ARC/GAS: Correct a `spaces' global shadowing error
[binutils-gdb.git] / gas / config / tc-i960.c
1 /* tc-i960.c - All the i80960-specific stuff
2 Copyright (C) 1989-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* See comment on md_parse_option for 80960-specific invocation options. */
22
23 /* There are 4 different lengths of (potentially) symbol-based displacements
24 in the 80960 instruction set, each of which could require address fix-ups
25 and (in the case of external symbols) emission of relocation directives:
26
27 32-bit (MEMB)
28 This is a standard length for the base assembler and requires no
29 special action.
30
31 13-bit (COBR)
32 This is a non-standard length, but the base assembler has a
33 hook for bit field address fixups: the fixS structure can
34 point to a descriptor of the field, in which case our
35 md_number_to_field() routine gets called to process it.
36
37 I made the hook a little cleaner by having fix_new() (in the base
38 assembler) return a pointer to the fixS in question. And I made it a
39 little simpler by storing the field size (in this case 13) instead of
40 of a pointer to another structure: 80960 displacements are ALWAYS
41 stored in the low-order bits of a 4-byte word.
42
43 Since the target of a COBR cannot be external, no relocation
44 directives for this size displacement have to be generated.
45 But the base assembler had to be modified to issue error
46 messages if the symbol did turn out to be external.
47
48 24-bit (CTRL)
49 Fixups are handled as for the 13-bit case (except that 24 is stored
50 in the fixS).
51
52 The relocation directive generated is the same as that for the 32-bit
53 displacement, except that it's PC-relative (the 32-bit displacement
54 never is). The i80960 version of the linker needs a mod to
55 distinguish and handle the 24-bit case.
56
57 12-bit (MEMA)
58 MEMA formats are always promoted to MEMB (32-bit) if the displacement
59 is based on a symbol, because it could be relocated at link time.
60 The only time we use the 12-bit format is if an absolute value of
61 less than 4096 is specified, in which case we need neither a fixup nor
62 a relocation directive. */
63
64 #include "as.h"
65
66 #include "safe-ctype.h"
67
68 #include "opcode/i960.h"
69
70 #if defined (OBJ_AOUT) || defined (OBJ_BOUT)
71
72 #define TC_S_IS_SYSPROC(s) ((1 <= S_GET_OTHER (s)) && (S_GET_OTHER (s) <= 32))
73 #define TC_S_IS_BALNAME(s) (S_GET_OTHER (s) == N_BALNAME)
74 #define TC_S_IS_CALLNAME(s) (S_GET_OTHER (s) == N_CALLNAME)
75 #define TC_S_IS_BADPROC(s) ((S_GET_OTHER (s) != 0) && !TC_S_IS_CALLNAME (s) && !TC_S_IS_BALNAME (s) && !TC_S_IS_SYSPROC (s))
76
77 #define TC_S_SET_SYSPROC(s, p) (S_SET_OTHER ((s), (p) + 1))
78 #define TC_S_GET_SYSPROC(s) (S_GET_OTHER (s) - 1)
79
80 #define TC_S_FORCE_TO_BALNAME(s) (S_SET_OTHER ((s), N_BALNAME))
81 #define TC_S_FORCE_TO_CALLNAME(s) (S_SET_OTHER ((s), N_CALLNAME))
82 #define TC_S_FORCE_TO_SYSPROC(s) {;}
83
84 #else /* ! OBJ_A/BOUT */
85 #ifdef OBJ_COFF
86
87 #define TC_S_IS_SYSPROC(s) (S_GET_STORAGE_CLASS (s) == C_SCALL)
88 #define TC_S_IS_BALNAME(s) (SF_GET_BALNAME (s))
89 #define TC_S_IS_CALLNAME(s) (SF_GET_CALLNAME (s))
90 #define TC_S_IS_BADPROC(s) (TC_S_IS_SYSPROC (s) && TC_S_GET_SYSPROC (s) < 0 && 31 < TC_S_GET_SYSPROC (s))
91
92 #define TC_S_SET_SYSPROC(s, p) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx = (p))
93 #define TC_S_GET_SYSPROC(s) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx)
94
95 #define TC_S_FORCE_TO_BALNAME(s) (SF_SET_BALNAME (s))
96 #define TC_S_FORCE_TO_CALLNAME(s) (SF_SET_CALLNAME (s))
97 #define TC_S_FORCE_TO_SYSPROC(s) (S_SET_STORAGE_CLASS ((s), C_SCALL))
98
99 #else /* ! OBJ_COFF */
100 #ifdef OBJ_ELF
101 #define TC_S_IS_SYSPROC(s) 0
102
103 #define TC_S_IS_BALNAME(s) 0
104 #define TC_S_IS_CALLNAME(s) 0
105 #define TC_S_IS_BADPROC(s) 0
106
107 #define TC_S_SET_SYSPROC(s, p)
108 #define TC_S_GET_SYSPROC(s) 0
109
110 #define TC_S_FORCE_TO_BALNAME(s)
111 #define TC_S_FORCE_TO_CALLNAME(s)
112 #define TC_S_FORCE_TO_SYSPROC(s)
113 #else
114 #error COFF, a.out, b.out, and ELF are the only supported formats.
115 #endif /* ! OBJ_ELF */
116 #endif /* ! OBJ_COFF */
117 #endif /* ! OBJ_A/BOUT */
118
119 extern char *input_line_pointer;
120
121 /* Local i80960 routines. */
122 struct memS;
123 struct regop;
124
125 /* See md_parse_option() for meanings of these options. */
126 static char norelax; /* True if -norelax switch seen. */
127 static char instrument_branches; /* True if -b switch seen. */
128
129 /* Characters that always start a comment.
130 If the pre-processor is disabled, these aren't very useful. */
131 const char comment_chars[] = "#";
132
133 /* Characters that only start a comment at the beginning of
134 a line. If the line seems to have the form '# 123 filename'
135 .line and .file directives will appear in the pre-processed output.
136
137 Note that input_file.c hand checks for '#' at the beginning of the
138 first line of the input file. This is because the compiler outputs
139 #NO_APP at the beginning of its output. */
140
141 /* Also note that comments started like this one will always work. */
142
143 const char line_comment_chars[] = "#";
144 const char line_separator_chars[] = ";";
145
146 /* Chars that can be used to separate mant from exp in floating point nums. */
147 const char EXP_CHARS[] = "eE";
148
149 /* Chars that mean this number is a floating point constant,
150 as in 0f12.456 or 0d1.2345e12. */
151 const char FLT_CHARS[] = "fFdDtT";
152
153 /* Table used by base assembler to relax addresses based on varying length
154 instructions. The fields are:
155 1) most positive reach of this state,
156 2) most negative reach of this state,
157 3) how many bytes this mode will add to the size of the current frag
158 4) which index into the table to try if we can't fit into this one.
159
160 For i80960, the only application is the (de-)optimization of cobr
161 instructions into separate compare and branch instructions when a 13-bit
162 displacement won't hack it. */
163 const relax_typeS md_relax_table[] =
164 {
165 {0, 0, 0, 0}, /* State 0 => no more relaxation possible. */
166 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr). */
167 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl). */
168 };
169
170 /* These are the machine dependent pseudo-ops.
171
172 This table describes all the machine specific pseudo-ops the assembler
173 has to support. The fields are:
174 pseudo-op name without dot
175 function to call to execute this pseudo-op
176 integer arg to pass to the function. */
177 #define S_LEAFPROC 1
178 #define S_SYSPROC 2
179
180 /* Macros to extract info from an 'expressionS' structure 'e'. */
181 #define adds(e) e.X_add_symbol
182 #define offs(e) e.X_add_number
183
184 /* Branch-prediction bits for CTRL/COBR format opcodes. */
185 #define BP_MASK 0x00000002 /* Mask for branch-prediction bit. */
186 #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch. */
187 #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch. */
188
189 /* Some instruction opcodes that we need explicitly. */
190 #define BE 0x12000000
191 #define BG 0x11000000
192 #define BGE 0x13000000
193 #define BL 0x14000000
194 #define BLE 0x16000000
195 #define BNE 0x15000000
196 #define BNO 0x10000000
197 #define BO 0x17000000
198 #define CHKBIT 0x5a002700
199 #define CMPI 0x5a002080
200 #define CMPO 0x5a002000
201
202 #define B 0x08000000
203 #define BAL 0x0b000000
204 #define CALL 0x09000000
205 #define CALLS 0x66003800
206 #define RET 0x0a000000
207
208 /* These masks are used to build up a set of MEMB mode bits. */
209 #define A_BIT 0x0400
210 #define I_BIT 0x0800
211 #define MEMB_BIT 0x1000
212 #define D_BIT 0x2000
213
214 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
215 used). */
216 #define MEMA_ABASE 0x2000
217
218 /* Info from which a MEMA or MEMB format instruction can be generated. */
219 typedef struct memS
220 {
221 /* (First) 32 bits of instruction. */
222 long opcode;
223 /* 0-(none), 12- or, 32-bit displacement needed. */
224 int disp;
225 /* The expression in the source instruction from which the
226 displacement should be determined. */
227 char *e;
228 }
229 memS;
230
231 /* The two pieces of info we need to generate a register operand. */
232 struct regop
233 {
234 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg. */
235 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0). */
236 int n; /* Register number or literal value. */
237 };
238
239 /* Number and assembler mnemonic for all registers that can appear in
240 operands. */
241 static const struct
242 {
243 const char *reg_name;
244 int reg_num;
245 }
246 regnames[] =
247 {
248 { "pfp", 0 },
249 { "sp", 1 },
250 { "rip", 2 },
251 { "r3", 3 },
252 { "r4", 4 },
253 { "r5", 5 },
254 { "r6", 6 },
255 { "r7", 7 },
256 { "r8", 8 },
257 { "r9", 9 },
258 { "r10", 10 },
259 { "r11", 11 },
260 { "r12", 12 },
261 { "r13", 13 },
262 { "r14", 14 },
263 { "r15", 15 },
264 { "g0", 16 },
265 { "g1", 17 },
266 { "g2", 18 },
267 { "g3", 19 },
268 { "g4", 20 },
269 { "g5", 21 },
270 { "g6", 22 },
271 { "g7", 23 },
272 { "g8", 24 },
273 { "g9", 25 },
274 { "g10", 26 },
275 { "g11", 27 },
276 { "g12", 28 },
277 { "g13", 29 },
278 { "g14", 30 },
279 { "fp", 31 },
280
281 /* Numbers for special-function registers are for assembler internal
282 use only: they are scaled back to range [0-31] for binary output. */
283 #define SF0 32
284
285 { "sf0", 32 },
286 { "sf1", 33 },
287 { "sf2", 34 },
288 { "sf3", 35 },
289 { "sf4", 36 },
290 { "sf5", 37 },
291 { "sf6", 38 },
292 { "sf7", 39 },
293 { "sf8", 40 },
294 { "sf9", 41 },
295 { "sf10", 42 },
296 { "sf11", 43 },
297 { "sf12", 44 },
298 { "sf13", 45 },
299 { "sf14", 46 },
300 { "sf15", 47 },
301 { "sf16", 48 },
302 { "sf17", 49 },
303 { "sf18", 50 },
304 { "sf19", 51 },
305 { "sf20", 52 },
306 { "sf21", 53 },
307 { "sf22", 54 },
308 { "sf23", 55 },
309 { "sf24", 56 },
310 { "sf25", 57 },
311 { "sf26", 58 },
312 { "sf27", 59 },
313 { "sf28", 60 },
314 { "sf29", 61 },
315 { "sf30", 62 },
316 { "sf31", 63 },
317
318 /* Numbers for floating point registers are for assembler internal
319 use only: they are scaled back to [0-3] for binary output. */
320 #define FP0 64
321
322 { "fp0", 64 },
323 { "fp1", 65 },
324 { "fp2", 66 },
325 { "fp3", 67 },
326
327 { NULL, 0 }, /* END OF LIST */
328 };
329
330 #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
331 #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
332 #define IS_FP_REG(n) ((n) >= FP0)
333
334 /* Number and assembler mnemonic for all registers that can appear as
335 'abase' (indirect addressing) registers. */
336 static const struct
337 {
338 const char *areg_name;
339 int areg_num;
340 }
341 aregs[] =
342 {
343 { "(pfp)", 0 },
344 { "(sp)", 1 },
345 { "(rip)", 2 },
346 { "(r3)", 3 },
347 { "(r4)", 4 },
348 { "(r5)", 5 },
349 { "(r6)", 6 },
350 { "(r7)", 7 },
351 { "(r8)", 8 },
352 { "(r9)", 9 },
353 { "(r10)", 10 },
354 { "(r11)", 11 },
355 { "(r12)", 12 },
356 { "(r13)", 13 },
357 { "(r14)", 14 },
358 { "(r15)", 15 },
359 { "(g0)", 16 },
360 { "(g1)", 17 },
361 { "(g2)", 18 },
362 { "(g3)", 19 },
363 { "(g4)", 20 },
364 { "(g5)", 21 },
365 { "(g6)", 22 },
366 { "(g7)", 23 },
367 { "(g8)", 24 },
368 { "(g9)", 25 },
369 { "(g10)", 26 },
370 { "(g11)", 27 },
371 { "(g12)", 28 },
372 { "(g13)", 29 },
373 { "(g14)", 30 },
374 { "(fp)", 31 },
375
376 #define IPREL 32
377 /* For assembler internal use only: this number never appears in binary
378 output. */
379 { "(ip)", IPREL },
380
381 { NULL, 0 }, /* END OF LIST */
382 };
383
384 /* Hash tables. */
385 static struct hash_control *op_hash; /* Opcode mnemonics. */
386 static struct hash_control *reg_hash; /* Register name hash table. */
387 static struct hash_control *areg_hash; /* Abase register hash table. */
388
389 /* Architecture for which we are assembling. */
390 #define ARCH_ANY 0 /* Default: no architecture checking done. */
391 #define ARCH_KA 1
392 #define ARCH_KB 2
393 #define ARCH_MC 3
394 #define ARCH_CA 4
395 #define ARCH_JX 5
396 #define ARCH_HX 6
397 int architecture = ARCH_ANY; /* Architecture requested on invocation line. */
398 int iclasses_seen; /* OR of instruction classes (I_* constants)
399 for which we've actually assembled
400 instructions. */
401
402 /* BRANCH-PREDICTION INSTRUMENTATION
403
404 The following supports generation of branch-prediction instrumentation
405 (turned on by -b switch). The instrumentation collects counts
406 of branches taken/not-taken for later input to a utility that will
407 set the branch prediction bits of the instructions in accordance with
408 the behavior observed. (Note that the KX series does not have
409 brach-prediction.)
410
411 The instrumentation consists of:
412
413 (1) before and after each conditional branch, a call to an external
414 routine that increments and steps over an inline counter. The
415 counter itself, initialized to 0, immediately follows the call
416 instruction. For each branch, the counter following the branch
417 is the number of times the branch was not taken, and the difference
418 between the counters is the number of times it was taken. An
419 example of an instrumented conditional branch:
420
421 call BR_CNT_FUNC
422 .word 0
423 LBRANCH23: be label
424 call BR_CNT_FUNC
425 .word 0
426
427 (2) a table of pointers to the instrumented branches, so that an
428 external postprocessing routine can locate all of the counters.
429 the table begins with a 2-word header: a pointer to the next in
430 a linked list of such tables (initialized to 0); and a count
431 of the number of entries in the table (exclusive of the header.
432
433 Note that input source code is expected to already contain calls
434 an external routine that will link the branch local table into a
435 list of such tables. */
436
437 /* Number of branches instrumented so far. Also used to generate
438 unique local labels for each instrumented branch. */
439 static int br_cnt;
440
441 #define BR_LABEL_BASE "LBRANCH"
442 /* Basename of local labels on instrumented branches, to avoid
443 conflict with compiler- generated local labels. */
444
445 #define BR_CNT_FUNC "__inc_branch"
446 /* Name of the external routine that will increment (and step over) an
447 inline counter. */
448
449 #define BR_TAB_NAME "__BRANCH_TABLE__"
450 /* Name of the table of pointers to branches. A local (i.e.,
451 non-external) symbol. */
452
453 static void ctrl_fmt (const char *, long, int);
454
455 \f
456 void
457 md_begin (void)
458 {
459 int i; /* Loop counter. */
460 const struct i960_opcode *oP; /* Pointer into opcode table. */
461 const char *retval; /* Value returned by hash functions. */
462
463 op_hash = hash_new ();
464 reg_hash = hash_new ();
465 areg_hash = hash_new ();
466
467 /* For some reason, the base assembler uses an empty string for "no
468 error message", instead of a NULL pointer. */
469 retval = 0;
470
471 for (oP = i960_opcodes; oP->name && !retval; oP++)
472 retval = hash_insert (op_hash, oP->name, (void *) oP);
473
474 for (i = 0; regnames[i].reg_name && !retval; i++)
475 retval = hash_insert (reg_hash, regnames[i].reg_name,
476 (char *) &regnames[i].reg_num);
477
478 for (i = 0; aregs[i].areg_name && !retval; i++)
479 retval = hash_insert (areg_hash, aregs[i].areg_name,
480 (char *) &aregs[i].areg_num);
481
482 if (retval)
483 as_fatal (_("Hashing returned \"%s\"."), retval);
484 }
485
486 /* parse_expr: parse an expression
487
488 Use base assembler's expression parser to parse an expression.
489 It, unfortunately, runs off a global which we have to save/restore
490 in order to make it work for us.
491
492 An empty expression string is treated as an absolute 0.
493
494 Sets O_illegal regardless of expression evaluation if entire input
495 string is not consumed in the evaluation -- tolerate no dangling junk! */
496
497 static void
498 parse_expr (const char *textP, /* Text of expression to be parsed. */
499 expressionS *expP) /* Where to put the results of parsing. */
500 {
501 char *save_in; /* Save global here. */
502 symbolS *symP;
503
504 know (textP);
505
506 if (*textP == '\0')
507 {
508 /* Treat empty string as absolute 0. */
509 expP->X_add_symbol = expP->X_op_symbol = NULL;
510 expP->X_add_number = 0;
511 expP->X_op = O_constant;
512 }
513 else
514 {
515 save_in = input_line_pointer; /* Save global. */
516 input_line_pointer = (char *) textP; /* Make parser work for us. */
517
518 (void) expression (expP);
519 if ((size_t) (input_line_pointer - textP) != strlen (textP))
520 /* Did not consume all of the input. */
521 expP->X_op = O_illegal;
522
523 symP = expP->X_add_symbol;
524 if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
525 /* Register name in an expression. */
526 /* FIXME: this isn't much of a check any more. */
527 expP->X_op = O_illegal;
528
529 input_line_pointer = save_in; /* Restore global. */
530 }
531 }
532
533 /* emit: output instruction binary
534
535 Output instruction binary, in target byte order, 4 bytes at a time.
536 Return pointer to where it was placed. */
537
538 static char *
539 emit (long instr) /* Word to be output, host byte order. */
540 {
541 char *toP; /* Where to output it. */
542
543 toP = frag_more (4); /* Allocate storage. */
544 md_number_to_chars (toP, instr, 4); /* Convert to target byte order. */
545 return toP;
546 }
547
548 /* get_cdisp: handle displacement for a COBR or CTRL instruction.
549
550 Parse displacement for a COBR or CTRL instruction.
551
552 If successful, output the instruction opcode and set up for it,
553 depending on the arg 'var_frag', either:
554 o an address fixup to be done when all symbol values are known, or
555 o a varying length code fragment, with address fixup info. This
556 will be done for cobr instructions that may have to be relaxed
557 in to compare/branch instructions (8 bytes) if the final
558 address displacement is greater than 13 bits. */
559
560 static void
561 get_cdisp (const char *dispP, /* Displacement as specified in source instruction. */
562 const char *ifmtP, /* "COBR" or "CTRL" (for use in error message). */
563 long instr, /* Instruction needing the displacement. */
564 int numbits, /* # bits of displacement (13 for COBR, 24 for CTRL). */
565 int var_frag,/* 1 if varying length code fragment should be emitted;
566 0 if an address fix should be emitted. */
567 int callj) /* 1 if callj relocation should be done; else 0. */
568 {
569 expressionS e; /* Parsed expression. */
570 fixS *fixP; /* Structure describing needed address fix. */
571 char *outP; /* Where instruction binary is output to. */
572
573 fixP = NULL;
574
575 parse_expr (dispP, &e);
576 switch (e.X_op)
577 {
578 case O_illegal:
579 as_bad (_("expression syntax error"));
580 break;
581
582 case O_symbol:
583 if (S_GET_SEGMENT (e.X_add_symbol) == now_seg
584 || S_GET_SEGMENT (e.X_add_symbol) == undefined_section)
585 {
586 if (var_frag)
587 {
588 outP = frag_more (8); /* Allocate worst-case storage. */
589 md_number_to_chars (outP, instr, 4);
590 frag_variant (rs_machine_dependent, 4, 4, 1,
591 adds (e), offs (e), outP);
592 }
593 else
594 {
595 /* Set up a new fix structure, so address can be updated
596 when all symbol values are known. */
597 outP = emit (instr);
598 fixP = fix_new (frag_now,
599 outP - frag_now->fr_literal,
600 4,
601 adds (e),
602 offs (e),
603 1,
604 NO_RELOC);
605
606 fixP->fx_tcbit = callj;
607
608 /* We want to modify a bit field when the address is
609 known. But we don't need all the garbage in the
610 bit_fix structure. So we're going to lie and store
611 the number of bits affected instead of a pointer. */
612 fixP->fx_bit_fixP = (bit_fixS *) (size_t) numbits;
613 }
614 }
615 else
616 as_bad (_("attempt to branch into different segment"));
617 break;
618
619 default:
620 as_bad (_("target of %s instruction must be a label"), ifmtP);
621 break;
622 }
623 }
624
625 static int
626 md_chars_to_number (char * val, /* Value in target byte order. */
627 int n) /* Number of bytes in the input. */
628 {
629 int retval;
630
631 for (retval = 0; n--;)
632 {
633 retval <<= 8;
634 retval |= (unsigned char) val[n];
635 }
636 return retval;
637 }
638
639 /* mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
640
641 There are 2 possible MEMA formats:
642 - displacement only
643 - displacement + abase
644
645 They are distinguished by the setting of the MEMA_ABASE bit. */
646
647 static void
648 mema_to_memb (char * opcodeP) /* Where to find the opcode, in target byte order. */
649 {
650 long opcode; /* Opcode in host byte order. */
651 long mode; /* Mode bits for MEMB instruction. */
652
653 opcode = md_chars_to_number (opcodeP, 4);
654 know (!(opcode & MEMB_BIT));
655
656 mode = MEMB_BIT | D_BIT;
657 if (opcode & MEMA_ABASE)
658 mode |= A_BIT;
659
660 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits. */
661 opcode |= mode; /* Set MEMB mode bits. */
662
663 md_number_to_chars (opcodeP, opcode, 4);
664 }
665
666 /* targ_has_sfr:
667
668 Return TRUE iff the target architecture supports the specified
669 special-function register (sfr). */
670
671 static int
672 targ_has_sfr (int n) /* Number (0-31) of sfr. */
673 {
674 switch (architecture)
675 {
676 case ARCH_KA:
677 case ARCH_KB:
678 case ARCH_MC:
679 case ARCH_JX:
680 return 0;
681 case ARCH_HX:
682 return ((0 <= n) && (n <= 4));
683 case ARCH_CA:
684 default:
685 return ((0 <= n) && (n <= 2));
686 }
687 }
688
689 /* Look up a (suspected) register name in the register table and return the
690 associated register number (or -1 if not found). */
691
692 static int
693 get_regnum (char *regname) /* Suspected register name. */
694 {
695 int *rP;
696
697 rP = (int *) hash_find (reg_hash, regname);
698 return (rP == NULL) ? -1 : *rP;
699 }
700
701 /* syntax: Issue a syntax error. */
702
703 static void
704 syntax (void)
705 {
706 as_bad (_("syntax error"));
707 }
708
709 /* parse_regop: parse a register operand.
710
711 In case of illegal operand, issue a message and return some valid
712 information so instruction processing can continue. */
713
714 static void
715 parse_regop (struct regop *regopP, /* Where to put description of register operand. */
716 char *optext, /* Text of operand. */
717 char opdesc) /* Descriptor byte: what's legal for this operand. */
718 {
719 int n; /* Register number. */
720 expressionS e; /* Parsed expression. */
721
722 /* See if operand is a register. */
723 n = get_regnum (optext);
724 if (n >= 0)
725 {
726 if (IS_RG_REG (n))
727 {
728 /* Global or local register. */
729 if (!REG_ALIGN (opdesc, n))
730 as_bad (_("unaligned register"));
731
732 regopP->n = n;
733 regopP->mode = 0;
734 regopP->special = 0;
735 return;
736 }
737 else if (IS_FP_REG (n) && FP_OK (opdesc))
738 {
739 /* Floating point register, and it's allowed. */
740 regopP->n = n - FP0;
741 regopP->mode = 1;
742 regopP->special = 0;
743 return;
744 }
745 else if (IS_SF_REG (n) && SFR_OK (opdesc))
746 {
747 /* Special-function register, and it's allowed. */
748 regopP->n = n - SF0;
749 regopP->mode = 0;
750 regopP->special = 1;
751 if (!targ_has_sfr (regopP->n))
752 as_bad (_("no such sfr in this architecture"));
753
754 return;
755 }
756 }
757 else if (LIT_OK (opdesc))
758 {
759 /* How about a literal? */
760 regopP->mode = 1;
761 regopP->special = 0;
762 if (FP_OK (opdesc))
763 {
764 /* Floating point literal acceptable. */
765 /* Skip over 0f, 0d, or 0e prefix. */
766 if ((optext[0] == '0')
767 && (optext[1] >= 'd')
768 && (optext[1] <= 'f'))
769 optext += 2;
770
771 if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
772 {
773 regopP->n = 0x10;
774 return;
775 }
776
777 if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
778 {
779 regopP->n = 0x16;
780 return;
781 }
782 }
783 else
784 {
785 /* Fixed point literal acceptable. */
786 parse_expr (optext, &e);
787 if (e.X_op != O_constant
788 || (offs (e) < 0) || (offs (e) > 31))
789 {
790 as_bad (_("illegal literal"));
791 offs (e) = 0;
792 }
793 regopP->n = offs (e);
794 return;
795 }
796 }
797
798 /* Nothing worked. */
799 syntax ();
800 regopP->mode = 0; /* Register r0 is always a good one. */
801 regopP->n = 0;
802 regopP->special = 0;
803 }
804
805 /* get_ispec: parse a memory operand for an index specification
806
807 Here, an "index specification" is taken to be anything surrounded
808 by square brackets and NOT followed by anything else.
809
810 If it's found, detach it from the input string, remove the surrounding
811 square brackets, and return a pointer to it. Otherwise, return NULL. */
812
813 static char *
814 get_ispec (char *textP) /* Pointer to memory operand from source instruction, no white space. */
815
816 {
817 /* Points to start of index specification. */
818 char *start;
819 /* Points to end of index specification. */
820 char *end;
821
822 /* Find opening square bracket, if any. */
823 start = strchr (textP, '[');
824
825 if (start != NULL)
826 {
827 /* Eliminate '[', detach from rest of operand. */
828 *start++ = '\0';
829
830 end = strchr (start, ']');
831
832 if (end == NULL)
833 as_bad (_("unmatched '['"));
834 else
835 {
836 /* Eliminate ']' and make sure it was the last thing
837 in the string. */
838 *end = '\0';
839 if (*(end + 1) != '\0')
840 as_bad (_("garbage after index spec ignored"));
841 }
842 }
843 return start;
844 }
845
846 /* parse_memop: parse a memory operand
847
848 This routine is based on the observation that the 4 mode bits of the
849 MEMB format, taken individually, have fairly consistent meaning:
850
851 M3 (bit 13): 1 if displacement is present (D_BIT)
852 M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
853 M1 (bit 11): 1 if index is present (I_BIT)
854 M0 (bit 10): 1 if abase is present (A_BIT)
855
856 So we parse the memory operand and set bits in the mode as we find
857 things. Then at the end, if we go to MEMB format, we need only set
858 the MEMB bit (M2) and our mode is built for us.
859
860 Unfortunately, I said "fairly consistent". The exceptions:
861
862 DBIA
863 0100 Would seem illegal, but means "abase-only".
864
865 0101 Would seem to mean "abase-only" -- it means IP-relative.
866 Must be converted to 0100.
867
868 0110 Would seem to mean "index-only", but is reserved.
869 We turn on the D bit and provide a 0 displacement.
870
871 The other thing to observe is that we parse from the right, peeling
872 things * off as we go: first any index spec, then any abase, then
873 the displacement. */
874
875 static void
876 parse_memop (memS *memP, /* Where to put the results. */
877 char *argP, /* Text of the operand to be parsed. */
878 int optype) /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16. */
879 {
880 char *indexP; /* Pointer to index specification with "[]" removed. */
881 char *p; /* Temp char pointer. */
882 char iprel_flag; /* True if this is an IP-relative operand. */
883 int regnum; /* Register number. */
884 /* Scale factor: 1,2,4,8, or 16. Later converted to internal format
885 (0,1,2,3,4 respectively). */
886 int scale;
887 int mode; /* MEMB mode bits. */
888 int *intP; /* Pointer to register number. */
889
890 /* The following table contains the default scale factors for each
891 type of memory instruction. It is accessed using (optype-MEM1)
892 as an index -- thus it assumes the 'optype' constants are
893 assigned consecutive values, in the order they appear in this
894 table. */
895 static const int def_scale[] =
896 {
897 1, /* MEM1 */
898 2, /* MEM2 */
899 4, /* MEM4 */
900 8, /* MEM8 */
901 -1, /* MEM12 -- no valid default */
902 16 /* MEM16 */
903 };
904
905 iprel_flag = mode = 0;
906
907 /* Any index present? */
908 indexP = get_ispec (argP);
909 if (indexP)
910 {
911 p = strchr (indexP, '*');
912 if (p == NULL)
913 {
914 /* No explicit scale -- use default for this instruction
915 type and assembler mode. */
916 if (flag_mri)
917 scale = 1;
918 else
919 /* GNU960 compatibility */
920 scale = def_scale[optype - MEM1];
921 }
922 else
923 {
924 *p++ = '\0'; /* Eliminate '*' */
925
926 /* Now indexP->a '\0'-terminated register name,
927 and p->a scale factor. */
928
929 if (!strcmp (p, "16"))
930 scale = 16;
931 else if (strchr ("1248", *p) && (p[1] == '\0'))
932 scale = *p - '0';
933 else
934 scale = -1;
935 }
936
937 regnum = get_regnum (indexP); /* Get index reg. # */
938 if (!IS_RG_REG (regnum))
939 {
940 as_bad (_("invalid index register"));
941 return;
942 }
943
944 /* Convert scale to its binary encoding. */
945 switch (scale)
946 {
947 case 1:
948 scale = 0 << 7;
949 break;
950 case 2:
951 scale = 1 << 7;
952 break;
953 case 4:
954 scale = 2 << 7;
955 break;
956 case 8:
957 scale = 3 << 7;
958 break;
959 case 16:
960 scale = 4 << 7;
961 break;
962 default:
963 as_bad (_("invalid scale factor"));
964 return;
965 };
966
967 memP->opcode |= scale | regnum; /* Set index bits in opcode. */
968 mode |= I_BIT; /* Found a valid index spec. */
969 }
970
971 /* Any abase (Register Indirect) specification present? */
972 if ((p = strrchr (argP, '(')) != NULL)
973 {
974 /* "(" is there -- does it start a legal abase spec? If not, it
975 could be part of a displacement expression. */
976 intP = (int *) hash_find (areg_hash, p);
977 if (intP != NULL)
978 {
979 /* Got an abase here. */
980 regnum = *intP;
981 *p = '\0'; /* Discard register spec. */
982 if (regnum == IPREL)
983 /* We have to specialcase ip-rel mode. */
984 iprel_flag = 1;
985 else
986 {
987 memP->opcode |= regnum << 14;
988 mode |= A_BIT;
989 }
990 }
991 }
992
993 /* Any expression present? */
994 memP->e = argP;
995 if (*argP != '\0')
996 mode |= D_BIT;
997
998 /* Special-case ip-relative addressing. */
999 if (iprel_flag)
1000 {
1001 if (mode & I_BIT)
1002 syntax ();
1003 else
1004 {
1005 memP->opcode |= 5 << 10; /* IP-relative mode. */
1006 memP->disp = 32;
1007 }
1008 return;
1009 }
1010
1011 /* Handle all other modes. */
1012 switch (mode)
1013 {
1014 case D_BIT | A_BIT:
1015 /* Go with MEMA instruction format for now (grow to MEMB later
1016 if 12 bits is not enough for the displacement). MEMA format
1017 has a single mode bit: set it to indicate that abase is
1018 present. */
1019 memP->opcode |= MEMA_ABASE;
1020 memP->disp = 12;
1021 break;
1022
1023 case D_BIT:
1024 /* Go with MEMA instruction format for now (grow to MEMB later
1025 if 12 bits is not enough for the displacement). */
1026 memP->disp = 12;
1027 break;
1028
1029 case A_BIT:
1030 /* For some reason, the bit string for this mode is not
1031 consistent: it should be 0 (exclusive of the MEMB bit), so we
1032 set it "by hand" here. */
1033 memP->opcode |= MEMB_BIT;
1034 break;
1035
1036 case A_BIT | I_BIT:
1037 /* set MEMB bit in mode, and OR in mode bits. */
1038 memP->opcode |= mode | MEMB_BIT;
1039 break;
1040
1041 case I_BIT:
1042 /* Treat missing displacement as displacement of 0. */
1043 mode |= D_BIT;
1044 /* Fall through. */
1045 case D_BIT | A_BIT | I_BIT:
1046 case D_BIT | I_BIT:
1047 /* Set MEMB bit in mode, and OR in mode bits. */
1048 memP->opcode |= mode | MEMB_BIT;
1049 memP->disp = 32;
1050 break;
1051
1052 default:
1053 syntax ();
1054 break;
1055 }
1056 }
1057
1058 /* Generate a MEMA- or MEMB-format instruction. */
1059
1060 static void
1061 mem_fmt (char *args[], /* args[0]->opcode mnemonic, args[1-3]->operands. */
1062 struct i960_opcode *oP,/* Pointer to description of instruction. */
1063 int callx) /* Is this a callx opcode. */
1064 {
1065 int i; /* Loop counter. */
1066 struct regop regop; /* Description of register operand. */
1067 char opdesc; /* Operand descriptor byte. */
1068 memS instr; /* Description of binary to be output. */
1069 char *outP; /* Where the binary was output to. */
1070 expressionS exp; /* Parsed expression. */
1071 /* ->description of deferred address fixup. */
1072 fixS *fixP;
1073
1074 #ifdef OBJ_COFF
1075 /* COFF support isn't in place yet for callx relaxing. */
1076 callx = 0;
1077 #endif
1078
1079 memset (&instr, '\0', sizeof (memS));
1080 instr.opcode = oP->opcode;
1081
1082 /* Process operands. */
1083 for (i = 1; i <= oP->num_ops; i++)
1084 {
1085 opdesc = oP->operand[i - 1];
1086
1087 if (MEMOP (opdesc))
1088 parse_memop (&instr, args[i], oP->format);
1089 else
1090 {
1091 parse_regop (&regop, args[i], opdesc);
1092 instr.opcode |= regop.n << 19;
1093 }
1094 }
1095
1096 /* Parse the displacement; this must be done before emitting the
1097 opcode, in case it is an expression using `.'. */
1098 parse_expr (instr.e, &exp);
1099
1100 /* Output opcode. */
1101 outP = emit (instr.opcode);
1102
1103 if (instr.disp == 0)
1104 return;
1105
1106 /* Process the displacement. */
1107 switch (exp.X_op)
1108 {
1109 case O_illegal:
1110 as_bad (_("expression syntax error"));
1111 break;
1112
1113 case O_constant:
1114 if (instr.disp == 32)
1115 (void) emit (offs (exp)); /* Output displacement. */
1116 else
1117 {
1118 /* 12-bit displacement. */
1119 if (offs (exp) & ~0xfff)
1120 {
1121 /* Won't fit in 12 bits: convert already-output
1122 instruction to MEMB format, output
1123 displacement. */
1124 mema_to_memb (outP);
1125 (void) emit (offs (exp));
1126 }
1127 else
1128 {
1129 /* WILL fit in 12 bits: OR into opcode and
1130 overwrite the binary we already put out. */
1131 instr.opcode |= offs (exp);
1132 md_number_to_chars (outP, instr.opcode, 4);
1133 }
1134 }
1135 break;
1136
1137 default:
1138 if (instr.disp == 12)
1139 /* Displacement is dependent on a symbol, whose value
1140 may change at link time. We HAVE to reserve 32 bits.
1141 Convert already-output opcode to MEMB format. */
1142 mema_to_memb (outP);
1143
1144 /* Output 0 displacement and set up address fixup for when
1145 this symbol's value becomes known. */
1146 outP = emit ((long) 0);
1147 fixP = fix_new_exp (frag_now,
1148 outP - frag_now->fr_literal,
1149 4, &exp, 0, NO_RELOC);
1150 /* Steve's linker relaxing hack. Mark this 32-bit relocation as
1151 being in the instruction stream, specifically as part of a callx
1152 instruction. */
1153 fixP->fx_bsr = callx;
1154 break;
1155 }
1156 }
1157
1158 /* targ_has_iclass:
1159
1160 Return TRUE iff the target architecture supports the indicated
1161 class of instructions. */
1162
1163 static int
1164 targ_has_iclass (int ic) /* Instruction class; one of:
1165 I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM, I_CX2, I_HX, I_HX2. */
1166 {
1167 iclasses_seen |= ic;
1168
1169 switch (architecture)
1170 {
1171 case ARCH_KA:
1172 return ic & (I_BASE | I_KX);
1173 case ARCH_KB:
1174 return ic & (I_BASE | I_KX | I_FP | I_DEC);
1175 case ARCH_MC:
1176 return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
1177 case ARCH_CA:
1178 return ic & (I_BASE | I_CX | I_CX2 | I_CASIM);
1179 case ARCH_JX:
1180 return ic & (I_BASE | I_CX2 | I_JX);
1181 case ARCH_HX:
1182 return ic & (I_BASE | I_CX2 | I_JX | I_HX);
1183 default:
1184 if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
1185 && (iclasses_seen & (I_CX | I_CX2)))
1186 {
1187 as_warn (_("architecture of opcode conflicts with that of earlier instruction(s)"));
1188 iclasses_seen &= ~ic;
1189 }
1190 return 1;
1191 }
1192 }
1193
1194 /* shift_ok:
1195 Determine if a "shlo" instruction can be used to implement a "ldconst".
1196 This means that some number X < 32 can be shifted left to produce the
1197 constant of interest.
1198
1199 Return the shift count, or 0 if we can't do it.
1200 Caller calculates X by shifting original constant right 'shift' places. */
1201
1202 static int
1203 shift_ok (int n) /* The constant of interest. */
1204 {
1205 int shift; /* The shift count. */
1206
1207 if (n <= 0)
1208 /* Can't do it for negative numbers. */
1209 return 0;
1210
1211 /* Shift 'n' right until a 1 is about to be lost. */
1212 for (shift = 0; (n & 1) == 0; shift++)
1213 n >>= 1;
1214
1215 if (n >= 32)
1216 return 0;
1217
1218 return shift;
1219 }
1220
1221 /* parse_ldcont:
1222 Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1223 i80960 instruction.
1224
1225 Assumes the input consists of:
1226 arg[0] opcode mnemonic ('ldconst')
1227 arg[1] first operand (constant)
1228 arg[2] name of register to be loaded
1229
1230 Replaces opcode and/or operands as appropriate.
1231
1232 Returns the new number of arguments, or -1 on failure. */
1233
1234 static int
1235 parse_ldconst (char *arg[]) /* See above. */
1236 {
1237 int n; /* Constant to be loaded. */
1238 int shift; /* Shift count for "shlo" instruction. */
1239 static char buf[5]; /* Literal for first operand. */
1240 static char buf2[5]; /* Literal for second operand. */
1241 expressionS e; /* Parsed expression. */
1242
1243 arg[3] = NULL; /* So we can tell at the end if it got used or not. */
1244
1245 parse_expr (arg[1], &e);
1246 switch (e.X_op)
1247 {
1248 default:
1249 /* We're dependent on one or more symbols -- use "lda". */
1250 arg[0] = (char *) "lda";
1251 break;
1252
1253 case O_constant:
1254 /* Try the following mappings:
1255 ldconst 0,<reg> -> mov 0,<reg>
1256 ldconst 31,<reg> -> mov 31,<reg>
1257 ldconst 32,<reg> -> addo 1,31,<reg>
1258 ldconst 62,<reg> -> addo 31,31,<reg>
1259 ldconst 64,<reg> -> shlo 8,3,<reg>
1260 ldconst -1,<reg> -> subo 1,0,<reg>
1261 ldconst -31,<reg> -> subo 31,0,<reg>
1262
1263 Anything else becomes:
1264 lda xxx,<reg>. */
1265 n = offs (e);
1266 if ((0 <= n) && (n <= 31))
1267 arg[0] = (char *) "mov";
1268 else if ((-31 <= n) && (n <= -1))
1269 {
1270 arg[0] = (char *) "subo";
1271 arg[3] = arg[2];
1272 sprintf (buf, "%d", -n);
1273 arg[1] = buf;
1274 arg[2] = (char *) "0";
1275 }
1276 else if ((32 <= n) && (n <= 62))
1277 {
1278 arg[0] = (char *) "addo";
1279 arg[3] = arg[2];
1280 arg[1] = (char *) "31";
1281 sprintf (buf, "%d", n - 31);
1282 arg[2] = buf;
1283 }
1284 else if ((shift = shift_ok (n)) != 0)
1285 {
1286 arg[0] = (char *) "shlo";
1287 arg[3] = arg[2];
1288 sprintf (buf, "%d", shift);
1289 arg[1] = buf;
1290 sprintf (buf2, "%d", n >> shift);
1291 arg[2] = buf2;
1292 }
1293 else
1294 arg[0] = (char *) "lda";
1295 break;
1296
1297 case O_illegal:
1298 as_bad (_("invalid constant"));
1299 return -1;
1300 break;
1301 }
1302 return (arg[3] == 0) ? 2 : 3;
1303 }
1304
1305 /* reg_fmt: generate a REG-format instruction. */
1306
1307 static void
1308 reg_fmt (char *args[], /* args[0]->opcode mnemonic, args[1-3]->operands. */
1309 struct i960_opcode *oP)/* Pointer to description of instruction. */
1310 {
1311 long instr; /* Binary to be output. */
1312 struct regop regop; /* Description of register operand. */
1313 int n_ops; /* Number of operands. */
1314
1315 instr = oP->opcode;
1316 n_ops = oP->num_ops;
1317
1318 if (n_ops >= 1)
1319 {
1320 parse_regop (&regop, args[1], oP->operand[0]);
1321
1322 if ((n_ops == 1) && !(instr & M3))
1323 {
1324 /* 1-operand instruction in which the dst field should
1325 be used (instead of src1). */
1326 regop.n <<= 19;
1327 if (regop.special)
1328 regop.mode = regop.special;
1329 regop.mode <<= 13;
1330 regop.special = 0;
1331 }
1332 else
1333 {
1334 /* regop.n goes in bit 0, needs no shifting. */
1335 regop.mode <<= 11;
1336 regop.special <<= 5;
1337 }
1338 instr |= regop.n | regop.mode | regop.special;
1339 }
1340
1341 if (n_ops >= 2)
1342 {
1343 parse_regop (&regop, args[2], oP->operand[1]);
1344
1345 if ((n_ops == 2) && !(instr & M3))
1346 {
1347 /* 2-operand instruction in which the dst field should
1348 be used instead of src2). */
1349 regop.n <<= 19;
1350 if (regop.special)
1351 regop.mode = regop.special;
1352 regop.mode <<= 13;
1353 regop.special = 0;
1354 }
1355 else
1356 {
1357 regop.n <<= 14;
1358 regop.mode <<= 12;
1359 regop.special <<= 6;
1360 }
1361 instr |= regop.n | regop.mode | regop.special;
1362 }
1363 if (n_ops == 3)
1364 {
1365 parse_regop (&regop, args[3], oP->operand[2]);
1366 if (regop.special)
1367 regop.mode = regop.special;
1368 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
1369 }
1370 emit (instr);
1371 }
1372
1373 /* get_args: break individual arguments out of comma-separated list
1374
1375 Input assumptions:
1376 - all comments and labels have been removed
1377 - all strings of whitespace have been collapsed to a single blank.
1378 - all character constants ('x') have been replaced with decimal
1379
1380 Output:
1381 args[0] is untouched. args[1] points to first operand, etc. All args:
1382 - are NULL-terminated
1383 - contain no whitespace
1384
1385 Return value:
1386 Number of operands (0,1,2, or 3) or -1 on error. */
1387
1388 static int
1389 get_args (char *p, /* Pointer to comma-separated operands; Mucked by us. */
1390 char *args[]) /* Output arg: pointers to operands placed in args[1-3].
1391 Must accommodate 4 entries (args[0-3]). */
1392
1393 {
1394 int n; /* Number of operands. */
1395 char *to;
1396
1397 /* Skip lead white space. */
1398 while (*p == ' ')
1399 p++;
1400
1401 if (*p == '\0')
1402 return 0;
1403
1404 n = 1;
1405 args[1] = p;
1406
1407 /* Squeze blanks out by moving non-blanks toward start of string.
1408 Isolate operands, whenever comma is found. */
1409 to = p;
1410 while (*p != '\0')
1411 {
1412 if (*p == ' '
1413 && (! ISALNUM (p[1])
1414 || ! ISALNUM (p[-1])))
1415 p++;
1416 else if (*p == ',')
1417 {
1418 /* Start of operand. */
1419 if (n == 3)
1420 {
1421 as_bad (_("too many operands"));
1422 return -1;
1423 }
1424 *to++ = '\0'; /* Terminate argument. */
1425 args[++n] = to; /* Start next argument. */
1426 p++;
1427 }
1428 else
1429 *to++ = *p++;
1430 }
1431 *to = '\0';
1432 return n;
1433 }
1434
1435 /* i_scan: perform lexical scan of ascii assembler instruction.
1436
1437 Input assumptions:
1438 - input string is an i80960 instruction (not a pseudo-op)
1439 - all comments and labels have been removed
1440 - all strings of whitespace have been collapsed to a single blank.
1441
1442 Output:
1443 args[0] points to opcode, other entries point to operands. All strings:
1444 - are NULL-terminated
1445 - contain no whitespace
1446 - have character constants ('x') replaced with a decimal number
1447
1448 Return value:
1449 Number of operands (0,1,2, or 3) or -1 on error. */
1450
1451 static int
1452 i_scan (char *iP, /* Pointer to ascii instruction; Mucked by us. */
1453 char *args[]) /* Output arg: pointers to opcode and operands placed here.
1454 Must accommodate 4 entries. */
1455 {
1456 /* Isolate opcode. */
1457 if (*(iP) == ' ')
1458 iP++;
1459
1460 args[0] = iP;
1461 for (; *iP != ' '; iP++)
1462 {
1463 if (*iP == '\0')
1464 {
1465 /* There are no operands. */
1466 if (args[0] == iP)
1467 {
1468 /* We never moved: there was no opcode either! */
1469 as_bad (_("missing opcode"));
1470 return -1;
1471 }
1472 return 0;
1473 }
1474 }
1475 *iP++ = '\0';
1476 return (get_args (iP, args));
1477 }
1478
1479 static void
1480 brcnt_emit (void)
1481 {
1482 /* Emit call to "increment" routine. */
1483 ctrl_fmt (BR_CNT_FUNC, CALL, 1);
1484 /* Emit inline counter to be incremented. */
1485 emit (0);
1486 }
1487
1488 static char *
1489 brlab_next (void)
1490 {
1491 static char buf[20];
1492
1493 sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1494 return buf;
1495 }
1496
1497 static void
1498 ctrl_fmt (const char *targP, /* Pointer to text of lone operand (if any). */
1499 long opcode, /* Template of instruction. */
1500 int num_ops) /* Number of operands. */
1501 {
1502 int instrument; /* TRUE iff we should add instrumentation to track
1503 how often the branch is taken. */
1504
1505 if (num_ops == 0)
1506 emit (opcode); /* Output opcode. */
1507 else
1508 {
1509 instrument = instrument_branches && (opcode != CALL)
1510 && (opcode != B) && (opcode != RET) && (opcode != BAL);
1511
1512 if (instrument)
1513 {
1514 brcnt_emit ();
1515 colon (brlab_next ());
1516 }
1517
1518 /* The operand MUST be an ip-relative displacement. Parse it
1519 and set up address fix for the instruction we just output. */
1520 get_cdisp (targP, "CTRL", opcode, 24, 0, 0);
1521
1522 if (instrument)
1523 brcnt_emit ();
1524 }
1525 }
1526
1527 static void
1528 cobr_fmt (/* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1529 char *arg[],
1530 /* Opcode, with branch-prediction bits already set if necessary. */
1531 long opcode,
1532 /* Pointer to description of instruction. */
1533 struct i960_opcode *oP)
1534 {
1535 long instr; /* 32-bit instruction. */
1536 struct regop regop; /* Description of register operand. */
1537 int n; /* Number of operands. */
1538 int var_frag; /* 1 if varying length code fragment should
1539 be emitted; 0 if an address fix
1540 should be emitted. */
1541
1542 instr = opcode;
1543 n = oP->num_ops;
1544
1545 if (n >= 1)
1546 {
1547 /* First operand (if any) of a COBR is always a register
1548 operand. Parse it. */
1549 parse_regop (&regop, arg[1], oP->operand[0]);
1550 instr |= (regop.n << 19) | (regop.mode << 13);
1551 }
1552
1553 if (n >= 2)
1554 {
1555 /* Second operand (if any) of a COBR is always a register
1556 operand. Parse it. */
1557 parse_regop (&regop, arg[2], oP->operand[1]);
1558 instr |= (regop.n << 14) | regop.special;
1559 }
1560
1561 if (n < 3)
1562 emit (instr);
1563 else
1564 {
1565 if (instrument_branches)
1566 {
1567 brcnt_emit ();
1568 colon (brlab_next ());
1569 }
1570
1571 /* A third operand to a COBR is always a displacement. Parse
1572 it; if it's relaxable (a cobr "j" directive, or any cobr
1573 other than bbs/bbc when the "-norelax" option is not in use)
1574 set up a variable code fragment; otherwise set up an address
1575 fix. */
1576 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1577 get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);
1578
1579 if (instrument_branches)
1580 brcnt_emit ();
1581 }
1582 }
1583
1584 /* Assumptions about the passed-in text:
1585 - all comments, labels removed
1586 - text is an instruction
1587 - all white space compressed to single blanks
1588 - all character constants have been replaced with decimal. */
1589
1590 void
1591 md_assemble (char *textP)
1592 {
1593 /* Parsed instruction text, containing NO whitespace: arg[0]->opcode
1594 mnemonic arg[1-3]->operands, with char constants replaced by
1595 decimal numbers. */
1596 char *args[4];
1597 /* Number of instruction operands. */
1598 int n_ops;
1599 /* Pointer to instruction description. */
1600 struct i960_opcode *oP;
1601 /* TRUE iff opcode mnemonic included branch-prediction suffix (".f"
1602 or ".t"). */
1603 int branch_predict;
1604 /* Setting of branch-prediction bit(s) to be OR'd into instruction
1605 opcode of CTRL/COBR format instructions. */
1606 long bp_bits;
1607 /* Offset of last character in opcode mnemonic. */
1608 int n;
1609 const char *bp_error_msg = _("branch prediction invalid on this opcode");
1610
1611 /* Parse instruction into opcode and operands. */
1612 memset (args, '\0', sizeof (args));
1613
1614 n_ops = i_scan (textP, args);
1615
1616 if (n_ops == -1)
1617 return; /* Error message already issued. */
1618
1619 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction. */
1620 if (!strcmp (args[0], "ldconst"))
1621 {
1622 n_ops = parse_ldconst (args);
1623 if (n_ops == -1)
1624 return;
1625 }
1626
1627 /* Check for branch-prediction suffix on opcode mnemonic, strip it off. */
1628 n = strlen (args[0]) - 1;
1629 branch_predict = 0;
1630 bp_bits = 0;
1631
1632 if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
1633 {
1634 /* We could check here to see if the target architecture
1635 supports branch prediction, but why bother? The bit will
1636 just be ignored by processors that don't use it. */
1637 branch_predict = 1;
1638 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
1639 args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */
1640 }
1641
1642 /* Look up opcode mnemonic in table and check number of operands.
1643 Check that opcode is legal for the target architecture. If all
1644 looks good, assemble instruction. */
1645 oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
1646 if (!oP || !targ_has_iclass (oP->iclass))
1647 as_bad (_("invalid opcode, \"%s\"."), args[0]);
1648 else if (n_ops != oP->num_ops)
1649 as_bad (_("improper number of operands. expecting %d, got %d"),
1650 oP->num_ops, n_ops);
1651 else
1652 {
1653 switch (oP->format)
1654 {
1655 case FBRA:
1656 case CTRL:
1657 ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
1658 if (oP->format == FBRA)
1659 /* Now generate a 'bno' to same arg */
1660 ctrl_fmt (args[1], BNO | bp_bits, 1);
1661 break;
1662 case COBR:
1663 case COJ:
1664 cobr_fmt (args, oP->opcode | bp_bits, oP);
1665 break;
1666 case REG:
1667 if (branch_predict)
1668 as_warn ("%s", bp_error_msg);
1669 reg_fmt (args, oP);
1670 break;
1671 case MEM1:
1672 if (args[0][0] == 'c' && args[0][1] == 'a')
1673 {
1674 if (branch_predict)
1675 as_warn ("%s", bp_error_msg);
1676 mem_fmt (args, oP, 1);
1677 break;
1678 }
1679 /* Fall through. */
1680 case MEM2:
1681 case MEM4:
1682 case MEM8:
1683 case MEM12:
1684 case MEM16:
1685 if (branch_predict)
1686 as_warn ("%s", bp_error_msg);
1687 mem_fmt (args, oP, 0);
1688 break;
1689 case CALLJ:
1690 if (branch_predict)
1691 as_warn ("%s", bp_error_msg);
1692 /* Output opcode & set up "fixup" (relocation); flag
1693 relocation as 'callj' type. */
1694 know (oP->num_ops == 1);
1695 get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
1696 break;
1697 default:
1698 BAD_CASE (oP->format);
1699 break;
1700 }
1701 }
1702 }
1703
1704 void
1705 md_number_to_chars (char *buf,
1706 valueT value,
1707 int n)
1708 {
1709 number_to_chars_littleendian (buf, value, n);
1710 }
1711
1712 const char *
1713 md_atof (int type, char *litP, int *sizeP)
1714 {
1715 return ieee_md_atof (type, litP, sizeP, FALSE);
1716 }
1717
1718 static void
1719 md_number_to_imm (char *buf, long val, int n)
1720 {
1721 md_number_to_chars (buf, val, n);
1722 }
1723
1724 static void
1725 md_number_to_field (char *instrP, /* Pointer to instruction to be fixed. */
1726 long val, /* Address fixup value. */
1727 bit_fixS *bfixP) /* Description of bit field to be fixed up. */
1728 {
1729 int numbits; /* Length of bit field to be fixed. */
1730 long instr; /* 32-bit instruction to be fixed-up. */
1731 long sign; /* 0 or -1, according to sign bit of 'val'. */
1732
1733 /* Convert instruction back to host byte order. */
1734 instr = md_chars_to_number (instrP, 4);
1735
1736 /* Surprise! -- we stored the number of bits to be modified rather
1737 than a pointer to a structure. */
1738 numbits = (int) (size_t) bfixP;
1739 if (numbits == 1)
1740 /* This is a no-op, stuck here by reloc_callj(). */
1741 return;
1742
1743 know ((numbits == 13) || (numbits == 24));
1744
1745 /* Propagate sign bit of 'val' for the given number of bits. Result
1746 should be all 0 or all 1. */
1747 sign = val >> ((int) numbits - 1);
1748 if (((val < 0) && (sign != -1))
1749 || ((val > 0) && (sign != 0)))
1750 as_bad (_("Fixup of %ld too large for field width of %d"),
1751 val, numbits);
1752 else
1753 {
1754 /* Put bit field into instruction and write back in target
1755 * byte order. */
1756 val &= ~(-(1 << (int) numbits)); /* Clear unused sign bits. */
1757 instr |= val;
1758 md_number_to_chars (instrP, instr, 4);
1759 }
1760 }
1761 \f
1762
1763 /* md_parse_option
1764 Invocation line includes a switch not recognized by the base assembler.
1765 See if it's a processor-specific option. For the 960, these are:
1766
1767 -norelax:
1768 Conditional branch instructions that require displacements
1769 greater than 13 bits (or that have external targets) should
1770 generate errors. The default is to replace each such
1771 instruction with the corresponding compare (or chkbit) and
1772 branch instructions. Note that the Intel "j" cobr directives
1773 are ALWAYS "de-optimized" in this way when necessary,
1774 regardless of the setting of this option.
1775
1776 -b:
1777 Add code to collect information about branches taken, for
1778 later optimization of branch prediction bits by a separate
1779 tool. COBR and CNTL format instructions have branch
1780 prediction bits (in the CX architecture); if "BR" represents
1781 an instruction in one of these classes, the following rep-
1782 resents the code generated by the assembler:
1783
1784 call <increment routine>
1785 .word 0 # pre-counter
1786 Label: BR
1787 call <increment routine>
1788 .word 0 # post-counter
1789
1790 A table of all such "Labels" is also generated.
1791
1792 -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
1793 Select the 80960 architecture. Instructions or features not
1794 supported by the selected architecture cause fatal errors.
1795 The default is to generate code for any instruction or feature
1796 that is supported by SOME version of the 960 (even if this
1797 means mixing architectures!). */
1798
1799 const char *md_shortopts = "A:b";
1800 struct option md_longopts[] =
1801 {
1802 #define OPTION_LINKRELAX (OPTION_MD_BASE)
1803 {"linkrelax", no_argument, NULL, OPTION_LINKRELAX},
1804 {"link-relax", no_argument, NULL, OPTION_LINKRELAX},
1805 #define OPTION_NORELAX (OPTION_MD_BASE + 1)
1806 {"norelax", no_argument, NULL, OPTION_NORELAX},
1807 {"no-relax", no_argument, NULL, OPTION_NORELAX},
1808 {NULL, no_argument, NULL, 0}
1809 };
1810 size_t md_longopts_size = sizeof (md_longopts);
1811
1812 struct tabentry
1813 {
1814 const char *flag;
1815 int arch;
1816 };
1817 static const struct tabentry arch_tab[] =
1818 {
1819 {"KA", ARCH_KA},
1820 {"KB", ARCH_KB},
1821 {"SA", ARCH_KA}, /* Synonym for KA. */
1822 {"SB", ARCH_KB}, /* Synonym for KB. */
1823 {"KC", ARCH_MC}, /* Synonym for MC. */
1824 {"MC", ARCH_MC},
1825 {"CA", ARCH_CA},
1826 {"JX", ARCH_JX},
1827 {"HX", ARCH_HX},
1828 {NULL, 0}
1829 };
1830
1831 int
1832 md_parse_option (int c, const char *arg)
1833 {
1834 switch (c)
1835 {
1836 case OPTION_LINKRELAX:
1837 linkrelax = 1;
1838 flag_keep_locals = 1;
1839 break;
1840
1841 case OPTION_NORELAX:
1842 norelax = 1;
1843 break;
1844
1845 case 'b':
1846 instrument_branches = 1;
1847 break;
1848
1849 case 'A':
1850 {
1851 const struct tabentry *tp;
1852 const char *p = arg;
1853
1854 for (tp = arch_tab; tp->flag != NULL; tp++)
1855 if (!strcmp (p, tp->flag))
1856 break;
1857
1858 if (tp->flag == NULL)
1859 {
1860 as_bad (_("invalid architecture %s"), p);
1861 return 0;
1862 }
1863 else
1864 architecture = tp->arch;
1865 }
1866 break;
1867
1868 default:
1869 return 0;
1870 }
1871
1872 return 1;
1873 }
1874
1875 void
1876 md_show_usage (FILE *stream)
1877 {
1878 int i;
1879
1880 fprintf (stream, _("I960 options:\n"));
1881 for (i = 0; arch_tab[i].flag; i++)
1882 fprintf (stream, "%s-A%s", i ? " | " : "", arch_tab[i].flag);
1883 fprintf (stream, _("\n\
1884 specify variant of 960 architecture\n\
1885 -b add code to collect statistics about branches taken\n\
1886 -link-relax preserve individual alignment directives so linker\n\
1887 can do relaxing (b.out format only)\n\
1888 -no-relax don't alter compare-and-branch instructions for\n\
1889 long displacements\n"));
1890 }
1891 \f
1892 /* relax_cobr:
1893 Replace cobr instruction in a code fragment with equivalent branch and
1894 compare instructions, so it can reach beyond a 13-bit displacement.
1895 Set up an address fix/relocation for the new branch instruction. */
1896
1897 /* This "conditional jump" table maps cobr instructions into
1898 equivalent compare and branch opcodes. */
1899
1900 static const
1901 struct
1902 {
1903 long compare;
1904 long branch;
1905 }
1906
1907 coj[] =
1908 { /* COBR OPCODE: */
1909 { CHKBIT, BNO }, /* 0x30 - bbc */
1910 { CMPO, BG }, /* 0x31 - cmpobg */
1911 { CMPO, BE }, /* 0x32 - cmpobe */
1912 { CMPO, BGE }, /* 0x33 - cmpobge */
1913 { CMPO, BL }, /* 0x34 - cmpobl */
1914 { CMPO, BNE }, /* 0x35 - cmpobne */
1915 { CMPO, BLE }, /* 0x36 - cmpoble */
1916 { CHKBIT, BO }, /* 0x37 - bbs */
1917 { CMPI, BNO }, /* 0x38 - cmpibno */
1918 { CMPI, BG }, /* 0x39 - cmpibg */
1919 { CMPI, BE }, /* 0x3a - cmpibe */
1920 { CMPI, BGE }, /* 0x3b - cmpibge */
1921 { CMPI, BL }, /* 0x3c - cmpibl */
1922 { CMPI, BNE }, /* 0x3d - cmpibne */
1923 { CMPI, BLE }, /* 0x3e - cmpible */
1924 { CMPI, BO }, /* 0x3f - cmpibo */
1925 };
1926
1927 static void
1928 relax_cobr (fragS *fragP) /* fragP->fr_opcode is assumed to point to
1929 the cobr instruction, which comes at the
1930 end of the code fragment. */
1931 {
1932 int opcode, src1, src2, m1, s2;
1933 /* Bit fields from cobr instruction. */
1934 long bp_bits; /* Branch prediction bits from cobr instruction. */
1935 long instr; /* A single i960 instruction. */
1936 /* ->instruction to be replaced. */
1937 char *iP;
1938 fixS *fixP; /* Relocation that can be done at assembly time. */
1939
1940 /* Pick up & parse cobr instruction. */
1941 iP = fragP->fr_opcode;
1942 instr = md_chars_to_number (iP, 4);
1943 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index. */
1944 src1 = (instr >> 19) & 0x1f;
1945 m1 = (instr >> 13) & 1;
1946 s2 = instr & 1;
1947 src2 = (instr >> 14) & 0x1f;
1948 bp_bits = instr & BP_MASK;
1949
1950 /* Generate and output compare instruction. */
1951 instr = coj[opcode].compare
1952 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
1953 md_number_to_chars (iP, instr, 4);
1954
1955 /* Output branch instruction. */
1956 md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);
1957
1958 /* Set up address fixup/relocation. */
1959 fixP = fix_new (fragP,
1960 iP + 4 - fragP->fr_literal,
1961 4,
1962 fragP->fr_symbol,
1963 fragP->fr_offset,
1964 1,
1965 NO_RELOC);
1966
1967 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field. */
1968
1969 fragP->fr_fix += 4;
1970 frag_wane (fragP);
1971 }
1972
1973 /* md_convert_frag:
1974
1975 Called by base assembler after address relaxation is finished: modify
1976 variable fragments according to how much relaxation was done.
1977
1978 If the fragment substate is still 1, a 13-bit displacement was enough
1979 to reach the symbol in question. Set up an address fixup, but otherwise
1980 leave the cobr instruction alone.
1981
1982 If the fragment substate is 2, a 13-bit displacement was not enough.
1983 Replace the cobr with a two instructions (a compare and a branch). */
1984
1985 void
1986 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
1987 segT sec ATTRIBUTE_UNUSED,
1988 fragS *fragP)
1989 {
1990 /* Structure describing needed address fix. */
1991 fixS *fixP;
1992
1993 switch (fragP->fr_subtype)
1994 {
1995 case 1:
1996 /* Leave single cobr instruction. */
1997 fixP = fix_new (fragP,
1998 fragP->fr_opcode - fragP->fr_literal,
1999 4,
2000 fragP->fr_symbol,
2001 fragP->fr_offset,
2002 1,
2003 NO_RELOC);
2004
2005 fixP->fx_bit_fixP = (bit_fixS *) 13; /* Size of bit field. */
2006 break;
2007 case 2:
2008 /* Replace cobr with compare/branch instructions. */
2009 relax_cobr (fragP);
2010 break;
2011 default:
2012 BAD_CASE (fragP->fr_subtype);
2013 break;
2014 }
2015 }
2016
2017 /* md_estimate_size_before_relax: How much does it look like *fragP will grow?
2018
2019 Called by base assembler just before address relaxation.
2020 Return the amount by which the fragment will grow.
2021
2022 Any symbol that is now undefined will not become defined; cobr's
2023 based on undefined symbols will have to be replaced with a compare
2024 instruction and a branch instruction, and the code fragment will grow
2025 by 4 bytes. */
2026
2027 int
2028 md_estimate_size_before_relax (fragS *fragP, segT segment_type)
2029 {
2030 /* If symbol is undefined in this segment, go to "relaxed" state
2031 (compare and branch instructions instead of cobr) right now. */
2032 if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
2033 {
2034 relax_cobr (fragP);
2035 return 4;
2036 }
2037
2038 return md_relax_table[fragP->fr_subtype].rlx_length;
2039 }
2040
2041 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2042
2043 /* md_ri_to_chars:
2044 This routine exists in order to overcome machine byte-order problems
2045 when dealing with bit-field entries in the relocation_info struct.
2046
2047 But relocation info will be used on the host machine only (only
2048 executable code is actually downloaded to the i80960). Therefore,
2049 we leave it in host byte order. */
2050
2051 static void
2052 md_ri_to_chars (char *where, struct relocation_info *ri)
2053 {
2054 host_number_to_chars (where, ri->r_address, 4);
2055 host_number_to_chars (where + 4, ri->r_index, 3);
2056 #if WORDS_BIGENDIAN
2057 where[7] = (ri->r_pcrel << 7
2058 | ri->r_length << 5
2059 | ri->r_extern << 4
2060 | ri->r_bsr << 3
2061 | ri->r_disp << 2
2062 | ri->r_callj << 1
2063 | ri->nuthin << 0);
2064 #else
2065 where[7] = (ri->r_pcrel << 0
2066 | ri->r_length << 1
2067 | ri->r_extern << 3
2068 | ri->r_bsr << 4
2069 | ri->r_disp << 5
2070 | ri->r_callj << 6
2071 | ri->nuthin << 7);
2072 #endif
2073 }
2074
2075 #endif /* defined(OBJ_AOUT) | defined(OBJ_BOUT) */
2076
2077 \f
2078 /* brtab_emit: generate the fetch-prediction branch table.
2079
2080 See the comments above the declaration of 'br_cnt' for details on
2081 branch-prediction instrumentation.
2082
2083 The code emitted here would be functionally equivalent to the following
2084 example assembler source.
2085
2086 .data
2087 .align 2
2088 BR_TAB_NAME:
2089 .word 0 # link to next table
2090 .word 3 # length of table
2091 .word LBRANCH0 # 1st entry in table proper
2092 .word LBRANCH1
2093 .word LBRANCH2 */
2094
2095 void
2096 brtab_emit (void)
2097 {
2098 int i;
2099 char buf[20];
2100 /* Where the binary was output to. */
2101 char *p;
2102
2103 if (!instrument_branches)
2104 return;
2105
2106 subseg_set (data_section, 0); /* .data */
2107 frag_align (2, 0, 0); /* .align 2 */
2108 record_alignment (now_seg, 2);
2109 colon (BR_TAB_NAME); /* BR_TAB_NAME: */
2110 emit (0); /* .word 0 #link to next table */
2111 emit (br_cnt); /* .word n #length of table */
2112
2113 for (i = 0; i < br_cnt; i++)
2114 {
2115 sprintf (buf, "%s%d", BR_LABEL_BASE, i);
2116 p = emit (0);
2117 fix_new (frag_now,
2118 p - frag_now->fr_literal,
2119 4, symbol_find (buf), 0, 0, NO_RELOC);
2120 }
2121 }
2122
2123 /* s_leafproc: process .leafproc pseudo-op
2124
2125 .leafproc takes two arguments, the second one is optional:
2126 arg[1]: name of 'call' entry point to leaf procedure
2127 arg[2]: name of 'bal' entry point to leaf procedure
2128
2129 If the two arguments are identical, or if the second one is missing,
2130 the first argument is taken to be the 'bal' entry point.
2131
2132 If there are 2 distinct arguments, we must make sure that the 'bal'
2133 entry point immediately follows the 'call' entry point in the linked
2134 list of symbols. */
2135
2136 static void
2137 s_leafproc (int n_ops, /* Number of operands. */
2138 char *args[]) /* args[1]->1st operand, args[2]->2nd operand. */
2139 {
2140 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol. */
2141 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol. */
2142
2143 if ((n_ops != 1) && (n_ops != 2))
2144 {
2145 as_bad (_("should have 1 or 2 operands"));
2146 return;
2147 }
2148
2149 /* Find or create symbol for 'call' entry point. */
2150 callP = symbol_find_or_make (args[1]);
2151
2152 if (TC_S_IS_CALLNAME (callP))
2153 as_warn (_("Redefining leafproc %s"), S_GET_NAME (callP));
2154
2155 /* If that was the only argument, use it as the 'bal' entry point.
2156 Otherwise, mark it as the 'call' entry point and find or create
2157 another symbol for the 'bal' entry point. */
2158 if ((n_ops == 1) || !strcmp (args[1], args[2]))
2159 {
2160 TC_S_FORCE_TO_BALNAME (callP);
2161 }
2162 else
2163 {
2164 TC_S_FORCE_TO_CALLNAME (callP);
2165
2166 balP = symbol_find_or_make (args[2]);
2167 if (TC_S_IS_CALLNAME (balP))
2168 as_warn (_("Redefining leafproc %s"), S_GET_NAME (balP));
2169
2170 TC_S_FORCE_TO_BALNAME (balP);
2171
2172 #ifndef OBJ_ELF
2173 tc_set_bal_of_call (callP, balP);
2174 #endif
2175 }
2176 }
2177
2178 /* s_sysproc: process .sysproc pseudo-op
2179
2180 .sysproc takes two arguments:
2181 arg[1]: name of entry point to system procedure
2182 arg[2]: 'entry_num' (index) of system procedure in the range
2183 [0,31] inclusive.
2184
2185 For [ab].out, we store the 'entrynum' in the 'n_other' field of
2186 the symbol. Since that entry is normally 0, we bias 'entrynum'
2187 by adding 1 to it. It must be unbiased before it is used. */
2188
2189 static void
2190 s_sysproc (int n_ops, /* Number of operands. */
2191 char *args[]) /* args[1]->1st operand, args[2]->2nd operand. */
2192 {
2193 expressionS exp;
2194 symbolS *symP;
2195
2196 if (n_ops != 2)
2197 {
2198 as_bad (_("should have two operands"));
2199 return;
2200 }
2201
2202 /* Parse "entry_num" argument and check it for validity. */
2203 parse_expr (args[2], &exp);
2204 if (exp.X_op != O_constant
2205 || (offs (exp) < 0)
2206 || (offs (exp) > 31))
2207 {
2208 as_bad (_("'entry_num' must be absolute number in [0,31]"));
2209 return;
2210 }
2211
2212 /* Find/make symbol and stick entry number (biased by +1) into it. */
2213 symP = symbol_find_or_make (args[1]);
2214
2215 if (TC_S_IS_SYSPROC (symP))
2216 as_warn (_("Redefining entrynum for sysproc %s"), S_GET_NAME (symP));
2217
2218 TC_S_SET_SYSPROC (symP, offs (exp)); /* Encode entry number. */
2219 TC_S_FORCE_TO_SYSPROC (symP);
2220 }
2221
2222 /* parse_po: parse machine-dependent pseudo-op
2223
2224 This is a top-level routine for machine-dependent pseudo-ops. It slurps
2225 up the rest of the input line, breaks out the individual arguments,
2226 and dispatches them to the correct handler. */
2227
2228 static void
2229 parse_po (int po_num) /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC. */
2230 {
2231 /* Pointers operands, with no embedded whitespace.
2232 arg[0] unused, arg[1-3]->operands. */
2233 char *args[4];
2234 int n_ops; /* Number of operands. */
2235 char *p; /* Pointer to beginning of unparsed argument string. */
2236 char eol; /* Character that indicated end of line. */
2237
2238 extern char is_end_of_line[];
2239
2240 /* Advance input pointer to end of line. */
2241 p = input_line_pointer;
2242 while (!is_end_of_line[(unsigned char) *input_line_pointer])
2243 input_line_pointer++;
2244
2245 eol = *input_line_pointer; /* Save end-of-line char. */
2246 *input_line_pointer = '\0'; /* Terminate argument list. */
2247
2248 /* Parse out operands. */
2249 n_ops = get_args (p, args);
2250 if (n_ops == -1)
2251 return;
2252
2253 /* Dispatch to correct handler. */
2254 switch (po_num)
2255 {
2256 case S_SYSPROC:
2257 s_sysproc (n_ops, args);
2258 break;
2259 case S_LEAFPROC:
2260 s_leafproc (n_ops, args);
2261 break;
2262 default:
2263 BAD_CASE (po_num);
2264 break;
2265 }
2266
2267 /* Restore eol, so line numbers get updated correctly. Base
2268 assembler assumes we leave input pointer pointing at char
2269 following the eol. */
2270 *input_line_pointer++ = eol;
2271 }
2272
2273 /* reloc_callj: Relocate a 'callj' instruction
2274
2275 This is a "non-(GNU)-standard" machine-dependent hook. The base
2276 assembler calls it when it decides it can relocate an address at
2277 assembly time instead of emitting a relocation directive.
2278
2279 Check to see if the relocation involves a 'callj' instruction to a:
2280 sysproc: Replace the default 'call' instruction with a 'calls'
2281 leafproc: Replace the default 'call' instruction with a 'bal'.
2282 other proc: Do nothing.
2283
2284 See b.out.h for details on the 'n_other' field in a symbol structure.
2285
2286 IMPORTANT!:
2287 Assumes the caller has already figured out, in the case of a leafproc,
2288 to use the 'bal' entry point, and has substituted that symbol into the
2289 passed fixup structure. */
2290
2291 int
2292 reloc_callj (fixS *fixP) /* Relocation that can be done at assembly time. */
2293 {
2294 /* Points to the binary for the instruction being relocated. */
2295 char *where;
2296
2297 if (!fixP->fx_tcbit)
2298 /* This wasn't a callj instruction in the first place. */
2299 return 0;
2300
2301 where = fixP->fx_frag->fr_literal + fixP->fx_where;
2302
2303 if (TC_S_IS_SYSPROC (fixP->fx_addsy))
2304 {
2305 /* Symbol is a .sysproc: replace 'call' with 'calls'. System
2306 procedure number is (other-1). */
2307 md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);
2308
2309 /* Nothing else needs to be done for this instruction. Make
2310 sure 'md_number_to_field()' will perform a no-op. */
2311 fixP->fx_bit_fixP = (bit_fixS *) 1;
2312 }
2313 else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
2314 {
2315 /* Should not happen: see block comment above. */
2316 as_fatal (_("Trying to 'bal' to %s"), S_GET_NAME (fixP->fx_addsy));
2317 }
2318 else if (TC_S_IS_BALNAME (fixP->fx_addsy))
2319 {
2320 /* Replace 'call' with 'bal'; both instructions have the same
2321 format, so calling code should complete relocation as if
2322 nothing happened here. */
2323 md_number_to_chars (where, BAL, 4);
2324 }
2325 else if (TC_S_IS_BADPROC (fixP->fx_addsy))
2326 as_bad (_("Looks like a proc, but can't tell what kind.\n"));
2327
2328 /* Otherwise Symbol is neither a sysproc nor a leafproc. */
2329 return 0;
2330 }
2331
2332 /* Handle the MRI .endian pseudo-op. */
2333
2334 static void
2335 s_endian (int ignore ATTRIBUTE_UNUSED)
2336 {
2337 char *name;
2338 char c;
2339
2340 c = get_symbol_name (&name);
2341 if (strcasecmp (name, "little") == 0)
2342 ;
2343 else if (strcasecmp (name, "big") == 0)
2344 as_bad (_("big endian mode is not supported"));
2345 else
2346 as_warn (_("ignoring unrecognized .endian type `%s'"), name);
2347
2348 (void) restore_line_pointer (c);
2349
2350 demand_empty_rest_of_line ();
2351 }
2352
2353 /* We have no need to default values of symbols. */
2354
2355 symbolS *
2356 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2357 {
2358 return 0;
2359 }
2360
2361 /* Exactly what point is a PC-relative offset relative TO?
2362 On the i960, they're relative to the address of the instruction,
2363 which we have set up as the address of the fixup too. */
2364 long
2365 md_pcrel_from (fixS *fixP)
2366 {
2367 return fixP->fx_where + fixP->fx_frag->fr_address;
2368 }
2369
2370 void
2371 md_apply_fix (fixS *fixP,
2372 valueT *valP,
2373 segT seg ATTRIBUTE_UNUSED)
2374 {
2375 long val = *valP;
2376 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
2377
2378 if (!fixP->fx_bit_fixP)
2379 {
2380 md_number_to_imm (place, val, fixP->fx_size);
2381 }
2382 else if ((int) (size_t) fixP->fx_bit_fixP == 13
2383 && fixP->fx_addsy != NULL
2384 && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section)
2385 {
2386 /* This is a COBR instruction. They have only a
2387 13-bit displacement and are only to be used
2388 for local branches: flag as error, don't generate
2389 relocation. */
2390 as_bad_where (fixP->fx_file, fixP->fx_line,
2391 _("can't use COBR format with external label"));
2392 fixP->fx_addsy = NULL;
2393 }
2394 else
2395 md_number_to_field (place, val, fixP->fx_bit_fixP);
2396
2397 if (fixP->fx_addsy == NULL)
2398 fixP->fx_done = 1;
2399 }
2400
2401 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2402 void
2403 tc_bout_fix_to_chars (char *where,
2404 fixS *fixP,
2405 relax_addressT segment_address_in_file)
2406 {
2407 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
2408 struct relocation_info ri;
2409 symbolS *symbolP;
2410
2411 memset ((char *) &ri, '\0', sizeof (ri));
2412 symbolP = fixP->fx_addsy;
2413 know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
2414 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */
2415 /* These two 'cuz of NS32K */
2416 ri.r_callj = fixP->fx_tcbit;
2417 if (fixP->fx_bit_fixP)
2418 ri.r_length = 2;
2419 else
2420 ri.r_length = nbytes_r_length[fixP->fx_size];
2421 ri.r_pcrel = fixP->fx_pcrel;
2422 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
2423
2424 if (fixP->fx_r_type != NO_RELOC)
2425 {
2426 switch (fixP->fx_r_type)
2427 {
2428 case rs_align:
2429 ri.r_index = -2;
2430 ri.r_pcrel = 1;
2431 ri.r_length = fixP->fx_size - 1;
2432 break;
2433 case rs_org:
2434 ri.r_index = -2;
2435 ri.r_pcrel = 0;
2436 break;
2437 case rs_fill:
2438 ri.r_index = -1;
2439 break;
2440 default:
2441 abort ();
2442 }
2443 ri.r_extern = 0;
2444 }
2445 else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr)
2446 {
2447 ri.r_extern = 1;
2448 ri.r_index = symbolP->sy_number;
2449 }
2450 else
2451 {
2452 ri.r_extern = 0;
2453 ri.r_index = S_GET_TYPE (symbolP);
2454 }
2455
2456 /* Output the relocation information in machine-dependent form. */
2457 md_ri_to_chars (where, &ri);
2458 }
2459
2460 #endif /* OBJ_AOUT or OBJ_BOUT */
2461
2462 /* Align an address by rounding it up to the specified boundary. */
2463
2464 valueT
2465 md_section_align (segT seg,
2466 valueT addr) /* Address to be rounded up. */
2467 {
2468 int align;
2469
2470 align = bfd_get_section_alignment (stdoutput, seg);
2471 return (addr + (1 << align) - 1) & -(1 << align);
2472 }
2473
2474 extern int coff_flags;
2475
2476 /* For aout or bout, the bal immediately follows the call.
2477
2478 For coff, we cheat and store a pointer to the bal symbol in the
2479 second aux entry of the call. */
2480
2481 #undef OBJ_ABOUT
2482 #ifdef OBJ_AOUT
2483 #define OBJ_ABOUT
2484 #endif
2485 #ifdef OBJ_BOUT
2486 #define OBJ_ABOUT
2487 #endif
2488
2489 void
2490 tc_set_bal_of_call (symbolS *callP ATTRIBUTE_UNUSED,
2491 symbolS *balP ATTRIBUTE_UNUSED)
2492 {
2493 know (TC_S_IS_CALLNAME (callP));
2494 know (TC_S_IS_BALNAME (balP));
2495
2496 #ifdef OBJ_COFF
2497
2498 callP->sy_tc = balP;
2499 S_SET_NUMBER_AUXILIARY (callP, 2);
2500
2501 #else /* ! OBJ_COFF */
2502 #ifdef OBJ_ABOUT
2503
2504 /* If the 'bal' entry doesn't immediately follow the 'call'
2505 symbol, unlink it from the symbol list and re-insert it. */
2506 if (symbol_next (callP) != balP)
2507 {
2508 symbol_remove (balP, &symbol_rootP, &symbol_lastP);
2509 symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
2510 } /* if not in order */
2511
2512 #else /* ! OBJ_ABOUT */
2513 as_fatal ("Only supported for a.out, b.out, or COFF");
2514 #endif /* ! OBJ_ABOUT */
2515 #endif /* ! OBJ_COFF */
2516 }
2517
2518 symbolS *
2519 tc_get_bal_of_call (symbolS *callP ATTRIBUTE_UNUSED)
2520 {
2521 symbolS *retval;
2522
2523 know (TC_S_IS_CALLNAME (callP));
2524
2525 #ifdef OBJ_COFF
2526 retval = callP->sy_tc;
2527 #else
2528 #ifdef OBJ_ABOUT
2529 retval = symbol_next (callP);
2530 #else
2531 as_fatal ("Only supported for a.out, b.out, or COFF");
2532 #endif /* ! OBJ_ABOUT */
2533 #endif /* ! OBJ_COFF */
2534
2535 know (TC_S_IS_BALNAME (retval));
2536 return retval;
2537 }
2538
2539 #ifdef OBJ_COFF
2540 void
2541 tc_coff_symbol_emit_hook (symbolS *symbolP ATTRIBUTE_UNUSED)
2542 {
2543 if (TC_S_IS_CALLNAME (symbolP))
2544 {
2545 symbolS *balP = tc_get_bal_of_call (symbolP);
2546
2547 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
2548 if (S_GET_STORAGE_CLASS (symbolP) == C_EXT)
2549 S_SET_STORAGE_CLASS (symbolP, C_LEAFEXT);
2550 else
2551 S_SET_STORAGE_CLASS (symbolP, C_LEAFSTAT);
2552 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
2553 /* Fix up the bal symbol. */
2554 S_SET_STORAGE_CLASS (balP, C_LABEL);
2555 }
2556 }
2557 #endif /* OBJ_COFF */
2558
2559 void
2560 i960_handle_align (fragS *fragp ATTRIBUTE_UNUSED)
2561 {
2562 if (!linkrelax)
2563 return;
2564
2565 #ifndef OBJ_BOUT
2566 as_bad (_("option --link-relax is only supported in b.out format"));
2567 linkrelax = 0;
2568 return;
2569 #else
2570
2571 /* The text section "ends" with another alignment reloc, to which we
2572 aren't adding padding. */
2573 if (fragp->fr_next == text_last_frag
2574 || fragp->fr_next == data_last_frag)
2575 return;
2576
2577 /* alignment directive */
2578 fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0,
2579 (int) fragp->fr_type);
2580 #endif /* OBJ_BOUT */
2581 }
2582
2583 int
2584 i960_validate_fix (fixS *fixP, segT this_segment_type ATTRIBUTE_UNUSED)
2585 {
2586 if (fixP->fx_tcbit && TC_S_IS_CALLNAME (fixP->fx_addsy))
2587 {
2588 /* Relocation should be done via the associated 'bal'
2589 entry point symbol. */
2590 if (!TC_S_IS_BALNAME (tc_get_bal_of_call (fixP->fx_addsy)))
2591 {
2592 as_bad_where (fixP->fx_file, fixP->fx_line,
2593 _("No 'bal' entry point for leafproc %s"),
2594 S_GET_NAME (fixP->fx_addsy));
2595 return 0;
2596 }
2597 fixP->fx_addsy = tc_get_bal_of_call (fixP->fx_addsy);
2598 }
2599
2600 return 1;
2601 }
2602
2603 /* From cgen.c: */
2604
2605 static short
2606 tc_bfd_fix2rtype (fixS *fixP)
2607 {
2608 if (fixP->fx_pcrel == 0 && fixP->fx_size == 4)
2609 return BFD_RELOC_32;
2610
2611 if (fixP->fx_pcrel != 0 && fixP->fx_size == 4)
2612 return BFD_RELOC_24_PCREL;
2613
2614 abort ();
2615 return 0;
2616 }
2617
2618 /* Translate internal representation of relocation info to BFD target
2619 format.
2620
2621 FIXME: To what extent can we get all relevant targets to use this? */
2622
2623 arelent *
2624 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixP)
2625 {
2626 arelent * reloc;
2627
2628 reloc = XNEW (arelent);
2629
2630 /* HACK: Is this right? */
2631 fixP->fx_r_type = tc_bfd_fix2rtype (fixP);
2632
2633 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
2634 if (reloc->howto == NULL)
2635 {
2636 as_bad_where (fixP->fx_file, fixP->fx_line,
2637 _("internal error: can't export reloc type %d (`%s')"),
2638 fixP->fx_r_type,
2639 bfd_get_reloc_code_name (fixP->fx_r_type));
2640 return NULL;
2641 }
2642
2643 gas_assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);
2644
2645 reloc->sym_ptr_ptr = XNEW (asymbol *);
2646 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
2647 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
2648 reloc->addend = fixP->fx_addnumber;
2649
2650 return reloc;
2651 }
2652
2653 /* end from cgen.c */
2654
2655 const pseudo_typeS md_pseudo_table[] =
2656 {
2657 {"bss", s_lcomm, 1},
2658 {"endian", s_endian, 0},
2659 {"extended", float_cons, 't'},
2660 {"leafproc", parse_po, S_LEAFPROC},
2661 {"sysproc", parse_po, S_SYSPROC},
2662
2663 {"word", cons, 4},
2664 {"quad", cons, 16},
2665
2666 {0, 0, 0}
2667 };