* config/tc-mips.h (TC_ADDRESS_BYTES): New macro.
[binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define ATREG 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
102
103 #define ILLEGAL_REG (32)
104
105 #define AT mips_opts.at
106
107 /* Allow override of standard little-endian ECOFF format. */
108
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
111 #endif
112
113 extern int target_big_endian;
114
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
123
124 /* Information about an instruction, including its format, operands
125 and fixups. */
126 struct mips_cl_insn
127 {
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
130
131 /* True if this is a mips16 instruction and if we want the extended
132 form of INSN_MO. */
133 bfd_boolean use_extend;
134
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
141
142 /* The frag that contains the instruction. */
143 struct frag *frag;
144
145 /* The offset into FRAG of the first instruction byte. */
146 long where;
147
148 /* The relocs associated with the instruction, if any. */
149 fixS *fixp[3];
150
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
153
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
156
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
159 };
160
161 /* The ABI to use. */
162 enum mips_abi_level
163 {
164 NO_ABI = 0,
165 O32_ABI,
166 O64_ABI,
167 N32_ABI,
168 N64_ABI,
169 EABI_ABI
170 };
171
172 /* MIPS ABI we are using for this output file. */
173 static enum mips_abi_level mips_abi = NO_ABI;
174
175 /* Whether or not we have code that can call pic code. */
176 int mips_abicalls = FALSE;
177
178 /* Whether or not we have code which can be put into a shared
179 library. */
180 static bfd_boolean mips_in_shared = TRUE;
181
182 /* This is the set of options which may be modified by the .set
183 pseudo-op. We use a struct so that .set push and .set pop are more
184 reliable. */
185
186 struct mips_set_options
187 {
188 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
189 if it has not been initialized. Changed by `.set mipsN', and the
190 -mipsN command line option, and the default CPU. */
191 int isa;
192 /* Enabled Application Specific Extensions (ASEs). These are set to -1
193 if they have not been initialized. Changed by `.set <asename>', by
194 command line options, and based on the default architecture. */
195 int ase_mips3d;
196 int ase_mdmx;
197 int ase_smartmips;
198 int ase_dsp;
199 int ase_dspr2;
200 int ase_mt;
201 /* Whether we are assembling for the mips16 processor. 0 if we are
202 not, 1 if we are, and -1 if the value has not been initialized.
203 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
204 -nomips16 command line options, and the default CPU. */
205 int mips16;
206 /* Non-zero if we should not reorder instructions. Changed by `.set
207 reorder' and `.set noreorder'. */
208 int noreorder;
209 /* Non-zero if we should not permit the register designated "assembler
210 temporary" to be used in instructions. The value is the register
211 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
212 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
213 unsigned int at;
214 /* Non-zero if we should warn when a macro instruction expands into
215 more than one machine instruction. Changed by `.set nomacro' and
216 `.set macro'. */
217 int warn_about_macros;
218 /* Non-zero if we should not move instructions. Changed by `.set
219 move', `.set volatile', `.set nomove', and `.set novolatile'. */
220 int nomove;
221 /* Non-zero if we should not optimize branches by moving the target
222 of the branch into the delay slot. Actually, we don't perform
223 this optimization anyhow. Changed by `.set bopt' and `.set
224 nobopt'. */
225 int nobopt;
226 /* Non-zero if we should not autoextend mips16 instructions.
227 Changed by `.set autoextend' and `.set noautoextend'. */
228 int noautoextend;
229 /* Restrict general purpose registers and floating point registers
230 to 32 bit. This is initially determined when -mgp32 or -mfp32
231 is passed but can changed if the assembler code uses .set mipsN. */
232 int gp32;
233 int fp32;
234 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
235 command line option, and the default CPU. */
236 int arch;
237 /* True if ".set sym32" is in effect. */
238 bfd_boolean sym32;
239 /* True if floating-point operations are not allowed. Changed by .set
240 softfloat or .set hardfloat, by command line options -msoft-float or
241 -mhard-float. The default is false. */
242 bfd_boolean soft_float;
243
244 /* True if only single-precision floating-point operations are allowed.
245 Changed by .set singlefloat or .set doublefloat, command-line options
246 -msingle-float or -mdouble-float. The default is false. */
247 bfd_boolean single_float;
248 };
249
250 /* This is the struct we use to hold the current set of options. Note
251 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
252 -1 to indicate that they have not been initialized. */
253
254 /* True if -mgp32 was passed. */
255 static int file_mips_gp32 = -1;
256
257 /* True if -mfp32 was passed. */
258 static int file_mips_fp32 = -1;
259
260 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
261 static int file_mips_soft_float = 0;
262
263 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
264 static int file_mips_single_float = 0;
265
266 static struct mips_set_options mips_opts =
267 {
268 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
269 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
270 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
271 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
272 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
273 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
274 };
275
276 /* These variables are filled in with the masks of registers used.
277 The object format code reads them and puts them in the appropriate
278 place. */
279 unsigned long mips_gprmask;
280 unsigned long mips_cprmask[4];
281
282 /* MIPS ISA we are using for this output file. */
283 static int file_mips_isa = ISA_UNKNOWN;
284
285 /* True if any MIPS16 code was produced. */
286 static int file_ase_mips16;
287
288 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
289 || mips_opts.isa == ISA_MIPS32R2 \
290 || mips_opts.isa == ISA_MIPS64 \
291 || mips_opts.isa == ISA_MIPS64R2)
292
293 /* True if we want to create R_MIPS_JALR for jalr $25. */
294 #ifdef TE_IRIX
295 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
296 #else
297 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
298 because there's no place for any addend, the only acceptable
299 expression is a bare symbol. */
300 #define MIPS_JALR_HINT_P(EXPR) \
301 (!HAVE_IN_PLACE_ADDENDS \
302 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
303 #endif
304
305 /* True if -mips3d was passed or implied by arguments passed on the
306 command line (e.g., by -march). */
307 static int file_ase_mips3d;
308
309 /* True if -mdmx was passed or implied by arguments passed on the
310 command line (e.g., by -march). */
311 static int file_ase_mdmx;
312
313 /* True if -msmartmips was passed or implied by arguments passed on the
314 command line (e.g., by -march). */
315 static int file_ase_smartmips;
316
317 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
318 || mips_opts.isa == ISA_MIPS32R2)
319
320 /* True if -mdsp was passed or implied by arguments passed on the
321 command line (e.g., by -march). */
322 static int file_ase_dsp;
323
324 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
325 || mips_opts.isa == ISA_MIPS64R2)
326
327 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
328
329 /* True if -mdspr2 was passed or implied by arguments passed on the
330 command line (e.g., by -march). */
331 static int file_ase_dspr2;
332
333 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
334 || mips_opts.isa == ISA_MIPS64R2)
335
336 /* True if -mmt was passed or implied by arguments passed on the
337 command line (e.g., by -march). */
338 static int file_ase_mt;
339
340 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
341 || mips_opts.isa == ISA_MIPS64R2)
342
343 /* The argument of the -march= flag. The architecture we are assembling. */
344 static int file_mips_arch = CPU_UNKNOWN;
345 static const char *mips_arch_string;
346
347 /* The argument of the -mtune= flag. The architecture for which we
348 are optimizing. */
349 static int mips_tune = CPU_UNKNOWN;
350 static const char *mips_tune_string;
351
352 /* True when generating 32-bit code for a 64-bit processor. */
353 static int mips_32bitmode = 0;
354
355 /* True if the given ABI requires 32-bit registers. */
356 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
357
358 /* Likewise 64-bit registers. */
359 #define ABI_NEEDS_64BIT_REGS(ABI) \
360 ((ABI) == N32_ABI \
361 || (ABI) == N64_ABI \
362 || (ABI) == O64_ABI)
363
364 /* Return true if ISA supports 64 bit wide gp registers. */
365 #define ISA_HAS_64BIT_REGS(ISA) \
366 ((ISA) == ISA_MIPS3 \
367 || (ISA) == ISA_MIPS4 \
368 || (ISA) == ISA_MIPS5 \
369 || (ISA) == ISA_MIPS64 \
370 || (ISA) == ISA_MIPS64R2)
371
372 /* Return true if ISA supports 64 bit wide float registers. */
373 #define ISA_HAS_64BIT_FPRS(ISA) \
374 ((ISA) == ISA_MIPS3 \
375 || (ISA) == ISA_MIPS4 \
376 || (ISA) == ISA_MIPS5 \
377 || (ISA) == ISA_MIPS32R2 \
378 || (ISA) == ISA_MIPS64 \
379 || (ISA) == ISA_MIPS64R2)
380
381 /* Return true if ISA supports 64-bit right rotate (dror et al.)
382 instructions. */
383 #define ISA_HAS_DROR(ISA) \
384 ((ISA) == ISA_MIPS64R2)
385
386 /* Return true if ISA supports 32-bit right rotate (ror et al.)
387 instructions. */
388 #define ISA_HAS_ROR(ISA) \
389 ((ISA) == ISA_MIPS32R2 \
390 || (ISA) == ISA_MIPS64R2 \
391 || mips_opts.ase_smartmips)
392
393 /* Return true if ISA supports single-precision floats in odd registers. */
394 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
395 ((ISA) == ISA_MIPS32 \
396 || (ISA) == ISA_MIPS32R2 \
397 || (ISA) == ISA_MIPS64 \
398 || (ISA) == ISA_MIPS64R2)
399
400 /* Return true if ISA supports move to/from high part of a 64-bit
401 floating-point register. */
402 #define ISA_HAS_MXHC1(ISA) \
403 ((ISA) == ISA_MIPS32R2 \
404 || (ISA) == ISA_MIPS64R2)
405
406 #define HAVE_32BIT_GPRS \
407 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
408
409 #define HAVE_32BIT_FPRS \
410 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
411
412 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
413 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
414
415 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
416
417 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
418
419 /* True if relocations are stored in-place. */
420 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
421
422 /* The ABI-derived address size. */
423 #define HAVE_64BIT_ADDRESSES \
424 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
425 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
426
427 /* The size of symbolic constants (i.e., expressions of the form
428 "SYMBOL" or "SYMBOL + OFFSET"). */
429 #define HAVE_32BIT_SYMBOLS \
430 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
431 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
432
433 /* Addresses are loaded in different ways, depending on the address size
434 in use. The n32 ABI Documentation also mandates the use of additions
435 with overflow checking, but existing implementations don't follow it. */
436 #define ADDRESS_ADD_INSN \
437 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
438
439 #define ADDRESS_ADDI_INSN \
440 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
441
442 #define ADDRESS_LOAD_INSN \
443 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
444
445 #define ADDRESS_STORE_INSN \
446 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
447
448 /* Return true if the given CPU supports the MIPS16 ASE. */
449 #define CPU_HAS_MIPS16(cpu) \
450 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
451 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
452
453 /* True if CPU has a dror instruction. */
454 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
455
456 /* True if CPU has a ror instruction. */
457 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
458
459 /* True if CPU has seq/sne and seqi/snei instructions. */
460 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
461
462 /* True if CPU does not implement the all the coprocessor insns. For these
463 CPUs only those COP insns are accepted that are explicitly marked to be
464 available on the CPU. ISA membership for COP insns is ignored. */
465 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
466
467 /* True if mflo and mfhi can be immediately followed by instructions
468 which write to the HI and LO registers.
469
470 According to MIPS specifications, MIPS ISAs I, II, and III need
471 (at least) two instructions between the reads of HI/LO and
472 instructions which write them, and later ISAs do not. Contradicting
473 the MIPS specifications, some MIPS IV processor user manuals (e.g.
474 the UM for the NEC Vr5000) document needing the instructions between
475 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
476 MIPS64 and later ISAs to have the interlocks, plus any specific
477 earlier-ISA CPUs for which CPU documentation declares that the
478 instructions are really interlocked. */
479 #define hilo_interlocks \
480 (mips_opts.isa == ISA_MIPS32 \
481 || mips_opts.isa == ISA_MIPS32R2 \
482 || mips_opts.isa == ISA_MIPS64 \
483 || mips_opts.isa == ISA_MIPS64R2 \
484 || mips_opts.arch == CPU_R4010 \
485 || mips_opts.arch == CPU_R10000 \
486 || mips_opts.arch == CPU_R12000 \
487 || mips_opts.arch == CPU_R14000 \
488 || mips_opts.arch == CPU_R16000 \
489 || mips_opts.arch == CPU_RM7000 \
490 || mips_opts.arch == CPU_VR5500 \
491 )
492
493 /* Whether the processor uses hardware interlocks to protect reads
494 from the GPRs after they are loaded from memory, and thus does not
495 require nops to be inserted. This applies to instructions marked
496 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
497 level I. */
498 #define gpr_interlocks \
499 (mips_opts.isa != ISA_MIPS1 \
500 || mips_opts.arch == CPU_R3900)
501
502 /* Whether the processor uses hardware interlocks to avoid delays
503 required by coprocessor instructions, and thus does not require
504 nops to be inserted. This applies to instructions marked
505 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
506 between instructions marked INSN_WRITE_COND_CODE and ones marked
507 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
508 levels I, II, and III. */
509 /* Itbl support may require additional care here. */
510 #define cop_interlocks \
511 ((mips_opts.isa != ISA_MIPS1 \
512 && mips_opts.isa != ISA_MIPS2 \
513 && mips_opts.isa != ISA_MIPS3) \
514 || mips_opts.arch == CPU_R4300 \
515 )
516
517 /* Whether the processor uses hardware interlocks to protect reads
518 from coprocessor registers after they are loaded from memory, and
519 thus does not require nops to be inserted. This applies to
520 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
521 requires at MIPS ISA level I. */
522 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
523
524 /* Is this a mfhi or mflo instruction? */
525 #define MF_HILO_INSN(PINFO) \
526 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
527
528 /* Returns true for a (non floating-point) coprocessor instruction. Reading
529 or writing the condition code is only possible on the coprocessors and
530 these insns are not marked with INSN_COP. Thus for these insns use the
531 condition-code flags. */
532 #define COP_INSN(PINFO) \
533 (PINFO != INSN_MACRO \
534 && ((PINFO) & (FP_S | FP_D)) == 0 \
535 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
536
537 /* MIPS PIC level. */
538
539 enum mips_pic_level mips_pic;
540
541 /* 1 if we should generate 32 bit offsets from the $gp register in
542 SVR4_PIC mode. Currently has no meaning in other modes. */
543 static int mips_big_got = 0;
544
545 /* 1 if trap instructions should used for overflow rather than break
546 instructions. */
547 static int mips_trap = 0;
548
549 /* 1 if double width floating point constants should not be constructed
550 by assembling two single width halves into two single width floating
551 point registers which just happen to alias the double width destination
552 register. On some architectures this aliasing can be disabled by a bit
553 in the status register, and the setting of this bit cannot be determined
554 automatically at assemble time. */
555 static int mips_disable_float_construction;
556
557 /* Non-zero if any .set noreorder directives were used. */
558
559 static int mips_any_noreorder;
560
561 /* Non-zero if nops should be inserted when the register referenced in
562 an mfhi/mflo instruction is read in the next two instructions. */
563 static int mips_7000_hilo_fix;
564
565 /* The size of objects in the small data section. */
566 static unsigned int g_switch_value = 8;
567 /* Whether the -G option was used. */
568 static int g_switch_seen = 0;
569
570 #define N_RMASK 0xc4
571 #define N_VFP 0xd4
572
573 /* If we can determine in advance that GP optimization won't be
574 possible, we can skip the relaxation stuff that tries to produce
575 GP-relative references. This makes delay slot optimization work
576 better.
577
578 This function can only provide a guess, but it seems to work for
579 gcc output. It needs to guess right for gcc, otherwise gcc
580 will put what it thinks is a GP-relative instruction in a branch
581 delay slot.
582
583 I don't know if a fix is needed for the SVR4_PIC mode. I've only
584 fixed it for the non-PIC mode. KR 95/04/07 */
585 static int nopic_need_relax (symbolS *, int);
586
587 /* handle of the OPCODE hash table */
588 static struct hash_control *op_hash = NULL;
589
590 /* The opcode hash table we use for the mips16. */
591 static struct hash_control *mips16_op_hash = NULL;
592
593 /* This array holds the chars that always start a comment. If the
594 pre-processor is disabled, these aren't very useful */
595 const char comment_chars[] = "#";
596
597 /* This array holds the chars that only start a comment at the beginning of
598 a line. If the line seems to have the form '# 123 filename'
599 .line and .file directives will appear in the pre-processed output */
600 /* Note that input_file.c hand checks for '#' at the beginning of the
601 first line of the input file. This is because the compiler outputs
602 #NO_APP at the beginning of its output. */
603 /* Also note that C style comments are always supported. */
604 const char line_comment_chars[] = "#";
605
606 /* This array holds machine specific line separator characters. */
607 const char line_separator_chars[] = ";";
608
609 /* Chars that can be used to separate mant from exp in floating point nums */
610 const char EXP_CHARS[] = "eE";
611
612 /* Chars that mean this number is a floating point constant */
613 /* As in 0f12.456 */
614 /* or 0d1.2345e12 */
615 const char FLT_CHARS[] = "rRsSfFdDxXpP";
616
617 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
618 changed in read.c . Ideally it shouldn't have to know about it at all,
619 but nothing is ideal around here.
620 */
621
622 static char *insn_error;
623
624 static int auto_align = 1;
625
626 /* When outputting SVR4 PIC code, the assembler needs to know the
627 offset in the stack frame from which to restore the $gp register.
628 This is set by the .cprestore pseudo-op, and saved in this
629 variable. */
630 static offsetT mips_cprestore_offset = -1;
631
632 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
633 more optimizations, it can use a register value instead of a memory-saved
634 offset and even an other register than $gp as global pointer. */
635 static offsetT mips_cpreturn_offset = -1;
636 static int mips_cpreturn_register = -1;
637 static int mips_gp_register = GP;
638 static int mips_gprel_offset = 0;
639
640 /* Whether mips_cprestore_offset has been set in the current function
641 (or whether it has already been warned about, if not). */
642 static int mips_cprestore_valid = 0;
643
644 /* This is the register which holds the stack frame, as set by the
645 .frame pseudo-op. This is needed to implement .cprestore. */
646 static int mips_frame_reg = SP;
647
648 /* Whether mips_frame_reg has been set in the current function
649 (or whether it has already been warned about, if not). */
650 static int mips_frame_reg_valid = 0;
651
652 /* To output NOP instructions correctly, we need to keep information
653 about the previous two instructions. */
654
655 /* Whether we are optimizing. The default value of 2 means to remove
656 unneeded NOPs and swap branch instructions when possible. A value
657 of 1 means to not swap branches. A value of 0 means to always
658 insert NOPs. */
659 static int mips_optimize = 2;
660
661 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
662 equivalent to seeing no -g option at all. */
663 static int mips_debug = 0;
664
665 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
666 #define MAX_VR4130_NOPS 4
667
668 /* The maximum number of NOPs needed to fill delay slots. */
669 #define MAX_DELAY_NOPS 2
670
671 /* The maximum number of NOPs needed for any purpose. */
672 #define MAX_NOPS 4
673
674 /* A list of previous instructions, with index 0 being the most recent.
675 We need to look back MAX_NOPS instructions when filling delay slots
676 or working around processor errata. We need to look back one
677 instruction further if we're thinking about using history[0] to
678 fill a branch delay slot. */
679 static struct mips_cl_insn history[1 + MAX_NOPS];
680
681 /* Nop instructions used by emit_nop. */
682 static struct mips_cl_insn nop_insn, mips16_nop_insn;
683
684 /* The appropriate nop for the current mode. */
685 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
686
687 /* If this is set, it points to a frag holding nop instructions which
688 were inserted before the start of a noreorder section. If those
689 nops turn out to be unnecessary, the size of the frag can be
690 decreased. */
691 static fragS *prev_nop_frag;
692
693 /* The number of nop instructions we created in prev_nop_frag. */
694 static int prev_nop_frag_holds;
695
696 /* The number of nop instructions that we know we need in
697 prev_nop_frag. */
698 static int prev_nop_frag_required;
699
700 /* The number of instructions we've seen since prev_nop_frag. */
701 static int prev_nop_frag_since;
702
703 /* For ECOFF and ELF, relocations against symbols are done in two
704 parts, with a HI relocation and a LO relocation. Each relocation
705 has only 16 bits of space to store an addend. This means that in
706 order for the linker to handle carries correctly, it must be able
707 to locate both the HI and the LO relocation. This means that the
708 relocations must appear in order in the relocation table.
709
710 In order to implement this, we keep track of each unmatched HI
711 relocation. We then sort them so that they immediately precede the
712 corresponding LO relocation. */
713
714 struct mips_hi_fixup
715 {
716 /* Next HI fixup. */
717 struct mips_hi_fixup *next;
718 /* This fixup. */
719 fixS *fixp;
720 /* The section this fixup is in. */
721 segT seg;
722 };
723
724 /* The list of unmatched HI relocs. */
725
726 static struct mips_hi_fixup *mips_hi_fixup_list;
727
728 /* The frag containing the last explicit relocation operator.
729 Null if explicit relocations have not been used. */
730
731 static fragS *prev_reloc_op_frag;
732
733 /* Map normal MIPS register numbers to mips16 register numbers. */
734
735 #define X ILLEGAL_REG
736 static const int mips32_to_16_reg_map[] =
737 {
738 X, X, 2, 3, 4, 5, 6, 7,
739 X, X, X, X, X, X, X, X,
740 0, 1, X, X, X, X, X, X,
741 X, X, X, X, X, X, X, X
742 };
743 #undef X
744
745 /* Map mips16 register numbers to normal MIPS register numbers. */
746
747 static const unsigned int mips16_to_32_reg_map[] =
748 {
749 16, 17, 2, 3, 4, 5, 6, 7
750 };
751
752 /* Classifies the kind of instructions we're interested in when
753 implementing -mfix-vr4120. */
754 enum fix_vr4120_class
755 {
756 FIX_VR4120_MACC,
757 FIX_VR4120_DMACC,
758 FIX_VR4120_MULT,
759 FIX_VR4120_DMULT,
760 FIX_VR4120_DIV,
761 FIX_VR4120_MTHILO,
762 NUM_FIX_VR4120_CLASSES
763 };
764
765 /* ...likewise -mfix-loongson2f-jump. */
766 static bfd_boolean mips_fix_loongson2f_jump;
767
768 /* ...likewise -mfix-loongson2f-nop. */
769 static bfd_boolean mips_fix_loongson2f_nop;
770
771 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
772 static bfd_boolean mips_fix_loongson2f;
773
774 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
775 there must be at least one other instruction between an instruction
776 of type X and an instruction of type Y. */
777 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
778
779 /* True if -mfix-vr4120 is in force. */
780 static int mips_fix_vr4120;
781
782 /* ...likewise -mfix-vr4130. */
783 static int mips_fix_vr4130;
784
785 /* ...likewise -mfix-24k. */
786 static int mips_fix_24k;
787
788 /* ...likewise -mfix-cn63xxp1 */
789 static bfd_boolean mips_fix_cn63xxp1;
790
791 /* We don't relax branches by default, since this causes us to expand
792 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
793 fail to compute the offset before expanding the macro to the most
794 efficient expansion. */
795
796 static int mips_relax_branch;
797 \f
798 /* The expansion of many macros depends on the type of symbol that
799 they refer to. For example, when generating position-dependent code,
800 a macro that refers to a symbol may have two different expansions,
801 one which uses GP-relative addresses and one which uses absolute
802 addresses. When generating SVR4-style PIC, a macro may have
803 different expansions for local and global symbols.
804
805 We handle these situations by generating both sequences and putting
806 them in variant frags. In position-dependent code, the first sequence
807 will be the GP-relative one and the second sequence will be the
808 absolute one. In SVR4 PIC, the first sequence will be for global
809 symbols and the second will be for local symbols.
810
811 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
812 SECOND are the lengths of the two sequences in bytes. These fields
813 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
814 the subtype has the following flags:
815
816 RELAX_USE_SECOND
817 Set if it has been decided that we should use the second
818 sequence instead of the first.
819
820 RELAX_SECOND_LONGER
821 Set in the first variant frag if the macro's second implementation
822 is longer than its first. This refers to the macro as a whole,
823 not an individual relaxation.
824
825 RELAX_NOMACRO
826 Set in the first variant frag if the macro appeared in a .set nomacro
827 block and if one alternative requires a warning but the other does not.
828
829 RELAX_DELAY_SLOT
830 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
831 delay slot.
832
833 The frag's "opcode" points to the first fixup for relaxable code.
834
835 Relaxable macros are generated using a sequence such as:
836
837 relax_start (SYMBOL);
838 ... generate first expansion ...
839 relax_switch ();
840 ... generate second expansion ...
841 relax_end ();
842
843 The code and fixups for the unwanted alternative are discarded
844 by md_convert_frag. */
845 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
846
847 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
848 #define RELAX_SECOND(X) ((X) & 0xff)
849 #define RELAX_USE_SECOND 0x10000
850 #define RELAX_SECOND_LONGER 0x20000
851 #define RELAX_NOMACRO 0x40000
852 #define RELAX_DELAY_SLOT 0x80000
853
854 /* Branch without likely bit. If label is out of range, we turn:
855
856 beq reg1, reg2, label
857 delay slot
858
859 into
860
861 bne reg1, reg2, 0f
862 nop
863 j label
864 0: delay slot
865
866 with the following opcode replacements:
867
868 beq <-> bne
869 blez <-> bgtz
870 bltz <-> bgez
871 bc1f <-> bc1t
872
873 bltzal <-> bgezal (with jal label instead of j label)
874
875 Even though keeping the delay slot instruction in the delay slot of
876 the branch would be more efficient, it would be very tricky to do
877 correctly, because we'd have to introduce a variable frag *after*
878 the delay slot instruction, and expand that instead. Let's do it
879 the easy way for now, even if the branch-not-taken case now costs
880 one additional instruction. Out-of-range branches are not supposed
881 to be common, anyway.
882
883 Branch likely. If label is out of range, we turn:
884
885 beql reg1, reg2, label
886 delay slot (annulled if branch not taken)
887
888 into
889
890 beql reg1, reg2, 1f
891 nop
892 beql $0, $0, 2f
893 nop
894 1: j[al] label
895 delay slot (executed only if branch taken)
896 2:
897
898 It would be possible to generate a shorter sequence by losing the
899 likely bit, generating something like:
900
901 bne reg1, reg2, 0f
902 nop
903 j[al] label
904 delay slot (executed only if branch taken)
905 0:
906
907 beql -> bne
908 bnel -> beq
909 blezl -> bgtz
910 bgtzl -> blez
911 bltzl -> bgez
912 bgezl -> bltz
913 bc1fl -> bc1t
914 bc1tl -> bc1f
915
916 bltzall -> bgezal (with jal label instead of j label)
917 bgezall -> bltzal (ditto)
918
919
920 but it's not clear that it would actually improve performance. */
921 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
922 ((relax_substateT) \
923 (0xc0000000 \
924 | ((toofar) ? 1 : 0) \
925 | ((link) ? 2 : 0) \
926 | ((likely) ? 4 : 0) \
927 | ((uncond) ? 8 : 0)))
928 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
929 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
930 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
931 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
932 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
933
934 /* For mips16 code, we use an entirely different form of relaxation.
935 mips16 supports two versions of most instructions which take
936 immediate values: a small one which takes some small value, and a
937 larger one which takes a 16 bit value. Since branches also follow
938 this pattern, relaxing these values is required.
939
940 We can assemble both mips16 and normal MIPS code in a single
941 object. Therefore, we need to support this type of relaxation at
942 the same time that we support the relaxation described above. We
943 use the high bit of the subtype field to distinguish these cases.
944
945 The information we store for this type of relaxation is the
946 argument code found in the opcode file for this relocation, whether
947 the user explicitly requested a small or extended form, and whether
948 the relocation is in a jump or jal delay slot. That tells us the
949 size of the value, and how it should be stored. We also store
950 whether the fragment is considered to be extended or not. We also
951 store whether this is known to be a branch to a different section,
952 whether we have tried to relax this frag yet, and whether we have
953 ever extended a PC relative fragment because of a shift count. */
954 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
955 (0x80000000 \
956 | ((type) & 0xff) \
957 | ((small) ? 0x100 : 0) \
958 | ((ext) ? 0x200 : 0) \
959 | ((dslot) ? 0x400 : 0) \
960 | ((jal_dslot) ? 0x800 : 0))
961 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
962 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
963 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
964 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
965 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
966 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
967 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
968 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
969 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
970 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
971 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
972 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
973
974 /* Is the given value a sign-extended 32-bit value? */
975 #define IS_SEXT_32BIT_NUM(x) \
976 (((x) &~ (offsetT) 0x7fffffff) == 0 \
977 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
978
979 /* Is the given value a sign-extended 16-bit value? */
980 #define IS_SEXT_16BIT_NUM(x) \
981 (((x) &~ (offsetT) 0x7fff) == 0 \
982 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
983
984 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
985 #define IS_ZEXT_32BIT_NUM(x) \
986 (((x) &~ (offsetT) 0xffffffff) == 0 \
987 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
988
989 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
990 VALUE << SHIFT. VALUE is evaluated exactly once. */
991 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
992 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
993 | (((VALUE) & (MASK)) << (SHIFT)))
994
995 /* Extract bits MASK << SHIFT from STRUCT and shift them right
996 SHIFT places. */
997 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
998 (((STRUCT) >> (SHIFT)) & (MASK))
999
1000 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1001 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1002
1003 include/opcode/mips.h specifies operand fields using the macros
1004 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1005 with "MIPS16OP" instead of "OP". */
1006 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1007 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1008 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1009 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1010 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1011
1012 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1013 #define EXTRACT_OPERAND(FIELD, INSN) \
1014 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1015 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1016 EXTRACT_BITS ((INSN).insn_opcode, \
1017 MIPS16OP_MASK_##FIELD, \
1018 MIPS16OP_SH_##FIELD)
1019 \f
1020 /* Global variables used when generating relaxable macros. See the
1021 comment above RELAX_ENCODE for more details about how relaxation
1022 is used. */
1023 static struct {
1024 /* 0 if we're not emitting a relaxable macro.
1025 1 if we're emitting the first of the two relaxation alternatives.
1026 2 if we're emitting the second alternative. */
1027 int sequence;
1028
1029 /* The first relaxable fixup in the current frag. (In other words,
1030 the first fixup that refers to relaxable code.) */
1031 fixS *first_fixup;
1032
1033 /* sizes[0] says how many bytes of the first alternative are stored in
1034 the current frag. Likewise sizes[1] for the second alternative. */
1035 unsigned int sizes[2];
1036
1037 /* The symbol on which the choice of sequence depends. */
1038 symbolS *symbol;
1039 } mips_relax;
1040 \f
1041 /* Global variables used to decide whether a macro needs a warning. */
1042 static struct {
1043 /* True if the macro is in a branch delay slot. */
1044 bfd_boolean delay_slot_p;
1045
1046 /* For relaxable macros, sizes[0] is the length of the first alternative
1047 in bytes and sizes[1] is the length of the second alternative.
1048 For non-relaxable macros, both elements give the length of the
1049 macro in bytes. */
1050 unsigned int sizes[2];
1051
1052 /* The first variant frag for this macro. */
1053 fragS *first_frag;
1054 } mips_macro_warning;
1055 \f
1056 /* Prototypes for static functions. */
1057
1058 #define internalError() \
1059 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1060
1061 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1062
1063 static void append_insn
1064 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1065 static void mips_no_prev_insn (void);
1066 static void macro_build (expressionS *, const char *, const char *, ...);
1067 static void mips16_macro_build
1068 (expressionS *, const char *, const char *, va_list *);
1069 static void load_register (int, expressionS *, int);
1070 static void macro_start (void);
1071 static void macro_end (void);
1072 static void macro (struct mips_cl_insn * ip);
1073 static void mips16_macro (struct mips_cl_insn * ip);
1074 static void mips_ip (char *str, struct mips_cl_insn * ip);
1075 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1076 static void mips16_immed
1077 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1078 unsigned long *, bfd_boolean *, unsigned short *);
1079 static size_t my_getSmallExpression
1080 (expressionS *, bfd_reloc_code_real_type *, char *);
1081 static void my_getExpression (expressionS *, char *);
1082 static void s_align (int);
1083 static void s_change_sec (int);
1084 static void s_change_section (int);
1085 static void s_cons (int);
1086 static void s_float_cons (int);
1087 static void s_mips_globl (int);
1088 static void s_option (int);
1089 static void s_mipsset (int);
1090 static void s_abicalls (int);
1091 static void s_cpload (int);
1092 static void s_cpsetup (int);
1093 static void s_cplocal (int);
1094 static void s_cprestore (int);
1095 static void s_cpreturn (int);
1096 static void s_dtprelword (int);
1097 static void s_dtpreldword (int);
1098 static void s_gpvalue (int);
1099 static void s_gpword (int);
1100 static void s_gpdword (int);
1101 static void s_cpadd (int);
1102 static void s_insn (int);
1103 static void md_obj_begin (void);
1104 static void md_obj_end (void);
1105 static void s_mips_ent (int);
1106 static void s_mips_end (int);
1107 static void s_mips_frame (int);
1108 static void s_mips_mask (int reg_type);
1109 static void s_mips_stab (int);
1110 static void s_mips_weakext (int);
1111 static void s_mips_file (int);
1112 static void s_mips_loc (int);
1113 static bfd_boolean pic_need_relax (symbolS *, asection *);
1114 static int relaxed_branch_length (fragS *, asection *, int);
1115 static int validate_mips_insn (const struct mips_opcode *);
1116
1117 /* Table and functions used to map between CPU/ISA names, and
1118 ISA levels, and CPU numbers. */
1119
1120 struct mips_cpu_info
1121 {
1122 const char *name; /* CPU or ISA name. */
1123 int flags; /* ASEs available, or ISA flag. */
1124 int isa; /* ISA level. */
1125 int cpu; /* CPU number (default CPU if ISA). */
1126 };
1127
1128 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1129 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1130 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1131 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1132 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1133 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1134 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1135
1136 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1137 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1138 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1139 \f
1140 /* Pseudo-op table.
1141
1142 The following pseudo-ops from the Kane and Heinrich MIPS book
1143 should be defined here, but are currently unsupported: .alias,
1144 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1145
1146 The following pseudo-ops from the Kane and Heinrich MIPS book are
1147 specific to the type of debugging information being generated, and
1148 should be defined by the object format: .aent, .begin, .bend,
1149 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1150 .vreg.
1151
1152 The following pseudo-ops from the Kane and Heinrich MIPS book are
1153 not MIPS CPU specific, but are also not specific to the object file
1154 format. This file is probably the best place to define them, but
1155 they are not currently supported: .asm0, .endr, .lab, .struct. */
1156
1157 static const pseudo_typeS mips_pseudo_table[] =
1158 {
1159 /* MIPS specific pseudo-ops. */
1160 {"option", s_option, 0},
1161 {"set", s_mipsset, 0},
1162 {"rdata", s_change_sec, 'r'},
1163 {"sdata", s_change_sec, 's'},
1164 {"livereg", s_ignore, 0},
1165 {"abicalls", s_abicalls, 0},
1166 {"cpload", s_cpload, 0},
1167 {"cpsetup", s_cpsetup, 0},
1168 {"cplocal", s_cplocal, 0},
1169 {"cprestore", s_cprestore, 0},
1170 {"cpreturn", s_cpreturn, 0},
1171 {"dtprelword", s_dtprelword, 0},
1172 {"dtpreldword", s_dtpreldword, 0},
1173 {"gpvalue", s_gpvalue, 0},
1174 {"gpword", s_gpword, 0},
1175 {"gpdword", s_gpdword, 0},
1176 {"cpadd", s_cpadd, 0},
1177 {"insn", s_insn, 0},
1178
1179 /* Relatively generic pseudo-ops that happen to be used on MIPS
1180 chips. */
1181 {"asciiz", stringer, 8 + 1},
1182 {"bss", s_change_sec, 'b'},
1183 {"err", s_err, 0},
1184 {"half", s_cons, 1},
1185 {"dword", s_cons, 3},
1186 {"weakext", s_mips_weakext, 0},
1187 {"origin", s_org, 0},
1188 {"repeat", s_rept, 0},
1189
1190 /* For MIPS this is non-standard, but we define it for consistency. */
1191 {"sbss", s_change_sec, 'B'},
1192
1193 /* These pseudo-ops are defined in read.c, but must be overridden
1194 here for one reason or another. */
1195 {"align", s_align, 0},
1196 {"byte", s_cons, 0},
1197 {"data", s_change_sec, 'd'},
1198 {"double", s_float_cons, 'd'},
1199 {"float", s_float_cons, 'f'},
1200 {"globl", s_mips_globl, 0},
1201 {"global", s_mips_globl, 0},
1202 {"hword", s_cons, 1},
1203 {"int", s_cons, 2},
1204 {"long", s_cons, 2},
1205 {"octa", s_cons, 4},
1206 {"quad", s_cons, 3},
1207 {"section", s_change_section, 0},
1208 {"short", s_cons, 1},
1209 {"single", s_float_cons, 'f'},
1210 {"stabn", s_mips_stab, 'n'},
1211 {"text", s_change_sec, 't'},
1212 {"word", s_cons, 2},
1213
1214 { "extern", ecoff_directive_extern, 0},
1215
1216 { NULL, NULL, 0 },
1217 };
1218
1219 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1220 {
1221 /* These pseudo-ops should be defined by the object file format.
1222 However, a.out doesn't support them, so we have versions here. */
1223 {"aent", s_mips_ent, 1},
1224 {"bgnb", s_ignore, 0},
1225 {"end", s_mips_end, 0},
1226 {"endb", s_ignore, 0},
1227 {"ent", s_mips_ent, 0},
1228 {"file", s_mips_file, 0},
1229 {"fmask", s_mips_mask, 'F'},
1230 {"frame", s_mips_frame, 0},
1231 {"loc", s_mips_loc, 0},
1232 {"mask", s_mips_mask, 'R'},
1233 {"verstamp", s_ignore, 0},
1234 { NULL, NULL, 0 },
1235 };
1236
1237 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1238 purpose of the `.dc.a' internal pseudo-op. */
1239
1240 int
1241 mips_address_bytes (void)
1242 {
1243 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1244 }
1245
1246 extern void pop_insert (const pseudo_typeS *);
1247
1248 void
1249 mips_pop_insert (void)
1250 {
1251 pop_insert (mips_pseudo_table);
1252 if (! ECOFF_DEBUGGING)
1253 pop_insert (mips_nonecoff_pseudo_table);
1254 }
1255 \f
1256 /* Symbols labelling the current insn. */
1257
1258 struct insn_label_list
1259 {
1260 struct insn_label_list *next;
1261 symbolS *label;
1262 };
1263
1264 static struct insn_label_list *free_insn_labels;
1265 #define label_list tc_segment_info_data.labels
1266
1267 static void mips_clear_insn_labels (void);
1268
1269 static inline void
1270 mips_clear_insn_labels (void)
1271 {
1272 register struct insn_label_list **pl;
1273 segment_info_type *si;
1274
1275 if (now_seg)
1276 {
1277 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1278 ;
1279
1280 si = seg_info (now_seg);
1281 *pl = si->label_list;
1282 si->label_list = NULL;
1283 }
1284 }
1285
1286 \f
1287 static char *expr_end;
1288
1289 /* Expressions which appear in instructions. These are set by
1290 mips_ip. */
1291
1292 static expressionS imm_expr;
1293 static expressionS imm2_expr;
1294 static expressionS offset_expr;
1295
1296 /* Relocs associated with imm_expr and offset_expr. */
1297
1298 static bfd_reloc_code_real_type imm_reloc[3]
1299 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1300 static bfd_reloc_code_real_type offset_reloc[3]
1301 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1302
1303 /* These are set by mips16_ip if an explicit extension is used. */
1304
1305 static bfd_boolean mips16_small, mips16_ext;
1306
1307 #ifdef OBJ_ELF
1308 /* The pdr segment for per procedure frame/regmask info. Not used for
1309 ECOFF debugging. */
1310
1311 static segT pdr_seg;
1312 #endif
1313
1314 /* The default target format to use. */
1315
1316 const char *
1317 mips_target_format (void)
1318 {
1319 switch (OUTPUT_FLAVOR)
1320 {
1321 case bfd_target_ecoff_flavour:
1322 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1323 case bfd_target_coff_flavour:
1324 return "pe-mips";
1325 case bfd_target_elf_flavour:
1326 #ifdef TE_VXWORKS
1327 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1328 return (target_big_endian
1329 ? "elf32-bigmips-vxworks"
1330 : "elf32-littlemips-vxworks");
1331 #endif
1332 #ifdef TE_TMIPS
1333 /* This is traditional mips. */
1334 return (target_big_endian
1335 ? (HAVE_64BIT_OBJECTS
1336 ? "elf64-tradbigmips"
1337 : (HAVE_NEWABI
1338 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1339 : (HAVE_64BIT_OBJECTS
1340 ? "elf64-tradlittlemips"
1341 : (HAVE_NEWABI
1342 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1343 #else
1344 return (target_big_endian
1345 ? (HAVE_64BIT_OBJECTS
1346 ? "elf64-bigmips"
1347 : (HAVE_NEWABI
1348 ? "elf32-nbigmips" : "elf32-bigmips"))
1349 : (HAVE_64BIT_OBJECTS
1350 ? "elf64-littlemips"
1351 : (HAVE_NEWABI
1352 ? "elf32-nlittlemips" : "elf32-littlemips")));
1353 #endif
1354 default:
1355 abort ();
1356 return NULL;
1357 }
1358 }
1359
1360 /* Return the length of instruction INSN. */
1361
1362 static inline unsigned int
1363 insn_length (const struct mips_cl_insn *insn)
1364 {
1365 if (!mips_opts.mips16)
1366 return 4;
1367 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1368 }
1369
1370 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1371
1372 static void
1373 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1374 {
1375 size_t i;
1376
1377 insn->insn_mo = mo;
1378 insn->use_extend = FALSE;
1379 insn->extend = 0;
1380 insn->insn_opcode = mo->match;
1381 insn->frag = NULL;
1382 insn->where = 0;
1383 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1384 insn->fixp[i] = NULL;
1385 insn->fixed_p = (mips_opts.noreorder > 0);
1386 insn->noreorder_p = (mips_opts.noreorder > 0);
1387 insn->mips16_absolute_jump_p = 0;
1388 }
1389
1390 /* Record the current MIPS16 mode in now_seg. */
1391
1392 static void
1393 mips_record_mips16_mode (void)
1394 {
1395 segment_info_type *si;
1396
1397 si = seg_info (now_seg);
1398 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1399 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1400 }
1401
1402 /* Install INSN at the location specified by its "frag" and "where" fields. */
1403
1404 static void
1405 install_insn (const struct mips_cl_insn *insn)
1406 {
1407 char *f = insn->frag->fr_literal + insn->where;
1408 if (!mips_opts.mips16)
1409 md_number_to_chars (f, insn->insn_opcode, 4);
1410 else if (insn->mips16_absolute_jump_p)
1411 {
1412 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1413 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1414 }
1415 else
1416 {
1417 if (insn->use_extend)
1418 {
1419 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1420 f += 2;
1421 }
1422 md_number_to_chars (f, insn->insn_opcode, 2);
1423 }
1424 mips_record_mips16_mode ();
1425 }
1426
1427 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1428 and install the opcode in the new location. */
1429
1430 static void
1431 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1432 {
1433 size_t i;
1434
1435 insn->frag = frag;
1436 insn->where = where;
1437 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1438 if (insn->fixp[i] != NULL)
1439 {
1440 insn->fixp[i]->fx_frag = frag;
1441 insn->fixp[i]->fx_where = where;
1442 }
1443 install_insn (insn);
1444 }
1445
1446 /* Add INSN to the end of the output. */
1447
1448 static void
1449 add_fixed_insn (struct mips_cl_insn *insn)
1450 {
1451 char *f = frag_more (insn_length (insn));
1452 move_insn (insn, frag_now, f - frag_now->fr_literal);
1453 }
1454
1455 /* Start a variant frag and move INSN to the start of the variant part,
1456 marking it as fixed. The other arguments are as for frag_var. */
1457
1458 static void
1459 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1460 relax_substateT subtype, symbolS *symbol, offsetT offset)
1461 {
1462 frag_grow (max_chars);
1463 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1464 insn->fixed_p = 1;
1465 frag_var (rs_machine_dependent, max_chars, var,
1466 subtype, symbol, offset, NULL);
1467 }
1468
1469 /* Insert N copies of INSN into the history buffer, starting at
1470 position FIRST. Neither FIRST nor N need to be clipped. */
1471
1472 static void
1473 insert_into_history (unsigned int first, unsigned int n,
1474 const struct mips_cl_insn *insn)
1475 {
1476 if (mips_relax.sequence != 2)
1477 {
1478 unsigned int i;
1479
1480 for (i = ARRAY_SIZE (history); i-- > first;)
1481 if (i >= first + n)
1482 history[i] = history[i - n];
1483 else
1484 history[i] = *insn;
1485 }
1486 }
1487
1488 /* Emit a nop instruction, recording it in the history buffer. */
1489
1490 static void
1491 emit_nop (void)
1492 {
1493 add_fixed_insn (NOP_INSN);
1494 insert_into_history (0, 1, NOP_INSN);
1495 }
1496
1497 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1498 the idea is to make it obvious at a glance that each errata is
1499 included. */
1500
1501 static void
1502 init_vr4120_conflicts (void)
1503 {
1504 #define CONFLICT(FIRST, SECOND) \
1505 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1506
1507 /* Errata 21 - [D]DIV[U] after [D]MACC */
1508 CONFLICT (MACC, DIV);
1509 CONFLICT (DMACC, DIV);
1510
1511 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1512 CONFLICT (DMULT, DMULT);
1513 CONFLICT (DMULT, DMACC);
1514 CONFLICT (DMACC, DMULT);
1515 CONFLICT (DMACC, DMACC);
1516
1517 /* Errata 24 - MT{LO,HI} after [D]MACC */
1518 CONFLICT (MACC, MTHILO);
1519 CONFLICT (DMACC, MTHILO);
1520
1521 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1522 instruction is executed immediately after a MACC or DMACC
1523 instruction, the result of [either instruction] is incorrect." */
1524 CONFLICT (MACC, MULT);
1525 CONFLICT (MACC, DMULT);
1526 CONFLICT (DMACC, MULT);
1527 CONFLICT (DMACC, DMULT);
1528
1529 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1530 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1531 DDIV or DDIVU instruction, the result of the MACC or
1532 DMACC instruction is incorrect.". */
1533 CONFLICT (DMULT, MACC);
1534 CONFLICT (DMULT, DMACC);
1535 CONFLICT (DIV, MACC);
1536 CONFLICT (DIV, DMACC);
1537
1538 #undef CONFLICT
1539 }
1540
1541 struct regname {
1542 const char *name;
1543 unsigned int num;
1544 };
1545
1546 #define RTYPE_MASK 0x1ff00
1547 #define RTYPE_NUM 0x00100
1548 #define RTYPE_FPU 0x00200
1549 #define RTYPE_FCC 0x00400
1550 #define RTYPE_VEC 0x00800
1551 #define RTYPE_GP 0x01000
1552 #define RTYPE_CP0 0x02000
1553 #define RTYPE_PC 0x04000
1554 #define RTYPE_ACC 0x08000
1555 #define RTYPE_CCC 0x10000
1556 #define RNUM_MASK 0x000ff
1557 #define RWARN 0x80000
1558
1559 #define GENERIC_REGISTER_NUMBERS \
1560 {"$0", RTYPE_NUM | 0}, \
1561 {"$1", RTYPE_NUM | 1}, \
1562 {"$2", RTYPE_NUM | 2}, \
1563 {"$3", RTYPE_NUM | 3}, \
1564 {"$4", RTYPE_NUM | 4}, \
1565 {"$5", RTYPE_NUM | 5}, \
1566 {"$6", RTYPE_NUM | 6}, \
1567 {"$7", RTYPE_NUM | 7}, \
1568 {"$8", RTYPE_NUM | 8}, \
1569 {"$9", RTYPE_NUM | 9}, \
1570 {"$10", RTYPE_NUM | 10}, \
1571 {"$11", RTYPE_NUM | 11}, \
1572 {"$12", RTYPE_NUM | 12}, \
1573 {"$13", RTYPE_NUM | 13}, \
1574 {"$14", RTYPE_NUM | 14}, \
1575 {"$15", RTYPE_NUM | 15}, \
1576 {"$16", RTYPE_NUM | 16}, \
1577 {"$17", RTYPE_NUM | 17}, \
1578 {"$18", RTYPE_NUM | 18}, \
1579 {"$19", RTYPE_NUM | 19}, \
1580 {"$20", RTYPE_NUM | 20}, \
1581 {"$21", RTYPE_NUM | 21}, \
1582 {"$22", RTYPE_NUM | 22}, \
1583 {"$23", RTYPE_NUM | 23}, \
1584 {"$24", RTYPE_NUM | 24}, \
1585 {"$25", RTYPE_NUM | 25}, \
1586 {"$26", RTYPE_NUM | 26}, \
1587 {"$27", RTYPE_NUM | 27}, \
1588 {"$28", RTYPE_NUM | 28}, \
1589 {"$29", RTYPE_NUM | 29}, \
1590 {"$30", RTYPE_NUM | 30}, \
1591 {"$31", RTYPE_NUM | 31}
1592
1593 #define FPU_REGISTER_NAMES \
1594 {"$f0", RTYPE_FPU | 0}, \
1595 {"$f1", RTYPE_FPU | 1}, \
1596 {"$f2", RTYPE_FPU | 2}, \
1597 {"$f3", RTYPE_FPU | 3}, \
1598 {"$f4", RTYPE_FPU | 4}, \
1599 {"$f5", RTYPE_FPU | 5}, \
1600 {"$f6", RTYPE_FPU | 6}, \
1601 {"$f7", RTYPE_FPU | 7}, \
1602 {"$f8", RTYPE_FPU | 8}, \
1603 {"$f9", RTYPE_FPU | 9}, \
1604 {"$f10", RTYPE_FPU | 10}, \
1605 {"$f11", RTYPE_FPU | 11}, \
1606 {"$f12", RTYPE_FPU | 12}, \
1607 {"$f13", RTYPE_FPU | 13}, \
1608 {"$f14", RTYPE_FPU | 14}, \
1609 {"$f15", RTYPE_FPU | 15}, \
1610 {"$f16", RTYPE_FPU | 16}, \
1611 {"$f17", RTYPE_FPU | 17}, \
1612 {"$f18", RTYPE_FPU | 18}, \
1613 {"$f19", RTYPE_FPU | 19}, \
1614 {"$f20", RTYPE_FPU | 20}, \
1615 {"$f21", RTYPE_FPU | 21}, \
1616 {"$f22", RTYPE_FPU | 22}, \
1617 {"$f23", RTYPE_FPU | 23}, \
1618 {"$f24", RTYPE_FPU | 24}, \
1619 {"$f25", RTYPE_FPU | 25}, \
1620 {"$f26", RTYPE_FPU | 26}, \
1621 {"$f27", RTYPE_FPU | 27}, \
1622 {"$f28", RTYPE_FPU | 28}, \
1623 {"$f29", RTYPE_FPU | 29}, \
1624 {"$f30", RTYPE_FPU | 30}, \
1625 {"$f31", RTYPE_FPU | 31}
1626
1627 #define FPU_CONDITION_CODE_NAMES \
1628 {"$fcc0", RTYPE_FCC | 0}, \
1629 {"$fcc1", RTYPE_FCC | 1}, \
1630 {"$fcc2", RTYPE_FCC | 2}, \
1631 {"$fcc3", RTYPE_FCC | 3}, \
1632 {"$fcc4", RTYPE_FCC | 4}, \
1633 {"$fcc5", RTYPE_FCC | 5}, \
1634 {"$fcc6", RTYPE_FCC | 6}, \
1635 {"$fcc7", RTYPE_FCC | 7}
1636
1637 #define COPROC_CONDITION_CODE_NAMES \
1638 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1639 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1640 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1641 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1642 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1643 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1644 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1645 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1646
1647 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1648 {"$a4", RTYPE_GP | 8}, \
1649 {"$a5", RTYPE_GP | 9}, \
1650 {"$a6", RTYPE_GP | 10}, \
1651 {"$a7", RTYPE_GP | 11}, \
1652 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1653 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1654 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1655 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1656 {"$t0", RTYPE_GP | 12}, \
1657 {"$t1", RTYPE_GP | 13}, \
1658 {"$t2", RTYPE_GP | 14}, \
1659 {"$t3", RTYPE_GP | 15}
1660
1661 #define O32_SYMBOLIC_REGISTER_NAMES \
1662 {"$t0", RTYPE_GP | 8}, \
1663 {"$t1", RTYPE_GP | 9}, \
1664 {"$t2", RTYPE_GP | 10}, \
1665 {"$t3", RTYPE_GP | 11}, \
1666 {"$t4", RTYPE_GP | 12}, \
1667 {"$t5", RTYPE_GP | 13}, \
1668 {"$t6", RTYPE_GP | 14}, \
1669 {"$t7", RTYPE_GP | 15}, \
1670 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1671 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1672 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1673 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1674
1675 /* Remaining symbolic register names */
1676 #define SYMBOLIC_REGISTER_NAMES \
1677 {"$zero", RTYPE_GP | 0}, \
1678 {"$at", RTYPE_GP | 1}, \
1679 {"$AT", RTYPE_GP | 1}, \
1680 {"$v0", RTYPE_GP | 2}, \
1681 {"$v1", RTYPE_GP | 3}, \
1682 {"$a0", RTYPE_GP | 4}, \
1683 {"$a1", RTYPE_GP | 5}, \
1684 {"$a2", RTYPE_GP | 6}, \
1685 {"$a3", RTYPE_GP | 7}, \
1686 {"$s0", RTYPE_GP | 16}, \
1687 {"$s1", RTYPE_GP | 17}, \
1688 {"$s2", RTYPE_GP | 18}, \
1689 {"$s3", RTYPE_GP | 19}, \
1690 {"$s4", RTYPE_GP | 20}, \
1691 {"$s5", RTYPE_GP | 21}, \
1692 {"$s6", RTYPE_GP | 22}, \
1693 {"$s7", RTYPE_GP | 23}, \
1694 {"$t8", RTYPE_GP | 24}, \
1695 {"$t9", RTYPE_GP | 25}, \
1696 {"$k0", RTYPE_GP | 26}, \
1697 {"$kt0", RTYPE_GP | 26}, \
1698 {"$k1", RTYPE_GP | 27}, \
1699 {"$kt1", RTYPE_GP | 27}, \
1700 {"$gp", RTYPE_GP | 28}, \
1701 {"$sp", RTYPE_GP | 29}, \
1702 {"$s8", RTYPE_GP | 30}, \
1703 {"$fp", RTYPE_GP | 30}, \
1704 {"$ra", RTYPE_GP | 31}
1705
1706 #define MIPS16_SPECIAL_REGISTER_NAMES \
1707 {"$pc", RTYPE_PC | 0}
1708
1709 #define MDMX_VECTOR_REGISTER_NAMES \
1710 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1711 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1712 {"$v2", RTYPE_VEC | 2}, \
1713 {"$v3", RTYPE_VEC | 3}, \
1714 {"$v4", RTYPE_VEC | 4}, \
1715 {"$v5", RTYPE_VEC | 5}, \
1716 {"$v6", RTYPE_VEC | 6}, \
1717 {"$v7", RTYPE_VEC | 7}, \
1718 {"$v8", RTYPE_VEC | 8}, \
1719 {"$v9", RTYPE_VEC | 9}, \
1720 {"$v10", RTYPE_VEC | 10}, \
1721 {"$v11", RTYPE_VEC | 11}, \
1722 {"$v12", RTYPE_VEC | 12}, \
1723 {"$v13", RTYPE_VEC | 13}, \
1724 {"$v14", RTYPE_VEC | 14}, \
1725 {"$v15", RTYPE_VEC | 15}, \
1726 {"$v16", RTYPE_VEC | 16}, \
1727 {"$v17", RTYPE_VEC | 17}, \
1728 {"$v18", RTYPE_VEC | 18}, \
1729 {"$v19", RTYPE_VEC | 19}, \
1730 {"$v20", RTYPE_VEC | 20}, \
1731 {"$v21", RTYPE_VEC | 21}, \
1732 {"$v22", RTYPE_VEC | 22}, \
1733 {"$v23", RTYPE_VEC | 23}, \
1734 {"$v24", RTYPE_VEC | 24}, \
1735 {"$v25", RTYPE_VEC | 25}, \
1736 {"$v26", RTYPE_VEC | 26}, \
1737 {"$v27", RTYPE_VEC | 27}, \
1738 {"$v28", RTYPE_VEC | 28}, \
1739 {"$v29", RTYPE_VEC | 29}, \
1740 {"$v30", RTYPE_VEC | 30}, \
1741 {"$v31", RTYPE_VEC | 31}
1742
1743 #define MIPS_DSP_ACCUMULATOR_NAMES \
1744 {"$ac0", RTYPE_ACC | 0}, \
1745 {"$ac1", RTYPE_ACC | 1}, \
1746 {"$ac2", RTYPE_ACC | 2}, \
1747 {"$ac3", RTYPE_ACC | 3}
1748
1749 static const struct regname reg_names[] = {
1750 GENERIC_REGISTER_NUMBERS,
1751 FPU_REGISTER_NAMES,
1752 FPU_CONDITION_CODE_NAMES,
1753 COPROC_CONDITION_CODE_NAMES,
1754
1755 /* The $txx registers depends on the abi,
1756 these will be added later into the symbol table from
1757 one of the tables below once mips_abi is set after
1758 parsing of arguments from the command line. */
1759 SYMBOLIC_REGISTER_NAMES,
1760
1761 MIPS16_SPECIAL_REGISTER_NAMES,
1762 MDMX_VECTOR_REGISTER_NAMES,
1763 MIPS_DSP_ACCUMULATOR_NAMES,
1764 {0, 0}
1765 };
1766
1767 static const struct regname reg_names_o32[] = {
1768 O32_SYMBOLIC_REGISTER_NAMES,
1769 {0, 0}
1770 };
1771
1772 static const struct regname reg_names_n32n64[] = {
1773 N32N64_SYMBOLIC_REGISTER_NAMES,
1774 {0, 0}
1775 };
1776
1777 static int
1778 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1779 {
1780 symbolS *symbolP;
1781 char *e;
1782 char save_c;
1783 int reg = -1;
1784
1785 /* Find end of name. */
1786 e = *s;
1787 if (is_name_beginner (*e))
1788 ++e;
1789 while (is_part_of_name (*e))
1790 ++e;
1791
1792 /* Terminate name. */
1793 save_c = *e;
1794 *e = '\0';
1795
1796 /* Look for a register symbol. */
1797 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1798 {
1799 int r = S_GET_VALUE (symbolP);
1800 if (r & types)
1801 reg = r & RNUM_MASK;
1802 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1803 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1804 reg = (r & RNUM_MASK) - 2;
1805 }
1806 /* Else see if this is a register defined in an itbl entry. */
1807 else if ((types & RTYPE_GP) && itbl_have_entries)
1808 {
1809 char *n = *s;
1810 unsigned long r;
1811
1812 if (*n == '$')
1813 ++n;
1814 if (itbl_get_reg_val (n, &r))
1815 reg = r & RNUM_MASK;
1816 }
1817
1818 /* Advance to next token if a register was recognised. */
1819 if (reg >= 0)
1820 *s = e;
1821 else if (types & RWARN)
1822 as_warn (_("Unrecognized register name `%s'"), *s);
1823
1824 *e = save_c;
1825 if (regnop)
1826 *regnop = reg;
1827 return reg >= 0;
1828 }
1829
1830 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1831 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1832
1833 static bfd_boolean
1834 is_opcode_valid (const struct mips_opcode *mo)
1835 {
1836 int isa = mips_opts.isa;
1837 int fp_s, fp_d;
1838
1839 if (mips_opts.ase_mdmx)
1840 isa |= INSN_MDMX;
1841 if (mips_opts.ase_dsp)
1842 isa |= INSN_DSP;
1843 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1844 isa |= INSN_DSP64;
1845 if (mips_opts.ase_dspr2)
1846 isa |= INSN_DSPR2;
1847 if (mips_opts.ase_mt)
1848 isa |= INSN_MT;
1849 if (mips_opts.ase_mips3d)
1850 isa |= INSN_MIPS3D;
1851 if (mips_opts.ase_smartmips)
1852 isa |= INSN_SMARTMIPS;
1853
1854 /* Don't accept instructions based on the ISA if the CPU does not implement
1855 all the coprocessor insns. */
1856 if (NO_ISA_COP (mips_opts.arch)
1857 && COP_INSN (mo->pinfo))
1858 isa = 0;
1859
1860 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1861 return FALSE;
1862
1863 /* Check whether the instruction or macro requires single-precision or
1864 double-precision floating-point support. Note that this information is
1865 stored differently in the opcode table for insns and macros. */
1866 if (mo->pinfo == INSN_MACRO)
1867 {
1868 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1869 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1870 }
1871 else
1872 {
1873 fp_s = mo->pinfo & FP_S;
1874 fp_d = mo->pinfo & FP_D;
1875 }
1876
1877 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1878 return FALSE;
1879
1880 if (fp_s && mips_opts.soft_float)
1881 return FALSE;
1882
1883 return TRUE;
1884 }
1885
1886 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1887 selected ISA and architecture. */
1888
1889 static bfd_boolean
1890 is_opcode_valid_16 (const struct mips_opcode *mo)
1891 {
1892 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1893 }
1894
1895 /* This function is called once, at assembler startup time. It should set up
1896 all the tables, etc. that the MD part of the assembler will need. */
1897
1898 void
1899 md_begin (void)
1900 {
1901 const char *retval = NULL;
1902 int i = 0;
1903 int broken = 0;
1904
1905 if (mips_pic != NO_PIC)
1906 {
1907 if (g_switch_seen && g_switch_value != 0)
1908 as_bad (_("-G may not be used in position-independent code"));
1909 g_switch_value = 0;
1910 }
1911
1912 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1913 as_warn (_("Could not set architecture and machine"));
1914
1915 op_hash = hash_new ();
1916
1917 for (i = 0; i < NUMOPCODES;)
1918 {
1919 const char *name = mips_opcodes[i].name;
1920
1921 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1922 if (retval != NULL)
1923 {
1924 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1925 mips_opcodes[i].name, retval);
1926 /* Probably a memory allocation problem? Give up now. */
1927 as_fatal (_("Broken assembler. No assembly attempted."));
1928 }
1929 do
1930 {
1931 if (mips_opcodes[i].pinfo != INSN_MACRO)
1932 {
1933 if (!validate_mips_insn (&mips_opcodes[i]))
1934 broken = 1;
1935 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1936 {
1937 create_insn (&nop_insn, mips_opcodes + i);
1938 if (mips_fix_loongson2f_nop)
1939 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1940 nop_insn.fixed_p = 1;
1941 }
1942 }
1943 ++i;
1944 }
1945 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1946 }
1947
1948 mips16_op_hash = hash_new ();
1949
1950 i = 0;
1951 while (i < bfd_mips16_num_opcodes)
1952 {
1953 const char *name = mips16_opcodes[i].name;
1954
1955 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1956 if (retval != NULL)
1957 as_fatal (_("internal: can't hash `%s': %s"),
1958 mips16_opcodes[i].name, retval);
1959 do
1960 {
1961 if (mips16_opcodes[i].pinfo != INSN_MACRO
1962 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1963 != mips16_opcodes[i].match))
1964 {
1965 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1966 mips16_opcodes[i].name, mips16_opcodes[i].args);
1967 broken = 1;
1968 }
1969 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1970 {
1971 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1972 mips16_nop_insn.fixed_p = 1;
1973 }
1974 ++i;
1975 }
1976 while (i < bfd_mips16_num_opcodes
1977 && strcmp (mips16_opcodes[i].name, name) == 0);
1978 }
1979
1980 if (broken)
1981 as_fatal (_("Broken assembler. No assembly attempted."));
1982
1983 /* We add all the general register names to the symbol table. This
1984 helps us detect invalid uses of them. */
1985 for (i = 0; reg_names[i].name; i++)
1986 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1987 reg_names[i].num, /* & RNUM_MASK, */
1988 &zero_address_frag));
1989 if (HAVE_NEWABI)
1990 for (i = 0; reg_names_n32n64[i].name; i++)
1991 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1992 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1993 &zero_address_frag));
1994 else
1995 for (i = 0; reg_names_o32[i].name; i++)
1996 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1997 reg_names_o32[i].num, /* & RNUM_MASK, */
1998 &zero_address_frag));
1999
2000 mips_no_prev_insn ();
2001
2002 mips_gprmask = 0;
2003 mips_cprmask[0] = 0;
2004 mips_cprmask[1] = 0;
2005 mips_cprmask[2] = 0;
2006 mips_cprmask[3] = 0;
2007
2008 /* set the default alignment for the text section (2**2) */
2009 record_alignment (text_section, 2);
2010
2011 bfd_set_gp_size (stdoutput, g_switch_value);
2012
2013 #ifdef OBJ_ELF
2014 if (IS_ELF)
2015 {
2016 /* On a native system other than VxWorks, sections must be aligned
2017 to 16 byte boundaries. When configured for an embedded ELF
2018 target, we don't bother. */
2019 if (strncmp (TARGET_OS, "elf", 3) != 0
2020 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2021 {
2022 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2023 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2024 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2025 }
2026
2027 /* Create a .reginfo section for register masks and a .mdebug
2028 section for debugging information. */
2029 {
2030 segT seg;
2031 subsegT subseg;
2032 flagword flags;
2033 segT sec;
2034
2035 seg = now_seg;
2036 subseg = now_subseg;
2037
2038 /* The ABI says this section should be loaded so that the
2039 running program can access it. However, we don't load it
2040 if we are configured for an embedded target */
2041 flags = SEC_READONLY | SEC_DATA;
2042 if (strncmp (TARGET_OS, "elf", 3) != 0)
2043 flags |= SEC_ALLOC | SEC_LOAD;
2044
2045 if (mips_abi != N64_ABI)
2046 {
2047 sec = subseg_new (".reginfo", (subsegT) 0);
2048
2049 bfd_set_section_flags (stdoutput, sec, flags);
2050 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2051
2052 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2053 }
2054 else
2055 {
2056 /* The 64-bit ABI uses a .MIPS.options section rather than
2057 .reginfo section. */
2058 sec = subseg_new (".MIPS.options", (subsegT) 0);
2059 bfd_set_section_flags (stdoutput, sec, flags);
2060 bfd_set_section_alignment (stdoutput, sec, 3);
2061
2062 /* Set up the option header. */
2063 {
2064 Elf_Internal_Options opthdr;
2065 char *f;
2066
2067 opthdr.kind = ODK_REGINFO;
2068 opthdr.size = (sizeof (Elf_External_Options)
2069 + sizeof (Elf64_External_RegInfo));
2070 opthdr.section = 0;
2071 opthdr.info = 0;
2072 f = frag_more (sizeof (Elf_External_Options));
2073 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2074 (Elf_External_Options *) f);
2075
2076 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2077 }
2078 }
2079
2080 if (ECOFF_DEBUGGING)
2081 {
2082 sec = subseg_new (".mdebug", (subsegT) 0);
2083 (void) bfd_set_section_flags (stdoutput, sec,
2084 SEC_HAS_CONTENTS | SEC_READONLY);
2085 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2086 }
2087 else if (mips_flag_pdr)
2088 {
2089 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2090 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2091 SEC_READONLY | SEC_RELOC
2092 | SEC_DEBUGGING);
2093 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2094 }
2095
2096 subseg_set (seg, subseg);
2097 }
2098 }
2099 #endif /* OBJ_ELF */
2100
2101 if (! ECOFF_DEBUGGING)
2102 md_obj_begin ();
2103
2104 if (mips_fix_vr4120)
2105 init_vr4120_conflicts ();
2106 }
2107
2108 void
2109 md_mips_end (void)
2110 {
2111 if (! ECOFF_DEBUGGING)
2112 md_obj_end ();
2113 }
2114
2115 void
2116 md_assemble (char *str)
2117 {
2118 struct mips_cl_insn insn;
2119 bfd_reloc_code_real_type unused_reloc[3]
2120 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2121
2122 imm_expr.X_op = O_absent;
2123 imm2_expr.X_op = O_absent;
2124 offset_expr.X_op = O_absent;
2125 imm_reloc[0] = BFD_RELOC_UNUSED;
2126 imm_reloc[1] = BFD_RELOC_UNUSED;
2127 imm_reloc[2] = BFD_RELOC_UNUSED;
2128 offset_reloc[0] = BFD_RELOC_UNUSED;
2129 offset_reloc[1] = BFD_RELOC_UNUSED;
2130 offset_reloc[2] = BFD_RELOC_UNUSED;
2131
2132 if (mips_opts.mips16)
2133 mips16_ip (str, &insn);
2134 else
2135 {
2136 mips_ip (str, &insn);
2137 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2138 str, insn.insn_opcode));
2139 }
2140
2141 if (insn_error)
2142 {
2143 as_bad ("%s `%s'", insn_error, str);
2144 return;
2145 }
2146
2147 if (insn.insn_mo->pinfo == INSN_MACRO)
2148 {
2149 macro_start ();
2150 if (mips_opts.mips16)
2151 mips16_macro (&insn);
2152 else
2153 macro (&insn);
2154 macro_end ();
2155 }
2156 else
2157 {
2158 if (imm_expr.X_op != O_absent)
2159 append_insn (&insn, &imm_expr, imm_reloc);
2160 else if (offset_expr.X_op != O_absent)
2161 append_insn (&insn, &offset_expr, offset_reloc);
2162 else
2163 append_insn (&insn, NULL, unused_reloc);
2164 }
2165 }
2166
2167 /* Convenience functions for abstracting away the differences between
2168 MIPS16 and non-MIPS16 relocations. */
2169
2170 static inline bfd_boolean
2171 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2172 {
2173 switch (reloc)
2174 {
2175 case BFD_RELOC_MIPS16_JMP:
2176 case BFD_RELOC_MIPS16_GPREL:
2177 case BFD_RELOC_MIPS16_GOT16:
2178 case BFD_RELOC_MIPS16_CALL16:
2179 case BFD_RELOC_MIPS16_HI16_S:
2180 case BFD_RELOC_MIPS16_HI16:
2181 case BFD_RELOC_MIPS16_LO16:
2182 return TRUE;
2183
2184 default:
2185 return FALSE;
2186 }
2187 }
2188
2189 static inline bfd_boolean
2190 got16_reloc_p (bfd_reloc_code_real_type reloc)
2191 {
2192 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2193 }
2194
2195 static inline bfd_boolean
2196 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2197 {
2198 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2199 }
2200
2201 static inline bfd_boolean
2202 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2203 {
2204 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2205 }
2206
2207 /* Return true if the given relocation might need a matching %lo().
2208 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2209 need a matching %lo() when applied to local symbols. */
2210
2211 static inline bfd_boolean
2212 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2213 {
2214 return (HAVE_IN_PLACE_ADDENDS
2215 && (hi16_reloc_p (reloc)
2216 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2217 all GOT16 relocations evaluate to "G". */
2218 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2219 }
2220
2221 /* Return the type of %lo() reloc needed by RELOC, given that
2222 reloc_needs_lo_p. */
2223
2224 static inline bfd_reloc_code_real_type
2225 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2226 {
2227 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2228 }
2229
2230 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2231 relocation. */
2232
2233 static inline bfd_boolean
2234 fixup_has_matching_lo_p (fixS *fixp)
2235 {
2236 return (fixp->fx_next != NULL
2237 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2238 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2239 && fixp->fx_offset == fixp->fx_next->fx_offset);
2240 }
2241
2242 /* See whether instruction IP reads register REG. CLASS is the type
2243 of register. */
2244
2245 static int
2246 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2247 enum mips_regclass regclass)
2248 {
2249 if (regclass == MIPS16_REG)
2250 {
2251 gas_assert (mips_opts.mips16);
2252 reg = mips16_to_32_reg_map[reg];
2253 regclass = MIPS_GR_REG;
2254 }
2255
2256 /* Don't report on general register ZERO, since it never changes. */
2257 if (regclass == MIPS_GR_REG && reg == ZERO)
2258 return 0;
2259
2260 if (regclass == MIPS_FP_REG)
2261 {
2262 gas_assert (! mips_opts.mips16);
2263 /* If we are called with either $f0 or $f1, we must check $f0.
2264 This is not optimal, because it will introduce an unnecessary
2265 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2266 need to distinguish reading both $f0 and $f1 or just one of
2267 them. Note that we don't have to check the other way,
2268 because there is no instruction that sets both $f0 and $f1
2269 and requires a delay. */
2270 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2271 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2272 == (reg &~ (unsigned) 1)))
2273 return 1;
2274 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2275 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2276 == (reg &~ (unsigned) 1)))
2277 return 1;
2278 }
2279 else if (! mips_opts.mips16)
2280 {
2281 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2282 && EXTRACT_OPERAND (RS, *ip) == reg)
2283 return 1;
2284 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2285 && EXTRACT_OPERAND (RT, *ip) == reg)
2286 return 1;
2287 }
2288 else
2289 {
2290 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2291 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2292 return 1;
2293 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2294 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2295 return 1;
2296 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2297 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2298 == reg))
2299 return 1;
2300 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2301 return 1;
2302 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2303 return 1;
2304 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2305 return 1;
2306 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2307 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2308 return 1;
2309 }
2310
2311 return 0;
2312 }
2313
2314 /* This function returns true if modifying a register requires a
2315 delay. */
2316
2317 static int
2318 reg_needs_delay (unsigned int reg)
2319 {
2320 unsigned long prev_pinfo;
2321
2322 prev_pinfo = history[0].insn_mo->pinfo;
2323 if (! mips_opts.noreorder
2324 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2325 && ! gpr_interlocks)
2326 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2327 && ! cop_interlocks)))
2328 {
2329 /* A load from a coprocessor or from memory. All load delays
2330 delay the use of general register rt for one instruction. */
2331 /* Itbl support may require additional care here. */
2332 know (prev_pinfo & INSN_WRITE_GPR_T);
2333 if (reg == EXTRACT_OPERAND (RT, history[0]))
2334 return 1;
2335 }
2336
2337 return 0;
2338 }
2339
2340 /* Move all labels in insn_labels to the current insertion point. */
2341
2342 static void
2343 mips_move_labels (void)
2344 {
2345 segment_info_type *si = seg_info (now_seg);
2346 struct insn_label_list *l;
2347 valueT val;
2348
2349 for (l = si->label_list; l != NULL; l = l->next)
2350 {
2351 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2352 symbol_set_frag (l->label, frag_now);
2353 val = (valueT) frag_now_fix ();
2354 /* mips16 text labels are stored as odd. */
2355 if (mips_opts.mips16)
2356 ++val;
2357 S_SET_VALUE (l->label, val);
2358 }
2359 }
2360
2361 static bfd_boolean
2362 s_is_linkonce (symbolS *sym, segT from_seg)
2363 {
2364 bfd_boolean linkonce = FALSE;
2365 segT symseg = S_GET_SEGMENT (sym);
2366
2367 if (symseg != from_seg && !S_IS_LOCAL (sym))
2368 {
2369 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2370 linkonce = TRUE;
2371 #ifdef OBJ_ELF
2372 /* The GNU toolchain uses an extension for ELF: a section
2373 beginning with the magic string .gnu.linkonce is a
2374 linkonce section. */
2375 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2376 sizeof ".gnu.linkonce" - 1) == 0)
2377 linkonce = TRUE;
2378 #endif
2379 }
2380 return linkonce;
2381 }
2382
2383 /* Mark instruction labels in mips16 mode. This permits the linker to
2384 handle them specially, such as generating jalx instructions when
2385 needed. We also make them odd for the duration of the assembly, in
2386 order to generate the right sort of code. We will make them even
2387 in the adjust_symtab routine, while leaving them marked. This is
2388 convenient for the debugger and the disassembler. The linker knows
2389 to make them odd again. */
2390
2391 static void
2392 mips16_mark_labels (void)
2393 {
2394 segment_info_type *si = seg_info (now_seg);
2395 struct insn_label_list *l;
2396
2397 if (!mips_opts.mips16)
2398 return;
2399
2400 for (l = si->label_list; l != NULL; l = l->next)
2401 {
2402 symbolS *label = l->label;
2403
2404 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2405 if (IS_ELF)
2406 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2407 #endif
2408 if ((S_GET_VALUE (label) & 1) == 0
2409 /* Don't adjust the address if the label is global or weak, or
2410 in a link-once section, since we'll be emitting symbol reloc
2411 references to it which will be patched up by the linker, and
2412 the final value of the symbol may or may not be MIPS16. */
2413 && ! S_IS_WEAK (label)
2414 && ! S_IS_EXTERNAL (label)
2415 && ! s_is_linkonce (label, now_seg))
2416 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2417 }
2418 }
2419
2420 /* End the current frag. Make it a variant frag and record the
2421 relaxation info. */
2422
2423 static void
2424 relax_close_frag (void)
2425 {
2426 mips_macro_warning.first_frag = frag_now;
2427 frag_var (rs_machine_dependent, 0, 0,
2428 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2429 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2430
2431 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2432 mips_relax.first_fixup = 0;
2433 }
2434
2435 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2436 See the comment above RELAX_ENCODE for more details. */
2437
2438 static void
2439 relax_start (symbolS *symbol)
2440 {
2441 gas_assert (mips_relax.sequence == 0);
2442 mips_relax.sequence = 1;
2443 mips_relax.symbol = symbol;
2444 }
2445
2446 /* Start generating the second version of a relaxable sequence.
2447 See the comment above RELAX_ENCODE for more details. */
2448
2449 static void
2450 relax_switch (void)
2451 {
2452 gas_assert (mips_relax.sequence == 1);
2453 mips_relax.sequence = 2;
2454 }
2455
2456 /* End the current relaxable sequence. */
2457
2458 static void
2459 relax_end (void)
2460 {
2461 gas_assert (mips_relax.sequence == 2);
2462 relax_close_frag ();
2463 mips_relax.sequence = 0;
2464 }
2465
2466 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2467 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2468 by VR4120 errata. */
2469
2470 static unsigned int
2471 classify_vr4120_insn (const char *name)
2472 {
2473 if (strncmp (name, "macc", 4) == 0)
2474 return FIX_VR4120_MACC;
2475 if (strncmp (name, "dmacc", 5) == 0)
2476 return FIX_VR4120_DMACC;
2477 if (strncmp (name, "mult", 4) == 0)
2478 return FIX_VR4120_MULT;
2479 if (strncmp (name, "dmult", 5) == 0)
2480 return FIX_VR4120_DMULT;
2481 if (strstr (name, "div"))
2482 return FIX_VR4120_DIV;
2483 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2484 return FIX_VR4120_MTHILO;
2485 return NUM_FIX_VR4120_CLASSES;
2486 }
2487
2488 #define INSN_ERET 0x42000018
2489 #define INSN_DERET 0x4200001f
2490
2491 /* Return the number of instructions that must separate INSN1 and INSN2,
2492 where INSN1 is the earlier instruction. Return the worst-case value
2493 for any INSN2 if INSN2 is null. */
2494
2495 static unsigned int
2496 insns_between (const struct mips_cl_insn *insn1,
2497 const struct mips_cl_insn *insn2)
2498 {
2499 unsigned long pinfo1, pinfo2;
2500
2501 /* This function needs to know which pinfo flags are set for INSN2
2502 and which registers INSN2 uses. The former is stored in PINFO2 and
2503 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2504 will have every flag set and INSN2_USES_REG will always return true. */
2505 pinfo1 = insn1->insn_mo->pinfo;
2506 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2507
2508 #define INSN2_USES_REG(REG, CLASS) \
2509 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2510
2511 /* For most targets, write-after-read dependencies on the HI and LO
2512 registers must be separated by at least two instructions. */
2513 if (!hilo_interlocks)
2514 {
2515 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2516 return 2;
2517 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2518 return 2;
2519 }
2520
2521 /* If we're working around r7000 errata, there must be two instructions
2522 between an mfhi or mflo and any instruction that uses the result. */
2523 if (mips_7000_hilo_fix
2524 && MF_HILO_INSN (pinfo1)
2525 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2526 return 2;
2527
2528 /* If we're working around 24K errata, one instruction is required
2529 if an ERET or DERET is followed by a branch instruction. */
2530 if (mips_fix_24k)
2531 {
2532 if (insn1->insn_opcode == INSN_ERET
2533 || insn1->insn_opcode == INSN_DERET)
2534 {
2535 if (insn2 == NULL
2536 || insn2->insn_opcode == INSN_ERET
2537 || insn2->insn_opcode == INSN_DERET
2538 || (insn2->insn_mo->pinfo
2539 & (INSN_UNCOND_BRANCH_DELAY
2540 | INSN_COND_BRANCH_DELAY
2541 | INSN_COND_BRANCH_LIKELY)) != 0)
2542 return 1;
2543 }
2544 }
2545
2546 /* If working around VR4120 errata, check for combinations that need
2547 a single intervening instruction. */
2548 if (mips_fix_vr4120)
2549 {
2550 unsigned int class1, class2;
2551
2552 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2553 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2554 {
2555 if (insn2 == NULL)
2556 return 1;
2557 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2558 if (vr4120_conflicts[class1] & (1 << class2))
2559 return 1;
2560 }
2561 }
2562
2563 if (!mips_opts.mips16)
2564 {
2565 /* Check for GPR or coprocessor load delays. All such delays
2566 are on the RT register. */
2567 /* Itbl support may require additional care here. */
2568 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2569 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2570 {
2571 know (pinfo1 & INSN_WRITE_GPR_T);
2572 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2573 return 1;
2574 }
2575
2576 /* Check for generic coprocessor hazards.
2577
2578 This case is not handled very well. There is no special
2579 knowledge of CP0 handling, and the coprocessors other than
2580 the floating point unit are not distinguished at all. */
2581 /* Itbl support may require additional care here. FIXME!
2582 Need to modify this to include knowledge about
2583 user specified delays! */
2584 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2585 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2586 {
2587 /* Handle cases where INSN1 writes to a known general coprocessor
2588 register. There must be a one instruction delay before INSN2
2589 if INSN2 reads that register, otherwise no delay is needed. */
2590 if (pinfo1 & INSN_WRITE_FPR_T)
2591 {
2592 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2593 return 1;
2594 }
2595 else if (pinfo1 & INSN_WRITE_FPR_S)
2596 {
2597 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2598 return 1;
2599 }
2600 else
2601 {
2602 /* Read-after-write dependencies on the control registers
2603 require a two-instruction gap. */
2604 if ((pinfo1 & INSN_WRITE_COND_CODE)
2605 && (pinfo2 & INSN_READ_COND_CODE))
2606 return 2;
2607
2608 /* We don't know exactly what INSN1 does. If INSN2 is
2609 also a coprocessor instruction, assume there must be
2610 a one instruction gap. */
2611 if (pinfo2 & INSN_COP)
2612 return 1;
2613 }
2614 }
2615
2616 /* Check for read-after-write dependencies on the coprocessor
2617 control registers in cases where INSN1 does not need a general
2618 coprocessor delay. This means that INSN1 is a floating point
2619 comparison instruction. */
2620 /* Itbl support may require additional care here. */
2621 else if (!cop_interlocks
2622 && (pinfo1 & INSN_WRITE_COND_CODE)
2623 && (pinfo2 & INSN_READ_COND_CODE))
2624 return 1;
2625 }
2626
2627 #undef INSN2_USES_REG
2628
2629 return 0;
2630 }
2631
2632 /* Return the number of nops that would be needed to work around the
2633 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2634 the MAX_VR4130_NOPS instructions described by HIST. */
2635
2636 static int
2637 nops_for_vr4130 (const struct mips_cl_insn *hist,
2638 const struct mips_cl_insn *insn)
2639 {
2640 int i, j, reg;
2641
2642 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2643 are not affected by the errata. */
2644 if (insn != 0
2645 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2646 || strcmp (insn->insn_mo->name, "mtlo") == 0
2647 || strcmp (insn->insn_mo->name, "mthi") == 0))
2648 return 0;
2649
2650 /* Search for the first MFLO or MFHI. */
2651 for (i = 0; i < MAX_VR4130_NOPS; i++)
2652 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2653 {
2654 /* Extract the destination register. */
2655 if (mips_opts.mips16)
2656 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, hist[i])];
2657 else
2658 reg = EXTRACT_OPERAND (RD, hist[i]);
2659
2660 /* No nops are needed if INSN reads that register. */
2661 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2662 return 0;
2663
2664 /* ...or if any of the intervening instructions do. */
2665 for (j = 0; j < i; j++)
2666 if (insn_uses_reg (&hist[j], reg, MIPS_GR_REG))
2667 return 0;
2668
2669 return MAX_VR4130_NOPS - i;
2670 }
2671 return 0;
2672 }
2673
2674 /* Return the number of nops that would be needed if instruction INSN
2675 immediately followed the MAX_NOPS instructions given by HIST,
2676 where HIST[0] is the most recent instruction. If INSN is null,
2677 return the worse-case number of nops for any instruction. */
2678
2679 static int
2680 nops_for_insn (const struct mips_cl_insn *hist,
2681 const struct mips_cl_insn *insn)
2682 {
2683 int i, nops, tmp_nops;
2684
2685 nops = 0;
2686 for (i = 0; i < MAX_DELAY_NOPS; i++)
2687 {
2688 tmp_nops = insns_between (hist + i, insn) - i;
2689 if (tmp_nops > nops)
2690 nops = tmp_nops;
2691 }
2692
2693 if (mips_fix_vr4130)
2694 {
2695 tmp_nops = nops_for_vr4130 (hist, insn);
2696 if (tmp_nops > nops)
2697 nops = tmp_nops;
2698 }
2699
2700 return nops;
2701 }
2702
2703 /* The variable arguments provide NUM_INSNS extra instructions that
2704 might be added to HIST. Return the largest number of nops that
2705 would be needed after the extended sequence. */
2706
2707 static int
2708 nops_for_sequence (int num_insns, const struct mips_cl_insn *hist, ...)
2709 {
2710 va_list args;
2711 struct mips_cl_insn buffer[MAX_NOPS];
2712 struct mips_cl_insn *cursor;
2713 int nops;
2714
2715 va_start (args, hist);
2716 cursor = buffer + num_insns;
2717 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2718 while (cursor > buffer)
2719 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2720
2721 nops = nops_for_insn (buffer, NULL);
2722 va_end (args);
2723 return nops;
2724 }
2725
2726 /* Like nops_for_insn, but if INSN is a branch, take into account the
2727 worst-case delay for the branch target. */
2728
2729 static int
2730 nops_for_insn_or_target (const struct mips_cl_insn *hist,
2731 const struct mips_cl_insn *insn)
2732 {
2733 int nops, tmp_nops;
2734
2735 nops = nops_for_insn (hist, insn);
2736 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2737 | INSN_COND_BRANCH_DELAY
2738 | INSN_COND_BRANCH_LIKELY))
2739 {
2740 tmp_nops = nops_for_sequence (2, hist, insn, NOP_INSN);
2741 if (tmp_nops > nops)
2742 nops = tmp_nops;
2743 }
2744 else if (mips_opts.mips16
2745 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2746 | MIPS16_INSN_COND_BRANCH)))
2747 {
2748 tmp_nops = nops_for_sequence (1, hist, insn);
2749 if (tmp_nops > nops)
2750 nops = tmp_nops;
2751 }
2752 return nops;
2753 }
2754
2755 /* Fix NOP issue: Replace nops by "or at,at,zero". */
2756
2757 static void
2758 fix_loongson2f_nop (struct mips_cl_insn * ip)
2759 {
2760 if (strcmp (ip->insn_mo->name, "nop") == 0)
2761 ip->insn_opcode = LOONGSON2F_NOP_INSN;
2762 }
2763
2764 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
2765 jr target pc &= 'hffff_ffff_cfff_ffff. */
2766
2767 static void
2768 fix_loongson2f_jump (struct mips_cl_insn * ip)
2769 {
2770 if (strcmp (ip->insn_mo->name, "j") == 0
2771 || strcmp (ip->insn_mo->name, "jr") == 0
2772 || strcmp (ip->insn_mo->name, "jalr") == 0)
2773 {
2774 int sreg;
2775 expressionS ep;
2776
2777 if (! mips_opts.at)
2778 return;
2779
2780 sreg = EXTRACT_OPERAND (RS, *ip);
2781 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
2782 return;
2783
2784 ep.X_op = O_constant;
2785 ep.X_add_number = 0xcfff0000;
2786 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
2787 ep.X_add_number = 0xffff;
2788 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
2789 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
2790 }
2791 }
2792
2793 static void
2794 fix_loongson2f (struct mips_cl_insn * ip)
2795 {
2796 if (mips_fix_loongson2f_nop)
2797 fix_loongson2f_nop (ip);
2798
2799 if (mips_fix_loongson2f_jump)
2800 fix_loongson2f_jump (ip);
2801 }
2802
2803 /* Output an instruction. IP is the instruction information.
2804 ADDRESS_EXPR is an operand of the instruction to be used with
2805 RELOC_TYPE. */
2806
2807 static void
2808 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2809 bfd_reloc_code_real_type *reloc_type)
2810 {
2811 unsigned long prev_pinfo, pinfo;
2812 relax_stateT prev_insn_frag_type = 0;
2813 bfd_boolean relaxed_branch = FALSE;
2814 segment_info_type *si = seg_info (now_seg);
2815
2816 if (mips_fix_loongson2f)
2817 fix_loongson2f (ip);
2818
2819 /* Mark instruction labels in mips16 mode. */
2820 mips16_mark_labels ();
2821
2822 file_ase_mips16 |= mips_opts.mips16;
2823
2824 prev_pinfo = history[0].insn_mo->pinfo;
2825 pinfo = ip->insn_mo->pinfo;
2826
2827 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2828 {
2829 /* There are a lot of optimizations we could do that we don't.
2830 In particular, we do not, in general, reorder instructions.
2831 If you use gcc with optimization, it will reorder
2832 instructions and generally do much more optimization then we
2833 do here; repeating all that work in the assembler would only
2834 benefit hand written assembly code, and does not seem worth
2835 it. */
2836 int nops = (mips_optimize == 0
2837 ? nops_for_insn (history, NULL)
2838 : nops_for_insn_or_target (history, ip));
2839 if (nops > 0)
2840 {
2841 fragS *old_frag;
2842 unsigned long old_frag_offset;
2843 int i;
2844
2845 old_frag = frag_now;
2846 old_frag_offset = frag_now_fix ();
2847
2848 for (i = 0; i < nops; i++)
2849 emit_nop ();
2850
2851 if (listing)
2852 {
2853 listing_prev_line ();
2854 /* We may be at the start of a variant frag. In case we
2855 are, make sure there is enough space for the frag
2856 after the frags created by listing_prev_line. The
2857 argument to frag_grow here must be at least as large
2858 as the argument to all other calls to frag_grow in
2859 this file. We don't have to worry about being in the
2860 middle of a variant frag, because the variants insert
2861 all needed nop instructions themselves. */
2862 frag_grow (40);
2863 }
2864
2865 mips_move_labels ();
2866
2867 #ifndef NO_ECOFF_DEBUGGING
2868 if (ECOFF_DEBUGGING)
2869 ecoff_fix_loc (old_frag, old_frag_offset);
2870 #endif
2871 }
2872 }
2873 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2874 {
2875 /* Work out how many nops in prev_nop_frag are needed by IP. */
2876 int nops = nops_for_insn_or_target (history, ip);
2877 gas_assert (nops <= prev_nop_frag_holds);
2878
2879 /* Enforce NOPS as a minimum. */
2880 if (nops > prev_nop_frag_required)
2881 prev_nop_frag_required = nops;
2882
2883 if (prev_nop_frag_holds == prev_nop_frag_required)
2884 {
2885 /* Settle for the current number of nops. Update the history
2886 accordingly (for the benefit of any future .set reorder code). */
2887 prev_nop_frag = NULL;
2888 insert_into_history (prev_nop_frag_since,
2889 prev_nop_frag_holds, NOP_INSN);
2890 }
2891 else
2892 {
2893 /* Allow this instruction to replace one of the nops that was
2894 tentatively added to prev_nop_frag. */
2895 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2896 prev_nop_frag_holds--;
2897 prev_nop_frag_since++;
2898 }
2899 }
2900
2901 #ifdef OBJ_ELF
2902 /* The value passed to dwarf2_emit_insn is the distance between
2903 the beginning of the current instruction and the address that
2904 should be recorded in the debug tables. For MIPS16 debug info
2905 we want to use ISA-encoded addresses, so we pass -1 for an
2906 address higher by one than the current. */
2907 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2908 #endif
2909
2910 /* Record the frag type before frag_var. */
2911 if (history[0].frag)
2912 prev_insn_frag_type = history[0].frag->fr_type;
2913
2914 if (address_expr
2915 && *reloc_type == BFD_RELOC_16_PCREL_S2
2916 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2917 || pinfo & INSN_COND_BRANCH_LIKELY)
2918 && mips_relax_branch
2919 /* Don't try branch relaxation within .set nomacro, or within
2920 .set noat if we use $at for PIC computations. If it turns
2921 out that the branch was out-of-range, we'll get an error. */
2922 && !mips_opts.warn_about_macros
2923 && (mips_opts.at || mips_pic == NO_PIC)
2924 && !mips_opts.mips16)
2925 {
2926 relaxed_branch = TRUE;
2927 add_relaxed_insn (ip, (relaxed_branch_length
2928 (NULL, NULL,
2929 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2930 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2931 : 0)), 4,
2932 RELAX_BRANCH_ENCODE
2933 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2934 pinfo & INSN_COND_BRANCH_LIKELY,
2935 pinfo & INSN_WRITE_GPR_31,
2936 0),
2937 address_expr->X_add_symbol,
2938 address_expr->X_add_number);
2939 *reloc_type = BFD_RELOC_UNUSED;
2940 }
2941 else if (*reloc_type > BFD_RELOC_UNUSED)
2942 {
2943 /* We need to set up a variant frag. */
2944 gas_assert (mips_opts.mips16 && address_expr != NULL);
2945 add_relaxed_insn (ip, 4, 0,
2946 RELAX_MIPS16_ENCODE
2947 (*reloc_type - BFD_RELOC_UNUSED,
2948 mips16_small, mips16_ext,
2949 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2950 history[0].mips16_absolute_jump_p),
2951 make_expr_symbol (address_expr), 0);
2952 }
2953 else if (mips_opts.mips16
2954 && ! ip->use_extend
2955 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2956 {
2957 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2958 /* Make sure there is enough room to swap this instruction with
2959 a following jump instruction. */
2960 frag_grow (6);
2961 add_fixed_insn (ip);
2962 }
2963 else
2964 {
2965 if (mips_opts.mips16
2966 && mips_opts.noreorder
2967 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2968 as_warn (_("extended instruction in delay slot"));
2969
2970 if (mips_relax.sequence)
2971 {
2972 /* If we've reached the end of this frag, turn it into a variant
2973 frag and record the information for the instructions we've
2974 written so far. */
2975 if (frag_room () < 4)
2976 relax_close_frag ();
2977 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2978 }
2979
2980 if (mips_relax.sequence != 2)
2981 mips_macro_warning.sizes[0] += 4;
2982 if (mips_relax.sequence != 1)
2983 mips_macro_warning.sizes[1] += 4;
2984
2985 if (mips_opts.mips16)
2986 {
2987 ip->fixed_p = 1;
2988 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2989 }
2990 add_fixed_insn (ip);
2991 }
2992
2993 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2994 {
2995 if (address_expr->X_op == O_constant)
2996 {
2997 unsigned int tmp;
2998
2999 switch (*reloc_type)
3000 {
3001 case BFD_RELOC_32:
3002 ip->insn_opcode |= address_expr->X_add_number;
3003 break;
3004
3005 case BFD_RELOC_MIPS_HIGHEST:
3006 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
3007 ip->insn_opcode |= tmp & 0xffff;
3008 break;
3009
3010 case BFD_RELOC_MIPS_HIGHER:
3011 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3012 ip->insn_opcode |= tmp & 0xffff;
3013 break;
3014
3015 case BFD_RELOC_HI16_S:
3016 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3017 ip->insn_opcode |= tmp & 0xffff;
3018 break;
3019
3020 case BFD_RELOC_HI16:
3021 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3022 break;
3023
3024 case BFD_RELOC_UNUSED:
3025 case BFD_RELOC_LO16:
3026 case BFD_RELOC_MIPS_GOT_DISP:
3027 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3028 break;
3029
3030 case BFD_RELOC_MIPS_JMP:
3031 if ((address_expr->X_add_number & 3) != 0)
3032 as_bad (_("jump to misaligned address (0x%lx)"),
3033 (unsigned long) address_expr->X_add_number);
3034 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3035 break;
3036
3037 case BFD_RELOC_MIPS16_JMP:
3038 if ((address_expr->X_add_number & 3) != 0)
3039 as_bad (_("jump to misaligned address (0x%lx)"),
3040 (unsigned long) address_expr->X_add_number);
3041 ip->insn_opcode |=
3042 (((address_expr->X_add_number & 0x7c0000) << 3)
3043 | ((address_expr->X_add_number & 0xf800000) >> 7)
3044 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3045 break;
3046
3047 case BFD_RELOC_16_PCREL_S2:
3048 if ((address_expr->X_add_number & 3) != 0)
3049 as_bad (_("branch to misaligned address (0x%lx)"),
3050 (unsigned long) address_expr->X_add_number);
3051 if (mips_relax_branch)
3052 goto need_reloc;
3053 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3054 as_bad (_("branch address range overflow (0x%lx)"),
3055 (unsigned long) address_expr->X_add_number);
3056 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3057 break;
3058
3059 default:
3060 internalError ();
3061 }
3062 }
3063 else if (*reloc_type < BFD_RELOC_UNUSED)
3064 need_reloc:
3065 {
3066 reloc_howto_type *howto;
3067 int i;
3068
3069 /* In a compound relocation, it is the final (outermost)
3070 operator that determines the relocated field. */
3071 for (i = 1; i < 3; i++)
3072 if (reloc_type[i] == BFD_RELOC_UNUSED)
3073 break;
3074
3075 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3076 if (howto == NULL)
3077 {
3078 /* To reproduce this failure try assembling gas/testsuites/
3079 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3080 assembler. */
3081 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3082 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3083 }
3084
3085 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3086 bfd_get_reloc_size (howto),
3087 address_expr,
3088 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3089 reloc_type[0]);
3090
3091 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3092 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3093 && ip->fixp[0]->fx_addsy)
3094 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3095
3096 /* These relocations can have an addend that won't fit in
3097 4 octets for 64bit assembly. */
3098 if (HAVE_64BIT_GPRS
3099 && ! howto->partial_inplace
3100 && (reloc_type[0] == BFD_RELOC_16
3101 || reloc_type[0] == BFD_RELOC_32
3102 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3103 || reloc_type[0] == BFD_RELOC_GPREL16
3104 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3105 || reloc_type[0] == BFD_RELOC_GPREL32
3106 || reloc_type[0] == BFD_RELOC_64
3107 || reloc_type[0] == BFD_RELOC_CTOR
3108 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3109 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3110 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3111 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3112 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3113 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3114 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3115 || hi16_reloc_p (reloc_type[0])
3116 || lo16_reloc_p (reloc_type[0])))
3117 ip->fixp[0]->fx_no_overflow = 1;
3118
3119 if (mips_relax.sequence)
3120 {
3121 if (mips_relax.first_fixup == 0)
3122 mips_relax.first_fixup = ip->fixp[0];
3123 }
3124 else if (reloc_needs_lo_p (*reloc_type))
3125 {
3126 struct mips_hi_fixup *hi_fixup;
3127
3128 /* Reuse the last entry if it already has a matching %lo. */
3129 hi_fixup = mips_hi_fixup_list;
3130 if (hi_fixup == 0
3131 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3132 {
3133 hi_fixup = ((struct mips_hi_fixup *)
3134 xmalloc (sizeof (struct mips_hi_fixup)));
3135 hi_fixup->next = mips_hi_fixup_list;
3136 mips_hi_fixup_list = hi_fixup;
3137 }
3138 hi_fixup->fixp = ip->fixp[0];
3139 hi_fixup->seg = now_seg;
3140 }
3141
3142 /* Add fixups for the second and third relocations, if given.
3143 Note that the ABI allows the second relocation to be
3144 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3145 moment we only use RSS_UNDEF, but we could add support
3146 for the others if it ever becomes necessary. */
3147 for (i = 1; i < 3; i++)
3148 if (reloc_type[i] != BFD_RELOC_UNUSED)
3149 {
3150 ip->fixp[i] = fix_new (ip->frag, ip->where,
3151 ip->fixp[0]->fx_size, NULL, 0,
3152 FALSE, reloc_type[i]);
3153
3154 /* Use fx_tcbit to mark compound relocs. */
3155 ip->fixp[0]->fx_tcbit = 1;
3156 ip->fixp[i]->fx_tcbit = 1;
3157 }
3158 }
3159 }
3160 install_insn (ip);
3161
3162 /* Update the register mask information. */
3163 if (! mips_opts.mips16)
3164 {
3165 if (pinfo & INSN_WRITE_GPR_D)
3166 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3167 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3168 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3169 if (pinfo & INSN_READ_GPR_S)
3170 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3171 if (pinfo & INSN_WRITE_GPR_31)
3172 mips_gprmask |= 1 << RA;
3173 if (pinfo & INSN_WRITE_FPR_D)
3174 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3175 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3176 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3177 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3178 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3179 if ((pinfo & INSN_READ_FPR_R) != 0)
3180 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3181 if (pinfo & INSN_COP)
3182 {
3183 /* We don't keep enough information to sort these cases out.
3184 The itbl support does keep this information however, although
3185 we currently don't support itbl fprmats as part of the cop
3186 instruction. May want to add this support in the future. */
3187 }
3188 /* Never set the bit for $0, which is always zero. */
3189 mips_gprmask &= ~1 << 0;
3190 }
3191 else
3192 {
3193 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3194 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3195 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3196 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3197 if (pinfo & MIPS16_INSN_WRITE_Z)
3198 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3199 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3200 mips_gprmask |= 1 << TREG;
3201 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3202 mips_gprmask |= 1 << SP;
3203 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3204 mips_gprmask |= 1 << RA;
3205 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3206 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3207 if (pinfo & MIPS16_INSN_READ_Z)
3208 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3209 if (pinfo & MIPS16_INSN_READ_GPR_X)
3210 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3211 }
3212
3213 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3214 {
3215 /* Filling the branch delay slot is more complex. We try to
3216 switch the branch with the previous instruction, which we can
3217 do if the previous instruction does not set up a condition
3218 that the branch tests and if the branch is not itself the
3219 target of any branch. */
3220 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3221 || (pinfo & INSN_COND_BRANCH_DELAY))
3222 {
3223 if (mips_optimize < 2
3224 /* If we have seen .set volatile or .set nomove, don't
3225 optimize. */
3226 || mips_opts.nomove != 0
3227 /* We can't swap if the previous instruction's position
3228 is fixed. */
3229 || history[0].fixed_p
3230 /* If the previous previous insn was in a .set
3231 noreorder, we can't swap. Actually, the MIPS
3232 assembler will swap in this situation. However, gcc
3233 configured -with-gnu-as will generate code like
3234 .set noreorder
3235 lw $4,XXX
3236 .set reorder
3237 INSN
3238 bne $4,$0,foo
3239 in which we can not swap the bne and INSN. If gcc is
3240 not configured -with-gnu-as, it does not output the
3241 .set pseudo-ops. */
3242 || history[1].noreorder_p
3243 /* If the branch is itself the target of a branch, we
3244 can not swap. We cheat on this; all we check for is
3245 whether there is a label on this instruction. If
3246 there are any branches to anything other than a
3247 label, users must use .set noreorder. */
3248 || si->label_list != NULL
3249 /* If the previous instruction is in a variant frag
3250 other than this branch's one, we cannot do the swap.
3251 This does not apply to the mips16, which uses variant
3252 frags for different purposes. */
3253 || (! mips_opts.mips16
3254 && prev_insn_frag_type == rs_machine_dependent)
3255 /* Check for conflicts between the branch and the instructions
3256 before the candidate delay slot. */
3257 || nops_for_insn (history + 1, ip) > 0
3258 /* Check for conflicts between the swapped sequence and the
3259 target of the branch. */
3260 || nops_for_sequence (2, history + 1, ip, history) > 0
3261 /* We do not swap with a trap instruction, since it
3262 complicates trap handlers to have the trap
3263 instruction be in a delay slot. */
3264 || (prev_pinfo & INSN_TRAP)
3265 /* If the branch reads a register that the previous
3266 instruction sets, we can not swap. */
3267 || (! mips_opts.mips16
3268 && (prev_pinfo & INSN_WRITE_GPR_T)
3269 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3270 MIPS_GR_REG))
3271 || (! mips_opts.mips16
3272 && (prev_pinfo & INSN_WRITE_GPR_D)
3273 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3274 MIPS_GR_REG))
3275 || (mips_opts.mips16
3276 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3277 && (insn_uses_reg
3278 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3279 MIPS16_REG)))
3280 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3281 && (insn_uses_reg
3282 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3283 MIPS16_REG)))
3284 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3285 && (insn_uses_reg
3286 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3287 MIPS16_REG)))
3288 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3289 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3290 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3291 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3292 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3293 && insn_uses_reg (ip,
3294 MIPS16OP_EXTRACT_REG32R
3295 (history[0].insn_opcode),
3296 MIPS_GR_REG))))
3297 /* If the branch writes a register that the previous
3298 instruction sets, we can not swap (we know that
3299 branches write only to RD or to $31). */
3300 || (! mips_opts.mips16
3301 && (prev_pinfo & INSN_WRITE_GPR_T)
3302 && (((pinfo & INSN_WRITE_GPR_D)
3303 && (EXTRACT_OPERAND (RT, history[0])
3304 == EXTRACT_OPERAND (RD, *ip)))
3305 || ((pinfo & INSN_WRITE_GPR_31)
3306 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3307 || (! mips_opts.mips16
3308 && (prev_pinfo & INSN_WRITE_GPR_D)
3309 && (((pinfo & INSN_WRITE_GPR_D)
3310 && (EXTRACT_OPERAND (RD, history[0])
3311 == EXTRACT_OPERAND (RD, *ip)))
3312 || ((pinfo & INSN_WRITE_GPR_31)
3313 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3314 || (mips_opts.mips16
3315 && (pinfo & MIPS16_INSN_WRITE_31)
3316 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3317 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3318 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3319 == RA))))
3320 /* If the branch writes a register that the previous
3321 instruction reads, we can not swap (we know that
3322 branches only write to RD or to $31). */
3323 || (! mips_opts.mips16
3324 && (pinfo & INSN_WRITE_GPR_D)
3325 && insn_uses_reg (&history[0],
3326 EXTRACT_OPERAND (RD, *ip),
3327 MIPS_GR_REG))
3328 || (! mips_opts.mips16
3329 && (pinfo & INSN_WRITE_GPR_31)
3330 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3331 || (mips_opts.mips16
3332 && (pinfo & MIPS16_INSN_WRITE_31)
3333 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3334 /* If one instruction sets a condition code and the
3335 other one uses a condition code, we can not swap. */
3336 || ((pinfo & INSN_READ_COND_CODE)
3337 && (prev_pinfo & INSN_WRITE_COND_CODE))
3338 || ((pinfo & INSN_WRITE_COND_CODE)
3339 && (prev_pinfo & INSN_READ_COND_CODE))
3340 /* If the previous instruction uses the PC, we can not
3341 swap. */
3342 || (mips_opts.mips16
3343 && (prev_pinfo & MIPS16_INSN_READ_PC))
3344 /* If the previous instruction had a fixup in mips16
3345 mode, we can not swap. This normally means that the
3346 previous instruction was a 4 byte branch anyhow. */
3347 || (mips_opts.mips16 && history[0].fixp[0])
3348 /* If the previous instruction is a sync, sync.l, or
3349 sync.p, we can not swap. */
3350 || (prev_pinfo & INSN_SYNC)
3351 /* If the previous instruction is an ERET or
3352 DERET, avoid the swap. */
3353 || (history[0].insn_opcode == INSN_ERET)
3354 || (history[0].insn_opcode == INSN_DERET))
3355 {
3356 if (mips_opts.mips16
3357 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3358 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3359 && ISA_SUPPORTS_MIPS16E)
3360 {
3361 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3362 ip->insn_opcode |= 0x0080;
3363 install_insn (ip);
3364 insert_into_history (0, 1, ip);
3365 }
3366 else
3367 {
3368 /* We could do even better for unconditional branches to
3369 portions of this object file; we could pick up the
3370 instruction at the destination, put it in the delay
3371 slot, and bump the destination address. */
3372 insert_into_history (0, 1, ip);
3373 emit_nop ();
3374 }
3375
3376 if (mips_relax.sequence)
3377 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3378 }
3379 else
3380 {
3381 /* It looks like we can actually do the swap. */
3382 struct mips_cl_insn delay = history[0];
3383 if (mips_opts.mips16)
3384 {
3385 know (delay.frag == ip->frag);
3386 move_insn (ip, delay.frag, delay.where);
3387 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3388 }
3389 else if (relaxed_branch)
3390 {
3391 /* Add the delay slot instruction to the end of the
3392 current frag and shrink the fixed part of the
3393 original frag. If the branch occupies the tail of
3394 the latter, move it backwards to cover the gap. */
3395 delay.frag->fr_fix -= 4;
3396 if (delay.frag == ip->frag)
3397 move_insn (ip, ip->frag, ip->where - 4);
3398 add_fixed_insn (&delay);
3399 }
3400 else
3401 {
3402 move_insn (&delay, ip->frag, ip->where);
3403 move_insn (ip, history[0].frag, history[0].where);
3404 }
3405 history[0] = *ip;
3406 delay.fixed_p = 1;
3407 insert_into_history (0, 1, &delay);
3408 }
3409
3410 /* If that was an unconditional branch, forget the previous
3411 insn information. */
3412 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3413 {
3414 mips_no_prev_insn ();
3415 }
3416 }
3417 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3418 {
3419 /* We don't yet optimize a branch likely. What we should do
3420 is look at the target, copy the instruction found there
3421 into the delay slot, and increment the branch to jump to
3422 the next instruction. */
3423 insert_into_history (0, 1, ip);
3424 emit_nop ();
3425 }
3426 else
3427 insert_into_history (0, 1, ip);
3428 }
3429 else
3430 insert_into_history (0, 1, ip);
3431
3432 /* We just output an insn, so the next one doesn't have a label. */
3433 mips_clear_insn_labels ();
3434 }
3435
3436 /* Forget that there was any previous instruction or label. */
3437
3438 static void
3439 mips_no_prev_insn (void)
3440 {
3441 prev_nop_frag = NULL;
3442 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3443 mips_clear_insn_labels ();
3444 }
3445
3446 /* This function must be called before we emit something other than
3447 instructions. It is like mips_no_prev_insn except that it inserts
3448 any NOPS that might be needed by previous instructions. */
3449
3450 void
3451 mips_emit_delays (void)
3452 {
3453 if (! mips_opts.noreorder)
3454 {
3455 int nops = nops_for_insn (history, NULL);
3456 if (nops > 0)
3457 {
3458 while (nops-- > 0)
3459 add_fixed_insn (NOP_INSN);
3460 mips_move_labels ();
3461 }
3462 }
3463 mips_no_prev_insn ();
3464 }
3465
3466 /* Start a (possibly nested) noreorder block. */
3467
3468 static void
3469 start_noreorder (void)
3470 {
3471 if (mips_opts.noreorder == 0)
3472 {
3473 unsigned int i;
3474 int nops;
3475
3476 /* None of the instructions before the .set noreorder can be moved. */
3477 for (i = 0; i < ARRAY_SIZE (history); i++)
3478 history[i].fixed_p = 1;
3479
3480 /* Insert any nops that might be needed between the .set noreorder
3481 block and the previous instructions. We will later remove any
3482 nops that turn out not to be needed. */
3483 nops = nops_for_insn (history, NULL);
3484 if (nops > 0)
3485 {
3486 if (mips_optimize != 0)
3487 {
3488 /* Record the frag which holds the nop instructions, so
3489 that we can remove them if we don't need them. */
3490 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3491 prev_nop_frag = frag_now;
3492 prev_nop_frag_holds = nops;
3493 prev_nop_frag_required = 0;
3494 prev_nop_frag_since = 0;
3495 }
3496
3497 for (; nops > 0; --nops)
3498 add_fixed_insn (NOP_INSN);
3499
3500 /* Move on to a new frag, so that it is safe to simply
3501 decrease the size of prev_nop_frag. */
3502 frag_wane (frag_now);
3503 frag_new (0);
3504 mips_move_labels ();
3505 }
3506 mips16_mark_labels ();
3507 mips_clear_insn_labels ();
3508 }
3509 mips_opts.noreorder++;
3510 mips_any_noreorder = 1;
3511 }
3512
3513 /* End a nested noreorder block. */
3514
3515 static void
3516 end_noreorder (void)
3517 {
3518
3519 mips_opts.noreorder--;
3520 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3521 {
3522 /* Commit to inserting prev_nop_frag_required nops and go back to
3523 handling nop insertion the .set reorder way. */
3524 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3525 * (mips_opts.mips16 ? 2 : 4));
3526 insert_into_history (prev_nop_frag_since,
3527 prev_nop_frag_required, NOP_INSN);
3528 prev_nop_frag = NULL;
3529 }
3530 }
3531
3532 /* Set up global variables for the start of a new macro. */
3533
3534 static void
3535 macro_start (void)
3536 {
3537 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3538 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3539 && (history[0].insn_mo->pinfo
3540 & (INSN_UNCOND_BRANCH_DELAY
3541 | INSN_COND_BRANCH_DELAY
3542 | INSN_COND_BRANCH_LIKELY)) != 0);
3543 }
3544
3545 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3546 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3547 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3548
3549 static const char *
3550 macro_warning (relax_substateT subtype)
3551 {
3552 if (subtype & RELAX_DELAY_SLOT)
3553 return _("Macro instruction expanded into multiple instructions"
3554 " in a branch delay slot");
3555 else if (subtype & RELAX_NOMACRO)
3556 return _("Macro instruction expanded into multiple instructions");
3557 else
3558 return 0;
3559 }
3560
3561 /* Finish up a macro. Emit warnings as appropriate. */
3562
3563 static void
3564 macro_end (void)
3565 {
3566 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3567 {
3568 relax_substateT subtype;
3569
3570 /* Set up the relaxation warning flags. */
3571 subtype = 0;
3572 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3573 subtype |= RELAX_SECOND_LONGER;
3574 if (mips_opts.warn_about_macros)
3575 subtype |= RELAX_NOMACRO;
3576 if (mips_macro_warning.delay_slot_p)
3577 subtype |= RELAX_DELAY_SLOT;
3578
3579 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3580 {
3581 /* Either the macro has a single implementation or both
3582 implementations are longer than 4 bytes. Emit the
3583 warning now. */
3584 const char *msg = macro_warning (subtype);
3585 if (msg != 0)
3586 as_warn ("%s", msg);
3587 }
3588 else
3589 {
3590 /* One implementation might need a warning but the other
3591 definitely doesn't. */
3592 mips_macro_warning.first_frag->fr_subtype |= subtype;
3593 }
3594 }
3595 }
3596
3597 /* Read a macro's relocation codes from *ARGS and store them in *R.
3598 The first argument in *ARGS will be either the code for a single
3599 relocation or -1 followed by the three codes that make up a
3600 composite relocation. */
3601
3602 static void
3603 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3604 {
3605 int i, next;
3606
3607 next = va_arg (*args, int);
3608 if (next >= 0)
3609 r[0] = (bfd_reloc_code_real_type) next;
3610 else
3611 for (i = 0; i < 3; i++)
3612 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3613 }
3614
3615 /* Build an instruction created by a macro expansion. This is passed
3616 a pointer to the count of instructions created so far, an
3617 expression, the name of the instruction to build, an operand format
3618 string, and corresponding arguments. */
3619
3620 static void
3621 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3622 {
3623 const struct mips_opcode *mo;
3624 struct mips_cl_insn insn;
3625 bfd_reloc_code_real_type r[3];
3626 va_list args;
3627
3628 va_start (args, fmt);
3629
3630 if (mips_opts.mips16)
3631 {
3632 mips16_macro_build (ep, name, fmt, &args);
3633 va_end (args);
3634 return;
3635 }
3636
3637 r[0] = BFD_RELOC_UNUSED;
3638 r[1] = BFD_RELOC_UNUSED;
3639 r[2] = BFD_RELOC_UNUSED;
3640 mo = (struct mips_opcode *) hash_find (op_hash, name);
3641 gas_assert (mo);
3642 gas_assert (strcmp (name, mo->name) == 0);
3643
3644 while (1)
3645 {
3646 /* Search until we get a match for NAME. It is assumed here that
3647 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3648 if (strcmp (fmt, mo->args) == 0
3649 && mo->pinfo != INSN_MACRO
3650 && is_opcode_valid (mo))
3651 break;
3652
3653 ++mo;
3654 gas_assert (mo->name);
3655 gas_assert (strcmp (name, mo->name) == 0);
3656 }
3657
3658 create_insn (&insn, mo);
3659 for (;;)
3660 {
3661 switch (*fmt++)
3662 {
3663 case '\0':
3664 break;
3665
3666 case ',':
3667 case '(':
3668 case ')':
3669 continue;
3670
3671 case '+':
3672 switch (*fmt++)
3673 {
3674 case 'A':
3675 case 'E':
3676 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3677 continue;
3678
3679 case 'B':
3680 case 'F':
3681 /* Note that in the macro case, these arguments are already
3682 in MSB form. (When handling the instruction in the
3683 non-macro case, these arguments are sizes from which
3684 MSB values must be calculated.) */
3685 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3686 continue;
3687
3688 case 'C':
3689 case 'G':
3690 case 'H':
3691 /* Note that in the macro case, these arguments are already
3692 in MSBD form. (When handling the instruction in the
3693 non-macro case, these arguments are sizes from which
3694 MSBD values must be calculated.) */
3695 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3696 continue;
3697
3698 case 'Q':
3699 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3700 continue;
3701
3702 default:
3703 internalError ();
3704 }
3705 continue;
3706
3707 case '2':
3708 INSERT_OPERAND (BP, insn, va_arg (args, int));
3709 continue;
3710
3711 case 't':
3712 case 'w':
3713 case 'E':
3714 INSERT_OPERAND (RT, insn, va_arg (args, int));
3715 continue;
3716
3717 case 'c':
3718 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3719 continue;
3720
3721 case 'T':
3722 case 'W':
3723 INSERT_OPERAND (FT, insn, va_arg (args, int));
3724 continue;
3725
3726 case 'd':
3727 case 'G':
3728 case 'K':
3729 INSERT_OPERAND (RD, insn, va_arg (args, int));
3730 continue;
3731
3732 case 'U':
3733 {
3734 int tmp = va_arg (args, int);
3735
3736 INSERT_OPERAND (RT, insn, tmp);
3737 INSERT_OPERAND (RD, insn, tmp);
3738 continue;
3739 }
3740
3741 case 'V':
3742 case 'S':
3743 INSERT_OPERAND (FS, insn, va_arg (args, int));
3744 continue;
3745
3746 case 'z':
3747 continue;
3748
3749 case '<':
3750 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3751 continue;
3752
3753 case 'D':
3754 INSERT_OPERAND (FD, insn, va_arg (args, int));
3755 continue;
3756
3757 case 'B':
3758 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3759 continue;
3760
3761 case 'J':
3762 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3763 continue;
3764
3765 case 'q':
3766 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3767 continue;
3768
3769 case 'b':
3770 case 's':
3771 case 'r':
3772 case 'v':
3773 INSERT_OPERAND (RS, insn, va_arg (args, int));
3774 continue;
3775
3776 case 'i':
3777 case 'j':
3778 macro_read_relocs (&args, r);
3779 gas_assert (*r == BFD_RELOC_GPREL16
3780 || *r == BFD_RELOC_MIPS_HIGHER
3781 || *r == BFD_RELOC_HI16_S
3782 || *r == BFD_RELOC_LO16
3783 || *r == BFD_RELOC_MIPS_GOT_OFST);
3784 continue;
3785
3786 case 'o':
3787 macro_read_relocs (&args, r);
3788 continue;
3789
3790 case 'u':
3791 macro_read_relocs (&args, r);
3792 gas_assert (ep != NULL
3793 && (ep->X_op == O_constant
3794 || (ep->X_op == O_symbol
3795 && (*r == BFD_RELOC_MIPS_HIGHEST
3796 || *r == BFD_RELOC_HI16_S
3797 || *r == BFD_RELOC_HI16
3798 || *r == BFD_RELOC_GPREL16
3799 || *r == BFD_RELOC_MIPS_GOT_HI16
3800 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3801 continue;
3802
3803 case 'p':
3804 gas_assert (ep != NULL);
3805
3806 /*
3807 * This allows macro() to pass an immediate expression for
3808 * creating short branches without creating a symbol.
3809 *
3810 * We don't allow branch relaxation for these branches, as
3811 * they should only appear in ".set nomacro" anyway.
3812 */
3813 if (ep->X_op == O_constant)
3814 {
3815 if ((ep->X_add_number & 3) != 0)
3816 as_bad (_("branch to misaligned address (0x%lx)"),
3817 (unsigned long) ep->X_add_number);
3818 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3819 as_bad (_("branch address range overflow (0x%lx)"),
3820 (unsigned long) ep->X_add_number);
3821 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3822 ep = NULL;
3823 }
3824 else
3825 *r = BFD_RELOC_16_PCREL_S2;
3826 continue;
3827
3828 case 'a':
3829 gas_assert (ep != NULL);
3830 *r = BFD_RELOC_MIPS_JMP;
3831 continue;
3832
3833 case 'C':
3834 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3835 continue;
3836
3837 case 'k':
3838 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3839 continue;
3840
3841 default:
3842 internalError ();
3843 }
3844 break;
3845 }
3846 va_end (args);
3847 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3848
3849 append_insn (&insn, ep, r);
3850 }
3851
3852 static void
3853 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3854 va_list *args)
3855 {
3856 struct mips_opcode *mo;
3857 struct mips_cl_insn insn;
3858 bfd_reloc_code_real_type r[3]
3859 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3860
3861 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3862 gas_assert (mo);
3863 gas_assert (strcmp (name, mo->name) == 0);
3864
3865 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3866 {
3867 ++mo;
3868 gas_assert (mo->name);
3869 gas_assert (strcmp (name, mo->name) == 0);
3870 }
3871
3872 create_insn (&insn, mo);
3873 for (;;)
3874 {
3875 int c;
3876
3877 c = *fmt++;
3878 switch (c)
3879 {
3880 case '\0':
3881 break;
3882
3883 case ',':
3884 case '(':
3885 case ')':
3886 continue;
3887
3888 case 'y':
3889 case 'w':
3890 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
3891 continue;
3892
3893 case 'x':
3894 case 'v':
3895 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
3896 continue;
3897
3898 case 'z':
3899 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
3900 continue;
3901
3902 case 'Z':
3903 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
3904 continue;
3905
3906 case '0':
3907 case 'S':
3908 case 'P':
3909 case 'R':
3910 continue;
3911
3912 case 'X':
3913 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
3914 continue;
3915
3916 case 'Y':
3917 {
3918 int regno;
3919
3920 regno = va_arg (*args, int);
3921 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3922 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3923 }
3924 continue;
3925
3926 case '<':
3927 case '>':
3928 case '4':
3929 case '5':
3930 case 'H':
3931 case 'W':
3932 case 'D':
3933 case 'j':
3934 case '8':
3935 case 'V':
3936 case 'C':
3937 case 'U':
3938 case 'k':
3939 case 'K':
3940 case 'p':
3941 case 'q':
3942 {
3943 gas_assert (ep != NULL);
3944
3945 if (ep->X_op != O_constant)
3946 *r = (int) BFD_RELOC_UNUSED + c;
3947 else
3948 {
3949 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3950 FALSE, &insn.insn_opcode, &insn.use_extend,
3951 &insn.extend);
3952 ep = NULL;
3953 *r = BFD_RELOC_UNUSED;
3954 }
3955 }
3956 continue;
3957
3958 case '6':
3959 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
3960 continue;
3961 }
3962
3963 break;
3964 }
3965
3966 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3967
3968 append_insn (&insn, ep, r);
3969 }
3970
3971 /*
3972 * Sign-extend 32-bit mode constants that have bit 31 set and all
3973 * higher bits unset.
3974 */
3975 static void
3976 normalize_constant_expr (expressionS *ex)
3977 {
3978 if (ex->X_op == O_constant
3979 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3980 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3981 - 0x80000000);
3982 }
3983
3984 /*
3985 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3986 * all higher bits unset.
3987 */
3988 static void
3989 normalize_address_expr (expressionS *ex)
3990 {
3991 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3992 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3993 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3994 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3995 - 0x80000000);
3996 }
3997
3998 /*
3999 * Generate a "jalr" instruction with a relocation hint to the called
4000 * function. This occurs in NewABI PIC code.
4001 */
4002 static void
4003 macro_build_jalr (expressionS *ep)
4004 {
4005 char *f = NULL;
4006
4007 if (MIPS_JALR_HINT_P (ep))
4008 {
4009 frag_grow (8);
4010 f = frag_more (0);
4011 }
4012 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4013 if (MIPS_JALR_HINT_P (ep))
4014 fix_new_exp (frag_now, f - frag_now->fr_literal,
4015 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4016 }
4017
4018 /*
4019 * Generate a "lui" instruction.
4020 */
4021 static void
4022 macro_build_lui (expressionS *ep, int regnum)
4023 {
4024 expressionS high_expr;
4025 const struct mips_opcode *mo;
4026 struct mips_cl_insn insn;
4027 bfd_reloc_code_real_type r[3]
4028 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4029 const char *name = "lui";
4030 const char *fmt = "t,u";
4031
4032 gas_assert (! mips_opts.mips16);
4033
4034 high_expr = *ep;
4035
4036 if (high_expr.X_op == O_constant)
4037 {
4038 /* We can compute the instruction now without a relocation entry. */
4039 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4040 >> 16) & 0xffff;
4041 *r = BFD_RELOC_UNUSED;
4042 }
4043 else
4044 {
4045 gas_assert (ep->X_op == O_symbol);
4046 /* _gp_disp is a special case, used from s_cpload.
4047 __gnu_local_gp is used if mips_no_shared. */
4048 gas_assert (mips_pic == NO_PIC
4049 || (! HAVE_NEWABI
4050 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4051 || (! mips_in_shared
4052 && strcmp (S_GET_NAME (ep->X_add_symbol),
4053 "__gnu_local_gp") == 0));
4054 *r = BFD_RELOC_HI16_S;
4055 }
4056
4057 mo = hash_find (op_hash, name);
4058 gas_assert (strcmp (name, mo->name) == 0);
4059 gas_assert (strcmp (fmt, mo->args) == 0);
4060 create_insn (&insn, mo);
4061
4062 insn.insn_opcode = insn.insn_mo->match;
4063 INSERT_OPERAND (RT, insn, regnum);
4064 if (*r == BFD_RELOC_UNUSED)
4065 {
4066 insn.insn_opcode |= high_expr.X_add_number;
4067 append_insn (&insn, NULL, r);
4068 }
4069 else
4070 append_insn (&insn, &high_expr, r);
4071 }
4072
4073 /* Generate a sequence of instructions to do a load or store from a constant
4074 offset off of a base register (breg) into/from a target register (treg),
4075 using AT if necessary. */
4076 static void
4077 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4078 int treg, int breg, int dbl)
4079 {
4080 gas_assert (ep->X_op == O_constant);
4081
4082 /* Sign-extending 32-bit constants makes their handling easier. */
4083 if (!dbl)
4084 normalize_constant_expr (ep);
4085
4086 /* Right now, this routine can only handle signed 32-bit constants. */
4087 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4088 as_warn (_("operand overflow"));
4089
4090 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4091 {
4092 /* Signed 16-bit offset will fit in the op. Easy! */
4093 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4094 }
4095 else
4096 {
4097 /* 32-bit offset, need multiple instructions and AT, like:
4098 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4099 addu $tempreg,$tempreg,$breg
4100 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4101 to handle the complete offset. */
4102 macro_build_lui (ep, AT);
4103 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4104 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4105
4106 if (!mips_opts.at)
4107 as_bad (_("Macro used $at after \".set noat\""));
4108 }
4109 }
4110
4111 /* set_at()
4112 * Generates code to set the $at register to true (one)
4113 * if reg is less than the immediate expression.
4114 */
4115 static void
4116 set_at (int reg, int unsignedp)
4117 {
4118 if (imm_expr.X_op == O_constant
4119 && imm_expr.X_add_number >= -0x8000
4120 && imm_expr.X_add_number < 0x8000)
4121 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4122 AT, reg, BFD_RELOC_LO16);
4123 else
4124 {
4125 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4126 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4127 }
4128 }
4129
4130 /* Warn if an expression is not a constant. */
4131
4132 static void
4133 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4134 {
4135 if (ex->X_op == O_big)
4136 as_bad (_("unsupported large constant"));
4137 else if (ex->X_op != O_constant)
4138 as_bad (_("Instruction %s requires absolute expression"),
4139 ip->insn_mo->name);
4140
4141 if (HAVE_32BIT_GPRS)
4142 normalize_constant_expr (ex);
4143 }
4144
4145 /* Count the leading zeroes by performing a binary chop. This is a
4146 bulky bit of source, but performance is a LOT better for the
4147 majority of values than a simple loop to count the bits:
4148 for (lcnt = 0; (lcnt < 32); lcnt++)
4149 if ((v) & (1 << (31 - lcnt)))
4150 break;
4151 However it is not code size friendly, and the gain will drop a bit
4152 on certain cached systems.
4153 */
4154 #define COUNT_TOP_ZEROES(v) \
4155 (((v) & ~0xffff) == 0 \
4156 ? ((v) & ~0xff) == 0 \
4157 ? ((v) & ~0xf) == 0 \
4158 ? ((v) & ~0x3) == 0 \
4159 ? ((v) & ~0x1) == 0 \
4160 ? !(v) \
4161 ? 32 \
4162 : 31 \
4163 : 30 \
4164 : ((v) & ~0x7) == 0 \
4165 ? 29 \
4166 : 28 \
4167 : ((v) & ~0x3f) == 0 \
4168 ? ((v) & ~0x1f) == 0 \
4169 ? 27 \
4170 : 26 \
4171 : ((v) & ~0x7f) == 0 \
4172 ? 25 \
4173 : 24 \
4174 : ((v) & ~0xfff) == 0 \
4175 ? ((v) & ~0x3ff) == 0 \
4176 ? ((v) & ~0x1ff) == 0 \
4177 ? 23 \
4178 : 22 \
4179 : ((v) & ~0x7ff) == 0 \
4180 ? 21 \
4181 : 20 \
4182 : ((v) & ~0x3fff) == 0 \
4183 ? ((v) & ~0x1fff) == 0 \
4184 ? 19 \
4185 : 18 \
4186 : ((v) & ~0x7fff) == 0 \
4187 ? 17 \
4188 : 16 \
4189 : ((v) & ~0xffffff) == 0 \
4190 ? ((v) & ~0xfffff) == 0 \
4191 ? ((v) & ~0x3ffff) == 0 \
4192 ? ((v) & ~0x1ffff) == 0 \
4193 ? 15 \
4194 : 14 \
4195 : ((v) & ~0x7ffff) == 0 \
4196 ? 13 \
4197 : 12 \
4198 : ((v) & ~0x3fffff) == 0 \
4199 ? ((v) & ~0x1fffff) == 0 \
4200 ? 11 \
4201 : 10 \
4202 : ((v) & ~0x7fffff) == 0 \
4203 ? 9 \
4204 : 8 \
4205 : ((v) & ~0xfffffff) == 0 \
4206 ? ((v) & ~0x3ffffff) == 0 \
4207 ? ((v) & ~0x1ffffff) == 0 \
4208 ? 7 \
4209 : 6 \
4210 : ((v) & ~0x7ffffff) == 0 \
4211 ? 5 \
4212 : 4 \
4213 : ((v) & ~0x3fffffff) == 0 \
4214 ? ((v) & ~0x1fffffff) == 0 \
4215 ? 3 \
4216 : 2 \
4217 : ((v) & ~0x7fffffff) == 0 \
4218 ? 1 \
4219 : 0)
4220
4221 /* load_register()
4222 * This routine generates the least number of instructions necessary to load
4223 * an absolute expression value into a register.
4224 */
4225 static void
4226 load_register (int reg, expressionS *ep, int dbl)
4227 {
4228 int freg;
4229 expressionS hi32, lo32;
4230
4231 if (ep->X_op != O_big)
4232 {
4233 gas_assert (ep->X_op == O_constant);
4234
4235 /* Sign-extending 32-bit constants makes their handling easier. */
4236 if (!dbl)
4237 normalize_constant_expr (ep);
4238
4239 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4240 {
4241 /* We can handle 16 bit signed values with an addiu to
4242 $zero. No need to ever use daddiu here, since $zero and
4243 the result are always correct in 32 bit mode. */
4244 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4245 return;
4246 }
4247 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4248 {
4249 /* We can handle 16 bit unsigned values with an ori to
4250 $zero. */
4251 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4252 return;
4253 }
4254 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4255 {
4256 /* 32 bit values require an lui. */
4257 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4258 if ((ep->X_add_number & 0xffff) != 0)
4259 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4260 return;
4261 }
4262 }
4263
4264 /* The value is larger than 32 bits. */
4265
4266 if (!dbl || HAVE_32BIT_GPRS)
4267 {
4268 char value[32];
4269
4270 sprintf_vma (value, ep->X_add_number);
4271 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4272 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4273 return;
4274 }
4275
4276 if (ep->X_op != O_big)
4277 {
4278 hi32 = *ep;
4279 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4280 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4281 hi32.X_add_number &= 0xffffffff;
4282 lo32 = *ep;
4283 lo32.X_add_number &= 0xffffffff;
4284 }
4285 else
4286 {
4287 gas_assert (ep->X_add_number > 2);
4288 if (ep->X_add_number == 3)
4289 generic_bignum[3] = 0;
4290 else if (ep->X_add_number > 4)
4291 as_bad (_("Number larger than 64 bits"));
4292 lo32.X_op = O_constant;
4293 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4294 hi32.X_op = O_constant;
4295 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4296 }
4297
4298 if (hi32.X_add_number == 0)
4299 freg = 0;
4300 else
4301 {
4302 int shift, bit;
4303 unsigned long hi, lo;
4304
4305 if (hi32.X_add_number == (offsetT) 0xffffffff)
4306 {
4307 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4308 {
4309 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4310 return;
4311 }
4312 if (lo32.X_add_number & 0x80000000)
4313 {
4314 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4315 if (lo32.X_add_number & 0xffff)
4316 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4317 return;
4318 }
4319 }
4320
4321 /* Check for 16bit shifted constant. We know that hi32 is
4322 non-zero, so start the mask on the first bit of the hi32
4323 value. */
4324 shift = 17;
4325 do
4326 {
4327 unsigned long himask, lomask;
4328
4329 if (shift < 32)
4330 {
4331 himask = 0xffff >> (32 - shift);
4332 lomask = (0xffff << shift) & 0xffffffff;
4333 }
4334 else
4335 {
4336 himask = 0xffff << (shift - 32);
4337 lomask = 0;
4338 }
4339 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4340 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4341 {
4342 expressionS tmp;
4343
4344 tmp.X_op = O_constant;
4345 if (shift < 32)
4346 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4347 | (lo32.X_add_number >> shift));
4348 else
4349 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4350 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4351 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4352 reg, reg, (shift >= 32) ? shift - 32 : shift);
4353 return;
4354 }
4355 ++shift;
4356 }
4357 while (shift <= (64 - 16));
4358
4359 /* Find the bit number of the lowest one bit, and store the
4360 shifted value in hi/lo. */
4361 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4362 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4363 if (lo != 0)
4364 {
4365 bit = 0;
4366 while ((lo & 1) == 0)
4367 {
4368 lo >>= 1;
4369 ++bit;
4370 }
4371 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4372 hi >>= bit;
4373 }
4374 else
4375 {
4376 bit = 32;
4377 while ((hi & 1) == 0)
4378 {
4379 hi >>= 1;
4380 ++bit;
4381 }
4382 lo = hi;
4383 hi = 0;
4384 }
4385
4386 /* Optimize if the shifted value is a (power of 2) - 1. */
4387 if ((hi == 0 && ((lo + 1) & lo) == 0)
4388 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4389 {
4390 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4391 if (shift != 0)
4392 {
4393 expressionS tmp;
4394
4395 /* This instruction will set the register to be all
4396 ones. */
4397 tmp.X_op = O_constant;
4398 tmp.X_add_number = (offsetT) -1;
4399 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4400 if (bit != 0)
4401 {
4402 bit += shift;
4403 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4404 reg, reg, (bit >= 32) ? bit - 32 : bit);
4405 }
4406 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4407 reg, reg, (shift >= 32) ? shift - 32 : shift);
4408 return;
4409 }
4410 }
4411
4412 /* Sign extend hi32 before calling load_register, because we can
4413 generally get better code when we load a sign extended value. */
4414 if ((hi32.X_add_number & 0x80000000) != 0)
4415 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4416 load_register (reg, &hi32, 0);
4417 freg = reg;
4418 }
4419 if ((lo32.X_add_number & 0xffff0000) == 0)
4420 {
4421 if (freg != 0)
4422 {
4423 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4424 freg = reg;
4425 }
4426 }
4427 else
4428 {
4429 expressionS mid16;
4430
4431 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4432 {
4433 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4434 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4435 return;
4436 }
4437
4438 if (freg != 0)
4439 {
4440 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4441 freg = reg;
4442 }
4443 mid16 = lo32;
4444 mid16.X_add_number >>= 16;
4445 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4446 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4447 freg = reg;
4448 }
4449 if ((lo32.X_add_number & 0xffff) != 0)
4450 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4451 }
4452
4453 static inline void
4454 load_delay_nop (void)
4455 {
4456 if (!gpr_interlocks)
4457 macro_build (NULL, "nop", "");
4458 }
4459
4460 /* Load an address into a register. */
4461
4462 static void
4463 load_address (int reg, expressionS *ep, int *used_at)
4464 {
4465 if (ep->X_op != O_constant
4466 && ep->X_op != O_symbol)
4467 {
4468 as_bad (_("expression too complex"));
4469 ep->X_op = O_constant;
4470 }
4471
4472 if (ep->X_op == O_constant)
4473 {
4474 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4475 return;
4476 }
4477
4478 if (mips_pic == NO_PIC)
4479 {
4480 /* If this is a reference to a GP relative symbol, we want
4481 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4482 Otherwise we want
4483 lui $reg,<sym> (BFD_RELOC_HI16_S)
4484 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4485 If we have an addend, we always use the latter form.
4486
4487 With 64bit address space and a usable $at we want
4488 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4489 lui $at,<sym> (BFD_RELOC_HI16_S)
4490 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4491 daddiu $at,<sym> (BFD_RELOC_LO16)
4492 dsll32 $reg,0
4493 daddu $reg,$reg,$at
4494
4495 If $at is already in use, we use a path which is suboptimal
4496 on superscalar processors.
4497 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4498 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4499 dsll $reg,16
4500 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4501 dsll $reg,16
4502 daddiu $reg,<sym> (BFD_RELOC_LO16)
4503
4504 For GP relative symbols in 64bit address space we can use
4505 the same sequence as in 32bit address space. */
4506 if (HAVE_64BIT_SYMBOLS)
4507 {
4508 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4509 && !nopic_need_relax (ep->X_add_symbol, 1))
4510 {
4511 relax_start (ep->X_add_symbol);
4512 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4513 mips_gp_register, BFD_RELOC_GPREL16);
4514 relax_switch ();
4515 }
4516
4517 if (*used_at == 0 && mips_opts.at)
4518 {
4519 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4520 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4521 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4522 BFD_RELOC_MIPS_HIGHER);
4523 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4524 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4525 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4526 *used_at = 1;
4527 }
4528 else
4529 {
4530 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4531 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4532 BFD_RELOC_MIPS_HIGHER);
4533 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4534 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4535 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4536 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4537 }
4538
4539 if (mips_relax.sequence)
4540 relax_end ();
4541 }
4542 else
4543 {
4544 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4545 && !nopic_need_relax (ep->X_add_symbol, 1))
4546 {
4547 relax_start (ep->X_add_symbol);
4548 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4549 mips_gp_register, BFD_RELOC_GPREL16);
4550 relax_switch ();
4551 }
4552 macro_build_lui (ep, reg);
4553 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4554 reg, reg, BFD_RELOC_LO16);
4555 if (mips_relax.sequence)
4556 relax_end ();
4557 }
4558 }
4559 else if (!mips_big_got)
4560 {
4561 expressionS ex;
4562
4563 /* If this is a reference to an external symbol, we want
4564 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4565 Otherwise we want
4566 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4567 nop
4568 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4569 If there is a constant, it must be added in after.
4570
4571 If we have NewABI, we want
4572 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4573 unless we're referencing a global symbol with a non-zero
4574 offset, in which case cst must be added separately. */
4575 if (HAVE_NEWABI)
4576 {
4577 if (ep->X_add_number)
4578 {
4579 ex.X_add_number = ep->X_add_number;
4580 ep->X_add_number = 0;
4581 relax_start (ep->X_add_symbol);
4582 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4583 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4584 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4585 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4586 ex.X_op = O_constant;
4587 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4588 reg, reg, BFD_RELOC_LO16);
4589 ep->X_add_number = ex.X_add_number;
4590 relax_switch ();
4591 }
4592 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4593 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4594 if (mips_relax.sequence)
4595 relax_end ();
4596 }
4597 else
4598 {
4599 ex.X_add_number = ep->X_add_number;
4600 ep->X_add_number = 0;
4601 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4602 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4603 load_delay_nop ();
4604 relax_start (ep->X_add_symbol);
4605 relax_switch ();
4606 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4607 BFD_RELOC_LO16);
4608 relax_end ();
4609
4610 if (ex.X_add_number != 0)
4611 {
4612 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4613 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4614 ex.X_op = O_constant;
4615 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4616 reg, reg, BFD_RELOC_LO16);
4617 }
4618 }
4619 }
4620 else if (mips_big_got)
4621 {
4622 expressionS ex;
4623
4624 /* This is the large GOT case. If this is a reference to an
4625 external symbol, we want
4626 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4627 addu $reg,$reg,$gp
4628 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4629
4630 Otherwise, for a reference to a local symbol in old ABI, we want
4631 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4632 nop
4633 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4634 If there is a constant, it must be added in after.
4635
4636 In the NewABI, for local symbols, with or without offsets, we want:
4637 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4638 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4639 */
4640 if (HAVE_NEWABI)
4641 {
4642 ex.X_add_number = ep->X_add_number;
4643 ep->X_add_number = 0;
4644 relax_start (ep->X_add_symbol);
4645 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4646 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4647 reg, reg, mips_gp_register);
4648 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4649 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4650 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4651 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4652 else if (ex.X_add_number)
4653 {
4654 ex.X_op = O_constant;
4655 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4656 BFD_RELOC_LO16);
4657 }
4658
4659 ep->X_add_number = ex.X_add_number;
4660 relax_switch ();
4661 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4662 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4663 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4664 BFD_RELOC_MIPS_GOT_OFST);
4665 relax_end ();
4666 }
4667 else
4668 {
4669 ex.X_add_number = ep->X_add_number;
4670 ep->X_add_number = 0;
4671 relax_start (ep->X_add_symbol);
4672 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4673 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4674 reg, reg, mips_gp_register);
4675 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4676 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4677 relax_switch ();
4678 if (reg_needs_delay (mips_gp_register))
4679 {
4680 /* We need a nop before loading from $gp. This special
4681 check is required because the lui which starts the main
4682 instruction stream does not refer to $gp, and so will not
4683 insert the nop which may be required. */
4684 macro_build (NULL, "nop", "");
4685 }
4686 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4687 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4688 load_delay_nop ();
4689 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4690 BFD_RELOC_LO16);
4691 relax_end ();
4692
4693 if (ex.X_add_number != 0)
4694 {
4695 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4696 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4697 ex.X_op = O_constant;
4698 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4699 BFD_RELOC_LO16);
4700 }
4701 }
4702 }
4703 else
4704 abort ();
4705
4706 if (!mips_opts.at && *used_at == 1)
4707 as_bad (_("Macro used $at after \".set noat\""));
4708 }
4709
4710 /* Move the contents of register SOURCE into register DEST. */
4711
4712 static void
4713 move_register (int dest, int source)
4714 {
4715 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4716 dest, source, 0);
4717 }
4718
4719 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4720 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4721 The two alternatives are:
4722
4723 Global symbol Local sybmol
4724 ------------- ------------
4725 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4726 ... ...
4727 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4728
4729 load_got_offset emits the first instruction and add_got_offset
4730 emits the second for a 16-bit offset or add_got_offset_hilo emits
4731 a sequence to add a 32-bit offset using a scratch register. */
4732
4733 static void
4734 load_got_offset (int dest, expressionS *local)
4735 {
4736 expressionS global;
4737
4738 global = *local;
4739 global.X_add_number = 0;
4740
4741 relax_start (local->X_add_symbol);
4742 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4743 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4744 relax_switch ();
4745 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4746 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4747 relax_end ();
4748 }
4749
4750 static void
4751 add_got_offset (int dest, expressionS *local)
4752 {
4753 expressionS global;
4754
4755 global.X_op = O_constant;
4756 global.X_op_symbol = NULL;
4757 global.X_add_symbol = NULL;
4758 global.X_add_number = local->X_add_number;
4759
4760 relax_start (local->X_add_symbol);
4761 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4762 dest, dest, BFD_RELOC_LO16);
4763 relax_switch ();
4764 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4765 relax_end ();
4766 }
4767
4768 static void
4769 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4770 {
4771 expressionS global;
4772 int hold_mips_optimize;
4773
4774 global.X_op = O_constant;
4775 global.X_op_symbol = NULL;
4776 global.X_add_symbol = NULL;
4777 global.X_add_number = local->X_add_number;
4778
4779 relax_start (local->X_add_symbol);
4780 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4781 relax_switch ();
4782 /* Set mips_optimize around the lui instruction to avoid
4783 inserting an unnecessary nop after the lw. */
4784 hold_mips_optimize = mips_optimize;
4785 mips_optimize = 2;
4786 macro_build_lui (&global, tmp);
4787 mips_optimize = hold_mips_optimize;
4788 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4789 relax_end ();
4790
4791 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4792 }
4793
4794 /*
4795 * Build macros
4796 * This routine implements the seemingly endless macro or synthesized
4797 * instructions and addressing modes in the mips assembly language. Many
4798 * of these macros are simple and are similar to each other. These could
4799 * probably be handled by some kind of table or grammar approach instead of
4800 * this verbose method. Others are not simple macros but are more like
4801 * optimizing code generation.
4802 * One interesting optimization is when several store macros appear
4803 * consecutively that would load AT with the upper half of the same address.
4804 * The ensuing load upper instructions are ommited. This implies some kind
4805 * of global optimization. We currently only optimize within a single macro.
4806 * For many of the load and store macros if the address is specified as a
4807 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4808 * first load register 'at' with zero and use it as the base register. The
4809 * mips assembler simply uses register $zero. Just one tiny optimization
4810 * we're missing.
4811 */
4812 static void
4813 macro (struct mips_cl_insn *ip)
4814 {
4815 unsigned int treg, sreg, dreg, breg;
4816 unsigned int tempreg;
4817 int mask;
4818 int used_at = 0;
4819 expressionS expr1;
4820 const char *s;
4821 const char *s2;
4822 const char *fmt;
4823 int likely = 0;
4824 int dbl = 0;
4825 int coproc = 0;
4826 int lr = 0;
4827 int imm = 0;
4828 int call = 0;
4829 int off;
4830 offsetT maxnum;
4831 bfd_reloc_code_real_type r;
4832 int hold_mips_optimize;
4833
4834 gas_assert (! mips_opts.mips16);
4835
4836 treg = EXTRACT_OPERAND (RT, *ip);
4837 dreg = EXTRACT_OPERAND (RD, *ip);
4838 sreg = breg = EXTRACT_OPERAND (RS, *ip);
4839 mask = ip->insn_mo->mask;
4840
4841 expr1.X_op = O_constant;
4842 expr1.X_op_symbol = NULL;
4843 expr1.X_add_symbol = NULL;
4844 expr1.X_add_number = 1;
4845
4846 switch (mask)
4847 {
4848 case M_DABS:
4849 dbl = 1;
4850 case M_ABS:
4851 /* bgez $a0,.+12
4852 move v0,$a0
4853 sub v0,$zero,$a0
4854 */
4855
4856 start_noreorder ();
4857
4858 expr1.X_add_number = 8;
4859 macro_build (&expr1, "bgez", "s,p", sreg);
4860 if (dreg == sreg)
4861 macro_build (NULL, "nop", "");
4862 else
4863 move_register (dreg, sreg);
4864 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4865
4866 end_noreorder ();
4867 break;
4868
4869 case M_ADD_I:
4870 s = "addi";
4871 s2 = "add";
4872 goto do_addi;
4873 case M_ADDU_I:
4874 s = "addiu";
4875 s2 = "addu";
4876 goto do_addi;
4877 case M_DADD_I:
4878 dbl = 1;
4879 s = "daddi";
4880 s2 = "dadd";
4881 goto do_addi;
4882 case M_DADDU_I:
4883 dbl = 1;
4884 s = "daddiu";
4885 s2 = "daddu";
4886 do_addi:
4887 if (imm_expr.X_op == O_constant
4888 && imm_expr.X_add_number >= -0x8000
4889 && imm_expr.X_add_number < 0x8000)
4890 {
4891 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4892 break;
4893 }
4894 used_at = 1;
4895 load_register (AT, &imm_expr, dbl);
4896 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4897 break;
4898
4899 case M_AND_I:
4900 s = "andi";
4901 s2 = "and";
4902 goto do_bit;
4903 case M_OR_I:
4904 s = "ori";
4905 s2 = "or";
4906 goto do_bit;
4907 case M_NOR_I:
4908 s = "";
4909 s2 = "nor";
4910 goto do_bit;
4911 case M_XOR_I:
4912 s = "xori";
4913 s2 = "xor";
4914 do_bit:
4915 if (imm_expr.X_op == O_constant
4916 && imm_expr.X_add_number >= 0
4917 && imm_expr.X_add_number < 0x10000)
4918 {
4919 if (mask != M_NOR_I)
4920 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4921 else
4922 {
4923 macro_build (&imm_expr, "ori", "t,r,i",
4924 treg, sreg, BFD_RELOC_LO16);
4925 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4926 }
4927 break;
4928 }
4929
4930 used_at = 1;
4931 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4932 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4933 break;
4934
4935 case M_BALIGN:
4936 switch (imm_expr.X_add_number)
4937 {
4938 case 0:
4939 macro_build (NULL, "nop", "");
4940 break;
4941 case 2:
4942 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4943 break;
4944 default:
4945 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4946 (int) imm_expr.X_add_number);
4947 break;
4948 }
4949 break;
4950
4951 case M_BEQ_I:
4952 s = "beq";
4953 goto beq_i;
4954 case M_BEQL_I:
4955 s = "beql";
4956 likely = 1;
4957 goto beq_i;
4958 case M_BNE_I:
4959 s = "bne";
4960 goto beq_i;
4961 case M_BNEL_I:
4962 s = "bnel";
4963 likely = 1;
4964 beq_i:
4965 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4966 {
4967 macro_build (&offset_expr, s, "s,t,p", sreg, ZERO);
4968 break;
4969 }
4970 used_at = 1;
4971 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4972 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4973 break;
4974
4975 case M_BGEL:
4976 likely = 1;
4977 case M_BGE:
4978 if (treg == 0)
4979 {
4980 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4981 break;
4982 }
4983 if (sreg == 0)
4984 {
4985 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4986 break;
4987 }
4988 used_at = 1;
4989 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4990 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
4991 break;
4992
4993 case M_BGTL_I:
4994 likely = 1;
4995 case M_BGT_I:
4996 /* Check for > max integer. */
4997 maxnum = 0x7fffffff;
4998 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4999 {
5000 maxnum <<= 16;
5001 maxnum |= 0xffff;
5002 maxnum <<= 16;
5003 maxnum |= 0xffff;
5004 }
5005 if (imm_expr.X_op == O_constant
5006 && imm_expr.X_add_number >= maxnum
5007 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5008 {
5009 do_false:
5010 /* Result is always false. */
5011 if (! likely)
5012 macro_build (NULL, "nop", "");
5013 else
5014 macro_build (&offset_expr, "bnel", "s,t,p", ZERO, ZERO);
5015 break;
5016 }
5017 if (imm_expr.X_op != O_constant)
5018 as_bad (_("Unsupported large constant"));
5019 ++imm_expr.X_add_number;
5020 /* FALLTHROUGH */
5021 case M_BGE_I:
5022 case M_BGEL_I:
5023 if (mask == M_BGEL_I)
5024 likely = 1;
5025 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5026 {
5027 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5028 break;
5029 }
5030 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5031 {
5032 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5033 break;
5034 }
5035 maxnum = 0x7fffffff;
5036 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5037 {
5038 maxnum <<= 16;
5039 maxnum |= 0xffff;
5040 maxnum <<= 16;
5041 maxnum |= 0xffff;
5042 }
5043 maxnum = - maxnum - 1;
5044 if (imm_expr.X_op == O_constant
5045 && imm_expr.X_add_number <= maxnum
5046 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5047 {
5048 do_true:
5049 /* result is always true */
5050 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5051 macro_build (&offset_expr, "b", "p");
5052 break;
5053 }
5054 used_at = 1;
5055 set_at (sreg, 0);
5056 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5057 break;
5058
5059 case M_BGEUL:
5060 likely = 1;
5061 case M_BGEU:
5062 if (treg == 0)
5063 goto do_true;
5064 if (sreg == 0)
5065 {
5066 macro_build (&offset_expr, likely ? "beql" : "beq",
5067 "s,t,p", ZERO, treg);
5068 break;
5069 }
5070 used_at = 1;
5071 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5072 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5073 break;
5074
5075 case M_BGTUL_I:
5076 likely = 1;
5077 case M_BGTU_I:
5078 if (sreg == 0
5079 || (HAVE_32BIT_GPRS
5080 && imm_expr.X_op == O_constant
5081 && imm_expr.X_add_number == -1))
5082 goto do_false;
5083 if (imm_expr.X_op != O_constant)
5084 as_bad (_("Unsupported large constant"));
5085 ++imm_expr.X_add_number;
5086 /* FALLTHROUGH */
5087 case M_BGEU_I:
5088 case M_BGEUL_I:
5089 if (mask == M_BGEUL_I)
5090 likely = 1;
5091 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5092 goto do_true;
5093 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5094 {
5095 macro_build (&offset_expr, likely ? "bnel" : "bne",
5096 "s,t,p", sreg, ZERO);
5097 break;
5098 }
5099 used_at = 1;
5100 set_at (sreg, 1);
5101 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5102 break;
5103
5104 case M_BGTL:
5105 likely = 1;
5106 case M_BGT:
5107 if (treg == 0)
5108 {
5109 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5110 break;
5111 }
5112 if (sreg == 0)
5113 {
5114 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5115 break;
5116 }
5117 used_at = 1;
5118 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5119 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5120 break;
5121
5122 case M_BGTUL:
5123 likely = 1;
5124 case M_BGTU:
5125 if (treg == 0)
5126 {
5127 macro_build (&offset_expr, likely ? "bnel" : "bne",
5128 "s,t,p", sreg, ZERO);
5129 break;
5130 }
5131 if (sreg == 0)
5132 goto do_false;
5133 used_at = 1;
5134 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5135 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5136 break;
5137
5138 case M_BLEL:
5139 likely = 1;
5140 case M_BLE:
5141 if (treg == 0)
5142 {
5143 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5144 break;
5145 }
5146 if (sreg == 0)
5147 {
5148 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5149 break;
5150 }
5151 used_at = 1;
5152 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5153 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5154 break;
5155
5156 case M_BLEL_I:
5157 likely = 1;
5158 case M_BLE_I:
5159 maxnum = 0x7fffffff;
5160 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5161 {
5162 maxnum <<= 16;
5163 maxnum |= 0xffff;
5164 maxnum <<= 16;
5165 maxnum |= 0xffff;
5166 }
5167 if (imm_expr.X_op == O_constant
5168 && imm_expr.X_add_number >= maxnum
5169 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5170 goto do_true;
5171 if (imm_expr.X_op != O_constant)
5172 as_bad (_("Unsupported large constant"));
5173 ++imm_expr.X_add_number;
5174 /* FALLTHROUGH */
5175 case M_BLT_I:
5176 case M_BLTL_I:
5177 if (mask == M_BLTL_I)
5178 likely = 1;
5179 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5180 {
5181 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5182 break;
5183 }
5184 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5185 {
5186 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5187 break;
5188 }
5189 used_at = 1;
5190 set_at (sreg, 0);
5191 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5192 break;
5193
5194 case M_BLEUL:
5195 likely = 1;
5196 case M_BLEU:
5197 if (treg == 0)
5198 {
5199 macro_build (&offset_expr, likely ? "beql" : "beq",
5200 "s,t,p", sreg, ZERO);
5201 break;
5202 }
5203 if (sreg == 0)
5204 goto do_true;
5205 used_at = 1;
5206 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5207 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5208 break;
5209
5210 case M_BLEUL_I:
5211 likely = 1;
5212 case M_BLEU_I:
5213 if (sreg == 0
5214 || (HAVE_32BIT_GPRS
5215 && imm_expr.X_op == O_constant
5216 && imm_expr.X_add_number == -1))
5217 goto do_true;
5218 if (imm_expr.X_op != O_constant)
5219 as_bad (_("Unsupported large constant"));
5220 ++imm_expr.X_add_number;
5221 /* FALLTHROUGH */
5222 case M_BLTU_I:
5223 case M_BLTUL_I:
5224 if (mask == M_BLTUL_I)
5225 likely = 1;
5226 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5227 goto do_false;
5228 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5229 {
5230 macro_build (&offset_expr, likely ? "beql" : "beq",
5231 "s,t,p", sreg, ZERO);
5232 break;
5233 }
5234 used_at = 1;
5235 set_at (sreg, 1);
5236 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5237 break;
5238
5239 case M_BLTL:
5240 likely = 1;
5241 case M_BLT:
5242 if (treg == 0)
5243 {
5244 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5245 break;
5246 }
5247 if (sreg == 0)
5248 {
5249 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5250 break;
5251 }
5252 used_at = 1;
5253 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5254 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5255 break;
5256
5257 case M_BLTUL:
5258 likely = 1;
5259 case M_BLTU:
5260 if (treg == 0)
5261 goto do_false;
5262 if (sreg == 0)
5263 {
5264 macro_build (&offset_expr, likely ? "bnel" : "bne",
5265 "s,t,p", ZERO, treg);
5266 break;
5267 }
5268 used_at = 1;
5269 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5270 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5271 break;
5272
5273 case M_DEXT:
5274 {
5275 /* Use unsigned arithmetic. */
5276 addressT pos;
5277 addressT size;
5278
5279 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5280 {
5281 as_bad (_("Unsupported large constant"));
5282 pos = size = 1;
5283 }
5284 else
5285 {
5286 pos = imm_expr.X_add_number;
5287 size = imm2_expr.X_add_number;
5288 }
5289
5290 if (pos > 63)
5291 {
5292 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5293 pos = 1;
5294 }
5295 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5296 {
5297 as_bad (_("Improper extract size (%lu, position %lu)"),
5298 (unsigned long) size, (unsigned long) pos);
5299 size = 1;
5300 }
5301
5302 if (size <= 32 && pos < 32)
5303 {
5304 s = "dext";
5305 fmt = "t,r,+A,+C";
5306 }
5307 else if (size <= 32)
5308 {
5309 s = "dextu";
5310 fmt = "t,r,+E,+H";
5311 }
5312 else
5313 {
5314 s = "dextm";
5315 fmt = "t,r,+A,+G";
5316 }
5317 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5318 (int) (size - 1));
5319 }
5320 break;
5321
5322 case M_DINS:
5323 {
5324 /* Use unsigned arithmetic. */
5325 addressT pos;
5326 addressT size;
5327
5328 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5329 {
5330 as_bad (_("Unsupported large constant"));
5331 pos = size = 1;
5332 }
5333 else
5334 {
5335 pos = imm_expr.X_add_number;
5336 size = imm2_expr.X_add_number;
5337 }
5338
5339 if (pos > 63)
5340 {
5341 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5342 pos = 1;
5343 }
5344 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5345 {
5346 as_bad (_("Improper insert size (%lu, position %lu)"),
5347 (unsigned long) size, (unsigned long) pos);
5348 size = 1;
5349 }
5350
5351 if (pos < 32 && (pos + size - 1) < 32)
5352 {
5353 s = "dins";
5354 fmt = "t,r,+A,+B";
5355 }
5356 else if (pos >= 32)
5357 {
5358 s = "dinsu";
5359 fmt = "t,r,+E,+F";
5360 }
5361 else
5362 {
5363 s = "dinsm";
5364 fmt = "t,r,+A,+F";
5365 }
5366 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5367 (int) (pos + size - 1));
5368 }
5369 break;
5370
5371 case M_DDIV_3:
5372 dbl = 1;
5373 case M_DIV_3:
5374 s = "mflo";
5375 goto do_div3;
5376 case M_DREM_3:
5377 dbl = 1;
5378 case M_REM_3:
5379 s = "mfhi";
5380 do_div3:
5381 if (treg == 0)
5382 {
5383 as_warn (_("Divide by zero."));
5384 if (mips_trap)
5385 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5386 else
5387 macro_build (NULL, "break", "c", 7);
5388 break;
5389 }
5390
5391 start_noreorder ();
5392 if (mips_trap)
5393 {
5394 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5395 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5396 }
5397 else
5398 {
5399 expr1.X_add_number = 8;
5400 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5401 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5402 macro_build (NULL, "break", "c", 7);
5403 }
5404 expr1.X_add_number = -1;
5405 used_at = 1;
5406 load_register (AT, &expr1, dbl);
5407 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5408 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5409 if (dbl)
5410 {
5411 expr1.X_add_number = 1;
5412 load_register (AT, &expr1, dbl);
5413 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5414 }
5415 else
5416 {
5417 expr1.X_add_number = 0x80000000;
5418 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5419 }
5420 if (mips_trap)
5421 {
5422 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5423 /* We want to close the noreorder block as soon as possible, so
5424 that later insns are available for delay slot filling. */
5425 end_noreorder ();
5426 }
5427 else
5428 {
5429 expr1.X_add_number = 8;
5430 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5431 macro_build (NULL, "nop", "");
5432
5433 /* We want to close the noreorder block as soon as possible, so
5434 that later insns are available for delay slot filling. */
5435 end_noreorder ();
5436
5437 macro_build (NULL, "break", "c", 6);
5438 }
5439 macro_build (NULL, s, "d", dreg);
5440 break;
5441
5442 case M_DIV_3I:
5443 s = "div";
5444 s2 = "mflo";
5445 goto do_divi;
5446 case M_DIVU_3I:
5447 s = "divu";
5448 s2 = "mflo";
5449 goto do_divi;
5450 case M_REM_3I:
5451 s = "div";
5452 s2 = "mfhi";
5453 goto do_divi;
5454 case M_REMU_3I:
5455 s = "divu";
5456 s2 = "mfhi";
5457 goto do_divi;
5458 case M_DDIV_3I:
5459 dbl = 1;
5460 s = "ddiv";
5461 s2 = "mflo";
5462 goto do_divi;
5463 case M_DDIVU_3I:
5464 dbl = 1;
5465 s = "ddivu";
5466 s2 = "mflo";
5467 goto do_divi;
5468 case M_DREM_3I:
5469 dbl = 1;
5470 s = "ddiv";
5471 s2 = "mfhi";
5472 goto do_divi;
5473 case M_DREMU_3I:
5474 dbl = 1;
5475 s = "ddivu";
5476 s2 = "mfhi";
5477 do_divi:
5478 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5479 {
5480 as_warn (_("Divide by zero."));
5481 if (mips_trap)
5482 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5483 else
5484 macro_build (NULL, "break", "c", 7);
5485 break;
5486 }
5487 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5488 {
5489 if (strcmp (s2, "mflo") == 0)
5490 move_register (dreg, sreg);
5491 else
5492 move_register (dreg, ZERO);
5493 break;
5494 }
5495 if (imm_expr.X_op == O_constant
5496 && imm_expr.X_add_number == -1
5497 && s[strlen (s) - 1] != 'u')
5498 {
5499 if (strcmp (s2, "mflo") == 0)
5500 {
5501 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5502 }
5503 else
5504 move_register (dreg, ZERO);
5505 break;
5506 }
5507
5508 used_at = 1;
5509 load_register (AT, &imm_expr, dbl);
5510 macro_build (NULL, s, "z,s,t", sreg, AT);
5511 macro_build (NULL, s2, "d", dreg);
5512 break;
5513
5514 case M_DIVU_3:
5515 s = "divu";
5516 s2 = "mflo";
5517 goto do_divu3;
5518 case M_REMU_3:
5519 s = "divu";
5520 s2 = "mfhi";
5521 goto do_divu3;
5522 case M_DDIVU_3:
5523 s = "ddivu";
5524 s2 = "mflo";
5525 goto do_divu3;
5526 case M_DREMU_3:
5527 s = "ddivu";
5528 s2 = "mfhi";
5529 do_divu3:
5530 start_noreorder ();
5531 if (mips_trap)
5532 {
5533 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5534 macro_build (NULL, s, "z,s,t", sreg, treg);
5535 /* We want to close the noreorder block as soon as possible, so
5536 that later insns are available for delay slot filling. */
5537 end_noreorder ();
5538 }
5539 else
5540 {
5541 expr1.X_add_number = 8;
5542 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5543 macro_build (NULL, s, "z,s,t", sreg, treg);
5544
5545 /* We want to close the noreorder block as soon as possible, so
5546 that later insns are available for delay slot filling. */
5547 end_noreorder ();
5548 macro_build (NULL, "break", "c", 7);
5549 }
5550 macro_build (NULL, s2, "d", dreg);
5551 break;
5552
5553 case M_DLCA_AB:
5554 dbl = 1;
5555 case M_LCA_AB:
5556 call = 1;
5557 goto do_la;
5558 case M_DLA_AB:
5559 dbl = 1;
5560 case M_LA_AB:
5561 do_la:
5562 /* Load the address of a symbol into a register. If breg is not
5563 zero, we then add a base register to it. */
5564
5565 if (dbl && HAVE_32BIT_GPRS)
5566 as_warn (_("dla used to load 32-bit register"));
5567
5568 if (!dbl && HAVE_64BIT_OBJECTS)
5569 as_warn (_("la used to load 64-bit address"));
5570
5571 if (offset_expr.X_op == O_constant
5572 && offset_expr.X_add_number >= -0x8000
5573 && offset_expr.X_add_number < 0x8000)
5574 {
5575 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5576 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5577 break;
5578 }
5579
5580 if (mips_opts.at && (treg == breg))
5581 {
5582 tempreg = AT;
5583 used_at = 1;
5584 }
5585 else
5586 {
5587 tempreg = treg;
5588 }
5589
5590 if (offset_expr.X_op != O_symbol
5591 && offset_expr.X_op != O_constant)
5592 {
5593 as_bad (_("Expression too complex"));
5594 offset_expr.X_op = O_constant;
5595 }
5596
5597 if (offset_expr.X_op == O_constant)
5598 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5599 else if (mips_pic == NO_PIC)
5600 {
5601 /* If this is a reference to a GP relative symbol, we want
5602 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5603 Otherwise we want
5604 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5605 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5606 If we have a constant, we need two instructions anyhow,
5607 so we may as well always use the latter form.
5608
5609 With 64bit address space and a usable $at we want
5610 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5611 lui $at,<sym> (BFD_RELOC_HI16_S)
5612 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5613 daddiu $at,<sym> (BFD_RELOC_LO16)
5614 dsll32 $tempreg,0
5615 daddu $tempreg,$tempreg,$at
5616
5617 If $at is already in use, we use a path which is suboptimal
5618 on superscalar processors.
5619 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5620 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5621 dsll $tempreg,16
5622 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5623 dsll $tempreg,16
5624 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5625
5626 For GP relative symbols in 64bit address space we can use
5627 the same sequence as in 32bit address space. */
5628 if (HAVE_64BIT_SYMBOLS)
5629 {
5630 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5631 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5632 {
5633 relax_start (offset_expr.X_add_symbol);
5634 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5635 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5636 relax_switch ();
5637 }
5638
5639 if (used_at == 0 && mips_opts.at)
5640 {
5641 macro_build (&offset_expr, "lui", "t,u",
5642 tempreg, BFD_RELOC_MIPS_HIGHEST);
5643 macro_build (&offset_expr, "lui", "t,u",
5644 AT, BFD_RELOC_HI16_S);
5645 macro_build (&offset_expr, "daddiu", "t,r,j",
5646 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5647 macro_build (&offset_expr, "daddiu", "t,r,j",
5648 AT, AT, BFD_RELOC_LO16);
5649 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5650 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5651 used_at = 1;
5652 }
5653 else
5654 {
5655 macro_build (&offset_expr, "lui", "t,u",
5656 tempreg, BFD_RELOC_MIPS_HIGHEST);
5657 macro_build (&offset_expr, "daddiu", "t,r,j",
5658 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5659 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5660 macro_build (&offset_expr, "daddiu", "t,r,j",
5661 tempreg, tempreg, BFD_RELOC_HI16_S);
5662 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5663 macro_build (&offset_expr, "daddiu", "t,r,j",
5664 tempreg, tempreg, BFD_RELOC_LO16);
5665 }
5666
5667 if (mips_relax.sequence)
5668 relax_end ();
5669 }
5670 else
5671 {
5672 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5673 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5674 {
5675 relax_start (offset_expr.X_add_symbol);
5676 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5677 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5678 relax_switch ();
5679 }
5680 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5681 as_bad (_("Offset too large"));
5682 macro_build_lui (&offset_expr, tempreg);
5683 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5684 tempreg, tempreg, BFD_RELOC_LO16);
5685 if (mips_relax.sequence)
5686 relax_end ();
5687 }
5688 }
5689 else if (!mips_big_got && !HAVE_NEWABI)
5690 {
5691 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5692
5693 /* If this is a reference to an external symbol, and there
5694 is no constant, we want
5695 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5696 or for lca or if tempreg is PIC_CALL_REG
5697 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5698 For a local symbol, we want
5699 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5700 nop
5701 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5702
5703 If we have a small constant, and this is a reference to
5704 an external symbol, we want
5705 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5706 nop
5707 addiu $tempreg,$tempreg,<constant>
5708 For a local symbol, we want the same instruction
5709 sequence, but we output a BFD_RELOC_LO16 reloc on the
5710 addiu instruction.
5711
5712 If we have a large constant, and this is a reference to
5713 an external symbol, we want
5714 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5715 lui $at,<hiconstant>
5716 addiu $at,$at,<loconstant>
5717 addu $tempreg,$tempreg,$at
5718 For a local symbol, we want the same instruction
5719 sequence, but we output a BFD_RELOC_LO16 reloc on the
5720 addiu instruction.
5721 */
5722
5723 if (offset_expr.X_add_number == 0)
5724 {
5725 if (mips_pic == SVR4_PIC
5726 && breg == 0
5727 && (call || tempreg == PIC_CALL_REG))
5728 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5729
5730 relax_start (offset_expr.X_add_symbol);
5731 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5732 lw_reloc_type, mips_gp_register);
5733 if (breg != 0)
5734 {
5735 /* We're going to put in an addu instruction using
5736 tempreg, so we may as well insert the nop right
5737 now. */
5738 load_delay_nop ();
5739 }
5740 relax_switch ();
5741 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5742 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5743 load_delay_nop ();
5744 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5745 tempreg, tempreg, BFD_RELOC_LO16);
5746 relax_end ();
5747 /* FIXME: If breg == 0, and the next instruction uses
5748 $tempreg, then if this variant case is used an extra
5749 nop will be generated. */
5750 }
5751 else if (offset_expr.X_add_number >= -0x8000
5752 && offset_expr.X_add_number < 0x8000)
5753 {
5754 load_got_offset (tempreg, &offset_expr);
5755 load_delay_nop ();
5756 add_got_offset (tempreg, &offset_expr);
5757 }
5758 else
5759 {
5760 expr1.X_add_number = offset_expr.X_add_number;
5761 offset_expr.X_add_number =
5762 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5763 load_got_offset (tempreg, &offset_expr);
5764 offset_expr.X_add_number = expr1.X_add_number;
5765 /* If we are going to add in a base register, and the
5766 target register and the base register are the same,
5767 then we are using AT as a temporary register. Since
5768 we want to load the constant into AT, we add our
5769 current AT (from the global offset table) and the
5770 register into the register now, and pretend we were
5771 not using a base register. */
5772 if (breg == treg)
5773 {
5774 load_delay_nop ();
5775 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5776 treg, AT, breg);
5777 breg = 0;
5778 tempreg = treg;
5779 }
5780 add_got_offset_hilo (tempreg, &offset_expr, AT);
5781 used_at = 1;
5782 }
5783 }
5784 else if (!mips_big_got && HAVE_NEWABI)
5785 {
5786 int add_breg_early = 0;
5787
5788 /* If this is a reference to an external, and there is no
5789 constant, or local symbol (*), with or without a
5790 constant, we want
5791 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5792 or for lca or if tempreg is PIC_CALL_REG
5793 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5794
5795 If we have a small constant, and this is a reference to
5796 an external symbol, we want
5797 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5798 addiu $tempreg,$tempreg,<constant>
5799
5800 If we have a large constant, and this is a reference to
5801 an external symbol, we want
5802 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5803 lui $at,<hiconstant>
5804 addiu $at,$at,<loconstant>
5805 addu $tempreg,$tempreg,$at
5806
5807 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5808 local symbols, even though it introduces an additional
5809 instruction. */
5810
5811 if (offset_expr.X_add_number)
5812 {
5813 expr1.X_add_number = offset_expr.X_add_number;
5814 offset_expr.X_add_number = 0;
5815
5816 relax_start (offset_expr.X_add_symbol);
5817 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5818 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5819
5820 if (expr1.X_add_number >= -0x8000
5821 && expr1.X_add_number < 0x8000)
5822 {
5823 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5824 tempreg, tempreg, BFD_RELOC_LO16);
5825 }
5826 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5827 {
5828 /* If we are going to add in a base register, and the
5829 target register and the base register are the same,
5830 then we are using AT as a temporary register. Since
5831 we want to load the constant into AT, we add our
5832 current AT (from the global offset table) and the
5833 register into the register now, and pretend we were
5834 not using a base register. */
5835 if (breg != treg)
5836 dreg = tempreg;
5837 else
5838 {
5839 gas_assert (tempreg == AT);
5840 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5841 treg, AT, breg);
5842 dreg = treg;
5843 add_breg_early = 1;
5844 }
5845
5846 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5847 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5848 dreg, dreg, AT);
5849
5850 used_at = 1;
5851 }
5852 else
5853 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5854
5855 relax_switch ();
5856 offset_expr.X_add_number = expr1.X_add_number;
5857
5858 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5859 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5860 if (add_breg_early)
5861 {
5862 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5863 treg, tempreg, breg);
5864 breg = 0;
5865 tempreg = treg;
5866 }
5867 relax_end ();
5868 }
5869 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5870 {
5871 relax_start (offset_expr.X_add_symbol);
5872 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5873 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5874 relax_switch ();
5875 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5876 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5877 relax_end ();
5878 }
5879 else
5880 {
5881 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5882 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5883 }
5884 }
5885 else if (mips_big_got && !HAVE_NEWABI)
5886 {
5887 int gpdelay;
5888 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5889 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5890 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5891
5892 /* This is the large GOT case. If this is a reference to an
5893 external symbol, and there is no constant, we want
5894 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5895 addu $tempreg,$tempreg,$gp
5896 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5897 or for lca or if tempreg is PIC_CALL_REG
5898 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5899 addu $tempreg,$tempreg,$gp
5900 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5901 For a local symbol, we want
5902 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5903 nop
5904 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5905
5906 If we have a small constant, and this is a reference to
5907 an external symbol, we want
5908 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5909 addu $tempreg,$tempreg,$gp
5910 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5911 nop
5912 addiu $tempreg,$tempreg,<constant>
5913 For a local symbol, we want
5914 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5915 nop
5916 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5917
5918 If we have a large constant, and this is a reference to
5919 an external symbol, we want
5920 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5921 addu $tempreg,$tempreg,$gp
5922 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5923 lui $at,<hiconstant>
5924 addiu $at,$at,<loconstant>
5925 addu $tempreg,$tempreg,$at
5926 For a local symbol, we want
5927 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5928 lui $at,<hiconstant>
5929 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5930 addu $tempreg,$tempreg,$at
5931 */
5932
5933 expr1.X_add_number = offset_expr.X_add_number;
5934 offset_expr.X_add_number = 0;
5935 relax_start (offset_expr.X_add_symbol);
5936 gpdelay = reg_needs_delay (mips_gp_register);
5937 if (expr1.X_add_number == 0 && breg == 0
5938 && (call || tempreg == PIC_CALL_REG))
5939 {
5940 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5941 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5942 }
5943 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5944 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5945 tempreg, tempreg, mips_gp_register);
5946 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5947 tempreg, lw_reloc_type, tempreg);
5948 if (expr1.X_add_number == 0)
5949 {
5950 if (breg != 0)
5951 {
5952 /* We're going to put in an addu instruction using
5953 tempreg, so we may as well insert the nop right
5954 now. */
5955 load_delay_nop ();
5956 }
5957 }
5958 else if (expr1.X_add_number >= -0x8000
5959 && expr1.X_add_number < 0x8000)
5960 {
5961 load_delay_nop ();
5962 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5963 tempreg, tempreg, BFD_RELOC_LO16);
5964 }
5965 else
5966 {
5967 /* If we are going to add in a base register, and the
5968 target register and the base register are the same,
5969 then we are using AT as a temporary register. Since
5970 we want to load the constant into AT, we add our
5971 current AT (from the global offset table) and the
5972 register into the register now, and pretend we were
5973 not using a base register. */
5974 if (breg != treg)
5975 dreg = tempreg;
5976 else
5977 {
5978 gas_assert (tempreg == AT);
5979 load_delay_nop ();
5980 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5981 treg, AT, breg);
5982 dreg = treg;
5983 }
5984
5985 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5986 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5987
5988 used_at = 1;
5989 }
5990 offset_expr.X_add_number =
5991 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5992 relax_switch ();
5993
5994 if (gpdelay)
5995 {
5996 /* This is needed because this instruction uses $gp, but
5997 the first instruction on the main stream does not. */
5998 macro_build (NULL, "nop", "");
5999 }
6000
6001 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6002 local_reloc_type, mips_gp_register);
6003 if (expr1.X_add_number >= -0x8000
6004 && expr1.X_add_number < 0x8000)
6005 {
6006 load_delay_nop ();
6007 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6008 tempreg, tempreg, BFD_RELOC_LO16);
6009 /* FIXME: If add_number is 0, and there was no base
6010 register, the external symbol case ended with a load,
6011 so if the symbol turns out to not be external, and
6012 the next instruction uses tempreg, an unnecessary nop
6013 will be inserted. */
6014 }
6015 else
6016 {
6017 if (breg == treg)
6018 {
6019 /* We must add in the base register now, as in the
6020 external symbol case. */
6021 gas_assert (tempreg == AT);
6022 load_delay_nop ();
6023 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6024 treg, AT, breg);
6025 tempreg = treg;
6026 /* We set breg to 0 because we have arranged to add
6027 it in in both cases. */
6028 breg = 0;
6029 }
6030
6031 macro_build_lui (&expr1, AT);
6032 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6033 AT, AT, BFD_RELOC_LO16);
6034 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6035 tempreg, tempreg, AT);
6036 used_at = 1;
6037 }
6038 relax_end ();
6039 }
6040 else if (mips_big_got && HAVE_NEWABI)
6041 {
6042 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6043 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6044 int add_breg_early = 0;
6045
6046 /* This is the large GOT case. If this is a reference to an
6047 external symbol, and there is no constant, we want
6048 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6049 add $tempreg,$tempreg,$gp
6050 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6051 or for lca or if tempreg is PIC_CALL_REG
6052 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6053 add $tempreg,$tempreg,$gp
6054 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6055
6056 If we have a small constant, and this is a reference to
6057 an external symbol, we want
6058 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6059 add $tempreg,$tempreg,$gp
6060 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6061 addi $tempreg,$tempreg,<constant>
6062
6063 If we have a large constant, and this is a reference to
6064 an external symbol, we want
6065 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6066 addu $tempreg,$tempreg,$gp
6067 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6068 lui $at,<hiconstant>
6069 addi $at,$at,<loconstant>
6070 add $tempreg,$tempreg,$at
6071
6072 If we have NewABI, and we know it's a local symbol, we want
6073 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6074 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6075 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6076
6077 relax_start (offset_expr.X_add_symbol);
6078
6079 expr1.X_add_number = offset_expr.X_add_number;
6080 offset_expr.X_add_number = 0;
6081
6082 if (expr1.X_add_number == 0 && breg == 0
6083 && (call || tempreg == PIC_CALL_REG))
6084 {
6085 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6086 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6087 }
6088 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6089 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6090 tempreg, tempreg, mips_gp_register);
6091 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6092 tempreg, lw_reloc_type, tempreg);
6093
6094 if (expr1.X_add_number == 0)
6095 ;
6096 else if (expr1.X_add_number >= -0x8000
6097 && expr1.X_add_number < 0x8000)
6098 {
6099 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6100 tempreg, tempreg, BFD_RELOC_LO16);
6101 }
6102 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6103 {
6104 /* If we are going to add in a base register, and the
6105 target register and the base register are the same,
6106 then we are using AT as a temporary register. Since
6107 we want to load the constant into AT, we add our
6108 current AT (from the global offset table) and the
6109 register into the register now, and pretend we were
6110 not using a base register. */
6111 if (breg != treg)
6112 dreg = tempreg;
6113 else
6114 {
6115 gas_assert (tempreg == AT);
6116 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6117 treg, AT, breg);
6118 dreg = treg;
6119 add_breg_early = 1;
6120 }
6121
6122 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6123 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6124
6125 used_at = 1;
6126 }
6127 else
6128 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6129
6130 relax_switch ();
6131 offset_expr.X_add_number = expr1.X_add_number;
6132 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6133 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6134 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6135 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6136 if (add_breg_early)
6137 {
6138 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6139 treg, tempreg, breg);
6140 breg = 0;
6141 tempreg = treg;
6142 }
6143 relax_end ();
6144 }
6145 else
6146 abort ();
6147
6148 if (breg != 0)
6149 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6150 break;
6151
6152 case M_MSGSND:
6153 {
6154 unsigned long temp = (treg << 16) | (0x01);
6155 macro_build (NULL, "c2", "C", temp);
6156 }
6157 break;
6158
6159 case M_MSGLD:
6160 {
6161 unsigned long temp = (0x02);
6162 macro_build (NULL, "c2", "C", temp);
6163 }
6164 break;
6165
6166 case M_MSGLD_T:
6167 {
6168 unsigned long temp = (treg << 16) | (0x02);
6169 macro_build (NULL, "c2", "C", temp);
6170 }
6171 break;
6172
6173 case M_MSGWAIT:
6174 macro_build (NULL, "c2", "C", 3);
6175 break;
6176
6177 case M_MSGWAIT_T:
6178 {
6179 unsigned long temp = (treg << 16) | 0x03;
6180 macro_build (NULL, "c2", "C", temp);
6181 }
6182 break;
6183
6184 case M_J_A:
6185 /* The j instruction may not be used in PIC code, since it
6186 requires an absolute address. We convert it to a b
6187 instruction. */
6188 if (mips_pic == NO_PIC)
6189 macro_build (&offset_expr, "j", "a");
6190 else
6191 macro_build (&offset_expr, "b", "p");
6192 break;
6193
6194 /* The jal instructions must be handled as macros because when
6195 generating PIC code they expand to multi-instruction
6196 sequences. Normally they are simple instructions. */
6197 case M_JAL_1:
6198 dreg = RA;
6199 /* Fall through. */
6200 case M_JAL_2:
6201 if (mips_pic == NO_PIC)
6202 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6203 else
6204 {
6205 if (sreg != PIC_CALL_REG)
6206 as_warn (_("MIPS PIC call to register other than $25"));
6207
6208 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6209 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6210 {
6211 if (mips_cprestore_offset < 0)
6212 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6213 else
6214 {
6215 if (!mips_frame_reg_valid)
6216 {
6217 as_warn (_("No .frame pseudo-op used in PIC code"));
6218 /* Quiet this warning. */
6219 mips_frame_reg_valid = 1;
6220 }
6221 if (!mips_cprestore_valid)
6222 {
6223 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6224 /* Quiet this warning. */
6225 mips_cprestore_valid = 1;
6226 }
6227 if (mips_opts.noreorder)
6228 macro_build (NULL, "nop", "");
6229 expr1.X_add_number = mips_cprestore_offset;
6230 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6231 mips_gp_register,
6232 mips_frame_reg,
6233 HAVE_64BIT_ADDRESSES);
6234 }
6235 }
6236 }
6237
6238 break;
6239
6240 case M_JAL_A:
6241 if (mips_pic == NO_PIC)
6242 macro_build (&offset_expr, "jal", "a");
6243 else if (mips_pic == SVR4_PIC)
6244 {
6245 /* If this is a reference to an external symbol, and we are
6246 using a small GOT, we want
6247 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6248 nop
6249 jalr $ra,$25
6250 nop
6251 lw $gp,cprestore($sp)
6252 The cprestore value is set using the .cprestore
6253 pseudo-op. If we are using a big GOT, we want
6254 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6255 addu $25,$25,$gp
6256 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6257 nop
6258 jalr $ra,$25
6259 nop
6260 lw $gp,cprestore($sp)
6261 If the symbol is not external, we want
6262 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6263 nop
6264 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6265 jalr $ra,$25
6266 nop
6267 lw $gp,cprestore($sp)
6268
6269 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6270 sequences above, minus nops, unless the symbol is local,
6271 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6272 GOT_DISP. */
6273 if (HAVE_NEWABI)
6274 {
6275 if (!mips_big_got)
6276 {
6277 relax_start (offset_expr.X_add_symbol);
6278 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6279 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6280 mips_gp_register);
6281 relax_switch ();
6282 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6283 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6284 mips_gp_register);
6285 relax_end ();
6286 }
6287 else
6288 {
6289 relax_start (offset_expr.X_add_symbol);
6290 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6291 BFD_RELOC_MIPS_CALL_HI16);
6292 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6293 PIC_CALL_REG, mips_gp_register);
6294 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6295 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6296 PIC_CALL_REG);
6297 relax_switch ();
6298 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6299 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6300 mips_gp_register);
6301 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6302 PIC_CALL_REG, PIC_CALL_REG,
6303 BFD_RELOC_MIPS_GOT_OFST);
6304 relax_end ();
6305 }
6306
6307 macro_build_jalr (&offset_expr);
6308 }
6309 else
6310 {
6311 relax_start (offset_expr.X_add_symbol);
6312 if (!mips_big_got)
6313 {
6314 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6315 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6316 mips_gp_register);
6317 load_delay_nop ();
6318 relax_switch ();
6319 }
6320 else
6321 {
6322 int gpdelay;
6323
6324 gpdelay = reg_needs_delay (mips_gp_register);
6325 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6326 BFD_RELOC_MIPS_CALL_HI16);
6327 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6328 PIC_CALL_REG, mips_gp_register);
6329 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6330 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6331 PIC_CALL_REG);
6332 load_delay_nop ();
6333 relax_switch ();
6334 if (gpdelay)
6335 macro_build (NULL, "nop", "");
6336 }
6337 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6338 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6339 mips_gp_register);
6340 load_delay_nop ();
6341 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6342 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6343 relax_end ();
6344 macro_build_jalr (&offset_expr);
6345
6346 if (mips_cprestore_offset < 0)
6347 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6348 else
6349 {
6350 if (!mips_frame_reg_valid)
6351 {
6352 as_warn (_("No .frame pseudo-op used in PIC code"));
6353 /* Quiet this warning. */
6354 mips_frame_reg_valid = 1;
6355 }
6356 if (!mips_cprestore_valid)
6357 {
6358 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6359 /* Quiet this warning. */
6360 mips_cprestore_valid = 1;
6361 }
6362 if (mips_opts.noreorder)
6363 macro_build (NULL, "nop", "");
6364 expr1.X_add_number = mips_cprestore_offset;
6365 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6366 mips_gp_register,
6367 mips_frame_reg,
6368 HAVE_64BIT_ADDRESSES);
6369 }
6370 }
6371 }
6372 else if (mips_pic == VXWORKS_PIC)
6373 as_bad (_("Non-PIC jump used in PIC library"));
6374 else
6375 abort ();
6376
6377 break;
6378
6379 case M_LB_AB:
6380 s = "lb";
6381 goto ld;
6382 case M_LBU_AB:
6383 s = "lbu";
6384 goto ld;
6385 case M_LH_AB:
6386 s = "lh";
6387 goto ld;
6388 case M_LHU_AB:
6389 s = "lhu";
6390 goto ld;
6391 case M_LW_AB:
6392 s = "lw";
6393 goto ld;
6394 case M_LWC0_AB:
6395 s = "lwc0";
6396 /* Itbl support may require additional care here. */
6397 coproc = 1;
6398 goto ld;
6399 case M_LWC1_AB:
6400 s = "lwc1";
6401 /* Itbl support may require additional care here. */
6402 coproc = 1;
6403 goto ld;
6404 case M_LWC2_AB:
6405 s = "lwc2";
6406 /* Itbl support may require additional care here. */
6407 coproc = 1;
6408 goto ld;
6409 case M_LWC3_AB:
6410 s = "lwc3";
6411 /* Itbl support may require additional care here. */
6412 coproc = 1;
6413 goto ld;
6414 case M_LWL_AB:
6415 s = "lwl";
6416 lr = 1;
6417 goto ld;
6418 case M_LWR_AB:
6419 s = "lwr";
6420 lr = 1;
6421 goto ld;
6422 case M_LDC1_AB:
6423 s = "ldc1";
6424 /* Itbl support may require additional care here. */
6425 coproc = 1;
6426 goto ld;
6427 case M_LDC2_AB:
6428 s = "ldc2";
6429 /* Itbl support may require additional care here. */
6430 coproc = 1;
6431 goto ld;
6432 case M_LDC3_AB:
6433 s = "ldc3";
6434 /* Itbl support may require additional care here. */
6435 coproc = 1;
6436 goto ld;
6437 case M_LDL_AB:
6438 s = "ldl";
6439 lr = 1;
6440 goto ld;
6441 case M_LDR_AB:
6442 s = "ldr";
6443 lr = 1;
6444 goto ld;
6445 case M_LL_AB:
6446 s = "ll";
6447 goto ld;
6448 case M_LLD_AB:
6449 s = "lld";
6450 goto ld;
6451 case M_LWU_AB:
6452 s = "lwu";
6453 ld:
6454 if (breg == treg || coproc || lr)
6455 {
6456 tempreg = AT;
6457 used_at = 1;
6458 }
6459 else
6460 {
6461 tempreg = treg;
6462 }
6463 goto ld_st;
6464 case M_SB_AB:
6465 s = "sb";
6466 goto st;
6467 case M_SH_AB:
6468 s = "sh";
6469 goto st;
6470 case M_SW_AB:
6471 s = "sw";
6472 goto st;
6473 case M_SWC0_AB:
6474 s = "swc0";
6475 /* Itbl support may require additional care here. */
6476 coproc = 1;
6477 goto st;
6478 case M_SWC1_AB:
6479 s = "swc1";
6480 /* Itbl support may require additional care here. */
6481 coproc = 1;
6482 goto st;
6483 case M_SWC2_AB:
6484 s = "swc2";
6485 /* Itbl support may require additional care here. */
6486 coproc = 1;
6487 goto st;
6488 case M_SWC3_AB:
6489 s = "swc3";
6490 /* Itbl support may require additional care here. */
6491 coproc = 1;
6492 goto st;
6493 case M_SWL_AB:
6494 s = "swl";
6495 goto st;
6496 case M_SWR_AB:
6497 s = "swr";
6498 goto st;
6499 case M_SC_AB:
6500 s = "sc";
6501 goto st;
6502 case M_SCD_AB:
6503 s = "scd";
6504 goto st;
6505 case M_CACHE_AB:
6506 s = "cache";
6507 goto st;
6508 case M_SDC1_AB:
6509 s = "sdc1";
6510 coproc = 1;
6511 /* Itbl support may require additional care here. */
6512 goto st;
6513 case M_SDC2_AB:
6514 s = "sdc2";
6515 /* Itbl support may require additional care here. */
6516 coproc = 1;
6517 goto st;
6518 case M_SDC3_AB:
6519 s = "sdc3";
6520 /* Itbl support may require additional care here. */
6521 coproc = 1;
6522 goto st;
6523 case M_SDL_AB:
6524 s = "sdl";
6525 goto st;
6526 case M_SDR_AB:
6527 s = "sdr";
6528 st:
6529 tempreg = AT;
6530 used_at = 1;
6531 ld_st:
6532 if (coproc
6533 && NO_ISA_COP (mips_opts.arch)
6534 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6535 {
6536 as_bad (_("Opcode not supported on this processor: %s"),
6537 mips_cpu_info_from_arch (mips_opts.arch)->name);
6538 break;
6539 }
6540
6541 /* Itbl support may require additional care here. */
6542 if (mask == M_LWC1_AB
6543 || mask == M_SWC1_AB
6544 || mask == M_LDC1_AB
6545 || mask == M_SDC1_AB
6546 || mask == M_L_DAB
6547 || mask == M_S_DAB)
6548 fmt = "T,o(b)";
6549 else if (mask == M_CACHE_AB)
6550 fmt = "k,o(b)";
6551 else if (coproc)
6552 fmt = "E,o(b)";
6553 else
6554 fmt = "t,o(b)";
6555
6556 if (offset_expr.X_op != O_constant
6557 && offset_expr.X_op != O_symbol)
6558 {
6559 as_bad (_("Expression too complex"));
6560 offset_expr.X_op = O_constant;
6561 }
6562
6563 if (HAVE_32BIT_ADDRESSES
6564 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6565 {
6566 char value [32];
6567
6568 sprintf_vma (value, offset_expr.X_add_number);
6569 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6570 }
6571
6572 /* A constant expression in PIC code can be handled just as it
6573 is in non PIC code. */
6574 if (offset_expr.X_op == O_constant)
6575 {
6576 expr1.X_add_number = offset_expr.X_add_number;
6577 normalize_address_expr (&expr1);
6578 if (!IS_SEXT_16BIT_NUM (expr1.X_add_number))
6579 {
6580 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
6581 & ~(bfd_vma) 0xffff);
6582 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6583 if (breg != 0)
6584 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6585 tempreg, tempreg, breg);
6586 breg = tempreg;
6587 }
6588 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
6589 }
6590 else if (mips_pic == NO_PIC)
6591 {
6592 /* If this is a reference to a GP relative symbol, and there
6593 is no base register, we want
6594 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6595 Otherwise, if there is no base register, we want
6596 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6597 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6598 If we have a constant, we need two instructions anyhow,
6599 so we always use the latter form.
6600
6601 If we have a base register, and this is a reference to a
6602 GP relative symbol, we want
6603 addu $tempreg,$breg,$gp
6604 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6605 Otherwise we want
6606 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6607 addu $tempreg,$tempreg,$breg
6608 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6609 With a constant we always use the latter case.
6610
6611 With 64bit address space and no base register and $at usable,
6612 we want
6613 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6614 lui $at,<sym> (BFD_RELOC_HI16_S)
6615 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6616 dsll32 $tempreg,0
6617 daddu $tempreg,$at
6618 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6619 If we have a base register, we want
6620 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6621 lui $at,<sym> (BFD_RELOC_HI16_S)
6622 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6623 daddu $at,$breg
6624 dsll32 $tempreg,0
6625 daddu $tempreg,$at
6626 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6627
6628 Without $at we can't generate the optimal path for superscalar
6629 processors here since this would require two temporary registers.
6630 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6631 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6632 dsll $tempreg,16
6633 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6634 dsll $tempreg,16
6635 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6636 If we have a base register, we want
6637 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6638 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6639 dsll $tempreg,16
6640 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6641 dsll $tempreg,16
6642 daddu $tempreg,$tempreg,$breg
6643 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6644
6645 For GP relative symbols in 64bit address space we can use
6646 the same sequence as in 32bit address space. */
6647 if (HAVE_64BIT_SYMBOLS)
6648 {
6649 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6650 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6651 {
6652 relax_start (offset_expr.X_add_symbol);
6653 if (breg == 0)
6654 {
6655 macro_build (&offset_expr, s, fmt, treg,
6656 BFD_RELOC_GPREL16, mips_gp_register);
6657 }
6658 else
6659 {
6660 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6661 tempreg, breg, mips_gp_register);
6662 macro_build (&offset_expr, s, fmt, treg,
6663 BFD_RELOC_GPREL16, tempreg);
6664 }
6665 relax_switch ();
6666 }
6667
6668 if (used_at == 0 && mips_opts.at)
6669 {
6670 macro_build (&offset_expr, "lui", "t,u", tempreg,
6671 BFD_RELOC_MIPS_HIGHEST);
6672 macro_build (&offset_expr, "lui", "t,u", AT,
6673 BFD_RELOC_HI16_S);
6674 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6675 tempreg, BFD_RELOC_MIPS_HIGHER);
6676 if (breg != 0)
6677 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6678 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6679 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6680 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6681 tempreg);
6682 used_at = 1;
6683 }
6684 else
6685 {
6686 macro_build (&offset_expr, "lui", "t,u", tempreg,
6687 BFD_RELOC_MIPS_HIGHEST);
6688 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6689 tempreg, BFD_RELOC_MIPS_HIGHER);
6690 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6691 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6692 tempreg, BFD_RELOC_HI16_S);
6693 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6694 if (breg != 0)
6695 macro_build (NULL, "daddu", "d,v,t",
6696 tempreg, tempreg, breg);
6697 macro_build (&offset_expr, s, fmt, treg,
6698 BFD_RELOC_LO16, tempreg);
6699 }
6700
6701 if (mips_relax.sequence)
6702 relax_end ();
6703 break;
6704 }
6705
6706 if (breg == 0)
6707 {
6708 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6709 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6710 {
6711 relax_start (offset_expr.X_add_symbol);
6712 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6713 mips_gp_register);
6714 relax_switch ();
6715 }
6716 macro_build_lui (&offset_expr, tempreg);
6717 macro_build (&offset_expr, s, fmt, treg,
6718 BFD_RELOC_LO16, tempreg);
6719 if (mips_relax.sequence)
6720 relax_end ();
6721 }
6722 else
6723 {
6724 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6725 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6726 {
6727 relax_start (offset_expr.X_add_symbol);
6728 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6729 tempreg, breg, mips_gp_register);
6730 macro_build (&offset_expr, s, fmt, treg,
6731 BFD_RELOC_GPREL16, tempreg);
6732 relax_switch ();
6733 }
6734 macro_build_lui (&offset_expr, tempreg);
6735 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6736 tempreg, tempreg, breg);
6737 macro_build (&offset_expr, s, fmt, treg,
6738 BFD_RELOC_LO16, tempreg);
6739 if (mips_relax.sequence)
6740 relax_end ();
6741 }
6742 }
6743 else if (!mips_big_got)
6744 {
6745 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6746
6747 /* If this is a reference to an external symbol, we want
6748 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6749 nop
6750 <op> $treg,0($tempreg)
6751 Otherwise we want
6752 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6753 nop
6754 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6755 <op> $treg,0($tempreg)
6756
6757 For NewABI, we want
6758 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6759 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6760
6761 If there is a base register, we add it to $tempreg before
6762 the <op>. If there is a constant, we stick it in the
6763 <op> instruction. We don't handle constants larger than
6764 16 bits, because we have no way to load the upper 16 bits
6765 (actually, we could handle them for the subset of cases
6766 in which we are not using $at). */
6767 gas_assert (offset_expr.X_op == O_symbol);
6768 if (HAVE_NEWABI)
6769 {
6770 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6771 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6772 if (breg != 0)
6773 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6774 tempreg, tempreg, breg);
6775 macro_build (&offset_expr, s, fmt, treg,
6776 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6777 break;
6778 }
6779 expr1.X_add_number = offset_expr.X_add_number;
6780 offset_expr.X_add_number = 0;
6781 if (expr1.X_add_number < -0x8000
6782 || expr1.X_add_number >= 0x8000)
6783 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6784 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6785 lw_reloc_type, mips_gp_register);
6786 load_delay_nop ();
6787 relax_start (offset_expr.X_add_symbol);
6788 relax_switch ();
6789 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6790 tempreg, BFD_RELOC_LO16);
6791 relax_end ();
6792 if (breg != 0)
6793 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6794 tempreg, tempreg, breg);
6795 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6796 }
6797 else if (mips_big_got && !HAVE_NEWABI)
6798 {
6799 int gpdelay;
6800
6801 /* If this is a reference to an external symbol, we want
6802 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6803 addu $tempreg,$tempreg,$gp
6804 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6805 <op> $treg,0($tempreg)
6806 Otherwise we want
6807 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6808 nop
6809 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6810 <op> $treg,0($tempreg)
6811 If there is a base register, we add it to $tempreg before
6812 the <op>. If there is a constant, we stick it in the
6813 <op> instruction. We don't handle constants larger than
6814 16 bits, because we have no way to load the upper 16 bits
6815 (actually, we could handle them for the subset of cases
6816 in which we are not using $at). */
6817 gas_assert (offset_expr.X_op == O_symbol);
6818 expr1.X_add_number = offset_expr.X_add_number;
6819 offset_expr.X_add_number = 0;
6820 if (expr1.X_add_number < -0x8000
6821 || expr1.X_add_number >= 0x8000)
6822 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6823 gpdelay = reg_needs_delay (mips_gp_register);
6824 relax_start (offset_expr.X_add_symbol);
6825 macro_build (&offset_expr, "lui", "t,u", tempreg,
6826 BFD_RELOC_MIPS_GOT_HI16);
6827 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6828 mips_gp_register);
6829 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6830 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6831 relax_switch ();
6832 if (gpdelay)
6833 macro_build (NULL, "nop", "");
6834 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6835 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6836 load_delay_nop ();
6837 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6838 tempreg, BFD_RELOC_LO16);
6839 relax_end ();
6840
6841 if (breg != 0)
6842 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6843 tempreg, tempreg, breg);
6844 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6845 }
6846 else if (mips_big_got && HAVE_NEWABI)
6847 {
6848 /* If this is a reference to an external symbol, we want
6849 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6850 add $tempreg,$tempreg,$gp
6851 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6852 <op> $treg,<ofst>($tempreg)
6853 Otherwise, for local symbols, we want:
6854 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6855 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6856 gas_assert (offset_expr.X_op == O_symbol);
6857 expr1.X_add_number = offset_expr.X_add_number;
6858 offset_expr.X_add_number = 0;
6859 if (expr1.X_add_number < -0x8000
6860 || expr1.X_add_number >= 0x8000)
6861 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6862 relax_start (offset_expr.X_add_symbol);
6863 macro_build (&offset_expr, "lui", "t,u", tempreg,
6864 BFD_RELOC_MIPS_GOT_HI16);
6865 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6866 mips_gp_register);
6867 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6868 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6869 if (breg != 0)
6870 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6871 tempreg, tempreg, breg);
6872 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6873
6874 relax_switch ();
6875 offset_expr.X_add_number = expr1.X_add_number;
6876 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6877 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6878 if (breg != 0)
6879 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6880 tempreg, tempreg, breg);
6881 macro_build (&offset_expr, s, fmt, treg,
6882 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6883 relax_end ();
6884 }
6885 else
6886 abort ();
6887
6888 break;
6889
6890 case M_LI:
6891 case M_LI_S:
6892 load_register (treg, &imm_expr, 0);
6893 break;
6894
6895 case M_DLI:
6896 load_register (treg, &imm_expr, 1);
6897 break;
6898
6899 case M_LI_SS:
6900 if (imm_expr.X_op == O_constant)
6901 {
6902 used_at = 1;
6903 load_register (AT, &imm_expr, 0);
6904 macro_build (NULL, "mtc1", "t,G", AT, treg);
6905 break;
6906 }
6907 else
6908 {
6909 gas_assert (offset_expr.X_op == O_symbol
6910 && strcmp (segment_name (S_GET_SEGMENT
6911 (offset_expr.X_add_symbol)),
6912 ".lit4") == 0
6913 && offset_expr.X_add_number == 0);
6914 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6915 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6916 break;
6917 }
6918
6919 case M_LI_D:
6920 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6921 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6922 order 32 bits of the value and the low order 32 bits are either
6923 zero or in OFFSET_EXPR. */
6924 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6925 {
6926 if (HAVE_64BIT_GPRS)
6927 load_register (treg, &imm_expr, 1);
6928 else
6929 {
6930 int hreg, lreg;
6931
6932 if (target_big_endian)
6933 {
6934 hreg = treg;
6935 lreg = treg + 1;
6936 }
6937 else
6938 {
6939 hreg = treg + 1;
6940 lreg = treg;
6941 }
6942
6943 if (hreg <= 31)
6944 load_register (hreg, &imm_expr, 0);
6945 if (lreg <= 31)
6946 {
6947 if (offset_expr.X_op == O_absent)
6948 move_register (lreg, 0);
6949 else
6950 {
6951 gas_assert (offset_expr.X_op == O_constant);
6952 load_register (lreg, &offset_expr, 0);
6953 }
6954 }
6955 }
6956 break;
6957 }
6958
6959 /* We know that sym is in the .rdata section. First we get the
6960 upper 16 bits of the address. */
6961 if (mips_pic == NO_PIC)
6962 {
6963 macro_build_lui (&offset_expr, AT);
6964 used_at = 1;
6965 }
6966 else
6967 {
6968 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6969 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6970 used_at = 1;
6971 }
6972
6973 /* Now we load the register(s). */
6974 if (HAVE_64BIT_GPRS)
6975 {
6976 used_at = 1;
6977 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6978 }
6979 else
6980 {
6981 used_at = 1;
6982 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6983 if (treg != RA)
6984 {
6985 /* FIXME: How in the world do we deal with the possible
6986 overflow here? */
6987 offset_expr.X_add_number += 4;
6988 macro_build (&offset_expr, "lw", "t,o(b)",
6989 treg + 1, BFD_RELOC_LO16, AT);
6990 }
6991 }
6992 break;
6993
6994 case M_LI_DD:
6995 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6996 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6997 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6998 the value and the low order 32 bits are either zero or in
6999 OFFSET_EXPR. */
7000 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
7001 {
7002 used_at = 1;
7003 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
7004 if (HAVE_64BIT_FPRS)
7005 {
7006 gas_assert (HAVE_64BIT_GPRS);
7007 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7008 }
7009 else
7010 {
7011 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7012 if (offset_expr.X_op == O_absent)
7013 macro_build (NULL, "mtc1", "t,G", 0, treg);
7014 else
7015 {
7016 gas_assert (offset_expr.X_op == O_constant);
7017 load_register (AT, &offset_expr, 0);
7018 macro_build (NULL, "mtc1", "t,G", AT, treg);
7019 }
7020 }
7021 break;
7022 }
7023
7024 gas_assert (offset_expr.X_op == O_symbol
7025 && offset_expr.X_add_number == 0);
7026 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7027 if (strcmp (s, ".lit8") == 0)
7028 {
7029 if (mips_opts.isa != ISA_MIPS1)
7030 {
7031 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7032 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7033 break;
7034 }
7035 breg = mips_gp_register;
7036 r = BFD_RELOC_MIPS_LITERAL;
7037 goto dob;
7038 }
7039 else
7040 {
7041 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7042 used_at = 1;
7043 if (mips_pic != NO_PIC)
7044 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7045 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7046 else
7047 {
7048 /* FIXME: This won't work for a 64 bit address. */
7049 macro_build_lui (&offset_expr, AT);
7050 }
7051
7052 if (mips_opts.isa != ISA_MIPS1)
7053 {
7054 macro_build (&offset_expr, "ldc1", "T,o(b)",
7055 treg, BFD_RELOC_LO16, AT);
7056 break;
7057 }
7058 breg = AT;
7059 r = BFD_RELOC_LO16;
7060 goto dob;
7061 }
7062
7063 case M_L_DOB:
7064 /* Even on a big endian machine $fn comes before $fn+1. We have
7065 to adjust when loading from memory. */
7066 r = BFD_RELOC_LO16;
7067 dob:
7068 gas_assert (mips_opts.isa == ISA_MIPS1);
7069 macro_build (&offset_expr, "lwc1", "T,o(b)",
7070 target_big_endian ? treg + 1 : treg, r, breg);
7071 /* FIXME: A possible overflow which I don't know how to deal
7072 with. */
7073 offset_expr.X_add_number += 4;
7074 macro_build (&offset_expr, "lwc1", "T,o(b)",
7075 target_big_endian ? treg : treg + 1, r, breg);
7076 break;
7077
7078 case M_S_DOB:
7079 gas_assert (mips_opts.isa == ISA_MIPS1);
7080 /* Even on a big endian machine $fn comes before $fn+1. We have
7081 to adjust when storing to memory. */
7082 macro_build (&offset_expr, "swc1", "T,o(b)",
7083 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7084 offset_expr.X_add_number += 4;
7085 macro_build (&offset_expr, "swc1", "T,o(b)",
7086 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7087 break;
7088
7089 case M_L_DAB:
7090 /*
7091 * The MIPS assembler seems to check for X_add_number not
7092 * being double aligned and generating:
7093 * lui at,%hi(foo+1)
7094 * addu at,at,v1
7095 * addiu at,at,%lo(foo+1)
7096 * lwc1 f2,0(at)
7097 * lwc1 f3,4(at)
7098 * But, the resulting address is the same after relocation so why
7099 * generate the extra instruction?
7100 */
7101 /* Itbl support may require additional care here. */
7102 coproc = 1;
7103 if (mips_opts.isa != ISA_MIPS1)
7104 {
7105 s = "ldc1";
7106 goto ld;
7107 }
7108
7109 s = "lwc1";
7110 fmt = "T,o(b)";
7111 goto ldd_std;
7112
7113 case M_S_DAB:
7114 if (mips_opts.isa != ISA_MIPS1)
7115 {
7116 s = "sdc1";
7117 goto st;
7118 }
7119
7120 s = "swc1";
7121 fmt = "T,o(b)";
7122 /* Itbl support may require additional care here. */
7123 coproc = 1;
7124 goto ldd_std;
7125
7126 case M_LD_AB:
7127 if (HAVE_64BIT_GPRS)
7128 {
7129 s = "ld";
7130 goto ld;
7131 }
7132
7133 s = "lw";
7134 fmt = "t,o(b)";
7135 goto ldd_std;
7136
7137 case M_SD_AB:
7138 if (HAVE_64BIT_GPRS)
7139 {
7140 s = "sd";
7141 goto st;
7142 }
7143
7144 s = "sw";
7145 fmt = "t,o(b)";
7146
7147 ldd_std:
7148 if (offset_expr.X_op != O_symbol
7149 && offset_expr.X_op != O_constant)
7150 {
7151 as_bad (_("Expression too complex"));
7152 offset_expr.X_op = O_constant;
7153 }
7154
7155 if (HAVE_32BIT_ADDRESSES
7156 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7157 {
7158 char value [32];
7159
7160 sprintf_vma (value, offset_expr.X_add_number);
7161 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7162 }
7163
7164 /* Even on a big endian machine $fn comes before $fn+1. We have
7165 to adjust when loading from memory. We set coproc if we must
7166 load $fn+1 first. */
7167 /* Itbl support may require additional care here. */
7168 if (!target_big_endian)
7169 coproc = 0;
7170
7171 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
7172 {
7173 /* If this is a reference to a GP relative symbol, we want
7174 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7175 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7176 If we have a base register, we use this
7177 addu $at,$breg,$gp
7178 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7179 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7180 If this is not a GP relative symbol, we want
7181 lui $at,<sym> (BFD_RELOC_HI16_S)
7182 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7183 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7184 If there is a base register, we add it to $at after the
7185 lui instruction. If there is a constant, we always use
7186 the last case. */
7187 if (offset_expr.X_op == O_symbol
7188 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7189 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7190 {
7191 relax_start (offset_expr.X_add_symbol);
7192 if (breg == 0)
7193 {
7194 tempreg = mips_gp_register;
7195 }
7196 else
7197 {
7198 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7199 AT, breg, mips_gp_register);
7200 tempreg = AT;
7201 used_at = 1;
7202 }
7203
7204 /* Itbl support may require additional care here. */
7205 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7206 BFD_RELOC_GPREL16, tempreg);
7207 offset_expr.X_add_number += 4;
7208
7209 /* Set mips_optimize to 2 to avoid inserting an
7210 undesired nop. */
7211 hold_mips_optimize = mips_optimize;
7212 mips_optimize = 2;
7213 /* Itbl support may require additional care here. */
7214 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7215 BFD_RELOC_GPREL16, tempreg);
7216 mips_optimize = hold_mips_optimize;
7217
7218 relax_switch ();
7219
7220 offset_expr.X_add_number -= 4;
7221 }
7222 used_at = 1;
7223 macro_build_lui (&offset_expr, AT);
7224 if (breg != 0)
7225 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7226 /* Itbl support may require additional care here. */
7227 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7228 BFD_RELOC_LO16, AT);
7229 /* FIXME: How do we handle overflow here? */
7230 offset_expr.X_add_number += 4;
7231 /* Itbl support may require additional care here. */
7232 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7233 BFD_RELOC_LO16, AT);
7234 if (mips_relax.sequence)
7235 relax_end ();
7236 }
7237 else if (!mips_big_got)
7238 {
7239 /* If this is a reference to an external symbol, we want
7240 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7241 nop
7242 <op> $treg,0($at)
7243 <op> $treg+1,4($at)
7244 Otherwise we want
7245 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7246 nop
7247 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7248 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7249 If there is a base register we add it to $at before the
7250 lwc1 instructions. If there is a constant we include it
7251 in the lwc1 instructions. */
7252 used_at = 1;
7253 expr1.X_add_number = offset_expr.X_add_number;
7254 if (expr1.X_add_number < -0x8000
7255 || expr1.X_add_number >= 0x8000 - 4)
7256 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7257 load_got_offset (AT, &offset_expr);
7258 load_delay_nop ();
7259 if (breg != 0)
7260 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7261
7262 /* Set mips_optimize to 2 to avoid inserting an undesired
7263 nop. */
7264 hold_mips_optimize = mips_optimize;
7265 mips_optimize = 2;
7266
7267 /* Itbl support may require additional care here. */
7268 relax_start (offset_expr.X_add_symbol);
7269 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7270 BFD_RELOC_LO16, AT);
7271 expr1.X_add_number += 4;
7272 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7273 BFD_RELOC_LO16, AT);
7274 relax_switch ();
7275 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7276 BFD_RELOC_LO16, AT);
7277 offset_expr.X_add_number += 4;
7278 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7279 BFD_RELOC_LO16, AT);
7280 relax_end ();
7281
7282 mips_optimize = hold_mips_optimize;
7283 }
7284 else if (mips_big_got)
7285 {
7286 int gpdelay;
7287
7288 /* If this is a reference to an external symbol, we want
7289 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7290 addu $at,$at,$gp
7291 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7292 nop
7293 <op> $treg,0($at)
7294 <op> $treg+1,4($at)
7295 Otherwise we want
7296 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7297 nop
7298 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7299 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7300 If there is a base register we add it to $at before the
7301 lwc1 instructions. If there is a constant we include it
7302 in the lwc1 instructions. */
7303 used_at = 1;
7304 expr1.X_add_number = offset_expr.X_add_number;
7305 offset_expr.X_add_number = 0;
7306 if (expr1.X_add_number < -0x8000
7307 || expr1.X_add_number >= 0x8000 - 4)
7308 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7309 gpdelay = reg_needs_delay (mips_gp_register);
7310 relax_start (offset_expr.X_add_symbol);
7311 macro_build (&offset_expr, "lui", "t,u",
7312 AT, BFD_RELOC_MIPS_GOT_HI16);
7313 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7314 AT, AT, mips_gp_register);
7315 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7316 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7317 load_delay_nop ();
7318 if (breg != 0)
7319 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7320 /* Itbl support may require additional care here. */
7321 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7322 BFD_RELOC_LO16, AT);
7323 expr1.X_add_number += 4;
7324
7325 /* Set mips_optimize to 2 to avoid inserting an undesired
7326 nop. */
7327 hold_mips_optimize = mips_optimize;
7328 mips_optimize = 2;
7329 /* Itbl support may require additional care here. */
7330 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7331 BFD_RELOC_LO16, AT);
7332 mips_optimize = hold_mips_optimize;
7333 expr1.X_add_number -= 4;
7334
7335 relax_switch ();
7336 offset_expr.X_add_number = expr1.X_add_number;
7337 if (gpdelay)
7338 macro_build (NULL, "nop", "");
7339 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7340 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7341 load_delay_nop ();
7342 if (breg != 0)
7343 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7344 /* Itbl support may require additional care here. */
7345 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7346 BFD_RELOC_LO16, AT);
7347 offset_expr.X_add_number += 4;
7348
7349 /* Set mips_optimize to 2 to avoid inserting an undesired
7350 nop. */
7351 hold_mips_optimize = mips_optimize;
7352 mips_optimize = 2;
7353 /* Itbl support may require additional care here. */
7354 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7355 BFD_RELOC_LO16, AT);
7356 mips_optimize = hold_mips_optimize;
7357 relax_end ();
7358 }
7359 else
7360 abort ();
7361
7362 break;
7363
7364 case M_LD_OB:
7365 s = HAVE_64BIT_GPRS ? "ld" : "lw";
7366 goto sd_ob;
7367 case M_SD_OB:
7368 s = HAVE_64BIT_GPRS ? "sd" : "sw";
7369 sd_ob:
7370 macro_build (&offset_expr, s, "t,o(b)", treg,
7371 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7372 breg);
7373 if (!HAVE_64BIT_GPRS)
7374 {
7375 offset_expr.X_add_number += 4;
7376 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
7377 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7378 breg);
7379 }
7380 break;
7381
7382 /* New code added to support COPZ instructions.
7383 This code builds table entries out of the macros in mip_opcodes.
7384 R4000 uses interlocks to handle coproc delays.
7385 Other chips (like the R3000) require nops to be inserted for delays.
7386
7387 FIXME: Currently, we require that the user handle delays.
7388 In order to fill delay slots for non-interlocked chips,
7389 we must have a way to specify delays based on the coprocessor.
7390 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7391 What are the side-effects of the cop instruction?
7392 What cache support might we have and what are its effects?
7393 Both coprocessor & memory require delays. how long???
7394 What registers are read/set/modified?
7395
7396 If an itbl is provided to interpret cop instructions,
7397 this knowledge can be encoded in the itbl spec. */
7398
7399 case M_COP0:
7400 s = "c0";
7401 goto copz;
7402 case M_COP1:
7403 s = "c1";
7404 goto copz;
7405 case M_COP2:
7406 s = "c2";
7407 goto copz;
7408 case M_COP3:
7409 s = "c3";
7410 copz:
7411 if (NO_ISA_COP (mips_opts.arch)
7412 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7413 {
7414 as_bad (_("opcode not supported on this processor: %s"),
7415 mips_cpu_info_from_arch (mips_opts.arch)->name);
7416 break;
7417 }
7418
7419 /* For now we just do C (same as Cz). The parameter will be
7420 stored in insn_opcode by mips_ip. */
7421 macro_build (NULL, s, "C", ip->insn_opcode);
7422 break;
7423
7424 case M_MOVE:
7425 move_register (dreg, sreg);
7426 break;
7427
7428 case M_DMUL:
7429 dbl = 1;
7430 case M_MUL:
7431 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7432 macro_build (NULL, "mflo", "d", dreg);
7433 break;
7434
7435 case M_DMUL_I:
7436 dbl = 1;
7437 case M_MUL_I:
7438 /* The MIPS assembler some times generates shifts and adds. I'm
7439 not trying to be that fancy. GCC should do this for us
7440 anyway. */
7441 used_at = 1;
7442 load_register (AT, &imm_expr, dbl);
7443 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7444 macro_build (NULL, "mflo", "d", dreg);
7445 break;
7446
7447 case M_DMULO_I:
7448 dbl = 1;
7449 case M_MULO_I:
7450 imm = 1;
7451 goto do_mulo;
7452
7453 case M_DMULO:
7454 dbl = 1;
7455 case M_MULO:
7456 do_mulo:
7457 start_noreorder ();
7458 used_at = 1;
7459 if (imm)
7460 load_register (AT, &imm_expr, dbl);
7461 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7462 macro_build (NULL, "mflo", "d", dreg);
7463 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7464 macro_build (NULL, "mfhi", "d", AT);
7465 if (mips_trap)
7466 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7467 else
7468 {
7469 expr1.X_add_number = 8;
7470 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7471 macro_build (NULL, "nop", "");
7472 macro_build (NULL, "break", "c", 6);
7473 }
7474 end_noreorder ();
7475 macro_build (NULL, "mflo", "d", dreg);
7476 break;
7477
7478 case M_DMULOU_I:
7479 dbl = 1;
7480 case M_MULOU_I:
7481 imm = 1;
7482 goto do_mulou;
7483
7484 case M_DMULOU:
7485 dbl = 1;
7486 case M_MULOU:
7487 do_mulou:
7488 start_noreorder ();
7489 used_at = 1;
7490 if (imm)
7491 load_register (AT, &imm_expr, dbl);
7492 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7493 sreg, imm ? AT : treg);
7494 macro_build (NULL, "mfhi", "d", AT);
7495 macro_build (NULL, "mflo", "d", dreg);
7496 if (mips_trap)
7497 macro_build (NULL, "tne", "s,t,q", AT, ZERO, 6);
7498 else
7499 {
7500 expr1.X_add_number = 8;
7501 macro_build (&expr1, "beq", "s,t,p", AT, ZERO);
7502 macro_build (NULL, "nop", "");
7503 macro_build (NULL, "break", "c", 6);
7504 }
7505 end_noreorder ();
7506 break;
7507
7508 case M_DROL:
7509 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7510 {
7511 if (dreg == sreg)
7512 {
7513 tempreg = AT;
7514 used_at = 1;
7515 }
7516 else
7517 {
7518 tempreg = dreg;
7519 }
7520 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7521 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7522 break;
7523 }
7524 used_at = 1;
7525 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7526 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7527 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7528 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7529 break;
7530
7531 case M_ROL:
7532 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7533 {
7534 if (dreg == sreg)
7535 {
7536 tempreg = AT;
7537 used_at = 1;
7538 }
7539 else
7540 {
7541 tempreg = dreg;
7542 }
7543 macro_build (NULL, "negu", "d,w", tempreg, treg);
7544 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7545 break;
7546 }
7547 used_at = 1;
7548 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7549 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7550 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7551 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7552 break;
7553
7554 case M_DROL_I:
7555 {
7556 unsigned int rot;
7557 char *l;
7558 char *rr;
7559
7560 if (imm_expr.X_op != O_constant)
7561 as_bad (_("Improper rotate count"));
7562 rot = imm_expr.X_add_number & 0x3f;
7563 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7564 {
7565 rot = (64 - rot) & 0x3f;
7566 if (rot >= 32)
7567 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7568 else
7569 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7570 break;
7571 }
7572 if (rot == 0)
7573 {
7574 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7575 break;
7576 }
7577 l = (rot < 0x20) ? "dsll" : "dsll32";
7578 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7579 rot &= 0x1f;
7580 used_at = 1;
7581 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7582 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7583 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7584 }
7585 break;
7586
7587 case M_ROL_I:
7588 {
7589 unsigned int rot;
7590
7591 if (imm_expr.X_op != O_constant)
7592 as_bad (_("Improper rotate count"));
7593 rot = imm_expr.X_add_number & 0x1f;
7594 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7595 {
7596 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7597 break;
7598 }
7599 if (rot == 0)
7600 {
7601 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7602 break;
7603 }
7604 used_at = 1;
7605 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7606 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7607 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7608 }
7609 break;
7610
7611 case M_DROR:
7612 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7613 {
7614 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7615 break;
7616 }
7617 used_at = 1;
7618 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7619 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7620 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7621 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7622 break;
7623
7624 case M_ROR:
7625 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7626 {
7627 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7628 break;
7629 }
7630 used_at = 1;
7631 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7632 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7633 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7634 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7635 break;
7636
7637 case M_DROR_I:
7638 {
7639 unsigned int rot;
7640 char *l;
7641 char *rr;
7642
7643 if (imm_expr.X_op != O_constant)
7644 as_bad (_("Improper rotate count"));
7645 rot = imm_expr.X_add_number & 0x3f;
7646 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7647 {
7648 if (rot >= 32)
7649 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7650 else
7651 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7652 break;
7653 }
7654 if (rot == 0)
7655 {
7656 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7657 break;
7658 }
7659 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7660 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7661 rot &= 0x1f;
7662 used_at = 1;
7663 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7664 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7665 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7666 }
7667 break;
7668
7669 case M_ROR_I:
7670 {
7671 unsigned int rot;
7672
7673 if (imm_expr.X_op != O_constant)
7674 as_bad (_("Improper rotate count"));
7675 rot = imm_expr.X_add_number & 0x1f;
7676 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7677 {
7678 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7679 break;
7680 }
7681 if (rot == 0)
7682 {
7683 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7684 break;
7685 }
7686 used_at = 1;
7687 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7688 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7689 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7690 }
7691 break;
7692
7693 case M_SEQ:
7694 if (sreg == 0)
7695 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7696 else if (treg == 0)
7697 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7698 else
7699 {
7700 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7701 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7702 }
7703 break;
7704
7705 case M_SEQ_I:
7706 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7707 {
7708 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7709 break;
7710 }
7711 if (sreg == 0)
7712 {
7713 as_warn (_("Instruction %s: result is always false"),
7714 ip->insn_mo->name);
7715 move_register (dreg, 0);
7716 break;
7717 }
7718 if (CPU_HAS_SEQ (mips_opts.arch)
7719 && -512 <= imm_expr.X_add_number
7720 && imm_expr.X_add_number < 512)
7721 {
7722 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7723 (int) imm_expr.X_add_number);
7724 break;
7725 }
7726 if (imm_expr.X_op == O_constant
7727 && imm_expr.X_add_number >= 0
7728 && imm_expr.X_add_number < 0x10000)
7729 {
7730 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7731 }
7732 else if (imm_expr.X_op == O_constant
7733 && imm_expr.X_add_number > -0x8000
7734 && imm_expr.X_add_number < 0)
7735 {
7736 imm_expr.X_add_number = -imm_expr.X_add_number;
7737 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7738 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7739 }
7740 else if (CPU_HAS_SEQ (mips_opts.arch))
7741 {
7742 used_at = 1;
7743 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7744 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7745 break;
7746 }
7747 else
7748 {
7749 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7750 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7751 used_at = 1;
7752 }
7753 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7754 break;
7755
7756 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7757 s = "slt";
7758 goto sge;
7759 case M_SGEU:
7760 s = "sltu";
7761 sge:
7762 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7763 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7764 break;
7765
7766 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7767 case M_SGEU_I:
7768 if (imm_expr.X_op == O_constant
7769 && imm_expr.X_add_number >= -0x8000
7770 && imm_expr.X_add_number < 0x8000)
7771 {
7772 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7773 dreg, sreg, BFD_RELOC_LO16);
7774 }
7775 else
7776 {
7777 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7778 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7779 dreg, sreg, AT);
7780 used_at = 1;
7781 }
7782 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7783 break;
7784
7785 case M_SGT: /* sreg > treg <==> treg < sreg */
7786 s = "slt";
7787 goto sgt;
7788 case M_SGTU:
7789 s = "sltu";
7790 sgt:
7791 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7792 break;
7793
7794 case M_SGT_I: /* sreg > I <==> I < sreg */
7795 s = "slt";
7796 goto sgti;
7797 case M_SGTU_I:
7798 s = "sltu";
7799 sgti:
7800 used_at = 1;
7801 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7802 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7803 break;
7804
7805 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7806 s = "slt";
7807 goto sle;
7808 case M_SLEU:
7809 s = "sltu";
7810 sle:
7811 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7812 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7813 break;
7814
7815 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7816 s = "slt";
7817 goto slei;
7818 case M_SLEU_I:
7819 s = "sltu";
7820 slei:
7821 used_at = 1;
7822 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7823 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7824 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7825 break;
7826
7827 case M_SLT_I:
7828 if (imm_expr.X_op == O_constant
7829 && imm_expr.X_add_number >= -0x8000
7830 && imm_expr.X_add_number < 0x8000)
7831 {
7832 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7833 break;
7834 }
7835 used_at = 1;
7836 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7837 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7838 break;
7839
7840 case M_SLTU_I:
7841 if (imm_expr.X_op == O_constant
7842 && imm_expr.X_add_number >= -0x8000
7843 && imm_expr.X_add_number < 0x8000)
7844 {
7845 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7846 BFD_RELOC_LO16);
7847 break;
7848 }
7849 used_at = 1;
7850 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7851 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7852 break;
7853
7854 case M_SNE:
7855 if (sreg == 0)
7856 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7857 else if (treg == 0)
7858 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7859 else
7860 {
7861 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7862 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7863 }
7864 break;
7865
7866 case M_SNE_I:
7867 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7868 {
7869 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7870 break;
7871 }
7872 if (sreg == 0)
7873 {
7874 as_warn (_("Instruction %s: result is always true"),
7875 ip->insn_mo->name);
7876 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7877 dreg, 0, BFD_RELOC_LO16);
7878 break;
7879 }
7880 if (CPU_HAS_SEQ (mips_opts.arch)
7881 && -512 <= imm_expr.X_add_number
7882 && imm_expr.X_add_number < 512)
7883 {
7884 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7885 (int) imm_expr.X_add_number);
7886 break;
7887 }
7888 if (imm_expr.X_op == O_constant
7889 && imm_expr.X_add_number >= 0
7890 && imm_expr.X_add_number < 0x10000)
7891 {
7892 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7893 }
7894 else if (imm_expr.X_op == O_constant
7895 && imm_expr.X_add_number > -0x8000
7896 && imm_expr.X_add_number < 0)
7897 {
7898 imm_expr.X_add_number = -imm_expr.X_add_number;
7899 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7900 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7901 }
7902 else if (CPU_HAS_SEQ (mips_opts.arch))
7903 {
7904 used_at = 1;
7905 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7906 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7907 break;
7908 }
7909 else
7910 {
7911 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7912 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7913 used_at = 1;
7914 }
7915 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7916 break;
7917
7918 case M_DSUB_I:
7919 dbl = 1;
7920 case M_SUB_I:
7921 if (imm_expr.X_op == O_constant
7922 && imm_expr.X_add_number > -0x8000
7923 && imm_expr.X_add_number <= 0x8000)
7924 {
7925 imm_expr.X_add_number = -imm_expr.X_add_number;
7926 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7927 dreg, sreg, BFD_RELOC_LO16);
7928 break;
7929 }
7930 used_at = 1;
7931 load_register (AT, &imm_expr, dbl);
7932 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7933 break;
7934
7935 case M_DSUBU_I:
7936 dbl = 1;
7937 case M_SUBU_I:
7938 if (imm_expr.X_op == O_constant
7939 && imm_expr.X_add_number > -0x8000
7940 && imm_expr.X_add_number <= 0x8000)
7941 {
7942 imm_expr.X_add_number = -imm_expr.X_add_number;
7943 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7944 dreg, sreg, BFD_RELOC_LO16);
7945 break;
7946 }
7947 used_at = 1;
7948 load_register (AT, &imm_expr, dbl);
7949 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7950 break;
7951
7952 case M_TEQ_I:
7953 s = "teq";
7954 goto trap;
7955 case M_TGE_I:
7956 s = "tge";
7957 goto trap;
7958 case M_TGEU_I:
7959 s = "tgeu";
7960 goto trap;
7961 case M_TLT_I:
7962 s = "tlt";
7963 goto trap;
7964 case M_TLTU_I:
7965 s = "tltu";
7966 goto trap;
7967 case M_TNE_I:
7968 s = "tne";
7969 trap:
7970 used_at = 1;
7971 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7972 macro_build (NULL, s, "s,t", sreg, AT);
7973 break;
7974
7975 case M_TRUNCWS:
7976 case M_TRUNCWD:
7977 gas_assert (mips_opts.isa == ISA_MIPS1);
7978 used_at = 1;
7979 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7980 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7981
7982 /*
7983 * Is the double cfc1 instruction a bug in the mips assembler;
7984 * or is there a reason for it?
7985 */
7986 start_noreorder ();
7987 macro_build (NULL, "cfc1", "t,G", treg, RA);
7988 macro_build (NULL, "cfc1", "t,G", treg, RA);
7989 macro_build (NULL, "nop", "");
7990 expr1.X_add_number = 3;
7991 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7992 expr1.X_add_number = 2;
7993 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7994 macro_build (NULL, "ctc1", "t,G", AT, RA);
7995 macro_build (NULL, "nop", "");
7996 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7997 dreg, sreg);
7998 macro_build (NULL, "ctc1", "t,G", treg, RA);
7999 macro_build (NULL, "nop", "");
8000 end_noreorder ();
8001 break;
8002
8003 case M_ULH:
8004 s = "lb";
8005 goto ulh;
8006 case M_ULHU:
8007 s = "lbu";
8008 ulh:
8009 used_at = 1;
8010 if (offset_expr.X_add_number >= 0x7fff)
8011 as_bad (_("Operand overflow"));
8012 if (!target_big_endian)
8013 ++offset_expr.X_add_number;
8014 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8015 if (!target_big_endian)
8016 --offset_expr.X_add_number;
8017 else
8018 ++offset_expr.X_add_number;
8019 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8020 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8021 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8022 break;
8023
8024 case M_ULD:
8025 s = "ldl";
8026 s2 = "ldr";
8027 off = 7;
8028 goto ulw;
8029 case M_ULW:
8030 s = "lwl";
8031 s2 = "lwr";
8032 off = 3;
8033 ulw:
8034 if (offset_expr.X_add_number >= 0x8000 - off)
8035 as_bad (_("Operand overflow"));
8036 if (treg != breg)
8037 tempreg = treg;
8038 else
8039 {
8040 used_at = 1;
8041 tempreg = AT;
8042 }
8043 if (!target_big_endian)
8044 offset_expr.X_add_number += off;
8045 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8046 if (!target_big_endian)
8047 offset_expr.X_add_number -= off;
8048 else
8049 offset_expr.X_add_number += off;
8050 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8051
8052 /* If necessary, move the result in tempreg to the final destination. */
8053 if (treg == tempreg)
8054 break;
8055 /* Protect second load's delay slot. */
8056 load_delay_nop ();
8057 move_register (treg, tempreg);
8058 break;
8059
8060 case M_ULD_A:
8061 s = "ldl";
8062 s2 = "ldr";
8063 off = 7;
8064 goto ulwa;
8065 case M_ULW_A:
8066 s = "lwl";
8067 s2 = "lwr";
8068 off = 3;
8069 ulwa:
8070 used_at = 1;
8071 load_address (AT, &offset_expr, &used_at);
8072 if (breg != 0)
8073 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8074 if (!target_big_endian)
8075 expr1.X_add_number = off;
8076 else
8077 expr1.X_add_number = 0;
8078 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8079 if (!target_big_endian)
8080 expr1.X_add_number = 0;
8081 else
8082 expr1.X_add_number = off;
8083 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8084 break;
8085
8086 case M_ULH_A:
8087 case M_ULHU_A:
8088 used_at = 1;
8089 load_address (AT, &offset_expr, &used_at);
8090 if (breg != 0)
8091 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8092 if (target_big_endian)
8093 expr1.X_add_number = 0;
8094 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8095 treg, BFD_RELOC_LO16, AT);
8096 if (target_big_endian)
8097 expr1.X_add_number = 1;
8098 else
8099 expr1.X_add_number = 0;
8100 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8101 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8102 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8103 break;
8104
8105 case M_USH:
8106 used_at = 1;
8107 if (offset_expr.X_add_number >= 0x7fff)
8108 as_bad (_("Operand overflow"));
8109 if (target_big_endian)
8110 ++offset_expr.X_add_number;
8111 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8112 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8113 if (target_big_endian)
8114 --offset_expr.X_add_number;
8115 else
8116 ++offset_expr.X_add_number;
8117 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8118 break;
8119
8120 case M_USD:
8121 s = "sdl";
8122 s2 = "sdr";
8123 off = 7;
8124 goto usw;
8125 case M_USW:
8126 s = "swl";
8127 s2 = "swr";
8128 off = 3;
8129 usw:
8130 if (offset_expr.X_add_number >= 0x8000 - off)
8131 as_bad (_("Operand overflow"));
8132 if (!target_big_endian)
8133 offset_expr.X_add_number += off;
8134 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8135 if (!target_big_endian)
8136 offset_expr.X_add_number -= off;
8137 else
8138 offset_expr.X_add_number += off;
8139 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8140 break;
8141
8142 case M_USD_A:
8143 s = "sdl";
8144 s2 = "sdr";
8145 off = 7;
8146 goto uswa;
8147 case M_USW_A:
8148 s = "swl";
8149 s2 = "swr";
8150 off = 3;
8151 uswa:
8152 used_at = 1;
8153 load_address (AT, &offset_expr, &used_at);
8154 if (breg != 0)
8155 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8156 if (!target_big_endian)
8157 expr1.X_add_number = off;
8158 else
8159 expr1.X_add_number = 0;
8160 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8161 if (!target_big_endian)
8162 expr1.X_add_number = 0;
8163 else
8164 expr1.X_add_number = off;
8165 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8166 break;
8167
8168 case M_USH_A:
8169 used_at = 1;
8170 load_address (AT, &offset_expr, &used_at);
8171 if (breg != 0)
8172 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8173 if (!target_big_endian)
8174 expr1.X_add_number = 0;
8175 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8176 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8177 if (!target_big_endian)
8178 expr1.X_add_number = 1;
8179 else
8180 expr1.X_add_number = 0;
8181 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8182 if (!target_big_endian)
8183 expr1.X_add_number = 0;
8184 else
8185 expr1.X_add_number = 1;
8186 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8187 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8188 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8189 break;
8190
8191 default:
8192 /* FIXME: Check if this is one of the itbl macros, since they
8193 are added dynamically. */
8194 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8195 break;
8196 }
8197 if (!mips_opts.at && used_at)
8198 as_bad (_("Macro used $at after \".set noat\""));
8199 }
8200
8201 /* Implement macros in mips16 mode. */
8202
8203 static void
8204 mips16_macro (struct mips_cl_insn *ip)
8205 {
8206 int mask;
8207 int xreg, yreg, zreg, tmp;
8208 expressionS expr1;
8209 int dbl;
8210 const char *s, *s2, *s3;
8211
8212 mask = ip->insn_mo->mask;
8213
8214 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8215 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8216 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8217
8218 expr1.X_op = O_constant;
8219 expr1.X_op_symbol = NULL;
8220 expr1.X_add_symbol = NULL;
8221 expr1.X_add_number = 1;
8222
8223 dbl = 0;
8224
8225 switch (mask)
8226 {
8227 default:
8228 internalError ();
8229
8230 case M_DDIV_3:
8231 dbl = 1;
8232 case M_DIV_3:
8233 s = "mflo";
8234 goto do_div3;
8235 case M_DREM_3:
8236 dbl = 1;
8237 case M_REM_3:
8238 s = "mfhi";
8239 do_div3:
8240 start_noreorder ();
8241 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8242 expr1.X_add_number = 2;
8243 macro_build (&expr1, "bnez", "x,p", yreg);
8244 macro_build (NULL, "break", "6", 7);
8245
8246 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8247 since that causes an overflow. We should do that as well,
8248 but I don't see how to do the comparisons without a temporary
8249 register. */
8250 end_noreorder ();
8251 macro_build (NULL, s, "x", zreg);
8252 break;
8253
8254 case M_DIVU_3:
8255 s = "divu";
8256 s2 = "mflo";
8257 goto do_divu3;
8258 case M_REMU_3:
8259 s = "divu";
8260 s2 = "mfhi";
8261 goto do_divu3;
8262 case M_DDIVU_3:
8263 s = "ddivu";
8264 s2 = "mflo";
8265 goto do_divu3;
8266 case M_DREMU_3:
8267 s = "ddivu";
8268 s2 = "mfhi";
8269 do_divu3:
8270 start_noreorder ();
8271 macro_build (NULL, s, "0,x,y", xreg, yreg);
8272 expr1.X_add_number = 2;
8273 macro_build (&expr1, "bnez", "x,p", yreg);
8274 macro_build (NULL, "break", "6", 7);
8275 end_noreorder ();
8276 macro_build (NULL, s2, "x", zreg);
8277 break;
8278
8279 case M_DMUL:
8280 dbl = 1;
8281 case M_MUL:
8282 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8283 macro_build (NULL, "mflo", "x", zreg);
8284 break;
8285
8286 case M_DSUBU_I:
8287 dbl = 1;
8288 goto do_subu;
8289 case M_SUBU_I:
8290 do_subu:
8291 if (imm_expr.X_op != O_constant)
8292 as_bad (_("Unsupported large constant"));
8293 imm_expr.X_add_number = -imm_expr.X_add_number;
8294 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8295 break;
8296
8297 case M_SUBU_I_2:
8298 if (imm_expr.X_op != O_constant)
8299 as_bad (_("Unsupported large constant"));
8300 imm_expr.X_add_number = -imm_expr.X_add_number;
8301 macro_build (&imm_expr, "addiu", "x,k", xreg);
8302 break;
8303
8304 case M_DSUBU_I_2:
8305 if (imm_expr.X_op != O_constant)
8306 as_bad (_("Unsupported large constant"));
8307 imm_expr.X_add_number = -imm_expr.X_add_number;
8308 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8309 break;
8310
8311 case M_BEQ:
8312 s = "cmp";
8313 s2 = "bteqz";
8314 goto do_branch;
8315 case M_BNE:
8316 s = "cmp";
8317 s2 = "btnez";
8318 goto do_branch;
8319 case M_BLT:
8320 s = "slt";
8321 s2 = "btnez";
8322 goto do_branch;
8323 case M_BLTU:
8324 s = "sltu";
8325 s2 = "btnez";
8326 goto do_branch;
8327 case M_BLE:
8328 s = "slt";
8329 s2 = "bteqz";
8330 goto do_reverse_branch;
8331 case M_BLEU:
8332 s = "sltu";
8333 s2 = "bteqz";
8334 goto do_reverse_branch;
8335 case M_BGE:
8336 s = "slt";
8337 s2 = "bteqz";
8338 goto do_branch;
8339 case M_BGEU:
8340 s = "sltu";
8341 s2 = "bteqz";
8342 goto do_branch;
8343 case M_BGT:
8344 s = "slt";
8345 s2 = "btnez";
8346 goto do_reverse_branch;
8347 case M_BGTU:
8348 s = "sltu";
8349 s2 = "btnez";
8350
8351 do_reverse_branch:
8352 tmp = xreg;
8353 xreg = yreg;
8354 yreg = tmp;
8355
8356 do_branch:
8357 macro_build (NULL, s, "x,y", xreg, yreg);
8358 macro_build (&offset_expr, s2, "p");
8359 break;
8360
8361 case M_BEQ_I:
8362 s = "cmpi";
8363 s2 = "bteqz";
8364 s3 = "x,U";
8365 goto do_branch_i;
8366 case M_BNE_I:
8367 s = "cmpi";
8368 s2 = "btnez";
8369 s3 = "x,U";
8370 goto do_branch_i;
8371 case M_BLT_I:
8372 s = "slti";
8373 s2 = "btnez";
8374 s3 = "x,8";
8375 goto do_branch_i;
8376 case M_BLTU_I:
8377 s = "sltiu";
8378 s2 = "btnez";
8379 s3 = "x,8";
8380 goto do_branch_i;
8381 case M_BLE_I:
8382 s = "slti";
8383 s2 = "btnez";
8384 s3 = "x,8";
8385 goto do_addone_branch_i;
8386 case M_BLEU_I:
8387 s = "sltiu";
8388 s2 = "btnez";
8389 s3 = "x,8";
8390 goto do_addone_branch_i;
8391 case M_BGE_I:
8392 s = "slti";
8393 s2 = "bteqz";
8394 s3 = "x,8";
8395 goto do_branch_i;
8396 case M_BGEU_I:
8397 s = "sltiu";
8398 s2 = "bteqz";
8399 s3 = "x,8";
8400 goto do_branch_i;
8401 case M_BGT_I:
8402 s = "slti";
8403 s2 = "bteqz";
8404 s3 = "x,8";
8405 goto do_addone_branch_i;
8406 case M_BGTU_I:
8407 s = "sltiu";
8408 s2 = "bteqz";
8409 s3 = "x,8";
8410
8411 do_addone_branch_i:
8412 if (imm_expr.X_op != O_constant)
8413 as_bad (_("Unsupported large constant"));
8414 ++imm_expr.X_add_number;
8415
8416 do_branch_i:
8417 macro_build (&imm_expr, s, s3, xreg);
8418 macro_build (&offset_expr, s2, "p");
8419 break;
8420
8421 case M_ABS:
8422 expr1.X_add_number = 0;
8423 macro_build (&expr1, "slti", "x,8", yreg);
8424 if (xreg != yreg)
8425 move_register (xreg, yreg);
8426 expr1.X_add_number = 2;
8427 macro_build (&expr1, "bteqz", "p");
8428 macro_build (NULL, "neg", "x,w", xreg, xreg);
8429 }
8430 }
8431
8432 /* For consistency checking, verify that all bits are specified either
8433 by the match/mask part of the instruction definition, or by the
8434 operand list. */
8435 static int
8436 validate_mips_insn (const struct mips_opcode *opc)
8437 {
8438 const char *p = opc->args;
8439 char c;
8440 unsigned long used_bits = opc->mask;
8441
8442 if ((used_bits & opc->match) != opc->match)
8443 {
8444 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8445 opc->name, opc->args);
8446 return 0;
8447 }
8448 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8449 while (*p)
8450 switch (c = *p++)
8451 {
8452 case ',': break;
8453 case '(': break;
8454 case ')': break;
8455 case '+':
8456 switch (c = *p++)
8457 {
8458 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8459 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8460 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8461 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8462 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8463 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8464 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8465 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8466 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8467 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8468 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8469 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8470 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8471 case 'I': break;
8472 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8473 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8474 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8475 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8476 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8477 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8478 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8479 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8480 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8481 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8482
8483 default:
8484 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8485 c, opc->name, opc->args);
8486 return 0;
8487 }
8488 break;
8489 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8490 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8491 case 'A': break;
8492 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8493 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8494 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8495 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8496 case 'F': break;
8497 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8498 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8499 case 'I': break;
8500 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8501 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8502 case 'L': break;
8503 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8504 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8505 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8506 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8507 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8508 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8509 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8510 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8511 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8512 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8513 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8514 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8515 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8516 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8517 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8518 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8519 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8520 case 'f': break;
8521 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8522 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8523 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8524 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8525 case 'l': break;
8526 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8527 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8528 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8529 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8530 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8531 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8532 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8533 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8534 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8535 case 'x': break;
8536 case 'z': break;
8537 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8538 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8539 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8540 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8541 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8542 case '[': break;
8543 case ']': break;
8544 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8545 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8546 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8547 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8548 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8549 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8550 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8551 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8552 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8553 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8554 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8555 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8556 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8557 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8558 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8559 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8560 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8561 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8562 default:
8563 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8564 c, opc->name, opc->args);
8565 return 0;
8566 }
8567 #undef USE_BITS
8568 if (used_bits != 0xffffffff)
8569 {
8570 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8571 ~used_bits & 0xffffffff, opc->name, opc->args);
8572 return 0;
8573 }
8574 return 1;
8575 }
8576
8577 /* UDI immediates. */
8578 struct mips_immed {
8579 char type;
8580 unsigned int shift;
8581 unsigned long mask;
8582 const char * desc;
8583 };
8584
8585 static const struct mips_immed mips_immed[] = {
8586 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8587 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8588 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8589 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8590 { 0,0,0,0 }
8591 };
8592
8593 /* Check whether an odd floating-point register is allowed. */
8594 static int
8595 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8596 {
8597 const char *s = insn->name;
8598
8599 if (insn->pinfo == INSN_MACRO)
8600 /* Let a macro pass, we'll catch it later when it is expanded. */
8601 return 1;
8602
8603 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8604 {
8605 /* Allow odd registers for single-precision ops. */
8606 switch (insn->pinfo & (FP_S | FP_D))
8607 {
8608 case FP_S:
8609 case 0:
8610 return 1; /* both single precision - ok */
8611 case FP_D:
8612 return 0; /* both double precision - fail */
8613 default:
8614 break;
8615 }
8616
8617 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8618 s = strchr (insn->name, '.');
8619 if (argnum == 2)
8620 s = s != NULL ? strchr (s + 1, '.') : NULL;
8621 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8622 }
8623
8624 /* Single-precision coprocessor loads and moves are OK too. */
8625 if ((insn->pinfo & FP_S)
8626 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8627 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8628 return 1;
8629
8630 return 0;
8631 }
8632
8633 /* This routine assembles an instruction into its binary format. As a
8634 side effect, it sets one of the global variables imm_reloc or
8635 offset_reloc to the type of relocation to do if one of the operands
8636 is an address expression. */
8637
8638 static void
8639 mips_ip (char *str, struct mips_cl_insn *ip)
8640 {
8641 char *s;
8642 const char *args;
8643 char c = 0;
8644 struct mips_opcode *insn;
8645 char *argsStart;
8646 unsigned int regno;
8647 unsigned int lastregno;
8648 unsigned int lastpos = 0;
8649 unsigned int limlo, limhi;
8650 char *s_reset;
8651 char save_c = 0;
8652 offsetT min_range, max_range;
8653 int argnum;
8654 unsigned int rtype;
8655
8656 insn_error = NULL;
8657
8658 /* If the instruction contains a '.', we first try to match an instruction
8659 including the '.'. Then we try again without the '.'. */
8660 insn = NULL;
8661 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8662 continue;
8663
8664 /* If we stopped on whitespace, then replace the whitespace with null for
8665 the call to hash_find. Save the character we replaced just in case we
8666 have to re-parse the instruction. */
8667 if (ISSPACE (*s))
8668 {
8669 save_c = *s;
8670 *s++ = '\0';
8671 }
8672
8673 insn = (struct mips_opcode *) hash_find (op_hash, str);
8674
8675 /* If we didn't find the instruction in the opcode table, try again, but
8676 this time with just the instruction up to, but not including the
8677 first '.'. */
8678 if (insn == NULL)
8679 {
8680 /* Restore the character we overwrite above (if any). */
8681 if (save_c)
8682 *(--s) = save_c;
8683
8684 /* Scan up to the first '.' or whitespace. */
8685 for (s = str;
8686 *s != '\0' && *s != '.' && !ISSPACE (*s);
8687 ++s)
8688 continue;
8689
8690 /* If we did not find a '.', then we can quit now. */
8691 if (*s != '.')
8692 {
8693 insn_error = _("Unrecognized opcode");
8694 return;
8695 }
8696
8697 /* Lookup the instruction in the hash table. */
8698 *s++ = '\0';
8699 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8700 {
8701 insn_error = _("Unrecognized opcode");
8702 return;
8703 }
8704 }
8705
8706 argsStart = s;
8707 for (;;)
8708 {
8709 bfd_boolean ok;
8710
8711 gas_assert (strcmp (insn->name, str) == 0);
8712
8713 ok = is_opcode_valid (insn);
8714 if (! ok)
8715 {
8716 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8717 && strcmp (insn->name, insn[1].name) == 0)
8718 {
8719 ++insn;
8720 continue;
8721 }
8722 else
8723 {
8724 if (!insn_error)
8725 {
8726 static char buf[100];
8727 sprintf (buf,
8728 _("opcode not supported on this processor: %s (%s)"),
8729 mips_cpu_info_from_arch (mips_opts.arch)->name,
8730 mips_cpu_info_from_isa (mips_opts.isa)->name);
8731 insn_error = buf;
8732 }
8733 if (save_c)
8734 *(--s) = save_c;
8735 return;
8736 }
8737 }
8738
8739 create_insn (ip, insn);
8740 insn_error = NULL;
8741 argnum = 1;
8742 lastregno = 0xffffffff;
8743 for (args = insn->args;; ++args)
8744 {
8745 int is_mdmx;
8746
8747 s += strspn (s, " \t");
8748 is_mdmx = 0;
8749 switch (*args)
8750 {
8751 case '\0': /* end of args */
8752 if (*s == '\0')
8753 return;
8754 break;
8755
8756 case '2': /* DSP 2-bit unsigned immediate in bit 11. */
8757 my_getExpression (&imm_expr, s);
8758 check_absolute_expr (ip, &imm_expr);
8759 if ((unsigned long) imm_expr.X_add_number != 1
8760 && (unsigned long) imm_expr.X_add_number != 3)
8761 {
8762 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8763 (unsigned long) imm_expr.X_add_number);
8764 }
8765 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8766 imm_expr.X_op = O_absent;
8767 s = expr_end;
8768 continue;
8769
8770 case '3': /* DSP 3-bit unsigned immediate in bit 21. */
8771 my_getExpression (&imm_expr, s);
8772 check_absolute_expr (ip, &imm_expr);
8773 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8774 {
8775 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8776 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8777 }
8778 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8779 imm_expr.X_op = O_absent;
8780 s = expr_end;
8781 continue;
8782
8783 case '4': /* DSP 4-bit unsigned immediate in bit 21. */
8784 my_getExpression (&imm_expr, s);
8785 check_absolute_expr (ip, &imm_expr);
8786 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8787 {
8788 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8789 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8790 }
8791 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8792 imm_expr.X_op = O_absent;
8793 s = expr_end;
8794 continue;
8795
8796 case '5': /* DSP 8-bit unsigned immediate in bit 16. */
8797 my_getExpression (&imm_expr, s);
8798 check_absolute_expr (ip, &imm_expr);
8799 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8800 {
8801 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8802 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8803 }
8804 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8805 imm_expr.X_op = O_absent;
8806 s = expr_end;
8807 continue;
8808
8809 case '6': /* DSP 5-bit unsigned immediate in bit 21. */
8810 my_getExpression (&imm_expr, s);
8811 check_absolute_expr (ip, &imm_expr);
8812 if (imm_expr.X_add_number & ~OP_MASK_RS)
8813 {
8814 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8815 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8816 }
8817 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8818 imm_expr.X_op = O_absent;
8819 s = expr_end;
8820 continue;
8821
8822 case '7': /* Four DSP accumulators in bits 11,12. */
8823 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8824 s[3] >= '0' && s[3] <= '3')
8825 {
8826 regno = s[3] - '0';
8827 s += 4;
8828 INSERT_OPERAND (DSPACC, *ip, regno);
8829 continue;
8830 }
8831 else
8832 as_bad (_("Invalid dsp acc register"));
8833 break;
8834
8835 case '8': /* DSP 6-bit unsigned immediate in bit 11. */
8836 my_getExpression (&imm_expr, s);
8837 check_absolute_expr (ip, &imm_expr);
8838 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8839 {
8840 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8841 OP_MASK_WRDSP,
8842 (unsigned long) imm_expr.X_add_number);
8843 }
8844 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8845 imm_expr.X_op = O_absent;
8846 s = expr_end;
8847 continue;
8848
8849 case '9': /* Four DSP accumulators in bits 21,22. */
8850 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8851 s[3] >= '0' && s[3] <= '3')
8852 {
8853 regno = s[3] - '0';
8854 s += 4;
8855 INSERT_OPERAND (DSPACC_S, *ip, regno);
8856 continue;
8857 }
8858 else
8859 as_bad (_("Invalid dsp acc register"));
8860 break;
8861
8862 case '0': /* DSP 6-bit signed immediate in bit 20. */
8863 my_getExpression (&imm_expr, s);
8864 check_absolute_expr (ip, &imm_expr);
8865 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8866 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8867 if (imm_expr.X_add_number < min_range ||
8868 imm_expr.X_add_number > max_range)
8869 {
8870 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8871 (long) min_range, (long) max_range,
8872 (long) imm_expr.X_add_number);
8873 }
8874 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8875 imm_expr.X_op = O_absent;
8876 s = expr_end;
8877 continue;
8878
8879 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
8880 my_getExpression (&imm_expr, s);
8881 check_absolute_expr (ip, &imm_expr);
8882 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8883 {
8884 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8885 OP_MASK_RDDSP,
8886 (unsigned long) imm_expr.X_add_number);
8887 }
8888 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8889 imm_expr.X_op = O_absent;
8890 s = expr_end;
8891 continue;
8892
8893 case ':': /* DSP 7-bit signed immediate in bit 19. */
8894 my_getExpression (&imm_expr, s);
8895 check_absolute_expr (ip, &imm_expr);
8896 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8897 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8898 if (imm_expr.X_add_number < min_range ||
8899 imm_expr.X_add_number > max_range)
8900 {
8901 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8902 (long) min_range, (long) max_range,
8903 (long) imm_expr.X_add_number);
8904 }
8905 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8906 imm_expr.X_op = O_absent;
8907 s = expr_end;
8908 continue;
8909
8910 case '@': /* DSP 10-bit signed immediate in bit 16. */
8911 my_getExpression (&imm_expr, s);
8912 check_absolute_expr (ip, &imm_expr);
8913 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8914 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8915 if (imm_expr.X_add_number < min_range ||
8916 imm_expr.X_add_number > max_range)
8917 {
8918 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8919 (long) min_range, (long) max_range,
8920 (long) imm_expr.X_add_number);
8921 }
8922 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8923 imm_expr.X_op = O_absent;
8924 s = expr_end;
8925 continue;
8926
8927 case '!': /* MT usermode flag bit. */
8928 my_getExpression (&imm_expr, s);
8929 check_absolute_expr (ip, &imm_expr);
8930 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8931 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8932 (unsigned long) imm_expr.X_add_number);
8933 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8934 imm_expr.X_op = O_absent;
8935 s = expr_end;
8936 continue;
8937
8938 case '$': /* MT load high flag bit. */
8939 my_getExpression (&imm_expr, s);
8940 check_absolute_expr (ip, &imm_expr);
8941 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8942 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8943 (unsigned long) imm_expr.X_add_number);
8944 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8945 imm_expr.X_op = O_absent;
8946 s = expr_end;
8947 continue;
8948
8949 case '*': /* Four DSP accumulators in bits 18,19. */
8950 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8951 s[3] >= '0' && s[3] <= '3')
8952 {
8953 regno = s[3] - '0';
8954 s += 4;
8955 INSERT_OPERAND (MTACC_T, *ip, regno);
8956 continue;
8957 }
8958 else
8959 as_bad (_("Invalid dsp/smartmips acc register"));
8960 break;
8961
8962 case '&': /* Four DSP accumulators in bits 13,14. */
8963 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8964 s[3] >= '0' && s[3] <= '3')
8965 {
8966 regno = s[3] - '0';
8967 s += 4;
8968 INSERT_OPERAND (MTACC_D, *ip, regno);
8969 continue;
8970 }
8971 else
8972 as_bad (_("Invalid dsp/smartmips acc register"));
8973 break;
8974
8975 case ',':
8976 ++argnum;
8977 if (*s++ == *args)
8978 continue;
8979 s--;
8980 switch (*++args)
8981 {
8982 case 'r':
8983 case 'v':
8984 INSERT_OPERAND (RS, *ip, lastregno);
8985 continue;
8986
8987 case 'w':
8988 INSERT_OPERAND (RT, *ip, lastregno);
8989 continue;
8990
8991 case 'W':
8992 INSERT_OPERAND (FT, *ip, lastregno);
8993 continue;
8994
8995 case 'V':
8996 INSERT_OPERAND (FS, *ip, lastregno);
8997 continue;
8998 }
8999 break;
9000
9001 case '(':
9002 /* Handle optional base register.
9003 Either the base register is omitted or
9004 we must have a left paren. */
9005 /* This is dependent on the next operand specifier
9006 is a base register specification. */
9007 gas_assert (args[1] == 'b');
9008 if (*s == '\0')
9009 return;
9010
9011 case ')': /* These must match exactly. */
9012 case '[':
9013 case ']':
9014 if (*s++ == *args)
9015 continue;
9016 break;
9017
9018 case '+': /* Opcode extension character. */
9019 switch (*++args)
9020 {
9021 case '1': /* UDI immediates. */
9022 case '2':
9023 case '3':
9024 case '4':
9025 {
9026 const struct mips_immed *imm = mips_immed;
9027
9028 while (imm->type && imm->type != *args)
9029 ++imm;
9030 if (! imm->type)
9031 internalError ();
9032 my_getExpression (&imm_expr, s);
9033 check_absolute_expr (ip, &imm_expr);
9034 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9035 {
9036 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9037 imm->desc ? imm->desc : ip->insn_mo->name,
9038 (unsigned long) imm_expr.X_add_number,
9039 (unsigned long) imm_expr.X_add_number);
9040 imm_expr.X_add_number &= imm->mask;
9041 }
9042 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9043 << imm->shift);
9044 imm_expr.X_op = O_absent;
9045 s = expr_end;
9046 }
9047 continue;
9048
9049 case 'A': /* ins/ext position, becomes LSB. */
9050 limlo = 0;
9051 limhi = 31;
9052 goto do_lsb;
9053 case 'E':
9054 limlo = 32;
9055 limhi = 63;
9056 goto do_lsb;
9057 do_lsb:
9058 my_getExpression (&imm_expr, s);
9059 check_absolute_expr (ip, &imm_expr);
9060 if ((unsigned long) imm_expr.X_add_number < limlo
9061 || (unsigned long) imm_expr.X_add_number > limhi)
9062 {
9063 as_bad (_("Improper position (%lu)"),
9064 (unsigned long) imm_expr.X_add_number);
9065 imm_expr.X_add_number = limlo;
9066 }
9067 lastpos = imm_expr.X_add_number;
9068 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9069 imm_expr.X_op = O_absent;
9070 s = expr_end;
9071 continue;
9072
9073 case 'B': /* ins size, becomes MSB. */
9074 limlo = 1;
9075 limhi = 32;
9076 goto do_msb;
9077 case 'F':
9078 limlo = 33;
9079 limhi = 64;
9080 goto do_msb;
9081 do_msb:
9082 my_getExpression (&imm_expr, s);
9083 check_absolute_expr (ip, &imm_expr);
9084 /* Check for negative input so that small negative numbers
9085 will not succeed incorrectly. The checks against
9086 (pos+size) transitively check "size" itself,
9087 assuming that "pos" is reasonable. */
9088 if ((long) imm_expr.X_add_number < 0
9089 || ((unsigned long) imm_expr.X_add_number
9090 + lastpos) < limlo
9091 || ((unsigned long) imm_expr.X_add_number
9092 + lastpos) > limhi)
9093 {
9094 as_bad (_("Improper insert size (%lu, position %lu)"),
9095 (unsigned long) imm_expr.X_add_number,
9096 (unsigned long) lastpos);
9097 imm_expr.X_add_number = limlo - lastpos;
9098 }
9099 INSERT_OPERAND (INSMSB, *ip,
9100 lastpos + imm_expr.X_add_number - 1);
9101 imm_expr.X_op = O_absent;
9102 s = expr_end;
9103 continue;
9104
9105 case 'C': /* ext size, becomes MSBD. */
9106 limlo = 1;
9107 limhi = 32;
9108 goto do_msbd;
9109 case 'G':
9110 limlo = 33;
9111 limhi = 64;
9112 goto do_msbd;
9113 case 'H':
9114 limlo = 33;
9115 limhi = 64;
9116 goto do_msbd;
9117 do_msbd:
9118 my_getExpression (&imm_expr, s);
9119 check_absolute_expr (ip, &imm_expr);
9120 /* Check for negative input so that small negative numbers
9121 will not succeed incorrectly. The checks against
9122 (pos+size) transitively check "size" itself,
9123 assuming that "pos" is reasonable. */
9124 if ((long) imm_expr.X_add_number < 0
9125 || ((unsigned long) imm_expr.X_add_number
9126 + lastpos) < limlo
9127 || ((unsigned long) imm_expr.X_add_number
9128 + lastpos) > limhi)
9129 {
9130 as_bad (_("Improper extract size (%lu, position %lu)"),
9131 (unsigned long) imm_expr.X_add_number,
9132 (unsigned long) lastpos);
9133 imm_expr.X_add_number = limlo - lastpos;
9134 }
9135 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9136 imm_expr.X_op = O_absent;
9137 s = expr_end;
9138 continue;
9139
9140 case 'D':
9141 /* +D is for disassembly only; never match. */
9142 break;
9143
9144 case 'I':
9145 /* "+I" is like "I", except that imm2_expr is used. */
9146 my_getExpression (&imm2_expr, s);
9147 if (imm2_expr.X_op != O_big
9148 && imm2_expr.X_op != O_constant)
9149 insn_error = _("absolute expression required");
9150 if (HAVE_32BIT_GPRS)
9151 normalize_constant_expr (&imm2_expr);
9152 s = expr_end;
9153 continue;
9154
9155 case 'T': /* Coprocessor register. */
9156 /* +T is for disassembly only; never match. */
9157 break;
9158
9159 case 't': /* Coprocessor register number. */
9160 if (s[0] == '$' && ISDIGIT (s[1]))
9161 {
9162 ++s;
9163 regno = 0;
9164 do
9165 {
9166 regno *= 10;
9167 regno += *s - '0';
9168 ++s;
9169 }
9170 while (ISDIGIT (*s));
9171 if (regno > 31)
9172 as_bad (_("Invalid register number (%d)"), regno);
9173 else
9174 {
9175 INSERT_OPERAND (RT, *ip, regno);
9176 continue;
9177 }
9178 }
9179 else
9180 as_bad (_("Invalid coprocessor 0 register number"));
9181 break;
9182
9183 case 'x':
9184 /* bbit[01] and bbit[01]32 bit index. Give error if index
9185 is not in the valid range. */
9186 my_getExpression (&imm_expr, s);
9187 check_absolute_expr (ip, &imm_expr);
9188 if ((unsigned) imm_expr.X_add_number > 31)
9189 {
9190 as_bad (_("Improper bit index (%lu)"),
9191 (unsigned long) imm_expr.X_add_number);
9192 imm_expr.X_add_number = 0;
9193 }
9194 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9195 imm_expr.X_op = O_absent;
9196 s = expr_end;
9197 continue;
9198
9199 case 'X':
9200 /* bbit[01] bit index when bbit is used but we generate
9201 bbit[01]32 because the index is over 32. Move to the
9202 next candidate if index is not in the valid range. */
9203 my_getExpression (&imm_expr, s);
9204 check_absolute_expr (ip, &imm_expr);
9205 if ((unsigned) imm_expr.X_add_number < 32
9206 || (unsigned) imm_expr.X_add_number > 63)
9207 break;
9208 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9209 imm_expr.X_op = O_absent;
9210 s = expr_end;
9211 continue;
9212
9213 case 'p':
9214 /* cins, cins32, exts and exts32 position field. Give error
9215 if it's not in the valid range. */
9216 my_getExpression (&imm_expr, s);
9217 check_absolute_expr (ip, &imm_expr);
9218 if ((unsigned) imm_expr.X_add_number > 31)
9219 {
9220 as_bad (_("Improper position (%lu)"),
9221 (unsigned long) imm_expr.X_add_number);
9222 imm_expr.X_add_number = 0;
9223 }
9224 /* Make the pos explicit to simplify +S. */
9225 lastpos = imm_expr.X_add_number + 32;
9226 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9227 imm_expr.X_op = O_absent;
9228 s = expr_end;
9229 continue;
9230
9231 case 'P':
9232 /* cins, cins32, exts and exts32 position field. Move to
9233 the next candidate if it's not in the valid range. */
9234 my_getExpression (&imm_expr, s);
9235 check_absolute_expr (ip, &imm_expr);
9236 if ((unsigned) imm_expr.X_add_number < 32
9237 || (unsigned) imm_expr.X_add_number > 63)
9238 break;
9239 lastpos = imm_expr.X_add_number;
9240 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9241 imm_expr.X_op = O_absent;
9242 s = expr_end;
9243 continue;
9244
9245 case 's':
9246 /* cins and exts length-minus-one field. */
9247 my_getExpression (&imm_expr, s);
9248 check_absolute_expr (ip, &imm_expr);
9249 if ((unsigned long) imm_expr.X_add_number > 31)
9250 {
9251 as_bad (_("Improper size (%lu)"),
9252 (unsigned long) imm_expr.X_add_number);
9253 imm_expr.X_add_number = 0;
9254 }
9255 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9256 imm_expr.X_op = O_absent;
9257 s = expr_end;
9258 continue;
9259
9260 case 'S':
9261 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9262 length-minus-one field. */
9263 my_getExpression (&imm_expr, s);
9264 check_absolute_expr (ip, &imm_expr);
9265 if ((long) imm_expr.X_add_number < 0
9266 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9267 {
9268 as_bad (_("Improper size (%lu)"),
9269 (unsigned long) imm_expr.X_add_number);
9270 imm_expr.X_add_number = 0;
9271 }
9272 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9273 imm_expr.X_op = O_absent;
9274 s = expr_end;
9275 continue;
9276
9277 case 'Q':
9278 /* seqi/snei immediate field. */
9279 my_getExpression (&imm_expr, s);
9280 check_absolute_expr (ip, &imm_expr);
9281 if ((long) imm_expr.X_add_number < -512
9282 || (long) imm_expr.X_add_number >= 512)
9283 {
9284 as_bad (_("Improper immediate (%ld)"),
9285 (long) imm_expr.X_add_number);
9286 imm_expr.X_add_number = 0;
9287 }
9288 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9289 imm_expr.X_op = O_absent;
9290 s = expr_end;
9291 continue;
9292
9293 default:
9294 as_bad (_("Internal error: bad mips opcode "
9295 "(unknown extension operand type `+%c'): %s %s"),
9296 *args, insn->name, insn->args);
9297 /* Further processing is fruitless. */
9298 return;
9299 }
9300 break;
9301
9302 case '<': /* must be at least one digit */
9303 /*
9304 * According to the manual, if the shift amount is greater
9305 * than 31 or less than 0, then the shift amount should be
9306 * mod 32. In reality the mips assembler issues an error.
9307 * We issue a warning and mask out all but the low 5 bits.
9308 */
9309 my_getExpression (&imm_expr, s);
9310 check_absolute_expr (ip, &imm_expr);
9311 if ((unsigned long) imm_expr.X_add_number > 31)
9312 as_warn (_("Improper shift amount (%lu)"),
9313 (unsigned long) imm_expr.X_add_number);
9314 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9315 imm_expr.X_op = O_absent;
9316 s = expr_end;
9317 continue;
9318
9319 case '>': /* shift amount minus 32 */
9320 my_getExpression (&imm_expr, s);
9321 check_absolute_expr (ip, &imm_expr);
9322 if ((unsigned long) imm_expr.X_add_number < 32
9323 || (unsigned long) imm_expr.X_add_number > 63)
9324 break;
9325 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9326 imm_expr.X_op = O_absent;
9327 s = expr_end;
9328 continue;
9329
9330 case 'k': /* CACHE code. */
9331 case 'h': /* PREFX code. */
9332 case '1': /* SYNC type. */
9333 my_getExpression (&imm_expr, s);
9334 check_absolute_expr (ip, &imm_expr);
9335 if ((unsigned long) imm_expr.X_add_number > 31)
9336 as_warn (_("Invalid value for `%s' (%lu)"),
9337 ip->insn_mo->name,
9338 (unsigned long) imm_expr.X_add_number);
9339 if (*args == 'k')
9340 {
9341 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9342 switch (imm_expr.X_add_number)
9343 {
9344 case 5:
9345 case 25:
9346 case 26:
9347 case 27:
9348 case 28:
9349 case 29:
9350 case 30:
9351 case 31: /* These are ok. */
9352 break;
9353
9354 default: /* The rest must be changed to 28. */
9355 imm_expr.X_add_number = 28;
9356 break;
9357 }
9358 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9359 }
9360 else if (*args == 'h')
9361 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9362 else
9363 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9364 imm_expr.X_op = O_absent;
9365 s = expr_end;
9366 continue;
9367
9368 case 'c': /* BREAK code. */
9369 my_getExpression (&imm_expr, s);
9370 check_absolute_expr (ip, &imm_expr);
9371 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9372 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9373 ip->insn_mo->name,
9374 (unsigned long) imm_expr.X_add_number);
9375 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9376 imm_expr.X_op = O_absent;
9377 s = expr_end;
9378 continue;
9379
9380 case 'q': /* Lower BREAK code. */
9381 my_getExpression (&imm_expr, s);
9382 check_absolute_expr (ip, &imm_expr);
9383 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9384 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9385 ip->insn_mo->name,
9386 (unsigned long) imm_expr.X_add_number);
9387 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9388 imm_expr.X_op = O_absent;
9389 s = expr_end;
9390 continue;
9391
9392 case 'B': /* 20-bit SYSCALL/BREAK code. */
9393 my_getExpression (&imm_expr, s);
9394 check_absolute_expr (ip, &imm_expr);
9395 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9396 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9397 ip->insn_mo->name,
9398 (unsigned long) imm_expr.X_add_number);
9399 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9400 imm_expr.X_op = O_absent;
9401 s = expr_end;
9402 continue;
9403
9404 case 'C': /* Coprocessor code. */
9405 my_getExpression (&imm_expr, s);
9406 check_absolute_expr (ip, &imm_expr);
9407 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9408 {
9409 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9410 (unsigned long) imm_expr.X_add_number);
9411 imm_expr.X_add_number &= OP_MASK_COPZ;
9412 }
9413 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9414 imm_expr.X_op = O_absent;
9415 s = expr_end;
9416 continue;
9417
9418 case 'J': /* 19-bit WAIT code. */
9419 my_getExpression (&imm_expr, s);
9420 check_absolute_expr (ip, &imm_expr);
9421 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9422 {
9423 as_warn (_("Illegal 19-bit code (%lu)"),
9424 (unsigned long) imm_expr.X_add_number);
9425 imm_expr.X_add_number &= OP_MASK_CODE19;
9426 }
9427 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9428 imm_expr.X_op = O_absent;
9429 s = expr_end;
9430 continue;
9431
9432 case 'P': /* Performance register. */
9433 my_getExpression (&imm_expr, s);
9434 check_absolute_expr (ip, &imm_expr);
9435 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9436 as_warn (_("Invalid performance register (%lu)"),
9437 (unsigned long) imm_expr.X_add_number);
9438 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9439 imm_expr.X_op = O_absent;
9440 s = expr_end;
9441 continue;
9442
9443 case 'G': /* Coprocessor destination register. */
9444 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9445 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9446 else
9447 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9448 INSERT_OPERAND (RD, *ip, regno);
9449 if (ok)
9450 {
9451 lastregno = regno;
9452 continue;
9453 }
9454 else
9455 break;
9456
9457 case 'b': /* Base register. */
9458 case 'd': /* Destination register. */
9459 case 's': /* Source register. */
9460 case 't': /* Target register. */
9461 case 'r': /* Both target and source. */
9462 case 'v': /* Both dest and source. */
9463 case 'w': /* Both dest and target. */
9464 case 'E': /* Coprocessor target register. */
9465 case 'K': /* RDHWR destination register. */
9466 case 'x': /* Ignore register name. */
9467 case 'z': /* Must be zero register. */
9468 case 'U': /* Destination register (CLO/CLZ). */
9469 case 'g': /* Coprocessor destination register. */
9470 s_reset = s;
9471 if (*args == 'E' || *args == 'K')
9472 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9473 else
9474 {
9475 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9476 if (regno == AT && mips_opts.at)
9477 {
9478 if (mips_opts.at == ATREG)
9479 as_warn (_("Used $at without \".set noat\""));
9480 else
9481 as_warn (_("Used $%u with \".set at=$%u\""),
9482 regno, mips_opts.at);
9483 }
9484 }
9485 if (ok)
9486 {
9487 c = *args;
9488 if (*s == ' ')
9489 ++s;
9490 if (args[1] != *s)
9491 {
9492 if (c == 'r' || c == 'v' || c == 'w')
9493 {
9494 regno = lastregno;
9495 s = s_reset;
9496 ++args;
9497 }
9498 }
9499 /* 'z' only matches $0. */
9500 if (c == 'z' && regno != 0)
9501 break;
9502
9503 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9504 {
9505 if (regno == lastregno)
9506 {
9507 insn_error
9508 = _("Source and destination must be different");
9509 continue;
9510 }
9511 if (regno == 31 && lastregno == 0xffffffff)
9512 {
9513 insn_error
9514 = _("A destination register must be supplied");
9515 continue;
9516 }
9517 }
9518 /* Now that we have assembled one operand, we use the args
9519 string to figure out where it goes in the instruction. */
9520 switch (c)
9521 {
9522 case 'r':
9523 case 's':
9524 case 'v':
9525 case 'b':
9526 INSERT_OPERAND (RS, *ip, regno);
9527 break;
9528 case 'd':
9529 case 'K':
9530 case 'g':
9531 INSERT_OPERAND (RD, *ip, regno);
9532 break;
9533 case 'U':
9534 INSERT_OPERAND (RD, *ip, regno);
9535 INSERT_OPERAND (RT, *ip, regno);
9536 break;
9537 case 'w':
9538 case 't':
9539 case 'E':
9540 INSERT_OPERAND (RT, *ip, regno);
9541 break;
9542 case 'x':
9543 /* This case exists because on the r3000 trunc
9544 expands into a macro which requires a gp
9545 register. On the r6000 or r4000 it is
9546 assembled into a single instruction which
9547 ignores the register. Thus the insn version
9548 is MIPS_ISA2 and uses 'x', and the macro
9549 version is MIPS_ISA1 and uses 't'. */
9550 break;
9551 case 'z':
9552 /* This case is for the div instruction, which
9553 acts differently if the destination argument
9554 is $0. This only matches $0, and is checked
9555 outside the switch. */
9556 break;
9557 }
9558 lastregno = regno;
9559 continue;
9560 }
9561 switch (*args++)
9562 {
9563 case 'r':
9564 case 'v':
9565 INSERT_OPERAND (RS, *ip, lastregno);
9566 continue;
9567 case 'w':
9568 INSERT_OPERAND (RT, *ip, lastregno);
9569 continue;
9570 }
9571 break;
9572
9573 case 'O': /* MDMX alignment immediate constant. */
9574 my_getExpression (&imm_expr, s);
9575 check_absolute_expr (ip, &imm_expr);
9576 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9577 as_warn (_("Improper align amount (%ld), using low bits"),
9578 (long) imm_expr.X_add_number);
9579 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9580 imm_expr.X_op = O_absent;
9581 s = expr_end;
9582 continue;
9583
9584 case 'Q': /* MDMX vector, element sel, or const. */
9585 if (s[0] != '$')
9586 {
9587 /* MDMX Immediate. */
9588 my_getExpression (&imm_expr, s);
9589 check_absolute_expr (ip, &imm_expr);
9590 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9591 as_warn (_("Invalid MDMX Immediate (%ld)"),
9592 (long) imm_expr.X_add_number);
9593 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9594 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9595 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9596 else
9597 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9598 imm_expr.X_op = O_absent;
9599 s = expr_end;
9600 continue;
9601 }
9602 /* Not MDMX Immediate. Fall through. */
9603 case 'X': /* MDMX destination register. */
9604 case 'Y': /* MDMX source register. */
9605 case 'Z': /* MDMX target register. */
9606 is_mdmx = 1;
9607 case 'D': /* Floating point destination register. */
9608 case 'S': /* Floating point source register. */
9609 case 'T': /* Floating point target register. */
9610 case 'R': /* Floating point source register. */
9611 case 'V':
9612 case 'W':
9613 rtype = RTYPE_FPU;
9614 if (is_mdmx
9615 || (mips_opts.ase_mdmx
9616 && (ip->insn_mo->pinfo & FP_D)
9617 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9618 | INSN_COPROC_MEMORY_DELAY
9619 | INSN_LOAD_COPROC_DELAY
9620 | INSN_LOAD_MEMORY_DELAY
9621 | INSN_STORE_MEMORY))))
9622 rtype |= RTYPE_VEC;
9623 s_reset = s;
9624 if (reg_lookup (&s, rtype, &regno))
9625 {
9626 if ((regno & 1) != 0
9627 && HAVE_32BIT_FPRS
9628 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
9629 as_warn (_("Float register should be even, was %d"),
9630 regno);
9631
9632 c = *args;
9633 if (*s == ' ')
9634 ++s;
9635 if (args[1] != *s)
9636 {
9637 if (c == 'V' || c == 'W')
9638 {
9639 regno = lastregno;
9640 s = s_reset;
9641 ++args;
9642 }
9643 }
9644 switch (c)
9645 {
9646 case 'D':
9647 case 'X':
9648 INSERT_OPERAND (FD, *ip, regno);
9649 break;
9650 case 'V':
9651 case 'S':
9652 case 'Y':
9653 INSERT_OPERAND (FS, *ip, regno);
9654 break;
9655 case 'Q':
9656 /* This is like 'Z', but also needs to fix the MDMX
9657 vector/scalar select bits. Note that the
9658 scalar immediate case is handled above. */
9659 if (*s == '[')
9660 {
9661 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9662 int max_el = (is_qh ? 3 : 7);
9663 s++;
9664 my_getExpression(&imm_expr, s);
9665 check_absolute_expr (ip, &imm_expr);
9666 s = expr_end;
9667 if (imm_expr.X_add_number > max_el)
9668 as_bad (_("Bad element selector %ld"),
9669 (long) imm_expr.X_add_number);
9670 imm_expr.X_add_number &= max_el;
9671 ip->insn_opcode |= (imm_expr.X_add_number
9672 << (OP_SH_VSEL +
9673 (is_qh ? 2 : 1)));
9674 imm_expr.X_op = O_absent;
9675 if (*s != ']')
9676 as_warn (_("Expecting ']' found '%s'"), s);
9677 else
9678 s++;
9679 }
9680 else
9681 {
9682 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9683 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9684 << OP_SH_VSEL);
9685 else
9686 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9687 OP_SH_VSEL);
9688 }
9689 /* Fall through. */
9690 case 'W':
9691 case 'T':
9692 case 'Z':
9693 INSERT_OPERAND (FT, *ip, regno);
9694 break;
9695 case 'R':
9696 INSERT_OPERAND (FR, *ip, regno);
9697 break;
9698 }
9699 lastregno = regno;
9700 continue;
9701 }
9702
9703 switch (*args++)
9704 {
9705 case 'V':
9706 INSERT_OPERAND (FS, *ip, lastregno);
9707 continue;
9708 case 'W':
9709 INSERT_OPERAND (FT, *ip, lastregno);
9710 continue;
9711 }
9712 break;
9713
9714 case 'I':
9715 my_getExpression (&imm_expr, s);
9716 if (imm_expr.X_op != O_big
9717 && imm_expr.X_op != O_constant)
9718 insn_error = _("absolute expression required");
9719 if (HAVE_32BIT_GPRS)
9720 normalize_constant_expr (&imm_expr);
9721 s = expr_end;
9722 continue;
9723
9724 case 'A':
9725 my_getExpression (&offset_expr, s);
9726 normalize_address_expr (&offset_expr);
9727 *imm_reloc = BFD_RELOC_32;
9728 s = expr_end;
9729 continue;
9730
9731 case 'F':
9732 case 'L':
9733 case 'f':
9734 case 'l':
9735 {
9736 int f64;
9737 int using_gprs;
9738 char *save_in;
9739 char *err;
9740 unsigned char temp[8];
9741 int len;
9742 unsigned int length;
9743 segT seg;
9744 subsegT subseg;
9745 char *p;
9746
9747 /* These only appear as the last operand in an
9748 instruction, and every instruction that accepts
9749 them in any variant accepts them in all variants.
9750 This means we don't have to worry about backing out
9751 any changes if the instruction does not match.
9752
9753 The difference between them is the size of the
9754 floating point constant and where it goes. For 'F'
9755 and 'L' the constant is 64 bits; for 'f' and 'l' it
9756 is 32 bits. Where the constant is placed is based
9757 on how the MIPS assembler does things:
9758 F -- .rdata
9759 L -- .lit8
9760 f -- immediate value
9761 l -- .lit4
9762
9763 The .lit4 and .lit8 sections are only used if
9764 permitted by the -G argument.
9765
9766 The code below needs to know whether the target register
9767 is 32 or 64 bits wide. It relies on the fact 'f' and
9768 'F' are used with GPR-based instructions and 'l' and
9769 'L' are used with FPR-based instructions. */
9770
9771 f64 = *args == 'F' || *args == 'L';
9772 using_gprs = *args == 'F' || *args == 'f';
9773
9774 save_in = input_line_pointer;
9775 input_line_pointer = s;
9776 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9777 length = len;
9778 s = input_line_pointer;
9779 input_line_pointer = save_in;
9780 if (err != NULL && *err != '\0')
9781 {
9782 as_bad (_("Bad floating point constant: %s"), err);
9783 memset (temp, '\0', sizeof temp);
9784 length = f64 ? 8 : 4;
9785 }
9786
9787 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9788
9789 if (*args == 'f'
9790 || (*args == 'l'
9791 && (g_switch_value < 4
9792 || (temp[0] == 0 && temp[1] == 0)
9793 || (temp[2] == 0 && temp[3] == 0))))
9794 {
9795 imm_expr.X_op = O_constant;
9796 if (!target_big_endian)
9797 imm_expr.X_add_number = bfd_getl32 (temp);
9798 else
9799 imm_expr.X_add_number = bfd_getb32 (temp);
9800 }
9801 else if (length > 4
9802 && !mips_disable_float_construction
9803 /* Constants can only be constructed in GPRs and
9804 copied to FPRs if the GPRs are at least as wide
9805 as the FPRs. Force the constant into memory if
9806 we are using 64-bit FPRs but the GPRs are only
9807 32 bits wide. */
9808 && (using_gprs
9809 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9810 && ((temp[0] == 0 && temp[1] == 0)
9811 || (temp[2] == 0 && temp[3] == 0))
9812 && ((temp[4] == 0 && temp[5] == 0)
9813 || (temp[6] == 0 && temp[7] == 0)))
9814 {
9815 /* The value is simple enough to load with a couple of
9816 instructions. If using 32-bit registers, set
9817 imm_expr to the high order 32 bits and offset_expr to
9818 the low order 32 bits. Otherwise, set imm_expr to
9819 the entire 64 bit constant. */
9820 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9821 {
9822 imm_expr.X_op = O_constant;
9823 offset_expr.X_op = O_constant;
9824 if (!target_big_endian)
9825 {
9826 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9827 offset_expr.X_add_number = bfd_getl32 (temp);
9828 }
9829 else
9830 {
9831 imm_expr.X_add_number = bfd_getb32 (temp);
9832 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9833 }
9834 if (offset_expr.X_add_number == 0)
9835 offset_expr.X_op = O_absent;
9836 }
9837 else if (sizeof (imm_expr.X_add_number) > 4)
9838 {
9839 imm_expr.X_op = O_constant;
9840 if (!target_big_endian)
9841 imm_expr.X_add_number = bfd_getl64 (temp);
9842 else
9843 imm_expr.X_add_number = bfd_getb64 (temp);
9844 }
9845 else
9846 {
9847 imm_expr.X_op = O_big;
9848 imm_expr.X_add_number = 4;
9849 if (!target_big_endian)
9850 {
9851 generic_bignum[0] = bfd_getl16 (temp);
9852 generic_bignum[1] = bfd_getl16 (temp + 2);
9853 generic_bignum[2] = bfd_getl16 (temp + 4);
9854 generic_bignum[3] = bfd_getl16 (temp + 6);
9855 }
9856 else
9857 {
9858 generic_bignum[0] = bfd_getb16 (temp + 6);
9859 generic_bignum[1] = bfd_getb16 (temp + 4);
9860 generic_bignum[2] = bfd_getb16 (temp + 2);
9861 generic_bignum[3] = bfd_getb16 (temp);
9862 }
9863 }
9864 }
9865 else
9866 {
9867 const char *newname;
9868 segT new_seg;
9869
9870 /* Switch to the right section. */
9871 seg = now_seg;
9872 subseg = now_subseg;
9873 switch (*args)
9874 {
9875 default: /* unused default case avoids warnings. */
9876 case 'L':
9877 newname = RDATA_SECTION_NAME;
9878 if (g_switch_value >= 8)
9879 newname = ".lit8";
9880 break;
9881 case 'F':
9882 newname = RDATA_SECTION_NAME;
9883 break;
9884 case 'l':
9885 gas_assert (g_switch_value >= 4);
9886 newname = ".lit4";
9887 break;
9888 }
9889 new_seg = subseg_new (newname, (subsegT) 0);
9890 if (IS_ELF)
9891 bfd_set_section_flags (stdoutput, new_seg,
9892 (SEC_ALLOC
9893 | SEC_LOAD
9894 | SEC_READONLY
9895 | SEC_DATA));
9896 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9897 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9898 record_alignment (new_seg, 4);
9899 else
9900 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9901 if (seg == now_seg)
9902 as_bad (_("Can't use floating point insn in this section"));
9903
9904 /* Set the argument to the current address in the
9905 section. */
9906 offset_expr.X_op = O_symbol;
9907 offset_expr.X_add_symbol = symbol_temp_new_now ();
9908 offset_expr.X_add_number = 0;
9909
9910 /* Put the floating point number into the section. */
9911 p = frag_more ((int) length);
9912 memcpy (p, temp, length);
9913
9914 /* Switch back to the original section. */
9915 subseg_set (seg, subseg);
9916 }
9917 }
9918 continue;
9919
9920 case 'i': /* 16-bit unsigned immediate. */
9921 case 'j': /* 16-bit signed immediate. */
9922 *imm_reloc = BFD_RELOC_LO16;
9923 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9924 {
9925 int more;
9926 offsetT minval, maxval;
9927
9928 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9929 && strcmp (insn->name, insn[1].name) == 0);
9930
9931 /* If the expression was written as an unsigned number,
9932 only treat it as signed if there are no more
9933 alternatives. */
9934 if (more
9935 && *args == 'j'
9936 && sizeof (imm_expr.X_add_number) <= 4
9937 && imm_expr.X_op == O_constant
9938 && imm_expr.X_add_number < 0
9939 && imm_expr.X_unsigned
9940 && HAVE_64BIT_GPRS)
9941 break;
9942
9943 /* For compatibility with older assemblers, we accept
9944 0x8000-0xffff as signed 16-bit numbers when only
9945 signed numbers are allowed. */
9946 if (*args == 'i')
9947 minval = 0, maxval = 0xffff;
9948 else if (more)
9949 minval = -0x8000, maxval = 0x7fff;
9950 else
9951 minval = -0x8000, maxval = 0xffff;
9952
9953 if (imm_expr.X_op != O_constant
9954 || imm_expr.X_add_number < minval
9955 || imm_expr.X_add_number > maxval)
9956 {
9957 if (more)
9958 break;
9959 if (imm_expr.X_op == O_constant
9960 || imm_expr.X_op == O_big)
9961 as_bad (_("Expression out of range"));
9962 }
9963 }
9964 s = expr_end;
9965 continue;
9966
9967 case 'o': /* 16-bit offset. */
9968 offset_reloc[0] = BFD_RELOC_LO16;
9969 offset_reloc[1] = BFD_RELOC_UNUSED;
9970 offset_reloc[2] = BFD_RELOC_UNUSED;
9971
9972 /* Check whether there is only a single bracketed expression
9973 left. If so, it must be the base register and the
9974 constant must be zero. */
9975 offset_reloc[0] = BFD_RELOC_LO16;
9976 offset_reloc[1] = BFD_RELOC_UNUSED;
9977 offset_reloc[2] = BFD_RELOC_UNUSED;
9978 if (*s == '(' && strchr (s + 1, '(') == 0)
9979 {
9980 offset_expr.X_op = O_constant;
9981 offset_expr.X_add_number = 0;
9982 continue;
9983 }
9984
9985 /* If this value won't fit into a 16 bit offset, then go
9986 find a macro that will generate the 32 bit offset
9987 code pattern. */
9988 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9989 && (offset_expr.X_op != O_constant
9990 || offset_expr.X_add_number >= 0x8000
9991 || offset_expr.X_add_number < -0x8000))
9992 break;
9993
9994 s = expr_end;
9995 continue;
9996
9997 case 'p': /* PC-relative offset. */
9998 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9999 my_getExpression (&offset_expr, s);
10000 s = expr_end;
10001 continue;
10002
10003 case 'u': /* Upper 16 bits. */
10004 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
10005 && imm_expr.X_op == O_constant
10006 && (imm_expr.X_add_number < 0
10007 || imm_expr.X_add_number >= 0x10000))
10008 as_bad (_("lui expression (%lu) not in range 0..65535"),
10009 (unsigned long) imm_expr.X_add_number);
10010 s = expr_end;
10011 continue;
10012
10013 case 'a': /* 26-bit address. */
10014 my_getExpression (&offset_expr, s);
10015 s = expr_end;
10016 *offset_reloc = BFD_RELOC_MIPS_JMP;
10017 continue;
10018
10019 case 'N': /* 3-bit branch condition code. */
10020 case 'M': /* 3-bit compare condition code. */
10021 rtype = RTYPE_CCC;
10022 if (ip->insn_mo->pinfo & (FP_D | FP_S))
10023 rtype |= RTYPE_FCC;
10024 if (!reg_lookup (&s, rtype, &regno))
10025 break;
10026 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
10027 || strcmp (str + strlen (str) - 5, "any2f") == 0
10028 || strcmp (str + strlen (str) - 5, "any2t") == 0)
10029 && (regno & 1) != 0)
10030 as_warn (_("Condition code register should be even for %s, "
10031 "was %d"),
10032 str, regno);
10033 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
10034 || strcmp (str + strlen (str) - 5, "any4t") == 0)
10035 && (regno & 3) != 0)
10036 as_warn (_("Condition code register should be 0 or 4 for %s, "
10037 "was %d"),
10038 str, regno);
10039 if (*args == 'N')
10040 INSERT_OPERAND (BCC, *ip, regno);
10041 else
10042 INSERT_OPERAND (CCC, *ip, regno);
10043 continue;
10044
10045 case 'H':
10046 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10047 s += 2;
10048 if (ISDIGIT (*s))
10049 {
10050 c = 0;
10051 do
10052 {
10053 c *= 10;
10054 c += *s - '0';
10055 ++s;
10056 }
10057 while (ISDIGIT (*s));
10058 }
10059 else
10060 c = 8; /* Invalid sel value. */
10061
10062 if (c > 7)
10063 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
10064 ip->insn_opcode |= c;
10065 continue;
10066
10067 case 'e':
10068 /* Must be at least one digit. */
10069 my_getExpression (&imm_expr, s);
10070 check_absolute_expr (ip, &imm_expr);
10071
10072 if ((unsigned long) imm_expr.X_add_number
10073 > (unsigned long) OP_MASK_VECBYTE)
10074 {
10075 as_bad (_("bad byte vector index (%ld)"),
10076 (long) imm_expr.X_add_number);
10077 imm_expr.X_add_number = 0;
10078 }
10079
10080 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10081 imm_expr.X_op = O_absent;
10082 s = expr_end;
10083 continue;
10084
10085 case '%':
10086 my_getExpression (&imm_expr, s);
10087 check_absolute_expr (ip, &imm_expr);
10088
10089 if ((unsigned long) imm_expr.X_add_number
10090 > (unsigned long) OP_MASK_VECALIGN)
10091 {
10092 as_bad (_("bad byte vector index (%ld)"),
10093 (long) imm_expr.X_add_number);
10094 imm_expr.X_add_number = 0;
10095 }
10096
10097 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10098 imm_expr.X_op = O_absent;
10099 s = expr_end;
10100 continue;
10101
10102 default:
10103 as_bad (_("Bad char = '%c'\n"), *args);
10104 internalError ();
10105 }
10106 break;
10107 }
10108 /* Args don't match. */
10109 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10110 !strcmp (insn->name, insn[1].name))
10111 {
10112 ++insn;
10113 s = argsStart;
10114 insn_error = _("Illegal operands");
10115 continue;
10116 }
10117 if (save_c)
10118 *(--argsStart) = save_c;
10119 insn_error = _("Illegal operands");
10120 return;
10121 }
10122 }
10123
10124 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10125
10126 /* This routine assembles an instruction into its binary format when
10127 assembling for the mips16. As a side effect, it sets one of the
10128 global variables imm_reloc or offset_reloc to the type of
10129 relocation to do if one of the operands is an address expression.
10130 It also sets mips16_small and mips16_ext if the user explicitly
10131 requested a small or extended instruction. */
10132
10133 static void
10134 mips16_ip (char *str, struct mips_cl_insn *ip)
10135 {
10136 char *s;
10137 const char *args;
10138 struct mips_opcode *insn;
10139 char *argsstart;
10140 unsigned int regno;
10141 unsigned int lastregno = 0;
10142 char *s_reset;
10143 size_t i;
10144
10145 insn_error = NULL;
10146
10147 mips16_small = FALSE;
10148 mips16_ext = FALSE;
10149
10150 for (s = str; ISLOWER (*s); ++s)
10151 ;
10152 switch (*s)
10153 {
10154 case '\0':
10155 break;
10156
10157 case ' ':
10158 *s++ = '\0';
10159 break;
10160
10161 case '.':
10162 if (s[1] == 't' && s[2] == ' ')
10163 {
10164 *s = '\0';
10165 mips16_small = TRUE;
10166 s += 3;
10167 break;
10168 }
10169 else if (s[1] == 'e' && s[2] == ' ')
10170 {
10171 *s = '\0';
10172 mips16_ext = TRUE;
10173 s += 3;
10174 break;
10175 }
10176 /* Fall through. */
10177 default:
10178 insn_error = _("unknown opcode");
10179 return;
10180 }
10181
10182 if (mips_opts.noautoextend && ! mips16_ext)
10183 mips16_small = TRUE;
10184
10185 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10186 {
10187 insn_error = _("unrecognized opcode");
10188 return;
10189 }
10190
10191 argsstart = s;
10192 for (;;)
10193 {
10194 bfd_boolean ok;
10195
10196 gas_assert (strcmp (insn->name, str) == 0);
10197
10198 ok = is_opcode_valid_16 (insn);
10199 if (! ok)
10200 {
10201 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10202 && strcmp (insn->name, insn[1].name) == 0)
10203 {
10204 ++insn;
10205 continue;
10206 }
10207 else
10208 {
10209 if (!insn_error)
10210 {
10211 static char buf[100];
10212 sprintf (buf,
10213 _("opcode not supported on this processor: %s (%s)"),
10214 mips_cpu_info_from_arch (mips_opts.arch)->name,
10215 mips_cpu_info_from_isa (mips_opts.isa)->name);
10216 insn_error = buf;
10217 }
10218 return;
10219 }
10220 }
10221
10222 create_insn (ip, insn);
10223 imm_expr.X_op = O_absent;
10224 imm_reloc[0] = BFD_RELOC_UNUSED;
10225 imm_reloc[1] = BFD_RELOC_UNUSED;
10226 imm_reloc[2] = BFD_RELOC_UNUSED;
10227 imm2_expr.X_op = O_absent;
10228 offset_expr.X_op = O_absent;
10229 offset_reloc[0] = BFD_RELOC_UNUSED;
10230 offset_reloc[1] = BFD_RELOC_UNUSED;
10231 offset_reloc[2] = BFD_RELOC_UNUSED;
10232 for (args = insn->args; 1; ++args)
10233 {
10234 int c;
10235
10236 if (*s == ' ')
10237 ++s;
10238
10239 /* In this switch statement we call break if we did not find
10240 a match, continue if we did find a match, or return if we
10241 are done. */
10242
10243 c = *args;
10244 switch (c)
10245 {
10246 case '\0':
10247 if (*s == '\0')
10248 {
10249 /* Stuff the immediate value in now, if we can. */
10250 if (imm_expr.X_op == O_constant
10251 && *imm_reloc > BFD_RELOC_UNUSED
10252 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10253 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10254 && insn->pinfo != INSN_MACRO)
10255 {
10256 valueT tmp;
10257
10258 switch (*offset_reloc)
10259 {
10260 case BFD_RELOC_MIPS16_HI16_S:
10261 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10262 break;
10263
10264 case BFD_RELOC_MIPS16_HI16:
10265 tmp = imm_expr.X_add_number >> 16;
10266 break;
10267
10268 case BFD_RELOC_MIPS16_LO16:
10269 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10270 - 0x8000;
10271 break;
10272
10273 case BFD_RELOC_UNUSED:
10274 tmp = imm_expr.X_add_number;
10275 break;
10276
10277 default:
10278 internalError ();
10279 }
10280 *offset_reloc = BFD_RELOC_UNUSED;
10281
10282 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10283 tmp, TRUE, mips16_small,
10284 mips16_ext, &ip->insn_opcode,
10285 &ip->use_extend, &ip->extend);
10286 imm_expr.X_op = O_absent;
10287 *imm_reloc = BFD_RELOC_UNUSED;
10288 }
10289
10290 return;
10291 }
10292 break;
10293
10294 case ',':
10295 if (*s++ == c)
10296 continue;
10297 s--;
10298 switch (*++args)
10299 {
10300 case 'v':
10301 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10302 continue;
10303 case 'w':
10304 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10305 continue;
10306 }
10307 break;
10308
10309 case '(':
10310 case ')':
10311 if (*s++ == c)
10312 continue;
10313 break;
10314
10315 case 'v':
10316 case 'w':
10317 if (s[0] != '$')
10318 {
10319 if (c == 'v')
10320 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10321 else
10322 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10323 ++args;
10324 continue;
10325 }
10326 /* Fall through. */
10327 case 'x':
10328 case 'y':
10329 case 'z':
10330 case 'Z':
10331 case '0':
10332 case 'S':
10333 case 'R':
10334 case 'X':
10335 case 'Y':
10336 s_reset = s;
10337 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10338 {
10339 if (c == 'v' || c == 'w')
10340 {
10341 if (c == 'v')
10342 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10343 else
10344 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10345 ++args;
10346 continue;
10347 }
10348 break;
10349 }
10350
10351 if (*s == ' ')
10352 ++s;
10353 if (args[1] != *s)
10354 {
10355 if (c == 'v' || c == 'w')
10356 {
10357 regno = mips16_to_32_reg_map[lastregno];
10358 s = s_reset;
10359 ++args;
10360 }
10361 }
10362
10363 switch (c)
10364 {
10365 case 'x':
10366 case 'y':
10367 case 'z':
10368 case 'v':
10369 case 'w':
10370 case 'Z':
10371 regno = mips32_to_16_reg_map[regno];
10372 break;
10373
10374 case '0':
10375 if (regno != 0)
10376 regno = ILLEGAL_REG;
10377 break;
10378
10379 case 'S':
10380 if (regno != SP)
10381 regno = ILLEGAL_REG;
10382 break;
10383
10384 case 'R':
10385 if (regno != RA)
10386 regno = ILLEGAL_REG;
10387 break;
10388
10389 case 'X':
10390 case 'Y':
10391 if (regno == AT && mips_opts.at)
10392 {
10393 if (mips_opts.at == ATREG)
10394 as_warn (_("used $at without \".set noat\""));
10395 else
10396 as_warn (_("used $%u with \".set at=$%u\""),
10397 regno, mips_opts.at);
10398 }
10399 break;
10400
10401 default:
10402 internalError ();
10403 }
10404
10405 if (regno == ILLEGAL_REG)
10406 break;
10407
10408 switch (c)
10409 {
10410 case 'x':
10411 case 'v':
10412 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10413 break;
10414 case 'y':
10415 case 'w':
10416 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10417 break;
10418 case 'z':
10419 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10420 break;
10421 case 'Z':
10422 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10423 case '0':
10424 case 'S':
10425 case 'R':
10426 break;
10427 case 'X':
10428 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10429 break;
10430 case 'Y':
10431 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10432 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10433 break;
10434 default:
10435 internalError ();
10436 }
10437
10438 lastregno = regno;
10439 continue;
10440
10441 case 'P':
10442 if (strncmp (s, "$pc", 3) == 0)
10443 {
10444 s += 3;
10445 continue;
10446 }
10447 break;
10448
10449 case '5':
10450 case 'H':
10451 case 'W':
10452 case 'D':
10453 case 'j':
10454 case 'V':
10455 case 'C':
10456 case 'U':
10457 case 'k':
10458 case 'K':
10459 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10460 if (i > 0)
10461 {
10462 if (imm_expr.X_op != O_constant)
10463 {
10464 mips16_ext = TRUE;
10465 ip->use_extend = TRUE;
10466 ip->extend = 0;
10467 }
10468 else
10469 {
10470 /* We need to relax this instruction. */
10471 *offset_reloc = *imm_reloc;
10472 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10473 }
10474 s = expr_end;
10475 continue;
10476 }
10477 *imm_reloc = BFD_RELOC_UNUSED;
10478 /* Fall through. */
10479 case '<':
10480 case '>':
10481 case '[':
10482 case ']':
10483 case '4':
10484 case '8':
10485 my_getExpression (&imm_expr, s);
10486 if (imm_expr.X_op == O_register)
10487 {
10488 /* What we thought was an expression turned out to
10489 be a register. */
10490
10491 if (s[0] == '(' && args[1] == '(')
10492 {
10493 /* It looks like the expression was omitted
10494 before a register indirection, which means
10495 that the expression is implicitly zero. We
10496 still set up imm_expr, so that we handle
10497 explicit extensions correctly. */
10498 imm_expr.X_op = O_constant;
10499 imm_expr.X_add_number = 0;
10500 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10501 continue;
10502 }
10503
10504 break;
10505 }
10506
10507 /* We need to relax this instruction. */
10508 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10509 s = expr_end;
10510 continue;
10511
10512 case 'p':
10513 case 'q':
10514 case 'A':
10515 case 'B':
10516 case 'E':
10517 /* We use offset_reloc rather than imm_reloc for the PC
10518 relative operands. This lets macros with both
10519 immediate and address operands work correctly. */
10520 my_getExpression (&offset_expr, s);
10521
10522 if (offset_expr.X_op == O_register)
10523 break;
10524
10525 /* We need to relax this instruction. */
10526 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10527 s = expr_end;
10528 continue;
10529
10530 case '6': /* break code */
10531 my_getExpression (&imm_expr, s);
10532 check_absolute_expr (ip, &imm_expr);
10533 if ((unsigned long) imm_expr.X_add_number > 63)
10534 as_warn (_("Invalid value for `%s' (%lu)"),
10535 ip->insn_mo->name,
10536 (unsigned long) imm_expr.X_add_number);
10537 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10538 imm_expr.X_op = O_absent;
10539 s = expr_end;
10540 continue;
10541
10542 case 'a': /* 26 bit address */
10543 my_getExpression (&offset_expr, s);
10544 s = expr_end;
10545 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10546 ip->insn_opcode <<= 16;
10547 continue;
10548
10549 case 'l': /* register list for entry macro */
10550 case 'L': /* register list for exit macro */
10551 {
10552 int mask;
10553
10554 if (c == 'l')
10555 mask = 0;
10556 else
10557 mask = 7 << 3;
10558 while (*s != '\0')
10559 {
10560 unsigned int freg, reg1, reg2;
10561
10562 while (*s == ' ' || *s == ',')
10563 ++s;
10564 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10565 freg = 0;
10566 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10567 freg = 1;
10568 else
10569 {
10570 as_bad (_("can't parse register list"));
10571 break;
10572 }
10573 if (*s == ' ')
10574 ++s;
10575 if (*s != '-')
10576 reg2 = reg1;
10577 else
10578 {
10579 ++s;
10580 if (!reg_lookup (&s, freg ? RTYPE_FPU
10581 : (RTYPE_GP | RTYPE_NUM), &reg2))
10582 {
10583 as_bad (_("invalid register list"));
10584 break;
10585 }
10586 }
10587 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10588 {
10589 mask &= ~ (7 << 3);
10590 mask |= 5 << 3;
10591 }
10592 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10593 {
10594 mask &= ~ (7 << 3);
10595 mask |= 6 << 3;
10596 }
10597 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10598 mask |= (reg2 - 3) << 3;
10599 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10600 mask |= (reg2 - 15) << 1;
10601 else if (reg1 == RA && reg2 == RA)
10602 mask |= 1;
10603 else
10604 {
10605 as_bad (_("invalid register list"));
10606 break;
10607 }
10608 }
10609 /* The mask is filled in in the opcode table for the
10610 benefit of the disassembler. We remove it before
10611 applying the actual mask. */
10612 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10613 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10614 }
10615 continue;
10616
10617 case 'm': /* Register list for save insn. */
10618 case 'M': /* Register list for restore insn. */
10619 {
10620 int opcode = 0;
10621 int framesz = 0, seen_framesz = 0;
10622 int nargs = 0, statics = 0, sregs = 0;
10623
10624 while (*s != '\0')
10625 {
10626 unsigned int reg1, reg2;
10627
10628 SKIP_SPACE_TABS (s);
10629 while (*s == ',')
10630 ++s;
10631 SKIP_SPACE_TABS (s);
10632
10633 my_getExpression (&imm_expr, s);
10634 if (imm_expr.X_op == O_constant)
10635 {
10636 /* Handle the frame size. */
10637 if (seen_framesz)
10638 {
10639 as_bad (_("more than one frame size in list"));
10640 break;
10641 }
10642 seen_framesz = 1;
10643 framesz = imm_expr.X_add_number;
10644 imm_expr.X_op = O_absent;
10645 s = expr_end;
10646 continue;
10647 }
10648
10649 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10650 {
10651 as_bad (_("can't parse register list"));
10652 break;
10653 }
10654
10655 while (*s == ' ')
10656 ++s;
10657
10658 if (*s != '-')
10659 reg2 = reg1;
10660 else
10661 {
10662 ++s;
10663 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10664 || reg2 < reg1)
10665 {
10666 as_bad (_("can't parse register list"));
10667 break;
10668 }
10669 }
10670
10671 while (reg1 <= reg2)
10672 {
10673 if (reg1 >= 4 && reg1 <= 7)
10674 {
10675 if (!seen_framesz)
10676 /* args $a0-$a3 */
10677 nargs |= 1 << (reg1 - 4);
10678 else
10679 /* statics $a0-$a3 */
10680 statics |= 1 << (reg1 - 4);
10681 }
10682 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10683 {
10684 /* $s0-$s8 */
10685 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10686 }
10687 else if (reg1 == 31)
10688 {
10689 /* Add $ra to insn. */
10690 opcode |= 0x40;
10691 }
10692 else
10693 {
10694 as_bad (_("unexpected register in list"));
10695 break;
10696 }
10697 if (++reg1 == 24)
10698 reg1 = 30;
10699 }
10700 }
10701
10702 /* Encode args/statics combination. */
10703 if (nargs & statics)
10704 as_bad (_("arg/static registers overlap"));
10705 else if (nargs == 0xf)
10706 /* All $a0-$a3 are args. */
10707 opcode |= MIPS16_ALL_ARGS << 16;
10708 else if (statics == 0xf)
10709 /* All $a0-$a3 are statics. */
10710 opcode |= MIPS16_ALL_STATICS << 16;
10711 else
10712 {
10713 int narg = 0, nstat = 0;
10714
10715 /* Count arg registers. */
10716 while (nargs & 0x1)
10717 {
10718 nargs >>= 1;
10719 narg++;
10720 }
10721 if (nargs != 0)
10722 as_bad (_("invalid arg register list"));
10723
10724 /* Count static registers. */
10725 while (statics & 0x8)
10726 {
10727 statics = (statics << 1) & 0xf;
10728 nstat++;
10729 }
10730 if (statics != 0)
10731 as_bad (_("invalid static register list"));
10732
10733 /* Encode args/statics. */
10734 opcode |= ((narg << 2) | nstat) << 16;
10735 }
10736
10737 /* Encode $s0/$s1. */
10738 if (sregs & (1 << 0)) /* $s0 */
10739 opcode |= 0x20;
10740 if (sregs & (1 << 1)) /* $s1 */
10741 opcode |= 0x10;
10742 sregs >>= 2;
10743
10744 if (sregs != 0)
10745 {
10746 /* Count regs $s2-$s8. */
10747 int nsreg = 0;
10748 while (sregs & 1)
10749 {
10750 sregs >>= 1;
10751 nsreg++;
10752 }
10753 if (sregs != 0)
10754 as_bad (_("invalid static register list"));
10755 /* Encode $s2-$s8. */
10756 opcode |= nsreg << 24;
10757 }
10758
10759 /* Encode frame size. */
10760 if (!seen_framesz)
10761 as_bad (_("missing frame size"));
10762 else if ((framesz & 7) != 0 || framesz < 0
10763 || framesz > 0xff * 8)
10764 as_bad (_("invalid frame size"));
10765 else if (framesz != 128 || (opcode >> 16) != 0)
10766 {
10767 framesz /= 8;
10768 opcode |= (((framesz & 0xf0) << 16)
10769 | (framesz & 0x0f));
10770 }
10771
10772 /* Finally build the instruction. */
10773 if ((opcode >> 16) != 0 || framesz == 0)
10774 {
10775 ip->use_extend = TRUE;
10776 ip->extend = opcode >> 16;
10777 }
10778 ip->insn_opcode |= opcode & 0x7f;
10779 }
10780 continue;
10781
10782 case 'e': /* extend code */
10783 my_getExpression (&imm_expr, s);
10784 check_absolute_expr (ip, &imm_expr);
10785 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10786 {
10787 as_warn (_("Invalid value for `%s' (%lu)"),
10788 ip->insn_mo->name,
10789 (unsigned long) imm_expr.X_add_number);
10790 imm_expr.X_add_number &= 0x7ff;
10791 }
10792 ip->insn_opcode |= imm_expr.X_add_number;
10793 imm_expr.X_op = O_absent;
10794 s = expr_end;
10795 continue;
10796
10797 default:
10798 internalError ();
10799 }
10800 break;
10801 }
10802
10803 /* Args don't match. */
10804 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10805 strcmp (insn->name, insn[1].name) == 0)
10806 {
10807 ++insn;
10808 s = argsstart;
10809 continue;
10810 }
10811
10812 insn_error = _("illegal operands");
10813
10814 return;
10815 }
10816 }
10817
10818 /* This structure holds information we know about a mips16 immediate
10819 argument type. */
10820
10821 struct mips16_immed_operand
10822 {
10823 /* The type code used in the argument string in the opcode table. */
10824 int type;
10825 /* The number of bits in the short form of the opcode. */
10826 int nbits;
10827 /* The number of bits in the extended form of the opcode. */
10828 int extbits;
10829 /* The amount by which the short form is shifted when it is used;
10830 for example, the sw instruction has a shift count of 2. */
10831 int shift;
10832 /* The amount by which the short form is shifted when it is stored
10833 into the instruction code. */
10834 int op_shift;
10835 /* Non-zero if the short form is unsigned. */
10836 int unsp;
10837 /* Non-zero if the extended form is unsigned. */
10838 int extu;
10839 /* Non-zero if the value is PC relative. */
10840 int pcrel;
10841 };
10842
10843 /* The mips16 immediate operand types. */
10844
10845 static const struct mips16_immed_operand mips16_immed_operands[] =
10846 {
10847 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10848 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10849 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10850 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10851 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10852 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10853 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10854 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10855 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10856 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10857 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10858 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10859 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10860 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10861 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10862 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10863 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10864 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10865 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10866 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10867 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10868 };
10869
10870 #define MIPS16_NUM_IMMED \
10871 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10872
10873 /* Handle a mips16 instruction with an immediate value. This or's the
10874 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10875 whether an extended value is needed; if one is needed, it sets
10876 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10877 If SMALL is true, an unextended opcode was explicitly requested.
10878 If EXT is true, an extended opcode was explicitly requested. If
10879 WARN is true, warn if EXT does not match reality. */
10880
10881 static void
10882 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10883 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10884 unsigned long *insn, bfd_boolean *use_extend,
10885 unsigned short *extend)
10886 {
10887 const struct mips16_immed_operand *op;
10888 int mintiny, maxtiny;
10889 bfd_boolean needext;
10890
10891 op = mips16_immed_operands;
10892 while (op->type != type)
10893 {
10894 ++op;
10895 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10896 }
10897
10898 if (op->unsp)
10899 {
10900 if (type == '<' || type == '>' || type == '[' || type == ']')
10901 {
10902 mintiny = 1;
10903 maxtiny = 1 << op->nbits;
10904 }
10905 else
10906 {
10907 mintiny = 0;
10908 maxtiny = (1 << op->nbits) - 1;
10909 }
10910 }
10911 else
10912 {
10913 mintiny = - (1 << (op->nbits - 1));
10914 maxtiny = (1 << (op->nbits - 1)) - 1;
10915 }
10916
10917 /* Branch offsets have an implicit 0 in the lowest bit. */
10918 if (type == 'p' || type == 'q')
10919 val /= 2;
10920
10921 if ((val & ((1 << op->shift) - 1)) != 0
10922 || val < (mintiny << op->shift)
10923 || val > (maxtiny << op->shift))
10924 needext = TRUE;
10925 else
10926 needext = FALSE;
10927
10928 if (warn && ext && ! needext)
10929 as_warn_where (file, line,
10930 _("extended operand requested but not required"));
10931 if (small && needext)
10932 as_bad_where (file, line, _("invalid unextended operand value"));
10933
10934 if (small || (! ext && ! needext))
10935 {
10936 int insnval;
10937
10938 *use_extend = FALSE;
10939 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10940 insnval <<= op->op_shift;
10941 *insn |= insnval;
10942 }
10943 else
10944 {
10945 long minext, maxext;
10946 int extval;
10947
10948 if (op->extu)
10949 {
10950 minext = 0;
10951 maxext = (1 << op->extbits) - 1;
10952 }
10953 else
10954 {
10955 minext = - (1 << (op->extbits - 1));
10956 maxext = (1 << (op->extbits - 1)) - 1;
10957 }
10958 if (val < minext || val > maxext)
10959 as_bad_where (file, line,
10960 _("operand value out of range for instruction"));
10961
10962 *use_extend = TRUE;
10963 if (op->extbits == 16)
10964 {
10965 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
10966 val &= 0x1f;
10967 }
10968 else if (op->extbits == 15)
10969 {
10970 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
10971 val &= 0xf;
10972 }
10973 else
10974 {
10975 extval = ((val & 0x1f) << 6) | (val & 0x20);
10976 val = 0;
10977 }
10978
10979 *extend = (unsigned short) extval;
10980 *insn |= val;
10981 }
10982 }
10983 \f
10984 struct percent_op_match
10985 {
10986 const char *str;
10987 bfd_reloc_code_real_type reloc;
10988 };
10989
10990 static const struct percent_op_match mips_percent_op[] =
10991 {
10992 {"%lo", BFD_RELOC_LO16},
10993 #ifdef OBJ_ELF
10994 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
10995 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
10996 {"%call16", BFD_RELOC_MIPS_CALL16},
10997 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
10998 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
10999 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
11000 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
11001 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
11002 {"%got", BFD_RELOC_MIPS_GOT16},
11003 {"%gp_rel", BFD_RELOC_GPREL16},
11004 {"%half", BFD_RELOC_16},
11005 {"%highest", BFD_RELOC_MIPS_HIGHEST},
11006 {"%higher", BFD_RELOC_MIPS_HIGHER},
11007 {"%neg", BFD_RELOC_MIPS_SUB},
11008 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11009 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11010 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11011 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11012 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11013 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11014 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11015 #endif
11016 {"%hi", BFD_RELOC_HI16_S}
11017 };
11018
11019 static const struct percent_op_match mips16_percent_op[] =
11020 {
11021 {"%lo", BFD_RELOC_MIPS16_LO16},
11022 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11023 {"%got", BFD_RELOC_MIPS16_GOT16},
11024 {"%call16", BFD_RELOC_MIPS16_CALL16},
11025 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11026 };
11027
11028
11029 /* Return true if *STR points to a relocation operator. When returning true,
11030 move *STR over the operator and store its relocation code in *RELOC.
11031 Leave both *STR and *RELOC alone when returning false. */
11032
11033 static bfd_boolean
11034 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11035 {
11036 const struct percent_op_match *percent_op;
11037 size_t limit, i;
11038
11039 if (mips_opts.mips16)
11040 {
11041 percent_op = mips16_percent_op;
11042 limit = ARRAY_SIZE (mips16_percent_op);
11043 }
11044 else
11045 {
11046 percent_op = mips_percent_op;
11047 limit = ARRAY_SIZE (mips_percent_op);
11048 }
11049
11050 for (i = 0; i < limit; i++)
11051 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11052 {
11053 int len = strlen (percent_op[i].str);
11054
11055 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11056 continue;
11057
11058 *str += strlen (percent_op[i].str);
11059 *reloc = percent_op[i].reloc;
11060
11061 /* Check whether the output BFD supports this relocation.
11062 If not, issue an error and fall back on something safe. */
11063 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11064 {
11065 as_bad (_("relocation %s isn't supported by the current ABI"),
11066 percent_op[i].str);
11067 *reloc = BFD_RELOC_UNUSED;
11068 }
11069 return TRUE;
11070 }
11071 return FALSE;
11072 }
11073
11074
11075 /* Parse string STR as a 16-bit relocatable operand. Store the
11076 expression in *EP and the relocations in the array starting
11077 at RELOC. Return the number of relocation operators used.
11078
11079 On exit, EXPR_END points to the first character after the expression. */
11080
11081 static size_t
11082 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11083 char *str)
11084 {
11085 bfd_reloc_code_real_type reversed_reloc[3];
11086 size_t reloc_index, i;
11087 int crux_depth, str_depth;
11088 char *crux;
11089
11090 /* Search for the start of the main expression, recoding relocations
11091 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11092 of the main expression and with CRUX_DEPTH containing the number
11093 of open brackets at that point. */
11094 reloc_index = -1;
11095 str_depth = 0;
11096 do
11097 {
11098 reloc_index++;
11099 crux = str;
11100 crux_depth = str_depth;
11101
11102 /* Skip over whitespace and brackets, keeping count of the number
11103 of brackets. */
11104 while (*str == ' ' || *str == '\t' || *str == '(')
11105 if (*str++ == '(')
11106 str_depth++;
11107 }
11108 while (*str == '%'
11109 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11110 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11111
11112 my_getExpression (ep, crux);
11113 str = expr_end;
11114
11115 /* Match every open bracket. */
11116 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11117 if (*str++ == ')')
11118 crux_depth--;
11119
11120 if (crux_depth > 0)
11121 as_bad (_("unclosed '('"));
11122
11123 expr_end = str;
11124
11125 if (reloc_index != 0)
11126 {
11127 prev_reloc_op_frag = frag_now;
11128 for (i = 0; i < reloc_index; i++)
11129 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11130 }
11131
11132 return reloc_index;
11133 }
11134
11135 static void
11136 my_getExpression (expressionS *ep, char *str)
11137 {
11138 char *save_in;
11139 valueT val;
11140
11141 save_in = input_line_pointer;
11142 input_line_pointer = str;
11143 expression (ep);
11144 expr_end = input_line_pointer;
11145 input_line_pointer = save_in;
11146
11147 /* If we are in mips16 mode, and this is an expression based on `.',
11148 then we bump the value of the symbol by 1 since that is how other
11149 text symbols are handled. We don't bother to handle complex
11150 expressions, just `.' plus or minus a constant. */
11151 if (mips_opts.mips16
11152 && ep->X_op == O_symbol
11153 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11154 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11155 && symbol_get_frag (ep->X_add_symbol) == frag_now
11156 && symbol_constant_p (ep->X_add_symbol)
11157 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11158 S_SET_VALUE (ep->X_add_symbol, val + 1);
11159 }
11160
11161 char *
11162 md_atof (int type, char *litP, int *sizeP)
11163 {
11164 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11165 }
11166
11167 void
11168 md_number_to_chars (char *buf, valueT val, int n)
11169 {
11170 if (target_big_endian)
11171 number_to_chars_bigendian (buf, val, n);
11172 else
11173 number_to_chars_littleendian (buf, val, n);
11174 }
11175 \f
11176 #ifdef OBJ_ELF
11177 static int support_64bit_objects(void)
11178 {
11179 const char **list, **l;
11180 int yes;
11181
11182 list = bfd_target_list ();
11183 for (l = list; *l != NULL; l++)
11184 #ifdef TE_TMIPS
11185 /* This is traditional mips */
11186 if (strcmp (*l, "elf64-tradbigmips") == 0
11187 || strcmp (*l, "elf64-tradlittlemips") == 0)
11188 #else
11189 if (strcmp (*l, "elf64-bigmips") == 0
11190 || strcmp (*l, "elf64-littlemips") == 0)
11191 #endif
11192 break;
11193 yes = (*l != NULL);
11194 free (list);
11195 return yes;
11196 }
11197 #endif /* OBJ_ELF */
11198
11199 const char *md_shortopts = "O::g::G:";
11200
11201 enum options
11202 {
11203 OPTION_MARCH = OPTION_MD_BASE,
11204 OPTION_MTUNE,
11205 OPTION_MIPS1,
11206 OPTION_MIPS2,
11207 OPTION_MIPS3,
11208 OPTION_MIPS4,
11209 OPTION_MIPS5,
11210 OPTION_MIPS32,
11211 OPTION_MIPS64,
11212 OPTION_MIPS32R2,
11213 OPTION_MIPS64R2,
11214 OPTION_MIPS16,
11215 OPTION_NO_MIPS16,
11216 OPTION_MIPS3D,
11217 OPTION_NO_MIPS3D,
11218 OPTION_MDMX,
11219 OPTION_NO_MDMX,
11220 OPTION_DSP,
11221 OPTION_NO_DSP,
11222 OPTION_MT,
11223 OPTION_NO_MT,
11224 OPTION_SMARTMIPS,
11225 OPTION_NO_SMARTMIPS,
11226 OPTION_DSPR2,
11227 OPTION_NO_DSPR2,
11228 OPTION_COMPAT_ARCH_BASE,
11229 OPTION_M4650,
11230 OPTION_NO_M4650,
11231 OPTION_M4010,
11232 OPTION_NO_M4010,
11233 OPTION_M4100,
11234 OPTION_NO_M4100,
11235 OPTION_M3900,
11236 OPTION_NO_M3900,
11237 OPTION_M7000_HILO_FIX,
11238 OPTION_MNO_7000_HILO_FIX,
11239 OPTION_FIX_24K,
11240 OPTION_NO_FIX_24K,
11241 OPTION_FIX_LOONGSON2F_JUMP,
11242 OPTION_NO_FIX_LOONGSON2F_JUMP,
11243 OPTION_FIX_LOONGSON2F_NOP,
11244 OPTION_NO_FIX_LOONGSON2F_NOP,
11245 OPTION_FIX_VR4120,
11246 OPTION_NO_FIX_VR4120,
11247 OPTION_FIX_VR4130,
11248 OPTION_NO_FIX_VR4130,
11249 OPTION_FIX_CN63XXP1,
11250 OPTION_NO_FIX_CN63XXP1,
11251 OPTION_TRAP,
11252 OPTION_BREAK,
11253 OPTION_EB,
11254 OPTION_EL,
11255 OPTION_FP32,
11256 OPTION_GP32,
11257 OPTION_CONSTRUCT_FLOATS,
11258 OPTION_NO_CONSTRUCT_FLOATS,
11259 OPTION_FP64,
11260 OPTION_GP64,
11261 OPTION_RELAX_BRANCH,
11262 OPTION_NO_RELAX_BRANCH,
11263 OPTION_MSHARED,
11264 OPTION_MNO_SHARED,
11265 OPTION_MSYM32,
11266 OPTION_MNO_SYM32,
11267 OPTION_SOFT_FLOAT,
11268 OPTION_HARD_FLOAT,
11269 OPTION_SINGLE_FLOAT,
11270 OPTION_DOUBLE_FLOAT,
11271 OPTION_32,
11272 #ifdef OBJ_ELF
11273 OPTION_CALL_SHARED,
11274 OPTION_CALL_NONPIC,
11275 OPTION_NON_SHARED,
11276 OPTION_XGOT,
11277 OPTION_MABI,
11278 OPTION_N32,
11279 OPTION_64,
11280 OPTION_MDEBUG,
11281 OPTION_NO_MDEBUG,
11282 OPTION_PDR,
11283 OPTION_NO_PDR,
11284 OPTION_MVXWORKS_PIC,
11285 #endif /* OBJ_ELF */
11286 OPTION_END_OF_ENUM
11287 };
11288
11289 struct option md_longopts[] =
11290 {
11291 /* Options which specify architecture. */
11292 {"march", required_argument, NULL, OPTION_MARCH},
11293 {"mtune", required_argument, NULL, OPTION_MTUNE},
11294 {"mips0", no_argument, NULL, OPTION_MIPS1},
11295 {"mips1", no_argument, NULL, OPTION_MIPS1},
11296 {"mips2", no_argument, NULL, OPTION_MIPS2},
11297 {"mips3", no_argument, NULL, OPTION_MIPS3},
11298 {"mips4", no_argument, NULL, OPTION_MIPS4},
11299 {"mips5", no_argument, NULL, OPTION_MIPS5},
11300 {"mips32", no_argument, NULL, OPTION_MIPS32},
11301 {"mips64", no_argument, NULL, OPTION_MIPS64},
11302 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11303 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11304
11305 /* Options which specify Application Specific Extensions (ASEs). */
11306 {"mips16", no_argument, NULL, OPTION_MIPS16},
11307 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11308 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11309 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11310 {"mdmx", no_argument, NULL, OPTION_MDMX},
11311 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11312 {"mdsp", no_argument, NULL, OPTION_DSP},
11313 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11314 {"mmt", no_argument, NULL, OPTION_MT},
11315 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11316 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11317 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11318 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11319 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11320
11321 /* Old-style architecture options. Don't add more of these. */
11322 {"m4650", no_argument, NULL, OPTION_M4650},
11323 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11324 {"m4010", no_argument, NULL, OPTION_M4010},
11325 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11326 {"m4100", no_argument, NULL, OPTION_M4100},
11327 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11328 {"m3900", no_argument, NULL, OPTION_M3900},
11329 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11330
11331 /* Options which enable bug fixes. */
11332 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11333 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11334 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11335 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11336 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11337 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11338 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11339 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11340 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11341 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11342 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11343 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11344 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11345 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11346 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11347
11348 /* Miscellaneous options. */
11349 {"trap", no_argument, NULL, OPTION_TRAP},
11350 {"no-break", no_argument, NULL, OPTION_TRAP},
11351 {"break", no_argument, NULL, OPTION_BREAK},
11352 {"no-trap", no_argument, NULL, OPTION_BREAK},
11353 {"EB", no_argument, NULL, OPTION_EB},
11354 {"EL", no_argument, NULL, OPTION_EL},
11355 {"mfp32", no_argument, NULL, OPTION_FP32},
11356 {"mgp32", no_argument, NULL, OPTION_GP32},
11357 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11358 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11359 {"mfp64", no_argument, NULL, OPTION_FP64},
11360 {"mgp64", no_argument, NULL, OPTION_GP64},
11361 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11362 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11363 {"mshared", no_argument, NULL, OPTION_MSHARED},
11364 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11365 {"msym32", no_argument, NULL, OPTION_MSYM32},
11366 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11367 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11368 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11369 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11370 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11371
11372 /* Strictly speaking this next option is ELF specific,
11373 but we allow it for other ports as well in order to
11374 make testing easier. */
11375 {"32", no_argument, NULL, OPTION_32},
11376
11377 /* ELF-specific options. */
11378 #ifdef OBJ_ELF
11379 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11380 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11381 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11382 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11383 {"xgot", no_argument, NULL, OPTION_XGOT},
11384 {"mabi", required_argument, NULL, OPTION_MABI},
11385 {"n32", no_argument, NULL, OPTION_N32},
11386 {"64", no_argument, NULL, OPTION_64},
11387 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11388 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11389 {"mpdr", no_argument, NULL, OPTION_PDR},
11390 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11391 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11392 #endif /* OBJ_ELF */
11393
11394 {NULL, no_argument, NULL, 0}
11395 };
11396 size_t md_longopts_size = sizeof (md_longopts);
11397
11398 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11399 NEW_VALUE. Warn if another value was already specified. Note:
11400 we have to defer parsing the -march and -mtune arguments in order
11401 to handle 'from-abi' correctly, since the ABI might be specified
11402 in a later argument. */
11403
11404 static void
11405 mips_set_option_string (const char **string_ptr, const char *new_value)
11406 {
11407 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11408 as_warn (_("A different %s was already specified, is now %s"),
11409 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11410 new_value);
11411
11412 *string_ptr = new_value;
11413 }
11414
11415 int
11416 md_parse_option (int c, char *arg)
11417 {
11418 switch (c)
11419 {
11420 case OPTION_CONSTRUCT_FLOATS:
11421 mips_disable_float_construction = 0;
11422 break;
11423
11424 case OPTION_NO_CONSTRUCT_FLOATS:
11425 mips_disable_float_construction = 1;
11426 break;
11427
11428 case OPTION_TRAP:
11429 mips_trap = 1;
11430 break;
11431
11432 case OPTION_BREAK:
11433 mips_trap = 0;
11434 break;
11435
11436 case OPTION_EB:
11437 target_big_endian = 1;
11438 break;
11439
11440 case OPTION_EL:
11441 target_big_endian = 0;
11442 break;
11443
11444 case 'O':
11445 if (arg == NULL)
11446 mips_optimize = 1;
11447 else if (arg[0] == '0')
11448 mips_optimize = 0;
11449 else if (arg[0] == '1')
11450 mips_optimize = 1;
11451 else
11452 mips_optimize = 2;
11453 break;
11454
11455 case 'g':
11456 if (arg == NULL)
11457 mips_debug = 2;
11458 else
11459 mips_debug = atoi (arg);
11460 break;
11461
11462 case OPTION_MIPS1:
11463 file_mips_isa = ISA_MIPS1;
11464 break;
11465
11466 case OPTION_MIPS2:
11467 file_mips_isa = ISA_MIPS2;
11468 break;
11469
11470 case OPTION_MIPS3:
11471 file_mips_isa = ISA_MIPS3;
11472 break;
11473
11474 case OPTION_MIPS4:
11475 file_mips_isa = ISA_MIPS4;
11476 break;
11477
11478 case OPTION_MIPS5:
11479 file_mips_isa = ISA_MIPS5;
11480 break;
11481
11482 case OPTION_MIPS32:
11483 file_mips_isa = ISA_MIPS32;
11484 break;
11485
11486 case OPTION_MIPS32R2:
11487 file_mips_isa = ISA_MIPS32R2;
11488 break;
11489
11490 case OPTION_MIPS64R2:
11491 file_mips_isa = ISA_MIPS64R2;
11492 break;
11493
11494 case OPTION_MIPS64:
11495 file_mips_isa = ISA_MIPS64;
11496 break;
11497
11498 case OPTION_MTUNE:
11499 mips_set_option_string (&mips_tune_string, arg);
11500 break;
11501
11502 case OPTION_MARCH:
11503 mips_set_option_string (&mips_arch_string, arg);
11504 break;
11505
11506 case OPTION_M4650:
11507 mips_set_option_string (&mips_arch_string, "4650");
11508 mips_set_option_string (&mips_tune_string, "4650");
11509 break;
11510
11511 case OPTION_NO_M4650:
11512 break;
11513
11514 case OPTION_M4010:
11515 mips_set_option_string (&mips_arch_string, "4010");
11516 mips_set_option_string (&mips_tune_string, "4010");
11517 break;
11518
11519 case OPTION_NO_M4010:
11520 break;
11521
11522 case OPTION_M4100:
11523 mips_set_option_string (&mips_arch_string, "4100");
11524 mips_set_option_string (&mips_tune_string, "4100");
11525 break;
11526
11527 case OPTION_NO_M4100:
11528 break;
11529
11530 case OPTION_M3900:
11531 mips_set_option_string (&mips_arch_string, "3900");
11532 mips_set_option_string (&mips_tune_string, "3900");
11533 break;
11534
11535 case OPTION_NO_M3900:
11536 break;
11537
11538 case OPTION_MDMX:
11539 mips_opts.ase_mdmx = 1;
11540 break;
11541
11542 case OPTION_NO_MDMX:
11543 mips_opts.ase_mdmx = 0;
11544 break;
11545
11546 case OPTION_DSP:
11547 mips_opts.ase_dsp = 1;
11548 mips_opts.ase_dspr2 = 0;
11549 break;
11550
11551 case OPTION_NO_DSP:
11552 mips_opts.ase_dsp = 0;
11553 mips_opts.ase_dspr2 = 0;
11554 break;
11555
11556 case OPTION_DSPR2:
11557 mips_opts.ase_dspr2 = 1;
11558 mips_opts.ase_dsp = 1;
11559 break;
11560
11561 case OPTION_NO_DSPR2:
11562 mips_opts.ase_dspr2 = 0;
11563 mips_opts.ase_dsp = 0;
11564 break;
11565
11566 case OPTION_MT:
11567 mips_opts.ase_mt = 1;
11568 break;
11569
11570 case OPTION_NO_MT:
11571 mips_opts.ase_mt = 0;
11572 break;
11573
11574 case OPTION_MIPS16:
11575 mips_opts.mips16 = 1;
11576 mips_no_prev_insn ();
11577 break;
11578
11579 case OPTION_NO_MIPS16:
11580 mips_opts.mips16 = 0;
11581 mips_no_prev_insn ();
11582 break;
11583
11584 case OPTION_MIPS3D:
11585 mips_opts.ase_mips3d = 1;
11586 break;
11587
11588 case OPTION_NO_MIPS3D:
11589 mips_opts.ase_mips3d = 0;
11590 break;
11591
11592 case OPTION_SMARTMIPS:
11593 mips_opts.ase_smartmips = 1;
11594 break;
11595
11596 case OPTION_NO_SMARTMIPS:
11597 mips_opts.ase_smartmips = 0;
11598 break;
11599
11600 case OPTION_FIX_24K:
11601 mips_fix_24k = 1;
11602 break;
11603
11604 case OPTION_NO_FIX_24K:
11605 mips_fix_24k = 0;
11606 break;
11607
11608 case OPTION_FIX_LOONGSON2F_JUMP:
11609 mips_fix_loongson2f_jump = TRUE;
11610 break;
11611
11612 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11613 mips_fix_loongson2f_jump = FALSE;
11614 break;
11615
11616 case OPTION_FIX_LOONGSON2F_NOP:
11617 mips_fix_loongson2f_nop = TRUE;
11618 break;
11619
11620 case OPTION_NO_FIX_LOONGSON2F_NOP:
11621 mips_fix_loongson2f_nop = FALSE;
11622 break;
11623
11624 case OPTION_FIX_VR4120:
11625 mips_fix_vr4120 = 1;
11626 break;
11627
11628 case OPTION_NO_FIX_VR4120:
11629 mips_fix_vr4120 = 0;
11630 break;
11631
11632 case OPTION_FIX_VR4130:
11633 mips_fix_vr4130 = 1;
11634 break;
11635
11636 case OPTION_NO_FIX_VR4130:
11637 mips_fix_vr4130 = 0;
11638 break;
11639
11640 case OPTION_FIX_CN63XXP1:
11641 mips_fix_cn63xxp1 = TRUE;
11642 break;
11643
11644 case OPTION_NO_FIX_CN63XXP1:
11645 mips_fix_cn63xxp1 = FALSE;
11646 break;
11647
11648 case OPTION_RELAX_BRANCH:
11649 mips_relax_branch = 1;
11650 break;
11651
11652 case OPTION_NO_RELAX_BRANCH:
11653 mips_relax_branch = 0;
11654 break;
11655
11656 case OPTION_MSHARED:
11657 mips_in_shared = TRUE;
11658 break;
11659
11660 case OPTION_MNO_SHARED:
11661 mips_in_shared = FALSE;
11662 break;
11663
11664 case OPTION_MSYM32:
11665 mips_opts.sym32 = TRUE;
11666 break;
11667
11668 case OPTION_MNO_SYM32:
11669 mips_opts.sym32 = FALSE;
11670 break;
11671
11672 #ifdef OBJ_ELF
11673 /* When generating ELF code, we permit -KPIC and -call_shared to
11674 select SVR4_PIC, and -non_shared to select no PIC. This is
11675 intended to be compatible with Irix 5. */
11676 case OPTION_CALL_SHARED:
11677 if (!IS_ELF)
11678 {
11679 as_bad (_("-call_shared is supported only for ELF format"));
11680 return 0;
11681 }
11682 mips_pic = SVR4_PIC;
11683 mips_abicalls = TRUE;
11684 break;
11685
11686 case OPTION_CALL_NONPIC:
11687 if (!IS_ELF)
11688 {
11689 as_bad (_("-call_nonpic is supported only for ELF format"));
11690 return 0;
11691 }
11692 mips_pic = NO_PIC;
11693 mips_abicalls = TRUE;
11694 break;
11695
11696 case OPTION_NON_SHARED:
11697 if (!IS_ELF)
11698 {
11699 as_bad (_("-non_shared is supported only for ELF format"));
11700 return 0;
11701 }
11702 mips_pic = NO_PIC;
11703 mips_abicalls = FALSE;
11704 break;
11705
11706 /* The -xgot option tells the assembler to use 32 bit offsets
11707 when accessing the got in SVR4_PIC mode. It is for Irix
11708 compatibility. */
11709 case OPTION_XGOT:
11710 mips_big_got = 1;
11711 break;
11712 #endif /* OBJ_ELF */
11713
11714 case 'G':
11715 g_switch_value = atoi (arg);
11716 g_switch_seen = 1;
11717 break;
11718
11719 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11720 and -mabi=64. */
11721 case OPTION_32:
11722 if (IS_ELF)
11723 mips_abi = O32_ABI;
11724 /* We silently ignore -32 for non-ELF targets. This greatly
11725 simplifies the construction of the MIPS GAS test cases. */
11726 break;
11727
11728 #ifdef OBJ_ELF
11729 case OPTION_N32:
11730 if (!IS_ELF)
11731 {
11732 as_bad (_("-n32 is supported for ELF format only"));
11733 return 0;
11734 }
11735 mips_abi = N32_ABI;
11736 break;
11737
11738 case OPTION_64:
11739 if (!IS_ELF)
11740 {
11741 as_bad (_("-64 is supported for ELF format only"));
11742 return 0;
11743 }
11744 mips_abi = N64_ABI;
11745 if (!support_64bit_objects())
11746 as_fatal (_("No compiled in support for 64 bit object file format"));
11747 break;
11748 #endif /* OBJ_ELF */
11749
11750 case OPTION_GP32:
11751 file_mips_gp32 = 1;
11752 break;
11753
11754 case OPTION_GP64:
11755 file_mips_gp32 = 0;
11756 break;
11757
11758 case OPTION_FP32:
11759 file_mips_fp32 = 1;
11760 break;
11761
11762 case OPTION_FP64:
11763 file_mips_fp32 = 0;
11764 break;
11765
11766 case OPTION_SINGLE_FLOAT:
11767 file_mips_single_float = 1;
11768 break;
11769
11770 case OPTION_DOUBLE_FLOAT:
11771 file_mips_single_float = 0;
11772 break;
11773
11774 case OPTION_SOFT_FLOAT:
11775 file_mips_soft_float = 1;
11776 break;
11777
11778 case OPTION_HARD_FLOAT:
11779 file_mips_soft_float = 0;
11780 break;
11781
11782 #ifdef OBJ_ELF
11783 case OPTION_MABI:
11784 if (!IS_ELF)
11785 {
11786 as_bad (_("-mabi is supported for ELF format only"));
11787 return 0;
11788 }
11789 if (strcmp (arg, "32") == 0)
11790 mips_abi = O32_ABI;
11791 else if (strcmp (arg, "o64") == 0)
11792 mips_abi = O64_ABI;
11793 else if (strcmp (arg, "n32") == 0)
11794 mips_abi = N32_ABI;
11795 else if (strcmp (arg, "64") == 0)
11796 {
11797 mips_abi = N64_ABI;
11798 if (! support_64bit_objects())
11799 as_fatal (_("No compiled in support for 64 bit object file "
11800 "format"));
11801 }
11802 else if (strcmp (arg, "eabi") == 0)
11803 mips_abi = EABI_ABI;
11804 else
11805 {
11806 as_fatal (_("invalid abi -mabi=%s"), arg);
11807 return 0;
11808 }
11809 break;
11810 #endif /* OBJ_ELF */
11811
11812 case OPTION_M7000_HILO_FIX:
11813 mips_7000_hilo_fix = TRUE;
11814 break;
11815
11816 case OPTION_MNO_7000_HILO_FIX:
11817 mips_7000_hilo_fix = FALSE;
11818 break;
11819
11820 #ifdef OBJ_ELF
11821 case OPTION_MDEBUG:
11822 mips_flag_mdebug = TRUE;
11823 break;
11824
11825 case OPTION_NO_MDEBUG:
11826 mips_flag_mdebug = FALSE;
11827 break;
11828
11829 case OPTION_PDR:
11830 mips_flag_pdr = TRUE;
11831 break;
11832
11833 case OPTION_NO_PDR:
11834 mips_flag_pdr = FALSE;
11835 break;
11836
11837 case OPTION_MVXWORKS_PIC:
11838 mips_pic = VXWORKS_PIC;
11839 break;
11840 #endif /* OBJ_ELF */
11841
11842 default:
11843 return 0;
11844 }
11845
11846 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
11847
11848 return 1;
11849 }
11850 \f
11851 /* Set up globals to generate code for the ISA or processor
11852 described by INFO. */
11853
11854 static void
11855 mips_set_architecture (const struct mips_cpu_info *info)
11856 {
11857 if (info != 0)
11858 {
11859 file_mips_arch = info->cpu;
11860 mips_opts.arch = info->cpu;
11861 mips_opts.isa = info->isa;
11862 }
11863 }
11864
11865
11866 /* Likewise for tuning. */
11867
11868 static void
11869 mips_set_tune (const struct mips_cpu_info *info)
11870 {
11871 if (info != 0)
11872 mips_tune = info->cpu;
11873 }
11874
11875
11876 void
11877 mips_after_parse_args (void)
11878 {
11879 const struct mips_cpu_info *arch_info = 0;
11880 const struct mips_cpu_info *tune_info = 0;
11881
11882 /* GP relative stuff not working for PE */
11883 if (strncmp (TARGET_OS, "pe", 2) == 0)
11884 {
11885 if (g_switch_seen && g_switch_value != 0)
11886 as_bad (_("-G not supported in this configuration."));
11887 g_switch_value = 0;
11888 }
11889
11890 if (mips_abi == NO_ABI)
11891 mips_abi = MIPS_DEFAULT_ABI;
11892
11893 /* The following code determines the architecture and register size.
11894 Similar code was added to GCC 3.3 (see override_options() in
11895 config/mips/mips.c). The GAS and GCC code should be kept in sync
11896 as much as possible. */
11897
11898 if (mips_arch_string != 0)
11899 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11900
11901 if (file_mips_isa != ISA_UNKNOWN)
11902 {
11903 /* Handle -mipsN. At this point, file_mips_isa contains the
11904 ISA level specified by -mipsN, while arch_info->isa contains
11905 the -march selection (if any). */
11906 if (arch_info != 0)
11907 {
11908 /* -march takes precedence over -mipsN, since it is more descriptive.
11909 There's no harm in specifying both as long as the ISA levels
11910 are the same. */
11911 if (file_mips_isa != arch_info->isa)
11912 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11913 mips_cpu_info_from_isa (file_mips_isa)->name,
11914 mips_cpu_info_from_isa (arch_info->isa)->name);
11915 }
11916 else
11917 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11918 }
11919
11920 if (arch_info == 0)
11921 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11922
11923 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11924 as_bad (_("-march=%s is not compatible with the selected ABI"),
11925 arch_info->name);
11926
11927 mips_set_architecture (arch_info);
11928
11929 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11930 if (mips_tune_string != 0)
11931 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11932
11933 if (tune_info == 0)
11934 mips_set_tune (arch_info);
11935 else
11936 mips_set_tune (tune_info);
11937
11938 if (file_mips_gp32 >= 0)
11939 {
11940 /* The user specified the size of the integer registers. Make sure
11941 it agrees with the ABI and ISA. */
11942 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11943 as_bad (_("-mgp64 used with a 32-bit processor"));
11944 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11945 as_bad (_("-mgp32 used with a 64-bit ABI"));
11946 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11947 as_bad (_("-mgp64 used with a 32-bit ABI"));
11948 }
11949 else
11950 {
11951 /* Infer the integer register size from the ABI and processor.
11952 Restrict ourselves to 32-bit registers if that's all the
11953 processor has, or if the ABI cannot handle 64-bit registers. */
11954 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11955 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11956 }
11957
11958 switch (file_mips_fp32)
11959 {
11960 default:
11961 case -1:
11962 /* No user specified float register size.
11963 ??? GAS treats single-float processors as though they had 64-bit
11964 float registers (although it complains when double-precision
11965 instructions are used). As things stand, saying they have 32-bit
11966 registers would lead to spurious "register must be even" messages.
11967 So here we assume float registers are never smaller than the
11968 integer ones. */
11969 if (file_mips_gp32 == 0)
11970 /* 64-bit integer registers implies 64-bit float registers. */
11971 file_mips_fp32 = 0;
11972 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
11973 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
11974 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
11975 file_mips_fp32 = 0;
11976 else
11977 /* 32-bit float registers. */
11978 file_mips_fp32 = 1;
11979 break;
11980
11981 /* The user specified the size of the float registers. Check if it
11982 agrees with the ABI and ISA. */
11983 case 0:
11984 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
11985 as_bad (_("-mfp64 used with a 32-bit fpu"));
11986 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
11987 && !ISA_HAS_MXHC1 (mips_opts.isa))
11988 as_warn (_("-mfp64 used with a 32-bit ABI"));
11989 break;
11990 case 1:
11991 if (ABI_NEEDS_64BIT_REGS (mips_abi))
11992 as_warn (_("-mfp32 used with a 64-bit ABI"));
11993 break;
11994 }
11995
11996 /* End of GCC-shared inference code. */
11997
11998 /* This flag is set when we have a 64-bit capable CPU but use only
11999 32-bit wide registers. Note that EABI does not use it. */
12000 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
12001 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
12002 || mips_abi == O32_ABI))
12003 mips_32bitmode = 1;
12004
12005 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
12006 as_bad (_("trap exception not supported at ISA 1"));
12007
12008 /* If the selected architecture includes support for ASEs, enable
12009 generation of code for them. */
12010 if (mips_opts.mips16 == -1)
12011 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12012 if (mips_opts.ase_mips3d == -1)
12013 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12014 && file_mips_fp32 == 0) ? 1 : 0;
12015 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12016 as_bad (_("-mfp32 used with -mips3d"));
12017
12018 if (mips_opts.ase_mdmx == -1)
12019 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12020 && file_mips_fp32 == 0) ? 1 : 0;
12021 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12022 as_bad (_("-mfp32 used with -mdmx"));
12023
12024 if (mips_opts.ase_smartmips == -1)
12025 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12026 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12027 as_warn (_("%s ISA does not support SmartMIPS"),
12028 mips_cpu_info_from_isa (mips_opts.isa)->name);
12029
12030 if (mips_opts.ase_dsp == -1)
12031 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12032 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12033 as_warn (_("%s ISA does not support DSP ASE"),
12034 mips_cpu_info_from_isa (mips_opts.isa)->name);
12035
12036 if (mips_opts.ase_dspr2 == -1)
12037 {
12038 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12039 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12040 }
12041 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12042 as_warn (_("%s ISA does not support DSP R2 ASE"),
12043 mips_cpu_info_from_isa (mips_opts.isa)->name);
12044
12045 if (mips_opts.ase_mt == -1)
12046 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12047 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12048 as_warn (_("%s ISA does not support MT ASE"),
12049 mips_cpu_info_from_isa (mips_opts.isa)->name);
12050
12051 file_mips_isa = mips_opts.isa;
12052 file_ase_mips3d = mips_opts.ase_mips3d;
12053 file_ase_mdmx = mips_opts.ase_mdmx;
12054 file_ase_smartmips = mips_opts.ase_smartmips;
12055 file_ase_dsp = mips_opts.ase_dsp;
12056 file_ase_dspr2 = mips_opts.ase_dspr2;
12057 file_ase_mt = mips_opts.ase_mt;
12058 mips_opts.gp32 = file_mips_gp32;
12059 mips_opts.fp32 = file_mips_fp32;
12060 mips_opts.soft_float = file_mips_soft_float;
12061 mips_opts.single_float = file_mips_single_float;
12062
12063 if (mips_flag_mdebug < 0)
12064 {
12065 #ifdef OBJ_MAYBE_ECOFF
12066 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12067 mips_flag_mdebug = 1;
12068 else
12069 #endif /* OBJ_MAYBE_ECOFF */
12070 mips_flag_mdebug = 0;
12071 }
12072 }
12073 \f
12074 void
12075 mips_init_after_args (void)
12076 {
12077 /* initialize opcodes */
12078 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12079 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12080 }
12081
12082 long
12083 md_pcrel_from (fixS *fixP)
12084 {
12085 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12086 switch (fixP->fx_r_type)
12087 {
12088 case BFD_RELOC_16_PCREL_S2:
12089 case BFD_RELOC_MIPS_JMP:
12090 /* Return the address of the delay slot. */
12091 return addr + 4;
12092 default:
12093 /* We have no relocation type for PC relative MIPS16 instructions. */
12094 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12095 as_bad_where (fixP->fx_file, fixP->fx_line,
12096 _("PC relative MIPS16 instruction references a different section"));
12097 return addr;
12098 }
12099 }
12100
12101 /* This is called before the symbol table is processed. In order to
12102 work with gcc when using mips-tfile, we must keep all local labels.
12103 However, in other cases, we want to discard them. If we were
12104 called with -g, but we didn't see any debugging information, it may
12105 mean that gcc is smuggling debugging information through to
12106 mips-tfile, in which case we must generate all local labels. */
12107
12108 void
12109 mips_frob_file_before_adjust (void)
12110 {
12111 #ifndef NO_ECOFF_DEBUGGING
12112 if (ECOFF_DEBUGGING
12113 && mips_debug != 0
12114 && ! ecoff_debugging_seen)
12115 flag_keep_locals = 1;
12116 #endif
12117 }
12118
12119 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12120 the corresponding LO16 reloc. This is called before md_apply_fix and
12121 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12122 relocation operators.
12123
12124 For our purposes, a %lo() expression matches a %got() or %hi()
12125 expression if:
12126
12127 (a) it refers to the same symbol; and
12128 (b) the offset applied in the %lo() expression is no lower than
12129 the offset applied in the %got() or %hi().
12130
12131 (b) allows us to cope with code like:
12132
12133 lui $4,%hi(foo)
12134 lh $4,%lo(foo+2)($4)
12135
12136 ...which is legal on RELA targets, and has a well-defined behaviour
12137 if the user knows that adding 2 to "foo" will not induce a carry to
12138 the high 16 bits.
12139
12140 When several %lo()s match a particular %got() or %hi(), we use the
12141 following rules to distinguish them:
12142
12143 (1) %lo()s with smaller offsets are a better match than %lo()s with
12144 higher offsets.
12145
12146 (2) %lo()s with no matching %got() or %hi() are better than those
12147 that already have a matching %got() or %hi().
12148
12149 (3) later %lo()s are better than earlier %lo()s.
12150
12151 These rules are applied in order.
12152
12153 (1) means, among other things, that %lo()s with identical offsets are
12154 chosen if they exist.
12155
12156 (2) means that we won't associate several high-part relocations with
12157 the same low-part relocation unless there's no alternative. Having
12158 several high parts for the same low part is a GNU extension; this rule
12159 allows careful users to avoid it.
12160
12161 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12162 with the last high-part relocation being at the front of the list.
12163 It therefore makes sense to choose the last matching low-part
12164 relocation, all other things being equal. It's also easier
12165 to code that way. */
12166
12167 void
12168 mips_frob_file (void)
12169 {
12170 struct mips_hi_fixup *l;
12171 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12172
12173 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12174 {
12175 segment_info_type *seginfo;
12176 bfd_boolean matched_lo_p;
12177 fixS **hi_pos, **lo_pos, **pos;
12178
12179 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12180
12181 /* If a GOT16 relocation turns out to be against a global symbol,
12182 there isn't supposed to be a matching LO. */
12183 if (got16_reloc_p (l->fixp->fx_r_type)
12184 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12185 continue;
12186
12187 /* Check quickly whether the next fixup happens to be a matching %lo. */
12188 if (fixup_has_matching_lo_p (l->fixp))
12189 continue;
12190
12191 seginfo = seg_info (l->seg);
12192
12193 /* Set HI_POS to the position of this relocation in the chain.
12194 Set LO_POS to the position of the chosen low-part relocation.
12195 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12196 relocation that matches an immediately-preceding high-part
12197 relocation. */
12198 hi_pos = NULL;
12199 lo_pos = NULL;
12200 matched_lo_p = FALSE;
12201 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12202
12203 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12204 {
12205 if (*pos == l->fixp)
12206 hi_pos = pos;
12207
12208 if ((*pos)->fx_r_type == looking_for_rtype
12209 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12210 && (*pos)->fx_offset >= l->fixp->fx_offset
12211 && (lo_pos == NULL
12212 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12213 || (!matched_lo_p
12214 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12215 lo_pos = pos;
12216
12217 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12218 && fixup_has_matching_lo_p (*pos));
12219 }
12220
12221 /* If we found a match, remove the high-part relocation from its
12222 current position and insert it before the low-part relocation.
12223 Make the offsets match so that fixup_has_matching_lo_p()
12224 will return true.
12225
12226 We don't warn about unmatched high-part relocations since some
12227 versions of gcc have been known to emit dead "lui ...%hi(...)"
12228 instructions. */
12229 if (lo_pos != NULL)
12230 {
12231 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12232 if (l->fixp->fx_next != *lo_pos)
12233 {
12234 *hi_pos = l->fixp->fx_next;
12235 l->fixp->fx_next = *lo_pos;
12236 *lo_pos = l->fixp;
12237 }
12238 }
12239 }
12240 }
12241
12242 /* We may have combined relocations without symbols in the N32/N64 ABI.
12243 We have to prevent gas from dropping them. */
12244
12245 int
12246 mips_force_relocation (fixS *fixp)
12247 {
12248 if (generic_force_reloc (fixp))
12249 return 1;
12250
12251 if (HAVE_NEWABI
12252 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12253 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12254 || hi16_reloc_p (fixp->fx_r_type)
12255 || lo16_reloc_p (fixp->fx_r_type)))
12256 return 1;
12257
12258 return 0;
12259 }
12260
12261 /* Apply a fixup to the object file. */
12262
12263 void
12264 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12265 {
12266 bfd_byte *buf;
12267 long insn;
12268 reloc_howto_type *howto;
12269
12270 /* We ignore generic BFD relocations we don't know about. */
12271 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12272 if (! howto)
12273 return;
12274
12275 gas_assert (fixP->fx_size == 4
12276 || fixP->fx_r_type == BFD_RELOC_16
12277 || fixP->fx_r_type == BFD_RELOC_64
12278 || fixP->fx_r_type == BFD_RELOC_CTOR
12279 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12280 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12281 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12282 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12283
12284 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12285
12286 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12287
12288 /* Don't treat parts of a composite relocation as done. There are two
12289 reasons for this:
12290
12291 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12292 should nevertheless be emitted if the first part is.
12293
12294 (2) In normal usage, composite relocations are never assembly-time
12295 constants. The easiest way of dealing with the pathological
12296 exceptions is to generate a relocation against STN_UNDEF and
12297 leave everything up to the linker. */
12298 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12299 fixP->fx_done = 1;
12300
12301 switch (fixP->fx_r_type)
12302 {
12303 case BFD_RELOC_MIPS_TLS_GD:
12304 case BFD_RELOC_MIPS_TLS_LDM:
12305 case BFD_RELOC_MIPS_TLS_DTPREL32:
12306 case BFD_RELOC_MIPS_TLS_DTPREL64:
12307 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12308 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12309 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12310 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12311 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12312 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12313 /* fall through */
12314
12315 case BFD_RELOC_MIPS_JMP:
12316 case BFD_RELOC_MIPS_SHIFT5:
12317 case BFD_RELOC_MIPS_SHIFT6:
12318 case BFD_RELOC_MIPS_GOT_DISP:
12319 case BFD_RELOC_MIPS_GOT_PAGE:
12320 case BFD_RELOC_MIPS_GOT_OFST:
12321 case BFD_RELOC_MIPS_SUB:
12322 case BFD_RELOC_MIPS_INSERT_A:
12323 case BFD_RELOC_MIPS_INSERT_B:
12324 case BFD_RELOC_MIPS_DELETE:
12325 case BFD_RELOC_MIPS_HIGHEST:
12326 case BFD_RELOC_MIPS_HIGHER:
12327 case BFD_RELOC_MIPS_SCN_DISP:
12328 case BFD_RELOC_MIPS_REL16:
12329 case BFD_RELOC_MIPS_RELGOT:
12330 case BFD_RELOC_MIPS_JALR:
12331 case BFD_RELOC_HI16:
12332 case BFD_RELOC_HI16_S:
12333 case BFD_RELOC_GPREL16:
12334 case BFD_RELOC_MIPS_LITERAL:
12335 case BFD_RELOC_MIPS_CALL16:
12336 case BFD_RELOC_MIPS_GOT16:
12337 case BFD_RELOC_GPREL32:
12338 case BFD_RELOC_MIPS_GOT_HI16:
12339 case BFD_RELOC_MIPS_GOT_LO16:
12340 case BFD_RELOC_MIPS_CALL_HI16:
12341 case BFD_RELOC_MIPS_CALL_LO16:
12342 case BFD_RELOC_MIPS16_GPREL:
12343 case BFD_RELOC_MIPS16_GOT16:
12344 case BFD_RELOC_MIPS16_CALL16:
12345 case BFD_RELOC_MIPS16_HI16:
12346 case BFD_RELOC_MIPS16_HI16_S:
12347 case BFD_RELOC_MIPS16_JMP:
12348 /* Nothing needed to do. The value comes from the reloc entry. */
12349 break;
12350
12351 case BFD_RELOC_64:
12352 /* This is handled like BFD_RELOC_32, but we output a sign
12353 extended value if we are only 32 bits. */
12354 if (fixP->fx_done)
12355 {
12356 if (8 <= sizeof (valueT))
12357 md_number_to_chars ((char *) buf, *valP, 8);
12358 else
12359 {
12360 valueT hiv;
12361
12362 if ((*valP & 0x80000000) != 0)
12363 hiv = 0xffffffff;
12364 else
12365 hiv = 0;
12366 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12367 *valP, 4);
12368 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12369 hiv, 4);
12370 }
12371 }
12372 break;
12373
12374 case BFD_RELOC_RVA:
12375 case BFD_RELOC_32:
12376 case BFD_RELOC_16:
12377 /* If we are deleting this reloc entry, we must fill in the
12378 value now. This can happen if we have a .word which is not
12379 resolved when it appears but is later defined. */
12380 if (fixP->fx_done)
12381 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12382 break;
12383
12384 case BFD_RELOC_LO16:
12385 case BFD_RELOC_MIPS16_LO16:
12386 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12387 may be safe to remove, but if so it's not obvious. */
12388 /* When handling an embedded PIC switch statement, we can wind
12389 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12390 if (fixP->fx_done)
12391 {
12392 if (*valP + 0x8000 > 0xffff)
12393 as_bad_where (fixP->fx_file, fixP->fx_line,
12394 _("relocation overflow"));
12395 if (target_big_endian)
12396 buf += 2;
12397 md_number_to_chars ((char *) buf, *valP, 2);
12398 }
12399 break;
12400
12401 case BFD_RELOC_16_PCREL_S2:
12402 if ((*valP & 0x3) != 0)
12403 as_bad_where (fixP->fx_file, fixP->fx_line,
12404 _("Branch to misaligned address (%lx)"), (long) *valP);
12405
12406 /* We need to save the bits in the instruction since fixup_segment()
12407 might be deleting the relocation entry (i.e., a branch within
12408 the current segment). */
12409 if (! fixP->fx_done)
12410 break;
12411
12412 /* Update old instruction data. */
12413 if (target_big_endian)
12414 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12415 else
12416 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12417
12418 if (*valP + 0x20000 <= 0x3ffff)
12419 {
12420 insn |= (*valP >> 2) & 0xffff;
12421 md_number_to_chars ((char *) buf, insn, 4);
12422 }
12423 else if (mips_pic == NO_PIC
12424 && fixP->fx_done
12425 && fixP->fx_frag->fr_address >= text_section->vma
12426 && (fixP->fx_frag->fr_address
12427 < text_section->vma + bfd_get_section_size (text_section))
12428 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12429 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12430 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12431 {
12432 /* The branch offset is too large. If this is an
12433 unconditional branch, and we are not generating PIC code,
12434 we can convert it to an absolute jump instruction. */
12435 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12436 insn = 0x0c000000; /* jal */
12437 else
12438 insn = 0x08000000; /* j */
12439 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12440 fixP->fx_done = 0;
12441 fixP->fx_addsy = section_symbol (text_section);
12442 *valP += md_pcrel_from (fixP);
12443 md_number_to_chars ((char *) buf, insn, 4);
12444 }
12445 else
12446 {
12447 /* If we got here, we have branch-relaxation disabled,
12448 and there's nothing we can do to fix this instruction
12449 without turning it into a longer sequence. */
12450 as_bad_where (fixP->fx_file, fixP->fx_line,
12451 _("Branch out of range"));
12452 }
12453 break;
12454
12455 case BFD_RELOC_VTABLE_INHERIT:
12456 fixP->fx_done = 0;
12457 if (fixP->fx_addsy
12458 && !S_IS_DEFINED (fixP->fx_addsy)
12459 && !S_IS_WEAK (fixP->fx_addsy))
12460 S_SET_WEAK (fixP->fx_addsy);
12461 break;
12462
12463 case BFD_RELOC_VTABLE_ENTRY:
12464 fixP->fx_done = 0;
12465 break;
12466
12467 default:
12468 internalError ();
12469 }
12470
12471 /* Remember value for tc_gen_reloc. */
12472 fixP->fx_addnumber = *valP;
12473 }
12474
12475 static symbolS *
12476 get_symbol (void)
12477 {
12478 int c;
12479 char *name;
12480 symbolS *p;
12481
12482 name = input_line_pointer;
12483 c = get_symbol_end ();
12484 p = (symbolS *) symbol_find_or_make (name);
12485 *input_line_pointer = c;
12486 return p;
12487 }
12488
12489 /* Align the current frag to a given power of two. If a particular
12490 fill byte should be used, FILL points to an integer that contains
12491 that byte, otherwise FILL is null.
12492
12493 The MIPS assembler also automatically adjusts any preceding
12494 label. */
12495
12496 static void
12497 mips_align (int to, int *fill, symbolS *label)
12498 {
12499 mips_emit_delays ();
12500 mips_record_mips16_mode ();
12501 if (fill == NULL && subseg_text_p (now_seg))
12502 frag_align_code (to, 0);
12503 else
12504 frag_align (to, fill ? *fill : 0, 0);
12505 record_alignment (now_seg, to);
12506 if (label != NULL)
12507 {
12508 gas_assert (S_GET_SEGMENT (label) == now_seg);
12509 symbol_set_frag (label, frag_now);
12510 S_SET_VALUE (label, (valueT) frag_now_fix ());
12511 }
12512 }
12513
12514 /* Align to a given power of two. .align 0 turns off the automatic
12515 alignment used by the data creating pseudo-ops. */
12516
12517 static void
12518 s_align (int x ATTRIBUTE_UNUSED)
12519 {
12520 int temp, fill_value, *fill_ptr;
12521 long max_alignment = 28;
12522
12523 /* o Note that the assembler pulls down any immediately preceding label
12524 to the aligned address.
12525 o It's not documented but auto alignment is reinstated by
12526 a .align pseudo instruction.
12527 o Note also that after auto alignment is turned off the mips assembler
12528 issues an error on attempt to assemble an improperly aligned data item.
12529 We don't. */
12530
12531 temp = get_absolute_expression ();
12532 if (temp > max_alignment)
12533 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12534 else if (temp < 0)
12535 {
12536 as_warn (_("Alignment negative: 0 assumed."));
12537 temp = 0;
12538 }
12539 if (*input_line_pointer == ',')
12540 {
12541 ++input_line_pointer;
12542 fill_value = get_absolute_expression ();
12543 fill_ptr = &fill_value;
12544 }
12545 else
12546 fill_ptr = 0;
12547 if (temp)
12548 {
12549 segment_info_type *si = seg_info (now_seg);
12550 struct insn_label_list *l = si->label_list;
12551 /* Auto alignment should be switched on by next section change. */
12552 auto_align = 1;
12553 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12554 }
12555 else
12556 {
12557 auto_align = 0;
12558 }
12559
12560 demand_empty_rest_of_line ();
12561 }
12562
12563 static void
12564 s_change_sec (int sec)
12565 {
12566 segT seg;
12567
12568 #ifdef OBJ_ELF
12569 /* The ELF backend needs to know that we are changing sections, so
12570 that .previous works correctly. We could do something like check
12571 for an obj_section_change_hook macro, but that might be confusing
12572 as it would not be appropriate to use it in the section changing
12573 functions in read.c, since obj-elf.c intercepts those. FIXME:
12574 This should be cleaner, somehow. */
12575 if (IS_ELF)
12576 obj_elf_section_change_hook ();
12577 #endif
12578
12579 mips_emit_delays ();
12580
12581 switch (sec)
12582 {
12583 case 't':
12584 s_text (0);
12585 break;
12586 case 'd':
12587 s_data (0);
12588 break;
12589 case 'b':
12590 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12591 demand_empty_rest_of_line ();
12592 break;
12593
12594 case 'r':
12595 seg = subseg_new (RDATA_SECTION_NAME,
12596 (subsegT) get_absolute_expression ());
12597 if (IS_ELF)
12598 {
12599 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12600 | SEC_READONLY | SEC_RELOC
12601 | SEC_DATA));
12602 if (strncmp (TARGET_OS, "elf", 3) != 0)
12603 record_alignment (seg, 4);
12604 }
12605 demand_empty_rest_of_line ();
12606 break;
12607
12608 case 's':
12609 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12610 if (IS_ELF)
12611 {
12612 bfd_set_section_flags (stdoutput, seg,
12613 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12614 if (strncmp (TARGET_OS, "elf", 3) != 0)
12615 record_alignment (seg, 4);
12616 }
12617 demand_empty_rest_of_line ();
12618 break;
12619
12620 case 'B':
12621 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
12622 if (IS_ELF)
12623 {
12624 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
12625 if (strncmp (TARGET_OS, "elf", 3) != 0)
12626 record_alignment (seg, 4);
12627 }
12628 demand_empty_rest_of_line ();
12629 break;
12630 }
12631
12632 auto_align = 1;
12633 }
12634
12635 void
12636 s_change_section (int ignore ATTRIBUTE_UNUSED)
12637 {
12638 #ifdef OBJ_ELF
12639 char *section_name;
12640 char c;
12641 char next_c = 0;
12642 int section_type;
12643 int section_flag;
12644 int section_entry_size;
12645 int section_alignment;
12646
12647 if (!IS_ELF)
12648 return;
12649
12650 section_name = input_line_pointer;
12651 c = get_symbol_end ();
12652 if (c)
12653 next_c = *(input_line_pointer + 1);
12654
12655 /* Do we have .section Name<,"flags">? */
12656 if (c != ',' || (c == ',' && next_c == '"'))
12657 {
12658 /* just after name is now '\0'. */
12659 *input_line_pointer = c;
12660 input_line_pointer = section_name;
12661 obj_elf_section (ignore);
12662 return;
12663 }
12664 input_line_pointer++;
12665
12666 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12667 if (c == ',')
12668 section_type = get_absolute_expression ();
12669 else
12670 section_type = 0;
12671 if (*input_line_pointer++ == ',')
12672 section_flag = get_absolute_expression ();
12673 else
12674 section_flag = 0;
12675 if (*input_line_pointer++ == ',')
12676 section_entry_size = get_absolute_expression ();
12677 else
12678 section_entry_size = 0;
12679 if (*input_line_pointer++ == ',')
12680 section_alignment = get_absolute_expression ();
12681 else
12682 section_alignment = 0;
12683 /* FIXME: really ignore? */
12684 (void) section_alignment;
12685
12686 section_name = xstrdup (section_name);
12687
12688 /* When using the generic form of .section (as implemented by obj-elf.c),
12689 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12690 traditionally had to fall back on the more common @progbits instead.
12691
12692 There's nothing really harmful in this, since bfd will correct
12693 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12694 means that, for backwards compatibility, the special_section entries
12695 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12696
12697 Even so, we shouldn't force users of the MIPS .section syntax to
12698 incorrectly label the sections as SHT_PROGBITS. The best compromise
12699 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12700 generic type-checking code. */
12701 if (section_type == SHT_MIPS_DWARF)
12702 section_type = SHT_PROGBITS;
12703
12704 obj_elf_change_section (section_name, section_type, section_flag,
12705 section_entry_size, 0, 0, 0);
12706
12707 if (now_seg->name != section_name)
12708 free (section_name);
12709 #endif /* OBJ_ELF */
12710 }
12711
12712 void
12713 mips_enable_auto_align (void)
12714 {
12715 auto_align = 1;
12716 }
12717
12718 static void
12719 s_cons (int log_size)
12720 {
12721 segment_info_type *si = seg_info (now_seg);
12722 struct insn_label_list *l = si->label_list;
12723 symbolS *label;
12724
12725 label = l != NULL ? l->label : NULL;
12726 mips_emit_delays ();
12727 if (log_size > 0 && auto_align)
12728 mips_align (log_size, 0, label);
12729 mips_clear_insn_labels ();
12730 cons (1 << log_size);
12731 }
12732
12733 static void
12734 s_float_cons (int type)
12735 {
12736 segment_info_type *si = seg_info (now_seg);
12737 struct insn_label_list *l = si->label_list;
12738 symbolS *label;
12739
12740 label = l != NULL ? l->label : NULL;
12741
12742 mips_emit_delays ();
12743
12744 if (auto_align)
12745 {
12746 if (type == 'd')
12747 mips_align (3, 0, label);
12748 else
12749 mips_align (2, 0, label);
12750 }
12751
12752 mips_clear_insn_labels ();
12753
12754 float_cons (type);
12755 }
12756
12757 /* Handle .globl. We need to override it because on Irix 5 you are
12758 permitted to say
12759 .globl foo .text
12760 where foo is an undefined symbol, to mean that foo should be
12761 considered to be the address of a function. */
12762
12763 static void
12764 s_mips_globl (int x ATTRIBUTE_UNUSED)
12765 {
12766 char *name;
12767 int c;
12768 symbolS *symbolP;
12769 flagword flag;
12770
12771 do
12772 {
12773 name = input_line_pointer;
12774 c = get_symbol_end ();
12775 symbolP = symbol_find_or_make (name);
12776 S_SET_EXTERNAL (symbolP);
12777
12778 *input_line_pointer = c;
12779 SKIP_WHITESPACE ();
12780
12781 /* On Irix 5, every global symbol that is not explicitly labelled as
12782 being a function is apparently labelled as being an object. */
12783 flag = BSF_OBJECT;
12784
12785 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12786 && (*input_line_pointer != ','))
12787 {
12788 char *secname;
12789 asection *sec;
12790
12791 secname = input_line_pointer;
12792 c = get_symbol_end ();
12793 sec = bfd_get_section_by_name (stdoutput, secname);
12794 if (sec == NULL)
12795 as_bad (_("%s: no such section"), secname);
12796 *input_line_pointer = c;
12797
12798 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12799 flag = BSF_FUNCTION;
12800 }
12801
12802 symbol_get_bfdsym (symbolP)->flags |= flag;
12803
12804 c = *input_line_pointer;
12805 if (c == ',')
12806 {
12807 input_line_pointer++;
12808 SKIP_WHITESPACE ();
12809 if (is_end_of_line[(unsigned char) *input_line_pointer])
12810 c = '\n';
12811 }
12812 }
12813 while (c == ',');
12814
12815 demand_empty_rest_of_line ();
12816 }
12817
12818 static void
12819 s_option (int x ATTRIBUTE_UNUSED)
12820 {
12821 char *opt;
12822 char c;
12823
12824 opt = input_line_pointer;
12825 c = get_symbol_end ();
12826
12827 if (*opt == 'O')
12828 {
12829 /* FIXME: What does this mean? */
12830 }
12831 else if (strncmp (opt, "pic", 3) == 0)
12832 {
12833 int i;
12834
12835 i = atoi (opt + 3);
12836 if (i == 0)
12837 mips_pic = NO_PIC;
12838 else if (i == 2)
12839 {
12840 mips_pic = SVR4_PIC;
12841 mips_abicalls = TRUE;
12842 }
12843 else
12844 as_bad (_(".option pic%d not supported"), i);
12845
12846 if (mips_pic == SVR4_PIC)
12847 {
12848 if (g_switch_seen && g_switch_value != 0)
12849 as_warn (_("-G may not be used with SVR4 PIC code"));
12850 g_switch_value = 0;
12851 bfd_set_gp_size (stdoutput, 0);
12852 }
12853 }
12854 else
12855 as_warn (_("Unrecognized option \"%s\""), opt);
12856
12857 *input_line_pointer = c;
12858 demand_empty_rest_of_line ();
12859 }
12860
12861 /* This structure is used to hold a stack of .set values. */
12862
12863 struct mips_option_stack
12864 {
12865 struct mips_option_stack *next;
12866 struct mips_set_options options;
12867 };
12868
12869 static struct mips_option_stack *mips_opts_stack;
12870
12871 /* Handle the .set pseudo-op. */
12872
12873 static void
12874 s_mipsset (int x ATTRIBUTE_UNUSED)
12875 {
12876 char *name = input_line_pointer, ch;
12877
12878 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12879 ++input_line_pointer;
12880 ch = *input_line_pointer;
12881 *input_line_pointer = '\0';
12882
12883 if (strcmp (name, "reorder") == 0)
12884 {
12885 if (mips_opts.noreorder)
12886 end_noreorder ();
12887 }
12888 else if (strcmp (name, "noreorder") == 0)
12889 {
12890 if (!mips_opts.noreorder)
12891 start_noreorder ();
12892 }
12893 else if (strncmp (name, "at=", 3) == 0)
12894 {
12895 char *s = name + 3;
12896
12897 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12898 as_bad (_("Unrecognized register name `%s'"), s);
12899 }
12900 else if (strcmp (name, "at") == 0)
12901 {
12902 mips_opts.at = ATREG;
12903 }
12904 else if (strcmp (name, "noat") == 0)
12905 {
12906 mips_opts.at = ZERO;
12907 }
12908 else if (strcmp (name, "macro") == 0)
12909 {
12910 mips_opts.warn_about_macros = 0;
12911 }
12912 else if (strcmp (name, "nomacro") == 0)
12913 {
12914 if (mips_opts.noreorder == 0)
12915 as_bad (_("`noreorder' must be set before `nomacro'"));
12916 mips_opts.warn_about_macros = 1;
12917 }
12918 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12919 {
12920 mips_opts.nomove = 0;
12921 }
12922 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12923 {
12924 mips_opts.nomove = 1;
12925 }
12926 else if (strcmp (name, "bopt") == 0)
12927 {
12928 mips_opts.nobopt = 0;
12929 }
12930 else if (strcmp (name, "nobopt") == 0)
12931 {
12932 mips_opts.nobopt = 1;
12933 }
12934 else if (strcmp (name, "gp=default") == 0)
12935 mips_opts.gp32 = file_mips_gp32;
12936 else if (strcmp (name, "gp=32") == 0)
12937 mips_opts.gp32 = 1;
12938 else if (strcmp (name, "gp=64") == 0)
12939 {
12940 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12941 as_warn (_("%s isa does not support 64-bit registers"),
12942 mips_cpu_info_from_isa (mips_opts.isa)->name);
12943 mips_opts.gp32 = 0;
12944 }
12945 else if (strcmp (name, "fp=default") == 0)
12946 mips_opts.fp32 = file_mips_fp32;
12947 else if (strcmp (name, "fp=32") == 0)
12948 mips_opts.fp32 = 1;
12949 else if (strcmp (name, "fp=64") == 0)
12950 {
12951 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12952 as_warn (_("%s isa does not support 64-bit floating point registers"),
12953 mips_cpu_info_from_isa (mips_opts.isa)->name);
12954 mips_opts.fp32 = 0;
12955 }
12956 else if (strcmp (name, "softfloat") == 0)
12957 mips_opts.soft_float = 1;
12958 else if (strcmp (name, "hardfloat") == 0)
12959 mips_opts.soft_float = 0;
12960 else if (strcmp (name, "singlefloat") == 0)
12961 mips_opts.single_float = 1;
12962 else if (strcmp (name, "doublefloat") == 0)
12963 mips_opts.single_float = 0;
12964 else if (strcmp (name, "mips16") == 0
12965 || strcmp (name, "MIPS-16") == 0)
12966 mips_opts.mips16 = 1;
12967 else if (strcmp (name, "nomips16") == 0
12968 || strcmp (name, "noMIPS-16") == 0)
12969 mips_opts.mips16 = 0;
12970 else if (strcmp (name, "smartmips") == 0)
12971 {
12972 if (!ISA_SUPPORTS_SMARTMIPS)
12973 as_warn (_("%s ISA does not support SmartMIPS ASE"),
12974 mips_cpu_info_from_isa (mips_opts.isa)->name);
12975 mips_opts.ase_smartmips = 1;
12976 }
12977 else if (strcmp (name, "nosmartmips") == 0)
12978 mips_opts.ase_smartmips = 0;
12979 else if (strcmp (name, "mips3d") == 0)
12980 mips_opts.ase_mips3d = 1;
12981 else if (strcmp (name, "nomips3d") == 0)
12982 mips_opts.ase_mips3d = 0;
12983 else if (strcmp (name, "mdmx") == 0)
12984 mips_opts.ase_mdmx = 1;
12985 else if (strcmp (name, "nomdmx") == 0)
12986 mips_opts.ase_mdmx = 0;
12987 else if (strcmp (name, "dsp") == 0)
12988 {
12989 if (!ISA_SUPPORTS_DSP_ASE)
12990 as_warn (_("%s ISA does not support DSP ASE"),
12991 mips_cpu_info_from_isa (mips_opts.isa)->name);
12992 mips_opts.ase_dsp = 1;
12993 mips_opts.ase_dspr2 = 0;
12994 }
12995 else if (strcmp (name, "nodsp") == 0)
12996 {
12997 mips_opts.ase_dsp = 0;
12998 mips_opts.ase_dspr2 = 0;
12999 }
13000 else if (strcmp (name, "dspr2") == 0)
13001 {
13002 if (!ISA_SUPPORTS_DSPR2_ASE)
13003 as_warn (_("%s ISA does not support DSP R2 ASE"),
13004 mips_cpu_info_from_isa (mips_opts.isa)->name);
13005 mips_opts.ase_dspr2 = 1;
13006 mips_opts.ase_dsp = 1;
13007 }
13008 else if (strcmp (name, "nodspr2") == 0)
13009 {
13010 mips_opts.ase_dspr2 = 0;
13011 mips_opts.ase_dsp = 0;
13012 }
13013 else if (strcmp (name, "mt") == 0)
13014 {
13015 if (!ISA_SUPPORTS_MT_ASE)
13016 as_warn (_("%s ISA does not support MT ASE"),
13017 mips_cpu_info_from_isa (mips_opts.isa)->name);
13018 mips_opts.ase_mt = 1;
13019 }
13020 else if (strcmp (name, "nomt") == 0)
13021 mips_opts.ase_mt = 0;
13022 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13023 {
13024 int reset = 0;
13025
13026 /* Permit the user to change the ISA and architecture on the fly.
13027 Needless to say, misuse can cause serious problems. */
13028 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13029 {
13030 reset = 1;
13031 mips_opts.isa = file_mips_isa;
13032 mips_opts.arch = file_mips_arch;
13033 }
13034 else if (strncmp (name, "arch=", 5) == 0)
13035 {
13036 const struct mips_cpu_info *p;
13037
13038 p = mips_parse_cpu("internal use", name + 5);
13039 if (!p)
13040 as_bad (_("unknown architecture %s"), name + 5);
13041 else
13042 {
13043 mips_opts.arch = p->cpu;
13044 mips_opts.isa = p->isa;
13045 }
13046 }
13047 else if (strncmp (name, "mips", 4) == 0)
13048 {
13049 const struct mips_cpu_info *p;
13050
13051 p = mips_parse_cpu("internal use", name);
13052 if (!p)
13053 as_bad (_("unknown ISA level %s"), name + 4);
13054 else
13055 {
13056 mips_opts.arch = p->cpu;
13057 mips_opts.isa = p->isa;
13058 }
13059 }
13060 else
13061 as_bad (_("unknown ISA or architecture %s"), name);
13062
13063 switch (mips_opts.isa)
13064 {
13065 case 0:
13066 break;
13067 case ISA_MIPS1:
13068 case ISA_MIPS2:
13069 case ISA_MIPS32:
13070 case ISA_MIPS32R2:
13071 mips_opts.gp32 = 1;
13072 mips_opts.fp32 = 1;
13073 break;
13074 case ISA_MIPS3:
13075 case ISA_MIPS4:
13076 case ISA_MIPS5:
13077 case ISA_MIPS64:
13078 case ISA_MIPS64R2:
13079 mips_opts.gp32 = 0;
13080 mips_opts.fp32 = 0;
13081 break;
13082 default:
13083 as_bad (_("unknown ISA level %s"), name + 4);
13084 break;
13085 }
13086 if (reset)
13087 {
13088 mips_opts.gp32 = file_mips_gp32;
13089 mips_opts.fp32 = file_mips_fp32;
13090 }
13091 }
13092 else if (strcmp (name, "autoextend") == 0)
13093 mips_opts.noautoextend = 0;
13094 else if (strcmp (name, "noautoextend") == 0)
13095 mips_opts.noautoextend = 1;
13096 else if (strcmp (name, "push") == 0)
13097 {
13098 struct mips_option_stack *s;
13099
13100 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13101 s->next = mips_opts_stack;
13102 s->options = mips_opts;
13103 mips_opts_stack = s;
13104 }
13105 else if (strcmp (name, "pop") == 0)
13106 {
13107 struct mips_option_stack *s;
13108
13109 s = mips_opts_stack;
13110 if (s == NULL)
13111 as_bad (_(".set pop with no .set push"));
13112 else
13113 {
13114 /* If we're changing the reorder mode we need to handle
13115 delay slots correctly. */
13116 if (s->options.noreorder && ! mips_opts.noreorder)
13117 start_noreorder ();
13118 else if (! s->options.noreorder && mips_opts.noreorder)
13119 end_noreorder ();
13120
13121 mips_opts = s->options;
13122 mips_opts_stack = s->next;
13123 free (s);
13124 }
13125 }
13126 else if (strcmp (name, "sym32") == 0)
13127 mips_opts.sym32 = TRUE;
13128 else if (strcmp (name, "nosym32") == 0)
13129 mips_opts.sym32 = FALSE;
13130 else if (strchr (name, ','))
13131 {
13132 /* Generic ".set" directive; use the generic handler. */
13133 *input_line_pointer = ch;
13134 input_line_pointer = name;
13135 s_set (0);
13136 return;
13137 }
13138 else
13139 {
13140 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13141 }
13142 *input_line_pointer = ch;
13143 demand_empty_rest_of_line ();
13144 }
13145
13146 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13147 .option pic2. It means to generate SVR4 PIC calls. */
13148
13149 static void
13150 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13151 {
13152 mips_pic = SVR4_PIC;
13153 mips_abicalls = TRUE;
13154
13155 if (g_switch_seen && g_switch_value != 0)
13156 as_warn (_("-G may not be used with SVR4 PIC code"));
13157 g_switch_value = 0;
13158
13159 bfd_set_gp_size (stdoutput, 0);
13160 demand_empty_rest_of_line ();
13161 }
13162
13163 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13164 PIC code. It sets the $gp register for the function based on the
13165 function address, which is in the register named in the argument.
13166 This uses a relocation against _gp_disp, which is handled specially
13167 by the linker. The result is:
13168 lui $gp,%hi(_gp_disp)
13169 addiu $gp,$gp,%lo(_gp_disp)
13170 addu $gp,$gp,.cpload argument
13171 The .cpload argument is normally $25 == $t9.
13172
13173 The -mno-shared option changes this to:
13174 lui $gp,%hi(__gnu_local_gp)
13175 addiu $gp,$gp,%lo(__gnu_local_gp)
13176 and the argument is ignored. This saves an instruction, but the
13177 resulting code is not position independent; it uses an absolute
13178 address for __gnu_local_gp. Thus code assembled with -mno-shared
13179 can go into an ordinary executable, but not into a shared library. */
13180
13181 static void
13182 s_cpload (int ignore ATTRIBUTE_UNUSED)
13183 {
13184 expressionS ex;
13185 int reg;
13186 int in_shared;
13187
13188 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13189 .cpload is ignored. */
13190 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13191 {
13192 s_ignore (0);
13193 return;
13194 }
13195
13196 /* .cpload should be in a .set noreorder section. */
13197 if (mips_opts.noreorder == 0)
13198 as_warn (_(".cpload not in noreorder section"));
13199
13200 reg = tc_get_register (0);
13201
13202 /* If we need to produce a 64-bit address, we are better off using
13203 the default instruction sequence. */
13204 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13205
13206 ex.X_op = O_symbol;
13207 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13208 "__gnu_local_gp");
13209 ex.X_op_symbol = NULL;
13210 ex.X_add_number = 0;
13211
13212 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13213 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13214
13215 macro_start ();
13216 macro_build_lui (&ex, mips_gp_register);
13217 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13218 mips_gp_register, BFD_RELOC_LO16);
13219 if (in_shared)
13220 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13221 mips_gp_register, reg);
13222 macro_end ();
13223
13224 demand_empty_rest_of_line ();
13225 }
13226
13227 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13228 .cpsetup $reg1, offset|$reg2, label
13229
13230 If offset is given, this results in:
13231 sd $gp, offset($sp)
13232 lui $gp, %hi(%neg(%gp_rel(label)))
13233 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13234 daddu $gp, $gp, $reg1
13235
13236 If $reg2 is given, this results in:
13237 daddu $reg2, $gp, $0
13238 lui $gp, %hi(%neg(%gp_rel(label)))
13239 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13240 daddu $gp, $gp, $reg1
13241 $reg1 is normally $25 == $t9.
13242
13243 The -mno-shared option replaces the last three instructions with
13244 lui $gp,%hi(_gp)
13245 addiu $gp,$gp,%lo(_gp) */
13246
13247 static void
13248 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13249 {
13250 expressionS ex_off;
13251 expressionS ex_sym;
13252 int reg1;
13253
13254 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13255 We also need NewABI support. */
13256 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13257 {
13258 s_ignore (0);
13259 return;
13260 }
13261
13262 reg1 = tc_get_register (0);
13263 SKIP_WHITESPACE ();
13264 if (*input_line_pointer != ',')
13265 {
13266 as_bad (_("missing argument separator ',' for .cpsetup"));
13267 return;
13268 }
13269 else
13270 ++input_line_pointer;
13271 SKIP_WHITESPACE ();
13272 if (*input_line_pointer == '$')
13273 {
13274 mips_cpreturn_register = tc_get_register (0);
13275 mips_cpreturn_offset = -1;
13276 }
13277 else
13278 {
13279 mips_cpreturn_offset = get_absolute_expression ();
13280 mips_cpreturn_register = -1;
13281 }
13282 SKIP_WHITESPACE ();
13283 if (*input_line_pointer != ',')
13284 {
13285 as_bad (_("missing argument separator ',' for .cpsetup"));
13286 return;
13287 }
13288 else
13289 ++input_line_pointer;
13290 SKIP_WHITESPACE ();
13291 expression (&ex_sym);
13292
13293 macro_start ();
13294 if (mips_cpreturn_register == -1)
13295 {
13296 ex_off.X_op = O_constant;
13297 ex_off.X_add_symbol = NULL;
13298 ex_off.X_op_symbol = NULL;
13299 ex_off.X_add_number = mips_cpreturn_offset;
13300
13301 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13302 BFD_RELOC_LO16, SP);
13303 }
13304 else
13305 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13306 mips_gp_register, 0);
13307
13308 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13309 {
13310 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13311 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13312 BFD_RELOC_HI16_S);
13313
13314 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13315 mips_gp_register, -1, BFD_RELOC_GPREL16,
13316 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13317
13318 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13319 mips_gp_register, reg1);
13320 }
13321 else
13322 {
13323 expressionS ex;
13324
13325 ex.X_op = O_symbol;
13326 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13327 ex.X_op_symbol = NULL;
13328 ex.X_add_number = 0;
13329
13330 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13331 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13332
13333 macro_build_lui (&ex, mips_gp_register);
13334 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13335 mips_gp_register, BFD_RELOC_LO16);
13336 }
13337
13338 macro_end ();
13339
13340 demand_empty_rest_of_line ();
13341 }
13342
13343 static void
13344 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13345 {
13346 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13347 .cplocal is ignored. */
13348 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13349 {
13350 s_ignore (0);
13351 return;
13352 }
13353
13354 mips_gp_register = tc_get_register (0);
13355 demand_empty_rest_of_line ();
13356 }
13357
13358 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13359 offset from $sp. The offset is remembered, and after making a PIC
13360 call $gp is restored from that location. */
13361
13362 static void
13363 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13364 {
13365 expressionS ex;
13366
13367 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13368 .cprestore is ignored. */
13369 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13370 {
13371 s_ignore (0);
13372 return;
13373 }
13374
13375 mips_cprestore_offset = get_absolute_expression ();
13376 mips_cprestore_valid = 1;
13377
13378 ex.X_op = O_constant;
13379 ex.X_add_symbol = NULL;
13380 ex.X_op_symbol = NULL;
13381 ex.X_add_number = mips_cprestore_offset;
13382
13383 macro_start ();
13384 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13385 SP, HAVE_64BIT_ADDRESSES);
13386 macro_end ();
13387
13388 demand_empty_rest_of_line ();
13389 }
13390
13391 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13392 was given in the preceding .cpsetup, it results in:
13393 ld $gp, offset($sp)
13394
13395 If a register $reg2 was given there, it results in:
13396 daddu $gp, $reg2, $0 */
13397
13398 static void
13399 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13400 {
13401 expressionS ex;
13402
13403 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13404 We also need NewABI support. */
13405 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13406 {
13407 s_ignore (0);
13408 return;
13409 }
13410
13411 macro_start ();
13412 if (mips_cpreturn_register == -1)
13413 {
13414 ex.X_op = O_constant;
13415 ex.X_add_symbol = NULL;
13416 ex.X_op_symbol = NULL;
13417 ex.X_add_number = mips_cpreturn_offset;
13418
13419 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13420 }
13421 else
13422 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13423 mips_cpreturn_register, 0);
13424 macro_end ();
13425
13426 demand_empty_rest_of_line ();
13427 }
13428
13429 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13430 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13431 use in DWARF debug information. */
13432
13433 static void
13434 s_dtprel_internal (size_t bytes)
13435 {
13436 expressionS ex;
13437 char *p;
13438
13439 expression (&ex);
13440
13441 if (ex.X_op != O_symbol)
13442 {
13443 as_bad (_("Unsupported use of %s"), (bytes == 8
13444 ? ".dtpreldword"
13445 : ".dtprelword"));
13446 ignore_rest_of_line ();
13447 }
13448
13449 p = frag_more (bytes);
13450 md_number_to_chars (p, 0, bytes);
13451 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13452 (bytes == 8
13453 ? BFD_RELOC_MIPS_TLS_DTPREL64
13454 : BFD_RELOC_MIPS_TLS_DTPREL32));
13455
13456 demand_empty_rest_of_line ();
13457 }
13458
13459 /* Handle .dtprelword. */
13460
13461 static void
13462 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13463 {
13464 s_dtprel_internal (4);
13465 }
13466
13467 /* Handle .dtpreldword. */
13468
13469 static void
13470 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13471 {
13472 s_dtprel_internal (8);
13473 }
13474
13475 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13476 code. It sets the offset to use in gp_rel relocations. */
13477
13478 static void
13479 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13480 {
13481 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13482 We also need NewABI support. */
13483 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13484 {
13485 s_ignore (0);
13486 return;
13487 }
13488
13489 mips_gprel_offset = get_absolute_expression ();
13490
13491 demand_empty_rest_of_line ();
13492 }
13493
13494 /* Handle the .gpword pseudo-op. This is used when generating PIC
13495 code. It generates a 32 bit GP relative reloc. */
13496
13497 static void
13498 s_gpword (int ignore ATTRIBUTE_UNUSED)
13499 {
13500 segment_info_type *si;
13501 struct insn_label_list *l;
13502 symbolS *label;
13503 expressionS ex;
13504 char *p;
13505
13506 /* When not generating PIC code, this is treated as .word. */
13507 if (mips_pic != SVR4_PIC)
13508 {
13509 s_cons (2);
13510 return;
13511 }
13512
13513 si = seg_info (now_seg);
13514 l = si->label_list;
13515 label = l != NULL ? l->label : NULL;
13516 mips_emit_delays ();
13517 if (auto_align)
13518 mips_align (2, 0, label);
13519 mips_clear_insn_labels ();
13520
13521 expression (&ex);
13522
13523 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13524 {
13525 as_bad (_("Unsupported use of .gpword"));
13526 ignore_rest_of_line ();
13527 }
13528
13529 p = frag_more (4);
13530 md_number_to_chars (p, 0, 4);
13531 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13532 BFD_RELOC_GPREL32);
13533
13534 demand_empty_rest_of_line ();
13535 }
13536
13537 static void
13538 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13539 {
13540 segment_info_type *si;
13541 struct insn_label_list *l;
13542 symbolS *label;
13543 expressionS ex;
13544 char *p;
13545
13546 /* When not generating PIC code, this is treated as .dword. */
13547 if (mips_pic != SVR4_PIC)
13548 {
13549 s_cons (3);
13550 return;
13551 }
13552
13553 si = seg_info (now_seg);
13554 l = si->label_list;
13555 label = l != NULL ? l->label : NULL;
13556 mips_emit_delays ();
13557 if (auto_align)
13558 mips_align (3, 0, label);
13559 mips_clear_insn_labels ();
13560
13561 expression (&ex);
13562
13563 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13564 {
13565 as_bad (_("Unsupported use of .gpdword"));
13566 ignore_rest_of_line ();
13567 }
13568
13569 p = frag_more (8);
13570 md_number_to_chars (p, 0, 8);
13571 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13572 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13573
13574 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13575 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13576 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13577
13578 demand_empty_rest_of_line ();
13579 }
13580
13581 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13582 tables in SVR4 PIC code. */
13583
13584 static void
13585 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13586 {
13587 int reg;
13588
13589 /* This is ignored when not generating SVR4 PIC code. */
13590 if (mips_pic != SVR4_PIC)
13591 {
13592 s_ignore (0);
13593 return;
13594 }
13595
13596 /* Add $gp to the register named as an argument. */
13597 macro_start ();
13598 reg = tc_get_register (0);
13599 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13600 macro_end ();
13601
13602 demand_empty_rest_of_line ();
13603 }
13604
13605 /* Handle the .insn pseudo-op. This marks instruction labels in
13606 mips16 mode. This permits the linker to handle them specially,
13607 such as generating jalx instructions when needed. We also make
13608 them odd for the duration of the assembly, in order to generate the
13609 right sort of code. We will make them even in the adjust_symtab
13610 routine, while leaving them marked. This is convenient for the
13611 debugger and the disassembler. The linker knows to make them odd
13612 again. */
13613
13614 static void
13615 s_insn (int ignore ATTRIBUTE_UNUSED)
13616 {
13617 mips16_mark_labels ();
13618
13619 demand_empty_rest_of_line ();
13620 }
13621
13622 /* Handle a .stabn directive. We need these in order to mark a label
13623 as being a mips16 text label correctly. Sometimes the compiler
13624 will emit a label, followed by a .stabn, and then switch sections.
13625 If the label and .stabn are in mips16 mode, then the label is
13626 really a mips16 text label. */
13627
13628 static void
13629 s_mips_stab (int type)
13630 {
13631 if (type == 'n')
13632 mips16_mark_labels ();
13633
13634 s_stab (type);
13635 }
13636
13637 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13638
13639 static void
13640 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13641 {
13642 char *name;
13643 int c;
13644 symbolS *symbolP;
13645 expressionS exp;
13646
13647 name = input_line_pointer;
13648 c = get_symbol_end ();
13649 symbolP = symbol_find_or_make (name);
13650 S_SET_WEAK (symbolP);
13651 *input_line_pointer = c;
13652
13653 SKIP_WHITESPACE ();
13654
13655 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13656 {
13657 if (S_IS_DEFINED (symbolP))
13658 {
13659 as_bad (_("ignoring attempt to redefine symbol %s"),
13660 S_GET_NAME (symbolP));
13661 ignore_rest_of_line ();
13662 return;
13663 }
13664
13665 if (*input_line_pointer == ',')
13666 {
13667 ++input_line_pointer;
13668 SKIP_WHITESPACE ();
13669 }
13670
13671 expression (&exp);
13672 if (exp.X_op != O_symbol)
13673 {
13674 as_bad (_("bad .weakext directive"));
13675 ignore_rest_of_line ();
13676 return;
13677 }
13678 symbol_set_value_expression (symbolP, &exp);
13679 }
13680
13681 demand_empty_rest_of_line ();
13682 }
13683
13684 /* Parse a register string into a number. Called from the ECOFF code
13685 to parse .frame. The argument is non-zero if this is the frame
13686 register, so that we can record it in mips_frame_reg. */
13687
13688 int
13689 tc_get_register (int frame)
13690 {
13691 unsigned int reg;
13692
13693 SKIP_WHITESPACE ();
13694 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13695 reg = 0;
13696 if (frame)
13697 {
13698 mips_frame_reg = reg != 0 ? reg : SP;
13699 mips_frame_reg_valid = 1;
13700 mips_cprestore_valid = 0;
13701 }
13702 return reg;
13703 }
13704
13705 valueT
13706 md_section_align (asection *seg, valueT addr)
13707 {
13708 int align = bfd_get_section_alignment (stdoutput, seg);
13709
13710 if (IS_ELF)
13711 {
13712 /* We don't need to align ELF sections to the full alignment.
13713 However, Irix 5 may prefer that we align them at least to a 16
13714 byte boundary. We don't bother to align the sections if we
13715 are targeted for an embedded system. */
13716 if (strncmp (TARGET_OS, "elf", 3) == 0)
13717 return addr;
13718 if (align > 4)
13719 align = 4;
13720 }
13721
13722 return ((addr + (1 << align) - 1) & (-1 << align));
13723 }
13724
13725 /* Utility routine, called from above as well. If called while the
13726 input file is still being read, it's only an approximation. (For
13727 example, a symbol may later become defined which appeared to be
13728 undefined earlier.) */
13729
13730 static int
13731 nopic_need_relax (symbolS *sym, int before_relaxing)
13732 {
13733 if (sym == 0)
13734 return 0;
13735
13736 if (g_switch_value > 0)
13737 {
13738 const char *symname;
13739 int change;
13740
13741 /* Find out whether this symbol can be referenced off the $gp
13742 register. It can be if it is smaller than the -G size or if
13743 it is in the .sdata or .sbss section. Certain symbols can
13744 not be referenced off the $gp, although it appears as though
13745 they can. */
13746 symname = S_GET_NAME (sym);
13747 if (symname != (const char *) NULL
13748 && (strcmp (symname, "eprol") == 0
13749 || strcmp (symname, "etext") == 0
13750 || strcmp (symname, "_gp") == 0
13751 || strcmp (symname, "edata") == 0
13752 || strcmp (symname, "_fbss") == 0
13753 || strcmp (symname, "_fdata") == 0
13754 || strcmp (symname, "_ftext") == 0
13755 || strcmp (symname, "end") == 0
13756 || strcmp (symname, "_gp_disp") == 0))
13757 change = 1;
13758 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13759 && (0
13760 #ifndef NO_ECOFF_DEBUGGING
13761 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13762 && (symbol_get_obj (sym)->ecoff_extern_size
13763 <= g_switch_value))
13764 #endif
13765 /* We must defer this decision until after the whole
13766 file has been read, since there might be a .extern
13767 after the first use of this symbol. */
13768 || (before_relaxing
13769 #ifndef NO_ECOFF_DEBUGGING
13770 && symbol_get_obj (sym)->ecoff_extern_size == 0
13771 #endif
13772 && S_GET_VALUE (sym) == 0)
13773 || (S_GET_VALUE (sym) != 0
13774 && S_GET_VALUE (sym) <= g_switch_value)))
13775 change = 0;
13776 else
13777 {
13778 const char *segname;
13779
13780 segname = segment_name (S_GET_SEGMENT (sym));
13781 gas_assert (strcmp (segname, ".lit8") != 0
13782 && strcmp (segname, ".lit4") != 0);
13783 change = (strcmp (segname, ".sdata") != 0
13784 && strcmp (segname, ".sbss") != 0
13785 && strncmp (segname, ".sdata.", 7) != 0
13786 && strncmp (segname, ".sbss.", 6) != 0
13787 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13788 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13789 }
13790 return change;
13791 }
13792 else
13793 /* We are not optimizing for the $gp register. */
13794 return 1;
13795 }
13796
13797
13798 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13799
13800 static bfd_boolean
13801 pic_need_relax (symbolS *sym, asection *segtype)
13802 {
13803 asection *symsec;
13804
13805 /* Handle the case of a symbol equated to another symbol. */
13806 while (symbol_equated_reloc_p (sym))
13807 {
13808 symbolS *n;
13809
13810 /* It's possible to get a loop here in a badly written program. */
13811 n = symbol_get_value_expression (sym)->X_add_symbol;
13812 if (n == sym)
13813 break;
13814 sym = n;
13815 }
13816
13817 if (symbol_section_p (sym))
13818 return TRUE;
13819
13820 symsec = S_GET_SEGMENT (sym);
13821
13822 /* This must duplicate the test in adjust_reloc_syms. */
13823 return (symsec != &bfd_und_section
13824 && symsec != &bfd_abs_section
13825 && !bfd_is_com_section (symsec)
13826 && !s_is_linkonce (sym, segtype)
13827 #ifdef OBJ_ELF
13828 /* A global or weak symbol is treated as external. */
13829 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13830 #endif
13831 );
13832 }
13833
13834
13835 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13836 extended opcode. SEC is the section the frag is in. */
13837
13838 static int
13839 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13840 {
13841 int type;
13842 const struct mips16_immed_operand *op;
13843 offsetT val;
13844 int mintiny, maxtiny;
13845 segT symsec;
13846 fragS *sym_frag;
13847
13848 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13849 return 0;
13850 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13851 return 1;
13852
13853 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13854 op = mips16_immed_operands;
13855 while (op->type != type)
13856 {
13857 ++op;
13858 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13859 }
13860
13861 if (op->unsp)
13862 {
13863 if (type == '<' || type == '>' || type == '[' || type == ']')
13864 {
13865 mintiny = 1;
13866 maxtiny = 1 << op->nbits;
13867 }
13868 else
13869 {
13870 mintiny = 0;
13871 maxtiny = (1 << op->nbits) - 1;
13872 }
13873 }
13874 else
13875 {
13876 mintiny = - (1 << (op->nbits - 1));
13877 maxtiny = (1 << (op->nbits - 1)) - 1;
13878 }
13879
13880 sym_frag = symbol_get_frag (fragp->fr_symbol);
13881 val = S_GET_VALUE (fragp->fr_symbol);
13882 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13883
13884 if (op->pcrel)
13885 {
13886 addressT addr;
13887
13888 /* We won't have the section when we are called from
13889 mips_relax_frag. However, we will always have been called
13890 from md_estimate_size_before_relax first. If this is a
13891 branch to a different section, we mark it as such. If SEC is
13892 NULL, and the frag is not marked, then it must be a branch to
13893 the same section. */
13894 if (sec == NULL)
13895 {
13896 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13897 return 1;
13898 }
13899 else
13900 {
13901 /* Must have been called from md_estimate_size_before_relax. */
13902 if (symsec != sec)
13903 {
13904 fragp->fr_subtype =
13905 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13906
13907 /* FIXME: We should support this, and let the linker
13908 catch branches and loads that are out of range. */
13909 as_bad_where (fragp->fr_file, fragp->fr_line,
13910 _("unsupported PC relative reference to different section"));
13911
13912 return 1;
13913 }
13914 if (fragp != sym_frag && sym_frag->fr_address == 0)
13915 /* Assume non-extended on the first relaxation pass.
13916 The address we have calculated will be bogus if this is
13917 a forward branch to another frag, as the forward frag
13918 will have fr_address == 0. */
13919 return 0;
13920 }
13921
13922 /* In this case, we know for sure that the symbol fragment is in
13923 the same section. If the relax_marker of the symbol fragment
13924 differs from the relax_marker of this fragment, we have not
13925 yet adjusted the symbol fragment fr_address. We want to add
13926 in STRETCH in order to get a better estimate of the address.
13927 This particularly matters because of the shift bits. */
13928 if (stretch != 0
13929 && sym_frag->relax_marker != fragp->relax_marker)
13930 {
13931 fragS *f;
13932
13933 /* Adjust stretch for any alignment frag. Note that if have
13934 been expanding the earlier code, the symbol may be
13935 defined in what appears to be an earlier frag. FIXME:
13936 This doesn't handle the fr_subtype field, which specifies
13937 a maximum number of bytes to skip when doing an
13938 alignment. */
13939 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13940 {
13941 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13942 {
13943 if (stretch < 0)
13944 stretch = - ((- stretch)
13945 & ~ ((1 << (int) f->fr_offset) - 1));
13946 else
13947 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13948 if (stretch == 0)
13949 break;
13950 }
13951 }
13952 if (f != NULL)
13953 val += stretch;
13954 }
13955
13956 addr = fragp->fr_address + fragp->fr_fix;
13957
13958 /* The base address rules are complicated. The base address of
13959 a branch is the following instruction. The base address of a
13960 PC relative load or add is the instruction itself, but if it
13961 is in a delay slot (in which case it can not be extended) use
13962 the address of the instruction whose delay slot it is in. */
13963 if (type == 'p' || type == 'q')
13964 {
13965 addr += 2;
13966
13967 /* If we are currently assuming that this frag should be
13968 extended, then, the current address is two bytes
13969 higher. */
13970 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13971 addr += 2;
13972
13973 /* Ignore the low bit in the target, since it will be set
13974 for a text label. */
13975 if ((val & 1) != 0)
13976 --val;
13977 }
13978 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13979 addr -= 4;
13980 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13981 addr -= 2;
13982
13983 val -= addr & ~ ((1 << op->shift) - 1);
13984
13985 /* Branch offsets have an implicit 0 in the lowest bit. */
13986 if (type == 'p' || type == 'q')
13987 val /= 2;
13988
13989 /* If any of the shifted bits are set, we must use an extended
13990 opcode. If the address depends on the size of this
13991 instruction, this can lead to a loop, so we arrange to always
13992 use an extended opcode. We only check this when we are in
13993 the main relaxation loop, when SEC is NULL. */
13994 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13995 {
13996 fragp->fr_subtype =
13997 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13998 return 1;
13999 }
14000
14001 /* If we are about to mark a frag as extended because the value
14002 is precisely maxtiny + 1, then there is a chance of an
14003 infinite loop as in the following code:
14004 la $4,foo
14005 .skip 1020
14006 .align 2
14007 foo:
14008 In this case when the la is extended, foo is 0x3fc bytes
14009 away, so the la can be shrunk, but then foo is 0x400 away, so
14010 the la must be extended. To avoid this loop, we mark the
14011 frag as extended if it was small, and is about to become
14012 extended with a value of maxtiny + 1. */
14013 if (val == ((maxtiny + 1) << op->shift)
14014 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14015 && sec == NULL)
14016 {
14017 fragp->fr_subtype =
14018 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14019 return 1;
14020 }
14021 }
14022 else if (symsec != absolute_section && sec != NULL)
14023 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14024
14025 if ((val & ((1 << op->shift) - 1)) != 0
14026 || val < (mintiny << op->shift)
14027 || val > (maxtiny << op->shift))
14028 return 1;
14029 else
14030 return 0;
14031 }
14032
14033 /* Compute the length of a branch sequence, and adjust the
14034 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14035 worst-case length is computed, with UPDATE being used to indicate
14036 whether an unconditional (-1), branch-likely (+1) or regular (0)
14037 branch is to be computed. */
14038 static int
14039 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14040 {
14041 bfd_boolean toofar;
14042 int length;
14043
14044 if (fragp
14045 && S_IS_DEFINED (fragp->fr_symbol)
14046 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14047 {
14048 addressT addr;
14049 offsetT val;
14050
14051 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14052
14053 addr = fragp->fr_address + fragp->fr_fix + 4;
14054
14055 val -= addr;
14056
14057 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14058 }
14059 else if (fragp)
14060 /* If the symbol is not defined or it's in a different segment,
14061 assume the user knows what's going on and emit a short
14062 branch. */
14063 toofar = FALSE;
14064 else
14065 toofar = TRUE;
14066
14067 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14068 fragp->fr_subtype
14069 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14070 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14071 RELAX_BRANCH_LINK (fragp->fr_subtype),
14072 toofar);
14073
14074 length = 4;
14075 if (toofar)
14076 {
14077 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14078 length += 8;
14079
14080 if (mips_pic != NO_PIC)
14081 {
14082 /* Additional space for PIC loading of target address. */
14083 length += 8;
14084 if (mips_opts.isa == ISA_MIPS1)
14085 /* Additional space for $at-stabilizing nop. */
14086 length += 4;
14087 }
14088
14089 /* If branch is conditional. */
14090 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14091 length += 8;
14092 }
14093
14094 return length;
14095 }
14096
14097 /* Estimate the size of a frag before relaxing. Unless this is the
14098 mips16, we are not really relaxing here, and the final size is
14099 encoded in the subtype information. For the mips16, we have to
14100 decide whether we are using an extended opcode or not. */
14101
14102 int
14103 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14104 {
14105 int change;
14106
14107 if (RELAX_BRANCH_P (fragp->fr_subtype))
14108 {
14109
14110 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14111
14112 return fragp->fr_var;
14113 }
14114
14115 if (RELAX_MIPS16_P (fragp->fr_subtype))
14116 /* We don't want to modify the EXTENDED bit here; it might get us
14117 into infinite loops. We change it only in mips_relax_frag(). */
14118 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14119
14120 if (mips_pic == NO_PIC)
14121 change = nopic_need_relax (fragp->fr_symbol, 0);
14122 else if (mips_pic == SVR4_PIC)
14123 change = pic_need_relax (fragp->fr_symbol, segtype);
14124 else if (mips_pic == VXWORKS_PIC)
14125 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14126 change = 0;
14127 else
14128 abort ();
14129
14130 if (change)
14131 {
14132 fragp->fr_subtype |= RELAX_USE_SECOND;
14133 return -RELAX_FIRST (fragp->fr_subtype);
14134 }
14135 else
14136 return -RELAX_SECOND (fragp->fr_subtype);
14137 }
14138
14139 /* This is called to see whether a reloc against a defined symbol
14140 should be converted into a reloc against a section. */
14141
14142 int
14143 mips_fix_adjustable (fixS *fixp)
14144 {
14145 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14146 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14147 return 0;
14148
14149 if (fixp->fx_addsy == NULL)
14150 return 1;
14151
14152 /* If symbol SYM is in a mergeable section, relocations of the form
14153 SYM + 0 can usually be made section-relative. The mergeable data
14154 is then identified by the section offset rather than by the symbol.
14155
14156 However, if we're generating REL LO16 relocations, the offset is split
14157 between the LO16 and parterning high part relocation. The linker will
14158 need to recalculate the complete offset in order to correctly identify
14159 the merge data.
14160
14161 The linker has traditionally not looked for the parterning high part
14162 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14163 placed anywhere. Rather than break backwards compatibility by changing
14164 this, it seems better not to force the issue, and instead keep the
14165 original symbol. This will work with either linker behavior. */
14166 if ((lo16_reloc_p (fixp->fx_r_type)
14167 || reloc_needs_lo_p (fixp->fx_r_type))
14168 && HAVE_IN_PLACE_ADDENDS
14169 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14170 return 0;
14171
14172 /* There is no place to store an in-place offset for JALR relocations. */
14173 if (fixp->fx_r_type == BFD_RELOC_MIPS_JALR && HAVE_IN_PLACE_ADDENDS)
14174 return 0;
14175
14176 #ifdef OBJ_ELF
14177 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14178 to a floating-point stub. The same is true for non-R_MIPS16_26
14179 relocations against MIPS16 functions; in this case, the stub becomes
14180 the function's canonical address.
14181
14182 Floating-point stubs are stored in unique .mips16.call.* or
14183 .mips16.fn.* sections. If a stub T for function F is in section S,
14184 the first relocation in section S must be against F; this is how the
14185 linker determines the target function. All relocations that might
14186 resolve to T must also be against F. We therefore have the following
14187 restrictions, which are given in an intentionally-redundant way:
14188
14189 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14190 symbols.
14191
14192 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14193 if that stub might be used.
14194
14195 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14196 symbols.
14197
14198 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14199 that stub might be used.
14200
14201 There is a further restriction:
14202
14203 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14204 on targets with in-place addends; the relocation field cannot
14205 encode the low bit.
14206
14207 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14208 against a MIPS16 symbol.
14209
14210 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14211 relocation against some symbol R, no relocation against R may be
14212 reduced. (Note that this deals with (2) as well as (1) because
14213 relocations against global symbols will never be reduced on ELF
14214 targets.) This approach is a little simpler than trying to detect
14215 stub sections, and gives the "all or nothing" per-symbol consistency
14216 that we have for MIPS16 symbols. */
14217 if (IS_ELF
14218 && fixp->fx_subsy == NULL
14219 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14220 || *symbol_get_tc (fixp->fx_addsy)))
14221 return 0;
14222 #endif
14223
14224 return 1;
14225 }
14226
14227 /* Translate internal representation of relocation info to BFD target
14228 format. */
14229
14230 arelent **
14231 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14232 {
14233 static arelent *retval[4];
14234 arelent *reloc;
14235 bfd_reloc_code_real_type code;
14236
14237 memset (retval, 0, sizeof(retval));
14238 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14239 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14240 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14241 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14242
14243 if (fixp->fx_pcrel)
14244 {
14245 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14246
14247 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14248 Relocations want only the symbol offset. */
14249 reloc->addend = fixp->fx_addnumber + reloc->address;
14250 if (!IS_ELF)
14251 {
14252 /* A gruesome hack which is a result of the gruesome gas
14253 reloc handling. What's worse, for COFF (as opposed to
14254 ECOFF), we might need yet another copy of reloc->address.
14255 See bfd_install_relocation. */
14256 reloc->addend += reloc->address;
14257 }
14258 }
14259 else
14260 reloc->addend = fixp->fx_addnumber;
14261
14262 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14263 entry to be used in the relocation's section offset. */
14264 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14265 {
14266 reloc->address = reloc->addend;
14267 reloc->addend = 0;
14268 }
14269
14270 code = fixp->fx_r_type;
14271
14272 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14273 if (reloc->howto == NULL)
14274 {
14275 as_bad_where (fixp->fx_file, fixp->fx_line,
14276 _("Can not represent %s relocation in this object file format"),
14277 bfd_get_reloc_code_name (code));
14278 retval[0] = NULL;
14279 }
14280
14281 return retval;
14282 }
14283
14284 /* Relax a machine dependent frag. This returns the amount by which
14285 the current size of the frag should change. */
14286
14287 int
14288 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14289 {
14290 if (RELAX_BRANCH_P (fragp->fr_subtype))
14291 {
14292 offsetT old_var = fragp->fr_var;
14293
14294 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14295
14296 return fragp->fr_var - old_var;
14297 }
14298
14299 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14300 return 0;
14301
14302 if (mips16_extended_frag (fragp, NULL, stretch))
14303 {
14304 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14305 return 0;
14306 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14307 return 2;
14308 }
14309 else
14310 {
14311 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14312 return 0;
14313 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14314 return -2;
14315 }
14316
14317 return 0;
14318 }
14319
14320 /* Convert a machine dependent frag. */
14321
14322 void
14323 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14324 {
14325 if (RELAX_BRANCH_P (fragp->fr_subtype))
14326 {
14327 bfd_byte *buf;
14328 unsigned long insn;
14329 expressionS exp;
14330 fixS *fixp;
14331
14332 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14333
14334 if (target_big_endian)
14335 insn = bfd_getb32 (buf);
14336 else
14337 insn = bfd_getl32 (buf);
14338
14339 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14340 {
14341 /* We generate a fixup instead of applying it right now
14342 because, if there are linker relaxations, we're going to
14343 need the relocations. */
14344 exp.X_op = O_symbol;
14345 exp.X_add_symbol = fragp->fr_symbol;
14346 exp.X_add_number = fragp->fr_offset;
14347
14348 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14349 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14350 fixp->fx_file = fragp->fr_file;
14351 fixp->fx_line = fragp->fr_line;
14352
14353 md_number_to_chars ((char *) buf, insn, 4);
14354 buf += 4;
14355 }
14356 else
14357 {
14358 int i;
14359
14360 as_warn_where (fragp->fr_file, fragp->fr_line,
14361 _("relaxed out-of-range branch into a jump"));
14362
14363 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14364 goto uncond;
14365
14366 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14367 {
14368 /* Reverse the branch. */
14369 switch ((insn >> 28) & 0xf)
14370 {
14371 case 4:
14372 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14373 have the condition reversed by tweaking a single
14374 bit, and their opcodes all have 0x4???????. */
14375 gas_assert ((insn & 0xf1000000) == 0x41000000);
14376 insn ^= 0x00010000;
14377 break;
14378
14379 case 0:
14380 /* bltz 0x04000000 bgez 0x04010000
14381 bltzal 0x04100000 bgezal 0x04110000 */
14382 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14383 insn ^= 0x00010000;
14384 break;
14385
14386 case 1:
14387 /* beq 0x10000000 bne 0x14000000
14388 blez 0x18000000 bgtz 0x1c000000 */
14389 insn ^= 0x04000000;
14390 break;
14391
14392 default:
14393 abort ();
14394 }
14395 }
14396
14397 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14398 {
14399 /* Clear the and-link bit. */
14400 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14401
14402 /* bltzal 0x04100000 bgezal 0x04110000
14403 bltzall 0x04120000 bgezall 0x04130000 */
14404 insn &= ~0x00100000;
14405 }
14406
14407 /* Branch over the branch (if the branch was likely) or the
14408 full jump (not likely case). Compute the offset from the
14409 current instruction to branch to. */
14410 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14411 i = 16;
14412 else
14413 {
14414 /* How many bytes in instructions we've already emitted? */
14415 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14416 /* How many bytes in instructions from here to the end? */
14417 i = fragp->fr_var - i;
14418 }
14419 /* Convert to instruction count. */
14420 i >>= 2;
14421 /* Branch counts from the next instruction. */
14422 i--;
14423 insn |= i;
14424 /* Branch over the jump. */
14425 md_number_to_chars ((char *) buf, insn, 4);
14426 buf += 4;
14427
14428 /* nop */
14429 md_number_to_chars ((char *) buf, 0, 4);
14430 buf += 4;
14431
14432 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14433 {
14434 /* beql $0, $0, 2f */
14435 insn = 0x50000000;
14436 /* Compute the PC offset from the current instruction to
14437 the end of the variable frag. */
14438 /* How many bytes in instructions we've already emitted? */
14439 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14440 /* How many bytes in instructions from here to the end? */
14441 i = fragp->fr_var - i;
14442 /* Convert to instruction count. */
14443 i >>= 2;
14444 /* Don't decrement i, because we want to branch over the
14445 delay slot. */
14446
14447 insn |= i;
14448 md_number_to_chars ((char *) buf, insn, 4);
14449 buf += 4;
14450
14451 md_number_to_chars ((char *) buf, 0, 4);
14452 buf += 4;
14453 }
14454
14455 uncond:
14456 if (mips_pic == NO_PIC)
14457 {
14458 /* j or jal. */
14459 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14460 ? 0x0c000000 : 0x08000000);
14461 exp.X_op = O_symbol;
14462 exp.X_add_symbol = fragp->fr_symbol;
14463 exp.X_add_number = fragp->fr_offset;
14464
14465 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14466 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14467 fixp->fx_file = fragp->fr_file;
14468 fixp->fx_line = fragp->fr_line;
14469
14470 md_number_to_chars ((char *) buf, insn, 4);
14471 buf += 4;
14472 }
14473 else
14474 {
14475 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14476 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14477 exp.X_op = O_symbol;
14478 exp.X_add_symbol = fragp->fr_symbol;
14479 exp.X_add_number = fragp->fr_offset;
14480
14481 if (fragp->fr_offset)
14482 {
14483 exp.X_add_symbol = make_expr_symbol (&exp);
14484 exp.X_add_number = 0;
14485 }
14486
14487 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14488 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14489 fixp->fx_file = fragp->fr_file;
14490 fixp->fx_line = fragp->fr_line;
14491
14492 md_number_to_chars ((char *) buf, insn, 4);
14493 buf += 4;
14494
14495 if (mips_opts.isa == ISA_MIPS1)
14496 {
14497 /* nop */
14498 md_number_to_chars ((char *) buf, 0, 4);
14499 buf += 4;
14500 }
14501
14502 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14503 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14504
14505 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14506 4, &exp, FALSE, BFD_RELOC_LO16);
14507 fixp->fx_file = fragp->fr_file;
14508 fixp->fx_line = fragp->fr_line;
14509
14510 md_number_to_chars ((char *) buf, insn, 4);
14511 buf += 4;
14512
14513 /* j(al)r $at. */
14514 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14515 insn = 0x0020f809;
14516 else
14517 insn = 0x00200008;
14518
14519 md_number_to_chars ((char *) buf, insn, 4);
14520 buf += 4;
14521 }
14522 }
14523
14524 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14525 + fragp->fr_fix + fragp->fr_var);
14526
14527 fragp->fr_fix += fragp->fr_var;
14528
14529 return;
14530 }
14531
14532 if (RELAX_MIPS16_P (fragp->fr_subtype))
14533 {
14534 int type;
14535 const struct mips16_immed_operand *op;
14536 bfd_boolean small, ext;
14537 offsetT val;
14538 bfd_byte *buf;
14539 unsigned long insn;
14540 bfd_boolean use_extend;
14541 unsigned short extend;
14542
14543 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14544 op = mips16_immed_operands;
14545 while (op->type != type)
14546 ++op;
14547
14548 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14549 {
14550 small = FALSE;
14551 ext = TRUE;
14552 }
14553 else
14554 {
14555 small = TRUE;
14556 ext = FALSE;
14557 }
14558
14559 val = resolve_symbol_value (fragp->fr_symbol);
14560 if (op->pcrel)
14561 {
14562 addressT addr;
14563
14564 addr = fragp->fr_address + fragp->fr_fix;
14565
14566 /* The rules for the base address of a PC relative reloc are
14567 complicated; see mips16_extended_frag. */
14568 if (type == 'p' || type == 'q')
14569 {
14570 addr += 2;
14571 if (ext)
14572 addr += 2;
14573 /* Ignore the low bit in the target, since it will be
14574 set for a text label. */
14575 if ((val & 1) != 0)
14576 --val;
14577 }
14578 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14579 addr -= 4;
14580 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14581 addr -= 2;
14582
14583 addr &= ~ (addressT) ((1 << op->shift) - 1);
14584 val -= addr;
14585
14586 /* Make sure the section winds up with the alignment we have
14587 assumed. */
14588 if (op->shift > 0)
14589 record_alignment (asec, op->shift);
14590 }
14591
14592 if (ext
14593 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14594 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14595 as_warn_where (fragp->fr_file, fragp->fr_line,
14596 _("extended instruction in delay slot"));
14597
14598 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14599
14600 if (target_big_endian)
14601 insn = bfd_getb16 (buf);
14602 else
14603 insn = bfd_getl16 (buf);
14604
14605 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14606 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14607 small, ext, &insn, &use_extend, &extend);
14608
14609 if (use_extend)
14610 {
14611 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14612 fragp->fr_fix += 2;
14613 buf += 2;
14614 }
14615
14616 md_number_to_chars ((char *) buf, insn, 2);
14617 fragp->fr_fix += 2;
14618 buf += 2;
14619 }
14620 else
14621 {
14622 int first, second;
14623 fixS *fixp;
14624
14625 first = RELAX_FIRST (fragp->fr_subtype);
14626 second = RELAX_SECOND (fragp->fr_subtype);
14627 fixp = (fixS *) fragp->fr_opcode;
14628
14629 /* Possibly emit a warning if we've chosen the longer option. */
14630 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14631 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14632 {
14633 const char *msg = macro_warning (fragp->fr_subtype);
14634 if (msg != 0)
14635 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14636 }
14637
14638 /* Go through all the fixups for the first sequence. Disable them
14639 (by marking them as done) if we're going to use the second
14640 sequence instead. */
14641 while (fixp
14642 && fixp->fx_frag == fragp
14643 && fixp->fx_where < fragp->fr_fix - second)
14644 {
14645 if (fragp->fr_subtype & RELAX_USE_SECOND)
14646 fixp->fx_done = 1;
14647 fixp = fixp->fx_next;
14648 }
14649
14650 /* Go through the fixups for the second sequence. Disable them if
14651 we're going to use the first sequence, otherwise adjust their
14652 addresses to account for the relaxation. */
14653 while (fixp && fixp->fx_frag == fragp)
14654 {
14655 if (fragp->fr_subtype & RELAX_USE_SECOND)
14656 fixp->fx_where -= first;
14657 else
14658 fixp->fx_done = 1;
14659 fixp = fixp->fx_next;
14660 }
14661
14662 /* Now modify the frag contents. */
14663 if (fragp->fr_subtype & RELAX_USE_SECOND)
14664 {
14665 char *start;
14666
14667 start = fragp->fr_literal + fragp->fr_fix - first - second;
14668 memmove (start, start + first, second);
14669 fragp->fr_fix -= first;
14670 }
14671 else
14672 fragp->fr_fix -= second;
14673 }
14674 }
14675
14676 #ifdef OBJ_ELF
14677
14678 /* This function is called after the relocs have been generated.
14679 We've been storing mips16 text labels as odd. Here we convert them
14680 back to even for the convenience of the debugger. */
14681
14682 void
14683 mips_frob_file_after_relocs (void)
14684 {
14685 asymbol **syms;
14686 unsigned int count, i;
14687
14688 if (!IS_ELF)
14689 return;
14690
14691 syms = bfd_get_outsymbols (stdoutput);
14692 count = bfd_get_symcount (stdoutput);
14693 for (i = 0; i < count; i++, syms++)
14694 {
14695 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14696 && ((*syms)->value & 1) != 0)
14697 {
14698 (*syms)->value &= ~1;
14699 /* If the symbol has an odd size, it was probably computed
14700 incorrectly, so adjust that as well. */
14701 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14702 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14703 }
14704 }
14705 }
14706
14707 #endif
14708
14709 /* This function is called whenever a label is defined. It is used
14710 when handling branch delays; if a branch has a label, we assume we
14711 can not move it. */
14712
14713 void
14714 mips_define_label (symbolS *sym)
14715 {
14716 segment_info_type *si = seg_info (now_seg);
14717 struct insn_label_list *l;
14718
14719 if (free_insn_labels == NULL)
14720 l = (struct insn_label_list *) xmalloc (sizeof *l);
14721 else
14722 {
14723 l = free_insn_labels;
14724 free_insn_labels = l->next;
14725 }
14726
14727 l->label = sym;
14728 l->next = si->label_list;
14729 si->label_list = l;
14730
14731 #ifdef OBJ_ELF
14732 dwarf2_emit_label (sym);
14733 #endif
14734 }
14735 \f
14736 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14737
14738 /* Some special processing for a MIPS ELF file. */
14739
14740 void
14741 mips_elf_final_processing (void)
14742 {
14743 /* Write out the register information. */
14744 if (mips_abi != N64_ABI)
14745 {
14746 Elf32_RegInfo s;
14747
14748 s.ri_gprmask = mips_gprmask;
14749 s.ri_cprmask[0] = mips_cprmask[0];
14750 s.ri_cprmask[1] = mips_cprmask[1];
14751 s.ri_cprmask[2] = mips_cprmask[2];
14752 s.ri_cprmask[3] = mips_cprmask[3];
14753 /* The gp_value field is set by the MIPS ELF backend. */
14754
14755 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14756 ((Elf32_External_RegInfo *)
14757 mips_regmask_frag));
14758 }
14759 else
14760 {
14761 Elf64_Internal_RegInfo s;
14762
14763 s.ri_gprmask = mips_gprmask;
14764 s.ri_pad = 0;
14765 s.ri_cprmask[0] = mips_cprmask[0];
14766 s.ri_cprmask[1] = mips_cprmask[1];
14767 s.ri_cprmask[2] = mips_cprmask[2];
14768 s.ri_cprmask[3] = mips_cprmask[3];
14769 /* The gp_value field is set by the MIPS ELF backend. */
14770
14771 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14772 ((Elf64_External_RegInfo *)
14773 mips_regmask_frag));
14774 }
14775
14776 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14777 sort of BFD interface for this. */
14778 if (mips_any_noreorder)
14779 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14780 if (mips_pic != NO_PIC)
14781 {
14782 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14783 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14784 }
14785 if (mips_abicalls)
14786 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14787
14788 /* Set MIPS ELF flags for ASEs. */
14789 /* We may need to define a new flag for DSP ASE, and set this flag when
14790 file_ase_dsp is true. */
14791 /* Same for DSP R2. */
14792 /* We may need to define a new flag for MT ASE, and set this flag when
14793 file_ase_mt is true. */
14794 if (file_ase_mips16)
14795 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14796 #if 0 /* XXX FIXME */
14797 if (file_ase_mips3d)
14798 elf_elfheader (stdoutput)->e_flags |= ???;
14799 #endif
14800 if (file_ase_mdmx)
14801 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14802
14803 /* Set the MIPS ELF ABI flags. */
14804 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14805 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14806 else if (mips_abi == O64_ABI)
14807 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14808 else if (mips_abi == EABI_ABI)
14809 {
14810 if (!file_mips_gp32)
14811 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14812 else
14813 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14814 }
14815 else if (mips_abi == N32_ABI)
14816 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14817
14818 /* Nothing to do for N64_ABI. */
14819
14820 if (mips_32bitmode)
14821 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14822
14823 #if 0 /* XXX FIXME */
14824 /* 32 bit code with 64 bit FP registers. */
14825 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14826 elf_elfheader (stdoutput)->e_flags |= ???;
14827 #endif
14828 }
14829
14830 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14831 \f
14832 typedef struct proc {
14833 symbolS *func_sym;
14834 symbolS *func_end_sym;
14835 unsigned long reg_mask;
14836 unsigned long reg_offset;
14837 unsigned long fpreg_mask;
14838 unsigned long fpreg_offset;
14839 unsigned long frame_offset;
14840 unsigned long frame_reg;
14841 unsigned long pc_reg;
14842 } procS;
14843
14844 static procS cur_proc;
14845 static procS *cur_proc_ptr;
14846 static int numprocs;
14847
14848 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14849 nop as "0". */
14850
14851 char
14852 mips_nop_opcode (void)
14853 {
14854 return seg_info (now_seg)->tc_segment_info_data.mips16;
14855 }
14856
14857 /* Fill in an rs_align_code fragment. This only needs to do something
14858 for MIPS16 code, where 0 is not a nop. */
14859
14860 void
14861 mips_handle_align (fragS *fragp)
14862 {
14863 char *p;
14864 int bytes, size, excess;
14865 valueT opcode;
14866
14867 if (fragp->fr_type != rs_align_code)
14868 return;
14869
14870 p = fragp->fr_literal + fragp->fr_fix;
14871 if (*p)
14872 {
14873 opcode = mips16_nop_insn.insn_opcode;
14874 size = 2;
14875 }
14876 else
14877 {
14878 opcode = nop_insn.insn_opcode;
14879 size = 4;
14880 }
14881
14882 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14883 excess = bytes % size;
14884 if (excess != 0)
14885 {
14886 /* If we're not inserting a whole number of instructions,
14887 pad the end of the fixed part of the frag with zeros. */
14888 memset (p, 0, excess);
14889 p += excess;
14890 fragp->fr_fix += excess;
14891 }
14892
14893 md_number_to_chars (p, opcode, size);
14894 fragp->fr_var = size;
14895 }
14896
14897 static void
14898 md_obj_begin (void)
14899 {
14900 }
14901
14902 static void
14903 md_obj_end (void)
14904 {
14905 /* Check for premature end, nesting errors, etc. */
14906 if (cur_proc_ptr)
14907 as_warn (_("missing .end at end of assembly"));
14908 }
14909
14910 static long
14911 get_number (void)
14912 {
14913 int negative = 0;
14914 long val = 0;
14915
14916 if (*input_line_pointer == '-')
14917 {
14918 ++input_line_pointer;
14919 negative = 1;
14920 }
14921 if (!ISDIGIT (*input_line_pointer))
14922 as_bad (_("expected simple number"));
14923 if (input_line_pointer[0] == '0')
14924 {
14925 if (input_line_pointer[1] == 'x')
14926 {
14927 input_line_pointer += 2;
14928 while (ISXDIGIT (*input_line_pointer))
14929 {
14930 val <<= 4;
14931 val |= hex_value (*input_line_pointer++);
14932 }
14933 return negative ? -val : val;
14934 }
14935 else
14936 {
14937 ++input_line_pointer;
14938 while (ISDIGIT (*input_line_pointer))
14939 {
14940 val <<= 3;
14941 val |= *input_line_pointer++ - '0';
14942 }
14943 return negative ? -val : val;
14944 }
14945 }
14946 if (!ISDIGIT (*input_line_pointer))
14947 {
14948 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14949 *input_line_pointer, *input_line_pointer);
14950 as_warn (_("invalid number"));
14951 return -1;
14952 }
14953 while (ISDIGIT (*input_line_pointer))
14954 {
14955 val *= 10;
14956 val += *input_line_pointer++ - '0';
14957 }
14958 return negative ? -val : val;
14959 }
14960
14961 /* The .file directive; just like the usual .file directive, but there
14962 is an initial number which is the ECOFF file index. In the non-ECOFF
14963 case .file implies DWARF-2. */
14964
14965 static void
14966 s_mips_file (int x ATTRIBUTE_UNUSED)
14967 {
14968 static int first_file_directive = 0;
14969
14970 if (ECOFF_DEBUGGING)
14971 {
14972 get_number ();
14973 s_app_file (0);
14974 }
14975 else
14976 {
14977 char *filename;
14978
14979 filename = dwarf2_directive_file (0);
14980
14981 /* Versions of GCC up to 3.1 start files with a ".file"
14982 directive even for stabs output. Make sure that this
14983 ".file" is handled. Note that you need a version of GCC
14984 after 3.1 in order to support DWARF-2 on MIPS. */
14985 if (filename != NULL && ! first_file_directive)
14986 {
14987 (void) new_logical_line (filename, -1);
14988 s_app_file_string (filename, 0);
14989 }
14990 first_file_directive = 1;
14991 }
14992 }
14993
14994 /* The .loc directive, implying DWARF-2. */
14995
14996 static void
14997 s_mips_loc (int x ATTRIBUTE_UNUSED)
14998 {
14999 if (!ECOFF_DEBUGGING)
15000 dwarf2_directive_loc (0);
15001 }
15002
15003 /* The .end directive. */
15004
15005 static void
15006 s_mips_end (int x ATTRIBUTE_UNUSED)
15007 {
15008 symbolS *p;
15009
15010 /* Following functions need their own .frame and .cprestore directives. */
15011 mips_frame_reg_valid = 0;
15012 mips_cprestore_valid = 0;
15013
15014 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15015 {
15016 p = get_symbol ();
15017 demand_empty_rest_of_line ();
15018 }
15019 else
15020 p = NULL;
15021
15022 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15023 as_warn (_(".end not in text section"));
15024
15025 if (!cur_proc_ptr)
15026 {
15027 as_warn (_(".end directive without a preceding .ent directive."));
15028 demand_empty_rest_of_line ();
15029 return;
15030 }
15031
15032 if (p != NULL)
15033 {
15034 gas_assert (S_GET_NAME (p));
15035 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15036 as_warn (_(".end symbol does not match .ent symbol."));
15037
15038 if (debug_type == DEBUG_STABS)
15039 stabs_generate_asm_endfunc (S_GET_NAME (p),
15040 S_GET_NAME (p));
15041 }
15042 else
15043 as_warn (_(".end directive missing or unknown symbol"));
15044
15045 #ifdef OBJ_ELF
15046 /* Create an expression to calculate the size of the function. */
15047 if (p && cur_proc_ptr)
15048 {
15049 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15050 expressionS *exp = xmalloc (sizeof (expressionS));
15051
15052 obj->size = exp;
15053 exp->X_op = O_subtract;
15054 exp->X_add_symbol = symbol_temp_new_now ();
15055 exp->X_op_symbol = p;
15056 exp->X_add_number = 0;
15057
15058 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15059 }
15060
15061 /* Generate a .pdr section. */
15062 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15063 {
15064 segT saved_seg = now_seg;
15065 subsegT saved_subseg = now_subseg;
15066 expressionS exp;
15067 char *fragp;
15068
15069 #ifdef md_flush_pending_output
15070 md_flush_pending_output ();
15071 #endif
15072
15073 gas_assert (pdr_seg);
15074 subseg_set (pdr_seg, 0);
15075
15076 /* Write the symbol. */
15077 exp.X_op = O_symbol;
15078 exp.X_add_symbol = p;
15079 exp.X_add_number = 0;
15080 emit_expr (&exp, 4);
15081
15082 fragp = frag_more (7 * 4);
15083
15084 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15085 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15086 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15087 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15088 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15089 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15090 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15091
15092 subseg_set (saved_seg, saved_subseg);
15093 }
15094 #endif /* OBJ_ELF */
15095
15096 cur_proc_ptr = NULL;
15097 }
15098
15099 /* The .aent and .ent directives. */
15100
15101 static void
15102 s_mips_ent (int aent)
15103 {
15104 symbolS *symbolP;
15105
15106 symbolP = get_symbol ();
15107 if (*input_line_pointer == ',')
15108 ++input_line_pointer;
15109 SKIP_WHITESPACE ();
15110 if (ISDIGIT (*input_line_pointer)
15111 || *input_line_pointer == '-')
15112 get_number ();
15113
15114 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15115 as_warn (_(".ent or .aent not in text section."));
15116
15117 if (!aent && cur_proc_ptr)
15118 as_warn (_("missing .end"));
15119
15120 if (!aent)
15121 {
15122 /* This function needs its own .frame and .cprestore directives. */
15123 mips_frame_reg_valid = 0;
15124 mips_cprestore_valid = 0;
15125
15126 cur_proc_ptr = &cur_proc;
15127 memset (cur_proc_ptr, '\0', sizeof (procS));
15128
15129 cur_proc_ptr->func_sym = symbolP;
15130
15131 ++numprocs;
15132
15133 if (debug_type == DEBUG_STABS)
15134 stabs_generate_asm_func (S_GET_NAME (symbolP),
15135 S_GET_NAME (symbolP));
15136 }
15137
15138 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15139
15140 demand_empty_rest_of_line ();
15141 }
15142
15143 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15144 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15145 s_mips_frame is used so that we can set the PDR information correctly.
15146 We can't use the ecoff routines because they make reference to the ecoff
15147 symbol table (in the mdebug section). */
15148
15149 static void
15150 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15151 {
15152 #ifdef OBJ_ELF
15153 if (IS_ELF && !ECOFF_DEBUGGING)
15154 {
15155 long val;
15156
15157 if (cur_proc_ptr == (procS *) NULL)
15158 {
15159 as_warn (_(".frame outside of .ent"));
15160 demand_empty_rest_of_line ();
15161 return;
15162 }
15163
15164 cur_proc_ptr->frame_reg = tc_get_register (1);
15165
15166 SKIP_WHITESPACE ();
15167 if (*input_line_pointer++ != ','
15168 || get_absolute_expression_and_terminator (&val) != ',')
15169 {
15170 as_warn (_("Bad .frame directive"));
15171 --input_line_pointer;
15172 demand_empty_rest_of_line ();
15173 return;
15174 }
15175
15176 cur_proc_ptr->frame_offset = val;
15177 cur_proc_ptr->pc_reg = tc_get_register (0);
15178
15179 demand_empty_rest_of_line ();
15180 }
15181 else
15182 #endif /* OBJ_ELF */
15183 s_ignore (ignore);
15184 }
15185
15186 /* The .fmask and .mask directives. If the mdebug section is present
15187 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15188 embedded targets, s_mips_mask is used so that we can set the PDR
15189 information correctly. We can't use the ecoff routines because they
15190 make reference to the ecoff symbol table (in the mdebug section). */
15191
15192 static void
15193 s_mips_mask (int reg_type)
15194 {
15195 #ifdef OBJ_ELF
15196 if (IS_ELF && !ECOFF_DEBUGGING)
15197 {
15198 long mask, off;
15199
15200 if (cur_proc_ptr == (procS *) NULL)
15201 {
15202 as_warn (_(".mask/.fmask outside of .ent"));
15203 demand_empty_rest_of_line ();
15204 return;
15205 }
15206
15207 if (get_absolute_expression_and_terminator (&mask) != ',')
15208 {
15209 as_warn (_("Bad .mask/.fmask directive"));
15210 --input_line_pointer;
15211 demand_empty_rest_of_line ();
15212 return;
15213 }
15214
15215 off = get_absolute_expression ();
15216
15217 if (reg_type == 'F')
15218 {
15219 cur_proc_ptr->fpreg_mask = mask;
15220 cur_proc_ptr->fpreg_offset = off;
15221 }
15222 else
15223 {
15224 cur_proc_ptr->reg_mask = mask;
15225 cur_proc_ptr->reg_offset = off;
15226 }
15227
15228 demand_empty_rest_of_line ();
15229 }
15230 else
15231 #endif /* OBJ_ELF */
15232 s_ignore (reg_type);
15233 }
15234
15235 /* A table describing all the processors gas knows about. Names are
15236 matched in the order listed.
15237
15238 To ease comparison, please keep this table in the same order as
15239 gcc's mips_cpu_info_table[]. */
15240 static const struct mips_cpu_info mips_cpu_info_table[] =
15241 {
15242 /* Entries for generic ISAs */
15243 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15244 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15245 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15246 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15247 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15248 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15249 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15250 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15251 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15252
15253 /* MIPS I */
15254 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15255 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15256 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15257
15258 /* MIPS II */
15259 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15260
15261 /* MIPS III */
15262 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15263 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15264 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15265 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15266 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15267 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15268 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15269 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15270 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15271 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15272 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15273 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15274 /* ST Microelectronics Loongson 2E and 2F cores */
15275 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15276 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15277
15278 /* MIPS IV */
15279 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15280 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15281 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15282 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15283 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15284 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15285 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15286 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15287 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15288 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15289 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15290 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15291 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15292 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15293 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15294
15295 /* MIPS 32 */
15296 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15297 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15298 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15299 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15300
15301 /* MIPS 32 Release 2 */
15302 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15303 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15304 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15305 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15306 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15307 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15308 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15309 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15310 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15311 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15312 /* Deprecated forms of the above. */
15313 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15314 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15315 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15316 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15317 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15318 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15319 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15320 /* Deprecated forms of the above. */
15321 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15322 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15323 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15324 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15325 ISA_MIPS32R2, CPU_MIPS32R2 },
15326 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15327 ISA_MIPS32R2, CPU_MIPS32R2 },
15328 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15329 ISA_MIPS32R2, CPU_MIPS32R2 },
15330 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15331 ISA_MIPS32R2, CPU_MIPS32R2 },
15332 /* Deprecated forms of the above. */
15333 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15334 ISA_MIPS32R2, CPU_MIPS32R2 },
15335 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15336 ISA_MIPS32R2, CPU_MIPS32R2 },
15337 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15338 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15339 ISA_MIPS32R2, CPU_MIPS32R2 },
15340 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15341 ISA_MIPS32R2, CPU_MIPS32R2 },
15342 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15343 ISA_MIPS32R2, CPU_MIPS32R2 },
15344 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15345 ISA_MIPS32R2, CPU_MIPS32R2 },
15346 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15347 ISA_MIPS32R2, CPU_MIPS32R2 },
15348 /* Deprecated forms of the above. */
15349 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15350 ISA_MIPS32R2, CPU_MIPS32R2 },
15351 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15352 ISA_MIPS32R2, CPU_MIPS32R2 },
15353 /* 1004K cores are multiprocessor versions of the 34K. */
15354 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15355 ISA_MIPS32R2, CPU_MIPS32R2 },
15356 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15357 ISA_MIPS32R2, CPU_MIPS32R2 },
15358 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15359 ISA_MIPS32R2, CPU_MIPS32R2 },
15360 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15361 ISA_MIPS32R2, CPU_MIPS32R2 },
15362
15363 /* MIPS 64 */
15364 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15365 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15366 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15367 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15368
15369 /* Broadcom SB-1 CPU core */
15370 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15371 ISA_MIPS64, CPU_SB1 },
15372 /* Broadcom SB-1A CPU core */
15373 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15374 ISA_MIPS64, CPU_SB1 },
15375
15376 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
15377
15378 /* MIPS 64 Release 2 */
15379
15380 /* Cavium Networks Octeon CPU core */
15381 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15382
15383 /* RMI Xlr */
15384 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15385
15386 /* End marker */
15387 { NULL, 0, 0, 0 }
15388 };
15389
15390
15391 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15392 with a final "000" replaced by "k". Ignore case.
15393
15394 Note: this function is shared between GCC and GAS. */
15395
15396 static bfd_boolean
15397 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15398 {
15399 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15400 given++, canonical++;
15401
15402 return ((*given == 0 && *canonical == 0)
15403 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15404 }
15405
15406
15407 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15408 CPU name. We've traditionally allowed a lot of variation here.
15409
15410 Note: this function is shared between GCC and GAS. */
15411
15412 static bfd_boolean
15413 mips_matching_cpu_name_p (const char *canonical, const char *given)
15414 {
15415 /* First see if the name matches exactly, or with a final "000"
15416 turned into "k". */
15417 if (mips_strict_matching_cpu_name_p (canonical, given))
15418 return TRUE;
15419
15420 /* If not, try comparing based on numerical designation alone.
15421 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15422 if (TOLOWER (*given) == 'r')
15423 given++;
15424 if (!ISDIGIT (*given))
15425 return FALSE;
15426
15427 /* Skip over some well-known prefixes in the canonical name,
15428 hoping to find a number there too. */
15429 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15430 canonical += 2;
15431 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15432 canonical += 2;
15433 else if (TOLOWER (canonical[0]) == 'r')
15434 canonical += 1;
15435
15436 return mips_strict_matching_cpu_name_p (canonical, given);
15437 }
15438
15439
15440 /* Parse an option that takes the name of a processor as its argument.
15441 OPTION is the name of the option and CPU_STRING is the argument.
15442 Return the corresponding processor enumeration if the CPU_STRING is
15443 recognized, otherwise report an error and return null.
15444
15445 A similar function exists in GCC. */
15446
15447 static const struct mips_cpu_info *
15448 mips_parse_cpu (const char *option, const char *cpu_string)
15449 {
15450 const struct mips_cpu_info *p;
15451
15452 /* 'from-abi' selects the most compatible architecture for the given
15453 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15454 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15455 version. Look first at the -mgp options, if given, otherwise base
15456 the choice on MIPS_DEFAULT_64BIT.
15457
15458 Treat NO_ABI like the EABIs. One reason to do this is that the
15459 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15460 architecture. This code picks MIPS I for 'mips' and MIPS III for
15461 'mips64', just as we did in the days before 'from-abi'. */
15462 if (strcasecmp (cpu_string, "from-abi") == 0)
15463 {
15464 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15465 return mips_cpu_info_from_isa (ISA_MIPS1);
15466
15467 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15468 return mips_cpu_info_from_isa (ISA_MIPS3);
15469
15470 if (file_mips_gp32 >= 0)
15471 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15472
15473 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15474 ? ISA_MIPS3
15475 : ISA_MIPS1);
15476 }
15477
15478 /* 'default' has traditionally been a no-op. Probably not very useful. */
15479 if (strcasecmp (cpu_string, "default") == 0)
15480 return 0;
15481
15482 for (p = mips_cpu_info_table; p->name != 0; p++)
15483 if (mips_matching_cpu_name_p (p->name, cpu_string))
15484 return p;
15485
15486 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15487 return 0;
15488 }
15489
15490 /* Return the canonical processor information for ISA (a member of the
15491 ISA_MIPS* enumeration). */
15492
15493 static const struct mips_cpu_info *
15494 mips_cpu_info_from_isa (int isa)
15495 {
15496 int i;
15497
15498 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15499 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15500 && isa == mips_cpu_info_table[i].isa)
15501 return (&mips_cpu_info_table[i]);
15502
15503 return NULL;
15504 }
15505
15506 static const struct mips_cpu_info *
15507 mips_cpu_info_from_arch (int arch)
15508 {
15509 int i;
15510
15511 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15512 if (arch == mips_cpu_info_table[i].cpu)
15513 return (&mips_cpu_info_table[i]);
15514
15515 return NULL;
15516 }
15517 \f
15518 static void
15519 show (FILE *stream, const char *string, int *col_p, int *first_p)
15520 {
15521 if (*first_p)
15522 {
15523 fprintf (stream, "%24s", "");
15524 *col_p = 24;
15525 }
15526 else
15527 {
15528 fprintf (stream, ", ");
15529 *col_p += 2;
15530 }
15531
15532 if (*col_p + strlen (string) > 72)
15533 {
15534 fprintf (stream, "\n%24s", "");
15535 *col_p = 24;
15536 }
15537
15538 fprintf (stream, "%s", string);
15539 *col_p += strlen (string);
15540
15541 *first_p = 0;
15542 }
15543
15544 void
15545 md_show_usage (FILE *stream)
15546 {
15547 int column, first;
15548 size_t i;
15549
15550 fprintf (stream, _("\
15551 MIPS options:\n\
15552 -EB generate big endian output\n\
15553 -EL generate little endian output\n\
15554 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15555 -G NUM allow referencing objects up to NUM bytes\n\
15556 implicitly with the gp register [default 8]\n"));
15557 fprintf (stream, _("\
15558 -mips1 generate MIPS ISA I instructions\n\
15559 -mips2 generate MIPS ISA II instructions\n\
15560 -mips3 generate MIPS ISA III instructions\n\
15561 -mips4 generate MIPS ISA IV instructions\n\
15562 -mips5 generate MIPS ISA V instructions\n\
15563 -mips32 generate MIPS32 ISA instructions\n\
15564 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15565 -mips64 generate MIPS64 ISA instructions\n\
15566 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15567 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15568
15569 first = 1;
15570
15571 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15572 show (stream, mips_cpu_info_table[i].name, &column, &first);
15573 show (stream, "from-abi", &column, &first);
15574 fputc ('\n', stream);
15575
15576 fprintf (stream, _("\
15577 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15578 -no-mCPU don't generate code specific to CPU.\n\
15579 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15580
15581 first = 1;
15582
15583 show (stream, "3900", &column, &first);
15584 show (stream, "4010", &column, &first);
15585 show (stream, "4100", &column, &first);
15586 show (stream, "4650", &column, &first);
15587 fputc ('\n', stream);
15588
15589 fprintf (stream, _("\
15590 -mips16 generate mips16 instructions\n\
15591 -no-mips16 do not generate mips16 instructions\n"));
15592 fprintf (stream, _("\
15593 -msmartmips generate smartmips instructions\n\
15594 -mno-smartmips do not generate smartmips instructions\n"));
15595 fprintf (stream, _("\
15596 -mdsp generate DSP instructions\n\
15597 -mno-dsp do not generate DSP instructions\n"));
15598 fprintf (stream, _("\
15599 -mdspr2 generate DSP R2 instructions\n\
15600 -mno-dspr2 do not generate DSP R2 instructions\n"));
15601 fprintf (stream, _("\
15602 -mmt generate MT instructions\n\
15603 -mno-mt do not generate MT instructions\n"));
15604 fprintf (stream, _("\
15605 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15606 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15607 -mfix-vr4120 work around certain VR4120 errata\n\
15608 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15609 -mfix-24k insert a nop after ERET and DERET instructions\n\
15610 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15611 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15612 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15613 -msym32 assume all symbols have 32-bit values\n\
15614 -O0 remove unneeded NOPs, do not swap branches\n\
15615 -O remove unneeded NOPs and swap branches\n\
15616 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15617 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15618 fprintf (stream, _("\
15619 -mhard-float allow floating-point instructions\n\
15620 -msoft-float do not allow floating-point instructions\n\
15621 -msingle-float only allow 32-bit floating-point operations\n\
15622 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15623 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15624 ));
15625 #ifdef OBJ_ELF
15626 fprintf (stream, _("\
15627 -KPIC, -call_shared generate SVR4 position independent code\n\
15628 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15629 -mvxworks-pic generate VxWorks position independent code\n\
15630 -non_shared do not generate code that can operate with DSOs\n\
15631 -xgot assume a 32 bit GOT\n\
15632 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15633 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15634 position dependent (non shared) code\n\
15635 -mabi=ABI create ABI conformant object file for:\n"));
15636
15637 first = 1;
15638
15639 show (stream, "32", &column, &first);
15640 show (stream, "o64", &column, &first);
15641 show (stream, "n32", &column, &first);
15642 show (stream, "64", &column, &first);
15643 show (stream, "eabi", &column, &first);
15644
15645 fputc ('\n', stream);
15646
15647 fprintf (stream, _("\
15648 -32 create o32 ABI object file (default)\n\
15649 -n32 create n32 ABI object file\n\
15650 -64 create 64 ABI object file\n"));
15651 #endif
15652 }
15653
15654 #ifdef TE_IRIX
15655 enum dwarf2_format
15656 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15657 {
15658 if (HAVE_64BIT_SYMBOLS)
15659 return dwarf2_format_64bit_irix;
15660 else
15661 return dwarf2_format_32bit;
15662 }
15663 #endif
15664
15665 int
15666 mips_dwarf2_addr_size (void)
15667 {
15668 if (HAVE_64BIT_OBJECTS)
15669 return 8;
15670 else
15671 return 4;
15672 }
15673
15674 /* Standard calling conventions leave the CFA at SP on entry. */
15675 void
15676 mips_cfi_frame_initial_instructions (void)
15677 {
15678 cfi_add_CFA_def_cfa_register (SP);
15679 }
15680
15681 int
15682 tc_mips_regname_to_dw2regnum (char *regname)
15683 {
15684 unsigned int regnum = -1;
15685 unsigned int reg;
15686
15687 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15688 regnum = reg;
15689
15690 return regnum;
15691 }