* read.c (read_a_source_file): Use demand_empty_rest_of_line.
[binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*
23 TODO:
24
25 - optional operands
26 - directives:
27 .eb
28 .estate
29 .lb
30 .popsection
31 .previous
32 .psr
33 .pushsection
34 - labels are wrong if automatic alignment is introduced
35 (e.g., checkout the second real10 definition in test-data.s)
36 - DV-related stuff:
37 <reg>.safe_across_calls and any other DV-related directives I don't
38 have documentation for.
39 verify mod-sched-brs reads/writes are checked/marked (and other
40 notes)
41
42 */
43
44 #include "as.h"
45 #include "safe-ctype.h"
46 #include "dwarf2dbg.h"
47 #include "subsegs.h"
48
49 #include "opcode/ia64.h"
50
51 #include "elf/ia64.h"
52
53 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
54 #define MIN(a,b) ((a) < (b) ? (a) : (b))
55
56 #define NUM_SLOTS 4
57 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
58 #define CURR_SLOT md.slot[md.curr_slot]
59
60 #define O_pseudo_fixup (O_max + 1)
61
62 enum special_section
63 {
64 /* IA-64 ABI section pseudo-ops. */
65 SPECIAL_SECTION_BSS = 0,
66 SPECIAL_SECTION_SBSS,
67 SPECIAL_SECTION_SDATA,
68 SPECIAL_SECTION_RODATA,
69 SPECIAL_SECTION_COMMENT,
70 SPECIAL_SECTION_UNWIND,
71 SPECIAL_SECTION_UNWIND_INFO,
72 /* HPUX specific section pseudo-ops. */
73 SPECIAL_SECTION_INIT_ARRAY,
74 SPECIAL_SECTION_FINI_ARRAY,
75 };
76
77 enum reloc_func
78 {
79 FUNC_DTP_MODULE,
80 FUNC_DTP_RELATIVE,
81 FUNC_FPTR_RELATIVE,
82 FUNC_GP_RELATIVE,
83 FUNC_LT_RELATIVE,
84 FUNC_LT_RELATIVE_X,
85 FUNC_PC_RELATIVE,
86 FUNC_PLT_RELATIVE,
87 FUNC_SEC_RELATIVE,
88 FUNC_SEG_RELATIVE,
89 FUNC_TP_RELATIVE,
90 FUNC_LTV_RELATIVE,
91 FUNC_LT_FPTR_RELATIVE,
92 FUNC_LT_DTP_MODULE,
93 FUNC_LT_DTP_RELATIVE,
94 FUNC_LT_TP_RELATIVE,
95 FUNC_IPLT_RELOC,
96 };
97
98 enum reg_symbol
99 {
100 REG_GR = 0,
101 REG_FR = (REG_GR + 128),
102 REG_AR = (REG_FR + 128),
103 REG_CR = (REG_AR + 128),
104 REG_P = (REG_CR + 128),
105 REG_BR = (REG_P + 64),
106 REG_IP = (REG_BR + 8),
107 REG_CFM,
108 REG_PR,
109 REG_PR_ROT,
110 REG_PSR,
111 REG_PSR_L,
112 REG_PSR_UM,
113 /* The following are pseudo-registers for use by gas only. */
114 IND_CPUID,
115 IND_DBR,
116 IND_DTR,
117 IND_ITR,
118 IND_IBR,
119 IND_MEM,
120 IND_MSR,
121 IND_PKR,
122 IND_PMC,
123 IND_PMD,
124 IND_RR,
125 /* The following pseudo-registers are used for unwind directives only: */
126 REG_PSP,
127 REG_PRIUNAT,
128 REG_NUM
129 };
130
131 enum dynreg_type
132 {
133 DYNREG_GR = 0, /* dynamic general purpose register */
134 DYNREG_FR, /* dynamic floating point register */
135 DYNREG_PR, /* dynamic predicate register */
136 DYNREG_NUM_TYPES
137 };
138
139 enum operand_match_result
140 {
141 OPERAND_MATCH,
142 OPERAND_OUT_OF_RANGE,
143 OPERAND_MISMATCH
144 };
145
146 /* On the ia64, we can't know the address of a text label until the
147 instructions are packed into a bundle. To handle this, we keep
148 track of the list of labels that appear in front of each
149 instruction. */
150 struct label_fix
151 {
152 struct label_fix *next;
153 struct symbol *sym;
154 };
155
156 extern int target_big_endian;
157
158 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
159
160 static void ia64_float_to_chars_bigendian
161 PARAMS ((char *, LITTLENUM_TYPE *, int));
162 static void ia64_float_to_chars_littleendian
163 PARAMS ((char *, LITTLENUM_TYPE *, int));
164 static void (*ia64_float_to_chars)
165 PARAMS ((char *, LITTLENUM_TYPE *, int));
166
167 static struct hash_control *alias_hash;
168 static struct hash_control *alias_name_hash;
169 static struct hash_control *secalias_hash;
170 static struct hash_control *secalias_name_hash;
171
172 /* Characters which always start a comment. */
173 const char comment_chars[] = "";
174
175 /* Characters which start a comment at the beginning of a line. */
176 const char line_comment_chars[] = "#";
177
178 /* Characters which may be used to separate multiple commands on a
179 single line. */
180 const char line_separator_chars[] = ";";
181
182 /* Characters which are used to indicate an exponent in a floating
183 point number. */
184 const char EXP_CHARS[] = "eE";
185
186 /* Characters which mean that a number is a floating point constant,
187 as in 0d1.0. */
188 const char FLT_CHARS[] = "rRsSfFdDxXpP";
189
190 /* ia64-specific option processing: */
191
192 const char *md_shortopts = "m:N:x::";
193
194 struct option md_longopts[] =
195 {
196 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
197 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
198 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
199 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
200 };
201
202 size_t md_longopts_size = sizeof (md_longopts);
203
204 static struct
205 {
206 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
207 struct hash_control *reg_hash; /* register name hash table */
208 struct hash_control *dynreg_hash; /* dynamic register hash table */
209 struct hash_control *const_hash; /* constant hash table */
210 struct hash_control *entry_hash; /* code entry hint hash table */
211
212 symbolS *regsym[REG_NUM];
213
214 /* If X_op is != O_absent, the registername for the instruction's
215 qualifying predicate. If NULL, p0 is assumed for instructions
216 that are predicatable. */
217 expressionS qp;
218
219 unsigned int
220 manual_bundling : 1,
221 debug_dv: 1,
222 detect_dv: 1,
223 explicit_mode : 1, /* which mode we're in */
224 default_explicit_mode : 1, /* which mode is the default */
225 mode_explicitly_set : 1, /* was the current mode explicitly set? */
226 auto_align : 1,
227 keep_pending_output : 1;
228
229 /* Each bundle consists of up to three instructions. We keep
230 track of four most recent instructions so we can correctly set
231 the end_of_insn_group for the last instruction in a bundle. */
232 int curr_slot;
233 int num_slots_in_use;
234 struct slot
235 {
236 unsigned int
237 end_of_insn_group : 1,
238 manual_bundling_on : 1,
239 manual_bundling_off : 1;
240 signed char user_template; /* user-selected template, if any */
241 unsigned char qp_regno; /* qualifying predicate */
242 /* This duplicates a good fraction of "struct fix" but we
243 can't use a "struct fix" instead since we can't call
244 fix_new_exp() until we know the address of the instruction. */
245 int num_fixups;
246 struct insn_fix
247 {
248 bfd_reloc_code_real_type code;
249 enum ia64_opnd opnd; /* type of operand in need of fix */
250 unsigned int is_pcrel : 1; /* is operand pc-relative? */
251 expressionS expr; /* the value to be inserted */
252 }
253 fixup[2]; /* at most two fixups per insn */
254 struct ia64_opcode *idesc;
255 struct label_fix *label_fixups;
256 struct label_fix *tag_fixups;
257 struct unw_rec_list *unwind_record; /* Unwind directive. */
258 expressionS opnd[6];
259 char *src_file;
260 unsigned int src_line;
261 struct dwarf2_line_info debug_line;
262 }
263 slot[NUM_SLOTS];
264
265 segT last_text_seg;
266
267 struct dynreg
268 {
269 struct dynreg *next; /* next dynamic register */
270 const char *name;
271 unsigned short base; /* the base register number */
272 unsigned short num_regs; /* # of registers in this set */
273 }
274 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
275
276 flagword flags; /* ELF-header flags */
277
278 struct mem_offset {
279 unsigned hint:1; /* is this hint currently valid? */
280 bfd_vma offset; /* mem.offset offset */
281 bfd_vma base; /* mem.offset base */
282 } mem_offset;
283
284 int path; /* number of alt. entry points seen */
285 const char **entry_labels; /* labels of all alternate paths in
286 the current DV-checking block. */
287 int maxpaths; /* size currently allocated for
288 entry_labels */
289 /* Support for hardware errata workarounds. */
290
291 /* Record data about the last three insn groups. */
292 struct group
293 {
294 /* B-step workaround.
295 For each predicate register, this is set if the corresponding insn
296 group conditionally sets this register with one of the affected
297 instructions. */
298 int p_reg_set[64];
299 /* B-step workaround.
300 For each general register, this is set if the corresponding insn
301 a) is conditional one one of the predicate registers for which
302 P_REG_SET is 1 in the corresponding entry of the previous group,
303 b) sets this general register with one of the affected
304 instructions. */
305 int g_reg_set_conditionally[128];
306 } last_groups[3];
307 int group_idx;
308
309 int pointer_size; /* size in bytes of a pointer */
310 int pointer_size_shift; /* shift size of a pointer for alignment */
311 }
312 md;
313
314 /* application registers: */
315
316 #define AR_K0 0
317 #define AR_K7 7
318 #define AR_RSC 16
319 #define AR_BSP 17
320 #define AR_BSPSTORE 18
321 #define AR_RNAT 19
322 #define AR_UNAT 36
323 #define AR_FPSR 40
324 #define AR_ITC 44
325 #define AR_PFS 64
326 #define AR_LC 65
327
328 static const struct
329 {
330 const char *name;
331 int regnum;
332 }
333 ar[] =
334 {
335 {"ar.k0", 0}, {"ar.k1", 1}, {"ar.k2", 2}, {"ar.k3", 3},
336 {"ar.k4", 4}, {"ar.k5", 5}, {"ar.k6", 6}, {"ar.k7", 7},
337 {"ar.rsc", 16}, {"ar.bsp", 17},
338 {"ar.bspstore", 18}, {"ar.rnat", 19},
339 {"ar.fcr", 21}, {"ar.eflag", 24},
340 {"ar.csd", 25}, {"ar.ssd", 26},
341 {"ar.cflg", 27}, {"ar.fsr", 28},
342 {"ar.fir", 29}, {"ar.fdr", 30},
343 {"ar.ccv", 32}, {"ar.unat", 36},
344 {"ar.fpsr", 40}, {"ar.itc", 44},
345 {"ar.pfs", 64}, {"ar.lc", 65},
346 {"ar.ec", 66},
347 };
348
349 #define CR_IPSR 16
350 #define CR_ISR 17
351 #define CR_IIP 19
352 #define CR_IFA 20
353 #define CR_ITIR 21
354 #define CR_IIPA 22
355 #define CR_IFS 23
356 #define CR_IIM 24
357 #define CR_IHA 25
358 #define CR_IVR 65
359 #define CR_TPR 66
360 #define CR_EOI 67
361 #define CR_IRR0 68
362 #define CR_IRR3 71
363 #define CR_LRR0 80
364 #define CR_LRR1 81
365
366 /* control registers: */
367 static const struct
368 {
369 const char *name;
370 int regnum;
371 }
372 cr[] =
373 {
374 {"cr.dcr", 0},
375 {"cr.itm", 1},
376 {"cr.iva", 2},
377 {"cr.pta", 8},
378 {"cr.gpta", 9},
379 {"cr.ipsr", 16},
380 {"cr.isr", 17},
381 {"cr.iip", 19},
382 {"cr.ifa", 20},
383 {"cr.itir", 21},
384 {"cr.iipa", 22},
385 {"cr.ifs", 23},
386 {"cr.iim", 24},
387 {"cr.iha", 25},
388 {"cr.lid", 64},
389 {"cr.ivr", 65},
390 {"cr.tpr", 66},
391 {"cr.eoi", 67},
392 {"cr.irr0", 68},
393 {"cr.irr1", 69},
394 {"cr.irr2", 70},
395 {"cr.irr3", 71},
396 {"cr.itv", 72},
397 {"cr.pmv", 73},
398 {"cr.cmcv", 74},
399 {"cr.lrr0", 80},
400 {"cr.lrr1", 81}
401 };
402
403 #define PSR_MFL 4
404 #define PSR_IC 13
405 #define PSR_DFL 18
406 #define PSR_CPL 32
407
408 static const struct const_desc
409 {
410 const char *name;
411 valueT value;
412 }
413 const_bits[] =
414 {
415 /* PSR constant masks: */
416
417 /* 0: reserved */
418 {"psr.be", ((valueT) 1) << 1},
419 {"psr.up", ((valueT) 1) << 2},
420 {"psr.ac", ((valueT) 1) << 3},
421 {"psr.mfl", ((valueT) 1) << 4},
422 {"psr.mfh", ((valueT) 1) << 5},
423 /* 6-12: reserved */
424 {"psr.ic", ((valueT) 1) << 13},
425 {"psr.i", ((valueT) 1) << 14},
426 {"psr.pk", ((valueT) 1) << 15},
427 /* 16: reserved */
428 {"psr.dt", ((valueT) 1) << 17},
429 {"psr.dfl", ((valueT) 1) << 18},
430 {"psr.dfh", ((valueT) 1) << 19},
431 {"psr.sp", ((valueT) 1) << 20},
432 {"psr.pp", ((valueT) 1) << 21},
433 {"psr.di", ((valueT) 1) << 22},
434 {"psr.si", ((valueT) 1) << 23},
435 {"psr.db", ((valueT) 1) << 24},
436 {"psr.lp", ((valueT) 1) << 25},
437 {"psr.tb", ((valueT) 1) << 26},
438 {"psr.rt", ((valueT) 1) << 27},
439 /* 28-31: reserved */
440 /* 32-33: cpl (current privilege level) */
441 {"psr.is", ((valueT) 1) << 34},
442 {"psr.mc", ((valueT) 1) << 35},
443 {"psr.it", ((valueT) 1) << 36},
444 {"psr.id", ((valueT) 1) << 37},
445 {"psr.da", ((valueT) 1) << 38},
446 {"psr.dd", ((valueT) 1) << 39},
447 {"psr.ss", ((valueT) 1) << 40},
448 /* 41-42: ri (restart instruction) */
449 {"psr.ed", ((valueT) 1) << 43},
450 {"psr.bn", ((valueT) 1) << 44},
451 };
452
453 /* indirect register-sets/memory: */
454
455 static const struct
456 {
457 const char *name;
458 int regnum;
459 }
460 indirect_reg[] =
461 {
462 { "CPUID", IND_CPUID },
463 { "cpuid", IND_CPUID },
464 { "dbr", IND_DBR },
465 { "dtr", IND_DTR },
466 { "itr", IND_ITR },
467 { "ibr", IND_IBR },
468 { "msr", IND_MSR },
469 { "pkr", IND_PKR },
470 { "pmc", IND_PMC },
471 { "pmd", IND_PMD },
472 { "rr", IND_RR },
473 };
474
475 /* Pseudo functions used to indicate relocation types (these functions
476 start with an at sign (@). */
477 static struct
478 {
479 const char *name;
480 enum pseudo_type
481 {
482 PSEUDO_FUNC_NONE,
483 PSEUDO_FUNC_RELOC,
484 PSEUDO_FUNC_CONST,
485 PSEUDO_FUNC_REG,
486 PSEUDO_FUNC_FLOAT
487 }
488 type;
489 union
490 {
491 unsigned long ival;
492 symbolS *sym;
493 }
494 u;
495 }
496 pseudo_func[] =
497 {
498 /* reloc pseudo functions (these must come first!): */
499 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
500 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
501 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
502 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
503 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
504 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
505 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
506 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
507 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
508 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
509 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
510 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
511 { "", 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
512 { "", 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
513 { "", 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
514 { "", 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
515 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
516
517 /* mbtype4 constants: */
518 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
519 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
520 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
521 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
522 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
523
524 /* fclass constants: */
525 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
526 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
527 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
528 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
529 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
530 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
531 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
532 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
533 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
534
535 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
536
537 /* hint constants: */
538 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
539
540 /* unwind-related constants: */
541 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
542 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
543 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
544 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
545 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
546 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
547 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
548
549 /* unwind-related registers: */
550 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
551 };
552
553 /* 41-bit nop opcodes (one per unit): */
554 static const bfd_vma nop[IA64_NUM_UNITS] =
555 {
556 0x0000000000LL, /* NIL => break 0 */
557 0x0008000000LL, /* I-unit nop */
558 0x0008000000LL, /* M-unit nop */
559 0x4000000000LL, /* B-unit nop */
560 0x0008000000LL, /* F-unit nop */
561 0x0008000000LL, /* L-"unit" nop */
562 0x0008000000LL, /* X-unit nop */
563 };
564
565 /* Can't be `const' as it's passed to input routines (which have the
566 habit of setting temporary sentinels. */
567 static char special_section_name[][20] =
568 {
569 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
570 {".IA_64.unwind"}, {".IA_64.unwind_info"},
571 {".init_array"}, {".fini_array"}
572 };
573
574 static char *special_linkonce_name[] =
575 {
576 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
577 };
578
579 /* The best template for a particular sequence of up to three
580 instructions: */
581 #define N IA64_NUM_TYPES
582 static unsigned char best_template[N][N][N];
583 #undef N
584
585 /* Resource dependencies currently in effect */
586 static struct rsrc {
587 int depind; /* dependency index */
588 const struct ia64_dependency *dependency; /* actual dependency */
589 unsigned specific:1, /* is this a specific bit/regno? */
590 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
591 int index; /* specific regno/bit within dependency */
592 int note; /* optional qualifying note (0 if none) */
593 #define STATE_NONE 0
594 #define STATE_STOP 1
595 #define STATE_SRLZ 2
596 int insn_srlz; /* current insn serialization state */
597 int data_srlz; /* current data serialization state */
598 int qp_regno; /* qualifying predicate for this usage */
599 char *file; /* what file marked this dependency */
600 unsigned int line; /* what line marked this dependency */
601 struct mem_offset mem_offset; /* optional memory offset hint */
602 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
603 int path; /* corresponding code entry index */
604 } *regdeps = NULL;
605 static int regdepslen = 0;
606 static int regdepstotlen = 0;
607 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
608 static const char *dv_sem[] = { "none", "implied", "impliedf",
609 "data", "instr", "specific", "stop", "other" };
610 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
611
612 /* Current state of PR mutexation */
613 static struct qpmutex {
614 valueT prmask;
615 int path;
616 } *qp_mutexes = NULL; /* QP mutex bitmasks */
617 static int qp_mutexeslen = 0;
618 static int qp_mutexestotlen = 0;
619 static valueT qp_safe_across_calls = 0;
620
621 /* Current state of PR implications */
622 static struct qp_imply {
623 unsigned p1:6;
624 unsigned p2:6;
625 unsigned p2_branched:1;
626 int path;
627 } *qp_implies = NULL;
628 static int qp_implieslen = 0;
629 static int qp_impliestotlen = 0;
630
631 /* Keep track of static GR values so that indirect register usage can
632 sometimes be tracked. */
633 static struct gr {
634 unsigned known:1;
635 int path;
636 valueT value;
637 } gr_values[128] = {{ 1, 0, 0 }};
638
639 /* Remember the alignment frag. */
640 static fragS *align_frag;
641
642 /* These are the routines required to output the various types of
643 unwind records. */
644
645 /* A slot_number is a frag address plus the slot index (0-2). We use the
646 frag address here so that if there is a section switch in the middle of
647 a function, then instructions emitted to a different section are not
648 counted. Since there may be more than one frag for a function, this
649 means we also need to keep track of which frag this address belongs to
650 so we can compute inter-frag distances. This also nicely solves the
651 problem with nops emitted for align directives, which can't easily be
652 counted, but can easily be derived from frag sizes. */
653
654 typedef struct unw_rec_list {
655 unwind_record r;
656 unsigned long slot_number;
657 fragS *slot_frag;
658 unsigned long next_slot_number;
659 fragS *next_slot_frag;
660 struct unw_rec_list *next;
661 } unw_rec_list;
662
663 #define SLOT_NUM_NOT_SET (unsigned)-1
664
665 /* Linked list of saved prologue counts. A very poor
666 implementation of a map from label numbers to prologue counts. */
667 typedef struct label_prologue_count
668 {
669 struct label_prologue_count *next;
670 unsigned long label_number;
671 unsigned int prologue_count;
672 } label_prologue_count;
673
674 static struct
675 {
676 /* Maintain a list of unwind entries for the current function. */
677 unw_rec_list *list;
678 unw_rec_list *tail;
679
680 /* Any unwind entires that should be attached to the current slot
681 that an insn is being constructed for. */
682 unw_rec_list *current_entry;
683
684 /* These are used to create the unwind table entry for this function. */
685 symbolS *proc_start;
686 symbolS *proc_end;
687 symbolS *info; /* pointer to unwind info */
688 symbolS *personality_routine;
689 segT saved_text_seg;
690 subsegT saved_text_subseg;
691 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
692
693 /* TRUE if processing unwind directives in a prologue region. */
694 int prologue;
695 int prologue_mask;
696 unsigned int prologue_count; /* number of .prologues seen so far */
697 /* Prologue counts at previous .label_state directives. */
698 struct label_prologue_count * saved_prologue_counts;
699 } unwind;
700
701 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
702
703 /* Forward declarations: */
704 static int ar_is_in_integer_unit PARAMS ((int regnum));
705 static void set_section PARAMS ((char *name));
706 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
707 unsigned int, unsigned int));
708 static void dot_align (int);
709 static void dot_radix PARAMS ((int));
710 static void dot_special_section PARAMS ((int));
711 static void dot_proc PARAMS ((int));
712 static void dot_fframe PARAMS ((int));
713 static void dot_vframe PARAMS ((int));
714 static void dot_vframesp PARAMS ((int));
715 static void dot_vframepsp PARAMS ((int));
716 static void dot_save PARAMS ((int));
717 static void dot_restore PARAMS ((int));
718 static void dot_restorereg PARAMS ((int));
719 static void dot_restorereg_p PARAMS ((int));
720 static void dot_handlerdata PARAMS ((int));
721 static void dot_unwentry PARAMS ((int));
722 static void dot_altrp PARAMS ((int));
723 static void dot_savemem PARAMS ((int));
724 static void dot_saveg PARAMS ((int));
725 static void dot_savef PARAMS ((int));
726 static void dot_saveb PARAMS ((int));
727 static void dot_savegf PARAMS ((int));
728 static void dot_spill PARAMS ((int));
729 static void dot_spillreg PARAMS ((int));
730 static void dot_spillmem PARAMS ((int));
731 static void dot_spillreg_p PARAMS ((int));
732 static void dot_spillmem_p PARAMS ((int));
733 static void dot_label_state PARAMS ((int));
734 static void dot_copy_state PARAMS ((int));
735 static void dot_unwabi PARAMS ((int));
736 static void dot_personality PARAMS ((int));
737 static void dot_body PARAMS ((int));
738 static void dot_prologue PARAMS ((int));
739 static void dot_endp PARAMS ((int));
740 static void dot_template PARAMS ((int));
741 static void dot_regstk PARAMS ((int));
742 static void dot_rot PARAMS ((int));
743 static void dot_byteorder PARAMS ((int));
744 static void dot_psr PARAMS ((int));
745 static void dot_alias PARAMS ((int));
746 static void dot_ln PARAMS ((int));
747 static char *parse_section_name PARAMS ((void));
748 static void dot_xdata PARAMS ((int));
749 static void stmt_float_cons PARAMS ((int));
750 static void stmt_cons_ua PARAMS ((int));
751 static void dot_xfloat_cons PARAMS ((int));
752 static void dot_xstringer PARAMS ((int));
753 static void dot_xdata_ua PARAMS ((int));
754 static void dot_xfloat_cons_ua PARAMS ((int));
755 static void print_prmask PARAMS ((valueT mask));
756 static void dot_pred_rel PARAMS ((int));
757 static void dot_reg_val PARAMS ((int));
758 static void dot_dv_mode PARAMS ((int));
759 static void dot_entry PARAMS ((int));
760 static void dot_mem_offset PARAMS ((int));
761 static void add_unwind_entry PARAMS((unw_rec_list *ptr));
762 static symbolS *declare_register PARAMS ((const char *name, int regnum));
763 static void declare_register_set PARAMS ((const char *, int, int));
764 static unsigned int operand_width PARAMS ((enum ia64_opnd));
765 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
766 int index,
767 expressionS *e));
768 static int parse_operand PARAMS ((expressionS *e));
769 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
770 static int errata_nop_necessary_p PARAMS ((struct slot *, enum ia64_unit));
771 static void build_insn PARAMS ((struct slot *, bfd_vma *));
772 static void emit_one_bundle PARAMS ((void));
773 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
774 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
775 bfd_reloc_code_real_type r_type));
776 static void insn_group_break PARAMS ((int, int, int));
777 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
778 struct rsrc *, int depind, int path));
779 static void add_qp_mutex PARAMS((valueT mask));
780 static void add_qp_imply PARAMS((int p1, int p2));
781 static void clear_qp_branch_flag PARAMS((valueT mask));
782 static void clear_qp_mutex PARAMS((valueT mask));
783 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
784 static int has_suffix_p PARAMS((const char *, const char *));
785 static void clear_register_values PARAMS ((void));
786 static void print_dependency PARAMS ((const char *action, int depind));
787 static void instruction_serialization PARAMS ((void));
788 static void data_serialization PARAMS ((void));
789 static void remove_marked_resource PARAMS ((struct rsrc *));
790 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
791 static int is_taken_branch PARAMS ((struct ia64_opcode *));
792 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
793 static int depends_on PARAMS ((int, struct ia64_opcode *));
794 static int specify_resource PARAMS ((const struct ia64_dependency *,
795 struct ia64_opcode *, int, struct rsrc [], int, int));
796 static int check_dv PARAMS((struct ia64_opcode *idesc));
797 static void check_dependencies PARAMS((struct ia64_opcode *));
798 static void mark_resources PARAMS((struct ia64_opcode *));
799 static void update_dependencies PARAMS((struct ia64_opcode *));
800 static void note_register_values PARAMS((struct ia64_opcode *));
801 static int qp_mutex PARAMS ((int, int, int));
802 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
803 static void output_vbyte_mem PARAMS ((int, char *, char *));
804 static void count_output PARAMS ((int, char *, char *));
805 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
806 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
807 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
808 static void output_P1_format PARAMS ((vbyte_func, int));
809 static void output_P2_format PARAMS ((vbyte_func, int, int));
810 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
811 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
812 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
813 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
814 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
815 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
816 static void output_P9_format PARAMS ((vbyte_func, int, int));
817 static void output_P10_format PARAMS ((vbyte_func, int, int));
818 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
819 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
820 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
821 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
822 static char format_ab_reg PARAMS ((int, int));
823 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
824 unsigned long));
825 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
826 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
827 unsigned long));
828 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
829 static unw_rec_list *output_endp PARAMS ((void));
830 static unw_rec_list *output_prologue PARAMS ((void));
831 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
832 static unw_rec_list *output_body PARAMS ((void));
833 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
834 static unw_rec_list *output_mem_stack_v PARAMS ((void));
835 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
836 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
837 static unw_rec_list *output_rp_when PARAMS ((void));
838 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
839 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
840 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
841 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
842 static unw_rec_list *output_pfs_when PARAMS ((void));
843 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
844 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
845 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
846 static unw_rec_list *output_preds_when PARAMS ((void));
847 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
848 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
849 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
850 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
851 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
852 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
853 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
854 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
855 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
856 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
857 static unw_rec_list *output_unat_when PARAMS ((void));
858 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
859 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
860 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
861 static unw_rec_list *output_lc_when PARAMS ((void));
862 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
863 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
864 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
865 static unw_rec_list *output_fpsr_when PARAMS ((void));
866 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
867 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
868 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
869 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
870 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
871 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
872 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
873 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
874 static unw_rec_list *output_bsp_when PARAMS ((void));
875 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
876 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
877 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
878 static unw_rec_list *output_bspstore_when PARAMS ((void));
879 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
880 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
881 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
882 static unw_rec_list *output_rnat_when PARAMS ((void));
883 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
884 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
885 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
886 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
887 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
888 static unw_rec_list *output_label_state PARAMS ((unsigned long));
889 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
890 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int));
891 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int));
892 static unw_rec_list *output_spill_psprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
893 unsigned int));
894 static unw_rec_list *output_spill_sprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
895 unsigned int));
896 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
897 unsigned int));
898 static unw_rec_list *output_spill_reg_p PARAMS ((unsigned int, unsigned int, unsigned int,
899 unsigned int, unsigned int));
900 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
901 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
902 static int calc_record_size PARAMS ((unw_rec_list *));
903 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
904 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
905 unsigned long, fragS *,
906 int));
907 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
908 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
909 static int convert_expr_to_ab_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
910 static int convert_expr_to_xy_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
911 static void generate_unwind_image PARAMS ((const char *));
912 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
913 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
914 static void free_saved_prologue_counts PARAMS ((void));
915
916 /* Build the unwind section name by appending the (possibly stripped)
917 text section NAME to the unwind PREFIX. The resulting string
918 pointer is assigned to RESULT. The string is allocated on the
919 stack, so this must be a macro... */
920 #define make_unw_section_name(special, text_name, result) \
921 { \
922 const char *_prefix = special_section_name[special]; \
923 const char *_suffix = text_name; \
924 size_t _prefix_len, _suffix_len; \
925 char *_result; \
926 if (strncmp (text_name, ".gnu.linkonce.t.", \
927 sizeof (".gnu.linkonce.t.") - 1) == 0) \
928 { \
929 _prefix = special_linkonce_name[special - SPECIAL_SECTION_UNWIND]; \
930 _suffix += sizeof (".gnu.linkonce.t.") - 1; \
931 } \
932 _prefix_len = strlen (_prefix), _suffix_len = strlen (_suffix); \
933 _result = alloca (_prefix_len + _suffix_len + 1); \
934 memcpy (_result, _prefix, _prefix_len); \
935 memcpy (_result + _prefix_len, _suffix, _suffix_len); \
936 _result[_prefix_len + _suffix_len] = '\0'; \
937 result = _result; \
938 } \
939 while (0)
940
941 /* Determine if application register REGNUM resides in the integer
942 unit (as opposed to the memory unit). */
943 static int
944 ar_is_in_integer_unit (reg)
945 int reg;
946 {
947 reg -= REG_AR;
948
949 return (reg == 64 /* pfs */
950 || reg == 65 /* lc */
951 || reg == 66 /* ec */
952 /* ??? ias accepts and puts these in the integer unit. */
953 || (reg >= 112 && reg <= 127));
954 }
955
956 /* Switch to section NAME and create section if necessary. It's
957 rather ugly that we have to manipulate input_line_pointer but I
958 don't see any other way to accomplish the same thing without
959 changing obj-elf.c (which may be the Right Thing, in the end). */
960 static void
961 set_section (name)
962 char *name;
963 {
964 char *saved_input_line_pointer;
965
966 saved_input_line_pointer = input_line_pointer;
967 input_line_pointer = name;
968 obj_elf_section (0);
969 input_line_pointer = saved_input_line_pointer;
970 }
971
972 /* Map 's' to SHF_IA_64_SHORT. */
973
974 int
975 ia64_elf_section_letter (letter, ptr_msg)
976 int letter;
977 char **ptr_msg;
978 {
979 if (letter == 's')
980 return SHF_IA_64_SHORT;
981 else if (letter == 'o')
982 return SHF_LINK_ORDER;
983
984 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
985 return -1;
986 }
987
988 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
989
990 flagword
991 ia64_elf_section_flags (flags, attr, type)
992 flagword flags;
993 int attr, type ATTRIBUTE_UNUSED;
994 {
995 if (attr & SHF_IA_64_SHORT)
996 flags |= SEC_SMALL_DATA;
997 return flags;
998 }
999
1000 int
1001 ia64_elf_section_type (str, len)
1002 const char *str;
1003 size_t len;
1004 {
1005 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1006
1007 if (STREQ (ELF_STRING_ia64_unwind_info))
1008 return SHT_PROGBITS;
1009
1010 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1011 return SHT_PROGBITS;
1012
1013 if (STREQ (ELF_STRING_ia64_unwind))
1014 return SHT_IA_64_UNWIND;
1015
1016 if (STREQ (ELF_STRING_ia64_unwind_once))
1017 return SHT_IA_64_UNWIND;
1018
1019 if (STREQ ("unwind"))
1020 return SHT_IA_64_UNWIND;
1021
1022 if (STREQ ("init_array"))
1023 return SHT_INIT_ARRAY;
1024
1025 if (STREQ ("fini_array"))
1026 return SHT_FINI_ARRAY;
1027
1028 return -1;
1029 #undef STREQ
1030 }
1031
1032 static unsigned int
1033 set_regstack (ins, locs, outs, rots)
1034 unsigned int ins, locs, outs, rots;
1035 {
1036 /* Size of frame. */
1037 unsigned int sof;
1038
1039 sof = ins + locs + outs;
1040 if (sof > 96)
1041 {
1042 as_bad ("Size of frame exceeds maximum of 96 registers");
1043 return 0;
1044 }
1045 if (rots > sof)
1046 {
1047 as_warn ("Size of rotating registers exceeds frame size");
1048 return 0;
1049 }
1050 md.in.base = REG_GR + 32;
1051 md.loc.base = md.in.base + ins;
1052 md.out.base = md.loc.base + locs;
1053
1054 md.in.num_regs = ins;
1055 md.loc.num_regs = locs;
1056 md.out.num_regs = outs;
1057 md.rot.num_regs = rots;
1058 return sof;
1059 }
1060
1061 void
1062 ia64_flush_insns ()
1063 {
1064 struct label_fix *lfix;
1065 segT saved_seg;
1066 subsegT saved_subseg;
1067 unw_rec_list *ptr;
1068
1069 if (!md.last_text_seg)
1070 return;
1071
1072 saved_seg = now_seg;
1073 saved_subseg = now_subseg;
1074
1075 subseg_set (md.last_text_seg, 0);
1076
1077 while (md.num_slots_in_use > 0)
1078 emit_one_bundle (); /* force out queued instructions */
1079
1080 /* In case there are labels following the last instruction, resolve
1081 those now: */
1082 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1083 {
1084 S_SET_VALUE (lfix->sym, frag_now_fix ());
1085 symbol_set_frag (lfix->sym, frag_now);
1086 }
1087 CURR_SLOT.label_fixups = 0;
1088 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1089 {
1090 S_SET_VALUE (lfix->sym, frag_now_fix ());
1091 symbol_set_frag (lfix->sym, frag_now);
1092 }
1093 CURR_SLOT.tag_fixups = 0;
1094
1095 /* In case there are unwind directives following the last instruction,
1096 resolve those now. We only handle prologue, body, and endp directives
1097 here. Give an error for others. */
1098 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1099 {
1100 switch (ptr->r.type)
1101 {
1102 case prologue:
1103 case prologue_gr:
1104 case body:
1105 case endp:
1106 ptr->slot_number = (unsigned long) frag_more (0);
1107 ptr->slot_frag = frag_now;
1108 break;
1109
1110 /* Allow any record which doesn't have a "t" field (i.e.,
1111 doesn't relate to a particular instruction). */
1112 case unwabi:
1113 case br_gr:
1114 case copy_state:
1115 case fr_mem:
1116 case frgr_mem:
1117 case gr_gr:
1118 case gr_mem:
1119 case label_state:
1120 case rp_br:
1121 case spill_base:
1122 case spill_mask:
1123 /* nothing */
1124 break;
1125
1126 default:
1127 as_bad (_("Unwind directive not followed by an instruction."));
1128 break;
1129 }
1130 }
1131 unwind.current_entry = NULL;
1132
1133 subseg_set (saved_seg, saved_subseg);
1134
1135 if (md.qp.X_op == O_register)
1136 as_bad ("qualifying predicate not followed by instruction");
1137 }
1138
1139 static void
1140 ia64_do_align (int nbytes)
1141 {
1142 char *saved_input_line_pointer = input_line_pointer;
1143
1144 input_line_pointer = "";
1145 s_align_bytes (nbytes);
1146 input_line_pointer = saved_input_line_pointer;
1147 }
1148
1149 void
1150 ia64_cons_align (nbytes)
1151 int nbytes;
1152 {
1153 if (md.auto_align)
1154 {
1155 char *saved_input_line_pointer = input_line_pointer;
1156 input_line_pointer = "";
1157 s_align_bytes (nbytes);
1158 input_line_pointer = saved_input_line_pointer;
1159 }
1160 }
1161
1162 /* Output COUNT bytes to a memory location. */
1163 static unsigned char *vbyte_mem_ptr = NULL;
1164
1165 void
1166 output_vbyte_mem (count, ptr, comment)
1167 int count;
1168 char *ptr;
1169 char *comment ATTRIBUTE_UNUSED;
1170 {
1171 int x;
1172 if (vbyte_mem_ptr == NULL)
1173 abort ();
1174
1175 if (count == 0)
1176 return;
1177 for (x = 0; x < count; x++)
1178 *(vbyte_mem_ptr++) = ptr[x];
1179 }
1180
1181 /* Count the number of bytes required for records. */
1182 static int vbyte_count = 0;
1183 void
1184 count_output (count, ptr, comment)
1185 int count;
1186 char *ptr ATTRIBUTE_UNUSED;
1187 char *comment ATTRIBUTE_UNUSED;
1188 {
1189 vbyte_count += count;
1190 }
1191
1192 static void
1193 output_R1_format (f, rtype, rlen)
1194 vbyte_func f;
1195 unw_record_type rtype;
1196 int rlen;
1197 {
1198 int r = 0;
1199 char byte;
1200 if (rlen > 0x1f)
1201 {
1202 output_R3_format (f, rtype, rlen);
1203 return;
1204 }
1205
1206 if (rtype == body)
1207 r = 1;
1208 else if (rtype != prologue)
1209 as_bad ("record type is not valid");
1210
1211 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1212 (*f) (1, &byte, NULL);
1213 }
1214
1215 static void
1216 output_R2_format (f, mask, grsave, rlen)
1217 vbyte_func f;
1218 int mask, grsave;
1219 unsigned long rlen;
1220 {
1221 char bytes[20];
1222 int count = 2;
1223 mask = (mask & 0x0f);
1224 grsave = (grsave & 0x7f);
1225
1226 bytes[0] = (UNW_R2 | (mask >> 1));
1227 bytes[1] = (((mask & 0x01) << 7) | grsave);
1228 count += output_leb128 (bytes + 2, rlen, 0);
1229 (*f) (count, bytes, NULL);
1230 }
1231
1232 static void
1233 output_R3_format (f, rtype, rlen)
1234 vbyte_func f;
1235 unw_record_type rtype;
1236 unsigned long rlen;
1237 {
1238 int r = 0, count;
1239 char bytes[20];
1240 if (rlen <= 0x1f)
1241 {
1242 output_R1_format (f, rtype, rlen);
1243 return;
1244 }
1245
1246 if (rtype == body)
1247 r = 1;
1248 else if (rtype != prologue)
1249 as_bad ("record type is not valid");
1250 bytes[0] = (UNW_R3 | r);
1251 count = output_leb128 (bytes + 1, rlen, 0);
1252 (*f) (count + 1, bytes, NULL);
1253 }
1254
1255 static void
1256 output_P1_format (f, brmask)
1257 vbyte_func f;
1258 int brmask;
1259 {
1260 char byte;
1261 byte = UNW_P1 | (brmask & 0x1f);
1262 (*f) (1, &byte, NULL);
1263 }
1264
1265 static void
1266 output_P2_format (f, brmask, gr)
1267 vbyte_func f;
1268 int brmask;
1269 int gr;
1270 {
1271 char bytes[2];
1272 brmask = (brmask & 0x1f);
1273 bytes[0] = UNW_P2 | (brmask >> 1);
1274 bytes[1] = (((brmask & 1) << 7) | gr);
1275 (*f) (2, bytes, NULL);
1276 }
1277
1278 static void
1279 output_P3_format (f, rtype, reg)
1280 vbyte_func f;
1281 unw_record_type rtype;
1282 int reg;
1283 {
1284 char bytes[2];
1285 int r = 0;
1286 reg = (reg & 0x7f);
1287 switch (rtype)
1288 {
1289 case psp_gr:
1290 r = 0;
1291 break;
1292 case rp_gr:
1293 r = 1;
1294 break;
1295 case pfs_gr:
1296 r = 2;
1297 break;
1298 case preds_gr:
1299 r = 3;
1300 break;
1301 case unat_gr:
1302 r = 4;
1303 break;
1304 case lc_gr:
1305 r = 5;
1306 break;
1307 case rp_br:
1308 r = 6;
1309 break;
1310 case rnat_gr:
1311 r = 7;
1312 break;
1313 case bsp_gr:
1314 r = 8;
1315 break;
1316 case bspstore_gr:
1317 r = 9;
1318 break;
1319 case fpsr_gr:
1320 r = 10;
1321 break;
1322 case priunat_gr:
1323 r = 11;
1324 break;
1325 default:
1326 as_bad ("Invalid record type for P3 format.");
1327 }
1328 bytes[0] = (UNW_P3 | (r >> 1));
1329 bytes[1] = (((r & 1) << 7) | reg);
1330 (*f) (2, bytes, NULL);
1331 }
1332
1333 static void
1334 output_P4_format (f, imask, imask_size)
1335 vbyte_func f;
1336 unsigned char *imask;
1337 unsigned long imask_size;
1338 {
1339 imask[0] = UNW_P4;
1340 (*f) (imask_size, imask, NULL);
1341 }
1342
1343 static void
1344 output_P5_format (f, grmask, frmask)
1345 vbyte_func f;
1346 int grmask;
1347 unsigned long frmask;
1348 {
1349 char bytes[4];
1350 grmask = (grmask & 0x0f);
1351
1352 bytes[0] = UNW_P5;
1353 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1354 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1355 bytes[3] = (frmask & 0x000000ff);
1356 (*f) (4, bytes, NULL);
1357 }
1358
1359 static void
1360 output_P6_format (f, rtype, rmask)
1361 vbyte_func f;
1362 unw_record_type rtype;
1363 int rmask;
1364 {
1365 char byte;
1366 int r = 0;
1367
1368 if (rtype == gr_mem)
1369 r = 1;
1370 else if (rtype != fr_mem)
1371 as_bad ("Invalid record type for format P6");
1372 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1373 (*f) (1, &byte, NULL);
1374 }
1375
1376 static void
1377 output_P7_format (f, rtype, w1, w2)
1378 vbyte_func f;
1379 unw_record_type rtype;
1380 unsigned long w1;
1381 unsigned long w2;
1382 {
1383 char bytes[20];
1384 int count = 1;
1385 int r = 0;
1386 count += output_leb128 (bytes + 1, w1, 0);
1387 switch (rtype)
1388 {
1389 case mem_stack_f:
1390 r = 0;
1391 count += output_leb128 (bytes + count, w2 >> 4, 0);
1392 break;
1393 case mem_stack_v:
1394 r = 1;
1395 break;
1396 case spill_base:
1397 r = 2;
1398 break;
1399 case psp_sprel:
1400 r = 3;
1401 break;
1402 case rp_when:
1403 r = 4;
1404 break;
1405 case rp_psprel:
1406 r = 5;
1407 break;
1408 case pfs_when:
1409 r = 6;
1410 break;
1411 case pfs_psprel:
1412 r = 7;
1413 break;
1414 case preds_when:
1415 r = 8;
1416 break;
1417 case preds_psprel:
1418 r = 9;
1419 break;
1420 case lc_when:
1421 r = 10;
1422 break;
1423 case lc_psprel:
1424 r = 11;
1425 break;
1426 case unat_when:
1427 r = 12;
1428 break;
1429 case unat_psprel:
1430 r = 13;
1431 break;
1432 case fpsr_when:
1433 r = 14;
1434 break;
1435 case fpsr_psprel:
1436 r = 15;
1437 break;
1438 default:
1439 break;
1440 }
1441 bytes[0] = (UNW_P7 | r);
1442 (*f) (count, bytes, NULL);
1443 }
1444
1445 static void
1446 output_P8_format (f, rtype, t)
1447 vbyte_func f;
1448 unw_record_type rtype;
1449 unsigned long t;
1450 {
1451 char bytes[20];
1452 int r = 0;
1453 int count = 2;
1454 bytes[0] = UNW_P8;
1455 switch (rtype)
1456 {
1457 case rp_sprel:
1458 r = 1;
1459 break;
1460 case pfs_sprel:
1461 r = 2;
1462 break;
1463 case preds_sprel:
1464 r = 3;
1465 break;
1466 case lc_sprel:
1467 r = 4;
1468 break;
1469 case unat_sprel:
1470 r = 5;
1471 break;
1472 case fpsr_sprel:
1473 r = 6;
1474 break;
1475 case bsp_when:
1476 r = 7;
1477 break;
1478 case bsp_psprel:
1479 r = 8;
1480 break;
1481 case bsp_sprel:
1482 r = 9;
1483 break;
1484 case bspstore_when:
1485 r = 10;
1486 break;
1487 case bspstore_psprel:
1488 r = 11;
1489 break;
1490 case bspstore_sprel:
1491 r = 12;
1492 break;
1493 case rnat_when:
1494 r = 13;
1495 break;
1496 case rnat_psprel:
1497 r = 14;
1498 break;
1499 case rnat_sprel:
1500 r = 15;
1501 break;
1502 case priunat_when_gr:
1503 r = 16;
1504 break;
1505 case priunat_psprel:
1506 r = 17;
1507 break;
1508 case priunat_sprel:
1509 r = 18;
1510 break;
1511 case priunat_when_mem:
1512 r = 19;
1513 break;
1514 default:
1515 break;
1516 }
1517 bytes[1] = r;
1518 count += output_leb128 (bytes + 2, t, 0);
1519 (*f) (count, bytes, NULL);
1520 }
1521
1522 static void
1523 output_P9_format (f, grmask, gr)
1524 vbyte_func f;
1525 int grmask;
1526 int gr;
1527 {
1528 char bytes[3];
1529 bytes[0] = UNW_P9;
1530 bytes[1] = (grmask & 0x0f);
1531 bytes[2] = (gr & 0x7f);
1532 (*f) (3, bytes, NULL);
1533 }
1534
1535 static void
1536 output_P10_format (f, abi, context)
1537 vbyte_func f;
1538 int abi;
1539 int context;
1540 {
1541 char bytes[3];
1542 bytes[0] = UNW_P10;
1543 bytes[1] = (abi & 0xff);
1544 bytes[2] = (context & 0xff);
1545 (*f) (3, bytes, NULL);
1546 }
1547
1548 static void
1549 output_B1_format (f, rtype, label)
1550 vbyte_func f;
1551 unw_record_type rtype;
1552 unsigned long label;
1553 {
1554 char byte;
1555 int r = 0;
1556 if (label > 0x1f)
1557 {
1558 output_B4_format (f, rtype, label);
1559 return;
1560 }
1561 if (rtype == copy_state)
1562 r = 1;
1563 else if (rtype != label_state)
1564 as_bad ("Invalid record type for format B1");
1565
1566 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1567 (*f) (1, &byte, NULL);
1568 }
1569
1570 static void
1571 output_B2_format (f, ecount, t)
1572 vbyte_func f;
1573 unsigned long ecount;
1574 unsigned long t;
1575 {
1576 char bytes[20];
1577 int count = 1;
1578 if (ecount > 0x1f)
1579 {
1580 output_B3_format (f, ecount, t);
1581 return;
1582 }
1583 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1584 count += output_leb128 (bytes + 1, t, 0);
1585 (*f) (count, bytes, NULL);
1586 }
1587
1588 static void
1589 output_B3_format (f, ecount, t)
1590 vbyte_func f;
1591 unsigned long ecount;
1592 unsigned long t;
1593 {
1594 char bytes[20];
1595 int count = 1;
1596 if (ecount <= 0x1f)
1597 {
1598 output_B2_format (f, ecount, t);
1599 return;
1600 }
1601 bytes[0] = UNW_B3;
1602 count += output_leb128 (bytes + 1, t, 0);
1603 count += output_leb128 (bytes + count, ecount, 0);
1604 (*f) (count, bytes, NULL);
1605 }
1606
1607 static void
1608 output_B4_format (f, rtype, label)
1609 vbyte_func f;
1610 unw_record_type rtype;
1611 unsigned long label;
1612 {
1613 char bytes[20];
1614 int r = 0;
1615 int count = 1;
1616 if (label <= 0x1f)
1617 {
1618 output_B1_format (f, rtype, label);
1619 return;
1620 }
1621
1622 if (rtype == copy_state)
1623 r = 1;
1624 else if (rtype != label_state)
1625 as_bad ("Invalid record type for format B1");
1626
1627 bytes[0] = (UNW_B4 | (r << 3));
1628 count += output_leb128 (bytes + 1, label, 0);
1629 (*f) (count, bytes, NULL);
1630 }
1631
1632 static char
1633 format_ab_reg (ab, reg)
1634 int ab;
1635 int reg;
1636 {
1637 int ret;
1638 ab = (ab & 3);
1639 reg = (reg & 0x1f);
1640 ret = (ab << 5) | reg;
1641 return ret;
1642 }
1643
1644 static void
1645 output_X1_format (f, rtype, ab, reg, t, w1)
1646 vbyte_func f;
1647 unw_record_type rtype;
1648 int ab, reg;
1649 unsigned long t;
1650 unsigned long w1;
1651 {
1652 char bytes[20];
1653 int r = 0;
1654 int count = 2;
1655 bytes[0] = UNW_X1;
1656
1657 if (rtype == spill_sprel)
1658 r = 1;
1659 else if (rtype != spill_psprel)
1660 as_bad ("Invalid record type for format X1");
1661 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1662 count += output_leb128 (bytes + 2, t, 0);
1663 count += output_leb128 (bytes + count, w1, 0);
1664 (*f) (count, bytes, NULL);
1665 }
1666
1667 static void
1668 output_X2_format (f, ab, reg, x, y, treg, t)
1669 vbyte_func f;
1670 int ab, reg;
1671 int x, y, treg;
1672 unsigned long t;
1673 {
1674 char bytes[20];
1675 int count = 3;
1676 bytes[0] = UNW_X2;
1677 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1678 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1679 count += output_leb128 (bytes + 3, t, 0);
1680 (*f) (count, bytes, NULL);
1681 }
1682
1683 static void
1684 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1685 vbyte_func f;
1686 unw_record_type rtype;
1687 int qp;
1688 int ab, reg;
1689 unsigned long t;
1690 unsigned long w1;
1691 {
1692 char bytes[20];
1693 int r = 0;
1694 int count = 3;
1695 bytes[0] = UNW_X3;
1696
1697 if (rtype == spill_sprel_p)
1698 r = 1;
1699 else if (rtype != spill_psprel_p)
1700 as_bad ("Invalid record type for format X3");
1701 bytes[1] = ((r << 7) | (qp & 0x3f));
1702 bytes[2] = format_ab_reg (ab, reg);
1703 count += output_leb128 (bytes + 3, t, 0);
1704 count += output_leb128 (bytes + count, w1, 0);
1705 (*f) (count, bytes, NULL);
1706 }
1707
1708 static void
1709 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1710 vbyte_func f;
1711 int qp;
1712 int ab, reg;
1713 int x, y, treg;
1714 unsigned long t;
1715 {
1716 char bytes[20];
1717 int count = 4;
1718 bytes[0] = UNW_X4;
1719 bytes[1] = (qp & 0x3f);
1720 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1721 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1722 count += output_leb128 (bytes + 4, t, 0);
1723 (*f) (count, bytes, NULL);
1724 }
1725
1726 /* This function allocates a record list structure, and initializes fields. */
1727
1728 static unw_rec_list *
1729 alloc_record (unw_record_type t)
1730 {
1731 unw_rec_list *ptr;
1732 ptr = xmalloc (sizeof (*ptr));
1733 ptr->next = NULL;
1734 ptr->slot_number = SLOT_NUM_NOT_SET;
1735 ptr->r.type = t;
1736 ptr->next_slot_number = 0;
1737 ptr->next_slot_frag = 0;
1738 return ptr;
1739 }
1740
1741 /* Dummy unwind record used for calculating the length of the last prologue or
1742 body region. */
1743
1744 static unw_rec_list *
1745 output_endp ()
1746 {
1747 unw_rec_list *ptr = alloc_record (endp);
1748 return ptr;
1749 }
1750
1751 static unw_rec_list *
1752 output_prologue ()
1753 {
1754 unw_rec_list *ptr = alloc_record (prologue);
1755 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1756 return ptr;
1757 }
1758
1759 static unw_rec_list *
1760 output_prologue_gr (saved_mask, reg)
1761 unsigned int saved_mask;
1762 unsigned int reg;
1763 {
1764 unw_rec_list *ptr = alloc_record (prologue_gr);
1765 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1766 ptr->r.record.r.grmask = saved_mask;
1767 ptr->r.record.r.grsave = reg;
1768 return ptr;
1769 }
1770
1771 static unw_rec_list *
1772 output_body ()
1773 {
1774 unw_rec_list *ptr = alloc_record (body);
1775 return ptr;
1776 }
1777
1778 static unw_rec_list *
1779 output_mem_stack_f (size)
1780 unsigned int size;
1781 {
1782 unw_rec_list *ptr = alloc_record (mem_stack_f);
1783 ptr->r.record.p.size = size;
1784 return ptr;
1785 }
1786
1787 static unw_rec_list *
1788 output_mem_stack_v ()
1789 {
1790 unw_rec_list *ptr = alloc_record (mem_stack_v);
1791 return ptr;
1792 }
1793
1794 static unw_rec_list *
1795 output_psp_gr (gr)
1796 unsigned int gr;
1797 {
1798 unw_rec_list *ptr = alloc_record (psp_gr);
1799 ptr->r.record.p.gr = gr;
1800 return ptr;
1801 }
1802
1803 static unw_rec_list *
1804 output_psp_sprel (offset)
1805 unsigned int offset;
1806 {
1807 unw_rec_list *ptr = alloc_record (psp_sprel);
1808 ptr->r.record.p.spoff = offset / 4;
1809 return ptr;
1810 }
1811
1812 static unw_rec_list *
1813 output_rp_when ()
1814 {
1815 unw_rec_list *ptr = alloc_record (rp_when);
1816 return ptr;
1817 }
1818
1819 static unw_rec_list *
1820 output_rp_gr (gr)
1821 unsigned int gr;
1822 {
1823 unw_rec_list *ptr = alloc_record (rp_gr);
1824 ptr->r.record.p.gr = gr;
1825 return ptr;
1826 }
1827
1828 static unw_rec_list *
1829 output_rp_br (br)
1830 unsigned int br;
1831 {
1832 unw_rec_list *ptr = alloc_record (rp_br);
1833 ptr->r.record.p.br = br;
1834 return ptr;
1835 }
1836
1837 static unw_rec_list *
1838 output_rp_psprel (offset)
1839 unsigned int offset;
1840 {
1841 unw_rec_list *ptr = alloc_record (rp_psprel);
1842 ptr->r.record.p.pspoff = offset / 4;
1843 return ptr;
1844 }
1845
1846 static unw_rec_list *
1847 output_rp_sprel (offset)
1848 unsigned int offset;
1849 {
1850 unw_rec_list *ptr = alloc_record (rp_sprel);
1851 ptr->r.record.p.spoff = offset / 4;
1852 return ptr;
1853 }
1854
1855 static unw_rec_list *
1856 output_pfs_when ()
1857 {
1858 unw_rec_list *ptr = alloc_record (pfs_when);
1859 return ptr;
1860 }
1861
1862 static unw_rec_list *
1863 output_pfs_gr (gr)
1864 unsigned int gr;
1865 {
1866 unw_rec_list *ptr = alloc_record (pfs_gr);
1867 ptr->r.record.p.gr = gr;
1868 return ptr;
1869 }
1870
1871 static unw_rec_list *
1872 output_pfs_psprel (offset)
1873 unsigned int offset;
1874 {
1875 unw_rec_list *ptr = alloc_record (pfs_psprel);
1876 ptr->r.record.p.pspoff = offset / 4;
1877 return ptr;
1878 }
1879
1880 static unw_rec_list *
1881 output_pfs_sprel (offset)
1882 unsigned int offset;
1883 {
1884 unw_rec_list *ptr = alloc_record (pfs_sprel);
1885 ptr->r.record.p.spoff = offset / 4;
1886 return ptr;
1887 }
1888
1889 static unw_rec_list *
1890 output_preds_when ()
1891 {
1892 unw_rec_list *ptr = alloc_record (preds_when);
1893 return ptr;
1894 }
1895
1896 static unw_rec_list *
1897 output_preds_gr (gr)
1898 unsigned int gr;
1899 {
1900 unw_rec_list *ptr = alloc_record (preds_gr);
1901 ptr->r.record.p.gr = gr;
1902 return ptr;
1903 }
1904
1905 static unw_rec_list *
1906 output_preds_psprel (offset)
1907 unsigned int offset;
1908 {
1909 unw_rec_list *ptr = alloc_record (preds_psprel);
1910 ptr->r.record.p.pspoff = offset / 4;
1911 return ptr;
1912 }
1913
1914 static unw_rec_list *
1915 output_preds_sprel (offset)
1916 unsigned int offset;
1917 {
1918 unw_rec_list *ptr = alloc_record (preds_sprel);
1919 ptr->r.record.p.spoff = offset / 4;
1920 return ptr;
1921 }
1922
1923 static unw_rec_list *
1924 output_fr_mem (mask)
1925 unsigned int mask;
1926 {
1927 unw_rec_list *ptr = alloc_record (fr_mem);
1928 ptr->r.record.p.rmask = mask;
1929 return ptr;
1930 }
1931
1932 static unw_rec_list *
1933 output_frgr_mem (gr_mask, fr_mask)
1934 unsigned int gr_mask;
1935 unsigned int fr_mask;
1936 {
1937 unw_rec_list *ptr = alloc_record (frgr_mem);
1938 ptr->r.record.p.grmask = gr_mask;
1939 ptr->r.record.p.frmask = fr_mask;
1940 return ptr;
1941 }
1942
1943 static unw_rec_list *
1944 output_gr_gr (mask, reg)
1945 unsigned int mask;
1946 unsigned int reg;
1947 {
1948 unw_rec_list *ptr = alloc_record (gr_gr);
1949 ptr->r.record.p.grmask = mask;
1950 ptr->r.record.p.gr = reg;
1951 return ptr;
1952 }
1953
1954 static unw_rec_list *
1955 output_gr_mem (mask)
1956 unsigned int mask;
1957 {
1958 unw_rec_list *ptr = alloc_record (gr_mem);
1959 ptr->r.record.p.rmask = mask;
1960 return ptr;
1961 }
1962
1963 static unw_rec_list *
1964 output_br_mem (unsigned int mask)
1965 {
1966 unw_rec_list *ptr = alloc_record (br_mem);
1967 ptr->r.record.p.brmask = mask;
1968 return ptr;
1969 }
1970
1971 static unw_rec_list *
1972 output_br_gr (save_mask, reg)
1973 unsigned int save_mask;
1974 unsigned int reg;
1975 {
1976 unw_rec_list *ptr = alloc_record (br_gr);
1977 ptr->r.record.p.brmask = save_mask;
1978 ptr->r.record.p.gr = reg;
1979 return ptr;
1980 }
1981
1982 static unw_rec_list *
1983 output_spill_base (offset)
1984 unsigned int offset;
1985 {
1986 unw_rec_list *ptr = alloc_record (spill_base);
1987 ptr->r.record.p.pspoff = offset / 4;
1988 return ptr;
1989 }
1990
1991 static unw_rec_list *
1992 output_unat_when ()
1993 {
1994 unw_rec_list *ptr = alloc_record (unat_when);
1995 return ptr;
1996 }
1997
1998 static unw_rec_list *
1999 output_unat_gr (gr)
2000 unsigned int gr;
2001 {
2002 unw_rec_list *ptr = alloc_record (unat_gr);
2003 ptr->r.record.p.gr = gr;
2004 return ptr;
2005 }
2006
2007 static unw_rec_list *
2008 output_unat_psprel (offset)
2009 unsigned int offset;
2010 {
2011 unw_rec_list *ptr = alloc_record (unat_psprel);
2012 ptr->r.record.p.pspoff = offset / 4;
2013 return ptr;
2014 }
2015
2016 static unw_rec_list *
2017 output_unat_sprel (offset)
2018 unsigned int offset;
2019 {
2020 unw_rec_list *ptr = alloc_record (unat_sprel);
2021 ptr->r.record.p.spoff = offset / 4;
2022 return ptr;
2023 }
2024
2025 static unw_rec_list *
2026 output_lc_when ()
2027 {
2028 unw_rec_list *ptr = alloc_record (lc_when);
2029 return ptr;
2030 }
2031
2032 static unw_rec_list *
2033 output_lc_gr (gr)
2034 unsigned int gr;
2035 {
2036 unw_rec_list *ptr = alloc_record (lc_gr);
2037 ptr->r.record.p.gr = gr;
2038 return ptr;
2039 }
2040
2041 static unw_rec_list *
2042 output_lc_psprel (offset)
2043 unsigned int offset;
2044 {
2045 unw_rec_list *ptr = alloc_record (lc_psprel);
2046 ptr->r.record.p.pspoff = offset / 4;
2047 return ptr;
2048 }
2049
2050 static unw_rec_list *
2051 output_lc_sprel (offset)
2052 unsigned int offset;
2053 {
2054 unw_rec_list *ptr = alloc_record (lc_sprel);
2055 ptr->r.record.p.spoff = offset / 4;
2056 return ptr;
2057 }
2058
2059 static unw_rec_list *
2060 output_fpsr_when ()
2061 {
2062 unw_rec_list *ptr = alloc_record (fpsr_when);
2063 return ptr;
2064 }
2065
2066 static unw_rec_list *
2067 output_fpsr_gr (gr)
2068 unsigned int gr;
2069 {
2070 unw_rec_list *ptr = alloc_record (fpsr_gr);
2071 ptr->r.record.p.gr = gr;
2072 return ptr;
2073 }
2074
2075 static unw_rec_list *
2076 output_fpsr_psprel (offset)
2077 unsigned int offset;
2078 {
2079 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2080 ptr->r.record.p.pspoff = offset / 4;
2081 return ptr;
2082 }
2083
2084 static unw_rec_list *
2085 output_fpsr_sprel (offset)
2086 unsigned int offset;
2087 {
2088 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2089 ptr->r.record.p.spoff = offset / 4;
2090 return ptr;
2091 }
2092
2093 static unw_rec_list *
2094 output_priunat_when_gr ()
2095 {
2096 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2097 return ptr;
2098 }
2099
2100 static unw_rec_list *
2101 output_priunat_when_mem ()
2102 {
2103 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2104 return ptr;
2105 }
2106
2107 static unw_rec_list *
2108 output_priunat_gr (gr)
2109 unsigned int gr;
2110 {
2111 unw_rec_list *ptr = alloc_record (priunat_gr);
2112 ptr->r.record.p.gr = gr;
2113 return ptr;
2114 }
2115
2116 static unw_rec_list *
2117 output_priunat_psprel (offset)
2118 unsigned int offset;
2119 {
2120 unw_rec_list *ptr = alloc_record (priunat_psprel);
2121 ptr->r.record.p.pspoff = offset / 4;
2122 return ptr;
2123 }
2124
2125 static unw_rec_list *
2126 output_priunat_sprel (offset)
2127 unsigned int offset;
2128 {
2129 unw_rec_list *ptr = alloc_record (priunat_sprel);
2130 ptr->r.record.p.spoff = offset / 4;
2131 return ptr;
2132 }
2133
2134 static unw_rec_list *
2135 output_bsp_when ()
2136 {
2137 unw_rec_list *ptr = alloc_record (bsp_when);
2138 return ptr;
2139 }
2140
2141 static unw_rec_list *
2142 output_bsp_gr (gr)
2143 unsigned int gr;
2144 {
2145 unw_rec_list *ptr = alloc_record (bsp_gr);
2146 ptr->r.record.p.gr = gr;
2147 return ptr;
2148 }
2149
2150 static unw_rec_list *
2151 output_bsp_psprel (offset)
2152 unsigned int offset;
2153 {
2154 unw_rec_list *ptr = alloc_record (bsp_psprel);
2155 ptr->r.record.p.pspoff = offset / 4;
2156 return ptr;
2157 }
2158
2159 static unw_rec_list *
2160 output_bsp_sprel (offset)
2161 unsigned int offset;
2162 {
2163 unw_rec_list *ptr = alloc_record (bsp_sprel);
2164 ptr->r.record.p.spoff = offset / 4;
2165 return ptr;
2166 }
2167
2168 static unw_rec_list *
2169 output_bspstore_when ()
2170 {
2171 unw_rec_list *ptr = alloc_record (bspstore_when);
2172 return ptr;
2173 }
2174
2175 static unw_rec_list *
2176 output_bspstore_gr (gr)
2177 unsigned int gr;
2178 {
2179 unw_rec_list *ptr = alloc_record (bspstore_gr);
2180 ptr->r.record.p.gr = gr;
2181 return ptr;
2182 }
2183
2184 static unw_rec_list *
2185 output_bspstore_psprel (offset)
2186 unsigned int offset;
2187 {
2188 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2189 ptr->r.record.p.pspoff = offset / 4;
2190 return ptr;
2191 }
2192
2193 static unw_rec_list *
2194 output_bspstore_sprel (offset)
2195 unsigned int offset;
2196 {
2197 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2198 ptr->r.record.p.spoff = offset / 4;
2199 return ptr;
2200 }
2201
2202 static unw_rec_list *
2203 output_rnat_when ()
2204 {
2205 unw_rec_list *ptr = alloc_record (rnat_when);
2206 return ptr;
2207 }
2208
2209 static unw_rec_list *
2210 output_rnat_gr (gr)
2211 unsigned int gr;
2212 {
2213 unw_rec_list *ptr = alloc_record (rnat_gr);
2214 ptr->r.record.p.gr = gr;
2215 return ptr;
2216 }
2217
2218 static unw_rec_list *
2219 output_rnat_psprel (offset)
2220 unsigned int offset;
2221 {
2222 unw_rec_list *ptr = alloc_record (rnat_psprel);
2223 ptr->r.record.p.pspoff = offset / 4;
2224 return ptr;
2225 }
2226
2227 static unw_rec_list *
2228 output_rnat_sprel (offset)
2229 unsigned int offset;
2230 {
2231 unw_rec_list *ptr = alloc_record (rnat_sprel);
2232 ptr->r.record.p.spoff = offset / 4;
2233 return ptr;
2234 }
2235
2236 static unw_rec_list *
2237 output_unwabi (abi, context)
2238 unsigned long abi;
2239 unsigned long context;
2240 {
2241 unw_rec_list *ptr = alloc_record (unwabi);
2242 ptr->r.record.p.abi = abi;
2243 ptr->r.record.p.context = context;
2244 return ptr;
2245 }
2246
2247 static unw_rec_list *
2248 output_epilogue (unsigned long ecount)
2249 {
2250 unw_rec_list *ptr = alloc_record (epilogue);
2251 ptr->r.record.b.ecount = ecount;
2252 return ptr;
2253 }
2254
2255 static unw_rec_list *
2256 output_label_state (unsigned long label)
2257 {
2258 unw_rec_list *ptr = alloc_record (label_state);
2259 ptr->r.record.b.label = label;
2260 return ptr;
2261 }
2262
2263 static unw_rec_list *
2264 output_copy_state (unsigned long label)
2265 {
2266 unw_rec_list *ptr = alloc_record (copy_state);
2267 ptr->r.record.b.label = label;
2268 return ptr;
2269 }
2270
2271 static unw_rec_list *
2272 output_spill_psprel (ab, reg, offset)
2273 unsigned int ab;
2274 unsigned int reg;
2275 unsigned int offset;
2276 {
2277 unw_rec_list *ptr = alloc_record (spill_psprel);
2278 ptr->r.record.x.ab = ab;
2279 ptr->r.record.x.reg = reg;
2280 ptr->r.record.x.pspoff = offset / 4;
2281 return ptr;
2282 }
2283
2284 static unw_rec_list *
2285 output_spill_sprel (ab, reg, offset)
2286 unsigned int ab;
2287 unsigned int reg;
2288 unsigned int offset;
2289 {
2290 unw_rec_list *ptr = alloc_record (spill_sprel);
2291 ptr->r.record.x.ab = ab;
2292 ptr->r.record.x.reg = reg;
2293 ptr->r.record.x.spoff = offset / 4;
2294 return ptr;
2295 }
2296
2297 static unw_rec_list *
2298 output_spill_psprel_p (ab, reg, offset, predicate)
2299 unsigned int ab;
2300 unsigned int reg;
2301 unsigned int offset;
2302 unsigned int predicate;
2303 {
2304 unw_rec_list *ptr = alloc_record (spill_psprel_p);
2305 ptr->r.record.x.ab = ab;
2306 ptr->r.record.x.reg = reg;
2307 ptr->r.record.x.pspoff = offset / 4;
2308 ptr->r.record.x.qp = predicate;
2309 return ptr;
2310 }
2311
2312 static unw_rec_list *
2313 output_spill_sprel_p (ab, reg, offset, predicate)
2314 unsigned int ab;
2315 unsigned int reg;
2316 unsigned int offset;
2317 unsigned int predicate;
2318 {
2319 unw_rec_list *ptr = alloc_record (spill_sprel_p);
2320 ptr->r.record.x.ab = ab;
2321 ptr->r.record.x.reg = reg;
2322 ptr->r.record.x.spoff = offset / 4;
2323 ptr->r.record.x.qp = predicate;
2324 return ptr;
2325 }
2326
2327 static unw_rec_list *
2328 output_spill_reg (ab, reg, targ_reg, xy)
2329 unsigned int ab;
2330 unsigned int reg;
2331 unsigned int targ_reg;
2332 unsigned int xy;
2333 {
2334 unw_rec_list *ptr = alloc_record (spill_reg);
2335 ptr->r.record.x.ab = ab;
2336 ptr->r.record.x.reg = reg;
2337 ptr->r.record.x.treg = targ_reg;
2338 ptr->r.record.x.xy = xy;
2339 return ptr;
2340 }
2341
2342 static unw_rec_list *
2343 output_spill_reg_p (ab, reg, targ_reg, xy, predicate)
2344 unsigned int ab;
2345 unsigned int reg;
2346 unsigned int targ_reg;
2347 unsigned int xy;
2348 unsigned int predicate;
2349 {
2350 unw_rec_list *ptr = alloc_record (spill_reg_p);
2351 ptr->r.record.x.ab = ab;
2352 ptr->r.record.x.reg = reg;
2353 ptr->r.record.x.treg = targ_reg;
2354 ptr->r.record.x.xy = xy;
2355 ptr->r.record.x.qp = predicate;
2356 return ptr;
2357 }
2358
2359 /* Given a unw_rec_list process the correct format with the
2360 specified function. */
2361
2362 static void
2363 process_one_record (ptr, f)
2364 unw_rec_list *ptr;
2365 vbyte_func f;
2366 {
2367 unsigned long fr_mask, gr_mask;
2368
2369 switch (ptr->r.type)
2370 {
2371 /* This is a dummy record that takes up no space in the output. */
2372 case endp:
2373 break;
2374
2375 case gr_mem:
2376 case fr_mem:
2377 case br_mem:
2378 case frgr_mem:
2379 /* These are taken care of by prologue/prologue_gr. */
2380 break;
2381
2382 case prologue_gr:
2383 case prologue:
2384 if (ptr->r.type == prologue_gr)
2385 output_R2_format (f, ptr->r.record.r.grmask,
2386 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2387 else
2388 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2389
2390 /* Output descriptor(s) for union of register spills (if any). */
2391 gr_mask = ptr->r.record.r.mask.gr_mem;
2392 fr_mask = ptr->r.record.r.mask.fr_mem;
2393 if (fr_mask)
2394 {
2395 if ((fr_mask & ~0xfUL) == 0)
2396 output_P6_format (f, fr_mem, fr_mask);
2397 else
2398 {
2399 output_P5_format (f, gr_mask, fr_mask);
2400 gr_mask = 0;
2401 }
2402 }
2403 if (gr_mask)
2404 output_P6_format (f, gr_mem, gr_mask);
2405 if (ptr->r.record.r.mask.br_mem)
2406 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2407
2408 /* output imask descriptor if necessary: */
2409 if (ptr->r.record.r.mask.i)
2410 output_P4_format (f, ptr->r.record.r.mask.i,
2411 ptr->r.record.r.imask_size);
2412 break;
2413
2414 case body:
2415 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2416 break;
2417 case mem_stack_f:
2418 case mem_stack_v:
2419 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2420 ptr->r.record.p.size);
2421 break;
2422 case psp_gr:
2423 case rp_gr:
2424 case pfs_gr:
2425 case preds_gr:
2426 case unat_gr:
2427 case lc_gr:
2428 case fpsr_gr:
2429 case priunat_gr:
2430 case bsp_gr:
2431 case bspstore_gr:
2432 case rnat_gr:
2433 output_P3_format (f, ptr->r.type, ptr->r.record.p.gr);
2434 break;
2435 case rp_br:
2436 output_P3_format (f, rp_br, ptr->r.record.p.br);
2437 break;
2438 case psp_sprel:
2439 output_P7_format (f, psp_sprel, ptr->r.record.p.spoff, 0);
2440 break;
2441 case rp_when:
2442 case pfs_when:
2443 case preds_when:
2444 case unat_when:
2445 case lc_when:
2446 case fpsr_when:
2447 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2448 break;
2449 case rp_psprel:
2450 case pfs_psprel:
2451 case preds_psprel:
2452 case unat_psprel:
2453 case lc_psprel:
2454 case fpsr_psprel:
2455 case spill_base:
2456 output_P7_format (f, ptr->r.type, ptr->r.record.p.pspoff, 0);
2457 break;
2458 case rp_sprel:
2459 case pfs_sprel:
2460 case preds_sprel:
2461 case unat_sprel:
2462 case lc_sprel:
2463 case fpsr_sprel:
2464 case priunat_sprel:
2465 case bsp_sprel:
2466 case bspstore_sprel:
2467 case rnat_sprel:
2468 output_P8_format (f, ptr->r.type, ptr->r.record.p.spoff);
2469 break;
2470 case gr_gr:
2471 output_P9_format (f, ptr->r.record.p.grmask, ptr->r.record.p.gr);
2472 break;
2473 case br_gr:
2474 output_P2_format (f, ptr->r.record.p.brmask, ptr->r.record.p.gr);
2475 break;
2476 case spill_mask:
2477 as_bad ("spill_mask record unimplemented.");
2478 break;
2479 case priunat_when_gr:
2480 case priunat_when_mem:
2481 case bsp_when:
2482 case bspstore_when:
2483 case rnat_when:
2484 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2485 break;
2486 case priunat_psprel:
2487 case bsp_psprel:
2488 case bspstore_psprel:
2489 case rnat_psprel:
2490 output_P8_format (f, ptr->r.type, ptr->r.record.p.pspoff);
2491 break;
2492 case unwabi:
2493 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2494 break;
2495 case epilogue:
2496 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2497 break;
2498 case label_state:
2499 case copy_state:
2500 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2501 break;
2502 case spill_psprel:
2503 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2504 ptr->r.record.x.reg, ptr->r.record.x.t,
2505 ptr->r.record.x.pspoff);
2506 break;
2507 case spill_sprel:
2508 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2509 ptr->r.record.x.reg, ptr->r.record.x.t,
2510 ptr->r.record.x.spoff);
2511 break;
2512 case spill_reg:
2513 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2514 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2515 ptr->r.record.x.treg, ptr->r.record.x.t);
2516 break;
2517 case spill_psprel_p:
2518 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2519 ptr->r.record.x.ab, ptr->r.record.x.reg,
2520 ptr->r.record.x.t, ptr->r.record.x.pspoff);
2521 break;
2522 case spill_sprel_p:
2523 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2524 ptr->r.record.x.ab, ptr->r.record.x.reg,
2525 ptr->r.record.x.t, ptr->r.record.x.spoff);
2526 break;
2527 case spill_reg_p:
2528 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2529 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2530 ptr->r.record.x.xy, ptr->r.record.x.treg,
2531 ptr->r.record.x.t);
2532 break;
2533 default:
2534 as_bad ("record_type_not_valid");
2535 break;
2536 }
2537 }
2538
2539 /* Given a unw_rec_list list, process all the records with
2540 the specified function. */
2541 static void
2542 process_unw_records (list, f)
2543 unw_rec_list *list;
2544 vbyte_func f;
2545 {
2546 unw_rec_list *ptr;
2547 for (ptr = list; ptr; ptr = ptr->next)
2548 process_one_record (ptr, f);
2549 }
2550
2551 /* Determine the size of a record list in bytes. */
2552 static int
2553 calc_record_size (list)
2554 unw_rec_list *list;
2555 {
2556 vbyte_count = 0;
2557 process_unw_records (list, count_output);
2558 return vbyte_count;
2559 }
2560
2561 /* Update IMASK bitmask to reflect the fact that one or more registers
2562 of type TYPE are saved starting at instruction with index T. If N
2563 bits are set in REGMASK, it is assumed that instructions T through
2564 T+N-1 save these registers.
2565
2566 TYPE values:
2567 0: no save
2568 1: instruction saves next fp reg
2569 2: instruction saves next general reg
2570 3: instruction saves next branch reg */
2571 static void
2572 set_imask (region, regmask, t, type)
2573 unw_rec_list *region;
2574 unsigned long regmask;
2575 unsigned long t;
2576 unsigned int type;
2577 {
2578 unsigned char *imask;
2579 unsigned long imask_size;
2580 unsigned int i;
2581 int pos;
2582
2583 imask = region->r.record.r.mask.i;
2584 imask_size = region->r.record.r.imask_size;
2585 if (!imask)
2586 {
2587 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2588 imask = xmalloc (imask_size);
2589 memset (imask, 0, imask_size);
2590
2591 region->r.record.r.imask_size = imask_size;
2592 region->r.record.r.mask.i = imask;
2593 }
2594
2595 i = (t / 4) + 1;
2596 pos = 2 * (3 - t % 4);
2597 while (regmask)
2598 {
2599 if (i >= imask_size)
2600 {
2601 as_bad ("Ignoring attempt to spill beyond end of region");
2602 return;
2603 }
2604
2605 imask[i] |= (type & 0x3) << pos;
2606
2607 regmask &= (regmask - 1);
2608 pos -= 2;
2609 if (pos < 0)
2610 {
2611 pos = 0;
2612 ++i;
2613 }
2614 }
2615 }
2616
2617 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2618 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2619 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2620 for frag sizes. */
2621
2622 unsigned long
2623 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2624 unsigned long slot_addr;
2625 fragS *slot_frag;
2626 unsigned long first_addr;
2627 fragS *first_frag;
2628 int before_relax;
2629 {
2630 unsigned long index = 0;
2631
2632 /* First time we are called, the initial address and frag are invalid. */
2633 if (first_addr == 0)
2634 return 0;
2635
2636 /* If the two addresses are in different frags, then we need to add in
2637 the remaining size of this frag, and then the entire size of intermediate
2638 frags. */
2639 while (slot_frag != first_frag)
2640 {
2641 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2642
2643 if (! before_relax)
2644 {
2645 /* We can get the final addresses only during and after
2646 relaxation. */
2647 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2648 index += 3 * ((first_frag->fr_next->fr_address
2649 - first_frag->fr_address
2650 - first_frag->fr_fix) >> 4);
2651 }
2652 else
2653 /* We don't know what the final addresses will be. We try our
2654 best to estimate. */
2655 switch (first_frag->fr_type)
2656 {
2657 default:
2658 break;
2659
2660 case rs_space:
2661 as_fatal ("only constant space allocation is supported");
2662 break;
2663
2664 case rs_align:
2665 case rs_align_code:
2666 case rs_align_test:
2667 /* Take alignment into account. Assume the worst case
2668 before relaxation. */
2669 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2670 break;
2671
2672 case rs_org:
2673 if (first_frag->fr_symbol)
2674 {
2675 as_fatal ("only constant offsets are supported");
2676 break;
2677 }
2678 case rs_fill:
2679 index += 3 * (first_frag->fr_offset >> 4);
2680 break;
2681 }
2682
2683 /* Add in the full size of the frag converted to instruction slots. */
2684 index += 3 * (first_frag->fr_fix >> 4);
2685 /* Subtract away the initial part before first_addr. */
2686 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2687 + ((first_addr & 0x3) - (start_addr & 0x3)));
2688
2689 /* Move to the beginning of the next frag. */
2690 first_frag = first_frag->fr_next;
2691 first_addr = (unsigned long) &first_frag->fr_literal;
2692 }
2693
2694 /* Add in the used part of the last frag. */
2695 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2696 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2697 return index;
2698 }
2699
2700 /* Optimize unwind record directives. */
2701
2702 static unw_rec_list *
2703 optimize_unw_records (list)
2704 unw_rec_list *list;
2705 {
2706 if (!list)
2707 return NULL;
2708
2709 /* If the only unwind record is ".prologue" or ".prologue" followed
2710 by ".body", then we can optimize the unwind directives away. */
2711 if (list->r.type == prologue
2712 && (list->next->r.type == endp
2713 || (list->next->r.type == body && list->next->next->r.type == endp)))
2714 return NULL;
2715
2716 return list;
2717 }
2718
2719 /* Given a complete record list, process any records which have
2720 unresolved fields, (ie length counts for a prologue). After
2721 this has been run, all necessary information should be available
2722 within each record to generate an image. */
2723
2724 static void
2725 fixup_unw_records (list, before_relax)
2726 unw_rec_list *list;
2727 int before_relax;
2728 {
2729 unw_rec_list *ptr, *region = 0;
2730 unsigned long first_addr = 0, rlen = 0, t;
2731 fragS *first_frag = 0;
2732
2733 for (ptr = list; ptr; ptr = ptr->next)
2734 {
2735 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2736 as_bad (" Insn slot not set in unwind record.");
2737 t = slot_index (ptr->slot_number, ptr->slot_frag,
2738 first_addr, first_frag, before_relax);
2739 switch (ptr->r.type)
2740 {
2741 case prologue:
2742 case prologue_gr:
2743 case body:
2744 {
2745 unw_rec_list *last;
2746 int size;
2747 unsigned long last_addr = 0;
2748 fragS *last_frag = NULL;
2749
2750 first_addr = ptr->slot_number;
2751 first_frag = ptr->slot_frag;
2752 /* Find either the next body/prologue start, or the end of
2753 the function, and determine the size of the region. */
2754 for (last = ptr->next; last != NULL; last = last->next)
2755 if (last->r.type == prologue || last->r.type == prologue_gr
2756 || last->r.type == body || last->r.type == endp)
2757 {
2758 last_addr = last->slot_number;
2759 last_frag = last->slot_frag;
2760 break;
2761 }
2762 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2763 before_relax);
2764 rlen = ptr->r.record.r.rlen = size;
2765 if (ptr->r.type == body)
2766 /* End of region. */
2767 region = 0;
2768 else
2769 region = ptr;
2770 break;
2771 }
2772 case epilogue:
2773 ptr->r.record.b.t = rlen - 1 - t;
2774 break;
2775
2776 case mem_stack_f:
2777 case mem_stack_v:
2778 case rp_when:
2779 case pfs_when:
2780 case preds_when:
2781 case unat_when:
2782 case lc_when:
2783 case fpsr_when:
2784 case priunat_when_gr:
2785 case priunat_when_mem:
2786 case bsp_when:
2787 case bspstore_when:
2788 case rnat_when:
2789 ptr->r.record.p.t = t;
2790 break;
2791
2792 case spill_reg:
2793 case spill_sprel:
2794 case spill_psprel:
2795 case spill_reg_p:
2796 case spill_sprel_p:
2797 case spill_psprel_p:
2798 ptr->r.record.x.t = t;
2799 break;
2800
2801 case frgr_mem:
2802 if (!region)
2803 {
2804 as_bad ("frgr_mem record before region record!\n");
2805 return;
2806 }
2807 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2808 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2809 set_imask (region, ptr->r.record.p.frmask, t, 1);
2810 set_imask (region, ptr->r.record.p.grmask, t, 2);
2811 break;
2812 case fr_mem:
2813 if (!region)
2814 {
2815 as_bad ("fr_mem record before region record!\n");
2816 return;
2817 }
2818 region->r.record.r.mask.fr_mem |= ptr->r.record.p.rmask;
2819 set_imask (region, ptr->r.record.p.rmask, t, 1);
2820 break;
2821 case gr_mem:
2822 if (!region)
2823 {
2824 as_bad ("gr_mem record before region record!\n");
2825 return;
2826 }
2827 region->r.record.r.mask.gr_mem |= ptr->r.record.p.rmask;
2828 set_imask (region, ptr->r.record.p.rmask, t, 2);
2829 break;
2830 case br_mem:
2831 if (!region)
2832 {
2833 as_bad ("br_mem record before region record!\n");
2834 return;
2835 }
2836 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2837 set_imask (region, ptr->r.record.p.brmask, t, 3);
2838 break;
2839
2840 case gr_gr:
2841 if (!region)
2842 {
2843 as_bad ("gr_gr record before region record!\n");
2844 return;
2845 }
2846 set_imask (region, ptr->r.record.p.grmask, t, 2);
2847 break;
2848 case br_gr:
2849 if (!region)
2850 {
2851 as_bad ("br_gr record before region record!\n");
2852 return;
2853 }
2854 set_imask (region, ptr->r.record.p.brmask, t, 3);
2855 break;
2856
2857 default:
2858 break;
2859 }
2860 }
2861 }
2862
2863 /* Estimate the size of a frag before relaxing. We only have one type of frag
2864 to handle here, which is the unwind info frag. */
2865
2866 int
2867 ia64_estimate_size_before_relax (fragS *frag,
2868 asection *segtype ATTRIBUTE_UNUSED)
2869 {
2870 unw_rec_list *list;
2871 int len, size, pad;
2872
2873 /* ??? This code is identical to the first part of ia64_convert_frag. */
2874 list = (unw_rec_list *) frag->fr_opcode;
2875 fixup_unw_records (list, 0);
2876
2877 len = calc_record_size (list);
2878 /* pad to pointer-size boundary. */
2879 pad = len % md.pointer_size;
2880 if (pad != 0)
2881 len += md.pointer_size - pad;
2882 /* Add 8 for the header + a pointer for the personality offset. */
2883 size = len + 8 + md.pointer_size;
2884
2885 /* fr_var carries the max_chars that we created the fragment with.
2886 We must, of course, have allocated enough memory earlier. */
2887 assert (frag->fr_var >= size);
2888
2889 return frag->fr_fix + size;
2890 }
2891
2892 /* This function converts a rs_machine_dependent variant frag into a
2893 normal fill frag with the unwind image from the the record list. */
2894 void
2895 ia64_convert_frag (fragS *frag)
2896 {
2897 unw_rec_list *list;
2898 int len, size, pad;
2899 valueT flag_value;
2900
2901 /* ??? This code is identical to ia64_estimate_size_before_relax. */
2902 list = (unw_rec_list *) frag->fr_opcode;
2903 fixup_unw_records (list, 0);
2904
2905 len = calc_record_size (list);
2906 /* pad to pointer-size boundary. */
2907 pad = len % md.pointer_size;
2908 if (pad != 0)
2909 len += md.pointer_size - pad;
2910 /* Add 8 for the header + a pointer for the personality offset. */
2911 size = len + 8 + md.pointer_size;
2912
2913 /* fr_var carries the max_chars that we created the fragment with.
2914 We must, of course, have allocated enough memory earlier. */
2915 assert (frag->fr_var >= size);
2916
2917 /* Initialize the header area. fr_offset is initialized with
2918 unwind.personality_routine. */
2919 if (frag->fr_offset)
2920 {
2921 if (md.flags & EF_IA_64_ABI64)
2922 flag_value = (bfd_vma) 3 << 32;
2923 else
2924 /* 32-bit unwind info block. */
2925 flag_value = (bfd_vma) 0x1003 << 32;
2926 }
2927 else
2928 flag_value = 0;
2929
2930 md_number_to_chars (frag->fr_literal,
2931 (((bfd_vma) 1 << 48) /* Version. */
2932 | flag_value /* U & E handler flags. */
2933 | (len / md.pointer_size)), /* Length. */
2934 8);
2935
2936 /* Skip the header. */
2937 vbyte_mem_ptr = frag->fr_literal + 8;
2938 process_unw_records (list, output_vbyte_mem);
2939
2940 /* Fill the padding bytes with zeros. */
2941 if (pad != 0)
2942 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
2943 md.pointer_size - pad);
2944
2945 frag->fr_fix += size;
2946 frag->fr_type = rs_fill;
2947 frag->fr_var = 0;
2948 frag->fr_offset = 0;
2949 }
2950
2951 static int
2952 convert_expr_to_ab_reg (e, ab, regp)
2953 expressionS *e;
2954 unsigned int *ab;
2955 unsigned int *regp;
2956 {
2957 unsigned int reg;
2958
2959 if (e->X_op != O_register)
2960 return 0;
2961
2962 reg = e->X_add_number;
2963 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
2964 {
2965 *ab = 0;
2966 *regp = reg - REG_GR;
2967 }
2968 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
2969 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
2970 {
2971 *ab = 1;
2972 *regp = reg - REG_FR;
2973 }
2974 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
2975 {
2976 *ab = 2;
2977 *regp = reg - REG_BR;
2978 }
2979 else
2980 {
2981 *ab = 3;
2982 switch (reg)
2983 {
2984 case REG_PR: *regp = 0; break;
2985 case REG_PSP: *regp = 1; break;
2986 case REG_PRIUNAT: *regp = 2; break;
2987 case REG_BR + 0: *regp = 3; break;
2988 case REG_AR + AR_BSP: *regp = 4; break;
2989 case REG_AR + AR_BSPSTORE: *regp = 5; break;
2990 case REG_AR + AR_RNAT: *regp = 6; break;
2991 case REG_AR + AR_UNAT: *regp = 7; break;
2992 case REG_AR + AR_FPSR: *regp = 8; break;
2993 case REG_AR + AR_PFS: *regp = 9; break;
2994 case REG_AR + AR_LC: *regp = 10; break;
2995
2996 default:
2997 return 0;
2998 }
2999 }
3000 return 1;
3001 }
3002
3003 static int
3004 convert_expr_to_xy_reg (e, xy, regp)
3005 expressionS *e;
3006 unsigned int *xy;
3007 unsigned int *regp;
3008 {
3009 unsigned int reg;
3010
3011 if (e->X_op != O_register)
3012 return 0;
3013
3014 reg = e->X_add_number;
3015
3016 if (/* reg >= REG_GR && */ reg <= (REG_GR + 127))
3017 {
3018 *xy = 0;
3019 *regp = reg - REG_GR;
3020 }
3021 else if (reg >= REG_FR && reg <= (REG_FR + 127))
3022 {
3023 *xy = 1;
3024 *regp = reg - REG_FR;
3025 }
3026 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3027 {
3028 *xy = 2;
3029 *regp = reg - REG_BR;
3030 }
3031 else
3032 return -1;
3033 return 1;
3034 }
3035
3036 static void
3037 dot_align (int arg)
3038 {
3039 /* The current frag is an alignment frag. */
3040 align_frag = frag_now;
3041 s_align_bytes (arg);
3042 }
3043
3044 static void
3045 dot_radix (dummy)
3046 int dummy ATTRIBUTE_UNUSED;
3047 {
3048 int radix;
3049
3050 SKIP_WHITESPACE ();
3051 radix = *input_line_pointer++;
3052
3053 if (radix != 'C' && !is_end_of_line[(unsigned char) radix])
3054 {
3055 as_bad ("Radix `%c' unsupported", *input_line_pointer);
3056 ignore_rest_of_line ();
3057 return;
3058 }
3059 }
3060
3061 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3062 static void
3063 dot_special_section (which)
3064 int which;
3065 {
3066 set_section ((char *) special_section_name[which]);
3067 }
3068
3069 static void
3070 add_unwind_entry (ptr)
3071 unw_rec_list *ptr;
3072 {
3073 if (unwind.tail)
3074 unwind.tail->next = ptr;
3075 else
3076 unwind.list = ptr;
3077 unwind.tail = ptr;
3078
3079 /* The current entry can in fact be a chain of unwind entries. */
3080 if (unwind.current_entry == NULL)
3081 unwind.current_entry = ptr;
3082 }
3083
3084 static void
3085 dot_fframe (dummy)
3086 int dummy ATTRIBUTE_UNUSED;
3087 {
3088 expressionS e;
3089
3090 parse_operand (&e);
3091
3092 if (e.X_op != O_constant)
3093 as_bad ("Operand to .fframe must be a constant");
3094 else
3095 add_unwind_entry (output_mem_stack_f (e.X_add_number));
3096 }
3097
3098 static void
3099 dot_vframe (dummy)
3100 int dummy ATTRIBUTE_UNUSED;
3101 {
3102 expressionS e;
3103 unsigned reg;
3104
3105 parse_operand (&e);
3106 reg = e.X_add_number - REG_GR;
3107 if (e.X_op == O_register && reg < 128)
3108 {
3109 add_unwind_entry (output_mem_stack_v ());
3110 if (! (unwind.prologue_mask & 2))
3111 add_unwind_entry (output_psp_gr (reg));
3112 }
3113 else
3114 as_bad ("First operand to .vframe must be a general register");
3115 }
3116
3117 static void
3118 dot_vframesp (dummy)
3119 int dummy ATTRIBUTE_UNUSED;
3120 {
3121 expressionS e;
3122
3123 parse_operand (&e);
3124 if (e.X_op == O_constant)
3125 {
3126 add_unwind_entry (output_mem_stack_v ());
3127 add_unwind_entry (output_psp_sprel (e.X_add_number));
3128 }
3129 else
3130 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3131 }
3132
3133 static void
3134 dot_vframepsp (dummy)
3135 int dummy ATTRIBUTE_UNUSED;
3136 {
3137 expressionS e;
3138
3139 parse_operand (&e);
3140 if (e.X_op == O_constant)
3141 {
3142 add_unwind_entry (output_mem_stack_v ());
3143 add_unwind_entry (output_psp_sprel (e.X_add_number));
3144 }
3145 else
3146 as_bad ("Operand to .vframepsp must be a constant (psp-relative offset)");
3147 }
3148
3149 static void
3150 dot_save (dummy)
3151 int dummy ATTRIBUTE_UNUSED;
3152 {
3153 expressionS e1, e2;
3154 int sep;
3155 int reg1, reg2;
3156
3157 sep = parse_operand (&e1);
3158 if (sep != ',')
3159 as_bad ("No second operand to .save");
3160 sep = parse_operand (&e2);
3161
3162 reg1 = e1.X_add_number;
3163 reg2 = e2.X_add_number - REG_GR;
3164
3165 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3166 if (e1.X_op == O_register)
3167 {
3168 if (e2.X_op == O_register && reg2 >= 0 && reg2 < 128)
3169 {
3170 switch (reg1)
3171 {
3172 case REG_AR + AR_BSP:
3173 add_unwind_entry (output_bsp_when ());
3174 add_unwind_entry (output_bsp_gr (reg2));
3175 break;
3176 case REG_AR + AR_BSPSTORE:
3177 add_unwind_entry (output_bspstore_when ());
3178 add_unwind_entry (output_bspstore_gr (reg2));
3179 break;
3180 case REG_AR + AR_RNAT:
3181 add_unwind_entry (output_rnat_when ());
3182 add_unwind_entry (output_rnat_gr (reg2));
3183 break;
3184 case REG_AR + AR_UNAT:
3185 add_unwind_entry (output_unat_when ());
3186 add_unwind_entry (output_unat_gr (reg2));
3187 break;
3188 case REG_AR + AR_FPSR:
3189 add_unwind_entry (output_fpsr_when ());
3190 add_unwind_entry (output_fpsr_gr (reg2));
3191 break;
3192 case REG_AR + AR_PFS:
3193 add_unwind_entry (output_pfs_when ());
3194 if (! (unwind.prologue_mask & 4))
3195 add_unwind_entry (output_pfs_gr (reg2));
3196 break;
3197 case REG_AR + AR_LC:
3198 add_unwind_entry (output_lc_when ());
3199 add_unwind_entry (output_lc_gr (reg2));
3200 break;
3201 case REG_BR:
3202 add_unwind_entry (output_rp_when ());
3203 if (! (unwind.prologue_mask & 8))
3204 add_unwind_entry (output_rp_gr (reg2));
3205 break;
3206 case REG_PR:
3207 add_unwind_entry (output_preds_when ());
3208 if (! (unwind.prologue_mask & 1))
3209 add_unwind_entry (output_preds_gr (reg2));
3210 break;
3211 case REG_PRIUNAT:
3212 add_unwind_entry (output_priunat_when_gr ());
3213 add_unwind_entry (output_priunat_gr (reg2));
3214 break;
3215 default:
3216 as_bad ("First operand not a valid register");
3217 }
3218 }
3219 else
3220 as_bad (" Second operand not a valid register");
3221 }
3222 else
3223 as_bad ("First operand not a register");
3224 }
3225
3226 static void
3227 dot_restore (dummy)
3228 int dummy ATTRIBUTE_UNUSED;
3229 {
3230 expressionS e1, e2;
3231 unsigned long ecount; /* # of _additional_ regions to pop */
3232 int sep;
3233
3234 sep = parse_operand (&e1);
3235 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3236 {
3237 as_bad ("First operand to .restore must be stack pointer (sp)");
3238 return;
3239 }
3240
3241 if (sep == ',')
3242 {
3243 parse_operand (&e2);
3244 if (e2.X_op != O_constant || e2.X_add_number < 0)
3245 {
3246 as_bad ("Second operand to .restore must be a constant >= 0");
3247 return;
3248 }
3249 ecount = e2.X_add_number;
3250 }
3251 else
3252 ecount = unwind.prologue_count - 1;
3253
3254 if (ecount >= unwind.prologue_count)
3255 {
3256 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3257 ecount + 1, unwind.prologue_count);
3258 return;
3259 }
3260
3261 add_unwind_entry (output_epilogue (ecount));
3262
3263 if (ecount < unwind.prologue_count)
3264 unwind.prologue_count -= ecount + 1;
3265 else
3266 unwind.prologue_count = 0;
3267 }
3268
3269 static void
3270 dot_restorereg (dummy)
3271 int dummy ATTRIBUTE_UNUSED;
3272 {
3273 unsigned int ab, reg;
3274 expressionS e;
3275
3276 parse_operand (&e);
3277
3278 if (!convert_expr_to_ab_reg (&e, &ab, &reg))
3279 {
3280 as_bad ("First operand to .restorereg must be a preserved register");
3281 return;
3282 }
3283 add_unwind_entry (output_spill_reg (ab, reg, 0, 0));
3284 }
3285
3286 static void
3287 dot_restorereg_p (dummy)
3288 int dummy ATTRIBUTE_UNUSED;
3289 {
3290 unsigned int qp, ab, reg;
3291 expressionS e1, e2;
3292 int sep;
3293
3294 sep = parse_operand (&e1);
3295 if (sep != ',')
3296 {
3297 as_bad ("No second operand to .restorereg.p");
3298 return;
3299 }
3300
3301 parse_operand (&e2);
3302
3303 qp = e1.X_add_number - REG_P;
3304 if (e1.X_op != O_register || qp > 63)
3305 {
3306 as_bad ("First operand to .restorereg.p must be a predicate");
3307 return;
3308 }
3309
3310 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3311 {
3312 as_bad ("Second operand to .restorereg.p must be a preserved register");
3313 return;
3314 }
3315 add_unwind_entry (output_spill_reg_p (ab, reg, 0, 0, qp));
3316 }
3317
3318 static void
3319 generate_unwind_image (text_name)
3320 const char *text_name;
3321 {
3322 int size, pad;
3323 unw_rec_list *list;
3324
3325 /* Mark the end of the unwind info, so that we can compute the size of the
3326 last unwind region. */
3327 add_unwind_entry (output_endp ());
3328
3329 /* Force out pending instructions, to make sure all unwind records have
3330 a valid slot_number field. */
3331 ia64_flush_insns ();
3332
3333 /* Generate the unwind record. */
3334 list = optimize_unw_records (unwind.list);
3335 fixup_unw_records (list, 1);
3336 size = calc_record_size (list);
3337
3338 if (size > 0 || unwind.force_unwind_entry)
3339 {
3340 unwind.force_unwind_entry = 0;
3341 /* pad to pointer-size boundary. */
3342 pad = size % md.pointer_size;
3343 if (pad != 0)
3344 size += md.pointer_size - pad;
3345 /* Add 8 for the header + a pointer for the personality
3346 offset. */
3347 size += 8 + md.pointer_size;
3348 }
3349
3350 /* If there are unwind records, switch sections, and output the info. */
3351 if (size != 0)
3352 {
3353 char *sec_name;
3354 expressionS exp;
3355 bfd_reloc_code_real_type reloc;
3356
3357 make_unw_section_name (SPECIAL_SECTION_UNWIND_INFO, text_name, sec_name);
3358 set_section (sec_name);
3359 bfd_set_section_flags (stdoutput, now_seg,
3360 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3361
3362 /* Make sure the section has 4 byte alignment for ILP32 and
3363 8 byte alignment for LP64. */
3364 frag_align (md.pointer_size_shift, 0, 0);
3365 record_alignment (now_seg, md.pointer_size_shift);
3366
3367 /* Set expression which points to start of unwind descriptor area. */
3368 unwind.info = expr_build_dot ();
3369
3370 frag_var (rs_machine_dependent, size, size, 0, 0,
3371 (offsetT) unwind.personality_routine, (char *) list);
3372
3373 /* Add the personality address to the image. */
3374 if (unwind.personality_routine != 0)
3375 {
3376 exp.X_op = O_symbol;
3377 exp.X_add_symbol = unwind.personality_routine;
3378 exp.X_add_number = 0;
3379
3380 if (md.flags & EF_IA_64_BE)
3381 {
3382 if (md.flags & EF_IA_64_ABI64)
3383 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3384 else
3385 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3386 }
3387 else
3388 {
3389 if (md.flags & EF_IA_64_ABI64)
3390 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3391 else
3392 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3393 }
3394
3395 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3396 md.pointer_size, &exp, 0, reloc);
3397 unwind.personality_routine = 0;
3398 }
3399 }
3400
3401 free_saved_prologue_counts ();
3402 unwind.list = unwind.tail = unwind.current_entry = NULL;
3403 }
3404
3405 static void
3406 dot_handlerdata (dummy)
3407 int dummy ATTRIBUTE_UNUSED;
3408 {
3409 const char *text_name = segment_name (now_seg);
3410
3411 /* If text section name starts with ".text" (which it should),
3412 strip this prefix off. */
3413 if (strcmp (text_name, ".text") == 0)
3414 text_name = "";
3415
3416 unwind.force_unwind_entry = 1;
3417
3418 /* Remember which segment we're in so we can switch back after .endp */
3419 unwind.saved_text_seg = now_seg;
3420 unwind.saved_text_subseg = now_subseg;
3421
3422 /* Generate unwind info into unwind-info section and then leave that
3423 section as the currently active one so dataXX directives go into
3424 the language specific data area of the unwind info block. */
3425 generate_unwind_image (text_name);
3426 demand_empty_rest_of_line ();
3427 }
3428
3429 static void
3430 dot_unwentry (dummy)
3431 int dummy ATTRIBUTE_UNUSED;
3432 {
3433 unwind.force_unwind_entry = 1;
3434 demand_empty_rest_of_line ();
3435 }
3436
3437 static void
3438 dot_altrp (dummy)
3439 int dummy ATTRIBUTE_UNUSED;
3440 {
3441 expressionS e;
3442 unsigned reg;
3443
3444 parse_operand (&e);
3445 reg = e.X_add_number - REG_BR;
3446 if (e.X_op == O_register && reg < 8)
3447 add_unwind_entry (output_rp_br (reg));
3448 else
3449 as_bad ("First operand not a valid branch register");
3450 }
3451
3452 static void
3453 dot_savemem (psprel)
3454 int psprel;
3455 {
3456 expressionS e1, e2;
3457 int sep;
3458 int reg1, val;
3459
3460 sep = parse_operand (&e1);
3461 if (sep != ',')
3462 as_bad ("No second operand to .save%ssp", psprel ? "p" : "");
3463 sep = parse_operand (&e2);
3464
3465 reg1 = e1.X_add_number;
3466 val = e2.X_add_number;
3467
3468 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3469 if (e1.X_op == O_register)
3470 {
3471 if (e2.X_op == O_constant)
3472 {
3473 switch (reg1)
3474 {
3475 case REG_AR + AR_BSP:
3476 add_unwind_entry (output_bsp_when ());
3477 add_unwind_entry ((psprel
3478 ? output_bsp_psprel
3479 : output_bsp_sprel) (val));
3480 break;
3481 case REG_AR + AR_BSPSTORE:
3482 add_unwind_entry (output_bspstore_when ());
3483 add_unwind_entry ((psprel
3484 ? output_bspstore_psprel
3485 : output_bspstore_sprel) (val));
3486 break;
3487 case REG_AR + AR_RNAT:
3488 add_unwind_entry (output_rnat_when ());
3489 add_unwind_entry ((psprel
3490 ? output_rnat_psprel
3491 : output_rnat_sprel) (val));
3492 break;
3493 case REG_AR + AR_UNAT:
3494 add_unwind_entry (output_unat_when ());
3495 add_unwind_entry ((psprel
3496 ? output_unat_psprel
3497 : output_unat_sprel) (val));
3498 break;
3499 case REG_AR + AR_FPSR:
3500 add_unwind_entry (output_fpsr_when ());
3501 add_unwind_entry ((psprel
3502 ? output_fpsr_psprel
3503 : output_fpsr_sprel) (val));
3504 break;
3505 case REG_AR + AR_PFS:
3506 add_unwind_entry (output_pfs_when ());
3507 add_unwind_entry ((psprel
3508 ? output_pfs_psprel
3509 : output_pfs_sprel) (val));
3510 break;
3511 case REG_AR + AR_LC:
3512 add_unwind_entry (output_lc_when ());
3513 add_unwind_entry ((psprel
3514 ? output_lc_psprel
3515 : output_lc_sprel) (val));
3516 break;
3517 case REG_BR:
3518 add_unwind_entry (output_rp_when ());
3519 add_unwind_entry ((psprel
3520 ? output_rp_psprel
3521 : output_rp_sprel) (val));
3522 break;
3523 case REG_PR:
3524 add_unwind_entry (output_preds_when ());
3525 add_unwind_entry ((psprel
3526 ? output_preds_psprel
3527 : output_preds_sprel) (val));
3528 break;
3529 case REG_PRIUNAT:
3530 add_unwind_entry (output_priunat_when_mem ());
3531 add_unwind_entry ((psprel
3532 ? output_priunat_psprel
3533 : output_priunat_sprel) (val));
3534 break;
3535 default:
3536 as_bad ("First operand not a valid register");
3537 }
3538 }
3539 else
3540 as_bad (" Second operand not a valid constant");
3541 }
3542 else
3543 as_bad ("First operand not a register");
3544 }
3545
3546 static void
3547 dot_saveg (dummy)
3548 int dummy ATTRIBUTE_UNUSED;
3549 {
3550 expressionS e1, e2;
3551 int sep;
3552 sep = parse_operand (&e1);
3553 if (sep == ',')
3554 parse_operand (&e2);
3555
3556 if (e1.X_op != O_constant)
3557 as_bad ("First operand to .save.g must be a constant.");
3558 else
3559 {
3560 int grmask = e1.X_add_number;
3561 if (sep != ',')
3562 add_unwind_entry (output_gr_mem (grmask));
3563 else
3564 {
3565 int reg = e2.X_add_number - REG_GR;
3566 if (e2.X_op == O_register && reg >= 0 && reg < 128)
3567 add_unwind_entry (output_gr_gr (grmask, reg));
3568 else
3569 as_bad ("Second operand is an invalid register.");
3570 }
3571 }
3572 }
3573
3574 static void
3575 dot_savef (dummy)
3576 int dummy ATTRIBUTE_UNUSED;
3577 {
3578 expressionS e1;
3579 int sep;
3580 sep = parse_operand (&e1);
3581
3582 if (e1.X_op != O_constant)
3583 as_bad ("Operand to .save.f must be a constant.");
3584 else
3585 add_unwind_entry (output_fr_mem (e1.X_add_number));
3586 }
3587
3588 static void
3589 dot_saveb (dummy)
3590 int dummy ATTRIBUTE_UNUSED;
3591 {
3592 expressionS e1, e2;
3593 unsigned int reg;
3594 unsigned char sep;
3595 int brmask;
3596
3597 sep = parse_operand (&e1);
3598 if (e1.X_op != O_constant)
3599 {
3600 as_bad ("First operand to .save.b must be a constant.");
3601 return;
3602 }
3603 brmask = e1.X_add_number;
3604
3605 if (sep == ',')
3606 {
3607 sep = parse_operand (&e2);
3608 reg = e2.X_add_number - REG_GR;
3609 if (e2.X_op != O_register || reg > 127)
3610 {
3611 as_bad ("Second operand to .save.b must be a general register.");
3612 return;
3613 }
3614 add_unwind_entry (output_br_gr (brmask, e2.X_add_number));
3615 }
3616 else
3617 add_unwind_entry (output_br_mem (brmask));
3618
3619 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3620 demand_empty_rest_of_line ();
3621 }
3622
3623 static void
3624 dot_savegf (dummy)
3625 int dummy ATTRIBUTE_UNUSED;
3626 {
3627 expressionS e1, e2;
3628 int sep;
3629 sep = parse_operand (&e1);
3630 if (sep == ',')
3631 parse_operand (&e2);
3632
3633 if (e1.X_op != O_constant || sep != ',' || e2.X_op != O_constant)
3634 as_bad ("Both operands of .save.gf must be constants.");
3635 else
3636 {
3637 int grmask = e1.X_add_number;
3638 int frmask = e2.X_add_number;
3639 add_unwind_entry (output_frgr_mem (grmask, frmask));
3640 }
3641 }
3642
3643 static void
3644 dot_spill (dummy)
3645 int dummy ATTRIBUTE_UNUSED;
3646 {
3647 expressionS e;
3648 unsigned char sep;
3649
3650 sep = parse_operand (&e);
3651 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3652 demand_empty_rest_of_line ();
3653
3654 if (e.X_op != O_constant)
3655 as_bad ("Operand to .spill must be a constant");
3656 else
3657 add_unwind_entry (output_spill_base (e.X_add_number));
3658 }
3659
3660 static void
3661 dot_spillreg (dummy)
3662 int dummy ATTRIBUTE_UNUSED;
3663 {
3664 int sep, ab, xy, reg, treg;
3665 expressionS e1, e2;
3666
3667 sep = parse_operand (&e1);
3668 if (sep != ',')
3669 {
3670 as_bad ("No second operand to .spillreg");
3671 return;
3672 }
3673
3674 parse_operand (&e2);
3675
3676 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3677 {
3678 as_bad ("First operand to .spillreg must be a preserved register");
3679 return;
3680 }
3681
3682 if (!convert_expr_to_xy_reg (&e2, &xy, &treg))
3683 {
3684 as_bad ("Second operand to .spillreg must be a register");
3685 return;
3686 }
3687
3688 add_unwind_entry (output_spill_reg (ab, reg, treg, xy));
3689 }
3690
3691 static void
3692 dot_spillmem (psprel)
3693 int psprel;
3694 {
3695 expressionS e1, e2;
3696 int sep, ab, reg;
3697
3698 sep = parse_operand (&e1);
3699 if (sep != ',')
3700 {
3701 as_bad ("Second operand missing");
3702 return;
3703 }
3704
3705 parse_operand (&e2);
3706
3707 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3708 {
3709 as_bad ("First operand to .spill%s must be a preserved register",
3710 psprel ? "psp" : "sp");
3711 return;
3712 }
3713
3714 if (e2.X_op != O_constant)
3715 {
3716 as_bad ("Second operand to .spill%s must be a constant",
3717 psprel ? "psp" : "sp");
3718 return;
3719 }
3720
3721 if (psprel)
3722 add_unwind_entry (output_spill_psprel (ab, reg, e2.X_add_number));
3723 else
3724 add_unwind_entry (output_spill_sprel (ab, reg, e2.X_add_number));
3725 }
3726
3727 static void
3728 dot_spillreg_p (dummy)
3729 int dummy ATTRIBUTE_UNUSED;
3730 {
3731 int sep, ab, xy, reg, treg;
3732 expressionS e1, e2, e3;
3733 unsigned int qp;
3734
3735 sep = parse_operand (&e1);
3736 if (sep != ',')
3737 {
3738 as_bad ("No second and third operand to .spillreg.p");
3739 return;
3740 }
3741
3742 sep = parse_operand (&e2);
3743 if (sep != ',')
3744 {
3745 as_bad ("No third operand to .spillreg.p");
3746 return;
3747 }
3748
3749 parse_operand (&e3);
3750
3751 qp = e1.X_add_number - REG_P;
3752
3753 if (e1.X_op != O_register || qp > 63)
3754 {
3755 as_bad ("First operand to .spillreg.p must be a predicate");
3756 return;
3757 }
3758
3759 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3760 {
3761 as_bad ("Second operand to .spillreg.p must be a preserved register");
3762 return;
3763 }
3764
3765 if (!convert_expr_to_xy_reg (&e3, &xy, &treg))
3766 {
3767 as_bad ("Third operand to .spillreg.p must be a register");
3768 return;
3769 }
3770
3771 add_unwind_entry (output_spill_reg_p (ab, reg, treg, xy, qp));
3772 }
3773
3774 static void
3775 dot_spillmem_p (psprel)
3776 int psprel;
3777 {
3778 expressionS e1, e2, e3;
3779 int sep, ab, reg;
3780 unsigned int qp;
3781
3782 sep = parse_operand (&e1);
3783 if (sep != ',')
3784 {
3785 as_bad ("Second operand missing");
3786 return;
3787 }
3788
3789 parse_operand (&e2);
3790 if (sep != ',')
3791 {
3792 as_bad ("Second operand missing");
3793 return;
3794 }
3795
3796 parse_operand (&e3);
3797
3798 qp = e1.X_add_number - REG_P;
3799 if (e1.X_op != O_register || qp > 63)
3800 {
3801 as_bad ("First operand to .spill%s_p must be a predicate",
3802 psprel ? "psp" : "sp");
3803 return;
3804 }
3805
3806 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3807 {
3808 as_bad ("Second operand to .spill%s_p must be a preserved register",
3809 psprel ? "psp" : "sp");
3810 return;
3811 }
3812
3813 if (e3.X_op != O_constant)
3814 {
3815 as_bad ("Third operand to .spill%s_p must be a constant",
3816 psprel ? "psp" : "sp");
3817 return;
3818 }
3819
3820 if (psprel)
3821 add_unwind_entry (output_spill_psprel_p (ab, reg, e3.X_add_number, qp));
3822 else
3823 add_unwind_entry (output_spill_sprel_p (ab, reg, e3.X_add_number, qp));
3824 }
3825
3826 static unsigned int
3827 get_saved_prologue_count (lbl)
3828 unsigned long lbl;
3829 {
3830 label_prologue_count *lpc = unwind.saved_prologue_counts;
3831
3832 while (lpc != NULL && lpc->label_number != lbl)
3833 lpc = lpc->next;
3834
3835 if (lpc != NULL)
3836 return lpc->prologue_count;
3837
3838 as_bad ("Missing .label_state %ld", lbl);
3839 return 1;
3840 }
3841
3842 static void
3843 save_prologue_count (lbl, count)
3844 unsigned long lbl;
3845 unsigned int count;
3846 {
3847 label_prologue_count *lpc = unwind.saved_prologue_counts;
3848
3849 while (lpc != NULL && lpc->label_number != lbl)
3850 lpc = lpc->next;
3851
3852 if (lpc != NULL)
3853 lpc->prologue_count = count;
3854 else
3855 {
3856 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
3857
3858 new_lpc->next = unwind.saved_prologue_counts;
3859 new_lpc->label_number = lbl;
3860 new_lpc->prologue_count = count;
3861 unwind.saved_prologue_counts = new_lpc;
3862 }
3863 }
3864
3865 static void
3866 free_saved_prologue_counts ()
3867 {
3868 label_prologue_count *lpc = unwind.saved_prologue_counts;
3869 label_prologue_count *next;
3870
3871 while (lpc != NULL)
3872 {
3873 next = lpc->next;
3874 free (lpc);
3875 lpc = next;
3876 }
3877
3878 unwind.saved_prologue_counts = NULL;
3879 }
3880
3881 static void
3882 dot_label_state (dummy)
3883 int dummy ATTRIBUTE_UNUSED;
3884 {
3885 expressionS e;
3886
3887 parse_operand (&e);
3888 if (e.X_op != O_constant)
3889 {
3890 as_bad ("Operand to .label_state must be a constant");
3891 return;
3892 }
3893 add_unwind_entry (output_label_state (e.X_add_number));
3894 save_prologue_count (e.X_add_number, unwind.prologue_count);
3895 }
3896
3897 static void
3898 dot_copy_state (dummy)
3899 int dummy ATTRIBUTE_UNUSED;
3900 {
3901 expressionS e;
3902
3903 parse_operand (&e);
3904 if (e.X_op != O_constant)
3905 {
3906 as_bad ("Operand to .copy_state must be a constant");
3907 return;
3908 }
3909 add_unwind_entry (output_copy_state (e.X_add_number));
3910 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
3911 }
3912
3913 static void
3914 dot_unwabi (dummy)
3915 int dummy ATTRIBUTE_UNUSED;
3916 {
3917 expressionS e1, e2;
3918 unsigned char sep;
3919
3920 sep = parse_operand (&e1);
3921 if (sep != ',')
3922 {
3923 as_bad ("Second operand to .unwabi missing");
3924 return;
3925 }
3926 sep = parse_operand (&e2);
3927 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3928 demand_empty_rest_of_line ();
3929
3930 if (e1.X_op != O_constant)
3931 {
3932 as_bad ("First operand to .unwabi must be a constant");
3933 return;
3934 }
3935
3936 if (e2.X_op != O_constant)
3937 {
3938 as_bad ("Second operand to .unwabi must be a constant");
3939 return;
3940 }
3941
3942 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number));
3943 }
3944
3945 static void
3946 dot_personality (dummy)
3947 int dummy ATTRIBUTE_UNUSED;
3948 {
3949 char *name, *p, c;
3950 SKIP_WHITESPACE ();
3951 name = input_line_pointer;
3952 c = get_symbol_end ();
3953 p = input_line_pointer;
3954 unwind.personality_routine = symbol_find_or_make (name);
3955 unwind.force_unwind_entry = 1;
3956 *p = c;
3957 SKIP_WHITESPACE ();
3958 demand_empty_rest_of_line ();
3959 }
3960
3961 static void
3962 dot_proc (dummy)
3963 int dummy ATTRIBUTE_UNUSED;
3964 {
3965 char *name, *p, c;
3966 symbolS *sym;
3967
3968 unwind.proc_start = expr_build_dot ();
3969 /* Parse names of main and alternate entry points and mark them as
3970 function symbols: */
3971 while (1)
3972 {
3973 SKIP_WHITESPACE ();
3974 name = input_line_pointer;
3975 c = get_symbol_end ();
3976 p = input_line_pointer;
3977 sym = symbol_find_or_make (name);
3978 if (unwind.proc_start == 0)
3979 {
3980 unwind.proc_start = sym;
3981 }
3982 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
3983 *p = c;
3984 SKIP_WHITESPACE ();
3985 if (*input_line_pointer != ',')
3986 break;
3987 ++input_line_pointer;
3988 }
3989 demand_empty_rest_of_line ();
3990 ia64_do_align (16);
3991
3992 unwind.prologue_count = 0;
3993 unwind.list = unwind.tail = unwind.current_entry = NULL;
3994 unwind.personality_routine = 0;
3995 }
3996
3997 static void
3998 dot_body (dummy)
3999 int dummy ATTRIBUTE_UNUSED;
4000 {
4001 unwind.prologue = 0;
4002 unwind.prologue_mask = 0;
4003
4004 add_unwind_entry (output_body ());
4005 demand_empty_rest_of_line ();
4006 }
4007
4008 static void
4009 dot_prologue (dummy)
4010 int dummy ATTRIBUTE_UNUSED;
4011 {
4012 unsigned char sep;
4013 int mask = 0, grsave = 0;
4014
4015 if (!is_it_end_of_statement ())
4016 {
4017 expressionS e1, e2;
4018 sep = parse_operand (&e1);
4019 if (sep != ',')
4020 as_bad ("No second operand to .prologue");
4021 sep = parse_operand (&e2);
4022 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
4023 demand_empty_rest_of_line ();
4024
4025 if (e1.X_op == O_constant)
4026 {
4027 mask = e1.X_add_number;
4028
4029 if (e2.X_op == O_constant)
4030 grsave = e2.X_add_number;
4031 else if (e2.X_op == O_register
4032 && (grsave = e2.X_add_number - REG_GR) < 128)
4033 ;
4034 else
4035 as_bad ("Second operand not a constant or general register");
4036
4037 add_unwind_entry (output_prologue_gr (mask, grsave));
4038 }
4039 else
4040 as_bad ("First operand not a constant");
4041 }
4042 else
4043 add_unwind_entry (output_prologue ());
4044
4045 unwind.prologue = 1;
4046 unwind.prologue_mask = mask;
4047 ++unwind.prologue_count;
4048 }
4049
4050 static void
4051 dot_endp (dummy)
4052 int dummy ATTRIBUTE_UNUSED;
4053 {
4054 expressionS e;
4055 unsigned char *ptr;
4056 int bytes_per_address;
4057 long where;
4058 segT saved_seg;
4059 subsegT saved_subseg;
4060 const char *sec_name, *text_name;
4061 char *name, *p, c;
4062 symbolS *sym;
4063
4064 if (unwind.saved_text_seg)
4065 {
4066 saved_seg = unwind.saved_text_seg;
4067 saved_subseg = unwind.saved_text_subseg;
4068 unwind.saved_text_seg = NULL;
4069 }
4070 else
4071 {
4072 saved_seg = now_seg;
4073 saved_subseg = now_subseg;
4074 }
4075
4076 /*
4077 Use a slightly ugly scheme to derive the unwind section names from
4078 the text section name:
4079
4080 text sect. unwind table sect.
4081 name: name: comments:
4082 ---------- ----------------- --------------------------------
4083 .text .IA_64.unwind
4084 .text.foo .IA_64.unwind.text.foo
4085 .foo .IA_64.unwind.foo
4086 .gnu.linkonce.t.foo
4087 .gnu.linkonce.ia64unw.foo
4088 _info .IA_64.unwind_info gas issues error message (ditto)
4089 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
4090
4091 This mapping is done so that:
4092
4093 (a) An object file with unwind info only in .text will use
4094 unwind section names .IA_64.unwind and .IA_64.unwind_info.
4095 This follows the letter of the ABI and also ensures backwards
4096 compatibility with older toolchains.
4097
4098 (b) An object file with unwind info in multiple text sections
4099 will use separate unwind sections for each text section.
4100 This allows us to properly set the "sh_info" and "sh_link"
4101 fields in SHT_IA_64_UNWIND as required by the ABI and also
4102 lets GNU ld support programs with multiple segments
4103 containing unwind info (as might be the case for certain
4104 embedded applications).
4105
4106 (c) An error is issued if there would be a name clash.
4107 */
4108 text_name = segment_name (saved_seg);
4109 if (strncmp (text_name, "_info", 5) == 0)
4110 {
4111 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
4112 text_name);
4113 ignore_rest_of_line ();
4114 return;
4115 }
4116 if (strcmp (text_name, ".text") == 0)
4117 text_name = "";
4118
4119 insn_group_break (1, 0, 0);
4120
4121 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4122 if (!unwind.info)
4123 generate_unwind_image (text_name);
4124
4125 if (unwind.info || unwind.force_unwind_entry)
4126 {
4127 subseg_set (md.last_text_seg, 0);
4128 unwind.proc_end = expr_build_dot ();
4129
4130 make_unw_section_name (SPECIAL_SECTION_UNWIND, text_name, sec_name);
4131 set_section ((char *) sec_name);
4132 bfd_set_section_flags (stdoutput, now_seg,
4133 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
4134
4135 /* Make sure that section has 4 byte alignment for ILP32 and
4136 8 byte alignment for LP64. */
4137 record_alignment (now_seg, md.pointer_size_shift);
4138
4139 /* Need space for 3 pointers for procedure start, procedure end,
4140 and unwind info. */
4141 ptr = frag_more (3 * md.pointer_size);
4142 where = frag_now_fix () - (3 * md.pointer_size);
4143 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4144
4145 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4146 e.X_op = O_pseudo_fixup;
4147 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4148 e.X_add_number = 0;
4149 e.X_add_symbol = unwind.proc_start;
4150 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4151
4152 e.X_op = O_pseudo_fixup;
4153 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4154 e.X_add_number = 0;
4155 e.X_add_symbol = unwind.proc_end;
4156 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4157 bytes_per_address, &e);
4158
4159 if (unwind.info)
4160 {
4161 e.X_op = O_pseudo_fixup;
4162 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4163 e.X_add_number = 0;
4164 e.X_add_symbol = unwind.info;
4165 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4166 bytes_per_address, &e);
4167 }
4168 else
4169 md_number_to_chars (ptr + (bytes_per_address * 2), 0,
4170 bytes_per_address);
4171
4172 }
4173 subseg_set (saved_seg, saved_subseg);
4174
4175 /* Parse names of main and alternate entry points and set symbol sizes. */
4176 while (1)
4177 {
4178 SKIP_WHITESPACE ();
4179 name = input_line_pointer;
4180 c = get_symbol_end ();
4181 p = input_line_pointer;
4182 sym = symbol_find (name);
4183 if (sym && unwind.proc_start
4184 && (symbol_get_bfdsym (sym)->flags & BSF_FUNCTION)
4185 && S_GET_SIZE (sym) == 0 && symbol_get_obj (sym)->size == NULL)
4186 {
4187 fragS *fr = symbol_get_frag (unwind.proc_start);
4188 fragS *frag = symbol_get_frag (sym);
4189
4190 /* Check whether the function label is at or beyond last
4191 .proc directive. */
4192 while (fr && fr != frag)
4193 fr = fr->fr_next;
4194 if (fr)
4195 {
4196 if (frag == frag_now && SEG_NORMAL (now_seg))
4197 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4198 else
4199 {
4200 symbol_get_obj (sym)->size =
4201 (expressionS *) xmalloc (sizeof (expressionS));
4202 symbol_get_obj (sym)->size->X_op = O_subtract;
4203 symbol_get_obj (sym)->size->X_add_symbol
4204 = symbol_new (FAKE_LABEL_NAME, now_seg,
4205 frag_now_fix (), frag_now);
4206 symbol_get_obj (sym)->size->X_op_symbol = sym;
4207 symbol_get_obj (sym)->size->X_add_number = 0;
4208 }
4209 }
4210 }
4211 *p = c;
4212 SKIP_WHITESPACE ();
4213 if (*input_line_pointer != ',')
4214 break;
4215 ++input_line_pointer;
4216 }
4217 demand_empty_rest_of_line ();
4218 unwind.proc_start = unwind.proc_end = unwind.info = 0;
4219 }
4220
4221 static void
4222 dot_template (template)
4223 int template;
4224 {
4225 CURR_SLOT.user_template = template;
4226 }
4227
4228 static void
4229 dot_regstk (dummy)
4230 int dummy ATTRIBUTE_UNUSED;
4231 {
4232 int ins, locs, outs, rots;
4233
4234 if (is_it_end_of_statement ())
4235 ins = locs = outs = rots = 0;
4236 else
4237 {
4238 ins = get_absolute_expression ();
4239 if (*input_line_pointer++ != ',')
4240 goto err;
4241 locs = get_absolute_expression ();
4242 if (*input_line_pointer++ != ',')
4243 goto err;
4244 outs = get_absolute_expression ();
4245 if (*input_line_pointer++ != ',')
4246 goto err;
4247 rots = get_absolute_expression ();
4248 }
4249 set_regstack (ins, locs, outs, rots);
4250 return;
4251
4252 err:
4253 as_bad ("Comma expected");
4254 ignore_rest_of_line ();
4255 }
4256
4257 static void
4258 dot_rot (type)
4259 int type;
4260 {
4261 unsigned num_regs, num_alloced = 0;
4262 struct dynreg **drpp, *dr;
4263 int ch, base_reg = 0;
4264 char *name, *start;
4265 size_t len;
4266
4267 switch (type)
4268 {
4269 case DYNREG_GR: base_reg = REG_GR + 32; break;
4270 case DYNREG_FR: base_reg = REG_FR + 32; break;
4271 case DYNREG_PR: base_reg = REG_P + 16; break;
4272 default: break;
4273 }
4274
4275 /* First, remove existing names from hash table. */
4276 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4277 {
4278 hash_delete (md.dynreg_hash, dr->name);
4279 dr->num_regs = 0;
4280 }
4281
4282 drpp = &md.dynreg[type];
4283 while (1)
4284 {
4285 start = input_line_pointer;
4286 ch = get_symbol_end ();
4287 *input_line_pointer = ch;
4288 len = (input_line_pointer - start);
4289
4290 SKIP_WHITESPACE ();
4291 if (*input_line_pointer != '[')
4292 {
4293 as_bad ("Expected '['");
4294 goto err;
4295 }
4296 ++input_line_pointer; /* skip '[' */
4297
4298 num_regs = get_absolute_expression ();
4299
4300 if (*input_line_pointer++ != ']')
4301 {
4302 as_bad ("Expected ']'");
4303 goto err;
4304 }
4305 SKIP_WHITESPACE ();
4306
4307 num_alloced += num_regs;
4308 switch (type)
4309 {
4310 case DYNREG_GR:
4311 if (num_alloced > md.rot.num_regs)
4312 {
4313 as_bad ("Used more than the declared %d rotating registers",
4314 md.rot.num_regs);
4315 goto err;
4316 }
4317 break;
4318 case DYNREG_FR:
4319 if (num_alloced > 96)
4320 {
4321 as_bad ("Used more than the available 96 rotating registers");
4322 goto err;
4323 }
4324 break;
4325 case DYNREG_PR:
4326 if (num_alloced > 48)
4327 {
4328 as_bad ("Used more than the available 48 rotating registers");
4329 goto err;
4330 }
4331 break;
4332
4333 default:
4334 break;
4335 }
4336
4337 name = obstack_alloc (&notes, len + 1);
4338 memcpy (name, start, len);
4339 name[len] = '\0';
4340
4341 if (!*drpp)
4342 {
4343 *drpp = obstack_alloc (&notes, sizeof (*dr));
4344 memset (*drpp, 0, sizeof (*dr));
4345 }
4346
4347 dr = *drpp;
4348 dr->name = name;
4349 dr->num_regs = num_regs;
4350 dr->base = base_reg;
4351 drpp = &dr->next;
4352 base_reg += num_regs;
4353
4354 if (hash_insert (md.dynreg_hash, name, dr))
4355 {
4356 as_bad ("Attempt to redefine register set `%s'", name);
4357 goto err;
4358 }
4359
4360 if (*input_line_pointer != ',')
4361 break;
4362 ++input_line_pointer; /* skip comma */
4363 SKIP_WHITESPACE ();
4364 }
4365 demand_empty_rest_of_line ();
4366 return;
4367
4368 err:
4369 ignore_rest_of_line ();
4370 }
4371
4372 static void
4373 dot_byteorder (byteorder)
4374 int byteorder;
4375 {
4376 segment_info_type *seginfo = seg_info (now_seg);
4377
4378 if (byteorder == -1)
4379 {
4380 if (seginfo->tc_segment_info_data.endian == 0)
4381 seginfo->tc_segment_info_data.endian
4382 = TARGET_BYTES_BIG_ENDIAN ? 1 : 2;
4383 byteorder = seginfo->tc_segment_info_data.endian == 1;
4384 }
4385 else
4386 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4387
4388 if (target_big_endian != byteorder)
4389 {
4390 target_big_endian = byteorder;
4391 if (target_big_endian)
4392 {
4393 ia64_number_to_chars = number_to_chars_bigendian;
4394 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4395 }
4396 else
4397 {
4398 ia64_number_to_chars = number_to_chars_littleendian;
4399 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4400 }
4401 }
4402 }
4403
4404 static void
4405 dot_psr (dummy)
4406 int dummy ATTRIBUTE_UNUSED;
4407 {
4408 char *option;
4409 int ch;
4410
4411 while (1)
4412 {
4413 option = input_line_pointer;
4414 ch = get_symbol_end ();
4415 if (strcmp (option, "lsb") == 0)
4416 md.flags &= ~EF_IA_64_BE;
4417 else if (strcmp (option, "msb") == 0)
4418 md.flags |= EF_IA_64_BE;
4419 else if (strcmp (option, "abi32") == 0)
4420 md.flags &= ~EF_IA_64_ABI64;
4421 else if (strcmp (option, "abi64") == 0)
4422 md.flags |= EF_IA_64_ABI64;
4423 else
4424 as_bad ("Unknown psr option `%s'", option);
4425 *input_line_pointer = ch;
4426
4427 SKIP_WHITESPACE ();
4428 if (*input_line_pointer != ',')
4429 break;
4430
4431 ++input_line_pointer;
4432 SKIP_WHITESPACE ();
4433 }
4434 demand_empty_rest_of_line ();
4435 }
4436
4437 static void
4438 dot_ln (dummy)
4439 int dummy ATTRIBUTE_UNUSED;
4440 {
4441 new_logical_line (0, get_absolute_expression ());
4442 demand_empty_rest_of_line ();
4443 }
4444
4445 static char *
4446 parse_section_name ()
4447 {
4448 char *name;
4449 int len;
4450
4451 SKIP_WHITESPACE ();
4452 if (*input_line_pointer != '"')
4453 {
4454 as_bad ("Missing section name");
4455 ignore_rest_of_line ();
4456 return 0;
4457 }
4458 name = demand_copy_C_string (&len);
4459 if (!name)
4460 {
4461 ignore_rest_of_line ();
4462 return 0;
4463 }
4464 SKIP_WHITESPACE ();
4465 if (*input_line_pointer != ',')
4466 {
4467 as_bad ("Comma expected after section name");
4468 ignore_rest_of_line ();
4469 return 0;
4470 }
4471 ++input_line_pointer; /* skip comma */
4472 return name;
4473 }
4474
4475 static void
4476 dot_xdata (size)
4477 int size;
4478 {
4479 char *name = parse_section_name ();
4480 if (!name)
4481 return;
4482
4483 md.keep_pending_output = 1;
4484 set_section (name);
4485 cons (size);
4486 obj_elf_previous (0);
4487 md.keep_pending_output = 0;
4488 }
4489
4490 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4491
4492 static void
4493 stmt_float_cons (kind)
4494 int kind;
4495 {
4496 size_t alignment;
4497
4498 switch (kind)
4499 {
4500 case 'd':
4501 alignment = 8;
4502 break;
4503
4504 case 'x':
4505 case 'X':
4506 alignment = 16;
4507 break;
4508
4509 case 'f':
4510 default:
4511 alignment = 4;
4512 break;
4513 }
4514 ia64_do_align (alignment);
4515 float_cons (kind);
4516 }
4517
4518 static void
4519 stmt_cons_ua (size)
4520 int size;
4521 {
4522 int saved_auto_align = md.auto_align;
4523
4524 md.auto_align = 0;
4525 cons (size);
4526 md.auto_align = saved_auto_align;
4527 }
4528
4529 static void
4530 dot_xfloat_cons (kind)
4531 int kind;
4532 {
4533 char *name = parse_section_name ();
4534 if (!name)
4535 return;
4536
4537 md.keep_pending_output = 1;
4538 set_section (name);
4539 stmt_float_cons (kind);
4540 obj_elf_previous (0);
4541 md.keep_pending_output = 0;
4542 }
4543
4544 static void
4545 dot_xstringer (zero)
4546 int zero;
4547 {
4548 char *name = parse_section_name ();
4549 if (!name)
4550 return;
4551
4552 md.keep_pending_output = 1;
4553 set_section (name);
4554 stringer (zero);
4555 obj_elf_previous (0);
4556 md.keep_pending_output = 0;
4557 }
4558
4559 static void
4560 dot_xdata_ua (size)
4561 int size;
4562 {
4563 int saved_auto_align = md.auto_align;
4564 char *name = parse_section_name ();
4565 if (!name)
4566 return;
4567
4568 md.keep_pending_output = 1;
4569 set_section (name);
4570 md.auto_align = 0;
4571 cons (size);
4572 md.auto_align = saved_auto_align;
4573 obj_elf_previous (0);
4574 md.keep_pending_output = 0;
4575 }
4576
4577 static void
4578 dot_xfloat_cons_ua (kind)
4579 int kind;
4580 {
4581 int saved_auto_align = md.auto_align;
4582 char *name = parse_section_name ();
4583 if (!name)
4584 return;
4585
4586 md.keep_pending_output = 1;
4587 set_section (name);
4588 md.auto_align = 0;
4589 stmt_float_cons (kind);
4590 md.auto_align = saved_auto_align;
4591 obj_elf_previous (0);
4592 md.keep_pending_output = 0;
4593 }
4594
4595 /* .reg.val <regname>,value */
4596
4597 static void
4598 dot_reg_val (dummy)
4599 int dummy ATTRIBUTE_UNUSED;
4600 {
4601 expressionS reg;
4602
4603 expression (&reg);
4604 if (reg.X_op != O_register)
4605 {
4606 as_bad (_("Register name expected"));
4607 ignore_rest_of_line ();
4608 }
4609 else if (*input_line_pointer++ != ',')
4610 {
4611 as_bad (_("Comma expected"));
4612 ignore_rest_of_line ();
4613 }
4614 else
4615 {
4616 valueT value = get_absolute_expression ();
4617 int regno = reg.X_add_number;
4618 if (regno < REG_GR || regno > REG_GR + 128)
4619 as_warn (_("Register value annotation ignored"));
4620 else
4621 {
4622 gr_values[regno - REG_GR].known = 1;
4623 gr_values[regno - REG_GR].value = value;
4624 gr_values[regno - REG_GR].path = md.path;
4625 }
4626 }
4627 demand_empty_rest_of_line ();
4628 }
4629
4630 /* select dv checking mode
4631 .auto
4632 .explicit
4633 .default
4634
4635 A stop is inserted when changing modes
4636 */
4637
4638 static void
4639 dot_dv_mode (type)
4640 int type;
4641 {
4642 if (md.manual_bundling)
4643 as_warn (_("Directive invalid within a bundle"));
4644
4645 if (type == 'E' || type == 'A')
4646 md.mode_explicitly_set = 0;
4647 else
4648 md.mode_explicitly_set = 1;
4649
4650 md.detect_dv = 1;
4651 switch (type)
4652 {
4653 case 'A':
4654 case 'a':
4655 if (md.explicit_mode)
4656 insn_group_break (1, 0, 0);
4657 md.explicit_mode = 0;
4658 break;
4659 case 'E':
4660 case 'e':
4661 if (!md.explicit_mode)
4662 insn_group_break (1, 0, 0);
4663 md.explicit_mode = 1;
4664 break;
4665 default:
4666 case 'd':
4667 if (md.explicit_mode != md.default_explicit_mode)
4668 insn_group_break (1, 0, 0);
4669 md.explicit_mode = md.default_explicit_mode;
4670 md.mode_explicitly_set = 0;
4671 break;
4672 }
4673 }
4674
4675 static void
4676 print_prmask (mask)
4677 valueT mask;
4678 {
4679 int regno;
4680 char *comma = "";
4681 for (regno = 0; regno < 64; regno++)
4682 {
4683 if (mask & ((valueT) 1 << regno))
4684 {
4685 fprintf (stderr, "%s p%d", comma, regno);
4686 comma = ",";
4687 }
4688 }
4689 }
4690
4691 /*
4692 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear")
4693 .pred.rel.imply p1, p2 (also .pred.rel "imply")
4694 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex")
4695 .pred.safe_across_calls p1 [, p2 [,...]]
4696 */
4697
4698 static void
4699 dot_pred_rel (type)
4700 int type;
4701 {
4702 valueT mask = 0;
4703 int count = 0;
4704 int p1 = -1, p2 = -1;
4705
4706 if (type == 0)
4707 {
4708 if (*input_line_pointer != '"')
4709 {
4710 as_bad (_("Missing predicate relation type"));
4711 ignore_rest_of_line ();
4712 return;
4713 }
4714 else
4715 {
4716 int len;
4717 char *form = demand_copy_C_string (&len);
4718 if (strcmp (form, "mutex") == 0)
4719 type = 'm';
4720 else if (strcmp (form, "clear") == 0)
4721 type = 'c';
4722 else if (strcmp (form, "imply") == 0)
4723 type = 'i';
4724 else
4725 {
4726 as_bad (_("Unrecognized predicate relation type"));
4727 ignore_rest_of_line ();
4728 return;
4729 }
4730 }
4731 if (*input_line_pointer == ',')
4732 ++input_line_pointer;
4733 SKIP_WHITESPACE ();
4734 }
4735
4736 SKIP_WHITESPACE ();
4737 while (1)
4738 {
4739 valueT bit = 1;
4740 int regno;
4741
4742 if (TOUPPER (*input_line_pointer) != 'P'
4743 || (regno = atoi (++input_line_pointer)) < 0
4744 || regno > 63)
4745 {
4746 as_bad (_("Predicate register expected"));
4747 ignore_rest_of_line ();
4748 return;
4749 }
4750 while (ISDIGIT (*input_line_pointer))
4751 ++input_line_pointer;
4752 if (p1 == -1)
4753 p1 = regno;
4754 else if (p2 == -1)
4755 p2 = regno;
4756 bit <<= regno;
4757 if (mask & bit)
4758 as_warn (_("Duplicate predicate register ignored"));
4759 mask |= bit;
4760 count++;
4761 /* See if it's a range. */
4762 if (*input_line_pointer == '-')
4763 {
4764 valueT stop = 1;
4765 ++input_line_pointer;
4766
4767 if (TOUPPER (*input_line_pointer) != 'P'
4768 || (regno = atoi (++input_line_pointer)) < 0
4769 || regno > 63)
4770 {
4771 as_bad (_("Predicate register expected"));
4772 ignore_rest_of_line ();
4773 return;
4774 }
4775 while (ISDIGIT (*input_line_pointer))
4776 ++input_line_pointer;
4777 stop <<= regno;
4778 if (bit >= stop)
4779 {
4780 as_bad (_("Bad register range"));
4781 ignore_rest_of_line ();
4782 return;
4783 }
4784 while (bit < stop)
4785 {
4786 bit <<= 1;
4787 mask |= bit;
4788 count++;
4789 }
4790 SKIP_WHITESPACE ();
4791 }
4792 if (*input_line_pointer != ',')
4793 break;
4794 ++input_line_pointer;
4795 SKIP_WHITESPACE ();
4796 }
4797
4798 switch (type)
4799 {
4800 case 'c':
4801 if (count == 0)
4802 mask = ~(valueT) 0;
4803 clear_qp_mutex (mask);
4804 clear_qp_implies (mask, (valueT) 0);
4805 break;
4806 case 'i':
4807 if (count != 2 || p1 == -1 || p2 == -1)
4808 as_bad (_("Predicate source and target required"));
4809 else if (p1 == 0 || p2 == 0)
4810 as_bad (_("Use of p0 is not valid in this context"));
4811 else
4812 add_qp_imply (p1, p2);
4813 break;
4814 case 'm':
4815 if (count < 2)
4816 {
4817 as_bad (_("At least two PR arguments expected"));
4818 break;
4819 }
4820 else if (mask & 1)
4821 {
4822 as_bad (_("Use of p0 is not valid in this context"));
4823 break;
4824 }
4825 add_qp_mutex (mask);
4826 break;
4827 case 's':
4828 /* note that we don't override any existing relations */
4829 if (count == 0)
4830 {
4831 as_bad (_("At least one PR argument expected"));
4832 break;
4833 }
4834 if (md.debug_dv)
4835 {
4836 fprintf (stderr, "Safe across calls: ");
4837 print_prmask (mask);
4838 fprintf (stderr, "\n");
4839 }
4840 qp_safe_across_calls = mask;
4841 break;
4842 }
4843 demand_empty_rest_of_line ();
4844 }
4845
4846 /* .entry label [, label [, ...]]
4847 Hint to DV code that the given labels are to be considered entry points.
4848 Otherwise, only global labels are considered entry points. */
4849
4850 static void
4851 dot_entry (dummy)
4852 int dummy ATTRIBUTE_UNUSED;
4853 {
4854 const char *err;
4855 char *name;
4856 int c;
4857 symbolS *symbolP;
4858
4859 do
4860 {
4861 name = input_line_pointer;
4862 c = get_symbol_end ();
4863 symbolP = symbol_find_or_make (name);
4864
4865 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
4866 if (err)
4867 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
4868 name, err);
4869
4870 *input_line_pointer = c;
4871 SKIP_WHITESPACE ();
4872 c = *input_line_pointer;
4873 if (c == ',')
4874 {
4875 input_line_pointer++;
4876 SKIP_WHITESPACE ();
4877 if (*input_line_pointer == '\n')
4878 c = '\n';
4879 }
4880 }
4881 while (c == ',');
4882
4883 demand_empty_rest_of_line ();
4884 }
4885
4886 /* .mem.offset offset, base
4887 "base" is used to distinguish between offsets from a different base. */
4888
4889 static void
4890 dot_mem_offset (dummy)
4891 int dummy ATTRIBUTE_UNUSED;
4892 {
4893 md.mem_offset.hint = 1;
4894 md.mem_offset.offset = get_absolute_expression ();
4895 if (*input_line_pointer != ',')
4896 {
4897 as_bad (_("Comma expected"));
4898 ignore_rest_of_line ();
4899 return;
4900 }
4901 ++input_line_pointer;
4902 md.mem_offset.base = get_absolute_expression ();
4903 demand_empty_rest_of_line ();
4904 }
4905
4906 /* ia64-specific pseudo-ops: */
4907 const pseudo_typeS md_pseudo_table[] =
4908 {
4909 { "radix", dot_radix, 0 },
4910 { "lcomm", s_lcomm_bytes, 1 },
4911 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
4912 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
4913 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
4914 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
4915 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
4916 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
4917 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
4918 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
4919 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
4920 { "proc", dot_proc, 0 },
4921 { "body", dot_body, 0 },
4922 { "prologue", dot_prologue, 0 },
4923 { "endp", dot_endp, 0 },
4924
4925 { "fframe", dot_fframe, 0 },
4926 { "vframe", dot_vframe, 0 },
4927 { "vframesp", dot_vframesp, 0 },
4928 { "vframepsp", dot_vframepsp, 0 },
4929 { "save", dot_save, 0 },
4930 { "restore", dot_restore, 0 },
4931 { "restorereg", dot_restorereg, 0 },
4932 { "restorereg.p", dot_restorereg_p, 0 },
4933 { "handlerdata", dot_handlerdata, 0 },
4934 { "unwentry", dot_unwentry, 0 },
4935 { "altrp", dot_altrp, 0 },
4936 { "savesp", dot_savemem, 0 },
4937 { "savepsp", dot_savemem, 1 },
4938 { "save.g", dot_saveg, 0 },
4939 { "save.f", dot_savef, 0 },
4940 { "save.b", dot_saveb, 0 },
4941 { "save.gf", dot_savegf, 0 },
4942 { "spill", dot_spill, 0 },
4943 { "spillreg", dot_spillreg, 0 },
4944 { "spillsp", dot_spillmem, 0 },
4945 { "spillpsp", dot_spillmem, 1 },
4946 { "spillreg.p", dot_spillreg_p, 0 },
4947 { "spillsp.p", dot_spillmem_p, 0 },
4948 { "spillpsp.p", dot_spillmem_p, 1 },
4949 { "label_state", dot_label_state, 0 },
4950 { "copy_state", dot_copy_state, 0 },
4951 { "unwabi", dot_unwabi, 0 },
4952 { "personality", dot_personality, 0 },
4953 #if 0
4954 { "estate", dot_estate, 0 },
4955 #endif
4956 { "mii", dot_template, 0x0 },
4957 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
4958 { "mlx", dot_template, 0x2 },
4959 { "mmi", dot_template, 0x4 },
4960 { "mfi", dot_template, 0x6 },
4961 { "mmf", dot_template, 0x7 },
4962 { "mib", dot_template, 0x8 },
4963 { "mbb", dot_template, 0x9 },
4964 { "bbb", dot_template, 0xb },
4965 { "mmb", dot_template, 0xc },
4966 { "mfb", dot_template, 0xe },
4967 #if 0
4968 { "lb", dot_scope, 0 },
4969 { "le", dot_scope, 1 },
4970 #endif
4971 { "align", dot_align, 0 },
4972 { "regstk", dot_regstk, 0 },
4973 { "rotr", dot_rot, DYNREG_GR },
4974 { "rotf", dot_rot, DYNREG_FR },
4975 { "rotp", dot_rot, DYNREG_PR },
4976 { "lsb", dot_byteorder, 0 },
4977 { "msb", dot_byteorder, 1 },
4978 { "psr", dot_psr, 0 },
4979 { "alias", dot_alias, 0 },
4980 { "secalias", dot_alias, 1 },
4981 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
4982
4983 { "xdata1", dot_xdata, 1 },
4984 { "xdata2", dot_xdata, 2 },
4985 { "xdata4", dot_xdata, 4 },
4986 { "xdata8", dot_xdata, 8 },
4987 { "xreal4", dot_xfloat_cons, 'f' },
4988 { "xreal8", dot_xfloat_cons, 'd' },
4989 { "xreal10", dot_xfloat_cons, 'x' },
4990 { "xreal16", dot_xfloat_cons, 'X' },
4991 { "xstring", dot_xstringer, 0 },
4992 { "xstringz", dot_xstringer, 1 },
4993
4994 /* unaligned versions: */
4995 { "xdata2.ua", dot_xdata_ua, 2 },
4996 { "xdata4.ua", dot_xdata_ua, 4 },
4997 { "xdata8.ua", dot_xdata_ua, 8 },
4998 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
4999 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5000 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5001 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5002
5003 /* annotations/DV checking support */
5004 { "entry", dot_entry, 0 },
5005 { "mem.offset", dot_mem_offset, 0 },
5006 { "pred.rel", dot_pred_rel, 0 },
5007 { "pred.rel.clear", dot_pred_rel, 'c' },
5008 { "pred.rel.imply", dot_pred_rel, 'i' },
5009 { "pred.rel.mutex", dot_pred_rel, 'm' },
5010 { "pred.safe_across_calls", dot_pred_rel, 's' },
5011 { "reg.val", dot_reg_val, 0 },
5012 { "auto", dot_dv_mode, 'a' },
5013 { "explicit", dot_dv_mode, 'e' },
5014 { "default", dot_dv_mode, 'd' },
5015
5016 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5017 IA-64 aligns data allocation pseudo-ops by default, so we have to
5018 tell it that these ones are supposed to be unaligned. Long term,
5019 should rewrite so that only IA-64 specific data allocation pseudo-ops
5020 are aligned by default. */
5021 {"2byte", stmt_cons_ua, 2},
5022 {"4byte", stmt_cons_ua, 4},
5023 {"8byte", stmt_cons_ua, 8},
5024
5025 { NULL, 0, 0 }
5026 };
5027
5028 static const struct pseudo_opcode
5029 {
5030 const char *name;
5031 void (*handler) (int);
5032 int arg;
5033 }
5034 pseudo_opcode[] =
5035 {
5036 /* these are more like pseudo-ops, but don't start with a dot */
5037 { "data1", cons, 1 },
5038 { "data2", cons, 2 },
5039 { "data4", cons, 4 },
5040 { "data8", cons, 8 },
5041 { "data16", cons, 16 },
5042 { "real4", stmt_float_cons, 'f' },
5043 { "real8", stmt_float_cons, 'd' },
5044 { "real10", stmt_float_cons, 'x' },
5045 { "real16", stmt_float_cons, 'X' },
5046 { "string", stringer, 0 },
5047 { "stringz", stringer, 1 },
5048
5049 /* unaligned versions: */
5050 { "data2.ua", stmt_cons_ua, 2 },
5051 { "data4.ua", stmt_cons_ua, 4 },
5052 { "data8.ua", stmt_cons_ua, 8 },
5053 { "data16.ua", stmt_cons_ua, 16 },
5054 { "real4.ua", float_cons, 'f' },
5055 { "real8.ua", float_cons, 'd' },
5056 { "real10.ua", float_cons, 'x' },
5057 { "real16.ua", float_cons, 'X' },
5058 };
5059
5060 /* Declare a register by creating a symbol for it and entering it in
5061 the symbol table. */
5062
5063 static symbolS *
5064 declare_register (name, regnum)
5065 const char *name;
5066 int regnum;
5067 {
5068 const char *err;
5069 symbolS *sym;
5070
5071 sym = symbol_new (name, reg_section, regnum, &zero_address_frag);
5072
5073 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5074 if (err)
5075 as_fatal ("Inserting \"%s\" into register table failed: %s",
5076 name, err);
5077
5078 return sym;
5079 }
5080
5081 static void
5082 declare_register_set (prefix, num_regs, base_regnum)
5083 const char *prefix;
5084 int num_regs;
5085 int base_regnum;
5086 {
5087 char name[8];
5088 int i;
5089
5090 for (i = 0; i < num_regs; ++i)
5091 {
5092 sprintf (name, "%s%u", prefix, i);
5093 declare_register (name, base_regnum + i);
5094 }
5095 }
5096
5097 static unsigned int
5098 operand_width (opnd)
5099 enum ia64_opnd opnd;
5100 {
5101 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5102 unsigned int bits = 0;
5103 int i;
5104
5105 bits = 0;
5106 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5107 bits += odesc->field[i].bits;
5108
5109 return bits;
5110 }
5111
5112 static enum operand_match_result
5113 operand_match (idesc, index, e)
5114 const struct ia64_opcode *idesc;
5115 int index;
5116 expressionS *e;
5117 {
5118 enum ia64_opnd opnd = idesc->operands[index];
5119 int bits, relocatable = 0;
5120 struct insn_fix *fix;
5121 bfd_signed_vma val;
5122
5123 switch (opnd)
5124 {
5125 /* constants: */
5126
5127 case IA64_OPND_AR_CCV:
5128 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5129 return OPERAND_MATCH;
5130 break;
5131
5132 case IA64_OPND_AR_CSD:
5133 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5134 return OPERAND_MATCH;
5135 break;
5136
5137 case IA64_OPND_AR_PFS:
5138 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5139 return OPERAND_MATCH;
5140 break;
5141
5142 case IA64_OPND_GR0:
5143 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5144 return OPERAND_MATCH;
5145 break;
5146
5147 case IA64_OPND_IP:
5148 if (e->X_op == O_register && e->X_add_number == REG_IP)
5149 return OPERAND_MATCH;
5150 break;
5151
5152 case IA64_OPND_PR:
5153 if (e->X_op == O_register && e->X_add_number == REG_PR)
5154 return OPERAND_MATCH;
5155 break;
5156
5157 case IA64_OPND_PR_ROT:
5158 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5159 return OPERAND_MATCH;
5160 break;
5161
5162 case IA64_OPND_PSR:
5163 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5164 return OPERAND_MATCH;
5165 break;
5166
5167 case IA64_OPND_PSR_L:
5168 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5169 return OPERAND_MATCH;
5170 break;
5171
5172 case IA64_OPND_PSR_UM:
5173 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5174 return OPERAND_MATCH;
5175 break;
5176
5177 case IA64_OPND_C1:
5178 if (e->X_op == O_constant)
5179 {
5180 if (e->X_add_number == 1)
5181 return OPERAND_MATCH;
5182 else
5183 return OPERAND_OUT_OF_RANGE;
5184 }
5185 break;
5186
5187 case IA64_OPND_C8:
5188 if (e->X_op == O_constant)
5189 {
5190 if (e->X_add_number == 8)
5191 return OPERAND_MATCH;
5192 else
5193 return OPERAND_OUT_OF_RANGE;
5194 }
5195 break;
5196
5197 case IA64_OPND_C16:
5198 if (e->X_op == O_constant)
5199 {
5200 if (e->X_add_number == 16)
5201 return OPERAND_MATCH;
5202 else
5203 return OPERAND_OUT_OF_RANGE;
5204 }
5205 break;
5206
5207 /* register operands: */
5208
5209 case IA64_OPND_AR3:
5210 if (e->X_op == O_register && e->X_add_number >= REG_AR
5211 && e->X_add_number < REG_AR + 128)
5212 return OPERAND_MATCH;
5213 break;
5214
5215 case IA64_OPND_B1:
5216 case IA64_OPND_B2:
5217 if (e->X_op == O_register && e->X_add_number >= REG_BR
5218 && e->X_add_number < REG_BR + 8)
5219 return OPERAND_MATCH;
5220 break;
5221
5222 case IA64_OPND_CR3:
5223 if (e->X_op == O_register && e->X_add_number >= REG_CR
5224 && e->X_add_number < REG_CR + 128)
5225 return OPERAND_MATCH;
5226 break;
5227
5228 case IA64_OPND_F1:
5229 case IA64_OPND_F2:
5230 case IA64_OPND_F3:
5231 case IA64_OPND_F4:
5232 if (e->X_op == O_register && e->X_add_number >= REG_FR
5233 && e->X_add_number < REG_FR + 128)
5234 return OPERAND_MATCH;
5235 break;
5236
5237 case IA64_OPND_P1:
5238 case IA64_OPND_P2:
5239 if (e->X_op == O_register && e->X_add_number >= REG_P
5240 && e->X_add_number < REG_P + 64)
5241 return OPERAND_MATCH;
5242 break;
5243
5244 case IA64_OPND_R1:
5245 case IA64_OPND_R2:
5246 case IA64_OPND_R3:
5247 if (e->X_op == O_register && e->X_add_number >= REG_GR
5248 && e->X_add_number < REG_GR + 128)
5249 return OPERAND_MATCH;
5250 break;
5251
5252 case IA64_OPND_R3_2:
5253 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5254 {
5255 if (e->X_add_number < REG_GR + 4)
5256 return OPERAND_MATCH;
5257 else if (e->X_add_number < REG_GR + 128)
5258 return OPERAND_OUT_OF_RANGE;
5259 }
5260 break;
5261
5262 /* indirect operands: */
5263 case IA64_OPND_CPUID_R3:
5264 case IA64_OPND_DBR_R3:
5265 case IA64_OPND_DTR_R3:
5266 case IA64_OPND_ITR_R3:
5267 case IA64_OPND_IBR_R3:
5268 case IA64_OPND_MSR_R3:
5269 case IA64_OPND_PKR_R3:
5270 case IA64_OPND_PMC_R3:
5271 case IA64_OPND_PMD_R3:
5272 case IA64_OPND_RR_R3:
5273 if (e->X_op == O_index && e->X_op_symbol
5274 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5275 == opnd - IA64_OPND_CPUID_R3))
5276 return OPERAND_MATCH;
5277 break;
5278
5279 case IA64_OPND_MR3:
5280 if (e->X_op == O_index && !e->X_op_symbol)
5281 return OPERAND_MATCH;
5282 break;
5283
5284 /* immediate operands: */
5285 case IA64_OPND_CNT2a:
5286 case IA64_OPND_LEN4:
5287 case IA64_OPND_LEN6:
5288 bits = operand_width (idesc->operands[index]);
5289 if (e->X_op == O_constant)
5290 {
5291 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5292 return OPERAND_MATCH;
5293 else
5294 return OPERAND_OUT_OF_RANGE;
5295 }
5296 break;
5297
5298 case IA64_OPND_CNT2b:
5299 if (e->X_op == O_constant)
5300 {
5301 if ((bfd_vma) (e->X_add_number - 1) < 3)
5302 return OPERAND_MATCH;
5303 else
5304 return OPERAND_OUT_OF_RANGE;
5305 }
5306 break;
5307
5308 case IA64_OPND_CNT2c:
5309 val = e->X_add_number;
5310 if (e->X_op == O_constant)
5311 {
5312 if ((val == 0 || val == 7 || val == 15 || val == 16))
5313 return OPERAND_MATCH;
5314 else
5315 return OPERAND_OUT_OF_RANGE;
5316 }
5317 break;
5318
5319 case IA64_OPND_SOR:
5320 /* SOR must be an integer multiple of 8 */
5321 if (e->X_op == O_constant && e->X_add_number & 0x7)
5322 return OPERAND_OUT_OF_RANGE;
5323 case IA64_OPND_SOF:
5324 case IA64_OPND_SOL:
5325 if (e->X_op == O_constant)
5326 {
5327 if ((bfd_vma) e->X_add_number <= 96)
5328 return OPERAND_MATCH;
5329 else
5330 return OPERAND_OUT_OF_RANGE;
5331 }
5332 break;
5333
5334 case IA64_OPND_IMMU62:
5335 if (e->X_op == O_constant)
5336 {
5337 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5338 return OPERAND_MATCH;
5339 else
5340 return OPERAND_OUT_OF_RANGE;
5341 }
5342 else
5343 {
5344 /* FIXME -- need 62-bit relocation type */
5345 as_bad (_("62-bit relocation not yet implemented"));
5346 }
5347 break;
5348
5349 case IA64_OPND_IMMU64:
5350 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5351 || e->X_op == O_subtract)
5352 {
5353 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5354 fix->code = BFD_RELOC_IA64_IMM64;
5355 if (e->X_op != O_subtract)
5356 {
5357 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5358 if (e->X_op == O_pseudo_fixup)
5359 e->X_op = O_symbol;
5360 }
5361
5362 fix->opnd = idesc->operands[index];
5363 fix->expr = *e;
5364 fix->is_pcrel = 0;
5365 ++CURR_SLOT.num_fixups;
5366 return OPERAND_MATCH;
5367 }
5368 else if (e->X_op == O_constant)
5369 return OPERAND_MATCH;
5370 break;
5371
5372 case IA64_OPND_CCNT5:
5373 case IA64_OPND_CNT5:
5374 case IA64_OPND_CNT6:
5375 case IA64_OPND_CPOS6a:
5376 case IA64_OPND_CPOS6b:
5377 case IA64_OPND_CPOS6c:
5378 case IA64_OPND_IMMU2:
5379 case IA64_OPND_IMMU7a:
5380 case IA64_OPND_IMMU7b:
5381 case IA64_OPND_IMMU21:
5382 case IA64_OPND_IMMU24:
5383 case IA64_OPND_MBTYPE4:
5384 case IA64_OPND_MHTYPE8:
5385 case IA64_OPND_POS6:
5386 bits = operand_width (idesc->operands[index]);
5387 if (e->X_op == O_constant)
5388 {
5389 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5390 return OPERAND_MATCH;
5391 else
5392 return OPERAND_OUT_OF_RANGE;
5393 }
5394 break;
5395
5396 case IA64_OPND_IMMU9:
5397 bits = operand_width (idesc->operands[index]);
5398 if (e->X_op == O_constant)
5399 {
5400 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5401 {
5402 int lobits = e->X_add_number & 0x3;
5403 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5404 e->X_add_number |= (bfd_vma) 0x3;
5405 return OPERAND_MATCH;
5406 }
5407 else
5408 return OPERAND_OUT_OF_RANGE;
5409 }
5410 break;
5411
5412 case IA64_OPND_IMM44:
5413 /* least 16 bits must be zero */
5414 if ((e->X_add_number & 0xffff) != 0)
5415 /* XXX technically, this is wrong: we should not be issuing warning
5416 messages until we're sure this instruction pattern is going to
5417 be used! */
5418 as_warn (_("lower 16 bits of mask ignored"));
5419
5420 if (e->X_op == O_constant)
5421 {
5422 if (((e->X_add_number >= 0
5423 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5424 || (e->X_add_number < 0
5425 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5426 {
5427 /* sign-extend */
5428 if (e->X_add_number >= 0
5429 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5430 {
5431 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5432 }
5433 return OPERAND_MATCH;
5434 }
5435 else
5436 return OPERAND_OUT_OF_RANGE;
5437 }
5438 break;
5439
5440 case IA64_OPND_IMM17:
5441 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5442 if (e->X_op == O_constant)
5443 {
5444 if (((e->X_add_number >= 0
5445 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5446 || (e->X_add_number < 0
5447 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5448 {
5449 /* sign-extend */
5450 if (e->X_add_number >= 0
5451 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5452 {
5453 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5454 }
5455 return OPERAND_MATCH;
5456 }
5457 else
5458 return OPERAND_OUT_OF_RANGE;
5459 }
5460 break;
5461
5462 case IA64_OPND_IMM14:
5463 case IA64_OPND_IMM22:
5464 relocatable = 1;
5465 case IA64_OPND_IMM1:
5466 case IA64_OPND_IMM8:
5467 case IA64_OPND_IMM8U4:
5468 case IA64_OPND_IMM8M1:
5469 case IA64_OPND_IMM8M1U4:
5470 case IA64_OPND_IMM8M1U8:
5471 case IA64_OPND_IMM9a:
5472 case IA64_OPND_IMM9b:
5473 bits = operand_width (idesc->operands[index]);
5474 if (relocatable && (e->X_op == O_symbol
5475 || e->X_op == O_subtract
5476 || e->X_op == O_pseudo_fixup))
5477 {
5478 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5479
5480 if (idesc->operands[index] == IA64_OPND_IMM14)
5481 fix->code = BFD_RELOC_IA64_IMM14;
5482 else
5483 fix->code = BFD_RELOC_IA64_IMM22;
5484
5485 if (e->X_op != O_subtract)
5486 {
5487 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5488 if (e->X_op == O_pseudo_fixup)
5489 e->X_op = O_symbol;
5490 }
5491
5492 fix->opnd = idesc->operands[index];
5493 fix->expr = *e;
5494 fix->is_pcrel = 0;
5495 ++CURR_SLOT.num_fixups;
5496 return OPERAND_MATCH;
5497 }
5498 else if (e->X_op != O_constant
5499 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5500 return OPERAND_MISMATCH;
5501
5502 if (opnd == IA64_OPND_IMM8M1U4)
5503 {
5504 /* Zero is not valid for unsigned compares that take an adjusted
5505 constant immediate range. */
5506 if (e->X_add_number == 0)
5507 return OPERAND_OUT_OF_RANGE;
5508
5509 /* Sign-extend 32-bit unsigned numbers, so that the following range
5510 checks will work. */
5511 val = e->X_add_number;
5512 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5513 && ((val & ((bfd_vma) 1 << 31)) != 0))
5514 val = ((val << 32) >> 32);
5515
5516 /* Check for 0x100000000. This is valid because
5517 0x100000000-1 is the same as ((uint32_t) -1). */
5518 if (val == ((bfd_signed_vma) 1 << 32))
5519 return OPERAND_MATCH;
5520
5521 val = val - 1;
5522 }
5523 else if (opnd == IA64_OPND_IMM8M1U8)
5524 {
5525 /* Zero is not valid for unsigned compares that take an adjusted
5526 constant immediate range. */
5527 if (e->X_add_number == 0)
5528 return OPERAND_OUT_OF_RANGE;
5529
5530 /* Check for 0x10000000000000000. */
5531 if (e->X_op == O_big)
5532 {
5533 if (generic_bignum[0] == 0
5534 && generic_bignum[1] == 0
5535 && generic_bignum[2] == 0
5536 && generic_bignum[3] == 0
5537 && generic_bignum[4] == 1)
5538 return OPERAND_MATCH;
5539 else
5540 return OPERAND_OUT_OF_RANGE;
5541 }
5542 else
5543 val = e->X_add_number - 1;
5544 }
5545 else if (opnd == IA64_OPND_IMM8M1)
5546 val = e->X_add_number - 1;
5547 else if (opnd == IA64_OPND_IMM8U4)
5548 {
5549 /* Sign-extend 32-bit unsigned numbers, so that the following range
5550 checks will work. */
5551 val = e->X_add_number;
5552 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5553 && ((val & ((bfd_vma) 1 << 31)) != 0))
5554 val = ((val << 32) >> 32);
5555 }
5556 else
5557 val = e->X_add_number;
5558
5559 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5560 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5561 return OPERAND_MATCH;
5562 else
5563 return OPERAND_OUT_OF_RANGE;
5564
5565 case IA64_OPND_INC3:
5566 /* +/- 1, 4, 8, 16 */
5567 val = e->X_add_number;
5568 if (val < 0)
5569 val = -val;
5570 if (e->X_op == O_constant)
5571 {
5572 if ((val == 1 || val == 4 || val == 8 || val == 16))
5573 return OPERAND_MATCH;
5574 else
5575 return OPERAND_OUT_OF_RANGE;
5576 }
5577 break;
5578
5579 case IA64_OPND_TGT25:
5580 case IA64_OPND_TGT25b:
5581 case IA64_OPND_TGT25c:
5582 case IA64_OPND_TGT64:
5583 if (e->X_op == O_symbol)
5584 {
5585 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5586 if (opnd == IA64_OPND_TGT25)
5587 fix->code = BFD_RELOC_IA64_PCREL21F;
5588 else if (opnd == IA64_OPND_TGT25b)
5589 fix->code = BFD_RELOC_IA64_PCREL21M;
5590 else if (opnd == IA64_OPND_TGT25c)
5591 fix->code = BFD_RELOC_IA64_PCREL21B;
5592 else if (opnd == IA64_OPND_TGT64)
5593 fix->code = BFD_RELOC_IA64_PCREL60B;
5594 else
5595 abort ();
5596
5597 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5598 fix->opnd = idesc->operands[index];
5599 fix->expr = *e;
5600 fix->is_pcrel = 1;
5601 ++CURR_SLOT.num_fixups;
5602 return OPERAND_MATCH;
5603 }
5604 case IA64_OPND_TAG13:
5605 case IA64_OPND_TAG13b:
5606 switch (e->X_op)
5607 {
5608 case O_constant:
5609 return OPERAND_MATCH;
5610
5611 case O_symbol:
5612 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5613 /* There are no external relocs for TAG13/TAG13b fields, so we
5614 create a dummy reloc. This will not live past md_apply_fix3. */
5615 fix->code = BFD_RELOC_UNUSED;
5616 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5617 fix->opnd = idesc->operands[index];
5618 fix->expr = *e;
5619 fix->is_pcrel = 1;
5620 ++CURR_SLOT.num_fixups;
5621 return OPERAND_MATCH;
5622
5623 default:
5624 break;
5625 }
5626 break;
5627
5628 case IA64_OPND_LDXMOV:
5629 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5630 fix->code = BFD_RELOC_IA64_LDXMOV;
5631 fix->opnd = idesc->operands[index];
5632 fix->expr = *e;
5633 fix->is_pcrel = 0;
5634 ++CURR_SLOT.num_fixups;
5635 return OPERAND_MATCH;
5636
5637 default:
5638 break;
5639 }
5640 return OPERAND_MISMATCH;
5641 }
5642
5643 static int
5644 parse_operand (e)
5645 expressionS *e;
5646 {
5647 int sep = '\0';
5648
5649 memset (e, 0, sizeof (*e));
5650 e->X_op = O_absent;
5651 SKIP_WHITESPACE ();
5652 if (*input_line_pointer != '}')
5653 expression (e);
5654 sep = *input_line_pointer++;
5655
5656 if (sep == '}')
5657 {
5658 if (!md.manual_bundling)
5659 as_warn ("Found '}' when manual bundling is off");
5660 else
5661 CURR_SLOT.manual_bundling_off = 1;
5662 md.manual_bundling = 0;
5663 sep = '\0';
5664 }
5665 return sep;
5666 }
5667
5668 /* Returns the next entry in the opcode table that matches the one in
5669 IDESC, and frees the entry in IDESC. If no matching entry is
5670 found, NULL is returned instead. */
5671
5672 static struct ia64_opcode *
5673 get_next_opcode (struct ia64_opcode *idesc)
5674 {
5675 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
5676 ia64_free_opcode (idesc);
5677 return next;
5678 }
5679
5680 /* Parse the operands for the opcode and find the opcode variant that
5681 matches the specified operands, or NULL if no match is possible. */
5682
5683 static struct ia64_opcode *
5684 parse_operands (idesc)
5685 struct ia64_opcode *idesc;
5686 {
5687 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
5688 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
5689 enum ia64_opnd expected_operand = IA64_OPND_NIL;
5690 enum operand_match_result result;
5691 char mnemonic[129];
5692 char *first_arg = 0, *end, *saved_input_pointer;
5693 unsigned int sof;
5694
5695 assert (strlen (idesc->name) <= 128);
5696
5697 strcpy (mnemonic, idesc->name);
5698 if (idesc->operands[2] == IA64_OPND_SOF)
5699 {
5700 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
5701 can't parse the first operand until we have parsed the
5702 remaining operands of the "alloc" instruction. */
5703 SKIP_WHITESPACE ();
5704 first_arg = input_line_pointer;
5705 end = strchr (input_line_pointer, '=');
5706 if (!end)
5707 {
5708 as_bad ("Expected separator `='");
5709 return 0;
5710 }
5711 input_line_pointer = end + 1;
5712 ++i;
5713 ++num_outputs;
5714 }
5715
5716 for (; i < NELEMS (CURR_SLOT.opnd); ++i)
5717 {
5718 sep = parse_operand (CURR_SLOT.opnd + i);
5719 if (CURR_SLOT.opnd[i].X_op == O_absent)
5720 break;
5721
5722 ++num_operands;
5723
5724 if (sep != '=' && sep != ',')
5725 break;
5726
5727 if (sep == '=')
5728 {
5729 if (num_outputs > 0)
5730 as_bad ("Duplicate equal sign (=) in instruction");
5731 else
5732 num_outputs = i + 1;
5733 }
5734 }
5735 if (sep != '\0')
5736 {
5737 as_bad ("Illegal operand separator `%c'", sep);
5738 return 0;
5739 }
5740
5741 if (idesc->operands[2] == IA64_OPND_SOF)
5742 {
5743 /* map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r */
5744 know (strcmp (idesc->name, "alloc") == 0);
5745 if (num_operands == 5 /* first_arg not included in this count! */
5746 && CURR_SLOT.opnd[2].X_op == O_constant
5747 && CURR_SLOT.opnd[3].X_op == O_constant
5748 && CURR_SLOT.opnd[4].X_op == O_constant
5749 && CURR_SLOT.opnd[5].X_op == O_constant)
5750 {
5751 sof = set_regstack (CURR_SLOT.opnd[2].X_add_number,
5752 CURR_SLOT.opnd[3].X_add_number,
5753 CURR_SLOT.opnd[4].X_add_number,
5754 CURR_SLOT.opnd[5].X_add_number);
5755
5756 /* now we can parse the first arg: */
5757 saved_input_pointer = input_line_pointer;
5758 input_line_pointer = first_arg;
5759 sep = parse_operand (CURR_SLOT.opnd + 0);
5760 if (sep != '=')
5761 --num_outputs; /* force error */
5762 input_line_pointer = saved_input_pointer;
5763
5764 CURR_SLOT.opnd[2].X_add_number = sof;
5765 CURR_SLOT.opnd[3].X_add_number
5766 = sof - CURR_SLOT.opnd[4].X_add_number;
5767 CURR_SLOT.opnd[4] = CURR_SLOT.opnd[5];
5768 }
5769 }
5770
5771 highest_unmatched_operand = 0;
5772 curr_out_of_range_pos = -1;
5773 error_pos = 0;
5774 expected_operand = idesc->operands[0];
5775 for (; idesc; idesc = get_next_opcode (idesc))
5776 {
5777 if (num_outputs != idesc->num_outputs)
5778 continue; /* mismatch in # of outputs */
5779
5780 CURR_SLOT.num_fixups = 0;
5781
5782 /* Try to match all operands. If we see an out-of-range operand,
5783 then continue trying to match the rest of the operands, since if
5784 the rest match, then this idesc will give the best error message. */
5785
5786 out_of_range_pos = -1;
5787 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
5788 {
5789 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
5790 if (result != OPERAND_MATCH)
5791 {
5792 if (result != OPERAND_OUT_OF_RANGE)
5793 break;
5794 if (out_of_range_pos < 0)
5795 /* remember position of the first out-of-range operand: */
5796 out_of_range_pos = i;
5797 }
5798 }
5799
5800 /* If we did not match all operands, or if at least one operand was
5801 out-of-range, then this idesc does not match. Keep track of which
5802 idesc matched the most operands before failing. If we have two
5803 idescs that failed at the same position, and one had an out-of-range
5804 operand, then prefer the out-of-range operand. Thus if we have
5805 "add r0=0x1000000,r1" we get an error saying the constant is out
5806 of range instead of an error saying that the constant should have been
5807 a register. */
5808
5809 if (i != num_operands || out_of_range_pos >= 0)
5810 {
5811 if (i > highest_unmatched_operand
5812 || (i == highest_unmatched_operand
5813 && out_of_range_pos > curr_out_of_range_pos))
5814 {
5815 highest_unmatched_operand = i;
5816 if (out_of_range_pos >= 0)
5817 {
5818 expected_operand = idesc->operands[out_of_range_pos];
5819 error_pos = out_of_range_pos;
5820 }
5821 else
5822 {
5823 expected_operand = idesc->operands[i];
5824 error_pos = i;
5825 }
5826 curr_out_of_range_pos = out_of_range_pos;
5827 }
5828 continue;
5829 }
5830
5831 if (num_operands < NELEMS (idesc->operands)
5832 && idesc->operands[num_operands])
5833 continue; /* mismatch in number of arguments */
5834
5835 break;
5836 }
5837 if (!idesc)
5838 {
5839 if (expected_operand)
5840 as_bad ("Operand %u of `%s' should be %s",
5841 error_pos + 1, mnemonic,
5842 elf64_ia64_operands[expected_operand].desc);
5843 else
5844 as_bad ("Operand mismatch");
5845 return 0;
5846 }
5847 return idesc;
5848 }
5849
5850 /* Keep track of state necessary to determine whether a NOP is necessary
5851 to avoid an erratum in A and B step Itanium chips, and return 1 if we
5852 detect a case where additional NOPs may be necessary. */
5853 static int
5854 errata_nop_necessary_p (slot, insn_unit)
5855 struct slot *slot;
5856 enum ia64_unit insn_unit;
5857 {
5858 int i;
5859 struct group *this_group = md.last_groups + md.group_idx;
5860 struct group *prev_group = md.last_groups + (md.group_idx + 2) % 3;
5861 struct ia64_opcode *idesc = slot->idesc;
5862
5863 /* Test whether this could be the first insn in a problematic sequence. */
5864 if (insn_unit == IA64_UNIT_F)
5865 {
5866 for (i = 0; i < idesc->num_outputs; i++)
5867 if (idesc->operands[i] == IA64_OPND_P1
5868 || idesc->operands[i] == IA64_OPND_P2)
5869 {
5870 int regno = slot->opnd[i].X_add_number - REG_P;
5871 /* Ignore invalid operands; they generate errors elsewhere. */
5872 if (regno >= 64)
5873 return 0;
5874 this_group->p_reg_set[regno] = 1;
5875 }
5876 }
5877
5878 /* Test whether this could be the second insn in a problematic sequence. */
5879 if (insn_unit == IA64_UNIT_M && slot->qp_regno > 0
5880 && prev_group->p_reg_set[slot->qp_regno])
5881 {
5882 for (i = 0; i < idesc->num_outputs; i++)
5883 if (idesc->operands[i] == IA64_OPND_R1
5884 || idesc->operands[i] == IA64_OPND_R2
5885 || idesc->operands[i] == IA64_OPND_R3)
5886 {
5887 int regno = slot->opnd[i].X_add_number - REG_GR;
5888 /* Ignore invalid operands; they generate errors elsewhere. */
5889 if (regno >= 128)
5890 return 0;
5891 if (strncmp (idesc->name, "add", 3) != 0
5892 && strncmp (idesc->name, "sub", 3) != 0
5893 && strncmp (idesc->name, "shladd", 6) != 0
5894 && (idesc->flags & IA64_OPCODE_POSTINC) == 0)
5895 this_group->g_reg_set_conditionally[regno] = 1;
5896 }
5897 }
5898
5899 /* Test whether this could be the third insn in a problematic sequence. */
5900 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; i++)
5901 {
5902 if (/* For fc, ptc, ptr, tak, thash, tpa, ttag, probe, ptr, ptc. */
5903 idesc->operands[i] == IA64_OPND_R3
5904 /* For mov indirect. */
5905 || idesc->operands[i] == IA64_OPND_RR_R3
5906 || idesc->operands[i] == IA64_OPND_DBR_R3
5907 || idesc->operands[i] == IA64_OPND_IBR_R3
5908 || idesc->operands[i] == IA64_OPND_PKR_R3
5909 || idesc->operands[i] == IA64_OPND_PMC_R3
5910 || idesc->operands[i] == IA64_OPND_PMD_R3
5911 || idesc->operands[i] == IA64_OPND_MSR_R3
5912 || idesc->operands[i] == IA64_OPND_CPUID_R3
5913 /* For itr. */
5914 || idesc->operands[i] == IA64_OPND_ITR_R3
5915 || idesc->operands[i] == IA64_OPND_DTR_R3
5916 /* Normal memory addresses (load, store, xchg, cmpxchg, etc.). */
5917 || idesc->operands[i] == IA64_OPND_MR3)
5918 {
5919 int regno = slot->opnd[i].X_add_number - REG_GR;
5920 /* Ignore invalid operands; they generate errors elsewhere. */
5921 if (regno >= 128)
5922 return 0;
5923 if (idesc->operands[i] == IA64_OPND_R3)
5924 {
5925 if (strcmp (idesc->name, "fc") != 0
5926 && strcmp (idesc->name, "tak") != 0
5927 && strcmp (idesc->name, "thash") != 0
5928 && strcmp (idesc->name, "tpa") != 0
5929 && strcmp (idesc->name, "ttag") != 0
5930 && strncmp (idesc->name, "ptr", 3) != 0
5931 && strncmp (idesc->name, "ptc", 3) != 0
5932 && strncmp (idesc->name, "probe", 5) != 0)
5933 return 0;
5934 }
5935 if (prev_group->g_reg_set_conditionally[regno])
5936 return 1;
5937 }
5938 }
5939 return 0;
5940 }
5941
5942 static void
5943 build_insn (slot, insnp)
5944 struct slot *slot;
5945 bfd_vma *insnp;
5946 {
5947 const struct ia64_operand *odesc, *o2desc;
5948 struct ia64_opcode *idesc = slot->idesc;
5949 bfd_signed_vma insn, val;
5950 const char *err;
5951 int i;
5952
5953 insn = idesc->opcode | slot->qp_regno;
5954
5955 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
5956 {
5957 if (slot->opnd[i].X_op == O_register
5958 || slot->opnd[i].X_op == O_constant
5959 || slot->opnd[i].X_op == O_index)
5960 val = slot->opnd[i].X_add_number;
5961 else if (slot->opnd[i].X_op == O_big)
5962 {
5963 /* This must be the value 0x10000000000000000. */
5964 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
5965 val = 0;
5966 }
5967 else
5968 val = 0;
5969
5970 switch (idesc->operands[i])
5971 {
5972 case IA64_OPND_IMMU64:
5973 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
5974 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
5975 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
5976 | (((val >> 63) & 0x1) << 36));
5977 continue;
5978
5979 case IA64_OPND_IMMU62:
5980 val &= 0x3fffffffffffffffULL;
5981 if (val != slot->opnd[i].X_add_number)
5982 as_warn (_("Value truncated to 62 bits"));
5983 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
5984 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
5985 continue;
5986
5987 case IA64_OPND_TGT64:
5988 val >>= 4;
5989 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
5990 insn |= ((((val >> 59) & 0x1) << 36)
5991 | (((val >> 0) & 0xfffff) << 13));
5992 continue;
5993
5994 case IA64_OPND_AR3:
5995 val -= REG_AR;
5996 break;
5997
5998 case IA64_OPND_B1:
5999 case IA64_OPND_B2:
6000 val -= REG_BR;
6001 break;
6002
6003 case IA64_OPND_CR3:
6004 val -= REG_CR;
6005 break;
6006
6007 case IA64_OPND_F1:
6008 case IA64_OPND_F2:
6009 case IA64_OPND_F3:
6010 case IA64_OPND_F4:
6011 val -= REG_FR;
6012 break;
6013
6014 case IA64_OPND_P1:
6015 case IA64_OPND_P2:
6016 val -= REG_P;
6017 break;
6018
6019 case IA64_OPND_R1:
6020 case IA64_OPND_R2:
6021 case IA64_OPND_R3:
6022 case IA64_OPND_R3_2:
6023 case IA64_OPND_CPUID_R3:
6024 case IA64_OPND_DBR_R3:
6025 case IA64_OPND_DTR_R3:
6026 case IA64_OPND_ITR_R3:
6027 case IA64_OPND_IBR_R3:
6028 case IA64_OPND_MR3:
6029 case IA64_OPND_MSR_R3:
6030 case IA64_OPND_PKR_R3:
6031 case IA64_OPND_PMC_R3:
6032 case IA64_OPND_PMD_R3:
6033 case IA64_OPND_RR_R3:
6034 val -= REG_GR;
6035 break;
6036
6037 default:
6038 break;
6039 }
6040
6041 odesc = elf64_ia64_operands + idesc->operands[i];
6042 err = (*odesc->insert) (odesc, val, &insn);
6043 if (err)
6044 as_bad_where (slot->src_file, slot->src_line,
6045 "Bad operand value: %s", err);
6046 if (idesc->flags & IA64_OPCODE_PSEUDO)
6047 {
6048 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6049 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6050 {
6051 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6052 (*o2desc->insert) (o2desc, val, &insn);
6053 }
6054 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6055 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6056 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6057 {
6058 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6059 (*o2desc->insert) (o2desc, 64 - val, &insn);
6060 }
6061 }
6062 }
6063 *insnp = insn;
6064 }
6065
6066 static void
6067 emit_one_bundle ()
6068 {
6069 unsigned int manual_bundling_on = 0, manual_bundling_off = 0;
6070 unsigned int manual_bundling = 0;
6071 enum ia64_unit required_unit, insn_unit = 0;
6072 enum ia64_insn_type type[3], insn_type;
6073 unsigned int template, orig_template;
6074 bfd_vma insn[3] = { -1, -1, -1 };
6075 struct ia64_opcode *idesc;
6076 int end_of_insn_group = 0, user_template = -1;
6077 int n, i, j, first, curr;
6078 unw_rec_list *ptr, *last_ptr, *end_ptr;
6079 bfd_vma t0 = 0, t1 = 0;
6080 struct label_fix *lfix;
6081 struct insn_fix *ifix;
6082 char mnemonic[16];
6083 fixS *fix;
6084 char *f;
6085
6086 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6087 know (first >= 0 & first < NUM_SLOTS);
6088 n = MIN (3, md.num_slots_in_use);
6089
6090 /* Determine template: user user_template if specified, best match
6091 otherwise: */
6092
6093 if (md.slot[first].user_template >= 0)
6094 user_template = template = md.slot[first].user_template;
6095 else
6096 {
6097 /* Auto select appropriate template. */
6098 memset (type, 0, sizeof (type));
6099 curr = first;
6100 for (i = 0; i < n; ++i)
6101 {
6102 if (md.slot[curr].label_fixups && i != 0)
6103 break;
6104 type[i] = md.slot[curr].idesc->type;
6105 curr = (curr + 1) % NUM_SLOTS;
6106 }
6107 template = best_template[type[0]][type[1]][type[2]];
6108 }
6109
6110 /* initialize instructions with appropriate nops: */
6111 for (i = 0; i < 3; ++i)
6112 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6113
6114 f = frag_more (16);
6115
6116 /* now fill in slots with as many insns as possible: */
6117 curr = first;
6118 idesc = md.slot[curr].idesc;
6119 end_of_insn_group = 0;
6120 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6121 {
6122 /* If we have unwind records, we may need to update some now. */
6123 ptr = md.slot[curr].unwind_record;
6124 if (ptr)
6125 {
6126 /* Find the last prologue/body record in the list for the current
6127 insn, and set the slot number for all records up to that point.
6128 This needs to be done now, because prologue/body records refer to
6129 the current point, not the point after the instruction has been
6130 issued. This matters because there may have been nops emitted
6131 meanwhile. Any non-prologue non-body record followed by a
6132 prologue/body record must also refer to the current point. */
6133 last_ptr = NULL;
6134 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6135 for (; ptr != end_ptr; ptr = ptr->next)
6136 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6137 || ptr->r.type == body)
6138 last_ptr = ptr;
6139 if (last_ptr)
6140 {
6141 /* Make last_ptr point one after the last prologue/body
6142 record. */
6143 last_ptr = last_ptr->next;
6144 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6145 ptr = ptr->next)
6146 {
6147 ptr->slot_number = (unsigned long) f + i;
6148 ptr->slot_frag = frag_now;
6149 }
6150 /* Remove the initialized records, so that we won't accidentally
6151 update them again if we insert a nop and continue. */
6152 md.slot[curr].unwind_record = last_ptr;
6153 }
6154 }
6155
6156 if (idesc->flags & IA64_OPCODE_SLOT2)
6157 {
6158 if (manual_bundling && i != 2)
6159 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6160 "`%s' must be last in bundle", idesc->name);
6161 else
6162 i = 2;
6163 }
6164 if (idesc->flags & IA64_OPCODE_LAST)
6165 {
6166 int required_slot;
6167 unsigned int required_template;
6168
6169 /* If we need a stop bit after an M slot, our only choice is
6170 template 5 (M;;MI). If we need a stop bit after a B
6171 slot, our only choice is to place it at the end of the
6172 bundle, because the only available templates are MIB,
6173 MBB, BBB, MMB, and MFB. We don't handle anything other
6174 than M and B slots because these are the only kind of
6175 instructions that can have the IA64_OPCODE_LAST bit set. */
6176 required_template = template;
6177 switch (idesc->type)
6178 {
6179 case IA64_TYPE_M:
6180 required_slot = 0;
6181 required_template = 5;
6182 break;
6183
6184 case IA64_TYPE_B:
6185 required_slot = 2;
6186 break;
6187
6188 default:
6189 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6190 "Internal error: don't know how to force %s to end"
6191 "of instruction group", idesc->name);
6192 required_slot = i;
6193 break;
6194 }
6195 if (manual_bundling && i != required_slot)
6196 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6197 "`%s' must be last in instruction group",
6198 idesc->name);
6199 if (required_slot < i)
6200 /* Can't fit this instruction. */
6201 break;
6202
6203 i = required_slot;
6204 if (required_template != template)
6205 {
6206 /* If we switch the template, we need to reset the NOPs
6207 after slot i. The slot-types of the instructions ahead
6208 of i never change, so we don't need to worry about
6209 changing NOPs in front of this slot. */
6210 for (j = i; j < 3; ++j)
6211 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6212 }
6213 template = required_template;
6214 }
6215 if (curr != first && md.slot[curr].label_fixups)
6216 {
6217 if (manual_bundling_on)
6218 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6219 "Label must be first in a bundle");
6220 /* This insn must go into the first slot of a bundle. */
6221 break;
6222 }
6223
6224 manual_bundling_on = md.slot[curr].manual_bundling_on;
6225 manual_bundling_off = md.slot[curr].manual_bundling_off;
6226
6227 if (manual_bundling_on)
6228 {
6229 if (curr == first)
6230 manual_bundling = 1;
6231 else
6232 break; /* need to start a new bundle */
6233 }
6234
6235 if (end_of_insn_group && md.num_slots_in_use >= 1)
6236 {
6237 /* We need an instruction group boundary in the middle of a
6238 bundle. See if we can switch to an other template with
6239 an appropriate boundary. */
6240
6241 orig_template = template;
6242 if (i == 1 && (user_template == 4
6243 || (user_template < 0
6244 && (ia64_templ_desc[template].exec_unit[0]
6245 == IA64_UNIT_M))))
6246 {
6247 template = 5;
6248 end_of_insn_group = 0;
6249 }
6250 else if (i == 2 && (user_template == 0
6251 || (user_template < 0
6252 && (ia64_templ_desc[template].exec_unit[1]
6253 == IA64_UNIT_I)))
6254 /* This test makes sure we don't switch the template if
6255 the next instruction is one that needs to be first in
6256 an instruction group. Since all those instructions are
6257 in the M group, there is no way such an instruction can
6258 fit in this bundle even if we switch the template. The
6259 reason we have to check for this is that otherwise we
6260 may end up generating "MI;;I M.." which has the deadly
6261 effect that the second M instruction is no longer the
6262 first in the bundle! --davidm 99/12/16 */
6263 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6264 {
6265 template = 1;
6266 end_of_insn_group = 0;
6267 }
6268 else if (curr != first)
6269 /* can't fit this insn */
6270 break;
6271
6272 if (template != orig_template)
6273 /* if we switch the template, we need to reset the NOPs
6274 after slot i. The slot-types of the instructions ahead
6275 of i never change, so we don't need to worry about
6276 changing NOPs in front of this slot. */
6277 for (j = i; j < 3; ++j)
6278 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6279 }
6280 required_unit = ia64_templ_desc[template].exec_unit[i];
6281
6282 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6283 if (idesc->type == IA64_TYPE_DYN)
6284 {
6285 if ((strcmp (idesc->name, "nop") == 0)
6286 || (strcmp (idesc->name, "hint") == 0)
6287 || (strcmp (idesc->name, "break") == 0))
6288 insn_unit = required_unit;
6289 else if (strcmp (idesc->name, "chk.s") == 0)
6290 {
6291 insn_unit = IA64_UNIT_M;
6292 if (required_unit == IA64_UNIT_I)
6293 insn_unit = IA64_UNIT_I;
6294 }
6295 else
6296 as_fatal ("emit_one_bundle: unexpected dynamic op");
6297
6298 sprintf (mnemonic, "%s.%c", idesc->name, "?imbf??"[insn_unit]);
6299 ia64_free_opcode (idesc);
6300 md.slot[curr].idesc = idesc = ia64_find_opcode (mnemonic);
6301 #if 0
6302 know (!idesc->next); /* no resolved dynamic ops have collisions */
6303 #endif
6304 }
6305 else
6306 {
6307 insn_type = idesc->type;
6308 insn_unit = IA64_UNIT_NIL;
6309 switch (insn_type)
6310 {
6311 case IA64_TYPE_A:
6312 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6313 insn_unit = required_unit;
6314 break;
6315 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6316 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6317 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6318 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6319 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6320 default: break;
6321 }
6322 }
6323
6324 if (insn_unit != required_unit)
6325 {
6326 if (required_unit == IA64_UNIT_L
6327 && insn_unit == IA64_UNIT_I
6328 && !(idesc->flags & IA64_OPCODE_X_IN_MLX))
6329 {
6330 /* we got ourselves an MLX template but the current
6331 instruction isn't an X-unit, or an I-unit instruction
6332 that can go into the X slot of an MLX template. Duh. */
6333 if (md.num_slots_in_use >= NUM_SLOTS)
6334 {
6335 as_bad_where (md.slot[curr].src_file,
6336 md.slot[curr].src_line,
6337 "`%s' can't go in X slot of "
6338 "MLX template", idesc->name);
6339 /* drop this insn so we don't livelock: */
6340 --md.num_slots_in_use;
6341 }
6342 break;
6343 }
6344 continue; /* try next slot */
6345 }
6346
6347 {
6348 bfd_vma addr;
6349
6350 addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6351 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6352 }
6353
6354 if (errata_nop_necessary_p (md.slot + curr, insn_unit))
6355 as_warn (_("Additional NOP may be necessary to workaround Itanium processor A/B step errata"));
6356
6357 build_insn (md.slot + curr, insn + i);
6358
6359 ptr = md.slot[curr].unwind_record;
6360 if (ptr)
6361 {
6362 /* Set slot numbers for all remaining unwind records belonging to the
6363 current insn. There can not be any prologue/body unwind records
6364 here. */
6365 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6366 for (; ptr != end_ptr; ptr = ptr->next)
6367 {
6368 ptr->slot_number = (unsigned long) f + i;
6369 ptr->slot_frag = frag_now;
6370 }
6371 md.slot[curr].unwind_record = NULL;
6372 }
6373
6374 if (required_unit == IA64_UNIT_L)
6375 {
6376 know (i == 1);
6377 /* skip one slot for long/X-unit instructions */
6378 ++i;
6379 }
6380 --md.num_slots_in_use;
6381
6382 /* now is a good time to fix up the labels for this insn: */
6383 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6384 {
6385 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6386 symbol_set_frag (lfix->sym, frag_now);
6387 }
6388 /* and fix up the tags also. */
6389 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6390 {
6391 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6392 symbol_set_frag (lfix->sym, frag_now);
6393 }
6394
6395 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6396 {
6397 ifix = md.slot[curr].fixup + j;
6398 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6399 &ifix->expr, ifix->is_pcrel, ifix->code);
6400 fix->tc_fix_data.opnd = ifix->opnd;
6401 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
6402 fix->fx_file = md.slot[curr].src_file;
6403 fix->fx_line = md.slot[curr].src_line;
6404 }
6405
6406 end_of_insn_group = md.slot[curr].end_of_insn_group;
6407
6408 if (end_of_insn_group)
6409 {
6410 md.group_idx = (md.group_idx + 1) % 3;
6411 memset (md.last_groups + md.group_idx, 0, sizeof md.last_groups[0]);
6412 }
6413
6414 /* clear slot: */
6415 ia64_free_opcode (md.slot[curr].idesc);
6416 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6417 md.slot[curr].user_template = -1;
6418
6419 if (manual_bundling_off)
6420 {
6421 manual_bundling = 0;
6422 break;
6423 }
6424 curr = (curr + 1) % NUM_SLOTS;
6425 idesc = md.slot[curr].idesc;
6426 }
6427 if (manual_bundling)
6428 {
6429 if (md.num_slots_in_use > 0)
6430 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6431 "`%s' does not fit into %s template",
6432 idesc->name, ia64_templ_desc[template].name);
6433 else
6434 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6435 "Missing '}' at end of file");
6436 }
6437 know (md.num_slots_in_use < NUM_SLOTS);
6438
6439 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
6440 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
6441
6442 number_to_chars_littleendian (f + 0, t0, 8);
6443 number_to_chars_littleendian (f + 8, t1, 8);
6444
6445 if (unwind.list)
6446 {
6447 unwind.list->next_slot_number = (unsigned long) f + 16;
6448 unwind.list->next_slot_frag = frag_now;
6449 }
6450 }
6451
6452 int
6453 md_parse_option (c, arg)
6454 int c;
6455 char *arg;
6456 {
6457
6458 switch (c)
6459 {
6460 /* Switches from the Intel assembler. */
6461 case 'm':
6462 if (strcmp (arg, "ilp64") == 0
6463 || strcmp (arg, "lp64") == 0
6464 || strcmp (arg, "p64") == 0)
6465 {
6466 md.flags |= EF_IA_64_ABI64;
6467 }
6468 else if (strcmp (arg, "ilp32") == 0)
6469 {
6470 md.flags &= ~EF_IA_64_ABI64;
6471 }
6472 else if (strcmp (arg, "le") == 0)
6473 {
6474 md.flags &= ~EF_IA_64_BE;
6475 }
6476 else if (strcmp (arg, "be") == 0)
6477 {
6478 md.flags |= EF_IA_64_BE;
6479 }
6480 else
6481 return 0;
6482 break;
6483
6484 case 'N':
6485 if (strcmp (arg, "so") == 0)
6486 {
6487 /* Suppress signon message. */
6488 }
6489 else if (strcmp (arg, "pi") == 0)
6490 {
6491 /* Reject privileged instructions. FIXME */
6492 }
6493 else if (strcmp (arg, "us") == 0)
6494 {
6495 /* Allow union of signed and unsigned range. FIXME */
6496 }
6497 else if (strcmp (arg, "close_fcalls") == 0)
6498 {
6499 /* Do not resolve global function calls. */
6500 }
6501 else
6502 return 0;
6503 break;
6504
6505 case 'C':
6506 /* temp[="prefix"] Insert temporary labels into the object file
6507 symbol table prefixed by "prefix".
6508 Default prefix is ":temp:".
6509 */
6510 break;
6511
6512 case 'a':
6513 /* indirect=<tgt> Assume unannotated indirect branches behavior
6514 according to <tgt> --
6515 exit: branch out from the current context (default)
6516 labels: all labels in context may be branch targets
6517 */
6518 if (strncmp (arg, "indirect=", 9) != 0)
6519 return 0;
6520 break;
6521
6522 case 'x':
6523 /* -X conflicts with an ignored option, use -x instead */
6524 md.detect_dv = 1;
6525 if (!arg || strcmp (arg, "explicit") == 0)
6526 {
6527 /* set default mode to explicit */
6528 md.default_explicit_mode = 1;
6529 break;
6530 }
6531 else if (strcmp (arg, "auto") == 0)
6532 {
6533 md.default_explicit_mode = 0;
6534 }
6535 else if (strcmp (arg, "debug") == 0)
6536 {
6537 md.debug_dv = 1;
6538 }
6539 else if (strcmp (arg, "debugx") == 0)
6540 {
6541 md.default_explicit_mode = 1;
6542 md.debug_dv = 1;
6543 }
6544 else
6545 {
6546 as_bad (_("Unrecognized option '-x%s'"), arg);
6547 }
6548 break;
6549
6550 case 'S':
6551 /* nops Print nops statistics. */
6552 break;
6553
6554 /* GNU specific switches for gcc. */
6555 case OPTION_MCONSTANT_GP:
6556 md.flags |= EF_IA_64_CONS_GP;
6557 break;
6558
6559 case OPTION_MAUTO_PIC:
6560 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
6561 break;
6562
6563 default:
6564 return 0;
6565 }
6566
6567 return 1;
6568 }
6569
6570 void
6571 md_show_usage (stream)
6572 FILE *stream;
6573 {
6574 fputs (_("\
6575 IA-64 options:\n\
6576 --mconstant-gp mark output file as using the constant-GP model\n\
6577 (sets ELF header flag EF_IA_64_CONS_GP)\n\
6578 --mauto-pic mark output file as using the constant-GP model\n\
6579 without function descriptors (sets ELF header flag\n\
6580 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
6581 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
6582 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
6583 -x | -xexplicit turn on dependency violation checking (default)\n\
6584 -xauto automagically remove dependency violations\n\
6585 -xdebug debug dependency violation checker\n"),
6586 stream);
6587 }
6588
6589 void
6590 ia64_after_parse_args ()
6591 {
6592 if (debug_type == DEBUG_STABS)
6593 as_fatal (_("--gstabs is not supported for ia64"));
6594 }
6595
6596 /* Return true if TYPE fits in TEMPL at SLOT. */
6597
6598 static int
6599 match (int templ, int type, int slot)
6600 {
6601 enum ia64_unit unit;
6602 int result;
6603
6604 unit = ia64_templ_desc[templ].exec_unit[slot];
6605 switch (type)
6606 {
6607 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
6608 case IA64_TYPE_A:
6609 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
6610 break;
6611 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
6612 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
6613 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
6614 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
6615 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
6616 default: result = 0; break;
6617 }
6618 return result;
6619 }
6620
6621 /* Add a bit of extra goodness if a nop of type F or B would fit
6622 in TEMPL at SLOT. */
6623
6624 static inline int
6625 extra_goodness (int templ, int slot)
6626 {
6627 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
6628 return 2;
6629 if (slot == 2 && match (templ, IA64_TYPE_B, slot))
6630 return 1;
6631 return 0;
6632 }
6633
6634 /* This function is called once, at assembler startup time. It sets
6635 up all the tables, etc. that the MD part of the assembler will need
6636 that can be determined before arguments are parsed. */
6637 void
6638 md_begin ()
6639 {
6640 int i, j, k, t, total, ar_base, cr_base, goodness, best, regnum, ok;
6641 const char *err;
6642 char name[8];
6643
6644 md.auto_align = 1;
6645 md.explicit_mode = md.default_explicit_mode;
6646
6647 bfd_set_section_alignment (stdoutput, text_section, 4);
6648
6649 /* Make sure function pointers get initialized. */
6650 target_big_endian = -1;
6651 dot_byteorder (TARGET_BYTES_BIG_ENDIAN);
6652
6653 alias_hash = hash_new ();
6654 alias_name_hash = hash_new ();
6655 secalias_hash = hash_new ();
6656 secalias_name_hash = hash_new ();
6657
6658 pseudo_func[FUNC_DTP_MODULE].u.sym =
6659 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
6660 &zero_address_frag);
6661
6662 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
6663 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
6664 &zero_address_frag);
6665
6666 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
6667 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
6668 &zero_address_frag);
6669
6670 pseudo_func[FUNC_GP_RELATIVE].u.sym =
6671 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
6672 &zero_address_frag);
6673
6674 pseudo_func[FUNC_LT_RELATIVE].u.sym =
6675 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
6676 &zero_address_frag);
6677
6678 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
6679 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
6680 &zero_address_frag);
6681
6682 pseudo_func[FUNC_PC_RELATIVE].u.sym =
6683 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
6684 &zero_address_frag);
6685
6686 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
6687 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
6688 &zero_address_frag);
6689
6690 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
6691 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
6692 &zero_address_frag);
6693
6694 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
6695 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
6696 &zero_address_frag);
6697
6698 pseudo_func[FUNC_TP_RELATIVE].u.sym =
6699 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
6700 &zero_address_frag);
6701
6702 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
6703 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
6704 &zero_address_frag);
6705
6706 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
6707 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
6708 &zero_address_frag);
6709
6710 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
6711 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
6712 &zero_address_frag);
6713
6714 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
6715 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
6716 &zero_address_frag);
6717
6718 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
6719 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
6720 &zero_address_frag);
6721
6722 pseudo_func[FUNC_IPLT_RELOC].u.sym =
6723 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
6724 &zero_address_frag);
6725
6726 /* Compute the table of best templates. We compute goodness as a
6727 base 4 value, in which each match counts for 3, each F counts
6728 for 2, each B counts for 1. This should maximize the number of
6729 F and B nops in the chosen bundles, which is good because these
6730 pipelines are least likely to be overcommitted. */
6731 for (i = 0; i < IA64_NUM_TYPES; ++i)
6732 for (j = 0; j < IA64_NUM_TYPES; ++j)
6733 for (k = 0; k < IA64_NUM_TYPES; ++k)
6734 {
6735 best = 0;
6736 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
6737 {
6738 goodness = 0;
6739 if (match (t, i, 0))
6740 {
6741 if (match (t, j, 1))
6742 {
6743 if (match (t, k, 2))
6744 goodness = 3 + 3 + 3;
6745 else
6746 goodness = 3 + 3 + extra_goodness (t, 2);
6747 }
6748 else if (match (t, j, 2))
6749 goodness = 3 + 3 + extra_goodness (t, 1);
6750 else
6751 {
6752 goodness = 3;
6753 goodness += extra_goodness (t, 1);
6754 goodness += extra_goodness (t, 2);
6755 }
6756 }
6757 else if (match (t, i, 1))
6758 {
6759 if (match (t, j, 2))
6760 goodness = 3 + 3;
6761 else
6762 goodness = 3 + extra_goodness (t, 2);
6763 }
6764 else if (match (t, i, 2))
6765 goodness = 3 + extra_goodness (t, 1);
6766
6767 if (goodness > best)
6768 {
6769 best = goodness;
6770 best_template[i][j][k] = t;
6771 }
6772 }
6773 }
6774
6775 for (i = 0; i < NUM_SLOTS; ++i)
6776 md.slot[i].user_template = -1;
6777
6778 md.pseudo_hash = hash_new ();
6779 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
6780 {
6781 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
6782 (void *) (pseudo_opcode + i));
6783 if (err)
6784 as_fatal ("ia64.md_begin: can't hash `%s': %s",
6785 pseudo_opcode[i].name, err);
6786 }
6787
6788 md.reg_hash = hash_new ();
6789 md.dynreg_hash = hash_new ();
6790 md.const_hash = hash_new ();
6791 md.entry_hash = hash_new ();
6792
6793 /* general registers: */
6794
6795 total = 128;
6796 for (i = 0; i < total; ++i)
6797 {
6798 sprintf (name, "r%d", i - REG_GR);
6799 md.regsym[i] = declare_register (name, i);
6800 }
6801
6802 /* floating point registers: */
6803 total += 128;
6804 for (; i < total; ++i)
6805 {
6806 sprintf (name, "f%d", i - REG_FR);
6807 md.regsym[i] = declare_register (name, i);
6808 }
6809
6810 /* application registers: */
6811 total += 128;
6812 ar_base = i;
6813 for (; i < total; ++i)
6814 {
6815 sprintf (name, "ar%d", i - REG_AR);
6816 md.regsym[i] = declare_register (name, i);
6817 }
6818
6819 /* control registers: */
6820 total += 128;
6821 cr_base = i;
6822 for (; i < total; ++i)
6823 {
6824 sprintf (name, "cr%d", i - REG_CR);
6825 md.regsym[i] = declare_register (name, i);
6826 }
6827
6828 /* predicate registers: */
6829 total += 64;
6830 for (; i < total; ++i)
6831 {
6832 sprintf (name, "p%d", i - REG_P);
6833 md.regsym[i] = declare_register (name, i);
6834 }
6835
6836 /* branch registers: */
6837 total += 8;
6838 for (; i < total; ++i)
6839 {
6840 sprintf (name, "b%d", i - REG_BR);
6841 md.regsym[i] = declare_register (name, i);
6842 }
6843
6844 md.regsym[REG_IP] = declare_register ("ip", REG_IP);
6845 md.regsym[REG_CFM] = declare_register ("cfm", REG_CFM);
6846 md.regsym[REG_PR] = declare_register ("pr", REG_PR);
6847 md.regsym[REG_PR_ROT] = declare_register ("pr.rot", REG_PR_ROT);
6848 md.regsym[REG_PSR] = declare_register ("psr", REG_PSR);
6849 md.regsym[REG_PSR_L] = declare_register ("psr.l", REG_PSR_L);
6850 md.regsym[REG_PSR_UM] = declare_register ("psr.um", REG_PSR_UM);
6851
6852 for (i = 0; i < NELEMS (indirect_reg); ++i)
6853 {
6854 regnum = indirect_reg[i].regnum;
6855 md.regsym[regnum] = declare_register (indirect_reg[i].name, regnum);
6856 }
6857
6858 /* define synonyms for application registers: */
6859 for (i = REG_AR; i < REG_AR + NELEMS (ar); ++i)
6860 md.regsym[i] = declare_register (ar[i - REG_AR].name,
6861 REG_AR + ar[i - REG_AR].regnum);
6862
6863 /* define synonyms for control registers: */
6864 for (i = REG_CR; i < REG_CR + NELEMS (cr); ++i)
6865 md.regsym[i] = declare_register (cr[i - REG_CR].name,
6866 REG_CR + cr[i - REG_CR].regnum);
6867
6868 declare_register ("gp", REG_GR + 1);
6869 declare_register ("sp", REG_GR + 12);
6870 declare_register ("rp", REG_BR + 0);
6871
6872 /* pseudo-registers used to specify unwind info: */
6873 declare_register ("psp", REG_PSP);
6874
6875 declare_register_set ("ret", 4, REG_GR + 8);
6876 declare_register_set ("farg", 8, REG_FR + 8);
6877 declare_register_set ("fret", 8, REG_FR + 8);
6878
6879 for (i = 0; i < NELEMS (const_bits); ++i)
6880 {
6881 err = hash_insert (md.const_hash, const_bits[i].name,
6882 (PTR) (const_bits + i));
6883 if (err)
6884 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
6885 name, err);
6886 }
6887
6888 /* Set the architecture and machine depending on defaults and command line
6889 options. */
6890 if (md.flags & EF_IA_64_ABI64)
6891 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
6892 else
6893 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
6894
6895 if (! ok)
6896 as_warn (_("Could not set architecture and machine"));
6897
6898 /* Set the pointer size and pointer shift size depending on md.flags */
6899
6900 if (md.flags & EF_IA_64_ABI64)
6901 {
6902 md.pointer_size = 8; /* pointers are 8 bytes */
6903 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
6904 }
6905 else
6906 {
6907 md.pointer_size = 4; /* pointers are 4 bytes */
6908 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
6909 }
6910
6911 md.mem_offset.hint = 0;
6912 md.path = 0;
6913 md.maxpaths = 0;
6914 md.entry_labels = NULL;
6915 }
6916
6917 /* Set the elf type to 64 bit ABI by default. Cannot do this in md_begin
6918 because that is called after md_parse_option which is where we do the
6919 dynamic changing of md.flags based on -mlp64 or -milp32. Also, set the
6920 default endianness. */
6921
6922 void
6923 ia64_init (argc, argv)
6924 int argc ATTRIBUTE_UNUSED;
6925 char **argv ATTRIBUTE_UNUSED;
6926 {
6927 md.flags = MD_FLAGS_DEFAULT;
6928 }
6929
6930 /* Return a string for the target object file format. */
6931
6932 const char *
6933 ia64_target_format ()
6934 {
6935 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
6936 {
6937 if (md.flags & EF_IA_64_BE)
6938 {
6939 if (md.flags & EF_IA_64_ABI64)
6940 #if defined(TE_AIX50)
6941 return "elf64-ia64-aix-big";
6942 #elif defined(TE_HPUX)
6943 return "elf64-ia64-hpux-big";
6944 #else
6945 return "elf64-ia64-big";
6946 #endif
6947 else
6948 #if defined(TE_AIX50)
6949 return "elf32-ia64-aix-big";
6950 #elif defined(TE_HPUX)
6951 return "elf32-ia64-hpux-big";
6952 #else
6953 return "elf32-ia64-big";
6954 #endif
6955 }
6956 else
6957 {
6958 if (md.flags & EF_IA_64_ABI64)
6959 #ifdef TE_AIX50
6960 return "elf64-ia64-aix-little";
6961 #else
6962 return "elf64-ia64-little";
6963 #endif
6964 else
6965 #ifdef TE_AIX50
6966 return "elf32-ia64-aix-little";
6967 #else
6968 return "elf32-ia64-little";
6969 #endif
6970 }
6971 }
6972 else
6973 return "unknown-format";
6974 }
6975
6976 void
6977 ia64_end_of_source ()
6978 {
6979 /* terminate insn group upon reaching end of file: */
6980 insn_group_break (1, 0, 0);
6981
6982 /* emits slots we haven't written yet: */
6983 ia64_flush_insns ();
6984
6985 bfd_set_private_flags (stdoutput, md.flags);
6986
6987 md.mem_offset.hint = 0;
6988 }
6989
6990 void
6991 ia64_start_line ()
6992 {
6993 if (md.qp.X_op == O_register)
6994 as_bad ("qualifying predicate not followed by instruction");
6995 md.qp.X_op = O_absent;
6996
6997 if (ignore_input ())
6998 return;
6999
7000 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7001 {
7002 if (md.detect_dv && !md.explicit_mode)
7003 as_warn (_("Explicit stops are ignored in auto mode"));
7004 else
7005 insn_group_break (1, 0, 0);
7006 }
7007 }
7008
7009 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7010 labels. */
7011 static int defining_tag = 0;
7012
7013 int
7014 ia64_unrecognized_line (ch)
7015 int ch;
7016 {
7017 switch (ch)
7018 {
7019 case '(':
7020 expression (&md.qp);
7021 if (*input_line_pointer++ != ')')
7022 {
7023 as_bad ("Expected ')'");
7024 return 0;
7025 }
7026 if (md.qp.X_op != O_register)
7027 {
7028 as_bad ("Qualifying predicate expected");
7029 return 0;
7030 }
7031 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7032 {
7033 as_bad ("Predicate register expected");
7034 return 0;
7035 }
7036 return 1;
7037
7038 case '{':
7039 if (md.manual_bundling)
7040 as_warn ("Found '{' when manual bundling is already turned on");
7041 else
7042 CURR_SLOT.manual_bundling_on = 1;
7043 md.manual_bundling = 1;
7044
7045 /* Bundling is only acceptable in explicit mode
7046 or when in default automatic mode. */
7047 if (md.detect_dv && !md.explicit_mode)
7048 {
7049 if (!md.mode_explicitly_set
7050 && !md.default_explicit_mode)
7051 dot_dv_mode ('E');
7052 else
7053 as_warn (_("Found '{' after explicit switch to automatic mode"));
7054 }
7055 return 1;
7056
7057 case '}':
7058 if (!md.manual_bundling)
7059 as_warn ("Found '}' when manual bundling is off");
7060 else
7061 PREV_SLOT.manual_bundling_off = 1;
7062 md.manual_bundling = 0;
7063
7064 /* switch back to automatic mode, if applicable */
7065 if (md.detect_dv
7066 && md.explicit_mode
7067 && !md.mode_explicitly_set
7068 && !md.default_explicit_mode)
7069 dot_dv_mode ('A');
7070
7071 /* Allow '{' to follow on the same line. We also allow ";;", but that
7072 happens automatically because ';' is an end of line marker. */
7073 SKIP_WHITESPACE ();
7074 if (input_line_pointer[0] == '{')
7075 {
7076 input_line_pointer++;
7077 return ia64_unrecognized_line ('{');
7078 }
7079
7080 demand_empty_rest_of_line ();
7081 return 1;
7082
7083 case '[':
7084 {
7085 char *s;
7086 char c;
7087 symbolS *tag;
7088 int temp;
7089
7090 if (md.qp.X_op == O_register)
7091 {
7092 as_bad ("Tag must come before qualifying predicate.");
7093 return 0;
7094 }
7095
7096 /* This implements just enough of read_a_source_file in read.c to
7097 recognize labels. */
7098 if (is_name_beginner (*input_line_pointer))
7099 {
7100 s = input_line_pointer;
7101 c = get_symbol_end ();
7102 }
7103 else if (LOCAL_LABELS_FB
7104 && ISDIGIT (*input_line_pointer))
7105 {
7106 temp = 0;
7107 while (ISDIGIT (*input_line_pointer))
7108 temp = (temp * 10) + *input_line_pointer++ - '0';
7109 fb_label_instance_inc (temp);
7110 s = fb_label_name (temp, 0);
7111 c = *input_line_pointer;
7112 }
7113 else
7114 {
7115 s = NULL;
7116 c = '\0';
7117 }
7118 if (c != ':')
7119 {
7120 /* Put ':' back for error messages' sake. */
7121 *input_line_pointer++ = ':';
7122 as_bad ("Expected ':'");
7123 return 0;
7124 }
7125
7126 defining_tag = 1;
7127 tag = colon (s);
7128 defining_tag = 0;
7129 /* Put ':' back for error messages' sake. */
7130 *input_line_pointer++ = ':';
7131 if (*input_line_pointer++ != ']')
7132 {
7133 as_bad ("Expected ']'");
7134 return 0;
7135 }
7136 if (! tag)
7137 {
7138 as_bad ("Tag name expected");
7139 return 0;
7140 }
7141 return 1;
7142 }
7143
7144 default:
7145 break;
7146 }
7147
7148 /* Not a valid line. */
7149 return 0;
7150 }
7151
7152 void
7153 ia64_frob_label (sym)
7154 struct symbol *sym;
7155 {
7156 struct label_fix *fix;
7157
7158 /* Tags need special handling since they are not bundle breaks like
7159 labels. */
7160 if (defining_tag)
7161 {
7162 fix = obstack_alloc (&notes, sizeof (*fix));
7163 fix->sym = sym;
7164 fix->next = CURR_SLOT.tag_fixups;
7165 CURR_SLOT.tag_fixups = fix;
7166
7167 return;
7168 }
7169
7170 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7171 {
7172 md.last_text_seg = now_seg;
7173 fix = obstack_alloc (&notes, sizeof (*fix));
7174 fix->sym = sym;
7175 fix->next = CURR_SLOT.label_fixups;
7176 CURR_SLOT.label_fixups = fix;
7177
7178 /* Keep track of how many code entry points we've seen. */
7179 if (md.path == md.maxpaths)
7180 {
7181 md.maxpaths += 20;
7182 md.entry_labels = (const char **)
7183 xrealloc ((void *) md.entry_labels,
7184 md.maxpaths * sizeof (char *));
7185 }
7186 md.entry_labels[md.path++] = S_GET_NAME (sym);
7187 }
7188 }
7189
7190 #ifdef TE_HPUX
7191 /* The HP-UX linker will give unresolved symbol errors for symbols
7192 that are declared but unused. This routine removes declared,
7193 unused symbols from an object. */
7194 int
7195 ia64_frob_symbol (sym)
7196 struct symbol *sym;
7197 {
7198 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7199 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7200 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7201 && ! S_IS_EXTERNAL (sym)))
7202 return 1;
7203 return 0;
7204 }
7205 #endif
7206
7207 void
7208 ia64_flush_pending_output ()
7209 {
7210 if (!md.keep_pending_output
7211 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7212 {
7213 /* ??? This causes many unnecessary stop bits to be emitted.
7214 Unfortunately, it isn't clear if it is safe to remove this. */
7215 insn_group_break (1, 0, 0);
7216 ia64_flush_insns ();
7217 }
7218 }
7219
7220 /* Do ia64-specific expression optimization. All that's done here is
7221 to transform index expressions that are either due to the indexing
7222 of rotating registers or due to the indexing of indirect register
7223 sets. */
7224 int
7225 ia64_optimize_expr (l, op, r)
7226 expressionS *l;
7227 operatorT op;
7228 expressionS *r;
7229 {
7230 unsigned num_regs;
7231
7232 if (op == O_index)
7233 {
7234 if (l->X_op == O_register && r->X_op == O_constant)
7235 {
7236 num_regs = (l->X_add_number >> 16);
7237 if ((unsigned) r->X_add_number >= num_regs)
7238 {
7239 if (!num_regs)
7240 as_bad ("No current frame");
7241 else
7242 as_bad ("Index out of range 0..%u", num_regs - 1);
7243 r->X_add_number = 0;
7244 }
7245 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7246 return 1;
7247 }
7248 else if (l->X_op == O_register && r->X_op == O_register)
7249 {
7250 if (l->X_add_number < IND_CPUID || l->X_add_number > IND_RR
7251 || l->X_add_number == IND_MEM)
7252 {
7253 as_bad ("Indirect register set name expected");
7254 l->X_add_number = IND_CPUID;
7255 }
7256 l->X_op = O_index;
7257 l->X_op_symbol = md.regsym[l->X_add_number];
7258 l->X_add_number = r->X_add_number;
7259 return 1;
7260 }
7261 }
7262 return 0;
7263 }
7264
7265 int
7266 ia64_parse_name (name, e)
7267 char *name;
7268 expressionS *e;
7269 {
7270 struct const_desc *cdesc;
7271 struct dynreg *dr = 0;
7272 unsigned int regnum;
7273 struct symbol *sym;
7274 char *end;
7275
7276 /* first see if NAME is a known register name: */
7277 sym = hash_find (md.reg_hash, name);
7278 if (sym)
7279 {
7280 e->X_op = O_register;
7281 e->X_add_number = S_GET_VALUE (sym);
7282 return 1;
7283 }
7284
7285 cdesc = hash_find (md.const_hash, name);
7286 if (cdesc)
7287 {
7288 e->X_op = O_constant;
7289 e->X_add_number = cdesc->value;
7290 return 1;
7291 }
7292
7293 /* check for inN, locN, or outN: */
7294 switch (name[0])
7295 {
7296 case 'i':
7297 if (name[1] == 'n' && ISDIGIT (name[2]))
7298 {
7299 dr = &md.in;
7300 name += 2;
7301 }
7302 break;
7303
7304 case 'l':
7305 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
7306 {
7307 dr = &md.loc;
7308 name += 3;
7309 }
7310 break;
7311
7312 case 'o':
7313 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
7314 {
7315 dr = &md.out;
7316 name += 3;
7317 }
7318 break;
7319
7320 default:
7321 break;
7322 }
7323
7324 if (dr)
7325 {
7326 /* The name is inN, locN, or outN; parse the register number. */
7327 regnum = strtoul (name, &end, 10);
7328 if (end > name && *end == '\0')
7329 {
7330 if ((unsigned) regnum >= dr->num_regs)
7331 {
7332 if (!dr->num_regs)
7333 as_bad ("No current frame");
7334 else
7335 as_bad ("Register number out of range 0..%u",
7336 dr->num_regs - 1);
7337 regnum = 0;
7338 }
7339 e->X_op = O_register;
7340 e->X_add_number = dr->base + regnum;
7341 return 1;
7342 }
7343 }
7344
7345 if ((dr = hash_find (md.dynreg_hash, name)))
7346 {
7347 /* We've got ourselves the name of a rotating register set.
7348 Store the base register number in the low 16 bits of
7349 X_add_number and the size of the register set in the top 16
7350 bits. */
7351 e->X_op = O_register;
7352 e->X_add_number = dr->base | (dr->num_regs << 16);
7353 return 1;
7354 }
7355 return 0;
7356 }
7357
7358 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
7359
7360 char *
7361 ia64_canonicalize_symbol_name (name)
7362 char *name;
7363 {
7364 size_t len = strlen (name);
7365 if (len > 1 && name[len - 1] == '#')
7366 name[len - 1] = '\0';
7367 return name;
7368 }
7369
7370 /* Return true if idesc is a conditional branch instruction. This excludes
7371 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
7372 because they always read/write resources regardless of the value of the
7373 qualifying predicate. br.ia must always use p0, and hence is always
7374 taken. Thus this function returns true for branches which can fall
7375 through, and which use no resources if they do fall through. */
7376
7377 static int
7378 is_conditional_branch (idesc)
7379 struct ia64_opcode *idesc;
7380 {
7381 /* br is a conditional branch. Everything that starts with br. except
7382 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
7383 Everything that starts with brl is a conditional branch. */
7384 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
7385 && (idesc->name[2] == '\0'
7386 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
7387 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
7388 || idesc->name[2] == 'l'
7389 /* br.cond, br.call, br.clr */
7390 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
7391 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
7392 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
7393 }
7394
7395 /* Return whether the given opcode is a taken branch. If there's any doubt,
7396 returns zero. */
7397
7398 static int
7399 is_taken_branch (idesc)
7400 struct ia64_opcode *idesc;
7401 {
7402 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
7403 || strncmp (idesc->name, "br.ia", 5) == 0);
7404 }
7405
7406 /* Return whether the given opcode is an interruption or rfi. If there's any
7407 doubt, returns zero. */
7408
7409 static int
7410 is_interruption_or_rfi (idesc)
7411 struct ia64_opcode *idesc;
7412 {
7413 if (strcmp (idesc->name, "rfi") == 0)
7414 return 1;
7415 return 0;
7416 }
7417
7418 /* Returns the index of the given dependency in the opcode's list of chks, or
7419 -1 if there is no dependency. */
7420
7421 static int
7422 depends_on (depind, idesc)
7423 int depind;
7424 struct ia64_opcode *idesc;
7425 {
7426 int i;
7427 const struct ia64_opcode_dependency *dep = idesc->dependencies;
7428 for (i = 0; i < dep->nchks; i++)
7429 {
7430 if (depind == DEP (dep->chks[i]))
7431 return i;
7432 }
7433 return -1;
7434 }
7435
7436 /* Determine a set of specific resources used for a particular resource
7437 class. Returns the number of specific resources identified For those
7438 cases which are not determinable statically, the resource returned is
7439 marked nonspecific.
7440
7441 Meanings of value in 'NOTE':
7442 1) only read/write when the register number is explicitly encoded in the
7443 insn.
7444 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
7445 accesses CFM when qualifying predicate is in the rotating region.
7446 3) general register value is used to specify an indirect register; not
7447 determinable statically.
7448 4) only read the given resource when bits 7:0 of the indirect index
7449 register value does not match the register number of the resource; not
7450 determinable statically.
7451 5) all rules are implementation specific.
7452 6) only when both the index specified by the reader and the index specified
7453 by the writer have the same value in bits 63:61; not determinable
7454 statically.
7455 7) only access the specified resource when the corresponding mask bit is
7456 set
7457 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
7458 only read when these insns reference FR2-31
7459 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
7460 written when these insns write FR32-127
7461 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
7462 instruction
7463 11) The target predicates are written independently of PR[qp], but source
7464 registers are only read if PR[qp] is true. Since the state of PR[qp]
7465 cannot statically be determined, all source registers are marked used.
7466 12) This insn only reads the specified predicate register when that
7467 register is the PR[qp].
7468 13) This reference to ld-c only applies to teh GR whose value is loaded
7469 with data returned from memory, not the post-incremented address register.
7470 14) The RSE resource includes the implementation-specific RSE internal
7471 state resources. At least one (and possibly more) of these resources are
7472 read by each instruction listed in IC:rse-readers. At least one (and
7473 possibly more) of these resources are written by each insn listed in
7474 IC:rse-writers.
7475 15+16) Represents reserved instructions, which the assembler does not
7476 generate.
7477
7478 Memory resources (i.e. locations in memory) are *not* marked or tracked by
7479 this code; there are no dependency violations based on memory access.
7480 */
7481
7482 #define MAX_SPECS 256
7483 #define DV_CHK 1
7484 #define DV_REG 0
7485
7486 static int
7487 specify_resource (dep, idesc, type, specs, note, path)
7488 const struct ia64_dependency *dep;
7489 struct ia64_opcode *idesc;
7490 int type; /* is this a DV chk or a DV reg? */
7491 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
7492 int note; /* resource note for this insn's usage */
7493 int path; /* which execution path to examine */
7494 {
7495 int count = 0;
7496 int i;
7497 int rsrc_write = 0;
7498 struct rsrc tmpl;
7499
7500 if (dep->mode == IA64_DV_WAW
7501 || (dep->mode == IA64_DV_RAW && type == DV_REG)
7502 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
7503 rsrc_write = 1;
7504
7505 /* template for any resources we identify */
7506 tmpl.dependency = dep;
7507 tmpl.note = note;
7508 tmpl.insn_srlz = tmpl.data_srlz = 0;
7509 tmpl.qp_regno = CURR_SLOT.qp_regno;
7510 tmpl.link_to_qp_branch = 1;
7511 tmpl.mem_offset.hint = 0;
7512 tmpl.specific = 1;
7513 tmpl.index = 0;
7514 tmpl.cmp_type = CMP_NONE;
7515
7516 #define UNHANDLED \
7517 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
7518 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
7519 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
7520
7521 /* we don't need to track these */
7522 if (dep->semantics == IA64_DVS_NONE)
7523 return 0;
7524
7525 switch (dep->specifier)
7526 {
7527 case IA64_RS_AR_K:
7528 if (note == 1)
7529 {
7530 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7531 {
7532 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7533 if (regno >= 0 && regno <= 7)
7534 {
7535 specs[count] = tmpl;
7536 specs[count++].index = regno;
7537 }
7538 }
7539 }
7540 else if (note == 0)
7541 {
7542 for (i = 0; i < 8; i++)
7543 {
7544 specs[count] = tmpl;
7545 specs[count++].index = i;
7546 }
7547 }
7548 else
7549 {
7550 UNHANDLED;
7551 }
7552 break;
7553
7554 case IA64_RS_AR_UNAT:
7555 /* This is a mov =AR or mov AR= instruction. */
7556 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7557 {
7558 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7559 if (regno == AR_UNAT)
7560 {
7561 specs[count++] = tmpl;
7562 }
7563 }
7564 else
7565 {
7566 /* This is a spill/fill, or other instruction that modifies the
7567 unat register. */
7568
7569 /* Unless we can determine the specific bits used, mark the whole
7570 thing; bits 8:3 of the memory address indicate the bit used in
7571 UNAT. The .mem.offset hint may be used to eliminate a small
7572 subset of conflicts. */
7573 specs[count] = tmpl;
7574 if (md.mem_offset.hint)
7575 {
7576 if (md.debug_dv)
7577 fprintf (stderr, " Using hint for spill/fill\n");
7578 /* The index isn't actually used, just set it to something
7579 approximating the bit index. */
7580 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
7581 specs[count].mem_offset.hint = 1;
7582 specs[count].mem_offset.offset = md.mem_offset.offset;
7583 specs[count++].mem_offset.base = md.mem_offset.base;
7584 }
7585 else
7586 {
7587 specs[count++].specific = 0;
7588 }
7589 }
7590 break;
7591
7592 case IA64_RS_AR:
7593 if (note == 1)
7594 {
7595 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7596 {
7597 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7598 if ((regno >= 8 && regno <= 15)
7599 || (regno >= 20 && regno <= 23)
7600 || (regno >= 31 && regno <= 39)
7601 || (regno >= 41 && regno <= 47)
7602 || (regno >= 67 && regno <= 111))
7603 {
7604 specs[count] = tmpl;
7605 specs[count++].index = regno;
7606 }
7607 }
7608 }
7609 else
7610 {
7611 UNHANDLED;
7612 }
7613 break;
7614
7615 case IA64_RS_ARb:
7616 if (note == 1)
7617 {
7618 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7619 {
7620 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7621 if ((regno >= 48 && regno <= 63)
7622 || (regno >= 112 && regno <= 127))
7623 {
7624 specs[count] = tmpl;
7625 specs[count++].index = regno;
7626 }
7627 }
7628 }
7629 else if (note == 0)
7630 {
7631 for (i = 48; i < 64; i++)
7632 {
7633 specs[count] = tmpl;
7634 specs[count++].index = i;
7635 }
7636 for (i = 112; i < 128; i++)
7637 {
7638 specs[count] = tmpl;
7639 specs[count++].index = i;
7640 }
7641 }
7642 else
7643 {
7644 UNHANDLED;
7645 }
7646 break;
7647
7648 case IA64_RS_BR:
7649 if (note != 1)
7650 {
7651 UNHANDLED;
7652 }
7653 else
7654 {
7655 if (rsrc_write)
7656 {
7657 for (i = 0; i < idesc->num_outputs; i++)
7658 if (idesc->operands[i] == IA64_OPND_B1
7659 || idesc->operands[i] == IA64_OPND_B2)
7660 {
7661 specs[count] = tmpl;
7662 specs[count++].index =
7663 CURR_SLOT.opnd[i].X_add_number - REG_BR;
7664 }
7665 }
7666 else
7667 {
7668 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
7669 if (idesc->operands[i] == IA64_OPND_B1
7670 || idesc->operands[i] == IA64_OPND_B2)
7671 {
7672 specs[count] = tmpl;
7673 specs[count++].index =
7674 CURR_SLOT.opnd[i].X_add_number - REG_BR;
7675 }
7676 }
7677 }
7678 break;
7679
7680 case IA64_RS_CPUID: /* four or more registers */
7681 if (note == 3)
7682 {
7683 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
7684 {
7685 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7686 if (regno >= 0 && regno < NELEMS (gr_values)
7687 && KNOWN (regno))
7688 {
7689 specs[count] = tmpl;
7690 specs[count++].index = gr_values[regno].value & 0xFF;
7691 }
7692 else
7693 {
7694 specs[count] = tmpl;
7695 specs[count++].specific = 0;
7696 }
7697 }
7698 }
7699 else
7700 {
7701 UNHANDLED;
7702 }
7703 break;
7704
7705 case IA64_RS_DBR: /* four or more registers */
7706 if (note == 3)
7707 {
7708 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
7709 {
7710 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7711 if (regno >= 0 && regno < NELEMS (gr_values)
7712 && KNOWN (regno))
7713 {
7714 specs[count] = tmpl;
7715 specs[count++].index = gr_values[regno].value & 0xFF;
7716 }
7717 else
7718 {
7719 specs[count] = tmpl;
7720 specs[count++].specific = 0;
7721 }
7722 }
7723 }
7724 else if (note == 0 && !rsrc_write)
7725 {
7726 specs[count] = tmpl;
7727 specs[count++].specific = 0;
7728 }
7729 else
7730 {
7731 UNHANDLED;
7732 }
7733 break;
7734
7735 case IA64_RS_IBR: /* four or more registers */
7736 if (note == 3)
7737 {
7738 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
7739 {
7740 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7741 if (regno >= 0 && regno < NELEMS (gr_values)
7742 && KNOWN (regno))
7743 {
7744 specs[count] = tmpl;
7745 specs[count++].index = gr_values[regno].value & 0xFF;
7746 }
7747 else
7748 {
7749 specs[count] = tmpl;
7750 specs[count++].specific = 0;
7751 }
7752 }
7753 }
7754 else
7755 {
7756 UNHANDLED;
7757 }
7758 break;
7759
7760 case IA64_RS_MSR:
7761 if (note == 5)
7762 {
7763 /* These are implementation specific. Force all references to
7764 conflict with all other references. */
7765 specs[count] = tmpl;
7766 specs[count++].specific = 0;
7767 }
7768 else
7769 {
7770 UNHANDLED;
7771 }
7772 break;
7773
7774 case IA64_RS_PKR: /* 16 or more registers */
7775 if (note == 3 || note == 4)
7776 {
7777 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
7778 {
7779 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7780 if (regno >= 0 && regno < NELEMS (gr_values)
7781 && KNOWN (regno))
7782 {
7783 if (note == 3)
7784 {
7785 specs[count] = tmpl;
7786 specs[count++].index = gr_values[regno].value & 0xFF;
7787 }
7788 else
7789 for (i = 0; i < NELEMS (gr_values); i++)
7790 {
7791 /* Uses all registers *except* the one in R3. */
7792 if ((unsigned)i != (gr_values[regno].value & 0xFF))
7793 {
7794 specs[count] = tmpl;
7795 specs[count++].index = i;
7796 }
7797 }
7798 }
7799 else
7800 {
7801 specs[count] = tmpl;
7802 specs[count++].specific = 0;
7803 }
7804 }
7805 }
7806 else if (note == 0)
7807 {
7808 /* probe et al. */
7809 specs[count] = tmpl;
7810 specs[count++].specific = 0;
7811 }
7812 break;
7813
7814 case IA64_RS_PMC: /* four or more registers */
7815 if (note == 3)
7816 {
7817 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
7818 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
7819
7820 {
7821 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
7822 ? 1 : !rsrc_write);
7823 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
7824 if (regno >= 0 && regno < NELEMS (gr_values)
7825 && KNOWN (regno))
7826 {
7827 specs[count] = tmpl;
7828 specs[count++].index = gr_values[regno].value & 0xFF;
7829 }
7830 else
7831 {
7832 specs[count] = tmpl;
7833 specs[count++].specific = 0;
7834 }
7835 }
7836 }
7837 else
7838 {
7839 UNHANDLED;
7840 }
7841 break;
7842
7843 case IA64_RS_PMD: /* four or more registers */
7844 if (note == 3)
7845 {
7846 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
7847 {
7848 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7849 if (regno >= 0 && regno < NELEMS (gr_values)
7850 && KNOWN (regno))
7851 {
7852 specs[count] = tmpl;
7853 specs[count++].index = gr_values[regno].value & 0xFF;
7854 }
7855 else
7856 {
7857 specs[count] = tmpl;
7858 specs[count++].specific = 0;
7859 }
7860 }
7861 }
7862 else
7863 {
7864 UNHANDLED;
7865 }
7866 break;
7867
7868 case IA64_RS_RR: /* eight registers */
7869 if (note == 6)
7870 {
7871 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
7872 {
7873 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7874 if (regno >= 0 && regno < NELEMS (gr_values)
7875 && KNOWN (regno))
7876 {
7877 specs[count] = tmpl;
7878 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
7879 }
7880 else
7881 {
7882 specs[count] = tmpl;
7883 specs[count++].specific = 0;
7884 }
7885 }
7886 }
7887 else if (note == 0 && !rsrc_write)
7888 {
7889 specs[count] = tmpl;
7890 specs[count++].specific = 0;
7891 }
7892 else
7893 {
7894 UNHANDLED;
7895 }
7896 break;
7897
7898 case IA64_RS_CR_IRR:
7899 if (note == 0)
7900 {
7901 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
7902 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
7903 if (rsrc_write
7904 && idesc->operands[1] == IA64_OPND_CR3
7905 && regno == CR_IVR)
7906 {
7907 for (i = 0; i < 4; i++)
7908 {
7909 specs[count] = tmpl;
7910 specs[count++].index = CR_IRR0 + i;
7911 }
7912 }
7913 }
7914 else if (note == 1)
7915 {
7916 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7917 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
7918 && regno >= CR_IRR0
7919 && regno <= CR_IRR3)
7920 {
7921 specs[count] = tmpl;
7922 specs[count++].index = regno;
7923 }
7924 }
7925 else
7926 {
7927 UNHANDLED;
7928 }
7929 break;
7930
7931 case IA64_RS_CR_LRR:
7932 if (note != 1)
7933 {
7934 UNHANDLED;
7935 }
7936 else
7937 {
7938 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7939 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
7940 && (regno == CR_LRR0 || regno == CR_LRR1))
7941 {
7942 specs[count] = tmpl;
7943 specs[count++].index = regno;
7944 }
7945 }
7946 break;
7947
7948 case IA64_RS_CR:
7949 if (note == 1)
7950 {
7951 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
7952 {
7953 specs[count] = tmpl;
7954 specs[count++].index =
7955 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7956 }
7957 }
7958 else
7959 {
7960 UNHANDLED;
7961 }
7962 break;
7963
7964 case IA64_RS_FR:
7965 case IA64_RS_FRb:
7966 if (note != 1)
7967 {
7968 UNHANDLED;
7969 }
7970 else if (rsrc_write)
7971 {
7972 if (dep->specifier == IA64_RS_FRb
7973 && idesc->operands[0] == IA64_OPND_F1)
7974 {
7975 specs[count] = tmpl;
7976 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
7977 }
7978 }
7979 else
7980 {
7981 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
7982 {
7983 if (idesc->operands[i] == IA64_OPND_F2
7984 || idesc->operands[i] == IA64_OPND_F3
7985 || idesc->operands[i] == IA64_OPND_F4)
7986 {
7987 specs[count] = tmpl;
7988 specs[count++].index =
7989 CURR_SLOT.opnd[i].X_add_number - REG_FR;
7990 }
7991 }
7992 }
7993 break;
7994
7995 case IA64_RS_GR:
7996 if (note == 13)
7997 {
7998 /* This reference applies only to the GR whose value is loaded with
7999 data returned from memory. */
8000 specs[count] = tmpl;
8001 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8002 }
8003 else if (note == 1)
8004 {
8005 if (rsrc_write)
8006 {
8007 for (i = 0; i < idesc->num_outputs; i++)
8008 if (idesc->operands[i] == IA64_OPND_R1
8009 || idesc->operands[i] == IA64_OPND_R2
8010 || idesc->operands[i] == IA64_OPND_R3)
8011 {
8012 specs[count] = tmpl;
8013 specs[count++].index =
8014 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8015 }
8016 if (idesc->flags & IA64_OPCODE_POSTINC)
8017 for (i = 0; i < NELEMS (idesc->operands); i++)
8018 if (idesc->operands[i] == IA64_OPND_MR3)
8019 {
8020 specs[count] = tmpl;
8021 specs[count++].index =
8022 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8023 }
8024 }
8025 else
8026 {
8027 /* Look for anything that reads a GR. */
8028 for (i = 0; i < NELEMS (idesc->operands); i++)
8029 {
8030 if (idesc->operands[i] == IA64_OPND_MR3
8031 || idesc->operands[i] == IA64_OPND_CPUID_R3
8032 || idesc->operands[i] == IA64_OPND_DBR_R3
8033 || idesc->operands[i] == IA64_OPND_IBR_R3
8034 || idesc->operands[i] == IA64_OPND_MSR_R3
8035 || idesc->operands[i] == IA64_OPND_PKR_R3
8036 || idesc->operands[i] == IA64_OPND_PMC_R3
8037 || idesc->operands[i] == IA64_OPND_PMD_R3
8038 || idesc->operands[i] == IA64_OPND_RR_R3
8039 || ((i >= idesc->num_outputs)
8040 && (idesc->operands[i] == IA64_OPND_R1
8041 || idesc->operands[i] == IA64_OPND_R2
8042 || idesc->operands[i] == IA64_OPND_R3
8043 /* addl source register. */
8044 || idesc->operands[i] == IA64_OPND_R3_2)))
8045 {
8046 specs[count] = tmpl;
8047 specs[count++].index =
8048 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8049 }
8050 }
8051 }
8052 }
8053 else
8054 {
8055 UNHANDLED;
8056 }
8057 break;
8058
8059 /* This is the same as IA64_RS_PRr, except that the register range is
8060 from 1 - 15, and there are no rotating register reads/writes here. */
8061 case IA64_RS_PR:
8062 if (note == 0)
8063 {
8064 for (i = 1; i < 16; i++)
8065 {
8066 specs[count] = tmpl;
8067 specs[count++].index = i;
8068 }
8069 }
8070 else if (note == 7)
8071 {
8072 valueT mask = 0;
8073 /* Mark only those registers indicated by the mask. */
8074 if (rsrc_write)
8075 {
8076 mask = CURR_SLOT.opnd[2].X_add_number;
8077 for (i = 1; i < 16; i++)
8078 if (mask & ((valueT) 1 << i))
8079 {
8080 specs[count] = tmpl;
8081 specs[count++].index = i;
8082 }
8083 }
8084 else
8085 {
8086 UNHANDLED;
8087 }
8088 }
8089 else if (note == 11) /* note 11 implies note 1 as well */
8090 {
8091 if (rsrc_write)
8092 {
8093 for (i = 0; i < idesc->num_outputs; i++)
8094 {
8095 if (idesc->operands[i] == IA64_OPND_P1
8096 || idesc->operands[i] == IA64_OPND_P2)
8097 {
8098 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8099 if (regno >= 1 && regno < 16)
8100 {
8101 specs[count] = tmpl;
8102 specs[count++].index = regno;
8103 }
8104 }
8105 }
8106 }
8107 else
8108 {
8109 UNHANDLED;
8110 }
8111 }
8112 else if (note == 12)
8113 {
8114 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8115 {
8116 specs[count] = tmpl;
8117 specs[count++].index = CURR_SLOT.qp_regno;
8118 }
8119 }
8120 else if (note == 1)
8121 {
8122 if (rsrc_write)
8123 {
8124 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8125 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8126 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8127 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8128
8129 if ((idesc->operands[0] == IA64_OPND_P1
8130 || idesc->operands[0] == IA64_OPND_P2)
8131 && p1 >= 1 && p1 < 16)
8132 {
8133 specs[count] = tmpl;
8134 specs[count].cmp_type =
8135 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8136 specs[count++].index = p1;
8137 }
8138 if ((idesc->operands[1] == IA64_OPND_P1
8139 || idesc->operands[1] == IA64_OPND_P2)
8140 && p2 >= 1 && p2 < 16)
8141 {
8142 specs[count] = tmpl;
8143 specs[count].cmp_type =
8144 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8145 specs[count++].index = p2;
8146 }
8147 }
8148 else
8149 {
8150 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8151 {
8152 specs[count] = tmpl;
8153 specs[count++].index = CURR_SLOT.qp_regno;
8154 }
8155 if (idesc->operands[1] == IA64_OPND_PR)
8156 {
8157 for (i = 1; i < 16; i++)
8158 {
8159 specs[count] = tmpl;
8160 specs[count++].index = i;
8161 }
8162 }
8163 }
8164 }
8165 else
8166 {
8167 UNHANDLED;
8168 }
8169 break;
8170
8171 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8172 simplified cases of this. */
8173 case IA64_RS_PRr:
8174 if (note == 0)
8175 {
8176 for (i = 16; i < 63; i++)
8177 {
8178 specs[count] = tmpl;
8179 specs[count++].index = i;
8180 }
8181 }
8182 else if (note == 7)
8183 {
8184 valueT mask = 0;
8185 /* Mark only those registers indicated by the mask. */
8186 if (rsrc_write
8187 && idesc->operands[0] == IA64_OPND_PR)
8188 {
8189 mask = CURR_SLOT.opnd[2].X_add_number;
8190 if (mask & ((valueT) 1 << 16))
8191 for (i = 16; i < 63; i++)
8192 {
8193 specs[count] = tmpl;
8194 specs[count++].index = i;
8195 }
8196 }
8197 else if (rsrc_write
8198 && idesc->operands[0] == IA64_OPND_PR_ROT)
8199 {
8200 for (i = 16; i < 63; i++)
8201 {
8202 specs[count] = tmpl;
8203 specs[count++].index = i;
8204 }
8205 }
8206 else
8207 {
8208 UNHANDLED;
8209 }
8210 }
8211 else if (note == 11) /* note 11 implies note 1 as well */
8212 {
8213 if (rsrc_write)
8214 {
8215 for (i = 0; i < idesc->num_outputs; i++)
8216 {
8217 if (idesc->operands[i] == IA64_OPND_P1
8218 || idesc->operands[i] == IA64_OPND_P2)
8219 {
8220 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8221 if (regno >= 16 && regno < 63)
8222 {
8223 specs[count] = tmpl;
8224 specs[count++].index = regno;
8225 }
8226 }
8227 }
8228 }
8229 else
8230 {
8231 UNHANDLED;
8232 }
8233 }
8234 else if (note == 12)
8235 {
8236 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8237 {
8238 specs[count] = tmpl;
8239 specs[count++].index = CURR_SLOT.qp_regno;
8240 }
8241 }
8242 else if (note == 1)
8243 {
8244 if (rsrc_write)
8245 {
8246 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8247 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8248 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8249 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8250
8251 if ((idesc->operands[0] == IA64_OPND_P1
8252 || idesc->operands[0] == IA64_OPND_P2)
8253 && p1 >= 16 && p1 < 63)
8254 {
8255 specs[count] = tmpl;
8256 specs[count].cmp_type =
8257 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8258 specs[count++].index = p1;
8259 }
8260 if ((idesc->operands[1] == IA64_OPND_P1
8261 || idesc->operands[1] == IA64_OPND_P2)
8262 && p2 >= 16 && p2 < 63)
8263 {
8264 specs[count] = tmpl;
8265 specs[count].cmp_type =
8266 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8267 specs[count++].index = p2;
8268 }
8269 }
8270 else
8271 {
8272 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8273 {
8274 specs[count] = tmpl;
8275 specs[count++].index = CURR_SLOT.qp_regno;
8276 }
8277 if (idesc->operands[1] == IA64_OPND_PR)
8278 {
8279 for (i = 16; i < 63; i++)
8280 {
8281 specs[count] = tmpl;
8282 specs[count++].index = i;
8283 }
8284 }
8285 }
8286 }
8287 else
8288 {
8289 UNHANDLED;
8290 }
8291 break;
8292
8293 case IA64_RS_PSR:
8294 /* Verify that the instruction is using the PSR bit indicated in
8295 dep->regindex. */
8296 if (note == 0)
8297 {
8298 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
8299 {
8300 if (dep->regindex < 6)
8301 {
8302 specs[count++] = tmpl;
8303 }
8304 }
8305 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
8306 {
8307 if (dep->regindex < 32
8308 || dep->regindex == 35
8309 || dep->regindex == 36
8310 || (!rsrc_write && dep->regindex == PSR_CPL))
8311 {
8312 specs[count++] = tmpl;
8313 }
8314 }
8315 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
8316 {
8317 if (dep->regindex < 32
8318 || dep->regindex == 35
8319 || dep->regindex == 36
8320 || (rsrc_write && dep->regindex == PSR_CPL))
8321 {
8322 specs[count++] = tmpl;
8323 }
8324 }
8325 else
8326 {
8327 /* Several PSR bits have very specific dependencies. */
8328 switch (dep->regindex)
8329 {
8330 default:
8331 specs[count++] = tmpl;
8332 break;
8333 case PSR_IC:
8334 if (rsrc_write)
8335 {
8336 specs[count++] = tmpl;
8337 }
8338 else
8339 {
8340 /* Only certain CR accesses use PSR.ic */
8341 if (idesc->operands[0] == IA64_OPND_CR3
8342 || idesc->operands[1] == IA64_OPND_CR3)
8343 {
8344 int index =
8345 ((idesc->operands[0] == IA64_OPND_CR3)
8346 ? 0 : 1);
8347 int regno =
8348 CURR_SLOT.opnd[index].X_add_number - REG_CR;
8349
8350 switch (regno)
8351 {
8352 default:
8353 break;
8354 case CR_ITIR:
8355 case CR_IFS:
8356 case CR_IIM:
8357 case CR_IIP:
8358 case CR_IPSR:
8359 case CR_ISR:
8360 case CR_IFA:
8361 case CR_IHA:
8362 case CR_IIPA:
8363 specs[count++] = tmpl;
8364 break;
8365 }
8366 }
8367 }
8368 break;
8369 case PSR_CPL:
8370 if (rsrc_write)
8371 {
8372 specs[count++] = tmpl;
8373 }
8374 else
8375 {
8376 /* Only some AR accesses use cpl */
8377 if (idesc->operands[0] == IA64_OPND_AR3
8378 || idesc->operands[1] == IA64_OPND_AR3)
8379 {
8380 int index =
8381 ((idesc->operands[0] == IA64_OPND_AR3)
8382 ? 0 : 1);
8383 int regno =
8384 CURR_SLOT.opnd[index].X_add_number - REG_AR;
8385
8386 if (regno == AR_ITC
8387 || (index == 0
8388 && (regno == AR_ITC
8389 || regno == AR_RSC
8390 || (regno >= AR_K0
8391 && regno <= AR_K7))))
8392 {
8393 specs[count++] = tmpl;
8394 }
8395 }
8396 else
8397 {
8398 specs[count++] = tmpl;
8399 }
8400 break;
8401 }
8402 }
8403 }
8404 }
8405 else if (note == 7)
8406 {
8407 valueT mask = 0;
8408 if (idesc->operands[0] == IA64_OPND_IMMU24)
8409 {
8410 mask = CURR_SLOT.opnd[0].X_add_number;
8411 }
8412 else
8413 {
8414 UNHANDLED;
8415 }
8416 if (mask & ((valueT) 1 << dep->regindex))
8417 {
8418 specs[count++] = tmpl;
8419 }
8420 }
8421 else if (note == 8)
8422 {
8423 int min = dep->regindex == PSR_DFL ? 2 : 32;
8424 int max = dep->regindex == PSR_DFL ? 31 : 127;
8425 /* dfh is read on FR32-127; dfl is read on FR2-31 */
8426 for (i = 0; i < NELEMS (idesc->operands); i++)
8427 {
8428 if (idesc->operands[i] == IA64_OPND_F1
8429 || idesc->operands[i] == IA64_OPND_F2
8430 || idesc->operands[i] == IA64_OPND_F3
8431 || idesc->operands[i] == IA64_OPND_F4)
8432 {
8433 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
8434 if (reg >= min && reg <= max)
8435 {
8436 specs[count++] = tmpl;
8437 }
8438 }
8439 }
8440 }
8441 else if (note == 9)
8442 {
8443 int min = dep->regindex == PSR_MFL ? 2 : 32;
8444 int max = dep->regindex == PSR_MFL ? 31 : 127;
8445 /* mfh is read on writes to FR32-127; mfl is read on writes to
8446 FR2-31 */
8447 for (i = 0; i < idesc->num_outputs; i++)
8448 {
8449 if (idesc->operands[i] == IA64_OPND_F1)
8450 {
8451 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
8452 if (reg >= min && reg <= max)
8453 {
8454 specs[count++] = tmpl;
8455 }
8456 }
8457 }
8458 }
8459 else if (note == 10)
8460 {
8461 for (i = 0; i < NELEMS (idesc->operands); i++)
8462 {
8463 if (idesc->operands[i] == IA64_OPND_R1
8464 || idesc->operands[i] == IA64_OPND_R2
8465 || idesc->operands[i] == IA64_OPND_R3)
8466 {
8467 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8468 if (regno >= 16 && regno <= 31)
8469 {
8470 specs[count++] = tmpl;
8471 }
8472 }
8473 }
8474 }
8475 else
8476 {
8477 UNHANDLED;
8478 }
8479 break;
8480
8481 case IA64_RS_AR_FPSR:
8482 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8483 {
8484 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8485 if (regno == AR_FPSR)
8486 {
8487 specs[count++] = tmpl;
8488 }
8489 }
8490 else
8491 {
8492 specs[count++] = tmpl;
8493 }
8494 break;
8495
8496 case IA64_RS_ARX:
8497 /* Handle all AR[REG] resources */
8498 if (note == 0 || note == 1)
8499 {
8500 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8501 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
8502 && regno == dep->regindex)
8503 {
8504 specs[count++] = tmpl;
8505 }
8506 /* other AR[REG] resources may be affected by AR accesses */
8507 else if (idesc->operands[0] == IA64_OPND_AR3)
8508 {
8509 /* AR[] writes */
8510 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
8511 switch (dep->regindex)
8512 {
8513 default:
8514 break;
8515 case AR_BSP:
8516 case AR_RNAT:
8517 if (regno == AR_BSPSTORE)
8518 {
8519 specs[count++] = tmpl;
8520 }
8521 case AR_RSC:
8522 if (!rsrc_write &&
8523 (regno == AR_BSPSTORE
8524 || regno == AR_RNAT))
8525 {
8526 specs[count++] = tmpl;
8527 }
8528 break;
8529 }
8530 }
8531 else if (idesc->operands[1] == IA64_OPND_AR3)
8532 {
8533 /* AR[] reads */
8534 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
8535 switch (dep->regindex)
8536 {
8537 default:
8538 break;
8539 case AR_RSC:
8540 if (regno == AR_BSPSTORE || regno == AR_RNAT)
8541 {
8542 specs[count++] = tmpl;
8543 }
8544 break;
8545 }
8546 }
8547 else
8548 {
8549 specs[count++] = tmpl;
8550 }
8551 }
8552 else
8553 {
8554 UNHANDLED;
8555 }
8556 break;
8557
8558 case IA64_RS_CRX:
8559 /* Handle all CR[REG] resources */
8560 if (note == 0 || note == 1)
8561 {
8562 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8563 {
8564 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8565 if (regno == dep->regindex)
8566 {
8567 specs[count++] = tmpl;
8568 }
8569 else if (!rsrc_write)
8570 {
8571 /* Reads from CR[IVR] affect other resources. */
8572 if (regno == CR_IVR)
8573 {
8574 if ((dep->regindex >= CR_IRR0
8575 && dep->regindex <= CR_IRR3)
8576 || dep->regindex == CR_TPR)
8577 {
8578 specs[count++] = tmpl;
8579 }
8580 }
8581 }
8582 }
8583 else
8584 {
8585 specs[count++] = tmpl;
8586 }
8587 }
8588 else
8589 {
8590 UNHANDLED;
8591 }
8592 break;
8593
8594 case IA64_RS_INSERVICE:
8595 /* look for write of EOI (67) or read of IVR (65) */
8596 if ((idesc->operands[0] == IA64_OPND_CR3
8597 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
8598 || (idesc->operands[1] == IA64_OPND_CR3
8599 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
8600 {
8601 specs[count++] = tmpl;
8602 }
8603 break;
8604
8605 case IA64_RS_GR0:
8606 if (note == 1)
8607 {
8608 specs[count++] = tmpl;
8609 }
8610 else
8611 {
8612 UNHANDLED;
8613 }
8614 break;
8615
8616 case IA64_RS_CFM:
8617 if (note != 2)
8618 {
8619 specs[count++] = tmpl;
8620 }
8621 else
8622 {
8623 /* Check if any of the registers accessed are in the rotating region.
8624 mov to/from pr accesses CFM only when qp_regno is in the rotating
8625 region */
8626 for (i = 0; i < NELEMS (idesc->operands); i++)
8627 {
8628 if (idesc->operands[i] == IA64_OPND_R1
8629 || idesc->operands[i] == IA64_OPND_R2
8630 || idesc->operands[i] == IA64_OPND_R3)
8631 {
8632 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8633 /* Assumes that md.rot.num_regs is always valid */
8634 if (md.rot.num_regs > 0
8635 && num > 31
8636 && num < 31 + md.rot.num_regs)
8637 {
8638 specs[count] = tmpl;
8639 specs[count++].specific = 0;
8640 }
8641 }
8642 else if (idesc->operands[i] == IA64_OPND_F1
8643 || idesc->operands[i] == IA64_OPND_F2
8644 || idesc->operands[i] == IA64_OPND_F3
8645 || idesc->operands[i] == IA64_OPND_F4)
8646 {
8647 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
8648 if (num > 31)
8649 {
8650 specs[count] = tmpl;
8651 specs[count++].specific = 0;
8652 }
8653 }
8654 else if (idesc->operands[i] == IA64_OPND_P1
8655 || idesc->operands[i] == IA64_OPND_P2)
8656 {
8657 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
8658 if (num > 15)
8659 {
8660 specs[count] = tmpl;
8661 specs[count++].specific = 0;
8662 }
8663 }
8664 }
8665 if (CURR_SLOT.qp_regno > 15)
8666 {
8667 specs[count] = tmpl;
8668 specs[count++].specific = 0;
8669 }
8670 }
8671 break;
8672
8673 /* This is the same as IA64_RS_PRr, except simplified to account for
8674 the fact that there is only one register. */
8675 case IA64_RS_PR63:
8676 if (note == 0)
8677 {
8678 specs[count++] = tmpl;
8679 }
8680 else if (note == 7)
8681 {
8682 valueT mask = 0;
8683 if (idesc->operands[2] == IA64_OPND_IMM17)
8684 mask = CURR_SLOT.opnd[2].X_add_number;
8685 if (mask & ((valueT) 1 << 63))
8686 specs[count++] = tmpl;
8687 }
8688 else if (note == 11)
8689 {
8690 if ((idesc->operands[0] == IA64_OPND_P1
8691 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
8692 || (idesc->operands[1] == IA64_OPND_P2
8693 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
8694 {
8695 specs[count++] = tmpl;
8696 }
8697 }
8698 else if (note == 12)
8699 {
8700 if (CURR_SLOT.qp_regno == 63)
8701 {
8702 specs[count++] = tmpl;
8703 }
8704 }
8705 else if (note == 1)
8706 {
8707 if (rsrc_write)
8708 {
8709 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8710 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8711 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8712 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8713
8714 if (p1 == 63
8715 && (idesc->operands[0] == IA64_OPND_P1
8716 || idesc->operands[0] == IA64_OPND_P2))
8717 {
8718 specs[count] = tmpl;
8719 specs[count++].cmp_type =
8720 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8721 }
8722 if (p2 == 63
8723 && (idesc->operands[1] == IA64_OPND_P1
8724 || idesc->operands[1] == IA64_OPND_P2))
8725 {
8726 specs[count] = tmpl;
8727 specs[count++].cmp_type =
8728 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8729 }
8730 }
8731 else
8732 {
8733 if (CURR_SLOT.qp_regno == 63)
8734 {
8735 specs[count++] = tmpl;
8736 }
8737 }
8738 }
8739 else
8740 {
8741 UNHANDLED;
8742 }
8743 break;
8744
8745 case IA64_RS_RSE:
8746 /* FIXME we can identify some individual RSE written resources, but RSE
8747 read resources have not yet been completely identified, so for now
8748 treat RSE as a single resource */
8749 if (strncmp (idesc->name, "mov", 3) == 0)
8750 {
8751 if (rsrc_write)
8752 {
8753 if (idesc->operands[0] == IA64_OPND_AR3
8754 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
8755 {
8756 specs[count] = tmpl;
8757 specs[count++].index = 0; /* IA64_RSE_BSPLOAD/RNATBITINDEX */
8758 }
8759 }
8760 else
8761 {
8762 if (idesc->operands[0] == IA64_OPND_AR3)
8763 {
8764 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
8765 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
8766 {
8767 specs[count++] = tmpl;
8768 }
8769 }
8770 else if (idesc->operands[1] == IA64_OPND_AR3)
8771 {
8772 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
8773 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
8774 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
8775 {
8776 specs[count++] = tmpl;
8777 }
8778 }
8779 }
8780 }
8781 else
8782 {
8783 specs[count++] = tmpl;
8784 }
8785 break;
8786
8787 case IA64_RS_ANY:
8788 /* FIXME -- do any of these need to be non-specific? */
8789 specs[count++] = tmpl;
8790 break;
8791
8792 default:
8793 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
8794 break;
8795 }
8796
8797 return count;
8798 }
8799
8800 /* Clear branch flags on marked resources. This breaks the link between the
8801 QP of the marking instruction and a subsequent branch on the same QP. */
8802
8803 static void
8804 clear_qp_branch_flag (mask)
8805 valueT mask;
8806 {
8807 int i;
8808 for (i = 0; i < regdepslen; i++)
8809 {
8810 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
8811 if ((bit & mask) != 0)
8812 {
8813 regdeps[i].link_to_qp_branch = 0;
8814 }
8815 }
8816 }
8817
8818 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
8819 any mutexes which contain one of the PRs and create new ones when
8820 needed. */
8821
8822 static int
8823 update_qp_mutex (valueT mask)
8824 {
8825 int i;
8826 int add = 0;
8827
8828 i = 0;
8829 while (i < qp_mutexeslen)
8830 {
8831 if ((qp_mutexes[i].prmask & mask) != 0)
8832 {
8833 /* If it destroys and creates the same mutex, do nothing. */
8834 if (qp_mutexes[i].prmask == mask
8835 && qp_mutexes[i].path == md.path)
8836 {
8837 i++;
8838 add = -1;
8839 }
8840 else
8841 {
8842 int keep = 0;
8843
8844 if (md.debug_dv)
8845 {
8846 fprintf (stderr, " Clearing mutex relation");
8847 print_prmask (qp_mutexes[i].prmask);
8848 fprintf (stderr, "\n");
8849 }
8850
8851 /* Deal with the old mutex with more than 3+ PRs only if
8852 the new mutex on the same execution path with it.
8853
8854 FIXME: The 3+ mutex support is incomplete.
8855 dot_pred_rel () may be a better place to fix it. */
8856 if (qp_mutexes[i].path == md.path)
8857 {
8858 /* If it is a proper subset of the mutex, create a
8859 new mutex. */
8860 if (add == 0
8861 && (qp_mutexes[i].prmask & mask) == mask)
8862 add = 1;
8863
8864 qp_mutexes[i].prmask &= ~mask;
8865 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
8866 {
8867 /* Modify the mutex if there are more than one
8868 PR left. */
8869 keep = 1;
8870 i++;
8871 }
8872 }
8873
8874 if (keep == 0)
8875 /* Remove the mutex. */
8876 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
8877 }
8878 }
8879 else
8880 ++i;
8881 }
8882
8883 if (add == 1)
8884 add_qp_mutex (mask);
8885
8886 return add;
8887 }
8888
8889 /* Remove any mutexes which contain any of the PRs indicated in the mask.
8890
8891 Any changes to a PR clears the mutex relations which include that PR. */
8892
8893 static void
8894 clear_qp_mutex (mask)
8895 valueT mask;
8896 {
8897 int i;
8898
8899 i = 0;
8900 while (i < qp_mutexeslen)
8901 {
8902 if ((qp_mutexes[i].prmask & mask) != 0)
8903 {
8904 if (md.debug_dv)
8905 {
8906 fprintf (stderr, " Clearing mutex relation");
8907 print_prmask (qp_mutexes[i].prmask);
8908 fprintf (stderr, "\n");
8909 }
8910 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
8911 }
8912 else
8913 ++i;
8914 }
8915 }
8916
8917 /* Clear implies relations which contain PRs in the given masks.
8918 P1_MASK indicates the source of the implies relation, while P2_MASK
8919 indicates the implied PR. */
8920
8921 static void
8922 clear_qp_implies (p1_mask, p2_mask)
8923 valueT p1_mask;
8924 valueT p2_mask;
8925 {
8926 int i;
8927
8928 i = 0;
8929 while (i < qp_implieslen)
8930 {
8931 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
8932 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
8933 {
8934 if (md.debug_dv)
8935 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
8936 qp_implies[i].p1, qp_implies[i].p2);
8937 qp_implies[i] = qp_implies[--qp_implieslen];
8938 }
8939 else
8940 ++i;
8941 }
8942 }
8943
8944 /* Add the PRs specified to the list of implied relations. */
8945
8946 static void
8947 add_qp_imply (p1, p2)
8948 int p1, p2;
8949 {
8950 valueT mask;
8951 valueT bit;
8952 int i;
8953
8954 /* p0 is not meaningful here. */
8955 if (p1 == 0 || p2 == 0)
8956 abort ();
8957
8958 if (p1 == p2)
8959 return;
8960
8961 /* If it exists already, ignore it. */
8962 for (i = 0; i < qp_implieslen; i++)
8963 {
8964 if (qp_implies[i].p1 == p1
8965 && qp_implies[i].p2 == p2
8966 && qp_implies[i].path == md.path
8967 && !qp_implies[i].p2_branched)
8968 return;
8969 }
8970
8971 if (qp_implieslen == qp_impliestotlen)
8972 {
8973 qp_impliestotlen += 20;
8974 qp_implies = (struct qp_imply *)
8975 xrealloc ((void *) qp_implies,
8976 qp_impliestotlen * sizeof (struct qp_imply));
8977 }
8978 if (md.debug_dv)
8979 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
8980 qp_implies[qp_implieslen].p1 = p1;
8981 qp_implies[qp_implieslen].p2 = p2;
8982 qp_implies[qp_implieslen].path = md.path;
8983 qp_implies[qp_implieslen++].p2_branched = 0;
8984
8985 /* Add in the implied transitive relations; for everything that p2 implies,
8986 make p1 imply that, too; for everything that implies p1, make it imply p2
8987 as well. */
8988 for (i = 0; i < qp_implieslen; i++)
8989 {
8990 if (qp_implies[i].p1 == p2)
8991 add_qp_imply (p1, qp_implies[i].p2);
8992 if (qp_implies[i].p2 == p1)
8993 add_qp_imply (qp_implies[i].p1, p2);
8994 }
8995 /* Add in mutex relations implied by this implies relation; for each mutex
8996 relation containing p2, duplicate it and replace p2 with p1. */
8997 bit = (valueT) 1 << p1;
8998 mask = (valueT) 1 << p2;
8999 for (i = 0; i < qp_mutexeslen; i++)
9000 {
9001 if (qp_mutexes[i].prmask & mask)
9002 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9003 }
9004 }
9005
9006 /* Add the PRs specified in the mask to the mutex list; this means that only
9007 one of the PRs can be true at any time. PR0 should never be included in
9008 the mask. */
9009
9010 static void
9011 add_qp_mutex (mask)
9012 valueT mask;
9013 {
9014 if (mask & 0x1)
9015 abort ();
9016
9017 if (qp_mutexeslen == qp_mutexestotlen)
9018 {
9019 qp_mutexestotlen += 20;
9020 qp_mutexes = (struct qpmutex *)
9021 xrealloc ((void *) qp_mutexes,
9022 qp_mutexestotlen * sizeof (struct qpmutex));
9023 }
9024 if (md.debug_dv)
9025 {
9026 fprintf (stderr, " Registering mutex on");
9027 print_prmask (mask);
9028 fprintf (stderr, "\n");
9029 }
9030 qp_mutexes[qp_mutexeslen].path = md.path;
9031 qp_mutexes[qp_mutexeslen++].prmask = mask;
9032 }
9033
9034 static int
9035 has_suffix_p (name, suffix)
9036 const char *name;
9037 const char *suffix;
9038 {
9039 size_t namelen = strlen (name);
9040 size_t sufflen = strlen (suffix);
9041
9042 if (namelen <= sufflen)
9043 return 0;
9044 return strcmp (name + namelen - sufflen, suffix) == 0;
9045 }
9046
9047 static void
9048 clear_register_values ()
9049 {
9050 int i;
9051 if (md.debug_dv)
9052 fprintf (stderr, " Clearing register values\n");
9053 for (i = 1; i < NELEMS (gr_values); i++)
9054 gr_values[i].known = 0;
9055 }
9056
9057 /* Keep track of register values/changes which affect DV tracking.
9058
9059 optimization note: should add a flag to classes of insns where otherwise we
9060 have to examine a group of strings to identify them. */
9061
9062 static void
9063 note_register_values (idesc)
9064 struct ia64_opcode *idesc;
9065 {
9066 valueT qp_changemask = 0;
9067 int i;
9068
9069 /* Invalidate values for registers being written to. */
9070 for (i = 0; i < idesc->num_outputs; i++)
9071 {
9072 if (idesc->operands[i] == IA64_OPND_R1
9073 || idesc->operands[i] == IA64_OPND_R2
9074 || idesc->operands[i] == IA64_OPND_R3)
9075 {
9076 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9077 if (regno > 0 && regno < NELEMS (gr_values))
9078 gr_values[regno].known = 0;
9079 }
9080 else if (idesc->operands[i] == IA64_OPND_R3_2)
9081 {
9082 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9083 if (regno > 0 && regno < 4)
9084 gr_values[regno].known = 0;
9085 }
9086 else if (idesc->operands[i] == IA64_OPND_P1
9087 || idesc->operands[i] == IA64_OPND_P2)
9088 {
9089 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9090 qp_changemask |= (valueT) 1 << regno;
9091 }
9092 else if (idesc->operands[i] == IA64_OPND_PR)
9093 {
9094 if (idesc->operands[2] & (valueT) 0x10000)
9095 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9096 else
9097 qp_changemask = idesc->operands[2];
9098 break;
9099 }
9100 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9101 {
9102 if (idesc->operands[1] & ((valueT) 1 << 43))
9103 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9104 else
9105 qp_changemask = idesc->operands[1];
9106 qp_changemask &= ~(valueT) 0xFFFF;
9107 break;
9108 }
9109 }
9110
9111 /* Always clear qp branch flags on any PR change. */
9112 /* FIXME there may be exceptions for certain compares. */
9113 clear_qp_branch_flag (qp_changemask);
9114
9115 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9116 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9117 {
9118 qp_changemask |= ~(valueT) 0xFFFF;
9119 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9120 {
9121 for (i = 32; i < 32 + md.rot.num_regs; i++)
9122 gr_values[i].known = 0;
9123 }
9124 clear_qp_mutex (qp_changemask);
9125 clear_qp_implies (qp_changemask, qp_changemask);
9126 }
9127 /* After a call, all register values are undefined, except those marked
9128 as "safe". */
9129 else if (strncmp (idesc->name, "br.call", 6) == 0
9130 || strncmp (idesc->name, "brl.call", 7) == 0)
9131 {
9132 /* FIXME keep GR values which are marked as "safe_across_calls" */
9133 clear_register_values ();
9134 clear_qp_mutex (~qp_safe_across_calls);
9135 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9136 clear_qp_branch_flag (~qp_safe_across_calls);
9137 }
9138 else if (is_interruption_or_rfi (idesc)
9139 || is_taken_branch (idesc))
9140 {
9141 clear_register_values ();
9142 clear_qp_mutex (~(valueT) 0);
9143 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9144 }
9145 /* Look for mutex and implies relations. */
9146 else if ((idesc->operands[0] == IA64_OPND_P1
9147 || idesc->operands[0] == IA64_OPND_P2)
9148 && (idesc->operands[1] == IA64_OPND_P1
9149 || idesc->operands[1] == IA64_OPND_P2))
9150 {
9151 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9152 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9153 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9154 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9155
9156 /* If both PRs are PR0, we can't really do anything. */
9157 if (p1 == 0 && p2 == 0)
9158 {
9159 if (md.debug_dv)
9160 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9161 }
9162 /* In general, clear mutexes and implies which include P1 or P2,
9163 with the following exceptions. */
9164 else if (has_suffix_p (idesc->name, ".or.andcm")
9165 || has_suffix_p (idesc->name, ".and.orcm"))
9166 {
9167 clear_qp_implies (p2mask, p1mask);
9168 }
9169 else if (has_suffix_p (idesc->name, ".andcm")
9170 || has_suffix_p (idesc->name, ".and"))
9171 {
9172 clear_qp_implies (0, p1mask | p2mask);
9173 }
9174 else if (has_suffix_p (idesc->name, ".orcm")
9175 || has_suffix_p (idesc->name, ".or"))
9176 {
9177 clear_qp_mutex (p1mask | p2mask);
9178 clear_qp_implies (p1mask | p2mask, 0);
9179 }
9180 else
9181 {
9182 int added = 0;
9183
9184 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9185
9186 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9187 if (p1 == 0 || p2 == 0)
9188 clear_qp_mutex (p1mask | p2mask);
9189 else
9190 added = update_qp_mutex (p1mask | p2mask);
9191
9192 if (CURR_SLOT.qp_regno == 0
9193 || has_suffix_p (idesc->name, ".unc"))
9194 {
9195 if (added == 0 && p1 && p2)
9196 add_qp_mutex (p1mask | p2mask);
9197 if (CURR_SLOT.qp_regno != 0)
9198 {
9199 if (p1)
9200 add_qp_imply (p1, CURR_SLOT.qp_regno);
9201 if (p2)
9202 add_qp_imply (p2, CURR_SLOT.qp_regno);
9203 }
9204 }
9205 }
9206 }
9207 /* Look for mov imm insns into GRs. */
9208 else if (idesc->operands[0] == IA64_OPND_R1
9209 && (idesc->operands[1] == IA64_OPND_IMM22
9210 || idesc->operands[1] == IA64_OPND_IMMU64)
9211 && (strcmp (idesc->name, "mov") == 0
9212 || strcmp (idesc->name, "movl") == 0))
9213 {
9214 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9215 if (regno > 0 && regno < NELEMS (gr_values))
9216 {
9217 gr_values[regno].known = 1;
9218 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
9219 gr_values[regno].path = md.path;
9220 if (md.debug_dv)
9221 {
9222 fprintf (stderr, " Know gr%d = ", regno);
9223 fprintf_vma (stderr, gr_values[regno].value);
9224 fputs ("\n", stderr);
9225 }
9226 }
9227 }
9228 else
9229 {
9230 clear_qp_mutex (qp_changemask);
9231 clear_qp_implies (qp_changemask, qp_changemask);
9232 }
9233 }
9234
9235 /* Return whether the given predicate registers are currently mutex. */
9236
9237 static int
9238 qp_mutex (p1, p2, path)
9239 int p1;
9240 int p2;
9241 int path;
9242 {
9243 int i;
9244 valueT mask;
9245
9246 if (p1 != p2)
9247 {
9248 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
9249 for (i = 0; i < qp_mutexeslen; i++)
9250 {
9251 if (qp_mutexes[i].path >= path
9252 && (qp_mutexes[i].prmask & mask) == mask)
9253 return 1;
9254 }
9255 }
9256 return 0;
9257 }
9258
9259 /* Return whether the given resource is in the given insn's list of chks
9260 Return 1 if the conflict is absolutely determined, 2 if it's a potential
9261 conflict. */
9262
9263 static int
9264 resources_match (rs, idesc, note, qp_regno, path)
9265 struct rsrc *rs;
9266 struct ia64_opcode *idesc;
9267 int note;
9268 int qp_regno;
9269 int path;
9270 {
9271 struct rsrc specs[MAX_SPECS];
9272 int count;
9273
9274 /* If the marked resource's qp_regno and the given qp_regno are mutex,
9275 we don't need to check. One exception is note 11, which indicates that
9276 target predicates are written regardless of PR[qp]. */
9277 if (qp_mutex (rs->qp_regno, qp_regno, path)
9278 && note != 11)
9279 return 0;
9280
9281 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
9282 while (count-- > 0)
9283 {
9284 /* UNAT checking is a bit more specific than other resources */
9285 if (rs->dependency->specifier == IA64_RS_AR_UNAT
9286 && specs[count].mem_offset.hint
9287 && rs->mem_offset.hint)
9288 {
9289 if (rs->mem_offset.base == specs[count].mem_offset.base)
9290 {
9291 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
9292 ((specs[count].mem_offset.offset >> 3) & 0x3F))
9293 return 1;
9294 else
9295 continue;
9296 }
9297 }
9298
9299 /* Skip apparent PR write conflicts where both writes are an AND or both
9300 writes are an OR. */
9301 if (rs->dependency->specifier == IA64_RS_PR
9302 || rs->dependency->specifier == IA64_RS_PRr
9303 || rs->dependency->specifier == IA64_RS_PR63)
9304 {
9305 if (specs[count].cmp_type != CMP_NONE
9306 && specs[count].cmp_type == rs->cmp_type)
9307 {
9308 if (md.debug_dv)
9309 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
9310 dv_mode[rs->dependency->mode],
9311 rs->dependency->specifier != IA64_RS_PR63 ?
9312 specs[count].index : 63);
9313 continue;
9314 }
9315 if (md.debug_dv)
9316 fprintf (stderr,
9317 " %s on parallel compare conflict %s vs %s on PR%d\n",
9318 dv_mode[rs->dependency->mode],
9319 dv_cmp_type[rs->cmp_type],
9320 dv_cmp_type[specs[count].cmp_type],
9321 rs->dependency->specifier != IA64_RS_PR63 ?
9322 specs[count].index : 63);
9323
9324 }
9325
9326 /* If either resource is not specific, conservatively assume a conflict
9327 */
9328 if (!specs[count].specific || !rs->specific)
9329 return 2;
9330 else if (specs[count].index == rs->index)
9331 return 1;
9332 }
9333 #if 0
9334 if (md.debug_dv)
9335 fprintf (stderr, " No %s conflicts\n", rs->dependency->name);
9336 #endif
9337
9338 return 0;
9339 }
9340
9341 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
9342 insert a stop to create the break. Update all resource dependencies
9343 appropriately. If QP_REGNO is non-zero, only apply the break to resources
9344 which use the same QP_REGNO and have the link_to_qp_branch flag set.
9345 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
9346 instruction. */
9347
9348 static void
9349 insn_group_break (insert_stop, qp_regno, save_current)
9350 int insert_stop;
9351 int qp_regno;
9352 int save_current;
9353 {
9354 int i;
9355
9356 if (insert_stop && md.num_slots_in_use > 0)
9357 PREV_SLOT.end_of_insn_group = 1;
9358
9359 if (md.debug_dv)
9360 {
9361 fprintf (stderr, " Insn group break%s",
9362 (insert_stop ? " (w/stop)" : ""));
9363 if (qp_regno != 0)
9364 fprintf (stderr, " effective for QP=%d", qp_regno);
9365 fprintf (stderr, "\n");
9366 }
9367
9368 i = 0;
9369 while (i < regdepslen)
9370 {
9371 const struct ia64_dependency *dep = regdeps[i].dependency;
9372
9373 if (qp_regno != 0
9374 && regdeps[i].qp_regno != qp_regno)
9375 {
9376 ++i;
9377 continue;
9378 }
9379
9380 if (save_current
9381 && CURR_SLOT.src_file == regdeps[i].file
9382 && CURR_SLOT.src_line == regdeps[i].line)
9383 {
9384 ++i;
9385 continue;
9386 }
9387
9388 /* clear dependencies which are automatically cleared by a stop, or
9389 those that have reached the appropriate state of insn serialization */
9390 if (dep->semantics == IA64_DVS_IMPLIED
9391 || dep->semantics == IA64_DVS_IMPLIEDF
9392 || regdeps[i].insn_srlz == STATE_SRLZ)
9393 {
9394 print_dependency ("Removing", i);
9395 regdeps[i] = regdeps[--regdepslen];
9396 }
9397 else
9398 {
9399 if (dep->semantics == IA64_DVS_DATA
9400 || dep->semantics == IA64_DVS_INSTR
9401 || dep->semantics == IA64_DVS_SPECIFIC)
9402 {
9403 if (regdeps[i].insn_srlz == STATE_NONE)
9404 regdeps[i].insn_srlz = STATE_STOP;
9405 if (regdeps[i].data_srlz == STATE_NONE)
9406 regdeps[i].data_srlz = STATE_STOP;
9407 }
9408 ++i;
9409 }
9410 }
9411 }
9412
9413 /* Add the given resource usage spec to the list of active dependencies. */
9414
9415 static void
9416 mark_resource (idesc, dep, spec, depind, path)
9417 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
9418 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
9419 struct rsrc *spec;
9420 int depind;
9421 int path;
9422 {
9423 if (regdepslen == regdepstotlen)
9424 {
9425 regdepstotlen += 20;
9426 regdeps = (struct rsrc *)
9427 xrealloc ((void *) regdeps,
9428 regdepstotlen * sizeof (struct rsrc));
9429 }
9430
9431 regdeps[regdepslen] = *spec;
9432 regdeps[regdepslen].depind = depind;
9433 regdeps[regdepslen].path = path;
9434 regdeps[regdepslen].file = CURR_SLOT.src_file;
9435 regdeps[regdepslen].line = CURR_SLOT.src_line;
9436
9437 print_dependency ("Adding", regdepslen);
9438
9439 ++regdepslen;
9440 }
9441
9442 static void
9443 print_dependency (action, depind)
9444 const char *action;
9445 int depind;
9446 {
9447 if (md.debug_dv)
9448 {
9449 fprintf (stderr, " %s %s '%s'",
9450 action, dv_mode[(regdeps[depind].dependency)->mode],
9451 (regdeps[depind].dependency)->name);
9452 if (regdeps[depind].specific && regdeps[depind].index != 0)
9453 fprintf (stderr, " (%d)", regdeps[depind].index);
9454 if (regdeps[depind].mem_offset.hint)
9455 {
9456 fputs (" ", stderr);
9457 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
9458 fputs ("+", stderr);
9459 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
9460 }
9461 fprintf (stderr, "\n");
9462 }
9463 }
9464
9465 static void
9466 instruction_serialization ()
9467 {
9468 int i;
9469 if (md.debug_dv)
9470 fprintf (stderr, " Instruction serialization\n");
9471 for (i = 0; i < regdepslen; i++)
9472 if (regdeps[i].insn_srlz == STATE_STOP)
9473 regdeps[i].insn_srlz = STATE_SRLZ;
9474 }
9475
9476 static void
9477 data_serialization ()
9478 {
9479 int i = 0;
9480 if (md.debug_dv)
9481 fprintf (stderr, " Data serialization\n");
9482 while (i < regdepslen)
9483 {
9484 if (regdeps[i].data_srlz == STATE_STOP
9485 /* Note: as of 991210, all "other" dependencies are cleared by a
9486 data serialization. This might change with new tables */
9487 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
9488 {
9489 print_dependency ("Removing", i);
9490 regdeps[i] = regdeps[--regdepslen];
9491 }
9492 else
9493 ++i;
9494 }
9495 }
9496
9497 /* Insert stops and serializations as needed to avoid DVs. */
9498
9499 static void
9500 remove_marked_resource (rs)
9501 struct rsrc *rs;
9502 {
9503 switch (rs->dependency->semantics)
9504 {
9505 case IA64_DVS_SPECIFIC:
9506 if (md.debug_dv)
9507 fprintf (stderr, "Implementation-specific, assume worst case...\n");
9508 /* ...fall through... */
9509 case IA64_DVS_INSTR:
9510 if (md.debug_dv)
9511 fprintf (stderr, "Inserting instr serialization\n");
9512 if (rs->insn_srlz < STATE_STOP)
9513 insn_group_break (1, 0, 0);
9514 if (rs->insn_srlz < STATE_SRLZ)
9515 {
9516 int oldqp = CURR_SLOT.qp_regno;
9517 struct ia64_opcode *oldidesc = CURR_SLOT.idesc;
9518 /* Manually jam a srlz.i insn into the stream */
9519 CURR_SLOT.qp_regno = 0;
9520 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
9521 instruction_serialization ();
9522 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
9523 if (++md.num_slots_in_use >= NUM_SLOTS)
9524 emit_one_bundle ();
9525 CURR_SLOT.qp_regno = oldqp;
9526 CURR_SLOT.idesc = oldidesc;
9527 }
9528 insn_group_break (1, 0, 0);
9529 break;
9530 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
9531 "other" types of DV are eliminated
9532 by a data serialization */
9533 case IA64_DVS_DATA:
9534 if (md.debug_dv)
9535 fprintf (stderr, "Inserting data serialization\n");
9536 if (rs->data_srlz < STATE_STOP)
9537 insn_group_break (1, 0, 0);
9538 {
9539 int oldqp = CURR_SLOT.qp_regno;
9540 struct ia64_opcode *oldidesc = CURR_SLOT.idesc;
9541 /* Manually jam a srlz.d insn into the stream */
9542 CURR_SLOT.qp_regno = 0;
9543 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
9544 data_serialization ();
9545 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
9546 if (++md.num_slots_in_use >= NUM_SLOTS)
9547 emit_one_bundle ();
9548 CURR_SLOT.qp_regno = oldqp;
9549 CURR_SLOT.idesc = oldidesc;
9550 }
9551 break;
9552 case IA64_DVS_IMPLIED:
9553 case IA64_DVS_IMPLIEDF:
9554 if (md.debug_dv)
9555 fprintf (stderr, "Inserting stop\n");
9556 insn_group_break (1, 0, 0);
9557 break;
9558 default:
9559 break;
9560 }
9561 }
9562
9563 /* Check the resources used by the given opcode against the current dependency
9564 list.
9565
9566 The check is run once for each execution path encountered. In this case,
9567 a unique execution path is the sequence of instructions following a code
9568 entry point, e.g. the following has three execution paths, one starting
9569 at L0, one at L1, and one at L2.
9570
9571 L0: nop
9572 L1: add
9573 L2: add
9574 br.ret
9575 */
9576
9577 static void
9578 check_dependencies (idesc)
9579 struct ia64_opcode *idesc;
9580 {
9581 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
9582 int path;
9583 int i;
9584
9585 /* Note that the number of marked resources may change within the
9586 loop if in auto mode. */
9587 i = 0;
9588 while (i < regdepslen)
9589 {
9590 struct rsrc *rs = &regdeps[i];
9591 const struct ia64_dependency *dep = rs->dependency;
9592 int chkind;
9593 int note;
9594 int start_over = 0;
9595
9596 if (dep->semantics == IA64_DVS_NONE
9597 || (chkind = depends_on (rs->depind, idesc)) == -1)
9598 {
9599 ++i;
9600 continue;
9601 }
9602
9603 note = NOTE (opdeps->chks[chkind]);
9604
9605 /* Check this resource against each execution path seen thus far. */
9606 for (path = 0; path <= md.path; path++)
9607 {
9608 int matchtype;
9609
9610 /* If the dependency wasn't on the path being checked, ignore it. */
9611 if (rs->path < path)
9612 continue;
9613
9614 /* If the QP for this insn implies a QP which has branched, don't
9615 bother checking. Ed. NOTE: I don't think this check is terribly
9616 useful; what's the point of generating code which will only be
9617 reached if its QP is zero?
9618 This code was specifically inserted to handle the following code,
9619 based on notes from Intel's DV checking code, where p1 implies p2.
9620
9621 mov r4 = 2
9622 (p2) br.cond L
9623 (p1) mov r4 = 7
9624 */
9625 if (CURR_SLOT.qp_regno != 0)
9626 {
9627 int skip = 0;
9628 int implies;
9629 for (implies = 0; implies < qp_implieslen; implies++)
9630 {
9631 if (qp_implies[implies].path >= path
9632 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
9633 && qp_implies[implies].p2_branched)
9634 {
9635 skip = 1;
9636 break;
9637 }
9638 }
9639 if (skip)
9640 continue;
9641 }
9642
9643 if ((matchtype = resources_match (rs, idesc, note,
9644 CURR_SLOT.qp_regno, path)) != 0)
9645 {
9646 char msg[1024];
9647 char pathmsg[256] = "";
9648 char indexmsg[256] = "";
9649 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
9650
9651 if (path != 0)
9652 sprintf (pathmsg, " when entry is at label '%s'",
9653 md.entry_labels[path - 1]);
9654 if (rs->specific && rs->index != 0)
9655 sprintf (indexmsg, ", specific resource number is %d",
9656 rs->index);
9657 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
9658 idesc->name,
9659 (certain ? "violates" : "may violate"),
9660 dv_mode[dep->mode], dep->name,
9661 dv_sem[dep->semantics],
9662 pathmsg, indexmsg);
9663
9664 if (md.explicit_mode)
9665 {
9666 as_warn ("%s", msg);
9667 if (path < md.path)
9668 as_warn (_("Only the first path encountering the conflict "
9669 "is reported"));
9670 as_warn_where (rs->file, rs->line,
9671 _("This is the location of the "
9672 "conflicting usage"));
9673 /* Don't bother checking other paths, to avoid duplicating
9674 the same warning */
9675 break;
9676 }
9677 else
9678 {
9679 if (md.debug_dv)
9680 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
9681
9682 remove_marked_resource (rs);
9683
9684 /* since the set of dependencies has changed, start over */
9685 /* FIXME -- since we're removing dvs as we go, we
9686 probably don't really need to start over... */
9687 start_over = 1;
9688 break;
9689 }
9690 }
9691 }
9692 if (start_over)
9693 i = 0;
9694 else
9695 ++i;
9696 }
9697 }
9698
9699 /* Register new dependencies based on the given opcode. */
9700
9701 static void
9702 mark_resources (idesc)
9703 struct ia64_opcode *idesc;
9704 {
9705 int i;
9706 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
9707 int add_only_qp_reads = 0;
9708
9709 /* A conditional branch only uses its resources if it is taken; if it is
9710 taken, we stop following that path. The other branch types effectively
9711 *always* write their resources. If it's not taken, register only QP
9712 reads. */
9713 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
9714 {
9715 add_only_qp_reads = 1;
9716 }
9717
9718 if (md.debug_dv)
9719 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
9720
9721 for (i = 0; i < opdeps->nregs; i++)
9722 {
9723 const struct ia64_dependency *dep;
9724 struct rsrc specs[MAX_SPECS];
9725 int note;
9726 int path;
9727 int count;
9728
9729 dep = ia64_find_dependency (opdeps->regs[i]);
9730 note = NOTE (opdeps->regs[i]);
9731
9732 if (add_only_qp_reads
9733 && !(dep->mode == IA64_DV_WAR
9734 && (dep->specifier == IA64_RS_PR
9735 || dep->specifier == IA64_RS_PRr
9736 || dep->specifier == IA64_RS_PR63)))
9737 continue;
9738
9739 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
9740
9741 #if 0
9742 if (md.debug_dv && !count)
9743 fprintf (stderr, " No %s %s usage found (path %d)\n",
9744 dv_mode[dep->mode], dep->name, md.path);
9745 #endif
9746
9747 while (count-- > 0)
9748 {
9749 mark_resource (idesc, dep, &specs[count],
9750 DEP (opdeps->regs[i]), md.path);
9751 }
9752
9753 /* The execution path may affect register values, which may in turn
9754 affect which indirect-access resources are accessed. */
9755 switch (dep->specifier)
9756 {
9757 default:
9758 break;
9759 case IA64_RS_CPUID:
9760 case IA64_RS_DBR:
9761 case IA64_RS_IBR:
9762 case IA64_RS_MSR:
9763 case IA64_RS_PKR:
9764 case IA64_RS_PMC:
9765 case IA64_RS_PMD:
9766 case IA64_RS_RR:
9767 for (path = 0; path < md.path; path++)
9768 {
9769 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
9770 while (count-- > 0)
9771 mark_resource (idesc, dep, &specs[count],
9772 DEP (opdeps->regs[i]), path);
9773 }
9774 break;
9775 }
9776 }
9777 }
9778
9779 /* Remove dependencies when they no longer apply. */
9780
9781 static void
9782 update_dependencies (idesc)
9783 struct ia64_opcode *idesc;
9784 {
9785 int i;
9786
9787 if (strcmp (idesc->name, "srlz.i") == 0)
9788 {
9789 instruction_serialization ();
9790 }
9791 else if (strcmp (idesc->name, "srlz.d") == 0)
9792 {
9793 data_serialization ();
9794 }
9795 else if (is_interruption_or_rfi (idesc)
9796 || is_taken_branch (idesc))
9797 {
9798 /* Although technically the taken branch doesn't clear dependencies
9799 which require a srlz.[id], we don't follow the branch; the next
9800 instruction is assumed to start with a clean slate. */
9801 regdepslen = 0;
9802 md.path = 0;
9803 }
9804 else if (is_conditional_branch (idesc)
9805 && CURR_SLOT.qp_regno != 0)
9806 {
9807 int is_call = strstr (idesc->name, ".call") != NULL;
9808
9809 for (i = 0; i < qp_implieslen; i++)
9810 {
9811 /* If the conditional branch's predicate is implied by the predicate
9812 in an existing dependency, remove that dependency. */
9813 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
9814 {
9815 int depind = 0;
9816 /* Note that this implied predicate takes a branch so that if
9817 a later insn generates a DV but its predicate implies this
9818 one, we can avoid the false DV warning. */
9819 qp_implies[i].p2_branched = 1;
9820 while (depind < regdepslen)
9821 {
9822 if (regdeps[depind].qp_regno == qp_implies[i].p1)
9823 {
9824 print_dependency ("Removing", depind);
9825 regdeps[depind] = regdeps[--regdepslen];
9826 }
9827 else
9828 ++depind;
9829 }
9830 }
9831 }
9832 /* Any marked resources which have this same predicate should be
9833 cleared, provided that the QP hasn't been modified between the
9834 marking instruction and the branch. */
9835 if (is_call)
9836 {
9837 insn_group_break (0, CURR_SLOT.qp_regno, 1);
9838 }
9839 else
9840 {
9841 i = 0;
9842 while (i < regdepslen)
9843 {
9844 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
9845 && regdeps[i].link_to_qp_branch
9846 && (regdeps[i].file != CURR_SLOT.src_file
9847 || regdeps[i].line != CURR_SLOT.src_line))
9848 {
9849 /* Treat like a taken branch */
9850 print_dependency ("Removing", i);
9851 regdeps[i] = regdeps[--regdepslen];
9852 }
9853 else
9854 ++i;
9855 }
9856 }
9857 }
9858 }
9859
9860 /* Examine the current instruction for dependency violations. */
9861
9862 static int
9863 check_dv (idesc)
9864 struct ia64_opcode *idesc;
9865 {
9866 if (md.debug_dv)
9867 {
9868 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
9869 idesc->name, CURR_SLOT.src_line,
9870 idesc->dependencies->nchks,
9871 idesc->dependencies->nregs);
9872 }
9873
9874 /* Look through the list of currently marked resources; if the current
9875 instruction has the dependency in its chks list which uses that resource,
9876 check against the specific resources used. */
9877 check_dependencies (idesc);
9878
9879 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
9880 then add them to the list of marked resources. */
9881 mark_resources (idesc);
9882
9883 /* There are several types of dependency semantics, and each has its own
9884 requirements for being cleared
9885
9886 Instruction serialization (insns separated by interruption, rfi, or
9887 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
9888
9889 Data serialization (instruction serialization, or writer + srlz.d +
9890 reader, where writer and srlz.d are in separate groups) clears
9891 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
9892 always be the case).
9893
9894 Instruction group break (groups separated by stop, taken branch,
9895 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
9896 */
9897 update_dependencies (idesc);
9898
9899 /* Sometimes, knowing a register value allows us to avoid giving a false DV
9900 warning. Keep track of as many as possible that are useful. */
9901 note_register_values (idesc);
9902
9903 /* We don't need or want this anymore. */
9904 md.mem_offset.hint = 0;
9905
9906 return 0;
9907 }
9908
9909 /* Translate one line of assembly. Pseudo ops and labels do not show
9910 here. */
9911 void
9912 md_assemble (str)
9913 char *str;
9914 {
9915 char *saved_input_line_pointer, *mnemonic;
9916 const struct pseudo_opcode *pdesc;
9917 struct ia64_opcode *idesc;
9918 unsigned char qp_regno;
9919 unsigned int flags;
9920 int ch;
9921
9922 saved_input_line_pointer = input_line_pointer;
9923 input_line_pointer = str;
9924
9925 /* extract the opcode (mnemonic): */
9926
9927 mnemonic = input_line_pointer;
9928 ch = get_symbol_end ();
9929 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
9930 if (pdesc)
9931 {
9932 *input_line_pointer = ch;
9933 (*pdesc->handler) (pdesc->arg);
9934 goto done;
9935 }
9936
9937 /* Find the instruction descriptor matching the arguments. */
9938
9939 idesc = ia64_find_opcode (mnemonic);
9940 *input_line_pointer = ch;
9941 if (!idesc)
9942 {
9943 as_bad ("Unknown opcode `%s'", mnemonic);
9944 goto done;
9945 }
9946
9947 idesc = parse_operands (idesc);
9948 if (!idesc)
9949 goto done;
9950
9951 /* Handle the dynamic ops we can handle now: */
9952 if (idesc->type == IA64_TYPE_DYN)
9953 {
9954 if (strcmp (idesc->name, "add") == 0)
9955 {
9956 if (CURR_SLOT.opnd[2].X_op == O_register
9957 && CURR_SLOT.opnd[2].X_add_number < 4)
9958 mnemonic = "addl";
9959 else
9960 mnemonic = "adds";
9961 ia64_free_opcode (idesc);
9962 idesc = ia64_find_opcode (mnemonic);
9963 #if 0
9964 know (!idesc->next);
9965 #endif
9966 }
9967 else if (strcmp (idesc->name, "mov") == 0)
9968 {
9969 enum ia64_opnd opnd1, opnd2;
9970 int rop;
9971
9972 opnd1 = idesc->operands[0];
9973 opnd2 = idesc->operands[1];
9974 if (opnd1 == IA64_OPND_AR3)
9975 rop = 0;
9976 else if (opnd2 == IA64_OPND_AR3)
9977 rop = 1;
9978 else
9979 abort ();
9980 if (CURR_SLOT.opnd[rop].X_op == O_register
9981 && ar_is_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
9982 mnemonic = "mov.i";
9983 else
9984 mnemonic = "mov.m";
9985 ia64_free_opcode (idesc);
9986 idesc = ia64_find_opcode (mnemonic);
9987 while (idesc != NULL
9988 && (idesc->operands[0] != opnd1
9989 || idesc->operands[1] != opnd2))
9990 idesc = get_next_opcode (idesc);
9991 }
9992 }
9993
9994 qp_regno = 0;
9995 if (md.qp.X_op == O_register)
9996 {
9997 qp_regno = md.qp.X_add_number - REG_P;
9998 md.qp.X_op = O_absent;
9999 }
10000
10001 flags = idesc->flags;
10002
10003 if ((flags & IA64_OPCODE_FIRST) != 0)
10004 {
10005 /* The alignment frag has to end with a stop bit only if the
10006 next instruction after the alignment directive has to be
10007 the first instruction in an instruction group. */
10008 if (align_frag)
10009 {
10010 while (align_frag->fr_type != rs_align_code)
10011 {
10012 align_frag = align_frag->fr_next;
10013 if (!align_frag)
10014 break;
10015 }
10016 /* align_frag can be NULL if there are directives in
10017 between. */
10018 if (align_frag && align_frag->fr_next == frag_now)
10019 align_frag->tc_frag_data = 1;
10020 }
10021
10022 insn_group_break (1, 0, 0);
10023 }
10024 align_frag = NULL;
10025
10026 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10027 {
10028 as_bad ("`%s' cannot be predicated", idesc->name);
10029 goto done;
10030 }
10031
10032 /* Build the instruction. */
10033 CURR_SLOT.qp_regno = qp_regno;
10034 CURR_SLOT.idesc = idesc;
10035 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10036 dwarf2_where (&CURR_SLOT.debug_line);
10037
10038 /* Add unwind entry, if there is one. */
10039 if (unwind.current_entry)
10040 {
10041 CURR_SLOT.unwind_record = unwind.current_entry;
10042 unwind.current_entry = NULL;
10043 }
10044
10045 /* Check for dependency violations. */
10046 if (md.detect_dv)
10047 check_dv (idesc);
10048
10049 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10050 if (++md.num_slots_in_use >= NUM_SLOTS)
10051 emit_one_bundle ();
10052
10053 if ((flags & IA64_OPCODE_LAST) != 0)
10054 insn_group_break (1, 0, 0);
10055
10056 md.last_text_seg = now_seg;
10057
10058 done:
10059 input_line_pointer = saved_input_line_pointer;
10060 }
10061
10062 /* Called when symbol NAME cannot be found in the symbol table.
10063 Should be used for dynamic valued symbols only. */
10064
10065 symbolS *
10066 md_undefined_symbol (name)
10067 char *name ATTRIBUTE_UNUSED;
10068 {
10069 return 0;
10070 }
10071
10072 /* Called for any expression that can not be recognized. When the
10073 function is called, `input_line_pointer' will point to the start of
10074 the expression. */
10075
10076 void
10077 md_operand (e)
10078 expressionS *e;
10079 {
10080 enum pseudo_type pseudo_type;
10081 const char *name;
10082 size_t len;
10083 int ch, i;
10084
10085 switch (*input_line_pointer)
10086 {
10087 case '@':
10088 /* Find what relocation pseudo-function we're dealing with. */
10089 pseudo_type = 0;
10090 ch = *++input_line_pointer;
10091 for (i = 0; i < NELEMS (pseudo_func); ++i)
10092 if (pseudo_func[i].name && pseudo_func[i].name[0] == ch)
10093 {
10094 len = strlen (pseudo_func[i].name);
10095 if (strncmp (pseudo_func[i].name + 1,
10096 input_line_pointer + 1, len - 1) == 0
10097 && !is_part_of_name (input_line_pointer[len]))
10098 {
10099 input_line_pointer += len;
10100 pseudo_type = pseudo_func[i].type;
10101 break;
10102 }
10103 }
10104 switch (pseudo_type)
10105 {
10106 case PSEUDO_FUNC_RELOC:
10107 SKIP_WHITESPACE ();
10108 if (*input_line_pointer != '(')
10109 {
10110 as_bad ("Expected '('");
10111 goto err;
10112 }
10113 /* Skip '('. */
10114 ++input_line_pointer;
10115 expression (e);
10116 if (*input_line_pointer++ != ')')
10117 {
10118 as_bad ("Missing ')'");
10119 goto err;
10120 }
10121 if (e->X_op != O_symbol)
10122 {
10123 if (e->X_op != O_pseudo_fixup)
10124 {
10125 as_bad ("Not a symbolic expression");
10126 goto err;
10127 }
10128 if (i != FUNC_LT_RELATIVE)
10129 {
10130 as_bad ("Illegal combination of relocation functions");
10131 goto err;
10132 }
10133 switch (S_GET_VALUE (e->X_op_symbol))
10134 {
10135 case FUNC_FPTR_RELATIVE:
10136 i = FUNC_LT_FPTR_RELATIVE; break;
10137 case FUNC_DTP_MODULE:
10138 i = FUNC_LT_DTP_MODULE; break;
10139 case FUNC_DTP_RELATIVE:
10140 i = FUNC_LT_DTP_RELATIVE; break;
10141 case FUNC_TP_RELATIVE:
10142 i = FUNC_LT_TP_RELATIVE; break;
10143 default:
10144 as_bad ("Illegal combination of relocation functions");
10145 goto err;
10146 }
10147 }
10148 /* Make sure gas doesn't get rid of local symbols that are used
10149 in relocs. */
10150 e->X_op = O_pseudo_fixup;
10151 e->X_op_symbol = pseudo_func[i].u.sym;
10152 break;
10153
10154 case PSEUDO_FUNC_CONST:
10155 e->X_op = O_constant;
10156 e->X_add_number = pseudo_func[i].u.ival;
10157 break;
10158
10159 case PSEUDO_FUNC_REG:
10160 e->X_op = O_register;
10161 e->X_add_number = pseudo_func[i].u.ival;
10162 break;
10163
10164 default:
10165 name = input_line_pointer - 1;
10166 get_symbol_end ();
10167 as_bad ("Unknown pseudo function `%s'", name);
10168 goto err;
10169 }
10170 break;
10171
10172 case '[':
10173 ++input_line_pointer;
10174 expression (e);
10175 if (*input_line_pointer != ']')
10176 {
10177 as_bad ("Closing bracket misssing");
10178 goto err;
10179 }
10180 else
10181 {
10182 if (e->X_op != O_register)
10183 as_bad ("Register expected as index");
10184
10185 ++input_line_pointer;
10186 e->X_op = O_index;
10187 }
10188 break;
10189
10190 default:
10191 break;
10192 }
10193 return;
10194
10195 err:
10196 ignore_rest_of_line ();
10197 }
10198
10199 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10200 a section symbol plus some offset. For relocs involving @fptr(),
10201 directives we don't want such adjustments since we need to have the
10202 original symbol's name in the reloc. */
10203 int
10204 ia64_fix_adjustable (fix)
10205 fixS *fix;
10206 {
10207 /* Prevent all adjustments to global symbols */
10208 if (S_IS_EXTERN (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10209 return 0;
10210
10211 switch (fix->fx_r_type)
10212 {
10213 case BFD_RELOC_IA64_FPTR64I:
10214 case BFD_RELOC_IA64_FPTR32MSB:
10215 case BFD_RELOC_IA64_FPTR32LSB:
10216 case BFD_RELOC_IA64_FPTR64MSB:
10217 case BFD_RELOC_IA64_FPTR64LSB:
10218 case BFD_RELOC_IA64_LTOFF_FPTR22:
10219 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10220 return 0;
10221 default:
10222 break;
10223 }
10224
10225 return 1;
10226 }
10227
10228 int
10229 ia64_force_relocation (fix)
10230 fixS *fix;
10231 {
10232 switch (fix->fx_r_type)
10233 {
10234 case BFD_RELOC_IA64_FPTR64I:
10235 case BFD_RELOC_IA64_FPTR32MSB:
10236 case BFD_RELOC_IA64_FPTR32LSB:
10237 case BFD_RELOC_IA64_FPTR64MSB:
10238 case BFD_RELOC_IA64_FPTR64LSB:
10239
10240 case BFD_RELOC_IA64_LTOFF22:
10241 case BFD_RELOC_IA64_LTOFF64I:
10242 case BFD_RELOC_IA64_LTOFF_FPTR22:
10243 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10244 case BFD_RELOC_IA64_PLTOFF22:
10245 case BFD_RELOC_IA64_PLTOFF64I:
10246 case BFD_RELOC_IA64_PLTOFF64MSB:
10247 case BFD_RELOC_IA64_PLTOFF64LSB:
10248
10249 case BFD_RELOC_IA64_LTOFF22X:
10250 case BFD_RELOC_IA64_LDXMOV:
10251 return 1;
10252
10253 default:
10254 break;
10255 }
10256
10257 return generic_force_reloc (fix);
10258 }
10259
10260 /* Decide from what point a pc-relative relocation is relative to,
10261 relative to the pc-relative fixup. Er, relatively speaking. */
10262 long
10263 ia64_pcrel_from_section (fix, sec)
10264 fixS *fix;
10265 segT sec;
10266 {
10267 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
10268
10269 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
10270 off &= ~0xfUL;
10271
10272 return off;
10273 }
10274
10275
10276 /* Used to emit section-relative relocs for the dwarf2 debug data. */
10277 void
10278 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10279 {
10280 expressionS expr;
10281
10282 expr.X_op = O_pseudo_fixup;
10283 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
10284 expr.X_add_number = 0;
10285 expr.X_add_symbol = symbol;
10286 emit_expr (&expr, size);
10287 }
10288
10289 /* This is called whenever some data item (not an instruction) needs a
10290 fixup. We pick the right reloc code depending on the byteorder
10291 currently in effect. */
10292 void
10293 ia64_cons_fix_new (f, where, nbytes, exp)
10294 fragS *f;
10295 int where;
10296 int nbytes;
10297 expressionS *exp;
10298 {
10299 bfd_reloc_code_real_type code;
10300 fixS *fix;
10301
10302 switch (nbytes)
10303 {
10304 /* There are no reloc for 8 and 16 bit quantities, but we allow
10305 them here since they will work fine as long as the expression
10306 is fully defined at the end of the pass over the source file. */
10307 case 1: code = BFD_RELOC_8; break;
10308 case 2: code = BFD_RELOC_16; break;
10309 case 4:
10310 if (target_big_endian)
10311 code = BFD_RELOC_IA64_DIR32MSB;
10312 else
10313 code = BFD_RELOC_IA64_DIR32LSB;
10314 break;
10315
10316 case 8:
10317 /* In 32-bit mode, data8 could mean function descriptors too. */
10318 if (exp->X_op == O_pseudo_fixup
10319 && exp->X_op_symbol
10320 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
10321 && !(md.flags & EF_IA_64_ABI64))
10322 {
10323 if (target_big_endian)
10324 code = BFD_RELOC_IA64_IPLTMSB;
10325 else
10326 code = BFD_RELOC_IA64_IPLTLSB;
10327 exp->X_op = O_symbol;
10328 break;
10329 }
10330 else
10331 {
10332 if (target_big_endian)
10333 code = BFD_RELOC_IA64_DIR64MSB;
10334 else
10335 code = BFD_RELOC_IA64_DIR64LSB;
10336 break;
10337 }
10338
10339 case 16:
10340 if (exp->X_op == O_pseudo_fixup
10341 && exp->X_op_symbol
10342 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
10343 {
10344 if (target_big_endian)
10345 code = BFD_RELOC_IA64_IPLTMSB;
10346 else
10347 code = BFD_RELOC_IA64_IPLTLSB;
10348 exp->X_op = O_symbol;
10349 break;
10350 }
10351 /* FALLTHRU */
10352
10353 default:
10354 as_bad ("Unsupported fixup size %d", nbytes);
10355 ignore_rest_of_line ();
10356 return;
10357 }
10358
10359 if (exp->X_op == O_pseudo_fixup)
10360 {
10361 exp->X_op = O_symbol;
10362 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
10363 /* ??? If code unchanged, unsupported. */
10364 }
10365
10366 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
10367 /* We need to store the byte order in effect in case we're going
10368 to fix an 8 or 16 bit relocation (for which there no real
10369 relocs available). See md_apply_fix3(). */
10370 fix->tc_fix_data.bigendian = target_big_endian;
10371 }
10372
10373 /* Return the actual relocation we wish to associate with the pseudo
10374 reloc described by SYM and R_TYPE. SYM should be one of the
10375 symbols in the pseudo_func array, or NULL. */
10376
10377 static bfd_reloc_code_real_type
10378 ia64_gen_real_reloc_type (sym, r_type)
10379 struct symbol *sym;
10380 bfd_reloc_code_real_type r_type;
10381 {
10382 bfd_reloc_code_real_type new = 0;
10383
10384 if (sym == NULL)
10385 {
10386 return r_type;
10387 }
10388
10389 switch (S_GET_VALUE (sym))
10390 {
10391 case FUNC_FPTR_RELATIVE:
10392 switch (r_type)
10393 {
10394 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
10395 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
10396 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
10397 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
10398 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
10399 default: break;
10400 }
10401 break;
10402
10403 case FUNC_GP_RELATIVE:
10404 switch (r_type)
10405 {
10406 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
10407 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
10408 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
10409 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
10410 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
10411 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
10412 default: break;
10413 }
10414 break;
10415
10416 case FUNC_LT_RELATIVE:
10417 switch (r_type)
10418 {
10419 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
10420 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
10421 default: break;
10422 }
10423 break;
10424
10425 case FUNC_LT_RELATIVE_X:
10426 switch (r_type)
10427 {
10428 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
10429 default: break;
10430 }
10431 break;
10432
10433 case FUNC_PC_RELATIVE:
10434 switch (r_type)
10435 {
10436 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
10437 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
10438 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
10439 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
10440 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
10441 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
10442 default: break;
10443 }
10444 break;
10445
10446 case FUNC_PLT_RELATIVE:
10447 switch (r_type)
10448 {
10449 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
10450 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
10451 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
10452 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
10453 default: break;
10454 }
10455 break;
10456
10457 case FUNC_SEC_RELATIVE:
10458 switch (r_type)
10459 {
10460 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
10461 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
10462 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
10463 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
10464 default: break;
10465 }
10466 break;
10467
10468 case FUNC_SEG_RELATIVE:
10469 switch (r_type)
10470 {
10471 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
10472 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
10473 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
10474 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
10475 default: break;
10476 }
10477 break;
10478
10479 case FUNC_LTV_RELATIVE:
10480 switch (r_type)
10481 {
10482 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
10483 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
10484 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
10485 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
10486 default: break;
10487 }
10488 break;
10489
10490 case FUNC_LT_FPTR_RELATIVE:
10491 switch (r_type)
10492 {
10493 case BFD_RELOC_IA64_IMM22:
10494 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
10495 case BFD_RELOC_IA64_IMM64:
10496 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
10497 default:
10498 break;
10499 }
10500 break;
10501
10502 case FUNC_TP_RELATIVE:
10503 switch (r_type)
10504 {
10505 case BFD_RELOC_IA64_IMM14:
10506 new = BFD_RELOC_IA64_TPREL14; break;
10507 case BFD_RELOC_IA64_IMM22:
10508 new = BFD_RELOC_IA64_TPREL22; break;
10509 case BFD_RELOC_IA64_IMM64:
10510 new = BFD_RELOC_IA64_TPREL64I; break;
10511 default:
10512 break;
10513 }
10514 break;
10515
10516 case FUNC_LT_TP_RELATIVE:
10517 switch (r_type)
10518 {
10519 case BFD_RELOC_IA64_IMM22:
10520 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
10521 default:
10522 break;
10523 }
10524 break;
10525
10526 case FUNC_LT_DTP_MODULE:
10527 switch (r_type)
10528 {
10529 case BFD_RELOC_IA64_IMM22:
10530 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
10531 default:
10532 break;
10533 }
10534 break;
10535
10536 case FUNC_DTP_RELATIVE:
10537 switch (r_type)
10538 {
10539 case BFD_RELOC_IA64_DIR64MSB:
10540 new = BFD_RELOC_IA64_DTPREL64MSB; break;
10541 case BFD_RELOC_IA64_DIR64LSB:
10542 new = BFD_RELOC_IA64_DTPREL64LSB; break;
10543 case BFD_RELOC_IA64_IMM14:
10544 new = BFD_RELOC_IA64_DTPREL14; break;
10545 case BFD_RELOC_IA64_IMM22:
10546 new = BFD_RELOC_IA64_DTPREL22; break;
10547 case BFD_RELOC_IA64_IMM64:
10548 new = BFD_RELOC_IA64_DTPREL64I; break;
10549 default:
10550 break;
10551 }
10552 break;
10553
10554 case FUNC_LT_DTP_RELATIVE:
10555 switch (r_type)
10556 {
10557 case BFD_RELOC_IA64_IMM22:
10558 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
10559 default:
10560 break;
10561 }
10562 break;
10563
10564 case FUNC_IPLT_RELOC:
10565 break;
10566
10567 default:
10568 abort ();
10569 }
10570
10571 /* Hmmmm. Should this ever occur? */
10572 if (new)
10573 return new;
10574 else
10575 return r_type;
10576 }
10577
10578 /* Here is where generate the appropriate reloc for pseudo relocation
10579 functions. */
10580 void
10581 ia64_validate_fix (fix)
10582 fixS *fix;
10583 {
10584 switch (fix->fx_r_type)
10585 {
10586 case BFD_RELOC_IA64_FPTR64I:
10587 case BFD_RELOC_IA64_FPTR32MSB:
10588 case BFD_RELOC_IA64_FPTR64LSB:
10589 case BFD_RELOC_IA64_LTOFF_FPTR22:
10590 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10591 if (fix->fx_offset != 0)
10592 as_bad_where (fix->fx_file, fix->fx_line,
10593 "No addend allowed in @fptr() relocation");
10594 break;
10595 default:
10596 break;
10597 }
10598 }
10599
10600 static void
10601 fix_insn (fix, odesc, value)
10602 fixS *fix;
10603 const struct ia64_operand *odesc;
10604 valueT value;
10605 {
10606 bfd_vma insn[3], t0, t1, control_bits;
10607 const char *err;
10608 char *fixpos;
10609 long slot;
10610
10611 slot = fix->fx_where & 0x3;
10612 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
10613
10614 /* Bundles are always in little-endian byte order */
10615 t0 = bfd_getl64 (fixpos);
10616 t1 = bfd_getl64 (fixpos + 8);
10617 control_bits = t0 & 0x1f;
10618 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
10619 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
10620 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
10621
10622 err = NULL;
10623 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
10624 {
10625 insn[1] = (value >> 22) & 0x1ffffffffffLL;
10626 insn[2] |= (((value & 0x7f) << 13)
10627 | (((value >> 7) & 0x1ff) << 27)
10628 | (((value >> 16) & 0x1f) << 22)
10629 | (((value >> 21) & 0x1) << 21)
10630 | (((value >> 63) & 0x1) << 36));
10631 }
10632 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
10633 {
10634 if (value & ~0x3fffffffffffffffULL)
10635 err = "integer operand out of range";
10636 insn[1] = (value >> 21) & 0x1ffffffffffLL;
10637 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
10638 }
10639 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
10640 {
10641 value >>= 4;
10642 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
10643 insn[2] |= ((((value >> 59) & 0x1) << 36)
10644 | (((value >> 0) & 0xfffff) << 13));
10645 }
10646 else
10647 err = (*odesc->insert) (odesc, value, insn + slot);
10648
10649 if (err)
10650 as_bad_where (fix->fx_file, fix->fx_line, err);
10651
10652 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
10653 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
10654 number_to_chars_littleendian (fixpos + 0, t0, 8);
10655 number_to_chars_littleendian (fixpos + 8, t1, 8);
10656 }
10657
10658 /* Attempt to simplify or even eliminate a fixup. The return value is
10659 ignored; perhaps it was once meaningful, but now it is historical.
10660 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
10661
10662 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
10663 (if possible). */
10664
10665 void
10666 md_apply_fix3 (fix, valP, seg)
10667 fixS *fix;
10668 valueT *valP;
10669 segT seg ATTRIBUTE_UNUSED;
10670 {
10671 char *fixpos;
10672 valueT value = *valP;
10673
10674 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
10675
10676 if (fix->fx_pcrel)
10677 {
10678 switch (fix->fx_r_type)
10679 {
10680 case BFD_RELOC_IA64_DIR32MSB:
10681 fix->fx_r_type = BFD_RELOC_IA64_PCREL32MSB;
10682 break;
10683
10684 case BFD_RELOC_IA64_DIR32LSB:
10685 fix->fx_r_type = BFD_RELOC_IA64_PCREL32LSB;
10686 break;
10687
10688 case BFD_RELOC_IA64_DIR64MSB:
10689 fix->fx_r_type = BFD_RELOC_IA64_PCREL64MSB;
10690 break;
10691
10692 case BFD_RELOC_IA64_DIR64LSB:
10693 fix->fx_r_type = BFD_RELOC_IA64_PCREL64LSB;
10694 break;
10695
10696 default:
10697 break;
10698 }
10699 }
10700 if (fix->fx_addsy)
10701 {
10702 switch (fix->fx_r_type)
10703 {
10704 case BFD_RELOC_UNUSED:
10705 /* This must be a TAG13 or TAG13b operand. There are no external
10706 relocs defined for them, so we must give an error. */
10707 as_bad_where (fix->fx_file, fix->fx_line,
10708 "%s must have a constant value",
10709 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
10710 fix->fx_done = 1;
10711 return;
10712
10713 case BFD_RELOC_IA64_TPREL14:
10714 case BFD_RELOC_IA64_TPREL22:
10715 case BFD_RELOC_IA64_TPREL64I:
10716 case BFD_RELOC_IA64_LTOFF_TPREL22:
10717 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
10718 case BFD_RELOC_IA64_DTPREL14:
10719 case BFD_RELOC_IA64_DTPREL22:
10720 case BFD_RELOC_IA64_DTPREL64I:
10721 case BFD_RELOC_IA64_LTOFF_DTPREL22:
10722 S_SET_THREAD_LOCAL (fix->fx_addsy);
10723 break;
10724
10725 default:
10726 break;
10727 }
10728 }
10729 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
10730 {
10731 if (fix->tc_fix_data.bigendian)
10732 number_to_chars_bigendian (fixpos, value, fix->fx_size);
10733 else
10734 number_to_chars_littleendian (fixpos, value, fix->fx_size);
10735 fix->fx_done = 1;
10736 }
10737 else
10738 {
10739 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
10740 fix->fx_done = 1;
10741 }
10742 }
10743
10744 /* Generate the BFD reloc to be stuck in the object file from the
10745 fixup used internally in the assembler. */
10746
10747 arelent *
10748 tc_gen_reloc (sec, fixp)
10749 asection *sec ATTRIBUTE_UNUSED;
10750 fixS *fixp;
10751 {
10752 arelent *reloc;
10753
10754 reloc = xmalloc (sizeof (*reloc));
10755 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10756 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10757 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
10758 reloc->addend = fixp->fx_offset;
10759 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
10760
10761 if (!reloc->howto)
10762 {
10763 as_bad_where (fixp->fx_file, fixp->fx_line,
10764 "Cannot represent %s relocation in object file",
10765 bfd_get_reloc_code_name (fixp->fx_r_type));
10766 }
10767 return reloc;
10768 }
10769
10770 /* Turn a string in input_line_pointer into a floating point constant
10771 of type TYPE, and store the appropriate bytes in *LIT. The number
10772 of LITTLENUMS emitted is stored in *SIZE. An error message is
10773 returned, or NULL on OK. */
10774
10775 #define MAX_LITTLENUMS 5
10776
10777 char *
10778 md_atof (type, lit, size)
10779 int type;
10780 char *lit;
10781 int *size;
10782 {
10783 LITTLENUM_TYPE words[MAX_LITTLENUMS];
10784 char *t;
10785 int prec;
10786
10787 switch (type)
10788 {
10789 /* IEEE floats */
10790 case 'f':
10791 case 'F':
10792 case 's':
10793 case 'S':
10794 prec = 2;
10795 break;
10796
10797 case 'd':
10798 case 'D':
10799 case 'r':
10800 case 'R':
10801 prec = 4;
10802 break;
10803
10804 case 'x':
10805 case 'X':
10806 case 'p':
10807 case 'P':
10808 prec = 5;
10809 break;
10810
10811 default:
10812 *size = 0;
10813 return "Bad call to MD_ATOF()";
10814 }
10815 t = atof_ieee (input_line_pointer, type, words);
10816 if (t)
10817 input_line_pointer = t;
10818
10819 (*ia64_float_to_chars) (lit, words, prec);
10820
10821 if (type == 'X')
10822 {
10823 /* It is 10 byte floating point with 6 byte padding. */
10824 memset (&lit [10], 0, 6);
10825 *size = 8 * sizeof (LITTLENUM_TYPE);
10826 }
10827 else
10828 *size = prec * sizeof (LITTLENUM_TYPE);
10829
10830 return 0;
10831 }
10832
10833 /* Handle ia64 specific semantics of the align directive. */
10834
10835 void
10836 ia64_md_do_align (n, fill, len, max)
10837 int n ATTRIBUTE_UNUSED;
10838 const char *fill ATTRIBUTE_UNUSED;
10839 int len ATTRIBUTE_UNUSED;
10840 int max ATTRIBUTE_UNUSED;
10841 {
10842 if (subseg_text_p (now_seg))
10843 ia64_flush_insns ();
10844 }
10845
10846 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
10847 of an rs_align_code fragment. */
10848
10849 void
10850 ia64_handle_align (fragp)
10851 fragS *fragp;
10852 {
10853 /* Use mfi bundle of nops with no stop bits. */
10854 static const unsigned char le_nop[]
10855 = { 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
10856 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00};
10857 static const unsigned char le_nop_stop[]
10858 = { 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
10859 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00};
10860
10861 int bytes;
10862 char *p;
10863 const unsigned char *nop;
10864
10865 if (fragp->fr_type != rs_align_code)
10866 return;
10867
10868 /* Check if this frag has to end with a stop bit. */
10869 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
10870
10871 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
10872 p = fragp->fr_literal + fragp->fr_fix;
10873
10874 /* If no paddings are needed, we check if we need a stop bit. */
10875 if (!bytes && fragp->tc_frag_data)
10876 {
10877 if (fragp->fr_fix < 16)
10878 #if 1
10879 /* FIXME: It won't work with
10880 .align 16
10881 alloc r32=ar.pfs,1,2,4,0
10882 */
10883 ;
10884 #else
10885 as_bad_where (fragp->fr_file, fragp->fr_line,
10886 _("Can't add stop bit to mark end of instruction group"));
10887 #endif
10888 else
10889 /* Bundles are always in little-endian byte order. Make sure
10890 the previous bundle has the stop bit. */
10891 *(p - 16) |= 1;
10892 }
10893
10894 /* Make sure we are on a 16-byte boundary, in case someone has been
10895 putting data into a text section. */
10896 if (bytes & 15)
10897 {
10898 int fix = bytes & 15;
10899 memset (p, 0, fix);
10900 p += fix;
10901 bytes -= fix;
10902 fragp->fr_fix += fix;
10903 }
10904
10905 /* Instruction bundles are always little-endian. */
10906 memcpy (p, nop, 16);
10907 fragp->fr_var = 16;
10908 }
10909
10910 static void
10911 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
10912 int prec)
10913 {
10914 while (prec--)
10915 {
10916 number_to_chars_bigendian (lit, (long) (*words++),
10917 sizeof (LITTLENUM_TYPE));
10918 lit += sizeof (LITTLENUM_TYPE);
10919 }
10920 }
10921
10922 static void
10923 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
10924 int prec)
10925 {
10926 while (prec--)
10927 {
10928 number_to_chars_littleendian (lit, (long) (words[prec]),
10929 sizeof (LITTLENUM_TYPE));
10930 lit += sizeof (LITTLENUM_TYPE);
10931 }
10932 }
10933
10934 void
10935 ia64_elf_section_change_hook (void)
10936 {
10937 dot_byteorder (-1);
10938 }
10939
10940 /* Check if a label should be made global. */
10941 void
10942 ia64_check_label (symbolS *label)
10943 {
10944 if (*input_line_pointer == ':')
10945 {
10946 S_SET_EXTERNAL (label);
10947 input_line_pointer++;
10948 }
10949 }
10950
10951 /* Used to remember where .alias and .secalias directives are seen. We
10952 will rename symbol and section names when we are about to output
10953 the relocatable file. */
10954 struct alias
10955 {
10956 char *file; /* The file where the directive is seen. */
10957 unsigned int line; /* The line number the directive is at. */
10958 const char *name; /* The orignale name of the symbol. */
10959 };
10960
10961 /* Called for .alias and .secalias directives. If SECTION is 1, it is
10962 .secalias. Otherwise, it is .alias. */
10963 static void
10964 dot_alias (int section)
10965 {
10966 char *name, *alias;
10967 char delim;
10968 char *end_name;
10969 int len;
10970 const char *error_string;
10971 struct alias *h;
10972 const char *a;
10973 struct hash_control *ahash, *nhash;
10974 const char *kind;
10975
10976 name = input_line_pointer;
10977 delim = get_symbol_end ();
10978 end_name = input_line_pointer;
10979 *end_name = delim;
10980
10981 if (name == end_name)
10982 {
10983 as_bad (_("expected symbol name"));
10984 discard_rest_of_line ();
10985 return;
10986 }
10987
10988 SKIP_WHITESPACE ();
10989
10990 if (*input_line_pointer != ',')
10991 {
10992 *end_name = 0;
10993 as_bad (_("expected comma after \"%s\""), name);
10994 *end_name = delim;
10995 ignore_rest_of_line ();
10996 return;
10997 }
10998
10999 input_line_pointer++;
11000 *end_name = 0;
11001
11002 /* We call demand_copy_C_string to check if alias string is valid.
11003 There should be a closing `"' and no `\0' in the string. */
11004 alias = demand_copy_C_string (&len);
11005 if (alias == NULL)
11006 {
11007 ignore_rest_of_line ();
11008 return;
11009 }
11010
11011 /* Make a copy of name string. */
11012 len = strlen (name) + 1;
11013 obstack_grow (&notes, name, len);
11014 name = obstack_finish (&notes);
11015
11016 if (section)
11017 {
11018 kind = "section";
11019 ahash = secalias_hash;
11020 nhash = secalias_name_hash;
11021 }
11022 else
11023 {
11024 kind = "symbol";
11025 ahash = alias_hash;
11026 nhash = alias_name_hash;
11027 }
11028
11029 /* Check if alias has been used before. */
11030 h = (struct alias *) hash_find (ahash, alias);
11031 if (h)
11032 {
11033 if (strcmp (h->name, name))
11034 as_bad (_("`%s' is already the alias of %s `%s'"),
11035 alias, kind, h->name);
11036 goto out;
11037 }
11038
11039 /* Check if name already has an alias. */
11040 a = (const char *) hash_find (nhash, name);
11041 if (a)
11042 {
11043 if (strcmp (a, alias))
11044 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11045 goto out;
11046 }
11047
11048 h = (struct alias *) xmalloc (sizeof (struct alias));
11049 as_where (&h->file, &h->line);
11050 h->name = name;
11051
11052 error_string = hash_jam (ahash, alias, (PTR) h);
11053 if (error_string)
11054 {
11055 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11056 alias, kind, error_string);
11057 goto out;
11058 }
11059
11060 error_string = hash_jam (nhash, name, (PTR) alias);
11061 if (error_string)
11062 {
11063 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11064 alias, kind, error_string);
11065 out:
11066 obstack_free (&notes, name);
11067 obstack_free (&notes, alias);
11068 }
11069
11070 demand_empty_rest_of_line ();
11071 }
11072
11073 /* It renames the original symbol name to its alias. */
11074 static void
11075 do_alias (const char *alias, PTR value)
11076 {
11077 struct alias *h = (struct alias *) value;
11078 symbolS *sym = symbol_find (h->name);
11079
11080 if (sym == NULL)
11081 as_warn_where (h->file, h->line,
11082 _("symbol `%s' aliased to `%s' is not used"),
11083 h->name, alias);
11084 else
11085 S_SET_NAME (sym, (char *) alias);
11086 }
11087
11088 /* Called from write_object_file. */
11089 void
11090 ia64_adjust_symtab (void)
11091 {
11092 hash_traverse (alias_hash, do_alias);
11093 }
11094
11095 /* It renames the original section name to its alias. */
11096 static void
11097 do_secalias (const char *alias, PTR value)
11098 {
11099 struct alias *h = (struct alias *) value;
11100 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11101
11102 if (sec == NULL)
11103 as_warn_where (h->file, h->line,
11104 _("section `%s' aliased to `%s' is not used"),
11105 h->name, alias);
11106 else
11107 sec->name = alias;
11108 }
11109
11110 /* Called from write_object_file. */
11111 void
11112 ia64_frob_file (void)
11113 {
11114 hash_traverse (secalias_hash, do_secalias);
11115 }