sim: v850: fix cpu_option testsuite handling
[binutils-gdb.git] / gas / config / tc-metag.c
1 /* tc-metag.c -- Assembler for the Imagination Technologies Meta.
2 Copyright (C) 2013-2021 Free Software Foundation, Inc.
3 Contributed by Imagination Technologies Ltd.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "as.h"
23 #include "subsegs.h"
24 #include "symcat.h"
25 #include "safe-ctype.h"
26 #include "hashtab.h"
27
28 #include <stdio.h>
29
30 #include "opcode/metag.h"
31
32 const char comment_chars[] = "!";
33 const char line_comment_chars[] = "!#";
34 const char line_separator_chars[] = ";";
35 const char FLT_CHARS[] = "rRsSfFdDxXpP";
36 const char EXP_CHARS[] = "eE";
37 const char metag_symbol_chars[] = "[";
38
39 static char register_chars[256];
40 static char mnemonic_chars[256];
41
42 #define is_register_char(x) (register_chars[(unsigned char) x])
43 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
44 #define is_whitespace_char(x) (((x) == ' ') || ((x) == '\t'))
45 #define is_space_char(x) ((x) == ' ')
46
47 #define FPU_PREFIX_CHAR 'f'
48 #define DSP_PREFIX_CHAR 'd'
49
50 /* Instruction mnemonics that need disambiguating with respect to prefixes. */
51 #define FFB_INSN "ffb"
52 #define DCACHE_INSN "dcache"
53 #define DEFR_INSN "defr"
54
55 #define FPU_DOUBLE_CHAR 'd'
56 #define FPU_PAIR_CHAR 'l'
57
58 #define DSP_DUAL_CHAR 'l'
59
60 #define END_OF_INSN '\0'
61
62 /* Maximum length of a mnemonic including all suffixes. */
63 #define MAX_MNEMONIC_LEN 16
64 /* Maximum length of a register name. */
65 #define MAX_REG_LEN 17
66
67 /* Addressing modes must be enclosed with square brackets. */
68 #define ADDR_BEGIN_CHAR '['
69 #define ADDR_END_CHAR ']'
70 /* Immediates must be prefixed with a hash. */
71 #define IMM_CHAR '#'
72
73 #define COMMA ','
74 #define PLUS '+'
75 #define MINUS '-'
76
77 /* Short units are those that can be encoded with 2 bits. */
78 #define SHORT_UNITS "D0, D1, A0 or A1"
79
80 static unsigned int mcpu_opt = CoreMeta12;
81 static unsigned int mfpu_opt = 0;
82 static unsigned int mdsp_opt = 0;
83
84 const char * md_shortopts = "m:";
85
86 struct option md_longopts[] =
87 {
88 {NULL, no_argument, NULL, 0}
89 };
90 size_t md_longopts_size = sizeof (md_longopts);
91
92 /* Parser hash tables. */
93 static htab_t mnemonic_htab;
94 static htab_t reg_htab;
95 static htab_t dsp_reg_htab;
96 static htab_t dsp_tmpl_reg_htab[2];
97 static htab_t scond_htab;
98
99 #define GOT_NAME "__GLOBAL_OFFSET_TABLE__"
100 symbolS * GOT_symbol;
101
102 enum fpu_insn_width {
103 FPU_WIDTH_SINGLE,
104 FPU_WIDTH_DOUBLE,
105 FPU_WIDTH_PAIR,
106 };
107
108 #define FPU_ACTION_ABS_CHAR 'a'
109 #define FPU_ACTION_INV_CHAR 'i'
110 #define FPU_ACTION_QUIET_CHAR 'q'
111 #define FPU_ACTION_ZERO_CHAR 'z'
112
113 #define FPU_ACTION_ABS 0x1
114 #define FPU_ACTION_INV 0x2
115 #define FPU_ACTION_QUIET 0x4
116 #define FPU_ACTION_ZERO 0x8
117
118 enum dsp_insn_width {
119 DSP_WIDTH_SINGLE,
120 DSP_WIDTH_DUAL,
121 };
122
123 #define DSP_ACTION_QR64_CHAR 'q'
124 #define DSP_ACTION_UMUL_CHAR 'u'
125 #define DSP_ACTION_ROUND_CHAR 'r'
126 #define DSP_ACTION_CLAMP9_CHAR 'g'
127 #define DSP_ACTION_CLAMP8_CHAR 'b'
128 #define DSP_ACTION_MOD_CHAR 'm'
129 #define DSP_ACTION_ACC_ZERO_CHAR 'z'
130 #define DSP_ACTION_ACC_ADD_CHAR 'p'
131 #define DSP_ACTION_ACC_SUB_CHAR 'n'
132 #define DSP_ACTION_OV_CHAR 'o'
133
134 #define DSP_ACTION_QR64 0x001
135 #define DSP_ACTION_UMUL 0x002
136 #define DSP_ACTION_ROUND 0x004
137 #define DSP_ACTION_CLAMP9 0x008
138 #define DSP_ACTION_CLAMP8 0x010
139 #define DSP_ACTION_MOD 0x020
140 #define DSP_ACTION_ACC_ZERO 0x040
141 #define DSP_ACTION_ACC_ADD 0x080
142 #define DSP_ACTION_ACC_SUB 0x100
143 #define DSP_ACTION_OV 0x200
144
145 #define DSP_DAOPPAME_8_CHAR 'b'
146 #define DSP_DAOPPAME_16_CHAR 'w'
147 #define DSP_DAOPPAME_TEMP_CHAR 't'
148 #define DSP_DAOPPAME_HIGH_CHAR 'h'
149
150 #define DSP_DAOPPAME_8 0x1
151 #define DSP_DAOPPAME_16 0x2
152 #define DSP_DAOPPAME_TEMP 0x4
153 #define DSP_DAOPPAME_HIGH 0x8
154
155 /* Structure holding information about a parsed instruction. */
156 typedef struct {
157 /* Instruction type. */
158 enum insn_type type;
159 /* Split condition code. */
160 enum scond_code scond;
161
162 /* Instruction bits. */
163 unsigned int bits;
164 /* Size of the instruction in bytes. */
165 size_t len;
166
167 /* FPU instruction encoding. */
168 enum fpu_insn_width fpu_width;
169 unsigned int fpu_action_flags;
170
171 /* DSP instruction encoding. */
172 enum dsp_insn_width dsp_width;
173 unsigned int dsp_action_flags;
174 unsigned int dsp_daoppame_flags;
175
176 /* Reloc encoding information, maximum of one reloc per insn. */
177 enum bfd_reloc_code_real reloc_type;
178 int reloc_pcrel;
179 expressionS reloc_exp;
180 unsigned int reloc_size;
181 } metag_insn;
182
183 /* Structure holding information about a parsed addressing mode. */
184 typedef struct {
185 const metag_reg *base_reg;
186 const metag_reg *offset_reg;
187
188 expressionS exp;
189
190 enum bfd_reloc_code_real reloc_type;
191
192 /* Whether we have an immediate or not. */
193 unsigned short immediate:1;
194 /* Whether or not the base register is updated. */
195 unsigned short update:1;
196 /* Whether the operation uses the address pre or post increment. */
197 unsigned short post_increment:1;
198 /* Whether the immediate should be negated. */
199 unsigned short negate:1;
200 } metag_addr;
201
202 /* Linked list of possible parsers for this instruction. */
203 typedef struct _insn_templates {
204 const insn_template *template;
205 struct _insn_templates *next;
206 } insn_templates;
207
208 /* Parse an instruction that takes no operands. */
209 static const char *
210 parse_none (const char *line, metag_insn *insn,
211 const insn_template *template)
212 {
213 insn->bits = template->meta_opcode;
214 insn->len = 4;
215 return line;
216 }
217
218 /* Return the next non-whitespace character in LINE or NULL. */
219 static const char *
220 skip_whitespace (const char *line)
221 {
222 const char *l = line;
223
224 if (is_whitespace_char (*l))
225 {
226 l++;
227 }
228
229 return l;
230 }
231
232 /* Return the next non-space character in LINE or NULL. */
233 static const char *
234 skip_space (const char *line)
235 {
236 const char *l = line;
237
238 if (is_space_char (*l))
239 {
240 l++;
241 }
242
243 return l;
244 }
245
246 /* Return the character after the current one in LINE if the current
247 character is a comma, otherwise NULL. */
248 static const char *
249 skip_comma (const char *line)
250 {
251 const char *l = line;
252
253 if (l == NULL || *l != COMMA)
254 return NULL;
255
256 l++;
257
258 return l;
259 }
260
261 /* Return the metag_reg struct corresponding to NAME or NULL if no such
262 register exists. */
263 static const metag_reg *
264 parse_gp_reg (const char *name)
265 {
266 const metag_reg *reg;
267 metag_reg entry;
268
269 entry.name = name;
270
271 reg = (const metag_reg *) htab_find (reg_htab, &entry);
272
273 return reg;
274 }
275
276 /* Parse a list of up to COUNT GP registers from LINE, returning the
277 registers parsed in REGS and the number parsed in REGS_READ. Return
278 a pointer to the next character or NULL. */
279 static const char *
280 parse_gp_regs_list (const char *line, const metag_reg **regs, size_t count,
281 size_t *regs_read)
282 {
283 const char *l = line;
284 char reg_buf[MAX_REG_LEN];
285 int seen_regs = 0;
286 size_t i;
287
288 for (i = 0; i < count; i++)
289 {
290 size_t len = 0;
291 const char *next;
292
293 next = l;
294
295 if (i > 0)
296 {
297 l = skip_comma (l);
298 if (l == NULL)
299 {
300 *regs_read = seen_regs;
301 return next;
302 }
303 }
304
305 while (is_register_char (*l))
306 {
307 reg_buf[len] = *l;
308 l++;
309 len++;
310 if (!(len < MAX_REG_LEN))
311 return NULL;
312 }
313
314 reg_buf[len] = '\0';
315
316 if (len)
317 {
318 const metag_reg *reg = parse_gp_reg (reg_buf);
319
320 if (!reg)
321 {
322 *regs_read = seen_regs;
323 return next;
324 }
325 else
326 {
327 regs[i] = reg;
328 seen_regs++;
329 }
330 }
331 else
332 {
333 *regs_read = seen_regs;
334 return next;
335 }
336 }
337
338 *regs_read = seen_regs;
339 return l;
340 }
341
342 /* Parse a list of exactly COUNT GP registers from LINE, returning the
343 registers parsed in REGS. Return a pointer to the next character or NULL. */
344 static const char *
345 parse_gp_regs (const char *line, const metag_reg **regs, size_t count)
346 {
347 const char *l = line;
348 size_t regs_read = 0;
349
350 l = parse_gp_regs_list (l, regs, count, &regs_read);
351
352 if (regs_read != count)
353 return NULL;
354 else
355 return l;
356 }
357
358 /* Parse a list of exactly COUNT FPU registers from LINE, returning the
359 registers parsed in REGS. Return a pointer to the next character or NULL. */
360 static const char *
361 parse_fpu_regs (const char *line, const metag_reg **regs, size_t count)
362 {
363 const char *l = line;
364 size_t regs_read = 0;
365
366 l = parse_gp_regs_list (l, regs, count, &regs_read);
367
368 if (regs_read != count)
369 return NULL;
370 else
371 {
372 size_t i;
373 for (i = 0; i < count; i++)
374 {
375 if (regs[i]->unit != UNIT_FX)
376 return NULL;
377 }
378 return l;
379 }
380 }
381
382 /* Return TRUE if REG1 and REG2 are in paired units. */
383 static bool
384 is_unit_pair (const metag_reg *reg1, const metag_reg *reg2)
385 {
386 if ((reg1->unit == UNIT_A0 &&
387 (reg2->unit == UNIT_A1)) ||
388 (reg1->unit == UNIT_A1 &&
389 (reg2->unit == UNIT_A0)) ||
390 (reg1->unit == UNIT_D0 &&
391 (reg2->unit == UNIT_D1)) ||
392 (reg1->unit == UNIT_D1 &&
393 (reg2->unit == UNIT_D0)))
394 return true;
395
396 return false;
397 }
398
399 /* Return TRUE if REG1 and REG2 form a register pair. */
400 static bool
401 is_reg_pair (const metag_reg *reg1, const metag_reg *reg2)
402 {
403 if (reg1->unit == UNIT_FX &&
404 reg2->unit == UNIT_FX &&
405 reg2->no == reg1->no + 1)
406 return true;
407
408 if (reg1->no != reg2->no)
409 return false;
410
411 return is_unit_pair (reg1, reg2);
412 }
413
414 /* Parse a pair of GP registers from LINE, returning the registers parsed
415 in REGS. Return a pointer to the next character or NULL. */
416 static const char *
417 parse_pair_gp_regs (const char *line, const metag_reg **regs)
418 {
419 const char *l = line;
420
421 l = parse_gp_regs (line, regs, 2);
422
423 if (l == NULL)
424 {
425 l = parse_gp_regs (line, regs, 1);
426
427 if (l == NULL)
428 return NULL;
429
430 if (regs[0]->unit == UNIT_RD)
431 return l;
432 else
433 return NULL;
434 }
435
436 if (is_reg_pair (regs[0], regs[1]))
437 return l;
438
439 return NULL;
440 }
441
442 /* Parse a unit-to-unit MOV instruction. */
443 static const char *
444 parse_mov_u2u (const char *line, metag_insn *insn,
445 const insn_template *template)
446 {
447 const metag_reg *regs[2];
448
449 line = parse_gp_regs (line, regs, 2);
450
451 if (line == NULL)
452 return NULL;
453
454 if (!mfpu_opt && (regs[0]->unit == UNIT_FX || regs[1]->unit == UNIT_FX))
455 {
456 as_bad (_("no floating point unit specified"));
457 return NULL;
458 }
459
460 insn->bits = (template->meta_opcode |
461 (regs[1]->no << 19) |
462 (regs[0]->no << 14) |
463 (regs[1]->unit << 10) |
464 (regs[0]->unit << 5));
465 insn->len = 4;
466 return line;
467 }
468
469 /* Parse a MOV to port instruction. */
470 static const char *
471 parse_mov_port (const char *line, metag_insn *insn,
472 const insn_template *template)
473 {
474 const char *l = line;
475 bool is_movl = MINOR_OPCODE (template->meta_opcode) == MOVL_MINOR;
476 const metag_reg *dest_regs[2];
477 const metag_reg *port_regs[1];
478
479 if (is_movl)
480 l = parse_gp_regs (l, dest_regs, 2);
481 else
482 l = parse_gp_regs (l, dest_regs, 1);
483
484 if (l == NULL)
485 return NULL;
486
487 if (template->insn_type == INSN_FPU && dest_regs[0]->unit != UNIT_FX)
488 return NULL;
489
490 l = skip_comma (l);
491
492 if (l == NULL ||
493 *l == END_OF_INSN)
494 return NULL;
495
496 l = parse_gp_regs (l, port_regs, 1);
497
498 if (l == NULL)
499 return NULL;
500
501 if (port_regs[0]->unit != UNIT_RD ||
502 port_regs[0]->no != 0)
503 return NULL;
504
505 if (is_movl)
506 {
507 if (!is_unit_pair (dest_regs[0], dest_regs[1]))
508 return NULL;
509
510 insn->bits = (template->meta_opcode |
511 (dest_regs[0]->no << 14) |
512 (dest_regs[1]->no << 9) |
513 ((dest_regs[0]->unit & SHORT_UNIT_MASK) << 5));
514 }
515 else
516 insn->bits = (template->meta_opcode |
517 (dest_regs[0]->no << 14) |
518 (dest_regs[0]->unit << 5));
519
520 insn->len = 4;
521 return l;
522 }
523
524 /* Parse a MOVL to TTREC instruction. */
525 static const char *
526 parse_movl_ttrec (const char *line, metag_insn *insn,
527 const insn_template *template)
528 {
529 const char *l = line;
530 const metag_reg *src_regs[2];
531 const metag_reg *dest_regs[1];
532
533 l = parse_gp_regs (l, dest_regs, 1);
534
535 if (l == NULL)
536 return NULL;
537
538 if (dest_regs[0]->unit != UNIT_TT ||
539 dest_regs[0]->no != 3)
540 return NULL;
541
542 l = skip_comma (l);
543
544 if (l == NULL ||
545 *l == END_OF_INSN)
546 return NULL;
547
548 l = parse_gp_regs (l, src_regs, 2);
549
550 if (l == NULL)
551 return NULL;
552
553 if (!is_unit_pair (src_regs[0], src_regs[1]))
554 return NULL;
555
556 insn->bits = (template->meta_opcode |
557 (src_regs[0]->no << 19) |
558 (src_regs[1]->no << 14) |
559 ((src_regs[0]->unit & SHORT_UNIT_MASK) << 7));
560
561 insn->len = 4;
562 return l;
563 }
564
565 /* Parse an incrementing or decrementing addressing mode. */
566 static const char *
567 parse_addr_incr_op (const char *line, metag_addr *addr)
568 {
569 const char *l = line;
570 const char *ll;
571
572 ll = l + 1;
573
574 if (*l == PLUS &&
575 *ll == PLUS)
576 {
577 addr->update = 1;
578 ll++;
579 return ll;
580 }
581 else if (*l == MINUS &&
582 *ll == MINUS)
583 {
584 addr->update = 1;
585 addr->negate = 1;
586 ll++;
587 return ll;
588 }
589 return NULL;
590 }
591
592 /* Parse an pre-incrementing or pre-decrementing addressing mode. */
593 static const char *
594 parse_addr_pre_incr_op (const char *line, metag_addr *addr)
595 {
596 return parse_addr_incr_op (line, addr);
597 }
598
599 /* Parse an post-incrementing or post-decrementing addressing mode. */
600 static const char *
601 parse_addr_post_incr_op (const char *line, metag_addr *addr)
602 {
603 const char *l;
604
605 l = parse_addr_incr_op (line, addr);
606
607 if (l == NULL)
608 return NULL;
609
610 addr->post_increment = 1;
611
612 return l;
613 }
614
615 /* Parse an infix addressing mode. */
616 static const char *
617 parse_addr_op (const char *line, metag_addr *addr)
618 {
619 const char *l = line;
620 const char *ll;
621
622 ll = l + 1;
623
624 if (*l == PLUS)
625 {
626 if (*ll == PLUS)
627 {
628 addr->update = 1;
629 ll++;
630 return ll;
631 }
632 l++;
633 return l;
634 }
635 return NULL;
636 }
637
638 /* Parse the immediate portion of an addressing mode. */
639 static const char *
640 parse_imm_addr (const char *line, metag_addr *addr)
641 {
642 const char *l = line;
643 char *save_input_line_pointer;
644 expressionS *exp = &addr->exp;
645
646 /* Skip #. */
647 if (*l == '#')
648 l++;
649 else
650 return NULL;
651
652 save_input_line_pointer = input_line_pointer;
653 input_line_pointer = (char *) l;
654
655 expression (exp);
656
657 l = input_line_pointer;
658 input_line_pointer = save_input_line_pointer;
659
660 if (exp->X_op == O_absent || exp->X_op == O_big)
661 {
662 return NULL;
663 }
664 else if (exp->X_op == O_constant)
665 {
666 return l;
667 }
668 else
669 {
670 if (exp->X_op == O_PIC_reloc &&
671 exp->X_md == BFD_RELOC_METAG_GETSET_GOT)
672 {
673 exp->X_op = O_symbol;
674 addr->reloc_type = BFD_RELOC_METAG_GETSET_GOT;
675 }
676 else if (exp->X_op == O_PIC_reloc &&
677 exp->X_md == BFD_RELOC_METAG_TLS_IE)
678 {
679 exp->X_op = O_symbol;
680 addr->reloc_type = BFD_RELOC_METAG_TLS_IE;
681 }
682 else if (exp->X_op == O_PIC_reloc &&
683 exp->X_md == BFD_RELOC_METAG_GOTOFF)
684 {
685 exp->X_op = O_symbol;
686 addr->reloc_type = BFD_RELOC_METAG_GETSET_GOTOFF;
687 }
688 else
689 addr->reloc_type = BFD_RELOC_METAG_GETSETOFF;
690 return l;
691 }
692 }
693
694 /* Parse the offset portion of an addressing mode (register or immediate). */
695 static const char *
696 parse_addr_offset (const char *line, metag_addr *addr, int size)
697 {
698 const char *l = line;
699 const metag_reg *regs[1];
700
701 if (*l == IMM_CHAR)
702 {
703 /* ++ is a valid operator in our addressing but not in an expr. Make
704 sure that the expression parser never sees it. */
705 char *ppp = strstr(l, "++");
706 char ppch = '+';
707
708 if (ppp)
709 *ppp = '\0';
710
711 l = parse_imm_addr (l, addr);
712
713 if (ppp)
714 *ppp = ppch;
715
716 if (l == NULL)
717 return NULL;
718
719 if (addr->exp.X_add_number % size)
720 {
721 as_bad (_("offset must be a multiple of %d"), size);
722 return NULL;
723 }
724
725 addr->immediate = 1;
726 return l;
727 }
728 else
729 {
730 l = parse_gp_regs (l, regs, 1);
731
732 if (l == NULL)
733 return NULL;
734
735 if (regs[0]->unit != addr->base_reg->unit)
736 {
737 as_bad (_("offset and base must be from the same unit"));
738 return NULL;
739 }
740
741 addr->offset_reg = regs[0];
742 return l;
743 }
744 }
745
746 /* Parse an addressing mode. */
747 static const char *
748 parse_addr (const char *line, metag_addr *addr, unsigned int size)
749 {
750 const char *l = line;
751 const char *ll;
752 const metag_reg *regs[1];
753
754 /* Skip opening square bracket. */
755 l++;
756
757 ll = parse_addr_pre_incr_op (l, addr);
758
759 if (ll != NULL)
760 l = ll;
761
762 l = parse_gp_regs (l, regs, 1);
763
764 if (l == NULL)
765 return NULL;
766
767 addr->base_reg = regs[0];
768
769 if (*l == ADDR_END_CHAR)
770 {
771 addr->exp.X_op = O_constant;
772 addr->exp.X_add_symbol = NULL;
773 addr->exp.X_op_symbol = NULL;
774 if (addr->update == 1)
775 {
776 /* We have a pre increment/decrement. */
777 addr->exp.X_add_number = size;
778 }
779 else
780 {
781 /* Simple register with no offset (0 immediate). */
782 addr->exp.X_add_number = 0;
783 }
784 addr->immediate = 1;
785 l++;
786 return l;
787 }
788
789 /* We already had a pre increment/decrement. */
790 if (addr->update == 1)
791 return NULL;
792
793 ll = parse_addr_post_incr_op (l, addr);
794
795 if (ll && *ll == ADDR_END_CHAR)
796 {
797 if (addr->update == 1)
798 {
799 /* We have a post increment/decrement. */
800 addr->exp.X_op = O_constant;
801 addr->exp.X_add_number = size;
802 addr->exp.X_add_symbol = NULL;
803 addr->exp.X_op_symbol = NULL;
804 addr->post_increment = 1;
805 }
806 addr->immediate = 1;
807 ll++;
808 return ll;
809 }
810
811 addr->post_increment = 0;
812
813 l = parse_addr_op (l, addr);
814
815 if (l == NULL)
816 return NULL;
817
818 l = parse_addr_offset (l, addr, size);
819
820 if (l == NULL)
821 return NULL;
822
823 if (*l == ADDR_END_CHAR)
824 {
825 l++;
826 return l;
827 }
828
829 /* We already had a pre increment/decrement. */
830 if (addr->update == 1)
831 return NULL;
832
833 l = parse_addr_post_incr_op (l, addr);
834
835 if (l == NULL)
836 return NULL;
837
838 if (*l == ADDR_END_CHAR)
839 {
840 l++;
841 return l;
842 }
843
844 return NULL;
845 }
846
847 /* Parse a GET or pipeline MOV instruction. */
848 static const char *
849 parse_get (const char *line, const metag_reg **regs, metag_addr *addr,
850 unsigned int size, bool is_mov)
851 {
852 const char *l = line;
853
854 if (size == 8)
855 {
856 l = parse_pair_gp_regs (l, regs);
857
858 if (l == NULL)
859 return NULL;
860 }
861 else
862 {
863 l = parse_gp_regs (l, regs, 1);
864
865 if (l == NULL)
866 {
867 if (!is_mov)
868 as_bad (_("invalid destination register"));
869 return NULL;
870 }
871 }
872
873 l = skip_comma (l);
874
875 if (l == NULL ||
876 *l == END_OF_INSN)
877 return NULL;
878
879 l = parse_addr (l, addr, size);
880
881 if (l == NULL)
882 {
883 if (!is_mov)
884 as_bad (_("invalid memory operand"));
885 return NULL;
886 }
887
888 return l;
889 }
890
891 /* Parse a SET instruction. */
892 static const char *
893 parse_set (const char *line, const metag_reg **regs, metag_addr *addr,
894 unsigned int size)
895 {
896 const char *l = line;
897
898 l = parse_addr (l, addr, size);
899
900 if (l == NULL)
901 {
902 as_bad (_("invalid memory operand"));
903 return NULL;
904 }
905
906 l = skip_comma (l);
907
908 if (l == NULL ||
909 *l == END_OF_INSN)
910 return NULL;
911
912 if (size == 8)
913 {
914 const char *ll = l;
915
916 ll = parse_pair_gp_regs (l, regs);
917
918 if (ll == NULL)
919 {
920 /* Maybe this is an RD register, which is 64 bits wide so needs no
921 pair. */
922 l = parse_gp_regs (l, regs, 1);
923
924 if (l == NULL ||
925 regs[0]->unit != UNIT_RD)
926 {
927 return NULL;
928 }
929 }
930 else
931 l = ll;
932 }
933 else
934 {
935 l = parse_gp_regs (l, regs, 1);
936
937 if (l == NULL)
938 {
939 as_bad (_("invalid source register"));
940 return NULL;
941 }
942 }
943
944 return l;
945 }
946
947 /* Check a signed integer value can be represented in the given number
948 of bits. */
949 static bool
950 within_signed_range (int value, unsigned int bits)
951 {
952 int min_val = -(1 << (bits - 1));
953 int max_val = (1 << (bits - 1)) - 1;
954 return (value <= max_val) && (value >= min_val);
955 }
956
957 /* Check an unsigned integer value can be represented in the given number
958 of bits. */
959 static bool
960 within_unsigned_range (unsigned int value, unsigned int bits)
961 {
962 return value < (unsigned int)(1 << bits);
963 }
964
965 /* Return TRUE if UNIT can be expressed using a short code. */
966 static bool
967 is_short_unit (enum metag_unit unit)
968 {
969 switch (unit)
970 {
971 case UNIT_A0:
972 case UNIT_A1:
973 case UNIT_D0:
974 case UNIT_D1:
975 return true;
976 default:
977 return false;
978 }
979 }
980
981 /* Copy reloc data from ADDR to INSN. */
982 static void
983 copy_addr_reloc (metag_insn *insn, metag_addr *addr)
984 {
985 memcpy (&insn->reloc_exp, &addr->exp, sizeof(insn->reloc_exp));
986 insn->reloc_type = addr->reloc_type;
987 }
988
989 /* Parse a GET, SET or pipeline MOV instruction. */
990 static const char *
991 parse_get_set (const char *line, metag_insn *insn,
992 const insn_template *template)
993 {
994 const char *l = line;
995 const metag_reg *regs[2];
996 metag_addr addr;
997 unsigned int size = metag_get_set_size_bytes (template->meta_opcode);
998 bool is_get = MAJOR_OPCODE (template->meta_opcode) == OPC_GET;
999 unsigned int reg_no;
1000
1001 memset(&addr, 0, sizeof(addr));
1002 addr.reloc_type = BFD_RELOC_UNUSED;
1003
1004 if (is_get)
1005 {
1006 bool is_mov = startswith (template->name, "MOV");
1007
1008 l = parse_get (l, regs, &addr, size, is_mov);
1009
1010 if (l == NULL)
1011 return NULL;
1012
1013 if (!(regs[0]->unit == UNIT_D0 ||
1014 regs[0]->unit == UNIT_D1 ||
1015 regs[0]->unit == UNIT_A0 ||
1016 regs[0]->unit == UNIT_A1 ||
1017 (regs[0]->unit == UNIT_RD && is_mov) ||
1018 (regs[0]->unit == UNIT_CT && size == 4) ||
1019 (regs[0]->unit == UNIT_PC && size == 4) ||
1020 (regs[0]->unit == UNIT_TR && size == 4) ||
1021 (regs[0]->unit == UNIT_TT && (size == 4 || size == 8)) ||
1022 regs[0]->unit == UNIT_FX))
1023 {
1024 as_bad (_("invalid destination unit"));
1025 return NULL;
1026 }
1027
1028 if (regs[0]->unit == UNIT_RD)
1029 {
1030 if (regs[0]->no == 0)
1031 {
1032 as_bad (_("mov cannot use RD port as destination"));
1033 return NULL;
1034 }
1035 }
1036
1037 reg_no = regs[0]->no;
1038 }
1039 else
1040 {
1041 l = parse_set (l, regs, &addr, size);
1042
1043 if (l == NULL)
1044 return NULL;
1045
1046 if (!(regs[0]->unit == UNIT_D0 ||
1047 regs[0]->unit == UNIT_D1 ||
1048 regs[0]->unit == UNIT_A0 ||
1049 regs[0]->unit == UNIT_A1 ||
1050 regs[0]->unit == UNIT_RD ||
1051 (regs[0]->unit == UNIT_CT && size == 4) ||
1052 (regs[0]->unit == UNIT_PC && size == 4) ||
1053 (regs[0]->unit == UNIT_TR && size == 4) ||
1054 (regs[0]->unit == UNIT_TT && (size == 4 || size == 8)) ||
1055 regs[0]->unit == UNIT_FX))
1056 {
1057 as_bad (_("invalid source unit"));
1058 return NULL;
1059 }
1060
1061 if (addr.immediate == 0 &&
1062 (regs[0]->unit == addr.base_reg->unit ||
1063 (size == 8 && is_unit_pair (regs[0], addr.base_reg))))
1064 {
1065 as_bad (_("source and address units must not be shared for this addressing mode"));
1066 return NULL;
1067 }
1068
1069 if (regs[0]->unit == UNIT_RD)
1070 {
1071 if (regs[0]->no != 0)
1072 {
1073 as_bad (_("set can only use RD port as source"));
1074 return NULL;
1075 }
1076 reg_no = 16;
1077 }
1078 else
1079 reg_no = regs[0]->no;
1080 }
1081
1082 insn->bits = (template->meta_opcode |
1083 (reg_no << 19) |
1084 (regs[0]->unit << 1));
1085
1086 if (!is_short_unit (addr.base_reg->unit))
1087 {
1088 as_bad (_("base unit must be one of %s"), SHORT_UNITS);
1089 return NULL;
1090 }
1091
1092 insn->bits |= ((addr.base_reg->no << 14) |
1093 ((addr.base_reg->unit & SHORT_UNIT_MASK) << 5));
1094
1095 if (addr.immediate)
1096 {
1097 int offset = addr.exp.X_add_number;
1098
1099 copy_addr_reloc (insn, &addr);
1100
1101 if (addr.negate)
1102 offset = -offset;
1103
1104 offset = offset / (int)size;
1105
1106 if (!within_signed_range (offset, GET_SET_IMM_BITS))
1107 {
1108 /* We already tried to encode as an extended GET/SET. */
1109 as_bad (_("offset value out of range"));
1110 return NULL;
1111 }
1112
1113 offset = offset & GET_SET_IMM_MASK;
1114
1115 insn->bits |= (0x1 << 25);
1116 insn->bits |= (offset << 8);
1117 }
1118 else
1119 {
1120 insn->bits |= (addr.offset_reg->no << 9);
1121 }
1122
1123 if (addr.update)
1124 insn->bits |= (0x1 << 7);
1125
1126 if (addr.post_increment)
1127 insn->bits |= 0x1;
1128
1129 insn->len = 4;
1130 return l;
1131 }
1132
1133 /* Parse an extended GET or SET instruction. */
1134 static const char *
1135 parse_get_set_ext (const char *line, metag_insn *insn,
1136 const insn_template *template)
1137 {
1138 const char *l = line;
1139 const metag_reg *regs[2];
1140 metag_addr addr;
1141 unsigned int size = metag_get_set_ext_size_bytes (template->meta_opcode);
1142 bool is_get = MINOR_OPCODE (template->meta_opcode) == GET_EXT_MINOR;
1143 bool is_mov = MINOR_OPCODE (template->meta_opcode) == MOV_EXT_MINOR;
1144 unsigned int reg_unit;
1145
1146 memset(&addr, 0, sizeof(addr));
1147 addr.reloc_type = BFD_RELOC_UNUSED;
1148
1149 if (is_get || is_mov)
1150 {
1151 l = parse_get (l, regs, &addr, size, is_mov);
1152 }
1153 else
1154 {
1155 l = parse_set (l, regs, &addr, size);
1156 }
1157
1158 if (l == NULL)
1159 return NULL;
1160
1161 /* Extended GET/SET does not support incrementing addressing. */
1162 if (addr.update)
1163 return NULL;
1164
1165 if (is_mov)
1166 {
1167 if (regs[0]->unit != UNIT_RD)
1168 {
1169 as_bad (_("destination unit must be RD"));
1170 return NULL;
1171 }
1172 reg_unit = 0;
1173 }
1174 else
1175 {
1176 if (!is_short_unit (regs[0]->unit))
1177 {
1178 return NULL;
1179 }
1180 reg_unit = regs[0]->unit;
1181 }
1182
1183 insn->bits = (template->meta_opcode |
1184 (regs[0]->no << 19) |
1185 ((reg_unit & SHORT_UNIT_MASK) << 3));
1186
1187 if (!is_short_unit (addr.base_reg->unit))
1188 {
1189 as_bad (_("base unit must be one of %s"), SHORT_UNITS);
1190 return NULL;
1191 }
1192
1193 if (addr.base_reg->no > 1)
1194 {
1195 return NULL;
1196 }
1197
1198 insn->bits |= ((addr.base_reg->no & EXT_BASE_REG_MASK) |
1199 ((addr.base_reg->unit & SHORT_UNIT_MASK) << 5));
1200
1201 if (addr.immediate)
1202 {
1203 int offset = addr.exp.X_add_number;
1204
1205 copy_addr_reloc (insn, &addr);
1206
1207 if (addr.negate)
1208 offset = -offset;
1209
1210 offset = offset / (int)size;
1211
1212 if (!within_signed_range (offset, GET_SET_EXT_IMM_BITS))
1213 {
1214 /* Parsing as a standard GET/SET provides a smaller offset. */
1215 as_bad (_("offset value out of range"));
1216 return NULL;
1217 }
1218
1219 offset = offset & GET_SET_EXT_IMM_MASK;
1220
1221 insn->bits |= (offset << 7);
1222 }
1223 else
1224 {
1225 return NULL;
1226 }
1227
1228 insn->len = 4;
1229 return l;
1230 }
1231
1232 /* Parse an MGET or MSET instruction addressing mode. */
1233 static const char *
1234 parse_mget_mset_addr (const char *line, metag_addr *addr)
1235 {
1236 const char *l = line;
1237 const char *ll;
1238 const metag_reg *regs[1];
1239
1240 /* Skip opening square bracket. */
1241 l++;
1242
1243 l = parse_gp_regs (l, regs, 1);
1244
1245 if (l == NULL)
1246 return NULL;
1247
1248 addr->base_reg = regs[0];
1249
1250 ll = parse_addr_post_incr_op (l, addr);
1251
1252 if (ll != NULL)
1253 l = ll;
1254
1255 if (addr->negate == 1)
1256 return NULL;
1257
1258 if (*l == ADDR_END_CHAR)
1259 {
1260 l++;
1261 return l;
1262 }
1263
1264 return NULL;
1265 }
1266
1267 /* Parse an MGET instruction. */
1268 static const char *
1269 parse_mget (const char *line, const metag_reg **regs, metag_addr *addr,
1270 size_t *regs_read)
1271 {
1272 const char *l = line;
1273
1274 l = parse_gp_regs_list (l, regs, MGET_MSET_MAX_REGS, regs_read);
1275
1276 if (l == NULL ||
1277 *regs_read == 0)
1278 {
1279 as_bad (_("invalid destination register list"));
1280 return NULL;
1281 }
1282
1283 l = skip_comma (l);
1284
1285 if (l == NULL ||
1286 *l == END_OF_INSN)
1287 return NULL;
1288
1289 l = parse_mget_mset_addr (l, addr);
1290
1291 if (l == NULL)
1292 {
1293 as_bad (_("invalid memory operand"));
1294 return NULL;
1295 }
1296
1297 return l;
1298 }
1299
1300 /* Parse an MSET instruction. */
1301 static const char *
1302 parse_mset (const char *line, const metag_reg **regs, metag_addr *addr,
1303 size_t *regs_read)
1304 {
1305 const char *l = line;
1306
1307 l = parse_mget_mset_addr (l, addr);
1308
1309 if (l == NULL)
1310 {
1311 as_bad (_("invalid memory operand"));
1312 return NULL;
1313 }
1314
1315 l = skip_comma (l);
1316
1317 if (l == NULL ||
1318 *l == END_OF_INSN)
1319 return NULL;
1320
1321 l = parse_gp_regs_list (l, regs, MGET_MSET_MAX_REGS, regs_read);
1322
1323 if (l == NULL ||
1324 *regs_read == 0)
1325 {
1326 as_bad (_("invalid source register list"));
1327 return NULL;
1328 }
1329
1330 return l;
1331 }
1332
1333 /* Take a register list REGS of size REGS_READ and convert it into an
1334 rmask value if possible. Return the rmask value in RMASK and the
1335 lowest numbered register in LOWEST_REG. Return TRUE if the conversion
1336 was successful. */
1337 static bool
1338 check_rmask (const metag_reg **regs, size_t regs_read, bool is_fpu,
1339 bool is_64bit, unsigned int *lowest_reg,
1340 unsigned int *rmask)
1341 {
1342 unsigned int reg_unit = regs[0]->unit;
1343 size_t i;
1344
1345 for (i = 0; i < regs_read; i++)
1346 {
1347 if (is_fpu)
1348 {
1349 if (is_64bit && regs[i]->no % 2)
1350 {
1351 as_bad (_("register list must be even numbered"));
1352 return false;
1353 }
1354 }
1355 else if (regs[i]->unit != reg_unit)
1356 {
1357 as_bad (_("register list must be from the same unit"));
1358 return false;
1359 }
1360
1361 if (regs[i]->no < *lowest_reg)
1362 *lowest_reg = regs[i]->no;
1363 }
1364
1365 for (i = 0; i < regs_read; i++)
1366 {
1367 unsigned int next_bit, next_reg;
1368 if (regs[i]->no == *lowest_reg)
1369 continue;
1370
1371 if (is_fpu && is_64bit)
1372 next_reg = ((regs[i]->no / 2) - ((*lowest_reg / 2) + 1));
1373 else
1374 next_reg = (regs[i]->no - (*lowest_reg + 1));
1375
1376 next_bit = (1 << next_reg);
1377
1378 if (*rmask & next_bit)
1379 {
1380 as_bad (_("register list must not contain duplicates"));
1381 return false;
1382 }
1383
1384 *rmask |= next_bit;
1385 }
1386
1387 return true;
1388 }
1389
1390 /* Parse an MGET or MSET instruction. */
1391 static const char *
1392 parse_mget_mset (const char *line, metag_insn *insn,
1393 const insn_template *template)
1394 {
1395 const char *l = line;
1396 const metag_reg *regs[MGET_MSET_MAX_REGS];
1397 metag_addr addr;
1398 bool is_get = MAJOR_OPCODE (template->meta_opcode) == OPC_GET;
1399 bool is_fpu = (MINOR_OPCODE (template->meta_opcode) & 0x6) == 0x6;
1400 bool is_64bit = (MINOR_OPCODE (template->meta_opcode) & 0x1) == 0x1;
1401 size_t regs_read = 0;
1402 unsigned int rmask = 0, reg_unit = 0, lowest_reg = 0xffffffff;
1403
1404 memset(&addr, 0, sizeof(addr));
1405 addr.reloc_type = BFD_RELOC_UNUSED;
1406
1407 if (is_get)
1408 {
1409 l = parse_mget (l, regs, &addr, &regs_read);
1410 }
1411 else
1412 {
1413 l = parse_mset (l, regs, &addr, &regs_read);
1414 }
1415
1416 if (l == NULL)
1417 return NULL;
1418
1419 if (!check_rmask (regs, regs_read, is_fpu, is_64bit, &lowest_reg, &rmask))
1420 return NULL;
1421
1422 reg_unit = regs[0]->unit;
1423
1424 if (is_fpu)
1425 {
1426 if (reg_unit != UNIT_FX)
1427 return NULL;
1428
1429 reg_unit = 0;
1430 }
1431 else if (reg_unit == UNIT_FX)
1432 return NULL;
1433
1434 insn->bits = (template->meta_opcode |
1435 (lowest_reg << 19) |
1436 ((reg_unit & SHORT_UNIT_MASK) << 3));
1437
1438 if (!is_short_unit (addr.base_reg->unit))
1439 {
1440 as_bad (_("base unit must be one of %s"), SHORT_UNITS);
1441 return NULL;
1442 }
1443
1444 insn->bits |= ((addr.base_reg->no << 14) |
1445 ((addr.base_reg->unit & SHORT_UNIT_MASK) << 5));
1446
1447 insn->bits |= (rmask & RMASK_MASK) << 7;
1448
1449 insn->len = 4;
1450 return l;
1451 }
1452
1453 /* Parse a list of registers for MMOV pipeline prime. */
1454 static const char *
1455 parse_mmov_prime_list (const char *line, const metag_reg **regs,
1456 unsigned int *rmask)
1457 {
1458 const char *l = line;
1459 const metag_reg *ra_regs[MMOV_MAX_REGS];
1460 size_t regs_read = 0, i;
1461 unsigned int mask = 0;
1462
1463 l = parse_gp_regs_list (l, regs, 1, &regs_read);
1464
1465 /* First register must be a port. */
1466 if (l == NULL || regs[0]->unit != UNIT_RD)
1467 return NULL;
1468
1469 l = skip_comma (l);
1470
1471 if (l == NULL)
1472 return NULL;
1473
1474 l = parse_gp_regs_list (l, ra_regs, MMOV_MAX_REGS, &regs_read);
1475
1476 if (l == NULL)
1477 return NULL;
1478
1479 /* Check remaining registers match the first.
1480
1481 Note that we also accept RA (0x10) as input for the remaining registers.
1482 Whilst this doesn't represent the instruction in any way we're stuck
1483 with it because the embedded assembler accepts it. */
1484 for (i = 0; i < regs_read; i++)
1485 {
1486 if (ra_regs[i]->unit != UNIT_RD ||
1487 (ra_regs[i]->no != 0x10 && ra_regs[i]->no != regs[0]->no))
1488 return NULL;
1489
1490 mask = (mask << 1) | 0x1;
1491 }
1492
1493 *rmask = mask;
1494
1495 return l;
1496 }
1497
1498 /* Parse a MMOV instruction. */
1499 static const char *
1500 parse_mmov (const char *line, metag_insn *insn,
1501 const insn_template *template)
1502 {
1503 const char *l = line;
1504 bool is_fpu = template->insn_type == INSN_FPU;
1505 bool is_prime = (MINOR_OPCODE (template->meta_opcode) & 0x2) != 0 && !is_fpu;
1506 bool is_64bit = (MINOR_OPCODE (template->meta_opcode) & 0x1) != 0;
1507 unsigned int rmask = 0;
1508
1509 if (is_prime)
1510 {
1511 const metag_reg *reg;
1512 metag_addr addr;
1513
1514 memset (&addr, 0, sizeof(addr));
1515
1516 l = parse_mmov_prime_list (l, &reg, &rmask);
1517
1518 if (l == NULL)
1519 return NULL;
1520
1521 l = skip_comma (l);
1522
1523 if (l == NULL)
1524 return NULL;
1525
1526 l = parse_mget_mset_addr (l, &addr);
1527
1528 if (l == NULL)
1529 {
1530 as_bad (_("invalid memory operand"));
1531 return NULL;
1532 }
1533
1534 insn->bits = (template->meta_opcode |
1535 (reg->no << 19) |
1536 (addr.base_reg->no << 14) |
1537 ((rmask & RMASK_MASK) << 7) |
1538 ((addr.base_reg->unit & SHORT_UNIT_MASK) << 5));
1539 }
1540 else
1541 {
1542 const metag_reg *regs[MMOV_MAX_REGS + 1];
1543 unsigned int lowest_reg = 0xffffffff;
1544 size_t regs_read = 0;
1545
1546 l = parse_gp_regs_list (l, regs, MMOV_MAX_REGS + 1, &regs_read);
1547
1548 if (l == NULL || regs_read == 0)
1549 return NULL;
1550
1551 if (!is_short_unit (regs[0]->unit) &&
1552 !(is_fpu && regs[0]->unit == UNIT_FX))
1553 {
1554 return NULL;
1555 }
1556
1557 if (!(regs[regs_read-1]->unit == UNIT_RD &&
1558 regs[regs_read-1]->no == 0))
1559 {
1560 return NULL;
1561 }
1562
1563 if (!check_rmask (regs, regs_read - 1, is_fpu, is_64bit, &lowest_reg,
1564 &rmask))
1565 return NULL;
1566
1567 if (is_fpu)
1568 {
1569 insn->bits = (template->meta_opcode |
1570 (regs[0]->no << 14) |
1571 ((rmask & RMASK_MASK) << 7));
1572 }
1573 else
1574 {
1575 insn->bits = (template->meta_opcode |
1576 (regs[0]->no << 19) |
1577 ((rmask & RMASK_MASK) << 7) |
1578 ((regs[0]->unit & SHORT_UNIT_MASK) << 3));
1579 }
1580 }
1581
1582 insn->len = 4;
1583 return l;
1584 }
1585
1586 /* Parse an immediate constant. */
1587 static const char *
1588 parse_imm_constant (const char *line, metag_insn *insn, int *value)
1589 {
1590 const char *l = line;
1591 char *save_input_line_pointer;
1592 expressionS *exp = &insn->reloc_exp;
1593
1594 /* Skip #. */
1595 if (*l == '#')
1596 l++;
1597 else
1598 return NULL;
1599
1600 save_input_line_pointer = input_line_pointer;
1601 input_line_pointer = (char *) l;
1602
1603 expression (exp);
1604
1605 l = input_line_pointer;
1606 input_line_pointer = save_input_line_pointer;
1607
1608 if (exp->X_op == O_constant)
1609 {
1610 *value = exp->X_add_number;
1611
1612 return l;
1613 }
1614 else
1615 {
1616 return NULL;
1617 }
1618 }
1619
1620 /* Parse an MDRD instruction. */
1621 static const char *
1622 parse_mdrd (const char *line, metag_insn *insn,
1623 const insn_template *template)
1624 {
1625 const char *l = line;
1626 unsigned int rmask = 0;
1627 int value = 0, i;
1628
1629 l = parse_imm_constant (l, insn, &value);
1630
1631 if (l == NULL)
1632 return NULL;
1633
1634 if (value < 1 || value > 8)
1635 {
1636 as_bad (_("MDRD value must be between 1 and 8"));
1637 return NULL;
1638 }
1639
1640 for (i = 1; i < value; i++)
1641 {
1642 rmask <<= 1;
1643 rmask |= 1;
1644 }
1645
1646 insn->bits = (template->meta_opcode |
1647 (rmask << 7));
1648
1649 insn->len = 4;
1650 return l;
1651 }
1652
1653 /* Parse a conditional SET instruction. */
1654 static const char *
1655 parse_cond_set (const char *line, metag_insn *insn,
1656 const insn_template *template)
1657 {
1658 const char *l = line;
1659 const metag_reg *regs[2];
1660 metag_addr addr;
1661 unsigned int size = metag_cond_set_size_bytes (template->meta_opcode);
1662 unsigned int reg_no;
1663
1664 memset(&addr, 0, sizeof(addr));
1665 addr.reloc_type = BFD_RELOC_UNUSED;
1666
1667 l = parse_set (l, regs, &addr, size);
1668
1669 if (l == NULL)
1670 return NULL;
1671
1672 if (regs[0]->unit == UNIT_RD)
1673 {
1674 if (regs[0]->no != 0)
1675 {
1676 as_bad (_("set can only use RD port as source"));
1677 return NULL;
1678 }
1679 reg_no = 16;
1680 }
1681 else
1682 reg_no = regs[0]->no;
1683
1684 if (addr.update)
1685 return NULL;
1686
1687 if (!(addr.immediate &&
1688 addr.exp.X_add_number == 0))
1689 return NULL;
1690
1691 insn->bits = (template->meta_opcode |
1692 (reg_no << 19) |
1693 (regs[0]->unit << 10));
1694
1695 if (!is_short_unit (addr.base_reg->unit))
1696 {
1697 as_bad (_("base unit must be one of %s"), SHORT_UNITS);
1698 return NULL;
1699 }
1700
1701 insn->bits |= ((addr.base_reg->no << 14) |
1702 ((addr.base_reg->unit & SHORT_UNIT_MASK) << 5));
1703
1704 insn->len = 4;
1705 return l;
1706 }
1707
1708 /* Parse an XFR instruction. */
1709 static const char *
1710 parse_xfr (const char *line, metag_insn *insn,
1711 const insn_template *template)
1712 {
1713 const char *l = line;
1714 metag_addr dest_addr, src_addr;
1715 unsigned int size = 4;
1716
1717 memset(&dest_addr, 0, sizeof(dest_addr));
1718 memset(&src_addr, 0, sizeof(src_addr));
1719 dest_addr.reloc_type = BFD_RELOC_UNUSED;
1720 src_addr.reloc_type = BFD_RELOC_UNUSED;
1721
1722 l = parse_addr (l, &dest_addr, size);
1723
1724 if (l == NULL ||
1725 dest_addr.immediate == 1)
1726 {
1727 as_bad (_("invalid destination memory operand"));
1728 return NULL;
1729 }
1730
1731 l = skip_comma (l);
1732
1733 if (l == NULL ||
1734 *l == END_OF_INSN)
1735 return NULL;
1736
1737 l = parse_addr (l, &src_addr, size);
1738
1739 if (l == NULL ||
1740 src_addr.immediate == 1)
1741 {
1742 as_bad (_("invalid source memory operand"));
1743 return NULL;
1744 }
1745
1746 if (!is_short_unit (dest_addr.base_reg->unit) ||
1747 !is_short_unit (src_addr.base_reg->unit))
1748 {
1749 as_bad (_("address units must be one of %s"), SHORT_UNITS);
1750 return NULL;
1751 }
1752
1753 if ((dest_addr.base_reg->unit != dest_addr.offset_reg->unit) ||
1754 (src_addr.base_reg->unit != src_addr.offset_reg->unit))
1755 {
1756 as_bad (_("base and offset must be from the same unit"));
1757 return NULL;
1758 }
1759
1760 if (dest_addr.update == 1 &&
1761 src_addr.update == 1 &&
1762 dest_addr.post_increment != src_addr.post_increment)
1763 {
1764 as_bad (_("source and destination increment mode must agree"));
1765 return NULL;
1766 }
1767
1768 insn->bits = (template->meta_opcode |
1769 (src_addr.base_reg->no << 19) |
1770 (src_addr.offset_reg->no << 14) |
1771 ((src_addr.base_reg->unit & SHORT_UNIT_MASK) << 2));
1772
1773 insn->bits |= ((dest_addr.base_reg->no << 9) |
1774 (dest_addr.offset_reg->no << 4) |
1775 ((dest_addr.base_reg->unit & SHORT_UNIT_MASK)));
1776
1777 if (dest_addr.update == 1)
1778 insn->bits |= (1 << 26);
1779
1780 if (src_addr.update == 1)
1781 insn->bits |= (1 << 27);
1782
1783 if (dest_addr.post_increment == 1 ||
1784 src_addr.post_increment == 1)
1785 insn->bits |= (1 << 24);
1786
1787 insn->len = 4;
1788 return l;
1789 }
1790
1791 /* Parse an 8bit immediate value. */
1792 static const char *
1793 parse_imm8 (const char *line, metag_insn *insn, int *value)
1794 {
1795 const char *l = line;
1796 char *save_input_line_pointer;
1797 expressionS *exp = &insn->reloc_exp;
1798
1799 /* Skip #. */
1800 if (*l == '#')
1801 l++;
1802 else
1803 return NULL;
1804
1805 save_input_line_pointer = input_line_pointer;
1806 input_line_pointer = (char *) l;
1807
1808 expression (exp);
1809
1810 l = input_line_pointer;
1811 input_line_pointer = save_input_line_pointer;
1812
1813 if (exp->X_op == O_absent || exp->X_op == O_big)
1814 {
1815 return NULL;
1816 }
1817 else if (exp->X_op == O_constant)
1818 {
1819 *value = exp->X_add_number;
1820 }
1821 else
1822 {
1823 insn->reloc_type = BFD_RELOC_METAG_REL8;
1824 insn->reloc_pcrel = 0;
1825 }
1826
1827 return l;
1828 }
1829
1830 /* Parse a 16bit immediate value. */
1831 static const char *
1832 parse_imm16 (const char *line, metag_insn *insn, int *value)
1833 {
1834 const char *l = line;
1835 char *save_input_line_pointer;
1836 expressionS *exp = &insn->reloc_exp;
1837 bool is_hi = false;
1838 bool is_lo = false;
1839
1840 /* Skip #. */
1841 if (*l == '#')
1842 l++;
1843 else
1844 return NULL;
1845
1846 if (strncasecmp (l, "HI", 2) == 0)
1847 {
1848 is_hi = true;
1849 l += 2;
1850 }
1851 else if (strncasecmp (l, "LO", 2) == 0)
1852 {
1853 is_lo = true;
1854 l += 2;
1855 }
1856
1857 save_input_line_pointer = input_line_pointer;
1858 input_line_pointer = (char *) l;
1859
1860 expression (exp);
1861
1862 l = input_line_pointer;
1863 input_line_pointer = save_input_line_pointer;
1864
1865 if (exp->X_op == O_absent || exp->X_op == O_big)
1866 {
1867 return NULL;
1868 }
1869 else if (exp->X_op == O_constant)
1870 {
1871 if (is_hi)
1872 *value = (exp->X_add_number >> 16) & IMM16_MASK;
1873 else if (is_lo)
1874 *value = exp->X_add_number & IMM16_MASK;
1875 else
1876 *value = exp->X_add_number;
1877 }
1878 else
1879 {
1880 if (exp->X_op == O_PIC_reloc)
1881 {
1882 exp->X_op = O_symbol;
1883
1884 if (exp->X_md == BFD_RELOC_METAG_GOTOFF)
1885 {
1886 if (is_hi)
1887 insn->reloc_type = BFD_RELOC_METAG_HI16_GOTOFF;
1888 else if (is_lo)
1889 insn->reloc_type = BFD_RELOC_METAG_LO16_GOTOFF;
1890 else
1891 return NULL;
1892 }
1893 else if (exp->X_md == BFD_RELOC_METAG_PLT)
1894 {
1895 if (is_hi)
1896 insn->reloc_type = BFD_RELOC_METAG_HI16_PLT;
1897 else if (is_lo)
1898 insn->reloc_type = BFD_RELOC_METAG_LO16_PLT;
1899 else
1900 return NULL;
1901 }
1902 else if (exp->X_md == BFD_RELOC_METAG_TLS_LDO)
1903 {
1904 if (is_hi)
1905 insn->reloc_type = BFD_RELOC_METAG_TLS_LDO_HI16;
1906 else if (is_lo)
1907 insn->reloc_type = BFD_RELOC_METAG_TLS_LDO_LO16;
1908 else
1909 return NULL;
1910 }
1911 else if (exp->X_md == BFD_RELOC_METAG_TLS_IENONPIC)
1912 {
1913 if (is_hi)
1914 insn->reloc_type = BFD_RELOC_METAG_TLS_IENONPIC_HI16;
1915 else if (is_lo)
1916 insn->reloc_type = BFD_RELOC_METAG_TLS_IENONPIC_LO16;
1917 else
1918 return NULL;
1919 }
1920 else if (exp->X_md == BFD_RELOC_METAG_TLS_LE)
1921 {
1922 if (is_hi)
1923 insn->reloc_type = BFD_RELOC_METAG_TLS_LE_HI16;
1924 else if (is_lo)
1925 insn->reloc_type = BFD_RELOC_METAG_TLS_LE_LO16;
1926 else
1927 return NULL;
1928 }
1929 else if (exp->X_md == BFD_RELOC_METAG_TLS_GD ||
1930 exp->X_md == BFD_RELOC_METAG_TLS_LDM)
1931 insn->reloc_type = exp->X_md;
1932 }
1933 else
1934 {
1935 if (exp->X_op == O_symbol && exp->X_add_symbol == GOT_symbol)
1936 {
1937 if (is_hi)
1938 insn->reloc_type = BFD_RELOC_METAG_HI16_GOTPC;
1939 else if (is_lo)
1940 insn->reloc_type = BFD_RELOC_METAG_LO16_GOTPC;
1941 else
1942 return NULL;
1943 }
1944 else
1945 {
1946 if (is_hi)
1947 insn->reloc_type = BFD_RELOC_METAG_HIADDR16;
1948 else if (is_lo)
1949 insn->reloc_type = BFD_RELOC_METAG_LOADDR16;
1950 else
1951 insn->reloc_type = BFD_RELOC_METAG_REL16;
1952 }
1953 }
1954
1955 insn->reloc_pcrel = 0;
1956 }
1957
1958 return l;
1959 }
1960
1961 /* Parse a MOV to control unit instruction. */
1962 static const char *
1963 parse_mov_ct (const char *line, metag_insn *insn,
1964 const insn_template *template)
1965 {
1966 const char *l = line;
1967 const metag_reg *regs[1];
1968 bool top = (template->meta_opcode & 0x1) != 0;
1969 bool is_trace = ((template->meta_opcode >> 2) & 0x1) != 0;
1970 bool sign_extend = 0;
1971 int value = 0;
1972
1973 l = parse_gp_regs (l, regs, 1);
1974
1975 if (l == NULL)
1976 return NULL;
1977
1978 if (is_trace)
1979 {
1980 if (regs[0]->unit != UNIT_TT)
1981 return NULL;
1982 }
1983 else
1984 {
1985 if (regs[0]->unit != UNIT_CT)
1986 return NULL;
1987 }
1988
1989 l = skip_comma (l);
1990
1991 if (l == NULL ||
1992 *l == END_OF_INSN)
1993 return NULL;
1994
1995 l = parse_imm16 (l, insn, &value);
1996
1997 if (l == NULL)
1998 return NULL;
1999
2000 if (value < 0)
2001 sign_extend = 1;
2002
2003 insn->bits = (template->meta_opcode |
2004 (regs[0]->no << 19) |
2005 ((value & IMM16_MASK) << 3));
2006
2007 if (sign_extend && !top)
2008 insn->bits |= (1 << 1);
2009
2010 insn->len = 4;
2011 return l;
2012 }
2013
2014 /* Parse a SWAP instruction. */
2015 static const char *
2016 parse_swap (const char *line, metag_insn *insn,
2017 const insn_template *template)
2018 {
2019 const char *l = line;
2020 const metag_reg *regs[2];
2021
2022 l = parse_gp_regs (l, regs, 2);
2023
2024 if (l == NULL)
2025 return NULL;
2026
2027 /* PC.r | CT.r | TR.r | TT.r are treated as if they are a single unit. */
2028 switch (regs[0]->unit)
2029 {
2030 case UNIT_PC:
2031 case UNIT_CT:
2032 case UNIT_TR:
2033 case UNIT_TT:
2034 if (regs[1]->unit == UNIT_PC
2035 || regs[1]->unit == UNIT_CT
2036 || regs[1]->unit == UNIT_TR
2037 || regs[1]->unit == UNIT_TT)
2038 {
2039 as_bad (_("PC, CT, TR and TT are treated as if they are a single unit but operands must be in different units"));
2040 return NULL;
2041 }
2042 break;
2043
2044 default:
2045 /* Registers must be in different units. */
2046 if (regs[0]->unit == regs[1]->unit)
2047 {
2048 as_bad (_("source and destination register must be in different units"));
2049 return NULL;
2050 }
2051 break;
2052 }
2053
2054 insn->bits = (template->meta_opcode
2055 | (regs[1]->no << 19)
2056 | (regs[0]->no << 14)
2057 | (regs[1]->unit << 10)
2058 | (regs[0]->unit << 5));
2059
2060 insn->len = 4;
2061 return l;
2062 }
2063
2064 /* Parse a JUMP instruction. */
2065 static const char *
2066 parse_jump (const char *line, metag_insn *insn,
2067 const insn_template *template)
2068 {
2069 const char *l = line;
2070 const metag_reg *regs[1];
2071 int value = 0;
2072
2073 l = parse_gp_regs (l, regs, 1);
2074
2075 if (l == NULL)
2076 return NULL;
2077
2078 if (!is_short_unit (regs[0]->unit))
2079 {
2080 as_bad (_("register unit must be one of %s"), SHORT_UNITS);
2081 return false;
2082 }
2083
2084 l = skip_comma (l);
2085
2086 if (l == NULL ||
2087 *l == END_OF_INSN)
2088 return NULL;
2089
2090 l = parse_imm16 (l, insn, &value);
2091
2092 if (l == NULL)
2093 return NULL;
2094
2095 insn->bits = (template->meta_opcode |
2096 (regs[0]->no << 19) |
2097 (regs[0]->unit & SHORT_UNIT_MASK) |
2098 ((value & IMM16_MASK) << 3));
2099
2100 insn->len = 4;
2101 return l;
2102 }
2103
2104 /* Parse a 19bit immediate value. */
2105 static const char *
2106 parse_imm19 (const char *line, metag_insn *insn, int *value)
2107 {
2108 const char *l = line;
2109 char *save_input_line_pointer;
2110 expressionS *exp = &insn->reloc_exp;
2111
2112 /* Skip #. */
2113 if (*l == '#')
2114 l++;
2115
2116 save_input_line_pointer = input_line_pointer;
2117 input_line_pointer = (char *) l;
2118
2119 expression (exp);
2120
2121 l = input_line_pointer;
2122 input_line_pointer = save_input_line_pointer;
2123
2124 if (exp->X_op == O_absent || exp->X_op == O_big)
2125 {
2126 return NULL;
2127 }
2128 else if (exp->X_op == O_constant)
2129 {
2130 *value = exp->X_add_number;
2131 }
2132 else
2133 {
2134 if (exp->X_op == O_PIC_reloc)
2135 {
2136 exp->X_op = O_symbol;
2137
2138 if (exp->X_md == BFD_RELOC_METAG_PLT)
2139 insn->reloc_type = BFD_RELOC_METAG_RELBRANCH_PLT;
2140 else
2141 return NULL;
2142 }
2143 else
2144 insn->reloc_type = BFD_RELOC_METAG_RELBRANCH;
2145 insn->reloc_pcrel = 1;
2146 }
2147
2148 return l;
2149 }
2150
2151 /* Parse a CALLR instruction. */
2152 static const char *
2153 parse_callr (const char *line, metag_insn *insn,
2154 const insn_template *template)
2155 {
2156 const char *l = line;
2157 const metag_reg *regs[1];
2158 int value = 0;
2159
2160 l = parse_gp_regs (l, regs, 1);
2161
2162 if (l == NULL)
2163 return NULL;
2164
2165 if (!is_short_unit (regs[0]->unit))
2166 {
2167 as_bad (_("link register unit must be one of %s"), SHORT_UNITS);
2168 return NULL;
2169 }
2170
2171 if (regs[0]->no & ~CALLR_REG_MASK)
2172 {
2173 as_bad (_("link register must be in a low numbered register"));
2174 return NULL;
2175 }
2176
2177 l = skip_comma (l);
2178
2179 if (l == NULL ||
2180 *l == END_OF_INSN)
2181 return NULL;
2182
2183 l = parse_imm19 (l, insn, &value);
2184
2185 if (l == NULL)
2186 return NULL;
2187
2188 if (!within_signed_range (value / 4, IMM19_BITS))
2189 {
2190 as_bad (_("target out of range"));
2191 return NULL;
2192 }
2193
2194 insn->bits = (template->meta_opcode |
2195 (regs[0]->no & CALLR_REG_MASK) |
2196 ((regs[0]->unit & SHORT_UNIT_MASK) << 3) |
2197 ((value & IMM19_MASK) << 5));
2198
2199 insn->len = 4;
2200 return l;
2201 }
2202
2203 /* Return the value for the register field if we apply the O2R modifier
2204 to operand 2 REG, combined with UNIT_BIT derived from the destination
2205 register or source1. Uses address unit O2R if IS_ADDR is set. */
2206 static int
2207 lookup_o2r (unsigned int is_addr, unsigned int unit_bit, const metag_reg *reg)
2208 {
2209 if (reg->no & ~O2R_REG_MASK)
2210 return -1;
2211
2212 if (is_addr)
2213 {
2214 if (unit_bit)
2215 {
2216 switch (reg->unit)
2217 {
2218 case UNIT_D1:
2219 return reg->no;
2220 case UNIT_D0:
2221 return (1 << 3) | reg->no;
2222 case UNIT_RD:
2223 return (2 << 3) | reg->no;
2224 case UNIT_A0:
2225 return (3 << 3) | reg->no;
2226 default:
2227 return -1;
2228 }
2229 }
2230 else
2231 {
2232 switch (reg->unit)
2233 {
2234 case UNIT_A1:
2235 return reg->no;
2236 case UNIT_D0:
2237 return (1 << 3) | reg->no;
2238 case UNIT_RD:
2239 return (2 << 3) | reg->no;
2240 case UNIT_D1:
2241 return (3 << 3) | reg->no;
2242 default:
2243 return -1;
2244 }
2245 }
2246 }
2247 else
2248 {
2249 if (unit_bit)
2250 {
2251 switch (reg->unit)
2252 {
2253 case UNIT_A1:
2254 return reg->no;
2255 case UNIT_D0:
2256 return (1 << 3) | reg->no;
2257 case UNIT_RD:
2258 return (2 << 3) | reg->no;
2259 case UNIT_A0:
2260 return (3 << 3) | reg->no;
2261 default:
2262 return -1;
2263 }
2264 }
2265 else
2266 {
2267 switch (reg->unit)
2268 {
2269 case UNIT_A1:
2270 return reg->no;
2271 case UNIT_D1:
2272 return (1 << 3) | reg->no;
2273 case UNIT_RD:
2274 return (2 << 3) | reg->no;
2275 case UNIT_A0:
2276 return (3 << 3) | reg->no;
2277 default:
2278 return -1;
2279 }
2280 }
2281 }
2282 }
2283
2284 /* Parse GP ALU instruction. */
2285 static const char *
2286 parse_alu (const char *line, metag_insn *insn,
2287 const insn_template *template)
2288 {
2289 const char *l = line;
2290 const metag_reg *dest_regs[1];
2291 const metag_reg *src_regs[2];
2292 int value = 0;
2293 bool o1z = 0;
2294 bool imm = ((template->meta_opcode >> 25) & 0x1) != 0;
2295 bool cond = ((template->meta_opcode >> 26) & 0x1) != 0;
2296 bool ca = ((template->meta_opcode >> 5) & 0x1) != 0;
2297 bool top = (template->meta_opcode & 0x1) != 0;
2298 bool sign_extend = 0;
2299 bool is_addr_op = MAJOR_OPCODE (template->meta_opcode) == OPC_ADDR;
2300 bool is_mul = MAJOR_OPCODE (template->meta_opcode) == OPC_MUL;
2301 unsigned int unit_bit = 0;
2302 bool is_quickrot = (template->arg_type & GP_ARGS_QR) != 0;
2303
2304 l = parse_gp_regs (l, dest_regs, 1);
2305
2306 if (l == NULL)
2307 return NULL;
2308
2309 l = skip_comma (l);
2310
2311 if (l == NULL ||
2312 *l == END_OF_INSN)
2313 return NULL;
2314
2315 if (is_addr_op)
2316 {
2317 if (dest_regs[0]->unit == UNIT_A0)
2318 unit_bit = 0;
2319 else if (dest_regs[0]->unit == UNIT_A1)
2320 unit_bit = 1;
2321 }
2322 else
2323 {
2324 if (dest_regs[0]->unit == UNIT_D0)
2325 unit_bit = 0;
2326 else if (dest_regs[0]->unit == UNIT_D1)
2327 unit_bit = 1;
2328 }
2329
2330 if ((MAJOR_OPCODE (template->meta_opcode) == OPC_ADDR ||
2331 MAJOR_OPCODE (template->meta_opcode) == OPC_ADD ||
2332 MAJOR_OPCODE (template->meta_opcode) == OPC_SUB) &&
2333 ((template->meta_opcode >> 2) & 0x1))
2334 o1z = 1;
2335
2336 if (imm)
2337 {
2338 if (!cond)
2339 {
2340 if (is_addr_op)
2341 {
2342 if (dest_regs[0]->unit == UNIT_A0)
2343 unit_bit = 0;
2344 else if (dest_regs[0]->unit == UNIT_A1)
2345 unit_bit = 1;
2346 else
2347 return NULL;
2348 }
2349 else
2350 {
2351 if (dest_regs[0]->unit == UNIT_D0)
2352 unit_bit = 0;
2353 else if (dest_regs[0]->unit == UNIT_D1)
2354 unit_bit = 1;
2355 else
2356 return NULL;
2357 }
2358 }
2359
2360 if (cond)
2361 {
2362 l = parse_gp_regs (l, src_regs, 1);
2363
2364 if (l == NULL)
2365 return NULL;
2366
2367 l = skip_comma (l);
2368
2369 if (l == NULL ||
2370 *l == END_OF_INSN)
2371 return NULL;
2372
2373 if (is_addr_op)
2374 {
2375 if (src_regs[0]->unit == UNIT_A0)
2376 unit_bit = 0;
2377 else if (src_regs[0]->unit == UNIT_A1)
2378 unit_bit = 1;
2379 else
2380 return NULL;
2381 }
2382 else
2383 {
2384 if (src_regs[0]->unit == UNIT_D0)
2385 unit_bit = 0;
2386 else if (src_regs[0]->unit == UNIT_D1)
2387 unit_bit = 1;
2388 else
2389 return NULL;
2390 }
2391
2392 if (src_regs[0]->unit != dest_regs[0]->unit && !ca)
2393 return NULL;
2394
2395 l = parse_imm8 (l, insn, &value);
2396
2397 if (l == NULL)
2398 return NULL;
2399
2400 if (!within_unsigned_range (value, IMM8_BITS))
2401 return NULL;
2402
2403 insn->bits = (template->meta_opcode |
2404 (dest_regs[0]->no << 19) |
2405 (src_regs[0]->no << 14) |
2406 ((value & IMM8_MASK) << 6));
2407
2408 if (ca)
2409 {
2410 if (is_addr_op)
2411 {
2412 if (src_regs[0]->unit == UNIT_A0)
2413 unit_bit = 0;
2414 else if (src_regs[0]->unit == UNIT_A1)
2415 unit_bit = 1;
2416 else
2417 return NULL;
2418 }
2419 else
2420 {
2421 if (src_regs[0]->unit == UNIT_D0)
2422 unit_bit = 0;
2423 else if (src_regs[0]->unit == UNIT_D1)
2424 unit_bit = 1;
2425 else
2426 return NULL;
2427 }
2428
2429 insn->bits |= dest_regs[0]->unit << 1;
2430 }
2431 }
2432 else if (o1z)
2433 {
2434 l = parse_imm16 (l, insn, &value);
2435
2436 if (l == NULL)
2437 return NULL;
2438
2439 if (value < 0)
2440 {
2441 if (!within_signed_range (value, IMM16_BITS))
2442 {
2443 as_bad (_("immediate out of range"));
2444 return NULL;
2445 }
2446 sign_extend = 1;
2447 }
2448 else
2449 {
2450 if (!within_unsigned_range (value, IMM16_BITS))
2451 {
2452 as_bad (_("immediate out of range"));
2453 return NULL;
2454 }
2455 }
2456
2457 insn->bits = (template->meta_opcode |
2458 (dest_regs[0]->no << 19) |
2459 ((value & IMM16_MASK) << 3));
2460 }
2461 else
2462 {
2463 l = parse_gp_regs (l, src_regs, 1);
2464
2465 if (l == NULL)
2466 return NULL;
2467
2468 if (!(src_regs[0]->unit == dest_regs[0]->unit))
2469 return NULL;
2470
2471 /* CPC is valid for address ops. */
2472 if (src_regs[0]->no != dest_regs[0]->no &&
2473 !(is_addr_op && src_regs[0]->no == 0x10))
2474 return NULL;
2475
2476 l = skip_comma (l);
2477
2478 if (l == NULL ||
2479 *l == END_OF_INSN)
2480 return NULL;
2481
2482 l = parse_imm16 (l, insn, &value);
2483
2484 if (l == NULL)
2485 return NULL;
2486
2487 if (value < 0)
2488 {
2489 if (!within_signed_range (value, IMM16_BITS))
2490 {
2491 as_bad (_("immediate out of range"));
2492 return NULL;
2493 }
2494 sign_extend = 1;
2495 }
2496 else
2497 {
2498 if (!within_unsigned_range (value, IMM16_BITS))
2499 {
2500 as_bad (_("immediate out of range"));
2501 return NULL;
2502 }
2503 }
2504
2505 insn->bits = (template->meta_opcode |
2506 (dest_regs[0]->no << 19) |
2507 (src_regs[0]->no << 19) |
2508 ((value & IMM16_MASK) << 3));
2509 }
2510 }
2511 else
2512 {
2513 bool o2r = 0;
2514 int rs2;
2515
2516 if (cond || !o1z)
2517 l = parse_gp_regs (l, src_regs, 2);
2518 else
2519 l = parse_gp_regs (l, src_regs, 1);
2520
2521 if (l == NULL)
2522 return NULL;
2523
2524 if (cond || !o1z)
2525 {
2526 if (is_addr_op)
2527 {
2528 if (src_regs[0]->unit == UNIT_A0)
2529 unit_bit = 0;
2530 else if (src_regs[0]->unit == UNIT_A1)
2531 unit_bit = 1;
2532 else
2533 return NULL;
2534 }
2535 else
2536 {
2537 if (src_regs[0]->unit == UNIT_D0)
2538 unit_bit = 0;
2539 else if (src_regs[0]->unit == UNIT_D1)
2540 unit_bit = 1;
2541 else
2542 return NULL;
2543 }
2544 }
2545 else
2546 {
2547 if (is_addr_op)
2548 {
2549 if (dest_regs[0]->unit == UNIT_A0)
2550 unit_bit = 0;
2551 else if (dest_regs[0]->unit == UNIT_A1)
2552 unit_bit = 1;
2553 else
2554 return NULL;
2555 }
2556 else
2557 {
2558 if (dest_regs[0]->unit == UNIT_D0)
2559 unit_bit = 0;
2560 else if (dest_regs[0]->unit == UNIT_D1)
2561 unit_bit = 1;
2562 else
2563 return NULL;
2564 }
2565 }
2566
2567 if (cond)
2568 {
2569 if (src_regs[0]->unit != src_regs[1]->unit)
2570 {
2571 rs2 = lookup_o2r (is_addr_op, unit_bit, src_regs[1]);
2572
2573 if (rs2 < 0)
2574 return NULL;
2575
2576 o2r = 1;
2577 }
2578 else
2579 {
2580 rs2 = src_regs[1]->no;
2581 }
2582
2583 insn->bits = (template->meta_opcode |
2584 (dest_regs[0]->no << 19) |
2585 (src_regs[0]->no << 14) |
2586 (rs2 << 9));
2587
2588 if (is_mul)
2589 {
2590 if (dest_regs[0]->unit != src_regs[0]->unit && is_mul)
2591 {
2592 if (ca)
2593 {
2594 insn->bits |= dest_regs[0]->unit << 1;
2595 }
2596 else
2597 return NULL;
2598 }
2599 }
2600 else
2601 insn->bits |= dest_regs[0]->unit << 5;
2602 }
2603 else if (o1z)
2604 {
2605 if (dest_regs[0]->unit != src_regs[0]->unit)
2606 {
2607 rs2 = lookup_o2r (is_addr_op, unit_bit, src_regs[0]);
2608
2609 if (rs2 < 0)
2610 return NULL;
2611
2612 o2r = 1;
2613 }
2614 else
2615 {
2616 rs2 = src_regs[0]->no;
2617 }
2618
2619 insn->bits = (template->meta_opcode |
2620 (dest_regs[0]->no << 19) |
2621 (rs2 << 9));
2622 }
2623 else
2624 {
2625 if (dest_regs[0]->unit != src_regs[0]->unit)
2626 return NULL;
2627
2628 if (dest_regs[0]->unit != src_regs[1]->unit)
2629 {
2630 rs2 = lookup_o2r (is_addr_op, unit_bit, src_regs[1]);
2631
2632 if (rs2 < 0)
2633 return NULL;
2634
2635 o2r = 1;
2636 }
2637 else
2638 {
2639 rs2 = src_regs[1]->no;
2640 }
2641
2642 insn->bits = (template->meta_opcode |
2643 (dest_regs[0]->no << 19) |
2644 (src_regs[0]->no << 14) |
2645 (rs2 << 9));
2646 }
2647
2648 if (o2r)
2649 insn->bits |= 1;
2650 }
2651
2652 if (is_quickrot)
2653 {
2654 const metag_reg *qr_regs[1];
2655 bool limit_regs = imm && cond;
2656
2657 l = skip_comma (l);
2658
2659 if (l == NULL ||
2660 *l == END_OF_INSN)
2661 return NULL;
2662
2663 l = parse_gp_regs (l, qr_regs, 1);
2664
2665 if (l == NULL)
2666 return NULL;
2667
2668 if (!((unit_bit == 0 && qr_regs[0]->unit != UNIT_A0) ||
2669 !(unit_bit == 1 && qr_regs[0]->unit != UNIT_A1)))
2670 {
2671 as_bad (_("invalid quickrot unit specified"));
2672 return NULL;
2673 }
2674
2675 switch (qr_regs[0]->no)
2676 {
2677 case 2:
2678 break;
2679 case 3:
2680 if (!limit_regs)
2681 {
2682 insn->bits |= (1 << 7);
2683 break;
2684 }
2685 /* Fall through. */
2686 default:
2687 as_bad (_("invalid quickrot register specified"));
2688 return NULL;
2689 }
2690 }
2691
2692 if (sign_extend && !top)
2693 insn->bits |= (1 << 1);
2694
2695 insn->bits |= unit_bit << 24;
2696 insn->len = 4;
2697 return l;
2698 }
2699
2700 /* Parse a B instruction. */
2701 static const char *
2702 parse_branch (const char *line, metag_insn *insn,
2703 const insn_template *template)
2704 {
2705 const char *l = line;
2706 int value = 0;
2707
2708 l = parse_imm19 (l, insn, &value);
2709
2710 if (l == NULL)
2711 return NULL;
2712
2713 if (!within_signed_range (value / 4, IMM19_BITS))
2714 {
2715 as_bad (_("target out of range"));
2716 return NULL;
2717 }
2718
2719 insn->bits = (template->meta_opcode |
2720 ((value & IMM19_MASK) << 5));
2721
2722 insn->len = 4;
2723 return l;
2724 }
2725
2726 /* Parse a KICK instruction. */
2727 static const char *
2728 parse_kick (const char *line, metag_insn *insn,
2729 const insn_template *template)
2730 {
2731 const char *l = line;
2732 const metag_reg *regs[2];
2733
2734 l = parse_gp_regs (l, regs, 2);
2735
2736 if (l == NULL)
2737 return NULL;
2738
2739 if (regs[1]->unit != UNIT_TR)
2740 {
2741 as_bad (_("source register must be in the trigger unit"));
2742 return NULL;
2743 }
2744
2745 insn->bits = (template->meta_opcode |
2746 (regs[1]->no << 19) |
2747 (regs[0]->no << 14) |
2748 (regs[0]->unit << 5));
2749
2750 insn->len = 4;
2751 return l;
2752 }
2753
2754 /* Parse a SWITCH instruction. */
2755 static const char *
2756 parse_switch (const char *line, metag_insn *insn,
2757 const insn_template *template)
2758 {
2759 const char *l = line;
2760 int value = 0;
2761
2762 l = parse_imm_constant (l, insn, &value);
2763
2764 if (l == NULL)
2765 return NULL;
2766
2767 if (!within_unsigned_range (value, IMM24_BITS))
2768 {
2769 as_bad (_("target out of range"));
2770 return NULL;
2771 }
2772
2773 insn->bits = (template->meta_opcode |
2774 (value & IMM24_MASK));
2775
2776 insn->len = 4;
2777 return l;
2778 }
2779
2780 /* Parse a shift instruction. */
2781 static const char *
2782 parse_shift (const char *line, metag_insn *insn,
2783 const insn_template *template)
2784 {
2785 const char *l = line;
2786 const metag_reg *regs[2];
2787 const metag_reg *src2_regs[1];
2788 int value = 0;
2789 bool cond = ((template->meta_opcode >> 26) & 0x1) != 0;
2790 bool ca = ((template->meta_opcode >> 5) & 0x1) != 0;
2791 unsigned int unit_bit = 0;
2792
2793 l = parse_gp_regs (l, regs, 2);
2794
2795 if (l == NULL)
2796 return NULL;
2797
2798 l = skip_comma (l);
2799
2800 if (l == NULL ||
2801 *l == END_OF_INSN)
2802 return NULL;
2803
2804 if (regs[1]->unit == UNIT_D0)
2805 unit_bit = 0;
2806 else if (regs[1]->unit == UNIT_D1)
2807 unit_bit = 1;
2808 else
2809 return NULL;
2810
2811 if (regs[0]->unit != regs[1]->unit && !(cond && ca))
2812 return NULL;
2813
2814 if (*l == '#')
2815 {
2816 l = parse_imm_constant (l, insn, &value);
2817
2818 if (l == NULL)
2819 return NULL;
2820
2821 if (!within_unsigned_range (value, IMM5_BITS))
2822 return NULL;
2823
2824 insn->bits = (template->meta_opcode |
2825 (1 << 25) |
2826 (regs[0]->no << 19) |
2827 (regs[1]->no << 14) |
2828 ((value & IMM5_MASK) << 9));
2829 }
2830 else
2831 {
2832 l = parse_gp_regs (l, src2_regs, 1);
2833
2834 if (l == NULL)
2835 return NULL;
2836
2837 insn->bits = (template->meta_opcode |
2838 (regs[0]->no << 19) |
2839 (regs[1]->no << 14) |
2840 (src2_regs[0]->no << 9));
2841
2842 if (src2_regs[0]->unit != regs[1]->unit)
2843 {
2844 as_bad(_("Source registers must be in the same unit"));
2845 return NULL;
2846 }
2847 }
2848
2849 if (regs[0]->unit != regs[1]->unit)
2850 {
2851 if (cond && ca)
2852 {
2853 if (regs[1]->unit == UNIT_D0)
2854 unit_bit = 0;
2855 else if (regs[1]->unit == UNIT_D1)
2856 unit_bit = 1;
2857 else
2858 return NULL;
2859
2860 insn->bits |= ((1 << 5) |
2861 (regs[0]->unit << 1));
2862 }
2863 else
2864 return NULL;
2865 }
2866
2867 insn->bits |= unit_bit << 24;
2868 insn->len = 4;
2869 return l;
2870 }
2871
2872 /* Parse a MIN or MAX instruction. */
2873 static const char *
2874 parse_min_max (const char *line, metag_insn *insn,
2875 const insn_template *template)
2876 {
2877 const char *l = line;
2878 const metag_reg *regs[3];
2879
2880 l = parse_gp_regs (l, regs, 3);
2881
2882 if (l == NULL)
2883 return NULL;
2884
2885 if (!(regs[0]->unit == UNIT_D0 ||
2886 regs[0]->unit == UNIT_D1))
2887 return NULL;
2888
2889 if (!(regs[0]->unit == regs[1]->unit &&
2890 regs[1]->unit == regs[2]->unit))
2891 return NULL;
2892
2893 insn->bits = (template->meta_opcode |
2894 (regs[0]->no << 19) |
2895 (regs[1]->no << 14) |
2896 (regs[2]->no << 9));
2897
2898 if (regs[0]->unit == UNIT_D1)
2899 insn->bits |= (1 << 24);
2900
2901 insn->len = 4;
2902 return l;
2903 }
2904
2905 /* Parse a bit operation instruction. */
2906 static const char *
2907 parse_bitop (const char *line, metag_insn *insn,
2908 const insn_template *template)
2909 {
2910 const char *l = line;
2911 const metag_reg *regs[2];
2912 bool swap_inst = MAJOR_OPCODE (template->meta_opcode) == OPC_MISC;
2913 bool is_bexl = 0;
2914
2915 if (swap_inst && ((template->meta_opcode >> 1) & 0xb) == 0xa)
2916 is_bexl = 1;
2917
2918 l = parse_gp_regs (l, regs, 2);
2919
2920 if (l == NULL)
2921 return NULL;
2922
2923 if (!(regs[0]->unit == UNIT_D0 ||
2924 regs[0]->unit == UNIT_D1))
2925 return NULL;
2926
2927 if (is_bexl)
2928 {
2929 if (regs[0]->unit == UNIT_D0 &&
2930 regs[1]->unit != UNIT_D1)
2931 return NULL;
2932 else if (regs[0]->unit == UNIT_D1 &&
2933 regs[1]->unit != UNIT_D0)
2934 return NULL;
2935 }
2936 else if (!(regs[0]->unit == regs[1]->unit))
2937 return NULL;
2938
2939 insn->bits = (template->meta_opcode |
2940 (regs[0]->no << 19) |
2941 (regs[1]->no << 14));
2942
2943 if (swap_inst)
2944 {
2945 if (regs[1]->unit == UNIT_D1)
2946 insn->bits |= 1;
2947 }
2948 else
2949 {
2950 if (regs[1]->unit == UNIT_D1)
2951 insn->bits |= (1 << 24);
2952 }
2953
2954 insn->len = 4;
2955 return l;
2956 }
2957
2958 /* Parse a CMP or TST instruction. */
2959 static const char *
2960 parse_cmp (const char *line, metag_insn *insn,
2961 const insn_template *template)
2962 {
2963 const char *l = line;
2964 const metag_reg *dest_regs[1];
2965 const metag_reg *src_regs[1];
2966 int value = 0;
2967 bool imm = ((template->meta_opcode >> 25) & 0x1) != 0;
2968 bool cond = ((template->meta_opcode >> 26) & 0x1) != 0;
2969 bool top = (template->meta_opcode & 0x1) != 0;
2970 bool sign_extend = 0;
2971 unsigned int unit_bit = 0;
2972
2973 l = parse_gp_regs (l, dest_regs, 1);
2974
2975 if (l == NULL)
2976 return NULL;
2977
2978 l = skip_comma (l);
2979
2980 if (l == NULL ||
2981 *l == END_OF_INSN)
2982 return NULL;
2983
2984 if (dest_regs[0]->unit == UNIT_D0)
2985 unit_bit = 0;
2986 else if (dest_regs[0]->unit == UNIT_D1)
2987 unit_bit = 1;
2988 else
2989 return NULL;
2990
2991 if (imm)
2992 {
2993 if (cond)
2994 {
2995 l = parse_imm_constant (l, insn, &value);
2996
2997 if (l == NULL)
2998 return NULL;
2999
3000 if (!within_unsigned_range (value, IMM8_BITS))
3001 return NULL;
3002
3003 insn->bits = (template->meta_opcode |
3004 (dest_regs[0]->no << 14) |
3005 ((value & IMM8_MASK) << 6));
3006
3007 }
3008 else
3009 {
3010 l = parse_imm16 (l, insn, &value);
3011
3012 if (l == NULL)
3013 return NULL;
3014
3015 if (value < 0)
3016 {
3017 if (!within_signed_range (value, IMM16_BITS))
3018 {
3019 as_bad (_("immediate out of range"));
3020 return NULL;
3021 }
3022 sign_extend = 1;
3023 }
3024 else
3025 {
3026 if (!within_unsigned_range (value, IMM16_BITS))
3027 {
3028 as_bad (_("immediate out of range"));
3029 return NULL;
3030 }
3031 }
3032
3033 insn->bits = (template->meta_opcode |
3034 (dest_regs[0]->no << 19) |
3035 ((value & IMM16_MASK) << 3));
3036 }
3037 }
3038 else
3039 {
3040 bool o2r = 0;
3041 int rs2;
3042
3043 l = parse_gp_regs (l, src_regs, 1);
3044
3045 if (l == NULL)
3046 return NULL;
3047
3048 if (dest_regs[0]->unit != src_regs[0]->unit)
3049 {
3050 rs2 = lookup_o2r (0, unit_bit, src_regs[0]);
3051
3052 if (rs2 < 0)
3053 return NULL;
3054
3055 o2r = 1;
3056 }
3057 else
3058 {
3059 rs2 = src_regs[0]->no;
3060 }
3061
3062 insn->bits = (template->meta_opcode |
3063 (dest_regs[0]->no << 14) |
3064 (rs2 << 9));
3065
3066 if (o2r)
3067 insn->bits |= 1;
3068 }
3069
3070 if (sign_extend && !top)
3071 insn->bits |= (1 << 1);
3072
3073 insn->bits |= unit_bit << 24;
3074 insn->len = 4;
3075 return l;
3076 }
3077
3078 /* Parse a CACHEW instruction. */
3079 static const char *
3080 parse_cachew (const char *line, metag_insn *insn,
3081 const insn_template *template)
3082 {
3083 const char *l = line;
3084 const metag_reg *src_regs[2];
3085 unsigned int size = ((template->meta_opcode >> 1) & 0x1) ? 8 : 4;
3086 metag_addr addr;
3087 int offset;
3088
3089 memset(&addr, 0, sizeof(addr));
3090 addr.reloc_type = BFD_RELOC_UNUSED;
3091
3092 l = parse_addr (l, &addr, size);
3093
3094 if (l == NULL ||
3095 !is_short_unit (addr.base_reg->unit) ||
3096 addr.update ||
3097 !addr.immediate)
3098 {
3099 as_bad (_("invalid memory operand"));
3100 return NULL;
3101 }
3102
3103 l = skip_comma (l);
3104
3105 if (l == NULL ||
3106 *l == END_OF_INSN)
3107 return NULL;
3108
3109 if (size == 4)
3110 l = parse_gp_regs (l, src_regs, 1);
3111 else
3112 l = parse_pair_gp_regs (l, src_regs);
3113
3114 if (l == NULL ||
3115 !is_short_unit (src_regs[0]->unit))
3116 {
3117 as_bad (_("invalid source register"));
3118 return NULL;
3119 }
3120
3121 offset = addr.exp.X_add_number;
3122
3123 if (addr.negate)
3124 offset = -offset;
3125
3126 offset = offset / 64;
3127
3128 if (!within_signed_range (offset, GET_SET_IMM_BITS))
3129 {
3130 as_bad (_("offset value out of range"));
3131 return NULL;
3132 }
3133
3134 insn->bits = (template->meta_opcode |
3135 (src_regs[0]->no << 19) |
3136 (addr.base_reg->no << 14) |
3137 ((offset & GET_SET_IMM_MASK) << 8) |
3138 ((addr.base_reg->unit & SHORT_UNIT_MASK) << 5) |
3139 ((src_regs[0]->unit & SHORT_UNIT_MASK) << 3));
3140
3141 insn->len = 4;
3142 return l;
3143 }
3144
3145 /* Parse a CACHEW instruction. */
3146 static const char *
3147 parse_cacher (const char *line, metag_insn *insn,
3148 const insn_template *template)
3149 {
3150 const char *l = line;
3151 const metag_reg *dest_regs[2];
3152 unsigned int size = ((template->meta_opcode >> 1) & 0x1) ? 8 : 4;
3153 metag_addr addr;
3154 int offset;
3155
3156 memset(&addr, 0, sizeof(addr));
3157 addr.reloc_type = BFD_RELOC_UNUSED;
3158
3159 if (size == 4)
3160 l = parse_gp_regs (l, dest_regs, 1);
3161 else
3162 l = parse_pair_gp_regs (l, dest_regs);
3163
3164 if (l == NULL ||
3165 !is_short_unit (dest_regs[0]->unit))
3166 {
3167 as_bad (_("invalid destination register"));
3168 return NULL;
3169 }
3170
3171 l = skip_comma (l);
3172
3173 if (l == NULL ||
3174 *l == END_OF_INSN)
3175 return NULL;
3176
3177 l = parse_addr (l, &addr, size);
3178
3179 if (l == NULL ||
3180 !is_short_unit (addr.base_reg->unit) ||
3181 addr.update ||
3182 !addr.immediate)
3183 {
3184 as_bad (_("invalid memory operand"));
3185 return NULL;
3186 }
3187
3188 offset = addr.exp.X_add_number;
3189
3190 if (addr.negate)
3191 offset = -offset;
3192
3193 offset = offset / (int)size;
3194
3195 if (!within_signed_range (offset, GET_SET_IMM_BITS))
3196 {
3197 as_bad (_("offset value out of range"));
3198 return NULL;
3199 }
3200
3201 insn->bits = (template->meta_opcode |
3202 (dest_regs[0]->no << 19) |
3203 (addr.base_reg->no << 14) |
3204 ((offset & GET_SET_IMM_MASK) << 8) |
3205 ((addr.base_reg->unit & SHORT_UNIT_MASK) << 5) |
3206 ((dest_regs[0]->unit & SHORT_UNIT_MASK) << 3));
3207
3208 insn->len = 4;
3209 return l;
3210 }
3211
3212 /* Parse an ICACHE instruction. */
3213 static const char *
3214 parse_icache (const char *line, metag_insn *insn,
3215 const insn_template *template)
3216 {
3217 const char *l = line;
3218 int offset;
3219 int pfcount;
3220
3221 l = parse_imm_constant (l, insn, &offset);
3222
3223 if (l == NULL)
3224 return NULL;
3225
3226 if (!within_signed_range (offset, IMM15_BITS))
3227 return NULL;
3228
3229 l = skip_comma (l);
3230
3231 l = parse_imm_constant (l, insn, &pfcount);
3232
3233 if (l == NULL)
3234 return NULL;
3235
3236 if (!within_unsigned_range (pfcount, IMM4_BITS))
3237 return NULL;
3238
3239 insn->bits = (template->meta_opcode |
3240 ((offset & IMM15_MASK) << 9) |
3241 ((pfcount & IMM4_MASK) << 1));
3242
3243 insn->len = 4;
3244 return l;
3245 }
3246
3247 /* Parse a LNKGET instruction. */
3248 static const char *
3249 parse_lnkget (const char *line, metag_insn *insn,
3250 const insn_template *template)
3251 {
3252 const char *l = line;
3253 const metag_reg *dest_regs[2];
3254 unsigned int size = metag_get_set_ext_size_bytes (template->meta_opcode);
3255 metag_addr addr;
3256 int offset;
3257
3258 memset(&addr, 0, sizeof(addr));
3259 addr.reloc_type = BFD_RELOC_UNUSED;
3260
3261 if (size == 8)
3262 l = parse_pair_gp_regs (l, dest_regs);
3263 else
3264 l = parse_gp_regs (l, dest_regs, 1);
3265
3266 if (l == NULL ||
3267 !is_short_unit (dest_regs[0]->unit))
3268 {
3269 as_bad (_("invalid destination register"));
3270 return NULL;
3271 }
3272
3273 l = skip_comma (l);
3274
3275 if (l == NULL ||
3276 *l == END_OF_INSN)
3277 return NULL;
3278
3279 l = parse_addr (l, &addr, size);
3280
3281 if (l == NULL ||
3282 !is_short_unit (addr.base_reg->unit) ||
3283 addr.update ||
3284 !addr.immediate)
3285 {
3286 as_bad (_("invalid memory operand"));
3287 return NULL;
3288 }
3289
3290 offset = addr.exp.X_add_number;
3291
3292 if (addr.negate)
3293 offset = -offset;
3294
3295 offset = offset / size;
3296
3297 if (!within_signed_range (offset, GET_SET_IMM_BITS))
3298 {
3299 as_bad (_("offset value out of range"));
3300 return NULL;
3301 }
3302
3303 insn->bits = (template->meta_opcode |
3304 (dest_regs[0]->no << 19) |
3305 (addr.base_reg->no << 14) |
3306 ((offset & GET_SET_IMM_MASK) << 8) |
3307 ((addr.base_reg->unit & SHORT_UNIT_MASK) << 5) |
3308 ((dest_regs[0]->unit & SHORT_UNIT_MASK) << 3));
3309
3310 insn->len = 4;
3311 return l;
3312 }
3313
3314 /* Parse an FPU MOV instruction. */
3315 static const char *
3316 parse_fmov (const char *line, metag_insn *insn,
3317 const insn_template *template)
3318 {
3319 const char *l = line;
3320 const metag_reg *regs[2];
3321
3322 l = parse_fpu_regs (l, regs, 2);
3323
3324 if (l == NULL)
3325 return NULL;
3326
3327 insn->bits = (template->meta_opcode |
3328 (regs[0]->no << 19) |
3329 (regs[1]->no << 14));
3330
3331 if (insn->fpu_width == FPU_WIDTH_DOUBLE)
3332 insn->bits |= (1 << 5);
3333 else if (insn->fpu_width == FPU_WIDTH_PAIR)
3334 insn->bits |= (1 << 6);
3335
3336 insn->len = 4;
3337 return l;
3338 }
3339
3340 /* Parse an FPU MMOV instruction. */
3341 static const char *
3342 parse_fmmov (const char *line, metag_insn *insn,
3343 const insn_template *template)
3344 {
3345 const char *l = line;
3346 bool to_fpu = MAJOR_OPCODE (template->meta_opcode) == OPC_GET;
3347 bool is_mmovl = (MINOR_OPCODE (template->meta_opcode) & 0x1) != 0;
3348 size_t regs_read = 0;
3349 const metag_reg *regs[16];
3350 unsigned int lowest_data_reg = 0xffffffff;
3351 unsigned int lowest_fpu_reg = 0xffffffff;
3352 unsigned int rmask = 0, data_unit;
3353 size_t i;
3354 int last_reg = -1;
3355
3356 if (insn->fpu_width != FPU_WIDTH_SINGLE)
3357 return NULL;
3358
3359 l = parse_gp_regs_list (l, regs, 16, &regs_read);
3360
3361 if (l == NULL)
3362 return NULL;
3363
3364 if (regs_read % 2)
3365 return NULL;
3366
3367 if (to_fpu)
3368 {
3369 for (i = 0; i < regs_read / 2; i++)
3370 {
3371 if (regs[i]->unit != UNIT_FX)
3372 return NULL;
3373
3374 if (last_reg == -1)
3375 {
3376 last_reg = regs[i]->no;
3377 lowest_fpu_reg = last_reg;
3378 }
3379 else
3380 {
3381 if (is_mmovl)
3382 {
3383 if (regs[i]->no != (unsigned int)(last_reg + 2))
3384 return NULL;
3385 }
3386 else if (regs[i]->no != (unsigned int)(last_reg + 1))
3387 return NULL;
3388
3389 last_reg = regs[i]->no;
3390 }
3391 }
3392
3393 if (regs[i]->unit == UNIT_D0)
3394 data_unit = 0;
3395 else if (regs[i]->unit == UNIT_D1)
3396 data_unit = 1;
3397 else
3398 return NULL;
3399
3400 if (!check_rmask (&regs[i], regs_read / 2, true, false, &lowest_data_reg,
3401 &rmask))
3402 return NULL;
3403 }
3404 else
3405 {
3406 if (regs[0]->unit == UNIT_D0)
3407 data_unit = 0;
3408 else if (regs[0]->unit == UNIT_D1)
3409 data_unit = 1;
3410 else
3411 return NULL;
3412
3413 if (!check_rmask (regs, regs_read / 2, true, false, &lowest_data_reg,
3414 &rmask))
3415 return NULL;
3416
3417 for (i = regs_read / 2; i < regs_read; i++)
3418 {
3419 if (regs[i]->unit != UNIT_FX)
3420 return NULL;
3421
3422 if (last_reg == -1)
3423 {
3424 last_reg = regs[i]->no;
3425 lowest_fpu_reg = last_reg;
3426 }
3427 else
3428 {
3429 if (is_mmovl)
3430 {
3431 if (regs[i]->no != (unsigned int)(last_reg + 2))
3432 return NULL;
3433 }
3434 else if (regs[i]->no != (unsigned int)(last_reg + 1))
3435 return NULL;
3436
3437 last_reg = regs[i]->no;
3438 }
3439 }
3440 }
3441
3442 insn->bits = (template->meta_opcode |
3443 ((lowest_data_reg & REG_MASK) << 19) |
3444 ((lowest_fpu_reg & REG_MASK) << 14) |
3445 ((rmask & RMASK_MASK) << 7) |
3446 data_unit);
3447
3448 insn->len = 4;
3449 return l;
3450 }
3451
3452 /* Parse an FPU data unit MOV instruction. */
3453 static const char *
3454 parse_fmov_data (const char *line, metag_insn *insn,
3455 const insn_template *template)
3456 {
3457 const char *l = line;
3458 bool to_fpu = ((template->meta_opcode >> 7) & 0x1) != 0;
3459 const metag_reg *regs[2];
3460 unsigned int base_unit;
3461
3462 if (insn->fpu_width == FPU_WIDTH_PAIR)
3463 return NULL;
3464
3465 l = parse_gp_regs (l, regs, 2);
3466
3467 if (l == NULL)
3468 return NULL;
3469
3470 if (to_fpu)
3471 {
3472 if (regs[0]->unit != UNIT_FX)
3473 return NULL;
3474
3475 if (regs[1]->unit == UNIT_D0)
3476 base_unit = 0;
3477 else if (regs[1]->unit == UNIT_D1)
3478 base_unit = 1;
3479 else
3480 return NULL;
3481 }
3482 else
3483 {
3484 if (regs[0]->unit == UNIT_D0)
3485 base_unit = 0;
3486 else if (regs[0]->unit == UNIT_D1)
3487 base_unit = 1;
3488 else
3489 return NULL;
3490
3491 if (regs[1]->unit != UNIT_FX)
3492 return NULL;
3493 }
3494
3495 insn->bits = (template->meta_opcode |
3496 (base_unit << 24) |
3497 (regs[0]->no << 19) |
3498 (regs[1]->no << 9));
3499
3500 insn->len = 4;
3501 return l;
3502 }
3503
3504 /* Parse an FPU immediate MOV instruction. */
3505 static const char *
3506 parse_fmov_i (const char *line, metag_insn *insn,
3507 const insn_template *template)
3508 {
3509 const char *l = line;
3510 const metag_reg *regs[1];
3511 int value = 0;
3512
3513 l = parse_fpu_regs (l, regs, 1);
3514
3515 l = skip_comma (l);
3516
3517 if (l == NULL ||
3518 *l == END_OF_INSN)
3519 return NULL;
3520
3521 l = parse_imm16 (l, insn, &value);
3522
3523 if (l == NULL)
3524 return NULL;
3525
3526 insn->bits = (template->meta_opcode |
3527 (regs[0]->no << 19) |
3528 ((value & IMM16_MASK) << 3));
3529
3530 if (insn->fpu_width == FPU_WIDTH_DOUBLE)
3531 insn->bits |= (1 << 1);
3532 else if (insn->fpu_width == FPU_WIDTH_PAIR)
3533 insn->bits |= (1 << 2);
3534
3535 insn->len = 4;
3536 return l;
3537 }
3538
3539 /* Parse an FPU PACK instruction. */
3540 static const char *
3541 parse_fpack (const char *line, metag_insn *insn,
3542 const insn_template *template)
3543 {
3544 const char *l = line;
3545 const metag_reg *regs[3];
3546
3547 l = parse_fpu_regs (l, regs, 3);
3548
3549 if (l == NULL)
3550 return NULL;
3551
3552 if (regs[0]->no % 2)
3553 {
3554 as_bad (_("destination register should be even numbered"));
3555 return NULL;
3556 }
3557
3558 insn->bits = (template->meta_opcode |
3559 (regs[0]->no << 19) |
3560 (regs[1]->no << 14) |
3561 (regs[2]->no << 9));
3562
3563 insn->len = 4;
3564 return l;
3565 }
3566
3567 /* Parse an FPU SWAP instruction. */
3568 static const char *
3569 parse_fswap (const char *line, metag_insn *insn,
3570 const insn_template *template)
3571 {
3572 const char *l = line;
3573 const metag_reg *regs[2];
3574
3575 if (insn->fpu_width != FPU_WIDTH_PAIR)
3576 return NULL;
3577
3578 l = parse_fpu_regs (l, regs, 2);
3579
3580 if (l == NULL)
3581 return NULL;
3582
3583 if (regs[0]->no % 2)
3584 return NULL;
3585
3586 if (regs[1]->no % 2)
3587 return NULL;
3588
3589 insn->bits = (template->meta_opcode |
3590 (regs[0]->no << 19) |
3591 (regs[1]->no << 14));
3592
3593 insn->len = 4;
3594 return l;
3595 }
3596
3597 /* Parse an FPU CMP instruction. */
3598 static const char *
3599 parse_fcmp (const char *line, metag_insn *insn,
3600 const insn_template *template)
3601 {
3602 const char *l = line, *l2;
3603 const metag_reg *regs1[1];
3604 const metag_reg *regs2[1];
3605
3606 l = parse_fpu_regs (l, regs1, 1);
3607
3608 l = skip_comma (l);
3609
3610 if (l == NULL ||
3611 *l == END_OF_INSN)
3612 return NULL;
3613
3614 l2 = parse_fpu_regs (l, regs2, 1);
3615
3616 if (l2 != NULL)
3617 {
3618 insn->bits = (regs2[0]->no << 9);
3619 }
3620 else
3621 {
3622 int constant = 0;
3623 l2 = parse_imm_constant (l, insn, &constant);
3624 if (!l2 || constant != 0)
3625 {
3626 as_bad (_("comparison must be with register or #0"));
3627 return NULL;
3628 }
3629 insn->bits = (1 << 8);
3630 }
3631
3632 insn->bits |= (template->meta_opcode |
3633 (regs1[0]->no << 14));
3634
3635 if (insn->fpu_action_flags & FPU_ACTION_ABS)
3636 insn->bits |= (1 << 19);
3637
3638 if (insn->fpu_action_flags & FPU_ACTION_QUIET)
3639 insn->bits |= (1 << 7);
3640
3641 if (insn->fpu_width == FPU_WIDTH_PAIR)
3642 insn->bits |= (1 << 6);
3643 else if (insn->fpu_width == FPU_WIDTH_DOUBLE)
3644 insn->bits |= (1 << 5);
3645
3646 insn->len = 4;
3647 return l2;
3648 }
3649
3650 /* Parse an FPU MIN or MAX instruction. */
3651 static const char *
3652 parse_fminmax (const char *line, metag_insn *insn,
3653 const insn_template *template)
3654 {
3655 const char *l = line;
3656 const metag_reg *regs[3];
3657
3658 l = parse_fpu_regs (l, regs, 3);
3659
3660 if (l == NULL)
3661 return NULL;
3662
3663 insn->bits = (template->meta_opcode |
3664 (regs[0]->no << 19) |
3665 (regs[1]->no << 14) |
3666 (regs[2]->no << 9));
3667
3668 if (insn->fpu_width == FPU_WIDTH_PAIR)
3669 insn->bits |= (1 << 6);
3670 else if (insn->fpu_width == FPU_WIDTH_DOUBLE)
3671 insn->bits |= (1 << 5);
3672
3673 insn->len = 4;
3674 return l;
3675 }
3676
3677 /* Parse an FPU data conversion instruction. */
3678 static const char *
3679 parse_fconv (const char *line, metag_insn *insn,
3680 const insn_template *template)
3681 {
3682 const char *l = line;
3683 const metag_reg *regs[2];
3684
3685 if (insn->fpu_width == FPU_WIDTH_PAIR)
3686 {
3687 if (strncasecmp (template->name, "FTOH", 4) &&
3688 strncasecmp (template->name, "HTOF", 4) &&
3689 strncasecmp (template->name, "FTOI", 4) &&
3690 strncasecmp (template->name, "ITOF", 4))
3691 {
3692 as_bad (_("instruction cannot operate on pair values"));
3693 return NULL;
3694 }
3695 }
3696
3697 if (insn->fpu_action_flags & FPU_ACTION_ZERO)
3698 {
3699 if (strncasecmp (template->name, "FTOI", 4) &&
3700 strncasecmp (template->name, "DTOI", 4) &&
3701 strncasecmp (template->name, "DTOL", 4))
3702 {
3703 as_bad (_("zero flag is not valid for this instruction"));
3704 return NULL;
3705 }
3706 }
3707
3708 l = parse_fpu_regs (l, regs, 2);
3709
3710 if (l == NULL)
3711 return NULL;
3712
3713 if (!strncasecmp (template->name, "DTOL", 4) ||
3714 !strncasecmp (template->name, "LTOD", 4))
3715 {
3716 if (regs[0]->no % 2)
3717 {
3718 as_bad (_("destination register should be even numbered"));
3719 return NULL;
3720 }
3721
3722 if (regs[1]->no % 2)
3723 {
3724 as_bad (_("source register should be even numbered"));
3725 return NULL;
3726 }
3727 }
3728
3729 insn->bits = (template->meta_opcode |
3730 (regs[0]->no << 19) |
3731 (regs[1]->no << 14));
3732
3733 if (insn->fpu_width == FPU_WIDTH_PAIR)
3734 insn->bits |= (1 << 6);
3735
3736 if (insn->fpu_action_flags & FPU_ACTION_ZERO)
3737 insn->bits |= (1 << 12);
3738
3739 insn->len = 4;
3740 return l;
3741 }
3742
3743 /* Parse an FPU extended data conversion instruction. */
3744 static const char *
3745 parse_fconvx (const char *line, metag_insn *insn,
3746 const insn_template *template)
3747 {
3748 const char *l = line;
3749 const metag_reg *regs[2];
3750 int fraction_bits = 0;
3751
3752 if (insn->fpu_width == FPU_WIDTH_PAIR)
3753 {
3754 if (strncasecmp (template->name, "FTOX", 4) &&
3755 strncasecmp (template->name, "XTOF", 4))
3756 {
3757 as_bad (_("instruction cannot operate on pair values"));
3758 return NULL;
3759 }
3760 }
3761
3762 l = parse_fpu_regs (l, regs, 2);
3763
3764 l = skip_comma (l);
3765
3766 if (l == NULL ||
3767 *l == END_OF_INSN)
3768 return NULL;
3769
3770 l = parse_imm_constant (l, insn, &fraction_bits);
3771
3772 if (l == NULL)
3773 return NULL;
3774
3775 insn->bits = (template->meta_opcode |
3776 (regs[0]->no << 19) |
3777 (regs[1]->no << 14));
3778
3779 if (strncasecmp (template->name, "DTOXL", 5) &&
3780 strncasecmp (template->name, "XLTOD", 5))
3781 {
3782 if (!within_unsigned_range (fraction_bits, IMM5_BITS))
3783 {
3784 as_bad (_("fraction bits value out of range"));
3785 return NULL;
3786 }
3787 insn->bits |= ((fraction_bits & IMM5_MASK) << 9);
3788 }
3789 else
3790 {
3791 if (!within_unsigned_range (fraction_bits, IMM6_BITS))
3792 {
3793 as_bad (_("fraction bits value out of range"));
3794 return NULL;
3795 }
3796 insn->bits |= ((fraction_bits & IMM6_MASK) << 8);
3797 }
3798
3799 if (insn->fpu_width == FPU_WIDTH_PAIR)
3800 insn->bits |= (1 << 6);
3801
3802 insn->len = 4;
3803 return l;
3804 }
3805
3806 /* Parse an FPU basic arithmetic instruction. */
3807 static const char *
3808 parse_fbarith (const char *line, metag_insn *insn,
3809 const insn_template *template)
3810 {
3811 const char *l = line;
3812 const metag_reg *regs[3];
3813
3814 l = parse_fpu_regs (l, regs, 3);
3815
3816 if (l == NULL)
3817 return NULL;
3818
3819 insn->bits = (template->meta_opcode |
3820 (regs[0]->no << 19) |
3821 (regs[1]->no << 14) |
3822 (regs[2]->no << 9));
3823
3824 if (insn->fpu_width == FPU_WIDTH_PAIR)
3825 insn->bits |= (1 << 6);
3826 else if (insn->fpu_width == FPU_WIDTH_DOUBLE)
3827 insn->bits |= (1 << 5);
3828
3829 if (insn->fpu_action_flags & FPU_ACTION_INV)
3830 insn->bits |= (1 << 7);
3831
3832 insn->len = 4;
3833 return l;
3834 }
3835
3836 /* Parse a floating point accumulator name. */
3837 static const char *
3838 parse_acf (const char *line, int *part)
3839 {
3840 const char *l = line;
3841 size_t i;
3842
3843 for (i = 0; i < sizeof(metag_acftab)/sizeof(metag_acftab[0]); i++)
3844 {
3845 const metag_acf *acf = &metag_acftab[i];
3846 size_t name_len = strlen (acf->name);
3847
3848 if (strncasecmp (l, acf->name, name_len) == 0)
3849 {
3850 l += name_len;
3851 *part = acf->part;
3852 return l;
3853 }
3854 }
3855 return NULL;
3856 }
3857
3858 /* Parse an FPU extended arithmetic instruction. */
3859 static const char *
3860 parse_fearith (const char *line, metag_insn *insn,
3861 const insn_template *template)
3862 {
3863 const char *l = line;
3864 const metag_reg *regs[3];
3865 bool is_muz = (MINOR_OPCODE (template->meta_opcode) == 0x6
3866 && ((template->meta_opcode >> 4) & 0x1) != 0);
3867 bool is_o3o = (template->meta_opcode & 0x1) != 0;
3868 bool is_mac = 0;
3869 bool is_maw = 0;
3870
3871 if (!strncasecmp (template->name, "MAW", 3))
3872 is_maw = 1;
3873
3874 if (!strncasecmp (template->name, "MAC", 3))
3875 {
3876 int part;
3877 l = parse_acf (l, &part);
3878
3879 if (l == NULL || part != 0)
3880 return NULL;
3881
3882 l = skip_comma (l);
3883
3884 l = parse_fpu_regs (l, &regs[1], 2);
3885
3886 is_mac = 1;
3887 }
3888 else
3889 {
3890 if (is_o3o && is_maw)
3891 l = parse_fpu_regs (l, regs, 2);
3892 else
3893 l = parse_fpu_regs (l, regs, 3);
3894 }
3895
3896 if (l == NULL)
3897 return NULL;
3898
3899 if (is_o3o && is_maw)
3900 insn->bits = (template->meta_opcode |
3901 (regs[1]->no << 9));
3902 else
3903 insn->bits = (template->meta_opcode |
3904 (regs[1]->no << 14));
3905
3906 if (!(is_o3o && is_maw))
3907 insn->bits |= (regs[2]->no << 9);
3908
3909 if (is_o3o && is_maw)
3910 insn->bits |= (regs[0]->no << 14);
3911 else if (!is_mac)
3912 insn->bits |= (regs[0]->no << 19);
3913
3914 if (insn->fpu_width == FPU_WIDTH_PAIR)
3915 insn->bits |= (1 << 6);
3916 else if (insn->fpu_width == FPU_WIDTH_DOUBLE)
3917 insn->bits |= (1 << 5);
3918
3919 if (!is_mac && !is_maw)
3920 if (insn->fpu_action_flags & FPU_ACTION_INV)
3921 insn->bits |= (1 << 7);
3922
3923 if (is_muz)
3924 if (insn->fpu_action_flags & FPU_ACTION_QUIET)
3925 insn->bits |= (1 << 1);
3926
3927 insn->len = 4;
3928 return l;
3929 }
3930
3931 /* Parse an FPU RCP or RSQ instruction. */
3932 static const char *
3933 parse_frec (const char *line, metag_insn *insn,
3934 const insn_template *template)
3935 {
3936 const char *l = line;
3937 const metag_reg *regs[2];
3938
3939 l = parse_fpu_regs (l, regs, 2);
3940
3941 if (l == NULL)
3942 return NULL;
3943
3944 insn->bits = (template->meta_opcode |
3945 (regs[0]->no << 19) |
3946 (regs[1]->no << 14));
3947
3948 if (insn->fpu_width == FPU_WIDTH_PAIR)
3949 insn->bits |= (1 << 6);
3950 else if (insn->fpu_width == FPU_WIDTH_DOUBLE)
3951 insn->bits |= (1 << 5);
3952
3953 if (insn->fpu_action_flags & FPU_ACTION_ZERO)
3954 insn->bits |= (1 << 10);
3955 else if (insn->fpu_action_flags & FPU_ACTION_QUIET)
3956 insn->bits |= (1 << 9);
3957
3958 if (insn->fpu_action_flags & FPU_ACTION_INV)
3959 insn->bits |= (1 << 7);
3960
3961 insn->len = 4;
3962 return l;
3963 }
3964
3965 /* Parse an FPU vector arithmetic instruction. */
3966 static const char *
3967 parse_fsimd (const char *line, metag_insn *insn,
3968 const insn_template *template)
3969 {
3970 const char *l = line;
3971 const metag_reg *regs[3];
3972
3973 if (insn->fpu_width != FPU_WIDTH_PAIR)
3974 {
3975 as_bad (_("simd instructions operate on pair values (L prefix)"));
3976 return NULL;
3977 }
3978
3979 l = parse_fpu_regs (l, regs, 3);
3980
3981 if (l == NULL)
3982 return NULL;
3983
3984 if (regs[0]->no % 2)
3985 {
3986 as_bad (_("destination register should be even numbered"));
3987 return NULL;
3988 }
3989
3990 if ((regs[1]->no % 2) ||
3991 (regs[2]->no % 2))
3992 {
3993 as_bad (_("source registers should be even numbered"));
3994 return NULL;
3995 }
3996
3997 insn->bits = (template->meta_opcode |
3998 (regs[0]->no << 19) |
3999 (regs[1]->no << 14) |
4000 (regs[2]->no << 9));
4001
4002 if (insn->fpu_action_flags & FPU_ACTION_INV)
4003 insn->bits |= (1 << 7);
4004
4005 insn->len = 4;
4006 return l;
4007 }
4008
4009 /* Parse an FPU accumulator GET or SET instruction. */
4010 static const char *
4011 parse_fget_set_acf (const char *line, metag_insn *insn,
4012 const insn_template *template)
4013 {
4014 const char *l = line;
4015 int part;
4016 metag_addr addr;
4017 bool is_get = MAJOR_OPCODE (template->meta_opcode) == OPC_GET;
4018
4019 memset(&addr, 0, sizeof(addr));
4020 addr.reloc_type = BFD_RELOC_UNUSED;
4021
4022 if (is_get)
4023 {
4024 l = parse_acf (l, &part);
4025
4026 l = skip_comma (l);
4027
4028 if (l == NULL)
4029 return NULL;
4030
4031 l = parse_mget_mset_addr (l, &addr);
4032 }
4033 else
4034 {
4035 l = parse_mget_mset_addr (l, &addr);
4036
4037 l = skip_comma (l);
4038
4039 if (l == NULL)
4040 return NULL;
4041
4042 l = parse_acf (l, &part);
4043 }
4044
4045 if (l == NULL)
4046 return NULL;
4047
4048 insn->bits = (template->meta_opcode |
4049 (part << 19));
4050
4051 if (!is_short_unit (addr.base_reg->unit))
4052 {
4053 as_bad (_("base unit must be one of %s"), SHORT_UNITS);
4054 return NULL;
4055 }
4056
4057 insn->bits |= ((addr.base_reg->no << 14) |
4058 ((addr.base_reg->unit & SHORT_UNIT_MASK) << 5));
4059
4060 insn->len = 4;
4061 return l;
4062 }
4063
4064 /* Copy the name of the next register in LINE to REG_BUF. */
4065 static size_t
4066 strip_reg_name(const char *line, char *reg_buf)
4067 {
4068 const char *l = line;
4069 size_t len = 0;
4070
4071 while (is_register_char (*l))
4072 {
4073 reg_buf[len] = *l;
4074 l++;
4075 len++;
4076 if (!(len < MAX_REG_LEN))
4077 return 0;
4078 }
4079
4080 if (len)
4081 reg_buf[len] = '\0';
4082
4083 return len;
4084 }
4085
4086 /* Parse a DSP register from LINE into REG using only the registers
4087 from DSP_REGTAB. Return the next character or NULL. */
4088 static const char *
4089 __parse_dsp_reg (const char *line, const metag_reg **reg, htab_t dsp_regtab)
4090 {
4091 const char *l = line;
4092 char name[MAX_REG_LEN];
4093 size_t len = 0;
4094 metag_reg entry;
4095 const metag_reg *_reg;
4096
4097 /* We don't entirely strip the register name because we might
4098 actually want to match whole string in the register table,
4099 e.g. "D0AW.1++" not just "D0AW.1". The string length of the table
4100 entry limits our comparison to a reasonable bound anyway. */
4101 while (is_register_char (*l) || *l == PLUS)
4102 {
4103 name[len] = *l;
4104 l++;
4105 len++;
4106 if (!(len < MAX_REG_LEN))
4107 return NULL;
4108 }
4109
4110 if (!len)
4111 return NULL;
4112
4113 name[len] = '\0';
4114 entry.name = name;
4115
4116 _reg = (const metag_reg *) htab_find (dsp_regtab, &entry);
4117 if (!_reg)
4118 return NULL;
4119
4120 *reg = _reg;
4121
4122 return l;
4123 }
4124
4125 /* Parse a DSP register and setup "reg" with a metag_reg whose "no"
4126 member is suitable for encoding into a DSP insn register field. */
4127 static const char *
4128 parse_dsp_insn_reg (const char *line, const metag_reg **reg)
4129 {
4130 return __parse_dsp_reg (line, reg, dsp_reg_htab);
4131 }
4132
4133 /* Parse a DSP register and setup "reg" with a metag_reg whose "no"
4134 member is suitable for encoding into a DSP template definition insn
4135 register field.
4136
4137 There is a separate table for whether we're doing a load or a store
4138 definition. "load" specifies which table to look at. */
4139 static const char *
4140 parse_dsp_template_reg (const char *line, const metag_reg **reg,
4141 bool load)
4142 {
4143 return __parse_dsp_reg (line, reg, dsp_tmpl_reg_htab[load]);
4144 }
4145
4146 /* Parse a single DSP register from LINE. */
4147 static const char *
4148 parse_dsp_reg (const char *line, const metag_reg **reg,
4149 bool tmpl, bool load)
4150 {
4151 if (tmpl)
4152 return parse_dsp_template_reg (line, reg, load);
4153 else
4154 return parse_dsp_insn_reg (line, reg);
4155 }
4156
4157 /* Return TRUE if UNIT is an address unit. */
4158 static bool
4159 is_addr_unit (enum metag_unit unit)
4160 {
4161 switch (unit)
4162 {
4163 case UNIT_A0:
4164 case UNIT_A1:
4165 return true;
4166 default:
4167 return false;
4168 }
4169 }
4170
4171 /* Return TRUE if UNIT1 and UNIT2 are equivalent units. */
4172 static bool
4173 is_same_data_unit (enum metag_unit unit1, enum metag_unit unit2)
4174 {
4175 if (unit1 == unit2)
4176 return true;
4177
4178 switch (unit1)
4179 {
4180 case UNIT_D0:
4181 if (unit2 == UNIT_ACC_D0 || unit2 == UNIT_RAM_D0)
4182 return true;
4183 break;
4184 case UNIT_D1:
4185 if (unit2 == UNIT_ACC_D1 || unit2 == UNIT_RAM_D1)
4186 return true;
4187 break;
4188 case UNIT_ACC_D0:
4189 if (unit2 == UNIT_D0 || unit2 == UNIT_RAM_D0)
4190 return true;
4191 break;
4192 case UNIT_ACC_D1:
4193 if (unit2 == UNIT_D1 || unit2 == UNIT_RAM_D1)
4194 return true;
4195 break;
4196 case UNIT_RAM_D0:
4197 if (unit2 == UNIT_ACC_D0 || unit2 == UNIT_D0)
4198 return true;
4199 break;
4200 case UNIT_RAM_D1:
4201 if (unit2 == UNIT_ACC_D1 || unit2 == UNIT_D1)
4202 return true;
4203 break;
4204 default:
4205 return false;
4206 }
4207
4208 return false;
4209 }
4210
4211 /* Return TRUE if the register NUM is a quickrot control register. */
4212 static bool
4213 is_quickrot_reg (unsigned int num)
4214 {
4215 switch (num)
4216 {
4217 case 2:
4218 case 3:
4219 return true;
4220 }
4221
4222 return false;
4223 }
4224
4225 /* Return TRUE if REG is an accumulator register. */
4226 static bool
4227 is_accumulator_reg (const metag_reg *reg)
4228 {
4229 if (reg->unit == UNIT_ACC_D0 || reg->unit == UNIT_ACC_D1)
4230 return true;
4231
4232 return false;
4233 }
4234
4235 /* Return TRUE if REG is a DSP RAM register. */
4236 static bool
4237 is_dspram_reg (const metag_reg *reg)
4238 {
4239 if (reg->unit == UNIT_RAM_D0 || reg->unit == UNIT_RAM_D1)
4240 return true;
4241
4242 return false;
4243 }
4244
4245 static const char *
4246 __parse_gp_reg (const char *line, const metag_reg **reg, bool load)
4247 {
4248 const char *l = line;
4249 char reg_buf[MAX_REG_LEN];
4250 size_t len = 0;
4251
4252 if (l == NULL)
4253 return NULL;
4254
4255 /* Parse [DSPRAM.x]. */
4256 if (*l == ADDR_BEGIN_CHAR)
4257 {
4258 l++;
4259
4260 if (l == NULL)
4261 return NULL;
4262
4263 l = parse_dsp_reg (l, reg, true, load);
4264 if (l == NULL)
4265 return NULL;
4266
4267 if (*l == ADDR_END_CHAR)
4268 l++;
4269 else
4270 {
4271 as_bad (_("expected ']', not %c in %s"), *l, l);
4272 return NULL;
4273 }
4274
4275 return l;
4276 }
4277 else
4278 {
4279
4280 len = strip_reg_name (l, reg_buf);
4281 if (!len)
4282 return NULL;
4283
4284 l += len;
4285 *reg = parse_gp_reg (reg_buf);
4286 if (*reg == NULL)
4287 return NULL;
4288 }
4289
4290 return l;
4291 }
4292
4293 /* Parse a list of DSP/GP registers. TRY_GP indicates whether we
4294 should try to parse the register as a general-purpose register if
4295 we fail to parse it as a DSP one. TMPL indicates whether the
4296 registers are part of a template definition instruction. If this is
4297 a template definition instruction LOAD says whether it's a load
4298 template insn. FIRST_DST indicates whether the first register is
4299 a destination operand. */
4300 static const char *
4301 parse_dsp_regs_list (const char *line, const metag_reg **regs, size_t count,
4302 size_t *regs_read, bool try_gp, bool tmpl,
4303 bool load, bool first_dst)
4304 {
4305 const char *l = line;
4306 int seen_regs = 0;
4307 size_t i;
4308 const metag_reg *reg;
4309
4310 for (i = 0; i < count; i++)
4311 {
4312 const char *next, *ll;
4313
4314 next = l;
4315
4316 if (i > 0)
4317 {
4318 l = skip_comma (l);
4319 if (l == NULL)
4320 {
4321 *regs_read = seen_regs;
4322 return next;
4323 }
4324 }
4325
4326 ll = parse_dsp_reg (l, &reg, tmpl, load);
4327
4328 if (!ll)
4329 {
4330 if (try_gp)
4331 {
4332 l = __parse_gp_reg (l, &reg, !(first_dst && i == 0));
4333 if (l == NULL)
4334 {
4335 *regs_read = seen_regs;
4336 return next;
4337 }
4338 regs[i] = reg;
4339 seen_regs++;
4340 }
4341 else
4342 {
4343 *regs_read = seen_regs;
4344 return l;
4345 }
4346 }
4347 else
4348 {
4349 regs[i] = reg;
4350 seen_regs++;
4351 l = ll;
4352 }
4353 }
4354
4355 *regs_read = seen_regs;
4356 return l;
4357 }
4358
4359 /* Parse the following memory references:
4360
4361 - [Ax.r]
4362 - [Ax.r++]
4363 - [Ax.r--]
4364 - [Ax.r+Ax.r++]
4365 - [Ax.r-Ax.r--]
4366
4367 - [DSPRam]
4368 - [DSPRam++]
4369 - [DSPRam+DSPRam++]
4370 - [DSPRam-DSPRam--] */
4371 static const char *
4372 parse_dsp_addr (const char *line, metag_addr *addr, unsigned int size,
4373 bool load)
4374 {
4375 const char *l = line, *ll;
4376 const metag_reg *regs[1];
4377 size_t regs_read;
4378
4379 /* Skip opening square bracket. */
4380 l++;
4381
4382 l = parse_dsp_regs_list (l, regs, 1, &regs_read, true, true, load, false);
4383
4384 if (l == NULL)
4385 return NULL;
4386
4387 if (!is_addr_unit (regs[0]->unit) &&
4388 !is_dspram_reg (regs[0]))
4389 {
4390 as_bad (_("invalid register for memory access"));
4391 return NULL;
4392 }
4393
4394 addr->base_reg = regs[0];
4395
4396 if (*l == ADDR_END_CHAR)
4397 {
4398 addr->exp.X_op = O_constant;
4399 addr->exp.X_add_symbol = NULL;
4400 addr->exp.X_op_symbol = NULL;
4401
4402 /* Simple register with no offset (0 immediate). */
4403 addr->exp.X_add_number = 0;
4404
4405 addr->immediate = 1;
4406 l++;
4407
4408 return l;
4409 }
4410
4411 ll = parse_addr_post_incr_op (l, addr);
4412
4413 if (ll && *ll == ADDR_END_CHAR)
4414 {
4415 if (addr->update == 1)
4416 {
4417 /* We have a post increment/decrement. */
4418 addr->exp.X_op = O_constant;
4419 addr->exp.X_add_number = size;
4420 addr->exp.X_add_symbol = NULL;
4421 addr->exp.X_op_symbol = NULL;
4422 addr->post_increment = 1;
4423 }
4424 addr->immediate = 1;
4425 ll++;
4426 return ll;
4427 }
4428
4429 addr->post_increment = 0;
4430
4431 l = parse_addr_op (l, addr);
4432
4433 if (l == NULL)
4434 return NULL;
4435
4436 l = parse_dsp_regs_list (l, regs, 1, &regs_read, true, true, load, false);
4437
4438 if (l == NULL)
4439 return NULL;
4440
4441 if (regs[0]->unit != addr->base_reg->unit)
4442 {
4443 as_bad (_("offset and base must be from the same unit"));
4444 return NULL;
4445 }
4446
4447 addr->offset_reg = regs[0];
4448
4449 if (*l == ADDR_END_CHAR)
4450 {
4451 l++;
4452 return l;
4453 }
4454
4455 l = parse_addr_post_incr_op (l, addr);
4456
4457 if (l == NULL)
4458 return NULL;
4459
4460 if (*l == ADDR_END_CHAR)
4461 {
4462 l++;
4463 return l;
4464 }
4465
4466 return NULL;
4467 }
4468
4469 /* Parse a DSP GET or SET instruction. */
4470 static const char *
4471 parse_dget_set (const char *line, metag_insn *insn,
4472 const insn_template *template)
4473 {
4474 const char *l = line;
4475 metag_addr addr;
4476 int unit = 0;
4477 int rd_reg = 0;
4478 bool is_get = (template->meta_opcode & 0x100) != 0;
4479 bool is_dual = (template->meta_opcode & 0x4) != 0;
4480 bool is_template = false;
4481 const metag_reg *regs[2];
4482 unsigned int size;
4483 size_t count, regs_read;
4484
4485 memset(&addr, 0, sizeof(addr));
4486 addr.reloc_type = BFD_RELOC_UNUSED;
4487
4488 size = is_dual ? 8 : 4;
4489 count = is_dual ? 2 : 1;
4490
4491 if (is_get)
4492 {
4493 /* GETL can be used on one template table entry. */
4494 if (*l == 'T')
4495 count = 1;
4496
4497 l = parse_dsp_regs_list (l, regs, count, &regs_read, false,
4498 false, false, false);
4499 l = skip_comma (l);
4500
4501 if (l == NULL)
4502 {
4503 as_bad (_("unexpected end of line"));
4504 return NULL;
4505 }
4506
4507 l = parse_addr (l, &addr, size);
4508 }
4509 else
4510 {
4511 l = parse_addr (l, &addr, size);
4512
4513 l = skip_comma (l);
4514
4515 if (l == NULL)
4516 return NULL;
4517
4518 /* GETL can be used on one template table entry. */
4519 if (*l == 'T')
4520 count = 1;
4521
4522 l = parse_dsp_regs_list (l, regs, count, &regs_read, false, false,
4523 false, false);
4524 }
4525
4526 if (l == NULL)
4527 return NULL;
4528
4529 /* The first register dictates the unit. */
4530 if (regs[0]->unit == UNIT_DT)
4531 is_template = true;
4532 else
4533 {
4534 if (regs[0]->unit == UNIT_D0 || regs[0]->unit == UNIT_RAM_D0 ||
4535 regs[0]->unit == UNIT_ACC_D0)
4536 unit = 0;
4537 else
4538 unit = 1;
4539 }
4540
4541 rd_reg = regs[0]->no;
4542
4543 /* The 'H' modifier allows a DSP GET/SET instruction to target the
4544 upper 8-bits of an accumulator. It is _only_ valid for the
4545 accumulators. */
4546 if (insn->dsp_daoppame_flags & DSP_DAOPPAME_HIGH)
4547 {
4548 if (is_template || !(rd_reg >= 16 && rd_reg < 20))
4549 {
4550 as_bad (_("'H' modifier only valid for accumulator registers"));
4551 return NULL;
4552 }
4553
4554 /* Top 8-bits of the accumulator. */
4555 rd_reg |= 8;
4556 }
4557
4558 if (is_template)
4559 {
4560 insn->bits = (template->meta_opcode | (1 << 1));
4561 }
4562 else
4563 {
4564 insn->bits = (template->meta_opcode | unit);
4565 }
4566
4567 insn->bits |= (rd_reg << 19);
4568
4569 if (addr.immediate)
4570 {
4571 int offset = addr.exp.X_add_number;
4572
4573 if (addr.negate)
4574 offset = -offset;
4575
4576 offset = offset / (int)size;
4577
4578 if (!within_signed_range (offset, DGET_SET_IMM_BITS))
4579 {
4580 as_bad (_("offset value out of range"));
4581 return NULL;
4582 }
4583
4584 offset = offset & DGET_SET_IMM_MASK;
4585
4586 insn->bits |= (1 << 13);
4587 insn->bits |= (offset << 9);
4588 }
4589 else
4590 {
4591 int au = (addr.base_reg->unit == UNIT_A1);
4592
4593 insn->bits |= (au << 18);
4594 insn->bits |= ((addr.base_reg->no & REG_MASK) << 14);
4595 insn->bits |= ((addr.offset_reg->no & REG_MASK) << 9);
4596 }
4597
4598 if (is_dual)
4599 insn->bits |= (1 << 2);
4600
4601 if (!is_addr_unit (addr.base_reg->unit))
4602 {
4603 as_bad (_("base unit must be either A0 or A1"));
4604 return NULL;
4605 }
4606
4607 unit = (addr.base_reg->unit == UNIT_A0) ? 0 : 1;
4608 insn->bits |= ((addr.base_reg->no << 14) | (unit << 18));
4609
4610 insn->len = 4;
4611
4612 return l;
4613 }
4614
4615 /* Parse a DSP template instruction. */
4616 static const char *
4617 parse_dtemplate (const char *line, metag_insn *insn,
4618 const insn_template *template)
4619 {
4620 const char *l = line;
4621 const metag_reg *regs[TEMPLATE_NUM_REGS];
4622 bool daop_only = false;
4623 int regs_val[4];
4624 int regs_which[4] = { -1, -1, -1, -1}; /* Register or immediate? */
4625 int i;
4626
4627 for (i = 0; i < TEMPLATE_NUM_REGS; i++)
4628 {
4629 if (l == NULL)
4630 {
4631 as_bad (_("unexpected end of line"));
4632 return NULL;
4633 }
4634
4635 /* We may only have 3 register operands. */
4636 if (*l == END_OF_INSN && i == 3)
4637 {
4638 daop_only = true;
4639 break;
4640 }
4641
4642 if (i != 0)
4643 {
4644 l = skip_comma (l);
4645 if (l == NULL)
4646 return NULL;
4647 }
4648
4649 if (*l == IMM_CHAR)
4650 {
4651 l = parse_imm_constant (l, insn, &regs_val[i]);
4652 if (l == NULL)
4653 {
4654 as_bad (_("invalid immediate"));
4655 return NULL;
4656 }
4657 regs_which[i] = 0;
4658 }
4659 else
4660 {
4661 /* We can't tell from the template instantiation whether
4662 this is a load or store. So we have to try looking up the
4663 register name in both the load and store tables. */
4664 const char *l2 = l;
4665 l = __parse_gp_reg (l, &regs[i], true);
4666 if (l == NULL)
4667 {
4668 /* Try the store table too. */
4669 l = __parse_gp_reg (l2, &regs[i], false);
4670 if (l == NULL)
4671 {
4672 /* Then try a DSP register. */
4673 l = parse_dsp_insn_reg (l2, &regs[i]);
4674 if (l == NULL || regs[i]->unit == UNIT_DT)
4675 {
4676 as_bad (_("invalid register"));
4677 return NULL;
4678 }
4679 }
4680 }
4681 regs_which[i] = 1;
4682 }
4683 }
4684
4685 insn->bits = template->meta_opcode;
4686
4687 if (regs_which[0] == 0)
4688 insn->bits |= (regs_val[0] << 19);
4689 else if (regs_which[0] == 1)
4690 insn->bits |= (regs[0]->no << 19);
4691
4692 if (regs_which[1] == 0)
4693 insn->bits |= (regs_val[1] << 14);
4694 else if (regs_which[1] == 1)
4695 insn->bits |= (regs[1]->no << 14);
4696
4697 if (regs_which[2] == 0)
4698 insn->bits |= (regs_val[2] << 9);
4699 else if (regs_which[2] == 1)
4700 insn->bits |= (regs[2]->no << 9);
4701
4702 if (regs_which[3] == 0)
4703 insn->bits |= (regs_val[3] << 4);
4704 else if (regs_which[3] == 1)
4705 insn->bits |= (regs[3]->no << 4);
4706
4707 /* DaOp only. */
4708 if (daop_only)
4709 insn->bits |= (0x3 << 24); /* Set the minor opcode. */
4710 else if (insn->dsp_daoppame_flags & DSP_DAOPPAME_HIGH) /* Half Load/Store. */
4711 insn->bits |= (0x5 << 24); /* Set the minor opcode. */
4712
4713 insn->len = 4;
4714
4715 return l;
4716 }
4717
4718 /* Parse a DSP Template definition memory reference, e.g
4719 [A0.7+A0.5++]. DSPRAM is set to true by this function if this
4720 template definition is a DSP RAM template definition. */
4721 static const char *
4722 template_mem_ref(const char *line, metag_addr *addr,
4723 bool *dspram, int size, bool load)
4724 {
4725 const char *l = line;
4726
4727 l = parse_dsp_addr (l, addr, size, load);
4728
4729 if (l != NULL)
4730 {
4731 if (is_addr_unit(addr->base_reg->unit))
4732 *dspram = false;
4733 else
4734 *dspram = true;
4735 }
4736
4737 return l;
4738 }
4739
4740 /* Sets LOAD to TRUE if this is a Template load definition (otherwise
4741 it's a store). Fills out ADDR, TEMPLATE_REG and ADDR_UNIT. */
4742 static const char *
4743 parse_template_regs (const char *line, bool *load,
4744 unsigned int *addr_unit,
4745 const metag_reg **template_reg, metag_addr *addr,
4746 bool *dspram, int size)
4747 {
4748 const char *l = line;
4749
4750 if (l == NULL)
4751 return NULL;
4752
4753 /* DSP Template load definition (Tx, [Ax]) */
4754 if (*l == 'T')
4755 {
4756 *load = true;
4757 l = parse_dsp_reg (l, &template_reg[0], false, false);
4758 if (l == NULL)
4759 return NULL;
4760
4761 l = skip_comma (l);
4762
4763 l = template_mem_ref (l, addr, dspram, size, *load);
4764
4765 if (addr->base_reg->unit == UNIT_A1)
4766 *addr_unit = 1;
4767
4768 }
4769 else if (*l == ADDR_BEGIN_CHAR) /* DSP Template store ([Ax], Tx) */
4770 {
4771 *load = false;
4772 l = template_mem_ref (l, addr, dspram, size, *load);
4773 l = skip_comma(l);
4774
4775 if (l == NULL)
4776 return NULL;
4777
4778 l = parse_dsp_reg (l, &template_reg[0], false, false);
4779 if (l == NULL)
4780 return NULL;
4781
4782 if (addr->base_reg->unit == UNIT_A1)
4783 *addr_unit = 1;
4784 }
4785 else
4786 {
4787 as_bad (_("invalid register operand"));
4788 return NULL;
4789 }
4790
4791 return l;
4792 }
4793
4794 #define INVALID_SHIFT (-1)
4795
4796 static metag_reg _reg;
4797
4798 /* Parse a template instruction definition. */
4799 static const char *
4800 interpret_template_regs(const char *line, metag_insn *insn,
4801 const metag_reg **regs,
4802 int *regs_shift, bool *load, bool *dspram,
4803 int size, int *ls_shift, int *au_shift,
4804 unsigned int *au, int *imm, int *imm_shift,
4805 unsigned int *imm_mask)
4806 {
4807 const char *l = line;
4808 metag_addr addr;
4809 const metag_reg *template_reg[1];
4810
4811 memset (&addr, 0, sizeof(addr));
4812
4813 regs_shift[0] = 19;
4814 regs_shift[1] = INVALID_SHIFT;
4815
4816 insn->bits |= (1 << 1);
4817
4818 l = skip_whitespace (l);
4819
4820 l = parse_template_regs (l, load, au, template_reg,
4821 &addr, dspram, size);
4822 if (l == NULL)
4823 {
4824 as_bad (_("could not parse template definition"));
4825 return NULL;
4826 }
4827
4828 regs[2] = template_reg[0];
4829 regs_shift[2] = 9;
4830
4831 /* DSPRAM definition. */
4832 if (*dspram)
4833 {
4834
4835 _reg = *addr.base_reg;
4836
4837 if (addr.immediate)
4838 {
4839 /* Set the post-increment bit in the register field. */
4840 if (addr.update)
4841 _reg.no |= 0x1;
4842 }
4843 else
4844 {
4845 /* The bottom bit of the increment register tells us
4846 whether it's increment register 0 or 1. */
4847 if (addr.offset_reg->no & 0x1)
4848 _reg.no |= 0x3;
4849 else
4850 _reg.no |= 0x2;
4851 }
4852
4853 regs[0] = &_reg;
4854
4855 insn->bits |= (0x3 << 17); /* This signifies a DSPRAM definition. */
4856 }
4857 else /* DaOpPaMe definition. */
4858 {
4859 regs[0] = addr.base_reg;
4860 if (addr.immediate)
4861 {
4862 /* Set the I bit. */
4863 insn->bits |= (1 << 18);
4864
4865 if (addr.update == 1)
4866 {
4867 if (addr.negate == 1)
4868 *imm = 0x3;
4869 else
4870 *imm = 0x1;
4871 }
4872
4873 *imm_shift = 14;
4874 *imm_mask = 0x3;
4875 }
4876 else
4877 {
4878 /* Setup the offset register. */
4879 regs[1] = addr.offset_reg;
4880 regs_shift[1] = 14;
4881 }
4882 *au_shift = 23;
4883 }
4884
4885 *ls_shift = 13;
4886
4887 return l;
4888 }
4889
4890 /* Does this combination of units need the O2R bit and can it be encoded? */
4891 static bool
4892 units_need_o2r (enum metag_unit unit1, enum metag_unit unit2)
4893 {
4894 if (unit1 == unit2)
4895 return false;
4896
4897 if (unit1 == UNIT_D0 || unit1 == UNIT_ACC_D0 || unit1 == UNIT_RAM_D0)
4898 {
4899 if (unit2 == UNIT_ACC_D0 || unit2 == UNIT_RAM_D0 || unit2 == UNIT_D0)
4900 return false;
4901
4902 switch (unit2)
4903 {
4904 case UNIT_A1:
4905 case UNIT_D1:
4906 case UNIT_RD:
4907 case UNIT_A0:
4908 return true;
4909 default:
4910 return false;
4911 }
4912 }
4913
4914 if (unit1 == UNIT_D1 || unit1 == UNIT_ACC_D1 || unit1 == UNIT_RAM_D1)
4915 {
4916 if (unit2 == UNIT_ACC_D1 || unit2 == UNIT_RAM_D1 || unit2 == UNIT_D1)
4917 return false;
4918
4919 switch (unit2)
4920 {
4921 case UNIT_A1:
4922 case UNIT_D0:
4923 case UNIT_RD:
4924 case UNIT_A0:
4925 return true;
4926 default:
4927 return false;
4928 }
4929 }
4930
4931 return false;
4932 }
4933
4934 /* Return TRUE if this is a DSP data unit. */
4935 static bool
4936 is_dsp_data_unit (const metag_reg *reg)
4937 {
4938 switch (reg->unit)
4939 {
4940 case UNIT_D0:
4941 case UNIT_D1:
4942 case UNIT_ACC_D0:
4943 case UNIT_ACC_D1:
4944 case UNIT_RAM_D0:
4945 case UNIT_RAM_D1:
4946 return true;
4947 default:
4948 return false;
4949 }
4950 }
4951
4952 static metag_reg o2r_reg;
4953
4954 /* Parse a DaOpPaMe load template definition. */
4955 static const char *
4956 parse_dalu (const char *line, metag_insn *insn,
4957 const insn_template *template)
4958 {
4959 const char *l = line;
4960 const char *ll;
4961 const metag_reg *regs[4];
4962 metag_addr addr;
4963 size_t regs_read;
4964 bool is_mov = MAJOR_OPCODE (template->meta_opcode) == OPC_ADD;
4965 bool is_cmp = (MAJOR_OPCODE (template->meta_opcode) == OPC_CMP
4966 && (template->meta_opcode & 0xee) == 0);
4967 bool is_dual = insn->dsp_width == DSP_WIDTH_DUAL;
4968 bool is_quickrot64 = (insn->dsp_action_flags & DSP_ACTION_QR64) != 0;
4969 int l1_shift = INVALID_SHIFT;
4970 bool load = false;
4971 int ls_shift = INVALID_SHIFT;
4972 bool ar = false;
4973 int ar_shift = INVALID_SHIFT;
4974 int regs_shift[3] = { INVALID_SHIFT, INVALID_SHIFT, INVALID_SHIFT };
4975 int imm = 0;
4976 int imm_shift = INVALID_SHIFT;
4977 unsigned int imm_mask = 0;
4978 unsigned int au = 0;
4979 int au_shift = INVALID_SHIFT;
4980 unsigned int du = 0;
4981 int du_shift = INVALID_SHIFT;
4982 unsigned int sc = ((insn->dsp_action_flags & DSP_ACTION_OV) != 0);
4983 int sc_shift = INVALID_SHIFT;
4984 unsigned int om = ((insn->dsp_action_flags & DSP_ACTION_MOD) != 0);
4985 int om_shift = INVALID_SHIFT;
4986 unsigned int o2r = 0;
4987 int o2r_shift = INVALID_SHIFT;
4988 unsigned int qr = 0;
4989 int qr_shift = INVALID_SHIFT;
4990 int qd_shift = INVALID_SHIFT;
4991 unsigned int qn = 0;
4992 int qn_shift = INVALID_SHIFT;
4993 unsigned int a1 = ((insn->dsp_action_flags & (DSP_ACTION_ACC_SUB|DSP_ACTION_ACC_ZERO)) != 0);
4994 int a1_shift = INVALID_SHIFT;
4995 unsigned int a2 = ((insn->dsp_action_flags & (DSP_ACTION_ACC_SUB|DSP_ACTION_ACC_ADD)) != 0);
4996 int a2_shift = INVALID_SHIFT;
4997 unsigned su = ((insn->dsp_action_flags & DSP_ACTION_UMUL) != 0);
4998 int su_shift = INVALID_SHIFT;
4999 unsigned int ac;
5000 int ac_shift = INVALID_SHIFT;
5001 unsigned int mx = (((insn->dsp_daoppame_flags & DSP_DAOPPAME_8) != 0) ||
5002 (insn->dsp_daoppame_flags & DSP_DAOPPAME_16) != 0);
5003 int mx_shift = INVALID_SHIFT;
5004 int size = is_dual ? 8 : 4;
5005 bool dspram;
5006 bool conditional = (MINOR_OPCODE (template->meta_opcode) & 0x4) != 0;
5007
5008 /* XFIXME: check the flags are valid with the instruction. */
5009 if (is_quickrot64 && !(template->arg_type & DSP_ARGS_QR))
5010 {
5011 as_bad (_("QUICKRoT 64-bit extension not applicable to this instruction"));
5012 return NULL;
5013 }
5014
5015 insn->bits = template->meta_opcode;
5016
5017 memset (regs, 0, sizeof (regs));
5018 memset (&addr, 0, sizeof (addr));
5019
5020 /* There are the following forms of DSP ALU instructions,
5021
5022 * Group 1:
5023 19. D[T] Op De.r,Dx.r,De.r
5024 1. D[T] Op De.r,Dx.r,De.r|ACe.r [Accumulator in src 2]
5025 3. D[T] Op De.r,Dx.r,De.r[,Ae.r] [QUICKRoT]
5026 2. D[T] Op ACe.e,ACx.r,ACo.e [cross-unit accumulator op]
5027 5. D[T] Op De.r|ACe.r,Dx.r,De.r
5028 20. D[T] Op De.r,Dx.r|ACx.r,De.r
5029 8. D Opcc De.r,Dx.r,Rx.r
5030 6. D Op De.r,Dx.r,Rx.r|RD
5031 17. D Op De.r|ACe.r,Dx.r,Rx.r|RD
5032 7. D Op De.e,Dx.r,#I16
5033
5034 * Group 2:
5035 4. D[T] Op Dx.r,De.r
5036 10. D Op Dx.r,Rx.r|RD
5037 13. D Op Dx.r,Rx.r
5038 11. D Op Dx.r,#I16
5039 12. D[T] Op De.r,Dx.r
5040 14. D Op DSPe.r,Dx.r
5041 15. D Op DSPx.r,#I16
5042 16. D Op De.r,DSPx.r
5043 18. D Op De.r,Dx.r|ACx.r
5044
5045 * Group 3:
5046 22. D Op De.r,Dx.r|ACx.r,De.r|#I5
5047 23. D Op Ux.r,Dx.r|ACx.r,De.r|#I5
5048 21. D Op De.r,Dx.r|ACx.r,#I5 */
5049
5050 /* Group 1. */
5051 if (template->arg_type & DSP_ARGS_1)
5052 {
5053 du_shift = 24;
5054
5055 /* Could this be a cross-unit accumulator op,
5056 e.g. ACe.e,ACx.r,ACo.e */
5057 if (template->arg_type & DSP_ARGS_XACC)
5058 {
5059 ll = parse_dsp_regs_list (l, regs, 3, &regs_read, false, false,
5060 false, false);
5061 if (ll != NULL && regs_read == 3
5062 && is_accumulator_reg (regs[0]))
5063 {
5064 if (regs[0]->unit != regs[1]->unit ||
5065 regs[2]->unit == regs[1]->unit)
5066 {
5067 as_bad (_("invalid operands for cross-unit op"));
5068 return NULL;
5069 }
5070
5071 du = (regs[1]->unit == UNIT_ACC_D1);
5072 regs_shift[1] = 19;
5073 l = ll;
5074
5075 /* All cross-unit accumulator ops have bits 8 and 6 set. */
5076 insn->bits |= (5 << 6);
5077
5078 goto check_for_template;
5079 }
5080
5081 /* If we reach here, this instruction is not a
5082 cross-unit accumulator op. */
5083 }
5084
5085 if (template->arg_type & DSP_ARGS_SPLIT8)
5086 om_shift = 7;
5087
5088 sc_shift = 5;
5089 l1_shift = 4;
5090 o2r_shift = 0;
5091
5092 /* De.r|ACe.r,Dx.r,De.r */
5093 if (template->arg_type & DSP_ARGS_DACC)
5094 {
5095 /* XFIXME: these need moving? */
5096 a2_shift = 7;
5097 su_shift = 6;
5098 a1_shift = 2;
5099 om_shift = 3;
5100
5101 ll = parse_dsp_reg (l, &regs[0], false, false);
5102 if (ll != NULL)
5103 {
5104 /* Using ACe.r as the dst requires one of the P,N or Z
5105 flags to be used. */
5106 if (!(insn->dsp_action_flags &
5107 (DSP_ACTION_ACC_SUB|DSP_ACTION_ACC_ADD|DSP_ACTION_ACC_ZERO)))
5108 {
5109 as_bad (_("missing flags: one of 'P', 'N' or 'Z' required"));
5110 return NULL;
5111 }
5112
5113 l = ll;
5114 l = skip_comma (l);
5115 l = parse_dsp_regs_list (l, &regs[1], 2, &regs_read,
5116 true, false, false, false);
5117 if (l == NULL || regs_read != 2)
5118 {
5119 as_bad (_("invalid register"));
5120 return NULL;
5121 }
5122
5123 if (regs[1]->unit == UNIT_D1 || regs[1]->unit == UNIT_RAM_D1)
5124 du = 1;
5125
5126 regs_shift[0] = 19;
5127 regs_shift[1] = 14;
5128 regs_shift[2] = 9;
5129 goto check_for_template;
5130 }
5131
5132 /* If we reach here, this instruction does not use the
5133 accumulator as the destination register. */
5134 if ((insn->dsp_action_flags &
5135 (DSP_ACTION_ACC_SUB|DSP_ACTION_ACC_ADD|DSP_ACTION_ACC_ZERO)))
5136 {
5137 as_bad (_("'P', 'N' or 'Z' flags may only be specified when accumulating"));
5138 return NULL;
5139 }
5140 }
5141
5142 regs_shift[0] = 19;
5143
5144
5145 l = parse_dsp_regs_list (l, regs, 2, &regs_read, true, false, false, true);
5146 if (l == NULL || regs_read != 2)
5147 return NULL;
5148
5149 l = skip_comma (l);
5150 if (l == NULL)
5151 return NULL;
5152
5153 if (regs[1]->unit == UNIT_D1 || regs[1]->unit == UNIT_RAM_D1)
5154 du = 1;
5155
5156 if (is_accumulator_reg(regs[0]) && !(template->arg_type & DSP_ARGS_DACC))
5157 {
5158 as_bad (_("accumulator not a valid destination"));
5159 return NULL;
5160 }
5161
5162 /* Check for immediate, e.g. De.r,Dx.r,#I16 */
5163 if (*l == IMM_CHAR)
5164 {
5165 l = parse_imm16 (l, insn, &imm);
5166 if (l == NULL)
5167 {
5168 as_bad (_("invalid immediate value"));
5169 return NULL;
5170 }
5171
5172 if (!within_signed_range (imm, IMM16_BITS))
5173 {
5174 as_bad (_("immediate value out of range"));
5175 return NULL;
5176 }
5177
5178 if (regs[0]->unit != regs[1]->unit || regs[0]->no != regs[1]->no)
5179 {
5180 as_bad (_("immediate value not allowed when source & dest differ"));
5181 return NULL;
5182 }
5183
5184 imm_mask = 0xffff;
5185 imm_shift = 3;
5186
5187 /* Set the I-bit */
5188 insn->bits |= (1 << 25);
5189
5190 insn->bits |= (0x3 << 0);
5191
5192 l1_shift = 2;
5193
5194 /* Remove any bits that have been set in the immediate
5195 field. */
5196 insn->bits &= ~(imm_mask << imm_shift);
5197 }
5198 else
5199 {
5200
5201 regs_shift[1] = 14;
5202 regs_shift[2] = 9;
5203
5204 /* Is Rs2 an accumulator reg, e.g. De.r,Dx.r,De.r|ACe.r */
5205 ll = parse_dsp_reg (l, &regs[2], false, false);
5206 if (ll != NULL)
5207 {
5208 l = ll;
5209
5210 if (!(template->arg_type & DSP_ARGS_ACC2))
5211 {
5212 as_bad (_("invalid register operand: %s"), regs[2]->name);
5213 return NULL;
5214 }
5215
5216 om_shift = 3;
5217 ar_shift = 7;
5218 ar = true;
5219 }
5220 else
5221 {
5222 /* De.r,Dx.r,De.r */
5223 l = __parse_gp_reg (l, &regs[2], true);
5224 if (l == NULL)
5225 return NULL;
5226 }
5227
5228 if (template->arg_type & DSP_ARGS_ACC2)
5229 om_shift = 3;
5230
5231 /* Is this a QUICKRoT instruction? De.r,Dx.r,De.r[,Ae.r] */
5232 if (template->arg_type & DSP_ARGS_QR)
5233 {
5234 if (conditional)
5235 qn_shift = 5;
5236 else
5237 {
5238 qn_shift = 7;
5239 qr_shift = 6;
5240 qd_shift = 5;
5241 }
5242
5243 l = skip_comma (l);
5244 if (l == NULL)
5245 {
5246 as_bad (_("QUICKRoT extension requires 4 registers"));
5247 return NULL;
5248 }
5249
5250 l = __parse_gp_reg (l, &regs[3], true);
5251 if (l == NULL)
5252 {
5253 as_bad (_("invalid fourth register"));
5254 return NULL;
5255 }
5256
5257 if (!is_addr_unit (regs[3]->unit) ||
5258 !is_quickrot_reg (regs[3]->no))
5259 {
5260 as_bad (_("A0.2,A0.3,A1.2,A1.3 required for QUICKRoT register"));
5261 return NULL;
5262 }
5263
5264 qn = (regs[3]->no == 3);
5265 }
5266 }
5267
5268 check_for_template:
5269 /* This is the common exit path. Check for o2r. */
5270 if (regs[2] != NULL)
5271 {
5272 o2r = units_need_o2r (regs[1]->unit, regs[2]->unit);
5273 if (o2r)
5274 {
5275 o2r_reg.no = lookup_o2r (0, du, regs[2]);
5276 o2r_reg.unit = regs[2]->unit;
5277 regs[2] = &o2r_reg;
5278 }
5279 }
5280
5281 /* Check any DSP RAM pointers are valid for this unit. */
5282 if ((du && (regs[0]->unit == UNIT_RAM_D0)) ||
5283 (!du && (regs[0]->unit == UNIT_RAM_D1)) ||
5284 (du && (regs[1]->unit == UNIT_RAM_D0)) ||
5285 (!du && (regs[1]->unit == UNIT_RAM_D1)) ||
5286 (du && regs[2] && (regs[2]->unit == UNIT_RAM_D0)) ||
5287 (!du && regs[2] && (regs[2]->unit == UNIT_RAM_D1))) {
5288 as_bad (_("DSP RAM pointer in incorrect unit"));
5289 return NULL;
5290 }
5291
5292 /* Is this a template definition? */
5293 if (IS_TEMPLATE_DEF (insn))
5294 {
5295 l = interpret_template_regs(l, insn, regs, regs_shift, &load,
5296 &dspram, size, &ls_shift, &au_shift,
5297 &au, &imm, &imm_shift, &imm_mask);
5298
5299 if (l == NULL)
5300 return NULL;
5301
5302 if (!dspram)
5303 mx_shift = 0;
5304 }
5305
5306 goto matched;
5307 }
5308
5309 /* Group 2. */
5310 if (template->arg_type & DSP_ARGS_2)
5311 {
5312 bool is_xsd = (MAJOR_OPCODE (template->meta_opcode) == OPC_MISC
5313 && MINOR_OPCODE (template->meta_opcode) == 0xa);
5314 bool is_fpu_mov = template->insn_type == INSN_DSP_FPU;
5315 bool to_fpu = ((template->meta_opcode >> 7) & 0x1) != 0;
5316
5317 if (is_xsd)
5318 du_shift = 0;
5319 else
5320 du_shift = 24;
5321
5322 l1_shift = 4;
5323
5324 /* CMPs and TSTs don't store to their destination operand. */
5325 ll = __parse_gp_reg (l, regs, is_cmp);
5326 if (ll == NULL)
5327 {
5328 /* DSPe.r,Dx.r or DSPx.r,#I16 */
5329 if (template->arg_type & DSP_ARGS_DSP_SRC1)
5330 {
5331 l = parse_dsp_reg (l, regs, false, false);
5332 if (l == NULL)
5333 {
5334 as_bad (_("invalid register operand #1"));
5335 return NULL;
5336 }
5337
5338 /* Only MOV instructions have a DSP register as a
5339 destination. Set the MOV DSPe.r opcode. The simple
5340 OR'ing is OK because the usual MOV opcode is 0x00. */
5341 insn->bits = 0x91u << 24;
5342 du_shift = 0;
5343 l1_shift = 2;
5344 regs_shift[0] = 19;
5345 }
5346 else
5347 {
5348 as_bad (_("invalid register operand #2"));
5349 return NULL;
5350 }
5351 }
5352 else
5353 {
5354 l = ll;
5355
5356 /* Everything but CMP and TST. */
5357 if (MAJOR_OPCODE (template->meta_opcode) == OPC_ADD ||
5358 MAJOR_OPCODE (template->meta_opcode) == OPC_SUB ||
5359 MAJOR_OPCODE (insn->bits) == OPC_9 ||
5360 MAJOR_OPCODE (template->meta_opcode) == OPC_MISC ||
5361 ((template->meta_opcode & 0x0000002c) != 0))
5362 regs_shift[0] = 19;
5363 else
5364 regs_shift[0] = 14;
5365 }
5366
5367 if (!is_dsp_data_unit (regs[0]) && !(regs[0]->unit == UNIT_FX &&
5368 is_fpu_mov && to_fpu))
5369 return NULL;
5370
5371 du = (regs[0]->unit == UNIT_D1 || regs[0]->unit == UNIT_RAM_D1 ||
5372 regs[0]->unit == UNIT_ACC_D1);
5373
5374 l = skip_comma (l);
5375
5376 if (*l == IMM_CHAR)
5377 {
5378 if (template->arg_type & DSP_ARGS_IMM &&
5379 !(is_mov && (MAJOR_OPCODE (insn->bits) != OPC_9)))
5380 {
5381 l = parse_imm16 (l, insn, &imm);
5382 if (l == NULL)
5383 {
5384 as_bad (_("invalid immediate value"));
5385 return NULL;
5386 }
5387
5388 if (!within_signed_range (imm, IMM16_BITS))
5389 return NULL;
5390
5391 l1_shift = 2;
5392 regs_shift[0] = 19;
5393
5394 imm_mask = 0xffff;
5395 imm_shift = 3;
5396
5397 /* Set the I-bit unless it's a MOV because they're
5398 different. */
5399 if (!(is_mov && MAJOR_OPCODE (insn->bits) == OPC_9))
5400 insn->bits |= (1 << 25);
5401
5402 /* All instructions that takes immediates also have bit 1 set. */
5403 insn->bits |= (1 << 1);
5404
5405 if (MAJOR_OPCODE (insn->bits) != OPC_9)
5406 insn->bits |= (1 << 0);
5407
5408 insn->bits &= ~(1 << 8);
5409 }
5410 else
5411 {
5412 as_bad (_("this instruction does not accept an immediate"));
5413 return NULL;
5414 }
5415 }
5416 else
5417 {
5418 if (MAJOR_OPCODE (insn->bits) != OPC_9)
5419 {
5420 insn->bits |= (1 << 8);
5421 l1_shift = 4;
5422 }
5423
5424 ll = __parse_gp_reg (l, &regs[1], true);
5425 if (ll == NULL)
5426 {
5427 if (template->arg_type & DSP_ARGS_DSP_SRC2)
5428 {
5429 l = parse_dsp_reg (l, &regs[1], false, false);
5430 if (l == NULL)
5431 {
5432 as_bad (_("invalid register operand #3"));
5433 return NULL;
5434 }
5435
5436 /* MOV and NEG. */
5437 if ((is_mov && (MAJOR_OPCODE (insn->bits) != OPC_9)) ||
5438 MAJOR_OPCODE (template->meta_opcode) == OPC_SUB)
5439 {
5440 if (is_accumulator_reg (regs[1]))
5441 {
5442 if (is_fpu_mov)
5443 {
5444 as_bad (_("this instruction does not accept an accumulator"));
5445 return NULL;
5446 }
5447 ar_shift = 7;
5448 ar = 1;
5449 regs_shift[1] = 9;
5450 }
5451 else
5452 {
5453 du_shift = 0;
5454 l1_shift = 2;
5455 regs_shift[1] = 14;
5456 insn->bits = 0x92u << 24; /* Set opcode. */
5457 }
5458 }
5459 }
5460 else
5461 {
5462 as_bad (_("invalid register operand #4"));
5463 return NULL;
5464 }
5465 }
5466 else
5467 {
5468 /* Set the o2r bit if required. */
5469 if (!is_fpu_mov && units_need_o2r (regs[0]->unit, regs[1]->unit))
5470 {
5471 o2r_reg = *regs[1];
5472 o2r_reg.no = lookup_o2r (0, du, regs[1]);
5473 regs[1] = &o2r_reg;
5474 o2r_shift = 0;
5475 o2r = 1;
5476 }
5477 else if (!is_dsp_data_unit (regs[1]) &&
5478 !(is_fpu_mov && !to_fpu && regs[1]->unit == UNIT_FX))
5479 return NULL;
5480
5481 if (is_fpu_mov && to_fpu)
5482 du = (regs[1]->unit == UNIT_D1 ||
5483 regs[1]->unit == UNIT_RAM_D1 ||
5484 regs[1]->unit == UNIT_ACC_D1);
5485
5486 l = ll;
5487
5488 if (MAJOR_OPCODE (insn->bits) == OPC_ADD ||
5489 MAJOR_OPCODE (template->meta_opcode) == OPC_SUB ||
5490 (((template->meta_opcode & 0x0000002c) == 0) &&
5491 MAJOR_OPCODE (template->meta_opcode) != OPC_MISC))
5492 regs_shift[1] = 9;
5493 else
5494 regs_shift[1] = 14;
5495 }
5496 }
5497
5498 /* If it's an 0x0 MOV or NEG set some lower bits. */
5499 if ((MAJOR_OPCODE (insn->bits) == OPC_ADD ||
5500 MAJOR_OPCODE (template->meta_opcode) == OPC_SUB) && !is_fpu_mov)
5501 {
5502 om_shift = 3;
5503 sc_shift = 5;
5504 insn->bits |= (1 << 2);
5505 }
5506
5507 /* Check for template definitions. */
5508 if (IS_TEMPLATE_DEF (insn))
5509 {
5510 l = interpret_template_regs(l, insn, regs, regs_shift, &load,
5511 &dspram, size, &ls_shift, &au_shift,
5512 &au, &imm, &imm_shift, &imm_mask);
5513 mx_shift = 0;
5514
5515 if (l == NULL)
5516 return NULL;
5517 }
5518 goto matched;
5519 }
5520
5521 /* Group 3. */
5522 du_shift = 24;
5523 l1_shift = 4;
5524
5525 l = __parse_gp_reg (l, regs, false);
5526 if (l == NULL)
5527 {
5528 as_bad (_("invalid register operand"));
5529 return NULL;
5530 }
5531
5532 l = skip_comma (l);
5533
5534 if (*l == 'A')
5535 {
5536 l = parse_dsp_reg (l, &regs[1], false, false);
5537 if (l == NULL)
5538 {
5539 as_bad (_("invalid accumulator register"));
5540 return NULL;
5541 }
5542 ac = 1;
5543 ac_shift = 0;
5544 }
5545 else
5546 {
5547 l = __parse_gp_reg (l, &regs[1], true);
5548 if (l == NULL)
5549 {
5550 as_bad (_("invalid register operand"));
5551 return NULL;
5552 }
5553 }
5554
5555 regs_shift[0] = 19;
5556 regs_shift[1] = 14;
5557
5558 du = (regs[1]->unit == UNIT_D1 || regs[1]->unit == UNIT_ACC_D1
5559 || regs[1]->unit == UNIT_RAM_D1);
5560
5561 l = skip_comma (l);
5562
5563 if (*l == IMM_CHAR)
5564 {
5565 l = parse_imm_constant (l, insn, &imm);
5566 if (l == NULL)
5567 {
5568 as_bad (_("invalid immediate value"));
5569 return NULL;
5570 }
5571
5572 if (!within_unsigned_range (imm, IMM5_BITS))
5573 return NULL;
5574
5575 imm_mask = 0x1f;
5576 imm_shift = 9;
5577
5578 /* Set the I-bit */
5579 insn->bits |= (1 << 25);
5580 }
5581 else
5582 {
5583 regs_shift[2] = 9;
5584 l = __parse_gp_reg (l, &regs[2], true);
5585 if (l == NULL)
5586 return NULL;
5587 }
5588
5589 /* Check for post-processing R,G,B flags. Conditional instructions
5590 do not have these bits. */
5591 if (insn->dsp_action_flags & DSP_ACTION_CLAMP9)
5592 {
5593 if ((template->meta_opcode >> 26) & 0x1)
5594 {
5595 as_bad (_("conditional instruction cannot use G flag"));
5596 return NULL;
5597 }
5598
5599 insn->bits |= (1 << 3);
5600 }
5601
5602 if (insn->dsp_action_flags & DSP_ACTION_CLAMP8)
5603 {
5604 if ((template->meta_opcode >> 26) & 0x1)
5605 {
5606 as_bad (_("conditional instruction cannot use B flag"));
5607 return NULL;
5608 }
5609
5610 insn->bits |= (0x3 << 2);
5611 }
5612
5613 if (insn->dsp_action_flags & DSP_ACTION_ROUND)
5614 {
5615 if ((template->meta_opcode >> 26) & 0x1)
5616 {
5617 as_bad (_("conditional instruction cannot use R flag"));
5618 return NULL;
5619 }
5620 insn->bits |= (1 << 2);
5621 }
5622
5623 /* Conditional Data Unit Shift instructions cannot be dual unit. */
5624 if ((template->meta_opcode >> 26) & 0x1)
5625 ls_shift = INVALID_SHIFT;
5626
5627 /* The Condition Is Always (CA) bit must be set if we're targeting a
5628 Ux.r register as the destination. This means that we can't have
5629 any other condition bits set. */
5630 if (!is_same_data_unit (regs[1]->unit, regs[0]->unit))
5631 {
5632 /* Set both the Conditional bit and the Condition is Always bit. */
5633 insn->bits |= (1 << 26);
5634 insn->bits |= (1 << 5);
5635
5636 /* Fill out the Ud field. */
5637 insn->bits |= (regs[0]->unit << 1);
5638 }
5639
5640 if (IS_TEMPLATE_DEF (insn))
5641 {
5642 l = interpret_template_regs(l, insn, regs, regs_shift, &load,
5643 &dspram, size, &ls_shift, &au_shift,
5644 &au, &imm, &imm_shift, &imm_mask);
5645
5646 if (l == NULL)
5647 return NULL;
5648
5649 if (!dspram)
5650 mx_shift = 5;
5651 }
5652
5653 /* Fall through. */
5654 matched:
5655
5656 /* Set the registers and immediate values. */
5657 if (regs_shift[0] != INVALID_SHIFT)
5658 insn->bits |= (regs[0]->no << regs_shift[0]);
5659
5660 if (regs_shift[1] != INVALID_SHIFT)
5661 insn->bits |= (regs[1]->no << regs_shift[1]);
5662
5663 if (regs_shift[2] != INVALID_SHIFT)
5664 insn->bits |= (regs[2]->no << regs_shift[2]);
5665
5666 /* Does this insn have an 'IMM' bit? The immediate value should
5667 already have been masked. */
5668 if (imm_shift != INVALID_SHIFT)
5669 insn->bits |= ((imm & imm_mask) << imm_shift);
5670
5671 /* Does this insn have an 'AU' bit? */
5672 if (au_shift != INVALID_SHIFT)
5673 insn->bits |= (au << au_shift);
5674
5675 /* Does this instruction have an 'LS' bit? */
5676 if (ls_shift != INVALID_SHIFT)
5677 insn->bits |= (load << ls_shift);
5678
5679 /* Does this instruction have an 'AR' bit? */
5680 if (ar)
5681 insn->bits |= (1 << ar_shift);
5682
5683 if (du_shift != INVALID_SHIFT)
5684 insn->bits |= (du << du_shift);
5685
5686 if (sc_shift != INVALID_SHIFT)
5687 insn->bits |= (sc << sc_shift);
5688
5689 if (om_shift != INVALID_SHIFT)
5690 insn->bits |= (om << om_shift);
5691
5692 if (o2r_shift != INVALID_SHIFT)
5693 insn->bits |= (o2r << o2r_shift);
5694
5695 if (qn_shift != INVALID_SHIFT)
5696 insn->bits |= (qn << qn_shift);
5697
5698 if (qr_shift != INVALID_SHIFT)
5699 insn->bits |= (qr << qr_shift);
5700
5701 if (qd_shift != INVALID_SHIFT)
5702 insn->bits |= (is_quickrot64 << qd_shift);
5703
5704 if (a1_shift != INVALID_SHIFT)
5705 insn->bits |= (a1 << a1_shift);
5706
5707 if (a2_shift != INVALID_SHIFT)
5708 insn->bits |= (a2 << a2_shift);
5709
5710 if (su_shift != INVALID_SHIFT)
5711 insn->bits |= (su << su_shift);
5712
5713 if (imm_shift != INVALID_SHIFT)
5714 insn->bits |= ((imm & imm_mask) << imm_shift);
5715
5716 if (ac_shift != INVALID_SHIFT)
5717 insn->bits |= (ac << ac_shift);
5718
5719 if (mx_shift != INVALID_SHIFT)
5720 insn->bits |= (mx << mx_shift);
5721
5722 if (is_dual)
5723 {
5724 if (l1_shift == INVALID_SHIFT)
5725 {
5726 as_bad (_("'L' modifier not valid for this instruction"));
5727 return NULL;
5728 }
5729
5730 insn->bits |= (1 << l1_shift);
5731 }
5732
5733 insn->len = 4;
5734
5735 return l;
5736 }
5737
5738 typedef const char *(*insn_parser)(const char *, metag_insn *,
5739 const insn_template *);
5740
5741 /* Parser table. */
5742 static const insn_parser insn_parsers[ENC_MAX] =
5743 {
5744 [ENC_NONE] = parse_none,
5745 [ENC_MOV_U2U] = parse_mov_u2u,
5746 [ENC_MOV_PORT] = parse_mov_port,
5747 [ENC_MMOV] = parse_mmov,
5748 [ENC_MDRD] = parse_mdrd,
5749 [ENC_MOVL_TTREC] = parse_movl_ttrec,
5750 [ENC_GET_SET] = parse_get_set,
5751 [ENC_GET_SET_EXT] = parse_get_set_ext,
5752 [ENC_MGET_MSET] = parse_mget_mset,
5753 [ENC_COND_SET] = parse_cond_set,
5754 [ENC_XFR] = parse_xfr,
5755 [ENC_MOV_CT] = parse_mov_ct,
5756 [ENC_SWAP] = parse_swap,
5757 [ENC_JUMP] = parse_jump,
5758 [ENC_CALLR] = parse_callr,
5759 [ENC_ALU] = parse_alu,
5760 [ENC_SHIFT] = parse_shift,
5761 [ENC_MIN_MAX] = parse_min_max,
5762 [ENC_BITOP] = parse_bitop,
5763 [ENC_CMP] = parse_cmp,
5764 [ENC_BRANCH] = parse_branch,
5765 [ENC_KICK] = parse_kick,
5766 [ENC_SWITCH] = parse_switch,
5767 [ENC_CACHER] = parse_cacher,
5768 [ENC_CACHEW] = parse_cachew,
5769 [ENC_ICACHE] = parse_icache,
5770 [ENC_LNKGET] = parse_lnkget,
5771 [ENC_FMOV] = parse_fmov,
5772 [ENC_FMMOV] = parse_fmmov,
5773 [ENC_FMOV_DATA] = parse_fmov_data,
5774 [ENC_FMOV_I] = parse_fmov_i,
5775 [ENC_FPACK] = parse_fpack,
5776 [ENC_FSWAP] = parse_fswap,
5777 [ENC_FCMP] = parse_fcmp,
5778 [ENC_FMINMAX] = parse_fminmax,
5779 [ENC_FCONV] = parse_fconv,
5780 [ENC_FCONVX] = parse_fconvx,
5781 [ENC_FBARITH] = parse_fbarith,
5782 [ENC_FEARITH] = parse_fearith,
5783 [ENC_FREC] = parse_frec,
5784 [ENC_FSIMD] = parse_fsimd,
5785 [ENC_FGET_SET_ACF] = parse_fget_set_acf,
5786 [ENC_DGET_SET] = parse_dget_set,
5787 [ENC_DTEMPLATE] = parse_dtemplate,
5788 [ENC_DALU] = parse_dalu,
5789 };
5790
5791 struct metag_core_option
5792 {
5793 const char *name;
5794 unsigned int value;
5795 };
5796
5797 /* CPU type options. */
5798 static const struct metag_core_option metag_cpus[] =
5799 {
5800 {"all", CoreMeta11|CoreMeta12|CoreMeta21},
5801 {"metac11", CoreMeta11},
5802 {"metac12", CoreMeta12},
5803 {"metac21", CoreMeta21},
5804 {NULL, 0},
5805 };
5806
5807 /* FPU type options. */
5808 static const struct metag_core_option metag_fpus[] =
5809 {
5810 {"metac21", FpuMeta21},
5811 {NULL, 0},
5812 };
5813
5814 /* DSP type options. */
5815 static const struct metag_core_option metag_dsps[] =
5816 {
5817 {"metac21", DspMeta21},
5818 {NULL, 0},
5819 };
5820
5821 /* Parse a CPU command line option. */
5822 static bool
5823 metag_parse_cpu (const char * str)
5824 {
5825 const struct metag_core_option * opt;
5826 int optlen;
5827
5828 optlen = strlen (str);
5829
5830 if (optlen == 0)
5831 {
5832 as_bad (_("missing cpu name `%s'"), str);
5833 return 0;
5834 }
5835
5836 for (opt = metag_cpus; opt->name != NULL; opt++)
5837 if (strncmp (opt->name, str, optlen) == 0)
5838 {
5839 mcpu_opt = opt->value;
5840 return 1;
5841 }
5842
5843 as_bad (_("unknown cpu `%s'"), str);
5844 return 0;
5845 }
5846
5847 /* Parse an FPU command line option. */
5848 static bool
5849 metag_parse_fpu (const char * str)
5850 {
5851 const struct metag_core_option * opt;
5852 int optlen;
5853
5854 optlen = strlen (str);
5855
5856 if (optlen == 0)
5857 {
5858 as_bad (_("missing fpu name `%s'"), str);
5859 return 0;
5860 }
5861
5862 for (opt = metag_fpus; opt->name != NULL; opt++)
5863 if (strncmp (opt->name, str, optlen) == 0)
5864 {
5865 mfpu_opt = opt->value;
5866 return 1;
5867 }
5868
5869 as_bad (_("unknown fpu `%s'"), str);
5870 return 0;
5871 }
5872
5873 /* Parse a DSP command line option. */
5874 static bool
5875 metag_parse_dsp (const char * str)
5876 {
5877 const struct metag_core_option * opt;
5878 int optlen;
5879
5880 optlen = strlen (str);
5881
5882 if (optlen == 0)
5883 {
5884 as_bad (_("missing DSP name `%s'"), str);
5885 return 0;
5886 }
5887
5888 for (opt = metag_dsps; opt->name != NULL; opt++)
5889 if (strncmp (opt->name, str, optlen) == 0)
5890 {
5891 mdsp_opt = opt->value;
5892 return 1;
5893 }
5894
5895 as_bad (_("unknown DSP `%s'"), str);
5896 return 0;
5897 }
5898
5899 struct metag_long_option
5900 {
5901 const char *option; /* Substring to match. */
5902 const char *help; /* Help information. */
5903 bool (*func) (const char *subopt); /* Function to decode sub-option. */
5904 const char *deprecated; /* If non-null, print this message. */
5905 };
5906
5907 struct metag_long_option metag_long_opts[] =
5908 {
5909 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
5910 metag_parse_cpu, NULL},
5911 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
5912 metag_parse_fpu, NULL},
5913 {"mdsp=", N_("<dsp name>\t assemble for DSP architecture <dsp name>"),
5914 metag_parse_dsp, NULL},
5915 {NULL, NULL, 0, NULL}
5916 };
5917
5918 int
5919 md_parse_option (int c, const char * arg)
5920 {
5921 struct metag_long_option *lopt;
5922
5923 for (lopt = metag_long_opts; lopt->option != NULL; lopt++)
5924 {
5925 /* These options are expected to have an argument. */
5926 if (c == lopt->option[0]
5927 && arg != NULL
5928 && startswith (arg, lopt->option + 1))
5929 {
5930 #if WARN_DEPRECATED
5931 /* If the option is deprecated, tell the user. */
5932 if (lopt->deprecated != NULL)
5933 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
5934 _(lopt->deprecated));
5935 #endif
5936
5937 /* Call the sup-option parser. */
5938 return lopt->func (arg + strlen (lopt->option) - 1);
5939 }
5940 }
5941
5942 return 0;
5943 }
5944
5945 void
5946 md_show_usage (FILE * stream)
5947 {
5948 struct metag_long_option *lopt;
5949
5950 fprintf (stream, _(" Meta specific command line options:\n"));
5951
5952 for (lopt = metag_long_opts; lopt->option != NULL; lopt++)
5953 if (lopt->help != NULL)
5954 fprintf (stream, " -%s%s\n", lopt->option, _(lopt->help));
5955 }
5956
5957 /* The target specific pseudo-ops which we support. */
5958 const pseudo_typeS md_pseudo_table[] =
5959 {
5960 { "word", cons, 2 },
5961 { NULL, NULL, 0 }
5962 };
5963
5964 void
5965 md_begin (void)
5966 {
5967 int c;
5968
5969 for (c = 0; c < 256; c++)
5970 {
5971 if (ISDIGIT (c))
5972 {
5973 register_chars[c] = c;
5974 /* LOCK0, LOCK1, LOCK2. */
5975 mnemonic_chars[c] = c;
5976 }
5977 else if (ISLOWER (c))
5978 {
5979 register_chars[c] = c;
5980 mnemonic_chars[c] = c;
5981 }
5982 else if (ISUPPER (c))
5983 {
5984 register_chars[c] = c;
5985 mnemonic_chars[c] = c;
5986 }
5987 else if (c == '.')
5988 {
5989 register_chars[c] = c;
5990 }
5991 }
5992 }
5993
5994 /* Parse a split condition code prefix. */
5995 static const char *
5996 parse_split_condition (const char *line, metag_insn *insn)
5997 {
5998 const char *l = line;
5999 const split_condition *scond;
6000 split_condition entry;
6001 char buf[4];
6002
6003 memcpy (buf, l, 4);
6004 buf[3] = '\0';
6005
6006 entry.name = buf;
6007
6008 scond = (const split_condition *) htab_find (scond_htab, &entry);
6009
6010 if (!scond)
6011 return NULL;
6012
6013 insn->scond = scond->code;
6014
6015 return l + strlen (scond->name);
6016 }
6017
6018 /* Parse an instruction prefix - F for float, D for DSP - and associated
6019 flags and condition codes. */
6020 static const char *
6021 parse_prefix (const char *line, metag_insn *insn)
6022 {
6023 const char *l = line;
6024
6025 l = skip_whitespace (l);
6026
6027 insn->type = INSN_GP;
6028
6029 if (TOLOWER (*l) == FPU_PREFIX_CHAR)
6030 {
6031 if (strncasecmp (l, FFB_INSN, strlen(FFB_INSN)))
6032 {
6033 insn->type = INSN_FPU;
6034
6035 l++;
6036
6037 if (*l == END_OF_INSN)
6038 {
6039 as_bad (_("premature end of floating point prefix"));
6040 return NULL;
6041 }
6042
6043 if (TOLOWER (*l) == FPU_DOUBLE_CHAR)
6044 {
6045 insn->fpu_width = FPU_WIDTH_DOUBLE;
6046 l++;
6047 }
6048 else if (TOLOWER (*l) == FPU_PAIR_CHAR)
6049 {
6050 const char *l2 = l;
6051
6052 /* Check this isn't a split condition beginning with L. */
6053 l2 = parse_split_condition (l2, insn);
6054
6055 if (l2 && is_whitespace_char (*l2))
6056 {
6057 l = l2;
6058 }
6059 else
6060 {
6061 insn->fpu_width = FPU_WIDTH_PAIR;
6062 l++;
6063 }
6064 }
6065 else
6066 {
6067 insn->fpu_width = FPU_WIDTH_SINGLE;
6068 }
6069
6070 if (TOLOWER (*l) == FPU_ACTION_ABS_CHAR)
6071 {
6072 insn->fpu_action_flags |= FPU_ACTION_ABS;
6073 l++;
6074 }
6075 else if (TOLOWER (*l) == FPU_ACTION_INV_CHAR)
6076 {
6077 insn->fpu_action_flags |= FPU_ACTION_INV;
6078 l++;
6079 }
6080
6081 if (TOLOWER (*l) == FPU_ACTION_QUIET_CHAR)
6082 {
6083 insn->fpu_action_flags |= FPU_ACTION_QUIET;
6084 l++;
6085 }
6086
6087 if (TOLOWER (*l) == FPU_ACTION_ZERO_CHAR)
6088 {
6089 insn->fpu_action_flags |= FPU_ACTION_ZERO;
6090 l++;
6091 }
6092
6093 if (! is_whitespace_char (*l))
6094 {
6095 l = parse_split_condition (l, insn);
6096
6097 if (!l)
6098 {
6099 as_bad (_("unknown floating point prefix character"));
6100 return NULL;
6101 }
6102 }
6103
6104 l = skip_space (l);
6105 }
6106 }
6107 else if (TOLOWER (*l) == DSP_PREFIX_CHAR)
6108 {
6109 if (strncasecmp (l, DCACHE_INSN, strlen (DCACHE_INSN)) &&
6110 strncasecmp (l, DEFR_INSN, strlen (DEFR_INSN)))
6111 {
6112 const char *ll = l;
6113 insn->type = INSN_DSP;
6114
6115 l++;
6116
6117 insn->dsp_width = DSP_WIDTH_SINGLE;
6118
6119 while (!is_whitespace_char (*l))
6120 {
6121 /* We have to check for split condition codes first
6122 because they are the longest strings to match,
6123 e.g. if the string contains "LLS" we want it to match
6124 the split condition code "LLS", not the dual unit
6125 character "L". */
6126 ll = l;
6127 l = parse_split_condition (l, insn);
6128
6129 if (l == NULL)
6130 l = ll;
6131 else
6132 continue;
6133
6134 /* Accept an FPU prefix char which may be used when doing
6135 template MOV with FPU registers. */
6136 if (TOLOWER(*l) == FPU_PREFIX_CHAR)
6137 {
6138 insn->type = INSN_DSP_FPU;
6139 l++;
6140 continue;
6141 }
6142
6143 if (TOLOWER(*l) == DSP_DUAL_CHAR)
6144 {
6145 insn->dsp_width = DSP_WIDTH_DUAL;
6146 l++;
6147 continue;
6148 }
6149
6150 if (TOLOWER(*l) == DSP_ACTION_QR64_CHAR)
6151 {
6152 insn->dsp_action_flags |= DSP_ACTION_QR64;
6153 l++;
6154 continue;
6155 }
6156
6157 if (TOLOWER(*l) == DSP_ACTION_UMUL_CHAR)
6158 {
6159 insn->dsp_action_flags |= DSP_ACTION_UMUL;
6160 l++;
6161 continue;
6162 }
6163
6164 if (TOLOWER(*l) == DSP_ACTION_ROUND_CHAR)
6165 {
6166 insn->dsp_action_flags |= DSP_ACTION_ROUND;
6167 l++;
6168 continue;
6169 }
6170
6171 if (TOLOWER(*l) == DSP_ACTION_CLAMP9_CHAR)
6172 {
6173 insn->dsp_action_flags |= DSP_ACTION_CLAMP9;
6174 l++;
6175 continue;
6176 }
6177
6178 if (TOLOWER(*l) == DSP_ACTION_CLAMP8_CHAR)
6179 {
6180 insn->dsp_action_flags |= DSP_ACTION_CLAMP8;
6181 l++;
6182 continue;
6183 }
6184
6185 if (TOLOWER(*l) == DSP_ACTION_MOD_CHAR)
6186 {
6187 insn->dsp_action_flags |= DSP_ACTION_MOD;
6188 l++;
6189 continue;
6190 }
6191
6192 if (TOLOWER(*l) == DSP_ACTION_ACC_ZERO_CHAR)
6193 {
6194 insn->dsp_action_flags |= DSP_ACTION_ACC_ZERO;
6195 l++;
6196 continue;
6197 }
6198
6199 if (TOLOWER(*l) == DSP_ACTION_ACC_ADD_CHAR)
6200 {
6201 insn->dsp_action_flags |= DSP_ACTION_ACC_ADD;
6202 l++;
6203 continue;
6204 }
6205
6206 if (TOLOWER(*l) == DSP_ACTION_ACC_SUB_CHAR)
6207 {
6208 insn->dsp_action_flags |= DSP_ACTION_ACC_SUB;
6209 l++;
6210 continue;
6211 }
6212
6213 if (TOLOWER(*l) == DSP_ACTION_OV_CHAR)
6214 {
6215 insn->dsp_action_flags |= DSP_ACTION_OV;
6216 l++;
6217 continue;
6218 }
6219
6220 if (TOLOWER(*l) == DSP_DAOPPAME_8_CHAR)
6221 {
6222 insn->dsp_daoppame_flags |= DSP_DAOPPAME_8;
6223 l++;
6224 continue;
6225 }
6226
6227 if (TOLOWER(*l) == DSP_DAOPPAME_16_CHAR)
6228 {
6229 insn->dsp_daoppame_flags |= DSP_DAOPPAME_16;
6230 l++;
6231 continue;
6232 }
6233
6234 if (TOLOWER(*l) == DSP_DAOPPAME_TEMP_CHAR)
6235 {
6236 insn->dsp_daoppame_flags |= DSP_DAOPPAME_TEMP;
6237 l++;
6238 continue;
6239 }
6240
6241 if (TOLOWER(*l) == DSP_DAOPPAME_HIGH_CHAR)
6242 {
6243 insn->dsp_daoppame_flags |= DSP_DAOPPAME_HIGH;
6244 l++;
6245 continue;
6246 }
6247
6248 as_bad (_("unknown DSP prefix character %c %s"), *l, l);
6249 return NULL;
6250 }
6251
6252 l = skip_space (l);
6253 }
6254 }
6255
6256 return l;
6257 }
6258
6259 /* Return a list of appropriate instruction parsers for MNEMONIC. */
6260 static insn_templates *
6261 find_insn_templates (const char *mnemonic)
6262 {
6263 insn_template template;
6264 insn_templates entry;
6265 insn_templates *slot;
6266
6267 entry.template = &template;
6268
6269 memcpy ((void *)&entry.template->name, &mnemonic, sizeof (char *));
6270
6271 slot = (insn_templates *) htab_find (mnemonic_htab, &entry);
6272
6273 if (slot)
6274 return slot;
6275
6276 return NULL;
6277 }
6278
6279 /* Make an uppercase copy of SRC into DST and return DST. */
6280 static char *
6281 strupper (char * dst, const char *src)
6282 {
6283 size_t i = 0;
6284
6285 while (src[i])
6286 {
6287 dst[i] = TOUPPER (src[i]);
6288 i++;
6289 }
6290
6291 dst[i] = 0;
6292
6293 return dst;
6294 }
6295
6296 /* Calculate a hash value for a template. */
6297 static hashval_t
6298 hash_templates (const void *p)
6299 {
6300 insn_templates *tp = (insn_templates *)p;
6301 char buf[MAX_MNEMONIC_LEN];
6302
6303 strupper (buf, tp->template->name);
6304
6305 return htab_hash_string (buf);
6306 }
6307
6308 /* Check if two templates are equal. */
6309 static int
6310 eq_templates (const void *a, const void *b)
6311 {
6312 insn_templates *ta = (insn_templates *)a;
6313 insn_templates *tb = (insn_templates *)b;
6314 return strcasecmp (ta->template->name, tb->template->name) == 0;
6315 }
6316
6317 /* Create the hash table required for parsing instructions. */
6318 static void
6319 create_mnemonic_htab (void)
6320 {
6321 size_t i, num_templates = sizeof(metag_optab)/sizeof(metag_optab[0]);
6322
6323 mnemonic_htab = htab_create_alloc (num_templates, hash_templates,
6324 eq_templates, NULL, xcalloc, free);
6325
6326 for (i = 0; i < num_templates; i++)
6327 {
6328 const insn_template *template = &metag_optab[i];
6329 insn_templates **slot = NULL;
6330 insn_templates *new_entry;
6331
6332 new_entry = XNEW (insn_templates);
6333
6334 new_entry->template = template;
6335 new_entry->next = NULL;
6336
6337 slot = (insn_templates **) htab_find_slot (mnemonic_htab, new_entry,
6338 INSERT);
6339
6340 if (*slot)
6341 {
6342 insn_templates *last_entry = *slot;
6343
6344 while (last_entry->next)
6345 last_entry = last_entry->next;
6346
6347 last_entry->next = new_entry;
6348 }
6349 else
6350 {
6351 *slot = new_entry;
6352 }
6353 }
6354 }
6355
6356 /* Calculate a hash value for a register. */
6357 static hashval_t
6358 hash_regs (const void *p)
6359 {
6360 metag_reg *rp = (metag_reg *)p;
6361 char buf[MAX_REG_LEN];
6362
6363 strupper (buf, rp->name);
6364
6365 return htab_hash_string (buf);
6366 }
6367
6368 /* Check if two registers are equal. */
6369 static int
6370 eq_regs (const void *a, const void *b)
6371 {
6372 metag_reg *ra = (metag_reg *)a;
6373 metag_reg *rb = (metag_reg *)b;
6374 return strcasecmp (ra->name, rb->name) == 0;
6375 }
6376
6377 /* Create the hash table required for parsing registers. */
6378 static void
6379 create_reg_htab (void)
6380 {
6381 size_t i, num_regs = sizeof(metag_regtab)/sizeof(metag_regtab[0]);
6382
6383 reg_htab = htab_create_alloc (num_regs, hash_regs,
6384 eq_regs, NULL, xcalloc, free);
6385
6386 for (i = 0; i < num_regs; i++)
6387 {
6388 const metag_reg *reg = &metag_regtab[i];
6389 const metag_reg **slot;
6390
6391 slot = (const metag_reg **) htab_find_slot (reg_htab, reg, INSERT);
6392
6393 if (!*slot)
6394 *slot = reg;
6395 }
6396 }
6397
6398 /* Create the hash table required for parsing DSP registers. */
6399 static void
6400 create_dspreg_htabs (void)
6401 {
6402 size_t i, num_regs = sizeof(metag_dsp_regtab)/sizeof(metag_dsp_regtab[0]);
6403 size_t h;
6404
6405 dsp_reg_htab = htab_create_alloc (num_regs, hash_regs,
6406 eq_regs, NULL, xcalloc, free);
6407
6408 for (i = 0; i < num_regs; i++)
6409 {
6410 const metag_reg *reg = &metag_dsp_regtab[i];
6411 const metag_reg **slot;
6412
6413 slot = (const metag_reg **) htab_find_slot (dsp_reg_htab, reg, INSERT);
6414
6415 /* Make sure there are no hash table collisions, which would
6416 require chaining entries. */
6417 gas_assert (*slot == NULL);
6418 *slot = reg;
6419 }
6420
6421 num_regs = sizeof(metag_dsp_tmpl_regtab[0])/sizeof(metag_dsp_tmpl_regtab[0][0]);
6422
6423 for (h = 0; h < 2; h++)
6424 {
6425 dsp_tmpl_reg_htab[h] = htab_create_alloc (num_regs, hash_regs,
6426 eq_regs, NULL, xcalloc, free);
6427 }
6428
6429 for (h = 0; h < 2; h++)
6430 {
6431 for (i = 0; i < num_regs; i++)
6432 {
6433 const metag_reg *reg = &metag_dsp_tmpl_regtab[h][i];
6434 const metag_reg **slot;
6435 slot = (const metag_reg **) htab_find_slot (dsp_tmpl_reg_htab[h],
6436 reg, INSERT);
6437
6438 /* Make sure there are no hash table collisions, which would
6439 require chaining entries. */
6440 gas_assert (*slot == NULL);
6441 *slot = reg;
6442 }
6443 }
6444 }
6445
6446 /* Calculate a hash value for a split condition code. */
6447 static hashval_t
6448 hash_scond (const void *p)
6449 {
6450 split_condition *cp = (split_condition *)p;
6451 char buf[4];
6452
6453 strupper (buf, cp->name);
6454
6455 return htab_hash_string (buf);
6456 }
6457
6458 /* Check if two split condition codes are equal. */
6459 static int
6460 eq_scond (const void *a, const void *b)
6461 {
6462 split_condition *ra = (split_condition *)a;
6463 split_condition *rb = (split_condition *)b;
6464
6465 return strcasecmp (ra->name, rb->name) == 0;
6466 }
6467
6468 /* Create the hash table required for parsing split condition codes. */
6469 static void
6470 create_scond_htab (void)
6471 {
6472 size_t i, nentries;
6473
6474 nentries = sizeof (metag_scondtab) / sizeof (metag_scondtab[0]);
6475
6476 scond_htab = htab_create_alloc (nentries, hash_scond, eq_scond,
6477 NULL, xcalloc, free);
6478 for (i = 0; i < nentries; i++)
6479 {
6480 const split_condition *scond = &metag_scondtab[i];
6481 const split_condition **slot;
6482
6483 slot = (const split_condition **) htab_find_slot (scond_htab,
6484 scond, INSERT);
6485 /* Make sure there are no hash table collisions, which would
6486 require chaining entries. */
6487 gas_assert (*slot == NULL);
6488 *slot = scond;
6489 }
6490 }
6491
6492 /* Entry point for instruction parsing. */
6493 static bool
6494 parse_insn (const char *line, metag_insn *insn)
6495 {
6496 char mnemonic[MAX_MNEMONIC_LEN];
6497 const char *l = line;
6498 size_t mnemonic_len = 0;
6499 insn_templates *templates;
6500
6501 l = skip_space (l);
6502
6503 while (is_mnemonic_char(*l))
6504 {
6505 l++;
6506 mnemonic_len++;
6507 }
6508
6509 if (mnemonic_len >= MAX_MNEMONIC_LEN)
6510 {
6511 as_bad (_("instruction mnemonic too long: %s"), line);
6512 return false;
6513 }
6514
6515 strncpy(mnemonic, line, mnemonic_len);
6516
6517 mnemonic[mnemonic_len] = '\0';
6518
6519 templates = find_insn_templates (mnemonic);
6520
6521 if (templates)
6522 {
6523 insn_templates *current_template = templates;
6524
6525 l = skip_space (l);
6526
6527 while (current_template)
6528 {
6529 const insn_template *template = current_template->template;
6530 enum insn_encoding encoding = template->encoding;
6531 insn_parser parser = insn_parsers[encoding];
6532
6533 current_template = current_template->next;
6534
6535 if (template->insn_type == INSN_GP &&
6536 !(template->core_flags & mcpu_opt))
6537 continue;
6538
6539 if (template->insn_type == INSN_FPU &&
6540 !(template->core_flags & mfpu_opt))
6541 continue;
6542
6543 if (template->insn_type == INSN_DSP &&
6544 !(template->core_flags & mdsp_opt))
6545 continue;
6546
6547 if (template->insn_type == INSN_DSP_FPU &&
6548 !((template->core_flags & mdsp_opt) &&
6549 (template->core_flags & mfpu_opt)))
6550 continue;
6551
6552 /* DSP instructions always require special decoding */
6553 if ((insn->type == INSN_DSP && (template->insn_type != INSN_DSP)) ||
6554 ((template->insn_type == INSN_DSP) && insn->type != INSN_DSP) ||
6555 (insn->type == INSN_DSP_FPU && (template->insn_type != INSN_DSP_FPU)) ||
6556 ((template->insn_type == INSN_DSP_FPU) && insn->type != INSN_DSP_FPU))
6557 continue;
6558
6559 if (parser)
6560 {
6561 const char *end = parser(l, insn, template);
6562
6563 if (end != NULL)
6564 {
6565 if (*end != END_OF_INSN)
6566 as_bad (_("junk at end of line: \"%s\""), line);
6567 else
6568 return true;
6569 }
6570 }
6571 }
6572
6573 as_bad (_("failed to assemble instruction: \"%s\""), line);
6574 }
6575 else
6576 {
6577 if (insn->type == INSN_FPU)
6578 as_bad (_("unknown floating point mnemonic: \"%s\""), mnemonic);
6579 else
6580 as_bad (_("unknown mnemonic: \"%s\""), mnemonic);
6581 }
6582 return false;
6583 }
6584
6585 static void
6586 output_insn (metag_insn *insn)
6587 {
6588 char *output;
6589
6590 output = frag_more (insn->len);
6591 dwarf2_emit_insn (insn->len);
6592
6593 if (insn->reloc_type != BFD_RELOC_UNUSED)
6594 {
6595 fix_new_exp (frag_now, output - frag_now->fr_literal,
6596 insn->reloc_size, &insn->reloc_exp,
6597 insn->reloc_pcrel, insn->reloc_type);
6598 }
6599
6600 md_number_to_chars (output, insn->bits, insn->len);
6601 }
6602
6603 void
6604 md_assemble (char *line)
6605 {
6606 const char *l = line;
6607 metag_insn insn;
6608
6609 memset (&insn, 0, sizeof(insn));
6610
6611 insn.reloc_type = BFD_RELOC_UNUSED;
6612 insn.reloc_pcrel = 0;
6613 insn.reloc_size = 4;
6614
6615 if (!mnemonic_htab)
6616 {
6617 create_mnemonic_htab ();
6618 create_reg_htab ();
6619 create_dspreg_htabs ();
6620 create_scond_htab ();
6621 }
6622
6623 l = parse_prefix (l, &insn);
6624
6625 if (l == NULL)
6626 return;
6627
6628 if (insn.type == INSN_DSP &&
6629 !mdsp_opt)
6630 {
6631 as_bad (_("cannot assemble DSP instruction, DSP option not set: %s"),
6632 line);
6633 return;
6634 }
6635 else if (insn.type == INSN_FPU &&
6636 !mfpu_opt)
6637 {
6638 as_bad (_("cannot assemble FPU instruction, FPU option not set: %s"),
6639 line);
6640 return;
6641 }
6642
6643 if (!parse_insn (l, &insn))
6644 return;
6645
6646 output_insn (&insn);
6647 }
6648
6649 void
6650 md_operand (expressionS * expressionP)
6651 {
6652 if (* input_line_pointer == IMM_CHAR)
6653 {
6654 input_line_pointer ++;
6655 expression (expressionP);
6656 }
6657 }
6658
6659 valueT
6660 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6661 {
6662 return size;
6663 }
6664
6665 symbolS *
6666 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6667 {
6668 return NULL;
6669 }
6670
6671 /* Functions concerning relocs. */
6672
6673 /* The location from which a PC relative jump should be calculated,
6674 given a PC relative reloc. */
6675
6676 long
6677 md_pcrel_from_section (fixS * fixP, segT sec)
6678 {
6679 if ((fixP->fx_addsy != (symbolS *) NULL
6680 && (! S_IS_DEFINED (fixP->fx_addsy)
6681 || S_GET_SEGMENT (fixP->fx_addsy) != sec))
6682 || metag_force_relocation (fixP))
6683 {
6684 /* The symbol is undefined (or is defined but not in this section).
6685 Let the linker figure it out. */
6686 return 0;
6687 }
6688
6689 return fixP->fx_frag->fr_address + fixP->fx_where;
6690 }
6691
6692 /* Write a value out to the object file, using the appropriate endianness. */
6693
6694 void
6695 md_number_to_chars (char * buf, valueT val, int n)
6696 {
6697 number_to_chars_littleendian (buf, val, n);
6698 }
6699
6700 /* Turn a string in input_line_pointer into a floating point constant of type
6701 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
6702 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
6703 */
6704
6705 const char *
6706 md_atof (int type, char * litP, int * sizeP)
6707 {
6708 int i;
6709 int prec;
6710 LITTLENUM_TYPE words [MAX_LITTLENUMS];
6711 char * t;
6712
6713 switch (type)
6714 {
6715 case 'f':
6716 case 'F':
6717 case 's':
6718 case 'S':
6719 prec = 2;
6720 break;
6721
6722 case 'd':
6723 case 'D':
6724 case 'r':
6725 case 'R':
6726 prec = 4;
6727 break;
6728
6729 /* FIXME: Some targets allow other format chars for bigger sizes here. */
6730
6731 default:
6732 * sizeP = 0;
6733 return _("Bad call to md_atof()");
6734 }
6735
6736 t = atof_ieee (input_line_pointer, type, words);
6737 if (t)
6738 input_line_pointer = t;
6739 * sizeP = prec * sizeof (LITTLENUM_TYPE);
6740
6741 for (i = 0; i < prec; i++)
6742 {
6743 md_number_to_chars (litP, (valueT) words[i],
6744 sizeof (LITTLENUM_TYPE));
6745 litP += sizeof (LITTLENUM_TYPE);
6746 }
6747
6748 return 0;
6749 }
6750
6751 /* If this function returns non-zero, it prevents the relocation
6752 against symbol(s) in the FIXP from being replaced with relocations
6753 against section symbols, and guarantees that a relocation will be
6754 emitted even when the value can be resolved locally. */
6755
6756 int
6757 metag_force_relocation (fixS * fix)
6758 {
6759 switch (fix->fx_r_type)
6760 {
6761 case BFD_RELOC_METAG_RELBRANCH_PLT:
6762 case BFD_RELOC_METAG_TLS_LE:
6763 case BFD_RELOC_METAG_TLS_IE:
6764 case BFD_RELOC_METAG_TLS_LDO:
6765 case BFD_RELOC_METAG_TLS_LDM:
6766 case BFD_RELOC_METAG_TLS_GD:
6767 return 1;
6768 default:
6769 ;
6770 }
6771
6772 return generic_force_reloc (fix);
6773 }
6774
6775 bool
6776 metag_fix_adjustable (fixS * fixP)
6777 {
6778 if (fixP->fx_addsy == NULL)
6779 return 1;
6780
6781 /* Prevent all adjustments to global symbols. */
6782 if (S_IS_EXTERNAL (fixP->fx_addsy))
6783 return 0;
6784 if (S_IS_WEAK (fixP->fx_addsy))
6785 return 0;
6786
6787 if (fixP->fx_r_type == BFD_RELOC_METAG_HI16_GOTOFF ||
6788 fixP->fx_r_type == BFD_RELOC_METAG_LO16_GOTOFF ||
6789 fixP->fx_r_type == BFD_RELOC_METAG_GETSET_GOTOFF ||
6790 fixP->fx_r_type == BFD_RELOC_METAG_GETSET_GOT ||
6791 fixP->fx_r_type == BFD_RELOC_METAG_HI16_GOTPC ||
6792 fixP->fx_r_type == BFD_RELOC_METAG_LO16_GOTPC ||
6793 fixP->fx_r_type == BFD_RELOC_METAG_HI16_PLT ||
6794 fixP->fx_r_type == BFD_RELOC_METAG_LO16_PLT ||
6795 fixP->fx_r_type == BFD_RELOC_METAG_RELBRANCH_PLT)
6796 return 0;
6797
6798 /* We need the symbol name for the VTABLE entries. */
6799 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
6800 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6801 return 0;
6802
6803 return 1;
6804 }
6805
6806 /* Return an initial guess of the length by which a fragment must grow to
6807 hold a branch to reach its destination.
6808 Also updates fr_type/fr_subtype as necessary.
6809
6810 Called just before doing relaxation.
6811 Any symbol that is now undefined will not become defined.
6812 The guess for fr_var is ACTUALLY the growth beyond fr_fix.
6813 Whatever we do to grow fr_fix or fr_var contributes to our returned value.
6814 Although it may not be explicit in the frag, pretend fr_var starts with a
6815 0 value. */
6816
6817 int
6818 md_estimate_size_before_relax (fragS * fragP ATTRIBUTE_UNUSED,
6819 segT segment ATTRIBUTE_UNUSED)
6820 {
6821 /* No assembler relaxation is defined (or necessary) for this port. */
6822 abort ();
6823 }
6824
6825 /* *fragP has been relaxed to its final size, and now needs to have
6826 the bytes inside it modified to conform to the new size.
6827
6828 Called after relaxation is finished.
6829 fragP->fr_type == rs_machine_dependent.
6830 fragP->fr_subtype is the subtype of what the address relaxed to. */
6831
6832 void
6833 md_convert_frag (bfd * abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
6834 fragS * fragP ATTRIBUTE_UNUSED)
6835 {
6836 /* No assembler relaxation is defined (or necessary) for this port. */
6837 abort ();
6838 }
6839
6840 /* This is called from HANDLE_ALIGN in tc-metag.h. */
6841
6842 void
6843 metag_handle_align (fragS * fragP)
6844 {
6845 static unsigned char const noop[4] = { 0xfe, 0xff, 0xff, 0xa0 };
6846 int bytes, fix;
6847 char *p;
6848
6849 if (fragP->fr_type != rs_align_code)
6850 return;
6851
6852 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6853 p = fragP->fr_literal + fragP->fr_fix;
6854 fix = 0;
6855
6856 if (bytes & 3)
6857 {
6858 fix = bytes & 3;
6859 memset (p, 0, fix);
6860 p += fix;
6861 bytes -= fix;
6862 }
6863
6864 while (bytes >= 4)
6865 {
6866 memcpy (p, noop, 4);
6867 p += 4;
6868 bytes -= 4;
6869 fix += 4;
6870 }
6871
6872 fragP->fr_fix += fix;
6873 fragP->fr_var = 4;
6874 }
6875
6876 static char *
6877 metag_end_of_match (char * cont, const char * what)
6878 {
6879 int len = strlen (what);
6880
6881 if (strncasecmp (cont, what, strlen (what)) == 0
6882 && ! is_part_of_name (cont[len]))
6883 return cont + len;
6884
6885 return NULL;
6886 }
6887
6888 int
6889 metag_parse_name (char const * name, expressionS * exprP, enum expr_mode mode,
6890 char * nextcharP)
6891 {
6892 char *next = input_line_pointer;
6893 char *next_end;
6894 int reloc_type;
6895 operatorT op_type;
6896 segT segment;
6897
6898 exprP->X_op_symbol = NULL;
6899 exprP->X_md = BFD_RELOC_UNUSED;
6900
6901 if (strcmp (name, GOT_NAME) == 0)
6902 {
6903 if (! GOT_symbol)
6904 GOT_symbol = symbol_find_or_make (name);
6905
6906 exprP->X_add_symbol = GOT_symbol;
6907 no_suffix:
6908 /* If we have an absolute symbol or a
6909 reg, then we know its value now. */
6910 segment = S_GET_SEGMENT (exprP->X_add_symbol);
6911 if (mode != expr_defer && segment == absolute_section)
6912 {
6913 exprP->X_op = O_constant;
6914 exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
6915 exprP->X_add_symbol = NULL;
6916 }
6917 else if (mode != expr_defer && segment == reg_section)
6918 {
6919 exprP->X_op = O_register;
6920 exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
6921 exprP->X_add_symbol = NULL;
6922 }
6923 else
6924 {
6925 exprP->X_op = O_symbol;
6926 exprP->X_add_number = 0;
6927 }
6928
6929 return 1;
6930 }
6931
6932 exprP->X_add_symbol = symbol_find_or_make (name);
6933
6934 if (*nextcharP != '@')
6935 goto no_suffix;
6936 else if ((next_end = metag_end_of_match (next + 1, "GOTOFF")))
6937 {
6938 reloc_type = BFD_RELOC_METAG_GOTOFF;
6939 op_type = O_PIC_reloc;
6940 }
6941 else if ((next_end = metag_end_of_match (next + 1, "GOT")))
6942 {
6943 reloc_type = BFD_RELOC_METAG_GETSET_GOT;
6944 op_type = O_PIC_reloc;
6945 }
6946 else if ((next_end = metag_end_of_match (next + 1, "PLT")))
6947 {
6948 reloc_type = BFD_RELOC_METAG_PLT;
6949 op_type = O_PIC_reloc;
6950 }
6951 else if ((next_end = metag_end_of_match (next + 1, "TLSGD")))
6952 {
6953 reloc_type = BFD_RELOC_METAG_TLS_GD;
6954 op_type = O_PIC_reloc;
6955 }
6956 else if ((next_end = metag_end_of_match (next + 1, "TLSLDM")))
6957 {
6958 reloc_type = BFD_RELOC_METAG_TLS_LDM;
6959 op_type = O_PIC_reloc;
6960 }
6961 else if ((next_end = metag_end_of_match (next + 1, "TLSLDO")))
6962 {
6963 reloc_type = BFD_RELOC_METAG_TLS_LDO;
6964 op_type = O_PIC_reloc;
6965 }
6966 else if ((next_end = metag_end_of_match (next + 1, "TLSIE")))
6967 {
6968 reloc_type = BFD_RELOC_METAG_TLS_IE;
6969 op_type = O_PIC_reloc;
6970 }
6971 else if ((next_end = metag_end_of_match (next + 1, "TLSIENONPIC")))
6972 {
6973 reloc_type = BFD_RELOC_METAG_TLS_IENONPIC;
6974 op_type = O_PIC_reloc; /* FIXME: is this correct? */
6975 }
6976 else if ((next_end = metag_end_of_match (next + 1, "TLSLE")))
6977 {
6978 reloc_type = BFD_RELOC_METAG_TLS_LE;
6979 op_type = O_PIC_reloc;
6980 }
6981 else
6982 goto no_suffix;
6983
6984 *input_line_pointer = *nextcharP;
6985 input_line_pointer = next_end;
6986 *nextcharP = *input_line_pointer;
6987 *input_line_pointer = '\0';
6988
6989 exprP->X_op = op_type;
6990 exprP->X_add_number = 0;
6991 exprP->X_md = reloc_type;
6992
6993 return 1;
6994 }
6995
6996 /* If while processing a fixup, a reloc really needs to be created
6997 then it is done here. */
6998
6999 arelent *
7000 tc_gen_reloc (asection *seg ATTRIBUTE_UNUSED, fixS *fixp)
7001 {
7002 arelent *reloc;
7003
7004 reloc = XNEW (arelent);
7005 reloc->sym_ptr_ptr = XNEW (asymbol *);
7006 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7007 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7008
7009 reloc->addend = fixp->fx_offset;
7010 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
7011
7012 if (reloc->howto == (reloc_howto_type *) NULL)
7013 {
7014 as_bad_where (fixp->fx_file, fixp->fx_line,
7015 /* xgettext:c-format. */
7016 _("reloc %d not supported by object file format"),
7017 (int) fixp->fx_r_type);
7018
7019 xfree (reloc);
7020
7021 return NULL;
7022 }
7023
7024 return reloc;
7025 }
7026
7027 static unsigned int
7028 md_chars_to_number (char *val, int n)
7029 {
7030 unsigned int retval;
7031 unsigned char * where = (unsigned char *) val;
7032
7033 for (retval = 0; n--;)
7034 {
7035 retval <<= 8;
7036 retval |= where[n];
7037 }
7038 return retval;
7039 }
7040
7041 void
7042 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
7043 {
7044 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7045 int value = (int)*valP;
7046
7047 switch (fixP->fx_r_type)
7048 {
7049 case BFD_RELOC_METAG_TLS_GD:
7050 case BFD_RELOC_METAG_TLS_LE_HI16:
7051 case BFD_RELOC_METAG_TLS_LE_LO16:
7052 case BFD_RELOC_METAG_TLS_IE:
7053 case BFD_RELOC_METAG_TLS_IENONPIC_HI16:
7054 case BFD_RELOC_METAG_TLS_IENONPIC_LO16:
7055 case BFD_RELOC_METAG_TLS_LDM:
7056 case BFD_RELOC_METAG_TLS_LDO_HI16:
7057 case BFD_RELOC_METAG_TLS_LDO_LO16:
7058 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7059 /* Fall through */
7060
7061 case BFD_RELOC_METAG_HIADDR16:
7062 case BFD_RELOC_METAG_LOADDR16:
7063 case BFD_RELOC_VTABLE_INHERIT:
7064 case BFD_RELOC_VTABLE_ENTRY:
7065 fixP->fx_done = false;
7066 break;
7067
7068 case BFD_RELOC_METAG_REL8:
7069 if (!within_unsigned_range (value, IMM8_BITS))
7070 {
7071 as_bad_where (fixP->fx_file, fixP->fx_line,
7072 "rel8 out of range %d", value);
7073 }
7074 else
7075 {
7076 unsigned int newval;
7077 newval = md_chars_to_number (buf, 4);
7078 newval = (newval & 0xffffc03f) | ((value & IMM8_MASK) << 6);
7079 md_number_to_chars (buf, newval, 4);
7080 }
7081 break;
7082 case BFD_RELOC_METAG_REL16:
7083 if (!within_unsigned_range (value, IMM16_BITS))
7084 {
7085 as_bad_where (fixP->fx_file, fixP->fx_line,
7086 "rel16 out of range %d", value);
7087 }
7088 else
7089 {
7090 unsigned int newval;
7091 newval = md_chars_to_number (buf, 4);
7092 newval = (newval & 0xfff80007) | ((value & IMM16_MASK) << 3);
7093 md_number_to_chars (buf, newval, 4);
7094 }
7095 break;
7096
7097 case BFD_RELOC_8:
7098 md_number_to_chars (buf, value, 1);
7099 break;
7100 case BFD_RELOC_16:
7101 md_number_to_chars (buf, value, 2);
7102 break;
7103 case BFD_RELOC_32:
7104 md_number_to_chars (buf, value, 4);
7105 break;
7106 case BFD_RELOC_64:
7107 md_number_to_chars (buf, value, 8);
7108 break;
7109
7110 case BFD_RELOC_METAG_RELBRANCH:
7111 if (!value)
7112 break;
7113
7114 value = value / 4;
7115
7116 if (!within_signed_range (value, IMM19_BITS))
7117 {
7118 as_bad_where (fixP->fx_file, fixP->fx_line,
7119 "relbranch out of range %d", value);
7120 }
7121 else
7122 {
7123 unsigned int newval;
7124 newval = md_chars_to_number (buf, 4);
7125 newval = (newval & 0xff00001f) | ((value & IMM19_MASK) << 5);
7126 md_number_to_chars (buf, newval, 4);
7127 }
7128 break;
7129 default:
7130 break;
7131 }
7132
7133 if (fixP->fx_addsy == NULL)
7134 fixP->fx_done = true;
7135 }