Constify more
[binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
1455 OPTION_FPXX,
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
1482 OPTION_NAN,
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
1485 OPTION_END_OF_ENUM
1486 };
1487
1488 struct option md_longopts[] =
1489 {
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1615 {"mnan", required_argument, NULL, OPTION_NAN},
1616
1617 {NULL, no_argument, NULL, 0}
1618 };
1619 size_t md_longopts_size = sizeof (md_longopts);
1620 \f
1621 /* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624 struct mips_ase
1625 {
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
1652 };
1653
1654 /* A table of all supported ASEs. */
1655 static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
1658 2, 2, 2, 2,
1659 -1 },
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
1663 2, 2, 2, 2,
1664 -1 },
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
1668 2, 2, 2, 2,
1669 -1 },
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
1673 2, 2, 2, 2,
1674 -1 },
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
1679 -1, 1, -1, -1,
1680 6 },
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1685 2, 1, -1, -1,
1686 6 },
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
1690 2, 2, -1, -1,
1691 -1 },
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1695 1, -1, -1, -1,
1696 6 },
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
1700 2, 2, 2, 2,
1701 -1 },
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
1705 2, 2, 2, 2,
1706 -1 },
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
1710 2, 2, -1, -1,
1711 -1 },
1712 };
1713
1714 /* The set of ASEs that require -mfp64. */
1715 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1716
1717 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1718 static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720 };
1721 \f
1722 /* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
1738
1739 static const pseudo_typeS mips_pseudo_table[] =
1740 {
1741 /* MIPS specific pseudo-ops. */
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
1751 {"cprestore", s_cprestore, 0},
1752 {"cpreturn", s_cpreturn, 0},
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
1757 {"gpvalue", s_gpvalue, 0},
1758 {"gpword", s_gpword, 0},
1759 {"gpdword", s_gpdword, 0},
1760 {"ehword", s_ehword, 0},
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
1763 {"nan", s_nan, 0},
1764 {"module", s_module, 0},
1765
1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
1767 chips. */
1768 {"asciiz", stringer, 8 + 1},
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
1776
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
1780 /* These pseudo-ops are defined in read.c, but must be overridden
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
1794 {"section", s_change_section, 0},
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
1797 {"stabd", s_mips_stab, 'd'},
1798 {"stabn", s_mips_stab, 'n'},
1799 {"stabs", s_mips_stab, 's'},
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
1802
1803 { "extern", ecoff_directive_extern, 0},
1804
1805 { NULL, NULL, 0 },
1806 };
1807
1808 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809 {
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
1817 {"file", s_mips_file, 0},
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
1820 {"loc", s_mips_loc, 0},
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
1823 { NULL, NULL, 0 },
1824 };
1825
1826 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829 int
1830 mips_address_bytes (void)
1831 {
1832 file_mips_check_options ();
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834 }
1835
1836 extern void pop_insert (const pseudo_typeS *);
1837
1838 void
1839 mips_pop_insert (void)
1840 {
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844 }
1845 \f
1846 /* Symbols labelling the current insn. */
1847
1848 struct insn_label_list
1849 {
1850 struct insn_label_list *next;
1851 symbolS *label;
1852 };
1853
1854 static struct insn_label_list *free_insn_labels;
1855 #define label_list tc_segment_info_data.labels
1856
1857 static void mips_clear_insn_labels (void);
1858 static void mips_mark_labels (void);
1859 static void mips_compressed_mark_labels (void);
1860
1861 static inline void
1862 mips_clear_insn_labels (void)
1863 {
1864 struct insn_label_list **pl;
1865 segment_info_type *si;
1866
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
1871
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
1876 }
1877
1878 /* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880 static inline void
1881 mips_mark_labels (void)
1882 {
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885 }
1886 \f
1887 static char *expr_end;
1888
1889 /* An expression in a macro instruction. This is set by mips_ip and
1890 mips16_ip and when populated is always an O_constant. */
1891
1892 static expressionS imm_expr;
1893
1894 /* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
1898
1899 static expressionS offset_expr;
1900 static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1902
1903 /* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
1906
1907 static unsigned int forced_insn_length;
1908
1909 /* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912 static bfd_boolean mips_assembling_insn;
1913
1914 /* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
1916
1917 static segT pdr_seg;
1918
1919 /* The default target format to use. */
1920
1921 #if defined (TE_FreeBSD)
1922 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923 #elif defined (TE_TMIPS)
1924 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925 #else
1926 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927 #endif
1928
1929 const char *
1930 mips_target_format (void)
1931 {
1932 switch (OUTPUT_FLAVOR)
1933 {
1934 case bfd_target_elf_flavour:
1935 #ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940 #endif
1941 return (target_big_endian
1942 ? (HAVE_64BIT_OBJECTS
1943 ? ELF_TARGET ("elf64-", "big")
1944 : (HAVE_NEWABI
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
1947 : (HAVE_64BIT_OBJECTS
1948 ? ELF_TARGET ("elf64-", "little")
1949 : (HAVE_NEWABI
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956 }
1957
1958 /* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961 static int
1962 mips_isa_rev (void)
1963 {
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984 }
1985
1986 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988 static unsigned int
1989 mips_ase_mask (unsigned int flags)
1990 {
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997 }
1998
1999 /* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002 static void
2003 mips_check_isa_supports_ase (const struct mips_ase *ase)
2004 {
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
2021 as_warn (_("the %d-bit %s architecture does not support the"
2022 " `%s' extension"), size, base, ase->name);
2023 else
2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2025 ase->name, base, size, min_rev);
2026 }
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
2037 if ((ase->flags & FP64_ASES)
2038 && mips_opts.fp != 64
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2043 }
2044 }
2045
2046 /* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049 static void
2050 mips_check_isa_supports_ases (void)
2051 {
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060 }
2061
2062 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065 static unsigned int
2066 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
2068 {
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
2072 opts->ase &= ~mask;
2073 if (enabled_p)
2074 opts->ase |= ase->flags;
2075 return mask;
2076 }
2077
2078 /* Return the ASE called NAME, or null if none. */
2079
2080 static const struct mips_ase *
2081 mips_lookup_ase (const char *name)
2082 {
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089 }
2090
2091 /* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2093 otherwise it is a 32-bit instruction. */
2094
2095 static inline unsigned int
2096 micromips_insn_length (const struct mips_opcode *mo)
2097 {
2098 return (mo->mask >> 16) == 0 ? 2 : 4;
2099 }
2100
2101 /* Return the length of MIPS16 instruction OPCODE. */
2102
2103 static inline unsigned int
2104 mips16_opcode_length (unsigned long opcode)
2105 {
2106 return (opcode >> 16) == 0 ? 2 : 4;
2107 }
2108
2109 /* Return the length of instruction INSN. */
2110
2111 static inline unsigned int
2112 insn_length (const struct mips_cl_insn *insn)
2113 {
2114 if (mips_opts.micromips)
2115 return micromips_insn_length (insn->insn_mo);
2116 else if (mips_opts.mips16)
2117 return mips16_opcode_length (insn->insn_opcode);
2118 else
2119 return 4;
2120 }
2121
2122 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2123
2124 static void
2125 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2126 {
2127 size_t i;
2128
2129 insn->insn_mo = mo;
2130 insn->insn_opcode = mo->match;
2131 insn->frag = NULL;
2132 insn->where = 0;
2133 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2134 insn->fixp[i] = NULL;
2135 insn->fixed_p = (mips_opts.noreorder > 0);
2136 insn->noreorder_p = (mips_opts.noreorder > 0);
2137 insn->mips16_absolute_jump_p = 0;
2138 insn->complete_p = 0;
2139 insn->cleared_p = 0;
2140 }
2141
2142 /* Get a list of all the operands in INSN. */
2143
2144 static const struct mips_operand_array *
2145 insn_operands (const struct mips_cl_insn *insn)
2146 {
2147 if (insn->insn_mo >= &mips_opcodes[0]
2148 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2149 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2150
2151 if (insn->insn_mo >= &mips16_opcodes[0]
2152 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2153 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2154
2155 if (insn->insn_mo >= &micromips_opcodes[0]
2156 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2157 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2158
2159 abort ();
2160 }
2161
2162 /* Get a description of operand OPNO of INSN. */
2163
2164 static const struct mips_operand *
2165 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2166 {
2167 const struct mips_operand_array *operands;
2168
2169 operands = insn_operands (insn);
2170 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2171 abort ();
2172 return operands->operand[opno];
2173 }
2174
2175 /* Install UVAL as the value of OPERAND in INSN. */
2176
2177 static inline void
2178 insn_insert_operand (struct mips_cl_insn *insn,
2179 const struct mips_operand *operand, unsigned int uval)
2180 {
2181 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2182 }
2183
2184 /* Extract the value of OPERAND from INSN. */
2185
2186 static inline unsigned
2187 insn_extract_operand (const struct mips_cl_insn *insn,
2188 const struct mips_operand *operand)
2189 {
2190 return mips_extract_operand (operand, insn->insn_opcode);
2191 }
2192
2193 /* Record the current MIPS16/microMIPS mode in now_seg. */
2194
2195 static void
2196 mips_record_compressed_mode (void)
2197 {
2198 segment_info_type *si;
2199
2200 si = seg_info (now_seg);
2201 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2202 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2203 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2204 si->tc_segment_info_data.micromips = mips_opts.micromips;
2205 }
2206
2207 /* Read a standard MIPS instruction from BUF. */
2208
2209 static unsigned long
2210 read_insn (char *buf)
2211 {
2212 if (target_big_endian)
2213 return bfd_getb32 ((bfd_byte *) buf);
2214 else
2215 return bfd_getl32 ((bfd_byte *) buf);
2216 }
2217
2218 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2219 the next byte. */
2220
2221 static char *
2222 write_insn (char *buf, unsigned int insn)
2223 {
2224 md_number_to_chars (buf, insn, 4);
2225 return buf + 4;
2226 }
2227
2228 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2229 has length LENGTH. */
2230
2231 static unsigned long
2232 read_compressed_insn (char *buf, unsigned int length)
2233 {
2234 unsigned long insn;
2235 unsigned int i;
2236
2237 insn = 0;
2238 for (i = 0; i < length; i += 2)
2239 {
2240 insn <<= 16;
2241 if (target_big_endian)
2242 insn |= bfd_getb16 ((char *) buf);
2243 else
2244 insn |= bfd_getl16 ((char *) buf);
2245 buf += 2;
2246 }
2247 return insn;
2248 }
2249
2250 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2251 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2252
2253 static char *
2254 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2255 {
2256 unsigned int i;
2257
2258 for (i = 0; i < length; i += 2)
2259 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2260 return buf + length;
2261 }
2262
2263 /* Install INSN at the location specified by its "frag" and "where" fields. */
2264
2265 static void
2266 install_insn (const struct mips_cl_insn *insn)
2267 {
2268 char *f = insn->frag->fr_literal + insn->where;
2269 if (HAVE_CODE_COMPRESSION)
2270 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2271 else
2272 write_insn (f, insn->insn_opcode);
2273 mips_record_compressed_mode ();
2274 }
2275
2276 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2277 and install the opcode in the new location. */
2278
2279 static void
2280 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2281 {
2282 size_t i;
2283
2284 insn->frag = frag;
2285 insn->where = where;
2286 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2287 if (insn->fixp[i] != NULL)
2288 {
2289 insn->fixp[i]->fx_frag = frag;
2290 insn->fixp[i]->fx_where = where;
2291 }
2292 install_insn (insn);
2293 }
2294
2295 /* Add INSN to the end of the output. */
2296
2297 static void
2298 add_fixed_insn (struct mips_cl_insn *insn)
2299 {
2300 char *f = frag_more (insn_length (insn));
2301 move_insn (insn, frag_now, f - frag_now->fr_literal);
2302 }
2303
2304 /* Start a variant frag and move INSN to the start of the variant part,
2305 marking it as fixed. The other arguments are as for frag_var. */
2306
2307 static void
2308 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2309 relax_substateT subtype, symbolS *symbol, offsetT offset)
2310 {
2311 frag_grow (max_chars);
2312 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2313 insn->fixed_p = 1;
2314 frag_var (rs_machine_dependent, max_chars, var,
2315 subtype, symbol, offset, NULL);
2316 }
2317
2318 /* Insert N copies of INSN into the history buffer, starting at
2319 position FIRST. Neither FIRST nor N need to be clipped. */
2320
2321 static void
2322 insert_into_history (unsigned int first, unsigned int n,
2323 const struct mips_cl_insn *insn)
2324 {
2325 if (mips_relax.sequence != 2)
2326 {
2327 unsigned int i;
2328
2329 for (i = ARRAY_SIZE (history); i-- > first;)
2330 if (i >= first + n)
2331 history[i] = history[i - n];
2332 else
2333 history[i] = *insn;
2334 }
2335 }
2336
2337 /* Clear the error in insn_error. */
2338
2339 static void
2340 clear_insn_error (void)
2341 {
2342 memset (&insn_error, 0, sizeof (insn_error));
2343 }
2344
2345 /* Possibly record error message MSG for the current instruction.
2346 If the error is about a particular argument, ARGNUM is the 1-based
2347 number of that argument, otherwise it is 0. FORMAT is the format
2348 of MSG. Return true if MSG was used, false if the current message
2349 was kept. */
2350
2351 static bfd_boolean
2352 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2353 const char *msg)
2354 {
2355 if (argnum == 0)
2356 {
2357 /* Give priority to errors against specific arguments, and to
2358 the first whole-instruction message. */
2359 if (insn_error.msg)
2360 return FALSE;
2361 }
2362 else
2363 {
2364 /* Keep insn_error if it is against a later argument. */
2365 if (argnum < insn_error.min_argnum)
2366 return FALSE;
2367
2368 /* If both errors are against the same argument but are different,
2369 give up on reporting a specific error for this argument.
2370 See the comment about mips_insn_error for details. */
2371 if (argnum == insn_error.min_argnum
2372 && insn_error.msg
2373 && strcmp (insn_error.msg, msg) != 0)
2374 {
2375 insn_error.msg = 0;
2376 insn_error.min_argnum += 1;
2377 return FALSE;
2378 }
2379 }
2380 insn_error.min_argnum = argnum;
2381 insn_error.format = format;
2382 insn_error.msg = msg;
2383 return TRUE;
2384 }
2385
2386 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2387 as for set_insn_error_format. */
2388
2389 static void
2390 set_insn_error (int argnum, const char *msg)
2391 {
2392 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2393 }
2394
2395 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398 static void
2399 set_insn_error_i (int argnum, const char *msg, int i)
2400 {
2401 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2402 insn_error.u.i = i;
2403 }
2404
2405 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2406 are as for set_insn_error_format. */
2407
2408 static void
2409 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2410 {
2411 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2412 {
2413 insn_error.u.ss[0] = s1;
2414 insn_error.u.ss[1] = s2;
2415 }
2416 }
2417
2418 /* Report the error in insn_error, which is against assembly code STR. */
2419
2420 static void
2421 report_insn_error (const char *str)
2422 {
2423 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2424
2425 switch (insn_error.format)
2426 {
2427 case ERR_FMT_PLAIN:
2428 as_bad (msg, str);
2429 break;
2430
2431 case ERR_FMT_I:
2432 as_bad (msg, insn_error.u.i, str);
2433 break;
2434
2435 case ERR_FMT_SS:
2436 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2437 break;
2438 }
2439
2440 free ((char *) msg);
2441 }
2442
2443 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2444 the idea is to make it obvious at a glance that each errata is
2445 included. */
2446
2447 static void
2448 init_vr4120_conflicts (void)
2449 {
2450 #define CONFLICT(FIRST, SECOND) \
2451 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2452
2453 /* Errata 21 - [D]DIV[U] after [D]MACC */
2454 CONFLICT (MACC, DIV);
2455 CONFLICT (DMACC, DIV);
2456
2457 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2458 CONFLICT (DMULT, DMULT);
2459 CONFLICT (DMULT, DMACC);
2460 CONFLICT (DMACC, DMULT);
2461 CONFLICT (DMACC, DMACC);
2462
2463 /* Errata 24 - MT{LO,HI} after [D]MACC */
2464 CONFLICT (MACC, MTHILO);
2465 CONFLICT (DMACC, MTHILO);
2466
2467 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2468 instruction is executed immediately after a MACC or DMACC
2469 instruction, the result of [either instruction] is incorrect." */
2470 CONFLICT (MACC, MULT);
2471 CONFLICT (MACC, DMULT);
2472 CONFLICT (DMACC, MULT);
2473 CONFLICT (DMACC, DMULT);
2474
2475 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2476 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2477 DDIV or DDIVU instruction, the result of the MACC or
2478 DMACC instruction is incorrect.". */
2479 CONFLICT (DMULT, MACC);
2480 CONFLICT (DMULT, DMACC);
2481 CONFLICT (DIV, MACC);
2482 CONFLICT (DIV, DMACC);
2483
2484 #undef CONFLICT
2485 }
2486
2487 struct regname {
2488 const char *name;
2489 unsigned int num;
2490 };
2491
2492 #define RNUM_MASK 0x00000ff
2493 #define RTYPE_MASK 0x0ffff00
2494 #define RTYPE_NUM 0x0000100
2495 #define RTYPE_FPU 0x0000200
2496 #define RTYPE_FCC 0x0000400
2497 #define RTYPE_VEC 0x0000800
2498 #define RTYPE_GP 0x0001000
2499 #define RTYPE_CP0 0x0002000
2500 #define RTYPE_PC 0x0004000
2501 #define RTYPE_ACC 0x0008000
2502 #define RTYPE_CCC 0x0010000
2503 #define RTYPE_VI 0x0020000
2504 #define RTYPE_VF 0x0040000
2505 #define RTYPE_R5900_I 0x0080000
2506 #define RTYPE_R5900_Q 0x0100000
2507 #define RTYPE_R5900_R 0x0200000
2508 #define RTYPE_R5900_ACC 0x0400000
2509 #define RTYPE_MSA 0x0800000
2510 #define RWARN 0x8000000
2511
2512 #define GENERIC_REGISTER_NUMBERS \
2513 {"$0", RTYPE_NUM | 0}, \
2514 {"$1", RTYPE_NUM | 1}, \
2515 {"$2", RTYPE_NUM | 2}, \
2516 {"$3", RTYPE_NUM | 3}, \
2517 {"$4", RTYPE_NUM | 4}, \
2518 {"$5", RTYPE_NUM | 5}, \
2519 {"$6", RTYPE_NUM | 6}, \
2520 {"$7", RTYPE_NUM | 7}, \
2521 {"$8", RTYPE_NUM | 8}, \
2522 {"$9", RTYPE_NUM | 9}, \
2523 {"$10", RTYPE_NUM | 10}, \
2524 {"$11", RTYPE_NUM | 11}, \
2525 {"$12", RTYPE_NUM | 12}, \
2526 {"$13", RTYPE_NUM | 13}, \
2527 {"$14", RTYPE_NUM | 14}, \
2528 {"$15", RTYPE_NUM | 15}, \
2529 {"$16", RTYPE_NUM | 16}, \
2530 {"$17", RTYPE_NUM | 17}, \
2531 {"$18", RTYPE_NUM | 18}, \
2532 {"$19", RTYPE_NUM | 19}, \
2533 {"$20", RTYPE_NUM | 20}, \
2534 {"$21", RTYPE_NUM | 21}, \
2535 {"$22", RTYPE_NUM | 22}, \
2536 {"$23", RTYPE_NUM | 23}, \
2537 {"$24", RTYPE_NUM | 24}, \
2538 {"$25", RTYPE_NUM | 25}, \
2539 {"$26", RTYPE_NUM | 26}, \
2540 {"$27", RTYPE_NUM | 27}, \
2541 {"$28", RTYPE_NUM | 28}, \
2542 {"$29", RTYPE_NUM | 29}, \
2543 {"$30", RTYPE_NUM | 30}, \
2544 {"$31", RTYPE_NUM | 31}
2545
2546 #define FPU_REGISTER_NAMES \
2547 {"$f0", RTYPE_FPU | 0}, \
2548 {"$f1", RTYPE_FPU | 1}, \
2549 {"$f2", RTYPE_FPU | 2}, \
2550 {"$f3", RTYPE_FPU | 3}, \
2551 {"$f4", RTYPE_FPU | 4}, \
2552 {"$f5", RTYPE_FPU | 5}, \
2553 {"$f6", RTYPE_FPU | 6}, \
2554 {"$f7", RTYPE_FPU | 7}, \
2555 {"$f8", RTYPE_FPU | 8}, \
2556 {"$f9", RTYPE_FPU | 9}, \
2557 {"$f10", RTYPE_FPU | 10}, \
2558 {"$f11", RTYPE_FPU | 11}, \
2559 {"$f12", RTYPE_FPU | 12}, \
2560 {"$f13", RTYPE_FPU | 13}, \
2561 {"$f14", RTYPE_FPU | 14}, \
2562 {"$f15", RTYPE_FPU | 15}, \
2563 {"$f16", RTYPE_FPU | 16}, \
2564 {"$f17", RTYPE_FPU | 17}, \
2565 {"$f18", RTYPE_FPU | 18}, \
2566 {"$f19", RTYPE_FPU | 19}, \
2567 {"$f20", RTYPE_FPU | 20}, \
2568 {"$f21", RTYPE_FPU | 21}, \
2569 {"$f22", RTYPE_FPU | 22}, \
2570 {"$f23", RTYPE_FPU | 23}, \
2571 {"$f24", RTYPE_FPU | 24}, \
2572 {"$f25", RTYPE_FPU | 25}, \
2573 {"$f26", RTYPE_FPU | 26}, \
2574 {"$f27", RTYPE_FPU | 27}, \
2575 {"$f28", RTYPE_FPU | 28}, \
2576 {"$f29", RTYPE_FPU | 29}, \
2577 {"$f30", RTYPE_FPU | 30}, \
2578 {"$f31", RTYPE_FPU | 31}
2579
2580 #define FPU_CONDITION_CODE_NAMES \
2581 {"$fcc0", RTYPE_FCC | 0}, \
2582 {"$fcc1", RTYPE_FCC | 1}, \
2583 {"$fcc2", RTYPE_FCC | 2}, \
2584 {"$fcc3", RTYPE_FCC | 3}, \
2585 {"$fcc4", RTYPE_FCC | 4}, \
2586 {"$fcc5", RTYPE_FCC | 5}, \
2587 {"$fcc6", RTYPE_FCC | 6}, \
2588 {"$fcc7", RTYPE_FCC | 7}
2589
2590 #define COPROC_CONDITION_CODE_NAMES \
2591 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2592 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2593 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2594 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2595 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2596 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2597 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2598 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2599
2600 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2601 {"$a4", RTYPE_GP | 8}, \
2602 {"$a5", RTYPE_GP | 9}, \
2603 {"$a6", RTYPE_GP | 10}, \
2604 {"$a7", RTYPE_GP | 11}, \
2605 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2606 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2607 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2608 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2609 {"$t0", RTYPE_GP | 12}, \
2610 {"$t1", RTYPE_GP | 13}, \
2611 {"$t2", RTYPE_GP | 14}, \
2612 {"$t3", RTYPE_GP | 15}
2613
2614 #define O32_SYMBOLIC_REGISTER_NAMES \
2615 {"$t0", RTYPE_GP | 8}, \
2616 {"$t1", RTYPE_GP | 9}, \
2617 {"$t2", RTYPE_GP | 10}, \
2618 {"$t3", RTYPE_GP | 11}, \
2619 {"$t4", RTYPE_GP | 12}, \
2620 {"$t5", RTYPE_GP | 13}, \
2621 {"$t6", RTYPE_GP | 14}, \
2622 {"$t7", RTYPE_GP | 15}, \
2623 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2624 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2625 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2626 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2627
2628 /* Remaining symbolic register names */
2629 #define SYMBOLIC_REGISTER_NAMES \
2630 {"$zero", RTYPE_GP | 0}, \
2631 {"$at", RTYPE_GP | 1}, \
2632 {"$AT", RTYPE_GP | 1}, \
2633 {"$v0", RTYPE_GP | 2}, \
2634 {"$v1", RTYPE_GP | 3}, \
2635 {"$a0", RTYPE_GP | 4}, \
2636 {"$a1", RTYPE_GP | 5}, \
2637 {"$a2", RTYPE_GP | 6}, \
2638 {"$a3", RTYPE_GP | 7}, \
2639 {"$s0", RTYPE_GP | 16}, \
2640 {"$s1", RTYPE_GP | 17}, \
2641 {"$s2", RTYPE_GP | 18}, \
2642 {"$s3", RTYPE_GP | 19}, \
2643 {"$s4", RTYPE_GP | 20}, \
2644 {"$s5", RTYPE_GP | 21}, \
2645 {"$s6", RTYPE_GP | 22}, \
2646 {"$s7", RTYPE_GP | 23}, \
2647 {"$t8", RTYPE_GP | 24}, \
2648 {"$t9", RTYPE_GP | 25}, \
2649 {"$k0", RTYPE_GP | 26}, \
2650 {"$kt0", RTYPE_GP | 26}, \
2651 {"$k1", RTYPE_GP | 27}, \
2652 {"$kt1", RTYPE_GP | 27}, \
2653 {"$gp", RTYPE_GP | 28}, \
2654 {"$sp", RTYPE_GP | 29}, \
2655 {"$s8", RTYPE_GP | 30}, \
2656 {"$fp", RTYPE_GP | 30}, \
2657 {"$ra", RTYPE_GP | 31}
2658
2659 #define MIPS16_SPECIAL_REGISTER_NAMES \
2660 {"$pc", RTYPE_PC | 0}
2661
2662 #define MDMX_VECTOR_REGISTER_NAMES \
2663 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2664 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2665 {"$v2", RTYPE_VEC | 2}, \
2666 {"$v3", RTYPE_VEC | 3}, \
2667 {"$v4", RTYPE_VEC | 4}, \
2668 {"$v5", RTYPE_VEC | 5}, \
2669 {"$v6", RTYPE_VEC | 6}, \
2670 {"$v7", RTYPE_VEC | 7}, \
2671 {"$v8", RTYPE_VEC | 8}, \
2672 {"$v9", RTYPE_VEC | 9}, \
2673 {"$v10", RTYPE_VEC | 10}, \
2674 {"$v11", RTYPE_VEC | 11}, \
2675 {"$v12", RTYPE_VEC | 12}, \
2676 {"$v13", RTYPE_VEC | 13}, \
2677 {"$v14", RTYPE_VEC | 14}, \
2678 {"$v15", RTYPE_VEC | 15}, \
2679 {"$v16", RTYPE_VEC | 16}, \
2680 {"$v17", RTYPE_VEC | 17}, \
2681 {"$v18", RTYPE_VEC | 18}, \
2682 {"$v19", RTYPE_VEC | 19}, \
2683 {"$v20", RTYPE_VEC | 20}, \
2684 {"$v21", RTYPE_VEC | 21}, \
2685 {"$v22", RTYPE_VEC | 22}, \
2686 {"$v23", RTYPE_VEC | 23}, \
2687 {"$v24", RTYPE_VEC | 24}, \
2688 {"$v25", RTYPE_VEC | 25}, \
2689 {"$v26", RTYPE_VEC | 26}, \
2690 {"$v27", RTYPE_VEC | 27}, \
2691 {"$v28", RTYPE_VEC | 28}, \
2692 {"$v29", RTYPE_VEC | 29}, \
2693 {"$v30", RTYPE_VEC | 30}, \
2694 {"$v31", RTYPE_VEC | 31}
2695
2696 #define R5900_I_NAMES \
2697 {"$I", RTYPE_R5900_I | 0}
2698
2699 #define R5900_Q_NAMES \
2700 {"$Q", RTYPE_R5900_Q | 0}
2701
2702 #define R5900_R_NAMES \
2703 {"$R", RTYPE_R5900_R | 0}
2704
2705 #define R5900_ACC_NAMES \
2706 {"$ACC", RTYPE_R5900_ACC | 0 }
2707
2708 #define MIPS_DSP_ACCUMULATOR_NAMES \
2709 {"$ac0", RTYPE_ACC | 0}, \
2710 {"$ac1", RTYPE_ACC | 1}, \
2711 {"$ac2", RTYPE_ACC | 2}, \
2712 {"$ac3", RTYPE_ACC | 3}
2713
2714 static const struct regname reg_names[] = {
2715 GENERIC_REGISTER_NUMBERS,
2716 FPU_REGISTER_NAMES,
2717 FPU_CONDITION_CODE_NAMES,
2718 COPROC_CONDITION_CODE_NAMES,
2719
2720 /* The $txx registers depends on the abi,
2721 these will be added later into the symbol table from
2722 one of the tables below once mips_abi is set after
2723 parsing of arguments from the command line. */
2724 SYMBOLIC_REGISTER_NAMES,
2725
2726 MIPS16_SPECIAL_REGISTER_NAMES,
2727 MDMX_VECTOR_REGISTER_NAMES,
2728 R5900_I_NAMES,
2729 R5900_Q_NAMES,
2730 R5900_R_NAMES,
2731 R5900_ACC_NAMES,
2732 MIPS_DSP_ACCUMULATOR_NAMES,
2733 {0, 0}
2734 };
2735
2736 static const struct regname reg_names_o32[] = {
2737 O32_SYMBOLIC_REGISTER_NAMES,
2738 {0, 0}
2739 };
2740
2741 static const struct regname reg_names_n32n64[] = {
2742 N32N64_SYMBOLIC_REGISTER_NAMES,
2743 {0, 0}
2744 };
2745
2746 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2747 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2748 of these register symbols, return the associated vector register,
2749 otherwise return SYMVAL itself. */
2750
2751 static unsigned int
2752 mips_prefer_vec_regno (unsigned int symval)
2753 {
2754 if ((symval & -2) == (RTYPE_GP | 2))
2755 return RTYPE_VEC | (symval & 1);
2756 return symval;
2757 }
2758
2759 /* Return true if string [S, E) is a valid register name, storing its
2760 symbol value in *SYMVAL_PTR if so. */
2761
2762 static bfd_boolean
2763 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2764 {
2765 char save_c;
2766 symbolS *symbol;
2767
2768 /* Terminate name. */
2769 save_c = *e;
2770 *e = '\0';
2771
2772 /* Look up the name. */
2773 symbol = symbol_find (s);
2774 *e = save_c;
2775
2776 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2777 return FALSE;
2778
2779 *symval_ptr = S_GET_VALUE (symbol);
2780 return TRUE;
2781 }
2782
2783 /* Return true if the string at *SPTR is a valid register name. Allow it
2784 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2785 is nonnull.
2786
2787 When returning true, move *SPTR past the register, store the
2788 register's symbol value in *SYMVAL_PTR and the channel mask in
2789 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2790 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2791 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2792
2793 static bfd_boolean
2794 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2795 unsigned int *channels_ptr)
2796 {
2797 char *s, *e, *m;
2798 const char *q;
2799 unsigned int channels, symval, bit;
2800
2801 /* Find end of name. */
2802 s = e = *sptr;
2803 if (is_name_beginner (*e))
2804 ++e;
2805 while (is_part_of_name (*e))
2806 ++e;
2807
2808 channels = 0;
2809 if (!mips_parse_register_1 (s, e, &symval))
2810 {
2811 if (!channels_ptr)
2812 return FALSE;
2813
2814 /* Eat characters from the end of the string that are valid
2815 channel suffixes. The preceding register must be $ACC or
2816 end with a digit, so there is no ambiguity. */
2817 bit = 1;
2818 m = e;
2819 for (q = "wzyx"; *q; q++, bit <<= 1)
2820 if (m > s && m[-1] == *q)
2821 {
2822 --m;
2823 channels |= bit;
2824 }
2825
2826 if (channels == 0
2827 || !mips_parse_register_1 (s, m, &symval)
2828 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2829 return FALSE;
2830 }
2831
2832 *sptr = e;
2833 *symval_ptr = symval;
2834 if (channels_ptr)
2835 *channels_ptr = channels;
2836 return TRUE;
2837 }
2838
2839 /* Check if SPTR points at a valid register specifier according to TYPES.
2840 If so, then return 1, advance S to consume the specifier and store
2841 the register's number in REGNOP, otherwise return 0. */
2842
2843 static int
2844 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2845 {
2846 unsigned int regno;
2847
2848 if (mips_parse_register (s, &regno, NULL))
2849 {
2850 if (types & RTYPE_VEC)
2851 regno = mips_prefer_vec_regno (regno);
2852 if (regno & types)
2853 regno &= RNUM_MASK;
2854 else
2855 regno = ~0;
2856 }
2857 else
2858 {
2859 if (types & RWARN)
2860 as_warn (_("unrecognized register name `%s'"), *s);
2861 regno = ~0;
2862 }
2863 if (regnop)
2864 *regnop = regno;
2865 return regno <= RNUM_MASK;
2866 }
2867
2868 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2869 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2870
2871 static char *
2872 mips_parse_vu0_channels (char *s, unsigned int *channels)
2873 {
2874 unsigned int i;
2875
2876 *channels = 0;
2877 for (i = 0; i < 4; i++)
2878 if (*s == "xyzw"[i])
2879 {
2880 *channels |= 1 << (3 - i);
2881 ++s;
2882 }
2883 return s;
2884 }
2885
2886 /* Token types for parsed operand lists. */
2887 enum mips_operand_token_type {
2888 /* A plain register, e.g. $f2. */
2889 OT_REG,
2890
2891 /* A 4-bit XYZW channel mask. */
2892 OT_CHANNELS,
2893
2894 /* A constant vector index, e.g. [1]. */
2895 OT_INTEGER_INDEX,
2896
2897 /* A register vector index, e.g. [$2]. */
2898 OT_REG_INDEX,
2899
2900 /* A continuous range of registers, e.g. $s0-$s4. */
2901 OT_REG_RANGE,
2902
2903 /* A (possibly relocated) expression. */
2904 OT_INTEGER,
2905
2906 /* A floating-point value. */
2907 OT_FLOAT,
2908
2909 /* A single character. This can be '(', ')' or ',', but '(' only appears
2910 before OT_REGs. */
2911 OT_CHAR,
2912
2913 /* A doubled character, either "--" or "++". */
2914 OT_DOUBLE_CHAR,
2915
2916 /* The end of the operand list. */
2917 OT_END
2918 };
2919
2920 /* A parsed operand token. */
2921 struct mips_operand_token
2922 {
2923 /* The type of token. */
2924 enum mips_operand_token_type type;
2925 union
2926 {
2927 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2928 unsigned int regno;
2929
2930 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2931 unsigned int channels;
2932
2933 /* The integer value of an OT_INTEGER_INDEX. */
2934 addressT index;
2935
2936 /* The two register symbol values involved in an OT_REG_RANGE. */
2937 struct {
2938 unsigned int regno1;
2939 unsigned int regno2;
2940 } reg_range;
2941
2942 /* The value of an OT_INTEGER. The value is represented as an
2943 expression and the relocation operators that were applied to
2944 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2945 relocation operators were used. */
2946 struct {
2947 expressionS value;
2948 bfd_reloc_code_real_type relocs[3];
2949 } integer;
2950
2951 /* The binary data for an OT_FLOAT constant, and the number of bytes
2952 in the constant. */
2953 struct {
2954 unsigned char data[8];
2955 int length;
2956 } flt;
2957
2958 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2959 char ch;
2960 } u;
2961 };
2962
2963 /* An obstack used to construct lists of mips_operand_tokens. */
2964 static struct obstack mips_operand_tokens;
2965
2966 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2967
2968 static void
2969 mips_add_token (struct mips_operand_token *token,
2970 enum mips_operand_token_type type)
2971 {
2972 token->type = type;
2973 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2974 }
2975
2976 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2977 and OT_REG tokens for them if so, and return a pointer to the first
2978 unconsumed character. Return null otherwise. */
2979
2980 static char *
2981 mips_parse_base_start (char *s)
2982 {
2983 struct mips_operand_token token;
2984 unsigned int regno, channels;
2985 bfd_boolean decrement_p;
2986
2987 if (*s != '(')
2988 return 0;
2989
2990 ++s;
2991 SKIP_SPACE_TABS (s);
2992
2993 /* Only match "--" as part of a base expression. In other contexts "--X"
2994 is a double negative. */
2995 decrement_p = (s[0] == '-' && s[1] == '-');
2996 if (decrement_p)
2997 {
2998 s += 2;
2999 SKIP_SPACE_TABS (s);
3000 }
3001
3002 /* Allow a channel specifier because that leads to better error messages
3003 than treating something like "$vf0x++" as an expression. */
3004 if (!mips_parse_register (&s, &regno, &channels))
3005 return 0;
3006
3007 token.u.ch = '(';
3008 mips_add_token (&token, OT_CHAR);
3009
3010 if (decrement_p)
3011 {
3012 token.u.ch = '-';
3013 mips_add_token (&token, OT_DOUBLE_CHAR);
3014 }
3015
3016 token.u.regno = regno;
3017 mips_add_token (&token, OT_REG);
3018
3019 if (channels)
3020 {
3021 token.u.channels = channels;
3022 mips_add_token (&token, OT_CHANNELS);
3023 }
3024
3025 /* For consistency, only match "++" as part of base expressions too. */
3026 SKIP_SPACE_TABS (s);
3027 if (s[0] == '+' && s[1] == '+')
3028 {
3029 s += 2;
3030 token.u.ch = '+';
3031 mips_add_token (&token, OT_DOUBLE_CHAR);
3032 }
3033
3034 return s;
3035 }
3036
3037 /* Parse one or more tokens from S. Return a pointer to the first
3038 unconsumed character on success. Return null if an error was found
3039 and store the error text in insn_error. FLOAT_FORMAT is as for
3040 mips_parse_arguments. */
3041
3042 static char *
3043 mips_parse_argument_token (char *s, char float_format)
3044 {
3045 char *end, *save_in;
3046 const char *err;
3047 unsigned int regno1, regno2, channels;
3048 struct mips_operand_token token;
3049
3050 /* First look for "($reg", since we want to treat that as an
3051 OT_CHAR and OT_REG rather than an expression. */
3052 end = mips_parse_base_start (s);
3053 if (end)
3054 return end;
3055
3056 /* Handle other characters that end up as OT_CHARs. */
3057 if (*s == ')' || *s == ',')
3058 {
3059 token.u.ch = *s;
3060 mips_add_token (&token, OT_CHAR);
3061 ++s;
3062 return s;
3063 }
3064
3065 /* Handle tokens that start with a register. */
3066 if (mips_parse_register (&s, &regno1, &channels))
3067 {
3068 if (channels)
3069 {
3070 /* A register and a VU0 channel suffix. */
3071 token.u.regno = regno1;
3072 mips_add_token (&token, OT_REG);
3073
3074 token.u.channels = channels;
3075 mips_add_token (&token, OT_CHANNELS);
3076 return s;
3077 }
3078
3079 SKIP_SPACE_TABS (s);
3080 if (*s == '-')
3081 {
3082 /* A register range. */
3083 ++s;
3084 SKIP_SPACE_TABS (s);
3085 if (!mips_parse_register (&s, &regno2, NULL))
3086 {
3087 set_insn_error (0, _("invalid register range"));
3088 return 0;
3089 }
3090
3091 token.u.reg_range.regno1 = regno1;
3092 token.u.reg_range.regno2 = regno2;
3093 mips_add_token (&token, OT_REG_RANGE);
3094 return s;
3095 }
3096
3097 /* Add the register itself. */
3098 token.u.regno = regno1;
3099 mips_add_token (&token, OT_REG);
3100
3101 /* Check for a vector index. */
3102 if (*s == '[')
3103 {
3104 ++s;
3105 SKIP_SPACE_TABS (s);
3106 if (mips_parse_register (&s, &token.u.regno, NULL))
3107 mips_add_token (&token, OT_REG_INDEX);
3108 else
3109 {
3110 expressionS element;
3111
3112 my_getExpression (&element, s);
3113 if (element.X_op != O_constant)
3114 {
3115 set_insn_error (0, _("vector element must be constant"));
3116 return 0;
3117 }
3118 s = expr_end;
3119 token.u.index = element.X_add_number;
3120 mips_add_token (&token, OT_INTEGER_INDEX);
3121 }
3122 SKIP_SPACE_TABS (s);
3123 if (*s != ']')
3124 {
3125 set_insn_error (0, _("missing `]'"));
3126 return 0;
3127 }
3128 ++s;
3129 }
3130 return s;
3131 }
3132
3133 if (float_format)
3134 {
3135 /* First try to treat expressions as floats. */
3136 save_in = input_line_pointer;
3137 input_line_pointer = s;
3138 err = md_atof (float_format, (char *) token.u.flt.data,
3139 &token.u.flt.length);
3140 end = input_line_pointer;
3141 input_line_pointer = save_in;
3142 if (err && *err)
3143 {
3144 set_insn_error (0, err);
3145 return 0;
3146 }
3147 if (s != end)
3148 {
3149 mips_add_token (&token, OT_FLOAT);
3150 return end;
3151 }
3152 }
3153
3154 /* Treat everything else as an integer expression. */
3155 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3157 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3158 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3159 s = expr_end;
3160 mips_add_token (&token, OT_INTEGER);
3161 return s;
3162 }
3163
3164 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3165 if expressions should be treated as 32-bit floating-point constants,
3166 'd' if they should be treated as 64-bit floating-point constants,
3167 or 0 if they should be treated as integer expressions (the usual case).
3168
3169 Return a list of tokens on success, otherwise return 0. The caller
3170 must obstack_free the list after use. */
3171
3172 static struct mips_operand_token *
3173 mips_parse_arguments (char *s, char float_format)
3174 {
3175 struct mips_operand_token token;
3176
3177 SKIP_SPACE_TABS (s);
3178 while (*s)
3179 {
3180 s = mips_parse_argument_token (s, float_format);
3181 if (!s)
3182 {
3183 obstack_free (&mips_operand_tokens,
3184 obstack_finish (&mips_operand_tokens));
3185 return 0;
3186 }
3187 SKIP_SPACE_TABS (s);
3188 }
3189 mips_add_token (&token, OT_END);
3190 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3191 }
3192
3193 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3194 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3195
3196 static bfd_boolean
3197 is_opcode_valid (const struct mips_opcode *mo)
3198 {
3199 int isa = mips_opts.isa;
3200 int ase = mips_opts.ase;
3201 int fp_s, fp_d;
3202 unsigned int i;
3203
3204 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3205 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3206 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3207 ase |= mips_ases[i].flags64;
3208
3209 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3210 return FALSE;
3211
3212 /* Check whether the instruction or macro requires single-precision or
3213 double-precision floating-point support. Note that this information is
3214 stored differently in the opcode table for insns and macros. */
3215 if (mo->pinfo == INSN_MACRO)
3216 {
3217 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3218 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3219 }
3220 else
3221 {
3222 fp_s = mo->pinfo & FP_S;
3223 fp_d = mo->pinfo & FP_D;
3224 }
3225
3226 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3227 return FALSE;
3228
3229 if (fp_s && mips_opts.soft_float)
3230 return FALSE;
3231
3232 return TRUE;
3233 }
3234
3235 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3236 selected ISA and architecture. */
3237
3238 static bfd_boolean
3239 is_opcode_valid_16 (const struct mips_opcode *mo)
3240 {
3241 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3242 }
3243
3244 /* Return TRUE if the size of the microMIPS opcode MO matches one
3245 explicitly requested. Always TRUE in the standard MIPS mode. */
3246
3247 static bfd_boolean
3248 is_size_valid (const struct mips_opcode *mo)
3249 {
3250 if (!mips_opts.micromips)
3251 return TRUE;
3252
3253 if (mips_opts.insn32)
3254 {
3255 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3256 return FALSE;
3257 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3258 return FALSE;
3259 }
3260 if (!forced_insn_length)
3261 return TRUE;
3262 if (mo->pinfo == INSN_MACRO)
3263 return FALSE;
3264 return forced_insn_length == micromips_insn_length (mo);
3265 }
3266
3267 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3268 of the preceding instruction. Always TRUE in the standard MIPS mode.
3269
3270 We don't accept macros in 16-bit delay slots to avoid a case where
3271 a macro expansion fails because it relies on a preceding 32-bit real
3272 instruction to have matched and does not handle the operands correctly.
3273 The only macros that may expand to 16-bit instructions are JAL that
3274 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3275 and BGT (that likewise cannot be placed in a delay slot) that decay to
3276 a NOP. In all these cases the macros precede any corresponding real
3277 instruction definitions in the opcode table, so they will match in the
3278 second pass where the size of the delay slot is ignored and therefore
3279 produce correct code. */
3280
3281 static bfd_boolean
3282 is_delay_slot_valid (const struct mips_opcode *mo)
3283 {
3284 if (!mips_opts.micromips)
3285 return TRUE;
3286
3287 if (mo->pinfo == INSN_MACRO)
3288 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3289 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3290 && micromips_insn_length (mo) != 4)
3291 return FALSE;
3292 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3293 && micromips_insn_length (mo) != 2)
3294 return FALSE;
3295
3296 return TRUE;
3297 }
3298
3299 /* For consistency checking, verify that all bits of OPCODE are specified
3300 either by the match/mask part of the instruction definition, or by the
3301 operand list. Also build up a list of operands in OPERANDS.
3302
3303 INSN_BITS says which bits of the instruction are significant.
3304 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3305 provides the mips_operand description of each operand. DECODE_OPERAND
3306 is null for MIPS16 instructions. */
3307
3308 static int
3309 validate_mips_insn (const struct mips_opcode *opcode,
3310 unsigned long insn_bits,
3311 const struct mips_operand *(*decode_operand) (const char *),
3312 struct mips_operand_array *operands)
3313 {
3314 const char *s;
3315 unsigned long used_bits, doubled, undefined, opno, mask;
3316 const struct mips_operand *operand;
3317
3318 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3319 if ((mask & opcode->match) != opcode->match)
3320 {
3321 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3322 opcode->name, opcode->args);
3323 return 0;
3324 }
3325 used_bits = 0;
3326 opno = 0;
3327 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3328 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3329 for (s = opcode->args; *s; ++s)
3330 switch (*s)
3331 {
3332 case ',':
3333 case '(':
3334 case ')':
3335 break;
3336
3337 case '#':
3338 s++;
3339 break;
3340
3341 default:
3342 if (!decode_operand)
3343 operand = decode_mips16_operand (*s, FALSE);
3344 else
3345 operand = decode_operand (s);
3346 if (!operand && opcode->pinfo != INSN_MACRO)
3347 {
3348 as_bad (_("internal: unknown operand type: %s %s"),
3349 opcode->name, opcode->args);
3350 return 0;
3351 }
3352 gas_assert (opno < MAX_OPERANDS);
3353 operands->operand[opno] = operand;
3354 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3355 {
3356 used_bits = mips_insert_operand (operand, used_bits, -1);
3357 if (operand->type == OP_MDMX_IMM_REG)
3358 /* Bit 5 is the format selector (OB vs QH). The opcode table
3359 has separate entries for each format. */
3360 used_bits &= ~(1 << (operand->lsb + 5));
3361 if (operand->type == OP_ENTRY_EXIT_LIST)
3362 used_bits &= ~(mask & 0x700);
3363 }
3364 /* Skip prefix characters. */
3365 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3366 ++s;
3367 opno += 1;
3368 break;
3369 }
3370 doubled = used_bits & mask & insn_bits;
3371 if (doubled)
3372 {
3373 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3374 " %s %s"), doubled, opcode->name, opcode->args);
3375 return 0;
3376 }
3377 used_bits |= mask;
3378 undefined = ~used_bits & insn_bits;
3379 if (opcode->pinfo != INSN_MACRO && undefined)
3380 {
3381 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3382 undefined, opcode->name, opcode->args);
3383 return 0;
3384 }
3385 used_bits &= ~insn_bits;
3386 if (used_bits)
3387 {
3388 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3389 used_bits, opcode->name, opcode->args);
3390 return 0;
3391 }
3392 return 1;
3393 }
3394
3395 /* The MIPS16 version of validate_mips_insn. */
3396
3397 static int
3398 validate_mips16_insn (const struct mips_opcode *opcode,
3399 struct mips_operand_array *operands)
3400 {
3401 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3402 {
3403 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3404 instruction. Use TMP to describe the full instruction. */
3405 struct mips_opcode tmp;
3406
3407 tmp = *opcode;
3408 tmp.match <<= 16;
3409 tmp.mask <<= 16;
3410 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3411 }
3412 return validate_mips_insn (opcode, 0xffff, 0, operands);
3413 }
3414
3415 /* The microMIPS version of validate_mips_insn. */
3416
3417 static int
3418 validate_micromips_insn (const struct mips_opcode *opc,
3419 struct mips_operand_array *operands)
3420 {
3421 unsigned long insn_bits;
3422 unsigned long major;
3423 unsigned int length;
3424
3425 if (opc->pinfo == INSN_MACRO)
3426 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3427 operands);
3428
3429 length = micromips_insn_length (opc);
3430 if (length != 2 && length != 4)
3431 {
3432 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3433 "%s %s"), length, opc->name, opc->args);
3434 return 0;
3435 }
3436 major = opc->match >> (10 + 8 * (length - 2));
3437 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3438 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3439 {
3440 as_bad (_("internal error: bad microMIPS opcode "
3441 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3442 return 0;
3443 }
3444
3445 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3446 insn_bits = 1 << 4 * length;
3447 insn_bits <<= 4 * length;
3448 insn_bits -= 1;
3449 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3450 operands);
3451 }
3452
3453 /* This function is called once, at assembler startup time. It should set up
3454 all the tables, etc. that the MD part of the assembler will need. */
3455
3456 void
3457 md_begin (void)
3458 {
3459 const char *retval = NULL;
3460 int i = 0;
3461 int broken = 0;
3462
3463 if (mips_pic != NO_PIC)
3464 {
3465 if (g_switch_seen && g_switch_value != 0)
3466 as_bad (_("-G may not be used in position-independent code"));
3467 g_switch_value = 0;
3468 }
3469 else if (mips_abicalls)
3470 {
3471 if (g_switch_seen && g_switch_value != 0)
3472 as_bad (_("-G may not be used with abicalls"));
3473 g_switch_value = 0;
3474 }
3475
3476 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3477 as_warn (_("could not set architecture and machine"));
3478
3479 op_hash = hash_new ();
3480
3481 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3482 for (i = 0; i < NUMOPCODES;)
3483 {
3484 const char *name = mips_opcodes[i].name;
3485
3486 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3487 if (retval != NULL)
3488 {
3489 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3490 mips_opcodes[i].name, retval);
3491 /* Probably a memory allocation problem? Give up now. */
3492 as_fatal (_("broken assembler, no assembly attempted"));
3493 }
3494 do
3495 {
3496 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3497 decode_mips_operand, &mips_operands[i]))
3498 broken = 1;
3499 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3500 {
3501 create_insn (&nop_insn, mips_opcodes + i);
3502 if (mips_fix_loongson2f_nop)
3503 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3504 nop_insn.fixed_p = 1;
3505 }
3506 ++i;
3507 }
3508 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3509 }
3510
3511 mips16_op_hash = hash_new ();
3512 mips16_operands = XCNEWVEC (struct mips_operand_array,
3513 bfd_mips16_num_opcodes);
3514
3515 i = 0;
3516 while (i < bfd_mips16_num_opcodes)
3517 {
3518 const char *name = mips16_opcodes[i].name;
3519
3520 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3521 if (retval != NULL)
3522 as_fatal (_("internal: can't hash `%s': %s"),
3523 mips16_opcodes[i].name, retval);
3524 do
3525 {
3526 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3527 broken = 1;
3528 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3529 {
3530 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3531 mips16_nop_insn.fixed_p = 1;
3532 }
3533 ++i;
3534 }
3535 while (i < bfd_mips16_num_opcodes
3536 && strcmp (mips16_opcodes[i].name, name) == 0);
3537 }
3538
3539 micromips_op_hash = hash_new ();
3540 micromips_operands = XCNEWVEC (struct mips_operand_array,
3541 bfd_micromips_num_opcodes);
3542
3543 i = 0;
3544 while (i < bfd_micromips_num_opcodes)
3545 {
3546 const char *name = micromips_opcodes[i].name;
3547
3548 retval = hash_insert (micromips_op_hash, name,
3549 (void *) &micromips_opcodes[i]);
3550 if (retval != NULL)
3551 as_fatal (_("internal: can't hash `%s': %s"),
3552 micromips_opcodes[i].name, retval);
3553 do
3554 {
3555 struct mips_cl_insn *micromips_nop_insn;
3556
3557 if (!validate_micromips_insn (&micromips_opcodes[i],
3558 &micromips_operands[i]))
3559 broken = 1;
3560
3561 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3562 {
3563 if (micromips_insn_length (micromips_opcodes + i) == 2)
3564 micromips_nop_insn = &micromips_nop16_insn;
3565 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3566 micromips_nop_insn = &micromips_nop32_insn;
3567 else
3568 continue;
3569
3570 if (micromips_nop_insn->insn_mo == NULL
3571 && strcmp (name, "nop") == 0)
3572 {
3573 create_insn (micromips_nop_insn, micromips_opcodes + i);
3574 micromips_nop_insn->fixed_p = 1;
3575 }
3576 }
3577 }
3578 while (++i < bfd_micromips_num_opcodes
3579 && strcmp (micromips_opcodes[i].name, name) == 0);
3580 }
3581
3582 if (broken)
3583 as_fatal (_("broken assembler, no assembly attempted"));
3584
3585 /* We add all the general register names to the symbol table. This
3586 helps us detect invalid uses of them. */
3587 for (i = 0; reg_names[i].name; i++)
3588 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3589 reg_names[i].num, /* & RNUM_MASK, */
3590 &zero_address_frag));
3591 if (HAVE_NEWABI)
3592 for (i = 0; reg_names_n32n64[i].name; i++)
3593 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3594 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3595 &zero_address_frag));
3596 else
3597 for (i = 0; reg_names_o32[i].name; i++)
3598 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3599 reg_names_o32[i].num, /* & RNUM_MASK, */
3600 &zero_address_frag));
3601
3602 for (i = 0; i < 32; i++)
3603 {
3604 char regname[7];
3605
3606 /* R5900 VU0 floating-point register. */
3607 regname[sizeof (rename) - 1] = 0;
3608 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3609 symbol_table_insert (symbol_new (regname, reg_section,
3610 RTYPE_VF | i, &zero_address_frag));
3611
3612 /* R5900 VU0 integer register. */
3613 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3614 symbol_table_insert (symbol_new (regname, reg_section,
3615 RTYPE_VI | i, &zero_address_frag));
3616
3617 /* MSA register. */
3618 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3619 symbol_table_insert (symbol_new (regname, reg_section,
3620 RTYPE_MSA | i, &zero_address_frag));
3621 }
3622
3623 obstack_init (&mips_operand_tokens);
3624
3625 mips_no_prev_insn ();
3626
3627 mips_gprmask = 0;
3628 mips_cprmask[0] = 0;
3629 mips_cprmask[1] = 0;
3630 mips_cprmask[2] = 0;
3631 mips_cprmask[3] = 0;
3632
3633 /* set the default alignment for the text section (2**2) */
3634 record_alignment (text_section, 2);
3635
3636 bfd_set_gp_size (stdoutput, g_switch_value);
3637
3638 /* On a native system other than VxWorks, sections must be aligned
3639 to 16 byte boundaries. When configured for an embedded ELF
3640 target, we don't bother. */
3641 if (strncmp (TARGET_OS, "elf", 3) != 0
3642 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3643 {
3644 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3645 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3646 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3647 }
3648
3649 /* Create a .reginfo section for register masks and a .mdebug
3650 section for debugging information. */
3651 {
3652 segT seg;
3653 subsegT subseg;
3654 flagword flags;
3655 segT sec;
3656
3657 seg = now_seg;
3658 subseg = now_subseg;
3659
3660 /* The ABI says this section should be loaded so that the
3661 running program can access it. However, we don't load it
3662 if we are configured for an embedded target */
3663 flags = SEC_READONLY | SEC_DATA;
3664 if (strncmp (TARGET_OS, "elf", 3) != 0)
3665 flags |= SEC_ALLOC | SEC_LOAD;
3666
3667 if (mips_abi != N64_ABI)
3668 {
3669 sec = subseg_new (".reginfo", (subsegT) 0);
3670
3671 bfd_set_section_flags (stdoutput, sec, flags);
3672 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3673
3674 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3675 }
3676 else
3677 {
3678 /* The 64-bit ABI uses a .MIPS.options section rather than
3679 .reginfo section. */
3680 sec = subseg_new (".MIPS.options", (subsegT) 0);
3681 bfd_set_section_flags (stdoutput, sec, flags);
3682 bfd_set_section_alignment (stdoutput, sec, 3);
3683
3684 /* Set up the option header. */
3685 {
3686 Elf_Internal_Options opthdr;
3687 char *f;
3688
3689 opthdr.kind = ODK_REGINFO;
3690 opthdr.size = (sizeof (Elf_External_Options)
3691 + sizeof (Elf64_External_RegInfo));
3692 opthdr.section = 0;
3693 opthdr.info = 0;
3694 f = frag_more (sizeof (Elf_External_Options));
3695 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3696 (Elf_External_Options *) f);
3697
3698 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3699 }
3700 }
3701
3702 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3703 bfd_set_section_flags (stdoutput, sec,
3704 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3705 bfd_set_section_alignment (stdoutput, sec, 3);
3706 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3707
3708 if (ECOFF_DEBUGGING)
3709 {
3710 sec = subseg_new (".mdebug", (subsegT) 0);
3711 (void) bfd_set_section_flags (stdoutput, sec,
3712 SEC_HAS_CONTENTS | SEC_READONLY);
3713 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3714 }
3715 else if (mips_flag_pdr)
3716 {
3717 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3718 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3719 SEC_READONLY | SEC_RELOC
3720 | SEC_DEBUGGING);
3721 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3722 }
3723
3724 subseg_set (seg, subseg);
3725 }
3726
3727 if (mips_fix_vr4120)
3728 init_vr4120_conflicts ();
3729 }
3730
3731 static inline void
3732 fpabi_incompatible_with (int fpabi, const char *what)
3733 {
3734 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3735 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3736 }
3737
3738 static inline void
3739 fpabi_requires (int fpabi, const char *what)
3740 {
3741 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3742 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3743 }
3744
3745 /* Check -mabi and register sizes against the specified FP ABI. */
3746 static void
3747 check_fpabi (int fpabi)
3748 {
3749 switch (fpabi)
3750 {
3751 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3752 if (file_mips_opts.soft_float)
3753 fpabi_incompatible_with (fpabi, "softfloat");
3754 else if (file_mips_opts.single_float)
3755 fpabi_incompatible_with (fpabi, "singlefloat");
3756 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3757 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3758 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3759 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3760 break;
3761
3762 case Val_GNU_MIPS_ABI_FP_XX:
3763 if (mips_abi != O32_ABI)
3764 fpabi_requires (fpabi, "-mabi=32");
3765 else if (file_mips_opts.soft_float)
3766 fpabi_incompatible_with (fpabi, "softfloat");
3767 else if (file_mips_opts.single_float)
3768 fpabi_incompatible_with (fpabi, "singlefloat");
3769 else if (file_mips_opts.fp != 0)
3770 fpabi_requires (fpabi, "fp=xx");
3771 break;
3772
3773 case Val_GNU_MIPS_ABI_FP_64A:
3774 case Val_GNU_MIPS_ABI_FP_64:
3775 if (mips_abi != O32_ABI)
3776 fpabi_requires (fpabi, "-mabi=32");
3777 else if (file_mips_opts.soft_float)
3778 fpabi_incompatible_with (fpabi, "softfloat");
3779 else if (file_mips_opts.single_float)
3780 fpabi_incompatible_with (fpabi, "singlefloat");
3781 else if (file_mips_opts.fp != 64)
3782 fpabi_requires (fpabi, "fp=64");
3783 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3784 fpabi_incompatible_with (fpabi, "nooddspreg");
3785 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3786 fpabi_requires (fpabi, "nooddspreg");
3787 break;
3788
3789 case Val_GNU_MIPS_ABI_FP_SINGLE:
3790 if (file_mips_opts.soft_float)
3791 fpabi_incompatible_with (fpabi, "softfloat");
3792 else if (!file_mips_opts.single_float)
3793 fpabi_requires (fpabi, "singlefloat");
3794 break;
3795
3796 case Val_GNU_MIPS_ABI_FP_SOFT:
3797 if (!file_mips_opts.soft_float)
3798 fpabi_requires (fpabi, "softfloat");
3799 break;
3800
3801 case Val_GNU_MIPS_ABI_FP_OLD_64:
3802 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3803 Tag_GNU_MIPS_ABI_FP, fpabi);
3804 break;
3805
3806 case Val_GNU_MIPS_ABI_FP_NAN2008:
3807 /* Silently ignore compatibility value. */
3808 break;
3809
3810 default:
3811 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3812 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3813 break;
3814 }
3815 }
3816
3817 /* Perform consistency checks on the current options. */
3818
3819 static void
3820 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3821 {
3822 /* Check the size of integer registers agrees with the ABI and ISA. */
3823 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3824 as_bad (_("`gp=64' used with a 32-bit processor"));
3825 else if (abi_checks
3826 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3827 as_bad (_("`gp=32' used with a 64-bit ABI"));
3828 else if (abi_checks
3829 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3830 as_bad (_("`gp=64' used with a 32-bit ABI"));
3831
3832 /* Check the size of the float registers agrees with the ABI and ISA. */
3833 switch (opts->fp)
3834 {
3835 case 0:
3836 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3837 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3838 else if (opts->single_float == 1)
3839 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3840 break;
3841 case 64:
3842 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3843 as_bad (_("`fp=64' used with a 32-bit fpu"));
3844 else if (abi_checks
3845 && ABI_NEEDS_32BIT_REGS (mips_abi)
3846 && !ISA_HAS_MXHC1 (opts->isa))
3847 as_warn (_("`fp=64' used with a 32-bit ABI"));
3848 break;
3849 case 32:
3850 if (abi_checks
3851 && ABI_NEEDS_64BIT_REGS (mips_abi))
3852 as_warn (_("`fp=32' used with a 64-bit ABI"));
3853 if (ISA_IS_R6 (mips_opts.isa) && opts->single_float == 0)
3854 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3855 break;
3856 default:
3857 as_bad (_("Unknown size of floating point registers"));
3858 break;
3859 }
3860
3861 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3862 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3863
3864 if (opts->micromips == 1 && opts->mips16 == 1)
3865 as_bad (_("`mips16' cannot be used with `micromips'"));
3866 else if (ISA_IS_R6 (mips_opts.isa)
3867 && (opts->micromips == 1
3868 || opts->mips16 == 1))
3869 as_fatal (_("`%s' can not be used with `%s'"),
3870 opts->micromips ? "micromips" : "mips16",
3871 mips_cpu_info_from_isa (mips_opts.isa)->name);
3872
3873 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3874 as_fatal (_("branch relaxation is not supported in `%s'"),
3875 mips_cpu_info_from_isa (opts->isa)->name);
3876 }
3877
3878 /* Perform consistency checks on the module level options exactly once.
3879 This is a deferred check that happens:
3880 at the first .set directive
3881 or, at the first pseudo op that generates code (inc .dc.a)
3882 or, at the first instruction
3883 or, at the end. */
3884
3885 static void
3886 file_mips_check_options (void)
3887 {
3888 const struct mips_cpu_info *arch_info = 0;
3889
3890 if (file_mips_opts_checked)
3891 return;
3892
3893 /* The following code determines the register size.
3894 Similar code was added to GCC 3.3 (see override_options() in
3895 config/mips/mips.c). The GAS and GCC code should be kept in sync
3896 as much as possible. */
3897
3898 if (file_mips_opts.gp < 0)
3899 {
3900 /* Infer the integer register size from the ABI and processor.
3901 Restrict ourselves to 32-bit registers if that's all the
3902 processor has, or if the ABI cannot handle 64-bit registers. */
3903 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3904 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3905 ? 32 : 64;
3906 }
3907
3908 if (file_mips_opts.fp < 0)
3909 {
3910 /* No user specified float register size.
3911 ??? GAS treats single-float processors as though they had 64-bit
3912 float registers (although it complains when double-precision
3913 instructions are used). As things stand, saying they have 32-bit
3914 registers would lead to spurious "register must be even" messages.
3915 So here we assume float registers are never smaller than the
3916 integer ones. */
3917 if (file_mips_opts.gp == 64)
3918 /* 64-bit integer registers implies 64-bit float registers. */
3919 file_mips_opts.fp = 64;
3920 else if ((file_mips_opts.ase & FP64_ASES)
3921 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3922 /* Handle ASEs that require 64-bit float registers, if possible. */
3923 file_mips_opts.fp = 64;
3924 else if (ISA_IS_R6 (mips_opts.isa))
3925 /* R6 implies 64-bit float registers. */
3926 file_mips_opts.fp = 64;
3927 else
3928 /* 32-bit float registers. */
3929 file_mips_opts.fp = 32;
3930 }
3931
3932 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3933
3934 /* Disable operations on odd-numbered floating-point registers by default
3935 when using the FPXX ABI. */
3936 if (file_mips_opts.oddspreg < 0)
3937 {
3938 if (file_mips_opts.fp == 0)
3939 file_mips_opts.oddspreg = 0;
3940 else
3941 file_mips_opts.oddspreg = 1;
3942 }
3943
3944 /* End of GCC-shared inference code. */
3945
3946 /* This flag is set when we have a 64-bit capable CPU but use only
3947 32-bit wide registers. Note that EABI does not use it. */
3948 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3949 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3950 || mips_abi == O32_ABI))
3951 mips_32bitmode = 1;
3952
3953 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3954 as_bad (_("trap exception not supported at ISA 1"));
3955
3956 /* If the selected architecture includes support for ASEs, enable
3957 generation of code for them. */
3958 if (file_mips_opts.mips16 == -1)
3959 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3960 if (file_mips_opts.micromips == -1)
3961 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3962 ? 1 : 0;
3963
3964 if (mips_nan2008 == -1)
3965 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3966 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3967 as_fatal (_("`%s' does not support legacy NaN"),
3968 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3969
3970 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3971 being selected implicitly. */
3972 if (file_mips_opts.fp != 64)
3973 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3974
3975 /* If the user didn't explicitly select or deselect a particular ASE,
3976 use the default setting for the CPU. */
3977 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3978
3979 /* Set up the current options. These may change throughout assembly. */
3980 mips_opts = file_mips_opts;
3981
3982 mips_check_isa_supports_ases ();
3983 mips_check_options (&file_mips_opts, TRUE);
3984 file_mips_opts_checked = TRUE;
3985
3986 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3987 as_warn (_("could not set architecture and machine"));
3988 }
3989
3990 void
3991 md_assemble (char *str)
3992 {
3993 struct mips_cl_insn insn;
3994 bfd_reloc_code_real_type unused_reloc[3]
3995 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3996
3997 file_mips_check_options ();
3998
3999 imm_expr.X_op = O_absent;
4000 offset_expr.X_op = O_absent;
4001 offset_reloc[0] = BFD_RELOC_UNUSED;
4002 offset_reloc[1] = BFD_RELOC_UNUSED;
4003 offset_reloc[2] = BFD_RELOC_UNUSED;
4004
4005 mips_mark_labels ();
4006 mips_assembling_insn = TRUE;
4007 clear_insn_error ();
4008
4009 if (mips_opts.mips16)
4010 mips16_ip (str, &insn);
4011 else
4012 {
4013 mips_ip (str, &insn);
4014 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4015 str, insn.insn_opcode));
4016 }
4017
4018 if (insn_error.msg)
4019 report_insn_error (str);
4020 else if (insn.insn_mo->pinfo == INSN_MACRO)
4021 {
4022 macro_start ();
4023 if (mips_opts.mips16)
4024 mips16_macro (&insn);
4025 else
4026 macro (&insn, str);
4027 macro_end ();
4028 }
4029 else
4030 {
4031 if (offset_expr.X_op != O_absent)
4032 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4033 else
4034 append_insn (&insn, NULL, unused_reloc, FALSE);
4035 }
4036
4037 mips_assembling_insn = FALSE;
4038 }
4039
4040 /* Convenience functions for abstracting away the differences between
4041 MIPS16 and non-MIPS16 relocations. */
4042
4043 static inline bfd_boolean
4044 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4045 {
4046 switch (reloc)
4047 {
4048 case BFD_RELOC_MIPS16_JMP:
4049 case BFD_RELOC_MIPS16_GPREL:
4050 case BFD_RELOC_MIPS16_GOT16:
4051 case BFD_RELOC_MIPS16_CALL16:
4052 case BFD_RELOC_MIPS16_HI16_S:
4053 case BFD_RELOC_MIPS16_HI16:
4054 case BFD_RELOC_MIPS16_LO16:
4055 return TRUE;
4056
4057 default:
4058 return FALSE;
4059 }
4060 }
4061
4062 static inline bfd_boolean
4063 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4064 {
4065 switch (reloc)
4066 {
4067 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4068 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4069 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4070 case BFD_RELOC_MICROMIPS_GPREL16:
4071 case BFD_RELOC_MICROMIPS_JMP:
4072 case BFD_RELOC_MICROMIPS_HI16:
4073 case BFD_RELOC_MICROMIPS_HI16_S:
4074 case BFD_RELOC_MICROMIPS_LO16:
4075 case BFD_RELOC_MICROMIPS_LITERAL:
4076 case BFD_RELOC_MICROMIPS_GOT16:
4077 case BFD_RELOC_MICROMIPS_CALL16:
4078 case BFD_RELOC_MICROMIPS_GOT_HI16:
4079 case BFD_RELOC_MICROMIPS_GOT_LO16:
4080 case BFD_RELOC_MICROMIPS_CALL_HI16:
4081 case BFD_RELOC_MICROMIPS_CALL_LO16:
4082 case BFD_RELOC_MICROMIPS_SUB:
4083 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4084 case BFD_RELOC_MICROMIPS_GOT_OFST:
4085 case BFD_RELOC_MICROMIPS_GOT_DISP:
4086 case BFD_RELOC_MICROMIPS_HIGHEST:
4087 case BFD_RELOC_MICROMIPS_HIGHER:
4088 case BFD_RELOC_MICROMIPS_SCN_DISP:
4089 case BFD_RELOC_MICROMIPS_JALR:
4090 return TRUE;
4091
4092 default:
4093 return FALSE;
4094 }
4095 }
4096
4097 static inline bfd_boolean
4098 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4099 {
4100 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4101 }
4102
4103 static inline bfd_boolean
4104 got16_reloc_p (bfd_reloc_code_real_type reloc)
4105 {
4106 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4107 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4108 }
4109
4110 static inline bfd_boolean
4111 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4112 {
4113 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4114 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4115 }
4116
4117 static inline bfd_boolean
4118 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4119 {
4120 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4121 || reloc == BFD_RELOC_MICROMIPS_LO16);
4122 }
4123
4124 static inline bfd_boolean
4125 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4126 {
4127 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4128 }
4129
4130 static inline bfd_boolean
4131 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4132 {
4133 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4134 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4135 }
4136
4137 /* Return true if RELOC is a PC-relative relocation that does not have
4138 full address range. */
4139
4140 static inline bfd_boolean
4141 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4142 {
4143 switch (reloc)
4144 {
4145 case BFD_RELOC_16_PCREL_S2:
4146 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4147 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4148 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4149 case BFD_RELOC_MIPS_21_PCREL_S2:
4150 case BFD_RELOC_MIPS_26_PCREL_S2:
4151 case BFD_RELOC_MIPS_18_PCREL_S3:
4152 case BFD_RELOC_MIPS_19_PCREL_S2:
4153 return TRUE;
4154
4155 case BFD_RELOC_32_PCREL:
4156 case BFD_RELOC_HI16_S_PCREL:
4157 case BFD_RELOC_LO16_PCREL:
4158 return HAVE_64BIT_ADDRESSES;
4159
4160 default:
4161 return FALSE;
4162 }
4163 }
4164
4165 /* Return true if the given relocation might need a matching %lo().
4166 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4167 need a matching %lo() when applied to local symbols. */
4168
4169 static inline bfd_boolean
4170 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4171 {
4172 return (HAVE_IN_PLACE_ADDENDS
4173 && (hi16_reloc_p (reloc)
4174 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4175 all GOT16 relocations evaluate to "G". */
4176 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4177 }
4178
4179 /* Return the type of %lo() reloc needed by RELOC, given that
4180 reloc_needs_lo_p. */
4181
4182 static inline bfd_reloc_code_real_type
4183 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4184 {
4185 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4186 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4187 : BFD_RELOC_LO16));
4188 }
4189
4190 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4191 relocation. */
4192
4193 static inline bfd_boolean
4194 fixup_has_matching_lo_p (fixS *fixp)
4195 {
4196 return (fixp->fx_next != NULL
4197 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4198 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4199 && fixp->fx_offset == fixp->fx_next->fx_offset);
4200 }
4201
4202 /* Move all labels in LABELS to the current insertion point. TEXT_P
4203 says whether the labels refer to text or data. */
4204
4205 static void
4206 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4207 {
4208 struct insn_label_list *l;
4209 valueT val;
4210
4211 for (l = labels; l != NULL; l = l->next)
4212 {
4213 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4214 symbol_set_frag (l->label, frag_now);
4215 val = (valueT) frag_now_fix ();
4216 /* MIPS16/microMIPS text labels are stored as odd. */
4217 if (text_p && HAVE_CODE_COMPRESSION)
4218 ++val;
4219 S_SET_VALUE (l->label, val);
4220 }
4221 }
4222
4223 /* Move all labels in insn_labels to the current insertion point
4224 and treat them as text labels. */
4225
4226 static void
4227 mips_move_text_labels (void)
4228 {
4229 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4230 }
4231
4232 static bfd_boolean
4233 s_is_linkonce (symbolS *sym, segT from_seg)
4234 {
4235 bfd_boolean linkonce = FALSE;
4236 segT symseg = S_GET_SEGMENT (sym);
4237
4238 if (symseg != from_seg && !S_IS_LOCAL (sym))
4239 {
4240 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4241 linkonce = TRUE;
4242 /* The GNU toolchain uses an extension for ELF: a section
4243 beginning with the magic string .gnu.linkonce is a
4244 linkonce section. */
4245 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4246 sizeof ".gnu.linkonce" - 1) == 0)
4247 linkonce = TRUE;
4248 }
4249 return linkonce;
4250 }
4251
4252 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4253 linker to handle them specially, such as generating jalx instructions
4254 when needed. We also make them odd for the duration of the assembly,
4255 in order to generate the right sort of code. We will make them even
4256 in the adjust_symtab routine, while leaving them marked. This is
4257 convenient for the debugger and the disassembler. The linker knows
4258 to make them odd again. */
4259
4260 static void
4261 mips_compressed_mark_label (symbolS *label)
4262 {
4263 gas_assert (HAVE_CODE_COMPRESSION);
4264
4265 if (mips_opts.mips16)
4266 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4267 else
4268 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4269 if ((S_GET_VALUE (label) & 1) == 0
4270 /* Don't adjust the address if the label is global or weak, or
4271 in a link-once section, since we'll be emitting symbol reloc
4272 references to it which will be patched up by the linker, and
4273 the final value of the symbol may or may not be MIPS16/microMIPS. */
4274 && !S_IS_WEAK (label)
4275 && !S_IS_EXTERNAL (label)
4276 && !s_is_linkonce (label, now_seg))
4277 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4278 }
4279
4280 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4281
4282 static void
4283 mips_compressed_mark_labels (void)
4284 {
4285 struct insn_label_list *l;
4286
4287 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4288 mips_compressed_mark_label (l->label);
4289 }
4290
4291 /* End the current frag. Make it a variant frag and record the
4292 relaxation info. */
4293
4294 static void
4295 relax_close_frag (void)
4296 {
4297 mips_macro_warning.first_frag = frag_now;
4298 frag_var (rs_machine_dependent, 0, 0,
4299 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4300 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4301
4302 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4303 mips_relax.first_fixup = 0;
4304 }
4305
4306 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4307 See the comment above RELAX_ENCODE for more details. */
4308
4309 static void
4310 relax_start (symbolS *symbol)
4311 {
4312 gas_assert (mips_relax.sequence == 0);
4313 mips_relax.sequence = 1;
4314 mips_relax.symbol = symbol;
4315 }
4316
4317 /* Start generating the second version of a relaxable sequence.
4318 See the comment above RELAX_ENCODE for more details. */
4319
4320 static void
4321 relax_switch (void)
4322 {
4323 gas_assert (mips_relax.sequence == 1);
4324 mips_relax.sequence = 2;
4325 }
4326
4327 /* End the current relaxable sequence. */
4328
4329 static void
4330 relax_end (void)
4331 {
4332 gas_assert (mips_relax.sequence == 2);
4333 relax_close_frag ();
4334 mips_relax.sequence = 0;
4335 }
4336
4337 /* Return true if IP is a delayed branch or jump. */
4338
4339 static inline bfd_boolean
4340 delayed_branch_p (const struct mips_cl_insn *ip)
4341 {
4342 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4343 | INSN_COND_BRANCH_DELAY
4344 | INSN_COND_BRANCH_LIKELY)) != 0;
4345 }
4346
4347 /* Return true if IP is a compact branch or jump. */
4348
4349 static inline bfd_boolean
4350 compact_branch_p (const struct mips_cl_insn *ip)
4351 {
4352 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4353 | INSN2_COND_BRANCH)) != 0;
4354 }
4355
4356 /* Return true if IP is an unconditional branch or jump. */
4357
4358 static inline bfd_boolean
4359 uncond_branch_p (const struct mips_cl_insn *ip)
4360 {
4361 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4362 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4363 }
4364
4365 /* Return true if IP is a branch-likely instruction. */
4366
4367 static inline bfd_boolean
4368 branch_likely_p (const struct mips_cl_insn *ip)
4369 {
4370 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4371 }
4372
4373 /* Return the type of nop that should be used to fill the delay slot
4374 of delayed branch IP. */
4375
4376 static struct mips_cl_insn *
4377 get_delay_slot_nop (const struct mips_cl_insn *ip)
4378 {
4379 if (mips_opts.micromips
4380 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4381 return &micromips_nop32_insn;
4382 return NOP_INSN;
4383 }
4384
4385 /* Return a mask that has bit N set if OPCODE reads the register(s)
4386 in operand N. */
4387
4388 static unsigned int
4389 insn_read_mask (const struct mips_opcode *opcode)
4390 {
4391 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4392 }
4393
4394 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4395 in operand N. */
4396
4397 static unsigned int
4398 insn_write_mask (const struct mips_opcode *opcode)
4399 {
4400 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4401 }
4402
4403 /* Return a mask of the registers specified by operand OPERAND of INSN.
4404 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4405 is set. */
4406
4407 static unsigned int
4408 operand_reg_mask (const struct mips_cl_insn *insn,
4409 const struct mips_operand *operand,
4410 unsigned int type_mask)
4411 {
4412 unsigned int uval, vsel;
4413
4414 switch (operand->type)
4415 {
4416 case OP_INT:
4417 case OP_MAPPED_INT:
4418 case OP_MSB:
4419 case OP_PCREL:
4420 case OP_PERF_REG:
4421 case OP_ADDIUSP_INT:
4422 case OP_ENTRY_EXIT_LIST:
4423 case OP_REPEAT_DEST_REG:
4424 case OP_REPEAT_PREV_REG:
4425 case OP_PC:
4426 case OP_VU0_SUFFIX:
4427 case OP_VU0_MATCH_SUFFIX:
4428 case OP_IMM_INDEX:
4429 abort ();
4430
4431 case OP_REG:
4432 case OP_OPTIONAL_REG:
4433 {
4434 const struct mips_reg_operand *reg_op;
4435
4436 reg_op = (const struct mips_reg_operand *) operand;
4437 if (!(type_mask & (1 << reg_op->reg_type)))
4438 return 0;
4439 uval = insn_extract_operand (insn, operand);
4440 return 1 << mips_decode_reg_operand (reg_op, uval);
4441 }
4442
4443 case OP_REG_PAIR:
4444 {
4445 const struct mips_reg_pair_operand *pair_op;
4446
4447 pair_op = (const struct mips_reg_pair_operand *) operand;
4448 if (!(type_mask & (1 << pair_op->reg_type)))
4449 return 0;
4450 uval = insn_extract_operand (insn, operand);
4451 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4452 }
4453
4454 case OP_CLO_CLZ_DEST:
4455 if (!(type_mask & (1 << OP_REG_GP)))
4456 return 0;
4457 uval = insn_extract_operand (insn, operand);
4458 return (1 << (uval & 31)) | (1 << (uval >> 5));
4459
4460 case OP_SAME_RS_RT:
4461 if (!(type_mask & (1 << OP_REG_GP)))
4462 return 0;
4463 uval = insn_extract_operand (insn, operand);
4464 gas_assert ((uval & 31) == (uval >> 5));
4465 return 1 << (uval & 31);
4466
4467 case OP_CHECK_PREV:
4468 case OP_NON_ZERO_REG:
4469 if (!(type_mask & (1 << OP_REG_GP)))
4470 return 0;
4471 uval = insn_extract_operand (insn, operand);
4472 return 1 << (uval & 31);
4473
4474 case OP_LWM_SWM_LIST:
4475 abort ();
4476
4477 case OP_SAVE_RESTORE_LIST:
4478 abort ();
4479
4480 case OP_MDMX_IMM_REG:
4481 if (!(type_mask & (1 << OP_REG_VEC)))
4482 return 0;
4483 uval = insn_extract_operand (insn, operand);
4484 vsel = uval >> 5;
4485 if ((vsel & 0x18) == 0x18)
4486 return 0;
4487 return 1 << (uval & 31);
4488
4489 case OP_REG_INDEX:
4490 if (!(type_mask & (1 << OP_REG_GP)))
4491 return 0;
4492 return 1 << insn_extract_operand (insn, operand);
4493 }
4494 abort ();
4495 }
4496
4497 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4498 where bit N of OPNO_MASK is set if operand N should be included.
4499 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4500 is set. */
4501
4502 static unsigned int
4503 insn_reg_mask (const struct mips_cl_insn *insn,
4504 unsigned int type_mask, unsigned int opno_mask)
4505 {
4506 unsigned int opno, reg_mask;
4507
4508 opno = 0;
4509 reg_mask = 0;
4510 while (opno_mask != 0)
4511 {
4512 if (opno_mask & 1)
4513 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4514 opno_mask >>= 1;
4515 opno += 1;
4516 }
4517 return reg_mask;
4518 }
4519
4520 /* Return the mask of core registers that IP reads. */
4521
4522 static unsigned int
4523 gpr_read_mask (const struct mips_cl_insn *ip)
4524 {
4525 unsigned long pinfo, pinfo2;
4526 unsigned int mask;
4527
4528 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4529 pinfo = ip->insn_mo->pinfo;
4530 pinfo2 = ip->insn_mo->pinfo2;
4531 if (pinfo & INSN_UDI)
4532 {
4533 /* UDI instructions have traditionally been assumed to read RS
4534 and RT. */
4535 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4536 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4537 }
4538 if (pinfo & INSN_READ_GPR_24)
4539 mask |= 1 << 24;
4540 if (pinfo2 & INSN2_READ_GPR_16)
4541 mask |= 1 << 16;
4542 if (pinfo2 & INSN2_READ_SP)
4543 mask |= 1 << SP;
4544 if (pinfo2 & INSN2_READ_GPR_31)
4545 mask |= 1 << 31;
4546 /* Don't include register 0. */
4547 return mask & ~1;
4548 }
4549
4550 /* Return the mask of core registers that IP writes. */
4551
4552 static unsigned int
4553 gpr_write_mask (const struct mips_cl_insn *ip)
4554 {
4555 unsigned long pinfo, pinfo2;
4556 unsigned int mask;
4557
4558 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4559 pinfo = ip->insn_mo->pinfo;
4560 pinfo2 = ip->insn_mo->pinfo2;
4561 if (pinfo & INSN_WRITE_GPR_24)
4562 mask |= 1 << 24;
4563 if (pinfo & INSN_WRITE_GPR_31)
4564 mask |= 1 << 31;
4565 if (pinfo & INSN_UDI)
4566 /* UDI instructions have traditionally been assumed to write to RD. */
4567 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4568 if (pinfo2 & INSN2_WRITE_SP)
4569 mask |= 1 << SP;
4570 /* Don't include register 0. */
4571 return mask & ~1;
4572 }
4573
4574 /* Return the mask of floating-point registers that IP reads. */
4575
4576 static unsigned int
4577 fpr_read_mask (const struct mips_cl_insn *ip)
4578 {
4579 unsigned long pinfo;
4580 unsigned int mask;
4581
4582 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4583 | (1 << OP_REG_MSA)),
4584 insn_read_mask (ip->insn_mo));
4585 pinfo = ip->insn_mo->pinfo;
4586 /* Conservatively treat all operands to an FP_D instruction are doubles.
4587 (This is overly pessimistic for things like cvt.d.s.) */
4588 if (FPR_SIZE != 64 && (pinfo & FP_D))
4589 mask |= mask << 1;
4590 return mask;
4591 }
4592
4593 /* Return the mask of floating-point registers that IP writes. */
4594
4595 static unsigned int
4596 fpr_write_mask (const struct mips_cl_insn *ip)
4597 {
4598 unsigned long pinfo;
4599 unsigned int mask;
4600
4601 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4602 | (1 << OP_REG_MSA)),
4603 insn_write_mask (ip->insn_mo));
4604 pinfo = ip->insn_mo->pinfo;
4605 /* Conservatively treat all operands to an FP_D instruction are doubles.
4606 (This is overly pessimistic for things like cvt.s.d.) */
4607 if (FPR_SIZE != 64 && (pinfo & FP_D))
4608 mask |= mask << 1;
4609 return mask;
4610 }
4611
4612 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4613 Check whether that is allowed. */
4614
4615 static bfd_boolean
4616 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4617 {
4618 const char *s = insn->name;
4619 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4620 || FPR_SIZE == 64)
4621 && mips_opts.oddspreg;
4622
4623 if (insn->pinfo == INSN_MACRO)
4624 /* Let a macro pass, we'll catch it later when it is expanded. */
4625 return TRUE;
4626
4627 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4628 otherwise it depends on oddspreg. */
4629 if ((insn->pinfo & FP_S)
4630 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4631 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4632 return FPR_SIZE == 32 || oddspreg;
4633
4634 /* Allow odd registers for single-precision ops and double-precision if the
4635 floating-point registers are 64-bit wide. */
4636 switch (insn->pinfo & (FP_S | FP_D))
4637 {
4638 case FP_S:
4639 case 0:
4640 return oddspreg;
4641 case FP_D:
4642 return FPR_SIZE == 64;
4643 default:
4644 break;
4645 }
4646
4647 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4648 s = strchr (insn->name, '.');
4649 if (s != NULL && opnum == 2)
4650 s = strchr (s + 1, '.');
4651 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4652 return oddspreg;
4653
4654 return FPR_SIZE == 64;
4655 }
4656
4657 /* Information about an instruction argument that we're trying to match. */
4658 struct mips_arg_info
4659 {
4660 /* The instruction so far. */
4661 struct mips_cl_insn *insn;
4662
4663 /* The first unconsumed operand token. */
4664 struct mips_operand_token *token;
4665
4666 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4667 int opnum;
4668
4669 /* The 1-based argument number, for error reporting. This does not
4670 count elided optional registers, etc.. */
4671 int argnum;
4672
4673 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4674 unsigned int last_regno;
4675
4676 /* If the first operand was an OP_REG, this is the register that it
4677 specified, otherwise it is ILLEGAL_REG. */
4678 unsigned int dest_regno;
4679
4680 /* The value of the last OP_INT operand. Only used for OP_MSB,
4681 where it gives the lsb position. */
4682 unsigned int last_op_int;
4683
4684 /* If true, match routines should assume that no later instruction
4685 alternative matches and should therefore be as accomodating as
4686 possible. Match routines should not report errors if something
4687 is only invalid for !LAX_MATCH. */
4688 bfd_boolean lax_match;
4689
4690 /* True if a reference to the current AT register was seen. */
4691 bfd_boolean seen_at;
4692 };
4693
4694 /* Record that the argument is out of range. */
4695
4696 static void
4697 match_out_of_range (struct mips_arg_info *arg)
4698 {
4699 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4700 }
4701
4702 /* Record that the argument isn't constant but needs to be. */
4703
4704 static void
4705 match_not_constant (struct mips_arg_info *arg)
4706 {
4707 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4708 arg->argnum);
4709 }
4710
4711 /* Try to match an OT_CHAR token for character CH. Consume the token
4712 and return true on success, otherwise return false. */
4713
4714 static bfd_boolean
4715 match_char (struct mips_arg_info *arg, char ch)
4716 {
4717 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4718 {
4719 ++arg->token;
4720 if (ch == ',')
4721 arg->argnum += 1;
4722 return TRUE;
4723 }
4724 return FALSE;
4725 }
4726
4727 /* Try to get an expression from the next tokens in ARG. Consume the
4728 tokens and return true on success, storing the expression value in
4729 VALUE and relocation types in R. */
4730
4731 static bfd_boolean
4732 match_expression (struct mips_arg_info *arg, expressionS *value,
4733 bfd_reloc_code_real_type *r)
4734 {
4735 /* If the next token is a '(' that was parsed as being part of a base
4736 expression, assume we have an elided offset. The later match will fail
4737 if this turns out to be wrong. */
4738 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4739 {
4740 value->X_op = O_constant;
4741 value->X_add_number = 0;
4742 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4743 return TRUE;
4744 }
4745
4746 /* Reject register-based expressions such as "0+$2" and "(($2))".
4747 For plain registers the default error seems more appropriate. */
4748 if (arg->token->type == OT_INTEGER
4749 && arg->token->u.integer.value.X_op == O_register)
4750 {
4751 set_insn_error (arg->argnum, _("register value used as expression"));
4752 return FALSE;
4753 }
4754
4755 if (arg->token->type == OT_INTEGER)
4756 {
4757 *value = arg->token->u.integer.value;
4758 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4759 ++arg->token;
4760 return TRUE;
4761 }
4762
4763 set_insn_error_i
4764 (arg->argnum, _("operand %d must be an immediate expression"),
4765 arg->argnum);
4766 return FALSE;
4767 }
4768
4769 /* Try to get a constant expression from the next tokens in ARG. Consume
4770 the tokens and return return true on success, storing the constant value
4771 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4772 error. */
4773
4774 static bfd_boolean
4775 match_const_int (struct mips_arg_info *arg, offsetT *value)
4776 {
4777 expressionS ex;
4778 bfd_reloc_code_real_type r[3];
4779
4780 if (!match_expression (arg, &ex, r))
4781 return FALSE;
4782
4783 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4784 *value = ex.X_add_number;
4785 else
4786 {
4787 match_not_constant (arg);
4788 return FALSE;
4789 }
4790 return TRUE;
4791 }
4792
4793 /* Return the RTYPE_* flags for a register operand of type TYPE that
4794 appears in instruction OPCODE. */
4795
4796 static unsigned int
4797 convert_reg_type (const struct mips_opcode *opcode,
4798 enum mips_reg_operand_type type)
4799 {
4800 switch (type)
4801 {
4802 case OP_REG_GP:
4803 return RTYPE_NUM | RTYPE_GP;
4804
4805 case OP_REG_FP:
4806 /* Allow vector register names for MDMX if the instruction is a 64-bit
4807 FPR load, store or move (including moves to and from GPRs). */
4808 if ((mips_opts.ase & ASE_MDMX)
4809 && (opcode->pinfo & FP_D)
4810 && (opcode->pinfo & (INSN_COPROC_MOVE
4811 | INSN_COPROC_MEMORY_DELAY
4812 | INSN_LOAD_COPROC
4813 | INSN_LOAD_MEMORY
4814 | INSN_STORE_MEMORY)))
4815 return RTYPE_FPU | RTYPE_VEC;
4816 return RTYPE_FPU;
4817
4818 case OP_REG_CCC:
4819 if (opcode->pinfo & (FP_D | FP_S))
4820 return RTYPE_CCC | RTYPE_FCC;
4821 return RTYPE_CCC;
4822
4823 case OP_REG_VEC:
4824 if (opcode->membership & INSN_5400)
4825 return RTYPE_FPU;
4826 return RTYPE_FPU | RTYPE_VEC;
4827
4828 case OP_REG_ACC:
4829 return RTYPE_ACC;
4830
4831 case OP_REG_COPRO:
4832 if (opcode->name[strlen (opcode->name) - 1] == '0')
4833 return RTYPE_NUM | RTYPE_CP0;
4834 return RTYPE_NUM;
4835
4836 case OP_REG_HW:
4837 return RTYPE_NUM;
4838
4839 case OP_REG_VI:
4840 return RTYPE_NUM | RTYPE_VI;
4841
4842 case OP_REG_VF:
4843 return RTYPE_NUM | RTYPE_VF;
4844
4845 case OP_REG_R5900_I:
4846 return RTYPE_R5900_I;
4847
4848 case OP_REG_R5900_Q:
4849 return RTYPE_R5900_Q;
4850
4851 case OP_REG_R5900_R:
4852 return RTYPE_R5900_R;
4853
4854 case OP_REG_R5900_ACC:
4855 return RTYPE_R5900_ACC;
4856
4857 case OP_REG_MSA:
4858 return RTYPE_MSA;
4859
4860 case OP_REG_MSA_CTRL:
4861 return RTYPE_NUM;
4862 }
4863 abort ();
4864 }
4865
4866 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4867
4868 static void
4869 check_regno (struct mips_arg_info *arg,
4870 enum mips_reg_operand_type type, unsigned int regno)
4871 {
4872 if (AT && type == OP_REG_GP && regno == AT)
4873 arg->seen_at = TRUE;
4874
4875 if (type == OP_REG_FP
4876 && (regno & 1) != 0
4877 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4878 {
4879 /* This was a warning prior to introducing O32 FPXX and FP64 support
4880 so maintain a warning for FP32 but raise an error for the new
4881 cases. */
4882 if (FPR_SIZE == 32)
4883 as_warn (_("float register should be even, was %d"), regno);
4884 else
4885 as_bad (_("float register should be even, was %d"), regno);
4886 }
4887
4888 if (type == OP_REG_CCC)
4889 {
4890 const char *name;
4891 size_t length;
4892
4893 name = arg->insn->insn_mo->name;
4894 length = strlen (name);
4895 if ((regno & 1) != 0
4896 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4897 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4898 as_warn (_("condition code register should be even for %s, was %d"),
4899 name, regno);
4900
4901 if ((regno & 3) != 0
4902 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4903 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4904 name, regno);
4905 }
4906 }
4907
4908 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4909 a register of type TYPE. Return true on success, storing the register
4910 number in *REGNO and warning about any dubious uses. */
4911
4912 static bfd_boolean
4913 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4914 unsigned int symval, unsigned int *regno)
4915 {
4916 if (type == OP_REG_VEC)
4917 symval = mips_prefer_vec_regno (symval);
4918 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4919 return FALSE;
4920
4921 *regno = symval & RNUM_MASK;
4922 check_regno (arg, type, *regno);
4923 return TRUE;
4924 }
4925
4926 /* Try to interpret the next token in ARG as a register of type TYPE.
4927 Consume the token and return true on success, storing the register
4928 number in *REGNO. Return false on failure. */
4929
4930 static bfd_boolean
4931 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4932 unsigned int *regno)
4933 {
4934 if (arg->token->type == OT_REG
4935 && match_regno (arg, type, arg->token->u.regno, regno))
4936 {
4937 ++arg->token;
4938 return TRUE;
4939 }
4940 return FALSE;
4941 }
4942
4943 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4944 Consume the token and return true on success, storing the register numbers
4945 in *REGNO1 and *REGNO2. Return false on failure. */
4946
4947 static bfd_boolean
4948 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4949 unsigned int *regno1, unsigned int *regno2)
4950 {
4951 if (match_reg (arg, type, regno1))
4952 {
4953 *regno2 = *regno1;
4954 return TRUE;
4955 }
4956 if (arg->token->type == OT_REG_RANGE
4957 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4958 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4959 && *regno1 <= *regno2)
4960 {
4961 ++arg->token;
4962 return TRUE;
4963 }
4964 return FALSE;
4965 }
4966
4967 /* OP_INT matcher. */
4968
4969 static bfd_boolean
4970 match_int_operand (struct mips_arg_info *arg,
4971 const struct mips_operand *operand_base)
4972 {
4973 const struct mips_int_operand *operand;
4974 unsigned int uval;
4975 int min_val, max_val, factor;
4976 offsetT sval;
4977
4978 operand = (const struct mips_int_operand *) operand_base;
4979 factor = 1 << operand->shift;
4980 min_val = mips_int_operand_min (operand);
4981 max_val = mips_int_operand_max (operand);
4982
4983 if (operand_base->lsb == 0
4984 && operand_base->size == 16
4985 && operand->shift == 0
4986 && operand->bias == 0
4987 && (operand->max_val == 32767 || operand->max_val == 65535))
4988 {
4989 /* The operand can be relocated. */
4990 if (!match_expression (arg, &offset_expr, offset_reloc))
4991 return FALSE;
4992
4993 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4994 /* Relocation operators were used. Accept the arguent and
4995 leave the relocation value in offset_expr and offset_relocs
4996 for the caller to process. */
4997 return TRUE;
4998
4999 if (offset_expr.X_op != O_constant)
5000 {
5001 /* Accept non-constant operands if no later alternative matches,
5002 leaving it for the caller to process. */
5003 if (!arg->lax_match)
5004 return FALSE;
5005 offset_reloc[0] = BFD_RELOC_LO16;
5006 return TRUE;
5007 }
5008
5009 /* Clear the global state; we're going to install the operand
5010 ourselves. */
5011 sval = offset_expr.X_add_number;
5012 offset_expr.X_op = O_absent;
5013
5014 /* For compatibility with older assemblers, we accept
5015 0x8000-0xffff as signed 16-bit numbers when only
5016 signed numbers are allowed. */
5017 if (sval > max_val)
5018 {
5019 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5020 if (!arg->lax_match && sval <= max_val)
5021 return FALSE;
5022 }
5023 }
5024 else
5025 {
5026 if (!match_const_int (arg, &sval))
5027 return FALSE;
5028 }
5029
5030 arg->last_op_int = sval;
5031
5032 if (sval < min_val || sval > max_val || sval % factor)
5033 {
5034 match_out_of_range (arg);
5035 return FALSE;
5036 }
5037
5038 uval = (unsigned int) sval >> operand->shift;
5039 uval -= operand->bias;
5040
5041 /* Handle -mfix-cn63xxp1. */
5042 if (arg->opnum == 1
5043 && mips_fix_cn63xxp1
5044 && !mips_opts.micromips
5045 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5046 switch (uval)
5047 {
5048 case 5:
5049 case 25:
5050 case 26:
5051 case 27:
5052 case 28:
5053 case 29:
5054 case 30:
5055 case 31:
5056 /* These are ok. */
5057 break;
5058
5059 default:
5060 /* The rest must be changed to 28. */
5061 uval = 28;
5062 break;
5063 }
5064
5065 insn_insert_operand (arg->insn, operand_base, uval);
5066 return TRUE;
5067 }
5068
5069 /* OP_MAPPED_INT matcher. */
5070
5071 static bfd_boolean
5072 match_mapped_int_operand (struct mips_arg_info *arg,
5073 const struct mips_operand *operand_base)
5074 {
5075 const struct mips_mapped_int_operand *operand;
5076 unsigned int uval, num_vals;
5077 offsetT sval;
5078
5079 operand = (const struct mips_mapped_int_operand *) operand_base;
5080 if (!match_const_int (arg, &sval))
5081 return FALSE;
5082
5083 num_vals = 1 << operand_base->size;
5084 for (uval = 0; uval < num_vals; uval++)
5085 if (operand->int_map[uval] == sval)
5086 break;
5087 if (uval == num_vals)
5088 {
5089 match_out_of_range (arg);
5090 return FALSE;
5091 }
5092
5093 insn_insert_operand (arg->insn, operand_base, uval);
5094 return TRUE;
5095 }
5096
5097 /* OP_MSB matcher. */
5098
5099 static bfd_boolean
5100 match_msb_operand (struct mips_arg_info *arg,
5101 const struct mips_operand *operand_base)
5102 {
5103 const struct mips_msb_operand *operand;
5104 int min_val, max_val, max_high;
5105 offsetT size, sval, high;
5106
5107 operand = (const struct mips_msb_operand *) operand_base;
5108 min_val = operand->bias;
5109 max_val = min_val + (1 << operand_base->size) - 1;
5110 max_high = operand->opsize;
5111
5112 if (!match_const_int (arg, &size))
5113 return FALSE;
5114
5115 high = size + arg->last_op_int;
5116 sval = operand->add_lsb ? high : size;
5117
5118 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5119 {
5120 match_out_of_range (arg);
5121 return FALSE;
5122 }
5123 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5124 return TRUE;
5125 }
5126
5127 /* OP_REG matcher. */
5128
5129 static bfd_boolean
5130 match_reg_operand (struct mips_arg_info *arg,
5131 const struct mips_operand *operand_base)
5132 {
5133 const struct mips_reg_operand *operand;
5134 unsigned int regno, uval, num_vals;
5135
5136 operand = (const struct mips_reg_operand *) operand_base;
5137 if (!match_reg (arg, operand->reg_type, &regno))
5138 return FALSE;
5139
5140 if (operand->reg_map)
5141 {
5142 num_vals = 1 << operand->root.size;
5143 for (uval = 0; uval < num_vals; uval++)
5144 if (operand->reg_map[uval] == regno)
5145 break;
5146 if (num_vals == uval)
5147 return FALSE;
5148 }
5149 else
5150 uval = regno;
5151
5152 arg->last_regno = regno;
5153 if (arg->opnum == 1)
5154 arg->dest_regno = regno;
5155 insn_insert_operand (arg->insn, operand_base, uval);
5156 return TRUE;
5157 }
5158
5159 /* OP_REG_PAIR matcher. */
5160
5161 static bfd_boolean
5162 match_reg_pair_operand (struct mips_arg_info *arg,
5163 const struct mips_operand *operand_base)
5164 {
5165 const struct mips_reg_pair_operand *operand;
5166 unsigned int regno1, regno2, uval, num_vals;
5167
5168 operand = (const struct mips_reg_pair_operand *) operand_base;
5169 if (!match_reg (arg, operand->reg_type, &regno1)
5170 || !match_char (arg, ',')
5171 || !match_reg (arg, operand->reg_type, &regno2))
5172 return FALSE;
5173
5174 num_vals = 1 << operand_base->size;
5175 for (uval = 0; uval < num_vals; uval++)
5176 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5177 break;
5178 if (uval == num_vals)
5179 return FALSE;
5180
5181 insn_insert_operand (arg->insn, operand_base, uval);
5182 return TRUE;
5183 }
5184
5185 /* OP_PCREL matcher. The caller chooses the relocation type. */
5186
5187 static bfd_boolean
5188 match_pcrel_operand (struct mips_arg_info *arg)
5189 {
5190 bfd_reloc_code_real_type r[3];
5191
5192 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5193 }
5194
5195 /* OP_PERF_REG matcher. */
5196
5197 static bfd_boolean
5198 match_perf_reg_operand (struct mips_arg_info *arg,
5199 const struct mips_operand *operand)
5200 {
5201 offsetT sval;
5202
5203 if (!match_const_int (arg, &sval))
5204 return FALSE;
5205
5206 if (sval != 0
5207 && (sval != 1
5208 || (mips_opts.arch == CPU_R5900
5209 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5210 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5211 {
5212 set_insn_error (arg->argnum, _("invalid performance register"));
5213 return FALSE;
5214 }
5215
5216 insn_insert_operand (arg->insn, operand, sval);
5217 return TRUE;
5218 }
5219
5220 /* OP_ADDIUSP matcher. */
5221
5222 static bfd_boolean
5223 match_addiusp_operand (struct mips_arg_info *arg,
5224 const struct mips_operand *operand)
5225 {
5226 offsetT sval;
5227 unsigned int uval;
5228
5229 if (!match_const_int (arg, &sval))
5230 return FALSE;
5231
5232 if (sval % 4)
5233 {
5234 match_out_of_range (arg);
5235 return FALSE;
5236 }
5237
5238 sval /= 4;
5239 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5240 {
5241 match_out_of_range (arg);
5242 return FALSE;
5243 }
5244
5245 uval = (unsigned int) sval;
5246 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5247 insn_insert_operand (arg->insn, operand, uval);
5248 return TRUE;
5249 }
5250
5251 /* OP_CLO_CLZ_DEST matcher. */
5252
5253 static bfd_boolean
5254 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5255 const struct mips_operand *operand)
5256 {
5257 unsigned int regno;
5258
5259 if (!match_reg (arg, OP_REG_GP, &regno))
5260 return FALSE;
5261
5262 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5263 return TRUE;
5264 }
5265
5266 /* OP_CHECK_PREV matcher. */
5267
5268 static bfd_boolean
5269 match_check_prev_operand (struct mips_arg_info *arg,
5270 const struct mips_operand *operand_base)
5271 {
5272 const struct mips_check_prev_operand *operand;
5273 unsigned int regno;
5274
5275 operand = (const struct mips_check_prev_operand *) operand_base;
5276
5277 if (!match_reg (arg, OP_REG_GP, &regno))
5278 return FALSE;
5279
5280 if (!operand->zero_ok && regno == 0)
5281 return FALSE;
5282
5283 if ((operand->less_than_ok && regno < arg->last_regno)
5284 || (operand->greater_than_ok && regno > arg->last_regno)
5285 || (operand->equal_ok && regno == arg->last_regno))
5286 {
5287 arg->last_regno = regno;
5288 insn_insert_operand (arg->insn, operand_base, regno);
5289 return TRUE;
5290 }
5291
5292 return FALSE;
5293 }
5294
5295 /* OP_SAME_RS_RT matcher. */
5296
5297 static bfd_boolean
5298 match_same_rs_rt_operand (struct mips_arg_info *arg,
5299 const struct mips_operand *operand)
5300 {
5301 unsigned int regno;
5302
5303 if (!match_reg (arg, OP_REG_GP, &regno))
5304 return FALSE;
5305
5306 if (regno == 0)
5307 {
5308 set_insn_error (arg->argnum, _("the source register must not be $0"));
5309 return FALSE;
5310 }
5311
5312 arg->last_regno = regno;
5313
5314 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5315 return TRUE;
5316 }
5317
5318 /* OP_LWM_SWM_LIST matcher. */
5319
5320 static bfd_boolean
5321 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5322 const struct mips_operand *operand)
5323 {
5324 unsigned int reglist, sregs, ra, regno1, regno2;
5325 struct mips_arg_info reset;
5326
5327 reglist = 0;
5328 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5329 return FALSE;
5330 do
5331 {
5332 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5333 {
5334 reglist |= 1 << FP;
5335 regno2 = S7;
5336 }
5337 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5338 reset = *arg;
5339 }
5340 while (match_char (arg, ',')
5341 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5342 *arg = reset;
5343
5344 if (operand->size == 2)
5345 {
5346 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5347
5348 s0, ra
5349 s0, s1, ra, s2, s3
5350 s0-s2, ra
5351
5352 and any permutations of these. */
5353 if ((reglist & 0xfff1ffff) != 0x80010000)
5354 return FALSE;
5355
5356 sregs = (reglist >> 17) & 7;
5357 ra = 0;
5358 }
5359 else
5360 {
5361 /* The list must include at least one of ra and s0-sN,
5362 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5363 which are $23 and $30 respectively.) E.g.:
5364
5365 ra
5366 s0
5367 ra, s0, s1, s2
5368 s0-s8
5369 s0-s5, ra
5370
5371 and any permutations of these. */
5372 if ((reglist & 0x3f00ffff) != 0)
5373 return FALSE;
5374
5375 ra = (reglist >> 27) & 0x10;
5376 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5377 }
5378 sregs += 1;
5379 if ((sregs & -sregs) != sregs)
5380 return FALSE;
5381
5382 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5383 return TRUE;
5384 }
5385
5386 /* OP_ENTRY_EXIT_LIST matcher. */
5387
5388 static unsigned int
5389 match_entry_exit_operand (struct mips_arg_info *arg,
5390 const struct mips_operand *operand)
5391 {
5392 unsigned int mask;
5393 bfd_boolean is_exit;
5394
5395 /* The format is the same for both ENTRY and EXIT, but the constraints
5396 are different. */
5397 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5398 mask = (is_exit ? 7 << 3 : 0);
5399 do
5400 {
5401 unsigned int regno1, regno2;
5402 bfd_boolean is_freg;
5403
5404 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5405 is_freg = FALSE;
5406 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5407 is_freg = TRUE;
5408 else
5409 return FALSE;
5410
5411 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5412 {
5413 mask &= ~(7 << 3);
5414 mask |= (5 + regno2) << 3;
5415 }
5416 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5417 mask |= (regno2 - 3) << 3;
5418 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5419 mask |= (regno2 - 15) << 1;
5420 else if (regno1 == RA && regno2 == RA)
5421 mask |= 1;
5422 else
5423 return FALSE;
5424 }
5425 while (match_char (arg, ','));
5426
5427 insn_insert_operand (arg->insn, operand, mask);
5428 return TRUE;
5429 }
5430
5431 /* OP_SAVE_RESTORE_LIST matcher. */
5432
5433 static bfd_boolean
5434 match_save_restore_list_operand (struct mips_arg_info *arg)
5435 {
5436 unsigned int opcode, args, statics, sregs;
5437 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5438 offsetT frame_size;
5439
5440 opcode = arg->insn->insn_opcode;
5441 frame_size = 0;
5442 num_frame_sizes = 0;
5443 args = 0;
5444 statics = 0;
5445 sregs = 0;
5446 do
5447 {
5448 unsigned int regno1, regno2;
5449
5450 if (arg->token->type == OT_INTEGER)
5451 {
5452 /* Handle the frame size. */
5453 if (!match_const_int (arg, &frame_size))
5454 return FALSE;
5455 num_frame_sizes += 1;
5456 }
5457 else
5458 {
5459 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5460 return FALSE;
5461
5462 while (regno1 <= regno2)
5463 {
5464 if (regno1 >= 4 && regno1 <= 7)
5465 {
5466 if (num_frame_sizes == 0)
5467 /* args $a0-$a3 */
5468 args |= 1 << (regno1 - 4);
5469 else
5470 /* statics $a0-$a3 */
5471 statics |= 1 << (regno1 - 4);
5472 }
5473 else if (regno1 >= 16 && regno1 <= 23)
5474 /* $s0-$s7 */
5475 sregs |= 1 << (regno1 - 16);
5476 else if (regno1 == 30)
5477 /* $s8 */
5478 sregs |= 1 << 8;
5479 else if (regno1 == 31)
5480 /* Add $ra to insn. */
5481 opcode |= 0x40;
5482 else
5483 return FALSE;
5484 regno1 += 1;
5485 if (regno1 == 24)
5486 regno1 = 30;
5487 }
5488 }
5489 }
5490 while (match_char (arg, ','));
5491
5492 /* Encode args/statics combination. */
5493 if (args & statics)
5494 return FALSE;
5495 else if (args == 0xf)
5496 /* All $a0-$a3 are args. */
5497 opcode |= MIPS16_ALL_ARGS << 16;
5498 else if (statics == 0xf)
5499 /* All $a0-$a3 are statics. */
5500 opcode |= MIPS16_ALL_STATICS << 16;
5501 else
5502 {
5503 /* Count arg registers. */
5504 num_args = 0;
5505 while (args & 0x1)
5506 {
5507 args >>= 1;
5508 num_args += 1;
5509 }
5510 if (args != 0)
5511 return FALSE;
5512
5513 /* Count static registers. */
5514 num_statics = 0;
5515 while (statics & 0x8)
5516 {
5517 statics = (statics << 1) & 0xf;
5518 num_statics += 1;
5519 }
5520 if (statics != 0)
5521 return FALSE;
5522
5523 /* Encode args/statics. */
5524 opcode |= ((num_args << 2) | num_statics) << 16;
5525 }
5526
5527 /* Encode $s0/$s1. */
5528 if (sregs & (1 << 0)) /* $s0 */
5529 opcode |= 0x20;
5530 if (sregs & (1 << 1)) /* $s1 */
5531 opcode |= 0x10;
5532 sregs >>= 2;
5533
5534 /* Encode $s2-$s8. */
5535 num_sregs = 0;
5536 while (sregs & 1)
5537 {
5538 sregs >>= 1;
5539 num_sregs += 1;
5540 }
5541 if (sregs != 0)
5542 return FALSE;
5543 opcode |= num_sregs << 24;
5544
5545 /* Encode frame size. */
5546 if (num_frame_sizes == 0)
5547 {
5548 set_insn_error (arg->argnum, _("missing frame size"));
5549 return FALSE;
5550 }
5551 if (num_frame_sizes > 1)
5552 {
5553 set_insn_error (arg->argnum, _("frame size specified twice"));
5554 return FALSE;
5555 }
5556 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5557 {
5558 set_insn_error (arg->argnum, _("invalid frame size"));
5559 return FALSE;
5560 }
5561 if (frame_size != 128 || (opcode >> 16) != 0)
5562 {
5563 frame_size /= 8;
5564 opcode |= (((frame_size & 0xf0) << 16)
5565 | (frame_size & 0x0f));
5566 }
5567
5568 /* Finally build the instruction. */
5569 if ((opcode >> 16) != 0 || frame_size == 0)
5570 opcode |= MIPS16_EXTEND;
5571 arg->insn->insn_opcode = opcode;
5572 return TRUE;
5573 }
5574
5575 /* OP_MDMX_IMM_REG matcher. */
5576
5577 static bfd_boolean
5578 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5579 const struct mips_operand *operand)
5580 {
5581 unsigned int regno, uval;
5582 bfd_boolean is_qh;
5583 const struct mips_opcode *opcode;
5584
5585 /* The mips_opcode records whether this is an octobyte or quadhalf
5586 instruction. Start out with that bit in place. */
5587 opcode = arg->insn->insn_mo;
5588 uval = mips_extract_operand (operand, opcode->match);
5589 is_qh = (uval != 0);
5590
5591 if (arg->token->type == OT_REG)
5592 {
5593 if ((opcode->membership & INSN_5400)
5594 && strcmp (opcode->name, "rzu.ob") == 0)
5595 {
5596 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5597 arg->argnum);
5598 return FALSE;
5599 }
5600
5601 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5602 return FALSE;
5603 ++arg->token;
5604
5605 /* Check whether this is a vector register or a broadcast of
5606 a single element. */
5607 if (arg->token->type == OT_INTEGER_INDEX)
5608 {
5609 if (arg->token->u.index > (is_qh ? 3 : 7))
5610 {
5611 set_insn_error (arg->argnum, _("invalid element selector"));
5612 return FALSE;
5613 }
5614 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5615 ++arg->token;
5616 }
5617 else
5618 {
5619 /* A full vector. */
5620 if ((opcode->membership & INSN_5400)
5621 && (strcmp (opcode->name, "sll.ob") == 0
5622 || strcmp (opcode->name, "srl.ob") == 0))
5623 {
5624 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5625 arg->argnum);
5626 return FALSE;
5627 }
5628
5629 if (is_qh)
5630 uval |= MDMX_FMTSEL_VEC_QH << 5;
5631 else
5632 uval |= MDMX_FMTSEL_VEC_OB << 5;
5633 }
5634 uval |= regno;
5635 }
5636 else
5637 {
5638 offsetT sval;
5639
5640 if (!match_const_int (arg, &sval))
5641 return FALSE;
5642 if (sval < 0 || sval > 31)
5643 {
5644 match_out_of_range (arg);
5645 return FALSE;
5646 }
5647 uval |= (sval & 31);
5648 if (is_qh)
5649 uval |= MDMX_FMTSEL_IMM_QH << 5;
5650 else
5651 uval |= MDMX_FMTSEL_IMM_OB << 5;
5652 }
5653 insn_insert_operand (arg->insn, operand, uval);
5654 return TRUE;
5655 }
5656
5657 /* OP_IMM_INDEX matcher. */
5658
5659 static bfd_boolean
5660 match_imm_index_operand (struct mips_arg_info *arg,
5661 const struct mips_operand *operand)
5662 {
5663 unsigned int max_val;
5664
5665 if (arg->token->type != OT_INTEGER_INDEX)
5666 return FALSE;
5667
5668 max_val = (1 << operand->size) - 1;
5669 if (arg->token->u.index > max_val)
5670 {
5671 match_out_of_range (arg);
5672 return FALSE;
5673 }
5674 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5675 ++arg->token;
5676 return TRUE;
5677 }
5678
5679 /* OP_REG_INDEX matcher. */
5680
5681 static bfd_boolean
5682 match_reg_index_operand (struct mips_arg_info *arg,
5683 const struct mips_operand *operand)
5684 {
5685 unsigned int regno;
5686
5687 if (arg->token->type != OT_REG_INDEX)
5688 return FALSE;
5689
5690 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5691 return FALSE;
5692
5693 insn_insert_operand (arg->insn, operand, regno);
5694 ++arg->token;
5695 return TRUE;
5696 }
5697
5698 /* OP_PC matcher. */
5699
5700 static bfd_boolean
5701 match_pc_operand (struct mips_arg_info *arg)
5702 {
5703 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5704 {
5705 ++arg->token;
5706 return TRUE;
5707 }
5708 return FALSE;
5709 }
5710
5711 /* OP_NON_ZERO_REG matcher. */
5712
5713 static bfd_boolean
5714 match_non_zero_reg_operand (struct mips_arg_info *arg,
5715 const struct mips_operand *operand)
5716 {
5717 unsigned int regno;
5718
5719 if (!match_reg (arg, OP_REG_GP, &regno))
5720 return FALSE;
5721
5722 if (regno == 0)
5723 return FALSE;
5724
5725 arg->last_regno = regno;
5726 insn_insert_operand (arg->insn, operand, regno);
5727 return TRUE;
5728 }
5729
5730 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5731 register that we need to match. */
5732
5733 static bfd_boolean
5734 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5735 {
5736 unsigned int regno;
5737
5738 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5739 }
5740
5741 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5742 the length of the value in bytes (4 for float, 8 for double) and
5743 USING_GPRS says whether the destination is a GPR rather than an FPR.
5744
5745 Return the constant in IMM and OFFSET as follows:
5746
5747 - If the constant should be loaded via memory, set IMM to O_absent and
5748 OFFSET to the memory address.
5749
5750 - Otherwise, if the constant should be loaded into two 32-bit registers,
5751 set IMM to the O_constant to load into the high register and OFFSET
5752 to the corresponding value for the low register.
5753
5754 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5755
5756 These constants only appear as the last operand in an instruction,
5757 and every instruction that accepts them in any variant accepts them
5758 in all variants. This means we don't have to worry about backing out
5759 any changes if the instruction does not match. We just match
5760 unconditionally and report an error if the constant is invalid. */
5761
5762 static bfd_boolean
5763 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5764 expressionS *offset, int length, bfd_boolean using_gprs)
5765 {
5766 char *p;
5767 segT seg, new_seg;
5768 subsegT subseg;
5769 const char *newname;
5770 unsigned char *data;
5771
5772 /* Where the constant is placed is based on how the MIPS assembler
5773 does things:
5774
5775 length == 4 && using_gprs -- immediate value only
5776 length == 8 && using_gprs -- .rdata or immediate value
5777 length == 4 && !using_gprs -- .lit4 or immediate value
5778 length == 8 && !using_gprs -- .lit8 or immediate value
5779
5780 The .lit4 and .lit8 sections are only used if permitted by the
5781 -G argument. */
5782 if (arg->token->type != OT_FLOAT)
5783 {
5784 set_insn_error (arg->argnum, _("floating-point expression required"));
5785 return FALSE;
5786 }
5787
5788 gas_assert (arg->token->u.flt.length == length);
5789 data = arg->token->u.flt.data;
5790 ++arg->token;
5791
5792 /* Handle 32-bit constants for which an immediate value is best. */
5793 if (length == 4
5794 && (using_gprs
5795 || g_switch_value < 4
5796 || (data[0] == 0 && data[1] == 0)
5797 || (data[2] == 0 && data[3] == 0)))
5798 {
5799 imm->X_op = O_constant;
5800 if (!target_big_endian)
5801 imm->X_add_number = bfd_getl32 (data);
5802 else
5803 imm->X_add_number = bfd_getb32 (data);
5804 offset->X_op = O_absent;
5805 return TRUE;
5806 }
5807
5808 /* Handle 64-bit constants for which an immediate value is best. */
5809 if (length == 8
5810 && !mips_disable_float_construction
5811 /* Constants can only be constructed in GPRs and copied to FPRs if the
5812 GPRs are at least as wide as the FPRs or MTHC1 is available.
5813 Unlike most tests for 32-bit floating-point registers this check
5814 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5815 permit 64-bit moves without MXHC1.
5816 Force the constant into memory otherwise. */
5817 && (using_gprs
5818 || GPR_SIZE == 64
5819 || ISA_HAS_MXHC1 (mips_opts.isa)
5820 || FPR_SIZE == 32)
5821 && ((data[0] == 0 && data[1] == 0)
5822 || (data[2] == 0 && data[3] == 0))
5823 && ((data[4] == 0 && data[5] == 0)
5824 || (data[6] == 0 && data[7] == 0)))
5825 {
5826 /* The value is simple enough to load with a couple of instructions.
5827 If using 32-bit registers, set IMM to the high order 32 bits and
5828 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5829 64 bit constant. */
5830 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5831 {
5832 imm->X_op = O_constant;
5833 offset->X_op = O_constant;
5834 if (!target_big_endian)
5835 {
5836 imm->X_add_number = bfd_getl32 (data + 4);
5837 offset->X_add_number = bfd_getl32 (data);
5838 }
5839 else
5840 {
5841 imm->X_add_number = bfd_getb32 (data);
5842 offset->X_add_number = bfd_getb32 (data + 4);
5843 }
5844 if (offset->X_add_number == 0)
5845 offset->X_op = O_absent;
5846 }
5847 else
5848 {
5849 imm->X_op = O_constant;
5850 if (!target_big_endian)
5851 imm->X_add_number = bfd_getl64 (data);
5852 else
5853 imm->X_add_number = bfd_getb64 (data);
5854 offset->X_op = O_absent;
5855 }
5856 return TRUE;
5857 }
5858
5859 /* Switch to the right section. */
5860 seg = now_seg;
5861 subseg = now_subseg;
5862 if (length == 4)
5863 {
5864 gas_assert (!using_gprs && g_switch_value >= 4);
5865 newname = ".lit4";
5866 }
5867 else
5868 {
5869 if (using_gprs || g_switch_value < 8)
5870 newname = RDATA_SECTION_NAME;
5871 else
5872 newname = ".lit8";
5873 }
5874
5875 new_seg = subseg_new (newname, (subsegT) 0);
5876 bfd_set_section_flags (stdoutput, new_seg,
5877 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5878 frag_align (length == 4 ? 2 : 3, 0, 0);
5879 if (strncmp (TARGET_OS, "elf", 3) != 0)
5880 record_alignment (new_seg, 4);
5881 else
5882 record_alignment (new_seg, length == 4 ? 2 : 3);
5883 if (seg == now_seg)
5884 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5885
5886 /* Set the argument to the current address in the section. */
5887 imm->X_op = O_absent;
5888 offset->X_op = O_symbol;
5889 offset->X_add_symbol = symbol_temp_new_now ();
5890 offset->X_add_number = 0;
5891
5892 /* Put the floating point number into the section. */
5893 p = frag_more (length);
5894 memcpy (p, data, length);
5895
5896 /* Switch back to the original section. */
5897 subseg_set (seg, subseg);
5898 return TRUE;
5899 }
5900
5901 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5902 them. */
5903
5904 static bfd_boolean
5905 match_vu0_suffix_operand (struct mips_arg_info *arg,
5906 const struct mips_operand *operand,
5907 bfd_boolean match_p)
5908 {
5909 unsigned int uval;
5910
5911 /* The operand can be an XYZW mask or a single 2-bit channel index
5912 (with X being 0). */
5913 gas_assert (operand->size == 2 || operand->size == 4);
5914
5915 /* The suffix can be omitted when it is already part of the opcode. */
5916 if (arg->token->type != OT_CHANNELS)
5917 return match_p;
5918
5919 uval = arg->token->u.channels;
5920 if (operand->size == 2)
5921 {
5922 /* Check that a single bit is set and convert it into a 2-bit index. */
5923 if ((uval & -uval) != uval)
5924 return FALSE;
5925 uval = 4 - ffs (uval);
5926 }
5927
5928 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5929 return FALSE;
5930
5931 ++arg->token;
5932 if (!match_p)
5933 insn_insert_operand (arg->insn, operand, uval);
5934 return TRUE;
5935 }
5936
5937 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5938 of the argument text if the match is successful, otherwise return null. */
5939
5940 static bfd_boolean
5941 match_operand (struct mips_arg_info *arg,
5942 const struct mips_operand *operand)
5943 {
5944 switch (operand->type)
5945 {
5946 case OP_INT:
5947 return match_int_operand (arg, operand);
5948
5949 case OP_MAPPED_INT:
5950 return match_mapped_int_operand (arg, operand);
5951
5952 case OP_MSB:
5953 return match_msb_operand (arg, operand);
5954
5955 case OP_REG:
5956 case OP_OPTIONAL_REG:
5957 return match_reg_operand (arg, operand);
5958
5959 case OP_REG_PAIR:
5960 return match_reg_pair_operand (arg, operand);
5961
5962 case OP_PCREL:
5963 return match_pcrel_operand (arg);
5964
5965 case OP_PERF_REG:
5966 return match_perf_reg_operand (arg, operand);
5967
5968 case OP_ADDIUSP_INT:
5969 return match_addiusp_operand (arg, operand);
5970
5971 case OP_CLO_CLZ_DEST:
5972 return match_clo_clz_dest_operand (arg, operand);
5973
5974 case OP_LWM_SWM_LIST:
5975 return match_lwm_swm_list_operand (arg, operand);
5976
5977 case OP_ENTRY_EXIT_LIST:
5978 return match_entry_exit_operand (arg, operand);
5979
5980 case OP_SAVE_RESTORE_LIST:
5981 return match_save_restore_list_operand (arg);
5982
5983 case OP_MDMX_IMM_REG:
5984 return match_mdmx_imm_reg_operand (arg, operand);
5985
5986 case OP_REPEAT_DEST_REG:
5987 return match_tied_reg_operand (arg, arg->dest_regno);
5988
5989 case OP_REPEAT_PREV_REG:
5990 return match_tied_reg_operand (arg, arg->last_regno);
5991
5992 case OP_PC:
5993 return match_pc_operand (arg);
5994
5995 case OP_VU0_SUFFIX:
5996 return match_vu0_suffix_operand (arg, operand, FALSE);
5997
5998 case OP_VU0_MATCH_SUFFIX:
5999 return match_vu0_suffix_operand (arg, operand, TRUE);
6000
6001 case OP_IMM_INDEX:
6002 return match_imm_index_operand (arg, operand);
6003
6004 case OP_REG_INDEX:
6005 return match_reg_index_operand (arg, operand);
6006
6007 case OP_SAME_RS_RT:
6008 return match_same_rs_rt_operand (arg, operand);
6009
6010 case OP_CHECK_PREV:
6011 return match_check_prev_operand (arg, operand);
6012
6013 case OP_NON_ZERO_REG:
6014 return match_non_zero_reg_operand (arg, operand);
6015 }
6016 abort ();
6017 }
6018
6019 /* ARG is the state after successfully matching an instruction.
6020 Issue any queued-up warnings. */
6021
6022 static void
6023 check_completed_insn (struct mips_arg_info *arg)
6024 {
6025 if (arg->seen_at)
6026 {
6027 if (AT == ATREG)
6028 as_warn (_("used $at without \".set noat\""));
6029 else
6030 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6031 }
6032 }
6033
6034 /* Return true if modifying general-purpose register REG needs a delay. */
6035
6036 static bfd_boolean
6037 reg_needs_delay (unsigned int reg)
6038 {
6039 unsigned long prev_pinfo;
6040
6041 prev_pinfo = history[0].insn_mo->pinfo;
6042 if (!mips_opts.noreorder
6043 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6044 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6045 && (gpr_write_mask (&history[0]) & (1 << reg)))
6046 return TRUE;
6047
6048 return FALSE;
6049 }
6050
6051 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6052 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6053 by VR4120 errata. */
6054
6055 static unsigned int
6056 classify_vr4120_insn (const char *name)
6057 {
6058 if (strncmp (name, "macc", 4) == 0)
6059 return FIX_VR4120_MACC;
6060 if (strncmp (name, "dmacc", 5) == 0)
6061 return FIX_VR4120_DMACC;
6062 if (strncmp (name, "mult", 4) == 0)
6063 return FIX_VR4120_MULT;
6064 if (strncmp (name, "dmult", 5) == 0)
6065 return FIX_VR4120_DMULT;
6066 if (strstr (name, "div"))
6067 return FIX_VR4120_DIV;
6068 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6069 return FIX_VR4120_MTHILO;
6070 return NUM_FIX_VR4120_CLASSES;
6071 }
6072
6073 #define INSN_ERET 0x42000018
6074 #define INSN_DERET 0x4200001f
6075 #define INSN_DMULT 0x1c
6076 #define INSN_DMULTU 0x1d
6077
6078 /* Return the number of instructions that must separate INSN1 and INSN2,
6079 where INSN1 is the earlier instruction. Return the worst-case value
6080 for any INSN2 if INSN2 is null. */
6081
6082 static unsigned int
6083 insns_between (const struct mips_cl_insn *insn1,
6084 const struct mips_cl_insn *insn2)
6085 {
6086 unsigned long pinfo1, pinfo2;
6087 unsigned int mask;
6088
6089 /* If INFO2 is null, pessimistically assume that all flags are set for
6090 the second instruction. */
6091 pinfo1 = insn1->insn_mo->pinfo;
6092 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6093
6094 /* For most targets, write-after-read dependencies on the HI and LO
6095 registers must be separated by at least two instructions. */
6096 if (!hilo_interlocks)
6097 {
6098 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6099 return 2;
6100 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6101 return 2;
6102 }
6103
6104 /* If we're working around r7000 errata, there must be two instructions
6105 between an mfhi or mflo and any instruction that uses the result. */
6106 if (mips_7000_hilo_fix
6107 && !mips_opts.micromips
6108 && MF_HILO_INSN (pinfo1)
6109 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6110 return 2;
6111
6112 /* If we're working around 24K errata, one instruction is required
6113 if an ERET or DERET is followed by a branch instruction. */
6114 if (mips_fix_24k && !mips_opts.micromips)
6115 {
6116 if (insn1->insn_opcode == INSN_ERET
6117 || insn1->insn_opcode == INSN_DERET)
6118 {
6119 if (insn2 == NULL
6120 || insn2->insn_opcode == INSN_ERET
6121 || insn2->insn_opcode == INSN_DERET
6122 || delayed_branch_p (insn2))
6123 return 1;
6124 }
6125 }
6126
6127 /* If we're working around PMC RM7000 errata, there must be three
6128 nops between a dmult and a load instruction. */
6129 if (mips_fix_rm7000 && !mips_opts.micromips)
6130 {
6131 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6132 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6133 {
6134 if (pinfo2 & INSN_LOAD_MEMORY)
6135 return 3;
6136 }
6137 }
6138
6139 /* If working around VR4120 errata, check for combinations that need
6140 a single intervening instruction. */
6141 if (mips_fix_vr4120 && !mips_opts.micromips)
6142 {
6143 unsigned int class1, class2;
6144
6145 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6146 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6147 {
6148 if (insn2 == NULL)
6149 return 1;
6150 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6151 if (vr4120_conflicts[class1] & (1 << class2))
6152 return 1;
6153 }
6154 }
6155
6156 if (!HAVE_CODE_COMPRESSION)
6157 {
6158 /* Check for GPR or coprocessor load delays. All such delays
6159 are on the RT register. */
6160 /* Itbl support may require additional care here. */
6161 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6162 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6163 {
6164 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6165 return 1;
6166 }
6167
6168 /* Check for generic coprocessor hazards.
6169
6170 This case is not handled very well. There is no special
6171 knowledge of CP0 handling, and the coprocessors other than
6172 the floating point unit are not distinguished at all. */
6173 /* Itbl support may require additional care here. FIXME!
6174 Need to modify this to include knowledge about
6175 user specified delays! */
6176 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6177 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6178 {
6179 /* Handle cases where INSN1 writes to a known general coprocessor
6180 register. There must be a one instruction delay before INSN2
6181 if INSN2 reads that register, otherwise no delay is needed. */
6182 mask = fpr_write_mask (insn1);
6183 if (mask != 0)
6184 {
6185 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6186 return 1;
6187 }
6188 else
6189 {
6190 /* Read-after-write dependencies on the control registers
6191 require a two-instruction gap. */
6192 if ((pinfo1 & INSN_WRITE_COND_CODE)
6193 && (pinfo2 & INSN_READ_COND_CODE))
6194 return 2;
6195
6196 /* We don't know exactly what INSN1 does. If INSN2 is
6197 also a coprocessor instruction, assume there must be
6198 a one instruction gap. */
6199 if (pinfo2 & INSN_COP)
6200 return 1;
6201 }
6202 }
6203
6204 /* Check for read-after-write dependencies on the coprocessor
6205 control registers in cases where INSN1 does not need a general
6206 coprocessor delay. This means that INSN1 is a floating point
6207 comparison instruction. */
6208 /* Itbl support may require additional care here. */
6209 else if (!cop_interlocks
6210 && (pinfo1 & INSN_WRITE_COND_CODE)
6211 && (pinfo2 & INSN_READ_COND_CODE))
6212 return 1;
6213 }
6214
6215 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6216 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6217 and pause. */
6218 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6219 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6220 || (insn2 && delayed_branch_p (insn2))))
6221 return 1;
6222
6223 return 0;
6224 }
6225
6226 /* Return the number of nops that would be needed to work around the
6227 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6228 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6229 that are contained within the first IGNORE instructions of HIST. */
6230
6231 static int
6232 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6233 const struct mips_cl_insn *insn)
6234 {
6235 int i, j;
6236 unsigned int mask;
6237
6238 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6239 are not affected by the errata. */
6240 if (insn != 0
6241 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6242 || strcmp (insn->insn_mo->name, "mtlo") == 0
6243 || strcmp (insn->insn_mo->name, "mthi") == 0))
6244 return 0;
6245
6246 /* Search for the first MFLO or MFHI. */
6247 for (i = 0; i < MAX_VR4130_NOPS; i++)
6248 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6249 {
6250 /* Extract the destination register. */
6251 mask = gpr_write_mask (&hist[i]);
6252
6253 /* No nops are needed if INSN reads that register. */
6254 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6255 return 0;
6256
6257 /* ...or if any of the intervening instructions do. */
6258 for (j = 0; j < i; j++)
6259 if (gpr_read_mask (&hist[j]) & mask)
6260 return 0;
6261
6262 if (i >= ignore)
6263 return MAX_VR4130_NOPS - i;
6264 }
6265 return 0;
6266 }
6267
6268 #define BASE_REG_EQ(INSN1, INSN2) \
6269 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6270 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6271
6272 /* Return the minimum alignment for this store instruction. */
6273
6274 static int
6275 fix_24k_align_to (const struct mips_opcode *mo)
6276 {
6277 if (strcmp (mo->name, "sh") == 0)
6278 return 2;
6279
6280 if (strcmp (mo->name, "swc1") == 0
6281 || strcmp (mo->name, "swc2") == 0
6282 || strcmp (mo->name, "sw") == 0
6283 || strcmp (mo->name, "sc") == 0
6284 || strcmp (mo->name, "s.s") == 0)
6285 return 4;
6286
6287 if (strcmp (mo->name, "sdc1") == 0
6288 || strcmp (mo->name, "sdc2") == 0
6289 || strcmp (mo->name, "s.d") == 0)
6290 return 8;
6291
6292 /* sb, swl, swr */
6293 return 1;
6294 }
6295
6296 struct fix_24k_store_info
6297 {
6298 /* Immediate offset, if any, for this store instruction. */
6299 short off;
6300 /* Alignment required by this store instruction. */
6301 int align_to;
6302 /* True for register offsets. */
6303 int register_offset;
6304 };
6305
6306 /* Comparison function used by qsort. */
6307
6308 static int
6309 fix_24k_sort (const void *a, const void *b)
6310 {
6311 const struct fix_24k_store_info *pos1 = a;
6312 const struct fix_24k_store_info *pos2 = b;
6313
6314 return (pos1->off - pos2->off);
6315 }
6316
6317 /* INSN is a store instruction. Try to record the store information
6318 in STINFO. Return false if the information isn't known. */
6319
6320 static bfd_boolean
6321 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6322 const struct mips_cl_insn *insn)
6323 {
6324 /* The instruction must have a known offset. */
6325 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6326 return FALSE;
6327
6328 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6329 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6330 return TRUE;
6331 }
6332
6333 /* Return the number of nops that would be needed to work around the 24k
6334 "lost data on stores during refill" errata if instruction INSN
6335 immediately followed the 2 instructions described by HIST.
6336 Ignore hazards that are contained within the first IGNORE
6337 instructions of HIST.
6338
6339 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6340 for the data cache refills and store data. The following describes
6341 the scenario where the store data could be lost.
6342
6343 * A data cache miss, due to either a load or a store, causing fill
6344 data to be supplied by the memory subsystem
6345 * The first three doublewords of fill data are returned and written
6346 into the cache
6347 * A sequence of four stores occurs in consecutive cycles around the
6348 final doubleword of the fill:
6349 * Store A
6350 * Store B
6351 * Store C
6352 * Zero, One or more instructions
6353 * Store D
6354
6355 The four stores A-D must be to different doublewords of the line that
6356 is being filled. The fourth instruction in the sequence above permits
6357 the fill of the final doubleword to be transferred from the FSB into
6358 the cache. In the sequence above, the stores may be either integer
6359 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6360 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6361 different doublewords on the line. If the floating point unit is
6362 running in 1:2 mode, it is not possible to create the sequence above
6363 using only floating point store instructions.
6364
6365 In this case, the cache line being filled is incorrectly marked
6366 invalid, thereby losing the data from any store to the line that
6367 occurs between the original miss and the completion of the five
6368 cycle sequence shown above.
6369
6370 The workarounds are:
6371
6372 * Run the data cache in write-through mode.
6373 * Insert a non-store instruction between
6374 Store A and Store B or Store B and Store C. */
6375
6376 static int
6377 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6378 const struct mips_cl_insn *insn)
6379 {
6380 struct fix_24k_store_info pos[3];
6381 int align, i, base_offset;
6382
6383 if (ignore >= 2)
6384 return 0;
6385
6386 /* If the previous instruction wasn't a store, there's nothing to
6387 worry about. */
6388 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6389 return 0;
6390
6391 /* If the instructions after the previous one are unknown, we have
6392 to assume the worst. */
6393 if (!insn)
6394 return 1;
6395
6396 /* Check whether we are dealing with three consecutive stores. */
6397 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6398 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6399 return 0;
6400
6401 /* If we don't know the relationship between the store addresses,
6402 assume the worst. */
6403 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6404 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6405 return 1;
6406
6407 if (!fix_24k_record_store_info (&pos[0], insn)
6408 || !fix_24k_record_store_info (&pos[1], &hist[0])
6409 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6410 return 1;
6411
6412 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6413
6414 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6415 X bytes and such that the base register + X is known to be aligned
6416 to align bytes. */
6417
6418 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6419 align = 8;
6420 else
6421 {
6422 align = pos[0].align_to;
6423 base_offset = pos[0].off;
6424 for (i = 1; i < 3; i++)
6425 if (align < pos[i].align_to)
6426 {
6427 align = pos[i].align_to;
6428 base_offset = pos[i].off;
6429 }
6430 for (i = 0; i < 3; i++)
6431 pos[i].off -= base_offset;
6432 }
6433
6434 pos[0].off &= ~align + 1;
6435 pos[1].off &= ~align + 1;
6436 pos[2].off &= ~align + 1;
6437
6438 /* If any two stores write to the same chunk, they also write to the
6439 same doubleword. The offsets are still sorted at this point. */
6440 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6441 return 0;
6442
6443 /* A range of at least 9 bytes is needed for the stores to be in
6444 non-overlapping doublewords. */
6445 if (pos[2].off - pos[0].off <= 8)
6446 return 0;
6447
6448 if (pos[2].off - pos[1].off >= 24
6449 || pos[1].off - pos[0].off >= 24
6450 || pos[2].off - pos[0].off >= 32)
6451 return 0;
6452
6453 return 1;
6454 }
6455
6456 /* Return the number of nops that would be needed if instruction INSN
6457 immediately followed the MAX_NOPS instructions given by HIST,
6458 where HIST[0] is the most recent instruction. Ignore hazards
6459 between INSN and the first IGNORE instructions in HIST.
6460
6461 If INSN is null, return the worse-case number of nops for any
6462 instruction. */
6463
6464 static int
6465 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6466 const struct mips_cl_insn *insn)
6467 {
6468 int i, nops, tmp_nops;
6469
6470 nops = 0;
6471 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6472 {
6473 tmp_nops = insns_between (hist + i, insn) - i;
6474 if (tmp_nops > nops)
6475 nops = tmp_nops;
6476 }
6477
6478 if (mips_fix_vr4130 && !mips_opts.micromips)
6479 {
6480 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6481 if (tmp_nops > nops)
6482 nops = tmp_nops;
6483 }
6484
6485 if (mips_fix_24k && !mips_opts.micromips)
6486 {
6487 tmp_nops = nops_for_24k (ignore, hist, insn);
6488 if (tmp_nops > nops)
6489 nops = tmp_nops;
6490 }
6491
6492 return nops;
6493 }
6494
6495 /* The variable arguments provide NUM_INSNS extra instructions that
6496 might be added to HIST. Return the largest number of nops that
6497 would be needed after the extended sequence, ignoring hazards
6498 in the first IGNORE instructions. */
6499
6500 static int
6501 nops_for_sequence (int num_insns, int ignore,
6502 const struct mips_cl_insn *hist, ...)
6503 {
6504 va_list args;
6505 struct mips_cl_insn buffer[MAX_NOPS];
6506 struct mips_cl_insn *cursor;
6507 int nops;
6508
6509 va_start (args, hist);
6510 cursor = buffer + num_insns;
6511 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6512 while (cursor > buffer)
6513 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6514
6515 nops = nops_for_insn (ignore, buffer, NULL);
6516 va_end (args);
6517 return nops;
6518 }
6519
6520 /* Like nops_for_insn, but if INSN is a branch, take into account the
6521 worst-case delay for the branch target. */
6522
6523 static int
6524 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6525 const struct mips_cl_insn *insn)
6526 {
6527 int nops, tmp_nops;
6528
6529 nops = nops_for_insn (ignore, hist, insn);
6530 if (delayed_branch_p (insn))
6531 {
6532 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6533 hist, insn, get_delay_slot_nop (insn));
6534 if (tmp_nops > nops)
6535 nops = tmp_nops;
6536 }
6537 else if (compact_branch_p (insn))
6538 {
6539 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6540 if (tmp_nops > nops)
6541 nops = tmp_nops;
6542 }
6543 return nops;
6544 }
6545
6546 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6547
6548 static void
6549 fix_loongson2f_nop (struct mips_cl_insn * ip)
6550 {
6551 gas_assert (!HAVE_CODE_COMPRESSION);
6552 if (strcmp (ip->insn_mo->name, "nop") == 0)
6553 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6554 }
6555
6556 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6557 jr target pc &= 'hffff_ffff_cfff_ffff. */
6558
6559 static void
6560 fix_loongson2f_jump (struct mips_cl_insn * ip)
6561 {
6562 gas_assert (!HAVE_CODE_COMPRESSION);
6563 if (strcmp (ip->insn_mo->name, "j") == 0
6564 || strcmp (ip->insn_mo->name, "jr") == 0
6565 || strcmp (ip->insn_mo->name, "jalr") == 0)
6566 {
6567 int sreg;
6568 expressionS ep;
6569
6570 if (! mips_opts.at)
6571 return;
6572
6573 sreg = EXTRACT_OPERAND (0, RS, *ip);
6574 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6575 return;
6576
6577 ep.X_op = O_constant;
6578 ep.X_add_number = 0xcfff0000;
6579 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6580 ep.X_add_number = 0xffff;
6581 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6582 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6583 }
6584 }
6585
6586 static void
6587 fix_loongson2f (struct mips_cl_insn * ip)
6588 {
6589 if (mips_fix_loongson2f_nop)
6590 fix_loongson2f_nop (ip);
6591
6592 if (mips_fix_loongson2f_jump)
6593 fix_loongson2f_jump (ip);
6594 }
6595
6596 /* IP is a branch that has a delay slot, and we need to fill it
6597 automatically. Return true if we can do that by swapping IP
6598 with the previous instruction.
6599 ADDRESS_EXPR is an operand of the instruction to be used with
6600 RELOC_TYPE. */
6601
6602 static bfd_boolean
6603 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6604 bfd_reloc_code_real_type *reloc_type)
6605 {
6606 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6607 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6608 unsigned int fpr_read, prev_fpr_write;
6609
6610 /* -O2 and above is required for this optimization. */
6611 if (mips_optimize < 2)
6612 return FALSE;
6613
6614 /* If we have seen .set volatile or .set nomove, don't optimize. */
6615 if (mips_opts.nomove)
6616 return FALSE;
6617
6618 /* We can't swap if the previous instruction's position is fixed. */
6619 if (history[0].fixed_p)
6620 return FALSE;
6621
6622 /* If the previous previous insn was in a .set noreorder, we can't
6623 swap. Actually, the MIPS assembler will swap in this situation.
6624 However, gcc configured -with-gnu-as will generate code like
6625
6626 .set noreorder
6627 lw $4,XXX
6628 .set reorder
6629 INSN
6630 bne $4,$0,foo
6631
6632 in which we can not swap the bne and INSN. If gcc is not configured
6633 -with-gnu-as, it does not output the .set pseudo-ops. */
6634 if (history[1].noreorder_p)
6635 return FALSE;
6636
6637 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6638 This means that the previous instruction was a 4-byte one anyhow. */
6639 if (mips_opts.mips16 && history[0].fixp[0])
6640 return FALSE;
6641
6642 /* If the branch is itself the target of a branch, we can not swap.
6643 We cheat on this; all we check for is whether there is a label on
6644 this instruction. If there are any branches to anything other than
6645 a label, users must use .set noreorder. */
6646 if (seg_info (now_seg)->label_list)
6647 return FALSE;
6648
6649 /* If the previous instruction is in a variant frag other than this
6650 branch's one, we cannot do the swap. This does not apply to
6651 MIPS16 code, which uses variant frags for different purposes. */
6652 if (!mips_opts.mips16
6653 && history[0].frag
6654 && history[0].frag->fr_type == rs_machine_dependent)
6655 return FALSE;
6656
6657 /* We do not swap with instructions that cannot architecturally
6658 be placed in a branch delay slot, such as SYNC or ERET. We
6659 also refrain from swapping with a trap instruction, since it
6660 complicates trap handlers to have the trap instruction be in
6661 a delay slot. */
6662 prev_pinfo = history[0].insn_mo->pinfo;
6663 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6664 return FALSE;
6665
6666 /* Check for conflicts between the branch and the instructions
6667 before the candidate delay slot. */
6668 if (nops_for_insn (0, history + 1, ip) > 0)
6669 return FALSE;
6670
6671 /* Check for conflicts between the swapped sequence and the
6672 target of the branch. */
6673 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6674 return FALSE;
6675
6676 /* If the branch reads a register that the previous
6677 instruction sets, we can not swap. */
6678 gpr_read = gpr_read_mask (ip);
6679 prev_gpr_write = gpr_write_mask (&history[0]);
6680 if (gpr_read & prev_gpr_write)
6681 return FALSE;
6682
6683 fpr_read = fpr_read_mask (ip);
6684 prev_fpr_write = fpr_write_mask (&history[0]);
6685 if (fpr_read & prev_fpr_write)
6686 return FALSE;
6687
6688 /* If the branch writes a register that the previous
6689 instruction sets, we can not swap. */
6690 gpr_write = gpr_write_mask (ip);
6691 if (gpr_write & prev_gpr_write)
6692 return FALSE;
6693
6694 /* If the branch writes a register that the previous
6695 instruction reads, we can not swap. */
6696 prev_gpr_read = gpr_read_mask (&history[0]);
6697 if (gpr_write & prev_gpr_read)
6698 return FALSE;
6699
6700 /* If one instruction sets a condition code and the
6701 other one uses a condition code, we can not swap. */
6702 pinfo = ip->insn_mo->pinfo;
6703 if ((pinfo & INSN_READ_COND_CODE)
6704 && (prev_pinfo & INSN_WRITE_COND_CODE))
6705 return FALSE;
6706 if ((pinfo & INSN_WRITE_COND_CODE)
6707 && (prev_pinfo & INSN_READ_COND_CODE))
6708 return FALSE;
6709
6710 /* If the previous instruction uses the PC, we can not swap. */
6711 prev_pinfo2 = history[0].insn_mo->pinfo2;
6712 if (prev_pinfo2 & INSN2_READ_PC)
6713 return FALSE;
6714
6715 /* If the previous instruction has an incorrect size for a fixed
6716 branch delay slot in microMIPS mode, we cannot swap. */
6717 pinfo2 = ip->insn_mo->pinfo2;
6718 if (mips_opts.micromips
6719 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6720 && insn_length (history) != 2)
6721 return FALSE;
6722 if (mips_opts.micromips
6723 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6724 && insn_length (history) != 4)
6725 return FALSE;
6726
6727 /* On R5900 short loops need to be fixed by inserting a nop in
6728 the branch delay slots.
6729 A short loop can be terminated too early. */
6730 if (mips_opts.arch == CPU_R5900
6731 /* Check if instruction has a parameter, ignore "j $31". */
6732 && (address_expr != NULL)
6733 /* Parameter must be 16 bit. */
6734 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6735 /* Branch to same segment. */
6736 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6737 /* Branch to same code fragment. */
6738 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6739 /* Can only calculate branch offset if value is known. */
6740 && symbol_constant_p(address_expr->X_add_symbol)
6741 /* Check if branch is really conditional. */
6742 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6743 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6744 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6745 {
6746 int distance;
6747 /* Check if loop is shorter than 6 instructions including
6748 branch and delay slot. */
6749 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6750 if (distance <= 20)
6751 {
6752 int i;
6753 int rv;
6754
6755 rv = FALSE;
6756 /* When the loop includes branches or jumps,
6757 it is not a short loop. */
6758 for (i = 0; i < (distance / 4); i++)
6759 {
6760 if ((history[i].cleared_p)
6761 || delayed_branch_p(&history[i]))
6762 {
6763 rv = TRUE;
6764 break;
6765 }
6766 }
6767 if (rv == FALSE)
6768 {
6769 /* Insert nop after branch to fix short loop. */
6770 return FALSE;
6771 }
6772 }
6773 }
6774
6775 return TRUE;
6776 }
6777
6778 /* Decide how we should add IP to the instruction stream.
6779 ADDRESS_EXPR is an operand of the instruction to be used with
6780 RELOC_TYPE. */
6781
6782 static enum append_method
6783 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6784 bfd_reloc_code_real_type *reloc_type)
6785 {
6786 /* The relaxed version of a macro sequence must be inherently
6787 hazard-free. */
6788 if (mips_relax.sequence == 2)
6789 return APPEND_ADD;
6790
6791 /* We must not dabble with instructions in a ".set norerorder" block. */
6792 if (mips_opts.noreorder)
6793 return APPEND_ADD;
6794
6795 /* Otherwise, it's our responsibility to fill branch delay slots. */
6796 if (delayed_branch_p (ip))
6797 {
6798 if (!branch_likely_p (ip)
6799 && can_swap_branch_p (ip, address_expr, reloc_type))
6800 return APPEND_SWAP;
6801
6802 if (mips_opts.mips16
6803 && ISA_SUPPORTS_MIPS16E
6804 && gpr_read_mask (ip) != 0)
6805 return APPEND_ADD_COMPACT;
6806
6807 return APPEND_ADD_WITH_NOP;
6808 }
6809
6810 return APPEND_ADD;
6811 }
6812
6813 /* IP is a MIPS16 instruction whose opcode we have just changed.
6814 Point IP->insn_mo to the new opcode's definition. */
6815
6816 static void
6817 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6818 {
6819 const struct mips_opcode *mo, *end;
6820
6821 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6822 for (mo = ip->insn_mo; mo < end; mo++)
6823 if ((ip->insn_opcode & mo->mask) == mo->match)
6824 {
6825 ip->insn_mo = mo;
6826 return;
6827 }
6828 abort ();
6829 }
6830
6831 /* For microMIPS macros, we need to generate a local number label
6832 as the target of branches. */
6833 #define MICROMIPS_LABEL_CHAR '\037'
6834 static unsigned long micromips_target_label;
6835 static char micromips_target_name[32];
6836
6837 static char *
6838 micromips_label_name (void)
6839 {
6840 char *p = micromips_target_name;
6841 char symbol_name_temporary[24];
6842 unsigned long l;
6843 int i;
6844
6845 if (*p)
6846 return p;
6847
6848 i = 0;
6849 l = micromips_target_label;
6850 #ifdef LOCAL_LABEL_PREFIX
6851 *p++ = LOCAL_LABEL_PREFIX;
6852 #endif
6853 *p++ = 'L';
6854 *p++ = MICROMIPS_LABEL_CHAR;
6855 do
6856 {
6857 symbol_name_temporary[i++] = l % 10 + '0';
6858 l /= 10;
6859 }
6860 while (l != 0);
6861 while (i > 0)
6862 *p++ = symbol_name_temporary[--i];
6863 *p = '\0';
6864
6865 return micromips_target_name;
6866 }
6867
6868 static void
6869 micromips_label_expr (expressionS *label_expr)
6870 {
6871 label_expr->X_op = O_symbol;
6872 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6873 label_expr->X_add_number = 0;
6874 }
6875
6876 static void
6877 micromips_label_inc (void)
6878 {
6879 micromips_target_label++;
6880 *micromips_target_name = '\0';
6881 }
6882
6883 static void
6884 micromips_add_label (void)
6885 {
6886 symbolS *s;
6887
6888 s = colon (micromips_label_name ());
6889 micromips_label_inc ();
6890 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6891 }
6892
6893 /* If assembling microMIPS code, then return the microMIPS reloc
6894 corresponding to the requested one if any. Otherwise return
6895 the reloc unchanged. */
6896
6897 static bfd_reloc_code_real_type
6898 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6899 {
6900 static const bfd_reloc_code_real_type relocs[][2] =
6901 {
6902 /* Keep sorted incrementally by the left-hand key. */
6903 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6904 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6905 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6906 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6907 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6908 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6909 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6910 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6911 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6912 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6913 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6914 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6915 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6916 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6917 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6918 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6919 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6920 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6921 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6922 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6923 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6924 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6925 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6926 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6927 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6928 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6929 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6930 };
6931 bfd_reloc_code_real_type r;
6932 size_t i;
6933
6934 if (!mips_opts.micromips)
6935 return reloc;
6936 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6937 {
6938 r = relocs[i][0];
6939 if (r > reloc)
6940 return reloc;
6941 if (r == reloc)
6942 return relocs[i][1];
6943 }
6944 return reloc;
6945 }
6946
6947 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6948 Return true on success, storing the resolved value in RESULT. */
6949
6950 static bfd_boolean
6951 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6952 offsetT *result)
6953 {
6954 switch (reloc)
6955 {
6956 case BFD_RELOC_MIPS_HIGHEST:
6957 case BFD_RELOC_MICROMIPS_HIGHEST:
6958 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6959 return TRUE;
6960
6961 case BFD_RELOC_MIPS_HIGHER:
6962 case BFD_RELOC_MICROMIPS_HIGHER:
6963 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6964 return TRUE;
6965
6966 case BFD_RELOC_HI16_S:
6967 case BFD_RELOC_MICROMIPS_HI16_S:
6968 case BFD_RELOC_MIPS16_HI16_S:
6969 *result = ((operand + 0x8000) >> 16) & 0xffff;
6970 return TRUE;
6971
6972 case BFD_RELOC_HI16:
6973 case BFD_RELOC_MICROMIPS_HI16:
6974 case BFD_RELOC_MIPS16_HI16:
6975 *result = (operand >> 16) & 0xffff;
6976 return TRUE;
6977
6978 case BFD_RELOC_LO16:
6979 case BFD_RELOC_MICROMIPS_LO16:
6980 case BFD_RELOC_MIPS16_LO16:
6981 *result = operand & 0xffff;
6982 return TRUE;
6983
6984 case BFD_RELOC_UNUSED:
6985 *result = operand;
6986 return TRUE;
6987
6988 default:
6989 return FALSE;
6990 }
6991 }
6992
6993 /* Output an instruction. IP is the instruction information.
6994 ADDRESS_EXPR is an operand of the instruction to be used with
6995 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6996 a macro expansion. */
6997
6998 static void
6999 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7000 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7001 {
7002 unsigned long prev_pinfo2, pinfo;
7003 bfd_boolean relaxed_branch = FALSE;
7004 enum append_method method;
7005 bfd_boolean relax32;
7006 int branch_disp;
7007
7008 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7009 fix_loongson2f (ip);
7010
7011 file_ase_mips16 |= mips_opts.mips16;
7012 file_ase_micromips |= mips_opts.micromips;
7013
7014 prev_pinfo2 = history[0].insn_mo->pinfo2;
7015 pinfo = ip->insn_mo->pinfo;
7016
7017 if (mips_opts.micromips
7018 && !expansionp
7019 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7020 && micromips_insn_length (ip->insn_mo) != 2)
7021 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7022 && micromips_insn_length (ip->insn_mo) != 4)))
7023 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7024 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7025
7026 if (address_expr == NULL)
7027 ip->complete_p = 1;
7028 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7029 && reloc_type[1] == BFD_RELOC_UNUSED
7030 && reloc_type[2] == BFD_RELOC_UNUSED
7031 && address_expr->X_op == O_constant)
7032 {
7033 switch (*reloc_type)
7034 {
7035 case BFD_RELOC_MIPS_JMP:
7036 {
7037 int shift;
7038
7039 shift = mips_opts.micromips ? 1 : 2;
7040 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7041 as_bad (_("jump to misaligned address (0x%lx)"),
7042 (unsigned long) address_expr->X_add_number);
7043 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7044 & 0x3ffffff);
7045 ip->complete_p = 1;
7046 }
7047 break;
7048
7049 case BFD_RELOC_MIPS16_JMP:
7050 if ((address_expr->X_add_number & 3) != 0)
7051 as_bad (_("jump to misaligned address (0x%lx)"),
7052 (unsigned long) address_expr->X_add_number);
7053 ip->insn_opcode |=
7054 (((address_expr->X_add_number & 0x7c0000) << 3)
7055 | ((address_expr->X_add_number & 0xf800000) >> 7)
7056 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7057 ip->complete_p = 1;
7058 break;
7059
7060 case BFD_RELOC_16_PCREL_S2:
7061 {
7062 int shift;
7063
7064 shift = mips_opts.micromips ? 1 : 2;
7065 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7066 as_bad (_("branch to misaligned address (0x%lx)"),
7067 (unsigned long) address_expr->X_add_number);
7068 if (!mips_relax_branch)
7069 {
7070 if ((address_expr->X_add_number + (1 << (shift + 15)))
7071 & ~((1 << (shift + 16)) - 1))
7072 as_bad (_("branch address range overflow (0x%lx)"),
7073 (unsigned long) address_expr->X_add_number);
7074 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7075 & 0xffff);
7076 }
7077 }
7078 break;
7079
7080 case BFD_RELOC_MIPS_21_PCREL_S2:
7081 {
7082 int shift;
7083
7084 shift = 2;
7085 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7086 as_bad (_("branch to misaligned address (0x%lx)"),
7087 (unsigned long) address_expr->X_add_number);
7088 if ((address_expr->X_add_number + (1 << (shift + 20)))
7089 & ~((1 << (shift + 21)) - 1))
7090 as_bad (_("branch address range overflow (0x%lx)"),
7091 (unsigned long) address_expr->X_add_number);
7092 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7093 & 0x1fffff);
7094 }
7095 break;
7096
7097 case BFD_RELOC_MIPS_26_PCREL_S2:
7098 {
7099 int shift;
7100
7101 shift = 2;
7102 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7103 as_bad (_("branch to misaligned address (0x%lx)"),
7104 (unsigned long) address_expr->X_add_number);
7105 if ((address_expr->X_add_number + (1 << (shift + 25)))
7106 & ~((1 << (shift + 26)) - 1))
7107 as_bad (_("branch address range overflow (0x%lx)"),
7108 (unsigned long) address_expr->X_add_number);
7109 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7110 & 0x3ffffff);
7111 }
7112 break;
7113
7114 default:
7115 {
7116 offsetT value;
7117
7118 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7119 &value))
7120 {
7121 ip->insn_opcode |= value & 0xffff;
7122 ip->complete_p = 1;
7123 }
7124 }
7125 break;
7126 }
7127 }
7128
7129 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7130 {
7131 /* There are a lot of optimizations we could do that we don't.
7132 In particular, we do not, in general, reorder instructions.
7133 If you use gcc with optimization, it will reorder
7134 instructions and generally do much more optimization then we
7135 do here; repeating all that work in the assembler would only
7136 benefit hand written assembly code, and does not seem worth
7137 it. */
7138 int nops = (mips_optimize == 0
7139 ? nops_for_insn (0, history, NULL)
7140 : nops_for_insn_or_target (0, history, ip));
7141 if (nops > 0)
7142 {
7143 fragS *old_frag;
7144 unsigned long old_frag_offset;
7145 int i;
7146
7147 old_frag = frag_now;
7148 old_frag_offset = frag_now_fix ();
7149
7150 for (i = 0; i < nops; i++)
7151 add_fixed_insn (NOP_INSN);
7152 insert_into_history (0, nops, NOP_INSN);
7153
7154 if (listing)
7155 {
7156 listing_prev_line ();
7157 /* We may be at the start of a variant frag. In case we
7158 are, make sure there is enough space for the frag
7159 after the frags created by listing_prev_line. The
7160 argument to frag_grow here must be at least as large
7161 as the argument to all other calls to frag_grow in
7162 this file. We don't have to worry about being in the
7163 middle of a variant frag, because the variants insert
7164 all needed nop instructions themselves. */
7165 frag_grow (40);
7166 }
7167
7168 mips_move_text_labels ();
7169
7170 #ifndef NO_ECOFF_DEBUGGING
7171 if (ECOFF_DEBUGGING)
7172 ecoff_fix_loc (old_frag, old_frag_offset);
7173 #endif
7174 }
7175 }
7176 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7177 {
7178 int nops;
7179
7180 /* Work out how many nops in prev_nop_frag are needed by IP,
7181 ignoring hazards generated by the first prev_nop_frag_since
7182 instructions. */
7183 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7184 gas_assert (nops <= prev_nop_frag_holds);
7185
7186 /* Enforce NOPS as a minimum. */
7187 if (nops > prev_nop_frag_required)
7188 prev_nop_frag_required = nops;
7189
7190 if (prev_nop_frag_holds == prev_nop_frag_required)
7191 {
7192 /* Settle for the current number of nops. Update the history
7193 accordingly (for the benefit of any future .set reorder code). */
7194 prev_nop_frag = NULL;
7195 insert_into_history (prev_nop_frag_since,
7196 prev_nop_frag_holds, NOP_INSN);
7197 }
7198 else
7199 {
7200 /* Allow this instruction to replace one of the nops that was
7201 tentatively added to prev_nop_frag. */
7202 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7203 prev_nop_frag_holds--;
7204 prev_nop_frag_since++;
7205 }
7206 }
7207
7208 method = get_append_method (ip, address_expr, reloc_type);
7209 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7210
7211 dwarf2_emit_insn (0);
7212 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7213 so "move" the instruction address accordingly.
7214
7215 Also, it doesn't seem appropriate for the assembler to reorder .loc
7216 entries. If this instruction is a branch that we are going to swap
7217 with the previous instruction, the two instructions should be
7218 treated as a unit, and the debug information for both instructions
7219 should refer to the start of the branch sequence. Using the
7220 current position is certainly wrong when swapping a 32-bit branch
7221 and a 16-bit delay slot, since the current position would then be
7222 in the middle of a branch. */
7223 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7224
7225 relax32 = (mips_relax_branch
7226 /* Don't try branch relaxation within .set nomacro, or within
7227 .set noat if we use $at for PIC computations. If it turns
7228 out that the branch was out-of-range, we'll get an error. */
7229 && !mips_opts.warn_about_macros
7230 && (mips_opts.at || mips_pic == NO_PIC)
7231 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7232 as they have no complementing branches. */
7233 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7234
7235 if (!HAVE_CODE_COMPRESSION
7236 && address_expr
7237 && relax32
7238 && *reloc_type == BFD_RELOC_16_PCREL_S2
7239 && delayed_branch_p (ip))
7240 {
7241 relaxed_branch = TRUE;
7242 add_relaxed_insn (ip, (relaxed_branch_length
7243 (NULL, NULL,
7244 uncond_branch_p (ip) ? -1
7245 : branch_likely_p (ip) ? 1
7246 : 0)), 4,
7247 RELAX_BRANCH_ENCODE
7248 (AT,
7249 uncond_branch_p (ip),
7250 branch_likely_p (ip),
7251 pinfo & INSN_WRITE_GPR_31,
7252 0),
7253 address_expr->X_add_symbol,
7254 address_expr->X_add_number);
7255 *reloc_type = BFD_RELOC_UNUSED;
7256 }
7257 else if (mips_opts.micromips
7258 && address_expr
7259 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7260 || *reloc_type > BFD_RELOC_UNUSED)
7261 && (delayed_branch_p (ip) || compact_branch_p (ip))
7262 /* Don't try branch relaxation when users specify
7263 16-bit/32-bit instructions. */
7264 && !forced_insn_length)
7265 {
7266 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7267 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7268 int uncond = uncond_branch_p (ip) ? -1 : 0;
7269 int compact = compact_branch_p (ip);
7270 int al = pinfo & INSN_WRITE_GPR_31;
7271 int length32;
7272
7273 gas_assert (address_expr != NULL);
7274 gas_assert (!mips_relax.sequence);
7275
7276 relaxed_branch = TRUE;
7277 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7278 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7279 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7280 relax32, 0, 0),
7281 address_expr->X_add_symbol,
7282 address_expr->X_add_number);
7283 *reloc_type = BFD_RELOC_UNUSED;
7284 }
7285 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7286 {
7287 /* We need to set up a variant frag. */
7288 gas_assert (address_expr != NULL);
7289 add_relaxed_insn (ip, 4, 0,
7290 RELAX_MIPS16_ENCODE
7291 (*reloc_type - BFD_RELOC_UNUSED,
7292 forced_insn_length == 2, forced_insn_length == 4,
7293 delayed_branch_p (&history[0]),
7294 history[0].mips16_absolute_jump_p),
7295 make_expr_symbol (address_expr), 0);
7296 }
7297 else if (mips_opts.mips16 && insn_length (ip) == 2)
7298 {
7299 if (!delayed_branch_p (ip))
7300 /* Make sure there is enough room to swap this instruction with
7301 a following jump instruction. */
7302 frag_grow (6);
7303 add_fixed_insn (ip);
7304 }
7305 else
7306 {
7307 if (mips_opts.mips16
7308 && mips_opts.noreorder
7309 && delayed_branch_p (&history[0]))
7310 as_warn (_("extended instruction in delay slot"));
7311
7312 if (mips_relax.sequence)
7313 {
7314 /* If we've reached the end of this frag, turn it into a variant
7315 frag and record the information for the instructions we've
7316 written so far. */
7317 if (frag_room () < 4)
7318 relax_close_frag ();
7319 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7320 }
7321
7322 if (mips_relax.sequence != 2)
7323 {
7324 if (mips_macro_warning.first_insn_sizes[0] == 0)
7325 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7326 mips_macro_warning.sizes[0] += insn_length (ip);
7327 mips_macro_warning.insns[0]++;
7328 }
7329 if (mips_relax.sequence != 1)
7330 {
7331 if (mips_macro_warning.first_insn_sizes[1] == 0)
7332 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7333 mips_macro_warning.sizes[1] += insn_length (ip);
7334 mips_macro_warning.insns[1]++;
7335 }
7336
7337 if (mips_opts.mips16)
7338 {
7339 ip->fixed_p = 1;
7340 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7341 }
7342 add_fixed_insn (ip);
7343 }
7344
7345 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7346 {
7347 bfd_reloc_code_real_type final_type[3];
7348 reloc_howto_type *howto0;
7349 reloc_howto_type *howto;
7350 int i;
7351
7352 /* Perform any necessary conversion to microMIPS relocations
7353 and find out how many relocations there actually are. */
7354 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7355 final_type[i] = micromips_map_reloc (reloc_type[i]);
7356
7357 /* In a compound relocation, it is the final (outermost)
7358 operator that determines the relocated field. */
7359 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7360 if (!howto)
7361 abort ();
7362
7363 if (i > 1)
7364 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7365 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7366 bfd_get_reloc_size (howto),
7367 address_expr,
7368 howto0 && howto0->pc_relative,
7369 final_type[0]);
7370
7371 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7372 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7373 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7374
7375 /* These relocations can have an addend that won't fit in
7376 4 octets for 64bit assembly. */
7377 if (GPR_SIZE == 64
7378 && ! howto->partial_inplace
7379 && (reloc_type[0] == BFD_RELOC_16
7380 || reloc_type[0] == BFD_RELOC_32
7381 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7382 || reloc_type[0] == BFD_RELOC_GPREL16
7383 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7384 || reloc_type[0] == BFD_RELOC_GPREL32
7385 || reloc_type[0] == BFD_RELOC_64
7386 || reloc_type[0] == BFD_RELOC_CTOR
7387 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7388 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7389 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7390 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7391 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7392 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7393 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7394 || hi16_reloc_p (reloc_type[0])
7395 || lo16_reloc_p (reloc_type[0])))
7396 ip->fixp[0]->fx_no_overflow = 1;
7397
7398 /* These relocations can have an addend that won't fit in 2 octets. */
7399 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7400 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7401 ip->fixp[0]->fx_no_overflow = 1;
7402
7403 if (mips_relax.sequence)
7404 {
7405 if (mips_relax.first_fixup == 0)
7406 mips_relax.first_fixup = ip->fixp[0];
7407 }
7408 else if (reloc_needs_lo_p (*reloc_type))
7409 {
7410 struct mips_hi_fixup *hi_fixup;
7411
7412 /* Reuse the last entry if it already has a matching %lo. */
7413 hi_fixup = mips_hi_fixup_list;
7414 if (hi_fixup == 0
7415 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7416 {
7417 hi_fixup = ((struct mips_hi_fixup *)
7418 xmalloc (sizeof (struct mips_hi_fixup)));
7419 hi_fixup->next = mips_hi_fixup_list;
7420 mips_hi_fixup_list = hi_fixup;
7421 }
7422 hi_fixup->fixp = ip->fixp[0];
7423 hi_fixup->seg = now_seg;
7424 }
7425
7426 /* Add fixups for the second and third relocations, if given.
7427 Note that the ABI allows the second relocation to be
7428 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7429 moment we only use RSS_UNDEF, but we could add support
7430 for the others if it ever becomes necessary. */
7431 for (i = 1; i < 3; i++)
7432 if (reloc_type[i] != BFD_RELOC_UNUSED)
7433 {
7434 ip->fixp[i] = fix_new (ip->frag, ip->where,
7435 ip->fixp[0]->fx_size, NULL, 0,
7436 FALSE, final_type[i]);
7437
7438 /* Use fx_tcbit to mark compound relocs. */
7439 ip->fixp[0]->fx_tcbit = 1;
7440 ip->fixp[i]->fx_tcbit = 1;
7441 }
7442 }
7443 install_insn (ip);
7444
7445 /* Update the register mask information. */
7446 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7447 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7448
7449 switch (method)
7450 {
7451 case APPEND_ADD:
7452 insert_into_history (0, 1, ip);
7453 break;
7454
7455 case APPEND_ADD_WITH_NOP:
7456 {
7457 struct mips_cl_insn *nop;
7458
7459 insert_into_history (0, 1, ip);
7460 nop = get_delay_slot_nop (ip);
7461 add_fixed_insn (nop);
7462 insert_into_history (0, 1, nop);
7463 if (mips_relax.sequence)
7464 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7465 }
7466 break;
7467
7468 case APPEND_ADD_COMPACT:
7469 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7470 gas_assert (mips_opts.mips16);
7471 ip->insn_opcode |= 0x0080;
7472 find_altered_mips16_opcode (ip);
7473 install_insn (ip);
7474 insert_into_history (0, 1, ip);
7475 break;
7476
7477 case APPEND_SWAP:
7478 {
7479 struct mips_cl_insn delay = history[0];
7480 if (mips_opts.mips16)
7481 {
7482 know (delay.frag == ip->frag);
7483 move_insn (ip, delay.frag, delay.where);
7484 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7485 }
7486 else if (relaxed_branch || delay.frag != ip->frag)
7487 {
7488 /* Add the delay slot instruction to the end of the
7489 current frag and shrink the fixed part of the
7490 original frag. If the branch occupies the tail of
7491 the latter, move it backwards to cover the gap. */
7492 delay.frag->fr_fix -= branch_disp;
7493 if (delay.frag == ip->frag)
7494 move_insn (ip, ip->frag, ip->where - branch_disp);
7495 add_fixed_insn (&delay);
7496 }
7497 else
7498 {
7499 move_insn (&delay, ip->frag,
7500 ip->where - branch_disp + insn_length (ip));
7501 move_insn (ip, history[0].frag, history[0].where);
7502 }
7503 history[0] = *ip;
7504 delay.fixed_p = 1;
7505 insert_into_history (0, 1, &delay);
7506 }
7507 break;
7508 }
7509
7510 /* If we have just completed an unconditional branch, clear the history. */
7511 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7512 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7513 {
7514 unsigned int i;
7515
7516 mips_no_prev_insn ();
7517
7518 for (i = 0; i < ARRAY_SIZE (history); i++)
7519 history[i].cleared_p = 1;
7520 }
7521
7522 /* We need to emit a label at the end of branch-likely macros. */
7523 if (emit_branch_likely_macro)
7524 {
7525 emit_branch_likely_macro = FALSE;
7526 micromips_add_label ();
7527 }
7528
7529 /* We just output an insn, so the next one doesn't have a label. */
7530 mips_clear_insn_labels ();
7531 }
7532
7533 /* Forget that there was any previous instruction or label.
7534 When BRANCH is true, the branch history is also flushed. */
7535
7536 static void
7537 mips_no_prev_insn (void)
7538 {
7539 prev_nop_frag = NULL;
7540 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7541 mips_clear_insn_labels ();
7542 }
7543
7544 /* This function must be called before we emit something other than
7545 instructions. It is like mips_no_prev_insn except that it inserts
7546 any NOPS that might be needed by previous instructions. */
7547
7548 void
7549 mips_emit_delays (void)
7550 {
7551 if (! mips_opts.noreorder)
7552 {
7553 int nops = nops_for_insn (0, history, NULL);
7554 if (nops > 0)
7555 {
7556 while (nops-- > 0)
7557 add_fixed_insn (NOP_INSN);
7558 mips_move_text_labels ();
7559 }
7560 }
7561 mips_no_prev_insn ();
7562 }
7563
7564 /* Start a (possibly nested) noreorder block. */
7565
7566 static void
7567 start_noreorder (void)
7568 {
7569 if (mips_opts.noreorder == 0)
7570 {
7571 unsigned int i;
7572 int nops;
7573
7574 /* None of the instructions before the .set noreorder can be moved. */
7575 for (i = 0; i < ARRAY_SIZE (history); i++)
7576 history[i].fixed_p = 1;
7577
7578 /* Insert any nops that might be needed between the .set noreorder
7579 block and the previous instructions. We will later remove any
7580 nops that turn out not to be needed. */
7581 nops = nops_for_insn (0, history, NULL);
7582 if (nops > 0)
7583 {
7584 if (mips_optimize != 0)
7585 {
7586 /* Record the frag which holds the nop instructions, so
7587 that we can remove them if we don't need them. */
7588 frag_grow (nops * NOP_INSN_SIZE);
7589 prev_nop_frag = frag_now;
7590 prev_nop_frag_holds = nops;
7591 prev_nop_frag_required = 0;
7592 prev_nop_frag_since = 0;
7593 }
7594
7595 for (; nops > 0; --nops)
7596 add_fixed_insn (NOP_INSN);
7597
7598 /* Move on to a new frag, so that it is safe to simply
7599 decrease the size of prev_nop_frag. */
7600 frag_wane (frag_now);
7601 frag_new (0);
7602 mips_move_text_labels ();
7603 }
7604 mips_mark_labels ();
7605 mips_clear_insn_labels ();
7606 }
7607 mips_opts.noreorder++;
7608 mips_any_noreorder = 1;
7609 }
7610
7611 /* End a nested noreorder block. */
7612
7613 static void
7614 end_noreorder (void)
7615 {
7616 mips_opts.noreorder--;
7617 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7618 {
7619 /* Commit to inserting prev_nop_frag_required nops and go back to
7620 handling nop insertion the .set reorder way. */
7621 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7622 * NOP_INSN_SIZE);
7623 insert_into_history (prev_nop_frag_since,
7624 prev_nop_frag_required, NOP_INSN);
7625 prev_nop_frag = NULL;
7626 }
7627 }
7628
7629 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7630 higher bits unset. */
7631
7632 static void
7633 normalize_constant_expr (expressionS *ex)
7634 {
7635 if (ex->X_op == O_constant
7636 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7637 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7638 - 0x80000000);
7639 }
7640
7641 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7642 all higher bits unset. */
7643
7644 static void
7645 normalize_address_expr (expressionS *ex)
7646 {
7647 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7648 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7649 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7650 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7651 - 0x80000000);
7652 }
7653
7654 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7655 Return true if the match was successful.
7656
7657 OPCODE_EXTRA is a value that should be ORed into the opcode
7658 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7659 there are more alternatives after OPCODE and SOFT_MATCH is
7660 as for mips_arg_info. */
7661
7662 static bfd_boolean
7663 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7664 struct mips_operand_token *tokens, unsigned int opcode_extra,
7665 bfd_boolean lax_match, bfd_boolean complete_p)
7666 {
7667 const char *args;
7668 struct mips_arg_info arg;
7669 const struct mips_operand *operand;
7670 char c;
7671
7672 imm_expr.X_op = O_absent;
7673 offset_expr.X_op = O_absent;
7674 offset_reloc[0] = BFD_RELOC_UNUSED;
7675 offset_reloc[1] = BFD_RELOC_UNUSED;
7676 offset_reloc[2] = BFD_RELOC_UNUSED;
7677
7678 create_insn (insn, opcode);
7679 /* When no opcode suffix is specified, assume ".xyzw". */
7680 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7681 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7682 else
7683 insn->insn_opcode |= opcode_extra;
7684 memset (&arg, 0, sizeof (arg));
7685 arg.insn = insn;
7686 arg.token = tokens;
7687 arg.argnum = 1;
7688 arg.last_regno = ILLEGAL_REG;
7689 arg.dest_regno = ILLEGAL_REG;
7690 arg.lax_match = lax_match;
7691 for (args = opcode->args;; ++args)
7692 {
7693 if (arg.token->type == OT_END)
7694 {
7695 /* Handle unary instructions in which only one operand is given.
7696 The source is then the same as the destination. */
7697 if (arg.opnum == 1 && *args == ',')
7698 {
7699 operand = (mips_opts.micromips
7700 ? decode_micromips_operand (args + 1)
7701 : decode_mips_operand (args + 1));
7702 if (operand && mips_optional_operand_p (operand))
7703 {
7704 arg.token = tokens;
7705 arg.argnum = 1;
7706 continue;
7707 }
7708 }
7709
7710 /* Treat elided base registers as $0. */
7711 if (strcmp (args, "(b)") == 0)
7712 args += 3;
7713
7714 if (args[0] == '+')
7715 switch (args[1])
7716 {
7717 case 'K':
7718 case 'N':
7719 /* The register suffix is optional. */
7720 args += 2;
7721 break;
7722 }
7723
7724 /* Fail the match if there were too few operands. */
7725 if (*args)
7726 return FALSE;
7727
7728 /* Successful match. */
7729 if (!complete_p)
7730 return TRUE;
7731 clear_insn_error ();
7732 if (arg.dest_regno == arg.last_regno
7733 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7734 {
7735 if (arg.opnum == 2)
7736 set_insn_error
7737 (0, _("source and destination must be different"));
7738 else if (arg.last_regno == 31)
7739 set_insn_error
7740 (0, _("a destination register must be supplied"));
7741 }
7742 else if (arg.last_regno == 31
7743 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7744 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7745 set_insn_error (0, _("the source register must not be $31"));
7746 check_completed_insn (&arg);
7747 return TRUE;
7748 }
7749
7750 /* Fail the match if the line has too many operands. */
7751 if (*args == 0)
7752 return FALSE;
7753
7754 /* Handle characters that need to match exactly. */
7755 if (*args == '(' || *args == ')' || *args == ',')
7756 {
7757 if (match_char (&arg, *args))
7758 continue;
7759 return FALSE;
7760 }
7761 if (*args == '#')
7762 {
7763 ++args;
7764 if (arg.token->type == OT_DOUBLE_CHAR
7765 && arg.token->u.ch == *args)
7766 {
7767 ++arg.token;
7768 continue;
7769 }
7770 return FALSE;
7771 }
7772
7773 /* Handle special macro operands. Work out the properties of
7774 other operands. */
7775 arg.opnum += 1;
7776 switch (*args)
7777 {
7778 case '-':
7779 switch (args[1])
7780 {
7781 case 'A':
7782 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7783 break;
7784
7785 case 'B':
7786 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7787 break;
7788 }
7789 break;
7790
7791 case '+':
7792 switch (args[1])
7793 {
7794 case 'i':
7795 *offset_reloc = BFD_RELOC_MIPS_JMP;
7796 break;
7797
7798 case '\'':
7799 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7800 break;
7801
7802 case '\"':
7803 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7804 break;
7805 }
7806 break;
7807
7808 case 'I':
7809 if (!match_const_int (&arg, &imm_expr.X_add_number))
7810 return FALSE;
7811 imm_expr.X_op = O_constant;
7812 if (GPR_SIZE == 32)
7813 normalize_constant_expr (&imm_expr);
7814 continue;
7815
7816 case 'A':
7817 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7818 {
7819 /* Assume that the offset has been elided and that what
7820 we saw was a base register. The match will fail later
7821 if that assumption turns out to be wrong. */
7822 offset_expr.X_op = O_constant;
7823 offset_expr.X_add_number = 0;
7824 }
7825 else
7826 {
7827 if (!match_expression (&arg, &offset_expr, offset_reloc))
7828 return FALSE;
7829 normalize_address_expr (&offset_expr);
7830 }
7831 continue;
7832
7833 case 'F':
7834 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7835 8, TRUE))
7836 return FALSE;
7837 continue;
7838
7839 case 'L':
7840 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7841 8, FALSE))
7842 return FALSE;
7843 continue;
7844
7845 case 'f':
7846 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7847 4, TRUE))
7848 return FALSE;
7849 continue;
7850
7851 case 'l':
7852 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7853 4, FALSE))
7854 return FALSE;
7855 continue;
7856
7857 case 'p':
7858 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7859 break;
7860
7861 case 'a':
7862 *offset_reloc = BFD_RELOC_MIPS_JMP;
7863 break;
7864
7865 case 'm':
7866 gas_assert (mips_opts.micromips);
7867 c = args[1];
7868 switch (c)
7869 {
7870 case 'D':
7871 case 'E':
7872 if (!forced_insn_length)
7873 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7874 else if (c == 'D')
7875 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7876 else
7877 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7878 break;
7879 }
7880 break;
7881 }
7882
7883 operand = (mips_opts.micromips
7884 ? decode_micromips_operand (args)
7885 : decode_mips_operand (args));
7886 if (!operand)
7887 abort ();
7888
7889 /* Skip prefixes. */
7890 if (*args == '+' || *args == 'm' || *args == '-')
7891 args++;
7892
7893 if (mips_optional_operand_p (operand)
7894 && args[1] == ','
7895 && (arg.token[0].type != OT_REG
7896 || arg.token[1].type == OT_END))
7897 {
7898 /* Assume that the register has been elided and is the
7899 same as the first operand. */
7900 arg.token = tokens;
7901 arg.argnum = 1;
7902 }
7903
7904 if (!match_operand (&arg, operand))
7905 return FALSE;
7906 }
7907 }
7908
7909 /* Like match_insn, but for MIPS16. */
7910
7911 static bfd_boolean
7912 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7913 struct mips_operand_token *tokens)
7914 {
7915 const char *args;
7916 const struct mips_operand *operand;
7917 const struct mips_operand *ext_operand;
7918 struct mips_arg_info arg;
7919 int relax_char;
7920
7921 create_insn (insn, opcode);
7922 imm_expr.X_op = O_absent;
7923 offset_expr.X_op = O_absent;
7924 offset_reloc[0] = BFD_RELOC_UNUSED;
7925 offset_reloc[1] = BFD_RELOC_UNUSED;
7926 offset_reloc[2] = BFD_RELOC_UNUSED;
7927 relax_char = 0;
7928
7929 memset (&arg, 0, sizeof (arg));
7930 arg.insn = insn;
7931 arg.token = tokens;
7932 arg.argnum = 1;
7933 arg.last_regno = ILLEGAL_REG;
7934 arg.dest_regno = ILLEGAL_REG;
7935 relax_char = 0;
7936 for (args = opcode->args;; ++args)
7937 {
7938 int c;
7939
7940 if (arg.token->type == OT_END)
7941 {
7942 offsetT value;
7943
7944 /* Handle unary instructions in which only one operand is given.
7945 The source is then the same as the destination. */
7946 if (arg.opnum == 1 && *args == ',')
7947 {
7948 operand = decode_mips16_operand (args[1], FALSE);
7949 if (operand && mips_optional_operand_p (operand))
7950 {
7951 arg.token = tokens;
7952 arg.argnum = 1;
7953 continue;
7954 }
7955 }
7956
7957 /* Fail the match if there were too few operands. */
7958 if (*args)
7959 return FALSE;
7960
7961 /* Successful match. Stuff the immediate value in now, if
7962 we can. */
7963 clear_insn_error ();
7964 if (opcode->pinfo == INSN_MACRO)
7965 {
7966 gas_assert (relax_char == 0 || relax_char == 'p');
7967 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7968 }
7969 else if (relax_char
7970 && offset_expr.X_op == O_constant
7971 && calculate_reloc (*offset_reloc,
7972 offset_expr.X_add_number,
7973 &value))
7974 {
7975 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7976 forced_insn_length, &insn->insn_opcode);
7977 offset_expr.X_op = O_absent;
7978 *offset_reloc = BFD_RELOC_UNUSED;
7979 }
7980 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7981 {
7982 if (forced_insn_length == 2)
7983 set_insn_error (0, _("invalid unextended operand value"));
7984 forced_insn_length = 4;
7985 insn->insn_opcode |= MIPS16_EXTEND;
7986 }
7987 else if (relax_char)
7988 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7989
7990 check_completed_insn (&arg);
7991 return TRUE;
7992 }
7993
7994 /* Fail the match if the line has too many operands. */
7995 if (*args == 0)
7996 return FALSE;
7997
7998 /* Handle characters that need to match exactly. */
7999 if (*args == '(' || *args == ')' || *args == ',')
8000 {
8001 if (match_char (&arg, *args))
8002 continue;
8003 return FALSE;
8004 }
8005
8006 arg.opnum += 1;
8007 c = *args;
8008 switch (c)
8009 {
8010 case 'p':
8011 case 'q':
8012 case 'A':
8013 case 'B':
8014 case 'E':
8015 relax_char = c;
8016 break;
8017
8018 case 'I':
8019 if (!match_const_int (&arg, &imm_expr.X_add_number))
8020 return FALSE;
8021 imm_expr.X_op = O_constant;
8022 if (GPR_SIZE == 32)
8023 normalize_constant_expr (&imm_expr);
8024 continue;
8025
8026 case 'a':
8027 case 'i':
8028 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8029 insn->insn_opcode <<= 16;
8030 break;
8031 }
8032
8033 operand = decode_mips16_operand (c, FALSE);
8034 if (!operand)
8035 abort ();
8036
8037 /* '6' is a special case. It is used for BREAK and SDBBP,
8038 whose operands are only meaningful to the software that decodes
8039 them. This means that there is no architectural reason why
8040 they cannot be prefixed by EXTEND, but in practice,
8041 exception handlers will only look at the instruction
8042 itself. We therefore allow '6' to be extended when
8043 disassembling but not when assembling. */
8044 if (operand->type != OP_PCREL && c != '6')
8045 {
8046 ext_operand = decode_mips16_operand (c, TRUE);
8047 if (operand != ext_operand)
8048 {
8049 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8050 {
8051 offset_expr.X_op = O_constant;
8052 offset_expr.X_add_number = 0;
8053 relax_char = c;
8054 continue;
8055 }
8056
8057 /* We need the OT_INTEGER check because some MIPS16
8058 immediate variants are listed before the register ones. */
8059 if (arg.token->type != OT_INTEGER
8060 || !match_expression (&arg, &offset_expr, offset_reloc))
8061 return FALSE;
8062
8063 /* '8' is used for SLTI(U) and has traditionally not
8064 been allowed to take relocation operators. */
8065 if (offset_reloc[0] != BFD_RELOC_UNUSED
8066 && (ext_operand->size != 16 || c == '8'))
8067 return FALSE;
8068
8069 relax_char = c;
8070 continue;
8071 }
8072 }
8073
8074 if (mips_optional_operand_p (operand)
8075 && args[1] == ','
8076 && (arg.token[0].type != OT_REG
8077 || arg.token[1].type == OT_END))
8078 {
8079 /* Assume that the register has been elided and is the
8080 same as the first operand. */
8081 arg.token = tokens;
8082 arg.argnum = 1;
8083 }
8084
8085 if (!match_operand (&arg, operand))
8086 return FALSE;
8087 }
8088 }
8089
8090 /* Record that the current instruction is invalid for the current ISA. */
8091
8092 static void
8093 match_invalid_for_isa (void)
8094 {
8095 set_insn_error_ss
8096 (0, _("opcode not supported on this processor: %s (%s)"),
8097 mips_cpu_info_from_arch (mips_opts.arch)->name,
8098 mips_cpu_info_from_isa (mips_opts.isa)->name);
8099 }
8100
8101 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8102 Return true if a definite match or failure was found, storing any match
8103 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8104 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8105 tried and failed to match under normal conditions and now want to try a
8106 more relaxed match. */
8107
8108 static bfd_boolean
8109 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8110 const struct mips_opcode *past, struct mips_operand_token *tokens,
8111 int opcode_extra, bfd_boolean lax_match)
8112 {
8113 const struct mips_opcode *opcode;
8114 const struct mips_opcode *invalid_delay_slot;
8115 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8116
8117 /* Search for a match, ignoring alternatives that don't satisfy the
8118 current ISA or forced_length. */
8119 invalid_delay_slot = 0;
8120 seen_valid_for_isa = FALSE;
8121 seen_valid_for_size = FALSE;
8122 opcode = first;
8123 do
8124 {
8125 gas_assert (strcmp (opcode->name, first->name) == 0);
8126 if (is_opcode_valid (opcode))
8127 {
8128 seen_valid_for_isa = TRUE;
8129 if (is_size_valid (opcode))
8130 {
8131 bfd_boolean delay_slot_ok;
8132
8133 seen_valid_for_size = TRUE;
8134 delay_slot_ok = is_delay_slot_valid (opcode);
8135 if (match_insn (insn, opcode, tokens, opcode_extra,
8136 lax_match, delay_slot_ok))
8137 {
8138 if (!delay_slot_ok)
8139 {
8140 if (!invalid_delay_slot)
8141 invalid_delay_slot = opcode;
8142 }
8143 else
8144 return TRUE;
8145 }
8146 }
8147 }
8148 ++opcode;
8149 }
8150 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8151
8152 /* If the only matches we found had the wrong length for the delay slot,
8153 pick the first such match. We'll issue an appropriate warning later. */
8154 if (invalid_delay_slot)
8155 {
8156 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8157 lax_match, TRUE))
8158 return TRUE;
8159 abort ();
8160 }
8161
8162 /* Handle the case where we didn't try to match an instruction because
8163 all the alternatives were incompatible with the current ISA. */
8164 if (!seen_valid_for_isa)
8165 {
8166 match_invalid_for_isa ();
8167 return TRUE;
8168 }
8169
8170 /* Handle the case where we didn't try to match an instruction because
8171 all the alternatives were of the wrong size. */
8172 if (!seen_valid_for_size)
8173 {
8174 if (mips_opts.insn32)
8175 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8176 else
8177 set_insn_error_i
8178 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8179 8 * forced_insn_length);
8180 return TRUE;
8181 }
8182
8183 return FALSE;
8184 }
8185
8186 /* Like match_insns, but for MIPS16. */
8187
8188 static bfd_boolean
8189 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8190 struct mips_operand_token *tokens)
8191 {
8192 const struct mips_opcode *opcode;
8193 bfd_boolean seen_valid_for_isa;
8194
8195 /* Search for a match, ignoring alternatives that don't satisfy the
8196 current ISA. There are no separate entries for extended forms so
8197 we deal with forced_length later. */
8198 seen_valid_for_isa = FALSE;
8199 opcode = first;
8200 do
8201 {
8202 gas_assert (strcmp (opcode->name, first->name) == 0);
8203 if (is_opcode_valid_16 (opcode))
8204 {
8205 seen_valid_for_isa = TRUE;
8206 if (match_mips16_insn (insn, opcode, tokens))
8207 return TRUE;
8208 }
8209 ++opcode;
8210 }
8211 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8212 && strcmp (opcode->name, first->name) == 0);
8213
8214 /* Handle the case where we didn't try to match an instruction because
8215 all the alternatives were incompatible with the current ISA. */
8216 if (!seen_valid_for_isa)
8217 {
8218 match_invalid_for_isa ();
8219 return TRUE;
8220 }
8221
8222 return FALSE;
8223 }
8224
8225 /* Set up global variables for the start of a new macro. */
8226
8227 static void
8228 macro_start (void)
8229 {
8230 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8231 memset (&mips_macro_warning.first_insn_sizes, 0,
8232 sizeof (mips_macro_warning.first_insn_sizes));
8233 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8234 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8235 && delayed_branch_p (&history[0]));
8236 switch (history[0].insn_mo->pinfo2
8237 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8238 {
8239 case INSN2_BRANCH_DELAY_32BIT:
8240 mips_macro_warning.delay_slot_length = 4;
8241 break;
8242 case INSN2_BRANCH_DELAY_16BIT:
8243 mips_macro_warning.delay_slot_length = 2;
8244 break;
8245 default:
8246 mips_macro_warning.delay_slot_length = 0;
8247 break;
8248 }
8249 mips_macro_warning.first_frag = NULL;
8250 }
8251
8252 /* Given that a macro is longer than one instruction or of the wrong size,
8253 return the appropriate warning for it. Return null if no warning is
8254 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8255 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8256 and RELAX_NOMACRO. */
8257
8258 static const char *
8259 macro_warning (relax_substateT subtype)
8260 {
8261 if (subtype & RELAX_DELAY_SLOT)
8262 return _("macro instruction expanded into multiple instructions"
8263 " in a branch delay slot");
8264 else if (subtype & RELAX_NOMACRO)
8265 return _("macro instruction expanded into multiple instructions");
8266 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8267 | RELAX_DELAY_SLOT_SIZE_SECOND))
8268 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8269 ? _("macro instruction expanded into a wrong size instruction"
8270 " in a 16-bit branch delay slot")
8271 : _("macro instruction expanded into a wrong size instruction"
8272 " in a 32-bit branch delay slot"));
8273 else
8274 return 0;
8275 }
8276
8277 /* Finish up a macro. Emit warnings as appropriate. */
8278
8279 static void
8280 macro_end (void)
8281 {
8282 /* Relaxation warning flags. */
8283 relax_substateT subtype = 0;
8284
8285 /* Check delay slot size requirements. */
8286 if (mips_macro_warning.delay_slot_length == 2)
8287 subtype |= RELAX_DELAY_SLOT_16BIT;
8288 if (mips_macro_warning.delay_slot_length != 0)
8289 {
8290 if (mips_macro_warning.delay_slot_length
8291 != mips_macro_warning.first_insn_sizes[0])
8292 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8293 if (mips_macro_warning.delay_slot_length
8294 != mips_macro_warning.first_insn_sizes[1])
8295 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8296 }
8297
8298 /* Check instruction count requirements. */
8299 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8300 {
8301 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8302 subtype |= RELAX_SECOND_LONGER;
8303 if (mips_opts.warn_about_macros)
8304 subtype |= RELAX_NOMACRO;
8305 if (mips_macro_warning.delay_slot_p)
8306 subtype |= RELAX_DELAY_SLOT;
8307 }
8308
8309 /* If both alternatives fail to fill a delay slot correctly,
8310 emit the warning now. */
8311 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8312 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8313 {
8314 relax_substateT s;
8315 const char *msg;
8316
8317 s = subtype & (RELAX_DELAY_SLOT_16BIT
8318 | RELAX_DELAY_SLOT_SIZE_FIRST
8319 | RELAX_DELAY_SLOT_SIZE_SECOND);
8320 msg = macro_warning (s);
8321 if (msg != NULL)
8322 as_warn ("%s", msg);
8323 subtype &= ~s;
8324 }
8325
8326 /* If both implementations are longer than 1 instruction, then emit the
8327 warning now. */
8328 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8329 {
8330 relax_substateT s;
8331 const char *msg;
8332
8333 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8334 msg = macro_warning (s);
8335 if (msg != NULL)
8336 as_warn ("%s", msg);
8337 subtype &= ~s;
8338 }
8339
8340 /* If any flags still set, then one implementation might need a warning
8341 and the other either will need one of a different kind or none at all.
8342 Pass any remaining flags over to relaxation. */
8343 if (mips_macro_warning.first_frag != NULL)
8344 mips_macro_warning.first_frag->fr_subtype |= subtype;
8345 }
8346
8347 /* Instruction operand formats used in macros that vary between
8348 standard MIPS and microMIPS code. */
8349
8350 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8351 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8352 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8353 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8354 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8355 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8356 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8357 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8358
8359 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8360 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8361 : cop12_fmt[mips_opts.micromips])
8362 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8363 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8364 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8365 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8366 : mem12_fmt[mips_opts.micromips])
8367 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8368 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8369 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8370
8371 /* Read a macro's relocation codes from *ARGS and store them in *R.
8372 The first argument in *ARGS will be either the code for a single
8373 relocation or -1 followed by the three codes that make up a
8374 composite relocation. */
8375
8376 static void
8377 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8378 {
8379 int i, next;
8380
8381 next = va_arg (*args, int);
8382 if (next >= 0)
8383 r[0] = (bfd_reloc_code_real_type) next;
8384 else
8385 {
8386 for (i = 0; i < 3; i++)
8387 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8388 /* This function is only used for 16-bit relocation fields.
8389 To make the macro code simpler, treat an unrelocated value
8390 in the same way as BFD_RELOC_LO16. */
8391 if (r[0] == BFD_RELOC_UNUSED)
8392 r[0] = BFD_RELOC_LO16;
8393 }
8394 }
8395
8396 /* Build an instruction created by a macro expansion. This is passed
8397 a pointer to the count of instructions created so far, an
8398 expression, the name of the instruction to build, an operand format
8399 string, and corresponding arguments. */
8400
8401 static void
8402 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8403 {
8404 const struct mips_opcode *mo = NULL;
8405 bfd_reloc_code_real_type r[3];
8406 const struct mips_opcode *amo;
8407 const struct mips_operand *operand;
8408 struct hash_control *hash;
8409 struct mips_cl_insn insn;
8410 va_list args;
8411 unsigned int uval;
8412
8413 va_start (args, fmt);
8414
8415 if (mips_opts.mips16)
8416 {
8417 mips16_macro_build (ep, name, fmt, &args);
8418 va_end (args);
8419 return;
8420 }
8421
8422 r[0] = BFD_RELOC_UNUSED;
8423 r[1] = BFD_RELOC_UNUSED;
8424 r[2] = BFD_RELOC_UNUSED;
8425 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8426 amo = (struct mips_opcode *) hash_find (hash, name);
8427 gas_assert (amo);
8428 gas_assert (strcmp (name, amo->name) == 0);
8429
8430 do
8431 {
8432 /* Search until we get a match for NAME. It is assumed here that
8433 macros will never generate MDMX, MIPS-3D, or MT instructions.
8434 We try to match an instruction that fulfils the branch delay
8435 slot instruction length requirement (if any) of the previous
8436 instruction. While doing this we record the first instruction
8437 seen that matches all the other conditions and use it anyway
8438 if the requirement cannot be met; we will issue an appropriate
8439 warning later on. */
8440 if (strcmp (fmt, amo->args) == 0
8441 && amo->pinfo != INSN_MACRO
8442 && is_opcode_valid (amo)
8443 && is_size_valid (amo))
8444 {
8445 if (is_delay_slot_valid (amo))
8446 {
8447 mo = amo;
8448 break;
8449 }
8450 else if (!mo)
8451 mo = amo;
8452 }
8453
8454 ++amo;
8455 gas_assert (amo->name);
8456 }
8457 while (strcmp (name, amo->name) == 0);
8458
8459 gas_assert (mo);
8460 create_insn (&insn, mo);
8461 for (; *fmt; ++fmt)
8462 {
8463 switch (*fmt)
8464 {
8465 case ',':
8466 case '(':
8467 case ')':
8468 case 'z':
8469 break;
8470
8471 case 'i':
8472 case 'j':
8473 macro_read_relocs (&args, r);
8474 gas_assert (*r == BFD_RELOC_GPREL16
8475 || *r == BFD_RELOC_MIPS_HIGHER
8476 || *r == BFD_RELOC_HI16_S
8477 || *r == BFD_RELOC_LO16
8478 || *r == BFD_RELOC_MIPS_GOT_OFST);
8479 break;
8480
8481 case 'o':
8482 macro_read_relocs (&args, r);
8483 break;
8484
8485 case 'u':
8486 macro_read_relocs (&args, r);
8487 gas_assert (ep != NULL
8488 && (ep->X_op == O_constant
8489 || (ep->X_op == O_symbol
8490 && (*r == BFD_RELOC_MIPS_HIGHEST
8491 || *r == BFD_RELOC_HI16_S
8492 || *r == BFD_RELOC_HI16
8493 || *r == BFD_RELOC_GPREL16
8494 || *r == BFD_RELOC_MIPS_GOT_HI16
8495 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8496 break;
8497
8498 case 'p':
8499 gas_assert (ep != NULL);
8500
8501 /*
8502 * This allows macro() to pass an immediate expression for
8503 * creating short branches without creating a symbol.
8504 *
8505 * We don't allow branch relaxation for these branches, as
8506 * they should only appear in ".set nomacro" anyway.
8507 */
8508 if (ep->X_op == O_constant)
8509 {
8510 /* For microMIPS we always use relocations for branches.
8511 So we should not resolve immediate values. */
8512 gas_assert (!mips_opts.micromips);
8513
8514 if ((ep->X_add_number & 3) != 0)
8515 as_bad (_("branch to misaligned address (0x%lx)"),
8516 (unsigned long) ep->X_add_number);
8517 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8518 as_bad (_("branch address range overflow (0x%lx)"),
8519 (unsigned long) ep->X_add_number);
8520 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8521 ep = NULL;
8522 }
8523 else
8524 *r = BFD_RELOC_16_PCREL_S2;
8525 break;
8526
8527 case 'a':
8528 gas_assert (ep != NULL);
8529 *r = BFD_RELOC_MIPS_JMP;
8530 break;
8531
8532 default:
8533 operand = (mips_opts.micromips
8534 ? decode_micromips_operand (fmt)
8535 : decode_mips_operand (fmt));
8536 if (!operand)
8537 abort ();
8538
8539 uval = va_arg (args, int);
8540 if (operand->type == OP_CLO_CLZ_DEST)
8541 uval |= (uval << 5);
8542 insn_insert_operand (&insn, operand, uval);
8543
8544 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8545 ++fmt;
8546 break;
8547 }
8548 }
8549 va_end (args);
8550 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8551
8552 append_insn (&insn, ep, r, TRUE);
8553 }
8554
8555 static void
8556 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8557 va_list *args)
8558 {
8559 struct mips_opcode *mo;
8560 struct mips_cl_insn insn;
8561 const struct mips_operand *operand;
8562 bfd_reloc_code_real_type r[3]
8563 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8564
8565 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8566 gas_assert (mo);
8567 gas_assert (strcmp (name, mo->name) == 0);
8568
8569 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8570 {
8571 ++mo;
8572 gas_assert (mo->name);
8573 gas_assert (strcmp (name, mo->name) == 0);
8574 }
8575
8576 create_insn (&insn, mo);
8577 for (; *fmt; ++fmt)
8578 {
8579 int c;
8580
8581 c = *fmt;
8582 switch (c)
8583 {
8584 case ',':
8585 case '(':
8586 case ')':
8587 break;
8588
8589 case '0':
8590 case 'S':
8591 case 'P':
8592 case 'R':
8593 break;
8594
8595 case '<':
8596 case '>':
8597 case '4':
8598 case '5':
8599 case 'H':
8600 case 'W':
8601 case 'D':
8602 case 'j':
8603 case '8':
8604 case 'V':
8605 case 'C':
8606 case 'U':
8607 case 'k':
8608 case 'K':
8609 case 'p':
8610 case 'q':
8611 {
8612 offsetT value;
8613
8614 gas_assert (ep != NULL);
8615
8616 if (ep->X_op != O_constant)
8617 *r = (int) BFD_RELOC_UNUSED + c;
8618 else if (calculate_reloc (*r, ep->X_add_number, &value))
8619 {
8620 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8621 ep = NULL;
8622 *r = BFD_RELOC_UNUSED;
8623 }
8624 }
8625 break;
8626
8627 default:
8628 operand = decode_mips16_operand (c, FALSE);
8629 if (!operand)
8630 abort ();
8631
8632 insn_insert_operand (&insn, operand, va_arg (*args, int));
8633 break;
8634 }
8635 }
8636
8637 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8638
8639 append_insn (&insn, ep, r, TRUE);
8640 }
8641
8642 /*
8643 * Generate a "jalr" instruction with a relocation hint to the called
8644 * function. This occurs in NewABI PIC code.
8645 */
8646 static void
8647 macro_build_jalr (expressionS *ep, int cprestore)
8648 {
8649 static const bfd_reloc_code_real_type jalr_relocs[2]
8650 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8651 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8652 const char *jalr;
8653 char *f = NULL;
8654
8655 if (MIPS_JALR_HINT_P (ep))
8656 {
8657 frag_grow (8);
8658 f = frag_more (0);
8659 }
8660 if (mips_opts.micromips)
8661 {
8662 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8663 ? "jalr" : "jalrs");
8664 if (MIPS_JALR_HINT_P (ep)
8665 || mips_opts.insn32
8666 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8667 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8668 else
8669 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8670 }
8671 else
8672 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8673 if (MIPS_JALR_HINT_P (ep))
8674 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8675 }
8676
8677 /*
8678 * Generate a "lui" instruction.
8679 */
8680 static void
8681 macro_build_lui (expressionS *ep, int regnum)
8682 {
8683 gas_assert (! mips_opts.mips16);
8684
8685 if (ep->X_op != O_constant)
8686 {
8687 gas_assert (ep->X_op == O_symbol);
8688 /* _gp_disp is a special case, used from s_cpload.
8689 __gnu_local_gp is used if mips_no_shared. */
8690 gas_assert (mips_pic == NO_PIC
8691 || (! HAVE_NEWABI
8692 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8693 || (! mips_in_shared
8694 && strcmp (S_GET_NAME (ep->X_add_symbol),
8695 "__gnu_local_gp") == 0));
8696 }
8697
8698 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8699 }
8700
8701 /* Generate a sequence of instructions to do a load or store from a constant
8702 offset off of a base register (breg) into/from a target register (treg),
8703 using AT if necessary. */
8704 static void
8705 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8706 int treg, int breg, int dbl)
8707 {
8708 gas_assert (ep->X_op == O_constant);
8709
8710 /* Sign-extending 32-bit constants makes their handling easier. */
8711 if (!dbl)
8712 normalize_constant_expr (ep);
8713
8714 /* Right now, this routine can only handle signed 32-bit constants. */
8715 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8716 as_warn (_("operand overflow"));
8717
8718 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8719 {
8720 /* Signed 16-bit offset will fit in the op. Easy! */
8721 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8722 }
8723 else
8724 {
8725 /* 32-bit offset, need multiple instructions and AT, like:
8726 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8727 addu $tempreg,$tempreg,$breg
8728 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8729 to handle the complete offset. */
8730 macro_build_lui (ep, AT);
8731 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8732 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8733
8734 if (!mips_opts.at)
8735 as_bad (_("macro used $at after \".set noat\""));
8736 }
8737 }
8738
8739 /* set_at()
8740 * Generates code to set the $at register to true (one)
8741 * if reg is less than the immediate expression.
8742 */
8743 static void
8744 set_at (int reg, int unsignedp)
8745 {
8746 if (imm_expr.X_add_number >= -0x8000
8747 && imm_expr.X_add_number < 0x8000)
8748 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8749 AT, reg, BFD_RELOC_LO16);
8750 else
8751 {
8752 load_register (AT, &imm_expr, GPR_SIZE == 64);
8753 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8754 }
8755 }
8756
8757 /* Count the leading zeroes by performing a binary chop. This is a
8758 bulky bit of source, but performance is a LOT better for the
8759 majority of values than a simple loop to count the bits:
8760 for (lcnt = 0; (lcnt < 32); lcnt++)
8761 if ((v) & (1 << (31 - lcnt)))
8762 break;
8763 However it is not code size friendly, and the gain will drop a bit
8764 on certain cached systems.
8765 */
8766 #define COUNT_TOP_ZEROES(v) \
8767 (((v) & ~0xffff) == 0 \
8768 ? ((v) & ~0xff) == 0 \
8769 ? ((v) & ~0xf) == 0 \
8770 ? ((v) & ~0x3) == 0 \
8771 ? ((v) & ~0x1) == 0 \
8772 ? !(v) \
8773 ? 32 \
8774 : 31 \
8775 : 30 \
8776 : ((v) & ~0x7) == 0 \
8777 ? 29 \
8778 : 28 \
8779 : ((v) & ~0x3f) == 0 \
8780 ? ((v) & ~0x1f) == 0 \
8781 ? 27 \
8782 : 26 \
8783 : ((v) & ~0x7f) == 0 \
8784 ? 25 \
8785 : 24 \
8786 : ((v) & ~0xfff) == 0 \
8787 ? ((v) & ~0x3ff) == 0 \
8788 ? ((v) & ~0x1ff) == 0 \
8789 ? 23 \
8790 : 22 \
8791 : ((v) & ~0x7ff) == 0 \
8792 ? 21 \
8793 : 20 \
8794 : ((v) & ~0x3fff) == 0 \
8795 ? ((v) & ~0x1fff) == 0 \
8796 ? 19 \
8797 : 18 \
8798 : ((v) & ~0x7fff) == 0 \
8799 ? 17 \
8800 : 16 \
8801 : ((v) & ~0xffffff) == 0 \
8802 ? ((v) & ~0xfffff) == 0 \
8803 ? ((v) & ~0x3ffff) == 0 \
8804 ? ((v) & ~0x1ffff) == 0 \
8805 ? 15 \
8806 : 14 \
8807 : ((v) & ~0x7ffff) == 0 \
8808 ? 13 \
8809 : 12 \
8810 : ((v) & ~0x3fffff) == 0 \
8811 ? ((v) & ~0x1fffff) == 0 \
8812 ? 11 \
8813 : 10 \
8814 : ((v) & ~0x7fffff) == 0 \
8815 ? 9 \
8816 : 8 \
8817 : ((v) & ~0xfffffff) == 0 \
8818 ? ((v) & ~0x3ffffff) == 0 \
8819 ? ((v) & ~0x1ffffff) == 0 \
8820 ? 7 \
8821 : 6 \
8822 : ((v) & ~0x7ffffff) == 0 \
8823 ? 5 \
8824 : 4 \
8825 : ((v) & ~0x3fffffff) == 0 \
8826 ? ((v) & ~0x1fffffff) == 0 \
8827 ? 3 \
8828 : 2 \
8829 : ((v) & ~0x7fffffff) == 0 \
8830 ? 1 \
8831 : 0)
8832
8833 /* load_register()
8834 * This routine generates the least number of instructions necessary to load
8835 * an absolute expression value into a register.
8836 */
8837 static void
8838 load_register (int reg, expressionS *ep, int dbl)
8839 {
8840 int freg;
8841 expressionS hi32, lo32;
8842
8843 if (ep->X_op != O_big)
8844 {
8845 gas_assert (ep->X_op == O_constant);
8846
8847 /* Sign-extending 32-bit constants makes their handling easier. */
8848 if (!dbl)
8849 normalize_constant_expr (ep);
8850
8851 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8852 {
8853 /* We can handle 16 bit signed values with an addiu to
8854 $zero. No need to ever use daddiu here, since $zero and
8855 the result are always correct in 32 bit mode. */
8856 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8857 return;
8858 }
8859 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8860 {
8861 /* We can handle 16 bit unsigned values with an ori to
8862 $zero. */
8863 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8864 return;
8865 }
8866 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8867 {
8868 /* 32 bit values require an lui. */
8869 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8870 if ((ep->X_add_number & 0xffff) != 0)
8871 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8872 return;
8873 }
8874 }
8875
8876 /* The value is larger than 32 bits. */
8877
8878 if (!dbl || GPR_SIZE == 32)
8879 {
8880 char value[32];
8881
8882 sprintf_vma (value, ep->X_add_number);
8883 as_bad (_("number (0x%s) larger than 32 bits"), value);
8884 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8885 return;
8886 }
8887
8888 if (ep->X_op != O_big)
8889 {
8890 hi32 = *ep;
8891 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8892 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8893 hi32.X_add_number &= 0xffffffff;
8894 lo32 = *ep;
8895 lo32.X_add_number &= 0xffffffff;
8896 }
8897 else
8898 {
8899 gas_assert (ep->X_add_number > 2);
8900 if (ep->X_add_number == 3)
8901 generic_bignum[3] = 0;
8902 else if (ep->X_add_number > 4)
8903 as_bad (_("number larger than 64 bits"));
8904 lo32.X_op = O_constant;
8905 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8906 hi32.X_op = O_constant;
8907 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8908 }
8909
8910 if (hi32.X_add_number == 0)
8911 freg = 0;
8912 else
8913 {
8914 int shift, bit;
8915 unsigned long hi, lo;
8916
8917 if (hi32.X_add_number == (offsetT) 0xffffffff)
8918 {
8919 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8920 {
8921 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8922 return;
8923 }
8924 if (lo32.X_add_number & 0x80000000)
8925 {
8926 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8927 if (lo32.X_add_number & 0xffff)
8928 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8929 return;
8930 }
8931 }
8932
8933 /* Check for 16bit shifted constant. We know that hi32 is
8934 non-zero, so start the mask on the first bit of the hi32
8935 value. */
8936 shift = 17;
8937 do
8938 {
8939 unsigned long himask, lomask;
8940
8941 if (shift < 32)
8942 {
8943 himask = 0xffff >> (32 - shift);
8944 lomask = (0xffff << shift) & 0xffffffff;
8945 }
8946 else
8947 {
8948 himask = 0xffff << (shift - 32);
8949 lomask = 0;
8950 }
8951 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8952 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8953 {
8954 expressionS tmp;
8955
8956 tmp.X_op = O_constant;
8957 if (shift < 32)
8958 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8959 | (lo32.X_add_number >> shift));
8960 else
8961 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8962 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8963 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8964 reg, reg, (shift >= 32) ? shift - 32 : shift);
8965 return;
8966 }
8967 ++shift;
8968 }
8969 while (shift <= (64 - 16));
8970
8971 /* Find the bit number of the lowest one bit, and store the
8972 shifted value in hi/lo. */
8973 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8974 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8975 if (lo != 0)
8976 {
8977 bit = 0;
8978 while ((lo & 1) == 0)
8979 {
8980 lo >>= 1;
8981 ++bit;
8982 }
8983 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8984 hi >>= bit;
8985 }
8986 else
8987 {
8988 bit = 32;
8989 while ((hi & 1) == 0)
8990 {
8991 hi >>= 1;
8992 ++bit;
8993 }
8994 lo = hi;
8995 hi = 0;
8996 }
8997
8998 /* Optimize if the shifted value is a (power of 2) - 1. */
8999 if ((hi == 0 && ((lo + 1) & lo) == 0)
9000 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9001 {
9002 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9003 if (shift != 0)
9004 {
9005 expressionS tmp;
9006
9007 /* This instruction will set the register to be all
9008 ones. */
9009 tmp.X_op = O_constant;
9010 tmp.X_add_number = (offsetT) -1;
9011 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9012 if (bit != 0)
9013 {
9014 bit += shift;
9015 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9016 reg, reg, (bit >= 32) ? bit - 32 : bit);
9017 }
9018 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9019 reg, reg, (shift >= 32) ? shift - 32 : shift);
9020 return;
9021 }
9022 }
9023
9024 /* Sign extend hi32 before calling load_register, because we can
9025 generally get better code when we load a sign extended value. */
9026 if ((hi32.X_add_number & 0x80000000) != 0)
9027 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9028 load_register (reg, &hi32, 0);
9029 freg = reg;
9030 }
9031 if ((lo32.X_add_number & 0xffff0000) == 0)
9032 {
9033 if (freg != 0)
9034 {
9035 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9036 freg = reg;
9037 }
9038 }
9039 else
9040 {
9041 expressionS mid16;
9042
9043 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9044 {
9045 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9046 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9047 return;
9048 }
9049
9050 if (freg != 0)
9051 {
9052 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9053 freg = reg;
9054 }
9055 mid16 = lo32;
9056 mid16.X_add_number >>= 16;
9057 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9058 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9059 freg = reg;
9060 }
9061 if ((lo32.X_add_number & 0xffff) != 0)
9062 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9063 }
9064
9065 static inline void
9066 load_delay_nop (void)
9067 {
9068 if (!gpr_interlocks)
9069 macro_build (NULL, "nop", "");
9070 }
9071
9072 /* Load an address into a register. */
9073
9074 static void
9075 load_address (int reg, expressionS *ep, int *used_at)
9076 {
9077 if (ep->X_op != O_constant
9078 && ep->X_op != O_symbol)
9079 {
9080 as_bad (_("expression too complex"));
9081 ep->X_op = O_constant;
9082 }
9083
9084 if (ep->X_op == O_constant)
9085 {
9086 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9087 return;
9088 }
9089
9090 if (mips_pic == NO_PIC)
9091 {
9092 /* If this is a reference to a GP relative symbol, we want
9093 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9094 Otherwise we want
9095 lui $reg,<sym> (BFD_RELOC_HI16_S)
9096 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9097 If we have an addend, we always use the latter form.
9098
9099 With 64bit address space and a usable $at we want
9100 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9101 lui $at,<sym> (BFD_RELOC_HI16_S)
9102 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9103 daddiu $at,<sym> (BFD_RELOC_LO16)
9104 dsll32 $reg,0
9105 daddu $reg,$reg,$at
9106
9107 If $at is already in use, we use a path which is suboptimal
9108 on superscalar processors.
9109 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9110 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9111 dsll $reg,16
9112 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9113 dsll $reg,16
9114 daddiu $reg,<sym> (BFD_RELOC_LO16)
9115
9116 For GP relative symbols in 64bit address space we can use
9117 the same sequence as in 32bit address space. */
9118 if (HAVE_64BIT_SYMBOLS)
9119 {
9120 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9121 && !nopic_need_relax (ep->X_add_symbol, 1))
9122 {
9123 relax_start (ep->X_add_symbol);
9124 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9125 mips_gp_register, BFD_RELOC_GPREL16);
9126 relax_switch ();
9127 }
9128
9129 if (*used_at == 0 && mips_opts.at)
9130 {
9131 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9132 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9133 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9134 BFD_RELOC_MIPS_HIGHER);
9135 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9136 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9137 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9138 *used_at = 1;
9139 }
9140 else
9141 {
9142 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9143 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9144 BFD_RELOC_MIPS_HIGHER);
9145 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9146 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9147 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9148 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9149 }
9150
9151 if (mips_relax.sequence)
9152 relax_end ();
9153 }
9154 else
9155 {
9156 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9157 && !nopic_need_relax (ep->X_add_symbol, 1))
9158 {
9159 relax_start (ep->X_add_symbol);
9160 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9161 mips_gp_register, BFD_RELOC_GPREL16);
9162 relax_switch ();
9163 }
9164 macro_build_lui (ep, reg);
9165 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9166 reg, reg, BFD_RELOC_LO16);
9167 if (mips_relax.sequence)
9168 relax_end ();
9169 }
9170 }
9171 else if (!mips_big_got)
9172 {
9173 expressionS ex;
9174
9175 /* If this is a reference to an external symbol, we want
9176 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9177 Otherwise we want
9178 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9179 nop
9180 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9181 If there is a constant, it must be added in after.
9182
9183 If we have NewABI, we want
9184 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9185 unless we're referencing a global symbol with a non-zero
9186 offset, in which case cst must be added separately. */
9187 if (HAVE_NEWABI)
9188 {
9189 if (ep->X_add_number)
9190 {
9191 ex.X_add_number = ep->X_add_number;
9192 ep->X_add_number = 0;
9193 relax_start (ep->X_add_symbol);
9194 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9195 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9196 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9197 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9198 ex.X_op = O_constant;
9199 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9200 reg, reg, BFD_RELOC_LO16);
9201 ep->X_add_number = ex.X_add_number;
9202 relax_switch ();
9203 }
9204 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9205 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9206 if (mips_relax.sequence)
9207 relax_end ();
9208 }
9209 else
9210 {
9211 ex.X_add_number = ep->X_add_number;
9212 ep->X_add_number = 0;
9213 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9214 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9215 load_delay_nop ();
9216 relax_start (ep->X_add_symbol);
9217 relax_switch ();
9218 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9219 BFD_RELOC_LO16);
9220 relax_end ();
9221
9222 if (ex.X_add_number != 0)
9223 {
9224 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9225 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9226 ex.X_op = O_constant;
9227 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9228 reg, reg, BFD_RELOC_LO16);
9229 }
9230 }
9231 }
9232 else if (mips_big_got)
9233 {
9234 expressionS ex;
9235
9236 /* This is the large GOT case. If this is a reference to an
9237 external symbol, we want
9238 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9239 addu $reg,$reg,$gp
9240 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9241
9242 Otherwise, for a reference to a local symbol in old ABI, we want
9243 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9244 nop
9245 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9246 If there is a constant, it must be added in after.
9247
9248 In the NewABI, for local symbols, with or without offsets, we want:
9249 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9250 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9251 */
9252 if (HAVE_NEWABI)
9253 {
9254 ex.X_add_number = ep->X_add_number;
9255 ep->X_add_number = 0;
9256 relax_start (ep->X_add_symbol);
9257 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9258 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9259 reg, reg, mips_gp_register);
9260 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9261 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9262 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9263 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9264 else if (ex.X_add_number)
9265 {
9266 ex.X_op = O_constant;
9267 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9268 BFD_RELOC_LO16);
9269 }
9270
9271 ep->X_add_number = ex.X_add_number;
9272 relax_switch ();
9273 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9274 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9275 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9276 BFD_RELOC_MIPS_GOT_OFST);
9277 relax_end ();
9278 }
9279 else
9280 {
9281 ex.X_add_number = ep->X_add_number;
9282 ep->X_add_number = 0;
9283 relax_start (ep->X_add_symbol);
9284 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9285 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9286 reg, reg, mips_gp_register);
9287 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9288 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9289 relax_switch ();
9290 if (reg_needs_delay (mips_gp_register))
9291 {
9292 /* We need a nop before loading from $gp. This special
9293 check is required because the lui which starts the main
9294 instruction stream does not refer to $gp, and so will not
9295 insert the nop which may be required. */
9296 macro_build (NULL, "nop", "");
9297 }
9298 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9299 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9300 load_delay_nop ();
9301 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9302 BFD_RELOC_LO16);
9303 relax_end ();
9304
9305 if (ex.X_add_number != 0)
9306 {
9307 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9308 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9309 ex.X_op = O_constant;
9310 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9311 BFD_RELOC_LO16);
9312 }
9313 }
9314 }
9315 else
9316 abort ();
9317
9318 if (!mips_opts.at && *used_at == 1)
9319 as_bad (_("macro used $at after \".set noat\""));
9320 }
9321
9322 /* Move the contents of register SOURCE into register DEST. */
9323
9324 static void
9325 move_register (int dest, int source)
9326 {
9327 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9328 instruction specifically requires a 32-bit one. */
9329 if (mips_opts.micromips
9330 && !mips_opts.insn32
9331 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9332 macro_build (NULL, "move", "mp,mj", dest, source);
9333 else
9334 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9335 }
9336
9337 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9338 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9339 The two alternatives are:
9340
9341 Global symbol Local sybmol
9342 ------------- ------------
9343 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9344 ... ...
9345 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9346
9347 load_got_offset emits the first instruction and add_got_offset
9348 emits the second for a 16-bit offset or add_got_offset_hilo emits
9349 a sequence to add a 32-bit offset using a scratch register. */
9350
9351 static void
9352 load_got_offset (int dest, expressionS *local)
9353 {
9354 expressionS global;
9355
9356 global = *local;
9357 global.X_add_number = 0;
9358
9359 relax_start (local->X_add_symbol);
9360 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9361 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9362 relax_switch ();
9363 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9364 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9365 relax_end ();
9366 }
9367
9368 static void
9369 add_got_offset (int dest, expressionS *local)
9370 {
9371 expressionS global;
9372
9373 global.X_op = O_constant;
9374 global.X_op_symbol = NULL;
9375 global.X_add_symbol = NULL;
9376 global.X_add_number = local->X_add_number;
9377
9378 relax_start (local->X_add_symbol);
9379 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9380 dest, dest, BFD_RELOC_LO16);
9381 relax_switch ();
9382 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9383 relax_end ();
9384 }
9385
9386 static void
9387 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9388 {
9389 expressionS global;
9390 int hold_mips_optimize;
9391
9392 global.X_op = O_constant;
9393 global.X_op_symbol = NULL;
9394 global.X_add_symbol = NULL;
9395 global.X_add_number = local->X_add_number;
9396
9397 relax_start (local->X_add_symbol);
9398 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9399 relax_switch ();
9400 /* Set mips_optimize around the lui instruction to avoid
9401 inserting an unnecessary nop after the lw. */
9402 hold_mips_optimize = mips_optimize;
9403 mips_optimize = 2;
9404 macro_build_lui (&global, tmp);
9405 mips_optimize = hold_mips_optimize;
9406 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9407 relax_end ();
9408
9409 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9410 }
9411
9412 /* Emit a sequence of instructions to emulate a branch likely operation.
9413 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9414 is its complementing branch with the original condition negated.
9415 CALL is set if the original branch specified the link operation.
9416 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9417
9418 Code like this is produced in the noreorder mode:
9419
9420 BRNEG <args>, 1f
9421 nop
9422 b <sym>
9423 delay slot (executed only if branch taken)
9424 1:
9425
9426 or, if CALL is set:
9427
9428 BRNEG <args>, 1f
9429 nop
9430 bal <sym>
9431 delay slot (executed only if branch taken)
9432 1:
9433
9434 In the reorder mode the delay slot would be filled with a nop anyway,
9435 so code produced is simply:
9436
9437 BR <args>, <sym>
9438 nop
9439
9440 This function is used when producing code for the microMIPS ASE that
9441 does not implement branch likely instructions in hardware. */
9442
9443 static void
9444 macro_build_branch_likely (const char *br, const char *brneg,
9445 int call, expressionS *ep, const char *fmt,
9446 unsigned int sreg, unsigned int treg)
9447 {
9448 int noreorder = mips_opts.noreorder;
9449 expressionS expr1;
9450
9451 gas_assert (mips_opts.micromips);
9452 start_noreorder ();
9453 if (noreorder)
9454 {
9455 micromips_label_expr (&expr1);
9456 macro_build (&expr1, brneg, fmt, sreg, treg);
9457 macro_build (NULL, "nop", "");
9458 macro_build (ep, call ? "bal" : "b", "p");
9459
9460 /* Set to true so that append_insn adds a label. */
9461 emit_branch_likely_macro = TRUE;
9462 }
9463 else
9464 {
9465 macro_build (ep, br, fmt, sreg, treg);
9466 macro_build (NULL, "nop", "");
9467 }
9468 end_noreorder ();
9469 }
9470
9471 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9472 the condition code tested. EP specifies the branch target. */
9473
9474 static void
9475 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9476 {
9477 const int call = 0;
9478 const char *brneg;
9479 const char *br;
9480
9481 switch (type)
9482 {
9483 case M_BC1FL:
9484 br = "bc1f";
9485 brneg = "bc1t";
9486 break;
9487 case M_BC1TL:
9488 br = "bc1t";
9489 brneg = "bc1f";
9490 break;
9491 case M_BC2FL:
9492 br = "bc2f";
9493 brneg = "bc2t";
9494 break;
9495 case M_BC2TL:
9496 br = "bc2t";
9497 brneg = "bc2f";
9498 break;
9499 default:
9500 abort ();
9501 }
9502 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9503 }
9504
9505 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9506 the register tested. EP specifies the branch target. */
9507
9508 static void
9509 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9510 {
9511 const char *brneg = NULL;
9512 const char *br;
9513 int call = 0;
9514
9515 switch (type)
9516 {
9517 case M_BGEZ:
9518 br = "bgez";
9519 break;
9520 case M_BGEZL:
9521 br = mips_opts.micromips ? "bgez" : "bgezl";
9522 brneg = "bltz";
9523 break;
9524 case M_BGEZALL:
9525 gas_assert (mips_opts.micromips);
9526 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9527 brneg = "bltz";
9528 call = 1;
9529 break;
9530 case M_BGTZ:
9531 br = "bgtz";
9532 break;
9533 case M_BGTZL:
9534 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9535 brneg = "blez";
9536 break;
9537 case M_BLEZ:
9538 br = "blez";
9539 break;
9540 case M_BLEZL:
9541 br = mips_opts.micromips ? "blez" : "blezl";
9542 brneg = "bgtz";
9543 break;
9544 case M_BLTZ:
9545 br = "bltz";
9546 break;
9547 case M_BLTZL:
9548 br = mips_opts.micromips ? "bltz" : "bltzl";
9549 brneg = "bgez";
9550 break;
9551 case M_BLTZALL:
9552 gas_assert (mips_opts.micromips);
9553 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9554 brneg = "bgez";
9555 call = 1;
9556 break;
9557 default:
9558 abort ();
9559 }
9560 if (mips_opts.micromips && brneg)
9561 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9562 else
9563 macro_build (ep, br, "s,p", sreg);
9564 }
9565
9566 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9567 TREG as the registers tested. EP specifies the branch target. */
9568
9569 static void
9570 macro_build_branch_rsrt (int type, expressionS *ep,
9571 unsigned int sreg, unsigned int treg)
9572 {
9573 const char *brneg = NULL;
9574 const int call = 0;
9575 const char *br;
9576
9577 switch (type)
9578 {
9579 case M_BEQ:
9580 case M_BEQ_I:
9581 br = "beq";
9582 break;
9583 case M_BEQL:
9584 case M_BEQL_I:
9585 br = mips_opts.micromips ? "beq" : "beql";
9586 brneg = "bne";
9587 break;
9588 case M_BNE:
9589 case M_BNE_I:
9590 br = "bne";
9591 break;
9592 case M_BNEL:
9593 case M_BNEL_I:
9594 br = mips_opts.micromips ? "bne" : "bnel";
9595 brneg = "beq";
9596 break;
9597 default:
9598 abort ();
9599 }
9600 if (mips_opts.micromips && brneg)
9601 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9602 else
9603 macro_build (ep, br, "s,t,p", sreg, treg);
9604 }
9605
9606 /* Return the high part that should be loaded in order to make the low
9607 part of VALUE accessible using an offset of OFFBITS bits. */
9608
9609 static offsetT
9610 offset_high_part (offsetT value, unsigned int offbits)
9611 {
9612 offsetT bias;
9613 addressT low_mask;
9614
9615 if (offbits == 0)
9616 return value;
9617 bias = 1 << (offbits - 1);
9618 low_mask = bias * 2 - 1;
9619 return (value + bias) & ~low_mask;
9620 }
9621
9622 /* Return true if the value stored in offset_expr and offset_reloc
9623 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9624 amount that the caller wants to add without inducing overflow
9625 and ALIGN is the known alignment of the value in bytes. */
9626
9627 static bfd_boolean
9628 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9629 {
9630 if (offbits == 16)
9631 {
9632 /* Accept any relocation operator if overflow isn't a concern. */
9633 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9634 return TRUE;
9635
9636 /* These relocations are guaranteed not to overflow in correct links. */
9637 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9638 || gprel16_reloc_p (*offset_reloc))
9639 return TRUE;
9640 }
9641 if (offset_expr.X_op == O_constant
9642 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9643 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9644 return TRUE;
9645 return FALSE;
9646 }
9647
9648 /*
9649 * Build macros
9650 * This routine implements the seemingly endless macro or synthesized
9651 * instructions and addressing modes in the mips assembly language. Many
9652 * of these macros are simple and are similar to each other. These could
9653 * probably be handled by some kind of table or grammar approach instead of
9654 * this verbose method. Others are not simple macros but are more like
9655 * optimizing code generation.
9656 * One interesting optimization is when several store macros appear
9657 * consecutively that would load AT with the upper half of the same address.
9658 * The ensuing load upper instructions are ommited. This implies some kind
9659 * of global optimization. We currently only optimize within a single macro.
9660 * For many of the load and store macros if the address is specified as a
9661 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9662 * first load register 'at' with zero and use it as the base register. The
9663 * mips assembler simply uses register $zero. Just one tiny optimization
9664 * we're missing.
9665 */
9666 static void
9667 macro (struct mips_cl_insn *ip, char *str)
9668 {
9669 const struct mips_operand_array *operands;
9670 unsigned int breg, i;
9671 unsigned int tempreg;
9672 int mask;
9673 int used_at = 0;
9674 expressionS label_expr;
9675 expressionS expr1;
9676 expressionS *ep;
9677 const char *s;
9678 const char *s2;
9679 const char *fmt;
9680 int likely = 0;
9681 int coproc = 0;
9682 int offbits = 16;
9683 int call = 0;
9684 int jals = 0;
9685 int dbl = 0;
9686 int imm = 0;
9687 int ust = 0;
9688 int lp = 0;
9689 bfd_boolean large_offset;
9690 int off;
9691 int hold_mips_optimize;
9692 unsigned int align;
9693 unsigned int op[MAX_OPERANDS];
9694
9695 gas_assert (! mips_opts.mips16);
9696
9697 operands = insn_operands (ip);
9698 for (i = 0; i < MAX_OPERANDS; i++)
9699 if (operands->operand[i])
9700 op[i] = insn_extract_operand (ip, operands->operand[i]);
9701 else
9702 op[i] = -1;
9703
9704 mask = ip->insn_mo->mask;
9705
9706 label_expr.X_op = O_constant;
9707 label_expr.X_op_symbol = NULL;
9708 label_expr.X_add_symbol = NULL;
9709 label_expr.X_add_number = 0;
9710
9711 expr1.X_op = O_constant;
9712 expr1.X_op_symbol = NULL;
9713 expr1.X_add_symbol = NULL;
9714 expr1.X_add_number = 1;
9715 align = 1;
9716
9717 switch (mask)
9718 {
9719 case M_DABS:
9720 dbl = 1;
9721 case M_ABS:
9722 /* bgez $a0,1f
9723 move v0,$a0
9724 sub v0,$zero,$a0
9725 1:
9726 */
9727
9728 start_noreorder ();
9729
9730 if (mips_opts.micromips)
9731 micromips_label_expr (&label_expr);
9732 else
9733 label_expr.X_add_number = 8;
9734 macro_build (&label_expr, "bgez", "s,p", op[1]);
9735 if (op[0] == op[1])
9736 macro_build (NULL, "nop", "");
9737 else
9738 move_register (op[0], op[1]);
9739 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9740 if (mips_opts.micromips)
9741 micromips_add_label ();
9742
9743 end_noreorder ();
9744 break;
9745
9746 case M_ADD_I:
9747 s = "addi";
9748 s2 = "add";
9749 goto do_addi;
9750 case M_ADDU_I:
9751 s = "addiu";
9752 s2 = "addu";
9753 goto do_addi;
9754 case M_DADD_I:
9755 dbl = 1;
9756 s = "daddi";
9757 s2 = "dadd";
9758 if (!mips_opts.micromips)
9759 goto do_addi;
9760 if (imm_expr.X_add_number >= -0x200
9761 && imm_expr.X_add_number < 0x200)
9762 {
9763 macro_build (NULL, s, "t,r,.", op[0], op[1],
9764 (int) imm_expr.X_add_number);
9765 break;
9766 }
9767 goto do_addi_i;
9768 case M_DADDU_I:
9769 dbl = 1;
9770 s = "daddiu";
9771 s2 = "daddu";
9772 do_addi:
9773 if (imm_expr.X_add_number >= -0x8000
9774 && imm_expr.X_add_number < 0x8000)
9775 {
9776 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9777 break;
9778 }
9779 do_addi_i:
9780 used_at = 1;
9781 load_register (AT, &imm_expr, dbl);
9782 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9783 break;
9784
9785 case M_AND_I:
9786 s = "andi";
9787 s2 = "and";
9788 goto do_bit;
9789 case M_OR_I:
9790 s = "ori";
9791 s2 = "or";
9792 goto do_bit;
9793 case M_NOR_I:
9794 s = "";
9795 s2 = "nor";
9796 goto do_bit;
9797 case M_XOR_I:
9798 s = "xori";
9799 s2 = "xor";
9800 do_bit:
9801 if (imm_expr.X_add_number >= 0
9802 && imm_expr.X_add_number < 0x10000)
9803 {
9804 if (mask != M_NOR_I)
9805 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9806 else
9807 {
9808 macro_build (&imm_expr, "ori", "t,r,i",
9809 op[0], op[1], BFD_RELOC_LO16);
9810 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9811 }
9812 break;
9813 }
9814
9815 used_at = 1;
9816 load_register (AT, &imm_expr, GPR_SIZE == 64);
9817 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9818 break;
9819
9820 case M_BALIGN:
9821 switch (imm_expr.X_add_number)
9822 {
9823 case 0:
9824 macro_build (NULL, "nop", "");
9825 break;
9826 case 2:
9827 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9828 break;
9829 case 1:
9830 case 3:
9831 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9832 (int) imm_expr.X_add_number);
9833 break;
9834 default:
9835 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9836 (unsigned long) imm_expr.X_add_number);
9837 break;
9838 }
9839 break;
9840
9841 case M_BC1FL:
9842 case M_BC1TL:
9843 case M_BC2FL:
9844 case M_BC2TL:
9845 gas_assert (mips_opts.micromips);
9846 macro_build_branch_ccl (mask, &offset_expr,
9847 EXTRACT_OPERAND (1, BCC, *ip));
9848 break;
9849
9850 case M_BEQ_I:
9851 case M_BEQL_I:
9852 case M_BNE_I:
9853 case M_BNEL_I:
9854 if (imm_expr.X_add_number == 0)
9855 op[1] = 0;
9856 else
9857 {
9858 op[1] = AT;
9859 used_at = 1;
9860 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9861 }
9862 /* Fall through. */
9863 case M_BEQL:
9864 case M_BNEL:
9865 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9866 break;
9867
9868 case M_BGEL:
9869 likely = 1;
9870 case M_BGE:
9871 if (op[1] == 0)
9872 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9873 else if (op[0] == 0)
9874 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9875 else
9876 {
9877 used_at = 1;
9878 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9879 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9880 &offset_expr, AT, ZERO);
9881 }
9882 break;
9883
9884 case M_BGEZL:
9885 case M_BGEZALL:
9886 case M_BGTZL:
9887 case M_BLEZL:
9888 case M_BLTZL:
9889 case M_BLTZALL:
9890 macro_build_branch_rs (mask, &offset_expr, op[0]);
9891 break;
9892
9893 case M_BGTL_I:
9894 likely = 1;
9895 case M_BGT_I:
9896 /* Check for > max integer. */
9897 if (imm_expr.X_add_number >= GPR_SMAX)
9898 {
9899 do_false:
9900 /* Result is always false. */
9901 if (! likely)
9902 macro_build (NULL, "nop", "");
9903 else
9904 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9905 break;
9906 }
9907 ++imm_expr.X_add_number;
9908 /* FALLTHROUGH */
9909 case M_BGE_I:
9910 case M_BGEL_I:
9911 if (mask == M_BGEL_I)
9912 likely = 1;
9913 if (imm_expr.X_add_number == 0)
9914 {
9915 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9916 &offset_expr, op[0]);
9917 break;
9918 }
9919 if (imm_expr.X_add_number == 1)
9920 {
9921 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9922 &offset_expr, op[0]);
9923 break;
9924 }
9925 if (imm_expr.X_add_number <= GPR_SMIN)
9926 {
9927 do_true:
9928 /* result is always true */
9929 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9930 macro_build (&offset_expr, "b", "p");
9931 break;
9932 }
9933 used_at = 1;
9934 set_at (op[0], 0);
9935 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9936 &offset_expr, AT, ZERO);
9937 break;
9938
9939 case M_BGEUL:
9940 likely = 1;
9941 case M_BGEU:
9942 if (op[1] == 0)
9943 goto do_true;
9944 else if (op[0] == 0)
9945 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9946 &offset_expr, ZERO, op[1]);
9947 else
9948 {
9949 used_at = 1;
9950 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9951 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9952 &offset_expr, AT, ZERO);
9953 }
9954 break;
9955
9956 case M_BGTUL_I:
9957 likely = 1;
9958 case M_BGTU_I:
9959 if (op[0] == 0
9960 || (GPR_SIZE == 32
9961 && imm_expr.X_add_number == -1))
9962 goto do_false;
9963 ++imm_expr.X_add_number;
9964 /* FALLTHROUGH */
9965 case M_BGEU_I:
9966 case M_BGEUL_I:
9967 if (mask == M_BGEUL_I)
9968 likely = 1;
9969 if (imm_expr.X_add_number == 0)
9970 goto do_true;
9971 else if (imm_expr.X_add_number == 1)
9972 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9973 &offset_expr, op[0], ZERO);
9974 else
9975 {
9976 used_at = 1;
9977 set_at (op[0], 1);
9978 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9979 &offset_expr, AT, ZERO);
9980 }
9981 break;
9982
9983 case M_BGTL:
9984 likely = 1;
9985 case M_BGT:
9986 if (op[1] == 0)
9987 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9988 else if (op[0] == 0)
9989 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9990 else
9991 {
9992 used_at = 1;
9993 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9994 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9995 &offset_expr, AT, ZERO);
9996 }
9997 break;
9998
9999 case M_BGTUL:
10000 likely = 1;
10001 case M_BGTU:
10002 if (op[1] == 0)
10003 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10004 &offset_expr, op[0], ZERO);
10005 else if (op[0] == 0)
10006 goto do_false;
10007 else
10008 {
10009 used_at = 1;
10010 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10011 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10012 &offset_expr, AT, ZERO);
10013 }
10014 break;
10015
10016 case M_BLEL:
10017 likely = 1;
10018 case M_BLE:
10019 if (op[1] == 0)
10020 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10021 else if (op[0] == 0)
10022 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10023 else
10024 {
10025 used_at = 1;
10026 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10027 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10028 &offset_expr, AT, ZERO);
10029 }
10030 break;
10031
10032 case M_BLEL_I:
10033 likely = 1;
10034 case M_BLE_I:
10035 if (imm_expr.X_add_number >= GPR_SMAX)
10036 goto do_true;
10037 ++imm_expr.X_add_number;
10038 /* FALLTHROUGH */
10039 case M_BLT_I:
10040 case M_BLTL_I:
10041 if (mask == M_BLTL_I)
10042 likely = 1;
10043 if (imm_expr.X_add_number == 0)
10044 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10045 else if (imm_expr.X_add_number == 1)
10046 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10047 else
10048 {
10049 used_at = 1;
10050 set_at (op[0], 0);
10051 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10052 &offset_expr, AT, ZERO);
10053 }
10054 break;
10055
10056 case M_BLEUL:
10057 likely = 1;
10058 case M_BLEU:
10059 if (op[1] == 0)
10060 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10061 &offset_expr, op[0], ZERO);
10062 else if (op[0] == 0)
10063 goto do_true;
10064 else
10065 {
10066 used_at = 1;
10067 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10068 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10069 &offset_expr, AT, ZERO);
10070 }
10071 break;
10072
10073 case M_BLEUL_I:
10074 likely = 1;
10075 case M_BLEU_I:
10076 if (op[0] == 0
10077 || (GPR_SIZE == 32
10078 && imm_expr.X_add_number == -1))
10079 goto do_true;
10080 ++imm_expr.X_add_number;
10081 /* FALLTHROUGH */
10082 case M_BLTU_I:
10083 case M_BLTUL_I:
10084 if (mask == M_BLTUL_I)
10085 likely = 1;
10086 if (imm_expr.X_add_number == 0)
10087 goto do_false;
10088 else if (imm_expr.X_add_number == 1)
10089 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10090 &offset_expr, op[0], ZERO);
10091 else
10092 {
10093 used_at = 1;
10094 set_at (op[0], 1);
10095 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10096 &offset_expr, AT, ZERO);
10097 }
10098 break;
10099
10100 case M_BLTL:
10101 likely = 1;
10102 case M_BLT:
10103 if (op[1] == 0)
10104 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10105 else if (op[0] == 0)
10106 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10107 else
10108 {
10109 used_at = 1;
10110 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10111 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10112 &offset_expr, AT, ZERO);
10113 }
10114 break;
10115
10116 case M_BLTUL:
10117 likely = 1;
10118 case M_BLTU:
10119 if (op[1] == 0)
10120 goto do_false;
10121 else if (op[0] == 0)
10122 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10123 &offset_expr, ZERO, op[1]);
10124 else
10125 {
10126 used_at = 1;
10127 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10128 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10129 &offset_expr, AT, ZERO);
10130 }
10131 break;
10132
10133 case M_DDIV_3:
10134 dbl = 1;
10135 case M_DIV_3:
10136 s = "mflo";
10137 goto do_div3;
10138 case M_DREM_3:
10139 dbl = 1;
10140 case M_REM_3:
10141 s = "mfhi";
10142 do_div3:
10143 if (op[2] == 0)
10144 {
10145 as_warn (_("divide by zero"));
10146 if (mips_trap)
10147 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10148 else
10149 macro_build (NULL, "break", BRK_FMT, 7);
10150 break;
10151 }
10152
10153 start_noreorder ();
10154 if (mips_trap)
10155 {
10156 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10157 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10158 }
10159 else
10160 {
10161 if (mips_opts.micromips)
10162 micromips_label_expr (&label_expr);
10163 else
10164 label_expr.X_add_number = 8;
10165 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10166 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10167 macro_build (NULL, "break", BRK_FMT, 7);
10168 if (mips_opts.micromips)
10169 micromips_add_label ();
10170 }
10171 expr1.X_add_number = -1;
10172 used_at = 1;
10173 load_register (AT, &expr1, dbl);
10174 if (mips_opts.micromips)
10175 micromips_label_expr (&label_expr);
10176 else
10177 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10178 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10179 if (dbl)
10180 {
10181 expr1.X_add_number = 1;
10182 load_register (AT, &expr1, dbl);
10183 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10184 }
10185 else
10186 {
10187 expr1.X_add_number = 0x80000000;
10188 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10189 }
10190 if (mips_trap)
10191 {
10192 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10193 /* We want to close the noreorder block as soon as possible, so
10194 that later insns are available for delay slot filling. */
10195 end_noreorder ();
10196 }
10197 else
10198 {
10199 if (mips_opts.micromips)
10200 micromips_label_expr (&label_expr);
10201 else
10202 label_expr.X_add_number = 8;
10203 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10204 macro_build (NULL, "nop", "");
10205
10206 /* We want to close the noreorder block as soon as possible, so
10207 that later insns are available for delay slot filling. */
10208 end_noreorder ();
10209
10210 macro_build (NULL, "break", BRK_FMT, 6);
10211 }
10212 if (mips_opts.micromips)
10213 micromips_add_label ();
10214 macro_build (NULL, s, MFHL_FMT, op[0]);
10215 break;
10216
10217 case M_DIV_3I:
10218 s = "div";
10219 s2 = "mflo";
10220 goto do_divi;
10221 case M_DIVU_3I:
10222 s = "divu";
10223 s2 = "mflo";
10224 goto do_divi;
10225 case M_REM_3I:
10226 s = "div";
10227 s2 = "mfhi";
10228 goto do_divi;
10229 case M_REMU_3I:
10230 s = "divu";
10231 s2 = "mfhi";
10232 goto do_divi;
10233 case M_DDIV_3I:
10234 dbl = 1;
10235 s = "ddiv";
10236 s2 = "mflo";
10237 goto do_divi;
10238 case M_DDIVU_3I:
10239 dbl = 1;
10240 s = "ddivu";
10241 s2 = "mflo";
10242 goto do_divi;
10243 case M_DREM_3I:
10244 dbl = 1;
10245 s = "ddiv";
10246 s2 = "mfhi";
10247 goto do_divi;
10248 case M_DREMU_3I:
10249 dbl = 1;
10250 s = "ddivu";
10251 s2 = "mfhi";
10252 do_divi:
10253 if (imm_expr.X_add_number == 0)
10254 {
10255 as_warn (_("divide by zero"));
10256 if (mips_trap)
10257 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10258 else
10259 macro_build (NULL, "break", BRK_FMT, 7);
10260 break;
10261 }
10262 if (imm_expr.X_add_number == 1)
10263 {
10264 if (strcmp (s2, "mflo") == 0)
10265 move_register (op[0], op[1]);
10266 else
10267 move_register (op[0], ZERO);
10268 break;
10269 }
10270 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10271 {
10272 if (strcmp (s2, "mflo") == 0)
10273 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10274 else
10275 move_register (op[0], ZERO);
10276 break;
10277 }
10278
10279 used_at = 1;
10280 load_register (AT, &imm_expr, dbl);
10281 macro_build (NULL, s, "z,s,t", op[1], AT);
10282 macro_build (NULL, s2, MFHL_FMT, op[0]);
10283 break;
10284
10285 case M_DIVU_3:
10286 s = "divu";
10287 s2 = "mflo";
10288 goto do_divu3;
10289 case M_REMU_3:
10290 s = "divu";
10291 s2 = "mfhi";
10292 goto do_divu3;
10293 case M_DDIVU_3:
10294 s = "ddivu";
10295 s2 = "mflo";
10296 goto do_divu3;
10297 case M_DREMU_3:
10298 s = "ddivu";
10299 s2 = "mfhi";
10300 do_divu3:
10301 start_noreorder ();
10302 if (mips_trap)
10303 {
10304 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10305 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10306 /* We want to close the noreorder block as soon as possible, so
10307 that later insns are available for delay slot filling. */
10308 end_noreorder ();
10309 }
10310 else
10311 {
10312 if (mips_opts.micromips)
10313 micromips_label_expr (&label_expr);
10314 else
10315 label_expr.X_add_number = 8;
10316 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10317 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10318
10319 /* We want to close the noreorder block as soon as possible, so
10320 that later insns are available for delay slot filling. */
10321 end_noreorder ();
10322 macro_build (NULL, "break", BRK_FMT, 7);
10323 if (mips_opts.micromips)
10324 micromips_add_label ();
10325 }
10326 macro_build (NULL, s2, MFHL_FMT, op[0]);
10327 break;
10328
10329 case M_DLCA_AB:
10330 dbl = 1;
10331 case M_LCA_AB:
10332 call = 1;
10333 goto do_la;
10334 case M_DLA_AB:
10335 dbl = 1;
10336 case M_LA_AB:
10337 do_la:
10338 /* Load the address of a symbol into a register. If breg is not
10339 zero, we then add a base register to it. */
10340
10341 breg = op[2];
10342 if (dbl && GPR_SIZE == 32)
10343 as_warn (_("dla used to load 32-bit register; recommend using la "
10344 "instead"));
10345
10346 if (!dbl && HAVE_64BIT_OBJECTS)
10347 as_warn (_("la used to load 64-bit address; recommend using dla "
10348 "instead"));
10349
10350 if (small_offset_p (0, align, 16))
10351 {
10352 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10353 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10354 break;
10355 }
10356
10357 if (mips_opts.at && (op[0] == breg))
10358 {
10359 tempreg = AT;
10360 used_at = 1;
10361 }
10362 else
10363 tempreg = op[0];
10364
10365 if (offset_expr.X_op != O_symbol
10366 && offset_expr.X_op != O_constant)
10367 {
10368 as_bad (_("expression too complex"));
10369 offset_expr.X_op = O_constant;
10370 }
10371
10372 if (offset_expr.X_op == O_constant)
10373 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10374 else if (mips_pic == NO_PIC)
10375 {
10376 /* If this is a reference to a GP relative symbol, we want
10377 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10378 Otherwise we want
10379 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10380 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10381 If we have a constant, we need two instructions anyhow,
10382 so we may as well always use the latter form.
10383
10384 With 64bit address space and a usable $at we want
10385 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10386 lui $at,<sym> (BFD_RELOC_HI16_S)
10387 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10388 daddiu $at,<sym> (BFD_RELOC_LO16)
10389 dsll32 $tempreg,0
10390 daddu $tempreg,$tempreg,$at
10391
10392 If $at is already in use, we use a path which is suboptimal
10393 on superscalar processors.
10394 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10395 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10396 dsll $tempreg,16
10397 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10398 dsll $tempreg,16
10399 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10400
10401 For GP relative symbols in 64bit address space we can use
10402 the same sequence as in 32bit address space. */
10403 if (HAVE_64BIT_SYMBOLS)
10404 {
10405 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10406 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10407 {
10408 relax_start (offset_expr.X_add_symbol);
10409 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10410 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10411 relax_switch ();
10412 }
10413
10414 if (used_at == 0 && mips_opts.at)
10415 {
10416 macro_build (&offset_expr, "lui", LUI_FMT,
10417 tempreg, BFD_RELOC_MIPS_HIGHEST);
10418 macro_build (&offset_expr, "lui", LUI_FMT,
10419 AT, BFD_RELOC_HI16_S);
10420 macro_build (&offset_expr, "daddiu", "t,r,j",
10421 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10422 macro_build (&offset_expr, "daddiu", "t,r,j",
10423 AT, AT, BFD_RELOC_LO16);
10424 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10425 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10426 used_at = 1;
10427 }
10428 else
10429 {
10430 macro_build (&offset_expr, "lui", LUI_FMT,
10431 tempreg, BFD_RELOC_MIPS_HIGHEST);
10432 macro_build (&offset_expr, "daddiu", "t,r,j",
10433 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10434 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10435 macro_build (&offset_expr, "daddiu", "t,r,j",
10436 tempreg, tempreg, BFD_RELOC_HI16_S);
10437 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10438 macro_build (&offset_expr, "daddiu", "t,r,j",
10439 tempreg, tempreg, BFD_RELOC_LO16);
10440 }
10441
10442 if (mips_relax.sequence)
10443 relax_end ();
10444 }
10445 else
10446 {
10447 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10448 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10449 {
10450 relax_start (offset_expr.X_add_symbol);
10451 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10452 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10453 relax_switch ();
10454 }
10455 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10456 as_bad (_("offset too large"));
10457 macro_build_lui (&offset_expr, tempreg);
10458 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10459 tempreg, tempreg, BFD_RELOC_LO16);
10460 if (mips_relax.sequence)
10461 relax_end ();
10462 }
10463 }
10464 else if (!mips_big_got && !HAVE_NEWABI)
10465 {
10466 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10467
10468 /* If this is a reference to an external symbol, and there
10469 is no constant, we want
10470 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10471 or for lca or if tempreg is PIC_CALL_REG
10472 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10473 For a local symbol, we want
10474 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10475 nop
10476 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10477
10478 If we have a small constant, and this is a reference to
10479 an external symbol, we want
10480 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10481 nop
10482 addiu $tempreg,$tempreg,<constant>
10483 For a local symbol, we want the same instruction
10484 sequence, but we output a BFD_RELOC_LO16 reloc on the
10485 addiu instruction.
10486
10487 If we have a large constant, and this is a reference to
10488 an external symbol, we want
10489 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10490 lui $at,<hiconstant>
10491 addiu $at,$at,<loconstant>
10492 addu $tempreg,$tempreg,$at
10493 For a local symbol, we want the same instruction
10494 sequence, but we output a BFD_RELOC_LO16 reloc on the
10495 addiu instruction.
10496 */
10497
10498 if (offset_expr.X_add_number == 0)
10499 {
10500 if (mips_pic == SVR4_PIC
10501 && breg == 0
10502 && (call || tempreg == PIC_CALL_REG))
10503 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10504
10505 relax_start (offset_expr.X_add_symbol);
10506 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10507 lw_reloc_type, mips_gp_register);
10508 if (breg != 0)
10509 {
10510 /* We're going to put in an addu instruction using
10511 tempreg, so we may as well insert the nop right
10512 now. */
10513 load_delay_nop ();
10514 }
10515 relax_switch ();
10516 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10517 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10518 load_delay_nop ();
10519 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10520 tempreg, tempreg, BFD_RELOC_LO16);
10521 relax_end ();
10522 /* FIXME: If breg == 0, and the next instruction uses
10523 $tempreg, then if this variant case is used an extra
10524 nop will be generated. */
10525 }
10526 else if (offset_expr.X_add_number >= -0x8000
10527 && offset_expr.X_add_number < 0x8000)
10528 {
10529 load_got_offset (tempreg, &offset_expr);
10530 load_delay_nop ();
10531 add_got_offset (tempreg, &offset_expr);
10532 }
10533 else
10534 {
10535 expr1.X_add_number = offset_expr.X_add_number;
10536 offset_expr.X_add_number =
10537 SEXT_16BIT (offset_expr.X_add_number);
10538 load_got_offset (tempreg, &offset_expr);
10539 offset_expr.X_add_number = expr1.X_add_number;
10540 /* If we are going to add in a base register, and the
10541 target register and the base register are the same,
10542 then we are using AT as a temporary register. Since
10543 we want to load the constant into AT, we add our
10544 current AT (from the global offset table) and the
10545 register into the register now, and pretend we were
10546 not using a base register. */
10547 if (breg == op[0])
10548 {
10549 load_delay_nop ();
10550 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10551 op[0], AT, breg);
10552 breg = 0;
10553 tempreg = op[0];
10554 }
10555 add_got_offset_hilo (tempreg, &offset_expr, AT);
10556 used_at = 1;
10557 }
10558 }
10559 else if (!mips_big_got && HAVE_NEWABI)
10560 {
10561 int add_breg_early = 0;
10562
10563 /* If this is a reference to an external, and there is no
10564 constant, or local symbol (*), with or without a
10565 constant, we want
10566 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10567 or for lca or if tempreg is PIC_CALL_REG
10568 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10569
10570 If we have a small constant, and this is a reference to
10571 an external symbol, we want
10572 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10573 addiu $tempreg,$tempreg,<constant>
10574
10575 If we have a large constant, and this is a reference to
10576 an external symbol, we want
10577 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10578 lui $at,<hiconstant>
10579 addiu $at,$at,<loconstant>
10580 addu $tempreg,$tempreg,$at
10581
10582 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10583 local symbols, even though it introduces an additional
10584 instruction. */
10585
10586 if (offset_expr.X_add_number)
10587 {
10588 expr1.X_add_number = offset_expr.X_add_number;
10589 offset_expr.X_add_number = 0;
10590
10591 relax_start (offset_expr.X_add_symbol);
10592 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10593 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10594
10595 if (expr1.X_add_number >= -0x8000
10596 && expr1.X_add_number < 0x8000)
10597 {
10598 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10599 tempreg, tempreg, BFD_RELOC_LO16);
10600 }
10601 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10602 {
10603 unsigned int dreg;
10604
10605 /* If we are going to add in a base register, and the
10606 target register and the base register are the same,
10607 then we are using AT as a temporary register. Since
10608 we want to load the constant into AT, we add our
10609 current AT (from the global offset table) and the
10610 register into the register now, and pretend we were
10611 not using a base register. */
10612 if (breg != op[0])
10613 dreg = tempreg;
10614 else
10615 {
10616 gas_assert (tempreg == AT);
10617 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10618 op[0], AT, breg);
10619 dreg = op[0];
10620 add_breg_early = 1;
10621 }
10622
10623 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10624 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10625 dreg, dreg, AT);
10626
10627 used_at = 1;
10628 }
10629 else
10630 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10631
10632 relax_switch ();
10633 offset_expr.X_add_number = expr1.X_add_number;
10634
10635 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10636 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10637 if (add_breg_early)
10638 {
10639 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10640 op[0], tempreg, breg);
10641 breg = 0;
10642 tempreg = op[0];
10643 }
10644 relax_end ();
10645 }
10646 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10647 {
10648 relax_start (offset_expr.X_add_symbol);
10649 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10650 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10651 relax_switch ();
10652 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10653 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10654 relax_end ();
10655 }
10656 else
10657 {
10658 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10659 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10660 }
10661 }
10662 else if (mips_big_got && !HAVE_NEWABI)
10663 {
10664 int gpdelay;
10665 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10666 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10667 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10668
10669 /* This is the large GOT case. If this is a reference to an
10670 external symbol, and there is no constant, we want
10671 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10672 addu $tempreg,$tempreg,$gp
10673 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10674 or for lca or if tempreg is PIC_CALL_REG
10675 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10676 addu $tempreg,$tempreg,$gp
10677 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10678 For a local symbol, we want
10679 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10680 nop
10681 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10682
10683 If we have a small constant, and this is a reference to
10684 an external symbol, we want
10685 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10686 addu $tempreg,$tempreg,$gp
10687 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10688 nop
10689 addiu $tempreg,$tempreg,<constant>
10690 For a local symbol, we want
10691 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10692 nop
10693 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10694
10695 If we have a large constant, and this is a reference to
10696 an external symbol, we want
10697 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10698 addu $tempreg,$tempreg,$gp
10699 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10700 lui $at,<hiconstant>
10701 addiu $at,$at,<loconstant>
10702 addu $tempreg,$tempreg,$at
10703 For a local symbol, we want
10704 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10705 lui $at,<hiconstant>
10706 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10707 addu $tempreg,$tempreg,$at
10708 */
10709
10710 expr1.X_add_number = offset_expr.X_add_number;
10711 offset_expr.X_add_number = 0;
10712 relax_start (offset_expr.X_add_symbol);
10713 gpdelay = reg_needs_delay (mips_gp_register);
10714 if (expr1.X_add_number == 0 && breg == 0
10715 && (call || tempreg == PIC_CALL_REG))
10716 {
10717 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10718 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10719 }
10720 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10721 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10722 tempreg, tempreg, mips_gp_register);
10723 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10724 tempreg, lw_reloc_type, tempreg);
10725 if (expr1.X_add_number == 0)
10726 {
10727 if (breg != 0)
10728 {
10729 /* We're going to put in an addu instruction using
10730 tempreg, so we may as well insert the nop right
10731 now. */
10732 load_delay_nop ();
10733 }
10734 }
10735 else if (expr1.X_add_number >= -0x8000
10736 && expr1.X_add_number < 0x8000)
10737 {
10738 load_delay_nop ();
10739 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10740 tempreg, tempreg, BFD_RELOC_LO16);
10741 }
10742 else
10743 {
10744 unsigned int dreg;
10745
10746 /* If we are going to add in a base register, and the
10747 target register and the base register are the same,
10748 then we are using AT as a temporary register. Since
10749 we want to load the constant into AT, we add our
10750 current AT (from the global offset table) and the
10751 register into the register now, and pretend we were
10752 not using a base register. */
10753 if (breg != op[0])
10754 dreg = tempreg;
10755 else
10756 {
10757 gas_assert (tempreg == AT);
10758 load_delay_nop ();
10759 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10760 op[0], AT, breg);
10761 dreg = op[0];
10762 }
10763
10764 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10765 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10766
10767 used_at = 1;
10768 }
10769 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10770 relax_switch ();
10771
10772 if (gpdelay)
10773 {
10774 /* This is needed because this instruction uses $gp, but
10775 the first instruction on the main stream does not. */
10776 macro_build (NULL, "nop", "");
10777 }
10778
10779 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10780 local_reloc_type, mips_gp_register);
10781 if (expr1.X_add_number >= -0x8000
10782 && expr1.X_add_number < 0x8000)
10783 {
10784 load_delay_nop ();
10785 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10786 tempreg, tempreg, BFD_RELOC_LO16);
10787 /* FIXME: If add_number is 0, and there was no base
10788 register, the external symbol case ended with a load,
10789 so if the symbol turns out to not be external, and
10790 the next instruction uses tempreg, an unnecessary nop
10791 will be inserted. */
10792 }
10793 else
10794 {
10795 if (breg == op[0])
10796 {
10797 /* We must add in the base register now, as in the
10798 external symbol case. */
10799 gas_assert (tempreg == AT);
10800 load_delay_nop ();
10801 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10802 op[0], AT, breg);
10803 tempreg = op[0];
10804 /* We set breg to 0 because we have arranged to add
10805 it in in both cases. */
10806 breg = 0;
10807 }
10808
10809 macro_build_lui (&expr1, AT);
10810 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10811 AT, AT, BFD_RELOC_LO16);
10812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10813 tempreg, tempreg, AT);
10814 used_at = 1;
10815 }
10816 relax_end ();
10817 }
10818 else if (mips_big_got && HAVE_NEWABI)
10819 {
10820 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10821 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10822 int add_breg_early = 0;
10823
10824 /* This is the large GOT case. If this is a reference to an
10825 external symbol, and there is no constant, we want
10826 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10827 add $tempreg,$tempreg,$gp
10828 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10829 or for lca or if tempreg is PIC_CALL_REG
10830 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10831 add $tempreg,$tempreg,$gp
10832 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10833
10834 If we have a small constant, and this is a reference to
10835 an external symbol, we want
10836 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10837 add $tempreg,$tempreg,$gp
10838 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10839 addi $tempreg,$tempreg,<constant>
10840
10841 If we have a large constant, and this is a reference to
10842 an external symbol, we want
10843 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10844 addu $tempreg,$tempreg,$gp
10845 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10846 lui $at,<hiconstant>
10847 addi $at,$at,<loconstant>
10848 add $tempreg,$tempreg,$at
10849
10850 If we have NewABI, and we know it's a local symbol, we want
10851 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10852 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10853 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10854
10855 relax_start (offset_expr.X_add_symbol);
10856
10857 expr1.X_add_number = offset_expr.X_add_number;
10858 offset_expr.X_add_number = 0;
10859
10860 if (expr1.X_add_number == 0 && breg == 0
10861 && (call || tempreg == PIC_CALL_REG))
10862 {
10863 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10864 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10865 }
10866 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10867 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10868 tempreg, tempreg, mips_gp_register);
10869 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10870 tempreg, lw_reloc_type, tempreg);
10871
10872 if (expr1.X_add_number == 0)
10873 ;
10874 else if (expr1.X_add_number >= -0x8000
10875 && expr1.X_add_number < 0x8000)
10876 {
10877 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10878 tempreg, tempreg, BFD_RELOC_LO16);
10879 }
10880 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10881 {
10882 unsigned int dreg;
10883
10884 /* If we are going to add in a base register, and the
10885 target register and the base register are the same,
10886 then we are using AT as a temporary register. Since
10887 we want to load the constant into AT, we add our
10888 current AT (from the global offset table) and the
10889 register into the register now, and pretend we were
10890 not using a base register. */
10891 if (breg != op[0])
10892 dreg = tempreg;
10893 else
10894 {
10895 gas_assert (tempreg == AT);
10896 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10897 op[0], AT, breg);
10898 dreg = op[0];
10899 add_breg_early = 1;
10900 }
10901
10902 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10903 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10904
10905 used_at = 1;
10906 }
10907 else
10908 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10909
10910 relax_switch ();
10911 offset_expr.X_add_number = expr1.X_add_number;
10912 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10913 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10914 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10915 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10916 if (add_breg_early)
10917 {
10918 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10919 op[0], tempreg, breg);
10920 breg = 0;
10921 tempreg = op[0];
10922 }
10923 relax_end ();
10924 }
10925 else
10926 abort ();
10927
10928 if (breg != 0)
10929 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10930 break;
10931
10932 case M_MSGSND:
10933 gas_assert (!mips_opts.micromips);
10934 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10935 break;
10936
10937 case M_MSGLD:
10938 gas_assert (!mips_opts.micromips);
10939 macro_build (NULL, "c2", "C", 0x02);
10940 break;
10941
10942 case M_MSGLD_T:
10943 gas_assert (!mips_opts.micromips);
10944 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10945 break;
10946
10947 case M_MSGWAIT:
10948 gas_assert (!mips_opts.micromips);
10949 macro_build (NULL, "c2", "C", 3);
10950 break;
10951
10952 case M_MSGWAIT_T:
10953 gas_assert (!mips_opts.micromips);
10954 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10955 break;
10956
10957 case M_J_A:
10958 /* The j instruction may not be used in PIC code, since it
10959 requires an absolute address. We convert it to a b
10960 instruction. */
10961 if (mips_pic == NO_PIC)
10962 macro_build (&offset_expr, "j", "a");
10963 else
10964 macro_build (&offset_expr, "b", "p");
10965 break;
10966
10967 /* The jal instructions must be handled as macros because when
10968 generating PIC code they expand to multi-instruction
10969 sequences. Normally they are simple instructions. */
10970 case M_JALS_1:
10971 op[1] = op[0];
10972 op[0] = RA;
10973 /* Fall through. */
10974 case M_JALS_2:
10975 gas_assert (mips_opts.micromips);
10976 if (mips_opts.insn32)
10977 {
10978 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10979 break;
10980 }
10981 jals = 1;
10982 goto jal;
10983 case M_JAL_1:
10984 op[1] = op[0];
10985 op[0] = RA;
10986 /* Fall through. */
10987 case M_JAL_2:
10988 jal:
10989 if (mips_pic == NO_PIC)
10990 {
10991 s = jals ? "jalrs" : "jalr";
10992 if (mips_opts.micromips
10993 && !mips_opts.insn32
10994 && op[0] == RA
10995 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10996 macro_build (NULL, s, "mj", op[1]);
10997 else
10998 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10999 }
11000 else
11001 {
11002 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11003 && mips_cprestore_offset >= 0);
11004
11005 if (op[1] != PIC_CALL_REG)
11006 as_warn (_("MIPS PIC call to register other than $25"));
11007
11008 s = ((mips_opts.micromips
11009 && !mips_opts.insn32
11010 && (!mips_opts.noreorder || cprestore))
11011 ? "jalrs" : "jalr");
11012 if (mips_opts.micromips
11013 && !mips_opts.insn32
11014 && op[0] == RA
11015 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11016 macro_build (NULL, s, "mj", op[1]);
11017 else
11018 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11019 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11020 {
11021 if (mips_cprestore_offset < 0)
11022 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11023 else
11024 {
11025 if (!mips_frame_reg_valid)
11026 {
11027 as_warn (_("no .frame pseudo-op used in PIC code"));
11028 /* Quiet this warning. */
11029 mips_frame_reg_valid = 1;
11030 }
11031 if (!mips_cprestore_valid)
11032 {
11033 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11034 /* Quiet this warning. */
11035 mips_cprestore_valid = 1;
11036 }
11037 if (mips_opts.noreorder)
11038 macro_build (NULL, "nop", "");
11039 expr1.X_add_number = mips_cprestore_offset;
11040 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11041 mips_gp_register,
11042 mips_frame_reg,
11043 HAVE_64BIT_ADDRESSES);
11044 }
11045 }
11046 }
11047
11048 break;
11049
11050 case M_JALS_A:
11051 gas_assert (mips_opts.micromips);
11052 if (mips_opts.insn32)
11053 {
11054 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11055 break;
11056 }
11057 jals = 1;
11058 /* Fall through. */
11059 case M_JAL_A:
11060 if (mips_pic == NO_PIC)
11061 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11062 else if (mips_pic == SVR4_PIC)
11063 {
11064 /* If this is a reference to an external symbol, and we are
11065 using a small GOT, we want
11066 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11067 nop
11068 jalr $ra,$25
11069 nop
11070 lw $gp,cprestore($sp)
11071 The cprestore value is set using the .cprestore
11072 pseudo-op. If we are using a big GOT, we want
11073 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11074 addu $25,$25,$gp
11075 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11076 nop
11077 jalr $ra,$25
11078 nop
11079 lw $gp,cprestore($sp)
11080 If the symbol is not external, we want
11081 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11082 nop
11083 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11084 jalr $ra,$25
11085 nop
11086 lw $gp,cprestore($sp)
11087
11088 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11089 sequences above, minus nops, unless the symbol is local,
11090 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11091 GOT_DISP. */
11092 if (HAVE_NEWABI)
11093 {
11094 if (!mips_big_got)
11095 {
11096 relax_start (offset_expr.X_add_symbol);
11097 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11098 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11099 mips_gp_register);
11100 relax_switch ();
11101 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11102 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11103 mips_gp_register);
11104 relax_end ();
11105 }
11106 else
11107 {
11108 relax_start (offset_expr.X_add_symbol);
11109 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11110 BFD_RELOC_MIPS_CALL_HI16);
11111 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11112 PIC_CALL_REG, mips_gp_register);
11113 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11114 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11115 PIC_CALL_REG);
11116 relax_switch ();
11117 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11118 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11119 mips_gp_register);
11120 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11121 PIC_CALL_REG, PIC_CALL_REG,
11122 BFD_RELOC_MIPS_GOT_OFST);
11123 relax_end ();
11124 }
11125
11126 macro_build_jalr (&offset_expr, 0);
11127 }
11128 else
11129 {
11130 relax_start (offset_expr.X_add_symbol);
11131 if (!mips_big_got)
11132 {
11133 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11134 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11135 mips_gp_register);
11136 load_delay_nop ();
11137 relax_switch ();
11138 }
11139 else
11140 {
11141 int gpdelay;
11142
11143 gpdelay = reg_needs_delay (mips_gp_register);
11144 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11145 BFD_RELOC_MIPS_CALL_HI16);
11146 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11147 PIC_CALL_REG, mips_gp_register);
11148 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11149 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11150 PIC_CALL_REG);
11151 load_delay_nop ();
11152 relax_switch ();
11153 if (gpdelay)
11154 macro_build (NULL, "nop", "");
11155 }
11156 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11157 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11158 mips_gp_register);
11159 load_delay_nop ();
11160 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11161 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11162 relax_end ();
11163 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11164
11165 if (mips_cprestore_offset < 0)
11166 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11167 else
11168 {
11169 if (!mips_frame_reg_valid)
11170 {
11171 as_warn (_("no .frame pseudo-op used in PIC code"));
11172 /* Quiet this warning. */
11173 mips_frame_reg_valid = 1;
11174 }
11175 if (!mips_cprestore_valid)
11176 {
11177 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11178 /* Quiet this warning. */
11179 mips_cprestore_valid = 1;
11180 }
11181 if (mips_opts.noreorder)
11182 macro_build (NULL, "nop", "");
11183 expr1.X_add_number = mips_cprestore_offset;
11184 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11185 mips_gp_register,
11186 mips_frame_reg,
11187 HAVE_64BIT_ADDRESSES);
11188 }
11189 }
11190 }
11191 else if (mips_pic == VXWORKS_PIC)
11192 as_bad (_("non-PIC jump used in PIC library"));
11193 else
11194 abort ();
11195
11196 break;
11197
11198 case M_LBUE_AB:
11199 s = "lbue";
11200 fmt = "t,+j(b)";
11201 offbits = 9;
11202 goto ld_st;
11203 case M_LHUE_AB:
11204 s = "lhue";
11205 fmt = "t,+j(b)";
11206 offbits = 9;
11207 goto ld_st;
11208 case M_LBE_AB:
11209 s = "lbe";
11210 fmt = "t,+j(b)";
11211 offbits = 9;
11212 goto ld_st;
11213 case M_LHE_AB:
11214 s = "lhe";
11215 fmt = "t,+j(b)";
11216 offbits = 9;
11217 goto ld_st;
11218 case M_LLE_AB:
11219 s = "lle";
11220 fmt = "t,+j(b)";
11221 offbits = 9;
11222 goto ld_st;
11223 case M_LWE_AB:
11224 s = "lwe";
11225 fmt = "t,+j(b)";
11226 offbits = 9;
11227 goto ld_st;
11228 case M_LWLE_AB:
11229 s = "lwle";
11230 fmt = "t,+j(b)";
11231 offbits = 9;
11232 goto ld_st;
11233 case M_LWRE_AB:
11234 s = "lwre";
11235 fmt = "t,+j(b)";
11236 offbits = 9;
11237 goto ld_st;
11238 case M_SBE_AB:
11239 s = "sbe";
11240 fmt = "t,+j(b)";
11241 offbits = 9;
11242 goto ld_st;
11243 case M_SCE_AB:
11244 s = "sce";
11245 fmt = "t,+j(b)";
11246 offbits = 9;
11247 goto ld_st;
11248 case M_SHE_AB:
11249 s = "she";
11250 fmt = "t,+j(b)";
11251 offbits = 9;
11252 goto ld_st;
11253 case M_SWE_AB:
11254 s = "swe";
11255 fmt = "t,+j(b)";
11256 offbits = 9;
11257 goto ld_st;
11258 case M_SWLE_AB:
11259 s = "swle";
11260 fmt = "t,+j(b)";
11261 offbits = 9;
11262 goto ld_st;
11263 case M_SWRE_AB:
11264 s = "swre";
11265 fmt = "t,+j(b)";
11266 offbits = 9;
11267 goto ld_st;
11268 case M_ACLR_AB:
11269 s = "aclr";
11270 fmt = "\\,~(b)";
11271 offbits = 12;
11272 goto ld_st;
11273 case M_ASET_AB:
11274 s = "aset";
11275 fmt = "\\,~(b)";
11276 offbits = 12;
11277 goto ld_st;
11278 case M_LB_AB:
11279 s = "lb";
11280 fmt = "t,o(b)";
11281 goto ld;
11282 case M_LBU_AB:
11283 s = "lbu";
11284 fmt = "t,o(b)";
11285 goto ld;
11286 case M_LH_AB:
11287 s = "lh";
11288 fmt = "t,o(b)";
11289 goto ld;
11290 case M_LHU_AB:
11291 s = "lhu";
11292 fmt = "t,o(b)";
11293 goto ld;
11294 case M_LW_AB:
11295 s = "lw";
11296 fmt = "t,o(b)";
11297 goto ld;
11298 case M_LWC0_AB:
11299 gas_assert (!mips_opts.micromips);
11300 s = "lwc0";
11301 fmt = "E,o(b)";
11302 /* Itbl support may require additional care here. */
11303 coproc = 1;
11304 goto ld_st;
11305 case M_LWC1_AB:
11306 s = "lwc1";
11307 fmt = "T,o(b)";
11308 /* Itbl support may require additional care here. */
11309 coproc = 1;
11310 goto ld_st;
11311 case M_LWC2_AB:
11312 s = "lwc2";
11313 fmt = COP12_FMT;
11314 offbits = (mips_opts.micromips ? 12
11315 : ISA_IS_R6 (mips_opts.isa) ? 11
11316 : 16);
11317 /* Itbl support may require additional care here. */
11318 coproc = 1;
11319 goto ld_st;
11320 case M_LWC3_AB:
11321 gas_assert (!mips_opts.micromips);
11322 s = "lwc3";
11323 fmt = "E,o(b)";
11324 /* Itbl support may require additional care here. */
11325 coproc = 1;
11326 goto ld_st;
11327 case M_LWL_AB:
11328 s = "lwl";
11329 fmt = MEM12_FMT;
11330 offbits = (mips_opts.micromips ? 12 : 16);
11331 goto ld_st;
11332 case M_LWR_AB:
11333 s = "lwr";
11334 fmt = MEM12_FMT;
11335 offbits = (mips_opts.micromips ? 12 : 16);
11336 goto ld_st;
11337 case M_LDC1_AB:
11338 s = "ldc1";
11339 fmt = "T,o(b)";
11340 /* Itbl support may require additional care here. */
11341 coproc = 1;
11342 goto ld_st;
11343 case M_LDC2_AB:
11344 s = "ldc2";
11345 fmt = COP12_FMT;
11346 offbits = (mips_opts.micromips ? 12
11347 : ISA_IS_R6 (mips_opts.isa) ? 11
11348 : 16);
11349 /* Itbl support may require additional care here. */
11350 coproc = 1;
11351 goto ld_st;
11352 case M_LQC2_AB:
11353 s = "lqc2";
11354 fmt = "+7,o(b)";
11355 /* Itbl support may require additional care here. */
11356 coproc = 1;
11357 goto ld_st;
11358 case M_LDC3_AB:
11359 s = "ldc3";
11360 fmt = "E,o(b)";
11361 /* Itbl support may require additional care here. */
11362 coproc = 1;
11363 goto ld_st;
11364 case M_LDL_AB:
11365 s = "ldl";
11366 fmt = MEM12_FMT;
11367 offbits = (mips_opts.micromips ? 12 : 16);
11368 goto ld_st;
11369 case M_LDR_AB:
11370 s = "ldr";
11371 fmt = MEM12_FMT;
11372 offbits = (mips_opts.micromips ? 12 : 16);
11373 goto ld_st;
11374 case M_LL_AB:
11375 s = "ll";
11376 fmt = LL_SC_FMT;
11377 offbits = (mips_opts.micromips ? 12
11378 : ISA_IS_R6 (mips_opts.isa) ? 9
11379 : 16);
11380 goto ld;
11381 case M_LLD_AB:
11382 s = "lld";
11383 fmt = LL_SC_FMT;
11384 offbits = (mips_opts.micromips ? 12
11385 : ISA_IS_R6 (mips_opts.isa) ? 9
11386 : 16);
11387 goto ld;
11388 case M_LWU_AB:
11389 s = "lwu";
11390 fmt = MEM12_FMT;
11391 offbits = (mips_opts.micromips ? 12 : 16);
11392 goto ld;
11393 case M_LWP_AB:
11394 gas_assert (mips_opts.micromips);
11395 s = "lwp";
11396 fmt = "t,~(b)";
11397 offbits = 12;
11398 lp = 1;
11399 goto ld;
11400 case M_LDP_AB:
11401 gas_assert (mips_opts.micromips);
11402 s = "ldp";
11403 fmt = "t,~(b)";
11404 offbits = 12;
11405 lp = 1;
11406 goto ld;
11407 case M_LWM_AB:
11408 gas_assert (mips_opts.micromips);
11409 s = "lwm";
11410 fmt = "n,~(b)";
11411 offbits = 12;
11412 goto ld_st;
11413 case M_LDM_AB:
11414 gas_assert (mips_opts.micromips);
11415 s = "ldm";
11416 fmt = "n,~(b)";
11417 offbits = 12;
11418 goto ld_st;
11419
11420 ld:
11421 /* We don't want to use $0 as tempreg. */
11422 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11423 goto ld_st;
11424 else
11425 tempreg = op[0] + lp;
11426 goto ld_noat;
11427
11428 case M_SB_AB:
11429 s = "sb";
11430 fmt = "t,o(b)";
11431 goto ld_st;
11432 case M_SH_AB:
11433 s = "sh";
11434 fmt = "t,o(b)";
11435 goto ld_st;
11436 case M_SW_AB:
11437 s = "sw";
11438 fmt = "t,o(b)";
11439 goto ld_st;
11440 case M_SWC0_AB:
11441 gas_assert (!mips_opts.micromips);
11442 s = "swc0";
11443 fmt = "E,o(b)";
11444 /* Itbl support may require additional care here. */
11445 coproc = 1;
11446 goto ld_st;
11447 case M_SWC1_AB:
11448 s = "swc1";
11449 fmt = "T,o(b)";
11450 /* Itbl support may require additional care here. */
11451 coproc = 1;
11452 goto ld_st;
11453 case M_SWC2_AB:
11454 s = "swc2";
11455 fmt = COP12_FMT;
11456 offbits = (mips_opts.micromips ? 12
11457 : ISA_IS_R6 (mips_opts.isa) ? 11
11458 : 16);
11459 /* Itbl support may require additional care here. */
11460 coproc = 1;
11461 goto ld_st;
11462 case M_SWC3_AB:
11463 gas_assert (!mips_opts.micromips);
11464 s = "swc3";
11465 fmt = "E,o(b)";
11466 /* Itbl support may require additional care here. */
11467 coproc = 1;
11468 goto ld_st;
11469 case M_SWL_AB:
11470 s = "swl";
11471 fmt = MEM12_FMT;
11472 offbits = (mips_opts.micromips ? 12 : 16);
11473 goto ld_st;
11474 case M_SWR_AB:
11475 s = "swr";
11476 fmt = MEM12_FMT;
11477 offbits = (mips_opts.micromips ? 12 : 16);
11478 goto ld_st;
11479 case M_SC_AB:
11480 s = "sc";
11481 fmt = LL_SC_FMT;
11482 offbits = (mips_opts.micromips ? 12
11483 : ISA_IS_R6 (mips_opts.isa) ? 9
11484 : 16);
11485 goto ld_st;
11486 case M_SCD_AB:
11487 s = "scd";
11488 fmt = LL_SC_FMT;
11489 offbits = (mips_opts.micromips ? 12
11490 : ISA_IS_R6 (mips_opts.isa) ? 9
11491 : 16);
11492 goto ld_st;
11493 case M_CACHE_AB:
11494 s = "cache";
11495 fmt = (mips_opts.micromips ? "k,~(b)"
11496 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11497 : "k,o(b)");
11498 offbits = (mips_opts.micromips ? 12
11499 : ISA_IS_R6 (mips_opts.isa) ? 9
11500 : 16);
11501 goto ld_st;
11502 case M_CACHEE_AB:
11503 s = "cachee";
11504 fmt = "k,+j(b)";
11505 offbits = 9;
11506 goto ld_st;
11507 case M_PREF_AB:
11508 s = "pref";
11509 fmt = (mips_opts.micromips ? "k,~(b)"
11510 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11511 : "k,o(b)");
11512 offbits = (mips_opts.micromips ? 12
11513 : ISA_IS_R6 (mips_opts.isa) ? 9
11514 : 16);
11515 goto ld_st;
11516 case M_PREFE_AB:
11517 s = "prefe";
11518 fmt = "k,+j(b)";
11519 offbits = 9;
11520 goto ld_st;
11521 case M_SDC1_AB:
11522 s = "sdc1";
11523 fmt = "T,o(b)";
11524 coproc = 1;
11525 /* Itbl support may require additional care here. */
11526 goto ld_st;
11527 case M_SDC2_AB:
11528 s = "sdc2";
11529 fmt = COP12_FMT;
11530 offbits = (mips_opts.micromips ? 12
11531 : ISA_IS_R6 (mips_opts.isa) ? 11
11532 : 16);
11533 /* Itbl support may require additional care here. */
11534 coproc = 1;
11535 goto ld_st;
11536 case M_SQC2_AB:
11537 s = "sqc2";
11538 fmt = "+7,o(b)";
11539 /* Itbl support may require additional care here. */
11540 coproc = 1;
11541 goto ld_st;
11542 case M_SDC3_AB:
11543 gas_assert (!mips_opts.micromips);
11544 s = "sdc3";
11545 fmt = "E,o(b)";
11546 /* Itbl support may require additional care here. */
11547 coproc = 1;
11548 goto ld_st;
11549 case M_SDL_AB:
11550 s = "sdl";
11551 fmt = MEM12_FMT;
11552 offbits = (mips_opts.micromips ? 12 : 16);
11553 goto ld_st;
11554 case M_SDR_AB:
11555 s = "sdr";
11556 fmt = MEM12_FMT;
11557 offbits = (mips_opts.micromips ? 12 : 16);
11558 goto ld_st;
11559 case M_SWP_AB:
11560 gas_assert (mips_opts.micromips);
11561 s = "swp";
11562 fmt = "t,~(b)";
11563 offbits = 12;
11564 goto ld_st;
11565 case M_SDP_AB:
11566 gas_assert (mips_opts.micromips);
11567 s = "sdp";
11568 fmt = "t,~(b)";
11569 offbits = 12;
11570 goto ld_st;
11571 case M_SWM_AB:
11572 gas_assert (mips_opts.micromips);
11573 s = "swm";
11574 fmt = "n,~(b)";
11575 offbits = 12;
11576 goto ld_st;
11577 case M_SDM_AB:
11578 gas_assert (mips_opts.micromips);
11579 s = "sdm";
11580 fmt = "n,~(b)";
11581 offbits = 12;
11582
11583 ld_st:
11584 tempreg = AT;
11585 ld_noat:
11586 breg = op[2];
11587 if (small_offset_p (0, align, 16))
11588 {
11589 /* The first case exists for M_LD_AB and M_SD_AB, which are
11590 macros for o32 but which should act like normal instructions
11591 otherwise. */
11592 if (offbits == 16)
11593 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11594 offset_reloc[1], offset_reloc[2], breg);
11595 else if (small_offset_p (0, align, offbits))
11596 {
11597 if (offbits == 0)
11598 macro_build (NULL, s, fmt, op[0], breg);
11599 else
11600 macro_build (NULL, s, fmt, op[0],
11601 (int) offset_expr.X_add_number, breg);
11602 }
11603 else
11604 {
11605 if (tempreg == AT)
11606 used_at = 1;
11607 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11608 tempreg, breg, -1, offset_reloc[0],
11609 offset_reloc[1], offset_reloc[2]);
11610 if (offbits == 0)
11611 macro_build (NULL, s, fmt, op[0], tempreg);
11612 else
11613 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11614 }
11615 break;
11616 }
11617
11618 if (tempreg == AT)
11619 used_at = 1;
11620
11621 if (offset_expr.X_op != O_constant
11622 && offset_expr.X_op != O_symbol)
11623 {
11624 as_bad (_("expression too complex"));
11625 offset_expr.X_op = O_constant;
11626 }
11627
11628 if (HAVE_32BIT_ADDRESSES
11629 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11630 {
11631 char value [32];
11632
11633 sprintf_vma (value, offset_expr.X_add_number);
11634 as_bad (_("number (0x%s) larger than 32 bits"), value);
11635 }
11636
11637 /* A constant expression in PIC code can be handled just as it
11638 is in non PIC code. */
11639 if (offset_expr.X_op == O_constant)
11640 {
11641 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11642 offbits == 0 ? 16 : offbits);
11643 offset_expr.X_add_number -= expr1.X_add_number;
11644
11645 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11646 if (breg != 0)
11647 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11648 tempreg, tempreg, breg);
11649 if (offbits == 0)
11650 {
11651 if (offset_expr.X_add_number != 0)
11652 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11653 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11654 macro_build (NULL, s, fmt, op[0], tempreg);
11655 }
11656 else if (offbits == 16)
11657 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11658 else
11659 macro_build (NULL, s, fmt, op[0],
11660 (int) offset_expr.X_add_number, tempreg);
11661 }
11662 else if (offbits != 16)
11663 {
11664 /* The offset field is too narrow to be used for a low-part
11665 relocation, so load the whole address into the auxillary
11666 register. */
11667 load_address (tempreg, &offset_expr, &used_at);
11668 if (breg != 0)
11669 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11670 tempreg, tempreg, breg);
11671 if (offbits == 0)
11672 macro_build (NULL, s, fmt, op[0], tempreg);
11673 else
11674 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11675 }
11676 else if (mips_pic == NO_PIC)
11677 {
11678 /* If this is a reference to a GP relative symbol, and there
11679 is no base register, we want
11680 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11681 Otherwise, if there is no base register, we want
11682 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11683 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11684 If we have a constant, we need two instructions anyhow,
11685 so we always use the latter form.
11686
11687 If we have a base register, and this is a reference to a
11688 GP relative symbol, we want
11689 addu $tempreg,$breg,$gp
11690 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11691 Otherwise we want
11692 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11693 addu $tempreg,$tempreg,$breg
11694 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11695 With a constant we always use the latter case.
11696
11697 With 64bit address space and no base register and $at usable,
11698 we want
11699 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11700 lui $at,<sym> (BFD_RELOC_HI16_S)
11701 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11702 dsll32 $tempreg,0
11703 daddu $tempreg,$at
11704 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11705 If we have a base register, we want
11706 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11707 lui $at,<sym> (BFD_RELOC_HI16_S)
11708 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11709 daddu $at,$breg
11710 dsll32 $tempreg,0
11711 daddu $tempreg,$at
11712 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11713
11714 Without $at we can't generate the optimal path for superscalar
11715 processors here since this would require two temporary registers.
11716 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11717 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11718 dsll $tempreg,16
11719 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11720 dsll $tempreg,16
11721 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11722 If we have a base register, we want
11723 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11724 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11725 dsll $tempreg,16
11726 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11727 dsll $tempreg,16
11728 daddu $tempreg,$tempreg,$breg
11729 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11730
11731 For GP relative symbols in 64bit address space we can use
11732 the same sequence as in 32bit address space. */
11733 if (HAVE_64BIT_SYMBOLS)
11734 {
11735 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11736 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11737 {
11738 relax_start (offset_expr.X_add_symbol);
11739 if (breg == 0)
11740 {
11741 macro_build (&offset_expr, s, fmt, op[0],
11742 BFD_RELOC_GPREL16, mips_gp_register);
11743 }
11744 else
11745 {
11746 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11747 tempreg, breg, mips_gp_register);
11748 macro_build (&offset_expr, s, fmt, op[0],
11749 BFD_RELOC_GPREL16, tempreg);
11750 }
11751 relax_switch ();
11752 }
11753
11754 if (used_at == 0 && mips_opts.at)
11755 {
11756 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11757 BFD_RELOC_MIPS_HIGHEST);
11758 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11759 BFD_RELOC_HI16_S);
11760 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11761 tempreg, BFD_RELOC_MIPS_HIGHER);
11762 if (breg != 0)
11763 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11764 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11765 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11766 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11767 tempreg);
11768 used_at = 1;
11769 }
11770 else
11771 {
11772 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11773 BFD_RELOC_MIPS_HIGHEST);
11774 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11775 tempreg, BFD_RELOC_MIPS_HIGHER);
11776 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11777 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11778 tempreg, BFD_RELOC_HI16_S);
11779 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11780 if (breg != 0)
11781 macro_build (NULL, "daddu", "d,v,t",
11782 tempreg, tempreg, breg);
11783 macro_build (&offset_expr, s, fmt, op[0],
11784 BFD_RELOC_LO16, tempreg);
11785 }
11786
11787 if (mips_relax.sequence)
11788 relax_end ();
11789 break;
11790 }
11791
11792 if (breg == 0)
11793 {
11794 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11795 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11796 {
11797 relax_start (offset_expr.X_add_symbol);
11798 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11799 mips_gp_register);
11800 relax_switch ();
11801 }
11802 macro_build_lui (&offset_expr, tempreg);
11803 macro_build (&offset_expr, s, fmt, op[0],
11804 BFD_RELOC_LO16, tempreg);
11805 if (mips_relax.sequence)
11806 relax_end ();
11807 }
11808 else
11809 {
11810 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11811 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11812 {
11813 relax_start (offset_expr.X_add_symbol);
11814 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11815 tempreg, breg, mips_gp_register);
11816 macro_build (&offset_expr, s, fmt, op[0],
11817 BFD_RELOC_GPREL16, tempreg);
11818 relax_switch ();
11819 }
11820 macro_build_lui (&offset_expr, tempreg);
11821 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11822 tempreg, tempreg, breg);
11823 macro_build (&offset_expr, s, fmt, op[0],
11824 BFD_RELOC_LO16, tempreg);
11825 if (mips_relax.sequence)
11826 relax_end ();
11827 }
11828 }
11829 else if (!mips_big_got)
11830 {
11831 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11832
11833 /* If this is a reference to an external symbol, we want
11834 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11835 nop
11836 <op> op[0],0($tempreg)
11837 Otherwise we want
11838 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11839 nop
11840 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11841 <op> op[0],0($tempreg)
11842
11843 For NewABI, we want
11844 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11845 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11846
11847 If there is a base register, we add it to $tempreg before
11848 the <op>. If there is a constant, we stick it in the
11849 <op> instruction. We don't handle constants larger than
11850 16 bits, because we have no way to load the upper 16 bits
11851 (actually, we could handle them for the subset of cases
11852 in which we are not using $at). */
11853 gas_assert (offset_expr.X_op == O_symbol);
11854 if (HAVE_NEWABI)
11855 {
11856 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11857 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11858 if (breg != 0)
11859 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11860 tempreg, tempreg, breg);
11861 macro_build (&offset_expr, s, fmt, op[0],
11862 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11863 break;
11864 }
11865 expr1.X_add_number = offset_expr.X_add_number;
11866 offset_expr.X_add_number = 0;
11867 if (expr1.X_add_number < -0x8000
11868 || expr1.X_add_number >= 0x8000)
11869 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11870 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11871 lw_reloc_type, mips_gp_register);
11872 load_delay_nop ();
11873 relax_start (offset_expr.X_add_symbol);
11874 relax_switch ();
11875 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11876 tempreg, BFD_RELOC_LO16);
11877 relax_end ();
11878 if (breg != 0)
11879 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11880 tempreg, tempreg, breg);
11881 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11882 }
11883 else if (mips_big_got && !HAVE_NEWABI)
11884 {
11885 int gpdelay;
11886
11887 /* If this is a reference to an external symbol, we want
11888 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11889 addu $tempreg,$tempreg,$gp
11890 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11891 <op> op[0],0($tempreg)
11892 Otherwise we want
11893 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11894 nop
11895 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11896 <op> op[0],0($tempreg)
11897 If there is a base register, we add it to $tempreg before
11898 the <op>. If there is a constant, we stick it in the
11899 <op> instruction. We don't handle constants larger than
11900 16 bits, because we have no way to load the upper 16 bits
11901 (actually, we could handle them for the subset of cases
11902 in which we are not using $at). */
11903 gas_assert (offset_expr.X_op == O_symbol);
11904 expr1.X_add_number = offset_expr.X_add_number;
11905 offset_expr.X_add_number = 0;
11906 if (expr1.X_add_number < -0x8000
11907 || expr1.X_add_number >= 0x8000)
11908 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11909 gpdelay = reg_needs_delay (mips_gp_register);
11910 relax_start (offset_expr.X_add_symbol);
11911 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11912 BFD_RELOC_MIPS_GOT_HI16);
11913 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11914 mips_gp_register);
11915 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11916 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11917 relax_switch ();
11918 if (gpdelay)
11919 macro_build (NULL, "nop", "");
11920 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11921 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11922 load_delay_nop ();
11923 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11924 tempreg, BFD_RELOC_LO16);
11925 relax_end ();
11926
11927 if (breg != 0)
11928 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11929 tempreg, tempreg, breg);
11930 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11931 }
11932 else if (mips_big_got && HAVE_NEWABI)
11933 {
11934 /* If this is a reference to an external symbol, we want
11935 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11936 add $tempreg,$tempreg,$gp
11937 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11938 <op> op[0],<ofst>($tempreg)
11939 Otherwise, for local symbols, we want:
11940 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11941 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11942 gas_assert (offset_expr.X_op == O_symbol);
11943 expr1.X_add_number = offset_expr.X_add_number;
11944 offset_expr.X_add_number = 0;
11945 if (expr1.X_add_number < -0x8000
11946 || expr1.X_add_number >= 0x8000)
11947 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11948 relax_start (offset_expr.X_add_symbol);
11949 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11950 BFD_RELOC_MIPS_GOT_HI16);
11951 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11952 mips_gp_register);
11953 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11954 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11955 if (breg != 0)
11956 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11957 tempreg, tempreg, breg);
11958 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11959
11960 relax_switch ();
11961 offset_expr.X_add_number = expr1.X_add_number;
11962 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11963 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11964 if (breg != 0)
11965 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11966 tempreg, tempreg, breg);
11967 macro_build (&offset_expr, s, fmt, op[0],
11968 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11969 relax_end ();
11970 }
11971 else
11972 abort ();
11973
11974 break;
11975
11976 case M_JRADDIUSP:
11977 gas_assert (mips_opts.micromips);
11978 gas_assert (mips_opts.insn32);
11979 start_noreorder ();
11980 macro_build (NULL, "jr", "s", RA);
11981 expr1.X_add_number = op[0] << 2;
11982 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11983 end_noreorder ();
11984 break;
11985
11986 case M_JRC:
11987 gas_assert (mips_opts.micromips);
11988 gas_assert (mips_opts.insn32);
11989 macro_build (NULL, "jr", "s", op[0]);
11990 if (mips_opts.noreorder)
11991 macro_build (NULL, "nop", "");
11992 break;
11993
11994 case M_LI:
11995 case M_LI_S:
11996 load_register (op[0], &imm_expr, 0);
11997 break;
11998
11999 case M_DLI:
12000 load_register (op[0], &imm_expr, 1);
12001 break;
12002
12003 case M_LI_SS:
12004 if (imm_expr.X_op == O_constant)
12005 {
12006 used_at = 1;
12007 load_register (AT, &imm_expr, 0);
12008 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12009 break;
12010 }
12011 else
12012 {
12013 gas_assert (imm_expr.X_op == O_absent
12014 && offset_expr.X_op == O_symbol
12015 && strcmp (segment_name (S_GET_SEGMENT
12016 (offset_expr.X_add_symbol)),
12017 ".lit4") == 0
12018 && offset_expr.X_add_number == 0);
12019 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12020 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12021 break;
12022 }
12023
12024 case M_LI_D:
12025 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12026 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12027 order 32 bits of the value and the low order 32 bits are either
12028 zero or in OFFSET_EXPR. */
12029 if (imm_expr.X_op == O_constant)
12030 {
12031 if (GPR_SIZE == 64)
12032 load_register (op[0], &imm_expr, 1);
12033 else
12034 {
12035 int hreg, lreg;
12036
12037 if (target_big_endian)
12038 {
12039 hreg = op[0];
12040 lreg = op[0] + 1;
12041 }
12042 else
12043 {
12044 hreg = op[0] + 1;
12045 lreg = op[0];
12046 }
12047
12048 if (hreg <= 31)
12049 load_register (hreg, &imm_expr, 0);
12050 if (lreg <= 31)
12051 {
12052 if (offset_expr.X_op == O_absent)
12053 move_register (lreg, 0);
12054 else
12055 {
12056 gas_assert (offset_expr.X_op == O_constant);
12057 load_register (lreg, &offset_expr, 0);
12058 }
12059 }
12060 }
12061 break;
12062 }
12063 gas_assert (imm_expr.X_op == O_absent);
12064
12065 /* We know that sym is in the .rdata section. First we get the
12066 upper 16 bits of the address. */
12067 if (mips_pic == NO_PIC)
12068 {
12069 macro_build_lui (&offset_expr, AT);
12070 used_at = 1;
12071 }
12072 else
12073 {
12074 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12075 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12076 used_at = 1;
12077 }
12078
12079 /* Now we load the register(s). */
12080 if (GPR_SIZE == 64)
12081 {
12082 used_at = 1;
12083 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12084 BFD_RELOC_LO16, AT);
12085 }
12086 else
12087 {
12088 used_at = 1;
12089 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12090 BFD_RELOC_LO16, AT);
12091 if (op[0] != RA)
12092 {
12093 /* FIXME: How in the world do we deal with the possible
12094 overflow here? */
12095 offset_expr.X_add_number += 4;
12096 macro_build (&offset_expr, "lw", "t,o(b)",
12097 op[0] + 1, BFD_RELOC_LO16, AT);
12098 }
12099 }
12100 break;
12101
12102 case M_LI_DD:
12103 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12104 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12105 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12106 the value and the low order 32 bits are either zero or in
12107 OFFSET_EXPR. */
12108 if (imm_expr.X_op == O_constant)
12109 {
12110 used_at = 1;
12111 load_register (AT, &imm_expr, FPR_SIZE == 64);
12112 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12113 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12114 else
12115 {
12116 if (ISA_HAS_MXHC1 (mips_opts.isa))
12117 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12118 else if (FPR_SIZE != 32)
12119 as_bad (_("Unable to generate `%s' compliant code "
12120 "without mthc1"),
12121 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12122 else
12123 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12124 if (offset_expr.X_op == O_absent)
12125 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12126 else
12127 {
12128 gas_assert (offset_expr.X_op == O_constant);
12129 load_register (AT, &offset_expr, 0);
12130 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12131 }
12132 }
12133 break;
12134 }
12135
12136 gas_assert (imm_expr.X_op == O_absent
12137 && offset_expr.X_op == O_symbol
12138 && offset_expr.X_add_number == 0);
12139 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12140 if (strcmp (s, ".lit8") == 0)
12141 {
12142 op[2] = mips_gp_register;
12143 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12144 offset_reloc[1] = BFD_RELOC_UNUSED;
12145 offset_reloc[2] = BFD_RELOC_UNUSED;
12146 }
12147 else
12148 {
12149 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12150 used_at = 1;
12151 if (mips_pic != NO_PIC)
12152 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12153 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12154 else
12155 {
12156 /* FIXME: This won't work for a 64 bit address. */
12157 macro_build_lui (&offset_expr, AT);
12158 }
12159
12160 op[2] = AT;
12161 offset_reloc[0] = BFD_RELOC_LO16;
12162 offset_reloc[1] = BFD_RELOC_UNUSED;
12163 offset_reloc[2] = BFD_RELOC_UNUSED;
12164 }
12165 align = 8;
12166 /* Fall through */
12167
12168 case M_L_DAB:
12169 /*
12170 * The MIPS assembler seems to check for X_add_number not
12171 * being double aligned and generating:
12172 * lui at,%hi(foo+1)
12173 * addu at,at,v1
12174 * addiu at,at,%lo(foo+1)
12175 * lwc1 f2,0(at)
12176 * lwc1 f3,4(at)
12177 * But, the resulting address is the same after relocation so why
12178 * generate the extra instruction?
12179 */
12180 /* Itbl support may require additional care here. */
12181 coproc = 1;
12182 fmt = "T,o(b)";
12183 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12184 {
12185 s = "ldc1";
12186 goto ld_st;
12187 }
12188 s = "lwc1";
12189 goto ldd_std;
12190
12191 case M_S_DAB:
12192 gas_assert (!mips_opts.micromips);
12193 /* Itbl support may require additional care here. */
12194 coproc = 1;
12195 fmt = "T,o(b)";
12196 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12197 {
12198 s = "sdc1";
12199 goto ld_st;
12200 }
12201 s = "swc1";
12202 goto ldd_std;
12203
12204 case M_LQ_AB:
12205 fmt = "t,o(b)";
12206 s = "lq";
12207 goto ld;
12208
12209 case M_SQ_AB:
12210 fmt = "t,o(b)";
12211 s = "sq";
12212 goto ld_st;
12213
12214 case M_LD_AB:
12215 fmt = "t,o(b)";
12216 if (GPR_SIZE == 64)
12217 {
12218 s = "ld";
12219 goto ld;
12220 }
12221 s = "lw";
12222 goto ldd_std;
12223
12224 case M_SD_AB:
12225 fmt = "t,o(b)";
12226 if (GPR_SIZE == 64)
12227 {
12228 s = "sd";
12229 goto ld_st;
12230 }
12231 s = "sw";
12232
12233 ldd_std:
12234 /* Even on a big endian machine $fn comes before $fn+1. We have
12235 to adjust when loading from memory. We set coproc if we must
12236 load $fn+1 first. */
12237 /* Itbl support may require additional care here. */
12238 if (!target_big_endian)
12239 coproc = 0;
12240
12241 breg = op[2];
12242 if (small_offset_p (0, align, 16))
12243 {
12244 ep = &offset_expr;
12245 if (!small_offset_p (4, align, 16))
12246 {
12247 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12248 -1, offset_reloc[0], offset_reloc[1],
12249 offset_reloc[2]);
12250 expr1.X_add_number = 0;
12251 ep = &expr1;
12252 breg = AT;
12253 used_at = 1;
12254 offset_reloc[0] = BFD_RELOC_LO16;
12255 offset_reloc[1] = BFD_RELOC_UNUSED;
12256 offset_reloc[2] = BFD_RELOC_UNUSED;
12257 }
12258 if (strcmp (s, "lw") == 0 && op[0] == breg)
12259 {
12260 ep->X_add_number += 4;
12261 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12262 offset_reloc[1], offset_reloc[2], breg);
12263 ep->X_add_number -= 4;
12264 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12265 offset_reloc[1], offset_reloc[2], breg);
12266 }
12267 else
12268 {
12269 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12270 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12271 breg);
12272 ep->X_add_number += 4;
12273 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12274 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12275 breg);
12276 }
12277 break;
12278 }
12279
12280 if (offset_expr.X_op != O_symbol
12281 && offset_expr.X_op != O_constant)
12282 {
12283 as_bad (_("expression too complex"));
12284 offset_expr.X_op = O_constant;
12285 }
12286
12287 if (HAVE_32BIT_ADDRESSES
12288 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12289 {
12290 char value [32];
12291
12292 sprintf_vma (value, offset_expr.X_add_number);
12293 as_bad (_("number (0x%s) larger than 32 bits"), value);
12294 }
12295
12296 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12297 {
12298 /* If this is a reference to a GP relative symbol, we want
12299 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12300 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12301 If we have a base register, we use this
12302 addu $at,$breg,$gp
12303 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12304 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12305 If this is not a GP relative symbol, we want
12306 lui $at,<sym> (BFD_RELOC_HI16_S)
12307 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12308 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12309 If there is a base register, we add it to $at after the
12310 lui instruction. If there is a constant, we always use
12311 the last case. */
12312 if (offset_expr.X_op == O_symbol
12313 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12314 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12315 {
12316 relax_start (offset_expr.X_add_symbol);
12317 if (breg == 0)
12318 {
12319 tempreg = mips_gp_register;
12320 }
12321 else
12322 {
12323 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12324 AT, breg, mips_gp_register);
12325 tempreg = AT;
12326 used_at = 1;
12327 }
12328
12329 /* Itbl support may require additional care here. */
12330 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12331 BFD_RELOC_GPREL16, tempreg);
12332 offset_expr.X_add_number += 4;
12333
12334 /* Set mips_optimize to 2 to avoid inserting an
12335 undesired nop. */
12336 hold_mips_optimize = mips_optimize;
12337 mips_optimize = 2;
12338 /* Itbl support may require additional care here. */
12339 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12340 BFD_RELOC_GPREL16, tempreg);
12341 mips_optimize = hold_mips_optimize;
12342
12343 relax_switch ();
12344
12345 offset_expr.X_add_number -= 4;
12346 }
12347 used_at = 1;
12348 if (offset_high_part (offset_expr.X_add_number, 16)
12349 != offset_high_part (offset_expr.X_add_number + 4, 16))
12350 {
12351 load_address (AT, &offset_expr, &used_at);
12352 offset_expr.X_op = O_constant;
12353 offset_expr.X_add_number = 0;
12354 }
12355 else
12356 macro_build_lui (&offset_expr, AT);
12357 if (breg != 0)
12358 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12359 /* Itbl support may require additional care here. */
12360 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12361 BFD_RELOC_LO16, AT);
12362 /* FIXME: How do we handle overflow here? */
12363 offset_expr.X_add_number += 4;
12364 /* Itbl support may require additional care here. */
12365 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12366 BFD_RELOC_LO16, AT);
12367 if (mips_relax.sequence)
12368 relax_end ();
12369 }
12370 else if (!mips_big_got)
12371 {
12372 /* If this is a reference to an external symbol, we want
12373 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12374 nop
12375 <op> op[0],0($at)
12376 <op> op[0]+1,4($at)
12377 Otherwise we want
12378 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12379 nop
12380 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12381 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12382 If there is a base register we add it to $at before the
12383 lwc1 instructions. If there is a constant we include it
12384 in the lwc1 instructions. */
12385 used_at = 1;
12386 expr1.X_add_number = offset_expr.X_add_number;
12387 if (expr1.X_add_number < -0x8000
12388 || expr1.X_add_number >= 0x8000 - 4)
12389 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12390 load_got_offset (AT, &offset_expr);
12391 load_delay_nop ();
12392 if (breg != 0)
12393 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12394
12395 /* Set mips_optimize to 2 to avoid inserting an undesired
12396 nop. */
12397 hold_mips_optimize = mips_optimize;
12398 mips_optimize = 2;
12399
12400 /* Itbl support may require additional care here. */
12401 relax_start (offset_expr.X_add_symbol);
12402 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12403 BFD_RELOC_LO16, AT);
12404 expr1.X_add_number += 4;
12405 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12406 BFD_RELOC_LO16, AT);
12407 relax_switch ();
12408 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12409 BFD_RELOC_LO16, AT);
12410 offset_expr.X_add_number += 4;
12411 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12412 BFD_RELOC_LO16, AT);
12413 relax_end ();
12414
12415 mips_optimize = hold_mips_optimize;
12416 }
12417 else if (mips_big_got)
12418 {
12419 int gpdelay;
12420
12421 /* If this is a reference to an external symbol, we want
12422 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12423 addu $at,$at,$gp
12424 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12425 nop
12426 <op> op[0],0($at)
12427 <op> op[0]+1,4($at)
12428 Otherwise we want
12429 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12430 nop
12431 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12432 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12433 If there is a base register we add it to $at before the
12434 lwc1 instructions. If there is a constant we include it
12435 in the lwc1 instructions. */
12436 used_at = 1;
12437 expr1.X_add_number = offset_expr.X_add_number;
12438 offset_expr.X_add_number = 0;
12439 if (expr1.X_add_number < -0x8000
12440 || expr1.X_add_number >= 0x8000 - 4)
12441 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12442 gpdelay = reg_needs_delay (mips_gp_register);
12443 relax_start (offset_expr.X_add_symbol);
12444 macro_build (&offset_expr, "lui", LUI_FMT,
12445 AT, BFD_RELOC_MIPS_GOT_HI16);
12446 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12447 AT, AT, mips_gp_register);
12448 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12449 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12450 load_delay_nop ();
12451 if (breg != 0)
12452 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12453 /* Itbl support may require additional care here. */
12454 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12455 BFD_RELOC_LO16, AT);
12456 expr1.X_add_number += 4;
12457
12458 /* Set mips_optimize to 2 to avoid inserting an undesired
12459 nop. */
12460 hold_mips_optimize = mips_optimize;
12461 mips_optimize = 2;
12462 /* Itbl support may require additional care here. */
12463 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12464 BFD_RELOC_LO16, AT);
12465 mips_optimize = hold_mips_optimize;
12466 expr1.X_add_number -= 4;
12467
12468 relax_switch ();
12469 offset_expr.X_add_number = expr1.X_add_number;
12470 if (gpdelay)
12471 macro_build (NULL, "nop", "");
12472 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12473 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12474 load_delay_nop ();
12475 if (breg != 0)
12476 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12477 /* Itbl support may require additional care here. */
12478 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12479 BFD_RELOC_LO16, AT);
12480 offset_expr.X_add_number += 4;
12481
12482 /* Set mips_optimize to 2 to avoid inserting an undesired
12483 nop. */
12484 hold_mips_optimize = mips_optimize;
12485 mips_optimize = 2;
12486 /* Itbl support may require additional care here. */
12487 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12488 BFD_RELOC_LO16, AT);
12489 mips_optimize = hold_mips_optimize;
12490 relax_end ();
12491 }
12492 else
12493 abort ();
12494
12495 break;
12496
12497 case M_SAA_AB:
12498 s = "saa";
12499 goto saa_saad;
12500 case M_SAAD_AB:
12501 s = "saad";
12502 saa_saad:
12503 gas_assert (!mips_opts.micromips);
12504 offbits = 0;
12505 fmt = "t,(b)";
12506 goto ld_st;
12507
12508 /* New code added to support COPZ instructions.
12509 This code builds table entries out of the macros in mip_opcodes.
12510 R4000 uses interlocks to handle coproc delays.
12511 Other chips (like the R3000) require nops to be inserted for delays.
12512
12513 FIXME: Currently, we require that the user handle delays.
12514 In order to fill delay slots for non-interlocked chips,
12515 we must have a way to specify delays based on the coprocessor.
12516 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12517 What are the side-effects of the cop instruction?
12518 What cache support might we have and what are its effects?
12519 Both coprocessor & memory require delays. how long???
12520 What registers are read/set/modified?
12521
12522 If an itbl is provided to interpret cop instructions,
12523 this knowledge can be encoded in the itbl spec. */
12524
12525 case M_COP0:
12526 s = "c0";
12527 goto copz;
12528 case M_COP1:
12529 s = "c1";
12530 goto copz;
12531 case M_COP2:
12532 s = "c2";
12533 goto copz;
12534 case M_COP3:
12535 s = "c3";
12536 copz:
12537 gas_assert (!mips_opts.micromips);
12538 /* For now we just do C (same as Cz). The parameter will be
12539 stored in insn_opcode by mips_ip. */
12540 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12541 break;
12542
12543 case M_MOVE:
12544 move_register (op[0], op[1]);
12545 break;
12546
12547 case M_MOVEP:
12548 gas_assert (mips_opts.micromips);
12549 gas_assert (mips_opts.insn32);
12550 move_register (micromips_to_32_reg_h_map1[op[0]],
12551 micromips_to_32_reg_m_map[op[1]]);
12552 move_register (micromips_to_32_reg_h_map2[op[0]],
12553 micromips_to_32_reg_n_map[op[2]]);
12554 break;
12555
12556 case M_DMUL:
12557 dbl = 1;
12558 case M_MUL:
12559 if (mips_opts.arch == CPU_R5900)
12560 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12561 op[2]);
12562 else
12563 {
12564 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12565 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12566 }
12567 break;
12568
12569 case M_DMUL_I:
12570 dbl = 1;
12571 case M_MUL_I:
12572 /* The MIPS assembler some times generates shifts and adds. I'm
12573 not trying to be that fancy. GCC should do this for us
12574 anyway. */
12575 used_at = 1;
12576 load_register (AT, &imm_expr, dbl);
12577 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12578 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12579 break;
12580
12581 case M_DMULO_I:
12582 dbl = 1;
12583 case M_MULO_I:
12584 imm = 1;
12585 goto do_mulo;
12586
12587 case M_DMULO:
12588 dbl = 1;
12589 case M_MULO:
12590 do_mulo:
12591 start_noreorder ();
12592 used_at = 1;
12593 if (imm)
12594 load_register (AT, &imm_expr, dbl);
12595 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12596 op[1], imm ? AT : op[2]);
12597 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12598 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12599 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12600 if (mips_trap)
12601 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12602 else
12603 {
12604 if (mips_opts.micromips)
12605 micromips_label_expr (&label_expr);
12606 else
12607 label_expr.X_add_number = 8;
12608 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12609 macro_build (NULL, "nop", "");
12610 macro_build (NULL, "break", BRK_FMT, 6);
12611 if (mips_opts.micromips)
12612 micromips_add_label ();
12613 }
12614 end_noreorder ();
12615 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12616 break;
12617
12618 case M_DMULOU_I:
12619 dbl = 1;
12620 case M_MULOU_I:
12621 imm = 1;
12622 goto do_mulou;
12623
12624 case M_DMULOU:
12625 dbl = 1;
12626 case M_MULOU:
12627 do_mulou:
12628 start_noreorder ();
12629 used_at = 1;
12630 if (imm)
12631 load_register (AT, &imm_expr, dbl);
12632 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12633 op[1], imm ? AT : op[2]);
12634 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12635 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12636 if (mips_trap)
12637 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12638 else
12639 {
12640 if (mips_opts.micromips)
12641 micromips_label_expr (&label_expr);
12642 else
12643 label_expr.X_add_number = 8;
12644 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12645 macro_build (NULL, "nop", "");
12646 macro_build (NULL, "break", BRK_FMT, 6);
12647 if (mips_opts.micromips)
12648 micromips_add_label ();
12649 }
12650 end_noreorder ();
12651 break;
12652
12653 case M_DROL:
12654 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12655 {
12656 if (op[0] == op[1])
12657 {
12658 tempreg = AT;
12659 used_at = 1;
12660 }
12661 else
12662 tempreg = op[0];
12663 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12664 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12665 break;
12666 }
12667 used_at = 1;
12668 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12669 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12670 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12671 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12672 break;
12673
12674 case M_ROL:
12675 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12676 {
12677 if (op[0] == op[1])
12678 {
12679 tempreg = AT;
12680 used_at = 1;
12681 }
12682 else
12683 tempreg = op[0];
12684 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12685 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12686 break;
12687 }
12688 used_at = 1;
12689 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12690 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12691 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12692 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12693 break;
12694
12695 case M_DROL_I:
12696 {
12697 unsigned int rot;
12698 const char *l;
12699 const char *rr;
12700
12701 rot = imm_expr.X_add_number & 0x3f;
12702 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12703 {
12704 rot = (64 - rot) & 0x3f;
12705 if (rot >= 32)
12706 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12707 else
12708 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12709 break;
12710 }
12711 if (rot == 0)
12712 {
12713 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12714 break;
12715 }
12716 l = (rot < 0x20) ? "dsll" : "dsll32";
12717 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12718 rot &= 0x1f;
12719 used_at = 1;
12720 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12721 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12722 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12723 }
12724 break;
12725
12726 case M_ROL_I:
12727 {
12728 unsigned int rot;
12729
12730 rot = imm_expr.X_add_number & 0x1f;
12731 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12732 {
12733 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12734 (32 - rot) & 0x1f);
12735 break;
12736 }
12737 if (rot == 0)
12738 {
12739 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12740 break;
12741 }
12742 used_at = 1;
12743 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12744 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12745 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12746 }
12747 break;
12748
12749 case M_DROR:
12750 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12751 {
12752 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12753 break;
12754 }
12755 used_at = 1;
12756 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12757 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12758 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12759 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12760 break;
12761
12762 case M_ROR:
12763 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12764 {
12765 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12766 break;
12767 }
12768 used_at = 1;
12769 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12770 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12771 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12772 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12773 break;
12774
12775 case M_DROR_I:
12776 {
12777 unsigned int rot;
12778 const char *l;
12779 const char *rr;
12780
12781 rot = imm_expr.X_add_number & 0x3f;
12782 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12783 {
12784 if (rot >= 32)
12785 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12786 else
12787 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12788 break;
12789 }
12790 if (rot == 0)
12791 {
12792 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12793 break;
12794 }
12795 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12796 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12797 rot &= 0x1f;
12798 used_at = 1;
12799 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12800 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12801 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12802 }
12803 break;
12804
12805 case M_ROR_I:
12806 {
12807 unsigned int rot;
12808
12809 rot = imm_expr.X_add_number & 0x1f;
12810 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12811 {
12812 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12813 break;
12814 }
12815 if (rot == 0)
12816 {
12817 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12818 break;
12819 }
12820 used_at = 1;
12821 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12822 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12823 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12824 }
12825 break;
12826
12827 case M_SEQ:
12828 if (op[1] == 0)
12829 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12830 else if (op[2] == 0)
12831 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12832 else
12833 {
12834 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12835 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12836 }
12837 break;
12838
12839 case M_SEQ_I:
12840 if (imm_expr.X_add_number == 0)
12841 {
12842 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12843 break;
12844 }
12845 if (op[1] == 0)
12846 {
12847 as_warn (_("instruction %s: result is always false"),
12848 ip->insn_mo->name);
12849 move_register (op[0], 0);
12850 break;
12851 }
12852 if (CPU_HAS_SEQ (mips_opts.arch)
12853 && -512 <= imm_expr.X_add_number
12854 && imm_expr.X_add_number < 512)
12855 {
12856 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12857 (int) imm_expr.X_add_number);
12858 break;
12859 }
12860 if (imm_expr.X_add_number >= 0
12861 && imm_expr.X_add_number < 0x10000)
12862 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12863 else if (imm_expr.X_add_number > -0x8000
12864 && imm_expr.X_add_number < 0)
12865 {
12866 imm_expr.X_add_number = -imm_expr.X_add_number;
12867 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12868 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12869 }
12870 else if (CPU_HAS_SEQ (mips_opts.arch))
12871 {
12872 used_at = 1;
12873 load_register (AT, &imm_expr, GPR_SIZE == 64);
12874 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12875 break;
12876 }
12877 else
12878 {
12879 load_register (AT, &imm_expr, GPR_SIZE == 64);
12880 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12881 used_at = 1;
12882 }
12883 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12884 break;
12885
12886 case M_SGE: /* X >= Y <==> not (X < Y) */
12887 s = "slt";
12888 goto sge;
12889 case M_SGEU:
12890 s = "sltu";
12891 sge:
12892 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12893 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12894 break;
12895
12896 case M_SGE_I: /* X >= I <==> not (X < I) */
12897 case M_SGEU_I:
12898 if (imm_expr.X_add_number >= -0x8000
12899 && imm_expr.X_add_number < 0x8000)
12900 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12901 op[0], op[1], BFD_RELOC_LO16);
12902 else
12903 {
12904 load_register (AT, &imm_expr, GPR_SIZE == 64);
12905 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12906 op[0], op[1], AT);
12907 used_at = 1;
12908 }
12909 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12910 break;
12911
12912 case M_SGT: /* X > Y <==> Y < X */
12913 s = "slt";
12914 goto sgt;
12915 case M_SGTU:
12916 s = "sltu";
12917 sgt:
12918 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12919 break;
12920
12921 case M_SGT_I: /* X > I <==> I < X */
12922 s = "slt";
12923 goto sgti;
12924 case M_SGTU_I:
12925 s = "sltu";
12926 sgti:
12927 used_at = 1;
12928 load_register (AT, &imm_expr, GPR_SIZE == 64);
12929 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12930 break;
12931
12932 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12933 s = "slt";
12934 goto sle;
12935 case M_SLEU:
12936 s = "sltu";
12937 sle:
12938 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12939 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12940 break;
12941
12942 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12943 s = "slt";
12944 goto slei;
12945 case M_SLEU_I:
12946 s = "sltu";
12947 slei:
12948 used_at = 1;
12949 load_register (AT, &imm_expr, GPR_SIZE == 64);
12950 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12951 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12952 break;
12953
12954 case M_SLT_I:
12955 if (imm_expr.X_add_number >= -0x8000
12956 && imm_expr.X_add_number < 0x8000)
12957 {
12958 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12959 BFD_RELOC_LO16);
12960 break;
12961 }
12962 used_at = 1;
12963 load_register (AT, &imm_expr, GPR_SIZE == 64);
12964 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12965 break;
12966
12967 case M_SLTU_I:
12968 if (imm_expr.X_add_number >= -0x8000
12969 && imm_expr.X_add_number < 0x8000)
12970 {
12971 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12972 BFD_RELOC_LO16);
12973 break;
12974 }
12975 used_at = 1;
12976 load_register (AT, &imm_expr, GPR_SIZE == 64);
12977 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12978 break;
12979
12980 case M_SNE:
12981 if (op[1] == 0)
12982 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12983 else if (op[2] == 0)
12984 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12985 else
12986 {
12987 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12988 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12989 }
12990 break;
12991
12992 case M_SNE_I:
12993 if (imm_expr.X_add_number == 0)
12994 {
12995 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12996 break;
12997 }
12998 if (op[1] == 0)
12999 {
13000 as_warn (_("instruction %s: result is always true"),
13001 ip->insn_mo->name);
13002 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13003 op[0], 0, BFD_RELOC_LO16);
13004 break;
13005 }
13006 if (CPU_HAS_SEQ (mips_opts.arch)
13007 && -512 <= imm_expr.X_add_number
13008 && imm_expr.X_add_number < 512)
13009 {
13010 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13011 (int) imm_expr.X_add_number);
13012 break;
13013 }
13014 if (imm_expr.X_add_number >= 0
13015 && imm_expr.X_add_number < 0x10000)
13016 {
13017 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13018 BFD_RELOC_LO16);
13019 }
13020 else if (imm_expr.X_add_number > -0x8000
13021 && imm_expr.X_add_number < 0)
13022 {
13023 imm_expr.X_add_number = -imm_expr.X_add_number;
13024 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13025 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13026 }
13027 else if (CPU_HAS_SEQ (mips_opts.arch))
13028 {
13029 used_at = 1;
13030 load_register (AT, &imm_expr, GPR_SIZE == 64);
13031 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13032 break;
13033 }
13034 else
13035 {
13036 load_register (AT, &imm_expr, GPR_SIZE == 64);
13037 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13038 used_at = 1;
13039 }
13040 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13041 break;
13042
13043 case M_SUB_I:
13044 s = "addi";
13045 s2 = "sub";
13046 goto do_subi;
13047 case M_SUBU_I:
13048 s = "addiu";
13049 s2 = "subu";
13050 goto do_subi;
13051 case M_DSUB_I:
13052 dbl = 1;
13053 s = "daddi";
13054 s2 = "dsub";
13055 if (!mips_opts.micromips)
13056 goto do_subi;
13057 if (imm_expr.X_add_number > -0x200
13058 && imm_expr.X_add_number <= 0x200)
13059 {
13060 macro_build (NULL, s, "t,r,.", op[0], op[1],
13061 (int) -imm_expr.X_add_number);
13062 break;
13063 }
13064 goto do_subi_i;
13065 case M_DSUBU_I:
13066 dbl = 1;
13067 s = "daddiu";
13068 s2 = "dsubu";
13069 do_subi:
13070 if (imm_expr.X_add_number > -0x8000
13071 && imm_expr.X_add_number <= 0x8000)
13072 {
13073 imm_expr.X_add_number = -imm_expr.X_add_number;
13074 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13075 break;
13076 }
13077 do_subi_i:
13078 used_at = 1;
13079 load_register (AT, &imm_expr, dbl);
13080 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13081 break;
13082
13083 case M_TEQ_I:
13084 s = "teq";
13085 goto trap;
13086 case M_TGE_I:
13087 s = "tge";
13088 goto trap;
13089 case M_TGEU_I:
13090 s = "tgeu";
13091 goto trap;
13092 case M_TLT_I:
13093 s = "tlt";
13094 goto trap;
13095 case M_TLTU_I:
13096 s = "tltu";
13097 goto trap;
13098 case M_TNE_I:
13099 s = "tne";
13100 trap:
13101 used_at = 1;
13102 load_register (AT, &imm_expr, GPR_SIZE == 64);
13103 macro_build (NULL, s, "s,t", op[0], AT);
13104 break;
13105
13106 case M_TRUNCWS:
13107 case M_TRUNCWD:
13108 gas_assert (!mips_opts.micromips);
13109 gas_assert (mips_opts.isa == ISA_MIPS1);
13110 used_at = 1;
13111
13112 /*
13113 * Is the double cfc1 instruction a bug in the mips assembler;
13114 * or is there a reason for it?
13115 */
13116 start_noreorder ();
13117 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13118 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13119 macro_build (NULL, "nop", "");
13120 expr1.X_add_number = 3;
13121 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13122 expr1.X_add_number = 2;
13123 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13124 macro_build (NULL, "ctc1", "t,G", AT, RA);
13125 macro_build (NULL, "nop", "");
13126 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13127 op[0], op[1]);
13128 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13129 macro_build (NULL, "nop", "");
13130 end_noreorder ();
13131 break;
13132
13133 case M_ULH_AB:
13134 s = "lb";
13135 s2 = "lbu";
13136 off = 1;
13137 goto uld_st;
13138 case M_ULHU_AB:
13139 s = "lbu";
13140 s2 = "lbu";
13141 off = 1;
13142 goto uld_st;
13143 case M_ULW_AB:
13144 s = "lwl";
13145 s2 = "lwr";
13146 offbits = (mips_opts.micromips ? 12 : 16);
13147 off = 3;
13148 goto uld_st;
13149 case M_ULD_AB:
13150 s = "ldl";
13151 s2 = "ldr";
13152 offbits = (mips_opts.micromips ? 12 : 16);
13153 off = 7;
13154 goto uld_st;
13155 case M_USH_AB:
13156 s = "sb";
13157 s2 = "sb";
13158 off = 1;
13159 ust = 1;
13160 goto uld_st;
13161 case M_USW_AB:
13162 s = "swl";
13163 s2 = "swr";
13164 offbits = (mips_opts.micromips ? 12 : 16);
13165 off = 3;
13166 ust = 1;
13167 goto uld_st;
13168 case M_USD_AB:
13169 s = "sdl";
13170 s2 = "sdr";
13171 offbits = (mips_opts.micromips ? 12 : 16);
13172 off = 7;
13173 ust = 1;
13174
13175 uld_st:
13176 breg = op[2];
13177 large_offset = !small_offset_p (off, align, offbits);
13178 ep = &offset_expr;
13179 expr1.X_add_number = 0;
13180 if (large_offset)
13181 {
13182 used_at = 1;
13183 tempreg = AT;
13184 if (small_offset_p (0, align, 16))
13185 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13186 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13187 else
13188 {
13189 load_address (tempreg, ep, &used_at);
13190 if (breg != 0)
13191 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13192 tempreg, tempreg, breg);
13193 }
13194 offset_reloc[0] = BFD_RELOC_LO16;
13195 offset_reloc[1] = BFD_RELOC_UNUSED;
13196 offset_reloc[2] = BFD_RELOC_UNUSED;
13197 breg = tempreg;
13198 tempreg = op[0];
13199 ep = &expr1;
13200 }
13201 else if (!ust && op[0] == breg)
13202 {
13203 used_at = 1;
13204 tempreg = AT;
13205 }
13206 else
13207 tempreg = op[0];
13208
13209 if (off == 1)
13210 goto ulh_sh;
13211
13212 if (!target_big_endian)
13213 ep->X_add_number += off;
13214 if (offbits == 12)
13215 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13216 else
13217 macro_build (ep, s, "t,o(b)", tempreg, -1,
13218 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13219
13220 if (!target_big_endian)
13221 ep->X_add_number -= off;
13222 else
13223 ep->X_add_number += off;
13224 if (offbits == 12)
13225 macro_build (NULL, s2, "t,~(b)",
13226 tempreg, (int) ep->X_add_number, breg);
13227 else
13228 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13229 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13230
13231 /* If necessary, move the result in tempreg to the final destination. */
13232 if (!ust && op[0] != tempreg)
13233 {
13234 /* Protect second load's delay slot. */
13235 load_delay_nop ();
13236 move_register (op[0], tempreg);
13237 }
13238 break;
13239
13240 ulh_sh:
13241 used_at = 1;
13242 if (target_big_endian == ust)
13243 ep->X_add_number += off;
13244 tempreg = ust || large_offset ? op[0] : AT;
13245 macro_build (ep, s, "t,o(b)", tempreg, -1,
13246 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13247
13248 /* For halfword transfers we need a temporary register to shuffle
13249 bytes. Unfortunately for M_USH_A we have none available before
13250 the next store as AT holds the base address. We deal with this
13251 case by clobbering TREG and then restoring it as with ULH. */
13252 tempreg = ust == large_offset ? op[0] : AT;
13253 if (ust)
13254 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13255
13256 if (target_big_endian == ust)
13257 ep->X_add_number -= off;
13258 else
13259 ep->X_add_number += off;
13260 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13261 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13262
13263 /* For M_USH_A re-retrieve the LSB. */
13264 if (ust && large_offset)
13265 {
13266 if (target_big_endian)
13267 ep->X_add_number += off;
13268 else
13269 ep->X_add_number -= off;
13270 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13271 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13272 }
13273 /* For ULH and M_USH_A OR the LSB in. */
13274 if (!ust || large_offset)
13275 {
13276 tempreg = !large_offset ? AT : op[0];
13277 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13278 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13279 }
13280 break;
13281
13282 default:
13283 /* FIXME: Check if this is one of the itbl macros, since they
13284 are added dynamically. */
13285 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13286 break;
13287 }
13288 if (!mips_opts.at && used_at)
13289 as_bad (_("macro used $at after \".set noat\""));
13290 }
13291
13292 /* Implement macros in mips16 mode. */
13293
13294 static void
13295 mips16_macro (struct mips_cl_insn *ip)
13296 {
13297 const struct mips_operand_array *operands;
13298 int mask;
13299 int tmp;
13300 expressionS expr1;
13301 int dbl;
13302 const char *s, *s2, *s3;
13303 unsigned int op[MAX_OPERANDS];
13304 unsigned int i;
13305
13306 mask = ip->insn_mo->mask;
13307
13308 operands = insn_operands (ip);
13309 for (i = 0; i < MAX_OPERANDS; i++)
13310 if (operands->operand[i])
13311 op[i] = insn_extract_operand (ip, operands->operand[i]);
13312 else
13313 op[i] = -1;
13314
13315 expr1.X_op = O_constant;
13316 expr1.X_op_symbol = NULL;
13317 expr1.X_add_symbol = NULL;
13318 expr1.X_add_number = 1;
13319
13320 dbl = 0;
13321
13322 switch (mask)
13323 {
13324 default:
13325 abort ();
13326
13327 case M_DDIV_3:
13328 dbl = 1;
13329 case M_DIV_3:
13330 s = "mflo";
13331 goto do_div3;
13332 case M_DREM_3:
13333 dbl = 1;
13334 case M_REM_3:
13335 s = "mfhi";
13336 do_div3:
13337 start_noreorder ();
13338 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13339 expr1.X_add_number = 2;
13340 macro_build (&expr1, "bnez", "x,p", op[2]);
13341 macro_build (NULL, "break", "6", 7);
13342
13343 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13344 since that causes an overflow. We should do that as well,
13345 but I don't see how to do the comparisons without a temporary
13346 register. */
13347 end_noreorder ();
13348 macro_build (NULL, s, "x", op[0]);
13349 break;
13350
13351 case M_DIVU_3:
13352 s = "divu";
13353 s2 = "mflo";
13354 goto do_divu3;
13355 case M_REMU_3:
13356 s = "divu";
13357 s2 = "mfhi";
13358 goto do_divu3;
13359 case M_DDIVU_3:
13360 s = "ddivu";
13361 s2 = "mflo";
13362 goto do_divu3;
13363 case M_DREMU_3:
13364 s = "ddivu";
13365 s2 = "mfhi";
13366 do_divu3:
13367 start_noreorder ();
13368 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13369 expr1.X_add_number = 2;
13370 macro_build (&expr1, "bnez", "x,p", op[2]);
13371 macro_build (NULL, "break", "6", 7);
13372 end_noreorder ();
13373 macro_build (NULL, s2, "x", op[0]);
13374 break;
13375
13376 case M_DMUL:
13377 dbl = 1;
13378 case M_MUL:
13379 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13380 macro_build (NULL, "mflo", "x", op[0]);
13381 break;
13382
13383 case M_DSUBU_I:
13384 dbl = 1;
13385 goto do_subu;
13386 case M_SUBU_I:
13387 do_subu:
13388 imm_expr.X_add_number = -imm_expr.X_add_number;
13389 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13390 break;
13391
13392 case M_SUBU_I_2:
13393 imm_expr.X_add_number = -imm_expr.X_add_number;
13394 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13395 break;
13396
13397 case M_DSUBU_I_2:
13398 imm_expr.X_add_number = -imm_expr.X_add_number;
13399 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13400 break;
13401
13402 case M_BEQ:
13403 s = "cmp";
13404 s2 = "bteqz";
13405 goto do_branch;
13406 case M_BNE:
13407 s = "cmp";
13408 s2 = "btnez";
13409 goto do_branch;
13410 case M_BLT:
13411 s = "slt";
13412 s2 = "btnez";
13413 goto do_branch;
13414 case M_BLTU:
13415 s = "sltu";
13416 s2 = "btnez";
13417 goto do_branch;
13418 case M_BLE:
13419 s = "slt";
13420 s2 = "bteqz";
13421 goto do_reverse_branch;
13422 case M_BLEU:
13423 s = "sltu";
13424 s2 = "bteqz";
13425 goto do_reverse_branch;
13426 case M_BGE:
13427 s = "slt";
13428 s2 = "bteqz";
13429 goto do_branch;
13430 case M_BGEU:
13431 s = "sltu";
13432 s2 = "bteqz";
13433 goto do_branch;
13434 case M_BGT:
13435 s = "slt";
13436 s2 = "btnez";
13437 goto do_reverse_branch;
13438 case M_BGTU:
13439 s = "sltu";
13440 s2 = "btnez";
13441
13442 do_reverse_branch:
13443 tmp = op[1];
13444 op[1] = op[0];
13445 op[0] = tmp;
13446
13447 do_branch:
13448 macro_build (NULL, s, "x,y", op[0], op[1]);
13449 macro_build (&offset_expr, s2, "p");
13450 break;
13451
13452 case M_BEQ_I:
13453 s = "cmpi";
13454 s2 = "bteqz";
13455 s3 = "x,U";
13456 goto do_branch_i;
13457 case M_BNE_I:
13458 s = "cmpi";
13459 s2 = "btnez";
13460 s3 = "x,U";
13461 goto do_branch_i;
13462 case M_BLT_I:
13463 s = "slti";
13464 s2 = "btnez";
13465 s3 = "x,8";
13466 goto do_branch_i;
13467 case M_BLTU_I:
13468 s = "sltiu";
13469 s2 = "btnez";
13470 s3 = "x,8";
13471 goto do_branch_i;
13472 case M_BLE_I:
13473 s = "slti";
13474 s2 = "btnez";
13475 s3 = "x,8";
13476 goto do_addone_branch_i;
13477 case M_BLEU_I:
13478 s = "sltiu";
13479 s2 = "btnez";
13480 s3 = "x,8";
13481 goto do_addone_branch_i;
13482 case M_BGE_I:
13483 s = "slti";
13484 s2 = "bteqz";
13485 s3 = "x,8";
13486 goto do_branch_i;
13487 case M_BGEU_I:
13488 s = "sltiu";
13489 s2 = "bteqz";
13490 s3 = "x,8";
13491 goto do_branch_i;
13492 case M_BGT_I:
13493 s = "slti";
13494 s2 = "bteqz";
13495 s3 = "x,8";
13496 goto do_addone_branch_i;
13497 case M_BGTU_I:
13498 s = "sltiu";
13499 s2 = "bteqz";
13500 s3 = "x,8";
13501
13502 do_addone_branch_i:
13503 ++imm_expr.X_add_number;
13504
13505 do_branch_i:
13506 macro_build (&imm_expr, s, s3, op[0]);
13507 macro_build (&offset_expr, s2, "p");
13508 break;
13509
13510 case M_ABS:
13511 expr1.X_add_number = 0;
13512 macro_build (&expr1, "slti", "x,8", op[1]);
13513 if (op[0] != op[1])
13514 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13515 expr1.X_add_number = 2;
13516 macro_build (&expr1, "bteqz", "p");
13517 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13518 break;
13519 }
13520 }
13521
13522 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13523 opcode bits in *OPCODE_EXTRA. */
13524
13525 static struct mips_opcode *
13526 mips_lookup_insn (struct hash_control *hash, const char *start,
13527 ssize_t length, unsigned int *opcode_extra)
13528 {
13529 char *name, *dot, *p;
13530 unsigned int mask, suffix;
13531 ssize_t opend;
13532 struct mips_opcode *insn;
13533
13534 /* Make a copy of the instruction so that we can fiddle with it. */
13535 name = xstrndup (start, length);
13536
13537 /* Look up the instruction as-is. */
13538 insn = (struct mips_opcode *) hash_find (hash, name);
13539 if (insn)
13540 goto end;
13541
13542 dot = strchr (name, '.');
13543 if (dot && dot[1])
13544 {
13545 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13546 p = mips_parse_vu0_channels (dot + 1, &mask);
13547 if (*p == 0 && mask != 0)
13548 {
13549 *dot = 0;
13550 insn = (struct mips_opcode *) hash_find (hash, name);
13551 *dot = '.';
13552 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13553 {
13554 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13555 goto end;
13556 }
13557 }
13558 }
13559
13560 if (mips_opts.micromips)
13561 {
13562 /* See if there's an instruction size override suffix,
13563 either `16' or `32', at the end of the mnemonic proper,
13564 that defines the operation, i.e. before the first `.'
13565 character if any. Strip it and retry. */
13566 opend = dot != NULL ? dot - name : length;
13567 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13568 suffix = 2;
13569 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13570 suffix = 4;
13571 else
13572 suffix = 0;
13573 if (suffix)
13574 {
13575 memcpy (name + opend - 2, name + opend, length - opend + 1);
13576 insn = (struct mips_opcode *) hash_find (hash, name);
13577 if (insn)
13578 {
13579 forced_insn_length = suffix;
13580 goto end;
13581 }
13582 }
13583 }
13584
13585 insn = NULL;
13586 end:
13587 free (name);
13588 return insn;
13589 }
13590
13591 /* Assemble an instruction into its binary format. If the instruction
13592 is a macro, set imm_expr and offset_expr to the values associated
13593 with "I" and "A" operands respectively. Otherwise store the value
13594 of the relocatable field (if any) in offset_expr. In both cases
13595 set offset_reloc to the relocation operators applied to offset_expr. */
13596
13597 static void
13598 mips_ip (char *str, struct mips_cl_insn *insn)
13599 {
13600 const struct mips_opcode *first, *past;
13601 struct hash_control *hash;
13602 char format;
13603 size_t end;
13604 struct mips_operand_token *tokens;
13605 unsigned int opcode_extra;
13606
13607 if (mips_opts.micromips)
13608 {
13609 hash = micromips_op_hash;
13610 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13611 }
13612 else
13613 {
13614 hash = op_hash;
13615 past = &mips_opcodes[NUMOPCODES];
13616 }
13617 forced_insn_length = 0;
13618 opcode_extra = 0;
13619
13620 /* We first try to match an instruction up to a space or to the end. */
13621 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13622 continue;
13623
13624 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13625 if (first == NULL)
13626 {
13627 set_insn_error (0, _("unrecognized opcode"));
13628 return;
13629 }
13630
13631 if (strcmp (first->name, "li.s") == 0)
13632 format = 'f';
13633 else if (strcmp (first->name, "li.d") == 0)
13634 format = 'd';
13635 else
13636 format = 0;
13637 tokens = mips_parse_arguments (str + end, format);
13638 if (!tokens)
13639 return;
13640
13641 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13642 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13643 set_insn_error (0, _("invalid operands"));
13644
13645 obstack_free (&mips_operand_tokens, tokens);
13646 }
13647
13648 /* As for mips_ip, but used when assembling MIPS16 code.
13649 Also set forced_insn_length to the resulting instruction size in
13650 bytes if the user explicitly requested a small or extended instruction. */
13651
13652 static void
13653 mips16_ip (char *str, struct mips_cl_insn *insn)
13654 {
13655 char *end, *s, c;
13656 struct mips_opcode *first;
13657 struct mips_operand_token *tokens;
13658
13659 forced_insn_length = 0;
13660
13661 for (s = str; ISLOWER (*s); ++s)
13662 ;
13663 end = s;
13664 c = *end;
13665 switch (c)
13666 {
13667 case '\0':
13668 break;
13669
13670 case ' ':
13671 s++;
13672 break;
13673
13674 case '.':
13675 if (s[1] == 't' && s[2] == ' ')
13676 {
13677 forced_insn_length = 2;
13678 s += 3;
13679 break;
13680 }
13681 else if (s[1] == 'e' && s[2] == ' ')
13682 {
13683 forced_insn_length = 4;
13684 s += 3;
13685 break;
13686 }
13687 /* Fall through. */
13688 default:
13689 set_insn_error (0, _("unrecognized opcode"));
13690 return;
13691 }
13692
13693 if (mips_opts.noautoextend && !forced_insn_length)
13694 forced_insn_length = 2;
13695
13696 *end = 0;
13697 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13698 *end = c;
13699
13700 if (!first)
13701 {
13702 set_insn_error (0, _("unrecognized opcode"));
13703 return;
13704 }
13705
13706 tokens = mips_parse_arguments (s, 0);
13707 if (!tokens)
13708 return;
13709
13710 if (!match_mips16_insns (insn, first, tokens))
13711 set_insn_error (0, _("invalid operands"));
13712
13713 obstack_free (&mips_operand_tokens, tokens);
13714 }
13715
13716 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13717 NBITS is the number of significant bits in VAL. */
13718
13719 static unsigned long
13720 mips16_immed_extend (offsetT val, unsigned int nbits)
13721 {
13722 int extval;
13723 if (nbits == 16)
13724 {
13725 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13726 val &= 0x1f;
13727 }
13728 else if (nbits == 15)
13729 {
13730 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13731 val &= 0xf;
13732 }
13733 else
13734 {
13735 extval = ((val & 0x1f) << 6) | (val & 0x20);
13736 val = 0;
13737 }
13738 return (extval << 16) | val;
13739 }
13740
13741 /* Like decode_mips16_operand, but require the operand to be defined and
13742 require it to be an integer. */
13743
13744 static const struct mips_int_operand *
13745 mips16_immed_operand (int type, bfd_boolean extended_p)
13746 {
13747 const struct mips_operand *operand;
13748
13749 operand = decode_mips16_operand (type, extended_p);
13750 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13751 abort ();
13752 return (const struct mips_int_operand *) operand;
13753 }
13754
13755 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13756
13757 static bfd_boolean
13758 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13759 bfd_reloc_code_real_type reloc, offsetT sval)
13760 {
13761 int min_val, max_val;
13762
13763 min_val = mips_int_operand_min (operand);
13764 max_val = mips_int_operand_max (operand);
13765 if (reloc != BFD_RELOC_UNUSED)
13766 {
13767 if (min_val < 0)
13768 sval = SEXT_16BIT (sval);
13769 else
13770 sval &= 0xffff;
13771 }
13772
13773 return (sval >= min_val
13774 && sval <= max_val
13775 && (sval & ((1 << operand->shift) - 1)) == 0);
13776 }
13777
13778 /* Install immediate value VAL into MIPS16 instruction *INSN,
13779 extending it if necessary. The instruction in *INSN may
13780 already be extended.
13781
13782 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13783 if none. In the former case, VAL is a 16-bit number with no
13784 defined signedness.
13785
13786 TYPE is the type of the immediate field. USER_INSN_LENGTH
13787 is the length that the user requested, or 0 if none. */
13788
13789 static void
13790 mips16_immed (const char *file, unsigned int line, int type,
13791 bfd_reloc_code_real_type reloc, offsetT val,
13792 unsigned int user_insn_length, unsigned long *insn)
13793 {
13794 const struct mips_int_operand *operand;
13795 unsigned int uval, length;
13796
13797 operand = mips16_immed_operand (type, FALSE);
13798 if (!mips16_immed_in_range_p (operand, reloc, val))
13799 {
13800 /* We need an extended instruction. */
13801 if (user_insn_length == 2)
13802 as_bad_where (file, line, _("invalid unextended operand value"));
13803 else
13804 *insn |= MIPS16_EXTEND;
13805 }
13806 else if (user_insn_length == 4)
13807 {
13808 /* The operand doesn't force an unextended instruction to be extended.
13809 Warn if the user wanted an extended instruction anyway. */
13810 *insn |= MIPS16_EXTEND;
13811 as_warn_where (file, line,
13812 _("extended operand requested but not required"));
13813 }
13814
13815 length = mips16_opcode_length (*insn);
13816 if (length == 4)
13817 {
13818 operand = mips16_immed_operand (type, TRUE);
13819 if (!mips16_immed_in_range_p (operand, reloc, val))
13820 as_bad_where (file, line,
13821 _("operand value out of range for instruction"));
13822 }
13823 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13824 if (length == 2)
13825 *insn = mips_insert_operand (&operand->root, *insn, uval);
13826 else
13827 *insn |= mips16_immed_extend (uval, operand->root.size);
13828 }
13829 \f
13830 struct percent_op_match
13831 {
13832 const char *str;
13833 bfd_reloc_code_real_type reloc;
13834 };
13835
13836 static const struct percent_op_match mips_percent_op[] =
13837 {
13838 {"%lo", BFD_RELOC_LO16},
13839 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13840 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13841 {"%call16", BFD_RELOC_MIPS_CALL16},
13842 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13843 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13844 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13845 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13846 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13847 {"%got", BFD_RELOC_MIPS_GOT16},
13848 {"%gp_rel", BFD_RELOC_GPREL16},
13849 {"%half", BFD_RELOC_16},
13850 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13851 {"%higher", BFD_RELOC_MIPS_HIGHER},
13852 {"%neg", BFD_RELOC_MIPS_SUB},
13853 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13854 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13855 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13856 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13857 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13858 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13859 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13860 {"%hi", BFD_RELOC_HI16_S},
13861 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13862 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13863 };
13864
13865 static const struct percent_op_match mips16_percent_op[] =
13866 {
13867 {"%lo", BFD_RELOC_MIPS16_LO16},
13868 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13869 {"%got", BFD_RELOC_MIPS16_GOT16},
13870 {"%call16", BFD_RELOC_MIPS16_CALL16},
13871 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13872 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13873 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13874 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13875 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13876 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13877 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13878 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13879 };
13880
13881
13882 /* Return true if *STR points to a relocation operator. When returning true,
13883 move *STR over the operator and store its relocation code in *RELOC.
13884 Leave both *STR and *RELOC alone when returning false. */
13885
13886 static bfd_boolean
13887 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13888 {
13889 const struct percent_op_match *percent_op;
13890 size_t limit, i;
13891
13892 if (mips_opts.mips16)
13893 {
13894 percent_op = mips16_percent_op;
13895 limit = ARRAY_SIZE (mips16_percent_op);
13896 }
13897 else
13898 {
13899 percent_op = mips_percent_op;
13900 limit = ARRAY_SIZE (mips_percent_op);
13901 }
13902
13903 for (i = 0; i < limit; i++)
13904 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13905 {
13906 int len = strlen (percent_op[i].str);
13907
13908 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13909 continue;
13910
13911 *str += strlen (percent_op[i].str);
13912 *reloc = percent_op[i].reloc;
13913
13914 /* Check whether the output BFD supports this relocation.
13915 If not, issue an error and fall back on something safe. */
13916 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13917 {
13918 as_bad (_("relocation %s isn't supported by the current ABI"),
13919 percent_op[i].str);
13920 *reloc = BFD_RELOC_UNUSED;
13921 }
13922 return TRUE;
13923 }
13924 return FALSE;
13925 }
13926
13927
13928 /* Parse string STR as a 16-bit relocatable operand. Store the
13929 expression in *EP and the relocations in the array starting
13930 at RELOC. Return the number of relocation operators used.
13931
13932 On exit, EXPR_END points to the first character after the expression. */
13933
13934 static size_t
13935 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13936 char *str)
13937 {
13938 bfd_reloc_code_real_type reversed_reloc[3];
13939 size_t reloc_index, i;
13940 int crux_depth, str_depth;
13941 char *crux;
13942
13943 /* Search for the start of the main expression, recoding relocations
13944 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13945 of the main expression and with CRUX_DEPTH containing the number
13946 of open brackets at that point. */
13947 reloc_index = -1;
13948 str_depth = 0;
13949 do
13950 {
13951 reloc_index++;
13952 crux = str;
13953 crux_depth = str_depth;
13954
13955 /* Skip over whitespace and brackets, keeping count of the number
13956 of brackets. */
13957 while (*str == ' ' || *str == '\t' || *str == '(')
13958 if (*str++ == '(')
13959 str_depth++;
13960 }
13961 while (*str == '%'
13962 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13963 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13964
13965 my_getExpression (ep, crux);
13966 str = expr_end;
13967
13968 /* Match every open bracket. */
13969 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13970 if (*str++ == ')')
13971 crux_depth--;
13972
13973 if (crux_depth > 0)
13974 as_bad (_("unclosed '('"));
13975
13976 expr_end = str;
13977
13978 if (reloc_index != 0)
13979 {
13980 prev_reloc_op_frag = frag_now;
13981 for (i = 0; i < reloc_index; i++)
13982 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13983 }
13984
13985 return reloc_index;
13986 }
13987
13988 static void
13989 my_getExpression (expressionS *ep, char *str)
13990 {
13991 char *save_in;
13992
13993 save_in = input_line_pointer;
13994 input_line_pointer = str;
13995 expression (ep);
13996 expr_end = input_line_pointer;
13997 input_line_pointer = save_in;
13998 }
13999
14000 const char *
14001 md_atof (int type, char *litP, int *sizeP)
14002 {
14003 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14004 }
14005
14006 void
14007 md_number_to_chars (char *buf, valueT val, int n)
14008 {
14009 if (target_big_endian)
14010 number_to_chars_bigendian (buf, val, n);
14011 else
14012 number_to_chars_littleendian (buf, val, n);
14013 }
14014 \f
14015 static int support_64bit_objects(void)
14016 {
14017 const char **list, **l;
14018 int yes;
14019
14020 list = bfd_target_list ();
14021 for (l = list; *l != NULL; l++)
14022 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14023 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14024 break;
14025 yes = (*l != NULL);
14026 free (list);
14027 return yes;
14028 }
14029
14030 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14031 NEW_VALUE. Warn if another value was already specified. Note:
14032 we have to defer parsing the -march and -mtune arguments in order
14033 to handle 'from-abi' correctly, since the ABI might be specified
14034 in a later argument. */
14035
14036 static void
14037 mips_set_option_string (const char **string_ptr, const char *new_value)
14038 {
14039 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14040 as_warn (_("a different %s was already specified, is now %s"),
14041 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14042 new_value);
14043
14044 *string_ptr = new_value;
14045 }
14046
14047 int
14048 md_parse_option (int c, const char *arg)
14049 {
14050 unsigned int i;
14051
14052 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14053 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14054 {
14055 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14056 c == mips_ases[i].option_on);
14057 return 1;
14058 }
14059
14060 switch (c)
14061 {
14062 case OPTION_CONSTRUCT_FLOATS:
14063 mips_disable_float_construction = 0;
14064 break;
14065
14066 case OPTION_NO_CONSTRUCT_FLOATS:
14067 mips_disable_float_construction = 1;
14068 break;
14069
14070 case OPTION_TRAP:
14071 mips_trap = 1;
14072 break;
14073
14074 case OPTION_BREAK:
14075 mips_trap = 0;
14076 break;
14077
14078 case OPTION_EB:
14079 target_big_endian = 1;
14080 break;
14081
14082 case OPTION_EL:
14083 target_big_endian = 0;
14084 break;
14085
14086 case 'O':
14087 if (arg == NULL)
14088 mips_optimize = 1;
14089 else if (arg[0] == '0')
14090 mips_optimize = 0;
14091 else if (arg[0] == '1')
14092 mips_optimize = 1;
14093 else
14094 mips_optimize = 2;
14095 break;
14096
14097 case 'g':
14098 if (arg == NULL)
14099 mips_debug = 2;
14100 else
14101 mips_debug = atoi (arg);
14102 break;
14103
14104 case OPTION_MIPS1:
14105 file_mips_opts.isa = ISA_MIPS1;
14106 break;
14107
14108 case OPTION_MIPS2:
14109 file_mips_opts.isa = ISA_MIPS2;
14110 break;
14111
14112 case OPTION_MIPS3:
14113 file_mips_opts.isa = ISA_MIPS3;
14114 break;
14115
14116 case OPTION_MIPS4:
14117 file_mips_opts.isa = ISA_MIPS4;
14118 break;
14119
14120 case OPTION_MIPS5:
14121 file_mips_opts.isa = ISA_MIPS5;
14122 break;
14123
14124 case OPTION_MIPS32:
14125 file_mips_opts.isa = ISA_MIPS32;
14126 break;
14127
14128 case OPTION_MIPS32R2:
14129 file_mips_opts.isa = ISA_MIPS32R2;
14130 break;
14131
14132 case OPTION_MIPS32R3:
14133 file_mips_opts.isa = ISA_MIPS32R3;
14134 break;
14135
14136 case OPTION_MIPS32R5:
14137 file_mips_opts.isa = ISA_MIPS32R5;
14138 break;
14139
14140 case OPTION_MIPS32R6:
14141 file_mips_opts.isa = ISA_MIPS32R6;
14142 break;
14143
14144 case OPTION_MIPS64R2:
14145 file_mips_opts.isa = ISA_MIPS64R2;
14146 break;
14147
14148 case OPTION_MIPS64R3:
14149 file_mips_opts.isa = ISA_MIPS64R3;
14150 break;
14151
14152 case OPTION_MIPS64R5:
14153 file_mips_opts.isa = ISA_MIPS64R5;
14154 break;
14155
14156 case OPTION_MIPS64R6:
14157 file_mips_opts.isa = ISA_MIPS64R6;
14158 break;
14159
14160 case OPTION_MIPS64:
14161 file_mips_opts.isa = ISA_MIPS64;
14162 break;
14163
14164 case OPTION_MTUNE:
14165 mips_set_option_string (&mips_tune_string, arg);
14166 break;
14167
14168 case OPTION_MARCH:
14169 mips_set_option_string (&mips_arch_string, arg);
14170 break;
14171
14172 case OPTION_M4650:
14173 mips_set_option_string (&mips_arch_string, "4650");
14174 mips_set_option_string (&mips_tune_string, "4650");
14175 break;
14176
14177 case OPTION_NO_M4650:
14178 break;
14179
14180 case OPTION_M4010:
14181 mips_set_option_string (&mips_arch_string, "4010");
14182 mips_set_option_string (&mips_tune_string, "4010");
14183 break;
14184
14185 case OPTION_NO_M4010:
14186 break;
14187
14188 case OPTION_M4100:
14189 mips_set_option_string (&mips_arch_string, "4100");
14190 mips_set_option_string (&mips_tune_string, "4100");
14191 break;
14192
14193 case OPTION_NO_M4100:
14194 break;
14195
14196 case OPTION_M3900:
14197 mips_set_option_string (&mips_arch_string, "3900");
14198 mips_set_option_string (&mips_tune_string, "3900");
14199 break;
14200
14201 case OPTION_NO_M3900:
14202 break;
14203
14204 case OPTION_MICROMIPS:
14205 if (file_mips_opts.mips16 == 1)
14206 {
14207 as_bad (_("-mmicromips cannot be used with -mips16"));
14208 return 0;
14209 }
14210 file_mips_opts.micromips = 1;
14211 mips_no_prev_insn ();
14212 break;
14213
14214 case OPTION_NO_MICROMIPS:
14215 file_mips_opts.micromips = 0;
14216 mips_no_prev_insn ();
14217 break;
14218
14219 case OPTION_MIPS16:
14220 if (file_mips_opts.micromips == 1)
14221 {
14222 as_bad (_("-mips16 cannot be used with -micromips"));
14223 return 0;
14224 }
14225 file_mips_opts.mips16 = 1;
14226 mips_no_prev_insn ();
14227 break;
14228
14229 case OPTION_NO_MIPS16:
14230 file_mips_opts.mips16 = 0;
14231 mips_no_prev_insn ();
14232 break;
14233
14234 case OPTION_FIX_24K:
14235 mips_fix_24k = 1;
14236 break;
14237
14238 case OPTION_NO_FIX_24K:
14239 mips_fix_24k = 0;
14240 break;
14241
14242 case OPTION_FIX_RM7000:
14243 mips_fix_rm7000 = 1;
14244 break;
14245
14246 case OPTION_NO_FIX_RM7000:
14247 mips_fix_rm7000 = 0;
14248 break;
14249
14250 case OPTION_FIX_LOONGSON2F_JUMP:
14251 mips_fix_loongson2f_jump = TRUE;
14252 break;
14253
14254 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14255 mips_fix_loongson2f_jump = FALSE;
14256 break;
14257
14258 case OPTION_FIX_LOONGSON2F_NOP:
14259 mips_fix_loongson2f_nop = TRUE;
14260 break;
14261
14262 case OPTION_NO_FIX_LOONGSON2F_NOP:
14263 mips_fix_loongson2f_nop = FALSE;
14264 break;
14265
14266 case OPTION_FIX_VR4120:
14267 mips_fix_vr4120 = 1;
14268 break;
14269
14270 case OPTION_NO_FIX_VR4120:
14271 mips_fix_vr4120 = 0;
14272 break;
14273
14274 case OPTION_FIX_VR4130:
14275 mips_fix_vr4130 = 1;
14276 break;
14277
14278 case OPTION_NO_FIX_VR4130:
14279 mips_fix_vr4130 = 0;
14280 break;
14281
14282 case OPTION_FIX_CN63XXP1:
14283 mips_fix_cn63xxp1 = TRUE;
14284 break;
14285
14286 case OPTION_NO_FIX_CN63XXP1:
14287 mips_fix_cn63xxp1 = FALSE;
14288 break;
14289
14290 case OPTION_RELAX_BRANCH:
14291 mips_relax_branch = 1;
14292 break;
14293
14294 case OPTION_NO_RELAX_BRANCH:
14295 mips_relax_branch = 0;
14296 break;
14297
14298 case OPTION_INSN32:
14299 file_mips_opts.insn32 = TRUE;
14300 break;
14301
14302 case OPTION_NO_INSN32:
14303 file_mips_opts.insn32 = FALSE;
14304 break;
14305
14306 case OPTION_MSHARED:
14307 mips_in_shared = TRUE;
14308 break;
14309
14310 case OPTION_MNO_SHARED:
14311 mips_in_shared = FALSE;
14312 break;
14313
14314 case OPTION_MSYM32:
14315 file_mips_opts.sym32 = TRUE;
14316 break;
14317
14318 case OPTION_MNO_SYM32:
14319 file_mips_opts.sym32 = FALSE;
14320 break;
14321
14322 /* When generating ELF code, we permit -KPIC and -call_shared to
14323 select SVR4_PIC, and -non_shared to select no PIC. This is
14324 intended to be compatible with Irix 5. */
14325 case OPTION_CALL_SHARED:
14326 mips_pic = SVR4_PIC;
14327 mips_abicalls = TRUE;
14328 break;
14329
14330 case OPTION_CALL_NONPIC:
14331 mips_pic = NO_PIC;
14332 mips_abicalls = TRUE;
14333 break;
14334
14335 case OPTION_NON_SHARED:
14336 mips_pic = NO_PIC;
14337 mips_abicalls = FALSE;
14338 break;
14339
14340 /* The -xgot option tells the assembler to use 32 bit offsets
14341 when accessing the got in SVR4_PIC mode. It is for Irix
14342 compatibility. */
14343 case OPTION_XGOT:
14344 mips_big_got = 1;
14345 break;
14346
14347 case 'G':
14348 g_switch_value = atoi (arg);
14349 g_switch_seen = 1;
14350 break;
14351
14352 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14353 and -mabi=64. */
14354 case OPTION_32:
14355 mips_abi = O32_ABI;
14356 break;
14357
14358 case OPTION_N32:
14359 mips_abi = N32_ABI;
14360 break;
14361
14362 case OPTION_64:
14363 mips_abi = N64_ABI;
14364 if (!support_64bit_objects())
14365 as_fatal (_("no compiled in support for 64 bit object file format"));
14366 break;
14367
14368 case OPTION_GP32:
14369 file_mips_opts.gp = 32;
14370 break;
14371
14372 case OPTION_GP64:
14373 file_mips_opts.gp = 64;
14374 break;
14375
14376 case OPTION_FP32:
14377 file_mips_opts.fp = 32;
14378 break;
14379
14380 case OPTION_FPXX:
14381 file_mips_opts.fp = 0;
14382 break;
14383
14384 case OPTION_FP64:
14385 file_mips_opts.fp = 64;
14386 break;
14387
14388 case OPTION_ODD_SPREG:
14389 file_mips_opts.oddspreg = 1;
14390 break;
14391
14392 case OPTION_NO_ODD_SPREG:
14393 file_mips_opts.oddspreg = 0;
14394 break;
14395
14396 case OPTION_SINGLE_FLOAT:
14397 file_mips_opts.single_float = 1;
14398 break;
14399
14400 case OPTION_DOUBLE_FLOAT:
14401 file_mips_opts.single_float = 0;
14402 break;
14403
14404 case OPTION_SOFT_FLOAT:
14405 file_mips_opts.soft_float = 1;
14406 break;
14407
14408 case OPTION_HARD_FLOAT:
14409 file_mips_opts.soft_float = 0;
14410 break;
14411
14412 case OPTION_MABI:
14413 if (strcmp (arg, "32") == 0)
14414 mips_abi = O32_ABI;
14415 else if (strcmp (arg, "o64") == 0)
14416 mips_abi = O64_ABI;
14417 else if (strcmp (arg, "n32") == 0)
14418 mips_abi = N32_ABI;
14419 else if (strcmp (arg, "64") == 0)
14420 {
14421 mips_abi = N64_ABI;
14422 if (! support_64bit_objects())
14423 as_fatal (_("no compiled in support for 64 bit object file "
14424 "format"));
14425 }
14426 else if (strcmp (arg, "eabi") == 0)
14427 mips_abi = EABI_ABI;
14428 else
14429 {
14430 as_fatal (_("invalid abi -mabi=%s"), arg);
14431 return 0;
14432 }
14433 break;
14434
14435 case OPTION_M7000_HILO_FIX:
14436 mips_7000_hilo_fix = TRUE;
14437 break;
14438
14439 case OPTION_MNO_7000_HILO_FIX:
14440 mips_7000_hilo_fix = FALSE;
14441 break;
14442
14443 case OPTION_MDEBUG:
14444 mips_flag_mdebug = TRUE;
14445 break;
14446
14447 case OPTION_NO_MDEBUG:
14448 mips_flag_mdebug = FALSE;
14449 break;
14450
14451 case OPTION_PDR:
14452 mips_flag_pdr = TRUE;
14453 break;
14454
14455 case OPTION_NO_PDR:
14456 mips_flag_pdr = FALSE;
14457 break;
14458
14459 case OPTION_MVXWORKS_PIC:
14460 mips_pic = VXWORKS_PIC;
14461 break;
14462
14463 case OPTION_NAN:
14464 if (strcmp (arg, "2008") == 0)
14465 mips_nan2008 = 1;
14466 else if (strcmp (arg, "legacy") == 0)
14467 mips_nan2008 = 0;
14468 else
14469 {
14470 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14471 return 0;
14472 }
14473 break;
14474
14475 default:
14476 return 0;
14477 }
14478
14479 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14480
14481 return 1;
14482 }
14483 \f
14484 /* Set up globals to tune for the ISA or processor described by INFO. */
14485
14486 static void
14487 mips_set_tune (const struct mips_cpu_info *info)
14488 {
14489 if (info != 0)
14490 mips_tune = info->cpu;
14491 }
14492
14493
14494 void
14495 mips_after_parse_args (void)
14496 {
14497 const struct mips_cpu_info *arch_info = 0;
14498 const struct mips_cpu_info *tune_info = 0;
14499
14500 /* GP relative stuff not working for PE */
14501 if (strncmp (TARGET_OS, "pe", 2) == 0)
14502 {
14503 if (g_switch_seen && g_switch_value != 0)
14504 as_bad (_("-G not supported in this configuration"));
14505 g_switch_value = 0;
14506 }
14507
14508 if (mips_abi == NO_ABI)
14509 mips_abi = MIPS_DEFAULT_ABI;
14510
14511 /* The following code determines the architecture.
14512 Similar code was added to GCC 3.3 (see override_options() in
14513 config/mips/mips.c). The GAS and GCC code should be kept in sync
14514 as much as possible. */
14515
14516 if (mips_arch_string != 0)
14517 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14518
14519 if (file_mips_opts.isa != ISA_UNKNOWN)
14520 {
14521 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14522 ISA level specified by -mipsN, while arch_info->isa contains
14523 the -march selection (if any). */
14524 if (arch_info != 0)
14525 {
14526 /* -march takes precedence over -mipsN, since it is more descriptive.
14527 There's no harm in specifying both as long as the ISA levels
14528 are the same. */
14529 if (file_mips_opts.isa != arch_info->isa)
14530 as_bad (_("-%s conflicts with the other architecture options,"
14531 " which imply -%s"),
14532 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14533 mips_cpu_info_from_isa (arch_info->isa)->name);
14534 }
14535 else
14536 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14537 }
14538
14539 if (arch_info == 0)
14540 {
14541 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14542 gas_assert (arch_info);
14543 }
14544
14545 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14546 as_bad (_("-march=%s is not compatible with the selected ABI"),
14547 arch_info->name);
14548
14549 file_mips_opts.arch = arch_info->cpu;
14550 file_mips_opts.isa = arch_info->isa;
14551
14552 /* Set up initial mips_opts state. */
14553 mips_opts = file_mips_opts;
14554
14555 /* The register size inference code is now placed in
14556 file_mips_check_options. */
14557
14558 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14559 processor. */
14560 if (mips_tune_string != 0)
14561 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14562
14563 if (tune_info == 0)
14564 mips_set_tune (arch_info);
14565 else
14566 mips_set_tune (tune_info);
14567
14568 if (mips_flag_mdebug < 0)
14569 mips_flag_mdebug = 0;
14570 }
14571 \f
14572 void
14573 mips_init_after_args (void)
14574 {
14575 /* initialize opcodes */
14576 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14577 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14578 }
14579
14580 long
14581 md_pcrel_from (fixS *fixP)
14582 {
14583 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14584 switch (fixP->fx_r_type)
14585 {
14586 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14587 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14588 /* Return the address of the delay slot. */
14589 return addr + 2;
14590
14591 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14592 case BFD_RELOC_MICROMIPS_JMP:
14593 case BFD_RELOC_16_PCREL_S2:
14594 case BFD_RELOC_MIPS_21_PCREL_S2:
14595 case BFD_RELOC_MIPS_26_PCREL_S2:
14596 case BFD_RELOC_MIPS_JMP:
14597 /* Return the address of the delay slot. */
14598 return addr + 4;
14599
14600 default:
14601 return addr;
14602 }
14603 }
14604
14605 /* This is called before the symbol table is processed. In order to
14606 work with gcc when using mips-tfile, we must keep all local labels.
14607 However, in other cases, we want to discard them. If we were
14608 called with -g, but we didn't see any debugging information, it may
14609 mean that gcc is smuggling debugging information through to
14610 mips-tfile, in which case we must generate all local labels. */
14611
14612 void
14613 mips_frob_file_before_adjust (void)
14614 {
14615 #ifndef NO_ECOFF_DEBUGGING
14616 if (ECOFF_DEBUGGING
14617 && mips_debug != 0
14618 && ! ecoff_debugging_seen)
14619 flag_keep_locals = 1;
14620 #endif
14621 }
14622
14623 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14624 the corresponding LO16 reloc. This is called before md_apply_fix and
14625 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14626 relocation operators.
14627
14628 For our purposes, a %lo() expression matches a %got() or %hi()
14629 expression if:
14630
14631 (a) it refers to the same symbol; and
14632 (b) the offset applied in the %lo() expression is no lower than
14633 the offset applied in the %got() or %hi().
14634
14635 (b) allows us to cope with code like:
14636
14637 lui $4,%hi(foo)
14638 lh $4,%lo(foo+2)($4)
14639
14640 ...which is legal on RELA targets, and has a well-defined behaviour
14641 if the user knows that adding 2 to "foo" will not induce a carry to
14642 the high 16 bits.
14643
14644 When several %lo()s match a particular %got() or %hi(), we use the
14645 following rules to distinguish them:
14646
14647 (1) %lo()s with smaller offsets are a better match than %lo()s with
14648 higher offsets.
14649
14650 (2) %lo()s with no matching %got() or %hi() are better than those
14651 that already have a matching %got() or %hi().
14652
14653 (3) later %lo()s are better than earlier %lo()s.
14654
14655 These rules are applied in order.
14656
14657 (1) means, among other things, that %lo()s with identical offsets are
14658 chosen if they exist.
14659
14660 (2) means that we won't associate several high-part relocations with
14661 the same low-part relocation unless there's no alternative. Having
14662 several high parts for the same low part is a GNU extension; this rule
14663 allows careful users to avoid it.
14664
14665 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14666 with the last high-part relocation being at the front of the list.
14667 It therefore makes sense to choose the last matching low-part
14668 relocation, all other things being equal. It's also easier
14669 to code that way. */
14670
14671 void
14672 mips_frob_file (void)
14673 {
14674 struct mips_hi_fixup *l;
14675 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14676
14677 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14678 {
14679 segment_info_type *seginfo;
14680 bfd_boolean matched_lo_p;
14681 fixS **hi_pos, **lo_pos, **pos;
14682
14683 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14684
14685 /* If a GOT16 relocation turns out to be against a global symbol,
14686 there isn't supposed to be a matching LO. Ignore %gots against
14687 constants; we'll report an error for those later. */
14688 if (got16_reloc_p (l->fixp->fx_r_type)
14689 && !(l->fixp->fx_addsy
14690 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14691 continue;
14692
14693 /* Check quickly whether the next fixup happens to be a matching %lo. */
14694 if (fixup_has_matching_lo_p (l->fixp))
14695 continue;
14696
14697 seginfo = seg_info (l->seg);
14698
14699 /* Set HI_POS to the position of this relocation in the chain.
14700 Set LO_POS to the position of the chosen low-part relocation.
14701 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14702 relocation that matches an immediately-preceding high-part
14703 relocation. */
14704 hi_pos = NULL;
14705 lo_pos = NULL;
14706 matched_lo_p = FALSE;
14707 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14708
14709 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14710 {
14711 if (*pos == l->fixp)
14712 hi_pos = pos;
14713
14714 if ((*pos)->fx_r_type == looking_for_rtype
14715 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14716 && (*pos)->fx_offset >= l->fixp->fx_offset
14717 && (lo_pos == NULL
14718 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14719 || (!matched_lo_p
14720 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14721 lo_pos = pos;
14722
14723 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14724 && fixup_has_matching_lo_p (*pos));
14725 }
14726
14727 /* If we found a match, remove the high-part relocation from its
14728 current position and insert it before the low-part relocation.
14729 Make the offsets match so that fixup_has_matching_lo_p()
14730 will return true.
14731
14732 We don't warn about unmatched high-part relocations since some
14733 versions of gcc have been known to emit dead "lui ...%hi(...)"
14734 instructions. */
14735 if (lo_pos != NULL)
14736 {
14737 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14738 if (l->fixp->fx_next != *lo_pos)
14739 {
14740 *hi_pos = l->fixp->fx_next;
14741 l->fixp->fx_next = *lo_pos;
14742 *lo_pos = l->fixp;
14743 }
14744 }
14745 }
14746 }
14747
14748 int
14749 mips_force_relocation (fixS *fixp)
14750 {
14751 if (generic_force_reloc (fixp))
14752 return 1;
14753
14754 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14755 so that the linker relaxation can update targets. */
14756 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14757 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14758 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14759 return 1;
14760
14761 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14762 if (ISA_IS_R6 (mips_opts.isa)
14763 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14764 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14765 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14766 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14767 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14768 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14769 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14770 return 1;
14771
14772 return 0;
14773 }
14774
14775 /* Read the instruction associated with RELOC from BUF. */
14776
14777 static unsigned int
14778 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14779 {
14780 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14781 return read_compressed_insn (buf, 4);
14782 else
14783 return read_insn (buf);
14784 }
14785
14786 /* Write instruction INSN to BUF, given that it has been relocated
14787 by RELOC. */
14788
14789 static void
14790 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14791 unsigned long insn)
14792 {
14793 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14794 write_compressed_insn (buf, insn, 4);
14795 else
14796 write_insn (buf, insn);
14797 }
14798
14799 /* Apply a fixup to the object file. */
14800
14801 void
14802 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14803 {
14804 char *buf;
14805 unsigned long insn;
14806 reloc_howto_type *howto;
14807
14808 if (fixP->fx_pcrel)
14809 switch (fixP->fx_r_type)
14810 {
14811 case BFD_RELOC_16_PCREL_S2:
14812 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14813 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14814 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14815 case BFD_RELOC_32_PCREL:
14816 case BFD_RELOC_MIPS_21_PCREL_S2:
14817 case BFD_RELOC_MIPS_26_PCREL_S2:
14818 case BFD_RELOC_MIPS_18_PCREL_S3:
14819 case BFD_RELOC_MIPS_19_PCREL_S2:
14820 case BFD_RELOC_HI16_S_PCREL:
14821 case BFD_RELOC_LO16_PCREL:
14822 break;
14823
14824 case BFD_RELOC_32:
14825 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14826 break;
14827
14828 default:
14829 as_bad_where (fixP->fx_file, fixP->fx_line,
14830 _("PC-relative reference to a different section"));
14831 break;
14832 }
14833
14834 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14835 that have no MIPS ELF equivalent. */
14836 if (fixP->fx_r_type != BFD_RELOC_8)
14837 {
14838 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14839 if (!howto)
14840 return;
14841 }
14842
14843 gas_assert (fixP->fx_size == 2
14844 || fixP->fx_size == 4
14845 || fixP->fx_r_type == BFD_RELOC_8
14846 || fixP->fx_r_type == BFD_RELOC_16
14847 || fixP->fx_r_type == BFD_RELOC_64
14848 || fixP->fx_r_type == BFD_RELOC_CTOR
14849 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14850 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14851 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14852 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14853 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14854 || fixP->fx_r_type == BFD_RELOC_NONE);
14855
14856 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14857
14858 /* Don't treat parts of a composite relocation as done. There are two
14859 reasons for this:
14860
14861 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14862 should nevertheless be emitted if the first part is.
14863
14864 (2) In normal usage, composite relocations are never assembly-time
14865 constants. The easiest way of dealing with the pathological
14866 exceptions is to generate a relocation against STN_UNDEF and
14867 leave everything up to the linker. */
14868 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14869 fixP->fx_done = 1;
14870
14871 switch (fixP->fx_r_type)
14872 {
14873 case BFD_RELOC_MIPS_TLS_GD:
14874 case BFD_RELOC_MIPS_TLS_LDM:
14875 case BFD_RELOC_MIPS_TLS_DTPREL32:
14876 case BFD_RELOC_MIPS_TLS_DTPREL64:
14877 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14878 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14879 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14880 case BFD_RELOC_MIPS_TLS_TPREL32:
14881 case BFD_RELOC_MIPS_TLS_TPREL64:
14882 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14883 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14884 case BFD_RELOC_MICROMIPS_TLS_GD:
14885 case BFD_RELOC_MICROMIPS_TLS_LDM:
14886 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14887 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14888 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14889 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14890 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14891 case BFD_RELOC_MIPS16_TLS_GD:
14892 case BFD_RELOC_MIPS16_TLS_LDM:
14893 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14894 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14895 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14896 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14897 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14898 if (!fixP->fx_addsy)
14899 {
14900 as_bad_where (fixP->fx_file, fixP->fx_line,
14901 _("TLS relocation against a constant"));
14902 break;
14903 }
14904 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14905 /* fall through */
14906
14907 case BFD_RELOC_MIPS_JMP:
14908 case BFD_RELOC_MIPS_SHIFT5:
14909 case BFD_RELOC_MIPS_SHIFT6:
14910 case BFD_RELOC_MIPS_GOT_DISP:
14911 case BFD_RELOC_MIPS_GOT_PAGE:
14912 case BFD_RELOC_MIPS_GOT_OFST:
14913 case BFD_RELOC_MIPS_SUB:
14914 case BFD_RELOC_MIPS_INSERT_A:
14915 case BFD_RELOC_MIPS_INSERT_B:
14916 case BFD_RELOC_MIPS_DELETE:
14917 case BFD_RELOC_MIPS_HIGHEST:
14918 case BFD_RELOC_MIPS_HIGHER:
14919 case BFD_RELOC_MIPS_SCN_DISP:
14920 case BFD_RELOC_MIPS_REL16:
14921 case BFD_RELOC_MIPS_RELGOT:
14922 case BFD_RELOC_MIPS_JALR:
14923 case BFD_RELOC_HI16:
14924 case BFD_RELOC_HI16_S:
14925 case BFD_RELOC_LO16:
14926 case BFD_RELOC_GPREL16:
14927 case BFD_RELOC_MIPS_LITERAL:
14928 case BFD_RELOC_MIPS_CALL16:
14929 case BFD_RELOC_MIPS_GOT16:
14930 case BFD_RELOC_GPREL32:
14931 case BFD_RELOC_MIPS_GOT_HI16:
14932 case BFD_RELOC_MIPS_GOT_LO16:
14933 case BFD_RELOC_MIPS_CALL_HI16:
14934 case BFD_RELOC_MIPS_CALL_LO16:
14935 case BFD_RELOC_MIPS16_GPREL:
14936 case BFD_RELOC_MIPS16_GOT16:
14937 case BFD_RELOC_MIPS16_CALL16:
14938 case BFD_RELOC_MIPS16_HI16:
14939 case BFD_RELOC_MIPS16_HI16_S:
14940 case BFD_RELOC_MIPS16_LO16:
14941 case BFD_RELOC_MIPS16_JMP:
14942 case BFD_RELOC_MICROMIPS_JMP:
14943 case BFD_RELOC_MICROMIPS_GOT_DISP:
14944 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14945 case BFD_RELOC_MICROMIPS_GOT_OFST:
14946 case BFD_RELOC_MICROMIPS_SUB:
14947 case BFD_RELOC_MICROMIPS_HIGHEST:
14948 case BFD_RELOC_MICROMIPS_HIGHER:
14949 case BFD_RELOC_MICROMIPS_SCN_DISP:
14950 case BFD_RELOC_MICROMIPS_JALR:
14951 case BFD_RELOC_MICROMIPS_HI16:
14952 case BFD_RELOC_MICROMIPS_HI16_S:
14953 case BFD_RELOC_MICROMIPS_LO16:
14954 case BFD_RELOC_MICROMIPS_GPREL16:
14955 case BFD_RELOC_MICROMIPS_LITERAL:
14956 case BFD_RELOC_MICROMIPS_CALL16:
14957 case BFD_RELOC_MICROMIPS_GOT16:
14958 case BFD_RELOC_MICROMIPS_GOT_HI16:
14959 case BFD_RELOC_MICROMIPS_GOT_LO16:
14960 case BFD_RELOC_MICROMIPS_CALL_HI16:
14961 case BFD_RELOC_MICROMIPS_CALL_LO16:
14962 case BFD_RELOC_MIPS_EH:
14963 if (fixP->fx_done)
14964 {
14965 offsetT value;
14966
14967 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14968 {
14969 insn = read_reloc_insn (buf, fixP->fx_r_type);
14970 if (mips16_reloc_p (fixP->fx_r_type))
14971 insn |= mips16_immed_extend (value, 16);
14972 else
14973 insn |= (value & 0xffff);
14974 write_reloc_insn (buf, fixP->fx_r_type, insn);
14975 }
14976 else
14977 as_bad_where (fixP->fx_file, fixP->fx_line,
14978 _("unsupported constant in relocation"));
14979 }
14980 break;
14981
14982 case BFD_RELOC_64:
14983 /* This is handled like BFD_RELOC_32, but we output a sign
14984 extended value if we are only 32 bits. */
14985 if (fixP->fx_done)
14986 {
14987 if (8 <= sizeof (valueT))
14988 md_number_to_chars (buf, *valP, 8);
14989 else
14990 {
14991 valueT hiv;
14992
14993 if ((*valP & 0x80000000) != 0)
14994 hiv = 0xffffffff;
14995 else
14996 hiv = 0;
14997 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14998 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
14999 }
15000 }
15001 break;
15002
15003 case BFD_RELOC_RVA:
15004 case BFD_RELOC_32:
15005 case BFD_RELOC_32_PCREL:
15006 case BFD_RELOC_16:
15007 case BFD_RELOC_8:
15008 /* If we are deleting this reloc entry, we must fill in the
15009 value now. This can happen if we have a .word which is not
15010 resolved when it appears but is later defined. */
15011 if (fixP->fx_done)
15012 md_number_to_chars (buf, *valP, fixP->fx_size);
15013 break;
15014
15015 case BFD_RELOC_MIPS_21_PCREL_S2:
15016 case BFD_RELOC_MIPS_26_PCREL_S2:
15017 if ((*valP & 0x3) != 0)
15018 as_bad_where (fixP->fx_file, fixP->fx_line,
15019 _("branch to misaligned address (%lx)"), (long) *valP);
15020
15021 gas_assert (!fixP->fx_done);
15022 break;
15023
15024 case BFD_RELOC_MIPS_18_PCREL_S3:
15025 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15026 as_bad_where (fixP->fx_file, fixP->fx_line,
15027 _("PC-relative access using misaligned symbol (%lx)"),
15028 (long) S_GET_VALUE (fixP->fx_addsy));
15029 if ((fixP->fx_offset & 0x7) != 0)
15030 as_bad_where (fixP->fx_file, fixP->fx_line,
15031 _("PC-relative access using misaligned offset (%lx)"),
15032 (long) fixP->fx_offset);
15033
15034 gas_assert (!fixP->fx_done);
15035 break;
15036
15037 case BFD_RELOC_MIPS_19_PCREL_S2:
15038 if ((*valP & 0x3) != 0)
15039 as_bad_where (fixP->fx_file, fixP->fx_line,
15040 _("PC-relative access to misaligned address (%lx)"),
15041 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15042
15043 gas_assert (!fixP->fx_done);
15044 break;
15045
15046 case BFD_RELOC_HI16_S_PCREL:
15047 case BFD_RELOC_LO16_PCREL:
15048 gas_assert (!fixP->fx_done);
15049 break;
15050
15051 case BFD_RELOC_16_PCREL_S2:
15052 if ((*valP & 0x3) != 0)
15053 as_bad_where (fixP->fx_file, fixP->fx_line,
15054 _("branch to misaligned address (%lx)"), (long) *valP);
15055
15056 /* We need to save the bits in the instruction since fixup_segment()
15057 might be deleting the relocation entry (i.e., a branch within
15058 the current segment). */
15059 if (! fixP->fx_done)
15060 break;
15061
15062 /* Update old instruction data. */
15063 insn = read_insn (buf);
15064
15065 if (*valP + 0x20000 <= 0x3ffff)
15066 {
15067 insn |= (*valP >> 2) & 0xffff;
15068 write_insn (buf, insn);
15069 }
15070 else if (mips_pic == NO_PIC
15071 && fixP->fx_done
15072 && fixP->fx_frag->fr_address >= text_section->vma
15073 && (fixP->fx_frag->fr_address
15074 < text_section->vma + bfd_get_section_size (text_section))
15075 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15076 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15077 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15078 {
15079 /* The branch offset is too large. If this is an
15080 unconditional branch, and we are not generating PIC code,
15081 we can convert it to an absolute jump instruction. */
15082 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15083 insn = 0x0c000000; /* jal */
15084 else
15085 insn = 0x08000000; /* j */
15086 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15087 fixP->fx_done = 0;
15088 fixP->fx_addsy = section_symbol (text_section);
15089 *valP += md_pcrel_from (fixP);
15090 write_insn (buf, insn);
15091 }
15092 else
15093 {
15094 /* If we got here, we have branch-relaxation disabled,
15095 and there's nothing we can do to fix this instruction
15096 without turning it into a longer sequence. */
15097 as_bad_where (fixP->fx_file, fixP->fx_line,
15098 _("branch out of range"));
15099 }
15100 break;
15101
15102 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15103 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15104 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15105 /* We adjust the offset back to even. */
15106 if ((*valP & 0x1) != 0)
15107 --(*valP);
15108
15109 if (! fixP->fx_done)
15110 break;
15111
15112 /* Should never visit here, because we keep the relocation. */
15113 abort ();
15114 break;
15115
15116 case BFD_RELOC_VTABLE_INHERIT:
15117 fixP->fx_done = 0;
15118 if (fixP->fx_addsy
15119 && !S_IS_DEFINED (fixP->fx_addsy)
15120 && !S_IS_WEAK (fixP->fx_addsy))
15121 S_SET_WEAK (fixP->fx_addsy);
15122 break;
15123
15124 case BFD_RELOC_NONE:
15125 case BFD_RELOC_VTABLE_ENTRY:
15126 fixP->fx_done = 0;
15127 break;
15128
15129 default:
15130 abort ();
15131 }
15132
15133 /* Remember value for tc_gen_reloc. */
15134 fixP->fx_addnumber = *valP;
15135 }
15136
15137 static symbolS *
15138 get_symbol (void)
15139 {
15140 int c;
15141 char *name;
15142 symbolS *p;
15143
15144 c = get_symbol_name (&name);
15145 p = (symbolS *) symbol_find_or_make (name);
15146 (void) restore_line_pointer (c);
15147 return p;
15148 }
15149
15150 /* Align the current frag to a given power of two. If a particular
15151 fill byte should be used, FILL points to an integer that contains
15152 that byte, otherwise FILL is null.
15153
15154 This function used to have the comment:
15155
15156 The MIPS assembler also automatically adjusts any preceding label.
15157
15158 The implementation therefore applied the adjustment to a maximum of
15159 one label. However, other label adjustments are applied to batches
15160 of labels, and adjusting just one caused problems when new labels
15161 were added for the sake of debugging or unwind information.
15162 We therefore adjust all preceding labels (given as LABELS) instead. */
15163
15164 static void
15165 mips_align (int to, int *fill, struct insn_label_list *labels)
15166 {
15167 mips_emit_delays ();
15168 mips_record_compressed_mode ();
15169 if (fill == NULL && subseg_text_p (now_seg))
15170 frag_align_code (to, 0);
15171 else
15172 frag_align (to, fill ? *fill : 0, 0);
15173 record_alignment (now_seg, to);
15174 mips_move_labels (labels, FALSE);
15175 }
15176
15177 /* Align to a given power of two. .align 0 turns off the automatic
15178 alignment used by the data creating pseudo-ops. */
15179
15180 static void
15181 s_align (int x ATTRIBUTE_UNUSED)
15182 {
15183 int temp, fill_value, *fill_ptr;
15184 long max_alignment = 28;
15185
15186 /* o Note that the assembler pulls down any immediately preceding label
15187 to the aligned address.
15188 o It's not documented but auto alignment is reinstated by
15189 a .align pseudo instruction.
15190 o Note also that after auto alignment is turned off the mips assembler
15191 issues an error on attempt to assemble an improperly aligned data item.
15192 We don't. */
15193
15194 temp = get_absolute_expression ();
15195 if (temp > max_alignment)
15196 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15197 else if (temp < 0)
15198 {
15199 as_warn (_("alignment negative, 0 assumed"));
15200 temp = 0;
15201 }
15202 if (*input_line_pointer == ',')
15203 {
15204 ++input_line_pointer;
15205 fill_value = get_absolute_expression ();
15206 fill_ptr = &fill_value;
15207 }
15208 else
15209 fill_ptr = 0;
15210 if (temp)
15211 {
15212 segment_info_type *si = seg_info (now_seg);
15213 struct insn_label_list *l = si->label_list;
15214 /* Auto alignment should be switched on by next section change. */
15215 auto_align = 1;
15216 mips_align (temp, fill_ptr, l);
15217 }
15218 else
15219 {
15220 auto_align = 0;
15221 }
15222
15223 demand_empty_rest_of_line ();
15224 }
15225
15226 static void
15227 s_change_sec (int sec)
15228 {
15229 segT seg;
15230
15231 /* The ELF backend needs to know that we are changing sections, so
15232 that .previous works correctly. We could do something like check
15233 for an obj_section_change_hook macro, but that might be confusing
15234 as it would not be appropriate to use it in the section changing
15235 functions in read.c, since obj-elf.c intercepts those. FIXME:
15236 This should be cleaner, somehow. */
15237 obj_elf_section_change_hook ();
15238
15239 mips_emit_delays ();
15240
15241 switch (sec)
15242 {
15243 case 't':
15244 s_text (0);
15245 break;
15246 case 'd':
15247 s_data (0);
15248 break;
15249 case 'b':
15250 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15251 demand_empty_rest_of_line ();
15252 break;
15253
15254 case 'r':
15255 seg = subseg_new (RDATA_SECTION_NAME,
15256 (subsegT) get_absolute_expression ());
15257 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15258 | SEC_READONLY | SEC_RELOC
15259 | SEC_DATA));
15260 if (strncmp (TARGET_OS, "elf", 3) != 0)
15261 record_alignment (seg, 4);
15262 demand_empty_rest_of_line ();
15263 break;
15264
15265 case 's':
15266 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15267 bfd_set_section_flags (stdoutput, seg,
15268 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15269 if (strncmp (TARGET_OS, "elf", 3) != 0)
15270 record_alignment (seg, 4);
15271 demand_empty_rest_of_line ();
15272 break;
15273
15274 case 'B':
15275 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15276 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15277 if (strncmp (TARGET_OS, "elf", 3) != 0)
15278 record_alignment (seg, 4);
15279 demand_empty_rest_of_line ();
15280 break;
15281 }
15282
15283 auto_align = 1;
15284 }
15285
15286 void
15287 s_change_section (int ignore ATTRIBUTE_UNUSED)
15288 {
15289 char *saved_ilp;
15290 char *section_name;
15291 char c, endc;
15292 char next_c = 0;
15293 int section_type;
15294 int section_flag;
15295 int section_entry_size;
15296 int section_alignment;
15297
15298 saved_ilp = input_line_pointer;
15299 endc = get_symbol_name (&section_name);
15300 c = (endc == '"' ? input_line_pointer[1] : endc);
15301 if (c)
15302 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15303
15304 /* Do we have .section Name<,"flags">? */
15305 if (c != ',' || (c == ',' && next_c == '"'))
15306 {
15307 /* Just after name is now '\0'. */
15308 (void) restore_line_pointer (endc);
15309 input_line_pointer = saved_ilp;
15310 obj_elf_section (ignore);
15311 return;
15312 }
15313
15314 section_name = xstrdup (section_name);
15315 c = restore_line_pointer (endc);
15316
15317 input_line_pointer++;
15318
15319 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15320 if (c == ',')
15321 section_type = get_absolute_expression ();
15322 else
15323 section_type = 0;
15324
15325 if (*input_line_pointer++ == ',')
15326 section_flag = get_absolute_expression ();
15327 else
15328 section_flag = 0;
15329
15330 if (*input_line_pointer++ == ',')
15331 section_entry_size = get_absolute_expression ();
15332 else
15333 section_entry_size = 0;
15334
15335 if (*input_line_pointer++ == ',')
15336 section_alignment = get_absolute_expression ();
15337 else
15338 section_alignment = 0;
15339
15340 /* FIXME: really ignore? */
15341 (void) section_alignment;
15342
15343 /* When using the generic form of .section (as implemented by obj-elf.c),
15344 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15345 traditionally had to fall back on the more common @progbits instead.
15346
15347 There's nothing really harmful in this, since bfd will correct
15348 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15349 means that, for backwards compatibility, the special_section entries
15350 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15351
15352 Even so, we shouldn't force users of the MIPS .section syntax to
15353 incorrectly label the sections as SHT_PROGBITS. The best compromise
15354 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15355 generic type-checking code. */
15356 if (section_type == SHT_MIPS_DWARF)
15357 section_type = SHT_PROGBITS;
15358
15359 obj_elf_change_section (section_name, section_type, section_flag,
15360 section_entry_size, 0, 0, 0);
15361
15362 if (now_seg->name != section_name)
15363 free (section_name);
15364 }
15365
15366 void
15367 mips_enable_auto_align (void)
15368 {
15369 auto_align = 1;
15370 }
15371
15372 static void
15373 s_cons (int log_size)
15374 {
15375 segment_info_type *si = seg_info (now_seg);
15376 struct insn_label_list *l = si->label_list;
15377
15378 mips_emit_delays ();
15379 if (log_size > 0 && auto_align)
15380 mips_align (log_size, 0, l);
15381 cons (1 << log_size);
15382 mips_clear_insn_labels ();
15383 }
15384
15385 static void
15386 s_float_cons (int type)
15387 {
15388 segment_info_type *si = seg_info (now_seg);
15389 struct insn_label_list *l = si->label_list;
15390
15391 mips_emit_delays ();
15392
15393 if (auto_align)
15394 {
15395 if (type == 'd')
15396 mips_align (3, 0, l);
15397 else
15398 mips_align (2, 0, l);
15399 }
15400
15401 float_cons (type);
15402 mips_clear_insn_labels ();
15403 }
15404
15405 /* Handle .globl. We need to override it because on Irix 5 you are
15406 permitted to say
15407 .globl foo .text
15408 where foo is an undefined symbol, to mean that foo should be
15409 considered to be the address of a function. */
15410
15411 static void
15412 s_mips_globl (int x ATTRIBUTE_UNUSED)
15413 {
15414 char *name;
15415 int c;
15416 symbolS *symbolP;
15417 flagword flag;
15418
15419 do
15420 {
15421 c = get_symbol_name (&name);
15422 symbolP = symbol_find_or_make (name);
15423 S_SET_EXTERNAL (symbolP);
15424
15425 *input_line_pointer = c;
15426 SKIP_WHITESPACE_AFTER_NAME ();
15427
15428 /* On Irix 5, every global symbol that is not explicitly labelled as
15429 being a function is apparently labelled as being an object. */
15430 flag = BSF_OBJECT;
15431
15432 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15433 && (*input_line_pointer != ','))
15434 {
15435 char *secname;
15436 asection *sec;
15437
15438 c = get_symbol_name (&secname);
15439 sec = bfd_get_section_by_name (stdoutput, secname);
15440 if (sec == NULL)
15441 as_bad (_("%s: no such section"), secname);
15442 (void) restore_line_pointer (c);
15443
15444 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15445 flag = BSF_FUNCTION;
15446 }
15447
15448 symbol_get_bfdsym (symbolP)->flags |= flag;
15449
15450 c = *input_line_pointer;
15451 if (c == ',')
15452 {
15453 input_line_pointer++;
15454 SKIP_WHITESPACE ();
15455 if (is_end_of_line[(unsigned char) *input_line_pointer])
15456 c = '\n';
15457 }
15458 }
15459 while (c == ',');
15460
15461 demand_empty_rest_of_line ();
15462 }
15463
15464 static void
15465 s_option (int x ATTRIBUTE_UNUSED)
15466 {
15467 char *opt;
15468 char c;
15469
15470 c = get_symbol_name (&opt);
15471
15472 if (*opt == 'O')
15473 {
15474 /* FIXME: What does this mean? */
15475 }
15476 else if (strncmp (opt, "pic", 3) == 0)
15477 {
15478 int i;
15479
15480 i = atoi (opt + 3);
15481 if (i == 0)
15482 mips_pic = NO_PIC;
15483 else if (i == 2)
15484 {
15485 mips_pic = SVR4_PIC;
15486 mips_abicalls = TRUE;
15487 }
15488 else
15489 as_bad (_(".option pic%d not supported"), i);
15490
15491 if (mips_pic == SVR4_PIC)
15492 {
15493 if (g_switch_seen && g_switch_value != 0)
15494 as_warn (_("-G may not be used with SVR4 PIC code"));
15495 g_switch_value = 0;
15496 bfd_set_gp_size (stdoutput, 0);
15497 }
15498 }
15499 else
15500 as_warn (_("unrecognized option \"%s\""), opt);
15501
15502 (void) restore_line_pointer (c);
15503 demand_empty_rest_of_line ();
15504 }
15505
15506 /* This structure is used to hold a stack of .set values. */
15507
15508 struct mips_option_stack
15509 {
15510 struct mips_option_stack *next;
15511 struct mips_set_options options;
15512 };
15513
15514 static struct mips_option_stack *mips_opts_stack;
15515
15516 static bfd_boolean
15517 parse_code_option (char * name)
15518 {
15519 const struct mips_ase *ase;
15520 if (strncmp (name, "at=", 3) == 0)
15521 {
15522 char *s = name + 3;
15523
15524 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15525 as_bad (_("unrecognized register name `%s'"), s);
15526 }
15527 else if (strcmp (name, "at") == 0)
15528 mips_opts.at = ATREG;
15529 else if (strcmp (name, "noat") == 0)
15530 mips_opts.at = ZERO;
15531 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15532 mips_opts.nomove = 0;
15533 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15534 mips_opts.nomove = 1;
15535 else if (strcmp (name, "bopt") == 0)
15536 mips_opts.nobopt = 0;
15537 else if (strcmp (name, "nobopt") == 0)
15538 mips_opts.nobopt = 1;
15539 else if (strcmp (name, "gp=32") == 0)
15540 mips_opts.gp = 32;
15541 else if (strcmp (name, "gp=64") == 0)
15542 mips_opts.gp = 64;
15543 else if (strcmp (name, "fp=32") == 0)
15544 mips_opts.fp = 32;
15545 else if (strcmp (name, "fp=xx") == 0)
15546 mips_opts.fp = 0;
15547 else if (strcmp (name, "fp=64") == 0)
15548 mips_opts.fp = 64;
15549 else if (strcmp (name, "softfloat") == 0)
15550 mips_opts.soft_float = 1;
15551 else if (strcmp (name, "hardfloat") == 0)
15552 mips_opts.soft_float = 0;
15553 else if (strcmp (name, "singlefloat") == 0)
15554 mips_opts.single_float = 1;
15555 else if (strcmp (name, "doublefloat") == 0)
15556 mips_opts.single_float = 0;
15557 else if (strcmp (name, "nooddspreg") == 0)
15558 mips_opts.oddspreg = 0;
15559 else if (strcmp (name, "oddspreg") == 0)
15560 mips_opts.oddspreg = 1;
15561 else if (strcmp (name, "mips16") == 0
15562 || strcmp (name, "MIPS-16") == 0)
15563 mips_opts.mips16 = 1;
15564 else if (strcmp (name, "nomips16") == 0
15565 || strcmp (name, "noMIPS-16") == 0)
15566 mips_opts.mips16 = 0;
15567 else if (strcmp (name, "micromips") == 0)
15568 mips_opts.micromips = 1;
15569 else if (strcmp (name, "nomicromips") == 0)
15570 mips_opts.micromips = 0;
15571 else if (name[0] == 'n'
15572 && name[1] == 'o'
15573 && (ase = mips_lookup_ase (name + 2)))
15574 mips_set_ase (ase, &mips_opts, FALSE);
15575 else if ((ase = mips_lookup_ase (name)))
15576 mips_set_ase (ase, &mips_opts, TRUE);
15577 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15578 {
15579 /* Permit the user to change the ISA and architecture on the fly.
15580 Needless to say, misuse can cause serious problems. */
15581 if (strncmp (name, "arch=", 5) == 0)
15582 {
15583 const struct mips_cpu_info *p;
15584
15585 p = mips_parse_cpu ("internal use", name + 5);
15586 if (!p)
15587 as_bad (_("unknown architecture %s"), name + 5);
15588 else
15589 {
15590 mips_opts.arch = p->cpu;
15591 mips_opts.isa = p->isa;
15592 }
15593 }
15594 else if (strncmp (name, "mips", 4) == 0)
15595 {
15596 const struct mips_cpu_info *p;
15597
15598 p = mips_parse_cpu ("internal use", name);
15599 if (!p)
15600 as_bad (_("unknown ISA level %s"), name + 4);
15601 else
15602 {
15603 mips_opts.arch = p->cpu;
15604 mips_opts.isa = p->isa;
15605 }
15606 }
15607 else
15608 as_bad (_("unknown ISA or architecture %s"), name);
15609 }
15610 else if (strcmp (name, "autoextend") == 0)
15611 mips_opts.noautoextend = 0;
15612 else if (strcmp (name, "noautoextend") == 0)
15613 mips_opts.noautoextend = 1;
15614 else if (strcmp (name, "insn32") == 0)
15615 mips_opts.insn32 = TRUE;
15616 else if (strcmp (name, "noinsn32") == 0)
15617 mips_opts.insn32 = FALSE;
15618 else if (strcmp (name, "sym32") == 0)
15619 mips_opts.sym32 = TRUE;
15620 else if (strcmp (name, "nosym32") == 0)
15621 mips_opts.sym32 = FALSE;
15622 else
15623 return FALSE;
15624 return TRUE;
15625 }
15626
15627 /* Handle the .set pseudo-op. */
15628
15629 static void
15630 s_mipsset (int x ATTRIBUTE_UNUSED)
15631 {
15632 char *name = input_line_pointer, ch;
15633 int prev_isa = mips_opts.isa;
15634
15635 file_mips_check_options ();
15636
15637 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15638 ++input_line_pointer;
15639 ch = *input_line_pointer;
15640 *input_line_pointer = '\0';
15641
15642 if (strchr (name, ','))
15643 {
15644 /* Generic ".set" directive; use the generic handler. */
15645 *input_line_pointer = ch;
15646 input_line_pointer = name;
15647 s_set (0);
15648 return;
15649 }
15650
15651 if (strcmp (name, "reorder") == 0)
15652 {
15653 if (mips_opts.noreorder)
15654 end_noreorder ();
15655 }
15656 else if (strcmp (name, "noreorder") == 0)
15657 {
15658 if (!mips_opts.noreorder)
15659 start_noreorder ();
15660 }
15661 else if (strcmp (name, "macro") == 0)
15662 mips_opts.warn_about_macros = 0;
15663 else if (strcmp (name, "nomacro") == 0)
15664 {
15665 if (mips_opts.noreorder == 0)
15666 as_bad (_("`noreorder' must be set before `nomacro'"));
15667 mips_opts.warn_about_macros = 1;
15668 }
15669 else if (strcmp (name, "gp=default") == 0)
15670 mips_opts.gp = file_mips_opts.gp;
15671 else if (strcmp (name, "fp=default") == 0)
15672 mips_opts.fp = file_mips_opts.fp;
15673 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15674 {
15675 mips_opts.isa = file_mips_opts.isa;
15676 mips_opts.arch = file_mips_opts.arch;
15677 mips_opts.gp = file_mips_opts.gp;
15678 mips_opts.fp = file_mips_opts.fp;
15679 }
15680 else if (strcmp (name, "push") == 0)
15681 {
15682 struct mips_option_stack *s;
15683
15684 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15685 s->next = mips_opts_stack;
15686 s->options = mips_opts;
15687 mips_opts_stack = s;
15688 }
15689 else if (strcmp (name, "pop") == 0)
15690 {
15691 struct mips_option_stack *s;
15692
15693 s = mips_opts_stack;
15694 if (s == NULL)
15695 as_bad (_(".set pop with no .set push"));
15696 else
15697 {
15698 /* If we're changing the reorder mode we need to handle
15699 delay slots correctly. */
15700 if (s->options.noreorder && ! mips_opts.noreorder)
15701 start_noreorder ();
15702 else if (! s->options.noreorder && mips_opts.noreorder)
15703 end_noreorder ();
15704
15705 mips_opts = s->options;
15706 mips_opts_stack = s->next;
15707 free (s);
15708 }
15709 }
15710 else if (!parse_code_option (name))
15711 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15712
15713 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15714 registers based on what is supported by the arch/cpu. */
15715 if (mips_opts.isa != prev_isa)
15716 {
15717 switch (mips_opts.isa)
15718 {
15719 case 0:
15720 break;
15721 case ISA_MIPS1:
15722 /* MIPS I cannot support FPXX. */
15723 mips_opts.fp = 32;
15724 /* fall-through. */
15725 case ISA_MIPS2:
15726 case ISA_MIPS32:
15727 case ISA_MIPS32R2:
15728 case ISA_MIPS32R3:
15729 case ISA_MIPS32R5:
15730 mips_opts.gp = 32;
15731 if (mips_opts.fp != 0)
15732 mips_opts.fp = 32;
15733 break;
15734 case ISA_MIPS32R6:
15735 mips_opts.gp = 32;
15736 mips_opts.fp = 64;
15737 break;
15738 case ISA_MIPS3:
15739 case ISA_MIPS4:
15740 case ISA_MIPS5:
15741 case ISA_MIPS64:
15742 case ISA_MIPS64R2:
15743 case ISA_MIPS64R3:
15744 case ISA_MIPS64R5:
15745 case ISA_MIPS64R6:
15746 mips_opts.gp = 64;
15747 if (mips_opts.fp != 0)
15748 {
15749 if (mips_opts.arch == CPU_R5900)
15750 mips_opts.fp = 32;
15751 else
15752 mips_opts.fp = 64;
15753 }
15754 break;
15755 default:
15756 as_bad (_("unknown ISA level %s"), name + 4);
15757 break;
15758 }
15759 }
15760
15761 mips_check_options (&mips_opts, FALSE);
15762
15763 mips_check_isa_supports_ases ();
15764 *input_line_pointer = ch;
15765 demand_empty_rest_of_line ();
15766 }
15767
15768 /* Handle the .module pseudo-op. */
15769
15770 static void
15771 s_module (int ignore ATTRIBUTE_UNUSED)
15772 {
15773 char *name = input_line_pointer, ch;
15774
15775 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15776 ++input_line_pointer;
15777 ch = *input_line_pointer;
15778 *input_line_pointer = '\0';
15779
15780 if (!file_mips_opts_checked)
15781 {
15782 if (!parse_code_option (name))
15783 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15784
15785 /* Update module level settings from mips_opts. */
15786 file_mips_opts = mips_opts;
15787 }
15788 else
15789 as_bad (_(".module is not permitted after generating code"));
15790
15791 *input_line_pointer = ch;
15792 demand_empty_rest_of_line ();
15793 }
15794
15795 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15796 .option pic2. It means to generate SVR4 PIC calls. */
15797
15798 static void
15799 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15800 {
15801 mips_pic = SVR4_PIC;
15802 mips_abicalls = TRUE;
15803
15804 if (g_switch_seen && g_switch_value != 0)
15805 as_warn (_("-G may not be used with SVR4 PIC code"));
15806 g_switch_value = 0;
15807
15808 bfd_set_gp_size (stdoutput, 0);
15809 demand_empty_rest_of_line ();
15810 }
15811
15812 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15813 PIC code. It sets the $gp register for the function based on the
15814 function address, which is in the register named in the argument.
15815 This uses a relocation against _gp_disp, which is handled specially
15816 by the linker. The result is:
15817 lui $gp,%hi(_gp_disp)
15818 addiu $gp,$gp,%lo(_gp_disp)
15819 addu $gp,$gp,.cpload argument
15820 The .cpload argument is normally $25 == $t9.
15821
15822 The -mno-shared option changes this to:
15823 lui $gp,%hi(__gnu_local_gp)
15824 addiu $gp,$gp,%lo(__gnu_local_gp)
15825 and the argument is ignored. This saves an instruction, but the
15826 resulting code is not position independent; it uses an absolute
15827 address for __gnu_local_gp. Thus code assembled with -mno-shared
15828 can go into an ordinary executable, but not into a shared library. */
15829
15830 static void
15831 s_cpload (int ignore ATTRIBUTE_UNUSED)
15832 {
15833 expressionS ex;
15834 int reg;
15835 int in_shared;
15836
15837 file_mips_check_options ();
15838
15839 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15840 .cpload is ignored. */
15841 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15842 {
15843 s_ignore (0);
15844 return;
15845 }
15846
15847 if (mips_opts.mips16)
15848 {
15849 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15850 ignore_rest_of_line ();
15851 return;
15852 }
15853
15854 /* .cpload should be in a .set noreorder section. */
15855 if (mips_opts.noreorder == 0)
15856 as_warn (_(".cpload not in noreorder section"));
15857
15858 reg = tc_get_register (0);
15859
15860 /* If we need to produce a 64-bit address, we are better off using
15861 the default instruction sequence. */
15862 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15863
15864 ex.X_op = O_symbol;
15865 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15866 "__gnu_local_gp");
15867 ex.X_op_symbol = NULL;
15868 ex.X_add_number = 0;
15869
15870 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15871 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15872
15873 mips_mark_labels ();
15874 mips_assembling_insn = TRUE;
15875
15876 macro_start ();
15877 macro_build_lui (&ex, mips_gp_register);
15878 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15879 mips_gp_register, BFD_RELOC_LO16);
15880 if (in_shared)
15881 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15882 mips_gp_register, reg);
15883 macro_end ();
15884
15885 mips_assembling_insn = FALSE;
15886 demand_empty_rest_of_line ();
15887 }
15888
15889 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15890 .cpsetup $reg1, offset|$reg2, label
15891
15892 If offset is given, this results in:
15893 sd $gp, offset($sp)
15894 lui $gp, %hi(%neg(%gp_rel(label)))
15895 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15896 daddu $gp, $gp, $reg1
15897
15898 If $reg2 is given, this results in:
15899 or $reg2, $gp, $0
15900 lui $gp, %hi(%neg(%gp_rel(label)))
15901 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15902 daddu $gp, $gp, $reg1
15903 $reg1 is normally $25 == $t9.
15904
15905 The -mno-shared option replaces the last three instructions with
15906 lui $gp,%hi(_gp)
15907 addiu $gp,$gp,%lo(_gp) */
15908
15909 static void
15910 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15911 {
15912 expressionS ex_off;
15913 expressionS ex_sym;
15914 int reg1;
15915
15916 file_mips_check_options ();
15917
15918 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15919 We also need NewABI support. */
15920 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15921 {
15922 s_ignore (0);
15923 return;
15924 }
15925
15926 if (mips_opts.mips16)
15927 {
15928 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15929 ignore_rest_of_line ();
15930 return;
15931 }
15932
15933 reg1 = tc_get_register (0);
15934 SKIP_WHITESPACE ();
15935 if (*input_line_pointer != ',')
15936 {
15937 as_bad (_("missing argument separator ',' for .cpsetup"));
15938 return;
15939 }
15940 else
15941 ++input_line_pointer;
15942 SKIP_WHITESPACE ();
15943 if (*input_line_pointer == '$')
15944 {
15945 mips_cpreturn_register = tc_get_register (0);
15946 mips_cpreturn_offset = -1;
15947 }
15948 else
15949 {
15950 mips_cpreturn_offset = get_absolute_expression ();
15951 mips_cpreturn_register = -1;
15952 }
15953 SKIP_WHITESPACE ();
15954 if (*input_line_pointer != ',')
15955 {
15956 as_bad (_("missing argument separator ',' for .cpsetup"));
15957 return;
15958 }
15959 else
15960 ++input_line_pointer;
15961 SKIP_WHITESPACE ();
15962 expression (&ex_sym);
15963
15964 mips_mark_labels ();
15965 mips_assembling_insn = TRUE;
15966
15967 macro_start ();
15968 if (mips_cpreturn_register == -1)
15969 {
15970 ex_off.X_op = O_constant;
15971 ex_off.X_add_symbol = NULL;
15972 ex_off.X_op_symbol = NULL;
15973 ex_off.X_add_number = mips_cpreturn_offset;
15974
15975 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15976 BFD_RELOC_LO16, SP);
15977 }
15978 else
15979 move_register (mips_cpreturn_register, mips_gp_register);
15980
15981 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15982 {
15983 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15984 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15985 BFD_RELOC_HI16_S);
15986
15987 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15988 mips_gp_register, -1, BFD_RELOC_GPREL16,
15989 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15990
15991 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15992 mips_gp_register, reg1);
15993 }
15994 else
15995 {
15996 expressionS ex;
15997
15998 ex.X_op = O_symbol;
15999 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16000 ex.X_op_symbol = NULL;
16001 ex.X_add_number = 0;
16002
16003 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16004 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16005
16006 macro_build_lui (&ex, mips_gp_register);
16007 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16008 mips_gp_register, BFD_RELOC_LO16);
16009 }
16010
16011 macro_end ();
16012
16013 mips_assembling_insn = FALSE;
16014 demand_empty_rest_of_line ();
16015 }
16016
16017 static void
16018 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16019 {
16020 file_mips_check_options ();
16021
16022 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16023 .cplocal is ignored. */
16024 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16025 {
16026 s_ignore (0);
16027 return;
16028 }
16029
16030 if (mips_opts.mips16)
16031 {
16032 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16033 ignore_rest_of_line ();
16034 return;
16035 }
16036
16037 mips_gp_register = tc_get_register (0);
16038 demand_empty_rest_of_line ();
16039 }
16040
16041 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16042 offset from $sp. The offset is remembered, and after making a PIC
16043 call $gp is restored from that location. */
16044
16045 static void
16046 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16047 {
16048 expressionS ex;
16049
16050 file_mips_check_options ();
16051
16052 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16053 .cprestore is ignored. */
16054 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16055 {
16056 s_ignore (0);
16057 return;
16058 }
16059
16060 if (mips_opts.mips16)
16061 {
16062 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16063 ignore_rest_of_line ();
16064 return;
16065 }
16066
16067 mips_cprestore_offset = get_absolute_expression ();
16068 mips_cprestore_valid = 1;
16069
16070 ex.X_op = O_constant;
16071 ex.X_add_symbol = NULL;
16072 ex.X_op_symbol = NULL;
16073 ex.X_add_number = mips_cprestore_offset;
16074
16075 mips_mark_labels ();
16076 mips_assembling_insn = TRUE;
16077
16078 macro_start ();
16079 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16080 SP, HAVE_64BIT_ADDRESSES);
16081 macro_end ();
16082
16083 mips_assembling_insn = FALSE;
16084 demand_empty_rest_of_line ();
16085 }
16086
16087 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16088 was given in the preceding .cpsetup, it results in:
16089 ld $gp, offset($sp)
16090
16091 If a register $reg2 was given there, it results in:
16092 or $gp, $reg2, $0 */
16093
16094 static void
16095 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16096 {
16097 expressionS ex;
16098
16099 file_mips_check_options ();
16100
16101 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16102 We also need NewABI support. */
16103 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16104 {
16105 s_ignore (0);
16106 return;
16107 }
16108
16109 if (mips_opts.mips16)
16110 {
16111 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16112 ignore_rest_of_line ();
16113 return;
16114 }
16115
16116 mips_mark_labels ();
16117 mips_assembling_insn = TRUE;
16118
16119 macro_start ();
16120 if (mips_cpreturn_register == -1)
16121 {
16122 ex.X_op = O_constant;
16123 ex.X_add_symbol = NULL;
16124 ex.X_op_symbol = NULL;
16125 ex.X_add_number = mips_cpreturn_offset;
16126
16127 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16128 }
16129 else
16130 move_register (mips_gp_register, mips_cpreturn_register);
16131
16132 macro_end ();
16133
16134 mips_assembling_insn = FALSE;
16135 demand_empty_rest_of_line ();
16136 }
16137
16138 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16139 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16140 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16141 debug information or MIPS16 TLS. */
16142
16143 static void
16144 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16145 bfd_reloc_code_real_type rtype)
16146 {
16147 expressionS ex;
16148 char *p;
16149
16150 expression (&ex);
16151
16152 if (ex.X_op != O_symbol)
16153 {
16154 as_bad (_("unsupported use of %s"), dirstr);
16155 ignore_rest_of_line ();
16156 }
16157
16158 p = frag_more (bytes);
16159 md_number_to_chars (p, 0, bytes);
16160 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16161 demand_empty_rest_of_line ();
16162 mips_clear_insn_labels ();
16163 }
16164
16165 /* Handle .dtprelword. */
16166
16167 static void
16168 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16169 {
16170 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16171 }
16172
16173 /* Handle .dtpreldword. */
16174
16175 static void
16176 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16177 {
16178 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16179 }
16180
16181 /* Handle .tprelword. */
16182
16183 static void
16184 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16185 {
16186 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16187 }
16188
16189 /* Handle .tpreldword. */
16190
16191 static void
16192 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16193 {
16194 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16195 }
16196
16197 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16198 code. It sets the offset to use in gp_rel relocations. */
16199
16200 static void
16201 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16202 {
16203 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16204 We also need NewABI support. */
16205 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16206 {
16207 s_ignore (0);
16208 return;
16209 }
16210
16211 mips_gprel_offset = get_absolute_expression ();
16212
16213 demand_empty_rest_of_line ();
16214 }
16215
16216 /* Handle the .gpword pseudo-op. This is used when generating PIC
16217 code. It generates a 32 bit GP relative reloc. */
16218
16219 static void
16220 s_gpword (int ignore ATTRIBUTE_UNUSED)
16221 {
16222 segment_info_type *si;
16223 struct insn_label_list *l;
16224 expressionS ex;
16225 char *p;
16226
16227 /* When not generating PIC code, this is treated as .word. */
16228 if (mips_pic != SVR4_PIC)
16229 {
16230 s_cons (2);
16231 return;
16232 }
16233
16234 si = seg_info (now_seg);
16235 l = si->label_list;
16236 mips_emit_delays ();
16237 if (auto_align)
16238 mips_align (2, 0, l);
16239
16240 expression (&ex);
16241 mips_clear_insn_labels ();
16242
16243 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16244 {
16245 as_bad (_("unsupported use of .gpword"));
16246 ignore_rest_of_line ();
16247 }
16248
16249 p = frag_more (4);
16250 md_number_to_chars (p, 0, 4);
16251 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16252 BFD_RELOC_GPREL32);
16253
16254 demand_empty_rest_of_line ();
16255 }
16256
16257 static void
16258 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16259 {
16260 segment_info_type *si;
16261 struct insn_label_list *l;
16262 expressionS ex;
16263 char *p;
16264
16265 /* When not generating PIC code, this is treated as .dword. */
16266 if (mips_pic != SVR4_PIC)
16267 {
16268 s_cons (3);
16269 return;
16270 }
16271
16272 si = seg_info (now_seg);
16273 l = si->label_list;
16274 mips_emit_delays ();
16275 if (auto_align)
16276 mips_align (3, 0, l);
16277
16278 expression (&ex);
16279 mips_clear_insn_labels ();
16280
16281 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16282 {
16283 as_bad (_("unsupported use of .gpdword"));
16284 ignore_rest_of_line ();
16285 }
16286
16287 p = frag_more (8);
16288 md_number_to_chars (p, 0, 8);
16289 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16290 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16291
16292 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16293 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16294 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16295
16296 demand_empty_rest_of_line ();
16297 }
16298
16299 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16300 tables. It generates a R_MIPS_EH reloc. */
16301
16302 static void
16303 s_ehword (int ignore ATTRIBUTE_UNUSED)
16304 {
16305 expressionS ex;
16306 char *p;
16307
16308 mips_emit_delays ();
16309
16310 expression (&ex);
16311 mips_clear_insn_labels ();
16312
16313 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16314 {
16315 as_bad (_("unsupported use of .ehword"));
16316 ignore_rest_of_line ();
16317 }
16318
16319 p = frag_more (4);
16320 md_number_to_chars (p, 0, 4);
16321 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16322 BFD_RELOC_32_PCREL);
16323
16324 demand_empty_rest_of_line ();
16325 }
16326
16327 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16328 tables in SVR4 PIC code. */
16329
16330 static void
16331 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16332 {
16333 int reg;
16334
16335 file_mips_check_options ();
16336
16337 /* This is ignored when not generating SVR4 PIC code. */
16338 if (mips_pic != SVR4_PIC)
16339 {
16340 s_ignore (0);
16341 return;
16342 }
16343
16344 mips_mark_labels ();
16345 mips_assembling_insn = TRUE;
16346
16347 /* Add $gp to the register named as an argument. */
16348 macro_start ();
16349 reg = tc_get_register (0);
16350 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16351 macro_end ();
16352
16353 mips_assembling_insn = FALSE;
16354 demand_empty_rest_of_line ();
16355 }
16356
16357 /* Handle the .insn pseudo-op. This marks instruction labels in
16358 mips16/micromips mode. This permits the linker to handle them specially,
16359 such as generating jalx instructions when needed. We also make
16360 them odd for the duration of the assembly, in order to generate the
16361 right sort of code. We will make them even in the adjust_symtab
16362 routine, while leaving them marked. This is convenient for the
16363 debugger and the disassembler. The linker knows to make them odd
16364 again. */
16365
16366 static void
16367 s_insn (int ignore ATTRIBUTE_UNUSED)
16368 {
16369 file_mips_check_options ();
16370 file_ase_mips16 |= mips_opts.mips16;
16371 file_ase_micromips |= mips_opts.micromips;
16372
16373 mips_mark_labels ();
16374
16375 demand_empty_rest_of_line ();
16376 }
16377
16378 /* Handle the .nan pseudo-op. */
16379
16380 static void
16381 s_nan (int ignore ATTRIBUTE_UNUSED)
16382 {
16383 static const char str_legacy[] = "legacy";
16384 static const char str_2008[] = "2008";
16385 size_t i;
16386
16387 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16388
16389 if (i == sizeof (str_2008) - 1
16390 && memcmp (input_line_pointer, str_2008, i) == 0)
16391 mips_nan2008 = 1;
16392 else if (i == sizeof (str_legacy) - 1
16393 && memcmp (input_line_pointer, str_legacy, i) == 0)
16394 {
16395 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16396 mips_nan2008 = 0;
16397 else
16398 as_bad (_("`%s' does not support legacy NaN"),
16399 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16400 }
16401 else
16402 as_bad (_("bad .nan directive"));
16403
16404 input_line_pointer += i;
16405 demand_empty_rest_of_line ();
16406 }
16407
16408 /* Handle a .stab[snd] directive. Ideally these directives would be
16409 implemented in a transparent way, so that removing them would not
16410 have any effect on the generated instructions. However, s_stab
16411 internally changes the section, so in practice we need to decide
16412 now whether the preceding label marks compressed code. We do not
16413 support changing the compression mode of a label after a .stab*
16414 directive, such as in:
16415
16416 foo:
16417 .stabs ...
16418 .set mips16
16419
16420 so the current mode wins. */
16421
16422 static void
16423 s_mips_stab (int type)
16424 {
16425 mips_mark_labels ();
16426 s_stab (type);
16427 }
16428
16429 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16430
16431 static void
16432 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16433 {
16434 char *name;
16435 int c;
16436 symbolS *symbolP;
16437 expressionS exp;
16438
16439 c = get_symbol_name (&name);
16440 symbolP = symbol_find_or_make (name);
16441 S_SET_WEAK (symbolP);
16442 *input_line_pointer = c;
16443
16444 SKIP_WHITESPACE_AFTER_NAME ();
16445
16446 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16447 {
16448 if (S_IS_DEFINED (symbolP))
16449 {
16450 as_bad (_("ignoring attempt to redefine symbol %s"),
16451 S_GET_NAME (symbolP));
16452 ignore_rest_of_line ();
16453 return;
16454 }
16455
16456 if (*input_line_pointer == ',')
16457 {
16458 ++input_line_pointer;
16459 SKIP_WHITESPACE ();
16460 }
16461
16462 expression (&exp);
16463 if (exp.X_op != O_symbol)
16464 {
16465 as_bad (_("bad .weakext directive"));
16466 ignore_rest_of_line ();
16467 return;
16468 }
16469 symbol_set_value_expression (symbolP, &exp);
16470 }
16471
16472 demand_empty_rest_of_line ();
16473 }
16474
16475 /* Parse a register string into a number. Called from the ECOFF code
16476 to parse .frame. The argument is non-zero if this is the frame
16477 register, so that we can record it in mips_frame_reg. */
16478
16479 int
16480 tc_get_register (int frame)
16481 {
16482 unsigned int reg;
16483
16484 SKIP_WHITESPACE ();
16485 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16486 reg = 0;
16487 if (frame)
16488 {
16489 mips_frame_reg = reg != 0 ? reg : SP;
16490 mips_frame_reg_valid = 1;
16491 mips_cprestore_valid = 0;
16492 }
16493 return reg;
16494 }
16495
16496 valueT
16497 md_section_align (asection *seg, valueT addr)
16498 {
16499 int align = bfd_get_section_alignment (stdoutput, seg);
16500
16501 /* We don't need to align ELF sections to the full alignment.
16502 However, Irix 5 may prefer that we align them at least to a 16
16503 byte boundary. We don't bother to align the sections if we
16504 are targeted for an embedded system. */
16505 if (strncmp (TARGET_OS, "elf", 3) == 0)
16506 return addr;
16507 if (align > 4)
16508 align = 4;
16509
16510 return ((addr + (1 << align) - 1) & -(1 << align));
16511 }
16512
16513 /* Utility routine, called from above as well. If called while the
16514 input file is still being read, it's only an approximation. (For
16515 example, a symbol may later become defined which appeared to be
16516 undefined earlier.) */
16517
16518 static int
16519 nopic_need_relax (symbolS *sym, int before_relaxing)
16520 {
16521 if (sym == 0)
16522 return 0;
16523
16524 if (g_switch_value > 0)
16525 {
16526 const char *symname;
16527 int change;
16528
16529 /* Find out whether this symbol can be referenced off the $gp
16530 register. It can be if it is smaller than the -G size or if
16531 it is in the .sdata or .sbss section. Certain symbols can
16532 not be referenced off the $gp, although it appears as though
16533 they can. */
16534 symname = S_GET_NAME (sym);
16535 if (symname != (const char *) NULL
16536 && (strcmp (symname, "eprol") == 0
16537 || strcmp (symname, "etext") == 0
16538 || strcmp (symname, "_gp") == 0
16539 || strcmp (symname, "edata") == 0
16540 || strcmp (symname, "_fbss") == 0
16541 || strcmp (symname, "_fdata") == 0
16542 || strcmp (symname, "_ftext") == 0
16543 || strcmp (symname, "end") == 0
16544 || strcmp (symname, "_gp_disp") == 0))
16545 change = 1;
16546 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16547 && (0
16548 #ifndef NO_ECOFF_DEBUGGING
16549 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16550 && (symbol_get_obj (sym)->ecoff_extern_size
16551 <= g_switch_value))
16552 #endif
16553 /* We must defer this decision until after the whole
16554 file has been read, since there might be a .extern
16555 after the first use of this symbol. */
16556 || (before_relaxing
16557 #ifndef NO_ECOFF_DEBUGGING
16558 && symbol_get_obj (sym)->ecoff_extern_size == 0
16559 #endif
16560 && S_GET_VALUE (sym) == 0)
16561 || (S_GET_VALUE (sym) != 0
16562 && S_GET_VALUE (sym) <= g_switch_value)))
16563 change = 0;
16564 else
16565 {
16566 const char *segname;
16567
16568 segname = segment_name (S_GET_SEGMENT (sym));
16569 gas_assert (strcmp (segname, ".lit8") != 0
16570 && strcmp (segname, ".lit4") != 0);
16571 change = (strcmp (segname, ".sdata") != 0
16572 && strcmp (segname, ".sbss") != 0
16573 && strncmp (segname, ".sdata.", 7) != 0
16574 && strncmp (segname, ".sbss.", 6) != 0
16575 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16576 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16577 }
16578 return change;
16579 }
16580 else
16581 /* We are not optimizing for the $gp register. */
16582 return 1;
16583 }
16584
16585
16586 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16587
16588 static bfd_boolean
16589 pic_need_relax (symbolS *sym, asection *segtype)
16590 {
16591 asection *symsec;
16592
16593 /* Handle the case of a symbol equated to another symbol. */
16594 while (symbol_equated_reloc_p (sym))
16595 {
16596 symbolS *n;
16597
16598 /* It's possible to get a loop here in a badly written program. */
16599 n = symbol_get_value_expression (sym)->X_add_symbol;
16600 if (n == sym)
16601 break;
16602 sym = n;
16603 }
16604
16605 if (symbol_section_p (sym))
16606 return TRUE;
16607
16608 symsec = S_GET_SEGMENT (sym);
16609
16610 /* This must duplicate the test in adjust_reloc_syms. */
16611 return (!bfd_is_und_section (symsec)
16612 && !bfd_is_abs_section (symsec)
16613 && !bfd_is_com_section (symsec)
16614 && !s_is_linkonce (sym, segtype)
16615 /* A global or weak symbol is treated as external. */
16616 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16617 }
16618
16619
16620 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16621 extended opcode. SEC is the section the frag is in. */
16622
16623 static int
16624 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16625 {
16626 int type;
16627 const struct mips_int_operand *operand;
16628 offsetT val;
16629 segT symsec;
16630 fragS *sym_frag;
16631
16632 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16633 return 0;
16634 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16635 return 1;
16636
16637 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16638 operand = mips16_immed_operand (type, FALSE);
16639
16640 sym_frag = symbol_get_frag (fragp->fr_symbol);
16641 val = S_GET_VALUE (fragp->fr_symbol);
16642 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16643
16644 if (operand->root.type == OP_PCREL)
16645 {
16646 const struct mips_pcrel_operand *pcrel_op;
16647 addressT addr;
16648 offsetT maxtiny;
16649
16650 /* We won't have the section when we are called from
16651 mips_relax_frag. However, we will always have been called
16652 from md_estimate_size_before_relax first. If this is a
16653 branch to a different section, we mark it as such. If SEC is
16654 NULL, and the frag is not marked, then it must be a branch to
16655 the same section. */
16656 pcrel_op = (const struct mips_pcrel_operand *) operand;
16657 if (sec == NULL)
16658 {
16659 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16660 return 1;
16661 }
16662 else
16663 {
16664 /* Must have been called from md_estimate_size_before_relax. */
16665 if (symsec != sec)
16666 {
16667 fragp->fr_subtype =
16668 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16669
16670 /* FIXME: We should support this, and let the linker
16671 catch branches and loads that are out of range. */
16672 as_bad_where (fragp->fr_file, fragp->fr_line,
16673 _("unsupported PC relative reference to different section"));
16674
16675 return 1;
16676 }
16677 if (fragp != sym_frag && sym_frag->fr_address == 0)
16678 /* Assume non-extended on the first relaxation pass.
16679 The address we have calculated will be bogus if this is
16680 a forward branch to another frag, as the forward frag
16681 will have fr_address == 0. */
16682 return 0;
16683 }
16684
16685 /* In this case, we know for sure that the symbol fragment is in
16686 the same section. If the relax_marker of the symbol fragment
16687 differs from the relax_marker of this fragment, we have not
16688 yet adjusted the symbol fragment fr_address. We want to add
16689 in STRETCH in order to get a better estimate of the address.
16690 This particularly matters because of the shift bits. */
16691 if (stretch != 0
16692 && sym_frag->relax_marker != fragp->relax_marker)
16693 {
16694 fragS *f;
16695
16696 /* Adjust stretch for any alignment frag. Note that if have
16697 been expanding the earlier code, the symbol may be
16698 defined in what appears to be an earlier frag. FIXME:
16699 This doesn't handle the fr_subtype field, which specifies
16700 a maximum number of bytes to skip when doing an
16701 alignment. */
16702 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16703 {
16704 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16705 {
16706 if (stretch < 0)
16707 stretch = - ((- stretch)
16708 & ~ ((1 << (int) f->fr_offset) - 1));
16709 else
16710 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16711 if (stretch == 0)
16712 break;
16713 }
16714 }
16715 if (f != NULL)
16716 val += stretch;
16717 }
16718
16719 addr = fragp->fr_address + fragp->fr_fix;
16720
16721 /* The base address rules are complicated. The base address of
16722 a branch is the following instruction. The base address of a
16723 PC relative load or add is the instruction itself, but if it
16724 is in a delay slot (in which case it can not be extended) use
16725 the address of the instruction whose delay slot it is in. */
16726 if (pcrel_op->include_isa_bit)
16727 {
16728 addr += 2;
16729
16730 /* If we are currently assuming that this frag should be
16731 extended, then, the current address is two bytes
16732 higher. */
16733 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16734 addr += 2;
16735
16736 /* Ignore the low bit in the target, since it will be set
16737 for a text label. */
16738 val &= -2;
16739 }
16740 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16741 addr -= 4;
16742 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16743 addr -= 2;
16744
16745 val -= addr & -(1 << pcrel_op->align_log2);
16746
16747 /* If any of the shifted bits are set, we must use an extended
16748 opcode. If the address depends on the size of this
16749 instruction, this can lead to a loop, so we arrange to always
16750 use an extended opcode. We only check this when we are in
16751 the main relaxation loop, when SEC is NULL. */
16752 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16753 {
16754 fragp->fr_subtype =
16755 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16756 return 1;
16757 }
16758
16759 /* If we are about to mark a frag as extended because the value
16760 is precisely the next value above maxtiny, then there is a
16761 chance of an infinite loop as in the following code:
16762 la $4,foo
16763 .skip 1020
16764 .align 2
16765 foo:
16766 In this case when the la is extended, foo is 0x3fc bytes
16767 away, so the la can be shrunk, but then foo is 0x400 away, so
16768 the la must be extended. To avoid this loop, we mark the
16769 frag as extended if it was small, and is about to become
16770 extended with the next value above maxtiny. */
16771 maxtiny = mips_int_operand_max (operand);
16772 if (val == maxtiny + (1 << operand->shift)
16773 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16774 && sec == NULL)
16775 {
16776 fragp->fr_subtype =
16777 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16778 return 1;
16779 }
16780 }
16781 else if (symsec != absolute_section && sec != NULL)
16782 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16783
16784 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16785 }
16786
16787 /* Compute the length of a branch sequence, and adjust the
16788 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16789 worst-case length is computed, with UPDATE being used to indicate
16790 whether an unconditional (-1), branch-likely (+1) or regular (0)
16791 branch is to be computed. */
16792 static int
16793 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16794 {
16795 bfd_boolean toofar;
16796 int length;
16797
16798 if (fragp
16799 && S_IS_DEFINED (fragp->fr_symbol)
16800 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16801 {
16802 addressT addr;
16803 offsetT val;
16804
16805 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16806
16807 addr = fragp->fr_address + fragp->fr_fix + 4;
16808
16809 val -= addr;
16810
16811 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16812 }
16813 else if (fragp)
16814 /* If the symbol is not defined or it's in a different segment,
16815 assume the user knows what's going on and emit a short
16816 branch. */
16817 toofar = FALSE;
16818 else
16819 toofar = TRUE;
16820
16821 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16822 fragp->fr_subtype
16823 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16824 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16825 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16826 RELAX_BRANCH_LINK (fragp->fr_subtype),
16827 toofar);
16828
16829 length = 4;
16830 if (toofar)
16831 {
16832 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16833 length += 8;
16834
16835 if (mips_pic != NO_PIC)
16836 {
16837 /* Additional space for PIC loading of target address. */
16838 length += 8;
16839 if (mips_opts.isa == ISA_MIPS1)
16840 /* Additional space for $at-stabilizing nop. */
16841 length += 4;
16842 }
16843
16844 /* If branch is conditional. */
16845 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16846 length += 8;
16847 }
16848
16849 return length;
16850 }
16851
16852 /* Compute the length of a branch sequence, and adjust the
16853 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16854 worst-case length is computed, with UPDATE being used to indicate
16855 whether an unconditional (-1), or regular (0) branch is to be
16856 computed. */
16857
16858 static int
16859 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16860 {
16861 bfd_boolean toofar;
16862 int length;
16863
16864 if (fragp
16865 && S_IS_DEFINED (fragp->fr_symbol)
16866 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16867 {
16868 addressT addr;
16869 offsetT val;
16870
16871 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16872 /* Ignore the low bit in the target, since it will be set
16873 for a text label. */
16874 if ((val & 1) != 0)
16875 --val;
16876
16877 addr = fragp->fr_address + fragp->fr_fix + 4;
16878
16879 val -= addr;
16880
16881 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16882 }
16883 else if (fragp)
16884 /* If the symbol is not defined or it's in a different segment,
16885 assume the user knows what's going on and emit a short
16886 branch. */
16887 toofar = FALSE;
16888 else
16889 toofar = TRUE;
16890
16891 if (fragp && update
16892 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16893 fragp->fr_subtype = (toofar
16894 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16895 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16896
16897 length = 4;
16898 if (toofar)
16899 {
16900 bfd_boolean compact_known = fragp != NULL;
16901 bfd_boolean compact = FALSE;
16902 bfd_boolean uncond;
16903
16904 if (compact_known)
16905 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16906 if (fragp)
16907 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16908 else
16909 uncond = update < 0;
16910
16911 /* If label is out of range, we turn branch <br>:
16912
16913 <br> label # 4 bytes
16914 0:
16915
16916 into:
16917
16918 j label # 4 bytes
16919 nop # 2 bytes if compact && !PIC
16920 0:
16921 */
16922 if (mips_pic == NO_PIC && (!compact_known || compact))
16923 length += 2;
16924
16925 /* If assembling PIC code, we further turn:
16926
16927 j label # 4 bytes
16928
16929 into:
16930
16931 lw/ld at, %got(label)(gp) # 4 bytes
16932 d/addiu at, %lo(label) # 4 bytes
16933 jr/c at # 2 bytes
16934 */
16935 if (mips_pic != NO_PIC)
16936 length += 6;
16937
16938 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16939
16940 <brneg> 0f # 4 bytes
16941 nop # 2 bytes if !compact
16942 */
16943 if (!uncond)
16944 length += (compact_known && compact) ? 4 : 6;
16945 }
16946
16947 return length;
16948 }
16949
16950 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16951 bit accordingly. */
16952
16953 static int
16954 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16955 {
16956 bfd_boolean toofar;
16957
16958 if (fragp
16959 && S_IS_DEFINED (fragp->fr_symbol)
16960 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16961 {
16962 addressT addr;
16963 offsetT val;
16964 int type;
16965
16966 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16967 /* Ignore the low bit in the target, since it will be set
16968 for a text label. */
16969 if ((val & 1) != 0)
16970 --val;
16971
16972 /* Assume this is a 2-byte branch. */
16973 addr = fragp->fr_address + fragp->fr_fix + 2;
16974
16975 /* We try to avoid the infinite loop by not adding 2 more bytes for
16976 long branches. */
16977
16978 val -= addr;
16979
16980 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16981 if (type == 'D')
16982 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16983 else if (type == 'E')
16984 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16985 else
16986 abort ();
16987 }
16988 else
16989 /* If the symbol is not defined or it's in a different segment,
16990 we emit a normal 32-bit branch. */
16991 toofar = TRUE;
16992
16993 if (fragp && update
16994 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16995 fragp->fr_subtype
16996 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16997 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16998
16999 if (toofar)
17000 return 4;
17001
17002 return 2;
17003 }
17004
17005 /* Estimate the size of a frag before relaxing. Unless this is the
17006 mips16, we are not really relaxing here, and the final size is
17007 encoded in the subtype information. For the mips16, we have to
17008 decide whether we are using an extended opcode or not. */
17009
17010 int
17011 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17012 {
17013 int change;
17014
17015 if (RELAX_BRANCH_P (fragp->fr_subtype))
17016 {
17017
17018 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17019
17020 return fragp->fr_var;
17021 }
17022
17023 if (RELAX_MIPS16_P (fragp->fr_subtype))
17024 /* We don't want to modify the EXTENDED bit here; it might get us
17025 into infinite loops. We change it only in mips_relax_frag(). */
17026 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17027
17028 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17029 {
17030 int length = 4;
17031
17032 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17033 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17034 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17035 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17036 fragp->fr_var = length;
17037
17038 return length;
17039 }
17040
17041 if (mips_pic == NO_PIC)
17042 change = nopic_need_relax (fragp->fr_symbol, 0);
17043 else if (mips_pic == SVR4_PIC)
17044 change = pic_need_relax (fragp->fr_symbol, segtype);
17045 else if (mips_pic == VXWORKS_PIC)
17046 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17047 change = 0;
17048 else
17049 abort ();
17050
17051 if (change)
17052 {
17053 fragp->fr_subtype |= RELAX_USE_SECOND;
17054 return -RELAX_FIRST (fragp->fr_subtype);
17055 }
17056 else
17057 return -RELAX_SECOND (fragp->fr_subtype);
17058 }
17059
17060 /* This is called to see whether a reloc against a defined symbol
17061 should be converted into a reloc against a section. */
17062
17063 int
17064 mips_fix_adjustable (fixS *fixp)
17065 {
17066 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17067 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17068 return 0;
17069
17070 if (fixp->fx_addsy == NULL)
17071 return 1;
17072
17073 /* Allow relocs used for EH tables. */
17074 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17075 return 1;
17076
17077 /* If symbol SYM is in a mergeable section, relocations of the form
17078 SYM + 0 can usually be made section-relative. The mergeable data
17079 is then identified by the section offset rather than by the symbol.
17080
17081 However, if we're generating REL LO16 relocations, the offset is split
17082 between the LO16 and parterning high part relocation. The linker will
17083 need to recalculate the complete offset in order to correctly identify
17084 the merge data.
17085
17086 The linker has traditionally not looked for the parterning high part
17087 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17088 placed anywhere. Rather than break backwards compatibility by changing
17089 this, it seems better not to force the issue, and instead keep the
17090 original symbol. This will work with either linker behavior. */
17091 if ((lo16_reloc_p (fixp->fx_r_type)
17092 || reloc_needs_lo_p (fixp->fx_r_type))
17093 && HAVE_IN_PLACE_ADDENDS
17094 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17095 return 0;
17096
17097 /* There is no place to store an in-place offset for JALR relocations.
17098 Likewise an in-range offset of limited PC-relative relocations may
17099 overflow the in-place relocatable field if recalculated against the
17100 start address of the symbol's containing section.
17101
17102 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17103 section relative to allow linker relaxations to be performed later on. */
17104 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
17105 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17106 || jalr_reloc_p (fixp->fx_r_type)))
17107 return 0;
17108
17109 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17110 to a floating-point stub. The same is true for non-R_MIPS16_26
17111 relocations against MIPS16 functions; in this case, the stub becomes
17112 the function's canonical address.
17113
17114 Floating-point stubs are stored in unique .mips16.call.* or
17115 .mips16.fn.* sections. If a stub T for function F is in section S,
17116 the first relocation in section S must be against F; this is how the
17117 linker determines the target function. All relocations that might
17118 resolve to T must also be against F. We therefore have the following
17119 restrictions, which are given in an intentionally-redundant way:
17120
17121 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17122 symbols.
17123
17124 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17125 if that stub might be used.
17126
17127 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17128 symbols.
17129
17130 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17131 that stub might be used.
17132
17133 There is a further restriction:
17134
17135 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17136 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17137 targets with in-place addends; the relocation field cannot
17138 encode the low bit.
17139
17140 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17141 against a MIPS16 symbol. We deal with (5) by by not reducing any
17142 such relocations on REL targets.
17143
17144 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17145 relocation against some symbol R, no relocation against R may be
17146 reduced. (Note that this deals with (2) as well as (1) because
17147 relocations against global symbols will never be reduced on ELF
17148 targets.) This approach is a little simpler than trying to detect
17149 stub sections, and gives the "all or nothing" per-symbol consistency
17150 that we have for MIPS16 symbols. */
17151 if (fixp->fx_subsy == NULL
17152 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17153 || *symbol_get_tc (fixp->fx_addsy)
17154 || (HAVE_IN_PLACE_ADDENDS
17155 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17156 && jmp_reloc_p (fixp->fx_r_type))))
17157 return 0;
17158
17159 return 1;
17160 }
17161
17162 /* Translate internal representation of relocation info to BFD target
17163 format. */
17164
17165 arelent **
17166 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17167 {
17168 static arelent *retval[4];
17169 arelent *reloc;
17170 bfd_reloc_code_real_type code;
17171
17172 memset (retval, 0, sizeof(retval));
17173 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
17174 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17175 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17176 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17177
17178 if (fixp->fx_pcrel)
17179 {
17180 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17181 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17182 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17183 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17184 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17185 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17186 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17187 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17188 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17189 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17190 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17191
17192 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17193 Relocations want only the symbol offset. */
17194 reloc->addend = fixp->fx_addnumber + reloc->address;
17195 }
17196 else
17197 reloc->addend = fixp->fx_addnumber;
17198
17199 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17200 entry to be used in the relocation's section offset. */
17201 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17202 {
17203 reloc->address = reloc->addend;
17204 reloc->addend = 0;
17205 }
17206
17207 code = fixp->fx_r_type;
17208
17209 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17210 if (reloc->howto == NULL)
17211 {
17212 as_bad_where (fixp->fx_file, fixp->fx_line,
17213 _("cannot represent %s relocation in this object file"
17214 " format"),
17215 bfd_get_reloc_code_name (code));
17216 retval[0] = NULL;
17217 }
17218
17219 return retval;
17220 }
17221
17222 /* Relax a machine dependent frag. This returns the amount by which
17223 the current size of the frag should change. */
17224
17225 int
17226 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17227 {
17228 if (RELAX_BRANCH_P (fragp->fr_subtype))
17229 {
17230 offsetT old_var = fragp->fr_var;
17231
17232 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17233
17234 return fragp->fr_var - old_var;
17235 }
17236
17237 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17238 {
17239 offsetT old_var = fragp->fr_var;
17240 offsetT new_var = 4;
17241
17242 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17243 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17244 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17245 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17246 fragp->fr_var = new_var;
17247
17248 return new_var - old_var;
17249 }
17250
17251 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17252 return 0;
17253
17254 if (mips16_extended_frag (fragp, NULL, stretch))
17255 {
17256 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17257 return 0;
17258 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17259 return 2;
17260 }
17261 else
17262 {
17263 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17264 return 0;
17265 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17266 return -2;
17267 }
17268
17269 return 0;
17270 }
17271
17272 /* Convert a machine dependent frag. */
17273
17274 void
17275 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17276 {
17277 if (RELAX_BRANCH_P (fragp->fr_subtype))
17278 {
17279 char *buf;
17280 unsigned long insn;
17281 expressionS exp;
17282 fixS *fixp;
17283
17284 buf = fragp->fr_literal + fragp->fr_fix;
17285 insn = read_insn (buf);
17286
17287 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17288 {
17289 /* We generate a fixup instead of applying it right now
17290 because, if there are linker relaxations, we're going to
17291 need the relocations. */
17292 exp.X_op = O_symbol;
17293 exp.X_add_symbol = fragp->fr_symbol;
17294 exp.X_add_number = fragp->fr_offset;
17295
17296 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17297 BFD_RELOC_16_PCREL_S2);
17298 fixp->fx_file = fragp->fr_file;
17299 fixp->fx_line = fragp->fr_line;
17300
17301 buf = write_insn (buf, insn);
17302 }
17303 else
17304 {
17305 int i;
17306
17307 as_warn_where (fragp->fr_file, fragp->fr_line,
17308 _("relaxed out-of-range branch into a jump"));
17309
17310 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17311 goto uncond;
17312
17313 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17314 {
17315 /* Reverse the branch. */
17316 switch ((insn >> 28) & 0xf)
17317 {
17318 case 4:
17319 if ((insn & 0xff000000) == 0x47000000
17320 || (insn & 0xff600000) == 0x45600000)
17321 {
17322 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17323 reversed by tweaking bit 23. */
17324 insn ^= 0x00800000;
17325 }
17326 else
17327 {
17328 /* bc[0-3][tf]l? instructions can have the condition
17329 reversed by tweaking a single TF bit, and their
17330 opcodes all have 0x4???????. */
17331 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17332 insn ^= 0x00010000;
17333 }
17334 break;
17335
17336 case 0:
17337 /* bltz 0x04000000 bgez 0x04010000
17338 bltzal 0x04100000 bgezal 0x04110000 */
17339 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17340 insn ^= 0x00010000;
17341 break;
17342
17343 case 1:
17344 /* beq 0x10000000 bne 0x14000000
17345 blez 0x18000000 bgtz 0x1c000000 */
17346 insn ^= 0x04000000;
17347 break;
17348
17349 default:
17350 abort ();
17351 }
17352 }
17353
17354 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17355 {
17356 /* Clear the and-link bit. */
17357 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17358
17359 /* bltzal 0x04100000 bgezal 0x04110000
17360 bltzall 0x04120000 bgezall 0x04130000 */
17361 insn &= ~0x00100000;
17362 }
17363
17364 /* Branch over the branch (if the branch was likely) or the
17365 full jump (not likely case). Compute the offset from the
17366 current instruction to branch to. */
17367 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17368 i = 16;
17369 else
17370 {
17371 /* How many bytes in instructions we've already emitted? */
17372 i = buf - fragp->fr_literal - fragp->fr_fix;
17373 /* How many bytes in instructions from here to the end? */
17374 i = fragp->fr_var - i;
17375 }
17376 /* Convert to instruction count. */
17377 i >>= 2;
17378 /* Branch counts from the next instruction. */
17379 i--;
17380 insn |= i;
17381 /* Branch over the jump. */
17382 buf = write_insn (buf, insn);
17383
17384 /* nop */
17385 buf = write_insn (buf, 0);
17386
17387 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17388 {
17389 /* beql $0, $0, 2f */
17390 insn = 0x50000000;
17391 /* Compute the PC offset from the current instruction to
17392 the end of the variable frag. */
17393 /* How many bytes in instructions we've already emitted? */
17394 i = buf - fragp->fr_literal - fragp->fr_fix;
17395 /* How many bytes in instructions from here to the end? */
17396 i = fragp->fr_var - i;
17397 /* Convert to instruction count. */
17398 i >>= 2;
17399 /* Don't decrement i, because we want to branch over the
17400 delay slot. */
17401 insn |= i;
17402
17403 buf = write_insn (buf, insn);
17404 buf = write_insn (buf, 0);
17405 }
17406
17407 uncond:
17408 if (mips_pic == NO_PIC)
17409 {
17410 /* j or jal. */
17411 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17412 ? 0x0c000000 : 0x08000000);
17413 exp.X_op = O_symbol;
17414 exp.X_add_symbol = fragp->fr_symbol;
17415 exp.X_add_number = fragp->fr_offset;
17416
17417 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17418 FALSE, BFD_RELOC_MIPS_JMP);
17419 fixp->fx_file = fragp->fr_file;
17420 fixp->fx_line = fragp->fr_line;
17421
17422 buf = write_insn (buf, insn);
17423 }
17424 else
17425 {
17426 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17427
17428 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17429 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17430 insn |= at << OP_SH_RT;
17431 exp.X_op = O_symbol;
17432 exp.X_add_symbol = fragp->fr_symbol;
17433 exp.X_add_number = fragp->fr_offset;
17434
17435 if (fragp->fr_offset)
17436 {
17437 exp.X_add_symbol = make_expr_symbol (&exp);
17438 exp.X_add_number = 0;
17439 }
17440
17441 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17442 FALSE, BFD_RELOC_MIPS_GOT16);
17443 fixp->fx_file = fragp->fr_file;
17444 fixp->fx_line = fragp->fr_line;
17445
17446 buf = write_insn (buf, insn);
17447
17448 if (mips_opts.isa == ISA_MIPS1)
17449 /* nop */
17450 buf = write_insn (buf, 0);
17451
17452 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17453 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17454 insn |= at << OP_SH_RS | at << OP_SH_RT;
17455
17456 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17457 FALSE, BFD_RELOC_LO16);
17458 fixp->fx_file = fragp->fr_file;
17459 fixp->fx_line = fragp->fr_line;
17460
17461 buf = write_insn (buf, insn);
17462
17463 /* j(al)r $at. */
17464 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17465 insn = 0x0000f809;
17466 else
17467 insn = 0x00000008;
17468 insn |= at << OP_SH_RS;
17469
17470 buf = write_insn (buf, insn);
17471 }
17472 }
17473
17474 fragp->fr_fix += fragp->fr_var;
17475 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17476 return;
17477 }
17478
17479 /* Relax microMIPS branches. */
17480 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17481 {
17482 char *buf = fragp->fr_literal + fragp->fr_fix;
17483 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17484 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17485 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17486 bfd_boolean short_ds;
17487 unsigned long insn;
17488 expressionS exp;
17489 fixS *fixp;
17490
17491 exp.X_op = O_symbol;
17492 exp.X_add_symbol = fragp->fr_symbol;
17493 exp.X_add_number = fragp->fr_offset;
17494
17495 fragp->fr_fix += fragp->fr_var;
17496
17497 /* Handle 16-bit branches that fit or are forced to fit. */
17498 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17499 {
17500 /* We generate a fixup instead of applying it right now,
17501 because if there is linker relaxation, we're going to
17502 need the relocations. */
17503 if (type == 'D')
17504 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17505 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17506 else if (type == 'E')
17507 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17508 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17509 else
17510 abort ();
17511
17512 fixp->fx_file = fragp->fr_file;
17513 fixp->fx_line = fragp->fr_line;
17514
17515 /* These relocations can have an addend that won't fit in
17516 2 octets. */
17517 fixp->fx_no_overflow = 1;
17518
17519 return;
17520 }
17521
17522 /* Handle 32-bit branches that fit or are forced to fit. */
17523 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17524 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17525 {
17526 /* We generate a fixup instead of applying it right now,
17527 because if there is linker relaxation, we're going to
17528 need the relocations. */
17529 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17530 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17531 fixp->fx_file = fragp->fr_file;
17532 fixp->fx_line = fragp->fr_line;
17533
17534 if (type == 0)
17535 return;
17536 }
17537
17538 /* Relax 16-bit branches to 32-bit branches. */
17539 if (type != 0)
17540 {
17541 insn = read_compressed_insn (buf, 2);
17542
17543 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17544 insn = 0x94000000; /* beq */
17545 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17546 {
17547 unsigned long regno;
17548
17549 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17550 regno = micromips_to_32_reg_d_map [regno];
17551 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17552 insn |= regno << MICROMIPSOP_SH_RS;
17553 }
17554 else
17555 abort ();
17556
17557 /* Nothing else to do, just write it out. */
17558 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17559 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17560 {
17561 buf = write_compressed_insn (buf, insn, 4);
17562 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17563 return;
17564 }
17565 }
17566 else
17567 insn = read_compressed_insn (buf, 4);
17568
17569 /* Relax 32-bit branches to a sequence of instructions. */
17570 as_warn_where (fragp->fr_file, fragp->fr_line,
17571 _("relaxed out-of-range branch into a jump"));
17572
17573 /* Set the short-delay-slot bit. */
17574 short_ds = al && (insn & 0x02000000) != 0;
17575
17576 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17577 {
17578 symbolS *l;
17579
17580 /* Reverse the branch. */
17581 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17582 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17583 insn ^= 0x20000000;
17584 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17585 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17586 || (insn & 0xffe00000) == 0x40800000 /* blez */
17587 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17588 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17589 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17590 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17591 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17592 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17593 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17594 insn ^= 0x00400000;
17595 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17596 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17597 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17598 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17599 insn ^= 0x00200000;
17600 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17601 BNZ.df */
17602 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17603 BNZ.V */
17604 insn ^= 0x00800000;
17605 else
17606 abort ();
17607
17608 if (al)
17609 {
17610 /* Clear the and-link and short-delay-slot bits. */
17611 gas_assert ((insn & 0xfda00000) == 0x40200000);
17612
17613 /* bltzal 0x40200000 bgezal 0x40600000 */
17614 /* bltzals 0x42200000 bgezals 0x42600000 */
17615 insn &= ~0x02200000;
17616 }
17617
17618 /* Make a label at the end for use with the branch. */
17619 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17620 micromips_label_inc ();
17621 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17622
17623 /* Refer to it. */
17624 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17625 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17626 fixp->fx_file = fragp->fr_file;
17627 fixp->fx_line = fragp->fr_line;
17628
17629 /* Branch over the jump. */
17630 buf = write_compressed_insn (buf, insn, 4);
17631 if (!compact)
17632 /* nop */
17633 buf = write_compressed_insn (buf, 0x0c00, 2);
17634 }
17635
17636 if (mips_pic == NO_PIC)
17637 {
17638 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17639
17640 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17641 insn = al ? jal : 0xd4000000;
17642
17643 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17644 BFD_RELOC_MICROMIPS_JMP);
17645 fixp->fx_file = fragp->fr_file;
17646 fixp->fx_line = fragp->fr_line;
17647
17648 buf = write_compressed_insn (buf, insn, 4);
17649 if (compact)
17650 /* nop */
17651 buf = write_compressed_insn (buf, 0x0c00, 2);
17652 }
17653 else
17654 {
17655 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17656 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17657 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17658
17659 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17660 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17661 insn |= at << MICROMIPSOP_SH_RT;
17662
17663 if (exp.X_add_number)
17664 {
17665 exp.X_add_symbol = make_expr_symbol (&exp);
17666 exp.X_add_number = 0;
17667 }
17668
17669 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17670 BFD_RELOC_MICROMIPS_GOT16);
17671 fixp->fx_file = fragp->fr_file;
17672 fixp->fx_line = fragp->fr_line;
17673
17674 buf = write_compressed_insn (buf, insn, 4);
17675
17676 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17677 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17678 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17679
17680 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17681 BFD_RELOC_MICROMIPS_LO16);
17682 fixp->fx_file = fragp->fr_file;
17683 fixp->fx_line = fragp->fr_line;
17684
17685 buf = write_compressed_insn (buf, insn, 4);
17686
17687 /* jr/jrc/jalr/jalrs $at */
17688 insn = al ? jalr : jr;
17689 insn |= at << MICROMIPSOP_SH_MJ;
17690
17691 buf = write_compressed_insn (buf, insn, 2);
17692 }
17693
17694 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17695 return;
17696 }
17697
17698 if (RELAX_MIPS16_P (fragp->fr_subtype))
17699 {
17700 int type;
17701 const struct mips_int_operand *operand;
17702 offsetT val;
17703 char *buf;
17704 unsigned int user_length, length;
17705 unsigned long insn;
17706 bfd_boolean ext;
17707
17708 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17709 operand = mips16_immed_operand (type, FALSE);
17710
17711 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17712 val = resolve_symbol_value (fragp->fr_symbol);
17713 if (operand->root.type == OP_PCREL)
17714 {
17715 const struct mips_pcrel_operand *pcrel_op;
17716 addressT addr;
17717
17718 pcrel_op = (const struct mips_pcrel_operand *) operand;
17719 addr = fragp->fr_address + fragp->fr_fix;
17720
17721 /* The rules for the base address of a PC relative reloc are
17722 complicated; see mips16_extended_frag. */
17723 if (pcrel_op->include_isa_bit)
17724 {
17725 addr += 2;
17726 if (ext)
17727 addr += 2;
17728 /* Ignore the low bit in the target, since it will be
17729 set for a text label. */
17730 val &= -2;
17731 }
17732 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17733 addr -= 4;
17734 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17735 addr -= 2;
17736
17737 addr &= -(1 << pcrel_op->align_log2);
17738 val -= addr;
17739
17740 /* Make sure the section winds up with the alignment we have
17741 assumed. */
17742 if (operand->shift > 0)
17743 record_alignment (asec, operand->shift);
17744 }
17745
17746 if (ext
17747 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17748 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17749 as_warn_where (fragp->fr_file, fragp->fr_line,
17750 _("extended instruction in delay slot"));
17751
17752 buf = fragp->fr_literal + fragp->fr_fix;
17753
17754 insn = read_compressed_insn (buf, 2);
17755 if (ext)
17756 insn |= MIPS16_EXTEND;
17757
17758 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17759 user_length = 4;
17760 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17761 user_length = 2;
17762 else
17763 user_length = 0;
17764
17765 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17766 BFD_RELOC_UNUSED, val, user_length, &insn);
17767
17768 length = (ext ? 4 : 2);
17769 gas_assert (mips16_opcode_length (insn) == length);
17770 write_compressed_insn (buf, insn, length);
17771 fragp->fr_fix += length;
17772 }
17773 else
17774 {
17775 relax_substateT subtype = fragp->fr_subtype;
17776 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17777 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17778 int first, second;
17779 fixS *fixp;
17780
17781 first = RELAX_FIRST (subtype);
17782 second = RELAX_SECOND (subtype);
17783 fixp = (fixS *) fragp->fr_opcode;
17784
17785 /* If the delay slot chosen does not match the size of the instruction,
17786 then emit a warning. */
17787 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17788 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17789 {
17790 relax_substateT s;
17791 const char *msg;
17792
17793 s = subtype & (RELAX_DELAY_SLOT_16BIT
17794 | RELAX_DELAY_SLOT_SIZE_FIRST
17795 | RELAX_DELAY_SLOT_SIZE_SECOND);
17796 msg = macro_warning (s);
17797 if (msg != NULL)
17798 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17799 subtype &= ~s;
17800 }
17801
17802 /* Possibly emit a warning if we've chosen the longer option. */
17803 if (use_second == second_longer)
17804 {
17805 relax_substateT s;
17806 const char *msg;
17807
17808 s = (subtype
17809 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17810 msg = macro_warning (s);
17811 if (msg != NULL)
17812 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17813 subtype &= ~s;
17814 }
17815
17816 /* Go through all the fixups for the first sequence. Disable them
17817 (by marking them as done) if we're going to use the second
17818 sequence instead. */
17819 while (fixp
17820 && fixp->fx_frag == fragp
17821 && fixp->fx_where < fragp->fr_fix - second)
17822 {
17823 if (subtype & RELAX_USE_SECOND)
17824 fixp->fx_done = 1;
17825 fixp = fixp->fx_next;
17826 }
17827
17828 /* Go through the fixups for the second sequence. Disable them if
17829 we're going to use the first sequence, otherwise adjust their
17830 addresses to account for the relaxation. */
17831 while (fixp && fixp->fx_frag == fragp)
17832 {
17833 if (subtype & RELAX_USE_SECOND)
17834 fixp->fx_where -= first;
17835 else
17836 fixp->fx_done = 1;
17837 fixp = fixp->fx_next;
17838 }
17839
17840 /* Now modify the frag contents. */
17841 if (subtype & RELAX_USE_SECOND)
17842 {
17843 char *start;
17844
17845 start = fragp->fr_literal + fragp->fr_fix - first - second;
17846 memmove (start, start + first, second);
17847 fragp->fr_fix -= first;
17848 }
17849 else
17850 fragp->fr_fix -= second;
17851 }
17852 }
17853
17854 /* This function is called after the relocs have been generated.
17855 We've been storing mips16 text labels as odd. Here we convert them
17856 back to even for the convenience of the debugger. */
17857
17858 void
17859 mips_frob_file_after_relocs (void)
17860 {
17861 asymbol **syms;
17862 unsigned int count, i;
17863
17864 syms = bfd_get_outsymbols (stdoutput);
17865 count = bfd_get_symcount (stdoutput);
17866 for (i = 0; i < count; i++, syms++)
17867 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17868 && ((*syms)->value & 1) != 0)
17869 {
17870 (*syms)->value &= ~1;
17871 /* If the symbol has an odd size, it was probably computed
17872 incorrectly, so adjust that as well. */
17873 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17874 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17875 }
17876 }
17877
17878 /* This function is called whenever a label is defined, including fake
17879 labels instantiated off the dot special symbol. It is used when
17880 handling branch delays; if a branch has a label, we assume we cannot
17881 move it. This also bumps the value of the symbol by 1 in compressed
17882 code. */
17883
17884 static void
17885 mips_record_label (symbolS *sym)
17886 {
17887 segment_info_type *si = seg_info (now_seg);
17888 struct insn_label_list *l;
17889
17890 if (free_insn_labels == NULL)
17891 l = (struct insn_label_list *) xmalloc (sizeof *l);
17892 else
17893 {
17894 l = free_insn_labels;
17895 free_insn_labels = l->next;
17896 }
17897
17898 l->label = sym;
17899 l->next = si->label_list;
17900 si->label_list = l;
17901 }
17902
17903 /* This function is called as tc_frob_label() whenever a label is defined
17904 and adds a DWARF-2 record we only want for true labels. */
17905
17906 void
17907 mips_define_label (symbolS *sym)
17908 {
17909 mips_record_label (sym);
17910 dwarf2_emit_label (sym);
17911 }
17912
17913 /* This function is called by tc_new_dot_label whenever a new dot symbol
17914 is defined. */
17915
17916 void
17917 mips_add_dot_label (symbolS *sym)
17918 {
17919 mips_record_label (sym);
17920 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17921 mips_compressed_mark_label (sym);
17922 }
17923 \f
17924 /* Converting ASE flags from internal to .MIPS.abiflags values. */
17925 static unsigned int
17926 mips_convert_ase_flags (int ase)
17927 {
17928 unsigned int ext_ases = 0;
17929
17930 if (ase & ASE_DSP)
17931 ext_ases |= AFL_ASE_DSP;
17932 if (ase & ASE_DSPR2)
17933 ext_ases |= AFL_ASE_DSPR2;
17934 if (ase & ASE_EVA)
17935 ext_ases |= AFL_ASE_EVA;
17936 if (ase & ASE_MCU)
17937 ext_ases |= AFL_ASE_MCU;
17938 if (ase & ASE_MDMX)
17939 ext_ases |= AFL_ASE_MDMX;
17940 if (ase & ASE_MIPS3D)
17941 ext_ases |= AFL_ASE_MIPS3D;
17942 if (ase & ASE_MT)
17943 ext_ases |= AFL_ASE_MT;
17944 if (ase & ASE_SMARTMIPS)
17945 ext_ases |= AFL_ASE_SMARTMIPS;
17946 if (ase & ASE_VIRT)
17947 ext_ases |= AFL_ASE_VIRT;
17948 if (ase & ASE_MSA)
17949 ext_ases |= AFL_ASE_MSA;
17950 if (ase & ASE_XPA)
17951 ext_ases |= AFL_ASE_XPA;
17952
17953 return ext_ases;
17954 }
17955 /* Some special processing for a MIPS ELF file. */
17956
17957 void
17958 mips_elf_final_processing (void)
17959 {
17960 int fpabi;
17961 Elf_Internal_ABIFlags_v0 flags;
17962
17963 flags.version = 0;
17964 flags.isa_rev = 0;
17965 switch (file_mips_opts.isa)
17966 {
17967 case INSN_ISA1:
17968 flags.isa_level = 1;
17969 break;
17970 case INSN_ISA2:
17971 flags.isa_level = 2;
17972 break;
17973 case INSN_ISA3:
17974 flags.isa_level = 3;
17975 break;
17976 case INSN_ISA4:
17977 flags.isa_level = 4;
17978 break;
17979 case INSN_ISA5:
17980 flags.isa_level = 5;
17981 break;
17982 case INSN_ISA32:
17983 flags.isa_level = 32;
17984 flags.isa_rev = 1;
17985 break;
17986 case INSN_ISA32R2:
17987 flags.isa_level = 32;
17988 flags.isa_rev = 2;
17989 break;
17990 case INSN_ISA32R3:
17991 flags.isa_level = 32;
17992 flags.isa_rev = 3;
17993 break;
17994 case INSN_ISA32R5:
17995 flags.isa_level = 32;
17996 flags.isa_rev = 5;
17997 break;
17998 case INSN_ISA32R6:
17999 flags.isa_level = 32;
18000 flags.isa_rev = 6;
18001 break;
18002 case INSN_ISA64:
18003 flags.isa_level = 64;
18004 flags.isa_rev = 1;
18005 break;
18006 case INSN_ISA64R2:
18007 flags.isa_level = 64;
18008 flags.isa_rev = 2;
18009 break;
18010 case INSN_ISA64R3:
18011 flags.isa_level = 64;
18012 flags.isa_rev = 3;
18013 break;
18014 case INSN_ISA64R5:
18015 flags.isa_level = 64;
18016 flags.isa_rev = 5;
18017 break;
18018 case INSN_ISA64R6:
18019 flags.isa_level = 64;
18020 flags.isa_rev = 6;
18021 break;
18022 }
18023
18024 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18025 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18026 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18027 : (file_mips_opts.fp == 64) ? AFL_REG_64
18028 : AFL_REG_32;
18029 flags.cpr2_size = AFL_REG_NONE;
18030 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18031 Tag_GNU_MIPS_ABI_FP);
18032 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18033 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18034 if (file_ase_mips16)
18035 flags.ases |= AFL_ASE_MIPS16;
18036 if (file_ase_micromips)
18037 flags.ases |= AFL_ASE_MICROMIPS;
18038 flags.flags1 = 0;
18039 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18040 || file_mips_opts.fp == 64)
18041 && file_mips_opts.oddspreg)
18042 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18043 flags.flags2 = 0;
18044
18045 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18046 ((Elf_External_ABIFlags_v0 *)
18047 mips_flags_frag));
18048
18049 /* Write out the register information. */
18050 if (mips_abi != N64_ABI)
18051 {
18052 Elf32_RegInfo s;
18053
18054 s.ri_gprmask = mips_gprmask;
18055 s.ri_cprmask[0] = mips_cprmask[0];
18056 s.ri_cprmask[1] = mips_cprmask[1];
18057 s.ri_cprmask[2] = mips_cprmask[2];
18058 s.ri_cprmask[3] = mips_cprmask[3];
18059 /* The gp_value field is set by the MIPS ELF backend. */
18060
18061 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18062 ((Elf32_External_RegInfo *)
18063 mips_regmask_frag));
18064 }
18065 else
18066 {
18067 Elf64_Internal_RegInfo s;
18068
18069 s.ri_gprmask = mips_gprmask;
18070 s.ri_pad = 0;
18071 s.ri_cprmask[0] = mips_cprmask[0];
18072 s.ri_cprmask[1] = mips_cprmask[1];
18073 s.ri_cprmask[2] = mips_cprmask[2];
18074 s.ri_cprmask[3] = mips_cprmask[3];
18075 /* The gp_value field is set by the MIPS ELF backend. */
18076
18077 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18078 ((Elf64_External_RegInfo *)
18079 mips_regmask_frag));
18080 }
18081
18082 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18083 sort of BFD interface for this. */
18084 if (mips_any_noreorder)
18085 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18086 if (mips_pic != NO_PIC)
18087 {
18088 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18089 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18090 }
18091 if (mips_abicalls)
18092 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18093
18094 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18095 defined at present; this might need to change in future. */
18096 if (file_ase_mips16)
18097 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18098 if (file_ase_micromips)
18099 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18100 if (file_mips_opts.ase & ASE_MDMX)
18101 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18102
18103 /* Set the MIPS ELF ABI flags. */
18104 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18105 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18106 else if (mips_abi == O64_ABI)
18107 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18108 else if (mips_abi == EABI_ABI)
18109 {
18110 if (file_mips_opts.gp == 64)
18111 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18112 else
18113 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18114 }
18115 else if (mips_abi == N32_ABI)
18116 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18117
18118 /* Nothing to do for N64_ABI. */
18119
18120 if (mips_32bitmode)
18121 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18122
18123 if (mips_nan2008 == 1)
18124 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18125
18126 /* 32 bit code with 64 bit FP registers. */
18127 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18128 Tag_GNU_MIPS_ABI_FP);
18129 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18130 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18131 }
18132 \f
18133 typedef struct proc {
18134 symbolS *func_sym;
18135 symbolS *func_end_sym;
18136 unsigned long reg_mask;
18137 unsigned long reg_offset;
18138 unsigned long fpreg_mask;
18139 unsigned long fpreg_offset;
18140 unsigned long frame_offset;
18141 unsigned long frame_reg;
18142 unsigned long pc_reg;
18143 } procS;
18144
18145 static procS cur_proc;
18146 static procS *cur_proc_ptr;
18147 static int numprocs;
18148
18149 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18150 as "2", and a normal nop as "0". */
18151
18152 #define NOP_OPCODE_MIPS 0
18153 #define NOP_OPCODE_MIPS16 1
18154 #define NOP_OPCODE_MICROMIPS 2
18155
18156 char
18157 mips_nop_opcode (void)
18158 {
18159 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18160 return NOP_OPCODE_MICROMIPS;
18161 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18162 return NOP_OPCODE_MIPS16;
18163 else
18164 return NOP_OPCODE_MIPS;
18165 }
18166
18167 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18168 32-bit microMIPS NOPs here (if applicable). */
18169
18170 void
18171 mips_handle_align (fragS *fragp)
18172 {
18173 char nop_opcode;
18174 char *p;
18175 int bytes, size, excess;
18176 valueT opcode;
18177
18178 if (fragp->fr_type != rs_align_code)
18179 return;
18180
18181 p = fragp->fr_literal + fragp->fr_fix;
18182 nop_opcode = *p;
18183 switch (nop_opcode)
18184 {
18185 case NOP_OPCODE_MICROMIPS:
18186 opcode = micromips_nop32_insn.insn_opcode;
18187 size = 4;
18188 break;
18189 case NOP_OPCODE_MIPS16:
18190 opcode = mips16_nop_insn.insn_opcode;
18191 size = 2;
18192 break;
18193 case NOP_OPCODE_MIPS:
18194 default:
18195 opcode = nop_insn.insn_opcode;
18196 size = 4;
18197 break;
18198 }
18199
18200 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18201 excess = bytes % size;
18202
18203 /* Handle the leading part if we're not inserting a whole number of
18204 instructions, and make it the end of the fixed part of the frag.
18205 Try to fit in a short microMIPS NOP if applicable and possible,
18206 and use zeroes otherwise. */
18207 gas_assert (excess < 4);
18208 fragp->fr_fix += excess;
18209 switch (excess)
18210 {
18211 case 3:
18212 *p++ = '\0';
18213 /* Fall through. */
18214 case 2:
18215 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18216 {
18217 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18218 break;
18219 }
18220 *p++ = '\0';
18221 /* Fall through. */
18222 case 1:
18223 *p++ = '\0';
18224 /* Fall through. */
18225 case 0:
18226 break;
18227 }
18228
18229 md_number_to_chars (p, opcode, size);
18230 fragp->fr_var = size;
18231 }
18232
18233 static long
18234 get_number (void)
18235 {
18236 int negative = 0;
18237 long val = 0;
18238
18239 if (*input_line_pointer == '-')
18240 {
18241 ++input_line_pointer;
18242 negative = 1;
18243 }
18244 if (!ISDIGIT (*input_line_pointer))
18245 as_bad (_("expected simple number"));
18246 if (input_line_pointer[0] == '0')
18247 {
18248 if (input_line_pointer[1] == 'x')
18249 {
18250 input_line_pointer += 2;
18251 while (ISXDIGIT (*input_line_pointer))
18252 {
18253 val <<= 4;
18254 val |= hex_value (*input_line_pointer++);
18255 }
18256 return negative ? -val : val;
18257 }
18258 else
18259 {
18260 ++input_line_pointer;
18261 while (ISDIGIT (*input_line_pointer))
18262 {
18263 val <<= 3;
18264 val |= *input_line_pointer++ - '0';
18265 }
18266 return negative ? -val : val;
18267 }
18268 }
18269 if (!ISDIGIT (*input_line_pointer))
18270 {
18271 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18272 *input_line_pointer, *input_line_pointer);
18273 as_warn (_("invalid number"));
18274 return -1;
18275 }
18276 while (ISDIGIT (*input_line_pointer))
18277 {
18278 val *= 10;
18279 val += *input_line_pointer++ - '0';
18280 }
18281 return negative ? -val : val;
18282 }
18283
18284 /* The .file directive; just like the usual .file directive, but there
18285 is an initial number which is the ECOFF file index. In the non-ECOFF
18286 case .file implies DWARF-2. */
18287
18288 static void
18289 s_mips_file (int x ATTRIBUTE_UNUSED)
18290 {
18291 static int first_file_directive = 0;
18292
18293 if (ECOFF_DEBUGGING)
18294 {
18295 get_number ();
18296 s_app_file (0);
18297 }
18298 else
18299 {
18300 char *filename;
18301
18302 filename = dwarf2_directive_file (0);
18303
18304 /* Versions of GCC up to 3.1 start files with a ".file"
18305 directive even for stabs output. Make sure that this
18306 ".file" is handled. Note that you need a version of GCC
18307 after 3.1 in order to support DWARF-2 on MIPS. */
18308 if (filename != NULL && ! first_file_directive)
18309 {
18310 (void) new_logical_line (filename, -1);
18311 s_app_file_string (filename, 0);
18312 }
18313 first_file_directive = 1;
18314 }
18315 }
18316
18317 /* The .loc directive, implying DWARF-2. */
18318
18319 static void
18320 s_mips_loc (int x ATTRIBUTE_UNUSED)
18321 {
18322 if (!ECOFF_DEBUGGING)
18323 dwarf2_directive_loc (0);
18324 }
18325
18326 /* The .end directive. */
18327
18328 static void
18329 s_mips_end (int x ATTRIBUTE_UNUSED)
18330 {
18331 symbolS *p;
18332
18333 /* Following functions need their own .frame and .cprestore directives. */
18334 mips_frame_reg_valid = 0;
18335 mips_cprestore_valid = 0;
18336
18337 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18338 {
18339 p = get_symbol ();
18340 demand_empty_rest_of_line ();
18341 }
18342 else
18343 p = NULL;
18344
18345 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18346 as_warn (_(".end not in text section"));
18347
18348 if (!cur_proc_ptr)
18349 {
18350 as_warn (_(".end directive without a preceding .ent directive"));
18351 demand_empty_rest_of_line ();
18352 return;
18353 }
18354
18355 if (p != NULL)
18356 {
18357 gas_assert (S_GET_NAME (p));
18358 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18359 as_warn (_(".end symbol does not match .ent symbol"));
18360
18361 if (debug_type == DEBUG_STABS)
18362 stabs_generate_asm_endfunc (S_GET_NAME (p),
18363 S_GET_NAME (p));
18364 }
18365 else
18366 as_warn (_(".end directive missing or unknown symbol"));
18367
18368 /* Create an expression to calculate the size of the function. */
18369 if (p && cur_proc_ptr)
18370 {
18371 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18372 expressionS *exp = xmalloc (sizeof (expressionS));
18373
18374 obj->size = exp;
18375 exp->X_op = O_subtract;
18376 exp->X_add_symbol = symbol_temp_new_now ();
18377 exp->X_op_symbol = p;
18378 exp->X_add_number = 0;
18379
18380 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18381 }
18382
18383 /* Generate a .pdr section. */
18384 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18385 {
18386 segT saved_seg = now_seg;
18387 subsegT saved_subseg = now_subseg;
18388 expressionS exp;
18389 char *fragp;
18390
18391 #ifdef md_flush_pending_output
18392 md_flush_pending_output ();
18393 #endif
18394
18395 gas_assert (pdr_seg);
18396 subseg_set (pdr_seg, 0);
18397
18398 /* Write the symbol. */
18399 exp.X_op = O_symbol;
18400 exp.X_add_symbol = p;
18401 exp.X_add_number = 0;
18402 emit_expr (&exp, 4);
18403
18404 fragp = frag_more (7 * 4);
18405
18406 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18407 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18408 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18409 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18410 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18411 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18412 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18413
18414 subseg_set (saved_seg, saved_subseg);
18415 }
18416
18417 cur_proc_ptr = NULL;
18418 }
18419
18420 /* The .aent and .ent directives. */
18421
18422 static void
18423 s_mips_ent (int aent)
18424 {
18425 symbolS *symbolP;
18426
18427 symbolP = get_symbol ();
18428 if (*input_line_pointer == ',')
18429 ++input_line_pointer;
18430 SKIP_WHITESPACE ();
18431 if (ISDIGIT (*input_line_pointer)
18432 || *input_line_pointer == '-')
18433 get_number ();
18434
18435 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18436 as_warn (_(".ent or .aent not in text section"));
18437
18438 if (!aent && cur_proc_ptr)
18439 as_warn (_("missing .end"));
18440
18441 if (!aent)
18442 {
18443 /* This function needs its own .frame and .cprestore directives. */
18444 mips_frame_reg_valid = 0;
18445 mips_cprestore_valid = 0;
18446
18447 cur_proc_ptr = &cur_proc;
18448 memset (cur_proc_ptr, '\0', sizeof (procS));
18449
18450 cur_proc_ptr->func_sym = symbolP;
18451
18452 ++numprocs;
18453
18454 if (debug_type == DEBUG_STABS)
18455 stabs_generate_asm_func (S_GET_NAME (symbolP),
18456 S_GET_NAME (symbolP));
18457 }
18458
18459 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18460
18461 demand_empty_rest_of_line ();
18462 }
18463
18464 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18465 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18466 s_mips_frame is used so that we can set the PDR information correctly.
18467 We can't use the ecoff routines because they make reference to the ecoff
18468 symbol table (in the mdebug section). */
18469
18470 static void
18471 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18472 {
18473 if (ECOFF_DEBUGGING)
18474 s_ignore (ignore);
18475 else
18476 {
18477 long val;
18478
18479 if (cur_proc_ptr == (procS *) NULL)
18480 {
18481 as_warn (_(".frame outside of .ent"));
18482 demand_empty_rest_of_line ();
18483 return;
18484 }
18485
18486 cur_proc_ptr->frame_reg = tc_get_register (1);
18487
18488 SKIP_WHITESPACE ();
18489 if (*input_line_pointer++ != ','
18490 || get_absolute_expression_and_terminator (&val) != ',')
18491 {
18492 as_warn (_("bad .frame directive"));
18493 --input_line_pointer;
18494 demand_empty_rest_of_line ();
18495 return;
18496 }
18497
18498 cur_proc_ptr->frame_offset = val;
18499 cur_proc_ptr->pc_reg = tc_get_register (0);
18500
18501 demand_empty_rest_of_line ();
18502 }
18503 }
18504
18505 /* The .fmask and .mask directives. If the mdebug section is present
18506 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18507 embedded targets, s_mips_mask is used so that we can set the PDR
18508 information correctly. We can't use the ecoff routines because they
18509 make reference to the ecoff symbol table (in the mdebug section). */
18510
18511 static void
18512 s_mips_mask (int reg_type)
18513 {
18514 if (ECOFF_DEBUGGING)
18515 s_ignore (reg_type);
18516 else
18517 {
18518 long mask, off;
18519
18520 if (cur_proc_ptr == (procS *) NULL)
18521 {
18522 as_warn (_(".mask/.fmask outside of .ent"));
18523 demand_empty_rest_of_line ();
18524 return;
18525 }
18526
18527 if (get_absolute_expression_and_terminator (&mask) != ',')
18528 {
18529 as_warn (_("bad .mask/.fmask directive"));
18530 --input_line_pointer;
18531 demand_empty_rest_of_line ();
18532 return;
18533 }
18534
18535 off = get_absolute_expression ();
18536
18537 if (reg_type == 'F')
18538 {
18539 cur_proc_ptr->fpreg_mask = mask;
18540 cur_proc_ptr->fpreg_offset = off;
18541 }
18542 else
18543 {
18544 cur_proc_ptr->reg_mask = mask;
18545 cur_proc_ptr->reg_offset = off;
18546 }
18547
18548 demand_empty_rest_of_line ();
18549 }
18550 }
18551
18552 /* A table describing all the processors gas knows about. Names are
18553 matched in the order listed.
18554
18555 To ease comparison, please keep this table in the same order as
18556 gcc's mips_cpu_info_table[]. */
18557 static const struct mips_cpu_info mips_cpu_info_table[] =
18558 {
18559 /* Entries for generic ISAs */
18560 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18561 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18562 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18563 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18564 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18565 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18566 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18567 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18568 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18569 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18570 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18571 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18572 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18573 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18574 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18575
18576 /* MIPS I */
18577 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18578 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18579 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18580
18581 /* MIPS II */
18582 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18583
18584 /* MIPS III */
18585 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18586 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18587 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18588 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18589 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18590 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18591 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18592 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18593 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18594 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18595 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18596 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18597 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18598 /* ST Microelectronics Loongson 2E and 2F cores */
18599 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18600 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18601
18602 /* MIPS IV */
18603 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18604 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18605 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18606 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18607 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18608 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18609 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18610 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18611 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18612 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18613 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18614 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18615 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18616 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18617 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18618
18619 /* MIPS 32 */
18620 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18621 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18622 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18623 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18624
18625 /* MIPS 32 Release 2 */
18626 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18627 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18628 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18629 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18630 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18631 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18632 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18633 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18634 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18635 ISA_MIPS32R2, CPU_MIPS32R2 },
18636 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18637 ISA_MIPS32R2, CPU_MIPS32R2 },
18638 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18639 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18640 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18641 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18642 /* Deprecated forms of the above. */
18643 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18644 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18645 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18646 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18647 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18648 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18649 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18650 /* Deprecated forms of the above. */
18651 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18652 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18654 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18655 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18656 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18657 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18658 /* Deprecated forms of the above. */
18659 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18660 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18661 /* 34Kn is a 34kc without DSP. */
18662 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18663 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18664 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18665 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18666 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18668 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18669 /* Deprecated forms of the above. */
18670 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18671 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18672 /* 1004K cores are multiprocessor versions of the 34K. */
18673 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18674 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18675 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18676 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18677 /* interaptiv is the new name for 1004kf */
18678 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18679 /* M5100 family */
18680 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18681 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18682 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18683 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18684
18685 /* MIPS 64 */
18686 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18687 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18688 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18689 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18690
18691 /* Broadcom SB-1 CPU core */
18692 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18693 /* Broadcom SB-1A CPU core */
18694 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18695
18696 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18697
18698 /* MIPS 64 Release 2 */
18699
18700 /* Cavium Networks Octeon CPU core */
18701 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18702 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18703 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18704 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18705
18706 /* RMI Xlr */
18707 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18708
18709 /* Broadcom XLP.
18710 XLP is mostly like XLR, with the prominent exception that it is
18711 MIPS64R2 rather than MIPS64. */
18712 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18713
18714 /* i6400. */
18715 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18716
18717 /* End marker */
18718 { NULL, 0, 0, 0, 0 }
18719 };
18720
18721
18722 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18723 with a final "000" replaced by "k". Ignore case.
18724
18725 Note: this function is shared between GCC and GAS. */
18726
18727 static bfd_boolean
18728 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18729 {
18730 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18731 given++, canonical++;
18732
18733 return ((*given == 0 && *canonical == 0)
18734 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18735 }
18736
18737
18738 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18739 CPU name. We've traditionally allowed a lot of variation here.
18740
18741 Note: this function is shared between GCC and GAS. */
18742
18743 static bfd_boolean
18744 mips_matching_cpu_name_p (const char *canonical, const char *given)
18745 {
18746 /* First see if the name matches exactly, or with a final "000"
18747 turned into "k". */
18748 if (mips_strict_matching_cpu_name_p (canonical, given))
18749 return TRUE;
18750
18751 /* If not, try comparing based on numerical designation alone.
18752 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18753 if (TOLOWER (*given) == 'r')
18754 given++;
18755 if (!ISDIGIT (*given))
18756 return FALSE;
18757
18758 /* Skip over some well-known prefixes in the canonical name,
18759 hoping to find a number there too. */
18760 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18761 canonical += 2;
18762 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18763 canonical += 2;
18764 else if (TOLOWER (canonical[0]) == 'r')
18765 canonical += 1;
18766
18767 return mips_strict_matching_cpu_name_p (canonical, given);
18768 }
18769
18770
18771 /* Parse an option that takes the name of a processor as its argument.
18772 OPTION is the name of the option and CPU_STRING is the argument.
18773 Return the corresponding processor enumeration if the CPU_STRING is
18774 recognized, otherwise report an error and return null.
18775
18776 A similar function exists in GCC. */
18777
18778 static const struct mips_cpu_info *
18779 mips_parse_cpu (const char *option, const char *cpu_string)
18780 {
18781 const struct mips_cpu_info *p;
18782
18783 /* 'from-abi' selects the most compatible architecture for the given
18784 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18785 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18786 version. Look first at the -mgp options, if given, otherwise base
18787 the choice on MIPS_DEFAULT_64BIT.
18788
18789 Treat NO_ABI like the EABIs. One reason to do this is that the
18790 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18791 architecture. This code picks MIPS I for 'mips' and MIPS III for
18792 'mips64', just as we did in the days before 'from-abi'. */
18793 if (strcasecmp (cpu_string, "from-abi") == 0)
18794 {
18795 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18796 return mips_cpu_info_from_isa (ISA_MIPS1);
18797
18798 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18799 return mips_cpu_info_from_isa (ISA_MIPS3);
18800
18801 if (file_mips_opts.gp >= 0)
18802 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18803 ? ISA_MIPS1 : ISA_MIPS3);
18804
18805 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18806 ? ISA_MIPS3
18807 : ISA_MIPS1);
18808 }
18809
18810 /* 'default' has traditionally been a no-op. Probably not very useful. */
18811 if (strcasecmp (cpu_string, "default") == 0)
18812 return 0;
18813
18814 for (p = mips_cpu_info_table; p->name != 0; p++)
18815 if (mips_matching_cpu_name_p (p->name, cpu_string))
18816 return p;
18817
18818 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18819 return 0;
18820 }
18821
18822 /* Return the canonical processor information for ISA (a member of the
18823 ISA_MIPS* enumeration). */
18824
18825 static const struct mips_cpu_info *
18826 mips_cpu_info_from_isa (int isa)
18827 {
18828 int i;
18829
18830 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18831 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18832 && isa == mips_cpu_info_table[i].isa)
18833 return (&mips_cpu_info_table[i]);
18834
18835 return NULL;
18836 }
18837
18838 static const struct mips_cpu_info *
18839 mips_cpu_info_from_arch (int arch)
18840 {
18841 int i;
18842
18843 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18844 if (arch == mips_cpu_info_table[i].cpu)
18845 return (&mips_cpu_info_table[i]);
18846
18847 return NULL;
18848 }
18849 \f
18850 static void
18851 show (FILE *stream, const char *string, int *col_p, int *first_p)
18852 {
18853 if (*first_p)
18854 {
18855 fprintf (stream, "%24s", "");
18856 *col_p = 24;
18857 }
18858 else
18859 {
18860 fprintf (stream, ", ");
18861 *col_p += 2;
18862 }
18863
18864 if (*col_p + strlen (string) > 72)
18865 {
18866 fprintf (stream, "\n%24s", "");
18867 *col_p = 24;
18868 }
18869
18870 fprintf (stream, "%s", string);
18871 *col_p += strlen (string);
18872
18873 *first_p = 0;
18874 }
18875
18876 void
18877 md_show_usage (FILE *stream)
18878 {
18879 int column, first;
18880 size_t i;
18881
18882 fprintf (stream, _("\
18883 MIPS options:\n\
18884 -EB generate big endian output\n\
18885 -EL generate little endian output\n\
18886 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18887 -G NUM allow referencing objects up to NUM bytes\n\
18888 implicitly with the gp register [default 8]\n"));
18889 fprintf (stream, _("\
18890 -mips1 generate MIPS ISA I instructions\n\
18891 -mips2 generate MIPS ISA II instructions\n\
18892 -mips3 generate MIPS ISA III instructions\n\
18893 -mips4 generate MIPS ISA IV instructions\n\
18894 -mips5 generate MIPS ISA V instructions\n\
18895 -mips32 generate MIPS32 ISA instructions\n\
18896 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18897 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18898 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18899 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
18900 -mips64 generate MIPS64 ISA instructions\n\
18901 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18902 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18903 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18904 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
18905 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18906
18907 first = 1;
18908
18909 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18910 show (stream, mips_cpu_info_table[i].name, &column, &first);
18911 show (stream, "from-abi", &column, &first);
18912 fputc ('\n', stream);
18913
18914 fprintf (stream, _("\
18915 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18916 -no-mCPU don't generate code specific to CPU.\n\
18917 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18918
18919 first = 1;
18920
18921 show (stream, "3900", &column, &first);
18922 show (stream, "4010", &column, &first);
18923 show (stream, "4100", &column, &first);
18924 show (stream, "4650", &column, &first);
18925 fputc ('\n', stream);
18926
18927 fprintf (stream, _("\
18928 -mips16 generate mips16 instructions\n\
18929 -no-mips16 do not generate mips16 instructions\n"));
18930 fprintf (stream, _("\
18931 -mmicromips generate microMIPS instructions\n\
18932 -mno-micromips do not generate microMIPS instructions\n"));
18933 fprintf (stream, _("\
18934 -msmartmips generate smartmips instructions\n\
18935 -mno-smartmips do not generate smartmips instructions\n"));
18936 fprintf (stream, _("\
18937 -mdsp generate DSP instructions\n\
18938 -mno-dsp do not generate DSP instructions\n"));
18939 fprintf (stream, _("\
18940 -mdspr2 generate DSP R2 instructions\n\
18941 -mno-dspr2 do not generate DSP R2 instructions\n"));
18942 fprintf (stream, _("\
18943 -mmt generate MT instructions\n\
18944 -mno-mt do not generate MT instructions\n"));
18945 fprintf (stream, _("\
18946 -mmcu generate MCU instructions\n\
18947 -mno-mcu do not generate MCU instructions\n"));
18948 fprintf (stream, _("\
18949 -mmsa generate MSA instructions\n\
18950 -mno-msa do not generate MSA instructions\n"));
18951 fprintf (stream, _("\
18952 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18953 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18954 fprintf (stream, _("\
18955 -mvirt generate Virtualization instructions\n\
18956 -mno-virt do not generate Virtualization instructions\n"));
18957 fprintf (stream, _("\
18958 -minsn32 only generate 32-bit microMIPS instructions\n\
18959 -mno-insn32 generate all microMIPS instructions\n"));
18960 fprintf (stream, _("\
18961 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18962 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18963 -mfix-vr4120 work around certain VR4120 errata\n\
18964 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18965 -mfix-24k insert a nop after ERET and DERET instructions\n\
18966 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18967 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18968 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18969 -msym32 assume all symbols have 32-bit values\n\
18970 -O0 remove unneeded NOPs, do not swap branches\n\
18971 -O remove unneeded NOPs and swap branches\n\
18972 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18973 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18974 fprintf (stream, _("\
18975 -mhard-float allow floating-point instructions\n\
18976 -msoft-float do not allow floating-point instructions\n\
18977 -msingle-float only allow 32-bit floating-point operations\n\
18978 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18979 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18980 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18981 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18982
18983 first = 1;
18984
18985 show (stream, "legacy", &column, &first);
18986 show (stream, "2008", &column, &first);
18987
18988 fputc ('\n', stream);
18989
18990 fprintf (stream, _("\
18991 -KPIC, -call_shared generate SVR4 position independent code\n\
18992 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18993 -mvxworks-pic generate VxWorks position independent code\n\
18994 -non_shared do not generate code that can operate with DSOs\n\
18995 -xgot assume a 32 bit GOT\n\
18996 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18997 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18998 position dependent (non shared) code\n\
18999 -mabi=ABI create ABI conformant object file for:\n"));
19000
19001 first = 1;
19002
19003 show (stream, "32", &column, &first);
19004 show (stream, "o64", &column, &first);
19005 show (stream, "n32", &column, &first);
19006 show (stream, "64", &column, &first);
19007 show (stream, "eabi", &column, &first);
19008
19009 fputc ('\n', stream);
19010
19011 fprintf (stream, _("\
19012 -32 create o32 ABI object file (default)\n\
19013 -n32 create n32 ABI object file\n\
19014 -64 create 64 ABI object file\n"));
19015 }
19016
19017 #ifdef TE_IRIX
19018 enum dwarf2_format
19019 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19020 {
19021 if (HAVE_64BIT_SYMBOLS)
19022 return dwarf2_format_64bit_irix;
19023 else
19024 return dwarf2_format_32bit;
19025 }
19026 #endif
19027
19028 int
19029 mips_dwarf2_addr_size (void)
19030 {
19031 if (HAVE_64BIT_OBJECTS)
19032 return 8;
19033 else
19034 return 4;
19035 }
19036
19037 /* Standard calling conventions leave the CFA at SP on entry. */
19038 void
19039 mips_cfi_frame_initial_instructions (void)
19040 {
19041 cfi_add_CFA_def_cfa_register (SP);
19042 }
19043
19044 int
19045 tc_mips_regname_to_dw2regnum (char *regname)
19046 {
19047 unsigned int regnum = -1;
19048 unsigned int reg;
19049
19050 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19051 regnum = reg;
19052
19053 return regnum;
19054 }
19055
19056 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19057 Given a symbolic attribute NAME, return the proper integer value.
19058 Returns -1 if the attribute is not known. */
19059
19060 int
19061 mips_convert_symbolic_attribute (const char *name)
19062 {
19063 static const struct
19064 {
19065 const char * name;
19066 const int tag;
19067 }
19068 attribute_table[] =
19069 {
19070 #define T(tag) {#tag, tag}
19071 T (Tag_GNU_MIPS_ABI_FP),
19072 T (Tag_GNU_MIPS_ABI_MSA),
19073 #undef T
19074 };
19075 unsigned int i;
19076
19077 if (name == NULL)
19078 return -1;
19079
19080 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19081 if (streq (name, attribute_table[i].name))
19082 return attribute_table[i].tag;
19083
19084 return -1;
19085 }
19086
19087 void
19088 md_mips_end (void)
19089 {
19090 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19091
19092 mips_emit_delays ();
19093 if (cur_proc_ptr)
19094 as_warn (_("missing .end at end of assembly"));
19095
19096 /* Just in case no code was emitted, do the consistency check. */
19097 file_mips_check_options ();
19098
19099 /* Set a floating-point ABI if the user did not. */
19100 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19101 {
19102 /* Perform consistency checks on the floating-point ABI. */
19103 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19104 Tag_GNU_MIPS_ABI_FP);
19105 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19106 check_fpabi (fpabi);
19107 }
19108 else
19109 {
19110 /* Soft-float gets precedence over single-float, the two options should
19111 not be used together so this should not matter. */
19112 if (file_mips_opts.soft_float == 1)
19113 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19114 /* Single-float gets precedence over all double_float cases. */
19115 else if (file_mips_opts.single_float == 1)
19116 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19117 else
19118 {
19119 switch (file_mips_opts.fp)
19120 {
19121 case 32:
19122 if (file_mips_opts.gp == 32)
19123 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19124 break;
19125 case 0:
19126 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19127 break;
19128 case 64:
19129 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19130 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19131 else if (file_mips_opts.gp == 32)
19132 fpabi = Val_GNU_MIPS_ABI_FP_64;
19133 else
19134 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19135 break;
19136 }
19137 }
19138
19139 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19140 Tag_GNU_MIPS_ABI_FP, fpabi);
19141 }
19142 }
19143
19144 /* Returns the relocation type required for a particular CFI encoding. */
19145
19146 bfd_reloc_code_real_type
19147 mips_cfi_reloc_for_encoding (int encoding)
19148 {
19149 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19150 return BFD_RELOC_32_PCREL;
19151 else return BFD_RELOC_NONE;
19152 }