Fix typo in previous commit.
[binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define ATREG 1
94 #define S0 16
95 #define S7 23
96 #define TREG 24
97 #define PIC_CALL_REG 25
98 #define KT0 26
99 #define KT1 27
100 #define GP 28
101 #define SP 29
102 #define FP 30
103 #define RA 31
104
105 #define ILLEGAL_REG (32)
106
107 #define AT mips_opts.at
108
109 /* Allow override of standard little-endian ECOFF format. */
110
111 #ifndef ECOFF_LITTLE_FORMAT
112 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
113 #endif
114
115 extern int target_big_endian;
116
117 /* The name of the readonly data section. */
118 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
121 ? ".rdata" \
122 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
123 ? ".rodata" \
124 : (abort (), ""))
125
126 /* Ways in which an instruction can be "appended" to the output. */
127 enum append_method {
128 /* Just add it normally. */
129 APPEND_ADD,
130
131 /* Add it normally and then add a nop. */
132 APPEND_ADD_WITH_NOP,
133
134 /* Turn an instruction with a delay slot into a "compact" version. */
135 APPEND_ADD_COMPACT,
136
137 /* Insert the instruction before the last one. */
138 APPEND_SWAP
139 };
140
141 /* Information about an instruction, including its format, operands
142 and fixups. */
143 struct mips_cl_insn
144 {
145 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
146 const struct mips_opcode *insn_mo;
147
148 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
149 a copy of INSN_MO->match with the operands filled in. If we have
150 decided to use an extended MIPS16 instruction, this includes the
151 extension. */
152 unsigned long insn_opcode;
153
154 /* The frag that contains the instruction. */
155 struct frag *frag;
156
157 /* The offset into FRAG of the first instruction byte. */
158 long where;
159
160 /* The relocs associated with the instruction, if any. */
161 fixS *fixp[3];
162
163 /* True if this entry cannot be moved from its current position. */
164 unsigned int fixed_p : 1;
165
166 /* True if this instruction occurred in a .set noreorder block. */
167 unsigned int noreorder_p : 1;
168
169 /* True for mips16 instructions that jump to an absolute address. */
170 unsigned int mips16_absolute_jump_p : 1;
171
172 /* True if this instruction is complete. */
173 unsigned int complete_p : 1;
174 };
175
176 /* The ABI to use. */
177 enum mips_abi_level
178 {
179 NO_ABI = 0,
180 O32_ABI,
181 O64_ABI,
182 N32_ABI,
183 N64_ABI,
184 EABI_ABI
185 };
186
187 /* MIPS ABI we are using for this output file. */
188 static enum mips_abi_level mips_abi = NO_ABI;
189
190 /* Whether or not we have code that can call pic code. */
191 int mips_abicalls = FALSE;
192
193 /* Whether or not we have code which can be put into a shared
194 library. */
195 static bfd_boolean mips_in_shared = TRUE;
196
197 /* This is the set of options which may be modified by the .set
198 pseudo-op. We use a struct so that .set push and .set pop are more
199 reliable. */
200
201 struct mips_set_options
202 {
203 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
204 if it has not been initialized. Changed by `.set mipsN', and the
205 -mipsN command line option, and the default CPU. */
206 int isa;
207 /* Enabled Application Specific Extensions (ASEs). These are set to -1
208 if they have not been initialized. Changed by `.set <asename>', by
209 command line options, and based on the default architecture. */
210 int ase_mips3d;
211 int ase_mdmx;
212 int ase_smartmips;
213 int ase_dsp;
214 int ase_dspr2;
215 int ase_mt;
216 int ase_mcu;
217 /* Whether we are assembling for the mips16 processor. 0 if we are
218 not, 1 if we are, and -1 if the value has not been initialized.
219 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
220 -nomips16 command line options, and the default CPU. */
221 int mips16;
222 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
223 1 if we are, and -1 if the value has not been initialized. Changed
224 by `.set micromips' and `.set nomicromips', and the -mmicromips
225 and -mno-micromips command line options, and the default CPU. */
226 int micromips;
227 /* Non-zero if we should not reorder instructions. Changed by `.set
228 reorder' and `.set noreorder'. */
229 int noreorder;
230 /* Non-zero if we should not permit the register designated "assembler
231 temporary" to be used in instructions. The value is the register
232 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
233 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
234 unsigned int at;
235 /* Non-zero if we should warn when a macro instruction expands into
236 more than one machine instruction. Changed by `.set nomacro' and
237 `.set macro'. */
238 int warn_about_macros;
239 /* Non-zero if we should not move instructions. Changed by `.set
240 move', `.set volatile', `.set nomove', and `.set novolatile'. */
241 int nomove;
242 /* Non-zero if we should not optimize branches by moving the target
243 of the branch into the delay slot. Actually, we don't perform
244 this optimization anyhow. Changed by `.set bopt' and `.set
245 nobopt'. */
246 int nobopt;
247 /* Non-zero if we should not autoextend mips16 instructions.
248 Changed by `.set autoextend' and `.set noautoextend'. */
249 int noautoextend;
250 /* Restrict general purpose registers and floating point registers
251 to 32 bit. This is initially determined when -mgp32 or -mfp32
252 is passed but can changed if the assembler code uses .set mipsN. */
253 int gp32;
254 int fp32;
255 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
256 command line option, and the default CPU. */
257 int arch;
258 /* True if ".set sym32" is in effect. */
259 bfd_boolean sym32;
260 /* True if floating-point operations are not allowed. Changed by .set
261 softfloat or .set hardfloat, by command line options -msoft-float or
262 -mhard-float. The default is false. */
263 bfd_boolean soft_float;
264
265 /* True if only single-precision floating-point operations are allowed.
266 Changed by .set singlefloat or .set doublefloat, command-line options
267 -msingle-float or -mdouble-float. The default is false. */
268 bfd_boolean single_float;
269 };
270
271 /* This is the struct we use to hold the current set of options. Note
272 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
273 -1 to indicate that they have not been initialized. */
274
275 /* True if -mgp32 was passed. */
276 static int file_mips_gp32 = -1;
277
278 /* True if -mfp32 was passed. */
279 static int file_mips_fp32 = -1;
280
281 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
282 static int file_mips_soft_float = 0;
283
284 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
285 static int file_mips_single_float = 0;
286
287 static struct mips_set_options mips_opts =
288 {
289 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
290 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
291 /* ase_mcu */ -1, /* mips16 */ -1, /* micromips */ -1, /* noreorder */ 0,
292 /* at */ ATREG, /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
293 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
294 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
295 };
296
297 /* These variables are filled in with the masks of registers used.
298 The object format code reads them and puts them in the appropriate
299 place. */
300 unsigned long mips_gprmask;
301 unsigned long mips_cprmask[4];
302
303 /* MIPS ISA we are using for this output file. */
304 static int file_mips_isa = ISA_UNKNOWN;
305
306 /* True if any MIPS16 code was produced. */
307 static int file_ase_mips16;
308
309 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
310 || mips_opts.isa == ISA_MIPS32R2 \
311 || mips_opts.isa == ISA_MIPS64 \
312 || mips_opts.isa == ISA_MIPS64R2)
313
314 /* True if any microMIPS code was produced. */
315 static int file_ase_micromips;
316
317 /* True if we want to create R_MIPS_JALR for jalr $25. */
318 #ifdef TE_IRIX
319 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
320 #else
321 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
322 because there's no place for any addend, the only acceptable
323 expression is a bare symbol. */
324 #define MIPS_JALR_HINT_P(EXPR) \
325 (!HAVE_IN_PLACE_ADDENDS \
326 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
327 #endif
328
329 /* True if -mips3d was passed or implied by arguments passed on the
330 command line (e.g., by -march). */
331 static int file_ase_mips3d;
332
333 /* True if -mdmx was passed or implied by arguments passed on the
334 command line (e.g., by -march). */
335 static int file_ase_mdmx;
336
337 /* True if -msmartmips was passed or implied by arguments passed on the
338 command line (e.g., by -march). */
339 static int file_ase_smartmips;
340
341 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
342 || mips_opts.isa == ISA_MIPS32R2)
343
344 /* True if -mdsp was passed or implied by arguments passed on the
345 command line (e.g., by -march). */
346 static int file_ase_dsp;
347
348 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
349 || mips_opts.isa == ISA_MIPS64R2 \
350 || mips_opts.micromips)
351
352 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
353
354 /* True if -mdspr2 was passed or implied by arguments passed on the
355 command line (e.g., by -march). */
356 static int file_ase_dspr2;
357
358 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
359 || mips_opts.isa == ISA_MIPS64R2 \
360 || mips_opts.micromips)
361
362 /* True if -mmt was passed or implied by arguments passed on the
363 command line (e.g., by -march). */
364 static int file_ase_mt;
365
366 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
367 || mips_opts.isa == ISA_MIPS64R2)
368
369 #define ISA_SUPPORTS_MCU_ASE (mips_opts.isa == ISA_MIPS32R2 \
370 || mips_opts.isa == ISA_MIPS64R2 \
371 || mips_opts.micromips)
372
373 /* The argument of the -march= flag. The architecture we are assembling. */
374 static int file_mips_arch = CPU_UNKNOWN;
375 static const char *mips_arch_string;
376
377 /* The argument of the -mtune= flag. The architecture for which we
378 are optimizing. */
379 static int mips_tune = CPU_UNKNOWN;
380 static const char *mips_tune_string;
381
382 /* True when generating 32-bit code for a 64-bit processor. */
383 static int mips_32bitmode = 0;
384
385 /* True if the given ABI requires 32-bit registers. */
386 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
387
388 /* Likewise 64-bit registers. */
389 #define ABI_NEEDS_64BIT_REGS(ABI) \
390 ((ABI) == N32_ABI \
391 || (ABI) == N64_ABI \
392 || (ABI) == O64_ABI)
393
394 /* Return true if ISA supports 64 bit wide gp registers. */
395 #define ISA_HAS_64BIT_REGS(ISA) \
396 ((ISA) == ISA_MIPS3 \
397 || (ISA) == ISA_MIPS4 \
398 || (ISA) == ISA_MIPS5 \
399 || (ISA) == ISA_MIPS64 \
400 || (ISA) == ISA_MIPS64R2)
401
402 /* Return true if ISA supports 64 bit wide float registers. */
403 #define ISA_HAS_64BIT_FPRS(ISA) \
404 ((ISA) == ISA_MIPS3 \
405 || (ISA) == ISA_MIPS4 \
406 || (ISA) == ISA_MIPS5 \
407 || (ISA) == ISA_MIPS32R2 \
408 || (ISA) == ISA_MIPS64 \
409 || (ISA) == ISA_MIPS64R2)
410
411 /* Return true if ISA supports 64-bit right rotate (dror et al.)
412 instructions. */
413 #define ISA_HAS_DROR(ISA) \
414 ((ISA) == ISA_MIPS64R2 \
415 || (mips_opts.micromips \
416 && ISA_HAS_64BIT_REGS (ISA)) \
417 )
418
419 /* Return true if ISA supports 32-bit right rotate (ror et al.)
420 instructions. */
421 #define ISA_HAS_ROR(ISA) \
422 ((ISA) == ISA_MIPS32R2 \
423 || (ISA) == ISA_MIPS64R2 \
424 || mips_opts.ase_smartmips \
425 || mips_opts.micromips \
426 )
427
428 /* Return true if ISA supports single-precision floats in odd registers. */
429 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
430 ((ISA) == ISA_MIPS32 \
431 || (ISA) == ISA_MIPS32R2 \
432 || (ISA) == ISA_MIPS64 \
433 || (ISA) == ISA_MIPS64R2)
434
435 /* Return true if ISA supports move to/from high part of a 64-bit
436 floating-point register. */
437 #define ISA_HAS_MXHC1(ISA) \
438 ((ISA) == ISA_MIPS32R2 \
439 || (ISA) == ISA_MIPS64R2)
440
441 #define HAVE_32BIT_GPRS \
442 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
443
444 #define HAVE_32BIT_FPRS \
445 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
446
447 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
448 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
449
450 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
451
452 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
453
454 /* True if relocations are stored in-place. */
455 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
456
457 /* The ABI-derived address size. */
458 #define HAVE_64BIT_ADDRESSES \
459 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
460 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
461
462 /* The size of symbolic constants (i.e., expressions of the form
463 "SYMBOL" or "SYMBOL + OFFSET"). */
464 #define HAVE_32BIT_SYMBOLS \
465 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
466 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
467
468 /* Addresses are loaded in different ways, depending on the address size
469 in use. The n32 ABI Documentation also mandates the use of additions
470 with overflow checking, but existing implementations don't follow it. */
471 #define ADDRESS_ADD_INSN \
472 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
473
474 #define ADDRESS_ADDI_INSN \
475 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
476
477 #define ADDRESS_LOAD_INSN \
478 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
479
480 #define ADDRESS_STORE_INSN \
481 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
482
483 /* Return true if the given CPU supports the MIPS16 ASE. */
484 #define CPU_HAS_MIPS16(cpu) \
485 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
486 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
487
488 /* Return true if the given CPU supports the microMIPS ASE. */
489 #define CPU_HAS_MICROMIPS(cpu) 0
490
491 /* True if CPU has a dror instruction. */
492 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
493
494 /* True if CPU has a ror instruction. */
495 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
496
497 /* True if CPU is in the Octeon family */
498 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
499
500 /* True if CPU has seq/sne and seqi/snei instructions. */
501 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
502
503 /* True if mflo and mfhi can be immediately followed by instructions
504 which write to the HI and LO registers.
505
506 According to MIPS specifications, MIPS ISAs I, II, and III need
507 (at least) two instructions between the reads of HI/LO and
508 instructions which write them, and later ISAs do not. Contradicting
509 the MIPS specifications, some MIPS IV processor user manuals (e.g.
510 the UM for the NEC Vr5000) document needing the instructions between
511 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
512 MIPS64 and later ISAs to have the interlocks, plus any specific
513 earlier-ISA CPUs for which CPU documentation declares that the
514 instructions are really interlocked. */
515 #define hilo_interlocks \
516 (mips_opts.isa == ISA_MIPS32 \
517 || mips_opts.isa == ISA_MIPS32R2 \
518 || mips_opts.isa == ISA_MIPS64 \
519 || mips_opts.isa == ISA_MIPS64R2 \
520 || mips_opts.arch == CPU_R4010 \
521 || mips_opts.arch == CPU_R10000 \
522 || mips_opts.arch == CPU_R12000 \
523 || mips_opts.arch == CPU_R14000 \
524 || mips_opts.arch == CPU_R16000 \
525 || mips_opts.arch == CPU_RM7000 \
526 || mips_opts.arch == CPU_VR5500 \
527 || mips_opts.micromips \
528 )
529
530 /* Whether the processor uses hardware interlocks to protect reads
531 from the GPRs after they are loaded from memory, and thus does not
532 require nops to be inserted. This applies to instructions marked
533 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
534 level I and microMIPS mode instructions are always interlocked. */
535 #define gpr_interlocks \
536 (mips_opts.isa != ISA_MIPS1 \
537 || mips_opts.arch == CPU_R3900 \
538 || mips_opts.micromips \
539 )
540
541 /* Whether the processor uses hardware interlocks to avoid delays
542 required by coprocessor instructions, and thus does not require
543 nops to be inserted. This applies to instructions marked
544 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
545 between instructions marked INSN_WRITE_COND_CODE and ones marked
546 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
547 levels I, II, and III and microMIPS mode instructions are always
548 interlocked. */
549 /* Itbl support may require additional care here. */
550 #define cop_interlocks \
551 ((mips_opts.isa != ISA_MIPS1 \
552 && mips_opts.isa != ISA_MIPS2 \
553 && mips_opts.isa != ISA_MIPS3) \
554 || mips_opts.arch == CPU_R4300 \
555 || mips_opts.micromips \
556 )
557
558 /* Whether the processor uses hardware interlocks to protect reads
559 from coprocessor registers after they are loaded from memory, and
560 thus does not require nops to be inserted. This applies to
561 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
562 requires at MIPS ISA level I and microMIPS mode instructions are
563 always interlocked. */
564 #define cop_mem_interlocks \
565 (mips_opts.isa != ISA_MIPS1 \
566 || mips_opts.micromips \
567 )
568
569 /* Is this a mfhi or mflo instruction? */
570 #define MF_HILO_INSN(PINFO) \
571 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
572
573 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
574 has been selected. This implies, in particular, that addresses of text
575 labels have their LSB set. */
576 #define HAVE_CODE_COMPRESSION \
577 ((mips_opts.mips16 | mips_opts.micromips) != 0)
578
579 /* MIPS PIC level. */
580
581 enum mips_pic_level mips_pic;
582
583 /* 1 if we should generate 32 bit offsets from the $gp register in
584 SVR4_PIC mode. Currently has no meaning in other modes. */
585 static int mips_big_got = 0;
586
587 /* 1 if trap instructions should used for overflow rather than break
588 instructions. */
589 static int mips_trap = 0;
590
591 /* 1 if double width floating point constants should not be constructed
592 by assembling two single width halves into two single width floating
593 point registers which just happen to alias the double width destination
594 register. On some architectures this aliasing can be disabled by a bit
595 in the status register, and the setting of this bit cannot be determined
596 automatically at assemble time. */
597 static int mips_disable_float_construction;
598
599 /* Non-zero if any .set noreorder directives were used. */
600
601 static int mips_any_noreorder;
602
603 /* Non-zero if nops should be inserted when the register referenced in
604 an mfhi/mflo instruction is read in the next two instructions. */
605 static int mips_7000_hilo_fix;
606
607 /* The size of objects in the small data section. */
608 static unsigned int g_switch_value = 8;
609 /* Whether the -G option was used. */
610 static int g_switch_seen = 0;
611
612 #define N_RMASK 0xc4
613 #define N_VFP 0xd4
614
615 /* If we can determine in advance that GP optimization won't be
616 possible, we can skip the relaxation stuff that tries to produce
617 GP-relative references. This makes delay slot optimization work
618 better.
619
620 This function can only provide a guess, but it seems to work for
621 gcc output. It needs to guess right for gcc, otherwise gcc
622 will put what it thinks is a GP-relative instruction in a branch
623 delay slot.
624
625 I don't know if a fix is needed for the SVR4_PIC mode. I've only
626 fixed it for the non-PIC mode. KR 95/04/07 */
627 static int nopic_need_relax (symbolS *, int);
628
629 /* handle of the OPCODE hash table */
630 static struct hash_control *op_hash = NULL;
631
632 /* The opcode hash table we use for the mips16. */
633 static struct hash_control *mips16_op_hash = NULL;
634
635 /* The opcode hash table we use for the microMIPS ASE. */
636 static struct hash_control *micromips_op_hash = NULL;
637
638 /* This array holds the chars that always start a comment. If the
639 pre-processor is disabled, these aren't very useful */
640 const char comment_chars[] = "#";
641
642 /* This array holds the chars that only start a comment at the beginning of
643 a line. If the line seems to have the form '# 123 filename'
644 .line and .file directives will appear in the pre-processed output */
645 /* Note that input_file.c hand checks for '#' at the beginning of the
646 first line of the input file. This is because the compiler outputs
647 #NO_APP at the beginning of its output. */
648 /* Also note that C style comments are always supported. */
649 const char line_comment_chars[] = "#";
650
651 /* This array holds machine specific line separator characters. */
652 const char line_separator_chars[] = ";";
653
654 /* Chars that can be used to separate mant from exp in floating point nums */
655 const char EXP_CHARS[] = "eE";
656
657 /* Chars that mean this number is a floating point constant */
658 /* As in 0f12.456 */
659 /* or 0d1.2345e12 */
660 const char FLT_CHARS[] = "rRsSfFdDxXpP";
661
662 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
663 changed in read.c . Ideally it shouldn't have to know about it at all,
664 but nothing is ideal around here.
665 */
666
667 static char *insn_error;
668
669 static int auto_align = 1;
670
671 /* When outputting SVR4 PIC code, the assembler needs to know the
672 offset in the stack frame from which to restore the $gp register.
673 This is set by the .cprestore pseudo-op, and saved in this
674 variable. */
675 static offsetT mips_cprestore_offset = -1;
676
677 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
678 more optimizations, it can use a register value instead of a memory-saved
679 offset and even an other register than $gp as global pointer. */
680 static offsetT mips_cpreturn_offset = -1;
681 static int mips_cpreturn_register = -1;
682 static int mips_gp_register = GP;
683 static int mips_gprel_offset = 0;
684
685 /* Whether mips_cprestore_offset has been set in the current function
686 (or whether it has already been warned about, if not). */
687 static int mips_cprestore_valid = 0;
688
689 /* This is the register which holds the stack frame, as set by the
690 .frame pseudo-op. This is needed to implement .cprestore. */
691 static int mips_frame_reg = SP;
692
693 /* Whether mips_frame_reg has been set in the current function
694 (or whether it has already been warned about, if not). */
695 static int mips_frame_reg_valid = 0;
696
697 /* To output NOP instructions correctly, we need to keep information
698 about the previous two instructions. */
699
700 /* Whether we are optimizing. The default value of 2 means to remove
701 unneeded NOPs and swap branch instructions when possible. A value
702 of 1 means to not swap branches. A value of 0 means to always
703 insert NOPs. */
704 static int mips_optimize = 2;
705
706 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
707 equivalent to seeing no -g option at all. */
708 static int mips_debug = 0;
709
710 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
711 #define MAX_VR4130_NOPS 4
712
713 /* The maximum number of NOPs needed to fill delay slots. */
714 #define MAX_DELAY_NOPS 2
715
716 /* The maximum number of NOPs needed for any purpose. */
717 #define MAX_NOPS 4
718
719 /* A list of previous instructions, with index 0 being the most recent.
720 We need to look back MAX_NOPS instructions when filling delay slots
721 or working around processor errata. We need to look back one
722 instruction further if we're thinking about using history[0] to
723 fill a branch delay slot. */
724 static struct mips_cl_insn history[1 + MAX_NOPS];
725
726 /* Nop instructions used by emit_nop. */
727 static struct mips_cl_insn nop_insn;
728 static struct mips_cl_insn mips16_nop_insn;
729 static struct mips_cl_insn micromips_nop16_insn;
730 static struct mips_cl_insn micromips_nop32_insn;
731
732 /* The appropriate nop for the current mode. */
733 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn \
734 : (mips_opts.micromips ? &micromips_nop16_insn : &nop_insn))
735
736 /* The size of NOP_INSN in bytes. */
737 #define NOP_INSN_SIZE (HAVE_CODE_COMPRESSION ? 2 : 4)
738
739 /* If this is set, it points to a frag holding nop instructions which
740 were inserted before the start of a noreorder section. If those
741 nops turn out to be unnecessary, the size of the frag can be
742 decreased. */
743 static fragS *prev_nop_frag;
744
745 /* The number of nop instructions we created in prev_nop_frag. */
746 static int prev_nop_frag_holds;
747
748 /* The number of nop instructions that we know we need in
749 prev_nop_frag. */
750 static int prev_nop_frag_required;
751
752 /* The number of instructions we've seen since prev_nop_frag. */
753 static int prev_nop_frag_since;
754
755 /* For ECOFF and ELF, relocations against symbols are done in two
756 parts, with a HI relocation and a LO relocation. Each relocation
757 has only 16 bits of space to store an addend. This means that in
758 order for the linker to handle carries correctly, it must be able
759 to locate both the HI and the LO relocation. This means that the
760 relocations must appear in order in the relocation table.
761
762 In order to implement this, we keep track of each unmatched HI
763 relocation. We then sort them so that they immediately precede the
764 corresponding LO relocation. */
765
766 struct mips_hi_fixup
767 {
768 /* Next HI fixup. */
769 struct mips_hi_fixup *next;
770 /* This fixup. */
771 fixS *fixp;
772 /* The section this fixup is in. */
773 segT seg;
774 };
775
776 /* The list of unmatched HI relocs. */
777
778 static struct mips_hi_fixup *mips_hi_fixup_list;
779
780 /* The frag containing the last explicit relocation operator.
781 Null if explicit relocations have not been used. */
782
783 static fragS *prev_reloc_op_frag;
784
785 /* Map normal MIPS register numbers to mips16 register numbers. */
786
787 #define X ILLEGAL_REG
788 static const int mips32_to_16_reg_map[] =
789 {
790 X, X, 2, 3, 4, 5, 6, 7,
791 X, X, X, X, X, X, X, X,
792 0, 1, X, X, X, X, X, X,
793 X, X, X, X, X, X, X, X
794 };
795 #undef X
796
797 /* Map mips16 register numbers to normal MIPS register numbers. */
798
799 static const unsigned int mips16_to_32_reg_map[] =
800 {
801 16, 17, 2, 3, 4, 5, 6, 7
802 };
803
804 /* Map normal MIPS register numbers to microMIPS register numbers. */
805
806 #define mips32_to_micromips_reg_b_map mips32_to_16_reg_map
807 #define mips32_to_micromips_reg_c_map mips32_to_16_reg_map
808 #define mips32_to_micromips_reg_d_map mips32_to_16_reg_map
809 #define mips32_to_micromips_reg_e_map mips32_to_16_reg_map
810 #define mips32_to_micromips_reg_f_map mips32_to_16_reg_map
811 #define mips32_to_micromips_reg_g_map mips32_to_16_reg_map
812 #define mips32_to_micromips_reg_l_map mips32_to_16_reg_map
813
814 #define X ILLEGAL_REG
815 /* reg type h: 4, 5, 6. */
816 static const int mips32_to_micromips_reg_h_map[] =
817 {
818 X, X, X, X, 4, 5, 6, X,
819 X, X, X, X, X, X, X, X,
820 X, X, X, X, X, X, X, X,
821 X, X, X, X, X, X, X, X
822 };
823
824 /* reg type m: 0, 17, 2, 3, 16, 18, 19, 20. */
825 static const int mips32_to_micromips_reg_m_map[] =
826 {
827 0, X, 2, 3, X, X, X, X,
828 X, X, X, X, X, X, X, X,
829 4, 1, 5, 6, 7, X, X, X,
830 X, X, X, X, X, X, X, X
831 };
832
833 /* reg type q: 0, 2-7. 17. */
834 static const int mips32_to_micromips_reg_q_map[] =
835 {
836 0, X, 2, 3, 4, 5, 6, 7,
837 X, X, X, X, X, X, X, X,
838 X, 1, X, X, X, X, X, X,
839 X, X, X, X, X, X, X, X
840 };
841
842 #define mips32_to_micromips_reg_n_map mips32_to_micromips_reg_m_map
843 #undef X
844
845 /* Map microMIPS register numbers to normal MIPS register numbers. */
846
847 #define micromips_to_32_reg_b_map mips16_to_32_reg_map
848 #define micromips_to_32_reg_c_map mips16_to_32_reg_map
849 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
850 #define micromips_to_32_reg_e_map mips16_to_32_reg_map
851 #define micromips_to_32_reg_f_map mips16_to_32_reg_map
852 #define micromips_to_32_reg_g_map mips16_to_32_reg_map
853
854 /* The microMIPS registers with type h. */
855 static const unsigned int micromips_to_32_reg_h_map[] =
856 {
857 5, 5, 6, 4, 4, 4, 4, 4
858 };
859
860 /* The microMIPS registers with type i. */
861 static const unsigned int micromips_to_32_reg_i_map[] =
862 {
863 6, 7, 7, 21, 22, 5, 6, 7
864 };
865
866 #define micromips_to_32_reg_l_map mips16_to_32_reg_map
867
868 /* The microMIPS registers with type m. */
869 static const unsigned int micromips_to_32_reg_m_map[] =
870 {
871 0, 17, 2, 3, 16, 18, 19, 20
872 };
873
874 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
875
876 /* The microMIPS registers with type q. */
877 static const unsigned int micromips_to_32_reg_q_map[] =
878 {
879 0, 17, 2, 3, 4, 5, 6, 7
880 };
881
882 /* microMIPS imm type B. */
883 static const int micromips_imm_b_map[] =
884 {
885 1, 4, 8, 12, 16, 20, 24, -1
886 };
887
888 /* microMIPS imm type C. */
889 static const int micromips_imm_c_map[] =
890 {
891 128, 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 255, 32768, 65535
892 };
893
894 /* Classifies the kind of instructions we're interested in when
895 implementing -mfix-vr4120. */
896 enum fix_vr4120_class
897 {
898 FIX_VR4120_MACC,
899 FIX_VR4120_DMACC,
900 FIX_VR4120_MULT,
901 FIX_VR4120_DMULT,
902 FIX_VR4120_DIV,
903 FIX_VR4120_MTHILO,
904 NUM_FIX_VR4120_CLASSES
905 };
906
907 /* ...likewise -mfix-loongson2f-jump. */
908 static bfd_boolean mips_fix_loongson2f_jump;
909
910 /* ...likewise -mfix-loongson2f-nop. */
911 static bfd_boolean mips_fix_loongson2f_nop;
912
913 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
914 static bfd_boolean mips_fix_loongson2f;
915
916 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
917 there must be at least one other instruction between an instruction
918 of type X and an instruction of type Y. */
919 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
920
921 /* True if -mfix-vr4120 is in force. */
922 static int mips_fix_vr4120;
923
924 /* ...likewise -mfix-vr4130. */
925 static int mips_fix_vr4130;
926
927 /* ...likewise -mfix-24k. */
928 static int mips_fix_24k;
929
930 /* ...likewise -mfix-cn63xxp1 */
931 static bfd_boolean mips_fix_cn63xxp1;
932
933 /* We don't relax branches by default, since this causes us to expand
934 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
935 fail to compute the offset before expanding the macro to the most
936 efficient expansion. */
937
938 static int mips_relax_branch;
939 \f
940 /* The expansion of many macros depends on the type of symbol that
941 they refer to. For example, when generating position-dependent code,
942 a macro that refers to a symbol may have two different expansions,
943 one which uses GP-relative addresses and one which uses absolute
944 addresses. When generating SVR4-style PIC, a macro may have
945 different expansions for local and global symbols.
946
947 We handle these situations by generating both sequences and putting
948 them in variant frags. In position-dependent code, the first sequence
949 will be the GP-relative one and the second sequence will be the
950 absolute one. In SVR4 PIC, the first sequence will be for global
951 symbols and the second will be for local symbols.
952
953 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
954 SECOND are the lengths of the two sequences in bytes. These fields
955 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
956 the subtype has the following flags:
957
958 RELAX_USE_SECOND
959 Set if it has been decided that we should use the second
960 sequence instead of the first.
961
962 RELAX_SECOND_LONGER
963 Set in the first variant frag if the macro's second implementation
964 is longer than its first. This refers to the macro as a whole,
965 not an individual relaxation.
966
967 RELAX_NOMACRO
968 Set in the first variant frag if the macro appeared in a .set nomacro
969 block and if one alternative requires a warning but the other does not.
970
971 RELAX_DELAY_SLOT
972 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
973 delay slot.
974
975 RELAX_DELAY_SLOT_16BIT
976 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
977 16-bit instruction.
978
979 RELAX_DELAY_SLOT_SIZE_FIRST
980 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
981 the macro is of the wrong size for the branch delay slot.
982
983 RELAX_DELAY_SLOT_SIZE_SECOND
984 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
985 the macro is of the wrong size for the branch delay slot.
986
987 The frag's "opcode" points to the first fixup for relaxable code.
988
989 Relaxable macros are generated using a sequence such as:
990
991 relax_start (SYMBOL);
992 ... generate first expansion ...
993 relax_switch ();
994 ... generate second expansion ...
995 relax_end ();
996
997 The code and fixups for the unwanted alternative are discarded
998 by md_convert_frag. */
999 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1000
1001 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1002 #define RELAX_SECOND(X) ((X) & 0xff)
1003 #define RELAX_USE_SECOND 0x10000
1004 #define RELAX_SECOND_LONGER 0x20000
1005 #define RELAX_NOMACRO 0x40000
1006 #define RELAX_DELAY_SLOT 0x80000
1007 #define RELAX_DELAY_SLOT_16BIT 0x100000
1008 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1009 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1010
1011 /* Branch without likely bit. If label is out of range, we turn:
1012
1013 beq reg1, reg2, label
1014 delay slot
1015
1016 into
1017
1018 bne reg1, reg2, 0f
1019 nop
1020 j label
1021 0: delay slot
1022
1023 with the following opcode replacements:
1024
1025 beq <-> bne
1026 blez <-> bgtz
1027 bltz <-> bgez
1028 bc1f <-> bc1t
1029
1030 bltzal <-> bgezal (with jal label instead of j label)
1031
1032 Even though keeping the delay slot instruction in the delay slot of
1033 the branch would be more efficient, it would be very tricky to do
1034 correctly, because we'd have to introduce a variable frag *after*
1035 the delay slot instruction, and expand that instead. Let's do it
1036 the easy way for now, even if the branch-not-taken case now costs
1037 one additional instruction. Out-of-range branches are not supposed
1038 to be common, anyway.
1039
1040 Branch likely. If label is out of range, we turn:
1041
1042 beql reg1, reg2, label
1043 delay slot (annulled if branch not taken)
1044
1045 into
1046
1047 beql reg1, reg2, 1f
1048 nop
1049 beql $0, $0, 2f
1050 nop
1051 1: j[al] label
1052 delay slot (executed only if branch taken)
1053 2:
1054
1055 It would be possible to generate a shorter sequence by losing the
1056 likely bit, generating something like:
1057
1058 bne reg1, reg2, 0f
1059 nop
1060 j[al] label
1061 delay slot (executed only if branch taken)
1062 0:
1063
1064 beql -> bne
1065 bnel -> beq
1066 blezl -> bgtz
1067 bgtzl -> blez
1068 bltzl -> bgez
1069 bgezl -> bltz
1070 bc1fl -> bc1t
1071 bc1tl -> bc1f
1072
1073 bltzall -> bgezal (with jal label instead of j label)
1074 bgezall -> bltzal (ditto)
1075
1076
1077 but it's not clear that it would actually improve performance. */
1078 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1079 ((relax_substateT) \
1080 (0xc0000000 \
1081 | ((at) & 0x1f) \
1082 | ((toofar) ? 0x20 : 0) \
1083 | ((link) ? 0x40 : 0) \
1084 | ((likely) ? 0x80 : 0) \
1085 | ((uncond) ? 0x100 : 0)))
1086 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1087 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1088 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1089 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1090 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1091 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1092
1093 /* For mips16 code, we use an entirely different form of relaxation.
1094 mips16 supports two versions of most instructions which take
1095 immediate values: a small one which takes some small value, and a
1096 larger one which takes a 16 bit value. Since branches also follow
1097 this pattern, relaxing these values is required.
1098
1099 We can assemble both mips16 and normal MIPS code in a single
1100 object. Therefore, we need to support this type of relaxation at
1101 the same time that we support the relaxation described above. We
1102 use the high bit of the subtype field to distinguish these cases.
1103
1104 The information we store for this type of relaxation is the
1105 argument code found in the opcode file for this relocation, whether
1106 the user explicitly requested a small or extended form, and whether
1107 the relocation is in a jump or jal delay slot. That tells us the
1108 size of the value, and how it should be stored. We also store
1109 whether the fragment is considered to be extended or not. We also
1110 store whether this is known to be a branch to a different section,
1111 whether we have tried to relax this frag yet, and whether we have
1112 ever extended a PC relative fragment because of a shift count. */
1113 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1114 (0x80000000 \
1115 | ((type) & 0xff) \
1116 | ((small) ? 0x100 : 0) \
1117 | ((ext) ? 0x200 : 0) \
1118 | ((dslot) ? 0x400 : 0) \
1119 | ((jal_dslot) ? 0x800 : 0))
1120 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1121 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1122 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1123 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1124 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1125 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1126 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1127 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1128 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1129 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1130 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1131 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1132
1133 /* For microMIPS code, we use relaxation similar to one we use for
1134 MIPS16 code. Some instructions that take immediate values support
1135 two encodings: a small one which takes some small value, and a
1136 larger one which takes a 16 bit value. As some branches also follow
1137 this pattern, relaxing these values is required.
1138
1139 We can assemble both microMIPS and normal MIPS code in a single
1140 object. Therefore, we need to support this type of relaxation at
1141 the same time that we support the relaxation described above. We
1142 use one of the high bits of the subtype field to distinguish these
1143 cases.
1144
1145 The information we store for this type of relaxation is the argument
1146 code found in the opcode file for this relocation, the register
1147 selected as the assembler temporary, whether the branch is
1148 unconditional, whether it is compact, whether it stores the link
1149 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1150 branches to a sequence of instructions is enabled, and whether the
1151 displacement of a branch is too large to fit as an immediate argument
1152 of a 16-bit and a 32-bit branch, respectively. */
1153 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1154 relax32, toofar16, toofar32) \
1155 (0x40000000 \
1156 | ((type) & 0xff) \
1157 | (((at) & 0x1f) << 8) \
1158 | ((uncond) ? 0x2000 : 0) \
1159 | ((compact) ? 0x4000 : 0) \
1160 | ((link) ? 0x8000 : 0) \
1161 | ((relax32) ? 0x10000 : 0) \
1162 | ((toofar16) ? 0x20000 : 0) \
1163 | ((toofar32) ? 0x40000 : 0))
1164 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1165 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1166 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1167 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1168 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1169 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1170 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1171
1172 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1173 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1174 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1175 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1176 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1177 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1178
1179 /* Sign-extend 16-bit value X. */
1180 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1181
1182 /* Is the given value a sign-extended 32-bit value? */
1183 #define IS_SEXT_32BIT_NUM(x) \
1184 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1185 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1186
1187 /* Is the given value a sign-extended 16-bit value? */
1188 #define IS_SEXT_16BIT_NUM(x) \
1189 (((x) &~ (offsetT) 0x7fff) == 0 \
1190 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1191
1192 /* Is the given value a sign-extended 12-bit value? */
1193 #define IS_SEXT_12BIT_NUM(x) \
1194 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1195
1196 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1197 #define IS_ZEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0xffffffff) == 0 \
1199 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1200
1201 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
1202 VALUE << SHIFT. VALUE is evaluated exactly once. */
1203 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
1204 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
1205 | (((VALUE) & (MASK)) << (SHIFT)))
1206
1207 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1208 SHIFT places. */
1209 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1210 (((STRUCT) >> (SHIFT)) & (MASK))
1211
1212 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1213 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1214
1215 include/opcode/mips.h specifies operand fields using the macros
1216 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1217 with "MIPS16OP" instead of "OP". */
1218 #define INSERT_OPERAND(MICROMIPS, FIELD, INSN, VALUE) \
1219 do \
1220 if (!(MICROMIPS)) \
1221 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1222 OP_MASK_##FIELD, OP_SH_##FIELD); \
1223 else \
1224 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1225 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD); \
1226 while (0)
1227 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1228 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1229 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1230
1231 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1232 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1233 (!(MICROMIPS) \
1234 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1235 : EXTRACT_BITS ((INSN).insn_opcode, \
1236 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1237 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1238 EXTRACT_BITS ((INSN).insn_opcode, \
1239 MIPS16OP_MASK_##FIELD, \
1240 MIPS16OP_SH_##FIELD)
1241
1242 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1243 #define MIPS16_EXTEND (0xf000U << 16)
1244 \f
1245 /* Whether or not we are emitting a branch-likely macro. */
1246 static bfd_boolean emit_branch_likely_macro = FALSE;
1247
1248 /* Global variables used when generating relaxable macros. See the
1249 comment above RELAX_ENCODE for more details about how relaxation
1250 is used. */
1251 static struct {
1252 /* 0 if we're not emitting a relaxable macro.
1253 1 if we're emitting the first of the two relaxation alternatives.
1254 2 if we're emitting the second alternative. */
1255 int sequence;
1256
1257 /* The first relaxable fixup in the current frag. (In other words,
1258 the first fixup that refers to relaxable code.) */
1259 fixS *first_fixup;
1260
1261 /* sizes[0] says how many bytes of the first alternative are stored in
1262 the current frag. Likewise sizes[1] for the second alternative. */
1263 unsigned int sizes[2];
1264
1265 /* The symbol on which the choice of sequence depends. */
1266 symbolS *symbol;
1267 } mips_relax;
1268 \f
1269 /* Global variables used to decide whether a macro needs a warning. */
1270 static struct {
1271 /* True if the macro is in a branch delay slot. */
1272 bfd_boolean delay_slot_p;
1273
1274 /* Set to the length in bytes required if the macro is in a delay slot
1275 that requires a specific length of instruction, otherwise zero. */
1276 unsigned int delay_slot_length;
1277
1278 /* For relaxable macros, sizes[0] is the length of the first alternative
1279 in bytes and sizes[1] is the length of the second alternative.
1280 For non-relaxable macros, both elements give the length of the
1281 macro in bytes. */
1282 unsigned int sizes[2];
1283
1284 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1285 instruction of the first alternative in bytes and first_insn_sizes[1]
1286 is the length of the first instruction of the second alternative.
1287 For non-relaxable macros, both elements give the length of the first
1288 instruction in bytes.
1289
1290 Set to zero if we haven't yet seen the first instruction. */
1291 unsigned int first_insn_sizes[2];
1292
1293 /* For relaxable macros, insns[0] is the number of instructions for the
1294 first alternative and insns[1] is the number of instructions for the
1295 second alternative.
1296
1297 For non-relaxable macros, both elements give the number of
1298 instructions for the macro. */
1299 unsigned int insns[2];
1300
1301 /* The first variant frag for this macro. */
1302 fragS *first_frag;
1303 } mips_macro_warning;
1304 \f
1305 /* Prototypes for static functions. */
1306
1307 #define internalError() \
1308 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1309
1310 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1311
1312 static void append_insn
1313 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1314 bfd_boolean expansionp);
1315 static void mips_no_prev_insn (void);
1316 static void macro_build (expressionS *, const char *, const char *, ...);
1317 static void mips16_macro_build
1318 (expressionS *, const char *, const char *, va_list *);
1319 static void load_register (int, expressionS *, int);
1320 static void macro_start (void);
1321 static void macro_end (void);
1322 static void macro (struct mips_cl_insn * ip);
1323 static void mips16_macro (struct mips_cl_insn * ip);
1324 static void mips_ip (char *str, struct mips_cl_insn * ip);
1325 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1326 static void mips16_immed
1327 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1328 unsigned int, unsigned long *);
1329 static size_t my_getSmallExpression
1330 (expressionS *, bfd_reloc_code_real_type *, char *);
1331 static void my_getExpression (expressionS *, char *);
1332 static void s_align (int);
1333 static void s_change_sec (int);
1334 static void s_change_section (int);
1335 static void s_cons (int);
1336 static void s_float_cons (int);
1337 static void s_mips_globl (int);
1338 static void s_option (int);
1339 static void s_mipsset (int);
1340 static void s_abicalls (int);
1341 static void s_cpload (int);
1342 static void s_cpsetup (int);
1343 static void s_cplocal (int);
1344 static void s_cprestore (int);
1345 static void s_cpreturn (int);
1346 static void s_dtprelword (int);
1347 static void s_dtpreldword (int);
1348 static void s_tprelword (int);
1349 static void s_tpreldword (int);
1350 static void s_gpvalue (int);
1351 static void s_gpword (int);
1352 static void s_gpdword (int);
1353 static void s_cpadd (int);
1354 static void s_insn (int);
1355 static void md_obj_begin (void);
1356 static void md_obj_end (void);
1357 static void s_mips_ent (int);
1358 static void s_mips_end (int);
1359 static void s_mips_frame (int);
1360 static void s_mips_mask (int reg_type);
1361 static void s_mips_stab (int);
1362 static void s_mips_weakext (int);
1363 static void s_mips_file (int);
1364 static void s_mips_loc (int);
1365 static bfd_boolean pic_need_relax (symbolS *, asection *);
1366 static int relaxed_branch_length (fragS *, asection *, int);
1367 static int validate_mips_insn (const struct mips_opcode *);
1368 static int validate_micromips_insn (const struct mips_opcode *);
1369 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1370 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1371
1372 /* Table and functions used to map between CPU/ISA names, and
1373 ISA levels, and CPU numbers. */
1374
1375 struct mips_cpu_info
1376 {
1377 const char *name; /* CPU or ISA name. */
1378 int flags; /* ASEs available, or ISA flag. */
1379 int isa; /* ISA level. */
1380 int cpu; /* CPU number (default CPU if ISA). */
1381 };
1382
1383 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1384 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1385 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1386 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1387 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1388 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1389 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1390 #define MIPS_CPU_ASE_MCU 0x0080 /* CPU implements MCU ASE */
1391
1392 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1393 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1394 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1395 \f
1396 /* Pseudo-op table.
1397
1398 The following pseudo-ops from the Kane and Heinrich MIPS book
1399 should be defined here, but are currently unsupported: .alias,
1400 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1401
1402 The following pseudo-ops from the Kane and Heinrich MIPS book are
1403 specific to the type of debugging information being generated, and
1404 should be defined by the object format: .aent, .begin, .bend,
1405 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1406 .vreg.
1407
1408 The following pseudo-ops from the Kane and Heinrich MIPS book are
1409 not MIPS CPU specific, but are also not specific to the object file
1410 format. This file is probably the best place to define them, but
1411 they are not currently supported: .asm0, .endr, .lab, .struct. */
1412
1413 static const pseudo_typeS mips_pseudo_table[] =
1414 {
1415 /* MIPS specific pseudo-ops. */
1416 {"option", s_option, 0},
1417 {"set", s_mipsset, 0},
1418 {"rdata", s_change_sec, 'r'},
1419 {"sdata", s_change_sec, 's'},
1420 {"livereg", s_ignore, 0},
1421 {"abicalls", s_abicalls, 0},
1422 {"cpload", s_cpload, 0},
1423 {"cpsetup", s_cpsetup, 0},
1424 {"cplocal", s_cplocal, 0},
1425 {"cprestore", s_cprestore, 0},
1426 {"cpreturn", s_cpreturn, 0},
1427 {"dtprelword", s_dtprelword, 0},
1428 {"dtpreldword", s_dtpreldword, 0},
1429 {"tprelword", s_tprelword, 0},
1430 {"tpreldword", s_tpreldword, 0},
1431 {"gpvalue", s_gpvalue, 0},
1432 {"gpword", s_gpword, 0},
1433 {"gpdword", s_gpdword, 0},
1434 {"cpadd", s_cpadd, 0},
1435 {"insn", s_insn, 0},
1436
1437 /* Relatively generic pseudo-ops that happen to be used on MIPS
1438 chips. */
1439 {"asciiz", stringer, 8 + 1},
1440 {"bss", s_change_sec, 'b'},
1441 {"err", s_err, 0},
1442 {"half", s_cons, 1},
1443 {"dword", s_cons, 3},
1444 {"weakext", s_mips_weakext, 0},
1445 {"origin", s_org, 0},
1446 {"repeat", s_rept, 0},
1447
1448 /* For MIPS this is non-standard, but we define it for consistency. */
1449 {"sbss", s_change_sec, 'B'},
1450
1451 /* These pseudo-ops are defined in read.c, but must be overridden
1452 here for one reason or another. */
1453 {"align", s_align, 0},
1454 {"byte", s_cons, 0},
1455 {"data", s_change_sec, 'd'},
1456 {"double", s_float_cons, 'd'},
1457 {"float", s_float_cons, 'f'},
1458 {"globl", s_mips_globl, 0},
1459 {"global", s_mips_globl, 0},
1460 {"hword", s_cons, 1},
1461 {"int", s_cons, 2},
1462 {"long", s_cons, 2},
1463 {"octa", s_cons, 4},
1464 {"quad", s_cons, 3},
1465 {"section", s_change_section, 0},
1466 {"short", s_cons, 1},
1467 {"single", s_float_cons, 'f'},
1468 {"stabn", s_mips_stab, 'n'},
1469 {"text", s_change_sec, 't'},
1470 {"word", s_cons, 2},
1471
1472 { "extern", ecoff_directive_extern, 0},
1473
1474 { NULL, NULL, 0 },
1475 };
1476
1477 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1478 {
1479 /* These pseudo-ops should be defined by the object file format.
1480 However, a.out doesn't support them, so we have versions here. */
1481 {"aent", s_mips_ent, 1},
1482 {"bgnb", s_ignore, 0},
1483 {"end", s_mips_end, 0},
1484 {"endb", s_ignore, 0},
1485 {"ent", s_mips_ent, 0},
1486 {"file", s_mips_file, 0},
1487 {"fmask", s_mips_mask, 'F'},
1488 {"frame", s_mips_frame, 0},
1489 {"loc", s_mips_loc, 0},
1490 {"mask", s_mips_mask, 'R'},
1491 {"verstamp", s_ignore, 0},
1492 { NULL, NULL, 0 },
1493 };
1494
1495 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1496 purpose of the `.dc.a' internal pseudo-op. */
1497
1498 int
1499 mips_address_bytes (void)
1500 {
1501 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1502 }
1503
1504 extern void pop_insert (const pseudo_typeS *);
1505
1506 void
1507 mips_pop_insert (void)
1508 {
1509 pop_insert (mips_pseudo_table);
1510 if (! ECOFF_DEBUGGING)
1511 pop_insert (mips_nonecoff_pseudo_table);
1512 }
1513 \f
1514 /* Symbols labelling the current insn. */
1515
1516 struct insn_label_list
1517 {
1518 struct insn_label_list *next;
1519 symbolS *label;
1520 };
1521
1522 static struct insn_label_list *free_insn_labels;
1523 #define label_list tc_segment_info_data.labels
1524
1525 static void mips_clear_insn_labels (void);
1526 static void mips_mark_labels (void);
1527 static void mips_compressed_mark_labels (void);
1528
1529 static inline void
1530 mips_clear_insn_labels (void)
1531 {
1532 register struct insn_label_list **pl;
1533 segment_info_type *si;
1534
1535 if (now_seg)
1536 {
1537 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1538 ;
1539
1540 si = seg_info (now_seg);
1541 *pl = si->label_list;
1542 si->label_list = NULL;
1543 }
1544 }
1545
1546 /* Mark instruction labels in MIPS16/microMIPS mode. */
1547
1548 static inline void
1549 mips_mark_labels (void)
1550 {
1551 if (HAVE_CODE_COMPRESSION)
1552 mips_compressed_mark_labels ();
1553 }
1554 \f
1555 static char *expr_end;
1556
1557 /* Expressions which appear in instructions. These are set by
1558 mips_ip. */
1559
1560 static expressionS imm_expr;
1561 static expressionS imm2_expr;
1562 static expressionS offset_expr;
1563
1564 /* Relocs associated with imm_expr and offset_expr. */
1565
1566 static bfd_reloc_code_real_type imm_reloc[3]
1567 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1568 static bfd_reloc_code_real_type offset_reloc[3]
1569 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1570
1571 /* This is set to the resulting size of the instruction to be produced
1572 by mips16_ip if an explicit extension is used or by mips_ip if an
1573 explicit size is supplied. */
1574
1575 static unsigned int forced_insn_length;
1576
1577 #ifdef OBJ_ELF
1578 /* The pdr segment for per procedure frame/regmask info. Not used for
1579 ECOFF debugging. */
1580
1581 static segT pdr_seg;
1582 #endif
1583
1584 /* The default target format to use. */
1585
1586 #if defined (TE_FreeBSD)
1587 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1588 #elif defined (TE_TMIPS)
1589 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1590 #else
1591 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1592 #endif
1593
1594 const char *
1595 mips_target_format (void)
1596 {
1597 switch (OUTPUT_FLAVOR)
1598 {
1599 case bfd_target_ecoff_flavour:
1600 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1601 case bfd_target_coff_flavour:
1602 return "pe-mips";
1603 case bfd_target_elf_flavour:
1604 #ifdef TE_VXWORKS
1605 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1606 return (target_big_endian
1607 ? "elf32-bigmips-vxworks"
1608 : "elf32-littlemips-vxworks");
1609 #endif
1610 return (target_big_endian
1611 ? (HAVE_64BIT_OBJECTS
1612 ? ELF_TARGET ("elf64-", "big")
1613 : (HAVE_NEWABI
1614 ? ELF_TARGET ("elf32-n", "big")
1615 : ELF_TARGET ("elf32-", "big")))
1616 : (HAVE_64BIT_OBJECTS
1617 ? ELF_TARGET ("elf64-", "little")
1618 : (HAVE_NEWABI
1619 ? ELF_TARGET ("elf32-n", "little")
1620 : ELF_TARGET ("elf32-", "little"))));
1621 default:
1622 abort ();
1623 return NULL;
1624 }
1625 }
1626
1627 /* Return the length of a microMIPS instruction in bytes. If bits of
1628 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
1629 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
1630 major opcode) will require further modifications to the opcode
1631 table. */
1632
1633 static inline unsigned int
1634 micromips_insn_length (const struct mips_opcode *mo)
1635 {
1636 return (mo->mask >> 16) == 0 ? 2 : 4;
1637 }
1638
1639 /* Return the length of MIPS16 instruction OPCODE. */
1640
1641 static inline unsigned int
1642 mips16_opcode_length (unsigned long opcode)
1643 {
1644 return (opcode >> 16) == 0 ? 2 : 4;
1645 }
1646
1647 /* Return the length of instruction INSN. */
1648
1649 static inline unsigned int
1650 insn_length (const struct mips_cl_insn *insn)
1651 {
1652 if (mips_opts.micromips)
1653 return micromips_insn_length (insn->insn_mo);
1654 else if (mips_opts.mips16)
1655 return mips16_opcode_length (insn->insn_opcode);
1656 else
1657 return 4;
1658 }
1659
1660 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1661
1662 static void
1663 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1664 {
1665 size_t i;
1666
1667 insn->insn_mo = mo;
1668 insn->insn_opcode = mo->match;
1669 insn->frag = NULL;
1670 insn->where = 0;
1671 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1672 insn->fixp[i] = NULL;
1673 insn->fixed_p = (mips_opts.noreorder > 0);
1674 insn->noreorder_p = (mips_opts.noreorder > 0);
1675 insn->mips16_absolute_jump_p = 0;
1676 insn->complete_p = 0;
1677 }
1678
1679 /* Record the current MIPS16/microMIPS mode in now_seg. */
1680
1681 static void
1682 mips_record_compressed_mode (void)
1683 {
1684 segment_info_type *si;
1685
1686 si = seg_info (now_seg);
1687 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1688 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1689 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
1690 si->tc_segment_info_data.micromips = mips_opts.micromips;
1691 }
1692
1693 /* Read a standard MIPS instruction from BUF. */
1694
1695 static unsigned long
1696 read_insn (char *buf)
1697 {
1698 if (target_big_endian)
1699 return bfd_getb32 ((bfd_byte *) buf);
1700 else
1701 return bfd_getl32 ((bfd_byte *) buf);
1702 }
1703
1704 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
1705 the next byte. */
1706
1707 static char *
1708 write_insn (char *buf, unsigned int insn)
1709 {
1710 md_number_to_chars (buf, insn, 4);
1711 return buf + 4;
1712 }
1713
1714 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
1715 has length LENGTH. */
1716
1717 static unsigned long
1718 read_compressed_insn (char *buf, unsigned int length)
1719 {
1720 unsigned long insn;
1721 unsigned int i;
1722
1723 insn = 0;
1724 for (i = 0; i < length; i += 2)
1725 {
1726 insn <<= 16;
1727 if (target_big_endian)
1728 insn |= bfd_getb16 ((char *) buf);
1729 else
1730 insn |= bfd_getl16 ((char *) buf);
1731 buf += 2;
1732 }
1733 return insn;
1734 }
1735
1736 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
1737 instruction is LENGTH bytes long. Return a pointer to the next byte. */
1738
1739 static char *
1740 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
1741 {
1742 unsigned int i;
1743
1744 for (i = 0; i < length; i += 2)
1745 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
1746 return buf + length;
1747 }
1748
1749 /* Install INSN at the location specified by its "frag" and "where" fields. */
1750
1751 static void
1752 install_insn (const struct mips_cl_insn *insn)
1753 {
1754 char *f = insn->frag->fr_literal + insn->where;
1755 if (HAVE_CODE_COMPRESSION)
1756 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1757 else
1758 write_insn (f, insn->insn_opcode);
1759 mips_record_compressed_mode ();
1760 }
1761
1762 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1763 and install the opcode in the new location. */
1764
1765 static void
1766 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1767 {
1768 size_t i;
1769
1770 insn->frag = frag;
1771 insn->where = where;
1772 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1773 if (insn->fixp[i] != NULL)
1774 {
1775 insn->fixp[i]->fx_frag = frag;
1776 insn->fixp[i]->fx_where = where;
1777 }
1778 install_insn (insn);
1779 }
1780
1781 /* Add INSN to the end of the output. */
1782
1783 static void
1784 add_fixed_insn (struct mips_cl_insn *insn)
1785 {
1786 char *f = frag_more (insn_length (insn));
1787 move_insn (insn, frag_now, f - frag_now->fr_literal);
1788 }
1789
1790 /* Start a variant frag and move INSN to the start of the variant part,
1791 marking it as fixed. The other arguments are as for frag_var. */
1792
1793 static void
1794 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1795 relax_substateT subtype, symbolS *symbol, offsetT offset)
1796 {
1797 frag_grow (max_chars);
1798 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1799 insn->fixed_p = 1;
1800 frag_var (rs_machine_dependent, max_chars, var,
1801 subtype, symbol, offset, NULL);
1802 }
1803
1804 /* Insert N copies of INSN into the history buffer, starting at
1805 position FIRST. Neither FIRST nor N need to be clipped. */
1806
1807 static void
1808 insert_into_history (unsigned int first, unsigned int n,
1809 const struct mips_cl_insn *insn)
1810 {
1811 if (mips_relax.sequence != 2)
1812 {
1813 unsigned int i;
1814
1815 for (i = ARRAY_SIZE (history); i-- > first;)
1816 if (i >= first + n)
1817 history[i] = history[i - n];
1818 else
1819 history[i] = *insn;
1820 }
1821 }
1822
1823 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1824 the idea is to make it obvious at a glance that each errata is
1825 included. */
1826
1827 static void
1828 init_vr4120_conflicts (void)
1829 {
1830 #define CONFLICT(FIRST, SECOND) \
1831 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1832
1833 /* Errata 21 - [D]DIV[U] after [D]MACC */
1834 CONFLICT (MACC, DIV);
1835 CONFLICT (DMACC, DIV);
1836
1837 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1838 CONFLICT (DMULT, DMULT);
1839 CONFLICT (DMULT, DMACC);
1840 CONFLICT (DMACC, DMULT);
1841 CONFLICT (DMACC, DMACC);
1842
1843 /* Errata 24 - MT{LO,HI} after [D]MACC */
1844 CONFLICT (MACC, MTHILO);
1845 CONFLICT (DMACC, MTHILO);
1846
1847 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1848 instruction is executed immediately after a MACC or DMACC
1849 instruction, the result of [either instruction] is incorrect." */
1850 CONFLICT (MACC, MULT);
1851 CONFLICT (MACC, DMULT);
1852 CONFLICT (DMACC, MULT);
1853 CONFLICT (DMACC, DMULT);
1854
1855 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1856 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1857 DDIV or DDIVU instruction, the result of the MACC or
1858 DMACC instruction is incorrect.". */
1859 CONFLICT (DMULT, MACC);
1860 CONFLICT (DMULT, DMACC);
1861 CONFLICT (DIV, MACC);
1862 CONFLICT (DIV, DMACC);
1863
1864 #undef CONFLICT
1865 }
1866
1867 struct regname {
1868 const char *name;
1869 unsigned int num;
1870 };
1871
1872 #define RTYPE_MASK 0x1ff00
1873 #define RTYPE_NUM 0x00100
1874 #define RTYPE_FPU 0x00200
1875 #define RTYPE_FCC 0x00400
1876 #define RTYPE_VEC 0x00800
1877 #define RTYPE_GP 0x01000
1878 #define RTYPE_CP0 0x02000
1879 #define RTYPE_PC 0x04000
1880 #define RTYPE_ACC 0x08000
1881 #define RTYPE_CCC 0x10000
1882 #define RNUM_MASK 0x000ff
1883 #define RWARN 0x80000
1884
1885 #define GENERIC_REGISTER_NUMBERS \
1886 {"$0", RTYPE_NUM | 0}, \
1887 {"$1", RTYPE_NUM | 1}, \
1888 {"$2", RTYPE_NUM | 2}, \
1889 {"$3", RTYPE_NUM | 3}, \
1890 {"$4", RTYPE_NUM | 4}, \
1891 {"$5", RTYPE_NUM | 5}, \
1892 {"$6", RTYPE_NUM | 6}, \
1893 {"$7", RTYPE_NUM | 7}, \
1894 {"$8", RTYPE_NUM | 8}, \
1895 {"$9", RTYPE_NUM | 9}, \
1896 {"$10", RTYPE_NUM | 10}, \
1897 {"$11", RTYPE_NUM | 11}, \
1898 {"$12", RTYPE_NUM | 12}, \
1899 {"$13", RTYPE_NUM | 13}, \
1900 {"$14", RTYPE_NUM | 14}, \
1901 {"$15", RTYPE_NUM | 15}, \
1902 {"$16", RTYPE_NUM | 16}, \
1903 {"$17", RTYPE_NUM | 17}, \
1904 {"$18", RTYPE_NUM | 18}, \
1905 {"$19", RTYPE_NUM | 19}, \
1906 {"$20", RTYPE_NUM | 20}, \
1907 {"$21", RTYPE_NUM | 21}, \
1908 {"$22", RTYPE_NUM | 22}, \
1909 {"$23", RTYPE_NUM | 23}, \
1910 {"$24", RTYPE_NUM | 24}, \
1911 {"$25", RTYPE_NUM | 25}, \
1912 {"$26", RTYPE_NUM | 26}, \
1913 {"$27", RTYPE_NUM | 27}, \
1914 {"$28", RTYPE_NUM | 28}, \
1915 {"$29", RTYPE_NUM | 29}, \
1916 {"$30", RTYPE_NUM | 30}, \
1917 {"$31", RTYPE_NUM | 31}
1918
1919 #define FPU_REGISTER_NAMES \
1920 {"$f0", RTYPE_FPU | 0}, \
1921 {"$f1", RTYPE_FPU | 1}, \
1922 {"$f2", RTYPE_FPU | 2}, \
1923 {"$f3", RTYPE_FPU | 3}, \
1924 {"$f4", RTYPE_FPU | 4}, \
1925 {"$f5", RTYPE_FPU | 5}, \
1926 {"$f6", RTYPE_FPU | 6}, \
1927 {"$f7", RTYPE_FPU | 7}, \
1928 {"$f8", RTYPE_FPU | 8}, \
1929 {"$f9", RTYPE_FPU | 9}, \
1930 {"$f10", RTYPE_FPU | 10}, \
1931 {"$f11", RTYPE_FPU | 11}, \
1932 {"$f12", RTYPE_FPU | 12}, \
1933 {"$f13", RTYPE_FPU | 13}, \
1934 {"$f14", RTYPE_FPU | 14}, \
1935 {"$f15", RTYPE_FPU | 15}, \
1936 {"$f16", RTYPE_FPU | 16}, \
1937 {"$f17", RTYPE_FPU | 17}, \
1938 {"$f18", RTYPE_FPU | 18}, \
1939 {"$f19", RTYPE_FPU | 19}, \
1940 {"$f20", RTYPE_FPU | 20}, \
1941 {"$f21", RTYPE_FPU | 21}, \
1942 {"$f22", RTYPE_FPU | 22}, \
1943 {"$f23", RTYPE_FPU | 23}, \
1944 {"$f24", RTYPE_FPU | 24}, \
1945 {"$f25", RTYPE_FPU | 25}, \
1946 {"$f26", RTYPE_FPU | 26}, \
1947 {"$f27", RTYPE_FPU | 27}, \
1948 {"$f28", RTYPE_FPU | 28}, \
1949 {"$f29", RTYPE_FPU | 29}, \
1950 {"$f30", RTYPE_FPU | 30}, \
1951 {"$f31", RTYPE_FPU | 31}
1952
1953 #define FPU_CONDITION_CODE_NAMES \
1954 {"$fcc0", RTYPE_FCC | 0}, \
1955 {"$fcc1", RTYPE_FCC | 1}, \
1956 {"$fcc2", RTYPE_FCC | 2}, \
1957 {"$fcc3", RTYPE_FCC | 3}, \
1958 {"$fcc4", RTYPE_FCC | 4}, \
1959 {"$fcc5", RTYPE_FCC | 5}, \
1960 {"$fcc6", RTYPE_FCC | 6}, \
1961 {"$fcc7", RTYPE_FCC | 7}
1962
1963 #define COPROC_CONDITION_CODE_NAMES \
1964 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1965 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1966 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1967 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1968 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1969 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1970 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1971 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1972
1973 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1974 {"$a4", RTYPE_GP | 8}, \
1975 {"$a5", RTYPE_GP | 9}, \
1976 {"$a6", RTYPE_GP | 10}, \
1977 {"$a7", RTYPE_GP | 11}, \
1978 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1979 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1980 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1981 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1982 {"$t0", RTYPE_GP | 12}, \
1983 {"$t1", RTYPE_GP | 13}, \
1984 {"$t2", RTYPE_GP | 14}, \
1985 {"$t3", RTYPE_GP | 15}
1986
1987 #define O32_SYMBOLIC_REGISTER_NAMES \
1988 {"$t0", RTYPE_GP | 8}, \
1989 {"$t1", RTYPE_GP | 9}, \
1990 {"$t2", RTYPE_GP | 10}, \
1991 {"$t3", RTYPE_GP | 11}, \
1992 {"$t4", RTYPE_GP | 12}, \
1993 {"$t5", RTYPE_GP | 13}, \
1994 {"$t6", RTYPE_GP | 14}, \
1995 {"$t7", RTYPE_GP | 15}, \
1996 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1997 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1998 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1999 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2000
2001 /* Remaining symbolic register names */
2002 #define SYMBOLIC_REGISTER_NAMES \
2003 {"$zero", RTYPE_GP | 0}, \
2004 {"$at", RTYPE_GP | 1}, \
2005 {"$AT", RTYPE_GP | 1}, \
2006 {"$v0", RTYPE_GP | 2}, \
2007 {"$v1", RTYPE_GP | 3}, \
2008 {"$a0", RTYPE_GP | 4}, \
2009 {"$a1", RTYPE_GP | 5}, \
2010 {"$a2", RTYPE_GP | 6}, \
2011 {"$a3", RTYPE_GP | 7}, \
2012 {"$s0", RTYPE_GP | 16}, \
2013 {"$s1", RTYPE_GP | 17}, \
2014 {"$s2", RTYPE_GP | 18}, \
2015 {"$s3", RTYPE_GP | 19}, \
2016 {"$s4", RTYPE_GP | 20}, \
2017 {"$s5", RTYPE_GP | 21}, \
2018 {"$s6", RTYPE_GP | 22}, \
2019 {"$s7", RTYPE_GP | 23}, \
2020 {"$t8", RTYPE_GP | 24}, \
2021 {"$t9", RTYPE_GP | 25}, \
2022 {"$k0", RTYPE_GP | 26}, \
2023 {"$kt0", RTYPE_GP | 26}, \
2024 {"$k1", RTYPE_GP | 27}, \
2025 {"$kt1", RTYPE_GP | 27}, \
2026 {"$gp", RTYPE_GP | 28}, \
2027 {"$sp", RTYPE_GP | 29}, \
2028 {"$s8", RTYPE_GP | 30}, \
2029 {"$fp", RTYPE_GP | 30}, \
2030 {"$ra", RTYPE_GP | 31}
2031
2032 #define MIPS16_SPECIAL_REGISTER_NAMES \
2033 {"$pc", RTYPE_PC | 0}
2034
2035 #define MDMX_VECTOR_REGISTER_NAMES \
2036 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2037 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2038 {"$v2", RTYPE_VEC | 2}, \
2039 {"$v3", RTYPE_VEC | 3}, \
2040 {"$v4", RTYPE_VEC | 4}, \
2041 {"$v5", RTYPE_VEC | 5}, \
2042 {"$v6", RTYPE_VEC | 6}, \
2043 {"$v7", RTYPE_VEC | 7}, \
2044 {"$v8", RTYPE_VEC | 8}, \
2045 {"$v9", RTYPE_VEC | 9}, \
2046 {"$v10", RTYPE_VEC | 10}, \
2047 {"$v11", RTYPE_VEC | 11}, \
2048 {"$v12", RTYPE_VEC | 12}, \
2049 {"$v13", RTYPE_VEC | 13}, \
2050 {"$v14", RTYPE_VEC | 14}, \
2051 {"$v15", RTYPE_VEC | 15}, \
2052 {"$v16", RTYPE_VEC | 16}, \
2053 {"$v17", RTYPE_VEC | 17}, \
2054 {"$v18", RTYPE_VEC | 18}, \
2055 {"$v19", RTYPE_VEC | 19}, \
2056 {"$v20", RTYPE_VEC | 20}, \
2057 {"$v21", RTYPE_VEC | 21}, \
2058 {"$v22", RTYPE_VEC | 22}, \
2059 {"$v23", RTYPE_VEC | 23}, \
2060 {"$v24", RTYPE_VEC | 24}, \
2061 {"$v25", RTYPE_VEC | 25}, \
2062 {"$v26", RTYPE_VEC | 26}, \
2063 {"$v27", RTYPE_VEC | 27}, \
2064 {"$v28", RTYPE_VEC | 28}, \
2065 {"$v29", RTYPE_VEC | 29}, \
2066 {"$v30", RTYPE_VEC | 30}, \
2067 {"$v31", RTYPE_VEC | 31}
2068
2069 #define MIPS_DSP_ACCUMULATOR_NAMES \
2070 {"$ac0", RTYPE_ACC | 0}, \
2071 {"$ac1", RTYPE_ACC | 1}, \
2072 {"$ac2", RTYPE_ACC | 2}, \
2073 {"$ac3", RTYPE_ACC | 3}
2074
2075 static const struct regname reg_names[] = {
2076 GENERIC_REGISTER_NUMBERS,
2077 FPU_REGISTER_NAMES,
2078 FPU_CONDITION_CODE_NAMES,
2079 COPROC_CONDITION_CODE_NAMES,
2080
2081 /* The $txx registers depends on the abi,
2082 these will be added later into the symbol table from
2083 one of the tables below once mips_abi is set after
2084 parsing of arguments from the command line. */
2085 SYMBOLIC_REGISTER_NAMES,
2086
2087 MIPS16_SPECIAL_REGISTER_NAMES,
2088 MDMX_VECTOR_REGISTER_NAMES,
2089 MIPS_DSP_ACCUMULATOR_NAMES,
2090 {0, 0}
2091 };
2092
2093 static const struct regname reg_names_o32[] = {
2094 O32_SYMBOLIC_REGISTER_NAMES,
2095 {0, 0}
2096 };
2097
2098 static const struct regname reg_names_n32n64[] = {
2099 N32N64_SYMBOLIC_REGISTER_NAMES,
2100 {0, 0}
2101 };
2102
2103 /* Check if S points at a valid register specifier according to TYPES.
2104 If so, then return 1, advance S to consume the specifier and store
2105 the register's number in REGNOP, otherwise return 0. */
2106
2107 static int
2108 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2109 {
2110 symbolS *symbolP;
2111 char *e;
2112 char save_c;
2113 int reg = -1;
2114
2115 /* Find end of name. */
2116 e = *s;
2117 if (is_name_beginner (*e))
2118 ++e;
2119 while (is_part_of_name (*e))
2120 ++e;
2121
2122 /* Terminate name. */
2123 save_c = *e;
2124 *e = '\0';
2125
2126 /* Look for a register symbol. */
2127 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
2128 {
2129 int r = S_GET_VALUE (symbolP);
2130 if (r & types)
2131 reg = r & RNUM_MASK;
2132 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
2133 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
2134 reg = (r & RNUM_MASK) - 2;
2135 }
2136 /* Else see if this is a register defined in an itbl entry. */
2137 else if ((types & RTYPE_GP) && itbl_have_entries)
2138 {
2139 char *n = *s;
2140 unsigned long r;
2141
2142 if (*n == '$')
2143 ++n;
2144 if (itbl_get_reg_val (n, &r))
2145 reg = r & RNUM_MASK;
2146 }
2147
2148 /* Advance to next token if a register was recognised. */
2149 if (reg >= 0)
2150 *s = e;
2151 else if (types & RWARN)
2152 as_warn (_("Unrecognized register name `%s'"), *s);
2153
2154 *e = save_c;
2155 if (regnop)
2156 *regnop = reg;
2157 return reg >= 0;
2158 }
2159
2160 /* Check if S points at a valid register list according to TYPES.
2161 If so, then return 1, advance S to consume the list and store
2162 the registers present on the list as a bitmask of ones in REGLISTP,
2163 otherwise return 0. A valid list comprises a comma-separated
2164 enumeration of valid single registers and/or dash-separated
2165 contiguous register ranges as determined by their numbers.
2166
2167 As a special exception if one of s0-s7 registers is specified as
2168 the range's lower delimiter and s8 (fp) is its upper one, then no
2169 registers whose numbers place them between s7 and s8 (i.e. $24-$29)
2170 are selected; they have to be listed separately if needed. */
2171
2172 static int
2173 reglist_lookup (char **s, unsigned int types, unsigned int *reglistp)
2174 {
2175 unsigned int reglist = 0;
2176 unsigned int lastregno;
2177 bfd_boolean ok = TRUE;
2178 unsigned int regmask;
2179 char *s_endlist = *s;
2180 char *s_reset = *s;
2181 unsigned int regno;
2182
2183 while (reg_lookup (s, types, &regno))
2184 {
2185 lastregno = regno;
2186 if (**s == '-')
2187 {
2188 (*s)++;
2189 ok = reg_lookup (s, types, &lastregno);
2190 if (ok && lastregno < regno)
2191 ok = FALSE;
2192 if (!ok)
2193 break;
2194 }
2195
2196 if (lastregno == FP && regno >= S0 && regno <= S7)
2197 {
2198 lastregno = S7;
2199 reglist |= 1 << FP;
2200 }
2201 regmask = 1 << lastregno;
2202 regmask = (regmask << 1) - 1;
2203 regmask ^= (1 << regno) - 1;
2204 reglist |= regmask;
2205
2206 s_endlist = *s;
2207 if (**s != ',')
2208 break;
2209 (*s)++;
2210 }
2211
2212 if (ok)
2213 *s = s_endlist;
2214 else
2215 *s = s_reset;
2216 if (reglistp)
2217 *reglistp = reglist;
2218 return ok && reglist != 0;
2219 }
2220
2221 /* Return TRUE if opcode MO is valid on the currently selected ISA and
2222 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
2223
2224 static bfd_boolean
2225 is_opcode_valid (const struct mips_opcode *mo)
2226 {
2227 int isa = mips_opts.isa;
2228 int fp_s, fp_d;
2229
2230 if (mips_opts.ase_mdmx)
2231 isa |= INSN_MDMX;
2232 if (mips_opts.ase_dsp)
2233 isa |= INSN_DSP;
2234 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
2235 isa |= INSN_DSP64;
2236 if (mips_opts.ase_dspr2)
2237 isa |= INSN_DSPR2;
2238 if (mips_opts.ase_mt)
2239 isa |= INSN_MT;
2240 if (mips_opts.ase_mips3d)
2241 isa |= INSN_MIPS3D;
2242 if (mips_opts.ase_smartmips)
2243 isa |= INSN_SMARTMIPS;
2244 if (mips_opts.ase_mcu)
2245 isa |= INSN_MCU;
2246
2247 if (!opcode_is_member (mo, isa, mips_opts.arch))
2248 return FALSE;
2249
2250 /* Check whether the instruction or macro requires single-precision or
2251 double-precision floating-point support. Note that this information is
2252 stored differently in the opcode table for insns and macros. */
2253 if (mo->pinfo == INSN_MACRO)
2254 {
2255 fp_s = mo->pinfo2 & INSN2_M_FP_S;
2256 fp_d = mo->pinfo2 & INSN2_M_FP_D;
2257 }
2258 else
2259 {
2260 fp_s = mo->pinfo & FP_S;
2261 fp_d = mo->pinfo & FP_D;
2262 }
2263
2264 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
2265 return FALSE;
2266
2267 if (fp_s && mips_opts.soft_float)
2268 return FALSE;
2269
2270 return TRUE;
2271 }
2272
2273 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
2274 selected ISA and architecture. */
2275
2276 static bfd_boolean
2277 is_opcode_valid_16 (const struct mips_opcode *mo)
2278 {
2279 return opcode_is_member (mo, mips_opts.isa, mips_opts.arch);
2280 }
2281
2282 /* Return TRUE if the size of the microMIPS opcode MO matches one
2283 explicitly requested. Always TRUE in the standard MIPS mode. */
2284
2285 static bfd_boolean
2286 is_size_valid (const struct mips_opcode *mo)
2287 {
2288 if (!mips_opts.micromips)
2289 return TRUE;
2290
2291 if (!forced_insn_length)
2292 return TRUE;
2293 if (mo->pinfo == INSN_MACRO)
2294 return FALSE;
2295 return forced_insn_length == micromips_insn_length (mo);
2296 }
2297
2298 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
2299 of the preceding instruction. Always TRUE in the standard MIPS mode. */
2300
2301 static bfd_boolean
2302 is_delay_slot_valid (const struct mips_opcode *mo)
2303 {
2304 if (!mips_opts.micromips)
2305 return TRUE;
2306
2307 if (mo->pinfo == INSN_MACRO)
2308 return TRUE;
2309 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
2310 && micromips_insn_length (mo) != 4)
2311 return FALSE;
2312 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
2313 && micromips_insn_length (mo) != 2)
2314 return FALSE;
2315
2316 return TRUE;
2317 }
2318
2319 /* This function is called once, at assembler startup time. It should set up
2320 all the tables, etc. that the MD part of the assembler will need. */
2321
2322 void
2323 md_begin (void)
2324 {
2325 const char *retval = NULL;
2326 int i = 0;
2327 int broken = 0;
2328
2329 if (mips_pic != NO_PIC)
2330 {
2331 if (g_switch_seen && g_switch_value != 0)
2332 as_bad (_("-G may not be used in position-independent code"));
2333 g_switch_value = 0;
2334 }
2335
2336 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
2337 as_warn (_("Could not set architecture and machine"));
2338
2339 op_hash = hash_new ();
2340
2341 for (i = 0; i < NUMOPCODES;)
2342 {
2343 const char *name = mips_opcodes[i].name;
2344
2345 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
2346 if (retval != NULL)
2347 {
2348 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2349 mips_opcodes[i].name, retval);
2350 /* Probably a memory allocation problem? Give up now. */
2351 as_fatal (_("Broken assembler. No assembly attempted."));
2352 }
2353 do
2354 {
2355 if (mips_opcodes[i].pinfo != INSN_MACRO)
2356 {
2357 if (!validate_mips_insn (&mips_opcodes[i]))
2358 broken = 1;
2359 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2360 {
2361 create_insn (&nop_insn, mips_opcodes + i);
2362 if (mips_fix_loongson2f_nop)
2363 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
2364 nop_insn.fixed_p = 1;
2365 }
2366 }
2367 ++i;
2368 }
2369 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
2370 }
2371
2372 mips16_op_hash = hash_new ();
2373
2374 i = 0;
2375 while (i < bfd_mips16_num_opcodes)
2376 {
2377 const char *name = mips16_opcodes[i].name;
2378
2379 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
2380 if (retval != NULL)
2381 as_fatal (_("internal: can't hash `%s': %s"),
2382 mips16_opcodes[i].name, retval);
2383 do
2384 {
2385 if (mips16_opcodes[i].pinfo != INSN_MACRO
2386 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
2387 != mips16_opcodes[i].match))
2388 {
2389 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
2390 mips16_opcodes[i].name, mips16_opcodes[i].args);
2391 broken = 1;
2392 }
2393 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2394 {
2395 create_insn (&mips16_nop_insn, mips16_opcodes + i);
2396 mips16_nop_insn.fixed_p = 1;
2397 }
2398 ++i;
2399 }
2400 while (i < bfd_mips16_num_opcodes
2401 && strcmp (mips16_opcodes[i].name, name) == 0);
2402 }
2403
2404 micromips_op_hash = hash_new ();
2405
2406 i = 0;
2407 while (i < bfd_micromips_num_opcodes)
2408 {
2409 const char *name = micromips_opcodes[i].name;
2410
2411 retval = hash_insert (micromips_op_hash, name,
2412 (void *) &micromips_opcodes[i]);
2413 if (retval != NULL)
2414 as_fatal (_("internal: can't hash `%s': %s"),
2415 micromips_opcodes[i].name, retval);
2416 do
2417 if (micromips_opcodes[i].pinfo != INSN_MACRO)
2418 {
2419 struct mips_cl_insn *micromips_nop_insn;
2420
2421 if (!validate_micromips_insn (&micromips_opcodes[i]))
2422 broken = 1;
2423
2424 if (micromips_insn_length (micromips_opcodes + i) == 2)
2425 micromips_nop_insn = &micromips_nop16_insn;
2426 else if (micromips_insn_length (micromips_opcodes + i) == 4)
2427 micromips_nop_insn = &micromips_nop32_insn;
2428 else
2429 continue;
2430
2431 if (micromips_nop_insn->insn_mo == NULL
2432 && strcmp (name, "nop") == 0)
2433 {
2434 create_insn (micromips_nop_insn, micromips_opcodes + i);
2435 micromips_nop_insn->fixed_p = 1;
2436 }
2437 }
2438 while (++i < bfd_micromips_num_opcodes
2439 && strcmp (micromips_opcodes[i].name, name) == 0);
2440 }
2441
2442 if (broken)
2443 as_fatal (_("Broken assembler. No assembly attempted."));
2444
2445 /* We add all the general register names to the symbol table. This
2446 helps us detect invalid uses of them. */
2447 for (i = 0; reg_names[i].name; i++)
2448 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
2449 reg_names[i].num, /* & RNUM_MASK, */
2450 &zero_address_frag));
2451 if (HAVE_NEWABI)
2452 for (i = 0; reg_names_n32n64[i].name; i++)
2453 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
2454 reg_names_n32n64[i].num, /* & RNUM_MASK, */
2455 &zero_address_frag));
2456 else
2457 for (i = 0; reg_names_o32[i].name; i++)
2458 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
2459 reg_names_o32[i].num, /* & RNUM_MASK, */
2460 &zero_address_frag));
2461
2462 mips_no_prev_insn ();
2463
2464 mips_gprmask = 0;
2465 mips_cprmask[0] = 0;
2466 mips_cprmask[1] = 0;
2467 mips_cprmask[2] = 0;
2468 mips_cprmask[3] = 0;
2469
2470 /* set the default alignment for the text section (2**2) */
2471 record_alignment (text_section, 2);
2472
2473 bfd_set_gp_size (stdoutput, g_switch_value);
2474
2475 #ifdef OBJ_ELF
2476 if (IS_ELF)
2477 {
2478 /* On a native system other than VxWorks, sections must be aligned
2479 to 16 byte boundaries. When configured for an embedded ELF
2480 target, we don't bother. */
2481 if (strncmp (TARGET_OS, "elf", 3) != 0
2482 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2483 {
2484 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2485 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2486 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2487 }
2488
2489 /* Create a .reginfo section for register masks and a .mdebug
2490 section for debugging information. */
2491 {
2492 segT seg;
2493 subsegT subseg;
2494 flagword flags;
2495 segT sec;
2496
2497 seg = now_seg;
2498 subseg = now_subseg;
2499
2500 /* The ABI says this section should be loaded so that the
2501 running program can access it. However, we don't load it
2502 if we are configured for an embedded target */
2503 flags = SEC_READONLY | SEC_DATA;
2504 if (strncmp (TARGET_OS, "elf", 3) != 0)
2505 flags |= SEC_ALLOC | SEC_LOAD;
2506
2507 if (mips_abi != N64_ABI)
2508 {
2509 sec = subseg_new (".reginfo", (subsegT) 0);
2510
2511 bfd_set_section_flags (stdoutput, sec, flags);
2512 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2513
2514 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2515 }
2516 else
2517 {
2518 /* The 64-bit ABI uses a .MIPS.options section rather than
2519 .reginfo section. */
2520 sec = subseg_new (".MIPS.options", (subsegT) 0);
2521 bfd_set_section_flags (stdoutput, sec, flags);
2522 bfd_set_section_alignment (stdoutput, sec, 3);
2523
2524 /* Set up the option header. */
2525 {
2526 Elf_Internal_Options opthdr;
2527 char *f;
2528
2529 opthdr.kind = ODK_REGINFO;
2530 opthdr.size = (sizeof (Elf_External_Options)
2531 + sizeof (Elf64_External_RegInfo));
2532 opthdr.section = 0;
2533 opthdr.info = 0;
2534 f = frag_more (sizeof (Elf_External_Options));
2535 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2536 (Elf_External_Options *) f);
2537
2538 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2539 }
2540 }
2541
2542 if (ECOFF_DEBUGGING)
2543 {
2544 sec = subseg_new (".mdebug", (subsegT) 0);
2545 (void) bfd_set_section_flags (stdoutput, sec,
2546 SEC_HAS_CONTENTS | SEC_READONLY);
2547 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2548 }
2549 else if (mips_flag_pdr)
2550 {
2551 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2552 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2553 SEC_READONLY | SEC_RELOC
2554 | SEC_DEBUGGING);
2555 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2556 }
2557
2558 subseg_set (seg, subseg);
2559 }
2560 }
2561 #endif /* OBJ_ELF */
2562
2563 if (! ECOFF_DEBUGGING)
2564 md_obj_begin ();
2565
2566 if (mips_fix_vr4120)
2567 init_vr4120_conflicts ();
2568 }
2569
2570 void
2571 md_mips_end (void)
2572 {
2573 mips_emit_delays ();
2574 if (! ECOFF_DEBUGGING)
2575 md_obj_end ();
2576 }
2577
2578 void
2579 md_assemble (char *str)
2580 {
2581 struct mips_cl_insn insn;
2582 bfd_reloc_code_real_type unused_reloc[3]
2583 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2584
2585 imm_expr.X_op = O_absent;
2586 imm2_expr.X_op = O_absent;
2587 offset_expr.X_op = O_absent;
2588 imm_reloc[0] = BFD_RELOC_UNUSED;
2589 imm_reloc[1] = BFD_RELOC_UNUSED;
2590 imm_reloc[2] = BFD_RELOC_UNUSED;
2591 offset_reloc[0] = BFD_RELOC_UNUSED;
2592 offset_reloc[1] = BFD_RELOC_UNUSED;
2593 offset_reloc[2] = BFD_RELOC_UNUSED;
2594
2595 if (mips_opts.mips16)
2596 mips16_ip (str, &insn);
2597 else
2598 {
2599 mips_ip (str, &insn);
2600 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2601 str, insn.insn_opcode));
2602 }
2603
2604 if (insn_error)
2605 {
2606 as_bad ("%s `%s'", insn_error, str);
2607 return;
2608 }
2609
2610 if (insn.insn_mo->pinfo == INSN_MACRO)
2611 {
2612 macro_start ();
2613 if (mips_opts.mips16)
2614 mips16_macro (&insn);
2615 else
2616 macro (&insn);
2617 macro_end ();
2618 }
2619 else
2620 {
2621 if (imm_expr.X_op != O_absent)
2622 append_insn (&insn, &imm_expr, imm_reloc, FALSE);
2623 else if (offset_expr.X_op != O_absent)
2624 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
2625 else
2626 append_insn (&insn, NULL, unused_reloc, FALSE);
2627 }
2628 }
2629
2630 /* Convenience functions for abstracting away the differences between
2631 MIPS16 and non-MIPS16 relocations. */
2632
2633 static inline bfd_boolean
2634 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2635 {
2636 switch (reloc)
2637 {
2638 case BFD_RELOC_MIPS16_JMP:
2639 case BFD_RELOC_MIPS16_GPREL:
2640 case BFD_RELOC_MIPS16_GOT16:
2641 case BFD_RELOC_MIPS16_CALL16:
2642 case BFD_RELOC_MIPS16_HI16_S:
2643 case BFD_RELOC_MIPS16_HI16:
2644 case BFD_RELOC_MIPS16_LO16:
2645 return TRUE;
2646
2647 default:
2648 return FALSE;
2649 }
2650 }
2651
2652 static inline bfd_boolean
2653 micromips_reloc_p (bfd_reloc_code_real_type reloc)
2654 {
2655 switch (reloc)
2656 {
2657 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
2658 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
2659 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
2660 case BFD_RELOC_MICROMIPS_GPREL16:
2661 case BFD_RELOC_MICROMIPS_JMP:
2662 case BFD_RELOC_MICROMIPS_HI16:
2663 case BFD_RELOC_MICROMIPS_HI16_S:
2664 case BFD_RELOC_MICROMIPS_LO16:
2665 case BFD_RELOC_MICROMIPS_LITERAL:
2666 case BFD_RELOC_MICROMIPS_GOT16:
2667 case BFD_RELOC_MICROMIPS_CALL16:
2668 case BFD_RELOC_MICROMIPS_GOT_HI16:
2669 case BFD_RELOC_MICROMIPS_GOT_LO16:
2670 case BFD_RELOC_MICROMIPS_CALL_HI16:
2671 case BFD_RELOC_MICROMIPS_CALL_LO16:
2672 case BFD_RELOC_MICROMIPS_SUB:
2673 case BFD_RELOC_MICROMIPS_GOT_PAGE:
2674 case BFD_RELOC_MICROMIPS_GOT_OFST:
2675 case BFD_RELOC_MICROMIPS_GOT_DISP:
2676 case BFD_RELOC_MICROMIPS_HIGHEST:
2677 case BFD_RELOC_MICROMIPS_HIGHER:
2678 case BFD_RELOC_MICROMIPS_SCN_DISP:
2679 case BFD_RELOC_MICROMIPS_JALR:
2680 return TRUE;
2681
2682 default:
2683 return FALSE;
2684 }
2685 }
2686
2687 static inline bfd_boolean
2688 jmp_reloc_p (bfd_reloc_code_real_type reloc)
2689 {
2690 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
2691 }
2692
2693 static inline bfd_boolean
2694 got16_reloc_p (bfd_reloc_code_real_type reloc)
2695 {
2696 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
2697 || reloc == BFD_RELOC_MICROMIPS_GOT16);
2698 }
2699
2700 static inline bfd_boolean
2701 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2702 {
2703 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
2704 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
2705 }
2706
2707 static inline bfd_boolean
2708 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2709 {
2710 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
2711 || reloc == BFD_RELOC_MICROMIPS_LO16);
2712 }
2713
2714 static inline bfd_boolean
2715 jalr_reloc_p (bfd_reloc_code_real_type reloc)
2716 {
2717 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
2718 }
2719
2720 /* Return true if the given relocation might need a matching %lo().
2721 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2722 need a matching %lo() when applied to local symbols. */
2723
2724 static inline bfd_boolean
2725 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2726 {
2727 return (HAVE_IN_PLACE_ADDENDS
2728 && (hi16_reloc_p (reloc)
2729 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2730 all GOT16 relocations evaluate to "G". */
2731 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2732 }
2733
2734 /* Return the type of %lo() reloc needed by RELOC, given that
2735 reloc_needs_lo_p. */
2736
2737 static inline bfd_reloc_code_real_type
2738 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2739 {
2740 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
2741 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
2742 : BFD_RELOC_LO16));
2743 }
2744
2745 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2746 relocation. */
2747
2748 static inline bfd_boolean
2749 fixup_has_matching_lo_p (fixS *fixp)
2750 {
2751 return (fixp->fx_next != NULL
2752 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2753 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2754 && fixp->fx_offset == fixp->fx_next->fx_offset);
2755 }
2756
2757 /* This function returns true if modifying a register requires a
2758 delay. */
2759
2760 static int
2761 reg_needs_delay (unsigned int reg)
2762 {
2763 unsigned long prev_pinfo;
2764
2765 prev_pinfo = history[0].insn_mo->pinfo;
2766 if (! mips_opts.noreorder
2767 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2768 && ! gpr_interlocks)
2769 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2770 && ! cop_interlocks)))
2771 {
2772 /* A load from a coprocessor or from memory. All load delays
2773 delay the use of general register rt for one instruction. */
2774 /* Itbl support may require additional care here. */
2775 know (prev_pinfo & INSN_WRITE_GPR_T);
2776 if (reg == EXTRACT_OPERAND (mips_opts.micromips, RT, history[0]))
2777 return 1;
2778 }
2779
2780 return 0;
2781 }
2782
2783 /* Move all labels in LABELS to the current insertion point. TEXT_P
2784 says whether the labels refer to text or data. */
2785
2786 static void
2787 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
2788 {
2789 struct insn_label_list *l;
2790 valueT val;
2791
2792 for (l = labels; l != NULL; l = l->next)
2793 {
2794 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2795 symbol_set_frag (l->label, frag_now);
2796 val = (valueT) frag_now_fix ();
2797 /* MIPS16/microMIPS text labels are stored as odd. */
2798 if (text_p && HAVE_CODE_COMPRESSION)
2799 ++val;
2800 S_SET_VALUE (l->label, val);
2801 }
2802 }
2803
2804 /* Move all labels in insn_labels to the current insertion point
2805 and treat them as text labels. */
2806
2807 static void
2808 mips_move_text_labels (void)
2809 {
2810 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
2811 }
2812
2813 static bfd_boolean
2814 s_is_linkonce (symbolS *sym, segT from_seg)
2815 {
2816 bfd_boolean linkonce = FALSE;
2817 segT symseg = S_GET_SEGMENT (sym);
2818
2819 if (symseg != from_seg && !S_IS_LOCAL (sym))
2820 {
2821 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2822 linkonce = TRUE;
2823 #ifdef OBJ_ELF
2824 /* The GNU toolchain uses an extension for ELF: a section
2825 beginning with the magic string .gnu.linkonce is a
2826 linkonce section. */
2827 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2828 sizeof ".gnu.linkonce" - 1) == 0)
2829 linkonce = TRUE;
2830 #endif
2831 }
2832 return linkonce;
2833 }
2834
2835 /* Mark instruction labels in MIPS16/microMIPS mode. This permits the
2836 linker to handle them specially, such as generating jalx instructions
2837 when needed. We also make them odd for the duration of the assembly,
2838 in order to generate the right sort of code. We will make them even
2839 in the adjust_symtab routine, while leaving them marked. This is
2840 convenient for the debugger and the disassembler. The linker knows
2841 to make them odd again. */
2842
2843 static void
2844 mips_compressed_mark_labels (void)
2845 {
2846 segment_info_type *si = seg_info (now_seg);
2847 struct insn_label_list *l;
2848
2849 gas_assert (HAVE_CODE_COMPRESSION);
2850
2851 for (l = si->label_list; l != NULL; l = l->next)
2852 {
2853 symbolS *label = l->label;
2854
2855 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2856 if (IS_ELF)
2857 {
2858 if (mips_opts.mips16)
2859 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2860 else
2861 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
2862 }
2863 #endif
2864 if ((S_GET_VALUE (label) & 1) == 0
2865 /* Don't adjust the address if the label is global or weak, or
2866 in a link-once section, since we'll be emitting symbol reloc
2867 references to it which will be patched up by the linker, and
2868 the final value of the symbol may or may not be MIPS16/microMIPS. */
2869 && ! S_IS_WEAK (label)
2870 && ! S_IS_EXTERNAL (label)
2871 && ! s_is_linkonce (label, now_seg))
2872 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2873 }
2874 }
2875
2876 /* End the current frag. Make it a variant frag and record the
2877 relaxation info. */
2878
2879 static void
2880 relax_close_frag (void)
2881 {
2882 mips_macro_warning.first_frag = frag_now;
2883 frag_var (rs_machine_dependent, 0, 0,
2884 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2885 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2886
2887 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2888 mips_relax.first_fixup = 0;
2889 }
2890
2891 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2892 See the comment above RELAX_ENCODE for more details. */
2893
2894 static void
2895 relax_start (symbolS *symbol)
2896 {
2897 gas_assert (mips_relax.sequence == 0);
2898 mips_relax.sequence = 1;
2899 mips_relax.symbol = symbol;
2900 }
2901
2902 /* Start generating the second version of a relaxable sequence.
2903 See the comment above RELAX_ENCODE for more details. */
2904
2905 static void
2906 relax_switch (void)
2907 {
2908 gas_assert (mips_relax.sequence == 1);
2909 mips_relax.sequence = 2;
2910 }
2911
2912 /* End the current relaxable sequence. */
2913
2914 static void
2915 relax_end (void)
2916 {
2917 gas_assert (mips_relax.sequence == 2);
2918 relax_close_frag ();
2919 mips_relax.sequence = 0;
2920 }
2921
2922 /* Return true if IP is a delayed branch or jump. */
2923
2924 static inline bfd_boolean
2925 delayed_branch_p (const struct mips_cl_insn *ip)
2926 {
2927 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2928 | INSN_COND_BRANCH_DELAY
2929 | INSN_COND_BRANCH_LIKELY)) != 0;
2930 }
2931
2932 /* Return true if IP is a compact branch or jump. */
2933
2934 static inline bfd_boolean
2935 compact_branch_p (const struct mips_cl_insn *ip)
2936 {
2937 if (mips_opts.mips16)
2938 return (ip->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2939 | MIPS16_INSN_COND_BRANCH)) != 0;
2940 else
2941 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
2942 | INSN2_COND_BRANCH)) != 0;
2943 }
2944
2945 /* Return true if IP is an unconditional branch or jump. */
2946
2947 static inline bfd_boolean
2948 uncond_branch_p (const struct mips_cl_insn *ip)
2949 {
2950 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
2951 || (mips_opts.mips16
2952 ? (ip->insn_mo->pinfo & MIPS16_INSN_UNCOND_BRANCH) != 0
2953 : (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0));
2954 }
2955
2956 /* Return true if IP is a branch-likely instruction. */
2957
2958 static inline bfd_boolean
2959 branch_likely_p (const struct mips_cl_insn *ip)
2960 {
2961 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
2962 }
2963
2964 /* Return the type of nop that should be used to fill the delay slot
2965 of delayed branch IP. */
2966
2967 static struct mips_cl_insn *
2968 get_delay_slot_nop (const struct mips_cl_insn *ip)
2969 {
2970 if (mips_opts.micromips
2971 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
2972 return &micromips_nop32_insn;
2973 return NOP_INSN;
2974 }
2975
2976 /* Return the mask of core registers that IP reads or writes. */
2977
2978 static unsigned int
2979 gpr_mod_mask (const struct mips_cl_insn *ip)
2980 {
2981 unsigned long pinfo2;
2982 unsigned int mask;
2983
2984 mask = 0;
2985 pinfo2 = ip->insn_mo->pinfo2;
2986 if (mips_opts.micromips)
2987 {
2988 if (pinfo2 & INSN2_MOD_GPR_MD)
2989 mask |= 1 << micromips_to_32_reg_d_map[EXTRACT_OPERAND (1, MD, *ip)];
2990 if (pinfo2 & INSN2_MOD_GPR_MF)
2991 mask |= 1 << micromips_to_32_reg_f_map[EXTRACT_OPERAND (1, MF, *ip)];
2992 if (pinfo2 & INSN2_MOD_SP)
2993 mask |= 1 << SP;
2994 }
2995 return mask;
2996 }
2997
2998 /* Return the mask of core registers that IP reads. */
2999
3000 static unsigned int
3001 gpr_read_mask (const struct mips_cl_insn *ip)
3002 {
3003 unsigned long pinfo, pinfo2;
3004 unsigned int mask;
3005
3006 mask = gpr_mod_mask (ip);
3007 pinfo = ip->insn_mo->pinfo;
3008 pinfo2 = ip->insn_mo->pinfo2;
3009 if (mips_opts.mips16)
3010 {
3011 if (pinfo & MIPS16_INSN_READ_X)
3012 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3013 if (pinfo & MIPS16_INSN_READ_Y)
3014 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3015 if (pinfo & MIPS16_INSN_READ_T)
3016 mask |= 1 << TREG;
3017 if (pinfo & MIPS16_INSN_READ_SP)
3018 mask |= 1 << SP;
3019 if (pinfo & MIPS16_INSN_READ_31)
3020 mask |= 1 << RA;
3021 if (pinfo & MIPS16_INSN_READ_Z)
3022 mask |= 1 << (mips16_to_32_reg_map
3023 [MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]);
3024 if (pinfo & MIPS16_INSN_READ_GPR_X)
3025 mask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3026 }
3027 else
3028 {
3029 if (pinfo2 & INSN2_READ_GPR_D)
3030 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3031 if (pinfo & INSN_READ_GPR_T)
3032 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3033 if (pinfo & INSN_READ_GPR_S)
3034 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3035 if (pinfo2 & INSN2_READ_GP)
3036 mask |= 1 << GP;
3037 if (pinfo2 & INSN2_READ_GPR_31)
3038 mask |= 1 << RA;
3039 if (pinfo2 & INSN2_READ_GPR_Z)
3040 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3041 }
3042 if (mips_opts.micromips)
3043 {
3044 if (pinfo2 & INSN2_READ_GPR_MC)
3045 mask |= 1 << micromips_to_32_reg_c_map[EXTRACT_OPERAND (1, MC, *ip)];
3046 if (pinfo2 & INSN2_READ_GPR_ME)
3047 mask |= 1 << micromips_to_32_reg_e_map[EXTRACT_OPERAND (1, ME, *ip)];
3048 if (pinfo2 & INSN2_READ_GPR_MG)
3049 mask |= 1 << micromips_to_32_reg_g_map[EXTRACT_OPERAND (1, MG, *ip)];
3050 if (pinfo2 & INSN2_READ_GPR_MJ)
3051 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3052 if (pinfo2 & INSN2_READ_GPR_MMN)
3053 {
3054 mask |= 1 << micromips_to_32_reg_m_map[EXTRACT_OPERAND (1, MM, *ip)];
3055 mask |= 1 << micromips_to_32_reg_n_map[EXTRACT_OPERAND (1, MN, *ip)];
3056 }
3057 if (pinfo2 & INSN2_READ_GPR_MP)
3058 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3059 if (pinfo2 & INSN2_READ_GPR_MQ)
3060 mask |= 1 << micromips_to_32_reg_q_map[EXTRACT_OPERAND (1, MQ, *ip)];
3061 }
3062 /* Don't include register 0. */
3063 return mask & ~1;
3064 }
3065
3066 /* Return the mask of core registers that IP writes. */
3067
3068 static unsigned int
3069 gpr_write_mask (const struct mips_cl_insn *ip)
3070 {
3071 unsigned long pinfo, pinfo2;
3072 unsigned int mask;
3073
3074 mask = gpr_mod_mask (ip);
3075 pinfo = ip->insn_mo->pinfo;
3076 pinfo2 = ip->insn_mo->pinfo2;
3077 if (mips_opts.mips16)
3078 {
3079 if (pinfo & MIPS16_INSN_WRITE_X)
3080 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3081 if (pinfo & MIPS16_INSN_WRITE_Y)
3082 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3083 if (pinfo & MIPS16_INSN_WRITE_Z)
3084 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RZ, *ip)];
3085 if (pinfo & MIPS16_INSN_WRITE_T)
3086 mask |= 1 << TREG;
3087 if (pinfo & MIPS16_INSN_WRITE_SP)
3088 mask |= 1 << SP;
3089 if (pinfo & MIPS16_INSN_WRITE_31)
3090 mask |= 1 << RA;
3091 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3092 mask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3093 }
3094 else
3095 {
3096 if (pinfo & INSN_WRITE_GPR_D)
3097 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3098 if (pinfo & INSN_WRITE_GPR_T)
3099 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3100 if (pinfo & INSN_WRITE_GPR_S)
3101 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3102 if (pinfo & INSN_WRITE_GPR_31)
3103 mask |= 1 << RA;
3104 if (pinfo2 & INSN2_WRITE_GPR_Z)
3105 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3106 }
3107 if (mips_opts.micromips)
3108 {
3109 if (pinfo2 & INSN2_WRITE_GPR_MB)
3110 mask |= 1 << micromips_to_32_reg_b_map[EXTRACT_OPERAND (1, MB, *ip)];
3111 if (pinfo2 & INSN2_WRITE_GPR_MHI)
3112 {
3113 mask |= 1 << micromips_to_32_reg_h_map[EXTRACT_OPERAND (1, MH, *ip)];
3114 mask |= 1 << micromips_to_32_reg_i_map[EXTRACT_OPERAND (1, MI, *ip)];
3115 }
3116 if (pinfo2 & INSN2_WRITE_GPR_MJ)
3117 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3118 if (pinfo2 & INSN2_WRITE_GPR_MP)
3119 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3120 }
3121 /* Don't include register 0. */
3122 return mask & ~1;
3123 }
3124
3125 /* Return the mask of floating-point registers that IP reads. */
3126
3127 static unsigned int
3128 fpr_read_mask (const struct mips_cl_insn *ip)
3129 {
3130 unsigned long pinfo, pinfo2;
3131 unsigned int mask;
3132
3133 mask = 0;
3134 pinfo = ip->insn_mo->pinfo;
3135 pinfo2 = ip->insn_mo->pinfo2;
3136 if (!mips_opts.mips16)
3137 {
3138 if (pinfo2 & INSN2_READ_FPR_D)
3139 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3140 if (pinfo & INSN_READ_FPR_S)
3141 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3142 if (pinfo & INSN_READ_FPR_T)
3143 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3144 if (pinfo & INSN_READ_FPR_R)
3145 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FR, *ip);
3146 if (pinfo2 & INSN2_READ_FPR_Z)
3147 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3148 }
3149 /* Conservatively treat all operands to an FP_D instruction are doubles.
3150 (This is overly pessimistic for things like cvt.d.s.) */
3151 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3152 mask |= mask << 1;
3153 return mask;
3154 }
3155
3156 /* Return the mask of floating-point registers that IP writes. */
3157
3158 static unsigned int
3159 fpr_write_mask (const struct mips_cl_insn *ip)
3160 {
3161 unsigned long pinfo, pinfo2;
3162 unsigned int mask;
3163
3164 mask = 0;
3165 pinfo = ip->insn_mo->pinfo;
3166 pinfo2 = ip->insn_mo->pinfo2;
3167 if (!mips_opts.mips16)
3168 {
3169 if (pinfo & INSN_WRITE_FPR_D)
3170 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3171 if (pinfo & INSN_WRITE_FPR_S)
3172 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3173 if (pinfo & INSN_WRITE_FPR_T)
3174 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3175 if (pinfo2 & INSN2_WRITE_FPR_Z)
3176 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3177 }
3178 /* Conservatively treat all operands to an FP_D instruction are doubles.
3179 (This is overly pessimistic for things like cvt.s.d.) */
3180 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3181 mask |= mask << 1;
3182 return mask;
3183 }
3184
3185 /* Classify an instruction according to the FIX_VR4120_* enumeration.
3186 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
3187 by VR4120 errata. */
3188
3189 static unsigned int
3190 classify_vr4120_insn (const char *name)
3191 {
3192 if (strncmp (name, "macc", 4) == 0)
3193 return FIX_VR4120_MACC;
3194 if (strncmp (name, "dmacc", 5) == 0)
3195 return FIX_VR4120_DMACC;
3196 if (strncmp (name, "mult", 4) == 0)
3197 return FIX_VR4120_MULT;
3198 if (strncmp (name, "dmult", 5) == 0)
3199 return FIX_VR4120_DMULT;
3200 if (strstr (name, "div"))
3201 return FIX_VR4120_DIV;
3202 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
3203 return FIX_VR4120_MTHILO;
3204 return NUM_FIX_VR4120_CLASSES;
3205 }
3206
3207 #define INSN_ERET 0x42000018
3208 #define INSN_DERET 0x4200001f
3209
3210 /* Return the number of instructions that must separate INSN1 and INSN2,
3211 where INSN1 is the earlier instruction. Return the worst-case value
3212 for any INSN2 if INSN2 is null. */
3213
3214 static unsigned int
3215 insns_between (const struct mips_cl_insn *insn1,
3216 const struct mips_cl_insn *insn2)
3217 {
3218 unsigned long pinfo1, pinfo2;
3219 unsigned int mask;
3220
3221 /* This function needs to know which pinfo flags are set for INSN2
3222 and which registers INSN2 uses. The former is stored in PINFO2 and
3223 the latter is tested via INSN2_USES_GPR. If INSN2 is null, PINFO2
3224 will have every flag set and INSN2_USES_GPR will always return true. */
3225 pinfo1 = insn1->insn_mo->pinfo;
3226 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
3227
3228 #define INSN2_USES_GPR(REG) \
3229 (insn2 == NULL || (gpr_read_mask (insn2) & (1U << (REG))) != 0)
3230
3231 /* For most targets, write-after-read dependencies on the HI and LO
3232 registers must be separated by at least two instructions. */
3233 if (!hilo_interlocks)
3234 {
3235 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
3236 return 2;
3237 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
3238 return 2;
3239 }
3240
3241 /* If we're working around r7000 errata, there must be two instructions
3242 between an mfhi or mflo and any instruction that uses the result. */
3243 if (mips_7000_hilo_fix
3244 && !mips_opts.micromips
3245 && MF_HILO_INSN (pinfo1)
3246 && INSN2_USES_GPR (EXTRACT_OPERAND (0, RD, *insn1)))
3247 return 2;
3248
3249 /* If we're working around 24K errata, one instruction is required
3250 if an ERET or DERET is followed by a branch instruction. */
3251 if (mips_fix_24k && !mips_opts.micromips)
3252 {
3253 if (insn1->insn_opcode == INSN_ERET
3254 || insn1->insn_opcode == INSN_DERET)
3255 {
3256 if (insn2 == NULL
3257 || insn2->insn_opcode == INSN_ERET
3258 || insn2->insn_opcode == INSN_DERET
3259 || delayed_branch_p (insn2))
3260 return 1;
3261 }
3262 }
3263
3264 /* If working around VR4120 errata, check for combinations that need
3265 a single intervening instruction. */
3266 if (mips_fix_vr4120 && !mips_opts.micromips)
3267 {
3268 unsigned int class1, class2;
3269
3270 class1 = classify_vr4120_insn (insn1->insn_mo->name);
3271 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
3272 {
3273 if (insn2 == NULL)
3274 return 1;
3275 class2 = classify_vr4120_insn (insn2->insn_mo->name);
3276 if (vr4120_conflicts[class1] & (1 << class2))
3277 return 1;
3278 }
3279 }
3280
3281 if (!HAVE_CODE_COMPRESSION)
3282 {
3283 /* Check for GPR or coprocessor load delays. All such delays
3284 are on the RT register. */
3285 /* Itbl support may require additional care here. */
3286 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
3287 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
3288 {
3289 know (pinfo1 & INSN_WRITE_GPR_T);
3290 if (INSN2_USES_GPR (EXTRACT_OPERAND (0, RT, *insn1)))
3291 return 1;
3292 }
3293
3294 /* Check for generic coprocessor hazards.
3295
3296 This case is not handled very well. There is no special
3297 knowledge of CP0 handling, and the coprocessors other than
3298 the floating point unit are not distinguished at all. */
3299 /* Itbl support may require additional care here. FIXME!
3300 Need to modify this to include knowledge about
3301 user specified delays! */
3302 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
3303 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
3304 {
3305 /* Handle cases where INSN1 writes to a known general coprocessor
3306 register. There must be a one instruction delay before INSN2
3307 if INSN2 reads that register, otherwise no delay is needed. */
3308 mask = fpr_write_mask (insn1);
3309 if (mask != 0)
3310 {
3311 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
3312 return 1;
3313 }
3314 else
3315 {
3316 /* Read-after-write dependencies on the control registers
3317 require a two-instruction gap. */
3318 if ((pinfo1 & INSN_WRITE_COND_CODE)
3319 && (pinfo2 & INSN_READ_COND_CODE))
3320 return 2;
3321
3322 /* We don't know exactly what INSN1 does. If INSN2 is
3323 also a coprocessor instruction, assume there must be
3324 a one instruction gap. */
3325 if (pinfo2 & INSN_COP)
3326 return 1;
3327 }
3328 }
3329
3330 /* Check for read-after-write dependencies on the coprocessor
3331 control registers in cases where INSN1 does not need a general
3332 coprocessor delay. This means that INSN1 is a floating point
3333 comparison instruction. */
3334 /* Itbl support may require additional care here. */
3335 else if (!cop_interlocks
3336 && (pinfo1 & INSN_WRITE_COND_CODE)
3337 && (pinfo2 & INSN_READ_COND_CODE))
3338 return 1;
3339 }
3340
3341 #undef INSN2_USES_GPR
3342
3343 return 0;
3344 }
3345
3346 /* Return the number of nops that would be needed to work around the
3347 VR4130 mflo/mfhi errata if instruction INSN immediately followed
3348 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
3349 that are contained within the first IGNORE instructions of HIST. */
3350
3351 static int
3352 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
3353 const struct mips_cl_insn *insn)
3354 {
3355 int i, j;
3356 unsigned int mask;
3357
3358 /* Check if the instruction writes to HI or LO. MTHI and MTLO
3359 are not affected by the errata. */
3360 if (insn != 0
3361 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
3362 || strcmp (insn->insn_mo->name, "mtlo") == 0
3363 || strcmp (insn->insn_mo->name, "mthi") == 0))
3364 return 0;
3365
3366 /* Search for the first MFLO or MFHI. */
3367 for (i = 0; i < MAX_VR4130_NOPS; i++)
3368 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
3369 {
3370 /* Extract the destination register. */
3371 mask = gpr_write_mask (&hist[i]);
3372
3373 /* No nops are needed if INSN reads that register. */
3374 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
3375 return 0;
3376
3377 /* ...or if any of the intervening instructions do. */
3378 for (j = 0; j < i; j++)
3379 if (gpr_read_mask (&hist[j]) & mask)
3380 return 0;
3381
3382 if (i >= ignore)
3383 return MAX_VR4130_NOPS - i;
3384 }
3385 return 0;
3386 }
3387
3388 #define BASE_REG_EQ(INSN1, INSN2) \
3389 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
3390 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
3391
3392 /* Return the minimum alignment for this store instruction. */
3393
3394 static int
3395 fix_24k_align_to (const struct mips_opcode *mo)
3396 {
3397 if (strcmp (mo->name, "sh") == 0)
3398 return 2;
3399
3400 if (strcmp (mo->name, "swc1") == 0
3401 || strcmp (mo->name, "swc2") == 0
3402 || strcmp (mo->name, "sw") == 0
3403 || strcmp (mo->name, "sc") == 0
3404 || strcmp (mo->name, "s.s") == 0)
3405 return 4;
3406
3407 if (strcmp (mo->name, "sdc1") == 0
3408 || strcmp (mo->name, "sdc2") == 0
3409 || strcmp (mo->name, "s.d") == 0)
3410 return 8;
3411
3412 /* sb, swl, swr */
3413 return 1;
3414 }
3415
3416 struct fix_24k_store_info
3417 {
3418 /* Immediate offset, if any, for this store instruction. */
3419 short off;
3420 /* Alignment required by this store instruction. */
3421 int align_to;
3422 /* True for register offsets. */
3423 int register_offset;
3424 };
3425
3426 /* Comparison function used by qsort. */
3427
3428 static int
3429 fix_24k_sort (const void *a, const void *b)
3430 {
3431 const struct fix_24k_store_info *pos1 = a;
3432 const struct fix_24k_store_info *pos2 = b;
3433
3434 return (pos1->off - pos2->off);
3435 }
3436
3437 /* INSN is a store instruction. Try to record the store information
3438 in STINFO. Return false if the information isn't known. */
3439
3440 static bfd_boolean
3441 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
3442 const struct mips_cl_insn *insn)
3443 {
3444 /* The instruction must have a known offset. */
3445 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
3446 return FALSE;
3447
3448 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
3449 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
3450 return TRUE;
3451 }
3452
3453 /* Return the number of nops that would be needed to work around the 24k
3454 "lost data on stores during refill" errata if instruction INSN
3455 immediately followed the 2 instructions described by HIST.
3456 Ignore hazards that are contained within the first IGNORE
3457 instructions of HIST.
3458
3459 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
3460 for the data cache refills and store data. The following describes
3461 the scenario where the store data could be lost.
3462
3463 * A data cache miss, due to either a load or a store, causing fill
3464 data to be supplied by the memory subsystem
3465 * The first three doublewords of fill data are returned and written
3466 into the cache
3467 * A sequence of four stores occurs in consecutive cycles around the
3468 final doubleword of the fill:
3469 * Store A
3470 * Store B
3471 * Store C
3472 * Zero, One or more instructions
3473 * Store D
3474
3475 The four stores A-D must be to different doublewords of the line that
3476 is being filled. The fourth instruction in the sequence above permits
3477 the fill of the final doubleword to be transferred from the FSB into
3478 the cache. In the sequence above, the stores may be either integer
3479 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
3480 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
3481 different doublewords on the line. If the floating point unit is
3482 running in 1:2 mode, it is not possible to create the sequence above
3483 using only floating point store instructions.
3484
3485 In this case, the cache line being filled is incorrectly marked
3486 invalid, thereby losing the data from any store to the line that
3487 occurs between the original miss and the completion of the five
3488 cycle sequence shown above.
3489
3490 The workarounds are:
3491
3492 * Run the data cache in write-through mode.
3493 * Insert a non-store instruction between
3494 Store A and Store B or Store B and Store C. */
3495
3496 static int
3497 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
3498 const struct mips_cl_insn *insn)
3499 {
3500 struct fix_24k_store_info pos[3];
3501 int align, i, base_offset;
3502
3503 if (ignore >= 2)
3504 return 0;
3505
3506 /* If the previous instruction wasn't a store, there's nothing to
3507 worry about. */
3508 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3509 return 0;
3510
3511 /* If the instructions after the previous one are unknown, we have
3512 to assume the worst. */
3513 if (!insn)
3514 return 1;
3515
3516 /* Check whether we are dealing with three consecutive stores. */
3517 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
3518 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3519 return 0;
3520
3521 /* If we don't know the relationship between the store addresses,
3522 assume the worst. */
3523 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
3524 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
3525 return 1;
3526
3527 if (!fix_24k_record_store_info (&pos[0], insn)
3528 || !fix_24k_record_store_info (&pos[1], &hist[0])
3529 || !fix_24k_record_store_info (&pos[2], &hist[1]))
3530 return 1;
3531
3532 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
3533
3534 /* Pick a value of ALIGN and X such that all offsets are adjusted by
3535 X bytes and such that the base register + X is known to be aligned
3536 to align bytes. */
3537
3538 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
3539 align = 8;
3540 else
3541 {
3542 align = pos[0].align_to;
3543 base_offset = pos[0].off;
3544 for (i = 1; i < 3; i++)
3545 if (align < pos[i].align_to)
3546 {
3547 align = pos[i].align_to;
3548 base_offset = pos[i].off;
3549 }
3550 for (i = 0; i < 3; i++)
3551 pos[i].off -= base_offset;
3552 }
3553
3554 pos[0].off &= ~align + 1;
3555 pos[1].off &= ~align + 1;
3556 pos[2].off &= ~align + 1;
3557
3558 /* If any two stores write to the same chunk, they also write to the
3559 same doubleword. The offsets are still sorted at this point. */
3560 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
3561 return 0;
3562
3563 /* A range of at least 9 bytes is needed for the stores to be in
3564 non-overlapping doublewords. */
3565 if (pos[2].off - pos[0].off <= 8)
3566 return 0;
3567
3568 if (pos[2].off - pos[1].off >= 24
3569 || pos[1].off - pos[0].off >= 24
3570 || pos[2].off - pos[0].off >= 32)
3571 return 0;
3572
3573 return 1;
3574 }
3575
3576 /* Return the number of nops that would be needed if instruction INSN
3577 immediately followed the MAX_NOPS instructions given by HIST,
3578 where HIST[0] is the most recent instruction. Ignore hazards
3579 between INSN and the first IGNORE instructions in HIST.
3580
3581 If INSN is null, return the worse-case number of nops for any
3582 instruction. */
3583
3584 static int
3585 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
3586 const struct mips_cl_insn *insn)
3587 {
3588 int i, nops, tmp_nops;
3589
3590 nops = 0;
3591 for (i = ignore; i < MAX_DELAY_NOPS; i++)
3592 {
3593 tmp_nops = insns_between (hist + i, insn) - i;
3594 if (tmp_nops > nops)
3595 nops = tmp_nops;
3596 }
3597
3598 if (mips_fix_vr4130 && !mips_opts.micromips)
3599 {
3600 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
3601 if (tmp_nops > nops)
3602 nops = tmp_nops;
3603 }
3604
3605 if (mips_fix_24k && !mips_opts.micromips)
3606 {
3607 tmp_nops = nops_for_24k (ignore, hist, insn);
3608 if (tmp_nops > nops)
3609 nops = tmp_nops;
3610 }
3611
3612 return nops;
3613 }
3614
3615 /* The variable arguments provide NUM_INSNS extra instructions that
3616 might be added to HIST. Return the largest number of nops that
3617 would be needed after the extended sequence, ignoring hazards
3618 in the first IGNORE instructions. */
3619
3620 static int
3621 nops_for_sequence (int num_insns, int ignore,
3622 const struct mips_cl_insn *hist, ...)
3623 {
3624 va_list args;
3625 struct mips_cl_insn buffer[MAX_NOPS];
3626 struct mips_cl_insn *cursor;
3627 int nops;
3628
3629 va_start (args, hist);
3630 cursor = buffer + num_insns;
3631 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
3632 while (cursor > buffer)
3633 *--cursor = *va_arg (args, const struct mips_cl_insn *);
3634
3635 nops = nops_for_insn (ignore, buffer, NULL);
3636 va_end (args);
3637 return nops;
3638 }
3639
3640 /* Like nops_for_insn, but if INSN is a branch, take into account the
3641 worst-case delay for the branch target. */
3642
3643 static int
3644 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
3645 const struct mips_cl_insn *insn)
3646 {
3647 int nops, tmp_nops;
3648
3649 nops = nops_for_insn (ignore, hist, insn);
3650 if (delayed_branch_p (insn))
3651 {
3652 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
3653 hist, insn, get_delay_slot_nop (insn));
3654 if (tmp_nops > nops)
3655 nops = tmp_nops;
3656 }
3657 else if (compact_branch_p (insn))
3658 {
3659 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
3660 if (tmp_nops > nops)
3661 nops = tmp_nops;
3662 }
3663 return nops;
3664 }
3665
3666 /* Fix NOP issue: Replace nops by "or at,at,zero". */
3667
3668 static void
3669 fix_loongson2f_nop (struct mips_cl_insn * ip)
3670 {
3671 gas_assert (!HAVE_CODE_COMPRESSION);
3672 if (strcmp (ip->insn_mo->name, "nop") == 0)
3673 ip->insn_opcode = LOONGSON2F_NOP_INSN;
3674 }
3675
3676 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
3677 jr target pc &= 'hffff_ffff_cfff_ffff. */
3678
3679 static void
3680 fix_loongson2f_jump (struct mips_cl_insn * ip)
3681 {
3682 gas_assert (!HAVE_CODE_COMPRESSION);
3683 if (strcmp (ip->insn_mo->name, "j") == 0
3684 || strcmp (ip->insn_mo->name, "jr") == 0
3685 || strcmp (ip->insn_mo->name, "jalr") == 0)
3686 {
3687 int sreg;
3688 expressionS ep;
3689
3690 if (! mips_opts.at)
3691 return;
3692
3693 sreg = EXTRACT_OPERAND (0, RS, *ip);
3694 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
3695 return;
3696
3697 ep.X_op = O_constant;
3698 ep.X_add_number = 0xcfff0000;
3699 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
3700 ep.X_add_number = 0xffff;
3701 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
3702 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
3703 }
3704 }
3705
3706 static void
3707 fix_loongson2f (struct mips_cl_insn * ip)
3708 {
3709 if (mips_fix_loongson2f_nop)
3710 fix_loongson2f_nop (ip);
3711
3712 if (mips_fix_loongson2f_jump)
3713 fix_loongson2f_jump (ip);
3714 }
3715
3716 /* IP is a branch that has a delay slot, and we need to fill it
3717 automatically. Return true if we can do that by swapping IP
3718 with the previous instruction. */
3719
3720 static bfd_boolean
3721 can_swap_branch_p (struct mips_cl_insn *ip)
3722 {
3723 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
3724 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
3725
3726 /* -O2 and above is required for this optimization. */
3727 if (mips_optimize < 2)
3728 return FALSE;
3729
3730 /* If we have seen .set volatile or .set nomove, don't optimize. */
3731 if (mips_opts.nomove)
3732 return FALSE;
3733
3734 /* We can't swap if the previous instruction's position is fixed. */
3735 if (history[0].fixed_p)
3736 return FALSE;
3737
3738 /* If the previous previous insn was in a .set noreorder, we can't
3739 swap. Actually, the MIPS assembler will swap in this situation.
3740 However, gcc configured -with-gnu-as will generate code like
3741
3742 .set noreorder
3743 lw $4,XXX
3744 .set reorder
3745 INSN
3746 bne $4,$0,foo
3747
3748 in which we can not swap the bne and INSN. If gcc is not configured
3749 -with-gnu-as, it does not output the .set pseudo-ops. */
3750 if (history[1].noreorder_p)
3751 return FALSE;
3752
3753 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
3754 This means that the previous instruction was a 4-byte one anyhow. */
3755 if (mips_opts.mips16 && history[0].fixp[0])
3756 return FALSE;
3757
3758 /* If the branch is itself the target of a branch, we can not swap.
3759 We cheat on this; all we check for is whether there is a label on
3760 this instruction. If there are any branches to anything other than
3761 a label, users must use .set noreorder. */
3762 if (seg_info (now_seg)->label_list)
3763 return FALSE;
3764
3765 /* If the previous instruction is in a variant frag other than this
3766 branch's one, we cannot do the swap. This does not apply to
3767 MIPS16 code, which uses variant frags for different purposes. */
3768 if (!mips_opts.mips16
3769 && history[0].frag
3770 && history[0].frag->fr_type == rs_machine_dependent)
3771 return FALSE;
3772
3773 /* We do not swap with instructions that cannot architecturally
3774 be placed in a branch delay slot, such as SYNC or ERET. We
3775 also refrain from swapping with a trap instruction, since it
3776 complicates trap handlers to have the trap instruction be in
3777 a delay slot. */
3778 prev_pinfo = history[0].insn_mo->pinfo;
3779 if (prev_pinfo & INSN_NO_DELAY_SLOT)
3780 return FALSE;
3781
3782 /* Check for conflicts between the branch and the instructions
3783 before the candidate delay slot. */
3784 if (nops_for_insn (0, history + 1, ip) > 0)
3785 return FALSE;
3786
3787 /* Check for conflicts between the swapped sequence and the
3788 target of the branch. */
3789 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
3790 return FALSE;
3791
3792 /* If the branch reads a register that the previous
3793 instruction sets, we can not swap. */
3794 gpr_read = gpr_read_mask (ip);
3795 prev_gpr_write = gpr_write_mask (&history[0]);
3796 if (gpr_read & prev_gpr_write)
3797 return FALSE;
3798
3799 /* If the branch writes a register that the previous
3800 instruction sets, we can not swap. */
3801 gpr_write = gpr_write_mask (ip);
3802 if (gpr_write & prev_gpr_write)
3803 return FALSE;
3804
3805 /* If the branch writes a register that the previous
3806 instruction reads, we can not swap. */
3807 prev_gpr_read = gpr_read_mask (&history[0]);
3808 if (gpr_write & prev_gpr_read)
3809 return FALSE;
3810
3811 /* If one instruction sets a condition code and the
3812 other one uses a condition code, we can not swap. */
3813 pinfo = ip->insn_mo->pinfo;
3814 if ((pinfo & INSN_READ_COND_CODE)
3815 && (prev_pinfo & INSN_WRITE_COND_CODE))
3816 return FALSE;
3817 if ((pinfo & INSN_WRITE_COND_CODE)
3818 && (prev_pinfo & INSN_READ_COND_CODE))
3819 return FALSE;
3820
3821 /* If the previous instruction uses the PC, we can not swap. */
3822 prev_pinfo2 = history[0].insn_mo->pinfo2;
3823 if (mips_opts.mips16 && (prev_pinfo & MIPS16_INSN_READ_PC))
3824 return FALSE;
3825 if (mips_opts.micromips && (prev_pinfo2 & INSN2_READ_PC))
3826 return FALSE;
3827
3828 /* If the previous instruction has an incorrect size for a fixed
3829 branch delay slot in microMIPS mode, we cannot swap. */
3830 pinfo2 = ip->insn_mo->pinfo2;
3831 if (mips_opts.micromips
3832 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
3833 && insn_length (history) != 2)
3834 return FALSE;
3835 if (mips_opts.micromips
3836 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
3837 && insn_length (history) != 4)
3838 return FALSE;
3839
3840 return TRUE;
3841 }
3842
3843 /* Decide how we should add IP to the instruction stream. */
3844
3845 static enum append_method
3846 get_append_method (struct mips_cl_insn *ip)
3847 {
3848 unsigned long pinfo;
3849
3850 /* The relaxed version of a macro sequence must be inherently
3851 hazard-free. */
3852 if (mips_relax.sequence == 2)
3853 return APPEND_ADD;
3854
3855 /* We must not dabble with instructions in a ".set norerorder" block. */
3856 if (mips_opts.noreorder)
3857 return APPEND_ADD;
3858
3859 /* Otherwise, it's our responsibility to fill branch delay slots. */
3860 if (delayed_branch_p (ip))
3861 {
3862 if (!branch_likely_p (ip) && can_swap_branch_p (ip))
3863 return APPEND_SWAP;
3864
3865 pinfo = ip->insn_mo->pinfo;
3866 if (mips_opts.mips16
3867 && ISA_SUPPORTS_MIPS16E
3868 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31)))
3869 return APPEND_ADD_COMPACT;
3870
3871 return APPEND_ADD_WITH_NOP;
3872 }
3873
3874 return APPEND_ADD;
3875 }
3876
3877 /* IP is a MIPS16 instruction whose opcode we have just changed.
3878 Point IP->insn_mo to the new opcode's definition. */
3879
3880 static void
3881 find_altered_mips16_opcode (struct mips_cl_insn *ip)
3882 {
3883 const struct mips_opcode *mo, *end;
3884
3885 end = &mips16_opcodes[bfd_mips16_num_opcodes];
3886 for (mo = ip->insn_mo; mo < end; mo++)
3887 if ((ip->insn_opcode & mo->mask) == mo->match)
3888 {
3889 ip->insn_mo = mo;
3890 return;
3891 }
3892 abort ();
3893 }
3894
3895 /* For microMIPS macros, we need to generate a local number label
3896 as the target of branches. */
3897 #define MICROMIPS_LABEL_CHAR '\037'
3898 static unsigned long micromips_target_label;
3899 static char micromips_target_name[32];
3900
3901 static char *
3902 micromips_label_name (void)
3903 {
3904 char *p = micromips_target_name;
3905 char symbol_name_temporary[24];
3906 unsigned long l;
3907 int i;
3908
3909 if (*p)
3910 return p;
3911
3912 i = 0;
3913 l = micromips_target_label;
3914 #ifdef LOCAL_LABEL_PREFIX
3915 *p++ = LOCAL_LABEL_PREFIX;
3916 #endif
3917 *p++ = 'L';
3918 *p++ = MICROMIPS_LABEL_CHAR;
3919 do
3920 {
3921 symbol_name_temporary[i++] = l % 10 + '0';
3922 l /= 10;
3923 }
3924 while (l != 0);
3925 while (i > 0)
3926 *p++ = symbol_name_temporary[--i];
3927 *p = '\0';
3928
3929 return micromips_target_name;
3930 }
3931
3932 static void
3933 micromips_label_expr (expressionS *label_expr)
3934 {
3935 label_expr->X_op = O_symbol;
3936 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
3937 label_expr->X_add_number = 0;
3938 }
3939
3940 static void
3941 micromips_label_inc (void)
3942 {
3943 micromips_target_label++;
3944 *micromips_target_name = '\0';
3945 }
3946
3947 static void
3948 micromips_add_label (void)
3949 {
3950 symbolS *s;
3951
3952 s = colon (micromips_label_name ());
3953 micromips_label_inc ();
3954 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
3955 if (IS_ELF)
3956 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
3957 #else
3958 (void) s;
3959 #endif
3960 }
3961
3962 /* If assembling microMIPS code, then return the microMIPS reloc
3963 corresponding to the requested one if any. Otherwise return
3964 the reloc unchanged. */
3965
3966 static bfd_reloc_code_real_type
3967 micromips_map_reloc (bfd_reloc_code_real_type reloc)
3968 {
3969 static const bfd_reloc_code_real_type relocs[][2] =
3970 {
3971 /* Keep sorted incrementally by the left-hand key. */
3972 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
3973 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
3974 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
3975 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
3976 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
3977 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
3978 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
3979 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
3980 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
3981 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
3982 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
3983 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
3984 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
3985 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
3986 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
3987 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
3988 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
3989 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
3990 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
3991 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
3992 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
3993 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
3994 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
3995 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
3996 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
3997 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
3998 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
3999 };
4000 bfd_reloc_code_real_type r;
4001 size_t i;
4002
4003 if (!mips_opts.micromips)
4004 return reloc;
4005 for (i = 0; i < ARRAY_SIZE (relocs); i++)
4006 {
4007 r = relocs[i][0];
4008 if (r > reloc)
4009 return reloc;
4010 if (r == reloc)
4011 return relocs[i][1];
4012 }
4013 return reloc;
4014 }
4015
4016 /* Output an instruction. IP is the instruction information.
4017 ADDRESS_EXPR is an operand of the instruction to be used with
4018 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
4019 a macro expansion. */
4020
4021 static void
4022 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
4023 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
4024 {
4025 unsigned long prev_pinfo2, pinfo;
4026 bfd_boolean relaxed_branch = FALSE;
4027 enum append_method method;
4028 bfd_boolean relax32;
4029 int branch_disp;
4030
4031 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
4032 fix_loongson2f (ip);
4033
4034 mips_mark_labels ();
4035
4036 file_ase_mips16 |= mips_opts.mips16;
4037 file_ase_micromips |= mips_opts.micromips;
4038
4039 prev_pinfo2 = history[0].insn_mo->pinfo2;
4040 pinfo = ip->insn_mo->pinfo;
4041
4042 if (mips_opts.micromips
4043 && !expansionp
4044 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
4045 && micromips_insn_length (ip->insn_mo) != 2)
4046 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
4047 && micromips_insn_length (ip->insn_mo) != 4)))
4048 as_warn (_("Wrong size instruction in a %u-bit branch delay slot"),
4049 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
4050
4051 if (address_expr == NULL)
4052 ip->complete_p = 1;
4053 else if (*reloc_type <= BFD_RELOC_UNUSED
4054 && address_expr->X_op == O_constant)
4055 {
4056 unsigned int tmp;
4057
4058 ip->complete_p = 1;
4059 switch (*reloc_type)
4060 {
4061 case BFD_RELOC_32:
4062 ip->insn_opcode |= address_expr->X_add_number;
4063 break;
4064
4065 case BFD_RELOC_MIPS_HIGHEST:
4066 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
4067 ip->insn_opcode |= tmp & 0xffff;
4068 break;
4069
4070 case BFD_RELOC_MIPS_HIGHER:
4071 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
4072 ip->insn_opcode |= tmp & 0xffff;
4073 break;
4074
4075 case BFD_RELOC_HI16_S:
4076 tmp = (address_expr->X_add_number + 0x8000) >> 16;
4077 ip->insn_opcode |= tmp & 0xffff;
4078 break;
4079
4080 case BFD_RELOC_HI16:
4081 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
4082 break;
4083
4084 case BFD_RELOC_UNUSED:
4085 case BFD_RELOC_LO16:
4086 case BFD_RELOC_MIPS_GOT_DISP:
4087 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
4088 break;
4089
4090 case BFD_RELOC_MIPS_JMP:
4091 {
4092 int shift;
4093
4094 shift = mips_opts.micromips ? 1 : 2;
4095 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4096 as_bad (_("jump to misaligned address (0x%lx)"),
4097 (unsigned long) address_expr->X_add_number);
4098 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4099 & 0x3ffffff);
4100 ip->complete_p = 0;
4101 }
4102 break;
4103
4104 case BFD_RELOC_MIPS16_JMP:
4105 if ((address_expr->X_add_number & 3) != 0)
4106 as_bad (_("jump to misaligned address (0x%lx)"),
4107 (unsigned long) address_expr->X_add_number);
4108 ip->insn_opcode |=
4109 (((address_expr->X_add_number & 0x7c0000) << 3)
4110 | ((address_expr->X_add_number & 0xf800000) >> 7)
4111 | ((address_expr->X_add_number & 0x3fffc) >> 2));
4112 ip->complete_p = 0;
4113 break;
4114
4115 case BFD_RELOC_16_PCREL_S2:
4116 {
4117 int shift;
4118
4119 shift = mips_opts.micromips ? 1 : 2;
4120 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4121 as_bad (_("branch to misaligned address (0x%lx)"),
4122 (unsigned long) address_expr->X_add_number);
4123 if (!mips_relax_branch)
4124 {
4125 if ((address_expr->X_add_number + (1 << (shift + 15)))
4126 & ~((1 << (shift + 16)) - 1))
4127 as_bad (_("branch address range overflow (0x%lx)"),
4128 (unsigned long) address_expr->X_add_number);
4129 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4130 & 0xffff);
4131 }
4132 ip->complete_p = 0;
4133 }
4134 break;
4135
4136 default:
4137 internalError ();
4138 }
4139 }
4140
4141 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
4142 {
4143 /* There are a lot of optimizations we could do that we don't.
4144 In particular, we do not, in general, reorder instructions.
4145 If you use gcc with optimization, it will reorder
4146 instructions and generally do much more optimization then we
4147 do here; repeating all that work in the assembler would only
4148 benefit hand written assembly code, and does not seem worth
4149 it. */
4150 int nops = (mips_optimize == 0
4151 ? nops_for_insn (0, history, NULL)
4152 : nops_for_insn_or_target (0, history, ip));
4153 if (nops > 0)
4154 {
4155 fragS *old_frag;
4156 unsigned long old_frag_offset;
4157 int i;
4158
4159 old_frag = frag_now;
4160 old_frag_offset = frag_now_fix ();
4161
4162 for (i = 0; i < nops; i++)
4163 add_fixed_insn (NOP_INSN);
4164 insert_into_history (0, nops, NOP_INSN);
4165
4166 if (listing)
4167 {
4168 listing_prev_line ();
4169 /* We may be at the start of a variant frag. In case we
4170 are, make sure there is enough space for the frag
4171 after the frags created by listing_prev_line. The
4172 argument to frag_grow here must be at least as large
4173 as the argument to all other calls to frag_grow in
4174 this file. We don't have to worry about being in the
4175 middle of a variant frag, because the variants insert
4176 all needed nop instructions themselves. */
4177 frag_grow (40);
4178 }
4179
4180 mips_move_text_labels ();
4181
4182 #ifndef NO_ECOFF_DEBUGGING
4183 if (ECOFF_DEBUGGING)
4184 ecoff_fix_loc (old_frag, old_frag_offset);
4185 #endif
4186 }
4187 }
4188 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
4189 {
4190 int nops;
4191
4192 /* Work out how many nops in prev_nop_frag are needed by IP,
4193 ignoring hazards generated by the first prev_nop_frag_since
4194 instructions. */
4195 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
4196 gas_assert (nops <= prev_nop_frag_holds);
4197
4198 /* Enforce NOPS as a minimum. */
4199 if (nops > prev_nop_frag_required)
4200 prev_nop_frag_required = nops;
4201
4202 if (prev_nop_frag_holds == prev_nop_frag_required)
4203 {
4204 /* Settle for the current number of nops. Update the history
4205 accordingly (for the benefit of any future .set reorder code). */
4206 prev_nop_frag = NULL;
4207 insert_into_history (prev_nop_frag_since,
4208 prev_nop_frag_holds, NOP_INSN);
4209 }
4210 else
4211 {
4212 /* Allow this instruction to replace one of the nops that was
4213 tentatively added to prev_nop_frag. */
4214 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
4215 prev_nop_frag_holds--;
4216 prev_nop_frag_since++;
4217 }
4218 }
4219
4220 method = get_append_method (ip);
4221 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
4222
4223 #ifdef OBJ_ELF
4224 /* The value passed to dwarf2_emit_insn is the distance between
4225 the beginning of the current instruction and the address that
4226 should be recorded in the debug tables. This is normally the
4227 current address.
4228
4229 For MIPS16/microMIPS debug info we want to use ISA-encoded
4230 addresses, so we use -1 for an address higher by one than the
4231 current one.
4232
4233 If the instruction produced is a branch that we will swap with
4234 the preceding instruction, then we add the displacement by which
4235 the branch will be moved backwards. This is more appropriate
4236 and for MIPS16/microMIPS code also prevents a debugger from
4237 placing a breakpoint in the middle of the branch (and corrupting
4238 code if software breakpoints are used). */
4239 dwarf2_emit_insn ((HAVE_CODE_COMPRESSION ? -1 : 0) + branch_disp);
4240 #endif
4241
4242 relax32 = (mips_relax_branch
4243 /* Don't try branch relaxation within .set nomacro, or within
4244 .set noat if we use $at for PIC computations. If it turns
4245 out that the branch was out-of-range, we'll get an error. */
4246 && !mips_opts.warn_about_macros
4247 && (mips_opts.at || mips_pic == NO_PIC)
4248 /* Don't relax BPOSGE32/64 as they have no complementing
4249 branches. */
4250 && !(ip->insn_mo->membership & (INSN_DSP64 | INSN_DSP)));
4251
4252 if (!HAVE_CODE_COMPRESSION
4253 && address_expr
4254 && relax32
4255 && *reloc_type == BFD_RELOC_16_PCREL_S2
4256 && delayed_branch_p (ip))
4257 {
4258 relaxed_branch = TRUE;
4259 add_relaxed_insn (ip, (relaxed_branch_length
4260 (NULL, NULL,
4261 uncond_branch_p (ip) ? -1
4262 : branch_likely_p (ip) ? 1
4263 : 0)), 4,
4264 RELAX_BRANCH_ENCODE
4265 (AT,
4266 uncond_branch_p (ip),
4267 branch_likely_p (ip),
4268 pinfo & INSN_WRITE_GPR_31,
4269 0),
4270 address_expr->X_add_symbol,
4271 address_expr->X_add_number);
4272 *reloc_type = BFD_RELOC_UNUSED;
4273 }
4274 else if (mips_opts.micromips
4275 && address_expr
4276 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
4277 || *reloc_type > BFD_RELOC_UNUSED)
4278 && (delayed_branch_p (ip) || compact_branch_p (ip))
4279 /* Don't try branch relaxation when users specify
4280 16-bit/32-bit instructions. */
4281 && !forced_insn_length)
4282 {
4283 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
4284 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
4285 int uncond = uncond_branch_p (ip) ? -1 : 0;
4286 int compact = compact_branch_p (ip);
4287 int al = pinfo & INSN_WRITE_GPR_31;
4288 int length32;
4289
4290 gas_assert (address_expr != NULL);
4291 gas_assert (!mips_relax.sequence);
4292
4293 relaxed_branch = TRUE;
4294 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
4295 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
4296 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
4297 relax32, 0, 0),
4298 address_expr->X_add_symbol,
4299 address_expr->X_add_number);
4300 *reloc_type = BFD_RELOC_UNUSED;
4301 }
4302 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
4303 {
4304 /* We need to set up a variant frag. */
4305 gas_assert (address_expr != NULL);
4306 add_relaxed_insn (ip, 4, 0,
4307 RELAX_MIPS16_ENCODE
4308 (*reloc_type - BFD_RELOC_UNUSED,
4309 forced_insn_length == 2, forced_insn_length == 4,
4310 delayed_branch_p (&history[0]),
4311 history[0].mips16_absolute_jump_p),
4312 make_expr_symbol (address_expr), 0);
4313 }
4314 else if (mips_opts.mips16 && insn_length (ip) == 2)
4315 {
4316 if (!delayed_branch_p (ip))
4317 /* Make sure there is enough room to swap this instruction with
4318 a following jump instruction. */
4319 frag_grow (6);
4320 add_fixed_insn (ip);
4321 }
4322 else
4323 {
4324 if (mips_opts.mips16
4325 && mips_opts.noreorder
4326 && delayed_branch_p (&history[0]))
4327 as_warn (_("extended instruction in delay slot"));
4328
4329 if (mips_relax.sequence)
4330 {
4331 /* If we've reached the end of this frag, turn it into a variant
4332 frag and record the information for the instructions we've
4333 written so far. */
4334 if (frag_room () < 4)
4335 relax_close_frag ();
4336 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4337 }
4338
4339 if (mips_relax.sequence != 2)
4340 {
4341 if (mips_macro_warning.first_insn_sizes[0] == 0)
4342 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
4343 mips_macro_warning.sizes[0] += insn_length (ip);
4344 mips_macro_warning.insns[0]++;
4345 }
4346 if (mips_relax.sequence != 1)
4347 {
4348 if (mips_macro_warning.first_insn_sizes[1] == 0)
4349 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
4350 mips_macro_warning.sizes[1] += insn_length (ip);
4351 mips_macro_warning.insns[1]++;
4352 }
4353
4354 if (mips_opts.mips16)
4355 {
4356 ip->fixed_p = 1;
4357 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
4358 }
4359 add_fixed_insn (ip);
4360 }
4361
4362 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
4363 {
4364 bfd_reloc_code_real_type final_type[3];
4365 reloc_howto_type *howto0;
4366 reloc_howto_type *howto;
4367 int i;
4368
4369 /* Perform any necessary conversion to microMIPS relocations
4370 and find out how many relocations there actually are. */
4371 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
4372 final_type[i] = micromips_map_reloc (reloc_type[i]);
4373
4374 /* In a compound relocation, it is the final (outermost)
4375 operator that determines the relocated field. */
4376 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
4377
4378 if (howto == NULL)
4379 {
4380 /* To reproduce this failure try assembling gas/testsuites/
4381 gas/mips/mips16-intermix.s with a mips-ecoff targeted
4382 assembler. */
4383 as_bad (_("Unsupported MIPS relocation number %d"),
4384 final_type[i - 1]);
4385 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
4386 }
4387
4388 if (i > 1)
4389 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
4390 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
4391 bfd_get_reloc_size (howto),
4392 address_expr,
4393 howto0 && howto0->pc_relative,
4394 final_type[0]);
4395
4396 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
4397 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
4398 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
4399
4400 /* These relocations can have an addend that won't fit in
4401 4 octets for 64bit assembly. */
4402 if (HAVE_64BIT_GPRS
4403 && ! howto->partial_inplace
4404 && (reloc_type[0] == BFD_RELOC_16
4405 || reloc_type[0] == BFD_RELOC_32
4406 || reloc_type[0] == BFD_RELOC_MIPS_JMP
4407 || reloc_type[0] == BFD_RELOC_GPREL16
4408 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
4409 || reloc_type[0] == BFD_RELOC_GPREL32
4410 || reloc_type[0] == BFD_RELOC_64
4411 || reloc_type[0] == BFD_RELOC_CTOR
4412 || reloc_type[0] == BFD_RELOC_MIPS_SUB
4413 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
4414 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
4415 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
4416 || reloc_type[0] == BFD_RELOC_MIPS_REL16
4417 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
4418 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
4419 || hi16_reloc_p (reloc_type[0])
4420 || lo16_reloc_p (reloc_type[0])))
4421 ip->fixp[0]->fx_no_overflow = 1;
4422
4423 if (mips_relax.sequence)
4424 {
4425 if (mips_relax.first_fixup == 0)
4426 mips_relax.first_fixup = ip->fixp[0];
4427 }
4428 else if (reloc_needs_lo_p (*reloc_type))
4429 {
4430 struct mips_hi_fixup *hi_fixup;
4431
4432 /* Reuse the last entry if it already has a matching %lo. */
4433 hi_fixup = mips_hi_fixup_list;
4434 if (hi_fixup == 0
4435 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4436 {
4437 hi_fixup = ((struct mips_hi_fixup *)
4438 xmalloc (sizeof (struct mips_hi_fixup)));
4439 hi_fixup->next = mips_hi_fixup_list;
4440 mips_hi_fixup_list = hi_fixup;
4441 }
4442 hi_fixup->fixp = ip->fixp[0];
4443 hi_fixup->seg = now_seg;
4444 }
4445
4446 /* Add fixups for the second and third relocations, if given.
4447 Note that the ABI allows the second relocation to be
4448 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
4449 moment we only use RSS_UNDEF, but we could add support
4450 for the others if it ever becomes necessary. */
4451 for (i = 1; i < 3; i++)
4452 if (reloc_type[i] != BFD_RELOC_UNUSED)
4453 {
4454 ip->fixp[i] = fix_new (ip->frag, ip->where,
4455 ip->fixp[0]->fx_size, NULL, 0,
4456 FALSE, final_type[i]);
4457
4458 /* Use fx_tcbit to mark compound relocs. */
4459 ip->fixp[0]->fx_tcbit = 1;
4460 ip->fixp[i]->fx_tcbit = 1;
4461 }
4462 }
4463 install_insn (ip);
4464
4465 /* Update the register mask information. */
4466 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
4467 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
4468
4469 switch (method)
4470 {
4471 case APPEND_ADD:
4472 insert_into_history (0, 1, ip);
4473 break;
4474
4475 case APPEND_ADD_WITH_NOP:
4476 {
4477 struct mips_cl_insn *nop;
4478
4479 insert_into_history (0, 1, ip);
4480 nop = get_delay_slot_nop (ip);
4481 add_fixed_insn (nop);
4482 insert_into_history (0, 1, nop);
4483 if (mips_relax.sequence)
4484 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
4485 }
4486 break;
4487
4488 case APPEND_ADD_COMPACT:
4489 /* Convert MIPS16 jr/jalr into a "compact" jump. */
4490 gas_assert (mips_opts.mips16);
4491 ip->insn_opcode |= 0x0080;
4492 find_altered_mips16_opcode (ip);
4493 install_insn (ip);
4494 insert_into_history (0, 1, ip);
4495 break;
4496
4497 case APPEND_SWAP:
4498 {
4499 struct mips_cl_insn delay = history[0];
4500 if (mips_opts.mips16)
4501 {
4502 know (delay.frag == ip->frag);
4503 move_insn (ip, delay.frag, delay.where);
4504 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
4505 }
4506 else if (relaxed_branch || delay.frag != ip->frag)
4507 {
4508 /* Add the delay slot instruction to the end of the
4509 current frag and shrink the fixed part of the
4510 original frag. If the branch occupies the tail of
4511 the latter, move it backwards to cover the gap. */
4512 delay.frag->fr_fix -= branch_disp;
4513 if (delay.frag == ip->frag)
4514 move_insn (ip, ip->frag, ip->where - branch_disp);
4515 add_fixed_insn (&delay);
4516 }
4517 else
4518 {
4519 move_insn (&delay, ip->frag,
4520 ip->where - branch_disp + insn_length (ip));
4521 move_insn (ip, history[0].frag, history[0].where);
4522 }
4523 history[0] = *ip;
4524 delay.fixed_p = 1;
4525 insert_into_history (0, 1, &delay);
4526 }
4527 break;
4528 }
4529
4530 /* If we have just completed an unconditional branch, clear the history. */
4531 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
4532 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
4533 mips_no_prev_insn ();
4534
4535 /* We need to emit a label at the end of branch-likely macros. */
4536 if (emit_branch_likely_macro)
4537 {
4538 emit_branch_likely_macro = FALSE;
4539 micromips_add_label ();
4540 }
4541
4542 /* We just output an insn, so the next one doesn't have a label. */
4543 mips_clear_insn_labels ();
4544 }
4545
4546 /* Forget that there was any previous instruction or label. */
4547
4548 static void
4549 mips_no_prev_insn (void)
4550 {
4551 prev_nop_frag = NULL;
4552 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
4553 mips_clear_insn_labels ();
4554 }
4555
4556 /* This function must be called before we emit something other than
4557 instructions. It is like mips_no_prev_insn except that it inserts
4558 any NOPS that might be needed by previous instructions. */
4559
4560 void
4561 mips_emit_delays (void)
4562 {
4563 if (! mips_opts.noreorder)
4564 {
4565 int nops = nops_for_insn (0, history, NULL);
4566 if (nops > 0)
4567 {
4568 while (nops-- > 0)
4569 add_fixed_insn (NOP_INSN);
4570 mips_move_text_labels ();
4571 }
4572 }
4573 mips_no_prev_insn ();
4574 }
4575
4576 /* Start a (possibly nested) noreorder block. */
4577
4578 static void
4579 start_noreorder (void)
4580 {
4581 if (mips_opts.noreorder == 0)
4582 {
4583 unsigned int i;
4584 int nops;
4585
4586 /* None of the instructions before the .set noreorder can be moved. */
4587 for (i = 0; i < ARRAY_SIZE (history); i++)
4588 history[i].fixed_p = 1;
4589
4590 /* Insert any nops that might be needed between the .set noreorder
4591 block and the previous instructions. We will later remove any
4592 nops that turn out not to be needed. */
4593 nops = nops_for_insn (0, history, NULL);
4594 if (nops > 0)
4595 {
4596 if (mips_optimize != 0)
4597 {
4598 /* Record the frag which holds the nop instructions, so
4599 that we can remove them if we don't need them. */
4600 frag_grow (nops * NOP_INSN_SIZE);
4601 prev_nop_frag = frag_now;
4602 prev_nop_frag_holds = nops;
4603 prev_nop_frag_required = 0;
4604 prev_nop_frag_since = 0;
4605 }
4606
4607 for (; nops > 0; --nops)
4608 add_fixed_insn (NOP_INSN);
4609
4610 /* Move on to a new frag, so that it is safe to simply
4611 decrease the size of prev_nop_frag. */
4612 frag_wane (frag_now);
4613 frag_new (0);
4614 mips_move_text_labels ();
4615 }
4616 mips_mark_labels ();
4617 mips_clear_insn_labels ();
4618 }
4619 mips_opts.noreorder++;
4620 mips_any_noreorder = 1;
4621 }
4622
4623 /* End a nested noreorder block. */
4624
4625 static void
4626 end_noreorder (void)
4627 {
4628 mips_opts.noreorder--;
4629 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
4630 {
4631 /* Commit to inserting prev_nop_frag_required nops and go back to
4632 handling nop insertion the .set reorder way. */
4633 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
4634 * NOP_INSN_SIZE);
4635 insert_into_history (prev_nop_frag_since,
4636 prev_nop_frag_required, NOP_INSN);
4637 prev_nop_frag = NULL;
4638 }
4639 }
4640
4641 /* Set up global variables for the start of a new macro. */
4642
4643 static void
4644 macro_start (void)
4645 {
4646 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
4647 memset (&mips_macro_warning.first_insn_sizes, 0,
4648 sizeof (mips_macro_warning.first_insn_sizes));
4649 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
4650 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
4651 && delayed_branch_p (&history[0]));
4652 switch (history[0].insn_mo->pinfo2
4653 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
4654 {
4655 case INSN2_BRANCH_DELAY_32BIT:
4656 mips_macro_warning.delay_slot_length = 4;
4657 break;
4658 case INSN2_BRANCH_DELAY_16BIT:
4659 mips_macro_warning.delay_slot_length = 2;
4660 break;
4661 default:
4662 mips_macro_warning.delay_slot_length = 0;
4663 break;
4664 }
4665 mips_macro_warning.first_frag = NULL;
4666 }
4667
4668 /* Given that a macro is longer than one instruction or of the wrong size,
4669 return the appropriate warning for it. Return null if no warning is
4670 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
4671 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
4672 and RELAX_NOMACRO. */
4673
4674 static const char *
4675 macro_warning (relax_substateT subtype)
4676 {
4677 if (subtype & RELAX_DELAY_SLOT)
4678 return _("Macro instruction expanded into multiple instructions"
4679 " in a branch delay slot");
4680 else if (subtype & RELAX_NOMACRO)
4681 return _("Macro instruction expanded into multiple instructions");
4682 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
4683 | RELAX_DELAY_SLOT_SIZE_SECOND))
4684 return ((subtype & RELAX_DELAY_SLOT_16BIT)
4685 ? _("Macro instruction expanded into a wrong size instruction"
4686 " in a 16-bit branch delay slot")
4687 : _("Macro instruction expanded into a wrong size instruction"
4688 " in a 32-bit branch delay slot"));
4689 else
4690 return 0;
4691 }
4692
4693 /* Finish up a macro. Emit warnings as appropriate. */
4694
4695 static void
4696 macro_end (void)
4697 {
4698 /* Relaxation warning flags. */
4699 relax_substateT subtype = 0;
4700
4701 /* Check delay slot size requirements. */
4702 if (mips_macro_warning.delay_slot_length == 2)
4703 subtype |= RELAX_DELAY_SLOT_16BIT;
4704 if (mips_macro_warning.delay_slot_length != 0)
4705 {
4706 if (mips_macro_warning.delay_slot_length
4707 != mips_macro_warning.first_insn_sizes[0])
4708 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
4709 if (mips_macro_warning.delay_slot_length
4710 != mips_macro_warning.first_insn_sizes[1])
4711 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
4712 }
4713
4714 /* Check instruction count requirements. */
4715 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
4716 {
4717 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
4718 subtype |= RELAX_SECOND_LONGER;
4719 if (mips_opts.warn_about_macros)
4720 subtype |= RELAX_NOMACRO;
4721 if (mips_macro_warning.delay_slot_p)
4722 subtype |= RELAX_DELAY_SLOT;
4723 }
4724
4725 /* If both alternatives fail to fill a delay slot correctly,
4726 emit the warning now. */
4727 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
4728 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
4729 {
4730 relax_substateT s;
4731 const char *msg;
4732
4733 s = subtype & (RELAX_DELAY_SLOT_16BIT
4734 | RELAX_DELAY_SLOT_SIZE_FIRST
4735 | RELAX_DELAY_SLOT_SIZE_SECOND);
4736 msg = macro_warning (s);
4737 if (msg != NULL)
4738 as_warn ("%s", msg);
4739 subtype &= ~s;
4740 }
4741
4742 /* If both implementations are longer than 1 instruction, then emit the
4743 warning now. */
4744 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
4745 {
4746 relax_substateT s;
4747 const char *msg;
4748
4749 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
4750 msg = macro_warning (s);
4751 if (msg != NULL)
4752 as_warn ("%s", msg);
4753 subtype &= ~s;
4754 }
4755
4756 /* If any flags still set, then one implementation might need a warning
4757 and the other either will need one of a different kind or none at all.
4758 Pass any remaining flags over to relaxation. */
4759 if (mips_macro_warning.first_frag != NULL)
4760 mips_macro_warning.first_frag->fr_subtype |= subtype;
4761 }
4762
4763 /* Instruction operand formats used in macros that vary between
4764 standard MIPS and microMIPS code. */
4765
4766 static const char * const brk_fmt[2] = { "c", "mF" };
4767 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
4768 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
4769 static const char * const lui_fmt[2] = { "t,u", "s,u" };
4770 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
4771 static const char * const mfhl_fmt[2] = { "d", "mj" };
4772 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
4773 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
4774
4775 #define BRK_FMT (brk_fmt[mips_opts.micromips])
4776 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
4777 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
4778 #define LUI_FMT (lui_fmt[mips_opts.micromips])
4779 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
4780 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips])
4781 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
4782 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
4783
4784 /* Read a macro's relocation codes from *ARGS and store them in *R.
4785 The first argument in *ARGS will be either the code for a single
4786 relocation or -1 followed by the three codes that make up a
4787 composite relocation. */
4788
4789 static void
4790 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
4791 {
4792 int i, next;
4793
4794 next = va_arg (*args, int);
4795 if (next >= 0)
4796 r[0] = (bfd_reloc_code_real_type) next;
4797 else
4798 for (i = 0; i < 3; i++)
4799 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
4800 }
4801
4802 /* Build an instruction created by a macro expansion. This is passed
4803 a pointer to the count of instructions created so far, an
4804 expression, the name of the instruction to build, an operand format
4805 string, and corresponding arguments. */
4806
4807 static void
4808 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
4809 {
4810 const struct mips_opcode *mo = NULL;
4811 bfd_reloc_code_real_type r[3];
4812 const struct mips_opcode *amo;
4813 struct hash_control *hash;
4814 struct mips_cl_insn insn;
4815 va_list args;
4816
4817 va_start (args, fmt);
4818
4819 if (mips_opts.mips16)
4820 {
4821 mips16_macro_build (ep, name, fmt, &args);
4822 va_end (args);
4823 return;
4824 }
4825
4826 r[0] = BFD_RELOC_UNUSED;
4827 r[1] = BFD_RELOC_UNUSED;
4828 r[2] = BFD_RELOC_UNUSED;
4829 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
4830 amo = (struct mips_opcode *) hash_find (hash, name);
4831 gas_assert (amo);
4832 gas_assert (strcmp (name, amo->name) == 0);
4833
4834 do
4835 {
4836 /* Search until we get a match for NAME. It is assumed here that
4837 macros will never generate MDMX, MIPS-3D, or MT instructions.
4838 We try to match an instruction that fulfils the branch delay
4839 slot instruction length requirement (if any) of the previous
4840 instruction. While doing this we record the first instruction
4841 seen that matches all the other conditions and use it anyway
4842 if the requirement cannot be met; we will issue an appropriate
4843 warning later on. */
4844 if (strcmp (fmt, amo->args) == 0
4845 && amo->pinfo != INSN_MACRO
4846 && is_opcode_valid (amo)
4847 && is_size_valid (amo))
4848 {
4849 if (is_delay_slot_valid (amo))
4850 {
4851 mo = amo;
4852 break;
4853 }
4854 else if (!mo)
4855 mo = amo;
4856 }
4857
4858 ++amo;
4859 gas_assert (amo->name);
4860 }
4861 while (strcmp (name, amo->name) == 0);
4862
4863 gas_assert (mo);
4864 create_insn (&insn, mo);
4865 for (;;)
4866 {
4867 switch (*fmt++)
4868 {
4869 case '\0':
4870 break;
4871
4872 case ',':
4873 case '(':
4874 case ')':
4875 continue;
4876
4877 case '+':
4878 switch (*fmt++)
4879 {
4880 case 'A':
4881 case 'E':
4882 INSERT_OPERAND (mips_opts.micromips,
4883 EXTLSB, insn, va_arg (args, int));
4884 continue;
4885
4886 case 'B':
4887 case 'F':
4888 /* Note that in the macro case, these arguments are already
4889 in MSB form. (When handling the instruction in the
4890 non-macro case, these arguments are sizes from which
4891 MSB values must be calculated.) */
4892 INSERT_OPERAND (mips_opts.micromips,
4893 INSMSB, insn, va_arg (args, int));
4894 continue;
4895
4896 case 'C':
4897 case 'G':
4898 case 'H':
4899 /* Note that in the macro case, these arguments are already
4900 in MSBD form. (When handling the instruction in the
4901 non-macro case, these arguments are sizes from which
4902 MSBD values must be calculated.) */
4903 INSERT_OPERAND (mips_opts.micromips,
4904 EXTMSBD, insn, va_arg (args, int));
4905 continue;
4906
4907 case 'Q':
4908 gas_assert (!mips_opts.micromips);
4909 INSERT_OPERAND (0, SEQI, insn, va_arg (args, int));
4910 continue;
4911
4912 default:
4913 internalError ();
4914 }
4915 continue;
4916
4917 case '2':
4918 INSERT_OPERAND (mips_opts.micromips, BP, insn, va_arg (args, int));
4919 continue;
4920
4921 case 'n':
4922 gas_assert (mips_opts.micromips);
4923 case 't':
4924 case 'w':
4925 case 'E':
4926 INSERT_OPERAND (mips_opts.micromips, RT, insn, va_arg (args, int));
4927 continue;
4928
4929 case 'c':
4930 gas_assert (!mips_opts.micromips);
4931 INSERT_OPERAND (0, CODE, insn, va_arg (args, int));
4932 continue;
4933
4934 case 'W':
4935 gas_assert (!mips_opts.micromips);
4936 case 'T':
4937 INSERT_OPERAND (mips_opts.micromips, FT, insn, va_arg (args, int));
4938 continue;
4939
4940 case 'G':
4941 if (mips_opts.micromips)
4942 INSERT_OPERAND (1, RS, insn, va_arg (args, int));
4943 else
4944 INSERT_OPERAND (0, RD, insn, va_arg (args, int));
4945 continue;
4946
4947 case 'K':
4948 gas_assert (!mips_opts.micromips);
4949 case 'd':
4950 INSERT_OPERAND (mips_opts.micromips, RD, insn, va_arg (args, int));
4951 continue;
4952
4953 case 'U':
4954 gas_assert (!mips_opts.micromips);
4955 {
4956 int tmp = va_arg (args, int);
4957
4958 INSERT_OPERAND (0, RT, insn, tmp);
4959 INSERT_OPERAND (0, RD, insn, tmp);
4960 }
4961 continue;
4962
4963 case 'V':
4964 case 'S':
4965 gas_assert (!mips_opts.micromips);
4966 INSERT_OPERAND (0, FS, insn, va_arg (args, int));
4967 continue;
4968
4969 case 'z':
4970 continue;
4971
4972 case '<':
4973 INSERT_OPERAND (mips_opts.micromips,
4974 SHAMT, insn, va_arg (args, int));
4975 continue;
4976
4977 case 'D':
4978 gas_assert (!mips_opts.micromips);
4979 INSERT_OPERAND (0, FD, insn, va_arg (args, int));
4980 continue;
4981
4982 case 'B':
4983 gas_assert (!mips_opts.micromips);
4984 INSERT_OPERAND (0, CODE20, insn, va_arg (args, int));
4985 continue;
4986
4987 case 'J':
4988 gas_assert (!mips_opts.micromips);
4989 INSERT_OPERAND (0, CODE19, insn, va_arg (args, int));
4990 continue;
4991
4992 case 'q':
4993 gas_assert (!mips_opts.micromips);
4994 INSERT_OPERAND (0, CODE2, insn, va_arg (args, int));
4995 continue;
4996
4997 case 'b':
4998 case 's':
4999 case 'r':
5000 case 'v':
5001 INSERT_OPERAND (mips_opts.micromips, RS, insn, va_arg (args, int));
5002 continue;
5003
5004 case 'i':
5005 case 'j':
5006 macro_read_relocs (&args, r);
5007 gas_assert (*r == BFD_RELOC_GPREL16
5008 || *r == BFD_RELOC_MIPS_HIGHER
5009 || *r == BFD_RELOC_HI16_S
5010 || *r == BFD_RELOC_LO16
5011 || *r == BFD_RELOC_MIPS_GOT_OFST);
5012 continue;
5013
5014 case 'o':
5015 macro_read_relocs (&args, r);
5016 continue;
5017
5018 case 'u':
5019 macro_read_relocs (&args, r);
5020 gas_assert (ep != NULL
5021 && (ep->X_op == O_constant
5022 || (ep->X_op == O_symbol
5023 && (*r == BFD_RELOC_MIPS_HIGHEST
5024 || *r == BFD_RELOC_HI16_S
5025 || *r == BFD_RELOC_HI16
5026 || *r == BFD_RELOC_GPREL16
5027 || *r == BFD_RELOC_MIPS_GOT_HI16
5028 || *r == BFD_RELOC_MIPS_CALL_HI16))));
5029 continue;
5030
5031 case 'p':
5032 gas_assert (ep != NULL);
5033
5034 /*
5035 * This allows macro() to pass an immediate expression for
5036 * creating short branches without creating a symbol.
5037 *
5038 * We don't allow branch relaxation for these branches, as
5039 * they should only appear in ".set nomacro" anyway.
5040 */
5041 if (ep->X_op == O_constant)
5042 {
5043 /* For microMIPS we always use relocations for branches.
5044 So we should not resolve immediate values. */
5045 gas_assert (!mips_opts.micromips);
5046
5047 if ((ep->X_add_number & 3) != 0)
5048 as_bad (_("branch to misaligned address (0x%lx)"),
5049 (unsigned long) ep->X_add_number);
5050 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
5051 as_bad (_("branch address range overflow (0x%lx)"),
5052 (unsigned long) ep->X_add_number);
5053 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
5054 ep = NULL;
5055 }
5056 else
5057 *r = BFD_RELOC_16_PCREL_S2;
5058 continue;
5059
5060 case 'a':
5061 gas_assert (ep != NULL);
5062 *r = BFD_RELOC_MIPS_JMP;
5063 continue;
5064
5065 case 'C':
5066 gas_assert (!mips_opts.micromips);
5067 INSERT_OPERAND (0, COPZ, insn, va_arg (args, unsigned long));
5068 continue;
5069
5070 case 'k':
5071 INSERT_OPERAND (mips_opts.micromips,
5072 CACHE, insn, va_arg (args, unsigned long));
5073 continue;
5074
5075 case '|':
5076 gas_assert (mips_opts.micromips);
5077 INSERT_OPERAND (1, TRAP, insn, va_arg (args, int));
5078 continue;
5079
5080 case '.':
5081 gas_assert (mips_opts.micromips);
5082 INSERT_OPERAND (1, OFFSET10, insn, va_arg (args, int));
5083 continue;
5084
5085 case '\\':
5086 INSERT_OPERAND (mips_opts.micromips,
5087 3BITPOS, insn, va_arg (args, unsigned int));
5088 continue;
5089
5090 case '~':
5091 INSERT_OPERAND (mips_opts.micromips,
5092 OFFSET12, insn, va_arg (args, unsigned long));
5093 continue;
5094
5095 case 'N':
5096 gas_assert (mips_opts.micromips);
5097 INSERT_OPERAND (1, BCC, insn, va_arg (args, int));
5098 continue;
5099
5100 case 'm': /* Opcode extension character. */
5101 gas_assert (mips_opts.micromips);
5102 switch (*fmt++)
5103 {
5104 case 'j':
5105 INSERT_OPERAND (1, MJ, insn, va_arg (args, int));
5106 break;
5107
5108 case 'p':
5109 INSERT_OPERAND (1, MP, insn, va_arg (args, int));
5110 break;
5111
5112 case 'F':
5113 INSERT_OPERAND (1, IMMF, insn, va_arg (args, int));
5114 break;
5115
5116 default:
5117 internalError ();
5118 }
5119 continue;
5120
5121 default:
5122 internalError ();
5123 }
5124 break;
5125 }
5126 va_end (args);
5127 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5128
5129 append_insn (&insn, ep, r, TRUE);
5130 }
5131
5132 static void
5133 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
5134 va_list *args)
5135 {
5136 struct mips_opcode *mo;
5137 struct mips_cl_insn insn;
5138 bfd_reloc_code_real_type r[3]
5139 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
5140
5141 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
5142 gas_assert (mo);
5143 gas_assert (strcmp (name, mo->name) == 0);
5144
5145 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
5146 {
5147 ++mo;
5148 gas_assert (mo->name);
5149 gas_assert (strcmp (name, mo->name) == 0);
5150 }
5151
5152 create_insn (&insn, mo);
5153 for (;;)
5154 {
5155 int c;
5156
5157 c = *fmt++;
5158 switch (c)
5159 {
5160 case '\0':
5161 break;
5162
5163 case ',':
5164 case '(':
5165 case ')':
5166 continue;
5167
5168 case 'y':
5169 case 'w':
5170 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
5171 continue;
5172
5173 case 'x':
5174 case 'v':
5175 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
5176 continue;
5177
5178 case 'z':
5179 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
5180 continue;
5181
5182 case 'Z':
5183 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
5184 continue;
5185
5186 case '0':
5187 case 'S':
5188 case 'P':
5189 case 'R':
5190 continue;
5191
5192 case 'X':
5193 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
5194 continue;
5195
5196 case 'Y':
5197 {
5198 int regno;
5199
5200 regno = va_arg (*args, int);
5201 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
5202 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
5203 }
5204 continue;
5205
5206 case '<':
5207 case '>':
5208 case '4':
5209 case '5':
5210 case 'H':
5211 case 'W':
5212 case 'D':
5213 case 'j':
5214 case '8':
5215 case 'V':
5216 case 'C':
5217 case 'U':
5218 case 'k':
5219 case 'K':
5220 case 'p':
5221 case 'q':
5222 {
5223 gas_assert (ep != NULL);
5224
5225 if (ep->X_op != O_constant)
5226 *r = (int) BFD_RELOC_UNUSED + c;
5227 else
5228 {
5229 mips16_immed (NULL, 0, c, *r, ep->X_add_number,
5230 0, &insn.insn_opcode);
5231 ep = NULL;
5232 *r = BFD_RELOC_UNUSED;
5233 }
5234 }
5235 continue;
5236
5237 case '6':
5238 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
5239 continue;
5240 }
5241
5242 break;
5243 }
5244
5245 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5246
5247 append_insn (&insn, ep, r, TRUE);
5248 }
5249
5250 /*
5251 * Sign-extend 32-bit mode constants that have bit 31 set and all
5252 * higher bits unset.
5253 */
5254 static void
5255 normalize_constant_expr (expressionS *ex)
5256 {
5257 if (ex->X_op == O_constant
5258 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5259 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5260 - 0x80000000);
5261 }
5262
5263 /*
5264 * Sign-extend 32-bit mode address offsets that have bit 31 set and
5265 * all higher bits unset.
5266 */
5267 static void
5268 normalize_address_expr (expressionS *ex)
5269 {
5270 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
5271 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
5272 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5273 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5274 - 0x80000000);
5275 }
5276
5277 /*
5278 * Generate a "jalr" instruction with a relocation hint to the called
5279 * function. This occurs in NewABI PIC code.
5280 */
5281 static void
5282 macro_build_jalr (expressionS *ep, int cprestore)
5283 {
5284 static const bfd_reloc_code_real_type jalr_relocs[2]
5285 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
5286 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
5287 const char *jalr;
5288 char *f = NULL;
5289
5290 if (MIPS_JALR_HINT_P (ep))
5291 {
5292 frag_grow (8);
5293 f = frag_more (0);
5294 }
5295 if (mips_opts.micromips)
5296 {
5297 jalr = mips_opts.noreorder && !cprestore ? "jalr" : "jalrs";
5298 if (MIPS_JALR_HINT_P (ep))
5299 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
5300 else
5301 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
5302 }
5303 else
5304 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
5305 if (MIPS_JALR_HINT_P (ep))
5306 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
5307 }
5308
5309 /*
5310 * Generate a "lui" instruction.
5311 */
5312 static void
5313 macro_build_lui (expressionS *ep, int regnum)
5314 {
5315 gas_assert (! mips_opts.mips16);
5316
5317 if (ep->X_op != O_constant)
5318 {
5319 gas_assert (ep->X_op == O_symbol);
5320 /* _gp_disp is a special case, used from s_cpload.
5321 __gnu_local_gp is used if mips_no_shared. */
5322 gas_assert (mips_pic == NO_PIC
5323 || (! HAVE_NEWABI
5324 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
5325 || (! mips_in_shared
5326 && strcmp (S_GET_NAME (ep->X_add_symbol),
5327 "__gnu_local_gp") == 0));
5328 }
5329
5330 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
5331 }
5332
5333 /* Generate a sequence of instructions to do a load or store from a constant
5334 offset off of a base register (breg) into/from a target register (treg),
5335 using AT if necessary. */
5336 static void
5337 macro_build_ldst_constoffset (expressionS *ep, const char *op,
5338 int treg, int breg, int dbl)
5339 {
5340 gas_assert (ep->X_op == O_constant);
5341
5342 /* Sign-extending 32-bit constants makes their handling easier. */
5343 if (!dbl)
5344 normalize_constant_expr (ep);
5345
5346 /* Right now, this routine can only handle signed 32-bit constants. */
5347 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
5348 as_warn (_("operand overflow"));
5349
5350 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
5351 {
5352 /* Signed 16-bit offset will fit in the op. Easy! */
5353 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
5354 }
5355 else
5356 {
5357 /* 32-bit offset, need multiple instructions and AT, like:
5358 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
5359 addu $tempreg,$tempreg,$breg
5360 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
5361 to handle the complete offset. */
5362 macro_build_lui (ep, AT);
5363 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
5364 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
5365
5366 if (!mips_opts.at)
5367 as_bad (_("Macro used $at after \".set noat\""));
5368 }
5369 }
5370
5371 /* set_at()
5372 * Generates code to set the $at register to true (one)
5373 * if reg is less than the immediate expression.
5374 */
5375 static void
5376 set_at (int reg, int unsignedp)
5377 {
5378 if (imm_expr.X_op == O_constant
5379 && imm_expr.X_add_number >= -0x8000
5380 && imm_expr.X_add_number < 0x8000)
5381 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
5382 AT, reg, BFD_RELOC_LO16);
5383 else
5384 {
5385 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
5386 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
5387 }
5388 }
5389
5390 /* Warn if an expression is not a constant. */
5391
5392 static void
5393 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
5394 {
5395 if (ex->X_op == O_big)
5396 as_bad (_("unsupported large constant"));
5397 else if (ex->X_op != O_constant)
5398 as_bad (_("Instruction %s requires absolute expression"),
5399 ip->insn_mo->name);
5400
5401 if (HAVE_32BIT_GPRS)
5402 normalize_constant_expr (ex);
5403 }
5404
5405 /* Count the leading zeroes by performing a binary chop. This is a
5406 bulky bit of source, but performance is a LOT better for the
5407 majority of values than a simple loop to count the bits:
5408 for (lcnt = 0; (lcnt < 32); lcnt++)
5409 if ((v) & (1 << (31 - lcnt)))
5410 break;
5411 However it is not code size friendly, and the gain will drop a bit
5412 on certain cached systems.
5413 */
5414 #define COUNT_TOP_ZEROES(v) \
5415 (((v) & ~0xffff) == 0 \
5416 ? ((v) & ~0xff) == 0 \
5417 ? ((v) & ~0xf) == 0 \
5418 ? ((v) & ~0x3) == 0 \
5419 ? ((v) & ~0x1) == 0 \
5420 ? !(v) \
5421 ? 32 \
5422 : 31 \
5423 : 30 \
5424 : ((v) & ~0x7) == 0 \
5425 ? 29 \
5426 : 28 \
5427 : ((v) & ~0x3f) == 0 \
5428 ? ((v) & ~0x1f) == 0 \
5429 ? 27 \
5430 : 26 \
5431 : ((v) & ~0x7f) == 0 \
5432 ? 25 \
5433 : 24 \
5434 : ((v) & ~0xfff) == 0 \
5435 ? ((v) & ~0x3ff) == 0 \
5436 ? ((v) & ~0x1ff) == 0 \
5437 ? 23 \
5438 : 22 \
5439 : ((v) & ~0x7ff) == 0 \
5440 ? 21 \
5441 : 20 \
5442 : ((v) & ~0x3fff) == 0 \
5443 ? ((v) & ~0x1fff) == 0 \
5444 ? 19 \
5445 : 18 \
5446 : ((v) & ~0x7fff) == 0 \
5447 ? 17 \
5448 : 16 \
5449 : ((v) & ~0xffffff) == 0 \
5450 ? ((v) & ~0xfffff) == 0 \
5451 ? ((v) & ~0x3ffff) == 0 \
5452 ? ((v) & ~0x1ffff) == 0 \
5453 ? 15 \
5454 : 14 \
5455 : ((v) & ~0x7ffff) == 0 \
5456 ? 13 \
5457 : 12 \
5458 : ((v) & ~0x3fffff) == 0 \
5459 ? ((v) & ~0x1fffff) == 0 \
5460 ? 11 \
5461 : 10 \
5462 : ((v) & ~0x7fffff) == 0 \
5463 ? 9 \
5464 : 8 \
5465 : ((v) & ~0xfffffff) == 0 \
5466 ? ((v) & ~0x3ffffff) == 0 \
5467 ? ((v) & ~0x1ffffff) == 0 \
5468 ? 7 \
5469 : 6 \
5470 : ((v) & ~0x7ffffff) == 0 \
5471 ? 5 \
5472 : 4 \
5473 : ((v) & ~0x3fffffff) == 0 \
5474 ? ((v) & ~0x1fffffff) == 0 \
5475 ? 3 \
5476 : 2 \
5477 : ((v) & ~0x7fffffff) == 0 \
5478 ? 1 \
5479 : 0)
5480
5481 /* load_register()
5482 * This routine generates the least number of instructions necessary to load
5483 * an absolute expression value into a register.
5484 */
5485 static void
5486 load_register (int reg, expressionS *ep, int dbl)
5487 {
5488 int freg;
5489 expressionS hi32, lo32;
5490
5491 if (ep->X_op != O_big)
5492 {
5493 gas_assert (ep->X_op == O_constant);
5494
5495 /* Sign-extending 32-bit constants makes their handling easier. */
5496 if (!dbl)
5497 normalize_constant_expr (ep);
5498
5499 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
5500 {
5501 /* We can handle 16 bit signed values with an addiu to
5502 $zero. No need to ever use daddiu here, since $zero and
5503 the result are always correct in 32 bit mode. */
5504 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5505 return;
5506 }
5507 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
5508 {
5509 /* We can handle 16 bit unsigned values with an ori to
5510 $zero. */
5511 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5512 return;
5513 }
5514 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
5515 {
5516 /* 32 bit values require an lui. */
5517 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5518 if ((ep->X_add_number & 0xffff) != 0)
5519 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5520 return;
5521 }
5522 }
5523
5524 /* The value is larger than 32 bits. */
5525
5526 if (!dbl || HAVE_32BIT_GPRS)
5527 {
5528 char value[32];
5529
5530 sprintf_vma (value, ep->X_add_number);
5531 as_bad (_("Number (0x%s) larger than 32 bits"), value);
5532 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5533 return;
5534 }
5535
5536 if (ep->X_op != O_big)
5537 {
5538 hi32 = *ep;
5539 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5540 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5541 hi32.X_add_number &= 0xffffffff;
5542 lo32 = *ep;
5543 lo32.X_add_number &= 0xffffffff;
5544 }
5545 else
5546 {
5547 gas_assert (ep->X_add_number > 2);
5548 if (ep->X_add_number == 3)
5549 generic_bignum[3] = 0;
5550 else if (ep->X_add_number > 4)
5551 as_bad (_("Number larger than 64 bits"));
5552 lo32.X_op = O_constant;
5553 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
5554 hi32.X_op = O_constant;
5555 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
5556 }
5557
5558 if (hi32.X_add_number == 0)
5559 freg = 0;
5560 else
5561 {
5562 int shift, bit;
5563 unsigned long hi, lo;
5564
5565 if (hi32.X_add_number == (offsetT) 0xffffffff)
5566 {
5567 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
5568 {
5569 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5570 return;
5571 }
5572 if (lo32.X_add_number & 0x80000000)
5573 {
5574 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5575 if (lo32.X_add_number & 0xffff)
5576 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5577 return;
5578 }
5579 }
5580
5581 /* Check for 16bit shifted constant. We know that hi32 is
5582 non-zero, so start the mask on the first bit of the hi32
5583 value. */
5584 shift = 17;
5585 do
5586 {
5587 unsigned long himask, lomask;
5588
5589 if (shift < 32)
5590 {
5591 himask = 0xffff >> (32 - shift);
5592 lomask = (0xffff << shift) & 0xffffffff;
5593 }
5594 else
5595 {
5596 himask = 0xffff << (shift - 32);
5597 lomask = 0;
5598 }
5599 if ((hi32.X_add_number & ~(offsetT) himask) == 0
5600 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
5601 {
5602 expressionS tmp;
5603
5604 tmp.X_op = O_constant;
5605 if (shift < 32)
5606 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
5607 | (lo32.X_add_number >> shift));
5608 else
5609 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
5610 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5611 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
5612 reg, reg, (shift >= 32) ? shift - 32 : shift);
5613 return;
5614 }
5615 ++shift;
5616 }
5617 while (shift <= (64 - 16));
5618
5619 /* Find the bit number of the lowest one bit, and store the
5620 shifted value in hi/lo. */
5621 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
5622 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
5623 if (lo != 0)
5624 {
5625 bit = 0;
5626 while ((lo & 1) == 0)
5627 {
5628 lo >>= 1;
5629 ++bit;
5630 }
5631 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
5632 hi >>= bit;
5633 }
5634 else
5635 {
5636 bit = 32;
5637 while ((hi & 1) == 0)
5638 {
5639 hi >>= 1;
5640 ++bit;
5641 }
5642 lo = hi;
5643 hi = 0;
5644 }
5645
5646 /* Optimize if the shifted value is a (power of 2) - 1. */
5647 if ((hi == 0 && ((lo + 1) & lo) == 0)
5648 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
5649 {
5650 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
5651 if (shift != 0)
5652 {
5653 expressionS tmp;
5654
5655 /* This instruction will set the register to be all
5656 ones. */
5657 tmp.X_op = O_constant;
5658 tmp.X_add_number = (offsetT) -1;
5659 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5660 if (bit != 0)
5661 {
5662 bit += shift;
5663 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
5664 reg, reg, (bit >= 32) ? bit - 32 : bit);
5665 }
5666 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
5667 reg, reg, (shift >= 32) ? shift - 32 : shift);
5668 return;
5669 }
5670 }
5671
5672 /* Sign extend hi32 before calling load_register, because we can
5673 generally get better code when we load a sign extended value. */
5674 if ((hi32.X_add_number & 0x80000000) != 0)
5675 hi32.X_add_number |= ~(offsetT) 0xffffffff;
5676 load_register (reg, &hi32, 0);
5677 freg = reg;
5678 }
5679 if ((lo32.X_add_number & 0xffff0000) == 0)
5680 {
5681 if (freg != 0)
5682 {
5683 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
5684 freg = reg;
5685 }
5686 }
5687 else
5688 {
5689 expressionS mid16;
5690
5691 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
5692 {
5693 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5694 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
5695 return;
5696 }
5697
5698 if (freg != 0)
5699 {
5700 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
5701 freg = reg;
5702 }
5703 mid16 = lo32;
5704 mid16.X_add_number >>= 16;
5705 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
5706 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5707 freg = reg;
5708 }
5709 if ((lo32.X_add_number & 0xffff) != 0)
5710 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
5711 }
5712
5713 static inline void
5714 load_delay_nop (void)
5715 {
5716 if (!gpr_interlocks)
5717 macro_build (NULL, "nop", "");
5718 }
5719
5720 /* Load an address into a register. */
5721
5722 static void
5723 load_address (int reg, expressionS *ep, int *used_at)
5724 {
5725 if (ep->X_op != O_constant
5726 && ep->X_op != O_symbol)
5727 {
5728 as_bad (_("expression too complex"));
5729 ep->X_op = O_constant;
5730 }
5731
5732 if (ep->X_op == O_constant)
5733 {
5734 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
5735 return;
5736 }
5737
5738 if (mips_pic == NO_PIC)
5739 {
5740 /* If this is a reference to a GP relative symbol, we want
5741 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
5742 Otherwise we want
5743 lui $reg,<sym> (BFD_RELOC_HI16_S)
5744 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5745 If we have an addend, we always use the latter form.
5746
5747 With 64bit address space and a usable $at we want
5748 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5749 lui $at,<sym> (BFD_RELOC_HI16_S)
5750 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
5751 daddiu $at,<sym> (BFD_RELOC_LO16)
5752 dsll32 $reg,0
5753 daddu $reg,$reg,$at
5754
5755 If $at is already in use, we use a path which is suboptimal
5756 on superscalar processors.
5757 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5758 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
5759 dsll $reg,16
5760 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
5761 dsll $reg,16
5762 daddiu $reg,<sym> (BFD_RELOC_LO16)
5763
5764 For GP relative symbols in 64bit address space we can use
5765 the same sequence as in 32bit address space. */
5766 if (HAVE_64BIT_SYMBOLS)
5767 {
5768 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
5769 && !nopic_need_relax (ep->X_add_symbol, 1))
5770 {
5771 relax_start (ep->X_add_symbol);
5772 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
5773 mips_gp_register, BFD_RELOC_GPREL16);
5774 relax_switch ();
5775 }
5776
5777 if (*used_at == 0 && mips_opts.at)
5778 {
5779 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
5780 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
5781 macro_build (ep, "daddiu", "t,r,j", reg, reg,
5782 BFD_RELOC_MIPS_HIGHER);
5783 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
5784 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
5785 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
5786 *used_at = 1;
5787 }
5788 else
5789 {
5790 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
5791 macro_build (ep, "daddiu", "t,r,j", reg, reg,
5792 BFD_RELOC_MIPS_HIGHER);
5793 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5794 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
5795 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5796 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
5797 }
5798
5799 if (mips_relax.sequence)
5800 relax_end ();
5801 }
5802 else
5803 {
5804 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
5805 && !nopic_need_relax (ep->X_add_symbol, 1))
5806 {
5807 relax_start (ep->X_add_symbol);
5808 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
5809 mips_gp_register, BFD_RELOC_GPREL16);
5810 relax_switch ();
5811 }
5812 macro_build_lui (ep, reg);
5813 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
5814 reg, reg, BFD_RELOC_LO16);
5815 if (mips_relax.sequence)
5816 relax_end ();
5817 }
5818 }
5819 else if (!mips_big_got)
5820 {
5821 expressionS ex;
5822
5823 /* If this is a reference to an external symbol, we want
5824 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5825 Otherwise we want
5826 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5827 nop
5828 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5829 If there is a constant, it must be added in after.
5830
5831 If we have NewABI, we want
5832 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5833 unless we're referencing a global symbol with a non-zero
5834 offset, in which case cst must be added separately. */
5835 if (HAVE_NEWABI)
5836 {
5837 if (ep->X_add_number)
5838 {
5839 ex.X_add_number = ep->X_add_number;
5840 ep->X_add_number = 0;
5841 relax_start (ep->X_add_symbol);
5842 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5843 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5844 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5845 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5846 ex.X_op = O_constant;
5847 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
5848 reg, reg, BFD_RELOC_LO16);
5849 ep->X_add_number = ex.X_add_number;
5850 relax_switch ();
5851 }
5852 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5853 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5854 if (mips_relax.sequence)
5855 relax_end ();
5856 }
5857 else
5858 {
5859 ex.X_add_number = ep->X_add_number;
5860 ep->X_add_number = 0;
5861 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5862 BFD_RELOC_MIPS_GOT16, mips_gp_register);
5863 load_delay_nop ();
5864 relax_start (ep->X_add_symbol);
5865 relax_switch ();
5866 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5867 BFD_RELOC_LO16);
5868 relax_end ();
5869
5870 if (ex.X_add_number != 0)
5871 {
5872 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5873 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5874 ex.X_op = O_constant;
5875 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
5876 reg, reg, BFD_RELOC_LO16);
5877 }
5878 }
5879 }
5880 else if (mips_big_got)
5881 {
5882 expressionS ex;
5883
5884 /* This is the large GOT case. If this is a reference to an
5885 external symbol, we want
5886 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5887 addu $reg,$reg,$gp
5888 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
5889
5890 Otherwise, for a reference to a local symbol in old ABI, we want
5891 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5892 nop
5893 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5894 If there is a constant, it must be added in after.
5895
5896 In the NewABI, for local symbols, with or without offsets, we want:
5897 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5898 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5899 */
5900 if (HAVE_NEWABI)
5901 {
5902 ex.X_add_number = ep->X_add_number;
5903 ep->X_add_number = 0;
5904 relax_start (ep->X_add_symbol);
5905 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
5906 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5907 reg, reg, mips_gp_register);
5908 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
5909 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
5910 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5911 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5912 else if (ex.X_add_number)
5913 {
5914 ex.X_op = O_constant;
5915 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5916 BFD_RELOC_LO16);
5917 }
5918
5919 ep->X_add_number = ex.X_add_number;
5920 relax_switch ();
5921 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5922 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
5923 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5924 BFD_RELOC_MIPS_GOT_OFST);
5925 relax_end ();
5926 }
5927 else
5928 {
5929 ex.X_add_number = ep->X_add_number;
5930 ep->X_add_number = 0;
5931 relax_start (ep->X_add_symbol);
5932 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
5933 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5934 reg, reg, mips_gp_register);
5935 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
5936 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
5937 relax_switch ();
5938 if (reg_needs_delay (mips_gp_register))
5939 {
5940 /* We need a nop before loading from $gp. This special
5941 check is required because the lui which starts the main
5942 instruction stream does not refer to $gp, and so will not
5943 insert the nop which may be required. */
5944 macro_build (NULL, "nop", "");
5945 }
5946 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
5947 BFD_RELOC_MIPS_GOT16, mips_gp_register);
5948 load_delay_nop ();
5949 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5950 BFD_RELOC_LO16);
5951 relax_end ();
5952
5953 if (ex.X_add_number != 0)
5954 {
5955 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
5956 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5957 ex.X_op = O_constant;
5958 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
5959 BFD_RELOC_LO16);
5960 }
5961 }
5962 }
5963 else
5964 abort ();
5965
5966 if (!mips_opts.at && *used_at == 1)
5967 as_bad (_("Macro used $at after \".set noat\""));
5968 }
5969
5970 /* Move the contents of register SOURCE into register DEST. */
5971
5972 static void
5973 move_register (int dest, int source)
5974 {
5975 /* Prefer to use a 16-bit microMIPS instruction unless the previous
5976 instruction specifically requires a 32-bit one. */
5977 if (mips_opts.micromips
5978 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
5979 macro_build (NULL, "move", "mp,mj", dest, source);
5980 else
5981 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
5982 dest, source, 0);
5983 }
5984
5985 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
5986 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
5987 The two alternatives are:
5988
5989 Global symbol Local sybmol
5990 ------------- ------------
5991 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
5992 ... ...
5993 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
5994
5995 load_got_offset emits the first instruction and add_got_offset
5996 emits the second for a 16-bit offset or add_got_offset_hilo emits
5997 a sequence to add a 32-bit offset using a scratch register. */
5998
5999 static void
6000 load_got_offset (int dest, expressionS *local)
6001 {
6002 expressionS global;
6003
6004 global = *local;
6005 global.X_add_number = 0;
6006
6007 relax_start (local->X_add_symbol);
6008 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6009 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6010 relax_switch ();
6011 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6012 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6013 relax_end ();
6014 }
6015
6016 static void
6017 add_got_offset (int dest, expressionS *local)
6018 {
6019 expressionS global;
6020
6021 global.X_op = O_constant;
6022 global.X_op_symbol = NULL;
6023 global.X_add_symbol = NULL;
6024 global.X_add_number = local->X_add_number;
6025
6026 relax_start (local->X_add_symbol);
6027 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
6028 dest, dest, BFD_RELOC_LO16);
6029 relax_switch ();
6030 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
6031 relax_end ();
6032 }
6033
6034 static void
6035 add_got_offset_hilo (int dest, expressionS *local, int tmp)
6036 {
6037 expressionS global;
6038 int hold_mips_optimize;
6039
6040 global.X_op = O_constant;
6041 global.X_op_symbol = NULL;
6042 global.X_add_symbol = NULL;
6043 global.X_add_number = local->X_add_number;
6044
6045 relax_start (local->X_add_symbol);
6046 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
6047 relax_switch ();
6048 /* Set mips_optimize around the lui instruction to avoid
6049 inserting an unnecessary nop after the lw. */
6050 hold_mips_optimize = mips_optimize;
6051 mips_optimize = 2;
6052 macro_build_lui (&global, tmp);
6053 mips_optimize = hold_mips_optimize;
6054 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
6055 relax_end ();
6056
6057 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
6058 }
6059
6060 /* Emit a sequence of instructions to emulate a branch likely operation.
6061 BR is an ordinary branch corresponding to one to be emulated. BRNEG
6062 is its complementing branch with the original condition negated.
6063 CALL is set if the original branch specified the link operation.
6064 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
6065
6066 Code like this is produced in the noreorder mode:
6067
6068 BRNEG <args>, 1f
6069 nop
6070 b <sym>
6071 delay slot (executed only if branch taken)
6072 1:
6073
6074 or, if CALL is set:
6075
6076 BRNEG <args>, 1f
6077 nop
6078 bal <sym>
6079 delay slot (executed only if branch taken)
6080 1:
6081
6082 In the reorder mode the delay slot would be filled with a nop anyway,
6083 so code produced is simply:
6084
6085 BR <args>, <sym>
6086 nop
6087
6088 This function is used when producing code for the microMIPS ASE that
6089 does not implement branch likely instructions in hardware. */
6090
6091 static void
6092 macro_build_branch_likely (const char *br, const char *brneg,
6093 int call, expressionS *ep, const char *fmt,
6094 unsigned int sreg, unsigned int treg)
6095 {
6096 int noreorder = mips_opts.noreorder;
6097 expressionS expr1;
6098
6099 gas_assert (mips_opts.micromips);
6100 start_noreorder ();
6101 if (noreorder)
6102 {
6103 micromips_label_expr (&expr1);
6104 macro_build (&expr1, brneg, fmt, sreg, treg);
6105 macro_build (NULL, "nop", "");
6106 macro_build (ep, call ? "bal" : "b", "p");
6107
6108 /* Set to true so that append_insn adds a label. */
6109 emit_branch_likely_macro = TRUE;
6110 }
6111 else
6112 {
6113 macro_build (ep, br, fmt, sreg, treg);
6114 macro_build (NULL, "nop", "");
6115 }
6116 end_noreorder ();
6117 }
6118
6119 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
6120 the condition code tested. EP specifies the branch target. */
6121
6122 static void
6123 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
6124 {
6125 const int call = 0;
6126 const char *brneg;
6127 const char *br;
6128
6129 switch (type)
6130 {
6131 case M_BC1FL:
6132 br = "bc1f";
6133 brneg = "bc1t";
6134 break;
6135 case M_BC1TL:
6136 br = "bc1t";
6137 brneg = "bc1f";
6138 break;
6139 case M_BC2FL:
6140 br = "bc2f";
6141 brneg = "bc2t";
6142 break;
6143 case M_BC2TL:
6144 br = "bc2t";
6145 brneg = "bc2f";
6146 break;
6147 default:
6148 abort ();
6149 }
6150 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
6151 }
6152
6153 /* Emit a two-argument branch macro specified by TYPE, using SREG as
6154 the register tested. EP specifies the branch target. */
6155
6156 static void
6157 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
6158 {
6159 const char *brneg = NULL;
6160 const char *br;
6161 int call = 0;
6162
6163 switch (type)
6164 {
6165 case M_BGEZ:
6166 br = "bgez";
6167 break;
6168 case M_BGEZL:
6169 br = mips_opts.micromips ? "bgez" : "bgezl";
6170 brneg = "bltz";
6171 break;
6172 case M_BGEZALL:
6173 gas_assert (mips_opts.micromips);
6174 br = "bgezals";
6175 brneg = "bltz";
6176 call = 1;
6177 break;
6178 case M_BGTZ:
6179 br = "bgtz";
6180 break;
6181 case M_BGTZL:
6182 br = mips_opts.micromips ? "bgtz" : "bgtzl";
6183 brneg = "blez";
6184 break;
6185 case M_BLEZ:
6186 br = "blez";
6187 break;
6188 case M_BLEZL:
6189 br = mips_opts.micromips ? "blez" : "blezl";
6190 brneg = "bgtz";
6191 break;
6192 case M_BLTZ:
6193 br = "bltz";
6194 break;
6195 case M_BLTZL:
6196 br = mips_opts.micromips ? "bltz" : "bltzl";
6197 brneg = "bgez";
6198 break;
6199 case M_BLTZALL:
6200 gas_assert (mips_opts.micromips);
6201 br = "bltzals";
6202 brneg = "bgez";
6203 call = 1;
6204 break;
6205 default:
6206 abort ();
6207 }
6208 if (mips_opts.micromips && brneg)
6209 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
6210 else
6211 macro_build (ep, br, "s,p", sreg);
6212 }
6213
6214 /* Emit a three-argument branch macro specified by TYPE, using SREG and
6215 TREG as the registers tested. EP specifies the branch target. */
6216
6217 static void
6218 macro_build_branch_rsrt (int type, expressionS *ep,
6219 unsigned int sreg, unsigned int treg)
6220 {
6221 const char *brneg = NULL;
6222 const int call = 0;
6223 const char *br;
6224
6225 switch (type)
6226 {
6227 case M_BEQ:
6228 case M_BEQ_I:
6229 br = "beq";
6230 break;
6231 case M_BEQL:
6232 case M_BEQL_I:
6233 br = mips_opts.micromips ? "beq" : "beql";
6234 brneg = "bne";
6235 break;
6236 case M_BNE:
6237 case M_BNE_I:
6238 br = "bne";
6239 break;
6240 case M_BNEL:
6241 case M_BNEL_I:
6242 br = mips_opts.micromips ? "bne" : "bnel";
6243 brneg = "beq";
6244 break;
6245 default:
6246 abort ();
6247 }
6248 if (mips_opts.micromips && brneg)
6249 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
6250 else
6251 macro_build (ep, br, "s,t,p", sreg, treg);
6252 }
6253
6254 /*
6255 * Build macros
6256 * This routine implements the seemingly endless macro or synthesized
6257 * instructions and addressing modes in the mips assembly language. Many
6258 * of these macros are simple and are similar to each other. These could
6259 * probably be handled by some kind of table or grammar approach instead of
6260 * this verbose method. Others are not simple macros but are more like
6261 * optimizing code generation.
6262 * One interesting optimization is when several store macros appear
6263 * consecutively that would load AT with the upper half of the same address.
6264 * The ensuing load upper instructions are ommited. This implies some kind
6265 * of global optimization. We currently only optimize within a single macro.
6266 * For many of the load and store macros if the address is specified as a
6267 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
6268 * first load register 'at' with zero and use it as the base register. The
6269 * mips assembler simply uses register $zero. Just one tiny optimization
6270 * we're missing.
6271 */
6272 static void
6273 macro (struct mips_cl_insn *ip)
6274 {
6275 unsigned int treg, sreg, dreg, breg;
6276 unsigned int tempreg;
6277 int mask;
6278 int used_at = 0;
6279 expressionS label_expr;
6280 expressionS expr1;
6281 expressionS *ep;
6282 const char *s;
6283 const char *s2;
6284 const char *fmt;
6285 int likely = 0;
6286 int coproc = 0;
6287 int off12 = 0;
6288 int call = 0;
6289 int jals = 0;
6290 int dbl = 0;
6291 int imm = 0;
6292 int ust = 0;
6293 int lp = 0;
6294 int ab = 0;
6295 int off0 = 0;
6296 int off;
6297 offsetT maxnum;
6298 bfd_reloc_code_real_type r;
6299 int hold_mips_optimize;
6300
6301 gas_assert (! mips_opts.mips16);
6302
6303 treg = EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
6304 dreg = EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
6305 sreg = breg = EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
6306 mask = ip->insn_mo->mask;
6307
6308 label_expr.X_op = O_constant;
6309 label_expr.X_op_symbol = NULL;
6310 label_expr.X_add_symbol = NULL;
6311 label_expr.X_add_number = 0;
6312
6313 expr1.X_op = O_constant;
6314 expr1.X_op_symbol = NULL;
6315 expr1.X_add_symbol = NULL;
6316 expr1.X_add_number = 1;
6317
6318 switch (mask)
6319 {
6320 case M_DABS:
6321 dbl = 1;
6322 case M_ABS:
6323 /* bgez $a0,1f
6324 move v0,$a0
6325 sub v0,$zero,$a0
6326 1:
6327 */
6328
6329 start_noreorder ();
6330
6331 if (mips_opts.micromips)
6332 micromips_label_expr (&label_expr);
6333 else
6334 label_expr.X_add_number = 8;
6335 macro_build (&label_expr, "bgez", "s,p", sreg);
6336 if (dreg == sreg)
6337 macro_build (NULL, "nop", "");
6338 else
6339 move_register (dreg, sreg);
6340 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
6341 if (mips_opts.micromips)
6342 micromips_add_label ();
6343
6344 end_noreorder ();
6345 break;
6346
6347 case M_ADD_I:
6348 s = "addi";
6349 s2 = "add";
6350 goto do_addi;
6351 case M_ADDU_I:
6352 s = "addiu";
6353 s2 = "addu";
6354 goto do_addi;
6355 case M_DADD_I:
6356 dbl = 1;
6357 s = "daddi";
6358 s2 = "dadd";
6359 if (!mips_opts.micromips)
6360 goto do_addi;
6361 if (imm_expr.X_op == O_constant
6362 && imm_expr.X_add_number >= -0x200
6363 && imm_expr.X_add_number < 0x200)
6364 {
6365 macro_build (NULL, s, "t,r,.", treg, sreg, imm_expr.X_add_number);
6366 break;
6367 }
6368 goto do_addi_i;
6369 case M_DADDU_I:
6370 dbl = 1;
6371 s = "daddiu";
6372 s2 = "daddu";
6373 do_addi:
6374 if (imm_expr.X_op == O_constant
6375 && imm_expr.X_add_number >= -0x8000
6376 && imm_expr.X_add_number < 0x8000)
6377 {
6378 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
6379 break;
6380 }
6381 do_addi_i:
6382 used_at = 1;
6383 load_register (AT, &imm_expr, dbl);
6384 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6385 break;
6386
6387 case M_AND_I:
6388 s = "andi";
6389 s2 = "and";
6390 goto do_bit;
6391 case M_OR_I:
6392 s = "ori";
6393 s2 = "or";
6394 goto do_bit;
6395 case M_NOR_I:
6396 s = "";
6397 s2 = "nor";
6398 goto do_bit;
6399 case M_XOR_I:
6400 s = "xori";
6401 s2 = "xor";
6402 do_bit:
6403 if (imm_expr.X_op == O_constant
6404 && imm_expr.X_add_number >= 0
6405 && imm_expr.X_add_number < 0x10000)
6406 {
6407 if (mask != M_NOR_I)
6408 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
6409 else
6410 {
6411 macro_build (&imm_expr, "ori", "t,r,i",
6412 treg, sreg, BFD_RELOC_LO16);
6413 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
6414 }
6415 break;
6416 }
6417
6418 used_at = 1;
6419 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
6420 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6421 break;
6422
6423 case M_BALIGN:
6424 switch (imm_expr.X_add_number)
6425 {
6426 case 0:
6427 macro_build (NULL, "nop", "");
6428 break;
6429 case 2:
6430 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
6431 break;
6432 case 1:
6433 case 3:
6434 macro_build (NULL, "balign", "t,s,2", treg, sreg,
6435 (int) imm_expr.X_add_number);
6436 break;
6437 default:
6438 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
6439 (unsigned long) imm_expr.X_add_number);
6440 break;
6441 }
6442 break;
6443
6444 case M_BC1FL:
6445 case M_BC1TL:
6446 case M_BC2FL:
6447 case M_BC2TL:
6448 gas_assert (mips_opts.micromips);
6449 macro_build_branch_ccl (mask, &offset_expr,
6450 EXTRACT_OPERAND (1, BCC, *ip));
6451 break;
6452
6453 case M_BEQ_I:
6454 case M_BEQL_I:
6455 case M_BNE_I:
6456 case M_BNEL_I:
6457 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6458 treg = 0;
6459 else
6460 {
6461 treg = AT;
6462 used_at = 1;
6463 load_register (treg, &imm_expr, HAVE_64BIT_GPRS);
6464 }
6465 /* Fall through. */
6466 case M_BEQL:
6467 case M_BNEL:
6468 macro_build_branch_rsrt (mask, &offset_expr, sreg, treg);
6469 break;
6470
6471 case M_BGEL:
6472 likely = 1;
6473 case M_BGE:
6474 if (treg == 0)
6475 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, sreg);
6476 else if (sreg == 0)
6477 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, treg);
6478 else
6479 {
6480 used_at = 1;
6481 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6482 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6483 &offset_expr, AT, ZERO);
6484 }
6485 break;
6486
6487 case M_BGEZL:
6488 case M_BGEZALL:
6489 case M_BGTZL:
6490 case M_BLEZL:
6491 case M_BLTZL:
6492 case M_BLTZALL:
6493 macro_build_branch_rs (mask, &offset_expr, sreg);
6494 break;
6495
6496 case M_BGTL_I:
6497 likely = 1;
6498 case M_BGT_I:
6499 /* Check for > max integer. */
6500 maxnum = 0x7fffffff;
6501 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6502 {
6503 maxnum <<= 16;
6504 maxnum |= 0xffff;
6505 maxnum <<= 16;
6506 maxnum |= 0xffff;
6507 }
6508 if (imm_expr.X_op == O_constant
6509 && imm_expr.X_add_number >= maxnum
6510 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6511 {
6512 do_false:
6513 /* Result is always false. */
6514 if (! likely)
6515 macro_build (NULL, "nop", "");
6516 else
6517 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
6518 break;
6519 }
6520 if (imm_expr.X_op != O_constant)
6521 as_bad (_("Unsupported large constant"));
6522 ++imm_expr.X_add_number;
6523 /* FALLTHROUGH */
6524 case M_BGE_I:
6525 case M_BGEL_I:
6526 if (mask == M_BGEL_I)
6527 likely = 1;
6528 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6529 {
6530 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
6531 &offset_expr, sreg);
6532 break;
6533 }
6534 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6535 {
6536 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
6537 &offset_expr, sreg);
6538 break;
6539 }
6540 maxnum = 0x7fffffff;
6541 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6542 {
6543 maxnum <<= 16;
6544 maxnum |= 0xffff;
6545 maxnum <<= 16;
6546 maxnum |= 0xffff;
6547 }
6548 maxnum = - maxnum - 1;
6549 if (imm_expr.X_op == O_constant
6550 && imm_expr.X_add_number <= maxnum
6551 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6552 {
6553 do_true:
6554 /* result is always true */
6555 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
6556 macro_build (&offset_expr, "b", "p");
6557 break;
6558 }
6559 used_at = 1;
6560 set_at (sreg, 0);
6561 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6562 &offset_expr, AT, ZERO);
6563 break;
6564
6565 case M_BGEUL:
6566 likely = 1;
6567 case M_BGEU:
6568 if (treg == 0)
6569 goto do_true;
6570 else if (sreg == 0)
6571 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6572 &offset_expr, ZERO, treg);
6573 else
6574 {
6575 used_at = 1;
6576 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
6577 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6578 &offset_expr, AT, ZERO);
6579 }
6580 break;
6581
6582 case M_BGTUL_I:
6583 likely = 1;
6584 case M_BGTU_I:
6585 if (sreg == 0
6586 || (HAVE_32BIT_GPRS
6587 && imm_expr.X_op == O_constant
6588 && imm_expr.X_add_number == -1))
6589 goto do_false;
6590 if (imm_expr.X_op != O_constant)
6591 as_bad (_("Unsupported large constant"));
6592 ++imm_expr.X_add_number;
6593 /* FALLTHROUGH */
6594 case M_BGEU_I:
6595 case M_BGEUL_I:
6596 if (mask == M_BGEUL_I)
6597 likely = 1;
6598 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6599 goto do_true;
6600 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6601 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6602 &offset_expr, sreg, ZERO);
6603 else
6604 {
6605 used_at = 1;
6606 set_at (sreg, 1);
6607 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6608 &offset_expr, AT, ZERO);
6609 }
6610 break;
6611
6612 case M_BGTL:
6613 likely = 1;
6614 case M_BGT:
6615 if (treg == 0)
6616 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, sreg);
6617 else if (sreg == 0)
6618 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, treg);
6619 else
6620 {
6621 used_at = 1;
6622 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6623 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6624 &offset_expr, AT, ZERO);
6625 }
6626 break;
6627
6628 case M_BGTUL:
6629 likely = 1;
6630 case M_BGTU:
6631 if (treg == 0)
6632 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6633 &offset_expr, sreg, ZERO);
6634 else if (sreg == 0)
6635 goto do_false;
6636 else
6637 {
6638 used_at = 1;
6639 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
6640 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6641 &offset_expr, AT, ZERO);
6642 }
6643 break;
6644
6645 case M_BLEL:
6646 likely = 1;
6647 case M_BLE:
6648 if (treg == 0)
6649 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
6650 else if (sreg == 0)
6651 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, treg);
6652 else
6653 {
6654 used_at = 1;
6655 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6656 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6657 &offset_expr, AT, ZERO);
6658 }
6659 break;
6660
6661 case M_BLEL_I:
6662 likely = 1;
6663 case M_BLE_I:
6664 maxnum = 0x7fffffff;
6665 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6666 {
6667 maxnum <<= 16;
6668 maxnum |= 0xffff;
6669 maxnum <<= 16;
6670 maxnum |= 0xffff;
6671 }
6672 if (imm_expr.X_op == O_constant
6673 && imm_expr.X_add_number >= maxnum
6674 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6675 goto do_true;
6676 if (imm_expr.X_op != O_constant)
6677 as_bad (_("Unsupported large constant"));
6678 ++imm_expr.X_add_number;
6679 /* FALLTHROUGH */
6680 case M_BLT_I:
6681 case M_BLTL_I:
6682 if (mask == M_BLTL_I)
6683 likely = 1;
6684 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6685 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
6686 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6687 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
6688 else
6689 {
6690 used_at = 1;
6691 set_at (sreg, 0);
6692 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6693 &offset_expr, AT, ZERO);
6694 }
6695 break;
6696
6697 case M_BLEUL:
6698 likely = 1;
6699 case M_BLEU:
6700 if (treg == 0)
6701 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6702 &offset_expr, sreg, ZERO);
6703 else if (sreg == 0)
6704 goto do_true;
6705 else
6706 {
6707 used_at = 1;
6708 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
6709 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6710 &offset_expr, AT, ZERO);
6711 }
6712 break;
6713
6714 case M_BLEUL_I:
6715 likely = 1;
6716 case M_BLEU_I:
6717 if (sreg == 0
6718 || (HAVE_32BIT_GPRS
6719 && imm_expr.X_op == O_constant
6720 && imm_expr.X_add_number == -1))
6721 goto do_true;
6722 if (imm_expr.X_op != O_constant)
6723 as_bad (_("Unsupported large constant"));
6724 ++imm_expr.X_add_number;
6725 /* FALLTHROUGH */
6726 case M_BLTU_I:
6727 case M_BLTUL_I:
6728 if (mask == M_BLTUL_I)
6729 likely = 1;
6730 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6731 goto do_false;
6732 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6733 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6734 &offset_expr, sreg, ZERO);
6735 else
6736 {
6737 used_at = 1;
6738 set_at (sreg, 1);
6739 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6740 &offset_expr, AT, ZERO);
6741 }
6742 break;
6743
6744 case M_BLTL:
6745 likely = 1;
6746 case M_BLT:
6747 if (treg == 0)
6748 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
6749 else if (sreg == 0)
6750 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, treg);
6751 else
6752 {
6753 used_at = 1;
6754 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6755 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6756 &offset_expr, AT, ZERO);
6757 }
6758 break;
6759
6760 case M_BLTUL:
6761 likely = 1;
6762 case M_BLTU:
6763 if (treg == 0)
6764 goto do_false;
6765 else if (sreg == 0)
6766 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6767 &offset_expr, ZERO, treg);
6768 else
6769 {
6770 used_at = 1;
6771 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
6772 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6773 &offset_expr, AT, ZERO);
6774 }
6775 break;
6776
6777 case M_DEXT:
6778 {
6779 /* Use unsigned arithmetic. */
6780 addressT pos;
6781 addressT size;
6782
6783 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
6784 {
6785 as_bad (_("Unsupported large constant"));
6786 pos = size = 1;
6787 }
6788 else
6789 {
6790 pos = imm_expr.X_add_number;
6791 size = imm2_expr.X_add_number;
6792 }
6793
6794 if (pos > 63)
6795 {
6796 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
6797 pos = 1;
6798 }
6799 if (size == 0 || size > 64 || (pos + size - 1) > 63)
6800 {
6801 as_bad (_("Improper extract size (%lu, position %lu)"),
6802 (unsigned long) size, (unsigned long) pos);
6803 size = 1;
6804 }
6805
6806 if (size <= 32 && pos < 32)
6807 {
6808 s = "dext";
6809 fmt = "t,r,+A,+C";
6810 }
6811 else if (size <= 32)
6812 {
6813 s = "dextu";
6814 fmt = "t,r,+E,+H";
6815 }
6816 else
6817 {
6818 s = "dextm";
6819 fmt = "t,r,+A,+G";
6820 }
6821 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
6822 (int) (size - 1));
6823 }
6824 break;
6825
6826 case M_DINS:
6827 {
6828 /* Use unsigned arithmetic. */
6829 addressT pos;
6830 addressT size;
6831
6832 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
6833 {
6834 as_bad (_("Unsupported large constant"));
6835 pos = size = 1;
6836 }
6837 else
6838 {
6839 pos = imm_expr.X_add_number;
6840 size = imm2_expr.X_add_number;
6841 }
6842
6843 if (pos > 63)
6844 {
6845 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
6846 pos = 1;
6847 }
6848 if (size == 0 || size > 64 || (pos + size - 1) > 63)
6849 {
6850 as_bad (_("Improper insert size (%lu, position %lu)"),
6851 (unsigned long) size, (unsigned long) pos);
6852 size = 1;
6853 }
6854
6855 if (pos < 32 && (pos + size - 1) < 32)
6856 {
6857 s = "dins";
6858 fmt = "t,r,+A,+B";
6859 }
6860 else if (pos >= 32)
6861 {
6862 s = "dinsu";
6863 fmt = "t,r,+E,+F";
6864 }
6865 else
6866 {
6867 s = "dinsm";
6868 fmt = "t,r,+A,+F";
6869 }
6870 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
6871 (int) (pos + size - 1));
6872 }
6873 break;
6874
6875 case M_DDIV_3:
6876 dbl = 1;
6877 case M_DIV_3:
6878 s = "mflo";
6879 goto do_div3;
6880 case M_DREM_3:
6881 dbl = 1;
6882 case M_REM_3:
6883 s = "mfhi";
6884 do_div3:
6885 if (treg == 0)
6886 {
6887 as_warn (_("Divide by zero."));
6888 if (mips_trap)
6889 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
6890 else
6891 macro_build (NULL, "break", BRK_FMT, 7);
6892 break;
6893 }
6894
6895 start_noreorder ();
6896 if (mips_trap)
6897 {
6898 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
6899 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
6900 }
6901 else
6902 {
6903 if (mips_opts.micromips)
6904 micromips_label_expr (&label_expr);
6905 else
6906 label_expr.X_add_number = 8;
6907 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
6908 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
6909 macro_build (NULL, "break", BRK_FMT, 7);
6910 if (mips_opts.micromips)
6911 micromips_add_label ();
6912 }
6913 expr1.X_add_number = -1;
6914 used_at = 1;
6915 load_register (AT, &expr1, dbl);
6916 if (mips_opts.micromips)
6917 micromips_label_expr (&label_expr);
6918 else
6919 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
6920 macro_build (&label_expr, "bne", "s,t,p", treg, AT);
6921 if (dbl)
6922 {
6923 expr1.X_add_number = 1;
6924 load_register (AT, &expr1, dbl);
6925 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
6926 }
6927 else
6928 {
6929 expr1.X_add_number = 0x80000000;
6930 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
6931 }
6932 if (mips_trap)
6933 {
6934 macro_build (NULL, "teq", TRAP_FMT, sreg, AT, 6);
6935 /* We want to close the noreorder block as soon as possible, so
6936 that later insns are available for delay slot filling. */
6937 end_noreorder ();
6938 }
6939 else
6940 {
6941 if (mips_opts.micromips)
6942 micromips_label_expr (&label_expr);
6943 else
6944 label_expr.X_add_number = 8;
6945 macro_build (&label_expr, "bne", "s,t,p", sreg, AT);
6946 macro_build (NULL, "nop", "");
6947
6948 /* We want to close the noreorder block as soon as possible, so
6949 that later insns are available for delay slot filling. */
6950 end_noreorder ();
6951
6952 macro_build (NULL, "break", BRK_FMT, 6);
6953 }
6954 if (mips_opts.micromips)
6955 micromips_add_label ();
6956 macro_build (NULL, s, MFHL_FMT, dreg);
6957 break;
6958
6959 case M_DIV_3I:
6960 s = "div";
6961 s2 = "mflo";
6962 goto do_divi;
6963 case M_DIVU_3I:
6964 s = "divu";
6965 s2 = "mflo";
6966 goto do_divi;
6967 case M_REM_3I:
6968 s = "div";
6969 s2 = "mfhi";
6970 goto do_divi;
6971 case M_REMU_3I:
6972 s = "divu";
6973 s2 = "mfhi";
6974 goto do_divi;
6975 case M_DDIV_3I:
6976 dbl = 1;
6977 s = "ddiv";
6978 s2 = "mflo";
6979 goto do_divi;
6980 case M_DDIVU_3I:
6981 dbl = 1;
6982 s = "ddivu";
6983 s2 = "mflo";
6984 goto do_divi;
6985 case M_DREM_3I:
6986 dbl = 1;
6987 s = "ddiv";
6988 s2 = "mfhi";
6989 goto do_divi;
6990 case M_DREMU_3I:
6991 dbl = 1;
6992 s = "ddivu";
6993 s2 = "mfhi";
6994 do_divi:
6995 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6996 {
6997 as_warn (_("Divide by zero."));
6998 if (mips_trap)
6999 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
7000 else
7001 macro_build (NULL, "break", BRK_FMT, 7);
7002 break;
7003 }
7004 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
7005 {
7006 if (strcmp (s2, "mflo") == 0)
7007 move_register (dreg, sreg);
7008 else
7009 move_register (dreg, ZERO);
7010 break;
7011 }
7012 if (imm_expr.X_op == O_constant
7013 && imm_expr.X_add_number == -1
7014 && s[strlen (s) - 1] != 'u')
7015 {
7016 if (strcmp (s2, "mflo") == 0)
7017 {
7018 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
7019 }
7020 else
7021 move_register (dreg, ZERO);
7022 break;
7023 }
7024
7025 used_at = 1;
7026 load_register (AT, &imm_expr, dbl);
7027 macro_build (NULL, s, "z,s,t", sreg, AT);
7028 macro_build (NULL, s2, MFHL_FMT, dreg);
7029 break;
7030
7031 case M_DIVU_3:
7032 s = "divu";
7033 s2 = "mflo";
7034 goto do_divu3;
7035 case M_REMU_3:
7036 s = "divu";
7037 s2 = "mfhi";
7038 goto do_divu3;
7039 case M_DDIVU_3:
7040 s = "ddivu";
7041 s2 = "mflo";
7042 goto do_divu3;
7043 case M_DREMU_3:
7044 s = "ddivu";
7045 s2 = "mfhi";
7046 do_divu3:
7047 start_noreorder ();
7048 if (mips_trap)
7049 {
7050 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7051 macro_build (NULL, s, "z,s,t", sreg, treg);
7052 /* We want to close the noreorder block as soon as possible, so
7053 that later insns are available for delay slot filling. */
7054 end_noreorder ();
7055 }
7056 else
7057 {
7058 if (mips_opts.micromips)
7059 micromips_label_expr (&label_expr);
7060 else
7061 label_expr.X_add_number = 8;
7062 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7063 macro_build (NULL, s, "z,s,t", sreg, treg);
7064
7065 /* We want to close the noreorder block as soon as possible, so
7066 that later insns are available for delay slot filling. */
7067 end_noreorder ();
7068 macro_build (NULL, "break", BRK_FMT, 7);
7069 if (mips_opts.micromips)
7070 micromips_add_label ();
7071 }
7072 macro_build (NULL, s2, MFHL_FMT, dreg);
7073 break;
7074
7075 case M_DLCA_AB:
7076 dbl = 1;
7077 case M_LCA_AB:
7078 call = 1;
7079 goto do_la;
7080 case M_DLA_AB:
7081 dbl = 1;
7082 case M_LA_AB:
7083 do_la:
7084 /* Load the address of a symbol into a register. If breg is not
7085 zero, we then add a base register to it. */
7086
7087 if (dbl && HAVE_32BIT_GPRS)
7088 as_warn (_("dla used to load 32-bit register"));
7089
7090 if (!dbl && HAVE_64BIT_OBJECTS)
7091 as_warn (_("la used to load 64-bit address"));
7092
7093 if (offset_expr.X_op == O_constant
7094 && offset_expr.X_add_number >= -0x8000
7095 && offset_expr.X_add_number < 0x8000)
7096 {
7097 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
7098 "t,r,j", treg, sreg, BFD_RELOC_LO16);
7099 break;
7100 }
7101
7102 if (mips_opts.at && (treg == breg))
7103 {
7104 tempreg = AT;
7105 used_at = 1;
7106 }
7107 else
7108 {
7109 tempreg = treg;
7110 }
7111
7112 if (offset_expr.X_op != O_symbol
7113 && offset_expr.X_op != O_constant)
7114 {
7115 as_bad (_("Expression too complex"));
7116 offset_expr.X_op = O_constant;
7117 }
7118
7119 if (offset_expr.X_op == O_constant)
7120 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
7121 else if (mips_pic == NO_PIC)
7122 {
7123 /* If this is a reference to a GP relative symbol, we want
7124 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
7125 Otherwise we want
7126 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
7127 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7128 If we have a constant, we need two instructions anyhow,
7129 so we may as well always use the latter form.
7130
7131 With 64bit address space and a usable $at we want
7132 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7133 lui $at,<sym> (BFD_RELOC_HI16_S)
7134 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7135 daddiu $at,<sym> (BFD_RELOC_LO16)
7136 dsll32 $tempreg,0
7137 daddu $tempreg,$tempreg,$at
7138
7139 If $at is already in use, we use a path which is suboptimal
7140 on superscalar processors.
7141 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7142 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7143 dsll $tempreg,16
7144 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
7145 dsll $tempreg,16
7146 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
7147
7148 For GP relative symbols in 64bit address space we can use
7149 the same sequence as in 32bit address space. */
7150 if (HAVE_64BIT_SYMBOLS)
7151 {
7152 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7153 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7154 {
7155 relax_start (offset_expr.X_add_symbol);
7156 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7157 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7158 relax_switch ();
7159 }
7160
7161 if (used_at == 0 && mips_opts.at)
7162 {
7163 macro_build (&offset_expr, "lui", LUI_FMT,
7164 tempreg, BFD_RELOC_MIPS_HIGHEST);
7165 macro_build (&offset_expr, "lui", LUI_FMT,
7166 AT, BFD_RELOC_HI16_S);
7167 macro_build (&offset_expr, "daddiu", "t,r,j",
7168 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7169 macro_build (&offset_expr, "daddiu", "t,r,j",
7170 AT, AT, BFD_RELOC_LO16);
7171 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
7172 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
7173 used_at = 1;
7174 }
7175 else
7176 {
7177 macro_build (&offset_expr, "lui", LUI_FMT,
7178 tempreg, BFD_RELOC_MIPS_HIGHEST);
7179 macro_build (&offset_expr, "daddiu", "t,r,j",
7180 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7181 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7182 macro_build (&offset_expr, "daddiu", "t,r,j",
7183 tempreg, tempreg, BFD_RELOC_HI16_S);
7184 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7185 macro_build (&offset_expr, "daddiu", "t,r,j",
7186 tempreg, tempreg, BFD_RELOC_LO16);
7187 }
7188
7189 if (mips_relax.sequence)
7190 relax_end ();
7191 }
7192 else
7193 {
7194 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7195 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7196 {
7197 relax_start (offset_expr.X_add_symbol);
7198 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7199 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7200 relax_switch ();
7201 }
7202 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7203 as_bad (_("Offset too large"));
7204 macro_build_lui (&offset_expr, tempreg);
7205 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7206 tempreg, tempreg, BFD_RELOC_LO16);
7207 if (mips_relax.sequence)
7208 relax_end ();
7209 }
7210 }
7211 else if (!mips_big_got && !HAVE_NEWABI)
7212 {
7213 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7214
7215 /* If this is a reference to an external symbol, and there
7216 is no constant, we want
7217 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7218 or for lca or if tempreg is PIC_CALL_REG
7219 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7220 For a local symbol, we want
7221 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7222 nop
7223 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7224
7225 If we have a small constant, and this is a reference to
7226 an external symbol, we want
7227 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7228 nop
7229 addiu $tempreg,$tempreg,<constant>
7230 For a local symbol, we want the same instruction
7231 sequence, but we output a BFD_RELOC_LO16 reloc on the
7232 addiu instruction.
7233
7234 If we have a large constant, and this is a reference to
7235 an external symbol, we want
7236 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7237 lui $at,<hiconstant>
7238 addiu $at,$at,<loconstant>
7239 addu $tempreg,$tempreg,$at
7240 For a local symbol, we want the same instruction
7241 sequence, but we output a BFD_RELOC_LO16 reloc on the
7242 addiu instruction.
7243 */
7244
7245 if (offset_expr.X_add_number == 0)
7246 {
7247 if (mips_pic == SVR4_PIC
7248 && breg == 0
7249 && (call || tempreg == PIC_CALL_REG))
7250 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
7251
7252 relax_start (offset_expr.X_add_symbol);
7253 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7254 lw_reloc_type, mips_gp_register);
7255 if (breg != 0)
7256 {
7257 /* We're going to put in an addu instruction using
7258 tempreg, so we may as well insert the nop right
7259 now. */
7260 load_delay_nop ();
7261 }
7262 relax_switch ();
7263 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7264 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
7265 load_delay_nop ();
7266 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7267 tempreg, tempreg, BFD_RELOC_LO16);
7268 relax_end ();
7269 /* FIXME: If breg == 0, and the next instruction uses
7270 $tempreg, then if this variant case is used an extra
7271 nop will be generated. */
7272 }
7273 else if (offset_expr.X_add_number >= -0x8000
7274 && offset_expr.X_add_number < 0x8000)
7275 {
7276 load_got_offset (tempreg, &offset_expr);
7277 load_delay_nop ();
7278 add_got_offset (tempreg, &offset_expr);
7279 }
7280 else
7281 {
7282 expr1.X_add_number = offset_expr.X_add_number;
7283 offset_expr.X_add_number =
7284 SEXT_16BIT (offset_expr.X_add_number);
7285 load_got_offset (tempreg, &offset_expr);
7286 offset_expr.X_add_number = expr1.X_add_number;
7287 /* If we are going to add in a base register, and the
7288 target register and the base register are the same,
7289 then we are using AT as a temporary register. Since
7290 we want to load the constant into AT, we add our
7291 current AT (from the global offset table) and the
7292 register into the register now, and pretend we were
7293 not using a base register. */
7294 if (breg == treg)
7295 {
7296 load_delay_nop ();
7297 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7298 treg, AT, breg);
7299 breg = 0;
7300 tempreg = treg;
7301 }
7302 add_got_offset_hilo (tempreg, &offset_expr, AT);
7303 used_at = 1;
7304 }
7305 }
7306 else if (!mips_big_got && HAVE_NEWABI)
7307 {
7308 int add_breg_early = 0;
7309
7310 /* If this is a reference to an external, and there is no
7311 constant, or local symbol (*), with or without a
7312 constant, we want
7313 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7314 or for lca or if tempreg is PIC_CALL_REG
7315 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7316
7317 If we have a small constant, and this is a reference to
7318 an external symbol, we want
7319 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7320 addiu $tempreg,$tempreg,<constant>
7321
7322 If we have a large constant, and this is a reference to
7323 an external symbol, we want
7324 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7325 lui $at,<hiconstant>
7326 addiu $at,$at,<loconstant>
7327 addu $tempreg,$tempreg,$at
7328
7329 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
7330 local symbols, even though it introduces an additional
7331 instruction. */
7332
7333 if (offset_expr.X_add_number)
7334 {
7335 expr1.X_add_number = offset_expr.X_add_number;
7336 offset_expr.X_add_number = 0;
7337
7338 relax_start (offset_expr.X_add_symbol);
7339 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7340 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7341
7342 if (expr1.X_add_number >= -0x8000
7343 && expr1.X_add_number < 0x8000)
7344 {
7345 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7346 tempreg, tempreg, BFD_RELOC_LO16);
7347 }
7348 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7349 {
7350 /* If we are going to add in a base register, and the
7351 target register and the base register are the same,
7352 then we are using AT as a temporary register. Since
7353 we want to load the constant into AT, we add our
7354 current AT (from the global offset table) and the
7355 register into the register now, and pretend we were
7356 not using a base register. */
7357 if (breg != treg)
7358 dreg = tempreg;
7359 else
7360 {
7361 gas_assert (tempreg == AT);
7362 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7363 treg, AT, breg);
7364 dreg = treg;
7365 add_breg_early = 1;
7366 }
7367
7368 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7369 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7370 dreg, dreg, AT);
7371
7372 used_at = 1;
7373 }
7374 else
7375 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7376
7377 relax_switch ();
7378 offset_expr.X_add_number = expr1.X_add_number;
7379
7380 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7381 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7382 if (add_breg_early)
7383 {
7384 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7385 treg, tempreg, breg);
7386 breg = 0;
7387 tempreg = treg;
7388 }
7389 relax_end ();
7390 }
7391 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
7392 {
7393 relax_start (offset_expr.X_add_symbol);
7394 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7395 BFD_RELOC_MIPS_CALL16, mips_gp_register);
7396 relax_switch ();
7397 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7398 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7399 relax_end ();
7400 }
7401 else
7402 {
7403 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7404 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7405 }
7406 }
7407 else if (mips_big_got && !HAVE_NEWABI)
7408 {
7409 int gpdelay;
7410 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7411 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7412 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7413
7414 /* This is the large GOT case. If this is a reference to an
7415 external symbol, and there is no constant, we want
7416 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7417 addu $tempreg,$tempreg,$gp
7418 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7419 or for lca or if tempreg is PIC_CALL_REG
7420 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7421 addu $tempreg,$tempreg,$gp
7422 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7423 For a local symbol, we want
7424 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7425 nop
7426 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7427
7428 If we have a small constant, and this is a reference to
7429 an external symbol, we want
7430 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7431 addu $tempreg,$tempreg,$gp
7432 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7433 nop
7434 addiu $tempreg,$tempreg,<constant>
7435 For a local symbol, we want
7436 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7437 nop
7438 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
7439
7440 If we have a large constant, and this is a reference to
7441 an external symbol, we want
7442 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7443 addu $tempreg,$tempreg,$gp
7444 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7445 lui $at,<hiconstant>
7446 addiu $at,$at,<loconstant>
7447 addu $tempreg,$tempreg,$at
7448 For a local symbol, we want
7449 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7450 lui $at,<hiconstant>
7451 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
7452 addu $tempreg,$tempreg,$at
7453 */
7454
7455 expr1.X_add_number = offset_expr.X_add_number;
7456 offset_expr.X_add_number = 0;
7457 relax_start (offset_expr.X_add_symbol);
7458 gpdelay = reg_needs_delay (mips_gp_register);
7459 if (expr1.X_add_number == 0 && breg == 0
7460 && (call || tempreg == PIC_CALL_REG))
7461 {
7462 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7463 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7464 }
7465 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7466 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7467 tempreg, tempreg, mips_gp_register);
7468 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7469 tempreg, lw_reloc_type, tempreg);
7470 if (expr1.X_add_number == 0)
7471 {
7472 if (breg != 0)
7473 {
7474 /* We're going to put in an addu instruction using
7475 tempreg, so we may as well insert the nop right
7476 now. */
7477 load_delay_nop ();
7478 }
7479 }
7480 else if (expr1.X_add_number >= -0x8000
7481 && expr1.X_add_number < 0x8000)
7482 {
7483 load_delay_nop ();
7484 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7485 tempreg, tempreg, BFD_RELOC_LO16);
7486 }
7487 else
7488 {
7489 /* If we are going to add in a base register, and the
7490 target register and the base register are the same,
7491 then we are using AT as a temporary register. Since
7492 we want to load the constant into AT, we add our
7493 current AT (from the global offset table) and the
7494 register into the register now, and pretend we were
7495 not using a base register. */
7496 if (breg != treg)
7497 dreg = tempreg;
7498 else
7499 {
7500 gas_assert (tempreg == AT);
7501 load_delay_nop ();
7502 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7503 treg, AT, breg);
7504 dreg = treg;
7505 }
7506
7507 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7508 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7509
7510 used_at = 1;
7511 }
7512 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
7513 relax_switch ();
7514
7515 if (gpdelay)
7516 {
7517 /* This is needed because this instruction uses $gp, but
7518 the first instruction on the main stream does not. */
7519 macro_build (NULL, "nop", "");
7520 }
7521
7522 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7523 local_reloc_type, mips_gp_register);
7524 if (expr1.X_add_number >= -0x8000
7525 && expr1.X_add_number < 0x8000)
7526 {
7527 load_delay_nop ();
7528 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7529 tempreg, tempreg, BFD_RELOC_LO16);
7530 /* FIXME: If add_number is 0, and there was no base
7531 register, the external symbol case ended with a load,
7532 so if the symbol turns out to not be external, and
7533 the next instruction uses tempreg, an unnecessary nop
7534 will be inserted. */
7535 }
7536 else
7537 {
7538 if (breg == treg)
7539 {
7540 /* We must add in the base register now, as in the
7541 external symbol case. */
7542 gas_assert (tempreg == AT);
7543 load_delay_nop ();
7544 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7545 treg, AT, breg);
7546 tempreg = treg;
7547 /* We set breg to 0 because we have arranged to add
7548 it in in both cases. */
7549 breg = 0;
7550 }
7551
7552 macro_build_lui (&expr1, AT);
7553 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7554 AT, AT, BFD_RELOC_LO16);
7555 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7556 tempreg, tempreg, AT);
7557 used_at = 1;
7558 }
7559 relax_end ();
7560 }
7561 else if (mips_big_got && HAVE_NEWABI)
7562 {
7563 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7564 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7565 int add_breg_early = 0;
7566
7567 /* This is the large GOT case. If this is a reference to an
7568 external symbol, and there is no constant, we want
7569 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7570 add $tempreg,$tempreg,$gp
7571 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7572 or for lca or if tempreg is PIC_CALL_REG
7573 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7574 add $tempreg,$tempreg,$gp
7575 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7576
7577 If we have a small constant, and this is a reference to
7578 an external symbol, we want
7579 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7580 add $tempreg,$tempreg,$gp
7581 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7582 addi $tempreg,$tempreg,<constant>
7583
7584 If we have a large constant, and this is a reference to
7585 an external symbol, we want
7586 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7587 addu $tempreg,$tempreg,$gp
7588 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7589 lui $at,<hiconstant>
7590 addi $at,$at,<loconstant>
7591 add $tempreg,$tempreg,$at
7592
7593 If we have NewABI, and we know it's a local symbol, we want
7594 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
7595 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
7596 otherwise we have to resort to GOT_HI16/GOT_LO16. */
7597
7598 relax_start (offset_expr.X_add_symbol);
7599
7600 expr1.X_add_number = offset_expr.X_add_number;
7601 offset_expr.X_add_number = 0;
7602
7603 if (expr1.X_add_number == 0 && breg == 0
7604 && (call || tempreg == PIC_CALL_REG))
7605 {
7606 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7607 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7608 }
7609 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7610 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7611 tempreg, tempreg, mips_gp_register);
7612 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7613 tempreg, lw_reloc_type, tempreg);
7614
7615 if (expr1.X_add_number == 0)
7616 ;
7617 else if (expr1.X_add_number >= -0x8000
7618 && expr1.X_add_number < 0x8000)
7619 {
7620 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7621 tempreg, tempreg, BFD_RELOC_LO16);
7622 }
7623 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7624 {
7625 /* If we are going to add in a base register, and the
7626 target register and the base register are the same,
7627 then we are using AT as a temporary register. Since
7628 we want to load the constant into AT, we add our
7629 current AT (from the global offset table) and the
7630 register into the register now, and pretend we were
7631 not using a base register. */
7632 if (breg != treg)
7633 dreg = tempreg;
7634 else
7635 {
7636 gas_assert (tempreg == AT);
7637 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7638 treg, AT, breg);
7639 dreg = treg;
7640 add_breg_early = 1;
7641 }
7642
7643 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7644 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7645
7646 used_at = 1;
7647 }
7648 else
7649 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7650
7651 relax_switch ();
7652 offset_expr.X_add_number = expr1.X_add_number;
7653 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7654 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
7655 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
7656 tempreg, BFD_RELOC_MIPS_GOT_OFST);
7657 if (add_breg_early)
7658 {
7659 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7660 treg, tempreg, breg);
7661 breg = 0;
7662 tempreg = treg;
7663 }
7664 relax_end ();
7665 }
7666 else
7667 abort ();
7668
7669 if (breg != 0)
7670 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
7671 break;
7672
7673 case M_MSGSND:
7674 gas_assert (!mips_opts.micromips);
7675 {
7676 unsigned long temp = (treg << 16) | (0x01);
7677 macro_build (NULL, "c2", "C", temp);
7678 }
7679 break;
7680
7681 case M_MSGLD:
7682 gas_assert (!mips_opts.micromips);
7683 {
7684 unsigned long temp = (0x02);
7685 macro_build (NULL, "c2", "C", temp);
7686 }
7687 break;
7688
7689 case M_MSGLD_T:
7690 gas_assert (!mips_opts.micromips);
7691 {
7692 unsigned long temp = (treg << 16) | (0x02);
7693 macro_build (NULL, "c2", "C", temp);
7694 }
7695 break;
7696
7697 case M_MSGWAIT:
7698 gas_assert (!mips_opts.micromips);
7699 macro_build (NULL, "c2", "C", 3);
7700 break;
7701
7702 case M_MSGWAIT_T:
7703 gas_assert (!mips_opts.micromips);
7704 {
7705 unsigned long temp = (treg << 16) | 0x03;
7706 macro_build (NULL, "c2", "C", temp);
7707 }
7708 break;
7709
7710 case M_J_A:
7711 /* The j instruction may not be used in PIC code, since it
7712 requires an absolute address. We convert it to a b
7713 instruction. */
7714 if (mips_pic == NO_PIC)
7715 macro_build (&offset_expr, "j", "a");
7716 else
7717 macro_build (&offset_expr, "b", "p");
7718 break;
7719
7720 /* The jal instructions must be handled as macros because when
7721 generating PIC code they expand to multi-instruction
7722 sequences. Normally they are simple instructions. */
7723 case M_JALS_1:
7724 dreg = RA;
7725 /* Fall through. */
7726 case M_JALS_2:
7727 gas_assert (mips_opts.micromips);
7728 jals = 1;
7729 goto jal;
7730 case M_JAL_1:
7731 dreg = RA;
7732 /* Fall through. */
7733 case M_JAL_2:
7734 jal:
7735 if (mips_pic == NO_PIC)
7736 {
7737 s = jals ? "jalrs" : "jalr";
7738 if (mips_opts.micromips && dreg == RA)
7739 macro_build (NULL, s, "mj", sreg);
7740 else
7741 macro_build (NULL, s, JALR_FMT, dreg, sreg);
7742 }
7743 else
7744 {
7745 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
7746 && mips_cprestore_offset >= 0);
7747
7748 if (sreg != PIC_CALL_REG)
7749 as_warn (_("MIPS PIC call to register other than $25"));
7750
7751 s = (mips_opts.micromips && (!mips_opts.noreorder || cprestore)
7752 ? "jalrs" : "jalr");
7753 if (mips_opts.micromips && dreg == RA)
7754 macro_build (NULL, s, "mj", sreg);
7755 else
7756 macro_build (NULL, s, JALR_FMT, dreg, sreg);
7757 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
7758 {
7759 if (mips_cprestore_offset < 0)
7760 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7761 else
7762 {
7763 if (!mips_frame_reg_valid)
7764 {
7765 as_warn (_("No .frame pseudo-op used in PIC code"));
7766 /* Quiet this warning. */
7767 mips_frame_reg_valid = 1;
7768 }
7769 if (!mips_cprestore_valid)
7770 {
7771 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7772 /* Quiet this warning. */
7773 mips_cprestore_valid = 1;
7774 }
7775 if (mips_opts.noreorder)
7776 macro_build (NULL, "nop", "");
7777 expr1.X_add_number = mips_cprestore_offset;
7778 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
7779 mips_gp_register,
7780 mips_frame_reg,
7781 HAVE_64BIT_ADDRESSES);
7782 }
7783 }
7784 }
7785
7786 break;
7787
7788 case M_JALS_A:
7789 gas_assert (mips_opts.micromips);
7790 jals = 1;
7791 /* Fall through. */
7792 case M_JAL_A:
7793 if (mips_pic == NO_PIC)
7794 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
7795 else if (mips_pic == SVR4_PIC)
7796 {
7797 /* If this is a reference to an external symbol, and we are
7798 using a small GOT, we want
7799 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7800 nop
7801 jalr $ra,$25
7802 nop
7803 lw $gp,cprestore($sp)
7804 The cprestore value is set using the .cprestore
7805 pseudo-op. If we are using a big GOT, we want
7806 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7807 addu $25,$25,$gp
7808 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
7809 nop
7810 jalr $ra,$25
7811 nop
7812 lw $gp,cprestore($sp)
7813 If the symbol is not external, we want
7814 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7815 nop
7816 addiu $25,$25,<sym> (BFD_RELOC_LO16)
7817 jalr $ra,$25
7818 nop
7819 lw $gp,cprestore($sp)
7820
7821 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
7822 sequences above, minus nops, unless the symbol is local,
7823 which enables us to use GOT_PAGE/GOT_OFST (big got) or
7824 GOT_DISP. */
7825 if (HAVE_NEWABI)
7826 {
7827 if (!mips_big_got)
7828 {
7829 relax_start (offset_expr.X_add_symbol);
7830 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7831 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
7832 mips_gp_register);
7833 relax_switch ();
7834 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7835 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
7836 mips_gp_register);
7837 relax_end ();
7838 }
7839 else
7840 {
7841 relax_start (offset_expr.X_add_symbol);
7842 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
7843 BFD_RELOC_MIPS_CALL_HI16);
7844 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
7845 PIC_CALL_REG, mips_gp_register);
7846 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7847 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
7848 PIC_CALL_REG);
7849 relax_switch ();
7850 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7851 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
7852 mips_gp_register);
7853 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7854 PIC_CALL_REG, PIC_CALL_REG,
7855 BFD_RELOC_MIPS_GOT_OFST);
7856 relax_end ();
7857 }
7858
7859 macro_build_jalr (&offset_expr, 0);
7860 }
7861 else
7862 {
7863 relax_start (offset_expr.X_add_symbol);
7864 if (!mips_big_got)
7865 {
7866 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7867 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
7868 mips_gp_register);
7869 load_delay_nop ();
7870 relax_switch ();
7871 }
7872 else
7873 {
7874 int gpdelay;
7875
7876 gpdelay = reg_needs_delay (mips_gp_register);
7877 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
7878 BFD_RELOC_MIPS_CALL_HI16);
7879 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
7880 PIC_CALL_REG, mips_gp_register);
7881 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7882 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
7883 PIC_CALL_REG);
7884 load_delay_nop ();
7885 relax_switch ();
7886 if (gpdelay)
7887 macro_build (NULL, "nop", "");
7888 }
7889 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7890 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
7891 mips_gp_register);
7892 load_delay_nop ();
7893 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7894 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
7895 relax_end ();
7896 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
7897
7898 if (mips_cprestore_offset < 0)
7899 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7900 else
7901 {
7902 if (!mips_frame_reg_valid)
7903 {
7904 as_warn (_("No .frame pseudo-op used in PIC code"));
7905 /* Quiet this warning. */
7906 mips_frame_reg_valid = 1;
7907 }
7908 if (!mips_cprestore_valid)
7909 {
7910 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7911 /* Quiet this warning. */
7912 mips_cprestore_valid = 1;
7913 }
7914 if (mips_opts.noreorder)
7915 macro_build (NULL, "nop", "");
7916 expr1.X_add_number = mips_cprestore_offset;
7917 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
7918 mips_gp_register,
7919 mips_frame_reg,
7920 HAVE_64BIT_ADDRESSES);
7921 }
7922 }
7923 }
7924 else if (mips_pic == VXWORKS_PIC)
7925 as_bad (_("Non-PIC jump used in PIC library"));
7926 else
7927 abort ();
7928
7929 break;
7930
7931 case M_ACLR_AB:
7932 ab = 1;
7933 case M_ACLR_OB:
7934 s = "aclr";
7935 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
7936 fmt = "\\,~(b)";
7937 off12 = 1;
7938 goto ld_st;
7939 case M_ASET_AB:
7940 ab = 1;
7941 case M_ASET_OB:
7942 s = "aset";
7943 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
7944 fmt = "\\,~(b)";
7945 off12 = 1;
7946 goto ld_st;
7947 case M_LB_AB:
7948 ab = 1;
7949 s = "lb";
7950 fmt = "t,o(b)";
7951 goto ld;
7952 case M_LBU_AB:
7953 ab = 1;
7954 s = "lbu";
7955 fmt = "t,o(b)";
7956 goto ld;
7957 case M_LH_AB:
7958 ab = 1;
7959 s = "lh";
7960 fmt = "t,o(b)";
7961 goto ld;
7962 case M_LHU_AB:
7963 ab = 1;
7964 s = "lhu";
7965 fmt = "t,o(b)";
7966 goto ld;
7967 case M_LW_AB:
7968 ab = 1;
7969 s = "lw";
7970 fmt = "t,o(b)";
7971 goto ld;
7972 case M_LWC0_AB:
7973 ab = 1;
7974 gas_assert (!mips_opts.micromips);
7975 s = "lwc0";
7976 fmt = "E,o(b)";
7977 /* Itbl support may require additional care here. */
7978 coproc = 1;
7979 goto ld_st;
7980 case M_LWC1_AB:
7981 ab = 1;
7982 s = "lwc1";
7983 fmt = "T,o(b)";
7984 /* Itbl support may require additional care here. */
7985 coproc = 1;
7986 goto ld_st;
7987 case M_LWC2_AB:
7988 ab = 1;
7989 case M_LWC2_OB:
7990 s = "lwc2";
7991 fmt = COP12_FMT;
7992 off12 = mips_opts.micromips;
7993 /* Itbl support may require additional care here. */
7994 coproc = 1;
7995 goto ld_st;
7996 case M_LWC3_AB:
7997 ab = 1;
7998 gas_assert (!mips_opts.micromips);
7999 s = "lwc3";
8000 fmt = "E,o(b)";
8001 /* Itbl support may require additional care here. */
8002 coproc = 1;
8003 goto ld_st;
8004 case M_LWL_AB:
8005 ab = 1;
8006 case M_LWL_OB:
8007 s = "lwl";
8008 fmt = MEM12_FMT;
8009 off12 = mips_opts.micromips;
8010 goto ld_st;
8011 case M_LWR_AB:
8012 ab = 1;
8013 case M_LWR_OB:
8014 s = "lwr";
8015 fmt = MEM12_FMT;
8016 off12 = mips_opts.micromips;
8017 goto ld_st;
8018 case M_LDC1_AB:
8019 ab = 1;
8020 s = "ldc1";
8021 fmt = "T,o(b)";
8022 /* Itbl support may require additional care here. */
8023 coproc = 1;
8024 goto ld_st;
8025 case M_LDC2_AB:
8026 ab = 1;
8027 case M_LDC2_OB:
8028 s = "ldc2";
8029 fmt = COP12_FMT;
8030 off12 = mips_opts.micromips;
8031 /* Itbl support may require additional care here. */
8032 coproc = 1;
8033 goto ld_st;
8034 case M_LDC3_AB:
8035 ab = 1;
8036 s = "ldc3";
8037 fmt = "E,o(b)";
8038 /* Itbl support may require additional care here. */
8039 coproc = 1;
8040 goto ld_st;
8041 case M_LDL_AB:
8042 ab = 1;
8043 case M_LDL_OB:
8044 s = "ldl";
8045 fmt = MEM12_FMT;
8046 off12 = mips_opts.micromips;
8047 goto ld_st;
8048 case M_LDR_AB:
8049 ab = 1;
8050 case M_LDR_OB:
8051 s = "ldr";
8052 fmt = MEM12_FMT;
8053 off12 = mips_opts.micromips;
8054 goto ld_st;
8055 case M_LL_AB:
8056 ab = 1;
8057 case M_LL_OB:
8058 s = "ll";
8059 fmt = MEM12_FMT;
8060 off12 = mips_opts.micromips;
8061 goto ld;
8062 case M_LLD_AB:
8063 ab = 1;
8064 case M_LLD_OB:
8065 s = "lld";
8066 fmt = MEM12_FMT;
8067 off12 = mips_opts.micromips;
8068 goto ld;
8069 case M_LWU_AB:
8070 ab = 1;
8071 case M_LWU_OB:
8072 s = "lwu";
8073 fmt = MEM12_FMT;
8074 off12 = mips_opts.micromips;
8075 goto ld;
8076 case M_LWP_AB:
8077 ab = 1;
8078 case M_LWP_OB:
8079 gas_assert (mips_opts.micromips);
8080 s = "lwp";
8081 fmt = "t,~(b)";
8082 off12 = 1;
8083 lp = 1;
8084 goto ld;
8085 case M_LDP_AB:
8086 ab = 1;
8087 case M_LDP_OB:
8088 gas_assert (mips_opts.micromips);
8089 s = "ldp";
8090 fmt = "t,~(b)";
8091 off12 = 1;
8092 lp = 1;
8093 goto ld;
8094 case M_LWM_AB:
8095 ab = 1;
8096 case M_LWM_OB:
8097 gas_assert (mips_opts.micromips);
8098 s = "lwm";
8099 fmt = "n,~(b)";
8100 off12 = 1;
8101 goto ld_st;
8102 case M_LDM_AB:
8103 ab = 1;
8104 case M_LDM_OB:
8105 gas_assert (mips_opts.micromips);
8106 s = "ldm";
8107 fmt = "n,~(b)";
8108 off12 = 1;
8109 goto ld_st;
8110
8111 ld:
8112 if (breg == treg + lp)
8113 goto ld_st;
8114 else
8115 tempreg = treg + lp;
8116 goto ld_noat;
8117
8118 case M_SB_AB:
8119 ab = 1;
8120 s = "sb";
8121 fmt = "t,o(b)";
8122 goto ld_st;
8123 case M_SH_AB:
8124 ab = 1;
8125 s = "sh";
8126 fmt = "t,o(b)";
8127 goto ld_st;
8128 case M_SW_AB:
8129 ab = 1;
8130 s = "sw";
8131 fmt = "t,o(b)";
8132 goto ld_st;
8133 case M_SWC0_AB:
8134 ab = 1;
8135 gas_assert (!mips_opts.micromips);
8136 s = "swc0";
8137 fmt = "E,o(b)";
8138 /* Itbl support may require additional care here. */
8139 coproc = 1;
8140 goto ld_st;
8141 case M_SWC1_AB:
8142 ab = 1;
8143 s = "swc1";
8144 fmt = "T,o(b)";
8145 /* Itbl support may require additional care here. */
8146 coproc = 1;
8147 goto ld_st;
8148 case M_SWC2_AB:
8149 ab = 1;
8150 case M_SWC2_OB:
8151 s = "swc2";
8152 fmt = COP12_FMT;
8153 off12 = mips_opts.micromips;
8154 /* Itbl support may require additional care here. */
8155 coproc = 1;
8156 goto ld_st;
8157 case M_SWC3_AB:
8158 ab = 1;
8159 gas_assert (!mips_opts.micromips);
8160 s = "swc3";
8161 fmt = "E,o(b)";
8162 /* Itbl support may require additional care here. */
8163 coproc = 1;
8164 goto ld_st;
8165 case M_SWL_AB:
8166 ab = 1;
8167 case M_SWL_OB:
8168 s = "swl";
8169 fmt = MEM12_FMT;
8170 off12 = mips_opts.micromips;
8171 goto ld_st;
8172 case M_SWR_AB:
8173 ab = 1;
8174 case M_SWR_OB:
8175 s = "swr";
8176 fmt = MEM12_FMT;
8177 off12 = mips_opts.micromips;
8178 goto ld_st;
8179 case M_SC_AB:
8180 ab = 1;
8181 case M_SC_OB:
8182 s = "sc";
8183 fmt = MEM12_FMT;
8184 off12 = mips_opts.micromips;
8185 goto ld_st;
8186 case M_SCD_AB:
8187 ab = 1;
8188 case M_SCD_OB:
8189 s = "scd";
8190 fmt = MEM12_FMT;
8191 off12 = mips_opts.micromips;
8192 goto ld_st;
8193 case M_CACHE_AB:
8194 ab = 1;
8195 case M_CACHE_OB:
8196 s = "cache";
8197 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
8198 off12 = mips_opts.micromips;
8199 goto ld_st;
8200 case M_PREF_AB:
8201 ab = 1;
8202 case M_PREF_OB:
8203 s = "pref";
8204 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
8205 off12 = mips_opts.micromips;
8206 goto ld_st;
8207 case M_SDC1_AB:
8208 ab = 1;
8209 s = "sdc1";
8210 fmt = "T,o(b)";
8211 coproc = 1;
8212 /* Itbl support may require additional care here. */
8213 goto ld_st;
8214 case M_SDC2_AB:
8215 ab = 1;
8216 case M_SDC2_OB:
8217 s = "sdc2";
8218 fmt = COP12_FMT;
8219 off12 = mips_opts.micromips;
8220 /* Itbl support may require additional care here. */
8221 coproc = 1;
8222 goto ld_st;
8223 case M_SDC3_AB:
8224 ab = 1;
8225 gas_assert (!mips_opts.micromips);
8226 s = "sdc3";
8227 fmt = "E,o(b)";
8228 /* Itbl support may require additional care here. */
8229 coproc = 1;
8230 goto ld_st;
8231 case M_SDL_AB:
8232 ab = 1;
8233 case M_SDL_OB:
8234 s = "sdl";
8235 fmt = MEM12_FMT;
8236 off12 = mips_opts.micromips;
8237 goto ld_st;
8238 case M_SDR_AB:
8239 ab = 1;
8240 case M_SDR_OB:
8241 s = "sdr";
8242 fmt = MEM12_FMT;
8243 off12 = mips_opts.micromips;
8244 goto ld_st;
8245 case M_SWP_AB:
8246 ab = 1;
8247 case M_SWP_OB:
8248 gas_assert (mips_opts.micromips);
8249 s = "swp";
8250 fmt = "t,~(b)";
8251 off12 = 1;
8252 goto ld_st;
8253 case M_SDP_AB:
8254 ab = 1;
8255 case M_SDP_OB:
8256 gas_assert (mips_opts.micromips);
8257 s = "sdp";
8258 fmt = "t,~(b)";
8259 off12 = 1;
8260 goto ld_st;
8261 case M_SWM_AB:
8262 ab = 1;
8263 case M_SWM_OB:
8264 gas_assert (mips_opts.micromips);
8265 s = "swm";
8266 fmt = "n,~(b)";
8267 off12 = 1;
8268 goto ld_st;
8269 case M_SDM_AB:
8270 ab = 1;
8271 case M_SDM_OB:
8272 gas_assert (mips_opts.micromips);
8273 s = "sdm";
8274 fmt = "n,~(b)";
8275 off12 = 1;
8276
8277 ld_st:
8278 tempreg = AT;
8279 used_at = 1;
8280 ld_noat:
8281 if (offset_expr.X_op != O_constant
8282 && offset_expr.X_op != O_symbol)
8283 {
8284 as_bad (_("Expression too complex"));
8285 offset_expr.X_op = O_constant;
8286 }
8287
8288 if (HAVE_32BIT_ADDRESSES
8289 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
8290 {
8291 char value [32];
8292
8293 sprintf_vma (value, offset_expr.X_add_number);
8294 as_bad (_("Number (0x%s) larger than 32 bits"), value);
8295 }
8296
8297 /* A constant expression in PIC code can be handled just as it
8298 is in non PIC code. */
8299 if (offset_expr.X_op == O_constant)
8300 {
8301 int hipart = 0;
8302
8303 expr1.X_add_number = offset_expr.X_add_number;
8304 normalize_address_expr (&expr1);
8305 if (!off12 && !IS_SEXT_16BIT_NUM (expr1.X_add_number))
8306 {
8307 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
8308 & ~(bfd_vma) 0xffff);
8309 hipart = 1;
8310 }
8311 else if (off12 && !IS_SEXT_12BIT_NUM (expr1.X_add_number))
8312 {
8313 expr1.X_add_number = ((expr1.X_add_number + 0x800)
8314 & ~(bfd_vma) 0xfff);
8315 hipart = 1;
8316 }
8317 if (hipart)
8318 {
8319 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
8320 if (breg != 0)
8321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8322 tempreg, tempreg, breg);
8323 breg = tempreg;
8324 }
8325 if (off0)
8326 {
8327 if (offset_expr.X_add_number == 0)
8328 tempreg = breg;
8329 else
8330 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
8331 "t,r,j", tempreg, breg, BFD_RELOC_LO16);
8332 macro_build (NULL, s, fmt, treg, tempreg);
8333 }
8334 else if (!off12)
8335 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
8336 else
8337 macro_build (NULL, s, fmt,
8338 treg, (unsigned long) offset_expr.X_add_number, breg);
8339 }
8340 else if (off12 || off0)
8341 {
8342 /* A 12-bit or 0-bit offset field is too narrow to be used
8343 for a low-part relocation, so load the whole address into
8344 the auxillary register. In the case of "A(b)" addresses,
8345 we first load absolute address "A" into the register and
8346 then add base register "b". In the case of "o(b)" addresses,
8347 we simply need to add 16-bit offset "o" to base register "b", and
8348 offset_reloc already contains the relocations associated
8349 with "o". */
8350 if (ab)
8351 {
8352 load_address (tempreg, &offset_expr, &used_at);
8353 if (breg != 0)
8354 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8355 tempreg, tempreg, breg);
8356 }
8357 else
8358 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8359 tempreg, breg, -1,
8360 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8361 expr1.X_add_number = 0;
8362 if (off0)
8363 macro_build (NULL, s, fmt, treg, tempreg);
8364 else
8365 macro_build (NULL, s, fmt,
8366 treg, (unsigned long) expr1.X_add_number, tempreg);
8367 }
8368 else if (mips_pic == NO_PIC)
8369 {
8370 /* If this is a reference to a GP relative symbol, and there
8371 is no base register, we want
8372 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
8373 Otherwise, if there is no base register, we want
8374 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8375 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8376 If we have a constant, we need two instructions anyhow,
8377 so we always use the latter form.
8378
8379 If we have a base register, and this is a reference to a
8380 GP relative symbol, we want
8381 addu $tempreg,$breg,$gp
8382 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
8383 Otherwise we want
8384 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8385 addu $tempreg,$tempreg,$breg
8386 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8387 With a constant we always use the latter case.
8388
8389 With 64bit address space and no base register and $at usable,
8390 we want
8391 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8392 lui $at,<sym> (BFD_RELOC_HI16_S)
8393 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8394 dsll32 $tempreg,0
8395 daddu $tempreg,$at
8396 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8397 If we have a base register, we want
8398 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8399 lui $at,<sym> (BFD_RELOC_HI16_S)
8400 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8401 daddu $at,$breg
8402 dsll32 $tempreg,0
8403 daddu $tempreg,$at
8404 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8405
8406 Without $at we can't generate the optimal path for superscalar
8407 processors here since this would require two temporary registers.
8408 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8409 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8410 dsll $tempreg,16
8411 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8412 dsll $tempreg,16
8413 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8414 If we have a base register, we want
8415 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8416 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8417 dsll $tempreg,16
8418 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8419 dsll $tempreg,16
8420 daddu $tempreg,$tempreg,$breg
8421 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8422
8423 For GP relative symbols in 64bit address space we can use
8424 the same sequence as in 32bit address space. */
8425 if (HAVE_64BIT_SYMBOLS)
8426 {
8427 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8428 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8429 {
8430 relax_start (offset_expr.X_add_symbol);
8431 if (breg == 0)
8432 {
8433 macro_build (&offset_expr, s, fmt, treg,
8434 BFD_RELOC_GPREL16, mips_gp_register);
8435 }
8436 else
8437 {
8438 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8439 tempreg, breg, mips_gp_register);
8440 macro_build (&offset_expr, s, fmt, treg,
8441 BFD_RELOC_GPREL16, tempreg);
8442 }
8443 relax_switch ();
8444 }
8445
8446 if (used_at == 0 && mips_opts.at)
8447 {
8448 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8449 BFD_RELOC_MIPS_HIGHEST);
8450 macro_build (&offset_expr, "lui", LUI_FMT, AT,
8451 BFD_RELOC_HI16_S);
8452 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8453 tempreg, BFD_RELOC_MIPS_HIGHER);
8454 if (breg != 0)
8455 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
8456 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
8457 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
8458 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
8459 tempreg);
8460 used_at = 1;
8461 }
8462 else
8463 {
8464 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8465 BFD_RELOC_MIPS_HIGHEST);
8466 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8467 tempreg, BFD_RELOC_MIPS_HIGHER);
8468 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8469 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8470 tempreg, BFD_RELOC_HI16_S);
8471 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8472 if (breg != 0)
8473 macro_build (NULL, "daddu", "d,v,t",
8474 tempreg, tempreg, breg);
8475 macro_build (&offset_expr, s, fmt, treg,
8476 BFD_RELOC_LO16, tempreg);
8477 }
8478
8479 if (mips_relax.sequence)
8480 relax_end ();
8481 break;
8482 }
8483
8484 if (breg == 0)
8485 {
8486 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8487 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8488 {
8489 relax_start (offset_expr.X_add_symbol);
8490 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
8491 mips_gp_register);
8492 relax_switch ();
8493 }
8494 macro_build_lui (&offset_expr, tempreg);
8495 macro_build (&offset_expr, s, fmt, treg,
8496 BFD_RELOC_LO16, tempreg);
8497 if (mips_relax.sequence)
8498 relax_end ();
8499 }
8500 else
8501 {
8502 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8503 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8504 {
8505 relax_start (offset_expr.X_add_symbol);
8506 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8507 tempreg, breg, mips_gp_register);
8508 macro_build (&offset_expr, s, fmt, treg,
8509 BFD_RELOC_GPREL16, tempreg);
8510 relax_switch ();
8511 }
8512 macro_build_lui (&offset_expr, tempreg);
8513 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8514 tempreg, tempreg, breg);
8515 macro_build (&offset_expr, s, fmt, treg,
8516 BFD_RELOC_LO16, tempreg);
8517 if (mips_relax.sequence)
8518 relax_end ();
8519 }
8520 }
8521 else if (!mips_big_got)
8522 {
8523 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
8524
8525 /* If this is a reference to an external symbol, we want
8526 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8527 nop
8528 <op> $treg,0($tempreg)
8529 Otherwise we want
8530 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8531 nop
8532 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8533 <op> $treg,0($tempreg)
8534
8535 For NewABI, we want
8536 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8537 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
8538
8539 If there is a base register, we add it to $tempreg before
8540 the <op>. If there is a constant, we stick it in the
8541 <op> instruction. We don't handle constants larger than
8542 16 bits, because we have no way to load the upper 16 bits
8543 (actually, we could handle them for the subset of cases
8544 in which we are not using $at). */
8545 gas_assert (offset_expr.X_op == O_symbol);
8546 if (HAVE_NEWABI)
8547 {
8548 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8549 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8550 if (breg != 0)
8551 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8552 tempreg, tempreg, breg);
8553 macro_build (&offset_expr, s, fmt, treg,
8554 BFD_RELOC_MIPS_GOT_OFST, tempreg);
8555 break;
8556 }
8557 expr1.X_add_number = offset_expr.X_add_number;
8558 offset_expr.X_add_number = 0;
8559 if (expr1.X_add_number < -0x8000
8560 || expr1.X_add_number >= 0x8000)
8561 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8562 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8563 lw_reloc_type, mips_gp_register);
8564 load_delay_nop ();
8565 relax_start (offset_expr.X_add_symbol);
8566 relax_switch ();
8567 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
8568 tempreg, BFD_RELOC_LO16);
8569 relax_end ();
8570 if (breg != 0)
8571 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8572 tempreg, tempreg, breg);
8573 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8574 }
8575 else if (mips_big_got && !HAVE_NEWABI)
8576 {
8577 int gpdelay;
8578
8579 /* If this is a reference to an external symbol, we want
8580 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8581 addu $tempreg,$tempreg,$gp
8582 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8583 <op> $treg,0($tempreg)
8584 Otherwise we want
8585 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8586 nop
8587 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8588 <op> $treg,0($tempreg)
8589 If there is a base register, we add it to $tempreg before
8590 the <op>. If there is a constant, we stick it in the
8591 <op> instruction. We don't handle constants larger than
8592 16 bits, because we have no way to load the upper 16 bits
8593 (actually, we could handle them for the subset of cases
8594 in which we are not using $at). */
8595 gas_assert (offset_expr.X_op == O_symbol);
8596 expr1.X_add_number = offset_expr.X_add_number;
8597 offset_expr.X_add_number = 0;
8598 if (expr1.X_add_number < -0x8000
8599 || expr1.X_add_number >= 0x8000)
8600 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8601 gpdelay = reg_needs_delay (mips_gp_register);
8602 relax_start (offset_expr.X_add_symbol);
8603 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8604 BFD_RELOC_MIPS_GOT_HI16);
8605 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
8606 mips_gp_register);
8607 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8608 BFD_RELOC_MIPS_GOT_LO16, tempreg);
8609 relax_switch ();
8610 if (gpdelay)
8611 macro_build (NULL, "nop", "");
8612 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8613 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8614 load_delay_nop ();
8615 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
8616 tempreg, BFD_RELOC_LO16);
8617 relax_end ();
8618
8619 if (breg != 0)
8620 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8621 tempreg, tempreg, breg);
8622 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8623 }
8624 else if (mips_big_got && HAVE_NEWABI)
8625 {
8626 /* If this is a reference to an external symbol, we want
8627 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8628 add $tempreg,$tempreg,$gp
8629 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8630 <op> $treg,<ofst>($tempreg)
8631 Otherwise, for local symbols, we want:
8632 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8633 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
8634 gas_assert (offset_expr.X_op == O_symbol);
8635 expr1.X_add_number = offset_expr.X_add_number;
8636 offset_expr.X_add_number = 0;
8637 if (expr1.X_add_number < -0x8000
8638 || expr1.X_add_number >= 0x8000)
8639 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8640 relax_start (offset_expr.X_add_symbol);
8641 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8642 BFD_RELOC_MIPS_GOT_HI16);
8643 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
8644 mips_gp_register);
8645 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8646 BFD_RELOC_MIPS_GOT_LO16, tempreg);
8647 if (breg != 0)
8648 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8649 tempreg, tempreg, breg);
8650 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8651
8652 relax_switch ();
8653 offset_expr.X_add_number = expr1.X_add_number;
8654 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8655 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8656 if (breg != 0)
8657 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8658 tempreg, tempreg, breg);
8659 macro_build (&offset_expr, s, fmt, treg,
8660 BFD_RELOC_MIPS_GOT_OFST, tempreg);
8661 relax_end ();
8662 }
8663 else
8664 abort ();
8665
8666 break;
8667
8668 case M_LI:
8669 case M_LI_S:
8670 load_register (treg, &imm_expr, 0);
8671 break;
8672
8673 case M_DLI:
8674 load_register (treg, &imm_expr, 1);
8675 break;
8676
8677 case M_LI_SS:
8678 if (imm_expr.X_op == O_constant)
8679 {
8680 used_at = 1;
8681 load_register (AT, &imm_expr, 0);
8682 macro_build (NULL, "mtc1", "t,G", AT, treg);
8683 break;
8684 }
8685 else
8686 {
8687 gas_assert (offset_expr.X_op == O_symbol
8688 && strcmp (segment_name (S_GET_SEGMENT
8689 (offset_expr.X_add_symbol)),
8690 ".lit4") == 0
8691 && offset_expr.X_add_number == 0);
8692 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
8693 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8694 break;
8695 }
8696
8697 case M_LI_D:
8698 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
8699 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
8700 order 32 bits of the value and the low order 32 bits are either
8701 zero or in OFFSET_EXPR. */
8702 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
8703 {
8704 if (HAVE_64BIT_GPRS)
8705 load_register (treg, &imm_expr, 1);
8706 else
8707 {
8708 int hreg, lreg;
8709
8710 if (target_big_endian)
8711 {
8712 hreg = treg;
8713 lreg = treg + 1;
8714 }
8715 else
8716 {
8717 hreg = treg + 1;
8718 lreg = treg;
8719 }
8720
8721 if (hreg <= 31)
8722 load_register (hreg, &imm_expr, 0);
8723 if (lreg <= 31)
8724 {
8725 if (offset_expr.X_op == O_absent)
8726 move_register (lreg, 0);
8727 else
8728 {
8729 gas_assert (offset_expr.X_op == O_constant);
8730 load_register (lreg, &offset_expr, 0);
8731 }
8732 }
8733 }
8734 break;
8735 }
8736
8737 /* We know that sym is in the .rdata section. First we get the
8738 upper 16 bits of the address. */
8739 if (mips_pic == NO_PIC)
8740 {
8741 macro_build_lui (&offset_expr, AT);
8742 used_at = 1;
8743 }
8744 else
8745 {
8746 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
8747 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8748 used_at = 1;
8749 }
8750
8751 /* Now we load the register(s). */
8752 if (HAVE_64BIT_GPRS)
8753 {
8754 used_at = 1;
8755 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8756 }
8757 else
8758 {
8759 used_at = 1;
8760 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8761 if (treg != RA)
8762 {
8763 /* FIXME: How in the world do we deal with the possible
8764 overflow here? */
8765 offset_expr.X_add_number += 4;
8766 macro_build (&offset_expr, "lw", "t,o(b)",
8767 treg + 1, BFD_RELOC_LO16, AT);
8768 }
8769 }
8770 break;
8771
8772 case M_LI_DD:
8773 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
8774 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
8775 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
8776 the value and the low order 32 bits are either zero or in
8777 OFFSET_EXPR. */
8778 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
8779 {
8780 used_at = 1;
8781 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
8782 if (HAVE_64BIT_FPRS)
8783 {
8784 gas_assert (HAVE_64BIT_GPRS);
8785 macro_build (NULL, "dmtc1", "t,S", AT, treg);
8786 }
8787 else
8788 {
8789 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
8790 if (offset_expr.X_op == O_absent)
8791 macro_build (NULL, "mtc1", "t,G", 0, treg);
8792 else
8793 {
8794 gas_assert (offset_expr.X_op == O_constant);
8795 load_register (AT, &offset_expr, 0);
8796 macro_build (NULL, "mtc1", "t,G", AT, treg);
8797 }
8798 }
8799 break;
8800 }
8801
8802 gas_assert (offset_expr.X_op == O_symbol
8803 && offset_expr.X_add_number == 0);
8804 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
8805 if (strcmp (s, ".lit8") == 0)
8806 {
8807 if (mips_opts.isa != ISA_MIPS1 || mips_opts.micromips)
8808 {
8809 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
8810 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8811 break;
8812 }
8813 breg = mips_gp_register;
8814 r = BFD_RELOC_MIPS_LITERAL;
8815 goto dob;
8816 }
8817 else
8818 {
8819 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8820 used_at = 1;
8821 if (mips_pic != NO_PIC)
8822 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
8823 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8824 else
8825 {
8826 /* FIXME: This won't work for a 64 bit address. */
8827 macro_build_lui (&offset_expr, AT);
8828 }
8829
8830 if (mips_opts.isa != ISA_MIPS1 || mips_opts.micromips)
8831 {
8832 macro_build (&offset_expr, "ldc1", "T,o(b)",
8833 treg, BFD_RELOC_LO16, AT);
8834 break;
8835 }
8836 breg = AT;
8837 r = BFD_RELOC_LO16;
8838 goto dob;
8839 }
8840
8841 case M_L_DOB:
8842 /* Even on a big endian machine $fn comes before $fn+1. We have
8843 to adjust when loading from memory. */
8844 r = BFD_RELOC_LO16;
8845 dob:
8846 gas_assert (!mips_opts.micromips);
8847 gas_assert (mips_opts.isa == ISA_MIPS1);
8848 macro_build (&offset_expr, "lwc1", "T,o(b)",
8849 target_big_endian ? treg + 1 : treg, r, breg);
8850 /* FIXME: A possible overflow which I don't know how to deal
8851 with. */
8852 offset_expr.X_add_number += 4;
8853 macro_build (&offset_expr, "lwc1", "T,o(b)",
8854 target_big_endian ? treg : treg + 1, r, breg);
8855 break;
8856
8857 case M_S_DOB:
8858 gas_assert (!mips_opts.micromips);
8859 gas_assert (mips_opts.isa == ISA_MIPS1);
8860 /* Even on a big endian machine $fn comes before $fn+1. We have
8861 to adjust when storing to memory. */
8862 macro_build (&offset_expr, "swc1", "T,o(b)",
8863 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
8864 offset_expr.X_add_number += 4;
8865 macro_build (&offset_expr, "swc1", "T,o(b)",
8866 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
8867 break;
8868
8869 case M_L_DAB:
8870 gas_assert (!mips_opts.micromips);
8871 /*
8872 * The MIPS assembler seems to check for X_add_number not
8873 * being double aligned and generating:
8874 * lui at,%hi(foo+1)
8875 * addu at,at,v1
8876 * addiu at,at,%lo(foo+1)
8877 * lwc1 f2,0(at)
8878 * lwc1 f3,4(at)
8879 * But, the resulting address is the same after relocation so why
8880 * generate the extra instruction?
8881 */
8882 /* Itbl support may require additional care here. */
8883 coproc = 1;
8884 fmt = "T,o(b)";
8885 if (mips_opts.isa != ISA_MIPS1)
8886 {
8887 s = "ldc1";
8888 goto ld_st;
8889 }
8890 s = "lwc1";
8891 goto ldd_std;
8892
8893 case M_S_DAB:
8894 gas_assert (!mips_opts.micromips);
8895 /* Itbl support may require additional care here. */
8896 coproc = 1;
8897 fmt = "T,o(b)";
8898 if (mips_opts.isa != ISA_MIPS1)
8899 {
8900 s = "sdc1";
8901 goto ld_st;
8902 }
8903 s = "swc1";
8904 goto ldd_std;
8905
8906 case M_LD_AB:
8907 fmt = "t,o(b)";
8908 if (HAVE_64BIT_GPRS)
8909 {
8910 s = "ld";
8911 goto ld;
8912 }
8913 s = "lw";
8914 goto ldd_std;
8915
8916 case M_SD_AB:
8917 fmt = "t,o(b)";
8918 if (HAVE_64BIT_GPRS)
8919 {
8920 s = "sd";
8921 goto ld_st;
8922 }
8923 s = "sw";
8924
8925 ldd_std:
8926 if (offset_expr.X_op != O_symbol
8927 && offset_expr.X_op != O_constant)
8928 {
8929 as_bad (_("Expression too complex"));
8930 offset_expr.X_op = O_constant;
8931 }
8932
8933 if (HAVE_32BIT_ADDRESSES
8934 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
8935 {
8936 char value [32];
8937
8938 sprintf_vma (value, offset_expr.X_add_number);
8939 as_bad (_("Number (0x%s) larger than 32 bits"), value);
8940 }
8941
8942 /* Even on a big endian machine $fn comes before $fn+1. We have
8943 to adjust when loading from memory. We set coproc if we must
8944 load $fn+1 first. */
8945 /* Itbl support may require additional care here. */
8946 if (!target_big_endian)
8947 coproc = 0;
8948
8949 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
8950 {
8951 /* If this is a reference to a GP relative symbol, we want
8952 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
8953 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
8954 If we have a base register, we use this
8955 addu $at,$breg,$gp
8956 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
8957 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
8958 If this is not a GP relative symbol, we want
8959 lui $at,<sym> (BFD_RELOC_HI16_S)
8960 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
8961 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
8962 If there is a base register, we add it to $at after the
8963 lui instruction. If there is a constant, we always use
8964 the last case. */
8965 if (offset_expr.X_op == O_symbol
8966 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8967 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8968 {
8969 relax_start (offset_expr.X_add_symbol);
8970 if (breg == 0)
8971 {
8972 tempreg = mips_gp_register;
8973 }
8974 else
8975 {
8976 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8977 AT, breg, mips_gp_register);
8978 tempreg = AT;
8979 used_at = 1;
8980 }
8981
8982 /* Itbl support may require additional care here. */
8983 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
8984 BFD_RELOC_GPREL16, tempreg);
8985 offset_expr.X_add_number += 4;
8986
8987 /* Set mips_optimize to 2 to avoid inserting an
8988 undesired nop. */
8989 hold_mips_optimize = mips_optimize;
8990 mips_optimize = 2;
8991 /* Itbl support may require additional care here. */
8992 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
8993 BFD_RELOC_GPREL16, tempreg);
8994 mips_optimize = hold_mips_optimize;
8995
8996 relax_switch ();
8997
8998 offset_expr.X_add_number -= 4;
8999 }
9000 used_at = 1;
9001 macro_build_lui (&offset_expr, AT);
9002 if (breg != 0)
9003 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9004 /* Itbl support may require additional care here. */
9005 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9006 BFD_RELOC_LO16, AT);
9007 /* FIXME: How do we handle overflow here? */
9008 offset_expr.X_add_number += 4;
9009 /* Itbl support may require additional care here. */
9010 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9011 BFD_RELOC_LO16, AT);
9012 if (mips_relax.sequence)
9013 relax_end ();
9014 }
9015 else if (!mips_big_got)
9016 {
9017 /* If this is a reference to an external symbol, we want
9018 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9019 nop
9020 <op> $treg,0($at)
9021 <op> $treg+1,4($at)
9022 Otherwise we want
9023 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9024 nop
9025 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9026 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9027 If there is a base register we add it to $at before the
9028 lwc1 instructions. If there is a constant we include it
9029 in the lwc1 instructions. */
9030 used_at = 1;
9031 expr1.X_add_number = offset_expr.X_add_number;
9032 if (expr1.X_add_number < -0x8000
9033 || expr1.X_add_number >= 0x8000 - 4)
9034 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9035 load_got_offset (AT, &offset_expr);
9036 load_delay_nop ();
9037 if (breg != 0)
9038 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9039
9040 /* Set mips_optimize to 2 to avoid inserting an undesired
9041 nop. */
9042 hold_mips_optimize = mips_optimize;
9043 mips_optimize = 2;
9044
9045 /* Itbl support may require additional care here. */
9046 relax_start (offset_expr.X_add_symbol);
9047 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9048 BFD_RELOC_LO16, AT);
9049 expr1.X_add_number += 4;
9050 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9051 BFD_RELOC_LO16, AT);
9052 relax_switch ();
9053 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9054 BFD_RELOC_LO16, AT);
9055 offset_expr.X_add_number += 4;
9056 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9057 BFD_RELOC_LO16, AT);
9058 relax_end ();
9059
9060 mips_optimize = hold_mips_optimize;
9061 }
9062 else if (mips_big_got)
9063 {
9064 int gpdelay;
9065
9066 /* If this is a reference to an external symbol, we want
9067 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9068 addu $at,$at,$gp
9069 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
9070 nop
9071 <op> $treg,0($at)
9072 <op> $treg+1,4($at)
9073 Otherwise we want
9074 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9075 nop
9076 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9077 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9078 If there is a base register we add it to $at before the
9079 lwc1 instructions. If there is a constant we include it
9080 in the lwc1 instructions. */
9081 used_at = 1;
9082 expr1.X_add_number = offset_expr.X_add_number;
9083 offset_expr.X_add_number = 0;
9084 if (expr1.X_add_number < -0x8000
9085 || expr1.X_add_number >= 0x8000 - 4)
9086 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9087 gpdelay = reg_needs_delay (mips_gp_register);
9088 relax_start (offset_expr.X_add_symbol);
9089 macro_build (&offset_expr, "lui", LUI_FMT,
9090 AT, BFD_RELOC_MIPS_GOT_HI16);
9091 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9092 AT, AT, mips_gp_register);
9093 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9094 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
9095 load_delay_nop ();
9096 if (breg != 0)
9097 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9098 /* Itbl support may require additional care here. */
9099 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9100 BFD_RELOC_LO16, AT);
9101 expr1.X_add_number += 4;
9102
9103 /* Set mips_optimize to 2 to avoid inserting an undesired
9104 nop. */
9105 hold_mips_optimize = mips_optimize;
9106 mips_optimize = 2;
9107 /* Itbl support may require additional care here. */
9108 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9109 BFD_RELOC_LO16, AT);
9110 mips_optimize = hold_mips_optimize;
9111 expr1.X_add_number -= 4;
9112
9113 relax_switch ();
9114 offset_expr.X_add_number = expr1.X_add_number;
9115 if (gpdelay)
9116 macro_build (NULL, "nop", "");
9117 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9118 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9119 load_delay_nop ();
9120 if (breg != 0)
9121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9122 /* Itbl support may require additional care here. */
9123 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9124 BFD_RELOC_LO16, AT);
9125 offset_expr.X_add_number += 4;
9126
9127 /* Set mips_optimize to 2 to avoid inserting an undesired
9128 nop. */
9129 hold_mips_optimize = mips_optimize;
9130 mips_optimize = 2;
9131 /* Itbl support may require additional care here. */
9132 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9133 BFD_RELOC_LO16, AT);
9134 mips_optimize = hold_mips_optimize;
9135 relax_end ();
9136 }
9137 else
9138 abort ();
9139
9140 break;
9141
9142 case M_LD_OB:
9143 s = HAVE_64BIT_GPRS ? "ld" : "lw";
9144 goto sd_ob;
9145 case M_SD_OB:
9146 s = HAVE_64BIT_GPRS ? "sd" : "sw";
9147 sd_ob:
9148 macro_build (&offset_expr, s, "t,o(b)", treg,
9149 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9150 breg);
9151 if (!HAVE_64BIT_GPRS)
9152 {
9153 offset_expr.X_add_number += 4;
9154 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
9155 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9156 breg);
9157 }
9158 break;
9159
9160
9161 case M_SAA_AB:
9162 ab = 1;
9163 case M_SAA_OB:
9164 s = "saa";
9165 off0 = 1;
9166 fmt = "t,(b)";
9167 goto ld_st;
9168 case M_SAAD_AB:
9169 ab = 1;
9170 case M_SAAD_OB:
9171 s = "saad";
9172 off0 = 1;
9173 fmt = "t,(b)";
9174 goto ld_st;
9175
9176 /* New code added to support COPZ instructions.
9177 This code builds table entries out of the macros in mip_opcodes.
9178 R4000 uses interlocks to handle coproc delays.
9179 Other chips (like the R3000) require nops to be inserted for delays.
9180
9181 FIXME: Currently, we require that the user handle delays.
9182 In order to fill delay slots for non-interlocked chips,
9183 we must have a way to specify delays based on the coprocessor.
9184 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
9185 What are the side-effects of the cop instruction?
9186 What cache support might we have and what are its effects?
9187 Both coprocessor & memory require delays. how long???
9188 What registers are read/set/modified?
9189
9190 If an itbl is provided to interpret cop instructions,
9191 this knowledge can be encoded in the itbl spec. */
9192
9193 case M_COP0:
9194 s = "c0";
9195 goto copz;
9196 case M_COP1:
9197 s = "c1";
9198 goto copz;
9199 case M_COP2:
9200 s = "c2";
9201 goto copz;
9202 case M_COP3:
9203 s = "c3";
9204 copz:
9205 gas_assert (!mips_opts.micromips);
9206 /* For now we just do C (same as Cz). The parameter will be
9207 stored in insn_opcode by mips_ip. */
9208 macro_build (NULL, s, "C", ip->insn_opcode);
9209 break;
9210
9211 case M_MOVE:
9212 move_register (dreg, sreg);
9213 break;
9214
9215 case M_DMUL:
9216 dbl = 1;
9217 case M_MUL:
9218 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
9219 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9220 break;
9221
9222 case M_DMUL_I:
9223 dbl = 1;
9224 case M_MUL_I:
9225 /* The MIPS assembler some times generates shifts and adds. I'm
9226 not trying to be that fancy. GCC should do this for us
9227 anyway. */
9228 used_at = 1;
9229 load_register (AT, &imm_expr, dbl);
9230 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
9231 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9232 break;
9233
9234 case M_DMULO_I:
9235 dbl = 1;
9236 case M_MULO_I:
9237 imm = 1;
9238 goto do_mulo;
9239
9240 case M_DMULO:
9241 dbl = 1;
9242 case M_MULO:
9243 do_mulo:
9244 start_noreorder ();
9245 used_at = 1;
9246 if (imm)
9247 load_register (AT, &imm_expr, dbl);
9248 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
9249 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9250 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, dreg, dreg, RA);
9251 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9252 if (mips_trap)
9253 macro_build (NULL, "tne", TRAP_FMT, dreg, AT, 6);
9254 else
9255 {
9256 if (mips_opts.micromips)
9257 micromips_label_expr (&label_expr);
9258 else
9259 label_expr.X_add_number = 8;
9260 macro_build (&label_expr, "beq", "s,t,p", dreg, AT);
9261 macro_build (NULL, "nop", "");
9262 macro_build (NULL, "break", BRK_FMT, 6);
9263 if (mips_opts.micromips)
9264 micromips_add_label ();
9265 }
9266 end_noreorder ();
9267 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9268 break;
9269
9270 case M_DMULOU_I:
9271 dbl = 1;
9272 case M_MULOU_I:
9273 imm = 1;
9274 goto do_mulou;
9275
9276 case M_DMULOU:
9277 dbl = 1;
9278 case M_MULOU:
9279 do_mulou:
9280 start_noreorder ();
9281 used_at = 1;
9282 if (imm)
9283 load_register (AT, &imm_expr, dbl);
9284 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
9285 sreg, imm ? AT : treg);
9286 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9287 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9288 if (mips_trap)
9289 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
9290 else
9291 {
9292 if (mips_opts.micromips)
9293 micromips_label_expr (&label_expr);
9294 else
9295 label_expr.X_add_number = 8;
9296 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
9297 macro_build (NULL, "nop", "");
9298 macro_build (NULL, "break", BRK_FMT, 6);
9299 if (mips_opts.micromips)
9300 micromips_add_label ();
9301 }
9302 end_noreorder ();
9303 break;
9304
9305 case M_DROL:
9306 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9307 {
9308 if (dreg == sreg)
9309 {
9310 tempreg = AT;
9311 used_at = 1;
9312 }
9313 else
9314 {
9315 tempreg = dreg;
9316 }
9317 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
9318 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
9319 break;
9320 }
9321 used_at = 1;
9322 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9323 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
9324 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
9325 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9326 break;
9327
9328 case M_ROL:
9329 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9330 {
9331 if (dreg == sreg)
9332 {
9333 tempreg = AT;
9334 used_at = 1;
9335 }
9336 else
9337 {
9338 tempreg = dreg;
9339 }
9340 macro_build (NULL, "negu", "d,w", tempreg, treg);
9341 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
9342 break;
9343 }
9344 used_at = 1;
9345 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9346 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
9347 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
9348 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9349 break;
9350
9351 case M_DROL_I:
9352 {
9353 unsigned int rot;
9354 char *l;
9355 char *rr;
9356
9357 if (imm_expr.X_op != O_constant)
9358 as_bad (_("Improper rotate count"));
9359 rot = imm_expr.X_add_number & 0x3f;
9360 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9361 {
9362 rot = (64 - rot) & 0x3f;
9363 if (rot >= 32)
9364 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9365 else
9366 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9367 break;
9368 }
9369 if (rot == 0)
9370 {
9371 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9372 break;
9373 }
9374 l = (rot < 0x20) ? "dsll" : "dsll32";
9375 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
9376 rot &= 0x1f;
9377 used_at = 1;
9378 macro_build (NULL, l, SHFT_FMT, AT, sreg, rot);
9379 macro_build (NULL, rr, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9380 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9381 }
9382 break;
9383
9384 case M_ROL_I:
9385 {
9386 unsigned int rot;
9387
9388 if (imm_expr.X_op != O_constant)
9389 as_bad (_("Improper rotate count"));
9390 rot = imm_expr.X_add_number & 0x1f;
9391 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9392 {
9393 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, (32 - rot) & 0x1f);
9394 break;
9395 }
9396 if (rot == 0)
9397 {
9398 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9399 break;
9400 }
9401 used_at = 1;
9402 macro_build (NULL, "sll", SHFT_FMT, AT, sreg, rot);
9403 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9404 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9405 }
9406 break;
9407
9408 case M_DROR:
9409 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9410 {
9411 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
9412 break;
9413 }
9414 used_at = 1;
9415 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9416 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
9417 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
9418 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9419 break;
9420
9421 case M_ROR:
9422 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9423 {
9424 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
9425 break;
9426 }
9427 used_at = 1;
9428 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9429 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
9430 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
9431 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9432 break;
9433
9434 case M_DROR_I:
9435 {
9436 unsigned int rot;
9437 char *l;
9438 char *rr;
9439
9440 if (imm_expr.X_op != O_constant)
9441 as_bad (_("Improper rotate count"));
9442 rot = imm_expr.X_add_number & 0x3f;
9443 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9444 {
9445 if (rot >= 32)
9446 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9447 else
9448 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9449 break;
9450 }
9451 if (rot == 0)
9452 {
9453 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9454 break;
9455 }
9456 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
9457 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
9458 rot &= 0x1f;
9459 used_at = 1;
9460 macro_build (NULL, rr, SHFT_FMT, AT, sreg, rot);
9461 macro_build (NULL, l, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9462 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9463 }
9464 break;
9465
9466 case M_ROR_I:
9467 {
9468 unsigned int rot;
9469
9470 if (imm_expr.X_op != O_constant)
9471 as_bad (_("Improper rotate count"));
9472 rot = imm_expr.X_add_number & 0x1f;
9473 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9474 {
9475 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, rot);
9476 break;
9477 }
9478 if (rot == 0)
9479 {
9480 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9481 break;
9482 }
9483 used_at = 1;
9484 macro_build (NULL, "srl", SHFT_FMT, AT, sreg, rot);
9485 macro_build (NULL, "sll", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9486 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9487 }
9488 break;
9489
9490 case M_SEQ:
9491 if (sreg == 0)
9492 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
9493 else if (treg == 0)
9494 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9495 else
9496 {
9497 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
9498 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
9499 }
9500 break;
9501
9502 case M_SEQ_I:
9503 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
9504 {
9505 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9506 break;
9507 }
9508 if (sreg == 0)
9509 {
9510 as_warn (_("Instruction %s: result is always false"),
9511 ip->insn_mo->name);
9512 move_register (dreg, 0);
9513 break;
9514 }
9515 if (CPU_HAS_SEQ (mips_opts.arch)
9516 && -512 <= imm_expr.X_add_number
9517 && imm_expr.X_add_number < 512)
9518 {
9519 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
9520 (int) imm_expr.X_add_number);
9521 break;
9522 }
9523 if (imm_expr.X_op == O_constant
9524 && imm_expr.X_add_number >= 0
9525 && imm_expr.X_add_number < 0x10000)
9526 {
9527 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
9528 }
9529 else if (imm_expr.X_op == O_constant
9530 && imm_expr.X_add_number > -0x8000
9531 && imm_expr.X_add_number < 0)
9532 {
9533 imm_expr.X_add_number = -imm_expr.X_add_number;
9534 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
9535 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9536 }
9537 else if (CPU_HAS_SEQ (mips_opts.arch))
9538 {
9539 used_at = 1;
9540 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9541 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
9542 break;
9543 }
9544 else
9545 {
9546 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9547 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
9548 used_at = 1;
9549 }
9550 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
9551 break;
9552
9553 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
9554 s = "slt";
9555 goto sge;
9556 case M_SGEU:
9557 s = "sltu";
9558 sge:
9559 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
9560 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9561 break;
9562
9563 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
9564 case M_SGEU_I:
9565 if (imm_expr.X_op == O_constant
9566 && imm_expr.X_add_number >= -0x8000
9567 && imm_expr.X_add_number < 0x8000)
9568 {
9569 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
9570 dreg, sreg, BFD_RELOC_LO16);
9571 }
9572 else
9573 {
9574 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9575 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
9576 dreg, sreg, AT);
9577 used_at = 1;
9578 }
9579 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9580 break;
9581
9582 case M_SGT: /* sreg > treg <==> treg < sreg */
9583 s = "slt";
9584 goto sgt;
9585 case M_SGTU:
9586 s = "sltu";
9587 sgt:
9588 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
9589 break;
9590
9591 case M_SGT_I: /* sreg > I <==> I < sreg */
9592 s = "slt";
9593 goto sgti;
9594 case M_SGTU_I:
9595 s = "sltu";
9596 sgti:
9597 used_at = 1;
9598 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9599 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
9600 break;
9601
9602 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
9603 s = "slt";
9604 goto sle;
9605 case M_SLEU:
9606 s = "sltu";
9607 sle:
9608 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
9609 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9610 break;
9611
9612 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
9613 s = "slt";
9614 goto slei;
9615 case M_SLEU_I:
9616 s = "sltu";
9617 slei:
9618 used_at = 1;
9619 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9620 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
9621 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9622 break;
9623
9624 case M_SLT_I:
9625 if (imm_expr.X_op == O_constant
9626 && imm_expr.X_add_number >= -0x8000
9627 && imm_expr.X_add_number < 0x8000)
9628 {
9629 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9630 break;
9631 }
9632 used_at = 1;
9633 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9634 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
9635 break;
9636
9637 case M_SLTU_I:
9638 if (imm_expr.X_op == O_constant
9639 && imm_expr.X_add_number >= -0x8000
9640 && imm_expr.X_add_number < 0x8000)
9641 {
9642 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
9643 BFD_RELOC_LO16);
9644 break;
9645 }
9646 used_at = 1;
9647 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9648 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
9649 break;
9650
9651 case M_SNE:
9652 if (sreg == 0)
9653 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
9654 else if (treg == 0)
9655 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
9656 else
9657 {
9658 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
9659 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
9660 }
9661 break;
9662
9663 case M_SNE_I:
9664 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
9665 {
9666 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
9667 break;
9668 }
9669 if (sreg == 0)
9670 {
9671 as_warn (_("Instruction %s: result is always true"),
9672 ip->insn_mo->name);
9673 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
9674 dreg, 0, BFD_RELOC_LO16);
9675 break;
9676 }
9677 if (CPU_HAS_SEQ (mips_opts.arch)
9678 && -512 <= imm_expr.X_add_number
9679 && imm_expr.X_add_number < 512)
9680 {
9681 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
9682 (int) imm_expr.X_add_number);
9683 break;
9684 }
9685 if (imm_expr.X_op == O_constant
9686 && imm_expr.X_add_number >= 0
9687 && imm_expr.X_add_number < 0x10000)
9688 {
9689 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
9690 }
9691 else if (imm_expr.X_op == O_constant
9692 && imm_expr.X_add_number > -0x8000
9693 && imm_expr.X_add_number < 0)
9694 {
9695 imm_expr.X_add_number = -imm_expr.X_add_number;
9696 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
9697 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9698 }
9699 else if (CPU_HAS_SEQ (mips_opts.arch))
9700 {
9701 used_at = 1;
9702 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9703 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
9704 break;
9705 }
9706 else
9707 {
9708 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9709 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
9710 used_at = 1;
9711 }
9712 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
9713 break;
9714
9715 case M_SUB_I:
9716 s = "addi";
9717 s2 = "sub";
9718 goto do_subi;
9719 case M_SUBU_I:
9720 s = "addiu";
9721 s2 = "subu";
9722 goto do_subi;
9723 case M_DSUB_I:
9724 dbl = 1;
9725 s = "daddi";
9726 s2 = "dsub";
9727 if (!mips_opts.micromips)
9728 goto do_subi;
9729 if (imm_expr.X_op == O_constant
9730 && imm_expr.X_add_number > -0x200
9731 && imm_expr.X_add_number <= 0x200)
9732 {
9733 macro_build (NULL, s, "t,r,.", dreg, sreg, -imm_expr.X_add_number);
9734 break;
9735 }
9736 goto do_subi_i;
9737 case M_DSUBU_I:
9738 dbl = 1;
9739 s = "daddiu";
9740 s2 = "dsubu";
9741 do_subi:
9742 if (imm_expr.X_op == O_constant
9743 && imm_expr.X_add_number > -0x8000
9744 && imm_expr.X_add_number <= 0x8000)
9745 {
9746 imm_expr.X_add_number = -imm_expr.X_add_number;
9747 macro_build (&imm_expr, s, "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9748 break;
9749 }
9750 do_subi_i:
9751 used_at = 1;
9752 load_register (AT, &imm_expr, dbl);
9753 macro_build (NULL, s2, "d,v,t", dreg, sreg, AT);
9754 break;
9755
9756 case M_TEQ_I:
9757 s = "teq";
9758 goto trap;
9759 case M_TGE_I:
9760 s = "tge";
9761 goto trap;
9762 case M_TGEU_I:
9763 s = "tgeu";
9764 goto trap;
9765 case M_TLT_I:
9766 s = "tlt";
9767 goto trap;
9768 case M_TLTU_I:
9769 s = "tltu";
9770 goto trap;
9771 case M_TNE_I:
9772 s = "tne";
9773 trap:
9774 used_at = 1;
9775 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9776 macro_build (NULL, s, "s,t", sreg, AT);
9777 break;
9778
9779 case M_TRUNCWS:
9780 case M_TRUNCWD:
9781 gas_assert (!mips_opts.micromips);
9782 gas_assert (mips_opts.isa == ISA_MIPS1);
9783 used_at = 1;
9784 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
9785 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
9786
9787 /*
9788 * Is the double cfc1 instruction a bug in the mips assembler;
9789 * or is there a reason for it?
9790 */
9791 start_noreorder ();
9792 macro_build (NULL, "cfc1", "t,G", treg, RA);
9793 macro_build (NULL, "cfc1", "t,G", treg, RA);
9794 macro_build (NULL, "nop", "");
9795 expr1.X_add_number = 3;
9796 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
9797 expr1.X_add_number = 2;
9798 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
9799 macro_build (NULL, "ctc1", "t,G", AT, RA);
9800 macro_build (NULL, "nop", "");
9801 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
9802 dreg, sreg);
9803 macro_build (NULL, "ctc1", "t,G", treg, RA);
9804 macro_build (NULL, "nop", "");
9805 end_noreorder ();
9806 break;
9807
9808 case M_ULH_A:
9809 ab = 1;
9810 case M_ULH:
9811 s = "lb";
9812 s2 = "lbu";
9813 off = 1;
9814 goto uld_st;
9815 case M_ULHU_A:
9816 ab = 1;
9817 case M_ULHU:
9818 s = "lbu";
9819 s2 = "lbu";
9820 off = 1;
9821 goto uld_st;
9822 case M_ULW_A:
9823 ab = 1;
9824 case M_ULW:
9825 s = "lwl";
9826 s2 = "lwr";
9827 off12 = mips_opts.micromips;
9828 off = 3;
9829 goto uld_st;
9830 case M_ULD_A:
9831 ab = 1;
9832 case M_ULD:
9833 s = "ldl";
9834 s2 = "ldr";
9835 off12 = mips_opts.micromips;
9836 off = 7;
9837 goto uld_st;
9838 case M_USH_A:
9839 ab = 1;
9840 case M_USH:
9841 s = "sb";
9842 s2 = "sb";
9843 off = 1;
9844 ust = 1;
9845 goto uld_st;
9846 case M_USW_A:
9847 ab = 1;
9848 case M_USW:
9849 s = "swl";
9850 s2 = "swr";
9851 off12 = mips_opts.micromips;
9852 off = 3;
9853 ust = 1;
9854 goto uld_st;
9855 case M_USD_A:
9856 ab = 1;
9857 case M_USD:
9858 s = "sdl";
9859 s2 = "sdr";
9860 off12 = mips_opts.micromips;
9861 off = 7;
9862 ust = 1;
9863
9864 uld_st:
9865 if (!ab && offset_expr.X_add_number >= 0x8000 - off)
9866 as_bad (_("Operand overflow"));
9867
9868 ep = &offset_expr;
9869 expr1.X_add_number = 0;
9870 if (ab)
9871 {
9872 used_at = 1;
9873 tempreg = AT;
9874 load_address (tempreg, ep, &used_at);
9875 if (breg != 0)
9876 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9877 tempreg, tempreg, breg);
9878 breg = tempreg;
9879 tempreg = treg;
9880 ep = &expr1;
9881 }
9882 else if (off12
9883 && (offset_expr.X_op != O_constant
9884 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number)
9885 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number + off)))
9886 {
9887 used_at = 1;
9888 tempreg = AT;
9889 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg,
9890 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
9891 breg = tempreg;
9892 tempreg = treg;
9893 ep = &expr1;
9894 }
9895 else if (!ust && treg == breg)
9896 {
9897 used_at = 1;
9898 tempreg = AT;
9899 }
9900 else
9901 tempreg = treg;
9902
9903 if (off == 1)
9904 goto ulh_sh;
9905
9906 if (!target_big_endian)
9907 ep->X_add_number += off;
9908 if (!off12)
9909 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
9910 else
9911 macro_build (NULL, s, "t,~(b)",
9912 tempreg, (unsigned long) ep->X_add_number, breg);
9913
9914 if (!target_big_endian)
9915 ep->X_add_number -= off;
9916 else
9917 ep->X_add_number += off;
9918 if (!off12)
9919 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
9920 else
9921 macro_build (NULL, s2, "t,~(b)",
9922 tempreg, (unsigned long) ep->X_add_number, breg);
9923
9924 /* If necessary, move the result in tempreg to the final destination. */
9925 if (!ust && treg != tempreg)
9926 {
9927 /* Protect second load's delay slot. */
9928 load_delay_nop ();
9929 move_register (treg, tempreg);
9930 }
9931 break;
9932
9933 ulh_sh:
9934 used_at = 1;
9935 if (target_big_endian == ust)
9936 ep->X_add_number += off;
9937 tempreg = ust || ab ? treg : AT;
9938 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
9939
9940 /* For halfword transfers we need a temporary register to shuffle
9941 bytes. Unfortunately for M_USH_A we have none available before
9942 the next store as AT holds the base address. We deal with this
9943 case by clobbering TREG and then restoring it as with ULH. */
9944 tempreg = ust == ab ? treg : AT;
9945 if (ust)
9946 macro_build (NULL, "srl", SHFT_FMT, tempreg, treg, 8);
9947
9948 if (target_big_endian == ust)
9949 ep->X_add_number -= off;
9950 else
9951 ep->X_add_number += off;
9952 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
9953
9954 /* For M_USH_A re-retrieve the LSB. */
9955 if (ust && ab)
9956 {
9957 if (target_big_endian)
9958 ep->X_add_number += off;
9959 else
9960 ep->X_add_number -= off;
9961 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
9962 }
9963 /* For ULH and M_USH_A OR the LSB in. */
9964 if (!ust || ab)
9965 {
9966 tempreg = !ab ? AT : treg;
9967 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
9968 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
9969 }
9970 break;
9971
9972 default:
9973 /* FIXME: Check if this is one of the itbl macros, since they
9974 are added dynamically. */
9975 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
9976 break;
9977 }
9978 if (!mips_opts.at && used_at)
9979 as_bad (_("Macro used $at after \".set noat\""));
9980 }
9981
9982 /* Implement macros in mips16 mode. */
9983
9984 static void
9985 mips16_macro (struct mips_cl_insn *ip)
9986 {
9987 int mask;
9988 int xreg, yreg, zreg, tmp;
9989 expressionS expr1;
9990 int dbl;
9991 const char *s, *s2, *s3;
9992
9993 mask = ip->insn_mo->mask;
9994
9995 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
9996 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
9997 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
9998
9999 expr1.X_op = O_constant;
10000 expr1.X_op_symbol = NULL;
10001 expr1.X_add_symbol = NULL;
10002 expr1.X_add_number = 1;
10003
10004 dbl = 0;
10005
10006 switch (mask)
10007 {
10008 default:
10009 internalError ();
10010
10011 case M_DDIV_3:
10012 dbl = 1;
10013 case M_DIV_3:
10014 s = "mflo";
10015 goto do_div3;
10016 case M_DREM_3:
10017 dbl = 1;
10018 case M_REM_3:
10019 s = "mfhi";
10020 do_div3:
10021 start_noreorder ();
10022 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
10023 expr1.X_add_number = 2;
10024 macro_build (&expr1, "bnez", "x,p", yreg);
10025 macro_build (NULL, "break", "6", 7);
10026
10027 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
10028 since that causes an overflow. We should do that as well,
10029 but I don't see how to do the comparisons without a temporary
10030 register. */
10031 end_noreorder ();
10032 macro_build (NULL, s, "x", zreg);
10033 break;
10034
10035 case M_DIVU_3:
10036 s = "divu";
10037 s2 = "mflo";
10038 goto do_divu3;
10039 case M_REMU_3:
10040 s = "divu";
10041 s2 = "mfhi";
10042 goto do_divu3;
10043 case M_DDIVU_3:
10044 s = "ddivu";
10045 s2 = "mflo";
10046 goto do_divu3;
10047 case M_DREMU_3:
10048 s = "ddivu";
10049 s2 = "mfhi";
10050 do_divu3:
10051 start_noreorder ();
10052 macro_build (NULL, s, "0,x,y", xreg, yreg);
10053 expr1.X_add_number = 2;
10054 macro_build (&expr1, "bnez", "x,p", yreg);
10055 macro_build (NULL, "break", "6", 7);
10056 end_noreorder ();
10057 macro_build (NULL, s2, "x", zreg);
10058 break;
10059
10060 case M_DMUL:
10061 dbl = 1;
10062 case M_MUL:
10063 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
10064 macro_build (NULL, "mflo", "x", zreg);
10065 break;
10066
10067 case M_DSUBU_I:
10068 dbl = 1;
10069 goto do_subu;
10070 case M_SUBU_I:
10071 do_subu:
10072 if (imm_expr.X_op != O_constant)
10073 as_bad (_("Unsupported large constant"));
10074 imm_expr.X_add_number = -imm_expr.X_add_number;
10075 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
10076 break;
10077
10078 case M_SUBU_I_2:
10079 if (imm_expr.X_op != O_constant)
10080 as_bad (_("Unsupported large constant"));
10081 imm_expr.X_add_number = -imm_expr.X_add_number;
10082 macro_build (&imm_expr, "addiu", "x,k", xreg);
10083 break;
10084
10085 case M_DSUBU_I_2:
10086 if (imm_expr.X_op != O_constant)
10087 as_bad (_("Unsupported large constant"));
10088 imm_expr.X_add_number = -imm_expr.X_add_number;
10089 macro_build (&imm_expr, "daddiu", "y,j", yreg);
10090 break;
10091
10092 case M_BEQ:
10093 s = "cmp";
10094 s2 = "bteqz";
10095 goto do_branch;
10096 case M_BNE:
10097 s = "cmp";
10098 s2 = "btnez";
10099 goto do_branch;
10100 case M_BLT:
10101 s = "slt";
10102 s2 = "btnez";
10103 goto do_branch;
10104 case M_BLTU:
10105 s = "sltu";
10106 s2 = "btnez";
10107 goto do_branch;
10108 case M_BLE:
10109 s = "slt";
10110 s2 = "bteqz";
10111 goto do_reverse_branch;
10112 case M_BLEU:
10113 s = "sltu";
10114 s2 = "bteqz";
10115 goto do_reverse_branch;
10116 case M_BGE:
10117 s = "slt";
10118 s2 = "bteqz";
10119 goto do_branch;
10120 case M_BGEU:
10121 s = "sltu";
10122 s2 = "bteqz";
10123 goto do_branch;
10124 case M_BGT:
10125 s = "slt";
10126 s2 = "btnez";
10127 goto do_reverse_branch;
10128 case M_BGTU:
10129 s = "sltu";
10130 s2 = "btnez";
10131
10132 do_reverse_branch:
10133 tmp = xreg;
10134 xreg = yreg;
10135 yreg = tmp;
10136
10137 do_branch:
10138 macro_build (NULL, s, "x,y", xreg, yreg);
10139 macro_build (&offset_expr, s2, "p");
10140 break;
10141
10142 case M_BEQ_I:
10143 s = "cmpi";
10144 s2 = "bteqz";
10145 s3 = "x,U";
10146 goto do_branch_i;
10147 case M_BNE_I:
10148 s = "cmpi";
10149 s2 = "btnez";
10150 s3 = "x,U";
10151 goto do_branch_i;
10152 case M_BLT_I:
10153 s = "slti";
10154 s2 = "btnez";
10155 s3 = "x,8";
10156 goto do_branch_i;
10157 case M_BLTU_I:
10158 s = "sltiu";
10159 s2 = "btnez";
10160 s3 = "x,8";
10161 goto do_branch_i;
10162 case M_BLE_I:
10163 s = "slti";
10164 s2 = "btnez";
10165 s3 = "x,8";
10166 goto do_addone_branch_i;
10167 case M_BLEU_I:
10168 s = "sltiu";
10169 s2 = "btnez";
10170 s3 = "x,8";
10171 goto do_addone_branch_i;
10172 case M_BGE_I:
10173 s = "slti";
10174 s2 = "bteqz";
10175 s3 = "x,8";
10176 goto do_branch_i;
10177 case M_BGEU_I:
10178 s = "sltiu";
10179 s2 = "bteqz";
10180 s3 = "x,8";
10181 goto do_branch_i;
10182 case M_BGT_I:
10183 s = "slti";
10184 s2 = "bteqz";
10185 s3 = "x,8";
10186 goto do_addone_branch_i;
10187 case M_BGTU_I:
10188 s = "sltiu";
10189 s2 = "bteqz";
10190 s3 = "x,8";
10191
10192 do_addone_branch_i:
10193 if (imm_expr.X_op != O_constant)
10194 as_bad (_("Unsupported large constant"));
10195 ++imm_expr.X_add_number;
10196
10197 do_branch_i:
10198 macro_build (&imm_expr, s, s3, xreg);
10199 macro_build (&offset_expr, s2, "p");
10200 break;
10201
10202 case M_ABS:
10203 expr1.X_add_number = 0;
10204 macro_build (&expr1, "slti", "x,8", yreg);
10205 if (xreg != yreg)
10206 move_register (xreg, yreg);
10207 expr1.X_add_number = 2;
10208 macro_build (&expr1, "bteqz", "p");
10209 macro_build (NULL, "neg", "x,w", xreg, xreg);
10210 }
10211 }
10212
10213 /* For consistency checking, verify that all bits are specified either
10214 by the match/mask part of the instruction definition, or by the
10215 operand list. */
10216 static int
10217 validate_mips_insn (const struct mips_opcode *opc)
10218 {
10219 const char *p = opc->args;
10220 char c;
10221 unsigned long used_bits = opc->mask;
10222
10223 if ((used_bits & opc->match) != opc->match)
10224 {
10225 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
10226 opc->name, opc->args);
10227 return 0;
10228 }
10229 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
10230 while (*p)
10231 switch (c = *p++)
10232 {
10233 case ',': break;
10234 case '(': break;
10235 case ')': break;
10236 case '+':
10237 switch (c = *p++)
10238 {
10239 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
10240 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
10241 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
10242 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
10243 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10244 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10245 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10246 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
10247 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10248 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10249 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10250 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10251 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10252 case 'I': break;
10253 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10254 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
10255 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10256 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10257 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10258 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10259 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10260 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
10261 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10262 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10263 case 'z': USE_BITS (OP_MASK_RZ, OP_SH_RZ); break;
10264 case 'Z': USE_BITS (OP_MASK_FZ, OP_SH_FZ); break;
10265 case 'a': USE_BITS (OP_MASK_OFFSET_A, OP_SH_OFFSET_A); break;
10266 case 'b': USE_BITS (OP_MASK_OFFSET_B, OP_SH_OFFSET_B); break;
10267 case 'c': USE_BITS (OP_MASK_OFFSET_C, OP_SH_OFFSET_C); break;
10268
10269 default:
10270 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
10271 c, opc->name, opc->args);
10272 return 0;
10273 }
10274 break;
10275 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10276 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10277 case 'A': break;
10278 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
10279 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
10280 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10281 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10282 case 'F': break;
10283 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10284 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10285 case 'I': break;
10286 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
10287 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10288 case 'L': break;
10289 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
10290 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
10291 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
10292 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
10293 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10294 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
10295 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10296 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10297 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10298 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10299 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10300 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10301 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10302 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
10303 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10304 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
10305 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10306 case 'f': break;
10307 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
10308 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10309 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10310 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
10311 case 'l': break;
10312 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10313 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10314 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
10315 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10316 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10317 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10318 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10319 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10320 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10321 case 'x': break;
10322 case 'z': break;
10323 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
10324 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
10325 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10326 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
10327 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
10328 case '[': break;
10329 case ']': break;
10330 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10331 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
10332 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
10333 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
10334 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
10335 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10336 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
10337 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
10338 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
10339 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
10340 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
10341 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
10342 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
10343 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
10344 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
10345 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
10346 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
10347 case '\\': USE_BITS (OP_MASK_3BITPOS, OP_SH_3BITPOS); break;
10348 case '~': USE_BITS (OP_MASK_OFFSET12, OP_SH_OFFSET12); break;
10349 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10350 default:
10351 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
10352 c, opc->name, opc->args);
10353 return 0;
10354 }
10355 #undef USE_BITS
10356 if (used_bits != 0xffffffff)
10357 {
10358 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
10359 ~used_bits & 0xffffffff, opc->name, opc->args);
10360 return 0;
10361 }
10362 return 1;
10363 }
10364
10365 /* For consistency checking, verify that the length implied matches the
10366 major opcode and that all bits are specified either by the match/mask
10367 part of the instruction definition, or by the operand list. */
10368
10369 static int
10370 validate_micromips_insn (const struct mips_opcode *opc)
10371 {
10372 unsigned long match = opc->match;
10373 unsigned long mask = opc->mask;
10374 const char *p = opc->args;
10375 unsigned long insn_bits;
10376 unsigned long used_bits;
10377 unsigned long major;
10378 unsigned int length;
10379 char e;
10380 char c;
10381
10382 if ((mask & match) != match)
10383 {
10384 as_bad (_("Internal error: bad microMIPS opcode (mask error): %s %s"),
10385 opc->name, opc->args);
10386 return 0;
10387 }
10388 length = micromips_insn_length (opc);
10389 if (length != 2 && length != 4)
10390 {
10391 as_bad (_("Internal error: bad microMIPS opcode (incorrect length: %u): "
10392 "%s %s"), length, opc->name, opc->args);
10393 return 0;
10394 }
10395 major = match >> (10 + 8 * (length - 2));
10396 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
10397 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
10398 {
10399 as_bad (_("Internal error: bad microMIPS opcode "
10400 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
10401 return 0;
10402 }
10403
10404 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
10405 insn_bits = 1 << 4 * length;
10406 insn_bits <<= 4 * length;
10407 insn_bits -= 1;
10408 used_bits = mask;
10409 #define USE_BITS(field) \
10410 (used_bits |= MICROMIPSOP_MASK_##field << MICROMIPSOP_SH_##field)
10411 while (*p)
10412 switch (c = *p++)
10413 {
10414 case ',': break;
10415 case '(': break;
10416 case ')': break;
10417 case '+':
10418 e = c;
10419 switch (c = *p++)
10420 {
10421 case 'A': USE_BITS (EXTLSB); break;
10422 case 'B': USE_BITS (INSMSB); break;
10423 case 'C': USE_BITS (EXTMSBD); break;
10424 case 'D': USE_BITS (RS); USE_BITS (SEL); break;
10425 case 'E': USE_BITS (EXTLSB); break;
10426 case 'F': USE_BITS (INSMSB); break;
10427 case 'G': USE_BITS (EXTMSBD); break;
10428 case 'H': USE_BITS (EXTMSBD); break;
10429 default:
10430 as_bad (_("Internal error: bad mips opcode "
10431 "(unknown extension operand type `%c%c'): %s %s"),
10432 e, c, opc->name, opc->args);
10433 return 0;
10434 }
10435 break;
10436 case 'm':
10437 e = c;
10438 switch (c = *p++)
10439 {
10440 case 'A': USE_BITS (IMMA); break;
10441 case 'B': USE_BITS (IMMB); break;
10442 case 'C': USE_BITS (IMMC); break;
10443 case 'D': USE_BITS (IMMD); break;
10444 case 'E': USE_BITS (IMME); break;
10445 case 'F': USE_BITS (IMMF); break;
10446 case 'G': USE_BITS (IMMG); break;
10447 case 'H': USE_BITS (IMMH); break;
10448 case 'I': USE_BITS (IMMI); break;
10449 case 'J': USE_BITS (IMMJ); break;
10450 case 'L': USE_BITS (IMML); break;
10451 case 'M': USE_BITS (IMMM); break;
10452 case 'N': USE_BITS (IMMN); break;
10453 case 'O': USE_BITS (IMMO); break;
10454 case 'P': USE_BITS (IMMP); break;
10455 case 'Q': USE_BITS (IMMQ); break;
10456 case 'U': USE_BITS (IMMU); break;
10457 case 'W': USE_BITS (IMMW); break;
10458 case 'X': USE_BITS (IMMX); break;
10459 case 'Y': USE_BITS (IMMY); break;
10460 case 'Z': break;
10461 case 'a': break;
10462 case 'b': USE_BITS (MB); break;
10463 case 'c': USE_BITS (MC); break;
10464 case 'd': USE_BITS (MD); break;
10465 case 'e': USE_BITS (ME); break;
10466 case 'f': USE_BITS (MF); break;
10467 case 'g': USE_BITS (MG); break;
10468 case 'h': USE_BITS (MH); break;
10469 case 'i': USE_BITS (MI); break;
10470 case 'j': USE_BITS (MJ); break;
10471 case 'l': USE_BITS (ML); break;
10472 case 'm': USE_BITS (MM); break;
10473 case 'n': USE_BITS (MN); break;
10474 case 'p': USE_BITS (MP); break;
10475 case 'q': USE_BITS (MQ); break;
10476 case 'r': break;
10477 case 's': break;
10478 case 't': break;
10479 case 'x': break;
10480 case 'y': break;
10481 case 'z': break;
10482 default:
10483 as_bad (_("Internal error: bad mips opcode "
10484 "(unknown extension operand type `%c%c'): %s %s"),
10485 e, c, opc->name, opc->args);
10486 return 0;
10487 }
10488 break;
10489 case '.': USE_BITS (OFFSET10); break;
10490 case '1': USE_BITS (STYPE); break;
10491 case '2': USE_BITS (BP); break;
10492 case '3': USE_BITS (SA3); break;
10493 case '4': USE_BITS (SA4); break;
10494 case '5': USE_BITS (IMM8); break;
10495 case '6': USE_BITS (RS); break;
10496 case '7': USE_BITS (DSPACC); break;
10497 case '8': USE_BITS (WRDSP); break;
10498 case '0': USE_BITS (DSPSFT); break;
10499 case '<': USE_BITS (SHAMT); break;
10500 case '>': USE_BITS (SHAMT); break;
10501 case '@': USE_BITS (IMM10); break;
10502 case 'B': USE_BITS (CODE10); break;
10503 case 'C': USE_BITS (COPZ); break;
10504 case 'D': USE_BITS (FD); break;
10505 case 'E': USE_BITS (RT); break;
10506 case 'G': USE_BITS (RS); break;
10507 case 'H': USE_BITS (SEL); break;
10508 case 'K': USE_BITS (RS); break;
10509 case 'M': USE_BITS (CCC); break;
10510 case 'N': USE_BITS (BCC); break;
10511 case 'R': USE_BITS (FR); break;
10512 case 'S': USE_BITS (FS); break;
10513 case 'T': USE_BITS (FT); break;
10514 case 'V': USE_BITS (FS); break;
10515 case '\\': USE_BITS (3BITPOS); break;
10516 case '^': USE_BITS (RD); break;
10517 case 'a': USE_BITS (TARGET); break;
10518 case 'b': USE_BITS (RS); break;
10519 case 'c': USE_BITS (CODE); break;
10520 case 'd': USE_BITS (RD); break;
10521 case 'h': USE_BITS (PREFX); break;
10522 case 'i': USE_BITS (IMMEDIATE); break;
10523 case 'j': USE_BITS (DELTA); break;
10524 case 'k': USE_BITS (CACHE); break;
10525 case 'n': USE_BITS (RT); break;
10526 case 'o': USE_BITS (DELTA); break;
10527 case 'p': USE_BITS (DELTA); break;
10528 case 'q': USE_BITS (CODE2); break;
10529 case 'r': USE_BITS (RS); break;
10530 case 's': USE_BITS (RS); break;
10531 case 't': USE_BITS (RT); break;
10532 case 'u': USE_BITS (IMMEDIATE); break;
10533 case 'v': USE_BITS (RS); break;
10534 case 'w': USE_BITS (RT); break;
10535 case 'y': USE_BITS (RS3); break;
10536 case 'z': break;
10537 case '|': USE_BITS (TRAP); break;
10538 case '~': USE_BITS (OFFSET12); break;
10539 default:
10540 as_bad (_("Internal error: bad microMIPS opcode "
10541 "(unknown operand type `%c'): %s %s"),
10542 c, opc->name, opc->args);
10543 return 0;
10544 }
10545 #undef USE_BITS
10546 if (used_bits != insn_bits)
10547 {
10548 if (~used_bits & insn_bits)
10549 as_bad (_("Internal error: bad microMIPS opcode "
10550 "(bits 0x%lx undefined): %s %s"),
10551 ~used_bits & insn_bits, opc->name, opc->args);
10552 if (used_bits & ~insn_bits)
10553 as_bad (_("Internal error: bad microMIPS opcode "
10554 "(bits 0x%lx defined): %s %s"),
10555 used_bits & ~insn_bits, opc->name, opc->args);
10556 return 0;
10557 }
10558 return 1;
10559 }
10560
10561 /* UDI immediates. */
10562 struct mips_immed {
10563 char type;
10564 unsigned int shift;
10565 unsigned long mask;
10566 const char * desc;
10567 };
10568
10569 static const struct mips_immed mips_immed[] = {
10570 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
10571 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
10572 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
10573 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
10574 { 0,0,0,0 }
10575 };
10576
10577 /* Check whether an odd floating-point register is allowed. */
10578 static int
10579 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
10580 {
10581 const char *s = insn->name;
10582
10583 if (insn->pinfo == INSN_MACRO)
10584 /* Let a macro pass, we'll catch it later when it is expanded. */
10585 return 1;
10586
10587 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
10588 {
10589 /* Allow odd registers for single-precision ops. */
10590 switch (insn->pinfo & (FP_S | FP_D))
10591 {
10592 case FP_S:
10593 case 0:
10594 return 1; /* both single precision - ok */
10595 case FP_D:
10596 return 0; /* both double precision - fail */
10597 default:
10598 break;
10599 }
10600
10601 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
10602 s = strchr (insn->name, '.');
10603 if (argnum == 2)
10604 s = s != NULL ? strchr (s + 1, '.') : NULL;
10605 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
10606 }
10607
10608 /* Single-precision coprocessor loads and moves are OK too. */
10609 if ((insn->pinfo & FP_S)
10610 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
10611 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
10612 return 1;
10613
10614 return 0;
10615 }
10616
10617 /* Check if EXPR is a constant between MIN (inclusive) and MAX (exclusive)
10618 taking bits from BIT up. */
10619 static int
10620 expr_const_in_range (expressionS *ep, offsetT min, offsetT max, int bit)
10621 {
10622 return (ep->X_op == O_constant
10623 && (ep->X_add_number & ((1 << bit) - 1)) == 0
10624 && ep->X_add_number >= min << bit
10625 && ep->X_add_number < max << bit);
10626 }
10627
10628 /* This routine assembles an instruction into its binary format. As a
10629 side effect, it sets one of the global variables imm_reloc or
10630 offset_reloc to the type of relocation to do if one of the operands
10631 is an address expression. */
10632
10633 static void
10634 mips_ip (char *str, struct mips_cl_insn *ip)
10635 {
10636 bfd_boolean wrong_delay_slot_insns = FALSE;
10637 bfd_boolean need_delay_slot_ok = TRUE;
10638 struct mips_opcode *firstinsn = NULL;
10639 const struct mips_opcode *past;
10640 struct hash_control *hash;
10641 char *s;
10642 const char *args;
10643 char c = 0;
10644 struct mips_opcode *insn;
10645 char *argsStart;
10646 unsigned int regno;
10647 unsigned int lastregno;
10648 unsigned int destregno = 0;
10649 unsigned int lastpos = 0;
10650 unsigned int limlo, limhi;
10651 char *s_reset;
10652 offsetT min_range, max_range;
10653 long opend;
10654 char *name;
10655 int argnum;
10656 unsigned int rtype;
10657 char *dot;
10658 long end;
10659
10660 insn_error = NULL;
10661
10662 if (mips_opts.micromips)
10663 {
10664 hash = micromips_op_hash;
10665 past = &micromips_opcodes[bfd_micromips_num_opcodes];
10666 }
10667 else
10668 {
10669 hash = op_hash;
10670 past = &mips_opcodes[NUMOPCODES];
10671 }
10672 forced_insn_length = 0;
10673 insn = NULL;
10674
10675 /* We first try to match an instruction up to a space or to the end. */
10676 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
10677 continue;
10678
10679 /* Make a copy of the instruction so that we can fiddle with it. */
10680 name = alloca (end + 1);
10681 memcpy (name, str, end);
10682 name[end] = '\0';
10683
10684 for (;;)
10685 {
10686 insn = (struct mips_opcode *) hash_find (hash, name);
10687
10688 if (insn != NULL || !mips_opts.micromips)
10689 break;
10690 if (forced_insn_length)
10691 break;
10692
10693 /* See if there's an instruction size override suffix,
10694 either `16' or `32', at the end of the mnemonic proper,
10695 that defines the operation, i.e. before the first `.'
10696 character if any. Strip it and retry. */
10697 dot = strchr (name, '.');
10698 opend = dot != NULL ? dot - name : end;
10699 if (opend < 3)
10700 break;
10701 if (name[opend - 2] == '1' && name[opend - 1] == '6')
10702 forced_insn_length = 2;
10703 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
10704 forced_insn_length = 4;
10705 else
10706 break;
10707 memcpy (name + opend - 2, name + opend, end - opend + 1);
10708 }
10709 if (insn == NULL)
10710 {
10711 insn_error = _("Unrecognized opcode");
10712 return;
10713 }
10714
10715 /* For microMIPS instructions placed in a fixed-length branch delay slot
10716 we make up to two passes over the relevant fragment of the opcode
10717 table. First we try instructions that meet the delay slot's length
10718 requirement. If none matched, then we retry with the remaining ones
10719 and if one matches, then we use it and then issue an appropriate
10720 warning later on. */
10721 argsStart = s = str + end;
10722 for (;;)
10723 {
10724 bfd_boolean delay_slot_ok;
10725 bfd_boolean size_ok;
10726 bfd_boolean ok;
10727
10728 gas_assert (strcmp (insn->name, name) == 0);
10729
10730 ok = is_opcode_valid (insn);
10731 size_ok = is_size_valid (insn);
10732 delay_slot_ok = is_delay_slot_valid (insn);
10733 if (!delay_slot_ok && !wrong_delay_slot_insns)
10734 {
10735 firstinsn = insn;
10736 wrong_delay_slot_insns = TRUE;
10737 }
10738 if (!ok || !size_ok || delay_slot_ok != need_delay_slot_ok)
10739 {
10740 static char buf[256];
10741
10742 if (insn + 1 < past && strcmp (insn->name, insn[1].name) == 0)
10743 {
10744 ++insn;
10745 continue;
10746 }
10747 if (wrong_delay_slot_insns && need_delay_slot_ok)
10748 {
10749 gas_assert (firstinsn);
10750 need_delay_slot_ok = FALSE;
10751 past = insn + 1;
10752 insn = firstinsn;
10753 continue;
10754 }
10755
10756 if (insn_error)
10757 return;
10758
10759 if (!ok)
10760 sprintf (buf, _("Opcode not supported on this processor: %s (%s)"),
10761 mips_cpu_info_from_arch (mips_opts.arch)->name,
10762 mips_cpu_info_from_isa (mips_opts.isa)->name);
10763 else
10764 sprintf (buf, _("Unrecognized %u-bit version of microMIPS opcode"),
10765 8 * forced_insn_length);
10766 insn_error = buf;
10767
10768 return;
10769 }
10770
10771 create_insn (ip, insn);
10772 insn_error = NULL;
10773 argnum = 1;
10774 lastregno = 0xffffffff;
10775 for (args = insn->args;; ++args)
10776 {
10777 int is_mdmx;
10778
10779 s += strspn (s, " \t");
10780 is_mdmx = 0;
10781 switch (*args)
10782 {
10783 case '\0': /* end of args */
10784 if (*s == '\0')
10785 return;
10786 break;
10787
10788 case '2':
10789 /* DSP 2-bit unsigned immediate in bit 11 (for standard MIPS
10790 code) or 14 (for microMIPS code). */
10791 my_getExpression (&imm_expr, s);
10792 check_absolute_expr (ip, &imm_expr);
10793 if ((unsigned long) imm_expr.X_add_number != 1
10794 && (unsigned long) imm_expr.X_add_number != 3)
10795 {
10796 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
10797 (unsigned long) imm_expr.X_add_number);
10798 }
10799 INSERT_OPERAND (mips_opts.micromips,
10800 BP, *ip, imm_expr.X_add_number);
10801 imm_expr.X_op = O_absent;
10802 s = expr_end;
10803 continue;
10804
10805 case '3':
10806 /* DSP 3-bit unsigned immediate in bit 13 (for standard MIPS
10807 code) or 21 (for microMIPS code). */
10808 {
10809 unsigned long mask = (mips_opts.micromips
10810 ? MICROMIPSOP_MASK_SA3 : OP_MASK_SA3);
10811
10812 my_getExpression (&imm_expr, s);
10813 check_absolute_expr (ip, &imm_expr);
10814 if ((unsigned long) imm_expr.X_add_number > mask)
10815 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
10816 mask, (unsigned long) imm_expr.X_add_number);
10817 INSERT_OPERAND (mips_opts.micromips,
10818 SA3, *ip, imm_expr.X_add_number);
10819 imm_expr.X_op = O_absent;
10820 s = expr_end;
10821 }
10822 continue;
10823
10824 case '4':
10825 /* DSP 4-bit unsigned immediate in bit 12 (for standard MIPS
10826 code) or 21 (for microMIPS code). */
10827 {
10828 unsigned long mask = (mips_opts.micromips
10829 ? MICROMIPSOP_MASK_SA4 : OP_MASK_SA4);
10830
10831 my_getExpression (&imm_expr, s);
10832 check_absolute_expr (ip, &imm_expr);
10833 if ((unsigned long) imm_expr.X_add_number > mask)
10834 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
10835 mask, (unsigned long) imm_expr.X_add_number);
10836 INSERT_OPERAND (mips_opts.micromips,
10837 SA4, *ip, imm_expr.X_add_number);
10838 imm_expr.X_op = O_absent;
10839 s = expr_end;
10840 }
10841 continue;
10842
10843 case '5':
10844 /* DSP 8-bit unsigned immediate in bit 13 (for standard MIPS
10845 code) or 16 (for microMIPS code). */
10846 {
10847 unsigned long mask = (mips_opts.micromips
10848 ? MICROMIPSOP_MASK_IMM8 : OP_MASK_IMM8);
10849
10850 my_getExpression (&imm_expr, s);
10851 check_absolute_expr (ip, &imm_expr);
10852 if ((unsigned long) imm_expr.X_add_number > mask)
10853 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
10854 mask, (unsigned long) imm_expr.X_add_number);
10855 INSERT_OPERAND (mips_opts.micromips,
10856 IMM8, *ip, imm_expr.X_add_number);
10857 imm_expr.X_op = O_absent;
10858 s = expr_end;
10859 }
10860 continue;
10861
10862 case '6':
10863 /* DSP 5-bit unsigned immediate in bit 16 (for standard MIPS
10864 code) or 21 (for microMIPS code). */
10865 {
10866 unsigned long mask = (mips_opts.micromips
10867 ? MICROMIPSOP_MASK_RS : OP_MASK_RS);
10868
10869 my_getExpression (&imm_expr, s);
10870 check_absolute_expr (ip, &imm_expr);
10871 if ((unsigned long) imm_expr.X_add_number > mask)
10872 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
10873 mask, (unsigned long) imm_expr.X_add_number);
10874 INSERT_OPERAND (mips_opts.micromips,
10875 RS, *ip, imm_expr.X_add_number);
10876 imm_expr.X_op = O_absent;
10877 s = expr_end;
10878 }
10879 continue;
10880
10881 case '7': /* Four DSP accumulators in bits 11,12. */
10882 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
10883 && s[3] >= '0' && s[3] <= '3')
10884 {
10885 regno = s[3] - '0';
10886 s += 4;
10887 INSERT_OPERAND (mips_opts.micromips, DSPACC, *ip, regno);
10888 continue;
10889 }
10890 else
10891 as_bad (_("Invalid dsp acc register"));
10892 break;
10893
10894 case '8':
10895 /* DSP 6-bit unsigned immediate in bit 11 (for standard MIPS
10896 code) or 14 (for microMIPS code). */
10897 {
10898 unsigned long mask = (mips_opts.micromips
10899 ? MICROMIPSOP_MASK_WRDSP
10900 : OP_MASK_WRDSP);
10901
10902 my_getExpression (&imm_expr, s);
10903 check_absolute_expr (ip, &imm_expr);
10904 if ((unsigned long) imm_expr.X_add_number > mask)
10905 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
10906 mask, (unsigned long) imm_expr.X_add_number);
10907 INSERT_OPERAND (mips_opts.micromips,
10908 WRDSP, *ip, imm_expr.X_add_number);
10909 imm_expr.X_op = O_absent;
10910 s = expr_end;
10911 }
10912 continue;
10913
10914 case '9': /* Four DSP accumulators in bits 21,22. */
10915 gas_assert (!mips_opts.micromips);
10916 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
10917 && s[3] >= '0' && s[3] <= '3')
10918 {
10919 regno = s[3] - '0';
10920 s += 4;
10921 INSERT_OPERAND (0, DSPACC_S, *ip, regno);
10922 continue;
10923 }
10924 else
10925 as_bad (_("Invalid dsp acc register"));
10926 break;
10927
10928 case '0':
10929 /* DSP 6-bit signed immediate in bit 16 (for standard MIPS
10930 code) or 20 (for microMIPS code). */
10931 {
10932 long mask = (mips_opts.micromips
10933 ? MICROMIPSOP_MASK_DSPSFT : OP_MASK_DSPSFT);
10934
10935 my_getExpression (&imm_expr, s);
10936 check_absolute_expr (ip, &imm_expr);
10937 min_range = -((mask + 1) >> 1);
10938 max_range = ((mask + 1) >> 1) - 1;
10939 if (imm_expr.X_add_number < min_range
10940 || imm_expr.X_add_number > max_range)
10941 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
10942 (long) min_range, (long) max_range,
10943 (long) imm_expr.X_add_number);
10944 INSERT_OPERAND (mips_opts.micromips,
10945 DSPSFT, *ip, imm_expr.X_add_number);
10946 imm_expr.X_op = O_absent;
10947 s = expr_end;
10948 }
10949 continue;
10950
10951 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
10952 gas_assert (!mips_opts.micromips);
10953 my_getExpression (&imm_expr, s);
10954 check_absolute_expr (ip, &imm_expr);
10955 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
10956 {
10957 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
10958 OP_MASK_RDDSP,
10959 (unsigned long) imm_expr.X_add_number);
10960 }
10961 INSERT_OPERAND (0, RDDSP, *ip, imm_expr.X_add_number);
10962 imm_expr.X_op = O_absent;
10963 s = expr_end;
10964 continue;
10965
10966 case ':': /* DSP 7-bit signed immediate in bit 19. */
10967 gas_assert (!mips_opts.micromips);
10968 my_getExpression (&imm_expr, s);
10969 check_absolute_expr (ip, &imm_expr);
10970 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
10971 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
10972 if (imm_expr.X_add_number < min_range ||
10973 imm_expr.X_add_number > max_range)
10974 {
10975 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
10976 (long) min_range, (long) max_range,
10977 (long) imm_expr.X_add_number);
10978 }
10979 INSERT_OPERAND (0, DSPSFT_7, *ip, imm_expr.X_add_number);
10980 imm_expr.X_op = O_absent;
10981 s = expr_end;
10982 continue;
10983
10984 case '@': /* DSP 10-bit signed immediate in bit 16. */
10985 {
10986 long mask = (mips_opts.micromips
10987 ? MICROMIPSOP_MASK_IMM10 : OP_MASK_IMM10);
10988
10989 my_getExpression (&imm_expr, s);
10990 check_absolute_expr (ip, &imm_expr);
10991 min_range = -((mask + 1) >> 1);
10992 max_range = ((mask + 1) >> 1) - 1;
10993 if (imm_expr.X_add_number < min_range
10994 || imm_expr.X_add_number > max_range)
10995 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
10996 (long) min_range, (long) max_range,
10997 (long) imm_expr.X_add_number);
10998 INSERT_OPERAND (mips_opts.micromips,
10999 IMM10, *ip, imm_expr.X_add_number);
11000 imm_expr.X_op = O_absent;
11001 s = expr_end;
11002 }
11003 continue;
11004
11005 case '^': /* DSP 5-bit unsigned immediate in bit 11. */
11006 gas_assert (mips_opts.micromips);
11007 my_getExpression (&imm_expr, s);
11008 check_absolute_expr (ip, &imm_expr);
11009 if (imm_expr.X_add_number & ~MICROMIPSOP_MASK_RD)
11010 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
11011 MICROMIPSOP_MASK_RD,
11012 (unsigned long) imm_expr.X_add_number);
11013 INSERT_OPERAND (1, RD, *ip, imm_expr.X_add_number);
11014 imm_expr.X_op = O_absent;
11015 s = expr_end;
11016 continue;
11017
11018 case '!': /* MT usermode flag bit. */
11019 gas_assert (!mips_opts.micromips);
11020 my_getExpression (&imm_expr, s);
11021 check_absolute_expr (ip, &imm_expr);
11022 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
11023 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
11024 (unsigned long) imm_expr.X_add_number);
11025 INSERT_OPERAND (0, MT_U, *ip, imm_expr.X_add_number);
11026 imm_expr.X_op = O_absent;
11027 s = expr_end;
11028 continue;
11029
11030 case '$': /* MT load high flag bit. */
11031 gas_assert (!mips_opts.micromips);
11032 my_getExpression (&imm_expr, s);
11033 check_absolute_expr (ip, &imm_expr);
11034 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
11035 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
11036 (unsigned long) imm_expr.X_add_number);
11037 INSERT_OPERAND (0, MT_H, *ip, imm_expr.X_add_number);
11038 imm_expr.X_op = O_absent;
11039 s = expr_end;
11040 continue;
11041
11042 case '*': /* Four DSP accumulators in bits 18,19. */
11043 gas_assert (!mips_opts.micromips);
11044 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11045 s[3] >= '0' && s[3] <= '3')
11046 {
11047 regno = s[3] - '0';
11048 s += 4;
11049 INSERT_OPERAND (0, MTACC_T, *ip, regno);
11050 continue;
11051 }
11052 else
11053 as_bad (_("Invalid dsp/smartmips acc register"));
11054 break;
11055
11056 case '&': /* Four DSP accumulators in bits 13,14. */
11057 gas_assert (!mips_opts.micromips);
11058 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11059 s[3] >= '0' && s[3] <= '3')
11060 {
11061 regno = s[3] - '0';
11062 s += 4;
11063 INSERT_OPERAND (0, MTACC_D, *ip, regno);
11064 continue;
11065 }
11066 else
11067 as_bad (_("Invalid dsp/smartmips acc register"));
11068 break;
11069
11070 case '\\': /* 3-bit bit position. */
11071 {
11072 unsigned long mask = (mips_opts.micromips
11073 ? MICROMIPSOP_MASK_3BITPOS
11074 : OP_MASK_3BITPOS);
11075
11076 my_getExpression (&imm_expr, s);
11077 check_absolute_expr (ip, &imm_expr);
11078 if ((unsigned long) imm_expr.X_add_number > mask)
11079 as_warn (_("Bit position for %s not in range 0..%lu (%lu)"),
11080 ip->insn_mo->name,
11081 mask, (unsigned long) imm_expr.X_add_number);
11082 INSERT_OPERAND (mips_opts.micromips,
11083 3BITPOS, *ip, imm_expr.X_add_number);
11084 imm_expr.X_op = O_absent;
11085 s = expr_end;
11086 }
11087 continue;
11088
11089 case ',':
11090 ++argnum;
11091 if (*s++ == *args)
11092 continue;
11093 s--;
11094 switch (*++args)
11095 {
11096 case 'r':
11097 case 'v':
11098 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
11099 continue;
11100
11101 case 'w':
11102 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
11103 continue;
11104
11105 case 'W':
11106 gas_assert (!mips_opts.micromips);
11107 INSERT_OPERAND (0, FT, *ip, lastregno);
11108 continue;
11109
11110 case 'V':
11111 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
11112 continue;
11113 }
11114 break;
11115
11116 case '(':
11117 /* Handle optional base register.
11118 Either the base register is omitted or
11119 we must have a left paren. */
11120 /* This is dependent on the next operand specifier
11121 is a base register specification. */
11122 gas_assert (args[1] == 'b'
11123 || (mips_opts.micromips
11124 && args[1] == 'm'
11125 && (args[2] == 'l' || args[2] == 'n'
11126 || args[2] == 's' || args[2] == 'a')));
11127 if (*s == '\0' && args[1] == 'b')
11128 return;
11129 /* Fall through. */
11130
11131 case ')': /* These must match exactly. */
11132 if (*s++ == *args)
11133 continue;
11134 break;
11135
11136 case '[': /* These must match exactly. */
11137 case ']':
11138 gas_assert (!mips_opts.micromips);
11139 if (*s++ == *args)
11140 continue;
11141 break;
11142
11143 case '+': /* Opcode extension character. */
11144 switch (*++args)
11145 {
11146 case '1': /* UDI immediates. */
11147 case '2':
11148 case '3':
11149 case '4':
11150 gas_assert (!mips_opts.micromips);
11151 {
11152 const struct mips_immed *imm = mips_immed;
11153
11154 while (imm->type && imm->type != *args)
11155 ++imm;
11156 if (! imm->type)
11157 internalError ();
11158 my_getExpression (&imm_expr, s);
11159 check_absolute_expr (ip, &imm_expr);
11160 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
11161 {
11162 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
11163 imm->desc ? imm->desc : ip->insn_mo->name,
11164 (unsigned long) imm_expr.X_add_number,
11165 (unsigned long) imm_expr.X_add_number);
11166 imm_expr.X_add_number &= imm->mask;
11167 }
11168 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
11169 << imm->shift);
11170 imm_expr.X_op = O_absent;
11171 s = expr_end;
11172 }
11173 continue;
11174
11175 case 'A': /* ins/ext position, becomes LSB. */
11176 limlo = 0;
11177 limhi = 31;
11178 goto do_lsb;
11179 case 'E':
11180 limlo = 32;
11181 limhi = 63;
11182 goto do_lsb;
11183 do_lsb:
11184 my_getExpression (&imm_expr, s);
11185 check_absolute_expr (ip, &imm_expr);
11186 if ((unsigned long) imm_expr.X_add_number < limlo
11187 || (unsigned long) imm_expr.X_add_number > limhi)
11188 {
11189 as_bad (_("Improper position (%lu)"),
11190 (unsigned long) imm_expr.X_add_number);
11191 imm_expr.X_add_number = limlo;
11192 }
11193 lastpos = imm_expr.X_add_number;
11194 INSERT_OPERAND (mips_opts.micromips,
11195 EXTLSB, *ip, imm_expr.X_add_number);
11196 imm_expr.X_op = O_absent;
11197 s = expr_end;
11198 continue;
11199
11200 case 'B': /* ins size, becomes MSB. */
11201 limlo = 1;
11202 limhi = 32;
11203 goto do_msb;
11204 case 'F':
11205 limlo = 33;
11206 limhi = 64;
11207 goto do_msb;
11208 do_msb:
11209 my_getExpression (&imm_expr, s);
11210 check_absolute_expr (ip, &imm_expr);
11211 /* Check for negative input so that small negative numbers
11212 will not succeed incorrectly. The checks against
11213 (pos+size) transitively check "size" itself,
11214 assuming that "pos" is reasonable. */
11215 if ((long) imm_expr.X_add_number < 0
11216 || ((unsigned long) imm_expr.X_add_number
11217 + lastpos) < limlo
11218 || ((unsigned long) imm_expr.X_add_number
11219 + lastpos) > limhi)
11220 {
11221 as_bad (_("Improper insert size (%lu, position %lu)"),
11222 (unsigned long) imm_expr.X_add_number,
11223 (unsigned long) lastpos);
11224 imm_expr.X_add_number = limlo - lastpos;
11225 }
11226 INSERT_OPERAND (mips_opts.micromips, INSMSB, *ip,
11227 lastpos + imm_expr.X_add_number - 1);
11228 imm_expr.X_op = O_absent;
11229 s = expr_end;
11230 continue;
11231
11232 case 'C': /* ext size, becomes MSBD. */
11233 limlo = 1;
11234 limhi = 32;
11235 goto do_msbd;
11236 case 'G':
11237 limlo = 33;
11238 limhi = 64;
11239 goto do_msbd;
11240 case 'H':
11241 limlo = 33;
11242 limhi = 64;
11243 goto do_msbd;
11244 do_msbd:
11245 my_getExpression (&imm_expr, s);
11246 check_absolute_expr (ip, &imm_expr);
11247 /* Check for negative input so that small negative numbers
11248 will not succeed incorrectly. The checks against
11249 (pos+size) transitively check "size" itself,
11250 assuming that "pos" is reasonable. */
11251 if ((long) imm_expr.X_add_number < 0
11252 || ((unsigned long) imm_expr.X_add_number
11253 + lastpos) < limlo
11254 || ((unsigned long) imm_expr.X_add_number
11255 + lastpos) > limhi)
11256 {
11257 as_bad (_("Improper extract size (%lu, position %lu)"),
11258 (unsigned long) imm_expr.X_add_number,
11259 (unsigned long) lastpos);
11260 imm_expr.X_add_number = limlo - lastpos;
11261 }
11262 INSERT_OPERAND (mips_opts.micromips,
11263 EXTMSBD, *ip, imm_expr.X_add_number - 1);
11264 imm_expr.X_op = O_absent;
11265 s = expr_end;
11266 continue;
11267
11268 case 'D':
11269 /* +D is for disassembly only; never match. */
11270 break;
11271
11272 case 'I':
11273 /* "+I" is like "I", except that imm2_expr is used. */
11274 my_getExpression (&imm2_expr, s);
11275 if (imm2_expr.X_op != O_big
11276 && imm2_expr.X_op != O_constant)
11277 insn_error = _("absolute expression required");
11278 if (HAVE_32BIT_GPRS)
11279 normalize_constant_expr (&imm2_expr);
11280 s = expr_end;
11281 continue;
11282
11283 case 'T': /* Coprocessor register. */
11284 gas_assert (!mips_opts.micromips);
11285 /* +T is for disassembly only; never match. */
11286 break;
11287
11288 case 't': /* Coprocessor register number. */
11289 gas_assert (!mips_opts.micromips);
11290 if (s[0] == '$' && ISDIGIT (s[1]))
11291 {
11292 ++s;
11293 regno = 0;
11294 do
11295 {
11296 regno *= 10;
11297 regno += *s - '0';
11298 ++s;
11299 }
11300 while (ISDIGIT (*s));
11301 if (regno > 31)
11302 as_bad (_("Invalid register number (%d)"), regno);
11303 else
11304 {
11305 INSERT_OPERAND (0, RT, *ip, regno);
11306 continue;
11307 }
11308 }
11309 else
11310 as_bad (_("Invalid coprocessor 0 register number"));
11311 break;
11312
11313 case 'x':
11314 /* bbit[01] and bbit[01]32 bit index. Give error if index
11315 is not in the valid range. */
11316 gas_assert (!mips_opts.micromips);
11317 my_getExpression (&imm_expr, s);
11318 check_absolute_expr (ip, &imm_expr);
11319 if ((unsigned) imm_expr.X_add_number > 31)
11320 {
11321 as_bad (_("Improper bit index (%lu)"),
11322 (unsigned long) imm_expr.X_add_number);
11323 imm_expr.X_add_number = 0;
11324 }
11325 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number);
11326 imm_expr.X_op = O_absent;
11327 s = expr_end;
11328 continue;
11329
11330 case 'X':
11331 /* bbit[01] bit index when bbit is used but we generate
11332 bbit[01]32 because the index is over 32. Move to the
11333 next candidate if index is not in the valid range. */
11334 gas_assert (!mips_opts.micromips);
11335 my_getExpression (&imm_expr, s);
11336 check_absolute_expr (ip, &imm_expr);
11337 if ((unsigned) imm_expr.X_add_number < 32
11338 || (unsigned) imm_expr.X_add_number > 63)
11339 break;
11340 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number - 32);
11341 imm_expr.X_op = O_absent;
11342 s = expr_end;
11343 continue;
11344
11345 case 'p':
11346 /* cins, cins32, exts and exts32 position field. Give error
11347 if it's not in the valid range. */
11348 gas_assert (!mips_opts.micromips);
11349 my_getExpression (&imm_expr, s);
11350 check_absolute_expr (ip, &imm_expr);
11351 if ((unsigned) imm_expr.X_add_number > 31)
11352 {
11353 as_bad (_("Improper position (%lu)"),
11354 (unsigned long) imm_expr.X_add_number);
11355 imm_expr.X_add_number = 0;
11356 }
11357 /* Make the pos explicit to simplify +S. */
11358 lastpos = imm_expr.X_add_number + 32;
11359 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number);
11360 imm_expr.X_op = O_absent;
11361 s = expr_end;
11362 continue;
11363
11364 case 'P':
11365 /* cins, cins32, exts and exts32 position field. Move to
11366 the next candidate if it's not in the valid range. */
11367 gas_assert (!mips_opts.micromips);
11368 my_getExpression (&imm_expr, s);
11369 check_absolute_expr (ip, &imm_expr);
11370 if ((unsigned) imm_expr.X_add_number < 32
11371 || (unsigned) imm_expr.X_add_number > 63)
11372 break;
11373 lastpos = imm_expr.X_add_number;
11374 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number - 32);
11375 imm_expr.X_op = O_absent;
11376 s = expr_end;
11377 continue;
11378
11379 case 's':
11380 /* cins and exts length-minus-one field. */
11381 gas_assert (!mips_opts.micromips);
11382 my_getExpression (&imm_expr, s);
11383 check_absolute_expr (ip, &imm_expr);
11384 if ((unsigned long) imm_expr.X_add_number > 31)
11385 {
11386 as_bad (_("Improper size (%lu)"),
11387 (unsigned long) imm_expr.X_add_number);
11388 imm_expr.X_add_number = 0;
11389 }
11390 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11391 imm_expr.X_op = O_absent;
11392 s = expr_end;
11393 continue;
11394
11395 case 'S':
11396 /* cins32/exts32 and cins/exts aliasing cint32/exts32
11397 length-minus-one field. */
11398 gas_assert (!mips_opts.micromips);
11399 my_getExpression (&imm_expr, s);
11400 check_absolute_expr (ip, &imm_expr);
11401 if ((long) imm_expr.X_add_number < 0
11402 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
11403 {
11404 as_bad (_("Improper size (%lu)"),
11405 (unsigned long) imm_expr.X_add_number);
11406 imm_expr.X_add_number = 0;
11407 }
11408 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11409 imm_expr.X_op = O_absent;
11410 s = expr_end;
11411 continue;
11412
11413 case 'Q':
11414 /* seqi/snei immediate field. */
11415 gas_assert (!mips_opts.micromips);
11416 my_getExpression (&imm_expr, s);
11417 check_absolute_expr (ip, &imm_expr);
11418 if ((long) imm_expr.X_add_number < -512
11419 || (long) imm_expr.X_add_number >= 512)
11420 {
11421 as_bad (_("Improper immediate (%ld)"),
11422 (long) imm_expr.X_add_number);
11423 imm_expr.X_add_number = 0;
11424 }
11425 INSERT_OPERAND (0, SEQI, *ip, imm_expr.X_add_number);
11426 imm_expr.X_op = O_absent;
11427 s = expr_end;
11428 continue;
11429
11430 case 'a': /* 8-bit signed offset in bit 6 */
11431 gas_assert (!mips_opts.micromips);
11432 my_getExpression (&imm_expr, s);
11433 check_absolute_expr (ip, &imm_expr);
11434 min_range = -((OP_MASK_OFFSET_A + 1) >> 1);
11435 max_range = ((OP_MASK_OFFSET_A + 1) >> 1) - 1;
11436 if (imm_expr.X_add_number < min_range
11437 || imm_expr.X_add_number > max_range)
11438 {
11439 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11440 (long) min_range, (long) max_range,
11441 (long) imm_expr.X_add_number);
11442 }
11443 INSERT_OPERAND (0, OFFSET_A, *ip, imm_expr.X_add_number);
11444 imm_expr.X_op = O_absent;
11445 s = expr_end;
11446 continue;
11447
11448 case 'b': /* 8-bit signed offset in bit 3 */
11449 gas_assert (!mips_opts.micromips);
11450 my_getExpression (&imm_expr, s);
11451 check_absolute_expr (ip, &imm_expr);
11452 min_range = -((OP_MASK_OFFSET_B + 1) >> 1);
11453 max_range = ((OP_MASK_OFFSET_B + 1) >> 1) - 1;
11454 if (imm_expr.X_add_number < min_range
11455 || imm_expr.X_add_number > max_range)
11456 {
11457 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11458 (long) min_range, (long) max_range,
11459 (long) imm_expr.X_add_number);
11460 }
11461 INSERT_OPERAND (0, OFFSET_B, *ip, imm_expr.X_add_number);
11462 imm_expr.X_op = O_absent;
11463 s = expr_end;
11464 continue;
11465
11466 case 'c': /* 9-bit signed offset in bit 6 */
11467 gas_assert (!mips_opts.micromips);
11468 my_getExpression (&imm_expr, s);
11469 check_absolute_expr (ip, &imm_expr);
11470 min_range = -((OP_MASK_OFFSET_C + 1) >> 1);
11471 max_range = ((OP_MASK_OFFSET_C + 1) >> 1) - 1;
11472 /* We check the offset range before adjusted. */
11473 min_range <<= 4;
11474 max_range <<= 4;
11475 if (imm_expr.X_add_number < min_range
11476 || imm_expr.X_add_number > max_range)
11477 {
11478 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11479 (long) min_range, (long) max_range,
11480 (long) imm_expr.X_add_number);
11481 }
11482 if (imm_expr.X_add_number & 0xf)
11483 {
11484 as_bad (_("Offset not 16 bytes alignment (%ld)"),
11485 (long) imm_expr.X_add_number);
11486 }
11487 /* Right shift 4 bits to adjust the offset operand. */
11488 INSERT_OPERAND (0, OFFSET_C, *ip,
11489 imm_expr.X_add_number >> 4);
11490 imm_expr.X_op = O_absent;
11491 s = expr_end;
11492 continue;
11493
11494 case 'z':
11495 gas_assert (!mips_opts.micromips);
11496 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
11497 break;
11498 if (regno == AT && mips_opts.at)
11499 {
11500 if (mips_opts.at == ATREG)
11501 as_warn (_("used $at without \".set noat\""));
11502 else
11503 as_warn (_("used $%u with \".set at=$%u\""),
11504 regno, mips_opts.at);
11505 }
11506 INSERT_OPERAND (0, RZ, *ip, regno);
11507 continue;
11508
11509 case 'Z':
11510 gas_assert (!mips_opts.micromips);
11511 if (!reg_lookup (&s, RTYPE_FPU, &regno))
11512 break;
11513 INSERT_OPERAND (0, FZ, *ip, regno);
11514 continue;
11515
11516 default:
11517 as_bad (_("Internal error: bad %s opcode "
11518 "(unknown extension operand type `+%c'): %s %s"),
11519 mips_opts.micromips ? "microMIPS" : "MIPS",
11520 *args, insn->name, insn->args);
11521 /* Further processing is fruitless. */
11522 return;
11523 }
11524 break;
11525
11526 case '.': /* 10-bit offset. */
11527 gas_assert (mips_opts.micromips);
11528 case '~': /* 12-bit offset. */
11529 {
11530 int shift = *args == '.' ? 9 : 11;
11531 size_t i;
11532
11533 /* Check whether there is only a single bracketed expression
11534 left. If so, it must be the base register and the
11535 constant must be zero. */
11536 if (*s == '(' && strchr (s + 1, '(') == 0)
11537 continue;
11538
11539 /* If this value won't fit into the offset, then go find
11540 a macro that will generate a 16- or 32-bit offset code
11541 pattern. */
11542 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
11543 if ((i == 0 && (imm_expr.X_op != O_constant
11544 || imm_expr.X_add_number >= 1 << shift
11545 || imm_expr.X_add_number < -1 << shift))
11546 || i > 0)
11547 {
11548 imm_expr.X_op = O_absent;
11549 break;
11550 }
11551 if (shift == 9)
11552 INSERT_OPERAND (1, OFFSET10, *ip, imm_expr.X_add_number);
11553 else
11554 INSERT_OPERAND (mips_opts.micromips,
11555 OFFSET12, *ip, imm_expr.X_add_number);
11556 imm_expr.X_op = O_absent;
11557 s = expr_end;
11558 }
11559 continue;
11560
11561 case '<': /* must be at least one digit */
11562 /*
11563 * According to the manual, if the shift amount is greater
11564 * than 31 or less than 0, then the shift amount should be
11565 * mod 32. In reality the mips assembler issues an error.
11566 * We issue a warning and mask out all but the low 5 bits.
11567 */
11568 my_getExpression (&imm_expr, s);
11569 check_absolute_expr (ip, &imm_expr);
11570 if ((unsigned long) imm_expr.X_add_number > 31)
11571 as_warn (_("Improper shift amount (%lu)"),
11572 (unsigned long) imm_expr.X_add_number);
11573 INSERT_OPERAND (mips_opts.micromips,
11574 SHAMT, *ip, imm_expr.X_add_number);
11575 imm_expr.X_op = O_absent;
11576 s = expr_end;
11577 continue;
11578
11579 case '>': /* shift amount minus 32 */
11580 my_getExpression (&imm_expr, s);
11581 check_absolute_expr (ip, &imm_expr);
11582 if ((unsigned long) imm_expr.X_add_number < 32
11583 || (unsigned long) imm_expr.X_add_number > 63)
11584 break;
11585 INSERT_OPERAND (mips_opts.micromips,
11586 SHAMT, *ip, imm_expr.X_add_number - 32);
11587 imm_expr.X_op = O_absent;
11588 s = expr_end;
11589 continue;
11590
11591 case 'k': /* CACHE code. */
11592 case 'h': /* PREFX code. */
11593 case '1': /* SYNC type. */
11594 my_getExpression (&imm_expr, s);
11595 check_absolute_expr (ip, &imm_expr);
11596 if ((unsigned long) imm_expr.X_add_number > 31)
11597 as_warn (_("Invalid value for `%s' (%lu)"),
11598 ip->insn_mo->name,
11599 (unsigned long) imm_expr.X_add_number);
11600 switch (*args)
11601 {
11602 case 'k':
11603 if (mips_fix_cn63xxp1
11604 && !mips_opts.micromips
11605 && strcmp ("pref", insn->name) == 0)
11606 switch (imm_expr.X_add_number)
11607 {
11608 case 5:
11609 case 25:
11610 case 26:
11611 case 27:
11612 case 28:
11613 case 29:
11614 case 30:
11615 case 31: /* These are ok. */
11616 break;
11617
11618 default: /* The rest must be changed to 28. */
11619 imm_expr.X_add_number = 28;
11620 break;
11621 }
11622 INSERT_OPERAND (mips_opts.micromips,
11623 CACHE, *ip, imm_expr.X_add_number);
11624 break;
11625 case 'h':
11626 INSERT_OPERAND (mips_opts.micromips,
11627 PREFX, *ip, imm_expr.X_add_number);
11628 break;
11629 case '1':
11630 INSERT_OPERAND (mips_opts.micromips,
11631 STYPE, *ip, imm_expr.X_add_number);
11632 break;
11633 }
11634 imm_expr.X_op = O_absent;
11635 s = expr_end;
11636 continue;
11637
11638 case 'c': /* BREAK code. */
11639 {
11640 unsigned long mask = (mips_opts.micromips
11641 ? MICROMIPSOP_MASK_CODE
11642 : OP_MASK_CODE);
11643
11644 my_getExpression (&imm_expr, s);
11645 check_absolute_expr (ip, &imm_expr);
11646 if ((unsigned long) imm_expr.X_add_number > mask)
11647 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11648 ip->insn_mo->name,
11649 mask, (unsigned long) imm_expr.X_add_number);
11650 INSERT_OPERAND (mips_opts.micromips,
11651 CODE, *ip, imm_expr.X_add_number);
11652 imm_expr.X_op = O_absent;
11653 s = expr_end;
11654 }
11655 continue;
11656
11657 case 'q': /* Lower BREAK code. */
11658 {
11659 unsigned long mask = (mips_opts.micromips
11660 ? MICROMIPSOP_MASK_CODE2
11661 : OP_MASK_CODE2);
11662
11663 my_getExpression (&imm_expr, s);
11664 check_absolute_expr (ip, &imm_expr);
11665 if ((unsigned long) imm_expr.X_add_number > mask)
11666 as_warn (_("Lower code for %s not in range 0..%lu (%lu)"),
11667 ip->insn_mo->name,
11668 mask, (unsigned long) imm_expr.X_add_number);
11669 INSERT_OPERAND (mips_opts.micromips,
11670 CODE2, *ip, imm_expr.X_add_number);
11671 imm_expr.X_op = O_absent;
11672 s = expr_end;
11673 }
11674 continue;
11675
11676 case 'B': /* 20- or 10-bit syscall/break/wait code. */
11677 {
11678 unsigned long mask = (mips_opts.micromips
11679 ? MICROMIPSOP_MASK_CODE10
11680 : OP_MASK_CODE20);
11681
11682 my_getExpression (&imm_expr, s);
11683 check_absolute_expr (ip, &imm_expr);
11684 if ((unsigned long) imm_expr.X_add_number > mask)
11685 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11686 ip->insn_mo->name,
11687 mask, (unsigned long) imm_expr.X_add_number);
11688 if (mips_opts.micromips)
11689 INSERT_OPERAND (1, CODE10, *ip, imm_expr.X_add_number);
11690 else
11691 INSERT_OPERAND (0, CODE20, *ip, imm_expr.X_add_number);
11692 imm_expr.X_op = O_absent;
11693 s = expr_end;
11694 }
11695 continue;
11696
11697 case 'C': /* 25- or 23-bit coprocessor code. */
11698 {
11699 unsigned long mask = (mips_opts.micromips
11700 ? MICROMIPSOP_MASK_COPZ
11701 : OP_MASK_COPZ);
11702
11703 my_getExpression (&imm_expr, s);
11704 check_absolute_expr (ip, &imm_expr);
11705 if ((unsigned long) imm_expr.X_add_number > mask)
11706 as_warn (_("Coproccesor code > %u bits (%lu)"),
11707 mips_opts.micromips ? 23U : 25U,
11708 (unsigned long) imm_expr.X_add_number);
11709 INSERT_OPERAND (mips_opts.micromips,
11710 COPZ, *ip, imm_expr.X_add_number);
11711 imm_expr.X_op = O_absent;
11712 s = expr_end;
11713 }
11714 continue;
11715
11716 case 'J': /* 19-bit WAIT code. */
11717 gas_assert (!mips_opts.micromips);
11718 my_getExpression (&imm_expr, s);
11719 check_absolute_expr (ip, &imm_expr);
11720 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
11721 {
11722 as_warn (_("Illegal 19-bit code (%lu)"),
11723 (unsigned long) imm_expr.X_add_number);
11724 imm_expr.X_add_number &= OP_MASK_CODE19;
11725 }
11726 INSERT_OPERAND (0, CODE19, *ip, imm_expr.X_add_number);
11727 imm_expr.X_op = O_absent;
11728 s = expr_end;
11729 continue;
11730
11731 case 'P': /* Performance register. */
11732 gas_assert (!mips_opts.micromips);
11733 my_getExpression (&imm_expr, s);
11734 check_absolute_expr (ip, &imm_expr);
11735 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
11736 as_warn (_("Invalid performance register (%lu)"),
11737 (unsigned long) imm_expr.X_add_number);
11738 INSERT_OPERAND (0, PERFREG, *ip, imm_expr.X_add_number);
11739 imm_expr.X_op = O_absent;
11740 s = expr_end;
11741 continue;
11742
11743 case 'G': /* Coprocessor destination register. */
11744 {
11745 unsigned long opcode = ip->insn_opcode;
11746 unsigned long mask;
11747 unsigned int types;
11748 int cop0;
11749
11750 if (mips_opts.micromips)
11751 {
11752 mask = ~((MICROMIPSOP_MASK_RT << MICROMIPSOP_SH_RT)
11753 | (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS)
11754 | (MICROMIPSOP_MASK_SEL << MICROMIPSOP_SH_SEL));
11755 opcode &= mask;
11756 switch (opcode)
11757 {
11758 case 0x000000fc: /* mfc0 */
11759 case 0x000002fc: /* mtc0 */
11760 case 0x580000fc: /* dmfc0 */
11761 case 0x580002fc: /* dmtc0 */
11762 cop0 = 1;
11763 break;
11764 default:
11765 cop0 = 0;
11766 break;
11767 }
11768 }
11769 else
11770 {
11771 opcode = (opcode >> OP_SH_OP) & OP_MASK_OP;
11772 cop0 = opcode == OP_OP_COP0;
11773 }
11774 types = RTYPE_NUM | (cop0 ? RTYPE_CP0 : RTYPE_GP);
11775 ok = reg_lookup (&s, types, &regno);
11776 if (mips_opts.micromips)
11777 INSERT_OPERAND (1, RS, *ip, regno);
11778 else
11779 INSERT_OPERAND (0, RD, *ip, regno);
11780 if (ok)
11781 {
11782 lastregno = regno;
11783 continue;
11784 }
11785 }
11786 break;
11787
11788 case 'y': /* ALNV.PS source register. */
11789 gas_assert (mips_opts.micromips);
11790 goto do_reg;
11791 case 'x': /* Ignore register name. */
11792 case 'U': /* Destination register (CLO/CLZ). */
11793 case 'g': /* Coprocessor destination register. */
11794 gas_assert (!mips_opts.micromips);
11795 case 'b': /* Base register. */
11796 case 'd': /* Destination register. */
11797 case 's': /* Source register. */
11798 case 't': /* Target register. */
11799 case 'r': /* Both target and source. */
11800 case 'v': /* Both dest and source. */
11801 case 'w': /* Both dest and target. */
11802 case 'E': /* Coprocessor target register. */
11803 case 'K': /* RDHWR destination register. */
11804 case 'z': /* Must be zero register. */
11805 do_reg:
11806 s_reset = s;
11807 if (*args == 'E' || *args == 'K')
11808 ok = reg_lookup (&s, RTYPE_NUM, &regno);
11809 else
11810 {
11811 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
11812 if (regno == AT && mips_opts.at)
11813 {
11814 if (mips_opts.at == ATREG)
11815 as_warn (_("Used $at without \".set noat\""));
11816 else
11817 as_warn (_("Used $%u with \".set at=$%u\""),
11818 regno, mips_opts.at);
11819 }
11820 }
11821 if (ok)
11822 {
11823 c = *args;
11824 if (*s == ' ')
11825 ++s;
11826 if (args[1] != *s)
11827 {
11828 if (c == 'r' || c == 'v' || c == 'w')
11829 {
11830 regno = lastregno;
11831 s = s_reset;
11832 ++args;
11833 }
11834 }
11835 /* 'z' only matches $0. */
11836 if (c == 'z' && regno != 0)
11837 break;
11838
11839 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
11840 {
11841 if (regno == lastregno)
11842 {
11843 insn_error
11844 = _("Source and destination must be different");
11845 continue;
11846 }
11847 if (regno == 31 && lastregno == 0xffffffff)
11848 {
11849 insn_error
11850 = _("A destination register must be supplied");
11851 continue;
11852 }
11853 }
11854 /* Now that we have assembled one operand, we use the args
11855 string to figure out where it goes in the instruction. */
11856 switch (c)
11857 {
11858 case 'r':
11859 case 's':
11860 case 'v':
11861 case 'b':
11862 INSERT_OPERAND (mips_opts.micromips, RS, *ip, regno);
11863 break;
11864
11865 case 'K':
11866 if (mips_opts.micromips)
11867 INSERT_OPERAND (1, RS, *ip, regno);
11868 else
11869 INSERT_OPERAND (0, RD, *ip, regno);
11870 break;
11871
11872 case 'd':
11873 case 'g':
11874 INSERT_OPERAND (mips_opts.micromips, RD, *ip, regno);
11875 break;
11876
11877 case 'U':
11878 gas_assert (!mips_opts.micromips);
11879 INSERT_OPERAND (0, RD, *ip, regno);
11880 INSERT_OPERAND (0, RT, *ip, regno);
11881 break;
11882
11883 case 'w':
11884 case 't':
11885 case 'E':
11886 INSERT_OPERAND (mips_opts.micromips, RT, *ip, regno);
11887 break;
11888
11889 case 'y':
11890 gas_assert (mips_opts.micromips);
11891 INSERT_OPERAND (1, RS3, *ip, regno);
11892 break;
11893
11894 case 'x':
11895 /* This case exists because on the r3000 trunc
11896 expands into a macro which requires a gp
11897 register. On the r6000 or r4000 it is
11898 assembled into a single instruction which
11899 ignores the register. Thus the insn version
11900 is MIPS_ISA2 and uses 'x', and the macro
11901 version is MIPS_ISA1 and uses 't'. */
11902 break;
11903
11904 case 'z':
11905 /* This case is for the div instruction, which
11906 acts differently if the destination argument
11907 is $0. This only matches $0, and is checked
11908 outside the switch. */
11909 break;
11910 }
11911 lastregno = regno;
11912 continue;
11913 }
11914 switch (*args++)
11915 {
11916 case 'r':
11917 case 'v':
11918 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
11919 continue;
11920
11921 case 'w':
11922 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
11923 continue;
11924 }
11925 break;
11926
11927 case 'O': /* MDMX alignment immediate constant. */
11928 gas_assert (!mips_opts.micromips);
11929 my_getExpression (&imm_expr, s);
11930 check_absolute_expr (ip, &imm_expr);
11931 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
11932 as_warn (_("Improper align amount (%ld), using low bits"),
11933 (long) imm_expr.X_add_number);
11934 INSERT_OPERAND (0, ALN, *ip, imm_expr.X_add_number);
11935 imm_expr.X_op = O_absent;
11936 s = expr_end;
11937 continue;
11938
11939 case 'Q': /* MDMX vector, element sel, or const. */
11940 if (s[0] != '$')
11941 {
11942 /* MDMX Immediate. */
11943 gas_assert (!mips_opts.micromips);
11944 my_getExpression (&imm_expr, s);
11945 check_absolute_expr (ip, &imm_expr);
11946 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
11947 as_warn (_("Invalid MDMX Immediate (%ld)"),
11948 (long) imm_expr.X_add_number);
11949 INSERT_OPERAND (0, FT, *ip, imm_expr.X_add_number);
11950 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
11951 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
11952 else
11953 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
11954 imm_expr.X_op = O_absent;
11955 s = expr_end;
11956 continue;
11957 }
11958 /* Not MDMX Immediate. Fall through. */
11959 case 'X': /* MDMX destination register. */
11960 case 'Y': /* MDMX source register. */
11961 case 'Z': /* MDMX target register. */
11962 is_mdmx = 1;
11963 case 'W':
11964 gas_assert (!mips_opts.micromips);
11965 case 'D': /* Floating point destination register. */
11966 case 'S': /* Floating point source register. */
11967 case 'T': /* Floating point target register. */
11968 case 'R': /* Floating point source register. */
11969 case 'V':
11970 rtype = RTYPE_FPU;
11971 if (is_mdmx
11972 || (mips_opts.ase_mdmx
11973 && (ip->insn_mo->pinfo & FP_D)
11974 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
11975 | INSN_COPROC_MEMORY_DELAY
11976 | INSN_LOAD_COPROC_DELAY
11977 | INSN_LOAD_MEMORY_DELAY
11978 | INSN_STORE_MEMORY))))
11979 rtype |= RTYPE_VEC;
11980 s_reset = s;
11981 if (reg_lookup (&s, rtype, &regno))
11982 {
11983 if ((regno & 1) != 0
11984 && HAVE_32BIT_FPRS
11985 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
11986 as_warn (_("Float register should be even, was %d"),
11987 regno);
11988
11989 c = *args;
11990 if (*s == ' ')
11991 ++s;
11992 if (args[1] != *s)
11993 {
11994 if (c == 'V' || c == 'W')
11995 {
11996 regno = lastregno;
11997 s = s_reset;
11998 ++args;
11999 }
12000 }
12001 switch (c)
12002 {
12003 case 'D':
12004 case 'X':
12005 INSERT_OPERAND (mips_opts.micromips, FD, *ip, regno);
12006 break;
12007
12008 case 'V':
12009 case 'S':
12010 case 'Y':
12011 INSERT_OPERAND (mips_opts.micromips, FS, *ip, regno);
12012 break;
12013
12014 case 'Q':
12015 /* This is like 'Z', but also needs to fix the MDMX
12016 vector/scalar select bits. Note that the
12017 scalar immediate case is handled above. */
12018 if (*s == '[')
12019 {
12020 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
12021 int max_el = (is_qh ? 3 : 7);
12022 s++;
12023 my_getExpression(&imm_expr, s);
12024 check_absolute_expr (ip, &imm_expr);
12025 s = expr_end;
12026 if (imm_expr.X_add_number > max_el)
12027 as_bad (_("Bad element selector %ld"),
12028 (long) imm_expr.X_add_number);
12029 imm_expr.X_add_number &= max_el;
12030 ip->insn_opcode |= (imm_expr.X_add_number
12031 << (OP_SH_VSEL +
12032 (is_qh ? 2 : 1)));
12033 imm_expr.X_op = O_absent;
12034 if (*s != ']')
12035 as_warn (_("Expecting ']' found '%s'"), s);
12036 else
12037 s++;
12038 }
12039 else
12040 {
12041 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
12042 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
12043 << OP_SH_VSEL);
12044 else
12045 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
12046 OP_SH_VSEL);
12047 }
12048 /* Fall through. */
12049 case 'W':
12050 case 'T':
12051 case 'Z':
12052 INSERT_OPERAND (mips_opts.micromips, FT, *ip, regno);
12053 break;
12054
12055 case 'R':
12056 INSERT_OPERAND (mips_opts.micromips, FR, *ip, regno);
12057 break;
12058 }
12059 lastregno = regno;
12060 continue;
12061 }
12062
12063 switch (*args++)
12064 {
12065 case 'V':
12066 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
12067 continue;
12068
12069 case 'W':
12070 INSERT_OPERAND (mips_opts.micromips, FT, *ip, lastregno);
12071 continue;
12072 }
12073 break;
12074
12075 case 'I':
12076 my_getExpression (&imm_expr, s);
12077 if (imm_expr.X_op != O_big
12078 && imm_expr.X_op != O_constant)
12079 insn_error = _("absolute expression required");
12080 if (HAVE_32BIT_GPRS)
12081 normalize_constant_expr (&imm_expr);
12082 s = expr_end;
12083 continue;
12084
12085 case 'A':
12086 my_getExpression (&offset_expr, s);
12087 normalize_address_expr (&offset_expr);
12088 *imm_reloc = BFD_RELOC_32;
12089 s = expr_end;
12090 continue;
12091
12092 case 'F':
12093 case 'L':
12094 case 'f':
12095 case 'l':
12096 {
12097 int f64;
12098 int using_gprs;
12099 char *save_in;
12100 char *err;
12101 unsigned char temp[8];
12102 int len;
12103 unsigned int length;
12104 segT seg;
12105 subsegT subseg;
12106 char *p;
12107
12108 /* These only appear as the last operand in an
12109 instruction, and every instruction that accepts
12110 them in any variant accepts them in all variants.
12111 This means we don't have to worry about backing out
12112 any changes if the instruction does not match.
12113
12114 The difference between them is the size of the
12115 floating point constant and where it goes. For 'F'
12116 and 'L' the constant is 64 bits; for 'f' and 'l' it
12117 is 32 bits. Where the constant is placed is based
12118 on how the MIPS assembler does things:
12119 F -- .rdata
12120 L -- .lit8
12121 f -- immediate value
12122 l -- .lit4
12123
12124 The .lit4 and .lit8 sections are only used if
12125 permitted by the -G argument.
12126
12127 The code below needs to know whether the target register
12128 is 32 or 64 bits wide. It relies on the fact 'f' and
12129 'F' are used with GPR-based instructions and 'l' and
12130 'L' are used with FPR-based instructions. */
12131
12132 f64 = *args == 'F' || *args == 'L';
12133 using_gprs = *args == 'F' || *args == 'f';
12134
12135 save_in = input_line_pointer;
12136 input_line_pointer = s;
12137 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
12138 length = len;
12139 s = input_line_pointer;
12140 input_line_pointer = save_in;
12141 if (err != NULL && *err != '\0')
12142 {
12143 as_bad (_("Bad floating point constant: %s"), err);
12144 memset (temp, '\0', sizeof temp);
12145 length = f64 ? 8 : 4;
12146 }
12147
12148 gas_assert (length == (unsigned) (f64 ? 8 : 4));
12149
12150 if (*args == 'f'
12151 || (*args == 'l'
12152 && (g_switch_value < 4
12153 || (temp[0] == 0 && temp[1] == 0)
12154 || (temp[2] == 0 && temp[3] == 0))))
12155 {
12156 imm_expr.X_op = O_constant;
12157 if (!target_big_endian)
12158 imm_expr.X_add_number = bfd_getl32 (temp);
12159 else
12160 imm_expr.X_add_number = bfd_getb32 (temp);
12161 }
12162 else if (length > 4
12163 && !mips_disable_float_construction
12164 /* Constants can only be constructed in GPRs and
12165 copied to FPRs if the GPRs are at least as wide
12166 as the FPRs. Force the constant into memory if
12167 we are using 64-bit FPRs but the GPRs are only
12168 32 bits wide. */
12169 && (using_gprs
12170 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
12171 && ((temp[0] == 0 && temp[1] == 0)
12172 || (temp[2] == 0 && temp[3] == 0))
12173 && ((temp[4] == 0 && temp[5] == 0)
12174 || (temp[6] == 0 && temp[7] == 0)))
12175 {
12176 /* The value is simple enough to load with a couple of
12177 instructions. If using 32-bit registers, set
12178 imm_expr to the high order 32 bits and offset_expr to
12179 the low order 32 bits. Otherwise, set imm_expr to
12180 the entire 64 bit constant. */
12181 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
12182 {
12183 imm_expr.X_op = O_constant;
12184 offset_expr.X_op = O_constant;
12185 if (!target_big_endian)
12186 {
12187 imm_expr.X_add_number = bfd_getl32 (temp + 4);
12188 offset_expr.X_add_number = bfd_getl32 (temp);
12189 }
12190 else
12191 {
12192 imm_expr.X_add_number = bfd_getb32 (temp);
12193 offset_expr.X_add_number = bfd_getb32 (temp + 4);
12194 }
12195 if (offset_expr.X_add_number == 0)
12196 offset_expr.X_op = O_absent;
12197 }
12198 else if (sizeof (imm_expr.X_add_number) > 4)
12199 {
12200 imm_expr.X_op = O_constant;
12201 if (!target_big_endian)
12202 imm_expr.X_add_number = bfd_getl64 (temp);
12203 else
12204 imm_expr.X_add_number = bfd_getb64 (temp);
12205 }
12206 else
12207 {
12208 imm_expr.X_op = O_big;
12209 imm_expr.X_add_number = 4;
12210 if (!target_big_endian)
12211 {
12212 generic_bignum[0] = bfd_getl16 (temp);
12213 generic_bignum[1] = bfd_getl16 (temp + 2);
12214 generic_bignum[2] = bfd_getl16 (temp + 4);
12215 generic_bignum[3] = bfd_getl16 (temp + 6);
12216 }
12217 else
12218 {
12219 generic_bignum[0] = bfd_getb16 (temp + 6);
12220 generic_bignum[1] = bfd_getb16 (temp + 4);
12221 generic_bignum[2] = bfd_getb16 (temp + 2);
12222 generic_bignum[3] = bfd_getb16 (temp);
12223 }
12224 }
12225 }
12226 else
12227 {
12228 const char *newname;
12229 segT new_seg;
12230
12231 /* Switch to the right section. */
12232 seg = now_seg;
12233 subseg = now_subseg;
12234 switch (*args)
12235 {
12236 default: /* unused default case avoids warnings. */
12237 case 'L':
12238 newname = RDATA_SECTION_NAME;
12239 if (g_switch_value >= 8)
12240 newname = ".lit8";
12241 break;
12242 case 'F':
12243 newname = RDATA_SECTION_NAME;
12244 break;
12245 case 'l':
12246 gas_assert (g_switch_value >= 4);
12247 newname = ".lit4";
12248 break;
12249 }
12250 new_seg = subseg_new (newname, (subsegT) 0);
12251 if (IS_ELF)
12252 bfd_set_section_flags (stdoutput, new_seg,
12253 (SEC_ALLOC
12254 | SEC_LOAD
12255 | SEC_READONLY
12256 | SEC_DATA));
12257 frag_align (*args == 'l' ? 2 : 3, 0, 0);
12258 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
12259 record_alignment (new_seg, 4);
12260 else
12261 record_alignment (new_seg, *args == 'l' ? 2 : 3);
12262 if (seg == now_seg)
12263 as_bad (_("Can't use floating point insn in this section"));
12264
12265 /* Set the argument to the current address in the
12266 section. */
12267 offset_expr.X_op = O_symbol;
12268 offset_expr.X_add_symbol = symbol_temp_new_now ();
12269 offset_expr.X_add_number = 0;
12270
12271 /* Put the floating point number into the section. */
12272 p = frag_more ((int) length);
12273 memcpy (p, temp, length);
12274
12275 /* Switch back to the original section. */
12276 subseg_set (seg, subseg);
12277 }
12278 }
12279 continue;
12280
12281 case 'i': /* 16-bit unsigned immediate. */
12282 case 'j': /* 16-bit signed immediate. */
12283 *imm_reloc = BFD_RELOC_LO16;
12284 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
12285 {
12286 int more;
12287 offsetT minval, maxval;
12288
12289 more = (insn + 1 < past
12290 && strcmp (insn->name, insn[1].name) == 0);
12291
12292 /* If the expression was written as an unsigned number,
12293 only treat it as signed if there are no more
12294 alternatives. */
12295 if (more
12296 && *args == 'j'
12297 && sizeof (imm_expr.X_add_number) <= 4
12298 && imm_expr.X_op == O_constant
12299 && imm_expr.X_add_number < 0
12300 && imm_expr.X_unsigned
12301 && HAVE_64BIT_GPRS)
12302 break;
12303
12304 /* For compatibility with older assemblers, we accept
12305 0x8000-0xffff as signed 16-bit numbers when only
12306 signed numbers are allowed. */
12307 if (*args == 'i')
12308 minval = 0, maxval = 0xffff;
12309 else if (more)
12310 minval = -0x8000, maxval = 0x7fff;
12311 else
12312 minval = -0x8000, maxval = 0xffff;
12313
12314 if (imm_expr.X_op != O_constant
12315 || imm_expr.X_add_number < minval
12316 || imm_expr.X_add_number > maxval)
12317 {
12318 if (more)
12319 break;
12320 if (imm_expr.X_op == O_constant
12321 || imm_expr.X_op == O_big)
12322 as_bad (_("Expression out of range"));
12323 }
12324 }
12325 s = expr_end;
12326 continue;
12327
12328 case 'o': /* 16-bit offset. */
12329 offset_reloc[0] = BFD_RELOC_LO16;
12330 offset_reloc[1] = BFD_RELOC_UNUSED;
12331 offset_reloc[2] = BFD_RELOC_UNUSED;
12332
12333 /* Check whether there is only a single bracketed expression
12334 left. If so, it must be the base register and the
12335 constant must be zero. */
12336 if (*s == '(' && strchr (s + 1, '(') == 0)
12337 {
12338 offset_expr.X_op = O_constant;
12339 offset_expr.X_add_number = 0;
12340 continue;
12341 }
12342
12343 /* If this value won't fit into a 16 bit offset, then go
12344 find a macro that will generate the 32 bit offset
12345 code pattern. */
12346 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
12347 && (offset_expr.X_op != O_constant
12348 || offset_expr.X_add_number >= 0x8000
12349 || offset_expr.X_add_number < -0x8000))
12350 break;
12351
12352 s = expr_end;
12353 continue;
12354
12355 case 'p': /* PC-relative offset. */
12356 *offset_reloc = BFD_RELOC_16_PCREL_S2;
12357 my_getExpression (&offset_expr, s);
12358 s = expr_end;
12359 continue;
12360
12361 case 'u': /* Upper 16 bits. */
12362 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
12363 && imm_expr.X_op == O_constant
12364 && (imm_expr.X_add_number < 0
12365 || imm_expr.X_add_number >= 0x10000))
12366 as_bad (_("lui expression (%lu) not in range 0..65535"),
12367 (unsigned long) imm_expr.X_add_number);
12368 s = expr_end;
12369 continue;
12370
12371 case 'a': /* 26-bit address. */
12372 *offset_reloc = BFD_RELOC_MIPS_JMP;
12373 my_getExpression (&offset_expr, s);
12374 s = expr_end;
12375 continue;
12376
12377 case 'N': /* 3-bit branch condition code. */
12378 case 'M': /* 3-bit compare condition code. */
12379 rtype = RTYPE_CCC;
12380 if (ip->insn_mo->pinfo & (FP_D | FP_S))
12381 rtype |= RTYPE_FCC;
12382 if (!reg_lookup (&s, rtype, &regno))
12383 break;
12384 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
12385 || strcmp (str + strlen (str) - 5, "any2f") == 0
12386 || strcmp (str + strlen (str) - 5, "any2t") == 0)
12387 && (regno & 1) != 0)
12388 as_warn (_("Condition code register should be even for %s, "
12389 "was %d"),
12390 str, regno);
12391 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
12392 || strcmp (str + strlen (str) - 5, "any4t") == 0)
12393 && (regno & 3) != 0)
12394 as_warn (_("Condition code register should be 0 or 4 for %s, "
12395 "was %d"),
12396 str, regno);
12397 if (*args == 'N')
12398 INSERT_OPERAND (mips_opts.micromips, BCC, *ip, regno);
12399 else
12400 INSERT_OPERAND (mips_opts.micromips, CCC, *ip, regno);
12401 continue;
12402
12403 case 'H':
12404 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
12405 s += 2;
12406 if (ISDIGIT (*s))
12407 {
12408 c = 0;
12409 do
12410 {
12411 c *= 10;
12412 c += *s - '0';
12413 ++s;
12414 }
12415 while (ISDIGIT (*s));
12416 }
12417 else
12418 c = 8; /* Invalid sel value. */
12419
12420 if (c > 7)
12421 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
12422 INSERT_OPERAND (mips_opts.micromips, SEL, *ip, c);
12423 continue;
12424
12425 case 'e':
12426 gas_assert (!mips_opts.micromips);
12427 /* Must be at least one digit. */
12428 my_getExpression (&imm_expr, s);
12429 check_absolute_expr (ip, &imm_expr);
12430
12431 if ((unsigned long) imm_expr.X_add_number
12432 > (unsigned long) OP_MASK_VECBYTE)
12433 {
12434 as_bad (_("bad byte vector index (%ld)"),
12435 (long) imm_expr.X_add_number);
12436 imm_expr.X_add_number = 0;
12437 }
12438
12439 INSERT_OPERAND (0, VECBYTE, *ip, imm_expr.X_add_number);
12440 imm_expr.X_op = O_absent;
12441 s = expr_end;
12442 continue;
12443
12444 case '%':
12445 gas_assert (!mips_opts.micromips);
12446 my_getExpression (&imm_expr, s);
12447 check_absolute_expr (ip, &imm_expr);
12448
12449 if ((unsigned long) imm_expr.X_add_number
12450 > (unsigned long) OP_MASK_VECALIGN)
12451 {
12452 as_bad (_("bad byte vector index (%ld)"),
12453 (long) imm_expr.X_add_number);
12454 imm_expr.X_add_number = 0;
12455 }
12456
12457 INSERT_OPERAND (0, VECALIGN, *ip, imm_expr.X_add_number);
12458 imm_expr.X_op = O_absent;
12459 s = expr_end;
12460 continue;
12461
12462 case 'm': /* Opcode extension character. */
12463 gas_assert (mips_opts.micromips);
12464 c = *++args;
12465 switch (c)
12466 {
12467 case 'r':
12468 if (strncmp (s, "$pc", 3) == 0)
12469 {
12470 s += 3;
12471 continue;
12472 }
12473 break;
12474
12475 case 'a':
12476 case 'b':
12477 case 'c':
12478 case 'd':
12479 case 'e':
12480 case 'f':
12481 case 'g':
12482 case 'h':
12483 case 'i':
12484 case 'j':
12485 case 'l':
12486 case 'm':
12487 case 'n':
12488 case 'p':
12489 case 'q':
12490 case 's':
12491 case 't':
12492 case 'x':
12493 case 'y':
12494 case 'z':
12495 s_reset = s;
12496 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
12497 if (regno == AT && mips_opts.at)
12498 {
12499 if (mips_opts.at == ATREG)
12500 as_warn (_("Used $at without \".set noat\""));
12501 else
12502 as_warn (_("Used $%u with \".set at=$%u\""),
12503 regno, mips_opts.at);
12504 }
12505 if (!ok)
12506 {
12507 if (c == 'c')
12508 {
12509 gas_assert (args[1] == ',');
12510 regno = lastregno;
12511 ++args;
12512 }
12513 else if (c == 't')
12514 {
12515 gas_assert (args[1] == ',');
12516 ++args;
12517 continue; /* Nothing to do. */
12518 }
12519 else
12520 break;
12521 }
12522
12523 if (c == 'j' && !strncmp (ip->insn_mo->name, "jalr", 4))
12524 {
12525 if (regno == lastregno)
12526 {
12527 insn_error
12528 = _("Source and destination must be different");
12529 continue;
12530 }
12531 if (regno == 31 && lastregno == 0xffffffff)
12532 {
12533 insn_error
12534 = _("A destination register must be supplied");
12535 continue;
12536 }
12537 }
12538
12539 if (*s == ' ')
12540 ++s;
12541 if (args[1] != *s)
12542 {
12543 if (c == 'e')
12544 {
12545 gas_assert (args[1] == ',');
12546 regno = lastregno;
12547 s = s_reset;
12548 ++args;
12549 }
12550 else if (c == 't')
12551 {
12552 gas_assert (args[1] == ',');
12553 s = s_reset;
12554 ++args;
12555 continue; /* Nothing to do. */
12556 }
12557 }
12558
12559 /* Make sure regno is the same as lastregno. */
12560 if (c == 't' && regno != lastregno)
12561 break;
12562
12563 /* Make sure regno is the same as destregno. */
12564 if (c == 'x' && regno != destregno)
12565 break;
12566
12567 /* We need to save regno, before regno maps to the
12568 microMIPS register encoding. */
12569 lastregno = regno;
12570
12571 if (c == 'f')
12572 destregno = regno;
12573
12574 switch (c)
12575 {
12576 case 'a':
12577 if (regno != GP)
12578 regno = ILLEGAL_REG;
12579 break;
12580
12581 case 'b':
12582 regno = mips32_to_micromips_reg_b_map[regno];
12583 break;
12584
12585 case 'c':
12586 regno = mips32_to_micromips_reg_c_map[regno];
12587 break;
12588
12589 case 'd':
12590 regno = mips32_to_micromips_reg_d_map[regno];
12591 break;
12592
12593 case 'e':
12594 regno = mips32_to_micromips_reg_e_map[regno];
12595 break;
12596
12597 case 'f':
12598 regno = mips32_to_micromips_reg_f_map[regno];
12599 break;
12600
12601 case 'g':
12602 regno = mips32_to_micromips_reg_g_map[regno];
12603 break;
12604
12605 case 'h':
12606 regno = mips32_to_micromips_reg_h_map[regno];
12607 break;
12608
12609 case 'i':
12610 switch (EXTRACT_OPERAND (1, MI, *ip))
12611 {
12612 case 4:
12613 if (regno == 21)
12614 regno = 3;
12615 else if (regno == 22)
12616 regno = 4;
12617 else if (regno == 5)
12618 regno = 5;
12619 else if (regno == 6)
12620 regno = 6;
12621 else if (regno == 7)
12622 regno = 7;
12623 else
12624 regno = ILLEGAL_REG;
12625 break;
12626
12627 case 5:
12628 if (regno == 6)
12629 regno = 0;
12630 else if (regno == 7)
12631 regno = 1;
12632 else
12633 regno = ILLEGAL_REG;
12634 break;
12635
12636 case 6:
12637 if (regno == 7)
12638 regno = 2;
12639 else
12640 regno = ILLEGAL_REG;
12641 break;
12642
12643 default:
12644 regno = ILLEGAL_REG;
12645 break;
12646 }
12647 break;
12648
12649 case 'l':
12650 regno = mips32_to_micromips_reg_l_map[regno];
12651 break;
12652
12653 case 'm':
12654 regno = mips32_to_micromips_reg_m_map[regno];
12655 break;
12656
12657 case 'n':
12658 regno = mips32_to_micromips_reg_n_map[regno];
12659 break;
12660
12661 case 'q':
12662 regno = mips32_to_micromips_reg_q_map[regno];
12663 break;
12664
12665 case 's':
12666 if (regno != SP)
12667 regno = ILLEGAL_REG;
12668 break;
12669
12670 case 'y':
12671 if (regno != 31)
12672 regno = ILLEGAL_REG;
12673 break;
12674
12675 case 'z':
12676 if (regno != ZERO)
12677 regno = ILLEGAL_REG;
12678 break;
12679
12680 case 'j': /* Do nothing. */
12681 case 'p':
12682 case 't':
12683 case 'x':
12684 break;
12685
12686 default:
12687 internalError ();
12688 }
12689
12690 if (regno == ILLEGAL_REG)
12691 break;
12692
12693 switch (c)
12694 {
12695 case 'b':
12696 INSERT_OPERAND (1, MB, *ip, regno);
12697 break;
12698
12699 case 'c':
12700 INSERT_OPERAND (1, MC, *ip, regno);
12701 break;
12702
12703 case 'd':
12704 INSERT_OPERAND (1, MD, *ip, regno);
12705 break;
12706
12707 case 'e':
12708 INSERT_OPERAND (1, ME, *ip, regno);
12709 break;
12710
12711 case 'f':
12712 INSERT_OPERAND (1, MF, *ip, regno);
12713 break;
12714
12715 case 'g':
12716 INSERT_OPERAND (1, MG, *ip, regno);
12717 break;
12718
12719 case 'h':
12720 INSERT_OPERAND (1, MH, *ip, regno);
12721 break;
12722
12723 case 'i':
12724 INSERT_OPERAND (1, MI, *ip, regno);
12725 break;
12726
12727 case 'j':
12728 INSERT_OPERAND (1, MJ, *ip, regno);
12729 break;
12730
12731 case 'l':
12732 INSERT_OPERAND (1, ML, *ip, regno);
12733 break;
12734
12735 case 'm':
12736 INSERT_OPERAND (1, MM, *ip, regno);
12737 break;
12738
12739 case 'n':
12740 INSERT_OPERAND (1, MN, *ip, regno);
12741 break;
12742
12743 case 'p':
12744 INSERT_OPERAND (1, MP, *ip, regno);
12745 break;
12746
12747 case 'q':
12748 INSERT_OPERAND (1, MQ, *ip, regno);
12749 break;
12750
12751 case 'a': /* Do nothing. */
12752 case 's': /* Do nothing. */
12753 case 't': /* Do nothing. */
12754 case 'x': /* Do nothing. */
12755 case 'y': /* Do nothing. */
12756 case 'z': /* Do nothing. */
12757 break;
12758
12759 default:
12760 internalError ();
12761 }
12762 continue;
12763
12764 case 'A':
12765 {
12766 bfd_reloc_code_real_type r[3];
12767 expressionS ep;
12768 int imm;
12769
12770 /* Check whether there is only a single bracketed
12771 expression left. If so, it must be the base register
12772 and the constant must be zero. */
12773 if (*s == '(' && strchr (s + 1, '(') == 0)
12774 {
12775 INSERT_OPERAND (1, IMMA, *ip, 0);
12776 continue;
12777 }
12778
12779 if (my_getSmallExpression (&ep, r, s) > 0
12780 || !expr_const_in_range (&ep, -64, 64, 2))
12781 break;
12782
12783 imm = ep.X_add_number >> 2;
12784 INSERT_OPERAND (1, IMMA, *ip, imm);
12785 }
12786 s = expr_end;
12787 continue;
12788
12789 case 'B':
12790 {
12791 bfd_reloc_code_real_type r[3];
12792 expressionS ep;
12793 int imm;
12794
12795 if (my_getSmallExpression (&ep, r, s) > 0
12796 || ep.X_op != O_constant)
12797 break;
12798
12799 for (imm = 0; imm < 8; imm++)
12800 if (micromips_imm_b_map[imm] == ep.X_add_number)
12801 break;
12802 if (imm >= 8)
12803 break;
12804
12805 INSERT_OPERAND (1, IMMB, *ip, imm);
12806 }
12807 s = expr_end;
12808 continue;
12809
12810 case 'C':
12811 {
12812 bfd_reloc_code_real_type r[3];
12813 expressionS ep;
12814 int imm;
12815
12816 if (my_getSmallExpression (&ep, r, s) > 0
12817 || ep.X_op != O_constant)
12818 break;
12819
12820 for (imm = 0; imm < 16; imm++)
12821 if (micromips_imm_c_map[imm] == ep.X_add_number)
12822 break;
12823 if (imm >= 16)
12824 break;
12825
12826 INSERT_OPERAND (1, IMMC, *ip, imm);
12827 }
12828 s = expr_end;
12829 continue;
12830
12831 case 'D': /* pc relative offset */
12832 case 'E': /* pc relative offset */
12833 my_getExpression (&offset_expr, s);
12834 if (offset_expr.X_op == O_register)
12835 break;
12836
12837 if (!forced_insn_length)
12838 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
12839 else if (c == 'D')
12840 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
12841 else
12842 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
12843 s = expr_end;
12844 continue;
12845
12846 case 'F':
12847 {
12848 bfd_reloc_code_real_type r[3];
12849 expressionS ep;
12850 int imm;
12851
12852 if (my_getSmallExpression (&ep, r, s) > 0
12853 || !expr_const_in_range (&ep, 0, 16, 0))
12854 break;
12855
12856 imm = ep.X_add_number;
12857 INSERT_OPERAND (1, IMMF, *ip, imm);
12858 }
12859 s = expr_end;
12860 continue;
12861
12862 case 'G':
12863 {
12864 bfd_reloc_code_real_type r[3];
12865 expressionS ep;
12866 int imm;
12867
12868 /* Check whether there is only a single bracketed
12869 expression left. If so, it must be the base register
12870 and the constant must be zero. */
12871 if (*s == '(' && strchr (s + 1, '(') == 0)
12872 {
12873 INSERT_OPERAND (1, IMMG, *ip, 0);
12874 continue;
12875 }
12876
12877 if (my_getSmallExpression (&ep, r, s) > 0
12878 || !expr_const_in_range (&ep, -1, 15, 0))
12879 break;
12880
12881 imm = ep.X_add_number & 15;
12882 INSERT_OPERAND (1, IMMG, *ip, imm);
12883 }
12884 s = expr_end;
12885 continue;
12886
12887 case 'H':
12888 {
12889 bfd_reloc_code_real_type r[3];
12890 expressionS ep;
12891 int imm;
12892
12893 /* Check whether there is only a single bracketed
12894 expression left. If so, it must be the base register
12895 and the constant must be zero. */
12896 if (*s == '(' && strchr (s + 1, '(') == 0)
12897 {
12898 INSERT_OPERAND (1, IMMH, *ip, 0);
12899 continue;
12900 }
12901
12902 if (my_getSmallExpression (&ep, r, s) > 0
12903 || !expr_const_in_range (&ep, 0, 16, 1))
12904 break;
12905
12906 imm = ep.X_add_number >> 1;
12907 INSERT_OPERAND (1, IMMH, *ip, imm);
12908 }
12909 s = expr_end;
12910 continue;
12911
12912 case 'I':
12913 {
12914 bfd_reloc_code_real_type r[3];
12915 expressionS ep;
12916 int imm;
12917
12918 if (my_getSmallExpression (&ep, r, s) > 0
12919 || !expr_const_in_range (&ep, -1, 127, 0))
12920 break;
12921
12922 imm = ep.X_add_number & 127;
12923 INSERT_OPERAND (1, IMMI, *ip, imm);
12924 }
12925 s = expr_end;
12926 continue;
12927
12928 case 'J':
12929 {
12930 bfd_reloc_code_real_type r[3];
12931 expressionS ep;
12932 int imm;
12933
12934 /* Check whether there is only a single bracketed
12935 expression left. If so, it must be the base register
12936 and the constant must be zero. */
12937 if (*s == '(' && strchr (s + 1, '(') == 0)
12938 {
12939 INSERT_OPERAND (1, IMMJ, *ip, 0);
12940 continue;
12941 }
12942
12943 if (my_getSmallExpression (&ep, r, s) > 0
12944 || !expr_const_in_range (&ep, 0, 16, 2))
12945 break;
12946
12947 imm = ep.X_add_number >> 2;
12948 INSERT_OPERAND (1, IMMJ, *ip, imm);
12949 }
12950 s = expr_end;
12951 continue;
12952
12953 case 'L':
12954 {
12955 bfd_reloc_code_real_type r[3];
12956 expressionS ep;
12957 int imm;
12958
12959 /* Check whether there is only a single bracketed
12960 expression left. If so, it must be the base register
12961 and the constant must be zero. */
12962 if (*s == '(' && strchr (s + 1, '(') == 0)
12963 {
12964 INSERT_OPERAND (1, IMML, *ip, 0);
12965 continue;
12966 }
12967
12968 if (my_getSmallExpression (&ep, r, s) > 0
12969 || !expr_const_in_range (&ep, 0, 16, 0))
12970 break;
12971
12972 imm = ep.X_add_number;
12973 INSERT_OPERAND (1, IMML, *ip, imm);
12974 }
12975 s = expr_end;
12976 continue;
12977
12978 case 'M':
12979 {
12980 bfd_reloc_code_real_type r[3];
12981 expressionS ep;
12982 int imm;
12983
12984 if (my_getSmallExpression (&ep, r, s) > 0
12985 || !expr_const_in_range (&ep, 1, 9, 0))
12986 break;
12987
12988 imm = ep.X_add_number & 7;
12989 INSERT_OPERAND (1, IMMM, *ip, imm);
12990 }
12991 s = expr_end;
12992 continue;
12993
12994 case 'N': /* Register list for lwm and swm. */
12995 {
12996 /* A comma-separated list of registers and/or
12997 dash-separated contiguous ranges including
12998 both ra and a set of one or more registers
12999 starting at s0 up to s3 which have to be
13000 consecutive, e.g.:
13001
13002 s0, ra
13003 s0, s1, ra, s2, s3
13004 s0-s2, ra
13005
13006 and any permutations of these. */
13007 unsigned int reglist;
13008 int imm;
13009
13010 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, &reglist))
13011 break;
13012
13013 if ((reglist & 0xfff1ffff) != 0x80010000)
13014 break;
13015
13016 reglist = (reglist >> 17) & 7;
13017 reglist += 1;
13018 if ((reglist & -reglist) != reglist)
13019 break;
13020
13021 imm = ffs (reglist) - 1;
13022 INSERT_OPERAND (1, IMMN, *ip, imm);
13023 }
13024 continue;
13025
13026 case 'O': /* sdbbp 4-bit code. */
13027 {
13028 bfd_reloc_code_real_type r[3];
13029 expressionS ep;
13030 int imm;
13031
13032 if (my_getSmallExpression (&ep, r, s) > 0
13033 || !expr_const_in_range (&ep, 0, 16, 0))
13034 break;
13035
13036 imm = ep.X_add_number;
13037 INSERT_OPERAND (1, IMMO, *ip, imm);
13038 }
13039 s = expr_end;
13040 continue;
13041
13042 case 'P':
13043 {
13044 bfd_reloc_code_real_type r[3];
13045 expressionS ep;
13046 int imm;
13047
13048 if (my_getSmallExpression (&ep, r, s) > 0
13049 || !expr_const_in_range (&ep, 0, 32, 2))
13050 break;
13051
13052 imm = ep.X_add_number >> 2;
13053 INSERT_OPERAND (1, IMMP, *ip, imm);
13054 }
13055 s = expr_end;
13056 continue;
13057
13058 case 'Q':
13059 {
13060 bfd_reloc_code_real_type r[3];
13061 expressionS ep;
13062 int imm;
13063
13064 if (my_getSmallExpression (&ep, r, s) > 0
13065 || !expr_const_in_range (&ep, -0x400000, 0x400000, 2))
13066 break;
13067
13068 imm = ep.X_add_number >> 2;
13069 INSERT_OPERAND (1, IMMQ, *ip, imm);
13070 }
13071 s = expr_end;
13072 continue;
13073
13074 case 'U':
13075 {
13076 bfd_reloc_code_real_type r[3];
13077 expressionS ep;
13078 int imm;
13079
13080 /* Check whether there is only a single bracketed
13081 expression left. If so, it must be the base register
13082 and the constant must be zero. */
13083 if (*s == '(' && strchr (s + 1, '(') == 0)
13084 {
13085 INSERT_OPERAND (1, IMMU, *ip, 0);
13086 continue;
13087 }
13088
13089 if (my_getSmallExpression (&ep, r, s) > 0
13090 || !expr_const_in_range (&ep, 0, 32, 2))
13091 break;
13092
13093 imm = ep.X_add_number >> 2;
13094 INSERT_OPERAND (1, IMMU, *ip, imm);
13095 }
13096 s = expr_end;
13097 continue;
13098
13099 case 'W':
13100 {
13101 bfd_reloc_code_real_type r[3];
13102 expressionS ep;
13103 int imm;
13104
13105 if (my_getSmallExpression (&ep, r, s) > 0
13106 || !expr_const_in_range (&ep, 0, 64, 2))
13107 break;
13108
13109 imm = ep.X_add_number >> 2;
13110 INSERT_OPERAND (1, IMMW, *ip, imm);
13111 }
13112 s = expr_end;
13113 continue;
13114
13115 case 'X':
13116 {
13117 bfd_reloc_code_real_type r[3];
13118 expressionS ep;
13119 int imm;
13120
13121 if (my_getSmallExpression (&ep, r, s) > 0
13122 || !expr_const_in_range (&ep, -8, 8, 0))
13123 break;
13124
13125 imm = ep.X_add_number;
13126 INSERT_OPERAND (1, IMMX, *ip, imm);
13127 }
13128 s = expr_end;
13129 continue;
13130
13131 case 'Y':
13132 {
13133 bfd_reloc_code_real_type r[3];
13134 expressionS ep;
13135 int imm;
13136
13137 if (my_getSmallExpression (&ep, r, s) > 0
13138 || expr_const_in_range (&ep, -2, 2, 2)
13139 || !expr_const_in_range (&ep, -258, 258, 2))
13140 break;
13141
13142 imm = ep.X_add_number >> 2;
13143 imm = ((imm >> 1) & ~0xff) | (imm & 0xff);
13144 INSERT_OPERAND (1, IMMY, *ip, imm);
13145 }
13146 s = expr_end;
13147 continue;
13148
13149 case 'Z':
13150 {
13151 bfd_reloc_code_real_type r[3];
13152 expressionS ep;
13153
13154 if (my_getSmallExpression (&ep, r, s) > 0
13155 || !expr_const_in_range (&ep, 0, 1, 0))
13156 break;
13157 }
13158 s = expr_end;
13159 continue;
13160
13161 default:
13162 as_bad (_("Internal error: bad microMIPS opcode "
13163 "(unknown extension operand type `m%c'): %s %s"),
13164 *args, insn->name, insn->args);
13165 /* Further processing is fruitless. */
13166 return;
13167 }
13168 break;
13169
13170 case 'n': /* Register list for 32-bit lwm and swm. */
13171 gas_assert (mips_opts.micromips);
13172 {
13173 /* A comma-separated list of registers and/or
13174 dash-separated contiguous ranges including
13175 at least one of ra and a set of one or more
13176 registers starting at s0 up to s7 and then
13177 s8 which have to be consecutive, e.g.:
13178
13179 ra
13180 s0
13181 ra, s0, s1, s2
13182 s0-s8
13183 s0-s5, ra
13184
13185 and any permutations of these. */
13186 unsigned int reglist;
13187 int imm;
13188 int ra;
13189
13190 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, &reglist))
13191 break;
13192
13193 if ((reglist & 0x3f00ffff) != 0)
13194 break;
13195
13196 ra = (reglist >> 27) & 0x10;
13197 reglist = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
13198 reglist += 1;
13199 if ((reglist & -reglist) != reglist)
13200 break;
13201
13202 imm = (ffs (reglist) - 1) | ra;
13203 INSERT_OPERAND (1, RT, *ip, imm);
13204 imm_expr.X_op = O_absent;
13205 }
13206 continue;
13207
13208 case '|': /* 4-bit trap code. */
13209 gas_assert (mips_opts.micromips);
13210 my_getExpression (&imm_expr, s);
13211 check_absolute_expr (ip, &imm_expr);
13212 if ((unsigned long) imm_expr.X_add_number
13213 > MICROMIPSOP_MASK_TRAP)
13214 as_bad (_("Trap code (%lu) for %s not in 0..15 range"),
13215 (unsigned long) imm_expr.X_add_number,
13216 ip->insn_mo->name);
13217 INSERT_OPERAND (1, TRAP, *ip, imm_expr.X_add_number);
13218 imm_expr.X_op = O_absent;
13219 s = expr_end;
13220 continue;
13221
13222 default:
13223 as_bad (_("Bad char = '%c'\n"), *args);
13224 internalError ();
13225 }
13226 break;
13227 }
13228 /* Args don't match. */
13229 s = argsStart;
13230 insn_error = _("Illegal operands");
13231 if (insn + 1 < past && !strcmp (insn->name, insn[1].name))
13232 {
13233 ++insn;
13234 continue;
13235 }
13236 else if (wrong_delay_slot_insns && need_delay_slot_ok)
13237 {
13238 gas_assert (firstinsn);
13239 need_delay_slot_ok = FALSE;
13240 past = insn + 1;
13241 insn = firstinsn;
13242 continue;
13243 }
13244 return;
13245 }
13246 }
13247
13248 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
13249
13250 /* This routine assembles an instruction into its binary format when
13251 assembling for the mips16. As a side effect, it sets one of the
13252 global variables imm_reloc or offset_reloc to the type of relocation
13253 to do if one of the operands is an address expression. It also sets
13254 forced_insn_length to the resulting instruction size in bytes if the
13255 user explicitly requested a small or extended instruction. */
13256
13257 static void
13258 mips16_ip (char *str, struct mips_cl_insn *ip)
13259 {
13260 char *s;
13261 const char *args;
13262 struct mips_opcode *insn;
13263 char *argsstart;
13264 unsigned int regno;
13265 unsigned int lastregno = 0;
13266 char *s_reset;
13267 size_t i;
13268
13269 insn_error = NULL;
13270
13271 forced_insn_length = 0;
13272
13273 for (s = str; ISLOWER (*s); ++s)
13274 ;
13275 switch (*s)
13276 {
13277 case '\0':
13278 break;
13279
13280 case ' ':
13281 *s++ = '\0';
13282 break;
13283
13284 case '.':
13285 if (s[1] == 't' && s[2] == ' ')
13286 {
13287 *s = '\0';
13288 forced_insn_length = 2;
13289 s += 3;
13290 break;
13291 }
13292 else if (s[1] == 'e' && s[2] == ' ')
13293 {
13294 *s = '\0';
13295 forced_insn_length = 4;
13296 s += 3;
13297 break;
13298 }
13299 /* Fall through. */
13300 default:
13301 insn_error = _("unknown opcode");
13302 return;
13303 }
13304
13305 if (mips_opts.noautoextend && !forced_insn_length)
13306 forced_insn_length = 2;
13307
13308 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
13309 {
13310 insn_error = _("unrecognized opcode");
13311 return;
13312 }
13313
13314 argsstart = s;
13315 for (;;)
13316 {
13317 bfd_boolean ok;
13318
13319 gas_assert (strcmp (insn->name, str) == 0);
13320
13321 ok = is_opcode_valid_16 (insn);
13322 if (! ok)
13323 {
13324 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
13325 && strcmp (insn->name, insn[1].name) == 0)
13326 {
13327 ++insn;
13328 continue;
13329 }
13330 else
13331 {
13332 if (!insn_error)
13333 {
13334 static char buf[100];
13335 sprintf (buf,
13336 _("Opcode not supported on this processor: %s (%s)"),
13337 mips_cpu_info_from_arch (mips_opts.arch)->name,
13338 mips_cpu_info_from_isa (mips_opts.isa)->name);
13339 insn_error = buf;
13340 }
13341 return;
13342 }
13343 }
13344
13345 create_insn (ip, insn);
13346 imm_expr.X_op = O_absent;
13347 imm_reloc[0] = BFD_RELOC_UNUSED;
13348 imm_reloc[1] = BFD_RELOC_UNUSED;
13349 imm_reloc[2] = BFD_RELOC_UNUSED;
13350 imm2_expr.X_op = O_absent;
13351 offset_expr.X_op = O_absent;
13352 offset_reloc[0] = BFD_RELOC_UNUSED;
13353 offset_reloc[1] = BFD_RELOC_UNUSED;
13354 offset_reloc[2] = BFD_RELOC_UNUSED;
13355 for (args = insn->args; 1; ++args)
13356 {
13357 int c;
13358
13359 if (*s == ' ')
13360 ++s;
13361
13362 /* In this switch statement we call break if we did not find
13363 a match, continue if we did find a match, or return if we
13364 are done. */
13365
13366 c = *args;
13367 switch (c)
13368 {
13369 case '\0':
13370 if (*s == '\0')
13371 {
13372 /* Stuff the immediate value in now, if we can. */
13373 if (imm_expr.X_op == O_constant
13374 && *imm_reloc > BFD_RELOC_UNUSED
13375 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
13376 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
13377 && insn->pinfo != INSN_MACRO)
13378 {
13379 valueT tmp;
13380
13381 switch (*offset_reloc)
13382 {
13383 case BFD_RELOC_MIPS16_HI16_S:
13384 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
13385 break;
13386
13387 case BFD_RELOC_MIPS16_HI16:
13388 tmp = imm_expr.X_add_number >> 16;
13389 break;
13390
13391 case BFD_RELOC_MIPS16_LO16:
13392 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
13393 - 0x8000;
13394 break;
13395
13396 case BFD_RELOC_UNUSED:
13397 tmp = imm_expr.X_add_number;
13398 break;
13399
13400 default:
13401 internalError ();
13402 }
13403
13404 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
13405 *offset_reloc, tmp, forced_insn_length,
13406 &ip->insn_opcode);
13407 imm_expr.X_op = O_absent;
13408 *imm_reloc = BFD_RELOC_UNUSED;
13409 *offset_reloc = BFD_RELOC_UNUSED;
13410 }
13411
13412 return;
13413 }
13414 break;
13415
13416 case ',':
13417 if (*s++ == c)
13418 continue;
13419 s--;
13420 switch (*++args)
13421 {
13422 case 'v':
13423 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13424 continue;
13425 case 'w':
13426 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13427 continue;
13428 }
13429 break;
13430
13431 case '(':
13432 case ')':
13433 if (*s++ == c)
13434 continue;
13435 break;
13436
13437 case 'v':
13438 case 'w':
13439 if (s[0] != '$')
13440 {
13441 if (c == 'v')
13442 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13443 else
13444 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13445 ++args;
13446 continue;
13447 }
13448 /* Fall through. */
13449 case 'x':
13450 case 'y':
13451 case 'z':
13452 case 'Z':
13453 case '0':
13454 case 'S':
13455 case 'R':
13456 case 'X':
13457 case 'Y':
13458 s_reset = s;
13459 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
13460 {
13461 if (c == 'v' || c == 'w')
13462 {
13463 if (c == 'v')
13464 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13465 else
13466 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13467 ++args;
13468 continue;
13469 }
13470 break;
13471 }
13472
13473 if (*s == ' ')
13474 ++s;
13475 if (args[1] != *s)
13476 {
13477 if (c == 'v' || c == 'w')
13478 {
13479 regno = mips16_to_32_reg_map[lastregno];
13480 s = s_reset;
13481 ++args;
13482 }
13483 }
13484
13485 switch (c)
13486 {
13487 case 'x':
13488 case 'y':
13489 case 'z':
13490 case 'v':
13491 case 'w':
13492 case 'Z':
13493 regno = mips32_to_16_reg_map[regno];
13494 break;
13495
13496 case '0':
13497 if (regno != 0)
13498 regno = ILLEGAL_REG;
13499 break;
13500
13501 case 'S':
13502 if (regno != SP)
13503 regno = ILLEGAL_REG;
13504 break;
13505
13506 case 'R':
13507 if (regno != RA)
13508 regno = ILLEGAL_REG;
13509 break;
13510
13511 case 'X':
13512 case 'Y':
13513 if (regno == AT && mips_opts.at)
13514 {
13515 if (mips_opts.at == ATREG)
13516 as_warn (_("used $at without \".set noat\""));
13517 else
13518 as_warn (_("used $%u with \".set at=$%u\""),
13519 regno, mips_opts.at);
13520 }
13521 break;
13522
13523 default:
13524 internalError ();
13525 }
13526
13527 if (regno == ILLEGAL_REG)
13528 break;
13529
13530 switch (c)
13531 {
13532 case 'x':
13533 case 'v':
13534 MIPS16_INSERT_OPERAND (RX, *ip, regno);
13535 break;
13536 case 'y':
13537 case 'w':
13538 MIPS16_INSERT_OPERAND (RY, *ip, regno);
13539 break;
13540 case 'z':
13541 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
13542 break;
13543 case 'Z':
13544 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
13545 case '0':
13546 case 'S':
13547 case 'R':
13548 break;
13549 case 'X':
13550 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
13551 break;
13552 case 'Y':
13553 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
13554 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
13555 break;
13556 default:
13557 internalError ();
13558 }
13559
13560 lastregno = regno;
13561 continue;
13562
13563 case 'P':
13564 if (strncmp (s, "$pc", 3) == 0)
13565 {
13566 s += 3;
13567 continue;
13568 }
13569 break;
13570
13571 case '5':
13572 case 'H':
13573 case 'W':
13574 case 'D':
13575 case 'j':
13576 case 'V':
13577 case 'C':
13578 case 'U':
13579 case 'k':
13580 case 'K':
13581 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
13582 if (i > 0)
13583 {
13584 if (imm_expr.X_op != O_constant)
13585 {
13586 forced_insn_length = 4;
13587 ip->insn_opcode |= MIPS16_EXTEND;
13588 }
13589 else
13590 {
13591 /* We need to relax this instruction. */
13592 *offset_reloc = *imm_reloc;
13593 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13594 }
13595 s = expr_end;
13596 continue;
13597 }
13598 *imm_reloc = BFD_RELOC_UNUSED;
13599 /* Fall through. */
13600 case '<':
13601 case '>':
13602 case '[':
13603 case ']':
13604 case '4':
13605 case '8':
13606 my_getExpression (&imm_expr, s);
13607 if (imm_expr.X_op == O_register)
13608 {
13609 /* What we thought was an expression turned out to
13610 be a register. */
13611
13612 if (s[0] == '(' && args[1] == '(')
13613 {
13614 /* It looks like the expression was omitted
13615 before a register indirection, which means
13616 that the expression is implicitly zero. We
13617 still set up imm_expr, so that we handle
13618 explicit extensions correctly. */
13619 imm_expr.X_op = O_constant;
13620 imm_expr.X_add_number = 0;
13621 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13622 continue;
13623 }
13624
13625 break;
13626 }
13627
13628 /* We need to relax this instruction. */
13629 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13630 s = expr_end;
13631 continue;
13632
13633 case 'p':
13634 case 'q':
13635 case 'A':
13636 case 'B':
13637 case 'E':
13638 /* We use offset_reloc rather than imm_reloc for the PC
13639 relative operands. This lets macros with both
13640 immediate and address operands work correctly. */
13641 my_getExpression (&offset_expr, s);
13642
13643 if (offset_expr.X_op == O_register)
13644 break;
13645
13646 /* We need to relax this instruction. */
13647 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
13648 s = expr_end;
13649 continue;
13650
13651 case '6': /* break code */
13652 my_getExpression (&imm_expr, s);
13653 check_absolute_expr (ip, &imm_expr);
13654 if ((unsigned long) imm_expr.X_add_number > 63)
13655 as_warn (_("Invalid value for `%s' (%lu)"),
13656 ip->insn_mo->name,
13657 (unsigned long) imm_expr.X_add_number);
13658 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
13659 imm_expr.X_op = O_absent;
13660 s = expr_end;
13661 continue;
13662
13663 case 'a': /* 26 bit address */
13664 my_getExpression (&offset_expr, s);
13665 s = expr_end;
13666 *offset_reloc = BFD_RELOC_MIPS16_JMP;
13667 ip->insn_opcode <<= 16;
13668 continue;
13669
13670 case 'l': /* register list for entry macro */
13671 case 'L': /* register list for exit macro */
13672 {
13673 int mask;
13674
13675 if (c == 'l')
13676 mask = 0;
13677 else
13678 mask = 7 << 3;
13679 while (*s != '\0')
13680 {
13681 unsigned int freg, reg1, reg2;
13682
13683 while (*s == ' ' || *s == ',')
13684 ++s;
13685 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
13686 freg = 0;
13687 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
13688 freg = 1;
13689 else
13690 {
13691 as_bad (_("can't parse register list"));
13692 break;
13693 }
13694 if (*s == ' ')
13695 ++s;
13696 if (*s != '-')
13697 reg2 = reg1;
13698 else
13699 {
13700 ++s;
13701 if (!reg_lookup (&s, freg ? RTYPE_FPU
13702 : (RTYPE_GP | RTYPE_NUM), &reg2))
13703 {
13704 as_bad (_("invalid register list"));
13705 break;
13706 }
13707 }
13708 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
13709 {
13710 mask &= ~ (7 << 3);
13711 mask |= 5 << 3;
13712 }
13713 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
13714 {
13715 mask &= ~ (7 << 3);
13716 mask |= 6 << 3;
13717 }
13718 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
13719 mask |= (reg2 - 3) << 3;
13720 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
13721 mask |= (reg2 - 15) << 1;
13722 else if (reg1 == RA && reg2 == RA)
13723 mask |= 1;
13724 else
13725 {
13726 as_bad (_("invalid register list"));
13727 break;
13728 }
13729 }
13730 /* The mask is filled in in the opcode table for the
13731 benefit of the disassembler. We remove it before
13732 applying the actual mask. */
13733 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
13734 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
13735 }
13736 continue;
13737
13738 case 'm': /* Register list for save insn. */
13739 case 'M': /* Register list for restore insn. */
13740 {
13741 int opcode = ip->insn_opcode;
13742 int framesz = 0, seen_framesz = 0;
13743 int nargs = 0, statics = 0, sregs = 0;
13744
13745 while (*s != '\0')
13746 {
13747 unsigned int reg1, reg2;
13748
13749 SKIP_SPACE_TABS (s);
13750 while (*s == ',')
13751 ++s;
13752 SKIP_SPACE_TABS (s);
13753
13754 my_getExpression (&imm_expr, s);
13755 if (imm_expr.X_op == O_constant)
13756 {
13757 /* Handle the frame size. */
13758 if (seen_framesz)
13759 {
13760 as_bad (_("more than one frame size in list"));
13761 break;
13762 }
13763 seen_framesz = 1;
13764 framesz = imm_expr.X_add_number;
13765 imm_expr.X_op = O_absent;
13766 s = expr_end;
13767 continue;
13768 }
13769
13770 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
13771 {
13772 as_bad (_("can't parse register list"));
13773 break;
13774 }
13775
13776 while (*s == ' ')
13777 ++s;
13778
13779 if (*s != '-')
13780 reg2 = reg1;
13781 else
13782 {
13783 ++s;
13784 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
13785 || reg2 < reg1)
13786 {
13787 as_bad (_("can't parse register list"));
13788 break;
13789 }
13790 }
13791
13792 while (reg1 <= reg2)
13793 {
13794 if (reg1 >= 4 && reg1 <= 7)
13795 {
13796 if (!seen_framesz)
13797 /* args $a0-$a3 */
13798 nargs |= 1 << (reg1 - 4);
13799 else
13800 /* statics $a0-$a3 */
13801 statics |= 1 << (reg1 - 4);
13802 }
13803 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
13804 {
13805 /* $s0-$s8 */
13806 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
13807 }
13808 else if (reg1 == 31)
13809 {
13810 /* Add $ra to insn. */
13811 opcode |= 0x40;
13812 }
13813 else
13814 {
13815 as_bad (_("unexpected register in list"));
13816 break;
13817 }
13818 if (++reg1 == 24)
13819 reg1 = 30;
13820 }
13821 }
13822
13823 /* Encode args/statics combination. */
13824 if (nargs & statics)
13825 as_bad (_("arg/static registers overlap"));
13826 else if (nargs == 0xf)
13827 /* All $a0-$a3 are args. */
13828 opcode |= MIPS16_ALL_ARGS << 16;
13829 else if (statics == 0xf)
13830 /* All $a0-$a3 are statics. */
13831 opcode |= MIPS16_ALL_STATICS << 16;
13832 else
13833 {
13834 int narg = 0, nstat = 0;
13835
13836 /* Count arg registers. */
13837 while (nargs & 0x1)
13838 {
13839 nargs >>= 1;
13840 narg++;
13841 }
13842 if (nargs != 0)
13843 as_bad (_("invalid arg register list"));
13844
13845 /* Count static registers. */
13846 while (statics & 0x8)
13847 {
13848 statics = (statics << 1) & 0xf;
13849 nstat++;
13850 }
13851 if (statics != 0)
13852 as_bad (_("invalid static register list"));
13853
13854 /* Encode args/statics. */
13855 opcode |= ((narg << 2) | nstat) << 16;
13856 }
13857
13858 /* Encode $s0/$s1. */
13859 if (sregs & (1 << 0)) /* $s0 */
13860 opcode |= 0x20;
13861 if (sregs & (1 << 1)) /* $s1 */
13862 opcode |= 0x10;
13863 sregs >>= 2;
13864
13865 if (sregs != 0)
13866 {
13867 /* Count regs $s2-$s8. */
13868 int nsreg = 0;
13869 while (sregs & 1)
13870 {
13871 sregs >>= 1;
13872 nsreg++;
13873 }
13874 if (sregs != 0)
13875 as_bad (_("invalid static register list"));
13876 /* Encode $s2-$s8. */
13877 opcode |= nsreg << 24;
13878 }
13879
13880 /* Encode frame size. */
13881 if (!seen_framesz)
13882 as_bad (_("missing frame size"));
13883 else if ((framesz & 7) != 0 || framesz < 0
13884 || framesz > 0xff * 8)
13885 as_bad (_("invalid frame size"));
13886 else if (framesz != 128 || (opcode >> 16) != 0)
13887 {
13888 framesz /= 8;
13889 opcode |= (((framesz & 0xf0) << 16)
13890 | (framesz & 0x0f));
13891 }
13892
13893 /* Finally build the instruction. */
13894 if ((opcode >> 16) != 0 || framesz == 0)
13895 opcode |= MIPS16_EXTEND;
13896 ip->insn_opcode = opcode;
13897 }
13898 continue;
13899
13900 case 'e': /* extend code */
13901 my_getExpression (&imm_expr, s);
13902 check_absolute_expr (ip, &imm_expr);
13903 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
13904 {
13905 as_warn (_("Invalid value for `%s' (%lu)"),
13906 ip->insn_mo->name,
13907 (unsigned long) imm_expr.X_add_number);
13908 imm_expr.X_add_number &= 0x7ff;
13909 }
13910 ip->insn_opcode |= imm_expr.X_add_number;
13911 imm_expr.X_op = O_absent;
13912 s = expr_end;
13913 continue;
13914
13915 default:
13916 internalError ();
13917 }
13918 break;
13919 }
13920
13921 /* Args don't match. */
13922 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
13923 strcmp (insn->name, insn[1].name) == 0)
13924 {
13925 ++insn;
13926 s = argsstart;
13927 continue;
13928 }
13929
13930 insn_error = _("illegal operands");
13931
13932 return;
13933 }
13934 }
13935
13936 /* This structure holds information we know about a mips16 immediate
13937 argument type. */
13938
13939 struct mips16_immed_operand
13940 {
13941 /* The type code used in the argument string in the opcode table. */
13942 int type;
13943 /* The number of bits in the short form of the opcode. */
13944 int nbits;
13945 /* The number of bits in the extended form of the opcode. */
13946 int extbits;
13947 /* The amount by which the short form is shifted when it is used;
13948 for example, the sw instruction has a shift count of 2. */
13949 int shift;
13950 /* The amount by which the short form is shifted when it is stored
13951 into the instruction code. */
13952 int op_shift;
13953 /* Non-zero if the short form is unsigned. */
13954 int unsp;
13955 /* Non-zero if the extended form is unsigned. */
13956 int extu;
13957 /* Non-zero if the value is PC relative. */
13958 int pcrel;
13959 };
13960
13961 /* The mips16 immediate operand types. */
13962
13963 static const struct mips16_immed_operand mips16_immed_operands[] =
13964 {
13965 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
13966 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
13967 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
13968 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
13969 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
13970 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
13971 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
13972 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
13973 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
13974 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
13975 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
13976 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
13977 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
13978 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
13979 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
13980 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
13981 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
13982 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
13983 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
13984 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
13985 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
13986 };
13987
13988 #define MIPS16_NUM_IMMED \
13989 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
13990
13991 /* Install immediate value VAL into MIPS16 instruction *INSN,
13992 extending it if necessary. The instruction in *INSN may
13993 already be extended.
13994
13995 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13996 if none. In the former case, VAL is a 16-bit number with no
13997 defined signedness.
13998
13999 TYPE is the type of the immediate field. USER_INSN_LENGTH
14000 is the length that the user requested, or 0 if none. */
14001
14002 static void
14003 mips16_immed (char *file, unsigned int line, int type,
14004 bfd_reloc_code_real_type reloc, offsetT val,
14005 unsigned int user_insn_length, unsigned long *insn)
14006 {
14007 const struct mips16_immed_operand *op;
14008 int mintiny, maxtiny;
14009
14010 op = mips16_immed_operands;
14011 while (op->type != type)
14012 {
14013 ++op;
14014 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
14015 }
14016
14017 if (op->unsp)
14018 {
14019 if (type == '<' || type == '>' || type == '[' || type == ']')
14020 {
14021 mintiny = 1;
14022 maxtiny = 1 << op->nbits;
14023 }
14024 else
14025 {
14026 mintiny = 0;
14027 maxtiny = (1 << op->nbits) - 1;
14028 }
14029 if (reloc != BFD_RELOC_UNUSED)
14030 val &= 0xffff;
14031 }
14032 else
14033 {
14034 mintiny = - (1 << (op->nbits - 1));
14035 maxtiny = (1 << (op->nbits - 1)) - 1;
14036 if (reloc != BFD_RELOC_UNUSED)
14037 val = SEXT_16BIT (val);
14038 }
14039
14040 /* Branch offsets have an implicit 0 in the lowest bit. */
14041 if (type == 'p' || type == 'q')
14042 val /= 2;
14043
14044 if ((val & ((1 << op->shift) - 1)) != 0
14045 || val < (mintiny << op->shift)
14046 || val > (maxtiny << op->shift))
14047 {
14048 /* We need an extended instruction. */
14049 if (user_insn_length == 2)
14050 as_bad_where (file, line, _("invalid unextended operand value"));
14051 else
14052 *insn |= MIPS16_EXTEND;
14053 }
14054 else if (user_insn_length == 4)
14055 {
14056 /* The operand doesn't force an unextended instruction to be extended.
14057 Warn if the user wanted an extended instruction anyway. */
14058 *insn |= MIPS16_EXTEND;
14059 as_warn_where (file, line,
14060 _("extended operand requested but not required"));
14061 }
14062
14063 if (mips16_opcode_length (*insn) == 2)
14064 {
14065 int insnval;
14066
14067 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
14068 insnval <<= op->op_shift;
14069 *insn |= insnval;
14070 }
14071 else
14072 {
14073 long minext, maxext;
14074 int extval;
14075
14076 if (reloc == BFD_RELOC_UNUSED)
14077 {
14078 if (op->extu)
14079 {
14080 minext = 0;
14081 maxext = (1 << op->extbits) - 1;
14082 }
14083 else
14084 {
14085 minext = - (1 << (op->extbits - 1));
14086 maxext = (1 << (op->extbits - 1)) - 1;
14087 }
14088 if (val < minext || val > maxext)
14089 as_bad_where (file, line,
14090 _("operand value out of range for instruction"));
14091 }
14092
14093 if (op->extbits == 16)
14094 {
14095 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14096 val &= 0x1f;
14097 }
14098 else if (op->extbits == 15)
14099 {
14100 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14101 val &= 0xf;
14102 }
14103 else
14104 {
14105 extval = ((val & 0x1f) << 6) | (val & 0x20);
14106 val = 0;
14107 }
14108
14109 *insn |= (extval << 16) | val;
14110 }
14111 }
14112 \f
14113 struct percent_op_match
14114 {
14115 const char *str;
14116 bfd_reloc_code_real_type reloc;
14117 };
14118
14119 static const struct percent_op_match mips_percent_op[] =
14120 {
14121 {"%lo", BFD_RELOC_LO16},
14122 #ifdef OBJ_ELF
14123 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14124 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14125 {"%call16", BFD_RELOC_MIPS_CALL16},
14126 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14127 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14128 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14129 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14130 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14131 {"%got", BFD_RELOC_MIPS_GOT16},
14132 {"%gp_rel", BFD_RELOC_GPREL16},
14133 {"%half", BFD_RELOC_16},
14134 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14135 {"%higher", BFD_RELOC_MIPS_HIGHER},
14136 {"%neg", BFD_RELOC_MIPS_SUB},
14137 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14138 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14139 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14140 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14141 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14142 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14143 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14144 #endif
14145 {"%hi", BFD_RELOC_HI16_S}
14146 };
14147
14148 static const struct percent_op_match mips16_percent_op[] =
14149 {
14150 {"%lo", BFD_RELOC_MIPS16_LO16},
14151 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14152 {"%got", BFD_RELOC_MIPS16_GOT16},
14153 {"%call16", BFD_RELOC_MIPS16_CALL16},
14154 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14155 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14156 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14157 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14158 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14159 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14160 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14161 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14162 };
14163
14164
14165 /* Return true if *STR points to a relocation operator. When returning true,
14166 move *STR over the operator and store its relocation code in *RELOC.
14167 Leave both *STR and *RELOC alone when returning false. */
14168
14169 static bfd_boolean
14170 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14171 {
14172 const struct percent_op_match *percent_op;
14173 size_t limit, i;
14174
14175 if (mips_opts.mips16)
14176 {
14177 percent_op = mips16_percent_op;
14178 limit = ARRAY_SIZE (mips16_percent_op);
14179 }
14180 else
14181 {
14182 percent_op = mips_percent_op;
14183 limit = ARRAY_SIZE (mips_percent_op);
14184 }
14185
14186 for (i = 0; i < limit; i++)
14187 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14188 {
14189 int len = strlen (percent_op[i].str);
14190
14191 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14192 continue;
14193
14194 *str += strlen (percent_op[i].str);
14195 *reloc = percent_op[i].reloc;
14196
14197 /* Check whether the output BFD supports this relocation.
14198 If not, issue an error and fall back on something safe. */
14199 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14200 {
14201 as_bad (_("relocation %s isn't supported by the current ABI"),
14202 percent_op[i].str);
14203 *reloc = BFD_RELOC_UNUSED;
14204 }
14205 return TRUE;
14206 }
14207 return FALSE;
14208 }
14209
14210
14211 /* Parse string STR as a 16-bit relocatable operand. Store the
14212 expression in *EP and the relocations in the array starting
14213 at RELOC. Return the number of relocation operators used.
14214
14215 On exit, EXPR_END points to the first character after the expression. */
14216
14217 static size_t
14218 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14219 char *str)
14220 {
14221 bfd_reloc_code_real_type reversed_reloc[3];
14222 size_t reloc_index, i;
14223 int crux_depth, str_depth;
14224 char *crux;
14225
14226 /* Search for the start of the main expression, recoding relocations
14227 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14228 of the main expression and with CRUX_DEPTH containing the number
14229 of open brackets at that point. */
14230 reloc_index = -1;
14231 str_depth = 0;
14232 do
14233 {
14234 reloc_index++;
14235 crux = str;
14236 crux_depth = str_depth;
14237
14238 /* Skip over whitespace and brackets, keeping count of the number
14239 of brackets. */
14240 while (*str == ' ' || *str == '\t' || *str == '(')
14241 if (*str++ == '(')
14242 str_depth++;
14243 }
14244 while (*str == '%'
14245 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14246 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14247
14248 my_getExpression (ep, crux);
14249 str = expr_end;
14250
14251 /* Match every open bracket. */
14252 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14253 if (*str++ == ')')
14254 crux_depth--;
14255
14256 if (crux_depth > 0)
14257 as_bad (_("unclosed '('"));
14258
14259 expr_end = str;
14260
14261 if (reloc_index != 0)
14262 {
14263 prev_reloc_op_frag = frag_now;
14264 for (i = 0; i < reloc_index; i++)
14265 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14266 }
14267
14268 return reloc_index;
14269 }
14270
14271 static void
14272 my_getExpression (expressionS *ep, char *str)
14273 {
14274 char *save_in;
14275
14276 save_in = input_line_pointer;
14277 input_line_pointer = str;
14278 expression (ep);
14279 expr_end = input_line_pointer;
14280 input_line_pointer = save_in;
14281 }
14282
14283 char *
14284 md_atof (int type, char *litP, int *sizeP)
14285 {
14286 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14287 }
14288
14289 void
14290 md_number_to_chars (char *buf, valueT val, int n)
14291 {
14292 if (target_big_endian)
14293 number_to_chars_bigendian (buf, val, n);
14294 else
14295 number_to_chars_littleendian (buf, val, n);
14296 }
14297 \f
14298 #ifdef OBJ_ELF
14299 static int support_64bit_objects(void)
14300 {
14301 const char **list, **l;
14302 int yes;
14303
14304 list = bfd_target_list ();
14305 for (l = list; *l != NULL; l++)
14306 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14307 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14308 break;
14309 yes = (*l != NULL);
14310 free (list);
14311 return yes;
14312 }
14313 #endif /* OBJ_ELF */
14314
14315 const char *md_shortopts = "O::g::G:";
14316
14317 enum options
14318 {
14319 OPTION_MARCH = OPTION_MD_BASE,
14320 OPTION_MTUNE,
14321 OPTION_MIPS1,
14322 OPTION_MIPS2,
14323 OPTION_MIPS3,
14324 OPTION_MIPS4,
14325 OPTION_MIPS5,
14326 OPTION_MIPS32,
14327 OPTION_MIPS64,
14328 OPTION_MIPS32R2,
14329 OPTION_MIPS64R2,
14330 OPTION_MIPS16,
14331 OPTION_NO_MIPS16,
14332 OPTION_MIPS3D,
14333 OPTION_NO_MIPS3D,
14334 OPTION_MDMX,
14335 OPTION_NO_MDMX,
14336 OPTION_DSP,
14337 OPTION_NO_DSP,
14338 OPTION_MT,
14339 OPTION_NO_MT,
14340 OPTION_SMARTMIPS,
14341 OPTION_NO_SMARTMIPS,
14342 OPTION_DSPR2,
14343 OPTION_NO_DSPR2,
14344 OPTION_MICROMIPS,
14345 OPTION_NO_MICROMIPS,
14346 OPTION_MCU,
14347 OPTION_NO_MCU,
14348 OPTION_COMPAT_ARCH_BASE,
14349 OPTION_M4650,
14350 OPTION_NO_M4650,
14351 OPTION_M4010,
14352 OPTION_NO_M4010,
14353 OPTION_M4100,
14354 OPTION_NO_M4100,
14355 OPTION_M3900,
14356 OPTION_NO_M3900,
14357 OPTION_M7000_HILO_FIX,
14358 OPTION_MNO_7000_HILO_FIX,
14359 OPTION_FIX_24K,
14360 OPTION_NO_FIX_24K,
14361 OPTION_FIX_LOONGSON2F_JUMP,
14362 OPTION_NO_FIX_LOONGSON2F_JUMP,
14363 OPTION_FIX_LOONGSON2F_NOP,
14364 OPTION_NO_FIX_LOONGSON2F_NOP,
14365 OPTION_FIX_VR4120,
14366 OPTION_NO_FIX_VR4120,
14367 OPTION_FIX_VR4130,
14368 OPTION_NO_FIX_VR4130,
14369 OPTION_FIX_CN63XXP1,
14370 OPTION_NO_FIX_CN63XXP1,
14371 OPTION_TRAP,
14372 OPTION_BREAK,
14373 OPTION_EB,
14374 OPTION_EL,
14375 OPTION_FP32,
14376 OPTION_GP32,
14377 OPTION_CONSTRUCT_FLOATS,
14378 OPTION_NO_CONSTRUCT_FLOATS,
14379 OPTION_FP64,
14380 OPTION_GP64,
14381 OPTION_RELAX_BRANCH,
14382 OPTION_NO_RELAX_BRANCH,
14383 OPTION_MSHARED,
14384 OPTION_MNO_SHARED,
14385 OPTION_MSYM32,
14386 OPTION_MNO_SYM32,
14387 OPTION_SOFT_FLOAT,
14388 OPTION_HARD_FLOAT,
14389 OPTION_SINGLE_FLOAT,
14390 OPTION_DOUBLE_FLOAT,
14391 OPTION_32,
14392 #ifdef OBJ_ELF
14393 OPTION_CALL_SHARED,
14394 OPTION_CALL_NONPIC,
14395 OPTION_NON_SHARED,
14396 OPTION_XGOT,
14397 OPTION_MABI,
14398 OPTION_N32,
14399 OPTION_64,
14400 OPTION_MDEBUG,
14401 OPTION_NO_MDEBUG,
14402 OPTION_PDR,
14403 OPTION_NO_PDR,
14404 OPTION_MVXWORKS_PIC,
14405 #endif /* OBJ_ELF */
14406 OPTION_END_OF_ENUM
14407 };
14408
14409 struct option md_longopts[] =
14410 {
14411 /* Options which specify architecture. */
14412 {"march", required_argument, NULL, OPTION_MARCH},
14413 {"mtune", required_argument, NULL, OPTION_MTUNE},
14414 {"mips0", no_argument, NULL, OPTION_MIPS1},
14415 {"mips1", no_argument, NULL, OPTION_MIPS1},
14416 {"mips2", no_argument, NULL, OPTION_MIPS2},
14417 {"mips3", no_argument, NULL, OPTION_MIPS3},
14418 {"mips4", no_argument, NULL, OPTION_MIPS4},
14419 {"mips5", no_argument, NULL, OPTION_MIPS5},
14420 {"mips32", no_argument, NULL, OPTION_MIPS32},
14421 {"mips64", no_argument, NULL, OPTION_MIPS64},
14422 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
14423 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
14424
14425 /* Options which specify Application Specific Extensions (ASEs). */
14426 {"mips16", no_argument, NULL, OPTION_MIPS16},
14427 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
14428 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
14429 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
14430 {"mdmx", no_argument, NULL, OPTION_MDMX},
14431 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
14432 {"mdsp", no_argument, NULL, OPTION_DSP},
14433 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
14434 {"mmt", no_argument, NULL, OPTION_MT},
14435 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
14436 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
14437 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
14438 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
14439 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
14440 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
14441 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
14442 {"mmcu", no_argument, NULL, OPTION_MCU},
14443 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
14444
14445 /* Old-style architecture options. Don't add more of these. */
14446 {"m4650", no_argument, NULL, OPTION_M4650},
14447 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
14448 {"m4010", no_argument, NULL, OPTION_M4010},
14449 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
14450 {"m4100", no_argument, NULL, OPTION_M4100},
14451 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
14452 {"m3900", no_argument, NULL, OPTION_M3900},
14453 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
14454
14455 /* Options which enable bug fixes. */
14456 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
14457 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
14458 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
14459 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
14460 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
14461 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
14462 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
14463 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
14464 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
14465 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
14466 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
14467 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
14468 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
14469 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
14470 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
14471
14472 /* Miscellaneous options. */
14473 {"trap", no_argument, NULL, OPTION_TRAP},
14474 {"no-break", no_argument, NULL, OPTION_TRAP},
14475 {"break", no_argument, NULL, OPTION_BREAK},
14476 {"no-trap", no_argument, NULL, OPTION_BREAK},
14477 {"EB", no_argument, NULL, OPTION_EB},
14478 {"EL", no_argument, NULL, OPTION_EL},
14479 {"mfp32", no_argument, NULL, OPTION_FP32},
14480 {"mgp32", no_argument, NULL, OPTION_GP32},
14481 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
14482 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
14483 {"mfp64", no_argument, NULL, OPTION_FP64},
14484 {"mgp64", no_argument, NULL, OPTION_GP64},
14485 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
14486 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
14487 {"mshared", no_argument, NULL, OPTION_MSHARED},
14488 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
14489 {"msym32", no_argument, NULL, OPTION_MSYM32},
14490 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
14491 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
14492 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
14493 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
14494 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
14495
14496 /* Strictly speaking this next option is ELF specific,
14497 but we allow it for other ports as well in order to
14498 make testing easier. */
14499 {"32", no_argument, NULL, OPTION_32},
14500
14501 /* ELF-specific options. */
14502 #ifdef OBJ_ELF
14503 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
14504 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
14505 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
14506 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
14507 {"xgot", no_argument, NULL, OPTION_XGOT},
14508 {"mabi", required_argument, NULL, OPTION_MABI},
14509 {"n32", no_argument, NULL, OPTION_N32},
14510 {"64", no_argument, NULL, OPTION_64},
14511 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
14512 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
14513 {"mpdr", no_argument, NULL, OPTION_PDR},
14514 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
14515 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
14516 #endif /* OBJ_ELF */
14517
14518 {NULL, no_argument, NULL, 0}
14519 };
14520 size_t md_longopts_size = sizeof (md_longopts);
14521
14522 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14523 NEW_VALUE. Warn if another value was already specified. Note:
14524 we have to defer parsing the -march and -mtune arguments in order
14525 to handle 'from-abi' correctly, since the ABI might be specified
14526 in a later argument. */
14527
14528 static void
14529 mips_set_option_string (const char **string_ptr, const char *new_value)
14530 {
14531 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14532 as_warn (_("A different %s was already specified, is now %s"),
14533 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14534 new_value);
14535
14536 *string_ptr = new_value;
14537 }
14538
14539 int
14540 md_parse_option (int c, char *arg)
14541 {
14542 switch (c)
14543 {
14544 case OPTION_CONSTRUCT_FLOATS:
14545 mips_disable_float_construction = 0;
14546 break;
14547
14548 case OPTION_NO_CONSTRUCT_FLOATS:
14549 mips_disable_float_construction = 1;
14550 break;
14551
14552 case OPTION_TRAP:
14553 mips_trap = 1;
14554 break;
14555
14556 case OPTION_BREAK:
14557 mips_trap = 0;
14558 break;
14559
14560 case OPTION_EB:
14561 target_big_endian = 1;
14562 break;
14563
14564 case OPTION_EL:
14565 target_big_endian = 0;
14566 break;
14567
14568 case 'O':
14569 if (arg == NULL)
14570 mips_optimize = 1;
14571 else if (arg[0] == '0')
14572 mips_optimize = 0;
14573 else if (arg[0] == '1')
14574 mips_optimize = 1;
14575 else
14576 mips_optimize = 2;
14577 break;
14578
14579 case 'g':
14580 if (arg == NULL)
14581 mips_debug = 2;
14582 else
14583 mips_debug = atoi (arg);
14584 break;
14585
14586 case OPTION_MIPS1:
14587 file_mips_isa = ISA_MIPS1;
14588 break;
14589
14590 case OPTION_MIPS2:
14591 file_mips_isa = ISA_MIPS2;
14592 break;
14593
14594 case OPTION_MIPS3:
14595 file_mips_isa = ISA_MIPS3;
14596 break;
14597
14598 case OPTION_MIPS4:
14599 file_mips_isa = ISA_MIPS4;
14600 break;
14601
14602 case OPTION_MIPS5:
14603 file_mips_isa = ISA_MIPS5;
14604 break;
14605
14606 case OPTION_MIPS32:
14607 file_mips_isa = ISA_MIPS32;
14608 break;
14609
14610 case OPTION_MIPS32R2:
14611 file_mips_isa = ISA_MIPS32R2;
14612 break;
14613
14614 case OPTION_MIPS64R2:
14615 file_mips_isa = ISA_MIPS64R2;
14616 break;
14617
14618 case OPTION_MIPS64:
14619 file_mips_isa = ISA_MIPS64;
14620 break;
14621
14622 case OPTION_MTUNE:
14623 mips_set_option_string (&mips_tune_string, arg);
14624 break;
14625
14626 case OPTION_MARCH:
14627 mips_set_option_string (&mips_arch_string, arg);
14628 break;
14629
14630 case OPTION_M4650:
14631 mips_set_option_string (&mips_arch_string, "4650");
14632 mips_set_option_string (&mips_tune_string, "4650");
14633 break;
14634
14635 case OPTION_NO_M4650:
14636 break;
14637
14638 case OPTION_M4010:
14639 mips_set_option_string (&mips_arch_string, "4010");
14640 mips_set_option_string (&mips_tune_string, "4010");
14641 break;
14642
14643 case OPTION_NO_M4010:
14644 break;
14645
14646 case OPTION_M4100:
14647 mips_set_option_string (&mips_arch_string, "4100");
14648 mips_set_option_string (&mips_tune_string, "4100");
14649 break;
14650
14651 case OPTION_NO_M4100:
14652 break;
14653
14654 case OPTION_M3900:
14655 mips_set_option_string (&mips_arch_string, "3900");
14656 mips_set_option_string (&mips_tune_string, "3900");
14657 break;
14658
14659 case OPTION_NO_M3900:
14660 break;
14661
14662 case OPTION_MDMX:
14663 mips_opts.ase_mdmx = 1;
14664 break;
14665
14666 case OPTION_NO_MDMX:
14667 mips_opts.ase_mdmx = 0;
14668 break;
14669
14670 case OPTION_DSP:
14671 mips_opts.ase_dsp = 1;
14672 mips_opts.ase_dspr2 = 0;
14673 break;
14674
14675 case OPTION_NO_DSP:
14676 mips_opts.ase_dsp = 0;
14677 mips_opts.ase_dspr2 = 0;
14678 break;
14679
14680 case OPTION_DSPR2:
14681 mips_opts.ase_dspr2 = 1;
14682 mips_opts.ase_dsp = 1;
14683 break;
14684
14685 case OPTION_NO_DSPR2:
14686 mips_opts.ase_dspr2 = 0;
14687 mips_opts.ase_dsp = 0;
14688 break;
14689
14690 case OPTION_MT:
14691 mips_opts.ase_mt = 1;
14692 break;
14693
14694 case OPTION_NO_MT:
14695 mips_opts.ase_mt = 0;
14696 break;
14697
14698 case OPTION_MCU:
14699 mips_opts.ase_mcu = 1;
14700 break;
14701
14702 case OPTION_NO_MCU:
14703 mips_opts.ase_mcu = 0;
14704 break;
14705
14706 case OPTION_MICROMIPS:
14707 if (mips_opts.mips16 == 1)
14708 {
14709 as_bad (_("-mmicromips cannot be used with -mips16"));
14710 return 0;
14711 }
14712 mips_opts.micromips = 1;
14713 mips_no_prev_insn ();
14714 break;
14715
14716 case OPTION_NO_MICROMIPS:
14717 mips_opts.micromips = 0;
14718 mips_no_prev_insn ();
14719 break;
14720
14721 case OPTION_MIPS16:
14722 if (mips_opts.micromips == 1)
14723 {
14724 as_bad (_("-mips16 cannot be used with -micromips"));
14725 return 0;
14726 }
14727 mips_opts.mips16 = 1;
14728 mips_no_prev_insn ();
14729 break;
14730
14731 case OPTION_NO_MIPS16:
14732 mips_opts.mips16 = 0;
14733 mips_no_prev_insn ();
14734 break;
14735
14736 case OPTION_MIPS3D:
14737 mips_opts.ase_mips3d = 1;
14738 break;
14739
14740 case OPTION_NO_MIPS3D:
14741 mips_opts.ase_mips3d = 0;
14742 break;
14743
14744 case OPTION_SMARTMIPS:
14745 mips_opts.ase_smartmips = 1;
14746 break;
14747
14748 case OPTION_NO_SMARTMIPS:
14749 mips_opts.ase_smartmips = 0;
14750 break;
14751
14752 case OPTION_FIX_24K:
14753 mips_fix_24k = 1;
14754 break;
14755
14756 case OPTION_NO_FIX_24K:
14757 mips_fix_24k = 0;
14758 break;
14759
14760 case OPTION_FIX_LOONGSON2F_JUMP:
14761 mips_fix_loongson2f_jump = TRUE;
14762 break;
14763
14764 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14765 mips_fix_loongson2f_jump = FALSE;
14766 break;
14767
14768 case OPTION_FIX_LOONGSON2F_NOP:
14769 mips_fix_loongson2f_nop = TRUE;
14770 break;
14771
14772 case OPTION_NO_FIX_LOONGSON2F_NOP:
14773 mips_fix_loongson2f_nop = FALSE;
14774 break;
14775
14776 case OPTION_FIX_VR4120:
14777 mips_fix_vr4120 = 1;
14778 break;
14779
14780 case OPTION_NO_FIX_VR4120:
14781 mips_fix_vr4120 = 0;
14782 break;
14783
14784 case OPTION_FIX_VR4130:
14785 mips_fix_vr4130 = 1;
14786 break;
14787
14788 case OPTION_NO_FIX_VR4130:
14789 mips_fix_vr4130 = 0;
14790 break;
14791
14792 case OPTION_FIX_CN63XXP1:
14793 mips_fix_cn63xxp1 = TRUE;
14794 break;
14795
14796 case OPTION_NO_FIX_CN63XXP1:
14797 mips_fix_cn63xxp1 = FALSE;
14798 break;
14799
14800 case OPTION_RELAX_BRANCH:
14801 mips_relax_branch = 1;
14802 break;
14803
14804 case OPTION_NO_RELAX_BRANCH:
14805 mips_relax_branch = 0;
14806 break;
14807
14808 case OPTION_MSHARED:
14809 mips_in_shared = TRUE;
14810 break;
14811
14812 case OPTION_MNO_SHARED:
14813 mips_in_shared = FALSE;
14814 break;
14815
14816 case OPTION_MSYM32:
14817 mips_opts.sym32 = TRUE;
14818 break;
14819
14820 case OPTION_MNO_SYM32:
14821 mips_opts.sym32 = FALSE;
14822 break;
14823
14824 #ifdef OBJ_ELF
14825 /* When generating ELF code, we permit -KPIC and -call_shared to
14826 select SVR4_PIC, and -non_shared to select no PIC. This is
14827 intended to be compatible with Irix 5. */
14828 case OPTION_CALL_SHARED:
14829 if (!IS_ELF)
14830 {
14831 as_bad (_("-call_shared is supported only for ELF format"));
14832 return 0;
14833 }
14834 mips_pic = SVR4_PIC;
14835 mips_abicalls = TRUE;
14836 break;
14837
14838 case OPTION_CALL_NONPIC:
14839 if (!IS_ELF)
14840 {
14841 as_bad (_("-call_nonpic is supported only for ELF format"));
14842 return 0;
14843 }
14844 mips_pic = NO_PIC;
14845 mips_abicalls = TRUE;
14846 break;
14847
14848 case OPTION_NON_SHARED:
14849 if (!IS_ELF)
14850 {
14851 as_bad (_("-non_shared is supported only for ELF format"));
14852 return 0;
14853 }
14854 mips_pic = NO_PIC;
14855 mips_abicalls = FALSE;
14856 break;
14857
14858 /* The -xgot option tells the assembler to use 32 bit offsets
14859 when accessing the got in SVR4_PIC mode. It is for Irix
14860 compatibility. */
14861 case OPTION_XGOT:
14862 mips_big_got = 1;
14863 break;
14864 #endif /* OBJ_ELF */
14865
14866 case 'G':
14867 g_switch_value = atoi (arg);
14868 g_switch_seen = 1;
14869 break;
14870
14871 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14872 and -mabi=64. */
14873 case OPTION_32:
14874 if (IS_ELF)
14875 mips_abi = O32_ABI;
14876 /* We silently ignore -32 for non-ELF targets. This greatly
14877 simplifies the construction of the MIPS GAS test cases. */
14878 break;
14879
14880 #ifdef OBJ_ELF
14881 case OPTION_N32:
14882 if (!IS_ELF)
14883 {
14884 as_bad (_("-n32 is supported for ELF format only"));
14885 return 0;
14886 }
14887 mips_abi = N32_ABI;
14888 break;
14889
14890 case OPTION_64:
14891 if (!IS_ELF)
14892 {
14893 as_bad (_("-64 is supported for ELF format only"));
14894 return 0;
14895 }
14896 mips_abi = N64_ABI;
14897 if (!support_64bit_objects())
14898 as_fatal (_("No compiled in support for 64 bit object file format"));
14899 break;
14900 #endif /* OBJ_ELF */
14901
14902 case OPTION_GP32:
14903 file_mips_gp32 = 1;
14904 break;
14905
14906 case OPTION_GP64:
14907 file_mips_gp32 = 0;
14908 break;
14909
14910 case OPTION_FP32:
14911 file_mips_fp32 = 1;
14912 break;
14913
14914 case OPTION_FP64:
14915 file_mips_fp32 = 0;
14916 break;
14917
14918 case OPTION_SINGLE_FLOAT:
14919 file_mips_single_float = 1;
14920 break;
14921
14922 case OPTION_DOUBLE_FLOAT:
14923 file_mips_single_float = 0;
14924 break;
14925
14926 case OPTION_SOFT_FLOAT:
14927 file_mips_soft_float = 1;
14928 break;
14929
14930 case OPTION_HARD_FLOAT:
14931 file_mips_soft_float = 0;
14932 break;
14933
14934 #ifdef OBJ_ELF
14935 case OPTION_MABI:
14936 if (!IS_ELF)
14937 {
14938 as_bad (_("-mabi is supported for ELF format only"));
14939 return 0;
14940 }
14941 if (strcmp (arg, "32") == 0)
14942 mips_abi = O32_ABI;
14943 else if (strcmp (arg, "o64") == 0)
14944 mips_abi = O64_ABI;
14945 else if (strcmp (arg, "n32") == 0)
14946 mips_abi = N32_ABI;
14947 else if (strcmp (arg, "64") == 0)
14948 {
14949 mips_abi = N64_ABI;
14950 if (! support_64bit_objects())
14951 as_fatal (_("No compiled in support for 64 bit object file "
14952 "format"));
14953 }
14954 else if (strcmp (arg, "eabi") == 0)
14955 mips_abi = EABI_ABI;
14956 else
14957 {
14958 as_fatal (_("invalid abi -mabi=%s"), arg);
14959 return 0;
14960 }
14961 break;
14962 #endif /* OBJ_ELF */
14963
14964 case OPTION_M7000_HILO_FIX:
14965 mips_7000_hilo_fix = TRUE;
14966 break;
14967
14968 case OPTION_MNO_7000_HILO_FIX:
14969 mips_7000_hilo_fix = FALSE;
14970 break;
14971
14972 #ifdef OBJ_ELF
14973 case OPTION_MDEBUG:
14974 mips_flag_mdebug = TRUE;
14975 break;
14976
14977 case OPTION_NO_MDEBUG:
14978 mips_flag_mdebug = FALSE;
14979 break;
14980
14981 case OPTION_PDR:
14982 mips_flag_pdr = TRUE;
14983 break;
14984
14985 case OPTION_NO_PDR:
14986 mips_flag_pdr = FALSE;
14987 break;
14988
14989 case OPTION_MVXWORKS_PIC:
14990 mips_pic = VXWORKS_PIC;
14991 break;
14992 #endif /* OBJ_ELF */
14993
14994 default:
14995 return 0;
14996 }
14997
14998 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14999
15000 return 1;
15001 }
15002 \f
15003 /* Set up globals to generate code for the ISA or processor
15004 described by INFO. */
15005
15006 static void
15007 mips_set_architecture (const struct mips_cpu_info *info)
15008 {
15009 if (info != 0)
15010 {
15011 file_mips_arch = info->cpu;
15012 mips_opts.arch = info->cpu;
15013 mips_opts.isa = info->isa;
15014 }
15015 }
15016
15017
15018 /* Likewise for tuning. */
15019
15020 static void
15021 mips_set_tune (const struct mips_cpu_info *info)
15022 {
15023 if (info != 0)
15024 mips_tune = info->cpu;
15025 }
15026
15027
15028 void
15029 mips_after_parse_args (void)
15030 {
15031 const struct mips_cpu_info *arch_info = 0;
15032 const struct mips_cpu_info *tune_info = 0;
15033
15034 /* GP relative stuff not working for PE */
15035 if (strncmp (TARGET_OS, "pe", 2) == 0)
15036 {
15037 if (g_switch_seen && g_switch_value != 0)
15038 as_bad (_("-G not supported in this configuration."));
15039 g_switch_value = 0;
15040 }
15041
15042 if (mips_abi == NO_ABI)
15043 mips_abi = MIPS_DEFAULT_ABI;
15044
15045 /* The following code determines the architecture and register size.
15046 Similar code was added to GCC 3.3 (see override_options() in
15047 config/mips/mips.c). The GAS and GCC code should be kept in sync
15048 as much as possible. */
15049
15050 if (mips_arch_string != 0)
15051 arch_info = mips_parse_cpu ("-march", mips_arch_string);
15052
15053 if (file_mips_isa != ISA_UNKNOWN)
15054 {
15055 /* Handle -mipsN. At this point, file_mips_isa contains the
15056 ISA level specified by -mipsN, while arch_info->isa contains
15057 the -march selection (if any). */
15058 if (arch_info != 0)
15059 {
15060 /* -march takes precedence over -mipsN, since it is more descriptive.
15061 There's no harm in specifying both as long as the ISA levels
15062 are the same. */
15063 if (file_mips_isa != arch_info->isa)
15064 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
15065 mips_cpu_info_from_isa (file_mips_isa)->name,
15066 mips_cpu_info_from_isa (arch_info->isa)->name);
15067 }
15068 else
15069 arch_info = mips_cpu_info_from_isa (file_mips_isa);
15070 }
15071
15072 if (arch_info == 0)
15073 {
15074 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15075 gas_assert (arch_info);
15076 }
15077
15078 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15079 as_bad (_("-march=%s is not compatible with the selected ABI"),
15080 arch_info->name);
15081
15082 mips_set_architecture (arch_info);
15083
15084 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
15085 if (mips_tune_string != 0)
15086 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15087
15088 if (tune_info == 0)
15089 mips_set_tune (arch_info);
15090 else
15091 mips_set_tune (tune_info);
15092
15093 if (file_mips_gp32 >= 0)
15094 {
15095 /* The user specified the size of the integer registers. Make sure
15096 it agrees with the ABI and ISA. */
15097 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
15098 as_bad (_("-mgp64 used with a 32-bit processor"));
15099 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
15100 as_bad (_("-mgp32 used with a 64-bit ABI"));
15101 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
15102 as_bad (_("-mgp64 used with a 32-bit ABI"));
15103 }
15104 else
15105 {
15106 /* Infer the integer register size from the ABI and processor.
15107 Restrict ourselves to 32-bit registers if that's all the
15108 processor has, or if the ABI cannot handle 64-bit registers. */
15109 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
15110 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
15111 }
15112
15113 switch (file_mips_fp32)
15114 {
15115 default:
15116 case -1:
15117 /* No user specified float register size.
15118 ??? GAS treats single-float processors as though they had 64-bit
15119 float registers (although it complains when double-precision
15120 instructions are used). As things stand, saying they have 32-bit
15121 registers would lead to spurious "register must be even" messages.
15122 So here we assume float registers are never smaller than the
15123 integer ones. */
15124 if (file_mips_gp32 == 0)
15125 /* 64-bit integer registers implies 64-bit float registers. */
15126 file_mips_fp32 = 0;
15127 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
15128 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
15129 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
15130 file_mips_fp32 = 0;
15131 else
15132 /* 32-bit float registers. */
15133 file_mips_fp32 = 1;
15134 break;
15135
15136 /* The user specified the size of the float registers. Check if it
15137 agrees with the ABI and ISA. */
15138 case 0:
15139 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
15140 as_bad (_("-mfp64 used with a 32-bit fpu"));
15141 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
15142 && !ISA_HAS_MXHC1 (mips_opts.isa))
15143 as_warn (_("-mfp64 used with a 32-bit ABI"));
15144 break;
15145 case 1:
15146 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15147 as_warn (_("-mfp32 used with a 64-bit ABI"));
15148 break;
15149 }
15150
15151 /* End of GCC-shared inference code. */
15152
15153 /* This flag is set when we have a 64-bit capable CPU but use only
15154 32-bit wide registers. Note that EABI does not use it. */
15155 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
15156 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
15157 || mips_abi == O32_ABI))
15158 mips_32bitmode = 1;
15159
15160 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
15161 as_bad (_("trap exception not supported at ISA 1"));
15162
15163 /* If the selected architecture includes support for ASEs, enable
15164 generation of code for them. */
15165 if (mips_opts.mips16 == -1)
15166 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
15167 if (mips_opts.micromips == -1)
15168 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
15169 if (mips_opts.ase_mips3d == -1)
15170 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
15171 && file_mips_fp32 == 0) ? 1 : 0;
15172 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
15173 as_bad (_("-mfp32 used with -mips3d"));
15174
15175 if (mips_opts.ase_mdmx == -1)
15176 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
15177 && file_mips_fp32 == 0) ? 1 : 0;
15178 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
15179 as_bad (_("-mfp32 used with -mdmx"));
15180
15181 if (mips_opts.ase_smartmips == -1)
15182 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
15183 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
15184 as_warn (_("%s ISA does not support SmartMIPS"),
15185 mips_cpu_info_from_isa (mips_opts.isa)->name);
15186
15187 if (mips_opts.ase_dsp == -1)
15188 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
15189 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
15190 as_warn (_("%s ISA does not support DSP ASE"),
15191 mips_cpu_info_from_isa (mips_opts.isa)->name);
15192
15193 if (mips_opts.ase_dspr2 == -1)
15194 {
15195 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
15196 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
15197 }
15198 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
15199 as_warn (_("%s ISA does not support DSP R2 ASE"),
15200 mips_cpu_info_from_isa (mips_opts.isa)->name);
15201
15202 if (mips_opts.ase_mt == -1)
15203 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
15204 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
15205 as_warn (_("%s ISA does not support MT ASE"),
15206 mips_cpu_info_from_isa (mips_opts.isa)->name);
15207
15208 if (mips_opts.ase_mcu == -1)
15209 mips_opts.ase_mcu = (arch_info->flags & MIPS_CPU_ASE_MCU) ? 1 : 0;
15210 if (mips_opts.ase_mcu && !ISA_SUPPORTS_MCU_ASE)
15211 as_warn (_("%s ISA does not support MCU ASE"),
15212 mips_cpu_info_from_isa (mips_opts.isa)->name);
15213
15214 file_mips_isa = mips_opts.isa;
15215 file_ase_mips3d = mips_opts.ase_mips3d;
15216 file_ase_mdmx = mips_opts.ase_mdmx;
15217 file_ase_smartmips = mips_opts.ase_smartmips;
15218 file_ase_dsp = mips_opts.ase_dsp;
15219 file_ase_dspr2 = mips_opts.ase_dspr2;
15220 file_ase_mt = mips_opts.ase_mt;
15221 mips_opts.gp32 = file_mips_gp32;
15222 mips_opts.fp32 = file_mips_fp32;
15223 mips_opts.soft_float = file_mips_soft_float;
15224 mips_opts.single_float = file_mips_single_float;
15225
15226 if (mips_flag_mdebug < 0)
15227 {
15228 #ifdef OBJ_MAYBE_ECOFF
15229 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
15230 mips_flag_mdebug = 1;
15231 else
15232 #endif /* OBJ_MAYBE_ECOFF */
15233 mips_flag_mdebug = 0;
15234 }
15235 }
15236 \f
15237 void
15238 mips_init_after_args (void)
15239 {
15240 /* initialize opcodes */
15241 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15242 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15243 }
15244
15245 long
15246 md_pcrel_from (fixS *fixP)
15247 {
15248 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15249 switch (fixP->fx_r_type)
15250 {
15251 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15252 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15253 /* Return the address of the delay slot. */
15254 return addr + 2;
15255
15256 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15257 case BFD_RELOC_MICROMIPS_JMP:
15258 case BFD_RELOC_16_PCREL_S2:
15259 case BFD_RELOC_MIPS_JMP:
15260 /* Return the address of the delay slot. */
15261 return addr + 4;
15262
15263 default:
15264 /* We have no relocation type for PC relative MIPS16 instructions. */
15265 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
15266 as_bad_where (fixP->fx_file, fixP->fx_line,
15267 _("PC relative MIPS16 instruction references a different section"));
15268 return addr;
15269 }
15270 }
15271
15272 /* This is called before the symbol table is processed. In order to
15273 work with gcc when using mips-tfile, we must keep all local labels.
15274 However, in other cases, we want to discard them. If we were
15275 called with -g, but we didn't see any debugging information, it may
15276 mean that gcc is smuggling debugging information through to
15277 mips-tfile, in which case we must generate all local labels. */
15278
15279 void
15280 mips_frob_file_before_adjust (void)
15281 {
15282 #ifndef NO_ECOFF_DEBUGGING
15283 if (ECOFF_DEBUGGING
15284 && mips_debug != 0
15285 && ! ecoff_debugging_seen)
15286 flag_keep_locals = 1;
15287 #endif
15288 }
15289
15290 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15291 the corresponding LO16 reloc. This is called before md_apply_fix and
15292 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15293 relocation operators.
15294
15295 For our purposes, a %lo() expression matches a %got() or %hi()
15296 expression if:
15297
15298 (a) it refers to the same symbol; and
15299 (b) the offset applied in the %lo() expression is no lower than
15300 the offset applied in the %got() or %hi().
15301
15302 (b) allows us to cope with code like:
15303
15304 lui $4,%hi(foo)
15305 lh $4,%lo(foo+2)($4)
15306
15307 ...which is legal on RELA targets, and has a well-defined behaviour
15308 if the user knows that adding 2 to "foo" will not induce a carry to
15309 the high 16 bits.
15310
15311 When several %lo()s match a particular %got() or %hi(), we use the
15312 following rules to distinguish them:
15313
15314 (1) %lo()s with smaller offsets are a better match than %lo()s with
15315 higher offsets.
15316
15317 (2) %lo()s with no matching %got() or %hi() are better than those
15318 that already have a matching %got() or %hi().
15319
15320 (3) later %lo()s are better than earlier %lo()s.
15321
15322 These rules are applied in order.
15323
15324 (1) means, among other things, that %lo()s with identical offsets are
15325 chosen if they exist.
15326
15327 (2) means that we won't associate several high-part relocations with
15328 the same low-part relocation unless there's no alternative. Having
15329 several high parts for the same low part is a GNU extension; this rule
15330 allows careful users to avoid it.
15331
15332 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15333 with the last high-part relocation being at the front of the list.
15334 It therefore makes sense to choose the last matching low-part
15335 relocation, all other things being equal. It's also easier
15336 to code that way. */
15337
15338 void
15339 mips_frob_file (void)
15340 {
15341 struct mips_hi_fixup *l;
15342 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15343
15344 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15345 {
15346 segment_info_type *seginfo;
15347 bfd_boolean matched_lo_p;
15348 fixS **hi_pos, **lo_pos, **pos;
15349
15350 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15351
15352 /* If a GOT16 relocation turns out to be against a global symbol,
15353 there isn't supposed to be a matching LO. */
15354 if (got16_reloc_p (l->fixp->fx_r_type)
15355 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
15356 continue;
15357
15358 /* Check quickly whether the next fixup happens to be a matching %lo. */
15359 if (fixup_has_matching_lo_p (l->fixp))
15360 continue;
15361
15362 seginfo = seg_info (l->seg);
15363
15364 /* Set HI_POS to the position of this relocation in the chain.
15365 Set LO_POS to the position of the chosen low-part relocation.
15366 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15367 relocation that matches an immediately-preceding high-part
15368 relocation. */
15369 hi_pos = NULL;
15370 lo_pos = NULL;
15371 matched_lo_p = FALSE;
15372 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15373
15374 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15375 {
15376 if (*pos == l->fixp)
15377 hi_pos = pos;
15378
15379 if ((*pos)->fx_r_type == looking_for_rtype
15380 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15381 && (*pos)->fx_offset >= l->fixp->fx_offset
15382 && (lo_pos == NULL
15383 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15384 || (!matched_lo_p
15385 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15386 lo_pos = pos;
15387
15388 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15389 && fixup_has_matching_lo_p (*pos));
15390 }
15391
15392 /* If we found a match, remove the high-part relocation from its
15393 current position and insert it before the low-part relocation.
15394 Make the offsets match so that fixup_has_matching_lo_p()
15395 will return true.
15396
15397 We don't warn about unmatched high-part relocations since some
15398 versions of gcc have been known to emit dead "lui ...%hi(...)"
15399 instructions. */
15400 if (lo_pos != NULL)
15401 {
15402 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15403 if (l->fixp->fx_next != *lo_pos)
15404 {
15405 *hi_pos = l->fixp->fx_next;
15406 l->fixp->fx_next = *lo_pos;
15407 *lo_pos = l->fixp;
15408 }
15409 }
15410 }
15411 }
15412
15413 /* We may have combined relocations without symbols in the N32/N64 ABI.
15414 We have to prevent gas from dropping them. */
15415
15416 int
15417 mips_force_relocation (fixS *fixp)
15418 {
15419 if (generic_force_reloc (fixp))
15420 return 1;
15421
15422 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15423 so that the linker relaxation can update targets. */
15424 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15425 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15426 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15427 return 1;
15428
15429 if (HAVE_NEWABI
15430 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
15431 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
15432 || hi16_reloc_p (fixp->fx_r_type)
15433 || lo16_reloc_p (fixp->fx_r_type)))
15434 return 1;
15435
15436 return 0;
15437 }
15438
15439 /* Apply a fixup to the object file. */
15440
15441 void
15442 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15443 {
15444 char *buf;
15445 long insn;
15446 reloc_howto_type *howto;
15447
15448 /* We ignore generic BFD relocations we don't know about. */
15449 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15450 if (! howto)
15451 return;
15452
15453 gas_assert (fixP->fx_size == 2
15454 || fixP->fx_size == 4
15455 || fixP->fx_r_type == BFD_RELOC_16
15456 || fixP->fx_r_type == BFD_RELOC_64
15457 || fixP->fx_r_type == BFD_RELOC_CTOR
15458 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15459 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15460 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15461 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15462 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
15463
15464 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15465
15466 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
15467 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15468 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15469 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1);
15470
15471 /* Don't treat parts of a composite relocation as done. There are two
15472 reasons for this:
15473
15474 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15475 should nevertheless be emitted if the first part is.
15476
15477 (2) In normal usage, composite relocations are never assembly-time
15478 constants. The easiest way of dealing with the pathological
15479 exceptions is to generate a relocation against STN_UNDEF and
15480 leave everything up to the linker. */
15481 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15482 fixP->fx_done = 1;
15483
15484 switch (fixP->fx_r_type)
15485 {
15486 case BFD_RELOC_MIPS_TLS_GD:
15487 case BFD_RELOC_MIPS_TLS_LDM:
15488 case BFD_RELOC_MIPS_TLS_DTPREL32:
15489 case BFD_RELOC_MIPS_TLS_DTPREL64:
15490 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15491 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15492 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15493 case BFD_RELOC_MIPS_TLS_TPREL32:
15494 case BFD_RELOC_MIPS_TLS_TPREL64:
15495 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15496 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15497 case BFD_RELOC_MICROMIPS_TLS_GD:
15498 case BFD_RELOC_MICROMIPS_TLS_LDM:
15499 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15500 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15501 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15502 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15503 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15504 case BFD_RELOC_MIPS16_TLS_GD:
15505 case BFD_RELOC_MIPS16_TLS_LDM:
15506 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15507 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15508 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15509 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15510 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15511 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15512 /* fall through */
15513
15514 case BFD_RELOC_MIPS_JMP:
15515 case BFD_RELOC_MIPS_SHIFT5:
15516 case BFD_RELOC_MIPS_SHIFT6:
15517 case BFD_RELOC_MIPS_GOT_DISP:
15518 case BFD_RELOC_MIPS_GOT_PAGE:
15519 case BFD_RELOC_MIPS_GOT_OFST:
15520 case BFD_RELOC_MIPS_SUB:
15521 case BFD_RELOC_MIPS_INSERT_A:
15522 case BFD_RELOC_MIPS_INSERT_B:
15523 case BFD_RELOC_MIPS_DELETE:
15524 case BFD_RELOC_MIPS_HIGHEST:
15525 case BFD_RELOC_MIPS_HIGHER:
15526 case BFD_RELOC_MIPS_SCN_DISP:
15527 case BFD_RELOC_MIPS_REL16:
15528 case BFD_RELOC_MIPS_RELGOT:
15529 case BFD_RELOC_MIPS_JALR:
15530 case BFD_RELOC_HI16:
15531 case BFD_RELOC_HI16_S:
15532 case BFD_RELOC_GPREL16:
15533 case BFD_RELOC_MIPS_LITERAL:
15534 case BFD_RELOC_MIPS_CALL16:
15535 case BFD_RELOC_MIPS_GOT16:
15536 case BFD_RELOC_GPREL32:
15537 case BFD_RELOC_MIPS_GOT_HI16:
15538 case BFD_RELOC_MIPS_GOT_LO16:
15539 case BFD_RELOC_MIPS_CALL_HI16:
15540 case BFD_RELOC_MIPS_CALL_LO16:
15541 case BFD_RELOC_MIPS16_GPREL:
15542 case BFD_RELOC_MIPS16_GOT16:
15543 case BFD_RELOC_MIPS16_CALL16:
15544 case BFD_RELOC_MIPS16_HI16:
15545 case BFD_RELOC_MIPS16_HI16_S:
15546 case BFD_RELOC_MIPS16_JMP:
15547 case BFD_RELOC_MICROMIPS_JMP:
15548 case BFD_RELOC_MICROMIPS_GOT_DISP:
15549 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15550 case BFD_RELOC_MICROMIPS_GOT_OFST:
15551 case BFD_RELOC_MICROMIPS_SUB:
15552 case BFD_RELOC_MICROMIPS_HIGHEST:
15553 case BFD_RELOC_MICROMIPS_HIGHER:
15554 case BFD_RELOC_MICROMIPS_SCN_DISP:
15555 case BFD_RELOC_MICROMIPS_JALR:
15556 case BFD_RELOC_MICROMIPS_HI16:
15557 case BFD_RELOC_MICROMIPS_HI16_S:
15558 case BFD_RELOC_MICROMIPS_GPREL16:
15559 case BFD_RELOC_MICROMIPS_LITERAL:
15560 case BFD_RELOC_MICROMIPS_CALL16:
15561 case BFD_RELOC_MICROMIPS_GOT16:
15562 case BFD_RELOC_MICROMIPS_GOT_HI16:
15563 case BFD_RELOC_MICROMIPS_GOT_LO16:
15564 case BFD_RELOC_MICROMIPS_CALL_HI16:
15565 case BFD_RELOC_MICROMIPS_CALL_LO16:
15566 /* Nothing needed to do. The value comes from the reloc entry. */
15567 break;
15568
15569 case BFD_RELOC_64:
15570 /* This is handled like BFD_RELOC_32, but we output a sign
15571 extended value if we are only 32 bits. */
15572 if (fixP->fx_done)
15573 {
15574 if (8 <= sizeof (valueT))
15575 md_number_to_chars (buf, *valP, 8);
15576 else
15577 {
15578 valueT hiv;
15579
15580 if ((*valP & 0x80000000) != 0)
15581 hiv = 0xffffffff;
15582 else
15583 hiv = 0;
15584 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15585 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15586 }
15587 }
15588 break;
15589
15590 case BFD_RELOC_RVA:
15591 case BFD_RELOC_32:
15592 case BFD_RELOC_16:
15593 /* If we are deleting this reloc entry, we must fill in the
15594 value now. This can happen if we have a .word which is not
15595 resolved when it appears but is later defined. */
15596 if (fixP->fx_done)
15597 md_number_to_chars (buf, *valP, fixP->fx_size);
15598 break;
15599
15600 case BFD_RELOC_LO16:
15601 case BFD_RELOC_MIPS16_LO16:
15602 case BFD_RELOC_MICROMIPS_LO16:
15603 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
15604 may be safe to remove, but if so it's not obvious. */
15605 /* When handling an embedded PIC switch statement, we can wind
15606 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
15607 if (fixP->fx_done)
15608 {
15609 if (*valP + 0x8000 > 0xffff)
15610 as_bad_where (fixP->fx_file, fixP->fx_line,
15611 _("relocation overflow"));
15612 /* 32-bit microMIPS instructions are divided into two halfwords.
15613 Relocations always refer to the second halfword, regardless
15614 of endianness. */
15615 if (target_big_endian || fixP->fx_r_type == BFD_RELOC_MICROMIPS_LO16)
15616 buf += 2;
15617 md_number_to_chars (buf, *valP, 2);
15618 }
15619 break;
15620
15621 case BFD_RELOC_16_PCREL_S2:
15622 if ((*valP & 0x3) != 0)
15623 as_bad_where (fixP->fx_file, fixP->fx_line,
15624 _("Branch to misaligned address (%lx)"), (long) *valP);
15625
15626 /* We need to save the bits in the instruction since fixup_segment()
15627 might be deleting the relocation entry (i.e., a branch within
15628 the current segment). */
15629 if (! fixP->fx_done)
15630 break;
15631
15632 /* Update old instruction data. */
15633 insn = read_insn (buf);
15634
15635 if (*valP + 0x20000 <= 0x3ffff)
15636 {
15637 insn |= (*valP >> 2) & 0xffff;
15638 write_insn (buf, insn);
15639 }
15640 else if (mips_pic == NO_PIC
15641 && fixP->fx_done
15642 && fixP->fx_frag->fr_address >= text_section->vma
15643 && (fixP->fx_frag->fr_address
15644 < text_section->vma + bfd_get_section_size (text_section))
15645 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15646 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15647 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15648 {
15649 /* The branch offset is too large. If this is an
15650 unconditional branch, and we are not generating PIC code,
15651 we can convert it to an absolute jump instruction. */
15652 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15653 insn = 0x0c000000; /* jal */
15654 else
15655 insn = 0x08000000; /* j */
15656 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15657 fixP->fx_done = 0;
15658 fixP->fx_addsy = section_symbol (text_section);
15659 *valP += md_pcrel_from (fixP);
15660 write_insn (buf, insn);
15661 }
15662 else
15663 {
15664 /* If we got here, we have branch-relaxation disabled,
15665 and there's nothing we can do to fix this instruction
15666 without turning it into a longer sequence. */
15667 as_bad_where (fixP->fx_file, fixP->fx_line,
15668 _("Branch out of range"));
15669 }
15670 break;
15671
15672 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15673 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15674 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15675 /* We adjust the offset back to even. */
15676 if ((*valP & 0x1) != 0)
15677 --(*valP);
15678
15679 if (! fixP->fx_done)
15680 break;
15681
15682 /* Should never visit here, because we keep the relocation. */
15683 abort ();
15684 break;
15685
15686 case BFD_RELOC_VTABLE_INHERIT:
15687 fixP->fx_done = 0;
15688 if (fixP->fx_addsy
15689 && !S_IS_DEFINED (fixP->fx_addsy)
15690 && !S_IS_WEAK (fixP->fx_addsy))
15691 S_SET_WEAK (fixP->fx_addsy);
15692 break;
15693
15694 case BFD_RELOC_VTABLE_ENTRY:
15695 fixP->fx_done = 0;
15696 break;
15697
15698 default:
15699 internalError ();
15700 }
15701
15702 /* Remember value for tc_gen_reloc. */
15703 fixP->fx_addnumber = *valP;
15704 }
15705
15706 static symbolS *
15707 get_symbol (void)
15708 {
15709 int c;
15710 char *name;
15711 symbolS *p;
15712
15713 name = input_line_pointer;
15714 c = get_symbol_end ();
15715 p = (symbolS *) symbol_find_or_make (name);
15716 *input_line_pointer = c;
15717 return p;
15718 }
15719
15720 /* Align the current frag to a given power of two. If a particular
15721 fill byte should be used, FILL points to an integer that contains
15722 that byte, otherwise FILL is null.
15723
15724 This function used to have the comment:
15725
15726 The MIPS assembler also automatically adjusts any preceding label.
15727
15728 The implementation therefore applied the adjustment to a maximum of
15729 one label. However, other label adjustments are applied to batches
15730 of labels, and adjusting just one caused problems when new labels
15731 were added for the sake of debugging or unwind information.
15732 We therefore adjust all preceding labels (given as LABELS) instead. */
15733
15734 static void
15735 mips_align (int to, int *fill, struct insn_label_list *labels)
15736 {
15737 mips_emit_delays ();
15738 mips_record_compressed_mode ();
15739 if (fill == NULL && subseg_text_p (now_seg))
15740 frag_align_code (to, 0);
15741 else
15742 frag_align (to, fill ? *fill : 0, 0);
15743 record_alignment (now_seg, to);
15744 mips_move_labels (labels, FALSE);
15745 }
15746
15747 /* Align to a given power of two. .align 0 turns off the automatic
15748 alignment used by the data creating pseudo-ops. */
15749
15750 static void
15751 s_align (int x ATTRIBUTE_UNUSED)
15752 {
15753 int temp, fill_value, *fill_ptr;
15754 long max_alignment = 28;
15755
15756 /* o Note that the assembler pulls down any immediately preceding label
15757 to the aligned address.
15758 o It's not documented but auto alignment is reinstated by
15759 a .align pseudo instruction.
15760 o Note also that after auto alignment is turned off the mips assembler
15761 issues an error on attempt to assemble an improperly aligned data item.
15762 We don't. */
15763
15764 temp = get_absolute_expression ();
15765 if (temp > max_alignment)
15766 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
15767 else if (temp < 0)
15768 {
15769 as_warn (_("Alignment negative: 0 assumed."));
15770 temp = 0;
15771 }
15772 if (*input_line_pointer == ',')
15773 {
15774 ++input_line_pointer;
15775 fill_value = get_absolute_expression ();
15776 fill_ptr = &fill_value;
15777 }
15778 else
15779 fill_ptr = 0;
15780 if (temp)
15781 {
15782 segment_info_type *si = seg_info (now_seg);
15783 struct insn_label_list *l = si->label_list;
15784 /* Auto alignment should be switched on by next section change. */
15785 auto_align = 1;
15786 mips_align (temp, fill_ptr, l);
15787 }
15788 else
15789 {
15790 auto_align = 0;
15791 }
15792
15793 demand_empty_rest_of_line ();
15794 }
15795
15796 static void
15797 s_change_sec (int sec)
15798 {
15799 segT seg;
15800
15801 #ifdef OBJ_ELF
15802 /* The ELF backend needs to know that we are changing sections, so
15803 that .previous works correctly. We could do something like check
15804 for an obj_section_change_hook macro, but that might be confusing
15805 as it would not be appropriate to use it in the section changing
15806 functions in read.c, since obj-elf.c intercepts those. FIXME:
15807 This should be cleaner, somehow. */
15808 if (IS_ELF)
15809 obj_elf_section_change_hook ();
15810 #endif
15811
15812 mips_emit_delays ();
15813
15814 switch (sec)
15815 {
15816 case 't':
15817 s_text (0);
15818 break;
15819 case 'd':
15820 s_data (0);
15821 break;
15822 case 'b':
15823 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15824 demand_empty_rest_of_line ();
15825 break;
15826
15827 case 'r':
15828 seg = subseg_new (RDATA_SECTION_NAME,
15829 (subsegT) get_absolute_expression ());
15830 if (IS_ELF)
15831 {
15832 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15833 | SEC_READONLY | SEC_RELOC
15834 | SEC_DATA));
15835 if (strncmp (TARGET_OS, "elf", 3) != 0)
15836 record_alignment (seg, 4);
15837 }
15838 demand_empty_rest_of_line ();
15839 break;
15840
15841 case 's':
15842 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15843 if (IS_ELF)
15844 {
15845 bfd_set_section_flags (stdoutput, seg,
15846 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15847 if (strncmp (TARGET_OS, "elf", 3) != 0)
15848 record_alignment (seg, 4);
15849 }
15850 demand_empty_rest_of_line ();
15851 break;
15852
15853 case 'B':
15854 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15855 if (IS_ELF)
15856 {
15857 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15858 if (strncmp (TARGET_OS, "elf", 3) != 0)
15859 record_alignment (seg, 4);
15860 }
15861 demand_empty_rest_of_line ();
15862 break;
15863 }
15864
15865 auto_align = 1;
15866 }
15867
15868 void
15869 s_change_section (int ignore ATTRIBUTE_UNUSED)
15870 {
15871 #ifdef OBJ_ELF
15872 char *section_name;
15873 char c;
15874 char next_c = 0;
15875 int section_type;
15876 int section_flag;
15877 int section_entry_size;
15878 int section_alignment;
15879
15880 if (!IS_ELF)
15881 return;
15882
15883 section_name = input_line_pointer;
15884 c = get_symbol_end ();
15885 if (c)
15886 next_c = *(input_line_pointer + 1);
15887
15888 /* Do we have .section Name<,"flags">? */
15889 if (c != ',' || (c == ',' && next_c == '"'))
15890 {
15891 /* just after name is now '\0'. */
15892 *input_line_pointer = c;
15893 input_line_pointer = section_name;
15894 obj_elf_section (ignore);
15895 return;
15896 }
15897 input_line_pointer++;
15898
15899 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15900 if (c == ',')
15901 section_type = get_absolute_expression ();
15902 else
15903 section_type = 0;
15904 if (*input_line_pointer++ == ',')
15905 section_flag = get_absolute_expression ();
15906 else
15907 section_flag = 0;
15908 if (*input_line_pointer++ == ',')
15909 section_entry_size = get_absolute_expression ();
15910 else
15911 section_entry_size = 0;
15912 if (*input_line_pointer++ == ',')
15913 section_alignment = get_absolute_expression ();
15914 else
15915 section_alignment = 0;
15916 /* FIXME: really ignore? */
15917 (void) section_alignment;
15918
15919 section_name = xstrdup (section_name);
15920
15921 /* When using the generic form of .section (as implemented by obj-elf.c),
15922 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15923 traditionally had to fall back on the more common @progbits instead.
15924
15925 There's nothing really harmful in this, since bfd will correct
15926 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15927 means that, for backwards compatibility, the special_section entries
15928 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15929
15930 Even so, we shouldn't force users of the MIPS .section syntax to
15931 incorrectly label the sections as SHT_PROGBITS. The best compromise
15932 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15933 generic type-checking code. */
15934 if (section_type == SHT_MIPS_DWARF)
15935 section_type = SHT_PROGBITS;
15936
15937 obj_elf_change_section (section_name, section_type, section_flag,
15938 section_entry_size, 0, 0, 0);
15939
15940 if (now_seg->name != section_name)
15941 free (section_name);
15942 #endif /* OBJ_ELF */
15943 }
15944
15945 void
15946 mips_enable_auto_align (void)
15947 {
15948 auto_align = 1;
15949 }
15950
15951 static void
15952 s_cons (int log_size)
15953 {
15954 segment_info_type *si = seg_info (now_seg);
15955 struct insn_label_list *l = si->label_list;
15956
15957 mips_emit_delays ();
15958 if (log_size > 0 && auto_align)
15959 mips_align (log_size, 0, l);
15960 cons (1 << log_size);
15961 mips_clear_insn_labels ();
15962 }
15963
15964 static void
15965 s_float_cons (int type)
15966 {
15967 segment_info_type *si = seg_info (now_seg);
15968 struct insn_label_list *l = si->label_list;
15969
15970 mips_emit_delays ();
15971
15972 if (auto_align)
15973 {
15974 if (type == 'd')
15975 mips_align (3, 0, l);
15976 else
15977 mips_align (2, 0, l);
15978 }
15979
15980 float_cons (type);
15981 mips_clear_insn_labels ();
15982 }
15983
15984 /* Handle .globl. We need to override it because on Irix 5 you are
15985 permitted to say
15986 .globl foo .text
15987 where foo is an undefined symbol, to mean that foo should be
15988 considered to be the address of a function. */
15989
15990 static void
15991 s_mips_globl (int x ATTRIBUTE_UNUSED)
15992 {
15993 char *name;
15994 int c;
15995 symbolS *symbolP;
15996 flagword flag;
15997
15998 do
15999 {
16000 name = input_line_pointer;
16001 c = get_symbol_end ();
16002 symbolP = symbol_find_or_make (name);
16003 S_SET_EXTERNAL (symbolP);
16004
16005 *input_line_pointer = c;
16006 SKIP_WHITESPACE ();
16007
16008 /* On Irix 5, every global symbol that is not explicitly labelled as
16009 being a function is apparently labelled as being an object. */
16010 flag = BSF_OBJECT;
16011
16012 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16013 && (*input_line_pointer != ','))
16014 {
16015 char *secname;
16016 asection *sec;
16017
16018 secname = input_line_pointer;
16019 c = get_symbol_end ();
16020 sec = bfd_get_section_by_name (stdoutput, secname);
16021 if (sec == NULL)
16022 as_bad (_("%s: no such section"), secname);
16023 *input_line_pointer = c;
16024
16025 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16026 flag = BSF_FUNCTION;
16027 }
16028
16029 symbol_get_bfdsym (symbolP)->flags |= flag;
16030
16031 c = *input_line_pointer;
16032 if (c == ',')
16033 {
16034 input_line_pointer++;
16035 SKIP_WHITESPACE ();
16036 if (is_end_of_line[(unsigned char) *input_line_pointer])
16037 c = '\n';
16038 }
16039 }
16040 while (c == ',');
16041
16042 demand_empty_rest_of_line ();
16043 }
16044
16045 static void
16046 s_option (int x ATTRIBUTE_UNUSED)
16047 {
16048 char *opt;
16049 char c;
16050
16051 opt = input_line_pointer;
16052 c = get_symbol_end ();
16053
16054 if (*opt == 'O')
16055 {
16056 /* FIXME: What does this mean? */
16057 }
16058 else if (strncmp (opt, "pic", 3) == 0)
16059 {
16060 int i;
16061
16062 i = atoi (opt + 3);
16063 if (i == 0)
16064 mips_pic = NO_PIC;
16065 else if (i == 2)
16066 {
16067 mips_pic = SVR4_PIC;
16068 mips_abicalls = TRUE;
16069 }
16070 else
16071 as_bad (_(".option pic%d not supported"), i);
16072
16073 if (mips_pic == SVR4_PIC)
16074 {
16075 if (g_switch_seen && g_switch_value != 0)
16076 as_warn (_("-G may not be used with SVR4 PIC code"));
16077 g_switch_value = 0;
16078 bfd_set_gp_size (stdoutput, 0);
16079 }
16080 }
16081 else
16082 as_warn (_("Unrecognized option \"%s\""), opt);
16083
16084 *input_line_pointer = c;
16085 demand_empty_rest_of_line ();
16086 }
16087
16088 /* This structure is used to hold a stack of .set values. */
16089
16090 struct mips_option_stack
16091 {
16092 struct mips_option_stack *next;
16093 struct mips_set_options options;
16094 };
16095
16096 static struct mips_option_stack *mips_opts_stack;
16097
16098 /* Handle the .set pseudo-op. */
16099
16100 static void
16101 s_mipsset (int x ATTRIBUTE_UNUSED)
16102 {
16103 char *name = input_line_pointer, ch;
16104
16105 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16106 ++input_line_pointer;
16107 ch = *input_line_pointer;
16108 *input_line_pointer = '\0';
16109
16110 if (strcmp (name, "reorder") == 0)
16111 {
16112 if (mips_opts.noreorder)
16113 end_noreorder ();
16114 }
16115 else if (strcmp (name, "noreorder") == 0)
16116 {
16117 if (!mips_opts.noreorder)
16118 start_noreorder ();
16119 }
16120 else if (strncmp (name, "at=", 3) == 0)
16121 {
16122 char *s = name + 3;
16123
16124 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16125 as_bad (_("Unrecognized register name `%s'"), s);
16126 }
16127 else if (strcmp (name, "at") == 0)
16128 {
16129 mips_opts.at = ATREG;
16130 }
16131 else if (strcmp (name, "noat") == 0)
16132 {
16133 mips_opts.at = ZERO;
16134 }
16135 else if (strcmp (name, "macro") == 0)
16136 {
16137 mips_opts.warn_about_macros = 0;
16138 }
16139 else if (strcmp (name, "nomacro") == 0)
16140 {
16141 if (mips_opts.noreorder == 0)
16142 as_bad (_("`noreorder' must be set before `nomacro'"));
16143 mips_opts.warn_about_macros = 1;
16144 }
16145 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16146 {
16147 mips_opts.nomove = 0;
16148 }
16149 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16150 {
16151 mips_opts.nomove = 1;
16152 }
16153 else if (strcmp (name, "bopt") == 0)
16154 {
16155 mips_opts.nobopt = 0;
16156 }
16157 else if (strcmp (name, "nobopt") == 0)
16158 {
16159 mips_opts.nobopt = 1;
16160 }
16161 else if (strcmp (name, "gp=default") == 0)
16162 mips_opts.gp32 = file_mips_gp32;
16163 else if (strcmp (name, "gp=32") == 0)
16164 mips_opts.gp32 = 1;
16165 else if (strcmp (name, "gp=64") == 0)
16166 {
16167 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
16168 as_warn (_("%s isa does not support 64-bit registers"),
16169 mips_cpu_info_from_isa (mips_opts.isa)->name);
16170 mips_opts.gp32 = 0;
16171 }
16172 else if (strcmp (name, "fp=default") == 0)
16173 mips_opts.fp32 = file_mips_fp32;
16174 else if (strcmp (name, "fp=32") == 0)
16175 mips_opts.fp32 = 1;
16176 else if (strcmp (name, "fp=64") == 0)
16177 {
16178 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
16179 as_warn (_("%s isa does not support 64-bit floating point registers"),
16180 mips_cpu_info_from_isa (mips_opts.isa)->name);
16181 mips_opts.fp32 = 0;
16182 }
16183 else if (strcmp (name, "softfloat") == 0)
16184 mips_opts.soft_float = 1;
16185 else if (strcmp (name, "hardfloat") == 0)
16186 mips_opts.soft_float = 0;
16187 else if (strcmp (name, "singlefloat") == 0)
16188 mips_opts.single_float = 1;
16189 else if (strcmp (name, "doublefloat") == 0)
16190 mips_opts.single_float = 0;
16191 else if (strcmp (name, "mips16") == 0
16192 || strcmp (name, "MIPS-16") == 0)
16193 {
16194 if (mips_opts.micromips == 1)
16195 as_fatal (_("`mips16' cannot be used with `micromips'"));
16196 mips_opts.mips16 = 1;
16197 }
16198 else if (strcmp (name, "nomips16") == 0
16199 || strcmp (name, "noMIPS-16") == 0)
16200 mips_opts.mips16 = 0;
16201 else if (strcmp (name, "micromips") == 0)
16202 {
16203 if (mips_opts.mips16 == 1)
16204 as_fatal (_("`micromips' cannot be used with `mips16'"));
16205 mips_opts.micromips = 1;
16206 }
16207 else if (strcmp (name, "nomicromips") == 0)
16208 mips_opts.micromips = 0;
16209 else if (strcmp (name, "smartmips") == 0)
16210 {
16211 if (!ISA_SUPPORTS_SMARTMIPS)
16212 as_warn (_("%s ISA does not support SmartMIPS ASE"),
16213 mips_cpu_info_from_isa (mips_opts.isa)->name);
16214 mips_opts.ase_smartmips = 1;
16215 }
16216 else if (strcmp (name, "nosmartmips") == 0)
16217 mips_opts.ase_smartmips = 0;
16218 else if (strcmp (name, "mips3d") == 0)
16219 mips_opts.ase_mips3d = 1;
16220 else if (strcmp (name, "nomips3d") == 0)
16221 mips_opts.ase_mips3d = 0;
16222 else if (strcmp (name, "mdmx") == 0)
16223 mips_opts.ase_mdmx = 1;
16224 else if (strcmp (name, "nomdmx") == 0)
16225 mips_opts.ase_mdmx = 0;
16226 else if (strcmp (name, "dsp") == 0)
16227 {
16228 if (!ISA_SUPPORTS_DSP_ASE)
16229 as_warn (_("%s ISA does not support DSP ASE"),
16230 mips_cpu_info_from_isa (mips_opts.isa)->name);
16231 mips_opts.ase_dsp = 1;
16232 mips_opts.ase_dspr2 = 0;
16233 }
16234 else if (strcmp (name, "nodsp") == 0)
16235 {
16236 mips_opts.ase_dsp = 0;
16237 mips_opts.ase_dspr2 = 0;
16238 }
16239 else if (strcmp (name, "dspr2") == 0)
16240 {
16241 if (!ISA_SUPPORTS_DSPR2_ASE)
16242 as_warn (_("%s ISA does not support DSP R2 ASE"),
16243 mips_cpu_info_from_isa (mips_opts.isa)->name);
16244 mips_opts.ase_dspr2 = 1;
16245 mips_opts.ase_dsp = 1;
16246 }
16247 else if (strcmp (name, "nodspr2") == 0)
16248 {
16249 mips_opts.ase_dspr2 = 0;
16250 mips_opts.ase_dsp = 0;
16251 }
16252 else if (strcmp (name, "mt") == 0)
16253 {
16254 if (!ISA_SUPPORTS_MT_ASE)
16255 as_warn (_("%s ISA does not support MT ASE"),
16256 mips_cpu_info_from_isa (mips_opts.isa)->name);
16257 mips_opts.ase_mt = 1;
16258 }
16259 else if (strcmp (name, "nomt") == 0)
16260 mips_opts.ase_mt = 0;
16261 else if (strcmp (name, "mcu") == 0)
16262 mips_opts.ase_mcu = 1;
16263 else if (strcmp (name, "nomcu") == 0)
16264 mips_opts.ase_mcu = 0;
16265 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16266 {
16267 int reset = 0;
16268
16269 /* Permit the user to change the ISA and architecture on the fly.
16270 Needless to say, misuse can cause serious problems. */
16271 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16272 {
16273 reset = 1;
16274 mips_opts.isa = file_mips_isa;
16275 mips_opts.arch = file_mips_arch;
16276 }
16277 else if (strncmp (name, "arch=", 5) == 0)
16278 {
16279 const struct mips_cpu_info *p;
16280
16281 p = mips_parse_cpu("internal use", name + 5);
16282 if (!p)
16283 as_bad (_("unknown architecture %s"), name + 5);
16284 else
16285 {
16286 mips_opts.arch = p->cpu;
16287 mips_opts.isa = p->isa;
16288 }
16289 }
16290 else if (strncmp (name, "mips", 4) == 0)
16291 {
16292 const struct mips_cpu_info *p;
16293
16294 p = mips_parse_cpu("internal use", name);
16295 if (!p)
16296 as_bad (_("unknown ISA level %s"), name + 4);
16297 else
16298 {
16299 mips_opts.arch = p->cpu;
16300 mips_opts.isa = p->isa;
16301 }
16302 }
16303 else
16304 as_bad (_("unknown ISA or architecture %s"), name);
16305
16306 switch (mips_opts.isa)
16307 {
16308 case 0:
16309 break;
16310 case ISA_MIPS1:
16311 case ISA_MIPS2:
16312 case ISA_MIPS32:
16313 case ISA_MIPS32R2:
16314 mips_opts.gp32 = 1;
16315 mips_opts.fp32 = 1;
16316 break;
16317 case ISA_MIPS3:
16318 case ISA_MIPS4:
16319 case ISA_MIPS5:
16320 case ISA_MIPS64:
16321 case ISA_MIPS64R2:
16322 mips_opts.gp32 = 0;
16323 mips_opts.fp32 = 0;
16324 break;
16325 default:
16326 as_bad (_("unknown ISA level %s"), name + 4);
16327 break;
16328 }
16329 if (reset)
16330 {
16331 mips_opts.gp32 = file_mips_gp32;
16332 mips_opts.fp32 = file_mips_fp32;
16333 }
16334 }
16335 else if (strcmp (name, "autoextend") == 0)
16336 mips_opts.noautoextend = 0;
16337 else if (strcmp (name, "noautoextend") == 0)
16338 mips_opts.noautoextend = 1;
16339 else if (strcmp (name, "push") == 0)
16340 {
16341 struct mips_option_stack *s;
16342
16343 s = (struct mips_option_stack *) xmalloc (sizeof *s);
16344 s->next = mips_opts_stack;
16345 s->options = mips_opts;
16346 mips_opts_stack = s;
16347 }
16348 else if (strcmp (name, "pop") == 0)
16349 {
16350 struct mips_option_stack *s;
16351
16352 s = mips_opts_stack;
16353 if (s == NULL)
16354 as_bad (_(".set pop with no .set push"));
16355 else
16356 {
16357 /* If we're changing the reorder mode we need to handle
16358 delay slots correctly. */
16359 if (s->options.noreorder && ! mips_opts.noreorder)
16360 start_noreorder ();
16361 else if (! s->options.noreorder && mips_opts.noreorder)
16362 end_noreorder ();
16363
16364 mips_opts = s->options;
16365 mips_opts_stack = s->next;
16366 free (s);
16367 }
16368 }
16369 else if (strcmp (name, "sym32") == 0)
16370 mips_opts.sym32 = TRUE;
16371 else if (strcmp (name, "nosym32") == 0)
16372 mips_opts.sym32 = FALSE;
16373 else if (strchr (name, ','))
16374 {
16375 /* Generic ".set" directive; use the generic handler. */
16376 *input_line_pointer = ch;
16377 input_line_pointer = name;
16378 s_set (0);
16379 return;
16380 }
16381 else
16382 {
16383 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
16384 }
16385 *input_line_pointer = ch;
16386 demand_empty_rest_of_line ();
16387 }
16388
16389 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16390 .option pic2. It means to generate SVR4 PIC calls. */
16391
16392 static void
16393 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16394 {
16395 mips_pic = SVR4_PIC;
16396 mips_abicalls = TRUE;
16397
16398 if (g_switch_seen && g_switch_value != 0)
16399 as_warn (_("-G may not be used with SVR4 PIC code"));
16400 g_switch_value = 0;
16401
16402 bfd_set_gp_size (stdoutput, 0);
16403 demand_empty_rest_of_line ();
16404 }
16405
16406 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16407 PIC code. It sets the $gp register for the function based on the
16408 function address, which is in the register named in the argument.
16409 This uses a relocation against _gp_disp, which is handled specially
16410 by the linker. The result is:
16411 lui $gp,%hi(_gp_disp)
16412 addiu $gp,$gp,%lo(_gp_disp)
16413 addu $gp,$gp,.cpload argument
16414 The .cpload argument is normally $25 == $t9.
16415
16416 The -mno-shared option changes this to:
16417 lui $gp,%hi(__gnu_local_gp)
16418 addiu $gp,$gp,%lo(__gnu_local_gp)
16419 and the argument is ignored. This saves an instruction, but the
16420 resulting code is not position independent; it uses an absolute
16421 address for __gnu_local_gp. Thus code assembled with -mno-shared
16422 can go into an ordinary executable, but not into a shared library. */
16423
16424 static void
16425 s_cpload (int ignore ATTRIBUTE_UNUSED)
16426 {
16427 expressionS ex;
16428 int reg;
16429 int in_shared;
16430
16431 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16432 .cpload is ignored. */
16433 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16434 {
16435 s_ignore (0);
16436 return;
16437 }
16438
16439 if (mips_opts.mips16)
16440 {
16441 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16442 ignore_rest_of_line ();
16443 return;
16444 }
16445
16446 /* .cpload should be in a .set noreorder section. */
16447 if (mips_opts.noreorder == 0)
16448 as_warn (_(".cpload not in noreorder section"));
16449
16450 reg = tc_get_register (0);
16451
16452 /* If we need to produce a 64-bit address, we are better off using
16453 the default instruction sequence. */
16454 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16455
16456 ex.X_op = O_symbol;
16457 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16458 "__gnu_local_gp");
16459 ex.X_op_symbol = NULL;
16460 ex.X_add_number = 0;
16461
16462 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16463 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16464
16465 macro_start ();
16466 macro_build_lui (&ex, mips_gp_register);
16467 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16468 mips_gp_register, BFD_RELOC_LO16);
16469 if (in_shared)
16470 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16471 mips_gp_register, reg);
16472 macro_end ();
16473
16474 demand_empty_rest_of_line ();
16475 }
16476
16477 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16478 .cpsetup $reg1, offset|$reg2, label
16479
16480 If offset is given, this results in:
16481 sd $gp, offset($sp)
16482 lui $gp, %hi(%neg(%gp_rel(label)))
16483 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16484 daddu $gp, $gp, $reg1
16485
16486 If $reg2 is given, this results in:
16487 daddu $reg2, $gp, $0
16488 lui $gp, %hi(%neg(%gp_rel(label)))
16489 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16490 daddu $gp, $gp, $reg1
16491 $reg1 is normally $25 == $t9.
16492
16493 The -mno-shared option replaces the last three instructions with
16494 lui $gp,%hi(_gp)
16495 addiu $gp,$gp,%lo(_gp) */
16496
16497 static void
16498 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16499 {
16500 expressionS ex_off;
16501 expressionS ex_sym;
16502 int reg1;
16503
16504 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16505 We also need NewABI support. */
16506 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16507 {
16508 s_ignore (0);
16509 return;
16510 }
16511
16512 if (mips_opts.mips16)
16513 {
16514 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16515 ignore_rest_of_line ();
16516 return;
16517 }
16518
16519 reg1 = tc_get_register (0);
16520 SKIP_WHITESPACE ();
16521 if (*input_line_pointer != ',')
16522 {
16523 as_bad (_("missing argument separator ',' for .cpsetup"));
16524 return;
16525 }
16526 else
16527 ++input_line_pointer;
16528 SKIP_WHITESPACE ();
16529 if (*input_line_pointer == '$')
16530 {
16531 mips_cpreturn_register = tc_get_register (0);
16532 mips_cpreturn_offset = -1;
16533 }
16534 else
16535 {
16536 mips_cpreturn_offset = get_absolute_expression ();
16537 mips_cpreturn_register = -1;
16538 }
16539 SKIP_WHITESPACE ();
16540 if (*input_line_pointer != ',')
16541 {
16542 as_bad (_("missing argument separator ',' for .cpsetup"));
16543 return;
16544 }
16545 else
16546 ++input_line_pointer;
16547 SKIP_WHITESPACE ();
16548 expression (&ex_sym);
16549
16550 macro_start ();
16551 if (mips_cpreturn_register == -1)
16552 {
16553 ex_off.X_op = O_constant;
16554 ex_off.X_add_symbol = NULL;
16555 ex_off.X_op_symbol = NULL;
16556 ex_off.X_add_number = mips_cpreturn_offset;
16557
16558 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16559 BFD_RELOC_LO16, SP);
16560 }
16561 else
16562 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
16563 mips_gp_register, 0);
16564
16565 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16566 {
16567 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16568 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16569 BFD_RELOC_HI16_S);
16570
16571 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16572 mips_gp_register, -1, BFD_RELOC_GPREL16,
16573 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16574
16575 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16576 mips_gp_register, reg1);
16577 }
16578 else
16579 {
16580 expressionS ex;
16581
16582 ex.X_op = O_symbol;
16583 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16584 ex.X_op_symbol = NULL;
16585 ex.X_add_number = 0;
16586
16587 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16588 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16589
16590 macro_build_lui (&ex, mips_gp_register);
16591 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16592 mips_gp_register, BFD_RELOC_LO16);
16593 }
16594
16595 macro_end ();
16596
16597 demand_empty_rest_of_line ();
16598 }
16599
16600 static void
16601 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16602 {
16603 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16604 .cplocal is ignored. */
16605 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16606 {
16607 s_ignore (0);
16608 return;
16609 }
16610
16611 if (mips_opts.mips16)
16612 {
16613 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16614 ignore_rest_of_line ();
16615 return;
16616 }
16617
16618 mips_gp_register = tc_get_register (0);
16619 demand_empty_rest_of_line ();
16620 }
16621
16622 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16623 offset from $sp. The offset is remembered, and after making a PIC
16624 call $gp is restored from that location. */
16625
16626 static void
16627 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16628 {
16629 expressionS ex;
16630
16631 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16632 .cprestore is ignored. */
16633 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16634 {
16635 s_ignore (0);
16636 return;
16637 }
16638
16639 if (mips_opts.mips16)
16640 {
16641 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16642 ignore_rest_of_line ();
16643 return;
16644 }
16645
16646 mips_cprestore_offset = get_absolute_expression ();
16647 mips_cprestore_valid = 1;
16648
16649 ex.X_op = O_constant;
16650 ex.X_add_symbol = NULL;
16651 ex.X_op_symbol = NULL;
16652 ex.X_add_number = mips_cprestore_offset;
16653
16654 macro_start ();
16655 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16656 SP, HAVE_64BIT_ADDRESSES);
16657 macro_end ();
16658
16659 demand_empty_rest_of_line ();
16660 }
16661
16662 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16663 was given in the preceding .cpsetup, it results in:
16664 ld $gp, offset($sp)
16665
16666 If a register $reg2 was given there, it results in:
16667 daddu $gp, $reg2, $0 */
16668
16669 static void
16670 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16671 {
16672 expressionS ex;
16673
16674 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16675 We also need NewABI support. */
16676 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16677 {
16678 s_ignore (0);
16679 return;
16680 }
16681
16682 if (mips_opts.mips16)
16683 {
16684 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16685 ignore_rest_of_line ();
16686 return;
16687 }
16688
16689 macro_start ();
16690 if (mips_cpreturn_register == -1)
16691 {
16692 ex.X_op = O_constant;
16693 ex.X_add_symbol = NULL;
16694 ex.X_op_symbol = NULL;
16695 ex.X_add_number = mips_cpreturn_offset;
16696
16697 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16698 }
16699 else
16700 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
16701 mips_cpreturn_register, 0);
16702 macro_end ();
16703
16704 demand_empty_rest_of_line ();
16705 }
16706
16707 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16708 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16709 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16710 debug information or MIPS16 TLS. */
16711
16712 static void
16713 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16714 bfd_reloc_code_real_type rtype)
16715 {
16716 expressionS ex;
16717 char *p;
16718
16719 expression (&ex);
16720
16721 if (ex.X_op != O_symbol)
16722 {
16723 as_bad (_("Unsupported use of %s"), dirstr);
16724 ignore_rest_of_line ();
16725 }
16726
16727 p = frag_more (bytes);
16728 md_number_to_chars (p, 0, bytes);
16729 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16730 demand_empty_rest_of_line ();
16731 mips_clear_insn_labels ();
16732 }
16733
16734 /* Handle .dtprelword. */
16735
16736 static void
16737 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16738 {
16739 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16740 }
16741
16742 /* Handle .dtpreldword. */
16743
16744 static void
16745 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16746 {
16747 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16748 }
16749
16750 /* Handle .tprelword. */
16751
16752 static void
16753 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16754 {
16755 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16756 }
16757
16758 /* Handle .tpreldword. */
16759
16760 static void
16761 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16762 {
16763 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16764 }
16765
16766 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16767 code. It sets the offset to use in gp_rel relocations. */
16768
16769 static void
16770 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16771 {
16772 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16773 We also need NewABI support. */
16774 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16775 {
16776 s_ignore (0);
16777 return;
16778 }
16779
16780 mips_gprel_offset = get_absolute_expression ();
16781
16782 demand_empty_rest_of_line ();
16783 }
16784
16785 /* Handle the .gpword pseudo-op. This is used when generating PIC
16786 code. It generates a 32 bit GP relative reloc. */
16787
16788 static void
16789 s_gpword (int ignore ATTRIBUTE_UNUSED)
16790 {
16791 segment_info_type *si;
16792 struct insn_label_list *l;
16793 expressionS ex;
16794 char *p;
16795
16796 /* When not generating PIC code, this is treated as .word. */
16797 if (mips_pic != SVR4_PIC)
16798 {
16799 s_cons (2);
16800 return;
16801 }
16802
16803 si = seg_info (now_seg);
16804 l = si->label_list;
16805 mips_emit_delays ();
16806 if (auto_align)
16807 mips_align (2, 0, l);
16808
16809 expression (&ex);
16810 mips_clear_insn_labels ();
16811
16812 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16813 {
16814 as_bad (_("Unsupported use of .gpword"));
16815 ignore_rest_of_line ();
16816 }
16817
16818 p = frag_more (4);
16819 md_number_to_chars (p, 0, 4);
16820 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16821 BFD_RELOC_GPREL32);
16822
16823 demand_empty_rest_of_line ();
16824 }
16825
16826 static void
16827 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16828 {
16829 segment_info_type *si;
16830 struct insn_label_list *l;
16831 expressionS ex;
16832 char *p;
16833
16834 /* When not generating PIC code, this is treated as .dword. */
16835 if (mips_pic != SVR4_PIC)
16836 {
16837 s_cons (3);
16838 return;
16839 }
16840
16841 si = seg_info (now_seg);
16842 l = si->label_list;
16843 mips_emit_delays ();
16844 if (auto_align)
16845 mips_align (3, 0, l);
16846
16847 expression (&ex);
16848 mips_clear_insn_labels ();
16849
16850 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16851 {
16852 as_bad (_("Unsupported use of .gpdword"));
16853 ignore_rest_of_line ();
16854 }
16855
16856 p = frag_more (8);
16857 md_number_to_chars (p, 0, 8);
16858 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16859 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16860
16861 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16862 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16863 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16864
16865 demand_empty_rest_of_line ();
16866 }
16867
16868 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16869 tables in SVR4 PIC code. */
16870
16871 static void
16872 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16873 {
16874 int reg;
16875
16876 /* This is ignored when not generating SVR4 PIC code. */
16877 if (mips_pic != SVR4_PIC)
16878 {
16879 s_ignore (0);
16880 return;
16881 }
16882
16883 /* Add $gp to the register named as an argument. */
16884 macro_start ();
16885 reg = tc_get_register (0);
16886 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16887 macro_end ();
16888
16889 demand_empty_rest_of_line ();
16890 }
16891
16892 /* Handle the .insn pseudo-op. This marks instruction labels in
16893 mips16/micromips mode. This permits the linker to handle them specially,
16894 such as generating jalx instructions when needed. We also make
16895 them odd for the duration of the assembly, in order to generate the
16896 right sort of code. We will make them even in the adjust_symtab
16897 routine, while leaving them marked. This is convenient for the
16898 debugger and the disassembler. The linker knows to make them odd
16899 again. */
16900
16901 static void
16902 s_insn (int ignore ATTRIBUTE_UNUSED)
16903 {
16904 mips_mark_labels ();
16905
16906 demand_empty_rest_of_line ();
16907 }
16908
16909 /* Handle a .stabn directive. We need these in order to mark a label
16910 as being a mips16 text label correctly. Sometimes the compiler
16911 will emit a label, followed by a .stabn, and then switch sections.
16912 If the label and .stabn are in mips16 mode, then the label is
16913 really a mips16 text label. */
16914
16915 static void
16916 s_mips_stab (int type)
16917 {
16918 if (type == 'n')
16919 mips_mark_labels ();
16920
16921 s_stab (type);
16922 }
16923
16924 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16925
16926 static void
16927 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16928 {
16929 char *name;
16930 int c;
16931 symbolS *symbolP;
16932 expressionS exp;
16933
16934 name = input_line_pointer;
16935 c = get_symbol_end ();
16936 symbolP = symbol_find_or_make (name);
16937 S_SET_WEAK (symbolP);
16938 *input_line_pointer = c;
16939
16940 SKIP_WHITESPACE ();
16941
16942 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16943 {
16944 if (S_IS_DEFINED (symbolP))
16945 {
16946 as_bad (_("ignoring attempt to redefine symbol %s"),
16947 S_GET_NAME (symbolP));
16948 ignore_rest_of_line ();
16949 return;
16950 }
16951
16952 if (*input_line_pointer == ',')
16953 {
16954 ++input_line_pointer;
16955 SKIP_WHITESPACE ();
16956 }
16957
16958 expression (&exp);
16959 if (exp.X_op != O_symbol)
16960 {
16961 as_bad (_("bad .weakext directive"));
16962 ignore_rest_of_line ();
16963 return;
16964 }
16965 symbol_set_value_expression (symbolP, &exp);
16966 }
16967
16968 demand_empty_rest_of_line ();
16969 }
16970
16971 /* Parse a register string into a number. Called from the ECOFF code
16972 to parse .frame. The argument is non-zero if this is the frame
16973 register, so that we can record it in mips_frame_reg. */
16974
16975 int
16976 tc_get_register (int frame)
16977 {
16978 unsigned int reg;
16979
16980 SKIP_WHITESPACE ();
16981 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16982 reg = 0;
16983 if (frame)
16984 {
16985 mips_frame_reg = reg != 0 ? reg : SP;
16986 mips_frame_reg_valid = 1;
16987 mips_cprestore_valid = 0;
16988 }
16989 return reg;
16990 }
16991
16992 valueT
16993 md_section_align (asection *seg, valueT addr)
16994 {
16995 int align = bfd_get_section_alignment (stdoutput, seg);
16996
16997 if (IS_ELF)
16998 {
16999 /* We don't need to align ELF sections to the full alignment.
17000 However, Irix 5 may prefer that we align them at least to a 16
17001 byte boundary. We don't bother to align the sections if we
17002 are targeted for an embedded system. */
17003 if (strncmp (TARGET_OS, "elf", 3) == 0)
17004 return addr;
17005 if (align > 4)
17006 align = 4;
17007 }
17008
17009 return ((addr + (1 << align) - 1) & (-1 << align));
17010 }
17011
17012 /* Utility routine, called from above as well. If called while the
17013 input file is still being read, it's only an approximation. (For
17014 example, a symbol may later become defined which appeared to be
17015 undefined earlier.) */
17016
17017 static int
17018 nopic_need_relax (symbolS *sym, int before_relaxing)
17019 {
17020 if (sym == 0)
17021 return 0;
17022
17023 if (g_switch_value > 0)
17024 {
17025 const char *symname;
17026 int change;
17027
17028 /* Find out whether this symbol can be referenced off the $gp
17029 register. It can be if it is smaller than the -G size or if
17030 it is in the .sdata or .sbss section. Certain symbols can
17031 not be referenced off the $gp, although it appears as though
17032 they can. */
17033 symname = S_GET_NAME (sym);
17034 if (symname != (const char *) NULL
17035 && (strcmp (symname, "eprol") == 0
17036 || strcmp (symname, "etext") == 0
17037 || strcmp (symname, "_gp") == 0
17038 || strcmp (symname, "edata") == 0
17039 || strcmp (symname, "_fbss") == 0
17040 || strcmp (symname, "_fdata") == 0
17041 || strcmp (symname, "_ftext") == 0
17042 || strcmp (symname, "end") == 0
17043 || strcmp (symname, "_gp_disp") == 0))
17044 change = 1;
17045 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17046 && (0
17047 #ifndef NO_ECOFF_DEBUGGING
17048 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17049 && (symbol_get_obj (sym)->ecoff_extern_size
17050 <= g_switch_value))
17051 #endif
17052 /* We must defer this decision until after the whole
17053 file has been read, since there might be a .extern
17054 after the first use of this symbol. */
17055 || (before_relaxing
17056 #ifndef NO_ECOFF_DEBUGGING
17057 && symbol_get_obj (sym)->ecoff_extern_size == 0
17058 #endif
17059 && S_GET_VALUE (sym) == 0)
17060 || (S_GET_VALUE (sym) != 0
17061 && S_GET_VALUE (sym) <= g_switch_value)))
17062 change = 0;
17063 else
17064 {
17065 const char *segname;
17066
17067 segname = segment_name (S_GET_SEGMENT (sym));
17068 gas_assert (strcmp (segname, ".lit8") != 0
17069 && strcmp (segname, ".lit4") != 0);
17070 change = (strcmp (segname, ".sdata") != 0
17071 && strcmp (segname, ".sbss") != 0
17072 && strncmp (segname, ".sdata.", 7) != 0
17073 && strncmp (segname, ".sbss.", 6) != 0
17074 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17075 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17076 }
17077 return change;
17078 }
17079 else
17080 /* We are not optimizing for the $gp register. */
17081 return 1;
17082 }
17083
17084
17085 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17086
17087 static bfd_boolean
17088 pic_need_relax (symbolS *sym, asection *segtype)
17089 {
17090 asection *symsec;
17091
17092 /* Handle the case of a symbol equated to another symbol. */
17093 while (symbol_equated_reloc_p (sym))
17094 {
17095 symbolS *n;
17096
17097 /* It's possible to get a loop here in a badly written program. */
17098 n = symbol_get_value_expression (sym)->X_add_symbol;
17099 if (n == sym)
17100 break;
17101 sym = n;
17102 }
17103
17104 if (symbol_section_p (sym))
17105 return TRUE;
17106
17107 symsec = S_GET_SEGMENT (sym);
17108
17109 /* This must duplicate the test in adjust_reloc_syms. */
17110 return (!bfd_is_und_section (symsec)
17111 && !bfd_is_abs_section (symsec)
17112 && !bfd_is_com_section (symsec)
17113 && !s_is_linkonce (sym, segtype)
17114 #ifdef OBJ_ELF
17115 /* A global or weak symbol is treated as external. */
17116 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
17117 #endif
17118 );
17119 }
17120
17121
17122 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17123 extended opcode. SEC is the section the frag is in. */
17124
17125 static int
17126 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17127 {
17128 int type;
17129 const struct mips16_immed_operand *op;
17130 offsetT val;
17131 int mintiny, maxtiny;
17132 segT symsec;
17133 fragS *sym_frag;
17134
17135 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17136 return 0;
17137 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17138 return 1;
17139
17140 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17141 op = mips16_immed_operands;
17142 while (op->type != type)
17143 {
17144 ++op;
17145 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
17146 }
17147
17148 if (op->unsp)
17149 {
17150 if (type == '<' || type == '>' || type == '[' || type == ']')
17151 {
17152 mintiny = 1;
17153 maxtiny = 1 << op->nbits;
17154 }
17155 else
17156 {
17157 mintiny = 0;
17158 maxtiny = (1 << op->nbits) - 1;
17159 }
17160 }
17161 else
17162 {
17163 mintiny = - (1 << (op->nbits - 1));
17164 maxtiny = (1 << (op->nbits - 1)) - 1;
17165 }
17166
17167 sym_frag = symbol_get_frag (fragp->fr_symbol);
17168 val = S_GET_VALUE (fragp->fr_symbol);
17169 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17170
17171 if (op->pcrel)
17172 {
17173 addressT addr;
17174
17175 /* We won't have the section when we are called from
17176 mips_relax_frag. However, we will always have been called
17177 from md_estimate_size_before_relax first. If this is a
17178 branch to a different section, we mark it as such. If SEC is
17179 NULL, and the frag is not marked, then it must be a branch to
17180 the same section. */
17181 if (sec == NULL)
17182 {
17183 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17184 return 1;
17185 }
17186 else
17187 {
17188 /* Must have been called from md_estimate_size_before_relax. */
17189 if (symsec != sec)
17190 {
17191 fragp->fr_subtype =
17192 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17193
17194 /* FIXME: We should support this, and let the linker
17195 catch branches and loads that are out of range. */
17196 as_bad_where (fragp->fr_file, fragp->fr_line,
17197 _("unsupported PC relative reference to different section"));
17198
17199 return 1;
17200 }
17201 if (fragp != sym_frag && sym_frag->fr_address == 0)
17202 /* Assume non-extended on the first relaxation pass.
17203 The address we have calculated will be bogus if this is
17204 a forward branch to another frag, as the forward frag
17205 will have fr_address == 0. */
17206 return 0;
17207 }
17208
17209 /* In this case, we know for sure that the symbol fragment is in
17210 the same section. If the relax_marker of the symbol fragment
17211 differs from the relax_marker of this fragment, we have not
17212 yet adjusted the symbol fragment fr_address. We want to add
17213 in STRETCH in order to get a better estimate of the address.
17214 This particularly matters because of the shift bits. */
17215 if (stretch != 0
17216 && sym_frag->relax_marker != fragp->relax_marker)
17217 {
17218 fragS *f;
17219
17220 /* Adjust stretch for any alignment frag. Note that if have
17221 been expanding the earlier code, the symbol may be
17222 defined in what appears to be an earlier frag. FIXME:
17223 This doesn't handle the fr_subtype field, which specifies
17224 a maximum number of bytes to skip when doing an
17225 alignment. */
17226 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17227 {
17228 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17229 {
17230 if (stretch < 0)
17231 stretch = - ((- stretch)
17232 & ~ ((1 << (int) f->fr_offset) - 1));
17233 else
17234 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17235 if (stretch == 0)
17236 break;
17237 }
17238 }
17239 if (f != NULL)
17240 val += stretch;
17241 }
17242
17243 addr = fragp->fr_address + fragp->fr_fix;
17244
17245 /* The base address rules are complicated. The base address of
17246 a branch is the following instruction. The base address of a
17247 PC relative load or add is the instruction itself, but if it
17248 is in a delay slot (in which case it can not be extended) use
17249 the address of the instruction whose delay slot it is in. */
17250 if (type == 'p' || type == 'q')
17251 {
17252 addr += 2;
17253
17254 /* If we are currently assuming that this frag should be
17255 extended, then, the current address is two bytes
17256 higher. */
17257 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17258 addr += 2;
17259
17260 /* Ignore the low bit in the target, since it will be set
17261 for a text label. */
17262 if ((val & 1) != 0)
17263 --val;
17264 }
17265 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17266 addr -= 4;
17267 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17268 addr -= 2;
17269
17270 val -= addr & ~ ((1 << op->shift) - 1);
17271
17272 /* Branch offsets have an implicit 0 in the lowest bit. */
17273 if (type == 'p' || type == 'q')
17274 val /= 2;
17275
17276 /* If any of the shifted bits are set, we must use an extended
17277 opcode. If the address depends on the size of this
17278 instruction, this can lead to a loop, so we arrange to always
17279 use an extended opcode. We only check this when we are in
17280 the main relaxation loop, when SEC is NULL. */
17281 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
17282 {
17283 fragp->fr_subtype =
17284 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17285 return 1;
17286 }
17287
17288 /* If we are about to mark a frag as extended because the value
17289 is precisely maxtiny + 1, then there is a chance of an
17290 infinite loop as in the following code:
17291 la $4,foo
17292 .skip 1020
17293 .align 2
17294 foo:
17295 In this case when the la is extended, foo is 0x3fc bytes
17296 away, so the la can be shrunk, but then foo is 0x400 away, so
17297 the la must be extended. To avoid this loop, we mark the
17298 frag as extended if it was small, and is about to become
17299 extended with a value of maxtiny + 1. */
17300 if (val == ((maxtiny + 1) << op->shift)
17301 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
17302 && sec == NULL)
17303 {
17304 fragp->fr_subtype =
17305 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17306 return 1;
17307 }
17308 }
17309 else if (symsec != absolute_section && sec != NULL)
17310 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
17311
17312 if ((val & ((1 << op->shift) - 1)) != 0
17313 || val < (mintiny << op->shift)
17314 || val > (maxtiny << op->shift))
17315 return 1;
17316 else
17317 return 0;
17318 }
17319
17320 /* Compute the length of a branch sequence, and adjust the
17321 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17322 worst-case length is computed, with UPDATE being used to indicate
17323 whether an unconditional (-1), branch-likely (+1) or regular (0)
17324 branch is to be computed. */
17325 static int
17326 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17327 {
17328 bfd_boolean toofar;
17329 int length;
17330
17331 if (fragp
17332 && S_IS_DEFINED (fragp->fr_symbol)
17333 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17334 {
17335 addressT addr;
17336 offsetT val;
17337
17338 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17339
17340 addr = fragp->fr_address + fragp->fr_fix + 4;
17341
17342 val -= addr;
17343
17344 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17345 }
17346 else if (fragp)
17347 /* If the symbol is not defined or it's in a different segment,
17348 assume the user knows what's going on and emit a short
17349 branch. */
17350 toofar = FALSE;
17351 else
17352 toofar = TRUE;
17353
17354 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17355 fragp->fr_subtype
17356 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17357 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17358 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17359 RELAX_BRANCH_LINK (fragp->fr_subtype),
17360 toofar);
17361
17362 length = 4;
17363 if (toofar)
17364 {
17365 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17366 length += 8;
17367
17368 if (mips_pic != NO_PIC)
17369 {
17370 /* Additional space for PIC loading of target address. */
17371 length += 8;
17372 if (mips_opts.isa == ISA_MIPS1)
17373 /* Additional space for $at-stabilizing nop. */
17374 length += 4;
17375 }
17376
17377 /* If branch is conditional. */
17378 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17379 length += 8;
17380 }
17381
17382 return length;
17383 }
17384
17385 /* Compute the length of a branch sequence, and adjust the
17386 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17387 worst-case length is computed, with UPDATE being used to indicate
17388 whether an unconditional (-1), or regular (0) branch is to be
17389 computed. */
17390
17391 static int
17392 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17393 {
17394 bfd_boolean toofar;
17395 int length;
17396
17397 if (fragp
17398 && S_IS_DEFINED (fragp->fr_symbol)
17399 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17400 {
17401 addressT addr;
17402 offsetT val;
17403
17404 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17405 /* Ignore the low bit in the target, since it will be set
17406 for a text label. */
17407 if ((val & 1) != 0)
17408 --val;
17409
17410 addr = fragp->fr_address + fragp->fr_fix + 4;
17411
17412 val -= addr;
17413
17414 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17415 }
17416 else if (fragp)
17417 /* If the symbol is not defined or it's in a different segment,
17418 assume the user knows what's going on and emit a short
17419 branch. */
17420 toofar = FALSE;
17421 else
17422 toofar = TRUE;
17423
17424 if (fragp && update
17425 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17426 fragp->fr_subtype = (toofar
17427 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17428 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17429
17430 length = 4;
17431 if (toofar)
17432 {
17433 bfd_boolean compact_known = fragp != NULL;
17434 bfd_boolean compact = FALSE;
17435 bfd_boolean uncond;
17436
17437 if (compact_known)
17438 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17439 if (fragp)
17440 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17441 else
17442 uncond = update < 0;
17443
17444 /* If label is out of range, we turn branch <br>:
17445
17446 <br> label # 4 bytes
17447 0:
17448
17449 into:
17450
17451 j label # 4 bytes
17452 nop # 2 bytes if compact && !PIC
17453 0:
17454 */
17455 if (mips_pic == NO_PIC && (!compact_known || compact))
17456 length += 2;
17457
17458 /* If assembling PIC code, we further turn:
17459
17460 j label # 4 bytes
17461
17462 into:
17463
17464 lw/ld at, %got(label)(gp) # 4 bytes
17465 d/addiu at, %lo(label) # 4 bytes
17466 jr/c at # 2 bytes
17467 */
17468 if (mips_pic != NO_PIC)
17469 length += 6;
17470
17471 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17472
17473 <brneg> 0f # 4 bytes
17474 nop # 2 bytes if !compact
17475 */
17476 if (!uncond)
17477 length += (compact_known && compact) ? 4 : 6;
17478 }
17479
17480 return length;
17481 }
17482
17483 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17484 bit accordingly. */
17485
17486 static int
17487 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17488 {
17489 bfd_boolean toofar;
17490
17491 if (fragp
17492 && S_IS_DEFINED (fragp->fr_symbol)
17493 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17494 {
17495 addressT addr;
17496 offsetT val;
17497 int type;
17498
17499 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17500 /* Ignore the low bit in the target, since it will be set
17501 for a text label. */
17502 if ((val & 1) != 0)
17503 --val;
17504
17505 /* Assume this is a 2-byte branch. */
17506 addr = fragp->fr_address + fragp->fr_fix + 2;
17507
17508 /* We try to avoid the infinite loop by not adding 2 more bytes for
17509 long branches. */
17510
17511 val -= addr;
17512
17513 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17514 if (type == 'D')
17515 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17516 else if (type == 'E')
17517 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17518 else
17519 abort ();
17520 }
17521 else
17522 /* If the symbol is not defined or it's in a different segment,
17523 we emit a normal 32-bit branch. */
17524 toofar = TRUE;
17525
17526 if (fragp && update
17527 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17528 fragp->fr_subtype
17529 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17530 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17531
17532 if (toofar)
17533 return 4;
17534
17535 return 2;
17536 }
17537
17538 /* Estimate the size of a frag before relaxing. Unless this is the
17539 mips16, we are not really relaxing here, and the final size is
17540 encoded in the subtype information. For the mips16, we have to
17541 decide whether we are using an extended opcode or not. */
17542
17543 int
17544 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17545 {
17546 int change;
17547
17548 if (RELAX_BRANCH_P (fragp->fr_subtype))
17549 {
17550
17551 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17552
17553 return fragp->fr_var;
17554 }
17555
17556 if (RELAX_MIPS16_P (fragp->fr_subtype))
17557 /* We don't want to modify the EXTENDED bit here; it might get us
17558 into infinite loops. We change it only in mips_relax_frag(). */
17559 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17560
17561 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17562 {
17563 int length = 4;
17564
17565 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17566 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17567 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17568 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17569 fragp->fr_var = length;
17570
17571 return length;
17572 }
17573
17574 if (mips_pic == NO_PIC)
17575 change = nopic_need_relax (fragp->fr_symbol, 0);
17576 else if (mips_pic == SVR4_PIC)
17577 change = pic_need_relax (fragp->fr_symbol, segtype);
17578 else if (mips_pic == VXWORKS_PIC)
17579 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17580 change = 0;
17581 else
17582 abort ();
17583
17584 if (change)
17585 {
17586 fragp->fr_subtype |= RELAX_USE_SECOND;
17587 return -RELAX_FIRST (fragp->fr_subtype);
17588 }
17589 else
17590 return -RELAX_SECOND (fragp->fr_subtype);
17591 }
17592
17593 /* This is called to see whether a reloc against a defined symbol
17594 should be converted into a reloc against a section. */
17595
17596 int
17597 mips_fix_adjustable (fixS *fixp)
17598 {
17599 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17600 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17601 return 0;
17602
17603 if (fixp->fx_addsy == NULL)
17604 return 1;
17605
17606 /* If symbol SYM is in a mergeable section, relocations of the form
17607 SYM + 0 can usually be made section-relative. The mergeable data
17608 is then identified by the section offset rather than by the symbol.
17609
17610 However, if we're generating REL LO16 relocations, the offset is split
17611 between the LO16 and parterning high part relocation. The linker will
17612 need to recalculate the complete offset in order to correctly identify
17613 the merge data.
17614
17615 The linker has traditionally not looked for the parterning high part
17616 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17617 placed anywhere. Rather than break backwards compatibility by changing
17618 this, it seems better not to force the issue, and instead keep the
17619 original symbol. This will work with either linker behavior. */
17620 if ((lo16_reloc_p (fixp->fx_r_type)
17621 || reloc_needs_lo_p (fixp->fx_r_type))
17622 && HAVE_IN_PLACE_ADDENDS
17623 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17624 return 0;
17625
17626 /* There is no place to store an in-place offset for JALR relocations.
17627 Likewise an in-range offset of PC-relative relocations may overflow
17628 the in-place relocatable field if recalculated against the start
17629 address of the symbol's containing section. */
17630 if (HAVE_IN_PLACE_ADDENDS
17631 && (fixp->fx_pcrel || jalr_reloc_p (fixp->fx_r_type)))
17632 return 0;
17633
17634 #ifdef OBJ_ELF
17635 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17636 to a floating-point stub. The same is true for non-R_MIPS16_26
17637 relocations against MIPS16 functions; in this case, the stub becomes
17638 the function's canonical address.
17639
17640 Floating-point stubs are stored in unique .mips16.call.* or
17641 .mips16.fn.* sections. If a stub T for function F is in section S,
17642 the first relocation in section S must be against F; this is how the
17643 linker determines the target function. All relocations that might
17644 resolve to T must also be against F. We therefore have the following
17645 restrictions, which are given in an intentionally-redundant way:
17646
17647 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17648 symbols.
17649
17650 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17651 if that stub might be used.
17652
17653 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17654 symbols.
17655
17656 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17657 that stub might be used.
17658
17659 There is a further restriction:
17660
17661 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17662 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17663 targets with in-place addends; the relocation field cannot
17664 encode the low bit.
17665
17666 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17667 against a MIPS16 symbol. We deal with (5) by by not reducing any
17668 such relocations on REL targets.
17669
17670 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17671 relocation against some symbol R, no relocation against R may be
17672 reduced. (Note that this deals with (2) as well as (1) because
17673 relocations against global symbols will never be reduced on ELF
17674 targets.) This approach is a little simpler than trying to detect
17675 stub sections, and gives the "all or nothing" per-symbol consistency
17676 that we have for MIPS16 symbols. */
17677 if (IS_ELF
17678 && fixp->fx_subsy == NULL
17679 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17680 || *symbol_get_tc (fixp->fx_addsy)
17681 || (HAVE_IN_PLACE_ADDENDS
17682 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17683 && jmp_reloc_p (fixp->fx_r_type))))
17684 return 0;
17685 #endif
17686
17687 return 1;
17688 }
17689
17690 /* Translate internal representation of relocation info to BFD target
17691 format. */
17692
17693 arelent **
17694 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17695 {
17696 static arelent *retval[4];
17697 arelent *reloc;
17698 bfd_reloc_code_real_type code;
17699
17700 memset (retval, 0, sizeof(retval));
17701 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
17702 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17703 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17704 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17705
17706 if (fixp->fx_pcrel)
17707 {
17708 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17709 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17710 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17711 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1);
17712
17713 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17714 Relocations want only the symbol offset. */
17715 reloc->addend = fixp->fx_addnumber + reloc->address;
17716 if (!IS_ELF)
17717 {
17718 /* A gruesome hack which is a result of the gruesome gas
17719 reloc handling. What's worse, for COFF (as opposed to
17720 ECOFF), we might need yet another copy of reloc->address.
17721 See bfd_install_relocation. */
17722 reloc->addend += reloc->address;
17723 }
17724 }
17725 else
17726 reloc->addend = fixp->fx_addnumber;
17727
17728 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17729 entry to be used in the relocation's section offset. */
17730 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17731 {
17732 reloc->address = reloc->addend;
17733 reloc->addend = 0;
17734 }
17735
17736 code = fixp->fx_r_type;
17737
17738 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17739 if (reloc->howto == NULL)
17740 {
17741 as_bad_where (fixp->fx_file, fixp->fx_line,
17742 _("Can not represent %s relocation in this object file format"),
17743 bfd_get_reloc_code_name (code));
17744 retval[0] = NULL;
17745 }
17746
17747 return retval;
17748 }
17749
17750 /* Relax a machine dependent frag. This returns the amount by which
17751 the current size of the frag should change. */
17752
17753 int
17754 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17755 {
17756 if (RELAX_BRANCH_P (fragp->fr_subtype))
17757 {
17758 offsetT old_var = fragp->fr_var;
17759
17760 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17761
17762 return fragp->fr_var - old_var;
17763 }
17764
17765 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17766 {
17767 offsetT old_var = fragp->fr_var;
17768 offsetT new_var = 4;
17769
17770 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17771 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17772 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17773 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17774 fragp->fr_var = new_var;
17775
17776 return new_var - old_var;
17777 }
17778
17779 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17780 return 0;
17781
17782 if (mips16_extended_frag (fragp, NULL, stretch))
17783 {
17784 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17785 return 0;
17786 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17787 return 2;
17788 }
17789 else
17790 {
17791 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17792 return 0;
17793 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17794 return -2;
17795 }
17796
17797 return 0;
17798 }
17799
17800 /* Convert a machine dependent frag. */
17801
17802 void
17803 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17804 {
17805 if (RELAX_BRANCH_P (fragp->fr_subtype))
17806 {
17807 char *buf;
17808 unsigned long insn;
17809 expressionS exp;
17810 fixS *fixp;
17811
17812 buf = fragp->fr_literal + fragp->fr_fix;
17813 insn = read_insn (buf);
17814
17815 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17816 {
17817 /* We generate a fixup instead of applying it right now
17818 because, if there are linker relaxations, we're going to
17819 need the relocations. */
17820 exp.X_op = O_symbol;
17821 exp.X_add_symbol = fragp->fr_symbol;
17822 exp.X_add_number = fragp->fr_offset;
17823
17824 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17825 BFD_RELOC_16_PCREL_S2);
17826 fixp->fx_file = fragp->fr_file;
17827 fixp->fx_line = fragp->fr_line;
17828
17829 buf = write_insn (buf, insn);
17830 }
17831 else
17832 {
17833 int i;
17834
17835 as_warn_where (fragp->fr_file, fragp->fr_line,
17836 _("Relaxed out-of-range branch into a jump"));
17837
17838 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17839 goto uncond;
17840
17841 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17842 {
17843 /* Reverse the branch. */
17844 switch ((insn >> 28) & 0xf)
17845 {
17846 case 4:
17847 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
17848 have the condition reversed by tweaking a single
17849 bit, and their opcodes all have 0x4???????. */
17850 gas_assert ((insn & 0xf1000000) == 0x41000000);
17851 insn ^= 0x00010000;
17852 break;
17853
17854 case 0:
17855 /* bltz 0x04000000 bgez 0x04010000
17856 bltzal 0x04100000 bgezal 0x04110000 */
17857 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17858 insn ^= 0x00010000;
17859 break;
17860
17861 case 1:
17862 /* beq 0x10000000 bne 0x14000000
17863 blez 0x18000000 bgtz 0x1c000000 */
17864 insn ^= 0x04000000;
17865 break;
17866
17867 default:
17868 abort ();
17869 }
17870 }
17871
17872 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17873 {
17874 /* Clear the and-link bit. */
17875 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17876
17877 /* bltzal 0x04100000 bgezal 0x04110000
17878 bltzall 0x04120000 bgezall 0x04130000 */
17879 insn &= ~0x00100000;
17880 }
17881
17882 /* Branch over the branch (if the branch was likely) or the
17883 full jump (not likely case). Compute the offset from the
17884 current instruction to branch to. */
17885 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17886 i = 16;
17887 else
17888 {
17889 /* How many bytes in instructions we've already emitted? */
17890 i = buf - fragp->fr_literal - fragp->fr_fix;
17891 /* How many bytes in instructions from here to the end? */
17892 i = fragp->fr_var - i;
17893 }
17894 /* Convert to instruction count. */
17895 i >>= 2;
17896 /* Branch counts from the next instruction. */
17897 i--;
17898 insn |= i;
17899 /* Branch over the jump. */
17900 buf = write_insn (buf, insn);
17901
17902 /* nop */
17903 buf = write_insn (buf, 0);
17904
17905 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17906 {
17907 /* beql $0, $0, 2f */
17908 insn = 0x50000000;
17909 /* Compute the PC offset from the current instruction to
17910 the end of the variable frag. */
17911 /* How many bytes in instructions we've already emitted? */
17912 i = buf - fragp->fr_literal - fragp->fr_fix;
17913 /* How many bytes in instructions from here to the end? */
17914 i = fragp->fr_var - i;
17915 /* Convert to instruction count. */
17916 i >>= 2;
17917 /* Don't decrement i, because we want to branch over the
17918 delay slot. */
17919 insn |= i;
17920
17921 buf = write_insn (buf, insn);
17922 buf = write_insn (buf, 0);
17923 }
17924
17925 uncond:
17926 if (mips_pic == NO_PIC)
17927 {
17928 /* j or jal. */
17929 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17930 ? 0x0c000000 : 0x08000000);
17931 exp.X_op = O_symbol;
17932 exp.X_add_symbol = fragp->fr_symbol;
17933 exp.X_add_number = fragp->fr_offset;
17934
17935 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17936 FALSE, BFD_RELOC_MIPS_JMP);
17937 fixp->fx_file = fragp->fr_file;
17938 fixp->fx_line = fragp->fr_line;
17939
17940 buf = write_insn (buf, insn);
17941 }
17942 else
17943 {
17944 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17945
17946 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17947 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17948 insn |= at << OP_SH_RT;
17949 exp.X_op = O_symbol;
17950 exp.X_add_symbol = fragp->fr_symbol;
17951 exp.X_add_number = fragp->fr_offset;
17952
17953 if (fragp->fr_offset)
17954 {
17955 exp.X_add_symbol = make_expr_symbol (&exp);
17956 exp.X_add_number = 0;
17957 }
17958
17959 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17960 FALSE, BFD_RELOC_MIPS_GOT16);
17961 fixp->fx_file = fragp->fr_file;
17962 fixp->fx_line = fragp->fr_line;
17963
17964 buf = write_insn (buf, insn);
17965
17966 if (mips_opts.isa == ISA_MIPS1)
17967 /* nop */
17968 buf = write_insn (buf, 0);
17969
17970 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17971 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17972 insn |= at << OP_SH_RS | at << OP_SH_RT;
17973
17974 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17975 FALSE, BFD_RELOC_LO16);
17976 fixp->fx_file = fragp->fr_file;
17977 fixp->fx_line = fragp->fr_line;
17978
17979 buf = write_insn (buf, insn);
17980
17981 /* j(al)r $at. */
17982 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17983 insn = 0x0000f809;
17984 else
17985 insn = 0x00000008;
17986 insn |= at << OP_SH_RS;
17987
17988 buf = write_insn (buf, insn);
17989 }
17990 }
17991
17992 fragp->fr_fix += fragp->fr_var;
17993 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17994 return;
17995 }
17996
17997 /* Relax microMIPS branches. */
17998 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17999 {
18000 char *buf = fragp->fr_literal + fragp->fr_fix;
18001 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18002 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18003 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18004 bfd_boolean short_ds;
18005 unsigned long insn;
18006 expressionS exp;
18007 fixS *fixp;
18008
18009 exp.X_op = O_symbol;
18010 exp.X_add_symbol = fragp->fr_symbol;
18011 exp.X_add_number = fragp->fr_offset;
18012
18013 fragp->fr_fix += fragp->fr_var;
18014
18015 /* Handle 16-bit branches that fit or are forced to fit. */
18016 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18017 {
18018 /* We generate a fixup instead of applying it right now,
18019 because if there is linker relaxation, we're going to
18020 need the relocations. */
18021 if (type == 'D')
18022 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18023 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18024 else if (type == 'E')
18025 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18026 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18027 else
18028 abort ();
18029
18030 fixp->fx_file = fragp->fr_file;
18031 fixp->fx_line = fragp->fr_line;
18032
18033 /* These relocations can have an addend that won't fit in
18034 2 octets. */
18035 fixp->fx_no_overflow = 1;
18036
18037 return;
18038 }
18039
18040 /* Handle 32-bit branches that fit or are forced to fit. */
18041 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18042 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18043 {
18044 /* We generate a fixup instead of applying it right now,
18045 because if there is linker relaxation, we're going to
18046 need the relocations. */
18047 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18048 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18049 fixp->fx_file = fragp->fr_file;
18050 fixp->fx_line = fragp->fr_line;
18051
18052 if (type == 0)
18053 return;
18054 }
18055
18056 /* Relax 16-bit branches to 32-bit branches. */
18057 if (type != 0)
18058 {
18059 insn = read_compressed_insn (buf, 2);
18060
18061 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18062 insn = 0x94000000; /* beq */
18063 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18064 {
18065 unsigned long regno;
18066
18067 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18068 regno = micromips_to_32_reg_d_map [regno];
18069 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18070 insn |= regno << MICROMIPSOP_SH_RS;
18071 }
18072 else
18073 abort ();
18074
18075 /* Nothing else to do, just write it out. */
18076 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18077 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18078 {
18079 buf = write_compressed_insn (buf, insn, 4);
18080 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18081 return;
18082 }
18083 }
18084 else
18085 insn = read_compressed_insn (buf, 4);
18086
18087 /* Relax 32-bit branches to a sequence of instructions. */
18088 as_warn_where (fragp->fr_file, fragp->fr_line,
18089 _("Relaxed out-of-range branch into a jump"));
18090
18091 /* Set the short-delay-slot bit. */
18092 short_ds = al && (insn & 0x02000000) != 0;
18093
18094 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18095 {
18096 symbolS *l;
18097
18098 /* Reverse the branch. */
18099 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18100 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18101 insn ^= 0x20000000;
18102 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18103 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18104 || (insn & 0xffe00000) == 0x40800000 /* blez */
18105 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18106 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18107 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18108 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18109 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18110 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18111 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18112 insn ^= 0x00400000;
18113 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18114 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18115 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18116 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18117 insn ^= 0x00200000;
18118 else
18119 abort ();
18120
18121 if (al)
18122 {
18123 /* Clear the and-link and short-delay-slot bits. */
18124 gas_assert ((insn & 0xfda00000) == 0x40200000);
18125
18126 /* bltzal 0x40200000 bgezal 0x40600000 */
18127 /* bltzals 0x42200000 bgezals 0x42600000 */
18128 insn &= ~0x02200000;
18129 }
18130
18131 /* Make a label at the end for use with the branch. */
18132 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18133 micromips_label_inc ();
18134 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
18135 if (IS_ELF)
18136 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18137 #endif
18138
18139 /* Refer to it. */
18140 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18141 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18142 fixp->fx_file = fragp->fr_file;
18143 fixp->fx_line = fragp->fr_line;
18144
18145 /* Branch over the jump. */
18146 buf = write_compressed_insn (buf, insn, 4);
18147 if (!compact)
18148 /* nop */
18149 buf = write_compressed_insn (buf, 0x0c00, 2);
18150 }
18151
18152 if (mips_pic == NO_PIC)
18153 {
18154 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
18155
18156 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18157 insn = al ? jal : 0xd4000000;
18158
18159 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18160 BFD_RELOC_MICROMIPS_JMP);
18161 fixp->fx_file = fragp->fr_file;
18162 fixp->fx_line = fragp->fr_line;
18163
18164 buf = write_compressed_insn (buf, insn, 4);
18165 if (compact)
18166 /* nop */
18167 buf = write_compressed_insn (buf, 0x0c00, 2);
18168 }
18169 else
18170 {
18171 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18172 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18173 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
18174
18175 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18176 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18177 insn |= at << MICROMIPSOP_SH_RT;
18178
18179 if (exp.X_add_number)
18180 {
18181 exp.X_add_symbol = make_expr_symbol (&exp);
18182 exp.X_add_number = 0;
18183 }
18184
18185 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18186 BFD_RELOC_MICROMIPS_GOT16);
18187 fixp->fx_file = fragp->fr_file;
18188 fixp->fx_line = fragp->fr_line;
18189
18190 buf = write_compressed_insn (buf, insn, 4);
18191
18192 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18193 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18194 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18195
18196 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18197 BFD_RELOC_MICROMIPS_LO16);
18198 fixp->fx_file = fragp->fr_file;
18199 fixp->fx_line = fragp->fr_line;
18200
18201 buf = write_compressed_insn (buf, insn, 4);
18202
18203 /* jr/jrc/jalr/jalrs $at */
18204 insn = al ? jalr : jr;
18205 insn |= at << MICROMIPSOP_SH_MJ;
18206
18207 buf = write_compressed_insn (buf, insn, 2);
18208 }
18209
18210 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18211 return;
18212 }
18213
18214 if (RELAX_MIPS16_P (fragp->fr_subtype))
18215 {
18216 int type;
18217 const struct mips16_immed_operand *op;
18218 offsetT val;
18219 char *buf;
18220 unsigned int user_length, length;
18221 unsigned long insn;
18222 bfd_boolean ext;
18223
18224 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18225 op = mips16_immed_operands;
18226 while (op->type != type)
18227 ++op;
18228
18229 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18230 val = resolve_symbol_value (fragp->fr_symbol);
18231 if (op->pcrel)
18232 {
18233 addressT addr;
18234
18235 addr = fragp->fr_address + fragp->fr_fix;
18236
18237 /* The rules for the base address of a PC relative reloc are
18238 complicated; see mips16_extended_frag. */
18239 if (type == 'p' || type == 'q')
18240 {
18241 addr += 2;
18242 if (ext)
18243 addr += 2;
18244 /* Ignore the low bit in the target, since it will be
18245 set for a text label. */
18246 if ((val & 1) != 0)
18247 --val;
18248 }
18249 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18250 addr -= 4;
18251 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18252 addr -= 2;
18253
18254 addr &= ~ (addressT) ((1 << op->shift) - 1);
18255 val -= addr;
18256
18257 /* Make sure the section winds up with the alignment we have
18258 assumed. */
18259 if (op->shift > 0)
18260 record_alignment (asec, op->shift);
18261 }
18262
18263 if (ext
18264 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18265 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18266 as_warn_where (fragp->fr_file, fragp->fr_line,
18267 _("extended instruction in delay slot"));
18268
18269 buf = fragp->fr_literal + fragp->fr_fix;
18270
18271 insn = read_compressed_insn (buf, 2);
18272 if (ext)
18273 insn |= MIPS16_EXTEND;
18274
18275 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18276 user_length = 4;
18277 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18278 user_length = 2;
18279 else
18280 user_length = 0;
18281
18282 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18283 BFD_RELOC_UNUSED, val, user_length, &insn);
18284
18285 length = (ext ? 4 : 2);
18286 gas_assert (mips16_opcode_length (insn) == length);
18287 write_compressed_insn (buf, insn, length);
18288 fragp->fr_fix += length;
18289 }
18290 else
18291 {
18292 relax_substateT subtype = fragp->fr_subtype;
18293 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18294 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18295 int first, second;
18296 fixS *fixp;
18297
18298 first = RELAX_FIRST (subtype);
18299 second = RELAX_SECOND (subtype);
18300 fixp = (fixS *) fragp->fr_opcode;
18301
18302 /* If the delay slot chosen does not match the size of the instruction,
18303 then emit a warning. */
18304 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18305 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18306 {
18307 relax_substateT s;
18308 const char *msg;
18309
18310 s = subtype & (RELAX_DELAY_SLOT_16BIT
18311 | RELAX_DELAY_SLOT_SIZE_FIRST
18312 | RELAX_DELAY_SLOT_SIZE_SECOND);
18313 msg = macro_warning (s);
18314 if (msg != NULL)
18315 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18316 subtype &= ~s;
18317 }
18318
18319 /* Possibly emit a warning if we've chosen the longer option. */
18320 if (use_second == second_longer)
18321 {
18322 relax_substateT s;
18323 const char *msg;
18324
18325 s = (subtype
18326 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18327 msg = macro_warning (s);
18328 if (msg != NULL)
18329 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18330 subtype &= ~s;
18331 }
18332
18333 /* Go through all the fixups for the first sequence. Disable them
18334 (by marking them as done) if we're going to use the second
18335 sequence instead. */
18336 while (fixp
18337 && fixp->fx_frag == fragp
18338 && fixp->fx_where < fragp->fr_fix - second)
18339 {
18340 if (subtype & RELAX_USE_SECOND)
18341 fixp->fx_done = 1;
18342 fixp = fixp->fx_next;
18343 }
18344
18345 /* Go through the fixups for the second sequence. Disable them if
18346 we're going to use the first sequence, otherwise adjust their
18347 addresses to account for the relaxation. */
18348 while (fixp && fixp->fx_frag == fragp)
18349 {
18350 if (subtype & RELAX_USE_SECOND)
18351 fixp->fx_where -= first;
18352 else
18353 fixp->fx_done = 1;
18354 fixp = fixp->fx_next;
18355 }
18356
18357 /* Now modify the frag contents. */
18358 if (subtype & RELAX_USE_SECOND)
18359 {
18360 char *start;
18361
18362 start = fragp->fr_literal + fragp->fr_fix - first - second;
18363 memmove (start, start + first, second);
18364 fragp->fr_fix -= first;
18365 }
18366 else
18367 fragp->fr_fix -= second;
18368 }
18369 }
18370
18371 #ifdef OBJ_ELF
18372
18373 /* This function is called after the relocs have been generated.
18374 We've been storing mips16 text labels as odd. Here we convert them
18375 back to even for the convenience of the debugger. */
18376
18377 void
18378 mips_frob_file_after_relocs (void)
18379 {
18380 asymbol **syms;
18381 unsigned int count, i;
18382
18383 if (!IS_ELF)
18384 return;
18385
18386 syms = bfd_get_outsymbols (stdoutput);
18387 count = bfd_get_symcount (stdoutput);
18388 for (i = 0; i < count; i++, syms++)
18389 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18390 && ((*syms)->value & 1) != 0)
18391 {
18392 (*syms)->value &= ~1;
18393 /* If the symbol has an odd size, it was probably computed
18394 incorrectly, so adjust that as well. */
18395 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18396 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18397 }
18398 }
18399
18400 #endif
18401
18402 /* This function is called whenever a label is defined, including fake
18403 labels instantiated off the dot special symbol. It is used when
18404 handling branch delays; if a branch has a label, we assume we cannot
18405 move it. This also bumps the value of the symbol by 1 in compressed
18406 code. */
18407
18408 void
18409 mips_record_label (symbolS *sym)
18410 {
18411 segment_info_type *si = seg_info (now_seg);
18412 struct insn_label_list *l;
18413
18414 if (free_insn_labels == NULL)
18415 l = (struct insn_label_list *) xmalloc (sizeof *l);
18416 else
18417 {
18418 l = free_insn_labels;
18419 free_insn_labels = l->next;
18420 }
18421
18422 l->label = sym;
18423 l->next = si->label_list;
18424 si->label_list = l;
18425 }
18426
18427 /* This function is called as tc_frob_label() whenever a label is defined
18428 and adds a DWARF-2 record we only want for true labels. */
18429
18430 void
18431 mips_define_label (symbolS *sym)
18432 {
18433 mips_record_label (sym);
18434 #ifdef OBJ_ELF
18435 dwarf2_emit_label (sym);
18436 #endif
18437 }
18438 \f
18439 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
18440
18441 /* Some special processing for a MIPS ELF file. */
18442
18443 void
18444 mips_elf_final_processing (void)
18445 {
18446 /* Write out the register information. */
18447 if (mips_abi != N64_ABI)
18448 {
18449 Elf32_RegInfo s;
18450
18451 s.ri_gprmask = mips_gprmask;
18452 s.ri_cprmask[0] = mips_cprmask[0];
18453 s.ri_cprmask[1] = mips_cprmask[1];
18454 s.ri_cprmask[2] = mips_cprmask[2];
18455 s.ri_cprmask[3] = mips_cprmask[3];
18456 /* The gp_value field is set by the MIPS ELF backend. */
18457
18458 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18459 ((Elf32_External_RegInfo *)
18460 mips_regmask_frag));
18461 }
18462 else
18463 {
18464 Elf64_Internal_RegInfo s;
18465
18466 s.ri_gprmask = mips_gprmask;
18467 s.ri_pad = 0;
18468 s.ri_cprmask[0] = mips_cprmask[0];
18469 s.ri_cprmask[1] = mips_cprmask[1];
18470 s.ri_cprmask[2] = mips_cprmask[2];
18471 s.ri_cprmask[3] = mips_cprmask[3];
18472 /* The gp_value field is set by the MIPS ELF backend. */
18473
18474 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18475 ((Elf64_External_RegInfo *)
18476 mips_regmask_frag));
18477 }
18478
18479 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18480 sort of BFD interface for this. */
18481 if (mips_any_noreorder)
18482 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18483 if (mips_pic != NO_PIC)
18484 {
18485 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18486 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18487 }
18488 if (mips_abicalls)
18489 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18490
18491 /* Set MIPS ELF flags for ASEs. */
18492 /* We may need to define a new flag for DSP ASE, and set this flag when
18493 file_ase_dsp is true. */
18494 /* Same for DSP R2. */
18495 /* We may need to define a new flag for MT ASE, and set this flag when
18496 file_ase_mt is true. */
18497 if (file_ase_mips16)
18498 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18499 if (file_ase_micromips)
18500 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18501 #if 0 /* XXX FIXME */
18502 if (file_ase_mips3d)
18503 elf_elfheader (stdoutput)->e_flags |= ???;
18504 #endif
18505 if (file_ase_mdmx)
18506 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18507
18508 /* Set the MIPS ELF ABI flags. */
18509 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18510 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18511 else if (mips_abi == O64_ABI)
18512 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18513 else if (mips_abi == EABI_ABI)
18514 {
18515 if (!file_mips_gp32)
18516 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18517 else
18518 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18519 }
18520 else if (mips_abi == N32_ABI)
18521 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18522
18523 /* Nothing to do for N64_ABI. */
18524
18525 if (mips_32bitmode)
18526 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18527
18528 #if 0 /* XXX FIXME */
18529 /* 32 bit code with 64 bit FP registers. */
18530 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
18531 elf_elfheader (stdoutput)->e_flags |= ???;
18532 #endif
18533 }
18534
18535 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
18536 \f
18537 typedef struct proc {
18538 symbolS *func_sym;
18539 symbolS *func_end_sym;
18540 unsigned long reg_mask;
18541 unsigned long reg_offset;
18542 unsigned long fpreg_mask;
18543 unsigned long fpreg_offset;
18544 unsigned long frame_offset;
18545 unsigned long frame_reg;
18546 unsigned long pc_reg;
18547 } procS;
18548
18549 static procS cur_proc;
18550 static procS *cur_proc_ptr;
18551 static int numprocs;
18552
18553 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18554 as "2", and a normal nop as "0". */
18555
18556 #define NOP_OPCODE_MIPS 0
18557 #define NOP_OPCODE_MIPS16 1
18558 #define NOP_OPCODE_MICROMIPS 2
18559
18560 char
18561 mips_nop_opcode (void)
18562 {
18563 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18564 return NOP_OPCODE_MICROMIPS;
18565 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18566 return NOP_OPCODE_MIPS16;
18567 else
18568 return NOP_OPCODE_MIPS;
18569 }
18570
18571 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18572 32-bit microMIPS NOPs here (if applicable). */
18573
18574 void
18575 mips_handle_align (fragS *fragp)
18576 {
18577 char nop_opcode;
18578 char *p;
18579 int bytes, size, excess;
18580 valueT opcode;
18581
18582 if (fragp->fr_type != rs_align_code)
18583 return;
18584
18585 p = fragp->fr_literal + fragp->fr_fix;
18586 nop_opcode = *p;
18587 switch (nop_opcode)
18588 {
18589 case NOP_OPCODE_MICROMIPS:
18590 opcode = micromips_nop32_insn.insn_opcode;
18591 size = 4;
18592 break;
18593 case NOP_OPCODE_MIPS16:
18594 opcode = mips16_nop_insn.insn_opcode;
18595 size = 2;
18596 break;
18597 case NOP_OPCODE_MIPS:
18598 default:
18599 opcode = nop_insn.insn_opcode;
18600 size = 4;
18601 break;
18602 }
18603
18604 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18605 excess = bytes % size;
18606
18607 /* Handle the leading part if we're not inserting a whole number of
18608 instructions, and make it the end of the fixed part of the frag.
18609 Try to fit in a short microMIPS NOP if applicable and possible,
18610 and use zeroes otherwise. */
18611 gas_assert (excess < 4);
18612 fragp->fr_fix += excess;
18613 switch (excess)
18614 {
18615 case 3:
18616 *p++ = '\0';
18617 /* Fall through. */
18618 case 2:
18619 if (nop_opcode == NOP_OPCODE_MICROMIPS)
18620 {
18621 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18622 break;
18623 }
18624 *p++ = '\0';
18625 /* Fall through. */
18626 case 1:
18627 *p++ = '\0';
18628 /* Fall through. */
18629 case 0:
18630 break;
18631 }
18632
18633 md_number_to_chars (p, opcode, size);
18634 fragp->fr_var = size;
18635 }
18636
18637 static void
18638 md_obj_begin (void)
18639 {
18640 }
18641
18642 static void
18643 md_obj_end (void)
18644 {
18645 /* Check for premature end, nesting errors, etc. */
18646 if (cur_proc_ptr)
18647 as_warn (_("missing .end at end of assembly"));
18648 }
18649
18650 static long
18651 get_number (void)
18652 {
18653 int negative = 0;
18654 long val = 0;
18655
18656 if (*input_line_pointer == '-')
18657 {
18658 ++input_line_pointer;
18659 negative = 1;
18660 }
18661 if (!ISDIGIT (*input_line_pointer))
18662 as_bad (_("expected simple number"));
18663 if (input_line_pointer[0] == '0')
18664 {
18665 if (input_line_pointer[1] == 'x')
18666 {
18667 input_line_pointer += 2;
18668 while (ISXDIGIT (*input_line_pointer))
18669 {
18670 val <<= 4;
18671 val |= hex_value (*input_line_pointer++);
18672 }
18673 return negative ? -val : val;
18674 }
18675 else
18676 {
18677 ++input_line_pointer;
18678 while (ISDIGIT (*input_line_pointer))
18679 {
18680 val <<= 3;
18681 val |= *input_line_pointer++ - '0';
18682 }
18683 return negative ? -val : val;
18684 }
18685 }
18686 if (!ISDIGIT (*input_line_pointer))
18687 {
18688 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18689 *input_line_pointer, *input_line_pointer);
18690 as_warn (_("invalid number"));
18691 return -1;
18692 }
18693 while (ISDIGIT (*input_line_pointer))
18694 {
18695 val *= 10;
18696 val += *input_line_pointer++ - '0';
18697 }
18698 return negative ? -val : val;
18699 }
18700
18701 /* The .file directive; just like the usual .file directive, but there
18702 is an initial number which is the ECOFF file index. In the non-ECOFF
18703 case .file implies DWARF-2. */
18704
18705 static void
18706 s_mips_file (int x ATTRIBUTE_UNUSED)
18707 {
18708 static int first_file_directive = 0;
18709
18710 if (ECOFF_DEBUGGING)
18711 {
18712 get_number ();
18713 s_app_file (0);
18714 }
18715 else
18716 {
18717 char *filename;
18718
18719 filename = dwarf2_directive_file (0);
18720
18721 /* Versions of GCC up to 3.1 start files with a ".file"
18722 directive even for stabs output. Make sure that this
18723 ".file" is handled. Note that you need a version of GCC
18724 after 3.1 in order to support DWARF-2 on MIPS. */
18725 if (filename != NULL && ! first_file_directive)
18726 {
18727 (void) new_logical_line (filename, -1);
18728 s_app_file_string (filename, 0);
18729 }
18730 first_file_directive = 1;
18731 }
18732 }
18733
18734 /* The .loc directive, implying DWARF-2. */
18735
18736 static void
18737 s_mips_loc (int x ATTRIBUTE_UNUSED)
18738 {
18739 if (!ECOFF_DEBUGGING)
18740 dwarf2_directive_loc (0);
18741 }
18742
18743 /* The .end directive. */
18744
18745 static void
18746 s_mips_end (int x ATTRIBUTE_UNUSED)
18747 {
18748 symbolS *p;
18749
18750 /* Following functions need their own .frame and .cprestore directives. */
18751 mips_frame_reg_valid = 0;
18752 mips_cprestore_valid = 0;
18753
18754 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18755 {
18756 p = get_symbol ();
18757 demand_empty_rest_of_line ();
18758 }
18759 else
18760 p = NULL;
18761
18762 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18763 as_warn (_(".end not in text section"));
18764
18765 if (!cur_proc_ptr)
18766 {
18767 as_warn (_(".end directive without a preceding .ent directive."));
18768 demand_empty_rest_of_line ();
18769 return;
18770 }
18771
18772 if (p != NULL)
18773 {
18774 gas_assert (S_GET_NAME (p));
18775 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18776 as_warn (_(".end symbol does not match .ent symbol."));
18777
18778 if (debug_type == DEBUG_STABS)
18779 stabs_generate_asm_endfunc (S_GET_NAME (p),
18780 S_GET_NAME (p));
18781 }
18782 else
18783 as_warn (_(".end directive missing or unknown symbol"));
18784
18785 #ifdef OBJ_ELF
18786 /* Create an expression to calculate the size of the function. */
18787 if (p && cur_proc_ptr)
18788 {
18789 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18790 expressionS *exp = xmalloc (sizeof (expressionS));
18791
18792 obj->size = exp;
18793 exp->X_op = O_subtract;
18794 exp->X_add_symbol = symbol_temp_new_now ();
18795 exp->X_op_symbol = p;
18796 exp->X_add_number = 0;
18797
18798 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18799 }
18800
18801 /* Generate a .pdr section. */
18802 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
18803 {
18804 segT saved_seg = now_seg;
18805 subsegT saved_subseg = now_subseg;
18806 expressionS exp;
18807 char *fragp;
18808
18809 #ifdef md_flush_pending_output
18810 md_flush_pending_output ();
18811 #endif
18812
18813 gas_assert (pdr_seg);
18814 subseg_set (pdr_seg, 0);
18815
18816 /* Write the symbol. */
18817 exp.X_op = O_symbol;
18818 exp.X_add_symbol = p;
18819 exp.X_add_number = 0;
18820 emit_expr (&exp, 4);
18821
18822 fragp = frag_more (7 * 4);
18823
18824 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18825 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18826 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18827 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18828 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18829 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18830 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18831
18832 subseg_set (saved_seg, saved_subseg);
18833 }
18834 #endif /* OBJ_ELF */
18835
18836 cur_proc_ptr = NULL;
18837 }
18838
18839 /* The .aent and .ent directives. */
18840
18841 static void
18842 s_mips_ent (int aent)
18843 {
18844 symbolS *symbolP;
18845
18846 symbolP = get_symbol ();
18847 if (*input_line_pointer == ',')
18848 ++input_line_pointer;
18849 SKIP_WHITESPACE ();
18850 if (ISDIGIT (*input_line_pointer)
18851 || *input_line_pointer == '-')
18852 get_number ();
18853
18854 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18855 as_warn (_(".ent or .aent not in text section."));
18856
18857 if (!aent && cur_proc_ptr)
18858 as_warn (_("missing .end"));
18859
18860 if (!aent)
18861 {
18862 /* This function needs its own .frame and .cprestore directives. */
18863 mips_frame_reg_valid = 0;
18864 mips_cprestore_valid = 0;
18865
18866 cur_proc_ptr = &cur_proc;
18867 memset (cur_proc_ptr, '\0', sizeof (procS));
18868
18869 cur_proc_ptr->func_sym = symbolP;
18870
18871 ++numprocs;
18872
18873 if (debug_type == DEBUG_STABS)
18874 stabs_generate_asm_func (S_GET_NAME (symbolP),
18875 S_GET_NAME (symbolP));
18876 }
18877
18878 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18879
18880 demand_empty_rest_of_line ();
18881 }
18882
18883 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18884 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18885 s_mips_frame is used so that we can set the PDR information correctly.
18886 We can't use the ecoff routines because they make reference to the ecoff
18887 symbol table (in the mdebug section). */
18888
18889 static void
18890 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18891 {
18892 #ifdef OBJ_ELF
18893 if (IS_ELF && !ECOFF_DEBUGGING)
18894 {
18895 long val;
18896
18897 if (cur_proc_ptr == (procS *) NULL)
18898 {
18899 as_warn (_(".frame outside of .ent"));
18900 demand_empty_rest_of_line ();
18901 return;
18902 }
18903
18904 cur_proc_ptr->frame_reg = tc_get_register (1);
18905
18906 SKIP_WHITESPACE ();
18907 if (*input_line_pointer++ != ','
18908 || get_absolute_expression_and_terminator (&val) != ',')
18909 {
18910 as_warn (_("Bad .frame directive"));
18911 --input_line_pointer;
18912 demand_empty_rest_of_line ();
18913 return;
18914 }
18915
18916 cur_proc_ptr->frame_offset = val;
18917 cur_proc_ptr->pc_reg = tc_get_register (0);
18918
18919 demand_empty_rest_of_line ();
18920 }
18921 else
18922 #endif /* OBJ_ELF */
18923 s_ignore (ignore);
18924 }
18925
18926 /* The .fmask and .mask directives. If the mdebug section is present
18927 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18928 embedded targets, s_mips_mask is used so that we can set the PDR
18929 information correctly. We can't use the ecoff routines because they
18930 make reference to the ecoff symbol table (in the mdebug section). */
18931
18932 static void
18933 s_mips_mask (int reg_type)
18934 {
18935 #ifdef OBJ_ELF
18936 if (IS_ELF && !ECOFF_DEBUGGING)
18937 {
18938 long mask, off;
18939
18940 if (cur_proc_ptr == (procS *) NULL)
18941 {
18942 as_warn (_(".mask/.fmask outside of .ent"));
18943 demand_empty_rest_of_line ();
18944 return;
18945 }
18946
18947 if (get_absolute_expression_and_terminator (&mask) != ',')
18948 {
18949 as_warn (_("Bad .mask/.fmask directive"));
18950 --input_line_pointer;
18951 demand_empty_rest_of_line ();
18952 return;
18953 }
18954
18955 off = get_absolute_expression ();
18956
18957 if (reg_type == 'F')
18958 {
18959 cur_proc_ptr->fpreg_mask = mask;
18960 cur_proc_ptr->fpreg_offset = off;
18961 }
18962 else
18963 {
18964 cur_proc_ptr->reg_mask = mask;
18965 cur_proc_ptr->reg_offset = off;
18966 }
18967
18968 demand_empty_rest_of_line ();
18969 }
18970 else
18971 #endif /* OBJ_ELF */
18972 s_ignore (reg_type);
18973 }
18974
18975 /* A table describing all the processors gas knows about. Names are
18976 matched in the order listed.
18977
18978 To ease comparison, please keep this table in the same order as
18979 gcc's mips_cpu_info_table[]. */
18980 static const struct mips_cpu_info mips_cpu_info_table[] =
18981 {
18982 /* Entries for generic ISAs */
18983 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
18984 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
18985 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
18986 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
18987 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
18988 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
18989 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
18990 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
18991 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
18992
18993 /* MIPS I */
18994 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
18995 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
18996 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
18997
18998 /* MIPS II */
18999 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
19000
19001 /* MIPS III */
19002 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
19003 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
19004 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
19005 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
19006 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
19007 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
19008 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
19009 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
19010 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
19011 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
19012 { "orion", 0, ISA_MIPS3, CPU_R4600 },
19013 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
19014 /* ST Microelectronics Loongson 2E and 2F cores */
19015 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
19016 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
19017
19018 /* MIPS IV */
19019 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
19020 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
19021 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
19022 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
19023 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
19024 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
19025 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
19026 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
19027 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
19028 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
19029 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
19030 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
19031 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
19032 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
19033 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
19034
19035 /* MIPS 32 */
19036 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
19037 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
19038 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
19039 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19040
19041 /* MIPS 32 Release 2 */
19042 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19043 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19044 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19045 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19046 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19047 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19048 { "m14k", MIPS_CPU_ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19049 { "m14kc", MIPS_CPU_ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19050 { "m14ke", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2 | MIPS_CPU_ASE_MCU,
19051 ISA_MIPS32R2, CPU_MIPS32R2 },
19052 { "m14kec", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2 | MIPS_CPU_ASE_MCU,
19053 ISA_MIPS32R2, CPU_MIPS32R2 },
19054 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19055 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19056 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19057 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19058 /* Deprecated forms of the above. */
19059 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19060 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19061 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19062 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19063 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19064 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19065 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19066 /* Deprecated forms of the above. */
19067 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19068 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19069 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19070 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19071 ISA_MIPS32R2, CPU_MIPS32R2 },
19072 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19073 ISA_MIPS32R2, CPU_MIPS32R2 },
19074 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19075 ISA_MIPS32R2, CPU_MIPS32R2 },
19076 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19077 ISA_MIPS32R2, CPU_MIPS32R2 },
19078 /* Deprecated forms of the above. */
19079 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19080 ISA_MIPS32R2, CPU_MIPS32R2 },
19081 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19082 ISA_MIPS32R2, CPU_MIPS32R2 },
19083 /* 34Kn is a 34kc without DSP. */
19084 { "34kn", MIPS_CPU_ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19085 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19086 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19087 ISA_MIPS32R2, CPU_MIPS32R2 },
19088 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19089 ISA_MIPS32R2, CPU_MIPS32R2 },
19090 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19091 ISA_MIPS32R2, CPU_MIPS32R2 },
19092 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19093 ISA_MIPS32R2, CPU_MIPS32R2 },
19094 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19095 ISA_MIPS32R2, CPU_MIPS32R2 },
19096 /* Deprecated forms of the above. */
19097 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19098 ISA_MIPS32R2, CPU_MIPS32R2 },
19099 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19100 ISA_MIPS32R2, CPU_MIPS32R2 },
19101 /* 1004K cores are multiprocessor versions of the 34K. */
19102 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19103 ISA_MIPS32R2, CPU_MIPS32R2 },
19104 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19105 ISA_MIPS32R2, CPU_MIPS32R2 },
19106 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19107 ISA_MIPS32R2, CPU_MIPS32R2 },
19108 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19109 ISA_MIPS32R2, CPU_MIPS32R2 },
19110
19111 /* MIPS 64 */
19112 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
19113 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
19114 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19115 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19116
19117 /* Broadcom SB-1 CPU core */
19118 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
19119 ISA_MIPS64, CPU_SB1 },
19120 /* Broadcom SB-1A CPU core */
19121 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
19122 ISA_MIPS64, CPU_SB1 },
19123
19124 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
19125
19126 /* MIPS 64 Release 2 */
19127
19128 /* Cavium Networks Octeon CPU core */
19129 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
19130 { "octeon+", 0, ISA_MIPS64R2, CPU_OCTEONP },
19131 { "octeon2", 0, ISA_MIPS64R2, CPU_OCTEON2 },
19132
19133 /* RMI Xlr */
19134 { "xlr", 0, ISA_MIPS64, CPU_XLR },
19135
19136 /* Broadcom XLP.
19137 XLP is mostly like XLR, with the prominent exception that it is
19138 MIPS64R2 rather than MIPS64. */
19139 { "xlp", 0, ISA_MIPS64R2, CPU_XLR },
19140
19141 /* End marker */
19142 { NULL, 0, 0, 0 }
19143 };
19144
19145
19146 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19147 with a final "000" replaced by "k". Ignore case.
19148
19149 Note: this function is shared between GCC and GAS. */
19150
19151 static bfd_boolean
19152 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19153 {
19154 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19155 given++, canonical++;
19156
19157 return ((*given == 0 && *canonical == 0)
19158 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19159 }
19160
19161
19162 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19163 CPU name. We've traditionally allowed a lot of variation here.
19164
19165 Note: this function is shared between GCC and GAS. */
19166
19167 static bfd_boolean
19168 mips_matching_cpu_name_p (const char *canonical, const char *given)
19169 {
19170 /* First see if the name matches exactly, or with a final "000"
19171 turned into "k". */
19172 if (mips_strict_matching_cpu_name_p (canonical, given))
19173 return TRUE;
19174
19175 /* If not, try comparing based on numerical designation alone.
19176 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19177 if (TOLOWER (*given) == 'r')
19178 given++;
19179 if (!ISDIGIT (*given))
19180 return FALSE;
19181
19182 /* Skip over some well-known prefixes in the canonical name,
19183 hoping to find a number there too. */
19184 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19185 canonical += 2;
19186 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19187 canonical += 2;
19188 else if (TOLOWER (canonical[0]) == 'r')
19189 canonical += 1;
19190
19191 return mips_strict_matching_cpu_name_p (canonical, given);
19192 }
19193
19194
19195 /* Parse an option that takes the name of a processor as its argument.
19196 OPTION is the name of the option and CPU_STRING is the argument.
19197 Return the corresponding processor enumeration if the CPU_STRING is
19198 recognized, otherwise report an error and return null.
19199
19200 A similar function exists in GCC. */
19201
19202 static const struct mips_cpu_info *
19203 mips_parse_cpu (const char *option, const char *cpu_string)
19204 {
19205 const struct mips_cpu_info *p;
19206
19207 /* 'from-abi' selects the most compatible architecture for the given
19208 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19209 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19210 version. Look first at the -mgp options, if given, otherwise base
19211 the choice on MIPS_DEFAULT_64BIT.
19212
19213 Treat NO_ABI like the EABIs. One reason to do this is that the
19214 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19215 architecture. This code picks MIPS I for 'mips' and MIPS III for
19216 'mips64', just as we did in the days before 'from-abi'. */
19217 if (strcasecmp (cpu_string, "from-abi") == 0)
19218 {
19219 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19220 return mips_cpu_info_from_isa (ISA_MIPS1);
19221
19222 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19223 return mips_cpu_info_from_isa (ISA_MIPS3);
19224
19225 if (file_mips_gp32 >= 0)
19226 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
19227
19228 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19229 ? ISA_MIPS3
19230 : ISA_MIPS1);
19231 }
19232
19233 /* 'default' has traditionally been a no-op. Probably not very useful. */
19234 if (strcasecmp (cpu_string, "default") == 0)
19235 return 0;
19236
19237 for (p = mips_cpu_info_table; p->name != 0; p++)
19238 if (mips_matching_cpu_name_p (p->name, cpu_string))
19239 return p;
19240
19241 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
19242 return 0;
19243 }
19244
19245 /* Return the canonical processor information for ISA (a member of the
19246 ISA_MIPS* enumeration). */
19247
19248 static const struct mips_cpu_info *
19249 mips_cpu_info_from_isa (int isa)
19250 {
19251 int i;
19252
19253 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19254 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19255 && isa == mips_cpu_info_table[i].isa)
19256 return (&mips_cpu_info_table[i]);
19257
19258 return NULL;
19259 }
19260
19261 static const struct mips_cpu_info *
19262 mips_cpu_info_from_arch (int arch)
19263 {
19264 int i;
19265
19266 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19267 if (arch == mips_cpu_info_table[i].cpu)
19268 return (&mips_cpu_info_table[i]);
19269
19270 return NULL;
19271 }
19272 \f
19273 static void
19274 show (FILE *stream, const char *string, int *col_p, int *first_p)
19275 {
19276 if (*first_p)
19277 {
19278 fprintf (stream, "%24s", "");
19279 *col_p = 24;
19280 }
19281 else
19282 {
19283 fprintf (stream, ", ");
19284 *col_p += 2;
19285 }
19286
19287 if (*col_p + strlen (string) > 72)
19288 {
19289 fprintf (stream, "\n%24s", "");
19290 *col_p = 24;
19291 }
19292
19293 fprintf (stream, "%s", string);
19294 *col_p += strlen (string);
19295
19296 *first_p = 0;
19297 }
19298
19299 void
19300 md_show_usage (FILE *stream)
19301 {
19302 int column, first;
19303 size_t i;
19304
19305 fprintf (stream, _("\
19306 MIPS options:\n\
19307 -EB generate big endian output\n\
19308 -EL generate little endian output\n\
19309 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19310 -G NUM allow referencing objects up to NUM bytes\n\
19311 implicitly with the gp register [default 8]\n"));
19312 fprintf (stream, _("\
19313 -mips1 generate MIPS ISA I instructions\n\
19314 -mips2 generate MIPS ISA II instructions\n\
19315 -mips3 generate MIPS ISA III instructions\n\
19316 -mips4 generate MIPS ISA IV instructions\n\
19317 -mips5 generate MIPS ISA V instructions\n\
19318 -mips32 generate MIPS32 ISA instructions\n\
19319 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19320 -mips64 generate MIPS64 ISA instructions\n\
19321 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19322 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19323
19324 first = 1;
19325
19326 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19327 show (stream, mips_cpu_info_table[i].name, &column, &first);
19328 show (stream, "from-abi", &column, &first);
19329 fputc ('\n', stream);
19330
19331 fprintf (stream, _("\
19332 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19333 -no-mCPU don't generate code specific to CPU.\n\
19334 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19335
19336 first = 1;
19337
19338 show (stream, "3900", &column, &first);
19339 show (stream, "4010", &column, &first);
19340 show (stream, "4100", &column, &first);
19341 show (stream, "4650", &column, &first);
19342 fputc ('\n', stream);
19343
19344 fprintf (stream, _("\
19345 -mips16 generate mips16 instructions\n\
19346 -no-mips16 do not generate mips16 instructions\n"));
19347 fprintf (stream, _("\
19348 -mmicromips generate microMIPS instructions\n\
19349 -mno-micromips do not generate microMIPS instructions\n"));
19350 fprintf (stream, _("\
19351 -msmartmips generate smartmips instructions\n\
19352 -mno-smartmips do not generate smartmips instructions\n"));
19353 fprintf (stream, _("\
19354 -mdsp generate DSP instructions\n\
19355 -mno-dsp do not generate DSP instructions\n"));
19356 fprintf (stream, _("\
19357 -mdspr2 generate DSP R2 instructions\n\
19358 -mno-dspr2 do not generate DSP R2 instructions\n"));
19359 fprintf (stream, _("\
19360 -mmt generate MT instructions\n\
19361 -mno-mt do not generate MT instructions\n"));
19362 fprintf (stream, _("\
19363 -mmcu generate MCU instructions\n\
19364 -mno-mcu do not generate MCU instructions\n"));
19365 fprintf (stream, _("\
19366 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19367 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19368 -mfix-vr4120 work around certain VR4120 errata\n\
19369 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19370 -mfix-24k insert a nop after ERET and DERET instructions\n\
19371 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19372 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19373 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19374 -msym32 assume all symbols have 32-bit values\n\
19375 -O0 remove unneeded NOPs, do not swap branches\n\
19376 -O remove unneeded NOPs and swap branches\n\
19377 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19378 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19379 fprintf (stream, _("\
19380 -mhard-float allow floating-point instructions\n\
19381 -msoft-float do not allow floating-point instructions\n\
19382 -msingle-float only allow 32-bit floating-point operations\n\
19383 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19384 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
19385 ));
19386 #ifdef OBJ_ELF
19387 fprintf (stream, _("\
19388 -KPIC, -call_shared generate SVR4 position independent code\n\
19389 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19390 -mvxworks-pic generate VxWorks position independent code\n\
19391 -non_shared do not generate code that can operate with DSOs\n\
19392 -xgot assume a 32 bit GOT\n\
19393 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19394 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19395 position dependent (non shared) code\n\
19396 -mabi=ABI create ABI conformant object file for:\n"));
19397
19398 first = 1;
19399
19400 show (stream, "32", &column, &first);
19401 show (stream, "o64", &column, &first);
19402 show (stream, "n32", &column, &first);
19403 show (stream, "64", &column, &first);
19404 show (stream, "eabi", &column, &first);
19405
19406 fputc ('\n', stream);
19407
19408 fprintf (stream, _("\
19409 -32 create o32 ABI object file (default)\n\
19410 -n32 create n32 ABI object file\n\
19411 -64 create 64 ABI object file\n"));
19412 #endif
19413 }
19414
19415 #ifdef TE_IRIX
19416 enum dwarf2_format
19417 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19418 {
19419 if (HAVE_64BIT_SYMBOLS)
19420 return dwarf2_format_64bit_irix;
19421 else
19422 return dwarf2_format_32bit;
19423 }
19424 #endif
19425
19426 int
19427 mips_dwarf2_addr_size (void)
19428 {
19429 if (HAVE_64BIT_OBJECTS)
19430 return 8;
19431 else
19432 return 4;
19433 }
19434
19435 /* Standard calling conventions leave the CFA at SP on entry. */
19436 void
19437 mips_cfi_frame_initial_instructions (void)
19438 {
19439 cfi_add_CFA_def_cfa_register (SP);
19440 }
19441
19442 int
19443 tc_mips_regname_to_dw2regnum (char *regname)
19444 {
19445 unsigned int regnum = -1;
19446 unsigned int reg;
19447
19448 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19449 regnum = reg;
19450
19451 return regnum;
19452 }