6e173fc1ad474f76efb08fee5aa672eac998c6f1
[binutils-gdb.git] / gas / config / tc-i960.c
1 /* tc-i960.c - All the i80960-specific stuff
2 Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GAS.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* See comment on md_parse_option for 80960-specific invocation options. */
21
22 /******************************************************************************
23 * i80690 NOTE!!!:
24 * Header, symbol, and relocation info will be used on the host machine
25 * only -- only executable code is actually downloaded to the i80960.
26 * Therefore, leave all such information in host byte order.
27 *
28 * (That's a slight lie -- we DO download some header information, but
29 * the downloader converts the file format and corrects the byte-ordering
30 * of the relevant fields while doing so.)
31 *
32 ***************************************************************************** */
33
34 /* There are 4 different lengths of (potentially) symbol-based displacements
35 * in the 80960 instruction set, each of which could require address fix-ups
36 * and (in the case of external symbols) emission of relocation directives:
37 *
38 * 32-bit (MEMB)
39 * This is a standard length for the base assembler and requires no
40 * special action.
41 *
42 * 13-bit (COBR)
43 * This is a non-standard length, but the base assembler has a hook for
44 * bit field address fixups: the fixS structure can point to a descriptor
45 * of the field, in which case our md_number_to_field() routine gets called
46 * to process it.
47 *
48 * I made the hook a little cleaner by having fix_new() (in the base
49 * assembler) return a pointer to the fixS in question. And I made it a
50 * little simpler by storing the field size (in this case 13) instead of
51 * of a pointer to another structure: 80960 displacements are ALWAYS
52 * stored in the low-order bits of a 4-byte word.
53 *
54 * Since the target of a COBR cannot be external, no relocation directives
55 * for this size displacement have to be generated. But the base assembler
56 * had to be modified to issue error messages if the symbol did turn out
57 * to be external.
58 *
59 * 24-bit (CTRL)
60 * Fixups are handled as for the 13-bit case (except that 24 is stored
61 * in the fixS).
62 *
63 * The relocation directive generated is the same as that for the 32-bit
64 * displacement, except that it's PC-relative (the 32-bit displacement
65 * never is). The i80960 version of the linker needs a mod to
66 * distinguish and handle the 24-bit case.
67 *
68 * 12-bit (MEMA)
69 * MEMA formats are always promoted to MEMB (32-bit) if the displacement
70 * is based on a symbol, because it could be relocated at link time.
71 * The only time we use the 12-bit format is if an absolute value of
72 * less than 4096 is specified, in which case we need neither a fixup nor
73 * a relocation directive.
74 */
75
76 #include <stdio.h>
77 #include <ctype.h>
78
79 #include "as.h"
80
81 #include "obstack.h"
82
83 #include "opcode/i960.h"
84
85 extern char *input_line_pointer;
86 extern struct hash_control *po_hash;
87 extern char *next_object_file_charP;
88
89 #ifdef OBJ_COFF
90 int md_reloc_size = sizeof(struct reloc);
91 #else /* OBJ_COFF */
92 int md_reloc_size = sizeof(struct relocation_info);
93 #endif /* OBJ_COFF */
94
95 /***************************
96 * Local i80960 routines *
97 ************************** */
98
99 static void brcnt_emit(); /* Emit branch-prediction instrumentation code */
100 static char * brlab_next(); /* Return next branch local label */
101 void brtab_emit(); /* Emit br-predict instrumentation table */
102 static void cobr_fmt(); /* Generate COBR instruction */
103 static void ctrl_fmt(); /* Generate CTRL instruction */
104 static char * emit(); /* Emit (internally) binary */
105 static int get_args(); /* Break arguments out of comma-separated list */
106 static void get_cdisp(); /* Handle COBR or CTRL displacement */
107 static char * get_ispec(); /* Find index specification string */
108 static int get_regnum(); /* Translate text to register number */
109 static int i_scan(); /* Lexical scan of instruction source */
110 static void mem_fmt(); /* Generate MEMA or MEMB instruction */
111 static void mema_to_memb(); /* Convert MEMA instruction to MEMB format */
112 static segT parse_expr(); /* Parse an expression */
113 static int parse_ldconst();/* Parse and replace a 'ldconst' pseudo-op */
114 static void parse_memop(); /* Parse a memory operand */
115 static void parse_po(); /* Parse machine-dependent pseudo-op */
116 static void parse_regop(); /* Parse a register operand */
117 static void reg_fmt(); /* Generate a REG format instruction */
118 void reloc_callj(); /* Relocate a 'callj' instruction */
119 static void relax_cobr(); /* "De-optimize" cobr into compare/branch */
120 static void s_leafproc(); /* Process '.leafproc' pseudo-op */
121 static void s_sysproc(); /* Process '.sysproc' pseudo-op */
122 static int shift_ok(); /* Will a 'shlo' substiture for a 'ldconst'? */
123 static void syntax(); /* Give syntax error */
124 static int targ_has_sfr(); /* Target chip supports spec-func register? */
125 static int targ_has_iclass();/* Target chip supports instruction set? */
126 /* static void unlink_sym(); */ /* Remove a symbol from the symbol list */
127
128 /* See md_parse_option() for meanings of these options */
129 static char norelax; /* True if -norelax switch seen */
130 static char instrument_branches; /* True if -b switch seen */
131
132 /* Characters that always start a comment.
133 * If the pre-processor is disabled, these aren't very useful.
134 */
135 char comment_chars[] = "#";
136
137 /* Characters that only start a comment at the beginning of
138 * a line. If the line seems to have the form '# 123 filename'
139 * .line and .file directives will appear in the pre-processed output.
140 *
141 * Note that input_file.c hand checks for '#' at the beginning of the
142 * first line of the input file. This is because the compiler outputs
143 * #NO_APP at the beginning of its output.
144 */
145
146 /* Also note that comments started like this one will always work. */
147
148 char line_comment_chars[] = "";
149
150 /* Chars that can be used to separate mant from exp in floating point nums */
151 char EXP_CHARS[] = "eE";
152
153 /* Chars that mean this number is a floating point constant,
154 * as in 0f12.456 or 0d1.2345e12
155 */
156 char FLT_CHARS[] = "fFdDtT";
157
158
159 /* Table used by base assembler to relax addresses based on varying length
160 * instructions. The fields are:
161 * 1) most positive reach of this state,
162 * 2) most negative reach of this state,
163 * 3) how many bytes this mode will add to the size of the current frag
164 * 4) which index into the table to try if we can't fit into this one.
165 *
166 * For i80960, the only application is the (de-)optimization of cobr
167 * instructions into separate compare and branch instructions when a 13-bit
168 * displacement won't hack it.
169 */
170 const relax_typeS
171 md_relax_table[] = {
172 {0, 0, 0,0}, /* State 0 => no more relaxation possible */
173 {4088, -4096, 0,2}, /* State 1: conditional branch (cobr) */
174 {0x800000-8,-0x800000,4,0}, /* State 2: compare (reg) & branch (ctrl) */
175 };
176
177
178 /* These are the machine dependent pseudo-ops.
179 *
180 * This table describes all the machine specific pseudo-ops the assembler
181 * has to support. The fields are:
182 * pseudo-op name without dot
183 * function to call to execute this pseudo-op
184 * integer arg to pass to the function
185 */
186 #define S_LEAFPROC 1
187 #define S_SYSPROC 2
188
189 const pseudo_typeS md_pseudo_table[] = {
190 { "bss", s_lcomm, 1 },
191 { "extended", float_cons, 't' },
192 { "leafproc", parse_po, S_LEAFPROC },
193 { "sysproc", parse_po, S_SYSPROC },
194
195 { "word", cons, 4 },
196 { "quad", big_cons, 16 },
197
198 { 0, 0, 0 }
199 };
200 \f
201 /* Macros to extract info from an 'expressionS' structure 'e' */
202 #define adds(e) e.X_add_symbol
203 #define subs(e) e.X_subtract_symbol
204 #define offs(e) e.X_add_number
205 #define segs(e) e.X_seg
206
207
208 /* Branch-prediction bits for CTRL/COBR format opcodes */
209 #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
210 #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
211 #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
212
213
214 /* Some instruction opcodes that we need explicitly */
215 #define BE 0x12000000
216 #define BG 0x11000000
217 #define BGE 0x13000000
218 #define BL 0x14000000
219 #define BLE 0x16000000
220 #define BNE 0x15000000
221 #define BNO 0x10000000
222 #define BO 0x17000000
223 #define CHKBIT 0x5a002700
224 #define CMPI 0x5a002080
225 #define CMPO 0x5a002000
226
227 #define B 0x08000000
228 #define BAL 0x0b000000
229 #define CALL 0x09000000
230 #define CALLS 0x66003800
231 #define RET 0x0a000000
232
233
234 /* These masks are used to build up a set of MEMB mode bits. */
235 #define A_BIT 0x0400
236 #define I_BIT 0x0800
237 #define MEMB_BIT 0x1000
238 #define D_BIT 0x2000
239
240
241 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is used) */
242 #define MEMA_ABASE 0x2000
243
244 /* Info from which a MEMA or MEMB format instruction can be generated */
245 typedef struct {
246 long opcode; /* (First) 32 bits of instruction */
247 int disp; /* 0-(none), 12- or, 32-bit displacement needed */
248 char *e; /* The expression in the source instruction from
249 * which the displacement should be determined
250 */
251 } memS;
252
253
254 /* The two pieces of info we need to generate a register operand */
255 struct regop {
256 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
257 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
258 int n; /* Register number or literal value */
259 };
260
261
262 /* Number and assembler mnemonic for all registers that can appear in operands */
263 static struct {
264 char *reg_name;
265 int reg_num;
266 } regnames[] = {
267 { "pfp", 0 }, { "sp", 1 }, { "rip", 2 }, { "r3", 3 },
268 { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 },
269 { "r8", 8 }, { "r9", 9 }, { "r10", 10 }, { "r11", 11 },
270 { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 },
271 { "g0", 16 }, { "g1", 17 }, { "g2", 18 }, { "g3", 19 },
272 { "g4", 20 }, { "g5", 21 }, { "g6", 22 }, { "g7", 23 },
273 { "g8", 24 }, { "g9", 25 }, { "g10", 26 }, { "g11", 27 },
274 { "g12", 28 }, { "g13", 29 }, { "g14", 30 }, { "fp", 31 },
275
276 /* Numbers for special-function registers are for assembler internal
277 * use only: they are scaled back to range [0-31] for binary output.
278 */
279 # define SF0 32
280
281 { "sf0", 32 }, { "sf1", 33 }, { "sf2", 34 }, { "sf3", 35 },
282 { "sf4", 36 }, { "sf5", 37 }, { "sf6", 38 }, { "sf7", 39 },
283 { "sf8", 40 }, { "sf9", 41 }, { "sf10",42 }, { "sf11",43 },
284 { "sf12",44 }, { "sf13",45 }, { "sf14",46 }, { "sf15",47 },
285 { "sf16",48 }, { "sf17",49 }, { "sf18",50 }, { "sf19",51 },
286 { "sf20",52 }, { "sf21",53 }, { "sf22",54 }, { "sf23",55 },
287 { "sf24",56 }, { "sf25",57 }, { "sf26",58 }, { "sf27",59 },
288 { "sf28",60 }, { "sf29",61 }, { "sf30",62 }, { "sf31",63 },
289
290 /* Numbers for floating point registers are for assembler internal use
291 * only: they are scaled back to [0-3] for binary output.
292 */
293 # define FP0 64
294
295 { "fp0", 64 }, { "fp1", 65 }, { "fp2", 66 }, { "fp3", 67 },
296
297 { NULL, 0 }, /* END OF LIST */
298 };
299
300 #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
301 #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
302 #define IS_FP_REG(n) ((n) >= FP0)
303
304 /* Number and assembler mnemonic for all registers that can appear as 'abase'
305 * (indirect addressing) registers.
306 */
307 static struct {
308 char *areg_name;
309 int areg_num;
310 } aregs[] = {
311 { "(pfp)", 0 }, { "(sp)", 1 }, { "(rip)", 2 }, { "(r3)", 3 },
312 { "(r4)", 4 }, { "(r5)", 5 }, { "(r6)", 6 }, { "(r7)", 7 },
313 { "(r8)", 8 }, { "(r9)", 9 }, { "(r10)", 10 }, { "(r11)", 11 },
314 { "(r12)", 12 }, { "(r13)", 13 }, { "(r14)", 14 }, { "(r15)", 15 },
315 { "(g0)", 16 }, { "(g1)", 17 }, { "(g2)", 18 }, { "(g3)", 19 },
316 { "(g4)", 20 }, { "(g5)", 21 }, { "(g6)", 22 }, { "(g7)", 23 },
317 { "(g8)", 24 }, { "(g9)", 25 }, { "(g10)", 26 }, { "(g11)", 27 },
318 { "(g12)", 28 }, { "(g13)", 29 }, { "(g14)", 30 }, { "(fp)", 31 },
319
320 # define IPREL 32
321 /* for assembler internal use only: this number never appears in binary
322 * output.
323 */
324 { "(ip)", IPREL },
325
326 { NULL, 0 }, /* END OF LIST */
327 };
328
329
330 /* Hash tables */
331 static struct hash_control *op_hash = NULL; /* Opcode mnemonics */
332 static struct hash_control *reg_hash = NULL; /* Register name hash table */
333 static struct hash_control *areg_hash = NULL; /* Abase register hash table */
334
335
336 /* Architecture for which we are assembling */
337 #define ARCH_ANY 0 /* Default: no architecture checking done */
338 #define ARCH_KA 1
339 #define ARCH_KB 2
340 #define ARCH_MC 3
341 #define ARCH_CA 4
342 int architecture = ARCH_ANY; /* Architecture requested on invocation line */
343 int iclasses_seen = 0; /* OR of instruction classes (I_* constants)
344 * for which we've actually assembled
345 * instructions.
346 */
347
348
349 /* BRANCH-PREDICTION INSTRUMENTATION
350 *
351 * The following supports generation of branch-prediction instrumentation
352 * (turned on by -b switch). The instrumentation collects counts
353 * of branches taken/not-taken for later input to a utility that will
354 * set the branch prediction bits of the instructions in accordance with
355 * the behavior observed. (Note that the KX series does not have
356 * brach-prediction.)
357 *
358 * The instrumentation consists of:
359 *
360 * (1) before and after each conditional branch, a call to an external
361 * routine that increments and steps over an inline counter. The
362 * counter itself, initialized to 0, immediately follows the call
363 * instruction. For each branch, the counter following the branch
364 * is the number of times the branch was not taken, and the difference
365 * between the counters is the number of times it was taken. An
366 * example of an instrumented conditional branch:
367 *
368 * call BR_CNT_FUNC
369 * .word 0
370 * LBRANCH23: be label
371 * call BR_CNT_FUNC
372 * .word 0
373 *
374 * (2) a table of pointers to the instrumented branches, so that an
375 * external postprocessing routine can locate all of the counters.
376 * the table begins with a 2-word header: a pointer to the next in
377 * a linked list of such tables (initialized to 0); and a count
378 * of the number of entries in the table (exclusive of the header.
379 *
380 * Note that input source code is expected to already contain calls
381 * an external routine that will link the branch local table into a
382 * list of such tables.
383 */
384
385 static int br_cnt = 0; /* Number of branches instrumented so far.
386 * Also used to generate unique local labels
387 * for each instrumented branch
388 */
389
390 #define BR_LABEL_BASE "LBRANCH"
391 /* Basename of local labels on instrumented
392 * branches, to avoid conflict with compiler-
393 * generated local labels.
394 */
395
396 #define BR_CNT_FUNC "__inc_branch"
397 /* Name of the external routine that will
398 * increment (and step over) an inline counter.
399 */
400
401 #define BR_TAB_NAME "__BRANCH_TABLE__"
402 /* Name of the table of pointers to branches.
403 * A local (i.e., non-external) symbol.
404 */
405 \f
406 /*****************************************************************************
407 * md_begin: One-time initialization.
408 *
409 * Set up hash tables.
410 *
411 **************************************************************************** */
412 void
413 md_begin()
414 {
415 int i; /* Loop counter */
416 const struct i960_opcode *oP; /* Pointer into opcode table */
417 char *retval; /* Value returned by hash functions */
418
419 if (((op_hash = hash_new()) == 0)
420 || ((reg_hash = hash_new()) == 0)
421 || ((areg_hash = hash_new()) == 0)) {
422 as_fatal("virtual memory exceeded");
423 }
424
425 retval = ""; /* For some reason, the base assembler uses an empty
426 * string for "no error message", instead of a NULL
427 * pointer.
428 */
429
430 for (oP=i960_opcodes; oP->name && !*retval; oP++) {
431 retval = hash_insert(op_hash, oP->name, oP);
432 }
433
434 for (i=0; regnames[i].reg_name && !*retval; i++) {
435 retval = hash_insert(reg_hash, regnames[i].reg_name,
436 &regnames[i].reg_num);
437 }
438
439 for (i=0; aregs[i].areg_name && !*retval; i++){
440 retval = hash_insert(areg_hash, aregs[i].areg_name,
441 &aregs[i].areg_num);
442 }
443
444 if (*retval) {
445 as_fatal("Hashing returned \"%s\".", retval);
446 }
447 } /* md_begin() */
448
449 /*****************************************************************************
450 * md_end: One-time final cleanup
451 *
452 * None necessary
453 *
454 **************************************************************************** */
455 void
456 md_end()
457 {
458 }
459
460 /*****************************************************************************
461 * md_assemble: Assemble an instruction
462 *
463 * Assumptions about the passed-in text:
464 * - all comments, labels removed
465 * - text is an instruction
466 * - all white space compressed to single blanks
467 * - all character constants have been replaced with decimal
468 *
469 **************************************************************************** */
470 void
471 md_assemble(textP)
472 char *textP; /* Source text of instruction */
473 {
474 char *args[4]; /* Parsed instruction text, containing NO whitespace:
475 * arg[0]->opcode mnemonic
476 * arg[1-3]->operands, with char constants
477 * replaced by decimal numbers
478 */
479 int n_ops; /* Number of instruction operands */
480 int callx;
481 struct i960_opcode *oP;
482 /* Pointer to instruction description */
483 int branch_predict;
484 /* TRUE iff opcode mnemonic included branch-prediction
485 * suffix (".f" or ".t")
486 */
487 long bp_bits; /* Setting of branch-prediction bit(s) to be OR'd
488 * into instruction opcode of CTRL/COBR format
489 * instructions.
490 */
491 int n; /* Offset of last character in opcode mnemonic */
492
493 static const char bp_error_msg[] = "branch prediction invalid on this opcode";
494
495
496 /* Parse instruction into opcode and operands */
497 memset(args, '\0', sizeof(args));
498 n_ops = i_scan(textP, args);
499 if (n_ops == -1){
500 return; /* Error message already issued */
501 }
502
503 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
504 if (!strcmp(args[0],"ldconst")){
505 n_ops = parse_ldconst(args);
506 if (n_ops == -1){
507 return;
508 }
509 }
510
511
512
513 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
514 n = strlen(args[0]) - 1;
515 branch_predict = 0;
516 bp_bits = 0;
517 if (args[0][n-1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')){
518 /* We could check here to see if the target architecture
519 * supports branch prediction, but why bother? The bit
520 * will just be ignored by processors that don't use it.
521 */
522 branch_predict = 1;
523 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
524 args[0][n-1] = '\0'; /* Strip suffix from opcode mnemonic */
525 }
526
527 /* Look up opcode mnemonic in table and check number of operands.
528 * Check that opcode is legal for the target architecture.
529 * If all looks good, assemble instruction.
530 */
531 oP = (struct i960_opcode *) hash_find(op_hash, args[0]);
532 if (!oP || !targ_has_iclass(oP->iclass)) {
533 as_bad("invalid opcode, \"%s\".", args[0]);
534
535 } else if (n_ops != oP->num_ops) {
536 as_bad("improper number of operands. expecting %d, got %d", oP->num_ops, n_ops);
537
538 } else {
539 switch (oP->format){
540 case FBRA:
541 case CTRL:
542 ctrl_fmt(args[1], oP->opcode | bp_bits, oP->num_ops);
543 if (oP->format == FBRA){
544 /* Now generate a 'bno' to same arg */
545 ctrl_fmt(args[1], BNO | bp_bits, 1);
546 }
547 break;
548 case COBR:
549 case COJ:
550 cobr_fmt(args, oP->opcode | bp_bits, oP);
551 break;
552 case REG:
553 if (branch_predict){
554 as_warn(bp_error_msg);
555 }
556 reg_fmt(args, oP);
557 break;
558 case MEM1:
559 if (args[0][0] == 'c' && args[0][1] == 'a')
560 {
561 if (branch_predict)
562 {
563 as_warn(bp_error_msg);
564 }
565 mem_fmt(args, oP, 1);
566 break;
567 }
568 case MEM2:
569 case MEM4:
570 case MEM8:
571 case MEM12:
572 case MEM16:
573 if (branch_predict){
574 as_warn(bp_error_msg);
575 }
576 mem_fmt(args, oP, 0);
577 break;
578 case CALLJ:
579 if (branch_predict){
580 as_warn(bp_error_msg);
581 }
582 /* Output opcode & set up "fixup" (relocation);
583 * flag relocation as 'callj' type.
584 */
585 know(oP->num_ops == 1);
586 get_cdisp(args[1], "CTRL", oP->opcode, 24, 0, 1);
587 break;
588 default:
589 BAD_CASE(oP->format);
590 break;
591 }
592 }
593 } /* md_assemble() */
594
595 /*****************************************************************************
596 * md_number_to_chars: convert a number to target byte order
597 *
598 **************************************************************************** */
599 void
600 md_number_to_chars(buf, value, n)
601 char *buf; /* Put output here */
602 long value; /* The integer to be converted */
603 int n; /* Number of bytes to output (significant bytes
604 * in 'value')
605 */
606 {
607 while (n--){
608 *buf++ = value;
609 value >>= 8;
610 }
611
612 /* XXX line number probably botched for this warning message. */
613 if (value != 0 && value != -1){
614 as_bad("Displacement too long for instruction field length.");
615 }
616
617 return;
618 } /* md_number_to_chars() */
619
620 /*****************************************************************************
621 * md_chars_to_number: convert from target byte order to host byte order.
622 *
623 **************************************************************************** */
624 int
625 md_chars_to_number(val, n)
626 unsigned char *val; /* Value in target byte order */
627 int n; /* Number of bytes in the input */
628 {
629 int retval;
630
631 for (retval=0; n--;){
632 retval <<= 8;
633 retval |= val[n];
634 }
635 return retval;
636 }
637
638
639 #define MAX_LITTLENUMS 6
640 #define LNUM_SIZE sizeof(LITTLENUM_TYPE)
641
642 /*****************************************************************************
643 * md_atof: convert ascii to floating point
644 *
645 * Turn a string at input_line_pointer into a floating point constant of type
646 * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
647 * emitted is returned at 'sizeP'. An error message is returned, or a pointer
648 * to an empty message if OK.
649 *
650 * Note we call the i386 floating point routine, rather than complicating
651 * things with more files or symbolic links.
652 *
653 **************************************************************************** */
654 char * md_atof(type, litP, sizeP)
655 int type;
656 char *litP;
657 int *sizeP;
658 {
659 LITTLENUM_TYPE words[MAX_LITTLENUMS];
660 LITTLENUM_TYPE *wordP;
661 int prec;
662 char *t;
663 char *atof_ieee();
664
665 switch(type) {
666 case 'f':
667 case 'F':
668 prec = 2;
669 break;
670
671 case 'd':
672 case 'D':
673 prec = 4;
674 break;
675
676 case 't':
677 case 'T':
678 prec = 5;
679 type = 'x'; /* That's what atof_ieee() understands */
680 break;
681
682 default:
683 *sizeP=0;
684 return "Bad call to md_atof()";
685 }
686
687 t = atof_ieee(input_line_pointer, type, words);
688 if (t){
689 input_line_pointer = t;
690 }
691
692 *sizeP = prec * LNUM_SIZE;
693
694 /* Output the LITTLENUMs in REVERSE order in accord with i80960
695 * word-order. (Dunno why atof_ieee doesn't do it in the right
696 * order in the first place -- probably because it's a hack of
697 * atof_m68k.)
698 */
699
700 for(wordP = words + prec - 1; prec--;){
701 md_number_to_chars(litP, (long) (*wordP--), LNUM_SIZE);
702 litP += sizeof(LITTLENUM_TYPE);
703 }
704
705 return ""; /* Someone should teach Dean about null pointers */
706 }
707
708
709 /*****************************************************************************
710 * md_number_to_imm
711 *
712 **************************************************************************** */
713 void
714 md_number_to_imm(buf, val, n)
715 char *buf;
716 long val;
717 int n;
718 {
719 md_number_to_chars(buf, val, n);
720 }
721
722
723 /*****************************************************************************
724 * md_number_to_disp
725 *
726 **************************************************************************** */
727 void
728 md_number_to_disp(buf, val, n)
729 char *buf;
730 long val;
731 int n;
732 {
733 md_number_to_chars(buf, val, n);
734 }
735
736 /*****************************************************************************
737 * md_number_to_field:
738 *
739 * Stick a value (an address fixup) into a bit field of
740 * previously-generated instruction.
741 *
742 **************************************************************************** */
743 void
744 md_number_to_field(instrP, val, bfixP)
745 char *instrP; /* Pointer to instruction to be fixed */
746 long val; /* Address fixup value */
747 bit_fixS *bfixP; /* Description of bit field to be fixed up */
748 {
749 int numbits; /* Length of bit field to be fixed */
750 long instr; /* 32-bit instruction to be fixed-up */
751 long sign; /* 0 or -1, according to sign bit of 'val' */
752
753 /* Convert instruction back to host byte order
754 */
755 instr = md_chars_to_number(instrP, 4);
756
757 /* Surprise! -- we stored the number of bits
758 * to be modified rather than a pointer to a structure.
759 */
760 numbits = (int)bfixP;
761 if (numbits == 1){
762 /* This is a no-op, stuck here by reloc_callj() */
763 return;
764 }
765
766 know ((numbits==13) || (numbits==24));
767
768 /* Propagate sign bit of 'val' for the given number of bits.
769 * Result should be all 0 or all 1
770 */
771 sign = val >> ((int)numbits - 1);
772 if (((val < 0) && (sign != -1))
773 || ((val > 0) && (sign != 0))){
774 as_bad("Fixup of %d too large for field width of %d",
775 val, numbits);
776 } else {
777 /* Put bit field into instruction and write back in target
778 * byte order.
779 */
780 val &= ~(-1 << (int)numbits); /* Clear unused sign bits */
781 instr |= val;
782 md_number_to_chars(instrP, instr, 4);
783 }
784 } /* md_number_to_field() */
785
786
787 /*****************************************************************************
788 * md_parse_option
789 * Invocation line includes a switch not recognized by the base assembler.
790 * See if it's a processor-specific option. For the 960, these are:
791 *
792 * -norelax:
793 * Conditional branch instructions that require displacements
794 * greater than 13 bits (or that have external targets) should
795 * generate errors. The default is to replace each such
796 * instruction with the corresponding compare (or chkbit) and
797 * branch instructions. Note that the Intel "j" cobr directives
798 * are ALWAYS "de-optimized" in this way when necessary,
799 * regardless of the setting of this option.
800 *
801 * -b:
802 * Add code to collect information about branches taken, for
803 * later optimization of branch prediction bits by a separate
804 * tool. COBR and CNTL format instructions have branch
805 * prediction bits (in the CX architecture); if "BR" represents
806 * an instruction in one of these classes, the following rep-
807 * resents the code generated by the assembler:
808 *
809 * call <increment routine>
810 * .word 0 # pre-counter
811 * Label: BR
812 * call <increment routine>
813 * .word 0 # post-counter
814 *
815 * A table of all such "Labels" is also generated.
816 *
817 *
818 * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
819 * Select the 80960 architecture. Instructions or features not
820 * supported by the selected architecture cause fatal errors.
821 * The default is to generate code for any instruction or feature
822 * that is supported by SOME version of the 960 (even if this
823 * means mixing architectures!).
824 *
825 **************************************************************************** */
826 int
827 md_parse_option(argP, cntP, vecP)
828 char **argP;
829 int *cntP;
830 char ***vecP;
831 {
832 char *p;
833 struct tabentry { char *flag; int arch; };
834 static struct tabentry arch_tab[] = {
835 "KA", ARCH_KA,
836 "KB", ARCH_KB,
837 "SA", ARCH_KA, /* Synonym for KA */
838 "SB", ARCH_KB, /* Synonym for KB */
839 "KC", ARCH_MC, /* Synonym for MC */
840 "MC", ARCH_MC,
841 "CA", ARCH_CA,
842 NULL, 0
843 };
844 struct tabentry *tp;
845 if (!strcmp(*argP,"linkrelax")){
846 linkrelax = 1;
847 flagseen ['L'] = 1;
848 } else if (!strcmp(*argP,"norelax")){
849 norelax = 1;
850
851 } else if (**argP == 'b'){
852 instrument_branches = 1;
853
854 } else if (**argP == 'A'){
855 p = (*argP) + 1;
856
857 for (tp = arch_tab; tp->flag != NULL; tp++){
858 if (!strcmp(p,tp->flag)){
859 break;
860 }
861 }
862
863 if (tp->flag == NULL){
864 as_bad("unknown architecture: %s", p);
865 } else {
866 architecture = tp->arch;
867 }
868 } else {
869 /* Unknown option */
870 (*argP)++;
871 return 0;
872 }
873 **argP = '\0'; /* Done parsing this switch */
874 return 1;
875 }
876
877 /*****************************************************************************
878 * md_convert_frag:
879 * Called by base assembler after address relaxation is finished: modify
880 * variable fragments according to how much relaxation was done.
881 *
882 * If the fragment substate is still 1, a 13-bit displacement was enough
883 * to reach the symbol in question. Set up an address fixup, but otherwise
884 * leave the cobr instruction alone.
885 *
886 * If the fragment substate is 2, a 13-bit displacement was not enough.
887 * Replace the cobr with a two instructions (a compare and a branch).
888 *
889 **************************************************************************** */
890 void
891 md_convert_frag(headers, fragP)
892 object_headers *headers;
893 fragS * fragP;
894 {
895 fixS *fixP; /* Structure describing needed address fix */
896
897 switch (fragP->fr_subtype){
898 case 1:
899 /* LEAVE SINGLE COBR INSTRUCTION */
900 fixP = fix_new(fragP,
901 fragP->fr_opcode-fragP->fr_literal,
902 4,
903 fragP->fr_symbol,
904 0,
905 fragP->fr_offset,
906 1,
907 0);
908
909 fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
910 break;
911 case 2:
912 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
913 relax_cobr(fragP);
914 break;
915 default:
916 BAD_CASE(fragP->fr_subtype);
917 break;
918 }
919 }
920
921 /*****************************************************************************
922 * md_estimate_size_before_relax: How much does it look like *fragP will grow?
923 *
924 * Called by base assembler just before address relaxation.
925 * Return the amount by which the fragment will grow.
926 *
927 * Any symbol that is now undefined will not become defined; cobr's
928 * based on undefined symbols will have to be replaced with a compare
929 * instruction and a branch instruction, and the code fragment will grow
930 * by 4 bytes.
931 *
932 **************************************************************************** */
933 int
934 md_estimate_size_before_relax(fragP, segment_type)
935 register fragS *fragP;
936 register segT segment_type;
937 {
938 /* If symbol is undefined in this segment, go to "relaxed" state
939 * (compare and branch instructions instead of cobr) right now.
940 */
941 if (S_GET_SEGMENT(fragP->fr_symbol) != segment_type) {
942 relax_cobr(fragP);
943 return 4;
944 }
945 return 0;
946 } /* md_estimate_size_before_relax() */
947
948
949 /*****************************************************************************
950 * md_ri_to_chars:
951 * This routine exists in order to overcome machine byte-order problems
952 * when dealing with bit-field entries in the relocation_info struct.
953 *
954 * But relocation info will be used on the host machine only (only
955 * executable code is actually downloaded to the i80960). Therefore,
956 * we leave it in host byte order.
957 *
958 **************************************************************************** */
959 void md_ri_to_chars(where, ri)
960 char *where;
961 struct relocation_info *ri;
962 {
963 *((struct relocation_info *) where) = *ri; /* structure assignment */
964 } /* md_ri_to_chars() */
965
966 #ifndef WORKING_DOT_WORD
967
968 int md_short_jump_size = 0;
969 int md_long_jump_size = 0;
970
971 void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol)
972 char *ptr;
973 long from_addr;
974 long to_addr;
975 fragS *frag;
976 symbolS *to_symbol;
977 {
978 as_fatal("failed sanity check.");
979 }
980
981 void
982 md_create_long_jump(ptr,from_addr,to_addr,frag,to_symbol)
983 char *ptr;
984 long from_addr, to_addr;
985 fragS *frag;
986 symbolS *to_symbol;
987 {
988 as_fatal("failed sanity check.");
989 }
990 #endif
991 \f
992 /*************************************************************
993 * *
994 * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER *
995 * *
996 ************************************************************ */
997
998
999
1000 /*****************************************************************************
1001 * brcnt_emit: Emit code to increment inline branch counter.
1002 *
1003 * See the comments above the declaration of 'br_cnt' for details on
1004 * branch-prediction instrumentation.
1005 **************************************************************************** */
1006 static void
1007 brcnt_emit()
1008 {
1009 ctrl_fmt(BR_CNT_FUNC,CALL,1);/* Emit call to "increment" routine */
1010 emit(0); /* Emit inline counter to be incremented */
1011 }
1012
1013 /*****************************************************************************
1014 * brlab_next: generate the next branch local label
1015 *
1016 * See the comments above the declaration of 'br_cnt' for details on
1017 * branch-prediction instrumentation.
1018 **************************************************************************** */
1019 static char *
1020 brlab_next()
1021 {
1022 static char buf[20];
1023
1024 sprintf(buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1025 return buf;
1026 }
1027
1028 /*****************************************************************************
1029 * brtab_emit: generate the fetch-prediction branch table.
1030 *
1031 * See the comments above the declaration of 'br_cnt' for details on
1032 * branch-prediction instrumentation.
1033 *
1034 * The code emitted here would be functionally equivalent to the following
1035 * example assembler source.
1036 *
1037 * .data
1038 * .align 2
1039 * BR_TAB_NAME:
1040 * .word 0 # link to next table
1041 * .word 3 # length of table
1042 * .word LBRANCH0 # 1st entry in table proper
1043 * .word LBRANCH1
1044 * .word LBRANCH2
1045 ***************************************************************************** */
1046 void
1047 brtab_emit()
1048 {
1049 int i;
1050 char buf[20];
1051 char *p; /* Where the binary was output to */
1052 fixS *fixP; /*->description of deferred address fixup */
1053
1054 if (!instrument_branches){
1055 return;
1056 }
1057
1058 subseg_new(SEG_DATA,0); /* .data */
1059 frag_align(2,0); /* .align 2 */
1060 record_alignment(now_seg,2);
1061 colon(BR_TAB_NAME); /* BR_TAB_NAME: */
1062 emit(0); /* .word 0 #link to next table */
1063 emit(br_cnt); /* .word n #length of table */
1064
1065 for (i=0; i<br_cnt; i++){
1066 sprintf(buf, "%s%d", BR_LABEL_BASE, i);
1067 p = emit(0);
1068 fixP = fix_new(frag_now,
1069 p - frag_now->fr_literal,
1070 4,
1071 symbol_find(buf),
1072 0,
1073 0,
1074 0,
1075 0);
1076 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1077 }
1078 }
1079
1080 /*****************************************************************************
1081 * cobr_fmt: generate a COBR-format instruction
1082 *
1083 **************************************************************************** */
1084 static
1085 void
1086 cobr_fmt(arg, opcode, oP)
1087 char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1088 long opcode; /* Opcode, with branch-prediction bits already set
1089 * if necessary.
1090 */
1091 struct i960_opcode *oP;
1092 /*->description of instruction */
1093 {
1094 long instr; /* 32-bit instruction */
1095 struct regop regop; /* Description of register operand */
1096 int n; /* Number of operands */
1097 int var_frag; /* 1 if varying length code fragment should
1098 * be emitted; 0 if an address fix
1099 * should be emitted.
1100 */
1101
1102 instr = opcode;
1103 n = oP->num_ops;
1104
1105 if (n >= 1) {
1106 /* First operand (if any) of a COBR is always a register
1107 * operand. Parse it.
1108 */
1109 parse_regop(&regop, arg[1], oP->operand[0]);
1110 instr |= (regop.n << 19) | (regop.mode << 13);
1111 }
1112 if (n >= 2) {
1113 /* Second operand (if any) of a COBR is always a register
1114 * operand. Parse it.
1115 */
1116 parse_regop(&regop, arg[2], oP->operand[1]);
1117 instr |= (regop.n << 14) | regop.special;
1118 }
1119
1120
1121 if (n < 3){
1122 emit(instr);
1123
1124 } else {
1125 if (instrument_branches){
1126 brcnt_emit();
1127 colon(brlab_next());
1128 }
1129
1130 /* A third operand to a COBR is always a displacement.
1131 * Parse it; if it's relaxable (a cobr "j" directive, or any
1132 * cobr other than bbs/bbc when the "-norelax" option is not in
1133 * use) set up a variable code fragment; otherwise set up an
1134 * address fix.
1135 */
1136 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1137 get_cdisp(arg[3], "COBR", instr, 13, var_frag, 0);
1138
1139 if (instrument_branches){
1140 brcnt_emit();
1141 }
1142 }
1143 } /* cobr_fmt() */
1144
1145
1146 /*****************************************************************************
1147 * ctrl_fmt: generate a CTRL-format instruction
1148 *
1149 **************************************************************************** */
1150 static
1151 void
1152 ctrl_fmt(targP, opcode, num_ops)
1153 char *targP; /* Pointer to text of lone operand (if any) */
1154 long opcode; /* Template of instruction */
1155 int num_ops; /* Number of operands */
1156 {
1157 int instrument; /* TRUE iff we should add instrumentation to track
1158 * how often the branch is taken
1159 */
1160
1161
1162 if (num_ops == 0){
1163 emit(opcode); /* Output opcode */
1164 } else {
1165
1166 instrument = instrument_branches && (opcode!=CALL)
1167 && (opcode!=B) && (opcode!=RET) && (opcode!=BAL);
1168
1169 if (instrument){
1170 brcnt_emit();
1171 colon(brlab_next());
1172 }
1173
1174 /* The operand MUST be an ip-relative displacment. Parse it
1175 * and set up address fix for the instruction we just output.
1176 */
1177 get_cdisp(targP, "CTRL", opcode, 24, 0, 0);
1178
1179 if (instrument){
1180 brcnt_emit();
1181 }
1182 }
1183
1184 }
1185
1186
1187 /*****************************************************************************
1188 * emit: output instruction binary
1189 *
1190 * Output instruction binary, in target byte order, 4 bytes at a time.
1191 * Return pointer to where it was placed.
1192 *
1193 **************************************************************************** */
1194 static
1195 char *
1196 emit(instr)
1197 long instr; /* Word to be output, host byte order */
1198 {
1199 char *toP; /* Where to output it */
1200
1201 toP = frag_more(4); /* Allocate storage */
1202 md_number_to_chars(toP, instr, 4); /* Convert to target byte order */
1203 return toP;
1204 }
1205
1206
1207 /*****************************************************************************
1208 * get_args: break individual arguments out of comma-separated list
1209 *
1210 * Input assumptions:
1211 * - all comments and labels have been removed
1212 * - all strings of whitespace have been collapsed to a single blank.
1213 * - all character constants ('x') have been replaced with decimal
1214 *
1215 * Output:
1216 * args[0] is untouched. args[1] points to first operand, etc. All args:
1217 * - are NULL-terminated
1218 * - contain no whitespace
1219 *
1220 * Return value:
1221 * Number of operands (0,1,2, or 3) or -1 on error.
1222 *
1223 **************************************************************************** */
1224 static int get_args(p, args)
1225 register char *p; /* Pointer to comma-separated operands; MUCKED BY US */
1226 char *args[]; /* Output arg: pointers to operands placed in args[1-3].
1227 * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
1228 */
1229 {
1230 register int n; /* Number of operands */
1231 register char *to;
1232 /* char buf[4]; */
1233 /* int len; */
1234
1235
1236 /* Skip lead white space */
1237 while (*p == ' '){
1238 p++;
1239 }
1240
1241 if (*p == '\0'){
1242 return 0;
1243 }
1244
1245 n = 1;
1246 args[1] = p;
1247
1248 /* Squeze blanks out by moving non-blanks toward start of string.
1249 * Isolate operands, whenever comma is found.
1250 */
1251 to = p;
1252 while (*p != '\0'){
1253
1254 if (*p == ' '){
1255 p++;
1256
1257 } else if (*p == ','){
1258
1259 /* Start of operand */
1260 if (n == 3){
1261 as_bad("too many operands");
1262 return -1;
1263 }
1264 *to++ = '\0'; /* Terminate argument */
1265 args[++n] = to; /* Start next argument */
1266 p++;
1267
1268 } else {
1269 *to++ = *p++;
1270 }
1271 }
1272 *to = '\0';
1273 return n;
1274 }
1275
1276
1277 /*****************************************************************************
1278 * get_cdisp: handle displacement for a COBR or CTRL instruction.
1279 *
1280 * Parse displacement for a COBR or CTRL instruction.
1281 *
1282 * If successful, output the instruction opcode and set up for it,
1283 * depending on the arg 'var_frag', either:
1284 * o an address fixup to be done when all symbol values are known, or
1285 * o a varying length code fragment, with address fixup info. This
1286 * will be done for cobr instructions that may have to be relaxed
1287 * in to compare/branch instructions (8 bytes) if the final address
1288 * displacement is greater than 13 bits.
1289 *
1290 **************************************************************************** */
1291 static
1292 void
1293 get_cdisp(dispP, ifmtP, instr, numbits, var_frag, callj)
1294 char *dispP; /*->displacement as specified in source instruction */
1295 char *ifmtP; /*->"COBR" or "CTRL" (for use in error message) */
1296 long instr; /* Instruction needing the displacement */
1297 int numbits; /* # bits of displacement (13 for COBR, 24 for CTRL) */
1298 int var_frag; /* 1 if varying length code fragment should be emitted;
1299 * 0 if an address fix should be emitted.
1300 */
1301 int callj; /* 1 if callj relocation should be done; else 0 */
1302 {
1303 expressionS e; /* Parsed expression */
1304 fixS *fixP; /* Structure describing needed address fix */
1305 char *outP; /* Where instruction binary is output to */
1306
1307 fixP = NULL;
1308
1309 switch (parse_expr(dispP,&e)) {
1310
1311 case SEG_GOOF:
1312 as_bad("expression syntax error");
1313 break;
1314
1315 case SEG_TEXT:
1316 case SEG_UNKNOWN:
1317 if (var_frag) {
1318 outP = frag_more(8); /* Allocate worst-case storage */
1319 md_number_to_chars(outP, instr, 4);
1320 frag_variant(rs_machine_dependent, 4, 4, 1,
1321 adds(e), offs(e), outP, 0, 0);
1322 } else {
1323 /* Set up a new fix structure, so address can be updated
1324 * when all symbol values are known.
1325 */
1326 outP = emit(instr);
1327 fixP = fix_new(frag_now,
1328 outP - frag_now->fr_literal,
1329 4,
1330 adds(e),
1331 0,
1332 offs(e),
1333 1,
1334 0);
1335
1336 fixP->fx_callj = callj;
1337
1338 /* We want to modify a bit field when the address is
1339 * known. But we don't need all the garbage in the
1340 * bit_fix structure. So we're going to lie and store
1341 * the number of bits affected instead of a pointer.
1342 */
1343 fixP->fx_bit_fixP = (bit_fixS *) numbits;
1344 }
1345 break;
1346
1347 case SEG_DATA:
1348 case SEG_BSS:
1349 as_bad("attempt to branch into different segment");
1350 break;
1351
1352 default:
1353 as_bad("target of %s instruction must be a label", ifmtP);
1354 break;
1355 }
1356 }
1357
1358
1359 /*****************************************************************************
1360 * get_ispec: parse a memory operand for an index specification
1361 *
1362 * Here, an "index specification" is taken to be anything surrounded
1363 * by square brackets and NOT followed by anything else.
1364 *
1365 * If it's found, detach it from the input string, remove the surrounding
1366 * square brackets, and return a pointer to it. Otherwise, return NULL.
1367 *
1368 **************************************************************************** */
1369 static
1370 char *
1371 get_ispec(textP)
1372 char *textP; /*->memory operand from source instruction, no white space */
1373 {
1374 char *start; /*->start of index specification */
1375 char *end; /*->end of index specification */
1376
1377 /* Find opening square bracket, if any
1378 */
1379 start = strchr(textP, '[');
1380
1381 if (start != NULL){
1382
1383 /* Eliminate '[', detach from rest of operand */
1384 *start++ = '\0';
1385
1386 end = strchr(start, ']');
1387
1388 if (end == NULL){
1389 as_bad("unmatched '['");
1390
1391 } else {
1392 /* Eliminate ']' and make sure it was the last thing
1393 * in the string.
1394 */
1395 *end = '\0';
1396 if (*(end+1) != '\0'){
1397 as_bad("garbage after index spec ignored");
1398 }
1399 }
1400 }
1401 return start;
1402 }
1403
1404 /*****************************************************************************
1405 * get_regnum:
1406 *
1407 * Look up a (suspected) register name in the register table and return the
1408 * associated register number (or -1 if not found).
1409 *
1410 **************************************************************************** */
1411 static
1412 int
1413 get_regnum(regname)
1414 char *regname; /* Suspected register name */
1415 {
1416 int *rP;
1417
1418 rP = (int *) hash_find(reg_hash, regname);
1419 return (rP == NULL) ? -1 : *rP;
1420 }
1421
1422
1423 /*****************************************************************************
1424 * i_scan: perform lexical scan of ascii assembler instruction.
1425 *
1426 * Input assumptions:
1427 * - input string is an i80960 instruction (not a pseudo-op)
1428 * - all comments and labels have been removed
1429 * - all strings of whitespace have been collapsed to a single blank.
1430 *
1431 * Output:
1432 * args[0] points to opcode, other entries point to operands. All strings:
1433 * - are NULL-terminated
1434 * - contain no whitespace
1435 * - have character constants ('x') replaced with a decimal number
1436 *
1437 * Return value:
1438 * Number of operands (0,1,2, or 3) or -1 on error.
1439 *
1440 **************************************************************************** */
1441 static int i_scan(iP, args)
1442 register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */
1443 char *args[]; /* Output arg: pointers to opcode and operands placed
1444 * here. MUST ACCOMMODATE 4 ENTRIES.
1445 */
1446 {
1447
1448 /* Isolate opcode */
1449 if (*(iP) == ' ') {
1450 iP++;
1451 } /* Skip lead space, if any */
1452 args[0] = iP;
1453 for (; *iP != ' '; iP++) {
1454 if (*iP == '\0') {
1455 /* There are no operands */
1456 if (args[0] == iP) {
1457 /* We never moved: there was no opcode either! */
1458 as_bad("missing opcode");
1459 return -1;
1460 }
1461 return 0;
1462 }
1463 }
1464 *iP++ = '\0'; /* Terminate opcode */
1465 return(get_args(iP, args));
1466 } /* i_scan() */
1467
1468
1469 /*****************************************************************************
1470 * mem_fmt: generate a MEMA- or MEMB-format instruction
1471 *
1472 **************************************************************************** */
1473 static void mem_fmt(args, oP, callx)
1474 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
1475 struct i960_opcode *oP; /* Pointer to description of instruction */
1476 int callx; /* Is this a callx opcode */
1477 {
1478 int i; /* Loop counter */
1479 struct regop regop; /* Description of register operand */
1480 char opdesc; /* Operand descriptor byte */
1481 memS instr; /* Description of binary to be output */
1482 char *outP; /* Where the binary was output to */
1483 expressionS expr; /* Parsed expression */
1484 fixS *fixP; /*->description of deferred address fixup */
1485
1486 memset(&instr, '\0', sizeof(memS));
1487 instr.opcode = oP->opcode;
1488
1489 /* Process operands. */
1490 for (i = 1; i <= oP->num_ops; i++){
1491 opdesc = oP->operand[i-1];
1492
1493 if (MEMOP(opdesc)){
1494 parse_memop(&instr, args[i], oP->format);
1495 } else {
1496 parse_regop(&regop, args[i], opdesc);
1497 instr.opcode |= regop.n << 19;
1498 }
1499 }
1500
1501 /* Output opcode */
1502 outP = emit(instr.opcode);
1503
1504 if (instr.disp == 0){
1505 return;
1506 }
1507
1508 /* Parse and process the displacement */
1509 switch (parse_expr(instr.e,&expr)){
1510
1511 case SEG_GOOF:
1512 as_bad("expression syntax error");
1513 break;
1514
1515 case SEG_ABSOLUTE:
1516 if (instr.disp == 32){
1517 (void) emit(offs(expr)); /* Output displacement */
1518 } else {
1519 /* 12-bit displacement */
1520 if (offs(expr) & ~0xfff){
1521 /* Won't fit in 12 bits: convert already-output
1522 * instruction to MEMB format, output
1523 * displacement.
1524 */
1525 mema_to_memb(outP);
1526 (void) emit(offs(expr));
1527 } else {
1528 /* WILL fit in 12 bits: OR into opcode and
1529 * overwrite the binary we already put out
1530 */
1531 instr.opcode |= offs(expr);
1532 md_number_to_chars(outP, instr.opcode, 4);
1533 }
1534 }
1535 break;
1536
1537 case SEG_DIFFERENCE:
1538 case SEG_TEXT:
1539 case SEG_DATA:
1540 case SEG_BSS:
1541 case SEG_UNKNOWN:
1542 if (instr.disp == 12){
1543 /* Displacement is dependent on a symbol, whose value
1544 * may change at link time. We HAVE to reserve 32 bits.
1545 * Convert already-output opcode to MEMB format.
1546 */
1547 mema_to_memb(outP);
1548 }
1549
1550 /* Output 0 displacement and set up address fixup for when
1551 * this symbol's value becomes known.
1552 */
1553 outP = emit((long) 0);
1554 fixP = fix_new(frag_now,
1555 outP - frag_now->fr_literal,
1556 4,
1557 adds(expr),
1558 subs(expr),
1559 offs(expr),
1560 0,
1561 NO_RELOC);
1562 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1563 fixP->fx_bsr = callx; /*SAC LD RELAX HACK */ /* Mark reloc as being in i stream */
1564 break;
1565
1566 default:
1567 BAD_CASE(segs(expr));
1568 break;
1569 }
1570 } /* memfmt() */
1571
1572
1573 /*****************************************************************************
1574 * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
1575 *
1576 * There are 2 possible MEMA formats:
1577 * - displacement only
1578 * - displacement + abase
1579 *
1580 * They are distinguished by the setting of the MEMA_ABASE bit.
1581 *
1582 **************************************************************************** */
1583 static void mema_to_memb(opcodeP)
1584 char *opcodeP; /* Where to find the opcode, in target byte order */
1585 {
1586 long opcode; /* Opcode in host byte order */
1587 long mode; /* Mode bits for MEMB instruction */
1588
1589 opcode = md_chars_to_number(opcodeP, 4);
1590 know(!(opcode & MEMB_BIT));
1591
1592 mode = MEMB_BIT | D_BIT;
1593 if (opcode & MEMA_ABASE){
1594 mode |= A_BIT;
1595 }
1596
1597 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
1598 opcode |= mode; /* Set MEMB mode bits */
1599
1600 md_number_to_chars(opcodeP, opcode, 4);
1601 } /* mema_to_memb() */
1602
1603
1604 /*****************************************************************************
1605 * parse_expr: parse an expression
1606 *
1607 * Use base assembler's expression parser to parse an expression.
1608 * It, unfortunately, runs off a global which we have to save/restore
1609 * in order to make it work for us.
1610 *
1611 * An empty expression string is treated as an absolute 0.
1612 *
1613 * Return "segment" to which the expression evaluates.
1614 * Return SEG_GOOF regardless of expression evaluation if entire input
1615 * string is not consumed in the evaluation -- tolerate no dangling junk!
1616 *
1617 **************************************************************************** */
1618 static
1619 segT
1620 parse_expr(textP, expP)
1621 char *textP; /* Text of expression to be parsed */
1622 expressionS *expP; /* Where to put the results of parsing */
1623 {
1624 char *save_in; /* Save global here */
1625 segT seg; /* Segment to which expression evaluates */
1626 symbolS *symP;
1627
1628 know(textP);
1629
1630 if (*textP == '\0') {
1631 /* Treat empty string as absolute 0 */
1632 expP->X_add_symbol = expP->X_subtract_symbol = NULL;
1633 expP->X_add_number = 0;
1634 seg = expP->X_seg = SEG_ABSOLUTE;
1635
1636 } else {
1637 save_in = input_line_pointer; /* Save global */
1638 input_line_pointer = textP; /* Make parser work for us */
1639
1640 seg = expression(expP);
1641 if (input_line_pointer - textP != strlen(textP)) {
1642 /* Did not consume all of the input */
1643 seg = SEG_GOOF;
1644 }
1645 symP = expP->X_add_symbol;
1646 if (symP && (hash_find(reg_hash, S_GET_NAME(symP)))) {
1647 /* Register name in an expression */
1648 seg = SEG_GOOF;
1649 }
1650
1651 input_line_pointer = save_in; /* Restore global */
1652 }
1653 return seg;
1654 }
1655
1656
1657 /*****************************************************************************
1658 * parse_ldcont:
1659 * Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1660 * i80960 instruction.
1661 *
1662 * Assumes the input consists of:
1663 * arg[0] opcode mnemonic ('ldconst')
1664 * arg[1] first operand (constant)
1665 * arg[2] name of register to be loaded
1666 *
1667 * Replaces opcode and/or operands as appropriate.
1668 *
1669 * Returns the new number of arguments, or -1 on failure.
1670 *
1671 **************************************************************************** */
1672 static
1673 int
1674 parse_ldconst(arg)
1675 char *arg[]; /* See above */
1676 {
1677 int n; /* Constant to be loaded */
1678 int shift; /* Shift count for "shlo" instruction */
1679 static char buf[5]; /* Literal for first operand */
1680 static char buf2[5]; /* Literal for second operand */
1681 expressionS e; /* Parsed expression */
1682
1683
1684 arg[3] = NULL; /* So we can tell at the end if it got used or not */
1685
1686 switch(parse_expr(arg[1],&e)){
1687
1688 case SEG_TEXT:
1689 case SEG_DATA:
1690 case SEG_BSS:
1691 case SEG_UNKNOWN:
1692 case SEG_DIFFERENCE:
1693 /* We're dependent on one or more symbols -- use "lda" */
1694 arg[0] = "lda";
1695 break;
1696
1697 case SEG_ABSOLUTE:
1698 /* Try the following mappings:
1699 * ldconst 0,<reg> ->mov 0,<reg>
1700 * ldconst 31,<reg> ->mov 31,<reg>
1701 * ldconst 32,<reg> ->addo 1,31,<reg>
1702 * ldconst 62,<reg> ->addo 31,31,<reg>
1703 * ldconst 64,<reg> ->shlo 8,3,<reg>
1704 * ldconst -1,<reg> ->subo 1,0,<reg>
1705 * ldconst -31,<reg>->subo 31,0,<reg>
1706 *
1707 * anthing else becomes:
1708 * lda xxx,<reg>
1709 */
1710 n = offs(e);
1711 if ((0 <= n) && (n <= 31)){
1712 arg[0] = "mov";
1713
1714 } else if ((-31 <= n) && (n <= -1)){
1715 arg[0] = "subo";
1716 arg[3] = arg[2];
1717 sprintf(buf, "%d", -n);
1718 arg[1] = buf;
1719 arg[2] = "0";
1720
1721 } else if ((32 <= n) && (n <= 62)){
1722 arg[0] = "addo";
1723 arg[3] = arg[2];
1724 arg[1] = "31";
1725 sprintf(buf, "%d", n-31);
1726 arg[2] = buf;
1727
1728 } else if ((shift = shift_ok(n)) != 0){
1729 arg[0] = "shlo";
1730 arg[3] = arg[2];
1731 sprintf(buf, "%d", shift);
1732 arg[1] = buf;
1733 sprintf(buf2, "%d", n >> shift);
1734 arg[2] = buf2;
1735
1736 } else {
1737 arg[0] = "lda";
1738 }
1739 break;
1740
1741 default:
1742 as_bad("invalid constant");
1743 return -1;
1744 break;
1745 }
1746 return (arg[3] == 0) ? 2: 3;
1747 }
1748
1749 /*****************************************************************************
1750 * parse_memop: parse a memory operand
1751 *
1752 * This routine is based on the observation that the 4 mode bits of the
1753 * MEMB format, taken individually, have fairly consistent meaning:
1754 *
1755 * M3 (bit 13): 1 if displacement is present (D_BIT)
1756 * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
1757 * M1 (bit 11): 1 if index is present (I_BIT)
1758 * M0 (bit 10): 1 if abase is present (A_BIT)
1759 *
1760 * So we parse the memory operand and set bits in the mode as we find
1761 * things. Then at the end, if we go to MEMB format, we need only set
1762 * the MEMB bit (M2) and our mode is built for us.
1763 *
1764 * Unfortunately, I said "fairly consistent". The exceptions:
1765 *
1766 * DBIA
1767 * 0100 Would seem illegal, but means "abase-only".
1768 *
1769 * 0101 Would seem to mean "abase-only" -- it means IP-relative.
1770 * Must be converted to 0100.
1771 *
1772 * 0110 Would seem to mean "index-only", but is reserved.
1773 * We turn on the D bit and provide a 0 displacement.
1774 *
1775 * The other thing to observe is that we parse from the right, peeling
1776 * things * off as we go: first any index spec, then any abase, then
1777 * the displacement.
1778 *
1779 **************************************************************************** */
1780 static
1781 void
1782 parse_memop(memP, argP, optype)
1783 memS *memP; /* Where to put the results */
1784 char *argP; /* Text of the operand to be parsed */
1785 int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
1786 {
1787 char *indexP; /* Pointer to index specification with "[]" removed */
1788 char *p; /* Temp char pointer */
1789 char iprel_flag;/* True if this is an IP-relative operand */
1790 int regnum; /* Register number */
1791 int scale; /* Scale factor: 1,2,4,8, or 16. Later converted
1792 * to internal format (0,1,2,3,4 respectively).
1793 */
1794 int mode; /* MEMB mode bits */
1795 int *intP; /* Pointer to register number */
1796
1797 /* The following table contains the default scale factors for each
1798 * type of memory instruction. It is accessed using (optype-MEM1)
1799 * as an index -- thus it assumes the 'optype' constants are assigned
1800 * consecutive values, in the order they appear in this table
1801 */
1802 static int def_scale[] = {
1803 1, /* MEM1 */
1804 2, /* MEM2 */
1805 4, /* MEM4 */
1806 8, /* MEM8 */
1807 -1, /* MEM12 -- no valid default */
1808 16 /* MEM16 */
1809 };
1810
1811
1812 iprel_flag = mode = 0;
1813
1814 /* Any index present? */
1815 indexP = get_ispec(argP);
1816 if (indexP) {
1817 p = strchr(indexP, '*');
1818 if (p == NULL) {
1819 /* No explicit scale -- use default for this
1820 *instruction type.
1821 */
1822 scale = def_scale[ optype - MEM1 ];
1823 } else {
1824 *p++ = '\0'; /* Eliminate '*' */
1825
1826 /* Now indexP->a '\0'-terminated register name,
1827 * and p->a scale factor.
1828 */
1829
1830 if (!strcmp(p,"16")){
1831 scale = 16;
1832 } else if (strchr("1248",*p) && (p[1] == '\0')){
1833 scale = *p - '0';
1834 } else {
1835 scale = -1;
1836 }
1837 }
1838
1839 regnum = get_regnum(indexP); /* Get index reg. # */
1840 if (!IS_RG_REG(regnum)){
1841 as_bad("invalid index register");
1842 return;
1843 }
1844
1845 /* Convert scale to its binary encoding */
1846 switch (scale){
1847 case 1: scale = 0 << 7; break;
1848 case 2: scale = 1 << 7; break;
1849 case 4: scale = 2 << 7; break;
1850 case 8: scale = 3 << 7; break;
1851 case 16: scale = 4 << 7; break;
1852 default: as_bad("invalid scale factor"); return;
1853 };
1854
1855 memP->opcode |= scale | regnum; /* Set index bits in opcode */
1856 mode |= I_BIT; /* Found a valid index spec */
1857 }
1858
1859 /* Any abase (Register Indirect) specification present? */
1860 if ((p = strrchr(argP,'(')) != NULL) {
1861 /* "(" is there -- does it start a legal abase spec?
1862 * (If not it could be part of a displacement expression.)
1863 */
1864 intP = (int *) hash_find(areg_hash, p);
1865 if (intP != NULL){
1866 /* Got an abase here */
1867 regnum = *intP;
1868 *p = '\0'; /* discard register spec */
1869 if (regnum == IPREL){
1870 /* We have to specialcase ip-rel mode */
1871 iprel_flag = 1;
1872 } else {
1873 memP->opcode |= regnum << 14;
1874 mode |= A_BIT;
1875 }
1876 }
1877 }
1878
1879 /* Any expression present? */
1880 memP->e = argP;
1881 if (*argP != '\0'){
1882 mode |= D_BIT;
1883 }
1884
1885 /* Special-case ip-relative addressing */
1886 if (iprel_flag){
1887 if (mode & I_BIT){
1888 syntax();
1889 } else {
1890 memP->opcode |= 5 << 10; /* IP-relative mode */
1891 memP->disp = 32;
1892 }
1893 return;
1894 }
1895
1896 /* Handle all other modes */
1897 switch (mode){
1898 case D_BIT | A_BIT:
1899 /* Go with MEMA instruction format for now (grow to MEMB later
1900 * if 12 bits is not enough for the displacement).
1901 * MEMA format has a single mode bit: set it to indicate
1902 * that abase is present.
1903 */
1904 memP->opcode |= MEMA_ABASE;
1905 memP->disp = 12;
1906 break;
1907
1908 case D_BIT:
1909 /* Go with MEMA instruction format for now (grow to MEMB later
1910 * if 12 bits is not enough for the displacement).
1911 */
1912 memP->disp = 12;
1913 break;
1914
1915 case A_BIT:
1916 /* For some reason, the bit string for this mode is not
1917 * consistent: it should be 0 (exclusive of the MEMB bit),
1918 * so we set it "by hand" here.
1919 */
1920 memP->opcode |= MEMB_BIT;
1921 break;
1922
1923 case A_BIT | I_BIT:
1924 /* set MEMB bit in mode, and OR in mode bits */
1925 memP->opcode |= mode | MEMB_BIT;
1926 break;
1927
1928 case I_BIT:
1929 /* Treat missing displacement as displacement of 0 */
1930 mode |= D_BIT;
1931 /***********************
1932 * Fall into next case *
1933 ********************** */
1934 case D_BIT | A_BIT | I_BIT:
1935 case D_BIT | I_BIT:
1936 /* set MEMB bit in mode, and OR in mode bits */
1937 memP->opcode |= mode | MEMB_BIT;
1938 memP->disp = 32;
1939 break;
1940
1941 default:
1942 syntax();
1943 break;
1944 }
1945 }
1946
1947 /*****************************************************************************
1948 * parse_po: parse machine-dependent pseudo-op
1949 *
1950 * This is a top-level routine for machine-dependent pseudo-ops. It slurps
1951 * up the rest of the input line, breaks out the individual arguments,
1952 * and dispatches them to the correct handler.
1953 **************************************************************************** */
1954 static
1955 void
1956 parse_po(po_num)
1957 int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
1958 {
1959 char *args[4]; /* Pointers operands, with no embedded whitespace.
1960 * arg[0] unused.
1961 * arg[1-3]->operands
1962 */
1963 int n_ops; /* Number of operands */
1964 char *p; /* Pointer to beginning of unparsed argument string */
1965 char eol; /* Character that indicated end of line */
1966
1967 extern char is_end_of_line[];
1968
1969 /* Advance input pointer to end of line. */
1970 p = input_line_pointer;
1971 while (!is_end_of_line[ *input_line_pointer ]){
1972 input_line_pointer++;
1973 }
1974 eol = *input_line_pointer; /* Save end-of-line char */
1975 *input_line_pointer = '\0'; /* Terminate argument list */
1976
1977 /* Parse out operands */
1978 n_ops = get_args(p, args);
1979 if (n_ops == -1){
1980 return;
1981 }
1982
1983 /* Dispatch to correct handler */
1984 switch(po_num){
1985 case S_SYSPROC: s_sysproc(n_ops, args); break;
1986 case S_LEAFPROC: s_leafproc(n_ops, args); break;
1987 default: BAD_CASE(po_num); break;
1988 }
1989
1990 /* Restore eol, so line numbers get updated correctly. Base assembler
1991 * assumes we leave input pointer pointing at char following the eol.
1992 */
1993 *input_line_pointer++ = eol;
1994 }
1995
1996 /*****************************************************************************
1997 * parse_regop: parse a register operand.
1998 *
1999 * In case of illegal operand, issue a message and return some valid
2000 * information so instruction processing can continue.
2001 **************************************************************************** */
2002 static
2003 void
2004 parse_regop(regopP, optext, opdesc)
2005 struct regop *regopP; /* Where to put description of register operand */
2006 char *optext; /* Text of operand */
2007 char opdesc; /* Descriptor byte: what's legal for this operand */
2008 {
2009 int n; /* Register number */
2010 expressionS e; /* Parsed expression */
2011
2012 /* See if operand is a register */
2013 n = get_regnum(optext);
2014 if (n >= 0){
2015 if (IS_RG_REG(n)){
2016 /* global or local register */
2017 if (!REG_ALIGN(opdesc,n)){
2018 as_bad("unaligned register");
2019 }
2020 regopP->n = n;
2021 regopP->mode = 0;
2022 regopP->special = 0;
2023 return;
2024 } else if (IS_FP_REG(n) && FP_OK(opdesc)){
2025 /* Floating point register, and it's allowed */
2026 regopP->n = n - FP0;
2027 regopP->mode = 1;
2028 regopP->special = 0;
2029 return;
2030 } else if (IS_SF_REG(n) && SFR_OK(opdesc)){
2031 /* Special-function register, and it's allowed */
2032 regopP->n = n - SF0;
2033 regopP->mode = 0;
2034 regopP->special = 1;
2035 if (!targ_has_sfr(regopP->n)){
2036 as_bad("no such sfr in this architecture");
2037 }
2038 return;
2039 }
2040 } else if (LIT_OK(opdesc)){
2041 /*
2042 * How about a literal?
2043 */
2044 regopP->mode = 1;
2045 regopP->special = 0;
2046 if (FP_OK(opdesc)){ /* floating point literal acceptable */
2047 /* Skip over 0f, 0d, or 0e prefix */
2048 if ( (optext[0] == '0')
2049 && (optext[1] >= 'd')
2050 && (optext[1] <= 'f') ){
2051 optext += 2;
2052 }
2053
2054 if (!strcmp(optext,"0.0") || !strcmp(optext,"0") ){
2055 regopP->n = 0x10;
2056 return;
2057 }
2058 if (!strcmp(optext,"1.0") || !strcmp(optext,"1") ){
2059 regopP->n = 0x16;
2060 return;
2061 }
2062
2063 } else { /* fixed point literal acceptable */
2064 if ((parse_expr(optext,&e) != SEG_ABSOLUTE)
2065 || (offs(e) < 0) || (offs(e) > 31)){
2066 as_bad("illegal literal");
2067 offs(e) = 0;
2068 }
2069 regopP->n = offs(e);
2070 return;
2071 }
2072 }
2073
2074 /* Nothing worked */
2075 syntax();
2076 regopP->mode = 0; /* Register r0 is always a good one */
2077 regopP->n = 0;
2078 regopP->special = 0;
2079 } /* parse_regop() */
2080
2081 /*****************************************************************************
2082 * reg_fmt: generate a REG-format instruction
2083 *
2084 **************************************************************************** */
2085 static void reg_fmt(args, oP)
2086 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
2087 struct i960_opcode *oP; /* Pointer to description of instruction */
2088 {
2089 long instr; /* Binary to be output */
2090 struct regop regop; /* Description of register operand */
2091 int n_ops; /* Number of operands */
2092
2093
2094 instr = oP->opcode;
2095 n_ops = oP->num_ops;
2096
2097 if (n_ops >= 1){
2098 parse_regop(&regop, args[1], oP->operand[0]);
2099
2100 if ((n_ops == 1) && !(instr & M3)){
2101 /* 1-operand instruction in which the dst field should
2102 * be used (instead of src1).
2103 */
2104 regop.n <<= 19;
2105 if (regop.special){
2106 regop.mode = regop.special;
2107 }
2108 regop.mode <<= 13;
2109 regop.special = 0;
2110 } else {
2111 /* regop.n goes in bit 0, needs no shifting */
2112 regop.mode <<= 11;
2113 regop.special <<= 5;
2114 }
2115 instr |= regop.n | regop.mode | regop.special;
2116 }
2117
2118 if (n_ops >= 2) {
2119 parse_regop(&regop, args[2], oP->operand[1]);
2120
2121 if ((n_ops == 2) && !(instr & M3)){
2122 /* 2-operand instruction in which the dst field should
2123 * be used instead of src2).
2124 */
2125 regop.n <<= 19;
2126 if (regop.special){
2127 regop.mode = regop.special;
2128 }
2129 regop.mode <<= 13;
2130 regop.special = 0;
2131 } else {
2132 regop.n <<= 14;
2133 regop.mode <<= 12;
2134 regop.special <<= 6;
2135 }
2136 instr |= regop.n | regop.mode | regop.special;
2137 }
2138 if (n_ops == 3){
2139 parse_regop(&regop, args[3], oP->operand[2]);
2140 if (regop.special){
2141 regop.mode = regop.special;
2142 }
2143 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
2144 }
2145 emit(instr);
2146 }
2147
2148
2149 /*****************************************************************************
2150 * relax_cobr:
2151 * Replace cobr instruction in a code fragment with equivalent branch and
2152 * compare instructions, so it can reach beyond a 13-bit displacement.
2153 * Set up an address fix/relocation for the new branch instruction.
2154 *
2155 **************************************************************************** */
2156
2157 /* This "conditional jump" table maps cobr instructions into equivalent
2158 * compare and branch opcodes.
2159 */
2160 static
2161 struct {
2162 long compare;
2163 long branch;
2164 } coj[] = { /* COBR OPCODE: */
2165 CHKBIT, BNO, /* 0x30 - bbc */
2166 CMPO, BG, /* 0x31 - cmpobg */
2167 CMPO, BE, /* 0x32 - cmpobe */
2168 CMPO, BGE, /* 0x33 - cmpobge */
2169 CMPO, BL, /* 0x34 - cmpobl */
2170 CMPO, BNE, /* 0x35 - cmpobne */
2171 CMPO, BLE, /* 0x36 - cmpoble */
2172 CHKBIT, BO, /* 0x37 - bbs */
2173 CMPI, BNO, /* 0x38 - cmpibno */
2174 CMPI, BG, /* 0x39 - cmpibg */
2175 CMPI, BE, /* 0x3a - cmpibe */
2176 CMPI, BGE, /* 0x3b - cmpibge */
2177 CMPI, BL, /* 0x3c - cmpibl */
2178 CMPI, BNE, /* 0x3d - cmpibne */
2179 CMPI, BLE, /* 0x3e - cmpible */
2180 CMPI, BO, /* 0x3f - cmpibo */
2181 };
2182
2183 static
2184 void
2185 relax_cobr(fragP)
2186 register fragS *fragP; /* fragP->fr_opcode is assumed to point to
2187 * the cobr instruction, which comes at the
2188 * end of the code fragment.
2189 */
2190 {
2191 int opcode, src1, src2, m1, s2;
2192 /* Bit fields from cobr instruction */
2193 long bp_bits; /* Branch prediction bits from cobr instruction */
2194 long instr; /* A single i960 instruction */
2195 char *iP; /*->instruction to be replaced */
2196 fixS *fixP; /* Relocation that can be done at assembly time */
2197
2198 /* PICK UP & PARSE COBR INSTRUCTION */
2199 iP = fragP->fr_opcode;
2200 instr = md_chars_to_number(iP, 4);
2201 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
2202 src1 = (instr >> 19) & 0x1f;
2203 m1 = (instr >> 13) & 1;
2204 s2 = instr & 1;
2205 src2 = (instr >> 14) & 0x1f;
2206 bp_bits= instr & BP_MASK;
2207
2208 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
2209 instr = coj[opcode].compare
2210 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
2211 md_number_to_chars(iP, instr, 4);
2212
2213 /* OUTPUT BRANCH INSTRUCTION */
2214 md_number_to_chars(iP+4, coj[opcode].branch | bp_bits, 4);
2215
2216 /* SET UP ADDRESS FIXUP/RELOCATION */
2217 fixP = fix_new(fragP,
2218 iP+4 - fragP->fr_literal,
2219 4,
2220 fragP->fr_symbol,
2221 0,
2222 fragP->fr_offset,
2223 1,
2224 0);
2225
2226 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
2227
2228 fragP->fr_fix += 4;
2229 frag_wane(fragP);
2230 }
2231
2232
2233 /*****************************************************************************
2234 * reloc_callj: Relocate a 'callj' instruction
2235 *
2236 * This is a "non-(GNU)-standard" machine-dependent hook. The base
2237 * assembler calls it when it decides it can relocate an address at
2238 * assembly time instead of emitting a relocation directive.
2239 *
2240 * Check to see if the relocation involves a 'callj' instruction to a:
2241 * sysproc: Replace the default 'call' instruction with a 'calls'
2242 * leafproc: Replace the default 'call' instruction with a 'bal'.
2243 * other proc: Do nothing.
2244 *
2245 * See b.out.h for details on the 'n_other' field in a symbol structure.
2246 *
2247 * IMPORTANT!:
2248 * Assumes the caller has already figured out, in the case of a leafproc,
2249 * to use the 'bal' entry point, and has substituted that symbol into the
2250 * passed fixup structure.
2251 *
2252 **************************************************************************** */
2253 void reloc_callj(fixP)
2254 fixS *fixP; /* Relocation that can be done at assembly time */
2255 {
2256 char *where; /*->the binary for the instruction being relocated */
2257
2258 if (!fixP->fx_callj) {
2259 return;
2260 } /* This wasn't a callj instruction in the first place */
2261
2262 where = fixP->fx_frag->fr_literal + fixP->fx_where;
2263
2264 if (TC_S_IS_SYSPROC(fixP->fx_addsy)) {
2265 /* Symbol is a .sysproc: replace 'call' with 'calls'.
2266 * System procedure number is (other-1).
2267 */
2268 md_number_to_chars(where, CALLS|TC_S_GET_SYSPROC(fixP->fx_addsy), 4);
2269
2270 /* Nothing else needs to be done for this instruction.
2271 * Make sure 'md_number_to_field()' will perform a no-op.
2272 */
2273 fixP->fx_bit_fixP = (bit_fixS *) 1;
2274
2275 } else if (TC_S_IS_CALLNAME(fixP->fx_addsy)) {
2276 /* Should not happen: see block comment above */
2277 as_fatal("Trying to 'bal' to %s", S_GET_NAME(fixP->fx_addsy));
2278
2279 } else if (TC_S_IS_BALNAME(fixP->fx_addsy)) {
2280 /* Replace 'call' with 'bal'; both instructions have
2281 * the same format, so calling code should complete
2282 * relocation as if nothing happened here.
2283 */
2284 md_number_to_chars(where, BAL, 4);
2285 } else if (TC_S_IS_BADPROC(fixP->fx_addsy)) {
2286 as_bad("Looks like a proc, but can't tell what kind.\n");
2287 } /* switch on proc type */
2288
2289 /* else Symbol is neither a sysproc nor a leafproc */
2290
2291 return;
2292 } /* reloc_callj() */
2293
2294
2295 /*****************************************************************************
2296 * s_leafproc: process .leafproc pseudo-op
2297 *
2298 * .leafproc takes two arguments, the second one is optional:
2299 * arg[1]: name of 'call' entry point to leaf procedure
2300 * arg[2]: name of 'bal' entry point to leaf procedure
2301 *
2302 * If the two arguments are identical, or if the second one is missing,
2303 * the first argument is taken to be the 'bal' entry point.
2304 *
2305 * If there are 2 distinct arguments, we must make sure that the 'bal'
2306 * entry point immediately follows the 'call' entry point in the linked
2307 * list of symbols.
2308 *
2309 **************************************************************************** */
2310 static void s_leafproc(n_ops, args)
2311 int n_ops; /* Number of operands */
2312 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2313 {
2314 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
2315 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
2316
2317 if ((n_ops != 1) && (n_ops != 2)) {
2318 as_bad("should have 1 or 2 operands");
2319 return;
2320 } /* Check number of arguments */
2321
2322 /* Find or create symbol for 'call' entry point. */
2323 callP = symbol_find_or_make(args[1]);
2324
2325 if (TC_S_IS_CALLNAME(callP)) {
2326 as_warn("Redefining leafproc %s", S_GET_NAME(callP));
2327 } /* is leafproc */
2328
2329 /* If that was the only argument, use it as the 'bal' entry point.
2330 * Otherwise, mark it as the 'call' entry point and find or create
2331 * another symbol for the 'bal' entry point.
2332 */
2333 if ((n_ops == 1) || !strcmp(args[1],args[2])) {
2334 TC_S_FORCE_TO_BALNAME(callP);
2335
2336 } else {
2337 TC_S_FORCE_TO_CALLNAME(callP);
2338
2339 balP = symbol_find_or_make(args[2]);
2340 if (TC_S_IS_CALLNAME(balP)) {
2341 as_warn("Redefining leafproc %s", S_GET_NAME(balP));
2342 }
2343 TC_S_FORCE_TO_BALNAME(balP);
2344
2345 tc_set_bal_of_call(callP, balP);
2346 } /* if only one arg, or the args are the same */
2347
2348 return;
2349 } /* s_leafproc() */
2350
2351
2352 /*
2353 * s_sysproc: process .sysproc pseudo-op
2354 *
2355 * .sysproc takes two arguments:
2356 * arg[1]: name of entry point to system procedure
2357 * arg[2]: 'entry_num' (index) of system procedure in the range
2358 * [0,31] inclusive.
2359 *
2360 * For [ab].out, we store the 'entrynum' in the 'n_other' field of
2361 * the symbol. Since that entry is normally 0, we bias 'entrynum'
2362 * by adding 1 to it. It must be unbiased before it is used.
2363 */
2364 static void s_sysproc(n_ops, args)
2365 int n_ops; /* Number of operands */
2366 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2367 {
2368 expressionS exp;
2369 symbolS *symP;
2370
2371 if (n_ops != 2) {
2372 as_bad("should have two operands");
2373 return;
2374 } /* bad arg count */
2375
2376 /* Parse "entry_num" argument and check it for validity. */
2377 if ((parse_expr(args[2],&exp) != SEG_ABSOLUTE)
2378 || (offs(exp) < 0)
2379 || (offs(exp) > 31)) {
2380 as_bad("'entry_num' must be absolute number in [0,31]");
2381 return;
2382 }
2383
2384 /* Find/make symbol and stick entry number (biased by +1) into it */
2385 symP = symbol_find_or_make(args[1]);
2386
2387 if (TC_S_IS_SYSPROC(symP)) {
2388 as_warn("Redefining entrynum for sysproc %s", S_GET_NAME(symP));
2389 } /* redefining */
2390
2391 TC_S_SET_SYSPROC(symP, offs(exp)); /* encode entry number */
2392 TC_S_FORCE_TO_SYSPROC(symP);
2393
2394 return;
2395 } /* s_sysproc() */
2396
2397
2398 /*****************************************************************************
2399 * shift_ok:
2400 * Determine if a "shlo" instruction can be used to implement a "ldconst".
2401 * This means that some number X < 32 can be shifted left to produce the
2402 * constant of interest.
2403 *
2404 * Return the shift count, or 0 if we can't do it.
2405 * Caller calculates X by shifting original constant right 'shift' places.
2406 *
2407 **************************************************************************** */
2408 static
2409 int
2410 shift_ok(n)
2411 int n; /* The constant of interest */
2412 {
2413 int shift; /* The shift count */
2414
2415 if (n <= 0){
2416 /* Can't do it for negative numbers */
2417 return 0;
2418 }
2419
2420 /* Shift 'n' right until a 1 is about to be lost */
2421 for (shift = 0; (n & 1) == 0; shift++){
2422 n >>= 1;
2423 }
2424
2425 if (n >= 32){
2426 return 0;
2427 }
2428 return shift;
2429 }
2430
2431
2432 /*****************************************************************************
2433 * syntax: issue syntax error
2434 *
2435 **************************************************************************** */
2436 static void syntax() {
2437 as_bad("syntax error");
2438 } /* syntax() */
2439
2440
2441 /*****************************************************************************
2442 * targ_has_sfr:
2443 * Return TRUE iff the target architecture supports the specified
2444 * special-function register (sfr).
2445 *
2446 **************************************************************************** */
2447 static
2448 int
2449 targ_has_sfr(n)
2450 int n; /* Number (0-31) of sfr */
2451 {
2452 switch (architecture){
2453 case ARCH_KA:
2454 case ARCH_KB:
2455 case ARCH_MC:
2456 return 0;
2457 case ARCH_CA:
2458 default:
2459 return ((0<=n) && (n<=2));
2460 }
2461 }
2462
2463
2464 /*****************************************************************************
2465 * targ_has_iclass:
2466 * Return TRUE iff the target architecture supports the indicated
2467 * class of instructions.
2468 *
2469 **************************************************************************** */
2470 static
2471 int
2472 targ_has_iclass(ic)
2473 int ic; /* Instruction class; one of:
2474 * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
2475 */
2476 {
2477 iclasses_seen |= ic;
2478 switch (architecture){
2479 case ARCH_KA: return ic & (I_BASE | I_KX);
2480 case ARCH_KB: return ic & (I_BASE | I_KX | I_FP | I_DEC);
2481 case ARCH_MC: return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
2482 case ARCH_CA: return ic & (I_BASE | I_CX | I_CASIM);
2483 default:
2484 if ((iclasses_seen & (I_KX|I_FP|I_DEC|I_MIL))
2485 && (iclasses_seen & I_CX)){
2486 as_warn("architecture of opcode conflicts with that of earlier instruction(s)");
2487 iclasses_seen &= ~ic;
2488 }
2489 return 1;
2490 }
2491 }
2492
2493
2494 /* Parse an operand that is machine-specific.
2495 We just return without modifying the expression if we have nothing
2496 to do. */
2497
2498 /* ARGSUSED */
2499 void
2500 md_operand (expressionP)
2501 expressionS *expressionP;
2502 {
2503 }
2504
2505 /* We have no need to default values of symbols. */
2506
2507 /* ARGSUSED */
2508 symbolS *md_undefined_symbol(name)
2509 char *name;
2510 {
2511 return 0;
2512 } /* md_undefined_symbol() */
2513
2514 /* Exactly what point is a PC-relative offset relative TO?
2515 On the i960, they're relative to the address of the instruction,
2516 which we have set up as the address of the fixup too. */
2517 long
2518 md_pcrel_from (fixP)
2519 fixS *fixP;
2520 {
2521 return fixP->fx_where + fixP->fx_frag->fr_address;
2522 }
2523
2524 void
2525 md_apply_fix(fixP, val)
2526 fixS *fixP;
2527 long val;
2528 {
2529 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
2530
2531 if (!fixP->fx_bit_fixP) {
2532
2533 switch (fixP->fx_im_disp) {
2534 case 0:
2535 fixP->fx_addnumber = val;
2536 md_number_to_imm(place, val, fixP->fx_size, fixP);
2537 break;
2538 case 1:
2539 md_number_to_disp(place,
2540 fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val,
2541 fixP->fx_size);
2542 break;
2543 case 2: /* fix requested for .long .word etc */
2544 md_number_to_chars(place, val, fixP->fx_size);
2545 break;
2546 default:
2547 as_fatal("Internal error in md_apply_fix() in file \"%s\"", __FILE__);
2548 } /* OVE: maybe one ought to put _imm _disp _chars in one md-func */
2549 } else {
2550 md_number_to_field(place, val, fixP->fx_bit_fixP);
2551 }
2552
2553 return;
2554 } /* md_apply_fix() */
2555
2556 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2557 void tc_bout_fix_to_chars(where, fixP, segment_address_in_file)
2558 char *where;
2559 fixS *fixP;
2560 relax_addressT segment_address_in_file;
2561 {
2562 static unsigned char nbytes_r_length [] = { 42, 0, 1, 42, 2 };
2563 struct relocation_info ri;
2564 symbolS *symbolP;
2565
2566 /* JF this is for paranoia */
2567 memset((char *)&ri, '\0', sizeof(ri));
2568 symbolP = fixP->fx_addsy;
2569 know(symbolP != 0 || fixP->fx_r_type != NO_RELOC);
2570 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */
2571 /* These two 'cuz of NS32K */
2572 ri.r_callj = fixP->fx_callj;
2573 if(fixP->fx_bit_fixP) {
2574 ri.r_length = 1;
2575 }
2576 else {
2577 ri.r_length = nbytes_r_length[fixP->fx_size];
2578 }
2579 ri.r_pcrel = fixP->fx_pcrel;
2580 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
2581
2582 if (fixP->fx_r_type != NO_RELOC)
2583 {
2584 switch (fixP->fx_r_type)
2585 {
2586 case rs_align:
2587 ri.r_index = -2;
2588 ri.r_pcrel = 1;
2589 ri.r_length = fixP->fx_size - 1;
2590 break;
2591 case rs_org:
2592 ri.r_index = -2;
2593 ri.r_pcrel = 0;
2594 break;
2595 case rs_fill:
2596 ri.r_index = -1;
2597 break;
2598 default:
2599 abort ();
2600 }
2601 ri.r_extern = 0;
2602 }
2603 else if (linkrelax || !S_IS_DEFINED(symbolP)) {
2604 ri.r_extern = 1;
2605 ri.r_index = symbolP->sy_number;
2606 } else {
2607 ri.r_extern = 0;
2608 ri.r_index = S_GET_TYPE(symbolP);
2609 }
2610
2611 /* Output the relocation information in machine-dependent form. */
2612 md_ri_to_chars(where, &ri);
2613
2614 return;
2615 } /* tc_bout_fix_to_chars() */
2616
2617 #endif /* OBJ_AOUT or OBJ_BOUT */
2618
2619 /* Align an address by rounding it up to the specified boundary.
2620 */
2621 long md_section_align(seg, addr)
2622 segT seg;
2623 long addr; /* Address to be rounded up */
2624 {
2625 return((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
2626 } /* md_section_align() */
2627
2628 #ifdef OBJ_COFF
2629 void tc_headers_hook(headers)
2630 object_headers *headers;
2631 {
2632 /* FIXME: remove this line */ /* unsigned short arch_flag = 0; */
2633
2634 if (iclasses_seen == I_BASE){
2635 headers->filehdr.f_flags |= F_I960CORE;
2636 } else if (iclasses_seen & I_CX){
2637 headers->filehdr.f_flags |= F_I960CA;
2638 } else if (iclasses_seen & I_MIL){
2639 headers->filehdr.f_flags |= F_I960MC;
2640 } else if (iclasses_seen & (I_DEC|I_FP)){
2641 headers->filehdr.f_flags |= F_I960KB;
2642 } else {
2643 headers->filehdr.f_flags |= F_I960KA;
2644 } /* set arch flag */
2645
2646 if (flagseen['R']) {
2647 headers->filehdr.f_magic = I960RWMAGIC;
2648 headers->aouthdr.magic = OMAGIC;
2649 } else {
2650 headers->filehdr.f_magic = I960ROMAGIC;
2651 headers->aouthdr.magic = NMAGIC;
2652 } /* set magic numbers */
2653
2654 return;
2655 } /* tc_headers_hook() */
2656 #endif /* OBJ_COFF */
2657
2658 /*
2659 * Things going on here:
2660 *
2661 * For bout, We need to assure a couple of simplifying
2662 * assumptions about leafprocs for the linker: the leafproc
2663 * entry symbols will be defined in the same assembly in
2664 * which they're declared with the '.leafproc' directive;
2665 * and if a leafproc has both 'call' and 'bal' entry points
2666 * they are both global or both local.
2667 *
2668 * For coff, the call symbol has a second aux entry that
2669 * contains the bal entry point. The bal symbol becomes a
2670 * label.
2671 *
2672 * For coff representation, the call symbol has a second aux entry that
2673 * contains the bal entry point. The bal symbol becomes a label.
2674 *
2675 */
2676
2677 void tc_crawl_symbol_chain(headers)
2678 object_headers *headers;
2679 {
2680 symbolS *symbolP;
2681
2682 for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next(symbolP)) {
2683 #ifdef OBJ_COFF
2684 if (TC_S_IS_SYSPROC(symbolP)) {
2685 /* second aux entry already contains the sysproc number */
2686 S_SET_NUMBER_AUXILIARY(symbolP, 2);
2687 S_SET_STORAGE_CLASS(symbolP, C_SCALL);
2688 S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
2689 continue;
2690 } /* rewrite sysproc */
2691 #endif /* OBJ_COFF */
2692
2693 if (!TC_S_IS_BALNAME(symbolP) && !TC_S_IS_CALLNAME(symbolP)) {
2694 continue;
2695 } /* Not a leafproc symbol */
2696
2697 if (!S_IS_DEFINED(symbolP)) {
2698 as_bad("leafproc symbol '%s' undefined", S_GET_NAME(symbolP));
2699 } /* undefined leaf */
2700
2701 if (TC_S_IS_CALLNAME(symbolP)) {
2702 symbolS *balP = tc_get_bal_of_call(symbolP);
2703 if (S_IS_EXTERNAL(symbolP) != S_IS_EXTERNAL(balP)) {
2704 S_SET_EXTERNAL(symbolP);
2705 S_SET_EXTERNAL(balP);
2706 as_warn("Warning: making leafproc entries %s and %s both global\n",
2707 S_GET_NAME(symbolP), S_GET_NAME(balP));
2708 } /* externality mismatch */
2709 } /* if callname */
2710 } /* walk the symbol chain */
2711
2712 return;
2713 } /* tc_crawl_symbol_chain() */
2714
2715 /*
2716 * For aout or bout, the bal immediately follows the call.
2717 *
2718 * For coff, we cheat and store a pointer to the bal symbol
2719 * in the second aux entry of the call.
2720 */
2721
2722 void tc_set_bal_of_call(callP, balP)
2723 symbolS *callP;
2724 symbolS *balP;
2725 {
2726 know(TC_S_IS_CALLNAME(callP));
2727 know(TC_S_IS_BALNAME(balP));
2728
2729 #ifdef OBJ_COFF
2730
2731 callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
2732 S_SET_NUMBER_AUXILIARY(callP,2);
2733
2734 #elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
2735
2736 /* If the 'bal' entry doesn't immediately follow the 'call'
2737 * symbol, unlink it from the symbol list and re-insert it.
2738 */
2739 if (symbol_next(callP) != balP) {
2740 symbol_remove(balP, &symbol_rootP, &symbol_lastP);
2741 symbol_append(balP, callP, &symbol_rootP, &symbol_lastP);
2742 } /* if not in order */
2743
2744 #else
2745 (as yet unwritten.);
2746 #endif /* switch on OBJ_FORMAT */
2747
2748 return;
2749 } /* tc_set_bal_of_call() */
2750
2751 char *_tc_get_bal_of_call(callP)
2752 symbolS *callP;
2753 {
2754 symbolS *retval;
2755
2756 know(TC_S_IS_CALLNAME(callP));
2757
2758 #ifdef OBJ_COFF
2759 retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
2760 #elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
2761 retval = symbol_next(callP);
2762 #else
2763 (as yet unwritten.);
2764 #endif /* switch on OBJ_FORMAT */
2765
2766 know(TC_S_IS_BALNAME(retval));
2767 return((char *) retval);
2768 } /* _tc_get_bal_of_call() */
2769
2770 void tc_coff_symbol_emit_hook(symbolP)
2771 symbolS *symbolP;
2772 {
2773 if (TC_S_IS_CALLNAME(symbolP)) {
2774 #ifdef OBJ_COFF
2775 symbolS *balP = tc_get_bal_of_call(symbolP);
2776
2777 /* second aux entry contains the bal entry point */
2778 /* S_SET_NUMBER_AUXILIARY(symbolP, 2); */
2779 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE(balP);
2780 S_SET_STORAGE_CLASS(symbolP, (!SF_GET_LOCAL(symbolP) ? C_LEAFEXT : C_LEAFSTAT));
2781 S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
2782 /* fix up the bal symbol */
2783 S_SET_STORAGE_CLASS(balP, C_LABEL);
2784 #endif /* OBJ_COFF */
2785 } /* only on calls */
2786
2787 return;
2788 } /* tc_coff_symbol_emit_hook() */
2789
2790 void
2791 i960_handle_align (fragp)
2792 fragS *fragp;
2793 {
2794 fixS *fixp;
2795 segT old_seg = now_seg, this_seg;
2796 int old_subseg = now_subseg;
2797 int pad_size;
2798 extern struct frag *text_last_frag, *data_last_frag;
2799
2800 if (!linkrelax)
2801 return;
2802
2803 /* The text section "ends" with another alignment reloc, to which we
2804 aren't adding padding. */
2805 if (fragp->fr_next == text_last_frag
2806 || fragp->fr_next == data_last_frag)
2807 {
2808 return;
2809 }
2810
2811 /* alignment directive */
2812 fixp = fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0, 0,
2813 (int) fragp->fr_type);
2814 }
2815
2816 /*
2817 * Local Variables:
2818 * comment-column: 0
2819 * fill-column: 131
2820 * End:
2821 */
2822
2823 /* end of tc-i960.c */