* config/tc-cris.c (cris_number_to_imm): Apply S_SET_THREAD_LOCAL
[binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #include "opcode/mips.h"
32 #include "itbl-ops.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35
36 #ifdef DEBUG
37 #define DBG(x) printf x
38 #else
39 #define DBG(x)
40 #endif
41
42 #ifdef OBJ_MAYBE_ELF
43 /* Clean up namespace so we can include obj-elf.h too. */
44 static int mips_output_flavor (void);
45 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
46 #undef OBJ_PROCESS_STAB
47 #undef OUTPUT_FLAVOR
48 #undef S_GET_ALIGN
49 #undef S_GET_SIZE
50 #undef S_SET_ALIGN
51 #undef S_SET_SIZE
52 #undef obj_frob_file
53 #undef obj_frob_file_after_relocs
54 #undef obj_frob_symbol
55 #undef obj_pop_insert
56 #undef obj_sec_sym_ok_for_reloc
57 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
58
59 #include "obj-elf.h"
60 /* Fix any of them that we actually care about. */
61 #undef OUTPUT_FLAVOR
62 #define OUTPUT_FLAVOR mips_output_flavor()
63 #endif
64
65 #if defined (OBJ_ELF)
66 #include "elf/mips.h"
67 #endif
68
69 #ifndef ECOFF_DEBUGGING
70 #define NO_ECOFF_DEBUGGING
71 #define ECOFF_DEBUGGING 0
72 #endif
73
74 int mips_flag_mdebug = -1;
75
76 /* Control generation of .pdr sections. Off by default on IRIX: the native
77 linker doesn't know about and discards them, but relocations against them
78 remain, leading to rld crashes. */
79 #ifdef TE_IRIX
80 int mips_flag_pdr = FALSE;
81 #else
82 int mips_flag_pdr = TRUE;
83 #endif
84
85 #include "ecoff.h"
86
87 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
88 static char *mips_regmask_frag;
89 #endif
90
91 #define ZERO 0
92 #define ATREG 1
93 #define TREG 24
94 #define PIC_CALL_REG 25
95 #define KT0 26
96 #define KT1 27
97 #define GP 28
98 #define SP 29
99 #define FP 30
100 #define RA 31
101
102 #define ILLEGAL_REG (32)
103
104 #define AT mips_opts.at
105
106 /* Allow override of standard little-endian ECOFF format. */
107
108 #ifndef ECOFF_LITTLE_FORMAT
109 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
110 #endif
111
112 extern int target_big_endian;
113
114 /* The name of the readonly data section. */
115 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
116 ? ".rdata" \
117 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
118 ? ".rdata" \
119 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
120 ? ".rodata" \
121 : (abort (), ""))
122
123 /* Information about an instruction, including its format, operands
124 and fixups. */
125 struct mips_cl_insn
126 {
127 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
128 const struct mips_opcode *insn_mo;
129
130 /* True if this is a mips16 instruction and if we want the extended
131 form of INSN_MO. */
132 bfd_boolean use_extend;
133
134 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
135 unsigned short extend;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. */
139 unsigned long insn_opcode;
140
141 /* The frag that contains the instruction. */
142 struct frag *frag;
143
144 /* The offset into FRAG of the first instruction byte. */
145 long where;
146
147 /* The relocs associated with the instruction, if any. */
148 fixS *fixp[3];
149
150 /* True if this entry cannot be moved from its current position. */
151 unsigned int fixed_p : 1;
152
153 /* True if this instruction occurred in a .set noreorder block. */
154 unsigned int noreorder_p : 1;
155
156 /* True for mips16 instructions that jump to an absolute address. */
157 unsigned int mips16_absolute_jump_p : 1;
158 };
159
160 /* The ABI to use. */
161 enum mips_abi_level
162 {
163 NO_ABI = 0,
164 O32_ABI,
165 O64_ABI,
166 N32_ABI,
167 N64_ABI,
168 EABI_ABI
169 };
170
171 /* MIPS ABI we are using for this output file. */
172 static enum mips_abi_level mips_abi = NO_ABI;
173
174 /* Whether or not we have code that can call pic code. */
175 int mips_abicalls = FALSE;
176
177 /* Whether or not we have code which can be put into a shared
178 library. */
179 static bfd_boolean mips_in_shared = TRUE;
180
181 /* This is the set of options which may be modified by the .set
182 pseudo-op. We use a struct so that .set push and .set pop are more
183 reliable. */
184
185 struct mips_set_options
186 {
187 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
188 if it has not been initialized. Changed by `.set mipsN', and the
189 -mipsN command line option, and the default CPU. */
190 int isa;
191 /* Enabled Application Specific Extensions (ASEs). These are set to -1
192 if they have not been initialized. Changed by `.set <asename>', by
193 command line options, and based on the default architecture. */
194 int ase_mips3d;
195 int ase_mdmx;
196 int ase_smartmips;
197 int ase_dsp;
198 int ase_dspr2;
199 int ase_mt;
200 /* Whether we are assembling for the mips16 processor. 0 if we are
201 not, 1 if we are, and -1 if the value has not been initialized.
202 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
203 -nomips16 command line options, and the default CPU. */
204 int mips16;
205 /* Non-zero if we should not reorder instructions. Changed by `.set
206 reorder' and `.set noreorder'. */
207 int noreorder;
208 /* Non-zero if we should not permit the register designated "assembler
209 temporary" to be used in instructions. The value is the register
210 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
211 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
212 unsigned int at;
213 /* Non-zero if we should warn when a macro instruction expands into
214 more than one machine instruction. Changed by `.set nomacro' and
215 `.set macro'. */
216 int warn_about_macros;
217 /* Non-zero if we should not move instructions. Changed by `.set
218 move', `.set volatile', `.set nomove', and `.set novolatile'. */
219 int nomove;
220 /* Non-zero if we should not optimize branches by moving the target
221 of the branch into the delay slot. Actually, we don't perform
222 this optimization anyhow. Changed by `.set bopt' and `.set
223 nobopt'. */
224 int nobopt;
225 /* Non-zero if we should not autoextend mips16 instructions.
226 Changed by `.set autoextend' and `.set noautoextend'. */
227 int noautoextend;
228 /* Restrict general purpose registers and floating point registers
229 to 32 bit. This is initially determined when -mgp32 or -mfp32
230 is passed but can changed if the assembler code uses .set mipsN. */
231 int gp32;
232 int fp32;
233 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
234 command line option, and the default CPU. */
235 int arch;
236 /* True if ".set sym32" is in effect. */
237 bfd_boolean sym32;
238 /* True if floating-point operations are not allowed. Changed by .set
239 softfloat or .set hardfloat, by command line options -msoft-float or
240 -mhard-float. The default is false. */
241 bfd_boolean soft_float;
242
243 /* True if only single-precision floating-point operations are allowed.
244 Changed by .set singlefloat or .set doublefloat, command-line options
245 -msingle-float or -mdouble-float. The default is false. */
246 bfd_boolean single_float;
247 };
248
249 /* This is the struct we use to hold the current set of options. Note
250 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
251 -1 to indicate that they have not been initialized. */
252
253 /* True if -mgp32 was passed. */
254 static int file_mips_gp32 = -1;
255
256 /* True if -mfp32 was passed. */
257 static int file_mips_fp32 = -1;
258
259 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
260 static int file_mips_soft_float = 0;
261
262 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
263 static int file_mips_single_float = 0;
264
265 static struct mips_set_options mips_opts =
266 {
267 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
268 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
269 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
270 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
271 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
272 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
273 };
274
275 /* These variables are filled in with the masks of registers used.
276 The object format code reads them and puts them in the appropriate
277 place. */
278 unsigned long mips_gprmask;
279 unsigned long mips_cprmask[4];
280
281 /* MIPS ISA we are using for this output file. */
282 static int file_mips_isa = ISA_UNKNOWN;
283
284 /* True if -mips16 was passed or implied by arguments passed on the
285 command line (e.g., by -march). */
286 static int file_ase_mips16;
287
288 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
289 || mips_opts.isa == ISA_MIPS32R2 \
290 || mips_opts.isa == ISA_MIPS64 \
291 || mips_opts.isa == ISA_MIPS64R2)
292
293 /* True if -mips3d was passed or implied by arguments passed on the
294 command line (e.g., by -march). */
295 static int file_ase_mips3d;
296
297 /* True if -mdmx was passed or implied by arguments passed on the
298 command line (e.g., by -march). */
299 static int file_ase_mdmx;
300
301 /* True if -msmartmips was passed or implied by arguments passed on the
302 command line (e.g., by -march). */
303 static int file_ase_smartmips;
304
305 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
306 || mips_opts.isa == ISA_MIPS32R2)
307
308 /* True if -mdsp was passed or implied by arguments passed on the
309 command line (e.g., by -march). */
310 static int file_ase_dsp;
311
312 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
313 || mips_opts.isa == ISA_MIPS64R2)
314
315 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
316
317 /* True if -mdspr2 was passed or implied by arguments passed on the
318 command line (e.g., by -march). */
319 static int file_ase_dspr2;
320
321 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
322 || mips_opts.isa == ISA_MIPS64R2)
323
324 /* True if -mmt was passed or implied by arguments passed on the
325 command line (e.g., by -march). */
326 static int file_ase_mt;
327
328 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
329 || mips_opts.isa == ISA_MIPS64R2)
330
331 /* The argument of the -march= flag. The architecture we are assembling. */
332 static int file_mips_arch = CPU_UNKNOWN;
333 static const char *mips_arch_string;
334
335 /* The argument of the -mtune= flag. The architecture for which we
336 are optimizing. */
337 static int mips_tune = CPU_UNKNOWN;
338 static const char *mips_tune_string;
339
340 /* True when generating 32-bit code for a 64-bit processor. */
341 static int mips_32bitmode = 0;
342
343 /* True if the given ABI requires 32-bit registers. */
344 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
345
346 /* Likewise 64-bit registers. */
347 #define ABI_NEEDS_64BIT_REGS(ABI) \
348 ((ABI) == N32_ABI \
349 || (ABI) == N64_ABI \
350 || (ABI) == O64_ABI)
351
352 /* Return true if ISA supports 64 bit wide gp registers. */
353 #define ISA_HAS_64BIT_REGS(ISA) \
354 ((ISA) == ISA_MIPS3 \
355 || (ISA) == ISA_MIPS4 \
356 || (ISA) == ISA_MIPS5 \
357 || (ISA) == ISA_MIPS64 \
358 || (ISA) == ISA_MIPS64R2)
359
360 /* Return true if ISA supports 64 bit wide float registers. */
361 #define ISA_HAS_64BIT_FPRS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS32R2 \
366 || (ISA) == ISA_MIPS64 \
367 || (ISA) == ISA_MIPS64R2)
368
369 /* Return true if ISA supports 64-bit right rotate (dror et al.)
370 instructions. */
371 #define ISA_HAS_DROR(ISA) \
372 ((ISA) == ISA_MIPS64R2)
373
374 /* Return true if ISA supports 32-bit right rotate (ror et al.)
375 instructions. */
376 #define ISA_HAS_ROR(ISA) \
377 ((ISA) == ISA_MIPS32R2 \
378 || (ISA) == ISA_MIPS64R2 \
379 || mips_opts.ase_smartmips)
380
381 /* Return true if ISA supports single-precision floats in odd registers. */
382 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
383 ((ISA) == ISA_MIPS32 \
384 || (ISA) == ISA_MIPS32R2 \
385 || (ISA) == ISA_MIPS64 \
386 || (ISA) == ISA_MIPS64R2)
387
388 /* Return true if ISA supports move to/from high part of a 64-bit
389 floating-point register. */
390 #define ISA_HAS_MXHC1(ISA) \
391 ((ISA) == ISA_MIPS32R2 \
392 || (ISA) == ISA_MIPS64R2)
393
394 #define HAVE_32BIT_GPRS \
395 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
396
397 #define HAVE_32BIT_FPRS \
398 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
399
400 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
401 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
402
403 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
404
405 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
406
407 /* True if relocations are stored in-place. */
408 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
409
410 /* The ABI-derived address size. */
411 #define HAVE_64BIT_ADDRESSES \
412 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
413 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
414
415 /* The size of symbolic constants (i.e., expressions of the form
416 "SYMBOL" or "SYMBOL + OFFSET"). */
417 #define HAVE_32BIT_SYMBOLS \
418 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
419 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
420
421 /* Addresses are loaded in different ways, depending on the address size
422 in use. The n32 ABI Documentation also mandates the use of additions
423 with overflow checking, but existing implementations don't follow it. */
424 #define ADDRESS_ADD_INSN \
425 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
426
427 #define ADDRESS_ADDI_INSN \
428 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
429
430 #define ADDRESS_LOAD_INSN \
431 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
432
433 #define ADDRESS_STORE_INSN \
434 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
435
436 /* Return true if the given CPU supports the MIPS16 ASE. */
437 #define CPU_HAS_MIPS16(cpu) \
438 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
439 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
440
441 /* True if CPU has a dror instruction. */
442 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
443
444 /* True if CPU has a ror instruction. */
445 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
446
447 /* True if CPU has seq/sne and seqi/snei instructions. */
448 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
449
450 /* True if CPU does not implement the all the coprocessor insns. For these
451 CPUs only those COP insns are accepted that are explicitly marked to be
452 available on the CPU. ISA membership for COP insns is ignored. */
453 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
454
455 /* True if mflo and mfhi can be immediately followed by instructions
456 which write to the HI and LO registers.
457
458 According to MIPS specifications, MIPS ISAs I, II, and III need
459 (at least) two instructions between the reads of HI/LO and
460 instructions which write them, and later ISAs do not. Contradicting
461 the MIPS specifications, some MIPS IV processor user manuals (e.g.
462 the UM for the NEC Vr5000) document needing the instructions between
463 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
464 MIPS64 and later ISAs to have the interlocks, plus any specific
465 earlier-ISA CPUs for which CPU documentation declares that the
466 instructions are really interlocked. */
467 #define hilo_interlocks \
468 (mips_opts.isa == ISA_MIPS32 \
469 || mips_opts.isa == ISA_MIPS32R2 \
470 || mips_opts.isa == ISA_MIPS64 \
471 || mips_opts.isa == ISA_MIPS64R2 \
472 || mips_opts.arch == CPU_R4010 \
473 || mips_opts.arch == CPU_R10000 \
474 || mips_opts.arch == CPU_R12000 \
475 || mips_opts.arch == CPU_RM7000 \
476 || mips_opts.arch == CPU_VR5500 \
477 )
478
479 /* Whether the processor uses hardware interlocks to protect reads
480 from the GPRs after they are loaded from memory, and thus does not
481 require nops to be inserted. This applies to instructions marked
482 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
483 level I. */
484 #define gpr_interlocks \
485 (mips_opts.isa != ISA_MIPS1 \
486 || mips_opts.arch == CPU_R3900)
487
488 /* Whether the processor uses hardware interlocks to avoid delays
489 required by coprocessor instructions, and thus does not require
490 nops to be inserted. This applies to instructions marked
491 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
492 between instructions marked INSN_WRITE_COND_CODE and ones marked
493 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
494 levels I, II, and III. */
495 /* Itbl support may require additional care here. */
496 #define cop_interlocks \
497 ((mips_opts.isa != ISA_MIPS1 \
498 && mips_opts.isa != ISA_MIPS2 \
499 && mips_opts.isa != ISA_MIPS3) \
500 || mips_opts.arch == CPU_R4300 \
501 )
502
503 /* Whether the processor uses hardware interlocks to protect reads
504 from coprocessor registers after they are loaded from memory, and
505 thus does not require nops to be inserted. This applies to
506 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
507 requires at MIPS ISA level I. */
508 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
509
510 /* Is this a mfhi or mflo instruction? */
511 #define MF_HILO_INSN(PINFO) \
512 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
513
514 /* Returns true for a (non floating-point) coprocessor instruction. Reading
515 or writing the condition code is only possible on the coprocessors and
516 these insns are not marked with INSN_COP. Thus for these insns use the
517 condition-code flags. */
518 #define COP_INSN(PINFO) \
519 (PINFO != INSN_MACRO \
520 && ((PINFO) & (FP_S | FP_D)) == 0 \
521 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
522
523 /* MIPS PIC level. */
524
525 enum mips_pic_level mips_pic;
526
527 /* 1 if we should generate 32 bit offsets from the $gp register in
528 SVR4_PIC mode. Currently has no meaning in other modes. */
529 static int mips_big_got = 0;
530
531 /* 1 if trap instructions should used for overflow rather than break
532 instructions. */
533 static int mips_trap = 0;
534
535 /* 1 if double width floating point constants should not be constructed
536 by assembling two single width halves into two single width floating
537 point registers which just happen to alias the double width destination
538 register. On some architectures this aliasing can be disabled by a bit
539 in the status register, and the setting of this bit cannot be determined
540 automatically at assemble time. */
541 static int mips_disable_float_construction;
542
543 /* Non-zero if any .set noreorder directives were used. */
544
545 static int mips_any_noreorder;
546
547 /* Non-zero if nops should be inserted when the register referenced in
548 an mfhi/mflo instruction is read in the next two instructions. */
549 static int mips_7000_hilo_fix;
550
551 /* The size of objects in the small data section. */
552 static unsigned int g_switch_value = 8;
553 /* Whether the -G option was used. */
554 static int g_switch_seen = 0;
555
556 #define N_RMASK 0xc4
557 #define N_VFP 0xd4
558
559 /* If we can determine in advance that GP optimization won't be
560 possible, we can skip the relaxation stuff that tries to produce
561 GP-relative references. This makes delay slot optimization work
562 better.
563
564 This function can only provide a guess, but it seems to work for
565 gcc output. It needs to guess right for gcc, otherwise gcc
566 will put what it thinks is a GP-relative instruction in a branch
567 delay slot.
568
569 I don't know if a fix is needed for the SVR4_PIC mode. I've only
570 fixed it for the non-PIC mode. KR 95/04/07 */
571 static int nopic_need_relax (symbolS *, int);
572
573 /* handle of the OPCODE hash table */
574 static struct hash_control *op_hash = NULL;
575
576 /* The opcode hash table we use for the mips16. */
577 static struct hash_control *mips16_op_hash = NULL;
578
579 /* This array holds the chars that always start a comment. If the
580 pre-processor is disabled, these aren't very useful */
581 const char comment_chars[] = "#";
582
583 /* This array holds the chars that only start a comment at the beginning of
584 a line. If the line seems to have the form '# 123 filename'
585 .line and .file directives will appear in the pre-processed output */
586 /* Note that input_file.c hand checks for '#' at the beginning of the
587 first line of the input file. This is because the compiler outputs
588 #NO_APP at the beginning of its output. */
589 /* Also note that C style comments are always supported. */
590 const char line_comment_chars[] = "#";
591
592 /* This array holds machine specific line separator characters. */
593 const char line_separator_chars[] = ";";
594
595 /* Chars that can be used to separate mant from exp in floating point nums */
596 const char EXP_CHARS[] = "eE";
597
598 /* Chars that mean this number is a floating point constant */
599 /* As in 0f12.456 */
600 /* or 0d1.2345e12 */
601 const char FLT_CHARS[] = "rRsSfFdDxXpP";
602
603 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
604 changed in read.c . Ideally it shouldn't have to know about it at all,
605 but nothing is ideal around here.
606 */
607
608 static char *insn_error;
609
610 static int auto_align = 1;
611
612 /* When outputting SVR4 PIC code, the assembler needs to know the
613 offset in the stack frame from which to restore the $gp register.
614 This is set by the .cprestore pseudo-op, and saved in this
615 variable. */
616 static offsetT mips_cprestore_offset = -1;
617
618 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
619 more optimizations, it can use a register value instead of a memory-saved
620 offset and even an other register than $gp as global pointer. */
621 static offsetT mips_cpreturn_offset = -1;
622 static int mips_cpreturn_register = -1;
623 static int mips_gp_register = GP;
624 static int mips_gprel_offset = 0;
625
626 /* Whether mips_cprestore_offset has been set in the current function
627 (or whether it has already been warned about, if not). */
628 static int mips_cprestore_valid = 0;
629
630 /* This is the register which holds the stack frame, as set by the
631 .frame pseudo-op. This is needed to implement .cprestore. */
632 static int mips_frame_reg = SP;
633
634 /* Whether mips_frame_reg has been set in the current function
635 (or whether it has already been warned about, if not). */
636 static int mips_frame_reg_valid = 0;
637
638 /* To output NOP instructions correctly, we need to keep information
639 about the previous two instructions. */
640
641 /* Whether we are optimizing. The default value of 2 means to remove
642 unneeded NOPs and swap branch instructions when possible. A value
643 of 1 means to not swap branches. A value of 0 means to always
644 insert NOPs. */
645 static int mips_optimize = 2;
646
647 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
648 equivalent to seeing no -g option at all. */
649 static int mips_debug = 0;
650
651 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
652 #define MAX_VR4130_NOPS 4
653
654 /* The maximum number of NOPs needed to fill delay slots. */
655 #define MAX_DELAY_NOPS 2
656
657 /* The maximum number of NOPs needed for any purpose. */
658 #define MAX_NOPS 4
659
660 /* A list of previous instructions, with index 0 being the most recent.
661 We need to look back MAX_NOPS instructions when filling delay slots
662 or working around processor errata. We need to look back one
663 instruction further if we're thinking about using history[0] to
664 fill a branch delay slot. */
665 static struct mips_cl_insn history[1 + MAX_NOPS];
666
667 /* Nop instructions used by emit_nop. */
668 static struct mips_cl_insn nop_insn, mips16_nop_insn;
669
670 /* The appropriate nop for the current mode. */
671 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
672
673 /* If this is set, it points to a frag holding nop instructions which
674 were inserted before the start of a noreorder section. If those
675 nops turn out to be unnecessary, the size of the frag can be
676 decreased. */
677 static fragS *prev_nop_frag;
678
679 /* The number of nop instructions we created in prev_nop_frag. */
680 static int prev_nop_frag_holds;
681
682 /* The number of nop instructions that we know we need in
683 prev_nop_frag. */
684 static int prev_nop_frag_required;
685
686 /* The number of instructions we've seen since prev_nop_frag. */
687 static int prev_nop_frag_since;
688
689 /* For ECOFF and ELF, relocations against symbols are done in two
690 parts, with a HI relocation and a LO relocation. Each relocation
691 has only 16 bits of space to store an addend. This means that in
692 order for the linker to handle carries correctly, it must be able
693 to locate both the HI and the LO relocation. This means that the
694 relocations must appear in order in the relocation table.
695
696 In order to implement this, we keep track of each unmatched HI
697 relocation. We then sort them so that they immediately precede the
698 corresponding LO relocation. */
699
700 struct mips_hi_fixup
701 {
702 /* Next HI fixup. */
703 struct mips_hi_fixup *next;
704 /* This fixup. */
705 fixS *fixp;
706 /* The section this fixup is in. */
707 segT seg;
708 };
709
710 /* The list of unmatched HI relocs. */
711
712 static struct mips_hi_fixup *mips_hi_fixup_list;
713
714 /* The frag containing the last explicit relocation operator.
715 Null if explicit relocations have not been used. */
716
717 static fragS *prev_reloc_op_frag;
718
719 /* Map normal MIPS register numbers to mips16 register numbers. */
720
721 #define X ILLEGAL_REG
722 static const int mips32_to_16_reg_map[] =
723 {
724 X, X, 2, 3, 4, 5, 6, 7,
725 X, X, X, X, X, X, X, X,
726 0, 1, X, X, X, X, X, X,
727 X, X, X, X, X, X, X, X
728 };
729 #undef X
730
731 /* Map mips16 register numbers to normal MIPS register numbers. */
732
733 static const unsigned int mips16_to_32_reg_map[] =
734 {
735 16, 17, 2, 3, 4, 5, 6, 7
736 };
737
738 /* Classifies the kind of instructions we're interested in when
739 implementing -mfix-vr4120. */
740 enum fix_vr4120_class {
741 FIX_VR4120_MACC,
742 FIX_VR4120_DMACC,
743 FIX_VR4120_MULT,
744 FIX_VR4120_DMULT,
745 FIX_VR4120_DIV,
746 FIX_VR4120_MTHILO,
747 NUM_FIX_VR4120_CLASSES
748 };
749
750 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
751 there must be at least one other instruction between an instruction
752 of type X and an instruction of type Y. */
753 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
754
755 /* True if -mfix-vr4120 is in force. */
756 static int mips_fix_vr4120;
757
758 /* ...likewise -mfix-vr4130. */
759 static int mips_fix_vr4130;
760
761 /* We don't relax branches by default, since this causes us to expand
762 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
763 fail to compute the offset before expanding the macro to the most
764 efficient expansion. */
765
766 static int mips_relax_branch;
767 \f
768 /* The expansion of many macros depends on the type of symbol that
769 they refer to. For example, when generating position-dependent code,
770 a macro that refers to a symbol may have two different expansions,
771 one which uses GP-relative addresses and one which uses absolute
772 addresses. When generating SVR4-style PIC, a macro may have
773 different expansions for local and global symbols.
774
775 We handle these situations by generating both sequences and putting
776 them in variant frags. In position-dependent code, the first sequence
777 will be the GP-relative one and the second sequence will be the
778 absolute one. In SVR4 PIC, the first sequence will be for global
779 symbols and the second will be for local symbols.
780
781 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
782 SECOND are the lengths of the two sequences in bytes. These fields
783 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
784 the subtype has the following flags:
785
786 RELAX_USE_SECOND
787 Set if it has been decided that we should use the second
788 sequence instead of the first.
789
790 RELAX_SECOND_LONGER
791 Set in the first variant frag if the macro's second implementation
792 is longer than its first. This refers to the macro as a whole,
793 not an individual relaxation.
794
795 RELAX_NOMACRO
796 Set in the first variant frag if the macro appeared in a .set nomacro
797 block and if one alternative requires a warning but the other does not.
798
799 RELAX_DELAY_SLOT
800 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
801 delay slot.
802
803 The frag's "opcode" points to the first fixup for relaxable code.
804
805 Relaxable macros are generated using a sequence such as:
806
807 relax_start (SYMBOL);
808 ... generate first expansion ...
809 relax_switch ();
810 ... generate second expansion ...
811 relax_end ();
812
813 The code and fixups for the unwanted alternative are discarded
814 by md_convert_frag. */
815 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
816
817 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
818 #define RELAX_SECOND(X) ((X) & 0xff)
819 #define RELAX_USE_SECOND 0x10000
820 #define RELAX_SECOND_LONGER 0x20000
821 #define RELAX_NOMACRO 0x40000
822 #define RELAX_DELAY_SLOT 0x80000
823
824 /* Branch without likely bit. If label is out of range, we turn:
825
826 beq reg1, reg2, label
827 delay slot
828
829 into
830
831 bne reg1, reg2, 0f
832 nop
833 j label
834 0: delay slot
835
836 with the following opcode replacements:
837
838 beq <-> bne
839 blez <-> bgtz
840 bltz <-> bgez
841 bc1f <-> bc1t
842
843 bltzal <-> bgezal (with jal label instead of j label)
844
845 Even though keeping the delay slot instruction in the delay slot of
846 the branch would be more efficient, it would be very tricky to do
847 correctly, because we'd have to introduce a variable frag *after*
848 the delay slot instruction, and expand that instead. Let's do it
849 the easy way for now, even if the branch-not-taken case now costs
850 one additional instruction. Out-of-range branches are not supposed
851 to be common, anyway.
852
853 Branch likely. If label is out of range, we turn:
854
855 beql reg1, reg2, label
856 delay slot (annulled if branch not taken)
857
858 into
859
860 beql reg1, reg2, 1f
861 nop
862 beql $0, $0, 2f
863 nop
864 1: j[al] label
865 delay slot (executed only if branch taken)
866 2:
867
868 It would be possible to generate a shorter sequence by losing the
869 likely bit, generating something like:
870
871 bne reg1, reg2, 0f
872 nop
873 j[al] label
874 delay slot (executed only if branch taken)
875 0:
876
877 beql -> bne
878 bnel -> beq
879 blezl -> bgtz
880 bgtzl -> blez
881 bltzl -> bgez
882 bgezl -> bltz
883 bc1fl -> bc1t
884 bc1tl -> bc1f
885
886 bltzall -> bgezal (with jal label instead of j label)
887 bgezall -> bltzal (ditto)
888
889
890 but it's not clear that it would actually improve performance. */
891 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
892 ((relax_substateT) \
893 (0xc0000000 \
894 | ((toofar) ? 1 : 0) \
895 | ((link) ? 2 : 0) \
896 | ((likely) ? 4 : 0) \
897 | ((uncond) ? 8 : 0)))
898 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
899 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
900 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
901 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
902 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
903
904 /* For mips16 code, we use an entirely different form of relaxation.
905 mips16 supports two versions of most instructions which take
906 immediate values: a small one which takes some small value, and a
907 larger one which takes a 16 bit value. Since branches also follow
908 this pattern, relaxing these values is required.
909
910 We can assemble both mips16 and normal MIPS code in a single
911 object. Therefore, we need to support this type of relaxation at
912 the same time that we support the relaxation described above. We
913 use the high bit of the subtype field to distinguish these cases.
914
915 The information we store for this type of relaxation is the
916 argument code found in the opcode file for this relocation, whether
917 the user explicitly requested a small or extended form, and whether
918 the relocation is in a jump or jal delay slot. That tells us the
919 size of the value, and how it should be stored. We also store
920 whether the fragment is considered to be extended or not. We also
921 store whether this is known to be a branch to a different section,
922 whether we have tried to relax this frag yet, and whether we have
923 ever extended a PC relative fragment because of a shift count. */
924 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
925 (0x80000000 \
926 | ((type) & 0xff) \
927 | ((small) ? 0x100 : 0) \
928 | ((ext) ? 0x200 : 0) \
929 | ((dslot) ? 0x400 : 0) \
930 | ((jal_dslot) ? 0x800 : 0))
931 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
932 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
933 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
934 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
935 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
936 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
937 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
938 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
939 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
940 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
941 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
942 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
943
944 /* Is the given value a sign-extended 32-bit value? */
945 #define IS_SEXT_32BIT_NUM(x) \
946 (((x) &~ (offsetT) 0x7fffffff) == 0 \
947 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
948
949 /* Is the given value a sign-extended 16-bit value? */
950 #define IS_SEXT_16BIT_NUM(x) \
951 (((x) &~ (offsetT) 0x7fff) == 0 \
952 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
953
954 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
955 #define IS_ZEXT_32BIT_NUM(x) \
956 (((x) &~ (offsetT) 0xffffffff) == 0 \
957 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
958
959 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
960 VALUE << SHIFT. VALUE is evaluated exactly once. */
961 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
962 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
963 | (((VALUE) & (MASK)) << (SHIFT)))
964
965 /* Extract bits MASK << SHIFT from STRUCT and shift them right
966 SHIFT places. */
967 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
968 (((STRUCT) >> (SHIFT)) & (MASK))
969
970 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
971 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
972
973 include/opcode/mips.h specifies operand fields using the macros
974 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
975 with "MIPS16OP" instead of "OP". */
976 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
977 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
978 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
979 INSERT_BITS ((INSN).insn_opcode, VALUE, \
980 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
981
982 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
983 #define EXTRACT_OPERAND(FIELD, INSN) \
984 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
985 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
986 EXTRACT_BITS ((INSN).insn_opcode, \
987 MIPS16OP_MASK_##FIELD, \
988 MIPS16OP_SH_##FIELD)
989 \f
990 /* Global variables used when generating relaxable macros. See the
991 comment above RELAX_ENCODE for more details about how relaxation
992 is used. */
993 static struct {
994 /* 0 if we're not emitting a relaxable macro.
995 1 if we're emitting the first of the two relaxation alternatives.
996 2 if we're emitting the second alternative. */
997 int sequence;
998
999 /* The first relaxable fixup in the current frag. (In other words,
1000 the first fixup that refers to relaxable code.) */
1001 fixS *first_fixup;
1002
1003 /* sizes[0] says how many bytes of the first alternative are stored in
1004 the current frag. Likewise sizes[1] for the second alternative. */
1005 unsigned int sizes[2];
1006
1007 /* The symbol on which the choice of sequence depends. */
1008 symbolS *symbol;
1009 } mips_relax;
1010 \f
1011 /* Global variables used to decide whether a macro needs a warning. */
1012 static struct {
1013 /* True if the macro is in a branch delay slot. */
1014 bfd_boolean delay_slot_p;
1015
1016 /* For relaxable macros, sizes[0] is the length of the first alternative
1017 in bytes and sizes[1] is the length of the second alternative.
1018 For non-relaxable macros, both elements give the length of the
1019 macro in bytes. */
1020 unsigned int sizes[2];
1021
1022 /* The first variant frag for this macro. */
1023 fragS *first_frag;
1024 } mips_macro_warning;
1025 \f
1026 /* Prototypes for static functions. */
1027
1028 #define internalError() \
1029 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1030
1031 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1032
1033 static void append_insn
1034 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r);
1035 static void mips_no_prev_insn (void);
1036 static void mips16_macro_build
1037 (expressionS *, const char *, const char *, va_list);
1038 static void load_register (int, expressionS *, int);
1039 static void macro_start (void);
1040 static void macro_end (void);
1041 static void macro (struct mips_cl_insn * ip);
1042 static void mips16_macro (struct mips_cl_insn * ip);
1043 #ifdef LOSING_COMPILER
1044 static void macro2 (struct mips_cl_insn * ip);
1045 #endif
1046 static void mips_ip (char *str, struct mips_cl_insn * ip);
1047 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1048 static void mips16_immed
1049 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1050 unsigned long *, bfd_boolean *, unsigned short *);
1051 static size_t my_getSmallExpression
1052 (expressionS *, bfd_reloc_code_real_type *, char *);
1053 static void my_getExpression (expressionS *, char *);
1054 static void s_align (int);
1055 static void s_change_sec (int);
1056 static void s_change_section (int);
1057 static void s_cons (int);
1058 static void s_float_cons (int);
1059 static void s_mips_globl (int);
1060 static void s_option (int);
1061 static void s_mipsset (int);
1062 static void s_abicalls (int);
1063 static void s_cpload (int);
1064 static void s_cpsetup (int);
1065 static void s_cplocal (int);
1066 static void s_cprestore (int);
1067 static void s_cpreturn (int);
1068 static void s_dtprelword (int);
1069 static void s_dtpreldword (int);
1070 static void s_gpvalue (int);
1071 static void s_gpword (int);
1072 static void s_gpdword (int);
1073 static void s_cpadd (int);
1074 static void s_insn (int);
1075 static void md_obj_begin (void);
1076 static void md_obj_end (void);
1077 static void s_mips_ent (int);
1078 static void s_mips_end (int);
1079 static void s_mips_frame (int);
1080 static void s_mips_mask (int reg_type);
1081 static void s_mips_stab (int);
1082 static void s_mips_weakext (int);
1083 static void s_mips_file (int);
1084 static void s_mips_loc (int);
1085 static bfd_boolean pic_need_relax (symbolS *, asection *);
1086 static int relaxed_branch_length (fragS *, asection *, int);
1087 static int validate_mips_insn (const struct mips_opcode *);
1088
1089 /* Table and functions used to map between CPU/ISA names, and
1090 ISA levels, and CPU numbers. */
1091
1092 struct mips_cpu_info
1093 {
1094 const char *name; /* CPU or ISA name. */
1095 int flags; /* ASEs available, or ISA flag. */
1096 int isa; /* ISA level. */
1097 int cpu; /* CPU number (default CPU if ISA). */
1098 };
1099
1100 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1101 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1102 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1103 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1104 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1105 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1106 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1107
1108 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1109 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1110 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1111 \f
1112 /* Pseudo-op table.
1113
1114 The following pseudo-ops from the Kane and Heinrich MIPS book
1115 should be defined here, but are currently unsupported: .alias,
1116 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1117
1118 The following pseudo-ops from the Kane and Heinrich MIPS book are
1119 specific to the type of debugging information being generated, and
1120 should be defined by the object format: .aent, .begin, .bend,
1121 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1122 .vreg.
1123
1124 The following pseudo-ops from the Kane and Heinrich MIPS book are
1125 not MIPS CPU specific, but are also not specific to the object file
1126 format. This file is probably the best place to define them, but
1127 they are not currently supported: .asm0, .endr, .lab, .struct. */
1128
1129 static const pseudo_typeS mips_pseudo_table[] =
1130 {
1131 /* MIPS specific pseudo-ops. */
1132 {"option", s_option, 0},
1133 {"set", s_mipsset, 0},
1134 {"rdata", s_change_sec, 'r'},
1135 {"sdata", s_change_sec, 's'},
1136 {"livereg", s_ignore, 0},
1137 {"abicalls", s_abicalls, 0},
1138 {"cpload", s_cpload, 0},
1139 {"cpsetup", s_cpsetup, 0},
1140 {"cplocal", s_cplocal, 0},
1141 {"cprestore", s_cprestore, 0},
1142 {"cpreturn", s_cpreturn, 0},
1143 {"dtprelword", s_dtprelword, 0},
1144 {"dtpreldword", s_dtpreldword, 0},
1145 {"gpvalue", s_gpvalue, 0},
1146 {"gpword", s_gpword, 0},
1147 {"gpdword", s_gpdword, 0},
1148 {"cpadd", s_cpadd, 0},
1149 {"insn", s_insn, 0},
1150
1151 /* Relatively generic pseudo-ops that happen to be used on MIPS
1152 chips. */
1153 {"asciiz", stringer, 8 + 1},
1154 {"bss", s_change_sec, 'b'},
1155 {"err", s_err, 0},
1156 {"half", s_cons, 1},
1157 {"dword", s_cons, 3},
1158 {"weakext", s_mips_weakext, 0},
1159 {"origin", s_org, 0},
1160 {"repeat", s_rept, 0},
1161
1162 /* These pseudo-ops are defined in read.c, but must be overridden
1163 here for one reason or another. */
1164 {"align", s_align, 0},
1165 {"byte", s_cons, 0},
1166 {"data", s_change_sec, 'd'},
1167 {"double", s_float_cons, 'd'},
1168 {"float", s_float_cons, 'f'},
1169 {"globl", s_mips_globl, 0},
1170 {"global", s_mips_globl, 0},
1171 {"hword", s_cons, 1},
1172 {"int", s_cons, 2},
1173 {"long", s_cons, 2},
1174 {"octa", s_cons, 4},
1175 {"quad", s_cons, 3},
1176 {"section", s_change_section, 0},
1177 {"short", s_cons, 1},
1178 {"single", s_float_cons, 'f'},
1179 {"stabn", s_mips_stab, 'n'},
1180 {"text", s_change_sec, 't'},
1181 {"word", s_cons, 2},
1182
1183 { "extern", ecoff_directive_extern, 0},
1184
1185 { NULL, NULL, 0 },
1186 };
1187
1188 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1189 {
1190 /* These pseudo-ops should be defined by the object file format.
1191 However, a.out doesn't support them, so we have versions here. */
1192 {"aent", s_mips_ent, 1},
1193 {"bgnb", s_ignore, 0},
1194 {"end", s_mips_end, 0},
1195 {"endb", s_ignore, 0},
1196 {"ent", s_mips_ent, 0},
1197 {"file", s_mips_file, 0},
1198 {"fmask", s_mips_mask, 'F'},
1199 {"frame", s_mips_frame, 0},
1200 {"loc", s_mips_loc, 0},
1201 {"mask", s_mips_mask, 'R'},
1202 {"verstamp", s_ignore, 0},
1203 { NULL, NULL, 0 },
1204 };
1205
1206 extern void pop_insert (const pseudo_typeS *);
1207
1208 void
1209 mips_pop_insert (void)
1210 {
1211 pop_insert (mips_pseudo_table);
1212 if (! ECOFF_DEBUGGING)
1213 pop_insert (mips_nonecoff_pseudo_table);
1214 }
1215 \f
1216 /* Symbols labelling the current insn. */
1217
1218 struct insn_label_list
1219 {
1220 struct insn_label_list *next;
1221 symbolS *label;
1222 };
1223
1224 static struct insn_label_list *free_insn_labels;
1225 #define label_list tc_segment_info_data.labels
1226
1227 static void mips_clear_insn_labels (void);
1228
1229 static inline void
1230 mips_clear_insn_labels (void)
1231 {
1232 register struct insn_label_list **pl;
1233 segment_info_type *si;
1234
1235 if (now_seg)
1236 {
1237 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1238 ;
1239
1240 si = seg_info (now_seg);
1241 *pl = si->label_list;
1242 si->label_list = NULL;
1243 }
1244 }
1245
1246 \f
1247 static char *expr_end;
1248
1249 /* Expressions which appear in instructions. These are set by
1250 mips_ip. */
1251
1252 static expressionS imm_expr;
1253 static expressionS imm2_expr;
1254 static expressionS offset_expr;
1255
1256 /* Relocs associated with imm_expr and offset_expr. */
1257
1258 static bfd_reloc_code_real_type imm_reloc[3]
1259 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1260 static bfd_reloc_code_real_type offset_reloc[3]
1261 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1262
1263 /* These are set by mips16_ip if an explicit extension is used. */
1264
1265 static bfd_boolean mips16_small, mips16_ext;
1266
1267 #ifdef OBJ_ELF
1268 /* The pdr segment for per procedure frame/regmask info. Not used for
1269 ECOFF debugging. */
1270
1271 static segT pdr_seg;
1272 #endif
1273
1274 /* The default target format to use. */
1275
1276 const char *
1277 mips_target_format (void)
1278 {
1279 switch (OUTPUT_FLAVOR)
1280 {
1281 case bfd_target_ecoff_flavour:
1282 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1283 case bfd_target_coff_flavour:
1284 return "pe-mips";
1285 case bfd_target_elf_flavour:
1286 #ifdef TE_VXWORKS
1287 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1288 return (target_big_endian
1289 ? "elf32-bigmips-vxworks"
1290 : "elf32-littlemips-vxworks");
1291 #endif
1292 #ifdef TE_TMIPS
1293 /* This is traditional mips. */
1294 return (target_big_endian
1295 ? (HAVE_64BIT_OBJECTS
1296 ? "elf64-tradbigmips"
1297 : (HAVE_NEWABI
1298 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1299 : (HAVE_64BIT_OBJECTS
1300 ? "elf64-tradlittlemips"
1301 : (HAVE_NEWABI
1302 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1303 #else
1304 return (target_big_endian
1305 ? (HAVE_64BIT_OBJECTS
1306 ? "elf64-bigmips"
1307 : (HAVE_NEWABI
1308 ? "elf32-nbigmips" : "elf32-bigmips"))
1309 : (HAVE_64BIT_OBJECTS
1310 ? "elf64-littlemips"
1311 : (HAVE_NEWABI
1312 ? "elf32-nlittlemips" : "elf32-littlemips")));
1313 #endif
1314 default:
1315 abort ();
1316 return NULL;
1317 }
1318 }
1319
1320 /* Return the length of instruction INSN. */
1321
1322 static inline unsigned int
1323 insn_length (const struct mips_cl_insn *insn)
1324 {
1325 if (!mips_opts.mips16)
1326 return 4;
1327 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1328 }
1329
1330 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1331
1332 static void
1333 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1334 {
1335 size_t i;
1336
1337 insn->insn_mo = mo;
1338 insn->use_extend = FALSE;
1339 insn->extend = 0;
1340 insn->insn_opcode = mo->match;
1341 insn->frag = NULL;
1342 insn->where = 0;
1343 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1344 insn->fixp[i] = NULL;
1345 insn->fixed_p = (mips_opts.noreorder > 0);
1346 insn->noreorder_p = (mips_opts.noreorder > 0);
1347 insn->mips16_absolute_jump_p = 0;
1348 }
1349
1350 /* Record the current MIPS16 mode in now_seg. */
1351
1352 static void
1353 mips_record_mips16_mode (void)
1354 {
1355 segment_info_type *si;
1356
1357 si = seg_info (now_seg);
1358 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1359 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1360 }
1361
1362 /* Install INSN at the location specified by its "frag" and "where" fields. */
1363
1364 static void
1365 install_insn (const struct mips_cl_insn *insn)
1366 {
1367 char *f = insn->frag->fr_literal + insn->where;
1368 if (!mips_opts.mips16)
1369 md_number_to_chars (f, insn->insn_opcode, 4);
1370 else if (insn->mips16_absolute_jump_p)
1371 {
1372 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1373 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1374 }
1375 else
1376 {
1377 if (insn->use_extend)
1378 {
1379 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1380 f += 2;
1381 }
1382 md_number_to_chars (f, insn->insn_opcode, 2);
1383 }
1384 mips_record_mips16_mode ();
1385 }
1386
1387 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1388 and install the opcode in the new location. */
1389
1390 static void
1391 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1392 {
1393 size_t i;
1394
1395 insn->frag = frag;
1396 insn->where = where;
1397 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1398 if (insn->fixp[i] != NULL)
1399 {
1400 insn->fixp[i]->fx_frag = frag;
1401 insn->fixp[i]->fx_where = where;
1402 }
1403 install_insn (insn);
1404 }
1405
1406 /* Add INSN to the end of the output. */
1407
1408 static void
1409 add_fixed_insn (struct mips_cl_insn *insn)
1410 {
1411 char *f = frag_more (insn_length (insn));
1412 move_insn (insn, frag_now, f - frag_now->fr_literal);
1413 }
1414
1415 /* Start a variant frag and move INSN to the start of the variant part,
1416 marking it as fixed. The other arguments are as for frag_var. */
1417
1418 static void
1419 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1420 relax_substateT subtype, symbolS *symbol, offsetT offset)
1421 {
1422 frag_grow (max_chars);
1423 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1424 insn->fixed_p = 1;
1425 frag_var (rs_machine_dependent, max_chars, var,
1426 subtype, symbol, offset, NULL);
1427 }
1428
1429 /* Insert N copies of INSN into the history buffer, starting at
1430 position FIRST. Neither FIRST nor N need to be clipped. */
1431
1432 static void
1433 insert_into_history (unsigned int first, unsigned int n,
1434 const struct mips_cl_insn *insn)
1435 {
1436 if (mips_relax.sequence != 2)
1437 {
1438 unsigned int i;
1439
1440 for (i = ARRAY_SIZE (history); i-- > first;)
1441 if (i >= first + n)
1442 history[i] = history[i - n];
1443 else
1444 history[i] = *insn;
1445 }
1446 }
1447
1448 /* Emit a nop instruction, recording it in the history buffer. */
1449
1450 static void
1451 emit_nop (void)
1452 {
1453 add_fixed_insn (NOP_INSN);
1454 insert_into_history (0, 1, NOP_INSN);
1455 }
1456
1457 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1458 the idea is to make it obvious at a glance that each errata is
1459 included. */
1460
1461 static void
1462 init_vr4120_conflicts (void)
1463 {
1464 #define CONFLICT(FIRST, SECOND) \
1465 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1466
1467 /* Errata 21 - [D]DIV[U] after [D]MACC */
1468 CONFLICT (MACC, DIV);
1469 CONFLICT (DMACC, DIV);
1470
1471 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1472 CONFLICT (DMULT, DMULT);
1473 CONFLICT (DMULT, DMACC);
1474 CONFLICT (DMACC, DMULT);
1475 CONFLICT (DMACC, DMACC);
1476
1477 /* Errata 24 - MT{LO,HI} after [D]MACC */
1478 CONFLICT (MACC, MTHILO);
1479 CONFLICT (DMACC, MTHILO);
1480
1481 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1482 instruction is executed immediately after a MACC or DMACC
1483 instruction, the result of [either instruction] is incorrect." */
1484 CONFLICT (MACC, MULT);
1485 CONFLICT (MACC, DMULT);
1486 CONFLICT (DMACC, MULT);
1487 CONFLICT (DMACC, DMULT);
1488
1489 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1490 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1491 DDIV or DDIVU instruction, the result of the MACC or
1492 DMACC instruction is incorrect.". */
1493 CONFLICT (DMULT, MACC);
1494 CONFLICT (DMULT, DMACC);
1495 CONFLICT (DIV, MACC);
1496 CONFLICT (DIV, DMACC);
1497
1498 #undef CONFLICT
1499 }
1500
1501 struct regname {
1502 const char *name;
1503 unsigned int num;
1504 };
1505
1506 #define RTYPE_MASK 0x1ff00
1507 #define RTYPE_NUM 0x00100
1508 #define RTYPE_FPU 0x00200
1509 #define RTYPE_FCC 0x00400
1510 #define RTYPE_VEC 0x00800
1511 #define RTYPE_GP 0x01000
1512 #define RTYPE_CP0 0x02000
1513 #define RTYPE_PC 0x04000
1514 #define RTYPE_ACC 0x08000
1515 #define RTYPE_CCC 0x10000
1516 #define RNUM_MASK 0x000ff
1517 #define RWARN 0x80000
1518
1519 #define GENERIC_REGISTER_NUMBERS \
1520 {"$0", RTYPE_NUM | 0}, \
1521 {"$1", RTYPE_NUM | 1}, \
1522 {"$2", RTYPE_NUM | 2}, \
1523 {"$3", RTYPE_NUM | 3}, \
1524 {"$4", RTYPE_NUM | 4}, \
1525 {"$5", RTYPE_NUM | 5}, \
1526 {"$6", RTYPE_NUM | 6}, \
1527 {"$7", RTYPE_NUM | 7}, \
1528 {"$8", RTYPE_NUM | 8}, \
1529 {"$9", RTYPE_NUM | 9}, \
1530 {"$10", RTYPE_NUM | 10}, \
1531 {"$11", RTYPE_NUM | 11}, \
1532 {"$12", RTYPE_NUM | 12}, \
1533 {"$13", RTYPE_NUM | 13}, \
1534 {"$14", RTYPE_NUM | 14}, \
1535 {"$15", RTYPE_NUM | 15}, \
1536 {"$16", RTYPE_NUM | 16}, \
1537 {"$17", RTYPE_NUM | 17}, \
1538 {"$18", RTYPE_NUM | 18}, \
1539 {"$19", RTYPE_NUM | 19}, \
1540 {"$20", RTYPE_NUM | 20}, \
1541 {"$21", RTYPE_NUM | 21}, \
1542 {"$22", RTYPE_NUM | 22}, \
1543 {"$23", RTYPE_NUM | 23}, \
1544 {"$24", RTYPE_NUM | 24}, \
1545 {"$25", RTYPE_NUM | 25}, \
1546 {"$26", RTYPE_NUM | 26}, \
1547 {"$27", RTYPE_NUM | 27}, \
1548 {"$28", RTYPE_NUM | 28}, \
1549 {"$29", RTYPE_NUM | 29}, \
1550 {"$30", RTYPE_NUM | 30}, \
1551 {"$31", RTYPE_NUM | 31}
1552
1553 #define FPU_REGISTER_NAMES \
1554 {"$f0", RTYPE_FPU | 0}, \
1555 {"$f1", RTYPE_FPU | 1}, \
1556 {"$f2", RTYPE_FPU | 2}, \
1557 {"$f3", RTYPE_FPU | 3}, \
1558 {"$f4", RTYPE_FPU | 4}, \
1559 {"$f5", RTYPE_FPU | 5}, \
1560 {"$f6", RTYPE_FPU | 6}, \
1561 {"$f7", RTYPE_FPU | 7}, \
1562 {"$f8", RTYPE_FPU | 8}, \
1563 {"$f9", RTYPE_FPU | 9}, \
1564 {"$f10", RTYPE_FPU | 10}, \
1565 {"$f11", RTYPE_FPU | 11}, \
1566 {"$f12", RTYPE_FPU | 12}, \
1567 {"$f13", RTYPE_FPU | 13}, \
1568 {"$f14", RTYPE_FPU | 14}, \
1569 {"$f15", RTYPE_FPU | 15}, \
1570 {"$f16", RTYPE_FPU | 16}, \
1571 {"$f17", RTYPE_FPU | 17}, \
1572 {"$f18", RTYPE_FPU | 18}, \
1573 {"$f19", RTYPE_FPU | 19}, \
1574 {"$f20", RTYPE_FPU | 20}, \
1575 {"$f21", RTYPE_FPU | 21}, \
1576 {"$f22", RTYPE_FPU | 22}, \
1577 {"$f23", RTYPE_FPU | 23}, \
1578 {"$f24", RTYPE_FPU | 24}, \
1579 {"$f25", RTYPE_FPU | 25}, \
1580 {"$f26", RTYPE_FPU | 26}, \
1581 {"$f27", RTYPE_FPU | 27}, \
1582 {"$f28", RTYPE_FPU | 28}, \
1583 {"$f29", RTYPE_FPU | 29}, \
1584 {"$f30", RTYPE_FPU | 30}, \
1585 {"$f31", RTYPE_FPU | 31}
1586
1587 #define FPU_CONDITION_CODE_NAMES \
1588 {"$fcc0", RTYPE_FCC | 0}, \
1589 {"$fcc1", RTYPE_FCC | 1}, \
1590 {"$fcc2", RTYPE_FCC | 2}, \
1591 {"$fcc3", RTYPE_FCC | 3}, \
1592 {"$fcc4", RTYPE_FCC | 4}, \
1593 {"$fcc5", RTYPE_FCC | 5}, \
1594 {"$fcc6", RTYPE_FCC | 6}, \
1595 {"$fcc7", RTYPE_FCC | 7}
1596
1597 #define COPROC_CONDITION_CODE_NAMES \
1598 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1599 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1600 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1601 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1602 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1603 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1604 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1605 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1606
1607 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1608 {"$a4", RTYPE_GP | 8}, \
1609 {"$a5", RTYPE_GP | 9}, \
1610 {"$a6", RTYPE_GP | 10}, \
1611 {"$a7", RTYPE_GP | 11}, \
1612 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1613 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1614 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1615 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1616 {"$t0", RTYPE_GP | 12}, \
1617 {"$t1", RTYPE_GP | 13}, \
1618 {"$t2", RTYPE_GP | 14}, \
1619 {"$t3", RTYPE_GP | 15}
1620
1621 #define O32_SYMBOLIC_REGISTER_NAMES \
1622 {"$t0", RTYPE_GP | 8}, \
1623 {"$t1", RTYPE_GP | 9}, \
1624 {"$t2", RTYPE_GP | 10}, \
1625 {"$t3", RTYPE_GP | 11}, \
1626 {"$t4", RTYPE_GP | 12}, \
1627 {"$t5", RTYPE_GP | 13}, \
1628 {"$t6", RTYPE_GP | 14}, \
1629 {"$t7", RTYPE_GP | 15}, \
1630 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1631 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1632 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1633 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1634
1635 /* Remaining symbolic register names */
1636 #define SYMBOLIC_REGISTER_NAMES \
1637 {"$zero", RTYPE_GP | 0}, \
1638 {"$at", RTYPE_GP | 1}, \
1639 {"$AT", RTYPE_GP | 1}, \
1640 {"$v0", RTYPE_GP | 2}, \
1641 {"$v1", RTYPE_GP | 3}, \
1642 {"$a0", RTYPE_GP | 4}, \
1643 {"$a1", RTYPE_GP | 5}, \
1644 {"$a2", RTYPE_GP | 6}, \
1645 {"$a3", RTYPE_GP | 7}, \
1646 {"$s0", RTYPE_GP | 16}, \
1647 {"$s1", RTYPE_GP | 17}, \
1648 {"$s2", RTYPE_GP | 18}, \
1649 {"$s3", RTYPE_GP | 19}, \
1650 {"$s4", RTYPE_GP | 20}, \
1651 {"$s5", RTYPE_GP | 21}, \
1652 {"$s6", RTYPE_GP | 22}, \
1653 {"$s7", RTYPE_GP | 23}, \
1654 {"$t8", RTYPE_GP | 24}, \
1655 {"$t9", RTYPE_GP | 25}, \
1656 {"$k0", RTYPE_GP | 26}, \
1657 {"$kt0", RTYPE_GP | 26}, \
1658 {"$k1", RTYPE_GP | 27}, \
1659 {"$kt1", RTYPE_GP | 27}, \
1660 {"$gp", RTYPE_GP | 28}, \
1661 {"$sp", RTYPE_GP | 29}, \
1662 {"$s8", RTYPE_GP | 30}, \
1663 {"$fp", RTYPE_GP | 30}, \
1664 {"$ra", RTYPE_GP | 31}
1665
1666 #define MIPS16_SPECIAL_REGISTER_NAMES \
1667 {"$pc", RTYPE_PC | 0}
1668
1669 #define MDMX_VECTOR_REGISTER_NAMES \
1670 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1671 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1672 {"$v2", RTYPE_VEC | 2}, \
1673 {"$v3", RTYPE_VEC | 3}, \
1674 {"$v4", RTYPE_VEC | 4}, \
1675 {"$v5", RTYPE_VEC | 5}, \
1676 {"$v6", RTYPE_VEC | 6}, \
1677 {"$v7", RTYPE_VEC | 7}, \
1678 {"$v8", RTYPE_VEC | 8}, \
1679 {"$v9", RTYPE_VEC | 9}, \
1680 {"$v10", RTYPE_VEC | 10}, \
1681 {"$v11", RTYPE_VEC | 11}, \
1682 {"$v12", RTYPE_VEC | 12}, \
1683 {"$v13", RTYPE_VEC | 13}, \
1684 {"$v14", RTYPE_VEC | 14}, \
1685 {"$v15", RTYPE_VEC | 15}, \
1686 {"$v16", RTYPE_VEC | 16}, \
1687 {"$v17", RTYPE_VEC | 17}, \
1688 {"$v18", RTYPE_VEC | 18}, \
1689 {"$v19", RTYPE_VEC | 19}, \
1690 {"$v20", RTYPE_VEC | 20}, \
1691 {"$v21", RTYPE_VEC | 21}, \
1692 {"$v22", RTYPE_VEC | 22}, \
1693 {"$v23", RTYPE_VEC | 23}, \
1694 {"$v24", RTYPE_VEC | 24}, \
1695 {"$v25", RTYPE_VEC | 25}, \
1696 {"$v26", RTYPE_VEC | 26}, \
1697 {"$v27", RTYPE_VEC | 27}, \
1698 {"$v28", RTYPE_VEC | 28}, \
1699 {"$v29", RTYPE_VEC | 29}, \
1700 {"$v30", RTYPE_VEC | 30}, \
1701 {"$v31", RTYPE_VEC | 31}
1702
1703 #define MIPS_DSP_ACCUMULATOR_NAMES \
1704 {"$ac0", RTYPE_ACC | 0}, \
1705 {"$ac1", RTYPE_ACC | 1}, \
1706 {"$ac2", RTYPE_ACC | 2}, \
1707 {"$ac3", RTYPE_ACC | 3}
1708
1709 static const struct regname reg_names[] = {
1710 GENERIC_REGISTER_NUMBERS,
1711 FPU_REGISTER_NAMES,
1712 FPU_CONDITION_CODE_NAMES,
1713 COPROC_CONDITION_CODE_NAMES,
1714
1715 /* The $txx registers depends on the abi,
1716 these will be added later into the symbol table from
1717 one of the tables below once mips_abi is set after
1718 parsing of arguments from the command line. */
1719 SYMBOLIC_REGISTER_NAMES,
1720
1721 MIPS16_SPECIAL_REGISTER_NAMES,
1722 MDMX_VECTOR_REGISTER_NAMES,
1723 MIPS_DSP_ACCUMULATOR_NAMES,
1724 {0, 0}
1725 };
1726
1727 static const struct regname reg_names_o32[] = {
1728 O32_SYMBOLIC_REGISTER_NAMES,
1729 {0, 0}
1730 };
1731
1732 static const struct regname reg_names_n32n64[] = {
1733 N32N64_SYMBOLIC_REGISTER_NAMES,
1734 {0, 0}
1735 };
1736
1737 static int
1738 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1739 {
1740 symbolS *symbolP;
1741 char *e;
1742 char save_c;
1743 int reg = -1;
1744
1745 /* Find end of name. */
1746 e = *s;
1747 if (is_name_beginner (*e))
1748 ++e;
1749 while (is_part_of_name (*e))
1750 ++e;
1751
1752 /* Terminate name. */
1753 save_c = *e;
1754 *e = '\0';
1755
1756 /* Look for a register symbol. */
1757 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1758 {
1759 int r = S_GET_VALUE (symbolP);
1760 if (r & types)
1761 reg = r & RNUM_MASK;
1762 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1763 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1764 reg = (r & RNUM_MASK) - 2;
1765 }
1766 /* Else see if this is a register defined in an itbl entry. */
1767 else if ((types & RTYPE_GP) && itbl_have_entries)
1768 {
1769 char *n = *s;
1770 unsigned long r;
1771
1772 if (*n == '$')
1773 ++n;
1774 if (itbl_get_reg_val (n, &r))
1775 reg = r & RNUM_MASK;
1776 }
1777
1778 /* Advance to next token if a register was recognised. */
1779 if (reg >= 0)
1780 *s = e;
1781 else if (types & RWARN)
1782 as_warn ("Unrecognized register name `%s'", *s);
1783
1784 *e = save_c;
1785 if (regnop)
1786 *regnop = reg;
1787 return reg >= 0;
1788 }
1789
1790 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1791 architecture. If EXPANSIONP is TRUE then this check is done while
1792 expanding a macro. Use is_opcode_valid_16 for MIPS16 opcodes. */
1793
1794 static bfd_boolean
1795 is_opcode_valid (const struct mips_opcode *mo, bfd_boolean expansionp)
1796 {
1797 int isa = mips_opts.isa;
1798 int fp_s, fp_d;
1799
1800 if (mips_opts.ase_mdmx)
1801 isa |= INSN_MDMX;
1802 if (mips_opts.ase_dsp)
1803 isa |= INSN_DSP;
1804 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1805 isa |= INSN_DSP64;
1806 if (mips_opts.ase_dspr2)
1807 isa |= INSN_DSPR2;
1808 if (mips_opts.ase_mt)
1809 isa |= INSN_MT;
1810 if (mips_opts.ase_mips3d)
1811 isa |= INSN_MIPS3D;
1812 if (mips_opts.ase_smartmips)
1813 isa |= INSN_SMARTMIPS;
1814
1815 /* For user code we don't check for mips_opts.mips16 since we want
1816 to allow jalx if -mips16 was specified on the command line. */
1817 if (expansionp ? mips_opts.mips16 : file_ase_mips16)
1818 isa |= INSN_MIPS16;
1819
1820 /* Don't accept instructions based on the ISA if the CPU does not implement
1821 all the coprocessor insns. */
1822 if (NO_ISA_COP (mips_opts.arch)
1823 && COP_INSN (mo->pinfo))
1824 isa = 0;
1825
1826 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1827 return FALSE;
1828
1829 /* Check whether the instruction or macro requires single-precision or
1830 double-precision floating-point support. Note that this information is
1831 stored differently in the opcode table for insns and macros. */
1832 if (mo->pinfo == INSN_MACRO)
1833 {
1834 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1835 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1836 }
1837 else
1838 {
1839 fp_s = mo->pinfo & FP_S;
1840 fp_d = mo->pinfo & FP_D;
1841 }
1842
1843 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1844 return FALSE;
1845
1846 if (fp_s && mips_opts.soft_float)
1847 return FALSE;
1848
1849 return TRUE;
1850 }
1851
1852 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1853 selected ISA and architecture. */
1854
1855 static bfd_boolean
1856 is_opcode_valid_16 (const struct mips_opcode *mo)
1857 {
1858 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1859 }
1860
1861 /* This function is called once, at assembler startup time. It should set up
1862 all the tables, etc. that the MD part of the assembler will need. */
1863
1864 void
1865 md_begin (void)
1866 {
1867 const char *retval = NULL;
1868 int i = 0;
1869 int broken = 0;
1870
1871 if (mips_pic != NO_PIC)
1872 {
1873 if (g_switch_seen && g_switch_value != 0)
1874 as_bad (_("-G may not be used in position-independent code"));
1875 g_switch_value = 0;
1876 }
1877
1878 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1879 as_warn (_("Could not set architecture and machine"));
1880
1881 op_hash = hash_new ();
1882
1883 for (i = 0; i < NUMOPCODES;)
1884 {
1885 const char *name = mips_opcodes[i].name;
1886
1887 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1888 if (retval != NULL)
1889 {
1890 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1891 mips_opcodes[i].name, retval);
1892 /* Probably a memory allocation problem? Give up now. */
1893 as_fatal (_("Broken assembler. No assembly attempted."));
1894 }
1895 do
1896 {
1897 if (mips_opcodes[i].pinfo != INSN_MACRO)
1898 {
1899 if (!validate_mips_insn (&mips_opcodes[i]))
1900 broken = 1;
1901 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1902 {
1903 create_insn (&nop_insn, mips_opcodes + i);
1904 nop_insn.fixed_p = 1;
1905 }
1906 }
1907 ++i;
1908 }
1909 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1910 }
1911
1912 mips16_op_hash = hash_new ();
1913
1914 i = 0;
1915 while (i < bfd_mips16_num_opcodes)
1916 {
1917 const char *name = mips16_opcodes[i].name;
1918
1919 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1920 if (retval != NULL)
1921 as_fatal (_("internal: can't hash `%s': %s"),
1922 mips16_opcodes[i].name, retval);
1923 do
1924 {
1925 if (mips16_opcodes[i].pinfo != INSN_MACRO
1926 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1927 != mips16_opcodes[i].match))
1928 {
1929 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1930 mips16_opcodes[i].name, mips16_opcodes[i].args);
1931 broken = 1;
1932 }
1933 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1934 {
1935 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1936 mips16_nop_insn.fixed_p = 1;
1937 }
1938 ++i;
1939 }
1940 while (i < bfd_mips16_num_opcodes
1941 && strcmp (mips16_opcodes[i].name, name) == 0);
1942 }
1943
1944 if (broken)
1945 as_fatal (_("Broken assembler. No assembly attempted."));
1946
1947 /* We add all the general register names to the symbol table. This
1948 helps us detect invalid uses of them. */
1949 for (i = 0; reg_names[i].name; i++)
1950 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1951 reg_names[i].num, /* & RNUM_MASK, */
1952 &zero_address_frag));
1953 if (HAVE_NEWABI)
1954 for (i = 0; reg_names_n32n64[i].name; i++)
1955 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1956 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1957 &zero_address_frag));
1958 else
1959 for (i = 0; reg_names_o32[i].name; i++)
1960 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1961 reg_names_o32[i].num, /* & RNUM_MASK, */
1962 &zero_address_frag));
1963
1964 mips_no_prev_insn ();
1965
1966 mips_gprmask = 0;
1967 mips_cprmask[0] = 0;
1968 mips_cprmask[1] = 0;
1969 mips_cprmask[2] = 0;
1970 mips_cprmask[3] = 0;
1971
1972 /* set the default alignment for the text section (2**2) */
1973 record_alignment (text_section, 2);
1974
1975 bfd_set_gp_size (stdoutput, g_switch_value);
1976
1977 #ifdef OBJ_ELF
1978 if (IS_ELF)
1979 {
1980 /* On a native system other than VxWorks, sections must be aligned
1981 to 16 byte boundaries. When configured for an embedded ELF
1982 target, we don't bother. */
1983 if (strncmp (TARGET_OS, "elf", 3) != 0
1984 && strncmp (TARGET_OS, "vxworks", 7) != 0)
1985 {
1986 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
1987 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
1988 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
1989 }
1990
1991 /* Create a .reginfo section for register masks and a .mdebug
1992 section for debugging information. */
1993 {
1994 segT seg;
1995 subsegT subseg;
1996 flagword flags;
1997 segT sec;
1998
1999 seg = now_seg;
2000 subseg = now_subseg;
2001
2002 /* The ABI says this section should be loaded so that the
2003 running program can access it. However, we don't load it
2004 if we are configured for an embedded target */
2005 flags = SEC_READONLY | SEC_DATA;
2006 if (strncmp (TARGET_OS, "elf", 3) != 0)
2007 flags |= SEC_ALLOC | SEC_LOAD;
2008
2009 if (mips_abi != N64_ABI)
2010 {
2011 sec = subseg_new (".reginfo", (subsegT) 0);
2012
2013 bfd_set_section_flags (stdoutput, sec, flags);
2014 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2015
2016 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2017 }
2018 else
2019 {
2020 /* The 64-bit ABI uses a .MIPS.options section rather than
2021 .reginfo section. */
2022 sec = subseg_new (".MIPS.options", (subsegT) 0);
2023 bfd_set_section_flags (stdoutput, sec, flags);
2024 bfd_set_section_alignment (stdoutput, sec, 3);
2025
2026 /* Set up the option header. */
2027 {
2028 Elf_Internal_Options opthdr;
2029 char *f;
2030
2031 opthdr.kind = ODK_REGINFO;
2032 opthdr.size = (sizeof (Elf_External_Options)
2033 + sizeof (Elf64_External_RegInfo));
2034 opthdr.section = 0;
2035 opthdr.info = 0;
2036 f = frag_more (sizeof (Elf_External_Options));
2037 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2038 (Elf_External_Options *) f);
2039
2040 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2041 }
2042 }
2043
2044 if (ECOFF_DEBUGGING)
2045 {
2046 sec = subseg_new (".mdebug", (subsegT) 0);
2047 (void) bfd_set_section_flags (stdoutput, sec,
2048 SEC_HAS_CONTENTS | SEC_READONLY);
2049 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2050 }
2051 else if (mips_flag_pdr)
2052 {
2053 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2054 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2055 SEC_READONLY | SEC_RELOC
2056 | SEC_DEBUGGING);
2057 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2058 }
2059
2060 subseg_set (seg, subseg);
2061 }
2062 }
2063 #endif /* OBJ_ELF */
2064
2065 if (! ECOFF_DEBUGGING)
2066 md_obj_begin ();
2067
2068 if (mips_fix_vr4120)
2069 init_vr4120_conflicts ();
2070 }
2071
2072 void
2073 md_mips_end (void)
2074 {
2075 if (! ECOFF_DEBUGGING)
2076 md_obj_end ();
2077 }
2078
2079 void
2080 md_assemble (char *str)
2081 {
2082 struct mips_cl_insn insn;
2083 bfd_reloc_code_real_type unused_reloc[3]
2084 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2085
2086 imm_expr.X_op = O_absent;
2087 imm2_expr.X_op = O_absent;
2088 offset_expr.X_op = O_absent;
2089 imm_reloc[0] = BFD_RELOC_UNUSED;
2090 imm_reloc[1] = BFD_RELOC_UNUSED;
2091 imm_reloc[2] = BFD_RELOC_UNUSED;
2092 offset_reloc[0] = BFD_RELOC_UNUSED;
2093 offset_reloc[1] = BFD_RELOC_UNUSED;
2094 offset_reloc[2] = BFD_RELOC_UNUSED;
2095
2096 if (mips_opts.mips16)
2097 mips16_ip (str, &insn);
2098 else
2099 {
2100 mips_ip (str, &insn);
2101 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2102 str, insn.insn_opcode));
2103 }
2104
2105 if (insn_error)
2106 {
2107 as_bad ("%s `%s'", insn_error, str);
2108 return;
2109 }
2110
2111 if (insn.insn_mo->pinfo == INSN_MACRO)
2112 {
2113 macro_start ();
2114 if (mips_opts.mips16)
2115 mips16_macro (&insn);
2116 else
2117 macro (&insn);
2118 macro_end ();
2119 }
2120 else
2121 {
2122 if (imm_expr.X_op != O_absent)
2123 append_insn (&insn, &imm_expr, imm_reloc);
2124 else if (offset_expr.X_op != O_absent)
2125 append_insn (&insn, &offset_expr, offset_reloc);
2126 else
2127 append_insn (&insn, NULL, unused_reloc);
2128 }
2129 }
2130
2131 /* Convenience functions for abstracting away the differences between
2132 MIPS16 and non-MIPS16 relocations. */
2133
2134 static inline bfd_boolean
2135 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2136 {
2137 switch (reloc)
2138 {
2139 case BFD_RELOC_MIPS16_JMP:
2140 case BFD_RELOC_MIPS16_GPREL:
2141 case BFD_RELOC_MIPS16_GOT16:
2142 case BFD_RELOC_MIPS16_CALL16:
2143 case BFD_RELOC_MIPS16_HI16_S:
2144 case BFD_RELOC_MIPS16_HI16:
2145 case BFD_RELOC_MIPS16_LO16:
2146 return TRUE;
2147
2148 default:
2149 return FALSE;
2150 }
2151 }
2152
2153 static inline bfd_boolean
2154 got16_reloc_p (bfd_reloc_code_real_type reloc)
2155 {
2156 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2157 }
2158
2159 static inline bfd_boolean
2160 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2161 {
2162 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2163 }
2164
2165 static inline bfd_boolean
2166 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2167 {
2168 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2169 }
2170
2171 /* Return true if the given relocation might need a matching %lo().
2172 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2173 need a matching %lo() when applied to local symbols. */
2174
2175 static inline bfd_boolean
2176 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2177 {
2178 return (HAVE_IN_PLACE_ADDENDS
2179 && (hi16_reloc_p (reloc)
2180 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2181 all GOT16 relocations evaluate to "G". */
2182 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2183 }
2184
2185 /* Return the type of %lo() reloc needed by RELOC, given that
2186 reloc_needs_lo_p. */
2187
2188 static inline bfd_reloc_code_real_type
2189 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2190 {
2191 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2192 }
2193
2194 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2195 relocation. */
2196
2197 static inline bfd_boolean
2198 fixup_has_matching_lo_p (fixS *fixp)
2199 {
2200 return (fixp->fx_next != NULL
2201 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2202 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2203 && fixp->fx_offset == fixp->fx_next->fx_offset);
2204 }
2205
2206 /* See whether instruction IP reads register REG. CLASS is the type
2207 of register. */
2208
2209 static int
2210 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2211 enum mips_regclass class)
2212 {
2213 if (class == MIPS16_REG)
2214 {
2215 assert (mips_opts.mips16);
2216 reg = mips16_to_32_reg_map[reg];
2217 class = MIPS_GR_REG;
2218 }
2219
2220 /* Don't report on general register ZERO, since it never changes. */
2221 if (class == MIPS_GR_REG && reg == ZERO)
2222 return 0;
2223
2224 if (class == MIPS_FP_REG)
2225 {
2226 assert (! mips_opts.mips16);
2227 /* If we are called with either $f0 or $f1, we must check $f0.
2228 This is not optimal, because it will introduce an unnecessary
2229 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2230 need to distinguish reading both $f0 and $f1 or just one of
2231 them. Note that we don't have to check the other way,
2232 because there is no instruction that sets both $f0 and $f1
2233 and requires a delay. */
2234 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2235 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2236 == (reg &~ (unsigned) 1)))
2237 return 1;
2238 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2239 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2240 == (reg &~ (unsigned) 1)))
2241 return 1;
2242 }
2243 else if (! mips_opts.mips16)
2244 {
2245 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2246 && EXTRACT_OPERAND (RS, *ip) == reg)
2247 return 1;
2248 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2249 && EXTRACT_OPERAND (RT, *ip) == reg)
2250 return 1;
2251 }
2252 else
2253 {
2254 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2255 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2256 return 1;
2257 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2258 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2259 return 1;
2260 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2261 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2262 == reg))
2263 return 1;
2264 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2265 return 1;
2266 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2267 return 1;
2268 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2269 return 1;
2270 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2271 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2272 return 1;
2273 }
2274
2275 return 0;
2276 }
2277
2278 /* This function returns true if modifying a register requires a
2279 delay. */
2280
2281 static int
2282 reg_needs_delay (unsigned int reg)
2283 {
2284 unsigned long prev_pinfo;
2285
2286 prev_pinfo = history[0].insn_mo->pinfo;
2287 if (! mips_opts.noreorder
2288 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2289 && ! gpr_interlocks)
2290 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2291 && ! cop_interlocks)))
2292 {
2293 /* A load from a coprocessor or from memory. All load delays
2294 delay the use of general register rt for one instruction. */
2295 /* Itbl support may require additional care here. */
2296 know (prev_pinfo & INSN_WRITE_GPR_T);
2297 if (reg == EXTRACT_OPERAND (RT, history[0]))
2298 return 1;
2299 }
2300
2301 return 0;
2302 }
2303
2304 /* Move all labels in insn_labels to the current insertion point. */
2305
2306 static void
2307 mips_move_labels (void)
2308 {
2309 segment_info_type *si = seg_info (now_seg);
2310 struct insn_label_list *l;
2311 valueT val;
2312
2313 for (l = si->label_list; l != NULL; l = l->next)
2314 {
2315 assert (S_GET_SEGMENT (l->label) == now_seg);
2316 symbol_set_frag (l->label, frag_now);
2317 val = (valueT) frag_now_fix ();
2318 /* mips16 text labels are stored as odd. */
2319 if (mips_opts.mips16)
2320 ++val;
2321 S_SET_VALUE (l->label, val);
2322 }
2323 }
2324
2325 static bfd_boolean
2326 s_is_linkonce (symbolS *sym, segT from_seg)
2327 {
2328 bfd_boolean linkonce = FALSE;
2329 segT symseg = S_GET_SEGMENT (sym);
2330
2331 if (symseg != from_seg && !S_IS_LOCAL (sym))
2332 {
2333 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2334 linkonce = TRUE;
2335 #ifdef OBJ_ELF
2336 /* The GNU toolchain uses an extension for ELF: a section
2337 beginning with the magic string .gnu.linkonce is a
2338 linkonce section. */
2339 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2340 sizeof ".gnu.linkonce" - 1) == 0)
2341 linkonce = TRUE;
2342 #endif
2343 }
2344 return linkonce;
2345 }
2346
2347 /* Mark instruction labels in mips16 mode. This permits the linker to
2348 handle them specially, such as generating jalx instructions when
2349 needed. We also make them odd for the duration of the assembly, in
2350 order to generate the right sort of code. We will make them even
2351 in the adjust_symtab routine, while leaving them marked. This is
2352 convenient for the debugger and the disassembler. The linker knows
2353 to make them odd again. */
2354
2355 static void
2356 mips16_mark_labels (void)
2357 {
2358 segment_info_type *si = seg_info (now_seg);
2359 struct insn_label_list *l;
2360
2361 if (!mips_opts.mips16)
2362 return;
2363
2364 for (l = si->label_list; l != NULL; l = l->next)
2365 {
2366 symbolS *label = l->label;
2367
2368 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2369 if (IS_ELF)
2370 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2371 #endif
2372 if ((S_GET_VALUE (label) & 1) == 0
2373 /* Don't adjust the address if the label is global or weak, or
2374 in a link-once section, since we'll be emitting symbol reloc
2375 references to it which will be patched up by the linker, and
2376 the final value of the symbol may or may not be MIPS16. */
2377 && ! S_IS_WEAK (label)
2378 && ! S_IS_EXTERNAL (label)
2379 && ! s_is_linkonce (label, now_seg))
2380 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2381 }
2382 }
2383
2384 /* End the current frag. Make it a variant frag and record the
2385 relaxation info. */
2386
2387 static void
2388 relax_close_frag (void)
2389 {
2390 mips_macro_warning.first_frag = frag_now;
2391 frag_var (rs_machine_dependent, 0, 0,
2392 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2393 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2394
2395 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2396 mips_relax.first_fixup = 0;
2397 }
2398
2399 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2400 See the comment above RELAX_ENCODE for more details. */
2401
2402 static void
2403 relax_start (symbolS *symbol)
2404 {
2405 assert (mips_relax.sequence == 0);
2406 mips_relax.sequence = 1;
2407 mips_relax.symbol = symbol;
2408 }
2409
2410 /* Start generating the second version of a relaxable sequence.
2411 See the comment above RELAX_ENCODE for more details. */
2412
2413 static void
2414 relax_switch (void)
2415 {
2416 assert (mips_relax.sequence == 1);
2417 mips_relax.sequence = 2;
2418 }
2419
2420 /* End the current relaxable sequence. */
2421
2422 static void
2423 relax_end (void)
2424 {
2425 assert (mips_relax.sequence == 2);
2426 relax_close_frag ();
2427 mips_relax.sequence = 0;
2428 }
2429
2430 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2431 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2432 by VR4120 errata. */
2433
2434 static unsigned int
2435 classify_vr4120_insn (const char *name)
2436 {
2437 if (strncmp (name, "macc", 4) == 0)
2438 return FIX_VR4120_MACC;
2439 if (strncmp (name, "dmacc", 5) == 0)
2440 return FIX_VR4120_DMACC;
2441 if (strncmp (name, "mult", 4) == 0)
2442 return FIX_VR4120_MULT;
2443 if (strncmp (name, "dmult", 5) == 0)
2444 return FIX_VR4120_DMULT;
2445 if (strstr (name, "div"))
2446 return FIX_VR4120_DIV;
2447 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2448 return FIX_VR4120_MTHILO;
2449 return NUM_FIX_VR4120_CLASSES;
2450 }
2451
2452 /* Return the number of instructions that must separate INSN1 and INSN2,
2453 where INSN1 is the earlier instruction. Return the worst-case value
2454 for any INSN2 if INSN2 is null. */
2455
2456 static unsigned int
2457 insns_between (const struct mips_cl_insn *insn1,
2458 const struct mips_cl_insn *insn2)
2459 {
2460 unsigned long pinfo1, pinfo2;
2461
2462 /* This function needs to know which pinfo flags are set for INSN2
2463 and which registers INSN2 uses. The former is stored in PINFO2 and
2464 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2465 will have every flag set and INSN2_USES_REG will always return true. */
2466 pinfo1 = insn1->insn_mo->pinfo;
2467 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2468
2469 #define INSN2_USES_REG(REG, CLASS) \
2470 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2471
2472 /* For most targets, write-after-read dependencies on the HI and LO
2473 registers must be separated by at least two instructions. */
2474 if (!hilo_interlocks)
2475 {
2476 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2477 return 2;
2478 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2479 return 2;
2480 }
2481
2482 /* If we're working around r7000 errata, there must be two instructions
2483 between an mfhi or mflo and any instruction that uses the result. */
2484 if (mips_7000_hilo_fix
2485 && MF_HILO_INSN (pinfo1)
2486 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2487 return 2;
2488
2489 /* If working around VR4120 errata, check for combinations that need
2490 a single intervening instruction. */
2491 if (mips_fix_vr4120)
2492 {
2493 unsigned int class1, class2;
2494
2495 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2496 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2497 {
2498 if (insn2 == NULL)
2499 return 1;
2500 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2501 if (vr4120_conflicts[class1] & (1 << class2))
2502 return 1;
2503 }
2504 }
2505
2506 if (!mips_opts.mips16)
2507 {
2508 /* Check for GPR or coprocessor load delays. All such delays
2509 are on the RT register. */
2510 /* Itbl support may require additional care here. */
2511 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2512 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2513 {
2514 know (pinfo1 & INSN_WRITE_GPR_T);
2515 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2516 return 1;
2517 }
2518
2519 /* Check for generic coprocessor hazards.
2520
2521 This case is not handled very well. There is no special
2522 knowledge of CP0 handling, and the coprocessors other than
2523 the floating point unit are not distinguished at all. */
2524 /* Itbl support may require additional care here. FIXME!
2525 Need to modify this to include knowledge about
2526 user specified delays! */
2527 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2528 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2529 {
2530 /* Handle cases where INSN1 writes to a known general coprocessor
2531 register. There must be a one instruction delay before INSN2
2532 if INSN2 reads that register, otherwise no delay is needed. */
2533 if (pinfo1 & INSN_WRITE_FPR_T)
2534 {
2535 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2536 return 1;
2537 }
2538 else if (pinfo1 & INSN_WRITE_FPR_S)
2539 {
2540 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2541 return 1;
2542 }
2543 else
2544 {
2545 /* Read-after-write dependencies on the control registers
2546 require a two-instruction gap. */
2547 if ((pinfo1 & INSN_WRITE_COND_CODE)
2548 && (pinfo2 & INSN_READ_COND_CODE))
2549 return 2;
2550
2551 /* We don't know exactly what INSN1 does. If INSN2 is
2552 also a coprocessor instruction, assume there must be
2553 a one instruction gap. */
2554 if (pinfo2 & INSN_COP)
2555 return 1;
2556 }
2557 }
2558
2559 /* Check for read-after-write dependencies on the coprocessor
2560 control registers in cases where INSN1 does not need a general
2561 coprocessor delay. This means that INSN1 is a floating point
2562 comparison instruction. */
2563 /* Itbl support may require additional care here. */
2564 else if (!cop_interlocks
2565 && (pinfo1 & INSN_WRITE_COND_CODE)
2566 && (pinfo2 & INSN_READ_COND_CODE))
2567 return 1;
2568 }
2569
2570 #undef INSN2_USES_REG
2571
2572 return 0;
2573 }
2574
2575 /* Return the number of nops that would be needed to work around the
2576 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2577 the MAX_VR4130_NOPS instructions described by HISTORY. */
2578
2579 static int
2580 nops_for_vr4130 (const struct mips_cl_insn *history,
2581 const struct mips_cl_insn *insn)
2582 {
2583 int i, j, reg;
2584
2585 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2586 are not affected by the errata. */
2587 if (insn != 0
2588 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2589 || strcmp (insn->insn_mo->name, "mtlo") == 0
2590 || strcmp (insn->insn_mo->name, "mthi") == 0))
2591 return 0;
2592
2593 /* Search for the first MFLO or MFHI. */
2594 for (i = 0; i < MAX_VR4130_NOPS; i++)
2595 if (!history[i].noreorder_p && MF_HILO_INSN (history[i].insn_mo->pinfo))
2596 {
2597 /* Extract the destination register. */
2598 if (mips_opts.mips16)
2599 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, history[i])];
2600 else
2601 reg = EXTRACT_OPERAND (RD, history[i]);
2602
2603 /* No nops are needed if INSN reads that register. */
2604 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2605 return 0;
2606
2607 /* ...or if any of the intervening instructions do. */
2608 for (j = 0; j < i; j++)
2609 if (insn_uses_reg (&history[j], reg, MIPS_GR_REG))
2610 return 0;
2611
2612 return MAX_VR4130_NOPS - i;
2613 }
2614 return 0;
2615 }
2616
2617 /* Return the number of nops that would be needed if instruction INSN
2618 immediately followed the MAX_NOPS instructions given by HISTORY,
2619 where HISTORY[0] is the most recent instruction. If INSN is null,
2620 return the worse-case number of nops for any instruction. */
2621
2622 static int
2623 nops_for_insn (const struct mips_cl_insn *history,
2624 const struct mips_cl_insn *insn)
2625 {
2626 int i, nops, tmp_nops;
2627
2628 nops = 0;
2629 for (i = 0; i < MAX_DELAY_NOPS; i++)
2630 if (!history[i].noreorder_p)
2631 {
2632 tmp_nops = insns_between (history + i, insn) - i;
2633 if (tmp_nops > nops)
2634 nops = tmp_nops;
2635 }
2636
2637 if (mips_fix_vr4130)
2638 {
2639 tmp_nops = nops_for_vr4130 (history, insn);
2640 if (tmp_nops > nops)
2641 nops = tmp_nops;
2642 }
2643
2644 return nops;
2645 }
2646
2647 /* The variable arguments provide NUM_INSNS extra instructions that
2648 might be added to HISTORY. Return the largest number of nops that
2649 would be needed after the extended sequence. */
2650
2651 static int
2652 nops_for_sequence (int num_insns, const struct mips_cl_insn *history, ...)
2653 {
2654 va_list args;
2655 struct mips_cl_insn buffer[MAX_NOPS];
2656 struct mips_cl_insn *cursor;
2657 int nops;
2658
2659 va_start (args, history);
2660 cursor = buffer + num_insns;
2661 memcpy (cursor, history, (MAX_NOPS - num_insns) * sizeof (*cursor));
2662 while (cursor > buffer)
2663 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2664
2665 nops = nops_for_insn (buffer, NULL);
2666 va_end (args);
2667 return nops;
2668 }
2669
2670 /* Like nops_for_insn, but if INSN is a branch, take into account the
2671 worst-case delay for the branch target. */
2672
2673 static int
2674 nops_for_insn_or_target (const struct mips_cl_insn *history,
2675 const struct mips_cl_insn *insn)
2676 {
2677 int nops, tmp_nops;
2678
2679 nops = nops_for_insn (history, insn);
2680 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2681 | INSN_COND_BRANCH_DELAY
2682 | INSN_COND_BRANCH_LIKELY))
2683 {
2684 tmp_nops = nops_for_sequence (2, history, insn, NOP_INSN);
2685 if (tmp_nops > nops)
2686 nops = tmp_nops;
2687 }
2688 else if (mips_opts.mips16 && (insn->insn_mo->pinfo & MIPS16_INSN_BRANCH))
2689 {
2690 tmp_nops = nops_for_sequence (1, history, insn);
2691 if (tmp_nops > nops)
2692 nops = tmp_nops;
2693 }
2694 return nops;
2695 }
2696
2697 /* Output an instruction. IP is the instruction information.
2698 ADDRESS_EXPR is an operand of the instruction to be used with
2699 RELOC_TYPE. */
2700
2701 static void
2702 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2703 bfd_reloc_code_real_type *reloc_type)
2704 {
2705 unsigned long prev_pinfo, pinfo;
2706 relax_stateT prev_insn_frag_type = 0;
2707 bfd_boolean relaxed_branch = FALSE;
2708 segment_info_type *si = seg_info (now_seg);
2709
2710 /* Mark instruction labels in mips16 mode. */
2711 mips16_mark_labels ();
2712
2713 prev_pinfo = history[0].insn_mo->pinfo;
2714 pinfo = ip->insn_mo->pinfo;
2715
2716 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2717 {
2718 /* There are a lot of optimizations we could do that we don't.
2719 In particular, we do not, in general, reorder instructions.
2720 If you use gcc with optimization, it will reorder
2721 instructions and generally do much more optimization then we
2722 do here; repeating all that work in the assembler would only
2723 benefit hand written assembly code, and does not seem worth
2724 it. */
2725 int nops = (mips_optimize == 0
2726 ? nops_for_insn (history, NULL)
2727 : nops_for_insn_or_target (history, ip));
2728 if (nops > 0)
2729 {
2730 fragS *old_frag;
2731 unsigned long old_frag_offset;
2732 int i;
2733
2734 old_frag = frag_now;
2735 old_frag_offset = frag_now_fix ();
2736
2737 for (i = 0; i < nops; i++)
2738 emit_nop ();
2739
2740 if (listing)
2741 {
2742 listing_prev_line ();
2743 /* We may be at the start of a variant frag. In case we
2744 are, make sure there is enough space for the frag
2745 after the frags created by listing_prev_line. The
2746 argument to frag_grow here must be at least as large
2747 as the argument to all other calls to frag_grow in
2748 this file. We don't have to worry about being in the
2749 middle of a variant frag, because the variants insert
2750 all needed nop instructions themselves. */
2751 frag_grow (40);
2752 }
2753
2754 mips_move_labels ();
2755
2756 #ifndef NO_ECOFF_DEBUGGING
2757 if (ECOFF_DEBUGGING)
2758 ecoff_fix_loc (old_frag, old_frag_offset);
2759 #endif
2760 }
2761 }
2762 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2763 {
2764 /* Work out how many nops in prev_nop_frag are needed by IP. */
2765 int nops = nops_for_insn_or_target (history, ip);
2766 assert (nops <= prev_nop_frag_holds);
2767
2768 /* Enforce NOPS as a minimum. */
2769 if (nops > prev_nop_frag_required)
2770 prev_nop_frag_required = nops;
2771
2772 if (prev_nop_frag_holds == prev_nop_frag_required)
2773 {
2774 /* Settle for the current number of nops. Update the history
2775 accordingly (for the benefit of any future .set reorder code). */
2776 prev_nop_frag = NULL;
2777 insert_into_history (prev_nop_frag_since,
2778 prev_nop_frag_holds, NOP_INSN);
2779 }
2780 else
2781 {
2782 /* Allow this instruction to replace one of the nops that was
2783 tentatively added to prev_nop_frag. */
2784 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2785 prev_nop_frag_holds--;
2786 prev_nop_frag_since++;
2787 }
2788 }
2789
2790 #ifdef OBJ_ELF
2791 /* The value passed to dwarf2_emit_insn is the distance between
2792 the beginning of the current instruction and the address that
2793 should be recorded in the debug tables. For MIPS16 debug info
2794 we want to use ISA-encoded addresses, so we pass -1 for an
2795 address higher by one than the current. */
2796 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2797 #endif
2798
2799 /* Record the frag type before frag_var. */
2800 if (history[0].frag)
2801 prev_insn_frag_type = history[0].frag->fr_type;
2802
2803 if (address_expr
2804 && *reloc_type == BFD_RELOC_16_PCREL_S2
2805 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2806 || pinfo & INSN_COND_BRANCH_LIKELY)
2807 && mips_relax_branch
2808 /* Don't try branch relaxation within .set nomacro, or within
2809 .set noat if we use $at for PIC computations. If it turns
2810 out that the branch was out-of-range, we'll get an error. */
2811 && !mips_opts.warn_about_macros
2812 && (mips_opts.at || mips_pic == NO_PIC)
2813 && !mips_opts.mips16)
2814 {
2815 relaxed_branch = TRUE;
2816 add_relaxed_insn (ip, (relaxed_branch_length
2817 (NULL, NULL,
2818 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2819 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2820 : 0)), 4,
2821 RELAX_BRANCH_ENCODE
2822 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2823 pinfo & INSN_COND_BRANCH_LIKELY,
2824 pinfo & INSN_WRITE_GPR_31,
2825 0),
2826 address_expr->X_add_symbol,
2827 address_expr->X_add_number);
2828 *reloc_type = BFD_RELOC_UNUSED;
2829 }
2830 else if (*reloc_type > BFD_RELOC_UNUSED)
2831 {
2832 /* We need to set up a variant frag. */
2833 assert (mips_opts.mips16 && address_expr != NULL);
2834 add_relaxed_insn (ip, 4, 0,
2835 RELAX_MIPS16_ENCODE
2836 (*reloc_type - BFD_RELOC_UNUSED,
2837 mips16_small, mips16_ext,
2838 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2839 history[0].mips16_absolute_jump_p),
2840 make_expr_symbol (address_expr), 0);
2841 }
2842 else if (mips_opts.mips16
2843 && ! ip->use_extend
2844 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2845 {
2846 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2847 /* Make sure there is enough room to swap this instruction with
2848 a following jump instruction. */
2849 frag_grow (6);
2850 add_fixed_insn (ip);
2851 }
2852 else
2853 {
2854 if (mips_opts.mips16
2855 && mips_opts.noreorder
2856 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2857 as_warn (_("extended instruction in delay slot"));
2858
2859 if (mips_relax.sequence)
2860 {
2861 /* If we've reached the end of this frag, turn it into a variant
2862 frag and record the information for the instructions we've
2863 written so far. */
2864 if (frag_room () < 4)
2865 relax_close_frag ();
2866 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2867 }
2868
2869 if (mips_relax.sequence != 2)
2870 mips_macro_warning.sizes[0] += 4;
2871 if (mips_relax.sequence != 1)
2872 mips_macro_warning.sizes[1] += 4;
2873
2874 if (mips_opts.mips16)
2875 {
2876 ip->fixed_p = 1;
2877 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2878 }
2879 add_fixed_insn (ip);
2880 }
2881
2882 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2883 {
2884 if (address_expr->X_op == O_constant)
2885 {
2886 unsigned int tmp;
2887
2888 switch (*reloc_type)
2889 {
2890 case BFD_RELOC_32:
2891 ip->insn_opcode |= address_expr->X_add_number;
2892 break;
2893
2894 case BFD_RELOC_MIPS_HIGHEST:
2895 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2896 ip->insn_opcode |= tmp & 0xffff;
2897 break;
2898
2899 case BFD_RELOC_MIPS_HIGHER:
2900 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
2901 ip->insn_opcode |= tmp & 0xffff;
2902 break;
2903
2904 case BFD_RELOC_HI16_S:
2905 tmp = (address_expr->X_add_number + 0x8000) >> 16;
2906 ip->insn_opcode |= tmp & 0xffff;
2907 break;
2908
2909 case BFD_RELOC_HI16:
2910 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
2911 break;
2912
2913 case BFD_RELOC_UNUSED:
2914 case BFD_RELOC_LO16:
2915 case BFD_RELOC_MIPS_GOT_DISP:
2916 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
2917 break;
2918
2919 case BFD_RELOC_MIPS_JMP:
2920 if ((address_expr->X_add_number & 3) != 0)
2921 as_bad (_("jump to misaligned address (0x%lx)"),
2922 (unsigned long) address_expr->X_add_number);
2923 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
2924 break;
2925
2926 case BFD_RELOC_MIPS16_JMP:
2927 if ((address_expr->X_add_number & 3) != 0)
2928 as_bad (_("jump to misaligned address (0x%lx)"),
2929 (unsigned long) address_expr->X_add_number);
2930 ip->insn_opcode |=
2931 (((address_expr->X_add_number & 0x7c0000) << 3)
2932 | ((address_expr->X_add_number & 0xf800000) >> 7)
2933 | ((address_expr->X_add_number & 0x3fffc) >> 2));
2934 break;
2935
2936 case BFD_RELOC_16_PCREL_S2:
2937 if ((address_expr->X_add_number & 3) != 0)
2938 as_bad (_("branch to misaligned address (0x%lx)"),
2939 (unsigned long) address_expr->X_add_number);
2940 if (mips_relax_branch)
2941 goto need_reloc;
2942 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
2943 as_bad (_("branch address range overflow (0x%lx)"),
2944 (unsigned long) address_expr->X_add_number);
2945 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
2946 break;
2947
2948 default:
2949 internalError ();
2950 }
2951 }
2952 else if (*reloc_type < BFD_RELOC_UNUSED)
2953 need_reloc:
2954 {
2955 reloc_howto_type *howto;
2956 int i;
2957
2958 /* In a compound relocation, it is the final (outermost)
2959 operator that determines the relocated field. */
2960 for (i = 1; i < 3; i++)
2961 if (reloc_type[i] == BFD_RELOC_UNUSED)
2962 break;
2963
2964 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
2965 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
2966 bfd_get_reloc_size (howto),
2967 address_expr,
2968 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
2969 reloc_type[0]);
2970
2971 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2972 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
2973 && ip->fixp[0]->fx_addsy)
2974 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
2975
2976 /* These relocations can have an addend that won't fit in
2977 4 octets for 64bit assembly. */
2978 if (HAVE_64BIT_GPRS
2979 && ! howto->partial_inplace
2980 && (reloc_type[0] == BFD_RELOC_16
2981 || reloc_type[0] == BFD_RELOC_32
2982 || reloc_type[0] == BFD_RELOC_MIPS_JMP
2983 || reloc_type[0] == BFD_RELOC_GPREL16
2984 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
2985 || reloc_type[0] == BFD_RELOC_GPREL32
2986 || reloc_type[0] == BFD_RELOC_64
2987 || reloc_type[0] == BFD_RELOC_CTOR
2988 || reloc_type[0] == BFD_RELOC_MIPS_SUB
2989 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
2990 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
2991 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
2992 || reloc_type[0] == BFD_RELOC_MIPS_REL16
2993 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
2994 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
2995 || hi16_reloc_p (reloc_type[0])
2996 || lo16_reloc_p (reloc_type[0])))
2997 ip->fixp[0]->fx_no_overflow = 1;
2998
2999 if (mips_relax.sequence)
3000 {
3001 if (mips_relax.first_fixup == 0)
3002 mips_relax.first_fixup = ip->fixp[0];
3003 }
3004 else if (reloc_needs_lo_p (*reloc_type))
3005 {
3006 struct mips_hi_fixup *hi_fixup;
3007
3008 /* Reuse the last entry if it already has a matching %lo. */
3009 hi_fixup = mips_hi_fixup_list;
3010 if (hi_fixup == 0
3011 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3012 {
3013 hi_fixup = ((struct mips_hi_fixup *)
3014 xmalloc (sizeof (struct mips_hi_fixup)));
3015 hi_fixup->next = mips_hi_fixup_list;
3016 mips_hi_fixup_list = hi_fixup;
3017 }
3018 hi_fixup->fixp = ip->fixp[0];
3019 hi_fixup->seg = now_seg;
3020 }
3021
3022 /* Add fixups for the second and third relocations, if given.
3023 Note that the ABI allows the second relocation to be
3024 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3025 moment we only use RSS_UNDEF, but we could add support
3026 for the others if it ever becomes necessary. */
3027 for (i = 1; i < 3; i++)
3028 if (reloc_type[i] != BFD_RELOC_UNUSED)
3029 {
3030 ip->fixp[i] = fix_new (ip->frag, ip->where,
3031 ip->fixp[0]->fx_size, NULL, 0,
3032 FALSE, reloc_type[i]);
3033
3034 /* Use fx_tcbit to mark compound relocs. */
3035 ip->fixp[0]->fx_tcbit = 1;
3036 ip->fixp[i]->fx_tcbit = 1;
3037 }
3038 }
3039 }
3040 install_insn (ip);
3041
3042 /* Update the register mask information. */
3043 if (! mips_opts.mips16)
3044 {
3045 if (pinfo & INSN_WRITE_GPR_D)
3046 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3047 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3048 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3049 if (pinfo & INSN_READ_GPR_S)
3050 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3051 if (pinfo & INSN_WRITE_GPR_31)
3052 mips_gprmask |= 1 << RA;
3053 if (pinfo & INSN_WRITE_FPR_D)
3054 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3055 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3056 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3057 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3058 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3059 if ((pinfo & INSN_READ_FPR_R) != 0)
3060 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3061 if (pinfo & INSN_COP)
3062 {
3063 /* We don't keep enough information to sort these cases out.
3064 The itbl support does keep this information however, although
3065 we currently don't support itbl fprmats as part of the cop
3066 instruction. May want to add this support in the future. */
3067 }
3068 /* Never set the bit for $0, which is always zero. */
3069 mips_gprmask &= ~1 << 0;
3070 }
3071 else
3072 {
3073 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3074 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3075 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3076 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3077 if (pinfo & MIPS16_INSN_WRITE_Z)
3078 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3079 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3080 mips_gprmask |= 1 << TREG;
3081 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3082 mips_gprmask |= 1 << SP;
3083 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3084 mips_gprmask |= 1 << RA;
3085 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3086 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3087 if (pinfo & MIPS16_INSN_READ_Z)
3088 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3089 if (pinfo & MIPS16_INSN_READ_GPR_X)
3090 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3091 }
3092
3093 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3094 {
3095 /* Filling the branch delay slot is more complex. We try to
3096 switch the branch with the previous instruction, which we can
3097 do if the previous instruction does not set up a condition
3098 that the branch tests and if the branch is not itself the
3099 target of any branch. */
3100 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3101 || (pinfo & INSN_COND_BRANCH_DELAY))
3102 {
3103 if (mips_optimize < 2
3104 /* If we have seen .set volatile or .set nomove, don't
3105 optimize. */
3106 || mips_opts.nomove != 0
3107 /* We can't swap if the previous instruction's position
3108 is fixed. */
3109 || history[0].fixed_p
3110 /* If the previous previous insn was in a .set
3111 noreorder, we can't swap. Actually, the MIPS
3112 assembler will swap in this situation. However, gcc
3113 configured -with-gnu-as will generate code like
3114 .set noreorder
3115 lw $4,XXX
3116 .set reorder
3117 INSN
3118 bne $4,$0,foo
3119 in which we can not swap the bne and INSN. If gcc is
3120 not configured -with-gnu-as, it does not output the
3121 .set pseudo-ops. */
3122 || history[1].noreorder_p
3123 /* If the branch is itself the target of a branch, we
3124 can not swap. We cheat on this; all we check for is
3125 whether there is a label on this instruction. If
3126 there are any branches to anything other than a
3127 label, users must use .set noreorder. */
3128 || si->label_list != NULL
3129 /* If the previous instruction is in a variant frag
3130 other than this branch's one, we cannot do the swap.
3131 This does not apply to the mips16, which uses variant
3132 frags for different purposes. */
3133 || (! mips_opts.mips16
3134 && prev_insn_frag_type == rs_machine_dependent)
3135 /* Check for conflicts between the branch and the instructions
3136 before the candidate delay slot. */
3137 || nops_for_insn (history + 1, ip) > 0
3138 /* Check for conflicts between the swapped sequence and the
3139 target of the branch. */
3140 || nops_for_sequence (2, history + 1, ip, history) > 0
3141 /* We do not swap with a trap instruction, since it
3142 complicates trap handlers to have the trap
3143 instruction be in a delay slot. */
3144 || (prev_pinfo & INSN_TRAP)
3145 /* If the branch reads a register that the previous
3146 instruction sets, we can not swap. */
3147 || (! mips_opts.mips16
3148 && (prev_pinfo & INSN_WRITE_GPR_T)
3149 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3150 MIPS_GR_REG))
3151 || (! mips_opts.mips16
3152 && (prev_pinfo & INSN_WRITE_GPR_D)
3153 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3154 MIPS_GR_REG))
3155 || (mips_opts.mips16
3156 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3157 && (insn_uses_reg
3158 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3159 MIPS16_REG)))
3160 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3161 && (insn_uses_reg
3162 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3163 MIPS16_REG)))
3164 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3165 && (insn_uses_reg
3166 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3167 MIPS16_REG)))
3168 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3169 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3170 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3171 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3172 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3173 && insn_uses_reg (ip,
3174 MIPS16OP_EXTRACT_REG32R
3175 (history[0].insn_opcode),
3176 MIPS_GR_REG))))
3177 /* If the branch writes a register that the previous
3178 instruction sets, we can not swap (we know that
3179 branches write only to RD or to $31). */
3180 || (! mips_opts.mips16
3181 && (prev_pinfo & INSN_WRITE_GPR_T)
3182 && (((pinfo & INSN_WRITE_GPR_D)
3183 && (EXTRACT_OPERAND (RT, history[0])
3184 == EXTRACT_OPERAND (RD, *ip)))
3185 || ((pinfo & INSN_WRITE_GPR_31)
3186 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3187 || (! mips_opts.mips16
3188 && (prev_pinfo & INSN_WRITE_GPR_D)
3189 && (((pinfo & INSN_WRITE_GPR_D)
3190 && (EXTRACT_OPERAND (RD, history[0])
3191 == EXTRACT_OPERAND (RD, *ip)))
3192 || ((pinfo & INSN_WRITE_GPR_31)
3193 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3194 || (mips_opts.mips16
3195 && (pinfo & MIPS16_INSN_WRITE_31)
3196 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3197 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3198 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3199 == RA))))
3200 /* If the branch writes a register that the previous
3201 instruction reads, we can not swap (we know that
3202 branches only write to RD or to $31). */
3203 || (! mips_opts.mips16
3204 && (pinfo & INSN_WRITE_GPR_D)
3205 && insn_uses_reg (&history[0],
3206 EXTRACT_OPERAND (RD, *ip),
3207 MIPS_GR_REG))
3208 || (! mips_opts.mips16
3209 && (pinfo & INSN_WRITE_GPR_31)
3210 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3211 || (mips_opts.mips16
3212 && (pinfo & MIPS16_INSN_WRITE_31)
3213 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3214 /* If one instruction sets a condition code and the
3215 other one uses a condition code, we can not swap. */
3216 || ((pinfo & INSN_READ_COND_CODE)
3217 && (prev_pinfo & INSN_WRITE_COND_CODE))
3218 || ((pinfo & INSN_WRITE_COND_CODE)
3219 && (prev_pinfo & INSN_READ_COND_CODE))
3220 /* If the previous instruction uses the PC, we can not
3221 swap. */
3222 || (mips_opts.mips16
3223 && (prev_pinfo & MIPS16_INSN_READ_PC))
3224 /* If the previous instruction had a fixup in mips16
3225 mode, we can not swap. This normally means that the
3226 previous instruction was a 4 byte branch anyhow. */
3227 || (mips_opts.mips16 && history[0].fixp[0])
3228 /* If the previous instruction is a sync, sync.l, or
3229 sync.p, we can not swap. */
3230 || (prev_pinfo & INSN_SYNC))
3231 {
3232 if (mips_opts.mips16
3233 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3234 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3235 && ISA_SUPPORTS_MIPS16E)
3236 {
3237 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3238 ip->insn_opcode |= 0x0080;
3239 install_insn (ip);
3240 insert_into_history (0, 1, ip);
3241 }
3242 else
3243 {
3244 /* We could do even better for unconditional branches to
3245 portions of this object file; we could pick up the
3246 instruction at the destination, put it in the delay
3247 slot, and bump the destination address. */
3248 insert_into_history (0, 1, ip);
3249 emit_nop ();
3250 }
3251
3252 if (mips_relax.sequence)
3253 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3254 }
3255 else
3256 {
3257 /* It looks like we can actually do the swap. */
3258 struct mips_cl_insn delay = history[0];
3259 if (mips_opts.mips16)
3260 {
3261 know (delay.frag == ip->frag);
3262 move_insn (ip, delay.frag, delay.where);
3263 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3264 }
3265 else if (relaxed_branch)
3266 {
3267 /* Add the delay slot instruction to the end of the
3268 current frag and shrink the fixed part of the
3269 original frag. If the branch occupies the tail of
3270 the latter, move it backwards to cover the gap. */
3271 delay.frag->fr_fix -= 4;
3272 if (delay.frag == ip->frag)
3273 move_insn (ip, ip->frag, ip->where - 4);
3274 add_fixed_insn (&delay);
3275 }
3276 else
3277 {
3278 move_insn (&delay, ip->frag, ip->where);
3279 move_insn (ip, history[0].frag, history[0].where);
3280 }
3281 history[0] = *ip;
3282 delay.fixed_p = 1;
3283 insert_into_history (0, 1, &delay);
3284 }
3285
3286 /* If that was an unconditional branch, forget the previous
3287 insn information. */
3288 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3289 mips_no_prev_insn ();
3290 }
3291 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3292 {
3293 /* We don't yet optimize a branch likely. What we should do
3294 is look at the target, copy the instruction found there
3295 into the delay slot, and increment the branch to jump to
3296 the next instruction. */
3297 insert_into_history (0, 1, ip);
3298 emit_nop ();
3299 }
3300 else
3301 insert_into_history (0, 1, ip);
3302 }
3303 else
3304 insert_into_history (0, 1, ip);
3305
3306 /* We just output an insn, so the next one doesn't have a label. */
3307 mips_clear_insn_labels ();
3308 }
3309
3310 /* Forget that there was any previous instruction or label. */
3311
3312 static void
3313 mips_no_prev_insn (void)
3314 {
3315 prev_nop_frag = NULL;
3316 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3317 mips_clear_insn_labels ();
3318 }
3319
3320 /* This function must be called before we emit something other than
3321 instructions. It is like mips_no_prev_insn except that it inserts
3322 any NOPS that might be needed by previous instructions. */
3323
3324 void
3325 mips_emit_delays (void)
3326 {
3327 if (! mips_opts.noreorder)
3328 {
3329 int nops = nops_for_insn (history, NULL);
3330 if (nops > 0)
3331 {
3332 while (nops-- > 0)
3333 add_fixed_insn (NOP_INSN);
3334 mips_move_labels ();
3335 }
3336 }
3337 mips_no_prev_insn ();
3338 }
3339
3340 /* Start a (possibly nested) noreorder block. */
3341
3342 static void
3343 start_noreorder (void)
3344 {
3345 if (mips_opts.noreorder == 0)
3346 {
3347 unsigned int i;
3348 int nops;
3349
3350 /* None of the instructions before the .set noreorder can be moved. */
3351 for (i = 0; i < ARRAY_SIZE (history); i++)
3352 history[i].fixed_p = 1;
3353
3354 /* Insert any nops that might be needed between the .set noreorder
3355 block and the previous instructions. We will later remove any
3356 nops that turn out not to be needed. */
3357 nops = nops_for_insn (history, NULL);
3358 if (nops > 0)
3359 {
3360 if (mips_optimize != 0)
3361 {
3362 /* Record the frag which holds the nop instructions, so
3363 that we can remove them if we don't need them. */
3364 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3365 prev_nop_frag = frag_now;
3366 prev_nop_frag_holds = nops;
3367 prev_nop_frag_required = 0;
3368 prev_nop_frag_since = 0;
3369 }
3370
3371 for (; nops > 0; --nops)
3372 add_fixed_insn (NOP_INSN);
3373
3374 /* Move on to a new frag, so that it is safe to simply
3375 decrease the size of prev_nop_frag. */
3376 frag_wane (frag_now);
3377 frag_new (0);
3378 mips_move_labels ();
3379 }
3380 mips16_mark_labels ();
3381 mips_clear_insn_labels ();
3382 }
3383 mips_opts.noreorder++;
3384 mips_any_noreorder = 1;
3385 }
3386
3387 /* End a nested noreorder block. */
3388
3389 static void
3390 end_noreorder (void)
3391 {
3392 mips_opts.noreorder--;
3393 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3394 {
3395 /* Commit to inserting prev_nop_frag_required nops and go back to
3396 handling nop insertion the .set reorder way. */
3397 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3398 * (mips_opts.mips16 ? 2 : 4));
3399 insert_into_history (prev_nop_frag_since,
3400 prev_nop_frag_required, NOP_INSN);
3401 prev_nop_frag = NULL;
3402 }
3403 }
3404
3405 /* Set up global variables for the start of a new macro. */
3406
3407 static void
3408 macro_start (void)
3409 {
3410 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3411 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3412 && (history[0].insn_mo->pinfo
3413 & (INSN_UNCOND_BRANCH_DELAY
3414 | INSN_COND_BRANCH_DELAY
3415 | INSN_COND_BRANCH_LIKELY)) != 0);
3416 }
3417
3418 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3419 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3420 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3421
3422 static const char *
3423 macro_warning (relax_substateT subtype)
3424 {
3425 if (subtype & RELAX_DELAY_SLOT)
3426 return _("Macro instruction expanded into multiple instructions"
3427 " in a branch delay slot");
3428 else if (subtype & RELAX_NOMACRO)
3429 return _("Macro instruction expanded into multiple instructions");
3430 else
3431 return 0;
3432 }
3433
3434 /* Finish up a macro. Emit warnings as appropriate. */
3435
3436 static void
3437 macro_end (void)
3438 {
3439 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3440 {
3441 relax_substateT subtype;
3442
3443 /* Set up the relaxation warning flags. */
3444 subtype = 0;
3445 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3446 subtype |= RELAX_SECOND_LONGER;
3447 if (mips_opts.warn_about_macros)
3448 subtype |= RELAX_NOMACRO;
3449 if (mips_macro_warning.delay_slot_p)
3450 subtype |= RELAX_DELAY_SLOT;
3451
3452 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3453 {
3454 /* Either the macro has a single implementation or both
3455 implementations are longer than 4 bytes. Emit the
3456 warning now. */
3457 const char *msg = macro_warning (subtype);
3458 if (msg != 0)
3459 as_warn (msg);
3460 }
3461 else
3462 {
3463 /* One implementation might need a warning but the other
3464 definitely doesn't. */
3465 mips_macro_warning.first_frag->fr_subtype |= subtype;
3466 }
3467 }
3468 }
3469
3470 /* Read a macro's relocation codes from *ARGS and store them in *R.
3471 The first argument in *ARGS will be either the code for a single
3472 relocation or -1 followed by the three codes that make up a
3473 composite relocation. */
3474
3475 static void
3476 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3477 {
3478 int i, next;
3479
3480 next = va_arg (*args, int);
3481 if (next >= 0)
3482 r[0] = (bfd_reloc_code_real_type) next;
3483 else
3484 for (i = 0; i < 3; i++)
3485 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3486 }
3487
3488 /* Build an instruction created by a macro expansion. This is passed
3489 a pointer to the count of instructions created so far, an
3490 expression, the name of the instruction to build, an operand format
3491 string, and corresponding arguments. */
3492
3493 static void
3494 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3495 {
3496 const struct mips_opcode *mo;
3497 struct mips_cl_insn insn;
3498 bfd_reloc_code_real_type r[3];
3499 va_list args;
3500
3501 va_start (args, fmt);
3502
3503 if (mips_opts.mips16)
3504 {
3505 mips16_macro_build (ep, name, fmt, args);
3506 va_end (args);
3507 return;
3508 }
3509
3510 r[0] = BFD_RELOC_UNUSED;
3511 r[1] = BFD_RELOC_UNUSED;
3512 r[2] = BFD_RELOC_UNUSED;
3513 mo = (struct mips_opcode *) hash_find (op_hash, name);
3514 assert (mo);
3515 assert (strcmp (name, mo->name) == 0);
3516
3517 while (1)
3518 {
3519 /* Search until we get a match for NAME. It is assumed here that
3520 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3521 if (strcmp (fmt, mo->args) == 0
3522 && mo->pinfo != INSN_MACRO
3523 && is_opcode_valid (mo, TRUE))
3524 break;
3525
3526 ++mo;
3527 assert (mo->name);
3528 assert (strcmp (name, mo->name) == 0);
3529 }
3530
3531 create_insn (&insn, mo);
3532 for (;;)
3533 {
3534 switch (*fmt++)
3535 {
3536 case '\0':
3537 break;
3538
3539 case ',':
3540 case '(':
3541 case ')':
3542 continue;
3543
3544 case '+':
3545 switch (*fmt++)
3546 {
3547 case 'A':
3548 case 'E':
3549 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3550 continue;
3551
3552 case 'B':
3553 case 'F':
3554 /* Note that in the macro case, these arguments are already
3555 in MSB form. (When handling the instruction in the
3556 non-macro case, these arguments are sizes from which
3557 MSB values must be calculated.) */
3558 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3559 continue;
3560
3561 case 'C':
3562 case 'G':
3563 case 'H':
3564 /* Note that in the macro case, these arguments are already
3565 in MSBD form. (When handling the instruction in the
3566 non-macro case, these arguments are sizes from which
3567 MSBD values must be calculated.) */
3568 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3569 continue;
3570
3571 case 'Q':
3572 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3573 continue;
3574
3575 default:
3576 internalError ();
3577 }
3578 continue;
3579
3580 case '2':
3581 INSERT_OPERAND (BP, insn, va_arg (args, int));
3582 continue;
3583
3584 case 't':
3585 case 'w':
3586 case 'E':
3587 INSERT_OPERAND (RT, insn, va_arg (args, int));
3588 continue;
3589
3590 case 'c':
3591 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3592 continue;
3593
3594 case 'T':
3595 case 'W':
3596 INSERT_OPERAND (FT, insn, va_arg (args, int));
3597 continue;
3598
3599 case 'd':
3600 case 'G':
3601 case 'K':
3602 INSERT_OPERAND (RD, insn, va_arg (args, int));
3603 continue;
3604
3605 case 'U':
3606 {
3607 int tmp = va_arg (args, int);
3608
3609 INSERT_OPERAND (RT, insn, tmp);
3610 INSERT_OPERAND (RD, insn, tmp);
3611 continue;
3612 }
3613
3614 case 'V':
3615 case 'S':
3616 INSERT_OPERAND (FS, insn, va_arg (args, int));
3617 continue;
3618
3619 case 'z':
3620 continue;
3621
3622 case '<':
3623 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3624 continue;
3625
3626 case 'D':
3627 INSERT_OPERAND (FD, insn, va_arg (args, int));
3628 continue;
3629
3630 case 'B':
3631 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3632 continue;
3633
3634 case 'J':
3635 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3636 continue;
3637
3638 case 'q':
3639 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3640 continue;
3641
3642 case 'b':
3643 case 's':
3644 case 'r':
3645 case 'v':
3646 INSERT_OPERAND (RS, insn, va_arg (args, int));
3647 continue;
3648
3649 case 'i':
3650 case 'j':
3651 case 'o':
3652 macro_read_relocs (&args, r);
3653 assert (*r == BFD_RELOC_GPREL16
3654 || *r == BFD_RELOC_MIPS_LITERAL
3655 || *r == BFD_RELOC_MIPS_HIGHER
3656 || *r == BFD_RELOC_HI16_S
3657 || *r == BFD_RELOC_LO16
3658 || *r == BFD_RELOC_MIPS_GOT16
3659 || *r == BFD_RELOC_MIPS_CALL16
3660 || *r == BFD_RELOC_MIPS_GOT_DISP
3661 || *r == BFD_RELOC_MIPS_GOT_PAGE
3662 || *r == BFD_RELOC_MIPS_GOT_OFST
3663 || *r == BFD_RELOC_MIPS_GOT_LO16
3664 || *r == BFD_RELOC_MIPS_CALL_LO16);
3665 continue;
3666
3667 case 'u':
3668 macro_read_relocs (&args, r);
3669 assert (ep != NULL
3670 && (ep->X_op == O_constant
3671 || (ep->X_op == O_symbol
3672 && (*r == BFD_RELOC_MIPS_HIGHEST
3673 || *r == BFD_RELOC_HI16_S
3674 || *r == BFD_RELOC_HI16
3675 || *r == BFD_RELOC_GPREL16
3676 || *r == BFD_RELOC_MIPS_GOT_HI16
3677 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3678 continue;
3679
3680 case 'p':
3681 assert (ep != NULL);
3682
3683 /*
3684 * This allows macro() to pass an immediate expression for
3685 * creating short branches without creating a symbol.
3686 *
3687 * We don't allow branch relaxation for these branches, as
3688 * they should only appear in ".set nomacro" anyway.
3689 */
3690 if (ep->X_op == O_constant)
3691 {
3692 if ((ep->X_add_number & 3) != 0)
3693 as_bad (_("branch to misaligned address (0x%lx)"),
3694 (unsigned long) ep->X_add_number);
3695 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3696 as_bad (_("branch address range overflow (0x%lx)"),
3697 (unsigned long) ep->X_add_number);
3698 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3699 ep = NULL;
3700 }
3701 else
3702 *r = BFD_RELOC_16_PCREL_S2;
3703 continue;
3704
3705 case 'a':
3706 assert (ep != NULL);
3707 *r = BFD_RELOC_MIPS_JMP;
3708 continue;
3709
3710 case 'C':
3711 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3712 continue;
3713
3714 case 'k':
3715 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3716 continue;
3717
3718 default:
3719 internalError ();
3720 }
3721 break;
3722 }
3723 va_end (args);
3724 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3725
3726 append_insn (&insn, ep, r);
3727 }
3728
3729 static void
3730 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3731 va_list args)
3732 {
3733 struct mips_opcode *mo;
3734 struct mips_cl_insn insn;
3735 bfd_reloc_code_real_type r[3]
3736 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3737
3738 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3739 assert (mo);
3740 assert (strcmp (name, mo->name) == 0);
3741
3742 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3743 {
3744 ++mo;
3745 assert (mo->name);
3746 assert (strcmp (name, mo->name) == 0);
3747 }
3748
3749 create_insn (&insn, mo);
3750 for (;;)
3751 {
3752 int c;
3753
3754 c = *fmt++;
3755 switch (c)
3756 {
3757 case '\0':
3758 break;
3759
3760 case ',':
3761 case '(':
3762 case ')':
3763 continue;
3764
3765 case 'y':
3766 case 'w':
3767 MIPS16_INSERT_OPERAND (RY, insn, va_arg (args, int));
3768 continue;
3769
3770 case 'x':
3771 case 'v':
3772 MIPS16_INSERT_OPERAND (RX, insn, va_arg (args, int));
3773 continue;
3774
3775 case 'z':
3776 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (args, int));
3777 continue;
3778
3779 case 'Z':
3780 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (args, int));
3781 continue;
3782
3783 case '0':
3784 case 'S':
3785 case 'P':
3786 case 'R':
3787 continue;
3788
3789 case 'X':
3790 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (args, int));
3791 continue;
3792
3793 case 'Y':
3794 {
3795 int regno;
3796
3797 regno = va_arg (args, int);
3798 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3799 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3800 }
3801 continue;
3802
3803 case '<':
3804 case '>':
3805 case '4':
3806 case '5':
3807 case 'H':
3808 case 'W':
3809 case 'D':
3810 case 'j':
3811 case '8':
3812 case 'V':
3813 case 'C':
3814 case 'U':
3815 case 'k':
3816 case 'K':
3817 case 'p':
3818 case 'q':
3819 {
3820 assert (ep != NULL);
3821
3822 if (ep->X_op != O_constant)
3823 *r = (int) BFD_RELOC_UNUSED + c;
3824 else
3825 {
3826 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3827 FALSE, &insn.insn_opcode, &insn.use_extend,
3828 &insn.extend);
3829 ep = NULL;
3830 *r = BFD_RELOC_UNUSED;
3831 }
3832 }
3833 continue;
3834
3835 case '6':
3836 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (args, int));
3837 continue;
3838 }
3839
3840 break;
3841 }
3842
3843 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3844
3845 append_insn (&insn, ep, r);
3846 }
3847
3848 /*
3849 * Sign-extend 32-bit mode constants that have bit 31 set and all
3850 * higher bits unset.
3851 */
3852 static void
3853 normalize_constant_expr (expressionS *ex)
3854 {
3855 if (ex->X_op == O_constant
3856 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3857 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3858 - 0x80000000);
3859 }
3860
3861 /*
3862 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3863 * all higher bits unset.
3864 */
3865 static void
3866 normalize_address_expr (expressionS *ex)
3867 {
3868 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3869 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3870 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3871 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3872 - 0x80000000);
3873 }
3874
3875 /*
3876 * Generate a "jalr" instruction with a relocation hint to the called
3877 * function. This occurs in NewABI PIC code.
3878 */
3879 static void
3880 macro_build_jalr (expressionS *ep)
3881 {
3882 char *f = NULL;
3883
3884 if (HAVE_NEWABI)
3885 {
3886 frag_grow (8);
3887 f = frag_more (0);
3888 }
3889 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
3890 if (HAVE_NEWABI)
3891 fix_new_exp (frag_now, f - frag_now->fr_literal,
3892 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
3893 }
3894
3895 /*
3896 * Generate a "lui" instruction.
3897 */
3898 static void
3899 macro_build_lui (expressionS *ep, int regnum)
3900 {
3901 expressionS high_expr;
3902 const struct mips_opcode *mo;
3903 struct mips_cl_insn insn;
3904 bfd_reloc_code_real_type r[3]
3905 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3906 const char *name = "lui";
3907 const char *fmt = "t,u";
3908
3909 assert (! mips_opts.mips16);
3910
3911 high_expr = *ep;
3912
3913 if (high_expr.X_op == O_constant)
3914 {
3915 /* We can compute the instruction now without a relocation entry. */
3916 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
3917 >> 16) & 0xffff;
3918 *r = BFD_RELOC_UNUSED;
3919 }
3920 else
3921 {
3922 assert (ep->X_op == O_symbol);
3923 /* _gp_disp is a special case, used from s_cpload.
3924 __gnu_local_gp is used if mips_no_shared. */
3925 assert (mips_pic == NO_PIC
3926 || (! HAVE_NEWABI
3927 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
3928 || (! mips_in_shared
3929 && strcmp (S_GET_NAME (ep->X_add_symbol),
3930 "__gnu_local_gp") == 0));
3931 *r = BFD_RELOC_HI16_S;
3932 }
3933
3934 mo = hash_find (op_hash, name);
3935 assert (strcmp (name, mo->name) == 0);
3936 assert (strcmp (fmt, mo->args) == 0);
3937 create_insn (&insn, mo);
3938
3939 insn.insn_opcode = insn.insn_mo->match;
3940 INSERT_OPERAND (RT, insn, regnum);
3941 if (*r == BFD_RELOC_UNUSED)
3942 {
3943 insn.insn_opcode |= high_expr.X_add_number;
3944 append_insn (&insn, NULL, r);
3945 }
3946 else
3947 append_insn (&insn, &high_expr, r);
3948 }
3949
3950 /* Generate a sequence of instructions to do a load or store from a constant
3951 offset off of a base register (breg) into/from a target register (treg),
3952 using AT if necessary. */
3953 static void
3954 macro_build_ldst_constoffset (expressionS *ep, const char *op,
3955 int treg, int breg, int dbl)
3956 {
3957 assert (ep->X_op == O_constant);
3958
3959 /* Sign-extending 32-bit constants makes their handling easier. */
3960 if (!dbl)
3961 normalize_constant_expr (ep);
3962
3963 /* Right now, this routine can only handle signed 32-bit constants. */
3964 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
3965 as_warn (_("operand overflow"));
3966
3967 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
3968 {
3969 /* Signed 16-bit offset will fit in the op. Easy! */
3970 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
3971 }
3972 else
3973 {
3974 /* 32-bit offset, need multiple instructions and AT, like:
3975 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
3976 addu $tempreg,$tempreg,$breg
3977 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
3978 to handle the complete offset. */
3979 macro_build_lui (ep, AT);
3980 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
3981 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
3982
3983 if (!mips_opts.at)
3984 as_bad (_("Macro used $at after \".set noat\""));
3985 }
3986 }
3987
3988 /* set_at()
3989 * Generates code to set the $at register to true (one)
3990 * if reg is less than the immediate expression.
3991 */
3992 static void
3993 set_at (int reg, int unsignedp)
3994 {
3995 if (imm_expr.X_op == O_constant
3996 && imm_expr.X_add_number >= -0x8000
3997 && imm_expr.X_add_number < 0x8000)
3998 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
3999 AT, reg, BFD_RELOC_LO16);
4000 else
4001 {
4002 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4003 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4004 }
4005 }
4006
4007 /* Warn if an expression is not a constant. */
4008
4009 static void
4010 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4011 {
4012 if (ex->X_op == O_big)
4013 as_bad (_("unsupported large constant"));
4014 else if (ex->X_op != O_constant)
4015 as_bad (_("Instruction %s requires absolute expression"),
4016 ip->insn_mo->name);
4017
4018 if (HAVE_32BIT_GPRS)
4019 normalize_constant_expr (ex);
4020 }
4021
4022 /* Count the leading zeroes by performing a binary chop. This is a
4023 bulky bit of source, but performance is a LOT better for the
4024 majority of values than a simple loop to count the bits:
4025 for (lcnt = 0; (lcnt < 32); lcnt++)
4026 if ((v) & (1 << (31 - lcnt)))
4027 break;
4028 However it is not code size friendly, and the gain will drop a bit
4029 on certain cached systems.
4030 */
4031 #define COUNT_TOP_ZEROES(v) \
4032 (((v) & ~0xffff) == 0 \
4033 ? ((v) & ~0xff) == 0 \
4034 ? ((v) & ~0xf) == 0 \
4035 ? ((v) & ~0x3) == 0 \
4036 ? ((v) & ~0x1) == 0 \
4037 ? !(v) \
4038 ? 32 \
4039 : 31 \
4040 : 30 \
4041 : ((v) & ~0x7) == 0 \
4042 ? 29 \
4043 : 28 \
4044 : ((v) & ~0x3f) == 0 \
4045 ? ((v) & ~0x1f) == 0 \
4046 ? 27 \
4047 : 26 \
4048 : ((v) & ~0x7f) == 0 \
4049 ? 25 \
4050 : 24 \
4051 : ((v) & ~0xfff) == 0 \
4052 ? ((v) & ~0x3ff) == 0 \
4053 ? ((v) & ~0x1ff) == 0 \
4054 ? 23 \
4055 : 22 \
4056 : ((v) & ~0x7ff) == 0 \
4057 ? 21 \
4058 : 20 \
4059 : ((v) & ~0x3fff) == 0 \
4060 ? ((v) & ~0x1fff) == 0 \
4061 ? 19 \
4062 : 18 \
4063 : ((v) & ~0x7fff) == 0 \
4064 ? 17 \
4065 : 16 \
4066 : ((v) & ~0xffffff) == 0 \
4067 ? ((v) & ~0xfffff) == 0 \
4068 ? ((v) & ~0x3ffff) == 0 \
4069 ? ((v) & ~0x1ffff) == 0 \
4070 ? 15 \
4071 : 14 \
4072 : ((v) & ~0x7ffff) == 0 \
4073 ? 13 \
4074 : 12 \
4075 : ((v) & ~0x3fffff) == 0 \
4076 ? ((v) & ~0x1fffff) == 0 \
4077 ? 11 \
4078 : 10 \
4079 : ((v) & ~0x7fffff) == 0 \
4080 ? 9 \
4081 : 8 \
4082 : ((v) & ~0xfffffff) == 0 \
4083 ? ((v) & ~0x3ffffff) == 0 \
4084 ? ((v) & ~0x1ffffff) == 0 \
4085 ? 7 \
4086 : 6 \
4087 : ((v) & ~0x7ffffff) == 0 \
4088 ? 5 \
4089 : 4 \
4090 : ((v) & ~0x3fffffff) == 0 \
4091 ? ((v) & ~0x1fffffff) == 0 \
4092 ? 3 \
4093 : 2 \
4094 : ((v) & ~0x7fffffff) == 0 \
4095 ? 1 \
4096 : 0)
4097
4098 /* load_register()
4099 * This routine generates the least number of instructions necessary to load
4100 * an absolute expression value into a register.
4101 */
4102 static void
4103 load_register (int reg, expressionS *ep, int dbl)
4104 {
4105 int freg;
4106 expressionS hi32, lo32;
4107
4108 if (ep->X_op != O_big)
4109 {
4110 assert (ep->X_op == O_constant);
4111
4112 /* Sign-extending 32-bit constants makes their handling easier. */
4113 if (!dbl)
4114 normalize_constant_expr (ep);
4115
4116 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4117 {
4118 /* We can handle 16 bit signed values with an addiu to
4119 $zero. No need to ever use daddiu here, since $zero and
4120 the result are always correct in 32 bit mode. */
4121 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4122 return;
4123 }
4124 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4125 {
4126 /* We can handle 16 bit unsigned values with an ori to
4127 $zero. */
4128 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4129 return;
4130 }
4131 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4132 {
4133 /* 32 bit values require an lui. */
4134 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4135 if ((ep->X_add_number & 0xffff) != 0)
4136 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4137 return;
4138 }
4139 }
4140
4141 /* The value is larger than 32 bits. */
4142
4143 if (!dbl || HAVE_32BIT_GPRS)
4144 {
4145 char value[32];
4146
4147 sprintf_vma (value, ep->X_add_number);
4148 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4149 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4150 return;
4151 }
4152
4153 if (ep->X_op != O_big)
4154 {
4155 hi32 = *ep;
4156 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4157 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4158 hi32.X_add_number &= 0xffffffff;
4159 lo32 = *ep;
4160 lo32.X_add_number &= 0xffffffff;
4161 }
4162 else
4163 {
4164 assert (ep->X_add_number > 2);
4165 if (ep->X_add_number == 3)
4166 generic_bignum[3] = 0;
4167 else if (ep->X_add_number > 4)
4168 as_bad (_("Number larger than 64 bits"));
4169 lo32.X_op = O_constant;
4170 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4171 hi32.X_op = O_constant;
4172 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4173 }
4174
4175 if (hi32.X_add_number == 0)
4176 freg = 0;
4177 else
4178 {
4179 int shift, bit;
4180 unsigned long hi, lo;
4181
4182 if (hi32.X_add_number == (offsetT) 0xffffffff)
4183 {
4184 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4185 {
4186 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4187 return;
4188 }
4189 if (lo32.X_add_number & 0x80000000)
4190 {
4191 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4192 if (lo32.X_add_number & 0xffff)
4193 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4194 return;
4195 }
4196 }
4197
4198 /* Check for 16bit shifted constant. We know that hi32 is
4199 non-zero, so start the mask on the first bit of the hi32
4200 value. */
4201 shift = 17;
4202 do
4203 {
4204 unsigned long himask, lomask;
4205
4206 if (shift < 32)
4207 {
4208 himask = 0xffff >> (32 - shift);
4209 lomask = (0xffff << shift) & 0xffffffff;
4210 }
4211 else
4212 {
4213 himask = 0xffff << (shift - 32);
4214 lomask = 0;
4215 }
4216 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4217 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4218 {
4219 expressionS tmp;
4220
4221 tmp.X_op = O_constant;
4222 if (shift < 32)
4223 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4224 | (lo32.X_add_number >> shift));
4225 else
4226 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4227 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4228 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4229 reg, reg, (shift >= 32) ? shift - 32 : shift);
4230 return;
4231 }
4232 ++shift;
4233 }
4234 while (shift <= (64 - 16));
4235
4236 /* Find the bit number of the lowest one bit, and store the
4237 shifted value in hi/lo. */
4238 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4239 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4240 if (lo != 0)
4241 {
4242 bit = 0;
4243 while ((lo & 1) == 0)
4244 {
4245 lo >>= 1;
4246 ++bit;
4247 }
4248 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4249 hi >>= bit;
4250 }
4251 else
4252 {
4253 bit = 32;
4254 while ((hi & 1) == 0)
4255 {
4256 hi >>= 1;
4257 ++bit;
4258 }
4259 lo = hi;
4260 hi = 0;
4261 }
4262
4263 /* Optimize if the shifted value is a (power of 2) - 1. */
4264 if ((hi == 0 && ((lo + 1) & lo) == 0)
4265 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4266 {
4267 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4268 if (shift != 0)
4269 {
4270 expressionS tmp;
4271
4272 /* This instruction will set the register to be all
4273 ones. */
4274 tmp.X_op = O_constant;
4275 tmp.X_add_number = (offsetT) -1;
4276 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4277 if (bit != 0)
4278 {
4279 bit += shift;
4280 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4281 reg, reg, (bit >= 32) ? bit - 32 : bit);
4282 }
4283 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4284 reg, reg, (shift >= 32) ? shift - 32 : shift);
4285 return;
4286 }
4287 }
4288
4289 /* Sign extend hi32 before calling load_register, because we can
4290 generally get better code when we load a sign extended value. */
4291 if ((hi32.X_add_number & 0x80000000) != 0)
4292 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4293 load_register (reg, &hi32, 0);
4294 freg = reg;
4295 }
4296 if ((lo32.X_add_number & 0xffff0000) == 0)
4297 {
4298 if (freg != 0)
4299 {
4300 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4301 freg = reg;
4302 }
4303 }
4304 else
4305 {
4306 expressionS mid16;
4307
4308 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4309 {
4310 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4311 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4312 return;
4313 }
4314
4315 if (freg != 0)
4316 {
4317 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4318 freg = reg;
4319 }
4320 mid16 = lo32;
4321 mid16.X_add_number >>= 16;
4322 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4323 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4324 freg = reg;
4325 }
4326 if ((lo32.X_add_number & 0xffff) != 0)
4327 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4328 }
4329
4330 static inline void
4331 load_delay_nop (void)
4332 {
4333 if (!gpr_interlocks)
4334 macro_build (NULL, "nop", "");
4335 }
4336
4337 /* Load an address into a register. */
4338
4339 static void
4340 load_address (int reg, expressionS *ep, int *used_at)
4341 {
4342 if (ep->X_op != O_constant
4343 && ep->X_op != O_symbol)
4344 {
4345 as_bad (_("expression too complex"));
4346 ep->X_op = O_constant;
4347 }
4348
4349 if (ep->X_op == O_constant)
4350 {
4351 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4352 return;
4353 }
4354
4355 if (mips_pic == NO_PIC)
4356 {
4357 /* If this is a reference to a GP relative symbol, we want
4358 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4359 Otherwise we want
4360 lui $reg,<sym> (BFD_RELOC_HI16_S)
4361 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4362 If we have an addend, we always use the latter form.
4363
4364 With 64bit address space and a usable $at we want
4365 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4366 lui $at,<sym> (BFD_RELOC_HI16_S)
4367 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4368 daddiu $at,<sym> (BFD_RELOC_LO16)
4369 dsll32 $reg,0
4370 daddu $reg,$reg,$at
4371
4372 If $at is already in use, we use a path which is suboptimal
4373 on superscalar processors.
4374 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4375 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4376 dsll $reg,16
4377 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4378 dsll $reg,16
4379 daddiu $reg,<sym> (BFD_RELOC_LO16)
4380
4381 For GP relative symbols in 64bit address space we can use
4382 the same sequence as in 32bit address space. */
4383 if (HAVE_64BIT_SYMBOLS)
4384 {
4385 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4386 && !nopic_need_relax (ep->X_add_symbol, 1))
4387 {
4388 relax_start (ep->X_add_symbol);
4389 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4390 mips_gp_register, BFD_RELOC_GPREL16);
4391 relax_switch ();
4392 }
4393
4394 if (*used_at == 0 && mips_opts.at)
4395 {
4396 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4397 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4398 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4399 BFD_RELOC_MIPS_HIGHER);
4400 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4401 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4402 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4403 *used_at = 1;
4404 }
4405 else
4406 {
4407 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4408 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4409 BFD_RELOC_MIPS_HIGHER);
4410 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4411 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4412 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4413 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4414 }
4415
4416 if (mips_relax.sequence)
4417 relax_end ();
4418 }
4419 else
4420 {
4421 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4422 && !nopic_need_relax (ep->X_add_symbol, 1))
4423 {
4424 relax_start (ep->X_add_symbol);
4425 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4426 mips_gp_register, BFD_RELOC_GPREL16);
4427 relax_switch ();
4428 }
4429 macro_build_lui (ep, reg);
4430 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4431 reg, reg, BFD_RELOC_LO16);
4432 if (mips_relax.sequence)
4433 relax_end ();
4434 }
4435 }
4436 else if (!mips_big_got)
4437 {
4438 expressionS ex;
4439
4440 /* If this is a reference to an external symbol, we want
4441 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4442 Otherwise we want
4443 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4444 nop
4445 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4446 If there is a constant, it must be added in after.
4447
4448 If we have NewABI, we want
4449 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4450 unless we're referencing a global symbol with a non-zero
4451 offset, in which case cst must be added separately. */
4452 if (HAVE_NEWABI)
4453 {
4454 if (ep->X_add_number)
4455 {
4456 ex.X_add_number = ep->X_add_number;
4457 ep->X_add_number = 0;
4458 relax_start (ep->X_add_symbol);
4459 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4460 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4461 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4462 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4463 ex.X_op = O_constant;
4464 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4465 reg, reg, BFD_RELOC_LO16);
4466 ep->X_add_number = ex.X_add_number;
4467 relax_switch ();
4468 }
4469 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4470 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4471 if (mips_relax.sequence)
4472 relax_end ();
4473 }
4474 else
4475 {
4476 ex.X_add_number = ep->X_add_number;
4477 ep->X_add_number = 0;
4478 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4479 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4480 load_delay_nop ();
4481 relax_start (ep->X_add_symbol);
4482 relax_switch ();
4483 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4484 BFD_RELOC_LO16);
4485 relax_end ();
4486
4487 if (ex.X_add_number != 0)
4488 {
4489 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4490 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4491 ex.X_op = O_constant;
4492 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4493 reg, reg, BFD_RELOC_LO16);
4494 }
4495 }
4496 }
4497 else if (mips_big_got)
4498 {
4499 expressionS ex;
4500
4501 /* This is the large GOT case. If this is a reference to an
4502 external symbol, we want
4503 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4504 addu $reg,$reg,$gp
4505 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4506
4507 Otherwise, for a reference to a local symbol in old ABI, we want
4508 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4509 nop
4510 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4511 If there is a constant, it must be added in after.
4512
4513 In the NewABI, for local symbols, with or without offsets, we want:
4514 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4515 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4516 */
4517 if (HAVE_NEWABI)
4518 {
4519 ex.X_add_number = ep->X_add_number;
4520 ep->X_add_number = 0;
4521 relax_start (ep->X_add_symbol);
4522 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4523 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4524 reg, reg, mips_gp_register);
4525 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4526 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4527 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4528 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4529 else if (ex.X_add_number)
4530 {
4531 ex.X_op = O_constant;
4532 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4533 BFD_RELOC_LO16);
4534 }
4535
4536 ep->X_add_number = ex.X_add_number;
4537 relax_switch ();
4538 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4539 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4540 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4541 BFD_RELOC_MIPS_GOT_OFST);
4542 relax_end ();
4543 }
4544 else
4545 {
4546 ex.X_add_number = ep->X_add_number;
4547 ep->X_add_number = 0;
4548 relax_start (ep->X_add_symbol);
4549 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4550 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4551 reg, reg, mips_gp_register);
4552 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4553 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4554 relax_switch ();
4555 if (reg_needs_delay (mips_gp_register))
4556 {
4557 /* We need a nop before loading from $gp. This special
4558 check is required because the lui which starts the main
4559 instruction stream does not refer to $gp, and so will not
4560 insert the nop which may be required. */
4561 macro_build (NULL, "nop", "");
4562 }
4563 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4564 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4565 load_delay_nop ();
4566 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4567 BFD_RELOC_LO16);
4568 relax_end ();
4569
4570 if (ex.X_add_number != 0)
4571 {
4572 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4573 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4574 ex.X_op = O_constant;
4575 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4576 BFD_RELOC_LO16);
4577 }
4578 }
4579 }
4580 else
4581 abort ();
4582
4583 if (!mips_opts.at && *used_at == 1)
4584 as_bad (_("Macro used $at after \".set noat\""));
4585 }
4586
4587 /* Move the contents of register SOURCE into register DEST. */
4588
4589 static void
4590 move_register (int dest, int source)
4591 {
4592 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4593 dest, source, 0);
4594 }
4595
4596 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4597 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4598 The two alternatives are:
4599
4600 Global symbol Local sybmol
4601 ------------- ------------
4602 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4603 ... ...
4604 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4605
4606 load_got_offset emits the first instruction and add_got_offset
4607 emits the second for a 16-bit offset or add_got_offset_hilo emits
4608 a sequence to add a 32-bit offset using a scratch register. */
4609
4610 static void
4611 load_got_offset (int dest, expressionS *local)
4612 {
4613 expressionS global;
4614
4615 global = *local;
4616 global.X_add_number = 0;
4617
4618 relax_start (local->X_add_symbol);
4619 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4620 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4621 relax_switch ();
4622 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4623 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4624 relax_end ();
4625 }
4626
4627 static void
4628 add_got_offset (int dest, expressionS *local)
4629 {
4630 expressionS global;
4631
4632 global.X_op = O_constant;
4633 global.X_op_symbol = NULL;
4634 global.X_add_symbol = NULL;
4635 global.X_add_number = local->X_add_number;
4636
4637 relax_start (local->X_add_symbol);
4638 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4639 dest, dest, BFD_RELOC_LO16);
4640 relax_switch ();
4641 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4642 relax_end ();
4643 }
4644
4645 static void
4646 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4647 {
4648 expressionS global;
4649 int hold_mips_optimize;
4650
4651 global.X_op = O_constant;
4652 global.X_op_symbol = NULL;
4653 global.X_add_symbol = NULL;
4654 global.X_add_number = local->X_add_number;
4655
4656 relax_start (local->X_add_symbol);
4657 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4658 relax_switch ();
4659 /* Set mips_optimize around the lui instruction to avoid
4660 inserting an unnecessary nop after the lw. */
4661 hold_mips_optimize = mips_optimize;
4662 mips_optimize = 2;
4663 macro_build_lui (&global, tmp);
4664 mips_optimize = hold_mips_optimize;
4665 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4666 relax_end ();
4667
4668 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4669 }
4670
4671 /*
4672 * Build macros
4673 * This routine implements the seemingly endless macro or synthesized
4674 * instructions and addressing modes in the mips assembly language. Many
4675 * of these macros are simple and are similar to each other. These could
4676 * probably be handled by some kind of table or grammar approach instead of
4677 * this verbose method. Others are not simple macros but are more like
4678 * optimizing code generation.
4679 * One interesting optimization is when several store macros appear
4680 * consecutively that would load AT with the upper half of the same address.
4681 * The ensuing load upper instructions are ommited. This implies some kind
4682 * of global optimization. We currently only optimize within a single macro.
4683 * For many of the load and store macros if the address is specified as a
4684 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4685 * first load register 'at' with zero and use it as the base register. The
4686 * mips assembler simply uses register $zero. Just one tiny optimization
4687 * we're missing.
4688 */
4689 static void
4690 macro (struct mips_cl_insn *ip)
4691 {
4692 unsigned int treg, sreg, dreg, breg;
4693 unsigned int tempreg;
4694 int mask;
4695 int used_at = 0;
4696 expressionS expr1;
4697 const char *s;
4698 const char *s2;
4699 const char *fmt;
4700 int likely = 0;
4701 int dbl = 0;
4702 int coproc = 0;
4703 int lr = 0;
4704 int imm = 0;
4705 int call = 0;
4706 int off;
4707 offsetT maxnum;
4708 bfd_reloc_code_real_type r;
4709 int hold_mips_optimize;
4710
4711 assert (! mips_opts.mips16);
4712
4713 treg = (ip->insn_opcode >> 16) & 0x1f;
4714 dreg = (ip->insn_opcode >> 11) & 0x1f;
4715 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4716 mask = ip->insn_mo->mask;
4717
4718 expr1.X_op = O_constant;
4719 expr1.X_op_symbol = NULL;
4720 expr1.X_add_symbol = NULL;
4721 expr1.X_add_number = 1;
4722
4723 switch (mask)
4724 {
4725 case M_DABS:
4726 dbl = 1;
4727 case M_ABS:
4728 /* bgez $a0,.+12
4729 move v0,$a0
4730 sub v0,$zero,$a0
4731 */
4732
4733 start_noreorder ();
4734
4735 expr1.X_add_number = 8;
4736 macro_build (&expr1, "bgez", "s,p", sreg);
4737 if (dreg == sreg)
4738 macro_build (NULL, "nop", "", 0);
4739 else
4740 move_register (dreg, sreg);
4741 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4742
4743 end_noreorder ();
4744 break;
4745
4746 case M_ADD_I:
4747 s = "addi";
4748 s2 = "add";
4749 goto do_addi;
4750 case M_ADDU_I:
4751 s = "addiu";
4752 s2 = "addu";
4753 goto do_addi;
4754 case M_DADD_I:
4755 dbl = 1;
4756 s = "daddi";
4757 s2 = "dadd";
4758 goto do_addi;
4759 case M_DADDU_I:
4760 dbl = 1;
4761 s = "daddiu";
4762 s2 = "daddu";
4763 do_addi:
4764 if (imm_expr.X_op == O_constant
4765 && imm_expr.X_add_number >= -0x8000
4766 && imm_expr.X_add_number < 0x8000)
4767 {
4768 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4769 break;
4770 }
4771 used_at = 1;
4772 load_register (AT, &imm_expr, dbl);
4773 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4774 break;
4775
4776 case M_AND_I:
4777 s = "andi";
4778 s2 = "and";
4779 goto do_bit;
4780 case M_OR_I:
4781 s = "ori";
4782 s2 = "or";
4783 goto do_bit;
4784 case M_NOR_I:
4785 s = "";
4786 s2 = "nor";
4787 goto do_bit;
4788 case M_XOR_I:
4789 s = "xori";
4790 s2 = "xor";
4791 do_bit:
4792 if (imm_expr.X_op == O_constant
4793 && imm_expr.X_add_number >= 0
4794 && imm_expr.X_add_number < 0x10000)
4795 {
4796 if (mask != M_NOR_I)
4797 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4798 else
4799 {
4800 macro_build (&imm_expr, "ori", "t,r,i",
4801 treg, sreg, BFD_RELOC_LO16);
4802 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4803 }
4804 break;
4805 }
4806
4807 used_at = 1;
4808 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4809 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4810 break;
4811
4812 case M_BALIGN:
4813 switch (imm_expr.X_add_number)
4814 {
4815 case 0:
4816 macro_build (NULL, "nop", "");
4817 break;
4818 case 2:
4819 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4820 break;
4821 default:
4822 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4823 (int)imm_expr.X_add_number);
4824 break;
4825 }
4826 break;
4827
4828 case M_BEQ_I:
4829 s = "beq";
4830 goto beq_i;
4831 case M_BEQL_I:
4832 s = "beql";
4833 likely = 1;
4834 goto beq_i;
4835 case M_BNE_I:
4836 s = "bne";
4837 goto beq_i;
4838 case M_BNEL_I:
4839 s = "bnel";
4840 likely = 1;
4841 beq_i:
4842 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4843 {
4844 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4845 break;
4846 }
4847 used_at = 1;
4848 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4849 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4850 break;
4851
4852 case M_BGEL:
4853 likely = 1;
4854 case M_BGE:
4855 if (treg == 0)
4856 {
4857 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4858 break;
4859 }
4860 if (sreg == 0)
4861 {
4862 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4863 break;
4864 }
4865 used_at = 1;
4866 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4867 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4868 break;
4869
4870 case M_BGTL_I:
4871 likely = 1;
4872 case M_BGT_I:
4873 /* check for > max integer */
4874 maxnum = 0x7fffffff;
4875 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4876 {
4877 maxnum <<= 16;
4878 maxnum |= 0xffff;
4879 maxnum <<= 16;
4880 maxnum |= 0xffff;
4881 }
4882 if (imm_expr.X_op == O_constant
4883 && imm_expr.X_add_number >= maxnum
4884 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4885 {
4886 do_false:
4887 /* result is always false */
4888 if (! likely)
4889 macro_build (NULL, "nop", "", 0);
4890 else
4891 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
4892 break;
4893 }
4894 if (imm_expr.X_op != O_constant)
4895 as_bad (_("Unsupported large constant"));
4896 ++imm_expr.X_add_number;
4897 /* FALLTHROUGH */
4898 case M_BGE_I:
4899 case M_BGEL_I:
4900 if (mask == M_BGEL_I)
4901 likely = 1;
4902 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4903 {
4904 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4905 break;
4906 }
4907 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4908 {
4909 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4910 break;
4911 }
4912 maxnum = 0x7fffffff;
4913 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4914 {
4915 maxnum <<= 16;
4916 maxnum |= 0xffff;
4917 maxnum <<= 16;
4918 maxnum |= 0xffff;
4919 }
4920 maxnum = - maxnum - 1;
4921 if (imm_expr.X_op == O_constant
4922 && imm_expr.X_add_number <= maxnum
4923 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4924 {
4925 do_true:
4926 /* result is always true */
4927 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
4928 macro_build (&offset_expr, "b", "p");
4929 break;
4930 }
4931 used_at = 1;
4932 set_at (sreg, 0);
4933 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4934 break;
4935
4936 case M_BGEUL:
4937 likely = 1;
4938 case M_BGEU:
4939 if (treg == 0)
4940 goto do_true;
4941 if (sreg == 0)
4942 {
4943 macro_build (&offset_expr, likely ? "beql" : "beq",
4944 "s,t,p", 0, treg);
4945 break;
4946 }
4947 used_at = 1;
4948 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4949 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4950 break;
4951
4952 case M_BGTUL_I:
4953 likely = 1;
4954 case M_BGTU_I:
4955 if (sreg == 0
4956 || (HAVE_32BIT_GPRS
4957 && imm_expr.X_op == O_constant
4958 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4959 goto do_false;
4960 if (imm_expr.X_op != O_constant)
4961 as_bad (_("Unsupported large constant"));
4962 ++imm_expr.X_add_number;
4963 /* FALLTHROUGH */
4964 case M_BGEU_I:
4965 case M_BGEUL_I:
4966 if (mask == M_BGEUL_I)
4967 likely = 1;
4968 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4969 goto do_true;
4970 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4971 {
4972 macro_build (&offset_expr, likely ? "bnel" : "bne",
4973 "s,t,p", sreg, 0);
4974 break;
4975 }
4976 used_at = 1;
4977 set_at (sreg, 1);
4978 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4979 break;
4980
4981 case M_BGTL:
4982 likely = 1;
4983 case M_BGT:
4984 if (treg == 0)
4985 {
4986 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4987 break;
4988 }
4989 if (sreg == 0)
4990 {
4991 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
4992 break;
4993 }
4994 used_at = 1;
4995 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4996 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4997 break;
4998
4999 case M_BGTUL:
5000 likely = 1;
5001 case M_BGTU:
5002 if (treg == 0)
5003 {
5004 macro_build (&offset_expr, likely ? "bnel" : "bne",
5005 "s,t,p", sreg, 0);
5006 break;
5007 }
5008 if (sreg == 0)
5009 goto do_false;
5010 used_at = 1;
5011 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5012 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5013 break;
5014
5015 case M_BLEL:
5016 likely = 1;
5017 case M_BLE:
5018 if (treg == 0)
5019 {
5020 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5021 break;
5022 }
5023 if (sreg == 0)
5024 {
5025 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5026 break;
5027 }
5028 used_at = 1;
5029 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5030 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5031 break;
5032
5033 case M_BLEL_I:
5034 likely = 1;
5035 case M_BLE_I:
5036 maxnum = 0x7fffffff;
5037 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5038 {
5039 maxnum <<= 16;
5040 maxnum |= 0xffff;
5041 maxnum <<= 16;
5042 maxnum |= 0xffff;
5043 }
5044 if (imm_expr.X_op == O_constant
5045 && imm_expr.X_add_number >= maxnum
5046 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5047 goto do_true;
5048 if (imm_expr.X_op != O_constant)
5049 as_bad (_("Unsupported large constant"));
5050 ++imm_expr.X_add_number;
5051 /* FALLTHROUGH */
5052 case M_BLT_I:
5053 case M_BLTL_I:
5054 if (mask == M_BLTL_I)
5055 likely = 1;
5056 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5057 {
5058 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5059 break;
5060 }
5061 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5062 {
5063 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5064 break;
5065 }
5066 used_at = 1;
5067 set_at (sreg, 0);
5068 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5069 break;
5070
5071 case M_BLEUL:
5072 likely = 1;
5073 case M_BLEU:
5074 if (treg == 0)
5075 {
5076 macro_build (&offset_expr, likely ? "beql" : "beq",
5077 "s,t,p", sreg, 0);
5078 break;
5079 }
5080 if (sreg == 0)
5081 goto do_true;
5082 used_at = 1;
5083 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5084 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5085 break;
5086
5087 case M_BLEUL_I:
5088 likely = 1;
5089 case M_BLEU_I:
5090 if (sreg == 0
5091 || (HAVE_32BIT_GPRS
5092 && imm_expr.X_op == O_constant
5093 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5094 goto do_true;
5095 if (imm_expr.X_op != O_constant)
5096 as_bad (_("Unsupported large constant"));
5097 ++imm_expr.X_add_number;
5098 /* FALLTHROUGH */
5099 case M_BLTU_I:
5100 case M_BLTUL_I:
5101 if (mask == M_BLTUL_I)
5102 likely = 1;
5103 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5104 goto do_false;
5105 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5106 {
5107 macro_build (&offset_expr, likely ? "beql" : "beq",
5108 "s,t,p", sreg, 0);
5109 break;
5110 }
5111 used_at = 1;
5112 set_at (sreg, 1);
5113 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5114 break;
5115
5116 case M_BLTL:
5117 likely = 1;
5118 case M_BLT:
5119 if (treg == 0)
5120 {
5121 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5122 break;
5123 }
5124 if (sreg == 0)
5125 {
5126 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5127 break;
5128 }
5129 used_at = 1;
5130 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5131 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5132 break;
5133
5134 case M_BLTUL:
5135 likely = 1;
5136 case M_BLTU:
5137 if (treg == 0)
5138 goto do_false;
5139 if (sreg == 0)
5140 {
5141 macro_build (&offset_expr, likely ? "bnel" : "bne",
5142 "s,t,p", 0, treg);
5143 break;
5144 }
5145 used_at = 1;
5146 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5147 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5148 break;
5149
5150 case M_DEXT:
5151 {
5152 unsigned long pos;
5153 unsigned long size;
5154
5155 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5156 {
5157 as_bad (_("Unsupported large constant"));
5158 pos = size = 1;
5159 }
5160 else
5161 {
5162 pos = (unsigned long) imm_expr.X_add_number;
5163 size = (unsigned long) imm2_expr.X_add_number;
5164 }
5165
5166 if (pos > 63)
5167 {
5168 as_bad (_("Improper position (%lu)"), pos);
5169 pos = 1;
5170 }
5171 if (size == 0 || size > 64
5172 || (pos + size - 1) > 63)
5173 {
5174 as_bad (_("Improper extract size (%lu, position %lu)"),
5175 size, pos);
5176 size = 1;
5177 }
5178
5179 if (size <= 32 && pos < 32)
5180 {
5181 s = "dext";
5182 fmt = "t,r,+A,+C";
5183 }
5184 else if (size <= 32)
5185 {
5186 s = "dextu";
5187 fmt = "t,r,+E,+H";
5188 }
5189 else
5190 {
5191 s = "dextm";
5192 fmt = "t,r,+A,+G";
5193 }
5194 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5195 }
5196 break;
5197
5198 case M_DINS:
5199 {
5200 unsigned long pos;
5201 unsigned long size;
5202
5203 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5204 {
5205 as_bad (_("Unsupported large constant"));
5206 pos = size = 1;
5207 }
5208 else
5209 {
5210 pos = (unsigned long) imm_expr.X_add_number;
5211 size = (unsigned long) imm2_expr.X_add_number;
5212 }
5213
5214 if (pos > 63)
5215 {
5216 as_bad (_("Improper position (%lu)"), pos);
5217 pos = 1;
5218 }
5219 if (size == 0 || size > 64
5220 || (pos + size - 1) > 63)
5221 {
5222 as_bad (_("Improper insert size (%lu, position %lu)"),
5223 size, pos);
5224 size = 1;
5225 }
5226
5227 if (pos < 32 && (pos + size - 1) < 32)
5228 {
5229 s = "dins";
5230 fmt = "t,r,+A,+B";
5231 }
5232 else if (pos >= 32)
5233 {
5234 s = "dinsu";
5235 fmt = "t,r,+E,+F";
5236 }
5237 else
5238 {
5239 s = "dinsm";
5240 fmt = "t,r,+A,+F";
5241 }
5242 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos,
5243 pos + size - 1);
5244 }
5245 break;
5246
5247 case M_DDIV_3:
5248 dbl = 1;
5249 case M_DIV_3:
5250 s = "mflo";
5251 goto do_div3;
5252 case M_DREM_3:
5253 dbl = 1;
5254 case M_REM_3:
5255 s = "mfhi";
5256 do_div3:
5257 if (treg == 0)
5258 {
5259 as_warn (_("Divide by zero."));
5260 if (mips_trap)
5261 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5262 else
5263 macro_build (NULL, "break", "c", 7);
5264 break;
5265 }
5266
5267 start_noreorder ();
5268 if (mips_trap)
5269 {
5270 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5271 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5272 }
5273 else
5274 {
5275 expr1.X_add_number = 8;
5276 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5277 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5278 macro_build (NULL, "break", "c", 7);
5279 }
5280 expr1.X_add_number = -1;
5281 used_at = 1;
5282 load_register (AT, &expr1, dbl);
5283 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5284 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5285 if (dbl)
5286 {
5287 expr1.X_add_number = 1;
5288 load_register (AT, &expr1, dbl);
5289 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5290 }
5291 else
5292 {
5293 expr1.X_add_number = 0x80000000;
5294 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5295 }
5296 if (mips_trap)
5297 {
5298 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5299 /* We want to close the noreorder block as soon as possible, so
5300 that later insns are available for delay slot filling. */
5301 end_noreorder ();
5302 }
5303 else
5304 {
5305 expr1.X_add_number = 8;
5306 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5307 macro_build (NULL, "nop", "", 0);
5308
5309 /* We want to close the noreorder block as soon as possible, so
5310 that later insns are available for delay slot filling. */
5311 end_noreorder ();
5312
5313 macro_build (NULL, "break", "c", 6);
5314 }
5315 macro_build (NULL, s, "d", dreg);
5316 break;
5317
5318 case M_DIV_3I:
5319 s = "div";
5320 s2 = "mflo";
5321 goto do_divi;
5322 case M_DIVU_3I:
5323 s = "divu";
5324 s2 = "mflo";
5325 goto do_divi;
5326 case M_REM_3I:
5327 s = "div";
5328 s2 = "mfhi";
5329 goto do_divi;
5330 case M_REMU_3I:
5331 s = "divu";
5332 s2 = "mfhi";
5333 goto do_divi;
5334 case M_DDIV_3I:
5335 dbl = 1;
5336 s = "ddiv";
5337 s2 = "mflo";
5338 goto do_divi;
5339 case M_DDIVU_3I:
5340 dbl = 1;
5341 s = "ddivu";
5342 s2 = "mflo";
5343 goto do_divi;
5344 case M_DREM_3I:
5345 dbl = 1;
5346 s = "ddiv";
5347 s2 = "mfhi";
5348 goto do_divi;
5349 case M_DREMU_3I:
5350 dbl = 1;
5351 s = "ddivu";
5352 s2 = "mfhi";
5353 do_divi:
5354 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5355 {
5356 as_warn (_("Divide by zero."));
5357 if (mips_trap)
5358 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5359 else
5360 macro_build (NULL, "break", "c", 7);
5361 break;
5362 }
5363 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5364 {
5365 if (strcmp (s2, "mflo") == 0)
5366 move_register (dreg, sreg);
5367 else
5368 move_register (dreg, 0);
5369 break;
5370 }
5371 if (imm_expr.X_op == O_constant
5372 && imm_expr.X_add_number == -1
5373 && s[strlen (s) - 1] != 'u')
5374 {
5375 if (strcmp (s2, "mflo") == 0)
5376 {
5377 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5378 }
5379 else
5380 move_register (dreg, 0);
5381 break;
5382 }
5383
5384 used_at = 1;
5385 load_register (AT, &imm_expr, dbl);
5386 macro_build (NULL, s, "z,s,t", sreg, AT);
5387 macro_build (NULL, s2, "d", dreg);
5388 break;
5389
5390 case M_DIVU_3:
5391 s = "divu";
5392 s2 = "mflo";
5393 goto do_divu3;
5394 case M_REMU_3:
5395 s = "divu";
5396 s2 = "mfhi";
5397 goto do_divu3;
5398 case M_DDIVU_3:
5399 s = "ddivu";
5400 s2 = "mflo";
5401 goto do_divu3;
5402 case M_DREMU_3:
5403 s = "ddivu";
5404 s2 = "mfhi";
5405 do_divu3:
5406 start_noreorder ();
5407 if (mips_trap)
5408 {
5409 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5410 macro_build (NULL, s, "z,s,t", sreg, treg);
5411 /* We want to close the noreorder block as soon as possible, so
5412 that later insns are available for delay slot filling. */
5413 end_noreorder ();
5414 }
5415 else
5416 {
5417 expr1.X_add_number = 8;
5418 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5419 macro_build (NULL, s, "z,s,t", sreg, treg);
5420
5421 /* We want to close the noreorder block as soon as possible, so
5422 that later insns are available for delay slot filling. */
5423 end_noreorder ();
5424 macro_build (NULL, "break", "c", 7);
5425 }
5426 macro_build (NULL, s2, "d", dreg);
5427 break;
5428
5429 case M_DLCA_AB:
5430 dbl = 1;
5431 case M_LCA_AB:
5432 call = 1;
5433 goto do_la;
5434 case M_DLA_AB:
5435 dbl = 1;
5436 case M_LA_AB:
5437 do_la:
5438 /* Load the address of a symbol into a register. If breg is not
5439 zero, we then add a base register to it. */
5440
5441 if (dbl && HAVE_32BIT_GPRS)
5442 as_warn (_("dla used to load 32-bit register"));
5443
5444 if (! dbl && HAVE_64BIT_OBJECTS)
5445 as_warn (_("la used to load 64-bit address"));
5446
5447 if (offset_expr.X_op == O_constant
5448 && offset_expr.X_add_number >= -0x8000
5449 && offset_expr.X_add_number < 0x8000)
5450 {
5451 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5452 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5453 break;
5454 }
5455
5456 if (mips_opts.at && (treg == breg))
5457 {
5458 tempreg = AT;
5459 used_at = 1;
5460 }
5461 else
5462 {
5463 tempreg = treg;
5464 }
5465
5466 if (offset_expr.X_op != O_symbol
5467 && offset_expr.X_op != O_constant)
5468 {
5469 as_bad (_("expression too complex"));
5470 offset_expr.X_op = O_constant;
5471 }
5472
5473 if (offset_expr.X_op == O_constant)
5474 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5475 else if (mips_pic == NO_PIC)
5476 {
5477 /* If this is a reference to a GP relative symbol, we want
5478 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5479 Otherwise we want
5480 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5481 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5482 If we have a constant, we need two instructions anyhow,
5483 so we may as well always use the latter form.
5484
5485 With 64bit address space and a usable $at we want
5486 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5487 lui $at,<sym> (BFD_RELOC_HI16_S)
5488 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5489 daddiu $at,<sym> (BFD_RELOC_LO16)
5490 dsll32 $tempreg,0
5491 daddu $tempreg,$tempreg,$at
5492
5493 If $at is already in use, we use a path which is suboptimal
5494 on superscalar processors.
5495 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5496 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5497 dsll $tempreg,16
5498 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5499 dsll $tempreg,16
5500 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5501
5502 For GP relative symbols in 64bit address space we can use
5503 the same sequence as in 32bit address space. */
5504 if (HAVE_64BIT_SYMBOLS)
5505 {
5506 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5507 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5508 {
5509 relax_start (offset_expr.X_add_symbol);
5510 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5511 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5512 relax_switch ();
5513 }
5514
5515 if (used_at == 0 && mips_opts.at)
5516 {
5517 macro_build (&offset_expr, "lui", "t,u",
5518 tempreg, BFD_RELOC_MIPS_HIGHEST);
5519 macro_build (&offset_expr, "lui", "t,u",
5520 AT, BFD_RELOC_HI16_S);
5521 macro_build (&offset_expr, "daddiu", "t,r,j",
5522 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5523 macro_build (&offset_expr, "daddiu", "t,r,j",
5524 AT, AT, BFD_RELOC_LO16);
5525 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5526 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5527 used_at = 1;
5528 }
5529 else
5530 {
5531 macro_build (&offset_expr, "lui", "t,u",
5532 tempreg, BFD_RELOC_MIPS_HIGHEST);
5533 macro_build (&offset_expr, "daddiu", "t,r,j",
5534 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5535 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5536 macro_build (&offset_expr, "daddiu", "t,r,j",
5537 tempreg, tempreg, BFD_RELOC_HI16_S);
5538 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5539 macro_build (&offset_expr, "daddiu", "t,r,j",
5540 tempreg, tempreg, BFD_RELOC_LO16);
5541 }
5542
5543 if (mips_relax.sequence)
5544 relax_end ();
5545 }
5546 else
5547 {
5548 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5549 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5550 {
5551 relax_start (offset_expr.X_add_symbol);
5552 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5553 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5554 relax_switch ();
5555 }
5556 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5557 as_bad (_("offset too large"));
5558 macro_build_lui (&offset_expr, tempreg);
5559 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5560 tempreg, tempreg, BFD_RELOC_LO16);
5561 if (mips_relax.sequence)
5562 relax_end ();
5563 }
5564 }
5565 else if (!mips_big_got && !HAVE_NEWABI)
5566 {
5567 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5568
5569 /* If this is a reference to an external symbol, and there
5570 is no constant, we want
5571 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5572 or for lca or if tempreg is PIC_CALL_REG
5573 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5574 For a local symbol, we want
5575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5576 nop
5577 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5578
5579 If we have a small constant, and this is a reference to
5580 an external symbol, we want
5581 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5582 nop
5583 addiu $tempreg,$tempreg,<constant>
5584 For a local symbol, we want the same instruction
5585 sequence, but we output a BFD_RELOC_LO16 reloc on the
5586 addiu instruction.
5587
5588 If we have a large constant, and this is a reference to
5589 an external symbol, we want
5590 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5591 lui $at,<hiconstant>
5592 addiu $at,$at,<loconstant>
5593 addu $tempreg,$tempreg,$at
5594 For a local symbol, we want the same instruction
5595 sequence, but we output a BFD_RELOC_LO16 reloc on the
5596 addiu instruction.
5597 */
5598
5599 if (offset_expr.X_add_number == 0)
5600 {
5601 if (mips_pic == SVR4_PIC
5602 && breg == 0
5603 && (call || tempreg == PIC_CALL_REG))
5604 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5605
5606 relax_start (offset_expr.X_add_symbol);
5607 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5608 lw_reloc_type, mips_gp_register);
5609 if (breg != 0)
5610 {
5611 /* We're going to put in an addu instruction using
5612 tempreg, so we may as well insert the nop right
5613 now. */
5614 load_delay_nop ();
5615 }
5616 relax_switch ();
5617 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5618 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5619 load_delay_nop ();
5620 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5621 tempreg, tempreg, BFD_RELOC_LO16);
5622 relax_end ();
5623 /* FIXME: If breg == 0, and the next instruction uses
5624 $tempreg, then if this variant case is used an extra
5625 nop will be generated. */
5626 }
5627 else if (offset_expr.X_add_number >= -0x8000
5628 && offset_expr.X_add_number < 0x8000)
5629 {
5630 load_got_offset (tempreg, &offset_expr);
5631 load_delay_nop ();
5632 add_got_offset (tempreg, &offset_expr);
5633 }
5634 else
5635 {
5636 expr1.X_add_number = offset_expr.X_add_number;
5637 offset_expr.X_add_number =
5638 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5639 load_got_offset (tempreg, &offset_expr);
5640 offset_expr.X_add_number = expr1.X_add_number;
5641 /* If we are going to add in a base register, and the
5642 target register and the base register are the same,
5643 then we are using AT as a temporary register. Since
5644 we want to load the constant into AT, we add our
5645 current AT (from the global offset table) and the
5646 register into the register now, and pretend we were
5647 not using a base register. */
5648 if (breg == treg)
5649 {
5650 load_delay_nop ();
5651 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5652 treg, AT, breg);
5653 breg = 0;
5654 tempreg = treg;
5655 }
5656 add_got_offset_hilo (tempreg, &offset_expr, AT);
5657 used_at = 1;
5658 }
5659 }
5660 else if (!mips_big_got && HAVE_NEWABI)
5661 {
5662 int add_breg_early = 0;
5663
5664 /* If this is a reference to an external, and there is no
5665 constant, or local symbol (*), with or without a
5666 constant, we want
5667 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5668 or for lca or if tempreg is PIC_CALL_REG
5669 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5670
5671 If we have a small constant, and this is a reference to
5672 an external symbol, we want
5673 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5674 addiu $tempreg,$tempreg,<constant>
5675
5676 If we have a large constant, and this is a reference to
5677 an external symbol, we want
5678 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5679 lui $at,<hiconstant>
5680 addiu $at,$at,<loconstant>
5681 addu $tempreg,$tempreg,$at
5682
5683 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5684 local symbols, even though it introduces an additional
5685 instruction. */
5686
5687 if (offset_expr.X_add_number)
5688 {
5689 expr1.X_add_number = offset_expr.X_add_number;
5690 offset_expr.X_add_number = 0;
5691
5692 relax_start (offset_expr.X_add_symbol);
5693 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5694 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5695
5696 if (expr1.X_add_number >= -0x8000
5697 && expr1.X_add_number < 0x8000)
5698 {
5699 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5700 tempreg, tempreg, BFD_RELOC_LO16);
5701 }
5702 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5703 {
5704 int dreg;
5705
5706 /* If we are going to add in a base register, and the
5707 target register and the base register are the same,
5708 then we are using AT as a temporary register. Since
5709 we want to load the constant into AT, we add our
5710 current AT (from the global offset table) and the
5711 register into the register now, and pretend we were
5712 not using a base register. */
5713 if (breg != treg)
5714 dreg = tempreg;
5715 else
5716 {
5717 assert (tempreg == AT);
5718 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5719 treg, AT, breg);
5720 dreg = treg;
5721 add_breg_early = 1;
5722 }
5723
5724 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5725 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5726 dreg, dreg, AT);
5727
5728 used_at = 1;
5729 }
5730 else
5731 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5732
5733 relax_switch ();
5734 offset_expr.X_add_number = expr1.X_add_number;
5735
5736 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5737 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5738 if (add_breg_early)
5739 {
5740 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5741 treg, tempreg, breg);
5742 breg = 0;
5743 tempreg = treg;
5744 }
5745 relax_end ();
5746 }
5747 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5748 {
5749 relax_start (offset_expr.X_add_symbol);
5750 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5751 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5752 relax_switch ();
5753 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5754 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5755 relax_end ();
5756 }
5757 else
5758 {
5759 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5760 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5761 }
5762 }
5763 else if (mips_big_got && !HAVE_NEWABI)
5764 {
5765 int gpdelay;
5766 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5767 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5768 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5769
5770 /* This is the large GOT case. If this is a reference to an
5771 external symbol, and there is no constant, we want
5772 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5773 addu $tempreg,$tempreg,$gp
5774 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5775 or for lca or if tempreg is PIC_CALL_REG
5776 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5777 addu $tempreg,$tempreg,$gp
5778 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5779 For a local symbol, we want
5780 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5781 nop
5782 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5783
5784 If we have a small constant, and this is a reference to
5785 an external symbol, we want
5786 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5787 addu $tempreg,$tempreg,$gp
5788 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5789 nop
5790 addiu $tempreg,$tempreg,<constant>
5791 For a local symbol, we want
5792 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5793 nop
5794 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5795
5796 If we have a large constant, and this is a reference to
5797 an external symbol, we want
5798 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5799 addu $tempreg,$tempreg,$gp
5800 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5801 lui $at,<hiconstant>
5802 addiu $at,$at,<loconstant>
5803 addu $tempreg,$tempreg,$at
5804 For a local symbol, we want
5805 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5806 lui $at,<hiconstant>
5807 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5808 addu $tempreg,$tempreg,$at
5809 */
5810
5811 expr1.X_add_number = offset_expr.X_add_number;
5812 offset_expr.X_add_number = 0;
5813 relax_start (offset_expr.X_add_symbol);
5814 gpdelay = reg_needs_delay (mips_gp_register);
5815 if (expr1.X_add_number == 0 && breg == 0
5816 && (call || tempreg == PIC_CALL_REG))
5817 {
5818 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5819 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5820 }
5821 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5822 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5823 tempreg, tempreg, mips_gp_register);
5824 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5825 tempreg, lw_reloc_type, tempreg);
5826 if (expr1.X_add_number == 0)
5827 {
5828 if (breg != 0)
5829 {
5830 /* We're going to put in an addu instruction using
5831 tempreg, so we may as well insert the nop right
5832 now. */
5833 load_delay_nop ();
5834 }
5835 }
5836 else if (expr1.X_add_number >= -0x8000
5837 && expr1.X_add_number < 0x8000)
5838 {
5839 load_delay_nop ();
5840 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5841 tempreg, tempreg, BFD_RELOC_LO16);
5842 }
5843 else
5844 {
5845 int dreg;
5846
5847 /* If we are going to add in a base register, and the
5848 target register and the base register are the same,
5849 then we are using AT as a temporary register. Since
5850 we want to load the constant into AT, we add our
5851 current AT (from the global offset table) and the
5852 register into the register now, and pretend we were
5853 not using a base register. */
5854 if (breg != treg)
5855 dreg = tempreg;
5856 else
5857 {
5858 assert (tempreg == AT);
5859 load_delay_nop ();
5860 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5861 treg, AT, breg);
5862 dreg = treg;
5863 }
5864
5865 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5866 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5867
5868 used_at = 1;
5869 }
5870 offset_expr.X_add_number =
5871 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5872 relax_switch ();
5873
5874 if (gpdelay)
5875 {
5876 /* This is needed because this instruction uses $gp, but
5877 the first instruction on the main stream does not. */
5878 macro_build (NULL, "nop", "");
5879 }
5880
5881 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5882 local_reloc_type, mips_gp_register);
5883 if (expr1.X_add_number >= -0x8000
5884 && expr1.X_add_number < 0x8000)
5885 {
5886 load_delay_nop ();
5887 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5888 tempreg, tempreg, BFD_RELOC_LO16);
5889 /* FIXME: If add_number is 0, and there was no base
5890 register, the external symbol case ended with a load,
5891 so if the symbol turns out to not be external, and
5892 the next instruction uses tempreg, an unnecessary nop
5893 will be inserted. */
5894 }
5895 else
5896 {
5897 if (breg == treg)
5898 {
5899 /* We must add in the base register now, as in the
5900 external symbol case. */
5901 assert (tempreg == AT);
5902 load_delay_nop ();
5903 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5904 treg, AT, breg);
5905 tempreg = treg;
5906 /* We set breg to 0 because we have arranged to add
5907 it in in both cases. */
5908 breg = 0;
5909 }
5910
5911 macro_build_lui (&expr1, AT);
5912 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5913 AT, AT, BFD_RELOC_LO16);
5914 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5915 tempreg, tempreg, AT);
5916 used_at = 1;
5917 }
5918 relax_end ();
5919 }
5920 else if (mips_big_got && HAVE_NEWABI)
5921 {
5922 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5923 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5924 int add_breg_early = 0;
5925
5926 /* This is the large GOT case. If this is a reference to an
5927 external symbol, and there is no constant, we want
5928 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5929 add $tempreg,$tempreg,$gp
5930 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5931 or for lca or if tempreg is PIC_CALL_REG
5932 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5933 add $tempreg,$tempreg,$gp
5934 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5935
5936 If we have a small constant, and this is a reference to
5937 an external symbol, we want
5938 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5939 add $tempreg,$tempreg,$gp
5940 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5941 addi $tempreg,$tempreg,<constant>
5942
5943 If we have a large constant, and this is a reference to
5944 an external symbol, we want
5945 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5946 addu $tempreg,$tempreg,$gp
5947 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5948 lui $at,<hiconstant>
5949 addi $at,$at,<loconstant>
5950 add $tempreg,$tempreg,$at
5951
5952 If we have NewABI, and we know it's a local symbol, we want
5953 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5954 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5955 otherwise we have to resort to GOT_HI16/GOT_LO16. */
5956
5957 relax_start (offset_expr.X_add_symbol);
5958
5959 expr1.X_add_number = offset_expr.X_add_number;
5960 offset_expr.X_add_number = 0;
5961
5962 if (expr1.X_add_number == 0 && breg == 0
5963 && (call || tempreg == PIC_CALL_REG))
5964 {
5965 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5966 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5967 }
5968 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5969 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5970 tempreg, tempreg, mips_gp_register);
5971 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5972 tempreg, lw_reloc_type, tempreg);
5973
5974 if (expr1.X_add_number == 0)
5975 ;
5976 else if (expr1.X_add_number >= -0x8000
5977 && expr1.X_add_number < 0x8000)
5978 {
5979 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5980 tempreg, tempreg, BFD_RELOC_LO16);
5981 }
5982 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5983 {
5984 int dreg;
5985
5986 /* If we are going to add in a base register, and the
5987 target register and the base register are the same,
5988 then we are using AT as a temporary register. Since
5989 we want to load the constant into AT, we add our
5990 current AT (from the global offset table) and the
5991 register into the register now, and pretend we were
5992 not using a base register. */
5993 if (breg != treg)
5994 dreg = tempreg;
5995 else
5996 {
5997 assert (tempreg == AT);
5998 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5999 treg, AT, breg);
6000 dreg = treg;
6001 add_breg_early = 1;
6002 }
6003
6004 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6005 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6006
6007 used_at = 1;
6008 }
6009 else
6010 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6011
6012 relax_switch ();
6013 offset_expr.X_add_number = expr1.X_add_number;
6014 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6015 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6016 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6017 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6018 if (add_breg_early)
6019 {
6020 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6021 treg, tempreg, breg);
6022 breg = 0;
6023 tempreg = treg;
6024 }
6025 relax_end ();
6026 }
6027 else
6028 abort ();
6029
6030 if (breg != 0)
6031 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6032 break;
6033
6034 case M_J_A:
6035 /* The j instruction may not be used in PIC code, since it
6036 requires an absolute address. We convert it to a b
6037 instruction. */
6038 if (mips_pic == NO_PIC)
6039 macro_build (&offset_expr, "j", "a");
6040 else
6041 macro_build (&offset_expr, "b", "p");
6042 break;
6043
6044 /* The jal instructions must be handled as macros because when
6045 generating PIC code they expand to multi-instruction
6046 sequences. Normally they are simple instructions. */
6047 case M_JAL_1:
6048 dreg = RA;
6049 /* Fall through. */
6050 case M_JAL_2:
6051 if (mips_pic == NO_PIC)
6052 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6053 else
6054 {
6055 if (sreg != PIC_CALL_REG)
6056 as_warn (_("MIPS PIC call to register other than $25"));
6057
6058 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6059 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6060 {
6061 if (mips_cprestore_offset < 0)
6062 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6063 else
6064 {
6065 if (! mips_frame_reg_valid)
6066 {
6067 as_warn (_("No .frame pseudo-op used in PIC code"));
6068 /* Quiet this warning. */
6069 mips_frame_reg_valid = 1;
6070 }
6071 if (! mips_cprestore_valid)
6072 {
6073 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6074 /* Quiet this warning. */
6075 mips_cprestore_valid = 1;
6076 }
6077 expr1.X_add_number = mips_cprestore_offset;
6078 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6079 mips_gp_register,
6080 mips_frame_reg,
6081 HAVE_64BIT_ADDRESSES);
6082 }
6083 }
6084 }
6085
6086 break;
6087
6088 case M_JAL_A:
6089 if (mips_pic == NO_PIC)
6090 macro_build (&offset_expr, "jal", "a");
6091 else if (mips_pic == SVR4_PIC)
6092 {
6093 /* If this is a reference to an external symbol, and we are
6094 using a small GOT, we want
6095 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6096 nop
6097 jalr $ra,$25
6098 nop
6099 lw $gp,cprestore($sp)
6100 The cprestore value is set using the .cprestore
6101 pseudo-op. If we are using a big GOT, we want
6102 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6103 addu $25,$25,$gp
6104 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6105 nop
6106 jalr $ra,$25
6107 nop
6108 lw $gp,cprestore($sp)
6109 If the symbol is not external, we want
6110 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6111 nop
6112 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6113 jalr $ra,$25
6114 nop
6115 lw $gp,cprestore($sp)
6116
6117 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6118 sequences above, minus nops, unless the symbol is local,
6119 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6120 GOT_DISP. */
6121 if (HAVE_NEWABI)
6122 {
6123 if (! mips_big_got)
6124 {
6125 relax_start (offset_expr.X_add_symbol);
6126 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6127 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6128 mips_gp_register);
6129 relax_switch ();
6130 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6131 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6132 mips_gp_register);
6133 relax_end ();
6134 }
6135 else
6136 {
6137 relax_start (offset_expr.X_add_symbol);
6138 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6139 BFD_RELOC_MIPS_CALL_HI16);
6140 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6141 PIC_CALL_REG, mips_gp_register);
6142 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6143 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6144 PIC_CALL_REG);
6145 relax_switch ();
6146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6147 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6148 mips_gp_register);
6149 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6150 PIC_CALL_REG, PIC_CALL_REG,
6151 BFD_RELOC_MIPS_GOT_OFST);
6152 relax_end ();
6153 }
6154
6155 macro_build_jalr (&offset_expr);
6156 }
6157 else
6158 {
6159 relax_start (offset_expr.X_add_symbol);
6160 if (! mips_big_got)
6161 {
6162 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6163 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6164 mips_gp_register);
6165 load_delay_nop ();
6166 relax_switch ();
6167 }
6168 else
6169 {
6170 int gpdelay;
6171
6172 gpdelay = reg_needs_delay (mips_gp_register);
6173 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6174 BFD_RELOC_MIPS_CALL_HI16);
6175 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6176 PIC_CALL_REG, mips_gp_register);
6177 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6178 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6179 PIC_CALL_REG);
6180 load_delay_nop ();
6181 relax_switch ();
6182 if (gpdelay)
6183 macro_build (NULL, "nop", "");
6184 }
6185 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6186 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6187 mips_gp_register);
6188 load_delay_nop ();
6189 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6190 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6191 relax_end ();
6192 macro_build_jalr (&offset_expr);
6193
6194 if (mips_cprestore_offset < 0)
6195 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6196 else
6197 {
6198 if (! mips_frame_reg_valid)
6199 {
6200 as_warn (_("No .frame pseudo-op used in PIC code"));
6201 /* Quiet this warning. */
6202 mips_frame_reg_valid = 1;
6203 }
6204 if (! mips_cprestore_valid)
6205 {
6206 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6207 /* Quiet this warning. */
6208 mips_cprestore_valid = 1;
6209 }
6210 if (mips_opts.noreorder)
6211 macro_build (NULL, "nop", "");
6212 expr1.X_add_number = mips_cprestore_offset;
6213 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6214 mips_gp_register,
6215 mips_frame_reg,
6216 HAVE_64BIT_ADDRESSES);
6217 }
6218 }
6219 }
6220 else if (mips_pic == VXWORKS_PIC)
6221 as_bad (_("Non-PIC jump used in PIC library"));
6222 else
6223 abort ();
6224
6225 break;
6226
6227 case M_LB_AB:
6228 s = "lb";
6229 goto ld;
6230 case M_LBU_AB:
6231 s = "lbu";
6232 goto ld;
6233 case M_LH_AB:
6234 s = "lh";
6235 goto ld;
6236 case M_LHU_AB:
6237 s = "lhu";
6238 goto ld;
6239 case M_LW_AB:
6240 s = "lw";
6241 goto ld;
6242 case M_LWC0_AB:
6243 s = "lwc0";
6244 /* Itbl support may require additional care here. */
6245 coproc = 1;
6246 goto ld;
6247 case M_LWC1_AB:
6248 s = "lwc1";
6249 /* Itbl support may require additional care here. */
6250 coproc = 1;
6251 goto ld;
6252 case M_LWC2_AB:
6253 s = "lwc2";
6254 /* Itbl support may require additional care here. */
6255 coproc = 1;
6256 goto ld;
6257 case M_LWC3_AB:
6258 s = "lwc3";
6259 /* Itbl support may require additional care here. */
6260 coproc = 1;
6261 goto ld;
6262 case M_LWL_AB:
6263 s = "lwl";
6264 lr = 1;
6265 goto ld;
6266 case M_LWR_AB:
6267 s = "lwr";
6268 lr = 1;
6269 goto ld;
6270 case M_LDC1_AB:
6271 s = "ldc1";
6272 /* Itbl support may require additional care here. */
6273 coproc = 1;
6274 goto ld;
6275 case M_LDC2_AB:
6276 s = "ldc2";
6277 /* Itbl support may require additional care here. */
6278 coproc = 1;
6279 goto ld;
6280 case M_LDC3_AB:
6281 s = "ldc3";
6282 /* Itbl support may require additional care here. */
6283 coproc = 1;
6284 goto ld;
6285 case M_LDL_AB:
6286 s = "ldl";
6287 lr = 1;
6288 goto ld;
6289 case M_LDR_AB:
6290 s = "ldr";
6291 lr = 1;
6292 goto ld;
6293 case M_LL_AB:
6294 s = "ll";
6295 goto ld;
6296 case M_LLD_AB:
6297 s = "lld";
6298 goto ld;
6299 case M_LWU_AB:
6300 s = "lwu";
6301 ld:
6302 if (breg == treg || coproc || lr)
6303 {
6304 tempreg = AT;
6305 used_at = 1;
6306 }
6307 else
6308 {
6309 tempreg = treg;
6310 }
6311 goto ld_st;
6312 case M_SB_AB:
6313 s = "sb";
6314 goto st;
6315 case M_SH_AB:
6316 s = "sh";
6317 goto st;
6318 case M_SW_AB:
6319 s = "sw";
6320 goto st;
6321 case M_SWC0_AB:
6322 s = "swc0";
6323 /* Itbl support may require additional care here. */
6324 coproc = 1;
6325 goto st;
6326 case M_SWC1_AB:
6327 s = "swc1";
6328 /* Itbl support may require additional care here. */
6329 coproc = 1;
6330 goto st;
6331 case M_SWC2_AB:
6332 s = "swc2";
6333 /* Itbl support may require additional care here. */
6334 coproc = 1;
6335 goto st;
6336 case M_SWC3_AB:
6337 s = "swc3";
6338 /* Itbl support may require additional care here. */
6339 coproc = 1;
6340 goto st;
6341 case M_SWL_AB:
6342 s = "swl";
6343 goto st;
6344 case M_SWR_AB:
6345 s = "swr";
6346 goto st;
6347 case M_SC_AB:
6348 s = "sc";
6349 goto st;
6350 case M_SCD_AB:
6351 s = "scd";
6352 goto st;
6353 case M_CACHE_AB:
6354 s = "cache";
6355 goto st;
6356 case M_SDC1_AB:
6357 s = "sdc1";
6358 coproc = 1;
6359 /* Itbl support may require additional care here. */
6360 goto st;
6361 case M_SDC2_AB:
6362 s = "sdc2";
6363 /* Itbl support may require additional care here. */
6364 coproc = 1;
6365 goto st;
6366 case M_SDC3_AB:
6367 s = "sdc3";
6368 /* Itbl support may require additional care here. */
6369 coproc = 1;
6370 goto st;
6371 case M_SDL_AB:
6372 s = "sdl";
6373 goto st;
6374 case M_SDR_AB:
6375 s = "sdr";
6376 st:
6377 tempreg = AT;
6378 used_at = 1;
6379 ld_st:
6380 if (coproc
6381 && NO_ISA_COP (mips_opts.arch)
6382 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6383 {
6384 as_bad (_("opcode not supported on this processor: %s"),
6385 mips_cpu_info_from_arch (mips_opts.arch)->name);
6386 break;
6387 }
6388
6389 /* Itbl support may require additional care here. */
6390 if (mask == M_LWC1_AB
6391 || mask == M_SWC1_AB
6392 || mask == M_LDC1_AB
6393 || mask == M_SDC1_AB
6394 || mask == M_L_DAB
6395 || mask == M_S_DAB)
6396 fmt = "T,o(b)";
6397 else if (mask == M_CACHE_AB)
6398 fmt = "k,o(b)";
6399 else if (coproc)
6400 fmt = "E,o(b)";
6401 else
6402 fmt = "t,o(b)";
6403
6404 if (offset_expr.X_op != O_constant
6405 && offset_expr.X_op != O_symbol)
6406 {
6407 as_bad (_("expression too complex"));
6408 offset_expr.X_op = O_constant;
6409 }
6410
6411 if (HAVE_32BIT_ADDRESSES
6412 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6413 {
6414 char value [32];
6415
6416 sprintf_vma (value, offset_expr.X_add_number);
6417 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6418 }
6419
6420 /* A constant expression in PIC code can be handled just as it
6421 is in non PIC code. */
6422 if (offset_expr.X_op == O_constant)
6423 {
6424 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6425 & ~(bfd_vma) 0xffff);
6426 normalize_address_expr (&expr1);
6427 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6428 if (breg != 0)
6429 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6430 tempreg, tempreg, breg);
6431 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6432 }
6433 else if (mips_pic == NO_PIC)
6434 {
6435 /* If this is a reference to a GP relative symbol, and there
6436 is no base register, we want
6437 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6438 Otherwise, if there is no base register, we want
6439 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6440 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6441 If we have a constant, we need two instructions anyhow,
6442 so we always use the latter form.
6443
6444 If we have a base register, and this is a reference to a
6445 GP relative symbol, we want
6446 addu $tempreg,$breg,$gp
6447 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6448 Otherwise we want
6449 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6450 addu $tempreg,$tempreg,$breg
6451 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6452 With a constant we always use the latter case.
6453
6454 With 64bit address space and no base register and $at usable,
6455 we want
6456 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6457 lui $at,<sym> (BFD_RELOC_HI16_S)
6458 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6459 dsll32 $tempreg,0
6460 daddu $tempreg,$at
6461 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6462 If we have a base register, we want
6463 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6464 lui $at,<sym> (BFD_RELOC_HI16_S)
6465 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6466 daddu $at,$breg
6467 dsll32 $tempreg,0
6468 daddu $tempreg,$at
6469 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6470
6471 Without $at we can't generate the optimal path for superscalar
6472 processors here since this would require two temporary registers.
6473 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6474 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6475 dsll $tempreg,16
6476 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6477 dsll $tempreg,16
6478 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6479 If we have a base register, we want
6480 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6481 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6482 dsll $tempreg,16
6483 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6484 dsll $tempreg,16
6485 daddu $tempreg,$tempreg,$breg
6486 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6487
6488 For GP relative symbols in 64bit address space we can use
6489 the same sequence as in 32bit address space. */
6490 if (HAVE_64BIT_SYMBOLS)
6491 {
6492 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6493 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6494 {
6495 relax_start (offset_expr.X_add_symbol);
6496 if (breg == 0)
6497 {
6498 macro_build (&offset_expr, s, fmt, treg,
6499 BFD_RELOC_GPREL16, mips_gp_register);
6500 }
6501 else
6502 {
6503 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6504 tempreg, breg, mips_gp_register);
6505 macro_build (&offset_expr, s, fmt, treg,
6506 BFD_RELOC_GPREL16, tempreg);
6507 }
6508 relax_switch ();
6509 }
6510
6511 if (used_at == 0 && mips_opts.at)
6512 {
6513 macro_build (&offset_expr, "lui", "t,u", tempreg,
6514 BFD_RELOC_MIPS_HIGHEST);
6515 macro_build (&offset_expr, "lui", "t,u", AT,
6516 BFD_RELOC_HI16_S);
6517 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6518 tempreg, BFD_RELOC_MIPS_HIGHER);
6519 if (breg != 0)
6520 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6521 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6522 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6523 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6524 tempreg);
6525 used_at = 1;
6526 }
6527 else
6528 {
6529 macro_build (&offset_expr, "lui", "t,u", tempreg,
6530 BFD_RELOC_MIPS_HIGHEST);
6531 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6532 tempreg, BFD_RELOC_MIPS_HIGHER);
6533 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6534 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6535 tempreg, BFD_RELOC_HI16_S);
6536 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6537 if (breg != 0)
6538 macro_build (NULL, "daddu", "d,v,t",
6539 tempreg, tempreg, breg);
6540 macro_build (&offset_expr, s, fmt, treg,
6541 BFD_RELOC_LO16, tempreg);
6542 }
6543
6544 if (mips_relax.sequence)
6545 relax_end ();
6546 break;
6547 }
6548
6549 if (breg == 0)
6550 {
6551 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6552 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6553 {
6554 relax_start (offset_expr.X_add_symbol);
6555 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6556 mips_gp_register);
6557 relax_switch ();
6558 }
6559 macro_build_lui (&offset_expr, tempreg);
6560 macro_build (&offset_expr, s, fmt, treg,
6561 BFD_RELOC_LO16, tempreg);
6562 if (mips_relax.sequence)
6563 relax_end ();
6564 }
6565 else
6566 {
6567 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6568 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6569 {
6570 relax_start (offset_expr.X_add_symbol);
6571 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6572 tempreg, breg, mips_gp_register);
6573 macro_build (&offset_expr, s, fmt, treg,
6574 BFD_RELOC_GPREL16, tempreg);
6575 relax_switch ();
6576 }
6577 macro_build_lui (&offset_expr, tempreg);
6578 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6579 tempreg, tempreg, breg);
6580 macro_build (&offset_expr, s, fmt, treg,
6581 BFD_RELOC_LO16, tempreg);
6582 if (mips_relax.sequence)
6583 relax_end ();
6584 }
6585 }
6586 else if (!mips_big_got)
6587 {
6588 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6589
6590 /* If this is a reference to an external symbol, we want
6591 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6592 nop
6593 <op> $treg,0($tempreg)
6594 Otherwise we want
6595 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6596 nop
6597 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6598 <op> $treg,0($tempreg)
6599
6600 For NewABI, we want
6601 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6602 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6603
6604 If there is a base register, we add it to $tempreg before
6605 the <op>. If there is a constant, we stick it in the
6606 <op> instruction. We don't handle constants larger than
6607 16 bits, because we have no way to load the upper 16 bits
6608 (actually, we could handle them for the subset of cases
6609 in which we are not using $at). */
6610 assert (offset_expr.X_op == O_symbol);
6611 if (HAVE_NEWABI)
6612 {
6613 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6614 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6615 if (breg != 0)
6616 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6617 tempreg, tempreg, breg);
6618 macro_build (&offset_expr, s, fmt, treg,
6619 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6620 break;
6621 }
6622 expr1.X_add_number = offset_expr.X_add_number;
6623 offset_expr.X_add_number = 0;
6624 if (expr1.X_add_number < -0x8000
6625 || expr1.X_add_number >= 0x8000)
6626 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6627 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6628 lw_reloc_type, mips_gp_register);
6629 load_delay_nop ();
6630 relax_start (offset_expr.X_add_symbol);
6631 relax_switch ();
6632 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6633 tempreg, BFD_RELOC_LO16);
6634 relax_end ();
6635 if (breg != 0)
6636 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6637 tempreg, tempreg, breg);
6638 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6639 }
6640 else if (mips_big_got && !HAVE_NEWABI)
6641 {
6642 int gpdelay;
6643
6644 /* If this is a reference to an external symbol, we want
6645 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6646 addu $tempreg,$tempreg,$gp
6647 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6648 <op> $treg,0($tempreg)
6649 Otherwise we want
6650 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6651 nop
6652 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6653 <op> $treg,0($tempreg)
6654 If there is a base register, we add it to $tempreg before
6655 the <op>. If there is a constant, we stick it in the
6656 <op> instruction. We don't handle constants larger than
6657 16 bits, because we have no way to load the upper 16 bits
6658 (actually, we could handle them for the subset of cases
6659 in which we are not using $at). */
6660 assert (offset_expr.X_op == O_symbol);
6661 expr1.X_add_number = offset_expr.X_add_number;
6662 offset_expr.X_add_number = 0;
6663 if (expr1.X_add_number < -0x8000
6664 || expr1.X_add_number >= 0x8000)
6665 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6666 gpdelay = reg_needs_delay (mips_gp_register);
6667 relax_start (offset_expr.X_add_symbol);
6668 macro_build (&offset_expr, "lui", "t,u", tempreg,
6669 BFD_RELOC_MIPS_GOT_HI16);
6670 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6671 mips_gp_register);
6672 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6673 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6674 relax_switch ();
6675 if (gpdelay)
6676 macro_build (NULL, "nop", "");
6677 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6678 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6679 load_delay_nop ();
6680 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6681 tempreg, BFD_RELOC_LO16);
6682 relax_end ();
6683
6684 if (breg != 0)
6685 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6686 tempreg, tempreg, breg);
6687 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6688 }
6689 else if (mips_big_got && HAVE_NEWABI)
6690 {
6691 /* If this is a reference to an external symbol, we want
6692 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6693 add $tempreg,$tempreg,$gp
6694 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6695 <op> $treg,<ofst>($tempreg)
6696 Otherwise, for local symbols, we want:
6697 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6698 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6699 assert (offset_expr.X_op == O_symbol);
6700 expr1.X_add_number = offset_expr.X_add_number;
6701 offset_expr.X_add_number = 0;
6702 if (expr1.X_add_number < -0x8000
6703 || expr1.X_add_number >= 0x8000)
6704 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6705 relax_start (offset_expr.X_add_symbol);
6706 macro_build (&offset_expr, "lui", "t,u", tempreg,
6707 BFD_RELOC_MIPS_GOT_HI16);
6708 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6709 mips_gp_register);
6710 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6711 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6712 if (breg != 0)
6713 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6714 tempreg, tempreg, breg);
6715 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6716
6717 relax_switch ();
6718 offset_expr.X_add_number = expr1.X_add_number;
6719 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6720 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6721 if (breg != 0)
6722 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6723 tempreg, tempreg, breg);
6724 macro_build (&offset_expr, s, fmt, treg,
6725 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6726 relax_end ();
6727 }
6728 else
6729 abort ();
6730
6731 break;
6732
6733 case M_LI:
6734 case M_LI_S:
6735 load_register (treg, &imm_expr, 0);
6736 break;
6737
6738 case M_DLI:
6739 load_register (treg, &imm_expr, 1);
6740 break;
6741
6742 case M_LI_SS:
6743 if (imm_expr.X_op == O_constant)
6744 {
6745 used_at = 1;
6746 load_register (AT, &imm_expr, 0);
6747 macro_build (NULL, "mtc1", "t,G", AT, treg);
6748 break;
6749 }
6750 else
6751 {
6752 assert (offset_expr.X_op == O_symbol
6753 && strcmp (segment_name (S_GET_SEGMENT
6754 (offset_expr.X_add_symbol)),
6755 ".lit4") == 0
6756 && offset_expr.X_add_number == 0);
6757 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6758 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6759 break;
6760 }
6761
6762 case M_LI_D:
6763 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6764 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6765 order 32 bits of the value and the low order 32 bits are either
6766 zero or in OFFSET_EXPR. */
6767 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6768 {
6769 if (HAVE_64BIT_GPRS)
6770 load_register (treg, &imm_expr, 1);
6771 else
6772 {
6773 int hreg, lreg;
6774
6775 if (target_big_endian)
6776 {
6777 hreg = treg;
6778 lreg = treg + 1;
6779 }
6780 else
6781 {
6782 hreg = treg + 1;
6783 lreg = treg;
6784 }
6785
6786 if (hreg <= 31)
6787 load_register (hreg, &imm_expr, 0);
6788 if (lreg <= 31)
6789 {
6790 if (offset_expr.X_op == O_absent)
6791 move_register (lreg, 0);
6792 else
6793 {
6794 assert (offset_expr.X_op == O_constant);
6795 load_register (lreg, &offset_expr, 0);
6796 }
6797 }
6798 }
6799 break;
6800 }
6801
6802 /* We know that sym is in the .rdata section. First we get the
6803 upper 16 bits of the address. */
6804 if (mips_pic == NO_PIC)
6805 {
6806 macro_build_lui (&offset_expr, AT);
6807 used_at = 1;
6808 }
6809 else
6810 {
6811 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6812 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6813 used_at = 1;
6814 }
6815
6816 /* Now we load the register(s). */
6817 if (HAVE_64BIT_GPRS)
6818 {
6819 used_at = 1;
6820 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6821 }
6822 else
6823 {
6824 used_at = 1;
6825 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6826 if (treg != RA)
6827 {
6828 /* FIXME: How in the world do we deal with the possible
6829 overflow here? */
6830 offset_expr.X_add_number += 4;
6831 macro_build (&offset_expr, "lw", "t,o(b)",
6832 treg + 1, BFD_RELOC_LO16, AT);
6833 }
6834 }
6835 break;
6836
6837 case M_LI_DD:
6838 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6839 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6840 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6841 the value and the low order 32 bits are either zero or in
6842 OFFSET_EXPR. */
6843 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6844 {
6845 used_at = 1;
6846 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6847 if (HAVE_64BIT_FPRS)
6848 {
6849 assert (HAVE_64BIT_GPRS);
6850 macro_build (NULL, "dmtc1", "t,S", AT, treg);
6851 }
6852 else
6853 {
6854 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
6855 if (offset_expr.X_op == O_absent)
6856 macro_build (NULL, "mtc1", "t,G", 0, treg);
6857 else
6858 {
6859 assert (offset_expr.X_op == O_constant);
6860 load_register (AT, &offset_expr, 0);
6861 macro_build (NULL, "mtc1", "t,G", AT, treg);
6862 }
6863 }
6864 break;
6865 }
6866
6867 assert (offset_expr.X_op == O_symbol
6868 && offset_expr.X_add_number == 0);
6869 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
6870 if (strcmp (s, ".lit8") == 0)
6871 {
6872 if (mips_opts.isa != ISA_MIPS1)
6873 {
6874 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
6875 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6876 break;
6877 }
6878 breg = mips_gp_register;
6879 r = BFD_RELOC_MIPS_LITERAL;
6880 goto dob;
6881 }
6882 else
6883 {
6884 assert (strcmp (s, RDATA_SECTION_NAME) == 0);
6885 used_at = 1;
6886 if (mips_pic != NO_PIC)
6887 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6888 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6889 else
6890 {
6891 /* FIXME: This won't work for a 64 bit address. */
6892 macro_build_lui (&offset_expr, AT);
6893 }
6894
6895 if (mips_opts.isa != ISA_MIPS1)
6896 {
6897 macro_build (&offset_expr, "ldc1", "T,o(b)",
6898 treg, BFD_RELOC_LO16, AT);
6899 break;
6900 }
6901 breg = AT;
6902 r = BFD_RELOC_LO16;
6903 goto dob;
6904 }
6905
6906 case M_L_DOB:
6907 /* Even on a big endian machine $fn comes before $fn+1. We have
6908 to adjust when loading from memory. */
6909 r = BFD_RELOC_LO16;
6910 dob:
6911 assert (mips_opts.isa == ISA_MIPS1);
6912 macro_build (&offset_expr, "lwc1", "T,o(b)",
6913 target_big_endian ? treg + 1 : treg, r, breg);
6914 /* FIXME: A possible overflow which I don't know how to deal
6915 with. */
6916 offset_expr.X_add_number += 4;
6917 macro_build (&offset_expr, "lwc1", "T,o(b)",
6918 target_big_endian ? treg : treg + 1, r, breg);
6919 break;
6920
6921 case M_L_DAB:
6922 /*
6923 * The MIPS assembler seems to check for X_add_number not
6924 * being double aligned and generating:
6925 * lui at,%hi(foo+1)
6926 * addu at,at,v1
6927 * addiu at,at,%lo(foo+1)
6928 * lwc1 f2,0(at)
6929 * lwc1 f3,4(at)
6930 * But, the resulting address is the same after relocation so why
6931 * generate the extra instruction?
6932 */
6933 /* Itbl support may require additional care here. */
6934 coproc = 1;
6935 if (mips_opts.isa != ISA_MIPS1)
6936 {
6937 s = "ldc1";
6938 goto ld;
6939 }
6940
6941 s = "lwc1";
6942 fmt = "T,o(b)";
6943 goto ldd_std;
6944
6945 case M_S_DAB:
6946 if (mips_opts.isa != ISA_MIPS1)
6947 {
6948 s = "sdc1";
6949 goto st;
6950 }
6951
6952 s = "swc1";
6953 fmt = "T,o(b)";
6954 /* Itbl support may require additional care here. */
6955 coproc = 1;
6956 goto ldd_std;
6957
6958 case M_LD_AB:
6959 if (HAVE_64BIT_GPRS)
6960 {
6961 s = "ld";
6962 goto ld;
6963 }
6964
6965 s = "lw";
6966 fmt = "t,o(b)";
6967 goto ldd_std;
6968
6969 case M_SD_AB:
6970 if (HAVE_64BIT_GPRS)
6971 {
6972 s = "sd";
6973 goto st;
6974 }
6975
6976 s = "sw";
6977 fmt = "t,o(b)";
6978
6979 ldd_std:
6980 if (offset_expr.X_op != O_symbol
6981 && offset_expr.X_op != O_constant)
6982 {
6983 as_bad (_("expression too complex"));
6984 offset_expr.X_op = O_constant;
6985 }
6986
6987 if (HAVE_32BIT_ADDRESSES
6988 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6989 {
6990 char value [32];
6991
6992 sprintf_vma (value, offset_expr.X_add_number);
6993 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6994 }
6995
6996 /* Even on a big endian machine $fn comes before $fn+1. We have
6997 to adjust when loading from memory. We set coproc if we must
6998 load $fn+1 first. */
6999 /* Itbl support may require additional care here. */
7000 if (! target_big_endian)
7001 coproc = 0;
7002
7003 if (mips_pic == NO_PIC
7004 || offset_expr.X_op == O_constant)
7005 {
7006 /* If this is a reference to a GP relative symbol, we want
7007 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7008 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7009 If we have a base register, we use this
7010 addu $at,$breg,$gp
7011 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7012 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7013 If this is not a GP relative symbol, we want
7014 lui $at,<sym> (BFD_RELOC_HI16_S)
7015 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7016 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7017 If there is a base register, we add it to $at after the
7018 lui instruction. If there is a constant, we always use
7019 the last case. */
7020 if (offset_expr.X_op == O_symbol
7021 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7022 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7023 {
7024 relax_start (offset_expr.X_add_symbol);
7025 if (breg == 0)
7026 {
7027 tempreg = mips_gp_register;
7028 }
7029 else
7030 {
7031 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7032 AT, breg, mips_gp_register);
7033 tempreg = AT;
7034 used_at = 1;
7035 }
7036
7037 /* Itbl support may require additional care here. */
7038 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7039 BFD_RELOC_GPREL16, tempreg);
7040 offset_expr.X_add_number += 4;
7041
7042 /* Set mips_optimize to 2 to avoid inserting an
7043 undesired nop. */
7044 hold_mips_optimize = mips_optimize;
7045 mips_optimize = 2;
7046 /* Itbl support may require additional care here. */
7047 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7048 BFD_RELOC_GPREL16, tempreg);
7049 mips_optimize = hold_mips_optimize;
7050
7051 relax_switch ();
7052
7053 /* We just generated two relocs. When tc_gen_reloc
7054 handles this case, it will skip the first reloc and
7055 handle the second. The second reloc already has an
7056 extra addend of 4, which we added above. We must
7057 subtract it out, and then subtract another 4 to make
7058 the first reloc come out right. The second reloc
7059 will come out right because we are going to add 4 to
7060 offset_expr when we build its instruction below.
7061
7062 If we have a symbol, then we don't want to include
7063 the offset, because it will wind up being included
7064 when we generate the reloc. */
7065
7066 if (offset_expr.X_op == O_constant)
7067 offset_expr.X_add_number -= 8;
7068 else
7069 {
7070 offset_expr.X_add_number = -4;
7071 offset_expr.X_op = O_constant;
7072 }
7073 }
7074 used_at = 1;
7075 macro_build_lui (&offset_expr, AT);
7076 if (breg != 0)
7077 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7078 /* Itbl support may require additional care here. */
7079 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7080 BFD_RELOC_LO16, AT);
7081 /* FIXME: How do we handle overflow here? */
7082 offset_expr.X_add_number += 4;
7083 /* Itbl support may require additional care here. */
7084 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7085 BFD_RELOC_LO16, AT);
7086 if (mips_relax.sequence)
7087 relax_end ();
7088 }
7089 else if (!mips_big_got)
7090 {
7091 /* If this is a reference to an external symbol, we want
7092 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7093 nop
7094 <op> $treg,0($at)
7095 <op> $treg+1,4($at)
7096 Otherwise we want
7097 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7098 nop
7099 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7100 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7101 If there is a base register we add it to $at before the
7102 lwc1 instructions. If there is a constant we include it
7103 in the lwc1 instructions. */
7104 used_at = 1;
7105 expr1.X_add_number = offset_expr.X_add_number;
7106 if (expr1.X_add_number < -0x8000
7107 || expr1.X_add_number >= 0x8000 - 4)
7108 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7109 load_got_offset (AT, &offset_expr);
7110 load_delay_nop ();
7111 if (breg != 0)
7112 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7113
7114 /* Set mips_optimize to 2 to avoid inserting an undesired
7115 nop. */
7116 hold_mips_optimize = mips_optimize;
7117 mips_optimize = 2;
7118
7119 /* Itbl support may require additional care here. */
7120 relax_start (offset_expr.X_add_symbol);
7121 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7122 BFD_RELOC_LO16, AT);
7123 expr1.X_add_number += 4;
7124 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7125 BFD_RELOC_LO16, AT);
7126 relax_switch ();
7127 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7128 BFD_RELOC_LO16, AT);
7129 offset_expr.X_add_number += 4;
7130 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7131 BFD_RELOC_LO16, AT);
7132 relax_end ();
7133
7134 mips_optimize = hold_mips_optimize;
7135 }
7136 else if (mips_big_got)
7137 {
7138 int gpdelay;
7139
7140 /* If this is a reference to an external symbol, we want
7141 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7142 addu $at,$at,$gp
7143 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7144 nop
7145 <op> $treg,0($at)
7146 <op> $treg+1,4($at)
7147 Otherwise we want
7148 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7149 nop
7150 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7151 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7152 If there is a base register we add it to $at before the
7153 lwc1 instructions. If there is a constant we include it
7154 in the lwc1 instructions. */
7155 used_at = 1;
7156 expr1.X_add_number = offset_expr.X_add_number;
7157 offset_expr.X_add_number = 0;
7158 if (expr1.X_add_number < -0x8000
7159 || expr1.X_add_number >= 0x8000 - 4)
7160 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7161 gpdelay = reg_needs_delay (mips_gp_register);
7162 relax_start (offset_expr.X_add_symbol);
7163 macro_build (&offset_expr, "lui", "t,u",
7164 AT, BFD_RELOC_MIPS_GOT_HI16);
7165 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7166 AT, AT, mips_gp_register);
7167 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7168 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7169 load_delay_nop ();
7170 if (breg != 0)
7171 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7172 /* Itbl support may require additional care here. */
7173 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7174 BFD_RELOC_LO16, AT);
7175 expr1.X_add_number += 4;
7176
7177 /* Set mips_optimize to 2 to avoid inserting an undesired
7178 nop. */
7179 hold_mips_optimize = mips_optimize;
7180 mips_optimize = 2;
7181 /* Itbl support may require additional care here. */
7182 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7183 BFD_RELOC_LO16, AT);
7184 mips_optimize = hold_mips_optimize;
7185 expr1.X_add_number -= 4;
7186
7187 relax_switch ();
7188 offset_expr.X_add_number = expr1.X_add_number;
7189 if (gpdelay)
7190 macro_build (NULL, "nop", "");
7191 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7192 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7193 load_delay_nop ();
7194 if (breg != 0)
7195 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7196 /* Itbl support may require additional care here. */
7197 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7198 BFD_RELOC_LO16, AT);
7199 offset_expr.X_add_number += 4;
7200
7201 /* Set mips_optimize to 2 to avoid inserting an undesired
7202 nop. */
7203 hold_mips_optimize = mips_optimize;
7204 mips_optimize = 2;
7205 /* Itbl support may require additional care here. */
7206 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7207 BFD_RELOC_LO16, AT);
7208 mips_optimize = hold_mips_optimize;
7209 relax_end ();
7210 }
7211 else
7212 abort ();
7213
7214 break;
7215
7216 case M_LD_OB:
7217 s = "lw";
7218 goto sd_ob;
7219 case M_SD_OB:
7220 s = "sw";
7221 sd_ob:
7222 assert (HAVE_32BIT_ADDRESSES);
7223 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7224 offset_expr.X_add_number += 4;
7225 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
7226 break;
7227
7228 /* New code added to support COPZ instructions.
7229 This code builds table entries out of the macros in mip_opcodes.
7230 R4000 uses interlocks to handle coproc delays.
7231 Other chips (like the R3000) require nops to be inserted for delays.
7232
7233 FIXME: Currently, we require that the user handle delays.
7234 In order to fill delay slots for non-interlocked chips,
7235 we must have a way to specify delays based on the coprocessor.
7236 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7237 What are the side-effects of the cop instruction?
7238 What cache support might we have and what are its effects?
7239 Both coprocessor & memory require delays. how long???
7240 What registers are read/set/modified?
7241
7242 If an itbl is provided to interpret cop instructions,
7243 this knowledge can be encoded in the itbl spec. */
7244
7245 case M_COP0:
7246 s = "c0";
7247 goto copz;
7248 case M_COP1:
7249 s = "c1";
7250 goto copz;
7251 case M_COP2:
7252 s = "c2";
7253 goto copz;
7254 case M_COP3:
7255 s = "c3";
7256 copz:
7257 if (NO_ISA_COP (mips_opts.arch)
7258 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7259 {
7260 as_bad (_("opcode not supported on this processor: %s"),
7261 mips_cpu_info_from_arch (mips_opts.arch)->name);
7262 break;
7263 }
7264
7265 /* For now we just do C (same as Cz). The parameter will be
7266 stored in insn_opcode by mips_ip. */
7267 macro_build (NULL, s, "C", ip->insn_opcode);
7268 break;
7269
7270 case M_MOVE:
7271 move_register (dreg, sreg);
7272 break;
7273
7274 #ifdef LOSING_COMPILER
7275 default:
7276 /* Try and see if this is a new itbl instruction.
7277 This code builds table entries out of the macros in mip_opcodes.
7278 FIXME: For now we just assemble the expression and pass it's
7279 value along as a 32-bit immediate.
7280 We may want to have the assembler assemble this value,
7281 so that we gain the assembler's knowledge of delay slots,
7282 symbols, etc.
7283 Would it be more efficient to use mask (id) here? */
7284 if (itbl_have_entries
7285 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
7286 {
7287 s = ip->insn_mo->name;
7288 s2 = "cop3";
7289 coproc = ITBL_DECODE_PNUM (immed_expr);;
7290 macro_build (&immed_expr, s, "C");
7291 break;
7292 }
7293 macro2 (ip);
7294 break;
7295 }
7296 if (!mips_opts.at && used_at)
7297 as_bad (_("Macro used $at after \".set noat\""));
7298 }
7299
7300 static void
7301 macro2 (struct mips_cl_insn *ip)
7302 {
7303 unsigned int treg, sreg, dreg, breg;
7304 unsigned int tempreg;
7305 int mask;
7306 int used_at;
7307 expressionS expr1;
7308 const char *s;
7309 const char *s2;
7310 const char *fmt;
7311 int likely = 0;
7312 int dbl = 0;
7313 int coproc = 0;
7314 int lr = 0;
7315 int imm = 0;
7316 int off;
7317 offsetT maxnum;
7318 bfd_reloc_code_real_type r;
7319
7320 treg = (ip->insn_opcode >> 16) & 0x1f;
7321 dreg = (ip->insn_opcode >> 11) & 0x1f;
7322 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
7323 mask = ip->insn_mo->mask;
7324
7325 expr1.X_op = O_constant;
7326 expr1.X_op_symbol = NULL;
7327 expr1.X_add_symbol = NULL;
7328 expr1.X_add_number = 1;
7329
7330 switch (mask)
7331 {
7332 #endif /* LOSING_COMPILER */
7333
7334 case M_DMUL:
7335 dbl = 1;
7336 case M_MUL:
7337 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7338 macro_build (NULL, "mflo", "d", dreg);
7339 break;
7340
7341 case M_DMUL_I:
7342 dbl = 1;
7343 case M_MUL_I:
7344 /* The MIPS assembler some times generates shifts and adds. I'm
7345 not trying to be that fancy. GCC should do this for us
7346 anyway. */
7347 used_at = 1;
7348 load_register (AT, &imm_expr, dbl);
7349 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7350 macro_build (NULL, "mflo", "d", dreg);
7351 break;
7352
7353 case M_DMULO_I:
7354 dbl = 1;
7355 case M_MULO_I:
7356 imm = 1;
7357 goto do_mulo;
7358
7359 case M_DMULO:
7360 dbl = 1;
7361 case M_MULO:
7362 do_mulo:
7363 start_noreorder ();
7364 used_at = 1;
7365 if (imm)
7366 load_register (AT, &imm_expr, dbl);
7367 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7368 macro_build (NULL, "mflo", "d", dreg);
7369 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7370 macro_build (NULL, "mfhi", "d", AT);
7371 if (mips_trap)
7372 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7373 else
7374 {
7375 expr1.X_add_number = 8;
7376 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7377 macro_build (NULL, "nop", "", 0);
7378 macro_build (NULL, "break", "c", 6);
7379 }
7380 end_noreorder ();
7381 macro_build (NULL, "mflo", "d", dreg);
7382 break;
7383
7384 case M_DMULOU_I:
7385 dbl = 1;
7386 case M_MULOU_I:
7387 imm = 1;
7388 goto do_mulou;
7389
7390 case M_DMULOU:
7391 dbl = 1;
7392 case M_MULOU:
7393 do_mulou:
7394 start_noreorder ();
7395 used_at = 1;
7396 if (imm)
7397 load_register (AT, &imm_expr, dbl);
7398 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7399 sreg, imm ? AT : treg);
7400 macro_build (NULL, "mfhi", "d", AT);
7401 macro_build (NULL, "mflo", "d", dreg);
7402 if (mips_trap)
7403 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7404 else
7405 {
7406 expr1.X_add_number = 8;
7407 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7408 macro_build (NULL, "nop", "", 0);
7409 macro_build (NULL, "break", "c", 6);
7410 }
7411 end_noreorder ();
7412 break;
7413
7414 case M_DROL:
7415 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7416 {
7417 if (dreg == sreg)
7418 {
7419 tempreg = AT;
7420 used_at = 1;
7421 }
7422 else
7423 {
7424 tempreg = dreg;
7425 }
7426 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7427 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7428 break;
7429 }
7430 used_at = 1;
7431 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7432 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7433 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7434 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7435 break;
7436
7437 case M_ROL:
7438 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7439 {
7440 if (dreg == sreg)
7441 {
7442 tempreg = AT;
7443 used_at = 1;
7444 }
7445 else
7446 {
7447 tempreg = dreg;
7448 }
7449 macro_build (NULL, "negu", "d,w", tempreg, treg);
7450 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7451 break;
7452 }
7453 used_at = 1;
7454 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7455 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7456 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7457 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7458 break;
7459
7460 case M_DROL_I:
7461 {
7462 unsigned int rot;
7463 char *l, *r;
7464
7465 if (imm_expr.X_op != O_constant)
7466 as_bad (_("Improper rotate count"));
7467 rot = imm_expr.X_add_number & 0x3f;
7468 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7469 {
7470 rot = (64 - rot) & 0x3f;
7471 if (rot >= 32)
7472 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7473 else
7474 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7475 break;
7476 }
7477 if (rot == 0)
7478 {
7479 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7480 break;
7481 }
7482 l = (rot < 0x20) ? "dsll" : "dsll32";
7483 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7484 rot &= 0x1f;
7485 used_at = 1;
7486 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7487 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7488 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7489 }
7490 break;
7491
7492 case M_ROL_I:
7493 {
7494 unsigned int rot;
7495
7496 if (imm_expr.X_op != O_constant)
7497 as_bad (_("Improper rotate count"));
7498 rot = imm_expr.X_add_number & 0x1f;
7499 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7500 {
7501 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7502 break;
7503 }
7504 if (rot == 0)
7505 {
7506 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7507 break;
7508 }
7509 used_at = 1;
7510 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7511 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7512 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7513 }
7514 break;
7515
7516 case M_DROR:
7517 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7518 {
7519 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7520 break;
7521 }
7522 used_at = 1;
7523 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7524 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7525 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7526 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7527 break;
7528
7529 case M_ROR:
7530 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7531 {
7532 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7533 break;
7534 }
7535 used_at = 1;
7536 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7537 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7538 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7539 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7540 break;
7541
7542 case M_DROR_I:
7543 {
7544 unsigned int rot;
7545 char *l, *r;
7546
7547 if (imm_expr.X_op != O_constant)
7548 as_bad (_("Improper rotate count"));
7549 rot = imm_expr.X_add_number & 0x3f;
7550 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7551 {
7552 if (rot >= 32)
7553 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7554 else
7555 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7556 break;
7557 }
7558 if (rot == 0)
7559 {
7560 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7561 break;
7562 }
7563 r = (rot < 0x20) ? "dsrl" : "dsrl32";
7564 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7565 rot &= 0x1f;
7566 used_at = 1;
7567 macro_build (NULL, r, "d,w,<", AT, sreg, rot);
7568 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7569 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7570 }
7571 break;
7572
7573 case M_ROR_I:
7574 {
7575 unsigned int rot;
7576
7577 if (imm_expr.X_op != O_constant)
7578 as_bad (_("Improper rotate count"));
7579 rot = imm_expr.X_add_number & 0x1f;
7580 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7581 {
7582 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7583 break;
7584 }
7585 if (rot == 0)
7586 {
7587 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7588 break;
7589 }
7590 used_at = 1;
7591 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7592 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7593 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7594 }
7595 break;
7596
7597 case M_S_DOB:
7598 assert (mips_opts.isa == ISA_MIPS1);
7599 /* Even on a big endian machine $fn comes before $fn+1. We have
7600 to adjust when storing to memory. */
7601 macro_build (&offset_expr, "swc1", "T,o(b)",
7602 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7603 offset_expr.X_add_number += 4;
7604 macro_build (&offset_expr, "swc1", "T,o(b)",
7605 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7606 break;
7607
7608 case M_SEQ:
7609 if (sreg == 0)
7610 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7611 else if (treg == 0)
7612 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7613 else
7614 {
7615 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7616 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7617 }
7618 break;
7619
7620 case M_SEQ_I:
7621 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7622 {
7623 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7624 break;
7625 }
7626 if (sreg == 0)
7627 {
7628 as_warn (_("Instruction %s: result is always false"),
7629 ip->insn_mo->name);
7630 move_register (dreg, 0);
7631 break;
7632 }
7633 if (CPU_HAS_SEQ (mips_opts.arch)
7634 && -512 <= imm_expr.X_add_number
7635 && imm_expr.X_add_number < 512)
7636 {
7637 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7638 imm_expr.X_add_number);
7639 break;
7640 }
7641 if (imm_expr.X_op == O_constant
7642 && imm_expr.X_add_number >= 0
7643 && imm_expr.X_add_number < 0x10000)
7644 {
7645 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7646 }
7647 else if (imm_expr.X_op == O_constant
7648 && imm_expr.X_add_number > -0x8000
7649 && imm_expr.X_add_number < 0)
7650 {
7651 imm_expr.X_add_number = -imm_expr.X_add_number;
7652 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7653 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7654 }
7655 else if (CPU_HAS_SEQ (mips_opts.arch))
7656 {
7657 used_at = 1;
7658 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7659 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7660 break;
7661 }
7662 else
7663 {
7664 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7665 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7666 used_at = 1;
7667 }
7668 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7669 break;
7670
7671 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7672 s = "slt";
7673 goto sge;
7674 case M_SGEU:
7675 s = "sltu";
7676 sge:
7677 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7678 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7679 break;
7680
7681 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7682 case M_SGEU_I:
7683 if (imm_expr.X_op == O_constant
7684 && imm_expr.X_add_number >= -0x8000
7685 && imm_expr.X_add_number < 0x8000)
7686 {
7687 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7688 dreg, sreg, BFD_RELOC_LO16);
7689 }
7690 else
7691 {
7692 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7693 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7694 dreg, sreg, AT);
7695 used_at = 1;
7696 }
7697 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7698 break;
7699
7700 case M_SGT: /* sreg > treg <==> treg < sreg */
7701 s = "slt";
7702 goto sgt;
7703 case M_SGTU:
7704 s = "sltu";
7705 sgt:
7706 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7707 break;
7708
7709 case M_SGT_I: /* sreg > I <==> I < sreg */
7710 s = "slt";
7711 goto sgti;
7712 case M_SGTU_I:
7713 s = "sltu";
7714 sgti:
7715 used_at = 1;
7716 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7717 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7718 break;
7719
7720 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7721 s = "slt";
7722 goto sle;
7723 case M_SLEU:
7724 s = "sltu";
7725 sle:
7726 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7727 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7728 break;
7729
7730 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7731 s = "slt";
7732 goto slei;
7733 case M_SLEU_I:
7734 s = "sltu";
7735 slei:
7736 used_at = 1;
7737 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7738 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7739 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7740 break;
7741
7742 case M_SLT_I:
7743 if (imm_expr.X_op == O_constant
7744 && imm_expr.X_add_number >= -0x8000
7745 && imm_expr.X_add_number < 0x8000)
7746 {
7747 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7748 break;
7749 }
7750 used_at = 1;
7751 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7752 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7753 break;
7754
7755 case M_SLTU_I:
7756 if (imm_expr.X_op == O_constant
7757 && imm_expr.X_add_number >= -0x8000
7758 && imm_expr.X_add_number < 0x8000)
7759 {
7760 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7761 BFD_RELOC_LO16);
7762 break;
7763 }
7764 used_at = 1;
7765 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7766 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7767 break;
7768
7769 case M_SNE:
7770 if (sreg == 0)
7771 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7772 else if (treg == 0)
7773 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7774 else
7775 {
7776 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7777 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7778 }
7779 break;
7780
7781 case M_SNE_I:
7782 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7783 {
7784 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7785 break;
7786 }
7787 if (sreg == 0)
7788 {
7789 as_warn (_("Instruction %s: result is always true"),
7790 ip->insn_mo->name);
7791 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7792 dreg, 0, BFD_RELOC_LO16);
7793 break;
7794 }
7795 if (CPU_HAS_SEQ (mips_opts.arch)
7796 && -512 <= imm_expr.X_add_number
7797 && imm_expr.X_add_number < 512)
7798 {
7799 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7800 imm_expr.X_add_number);
7801 break;
7802 }
7803 if (imm_expr.X_op == O_constant
7804 && imm_expr.X_add_number >= 0
7805 && imm_expr.X_add_number < 0x10000)
7806 {
7807 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7808 }
7809 else if (imm_expr.X_op == O_constant
7810 && imm_expr.X_add_number > -0x8000
7811 && imm_expr.X_add_number < 0)
7812 {
7813 imm_expr.X_add_number = -imm_expr.X_add_number;
7814 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7815 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7816 }
7817 else if (CPU_HAS_SEQ (mips_opts.arch))
7818 {
7819 used_at = 1;
7820 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7821 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7822 break;
7823 }
7824 else
7825 {
7826 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7827 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7828 used_at = 1;
7829 }
7830 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7831 break;
7832
7833 case M_DSUB_I:
7834 dbl = 1;
7835 case M_SUB_I:
7836 if (imm_expr.X_op == O_constant
7837 && imm_expr.X_add_number > -0x8000
7838 && imm_expr.X_add_number <= 0x8000)
7839 {
7840 imm_expr.X_add_number = -imm_expr.X_add_number;
7841 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7842 dreg, sreg, BFD_RELOC_LO16);
7843 break;
7844 }
7845 used_at = 1;
7846 load_register (AT, &imm_expr, dbl);
7847 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7848 break;
7849
7850 case M_DSUBU_I:
7851 dbl = 1;
7852 case M_SUBU_I:
7853 if (imm_expr.X_op == O_constant
7854 && imm_expr.X_add_number > -0x8000
7855 && imm_expr.X_add_number <= 0x8000)
7856 {
7857 imm_expr.X_add_number = -imm_expr.X_add_number;
7858 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7859 dreg, sreg, BFD_RELOC_LO16);
7860 break;
7861 }
7862 used_at = 1;
7863 load_register (AT, &imm_expr, dbl);
7864 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7865 break;
7866
7867 case M_TEQ_I:
7868 s = "teq";
7869 goto trap;
7870 case M_TGE_I:
7871 s = "tge";
7872 goto trap;
7873 case M_TGEU_I:
7874 s = "tgeu";
7875 goto trap;
7876 case M_TLT_I:
7877 s = "tlt";
7878 goto trap;
7879 case M_TLTU_I:
7880 s = "tltu";
7881 goto trap;
7882 case M_TNE_I:
7883 s = "tne";
7884 trap:
7885 used_at = 1;
7886 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7887 macro_build (NULL, s, "s,t", sreg, AT);
7888 break;
7889
7890 case M_TRUNCWS:
7891 case M_TRUNCWD:
7892 assert (mips_opts.isa == ISA_MIPS1);
7893 used_at = 1;
7894 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7895 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7896
7897 /*
7898 * Is the double cfc1 instruction a bug in the mips assembler;
7899 * or is there a reason for it?
7900 */
7901 start_noreorder ();
7902 macro_build (NULL, "cfc1", "t,G", treg, RA);
7903 macro_build (NULL, "cfc1", "t,G", treg, RA);
7904 macro_build (NULL, "nop", "");
7905 expr1.X_add_number = 3;
7906 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7907 expr1.X_add_number = 2;
7908 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7909 macro_build (NULL, "ctc1", "t,G", AT, RA);
7910 macro_build (NULL, "nop", "");
7911 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7912 dreg, sreg);
7913 macro_build (NULL, "ctc1", "t,G", treg, RA);
7914 macro_build (NULL, "nop", "");
7915 end_noreorder ();
7916 break;
7917
7918 case M_ULH:
7919 s = "lb";
7920 goto ulh;
7921 case M_ULHU:
7922 s = "lbu";
7923 ulh:
7924 used_at = 1;
7925 if (offset_expr.X_add_number >= 0x7fff)
7926 as_bad (_("operand overflow"));
7927 if (! target_big_endian)
7928 ++offset_expr.X_add_number;
7929 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
7930 if (! target_big_endian)
7931 --offset_expr.X_add_number;
7932 else
7933 ++offset_expr.X_add_number;
7934 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7935 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
7936 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7937 break;
7938
7939 case M_ULD:
7940 s = "ldl";
7941 s2 = "ldr";
7942 off = 7;
7943 goto ulw;
7944 case M_ULW:
7945 s = "lwl";
7946 s2 = "lwr";
7947 off = 3;
7948 ulw:
7949 if (offset_expr.X_add_number >= 0x8000 - off)
7950 as_bad (_("operand overflow"));
7951 if (treg != breg)
7952 tempreg = treg;
7953 else
7954 {
7955 used_at = 1;
7956 tempreg = AT;
7957 }
7958 if (! target_big_endian)
7959 offset_expr.X_add_number += off;
7960 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7961 if (! target_big_endian)
7962 offset_expr.X_add_number -= off;
7963 else
7964 offset_expr.X_add_number += off;
7965 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7966
7967 /* If necessary, move the result in tempreg the final destination. */
7968 if (treg == tempreg)
7969 break;
7970 /* Protect second load's delay slot. */
7971 load_delay_nop ();
7972 move_register (treg, tempreg);
7973 break;
7974
7975 case M_ULD_A:
7976 s = "ldl";
7977 s2 = "ldr";
7978 off = 7;
7979 goto ulwa;
7980 case M_ULW_A:
7981 s = "lwl";
7982 s2 = "lwr";
7983 off = 3;
7984 ulwa:
7985 used_at = 1;
7986 load_address (AT, &offset_expr, &used_at);
7987 if (breg != 0)
7988 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7989 if (! target_big_endian)
7990 expr1.X_add_number = off;
7991 else
7992 expr1.X_add_number = 0;
7993 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7994 if (! target_big_endian)
7995 expr1.X_add_number = 0;
7996 else
7997 expr1.X_add_number = off;
7998 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7999 break;
8000
8001 case M_ULH_A:
8002 case M_ULHU_A:
8003 used_at = 1;
8004 load_address (AT, &offset_expr, &used_at);
8005 if (breg != 0)
8006 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8007 if (target_big_endian)
8008 expr1.X_add_number = 0;
8009 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8010 treg, BFD_RELOC_LO16, AT);
8011 if (target_big_endian)
8012 expr1.X_add_number = 1;
8013 else
8014 expr1.X_add_number = 0;
8015 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8016 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8017 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8018 break;
8019
8020 case M_USH:
8021 used_at = 1;
8022 if (offset_expr.X_add_number >= 0x7fff)
8023 as_bad (_("operand overflow"));
8024 if (target_big_endian)
8025 ++offset_expr.X_add_number;
8026 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8027 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8028 if (target_big_endian)
8029 --offset_expr.X_add_number;
8030 else
8031 ++offset_expr.X_add_number;
8032 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8033 break;
8034
8035 case M_USD:
8036 s = "sdl";
8037 s2 = "sdr";
8038 off = 7;
8039 goto usw;
8040 case M_USW:
8041 s = "swl";
8042 s2 = "swr";
8043 off = 3;
8044 usw:
8045 if (offset_expr.X_add_number >= 0x8000 - off)
8046 as_bad (_("operand overflow"));
8047 if (! target_big_endian)
8048 offset_expr.X_add_number += off;
8049 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8050 if (! target_big_endian)
8051 offset_expr.X_add_number -= off;
8052 else
8053 offset_expr.X_add_number += off;
8054 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8055 break;
8056
8057 case M_USD_A:
8058 s = "sdl";
8059 s2 = "sdr";
8060 off = 7;
8061 goto uswa;
8062 case M_USW_A:
8063 s = "swl";
8064 s2 = "swr";
8065 off = 3;
8066 uswa:
8067 used_at = 1;
8068 load_address (AT, &offset_expr, &used_at);
8069 if (breg != 0)
8070 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8071 if (! target_big_endian)
8072 expr1.X_add_number = off;
8073 else
8074 expr1.X_add_number = 0;
8075 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8076 if (! target_big_endian)
8077 expr1.X_add_number = 0;
8078 else
8079 expr1.X_add_number = off;
8080 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8081 break;
8082
8083 case M_USH_A:
8084 used_at = 1;
8085 load_address (AT, &offset_expr, &used_at);
8086 if (breg != 0)
8087 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8088 if (! target_big_endian)
8089 expr1.X_add_number = 0;
8090 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8091 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8092 if (! target_big_endian)
8093 expr1.X_add_number = 1;
8094 else
8095 expr1.X_add_number = 0;
8096 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8097 if (! target_big_endian)
8098 expr1.X_add_number = 0;
8099 else
8100 expr1.X_add_number = 1;
8101 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8102 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8103 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8104 break;
8105
8106 default:
8107 /* FIXME: Check if this is one of the itbl macros, since they
8108 are added dynamically. */
8109 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8110 break;
8111 }
8112 if (!mips_opts.at && used_at)
8113 as_bad (_("Macro used $at after \".set noat\""));
8114 }
8115
8116 /* Implement macros in mips16 mode. */
8117
8118 static void
8119 mips16_macro (struct mips_cl_insn *ip)
8120 {
8121 int mask;
8122 int xreg, yreg, zreg, tmp;
8123 expressionS expr1;
8124 int dbl;
8125 const char *s, *s2, *s3;
8126
8127 mask = ip->insn_mo->mask;
8128
8129 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8130 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8131 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8132
8133 expr1.X_op = O_constant;
8134 expr1.X_op_symbol = NULL;
8135 expr1.X_add_symbol = NULL;
8136 expr1.X_add_number = 1;
8137
8138 dbl = 0;
8139
8140 switch (mask)
8141 {
8142 default:
8143 internalError ();
8144
8145 case M_DDIV_3:
8146 dbl = 1;
8147 case M_DIV_3:
8148 s = "mflo";
8149 goto do_div3;
8150 case M_DREM_3:
8151 dbl = 1;
8152 case M_REM_3:
8153 s = "mfhi";
8154 do_div3:
8155 start_noreorder ();
8156 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8157 expr1.X_add_number = 2;
8158 macro_build (&expr1, "bnez", "x,p", yreg);
8159 macro_build (NULL, "break", "6", 7);
8160
8161 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8162 since that causes an overflow. We should do that as well,
8163 but I don't see how to do the comparisons without a temporary
8164 register. */
8165 end_noreorder ();
8166 macro_build (NULL, s, "x", zreg);
8167 break;
8168
8169 case M_DIVU_3:
8170 s = "divu";
8171 s2 = "mflo";
8172 goto do_divu3;
8173 case M_REMU_3:
8174 s = "divu";
8175 s2 = "mfhi";
8176 goto do_divu3;
8177 case M_DDIVU_3:
8178 s = "ddivu";
8179 s2 = "mflo";
8180 goto do_divu3;
8181 case M_DREMU_3:
8182 s = "ddivu";
8183 s2 = "mfhi";
8184 do_divu3:
8185 start_noreorder ();
8186 macro_build (NULL, s, "0,x,y", xreg, yreg);
8187 expr1.X_add_number = 2;
8188 macro_build (&expr1, "bnez", "x,p", yreg);
8189 macro_build (NULL, "break", "6", 7);
8190 end_noreorder ();
8191 macro_build (NULL, s2, "x", zreg);
8192 break;
8193
8194 case M_DMUL:
8195 dbl = 1;
8196 case M_MUL:
8197 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8198 macro_build (NULL, "mflo", "x", zreg);
8199 break;
8200
8201 case M_DSUBU_I:
8202 dbl = 1;
8203 goto do_subu;
8204 case M_SUBU_I:
8205 do_subu:
8206 if (imm_expr.X_op != O_constant)
8207 as_bad (_("Unsupported large constant"));
8208 imm_expr.X_add_number = -imm_expr.X_add_number;
8209 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8210 break;
8211
8212 case M_SUBU_I_2:
8213 if (imm_expr.X_op != O_constant)
8214 as_bad (_("Unsupported large constant"));
8215 imm_expr.X_add_number = -imm_expr.X_add_number;
8216 macro_build (&imm_expr, "addiu", "x,k", xreg);
8217 break;
8218
8219 case M_DSUBU_I_2:
8220 if (imm_expr.X_op != O_constant)
8221 as_bad (_("Unsupported large constant"));
8222 imm_expr.X_add_number = -imm_expr.X_add_number;
8223 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8224 break;
8225
8226 case M_BEQ:
8227 s = "cmp";
8228 s2 = "bteqz";
8229 goto do_branch;
8230 case M_BNE:
8231 s = "cmp";
8232 s2 = "btnez";
8233 goto do_branch;
8234 case M_BLT:
8235 s = "slt";
8236 s2 = "btnez";
8237 goto do_branch;
8238 case M_BLTU:
8239 s = "sltu";
8240 s2 = "btnez";
8241 goto do_branch;
8242 case M_BLE:
8243 s = "slt";
8244 s2 = "bteqz";
8245 goto do_reverse_branch;
8246 case M_BLEU:
8247 s = "sltu";
8248 s2 = "bteqz";
8249 goto do_reverse_branch;
8250 case M_BGE:
8251 s = "slt";
8252 s2 = "bteqz";
8253 goto do_branch;
8254 case M_BGEU:
8255 s = "sltu";
8256 s2 = "bteqz";
8257 goto do_branch;
8258 case M_BGT:
8259 s = "slt";
8260 s2 = "btnez";
8261 goto do_reverse_branch;
8262 case M_BGTU:
8263 s = "sltu";
8264 s2 = "btnez";
8265
8266 do_reverse_branch:
8267 tmp = xreg;
8268 xreg = yreg;
8269 yreg = tmp;
8270
8271 do_branch:
8272 macro_build (NULL, s, "x,y", xreg, yreg);
8273 macro_build (&offset_expr, s2, "p");
8274 break;
8275
8276 case M_BEQ_I:
8277 s = "cmpi";
8278 s2 = "bteqz";
8279 s3 = "x,U";
8280 goto do_branch_i;
8281 case M_BNE_I:
8282 s = "cmpi";
8283 s2 = "btnez";
8284 s3 = "x,U";
8285 goto do_branch_i;
8286 case M_BLT_I:
8287 s = "slti";
8288 s2 = "btnez";
8289 s3 = "x,8";
8290 goto do_branch_i;
8291 case M_BLTU_I:
8292 s = "sltiu";
8293 s2 = "btnez";
8294 s3 = "x,8";
8295 goto do_branch_i;
8296 case M_BLE_I:
8297 s = "slti";
8298 s2 = "btnez";
8299 s3 = "x,8";
8300 goto do_addone_branch_i;
8301 case M_BLEU_I:
8302 s = "sltiu";
8303 s2 = "btnez";
8304 s3 = "x,8";
8305 goto do_addone_branch_i;
8306 case M_BGE_I:
8307 s = "slti";
8308 s2 = "bteqz";
8309 s3 = "x,8";
8310 goto do_branch_i;
8311 case M_BGEU_I:
8312 s = "sltiu";
8313 s2 = "bteqz";
8314 s3 = "x,8";
8315 goto do_branch_i;
8316 case M_BGT_I:
8317 s = "slti";
8318 s2 = "bteqz";
8319 s3 = "x,8";
8320 goto do_addone_branch_i;
8321 case M_BGTU_I:
8322 s = "sltiu";
8323 s2 = "bteqz";
8324 s3 = "x,8";
8325
8326 do_addone_branch_i:
8327 if (imm_expr.X_op != O_constant)
8328 as_bad (_("Unsupported large constant"));
8329 ++imm_expr.X_add_number;
8330
8331 do_branch_i:
8332 macro_build (&imm_expr, s, s3, xreg);
8333 macro_build (&offset_expr, s2, "p");
8334 break;
8335
8336 case M_ABS:
8337 expr1.X_add_number = 0;
8338 macro_build (&expr1, "slti", "x,8", yreg);
8339 if (xreg != yreg)
8340 move_register (xreg, yreg);
8341 expr1.X_add_number = 2;
8342 macro_build (&expr1, "bteqz", "p");
8343 macro_build (NULL, "neg", "x,w", xreg, xreg);
8344 }
8345 }
8346
8347 /* For consistency checking, verify that all bits are specified either
8348 by the match/mask part of the instruction definition, or by the
8349 operand list. */
8350 static int
8351 validate_mips_insn (const struct mips_opcode *opc)
8352 {
8353 const char *p = opc->args;
8354 char c;
8355 unsigned long used_bits = opc->mask;
8356
8357 if ((used_bits & opc->match) != opc->match)
8358 {
8359 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8360 opc->name, opc->args);
8361 return 0;
8362 }
8363 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8364 while (*p)
8365 switch (c = *p++)
8366 {
8367 case ',': break;
8368 case '(': break;
8369 case ')': break;
8370 case '+':
8371 switch (c = *p++)
8372 {
8373 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8374 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8375 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8376 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8377 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8378 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8379 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8380 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8381 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8382 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8383 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8384 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8385 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8386 case 'I': break;
8387 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8388 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8389 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8390 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8391 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8392 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8393 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8394 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8395 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8396 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8397
8398 default:
8399 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8400 c, opc->name, opc->args);
8401 return 0;
8402 }
8403 break;
8404 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8405 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8406 case 'A': break;
8407 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8408 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8409 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8410 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8411 case 'F': break;
8412 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8413 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8414 case 'I': break;
8415 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8416 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8417 case 'L': break;
8418 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8419 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8420 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8421 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8422 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8423 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8424 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8425 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8426 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8427 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8428 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8429 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8430 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8431 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8432 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8433 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8434 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8435 case 'f': break;
8436 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8437 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8438 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8439 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8440 case 'l': break;
8441 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8442 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8443 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8444 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8445 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8446 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8447 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8448 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8449 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8450 case 'x': break;
8451 case 'z': break;
8452 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8453 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8454 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8455 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8456 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8457 case '[': break;
8458 case ']': break;
8459 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8460 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8461 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8462 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8463 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8464 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8465 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8466 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8467 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8468 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8469 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8470 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8471 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8472 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8473 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8474 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8475 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8476 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8477 default:
8478 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8479 c, opc->name, opc->args);
8480 return 0;
8481 }
8482 #undef USE_BITS
8483 if (used_bits != 0xffffffff)
8484 {
8485 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8486 ~used_bits & 0xffffffff, opc->name, opc->args);
8487 return 0;
8488 }
8489 return 1;
8490 }
8491
8492 /* UDI immediates. */
8493 struct mips_immed {
8494 char type;
8495 unsigned int shift;
8496 unsigned long mask;
8497 const char * desc;
8498 };
8499
8500 static const struct mips_immed mips_immed[] = {
8501 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8502 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8503 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8504 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8505 { 0,0,0,0 }
8506 };
8507
8508 /* Check whether an odd floating-point register is allowed. */
8509 static int
8510 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8511 {
8512 const char *s = insn->name;
8513
8514 if (insn->pinfo == INSN_MACRO)
8515 /* Let a macro pass, we'll catch it later when it is expanded. */
8516 return 1;
8517
8518 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8519 {
8520 /* Allow odd registers for single-precision ops. */
8521 switch (insn->pinfo & (FP_S | FP_D))
8522 {
8523 case FP_S:
8524 case 0:
8525 return 1; /* both single precision - ok */
8526 case FP_D:
8527 return 0; /* both double precision - fail */
8528 default:
8529 break;
8530 }
8531
8532 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8533 s = strchr (insn->name, '.');
8534 if (argnum == 2)
8535 s = s != NULL ? strchr (s + 1, '.') : NULL;
8536 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8537 }
8538
8539 /* Single-precision coprocessor loads and moves are OK too. */
8540 if ((insn->pinfo & FP_S)
8541 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8542 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8543 return 1;
8544
8545 return 0;
8546 }
8547
8548 /* This routine assembles an instruction into its binary format. As a
8549 side effect, it sets one of the global variables imm_reloc or
8550 offset_reloc to the type of relocation to do if one of the operands
8551 is an address expression. */
8552
8553 static void
8554 mips_ip (char *str, struct mips_cl_insn *ip)
8555 {
8556 char *s;
8557 const char *args;
8558 char c = 0;
8559 struct mips_opcode *insn;
8560 char *argsStart;
8561 unsigned int regno;
8562 unsigned int lastregno = 0;
8563 unsigned int lastpos = 0;
8564 unsigned int limlo, limhi;
8565 char *s_reset;
8566 char save_c = 0;
8567 offsetT min_range, max_range;
8568 int argnum;
8569 unsigned int rtype;
8570
8571 insn_error = NULL;
8572
8573 /* If the instruction contains a '.', we first try to match an instruction
8574 including the '.'. Then we try again without the '.'. */
8575 insn = NULL;
8576 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8577 continue;
8578
8579 /* If we stopped on whitespace, then replace the whitespace with null for
8580 the call to hash_find. Save the character we replaced just in case we
8581 have to re-parse the instruction. */
8582 if (ISSPACE (*s))
8583 {
8584 save_c = *s;
8585 *s++ = '\0';
8586 }
8587
8588 insn = (struct mips_opcode *) hash_find (op_hash, str);
8589
8590 /* If we didn't find the instruction in the opcode table, try again, but
8591 this time with just the instruction up to, but not including the
8592 first '.'. */
8593 if (insn == NULL)
8594 {
8595 /* Restore the character we overwrite above (if any). */
8596 if (save_c)
8597 *(--s) = save_c;
8598
8599 /* Scan up to the first '.' or whitespace. */
8600 for (s = str;
8601 *s != '\0' && *s != '.' && !ISSPACE (*s);
8602 ++s)
8603 continue;
8604
8605 /* If we did not find a '.', then we can quit now. */
8606 if (*s != '.')
8607 {
8608 insn_error = "unrecognized opcode";
8609 return;
8610 }
8611
8612 /* Lookup the instruction in the hash table. */
8613 *s++ = '\0';
8614 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8615 {
8616 insn_error = "unrecognized opcode";
8617 return;
8618 }
8619 }
8620
8621 argsStart = s;
8622 for (;;)
8623 {
8624 bfd_boolean ok;
8625
8626 assert (strcmp (insn->name, str) == 0);
8627
8628 ok = is_opcode_valid (insn, FALSE);
8629 if (! ok)
8630 {
8631 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8632 && strcmp (insn->name, insn[1].name) == 0)
8633 {
8634 ++insn;
8635 continue;
8636 }
8637 else
8638 {
8639 if (!insn_error)
8640 {
8641 static char buf[100];
8642 sprintf (buf,
8643 _("opcode not supported on this processor: %s (%s)"),
8644 mips_cpu_info_from_arch (mips_opts.arch)->name,
8645 mips_cpu_info_from_isa (mips_opts.isa)->name);
8646 insn_error = buf;
8647 }
8648 if (save_c)
8649 *(--s) = save_c;
8650 return;
8651 }
8652 }
8653
8654 create_insn (ip, insn);
8655 insn_error = NULL;
8656 argnum = 1;
8657 for (args = insn->args;; ++args)
8658 {
8659 int is_mdmx;
8660
8661 s += strspn (s, " \t");
8662 is_mdmx = 0;
8663 switch (*args)
8664 {
8665 case '\0': /* end of args */
8666 if (*s == '\0')
8667 return;
8668 break;
8669
8670 case '2': /* dsp 2-bit unsigned immediate in bit 11 */
8671 my_getExpression (&imm_expr, s);
8672 check_absolute_expr (ip, &imm_expr);
8673 if ((unsigned long) imm_expr.X_add_number != 1
8674 && (unsigned long) imm_expr.X_add_number != 3)
8675 {
8676 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8677 (unsigned long) imm_expr.X_add_number);
8678 }
8679 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8680 imm_expr.X_op = O_absent;
8681 s = expr_end;
8682 continue;
8683
8684 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8685 my_getExpression (&imm_expr, s);
8686 check_absolute_expr (ip, &imm_expr);
8687 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8688 {
8689 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8690 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8691 }
8692 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8693 imm_expr.X_op = O_absent;
8694 s = expr_end;
8695 continue;
8696
8697 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8698 my_getExpression (&imm_expr, s);
8699 check_absolute_expr (ip, &imm_expr);
8700 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8701 {
8702 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8703 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8704 }
8705 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8706 imm_expr.X_op = O_absent;
8707 s = expr_end;
8708 continue;
8709
8710 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8711 my_getExpression (&imm_expr, s);
8712 check_absolute_expr (ip, &imm_expr);
8713 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8714 {
8715 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8716 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8717 }
8718 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8719 imm_expr.X_op = O_absent;
8720 s = expr_end;
8721 continue;
8722
8723 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8724 my_getExpression (&imm_expr, s);
8725 check_absolute_expr (ip, &imm_expr);
8726 if (imm_expr.X_add_number & ~OP_MASK_RS)
8727 {
8728 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8729 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8730 }
8731 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8732 imm_expr.X_op = O_absent;
8733 s = expr_end;
8734 continue;
8735
8736 case '7': /* four dsp accumulators in bits 11,12 */
8737 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8738 s[3] >= '0' && s[3] <= '3')
8739 {
8740 regno = s[3] - '0';
8741 s += 4;
8742 INSERT_OPERAND (DSPACC, *ip, regno);
8743 continue;
8744 }
8745 else
8746 as_bad (_("Invalid dsp acc register"));
8747 break;
8748
8749 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8750 my_getExpression (&imm_expr, s);
8751 check_absolute_expr (ip, &imm_expr);
8752 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8753 {
8754 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8755 OP_MASK_WRDSP,
8756 (unsigned long) imm_expr.X_add_number);
8757 }
8758 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8759 imm_expr.X_op = O_absent;
8760 s = expr_end;
8761 continue;
8762
8763 case '9': /* four dsp accumulators in bits 21,22 */
8764 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8765 s[3] >= '0' && s[3] <= '3')
8766 {
8767 regno = s[3] - '0';
8768 s += 4;
8769 INSERT_OPERAND (DSPACC_S, *ip, regno);
8770 continue;
8771 }
8772 else
8773 as_bad (_("Invalid dsp acc register"));
8774 break;
8775
8776 case '0': /* dsp 6-bit signed immediate in bit 20 */
8777 my_getExpression (&imm_expr, s);
8778 check_absolute_expr (ip, &imm_expr);
8779 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8780 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8781 if (imm_expr.X_add_number < min_range ||
8782 imm_expr.X_add_number > max_range)
8783 {
8784 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8785 (long) min_range, (long) max_range,
8786 (long) imm_expr.X_add_number);
8787 }
8788 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8789 imm_expr.X_op = O_absent;
8790 s = expr_end;
8791 continue;
8792
8793 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8794 my_getExpression (&imm_expr, s);
8795 check_absolute_expr (ip, &imm_expr);
8796 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8797 {
8798 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8799 OP_MASK_RDDSP,
8800 (unsigned long) imm_expr.X_add_number);
8801 }
8802 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8803 imm_expr.X_op = O_absent;
8804 s = expr_end;
8805 continue;
8806
8807 case ':': /* dsp 7-bit signed immediate in bit 19 */
8808 my_getExpression (&imm_expr, s);
8809 check_absolute_expr (ip, &imm_expr);
8810 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8811 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8812 if (imm_expr.X_add_number < min_range ||
8813 imm_expr.X_add_number > max_range)
8814 {
8815 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8816 (long) min_range, (long) max_range,
8817 (long) imm_expr.X_add_number);
8818 }
8819 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8820 imm_expr.X_op = O_absent;
8821 s = expr_end;
8822 continue;
8823
8824 case '@': /* dsp 10-bit signed immediate in bit 16 */
8825 my_getExpression (&imm_expr, s);
8826 check_absolute_expr (ip, &imm_expr);
8827 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8828 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8829 if (imm_expr.X_add_number < min_range ||
8830 imm_expr.X_add_number > max_range)
8831 {
8832 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8833 (long) min_range, (long) max_range,
8834 (long) imm_expr.X_add_number);
8835 }
8836 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8837 imm_expr.X_op = O_absent;
8838 s = expr_end;
8839 continue;
8840
8841 case '!': /* MT usermode flag bit. */
8842 my_getExpression (&imm_expr, s);
8843 check_absolute_expr (ip, &imm_expr);
8844 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8845 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8846 (unsigned long) imm_expr.X_add_number);
8847 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8848 imm_expr.X_op = O_absent;
8849 s = expr_end;
8850 continue;
8851
8852 case '$': /* MT load high flag bit. */
8853 my_getExpression (&imm_expr, s);
8854 check_absolute_expr (ip, &imm_expr);
8855 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8856 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8857 (unsigned long) imm_expr.X_add_number);
8858 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8859 imm_expr.X_op = O_absent;
8860 s = expr_end;
8861 continue;
8862
8863 case '*': /* four dsp accumulators in bits 18,19 */
8864 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8865 s[3] >= '0' && s[3] <= '3')
8866 {
8867 regno = s[3] - '0';
8868 s += 4;
8869 INSERT_OPERAND (MTACC_T, *ip, regno);
8870 continue;
8871 }
8872 else
8873 as_bad (_("Invalid dsp/smartmips acc register"));
8874 break;
8875
8876 case '&': /* four dsp accumulators in bits 13,14 */
8877 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8878 s[3] >= '0' && s[3] <= '3')
8879 {
8880 regno = s[3] - '0';
8881 s += 4;
8882 INSERT_OPERAND (MTACC_D, *ip, regno);
8883 continue;
8884 }
8885 else
8886 as_bad (_("Invalid dsp/smartmips acc register"));
8887 break;
8888
8889 case ',':
8890 ++argnum;
8891 if (*s++ == *args)
8892 continue;
8893 s--;
8894 switch (*++args)
8895 {
8896 case 'r':
8897 case 'v':
8898 INSERT_OPERAND (RS, *ip, lastregno);
8899 continue;
8900
8901 case 'w':
8902 INSERT_OPERAND (RT, *ip, lastregno);
8903 continue;
8904
8905 case 'W':
8906 INSERT_OPERAND (FT, *ip, lastregno);
8907 continue;
8908
8909 case 'V':
8910 INSERT_OPERAND (FS, *ip, lastregno);
8911 continue;
8912 }
8913 break;
8914
8915 case '(':
8916 /* Handle optional base register.
8917 Either the base register is omitted or
8918 we must have a left paren. */
8919 /* This is dependent on the next operand specifier
8920 is a base register specification. */
8921 assert (args[1] == 'b' || args[1] == '5'
8922 || args[1] == '-' || args[1] == '4');
8923 if (*s == '\0')
8924 return;
8925
8926 case ')': /* these must match exactly */
8927 case '[':
8928 case ']':
8929 if (*s++ == *args)
8930 continue;
8931 break;
8932
8933 case '+': /* Opcode extension character. */
8934 switch (*++args)
8935 {
8936 case '1': /* UDI immediates. */
8937 case '2':
8938 case '3':
8939 case '4':
8940 {
8941 const struct mips_immed *imm = mips_immed;
8942
8943 while (imm->type && imm->type != *args)
8944 ++imm;
8945 if (! imm->type)
8946 internalError ();
8947 my_getExpression (&imm_expr, s);
8948 check_absolute_expr (ip, &imm_expr);
8949 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
8950 {
8951 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
8952 imm->desc ? imm->desc : ip->insn_mo->name,
8953 (unsigned long) imm_expr.X_add_number,
8954 (unsigned long) imm_expr.X_add_number);
8955 imm_expr.X_add_number &= imm->mask;
8956 }
8957 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
8958 << imm->shift);
8959 imm_expr.X_op = O_absent;
8960 s = expr_end;
8961 }
8962 continue;
8963
8964 case 'A': /* ins/ext position, becomes LSB. */
8965 limlo = 0;
8966 limhi = 31;
8967 goto do_lsb;
8968 case 'E':
8969 limlo = 32;
8970 limhi = 63;
8971 goto do_lsb;
8972 do_lsb:
8973 my_getExpression (&imm_expr, s);
8974 check_absolute_expr (ip, &imm_expr);
8975 if ((unsigned long) imm_expr.X_add_number < limlo
8976 || (unsigned long) imm_expr.X_add_number > limhi)
8977 {
8978 as_bad (_("Improper position (%lu)"),
8979 (unsigned long) imm_expr.X_add_number);
8980 imm_expr.X_add_number = limlo;
8981 }
8982 lastpos = imm_expr.X_add_number;
8983 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
8984 imm_expr.X_op = O_absent;
8985 s = expr_end;
8986 continue;
8987
8988 case 'B': /* ins size, becomes MSB. */
8989 limlo = 1;
8990 limhi = 32;
8991 goto do_msb;
8992 case 'F':
8993 limlo = 33;
8994 limhi = 64;
8995 goto do_msb;
8996 do_msb:
8997 my_getExpression (&imm_expr, s);
8998 check_absolute_expr (ip, &imm_expr);
8999 /* Check for negative input so that small negative numbers
9000 will not succeed incorrectly. The checks against
9001 (pos+size) transitively check "size" itself,
9002 assuming that "pos" is reasonable. */
9003 if ((long) imm_expr.X_add_number < 0
9004 || ((unsigned long) imm_expr.X_add_number
9005 + lastpos) < limlo
9006 || ((unsigned long) imm_expr.X_add_number
9007 + lastpos) > limhi)
9008 {
9009 as_bad (_("Improper insert size (%lu, position %lu)"),
9010 (unsigned long) imm_expr.X_add_number,
9011 (unsigned long) lastpos);
9012 imm_expr.X_add_number = limlo - lastpos;
9013 }
9014 INSERT_OPERAND (INSMSB, *ip,
9015 lastpos + imm_expr.X_add_number - 1);
9016 imm_expr.X_op = O_absent;
9017 s = expr_end;
9018 continue;
9019
9020 case 'C': /* ext size, becomes MSBD. */
9021 limlo = 1;
9022 limhi = 32;
9023 goto do_msbd;
9024 case 'G':
9025 limlo = 33;
9026 limhi = 64;
9027 goto do_msbd;
9028 case 'H':
9029 limlo = 33;
9030 limhi = 64;
9031 goto do_msbd;
9032 do_msbd:
9033 my_getExpression (&imm_expr, s);
9034 check_absolute_expr (ip, &imm_expr);
9035 /* Check for negative input so that small negative numbers
9036 will not succeed incorrectly. The checks against
9037 (pos+size) transitively check "size" itself,
9038 assuming that "pos" is reasonable. */
9039 if ((long) imm_expr.X_add_number < 0
9040 || ((unsigned long) imm_expr.X_add_number
9041 + lastpos) < limlo
9042 || ((unsigned long) imm_expr.X_add_number
9043 + lastpos) > limhi)
9044 {
9045 as_bad (_("Improper extract size (%lu, position %lu)"),
9046 (unsigned long) imm_expr.X_add_number,
9047 (unsigned long) lastpos);
9048 imm_expr.X_add_number = limlo - lastpos;
9049 }
9050 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9051 imm_expr.X_op = O_absent;
9052 s = expr_end;
9053 continue;
9054
9055 case 'D':
9056 /* +D is for disassembly only; never match. */
9057 break;
9058
9059 case 'I':
9060 /* "+I" is like "I", except that imm2_expr is used. */
9061 my_getExpression (&imm2_expr, s);
9062 if (imm2_expr.X_op != O_big
9063 && imm2_expr.X_op != O_constant)
9064 insn_error = _("absolute expression required");
9065 if (HAVE_32BIT_GPRS)
9066 normalize_constant_expr (&imm2_expr);
9067 s = expr_end;
9068 continue;
9069
9070 case 'T': /* Coprocessor register. */
9071 /* +T is for disassembly only; never match. */
9072 break;
9073
9074 case 't': /* Coprocessor register number. */
9075 if (s[0] == '$' && ISDIGIT (s[1]))
9076 {
9077 ++s;
9078 regno = 0;
9079 do
9080 {
9081 regno *= 10;
9082 regno += *s - '0';
9083 ++s;
9084 }
9085 while (ISDIGIT (*s));
9086 if (regno > 31)
9087 as_bad (_("Invalid register number (%d)"), regno);
9088 else
9089 {
9090 INSERT_OPERAND (RT, *ip, regno);
9091 continue;
9092 }
9093 }
9094 else
9095 as_bad (_("Invalid coprocessor 0 register number"));
9096 break;
9097
9098 case 'x':
9099 /* bbit[01] and bbit[01]32 bit index. Give error if index
9100 is not in the valid range. */
9101 my_getExpression (&imm_expr, s);
9102 check_absolute_expr (ip, &imm_expr);
9103 if ((unsigned) imm_expr.X_add_number > 31)
9104 {
9105 as_bad (_("Improper bit index (%lu)"),
9106 (unsigned long) imm_expr.X_add_number);
9107 imm_expr.X_add_number = 0;
9108 }
9109 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9110 imm_expr.X_op = O_absent;
9111 s = expr_end;
9112 continue;
9113
9114 case 'X':
9115 /* bbit[01] bit index when bbit is used but we generate
9116 bbit[01]32 because the index is over 32. Move to the
9117 next candidate if index is not in the valid range. */
9118 my_getExpression (&imm_expr, s);
9119 check_absolute_expr (ip, &imm_expr);
9120 if ((unsigned) imm_expr.X_add_number < 32
9121 || (unsigned) imm_expr.X_add_number > 63)
9122 break;
9123 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9124 imm_expr.X_op = O_absent;
9125 s = expr_end;
9126 continue;
9127
9128 case 'p':
9129 /* cins, cins32, exts and exts32 position field. Give error
9130 if it's not in the valid range. */
9131 my_getExpression (&imm_expr, s);
9132 check_absolute_expr (ip, &imm_expr);
9133 if ((unsigned) imm_expr.X_add_number > 31)
9134 {
9135 as_bad (_("Improper position (%lu)"),
9136 (unsigned long) imm_expr.X_add_number);
9137 imm_expr.X_add_number = 0;
9138 }
9139 /* Make the pos explicit to simplify +S. */
9140 lastpos = imm_expr.X_add_number + 32;
9141 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9142 imm_expr.X_op = O_absent;
9143 s = expr_end;
9144 continue;
9145
9146 case 'P':
9147 /* cins, cins32, exts and exts32 position field. Move to
9148 the next candidate if it's not in the valid range. */
9149 my_getExpression (&imm_expr, s);
9150 check_absolute_expr (ip, &imm_expr);
9151 if ((unsigned) imm_expr.X_add_number < 32
9152 || (unsigned) imm_expr.X_add_number > 63)
9153 break;
9154 lastpos = imm_expr.X_add_number;
9155 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9156 imm_expr.X_op = O_absent;
9157 s = expr_end;
9158 continue;
9159
9160 case 's':
9161 /* cins and exts length-minus-one field. */
9162 my_getExpression (&imm_expr, s);
9163 check_absolute_expr (ip, &imm_expr);
9164 if ((unsigned long) imm_expr.X_add_number > 31)
9165 {
9166 as_bad (_("Improper size (%lu)"),
9167 (unsigned long) imm_expr.X_add_number);
9168 imm_expr.X_add_number = 0;
9169 }
9170 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9171 imm_expr.X_op = O_absent;
9172 s = expr_end;
9173 continue;
9174
9175 case 'S':
9176 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9177 length-minus-one field. */
9178 my_getExpression (&imm_expr, s);
9179 check_absolute_expr (ip, &imm_expr);
9180 if ((long) imm_expr.X_add_number < 0
9181 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9182 {
9183 as_bad (_("Improper size (%lu)"),
9184 (unsigned long) imm_expr.X_add_number);
9185 imm_expr.X_add_number = 0;
9186 }
9187 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9188 imm_expr.X_op = O_absent;
9189 s = expr_end;
9190 continue;
9191
9192 case 'Q':
9193 /* seqi/snei immediate field. */
9194 my_getExpression (&imm_expr, s);
9195 check_absolute_expr (ip, &imm_expr);
9196 if ((long) imm_expr.X_add_number < -512
9197 || (long) imm_expr.X_add_number >= 512)
9198 {
9199 as_bad (_("Improper immediate (%ld)"),
9200 (long) imm_expr.X_add_number);
9201 imm_expr.X_add_number = 0;
9202 }
9203 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9204 imm_expr.X_op = O_absent;
9205 s = expr_end;
9206 continue;
9207
9208 default:
9209 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
9210 *args, insn->name, insn->args);
9211 /* Further processing is fruitless. */
9212 return;
9213 }
9214 break;
9215
9216 case '<': /* must be at least one digit */
9217 /*
9218 * According to the manual, if the shift amount is greater
9219 * than 31 or less than 0, then the shift amount should be
9220 * mod 32. In reality the mips assembler issues an error.
9221 * We issue a warning and mask out all but the low 5 bits.
9222 */
9223 my_getExpression (&imm_expr, s);
9224 check_absolute_expr (ip, &imm_expr);
9225 if ((unsigned long) imm_expr.X_add_number > 31)
9226 as_warn (_("Improper shift amount (%lu)"),
9227 (unsigned long) imm_expr.X_add_number);
9228 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9229 imm_expr.X_op = O_absent;
9230 s = expr_end;
9231 continue;
9232
9233 case '>': /* shift amount minus 32 */
9234 my_getExpression (&imm_expr, s);
9235 check_absolute_expr (ip, &imm_expr);
9236 if ((unsigned long) imm_expr.X_add_number < 32
9237 || (unsigned long) imm_expr.X_add_number > 63)
9238 break;
9239 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9240 imm_expr.X_op = O_absent;
9241 s = expr_end;
9242 continue;
9243
9244 case 'k': /* cache code */
9245 case 'h': /* prefx code */
9246 case '1': /* sync type */
9247 my_getExpression (&imm_expr, s);
9248 check_absolute_expr (ip, &imm_expr);
9249 if ((unsigned long) imm_expr.X_add_number > 31)
9250 as_warn (_("Invalid value for `%s' (%lu)"),
9251 ip->insn_mo->name,
9252 (unsigned long) imm_expr.X_add_number);
9253 if (*args == 'k')
9254 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9255 else if (*args == 'h')
9256 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9257 else
9258 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9259 imm_expr.X_op = O_absent;
9260 s = expr_end;
9261 continue;
9262
9263 case 'c': /* break code */
9264 my_getExpression (&imm_expr, s);
9265 check_absolute_expr (ip, &imm_expr);
9266 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9267 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9268 ip->insn_mo->name,
9269 (unsigned long) imm_expr.X_add_number);
9270 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9271 imm_expr.X_op = O_absent;
9272 s = expr_end;
9273 continue;
9274
9275 case 'q': /* lower break code */
9276 my_getExpression (&imm_expr, s);
9277 check_absolute_expr (ip, &imm_expr);
9278 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9279 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9280 ip->insn_mo->name,
9281 (unsigned long) imm_expr.X_add_number);
9282 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9283 imm_expr.X_op = O_absent;
9284 s = expr_end;
9285 continue;
9286
9287 case 'B': /* 20-bit syscall/break code. */
9288 my_getExpression (&imm_expr, s);
9289 check_absolute_expr (ip, &imm_expr);
9290 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9291 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9292 ip->insn_mo->name,
9293 (unsigned long) imm_expr.X_add_number);
9294 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9295 imm_expr.X_op = O_absent;
9296 s = expr_end;
9297 continue;
9298
9299 case 'C': /* Coprocessor code */
9300 my_getExpression (&imm_expr, s);
9301 check_absolute_expr (ip, &imm_expr);
9302 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9303 {
9304 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9305 (unsigned long) imm_expr.X_add_number);
9306 imm_expr.X_add_number &= OP_MASK_COPZ;
9307 }
9308 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9309 imm_expr.X_op = O_absent;
9310 s = expr_end;
9311 continue;
9312
9313 case 'J': /* 19-bit wait code. */
9314 my_getExpression (&imm_expr, s);
9315 check_absolute_expr (ip, &imm_expr);
9316 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9317 {
9318 as_warn (_("Illegal 19-bit code (%lu)"),
9319 (unsigned long) imm_expr.X_add_number);
9320 imm_expr.X_add_number &= OP_MASK_CODE19;
9321 }
9322 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9323 imm_expr.X_op = O_absent;
9324 s = expr_end;
9325 continue;
9326
9327 case 'P': /* Performance register. */
9328 my_getExpression (&imm_expr, s);
9329 check_absolute_expr (ip, &imm_expr);
9330 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9331 as_warn (_("Invalid performance register (%lu)"),
9332 (unsigned long) imm_expr.X_add_number);
9333 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9334 imm_expr.X_op = O_absent;
9335 s = expr_end;
9336 continue;
9337
9338 case 'G': /* Coprocessor destination register. */
9339 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9340 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9341 else
9342 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9343 INSERT_OPERAND (RD, *ip, regno);
9344 if (ok)
9345 {
9346 lastregno = regno;
9347 continue;
9348 }
9349 else
9350 break;
9351
9352 case 'b': /* base register */
9353 case 'd': /* destination register */
9354 case 's': /* source register */
9355 case 't': /* target register */
9356 case 'r': /* both target and source */
9357 case 'v': /* both dest and source */
9358 case 'w': /* both dest and target */
9359 case 'E': /* coprocessor target register */
9360 case 'K': /* 'rdhwr' destination register */
9361 case 'x': /* ignore register name */
9362 case 'z': /* must be zero register */
9363 case 'U': /* destination register (clo/clz). */
9364 case 'g': /* coprocessor destination register */
9365 s_reset = s;
9366 if (*args == 'E' || *args == 'K')
9367 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9368 else
9369 {
9370 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9371 if (regno == AT && mips_opts.at)
9372 {
9373 if (mips_opts.at == ATREG)
9374 as_warn (_("used $at without \".set noat\""));
9375 else
9376 as_warn (_("used $%u with \".set at=$%u\""),
9377 regno, mips_opts.at);
9378 }
9379 }
9380 if (ok)
9381 {
9382 c = *args;
9383 if (*s == ' ')
9384 ++s;
9385 if (args[1] != *s)
9386 {
9387 if (c == 'r' || c == 'v' || c == 'w')
9388 {
9389 regno = lastregno;
9390 s = s_reset;
9391 ++args;
9392 }
9393 }
9394 /* 'z' only matches $0. */
9395 if (c == 'z' && regno != 0)
9396 break;
9397
9398 if (c == 's' && !strcmp (ip->insn_mo->name, "jalr"))
9399 {
9400 if (regno == lastregno)
9401 {
9402 insn_error = _("source and destinationations must be different");
9403 continue;
9404 }
9405 if (regno == 31 && lastregno == 0)
9406 {
9407 insn_error = _("a destination register must be supplied");
9408 continue;
9409 }
9410 }
9411 /* Now that we have assembled one operand, we use the args string
9412 * to figure out where it goes in the instruction. */
9413 switch (c)
9414 {
9415 case 'r':
9416 case 's':
9417 case 'v':
9418 case 'b':
9419 INSERT_OPERAND (RS, *ip, regno);
9420 break;
9421 case 'd':
9422 case 'G':
9423 case 'K':
9424 case 'g':
9425 INSERT_OPERAND (RD, *ip, regno);
9426 break;
9427 case 'U':
9428 INSERT_OPERAND (RD, *ip, regno);
9429 INSERT_OPERAND (RT, *ip, regno);
9430 break;
9431 case 'w':
9432 case 't':
9433 case 'E':
9434 INSERT_OPERAND (RT, *ip, regno);
9435 break;
9436 case 'x':
9437 /* This case exists because on the r3000 trunc
9438 expands into a macro which requires a gp
9439 register. On the r6000 or r4000 it is
9440 assembled into a single instruction which
9441 ignores the register. Thus the insn version
9442 is MIPS_ISA2 and uses 'x', and the macro
9443 version is MIPS_ISA1 and uses 't'. */
9444 break;
9445 case 'z':
9446 /* This case is for the div instruction, which
9447 acts differently if the destination argument
9448 is $0. This only matches $0, and is checked
9449 outside the switch. */
9450 break;
9451 case 'D':
9452 /* Itbl operand; not yet implemented. FIXME ?? */
9453 break;
9454 /* What about all other operands like 'i', which
9455 can be specified in the opcode table? */
9456 }
9457 lastregno = regno;
9458 continue;
9459 }
9460 switch (*args++)
9461 {
9462 case 'r':
9463 case 'v':
9464 INSERT_OPERAND (RS, *ip, lastregno);
9465 continue;
9466 case 'w':
9467 INSERT_OPERAND (RT, *ip, lastregno);
9468 continue;
9469 }
9470 break;
9471
9472 case 'O': /* MDMX alignment immediate constant. */
9473 my_getExpression (&imm_expr, s);
9474 check_absolute_expr (ip, &imm_expr);
9475 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9476 as_warn ("Improper align amount (%ld), using low bits",
9477 (long) imm_expr.X_add_number);
9478 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9479 imm_expr.X_op = O_absent;
9480 s = expr_end;
9481 continue;
9482
9483 case 'Q': /* MDMX vector, element sel, or const. */
9484 if (s[0] != '$')
9485 {
9486 /* MDMX Immediate. */
9487 my_getExpression (&imm_expr, s);
9488 check_absolute_expr (ip, &imm_expr);
9489 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9490 as_warn (_("Invalid MDMX Immediate (%ld)"),
9491 (long) imm_expr.X_add_number);
9492 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9493 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9494 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9495 else
9496 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9497 imm_expr.X_op = O_absent;
9498 s = expr_end;
9499 continue;
9500 }
9501 /* Not MDMX Immediate. Fall through. */
9502 case 'X': /* MDMX destination register. */
9503 case 'Y': /* MDMX source register. */
9504 case 'Z': /* MDMX target register. */
9505 is_mdmx = 1;
9506 case 'D': /* floating point destination register */
9507 case 'S': /* floating point source register */
9508 case 'T': /* floating point target register */
9509 case 'R': /* floating point source register */
9510 case 'V':
9511 case 'W':
9512 rtype = RTYPE_FPU;
9513 if (is_mdmx
9514 || (mips_opts.ase_mdmx
9515 && (ip->insn_mo->pinfo & FP_D)
9516 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9517 | INSN_COPROC_MEMORY_DELAY
9518 | INSN_LOAD_COPROC_DELAY
9519 | INSN_LOAD_MEMORY_DELAY
9520 | INSN_STORE_MEMORY))))
9521 rtype |= RTYPE_VEC;
9522 s_reset = s;
9523 if (reg_lookup (&s, rtype, &regno))
9524 {
9525 if ((regno & 1) != 0
9526 && HAVE_32BIT_FPRS
9527 && ! mips_oddfpreg_ok (ip->insn_mo, argnum))
9528 as_warn (_("Float register should be even, was %d"),
9529 regno);
9530
9531 c = *args;
9532 if (*s == ' ')
9533 ++s;
9534 if (args[1] != *s)
9535 {
9536 if (c == 'V' || c == 'W')
9537 {
9538 regno = lastregno;
9539 s = s_reset;
9540 ++args;
9541 }
9542 }
9543 switch (c)
9544 {
9545 case 'D':
9546 case 'X':
9547 INSERT_OPERAND (FD, *ip, regno);
9548 break;
9549 case 'V':
9550 case 'S':
9551 case 'Y':
9552 INSERT_OPERAND (FS, *ip, regno);
9553 break;
9554 case 'Q':
9555 /* This is like 'Z', but also needs to fix the MDMX
9556 vector/scalar select bits. Note that the
9557 scalar immediate case is handled above. */
9558 if (*s == '[')
9559 {
9560 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9561 int max_el = (is_qh ? 3 : 7);
9562 s++;
9563 my_getExpression(&imm_expr, s);
9564 check_absolute_expr (ip, &imm_expr);
9565 s = expr_end;
9566 if (imm_expr.X_add_number > max_el)
9567 as_bad(_("Bad element selector %ld"),
9568 (long) imm_expr.X_add_number);
9569 imm_expr.X_add_number &= max_el;
9570 ip->insn_opcode |= (imm_expr.X_add_number
9571 << (OP_SH_VSEL +
9572 (is_qh ? 2 : 1)));
9573 imm_expr.X_op = O_absent;
9574 if (*s != ']')
9575 as_warn(_("Expecting ']' found '%s'"), s);
9576 else
9577 s++;
9578 }
9579 else
9580 {
9581 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9582 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9583 << OP_SH_VSEL);
9584 else
9585 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9586 OP_SH_VSEL);
9587 }
9588 /* Fall through */
9589 case 'W':
9590 case 'T':
9591 case 'Z':
9592 INSERT_OPERAND (FT, *ip, regno);
9593 break;
9594 case 'R':
9595 INSERT_OPERAND (FR, *ip, regno);
9596 break;
9597 }
9598 lastregno = regno;
9599 continue;
9600 }
9601
9602 switch (*args++)
9603 {
9604 case 'V':
9605 INSERT_OPERAND (FS, *ip, lastregno);
9606 continue;
9607 case 'W':
9608 INSERT_OPERAND (FT, *ip, lastregno);
9609 continue;
9610 }
9611 break;
9612
9613 case 'I':
9614 my_getExpression (&imm_expr, s);
9615 if (imm_expr.X_op != O_big
9616 && imm_expr.X_op != O_constant)
9617 insn_error = _("absolute expression required");
9618 if (HAVE_32BIT_GPRS)
9619 normalize_constant_expr (&imm_expr);
9620 s = expr_end;
9621 continue;
9622
9623 case 'A':
9624 my_getExpression (&offset_expr, s);
9625 normalize_address_expr (&offset_expr);
9626 *imm_reloc = BFD_RELOC_32;
9627 s = expr_end;
9628 continue;
9629
9630 case 'F':
9631 case 'L':
9632 case 'f':
9633 case 'l':
9634 {
9635 int f64;
9636 int using_gprs;
9637 char *save_in;
9638 char *err;
9639 unsigned char temp[8];
9640 int len;
9641 unsigned int length;
9642 segT seg;
9643 subsegT subseg;
9644 char *p;
9645
9646 /* These only appear as the last operand in an
9647 instruction, and every instruction that accepts
9648 them in any variant accepts them in all variants.
9649 This means we don't have to worry about backing out
9650 any changes if the instruction does not match.
9651
9652 The difference between them is the size of the
9653 floating point constant and where it goes. For 'F'
9654 and 'L' the constant is 64 bits; for 'f' and 'l' it
9655 is 32 bits. Where the constant is placed is based
9656 on how the MIPS assembler does things:
9657 F -- .rdata
9658 L -- .lit8
9659 f -- immediate value
9660 l -- .lit4
9661
9662 The .lit4 and .lit8 sections are only used if
9663 permitted by the -G argument.
9664
9665 The code below needs to know whether the target register
9666 is 32 or 64 bits wide. It relies on the fact 'f' and
9667 'F' are used with GPR-based instructions and 'l' and
9668 'L' are used with FPR-based instructions. */
9669
9670 f64 = *args == 'F' || *args == 'L';
9671 using_gprs = *args == 'F' || *args == 'f';
9672
9673 save_in = input_line_pointer;
9674 input_line_pointer = s;
9675 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9676 length = len;
9677 s = input_line_pointer;
9678 input_line_pointer = save_in;
9679 if (err != NULL && *err != '\0')
9680 {
9681 as_bad (_("Bad floating point constant: %s"), err);
9682 memset (temp, '\0', sizeof temp);
9683 length = f64 ? 8 : 4;
9684 }
9685
9686 assert (length == (unsigned) (f64 ? 8 : 4));
9687
9688 if (*args == 'f'
9689 || (*args == 'l'
9690 && (g_switch_value < 4
9691 || (temp[0] == 0 && temp[1] == 0)
9692 || (temp[2] == 0 && temp[3] == 0))))
9693 {
9694 imm_expr.X_op = O_constant;
9695 if (! target_big_endian)
9696 imm_expr.X_add_number = bfd_getl32 (temp);
9697 else
9698 imm_expr.X_add_number = bfd_getb32 (temp);
9699 }
9700 else if (length > 4
9701 && ! mips_disable_float_construction
9702 /* Constants can only be constructed in GPRs and
9703 copied to FPRs if the GPRs are at least as wide
9704 as the FPRs. Force the constant into memory if
9705 we are using 64-bit FPRs but the GPRs are only
9706 32 bits wide. */
9707 && (using_gprs
9708 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9709 && ((temp[0] == 0 && temp[1] == 0)
9710 || (temp[2] == 0 && temp[3] == 0))
9711 && ((temp[4] == 0 && temp[5] == 0)
9712 || (temp[6] == 0 && temp[7] == 0)))
9713 {
9714 /* The value is simple enough to load with a couple of
9715 instructions. If using 32-bit registers, set
9716 imm_expr to the high order 32 bits and offset_expr to
9717 the low order 32 bits. Otherwise, set imm_expr to
9718 the entire 64 bit constant. */
9719 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9720 {
9721 imm_expr.X_op = O_constant;
9722 offset_expr.X_op = O_constant;
9723 if (! target_big_endian)
9724 {
9725 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9726 offset_expr.X_add_number = bfd_getl32 (temp);
9727 }
9728 else
9729 {
9730 imm_expr.X_add_number = bfd_getb32 (temp);
9731 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9732 }
9733 if (offset_expr.X_add_number == 0)
9734 offset_expr.X_op = O_absent;
9735 }
9736 else if (sizeof (imm_expr.X_add_number) > 4)
9737 {
9738 imm_expr.X_op = O_constant;
9739 if (! target_big_endian)
9740 imm_expr.X_add_number = bfd_getl64 (temp);
9741 else
9742 imm_expr.X_add_number = bfd_getb64 (temp);
9743 }
9744 else
9745 {
9746 imm_expr.X_op = O_big;
9747 imm_expr.X_add_number = 4;
9748 if (! target_big_endian)
9749 {
9750 generic_bignum[0] = bfd_getl16 (temp);
9751 generic_bignum[1] = bfd_getl16 (temp + 2);
9752 generic_bignum[2] = bfd_getl16 (temp + 4);
9753 generic_bignum[3] = bfd_getl16 (temp + 6);
9754 }
9755 else
9756 {
9757 generic_bignum[0] = bfd_getb16 (temp + 6);
9758 generic_bignum[1] = bfd_getb16 (temp + 4);
9759 generic_bignum[2] = bfd_getb16 (temp + 2);
9760 generic_bignum[3] = bfd_getb16 (temp);
9761 }
9762 }
9763 }
9764 else
9765 {
9766 const char *newname;
9767 segT new_seg;
9768
9769 /* Switch to the right section. */
9770 seg = now_seg;
9771 subseg = now_subseg;
9772 switch (*args)
9773 {
9774 default: /* unused default case avoids warnings. */
9775 case 'L':
9776 newname = RDATA_SECTION_NAME;
9777 if (g_switch_value >= 8)
9778 newname = ".lit8";
9779 break;
9780 case 'F':
9781 newname = RDATA_SECTION_NAME;
9782 break;
9783 case 'l':
9784 assert (g_switch_value >= 4);
9785 newname = ".lit4";
9786 break;
9787 }
9788 new_seg = subseg_new (newname, (subsegT) 0);
9789 if (IS_ELF)
9790 bfd_set_section_flags (stdoutput, new_seg,
9791 (SEC_ALLOC
9792 | SEC_LOAD
9793 | SEC_READONLY
9794 | SEC_DATA));
9795 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9796 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9797 record_alignment (new_seg, 4);
9798 else
9799 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9800 if (seg == now_seg)
9801 as_bad (_("Can't use floating point insn in this section"));
9802
9803 /* Set the argument to the current address in the
9804 section. */
9805 offset_expr.X_op = O_symbol;
9806 offset_expr.X_add_symbol =
9807 symbol_new ("L0\001", now_seg,
9808 (valueT) frag_now_fix (), frag_now);
9809 offset_expr.X_add_number = 0;
9810
9811 /* Put the floating point number into the section. */
9812 p = frag_more ((int) length);
9813 memcpy (p, temp, length);
9814
9815 /* Switch back to the original section. */
9816 subseg_set (seg, subseg);
9817 }
9818 }
9819 continue;
9820
9821 case 'i': /* 16 bit unsigned immediate */
9822 case 'j': /* 16 bit signed immediate */
9823 *imm_reloc = BFD_RELOC_LO16;
9824 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9825 {
9826 int more;
9827 offsetT minval, maxval;
9828
9829 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9830 && strcmp (insn->name, insn[1].name) == 0);
9831
9832 /* If the expression was written as an unsigned number,
9833 only treat it as signed if there are no more
9834 alternatives. */
9835 if (more
9836 && *args == 'j'
9837 && sizeof (imm_expr.X_add_number) <= 4
9838 && imm_expr.X_op == O_constant
9839 && imm_expr.X_add_number < 0
9840 && imm_expr.X_unsigned
9841 && HAVE_64BIT_GPRS)
9842 break;
9843
9844 /* For compatibility with older assemblers, we accept
9845 0x8000-0xffff as signed 16-bit numbers when only
9846 signed numbers are allowed. */
9847 if (*args == 'i')
9848 minval = 0, maxval = 0xffff;
9849 else if (more)
9850 minval = -0x8000, maxval = 0x7fff;
9851 else
9852 minval = -0x8000, maxval = 0xffff;
9853
9854 if (imm_expr.X_op != O_constant
9855 || imm_expr.X_add_number < minval
9856 || imm_expr.X_add_number > maxval)
9857 {
9858 if (more)
9859 break;
9860 if (imm_expr.X_op == O_constant
9861 || imm_expr.X_op == O_big)
9862 as_bad (_("expression out of range"));
9863 }
9864 }
9865 s = expr_end;
9866 continue;
9867
9868 case 'o': /* 16 bit offset */
9869 /* Check whether there is only a single bracketed expression
9870 left. If so, it must be the base register and the
9871 constant must be zero. */
9872 if (*s == '(' && strchr (s + 1, '(') == 0)
9873 {
9874 offset_expr.X_op = O_constant;
9875 offset_expr.X_add_number = 0;
9876 continue;
9877 }
9878
9879 /* If this value won't fit into a 16 bit offset, then go
9880 find a macro that will generate the 32 bit offset
9881 code pattern. */
9882 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9883 && (offset_expr.X_op != O_constant
9884 || offset_expr.X_add_number >= 0x8000
9885 || offset_expr.X_add_number < -0x8000))
9886 break;
9887
9888 s = expr_end;
9889 continue;
9890
9891 case 'p': /* pc relative offset */
9892 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9893 my_getExpression (&offset_expr, s);
9894 s = expr_end;
9895 continue;
9896
9897 case 'u': /* upper 16 bits */
9898 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
9899 && imm_expr.X_op == O_constant
9900 && (imm_expr.X_add_number < 0
9901 || imm_expr.X_add_number >= 0x10000))
9902 as_bad (_("lui expression not in range 0..65535"));
9903 s = expr_end;
9904 continue;
9905
9906 case 'a': /* 26 bit address */
9907 my_getExpression (&offset_expr, s);
9908 s = expr_end;
9909 *offset_reloc = BFD_RELOC_MIPS_JMP;
9910 continue;
9911
9912 case 'N': /* 3 bit branch condition code */
9913 case 'M': /* 3 bit compare condition code */
9914 rtype = RTYPE_CCC;
9915 if (ip->insn_mo->pinfo & (FP_D| FP_S))
9916 rtype |= RTYPE_FCC;
9917 if (!reg_lookup (&s, rtype, &regno))
9918 break;
9919 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
9920 || strcmp(str + strlen(str) - 5, "any2f") == 0
9921 || strcmp(str + strlen(str) - 5, "any2t") == 0)
9922 && (regno & 1) != 0)
9923 as_warn(_("Condition code register should be even for %s, was %d"),
9924 str, regno);
9925 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
9926 || strcmp(str + strlen(str) - 5, "any4t") == 0)
9927 && (regno & 3) != 0)
9928 as_warn(_("Condition code register should be 0 or 4 for %s, was %d"),
9929 str, regno);
9930 if (*args == 'N')
9931 INSERT_OPERAND (BCC, *ip, regno);
9932 else
9933 INSERT_OPERAND (CCC, *ip, regno);
9934 continue;
9935
9936 case 'H':
9937 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
9938 s += 2;
9939 if (ISDIGIT (*s))
9940 {
9941 c = 0;
9942 do
9943 {
9944 c *= 10;
9945 c += *s - '0';
9946 ++s;
9947 }
9948 while (ISDIGIT (*s));
9949 }
9950 else
9951 c = 8; /* Invalid sel value. */
9952
9953 if (c > 7)
9954 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
9955 ip->insn_opcode |= c;
9956 continue;
9957
9958 case 'e':
9959 /* Must be at least one digit. */
9960 my_getExpression (&imm_expr, s);
9961 check_absolute_expr (ip, &imm_expr);
9962
9963 if ((unsigned long) imm_expr.X_add_number
9964 > (unsigned long) OP_MASK_VECBYTE)
9965 {
9966 as_bad (_("bad byte vector index (%ld)"),
9967 (long) imm_expr.X_add_number);
9968 imm_expr.X_add_number = 0;
9969 }
9970
9971 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
9972 imm_expr.X_op = O_absent;
9973 s = expr_end;
9974 continue;
9975
9976 case '%':
9977 my_getExpression (&imm_expr, s);
9978 check_absolute_expr (ip, &imm_expr);
9979
9980 if ((unsigned long) imm_expr.X_add_number
9981 > (unsigned long) OP_MASK_VECALIGN)
9982 {
9983 as_bad (_("bad byte vector index (%ld)"),
9984 (long) imm_expr.X_add_number);
9985 imm_expr.X_add_number = 0;
9986 }
9987
9988 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
9989 imm_expr.X_op = O_absent;
9990 s = expr_end;
9991 continue;
9992
9993 default:
9994 as_bad (_("bad char = '%c'\n"), *args);
9995 internalError ();
9996 }
9997 break;
9998 }
9999 /* Args don't match. */
10000 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10001 !strcmp (insn->name, insn[1].name))
10002 {
10003 ++insn;
10004 s = argsStart;
10005 insn_error = _("illegal operands");
10006 continue;
10007 }
10008 if (save_c)
10009 *(--argsStart) = save_c;
10010 insn_error = _("illegal operands");
10011 return;
10012 }
10013 }
10014
10015 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10016
10017 /* This routine assembles an instruction into its binary format when
10018 assembling for the mips16. As a side effect, it sets one of the
10019 global variables imm_reloc or offset_reloc to the type of
10020 relocation to do if one of the operands is an address expression.
10021 It also sets mips16_small and mips16_ext if the user explicitly
10022 requested a small or extended instruction. */
10023
10024 static void
10025 mips16_ip (char *str, struct mips_cl_insn *ip)
10026 {
10027 char *s;
10028 const char *args;
10029 struct mips_opcode *insn;
10030 char *argsstart;
10031 unsigned int regno;
10032 unsigned int lastregno = 0;
10033 char *s_reset;
10034 size_t i;
10035
10036 insn_error = NULL;
10037
10038 mips16_small = FALSE;
10039 mips16_ext = FALSE;
10040
10041 for (s = str; ISLOWER (*s); ++s)
10042 ;
10043 switch (*s)
10044 {
10045 case '\0':
10046 break;
10047
10048 case ' ':
10049 *s++ = '\0';
10050 break;
10051
10052 case '.':
10053 if (s[1] == 't' && s[2] == ' ')
10054 {
10055 *s = '\0';
10056 mips16_small = TRUE;
10057 s += 3;
10058 break;
10059 }
10060 else if (s[1] == 'e' && s[2] == ' ')
10061 {
10062 *s = '\0';
10063 mips16_ext = TRUE;
10064 s += 3;
10065 break;
10066 }
10067 /* Fall through. */
10068 default:
10069 insn_error = _("unknown opcode");
10070 return;
10071 }
10072
10073 if (mips_opts.noautoextend && ! mips16_ext)
10074 mips16_small = TRUE;
10075
10076 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10077 {
10078 insn_error = _("unrecognized opcode");
10079 return;
10080 }
10081
10082 argsstart = s;
10083 for (;;)
10084 {
10085 bfd_boolean ok;
10086
10087 assert (strcmp (insn->name, str) == 0);
10088
10089 ok = is_opcode_valid_16 (insn);
10090 if (! ok)
10091 {
10092 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10093 && strcmp (insn->name, insn[1].name) == 0)
10094 {
10095 ++insn;
10096 continue;
10097 }
10098 else
10099 {
10100 if (!insn_error)
10101 {
10102 static char buf[100];
10103 sprintf (buf,
10104 _("opcode not supported on this processor: %s (%s)"),
10105 mips_cpu_info_from_arch (mips_opts.arch)->name,
10106 mips_cpu_info_from_isa (mips_opts.isa)->name);
10107 insn_error = buf;
10108 }
10109 return;
10110 }
10111 }
10112
10113 create_insn (ip, insn);
10114 imm_expr.X_op = O_absent;
10115 imm_reloc[0] = BFD_RELOC_UNUSED;
10116 imm_reloc[1] = BFD_RELOC_UNUSED;
10117 imm_reloc[2] = BFD_RELOC_UNUSED;
10118 imm2_expr.X_op = O_absent;
10119 offset_expr.X_op = O_absent;
10120 offset_reloc[0] = BFD_RELOC_UNUSED;
10121 offset_reloc[1] = BFD_RELOC_UNUSED;
10122 offset_reloc[2] = BFD_RELOC_UNUSED;
10123 for (args = insn->args; 1; ++args)
10124 {
10125 int c;
10126
10127 if (*s == ' ')
10128 ++s;
10129
10130 /* In this switch statement we call break if we did not find
10131 a match, continue if we did find a match, or return if we
10132 are done. */
10133
10134 c = *args;
10135 switch (c)
10136 {
10137 case '\0':
10138 if (*s == '\0')
10139 {
10140 /* Stuff the immediate value in now, if we can. */
10141 if (imm_expr.X_op == O_constant
10142 && *imm_reloc > BFD_RELOC_UNUSED
10143 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10144 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10145 && insn->pinfo != INSN_MACRO)
10146 {
10147 valueT tmp;
10148
10149 switch (*offset_reloc)
10150 {
10151 case BFD_RELOC_MIPS16_HI16_S:
10152 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10153 break;
10154
10155 case BFD_RELOC_MIPS16_HI16:
10156 tmp = imm_expr.X_add_number >> 16;
10157 break;
10158
10159 case BFD_RELOC_MIPS16_LO16:
10160 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10161 - 0x8000;
10162 break;
10163
10164 case BFD_RELOC_UNUSED:
10165 tmp = imm_expr.X_add_number;
10166 break;
10167
10168 default:
10169 internalError ();
10170 }
10171 *offset_reloc = BFD_RELOC_UNUSED;
10172
10173 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10174 tmp, TRUE, mips16_small,
10175 mips16_ext, &ip->insn_opcode,
10176 &ip->use_extend, &ip->extend);
10177 imm_expr.X_op = O_absent;
10178 *imm_reloc = BFD_RELOC_UNUSED;
10179 }
10180
10181 return;
10182 }
10183 break;
10184
10185 case ',':
10186 if (*s++ == c)
10187 continue;
10188 s--;
10189 switch (*++args)
10190 {
10191 case 'v':
10192 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10193 continue;
10194 case 'w':
10195 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10196 continue;
10197 }
10198 break;
10199
10200 case '(':
10201 case ')':
10202 if (*s++ == c)
10203 continue;
10204 break;
10205
10206 case 'v':
10207 case 'w':
10208 if (s[0] != '$')
10209 {
10210 if (c == 'v')
10211 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10212 else
10213 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10214 ++args;
10215 continue;
10216 }
10217 /* Fall through. */
10218 case 'x':
10219 case 'y':
10220 case 'z':
10221 case 'Z':
10222 case '0':
10223 case 'S':
10224 case 'R':
10225 case 'X':
10226 case 'Y':
10227 s_reset = s;
10228 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10229 {
10230 if (c == 'v' || c == 'w')
10231 {
10232 if (c == 'v')
10233 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10234 else
10235 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10236 ++args;
10237 continue;
10238 }
10239 break;
10240 }
10241
10242 if (*s == ' ')
10243 ++s;
10244 if (args[1] != *s)
10245 {
10246 if (c == 'v' || c == 'w')
10247 {
10248 regno = mips16_to_32_reg_map[lastregno];
10249 s = s_reset;
10250 ++args;
10251 }
10252 }
10253
10254 switch (c)
10255 {
10256 case 'x':
10257 case 'y':
10258 case 'z':
10259 case 'v':
10260 case 'w':
10261 case 'Z':
10262 regno = mips32_to_16_reg_map[regno];
10263 break;
10264
10265 case '0':
10266 if (regno != 0)
10267 regno = ILLEGAL_REG;
10268 break;
10269
10270 case 'S':
10271 if (regno != SP)
10272 regno = ILLEGAL_REG;
10273 break;
10274
10275 case 'R':
10276 if (regno != RA)
10277 regno = ILLEGAL_REG;
10278 break;
10279
10280 case 'X':
10281 case 'Y':
10282 if (regno == AT && mips_opts.at)
10283 {
10284 if (mips_opts.at == ATREG)
10285 as_warn (_("used $at without \".set noat\""));
10286 else
10287 as_warn (_("used $%u with \".set at=$%u\""),
10288 regno, mips_opts.at);
10289 }
10290 break;
10291
10292 default:
10293 internalError ();
10294 }
10295
10296 if (regno == ILLEGAL_REG)
10297 break;
10298
10299 switch (c)
10300 {
10301 case 'x':
10302 case 'v':
10303 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10304 break;
10305 case 'y':
10306 case 'w':
10307 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10308 break;
10309 case 'z':
10310 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10311 break;
10312 case 'Z':
10313 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10314 case '0':
10315 case 'S':
10316 case 'R':
10317 break;
10318 case 'X':
10319 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10320 break;
10321 case 'Y':
10322 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10323 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10324 break;
10325 default:
10326 internalError ();
10327 }
10328
10329 lastregno = regno;
10330 continue;
10331
10332 case 'P':
10333 if (strncmp (s, "$pc", 3) == 0)
10334 {
10335 s += 3;
10336 continue;
10337 }
10338 break;
10339
10340 case '5':
10341 case 'H':
10342 case 'W':
10343 case 'D':
10344 case 'j':
10345 case 'V':
10346 case 'C':
10347 case 'U':
10348 case 'k':
10349 case 'K':
10350 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10351 if (i > 0)
10352 {
10353 if (imm_expr.X_op != O_constant)
10354 {
10355 mips16_ext = TRUE;
10356 ip->use_extend = TRUE;
10357 ip->extend = 0;
10358 }
10359 else
10360 {
10361 /* We need to relax this instruction. */
10362 *offset_reloc = *imm_reloc;
10363 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10364 }
10365 s = expr_end;
10366 continue;
10367 }
10368 *imm_reloc = BFD_RELOC_UNUSED;
10369 /* Fall through. */
10370 case '<':
10371 case '>':
10372 case '[':
10373 case ']':
10374 case '4':
10375 case '8':
10376 my_getExpression (&imm_expr, s);
10377 if (imm_expr.X_op == O_register)
10378 {
10379 /* What we thought was an expression turned out to
10380 be a register. */
10381
10382 if (s[0] == '(' && args[1] == '(')
10383 {
10384 /* It looks like the expression was omitted
10385 before a register indirection, which means
10386 that the expression is implicitly zero. We
10387 still set up imm_expr, so that we handle
10388 explicit extensions correctly. */
10389 imm_expr.X_op = O_constant;
10390 imm_expr.X_add_number = 0;
10391 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10392 continue;
10393 }
10394
10395 break;
10396 }
10397
10398 /* We need to relax this instruction. */
10399 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10400 s = expr_end;
10401 continue;
10402
10403 case 'p':
10404 case 'q':
10405 case 'A':
10406 case 'B':
10407 case 'E':
10408 /* We use offset_reloc rather than imm_reloc for the PC
10409 relative operands. This lets macros with both
10410 immediate and address operands work correctly. */
10411 my_getExpression (&offset_expr, s);
10412
10413 if (offset_expr.X_op == O_register)
10414 break;
10415
10416 /* We need to relax this instruction. */
10417 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10418 s = expr_end;
10419 continue;
10420
10421 case '6': /* break code */
10422 my_getExpression (&imm_expr, s);
10423 check_absolute_expr (ip, &imm_expr);
10424 if ((unsigned long) imm_expr.X_add_number > 63)
10425 as_warn (_("Invalid value for `%s' (%lu)"),
10426 ip->insn_mo->name,
10427 (unsigned long) imm_expr.X_add_number);
10428 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10429 imm_expr.X_op = O_absent;
10430 s = expr_end;
10431 continue;
10432
10433 case 'a': /* 26 bit address */
10434 my_getExpression (&offset_expr, s);
10435 s = expr_end;
10436 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10437 ip->insn_opcode <<= 16;
10438 continue;
10439
10440 case 'l': /* register list for entry macro */
10441 case 'L': /* register list for exit macro */
10442 {
10443 int mask;
10444
10445 if (c == 'l')
10446 mask = 0;
10447 else
10448 mask = 7 << 3;
10449 while (*s != '\0')
10450 {
10451 unsigned int freg, reg1, reg2;
10452
10453 while (*s == ' ' || *s == ',')
10454 ++s;
10455 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10456 freg = 0;
10457 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10458 freg = 1;
10459 else
10460 {
10461 as_bad (_("can't parse register list"));
10462 break;
10463 }
10464 if (*s == ' ')
10465 ++s;
10466 if (*s != '-')
10467 reg2 = reg1;
10468 else
10469 {
10470 ++s;
10471 if (!reg_lookup (&s, freg ? RTYPE_FPU
10472 : (RTYPE_GP | RTYPE_NUM), &reg2))
10473 {
10474 as_bad (_("invalid register list"));
10475 break;
10476 }
10477 }
10478 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10479 {
10480 mask &= ~ (7 << 3);
10481 mask |= 5 << 3;
10482 }
10483 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10484 {
10485 mask &= ~ (7 << 3);
10486 mask |= 6 << 3;
10487 }
10488 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10489 mask |= (reg2 - 3) << 3;
10490 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10491 mask |= (reg2 - 15) << 1;
10492 else if (reg1 == RA && reg2 == RA)
10493 mask |= 1;
10494 else
10495 {
10496 as_bad (_("invalid register list"));
10497 break;
10498 }
10499 }
10500 /* The mask is filled in in the opcode table for the
10501 benefit of the disassembler. We remove it before
10502 applying the actual mask. */
10503 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10504 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10505 }
10506 continue;
10507
10508 case 'm': /* Register list for save insn. */
10509 case 'M': /* Register list for restore insn. */
10510 {
10511 int opcode = 0;
10512 int framesz = 0, seen_framesz = 0;
10513 int args = 0, statics = 0, sregs = 0;
10514
10515 while (*s != '\0')
10516 {
10517 unsigned int reg1, reg2;
10518
10519 SKIP_SPACE_TABS (s);
10520 while (*s == ',')
10521 ++s;
10522 SKIP_SPACE_TABS (s);
10523
10524 my_getExpression (&imm_expr, s);
10525 if (imm_expr.X_op == O_constant)
10526 {
10527 /* Handle the frame size. */
10528 if (seen_framesz)
10529 {
10530 as_bad (_("more than one frame size in list"));
10531 break;
10532 }
10533 seen_framesz = 1;
10534 framesz = imm_expr.X_add_number;
10535 imm_expr.X_op = O_absent;
10536 s = expr_end;
10537 continue;
10538 }
10539
10540 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10541 {
10542 as_bad (_("can't parse register list"));
10543 break;
10544 }
10545
10546 while (*s == ' ')
10547 ++s;
10548
10549 if (*s != '-')
10550 reg2 = reg1;
10551 else
10552 {
10553 ++s;
10554 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10555 || reg2 < reg1)
10556 {
10557 as_bad (_("can't parse register list"));
10558 break;
10559 }
10560 }
10561
10562 while (reg1 <= reg2)
10563 {
10564 if (reg1 >= 4 && reg1 <= 7)
10565 {
10566 if (!seen_framesz)
10567 /* args $a0-$a3 */
10568 args |= 1 << (reg1 - 4);
10569 else
10570 /* statics $a0-$a3 */
10571 statics |= 1 << (reg1 - 4);
10572 }
10573 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10574 {
10575 /* $s0-$s8 */
10576 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10577 }
10578 else if (reg1 == 31)
10579 {
10580 /* Add $ra to insn. */
10581 opcode |= 0x40;
10582 }
10583 else
10584 {
10585 as_bad (_("unexpected register in list"));
10586 break;
10587 }
10588 if (++reg1 == 24)
10589 reg1 = 30;
10590 }
10591 }
10592
10593 /* Encode args/statics combination. */
10594 if (args & statics)
10595 as_bad (_("arg/static registers overlap"));
10596 else if (args == 0xf)
10597 /* All $a0-$a3 are args. */
10598 opcode |= MIPS16_ALL_ARGS << 16;
10599 else if (statics == 0xf)
10600 /* All $a0-$a3 are statics. */
10601 opcode |= MIPS16_ALL_STATICS << 16;
10602 else
10603 {
10604 int narg = 0, nstat = 0;
10605
10606 /* Count arg registers. */
10607 while (args & 0x1)
10608 {
10609 args >>= 1;
10610 narg++;
10611 }
10612 if (args != 0)
10613 as_bad (_("invalid arg register list"));
10614
10615 /* Count static registers. */
10616 while (statics & 0x8)
10617 {
10618 statics = (statics << 1) & 0xf;
10619 nstat++;
10620 }
10621 if (statics != 0)
10622 as_bad (_("invalid static register list"));
10623
10624 /* Encode args/statics. */
10625 opcode |= ((narg << 2) | nstat) << 16;
10626 }
10627
10628 /* Encode $s0/$s1. */
10629 if (sregs & (1 << 0)) /* $s0 */
10630 opcode |= 0x20;
10631 if (sregs & (1 << 1)) /* $s1 */
10632 opcode |= 0x10;
10633 sregs >>= 2;
10634
10635 if (sregs != 0)
10636 {
10637 /* Count regs $s2-$s8. */
10638 int nsreg = 0;
10639 while (sregs & 1)
10640 {
10641 sregs >>= 1;
10642 nsreg++;
10643 }
10644 if (sregs != 0)
10645 as_bad (_("invalid static register list"));
10646 /* Encode $s2-$s8. */
10647 opcode |= nsreg << 24;
10648 }
10649
10650 /* Encode frame size. */
10651 if (!seen_framesz)
10652 as_bad (_("missing frame size"));
10653 else if ((framesz & 7) != 0 || framesz < 0
10654 || framesz > 0xff * 8)
10655 as_bad (_("invalid frame size"));
10656 else if (framesz != 128 || (opcode >> 16) != 0)
10657 {
10658 framesz /= 8;
10659 opcode |= (((framesz & 0xf0) << 16)
10660 | (framesz & 0x0f));
10661 }
10662
10663 /* Finally build the instruction. */
10664 if ((opcode >> 16) != 0 || framesz == 0)
10665 {
10666 ip->use_extend = TRUE;
10667 ip->extend = opcode >> 16;
10668 }
10669 ip->insn_opcode |= opcode & 0x7f;
10670 }
10671 continue;
10672
10673 case 'e': /* extend code */
10674 my_getExpression (&imm_expr, s);
10675 check_absolute_expr (ip, &imm_expr);
10676 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10677 {
10678 as_warn (_("Invalid value for `%s' (%lu)"),
10679 ip->insn_mo->name,
10680 (unsigned long) imm_expr.X_add_number);
10681 imm_expr.X_add_number &= 0x7ff;
10682 }
10683 ip->insn_opcode |= imm_expr.X_add_number;
10684 imm_expr.X_op = O_absent;
10685 s = expr_end;
10686 continue;
10687
10688 default:
10689 internalError ();
10690 }
10691 break;
10692 }
10693
10694 /* Args don't match. */
10695 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10696 strcmp (insn->name, insn[1].name) == 0)
10697 {
10698 ++insn;
10699 s = argsstart;
10700 continue;
10701 }
10702
10703 insn_error = _("illegal operands");
10704
10705 return;
10706 }
10707 }
10708
10709 /* This structure holds information we know about a mips16 immediate
10710 argument type. */
10711
10712 struct mips16_immed_operand
10713 {
10714 /* The type code used in the argument string in the opcode table. */
10715 int type;
10716 /* The number of bits in the short form of the opcode. */
10717 int nbits;
10718 /* The number of bits in the extended form of the opcode. */
10719 int extbits;
10720 /* The amount by which the short form is shifted when it is used;
10721 for example, the sw instruction has a shift count of 2. */
10722 int shift;
10723 /* The amount by which the short form is shifted when it is stored
10724 into the instruction code. */
10725 int op_shift;
10726 /* Non-zero if the short form is unsigned. */
10727 int unsp;
10728 /* Non-zero if the extended form is unsigned. */
10729 int extu;
10730 /* Non-zero if the value is PC relative. */
10731 int pcrel;
10732 };
10733
10734 /* The mips16 immediate operand types. */
10735
10736 static const struct mips16_immed_operand mips16_immed_operands[] =
10737 {
10738 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10739 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10740 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10741 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10742 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10743 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10744 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10745 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10746 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10747 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10748 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10749 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10750 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10751 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10752 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10753 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10754 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10755 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10756 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10757 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10758 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10759 };
10760
10761 #define MIPS16_NUM_IMMED \
10762 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10763
10764 /* Handle a mips16 instruction with an immediate value. This or's the
10765 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10766 whether an extended value is needed; if one is needed, it sets
10767 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10768 If SMALL is true, an unextended opcode was explicitly requested.
10769 If EXT is true, an extended opcode was explicitly requested. If
10770 WARN is true, warn if EXT does not match reality. */
10771
10772 static void
10773 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10774 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10775 unsigned long *insn, bfd_boolean *use_extend,
10776 unsigned short *extend)
10777 {
10778 const struct mips16_immed_operand *op;
10779 int mintiny, maxtiny;
10780 bfd_boolean needext;
10781
10782 op = mips16_immed_operands;
10783 while (op->type != type)
10784 {
10785 ++op;
10786 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10787 }
10788
10789 if (op->unsp)
10790 {
10791 if (type == '<' || type == '>' || type == '[' || type == ']')
10792 {
10793 mintiny = 1;
10794 maxtiny = 1 << op->nbits;
10795 }
10796 else
10797 {
10798 mintiny = 0;
10799 maxtiny = (1 << op->nbits) - 1;
10800 }
10801 }
10802 else
10803 {
10804 mintiny = - (1 << (op->nbits - 1));
10805 maxtiny = (1 << (op->nbits - 1)) - 1;
10806 }
10807
10808 /* Branch offsets have an implicit 0 in the lowest bit. */
10809 if (type == 'p' || type == 'q')
10810 val /= 2;
10811
10812 if ((val & ((1 << op->shift) - 1)) != 0
10813 || val < (mintiny << op->shift)
10814 || val > (maxtiny << op->shift))
10815 needext = TRUE;
10816 else
10817 needext = FALSE;
10818
10819 if (warn && ext && ! needext)
10820 as_warn_where (file, line,
10821 _("extended operand requested but not required"));
10822 if (small && needext)
10823 as_bad_where (file, line, _("invalid unextended operand value"));
10824
10825 if (small || (! ext && ! needext))
10826 {
10827 int insnval;
10828
10829 *use_extend = FALSE;
10830 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10831 insnval <<= op->op_shift;
10832 *insn |= insnval;
10833 }
10834 else
10835 {
10836 long minext, maxext;
10837 int extval;
10838
10839 if (op->extu)
10840 {
10841 minext = 0;
10842 maxext = (1 << op->extbits) - 1;
10843 }
10844 else
10845 {
10846 minext = - (1 << (op->extbits - 1));
10847 maxext = (1 << (op->extbits - 1)) - 1;
10848 }
10849 if (val < minext || val > maxext)
10850 as_bad_where (file, line,
10851 _("operand value out of range for instruction"));
10852
10853 *use_extend = TRUE;
10854 if (op->extbits == 16)
10855 {
10856 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
10857 val &= 0x1f;
10858 }
10859 else if (op->extbits == 15)
10860 {
10861 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
10862 val &= 0xf;
10863 }
10864 else
10865 {
10866 extval = ((val & 0x1f) << 6) | (val & 0x20);
10867 val = 0;
10868 }
10869
10870 *extend = (unsigned short) extval;
10871 *insn |= val;
10872 }
10873 }
10874 \f
10875 struct percent_op_match
10876 {
10877 const char *str;
10878 bfd_reloc_code_real_type reloc;
10879 };
10880
10881 static const struct percent_op_match mips_percent_op[] =
10882 {
10883 {"%lo", BFD_RELOC_LO16},
10884 #ifdef OBJ_ELF
10885 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
10886 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
10887 {"%call16", BFD_RELOC_MIPS_CALL16},
10888 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
10889 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
10890 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
10891 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
10892 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
10893 {"%got", BFD_RELOC_MIPS_GOT16},
10894 {"%gp_rel", BFD_RELOC_GPREL16},
10895 {"%half", BFD_RELOC_16},
10896 {"%highest", BFD_RELOC_MIPS_HIGHEST},
10897 {"%higher", BFD_RELOC_MIPS_HIGHER},
10898 {"%neg", BFD_RELOC_MIPS_SUB},
10899 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
10900 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
10901 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
10902 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
10903 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
10904 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
10905 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
10906 #endif
10907 {"%hi", BFD_RELOC_HI16_S}
10908 };
10909
10910 static const struct percent_op_match mips16_percent_op[] =
10911 {
10912 {"%lo", BFD_RELOC_MIPS16_LO16},
10913 {"%gprel", BFD_RELOC_MIPS16_GPREL},
10914 {"%got", BFD_RELOC_MIPS16_GOT16},
10915 {"%call16", BFD_RELOC_MIPS16_CALL16},
10916 {"%hi", BFD_RELOC_MIPS16_HI16_S}
10917 };
10918
10919
10920 /* Return true if *STR points to a relocation operator. When returning true,
10921 move *STR over the operator and store its relocation code in *RELOC.
10922 Leave both *STR and *RELOC alone when returning false. */
10923
10924 static bfd_boolean
10925 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
10926 {
10927 const struct percent_op_match *percent_op;
10928 size_t limit, i;
10929
10930 if (mips_opts.mips16)
10931 {
10932 percent_op = mips16_percent_op;
10933 limit = ARRAY_SIZE (mips16_percent_op);
10934 }
10935 else
10936 {
10937 percent_op = mips_percent_op;
10938 limit = ARRAY_SIZE (mips_percent_op);
10939 }
10940
10941 for (i = 0; i < limit; i++)
10942 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
10943 {
10944 int len = strlen (percent_op[i].str);
10945
10946 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
10947 continue;
10948
10949 *str += strlen (percent_op[i].str);
10950 *reloc = percent_op[i].reloc;
10951
10952 /* Check whether the output BFD supports this relocation.
10953 If not, issue an error and fall back on something safe. */
10954 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
10955 {
10956 as_bad ("relocation %s isn't supported by the current ABI",
10957 percent_op[i].str);
10958 *reloc = BFD_RELOC_UNUSED;
10959 }
10960 return TRUE;
10961 }
10962 return FALSE;
10963 }
10964
10965
10966 /* Parse string STR as a 16-bit relocatable operand. Store the
10967 expression in *EP and the relocations in the array starting
10968 at RELOC. Return the number of relocation operators used.
10969
10970 On exit, EXPR_END points to the first character after the expression. */
10971
10972 static size_t
10973 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
10974 char *str)
10975 {
10976 bfd_reloc_code_real_type reversed_reloc[3];
10977 size_t reloc_index, i;
10978 int crux_depth, str_depth;
10979 char *crux;
10980
10981 /* Search for the start of the main expression, recoding relocations
10982 in REVERSED_RELOC. End the loop with CRUX pointing to the start
10983 of the main expression and with CRUX_DEPTH containing the number
10984 of open brackets at that point. */
10985 reloc_index = -1;
10986 str_depth = 0;
10987 do
10988 {
10989 reloc_index++;
10990 crux = str;
10991 crux_depth = str_depth;
10992
10993 /* Skip over whitespace and brackets, keeping count of the number
10994 of brackets. */
10995 while (*str == ' ' || *str == '\t' || *str == '(')
10996 if (*str++ == '(')
10997 str_depth++;
10998 }
10999 while (*str == '%'
11000 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11001 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11002
11003 my_getExpression (ep, crux);
11004 str = expr_end;
11005
11006 /* Match every open bracket. */
11007 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11008 if (*str++ == ')')
11009 crux_depth--;
11010
11011 if (crux_depth > 0)
11012 as_bad ("unclosed '('");
11013
11014 expr_end = str;
11015
11016 if (reloc_index != 0)
11017 {
11018 prev_reloc_op_frag = frag_now;
11019 for (i = 0; i < reloc_index; i++)
11020 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11021 }
11022
11023 return reloc_index;
11024 }
11025
11026 static void
11027 my_getExpression (expressionS *ep, char *str)
11028 {
11029 char *save_in;
11030 valueT val;
11031
11032 save_in = input_line_pointer;
11033 input_line_pointer = str;
11034 expression (ep);
11035 expr_end = input_line_pointer;
11036 input_line_pointer = save_in;
11037
11038 /* If we are in mips16 mode, and this is an expression based on `.',
11039 then we bump the value of the symbol by 1 since that is how other
11040 text symbols are handled. We don't bother to handle complex
11041 expressions, just `.' plus or minus a constant. */
11042 if (mips_opts.mips16
11043 && ep->X_op == O_symbol
11044 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11045 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11046 && symbol_get_frag (ep->X_add_symbol) == frag_now
11047 && symbol_constant_p (ep->X_add_symbol)
11048 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11049 S_SET_VALUE (ep->X_add_symbol, val + 1);
11050 }
11051
11052 char *
11053 md_atof (int type, char *litP, int *sizeP)
11054 {
11055 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11056 }
11057
11058 void
11059 md_number_to_chars (char *buf, valueT val, int n)
11060 {
11061 if (target_big_endian)
11062 number_to_chars_bigendian (buf, val, n);
11063 else
11064 number_to_chars_littleendian (buf, val, n);
11065 }
11066 \f
11067 #ifdef OBJ_ELF
11068 static int support_64bit_objects(void)
11069 {
11070 const char **list, **l;
11071 int yes;
11072
11073 list = bfd_target_list ();
11074 for (l = list; *l != NULL; l++)
11075 #ifdef TE_TMIPS
11076 /* This is traditional mips */
11077 if (strcmp (*l, "elf64-tradbigmips") == 0
11078 || strcmp (*l, "elf64-tradlittlemips") == 0)
11079 #else
11080 if (strcmp (*l, "elf64-bigmips") == 0
11081 || strcmp (*l, "elf64-littlemips") == 0)
11082 #endif
11083 break;
11084 yes = (*l != NULL);
11085 free (list);
11086 return yes;
11087 }
11088 #endif /* OBJ_ELF */
11089
11090 const char *md_shortopts = "O::g::G:";
11091
11092 struct option md_longopts[] =
11093 {
11094 /* Options which specify architecture. */
11095 #define OPTION_ARCH_BASE (OPTION_MD_BASE)
11096 #define OPTION_MARCH (OPTION_ARCH_BASE + 0)
11097 {"march", required_argument, NULL, OPTION_MARCH},
11098 #define OPTION_MTUNE (OPTION_ARCH_BASE + 1)
11099 {"mtune", required_argument, NULL, OPTION_MTUNE},
11100 #define OPTION_MIPS1 (OPTION_ARCH_BASE + 2)
11101 {"mips0", no_argument, NULL, OPTION_MIPS1},
11102 {"mips1", no_argument, NULL, OPTION_MIPS1},
11103 #define OPTION_MIPS2 (OPTION_ARCH_BASE + 3)
11104 {"mips2", no_argument, NULL, OPTION_MIPS2},
11105 #define OPTION_MIPS3 (OPTION_ARCH_BASE + 4)
11106 {"mips3", no_argument, NULL, OPTION_MIPS3},
11107 #define OPTION_MIPS4 (OPTION_ARCH_BASE + 5)
11108 {"mips4", no_argument, NULL, OPTION_MIPS4},
11109 #define OPTION_MIPS5 (OPTION_ARCH_BASE + 6)
11110 {"mips5", no_argument, NULL, OPTION_MIPS5},
11111 #define OPTION_MIPS32 (OPTION_ARCH_BASE + 7)
11112 {"mips32", no_argument, NULL, OPTION_MIPS32},
11113 #define OPTION_MIPS64 (OPTION_ARCH_BASE + 8)
11114 {"mips64", no_argument, NULL, OPTION_MIPS64},
11115 #define OPTION_MIPS32R2 (OPTION_ARCH_BASE + 9)
11116 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11117 #define OPTION_MIPS64R2 (OPTION_ARCH_BASE + 10)
11118 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11119
11120 /* Options which specify Application Specific Extensions (ASEs). */
11121 #define OPTION_ASE_BASE (OPTION_ARCH_BASE + 11)
11122 #define OPTION_MIPS16 (OPTION_ASE_BASE + 0)
11123 {"mips16", no_argument, NULL, OPTION_MIPS16},
11124 #define OPTION_NO_MIPS16 (OPTION_ASE_BASE + 1)
11125 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11126 #define OPTION_MIPS3D (OPTION_ASE_BASE + 2)
11127 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11128 #define OPTION_NO_MIPS3D (OPTION_ASE_BASE + 3)
11129 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11130 #define OPTION_MDMX (OPTION_ASE_BASE + 4)
11131 {"mdmx", no_argument, NULL, OPTION_MDMX},
11132 #define OPTION_NO_MDMX (OPTION_ASE_BASE + 5)
11133 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11134 #define OPTION_DSP (OPTION_ASE_BASE + 6)
11135 {"mdsp", no_argument, NULL, OPTION_DSP},
11136 #define OPTION_NO_DSP (OPTION_ASE_BASE + 7)
11137 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11138 #define OPTION_MT (OPTION_ASE_BASE + 8)
11139 {"mmt", no_argument, NULL, OPTION_MT},
11140 #define OPTION_NO_MT (OPTION_ASE_BASE + 9)
11141 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11142 #define OPTION_SMARTMIPS (OPTION_ASE_BASE + 10)
11143 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11144 #define OPTION_NO_SMARTMIPS (OPTION_ASE_BASE + 11)
11145 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11146 #define OPTION_DSPR2 (OPTION_ASE_BASE + 12)
11147 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11148 #define OPTION_NO_DSPR2 (OPTION_ASE_BASE + 13)
11149 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11150
11151 /* Old-style architecture options. Don't add more of these. */
11152 #define OPTION_COMPAT_ARCH_BASE (OPTION_ASE_BASE + 14)
11153 #define OPTION_M4650 (OPTION_COMPAT_ARCH_BASE + 0)
11154 {"m4650", no_argument, NULL, OPTION_M4650},
11155 #define OPTION_NO_M4650 (OPTION_COMPAT_ARCH_BASE + 1)
11156 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11157 #define OPTION_M4010 (OPTION_COMPAT_ARCH_BASE + 2)
11158 {"m4010", no_argument, NULL, OPTION_M4010},
11159 #define OPTION_NO_M4010 (OPTION_COMPAT_ARCH_BASE + 3)
11160 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11161 #define OPTION_M4100 (OPTION_COMPAT_ARCH_BASE + 4)
11162 {"m4100", no_argument, NULL, OPTION_M4100},
11163 #define OPTION_NO_M4100 (OPTION_COMPAT_ARCH_BASE + 5)
11164 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11165 #define OPTION_M3900 (OPTION_COMPAT_ARCH_BASE + 6)
11166 {"m3900", no_argument, NULL, OPTION_M3900},
11167 #define OPTION_NO_M3900 (OPTION_COMPAT_ARCH_BASE + 7)
11168 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11169
11170 /* Options which enable bug fixes. */
11171 #define OPTION_FIX_BASE (OPTION_COMPAT_ARCH_BASE + 8)
11172 #define OPTION_M7000_HILO_FIX (OPTION_FIX_BASE + 0)
11173 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11174 #define OPTION_MNO_7000_HILO_FIX (OPTION_FIX_BASE + 1)
11175 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11176 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11177 #define OPTION_FIX_VR4120 (OPTION_FIX_BASE + 2)
11178 #define OPTION_NO_FIX_VR4120 (OPTION_FIX_BASE + 3)
11179 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11180 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11181 #define OPTION_FIX_VR4130 (OPTION_FIX_BASE + 4)
11182 #define OPTION_NO_FIX_VR4130 (OPTION_FIX_BASE + 5)
11183 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11184 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11185
11186 /* Miscellaneous options. */
11187 #define OPTION_MISC_BASE (OPTION_FIX_BASE + 6)
11188 #define OPTION_TRAP (OPTION_MISC_BASE + 0)
11189 {"trap", no_argument, NULL, OPTION_TRAP},
11190 {"no-break", no_argument, NULL, OPTION_TRAP},
11191 #define OPTION_BREAK (OPTION_MISC_BASE + 1)
11192 {"break", no_argument, NULL, OPTION_BREAK},
11193 {"no-trap", no_argument, NULL, OPTION_BREAK},
11194 #define OPTION_EB (OPTION_MISC_BASE + 2)
11195 {"EB", no_argument, NULL, OPTION_EB},
11196 #define OPTION_EL (OPTION_MISC_BASE + 3)
11197 {"EL", no_argument, NULL, OPTION_EL},
11198 #define OPTION_FP32 (OPTION_MISC_BASE + 4)
11199 {"mfp32", no_argument, NULL, OPTION_FP32},
11200 #define OPTION_GP32 (OPTION_MISC_BASE + 5)
11201 {"mgp32", no_argument, NULL, OPTION_GP32},
11202 #define OPTION_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 6)
11203 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11204 #define OPTION_NO_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 7)
11205 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11206 #define OPTION_FP64 (OPTION_MISC_BASE + 8)
11207 {"mfp64", no_argument, NULL, OPTION_FP64},
11208 #define OPTION_GP64 (OPTION_MISC_BASE + 9)
11209 {"mgp64", no_argument, NULL, OPTION_GP64},
11210 #define OPTION_RELAX_BRANCH (OPTION_MISC_BASE + 10)
11211 #define OPTION_NO_RELAX_BRANCH (OPTION_MISC_BASE + 11)
11212 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11213 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11214 #define OPTION_MSHARED (OPTION_MISC_BASE + 12)
11215 #define OPTION_MNO_SHARED (OPTION_MISC_BASE + 13)
11216 {"mshared", no_argument, NULL, OPTION_MSHARED},
11217 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11218 #define OPTION_MSYM32 (OPTION_MISC_BASE + 14)
11219 #define OPTION_MNO_SYM32 (OPTION_MISC_BASE + 15)
11220 {"msym32", no_argument, NULL, OPTION_MSYM32},
11221 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11222 #define OPTION_SOFT_FLOAT (OPTION_MISC_BASE + 16)
11223 #define OPTION_HARD_FLOAT (OPTION_MISC_BASE + 17)
11224 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11225 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11226 #define OPTION_SINGLE_FLOAT (OPTION_MISC_BASE + 18)
11227 #define OPTION_DOUBLE_FLOAT (OPTION_MISC_BASE + 19)
11228 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11229 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11230
11231 /* ELF-specific options. */
11232 #ifdef OBJ_ELF
11233 #define OPTION_ELF_BASE (OPTION_MISC_BASE + 20)
11234 #define OPTION_CALL_SHARED (OPTION_ELF_BASE + 0)
11235 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11236 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11237 #define OPTION_CALL_NONPIC (OPTION_ELF_BASE + 1)
11238 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11239 #define OPTION_NON_SHARED (OPTION_ELF_BASE + 2)
11240 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11241 #define OPTION_XGOT (OPTION_ELF_BASE + 3)
11242 {"xgot", no_argument, NULL, OPTION_XGOT},
11243 #define OPTION_MABI (OPTION_ELF_BASE + 4)
11244 {"mabi", required_argument, NULL, OPTION_MABI},
11245 #define OPTION_32 (OPTION_ELF_BASE + 5)
11246 {"32", no_argument, NULL, OPTION_32},
11247 #define OPTION_N32 (OPTION_ELF_BASE + 6)
11248 {"n32", no_argument, NULL, OPTION_N32},
11249 #define OPTION_64 (OPTION_ELF_BASE + 7)
11250 {"64", no_argument, NULL, OPTION_64},
11251 #define OPTION_MDEBUG (OPTION_ELF_BASE + 8)
11252 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11253 #define OPTION_NO_MDEBUG (OPTION_ELF_BASE + 9)
11254 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11255 #define OPTION_PDR (OPTION_ELF_BASE + 10)
11256 {"mpdr", no_argument, NULL, OPTION_PDR},
11257 #define OPTION_NO_PDR (OPTION_ELF_BASE + 11)
11258 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11259 #define OPTION_MVXWORKS_PIC (OPTION_ELF_BASE + 12)
11260 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11261 #endif /* OBJ_ELF */
11262
11263 {NULL, no_argument, NULL, 0}
11264 };
11265 size_t md_longopts_size = sizeof (md_longopts);
11266
11267 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11268 NEW_VALUE. Warn if another value was already specified. Note:
11269 we have to defer parsing the -march and -mtune arguments in order
11270 to handle 'from-abi' correctly, since the ABI might be specified
11271 in a later argument. */
11272
11273 static void
11274 mips_set_option_string (const char **string_ptr, const char *new_value)
11275 {
11276 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11277 as_warn (_("A different %s was already specified, is now %s"),
11278 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11279 new_value);
11280
11281 *string_ptr = new_value;
11282 }
11283
11284 int
11285 md_parse_option (int c, char *arg)
11286 {
11287 switch (c)
11288 {
11289 case OPTION_CONSTRUCT_FLOATS:
11290 mips_disable_float_construction = 0;
11291 break;
11292
11293 case OPTION_NO_CONSTRUCT_FLOATS:
11294 mips_disable_float_construction = 1;
11295 break;
11296
11297 case OPTION_TRAP:
11298 mips_trap = 1;
11299 break;
11300
11301 case OPTION_BREAK:
11302 mips_trap = 0;
11303 break;
11304
11305 case OPTION_EB:
11306 target_big_endian = 1;
11307 break;
11308
11309 case OPTION_EL:
11310 target_big_endian = 0;
11311 break;
11312
11313 case 'O':
11314 if (arg == NULL)
11315 mips_optimize = 1;
11316 else if (arg[0] == '0')
11317 mips_optimize = 0;
11318 else if (arg[0] == '1')
11319 mips_optimize = 1;
11320 else
11321 mips_optimize = 2;
11322 break;
11323
11324 case 'g':
11325 if (arg == NULL)
11326 mips_debug = 2;
11327 else
11328 mips_debug = atoi (arg);
11329 break;
11330
11331 case OPTION_MIPS1:
11332 file_mips_isa = ISA_MIPS1;
11333 break;
11334
11335 case OPTION_MIPS2:
11336 file_mips_isa = ISA_MIPS2;
11337 break;
11338
11339 case OPTION_MIPS3:
11340 file_mips_isa = ISA_MIPS3;
11341 break;
11342
11343 case OPTION_MIPS4:
11344 file_mips_isa = ISA_MIPS4;
11345 break;
11346
11347 case OPTION_MIPS5:
11348 file_mips_isa = ISA_MIPS5;
11349 break;
11350
11351 case OPTION_MIPS32:
11352 file_mips_isa = ISA_MIPS32;
11353 break;
11354
11355 case OPTION_MIPS32R2:
11356 file_mips_isa = ISA_MIPS32R2;
11357 break;
11358
11359 case OPTION_MIPS64R2:
11360 file_mips_isa = ISA_MIPS64R2;
11361 break;
11362
11363 case OPTION_MIPS64:
11364 file_mips_isa = ISA_MIPS64;
11365 break;
11366
11367 case OPTION_MTUNE:
11368 mips_set_option_string (&mips_tune_string, arg);
11369 break;
11370
11371 case OPTION_MARCH:
11372 mips_set_option_string (&mips_arch_string, arg);
11373 break;
11374
11375 case OPTION_M4650:
11376 mips_set_option_string (&mips_arch_string, "4650");
11377 mips_set_option_string (&mips_tune_string, "4650");
11378 break;
11379
11380 case OPTION_NO_M4650:
11381 break;
11382
11383 case OPTION_M4010:
11384 mips_set_option_string (&mips_arch_string, "4010");
11385 mips_set_option_string (&mips_tune_string, "4010");
11386 break;
11387
11388 case OPTION_NO_M4010:
11389 break;
11390
11391 case OPTION_M4100:
11392 mips_set_option_string (&mips_arch_string, "4100");
11393 mips_set_option_string (&mips_tune_string, "4100");
11394 break;
11395
11396 case OPTION_NO_M4100:
11397 break;
11398
11399 case OPTION_M3900:
11400 mips_set_option_string (&mips_arch_string, "3900");
11401 mips_set_option_string (&mips_tune_string, "3900");
11402 break;
11403
11404 case OPTION_NO_M3900:
11405 break;
11406
11407 case OPTION_MDMX:
11408 mips_opts.ase_mdmx = 1;
11409 break;
11410
11411 case OPTION_NO_MDMX:
11412 mips_opts.ase_mdmx = 0;
11413 break;
11414
11415 case OPTION_DSP:
11416 mips_opts.ase_dsp = 1;
11417 mips_opts.ase_dspr2 = 0;
11418 break;
11419
11420 case OPTION_NO_DSP:
11421 mips_opts.ase_dsp = 0;
11422 mips_opts.ase_dspr2 = 0;
11423 break;
11424
11425 case OPTION_DSPR2:
11426 mips_opts.ase_dspr2 = 1;
11427 mips_opts.ase_dsp = 1;
11428 break;
11429
11430 case OPTION_NO_DSPR2:
11431 mips_opts.ase_dspr2 = 0;
11432 mips_opts.ase_dsp = 0;
11433 break;
11434
11435 case OPTION_MT:
11436 mips_opts.ase_mt = 1;
11437 break;
11438
11439 case OPTION_NO_MT:
11440 mips_opts.ase_mt = 0;
11441 break;
11442
11443 case OPTION_MIPS16:
11444 mips_opts.mips16 = 1;
11445 mips_no_prev_insn ();
11446 break;
11447
11448 case OPTION_NO_MIPS16:
11449 mips_opts.mips16 = 0;
11450 mips_no_prev_insn ();
11451 break;
11452
11453 case OPTION_MIPS3D:
11454 mips_opts.ase_mips3d = 1;
11455 break;
11456
11457 case OPTION_NO_MIPS3D:
11458 mips_opts.ase_mips3d = 0;
11459 break;
11460
11461 case OPTION_SMARTMIPS:
11462 mips_opts.ase_smartmips = 1;
11463 break;
11464
11465 case OPTION_NO_SMARTMIPS:
11466 mips_opts.ase_smartmips = 0;
11467 break;
11468
11469 case OPTION_FIX_VR4120:
11470 mips_fix_vr4120 = 1;
11471 break;
11472
11473 case OPTION_NO_FIX_VR4120:
11474 mips_fix_vr4120 = 0;
11475 break;
11476
11477 case OPTION_FIX_VR4130:
11478 mips_fix_vr4130 = 1;
11479 break;
11480
11481 case OPTION_NO_FIX_VR4130:
11482 mips_fix_vr4130 = 0;
11483 break;
11484
11485 case OPTION_RELAX_BRANCH:
11486 mips_relax_branch = 1;
11487 break;
11488
11489 case OPTION_NO_RELAX_BRANCH:
11490 mips_relax_branch = 0;
11491 break;
11492
11493 case OPTION_MSHARED:
11494 mips_in_shared = TRUE;
11495 break;
11496
11497 case OPTION_MNO_SHARED:
11498 mips_in_shared = FALSE;
11499 break;
11500
11501 case OPTION_MSYM32:
11502 mips_opts.sym32 = TRUE;
11503 break;
11504
11505 case OPTION_MNO_SYM32:
11506 mips_opts.sym32 = FALSE;
11507 break;
11508
11509 #ifdef OBJ_ELF
11510 /* When generating ELF code, we permit -KPIC and -call_shared to
11511 select SVR4_PIC, and -non_shared to select no PIC. This is
11512 intended to be compatible with Irix 5. */
11513 case OPTION_CALL_SHARED:
11514 if (!IS_ELF)
11515 {
11516 as_bad (_("-call_shared is supported only for ELF format"));
11517 return 0;
11518 }
11519 mips_pic = SVR4_PIC;
11520 mips_abicalls = TRUE;
11521 break;
11522
11523 case OPTION_CALL_NONPIC:
11524 if (!IS_ELF)
11525 {
11526 as_bad (_("-call_nonpic is supported only for ELF format"));
11527 return 0;
11528 }
11529 mips_pic = NO_PIC;
11530 mips_abicalls = TRUE;
11531 break;
11532
11533 case OPTION_NON_SHARED:
11534 if (!IS_ELF)
11535 {
11536 as_bad (_("-non_shared is supported only for ELF format"));
11537 return 0;
11538 }
11539 mips_pic = NO_PIC;
11540 mips_abicalls = FALSE;
11541 break;
11542
11543 /* The -xgot option tells the assembler to use 32 bit offsets
11544 when accessing the got in SVR4_PIC mode. It is for Irix
11545 compatibility. */
11546 case OPTION_XGOT:
11547 mips_big_got = 1;
11548 break;
11549 #endif /* OBJ_ELF */
11550
11551 case 'G':
11552 g_switch_value = atoi (arg);
11553 g_switch_seen = 1;
11554 break;
11555
11556 #ifdef OBJ_ELF
11557 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11558 and -mabi=64. */
11559 case OPTION_32:
11560 if (!IS_ELF)
11561 {
11562 as_bad (_("-32 is supported for ELF format only"));
11563 return 0;
11564 }
11565 mips_abi = O32_ABI;
11566 break;
11567
11568 case OPTION_N32:
11569 if (!IS_ELF)
11570 {
11571 as_bad (_("-n32 is supported for ELF format only"));
11572 return 0;
11573 }
11574 mips_abi = N32_ABI;
11575 break;
11576
11577 case OPTION_64:
11578 if (!IS_ELF)
11579 {
11580 as_bad (_("-64 is supported for ELF format only"));
11581 return 0;
11582 }
11583 mips_abi = N64_ABI;
11584 if (!support_64bit_objects())
11585 as_fatal (_("No compiled in support for 64 bit object file format"));
11586 break;
11587 #endif /* OBJ_ELF */
11588
11589 case OPTION_GP32:
11590 file_mips_gp32 = 1;
11591 break;
11592
11593 case OPTION_GP64:
11594 file_mips_gp32 = 0;
11595 break;
11596
11597 case OPTION_FP32:
11598 file_mips_fp32 = 1;
11599 break;
11600
11601 case OPTION_FP64:
11602 file_mips_fp32 = 0;
11603 break;
11604
11605 case OPTION_SINGLE_FLOAT:
11606 file_mips_single_float = 1;
11607 break;
11608
11609 case OPTION_DOUBLE_FLOAT:
11610 file_mips_single_float = 0;
11611 break;
11612
11613 case OPTION_SOFT_FLOAT:
11614 file_mips_soft_float = 1;
11615 break;
11616
11617 case OPTION_HARD_FLOAT:
11618 file_mips_soft_float = 0;
11619 break;
11620
11621 #ifdef OBJ_ELF
11622 case OPTION_MABI:
11623 if (!IS_ELF)
11624 {
11625 as_bad (_("-mabi is supported for ELF format only"));
11626 return 0;
11627 }
11628 if (strcmp (arg, "32") == 0)
11629 mips_abi = O32_ABI;
11630 else if (strcmp (arg, "o64") == 0)
11631 mips_abi = O64_ABI;
11632 else if (strcmp (arg, "n32") == 0)
11633 mips_abi = N32_ABI;
11634 else if (strcmp (arg, "64") == 0)
11635 {
11636 mips_abi = N64_ABI;
11637 if (! support_64bit_objects())
11638 as_fatal (_("No compiled in support for 64 bit object file "
11639 "format"));
11640 }
11641 else if (strcmp (arg, "eabi") == 0)
11642 mips_abi = EABI_ABI;
11643 else
11644 {
11645 as_fatal (_("invalid abi -mabi=%s"), arg);
11646 return 0;
11647 }
11648 break;
11649 #endif /* OBJ_ELF */
11650
11651 case OPTION_M7000_HILO_FIX:
11652 mips_7000_hilo_fix = TRUE;
11653 break;
11654
11655 case OPTION_MNO_7000_HILO_FIX:
11656 mips_7000_hilo_fix = FALSE;
11657 break;
11658
11659 #ifdef OBJ_ELF
11660 case OPTION_MDEBUG:
11661 mips_flag_mdebug = TRUE;
11662 break;
11663
11664 case OPTION_NO_MDEBUG:
11665 mips_flag_mdebug = FALSE;
11666 break;
11667
11668 case OPTION_PDR:
11669 mips_flag_pdr = TRUE;
11670 break;
11671
11672 case OPTION_NO_PDR:
11673 mips_flag_pdr = FALSE;
11674 break;
11675
11676 case OPTION_MVXWORKS_PIC:
11677 mips_pic = VXWORKS_PIC;
11678 break;
11679 #endif /* OBJ_ELF */
11680
11681 default:
11682 return 0;
11683 }
11684
11685 return 1;
11686 }
11687 \f
11688 /* Set up globals to generate code for the ISA or processor
11689 described by INFO. */
11690
11691 static void
11692 mips_set_architecture (const struct mips_cpu_info *info)
11693 {
11694 if (info != 0)
11695 {
11696 file_mips_arch = info->cpu;
11697 mips_opts.arch = info->cpu;
11698 mips_opts.isa = info->isa;
11699 }
11700 }
11701
11702
11703 /* Likewise for tuning. */
11704
11705 static void
11706 mips_set_tune (const struct mips_cpu_info *info)
11707 {
11708 if (info != 0)
11709 mips_tune = info->cpu;
11710 }
11711
11712
11713 void
11714 mips_after_parse_args (void)
11715 {
11716 const struct mips_cpu_info *arch_info = 0;
11717 const struct mips_cpu_info *tune_info = 0;
11718
11719 /* GP relative stuff not working for PE */
11720 if (strncmp (TARGET_OS, "pe", 2) == 0)
11721 {
11722 if (g_switch_seen && g_switch_value != 0)
11723 as_bad (_("-G not supported in this configuration."));
11724 g_switch_value = 0;
11725 }
11726
11727 if (mips_abi == NO_ABI)
11728 mips_abi = MIPS_DEFAULT_ABI;
11729
11730 /* The following code determines the architecture and register size.
11731 Similar code was added to GCC 3.3 (see override_options() in
11732 config/mips/mips.c). The GAS and GCC code should be kept in sync
11733 as much as possible. */
11734
11735 if (mips_arch_string != 0)
11736 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11737
11738 if (file_mips_isa != ISA_UNKNOWN)
11739 {
11740 /* Handle -mipsN. At this point, file_mips_isa contains the
11741 ISA level specified by -mipsN, while arch_info->isa contains
11742 the -march selection (if any). */
11743 if (arch_info != 0)
11744 {
11745 /* -march takes precedence over -mipsN, since it is more descriptive.
11746 There's no harm in specifying both as long as the ISA levels
11747 are the same. */
11748 if (file_mips_isa != arch_info->isa)
11749 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11750 mips_cpu_info_from_isa (file_mips_isa)->name,
11751 mips_cpu_info_from_isa (arch_info->isa)->name);
11752 }
11753 else
11754 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11755 }
11756
11757 if (arch_info == 0)
11758 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11759
11760 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11761 as_bad ("-march=%s is not compatible with the selected ABI",
11762 arch_info->name);
11763
11764 mips_set_architecture (arch_info);
11765
11766 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11767 if (mips_tune_string != 0)
11768 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11769
11770 if (tune_info == 0)
11771 mips_set_tune (arch_info);
11772 else
11773 mips_set_tune (tune_info);
11774
11775 if (file_mips_gp32 >= 0)
11776 {
11777 /* The user specified the size of the integer registers. Make sure
11778 it agrees with the ABI and ISA. */
11779 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11780 as_bad (_("-mgp64 used with a 32-bit processor"));
11781 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11782 as_bad (_("-mgp32 used with a 64-bit ABI"));
11783 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11784 as_bad (_("-mgp64 used with a 32-bit ABI"));
11785 }
11786 else
11787 {
11788 /* Infer the integer register size from the ABI and processor.
11789 Restrict ourselves to 32-bit registers if that's all the
11790 processor has, or if the ABI cannot handle 64-bit registers. */
11791 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11792 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11793 }
11794
11795 switch (file_mips_fp32)
11796 {
11797 default:
11798 case -1:
11799 /* No user specified float register size.
11800 ??? GAS treats single-float processors as though they had 64-bit
11801 float registers (although it complains when double-precision
11802 instructions are used). As things stand, saying they have 32-bit
11803 registers would lead to spurious "register must be even" messages.
11804 So here we assume float registers are never smaller than the
11805 integer ones. */
11806 if (file_mips_gp32 == 0)
11807 /* 64-bit integer registers implies 64-bit float registers. */
11808 file_mips_fp32 = 0;
11809 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
11810 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
11811 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
11812 file_mips_fp32 = 0;
11813 else
11814 /* 32-bit float registers. */
11815 file_mips_fp32 = 1;
11816 break;
11817
11818 /* The user specified the size of the float registers. Check if it
11819 agrees with the ABI and ISA. */
11820 case 0:
11821 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
11822 as_bad (_("-mfp64 used with a 32-bit fpu"));
11823 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
11824 && !ISA_HAS_MXHC1 (mips_opts.isa))
11825 as_warn (_("-mfp64 used with a 32-bit ABI"));
11826 break;
11827 case 1:
11828 if (ABI_NEEDS_64BIT_REGS (mips_abi))
11829 as_warn (_("-mfp32 used with a 64-bit ABI"));
11830 break;
11831 }
11832
11833 /* End of GCC-shared inference code. */
11834
11835 /* This flag is set when we have a 64-bit capable CPU but use only
11836 32-bit wide registers. Note that EABI does not use it. */
11837 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
11838 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
11839 || mips_abi == O32_ABI))
11840 mips_32bitmode = 1;
11841
11842 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
11843 as_bad (_("trap exception not supported at ISA 1"));
11844
11845 /* If the selected architecture includes support for ASEs, enable
11846 generation of code for them. */
11847 if (mips_opts.mips16 == -1)
11848 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
11849 if (mips_opts.ase_mips3d == -1)
11850 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
11851 && file_mips_fp32 == 0) ? 1 : 0;
11852 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
11853 as_bad (_("-mfp32 used with -mips3d"));
11854
11855 if (mips_opts.ase_mdmx == -1)
11856 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
11857 && file_mips_fp32 == 0) ? 1 : 0;
11858 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
11859 as_bad (_("-mfp32 used with -mdmx"));
11860
11861 if (mips_opts.ase_smartmips == -1)
11862 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
11863 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
11864 as_warn ("%s ISA does not support SmartMIPS",
11865 mips_cpu_info_from_isa (mips_opts.isa)->name);
11866
11867 if (mips_opts.ase_dsp == -1)
11868 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
11869 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
11870 as_warn ("%s ISA does not support DSP ASE",
11871 mips_cpu_info_from_isa (mips_opts.isa)->name);
11872
11873 if (mips_opts.ase_dspr2 == -1)
11874 {
11875 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
11876 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
11877 }
11878 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
11879 as_warn ("%s ISA does not support DSP R2 ASE",
11880 mips_cpu_info_from_isa (mips_opts.isa)->name);
11881
11882 if (mips_opts.ase_mt == -1)
11883 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
11884 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
11885 as_warn ("%s ISA does not support MT ASE",
11886 mips_cpu_info_from_isa (mips_opts.isa)->name);
11887
11888 file_mips_isa = mips_opts.isa;
11889 file_ase_mips16 = mips_opts.mips16;
11890 file_ase_mips3d = mips_opts.ase_mips3d;
11891 file_ase_mdmx = mips_opts.ase_mdmx;
11892 file_ase_smartmips = mips_opts.ase_smartmips;
11893 file_ase_dsp = mips_opts.ase_dsp;
11894 file_ase_dspr2 = mips_opts.ase_dspr2;
11895 file_ase_mt = mips_opts.ase_mt;
11896 mips_opts.gp32 = file_mips_gp32;
11897 mips_opts.fp32 = file_mips_fp32;
11898 mips_opts.soft_float = file_mips_soft_float;
11899 mips_opts.single_float = file_mips_single_float;
11900
11901 if (mips_flag_mdebug < 0)
11902 {
11903 #ifdef OBJ_MAYBE_ECOFF
11904 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
11905 mips_flag_mdebug = 1;
11906 else
11907 #endif /* OBJ_MAYBE_ECOFF */
11908 mips_flag_mdebug = 0;
11909 }
11910 }
11911 \f
11912 void
11913 mips_init_after_args (void)
11914 {
11915 /* initialize opcodes */
11916 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
11917 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
11918 }
11919
11920 long
11921 md_pcrel_from (fixS *fixP)
11922 {
11923 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
11924 switch (fixP->fx_r_type)
11925 {
11926 case BFD_RELOC_16_PCREL_S2:
11927 case BFD_RELOC_MIPS_JMP:
11928 /* Return the address of the delay slot. */
11929 return addr + 4;
11930 default:
11931 /* We have no relocation type for PC relative MIPS16 instructions. */
11932 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
11933 as_bad_where (fixP->fx_file, fixP->fx_line,
11934 _("PC relative MIPS16 instruction references a different section"));
11935 return addr;
11936 }
11937 }
11938
11939 /* This is called before the symbol table is processed. In order to
11940 work with gcc when using mips-tfile, we must keep all local labels.
11941 However, in other cases, we want to discard them. If we were
11942 called with -g, but we didn't see any debugging information, it may
11943 mean that gcc is smuggling debugging information through to
11944 mips-tfile, in which case we must generate all local labels. */
11945
11946 void
11947 mips_frob_file_before_adjust (void)
11948 {
11949 #ifndef NO_ECOFF_DEBUGGING
11950 if (ECOFF_DEBUGGING
11951 && mips_debug != 0
11952 && ! ecoff_debugging_seen)
11953 flag_keep_locals = 1;
11954 #endif
11955 }
11956
11957 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
11958 the corresponding LO16 reloc. This is called before md_apply_fix and
11959 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
11960 relocation operators.
11961
11962 For our purposes, a %lo() expression matches a %got() or %hi()
11963 expression if:
11964
11965 (a) it refers to the same symbol; and
11966 (b) the offset applied in the %lo() expression is no lower than
11967 the offset applied in the %got() or %hi().
11968
11969 (b) allows us to cope with code like:
11970
11971 lui $4,%hi(foo)
11972 lh $4,%lo(foo+2)($4)
11973
11974 ...which is legal on RELA targets, and has a well-defined behaviour
11975 if the user knows that adding 2 to "foo" will not induce a carry to
11976 the high 16 bits.
11977
11978 When several %lo()s match a particular %got() or %hi(), we use the
11979 following rules to distinguish them:
11980
11981 (1) %lo()s with smaller offsets are a better match than %lo()s with
11982 higher offsets.
11983
11984 (2) %lo()s with no matching %got() or %hi() are better than those
11985 that already have a matching %got() or %hi().
11986
11987 (3) later %lo()s are better than earlier %lo()s.
11988
11989 These rules are applied in order.
11990
11991 (1) means, among other things, that %lo()s with identical offsets are
11992 chosen if they exist.
11993
11994 (2) means that we won't associate several high-part relocations with
11995 the same low-part relocation unless there's no alternative. Having
11996 several high parts for the same low part is a GNU extension; this rule
11997 allows careful users to avoid it.
11998
11999 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12000 with the last high-part relocation being at the front of the list.
12001 It therefore makes sense to choose the last matching low-part
12002 relocation, all other things being equal. It's also easier
12003 to code that way. */
12004
12005 void
12006 mips_frob_file (void)
12007 {
12008 struct mips_hi_fixup *l;
12009 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12010
12011 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12012 {
12013 segment_info_type *seginfo;
12014 bfd_boolean matched_lo_p;
12015 fixS **hi_pos, **lo_pos, **pos;
12016
12017 assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12018
12019 /* If a GOT16 relocation turns out to be against a global symbol,
12020 there isn't supposed to be a matching LO. */
12021 if (got16_reloc_p (l->fixp->fx_r_type)
12022 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12023 continue;
12024
12025 /* Check quickly whether the next fixup happens to be a matching %lo. */
12026 if (fixup_has_matching_lo_p (l->fixp))
12027 continue;
12028
12029 seginfo = seg_info (l->seg);
12030
12031 /* Set HI_POS to the position of this relocation in the chain.
12032 Set LO_POS to the position of the chosen low-part relocation.
12033 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12034 relocation that matches an immediately-preceding high-part
12035 relocation. */
12036 hi_pos = NULL;
12037 lo_pos = NULL;
12038 matched_lo_p = FALSE;
12039 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12040
12041 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12042 {
12043 if (*pos == l->fixp)
12044 hi_pos = pos;
12045
12046 if ((*pos)->fx_r_type == looking_for_rtype
12047 && (*pos)->fx_addsy == l->fixp->fx_addsy
12048 && (*pos)->fx_offset >= l->fixp->fx_offset
12049 && (lo_pos == NULL
12050 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12051 || (!matched_lo_p
12052 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12053 lo_pos = pos;
12054
12055 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12056 && fixup_has_matching_lo_p (*pos));
12057 }
12058
12059 /* If we found a match, remove the high-part relocation from its
12060 current position and insert it before the low-part relocation.
12061 Make the offsets match so that fixup_has_matching_lo_p()
12062 will return true.
12063
12064 We don't warn about unmatched high-part relocations since some
12065 versions of gcc have been known to emit dead "lui ...%hi(...)"
12066 instructions. */
12067 if (lo_pos != NULL)
12068 {
12069 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12070 if (l->fixp->fx_next != *lo_pos)
12071 {
12072 *hi_pos = l->fixp->fx_next;
12073 l->fixp->fx_next = *lo_pos;
12074 *lo_pos = l->fixp;
12075 }
12076 }
12077 }
12078 }
12079
12080 /* We may have combined relocations without symbols in the N32/N64 ABI.
12081 We have to prevent gas from dropping them. */
12082
12083 int
12084 mips_force_relocation (fixS *fixp)
12085 {
12086 if (generic_force_reloc (fixp))
12087 return 1;
12088
12089 if (HAVE_NEWABI
12090 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12091 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12092 || hi16_reloc_p (fixp->fx_r_type)
12093 || lo16_reloc_p (fixp->fx_r_type)))
12094 return 1;
12095
12096 return 0;
12097 }
12098
12099 /* Apply a fixup to the object file. */
12100
12101 void
12102 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12103 {
12104 bfd_byte *buf;
12105 long insn;
12106 reloc_howto_type *howto;
12107
12108 /* We ignore generic BFD relocations we don't know about. */
12109 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12110 if (! howto)
12111 return;
12112
12113 assert (fixP->fx_size == 4
12114 || fixP->fx_r_type == BFD_RELOC_16
12115 || fixP->fx_r_type == BFD_RELOC_64
12116 || fixP->fx_r_type == BFD_RELOC_CTOR
12117 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12118 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12119 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12120 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12121
12122 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12123
12124 assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12125
12126 /* Don't treat parts of a composite relocation as done. There are two
12127 reasons for this:
12128
12129 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12130 should nevertheless be emitted if the first part is.
12131
12132 (2) In normal usage, composite relocations are never assembly-time
12133 constants. The easiest way of dealing with the pathological
12134 exceptions is to generate a relocation against STN_UNDEF and
12135 leave everything up to the linker. */
12136 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12137 fixP->fx_done = 1;
12138
12139 switch (fixP->fx_r_type)
12140 {
12141 case BFD_RELOC_MIPS_TLS_GD:
12142 case BFD_RELOC_MIPS_TLS_LDM:
12143 case BFD_RELOC_MIPS_TLS_DTPREL32:
12144 case BFD_RELOC_MIPS_TLS_DTPREL64:
12145 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12146 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12147 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12148 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12149 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12150 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12151 /* fall through */
12152
12153 case BFD_RELOC_MIPS_JMP:
12154 case BFD_RELOC_MIPS_SHIFT5:
12155 case BFD_RELOC_MIPS_SHIFT6:
12156 case BFD_RELOC_MIPS_GOT_DISP:
12157 case BFD_RELOC_MIPS_GOT_PAGE:
12158 case BFD_RELOC_MIPS_GOT_OFST:
12159 case BFD_RELOC_MIPS_SUB:
12160 case BFD_RELOC_MIPS_INSERT_A:
12161 case BFD_RELOC_MIPS_INSERT_B:
12162 case BFD_RELOC_MIPS_DELETE:
12163 case BFD_RELOC_MIPS_HIGHEST:
12164 case BFD_RELOC_MIPS_HIGHER:
12165 case BFD_RELOC_MIPS_SCN_DISP:
12166 case BFD_RELOC_MIPS_REL16:
12167 case BFD_RELOC_MIPS_RELGOT:
12168 case BFD_RELOC_MIPS_JALR:
12169 case BFD_RELOC_HI16:
12170 case BFD_RELOC_HI16_S:
12171 case BFD_RELOC_GPREL16:
12172 case BFD_RELOC_MIPS_LITERAL:
12173 case BFD_RELOC_MIPS_CALL16:
12174 case BFD_RELOC_MIPS_GOT16:
12175 case BFD_RELOC_GPREL32:
12176 case BFD_RELOC_MIPS_GOT_HI16:
12177 case BFD_RELOC_MIPS_GOT_LO16:
12178 case BFD_RELOC_MIPS_CALL_HI16:
12179 case BFD_RELOC_MIPS_CALL_LO16:
12180 case BFD_RELOC_MIPS16_GPREL:
12181 case BFD_RELOC_MIPS16_GOT16:
12182 case BFD_RELOC_MIPS16_CALL16:
12183 case BFD_RELOC_MIPS16_HI16:
12184 case BFD_RELOC_MIPS16_HI16_S:
12185 case BFD_RELOC_MIPS16_JMP:
12186 /* Nothing needed to do. The value comes from the reloc entry. */
12187 break;
12188
12189 case BFD_RELOC_64:
12190 /* This is handled like BFD_RELOC_32, but we output a sign
12191 extended value if we are only 32 bits. */
12192 if (fixP->fx_done)
12193 {
12194 if (8 <= sizeof (valueT))
12195 md_number_to_chars ((char *) buf, *valP, 8);
12196 else
12197 {
12198 valueT hiv;
12199
12200 if ((*valP & 0x80000000) != 0)
12201 hiv = 0xffffffff;
12202 else
12203 hiv = 0;
12204 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12205 *valP, 4);
12206 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12207 hiv, 4);
12208 }
12209 }
12210 break;
12211
12212 case BFD_RELOC_RVA:
12213 case BFD_RELOC_32:
12214 case BFD_RELOC_16:
12215 /* If we are deleting this reloc entry, we must fill in the
12216 value now. This can happen if we have a .word which is not
12217 resolved when it appears but is later defined. */
12218 if (fixP->fx_done)
12219 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12220 break;
12221
12222 case BFD_RELOC_LO16:
12223 case BFD_RELOC_MIPS16_LO16:
12224 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12225 may be safe to remove, but if so it's not obvious. */
12226 /* When handling an embedded PIC switch statement, we can wind
12227 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12228 if (fixP->fx_done)
12229 {
12230 if (*valP + 0x8000 > 0xffff)
12231 as_bad_where (fixP->fx_file, fixP->fx_line,
12232 _("relocation overflow"));
12233 if (target_big_endian)
12234 buf += 2;
12235 md_number_to_chars ((char *) buf, *valP, 2);
12236 }
12237 break;
12238
12239 case BFD_RELOC_16_PCREL_S2:
12240 if ((*valP & 0x3) != 0)
12241 as_bad_where (fixP->fx_file, fixP->fx_line,
12242 _("Branch to misaligned address (%lx)"), (long) *valP);
12243
12244 /* We need to save the bits in the instruction since fixup_segment()
12245 might be deleting the relocation entry (i.e., a branch within
12246 the current segment). */
12247 if (! fixP->fx_done)
12248 break;
12249
12250 /* Update old instruction data. */
12251 if (target_big_endian)
12252 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12253 else
12254 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12255
12256 if (*valP + 0x20000 <= 0x3ffff)
12257 {
12258 insn |= (*valP >> 2) & 0xffff;
12259 md_number_to_chars ((char *) buf, insn, 4);
12260 }
12261 else if (mips_pic == NO_PIC
12262 && fixP->fx_done
12263 && fixP->fx_frag->fr_address >= text_section->vma
12264 && (fixP->fx_frag->fr_address
12265 < text_section->vma + bfd_get_section_size (text_section))
12266 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12267 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12268 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12269 {
12270 /* The branch offset is too large. If this is an
12271 unconditional branch, and we are not generating PIC code,
12272 we can convert it to an absolute jump instruction. */
12273 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12274 insn = 0x0c000000; /* jal */
12275 else
12276 insn = 0x08000000; /* j */
12277 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12278 fixP->fx_done = 0;
12279 fixP->fx_addsy = section_symbol (text_section);
12280 *valP += md_pcrel_from (fixP);
12281 md_number_to_chars ((char *) buf, insn, 4);
12282 }
12283 else
12284 {
12285 /* If we got here, we have branch-relaxation disabled,
12286 and there's nothing we can do to fix this instruction
12287 without turning it into a longer sequence. */
12288 as_bad_where (fixP->fx_file, fixP->fx_line,
12289 _("Branch out of range"));
12290 }
12291 break;
12292
12293 case BFD_RELOC_VTABLE_INHERIT:
12294 fixP->fx_done = 0;
12295 if (fixP->fx_addsy
12296 && !S_IS_DEFINED (fixP->fx_addsy)
12297 && !S_IS_WEAK (fixP->fx_addsy))
12298 S_SET_WEAK (fixP->fx_addsy);
12299 break;
12300
12301 case BFD_RELOC_VTABLE_ENTRY:
12302 fixP->fx_done = 0;
12303 break;
12304
12305 default:
12306 internalError ();
12307 }
12308
12309 /* Remember value for tc_gen_reloc. */
12310 fixP->fx_addnumber = *valP;
12311 }
12312
12313 static symbolS *
12314 get_symbol (void)
12315 {
12316 int c;
12317 char *name;
12318 symbolS *p;
12319
12320 name = input_line_pointer;
12321 c = get_symbol_end ();
12322 p = (symbolS *) symbol_find_or_make (name);
12323 *input_line_pointer = c;
12324 return p;
12325 }
12326
12327 /* Align the current frag to a given power of two. If a particular
12328 fill byte should be used, FILL points to an integer that contains
12329 that byte, otherwise FILL is null.
12330
12331 The MIPS assembler also automatically adjusts any preceding
12332 label. */
12333
12334 static void
12335 mips_align (int to, int *fill, symbolS *label)
12336 {
12337 mips_emit_delays ();
12338 mips_record_mips16_mode ();
12339 if (fill == NULL && subseg_text_p (now_seg))
12340 frag_align_code (to, 0);
12341 else
12342 frag_align (to, fill ? *fill : 0, 0);
12343 record_alignment (now_seg, to);
12344 if (label != NULL)
12345 {
12346 assert (S_GET_SEGMENT (label) == now_seg);
12347 symbol_set_frag (label, frag_now);
12348 S_SET_VALUE (label, (valueT) frag_now_fix ());
12349 }
12350 }
12351
12352 /* Align to a given power of two. .align 0 turns off the automatic
12353 alignment used by the data creating pseudo-ops. */
12354
12355 static void
12356 s_align (int x ATTRIBUTE_UNUSED)
12357 {
12358 int temp, fill_value, *fill_ptr;
12359 long max_alignment = 28;
12360
12361 /* o Note that the assembler pulls down any immediately preceding label
12362 to the aligned address.
12363 o It's not documented but auto alignment is reinstated by
12364 a .align pseudo instruction.
12365 o Note also that after auto alignment is turned off the mips assembler
12366 issues an error on attempt to assemble an improperly aligned data item.
12367 We don't. */
12368
12369 temp = get_absolute_expression ();
12370 if (temp > max_alignment)
12371 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12372 else if (temp < 0)
12373 {
12374 as_warn (_("Alignment negative: 0 assumed."));
12375 temp = 0;
12376 }
12377 if (*input_line_pointer == ',')
12378 {
12379 ++input_line_pointer;
12380 fill_value = get_absolute_expression ();
12381 fill_ptr = &fill_value;
12382 }
12383 else
12384 fill_ptr = 0;
12385 if (temp)
12386 {
12387 segment_info_type *si = seg_info (now_seg);
12388 struct insn_label_list *l = si->label_list;
12389 /* Auto alignment should be switched on by next section change. */
12390 auto_align = 1;
12391 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12392 }
12393 else
12394 {
12395 auto_align = 0;
12396 }
12397
12398 demand_empty_rest_of_line ();
12399 }
12400
12401 static void
12402 s_change_sec (int sec)
12403 {
12404 segT seg;
12405
12406 #ifdef OBJ_ELF
12407 /* The ELF backend needs to know that we are changing sections, so
12408 that .previous works correctly. We could do something like check
12409 for an obj_section_change_hook macro, but that might be confusing
12410 as it would not be appropriate to use it in the section changing
12411 functions in read.c, since obj-elf.c intercepts those. FIXME:
12412 This should be cleaner, somehow. */
12413 if (IS_ELF)
12414 obj_elf_section_change_hook ();
12415 #endif
12416
12417 mips_emit_delays ();
12418 switch (sec)
12419 {
12420 case 't':
12421 s_text (0);
12422 break;
12423 case 'd':
12424 s_data (0);
12425 break;
12426 case 'b':
12427 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12428 demand_empty_rest_of_line ();
12429 break;
12430
12431 case 'r':
12432 seg = subseg_new (RDATA_SECTION_NAME,
12433 (subsegT) get_absolute_expression ());
12434 if (IS_ELF)
12435 {
12436 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12437 | SEC_READONLY | SEC_RELOC
12438 | SEC_DATA));
12439 if (strncmp (TARGET_OS, "elf", 3) != 0)
12440 record_alignment (seg, 4);
12441 }
12442 demand_empty_rest_of_line ();
12443 break;
12444
12445 case 's':
12446 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12447 if (IS_ELF)
12448 {
12449 bfd_set_section_flags (stdoutput, seg,
12450 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12451 if (strncmp (TARGET_OS, "elf", 3) != 0)
12452 record_alignment (seg, 4);
12453 }
12454 demand_empty_rest_of_line ();
12455 break;
12456 }
12457
12458 auto_align = 1;
12459 }
12460
12461 void
12462 s_change_section (int ignore ATTRIBUTE_UNUSED)
12463 {
12464 #ifdef OBJ_ELF
12465 char *section_name;
12466 char c;
12467 char next_c = 0;
12468 int section_type;
12469 int section_flag;
12470 int section_entry_size;
12471 int section_alignment;
12472
12473 if (!IS_ELF)
12474 return;
12475
12476 section_name = input_line_pointer;
12477 c = get_symbol_end ();
12478 if (c)
12479 next_c = *(input_line_pointer + 1);
12480
12481 /* Do we have .section Name<,"flags">? */
12482 if (c != ',' || (c == ',' && next_c == '"'))
12483 {
12484 /* just after name is now '\0'. */
12485 *input_line_pointer = c;
12486 input_line_pointer = section_name;
12487 obj_elf_section (ignore);
12488 return;
12489 }
12490 input_line_pointer++;
12491
12492 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12493 if (c == ',')
12494 section_type = get_absolute_expression ();
12495 else
12496 section_type = 0;
12497 if (*input_line_pointer++ == ',')
12498 section_flag = get_absolute_expression ();
12499 else
12500 section_flag = 0;
12501 if (*input_line_pointer++ == ',')
12502 section_entry_size = get_absolute_expression ();
12503 else
12504 section_entry_size = 0;
12505 if (*input_line_pointer++ == ',')
12506 section_alignment = get_absolute_expression ();
12507 else
12508 section_alignment = 0;
12509
12510 section_name = xstrdup (section_name);
12511
12512 /* When using the generic form of .section (as implemented by obj-elf.c),
12513 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12514 traditionally had to fall back on the more common @progbits instead.
12515
12516 There's nothing really harmful in this, since bfd will correct
12517 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12518 means that, for backwards compatibility, the special_section entries
12519 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12520
12521 Even so, we shouldn't force users of the MIPS .section syntax to
12522 incorrectly label the sections as SHT_PROGBITS. The best compromise
12523 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12524 generic type-checking code. */
12525 if (section_type == SHT_MIPS_DWARF)
12526 section_type = SHT_PROGBITS;
12527
12528 obj_elf_change_section (section_name, section_type, section_flag,
12529 section_entry_size, 0, 0, 0);
12530
12531 if (now_seg->name != section_name)
12532 free (section_name);
12533 #endif /* OBJ_ELF */
12534 }
12535
12536 void
12537 mips_enable_auto_align (void)
12538 {
12539 auto_align = 1;
12540 }
12541
12542 static void
12543 s_cons (int log_size)
12544 {
12545 segment_info_type *si = seg_info (now_seg);
12546 struct insn_label_list *l = si->label_list;
12547 symbolS *label;
12548
12549 label = l != NULL ? l->label : NULL;
12550 mips_emit_delays ();
12551 if (log_size > 0 && auto_align)
12552 mips_align (log_size, 0, label);
12553 mips_clear_insn_labels ();
12554 cons (1 << log_size);
12555 }
12556
12557 static void
12558 s_float_cons (int type)
12559 {
12560 segment_info_type *si = seg_info (now_seg);
12561 struct insn_label_list *l = si->label_list;
12562 symbolS *label;
12563
12564 label = l != NULL ? l->label : NULL;
12565
12566 mips_emit_delays ();
12567
12568 if (auto_align)
12569 {
12570 if (type == 'd')
12571 mips_align (3, 0, label);
12572 else
12573 mips_align (2, 0, label);
12574 }
12575
12576 mips_clear_insn_labels ();
12577
12578 float_cons (type);
12579 }
12580
12581 /* Handle .globl. We need to override it because on Irix 5 you are
12582 permitted to say
12583 .globl foo .text
12584 where foo is an undefined symbol, to mean that foo should be
12585 considered to be the address of a function. */
12586
12587 static void
12588 s_mips_globl (int x ATTRIBUTE_UNUSED)
12589 {
12590 char *name;
12591 int c;
12592 symbolS *symbolP;
12593 flagword flag;
12594
12595 do
12596 {
12597 name = input_line_pointer;
12598 c = get_symbol_end ();
12599 symbolP = symbol_find_or_make (name);
12600 S_SET_EXTERNAL (symbolP);
12601
12602 *input_line_pointer = c;
12603 SKIP_WHITESPACE ();
12604
12605 /* On Irix 5, every global symbol that is not explicitly labelled as
12606 being a function is apparently labelled as being an object. */
12607 flag = BSF_OBJECT;
12608
12609 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12610 && (*input_line_pointer != ','))
12611 {
12612 char *secname;
12613 asection *sec;
12614
12615 secname = input_line_pointer;
12616 c = get_symbol_end ();
12617 sec = bfd_get_section_by_name (stdoutput, secname);
12618 if (sec == NULL)
12619 as_bad (_("%s: no such section"), secname);
12620 *input_line_pointer = c;
12621
12622 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12623 flag = BSF_FUNCTION;
12624 }
12625
12626 symbol_get_bfdsym (symbolP)->flags |= flag;
12627
12628 c = *input_line_pointer;
12629 if (c == ',')
12630 {
12631 input_line_pointer++;
12632 SKIP_WHITESPACE ();
12633 if (is_end_of_line[(unsigned char) *input_line_pointer])
12634 c = '\n';
12635 }
12636 }
12637 while (c == ',');
12638
12639 demand_empty_rest_of_line ();
12640 }
12641
12642 static void
12643 s_option (int x ATTRIBUTE_UNUSED)
12644 {
12645 char *opt;
12646 char c;
12647
12648 opt = input_line_pointer;
12649 c = get_symbol_end ();
12650
12651 if (*opt == 'O')
12652 {
12653 /* FIXME: What does this mean? */
12654 }
12655 else if (strncmp (opt, "pic", 3) == 0)
12656 {
12657 int i;
12658
12659 i = atoi (opt + 3);
12660 if (i == 0)
12661 mips_pic = NO_PIC;
12662 else if (i == 2)
12663 {
12664 mips_pic = SVR4_PIC;
12665 mips_abicalls = TRUE;
12666 }
12667 else
12668 as_bad (_(".option pic%d not supported"), i);
12669
12670 if (mips_pic == SVR4_PIC)
12671 {
12672 if (g_switch_seen && g_switch_value != 0)
12673 as_warn (_("-G may not be used with SVR4 PIC code"));
12674 g_switch_value = 0;
12675 bfd_set_gp_size (stdoutput, 0);
12676 }
12677 }
12678 else
12679 as_warn (_("Unrecognized option \"%s\""), opt);
12680
12681 *input_line_pointer = c;
12682 demand_empty_rest_of_line ();
12683 }
12684
12685 /* This structure is used to hold a stack of .set values. */
12686
12687 struct mips_option_stack
12688 {
12689 struct mips_option_stack *next;
12690 struct mips_set_options options;
12691 };
12692
12693 static struct mips_option_stack *mips_opts_stack;
12694
12695 /* Handle the .set pseudo-op. */
12696
12697 static void
12698 s_mipsset (int x ATTRIBUTE_UNUSED)
12699 {
12700 char *name = input_line_pointer, ch;
12701
12702 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12703 ++input_line_pointer;
12704 ch = *input_line_pointer;
12705 *input_line_pointer = '\0';
12706
12707 if (strcmp (name, "reorder") == 0)
12708 {
12709 if (mips_opts.noreorder)
12710 end_noreorder ();
12711 }
12712 else if (strcmp (name, "noreorder") == 0)
12713 {
12714 if (!mips_opts.noreorder)
12715 start_noreorder ();
12716 }
12717 else if (strncmp (name, "at=", 3) == 0)
12718 {
12719 char *s = name + 3;
12720
12721 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12722 as_bad (_("Unrecognized register name `%s'"), s);
12723 }
12724 else if (strcmp (name, "at") == 0)
12725 {
12726 mips_opts.at = ATREG;
12727 }
12728 else if (strcmp (name, "noat") == 0)
12729 {
12730 mips_opts.at = ZERO;
12731 }
12732 else if (strcmp (name, "macro") == 0)
12733 {
12734 mips_opts.warn_about_macros = 0;
12735 }
12736 else if (strcmp (name, "nomacro") == 0)
12737 {
12738 if (mips_opts.noreorder == 0)
12739 as_bad (_("`noreorder' must be set before `nomacro'"));
12740 mips_opts.warn_about_macros = 1;
12741 }
12742 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12743 {
12744 mips_opts.nomove = 0;
12745 }
12746 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12747 {
12748 mips_opts.nomove = 1;
12749 }
12750 else if (strcmp (name, "bopt") == 0)
12751 {
12752 mips_opts.nobopt = 0;
12753 }
12754 else if (strcmp (name, "nobopt") == 0)
12755 {
12756 mips_opts.nobopt = 1;
12757 }
12758 else if (strcmp (name, "gp=default") == 0)
12759 mips_opts.gp32 = file_mips_gp32;
12760 else if (strcmp (name, "gp=32") == 0)
12761 mips_opts.gp32 = 1;
12762 else if (strcmp (name, "gp=64") == 0)
12763 {
12764 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12765 as_warn ("%s isa does not support 64-bit registers",
12766 mips_cpu_info_from_isa (mips_opts.isa)->name);
12767 mips_opts.gp32 = 0;
12768 }
12769 else if (strcmp (name, "fp=default") == 0)
12770 mips_opts.fp32 = file_mips_fp32;
12771 else if (strcmp (name, "fp=32") == 0)
12772 mips_opts.fp32 = 1;
12773 else if (strcmp (name, "fp=64") == 0)
12774 {
12775 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12776 as_warn ("%s isa does not support 64-bit floating point registers",
12777 mips_cpu_info_from_isa (mips_opts.isa)->name);
12778 mips_opts.fp32 = 0;
12779 }
12780 else if (strcmp (name, "softfloat") == 0)
12781 mips_opts.soft_float = 1;
12782 else if (strcmp (name, "hardfloat") == 0)
12783 mips_opts.soft_float = 0;
12784 else if (strcmp (name, "singlefloat") == 0)
12785 mips_opts.single_float = 1;
12786 else if (strcmp (name, "doublefloat") == 0)
12787 mips_opts.single_float = 0;
12788 else if (strcmp (name, "mips16") == 0
12789 || strcmp (name, "MIPS-16") == 0)
12790 mips_opts.mips16 = 1;
12791 else if (strcmp (name, "nomips16") == 0
12792 || strcmp (name, "noMIPS-16") == 0)
12793 mips_opts.mips16 = 0;
12794 else if (strcmp (name, "smartmips") == 0)
12795 {
12796 if (!ISA_SUPPORTS_SMARTMIPS)
12797 as_warn ("%s ISA does not support SmartMIPS ASE",
12798 mips_cpu_info_from_isa (mips_opts.isa)->name);
12799 mips_opts.ase_smartmips = 1;
12800 }
12801 else if (strcmp (name, "nosmartmips") == 0)
12802 mips_opts.ase_smartmips = 0;
12803 else if (strcmp (name, "mips3d") == 0)
12804 mips_opts.ase_mips3d = 1;
12805 else if (strcmp (name, "nomips3d") == 0)
12806 mips_opts.ase_mips3d = 0;
12807 else if (strcmp (name, "mdmx") == 0)
12808 mips_opts.ase_mdmx = 1;
12809 else if (strcmp (name, "nomdmx") == 0)
12810 mips_opts.ase_mdmx = 0;
12811 else if (strcmp (name, "dsp") == 0)
12812 {
12813 if (!ISA_SUPPORTS_DSP_ASE)
12814 as_warn ("%s ISA does not support DSP ASE",
12815 mips_cpu_info_from_isa (mips_opts.isa)->name);
12816 mips_opts.ase_dsp = 1;
12817 mips_opts.ase_dspr2 = 0;
12818 }
12819 else if (strcmp (name, "nodsp") == 0)
12820 {
12821 mips_opts.ase_dsp = 0;
12822 mips_opts.ase_dspr2 = 0;
12823 }
12824 else if (strcmp (name, "dspr2") == 0)
12825 {
12826 if (!ISA_SUPPORTS_DSPR2_ASE)
12827 as_warn ("%s ISA does not support DSP R2 ASE",
12828 mips_cpu_info_from_isa (mips_opts.isa)->name);
12829 mips_opts.ase_dspr2 = 1;
12830 mips_opts.ase_dsp = 1;
12831 }
12832 else if (strcmp (name, "nodspr2") == 0)
12833 {
12834 mips_opts.ase_dspr2 = 0;
12835 mips_opts.ase_dsp = 0;
12836 }
12837 else if (strcmp (name, "mt") == 0)
12838 {
12839 if (!ISA_SUPPORTS_MT_ASE)
12840 as_warn ("%s ISA does not support MT ASE",
12841 mips_cpu_info_from_isa (mips_opts.isa)->name);
12842 mips_opts.ase_mt = 1;
12843 }
12844 else if (strcmp (name, "nomt") == 0)
12845 mips_opts.ase_mt = 0;
12846 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
12847 {
12848 int reset = 0;
12849
12850 /* Permit the user to change the ISA and architecture on the fly.
12851 Needless to say, misuse can cause serious problems. */
12852 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
12853 {
12854 reset = 1;
12855 mips_opts.isa = file_mips_isa;
12856 mips_opts.arch = file_mips_arch;
12857 }
12858 else if (strncmp (name, "arch=", 5) == 0)
12859 {
12860 const struct mips_cpu_info *p;
12861
12862 p = mips_parse_cpu("internal use", name + 5);
12863 if (!p)
12864 as_bad (_("unknown architecture %s"), name + 5);
12865 else
12866 {
12867 mips_opts.arch = p->cpu;
12868 mips_opts.isa = p->isa;
12869 }
12870 }
12871 else if (strncmp (name, "mips", 4) == 0)
12872 {
12873 const struct mips_cpu_info *p;
12874
12875 p = mips_parse_cpu("internal use", name);
12876 if (!p)
12877 as_bad (_("unknown ISA level %s"), name + 4);
12878 else
12879 {
12880 mips_opts.arch = p->cpu;
12881 mips_opts.isa = p->isa;
12882 }
12883 }
12884 else
12885 as_bad (_("unknown ISA or architecture %s"), name);
12886
12887 switch (mips_opts.isa)
12888 {
12889 case 0:
12890 break;
12891 case ISA_MIPS1:
12892 case ISA_MIPS2:
12893 case ISA_MIPS32:
12894 case ISA_MIPS32R2:
12895 mips_opts.gp32 = 1;
12896 mips_opts.fp32 = 1;
12897 break;
12898 case ISA_MIPS3:
12899 case ISA_MIPS4:
12900 case ISA_MIPS5:
12901 case ISA_MIPS64:
12902 case ISA_MIPS64R2:
12903 mips_opts.gp32 = 0;
12904 mips_opts.fp32 = 0;
12905 break;
12906 default:
12907 as_bad (_("unknown ISA level %s"), name + 4);
12908 break;
12909 }
12910 if (reset)
12911 {
12912 mips_opts.gp32 = file_mips_gp32;
12913 mips_opts.fp32 = file_mips_fp32;
12914 }
12915 }
12916 else if (strcmp (name, "autoextend") == 0)
12917 mips_opts.noautoextend = 0;
12918 else if (strcmp (name, "noautoextend") == 0)
12919 mips_opts.noautoextend = 1;
12920 else if (strcmp (name, "push") == 0)
12921 {
12922 struct mips_option_stack *s;
12923
12924 s = (struct mips_option_stack *) xmalloc (sizeof *s);
12925 s->next = mips_opts_stack;
12926 s->options = mips_opts;
12927 mips_opts_stack = s;
12928 }
12929 else if (strcmp (name, "pop") == 0)
12930 {
12931 struct mips_option_stack *s;
12932
12933 s = mips_opts_stack;
12934 if (s == NULL)
12935 as_bad (_(".set pop with no .set push"));
12936 else
12937 {
12938 /* If we're changing the reorder mode we need to handle
12939 delay slots correctly. */
12940 if (s->options.noreorder && ! mips_opts.noreorder)
12941 start_noreorder ();
12942 else if (! s->options.noreorder && mips_opts.noreorder)
12943 end_noreorder ();
12944
12945 mips_opts = s->options;
12946 mips_opts_stack = s->next;
12947 free (s);
12948 }
12949 }
12950 else if (strcmp (name, "sym32") == 0)
12951 mips_opts.sym32 = TRUE;
12952 else if (strcmp (name, "nosym32") == 0)
12953 mips_opts.sym32 = FALSE;
12954 else if (strchr (name, ','))
12955 {
12956 /* Generic ".set" directive; use the generic handler. */
12957 *input_line_pointer = ch;
12958 input_line_pointer = name;
12959 s_set (0);
12960 return;
12961 }
12962 else
12963 {
12964 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
12965 }
12966 *input_line_pointer = ch;
12967 demand_empty_rest_of_line ();
12968 }
12969
12970 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
12971 .option pic2. It means to generate SVR4 PIC calls. */
12972
12973 static void
12974 s_abicalls (int ignore ATTRIBUTE_UNUSED)
12975 {
12976 mips_pic = SVR4_PIC;
12977 mips_abicalls = TRUE;
12978
12979 if (g_switch_seen && g_switch_value != 0)
12980 as_warn (_("-G may not be used with SVR4 PIC code"));
12981 g_switch_value = 0;
12982
12983 bfd_set_gp_size (stdoutput, 0);
12984 demand_empty_rest_of_line ();
12985 }
12986
12987 /* Handle the .cpload pseudo-op. This is used when generating SVR4
12988 PIC code. It sets the $gp register for the function based on the
12989 function address, which is in the register named in the argument.
12990 This uses a relocation against _gp_disp, which is handled specially
12991 by the linker. The result is:
12992 lui $gp,%hi(_gp_disp)
12993 addiu $gp,$gp,%lo(_gp_disp)
12994 addu $gp,$gp,.cpload argument
12995 The .cpload argument is normally $25 == $t9.
12996
12997 The -mno-shared option changes this to:
12998 lui $gp,%hi(__gnu_local_gp)
12999 addiu $gp,$gp,%lo(__gnu_local_gp)
13000 and the argument is ignored. This saves an instruction, but the
13001 resulting code is not position independent; it uses an absolute
13002 address for __gnu_local_gp. Thus code assembled with -mno-shared
13003 can go into an ordinary executable, but not into a shared library. */
13004
13005 static void
13006 s_cpload (int ignore ATTRIBUTE_UNUSED)
13007 {
13008 expressionS ex;
13009 int reg;
13010 int in_shared;
13011
13012 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13013 .cpload is ignored. */
13014 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13015 {
13016 s_ignore (0);
13017 return;
13018 }
13019
13020 /* .cpload should be in a .set noreorder section. */
13021 if (mips_opts.noreorder == 0)
13022 as_warn (_(".cpload not in noreorder section"));
13023
13024 reg = tc_get_register (0);
13025
13026 /* If we need to produce a 64-bit address, we are better off using
13027 the default instruction sequence. */
13028 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13029
13030 ex.X_op = O_symbol;
13031 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13032 "__gnu_local_gp");
13033 ex.X_op_symbol = NULL;
13034 ex.X_add_number = 0;
13035
13036 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13037 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13038
13039 macro_start ();
13040 macro_build_lui (&ex, mips_gp_register);
13041 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13042 mips_gp_register, BFD_RELOC_LO16);
13043 if (in_shared)
13044 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13045 mips_gp_register, reg);
13046 macro_end ();
13047
13048 demand_empty_rest_of_line ();
13049 }
13050
13051 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13052 .cpsetup $reg1, offset|$reg2, label
13053
13054 If offset is given, this results in:
13055 sd $gp, offset($sp)
13056 lui $gp, %hi(%neg(%gp_rel(label)))
13057 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13058 daddu $gp, $gp, $reg1
13059
13060 If $reg2 is given, this results in:
13061 daddu $reg2, $gp, $0
13062 lui $gp, %hi(%neg(%gp_rel(label)))
13063 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13064 daddu $gp, $gp, $reg1
13065 $reg1 is normally $25 == $t9.
13066
13067 The -mno-shared option replaces the last three instructions with
13068 lui $gp,%hi(_gp)
13069 addiu $gp,$gp,%lo(_gp) */
13070
13071 static void
13072 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13073 {
13074 expressionS ex_off;
13075 expressionS ex_sym;
13076 int reg1;
13077
13078 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13079 We also need NewABI support. */
13080 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13081 {
13082 s_ignore (0);
13083 return;
13084 }
13085
13086 reg1 = tc_get_register (0);
13087 SKIP_WHITESPACE ();
13088 if (*input_line_pointer != ',')
13089 {
13090 as_bad (_("missing argument separator ',' for .cpsetup"));
13091 return;
13092 }
13093 else
13094 ++input_line_pointer;
13095 SKIP_WHITESPACE ();
13096 if (*input_line_pointer == '$')
13097 {
13098 mips_cpreturn_register = tc_get_register (0);
13099 mips_cpreturn_offset = -1;
13100 }
13101 else
13102 {
13103 mips_cpreturn_offset = get_absolute_expression ();
13104 mips_cpreturn_register = -1;
13105 }
13106 SKIP_WHITESPACE ();
13107 if (*input_line_pointer != ',')
13108 {
13109 as_bad (_("missing argument separator ',' for .cpsetup"));
13110 return;
13111 }
13112 else
13113 ++input_line_pointer;
13114 SKIP_WHITESPACE ();
13115 expression (&ex_sym);
13116
13117 macro_start ();
13118 if (mips_cpreturn_register == -1)
13119 {
13120 ex_off.X_op = O_constant;
13121 ex_off.X_add_symbol = NULL;
13122 ex_off.X_op_symbol = NULL;
13123 ex_off.X_add_number = mips_cpreturn_offset;
13124
13125 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13126 BFD_RELOC_LO16, SP);
13127 }
13128 else
13129 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13130 mips_gp_register, 0);
13131
13132 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13133 {
13134 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13135 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13136 BFD_RELOC_HI16_S);
13137
13138 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13139 mips_gp_register, -1, BFD_RELOC_GPREL16,
13140 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13141
13142 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13143 mips_gp_register, reg1);
13144 }
13145 else
13146 {
13147 expressionS ex;
13148
13149 ex.X_op = O_symbol;
13150 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13151 ex.X_op_symbol = NULL;
13152 ex.X_add_number = 0;
13153
13154 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13155 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13156
13157 macro_build_lui (&ex, mips_gp_register);
13158 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13159 mips_gp_register, BFD_RELOC_LO16);
13160 }
13161
13162 macro_end ();
13163
13164 demand_empty_rest_of_line ();
13165 }
13166
13167 static void
13168 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13169 {
13170 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13171 .cplocal is ignored. */
13172 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13173 {
13174 s_ignore (0);
13175 return;
13176 }
13177
13178 mips_gp_register = tc_get_register (0);
13179 demand_empty_rest_of_line ();
13180 }
13181
13182 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13183 offset from $sp. The offset is remembered, and after making a PIC
13184 call $gp is restored from that location. */
13185
13186 static void
13187 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13188 {
13189 expressionS ex;
13190
13191 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13192 .cprestore is ignored. */
13193 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13194 {
13195 s_ignore (0);
13196 return;
13197 }
13198
13199 mips_cprestore_offset = get_absolute_expression ();
13200 mips_cprestore_valid = 1;
13201
13202 ex.X_op = O_constant;
13203 ex.X_add_symbol = NULL;
13204 ex.X_op_symbol = NULL;
13205 ex.X_add_number = mips_cprestore_offset;
13206
13207 macro_start ();
13208 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13209 SP, HAVE_64BIT_ADDRESSES);
13210 macro_end ();
13211
13212 demand_empty_rest_of_line ();
13213 }
13214
13215 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13216 was given in the preceding .cpsetup, it results in:
13217 ld $gp, offset($sp)
13218
13219 If a register $reg2 was given there, it results in:
13220 daddu $gp, $reg2, $0 */
13221
13222 static void
13223 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13224 {
13225 expressionS ex;
13226
13227 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13228 We also need NewABI support. */
13229 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13230 {
13231 s_ignore (0);
13232 return;
13233 }
13234
13235 macro_start ();
13236 if (mips_cpreturn_register == -1)
13237 {
13238 ex.X_op = O_constant;
13239 ex.X_add_symbol = NULL;
13240 ex.X_op_symbol = NULL;
13241 ex.X_add_number = mips_cpreturn_offset;
13242
13243 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13244 }
13245 else
13246 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13247 mips_cpreturn_register, 0);
13248 macro_end ();
13249
13250 demand_empty_rest_of_line ();
13251 }
13252
13253 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13254 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13255 use in DWARF debug information. */
13256
13257 static void
13258 s_dtprel_internal (size_t bytes)
13259 {
13260 expressionS ex;
13261 char *p;
13262
13263 expression (&ex);
13264
13265 if (ex.X_op != O_symbol)
13266 {
13267 as_bad (_("Unsupported use of %s"), (bytes == 8
13268 ? ".dtpreldword"
13269 : ".dtprelword"));
13270 ignore_rest_of_line ();
13271 }
13272
13273 p = frag_more (bytes);
13274 md_number_to_chars (p, 0, bytes);
13275 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13276 (bytes == 8
13277 ? BFD_RELOC_MIPS_TLS_DTPREL64
13278 : BFD_RELOC_MIPS_TLS_DTPREL32));
13279
13280 demand_empty_rest_of_line ();
13281 }
13282
13283 /* Handle .dtprelword. */
13284
13285 static void
13286 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13287 {
13288 s_dtprel_internal (4);
13289 }
13290
13291 /* Handle .dtpreldword. */
13292
13293 static void
13294 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13295 {
13296 s_dtprel_internal (8);
13297 }
13298
13299 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13300 code. It sets the offset to use in gp_rel relocations. */
13301
13302 static void
13303 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13304 {
13305 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13306 We also need NewABI support. */
13307 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13308 {
13309 s_ignore (0);
13310 return;
13311 }
13312
13313 mips_gprel_offset = get_absolute_expression ();
13314
13315 demand_empty_rest_of_line ();
13316 }
13317
13318 /* Handle the .gpword pseudo-op. This is used when generating PIC
13319 code. It generates a 32 bit GP relative reloc. */
13320
13321 static void
13322 s_gpword (int ignore ATTRIBUTE_UNUSED)
13323 {
13324 segment_info_type *si;
13325 struct insn_label_list *l;
13326 symbolS *label;
13327 expressionS ex;
13328 char *p;
13329
13330 /* When not generating PIC code, this is treated as .word. */
13331 if (mips_pic != SVR4_PIC)
13332 {
13333 s_cons (2);
13334 return;
13335 }
13336
13337 si = seg_info (now_seg);
13338 l = si->label_list;
13339 label = l != NULL ? l->label : NULL;
13340 mips_emit_delays ();
13341 if (auto_align)
13342 mips_align (2, 0, label);
13343 mips_clear_insn_labels ();
13344
13345 expression (&ex);
13346
13347 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13348 {
13349 as_bad (_("Unsupported use of .gpword"));
13350 ignore_rest_of_line ();
13351 }
13352
13353 p = frag_more (4);
13354 md_number_to_chars (p, 0, 4);
13355 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13356 BFD_RELOC_GPREL32);
13357
13358 demand_empty_rest_of_line ();
13359 }
13360
13361 static void
13362 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13363 {
13364 segment_info_type *si;
13365 struct insn_label_list *l;
13366 symbolS *label;
13367 expressionS ex;
13368 char *p;
13369
13370 /* When not generating PIC code, this is treated as .dword. */
13371 if (mips_pic != SVR4_PIC)
13372 {
13373 s_cons (3);
13374 return;
13375 }
13376
13377 si = seg_info (now_seg);
13378 l = si->label_list;
13379 label = l != NULL ? l->label : NULL;
13380 mips_emit_delays ();
13381 if (auto_align)
13382 mips_align (3, 0, label);
13383 mips_clear_insn_labels ();
13384
13385 expression (&ex);
13386
13387 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13388 {
13389 as_bad (_("Unsupported use of .gpdword"));
13390 ignore_rest_of_line ();
13391 }
13392
13393 p = frag_more (8);
13394 md_number_to_chars (p, 0, 8);
13395 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13396 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13397
13398 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13399 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13400 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13401
13402 demand_empty_rest_of_line ();
13403 }
13404
13405 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13406 tables in SVR4 PIC code. */
13407
13408 static void
13409 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13410 {
13411 int reg;
13412
13413 /* This is ignored when not generating SVR4 PIC code. */
13414 if (mips_pic != SVR4_PIC)
13415 {
13416 s_ignore (0);
13417 return;
13418 }
13419
13420 /* Add $gp to the register named as an argument. */
13421 macro_start ();
13422 reg = tc_get_register (0);
13423 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13424 macro_end ();
13425
13426 demand_empty_rest_of_line ();
13427 }
13428
13429 /* Handle the .insn pseudo-op. This marks instruction labels in
13430 mips16 mode. This permits the linker to handle them specially,
13431 such as generating jalx instructions when needed. We also make
13432 them odd for the duration of the assembly, in order to generate the
13433 right sort of code. We will make them even in the adjust_symtab
13434 routine, while leaving them marked. This is convenient for the
13435 debugger and the disassembler. The linker knows to make them odd
13436 again. */
13437
13438 static void
13439 s_insn (int ignore ATTRIBUTE_UNUSED)
13440 {
13441 mips16_mark_labels ();
13442
13443 demand_empty_rest_of_line ();
13444 }
13445
13446 /* Handle a .stabn directive. We need these in order to mark a label
13447 as being a mips16 text label correctly. Sometimes the compiler
13448 will emit a label, followed by a .stabn, and then switch sections.
13449 If the label and .stabn are in mips16 mode, then the label is
13450 really a mips16 text label. */
13451
13452 static void
13453 s_mips_stab (int type)
13454 {
13455 if (type == 'n')
13456 mips16_mark_labels ();
13457
13458 s_stab (type);
13459 }
13460
13461 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13462
13463 static void
13464 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13465 {
13466 char *name;
13467 int c;
13468 symbolS *symbolP;
13469 expressionS exp;
13470
13471 name = input_line_pointer;
13472 c = get_symbol_end ();
13473 symbolP = symbol_find_or_make (name);
13474 S_SET_WEAK (symbolP);
13475 *input_line_pointer = c;
13476
13477 SKIP_WHITESPACE ();
13478
13479 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13480 {
13481 if (S_IS_DEFINED (symbolP))
13482 {
13483 as_bad ("ignoring attempt to redefine symbol %s",
13484 S_GET_NAME (symbolP));
13485 ignore_rest_of_line ();
13486 return;
13487 }
13488
13489 if (*input_line_pointer == ',')
13490 {
13491 ++input_line_pointer;
13492 SKIP_WHITESPACE ();
13493 }
13494
13495 expression (&exp);
13496 if (exp.X_op != O_symbol)
13497 {
13498 as_bad ("bad .weakext directive");
13499 ignore_rest_of_line ();
13500 return;
13501 }
13502 symbol_set_value_expression (symbolP, &exp);
13503 }
13504
13505 demand_empty_rest_of_line ();
13506 }
13507
13508 /* Parse a register string into a number. Called from the ECOFF code
13509 to parse .frame. The argument is non-zero if this is the frame
13510 register, so that we can record it in mips_frame_reg. */
13511
13512 int
13513 tc_get_register (int frame)
13514 {
13515 unsigned int reg;
13516
13517 SKIP_WHITESPACE ();
13518 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13519 reg = 0;
13520 if (frame)
13521 {
13522 mips_frame_reg = reg != 0 ? reg : SP;
13523 mips_frame_reg_valid = 1;
13524 mips_cprestore_valid = 0;
13525 }
13526 return reg;
13527 }
13528
13529 valueT
13530 md_section_align (asection *seg, valueT addr)
13531 {
13532 int align = bfd_get_section_alignment (stdoutput, seg);
13533
13534 if (IS_ELF)
13535 {
13536 /* We don't need to align ELF sections to the full alignment.
13537 However, Irix 5 may prefer that we align them at least to a 16
13538 byte boundary. We don't bother to align the sections if we
13539 are targeted for an embedded system. */
13540 if (strncmp (TARGET_OS, "elf", 3) == 0)
13541 return addr;
13542 if (align > 4)
13543 align = 4;
13544 }
13545
13546 return ((addr + (1 << align) - 1) & (-1 << align));
13547 }
13548
13549 /* Utility routine, called from above as well. If called while the
13550 input file is still being read, it's only an approximation. (For
13551 example, a symbol may later become defined which appeared to be
13552 undefined earlier.) */
13553
13554 static int
13555 nopic_need_relax (symbolS *sym, int before_relaxing)
13556 {
13557 if (sym == 0)
13558 return 0;
13559
13560 if (g_switch_value > 0)
13561 {
13562 const char *symname;
13563 int change;
13564
13565 /* Find out whether this symbol can be referenced off the $gp
13566 register. It can be if it is smaller than the -G size or if
13567 it is in the .sdata or .sbss section. Certain symbols can
13568 not be referenced off the $gp, although it appears as though
13569 they can. */
13570 symname = S_GET_NAME (sym);
13571 if (symname != (const char *) NULL
13572 && (strcmp (symname, "eprol") == 0
13573 || strcmp (symname, "etext") == 0
13574 || strcmp (symname, "_gp") == 0
13575 || strcmp (symname, "edata") == 0
13576 || strcmp (symname, "_fbss") == 0
13577 || strcmp (symname, "_fdata") == 0
13578 || strcmp (symname, "_ftext") == 0
13579 || strcmp (symname, "end") == 0
13580 || strcmp (symname, "_gp_disp") == 0))
13581 change = 1;
13582 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13583 && (0
13584 #ifndef NO_ECOFF_DEBUGGING
13585 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13586 && (symbol_get_obj (sym)->ecoff_extern_size
13587 <= g_switch_value))
13588 #endif
13589 /* We must defer this decision until after the whole
13590 file has been read, since there might be a .extern
13591 after the first use of this symbol. */
13592 || (before_relaxing
13593 #ifndef NO_ECOFF_DEBUGGING
13594 && symbol_get_obj (sym)->ecoff_extern_size == 0
13595 #endif
13596 && S_GET_VALUE (sym) == 0)
13597 || (S_GET_VALUE (sym) != 0
13598 && S_GET_VALUE (sym) <= g_switch_value)))
13599 change = 0;
13600 else
13601 {
13602 const char *segname;
13603
13604 segname = segment_name (S_GET_SEGMENT (sym));
13605 assert (strcmp (segname, ".lit8") != 0
13606 && strcmp (segname, ".lit4") != 0);
13607 change = (strcmp (segname, ".sdata") != 0
13608 && strcmp (segname, ".sbss") != 0
13609 && strncmp (segname, ".sdata.", 7) != 0
13610 && strncmp (segname, ".sbss.", 6) != 0
13611 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13612 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13613 }
13614 return change;
13615 }
13616 else
13617 /* We are not optimizing for the $gp register. */
13618 return 1;
13619 }
13620
13621
13622 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13623
13624 static bfd_boolean
13625 pic_need_relax (symbolS *sym, asection *segtype)
13626 {
13627 asection *symsec;
13628
13629 /* Handle the case of a symbol equated to another symbol. */
13630 while (symbol_equated_reloc_p (sym))
13631 {
13632 symbolS *n;
13633
13634 /* It's possible to get a loop here in a badly written program. */
13635 n = symbol_get_value_expression (sym)->X_add_symbol;
13636 if (n == sym)
13637 break;
13638 sym = n;
13639 }
13640
13641 if (symbol_section_p (sym))
13642 return TRUE;
13643
13644 symsec = S_GET_SEGMENT (sym);
13645
13646 /* This must duplicate the test in adjust_reloc_syms. */
13647 return (symsec != &bfd_und_section
13648 && symsec != &bfd_abs_section
13649 && !bfd_is_com_section (symsec)
13650 && !s_is_linkonce (sym, segtype)
13651 #ifdef OBJ_ELF
13652 /* A global or weak symbol is treated as external. */
13653 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13654 #endif
13655 );
13656 }
13657
13658
13659 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13660 extended opcode. SEC is the section the frag is in. */
13661
13662 static int
13663 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13664 {
13665 int type;
13666 const struct mips16_immed_operand *op;
13667 offsetT val;
13668 int mintiny, maxtiny;
13669 segT symsec;
13670 fragS *sym_frag;
13671
13672 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13673 return 0;
13674 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13675 return 1;
13676
13677 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13678 op = mips16_immed_operands;
13679 while (op->type != type)
13680 {
13681 ++op;
13682 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13683 }
13684
13685 if (op->unsp)
13686 {
13687 if (type == '<' || type == '>' || type == '[' || type == ']')
13688 {
13689 mintiny = 1;
13690 maxtiny = 1 << op->nbits;
13691 }
13692 else
13693 {
13694 mintiny = 0;
13695 maxtiny = (1 << op->nbits) - 1;
13696 }
13697 }
13698 else
13699 {
13700 mintiny = - (1 << (op->nbits - 1));
13701 maxtiny = (1 << (op->nbits - 1)) - 1;
13702 }
13703
13704 sym_frag = symbol_get_frag (fragp->fr_symbol);
13705 val = S_GET_VALUE (fragp->fr_symbol);
13706 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13707
13708 if (op->pcrel)
13709 {
13710 addressT addr;
13711
13712 /* We won't have the section when we are called from
13713 mips_relax_frag. However, we will always have been called
13714 from md_estimate_size_before_relax first. If this is a
13715 branch to a different section, we mark it as such. If SEC is
13716 NULL, and the frag is not marked, then it must be a branch to
13717 the same section. */
13718 if (sec == NULL)
13719 {
13720 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13721 return 1;
13722 }
13723 else
13724 {
13725 /* Must have been called from md_estimate_size_before_relax. */
13726 if (symsec != sec)
13727 {
13728 fragp->fr_subtype =
13729 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13730
13731 /* FIXME: We should support this, and let the linker
13732 catch branches and loads that are out of range. */
13733 as_bad_where (fragp->fr_file, fragp->fr_line,
13734 _("unsupported PC relative reference to different section"));
13735
13736 return 1;
13737 }
13738 if (fragp != sym_frag && sym_frag->fr_address == 0)
13739 /* Assume non-extended on the first relaxation pass.
13740 The address we have calculated will be bogus if this is
13741 a forward branch to another frag, as the forward frag
13742 will have fr_address == 0. */
13743 return 0;
13744 }
13745
13746 /* In this case, we know for sure that the symbol fragment is in
13747 the same section. If the relax_marker of the symbol fragment
13748 differs from the relax_marker of this fragment, we have not
13749 yet adjusted the symbol fragment fr_address. We want to add
13750 in STRETCH in order to get a better estimate of the address.
13751 This particularly matters because of the shift bits. */
13752 if (stretch != 0
13753 && sym_frag->relax_marker != fragp->relax_marker)
13754 {
13755 fragS *f;
13756
13757 /* Adjust stretch for any alignment frag. Note that if have
13758 been expanding the earlier code, the symbol may be
13759 defined in what appears to be an earlier frag. FIXME:
13760 This doesn't handle the fr_subtype field, which specifies
13761 a maximum number of bytes to skip when doing an
13762 alignment. */
13763 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13764 {
13765 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13766 {
13767 if (stretch < 0)
13768 stretch = - ((- stretch)
13769 & ~ ((1 << (int) f->fr_offset) - 1));
13770 else
13771 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13772 if (stretch == 0)
13773 break;
13774 }
13775 }
13776 if (f != NULL)
13777 val += stretch;
13778 }
13779
13780 addr = fragp->fr_address + fragp->fr_fix;
13781
13782 /* The base address rules are complicated. The base address of
13783 a branch is the following instruction. The base address of a
13784 PC relative load or add is the instruction itself, but if it
13785 is in a delay slot (in which case it can not be extended) use
13786 the address of the instruction whose delay slot it is in. */
13787 if (type == 'p' || type == 'q')
13788 {
13789 addr += 2;
13790
13791 /* If we are currently assuming that this frag should be
13792 extended, then, the current address is two bytes
13793 higher. */
13794 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13795 addr += 2;
13796
13797 /* Ignore the low bit in the target, since it will be set
13798 for a text label. */
13799 if ((val & 1) != 0)
13800 --val;
13801 }
13802 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13803 addr -= 4;
13804 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13805 addr -= 2;
13806
13807 val -= addr & ~ ((1 << op->shift) - 1);
13808
13809 /* Branch offsets have an implicit 0 in the lowest bit. */
13810 if (type == 'p' || type == 'q')
13811 val /= 2;
13812
13813 /* If any of the shifted bits are set, we must use an extended
13814 opcode. If the address depends on the size of this
13815 instruction, this can lead to a loop, so we arrange to always
13816 use an extended opcode. We only check this when we are in
13817 the main relaxation loop, when SEC is NULL. */
13818 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13819 {
13820 fragp->fr_subtype =
13821 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13822 return 1;
13823 }
13824
13825 /* If we are about to mark a frag as extended because the value
13826 is precisely maxtiny + 1, then there is a chance of an
13827 infinite loop as in the following code:
13828 la $4,foo
13829 .skip 1020
13830 .align 2
13831 foo:
13832 In this case when the la is extended, foo is 0x3fc bytes
13833 away, so the la can be shrunk, but then foo is 0x400 away, so
13834 the la must be extended. To avoid this loop, we mark the
13835 frag as extended if it was small, and is about to become
13836 extended with a value of maxtiny + 1. */
13837 if (val == ((maxtiny + 1) << op->shift)
13838 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
13839 && sec == NULL)
13840 {
13841 fragp->fr_subtype =
13842 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13843 return 1;
13844 }
13845 }
13846 else if (symsec != absolute_section && sec != NULL)
13847 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
13848
13849 if ((val & ((1 << op->shift) - 1)) != 0
13850 || val < (mintiny << op->shift)
13851 || val > (maxtiny << op->shift))
13852 return 1;
13853 else
13854 return 0;
13855 }
13856
13857 /* Compute the length of a branch sequence, and adjust the
13858 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
13859 worst-case length is computed, with UPDATE being used to indicate
13860 whether an unconditional (-1), branch-likely (+1) or regular (0)
13861 branch is to be computed. */
13862 static int
13863 relaxed_branch_length (fragS *fragp, asection *sec, int update)
13864 {
13865 bfd_boolean toofar;
13866 int length;
13867
13868 if (fragp
13869 && S_IS_DEFINED (fragp->fr_symbol)
13870 && sec == S_GET_SEGMENT (fragp->fr_symbol))
13871 {
13872 addressT addr;
13873 offsetT val;
13874
13875 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
13876
13877 addr = fragp->fr_address + fragp->fr_fix + 4;
13878
13879 val -= addr;
13880
13881 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
13882 }
13883 else if (fragp)
13884 /* If the symbol is not defined or it's in a different segment,
13885 assume the user knows what's going on and emit a short
13886 branch. */
13887 toofar = FALSE;
13888 else
13889 toofar = TRUE;
13890
13891 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
13892 fragp->fr_subtype
13893 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
13894 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
13895 RELAX_BRANCH_LINK (fragp->fr_subtype),
13896 toofar);
13897
13898 length = 4;
13899 if (toofar)
13900 {
13901 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
13902 length += 8;
13903
13904 if (mips_pic != NO_PIC)
13905 {
13906 /* Additional space for PIC loading of target address. */
13907 length += 8;
13908 if (mips_opts.isa == ISA_MIPS1)
13909 /* Additional space for $at-stabilizing nop. */
13910 length += 4;
13911 }
13912
13913 /* If branch is conditional. */
13914 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
13915 length += 8;
13916 }
13917
13918 return length;
13919 }
13920
13921 /* Estimate the size of a frag before relaxing. Unless this is the
13922 mips16, we are not really relaxing here, and the final size is
13923 encoded in the subtype information. For the mips16, we have to
13924 decide whether we are using an extended opcode or not. */
13925
13926 int
13927 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
13928 {
13929 int change;
13930
13931 if (RELAX_BRANCH_P (fragp->fr_subtype))
13932 {
13933
13934 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
13935
13936 return fragp->fr_var;
13937 }
13938
13939 if (RELAX_MIPS16_P (fragp->fr_subtype))
13940 /* We don't want to modify the EXTENDED bit here; it might get us
13941 into infinite loops. We change it only in mips_relax_frag(). */
13942 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
13943
13944 if (mips_pic == NO_PIC)
13945 change = nopic_need_relax (fragp->fr_symbol, 0);
13946 else if (mips_pic == SVR4_PIC)
13947 change = pic_need_relax (fragp->fr_symbol, segtype);
13948 else if (mips_pic == VXWORKS_PIC)
13949 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
13950 change = 0;
13951 else
13952 abort ();
13953
13954 if (change)
13955 {
13956 fragp->fr_subtype |= RELAX_USE_SECOND;
13957 return -RELAX_FIRST (fragp->fr_subtype);
13958 }
13959 else
13960 return -RELAX_SECOND (fragp->fr_subtype);
13961 }
13962
13963 /* This is called to see whether a reloc against a defined symbol
13964 should be converted into a reloc against a section. */
13965
13966 int
13967 mips_fix_adjustable (fixS *fixp)
13968 {
13969 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
13970 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13971 return 0;
13972
13973 if (fixp->fx_addsy == NULL)
13974 return 1;
13975
13976 /* If symbol SYM is in a mergeable section, relocations of the form
13977 SYM + 0 can usually be made section-relative. The mergeable data
13978 is then identified by the section offset rather than by the symbol.
13979
13980 However, if we're generating REL LO16 relocations, the offset is split
13981 between the LO16 and parterning high part relocation. The linker will
13982 need to recalculate the complete offset in order to correctly identify
13983 the merge data.
13984
13985 The linker has traditionally not looked for the parterning high part
13986 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
13987 placed anywhere. Rather than break backwards compatibility by changing
13988 this, it seems better not to force the issue, and instead keep the
13989 original symbol. This will work with either linker behavior. */
13990 if ((lo16_reloc_p (fixp->fx_r_type)
13991 || reloc_needs_lo_p (fixp->fx_r_type))
13992 && HAVE_IN_PLACE_ADDENDS
13993 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
13994 return 0;
13995
13996 #ifdef OBJ_ELF
13997 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
13998 to a floating-point stub. The same is true for non-R_MIPS16_26
13999 relocations against MIPS16 functions; in this case, the stub becomes
14000 the function's canonical address.
14001
14002 Floating-point stubs are stored in unique .mips16.call.* or
14003 .mips16.fn.* sections. If a stub T for function F is in section S,
14004 the first relocation in section S must be against F; this is how the
14005 linker determines the target function. All relocations that might
14006 resolve to T must also be against F. We therefore have the following
14007 restrictions, which are given in an intentionally-redundant way:
14008
14009 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14010 symbols.
14011
14012 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14013 if that stub might be used.
14014
14015 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14016 symbols.
14017
14018 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14019 that stub might be used.
14020
14021 There is a further restriction:
14022
14023 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14024 on targets with in-place addends; the relocation field cannot
14025 encode the low bit.
14026
14027 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14028 against a MIPS16 symbol.
14029
14030 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14031 relocation against some symbol R, no relocation against R may be
14032 reduced. (Note that this deals with (2) as well as (1) because
14033 relocations against global symbols will never be reduced on ELF
14034 targets.) This approach is a little simpler than trying to detect
14035 stub sections, and gives the "all or nothing" per-symbol consistency
14036 that we have for MIPS16 symbols. */
14037 if (IS_ELF
14038 && fixp->fx_subsy == NULL
14039 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14040 || *symbol_get_tc (fixp->fx_addsy)))
14041 return 0;
14042 #endif
14043
14044 return 1;
14045 }
14046
14047 /* Translate internal representation of relocation info to BFD target
14048 format. */
14049
14050 arelent **
14051 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14052 {
14053 static arelent *retval[4];
14054 arelent *reloc;
14055 bfd_reloc_code_real_type code;
14056
14057 memset (retval, 0, sizeof(retval));
14058 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14059 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14060 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14061 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14062
14063 if (fixp->fx_pcrel)
14064 {
14065 assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14066
14067 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14068 Relocations want only the symbol offset. */
14069 reloc->addend = fixp->fx_addnumber + reloc->address;
14070 if (!IS_ELF)
14071 {
14072 /* A gruesome hack which is a result of the gruesome gas
14073 reloc handling. What's worse, for COFF (as opposed to
14074 ECOFF), we might need yet another copy of reloc->address.
14075 See bfd_install_relocation. */
14076 reloc->addend += reloc->address;
14077 }
14078 }
14079 else
14080 reloc->addend = fixp->fx_addnumber;
14081
14082 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14083 entry to be used in the relocation's section offset. */
14084 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14085 {
14086 reloc->address = reloc->addend;
14087 reloc->addend = 0;
14088 }
14089
14090 code = fixp->fx_r_type;
14091
14092 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14093 if (reloc->howto == NULL)
14094 {
14095 as_bad_where (fixp->fx_file, fixp->fx_line,
14096 _("Can not represent %s relocation in this object file format"),
14097 bfd_get_reloc_code_name (code));
14098 retval[0] = NULL;
14099 }
14100
14101 return retval;
14102 }
14103
14104 /* Relax a machine dependent frag. This returns the amount by which
14105 the current size of the frag should change. */
14106
14107 int
14108 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14109 {
14110 if (RELAX_BRANCH_P (fragp->fr_subtype))
14111 {
14112 offsetT old_var = fragp->fr_var;
14113
14114 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14115
14116 return fragp->fr_var - old_var;
14117 }
14118
14119 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14120 return 0;
14121
14122 if (mips16_extended_frag (fragp, NULL, stretch))
14123 {
14124 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14125 return 0;
14126 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14127 return 2;
14128 }
14129 else
14130 {
14131 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14132 return 0;
14133 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14134 return -2;
14135 }
14136
14137 return 0;
14138 }
14139
14140 /* Convert a machine dependent frag. */
14141
14142 void
14143 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14144 {
14145 if (RELAX_BRANCH_P (fragp->fr_subtype))
14146 {
14147 bfd_byte *buf;
14148 unsigned long insn;
14149 expressionS exp;
14150 fixS *fixp;
14151
14152 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14153
14154 if (target_big_endian)
14155 insn = bfd_getb32 (buf);
14156 else
14157 insn = bfd_getl32 (buf);
14158
14159 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14160 {
14161 /* We generate a fixup instead of applying it right now
14162 because, if there are linker relaxations, we're going to
14163 need the relocations. */
14164 exp.X_op = O_symbol;
14165 exp.X_add_symbol = fragp->fr_symbol;
14166 exp.X_add_number = fragp->fr_offset;
14167
14168 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14169 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14170 fixp->fx_file = fragp->fr_file;
14171 fixp->fx_line = fragp->fr_line;
14172
14173 md_number_to_chars ((char *) buf, insn, 4);
14174 buf += 4;
14175 }
14176 else
14177 {
14178 int i;
14179
14180 as_warn_where (fragp->fr_file, fragp->fr_line,
14181 _("relaxed out-of-range branch into a jump"));
14182
14183 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14184 goto uncond;
14185
14186 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14187 {
14188 /* Reverse the branch. */
14189 switch ((insn >> 28) & 0xf)
14190 {
14191 case 4:
14192 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14193 have the condition reversed by tweaking a single
14194 bit, and their opcodes all have 0x4???????. */
14195 assert ((insn & 0xf1000000) == 0x41000000);
14196 insn ^= 0x00010000;
14197 break;
14198
14199 case 0:
14200 /* bltz 0x04000000 bgez 0x04010000
14201 bltzal 0x04100000 bgezal 0x04110000 */
14202 assert ((insn & 0xfc0e0000) == 0x04000000);
14203 insn ^= 0x00010000;
14204 break;
14205
14206 case 1:
14207 /* beq 0x10000000 bne 0x14000000
14208 blez 0x18000000 bgtz 0x1c000000 */
14209 insn ^= 0x04000000;
14210 break;
14211
14212 default:
14213 abort ();
14214 }
14215 }
14216
14217 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14218 {
14219 /* Clear the and-link bit. */
14220 assert ((insn & 0xfc1c0000) == 0x04100000);
14221
14222 /* bltzal 0x04100000 bgezal 0x04110000
14223 bltzall 0x04120000 bgezall 0x04130000 */
14224 insn &= ~0x00100000;
14225 }
14226
14227 /* Branch over the branch (if the branch was likely) or the
14228 full jump (not likely case). Compute the offset from the
14229 current instruction to branch to. */
14230 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14231 i = 16;
14232 else
14233 {
14234 /* How many bytes in instructions we've already emitted? */
14235 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14236 /* How many bytes in instructions from here to the end? */
14237 i = fragp->fr_var - i;
14238 }
14239 /* Convert to instruction count. */
14240 i >>= 2;
14241 /* Branch counts from the next instruction. */
14242 i--;
14243 insn |= i;
14244 /* Branch over the jump. */
14245 md_number_to_chars ((char *) buf, insn, 4);
14246 buf += 4;
14247
14248 /* nop */
14249 md_number_to_chars ((char *) buf, 0, 4);
14250 buf += 4;
14251
14252 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14253 {
14254 /* beql $0, $0, 2f */
14255 insn = 0x50000000;
14256 /* Compute the PC offset from the current instruction to
14257 the end of the variable frag. */
14258 /* How many bytes in instructions we've already emitted? */
14259 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14260 /* How many bytes in instructions from here to the end? */
14261 i = fragp->fr_var - i;
14262 /* Convert to instruction count. */
14263 i >>= 2;
14264 /* Don't decrement i, because we want to branch over the
14265 delay slot. */
14266
14267 insn |= i;
14268 md_number_to_chars ((char *) buf, insn, 4);
14269 buf += 4;
14270
14271 md_number_to_chars ((char *) buf, 0, 4);
14272 buf += 4;
14273 }
14274
14275 uncond:
14276 if (mips_pic == NO_PIC)
14277 {
14278 /* j or jal. */
14279 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14280 ? 0x0c000000 : 0x08000000);
14281 exp.X_op = O_symbol;
14282 exp.X_add_symbol = fragp->fr_symbol;
14283 exp.X_add_number = fragp->fr_offset;
14284
14285 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14286 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14287 fixp->fx_file = fragp->fr_file;
14288 fixp->fx_line = fragp->fr_line;
14289
14290 md_number_to_chars ((char *) buf, insn, 4);
14291 buf += 4;
14292 }
14293 else
14294 {
14295 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14296 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14297 exp.X_op = O_symbol;
14298 exp.X_add_symbol = fragp->fr_symbol;
14299 exp.X_add_number = fragp->fr_offset;
14300
14301 if (fragp->fr_offset)
14302 {
14303 exp.X_add_symbol = make_expr_symbol (&exp);
14304 exp.X_add_number = 0;
14305 }
14306
14307 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14308 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14309 fixp->fx_file = fragp->fr_file;
14310 fixp->fx_line = fragp->fr_line;
14311
14312 md_number_to_chars ((char *) buf, insn, 4);
14313 buf += 4;
14314
14315 if (mips_opts.isa == ISA_MIPS1)
14316 {
14317 /* nop */
14318 md_number_to_chars ((char *) buf, 0, 4);
14319 buf += 4;
14320 }
14321
14322 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14323 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14324
14325 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14326 4, &exp, FALSE, BFD_RELOC_LO16);
14327 fixp->fx_file = fragp->fr_file;
14328 fixp->fx_line = fragp->fr_line;
14329
14330 md_number_to_chars ((char *) buf, insn, 4);
14331 buf += 4;
14332
14333 /* j(al)r $at. */
14334 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14335 insn = 0x0020f809;
14336 else
14337 insn = 0x00200008;
14338
14339 md_number_to_chars ((char *) buf, insn, 4);
14340 buf += 4;
14341 }
14342 }
14343
14344 assert (buf == (bfd_byte *)fragp->fr_literal
14345 + fragp->fr_fix + fragp->fr_var);
14346
14347 fragp->fr_fix += fragp->fr_var;
14348
14349 return;
14350 }
14351
14352 if (RELAX_MIPS16_P (fragp->fr_subtype))
14353 {
14354 int type;
14355 const struct mips16_immed_operand *op;
14356 bfd_boolean small, ext;
14357 offsetT val;
14358 bfd_byte *buf;
14359 unsigned long insn;
14360 bfd_boolean use_extend;
14361 unsigned short extend;
14362
14363 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14364 op = mips16_immed_operands;
14365 while (op->type != type)
14366 ++op;
14367
14368 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14369 {
14370 small = FALSE;
14371 ext = TRUE;
14372 }
14373 else
14374 {
14375 small = TRUE;
14376 ext = FALSE;
14377 }
14378
14379 resolve_symbol_value (fragp->fr_symbol);
14380 val = S_GET_VALUE (fragp->fr_symbol);
14381 if (op->pcrel)
14382 {
14383 addressT addr;
14384
14385 addr = fragp->fr_address + fragp->fr_fix;
14386
14387 /* The rules for the base address of a PC relative reloc are
14388 complicated; see mips16_extended_frag. */
14389 if (type == 'p' || type == 'q')
14390 {
14391 addr += 2;
14392 if (ext)
14393 addr += 2;
14394 /* Ignore the low bit in the target, since it will be
14395 set for a text label. */
14396 if ((val & 1) != 0)
14397 --val;
14398 }
14399 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14400 addr -= 4;
14401 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14402 addr -= 2;
14403
14404 addr &= ~ (addressT) ((1 << op->shift) - 1);
14405 val -= addr;
14406
14407 /* Make sure the section winds up with the alignment we have
14408 assumed. */
14409 if (op->shift > 0)
14410 record_alignment (asec, op->shift);
14411 }
14412
14413 if (ext
14414 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14415 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14416 as_warn_where (fragp->fr_file, fragp->fr_line,
14417 _("extended instruction in delay slot"));
14418
14419 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14420
14421 if (target_big_endian)
14422 insn = bfd_getb16 (buf);
14423 else
14424 insn = bfd_getl16 (buf);
14425
14426 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14427 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14428 small, ext, &insn, &use_extend, &extend);
14429
14430 if (use_extend)
14431 {
14432 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14433 fragp->fr_fix += 2;
14434 buf += 2;
14435 }
14436
14437 md_number_to_chars ((char *) buf, insn, 2);
14438 fragp->fr_fix += 2;
14439 buf += 2;
14440 }
14441 else
14442 {
14443 int first, second;
14444 fixS *fixp;
14445
14446 first = RELAX_FIRST (fragp->fr_subtype);
14447 second = RELAX_SECOND (fragp->fr_subtype);
14448 fixp = (fixS *) fragp->fr_opcode;
14449
14450 /* Possibly emit a warning if we've chosen the longer option. */
14451 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14452 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14453 {
14454 const char *msg = macro_warning (fragp->fr_subtype);
14455 if (msg != 0)
14456 as_warn_where (fragp->fr_file, fragp->fr_line, msg);
14457 }
14458
14459 /* Go through all the fixups for the first sequence. Disable them
14460 (by marking them as done) if we're going to use the second
14461 sequence instead. */
14462 while (fixp
14463 && fixp->fx_frag == fragp
14464 && fixp->fx_where < fragp->fr_fix - second)
14465 {
14466 if (fragp->fr_subtype & RELAX_USE_SECOND)
14467 fixp->fx_done = 1;
14468 fixp = fixp->fx_next;
14469 }
14470
14471 /* Go through the fixups for the second sequence. Disable them if
14472 we're going to use the first sequence, otherwise adjust their
14473 addresses to account for the relaxation. */
14474 while (fixp && fixp->fx_frag == fragp)
14475 {
14476 if (fragp->fr_subtype & RELAX_USE_SECOND)
14477 fixp->fx_where -= first;
14478 else
14479 fixp->fx_done = 1;
14480 fixp = fixp->fx_next;
14481 }
14482
14483 /* Now modify the frag contents. */
14484 if (fragp->fr_subtype & RELAX_USE_SECOND)
14485 {
14486 char *start;
14487
14488 start = fragp->fr_literal + fragp->fr_fix - first - second;
14489 memmove (start, start + first, second);
14490 fragp->fr_fix -= first;
14491 }
14492 else
14493 fragp->fr_fix -= second;
14494 }
14495 }
14496
14497 #ifdef OBJ_ELF
14498
14499 /* This function is called after the relocs have been generated.
14500 We've been storing mips16 text labels as odd. Here we convert them
14501 back to even for the convenience of the debugger. */
14502
14503 void
14504 mips_frob_file_after_relocs (void)
14505 {
14506 asymbol **syms;
14507 unsigned int count, i;
14508
14509 if (!IS_ELF)
14510 return;
14511
14512 syms = bfd_get_outsymbols (stdoutput);
14513 count = bfd_get_symcount (stdoutput);
14514 for (i = 0; i < count; i++, syms++)
14515 {
14516 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14517 && ((*syms)->value & 1) != 0)
14518 {
14519 (*syms)->value &= ~1;
14520 /* If the symbol has an odd size, it was probably computed
14521 incorrectly, so adjust that as well. */
14522 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14523 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14524 }
14525 }
14526 }
14527
14528 #endif
14529
14530 /* This function is called whenever a label is defined. It is used
14531 when handling branch delays; if a branch has a label, we assume we
14532 can not move it. */
14533
14534 void
14535 mips_define_label (symbolS *sym)
14536 {
14537 segment_info_type *si = seg_info (now_seg);
14538 struct insn_label_list *l;
14539
14540 if (free_insn_labels == NULL)
14541 l = (struct insn_label_list *) xmalloc (sizeof *l);
14542 else
14543 {
14544 l = free_insn_labels;
14545 free_insn_labels = l->next;
14546 }
14547
14548 l->label = sym;
14549 l->next = si->label_list;
14550 si->label_list = l;
14551
14552 #ifdef OBJ_ELF
14553 dwarf2_emit_label (sym);
14554 #endif
14555 }
14556 \f
14557 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14558
14559 /* Some special processing for a MIPS ELF file. */
14560
14561 void
14562 mips_elf_final_processing (void)
14563 {
14564 /* Write out the register information. */
14565 if (mips_abi != N64_ABI)
14566 {
14567 Elf32_RegInfo s;
14568
14569 s.ri_gprmask = mips_gprmask;
14570 s.ri_cprmask[0] = mips_cprmask[0];
14571 s.ri_cprmask[1] = mips_cprmask[1];
14572 s.ri_cprmask[2] = mips_cprmask[2];
14573 s.ri_cprmask[3] = mips_cprmask[3];
14574 /* The gp_value field is set by the MIPS ELF backend. */
14575
14576 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14577 ((Elf32_External_RegInfo *)
14578 mips_regmask_frag));
14579 }
14580 else
14581 {
14582 Elf64_Internal_RegInfo s;
14583
14584 s.ri_gprmask = mips_gprmask;
14585 s.ri_pad = 0;
14586 s.ri_cprmask[0] = mips_cprmask[0];
14587 s.ri_cprmask[1] = mips_cprmask[1];
14588 s.ri_cprmask[2] = mips_cprmask[2];
14589 s.ri_cprmask[3] = mips_cprmask[3];
14590 /* The gp_value field is set by the MIPS ELF backend. */
14591
14592 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14593 ((Elf64_External_RegInfo *)
14594 mips_regmask_frag));
14595 }
14596
14597 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14598 sort of BFD interface for this. */
14599 if (mips_any_noreorder)
14600 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14601 if (mips_pic != NO_PIC)
14602 {
14603 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14604 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14605 }
14606 if (mips_abicalls)
14607 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14608
14609 /* Set MIPS ELF flags for ASEs. */
14610 /* We may need to define a new flag for DSP ASE, and set this flag when
14611 file_ase_dsp is true. */
14612 /* Same for DSP R2. */
14613 /* We may need to define a new flag for MT ASE, and set this flag when
14614 file_ase_mt is true. */
14615 if (file_ase_mips16)
14616 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14617 #if 0 /* XXX FIXME */
14618 if (file_ase_mips3d)
14619 elf_elfheader (stdoutput)->e_flags |= ???;
14620 #endif
14621 if (file_ase_mdmx)
14622 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14623
14624 /* Set the MIPS ELF ABI flags. */
14625 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14626 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14627 else if (mips_abi == O64_ABI)
14628 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14629 else if (mips_abi == EABI_ABI)
14630 {
14631 if (!file_mips_gp32)
14632 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14633 else
14634 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14635 }
14636 else if (mips_abi == N32_ABI)
14637 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14638
14639 /* Nothing to do for N64_ABI. */
14640
14641 if (mips_32bitmode)
14642 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14643
14644 #if 0 /* XXX FIXME */
14645 /* 32 bit code with 64 bit FP registers. */
14646 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14647 elf_elfheader (stdoutput)->e_flags |= ???;
14648 #endif
14649 }
14650
14651 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14652 \f
14653 typedef struct proc {
14654 symbolS *func_sym;
14655 symbolS *func_end_sym;
14656 unsigned long reg_mask;
14657 unsigned long reg_offset;
14658 unsigned long fpreg_mask;
14659 unsigned long fpreg_offset;
14660 unsigned long frame_offset;
14661 unsigned long frame_reg;
14662 unsigned long pc_reg;
14663 } procS;
14664
14665 static procS cur_proc;
14666 static procS *cur_proc_ptr;
14667 static int numprocs;
14668
14669 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14670 nop as "0". */
14671
14672 char
14673 mips_nop_opcode (void)
14674 {
14675 return seg_info (now_seg)->tc_segment_info_data.mips16;
14676 }
14677
14678 /* Fill in an rs_align_code fragment. This only needs to do something
14679 for MIPS16 code, where 0 is not a nop. */
14680
14681 void
14682 mips_handle_align (fragS *fragp)
14683 {
14684 char *p;
14685
14686 if (fragp->fr_type != rs_align_code)
14687 return;
14688
14689 p = fragp->fr_literal + fragp->fr_fix;
14690 if (*p)
14691 {
14692 int bytes;
14693
14694 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14695 if (bytes & 1)
14696 {
14697 *p++ = 0;
14698 fragp->fr_fix++;
14699 }
14700 md_number_to_chars (p, mips16_nop_insn.insn_opcode, 2);
14701 fragp->fr_var = 2;
14702 }
14703 }
14704
14705 static void
14706 md_obj_begin (void)
14707 {
14708 }
14709
14710 static void
14711 md_obj_end (void)
14712 {
14713 /* Check for premature end, nesting errors, etc. */
14714 if (cur_proc_ptr)
14715 as_warn (_("missing .end at end of assembly"));
14716 }
14717
14718 static long
14719 get_number (void)
14720 {
14721 int negative = 0;
14722 long val = 0;
14723
14724 if (*input_line_pointer == '-')
14725 {
14726 ++input_line_pointer;
14727 negative = 1;
14728 }
14729 if (!ISDIGIT (*input_line_pointer))
14730 as_bad (_("expected simple number"));
14731 if (input_line_pointer[0] == '0')
14732 {
14733 if (input_line_pointer[1] == 'x')
14734 {
14735 input_line_pointer += 2;
14736 while (ISXDIGIT (*input_line_pointer))
14737 {
14738 val <<= 4;
14739 val |= hex_value (*input_line_pointer++);
14740 }
14741 return negative ? -val : val;
14742 }
14743 else
14744 {
14745 ++input_line_pointer;
14746 while (ISDIGIT (*input_line_pointer))
14747 {
14748 val <<= 3;
14749 val |= *input_line_pointer++ - '0';
14750 }
14751 return negative ? -val : val;
14752 }
14753 }
14754 if (!ISDIGIT (*input_line_pointer))
14755 {
14756 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14757 *input_line_pointer, *input_line_pointer);
14758 as_warn (_("invalid number"));
14759 return -1;
14760 }
14761 while (ISDIGIT (*input_line_pointer))
14762 {
14763 val *= 10;
14764 val += *input_line_pointer++ - '0';
14765 }
14766 return negative ? -val : val;
14767 }
14768
14769 /* The .file directive; just like the usual .file directive, but there
14770 is an initial number which is the ECOFF file index. In the non-ECOFF
14771 case .file implies DWARF-2. */
14772
14773 static void
14774 s_mips_file (int x ATTRIBUTE_UNUSED)
14775 {
14776 static int first_file_directive = 0;
14777
14778 if (ECOFF_DEBUGGING)
14779 {
14780 get_number ();
14781 s_app_file (0);
14782 }
14783 else
14784 {
14785 char *filename;
14786
14787 filename = dwarf2_directive_file (0);
14788
14789 /* Versions of GCC up to 3.1 start files with a ".file"
14790 directive even for stabs output. Make sure that this
14791 ".file" is handled. Note that you need a version of GCC
14792 after 3.1 in order to support DWARF-2 on MIPS. */
14793 if (filename != NULL && ! first_file_directive)
14794 {
14795 (void) new_logical_line (filename, -1);
14796 s_app_file_string (filename, 0);
14797 }
14798 first_file_directive = 1;
14799 }
14800 }
14801
14802 /* The .loc directive, implying DWARF-2. */
14803
14804 static void
14805 s_mips_loc (int x ATTRIBUTE_UNUSED)
14806 {
14807 if (!ECOFF_DEBUGGING)
14808 dwarf2_directive_loc (0);
14809 }
14810
14811 /* The .end directive. */
14812
14813 static void
14814 s_mips_end (int x ATTRIBUTE_UNUSED)
14815 {
14816 symbolS *p;
14817
14818 /* Following functions need their own .frame and .cprestore directives. */
14819 mips_frame_reg_valid = 0;
14820 mips_cprestore_valid = 0;
14821
14822 if (!is_end_of_line[(unsigned char) *input_line_pointer])
14823 {
14824 p = get_symbol ();
14825 demand_empty_rest_of_line ();
14826 }
14827 else
14828 p = NULL;
14829
14830 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14831 as_warn (_(".end not in text section"));
14832
14833 if (!cur_proc_ptr)
14834 {
14835 as_warn (_(".end directive without a preceding .ent directive."));
14836 demand_empty_rest_of_line ();
14837 return;
14838 }
14839
14840 if (p != NULL)
14841 {
14842 assert (S_GET_NAME (p));
14843 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
14844 as_warn (_(".end symbol does not match .ent symbol."));
14845
14846 if (debug_type == DEBUG_STABS)
14847 stabs_generate_asm_endfunc (S_GET_NAME (p),
14848 S_GET_NAME (p));
14849 }
14850 else
14851 as_warn (_(".end directive missing or unknown symbol"));
14852
14853 #ifdef OBJ_ELF
14854 /* Create an expression to calculate the size of the function. */
14855 if (p && cur_proc_ptr)
14856 {
14857 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
14858 expressionS *exp = xmalloc (sizeof (expressionS));
14859
14860 obj->size = exp;
14861 exp->X_op = O_subtract;
14862 exp->X_add_symbol = symbol_temp_new_now ();
14863 exp->X_op_symbol = p;
14864 exp->X_add_number = 0;
14865
14866 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
14867 }
14868
14869 /* Generate a .pdr section. */
14870 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
14871 {
14872 segT saved_seg = now_seg;
14873 subsegT saved_subseg = now_subseg;
14874 valueT dot;
14875 expressionS exp;
14876 char *fragp;
14877
14878 dot = frag_now_fix ();
14879
14880 #ifdef md_flush_pending_output
14881 md_flush_pending_output ();
14882 #endif
14883
14884 assert (pdr_seg);
14885 subseg_set (pdr_seg, 0);
14886
14887 /* Write the symbol. */
14888 exp.X_op = O_symbol;
14889 exp.X_add_symbol = p;
14890 exp.X_add_number = 0;
14891 emit_expr (&exp, 4);
14892
14893 fragp = frag_more (7 * 4);
14894
14895 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
14896 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
14897 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
14898 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
14899 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
14900 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
14901 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
14902
14903 subseg_set (saved_seg, saved_subseg);
14904 }
14905 #endif /* OBJ_ELF */
14906
14907 cur_proc_ptr = NULL;
14908 }
14909
14910 /* The .aent and .ent directives. */
14911
14912 static void
14913 s_mips_ent (int aent)
14914 {
14915 symbolS *symbolP;
14916
14917 symbolP = get_symbol ();
14918 if (*input_line_pointer == ',')
14919 ++input_line_pointer;
14920 SKIP_WHITESPACE ();
14921 if (ISDIGIT (*input_line_pointer)
14922 || *input_line_pointer == '-')
14923 get_number ();
14924
14925 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14926 as_warn (_(".ent or .aent not in text section."));
14927
14928 if (!aent && cur_proc_ptr)
14929 as_warn (_("missing .end"));
14930
14931 if (!aent)
14932 {
14933 /* This function needs its own .frame and .cprestore directives. */
14934 mips_frame_reg_valid = 0;
14935 mips_cprestore_valid = 0;
14936
14937 cur_proc_ptr = &cur_proc;
14938 memset (cur_proc_ptr, '\0', sizeof (procS));
14939
14940 cur_proc_ptr->func_sym = symbolP;
14941
14942 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
14943
14944 ++numprocs;
14945
14946 if (debug_type == DEBUG_STABS)
14947 stabs_generate_asm_func (S_GET_NAME (symbolP),
14948 S_GET_NAME (symbolP));
14949 }
14950
14951 demand_empty_rest_of_line ();
14952 }
14953
14954 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
14955 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
14956 s_mips_frame is used so that we can set the PDR information correctly.
14957 We can't use the ecoff routines because they make reference to the ecoff
14958 symbol table (in the mdebug section). */
14959
14960 static void
14961 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
14962 {
14963 #ifdef OBJ_ELF
14964 if (IS_ELF && !ECOFF_DEBUGGING)
14965 {
14966 long val;
14967
14968 if (cur_proc_ptr == (procS *) NULL)
14969 {
14970 as_warn (_(".frame outside of .ent"));
14971 demand_empty_rest_of_line ();
14972 return;
14973 }
14974
14975 cur_proc_ptr->frame_reg = tc_get_register (1);
14976
14977 SKIP_WHITESPACE ();
14978 if (*input_line_pointer++ != ','
14979 || get_absolute_expression_and_terminator (&val) != ',')
14980 {
14981 as_warn (_("Bad .frame directive"));
14982 --input_line_pointer;
14983 demand_empty_rest_of_line ();
14984 return;
14985 }
14986
14987 cur_proc_ptr->frame_offset = val;
14988 cur_proc_ptr->pc_reg = tc_get_register (0);
14989
14990 demand_empty_rest_of_line ();
14991 }
14992 else
14993 #endif /* OBJ_ELF */
14994 s_ignore (ignore);
14995 }
14996
14997 /* The .fmask and .mask directives. If the mdebug section is present
14998 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
14999 embedded targets, s_mips_mask is used so that we can set the PDR
15000 information correctly. We can't use the ecoff routines because they
15001 make reference to the ecoff symbol table (in the mdebug section). */
15002
15003 static void
15004 s_mips_mask (int reg_type)
15005 {
15006 #ifdef OBJ_ELF
15007 if (IS_ELF && !ECOFF_DEBUGGING)
15008 {
15009 long mask, off;
15010
15011 if (cur_proc_ptr == (procS *) NULL)
15012 {
15013 as_warn (_(".mask/.fmask outside of .ent"));
15014 demand_empty_rest_of_line ();
15015 return;
15016 }
15017
15018 if (get_absolute_expression_and_terminator (&mask) != ',')
15019 {
15020 as_warn (_("Bad .mask/.fmask directive"));
15021 --input_line_pointer;
15022 demand_empty_rest_of_line ();
15023 return;
15024 }
15025
15026 off = get_absolute_expression ();
15027
15028 if (reg_type == 'F')
15029 {
15030 cur_proc_ptr->fpreg_mask = mask;
15031 cur_proc_ptr->fpreg_offset = off;
15032 }
15033 else
15034 {
15035 cur_proc_ptr->reg_mask = mask;
15036 cur_proc_ptr->reg_offset = off;
15037 }
15038
15039 demand_empty_rest_of_line ();
15040 }
15041 else
15042 #endif /* OBJ_ELF */
15043 s_ignore (reg_type);
15044 }
15045
15046 /* A table describing all the processors gas knows about. Names are
15047 matched in the order listed.
15048
15049 To ease comparison, please keep this table in the same order as
15050 gcc's mips_cpu_info_table[]. */
15051 static const struct mips_cpu_info mips_cpu_info_table[] =
15052 {
15053 /* Entries for generic ISAs */
15054 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15055 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15056 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15057 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15058 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15059 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15060 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15061 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15062 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15063
15064 /* MIPS I */
15065 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15066 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15067 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15068
15069 /* MIPS II */
15070 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15071
15072 /* MIPS III */
15073 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15074 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15075 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15076 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15077 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15078 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15079 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15080 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15081 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15082 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15083 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15084 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15085 /* ST Microelectronics Loongson 2E and 2F cores */
15086 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15087 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15088
15089 /* MIPS IV */
15090 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15091 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15092 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15093 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15094 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15095 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15096 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15097 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15098 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15099 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15100 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15101 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15102 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15103
15104 /* MIPS 32 */
15105 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15106 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15107 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15108 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15109
15110 /* MIPS 32 Release 2 */
15111 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15112 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15113 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15114 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15115 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15116 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15117 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15118 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15119 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15120 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15121 /* Deprecated forms of the above. */
15122 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15123 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15124 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15125 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15126 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15127 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15128 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15129 /* Deprecated forms of the above. */
15130 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15131 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15132 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15133 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15134 ISA_MIPS32R2, CPU_MIPS32R2 },
15135 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15136 ISA_MIPS32R2, CPU_MIPS32R2 },
15137 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15138 ISA_MIPS32R2, CPU_MIPS32R2 },
15139 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15140 ISA_MIPS32R2, CPU_MIPS32R2 },
15141 /* Deprecated forms of the above. */
15142 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15143 ISA_MIPS32R2, CPU_MIPS32R2 },
15144 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15145 ISA_MIPS32R2, CPU_MIPS32R2 },
15146 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15147 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15148 ISA_MIPS32R2, CPU_MIPS32R2 },
15149 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15150 ISA_MIPS32R2, CPU_MIPS32R2 },
15151 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15152 ISA_MIPS32R2, CPU_MIPS32R2 },
15153 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15154 ISA_MIPS32R2, CPU_MIPS32R2 },
15155 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15156 ISA_MIPS32R2, CPU_MIPS32R2 },
15157 /* Deprecated forms of the above. */
15158 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15159 ISA_MIPS32R2, CPU_MIPS32R2 },
15160 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15161 ISA_MIPS32R2, CPU_MIPS32R2 },
15162
15163 /* MIPS 64 */
15164 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15165 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15166 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15167 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15168
15169 /* Broadcom SB-1 CPU core */
15170 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15171 ISA_MIPS64, CPU_SB1 },
15172 /* Broadcom SB-1A CPU core */
15173 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15174 ISA_MIPS64, CPU_SB1 },
15175
15176 /* MIPS 64 Release 2 */
15177
15178 /* Cavium Networks Octeon CPU core */
15179 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15180
15181 /* End marker */
15182 { NULL, 0, 0, 0 }
15183 };
15184
15185
15186 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15187 with a final "000" replaced by "k". Ignore case.
15188
15189 Note: this function is shared between GCC and GAS. */
15190
15191 static bfd_boolean
15192 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15193 {
15194 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15195 given++, canonical++;
15196
15197 return ((*given == 0 && *canonical == 0)
15198 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15199 }
15200
15201
15202 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15203 CPU name. We've traditionally allowed a lot of variation here.
15204
15205 Note: this function is shared between GCC and GAS. */
15206
15207 static bfd_boolean
15208 mips_matching_cpu_name_p (const char *canonical, const char *given)
15209 {
15210 /* First see if the name matches exactly, or with a final "000"
15211 turned into "k". */
15212 if (mips_strict_matching_cpu_name_p (canonical, given))
15213 return TRUE;
15214
15215 /* If not, try comparing based on numerical designation alone.
15216 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15217 if (TOLOWER (*given) == 'r')
15218 given++;
15219 if (!ISDIGIT (*given))
15220 return FALSE;
15221
15222 /* Skip over some well-known prefixes in the canonical name,
15223 hoping to find a number there too. */
15224 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15225 canonical += 2;
15226 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15227 canonical += 2;
15228 else if (TOLOWER (canonical[0]) == 'r')
15229 canonical += 1;
15230
15231 return mips_strict_matching_cpu_name_p (canonical, given);
15232 }
15233
15234
15235 /* Parse an option that takes the name of a processor as its argument.
15236 OPTION is the name of the option and CPU_STRING is the argument.
15237 Return the corresponding processor enumeration if the CPU_STRING is
15238 recognized, otherwise report an error and return null.
15239
15240 A similar function exists in GCC. */
15241
15242 static const struct mips_cpu_info *
15243 mips_parse_cpu (const char *option, const char *cpu_string)
15244 {
15245 const struct mips_cpu_info *p;
15246
15247 /* 'from-abi' selects the most compatible architecture for the given
15248 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15249 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15250 version. Look first at the -mgp options, if given, otherwise base
15251 the choice on MIPS_DEFAULT_64BIT.
15252
15253 Treat NO_ABI like the EABIs. One reason to do this is that the
15254 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15255 architecture. This code picks MIPS I for 'mips' and MIPS III for
15256 'mips64', just as we did in the days before 'from-abi'. */
15257 if (strcasecmp (cpu_string, "from-abi") == 0)
15258 {
15259 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15260 return mips_cpu_info_from_isa (ISA_MIPS1);
15261
15262 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15263 return mips_cpu_info_from_isa (ISA_MIPS3);
15264
15265 if (file_mips_gp32 >= 0)
15266 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15267
15268 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15269 ? ISA_MIPS3
15270 : ISA_MIPS1);
15271 }
15272
15273 /* 'default' has traditionally been a no-op. Probably not very useful. */
15274 if (strcasecmp (cpu_string, "default") == 0)
15275 return 0;
15276
15277 for (p = mips_cpu_info_table; p->name != 0; p++)
15278 if (mips_matching_cpu_name_p (p->name, cpu_string))
15279 return p;
15280
15281 as_bad ("Bad value (%s) for %s", cpu_string, option);
15282 return 0;
15283 }
15284
15285 /* Return the canonical processor information for ISA (a member of the
15286 ISA_MIPS* enumeration). */
15287
15288 static const struct mips_cpu_info *
15289 mips_cpu_info_from_isa (int isa)
15290 {
15291 int i;
15292
15293 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15294 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15295 && isa == mips_cpu_info_table[i].isa)
15296 return (&mips_cpu_info_table[i]);
15297
15298 return NULL;
15299 }
15300
15301 static const struct mips_cpu_info *
15302 mips_cpu_info_from_arch (int arch)
15303 {
15304 int i;
15305
15306 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15307 if (arch == mips_cpu_info_table[i].cpu)
15308 return (&mips_cpu_info_table[i]);
15309
15310 return NULL;
15311 }
15312 \f
15313 static void
15314 show (FILE *stream, const char *string, int *col_p, int *first_p)
15315 {
15316 if (*first_p)
15317 {
15318 fprintf (stream, "%24s", "");
15319 *col_p = 24;
15320 }
15321 else
15322 {
15323 fprintf (stream, ", ");
15324 *col_p += 2;
15325 }
15326
15327 if (*col_p + strlen (string) > 72)
15328 {
15329 fprintf (stream, "\n%24s", "");
15330 *col_p = 24;
15331 }
15332
15333 fprintf (stream, "%s", string);
15334 *col_p += strlen (string);
15335
15336 *first_p = 0;
15337 }
15338
15339 void
15340 md_show_usage (FILE *stream)
15341 {
15342 int column, first;
15343 size_t i;
15344
15345 fprintf (stream, _("\
15346 MIPS options:\n\
15347 -EB generate big endian output\n\
15348 -EL generate little endian output\n\
15349 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15350 -G NUM allow referencing objects up to NUM bytes\n\
15351 implicitly with the gp register [default 8]\n"));
15352 fprintf (stream, _("\
15353 -mips1 generate MIPS ISA I instructions\n\
15354 -mips2 generate MIPS ISA II instructions\n\
15355 -mips3 generate MIPS ISA III instructions\n\
15356 -mips4 generate MIPS ISA IV instructions\n\
15357 -mips5 generate MIPS ISA V instructions\n\
15358 -mips32 generate MIPS32 ISA instructions\n\
15359 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15360 -mips64 generate MIPS64 ISA instructions\n\
15361 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15362 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15363
15364 first = 1;
15365
15366 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15367 show (stream, mips_cpu_info_table[i].name, &column, &first);
15368 show (stream, "from-abi", &column, &first);
15369 fputc ('\n', stream);
15370
15371 fprintf (stream, _("\
15372 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15373 -no-mCPU don't generate code specific to CPU.\n\
15374 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15375
15376 first = 1;
15377
15378 show (stream, "3900", &column, &first);
15379 show (stream, "4010", &column, &first);
15380 show (stream, "4100", &column, &first);
15381 show (stream, "4650", &column, &first);
15382 fputc ('\n', stream);
15383
15384 fprintf (stream, _("\
15385 -mips16 generate mips16 instructions\n\
15386 -no-mips16 do not generate mips16 instructions\n"));
15387 fprintf (stream, _("\
15388 -msmartmips generate smartmips instructions\n\
15389 -mno-smartmips do not generate smartmips instructions\n"));
15390 fprintf (stream, _("\
15391 -mdsp generate DSP instructions\n\
15392 -mno-dsp do not generate DSP instructions\n"));
15393 fprintf (stream, _("\
15394 -mdspr2 generate DSP R2 instructions\n\
15395 -mno-dspr2 do not generate DSP R2 instructions\n"));
15396 fprintf (stream, _("\
15397 -mmt generate MT instructions\n\
15398 -mno-mt do not generate MT instructions\n"));
15399 fprintf (stream, _("\
15400 -mfix-vr4120 work around certain VR4120 errata\n\
15401 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15402 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15403 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15404 -msym32 assume all symbols have 32-bit values\n\
15405 -O0 remove unneeded NOPs, do not swap branches\n\
15406 -O remove unneeded NOPs and swap branches\n\
15407 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15408 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15409 fprintf (stream, _("\
15410 -mhard-float allow floating-point instructions\n\
15411 -msoft-float do not allow floating-point instructions\n\
15412 -msingle-float only allow 32-bit floating-point operations\n\
15413 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15414 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15415 ));
15416 #ifdef OBJ_ELF
15417 fprintf (stream, _("\
15418 -KPIC, -call_shared generate SVR4 position independent code\n\
15419 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15420 -mvxworks-pic generate VxWorks position independent code\n\
15421 -non_shared do not generate code that can operate with DSOs\n\
15422 -xgot assume a 32 bit GOT\n\
15423 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15424 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15425 position dependent (non shared) code\n\
15426 -mabi=ABI create ABI conformant object file for:\n"));
15427
15428 first = 1;
15429
15430 show (stream, "32", &column, &first);
15431 show (stream, "o64", &column, &first);
15432 show (stream, "n32", &column, &first);
15433 show (stream, "64", &column, &first);
15434 show (stream, "eabi", &column, &first);
15435
15436 fputc ('\n', stream);
15437
15438 fprintf (stream, _("\
15439 -32 create o32 ABI object file (default)\n\
15440 -n32 create n32 ABI object file\n\
15441 -64 create 64 ABI object file\n"));
15442 #endif
15443 }
15444
15445 enum dwarf2_format
15446 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15447 {
15448 if (HAVE_64BIT_SYMBOLS)
15449 {
15450 #ifdef TE_IRIX
15451 return dwarf2_format_64bit_irix;
15452 #else
15453 return dwarf2_format_64bit;
15454 #endif
15455 }
15456 else
15457 return dwarf2_format_32bit;
15458 }
15459
15460 int
15461 mips_dwarf2_addr_size (void)
15462 {
15463 if (HAVE_64BIT_SYMBOLS)
15464 return 8;
15465 else
15466 return 4;
15467 }
15468
15469 /* Standard calling conventions leave the CFA at SP on entry. */
15470 void
15471 mips_cfi_frame_initial_instructions (void)
15472 {
15473 cfi_add_CFA_def_cfa_register (SP);
15474 }
15475
15476 int
15477 tc_mips_regname_to_dw2regnum (char *regname)
15478 {
15479 unsigned int regnum = -1;
15480 unsigned int reg;
15481
15482 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15483 regnum = reg;
15484
15485 return regnum;
15486 }