* doc/c-mips.texi (-m{no-,}fix-vr4120): Renamed from
[binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 02111-1307, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #include <stdarg.h>
32
33 #include "opcode/mips.h"
34 #include "itbl-ops.h"
35 #include "dwarf2dbg.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define AT 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
102
103 #define ILLEGAL_REG (32)
104
105 /* Allow override of standard little-endian ECOFF format. */
106
107 #ifndef ECOFF_LITTLE_FORMAT
108 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
109 #endif
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_aout_flavour \
115 ? ".data" \
116 : OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
123
124 /* The ABI to use. */
125 enum mips_abi_level
126 {
127 NO_ABI = 0,
128 O32_ABI,
129 O64_ABI,
130 N32_ABI,
131 N64_ABI,
132 EABI_ABI
133 };
134
135 /* MIPS ABI we are using for this output file. */
136 static enum mips_abi_level mips_abi = NO_ABI;
137
138 /* Whether or not we have code that can call pic code. */
139 int mips_abicalls = FALSE;
140
141 /* This is the set of options which may be modified by the .set
142 pseudo-op. We use a struct so that .set push and .set pop are more
143 reliable. */
144
145 struct mips_set_options
146 {
147 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
148 if it has not been initialized. Changed by `.set mipsN', and the
149 -mipsN command line option, and the default CPU. */
150 int isa;
151 /* Enabled Application Specific Extensions (ASEs). These are set to -1
152 if they have not been initialized. Changed by `.set <asename>', by
153 command line options, and based on the default architecture. */
154 int ase_mips3d;
155 int ase_mdmx;
156 /* Whether we are assembling for the mips16 processor. 0 if we are
157 not, 1 if we are, and -1 if the value has not been initialized.
158 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
159 -nomips16 command line options, and the default CPU. */
160 int mips16;
161 /* Non-zero if we should not reorder instructions. Changed by `.set
162 reorder' and `.set noreorder'. */
163 int noreorder;
164 /* Non-zero if we should not permit the $at ($1) register to be used
165 in instructions. Changed by `.set at' and `.set noat'. */
166 int noat;
167 /* Non-zero if we should warn when a macro instruction expands into
168 more than one machine instruction. Changed by `.set nomacro' and
169 `.set macro'. */
170 int warn_about_macros;
171 /* Non-zero if we should not move instructions. Changed by `.set
172 move', `.set volatile', `.set nomove', and `.set novolatile'. */
173 int nomove;
174 /* Non-zero if we should not optimize branches by moving the target
175 of the branch into the delay slot. Actually, we don't perform
176 this optimization anyhow. Changed by `.set bopt' and `.set
177 nobopt'. */
178 int nobopt;
179 /* Non-zero if we should not autoextend mips16 instructions.
180 Changed by `.set autoextend' and `.set noautoextend'. */
181 int noautoextend;
182 /* Restrict general purpose registers and floating point registers
183 to 32 bit. This is initially determined when -mgp32 or -mfp32
184 is passed but can changed if the assembler code uses .set mipsN. */
185 int gp32;
186 int fp32;
187 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
188 command line option, and the default CPU. */
189 int arch;
190 };
191
192 /* True if -mgp32 was passed. */
193 static int file_mips_gp32 = -1;
194
195 /* True if -mfp32 was passed. */
196 static int file_mips_fp32 = -1;
197
198 /* This is the struct we use to hold the current set of options. Note
199 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
200 -1 to indicate that they have not been initialized. */
201
202 static struct mips_set_options mips_opts =
203 {
204 ISA_UNKNOWN, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, CPU_UNKNOWN
205 };
206
207 /* These variables are filled in with the masks of registers used.
208 The object format code reads them and puts them in the appropriate
209 place. */
210 unsigned long mips_gprmask;
211 unsigned long mips_cprmask[4];
212
213 /* MIPS ISA we are using for this output file. */
214 static int file_mips_isa = ISA_UNKNOWN;
215
216 /* True if -mips16 was passed or implied by arguments passed on the
217 command line (e.g., by -march). */
218 static int file_ase_mips16;
219
220 /* True if -mips3d was passed or implied by arguments passed on the
221 command line (e.g., by -march). */
222 static int file_ase_mips3d;
223
224 /* True if -mdmx was passed or implied by arguments passed on the
225 command line (e.g., by -march). */
226 static int file_ase_mdmx;
227
228 /* The argument of the -march= flag. The architecture we are assembling. */
229 static int file_mips_arch = CPU_UNKNOWN;
230 static const char *mips_arch_string;
231
232 /* The argument of the -mtune= flag. The architecture for which we
233 are optimizing. */
234 static int mips_tune = CPU_UNKNOWN;
235 static const char *mips_tune_string;
236
237 /* True when generating 32-bit code for a 64-bit processor. */
238 static int mips_32bitmode = 0;
239
240 /* True if the given ABI requires 32-bit registers. */
241 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
242
243 /* Likewise 64-bit registers. */
244 #define ABI_NEEDS_64BIT_REGS(ABI) \
245 ((ABI) == N32_ABI \
246 || (ABI) == N64_ABI \
247 || (ABI) == O64_ABI)
248
249 /* Return true if ISA supports 64 bit gp register instructions. */
250 #define ISA_HAS_64BIT_REGS(ISA) ( \
251 (ISA) == ISA_MIPS3 \
252 || (ISA) == ISA_MIPS4 \
253 || (ISA) == ISA_MIPS5 \
254 || (ISA) == ISA_MIPS64 \
255 || (ISA) == ISA_MIPS64R2 \
256 )
257
258 /* Return true if ISA supports 64-bit right rotate (dror et al.)
259 instructions. */
260 #define ISA_HAS_DROR(ISA) ( \
261 (ISA) == ISA_MIPS64R2 \
262 )
263
264 /* Return true if ISA supports 32-bit right rotate (ror et al.)
265 instructions. */
266 #define ISA_HAS_ROR(ISA) ( \
267 (ISA) == ISA_MIPS32R2 \
268 || (ISA) == ISA_MIPS64R2 \
269 )
270
271 #define HAVE_32BIT_GPRS \
272 (mips_opts.gp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
273
274 #define HAVE_32BIT_FPRS \
275 (mips_opts.fp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
276
277 #define HAVE_64BIT_GPRS (! HAVE_32BIT_GPRS)
278 #define HAVE_64BIT_FPRS (! HAVE_32BIT_FPRS)
279
280 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
281
282 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
283
284 /* We can only have 64bit addresses if the object file format
285 supports it. */
286 #define HAVE_32BIT_ADDRESSES \
287 (HAVE_32BIT_GPRS \
288 || ((bfd_arch_bits_per_address (stdoutput) == 32 \
289 || ! HAVE_64BIT_OBJECTS) \
290 && mips_pic != EMBEDDED_PIC))
291
292 #define HAVE_64BIT_ADDRESSES (! HAVE_32BIT_ADDRESSES)
293
294 /* Addresses are loaded in different ways, depending on the address size
295 in use. The n32 ABI Documentation also mandates the use of additions
296 with overflow checking, but existing implementations don't follow it. */
297 #define ADDRESS_ADD_INSN \
298 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
299
300 #define ADDRESS_ADDI_INSN \
301 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
302
303 #define ADDRESS_LOAD_INSN \
304 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
305
306 #define ADDRESS_STORE_INSN \
307 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
308
309 /* Return true if the given CPU supports the MIPS16 ASE. */
310 #define CPU_HAS_MIPS16(cpu) \
311 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
312 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
313
314 /* Return true if the given CPU supports the MIPS3D ASE. */
315 #define CPU_HAS_MIPS3D(cpu) ((cpu) == CPU_SB1 \
316 )
317
318 /* Return true if the given CPU supports the MDMX ASE. */
319 #define CPU_HAS_MDMX(cpu) (FALSE \
320 )
321
322 /* True if CPU has a dror instruction. */
323 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
324
325 /* True if CPU has a ror instruction. */
326 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
327
328 /* True if mflo and mfhi can be immediately followed by instructions
329 which write to the HI and LO registers.
330
331 According to MIPS specifications, MIPS ISAs I, II, and III need
332 (at least) two instructions between the reads of HI/LO and
333 instructions which write them, and later ISAs do not. Contradicting
334 the MIPS specifications, some MIPS IV processor user manuals (e.g.
335 the UM for the NEC Vr5000) document needing the instructions between
336 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
337 MIPS64 and later ISAs to have the interlocks, plus any specific
338 earlier-ISA CPUs for which CPU documentation declares that the
339 instructions are really interlocked. */
340 #define hilo_interlocks \
341 (mips_opts.isa == ISA_MIPS32 \
342 || mips_opts.isa == ISA_MIPS32R2 \
343 || mips_opts.isa == ISA_MIPS64 \
344 || mips_opts.isa == ISA_MIPS64R2 \
345 || mips_opts.arch == CPU_R4010 \
346 || mips_opts.arch == CPU_R10000 \
347 || mips_opts.arch == CPU_R12000 \
348 || mips_opts.arch == CPU_RM7000 \
349 || mips_opts.arch == CPU_SB1 \
350 || mips_opts.arch == CPU_VR5500 \
351 )
352
353 /* Whether the processor uses hardware interlocks to protect reads
354 from the GPRs after they are loaded from memory, and thus does not
355 require nops to be inserted. This applies to instructions marked
356 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
357 level I. */
358 #define gpr_interlocks \
359 (mips_opts.isa != ISA_MIPS1 \
360 || mips_opts.arch == CPU_VR5400 \
361 || mips_opts.arch == CPU_VR5500 \
362 || mips_opts.arch == CPU_R3900)
363
364 /* Whether the processor uses hardware interlocks to avoid delays
365 required by coprocessor instructions, and thus does not require
366 nops to be inserted. This applies to instructions marked
367 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
368 between instructions marked INSN_WRITE_COND_CODE and ones marked
369 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
370 levels I, II, and III. */
371 /* Itbl support may require additional care here. */
372 #define cop_interlocks \
373 ((mips_opts.isa != ISA_MIPS1 \
374 && mips_opts.isa != ISA_MIPS2 \
375 && mips_opts.isa != ISA_MIPS3) \
376 || mips_opts.arch == CPU_R4300 \
377 || mips_opts.arch == CPU_VR5400 \
378 || mips_opts.arch == CPU_VR5500 \
379 || mips_opts.arch == CPU_SB1 \
380 )
381
382 /* Whether the processor uses hardware interlocks to protect reads
383 from coprocessor registers after they are loaded from memory, and
384 thus does not require nops to be inserted. This applies to
385 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
386 requires at MIPS ISA level I. */
387 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
388
389 /* Is this a mfhi or mflo instruction? */
390 #define MF_HILO_INSN(PINFO) \
391 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
392
393 /* MIPS PIC level. */
394
395 enum mips_pic_level mips_pic;
396
397 /* 1 if we should generate 32 bit offsets from the $gp register in
398 SVR4_PIC mode. Currently has no meaning in other modes. */
399 static int mips_big_got = 0;
400
401 /* 1 if trap instructions should used for overflow rather than break
402 instructions. */
403 static int mips_trap = 0;
404
405 /* 1 if double width floating point constants should not be constructed
406 by assembling two single width halves into two single width floating
407 point registers which just happen to alias the double width destination
408 register. On some architectures this aliasing can be disabled by a bit
409 in the status register, and the setting of this bit cannot be determined
410 automatically at assemble time. */
411 static int mips_disable_float_construction;
412
413 /* Non-zero if any .set noreorder directives were used. */
414
415 static int mips_any_noreorder;
416
417 /* Non-zero if nops should be inserted when the register referenced in
418 an mfhi/mflo instruction is read in the next two instructions. */
419 static int mips_7000_hilo_fix;
420
421 /* The size of the small data section. */
422 static unsigned int g_switch_value = 8;
423 /* Whether the -G option was used. */
424 static int g_switch_seen = 0;
425
426 #define N_RMASK 0xc4
427 #define N_VFP 0xd4
428
429 /* If we can determine in advance that GP optimization won't be
430 possible, we can skip the relaxation stuff that tries to produce
431 GP-relative references. This makes delay slot optimization work
432 better.
433
434 This function can only provide a guess, but it seems to work for
435 gcc output. It needs to guess right for gcc, otherwise gcc
436 will put what it thinks is a GP-relative instruction in a branch
437 delay slot.
438
439 I don't know if a fix is needed for the SVR4_PIC mode. I've only
440 fixed it for the non-PIC mode. KR 95/04/07 */
441 static int nopic_need_relax (symbolS *, int);
442
443 /* handle of the OPCODE hash table */
444 static struct hash_control *op_hash = NULL;
445
446 /* The opcode hash table we use for the mips16. */
447 static struct hash_control *mips16_op_hash = NULL;
448
449 /* This array holds the chars that always start a comment. If the
450 pre-processor is disabled, these aren't very useful */
451 const char comment_chars[] = "#";
452
453 /* This array holds the chars that only start a comment at the beginning of
454 a line. If the line seems to have the form '# 123 filename'
455 .line and .file directives will appear in the pre-processed output */
456 /* Note that input_file.c hand checks for '#' at the beginning of the
457 first line of the input file. This is because the compiler outputs
458 #NO_APP at the beginning of its output. */
459 /* Also note that C style comments are always supported. */
460 const char line_comment_chars[] = "#";
461
462 /* This array holds machine specific line separator characters. */
463 const char line_separator_chars[] = ";";
464
465 /* Chars that can be used to separate mant from exp in floating point nums */
466 const char EXP_CHARS[] = "eE";
467
468 /* Chars that mean this number is a floating point constant */
469 /* As in 0f12.456 */
470 /* or 0d1.2345e12 */
471 const char FLT_CHARS[] = "rRsSfFdDxXpP";
472
473 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
474 changed in read.c . Ideally it shouldn't have to know about it at all,
475 but nothing is ideal around here.
476 */
477
478 static char *insn_error;
479
480 static int auto_align = 1;
481
482 /* When outputting SVR4 PIC code, the assembler needs to know the
483 offset in the stack frame from which to restore the $gp register.
484 This is set by the .cprestore pseudo-op, and saved in this
485 variable. */
486 static offsetT mips_cprestore_offset = -1;
487
488 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
489 more optimizations, it can use a register value instead of a memory-saved
490 offset and even an other register than $gp as global pointer. */
491 static offsetT mips_cpreturn_offset = -1;
492 static int mips_cpreturn_register = -1;
493 static int mips_gp_register = GP;
494 static int mips_gprel_offset = 0;
495
496 /* Whether mips_cprestore_offset has been set in the current function
497 (or whether it has already been warned about, if not). */
498 static int mips_cprestore_valid = 0;
499
500 /* This is the register which holds the stack frame, as set by the
501 .frame pseudo-op. This is needed to implement .cprestore. */
502 static int mips_frame_reg = SP;
503
504 /* Whether mips_frame_reg has been set in the current function
505 (or whether it has already been warned about, if not). */
506 static int mips_frame_reg_valid = 0;
507
508 /* To output NOP instructions correctly, we need to keep information
509 about the previous two instructions. */
510
511 /* Whether we are optimizing. The default value of 2 means to remove
512 unneeded NOPs and swap branch instructions when possible. A value
513 of 1 means to not swap branches. A value of 0 means to always
514 insert NOPs. */
515 static int mips_optimize = 2;
516
517 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
518 equivalent to seeing no -g option at all. */
519 static int mips_debug = 0;
520
521 /* The previous instruction. */
522 static struct mips_cl_insn prev_insn;
523
524 /* The instruction before prev_insn. */
525 static struct mips_cl_insn prev_prev_insn;
526
527 /* If we don't want information for prev_insn or prev_prev_insn, we
528 point the insn_mo field at this dummy integer. */
529 static const struct mips_opcode dummy_opcode = { NULL, NULL, 0, 0, 0, 0 };
530
531 /* Non-zero if prev_insn is valid. */
532 static int prev_insn_valid;
533
534 /* The frag for the previous instruction. */
535 static struct frag *prev_insn_frag;
536
537 /* The offset into prev_insn_frag for the previous instruction. */
538 static long prev_insn_where;
539
540 /* The reloc type for the previous instruction, if any. */
541 static bfd_reloc_code_real_type prev_insn_reloc_type[3];
542
543 /* The reloc for the previous instruction, if any. */
544 static fixS *prev_insn_fixp[3];
545
546 /* Non-zero if the previous instruction was in a delay slot. */
547 static int prev_insn_is_delay_slot;
548
549 /* Non-zero if the previous instruction was in a .set noreorder. */
550 static int prev_insn_unreordered;
551
552 /* Non-zero if the previous instruction uses an extend opcode (if
553 mips16). */
554 static int prev_insn_extended;
555
556 /* Non-zero if the previous previous instruction was in a .set
557 noreorder. */
558 static int prev_prev_insn_unreordered;
559
560 /* If this is set, it points to a frag holding nop instructions which
561 were inserted before the start of a noreorder section. If those
562 nops turn out to be unnecessary, the size of the frag can be
563 decreased. */
564 static fragS *prev_nop_frag;
565
566 /* The number of nop instructions we created in prev_nop_frag. */
567 static int prev_nop_frag_holds;
568
569 /* The number of nop instructions that we know we need in
570 prev_nop_frag. */
571 static int prev_nop_frag_required;
572
573 /* The number of instructions we've seen since prev_nop_frag. */
574 static int prev_nop_frag_since;
575
576 /* For ECOFF and ELF, relocations against symbols are done in two
577 parts, with a HI relocation and a LO relocation. Each relocation
578 has only 16 bits of space to store an addend. This means that in
579 order for the linker to handle carries correctly, it must be able
580 to locate both the HI and the LO relocation. This means that the
581 relocations must appear in order in the relocation table.
582
583 In order to implement this, we keep track of each unmatched HI
584 relocation. We then sort them so that they immediately precede the
585 corresponding LO relocation. */
586
587 struct mips_hi_fixup
588 {
589 /* Next HI fixup. */
590 struct mips_hi_fixup *next;
591 /* This fixup. */
592 fixS *fixp;
593 /* The section this fixup is in. */
594 segT seg;
595 };
596
597 /* The list of unmatched HI relocs. */
598
599 static struct mips_hi_fixup *mips_hi_fixup_list;
600
601 /* The frag containing the last explicit relocation operator.
602 Null if explicit relocations have not been used. */
603
604 static fragS *prev_reloc_op_frag;
605
606 /* Map normal MIPS register numbers to mips16 register numbers. */
607
608 #define X ILLEGAL_REG
609 static const int mips32_to_16_reg_map[] =
610 {
611 X, X, 2, 3, 4, 5, 6, 7,
612 X, X, X, X, X, X, X, X,
613 0, 1, X, X, X, X, X, X,
614 X, X, X, X, X, X, X, X
615 };
616 #undef X
617
618 /* Map mips16 register numbers to normal MIPS register numbers. */
619
620 static const unsigned int mips16_to_32_reg_map[] =
621 {
622 16, 17, 2, 3, 4, 5, 6, 7
623 };
624
625 static int mips_fix_vr4120;
626
627 /* We don't relax branches by default, since this causes us to expand
628 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
629 fail to compute the offset before expanding the macro to the most
630 efficient expansion. */
631
632 static int mips_relax_branch;
633 \f
634 /* The expansion of many macros depends on the type of symbol that
635 they refer to. For example, when generating position-dependent code,
636 a macro that refers to a symbol may have two different expansions,
637 one which uses GP-relative addresses and one which uses absolute
638 addresses. When generating SVR4-style PIC, a macro may have
639 different expansions for local and global symbols.
640
641 We handle these situations by generating both sequences and putting
642 them in variant frags. In position-dependent code, the first sequence
643 will be the GP-relative one and the second sequence will be the
644 absolute one. In SVR4 PIC, the first sequence will be for global
645 symbols and the second will be for local symbols.
646
647 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
648 SECOND are the lengths of the two sequences in bytes. These fields
649 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
650 the subtype has the following flags:
651
652 RELAX_USE_SECOND
653 Set if it has been decided that we should use the second
654 sequence instead of the first.
655
656 RELAX_SECOND_LONGER
657 Set in the first variant frag if the macro's second implementation
658 is longer than its first. This refers to the macro as a whole,
659 not an individual relaxation.
660
661 RELAX_NOMACRO
662 Set in the first variant frag if the macro appeared in a .set nomacro
663 block and if one alternative requires a warning but the other does not.
664
665 RELAX_DELAY_SLOT
666 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
667 delay slot.
668
669 The frag's "opcode" points to the first fixup for relaxable code.
670
671 Relaxable macros are generated using a sequence such as:
672
673 relax_start (SYMBOL);
674 ... generate first expansion ...
675 relax_switch ();
676 ... generate second expansion ...
677 relax_end ();
678
679 The code and fixups for the unwanted alternative are discarded
680 by md_convert_frag. */
681 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
682
683 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
684 #define RELAX_SECOND(X) ((X) & 0xff)
685 #define RELAX_USE_SECOND 0x10000
686 #define RELAX_SECOND_LONGER 0x20000
687 #define RELAX_NOMACRO 0x40000
688 #define RELAX_DELAY_SLOT 0x80000
689
690 /* Branch without likely bit. If label is out of range, we turn:
691
692 beq reg1, reg2, label
693 delay slot
694
695 into
696
697 bne reg1, reg2, 0f
698 nop
699 j label
700 0: delay slot
701
702 with the following opcode replacements:
703
704 beq <-> bne
705 blez <-> bgtz
706 bltz <-> bgez
707 bc1f <-> bc1t
708
709 bltzal <-> bgezal (with jal label instead of j label)
710
711 Even though keeping the delay slot instruction in the delay slot of
712 the branch would be more efficient, it would be very tricky to do
713 correctly, because we'd have to introduce a variable frag *after*
714 the delay slot instruction, and expand that instead. Let's do it
715 the easy way for now, even if the branch-not-taken case now costs
716 one additional instruction. Out-of-range branches are not supposed
717 to be common, anyway.
718
719 Branch likely. If label is out of range, we turn:
720
721 beql reg1, reg2, label
722 delay slot (annulled if branch not taken)
723
724 into
725
726 beql reg1, reg2, 1f
727 nop
728 beql $0, $0, 2f
729 nop
730 1: j[al] label
731 delay slot (executed only if branch taken)
732 2:
733
734 It would be possible to generate a shorter sequence by losing the
735 likely bit, generating something like:
736
737 bne reg1, reg2, 0f
738 nop
739 j[al] label
740 delay slot (executed only if branch taken)
741 0:
742
743 beql -> bne
744 bnel -> beq
745 blezl -> bgtz
746 bgtzl -> blez
747 bltzl -> bgez
748 bgezl -> bltz
749 bc1fl -> bc1t
750 bc1tl -> bc1f
751
752 bltzall -> bgezal (with jal label instead of j label)
753 bgezall -> bltzal (ditto)
754
755
756 but it's not clear that it would actually improve performance. */
757 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
758 ((relax_substateT) \
759 (0xc0000000 \
760 | ((toofar) ? 1 : 0) \
761 | ((link) ? 2 : 0) \
762 | ((likely) ? 4 : 0) \
763 | ((uncond) ? 8 : 0)))
764 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
765 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
766 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
767 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
768 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
769
770 /* For mips16 code, we use an entirely different form of relaxation.
771 mips16 supports two versions of most instructions which take
772 immediate values: a small one which takes some small value, and a
773 larger one which takes a 16 bit value. Since branches also follow
774 this pattern, relaxing these values is required.
775
776 We can assemble both mips16 and normal MIPS code in a single
777 object. Therefore, we need to support this type of relaxation at
778 the same time that we support the relaxation described above. We
779 use the high bit of the subtype field to distinguish these cases.
780
781 The information we store for this type of relaxation is the
782 argument code found in the opcode file for this relocation, whether
783 the user explicitly requested a small or extended form, and whether
784 the relocation is in a jump or jal delay slot. That tells us the
785 size of the value, and how it should be stored. We also store
786 whether the fragment is considered to be extended or not. We also
787 store whether this is known to be a branch to a different section,
788 whether we have tried to relax this frag yet, and whether we have
789 ever extended a PC relative fragment because of a shift count. */
790 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
791 (0x80000000 \
792 | ((type) & 0xff) \
793 | ((small) ? 0x100 : 0) \
794 | ((ext) ? 0x200 : 0) \
795 | ((dslot) ? 0x400 : 0) \
796 | ((jal_dslot) ? 0x800 : 0))
797 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
798 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
799 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
800 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
801 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
802 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
803 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
804 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
805 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
806 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
807 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
808 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
809
810 /* Is the given value a sign-extended 32-bit value? */
811 #define IS_SEXT_32BIT_NUM(x) \
812 (((x) &~ (offsetT) 0x7fffffff) == 0 \
813 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
814
815 /* Is the given value a sign-extended 16-bit value? */
816 #define IS_SEXT_16BIT_NUM(x) \
817 (((x) &~ (offsetT) 0x7fff) == 0 \
818 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
819
820 \f
821 /* Global variables used when generating relaxable macros. See the
822 comment above RELAX_ENCODE for more details about how relaxation
823 is used. */
824 static struct {
825 /* 0 if we're not emitting a relaxable macro.
826 1 if we're emitting the first of the two relaxation alternatives.
827 2 if we're emitting the second alternative. */
828 int sequence;
829
830 /* The first relaxable fixup in the current frag. (In other words,
831 the first fixup that refers to relaxable code.) */
832 fixS *first_fixup;
833
834 /* sizes[0] says how many bytes of the first alternative are stored in
835 the current frag. Likewise sizes[1] for the second alternative. */
836 unsigned int sizes[2];
837
838 /* The symbol on which the choice of sequence depends. */
839 symbolS *symbol;
840 } mips_relax;
841 \f
842 /* Global variables used to decide whether a macro needs a warning. */
843 static struct {
844 /* True if the macro is in a branch delay slot. */
845 bfd_boolean delay_slot_p;
846
847 /* For relaxable macros, sizes[0] is the length of the first alternative
848 in bytes and sizes[1] is the length of the second alternative.
849 For non-relaxable macros, both elements give the length of the
850 macro in bytes. */
851 unsigned int sizes[2];
852
853 /* The first variant frag for this macro. */
854 fragS *first_frag;
855 } mips_macro_warning;
856 \f
857 /* Prototypes for static functions. */
858
859 #define internalError() \
860 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
861
862 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
863
864 static void append_insn
865 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r);
866 static void mips_no_prev_insn (int);
867 static void mips16_macro_build
868 (expressionS *, const char *, const char *, va_list);
869 static void load_register (int, expressionS *, int);
870 static void macro_start (void);
871 static void macro_end (void);
872 static void macro (struct mips_cl_insn * ip);
873 static void mips16_macro (struct mips_cl_insn * ip);
874 #ifdef LOSING_COMPILER
875 static void macro2 (struct mips_cl_insn * ip);
876 #endif
877 static void mips_ip (char *str, struct mips_cl_insn * ip);
878 static void mips16_ip (char *str, struct mips_cl_insn * ip);
879 static void mips16_immed
880 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
881 unsigned long *, bfd_boolean *, unsigned short *);
882 static size_t my_getSmallExpression
883 (expressionS *, bfd_reloc_code_real_type *, char *);
884 static void my_getExpression (expressionS *, char *);
885 static void s_align (int);
886 static void s_change_sec (int);
887 static void s_change_section (int);
888 static void s_cons (int);
889 static void s_float_cons (int);
890 static void s_mips_globl (int);
891 static void s_option (int);
892 static void s_mipsset (int);
893 static void s_abicalls (int);
894 static void s_cpload (int);
895 static void s_cpsetup (int);
896 static void s_cplocal (int);
897 static void s_cprestore (int);
898 static void s_cpreturn (int);
899 static void s_gpvalue (int);
900 static void s_gpword (int);
901 static void s_gpdword (int);
902 static void s_cpadd (int);
903 static void s_insn (int);
904 static void md_obj_begin (void);
905 static void md_obj_end (void);
906 static void s_mips_ent (int);
907 static void s_mips_end (int);
908 static void s_mips_frame (int);
909 static void s_mips_mask (int reg_type);
910 static void s_mips_stab (int);
911 static void s_mips_weakext (int);
912 static void s_mips_file (int);
913 static void s_mips_loc (int);
914 static bfd_boolean pic_need_relax (symbolS *, asection *);
915 static int relaxed_branch_length (fragS *, asection *, int);
916 static int validate_mips_insn (const struct mips_opcode *);
917
918 /* Table and functions used to map between CPU/ISA names, and
919 ISA levels, and CPU numbers. */
920
921 struct mips_cpu_info
922 {
923 const char *name; /* CPU or ISA name. */
924 int is_isa; /* Is this an ISA? (If 0, a CPU.) */
925 int isa; /* ISA level. */
926 int cpu; /* CPU number (default CPU if ISA). */
927 };
928
929 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
930 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
931 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
932 \f
933 /* Pseudo-op table.
934
935 The following pseudo-ops from the Kane and Heinrich MIPS book
936 should be defined here, but are currently unsupported: .alias,
937 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
938
939 The following pseudo-ops from the Kane and Heinrich MIPS book are
940 specific to the type of debugging information being generated, and
941 should be defined by the object format: .aent, .begin, .bend,
942 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
943 .vreg.
944
945 The following pseudo-ops from the Kane and Heinrich MIPS book are
946 not MIPS CPU specific, but are also not specific to the object file
947 format. This file is probably the best place to define them, but
948 they are not currently supported: .asm0, .endr, .lab, .repeat,
949 .struct. */
950
951 static const pseudo_typeS mips_pseudo_table[] =
952 {
953 /* MIPS specific pseudo-ops. */
954 {"option", s_option, 0},
955 {"set", s_mipsset, 0},
956 {"rdata", s_change_sec, 'r'},
957 {"sdata", s_change_sec, 's'},
958 {"livereg", s_ignore, 0},
959 {"abicalls", s_abicalls, 0},
960 {"cpload", s_cpload, 0},
961 {"cpsetup", s_cpsetup, 0},
962 {"cplocal", s_cplocal, 0},
963 {"cprestore", s_cprestore, 0},
964 {"cpreturn", s_cpreturn, 0},
965 {"gpvalue", s_gpvalue, 0},
966 {"gpword", s_gpword, 0},
967 {"gpdword", s_gpdword, 0},
968 {"cpadd", s_cpadd, 0},
969 {"insn", s_insn, 0},
970
971 /* Relatively generic pseudo-ops that happen to be used on MIPS
972 chips. */
973 {"asciiz", stringer, 1},
974 {"bss", s_change_sec, 'b'},
975 {"err", s_err, 0},
976 {"half", s_cons, 1},
977 {"dword", s_cons, 3},
978 {"weakext", s_mips_weakext, 0},
979
980 /* These pseudo-ops are defined in read.c, but must be overridden
981 here for one reason or another. */
982 {"align", s_align, 0},
983 {"byte", s_cons, 0},
984 {"data", s_change_sec, 'd'},
985 {"double", s_float_cons, 'd'},
986 {"float", s_float_cons, 'f'},
987 {"globl", s_mips_globl, 0},
988 {"global", s_mips_globl, 0},
989 {"hword", s_cons, 1},
990 {"int", s_cons, 2},
991 {"long", s_cons, 2},
992 {"octa", s_cons, 4},
993 {"quad", s_cons, 3},
994 {"section", s_change_section, 0},
995 {"short", s_cons, 1},
996 {"single", s_float_cons, 'f'},
997 {"stabn", s_mips_stab, 'n'},
998 {"text", s_change_sec, 't'},
999 {"word", s_cons, 2},
1000
1001 { "extern", ecoff_directive_extern, 0},
1002
1003 { NULL, NULL, 0 },
1004 };
1005
1006 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1007 {
1008 /* These pseudo-ops should be defined by the object file format.
1009 However, a.out doesn't support them, so we have versions here. */
1010 {"aent", s_mips_ent, 1},
1011 {"bgnb", s_ignore, 0},
1012 {"end", s_mips_end, 0},
1013 {"endb", s_ignore, 0},
1014 {"ent", s_mips_ent, 0},
1015 {"file", s_mips_file, 0},
1016 {"fmask", s_mips_mask, 'F'},
1017 {"frame", s_mips_frame, 0},
1018 {"loc", s_mips_loc, 0},
1019 {"mask", s_mips_mask, 'R'},
1020 {"verstamp", s_ignore, 0},
1021 { NULL, NULL, 0 },
1022 };
1023
1024 extern void pop_insert (const pseudo_typeS *);
1025
1026 void
1027 mips_pop_insert (void)
1028 {
1029 pop_insert (mips_pseudo_table);
1030 if (! ECOFF_DEBUGGING)
1031 pop_insert (mips_nonecoff_pseudo_table);
1032 }
1033 \f
1034 /* Symbols labelling the current insn. */
1035
1036 struct insn_label_list
1037 {
1038 struct insn_label_list *next;
1039 symbolS *label;
1040 };
1041
1042 static struct insn_label_list *insn_labels;
1043 static struct insn_label_list *free_insn_labels;
1044
1045 static void mips_clear_insn_labels (void);
1046
1047 static inline void
1048 mips_clear_insn_labels (void)
1049 {
1050 register struct insn_label_list **pl;
1051
1052 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1053 ;
1054 *pl = insn_labels;
1055 insn_labels = NULL;
1056 }
1057 \f
1058 static char *expr_end;
1059
1060 /* Expressions which appear in instructions. These are set by
1061 mips_ip. */
1062
1063 static expressionS imm_expr;
1064 static expressionS imm2_expr;
1065 static expressionS offset_expr;
1066
1067 /* Relocs associated with imm_expr and offset_expr. */
1068
1069 static bfd_reloc_code_real_type imm_reloc[3]
1070 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1071 static bfd_reloc_code_real_type offset_reloc[3]
1072 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1073
1074 /* These are set by mips16_ip if an explicit extension is used. */
1075
1076 static bfd_boolean mips16_small, mips16_ext;
1077
1078 #ifdef OBJ_ELF
1079 /* The pdr segment for per procedure frame/regmask info. Not used for
1080 ECOFF debugging. */
1081
1082 static segT pdr_seg;
1083 #endif
1084
1085 /* The default target format to use. */
1086
1087 const char *
1088 mips_target_format (void)
1089 {
1090 switch (OUTPUT_FLAVOR)
1091 {
1092 case bfd_target_aout_flavour:
1093 return target_big_endian ? "a.out-mips-big" : "a.out-mips-little";
1094 case bfd_target_ecoff_flavour:
1095 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1096 case bfd_target_coff_flavour:
1097 return "pe-mips";
1098 case bfd_target_elf_flavour:
1099 #ifdef TE_TMIPS
1100 /* This is traditional mips. */
1101 return (target_big_endian
1102 ? (HAVE_64BIT_OBJECTS
1103 ? "elf64-tradbigmips"
1104 : (HAVE_NEWABI
1105 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1106 : (HAVE_64BIT_OBJECTS
1107 ? "elf64-tradlittlemips"
1108 : (HAVE_NEWABI
1109 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1110 #else
1111 return (target_big_endian
1112 ? (HAVE_64BIT_OBJECTS
1113 ? "elf64-bigmips"
1114 : (HAVE_NEWABI
1115 ? "elf32-nbigmips" : "elf32-bigmips"))
1116 : (HAVE_64BIT_OBJECTS
1117 ? "elf64-littlemips"
1118 : (HAVE_NEWABI
1119 ? "elf32-nlittlemips" : "elf32-littlemips")));
1120 #endif
1121 default:
1122 abort ();
1123 return NULL;
1124 }
1125 }
1126
1127 /* This function is called once, at assembler startup time. It should
1128 set up all the tables, etc. that the MD part of the assembler will need. */
1129
1130 void
1131 md_begin (void)
1132 {
1133 register const char *retval = NULL;
1134 int i = 0;
1135 int broken = 0;
1136
1137 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1138 as_warn (_("Could not set architecture and machine"));
1139
1140 op_hash = hash_new ();
1141
1142 for (i = 0; i < NUMOPCODES;)
1143 {
1144 const char *name = mips_opcodes[i].name;
1145
1146 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1147 if (retval != NULL)
1148 {
1149 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1150 mips_opcodes[i].name, retval);
1151 /* Probably a memory allocation problem? Give up now. */
1152 as_fatal (_("Broken assembler. No assembly attempted."));
1153 }
1154 do
1155 {
1156 if (mips_opcodes[i].pinfo != INSN_MACRO)
1157 {
1158 if (!validate_mips_insn (&mips_opcodes[i]))
1159 broken = 1;
1160 }
1161 ++i;
1162 }
1163 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1164 }
1165
1166 mips16_op_hash = hash_new ();
1167
1168 i = 0;
1169 while (i < bfd_mips16_num_opcodes)
1170 {
1171 const char *name = mips16_opcodes[i].name;
1172
1173 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1174 if (retval != NULL)
1175 as_fatal (_("internal: can't hash `%s': %s"),
1176 mips16_opcodes[i].name, retval);
1177 do
1178 {
1179 if (mips16_opcodes[i].pinfo != INSN_MACRO
1180 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1181 != mips16_opcodes[i].match))
1182 {
1183 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1184 mips16_opcodes[i].name, mips16_opcodes[i].args);
1185 broken = 1;
1186 }
1187 ++i;
1188 }
1189 while (i < bfd_mips16_num_opcodes
1190 && strcmp (mips16_opcodes[i].name, name) == 0);
1191 }
1192
1193 if (broken)
1194 as_fatal (_("Broken assembler. No assembly attempted."));
1195
1196 /* We add all the general register names to the symbol table. This
1197 helps us detect invalid uses of them. */
1198 for (i = 0; i < 32; i++)
1199 {
1200 char buf[5];
1201
1202 sprintf (buf, "$%d", i);
1203 symbol_table_insert (symbol_new (buf, reg_section, i,
1204 &zero_address_frag));
1205 }
1206 symbol_table_insert (symbol_new ("$ra", reg_section, RA,
1207 &zero_address_frag));
1208 symbol_table_insert (symbol_new ("$fp", reg_section, FP,
1209 &zero_address_frag));
1210 symbol_table_insert (symbol_new ("$sp", reg_section, SP,
1211 &zero_address_frag));
1212 symbol_table_insert (symbol_new ("$gp", reg_section, GP,
1213 &zero_address_frag));
1214 symbol_table_insert (symbol_new ("$at", reg_section, AT,
1215 &zero_address_frag));
1216 symbol_table_insert (symbol_new ("$kt0", reg_section, KT0,
1217 &zero_address_frag));
1218 symbol_table_insert (symbol_new ("$kt1", reg_section, KT1,
1219 &zero_address_frag));
1220 symbol_table_insert (symbol_new ("$zero", reg_section, ZERO,
1221 &zero_address_frag));
1222 symbol_table_insert (symbol_new ("$pc", reg_section, -1,
1223 &zero_address_frag));
1224
1225 /* If we don't add these register names to the symbol table, they
1226 may end up being added as regular symbols by operand(), and then
1227 make it to the object file as undefined in case they're not
1228 regarded as local symbols. They're local in o32, since `$' is a
1229 local symbol prefix, but not in n32 or n64. */
1230 for (i = 0; i < 8; i++)
1231 {
1232 char buf[6];
1233
1234 sprintf (buf, "$fcc%i", i);
1235 symbol_table_insert (symbol_new (buf, reg_section, -1,
1236 &zero_address_frag));
1237 }
1238
1239 mips_no_prev_insn (FALSE);
1240
1241 mips_gprmask = 0;
1242 mips_cprmask[0] = 0;
1243 mips_cprmask[1] = 0;
1244 mips_cprmask[2] = 0;
1245 mips_cprmask[3] = 0;
1246
1247 /* set the default alignment for the text section (2**2) */
1248 record_alignment (text_section, 2);
1249
1250 if (USE_GLOBAL_POINTER_OPT)
1251 bfd_set_gp_size (stdoutput, g_switch_value);
1252
1253 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1254 {
1255 /* On a native system, sections must be aligned to 16 byte
1256 boundaries. When configured for an embedded ELF target, we
1257 don't bother. */
1258 if (strcmp (TARGET_OS, "elf") != 0)
1259 {
1260 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
1261 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
1262 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
1263 }
1264
1265 /* Create a .reginfo section for register masks and a .mdebug
1266 section for debugging information. */
1267 {
1268 segT seg;
1269 subsegT subseg;
1270 flagword flags;
1271 segT sec;
1272
1273 seg = now_seg;
1274 subseg = now_subseg;
1275
1276 /* The ABI says this section should be loaded so that the
1277 running program can access it. However, we don't load it
1278 if we are configured for an embedded target */
1279 flags = SEC_READONLY | SEC_DATA;
1280 if (strcmp (TARGET_OS, "elf") != 0)
1281 flags |= SEC_ALLOC | SEC_LOAD;
1282
1283 if (mips_abi != N64_ABI)
1284 {
1285 sec = subseg_new (".reginfo", (subsegT) 0);
1286
1287 bfd_set_section_flags (stdoutput, sec, flags);
1288 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
1289
1290 #ifdef OBJ_ELF
1291 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
1292 #endif
1293 }
1294 else
1295 {
1296 /* The 64-bit ABI uses a .MIPS.options section rather than
1297 .reginfo section. */
1298 sec = subseg_new (".MIPS.options", (subsegT) 0);
1299 bfd_set_section_flags (stdoutput, sec, flags);
1300 bfd_set_section_alignment (stdoutput, sec, 3);
1301
1302 #ifdef OBJ_ELF
1303 /* Set up the option header. */
1304 {
1305 Elf_Internal_Options opthdr;
1306 char *f;
1307
1308 opthdr.kind = ODK_REGINFO;
1309 opthdr.size = (sizeof (Elf_External_Options)
1310 + sizeof (Elf64_External_RegInfo));
1311 opthdr.section = 0;
1312 opthdr.info = 0;
1313 f = frag_more (sizeof (Elf_External_Options));
1314 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
1315 (Elf_External_Options *) f);
1316
1317 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
1318 }
1319 #endif
1320 }
1321
1322 if (ECOFF_DEBUGGING)
1323 {
1324 sec = subseg_new (".mdebug", (subsegT) 0);
1325 (void) bfd_set_section_flags (stdoutput, sec,
1326 SEC_HAS_CONTENTS | SEC_READONLY);
1327 (void) bfd_set_section_alignment (stdoutput, sec, 2);
1328 }
1329 #ifdef OBJ_ELF
1330 else if (OUTPUT_FLAVOR == bfd_target_elf_flavour && mips_flag_pdr)
1331 {
1332 pdr_seg = subseg_new (".pdr", (subsegT) 0);
1333 (void) bfd_set_section_flags (stdoutput, pdr_seg,
1334 SEC_READONLY | SEC_RELOC
1335 | SEC_DEBUGGING);
1336 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
1337 }
1338 #endif
1339
1340 subseg_set (seg, subseg);
1341 }
1342 }
1343
1344 if (! ECOFF_DEBUGGING)
1345 md_obj_begin ();
1346 }
1347
1348 void
1349 md_mips_end (void)
1350 {
1351 if (! ECOFF_DEBUGGING)
1352 md_obj_end ();
1353 }
1354
1355 void
1356 md_assemble (char *str)
1357 {
1358 struct mips_cl_insn insn;
1359 bfd_reloc_code_real_type unused_reloc[3]
1360 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1361
1362 imm_expr.X_op = O_absent;
1363 imm2_expr.X_op = O_absent;
1364 offset_expr.X_op = O_absent;
1365 imm_reloc[0] = BFD_RELOC_UNUSED;
1366 imm_reloc[1] = BFD_RELOC_UNUSED;
1367 imm_reloc[2] = BFD_RELOC_UNUSED;
1368 offset_reloc[0] = BFD_RELOC_UNUSED;
1369 offset_reloc[1] = BFD_RELOC_UNUSED;
1370 offset_reloc[2] = BFD_RELOC_UNUSED;
1371
1372 if (mips_opts.mips16)
1373 mips16_ip (str, &insn);
1374 else
1375 {
1376 mips_ip (str, &insn);
1377 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
1378 str, insn.insn_opcode));
1379 }
1380
1381 if (insn_error)
1382 {
1383 as_bad ("%s `%s'", insn_error, str);
1384 return;
1385 }
1386
1387 if (insn.insn_mo->pinfo == INSN_MACRO)
1388 {
1389 macro_start ();
1390 if (mips_opts.mips16)
1391 mips16_macro (&insn);
1392 else
1393 macro (&insn);
1394 macro_end ();
1395 }
1396 else
1397 {
1398 if (imm_expr.X_op != O_absent)
1399 append_insn (&insn, &imm_expr, imm_reloc);
1400 else if (offset_expr.X_op != O_absent)
1401 append_insn (&insn, &offset_expr, offset_reloc);
1402 else
1403 append_insn (&insn, NULL, unused_reloc);
1404 }
1405 }
1406
1407 /* Return true if the given relocation might need a matching %lo().
1408 Note that R_MIPS_GOT16 relocations only need a matching %lo() when
1409 applied to local symbols. */
1410
1411 static inline bfd_boolean
1412 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
1413 {
1414 return (reloc == BFD_RELOC_HI16_S
1415 || reloc == BFD_RELOC_MIPS_GOT16);
1416 }
1417
1418 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
1419 relocation. */
1420
1421 static inline bfd_boolean
1422 fixup_has_matching_lo_p (fixS *fixp)
1423 {
1424 return (fixp->fx_next != NULL
1425 && fixp->fx_next->fx_r_type == BFD_RELOC_LO16
1426 && fixp->fx_addsy == fixp->fx_next->fx_addsy
1427 && fixp->fx_offset == fixp->fx_next->fx_offset);
1428 }
1429
1430 /* See whether instruction IP reads register REG. CLASS is the type
1431 of register. */
1432
1433 static int
1434 insn_uses_reg (struct mips_cl_insn *ip, unsigned int reg,
1435 enum mips_regclass class)
1436 {
1437 if (class == MIPS16_REG)
1438 {
1439 assert (mips_opts.mips16);
1440 reg = mips16_to_32_reg_map[reg];
1441 class = MIPS_GR_REG;
1442 }
1443
1444 /* Don't report on general register ZERO, since it never changes. */
1445 if (class == MIPS_GR_REG && reg == ZERO)
1446 return 0;
1447
1448 if (class == MIPS_FP_REG)
1449 {
1450 assert (! mips_opts.mips16);
1451 /* If we are called with either $f0 or $f1, we must check $f0.
1452 This is not optimal, because it will introduce an unnecessary
1453 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
1454 need to distinguish reading both $f0 and $f1 or just one of
1455 them. Note that we don't have to check the other way,
1456 because there is no instruction that sets both $f0 and $f1
1457 and requires a delay. */
1458 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
1459 && ((((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS) &~(unsigned)1)
1460 == (reg &~ (unsigned) 1)))
1461 return 1;
1462 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
1463 && ((((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT) &~(unsigned)1)
1464 == (reg &~ (unsigned) 1)))
1465 return 1;
1466 }
1467 else if (! mips_opts.mips16)
1468 {
1469 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
1470 && ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == reg)
1471 return 1;
1472 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
1473 && ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT) == reg)
1474 return 1;
1475 }
1476 else
1477 {
1478 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
1479 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_RX)
1480 & MIPS16OP_MASK_RX)]
1481 == reg))
1482 return 1;
1483 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
1484 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_RY)
1485 & MIPS16OP_MASK_RY)]
1486 == reg))
1487 return 1;
1488 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
1489 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z)
1490 & MIPS16OP_MASK_MOVE32Z)]
1491 == reg))
1492 return 1;
1493 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
1494 return 1;
1495 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
1496 return 1;
1497 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
1498 return 1;
1499 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
1500 && ((ip->insn_opcode >> MIPS16OP_SH_REGR32)
1501 & MIPS16OP_MASK_REGR32) == reg)
1502 return 1;
1503 }
1504
1505 return 0;
1506 }
1507
1508 /* This function returns true if modifying a register requires a
1509 delay. */
1510
1511 static int
1512 reg_needs_delay (unsigned int reg)
1513 {
1514 unsigned long prev_pinfo;
1515
1516 prev_pinfo = prev_insn.insn_mo->pinfo;
1517 if (! mips_opts.noreorder
1518 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
1519 && ! gpr_interlocks)
1520 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
1521 && ! cop_interlocks)))
1522 {
1523 /* A load from a coprocessor or from memory. All load delays
1524 delay the use of general register rt for one instruction. */
1525 /* Itbl support may require additional care here. */
1526 know (prev_pinfo & INSN_WRITE_GPR_T);
1527 if (reg == ((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT))
1528 return 1;
1529 }
1530
1531 return 0;
1532 }
1533
1534 /* Mark instruction labels in mips16 mode. This permits the linker to
1535 handle them specially, such as generating jalx instructions when
1536 needed. We also make them odd for the duration of the assembly, in
1537 order to generate the right sort of code. We will make them even
1538 in the adjust_symtab routine, while leaving them marked. This is
1539 convenient for the debugger and the disassembler. The linker knows
1540 to make them odd again. */
1541
1542 static void
1543 mips16_mark_labels (void)
1544 {
1545 if (mips_opts.mips16)
1546 {
1547 struct insn_label_list *l;
1548 valueT val;
1549
1550 for (l = insn_labels; l != NULL; l = l->next)
1551 {
1552 #ifdef OBJ_ELF
1553 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1554 S_SET_OTHER (l->label, STO_MIPS16);
1555 #endif
1556 val = S_GET_VALUE (l->label);
1557 if ((val & 1) == 0)
1558 S_SET_VALUE (l->label, val + 1);
1559 }
1560 }
1561 }
1562
1563 /* End the current frag. Make it a variant frag and record the
1564 relaxation info. */
1565
1566 static void
1567 relax_close_frag (void)
1568 {
1569 mips_macro_warning.first_frag = frag_now;
1570 frag_var (rs_machine_dependent, 0, 0,
1571 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
1572 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
1573
1574 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
1575 mips_relax.first_fixup = 0;
1576 }
1577
1578 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
1579 See the comment above RELAX_ENCODE for more details. */
1580
1581 static void
1582 relax_start (symbolS *symbol)
1583 {
1584 assert (mips_relax.sequence == 0);
1585 mips_relax.sequence = 1;
1586 mips_relax.symbol = symbol;
1587 }
1588
1589 /* Start generating the second version of a relaxable sequence.
1590 See the comment above RELAX_ENCODE for more details. */
1591
1592 static void
1593 relax_switch (void)
1594 {
1595 assert (mips_relax.sequence == 1);
1596 mips_relax.sequence = 2;
1597 }
1598
1599 /* End the current relaxable sequence. */
1600
1601 static void
1602 relax_end (void)
1603 {
1604 assert (mips_relax.sequence == 2);
1605 relax_close_frag ();
1606 mips_relax.sequence = 0;
1607 }
1608
1609 /* Output an instruction. IP is the instruction information.
1610 ADDRESS_EXPR is an operand of the instruction to be used with
1611 RELOC_TYPE. */
1612
1613 static void
1614 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
1615 bfd_reloc_code_real_type *reloc_type)
1616 {
1617 register unsigned long prev_pinfo, pinfo;
1618 char *f;
1619 fixS *fixp[3];
1620 int nops = 0;
1621 relax_stateT prev_insn_frag_type = 0;
1622 bfd_boolean relaxed_branch = FALSE;
1623 bfd_boolean force_new_frag = FALSE;
1624
1625 /* Mark instruction labels in mips16 mode. */
1626 mips16_mark_labels ();
1627
1628 prev_pinfo = prev_insn.insn_mo->pinfo;
1629 pinfo = ip->insn_mo->pinfo;
1630
1631 if (mips_relax.sequence != 2
1632 && (!mips_opts.noreorder || prev_nop_frag != NULL))
1633 {
1634 int prev_prev_nop;
1635
1636 /* If the previous insn required any delay slots, see if we need
1637 to insert a NOP or two. There are eight kinds of possible
1638 hazards, of which an instruction can have at most one type.
1639 (1) a load from memory delay
1640 (2) a load from a coprocessor delay
1641 (3) an unconditional branch delay
1642 (4) a conditional branch delay
1643 (5) a move to coprocessor register delay
1644 (6) a load coprocessor register from memory delay
1645 (7) a coprocessor condition code delay
1646 (8) a HI/LO special register delay
1647
1648 There are a lot of optimizations we could do that we don't.
1649 In particular, we do not, in general, reorder instructions.
1650 If you use gcc with optimization, it will reorder
1651 instructions and generally do much more optimization then we
1652 do here; repeating all that work in the assembler would only
1653 benefit hand written assembly code, and does not seem worth
1654 it. */
1655
1656 /* This is how a NOP is emitted. */
1657 #define emit_nop() \
1658 (mips_opts.mips16 \
1659 ? md_number_to_chars (frag_more (2), 0x6500, 2) \
1660 : md_number_to_chars (frag_more (4), 0, 4))
1661
1662 /* The previous insn might require a delay slot, depending upon
1663 the contents of the current insn. */
1664 if (! mips_opts.mips16
1665 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
1666 && ! gpr_interlocks)
1667 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
1668 && ! cop_interlocks)))
1669 {
1670 /* A load from a coprocessor or from memory. All load
1671 delays delay the use of general register rt for one
1672 instruction. */
1673 /* Itbl support may require additional care here. */
1674 know (prev_pinfo & INSN_WRITE_GPR_T);
1675 if (mips_optimize == 0
1676 || insn_uses_reg (ip,
1677 ((prev_insn.insn_opcode >> OP_SH_RT)
1678 & OP_MASK_RT),
1679 MIPS_GR_REG))
1680 ++nops;
1681 }
1682 else if (! mips_opts.mips16
1683 && (((prev_pinfo & INSN_COPROC_MOVE_DELAY)
1684 && ! cop_interlocks)
1685 || ((prev_pinfo & INSN_COPROC_MEMORY_DELAY)
1686 && ! cop_mem_interlocks)))
1687 {
1688 /* A generic coprocessor delay. The previous instruction
1689 modified a coprocessor general or control register. If
1690 it modified a control register, we need to avoid any
1691 coprocessor instruction (this is probably not always
1692 required, but it sometimes is). If it modified a general
1693 register, we avoid using that register.
1694
1695 This case is not handled very well. There is no special
1696 knowledge of CP0 handling, and the coprocessors other
1697 than the floating point unit are not distinguished at
1698 all. */
1699 /* Itbl support may require additional care here. FIXME!
1700 Need to modify this to include knowledge about
1701 user specified delays! */
1702 if (prev_pinfo & INSN_WRITE_FPR_T)
1703 {
1704 if (mips_optimize == 0
1705 || insn_uses_reg (ip,
1706 ((prev_insn.insn_opcode >> OP_SH_FT)
1707 & OP_MASK_FT),
1708 MIPS_FP_REG))
1709 ++nops;
1710 }
1711 else if (prev_pinfo & INSN_WRITE_FPR_S)
1712 {
1713 if (mips_optimize == 0
1714 || insn_uses_reg (ip,
1715 ((prev_insn.insn_opcode >> OP_SH_FS)
1716 & OP_MASK_FS),
1717 MIPS_FP_REG))
1718 ++nops;
1719 }
1720 else
1721 {
1722 /* We don't know exactly what the previous instruction
1723 does. If the current instruction uses a coprocessor
1724 register, we must insert a NOP. If previous
1725 instruction may set the condition codes, and the
1726 current instruction uses them, we must insert two
1727 NOPS. */
1728 /* Itbl support may require additional care here. */
1729 if (mips_optimize == 0
1730 || ((prev_pinfo & INSN_WRITE_COND_CODE)
1731 && (pinfo & INSN_READ_COND_CODE)))
1732 nops += 2;
1733 else if (pinfo & INSN_COP)
1734 ++nops;
1735 }
1736 }
1737 else if (! mips_opts.mips16
1738 && (prev_pinfo & INSN_WRITE_COND_CODE)
1739 && ! cop_interlocks)
1740 {
1741 /* The previous instruction sets the coprocessor condition
1742 codes, but does not require a general coprocessor delay
1743 (this means it is a floating point comparison
1744 instruction). If this instruction uses the condition
1745 codes, we need to insert a single NOP. */
1746 /* Itbl support may require additional care here. */
1747 if (mips_optimize == 0
1748 || (pinfo & INSN_READ_COND_CODE))
1749 ++nops;
1750 }
1751
1752 /* If we're fixing up mfhi/mflo for the r7000 and the
1753 previous insn was an mfhi/mflo and the current insn
1754 reads the register that the mfhi/mflo wrote to, then
1755 insert two nops. */
1756
1757 else if (mips_7000_hilo_fix
1758 && MF_HILO_INSN (prev_pinfo)
1759 && insn_uses_reg (ip, ((prev_insn.insn_opcode >> OP_SH_RD)
1760 & OP_MASK_RD),
1761 MIPS_GR_REG))
1762 {
1763 nops += 2;
1764 }
1765
1766 /* If we're fixing up mfhi/mflo for the r7000 and the
1767 2nd previous insn was an mfhi/mflo and the current insn
1768 reads the register that the mfhi/mflo wrote to, then
1769 insert one nop. */
1770
1771 else if (mips_7000_hilo_fix
1772 && MF_HILO_INSN (prev_prev_insn.insn_opcode)
1773 && insn_uses_reg (ip, ((prev_prev_insn.insn_opcode >> OP_SH_RD)
1774 & OP_MASK_RD),
1775 MIPS_GR_REG))
1776
1777 {
1778 ++nops;
1779 }
1780
1781 else if (prev_pinfo & INSN_READ_LO)
1782 {
1783 /* The previous instruction reads the LO register; if the
1784 current instruction writes to the LO register, we must
1785 insert two NOPS. Some newer processors have interlocks.
1786 Also the tx39's multiply instructions can be executed
1787 immediately after a read from HI/LO (without the delay),
1788 though the tx39's divide insns still do require the
1789 delay. */
1790 if (! (hilo_interlocks
1791 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))
1792 && (mips_optimize == 0
1793 || (pinfo & INSN_WRITE_LO)))
1794 nops += 2;
1795 /* Most mips16 branch insns don't have a delay slot.
1796 If a read from LO is immediately followed by a branch
1797 to a write to LO we have a read followed by a write
1798 less than 2 insns away. We assume the target of
1799 a branch might be a write to LO, and insert a nop
1800 between a read and an immediately following branch. */
1801 else if (mips_opts.mips16
1802 && (mips_optimize == 0
1803 || (pinfo & MIPS16_INSN_BRANCH)))
1804 ++nops;
1805 }
1806 else if (prev_insn.insn_mo->pinfo & INSN_READ_HI)
1807 {
1808 /* The previous instruction reads the HI register; if the
1809 current instruction writes to the HI register, we must
1810 insert a NOP. Some newer processors have interlocks.
1811 Also the note tx39's multiply above. */
1812 if (! (hilo_interlocks
1813 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))
1814 && (mips_optimize == 0
1815 || (pinfo & INSN_WRITE_HI)))
1816 nops += 2;
1817 /* Most mips16 branch insns don't have a delay slot.
1818 If a read from HI is immediately followed by a branch
1819 to a write to HI we have a read followed by a write
1820 less than 2 insns away. We assume the target of
1821 a branch might be a write to HI, and insert a nop
1822 between a read and an immediately following branch. */
1823 else if (mips_opts.mips16
1824 && (mips_optimize == 0
1825 || (pinfo & MIPS16_INSN_BRANCH)))
1826 ++nops;
1827 }
1828
1829 /* If the previous instruction was in a noreorder section, then
1830 we don't want to insert the nop after all. */
1831 /* Itbl support may require additional care here. */
1832 if (prev_insn_unreordered)
1833 nops = 0;
1834
1835 /* There are two cases which require two intervening
1836 instructions: 1) setting the condition codes using a move to
1837 coprocessor instruction which requires a general coprocessor
1838 delay and then reading the condition codes 2) reading the HI
1839 or LO register and then writing to it (except on processors
1840 which have interlocks). If we are not already emitting a NOP
1841 instruction, we must check for these cases compared to the
1842 instruction previous to the previous instruction. */
1843 if ((! mips_opts.mips16
1844 && (prev_prev_insn.insn_mo->pinfo & INSN_COPROC_MOVE_DELAY)
1845 && (prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
1846 && (pinfo & INSN_READ_COND_CODE)
1847 && ! cop_interlocks)
1848 || ((prev_prev_insn.insn_mo->pinfo & INSN_READ_LO)
1849 && (pinfo & INSN_WRITE_LO)
1850 && ! (hilo_interlocks
1851 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT))))
1852 || ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
1853 && (pinfo & INSN_WRITE_HI)
1854 && ! (hilo_interlocks
1855 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))))
1856 prev_prev_nop = 1;
1857 else
1858 prev_prev_nop = 0;
1859
1860 if (prev_prev_insn_unreordered)
1861 prev_prev_nop = 0;
1862
1863 if (prev_prev_nop && nops == 0)
1864 ++nops;
1865
1866 if (mips_fix_vr4120 && prev_insn.insn_mo->name)
1867 {
1868 /* We're out of bits in pinfo, so we must resort to string
1869 ops here. Shortcuts are selected based on opcodes being
1870 limited to the VR4120 instruction set. */
1871 int min_nops = 0;
1872 const char *pn = prev_insn.insn_mo->name;
1873 const char *tn = ip->insn_mo->name;
1874 if (strncmp(pn, "macc", 4) == 0
1875 || strncmp(pn, "dmacc", 5) == 0)
1876 {
1877 /* Errata 21 - [D]DIV[U] after [D]MACC */
1878 if (strstr (tn, "div"))
1879 {
1880 min_nops = 1;
1881 }
1882
1883 /* Errata 23 - Continuous DMULT[U]/DMACC instructions */
1884 if (pn[0] == 'd' /* dmacc */
1885 && (strncmp(tn, "dmult", 5) == 0
1886 || strncmp(tn, "dmacc", 5) == 0))
1887 {
1888 min_nops = 1;
1889 }
1890
1891 /* Errata 24 - MT{LO,HI} after [D]MACC */
1892 if (strcmp (tn, "mtlo") == 0
1893 || strcmp (tn, "mthi") == 0)
1894 {
1895 min_nops = 1;
1896 }
1897
1898 }
1899 else if (strncmp(pn, "dmult", 5) == 0
1900 && (strncmp(tn, "dmult", 5) == 0
1901 || strncmp(tn, "dmacc", 5) == 0))
1902 {
1903 /* Here is the rest of errata 23. */
1904 min_nops = 1;
1905 }
1906 if (nops < min_nops)
1907 nops = min_nops;
1908 }
1909
1910 /* If we are being given a nop instruction, don't bother with
1911 one of the nops we would otherwise output. This will only
1912 happen when a nop instruction is used with mips_optimize set
1913 to 0. */
1914 if (nops > 0
1915 && ! mips_opts.noreorder
1916 && ip->insn_opcode == (unsigned) (mips_opts.mips16 ? 0x6500 : 0))
1917 --nops;
1918
1919 /* Now emit the right number of NOP instructions. */
1920 if (nops > 0 && ! mips_opts.noreorder)
1921 {
1922 fragS *old_frag;
1923 unsigned long old_frag_offset;
1924 int i;
1925 struct insn_label_list *l;
1926
1927 old_frag = frag_now;
1928 old_frag_offset = frag_now_fix ();
1929
1930 for (i = 0; i < nops; i++)
1931 emit_nop ();
1932
1933 if (listing)
1934 {
1935 listing_prev_line ();
1936 /* We may be at the start of a variant frag. In case we
1937 are, make sure there is enough space for the frag
1938 after the frags created by listing_prev_line. The
1939 argument to frag_grow here must be at least as large
1940 as the argument to all other calls to frag_grow in
1941 this file. We don't have to worry about being in the
1942 middle of a variant frag, because the variants insert
1943 all needed nop instructions themselves. */
1944 frag_grow (40);
1945 }
1946
1947 for (l = insn_labels; l != NULL; l = l->next)
1948 {
1949 valueT val;
1950
1951 assert (S_GET_SEGMENT (l->label) == now_seg);
1952 symbol_set_frag (l->label, frag_now);
1953 val = (valueT) frag_now_fix ();
1954 /* mips16 text labels are stored as odd. */
1955 if (mips_opts.mips16)
1956 ++val;
1957 S_SET_VALUE (l->label, val);
1958 }
1959
1960 #ifndef NO_ECOFF_DEBUGGING
1961 if (ECOFF_DEBUGGING)
1962 ecoff_fix_loc (old_frag, old_frag_offset);
1963 #endif
1964 }
1965 else if (prev_nop_frag != NULL)
1966 {
1967 /* We have a frag holding nops we may be able to remove. If
1968 we don't need any nops, we can decrease the size of
1969 prev_nop_frag by the size of one instruction. If we do
1970 need some nops, we count them in prev_nops_required. */
1971 if (prev_nop_frag_since == 0)
1972 {
1973 if (nops == 0)
1974 {
1975 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
1976 --prev_nop_frag_holds;
1977 }
1978 else
1979 prev_nop_frag_required += nops;
1980 }
1981 else
1982 {
1983 if (prev_prev_nop == 0)
1984 {
1985 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
1986 --prev_nop_frag_holds;
1987 }
1988 else
1989 ++prev_nop_frag_required;
1990 }
1991
1992 if (prev_nop_frag_holds <= prev_nop_frag_required)
1993 prev_nop_frag = NULL;
1994
1995 ++prev_nop_frag_since;
1996
1997 /* Sanity check: by the time we reach the second instruction
1998 after prev_nop_frag, we should have used up all the nops
1999 one way or another. */
2000 assert (prev_nop_frag_since <= 1 || prev_nop_frag == NULL);
2001 }
2002 }
2003
2004 /* Record the frag type before frag_var. */
2005 if (prev_insn_frag)
2006 prev_insn_frag_type = prev_insn_frag->fr_type;
2007
2008 if (address_expr
2009 && *reloc_type == BFD_RELOC_16_PCREL_S2
2010 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2011 || pinfo & INSN_COND_BRANCH_LIKELY)
2012 && mips_relax_branch
2013 /* Don't try branch relaxation within .set nomacro, or within
2014 .set noat if we use $at for PIC computations. If it turns
2015 out that the branch was out-of-range, we'll get an error. */
2016 && !mips_opts.warn_about_macros
2017 && !(mips_opts.noat && mips_pic != NO_PIC)
2018 && !mips_opts.mips16)
2019 {
2020 relaxed_branch = TRUE;
2021 f = frag_var (rs_machine_dependent,
2022 relaxed_branch_length
2023 (NULL, NULL,
2024 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2025 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1 : 0), 4,
2026 RELAX_BRANCH_ENCODE
2027 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2028 pinfo & INSN_COND_BRANCH_LIKELY,
2029 pinfo & INSN_WRITE_GPR_31,
2030 0),
2031 address_expr->X_add_symbol,
2032 address_expr->X_add_number,
2033 0);
2034 *reloc_type = BFD_RELOC_UNUSED;
2035 }
2036 else if (*reloc_type > BFD_RELOC_UNUSED)
2037 {
2038 /* We need to set up a variant frag. */
2039 assert (mips_opts.mips16 && address_expr != NULL);
2040 f = frag_var (rs_machine_dependent, 4, 0,
2041 RELAX_MIPS16_ENCODE (*reloc_type - BFD_RELOC_UNUSED,
2042 mips16_small, mips16_ext,
2043 (prev_pinfo
2044 & INSN_UNCOND_BRANCH_DELAY),
2045 (*prev_insn_reloc_type
2046 == BFD_RELOC_MIPS16_JMP)),
2047 make_expr_symbol (address_expr), 0, NULL);
2048 }
2049 else if (mips_opts.mips16
2050 && ! ip->use_extend
2051 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2052 {
2053 /* Make sure there is enough room to swap this instruction with
2054 a following jump instruction. */
2055 frag_grow (6);
2056 f = frag_more (2);
2057 }
2058 else
2059 {
2060 if (mips_opts.mips16
2061 && mips_opts.noreorder
2062 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2063 as_warn (_("extended instruction in delay slot"));
2064
2065 if (mips_relax.sequence)
2066 {
2067 /* If we've reached the end of this frag, turn it into a variant
2068 frag and record the information for the instructions we've
2069 written so far. */
2070 if (frag_room () < 4)
2071 relax_close_frag ();
2072 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2073 }
2074
2075 if (mips_relax.sequence != 2)
2076 mips_macro_warning.sizes[0] += 4;
2077 if (mips_relax.sequence != 1)
2078 mips_macro_warning.sizes[1] += 4;
2079
2080 f = frag_more (4);
2081 }
2082
2083 fixp[0] = fixp[1] = fixp[2] = NULL;
2084 if (address_expr != NULL && *reloc_type < BFD_RELOC_UNUSED)
2085 {
2086 if (address_expr->X_op == O_constant)
2087 {
2088 valueT tmp;
2089
2090 switch (*reloc_type)
2091 {
2092 case BFD_RELOC_32:
2093 ip->insn_opcode |= address_expr->X_add_number;
2094 break;
2095
2096 case BFD_RELOC_MIPS_HIGHEST:
2097 tmp = (address_expr->X_add_number
2098 + ((valueT) 0x8000 << 32) + 0x80008000) >> 16;
2099 tmp >>= 16;
2100 ip->insn_opcode |= (tmp >> 16) & 0xffff;
2101 break;
2102
2103 case BFD_RELOC_MIPS_HIGHER:
2104 tmp = (address_expr->X_add_number + 0x80008000) >> 16;
2105 ip->insn_opcode |= (tmp >> 16) & 0xffff;
2106 break;
2107
2108 case BFD_RELOC_HI16_S:
2109 ip->insn_opcode |= ((address_expr->X_add_number + 0x8000)
2110 >> 16) & 0xffff;
2111 break;
2112
2113 case BFD_RELOC_HI16:
2114 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
2115 break;
2116
2117 case BFD_RELOC_LO16:
2118 case BFD_RELOC_MIPS_GOT_DISP:
2119 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
2120 break;
2121
2122 case BFD_RELOC_MIPS_JMP:
2123 if ((address_expr->X_add_number & 3) != 0)
2124 as_bad (_("jump to misaligned address (0x%lx)"),
2125 (unsigned long) address_expr->X_add_number);
2126 if (address_expr->X_add_number & ~0xfffffff)
2127 as_bad (_("jump address range overflow (0x%lx)"),
2128 (unsigned long) address_expr->X_add_number);
2129 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
2130 break;
2131
2132 case BFD_RELOC_MIPS16_JMP:
2133 if ((address_expr->X_add_number & 3) != 0)
2134 as_bad (_("jump to misaligned address (0x%lx)"),
2135 (unsigned long) address_expr->X_add_number);
2136 if (address_expr->X_add_number & ~0xfffffff)
2137 as_bad (_("jump address range overflow (0x%lx)"),
2138 (unsigned long) address_expr->X_add_number);
2139 ip->insn_opcode |=
2140 (((address_expr->X_add_number & 0x7c0000) << 3)
2141 | ((address_expr->X_add_number & 0xf800000) >> 7)
2142 | ((address_expr->X_add_number & 0x3fffc) >> 2));
2143 break;
2144
2145 case BFD_RELOC_16_PCREL_S2:
2146 goto need_reloc;
2147
2148 default:
2149 internalError ();
2150 }
2151 }
2152 else
2153 need_reloc:
2154 {
2155 reloc_howto_type *howto;
2156 int i;
2157
2158 /* In a compound relocation, it is the final (outermost)
2159 operator that determines the relocated field. */
2160 for (i = 1; i < 3; i++)
2161 if (reloc_type[i] == BFD_RELOC_UNUSED)
2162 break;
2163
2164 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
2165 fixp[0] = fix_new_exp (frag_now, f - frag_now->fr_literal,
2166 bfd_get_reloc_size(howto),
2167 address_expr,
2168 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
2169 reloc_type[0]);
2170
2171 /* These relocations can have an addend that won't fit in
2172 4 octets for 64bit assembly. */
2173 if (HAVE_64BIT_GPRS
2174 && ! howto->partial_inplace
2175 && (reloc_type[0] == BFD_RELOC_16
2176 || reloc_type[0] == BFD_RELOC_32
2177 || reloc_type[0] == BFD_RELOC_MIPS_JMP
2178 || reloc_type[0] == BFD_RELOC_HI16_S
2179 || reloc_type[0] == BFD_RELOC_LO16
2180 || reloc_type[0] == BFD_RELOC_GPREL16
2181 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
2182 || reloc_type[0] == BFD_RELOC_GPREL32
2183 || reloc_type[0] == BFD_RELOC_64
2184 || reloc_type[0] == BFD_RELOC_CTOR
2185 || reloc_type[0] == BFD_RELOC_MIPS_SUB
2186 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
2187 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
2188 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
2189 || reloc_type[0] == BFD_RELOC_MIPS_REL16
2190 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT))
2191 fixp[0]->fx_no_overflow = 1;
2192
2193 if (mips_relax.sequence)
2194 {
2195 if (mips_relax.first_fixup == 0)
2196 mips_relax.first_fixup = fixp[0];
2197 }
2198 else if (reloc_needs_lo_p (*reloc_type))
2199 {
2200 struct mips_hi_fixup *hi_fixup;
2201
2202 /* Reuse the last entry if it already has a matching %lo. */
2203 hi_fixup = mips_hi_fixup_list;
2204 if (hi_fixup == 0
2205 || !fixup_has_matching_lo_p (hi_fixup->fixp))
2206 {
2207 hi_fixup = ((struct mips_hi_fixup *)
2208 xmalloc (sizeof (struct mips_hi_fixup)));
2209 hi_fixup->next = mips_hi_fixup_list;
2210 mips_hi_fixup_list = hi_fixup;
2211 }
2212 hi_fixup->fixp = fixp[0];
2213 hi_fixup->seg = now_seg;
2214 }
2215
2216 /* Add fixups for the second and third relocations, if given.
2217 Note that the ABI allows the second relocation to be
2218 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
2219 moment we only use RSS_UNDEF, but we could add support
2220 for the others if it ever becomes necessary. */
2221 for (i = 1; i < 3; i++)
2222 if (reloc_type[i] != BFD_RELOC_UNUSED)
2223 {
2224 address_expr->X_op = O_absent;
2225 address_expr->X_add_symbol = 0;
2226 address_expr->X_add_number = 0;
2227
2228 fixp[i] = fix_new_exp (frag_now, fixp[0]->fx_where,
2229 fixp[0]->fx_size, address_expr,
2230 FALSE, reloc_type[i]);
2231 }
2232 }
2233 }
2234
2235 if (! mips_opts.mips16)
2236 {
2237 md_number_to_chars (f, ip->insn_opcode, 4);
2238 #ifdef OBJ_ELF
2239 dwarf2_emit_insn (4);
2240 #endif
2241 }
2242 else if (*reloc_type == BFD_RELOC_MIPS16_JMP)
2243 {
2244 md_number_to_chars (f, ip->insn_opcode >> 16, 2);
2245 md_number_to_chars (f + 2, ip->insn_opcode & 0xffff, 2);
2246 #ifdef OBJ_ELF
2247 dwarf2_emit_insn (4);
2248 #endif
2249 }
2250 else
2251 {
2252 if (ip->use_extend)
2253 {
2254 md_number_to_chars (f, 0xf000 | ip->extend, 2);
2255 f += 2;
2256 }
2257 md_number_to_chars (f, ip->insn_opcode, 2);
2258 #ifdef OBJ_ELF
2259 dwarf2_emit_insn (ip->use_extend ? 4 : 2);
2260 #endif
2261 }
2262
2263 /* Update the register mask information. */
2264 if (! mips_opts.mips16)
2265 {
2266 if (pinfo & INSN_WRITE_GPR_D)
2267 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD);
2268 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
2269 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT);
2270 if (pinfo & INSN_READ_GPR_S)
2271 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS);
2272 if (pinfo & INSN_WRITE_GPR_31)
2273 mips_gprmask |= 1 << RA;
2274 if (pinfo & INSN_WRITE_FPR_D)
2275 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FD) & OP_MASK_FD);
2276 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
2277 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS);
2278 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
2279 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT);
2280 if ((pinfo & INSN_READ_FPR_R) != 0)
2281 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FR) & OP_MASK_FR);
2282 if (pinfo & INSN_COP)
2283 {
2284 /* We don't keep enough information to sort these cases out.
2285 The itbl support does keep this information however, although
2286 we currently don't support itbl fprmats as part of the cop
2287 instruction. May want to add this support in the future. */
2288 }
2289 /* Never set the bit for $0, which is always zero. */
2290 mips_gprmask &= ~1 << 0;
2291 }
2292 else
2293 {
2294 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
2295 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RX)
2296 & MIPS16OP_MASK_RX);
2297 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
2298 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RY)
2299 & MIPS16OP_MASK_RY);
2300 if (pinfo & MIPS16_INSN_WRITE_Z)
2301 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RZ)
2302 & MIPS16OP_MASK_RZ);
2303 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
2304 mips_gprmask |= 1 << TREG;
2305 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
2306 mips_gprmask |= 1 << SP;
2307 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
2308 mips_gprmask |= 1 << RA;
2309 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
2310 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
2311 if (pinfo & MIPS16_INSN_READ_Z)
2312 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z)
2313 & MIPS16OP_MASK_MOVE32Z);
2314 if (pinfo & MIPS16_INSN_READ_GPR_X)
2315 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_REGR32)
2316 & MIPS16OP_MASK_REGR32);
2317 }
2318
2319 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2320 {
2321 /* Filling the branch delay slot is more complex. We try to
2322 switch the branch with the previous instruction, which we can
2323 do if the previous instruction does not set up a condition
2324 that the branch tests and if the branch is not itself the
2325 target of any branch. */
2326 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
2327 || (pinfo & INSN_COND_BRANCH_DELAY))
2328 {
2329 if (mips_optimize < 2
2330 /* If we have seen .set volatile or .set nomove, don't
2331 optimize. */
2332 || mips_opts.nomove != 0
2333 /* If we had to emit any NOP instructions, then we
2334 already know we can not swap. */
2335 || nops != 0
2336 /* If we don't even know the previous insn, we can not
2337 swap. */
2338 || ! prev_insn_valid
2339 /* If the previous insn is already in a branch delay
2340 slot, then we can not swap. */
2341 || prev_insn_is_delay_slot
2342 /* If the previous previous insn was in a .set
2343 noreorder, we can't swap. Actually, the MIPS
2344 assembler will swap in this situation. However, gcc
2345 configured -with-gnu-as will generate code like
2346 .set noreorder
2347 lw $4,XXX
2348 .set reorder
2349 INSN
2350 bne $4,$0,foo
2351 in which we can not swap the bne and INSN. If gcc is
2352 not configured -with-gnu-as, it does not output the
2353 .set pseudo-ops. We don't have to check
2354 prev_insn_unreordered, because prev_insn_valid will
2355 be 0 in that case. We don't want to use
2356 prev_prev_insn_valid, because we do want to be able
2357 to swap at the start of a function. */
2358 || prev_prev_insn_unreordered
2359 /* If the branch is itself the target of a branch, we
2360 can not swap. We cheat on this; all we check for is
2361 whether there is a label on this instruction. If
2362 there are any branches to anything other than a
2363 label, users must use .set noreorder. */
2364 || insn_labels != NULL
2365 /* If the previous instruction is in a variant frag
2366 other than this branch's one, we cannot do the swap.
2367 This does not apply to the mips16, which uses variant
2368 frags for different purposes. */
2369 || (! mips_opts.mips16
2370 && prev_insn_frag_type == rs_machine_dependent)
2371 /* If the branch reads the condition codes, we don't
2372 even try to swap, because in the sequence
2373 ctc1 $X,$31
2374 INSN
2375 INSN
2376 bc1t LABEL
2377 we can not swap, and I don't feel like handling that
2378 case. */
2379 || (! mips_opts.mips16
2380 && (pinfo & INSN_READ_COND_CODE)
2381 && ! cop_interlocks)
2382 /* We can not swap with an instruction that requires a
2383 delay slot, because the target of the branch might
2384 interfere with that instruction. */
2385 || (! mips_opts.mips16
2386 && (prev_pinfo
2387 /* Itbl support may require additional care here. */
2388 & (INSN_LOAD_COPROC_DELAY
2389 | INSN_COPROC_MOVE_DELAY
2390 | INSN_WRITE_COND_CODE))
2391 && ! cop_interlocks)
2392 || (! (hilo_interlocks
2393 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))
2394 && (prev_pinfo
2395 & (INSN_READ_LO
2396 | INSN_READ_HI)))
2397 || (! mips_opts.mips16
2398 && (prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2399 && ! gpr_interlocks)
2400 || (! mips_opts.mips16
2401 /* Itbl support may require additional care here. */
2402 && (prev_pinfo & INSN_COPROC_MEMORY_DELAY)
2403 && ! cop_mem_interlocks)
2404 /* We can not swap with a branch instruction. */
2405 || (prev_pinfo
2406 & (INSN_UNCOND_BRANCH_DELAY
2407 | INSN_COND_BRANCH_DELAY
2408 | INSN_COND_BRANCH_LIKELY))
2409 /* We do not swap with a trap instruction, since it
2410 complicates trap handlers to have the trap
2411 instruction be in a delay slot. */
2412 || (prev_pinfo & INSN_TRAP)
2413 /* If the branch reads a register that the previous
2414 instruction sets, we can not swap. */
2415 || (! mips_opts.mips16
2416 && (prev_pinfo & INSN_WRITE_GPR_T)
2417 && insn_uses_reg (ip,
2418 ((prev_insn.insn_opcode >> OP_SH_RT)
2419 & OP_MASK_RT),
2420 MIPS_GR_REG))
2421 || (! mips_opts.mips16
2422 && (prev_pinfo & INSN_WRITE_GPR_D)
2423 && insn_uses_reg (ip,
2424 ((prev_insn.insn_opcode >> OP_SH_RD)
2425 & OP_MASK_RD),
2426 MIPS_GR_REG))
2427 || (mips_opts.mips16
2428 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
2429 && insn_uses_reg (ip,
2430 ((prev_insn.insn_opcode
2431 >> MIPS16OP_SH_RX)
2432 & MIPS16OP_MASK_RX),
2433 MIPS16_REG))
2434 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
2435 && insn_uses_reg (ip,
2436 ((prev_insn.insn_opcode
2437 >> MIPS16OP_SH_RY)
2438 & MIPS16OP_MASK_RY),
2439 MIPS16_REG))
2440 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
2441 && insn_uses_reg (ip,
2442 ((prev_insn.insn_opcode
2443 >> MIPS16OP_SH_RZ)
2444 & MIPS16OP_MASK_RZ),
2445 MIPS16_REG))
2446 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
2447 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
2448 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
2449 && insn_uses_reg (ip, RA, MIPS_GR_REG))
2450 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2451 && insn_uses_reg (ip,
2452 MIPS16OP_EXTRACT_REG32R (prev_insn.
2453 insn_opcode),
2454 MIPS_GR_REG))))
2455 /* If the branch writes a register that the previous
2456 instruction sets, we can not swap (we know that
2457 branches write only to RD or to $31). */
2458 || (! mips_opts.mips16
2459 && (prev_pinfo & INSN_WRITE_GPR_T)
2460 && (((pinfo & INSN_WRITE_GPR_D)
2461 && (((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT)
2462 == ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
2463 || ((pinfo & INSN_WRITE_GPR_31)
2464 && (((prev_insn.insn_opcode >> OP_SH_RT)
2465 & OP_MASK_RT)
2466 == RA))))
2467 || (! mips_opts.mips16
2468 && (prev_pinfo & INSN_WRITE_GPR_D)
2469 && (((pinfo & INSN_WRITE_GPR_D)
2470 && (((prev_insn.insn_opcode >> OP_SH_RD) & OP_MASK_RD)
2471 == ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
2472 || ((pinfo & INSN_WRITE_GPR_31)
2473 && (((prev_insn.insn_opcode >> OP_SH_RD)
2474 & OP_MASK_RD)
2475 == RA))))
2476 || (mips_opts.mips16
2477 && (pinfo & MIPS16_INSN_WRITE_31)
2478 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
2479 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2480 && (MIPS16OP_EXTRACT_REG32R (prev_insn.insn_opcode)
2481 == RA))))
2482 /* If the branch writes a register that the previous
2483 instruction reads, we can not swap (we know that
2484 branches only write to RD or to $31). */
2485 || (! mips_opts.mips16
2486 && (pinfo & INSN_WRITE_GPR_D)
2487 && insn_uses_reg (&prev_insn,
2488 ((ip->insn_opcode >> OP_SH_RD)
2489 & OP_MASK_RD),
2490 MIPS_GR_REG))
2491 || (! mips_opts.mips16
2492 && (pinfo & INSN_WRITE_GPR_31)
2493 && insn_uses_reg (&prev_insn, RA, MIPS_GR_REG))
2494 || (mips_opts.mips16
2495 && (pinfo & MIPS16_INSN_WRITE_31)
2496 && insn_uses_reg (&prev_insn, RA, MIPS_GR_REG))
2497 /* If we are generating embedded PIC code, the branch
2498 might be expanded into a sequence which uses $at, so
2499 we can't swap with an instruction which reads it. */
2500 || (mips_pic == EMBEDDED_PIC
2501 && insn_uses_reg (&prev_insn, AT, MIPS_GR_REG))
2502 /* If the previous previous instruction has a load
2503 delay, and sets a register that the branch reads, we
2504 can not swap. */
2505 || (! mips_opts.mips16
2506 /* Itbl support may require additional care here. */
2507 && (((prev_prev_insn.insn_mo->pinfo & INSN_LOAD_COPROC_DELAY)
2508 && ! cop_interlocks)
2509 || ((prev_prev_insn.insn_mo->pinfo
2510 & INSN_LOAD_MEMORY_DELAY)
2511 && ! gpr_interlocks))
2512 && insn_uses_reg (ip,
2513 ((prev_prev_insn.insn_opcode >> OP_SH_RT)
2514 & OP_MASK_RT),
2515 MIPS_GR_REG))
2516 /* If one instruction sets a condition code and the
2517 other one uses a condition code, we can not swap. */
2518 || ((pinfo & INSN_READ_COND_CODE)
2519 && (prev_pinfo & INSN_WRITE_COND_CODE))
2520 || ((pinfo & INSN_WRITE_COND_CODE)
2521 && (prev_pinfo & INSN_READ_COND_CODE))
2522 /* If the previous instruction uses the PC, we can not
2523 swap. */
2524 || (mips_opts.mips16
2525 && (prev_pinfo & MIPS16_INSN_READ_PC))
2526 /* If the previous instruction was extended, we can not
2527 swap. */
2528 || (mips_opts.mips16 && prev_insn_extended)
2529 /* If the previous instruction had a fixup in mips16
2530 mode, we can not swap. This normally means that the
2531 previous instruction was a 4 byte branch anyhow. */
2532 || (mips_opts.mips16 && prev_insn_fixp[0])
2533 /* If the previous instruction is a sync, sync.l, or
2534 sync.p, we can not swap. */
2535 || (prev_pinfo & INSN_SYNC))
2536 {
2537 /* We could do even better for unconditional branches to
2538 portions of this object file; we could pick up the
2539 instruction at the destination, put it in the delay
2540 slot, and bump the destination address. */
2541 emit_nop ();
2542 /* Update the previous insn information. */
2543 prev_prev_insn = *ip;
2544 prev_insn.insn_mo = &dummy_opcode;
2545 }
2546 else
2547 {
2548 /* It looks like we can actually do the swap. */
2549 if (! mips_opts.mips16)
2550 {
2551 char *prev_f;
2552 char temp[4];
2553
2554 prev_f = prev_insn_frag->fr_literal + prev_insn_where;
2555 if (!relaxed_branch)
2556 {
2557 /* If this is not a relaxed branch, then just
2558 swap the instructions. */
2559 memcpy (temp, prev_f, 4);
2560 memcpy (prev_f, f, 4);
2561 memcpy (f, temp, 4);
2562 }
2563 else
2564 {
2565 /* If this is a relaxed branch, then we move the
2566 instruction to be placed in the delay slot to
2567 the current frag, shrinking the fixed part of
2568 the originating frag. If the branch occupies
2569 the tail of the latter, we move it backwards,
2570 into the space freed by the moved instruction. */
2571 f = frag_more (4);
2572 memcpy (f, prev_f, 4);
2573 prev_insn_frag->fr_fix -= 4;
2574 if (prev_insn_frag->fr_type == rs_machine_dependent)
2575 memmove (prev_f, prev_f + 4, prev_insn_frag->fr_var);
2576 }
2577
2578 if (prev_insn_fixp[0])
2579 {
2580 prev_insn_fixp[0]->fx_frag = frag_now;
2581 prev_insn_fixp[0]->fx_where = f - frag_now->fr_literal;
2582 }
2583 if (prev_insn_fixp[1])
2584 {
2585 prev_insn_fixp[1]->fx_frag = frag_now;
2586 prev_insn_fixp[1]->fx_where = f - frag_now->fr_literal;
2587 }
2588 if (prev_insn_fixp[2])
2589 {
2590 prev_insn_fixp[2]->fx_frag = frag_now;
2591 prev_insn_fixp[2]->fx_where = f - frag_now->fr_literal;
2592 }
2593 if (prev_insn_fixp[0] && HAVE_NEWABI
2594 && prev_insn_frag != frag_now
2595 && (prev_insn_fixp[0]->fx_r_type
2596 == BFD_RELOC_MIPS_GOT_DISP
2597 || (prev_insn_fixp[0]->fx_r_type
2598 == BFD_RELOC_MIPS_CALL16)))
2599 {
2600 /* To avoid confusion in tc_gen_reloc, we must
2601 ensure that this does not become a variant
2602 frag. */
2603 force_new_frag = TRUE;
2604 }
2605
2606 if (!relaxed_branch)
2607 {
2608 if (fixp[0])
2609 {
2610 fixp[0]->fx_frag = prev_insn_frag;
2611 fixp[0]->fx_where = prev_insn_where;
2612 }
2613 if (fixp[1])
2614 {
2615 fixp[1]->fx_frag = prev_insn_frag;
2616 fixp[1]->fx_where = prev_insn_where;
2617 }
2618 if (fixp[2])
2619 {
2620 fixp[2]->fx_frag = prev_insn_frag;
2621 fixp[2]->fx_where = prev_insn_where;
2622 }
2623 }
2624 else if (prev_insn_frag->fr_type == rs_machine_dependent)
2625 {
2626 if (fixp[0])
2627 fixp[0]->fx_where -= 4;
2628 if (fixp[1])
2629 fixp[1]->fx_where -= 4;
2630 if (fixp[2])
2631 fixp[2]->fx_where -= 4;
2632 }
2633 }
2634 else
2635 {
2636 char *prev_f;
2637 char temp[2];
2638
2639 assert (prev_insn_fixp[0] == NULL);
2640 assert (prev_insn_fixp[1] == NULL);
2641 assert (prev_insn_fixp[2] == NULL);
2642 prev_f = prev_insn_frag->fr_literal + prev_insn_where;
2643 memcpy (temp, prev_f, 2);
2644 memcpy (prev_f, f, 2);
2645 if (*reloc_type != BFD_RELOC_MIPS16_JMP)
2646 {
2647 assert (*reloc_type == BFD_RELOC_UNUSED);
2648 memcpy (f, temp, 2);
2649 }
2650 else
2651 {
2652 memcpy (f, f + 2, 2);
2653 memcpy (f + 2, temp, 2);
2654 }
2655 if (fixp[0])
2656 {
2657 fixp[0]->fx_frag = prev_insn_frag;
2658 fixp[0]->fx_where = prev_insn_where;
2659 }
2660 if (fixp[1])
2661 {
2662 fixp[1]->fx_frag = prev_insn_frag;
2663 fixp[1]->fx_where = prev_insn_where;
2664 }
2665 if (fixp[2])
2666 {
2667 fixp[2]->fx_frag = prev_insn_frag;
2668 fixp[2]->fx_where = prev_insn_where;
2669 }
2670 }
2671
2672 /* Update the previous insn information; leave prev_insn
2673 unchanged. */
2674 prev_prev_insn = *ip;
2675 }
2676 prev_insn_is_delay_slot = 1;
2677
2678 /* If that was an unconditional branch, forget the previous
2679 insn information. */
2680 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
2681 {
2682 prev_prev_insn.insn_mo = &dummy_opcode;
2683 prev_insn.insn_mo = &dummy_opcode;
2684 }
2685
2686 prev_insn_fixp[0] = NULL;
2687 prev_insn_fixp[1] = NULL;
2688 prev_insn_fixp[2] = NULL;
2689 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2690 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2691 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2692 prev_insn_extended = 0;
2693 }
2694 else if (pinfo & INSN_COND_BRANCH_LIKELY)
2695 {
2696 /* We don't yet optimize a branch likely. What we should do
2697 is look at the target, copy the instruction found there
2698 into the delay slot, and increment the branch to jump to
2699 the next instruction. */
2700 emit_nop ();
2701 /* Update the previous insn information. */
2702 prev_prev_insn = *ip;
2703 prev_insn.insn_mo = &dummy_opcode;
2704 prev_insn_fixp[0] = NULL;
2705 prev_insn_fixp[1] = NULL;
2706 prev_insn_fixp[2] = NULL;
2707 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2708 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2709 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2710 prev_insn_extended = 0;
2711 }
2712 else
2713 {
2714 /* Update the previous insn information. */
2715 if (nops > 0)
2716 prev_prev_insn.insn_mo = &dummy_opcode;
2717 else
2718 prev_prev_insn = prev_insn;
2719 prev_insn = *ip;
2720
2721 /* Any time we see a branch, we always fill the delay slot
2722 immediately; since this insn is not a branch, we know it
2723 is not in a delay slot. */
2724 prev_insn_is_delay_slot = 0;
2725
2726 prev_insn_fixp[0] = fixp[0];
2727 prev_insn_fixp[1] = fixp[1];
2728 prev_insn_fixp[2] = fixp[2];
2729 prev_insn_reloc_type[0] = reloc_type[0];
2730 prev_insn_reloc_type[1] = reloc_type[1];
2731 prev_insn_reloc_type[2] = reloc_type[2];
2732 if (mips_opts.mips16)
2733 prev_insn_extended = (ip->use_extend
2734 || *reloc_type > BFD_RELOC_UNUSED);
2735 }
2736
2737 prev_prev_insn_unreordered = prev_insn_unreordered;
2738 prev_insn_unreordered = 0;
2739 prev_insn_frag = frag_now;
2740 prev_insn_where = f - frag_now->fr_literal;
2741 prev_insn_valid = 1;
2742 }
2743 else if (mips_relax.sequence != 2)
2744 {
2745 /* We need to record a bit of information even when we are not
2746 reordering, in order to determine the base address for mips16
2747 PC relative relocs. */
2748 prev_prev_insn = prev_insn;
2749 prev_insn = *ip;
2750 prev_insn_reloc_type[0] = reloc_type[0];
2751 prev_insn_reloc_type[1] = reloc_type[1];
2752 prev_insn_reloc_type[2] = reloc_type[2];
2753 prev_prev_insn_unreordered = prev_insn_unreordered;
2754 prev_insn_unreordered = 1;
2755 }
2756
2757 /* We just output an insn, so the next one doesn't have a label. */
2758 mips_clear_insn_labels ();
2759 }
2760
2761 /* This function forgets that there was any previous instruction or
2762 label. If PRESERVE is non-zero, it remembers enough information to
2763 know whether nops are needed before a noreorder section. */
2764
2765 static void
2766 mips_no_prev_insn (int preserve)
2767 {
2768 if (! preserve)
2769 {
2770 prev_insn.insn_mo = &dummy_opcode;
2771 prev_prev_insn.insn_mo = &dummy_opcode;
2772 prev_nop_frag = NULL;
2773 prev_nop_frag_holds = 0;
2774 prev_nop_frag_required = 0;
2775 prev_nop_frag_since = 0;
2776 }
2777 prev_insn_valid = 0;
2778 prev_insn_is_delay_slot = 0;
2779 prev_insn_unreordered = 0;
2780 prev_insn_extended = 0;
2781 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2782 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2783 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2784 prev_prev_insn_unreordered = 0;
2785 mips_clear_insn_labels ();
2786 }
2787
2788 /* This function must be called whenever we turn on noreorder or emit
2789 something other than instructions. It inserts any NOPS which might
2790 be needed by the previous instruction, and clears the information
2791 kept for the previous instructions. The INSNS parameter is true if
2792 instructions are to follow. */
2793
2794 static void
2795 mips_emit_delays (bfd_boolean insns)
2796 {
2797 if (! mips_opts.noreorder)
2798 {
2799 int nops;
2800
2801 nops = 0;
2802 if ((! mips_opts.mips16
2803 && ((prev_insn.insn_mo->pinfo
2804 & (INSN_LOAD_COPROC_DELAY
2805 | INSN_COPROC_MOVE_DELAY
2806 | INSN_WRITE_COND_CODE))
2807 && ! cop_interlocks))
2808 || (! hilo_interlocks
2809 && (prev_insn.insn_mo->pinfo
2810 & (INSN_READ_LO
2811 | INSN_READ_HI)))
2812 || (! mips_opts.mips16
2813 && (prev_insn.insn_mo->pinfo & INSN_LOAD_MEMORY_DELAY)
2814 && ! gpr_interlocks)
2815 || (! mips_opts.mips16
2816 && (prev_insn.insn_mo->pinfo & INSN_COPROC_MEMORY_DELAY)
2817 && ! cop_mem_interlocks))
2818 {
2819 /* Itbl support may require additional care here. */
2820 ++nops;
2821 if ((! mips_opts.mips16
2822 && ((prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
2823 && ! cop_interlocks))
2824 || (! hilo_interlocks
2825 && ((prev_insn.insn_mo->pinfo & INSN_READ_HI)
2826 || (prev_insn.insn_mo->pinfo & INSN_READ_LO))))
2827 ++nops;
2828
2829 if (prev_insn_unreordered)
2830 nops = 0;
2831 }
2832 else if ((! mips_opts.mips16
2833 && ((prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
2834 && ! cop_interlocks))
2835 || (! hilo_interlocks
2836 && ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
2837 || (prev_prev_insn.insn_mo->pinfo & INSN_READ_LO))))
2838 {
2839 /* Itbl support may require additional care here. */
2840 if (! prev_prev_insn_unreordered)
2841 ++nops;
2842 }
2843
2844 if (mips_fix_vr4120 && prev_insn.insn_mo->name)
2845 {
2846 int min_nops = 0;
2847 const char *pn = prev_insn.insn_mo->name;
2848 if (strncmp(pn, "macc", 4) == 0
2849 || strncmp(pn, "dmacc", 5) == 0
2850 || strncmp(pn, "dmult", 5) == 0)
2851 {
2852 min_nops = 1;
2853 }
2854 if (nops < min_nops)
2855 nops = min_nops;
2856 }
2857
2858 if (nops > 0)
2859 {
2860 struct insn_label_list *l;
2861
2862 if (insns)
2863 {
2864 /* Record the frag which holds the nop instructions, so
2865 that we can remove them if we don't need them. */
2866 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
2867 prev_nop_frag = frag_now;
2868 prev_nop_frag_holds = nops;
2869 prev_nop_frag_required = 0;
2870 prev_nop_frag_since = 0;
2871 }
2872
2873 for (; nops > 0; --nops)
2874 emit_nop ();
2875
2876 if (insns)
2877 {
2878 /* Move on to a new frag, so that it is safe to simply
2879 decrease the size of prev_nop_frag. */
2880 frag_wane (frag_now);
2881 frag_new (0);
2882 }
2883
2884 for (l = insn_labels; l != NULL; l = l->next)
2885 {
2886 valueT val;
2887
2888 assert (S_GET_SEGMENT (l->label) == now_seg);
2889 symbol_set_frag (l->label, frag_now);
2890 val = (valueT) frag_now_fix ();
2891 /* mips16 text labels are stored as odd. */
2892 if (mips_opts.mips16)
2893 ++val;
2894 S_SET_VALUE (l->label, val);
2895 }
2896 }
2897 }
2898
2899 /* Mark instruction labels in mips16 mode. */
2900 if (insns)
2901 mips16_mark_labels ();
2902
2903 mips_no_prev_insn (insns);
2904 }
2905
2906 /* Set up global variables for the start of a new macro. */
2907
2908 static void
2909 macro_start (void)
2910 {
2911 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
2912 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
2913 && (prev_insn.insn_mo->pinfo
2914 & (INSN_UNCOND_BRANCH_DELAY
2915 | INSN_COND_BRANCH_DELAY
2916 | INSN_COND_BRANCH_LIKELY)) != 0);
2917 }
2918
2919 /* Given that a macro is longer than 4 bytes, return the appropriate warning
2920 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
2921 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
2922
2923 static const char *
2924 macro_warning (relax_substateT subtype)
2925 {
2926 if (subtype & RELAX_DELAY_SLOT)
2927 return _("Macro instruction expanded into multiple instructions"
2928 " in a branch delay slot");
2929 else if (subtype & RELAX_NOMACRO)
2930 return _("Macro instruction expanded into multiple instructions");
2931 else
2932 return 0;
2933 }
2934
2935 /* Finish up a macro. Emit warnings as appropriate. */
2936
2937 static void
2938 macro_end (void)
2939 {
2940 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
2941 {
2942 relax_substateT subtype;
2943
2944 /* Set up the relaxation warning flags. */
2945 subtype = 0;
2946 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
2947 subtype |= RELAX_SECOND_LONGER;
2948 if (mips_opts.warn_about_macros)
2949 subtype |= RELAX_NOMACRO;
2950 if (mips_macro_warning.delay_slot_p)
2951 subtype |= RELAX_DELAY_SLOT;
2952
2953 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
2954 {
2955 /* Either the macro has a single implementation or both
2956 implementations are longer than 4 bytes. Emit the
2957 warning now. */
2958 const char *msg = macro_warning (subtype);
2959 if (msg != 0)
2960 as_warn (msg);
2961 }
2962 else
2963 {
2964 /* One implementation might need a warning but the other
2965 definitely doesn't. */
2966 mips_macro_warning.first_frag->fr_subtype |= subtype;
2967 }
2968 }
2969 }
2970
2971 /* Build an instruction created by a macro expansion. This is passed
2972 a pointer to the count of instructions created so far, an
2973 expression, the name of the instruction to build, an operand format
2974 string, and corresponding arguments. */
2975
2976 static void
2977 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
2978 {
2979 struct mips_cl_insn insn;
2980 bfd_reloc_code_real_type r[3];
2981 va_list args;
2982
2983 va_start (args, fmt);
2984
2985 if (mips_opts.mips16)
2986 {
2987 mips16_macro_build (ep, name, fmt, args);
2988 va_end (args);
2989 return;
2990 }
2991
2992 r[0] = BFD_RELOC_UNUSED;
2993 r[1] = BFD_RELOC_UNUSED;
2994 r[2] = BFD_RELOC_UNUSED;
2995 insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
2996 assert (insn.insn_mo);
2997 assert (strcmp (name, insn.insn_mo->name) == 0);
2998
2999 /* Search until we get a match for NAME. */
3000 while (1)
3001 {
3002 /* It is assumed here that macros will never generate
3003 MDMX or MIPS-3D instructions. */
3004 if (strcmp (fmt, insn.insn_mo->args) == 0
3005 && insn.insn_mo->pinfo != INSN_MACRO
3006 && OPCODE_IS_MEMBER (insn.insn_mo,
3007 (mips_opts.isa
3008 | (file_ase_mips16 ? INSN_MIPS16 : 0)),
3009 mips_opts.arch)
3010 && (mips_opts.arch != CPU_R4650 || (insn.insn_mo->pinfo & FP_D) == 0))
3011 break;
3012
3013 ++insn.insn_mo;
3014 assert (insn.insn_mo->name);
3015 assert (strcmp (name, insn.insn_mo->name) == 0);
3016 }
3017
3018 insn.insn_opcode = insn.insn_mo->match;
3019 for (;;)
3020 {
3021 switch (*fmt++)
3022 {
3023 case '\0':
3024 break;
3025
3026 case ',':
3027 case '(':
3028 case ')':
3029 continue;
3030
3031 case '+':
3032 switch (*fmt++)
3033 {
3034 case 'A':
3035 case 'E':
3036 insn.insn_opcode |= (va_arg (args, int)
3037 & OP_MASK_SHAMT) << OP_SH_SHAMT;
3038 continue;
3039
3040 case 'B':
3041 case 'F':
3042 /* Note that in the macro case, these arguments are already
3043 in MSB form. (When handling the instruction in the
3044 non-macro case, these arguments are sizes from which
3045 MSB values must be calculated.) */
3046 insn.insn_opcode |= (va_arg (args, int)
3047 & OP_MASK_INSMSB) << OP_SH_INSMSB;
3048 continue;
3049
3050 case 'C':
3051 case 'G':
3052 case 'H':
3053 /* Note that in the macro case, these arguments are already
3054 in MSBD form. (When handling the instruction in the
3055 non-macro case, these arguments are sizes from which
3056 MSBD values must be calculated.) */
3057 insn.insn_opcode |= (va_arg (args, int)
3058 & OP_MASK_EXTMSBD) << OP_SH_EXTMSBD;
3059 continue;
3060
3061 default:
3062 internalError ();
3063 }
3064 continue;
3065
3066 case 't':
3067 case 'w':
3068 case 'E':
3069 insn.insn_opcode |= va_arg (args, int) << OP_SH_RT;
3070 continue;
3071
3072 case 'c':
3073 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE;
3074 continue;
3075
3076 case 'T':
3077 case 'W':
3078 insn.insn_opcode |= va_arg (args, int) << OP_SH_FT;
3079 continue;
3080
3081 case 'd':
3082 case 'G':
3083 case 'K':
3084 insn.insn_opcode |= va_arg (args, int) << OP_SH_RD;
3085 continue;
3086
3087 case 'U':
3088 {
3089 int tmp = va_arg (args, int);
3090
3091 insn.insn_opcode |= tmp << OP_SH_RT;
3092 insn.insn_opcode |= tmp << OP_SH_RD;
3093 continue;
3094 }
3095
3096 case 'V':
3097 case 'S':
3098 insn.insn_opcode |= va_arg (args, int) << OP_SH_FS;
3099 continue;
3100
3101 case 'z':
3102 continue;
3103
3104 case '<':
3105 insn.insn_opcode |= va_arg (args, int) << OP_SH_SHAMT;
3106 continue;
3107
3108 case 'D':
3109 insn.insn_opcode |= va_arg (args, int) << OP_SH_FD;
3110 continue;
3111
3112 case 'B':
3113 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE20;
3114 continue;
3115
3116 case 'J':
3117 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE19;
3118 continue;
3119
3120 case 'q':
3121 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE2;
3122 continue;
3123
3124 case 'b':
3125 case 's':
3126 case 'r':
3127 case 'v':
3128 insn.insn_opcode |= va_arg (args, int) << OP_SH_RS;
3129 continue;
3130
3131 case 'i':
3132 case 'j':
3133 case 'o':
3134 *r = (bfd_reloc_code_real_type) va_arg (args, int);
3135 assert (*r == BFD_RELOC_GPREL16
3136 || *r == BFD_RELOC_MIPS_LITERAL
3137 || *r == BFD_RELOC_MIPS_HIGHER
3138 || *r == BFD_RELOC_HI16_S
3139 || *r == BFD_RELOC_LO16
3140 || *r == BFD_RELOC_MIPS_GOT16
3141 || *r == BFD_RELOC_MIPS_CALL16
3142 || *r == BFD_RELOC_MIPS_GOT_DISP
3143 || *r == BFD_RELOC_MIPS_GOT_PAGE
3144 || *r == BFD_RELOC_MIPS_GOT_OFST
3145 || *r == BFD_RELOC_MIPS_GOT_LO16
3146 || *r == BFD_RELOC_MIPS_CALL_LO16
3147 || (ep->X_op == O_subtract
3148 && *r == BFD_RELOC_PCREL_LO16));
3149 continue;
3150
3151 case 'u':
3152 *r = (bfd_reloc_code_real_type) va_arg (args, int);
3153 assert (ep != NULL
3154 && (ep->X_op == O_constant
3155 || (ep->X_op == O_symbol
3156 && (*r == BFD_RELOC_MIPS_HIGHEST
3157 || *r == BFD_RELOC_HI16_S
3158 || *r == BFD_RELOC_HI16
3159 || *r == BFD_RELOC_GPREL16
3160 || *r == BFD_RELOC_MIPS_GOT_HI16
3161 || *r == BFD_RELOC_MIPS_CALL_HI16))
3162 || (ep->X_op == O_subtract
3163 && *r == BFD_RELOC_PCREL_HI16_S)));
3164 continue;
3165
3166 case 'p':
3167 assert (ep != NULL);
3168 /*
3169 * This allows macro() to pass an immediate expression for
3170 * creating short branches without creating a symbol.
3171 * Note that the expression still might come from the assembly
3172 * input, in which case the value is not checked for range nor
3173 * is a relocation entry generated (yuck).
3174 */
3175 if (ep->X_op == O_constant)
3176 {
3177 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3178 ep = NULL;
3179 }
3180 else
3181 *r = BFD_RELOC_16_PCREL_S2;
3182 continue;
3183
3184 case 'a':
3185 assert (ep != NULL);
3186 *r = BFD_RELOC_MIPS_JMP;
3187 continue;
3188
3189 case 'C':
3190 insn.insn_opcode |= va_arg (args, unsigned long);
3191 continue;
3192
3193 default:
3194 internalError ();
3195 }
3196 break;
3197 }
3198 va_end (args);
3199 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3200
3201 append_insn (&insn, ep, r);
3202 }
3203
3204 static void
3205 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3206 va_list args)
3207 {
3208 struct mips_cl_insn insn;
3209 bfd_reloc_code_real_type r[3]
3210 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3211
3212 insn.insn_mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3213 assert (insn.insn_mo);
3214 assert (strcmp (name, insn.insn_mo->name) == 0);
3215
3216 while (strcmp (fmt, insn.insn_mo->args) != 0
3217 || insn.insn_mo->pinfo == INSN_MACRO)
3218 {
3219 ++insn.insn_mo;
3220 assert (insn.insn_mo->name);
3221 assert (strcmp (name, insn.insn_mo->name) == 0);
3222 }
3223
3224 insn.insn_opcode = insn.insn_mo->match;
3225 insn.use_extend = FALSE;
3226
3227 for (;;)
3228 {
3229 int c;
3230
3231 c = *fmt++;
3232 switch (c)
3233 {
3234 case '\0':
3235 break;
3236
3237 case ',':
3238 case '(':
3239 case ')':
3240 continue;
3241
3242 case 'y':
3243 case 'w':
3244 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RY;
3245 continue;
3246
3247 case 'x':
3248 case 'v':
3249 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RX;
3250 continue;
3251
3252 case 'z':
3253 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RZ;
3254 continue;
3255
3256 case 'Z':
3257 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_MOVE32Z;
3258 continue;
3259
3260 case '0':
3261 case 'S':
3262 case 'P':
3263 case 'R':
3264 continue;
3265
3266 case 'X':
3267 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_REGR32;
3268 continue;
3269
3270 case 'Y':
3271 {
3272 int regno;
3273
3274 regno = va_arg (args, int);
3275 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3276 insn.insn_opcode |= regno << MIPS16OP_SH_REG32R;
3277 }
3278 continue;
3279
3280 case '<':
3281 case '>':
3282 case '4':
3283 case '5':
3284 case 'H':
3285 case 'W':
3286 case 'D':
3287 case 'j':
3288 case '8':
3289 case 'V':
3290 case 'C':
3291 case 'U':
3292 case 'k':
3293 case 'K':
3294 case 'p':
3295 case 'q':
3296 {
3297 assert (ep != NULL);
3298
3299 if (ep->X_op != O_constant)
3300 *r = (int) BFD_RELOC_UNUSED + c;
3301 else
3302 {
3303 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3304 FALSE, &insn.insn_opcode, &insn.use_extend,
3305 &insn.extend);
3306 ep = NULL;
3307 *r = BFD_RELOC_UNUSED;
3308 }
3309 }
3310 continue;
3311
3312 case '6':
3313 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_IMM6;
3314 continue;
3315 }
3316
3317 break;
3318 }
3319
3320 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3321
3322 append_insn (&insn, ep, r);
3323 }
3324
3325 /*
3326 * Generate a "jalr" instruction with a relocation hint to the called
3327 * function. This occurs in NewABI PIC code.
3328 */
3329 static void
3330 macro_build_jalr (expressionS *ep)
3331 {
3332 char *f = NULL;
3333
3334 if (HAVE_NEWABI)
3335 {
3336 frag_grow (8);
3337 f = frag_more (0);
3338 }
3339 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
3340 if (HAVE_NEWABI)
3341 fix_new_exp (frag_now, f - frag_now->fr_literal,
3342 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
3343 }
3344
3345 /*
3346 * Generate a "lui" instruction.
3347 */
3348 static void
3349 macro_build_lui (expressionS *ep, int regnum)
3350 {
3351 expressionS high_expr;
3352 struct mips_cl_insn insn;
3353 bfd_reloc_code_real_type r[3]
3354 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3355 const char *name = "lui";
3356 const char *fmt = "t,u";
3357
3358 assert (! mips_opts.mips16);
3359
3360 high_expr = *ep;
3361
3362 if (high_expr.X_op == O_constant)
3363 {
3364 /* we can compute the instruction now without a relocation entry */
3365 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
3366 >> 16) & 0xffff;
3367 *r = BFD_RELOC_UNUSED;
3368 }
3369 else
3370 {
3371 assert (ep->X_op == O_symbol);
3372 /* _gp_disp is a special case, used from s_cpload. */
3373 assert (mips_pic == NO_PIC
3374 || (! HAVE_NEWABI
3375 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0));
3376 *r = BFD_RELOC_HI16_S;
3377 }
3378
3379 insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
3380 assert (insn.insn_mo);
3381 assert (strcmp (name, insn.insn_mo->name) == 0);
3382 assert (strcmp (fmt, insn.insn_mo->args) == 0);
3383
3384 insn.insn_opcode = insn.insn_mo->match | (regnum << OP_SH_RT);
3385 if (*r == BFD_RELOC_UNUSED)
3386 {
3387 insn.insn_opcode |= high_expr.X_add_number;
3388 append_insn (&insn, NULL, r);
3389 }
3390 else
3391 append_insn (&insn, &high_expr, r);
3392 }
3393
3394 /* Generate a sequence of instructions to do a load or store from a constant
3395 offset off of a base register (breg) into/from a target register (treg),
3396 using AT if necessary. */
3397 static void
3398 macro_build_ldst_constoffset (expressionS *ep, const char *op,
3399 int treg, int breg, int dbl)
3400 {
3401 assert (ep->X_op == O_constant);
3402
3403 /* Sign-extending 32-bit constants makes their handling easier. */
3404 if (! dbl && ! ((ep->X_add_number & ~((bfd_vma) 0x7fffffff))
3405 == ~((bfd_vma) 0x7fffffff)))
3406 {
3407 if (ep->X_add_number & ~((bfd_vma) 0xffffffff))
3408 as_bad (_("constant too large"));
3409
3410 ep->X_add_number = (((ep->X_add_number & 0xffffffff) ^ 0x80000000)
3411 - 0x80000000);
3412 }
3413
3414 /* Right now, this routine can only handle signed 32-bit constants. */
3415 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
3416 as_warn (_("operand overflow"));
3417
3418 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
3419 {
3420 /* Signed 16-bit offset will fit in the op. Easy! */
3421 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
3422 }
3423 else
3424 {
3425 /* 32-bit offset, need multiple instructions and AT, like:
3426 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
3427 addu $tempreg,$tempreg,$breg
3428 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
3429 to handle the complete offset. */
3430 macro_build_lui (ep, AT);
3431 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
3432 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
3433
3434 if (mips_opts.noat)
3435 as_warn (_("Macro used $at after \".set noat\""));
3436 }
3437 }
3438
3439 /* set_at()
3440 * Generates code to set the $at register to true (one)
3441 * if reg is less than the immediate expression.
3442 */
3443 static void
3444 set_at (int reg, int unsignedp)
3445 {
3446 if (imm_expr.X_op == O_constant
3447 && imm_expr.X_add_number >= -0x8000
3448 && imm_expr.X_add_number < 0x8000)
3449 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
3450 AT, reg, BFD_RELOC_LO16);
3451 else
3452 {
3453 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
3454 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
3455 }
3456 }
3457
3458 static void
3459 normalize_constant_expr (expressionS *ex)
3460 {
3461 if (ex->X_op == O_constant && HAVE_32BIT_GPRS)
3462 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3463 - 0x80000000);
3464 }
3465
3466 /* Warn if an expression is not a constant. */
3467
3468 static void
3469 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
3470 {
3471 if (ex->X_op == O_big)
3472 as_bad (_("unsupported large constant"));
3473 else if (ex->X_op != O_constant)
3474 as_bad (_("Instruction %s requires absolute expression"), ip->insn_mo->name);
3475
3476 normalize_constant_expr (ex);
3477 }
3478
3479 /* Count the leading zeroes by performing a binary chop. This is a
3480 bulky bit of source, but performance is a LOT better for the
3481 majority of values than a simple loop to count the bits:
3482 for (lcnt = 0; (lcnt < 32); lcnt++)
3483 if ((v) & (1 << (31 - lcnt)))
3484 break;
3485 However it is not code size friendly, and the gain will drop a bit
3486 on certain cached systems.
3487 */
3488 #define COUNT_TOP_ZEROES(v) \
3489 (((v) & ~0xffff) == 0 \
3490 ? ((v) & ~0xff) == 0 \
3491 ? ((v) & ~0xf) == 0 \
3492 ? ((v) & ~0x3) == 0 \
3493 ? ((v) & ~0x1) == 0 \
3494 ? !(v) \
3495 ? 32 \
3496 : 31 \
3497 : 30 \
3498 : ((v) & ~0x7) == 0 \
3499 ? 29 \
3500 : 28 \
3501 : ((v) & ~0x3f) == 0 \
3502 ? ((v) & ~0x1f) == 0 \
3503 ? 27 \
3504 : 26 \
3505 : ((v) & ~0x7f) == 0 \
3506 ? 25 \
3507 : 24 \
3508 : ((v) & ~0xfff) == 0 \
3509 ? ((v) & ~0x3ff) == 0 \
3510 ? ((v) & ~0x1ff) == 0 \
3511 ? 23 \
3512 : 22 \
3513 : ((v) & ~0x7ff) == 0 \
3514 ? 21 \
3515 : 20 \
3516 : ((v) & ~0x3fff) == 0 \
3517 ? ((v) & ~0x1fff) == 0 \
3518 ? 19 \
3519 : 18 \
3520 : ((v) & ~0x7fff) == 0 \
3521 ? 17 \
3522 : 16 \
3523 : ((v) & ~0xffffff) == 0 \
3524 ? ((v) & ~0xfffff) == 0 \
3525 ? ((v) & ~0x3ffff) == 0 \
3526 ? ((v) & ~0x1ffff) == 0 \
3527 ? 15 \
3528 : 14 \
3529 : ((v) & ~0x7ffff) == 0 \
3530 ? 13 \
3531 : 12 \
3532 : ((v) & ~0x3fffff) == 0 \
3533 ? ((v) & ~0x1fffff) == 0 \
3534 ? 11 \
3535 : 10 \
3536 : ((v) & ~0x7fffff) == 0 \
3537 ? 9 \
3538 : 8 \
3539 : ((v) & ~0xfffffff) == 0 \
3540 ? ((v) & ~0x3ffffff) == 0 \
3541 ? ((v) & ~0x1ffffff) == 0 \
3542 ? 7 \
3543 : 6 \
3544 : ((v) & ~0x7ffffff) == 0 \
3545 ? 5 \
3546 : 4 \
3547 : ((v) & ~0x3fffffff) == 0 \
3548 ? ((v) & ~0x1fffffff) == 0 \
3549 ? 3 \
3550 : 2 \
3551 : ((v) & ~0x7fffffff) == 0 \
3552 ? 1 \
3553 : 0)
3554
3555 /* load_register()
3556 * This routine generates the least number of instructions necessary to load
3557 * an absolute expression value into a register.
3558 */
3559 static void
3560 load_register (int reg, expressionS *ep, int dbl)
3561 {
3562 int freg;
3563 expressionS hi32, lo32;
3564
3565 if (ep->X_op != O_big)
3566 {
3567 assert (ep->X_op == O_constant);
3568
3569 /* Sign-extending 32-bit constants makes their handling easier. */
3570 if (! dbl && ! ((ep->X_add_number & ~((bfd_vma) 0x7fffffff))
3571 == ~((bfd_vma) 0x7fffffff)))
3572 {
3573 if (ep->X_add_number & ~((bfd_vma) 0xffffffff))
3574 as_bad (_("constant too large"));
3575
3576 ep->X_add_number = (((ep->X_add_number & 0xffffffff) ^ 0x80000000)
3577 - 0x80000000);
3578 }
3579
3580 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
3581 {
3582 /* We can handle 16 bit signed values with an addiu to
3583 $zero. No need to ever use daddiu here, since $zero and
3584 the result are always correct in 32 bit mode. */
3585 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3586 return;
3587 }
3588 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
3589 {
3590 /* We can handle 16 bit unsigned values with an ori to
3591 $zero. */
3592 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
3593 return;
3594 }
3595 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
3596 {
3597 /* 32 bit values require an lui. */
3598 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
3599 if ((ep->X_add_number & 0xffff) != 0)
3600 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
3601 return;
3602 }
3603 }
3604
3605 /* The value is larger than 32 bits. */
3606
3607 if (HAVE_32BIT_GPRS)
3608 {
3609 as_bad (_("Number (0x%lx) larger than 32 bits"),
3610 (unsigned long) ep->X_add_number);
3611 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3612 return;
3613 }
3614
3615 if (ep->X_op != O_big)
3616 {
3617 hi32 = *ep;
3618 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3619 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3620 hi32.X_add_number &= 0xffffffff;
3621 lo32 = *ep;
3622 lo32.X_add_number &= 0xffffffff;
3623 }
3624 else
3625 {
3626 assert (ep->X_add_number > 2);
3627 if (ep->X_add_number == 3)
3628 generic_bignum[3] = 0;
3629 else if (ep->X_add_number > 4)
3630 as_bad (_("Number larger than 64 bits"));
3631 lo32.X_op = O_constant;
3632 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
3633 hi32.X_op = O_constant;
3634 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
3635 }
3636
3637 if (hi32.X_add_number == 0)
3638 freg = 0;
3639 else
3640 {
3641 int shift, bit;
3642 unsigned long hi, lo;
3643
3644 if (hi32.X_add_number == (offsetT) 0xffffffff)
3645 {
3646 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
3647 {
3648 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3649 return;
3650 }
3651 if (lo32.X_add_number & 0x80000000)
3652 {
3653 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
3654 if (lo32.X_add_number & 0xffff)
3655 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
3656 return;
3657 }
3658 }
3659
3660 /* Check for 16bit shifted constant. We know that hi32 is
3661 non-zero, so start the mask on the first bit of the hi32
3662 value. */
3663 shift = 17;
3664 do
3665 {
3666 unsigned long himask, lomask;
3667
3668 if (shift < 32)
3669 {
3670 himask = 0xffff >> (32 - shift);
3671 lomask = (0xffff << shift) & 0xffffffff;
3672 }
3673 else
3674 {
3675 himask = 0xffff << (shift - 32);
3676 lomask = 0;
3677 }
3678 if ((hi32.X_add_number & ~(offsetT) himask) == 0
3679 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
3680 {
3681 expressionS tmp;
3682
3683 tmp.X_op = O_constant;
3684 if (shift < 32)
3685 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
3686 | (lo32.X_add_number >> shift));
3687 else
3688 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
3689 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
3690 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
3691 reg, reg, (shift >= 32) ? shift - 32 : shift);
3692 return;
3693 }
3694 ++shift;
3695 }
3696 while (shift <= (64 - 16));
3697
3698 /* Find the bit number of the lowest one bit, and store the
3699 shifted value in hi/lo. */
3700 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
3701 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
3702 if (lo != 0)
3703 {
3704 bit = 0;
3705 while ((lo & 1) == 0)
3706 {
3707 lo >>= 1;
3708 ++bit;
3709 }
3710 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
3711 hi >>= bit;
3712 }
3713 else
3714 {
3715 bit = 32;
3716 while ((hi & 1) == 0)
3717 {
3718 hi >>= 1;
3719 ++bit;
3720 }
3721 lo = hi;
3722 hi = 0;
3723 }
3724
3725 /* Optimize if the shifted value is a (power of 2) - 1. */
3726 if ((hi == 0 && ((lo + 1) & lo) == 0)
3727 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
3728 {
3729 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
3730 if (shift != 0)
3731 {
3732 expressionS tmp;
3733
3734 /* This instruction will set the register to be all
3735 ones. */
3736 tmp.X_op = O_constant;
3737 tmp.X_add_number = (offsetT) -1;
3738 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3739 if (bit != 0)
3740 {
3741 bit += shift;
3742 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
3743 reg, reg, (bit >= 32) ? bit - 32 : bit);
3744 }
3745 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
3746 reg, reg, (shift >= 32) ? shift - 32 : shift);
3747 return;
3748 }
3749 }
3750
3751 /* Sign extend hi32 before calling load_register, because we can
3752 generally get better code when we load a sign extended value. */
3753 if ((hi32.X_add_number & 0x80000000) != 0)
3754 hi32.X_add_number |= ~(offsetT) 0xffffffff;
3755 load_register (reg, &hi32, 0);
3756 freg = reg;
3757 }
3758 if ((lo32.X_add_number & 0xffff0000) == 0)
3759 {
3760 if (freg != 0)
3761 {
3762 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
3763 freg = reg;
3764 }
3765 }
3766 else
3767 {
3768 expressionS mid16;
3769
3770 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
3771 {
3772 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
3773 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
3774 return;
3775 }
3776
3777 if (freg != 0)
3778 {
3779 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
3780 freg = reg;
3781 }
3782 mid16 = lo32;
3783 mid16.X_add_number >>= 16;
3784 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
3785 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3786 freg = reg;
3787 }
3788 if ((lo32.X_add_number & 0xffff) != 0)
3789 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
3790 }
3791
3792 /* Load an address into a register. */
3793
3794 static void
3795 load_address (int reg, expressionS *ep, int *used_at)
3796 {
3797 if (ep->X_op != O_constant
3798 && ep->X_op != O_symbol)
3799 {
3800 as_bad (_("expression too complex"));
3801 ep->X_op = O_constant;
3802 }
3803
3804 if (ep->X_op == O_constant)
3805 {
3806 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
3807 return;
3808 }
3809
3810 if (mips_pic == NO_PIC)
3811 {
3812 /* If this is a reference to a GP relative symbol, we want
3813 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
3814 Otherwise we want
3815 lui $reg,<sym> (BFD_RELOC_HI16_S)
3816 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3817 If we have an addend, we always use the latter form.
3818
3819 With 64bit address space and a usable $at we want
3820 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3821 lui $at,<sym> (BFD_RELOC_HI16_S)
3822 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3823 daddiu $at,<sym> (BFD_RELOC_LO16)
3824 dsll32 $reg,0
3825 daddu $reg,$reg,$at
3826
3827 If $at is already in use, we use a path which is suboptimal
3828 on superscalar processors.
3829 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3830 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3831 dsll $reg,16
3832 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
3833 dsll $reg,16
3834 daddiu $reg,<sym> (BFD_RELOC_LO16)
3835 */
3836 if (HAVE_64BIT_ADDRESSES)
3837 {
3838 /* ??? We don't provide a GP-relative alternative for these macros.
3839 It used not to be possible with the original relaxation code,
3840 but it could be done now. */
3841
3842 if (*used_at == 0 && ! mips_opts.noat)
3843 {
3844 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
3845 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
3846 macro_build (ep, "daddiu", "t,r,j", reg, reg,
3847 BFD_RELOC_MIPS_HIGHER);
3848 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
3849 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
3850 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
3851 *used_at = 1;
3852 }
3853 else
3854 {
3855 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
3856 macro_build (ep, "daddiu", "t,r,j", reg, reg,
3857 BFD_RELOC_MIPS_HIGHER);
3858 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3859 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
3860 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3861 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
3862 }
3863 }
3864 else
3865 {
3866 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
3867 && ! nopic_need_relax (ep->X_add_symbol, 1))
3868 {
3869 relax_start (ep->X_add_symbol);
3870 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
3871 mips_gp_register, BFD_RELOC_GPREL16);
3872 relax_switch ();
3873 }
3874 macro_build_lui (ep, reg);
3875 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
3876 reg, reg, BFD_RELOC_LO16);
3877 if (mips_relax.sequence)
3878 relax_end ();
3879 }
3880 }
3881 else if (mips_pic == SVR4_PIC && ! mips_big_got)
3882 {
3883 expressionS ex;
3884
3885 /* If this is a reference to an external symbol, we want
3886 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3887 Otherwise we want
3888 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3889 nop
3890 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3891 If there is a constant, it must be added in after.
3892
3893 If we have NewABI, we want
3894 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
3895 unless we're referencing a global symbol with a non-zero
3896 offset, in which case cst must be added separately. */
3897 if (HAVE_NEWABI)
3898 {
3899 if (ep->X_add_number)
3900 {
3901 ex.X_add_number = ep->X_add_number;
3902 ep->X_add_number = 0;
3903 relax_start (ep->X_add_symbol);
3904 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3905 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
3906 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3907 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3908 ex.X_op = O_constant;
3909 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
3910 reg, reg, BFD_RELOC_LO16);
3911 ep->X_add_number = ex.X_add_number;
3912 relax_switch ();
3913 }
3914 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3915 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
3916 if (mips_relax.sequence)
3917 relax_end ();
3918 }
3919 else
3920 {
3921 ex.X_add_number = ep->X_add_number;
3922 ep->X_add_number = 0;
3923 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3924 BFD_RELOC_MIPS_GOT16, mips_gp_register);
3925 macro_build (NULL, "nop", "");
3926 relax_start (ep->X_add_symbol);
3927 relax_switch ();
3928 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
3929 BFD_RELOC_LO16);
3930 relax_end ();
3931
3932 if (ex.X_add_number != 0)
3933 {
3934 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3935 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3936 ex.X_op = O_constant;
3937 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
3938 reg, reg, BFD_RELOC_LO16);
3939 }
3940 }
3941 }
3942 else if (mips_pic == SVR4_PIC)
3943 {
3944 expressionS ex;
3945
3946 /* This is the large GOT case. If this is a reference to an
3947 external symbol, we want
3948 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
3949 addu $reg,$reg,$gp
3950 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
3951
3952 Otherwise, for a reference to a local symbol in old ABI, we want
3953 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3954 nop
3955 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3956 If there is a constant, it must be added in after.
3957
3958 In the NewABI, for local symbols, with or without offsets, we want:
3959 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
3960 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
3961 */
3962 if (HAVE_NEWABI)
3963 {
3964 ex.X_add_number = ep->X_add_number;
3965 ep->X_add_number = 0;
3966 relax_start (ep->X_add_symbol);
3967 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
3968 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
3969 reg, reg, mips_gp_register);
3970 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
3971 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
3972 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3973 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3974 else if (ex.X_add_number)
3975 {
3976 ex.X_op = O_constant;
3977 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
3978 BFD_RELOC_LO16);
3979 }
3980
3981 ep->X_add_number = ex.X_add_number;
3982 relax_switch ();
3983 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3984 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
3985 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
3986 BFD_RELOC_MIPS_GOT_OFST);
3987 relax_end ();
3988 }
3989 else
3990 {
3991 ex.X_add_number = ep->X_add_number;
3992 ep->X_add_number = 0;
3993 relax_start (ep->X_add_symbol);
3994 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
3995 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
3996 reg, reg, mips_gp_register);
3997 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
3998 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
3999 relax_switch ();
4000 if (reg_needs_delay (mips_gp_register))
4001 {
4002 /* We need a nop before loading from $gp. This special
4003 check is required because the lui which starts the main
4004 instruction stream does not refer to $gp, and so will not
4005 insert the nop which may be required. */
4006 macro_build (NULL, "nop", "");
4007 }
4008 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4009 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4010 macro_build (NULL, "nop", "");
4011 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4012 BFD_RELOC_LO16);
4013 relax_end ();
4014
4015 if (ex.X_add_number != 0)
4016 {
4017 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4018 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4019 ex.X_op = O_constant;
4020 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4021 BFD_RELOC_LO16);
4022 }
4023 }
4024 }
4025 else if (mips_pic == EMBEDDED_PIC)
4026 {
4027 /* We always do
4028 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4029 */
4030 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4031 reg, mips_gp_register, BFD_RELOC_GPREL16);
4032 }
4033 else
4034 abort ();
4035 }
4036
4037 /* Move the contents of register SOURCE into register DEST. */
4038
4039 static void
4040 move_register (int dest, int source)
4041 {
4042 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4043 dest, source, 0);
4044 }
4045
4046 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4047 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4048 The two alternatives are:
4049
4050 Global symbol Local sybmol
4051 ------------- ------------
4052 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4053 ... ...
4054 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4055
4056 load_got_offset emits the first instruction and add_got_offset
4057 emits the second for a 16-bit offset or add_got_offset_hilo emits
4058 a sequence to add a 32-bit offset using a scratch register. */
4059
4060 static void
4061 load_got_offset (int dest, expressionS *local)
4062 {
4063 expressionS global;
4064
4065 global = *local;
4066 global.X_add_number = 0;
4067
4068 relax_start (local->X_add_symbol);
4069 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4070 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4071 relax_switch ();
4072 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4073 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4074 relax_end ();
4075 }
4076
4077 static void
4078 add_got_offset (int dest, expressionS *local)
4079 {
4080 expressionS global;
4081
4082 global.X_op = O_constant;
4083 global.X_op_symbol = NULL;
4084 global.X_add_symbol = NULL;
4085 global.X_add_number = local->X_add_number;
4086
4087 relax_start (local->X_add_symbol);
4088 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4089 dest, dest, BFD_RELOC_LO16);
4090 relax_switch ();
4091 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4092 relax_end ();
4093 }
4094
4095 static void
4096 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4097 {
4098 expressionS global;
4099 int hold_mips_optimize;
4100
4101 global.X_op = O_constant;
4102 global.X_op_symbol = NULL;
4103 global.X_add_symbol = NULL;
4104 global.X_add_number = local->X_add_number;
4105
4106 relax_start (local->X_add_symbol);
4107 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4108 relax_switch ();
4109 /* Set mips_optimize around the lui instruction to avoid
4110 inserting an unnecessary nop after the lw. */
4111 hold_mips_optimize = mips_optimize;
4112 mips_optimize = 2;
4113 macro_build_lui (&global, tmp);
4114 mips_optimize = hold_mips_optimize;
4115 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4116 relax_end ();
4117
4118 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4119 }
4120
4121 /*
4122 * Build macros
4123 * This routine implements the seemingly endless macro or synthesized
4124 * instructions and addressing modes in the mips assembly language. Many
4125 * of these macros are simple and are similar to each other. These could
4126 * probably be handled by some kind of table or grammar approach instead of
4127 * this verbose method. Others are not simple macros but are more like
4128 * optimizing code generation.
4129 * One interesting optimization is when several store macros appear
4130 * consecutively that would load AT with the upper half of the same address.
4131 * The ensuing load upper instructions are ommited. This implies some kind
4132 * of global optimization. We currently only optimize within a single macro.
4133 * For many of the load and store macros if the address is specified as a
4134 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4135 * first load register 'at' with zero and use it as the base register. The
4136 * mips assembler simply uses register $zero. Just one tiny optimization
4137 * we're missing.
4138 */
4139 static void
4140 macro (struct mips_cl_insn *ip)
4141 {
4142 register int treg, sreg, dreg, breg;
4143 int tempreg;
4144 int mask;
4145 int used_at = 0;
4146 expressionS expr1;
4147 const char *s;
4148 const char *s2;
4149 const char *fmt;
4150 int likely = 0;
4151 int dbl = 0;
4152 int coproc = 0;
4153 int lr = 0;
4154 int imm = 0;
4155 int call = 0;
4156 int off;
4157 offsetT maxnum;
4158 bfd_reloc_code_real_type r;
4159 int hold_mips_optimize;
4160
4161 assert (! mips_opts.mips16);
4162
4163 treg = (ip->insn_opcode >> 16) & 0x1f;
4164 dreg = (ip->insn_opcode >> 11) & 0x1f;
4165 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4166 mask = ip->insn_mo->mask;
4167
4168 expr1.X_op = O_constant;
4169 expr1.X_op_symbol = NULL;
4170 expr1.X_add_symbol = NULL;
4171 expr1.X_add_number = 1;
4172
4173 switch (mask)
4174 {
4175 case M_DABS:
4176 dbl = 1;
4177 case M_ABS:
4178 /* bgez $a0,.+12
4179 move v0,$a0
4180 sub v0,$zero,$a0
4181 */
4182
4183 mips_emit_delays (TRUE);
4184 ++mips_opts.noreorder;
4185 mips_any_noreorder = 1;
4186
4187 expr1.X_add_number = 8;
4188 macro_build (&expr1, "bgez", "s,p", sreg);
4189 if (dreg == sreg)
4190 macro_build (NULL, "nop", "", 0);
4191 else
4192 move_register (dreg, sreg);
4193 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4194
4195 --mips_opts.noreorder;
4196 return;
4197
4198 case M_ADD_I:
4199 s = "addi";
4200 s2 = "add";
4201 goto do_addi;
4202 case M_ADDU_I:
4203 s = "addiu";
4204 s2 = "addu";
4205 goto do_addi;
4206 case M_DADD_I:
4207 dbl = 1;
4208 s = "daddi";
4209 s2 = "dadd";
4210 goto do_addi;
4211 case M_DADDU_I:
4212 dbl = 1;
4213 s = "daddiu";
4214 s2 = "daddu";
4215 do_addi:
4216 if (imm_expr.X_op == O_constant
4217 && imm_expr.X_add_number >= -0x8000
4218 && imm_expr.X_add_number < 0x8000)
4219 {
4220 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4221 return;
4222 }
4223 load_register (AT, &imm_expr, dbl);
4224 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4225 break;
4226
4227 case M_AND_I:
4228 s = "andi";
4229 s2 = "and";
4230 goto do_bit;
4231 case M_OR_I:
4232 s = "ori";
4233 s2 = "or";
4234 goto do_bit;
4235 case M_NOR_I:
4236 s = "";
4237 s2 = "nor";
4238 goto do_bit;
4239 case M_XOR_I:
4240 s = "xori";
4241 s2 = "xor";
4242 do_bit:
4243 if (imm_expr.X_op == O_constant
4244 && imm_expr.X_add_number >= 0
4245 && imm_expr.X_add_number < 0x10000)
4246 {
4247 if (mask != M_NOR_I)
4248 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4249 else
4250 {
4251 macro_build (&imm_expr, "ori", "t,r,i",
4252 treg, sreg, BFD_RELOC_LO16);
4253 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4254 }
4255 return;
4256 }
4257
4258 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4259 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4260 break;
4261
4262 case M_BEQ_I:
4263 s = "beq";
4264 goto beq_i;
4265 case M_BEQL_I:
4266 s = "beql";
4267 likely = 1;
4268 goto beq_i;
4269 case M_BNE_I:
4270 s = "bne";
4271 goto beq_i;
4272 case M_BNEL_I:
4273 s = "bnel";
4274 likely = 1;
4275 beq_i:
4276 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4277 {
4278 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4279 return;
4280 }
4281 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4282 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4283 break;
4284
4285 case M_BGEL:
4286 likely = 1;
4287 case M_BGE:
4288 if (treg == 0)
4289 {
4290 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4291 return;
4292 }
4293 if (sreg == 0)
4294 {
4295 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4296 return;
4297 }
4298 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4299 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4300 break;
4301
4302 case M_BGTL_I:
4303 likely = 1;
4304 case M_BGT_I:
4305 /* check for > max integer */
4306 maxnum = 0x7fffffff;
4307 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4308 {
4309 maxnum <<= 16;
4310 maxnum |= 0xffff;
4311 maxnum <<= 16;
4312 maxnum |= 0xffff;
4313 }
4314 if (imm_expr.X_op == O_constant
4315 && imm_expr.X_add_number >= maxnum
4316 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4317 {
4318 do_false:
4319 /* result is always false */
4320 if (! likely)
4321 macro_build (NULL, "nop", "", 0);
4322 else
4323 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
4324 return;
4325 }
4326 if (imm_expr.X_op != O_constant)
4327 as_bad (_("Unsupported large constant"));
4328 ++imm_expr.X_add_number;
4329 /* FALLTHROUGH */
4330 case M_BGE_I:
4331 case M_BGEL_I:
4332 if (mask == M_BGEL_I)
4333 likely = 1;
4334 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4335 {
4336 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4337 return;
4338 }
4339 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4340 {
4341 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4342 return;
4343 }
4344 maxnum = 0x7fffffff;
4345 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4346 {
4347 maxnum <<= 16;
4348 maxnum |= 0xffff;
4349 maxnum <<= 16;
4350 maxnum |= 0xffff;
4351 }
4352 maxnum = - maxnum - 1;
4353 if (imm_expr.X_op == O_constant
4354 && imm_expr.X_add_number <= maxnum
4355 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4356 {
4357 do_true:
4358 /* result is always true */
4359 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
4360 macro_build (&offset_expr, "b", "p");
4361 return;
4362 }
4363 set_at (sreg, 0);
4364 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4365 break;
4366
4367 case M_BGEUL:
4368 likely = 1;
4369 case M_BGEU:
4370 if (treg == 0)
4371 goto do_true;
4372 if (sreg == 0)
4373 {
4374 macro_build (&offset_expr, likely ? "beql" : "beq",
4375 "s,t,p", 0, treg);
4376 return;
4377 }
4378 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4379 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4380 break;
4381
4382 case M_BGTUL_I:
4383 likely = 1;
4384 case M_BGTU_I:
4385 if (sreg == 0
4386 || (HAVE_32BIT_GPRS
4387 && imm_expr.X_op == O_constant
4388 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4389 goto do_false;
4390 if (imm_expr.X_op != O_constant)
4391 as_bad (_("Unsupported large constant"));
4392 ++imm_expr.X_add_number;
4393 /* FALLTHROUGH */
4394 case M_BGEU_I:
4395 case M_BGEUL_I:
4396 if (mask == M_BGEUL_I)
4397 likely = 1;
4398 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4399 goto do_true;
4400 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4401 {
4402 macro_build (&offset_expr, likely ? "bnel" : "bne",
4403 "s,t,p", sreg, 0);
4404 return;
4405 }
4406 set_at (sreg, 1);
4407 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4408 break;
4409
4410 case M_BGTL:
4411 likely = 1;
4412 case M_BGT:
4413 if (treg == 0)
4414 {
4415 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4416 return;
4417 }
4418 if (sreg == 0)
4419 {
4420 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
4421 return;
4422 }
4423 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4424 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4425 break;
4426
4427 case M_BGTUL:
4428 likely = 1;
4429 case M_BGTU:
4430 if (treg == 0)
4431 {
4432 macro_build (&offset_expr, likely ? "bnel" : "bne",
4433 "s,t,p", sreg, 0);
4434 return;
4435 }
4436 if (sreg == 0)
4437 goto do_false;
4438 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
4439 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4440 break;
4441
4442 case M_BLEL:
4443 likely = 1;
4444 case M_BLE:
4445 if (treg == 0)
4446 {
4447 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
4448 return;
4449 }
4450 if (sreg == 0)
4451 {
4452 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
4453 return;
4454 }
4455 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4456 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4457 break;
4458
4459 case M_BLEL_I:
4460 likely = 1;
4461 case M_BLE_I:
4462 maxnum = 0x7fffffff;
4463 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4464 {
4465 maxnum <<= 16;
4466 maxnum |= 0xffff;
4467 maxnum <<= 16;
4468 maxnum |= 0xffff;
4469 }
4470 if (imm_expr.X_op == O_constant
4471 && imm_expr.X_add_number >= maxnum
4472 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4473 goto do_true;
4474 if (imm_expr.X_op != O_constant)
4475 as_bad (_("Unsupported large constant"));
4476 ++imm_expr.X_add_number;
4477 /* FALLTHROUGH */
4478 case M_BLT_I:
4479 case M_BLTL_I:
4480 if (mask == M_BLTL_I)
4481 likely = 1;
4482 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4483 {
4484 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
4485 return;
4486 }
4487 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4488 {
4489 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
4490 return;
4491 }
4492 set_at (sreg, 0);
4493 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4494 break;
4495
4496 case M_BLEUL:
4497 likely = 1;
4498 case M_BLEU:
4499 if (treg == 0)
4500 {
4501 macro_build (&offset_expr, likely ? "beql" : "beq",
4502 "s,t,p", sreg, 0);
4503 return;
4504 }
4505 if (sreg == 0)
4506 goto do_true;
4507 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
4508 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4509 break;
4510
4511 case M_BLEUL_I:
4512 likely = 1;
4513 case M_BLEU_I:
4514 if (sreg == 0
4515 || (HAVE_32BIT_GPRS
4516 && imm_expr.X_op == O_constant
4517 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4518 goto do_true;
4519 if (imm_expr.X_op != O_constant)
4520 as_bad (_("Unsupported large constant"));
4521 ++imm_expr.X_add_number;
4522 /* FALLTHROUGH */
4523 case M_BLTU_I:
4524 case M_BLTUL_I:
4525 if (mask == M_BLTUL_I)
4526 likely = 1;
4527 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4528 goto do_false;
4529 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4530 {
4531 macro_build (&offset_expr, likely ? "beql" : "beq",
4532 "s,t,p", sreg, 0);
4533 return;
4534 }
4535 set_at (sreg, 1);
4536 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4537 break;
4538
4539 case M_BLTL:
4540 likely = 1;
4541 case M_BLT:
4542 if (treg == 0)
4543 {
4544 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
4545 return;
4546 }
4547 if (sreg == 0)
4548 {
4549 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
4550 return;
4551 }
4552 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4553 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4554 break;
4555
4556 case M_BLTUL:
4557 likely = 1;
4558 case M_BLTU:
4559 if (treg == 0)
4560 goto do_false;
4561 if (sreg == 0)
4562 {
4563 macro_build (&offset_expr, likely ? "bnel" : "bne",
4564 "s,t,p", 0, treg);
4565 return;
4566 }
4567 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4568 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4569 break;
4570
4571 case M_DEXT:
4572 {
4573 unsigned long pos;
4574 unsigned long size;
4575
4576 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
4577 {
4578 as_bad (_("Unsupported large constant"));
4579 pos = size = 1;
4580 }
4581 else
4582 {
4583 pos = (unsigned long) imm_expr.X_add_number;
4584 size = (unsigned long) imm2_expr.X_add_number;
4585 }
4586
4587 if (pos > 63)
4588 {
4589 as_bad (_("Improper position (%lu)"), pos);
4590 pos = 1;
4591 }
4592 if (size == 0 || size > 64
4593 || (pos + size - 1) > 63)
4594 {
4595 as_bad (_("Improper extract size (%lu, position %lu)"),
4596 size, pos);
4597 size = 1;
4598 }
4599
4600 if (size <= 32 && pos < 32)
4601 {
4602 s = "dext";
4603 fmt = "t,r,+A,+C";
4604 }
4605 else if (size <= 32)
4606 {
4607 s = "dextu";
4608 fmt = "t,r,+E,+H";
4609 }
4610 else
4611 {
4612 s = "dextm";
4613 fmt = "t,r,+A,+G";
4614 }
4615 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
4616 }
4617 return;
4618
4619 case M_DINS:
4620 {
4621 unsigned long pos;
4622 unsigned long size;
4623
4624 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
4625 {
4626 as_bad (_("Unsupported large constant"));
4627 pos = size = 1;
4628 }
4629 else
4630 {
4631 pos = (unsigned long) imm_expr.X_add_number;
4632 size = (unsigned long) imm2_expr.X_add_number;
4633 }
4634
4635 if (pos > 63)
4636 {
4637 as_bad (_("Improper position (%lu)"), pos);
4638 pos = 1;
4639 }
4640 if (size == 0 || size > 64
4641 || (pos + size - 1) > 63)
4642 {
4643 as_bad (_("Improper insert size (%lu, position %lu)"),
4644 size, pos);
4645 size = 1;
4646 }
4647
4648 if (pos < 32 && (pos + size - 1) < 32)
4649 {
4650 s = "dins";
4651 fmt = "t,r,+A,+B";
4652 }
4653 else if (pos >= 32)
4654 {
4655 s = "dinsu";
4656 fmt = "t,r,+E,+F";
4657 }
4658 else
4659 {
4660 s = "dinsm";
4661 fmt = "t,r,+A,+F";
4662 }
4663 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos,
4664 pos + size - 1);
4665 }
4666 return;
4667
4668 case M_DDIV_3:
4669 dbl = 1;
4670 case M_DIV_3:
4671 s = "mflo";
4672 goto do_div3;
4673 case M_DREM_3:
4674 dbl = 1;
4675 case M_REM_3:
4676 s = "mfhi";
4677 do_div3:
4678 if (treg == 0)
4679 {
4680 as_warn (_("Divide by zero."));
4681 if (mips_trap)
4682 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
4683 else
4684 macro_build (NULL, "break", "c", 7);
4685 return;
4686 }
4687
4688 mips_emit_delays (TRUE);
4689 ++mips_opts.noreorder;
4690 mips_any_noreorder = 1;
4691 if (mips_trap)
4692 {
4693 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
4694 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4695 }
4696 else
4697 {
4698 expr1.X_add_number = 8;
4699 macro_build (&expr1, "bne", "s,t,p", treg, 0);
4700 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4701 macro_build (NULL, "break", "c", 7);
4702 }
4703 expr1.X_add_number = -1;
4704 load_register (AT, &expr1, dbl);
4705 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
4706 macro_build (&expr1, "bne", "s,t,p", treg, AT);
4707 if (dbl)
4708 {
4709 expr1.X_add_number = 1;
4710 load_register (AT, &expr1, dbl);
4711 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
4712 }
4713 else
4714 {
4715 expr1.X_add_number = 0x80000000;
4716 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
4717 }
4718 if (mips_trap)
4719 {
4720 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
4721 /* We want to close the noreorder block as soon as possible, so
4722 that later insns are available for delay slot filling. */
4723 --mips_opts.noreorder;
4724 }
4725 else
4726 {
4727 expr1.X_add_number = 8;
4728 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
4729 macro_build (NULL, "nop", "", 0);
4730
4731 /* We want to close the noreorder block as soon as possible, so
4732 that later insns are available for delay slot filling. */
4733 --mips_opts.noreorder;
4734
4735 macro_build (NULL, "break", "c", 6);
4736 }
4737 macro_build (NULL, s, "d", dreg);
4738 break;
4739
4740 case M_DIV_3I:
4741 s = "div";
4742 s2 = "mflo";
4743 goto do_divi;
4744 case M_DIVU_3I:
4745 s = "divu";
4746 s2 = "mflo";
4747 goto do_divi;
4748 case M_REM_3I:
4749 s = "div";
4750 s2 = "mfhi";
4751 goto do_divi;
4752 case M_REMU_3I:
4753 s = "divu";
4754 s2 = "mfhi";
4755 goto do_divi;
4756 case M_DDIV_3I:
4757 dbl = 1;
4758 s = "ddiv";
4759 s2 = "mflo";
4760 goto do_divi;
4761 case M_DDIVU_3I:
4762 dbl = 1;
4763 s = "ddivu";
4764 s2 = "mflo";
4765 goto do_divi;
4766 case M_DREM_3I:
4767 dbl = 1;
4768 s = "ddiv";
4769 s2 = "mfhi";
4770 goto do_divi;
4771 case M_DREMU_3I:
4772 dbl = 1;
4773 s = "ddivu";
4774 s2 = "mfhi";
4775 do_divi:
4776 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4777 {
4778 as_warn (_("Divide by zero."));
4779 if (mips_trap)
4780 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
4781 else
4782 macro_build (NULL, "break", "c", 7);
4783 return;
4784 }
4785 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4786 {
4787 if (strcmp (s2, "mflo") == 0)
4788 move_register (dreg, sreg);
4789 else
4790 move_register (dreg, 0);
4791 return;
4792 }
4793 if (imm_expr.X_op == O_constant
4794 && imm_expr.X_add_number == -1
4795 && s[strlen (s) - 1] != 'u')
4796 {
4797 if (strcmp (s2, "mflo") == 0)
4798 {
4799 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
4800 }
4801 else
4802 move_register (dreg, 0);
4803 return;
4804 }
4805
4806 load_register (AT, &imm_expr, dbl);
4807 macro_build (NULL, s, "z,s,t", sreg, AT);
4808 macro_build (NULL, s2, "d", dreg);
4809 break;
4810
4811 case M_DIVU_3:
4812 s = "divu";
4813 s2 = "mflo";
4814 goto do_divu3;
4815 case M_REMU_3:
4816 s = "divu";
4817 s2 = "mfhi";
4818 goto do_divu3;
4819 case M_DDIVU_3:
4820 s = "ddivu";
4821 s2 = "mflo";
4822 goto do_divu3;
4823 case M_DREMU_3:
4824 s = "ddivu";
4825 s2 = "mfhi";
4826 do_divu3:
4827 mips_emit_delays (TRUE);
4828 ++mips_opts.noreorder;
4829 mips_any_noreorder = 1;
4830 if (mips_trap)
4831 {
4832 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
4833 macro_build (NULL, s, "z,s,t", sreg, treg);
4834 /* We want to close the noreorder block as soon as possible, so
4835 that later insns are available for delay slot filling. */
4836 --mips_opts.noreorder;
4837 }
4838 else
4839 {
4840 expr1.X_add_number = 8;
4841 macro_build (&expr1, "bne", "s,t,p", treg, 0);
4842 macro_build (NULL, s, "z,s,t", sreg, treg);
4843
4844 /* We want to close the noreorder block as soon as possible, so
4845 that later insns are available for delay slot filling. */
4846 --mips_opts.noreorder;
4847 macro_build (NULL, "break", "c", 7);
4848 }
4849 macro_build (NULL, s2, "d", dreg);
4850 return;
4851
4852 case M_DLCA_AB:
4853 dbl = 1;
4854 case M_LCA_AB:
4855 call = 1;
4856 goto do_la;
4857 case M_DLA_AB:
4858 dbl = 1;
4859 case M_LA_AB:
4860 do_la:
4861 /* Load the address of a symbol into a register. If breg is not
4862 zero, we then add a base register to it. */
4863
4864 if (dbl && HAVE_32BIT_GPRS)
4865 as_warn (_("dla used to load 32-bit register"));
4866
4867 if (! dbl && HAVE_64BIT_OBJECTS)
4868 as_warn (_("la used to load 64-bit address"));
4869
4870 if (offset_expr.X_op == O_constant
4871 && offset_expr.X_add_number >= -0x8000
4872 && offset_expr.X_add_number < 0x8000)
4873 {
4874 macro_build (&offset_expr,
4875 (dbl || HAVE_64BIT_ADDRESSES) ? "daddiu" : "addiu",
4876 "t,r,j", treg, sreg, BFD_RELOC_LO16);
4877 return;
4878 }
4879
4880 if (treg == breg)
4881 {
4882 tempreg = AT;
4883 used_at = 1;
4884 }
4885 else
4886 {
4887 tempreg = treg;
4888 used_at = 0;
4889 }
4890
4891 /* When generating embedded PIC code, we permit expressions of
4892 the form
4893 la $treg,foo-bar
4894 la $treg,foo-bar($breg)
4895 where bar is an address in the current section. These are used
4896 when getting the addresses of functions. We don't permit
4897 X_add_number to be non-zero, because if the symbol is
4898 external the relaxing code needs to know that any addend is
4899 purely the offset to X_op_symbol. */
4900 if (mips_pic == EMBEDDED_PIC
4901 && offset_expr.X_op == O_subtract
4902 && (symbol_constant_p (offset_expr.X_op_symbol)
4903 ? S_GET_SEGMENT (offset_expr.X_op_symbol) == now_seg
4904 : (symbol_equated_p (offset_expr.X_op_symbol)
4905 && (S_GET_SEGMENT
4906 (symbol_get_value_expression (offset_expr.X_op_symbol)
4907 ->X_add_symbol)
4908 == now_seg)))
4909 && (offset_expr.X_add_number == 0
4910 || OUTPUT_FLAVOR == bfd_target_elf_flavour))
4911 {
4912 if (breg == 0)
4913 {
4914 tempreg = treg;
4915 used_at = 0;
4916 macro_build (&offset_expr, "lui", "t,u",
4917 tempreg, BFD_RELOC_PCREL_HI16_S);
4918 }
4919 else
4920 {
4921 macro_build (&offset_expr, "lui", "t,u",
4922 tempreg, BFD_RELOC_PCREL_HI16_S);
4923 macro_build (NULL,
4924 (dbl || HAVE_64BIT_ADDRESSES) ? "daddu" : "addu",
4925 "d,v,t", tempreg, tempreg, breg);
4926 }
4927 macro_build (&offset_expr,
4928 (dbl || HAVE_64BIT_ADDRESSES) ? "daddiu" : "addiu",
4929 "t,r,j", treg, tempreg, BFD_RELOC_PCREL_LO16);
4930 if (! used_at)
4931 return;
4932 break;
4933 }
4934
4935 if (offset_expr.X_op != O_symbol
4936 && offset_expr.X_op != O_constant)
4937 {
4938 as_bad (_("expression too complex"));
4939 offset_expr.X_op = O_constant;
4940 }
4941
4942 if (offset_expr.X_op == O_constant)
4943 load_register (tempreg, &offset_expr,
4944 ((mips_pic == EMBEDDED_PIC || mips_pic == NO_PIC)
4945 ? (dbl || HAVE_64BIT_ADDRESSES)
4946 : HAVE_64BIT_ADDRESSES));
4947 else if (mips_pic == NO_PIC)
4948 {
4949 /* If this is a reference to a GP relative symbol, we want
4950 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
4951 Otherwise we want
4952 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
4953 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
4954 If we have a constant, we need two instructions anyhow,
4955 so we may as well always use the latter form.
4956
4957 With 64bit address space and a usable $at we want
4958 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4959 lui $at,<sym> (BFD_RELOC_HI16_S)
4960 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4961 daddiu $at,<sym> (BFD_RELOC_LO16)
4962 dsll32 $tempreg,0
4963 daddu $tempreg,$tempreg,$at
4964
4965 If $at is already in use, we use a path which is suboptimal
4966 on superscalar processors.
4967 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4968 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4969 dsll $tempreg,16
4970 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
4971 dsll $tempreg,16
4972 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
4973 */
4974 if (HAVE_64BIT_ADDRESSES)
4975 {
4976 /* ??? We don't provide a GP-relative alternative for
4977 these macros. It used not to be possible with the
4978 original relaxation code, but it could be done now. */
4979
4980 if (used_at == 0 && ! mips_opts.noat)
4981 {
4982 macro_build (&offset_expr, "lui", "t,u",
4983 tempreg, BFD_RELOC_MIPS_HIGHEST);
4984 macro_build (&offset_expr, "lui", "t,u",
4985 AT, BFD_RELOC_HI16_S);
4986 macro_build (&offset_expr, "daddiu", "t,r,j",
4987 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
4988 macro_build (&offset_expr, "daddiu", "t,r,j",
4989 AT, AT, BFD_RELOC_LO16);
4990 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
4991 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
4992 used_at = 1;
4993 }
4994 else
4995 {
4996 macro_build (&offset_expr, "lui", "t,u",
4997 tempreg, BFD_RELOC_MIPS_HIGHEST);
4998 macro_build (&offset_expr, "daddiu", "t,r,j",
4999 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5000 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5001 macro_build (&offset_expr, "daddiu", "t,r,j",
5002 tempreg, tempreg, BFD_RELOC_HI16_S);
5003 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5004 macro_build (&offset_expr, "daddiu", "t,r,j",
5005 tempreg, tempreg, BFD_RELOC_LO16);
5006 }
5007 }
5008 else
5009 {
5010 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5011 && ! nopic_need_relax (offset_expr.X_add_symbol, 1))
5012 {
5013 relax_start (offset_expr.X_add_symbol);
5014 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5015 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5016 relax_switch ();
5017 }
5018 macro_build_lui (&offset_expr, tempreg);
5019 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5020 tempreg, tempreg, BFD_RELOC_LO16);
5021 if (mips_relax.sequence)
5022 relax_end ();
5023 }
5024 }
5025 else if (mips_pic == SVR4_PIC && ! mips_big_got && ! HAVE_NEWABI)
5026 {
5027 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5028
5029 /* If this is a reference to an external symbol, and there
5030 is no constant, we want
5031 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5032 or for lca or if tempreg is PIC_CALL_REG
5033 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5034 For a local symbol, we want
5035 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5036 nop
5037 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5038
5039 If we have a small constant, and this is a reference to
5040 an external symbol, we want
5041 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5042 nop
5043 addiu $tempreg,$tempreg,<constant>
5044 For a local symbol, we want the same instruction
5045 sequence, but we output a BFD_RELOC_LO16 reloc on the
5046 addiu instruction.
5047
5048 If we have a large constant, and this is a reference to
5049 an external symbol, we want
5050 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5051 lui $at,<hiconstant>
5052 addiu $at,$at,<loconstant>
5053 addu $tempreg,$tempreg,$at
5054 For a local symbol, we want the same instruction
5055 sequence, but we output a BFD_RELOC_LO16 reloc on the
5056 addiu instruction.
5057 */
5058
5059 if (offset_expr.X_add_number == 0)
5060 {
5061 if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5062 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5063
5064 relax_start (offset_expr.X_add_symbol);
5065 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5066 lw_reloc_type, mips_gp_register);
5067 if (breg != 0)
5068 {
5069 /* We're going to put in an addu instruction using
5070 tempreg, so we may as well insert the nop right
5071 now. */
5072 macro_build (NULL, "nop", "");
5073 }
5074 relax_switch ();
5075 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5076 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5077 macro_build (NULL, "nop", "");
5078 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5079 tempreg, tempreg, BFD_RELOC_LO16);
5080 relax_end ();
5081 /* FIXME: If breg == 0, and the next instruction uses
5082 $tempreg, then if this variant case is used an extra
5083 nop will be generated. */
5084 }
5085 else if (offset_expr.X_add_number >= -0x8000
5086 && offset_expr.X_add_number < 0x8000)
5087 {
5088 load_got_offset (tempreg, &offset_expr);
5089 macro_build (NULL, "nop", "");
5090 add_got_offset (tempreg, &offset_expr);
5091 }
5092 else
5093 {
5094 expr1.X_add_number = offset_expr.X_add_number;
5095 offset_expr.X_add_number =
5096 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5097 load_got_offset (tempreg, &offset_expr);
5098 offset_expr.X_add_number = expr1.X_add_number;
5099 /* If we are going to add in a base register, and the
5100 target register and the base register are the same,
5101 then we are using AT as a temporary register. Since
5102 we want to load the constant into AT, we add our
5103 current AT (from the global offset table) and the
5104 register into the register now, and pretend we were
5105 not using a base register. */
5106 if (breg == treg)
5107 {
5108 macro_build (NULL, "nop", "");
5109 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5110 treg, AT, breg);
5111 breg = 0;
5112 tempreg = treg;
5113 }
5114 add_got_offset_hilo (tempreg, &offset_expr, AT);
5115 used_at = 1;
5116 }
5117 }
5118 else if (mips_pic == SVR4_PIC && ! mips_big_got && HAVE_NEWABI)
5119 {
5120 int add_breg_early = 0;
5121
5122 /* If this is a reference to an external, and there is no
5123 constant, or local symbol (*), with or without a
5124 constant, we want
5125 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5126 or for lca or if tempreg is PIC_CALL_REG
5127 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5128
5129 If we have a small constant, and this is a reference to
5130 an external symbol, we want
5131 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5132 addiu $tempreg,$tempreg,<constant>
5133
5134 If we have a large constant, and this is a reference to
5135 an external symbol, we want
5136 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5137 lui $at,<hiconstant>
5138 addiu $at,$at,<loconstant>
5139 addu $tempreg,$tempreg,$at
5140
5141 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5142 local symbols, even though it introduces an additional
5143 instruction. */
5144
5145 if (offset_expr.X_add_number)
5146 {
5147 expr1.X_add_number = offset_expr.X_add_number;
5148 offset_expr.X_add_number = 0;
5149
5150 relax_start (offset_expr.X_add_symbol);
5151 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5152 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5153
5154 if (expr1.X_add_number >= -0x8000
5155 && expr1.X_add_number < 0x8000)
5156 {
5157 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5158 tempreg, tempreg, BFD_RELOC_LO16);
5159 }
5160 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5161 {
5162 int dreg;
5163
5164 /* If we are going to add in a base register, and the
5165 target register and the base register are the same,
5166 then we are using AT as a temporary register. Since
5167 we want to load the constant into AT, we add our
5168 current AT (from the global offset table) and the
5169 register into the register now, and pretend we were
5170 not using a base register. */
5171 if (breg != treg)
5172 dreg = tempreg;
5173 else
5174 {
5175 assert (tempreg == AT);
5176 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5177 treg, AT, breg);
5178 dreg = treg;
5179 add_breg_early = 1;
5180 }
5181
5182 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5183 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5184 dreg, dreg, AT);
5185
5186 used_at = 1;
5187 }
5188 else
5189 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5190
5191 relax_switch ();
5192 offset_expr.X_add_number = expr1.X_add_number;
5193
5194 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5195 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5196 if (add_breg_early)
5197 {
5198 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5199 treg, tempreg, breg);
5200 breg = 0;
5201 tempreg = treg;
5202 }
5203 relax_end ();
5204 }
5205 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5206 {
5207 relax_start (offset_expr.X_add_symbol);
5208 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5209 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5210 relax_switch ();
5211 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5212 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5213 relax_end ();
5214 }
5215 else
5216 {
5217 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5218 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5219 }
5220 }
5221 else if (mips_pic == SVR4_PIC && ! HAVE_NEWABI)
5222 {
5223 int gpdelay;
5224 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5225 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5226 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5227
5228 /* This is the large GOT case. If this is a reference to an
5229 external symbol, and there is no constant, we want
5230 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5231 addu $tempreg,$tempreg,$gp
5232 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5233 or for lca or if tempreg is PIC_CALL_REG
5234 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5235 addu $tempreg,$tempreg,$gp
5236 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5237 For a local symbol, we want
5238 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5239 nop
5240 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5241
5242 If we have a small constant, and this is a reference to
5243 an external symbol, we want
5244 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5245 addu $tempreg,$tempreg,$gp
5246 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5247 nop
5248 addiu $tempreg,$tempreg,<constant>
5249 For a local symbol, we want
5250 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5251 nop
5252 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5253
5254 If we have a large constant, and this is a reference to
5255 an external symbol, we want
5256 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5257 addu $tempreg,$tempreg,$gp
5258 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5259 lui $at,<hiconstant>
5260 addiu $at,$at,<loconstant>
5261 addu $tempreg,$tempreg,$at
5262 For a local symbol, we want
5263 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5264 lui $at,<hiconstant>
5265 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5266 addu $tempreg,$tempreg,$at
5267 */
5268
5269 expr1.X_add_number = offset_expr.X_add_number;
5270 offset_expr.X_add_number = 0;
5271 relax_start (offset_expr.X_add_symbol);
5272 gpdelay = reg_needs_delay (mips_gp_register);
5273 if (expr1.X_add_number == 0 && breg == 0
5274 && (call || tempreg == PIC_CALL_REG))
5275 {
5276 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5277 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5278 }
5279 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5280 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5281 tempreg, tempreg, mips_gp_register);
5282 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5283 tempreg, lw_reloc_type, tempreg);
5284 if (expr1.X_add_number == 0)
5285 {
5286 if (breg != 0)
5287 {
5288 /* We're going to put in an addu instruction using
5289 tempreg, so we may as well insert the nop right
5290 now. */
5291 macro_build (NULL, "nop", "");
5292 }
5293 }
5294 else if (expr1.X_add_number >= -0x8000
5295 && expr1.X_add_number < 0x8000)
5296 {
5297 macro_build (NULL, "nop", "");
5298 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5299 tempreg, tempreg, BFD_RELOC_LO16);
5300 }
5301 else
5302 {
5303 int dreg;
5304
5305 /* If we are going to add in a base register, and the
5306 target register and the base register are the same,
5307 then we are using AT as a temporary register. Since
5308 we want to load the constant into AT, we add our
5309 current AT (from the global offset table) and the
5310 register into the register now, and pretend we were
5311 not using a base register. */
5312 if (breg != treg)
5313 dreg = tempreg;
5314 else
5315 {
5316 assert (tempreg == AT);
5317 macro_build (NULL, "nop", "");
5318 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5319 treg, AT, breg);
5320 dreg = treg;
5321 }
5322
5323 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5324 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5325
5326 used_at = 1;
5327 }
5328 offset_expr.X_add_number =
5329 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5330 relax_switch ();
5331
5332 if (gpdelay)
5333 {
5334 /* This is needed because this instruction uses $gp, but
5335 the first instruction on the main stream does not. */
5336 macro_build (NULL, "nop", "");
5337 }
5338
5339 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5340 local_reloc_type, mips_gp_register);
5341 if (expr1.X_add_number >= -0x8000
5342 && expr1.X_add_number < 0x8000)
5343 {
5344 macro_build (NULL, "nop", "");
5345 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5346 tempreg, tempreg, BFD_RELOC_LO16);
5347 /* FIXME: If add_number is 0, and there was no base
5348 register, the external symbol case ended with a load,
5349 so if the symbol turns out to not be external, and
5350 the next instruction uses tempreg, an unnecessary nop
5351 will be inserted. */
5352 }
5353 else
5354 {
5355 if (breg == treg)
5356 {
5357 /* We must add in the base register now, as in the
5358 external symbol case. */
5359 assert (tempreg == AT);
5360 macro_build (NULL, "nop", "");
5361 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5362 treg, AT, breg);
5363 tempreg = treg;
5364 /* We set breg to 0 because we have arranged to add
5365 it in in both cases. */
5366 breg = 0;
5367 }
5368
5369 macro_build_lui (&expr1, AT);
5370 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5371 AT, AT, BFD_RELOC_LO16);
5372 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5373 tempreg, tempreg, AT);
5374 }
5375 relax_end ();
5376 }
5377 else if (mips_pic == SVR4_PIC && HAVE_NEWABI)
5378 {
5379 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5380 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5381 int add_breg_early = 0;
5382
5383 /* This is the large GOT case. If this is a reference to an
5384 external symbol, and there is no constant, we want
5385 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5386 add $tempreg,$tempreg,$gp
5387 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5388 or for lca or if tempreg is PIC_CALL_REG
5389 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5390 add $tempreg,$tempreg,$gp
5391 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5392
5393 If we have a small constant, and this is a reference to
5394 an external symbol, we want
5395 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5396 add $tempreg,$tempreg,$gp
5397 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5398 addi $tempreg,$tempreg,<constant>
5399
5400 If we have a large constant, and this is a reference to
5401 an external symbol, we want
5402 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5403 addu $tempreg,$tempreg,$gp
5404 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5405 lui $at,<hiconstant>
5406 addi $at,$at,<loconstant>
5407 add $tempreg,$tempreg,$at
5408
5409 If we have NewABI, and we know it's a local symbol, we want
5410 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5411 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5412 otherwise we have to resort to GOT_HI16/GOT_LO16. */
5413
5414 relax_start (offset_expr.X_add_symbol);
5415
5416 expr1.X_add_number = offset_expr.X_add_number;
5417 offset_expr.X_add_number = 0;
5418
5419 if (expr1.X_add_number == 0 && breg == 0
5420 && (call || tempreg == PIC_CALL_REG))
5421 {
5422 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5423 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5424 }
5425 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5426 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5427 tempreg, tempreg, mips_gp_register);
5428 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5429 tempreg, lw_reloc_type, tempreg);
5430
5431 if (expr1.X_add_number == 0)
5432 ;
5433 else if (expr1.X_add_number >= -0x8000
5434 && expr1.X_add_number < 0x8000)
5435 {
5436 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5437 tempreg, tempreg, BFD_RELOC_LO16);
5438 }
5439 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5440 {
5441 int dreg;
5442
5443 /* If we are going to add in a base register, and the
5444 target register and the base register are the same,
5445 then we are using AT as a temporary register. Since
5446 we want to load the constant into AT, we add our
5447 current AT (from the global offset table) and the
5448 register into the register now, and pretend we were
5449 not using a base register. */
5450 if (breg != treg)
5451 dreg = tempreg;
5452 else
5453 {
5454 assert (tempreg == AT);
5455 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5456 treg, AT, breg);
5457 dreg = treg;
5458 add_breg_early = 1;
5459 }
5460
5461 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5462 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5463
5464 used_at = 1;
5465 }
5466 else
5467 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5468
5469 relax_switch ();
5470 offset_expr.X_add_number = expr1.X_add_number;
5471 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5472 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
5473 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
5474 tempreg, BFD_RELOC_MIPS_GOT_OFST);
5475 if (add_breg_early)
5476 {
5477 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5478 treg, tempreg, breg);
5479 breg = 0;
5480 tempreg = treg;
5481 }
5482 relax_end ();
5483 }
5484 else if (mips_pic == EMBEDDED_PIC)
5485 {
5486 /* We use
5487 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5488 */
5489 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
5490 mips_gp_register, BFD_RELOC_GPREL16);
5491 }
5492 else
5493 abort ();
5494
5495 if (breg != 0)
5496 {
5497 char *s;
5498
5499 if (mips_pic == EMBEDDED_PIC || mips_pic == NO_PIC)
5500 s = (dbl || HAVE_64BIT_ADDRESSES) ? "daddu" : "addu";
5501 else
5502 s = ADDRESS_ADD_INSN;
5503
5504 macro_build (NULL, s, "d,v,t", treg, tempreg, breg);
5505 }
5506
5507 if (! used_at)
5508 return;
5509
5510 break;
5511
5512 case M_J_A:
5513 /* The j instruction may not be used in PIC code, since it
5514 requires an absolute address. We convert it to a b
5515 instruction. */
5516 if (mips_pic == NO_PIC)
5517 macro_build (&offset_expr, "j", "a");
5518 else
5519 macro_build (&offset_expr, "b", "p");
5520 return;
5521
5522 /* The jal instructions must be handled as macros because when
5523 generating PIC code they expand to multi-instruction
5524 sequences. Normally they are simple instructions. */
5525 case M_JAL_1:
5526 dreg = RA;
5527 /* Fall through. */
5528 case M_JAL_2:
5529 if (mips_pic == NO_PIC
5530 || mips_pic == EMBEDDED_PIC)
5531 macro_build (NULL, "jalr", "d,s", dreg, sreg);
5532 else if (mips_pic == SVR4_PIC)
5533 {
5534 if (sreg != PIC_CALL_REG)
5535 as_warn (_("MIPS PIC call to register other than $25"));
5536
5537 macro_build (NULL, "jalr", "d,s", dreg, sreg);
5538 if (! HAVE_NEWABI)
5539 {
5540 if (mips_cprestore_offset < 0)
5541 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5542 else
5543 {
5544 if (! mips_frame_reg_valid)
5545 {
5546 as_warn (_("No .frame pseudo-op used in PIC code"));
5547 /* Quiet this warning. */
5548 mips_frame_reg_valid = 1;
5549 }
5550 if (! mips_cprestore_valid)
5551 {
5552 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5553 /* Quiet this warning. */
5554 mips_cprestore_valid = 1;
5555 }
5556 expr1.X_add_number = mips_cprestore_offset;
5557 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
5558 mips_gp_register,
5559 mips_frame_reg,
5560 HAVE_64BIT_ADDRESSES);
5561 }
5562 }
5563 }
5564 else
5565 abort ();
5566
5567 return;
5568
5569 case M_JAL_A:
5570 if (mips_pic == NO_PIC)
5571 macro_build (&offset_expr, "jal", "a");
5572 else if (mips_pic == SVR4_PIC)
5573 {
5574 /* If this is a reference to an external symbol, and we are
5575 using a small GOT, we want
5576 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5577 nop
5578 jalr $ra,$25
5579 nop
5580 lw $gp,cprestore($sp)
5581 The cprestore value is set using the .cprestore
5582 pseudo-op. If we are using a big GOT, we want
5583 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5584 addu $25,$25,$gp
5585 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
5586 nop
5587 jalr $ra,$25
5588 nop
5589 lw $gp,cprestore($sp)
5590 If the symbol is not external, we want
5591 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5592 nop
5593 addiu $25,$25,<sym> (BFD_RELOC_LO16)
5594 jalr $ra,$25
5595 nop
5596 lw $gp,cprestore($sp)
5597
5598 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
5599 sequences above, minus nops, unless the symbol is local,
5600 which enables us to use GOT_PAGE/GOT_OFST (big got) or
5601 GOT_DISP. */
5602 if (HAVE_NEWABI)
5603 {
5604 if (! mips_big_got)
5605 {
5606 relax_start (offset_expr.X_add_symbol);
5607 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5608 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
5609 mips_gp_register);
5610 relax_switch ();
5611 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5612 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
5613 mips_gp_register);
5614 relax_end ();
5615 }
5616 else
5617 {
5618 relax_start (offset_expr.X_add_symbol);
5619 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
5620 BFD_RELOC_MIPS_CALL_HI16);
5621 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
5622 PIC_CALL_REG, mips_gp_register);
5623 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5624 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
5625 PIC_CALL_REG);
5626 relax_switch ();
5627 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5628 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
5629 mips_gp_register);
5630 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5631 PIC_CALL_REG, PIC_CALL_REG,
5632 BFD_RELOC_MIPS_GOT_OFST);
5633 relax_end ();
5634 }
5635
5636 macro_build_jalr (&offset_expr);
5637 }
5638 else
5639 {
5640 relax_start (offset_expr.X_add_symbol);
5641 if (! mips_big_got)
5642 {
5643 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5644 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
5645 mips_gp_register);
5646 macro_build (NULL, "nop", "");
5647 relax_switch ();
5648 }
5649 else
5650 {
5651 int gpdelay;
5652
5653 gpdelay = reg_needs_delay (mips_gp_register);
5654 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
5655 BFD_RELOC_MIPS_CALL_HI16);
5656 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
5657 PIC_CALL_REG, mips_gp_register);
5658 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5659 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
5660 PIC_CALL_REG);
5661 macro_build (NULL, "nop", "");
5662 relax_switch ();
5663 if (gpdelay)
5664 macro_build (NULL, "nop", "");
5665 }
5666 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5667 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
5668 mips_gp_register);
5669 macro_build (NULL, "nop", "");
5670 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5671 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
5672 relax_end ();
5673 macro_build_jalr (&offset_expr);
5674
5675 if (mips_cprestore_offset < 0)
5676 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5677 else
5678 {
5679 if (! mips_frame_reg_valid)
5680 {
5681 as_warn (_("No .frame pseudo-op used in PIC code"));
5682 /* Quiet this warning. */
5683 mips_frame_reg_valid = 1;
5684 }
5685 if (! mips_cprestore_valid)
5686 {
5687 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5688 /* Quiet this warning. */
5689 mips_cprestore_valid = 1;
5690 }
5691 if (mips_opts.noreorder)
5692 macro_build (NULL, "nop", "");
5693 expr1.X_add_number = mips_cprestore_offset;
5694 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
5695 mips_gp_register,
5696 mips_frame_reg,
5697 HAVE_64BIT_ADDRESSES);
5698 }
5699 }
5700 }
5701 else if (mips_pic == EMBEDDED_PIC)
5702 {
5703 macro_build (&offset_expr, "bal", "p");
5704 /* The linker may expand the call to a longer sequence which
5705 uses $at, so we must break rather than return. */
5706 break;
5707 }
5708 else
5709 abort ();
5710
5711 return;
5712
5713 case M_LB_AB:
5714 s = "lb";
5715 goto ld;
5716 case M_LBU_AB:
5717 s = "lbu";
5718 goto ld;
5719 case M_LH_AB:
5720 s = "lh";
5721 goto ld;
5722 case M_LHU_AB:
5723 s = "lhu";
5724 goto ld;
5725 case M_LW_AB:
5726 s = "lw";
5727 goto ld;
5728 case M_LWC0_AB:
5729 s = "lwc0";
5730 /* Itbl support may require additional care here. */
5731 coproc = 1;
5732 goto ld;
5733 case M_LWC1_AB:
5734 s = "lwc1";
5735 /* Itbl support may require additional care here. */
5736 coproc = 1;
5737 goto ld;
5738 case M_LWC2_AB:
5739 s = "lwc2";
5740 /* Itbl support may require additional care here. */
5741 coproc = 1;
5742 goto ld;
5743 case M_LWC3_AB:
5744 s = "lwc3";
5745 /* Itbl support may require additional care here. */
5746 coproc = 1;
5747 goto ld;
5748 case M_LWL_AB:
5749 s = "lwl";
5750 lr = 1;
5751 goto ld;
5752 case M_LWR_AB:
5753 s = "lwr";
5754 lr = 1;
5755 goto ld;
5756 case M_LDC1_AB:
5757 if (mips_opts.arch == CPU_R4650)
5758 {
5759 as_bad (_("opcode not supported on this processor"));
5760 return;
5761 }
5762 s = "ldc1";
5763 /* Itbl support may require additional care here. */
5764 coproc = 1;
5765 goto ld;
5766 case M_LDC2_AB:
5767 s = "ldc2";
5768 /* Itbl support may require additional care here. */
5769 coproc = 1;
5770 goto ld;
5771 case M_LDC3_AB:
5772 s = "ldc3";
5773 /* Itbl support may require additional care here. */
5774 coproc = 1;
5775 goto ld;
5776 case M_LDL_AB:
5777 s = "ldl";
5778 lr = 1;
5779 goto ld;
5780 case M_LDR_AB:
5781 s = "ldr";
5782 lr = 1;
5783 goto ld;
5784 case M_LL_AB:
5785 s = "ll";
5786 goto ld;
5787 case M_LLD_AB:
5788 s = "lld";
5789 goto ld;
5790 case M_LWU_AB:
5791 s = "lwu";
5792 ld:
5793 if (breg == treg || coproc || lr)
5794 {
5795 tempreg = AT;
5796 used_at = 1;
5797 }
5798 else
5799 {
5800 tempreg = treg;
5801 used_at = 0;
5802 }
5803 goto ld_st;
5804 case M_SB_AB:
5805 s = "sb";
5806 goto st;
5807 case M_SH_AB:
5808 s = "sh";
5809 goto st;
5810 case M_SW_AB:
5811 s = "sw";
5812 goto st;
5813 case M_SWC0_AB:
5814 s = "swc0";
5815 /* Itbl support may require additional care here. */
5816 coproc = 1;
5817 goto st;
5818 case M_SWC1_AB:
5819 s = "swc1";
5820 /* Itbl support may require additional care here. */
5821 coproc = 1;
5822 goto st;
5823 case M_SWC2_AB:
5824 s = "swc2";
5825 /* Itbl support may require additional care here. */
5826 coproc = 1;
5827 goto st;
5828 case M_SWC3_AB:
5829 s = "swc3";
5830 /* Itbl support may require additional care here. */
5831 coproc = 1;
5832 goto st;
5833 case M_SWL_AB:
5834 s = "swl";
5835 goto st;
5836 case M_SWR_AB:
5837 s = "swr";
5838 goto st;
5839 case M_SC_AB:
5840 s = "sc";
5841 goto st;
5842 case M_SCD_AB:
5843 s = "scd";
5844 goto st;
5845 case M_SDC1_AB:
5846 if (mips_opts.arch == CPU_R4650)
5847 {
5848 as_bad (_("opcode not supported on this processor"));
5849 return;
5850 }
5851 s = "sdc1";
5852 coproc = 1;
5853 /* Itbl support may require additional care here. */
5854 goto st;
5855 case M_SDC2_AB:
5856 s = "sdc2";
5857 /* Itbl support may require additional care here. */
5858 coproc = 1;
5859 goto st;
5860 case M_SDC3_AB:
5861 s = "sdc3";
5862 /* Itbl support may require additional care here. */
5863 coproc = 1;
5864 goto st;
5865 case M_SDL_AB:
5866 s = "sdl";
5867 goto st;
5868 case M_SDR_AB:
5869 s = "sdr";
5870 st:
5871 tempreg = AT;
5872 used_at = 1;
5873 ld_st:
5874 /* Itbl support may require additional care here. */
5875 if (mask == M_LWC1_AB
5876 || mask == M_SWC1_AB
5877 || mask == M_LDC1_AB
5878 || mask == M_SDC1_AB
5879 || mask == M_L_DAB
5880 || mask == M_S_DAB)
5881 fmt = "T,o(b)";
5882 else if (coproc)
5883 fmt = "E,o(b)";
5884 else
5885 fmt = "t,o(b)";
5886
5887 /* Sign-extending 32-bit constants makes their handling easier.
5888 The HAVE_64BIT_GPRS... part is due to the linux kernel hack
5889 described below. */
5890 if ((! HAVE_64BIT_ADDRESSES
5891 && (! HAVE_64BIT_GPRS && offset_expr.X_op == O_constant))
5892 && (offset_expr.X_op == O_constant)
5893 && ! ((offset_expr.X_add_number & ~((bfd_vma) 0x7fffffff))
5894 == ~((bfd_vma) 0x7fffffff)))
5895 {
5896 if (offset_expr.X_add_number & ~((bfd_vma) 0xffffffff))
5897 as_bad (_("constant too large"));
5898
5899 offset_expr.X_add_number = (((offset_expr.X_add_number & 0xffffffff)
5900 ^ 0x80000000) - 0x80000000);
5901 }
5902
5903 /* For embedded PIC, we allow loads where the offset is calculated
5904 by subtracting a symbol in the current segment from an unknown
5905 symbol, relative to a base register, e.g.:
5906 <op> $treg, <sym>-<localsym>($breg)
5907 This is used by the compiler for switch statements. */
5908 if (mips_pic == EMBEDDED_PIC
5909 && offset_expr.X_op == O_subtract
5910 && (symbol_constant_p (offset_expr.X_op_symbol)
5911 ? S_GET_SEGMENT (offset_expr.X_op_symbol) == now_seg
5912 : (symbol_equated_p (offset_expr.X_op_symbol)
5913 && (S_GET_SEGMENT
5914 (symbol_get_value_expression (offset_expr.X_op_symbol)
5915 ->X_add_symbol)
5916 == now_seg)))
5917 && breg != 0
5918 && (offset_expr.X_add_number == 0
5919 || OUTPUT_FLAVOR == bfd_target_elf_flavour))
5920 {
5921 /* For this case, we output the instructions:
5922 lui $tempreg,<sym> (BFD_RELOC_PCREL_HI16_S)
5923 addiu $tempreg,$tempreg,$breg
5924 <op> $treg,<sym>($tempreg) (BFD_RELOC_PCREL_LO16)
5925 If the relocation would fit entirely in 16 bits, it would be
5926 nice to emit:
5927 <op> $treg,<sym>($breg) (BFD_RELOC_PCREL_LO16)
5928 instead, but that seems quite difficult. */
5929 macro_build (&offset_expr, "lui", "t,u", tempreg,
5930 BFD_RELOC_PCREL_HI16_S);
5931 macro_build (NULL,
5932 ((bfd_arch_bits_per_address (stdoutput) == 32
5933 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
5934 ? "addu" : "daddu"),
5935 "d,v,t", tempreg, tempreg, breg);
5936 macro_build (&offset_expr, s, fmt, treg,
5937 BFD_RELOC_PCREL_LO16, tempreg);
5938 if (! used_at)
5939 return;
5940 break;
5941 }
5942
5943 if (offset_expr.X_op != O_constant
5944 && offset_expr.X_op != O_symbol)
5945 {
5946 as_bad (_("expression too complex"));
5947 offset_expr.X_op = O_constant;
5948 }
5949
5950 /* A constant expression in PIC code can be handled just as it
5951 is in non PIC code. */
5952 if (mips_pic == NO_PIC
5953 || offset_expr.X_op == O_constant)
5954 {
5955 /* If this is a reference to a GP relative symbol, and there
5956 is no base register, we want
5957 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
5958 Otherwise, if there is no base register, we want
5959 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5960 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5961 If we have a constant, we need two instructions anyhow,
5962 so we always use the latter form.
5963
5964 If we have a base register, and this is a reference to a
5965 GP relative symbol, we want
5966 addu $tempreg,$breg,$gp
5967 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
5968 Otherwise we want
5969 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5970 addu $tempreg,$tempreg,$breg
5971 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5972 With a constant we always use the latter case.
5973
5974 With 64bit address space and no base register and $at usable,
5975 we want
5976 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5977 lui $at,<sym> (BFD_RELOC_HI16_S)
5978 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5979 dsll32 $tempreg,0
5980 daddu $tempreg,$at
5981 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5982 If we have a base register, we want
5983 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5984 lui $at,<sym> (BFD_RELOC_HI16_S)
5985 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5986 daddu $at,$breg
5987 dsll32 $tempreg,0
5988 daddu $tempreg,$at
5989 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5990
5991 Without $at we can't generate the optimal path for superscalar
5992 processors here since this would require two temporary registers.
5993 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5994 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5995 dsll $tempreg,16
5996 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5997 dsll $tempreg,16
5998 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5999 If we have a base register, we want
6000 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6001 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6002 dsll $tempreg,16
6003 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6004 dsll $tempreg,16
6005 daddu $tempreg,$tempreg,$breg
6006 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6007
6008 If we have 64-bit addresses, as an optimization, for
6009 addresses which are 32-bit constants (e.g. kseg0/kseg1
6010 addresses) we fall back to the 32-bit address generation
6011 mechanism since it is more efficient. Note that due to
6012 the signed offset used by memory operations, the 32-bit
6013 range is shifted down by 32768 here. This code should
6014 probably attempt to generate 64-bit constants more
6015 efficiently in general.
6016
6017 As an extension for architectures with 64-bit registers,
6018 we don't truncate 64-bit addresses given as literal
6019 constants down to 32 bits, to support existing practice
6020 in the mips64 Linux (the kernel), that compiles source
6021 files with -mabi=64, assembling them as o32 or n32 (with
6022 -Wa,-32 or -Wa,-n32). This is not beautiful, but since
6023 the whole kernel is loaded into a memory region that is
6024 addressable with sign-extended 32-bit addresses, it is
6025 wasteful to compute the upper 32 bits of every
6026 non-literal address, that takes more space and time.
6027 Some day this should probably be implemented as an
6028 assembler option, such that the kernel doesn't have to
6029 use such ugly hacks, even though it will still have to
6030 end up converting the binary to ELF32 for a number of
6031 platforms whose boot loaders don't support ELF64
6032 binaries. */
6033 if ((HAVE_64BIT_ADDRESSES
6034 && ! (offset_expr.X_op == O_constant
6035 && IS_SEXT_32BIT_NUM (offset_expr.X_add_number + 0x8000)))
6036 || (HAVE_64BIT_GPRS
6037 && offset_expr.X_op == O_constant
6038 && ! IS_SEXT_32BIT_NUM (offset_expr.X_add_number + 0x8000)))
6039 {
6040 /* ??? We don't provide a GP-relative alternative for
6041 these macros. It used not to be possible with the
6042 original relaxation code, but it could be done now. */
6043
6044 if (used_at == 0 && ! mips_opts.noat)
6045 {
6046 macro_build (&offset_expr, "lui", "t,u", tempreg,
6047 BFD_RELOC_MIPS_HIGHEST);
6048 macro_build (&offset_expr, "lui", "t,u", AT,
6049 BFD_RELOC_HI16_S);
6050 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6051 tempreg, BFD_RELOC_MIPS_HIGHER);
6052 if (breg != 0)
6053 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6054 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6055 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6056 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6057 tempreg);
6058 used_at = 1;
6059 }
6060 else
6061 {
6062 macro_build (&offset_expr, "lui", "t,u", tempreg,
6063 BFD_RELOC_MIPS_HIGHEST);
6064 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6065 tempreg, BFD_RELOC_MIPS_HIGHER);
6066 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6067 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6068 tempreg, BFD_RELOC_HI16_S);
6069 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6070 if (breg != 0)
6071 macro_build (NULL, "daddu", "d,v,t",
6072 tempreg, tempreg, breg);
6073 macro_build (&offset_expr, s, fmt, treg,
6074 BFD_RELOC_LO16, tempreg);
6075 }
6076
6077 return;
6078 }
6079
6080 if (offset_expr.X_op == O_constant
6081 && ! IS_SEXT_32BIT_NUM (offset_expr.X_add_number + 0x8000))
6082 as_bad (_("load/store address overflow (max 32 bits)"));
6083
6084 if (breg == 0)
6085 {
6086 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6087 && ! nopic_need_relax (offset_expr.X_add_symbol, 1))
6088 {
6089 relax_start (offset_expr.X_add_symbol);
6090 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6091 mips_gp_register);
6092 relax_switch ();
6093 used_at = 0;
6094 }
6095 macro_build_lui (&offset_expr, tempreg);
6096 macro_build (&offset_expr, s, fmt, treg,
6097 BFD_RELOC_LO16, tempreg);
6098 if (mips_relax.sequence)
6099 relax_end ();
6100 }
6101 else
6102 {
6103 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6104 && ! nopic_need_relax (offset_expr.X_add_symbol, 1))
6105 {
6106 relax_start (offset_expr.X_add_symbol);
6107 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6108 tempreg, breg, mips_gp_register);
6109 macro_build (&offset_expr, s, fmt, treg,
6110 BFD_RELOC_GPREL16, tempreg);
6111 relax_switch ();
6112 }
6113 macro_build_lui (&offset_expr, tempreg);
6114 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6115 tempreg, tempreg, breg);
6116 macro_build (&offset_expr, s, fmt, treg,
6117 BFD_RELOC_LO16, tempreg);
6118 if (mips_relax.sequence)
6119 relax_end ();
6120 }
6121 }
6122 else if (mips_pic == SVR4_PIC && ! mips_big_got)
6123 {
6124 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6125
6126 /* If this is a reference to an external symbol, we want
6127 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6128 nop
6129 <op> $treg,0($tempreg)
6130 Otherwise we want
6131 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6132 nop
6133 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6134 <op> $treg,0($tempreg)
6135
6136 For NewABI, we want
6137 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6138 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6139
6140 If there is a base register, we add it to $tempreg before
6141 the <op>. If there is a constant, we stick it in the
6142 <op> instruction. We don't handle constants larger than
6143 16 bits, because we have no way to load the upper 16 bits
6144 (actually, we could handle them for the subset of cases
6145 in which we are not using $at). */
6146 assert (offset_expr.X_op == O_symbol);
6147 if (HAVE_NEWABI)
6148 {
6149 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6150 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6151 if (breg != 0)
6152 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6153 tempreg, tempreg, breg);
6154 macro_build (&offset_expr, s, fmt, treg,
6155 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6156
6157 if (! used_at)
6158 return;
6159
6160 break;
6161 }
6162 expr1.X_add_number = offset_expr.X_add_number;
6163 offset_expr.X_add_number = 0;
6164 if (expr1.X_add_number < -0x8000
6165 || expr1.X_add_number >= 0x8000)
6166 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6167 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6168 lw_reloc_type, mips_gp_register);
6169 macro_build (NULL, "nop", "");
6170 relax_start (offset_expr.X_add_symbol);
6171 relax_switch ();
6172 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6173 tempreg, BFD_RELOC_LO16);
6174 relax_end ();
6175 if (breg != 0)
6176 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6177 tempreg, tempreg, breg);
6178 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6179 }
6180 else if (mips_pic == SVR4_PIC && ! HAVE_NEWABI)
6181 {
6182 int gpdelay;
6183
6184 /* If this is a reference to an external symbol, we want
6185 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6186 addu $tempreg,$tempreg,$gp
6187 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6188 <op> $treg,0($tempreg)
6189 Otherwise we want
6190 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6191 nop
6192 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6193 <op> $treg,0($tempreg)
6194 If there is a base register, we add it to $tempreg before
6195 the <op>. If there is a constant, we stick it in the
6196 <op> instruction. We don't handle constants larger than
6197 16 bits, because we have no way to load the upper 16 bits
6198 (actually, we could handle them for the subset of cases
6199 in which we are not using $at). */
6200 assert (offset_expr.X_op == O_symbol);
6201 expr1.X_add_number = offset_expr.X_add_number;
6202 offset_expr.X_add_number = 0;
6203 if (expr1.X_add_number < -0x8000
6204 || expr1.X_add_number >= 0x8000)
6205 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6206 gpdelay = reg_needs_delay (mips_gp_register);
6207 relax_start (offset_expr.X_add_symbol);
6208 macro_build (&offset_expr, "lui", "t,u", tempreg,
6209 BFD_RELOC_MIPS_GOT_HI16);
6210 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6211 mips_gp_register);
6212 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6213 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6214 relax_switch ();
6215 if (gpdelay)
6216 macro_build (NULL, "nop", "");
6217 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6218 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6219 macro_build (NULL, "nop", "");
6220 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6221 tempreg, BFD_RELOC_LO16);
6222 relax_end ();
6223
6224 if (breg != 0)
6225 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6226 tempreg, tempreg, breg);
6227 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6228 }
6229 else if (mips_pic == SVR4_PIC && HAVE_NEWABI)
6230 {
6231 /* If this is a reference to an external symbol, we want
6232 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6233 add $tempreg,$tempreg,$gp
6234 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6235 <op> $treg,<ofst>($tempreg)
6236 Otherwise, for local symbols, we want:
6237 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6238 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6239 assert (offset_expr.X_op == O_symbol);
6240 expr1.X_add_number = offset_expr.X_add_number;
6241 offset_expr.X_add_number = 0;
6242 if (expr1.X_add_number < -0x8000
6243 || expr1.X_add_number >= 0x8000)
6244 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6245 relax_start (offset_expr.X_add_symbol);
6246 macro_build (&offset_expr, "lui", "t,u", tempreg,
6247 BFD_RELOC_MIPS_GOT_HI16);
6248 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6249 mips_gp_register);
6250 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6251 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6252 if (breg != 0)
6253 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6254 tempreg, tempreg, breg);
6255 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6256
6257 relax_switch ();
6258 offset_expr.X_add_number = expr1.X_add_number;
6259 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6260 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6261 if (breg != 0)
6262 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6263 tempreg, tempreg, breg);
6264 macro_build (&offset_expr, s, fmt, treg,
6265 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6266 relax_end ();
6267 }
6268 else if (mips_pic == EMBEDDED_PIC)
6269 {
6270 /* If there is no base register, we want
6271 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6272 If there is a base register, we want
6273 addu $tempreg,$breg,$gp
6274 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6275 */
6276 assert (offset_expr.X_op == O_symbol);
6277 if (breg == 0)
6278 {
6279 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6280 mips_gp_register);
6281 used_at = 0;
6282 }
6283 else
6284 {
6285 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6286 tempreg, breg, mips_gp_register);
6287 macro_build (&offset_expr, s, fmt, treg,
6288 BFD_RELOC_GPREL16, tempreg);
6289 }
6290 }
6291 else
6292 abort ();
6293
6294 if (! used_at)
6295 return;
6296
6297 break;
6298
6299 case M_LI:
6300 case M_LI_S:
6301 load_register (treg, &imm_expr, 0);
6302 return;
6303
6304 case M_DLI:
6305 load_register (treg, &imm_expr, 1);
6306 return;
6307
6308 case M_LI_SS:
6309 if (imm_expr.X_op == O_constant)
6310 {
6311 load_register (AT, &imm_expr, 0);
6312 macro_build (NULL, "mtc1", "t,G", AT, treg);
6313 break;
6314 }
6315 else
6316 {
6317 assert (offset_expr.X_op == O_symbol
6318 && strcmp (segment_name (S_GET_SEGMENT
6319 (offset_expr.X_add_symbol)),
6320 ".lit4") == 0
6321 && offset_expr.X_add_number == 0);
6322 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6323 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6324 return;
6325 }
6326
6327 case M_LI_D:
6328 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6329 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6330 order 32 bits of the value and the low order 32 bits are either
6331 zero or in OFFSET_EXPR. */
6332 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6333 {
6334 if (HAVE_64BIT_GPRS)
6335 load_register (treg, &imm_expr, 1);
6336 else
6337 {
6338 int hreg, lreg;
6339
6340 if (target_big_endian)
6341 {
6342 hreg = treg;
6343 lreg = treg + 1;
6344 }
6345 else
6346 {
6347 hreg = treg + 1;
6348 lreg = treg;
6349 }
6350
6351 if (hreg <= 31)
6352 load_register (hreg, &imm_expr, 0);
6353 if (lreg <= 31)
6354 {
6355 if (offset_expr.X_op == O_absent)
6356 move_register (lreg, 0);
6357 else
6358 {
6359 assert (offset_expr.X_op == O_constant);
6360 load_register (lreg, &offset_expr, 0);
6361 }
6362 }
6363 }
6364 return;
6365 }
6366
6367 /* We know that sym is in the .rdata section. First we get the
6368 upper 16 bits of the address. */
6369 if (mips_pic == NO_PIC)
6370 {
6371 macro_build_lui (&offset_expr, AT);
6372 }
6373 else if (mips_pic == SVR4_PIC)
6374 {
6375 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6376 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6377 }
6378 else if (mips_pic == EMBEDDED_PIC)
6379 {
6380 /* For embedded PIC we pick up the entire address off $gp in
6381 a single instruction. */
6382 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT,
6383 mips_gp_register, BFD_RELOC_GPREL16);
6384 offset_expr.X_op = O_constant;
6385 offset_expr.X_add_number = 0;
6386 }
6387 else
6388 abort ();
6389
6390 /* Now we load the register(s). */
6391 if (HAVE_64BIT_GPRS)
6392 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6393 else
6394 {
6395 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6396 if (treg != RA)
6397 {
6398 /* FIXME: How in the world do we deal with the possible
6399 overflow here? */
6400 offset_expr.X_add_number += 4;
6401 macro_build (&offset_expr, "lw", "t,o(b)",
6402 treg + 1, BFD_RELOC_LO16, AT);
6403 }
6404 }
6405 break;
6406
6407 case M_LI_DD:
6408 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6409 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6410 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6411 the value and the low order 32 bits are either zero or in
6412 OFFSET_EXPR. */
6413 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6414 {
6415 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6416 if (HAVE_64BIT_FPRS)
6417 {
6418 assert (HAVE_64BIT_GPRS);
6419 macro_build (NULL, "dmtc1", "t,S", AT, treg);
6420 }
6421 else
6422 {
6423 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
6424 if (offset_expr.X_op == O_absent)
6425 macro_build (NULL, "mtc1", "t,G", 0, treg);
6426 else
6427 {
6428 assert (offset_expr.X_op == O_constant);
6429 load_register (AT, &offset_expr, 0);
6430 macro_build (NULL, "mtc1", "t,G", AT, treg);
6431 }
6432 }
6433 break;
6434 }
6435
6436 assert (offset_expr.X_op == O_symbol
6437 && offset_expr.X_add_number == 0);
6438 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
6439 if (strcmp (s, ".lit8") == 0)
6440 {
6441 if (mips_opts.isa != ISA_MIPS1)
6442 {
6443 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
6444 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6445 return;
6446 }
6447 breg = mips_gp_register;
6448 r = BFD_RELOC_MIPS_LITERAL;
6449 goto dob;
6450 }
6451 else
6452 {
6453 assert (strcmp (s, RDATA_SECTION_NAME) == 0);
6454 if (mips_pic == SVR4_PIC)
6455 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6456 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6457 else
6458 {
6459 /* FIXME: This won't work for a 64 bit address. */
6460 macro_build_lui (&offset_expr, AT);
6461 }
6462
6463 if (mips_opts.isa != ISA_MIPS1)
6464 {
6465 macro_build (&offset_expr, "ldc1", "T,o(b)",
6466 treg, BFD_RELOC_LO16, AT);
6467 break;
6468 }
6469 breg = AT;
6470 r = BFD_RELOC_LO16;
6471 goto dob;
6472 }
6473
6474 case M_L_DOB:
6475 if (mips_opts.arch == CPU_R4650)
6476 {
6477 as_bad (_("opcode not supported on this processor"));
6478 return;
6479 }
6480 /* Even on a big endian machine $fn comes before $fn+1. We have
6481 to adjust when loading from memory. */
6482 r = BFD_RELOC_LO16;
6483 dob:
6484 assert (mips_opts.isa == ISA_MIPS1);
6485 macro_build (&offset_expr, "lwc1", "T,o(b)",
6486 target_big_endian ? treg + 1 : treg, r, breg);
6487 /* FIXME: A possible overflow which I don't know how to deal
6488 with. */
6489 offset_expr.X_add_number += 4;
6490 macro_build (&offset_expr, "lwc1", "T,o(b)",
6491 target_big_endian ? treg : treg + 1, r, breg);
6492
6493 if (breg != AT)
6494 return;
6495 break;
6496
6497 case M_L_DAB:
6498 /*
6499 * The MIPS assembler seems to check for X_add_number not
6500 * being double aligned and generating:
6501 * lui at,%hi(foo+1)
6502 * addu at,at,v1
6503 * addiu at,at,%lo(foo+1)
6504 * lwc1 f2,0(at)
6505 * lwc1 f3,4(at)
6506 * But, the resulting address is the same after relocation so why
6507 * generate the extra instruction?
6508 */
6509 if (mips_opts.arch == CPU_R4650)
6510 {
6511 as_bad (_("opcode not supported on this processor"));
6512 return;
6513 }
6514 /* Itbl support may require additional care here. */
6515 coproc = 1;
6516 if (mips_opts.isa != ISA_MIPS1)
6517 {
6518 s = "ldc1";
6519 goto ld;
6520 }
6521
6522 s = "lwc1";
6523 fmt = "T,o(b)";
6524 goto ldd_std;
6525
6526 case M_S_DAB:
6527 if (mips_opts.arch == CPU_R4650)
6528 {
6529 as_bad (_("opcode not supported on this processor"));
6530 return;
6531 }
6532
6533 if (mips_opts.isa != ISA_MIPS1)
6534 {
6535 s = "sdc1";
6536 goto st;
6537 }
6538
6539 s = "swc1";
6540 fmt = "T,o(b)";
6541 /* Itbl support may require additional care here. */
6542 coproc = 1;
6543 goto ldd_std;
6544
6545 case M_LD_AB:
6546 if (HAVE_64BIT_GPRS)
6547 {
6548 s = "ld";
6549 goto ld;
6550 }
6551
6552 s = "lw";
6553 fmt = "t,o(b)";
6554 goto ldd_std;
6555
6556 case M_SD_AB:
6557 if (HAVE_64BIT_GPRS)
6558 {
6559 s = "sd";
6560 goto st;
6561 }
6562
6563 s = "sw";
6564 fmt = "t,o(b)";
6565
6566 ldd_std:
6567 /* We do _not_ bother to allow embedded PIC (symbol-local_symbol)
6568 loads for the case of doing a pair of loads to simulate an 'ld'.
6569 This is not currently done by the compiler, and assembly coders
6570 writing embedded-pic code can cope. */
6571
6572 if (offset_expr.X_op != O_symbol
6573 && offset_expr.X_op != O_constant)
6574 {
6575 as_bad (_("expression too complex"));
6576 offset_expr.X_op = O_constant;
6577 }
6578
6579 /* Even on a big endian machine $fn comes before $fn+1. We have
6580 to adjust when loading from memory. We set coproc if we must
6581 load $fn+1 first. */
6582 /* Itbl support may require additional care here. */
6583 if (! target_big_endian)
6584 coproc = 0;
6585
6586 if (mips_pic == NO_PIC
6587 || offset_expr.X_op == O_constant)
6588 {
6589 /* If this is a reference to a GP relative symbol, we want
6590 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6591 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
6592 If we have a base register, we use this
6593 addu $at,$breg,$gp
6594 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
6595 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
6596 If this is not a GP relative symbol, we want
6597 lui $at,<sym> (BFD_RELOC_HI16_S)
6598 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6599 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6600 If there is a base register, we add it to $at after the
6601 lui instruction. If there is a constant, we always use
6602 the last case. */
6603 if ((valueT) offset_expr.X_add_number > MAX_GPREL_OFFSET
6604 || nopic_need_relax (offset_expr.X_add_symbol, 1))
6605 used_at = 1;
6606 else
6607 {
6608 relax_start (offset_expr.X_add_symbol);
6609 if (breg == 0)
6610 {
6611 tempreg = mips_gp_register;
6612 used_at = 0;
6613 }
6614 else
6615 {
6616 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6617 AT, breg, mips_gp_register);
6618 tempreg = AT;
6619 used_at = 1;
6620 }
6621
6622 /* Itbl support may require additional care here. */
6623 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6624 BFD_RELOC_GPREL16, tempreg);
6625 offset_expr.X_add_number += 4;
6626
6627 /* Set mips_optimize to 2 to avoid inserting an
6628 undesired nop. */
6629 hold_mips_optimize = mips_optimize;
6630 mips_optimize = 2;
6631 /* Itbl support may require additional care here. */
6632 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6633 BFD_RELOC_GPREL16, tempreg);
6634 mips_optimize = hold_mips_optimize;
6635
6636 relax_switch ();
6637
6638 /* We just generated two relocs. When tc_gen_reloc
6639 handles this case, it will skip the first reloc and
6640 handle the second. The second reloc already has an
6641 extra addend of 4, which we added above. We must
6642 subtract it out, and then subtract another 4 to make
6643 the first reloc come out right. The second reloc
6644 will come out right because we are going to add 4 to
6645 offset_expr when we build its instruction below.
6646
6647 If we have a symbol, then we don't want to include
6648 the offset, because it will wind up being included
6649 when we generate the reloc. */
6650
6651 if (offset_expr.X_op == O_constant)
6652 offset_expr.X_add_number -= 8;
6653 else
6654 {
6655 offset_expr.X_add_number = -4;
6656 offset_expr.X_op = O_constant;
6657 }
6658 }
6659 macro_build_lui (&offset_expr, AT);
6660 if (breg != 0)
6661 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6662 /* Itbl support may require additional care here. */
6663 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6664 BFD_RELOC_LO16, AT);
6665 /* FIXME: How do we handle overflow here? */
6666 offset_expr.X_add_number += 4;
6667 /* Itbl support may require additional care here. */
6668 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6669 BFD_RELOC_LO16, AT);
6670 if (mips_relax.sequence)
6671 relax_end ();
6672 }
6673 else if (mips_pic == SVR4_PIC && ! mips_big_got)
6674 {
6675 /* If this is a reference to an external symbol, we want
6676 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6677 nop
6678 <op> $treg,0($at)
6679 <op> $treg+1,4($at)
6680 Otherwise we want
6681 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6682 nop
6683 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6684 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6685 If there is a base register we add it to $at before the
6686 lwc1 instructions. If there is a constant we include it
6687 in the lwc1 instructions. */
6688 used_at = 1;
6689 expr1.X_add_number = offset_expr.X_add_number;
6690 if (expr1.X_add_number < -0x8000
6691 || expr1.X_add_number >= 0x8000 - 4)
6692 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6693 load_got_offset (AT, &offset_expr);
6694 macro_build (NULL, "nop", "");
6695 if (breg != 0)
6696 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6697
6698 /* Set mips_optimize to 2 to avoid inserting an undesired
6699 nop. */
6700 hold_mips_optimize = mips_optimize;
6701 mips_optimize = 2;
6702
6703 /* Itbl support may require additional care here. */
6704 relax_start (offset_expr.X_add_symbol);
6705 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
6706 BFD_RELOC_LO16, AT);
6707 expr1.X_add_number += 4;
6708 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
6709 BFD_RELOC_LO16, AT);
6710 relax_switch ();
6711 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6712 BFD_RELOC_LO16, AT);
6713 offset_expr.X_add_number += 4;
6714 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6715 BFD_RELOC_LO16, AT);
6716 relax_end ();
6717
6718 mips_optimize = hold_mips_optimize;
6719 }
6720 else if (mips_pic == SVR4_PIC)
6721 {
6722 int gpdelay;
6723
6724 /* If this is a reference to an external symbol, we want
6725 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6726 addu $at,$at,$gp
6727 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
6728 nop
6729 <op> $treg,0($at)
6730 <op> $treg+1,4($at)
6731 Otherwise we want
6732 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6733 nop
6734 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6735 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6736 If there is a base register we add it to $at before the
6737 lwc1 instructions. If there is a constant we include it
6738 in the lwc1 instructions. */
6739 used_at = 1;
6740 expr1.X_add_number = offset_expr.X_add_number;
6741 offset_expr.X_add_number = 0;
6742 if (expr1.X_add_number < -0x8000
6743 || expr1.X_add_number >= 0x8000 - 4)
6744 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6745 gpdelay = reg_needs_delay (mips_gp_register);
6746 relax_start (offset_expr.X_add_symbol);
6747 macro_build (&offset_expr, "lui", "t,u",
6748 AT, BFD_RELOC_MIPS_GOT_HI16);
6749 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6750 AT, AT, mips_gp_register);
6751 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6752 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
6753 macro_build (NULL, "nop", "");
6754 if (breg != 0)
6755 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6756 /* Itbl support may require additional care here. */
6757 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
6758 BFD_RELOC_LO16, AT);
6759 expr1.X_add_number += 4;
6760
6761 /* Set mips_optimize to 2 to avoid inserting an undesired
6762 nop. */
6763 hold_mips_optimize = mips_optimize;
6764 mips_optimize = 2;
6765 /* Itbl support may require additional care here. */
6766 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
6767 BFD_RELOC_LO16, AT);
6768 mips_optimize = hold_mips_optimize;
6769 expr1.X_add_number -= 4;
6770
6771 relax_switch ();
6772 offset_expr.X_add_number = expr1.X_add_number;
6773 if (gpdelay)
6774 macro_build (NULL, "nop", "");
6775 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6776 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6777 macro_build (NULL, "nop", "");
6778 if (breg != 0)
6779 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6780 /* Itbl support may require additional care here. */
6781 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6782 BFD_RELOC_LO16, AT);
6783 offset_expr.X_add_number += 4;
6784
6785 /* Set mips_optimize to 2 to avoid inserting an undesired
6786 nop. */
6787 hold_mips_optimize = mips_optimize;
6788 mips_optimize = 2;
6789 /* Itbl support may require additional care here. */
6790 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6791 BFD_RELOC_LO16, AT);
6792 mips_optimize = hold_mips_optimize;
6793 relax_end ();
6794 }
6795 else if (mips_pic == EMBEDDED_PIC)
6796 {
6797 /* If there is no base register, we use
6798 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6799 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
6800 If we have a base register, we use
6801 addu $at,$breg,$gp
6802 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
6803 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
6804 */
6805 if (breg == 0)
6806 {
6807 tempreg = mips_gp_register;
6808 used_at = 0;
6809 }
6810 else
6811 {
6812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6813 AT, breg, mips_gp_register);
6814 tempreg = AT;
6815 used_at = 1;
6816 }
6817
6818 /* Itbl support may require additional care here. */
6819 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6820 BFD_RELOC_GPREL16, tempreg);
6821 offset_expr.X_add_number += 4;
6822 /* Itbl support may require additional care here. */
6823 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6824 BFD_RELOC_GPREL16, tempreg);
6825 }
6826 else
6827 abort ();
6828
6829 if (! used_at)
6830 return;
6831
6832 break;
6833
6834 case M_LD_OB:
6835 s = "lw";
6836 goto sd_ob;
6837 case M_SD_OB:
6838 s = "sw";
6839 sd_ob:
6840 assert (HAVE_32BIT_ADDRESSES);
6841 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
6842 offset_expr.X_add_number += 4;
6843 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
6844 return;
6845
6846 /* New code added to support COPZ instructions.
6847 This code builds table entries out of the macros in mip_opcodes.
6848 R4000 uses interlocks to handle coproc delays.
6849 Other chips (like the R3000) require nops to be inserted for delays.
6850
6851 FIXME: Currently, we require that the user handle delays.
6852 In order to fill delay slots for non-interlocked chips,
6853 we must have a way to specify delays based on the coprocessor.
6854 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
6855 What are the side-effects of the cop instruction?
6856 What cache support might we have and what are its effects?
6857 Both coprocessor & memory require delays. how long???
6858 What registers are read/set/modified?
6859
6860 If an itbl is provided to interpret cop instructions,
6861 this knowledge can be encoded in the itbl spec. */
6862
6863 case M_COP0:
6864 s = "c0";
6865 goto copz;
6866 case M_COP1:
6867 s = "c1";
6868 goto copz;
6869 case M_COP2:
6870 s = "c2";
6871 goto copz;
6872 case M_COP3:
6873 s = "c3";
6874 copz:
6875 /* For now we just do C (same as Cz). The parameter will be
6876 stored in insn_opcode by mips_ip. */
6877 macro_build (NULL, s, "C", ip->insn_opcode);
6878 return;
6879
6880 case M_MOVE:
6881 move_register (dreg, sreg);
6882 return;
6883
6884 #ifdef LOSING_COMPILER
6885 default:
6886 /* Try and see if this is a new itbl instruction.
6887 This code builds table entries out of the macros in mip_opcodes.
6888 FIXME: For now we just assemble the expression and pass it's
6889 value along as a 32-bit immediate.
6890 We may want to have the assembler assemble this value,
6891 so that we gain the assembler's knowledge of delay slots,
6892 symbols, etc.
6893 Would it be more efficient to use mask (id) here? */
6894 if (itbl_have_entries
6895 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
6896 {
6897 s = ip->insn_mo->name;
6898 s2 = "cop3";
6899 coproc = ITBL_DECODE_PNUM (immed_expr);;
6900 macro_build (&immed_expr, s, "C");
6901 return;
6902 }
6903 macro2 (ip);
6904 return;
6905 }
6906 if (mips_opts.noat)
6907 as_warn (_("Macro used $at after \".set noat\""));
6908 }
6909
6910 static void
6911 macro2 (struct mips_cl_insn *ip)
6912 {
6913 register int treg, sreg, dreg, breg;
6914 int tempreg;
6915 int mask;
6916 int used_at;
6917 expressionS expr1;
6918 const char *s;
6919 const char *s2;
6920 const char *fmt;
6921 int likely = 0;
6922 int dbl = 0;
6923 int coproc = 0;
6924 int lr = 0;
6925 int imm = 0;
6926 int off;
6927 offsetT maxnum;
6928 bfd_reloc_code_real_type r;
6929
6930 treg = (ip->insn_opcode >> 16) & 0x1f;
6931 dreg = (ip->insn_opcode >> 11) & 0x1f;
6932 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
6933 mask = ip->insn_mo->mask;
6934
6935 expr1.X_op = O_constant;
6936 expr1.X_op_symbol = NULL;
6937 expr1.X_add_symbol = NULL;
6938 expr1.X_add_number = 1;
6939
6940 switch (mask)
6941 {
6942 #endif /* LOSING_COMPILER */
6943
6944 case M_DMUL:
6945 dbl = 1;
6946 case M_MUL:
6947 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
6948 macro_build (NULL, "mflo", "d", dreg);
6949 return;
6950
6951 case M_DMUL_I:
6952 dbl = 1;
6953 case M_MUL_I:
6954 /* The MIPS assembler some times generates shifts and adds. I'm
6955 not trying to be that fancy. GCC should do this for us
6956 anyway. */
6957 load_register (AT, &imm_expr, dbl);
6958 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
6959 macro_build (NULL, "mflo", "d", dreg);
6960 break;
6961
6962 case M_DMULO_I:
6963 dbl = 1;
6964 case M_MULO_I:
6965 imm = 1;
6966 goto do_mulo;
6967
6968 case M_DMULO:
6969 dbl = 1;
6970 case M_MULO:
6971 do_mulo:
6972 mips_emit_delays (TRUE);
6973 ++mips_opts.noreorder;
6974 mips_any_noreorder = 1;
6975 if (imm)
6976 load_register (AT, &imm_expr, dbl);
6977 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
6978 macro_build (NULL, "mflo", "d", dreg);
6979 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
6980 macro_build (NULL, "mfhi", "d", AT);
6981 if (mips_trap)
6982 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
6983 else
6984 {
6985 expr1.X_add_number = 8;
6986 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
6987 macro_build (NULL, "nop", "", 0);
6988 macro_build (NULL, "break", "c", 6);
6989 }
6990 --mips_opts.noreorder;
6991 macro_build (NULL, "mflo", "d", dreg);
6992 break;
6993
6994 case M_DMULOU_I:
6995 dbl = 1;
6996 case M_MULOU_I:
6997 imm = 1;
6998 goto do_mulou;
6999
7000 case M_DMULOU:
7001 dbl = 1;
7002 case M_MULOU:
7003 do_mulou:
7004 mips_emit_delays (TRUE);
7005 ++mips_opts.noreorder;
7006 mips_any_noreorder = 1;
7007 if (imm)
7008 load_register (AT, &imm_expr, dbl);
7009 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7010 sreg, imm ? AT : treg);
7011 macro_build (NULL, "mfhi", "d", AT);
7012 macro_build (NULL, "mflo", "d", dreg);
7013 if (mips_trap)
7014 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7015 else
7016 {
7017 expr1.X_add_number = 8;
7018 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7019 macro_build (NULL, "nop", "", 0);
7020 macro_build (NULL, "break", "c", 6);
7021 }
7022 --mips_opts.noreorder;
7023 break;
7024
7025 case M_DROL:
7026 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7027 {
7028 if (dreg == sreg)
7029 {
7030 tempreg = AT;
7031 used_at = 1;
7032 }
7033 else
7034 {
7035 tempreg = dreg;
7036 used_at = 0;
7037 }
7038 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7039 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7040 if (used_at)
7041 break;
7042 return;
7043 }
7044 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7045 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7046 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7047 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7048 break;
7049
7050 case M_ROL:
7051 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7052 {
7053 if (dreg == sreg)
7054 {
7055 tempreg = AT;
7056 used_at = 1;
7057 }
7058 else
7059 {
7060 tempreg = dreg;
7061 used_at = 0;
7062 }
7063 macro_build (NULL, "negu", "d,w", tempreg, treg);
7064 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7065 if (used_at)
7066 break;
7067 return;
7068 }
7069 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7070 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7071 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7072 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7073 break;
7074
7075 case M_DROL_I:
7076 {
7077 unsigned int rot;
7078 char *l, *r;
7079
7080 if (imm_expr.X_op != O_constant)
7081 as_bad (_("Improper rotate count"));
7082 rot = imm_expr.X_add_number & 0x3f;
7083 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7084 {
7085 rot = (64 - rot) & 0x3f;
7086 if (rot >= 32)
7087 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7088 else
7089 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7090 return;
7091 }
7092 if (rot == 0)
7093 {
7094 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7095 return;
7096 }
7097 l = (rot < 0x20) ? "dsll" : "dsll32";
7098 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7099 rot &= 0x1f;
7100 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7101 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7102 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7103 }
7104 break;
7105
7106 case M_ROL_I:
7107 {
7108 unsigned int rot;
7109
7110 if (imm_expr.X_op != O_constant)
7111 as_bad (_("Improper rotate count"));
7112 rot = imm_expr.X_add_number & 0x1f;
7113 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7114 {
7115 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7116 return;
7117 }
7118 if (rot == 0)
7119 {
7120 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7121 return;
7122 }
7123 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7124 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7125 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7126 }
7127 break;
7128
7129 case M_DROR:
7130 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7131 {
7132 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7133 return;
7134 }
7135 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7136 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7137 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7138 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7139 break;
7140
7141 case M_ROR:
7142 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7143 {
7144 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7145 return;
7146 }
7147 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7148 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7149 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7150 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7151 break;
7152
7153 case M_DROR_I:
7154 {
7155 unsigned int rot;
7156 char *l, *r;
7157
7158 if (imm_expr.X_op != O_constant)
7159 as_bad (_("Improper rotate count"));
7160 rot = imm_expr.X_add_number & 0x3f;
7161 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7162 {
7163 if (rot >= 32)
7164 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7165 else
7166 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7167 return;
7168 }
7169 if (rot == 0)
7170 {
7171 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7172 return;
7173 }
7174 r = (rot < 0x20) ? "dsrl" : "dsrl32";
7175 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7176 rot &= 0x1f;
7177 macro_build (NULL, r, "d,w,<", AT, sreg, rot);
7178 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7179 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7180 }
7181 break;
7182
7183 case M_ROR_I:
7184 {
7185 unsigned int rot;
7186
7187 if (imm_expr.X_op != O_constant)
7188 as_bad (_("Improper rotate count"));
7189 rot = imm_expr.X_add_number & 0x1f;
7190 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7191 {
7192 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7193 return;
7194 }
7195 if (rot == 0)
7196 {
7197 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7198 return;
7199 }
7200 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7201 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7202 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7203 }
7204 break;
7205
7206 case M_S_DOB:
7207 if (mips_opts.arch == CPU_R4650)
7208 {
7209 as_bad (_("opcode not supported on this processor"));
7210 return;
7211 }
7212 assert (mips_opts.isa == ISA_MIPS1);
7213 /* Even on a big endian machine $fn comes before $fn+1. We have
7214 to adjust when storing to memory. */
7215 macro_build (&offset_expr, "swc1", "T,o(b)",
7216 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7217 offset_expr.X_add_number += 4;
7218 macro_build (&offset_expr, "swc1", "T,o(b)",
7219 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7220 return;
7221
7222 case M_SEQ:
7223 if (sreg == 0)
7224 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7225 else if (treg == 0)
7226 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7227 else
7228 {
7229 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7230 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7231 }
7232 return;
7233
7234 case M_SEQ_I:
7235 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7236 {
7237 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7238 return;
7239 }
7240 if (sreg == 0)
7241 {
7242 as_warn (_("Instruction %s: result is always false"),
7243 ip->insn_mo->name);
7244 move_register (dreg, 0);
7245 return;
7246 }
7247 if (imm_expr.X_op == O_constant
7248 && imm_expr.X_add_number >= 0
7249 && imm_expr.X_add_number < 0x10000)
7250 {
7251 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7252 used_at = 0;
7253 }
7254 else if (imm_expr.X_op == O_constant
7255 && imm_expr.X_add_number > -0x8000
7256 && imm_expr.X_add_number < 0)
7257 {
7258 imm_expr.X_add_number = -imm_expr.X_add_number;
7259 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7260 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7261 used_at = 0;
7262 }
7263 else
7264 {
7265 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7266 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7267 used_at = 1;
7268 }
7269 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7270 if (used_at)
7271 break;
7272 return;
7273
7274 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7275 s = "slt";
7276 goto sge;
7277 case M_SGEU:
7278 s = "sltu";
7279 sge:
7280 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7281 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7282 return;
7283
7284 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7285 case M_SGEU_I:
7286 if (imm_expr.X_op == O_constant
7287 && imm_expr.X_add_number >= -0x8000
7288 && imm_expr.X_add_number < 0x8000)
7289 {
7290 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7291 dreg, sreg, BFD_RELOC_LO16);
7292 used_at = 0;
7293 }
7294 else
7295 {
7296 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7297 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7298 dreg, sreg, AT);
7299 used_at = 1;
7300 }
7301 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7302 if (used_at)
7303 break;
7304 return;
7305
7306 case M_SGT: /* sreg > treg <==> treg < sreg */
7307 s = "slt";
7308 goto sgt;
7309 case M_SGTU:
7310 s = "sltu";
7311 sgt:
7312 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7313 return;
7314
7315 case M_SGT_I: /* sreg > I <==> I < sreg */
7316 s = "slt";
7317 goto sgti;
7318 case M_SGTU_I:
7319 s = "sltu";
7320 sgti:
7321 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7322 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7323 break;
7324
7325 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7326 s = "slt";
7327 goto sle;
7328 case M_SLEU:
7329 s = "sltu";
7330 sle:
7331 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7332 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7333 return;
7334
7335 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7336 s = "slt";
7337 goto slei;
7338 case M_SLEU_I:
7339 s = "sltu";
7340 slei:
7341 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7342 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7343 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7344 break;
7345
7346 case M_SLT_I:
7347 if (imm_expr.X_op == O_constant
7348 && imm_expr.X_add_number >= -0x8000
7349 && imm_expr.X_add_number < 0x8000)
7350 {
7351 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7352 return;
7353 }
7354 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7355 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7356 break;
7357
7358 case M_SLTU_I:
7359 if (imm_expr.X_op == O_constant
7360 && imm_expr.X_add_number >= -0x8000
7361 && imm_expr.X_add_number < 0x8000)
7362 {
7363 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7364 BFD_RELOC_LO16);
7365 return;
7366 }
7367 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7368 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7369 break;
7370
7371 case M_SNE:
7372 if (sreg == 0)
7373 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7374 else if (treg == 0)
7375 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7376 else
7377 {
7378 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7379 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7380 }
7381 return;
7382
7383 case M_SNE_I:
7384 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7385 {
7386 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7387 return;
7388 }
7389 if (sreg == 0)
7390 {
7391 as_warn (_("Instruction %s: result is always true"),
7392 ip->insn_mo->name);
7393 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7394 dreg, 0, BFD_RELOC_LO16);
7395 return;
7396 }
7397 if (imm_expr.X_op == O_constant
7398 && imm_expr.X_add_number >= 0
7399 && imm_expr.X_add_number < 0x10000)
7400 {
7401 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7402 used_at = 0;
7403 }
7404 else if (imm_expr.X_op == O_constant
7405 && imm_expr.X_add_number > -0x8000
7406 && imm_expr.X_add_number < 0)
7407 {
7408 imm_expr.X_add_number = -imm_expr.X_add_number;
7409 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7410 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7411 used_at = 0;
7412 }
7413 else
7414 {
7415 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7416 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7417 used_at = 1;
7418 }
7419 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7420 if (used_at)
7421 break;
7422 return;
7423
7424 case M_DSUB_I:
7425 dbl = 1;
7426 case M_SUB_I:
7427 if (imm_expr.X_op == O_constant
7428 && imm_expr.X_add_number > -0x8000
7429 && imm_expr.X_add_number <= 0x8000)
7430 {
7431 imm_expr.X_add_number = -imm_expr.X_add_number;
7432 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7433 dreg, sreg, BFD_RELOC_LO16);
7434 return;
7435 }
7436 load_register (AT, &imm_expr, dbl);
7437 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7438 break;
7439
7440 case M_DSUBU_I:
7441 dbl = 1;
7442 case M_SUBU_I:
7443 if (imm_expr.X_op == O_constant
7444 && imm_expr.X_add_number > -0x8000
7445 && imm_expr.X_add_number <= 0x8000)
7446 {
7447 imm_expr.X_add_number = -imm_expr.X_add_number;
7448 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7449 dreg, sreg, BFD_RELOC_LO16);
7450 return;
7451 }
7452 load_register (AT, &imm_expr, dbl);
7453 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7454 break;
7455
7456 case M_TEQ_I:
7457 s = "teq";
7458 goto trap;
7459 case M_TGE_I:
7460 s = "tge";
7461 goto trap;
7462 case M_TGEU_I:
7463 s = "tgeu";
7464 goto trap;
7465 case M_TLT_I:
7466 s = "tlt";
7467 goto trap;
7468 case M_TLTU_I:
7469 s = "tltu";
7470 goto trap;
7471 case M_TNE_I:
7472 s = "tne";
7473 trap:
7474 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7475 macro_build (NULL, s, "s,t", sreg, AT);
7476 break;
7477
7478 case M_TRUNCWS:
7479 case M_TRUNCWD:
7480 assert (mips_opts.isa == ISA_MIPS1);
7481 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7482 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7483
7484 /*
7485 * Is the double cfc1 instruction a bug in the mips assembler;
7486 * or is there a reason for it?
7487 */
7488 mips_emit_delays (TRUE);
7489 ++mips_opts.noreorder;
7490 mips_any_noreorder = 1;
7491 macro_build (NULL, "cfc1", "t,G", treg, RA);
7492 macro_build (NULL, "cfc1", "t,G", treg, RA);
7493 macro_build (NULL, "nop", "");
7494 expr1.X_add_number = 3;
7495 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7496 expr1.X_add_number = 2;
7497 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7498 macro_build (NULL, "ctc1", "t,G", AT, RA);
7499 macro_build (NULL, "nop", "");
7500 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7501 dreg, sreg);
7502 macro_build (NULL, "ctc1", "t,G", treg, RA);
7503 macro_build (NULL, "nop", "");
7504 --mips_opts.noreorder;
7505 break;
7506
7507 case M_ULH:
7508 s = "lb";
7509 goto ulh;
7510 case M_ULHU:
7511 s = "lbu";
7512 ulh:
7513 if (offset_expr.X_add_number >= 0x7fff)
7514 as_bad (_("operand overflow"));
7515 if (! target_big_endian)
7516 ++offset_expr.X_add_number;
7517 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
7518 if (! target_big_endian)
7519 --offset_expr.X_add_number;
7520 else
7521 ++offset_expr.X_add_number;
7522 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7523 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
7524 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7525 break;
7526
7527 case M_ULD:
7528 s = "ldl";
7529 s2 = "ldr";
7530 off = 7;
7531 goto ulw;
7532 case M_ULW:
7533 s = "lwl";
7534 s2 = "lwr";
7535 off = 3;
7536 ulw:
7537 if (offset_expr.X_add_number >= 0x8000 - off)
7538 as_bad (_("operand overflow"));
7539 if (treg != breg)
7540 tempreg = treg;
7541 else
7542 tempreg = AT;
7543 if (! target_big_endian)
7544 offset_expr.X_add_number += off;
7545 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7546 if (! target_big_endian)
7547 offset_expr.X_add_number -= off;
7548 else
7549 offset_expr.X_add_number += off;
7550 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7551
7552 /* If necessary, move the result in tempreg the final destination. */
7553 if (treg == tempreg)
7554 return;
7555 /* Protect second load's delay slot. */
7556 if (!gpr_interlocks)
7557 macro_build (NULL, "nop", "");
7558 move_register (treg, tempreg);
7559 break;
7560
7561 case M_ULD_A:
7562 s = "ldl";
7563 s2 = "ldr";
7564 off = 7;
7565 goto ulwa;
7566 case M_ULW_A:
7567 s = "lwl";
7568 s2 = "lwr";
7569 off = 3;
7570 ulwa:
7571 used_at = 1;
7572 load_address (AT, &offset_expr, &used_at);
7573 if (breg != 0)
7574 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7575 if (! target_big_endian)
7576 expr1.X_add_number = off;
7577 else
7578 expr1.X_add_number = 0;
7579 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7580 if (! target_big_endian)
7581 expr1.X_add_number = 0;
7582 else
7583 expr1.X_add_number = off;
7584 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7585 break;
7586
7587 case M_ULH_A:
7588 case M_ULHU_A:
7589 used_at = 1;
7590 load_address (AT, &offset_expr, &used_at);
7591 if (breg != 0)
7592 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7593 if (target_big_endian)
7594 expr1.X_add_number = 0;
7595 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
7596 treg, BFD_RELOC_LO16, AT);
7597 if (target_big_endian)
7598 expr1.X_add_number = 1;
7599 else
7600 expr1.X_add_number = 0;
7601 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
7602 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
7603 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7604 break;
7605
7606 case M_USH:
7607 if (offset_expr.X_add_number >= 0x7fff)
7608 as_bad (_("operand overflow"));
7609 if (target_big_endian)
7610 ++offset_expr.X_add_number;
7611 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7612 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
7613 if (target_big_endian)
7614 --offset_expr.X_add_number;
7615 else
7616 ++offset_expr.X_add_number;
7617 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
7618 break;
7619
7620 case M_USD:
7621 s = "sdl";
7622 s2 = "sdr";
7623 off = 7;
7624 goto usw;
7625 case M_USW:
7626 s = "swl";
7627 s2 = "swr";
7628 off = 3;
7629 usw:
7630 if (offset_expr.X_add_number >= 0x8000 - off)
7631 as_bad (_("operand overflow"));
7632 if (! target_big_endian)
7633 offset_expr.X_add_number += off;
7634 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7635 if (! target_big_endian)
7636 offset_expr.X_add_number -= off;
7637 else
7638 offset_expr.X_add_number += off;
7639 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7640 return;
7641
7642 case M_USD_A:
7643 s = "sdl";
7644 s2 = "sdr";
7645 off = 7;
7646 goto uswa;
7647 case M_USW_A:
7648 s = "swl";
7649 s2 = "swr";
7650 off = 3;
7651 uswa:
7652 used_at = 1;
7653 load_address (AT, &offset_expr, &used_at);
7654 if (breg != 0)
7655 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7656 if (! target_big_endian)
7657 expr1.X_add_number = off;
7658 else
7659 expr1.X_add_number = 0;
7660 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7661 if (! target_big_endian)
7662 expr1.X_add_number = 0;
7663 else
7664 expr1.X_add_number = off;
7665 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7666 break;
7667
7668 case M_USH_A:
7669 used_at = 1;
7670 load_address (AT, &offset_expr, &used_at);
7671 if (breg != 0)
7672 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7673 if (! target_big_endian)
7674 expr1.X_add_number = 0;
7675 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7676 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
7677 if (! target_big_endian)
7678 expr1.X_add_number = 1;
7679 else
7680 expr1.X_add_number = 0;
7681 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7682 if (! target_big_endian)
7683 expr1.X_add_number = 0;
7684 else
7685 expr1.X_add_number = 1;
7686 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
7687 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
7688 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7689 break;
7690
7691 default:
7692 /* FIXME: Check if this is one of the itbl macros, since they
7693 are added dynamically. */
7694 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
7695 break;
7696 }
7697 if (mips_opts.noat)
7698 as_warn (_("Macro used $at after \".set noat\""));
7699 }
7700
7701 /* Implement macros in mips16 mode. */
7702
7703 static void
7704 mips16_macro (struct mips_cl_insn *ip)
7705 {
7706 int mask;
7707 int xreg, yreg, zreg, tmp;
7708 expressionS expr1;
7709 int dbl;
7710 const char *s, *s2, *s3;
7711
7712 mask = ip->insn_mo->mask;
7713
7714 xreg = (ip->insn_opcode >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX;
7715 yreg = (ip->insn_opcode >> MIPS16OP_SH_RY) & MIPS16OP_MASK_RY;
7716 zreg = (ip->insn_opcode >> MIPS16OP_SH_RZ) & MIPS16OP_MASK_RZ;
7717
7718 expr1.X_op = O_constant;
7719 expr1.X_op_symbol = NULL;
7720 expr1.X_add_symbol = NULL;
7721 expr1.X_add_number = 1;
7722
7723 dbl = 0;
7724
7725 switch (mask)
7726 {
7727 default:
7728 internalError ();
7729
7730 case M_DDIV_3:
7731 dbl = 1;
7732 case M_DIV_3:
7733 s = "mflo";
7734 goto do_div3;
7735 case M_DREM_3:
7736 dbl = 1;
7737 case M_REM_3:
7738 s = "mfhi";
7739 do_div3:
7740 mips_emit_delays (TRUE);
7741 ++mips_opts.noreorder;
7742 mips_any_noreorder = 1;
7743 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
7744 expr1.X_add_number = 2;
7745 macro_build (&expr1, "bnez", "x,p", yreg);
7746 macro_build (NULL, "break", "6", 7);
7747
7748 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
7749 since that causes an overflow. We should do that as well,
7750 but I don't see how to do the comparisons without a temporary
7751 register. */
7752 --mips_opts.noreorder;
7753 macro_build (NULL, s, "x", zreg);
7754 break;
7755
7756 case M_DIVU_3:
7757 s = "divu";
7758 s2 = "mflo";
7759 goto do_divu3;
7760 case M_REMU_3:
7761 s = "divu";
7762 s2 = "mfhi";
7763 goto do_divu3;
7764 case M_DDIVU_3:
7765 s = "ddivu";
7766 s2 = "mflo";
7767 goto do_divu3;
7768 case M_DREMU_3:
7769 s = "ddivu";
7770 s2 = "mfhi";
7771 do_divu3:
7772 mips_emit_delays (TRUE);
7773 ++mips_opts.noreorder;
7774 mips_any_noreorder = 1;
7775 macro_build (NULL, s, "0,x,y", xreg, yreg);
7776 expr1.X_add_number = 2;
7777 macro_build (&expr1, "bnez", "x,p", yreg);
7778 macro_build (NULL, "break", "6", 7);
7779 --mips_opts.noreorder;
7780 macro_build (NULL, s2, "x", zreg);
7781 break;
7782
7783 case M_DMUL:
7784 dbl = 1;
7785 case M_MUL:
7786 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
7787 macro_build (NULL, "mflo", "x", zreg);
7788 return;
7789
7790 case M_DSUBU_I:
7791 dbl = 1;
7792 goto do_subu;
7793 case M_SUBU_I:
7794 do_subu:
7795 if (imm_expr.X_op != O_constant)
7796 as_bad (_("Unsupported large constant"));
7797 imm_expr.X_add_number = -imm_expr.X_add_number;
7798 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
7799 break;
7800
7801 case M_SUBU_I_2:
7802 if (imm_expr.X_op != O_constant)
7803 as_bad (_("Unsupported large constant"));
7804 imm_expr.X_add_number = -imm_expr.X_add_number;
7805 macro_build (&imm_expr, "addiu", "x,k", xreg);
7806 break;
7807
7808 case M_DSUBU_I_2:
7809 if (imm_expr.X_op != O_constant)
7810 as_bad (_("Unsupported large constant"));
7811 imm_expr.X_add_number = -imm_expr.X_add_number;
7812 macro_build (&imm_expr, "daddiu", "y,j", yreg);
7813 break;
7814
7815 case M_BEQ:
7816 s = "cmp";
7817 s2 = "bteqz";
7818 goto do_branch;
7819 case M_BNE:
7820 s = "cmp";
7821 s2 = "btnez";
7822 goto do_branch;
7823 case M_BLT:
7824 s = "slt";
7825 s2 = "btnez";
7826 goto do_branch;
7827 case M_BLTU:
7828 s = "sltu";
7829 s2 = "btnez";
7830 goto do_branch;
7831 case M_BLE:
7832 s = "slt";
7833 s2 = "bteqz";
7834 goto do_reverse_branch;
7835 case M_BLEU:
7836 s = "sltu";
7837 s2 = "bteqz";
7838 goto do_reverse_branch;
7839 case M_BGE:
7840 s = "slt";
7841 s2 = "bteqz";
7842 goto do_branch;
7843 case M_BGEU:
7844 s = "sltu";
7845 s2 = "bteqz";
7846 goto do_branch;
7847 case M_BGT:
7848 s = "slt";
7849 s2 = "btnez";
7850 goto do_reverse_branch;
7851 case M_BGTU:
7852 s = "sltu";
7853 s2 = "btnez";
7854
7855 do_reverse_branch:
7856 tmp = xreg;
7857 xreg = yreg;
7858 yreg = tmp;
7859
7860 do_branch:
7861 macro_build (NULL, s, "x,y", xreg, yreg);
7862 macro_build (&offset_expr, s2, "p");
7863 break;
7864
7865 case M_BEQ_I:
7866 s = "cmpi";
7867 s2 = "bteqz";
7868 s3 = "x,U";
7869 goto do_branch_i;
7870 case M_BNE_I:
7871 s = "cmpi";
7872 s2 = "btnez";
7873 s3 = "x,U";
7874 goto do_branch_i;
7875 case M_BLT_I:
7876 s = "slti";
7877 s2 = "btnez";
7878 s3 = "x,8";
7879 goto do_branch_i;
7880 case M_BLTU_I:
7881 s = "sltiu";
7882 s2 = "btnez";
7883 s3 = "x,8";
7884 goto do_branch_i;
7885 case M_BLE_I:
7886 s = "slti";
7887 s2 = "btnez";
7888 s3 = "x,8";
7889 goto do_addone_branch_i;
7890 case M_BLEU_I:
7891 s = "sltiu";
7892 s2 = "btnez";
7893 s3 = "x,8";
7894 goto do_addone_branch_i;
7895 case M_BGE_I:
7896 s = "slti";
7897 s2 = "bteqz";
7898 s3 = "x,8";
7899 goto do_branch_i;
7900 case M_BGEU_I:
7901 s = "sltiu";
7902 s2 = "bteqz";
7903 s3 = "x,8";
7904 goto do_branch_i;
7905 case M_BGT_I:
7906 s = "slti";
7907 s2 = "bteqz";
7908 s3 = "x,8";
7909 goto do_addone_branch_i;
7910 case M_BGTU_I:
7911 s = "sltiu";
7912 s2 = "bteqz";
7913 s3 = "x,8";
7914
7915 do_addone_branch_i:
7916 if (imm_expr.X_op != O_constant)
7917 as_bad (_("Unsupported large constant"));
7918 ++imm_expr.X_add_number;
7919
7920 do_branch_i:
7921 macro_build (&imm_expr, s, s3, xreg);
7922 macro_build (&offset_expr, s2, "p");
7923 break;
7924
7925 case M_ABS:
7926 expr1.X_add_number = 0;
7927 macro_build (&expr1, "slti", "x,8", yreg);
7928 if (xreg != yreg)
7929 move_register (xreg, yreg);
7930 expr1.X_add_number = 2;
7931 macro_build (&expr1, "bteqz", "p");
7932 macro_build (NULL, "neg", "x,w", xreg, xreg);
7933 }
7934 }
7935
7936 /* For consistency checking, verify that all bits are specified either
7937 by the match/mask part of the instruction definition, or by the
7938 operand list. */
7939 static int
7940 validate_mips_insn (const struct mips_opcode *opc)
7941 {
7942 const char *p = opc->args;
7943 char c;
7944 unsigned long used_bits = opc->mask;
7945
7946 if ((used_bits & opc->match) != opc->match)
7947 {
7948 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
7949 opc->name, opc->args);
7950 return 0;
7951 }
7952 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
7953 while (*p)
7954 switch (c = *p++)
7955 {
7956 case ',': break;
7957 case '(': break;
7958 case ')': break;
7959 case '+':
7960 switch (c = *p++)
7961 {
7962 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7963 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
7964 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7965 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
7966 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7967 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7968 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
7969 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7970 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7971 case 'I': break;
7972 default:
7973 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
7974 c, opc->name, opc->args);
7975 return 0;
7976 }
7977 break;
7978 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7979 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7980 case 'A': break;
7981 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
7982 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
7983 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
7984 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7985 case 'F': break;
7986 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7987 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7988 case 'I': break;
7989 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
7990 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7991 case 'L': break;
7992 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
7993 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
7994 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
7995 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
7996 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7997 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
7998 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7999 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8000 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8001 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8002 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8003 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8004 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8005 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8006 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8007 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8008 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8009 case 'f': break;
8010 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8011 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8012 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8013 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8014 case 'l': break;
8015 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8016 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8017 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8018 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8019 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8020 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8021 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8022 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8023 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8024 case 'x': break;
8025 case 'z': break;
8026 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8027 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8028 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8029 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8030 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8031 case '[': break;
8032 case ']': break;
8033 default:
8034 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8035 c, opc->name, opc->args);
8036 return 0;
8037 }
8038 #undef USE_BITS
8039 if (used_bits != 0xffffffff)
8040 {
8041 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8042 ~used_bits & 0xffffffff, opc->name, opc->args);
8043 return 0;
8044 }
8045 return 1;
8046 }
8047
8048 /* This routine assembles an instruction into its binary format. As a
8049 side effect, it sets one of the global variables imm_reloc or
8050 offset_reloc to the type of relocation to do if one of the operands
8051 is an address expression. */
8052
8053 static void
8054 mips_ip (char *str, struct mips_cl_insn *ip)
8055 {
8056 char *s;
8057 const char *args;
8058 char c = 0;
8059 struct mips_opcode *insn;
8060 char *argsStart;
8061 unsigned int regno;
8062 unsigned int lastregno = 0;
8063 unsigned int lastpos = 0;
8064 unsigned int limlo, limhi;
8065 char *s_reset;
8066 char save_c = 0;
8067
8068 insn_error = NULL;
8069
8070 /* If the instruction contains a '.', we first try to match an instruction
8071 including the '.'. Then we try again without the '.'. */
8072 insn = NULL;
8073 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8074 continue;
8075
8076 /* If we stopped on whitespace, then replace the whitespace with null for
8077 the call to hash_find. Save the character we replaced just in case we
8078 have to re-parse the instruction. */
8079 if (ISSPACE (*s))
8080 {
8081 save_c = *s;
8082 *s++ = '\0';
8083 }
8084
8085 insn = (struct mips_opcode *) hash_find (op_hash, str);
8086
8087 /* If we didn't find the instruction in the opcode table, try again, but
8088 this time with just the instruction up to, but not including the
8089 first '.'. */
8090 if (insn == NULL)
8091 {
8092 /* Restore the character we overwrite above (if any). */
8093 if (save_c)
8094 *(--s) = save_c;
8095
8096 /* Scan up to the first '.' or whitespace. */
8097 for (s = str;
8098 *s != '\0' && *s != '.' && !ISSPACE (*s);
8099 ++s)
8100 continue;
8101
8102 /* If we did not find a '.', then we can quit now. */
8103 if (*s != '.')
8104 {
8105 insn_error = "unrecognized opcode";
8106 return;
8107 }
8108
8109 /* Lookup the instruction in the hash table. */
8110 *s++ = '\0';
8111 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8112 {
8113 insn_error = "unrecognized opcode";
8114 return;
8115 }
8116 }
8117
8118 argsStart = s;
8119 for (;;)
8120 {
8121 bfd_boolean ok;
8122
8123 assert (strcmp (insn->name, str) == 0);
8124
8125 if (OPCODE_IS_MEMBER (insn,
8126 (mips_opts.isa
8127 | (file_ase_mips16 ? INSN_MIPS16 : 0)
8128 | (mips_opts.ase_mdmx ? INSN_MDMX : 0)
8129 | (mips_opts.ase_mips3d ? INSN_MIPS3D : 0)),
8130 mips_opts.arch))
8131 ok = TRUE;
8132 else
8133 ok = FALSE;
8134
8135 if (insn->pinfo != INSN_MACRO)
8136 {
8137 if (mips_opts.arch == CPU_R4650 && (insn->pinfo & FP_D) != 0)
8138 ok = FALSE;
8139 }
8140
8141 if (! ok)
8142 {
8143 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8144 && strcmp (insn->name, insn[1].name) == 0)
8145 {
8146 ++insn;
8147 continue;
8148 }
8149 else
8150 {
8151 if (!insn_error)
8152 {
8153 static char buf[100];
8154 sprintf (buf,
8155 _("opcode not supported on this processor: %s (%s)"),
8156 mips_cpu_info_from_arch (mips_opts.arch)->name,
8157 mips_cpu_info_from_isa (mips_opts.isa)->name);
8158 insn_error = buf;
8159 }
8160 if (save_c)
8161 *(--s) = save_c;
8162 return;
8163 }
8164 }
8165
8166 ip->insn_mo = insn;
8167 ip->insn_opcode = insn->match;
8168 insn_error = NULL;
8169 for (args = insn->args;; ++args)
8170 {
8171 int is_mdmx;
8172
8173 s += strspn (s, " \t");
8174 is_mdmx = 0;
8175 switch (*args)
8176 {
8177 case '\0': /* end of args */
8178 if (*s == '\0')
8179 return;
8180 break;
8181
8182 case ',':
8183 if (*s++ == *args)
8184 continue;
8185 s--;
8186 switch (*++args)
8187 {
8188 case 'r':
8189 case 'v':
8190 ip->insn_opcode |= lastregno << OP_SH_RS;
8191 continue;
8192
8193 case 'w':
8194 ip->insn_opcode |= lastregno << OP_SH_RT;
8195 continue;
8196
8197 case 'W':
8198 ip->insn_opcode |= lastregno << OP_SH_FT;
8199 continue;
8200
8201 case 'V':
8202 ip->insn_opcode |= lastregno << OP_SH_FS;
8203 continue;
8204 }
8205 break;
8206
8207 case '(':
8208 /* Handle optional base register.
8209 Either the base register is omitted or
8210 we must have a left paren. */
8211 /* This is dependent on the next operand specifier
8212 is a base register specification. */
8213 assert (args[1] == 'b' || args[1] == '5'
8214 || args[1] == '-' || args[1] == '4');
8215 if (*s == '\0')
8216 return;
8217
8218 case ')': /* these must match exactly */
8219 case '[':
8220 case ']':
8221 if (*s++ == *args)
8222 continue;
8223 break;
8224
8225 case '+': /* Opcode extension character. */
8226 switch (*++args)
8227 {
8228 case 'A': /* ins/ext position, becomes LSB. */
8229 limlo = 0;
8230 limhi = 31;
8231 goto do_lsb;
8232 case 'E':
8233 limlo = 32;
8234 limhi = 63;
8235 goto do_lsb;
8236 do_lsb:
8237 my_getExpression (&imm_expr, s);
8238 check_absolute_expr (ip, &imm_expr);
8239 if ((unsigned long) imm_expr.X_add_number < limlo
8240 || (unsigned long) imm_expr.X_add_number > limhi)
8241 {
8242 as_bad (_("Improper position (%lu)"),
8243 (unsigned long) imm_expr.X_add_number);
8244 imm_expr.X_add_number = limlo;
8245 }
8246 lastpos = imm_expr.X_add_number;
8247 ip->insn_opcode |= (imm_expr.X_add_number
8248 & OP_MASK_SHAMT) << OP_SH_SHAMT;
8249 imm_expr.X_op = O_absent;
8250 s = expr_end;
8251 continue;
8252
8253 case 'B': /* ins size, becomes MSB. */
8254 limlo = 1;
8255 limhi = 32;
8256 goto do_msb;
8257 case 'F':
8258 limlo = 33;
8259 limhi = 64;
8260 goto do_msb;
8261 do_msb:
8262 my_getExpression (&imm_expr, s);
8263 check_absolute_expr (ip, &imm_expr);
8264 /* Check for negative input so that small negative numbers
8265 will not succeed incorrectly. The checks against
8266 (pos+size) transitively check "size" itself,
8267 assuming that "pos" is reasonable. */
8268 if ((long) imm_expr.X_add_number < 0
8269 || ((unsigned long) imm_expr.X_add_number
8270 + lastpos) < limlo
8271 || ((unsigned long) imm_expr.X_add_number
8272 + lastpos) > limhi)
8273 {
8274 as_bad (_("Improper insert size (%lu, position %lu)"),
8275 (unsigned long) imm_expr.X_add_number,
8276 (unsigned long) lastpos);
8277 imm_expr.X_add_number = limlo - lastpos;
8278 }
8279 ip->insn_opcode |= ((lastpos + imm_expr.X_add_number - 1)
8280 & OP_MASK_INSMSB) << OP_SH_INSMSB;
8281 imm_expr.X_op = O_absent;
8282 s = expr_end;
8283 continue;
8284
8285 case 'C': /* ext size, becomes MSBD. */
8286 limlo = 1;
8287 limhi = 32;
8288 goto do_msbd;
8289 case 'G':
8290 limlo = 33;
8291 limhi = 64;
8292 goto do_msbd;
8293 case 'H':
8294 limlo = 33;
8295 limhi = 64;
8296 goto do_msbd;
8297 do_msbd:
8298 my_getExpression (&imm_expr, s);
8299 check_absolute_expr (ip, &imm_expr);
8300 /* Check for negative input so that small negative numbers
8301 will not succeed incorrectly. The checks against
8302 (pos+size) transitively check "size" itself,
8303 assuming that "pos" is reasonable. */
8304 if ((long) imm_expr.X_add_number < 0
8305 || ((unsigned long) imm_expr.X_add_number
8306 + lastpos) < limlo
8307 || ((unsigned long) imm_expr.X_add_number
8308 + lastpos) > limhi)
8309 {
8310 as_bad (_("Improper extract size (%lu, position %lu)"),
8311 (unsigned long) imm_expr.X_add_number,
8312 (unsigned long) lastpos);
8313 imm_expr.X_add_number = limlo - lastpos;
8314 }
8315 ip->insn_opcode |= ((imm_expr.X_add_number - 1)
8316 & OP_MASK_EXTMSBD) << OP_SH_EXTMSBD;
8317 imm_expr.X_op = O_absent;
8318 s = expr_end;
8319 continue;
8320
8321 case 'D':
8322 /* +D is for disassembly only; never match. */
8323 break;
8324
8325 case 'I':
8326 /* "+I" is like "I", except that imm2_expr is used. */
8327 my_getExpression (&imm2_expr, s);
8328 if (imm2_expr.X_op != O_big
8329 && imm2_expr.X_op != O_constant)
8330 insn_error = _("absolute expression required");
8331 normalize_constant_expr (&imm2_expr);
8332 s = expr_end;
8333 continue;
8334
8335 default:
8336 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8337 *args, insn->name, insn->args);
8338 /* Further processing is fruitless. */
8339 return;
8340 }
8341 break;
8342
8343 case '<': /* must be at least one digit */
8344 /*
8345 * According to the manual, if the shift amount is greater
8346 * than 31 or less than 0, then the shift amount should be
8347 * mod 32. In reality the mips assembler issues an error.
8348 * We issue a warning and mask out all but the low 5 bits.
8349 */
8350 my_getExpression (&imm_expr, s);
8351 check_absolute_expr (ip, &imm_expr);
8352 if ((unsigned long) imm_expr.X_add_number > 31)
8353 {
8354 as_warn (_("Improper shift amount (%lu)"),
8355 (unsigned long) imm_expr.X_add_number);
8356 imm_expr.X_add_number &= OP_MASK_SHAMT;
8357 }
8358 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_SHAMT;
8359 imm_expr.X_op = O_absent;
8360 s = expr_end;
8361 continue;
8362
8363 case '>': /* shift amount minus 32 */
8364 my_getExpression (&imm_expr, s);
8365 check_absolute_expr (ip, &imm_expr);
8366 if ((unsigned long) imm_expr.X_add_number < 32
8367 || (unsigned long) imm_expr.X_add_number > 63)
8368 break;
8369 ip->insn_opcode |= (imm_expr.X_add_number - 32) << OP_SH_SHAMT;
8370 imm_expr.X_op = O_absent;
8371 s = expr_end;
8372 continue;
8373
8374 case 'k': /* cache code */
8375 case 'h': /* prefx code */
8376 my_getExpression (&imm_expr, s);
8377 check_absolute_expr (ip, &imm_expr);
8378 if ((unsigned long) imm_expr.X_add_number > 31)
8379 {
8380 as_warn (_("Invalid value for `%s' (%lu)"),
8381 ip->insn_mo->name,
8382 (unsigned long) imm_expr.X_add_number);
8383 imm_expr.X_add_number &= 0x1f;
8384 }
8385 if (*args == 'k')
8386 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CACHE;
8387 else
8388 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_PREFX;
8389 imm_expr.X_op = O_absent;
8390 s = expr_end;
8391 continue;
8392
8393 case 'c': /* break code */
8394 my_getExpression (&imm_expr, s);
8395 check_absolute_expr (ip, &imm_expr);
8396 if ((unsigned long) imm_expr.X_add_number > 1023)
8397 {
8398 as_warn (_("Illegal break code (%lu)"),
8399 (unsigned long) imm_expr.X_add_number);
8400 imm_expr.X_add_number &= OP_MASK_CODE;
8401 }
8402 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE;
8403 imm_expr.X_op = O_absent;
8404 s = expr_end;
8405 continue;
8406
8407 case 'q': /* lower break code */
8408 my_getExpression (&imm_expr, s);
8409 check_absolute_expr (ip, &imm_expr);
8410 if ((unsigned long) imm_expr.X_add_number > 1023)
8411 {
8412 as_warn (_("Illegal lower break code (%lu)"),
8413 (unsigned long) imm_expr.X_add_number);
8414 imm_expr.X_add_number &= OP_MASK_CODE2;
8415 }
8416 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE2;
8417 imm_expr.X_op = O_absent;
8418 s = expr_end;
8419 continue;
8420
8421 case 'B': /* 20-bit syscall/break code. */
8422 my_getExpression (&imm_expr, s);
8423 check_absolute_expr (ip, &imm_expr);
8424 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
8425 as_warn (_("Illegal 20-bit code (%lu)"),
8426 (unsigned long) imm_expr.X_add_number);
8427 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE20;
8428 imm_expr.X_op = O_absent;
8429 s = expr_end;
8430 continue;
8431
8432 case 'C': /* Coprocessor code */
8433 my_getExpression (&imm_expr, s);
8434 check_absolute_expr (ip, &imm_expr);
8435 if ((unsigned long) imm_expr.X_add_number >= (1 << 25))
8436 {
8437 as_warn (_("Coproccesor code > 25 bits (%lu)"),
8438 (unsigned long) imm_expr.X_add_number);
8439 imm_expr.X_add_number &= ((1 << 25) - 1);
8440 }
8441 ip->insn_opcode |= imm_expr.X_add_number;
8442 imm_expr.X_op = O_absent;
8443 s = expr_end;
8444 continue;
8445
8446 case 'J': /* 19-bit wait code. */
8447 my_getExpression (&imm_expr, s);
8448 check_absolute_expr (ip, &imm_expr);
8449 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
8450 as_warn (_("Illegal 19-bit code (%lu)"),
8451 (unsigned long) imm_expr.X_add_number);
8452 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE19;
8453 imm_expr.X_op = O_absent;
8454 s = expr_end;
8455 continue;
8456
8457 case 'P': /* Performance register */
8458 my_getExpression (&imm_expr, s);
8459 check_absolute_expr (ip, &imm_expr);
8460 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
8461 {
8462 as_warn (_("Invalid performance register (%lu)"),
8463 (unsigned long) imm_expr.X_add_number);
8464 imm_expr.X_add_number &= OP_MASK_PERFREG;
8465 }
8466 ip->insn_opcode |= (imm_expr.X_add_number << OP_SH_PERFREG);
8467 imm_expr.X_op = O_absent;
8468 s = expr_end;
8469 continue;
8470
8471 case 'b': /* base register */
8472 case 'd': /* destination register */
8473 case 's': /* source register */
8474 case 't': /* target register */
8475 case 'r': /* both target and source */
8476 case 'v': /* both dest and source */
8477 case 'w': /* both dest and target */
8478 case 'E': /* coprocessor target register */
8479 case 'G': /* coprocessor destination register */
8480 case 'K': /* 'rdhwr' destination register */
8481 case 'x': /* ignore register name */
8482 case 'z': /* must be zero register */
8483 case 'U': /* destination register (clo/clz). */
8484 s_reset = s;
8485 if (s[0] == '$')
8486 {
8487
8488 if (ISDIGIT (s[1]))
8489 {
8490 ++s;
8491 regno = 0;
8492 do
8493 {
8494 regno *= 10;
8495 regno += *s - '0';
8496 ++s;
8497 }
8498 while (ISDIGIT (*s));
8499 if (regno > 31)
8500 as_bad (_("Invalid register number (%d)"), regno);
8501 }
8502 else if (*args == 'E' || *args == 'G' || *args == 'K')
8503 goto notreg;
8504 else
8505 {
8506 if (s[1] == 'r' && s[2] == 'a')
8507 {
8508 s += 3;
8509 regno = RA;
8510 }
8511 else if (s[1] == 'f' && s[2] == 'p')
8512 {
8513 s += 3;
8514 regno = FP;
8515 }
8516 else if (s[1] == 's' && s[2] == 'p')
8517 {
8518 s += 3;
8519 regno = SP;
8520 }
8521 else if (s[1] == 'g' && s[2] == 'p')
8522 {
8523 s += 3;
8524 regno = GP;
8525 }
8526 else if (s[1] == 'a' && s[2] == 't')
8527 {
8528 s += 3;
8529 regno = AT;
8530 }
8531 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
8532 {
8533 s += 4;
8534 regno = KT0;
8535 }
8536 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
8537 {
8538 s += 4;
8539 regno = KT1;
8540 }
8541 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
8542 {
8543 s += 5;
8544 regno = ZERO;
8545 }
8546 else if (itbl_have_entries)
8547 {
8548 char *p, *n;
8549 unsigned long r;
8550
8551 p = s + 1; /* advance past '$' */
8552 n = itbl_get_field (&p); /* n is name */
8553
8554 /* See if this is a register defined in an
8555 itbl entry. */
8556 if (itbl_get_reg_val (n, &r))
8557 {
8558 /* Get_field advances to the start of
8559 the next field, so we need to back
8560 rack to the end of the last field. */
8561 if (p)
8562 s = p - 1;
8563 else
8564 s = strchr (s, '\0');
8565 regno = r;
8566 }
8567 else
8568 goto notreg;
8569 }
8570 else
8571 goto notreg;
8572 }
8573 if (regno == AT
8574 && ! mips_opts.noat
8575 && *args != 'E'
8576 && *args != 'G'
8577 && *args != 'K')
8578 as_warn (_("Used $at without \".set noat\""));
8579 c = *args;
8580 if (*s == ' ')
8581 ++s;
8582 if (args[1] != *s)
8583 {
8584 if (c == 'r' || c == 'v' || c == 'w')
8585 {
8586 regno = lastregno;
8587 s = s_reset;
8588 ++args;
8589 }
8590 }
8591 /* 'z' only matches $0. */
8592 if (c == 'z' && regno != 0)
8593 break;
8594
8595 /* Now that we have assembled one operand, we use the args string
8596 * to figure out where it goes in the instruction. */
8597 switch (c)
8598 {
8599 case 'r':
8600 case 's':
8601 case 'v':
8602 case 'b':
8603 ip->insn_opcode |= regno << OP_SH_RS;
8604 break;
8605 case 'd':
8606 case 'G':
8607 case 'K':
8608 ip->insn_opcode |= regno << OP_SH_RD;
8609 break;
8610 case 'U':
8611 ip->insn_opcode |= regno << OP_SH_RD;
8612 ip->insn_opcode |= regno << OP_SH_RT;
8613 break;
8614 case 'w':
8615 case 't':
8616 case 'E':
8617 ip->insn_opcode |= regno << OP_SH_RT;
8618 break;
8619 case 'x':
8620 /* This case exists because on the r3000 trunc
8621 expands into a macro which requires a gp
8622 register. On the r6000 or r4000 it is
8623 assembled into a single instruction which
8624 ignores the register. Thus the insn version
8625 is MIPS_ISA2 and uses 'x', and the macro
8626 version is MIPS_ISA1 and uses 't'. */
8627 break;
8628 case 'z':
8629 /* This case is for the div instruction, which
8630 acts differently if the destination argument
8631 is $0. This only matches $0, and is checked
8632 outside the switch. */
8633 break;
8634 case 'D':
8635 /* Itbl operand; not yet implemented. FIXME ?? */
8636 break;
8637 /* What about all other operands like 'i', which
8638 can be specified in the opcode table? */
8639 }
8640 lastregno = regno;
8641 continue;
8642 }
8643 notreg:
8644 switch (*args++)
8645 {
8646 case 'r':
8647 case 'v':
8648 ip->insn_opcode |= lastregno << OP_SH_RS;
8649 continue;
8650 case 'w':
8651 ip->insn_opcode |= lastregno << OP_SH_RT;
8652 continue;
8653 }
8654 break;
8655
8656 case 'O': /* MDMX alignment immediate constant. */
8657 my_getExpression (&imm_expr, s);
8658 check_absolute_expr (ip, &imm_expr);
8659 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
8660 {
8661 as_warn ("Improper align amount (%ld), using low bits",
8662 (long) imm_expr.X_add_number);
8663 imm_expr.X_add_number &= OP_MASK_ALN;
8664 }
8665 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_ALN;
8666 imm_expr.X_op = O_absent;
8667 s = expr_end;
8668 continue;
8669
8670 case 'Q': /* MDMX vector, element sel, or const. */
8671 if (s[0] != '$')
8672 {
8673 /* MDMX Immediate. */
8674 my_getExpression (&imm_expr, s);
8675 check_absolute_expr (ip, &imm_expr);
8676 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
8677 {
8678 as_warn (_("Invalid MDMX Immediate (%ld)"),
8679 (long) imm_expr.X_add_number);
8680 imm_expr.X_add_number &= OP_MASK_FT;
8681 }
8682 imm_expr.X_add_number &= OP_MASK_FT;
8683 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8684 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
8685 else
8686 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
8687 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_FT;
8688 imm_expr.X_op = O_absent;
8689 s = expr_end;
8690 continue;
8691 }
8692 /* Not MDMX Immediate. Fall through. */
8693 case 'X': /* MDMX destination register. */
8694 case 'Y': /* MDMX source register. */
8695 case 'Z': /* MDMX target register. */
8696 is_mdmx = 1;
8697 case 'D': /* floating point destination register */
8698 case 'S': /* floating point source register */
8699 case 'T': /* floating point target register */
8700 case 'R': /* floating point source register */
8701 case 'V':
8702 case 'W':
8703 s_reset = s;
8704 /* Accept $fN for FP and MDMX register numbers, and in
8705 addition accept $vN for MDMX register numbers. */
8706 if ((s[0] == '$' && s[1] == 'f' && ISDIGIT (s[2]))
8707 || (is_mdmx != 0 && s[0] == '$' && s[1] == 'v'
8708 && ISDIGIT (s[2])))
8709 {
8710 s += 2;
8711 regno = 0;
8712 do
8713 {
8714 regno *= 10;
8715 regno += *s - '0';
8716 ++s;
8717 }
8718 while (ISDIGIT (*s));
8719
8720 if (regno > 31)
8721 as_bad (_("Invalid float register number (%d)"), regno);
8722
8723 if ((regno & 1) != 0
8724 && HAVE_32BIT_FPRS
8725 && ! (strcmp (str, "mtc1") == 0
8726 || strcmp (str, "mfc1") == 0
8727 || strcmp (str, "lwc1") == 0
8728 || strcmp (str, "swc1") == 0
8729 || strcmp (str, "l.s") == 0
8730 || strcmp (str, "s.s") == 0))
8731 as_warn (_("Float register should be even, was %d"),
8732 regno);
8733
8734 c = *args;
8735 if (*s == ' ')
8736 ++s;
8737 if (args[1] != *s)
8738 {
8739 if (c == 'V' || c == 'W')
8740 {
8741 regno = lastregno;
8742 s = s_reset;
8743 ++args;
8744 }
8745 }
8746 switch (c)
8747 {
8748 case 'D':
8749 case 'X':
8750 ip->insn_opcode |= regno << OP_SH_FD;
8751 break;
8752 case 'V':
8753 case 'S':
8754 case 'Y':
8755 ip->insn_opcode |= regno << OP_SH_FS;
8756 break;
8757 case 'Q':
8758 /* This is like 'Z', but also needs to fix the MDMX
8759 vector/scalar select bits. Note that the
8760 scalar immediate case is handled above. */
8761 if (*s == '[')
8762 {
8763 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
8764 int max_el = (is_qh ? 3 : 7);
8765 s++;
8766 my_getExpression(&imm_expr, s);
8767 check_absolute_expr (ip, &imm_expr);
8768 s = expr_end;
8769 if (imm_expr.X_add_number > max_el)
8770 as_bad(_("Bad element selector %ld"),
8771 (long) imm_expr.X_add_number);
8772 imm_expr.X_add_number &= max_el;
8773 ip->insn_opcode |= (imm_expr.X_add_number
8774 << (OP_SH_VSEL +
8775 (is_qh ? 2 : 1)));
8776 if (*s != ']')
8777 as_warn(_("Expecting ']' found '%s'"), s);
8778 else
8779 s++;
8780 }
8781 else
8782 {
8783 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8784 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
8785 << OP_SH_VSEL);
8786 else
8787 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
8788 OP_SH_VSEL);
8789 }
8790 /* Fall through */
8791 case 'W':
8792 case 'T':
8793 case 'Z':
8794 ip->insn_opcode |= regno << OP_SH_FT;
8795 break;
8796 case 'R':
8797 ip->insn_opcode |= regno << OP_SH_FR;
8798 break;
8799 }
8800 lastregno = regno;
8801 continue;
8802 }
8803
8804 switch (*args++)
8805 {
8806 case 'V':
8807 ip->insn_opcode |= lastregno << OP_SH_FS;
8808 continue;
8809 case 'W':
8810 ip->insn_opcode |= lastregno << OP_SH_FT;
8811 continue;
8812 }
8813 break;
8814
8815 case 'I':
8816 my_getExpression (&imm_expr, s);
8817 if (imm_expr.X_op != O_big
8818 && imm_expr.X_op != O_constant)
8819 insn_error = _("absolute expression required");
8820 normalize_constant_expr (&imm_expr);
8821 s = expr_end;
8822 continue;
8823
8824 case 'A':
8825 my_getExpression (&offset_expr, s);
8826 *imm_reloc = BFD_RELOC_32;
8827 s = expr_end;
8828 continue;
8829
8830 case 'F':
8831 case 'L':
8832 case 'f':
8833 case 'l':
8834 {
8835 int f64;
8836 int using_gprs;
8837 char *save_in;
8838 char *err;
8839 unsigned char temp[8];
8840 int len;
8841 unsigned int length;
8842 segT seg;
8843 subsegT subseg;
8844 char *p;
8845
8846 /* These only appear as the last operand in an
8847 instruction, and every instruction that accepts
8848 them in any variant accepts them in all variants.
8849 This means we don't have to worry about backing out
8850 any changes if the instruction does not match.
8851
8852 The difference between them is the size of the
8853 floating point constant and where it goes. For 'F'
8854 and 'L' the constant is 64 bits; for 'f' and 'l' it
8855 is 32 bits. Where the constant is placed is based
8856 on how the MIPS assembler does things:
8857 F -- .rdata
8858 L -- .lit8
8859 f -- immediate value
8860 l -- .lit4
8861
8862 The .lit4 and .lit8 sections are only used if
8863 permitted by the -G argument.
8864
8865 When generating embedded PIC code, we use the
8866 .lit8 section but not the .lit4 section (we can do
8867 .lit4 inline easily; we need to put .lit8
8868 somewhere in the data segment, and using .lit8
8869 permits the linker to eventually combine identical
8870 .lit8 entries).
8871
8872 The code below needs to know whether the target register
8873 is 32 or 64 bits wide. It relies on the fact 'f' and
8874 'F' are used with GPR-based instructions and 'l' and
8875 'L' are used with FPR-based instructions. */
8876
8877 f64 = *args == 'F' || *args == 'L';
8878 using_gprs = *args == 'F' || *args == 'f';
8879
8880 save_in = input_line_pointer;
8881 input_line_pointer = s;
8882 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
8883 length = len;
8884 s = input_line_pointer;
8885 input_line_pointer = save_in;
8886 if (err != NULL && *err != '\0')
8887 {
8888 as_bad (_("Bad floating point constant: %s"), err);
8889 memset (temp, '\0', sizeof temp);
8890 length = f64 ? 8 : 4;
8891 }
8892
8893 assert (length == (unsigned) (f64 ? 8 : 4));
8894
8895 if (*args == 'f'
8896 || (*args == 'l'
8897 && (! USE_GLOBAL_POINTER_OPT
8898 || mips_pic == EMBEDDED_PIC
8899 || g_switch_value < 4
8900 || (temp[0] == 0 && temp[1] == 0)
8901 || (temp[2] == 0 && temp[3] == 0))))
8902 {
8903 imm_expr.X_op = O_constant;
8904 if (! target_big_endian)
8905 imm_expr.X_add_number = bfd_getl32 (temp);
8906 else
8907 imm_expr.X_add_number = bfd_getb32 (temp);
8908 }
8909 else if (length > 4
8910 && ! mips_disable_float_construction
8911 /* Constants can only be constructed in GPRs and
8912 copied to FPRs if the GPRs are at least as wide
8913 as the FPRs. Force the constant into memory if
8914 we are using 64-bit FPRs but the GPRs are only
8915 32 bits wide. */
8916 && (using_gprs
8917 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
8918 && ((temp[0] == 0 && temp[1] == 0)
8919 || (temp[2] == 0 && temp[3] == 0))
8920 && ((temp[4] == 0 && temp[5] == 0)
8921 || (temp[6] == 0 && temp[7] == 0)))
8922 {
8923 /* The value is simple enough to load with a couple of
8924 instructions. If using 32-bit registers, set
8925 imm_expr to the high order 32 bits and offset_expr to
8926 the low order 32 bits. Otherwise, set imm_expr to
8927 the entire 64 bit constant. */
8928 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
8929 {
8930 imm_expr.X_op = O_constant;
8931 offset_expr.X_op = O_constant;
8932 if (! target_big_endian)
8933 {
8934 imm_expr.X_add_number = bfd_getl32 (temp + 4);
8935 offset_expr.X_add_number = bfd_getl32 (temp);
8936 }
8937 else
8938 {
8939 imm_expr.X_add_number = bfd_getb32 (temp);
8940 offset_expr.X_add_number = bfd_getb32 (temp + 4);
8941 }
8942 if (offset_expr.X_add_number == 0)
8943 offset_expr.X_op = O_absent;
8944 }
8945 else if (sizeof (imm_expr.X_add_number) > 4)
8946 {
8947 imm_expr.X_op = O_constant;
8948 if (! target_big_endian)
8949 imm_expr.X_add_number = bfd_getl64 (temp);
8950 else
8951 imm_expr.X_add_number = bfd_getb64 (temp);
8952 }
8953 else
8954 {
8955 imm_expr.X_op = O_big;
8956 imm_expr.X_add_number = 4;
8957 if (! target_big_endian)
8958 {
8959 generic_bignum[0] = bfd_getl16 (temp);
8960 generic_bignum[1] = bfd_getl16 (temp + 2);
8961 generic_bignum[2] = bfd_getl16 (temp + 4);
8962 generic_bignum[3] = bfd_getl16 (temp + 6);
8963 }
8964 else
8965 {
8966 generic_bignum[0] = bfd_getb16 (temp + 6);
8967 generic_bignum[1] = bfd_getb16 (temp + 4);
8968 generic_bignum[2] = bfd_getb16 (temp + 2);
8969 generic_bignum[3] = bfd_getb16 (temp);
8970 }
8971 }
8972 }
8973 else
8974 {
8975 const char *newname;
8976 segT new_seg;
8977
8978 /* Switch to the right section. */
8979 seg = now_seg;
8980 subseg = now_subseg;
8981 switch (*args)
8982 {
8983 default: /* unused default case avoids warnings. */
8984 case 'L':
8985 newname = RDATA_SECTION_NAME;
8986 if ((USE_GLOBAL_POINTER_OPT && g_switch_value >= 8)
8987 || mips_pic == EMBEDDED_PIC)
8988 newname = ".lit8";
8989 break;
8990 case 'F':
8991 if (mips_pic == EMBEDDED_PIC)
8992 newname = ".lit8";
8993 else
8994 newname = RDATA_SECTION_NAME;
8995 break;
8996 case 'l':
8997 assert (!USE_GLOBAL_POINTER_OPT
8998 || g_switch_value >= 4);
8999 newname = ".lit4";
9000 break;
9001 }
9002 new_seg = subseg_new (newname, (subsegT) 0);
9003 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
9004 bfd_set_section_flags (stdoutput, new_seg,
9005 (SEC_ALLOC
9006 | SEC_LOAD
9007 | SEC_READONLY
9008 | SEC_DATA));
9009 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9010 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
9011 && strcmp (TARGET_OS, "elf") != 0)
9012 record_alignment (new_seg, 4);
9013 else
9014 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9015 if (seg == now_seg)
9016 as_bad (_("Can't use floating point insn in this section"));
9017
9018 /* Set the argument to the current address in the
9019 section. */
9020 offset_expr.X_op = O_symbol;
9021 offset_expr.X_add_symbol =
9022 symbol_new ("L0\001", now_seg,
9023 (valueT) frag_now_fix (), frag_now);
9024 offset_expr.X_add_number = 0;
9025
9026 /* Put the floating point number into the section. */
9027 p = frag_more ((int) length);
9028 memcpy (p, temp, length);
9029
9030 /* Switch back to the original section. */
9031 subseg_set (seg, subseg);
9032 }
9033 }
9034 continue;
9035
9036 case 'i': /* 16 bit unsigned immediate */
9037 case 'j': /* 16 bit signed immediate */
9038 *imm_reloc = BFD_RELOC_LO16;
9039 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9040 {
9041 int more;
9042 offsetT minval, maxval;
9043
9044 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9045 && strcmp (insn->name, insn[1].name) == 0);
9046
9047 /* If the expression was written as an unsigned number,
9048 only treat it as signed if there are no more
9049 alternatives. */
9050 if (more
9051 && *args == 'j'
9052 && sizeof (imm_expr.X_add_number) <= 4
9053 && imm_expr.X_op == O_constant
9054 && imm_expr.X_add_number < 0
9055 && imm_expr.X_unsigned
9056 && HAVE_64BIT_GPRS)
9057 break;
9058
9059 /* For compatibility with older assemblers, we accept
9060 0x8000-0xffff as signed 16-bit numbers when only
9061 signed numbers are allowed. */
9062 if (*args == 'i')
9063 minval = 0, maxval = 0xffff;
9064 else if (more)
9065 minval = -0x8000, maxval = 0x7fff;
9066 else
9067 minval = -0x8000, maxval = 0xffff;
9068
9069 if (imm_expr.X_op != O_constant
9070 || imm_expr.X_add_number < minval
9071 || imm_expr.X_add_number > maxval)
9072 {
9073 if (more)
9074 break;
9075 if (imm_expr.X_op == O_constant
9076 || imm_expr.X_op == O_big)
9077 as_bad (_("expression out of range"));
9078 }
9079 }
9080 s = expr_end;
9081 continue;
9082
9083 case 'o': /* 16 bit offset */
9084 /* Check whether there is only a single bracketed expression
9085 left. If so, it must be the base register and the
9086 constant must be zero. */
9087 if (*s == '(' && strchr (s + 1, '(') == 0)
9088 {
9089 offset_expr.X_op = O_constant;
9090 offset_expr.X_add_number = 0;
9091 continue;
9092 }
9093
9094 /* If this value won't fit into a 16 bit offset, then go
9095 find a macro that will generate the 32 bit offset
9096 code pattern. */
9097 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9098 && (offset_expr.X_op != O_constant
9099 || offset_expr.X_add_number >= 0x8000
9100 || offset_expr.X_add_number < -0x8000))
9101 break;
9102
9103 s = expr_end;
9104 continue;
9105
9106 case 'p': /* pc relative offset */
9107 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9108 my_getExpression (&offset_expr, s);
9109 s = expr_end;
9110 continue;
9111
9112 case 'u': /* upper 16 bits */
9113 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
9114 && imm_expr.X_op == O_constant
9115 && (imm_expr.X_add_number < 0
9116 || imm_expr.X_add_number >= 0x10000))
9117 as_bad (_("lui expression not in range 0..65535"));
9118 s = expr_end;
9119 continue;
9120
9121 case 'a': /* 26 bit address */
9122 my_getExpression (&offset_expr, s);
9123 s = expr_end;
9124 *offset_reloc = BFD_RELOC_MIPS_JMP;
9125 continue;
9126
9127 case 'N': /* 3 bit branch condition code */
9128 case 'M': /* 3 bit compare condition code */
9129 if (strncmp (s, "$fcc", 4) != 0)
9130 break;
9131 s += 4;
9132 regno = 0;
9133 do
9134 {
9135 regno *= 10;
9136 regno += *s - '0';
9137 ++s;
9138 }
9139 while (ISDIGIT (*s));
9140 if (regno > 7)
9141 as_bad (_("Invalid condition code register $fcc%d"), regno);
9142 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
9143 || strcmp(str + strlen(str) - 5, "any2f") == 0
9144 || strcmp(str + strlen(str) - 5, "any2t") == 0)
9145 && (regno & 1) != 0)
9146 as_warn(_("Condition code register should be even for %s, was %d"),
9147 str, regno);
9148 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
9149 || strcmp(str + strlen(str) - 5, "any4t") == 0)
9150 && (regno & 3) != 0)
9151 as_warn(_("Condition code register should be 0 or 4 for %s, was %d"),
9152 str, regno);
9153 if (*args == 'N')
9154 ip->insn_opcode |= regno << OP_SH_BCC;
9155 else
9156 ip->insn_opcode |= regno << OP_SH_CCC;
9157 continue;
9158
9159 case 'H':
9160 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
9161 s += 2;
9162 if (ISDIGIT (*s))
9163 {
9164 c = 0;
9165 do
9166 {
9167 c *= 10;
9168 c += *s - '0';
9169 ++s;
9170 }
9171 while (ISDIGIT (*s));
9172 }
9173 else
9174 c = 8; /* Invalid sel value. */
9175
9176 if (c > 7)
9177 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
9178 ip->insn_opcode |= c;
9179 continue;
9180
9181 case 'e':
9182 /* Must be at least one digit. */
9183 my_getExpression (&imm_expr, s);
9184 check_absolute_expr (ip, &imm_expr);
9185
9186 if ((unsigned long) imm_expr.X_add_number
9187 > (unsigned long) OP_MASK_VECBYTE)
9188 {
9189 as_bad (_("bad byte vector index (%ld)"),
9190 (long) imm_expr.X_add_number);
9191 imm_expr.X_add_number = 0;
9192 }
9193
9194 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_VECBYTE;
9195 imm_expr.X_op = O_absent;
9196 s = expr_end;
9197 continue;
9198
9199 case '%':
9200 my_getExpression (&imm_expr, s);
9201 check_absolute_expr (ip, &imm_expr);
9202
9203 if ((unsigned long) imm_expr.X_add_number
9204 > (unsigned long) OP_MASK_VECALIGN)
9205 {
9206 as_bad (_("bad byte vector index (%ld)"),
9207 (long) imm_expr.X_add_number);
9208 imm_expr.X_add_number = 0;
9209 }
9210
9211 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_VECALIGN;
9212 imm_expr.X_op = O_absent;
9213 s = expr_end;
9214 continue;
9215
9216 default:
9217 as_bad (_("bad char = '%c'\n"), *args);
9218 internalError ();
9219 }
9220 break;
9221 }
9222 /* Args don't match. */
9223 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
9224 !strcmp (insn->name, insn[1].name))
9225 {
9226 ++insn;
9227 s = argsStart;
9228 insn_error = _("illegal operands");
9229 continue;
9230 }
9231 if (save_c)
9232 *(--s) = save_c;
9233 insn_error = _("illegal operands");
9234 return;
9235 }
9236 }
9237
9238 /* This routine assembles an instruction into its binary format when
9239 assembling for the mips16. As a side effect, it sets one of the
9240 global variables imm_reloc or offset_reloc to the type of
9241 relocation to do if one of the operands is an address expression.
9242 It also sets mips16_small and mips16_ext if the user explicitly
9243 requested a small or extended instruction. */
9244
9245 static void
9246 mips16_ip (char *str, struct mips_cl_insn *ip)
9247 {
9248 char *s;
9249 const char *args;
9250 struct mips_opcode *insn;
9251 char *argsstart;
9252 unsigned int regno;
9253 unsigned int lastregno = 0;
9254 char *s_reset;
9255
9256 insn_error = NULL;
9257
9258 mips16_small = FALSE;
9259 mips16_ext = FALSE;
9260
9261 for (s = str; ISLOWER (*s); ++s)
9262 ;
9263 switch (*s)
9264 {
9265 case '\0':
9266 break;
9267
9268 case ' ':
9269 *s++ = '\0';
9270 break;
9271
9272 case '.':
9273 if (s[1] == 't' && s[2] == ' ')
9274 {
9275 *s = '\0';
9276 mips16_small = TRUE;
9277 s += 3;
9278 break;
9279 }
9280 else if (s[1] == 'e' && s[2] == ' ')
9281 {
9282 *s = '\0';
9283 mips16_ext = TRUE;
9284 s += 3;
9285 break;
9286 }
9287 /* Fall through. */
9288 default:
9289 insn_error = _("unknown opcode");
9290 return;
9291 }
9292
9293 if (mips_opts.noautoextend && ! mips16_ext)
9294 mips16_small = TRUE;
9295
9296 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
9297 {
9298 insn_error = _("unrecognized opcode");
9299 return;
9300 }
9301
9302 argsstart = s;
9303 for (;;)
9304 {
9305 assert (strcmp (insn->name, str) == 0);
9306
9307 ip->insn_mo = insn;
9308 ip->insn_opcode = insn->match;
9309 ip->use_extend = FALSE;
9310 imm_expr.X_op = O_absent;
9311 imm_reloc[0] = BFD_RELOC_UNUSED;
9312 imm_reloc[1] = BFD_RELOC_UNUSED;
9313 imm_reloc[2] = BFD_RELOC_UNUSED;
9314 imm2_expr.X_op = O_absent;
9315 offset_expr.X_op = O_absent;
9316 offset_reloc[0] = BFD_RELOC_UNUSED;
9317 offset_reloc[1] = BFD_RELOC_UNUSED;
9318 offset_reloc[2] = BFD_RELOC_UNUSED;
9319 for (args = insn->args; 1; ++args)
9320 {
9321 int c;
9322
9323 if (*s == ' ')
9324 ++s;
9325
9326 /* In this switch statement we call break if we did not find
9327 a match, continue if we did find a match, or return if we
9328 are done. */
9329
9330 c = *args;
9331 switch (c)
9332 {
9333 case '\0':
9334 if (*s == '\0')
9335 {
9336 /* Stuff the immediate value in now, if we can. */
9337 if (imm_expr.X_op == O_constant
9338 && *imm_reloc > BFD_RELOC_UNUSED
9339 && insn->pinfo != INSN_MACRO)
9340 {
9341 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
9342 imm_expr.X_add_number, TRUE, mips16_small,
9343 mips16_ext, &ip->insn_opcode,
9344 &ip->use_extend, &ip->extend);
9345 imm_expr.X_op = O_absent;
9346 *imm_reloc = BFD_RELOC_UNUSED;
9347 }
9348
9349 return;
9350 }
9351 break;
9352
9353 case ',':
9354 if (*s++ == c)
9355 continue;
9356 s--;
9357 switch (*++args)
9358 {
9359 case 'v':
9360 ip->insn_opcode |= lastregno << MIPS16OP_SH_RX;
9361 continue;
9362 case 'w':
9363 ip->insn_opcode |= lastregno << MIPS16OP_SH_RY;
9364 continue;
9365 }
9366 break;
9367
9368 case '(':
9369 case ')':
9370 if (*s++ == c)
9371 continue;
9372 break;
9373
9374 case 'v':
9375 case 'w':
9376 if (s[0] != '$')
9377 {
9378 if (c == 'v')
9379 ip->insn_opcode |= lastregno << MIPS16OP_SH_RX;
9380 else
9381 ip->insn_opcode |= lastregno << MIPS16OP_SH_RY;
9382 ++args;
9383 continue;
9384 }
9385 /* Fall through. */
9386 case 'x':
9387 case 'y':
9388 case 'z':
9389 case 'Z':
9390 case '0':
9391 case 'S':
9392 case 'R':
9393 case 'X':
9394 case 'Y':
9395 if (s[0] != '$')
9396 break;
9397 s_reset = s;
9398 if (ISDIGIT (s[1]))
9399 {
9400 ++s;
9401 regno = 0;
9402 do
9403 {
9404 regno *= 10;
9405 regno += *s - '0';
9406 ++s;
9407 }
9408 while (ISDIGIT (*s));
9409 if (regno > 31)
9410 {
9411 as_bad (_("invalid register number (%d)"), regno);
9412 regno = 2;
9413 }
9414 }
9415 else
9416 {
9417 if (s[1] == 'r' && s[2] == 'a')
9418 {
9419 s += 3;
9420 regno = RA;
9421 }
9422 else if (s[1] == 'f' && s[2] == 'p')
9423 {
9424 s += 3;
9425 regno = FP;
9426 }
9427 else if (s[1] == 's' && s[2] == 'p')
9428 {
9429 s += 3;
9430 regno = SP;
9431 }
9432 else if (s[1] == 'g' && s[2] == 'p')
9433 {
9434 s += 3;
9435 regno = GP;
9436 }
9437 else if (s[1] == 'a' && s[2] == 't')
9438 {
9439 s += 3;
9440 regno = AT;
9441 }
9442 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
9443 {
9444 s += 4;
9445 regno = KT0;
9446 }
9447 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
9448 {
9449 s += 4;
9450 regno = KT1;
9451 }
9452 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
9453 {
9454 s += 5;
9455 regno = ZERO;
9456 }
9457 else
9458 break;
9459 }
9460
9461 if (*s == ' ')
9462 ++s;
9463 if (args[1] != *s)
9464 {
9465 if (c == 'v' || c == 'w')
9466 {
9467 regno = mips16_to_32_reg_map[lastregno];
9468 s = s_reset;
9469 ++args;
9470 }
9471 }
9472
9473 switch (c)
9474 {
9475 case 'x':
9476 case 'y':
9477 case 'z':
9478 case 'v':
9479 case 'w':
9480 case 'Z':
9481 regno = mips32_to_16_reg_map[regno];
9482 break;
9483
9484 case '0':
9485 if (regno != 0)
9486 regno = ILLEGAL_REG;
9487 break;
9488
9489 case 'S':
9490 if (regno != SP)
9491 regno = ILLEGAL_REG;
9492 break;
9493
9494 case 'R':
9495 if (regno != RA)
9496 regno = ILLEGAL_REG;
9497 break;
9498
9499 case 'X':
9500 case 'Y':
9501 if (regno == AT && ! mips_opts.noat)
9502 as_warn (_("used $at without \".set noat\""));
9503 break;
9504
9505 default:
9506 internalError ();
9507 }
9508
9509 if (regno == ILLEGAL_REG)
9510 break;
9511
9512 switch (c)
9513 {
9514 case 'x':
9515 case 'v':
9516 ip->insn_opcode |= regno << MIPS16OP_SH_RX;
9517 break;
9518 case 'y':
9519 case 'w':
9520 ip->insn_opcode |= regno << MIPS16OP_SH_RY;
9521 break;
9522 case 'z':
9523 ip->insn_opcode |= regno << MIPS16OP_SH_RZ;
9524 break;
9525 case 'Z':
9526 ip->insn_opcode |= regno << MIPS16OP_SH_MOVE32Z;
9527 case '0':
9528 case 'S':
9529 case 'R':
9530 break;
9531 case 'X':
9532 ip->insn_opcode |= regno << MIPS16OP_SH_REGR32;
9533 break;
9534 case 'Y':
9535 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
9536 ip->insn_opcode |= regno << MIPS16OP_SH_REG32R;
9537 break;
9538 default:
9539 internalError ();
9540 }
9541
9542 lastregno = regno;
9543 continue;
9544
9545 case 'P':
9546 if (strncmp (s, "$pc", 3) == 0)
9547 {
9548 s += 3;
9549 continue;
9550 }
9551 break;
9552
9553 case '<':
9554 case '>':
9555 case '[':
9556 case ']':
9557 case '4':
9558 case '5':
9559 case 'H':
9560 case 'W':
9561 case 'D':
9562 case 'j':
9563 case '8':
9564 case 'V':
9565 case 'C':
9566 case 'U':
9567 case 'k':
9568 case 'K':
9569 if (s[0] == '%'
9570 && strncmp (s + 1, "gprel(", sizeof "gprel(" - 1) == 0)
9571 {
9572 /* This is %gprel(SYMBOL). We need to read SYMBOL,
9573 and generate the appropriate reloc. If the text
9574 inside %gprel is not a symbol name with an
9575 optional offset, then we generate a normal reloc
9576 and will probably fail later. */
9577 my_getExpression (&imm_expr, s + sizeof "%gprel" - 1);
9578 if (imm_expr.X_op == O_symbol)
9579 {
9580 mips16_ext = TRUE;
9581 *imm_reloc = BFD_RELOC_MIPS16_GPREL;
9582 s = expr_end;
9583 ip->use_extend = TRUE;
9584 ip->extend = 0;
9585 continue;
9586 }
9587 }
9588 else
9589 {
9590 /* Just pick up a normal expression. */
9591 my_getExpression (&imm_expr, s);
9592 }
9593
9594 if (imm_expr.X_op == O_register)
9595 {
9596 /* What we thought was an expression turned out to
9597 be a register. */
9598
9599 if (s[0] == '(' && args[1] == '(')
9600 {
9601 /* It looks like the expression was omitted
9602 before a register indirection, which means
9603 that the expression is implicitly zero. We
9604 still set up imm_expr, so that we handle
9605 explicit extensions correctly. */
9606 imm_expr.X_op = O_constant;
9607 imm_expr.X_add_number = 0;
9608 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9609 continue;
9610 }
9611
9612 break;
9613 }
9614
9615 /* We need to relax this instruction. */
9616 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9617 s = expr_end;
9618 continue;
9619
9620 case 'p':
9621 case 'q':
9622 case 'A':
9623 case 'B':
9624 case 'E':
9625 /* We use offset_reloc rather than imm_reloc for the PC
9626 relative operands. This lets macros with both
9627 immediate and address operands work correctly. */
9628 my_getExpression (&offset_expr, s);
9629
9630 if (offset_expr.X_op == O_register)
9631 break;
9632
9633 /* We need to relax this instruction. */
9634 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
9635 s = expr_end;
9636 continue;
9637
9638 case '6': /* break code */
9639 my_getExpression (&imm_expr, s);
9640 check_absolute_expr (ip, &imm_expr);
9641 if ((unsigned long) imm_expr.X_add_number > 63)
9642 {
9643 as_warn (_("Invalid value for `%s' (%lu)"),
9644 ip->insn_mo->name,
9645 (unsigned long) imm_expr.X_add_number);
9646 imm_expr.X_add_number &= 0x3f;
9647 }
9648 ip->insn_opcode |= imm_expr.X_add_number << MIPS16OP_SH_IMM6;
9649 imm_expr.X_op = O_absent;
9650 s = expr_end;
9651 continue;
9652
9653 case 'a': /* 26 bit address */
9654 my_getExpression (&offset_expr, s);
9655 s = expr_end;
9656 *offset_reloc = BFD_RELOC_MIPS16_JMP;
9657 ip->insn_opcode <<= 16;
9658 continue;
9659
9660 case 'l': /* register list for entry macro */
9661 case 'L': /* register list for exit macro */
9662 {
9663 int mask;
9664
9665 if (c == 'l')
9666 mask = 0;
9667 else
9668 mask = 7 << 3;
9669 while (*s != '\0')
9670 {
9671 int freg, reg1, reg2;
9672
9673 while (*s == ' ' || *s == ',')
9674 ++s;
9675 if (*s != '$')
9676 {
9677 as_bad (_("can't parse register list"));
9678 break;
9679 }
9680 ++s;
9681 if (*s != 'f')
9682 freg = 0;
9683 else
9684 {
9685 freg = 1;
9686 ++s;
9687 }
9688 reg1 = 0;
9689 while (ISDIGIT (*s))
9690 {
9691 reg1 *= 10;
9692 reg1 += *s - '0';
9693 ++s;
9694 }
9695 if (*s == ' ')
9696 ++s;
9697 if (*s != '-')
9698 reg2 = reg1;
9699 else
9700 {
9701 ++s;
9702 if (*s != '$')
9703 break;
9704 ++s;
9705 if (freg)
9706 {
9707 if (*s == 'f')
9708 ++s;
9709 else
9710 {
9711 as_bad (_("invalid register list"));
9712 break;
9713 }
9714 }
9715 reg2 = 0;
9716 while (ISDIGIT (*s))
9717 {
9718 reg2 *= 10;
9719 reg2 += *s - '0';
9720 ++s;
9721 }
9722 }
9723 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
9724 {
9725 mask &= ~ (7 << 3);
9726 mask |= 5 << 3;
9727 }
9728 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
9729 {
9730 mask &= ~ (7 << 3);
9731 mask |= 6 << 3;
9732 }
9733 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
9734 mask |= (reg2 - 3) << 3;
9735 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
9736 mask |= (reg2 - 15) << 1;
9737 else if (reg1 == RA && reg2 == RA)
9738 mask |= 1;
9739 else
9740 {
9741 as_bad (_("invalid register list"));
9742 break;
9743 }
9744 }
9745 /* The mask is filled in in the opcode table for the
9746 benefit of the disassembler. We remove it before
9747 applying the actual mask. */
9748 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
9749 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
9750 }
9751 continue;
9752
9753 case 'e': /* extend code */
9754 my_getExpression (&imm_expr, s);
9755 check_absolute_expr (ip, &imm_expr);
9756 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
9757 {
9758 as_warn (_("Invalid value for `%s' (%lu)"),
9759 ip->insn_mo->name,
9760 (unsigned long) imm_expr.X_add_number);
9761 imm_expr.X_add_number &= 0x7ff;
9762 }
9763 ip->insn_opcode |= imm_expr.X_add_number;
9764 imm_expr.X_op = O_absent;
9765 s = expr_end;
9766 continue;
9767
9768 default:
9769 internalError ();
9770 }
9771 break;
9772 }
9773
9774 /* Args don't match. */
9775 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
9776 strcmp (insn->name, insn[1].name) == 0)
9777 {
9778 ++insn;
9779 s = argsstart;
9780 continue;
9781 }
9782
9783 insn_error = _("illegal operands");
9784
9785 return;
9786 }
9787 }
9788
9789 /* This structure holds information we know about a mips16 immediate
9790 argument type. */
9791
9792 struct mips16_immed_operand
9793 {
9794 /* The type code used in the argument string in the opcode table. */
9795 int type;
9796 /* The number of bits in the short form of the opcode. */
9797 int nbits;
9798 /* The number of bits in the extended form of the opcode. */
9799 int extbits;
9800 /* The amount by which the short form is shifted when it is used;
9801 for example, the sw instruction has a shift count of 2. */
9802 int shift;
9803 /* The amount by which the short form is shifted when it is stored
9804 into the instruction code. */
9805 int op_shift;
9806 /* Non-zero if the short form is unsigned. */
9807 int unsp;
9808 /* Non-zero if the extended form is unsigned. */
9809 int extu;
9810 /* Non-zero if the value is PC relative. */
9811 int pcrel;
9812 };
9813
9814 /* The mips16 immediate operand types. */
9815
9816 static const struct mips16_immed_operand mips16_immed_operands[] =
9817 {
9818 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
9819 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
9820 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
9821 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
9822 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
9823 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
9824 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
9825 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
9826 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
9827 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
9828 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
9829 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
9830 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
9831 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
9832 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
9833 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
9834 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
9835 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
9836 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
9837 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
9838 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
9839 };
9840
9841 #define MIPS16_NUM_IMMED \
9842 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
9843
9844 /* Handle a mips16 instruction with an immediate value. This or's the
9845 small immediate value into *INSN. It sets *USE_EXTEND to indicate
9846 whether an extended value is needed; if one is needed, it sets
9847 *EXTEND to the value. The argument type is TYPE. The value is VAL.
9848 If SMALL is true, an unextended opcode was explicitly requested.
9849 If EXT is true, an extended opcode was explicitly requested. If
9850 WARN is true, warn if EXT does not match reality. */
9851
9852 static void
9853 mips16_immed (char *file, unsigned int line, int type, offsetT val,
9854 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
9855 unsigned long *insn, bfd_boolean *use_extend,
9856 unsigned short *extend)
9857 {
9858 register const struct mips16_immed_operand *op;
9859 int mintiny, maxtiny;
9860 bfd_boolean needext;
9861
9862 op = mips16_immed_operands;
9863 while (op->type != type)
9864 {
9865 ++op;
9866 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
9867 }
9868
9869 if (op->unsp)
9870 {
9871 if (type == '<' || type == '>' || type == '[' || type == ']')
9872 {
9873 mintiny = 1;
9874 maxtiny = 1 << op->nbits;
9875 }
9876 else
9877 {
9878 mintiny = 0;
9879 maxtiny = (1 << op->nbits) - 1;
9880 }
9881 }
9882 else
9883 {
9884 mintiny = - (1 << (op->nbits - 1));
9885 maxtiny = (1 << (op->nbits - 1)) - 1;
9886 }
9887
9888 /* Branch offsets have an implicit 0 in the lowest bit. */
9889 if (type == 'p' || type == 'q')
9890 val /= 2;
9891
9892 if ((val & ((1 << op->shift) - 1)) != 0
9893 || val < (mintiny << op->shift)
9894 || val > (maxtiny << op->shift))
9895 needext = TRUE;
9896 else
9897 needext = FALSE;
9898
9899 if (warn && ext && ! needext)
9900 as_warn_where (file, line,
9901 _("extended operand requested but not required"));
9902 if (small && needext)
9903 as_bad_where (file, line, _("invalid unextended operand value"));
9904
9905 if (small || (! ext && ! needext))
9906 {
9907 int insnval;
9908
9909 *use_extend = FALSE;
9910 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
9911 insnval <<= op->op_shift;
9912 *insn |= insnval;
9913 }
9914 else
9915 {
9916 long minext, maxext;
9917 int extval;
9918
9919 if (op->extu)
9920 {
9921 minext = 0;
9922 maxext = (1 << op->extbits) - 1;
9923 }
9924 else
9925 {
9926 minext = - (1 << (op->extbits - 1));
9927 maxext = (1 << (op->extbits - 1)) - 1;
9928 }
9929 if (val < minext || val > maxext)
9930 as_bad_where (file, line,
9931 _("operand value out of range for instruction"));
9932
9933 *use_extend = TRUE;
9934 if (op->extbits == 16)
9935 {
9936 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
9937 val &= 0x1f;
9938 }
9939 else if (op->extbits == 15)
9940 {
9941 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
9942 val &= 0xf;
9943 }
9944 else
9945 {
9946 extval = ((val & 0x1f) << 6) | (val & 0x20);
9947 val = 0;
9948 }
9949
9950 *extend = (unsigned short) extval;
9951 *insn |= val;
9952 }
9953 }
9954 \f
9955 static const struct percent_op_match
9956 {
9957 const char *str;
9958 bfd_reloc_code_real_type reloc;
9959 } percent_op[] =
9960 {
9961 {"%lo", BFD_RELOC_LO16},
9962 #ifdef OBJ_ELF
9963 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
9964 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
9965 {"%call16", BFD_RELOC_MIPS_CALL16},
9966 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
9967 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
9968 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
9969 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
9970 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
9971 {"%got", BFD_RELOC_MIPS_GOT16},
9972 {"%gp_rel", BFD_RELOC_GPREL16},
9973 {"%half", BFD_RELOC_16},
9974 {"%highest", BFD_RELOC_MIPS_HIGHEST},
9975 {"%higher", BFD_RELOC_MIPS_HIGHER},
9976 {"%neg", BFD_RELOC_MIPS_SUB},
9977 #endif
9978 {"%hi", BFD_RELOC_HI16_S}
9979 };
9980
9981
9982 /* Return true if *STR points to a relocation operator. When returning true,
9983 move *STR over the operator and store its relocation code in *RELOC.
9984 Leave both *STR and *RELOC alone when returning false. */
9985
9986 static bfd_boolean
9987 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
9988 {
9989 size_t i;
9990
9991 for (i = 0; i < ARRAY_SIZE (percent_op); i++)
9992 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
9993 {
9994 *str += strlen (percent_op[i].str);
9995 *reloc = percent_op[i].reloc;
9996
9997 /* Check whether the output BFD supports this relocation.
9998 If not, issue an error and fall back on something safe. */
9999 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
10000 {
10001 as_bad ("relocation %s isn't supported by the current ABI",
10002 percent_op[i].str);
10003 *reloc = BFD_RELOC_LO16;
10004 }
10005 return TRUE;
10006 }
10007 return FALSE;
10008 }
10009
10010
10011 /* Parse string STR as a 16-bit relocatable operand. Store the
10012 expression in *EP and the relocations in the array starting
10013 at RELOC. Return the number of relocation operators used.
10014
10015 On exit, EXPR_END points to the first character after the expression.
10016 If no relocation operators are used, RELOC[0] is set to BFD_RELOC_LO16. */
10017
10018 static size_t
10019 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
10020 char *str)
10021 {
10022 bfd_reloc_code_real_type reversed_reloc[3];
10023 size_t reloc_index, i;
10024 int crux_depth, str_depth;
10025 char *crux;
10026
10027 /* Search for the start of the main expression, recoding relocations
10028 in REVERSED_RELOC. End the loop with CRUX pointing to the start
10029 of the main expression and with CRUX_DEPTH containing the number
10030 of open brackets at that point. */
10031 reloc_index = -1;
10032 str_depth = 0;
10033 do
10034 {
10035 reloc_index++;
10036 crux = str;
10037 crux_depth = str_depth;
10038
10039 /* Skip over whitespace and brackets, keeping count of the number
10040 of brackets. */
10041 while (*str == ' ' || *str == '\t' || *str == '(')
10042 if (*str++ == '(')
10043 str_depth++;
10044 }
10045 while (*str == '%'
10046 && reloc_index < (HAVE_NEWABI ? 3 : 1)
10047 && parse_relocation (&str, &reversed_reloc[reloc_index]));
10048
10049 my_getExpression (ep, crux);
10050 str = expr_end;
10051
10052 /* Match every open bracket. */
10053 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
10054 if (*str++ == ')')
10055 crux_depth--;
10056
10057 if (crux_depth > 0)
10058 as_bad ("unclosed '('");
10059
10060 expr_end = str;
10061
10062 if (reloc_index == 0)
10063 reloc[0] = BFD_RELOC_LO16;
10064 else
10065 {
10066 prev_reloc_op_frag = frag_now;
10067 for (i = 0; i < reloc_index; i++)
10068 reloc[i] = reversed_reloc[reloc_index - 1 - i];
10069 }
10070
10071 return reloc_index;
10072 }
10073
10074 static void
10075 my_getExpression (expressionS *ep, char *str)
10076 {
10077 char *save_in;
10078 valueT val;
10079
10080 save_in = input_line_pointer;
10081 input_line_pointer = str;
10082 expression (ep);
10083 expr_end = input_line_pointer;
10084 input_line_pointer = save_in;
10085
10086 /* If we are in mips16 mode, and this is an expression based on `.',
10087 then we bump the value of the symbol by 1 since that is how other
10088 text symbols are handled. We don't bother to handle complex
10089 expressions, just `.' plus or minus a constant. */
10090 if (mips_opts.mips16
10091 && ep->X_op == O_symbol
10092 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
10093 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
10094 && symbol_get_frag (ep->X_add_symbol) == frag_now
10095 && symbol_constant_p (ep->X_add_symbol)
10096 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
10097 S_SET_VALUE (ep->X_add_symbol, val + 1);
10098 }
10099
10100 /* Turn a string in input_line_pointer into a floating point constant
10101 of type TYPE, and store the appropriate bytes in *LITP. The number
10102 of LITTLENUMS emitted is stored in *SIZEP. An error message is
10103 returned, or NULL on OK. */
10104
10105 char *
10106 md_atof (int type, char *litP, int *sizeP)
10107 {
10108 int prec;
10109 LITTLENUM_TYPE words[4];
10110 char *t;
10111 int i;
10112
10113 switch (type)
10114 {
10115 case 'f':
10116 prec = 2;
10117 break;
10118
10119 case 'd':
10120 prec = 4;
10121 break;
10122
10123 default:
10124 *sizeP = 0;
10125 return _("bad call to md_atof");
10126 }
10127
10128 t = atof_ieee (input_line_pointer, type, words);
10129 if (t)
10130 input_line_pointer = t;
10131
10132 *sizeP = prec * 2;
10133
10134 if (! target_big_endian)
10135 {
10136 for (i = prec - 1; i >= 0; i--)
10137 {
10138 md_number_to_chars (litP, words[i], 2);
10139 litP += 2;
10140 }
10141 }
10142 else
10143 {
10144 for (i = 0; i < prec; i++)
10145 {
10146 md_number_to_chars (litP, words[i], 2);
10147 litP += 2;
10148 }
10149 }
10150
10151 return NULL;
10152 }
10153
10154 void
10155 md_number_to_chars (char *buf, valueT val, int n)
10156 {
10157 if (target_big_endian)
10158 number_to_chars_bigendian (buf, val, n);
10159 else
10160 number_to_chars_littleendian (buf, val, n);
10161 }
10162 \f
10163 #ifdef OBJ_ELF
10164 static int support_64bit_objects(void)
10165 {
10166 const char **list, **l;
10167 int yes;
10168
10169 list = bfd_target_list ();
10170 for (l = list; *l != NULL; l++)
10171 #ifdef TE_TMIPS
10172 /* This is traditional mips */
10173 if (strcmp (*l, "elf64-tradbigmips") == 0
10174 || strcmp (*l, "elf64-tradlittlemips") == 0)
10175 #else
10176 if (strcmp (*l, "elf64-bigmips") == 0
10177 || strcmp (*l, "elf64-littlemips") == 0)
10178 #endif
10179 break;
10180 yes = (*l != NULL);
10181 free (list);
10182 return yes;
10183 }
10184 #endif /* OBJ_ELF */
10185
10186 const char *md_shortopts = "O::g::G:";
10187
10188 struct option md_longopts[] =
10189 {
10190 /* Options which specify architecture. */
10191 #define OPTION_ARCH_BASE (OPTION_MD_BASE)
10192 #define OPTION_MARCH (OPTION_ARCH_BASE + 0)
10193 {"march", required_argument, NULL, OPTION_MARCH},
10194 #define OPTION_MTUNE (OPTION_ARCH_BASE + 1)
10195 {"mtune", required_argument, NULL, OPTION_MTUNE},
10196 #define OPTION_MIPS1 (OPTION_ARCH_BASE + 2)
10197 {"mips0", no_argument, NULL, OPTION_MIPS1},
10198 {"mips1", no_argument, NULL, OPTION_MIPS1},
10199 #define OPTION_MIPS2 (OPTION_ARCH_BASE + 3)
10200 {"mips2", no_argument, NULL, OPTION_MIPS2},
10201 #define OPTION_MIPS3 (OPTION_ARCH_BASE + 4)
10202 {"mips3", no_argument, NULL, OPTION_MIPS3},
10203 #define OPTION_MIPS4 (OPTION_ARCH_BASE + 5)
10204 {"mips4", no_argument, NULL, OPTION_MIPS4},
10205 #define OPTION_MIPS5 (OPTION_ARCH_BASE + 6)
10206 {"mips5", no_argument, NULL, OPTION_MIPS5},
10207 #define OPTION_MIPS32 (OPTION_ARCH_BASE + 7)
10208 {"mips32", no_argument, NULL, OPTION_MIPS32},
10209 #define OPTION_MIPS64 (OPTION_ARCH_BASE + 8)
10210 {"mips64", no_argument, NULL, OPTION_MIPS64},
10211 #define OPTION_MIPS32R2 (OPTION_ARCH_BASE + 9)
10212 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
10213 #define OPTION_MIPS64R2 (OPTION_ARCH_BASE + 10)
10214 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
10215
10216 /* Options which specify Application Specific Extensions (ASEs). */
10217 #define OPTION_ASE_BASE (OPTION_ARCH_BASE + 11)
10218 #define OPTION_MIPS16 (OPTION_ASE_BASE + 0)
10219 {"mips16", no_argument, NULL, OPTION_MIPS16},
10220 #define OPTION_NO_MIPS16 (OPTION_ASE_BASE + 1)
10221 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
10222 #define OPTION_MIPS3D (OPTION_ASE_BASE + 2)
10223 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
10224 #define OPTION_NO_MIPS3D (OPTION_ASE_BASE + 3)
10225 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
10226 #define OPTION_MDMX (OPTION_ASE_BASE + 4)
10227 {"mdmx", no_argument, NULL, OPTION_MDMX},
10228 #define OPTION_NO_MDMX (OPTION_ASE_BASE + 5)
10229 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
10230
10231 /* Old-style architecture options. Don't add more of these. */
10232 #define OPTION_COMPAT_ARCH_BASE (OPTION_ASE_BASE + 6)
10233 #define OPTION_M4650 (OPTION_COMPAT_ARCH_BASE + 0)
10234 {"m4650", no_argument, NULL, OPTION_M4650},
10235 #define OPTION_NO_M4650 (OPTION_COMPAT_ARCH_BASE + 1)
10236 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
10237 #define OPTION_M4010 (OPTION_COMPAT_ARCH_BASE + 2)
10238 {"m4010", no_argument, NULL, OPTION_M4010},
10239 #define OPTION_NO_M4010 (OPTION_COMPAT_ARCH_BASE + 3)
10240 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
10241 #define OPTION_M4100 (OPTION_COMPAT_ARCH_BASE + 4)
10242 {"m4100", no_argument, NULL, OPTION_M4100},
10243 #define OPTION_NO_M4100 (OPTION_COMPAT_ARCH_BASE + 5)
10244 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
10245 #define OPTION_M3900 (OPTION_COMPAT_ARCH_BASE + 6)
10246 {"m3900", no_argument, NULL, OPTION_M3900},
10247 #define OPTION_NO_M3900 (OPTION_COMPAT_ARCH_BASE + 7)
10248 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
10249
10250 /* Options which enable bug fixes. */
10251 #define OPTION_FIX_BASE (OPTION_COMPAT_ARCH_BASE + 8)
10252 #define OPTION_M7000_HILO_FIX (OPTION_FIX_BASE + 0)
10253 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
10254 #define OPTION_MNO_7000_HILO_FIX (OPTION_FIX_BASE + 1)
10255 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
10256 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
10257 #define OPTION_FIX_VR4120 (OPTION_FIX_BASE + 2)
10258 #define OPTION_NO_FIX_VR4120 (OPTION_FIX_BASE + 3)
10259 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
10260 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
10261
10262 /* Miscellaneous options. */
10263 #define OPTION_MISC_BASE (OPTION_FIX_BASE + 4)
10264 #define OPTION_MEMBEDDED_PIC (OPTION_MISC_BASE + 0)
10265 {"membedded-pic", no_argument, NULL, OPTION_MEMBEDDED_PIC},
10266 #define OPTION_TRAP (OPTION_MISC_BASE + 1)
10267 {"trap", no_argument, NULL, OPTION_TRAP},
10268 {"no-break", no_argument, NULL, OPTION_TRAP},
10269 #define OPTION_BREAK (OPTION_MISC_BASE + 2)
10270 {"break", no_argument, NULL, OPTION_BREAK},
10271 {"no-trap", no_argument, NULL, OPTION_BREAK},
10272 #define OPTION_EB (OPTION_MISC_BASE + 3)
10273 {"EB", no_argument, NULL, OPTION_EB},
10274 #define OPTION_EL (OPTION_MISC_BASE + 4)
10275 {"EL", no_argument, NULL, OPTION_EL},
10276 #define OPTION_FP32 (OPTION_MISC_BASE + 5)
10277 {"mfp32", no_argument, NULL, OPTION_FP32},
10278 #define OPTION_GP32 (OPTION_MISC_BASE + 6)
10279 {"mgp32", no_argument, NULL, OPTION_GP32},
10280 #define OPTION_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 7)
10281 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
10282 #define OPTION_NO_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 8)
10283 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
10284 #define OPTION_FP64 (OPTION_MISC_BASE + 9)
10285 {"mfp64", no_argument, NULL, OPTION_FP64},
10286 #define OPTION_GP64 (OPTION_MISC_BASE + 10)
10287 {"mgp64", no_argument, NULL, OPTION_GP64},
10288 #define OPTION_RELAX_BRANCH (OPTION_MISC_BASE + 11)
10289 #define OPTION_NO_RELAX_BRANCH (OPTION_MISC_BASE + 12)
10290 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
10291 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
10292
10293 /* ELF-specific options. */
10294 #ifdef OBJ_ELF
10295 #define OPTION_ELF_BASE (OPTION_MISC_BASE + 13)
10296 #define OPTION_CALL_SHARED (OPTION_ELF_BASE + 0)
10297 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
10298 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
10299 #define OPTION_NON_SHARED (OPTION_ELF_BASE + 1)
10300 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
10301 #define OPTION_XGOT (OPTION_ELF_BASE + 2)
10302 {"xgot", no_argument, NULL, OPTION_XGOT},
10303 #define OPTION_MABI (OPTION_ELF_BASE + 3)
10304 {"mabi", required_argument, NULL, OPTION_MABI},
10305 #define OPTION_32 (OPTION_ELF_BASE + 4)
10306 {"32", no_argument, NULL, OPTION_32},
10307 #define OPTION_N32 (OPTION_ELF_BASE + 5)
10308 {"n32", no_argument, NULL, OPTION_N32},
10309 #define OPTION_64 (OPTION_ELF_BASE + 6)
10310 {"64", no_argument, NULL, OPTION_64},
10311 #define OPTION_MDEBUG (OPTION_ELF_BASE + 7)
10312 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
10313 #define OPTION_NO_MDEBUG (OPTION_ELF_BASE + 8)
10314 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
10315 #define OPTION_PDR (OPTION_ELF_BASE + 9)
10316 {"mpdr", no_argument, NULL, OPTION_PDR},
10317 #define OPTION_NO_PDR (OPTION_ELF_BASE + 10)
10318 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
10319 #endif /* OBJ_ELF */
10320
10321 {NULL, no_argument, NULL, 0}
10322 };
10323 size_t md_longopts_size = sizeof (md_longopts);
10324
10325 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
10326 NEW_VALUE. Warn if another value was already specified. Note:
10327 we have to defer parsing the -march and -mtune arguments in order
10328 to handle 'from-abi' correctly, since the ABI might be specified
10329 in a later argument. */
10330
10331 static void
10332 mips_set_option_string (const char **string_ptr, const char *new_value)
10333 {
10334 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
10335 as_warn (_("A different %s was already specified, is now %s"),
10336 string_ptr == &mips_arch_string ? "-march" : "-mtune",
10337 new_value);
10338
10339 *string_ptr = new_value;
10340 }
10341
10342 int
10343 md_parse_option (int c, char *arg)
10344 {
10345 switch (c)
10346 {
10347 case OPTION_CONSTRUCT_FLOATS:
10348 mips_disable_float_construction = 0;
10349 break;
10350
10351 case OPTION_NO_CONSTRUCT_FLOATS:
10352 mips_disable_float_construction = 1;
10353 break;
10354
10355 case OPTION_TRAP:
10356 mips_trap = 1;
10357 break;
10358
10359 case OPTION_BREAK:
10360 mips_trap = 0;
10361 break;
10362
10363 case OPTION_EB:
10364 target_big_endian = 1;
10365 break;
10366
10367 case OPTION_EL:
10368 target_big_endian = 0;
10369 break;
10370
10371 case 'O':
10372 if (arg && arg[1] == '0')
10373 mips_optimize = 1;
10374 else
10375 mips_optimize = 2;
10376 break;
10377
10378 case 'g':
10379 if (arg == NULL)
10380 mips_debug = 2;
10381 else
10382 mips_debug = atoi (arg);
10383 /* When the MIPS assembler sees -g or -g2, it does not do
10384 optimizations which limit full symbolic debugging. We take
10385 that to be equivalent to -O0. */
10386 if (mips_debug == 2)
10387 mips_optimize = 1;
10388 break;
10389
10390 case OPTION_MIPS1:
10391 file_mips_isa = ISA_MIPS1;
10392 break;
10393
10394 case OPTION_MIPS2:
10395 file_mips_isa = ISA_MIPS2;
10396 break;
10397
10398 case OPTION_MIPS3:
10399 file_mips_isa = ISA_MIPS3;
10400 break;
10401
10402 case OPTION_MIPS4:
10403 file_mips_isa = ISA_MIPS4;
10404 break;
10405
10406 case OPTION_MIPS5:
10407 file_mips_isa = ISA_MIPS5;
10408 break;
10409
10410 case OPTION_MIPS32:
10411 file_mips_isa = ISA_MIPS32;
10412 break;
10413
10414 case OPTION_MIPS32R2:
10415 file_mips_isa = ISA_MIPS32R2;
10416 break;
10417
10418 case OPTION_MIPS64R2:
10419 file_mips_isa = ISA_MIPS64R2;
10420 break;
10421
10422 case OPTION_MIPS64:
10423 file_mips_isa = ISA_MIPS64;
10424 break;
10425
10426 case OPTION_MTUNE:
10427 mips_set_option_string (&mips_tune_string, arg);
10428 break;
10429
10430 case OPTION_MARCH:
10431 mips_set_option_string (&mips_arch_string, arg);
10432 break;
10433
10434 case OPTION_M4650:
10435 mips_set_option_string (&mips_arch_string, "4650");
10436 mips_set_option_string (&mips_tune_string, "4650");
10437 break;
10438
10439 case OPTION_NO_M4650:
10440 break;
10441
10442 case OPTION_M4010:
10443 mips_set_option_string (&mips_arch_string, "4010");
10444 mips_set_option_string (&mips_tune_string, "4010");
10445 break;
10446
10447 case OPTION_NO_M4010:
10448 break;
10449
10450 case OPTION_M4100:
10451 mips_set_option_string (&mips_arch_string, "4100");
10452 mips_set_option_string (&mips_tune_string, "4100");
10453 break;
10454
10455 case OPTION_NO_M4100:
10456 break;
10457
10458 case OPTION_M3900:
10459 mips_set_option_string (&mips_arch_string, "3900");
10460 mips_set_option_string (&mips_tune_string, "3900");
10461 break;
10462
10463 case OPTION_NO_M3900:
10464 break;
10465
10466 case OPTION_MDMX:
10467 mips_opts.ase_mdmx = 1;
10468 break;
10469
10470 case OPTION_NO_MDMX:
10471 mips_opts.ase_mdmx = 0;
10472 break;
10473
10474 case OPTION_MIPS16:
10475 mips_opts.mips16 = 1;
10476 mips_no_prev_insn (FALSE);
10477 break;
10478
10479 case OPTION_NO_MIPS16:
10480 mips_opts.mips16 = 0;
10481 mips_no_prev_insn (FALSE);
10482 break;
10483
10484 case OPTION_MIPS3D:
10485 mips_opts.ase_mips3d = 1;
10486 break;
10487
10488 case OPTION_NO_MIPS3D:
10489 mips_opts.ase_mips3d = 0;
10490 break;
10491
10492 case OPTION_MEMBEDDED_PIC:
10493 mips_pic = EMBEDDED_PIC;
10494 if (USE_GLOBAL_POINTER_OPT && g_switch_seen)
10495 {
10496 as_bad (_("-G may not be used with embedded PIC code"));
10497 return 0;
10498 }
10499 g_switch_value = 0x7fffffff;
10500 break;
10501
10502 case OPTION_FIX_VR4120:
10503 mips_fix_vr4120 = 1;
10504 break;
10505
10506 case OPTION_NO_FIX_VR4120:
10507 mips_fix_vr4120 = 0;
10508 break;
10509
10510 case OPTION_RELAX_BRANCH:
10511 mips_relax_branch = 1;
10512 break;
10513
10514 case OPTION_NO_RELAX_BRANCH:
10515 mips_relax_branch = 0;
10516 break;
10517
10518 #ifdef OBJ_ELF
10519 /* When generating ELF code, we permit -KPIC and -call_shared to
10520 select SVR4_PIC, and -non_shared to select no PIC. This is
10521 intended to be compatible with Irix 5. */
10522 case OPTION_CALL_SHARED:
10523 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10524 {
10525 as_bad (_("-call_shared is supported only for ELF format"));
10526 return 0;
10527 }
10528 mips_pic = SVR4_PIC;
10529 mips_abicalls = TRUE;
10530 if (g_switch_seen && g_switch_value != 0)
10531 {
10532 as_bad (_("-G may not be used with SVR4 PIC code"));
10533 return 0;
10534 }
10535 g_switch_value = 0;
10536 break;
10537
10538 case OPTION_NON_SHARED:
10539 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10540 {
10541 as_bad (_("-non_shared is supported only for ELF format"));
10542 return 0;
10543 }
10544 mips_pic = NO_PIC;
10545 mips_abicalls = FALSE;
10546 break;
10547
10548 /* The -xgot option tells the assembler to use 32 offsets when
10549 accessing the got in SVR4_PIC mode. It is for Irix
10550 compatibility. */
10551 case OPTION_XGOT:
10552 mips_big_got = 1;
10553 break;
10554 #endif /* OBJ_ELF */
10555
10556 case 'G':
10557 if (! USE_GLOBAL_POINTER_OPT)
10558 {
10559 as_bad (_("-G is not supported for this configuration"));
10560 return 0;
10561 }
10562 else if (mips_pic == SVR4_PIC || mips_pic == EMBEDDED_PIC)
10563 {
10564 as_bad (_("-G may not be used with SVR4 or embedded PIC code"));
10565 return 0;
10566 }
10567 else
10568 g_switch_value = atoi (arg);
10569 g_switch_seen = 1;
10570 break;
10571
10572 #ifdef OBJ_ELF
10573 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
10574 and -mabi=64. */
10575 case OPTION_32:
10576 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10577 {
10578 as_bad (_("-32 is supported for ELF format only"));
10579 return 0;
10580 }
10581 mips_abi = O32_ABI;
10582 break;
10583
10584 case OPTION_N32:
10585 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10586 {
10587 as_bad (_("-n32 is supported for ELF format only"));
10588 return 0;
10589 }
10590 mips_abi = N32_ABI;
10591 break;
10592
10593 case OPTION_64:
10594 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10595 {
10596 as_bad (_("-64 is supported for ELF format only"));
10597 return 0;
10598 }
10599 mips_abi = N64_ABI;
10600 if (! support_64bit_objects())
10601 as_fatal (_("No compiled in support for 64 bit object file format"));
10602 break;
10603 #endif /* OBJ_ELF */
10604
10605 case OPTION_GP32:
10606 file_mips_gp32 = 1;
10607 break;
10608
10609 case OPTION_GP64:
10610 file_mips_gp32 = 0;
10611 break;
10612
10613 case OPTION_FP32:
10614 file_mips_fp32 = 1;
10615 break;
10616
10617 case OPTION_FP64:
10618 file_mips_fp32 = 0;
10619 break;
10620
10621 #ifdef OBJ_ELF
10622 case OPTION_MABI:
10623 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10624 {
10625 as_bad (_("-mabi is supported for ELF format only"));
10626 return 0;
10627 }
10628 if (strcmp (arg, "32") == 0)
10629 mips_abi = O32_ABI;
10630 else if (strcmp (arg, "o64") == 0)
10631 mips_abi = O64_ABI;
10632 else if (strcmp (arg, "n32") == 0)
10633 mips_abi = N32_ABI;
10634 else if (strcmp (arg, "64") == 0)
10635 {
10636 mips_abi = N64_ABI;
10637 if (! support_64bit_objects())
10638 as_fatal (_("No compiled in support for 64 bit object file "
10639 "format"));
10640 }
10641 else if (strcmp (arg, "eabi") == 0)
10642 mips_abi = EABI_ABI;
10643 else
10644 {
10645 as_fatal (_("invalid abi -mabi=%s"), arg);
10646 return 0;
10647 }
10648 break;
10649 #endif /* OBJ_ELF */
10650
10651 case OPTION_M7000_HILO_FIX:
10652 mips_7000_hilo_fix = TRUE;
10653 break;
10654
10655 case OPTION_MNO_7000_HILO_FIX:
10656 mips_7000_hilo_fix = FALSE;
10657 break;
10658
10659 #ifdef OBJ_ELF
10660 case OPTION_MDEBUG:
10661 mips_flag_mdebug = TRUE;
10662 break;
10663
10664 case OPTION_NO_MDEBUG:
10665 mips_flag_mdebug = FALSE;
10666 break;
10667
10668 case OPTION_PDR:
10669 mips_flag_pdr = TRUE;
10670 break;
10671
10672 case OPTION_NO_PDR:
10673 mips_flag_pdr = FALSE;
10674 break;
10675 #endif /* OBJ_ELF */
10676
10677 default:
10678 return 0;
10679 }
10680
10681 return 1;
10682 }
10683 \f
10684 /* Set up globals to generate code for the ISA or processor
10685 described by INFO. */
10686
10687 static void
10688 mips_set_architecture (const struct mips_cpu_info *info)
10689 {
10690 if (info != 0)
10691 {
10692 file_mips_arch = info->cpu;
10693 mips_opts.arch = info->cpu;
10694 mips_opts.isa = info->isa;
10695 }
10696 }
10697
10698
10699 /* Likewise for tuning. */
10700
10701 static void
10702 mips_set_tune (const struct mips_cpu_info *info)
10703 {
10704 if (info != 0)
10705 mips_tune = info->cpu;
10706 }
10707
10708
10709 void
10710 mips_after_parse_args (void)
10711 {
10712 const struct mips_cpu_info *arch_info = 0;
10713 const struct mips_cpu_info *tune_info = 0;
10714
10715 /* GP relative stuff not working for PE */
10716 if (strncmp (TARGET_OS, "pe", 2) == 0
10717 && g_switch_value != 0)
10718 {
10719 if (g_switch_seen)
10720 as_bad (_("-G not supported in this configuration."));
10721 g_switch_value = 0;
10722 }
10723
10724 if (mips_abi == NO_ABI)
10725 mips_abi = MIPS_DEFAULT_ABI;
10726
10727 /* The following code determines the architecture and register size.
10728 Similar code was added to GCC 3.3 (see override_options() in
10729 config/mips/mips.c). The GAS and GCC code should be kept in sync
10730 as much as possible. */
10731
10732 if (mips_arch_string != 0)
10733 arch_info = mips_parse_cpu ("-march", mips_arch_string);
10734
10735 if (file_mips_isa != ISA_UNKNOWN)
10736 {
10737 /* Handle -mipsN. At this point, file_mips_isa contains the
10738 ISA level specified by -mipsN, while arch_info->isa contains
10739 the -march selection (if any). */
10740 if (arch_info != 0)
10741 {
10742 /* -march takes precedence over -mipsN, since it is more descriptive.
10743 There's no harm in specifying both as long as the ISA levels
10744 are the same. */
10745 if (file_mips_isa != arch_info->isa)
10746 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
10747 mips_cpu_info_from_isa (file_mips_isa)->name,
10748 mips_cpu_info_from_isa (arch_info->isa)->name);
10749 }
10750 else
10751 arch_info = mips_cpu_info_from_isa (file_mips_isa);
10752 }
10753
10754 if (arch_info == 0)
10755 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
10756
10757 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
10758 as_bad ("-march=%s is not compatible with the selected ABI",
10759 arch_info->name);
10760
10761 mips_set_architecture (arch_info);
10762
10763 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
10764 if (mips_tune_string != 0)
10765 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
10766
10767 if (tune_info == 0)
10768 mips_set_tune (arch_info);
10769 else
10770 mips_set_tune (tune_info);
10771
10772 if (file_mips_gp32 >= 0)
10773 {
10774 /* The user specified the size of the integer registers. Make sure
10775 it agrees with the ABI and ISA. */
10776 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
10777 as_bad (_("-mgp64 used with a 32-bit processor"));
10778 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
10779 as_bad (_("-mgp32 used with a 64-bit ABI"));
10780 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
10781 as_bad (_("-mgp64 used with a 32-bit ABI"));
10782 }
10783 else
10784 {
10785 /* Infer the integer register size from the ABI and processor.
10786 Restrict ourselves to 32-bit registers if that's all the
10787 processor has, or if the ABI cannot handle 64-bit registers. */
10788 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
10789 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
10790 }
10791
10792 /* ??? GAS treats single-float processors as though they had 64-bit
10793 float registers (although it complains when double-precision
10794 instructions are used). As things stand, saying they have 32-bit
10795 registers would lead to spurious "register must be even" messages.
10796 So here we assume float registers are always the same size as
10797 integer ones, unless the user says otherwise. */
10798 if (file_mips_fp32 < 0)
10799 file_mips_fp32 = file_mips_gp32;
10800
10801 /* End of GCC-shared inference code. */
10802
10803 /* This flag is set when we have a 64-bit capable CPU but use only
10804 32-bit wide registers. Note that EABI does not use it. */
10805 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
10806 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
10807 || mips_abi == O32_ABI))
10808 mips_32bitmode = 1;
10809
10810 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
10811 as_bad (_("trap exception not supported at ISA 1"));
10812
10813 /* If the selected architecture includes support for ASEs, enable
10814 generation of code for them. */
10815 if (mips_opts.mips16 == -1)
10816 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
10817 if (mips_opts.ase_mips3d == -1)
10818 mips_opts.ase_mips3d = (CPU_HAS_MIPS3D (file_mips_arch)) ? 1 : 0;
10819 if (mips_opts.ase_mdmx == -1)
10820 mips_opts.ase_mdmx = (CPU_HAS_MDMX (file_mips_arch)) ? 1 : 0;
10821
10822 file_mips_isa = mips_opts.isa;
10823 file_ase_mips16 = mips_opts.mips16;
10824 file_ase_mips3d = mips_opts.ase_mips3d;
10825 file_ase_mdmx = mips_opts.ase_mdmx;
10826 mips_opts.gp32 = file_mips_gp32;
10827 mips_opts.fp32 = file_mips_fp32;
10828
10829 if (mips_flag_mdebug < 0)
10830 {
10831 #ifdef OBJ_MAYBE_ECOFF
10832 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
10833 mips_flag_mdebug = 1;
10834 else
10835 #endif /* OBJ_MAYBE_ECOFF */
10836 mips_flag_mdebug = 0;
10837 }
10838 }
10839 \f
10840 void
10841 mips_init_after_args (void)
10842 {
10843 /* initialize opcodes */
10844 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
10845 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
10846 }
10847
10848 long
10849 md_pcrel_from (fixS *fixP)
10850 {
10851 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
10852 switch (fixP->fx_r_type)
10853 {
10854 case BFD_RELOC_16_PCREL_S2:
10855 case BFD_RELOC_MIPS_JMP:
10856 /* Return the address of the delay slot. */
10857 return addr + 4;
10858 default:
10859 return addr;
10860 }
10861 }
10862
10863 /* This is called before the symbol table is processed. In order to
10864 work with gcc when using mips-tfile, we must keep all local labels.
10865 However, in other cases, we want to discard them. If we were
10866 called with -g, but we didn't see any debugging information, it may
10867 mean that gcc is smuggling debugging information through to
10868 mips-tfile, in which case we must generate all local labels. */
10869
10870 void
10871 mips_frob_file_before_adjust (void)
10872 {
10873 #ifndef NO_ECOFF_DEBUGGING
10874 if (ECOFF_DEBUGGING
10875 && mips_debug != 0
10876 && ! ecoff_debugging_seen)
10877 flag_keep_locals = 1;
10878 #endif
10879 }
10880
10881 /* Sort any unmatched HI16_S relocs so that they immediately precede
10882 the corresponding LO reloc. This is called before md_apply_fix3 and
10883 tc_gen_reloc. Unmatched HI16_S relocs can only be generated by
10884 explicit use of the %hi modifier. */
10885
10886 void
10887 mips_frob_file (void)
10888 {
10889 struct mips_hi_fixup *l;
10890
10891 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
10892 {
10893 segment_info_type *seginfo;
10894 int pass;
10895
10896 assert (reloc_needs_lo_p (l->fixp->fx_r_type));
10897
10898 /* If a GOT16 relocation turns out to be against a global symbol,
10899 there isn't supposed to be a matching LO. */
10900 if (l->fixp->fx_r_type == BFD_RELOC_MIPS_GOT16
10901 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
10902 continue;
10903
10904 /* Check quickly whether the next fixup happens to be a matching %lo. */
10905 if (fixup_has_matching_lo_p (l->fixp))
10906 continue;
10907
10908 /* Look through the fixups for this segment for a matching %lo.
10909 When we find one, move the %hi just in front of it. We do
10910 this in two passes. In the first pass, we try to find a
10911 unique %lo. In the second pass, we permit multiple %hi
10912 relocs for a single %lo (this is a GNU extension). */
10913 seginfo = seg_info (l->seg);
10914 for (pass = 0; pass < 2; pass++)
10915 {
10916 fixS *f, *prev;
10917
10918 prev = NULL;
10919 for (f = seginfo->fix_root; f != NULL; f = f->fx_next)
10920 {
10921 /* Check whether this is a %lo fixup which matches l->fixp. */
10922 if (f->fx_r_type == BFD_RELOC_LO16
10923 && f->fx_addsy == l->fixp->fx_addsy
10924 && f->fx_offset == l->fixp->fx_offset
10925 && (pass == 1
10926 || prev == NULL
10927 || !reloc_needs_lo_p (prev->fx_r_type)
10928 || !fixup_has_matching_lo_p (prev)))
10929 {
10930 fixS **pf;
10931
10932 /* Move l->fixp before f. */
10933 for (pf = &seginfo->fix_root;
10934 *pf != l->fixp;
10935 pf = &(*pf)->fx_next)
10936 assert (*pf != NULL);
10937
10938 *pf = l->fixp->fx_next;
10939
10940 l->fixp->fx_next = f;
10941 if (prev == NULL)
10942 seginfo->fix_root = l->fixp;
10943 else
10944 prev->fx_next = l->fixp;
10945
10946 break;
10947 }
10948
10949 prev = f;
10950 }
10951
10952 if (f != NULL)
10953 break;
10954
10955 #if 0 /* GCC code motion plus incomplete dead code elimination
10956 can leave a %hi without a %lo. */
10957 if (pass == 1)
10958 as_warn_where (l->fixp->fx_file, l->fixp->fx_line,
10959 _("Unmatched %%hi reloc"));
10960 #endif
10961 }
10962 }
10963 }
10964
10965 /* When generating embedded PIC code we need to use a special
10966 relocation to represent the difference of two symbols in the .text
10967 section (switch tables use a difference of this sort). See
10968 include/coff/mips.h for details. This macro checks whether this
10969 fixup requires the special reloc. */
10970 #define SWITCH_TABLE(fixp) \
10971 ((fixp)->fx_r_type == BFD_RELOC_32 \
10972 && OUTPUT_FLAVOR != bfd_target_elf_flavour \
10973 && (fixp)->fx_addsy != NULL \
10974 && (fixp)->fx_subsy != NULL \
10975 && S_GET_SEGMENT ((fixp)->fx_addsy) == text_section \
10976 && S_GET_SEGMENT ((fixp)->fx_subsy) == text_section)
10977
10978 /* When generating embedded PIC code we must keep all PC relative
10979 relocations, in case the linker has to relax a call. We also need
10980 to keep relocations for switch table entries.
10981
10982 We may have combined relocations without symbols in the N32/N64 ABI.
10983 We have to prevent gas from dropping them. */
10984
10985 int
10986 mips_force_relocation (fixS *fixp)
10987 {
10988 if (generic_force_reloc (fixp))
10989 return 1;
10990
10991 if (HAVE_NEWABI
10992 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
10993 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
10994 || fixp->fx_r_type == BFD_RELOC_HI16_S
10995 || fixp->fx_r_type == BFD_RELOC_LO16))
10996 return 1;
10997
10998 return (mips_pic == EMBEDDED_PIC
10999 && (fixp->fx_pcrel
11000 || SWITCH_TABLE (fixp)
11001 || fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S
11002 || fixp->fx_r_type == BFD_RELOC_PCREL_LO16));
11003 }
11004
11005 /* This hook is called before a fix is simplified. We don't really
11006 decide whether to skip a fix here. Rather, we turn global symbols
11007 used as branch targets into local symbols, such that they undergo
11008 simplification. We can only do this if the symbol is defined and
11009 it is in the same section as the branch. If this doesn't hold, we
11010 emit a better error message than just saying the relocation is not
11011 valid for the selected object format.
11012
11013 FIXP is the fix-up we're going to try to simplify, SEG is the
11014 segment in which the fix up occurs. The return value should be
11015 non-zero to indicate the fix-up is valid for further
11016 simplifications. */
11017
11018 int
11019 mips_validate_fix (struct fix *fixP, asection *seg)
11020 {
11021 /* There's a lot of discussion on whether it should be possible to
11022 use R_MIPS_PC16 to represent branch relocations. The outcome
11023 seems to be that it can, but gas/bfd are very broken in creating
11024 RELA relocations for this, so for now we only accept branches to
11025 symbols in the same section. Anything else is of dubious value,
11026 since there's no guarantee that at link time the symbol would be
11027 in range. Even for branches to local symbols this is arguably
11028 wrong, since it we assume the symbol is not going to be
11029 overridden, which should be possible per ELF library semantics,
11030 but then, there isn't a dynamic relocation that could be used to
11031 this effect, and the target would likely be out of range as well.
11032
11033 Unfortunately, it seems that there is too much code out there
11034 that relies on branches to symbols that are global to be resolved
11035 as if they were local, like the IRIX tools do, so we do it as
11036 well, but with a warning so that people are reminded to fix their
11037 code. If we ever get back to using R_MIPS_PC16 for branch
11038 targets, this entire block should go away (and probably the
11039 whole function). */
11040
11041 if (fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
11042 && (((OUTPUT_FLAVOR == bfd_target_ecoff_flavour
11043 || OUTPUT_FLAVOR == bfd_target_elf_flavour)
11044 && mips_pic != EMBEDDED_PIC)
11045 || bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16_PCREL_S2) == NULL)
11046 && fixP->fx_addsy)
11047 {
11048 if (! S_IS_DEFINED (fixP->fx_addsy))
11049 {
11050 as_bad_where (fixP->fx_file, fixP->fx_line,
11051 _("Cannot branch to undefined symbol."));
11052 /* Avoid any further errors about this fixup. */
11053 fixP->fx_done = 1;
11054 }
11055 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
11056 {
11057 as_bad_where (fixP->fx_file, fixP->fx_line,
11058 _("Cannot branch to symbol in another section."));
11059 fixP->fx_done = 1;
11060 }
11061 else if (S_IS_EXTERNAL (fixP->fx_addsy))
11062 {
11063 symbolS *sym = fixP->fx_addsy;
11064
11065 if (mips_pic == SVR4_PIC)
11066 as_warn_where (fixP->fx_file, fixP->fx_line,
11067 _("Pretending global symbol used as branch target is local."));
11068
11069 fixP->fx_addsy = symbol_create (S_GET_NAME (sym),
11070 S_GET_SEGMENT (sym),
11071 S_GET_VALUE (sym),
11072 symbol_get_frag (sym));
11073 copy_symbol_attributes (fixP->fx_addsy, sym);
11074 S_CLEAR_EXTERNAL (fixP->fx_addsy);
11075 assert (symbol_resolved_p (sym));
11076 symbol_mark_resolved (fixP->fx_addsy);
11077 }
11078 }
11079
11080 return 1;
11081 }
11082
11083 /* Apply a fixup to the object file. */
11084
11085 void
11086 md_apply_fix3 (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11087 {
11088 bfd_byte *buf;
11089 long insn;
11090 static int previous_fx_r_type = 0;
11091 reloc_howto_type *howto;
11092
11093 /* We ignore generic BFD relocations we don't know about. */
11094 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
11095 if (! howto)
11096 return;
11097
11098 assert (fixP->fx_size == 4
11099 || fixP->fx_r_type == BFD_RELOC_16
11100 || fixP->fx_r_type == BFD_RELOC_64
11101 || fixP->fx_r_type == BFD_RELOC_CTOR
11102 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
11103 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
11104 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY);
11105
11106 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
11107
11108 /* We are not done if this is a composite relocation to set up gp. */
11109 if (fixP->fx_addsy == NULL && ! fixP->fx_pcrel
11110 && !(fixP->fx_r_type == BFD_RELOC_MIPS_SUB
11111 || (fixP->fx_r_type == BFD_RELOC_64
11112 && (previous_fx_r_type == BFD_RELOC_GPREL32
11113 || previous_fx_r_type == BFD_RELOC_GPREL16))
11114 || (previous_fx_r_type == BFD_RELOC_MIPS_SUB
11115 && (fixP->fx_r_type == BFD_RELOC_HI16_S
11116 || fixP->fx_r_type == BFD_RELOC_LO16))))
11117 fixP->fx_done = 1;
11118 previous_fx_r_type = fixP->fx_r_type;
11119
11120 switch (fixP->fx_r_type)
11121 {
11122 case BFD_RELOC_MIPS_JMP:
11123 case BFD_RELOC_MIPS_SHIFT5:
11124 case BFD_RELOC_MIPS_SHIFT6:
11125 case BFD_RELOC_MIPS_GOT_DISP:
11126 case BFD_RELOC_MIPS_GOT_PAGE:
11127 case BFD_RELOC_MIPS_GOT_OFST:
11128 case BFD_RELOC_MIPS_SUB:
11129 case BFD_RELOC_MIPS_INSERT_A:
11130 case BFD_RELOC_MIPS_INSERT_B:
11131 case BFD_RELOC_MIPS_DELETE:
11132 case BFD_RELOC_MIPS_HIGHEST:
11133 case BFD_RELOC_MIPS_HIGHER:
11134 case BFD_RELOC_MIPS_SCN_DISP:
11135 case BFD_RELOC_MIPS_REL16:
11136 case BFD_RELOC_MIPS_RELGOT:
11137 case BFD_RELOC_MIPS_JALR:
11138 case BFD_RELOC_HI16:
11139 case BFD_RELOC_HI16_S:
11140 case BFD_RELOC_GPREL16:
11141 case BFD_RELOC_MIPS_LITERAL:
11142 case BFD_RELOC_MIPS_CALL16:
11143 case BFD_RELOC_MIPS_GOT16:
11144 case BFD_RELOC_GPREL32:
11145 case BFD_RELOC_MIPS_GOT_HI16:
11146 case BFD_RELOC_MIPS_GOT_LO16:
11147 case BFD_RELOC_MIPS_CALL_HI16:
11148 case BFD_RELOC_MIPS_CALL_LO16:
11149 case BFD_RELOC_MIPS16_GPREL:
11150 if (fixP->fx_pcrel)
11151 as_bad_where (fixP->fx_file, fixP->fx_line,
11152 _("Invalid PC relative reloc"));
11153 /* Nothing needed to do. The value comes from the reloc entry */
11154 break;
11155
11156 case BFD_RELOC_MIPS16_JMP:
11157 /* We currently always generate a reloc against a symbol, which
11158 means that we don't want an addend even if the symbol is
11159 defined. */
11160 *valP = 0;
11161 break;
11162
11163 case BFD_RELOC_PCREL_HI16_S:
11164 /* The addend for this is tricky if it is internal, so we just
11165 do everything here rather than in bfd_install_relocation. */
11166 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && !fixP->fx_done)
11167 break;
11168 if (fixP->fx_addsy
11169 && (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_SECTION_SYM) == 0)
11170 {
11171 /* For an external symbol adjust by the address to make it
11172 pcrel_offset. We use the address of the RELLO reloc
11173 which follows this one. */
11174 *valP += (fixP->fx_next->fx_frag->fr_address
11175 + fixP->fx_next->fx_where);
11176 }
11177 *valP = ((*valP + 0x8000) >> 16) & 0xffff;
11178 if (target_big_endian)
11179 buf += 2;
11180 md_number_to_chars (buf, *valP, 2);
11181 break;
11182
11183 case BFD_RELOC_PCREL_LO16:
11184 /* The addend for this is tricky if it is internal, so we just
11185 do everything here rather than in bfd_install_relocation. */
11186 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && !fixP->fx_done)
11187 break;
11188 if (fixP->fx_addsy
11189 && (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_SECTION_SYM) == 0)
11190 *valP += fixP->fx_frag->fr_address + fixP->fx_where;
11191 if (target_big_endian)
11192 buf += 2;
11193 md_number_to_chars (buf, *valP, 2);
11194 break;
11195
11196 case BFD_RELOC_64:
11197 /* This is handled like BFD_RELOC_32, but we output a sign
11198 extended value if we are only 32 bits. */
11199 if (fixP->fx_done
11200 || (mips_pic == EMBEDDED_PIC && SWITCH_TABLE (fixP)))
11201 {
11202 if (8 <= sizeof (valueT))
11203 md_number_to_chars (buf, *valP, 8);
11204 else
11205 {
11206 valueT hiv;
11207
11208 if ((*valP & 0x80000000) != 0)
11209 hiv = 0xffffffff;
11210 else
11211 hiv = 0;
11212 md_number_to_chars ((char *)(buf + target_big_endian ? 4 : 0),
11213 *valP, 4);
11214 md_number_to_chars ((char *)(buf + target_big_endian ? 0 : 4),
11215 hiv, 4);
11216 }
11217 }
11218 break;
11219
11220 case BFD_RELOC_RVA:
11221 case BFD_RELOC_32:
11222 /* If we are deleting this reloc entry, we must fill in the
11223 value now. This can happen if we have a .word which is not
11224 resolved when it appears but is later defined. We also need
11225 to fill in the value if this is an embedded PIC switch table
11226 entry. */
11227 if (fixP->fx_done
11228 || (mips_pic == EMBEDDED_PIC && SWITCH_TABLE (fixP)))
11229 md_number_to_chars (buf, *valP, 4);
11230 break;
11231
11232 case BFD_RELOC_16:
11233 /* If we are deleting this reloc entry, we must fill in the
11234 value now. */
11235 assert (fixP->fx_size == 2);
11236 if (fixP->fx_done)
11237 md_number_to_chars (buf, *valP, 2);
11238 break;
11239
11240 case BFD_RELOC_LO16:
11241 /* When handling an embedded PIC switch statement, we can wind
11242 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
11243 if (fixP->fx_done)
11244 {
11245 if (*valP + 0x8000 > 0xffff)
11246 as_bad_where (fixP->fx_file, fixP->fx_line,
11247 _("relocation overflow"));
11248 if (target_big_endian)
11249 buf += 2;
11250 md_number_to_chars (buf, *valP, 2);
11251 }
11252 break;
11253
11254 case BFD_RELOC_16_PCREL_S2:
11255 if ((*valP & 0x3) != 0)
11256 as_bad_where (fixP->fx_file, fixP->fx_line,
11257 _("Branch to odd address (%lx)"), (long) *valP);
11258
11259 /*
11260 * We need to save the bits in the instruction since fixup_segment()
11261 * might be deleting the relocation entry (i.e., a branch within
11262 * the current segment).
11263 */
11264 if (! fixP->fx_done)
11265 break;
11266
11267 /* update old instruction data */
11268 if (target_big_endian)
11269 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
11270 else
11271 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
11272
11273 if (*valP + 0x20000 <= 0x3ffff)
11274 {
11275 insn |= (*valP >> 2) & 0xffff;
11276 md_number_to_chars (buf, insn, 4);
11277 }
11278 else if (mips_pic == NO_PIC
11279 && fixP->fx_done
11280 && fixP->fx_frag->fr_address >= text_section->vma
11281 && (fixP->fx_frag->fr_address
11282 < text_section->vma + text_section->_raw_size)
11283 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
11284 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
11285 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
11286 {
11287 /* The branch offset is too large. If this is an
11288 unconditional branch, and we are not generating PIC code,
11289 we can convert it to an absolute jump instruction. */
11290 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
11291 insn = 0x0c000000; /* jal */
11292 else
11293 insn = 0x08000000; /* j */
11294 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
11295 fixP->fx_done = 0;
11296 fixP->fx_addsy = section_symbol (text_section);
11297 *valP += md_pcrel_from (fixP);
11298 md_number_to_chars (buf, insn, 4);
11299 }
11300 else
11301 {
11302 /* If we got here, we have branch-relaxation disabled,
11303 and there's nothing we can do to fix this instruction
11304 without turning it into a longer sequence. */
11305 as_bad_where (fixP->fx_file, fixP->fx_line,
11306 _("Branch out of range"));
11307 }
11308 break;
11309
11310 case BFD_RELOC_VTABLE_INHERIT:
11311 fixP->fx_done = 0;
11312 if (fixP->fx_addsy
11313 && !S_IS_DEFINED (fixP->fx_addsy)
11314 && !S_IS_WEAK (fixP->fx_addsy))
11315 S_SET_WEAK (fixP->fx_addsy);
11316 break;
11317
11318 case BFD_RELOC_VTABLE_ENTRY:
11319 fixP->fx_done = 0;
11320 break;
11321
11322 default:
11323 internalError ();
11324 }
11325
11326 /* Remember value for tc_gen_reloc. */
11327 fixP->fx_addnumber = *valP;
11328 }
11329
11330 #if 0
11331 void
11332 printInsn (unsigned long oc)
11333 {
11334 const struct mips_opcode *p;
11335 int treg, sreg, dreg, shamt;
11336 short imm;
11337 const char *args;
11338 int i;
11339
11340 for (i = 0; i < NUMOPCODES; ++i)
11341 {
11342 p = &mips_opcodes[i];
11343 if (((oc & p->mask) == p->match) && (p->pinfo != INSN_MACRO))
11344 {
11345 printf ("%08lx %s\t", oc, p->name);
11346 treg = (oc >> 16) & 0x1f;
11347 sreg = (oc >> 21) & 0x1f;
11348 dreg = (oc >> 11) & 0x1f;
11349 shamt = (oc >> 6) & 0x1f;
11350 imm = oc;
11351 for (args = p->args;; ++args)
11352 {
11353 switch (*args)
11354 {
11355 case '\0':
11356 printf ("\n");
11357 break;
11358
11359 case ',':
11360 case '(':
11361 case ')':
11362 printf ("%c", *args);
11363 continue;
11364
11365 case 'r':
11366 assert (treg == sreg);
11367 printf ("$%d,$%d", treg, sreg);
11368 continue;
11369
11370 case 'd':
11371 case 'G':
11372 printf ("$%d", dreg);
11373 continue;
11374
11375 case 't':
11376 case 'E':
11377 printf ("$%d", treg);
11378 continue;
11379
11380 case 'k':
11381 printf ("0x%x", treg);
11382 continue;
11383
11384 case 'b':
11385 case 's':
11386 printf ("$%d", sreg);
11387 continue;
11388
11389 case 'a':
11390 printf ("0x%08lx", oc & 0x1ffffff);
11391 continue;
11392
11393 case 'i':
11394 case 'j':
11395 case 'o':
11396 case 'u':
11397 printf ("%d", imm);
11398 continue;
11399
11400 case '<':
11401 case '>':
11402 printf ("$%d", shamt);
11403 continue;
11404
11405 default:
11406 internalError ();
11407 }
11408 break;
11409 }
11410 return;
11411 }
11412 }
11413 printf (_("%08lx UNDEFINED\n"), oc);
11414 }
11415 #endif
11416
11417 static symbolS *
11418 get_symbol (void)
11419 {
11420 int c;
11421 char *name;
11422 symbolS *p;
11423
11424 name = input_line_pointer;
11425 c = get_symbol_end ();
11426 p = (symbolS *) symbol_find_or_make (name);
11427 *input_line_pointer = c;
11428 return p;
11429 }
11430
11431 /* Align the current frag to a given power of two. The MIPS assembler
11432 also automatically adjusts any preceding label. */
11433
11434 static void
11435 mips_align (int to, int fill, symbolS *label)
11436 {
11437 mips_emit_delays (FALSE);
11438 frag_align (to, fill, 0);
11439 record_alignment (now_seg, to);
11440 if (label != NULL)
11441 {
11442 assert (S_GET_SEGMENT (label) == now_seg);
11443 symbol_set_frag (label, frag_now);
11444 S_SET_VALUE (label, (valueT) frag_now_fix ());
11445 }
11446 }
11447
11448 /* Align to a given power of two. .align 0 turns off the automatic
11449 alignment used by the data creating pseudo-ops. */
11450
11451 static void
11452 s_align (int x ATTRIBUTE_UNUSED)
11453 {
11454 register int temp;
11455 register long temp_fill;
11456 long max_alignment = 15;
11457
11458 /*
11459
11460 o Note that the assembler pulls down any immediately preceding label
11461 to the aligned address.
11462 o It's not documented but auto alignment is reinstated by
11463 a .align pseudo instruction.
11464 o Note also that after auto alignment is turned off the mips assembler
11465 issues an error on attempt to assemble an improperly aligned data item.
11466 We don't.
11467
11468 */
11469
11470 temp = get_absolute_expression ();
11471 if (temp > max_alignment)
11472 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
11473 else if (temp < 0)
11474 {
11475 as_warn (_("Alignment negative: 0 assumed."));
11476 temp = 0;
11477 }
11478 if (*input_line_pointer == ',')
11479 {
11480 ++input_line_pointer;
11481 temp_fill = get_absolute_expression ();
11482 }
11483 else
11484 temp_fill = 0;
11485 if (temp)
11486 {
11487 auto_align = 1;
11488 mips_align (temp, (int) temp_fill,
11489 insn_labels != NULL ? insn_labels->label : NULL);
11490 }
11491 else
11492 {
11493 auto_align = 0;
11494 }
11495
11496 demand_empty_rest_of_line ();
11497 }
11498
11499 void
11500 mips_flush_pending_output (void)
11501 {
11502 mips_emit_delays (FALSE);
11503 mips_clear_insn_labels ();
11504 }
11505
11506 static void
11507 s_change_sec (int sec)
11508 {
11509 segT seg;
11510
11511 /* When generating embedded PIC code, we only use the .text, .lit8,
11512 .sdata and .sbss sections. We change the .data and .rdata
11513 pseudo-ops to use .sdata. */
11514 if (mips_pic == EMBEDDED_PIC
11515 && (sec == 'd' || sec == 'r'))
11516 sec = 's';
11517
11518 #ifdef OBJ_ELF
11519 /* The ELF backend needs to know that we are changing sections, so
11520 that .previous works correctly. We could do something like check
11521 for an obj_section_change_hook macro, but that might be confusing
11522 as it would not be appropriate to use it in the section changing
11523 functions in read.c, since obj-elf.c intercepts those. FIXME:
11524 This should be cleaner, somehow. */
11525 obj_elf_section_change_hook ();
11526 #endif
11527
11528 mips_emit_delays (FALSE);
11529 switch (sec)
11530 {
11531 case 't':
11532 s_text (0);
11533 break;
11534 case 'd':
11535 s_data (0);
11536 break;
11537 case 'b':
11538 subseg_set (bss_section, (subsegT) get_absolute_expression ());
11539 demand_empty_rest_of_line ();
11540 break;
11541
11542 case 'r':
11543 if (USE_GLOBAL_POINTER_OPT)
11544 {
11545 seg = subseg_new (RDATA_SECTION_NAME,
11546 (subsegT) get_absolute_expression ());
11547 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11548 {
11549 bfd_set_section_flags (stdoutput, seg,
11550 (SEC_ALLOC
11551 | SEC_LOAD
11552 | SEC_READONLY
11553 | SEC_RELOC
11554 | SEC_DATA));
11555 if (strcmp (TARGET_OS, "elf") != 0)
11556 record_alignment (seg, 4);
11557 }
11558 demand_empty_rest_of_line ();
11559 }
11560 else
11561 {
11562 as_bad (_("No read only data section in this object file format"));
11563 demand_empty_rest_of_line ();
11564 return;
11565 }
11566 break;
11567
11568 case 's':
11569 if (USE_GLOBAL_POINTER_OPT)
11570 {
11571 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
11572 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11573 {
11574 bfd_set_section_flags (stdoutput, seg,
11575 SEC_ALLOC | SEC_LOAD | SEC_RELOC
11576 | SEC_DATA);
11577 if (strcmp (TARGET_OS, "elf") != 0)
11578 record_alignment (seg, 4);
11579 }
11580 demand_empty_rest_of_line ();
11581 break;
11582 }
11583 else
11584 {
11585 as_bad (_("Global pointers not supported; recompile -G 0"));
11586 demand_empty_rest_of_line ();
11587 return;
11588 }
11589 }
11590
11591 auto_align = 1;
11592 }
11593
11594 void
11595 s_change_section (int ignore ATTRIBUTE_UNUSED)
11596 {
11597 #ifdef OBJ_ELF
11598 char *section_name;
11599 char c;
11600 char next_c = 0;
11601 int section_type;
11602 int section_flag;
11603 int section_entry_size;
11604 int section_alignment;
11605
11606 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
11607 return;
11608
11609 section_name = input_line_pointer;
11610 c = get_symbol_end ();
11611 if (c)
11612 next_c = *(input_line_pointer + 1);
11613
11614 /* Do we have .section Name<,"flags">? */
11615 if (c != ',' || (c == ',' && next_c == '"'))
11616 {
11617 /* just after name is now '\0'. */
11618 *input_line_pointer = c;
11619 input_line_pointer = section_name;
11620 obj_elf_section (ignore);
11621 return;
11622 }
11623 input_line_pointer++;
11624
11625 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
11626 if (c == ',')
11627 section_type = get_absolute_expression ();
11628 else
11629 section_type = 0;
11630 if (*input_line_pointer++ == ',')
11631 section_flag = get_absolute_expression ();
11632 else
11633 section_flag = 0;
11634 if (*input_line_pointer++ == ',')
11635 section_entry_size = get_absolute_expression ();
11636 else
11637 section_entry_size = 0;
11638 if (*input_line_pointer++ == ',')
11639 section_alignment = get_absolute_expression ();
11640 else
11641 section_alignment = 0;
11642
11643 section_name = xstrdup (section_name);
11644
11645 /* When using the generic form of .section (as implemented by obj-elf.c),
11646 there's no way to set the section type to SHT_MIPS_DWARF. Users have
11647 traditionally had to fall back on the more common @progbits instead.
11648
11649 There's nothing really harmful in this, since bfd will correct
11650 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
11651 means that, for backwards compatibiltiy, the special_section entries
11652 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
11653
11654 Even so, we shouldn't force users of the MIPS .section syntax to
11655 incorrectly label the sections as SHT_PROGBITS. The best compromise
11656 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
11657 generic type-checking code. */
11658 if (section_type == SHT_MIPS_DWARF)
11659 section_type = SHT_PROGBITS;
11660
11661 obj_elf_change_section (section_name, section_type, section_flag,
11662 section_entry_size, 0, 0, 0);
11663
11664 if (now_seg->name != section_name)
11665 free (section_name);
11666 #endif /* OBJ_ELF */
11667 }
11668
11669 void
11670 mips_enable_auto_align (void)
11671 {
11672 auto_align = 1;
11673 }
11674
11675 static void
11676 s_cons (int log_size)
11677 {
11678 symbolS *label;
11679
11680 label = insn_labels != NULL ? insn_labels->label : NULL;
11681 mips_emit_delays (FALSE);
11682 if (log_size > 0 && auto_align)
11683 mips_align (log_size, 0, label);
11684 mips_clear_insn_labels ();
11685 cons (1 << log_size);
11686 }
11687
11688 static void
11689 s_float_cons (int type)
11690 {
11691 symbolS *label;
11692
11693 label = insn_labels != NULL ? insn_labels->label : NULL;
11694
11695 mips_emit_delays (FALSE);
11696
11697 if (auto_align)
11698 {
11699 if (type == 'd')
11700 mips_align (3, 0, label);
11701 else
11702 mips_align (2, 0, label);
11703 }
11704
11705 mips_clear_insn_labels ();
11706
11707 float_cons (type);
11708 }
11709
11710 /* Handle .globl. We need to override it because on Irix 5 you are
11711 permitted to say
11712 .globl foo .text
11713 where foo is an undefined symbol, to mean that foo should be
11714 considered to be the address of a function. */
11715
11716 static void
11717 s_mips_globl (int x ATTRIBUTE_UNUSED)
11718 {
11719 char *name;
11720 int c;
11721 symbolS *symbolP;
11722 flagword flag;
11723
11724 name = input_line_pointer;
11725 c = get_symbol_end ();
11726 symbolP = symbol_find_or_make (name);
11727 *input_line_pointer = c;
11728 SKIP_WHITESPACE ();
11729
11730 /* On Irix 5, every global symbol that is not explicitly labelled as
11731 being a function is apparently labelled as being an object. */
11732 flag = BSF_OBJECT;
11733
11734 if (! is_end_of_line[(unsigned char) *input_line_pointer])
11735 {
11736 char *secname;
11737 asection *sec;
11738
11739 secname = input_line_pointer;
11740 c = get_symbol_end ();
11741 sec = bfd_get_section_by_name (stdoutput, secname);
11742 if (sec == NULL)
11743 as_bad (_("%s: no such section"), secname);
11744 *input_line_pointer = c;
11745
11746 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
11747 flag = BSF_FUNCTION;
11748 }
11749
11750 symbol_get_bfdsym (symbolP)->flags |= flag;
11751
11752 S_SET_EXTERNAL (symbolP);
11753 demand_empty_rest_of_line ();
11754 }
11755
11756 static void
11757 s_option (int x ATTRIBUTE_UNUSED)
11758 {
11759 char *opt;
11760 char c;
11761
11762 opt = input_line_pointer;
11763 c = get_symbol_end ();
11764
11765 if (*opt == 'O')
11766 {
11767 /* FIXME: What does this mean? */
11768 }
11769 else if (strncmp (opt, "pic", 3) == 0)
11770 {
11771 int i;
11772
11773 i = atoi (opt + 3);
11774 if (i == 0)
11775 mips_pic = NO_PIC;
11776 else if (i == 2)
11777 {
11778 mips_pic = SVR4_PIC;
11779 mips_abicalls = TRUE;
11780 }
11781 else
11782 as_bad (_(".option pic%d not supported"), i);
11783
11784 if (USE_GLOBAL_POINTER_OPT && mips_pic == SVR4_PIC)
11785 {
11786 if (g_switch_seen && g_switch_value != 0)
11787 as_warn (_("-G may not be used with SVR4 PIC code"));
11788 g_switch_value = 0;
11789 bfd_set_gp_size (stdoutput, 0);
11790 }
11791 }
11792 else
11793 as_warn (_("Unrecognized option \"%s\""), opt);
11794
11795 *input_line_pointer = c;
11796 demand_empty_rest_of_line ();
11797 }
11798
11799 /* This structure is used to hold a stack of .set values. */
11800
11801 struct mips_option_stack
11802 {
11803 struct mips_option_stack *next;
11804 struct mips_set_options options;
11805 };
11806
11807 static struct mips_option_stack *mips_opts_stack;
11808
11809 /* Handle the .set pseudo-op. */
11810
11811 static void
11812 s_mipsset (int x ATTRIBUTE_UNUSED)
11813 {
11814 char *name = input_line_pointer, ch;
11815
11816 while (!is_end_of_line[(unsigned char) *input_line_pointer])
11817 ++input_line_pointer;
11818 ch = *input_line_pointer;
11819 *input_line_pointer = '\0';
11820
11821 if (strcmp (name, "reorder") == 0)
11822 {
11823 if (mips_opts.noreorder && prev_nop_frag != NULL)
11824 {
11825 /* If we still have pending nops, we can discard them. The
11826 usual nop handling will insert any that are still
11827 needed. */
11828 prev_nop_frag->fr_fix -= (prev_nop_frag_holds
11829 * (mips_opts.mips16 ? 2 : 4));
11830 prev_nop_frag = NULL;
11831 }
11832 mips_opts.noreorder = 0;
11833 }
11834 else if (strcmp (name, "noreorder") == 0)
11835 {
11836 mips_emit_delays (TRUE);
11837 mips_opts.noreorder = 1;
11838 mips_any_noreorder = 1;
11839 }
11840 else if (strcmp (name, "at") == 0)
11841 {
11842 mips_opts.noat = 0;
11843 }
11844 else if (strcmp (name, "noat") == 0)
11845 {
11846 mips_opts.noat = 1;
11847 }
11848 else if (strcmp (name, "macro") == 0)
11849 {
11850 mips_opts.warn_about_macros = 0;
11851 }
11852 else if (strcmp (name, "nomacro") == 0)
11853 {
11854 if (mips_opts.noreorder == 0)
11855 as_bad (_("`noreorder' must be set before `nomacro'"));
11856 mips_opts.warn_about_macros = 1;
11857 }
11858 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
11859 {
11860 mips_opts.nomove = 0;
11861 }
11862 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
11863 {
11864 mips_opts.nomove = 1;
11865 }
11866 else if (strcmp (name, "bopt") == 0)
11867 {
11868 mips_opts.nobopt = 0;
11869 }
11870 else if (strcmp (name, "nobopt") == 0)
11871 {
11872 mips_opts.nobopt = 1;
11873 }
11874 else if (strcmp (name, "mips16") == 0
11875 || strcmp (name, "MIPS-16") == 0)
11876 mips_opts.mips16 = 1;
11877 else if (strcmp (name, "nomips16") == 0
11878 || strcmp (name, "noMIPS-16") == 0)
11879 mips_opts.mips16 = 0;
11880 else if (strcmp (name, "mips3d") == 0)
11881 mips_opts.ase_mips3d = 1;
11882 else if (strcmp (name, "nomips3d") == 0)
11883 mips_opts.ase_mips3d = 0;
11884 else if (strcmp (name, "mdmx") == 0)
11885 mips_opts.ase_mdmx = 1;
11886 else if (strcmp (name, "nomdmx") == 0)
11887 mips_opts.ase_mdmx = 0;
11888 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
11889 {
11890 int reset = 0;
11891
11892 /* Permit the user to change the ISA and architecture on the fly.
11893 Needless to say, misuse can cause serious problems. */
11894 if (strcmp (name, "mips0") == 0)
11895 {
11896 reset = 1;
11897 mips_opts.isa = file_mips_isa;
11898 }
11899 else if (strcmp (name, "mips1") == 0)
11900 mips_opts.isa = ISA_MIPS1;
11901 else if (strcmp (name, "mips2") == 0)
11902 mips_opts.isa = ISA_MIPS2;
11903 else if (strcmp (name, "mips3") == 0)
11904 mips_opts.isa = ISA_MIPS3;
11905 else if (strcmp (name, "mips4") == 0)
11906 mips_opts.isa = ISA_MIPS4;
11907 else if (strcmp (name, "mips5") == 0)
11908 mips_opts.isa = ISA_MIPS5;
11909 else if (strcmp (name, "mips32") == 0)
11910 mips_opts.isa = ISA_MIPS32;
11911 else if (strcmp (name, "mips32r2") == 0)
11912 mips_opts.isa = ISA_MIPS32R2;
11913 else if (strcmp (name, "mips64") == 0)
11914 mips_opts.isa = ISA_MIPS64;
11915 else if (strcmp (name, "mips64r2") == 0)
11916 mips_opts.isa = ISA_MIPS64R2;
11917 else if (strcmp (name, "arch=default") == 0)
11918 {
11919 reset = 1;
11920 mips_opts.arch = file_mips_arch;
11921 mips_opts.isa = file_mips_isa;
11922 }
11923 else if (strncmp (name, "arch=", 5) == 0)
11924 {
11925 const struct mips_cpu_info *p;
11926
11927 p = mips_parse_cpu("internal use", name + 5);
11928 if (!p)
11929 as_bad (_("unknown architecture %s"), name + 5);
11930 else
11931 {
11932 mips_opts.arch = p->cpu;
11933 mips_opts.isa = p->isa;
11934 }
11935 }
11936 else
11937 as_bad (_("unknown ISA level %s"), name + 4);
11938
11939 switch (mips_opts.isa)
11940 {
11941 case 0:
11942 break;
11943 case ISA_MIPS1:
11944 case ISA_MIPS2:
11945 case ISA_MIPS32:
11946 case ISA_MIPS32R2:
11947 mips_opts.gp32 = 1;
11948 mips_opts.fp32 = 1;
11949 break;
11950 case ISA_MIPS3:
11951 case ISA_MIPS4:
11952 case ISA_MIPS5:
11953 case ISA_MIPS64:
11954 case ISA_MIPS64R2:
11955 mips_opts.gp32 = 0;
11956 mips_opts.fp32 = 0;
11957 break;
11958 default:
11959 as_bad (_("unknown ISA level %s"), name + 4);
11960 break;
11961 }
11962 if (reset)
11963 {
11964 mips_opts.gp32 = file_mips_gp32;
11965 mips_opts.fp32 = file_mips_fp32;
11966 }
11967 }
11968 else if (strcmp (name, "autoextend") == 0)
11969 mips_opts.noautoextend = 0;
11970 else if (strcmp (name, "noautoextend") == 0)
11971 mips_opts.noautoextend = 1;
11972 else if (strcmp (name, "push") == 0)
11973 {
11974 struct mips_option_stack *s;
11975
11976 s = (struct mips_option_stack *) xmalloc (sizeof *s);
11977 s->next = mips_opts_stack;
11978 s->options = mips_opts;
11979 mips_opts_stack = s;
11980 }
11981 else if (strcmp (name, "pop") == 0)
11982 {
11983 struct mips_option_stack *s;
11984
11985 s = mips_opts_stack;
11986 if (s == NULL)
11987 as_bad (_(".set pop with no .set push"));
11988 else
11989 {
11990 /* If we're changing the reorder mode we need to handle
11991 delay slots correctly. */
11992 if (s->options.noreorder && ! mips_opts.noreorder)
11993 mips_emit_delays (TRUE);
11994 else if (! s->options.noreorder && mips_opts.noreorder)
11995 {
11996 if (prev_nop_frag != NULL)
11997 {
11998 prev_nop_frag->fr_fix -= (prev_nop_frag_holds
11999 * (mips_opts.mips16 ? 2 : 4));
12000 prev_nop_frag = NULL;
12001 }
12002 }
12003
12004 mips_opts = s->options;
12005 mips_opts_stack = s->next;
12006 free (s);
12007 }
12008 }
12009 else
12010 {
12011 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
12012 }
12013 *input_line_pointer = ch;
12014 demand_empty_rest_of_line ();
12015 }
12016
12017 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
12018 .option pic2. It means to generate SVR4 PIC calls. */
12019
12020 static void
12021 s_abicalls (int ignore ATTRIBUTE_UNUSED)
12022 {
12023 mips_pic = SVR4_PIC;
12024 mips_abicalls = TRUE;
12025 if (USE_GLOBAL_POINTER_OPT)
12026 {
12027 if (g_switch_seen && g_switch_value != 0)
12028 as_warn (_("-G may not be used with SVR4 PIC code"));
12029 g_switch_value = 0;
12030 }
12031 bfd_set_gp_size (stdoutput, 0);
12032 demand_empty_rest_of_line ();
12033 }
12034
12035 /* Handle the .cpload pseudo-op. This is used when generating SVR4
12036 PIC code. It sets the $gp register for the function based on the
12037 function address, which is in the register named in the argument.
12038 This uses a relocation against _gp_disp, which is handled specially
12039 by the linker. The result is:
12040 lui $gp,%hi(_gp_disp)
12041 addiu $gp,$gp,%lo(_gp_disp)
12042 addu $gp,$gp,.cpload argument
12043 The .cpload argument is normally $25 == $t9. */
12044
12045 static void
12046 s_cpload (int ignore ATTRIBUTE_UNUSED)
12047 {
12048 expressionS ex;
12049
12050 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
12051 .cpload is ignored. */
12052 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
12053 {
12054 s_ignore (0);
12055 return;
12056 }
12057
12058 /* .cpload should be in a .set noreorder section. */
12059 if (mips_opts.noreorder == 0)
12060 as_warn (_(".cpload not in noreorder section"));
12061
12062 ex.X_op = O_symbol;
12063 ex.X_add_symbol = symbol_find_or_make ("_gp_disp");
12064 ex.X_op_symbol = NULL;
12065 ex.X_add_number = 0;
12066
12067 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
12068 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
12069
12070 macro_start ();
12071 macro_build_lui (&ex, mips_gp_register);
12072 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
12073 mips_gp_register, BFD_RELOC_LO16);
12074 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
12075 mips_gp_register, tc_get_register (0));
12076 macro_end ();
12077
12078 demand_empty_rest_of_line ();
12079 }
12080
12081 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
12082 .cpsetup $reg1, offset|$reg2, label
12083
12084 If offset is given, this results in:
12085 sd $gp, offset($sp)
12086 lui $gp, %hi(%neg(%gp_rel(label)))
12087 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
12088 daddu $gp, $gp, $reg1
12089
12090 If $reg2 is given, this results in:
12091 daddu $reg2, $gp, $0
12092 lui $gp, %hi(%neg(%gp_rel(label)))
12093 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
12094 daddu $gp, $gp, $reg1
12095 $reg1 is normally $25 == $t9. */
12096 static void
12097 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
12098 {
12099 expressionS ex_off;
12100 expressionS ex_sym;
12101 int reg1;
12102 char *f;
12103
12104 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
12105 We also need NewABI support. */
12106 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12107 {
12108 s_ignore (0);
12109 return;
12110 }
12111
12112 reg1 = tc_get_register (0);
12113 SKIP_WHITESPACE ();
12114 if (*input_line_pointer != ',')
12115 {
12116 as_bad (_("missing argument separator ',' for .cpsetup"));
12117 return;
12118 }
12119 else
12120 ++input_line_pointer;
12121 SKIP_WHITESPACE ();
12122 if (*input_line_pointer == '$')
12123 {
12124 mips_cpreturn_register = tc_get_register (0);
12125 mips_cpreturn_offset = -1;
12126 }
12127 else
12128 {
12129 mips_cpreturn_offset = get_absolute_expression ();
12130 mips_cpreturn_register = -1;
12131 }
12132 SKIP_WHITESPACE ();
12133 if (*input_line_pointer != ',')
12134 {
12135 as_bad (_("missing argument separator ',' for .cpsetup"));
12136 return;
12137 }
12138 else
12139 ++input_line_pointer;
12140 SKIP_WHITESPACE ();
12141 expression (&ex_sym);
12142
12143 macro_start ();
12144 if (mips_cpreturn_register == -1)
12145 {
12146 ex_off.X_op = O_constant;
12147 ex_off.X_add_symbol = NULL;
12148 ex_off.X_op_symbol = NULL;
12149 ex_off.X_add_number = mips_cpreturn_offset;
12150
12151 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
12152 BFD_RELOC_LO16, SP);
12153 }
12154 else
12155 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
12156 mips_gp_register, 0);
12157
12158 /* Ensure there's room for the next two instructions, so that `f'
12159 doesn't end up with an address in the wrong frag. */
12160 frag_grow (8);
12161 f = frag_more (0);
12162 macro_build (&ex_sym, "lui", "t,u", mips_gp_register, BFD_RELOC_GPREL16);
12163 fix_new (frag_now, f - frag_now->fr_literal,
12164 8, NULL, 0, 0, BFD_RELOC_MIPS_SUB);
12165 fix_new (frag_now, f - frag_now->fr_literal,
12166 4, NULL, 0, 0, BFD_RELOC_HI16_S);
12167
12168 f = frag_more (0);
12169 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
12170 mips_gp_register, BFD_RELOC_GPREL16);
12171 fix_new (frag_now, f - frag_now->fr_literal,
12172 8, NULL, 0, 0, BFD_RELOC_MIPS_SUB);
12173 fix_new (frag_now, f - frag_now->fr_literal,
12174 4, NULL, 0, 0, BFD_RELOC_LO16);
12175
12176 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
12177 mips_gp_register, reg1);
12178 macro_end ();
12179
12180 demand_empty_rest_of_line ();
12181 }
12182
12183 static void
12184 s_cplocal (int ignore ATTRIBUTE_UNUSED)
12185 {
12186 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
12187 .cplocal is ignored. */
12188 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12189 {
12190 s_ignore (0);
12191 return;
12192 }
12193
12194 mips_gp_register = tc_get_register (0);
12195 demand_empty_rest_of_line ();
12196 }
12197
12198 /* Handle the .cprestore pseudo-op. This stores $gp into a given
12199 offset from $sp. The offset is remembered, and after making a PIC
12200 call $gp is restored from that location. */
12201
12202 static void
12203 s_cprestore (int ignore ATTRIBUTE_UNUSED)
12204 {
12205 expressionS ex;
12206
12207 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
12208 .cprestore is ignored. */
12209 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
12210 {
12211 s_ignore (0);
12212 return;
12213 }
12214
12215 mips_cprestore_offset = get_absolute_expression ();
12216 mips_cprestore_valid = 1;
12217
12218 ex.X_op = O_constant;
12219 ex.X_add_symbol = NULL;
12220 ex.X_op_symbol = NULL;
12221 ex.X_add_number = mips_cprestore_offset;
12222
12223 macro_start ();
12224 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
12225 SP, HAVE_64BIT_ADDRESSES);
12226 macro_end ();
12227
12228 demand_empty_rest_of_line ();
12229 }
12230
12231 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
12232 was given in the preceding .cpsetup, it results in:
12233 ld $gp, offset($sp)
12234
12235 If a register $reg2 was given there, it results in:
12236 daddu $gp, $reg2, $0
12237 */
12238 static void
12239 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
12240 {
12241 expressionS ex;
12242
12243 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
12244 We also need NewABI support. */
12245 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12246 {
12247 s_ignore (0);
12248 return;
12249 }
12250
12251 macro_start ();
12252 if (mips_cpreturn_register == -1)
12253 {
12254 ex.X_op = O_constant;
12255 ex.X_add_symbol = NULL;
12256 ex.X_op_symbol = NULL;
12257 ex.X_add_number = mips_cpreturn_offset;
12258
12259 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
12260 }
12261 else
12262 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
12263 mips_cpreturn_register, 0);
12264 macro_end ();
12265
12266 demand_empty_rest_of_line ();
12267 }
12268
12269 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
12270 code. It sets the offset to use in gp_rel relocations. */
12271
12272 static void
12273 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
12274 {
12275 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
12276 We also need NewABI support. */
12277 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12278 {
12279 s_ignore (0);
12280 return;
12281 }
12282
12283 mips_gprel_offset = get_absolute_expression ();
12284
12285 demand_empty_rest_of_line ();
12286 }
12287
12288 /* Handle the .gpword pseudo-op. This is used when generating PIC
12289 code. It generates a 32 bit GP relative reloc. */
12290
12291 static void
12292 s_gpword (int ignore ATTRIBUTE_UNUSED)
12293 {
12294 symbolS *label;
12295 expressionS ex;
12296 char *p;
12297
12298 /* When not generating PIC code, this is treated as .word. */
12299 if (mips_pic != SVR4_PIC)
12300 {
12301 s_cons (2);
12302 return;
12303 }
12304
12305 label = insn_labels != NULL ? insn_labels->label : NULL;
12306 mips_emit_delays (TRUE);
12307 if (auto_align)
12308 mips_align (2, 0, label);
12309 mips_clear_insn_labels ();
12310
12311 expression (&ex);
12312
12313 if (ex.X_op != O_symbol || ex.X_add_number != 0)
12314 {
12315 as_bad (_("Unsupported use of .gpword"));
12316 ignore_rest_of_line ();
12317 }
12318
12319 p = frag_more (4);
12320 md_number_to_chars (p, 0, 4);
12321 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
12322 BFD_RELOC_GPREL32);
12323
12324 demand_empty_rest_of_line ();
12325 }
12326
12327 static void
12328 s_gpdword (int ignore ATTRIBUTE_UNUSED)
12329 {
12330 symbolS *label;
12331 expressionS ex;
12332 char *p;
12333
12334 /* When not generating PIC code, this is treated as .dword. */
12335 if (mips_pic != SVR4_PIC)
12336 {
12337 s_cons (3);
12338 return;
12339 }
12340
12341 label = insn_labels != NULL ? insn_labels->label : NULL;
12342 mips_emit_delays (TRUE);
12343 if (auto_align)
12344 mips_align (3, 0, label);
12345 mips_clear_insn_labels ();
12346
12347 expression (&ex);
12348
12349 if (ex.X_op != O_symbol || ex.X_add_number != 0)
12350 {
12351 as_bad (_("Unsupported use of .gpdword"));
12352 ignore_rest_of_line ();
12353 }
12354
12355 p = frag_more (8);
12356 md_number_to_chars (p, 0, 8);
12357 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
12358 BFD_RELOC_GPREL32);
12359
12360 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
12361 ex.X_op = O_absent;
12362 ex.X_add_symbol = 0;
12363 ex.X_add_number = 0;
12364 fix_new_exp (frag_now, p - frag_now->fr_literal, 8, &ex, FALSE,
12365 BFD_RELOC_64);
12366
12367 demand_empty_rest_of_line ();
12368 }
12369
12370 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
12371 tables in SVR4 PIC code. */
12372
12373 static void
12374 s_cpadd (int ignore ATTRIBUTE_UNUSED)
12375 {
12376 int reg;
12377
12378 /* This is ignored when not generating SVR4 PIC code. */
12379 if (mips_pic != SVR4_PIC)
12380 {
12381 s_ignore (0);
12382 return;
12383 }
12384
12385 /* Add $gp to the register named as an argument. */
12386 macro_start ();
12387 reg = tc_get_register (0);
12388 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
12389 macro_end ();
12390
12391 demand_empty_rest_of_line ();
12392 }
12393
12394 /* Handle the .insn pseudo-op. This marks instruction labels in
12395 mips16 mode. This permits the linker to handle them specially,
12396 such as generating jalx instructions when needed. We also make
12397 them odd for the duration of the assembly, in order to generate the
12398 right sort of code. We will make them even in the adjust_symtab
12399 routine, while leaving them marked. This is convenient for the
12400 debugger and the disassembler. The linker knows to make them odd
12401 again. */
12402
12403 static void
12404 s_insn (int ignore ATTRIBUTE_UNUSED)
12405 {
12406 mips16_mark_labels ();
12407
12408 demand_empty_rest_of_line ();
12409 }
12410
12411 /* Handle a .stabn directive. We need these in order to mark a label
12412 as being a mips16 text label correctly. Sometimes the compiler
12413 will emit a label, followed by a .stabn, and then switch sections.
12414 If the label and .stabn are in mips16 mode, then the label is
12415 really a mips16 text label. */
12416
12417 static void
12418 s_mips_stab (int type)
12419 {
12420 if (type == 'n')
12421 mips16_mark_labels ();
12422
12423 s_stab (type);
12424 }
12425
12426 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich.
12427 */
12428
12429 static void
12430 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
12431 {
12432 char *name;
12433 int c;
12434 symbolS *symbolP;
12435 expressionS exp;
12436
12437 name = input_line_pointer;
12438 c = get_symbol_end ();
12439 symbolP = symbol_find_or_make (name);
12440 S_SET_WEAK (symbolP);
12441 *input_line_pointer = c;
12442
12443 SKIP_WHITESPACE ();
12444
12445 if (! is_end_of_line[(unsigned char) *input_line_pointer])
12446 {
12447 if (S_IS_DEFINED (symbolP))
12448 {
12449 as_bad ("ignoring attempt to redefine symbol %s",
12450 S_GET_NAME (symbolP));
12451 ignore_rest_of_line ();
12452 return;
12453 }
12454
12455 if (*input_line_pointer == ',')
12456 {
12457 ++input_line_pointer;
12458 SKIP_WHITESPACE ();
12459 }
12460
12461 expression (&exp);
12462 if (exp.X_op != O_symbol)
12463 {
12464 as_bad ("bad .weakext directive");
12465 ignore_rest_of_line ();
12466 return;
12467 }
12468 symbol_set_value_expression (symbolP, &exp);
12469 }
12470
12471 demand_empty_rest_of_line ();
12472 }
12473
12474 /* Parse a register string into a number. Called from the ECOFF code
12475 to parse .frame. The argument is non-zero if this is the frame
12476 register, so that we can record it in mips_frame_reg. */
12477
12478 int
12479 tc_get_register (int frame)
12480 {
12481 int reg;
12482
12483 SKIP_WHITESPACE ();
12484 if (*input_line_pointer++ != '$')
12485 {
12486 as_warn (_("expected `$'"));
12487 reg = ZERO;
12488 }
12489 else if (ISDIGIT (*input_line_pointer))
12490 {
12491 reg = get_absolute_expression ();
12492 if (reg < 0 || reg >= 32)
12493 {
12494 as_warn (_("Bad register number"));
12495 reg = ZERO;
12496 }
12497 }
12498 else
12499 {
12500 if (strncmp (input_line_pointer, "ra", 2) == 0)
12501 {
12502 reg = RA;
12503 input_line_pointer += 2;
12504 }
12505 else if (strncmp (input_line_pointer, "fp", 2) == 0)
12506 {
12507 reg = FP;
12508 input_line_pointer += 2;
12509 }
12510 else if (strncmp (input_line_pointer, "sp", 2) == 0)
12511 {
12512 reg = SP;
12513 input_line_pointer += 2;
12514 }
12515 else if (strncmp (input_line_pointer, "gp", 2) == 0)
12516 {
12517 reg = GP;
12518 input_line_pointer += 2;
12519 }
12520 else if (strncmp (input_line_pointer, "at", 2) == 0)
12521 {
12522 reg = AT;
12523 input_line_pointer += 2;
12524 }
12525 else if (strncmp (input_line_pointer, "kt0", 3) == 0)
12526 {
12527 reg = KT0;
12528 input_line_pointer += 3;
12529 }
12530 else if (strncmp (input_line_pointer, "kt1", 3) == 0)
12531 {
12532 reg = KT1;
12533 input_line_pointer += 3;
12534 }
12535 else if (strncmp (input_line_pointer, "zero", 4) == 0)
12536 {
12537 reg = ZERO;
12538 input_line_pointer += 4;
12539 }
12540 else
12541 {
12542 as_warn (_("Unrecognized register name"));
12543 reg = ZERO;
12544 while (ISALNUM(*input_line_pointer))
12545 input_line_pointer++;
12546 }
12547 }
12548 if (frame)
12549 {
12550 mips_frame_reg = reg != 0 ? reg : SP;
12551 mips_frame_reg_valid = 1;
12552 mips_cprestore_valid = 0;
12553 }
12554 return reg;
12555 }
12556
12557 valueT
12558 md_section_align (asection *seg, valueT addr)
12559 {
12560 int align = bfd_get_section_alignment (stdoutput, seg);
12561
12562 #ifdef OBJ_ELF
12563 /* We don't need to align ELF sections to the full alignment.
12564 However, Irix 5 may prefer that we align them at least to a 16
12565 byte boundary. We don't bother to align the sections if we are
12566 targeted for an embedded system. */
12567 if (strcmp (TARGET_OS, "elf") == 0)
12568 return addr;
12569 if (align > 4)
12570 align = 4;
12571 #endif
12572
12573 return ((addr + (1 << align) - 1) & (-1 << align));
12574 }
12575
12576 /* Utility routine, called from above as well. If called while the
12577 input file is still being read, it's only an approximation. (For
12578 example, a symbol may later become defined which appeared to be
12579 undefined earlier.) */
12580
12581 static int
12582 nopic_need_relax (symbolS *sym, int before_relaxing)
12583 {
12584 if (sym == 0)
12585 return 0;
12586
12587 if (USE_GLOBAL_POINTER_OPT && g_switch_value > 0)
12588 {
12589 const char *symname;
12590 int change;
12591
12592 /* Find out whether this symbol can be referenced off the $gp
12593 register. It can be if it is smaller than the -G size or if
12594 it is in the .sdata or .sbss section. Certain symbols can
12595 not be referenced off the $gp, although it appears as though
12596 they can. */
12597 symname = S_GET_NAME (sym);
12598 if (symname != (const char *) NULL
12599 && (strcmp (symname, "eprol") == 0
12600 || strcmp (symname, "etext") == 0
12601 || strcmp (symname, "_gp") == 0
12602 || strcmp (symname, "edata") == 0
12603 || strcmp (symname, "_fbss") == 0
12604 || strcmp (symname, "_fdata") == 0
12605 || strcmp (symname, "_ftext") == 0
12606 || strcmp (symname, "end") == 0
12607 || strcmp (symname, "_gp_disp") == 0))
12608 change = 1;
12609 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
12610 && (0
12611 #ifndef NO_ECOFF_DEBUGGING
12612 || (symbol_get_obj (sym)->ecoff_extern_size != 0
12613 && (symbol_get_obj (sym)->ecoff_extern_size
12614 <= g_switch_value))
12615 #endif
12616 /* We must defer this decision until after the whole
12617 file has been read, since there might be a .extern
12618 after the first use of this symbol. */
12619 || (before_relaxing
12620 #ifndef NO_ECOFF_DEBUGGING
12621 && symbol_get_obj (sym)->ecoff_extern_size == 0
12622 #endif
12623 && S_GET_VALUE (sym) == 0)
12624 || (S_GET_VALUE (sym) != 0
12625 && S_GET_VALUE (sym) <= g_switch_value)))
12626 change = 0;
12627 else
12628 {
12629 const char *segname;
12630
12631 segname = segment_name (S_GET_SEGMENT (sym));
12632 assert (strcmp (segname, ".lit8") != 0
12633 && strcmp (segname, ".lit4") != 0);
12634 change = (strcmp (segname, ".sdata") != 0
12635 && strcmp (segname, ".sbss") != 0
12636 && strncmp (segname, ".sdata.", 7) != 0
12637 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
12638 }
12639 return change;
12640 }
12641 else
12642 /* We are not optimizing for the $gp register. */
12643 return 1;
12644 }
12645
12646
12647 /* Return true if the given symbol should be considered local for SVR4 PIC. */
12648
12649 static bfd_boolean
12650 pic_need_relax (symbolS *sym, asection *segtype)
12651 {
12652 asection *symsec;
12653 bfd_boolean linkonce;
12654
12655 /* Handle the case of a symbol equated to another symbol. */
12656 while (symbol_equated_reloc_p (sym))
12657 {
12658 symbolS *n;
12659
12660 /* It's possible to get a loop here in a badly written
12661 program. */
12662 n = symbol_get_value_expression (sym)->X_add_symbol;
12663 if (n == sym)
12664 break;
12665 sym = n;
12666 }
12667
12668 symsec = S_GET_SEGMENT (sym);
12669
12670 /* duplicate the test for LINK_ONCE sections as in adjust_reloc_syms */
12671 linkonce = FALSE;
12672 if (symsec != segtype && ! S_IS_LOCAL (sym))
12673 {
12674 if ((bfd_get_section_flags (stdoutput, symsec) & SEC_LINK_ONCE)
12675 != 0)
12676 linkonce = TRUE;
12677
12678 /* The GNU toolchain uses an extension for ELF: a section
12679 beginning with the magic string .gnu.linkonce is a linkonce
12680 section. */
12681 if (strncmp (segment_name (symsec), ".gnu.linkonce",
12682 sizeof ".gnu.linkonce" - 1) == 0)
12683 linkonce = TRUE;
12684 }
12685
12686 /* This must duplicate the test in adjust_reloc_syms. */
12687 return (symsec != &bfd_und_section
12688 && symsec != &bfd_abs_section
12689 && ! bfd_is_com_section (symsec)
12690 && !linkonce
12691 #ifdef OBJ_ELF
12692 /* A global or weak symbol is treated as external. */
12693 && (OUTPUT_FLAVOR != bfd_target_elf_flavour
12694 || (! S_IS_WEAK (sym)
12695 && (! S_IS_EXTERNAL (sym)
12696 || mips_pic == EMBEDDED_PIC)))
12697 #endif
12698 );
12699 }
12700
12701
12702 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
12703 extended opcode. SEC is the section the frag is in. */
12704
12705 static int
12706 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
12707 {
12708 int type;
12709 register const struct mips16_immed_operand *op;
12710 offsetT val;
12711 int mintiny, maxtiny;
12712 segT symsec;
12713 fragS *sym_frag;
12714
12715 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
12716 return 0;
12717 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
12718 return 1;
12719
12720 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
12721 op = mips16_immed_operands;
12722 while (op->type != type)
12723 {
12724 ++op;
12725 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
12726 }
12727
12728 if (op->unsp)
12729 {
12730 if (type == '<' || type == '>' || type == '[' || type == ']')
12731 {
12732 mintiny = 1;
12733 maxtiny = 1 << op->nbits;
12734 }
12735 else
12736 {
12737 mintiny = 0;
12738 maxtiny = (1 << op->nbits) - 1;
12739 }
12740 }
12741 else
12742 {
12743 mintiny = - (1 << (op->nbits - 1));
12744 maxtiny = (1 << (op->nbits - 1)) - 1;
12745 }
12746
12747 sym_frag = symbol_get_frag (fragp->fr_symbol);
12748 val = S_GET_VALUE (fragp->fr_symbol);
12749 symsec = S_GET_SEGMENT (fragp->fr_symbol);
12750
12751 if (op->pcrel)
12752 {
12753 addressT addr;
12754
12755 /* We won't have the section when we are called from
12756 mips_relax_frag. However, we will always have been called
12757 from md_estimate_size_before_relax first. If this is a
12758 branch to a different section, we mark it as such. If SEC is
12759 NULL, and the frag is not marked, then it must be a branch to
12760 the same section. */
12761 if (sec == NULL)
12762 {
12763 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
12764 return 1;
12765 }
12766 else
12767 {
12768 /* Must have been called from md_estimate_size_before_relax. */
12769 if (symsec != sec)
12770 {
12771 fragp->fr_subtype =
12772 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12773
12774 /* FIXME: We should support this, and let the linker
12775 catch branches and loads that are out of range. */
12776 as_bad_where (fragp->fr_file, fragp->fr_line,
12777 _("unsupported PC relative reference to different section"));
12778
12779 return 1;
12780 }
12781 if (fragp != sym_frag && sym_frag->fr_address == 0)
12782 /* Assume non-extended on the first relaxation pass.
12783 The address we have calculated will be bogus if this is
12784 a forward branch to another frag, as the forward frag
12785 will have fr_address == 0. */
12786 return 0;
12787 }
12788
12789 /* In this case, we know for sure that the symbol fragment is in
12790 the same section. If the relax_marker of the symbol fragment
12791 differs from the relax_marker of this fragment, we have not
12792 yet adjusted the symbol fragment fr_address. We want to add
12793 in STRETCH in order to get a better estimate of the address.
12794 This particularly matters because of the shift bits. */
12795 if (stretch != 0
12796 && sym_frag->relax_marker != fragp->relax_marker)
12797 {
12798 fragS *f;
12799
12800 /* Adjust stretch for any alignment frag. Note that if have
12801 been expanding the earlier code, the symbol may be
12802 defined in what appears to be an earlier frag. FIXME:
12803 This doesn't handle the fr_subtype field, which specifies
12804 a maximum number of bytes to skip when doing an
12805 alignment. */
12806 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
12807 {
12808 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
12809 {
12810 if (stretch < 0)
12811 stretch = - ((- stretch)
12812 & ~ ((1 << (int) f->fr_offset) - 1));
12813 else
12814 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
12815 if (stretch == 0)
12816 break;
12817 }
12818 }
12819 if (f != NULL)
12820 val += stretch;
12821 }
12822
12823 addr = fragp->fr_address + fragp->fr_fix;
12824
12825 /* The base address rules are complicated. The base address of
12826 a branch is the following instruction. The base address of a
12827 PC relative load or add is the instruction itself, but if it
12828 is in a delay slot (in which case it can not be extended) use
12829 the address of the instruction whose delay slot it is in. */
12830 if (type == 'p' || type == 'q')
12831 {
12832 addr += 2;
12833
12834 /* If we are currently assuming that this frag should be
12835 extended, then, the current address is two bytes
12836 higher. */
12837 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
12838 addr += 2;
12839
12840 /* Ignore the low bit in the target, since it will be set
12841 for a text label. */
12842 if ((val & 1) != 0)
12843 --val;
12844 }
12845 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
12846 addr -= 4;
12847 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
12848 addr -= 2;
12849
12850 val -= addr & ~ ((1 << op->shift) - 1);
12851
12852 /* Branch offsets have an implicit 0 in the lowest bit. */
12853 if (type == 'p' || type == 'q')
12854 val /= 2;
12855
12856 /* If any of the shifted bits are set, we must use an extended
12857 opcode. If the address depends on the size of this
12858 instruction, this can lead to a loop, so we arrange to always
12859 use an extended opcode. We only check this when we are in
12860 the main relaxation loop, when SEC is NULL. */
12861 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
12862 {
12863 fragp->fr_subtype =
12864 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12865 return 1;
12866 }
12867
12868 /* If we are about to mark a frag as extended because the value
12869 is precisely maxtiny + 1, then there is a chance of an
12870 infinite loop as in the following code:
12871 la $4,foo
12872 .skip 1020
12873 .align 2
12874 foo:
12875 In this case when the la is extended, foo is 0x3fc bytes
12876 away, so the la can be shrunk, but then foo is 0x400 away, so
12877 the la must be extended. To avoid this loop, we mark the
12878 frag as extended if it was small, and is about to become
12879 extended with a value of maxtiny + 1. */
12880 if (val == ((maxtiny + 1) << op->shift)
12881 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
12882 && sec == NULL)
12883 {
12884 fragp->fr_subtype =
12885 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12886 return 1;
12887 }
12888 }
12889 else if (symsec != absolute_section && sec != NULL)
12890 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
12891
12892 if ((val & ((1 << op->shift) - 1)) != 0
12893 || val < (mintiny << op->shift)
12894 || val > (maxtiny << op->shift))
12895 return 1;
12896 else
12897 return 0;
12898 }
12899
12900 /* Compute the length of a branch sequence, and adjust the
12901 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
12902 worst-case length is computed, with UPDATE being used to indicate
12903 whether an unconditional (-1), branch-likely (+1) or regular (0)
12904 branch is to be computed. */
12905 static int
12906 relaxed_branch_length (fragS *fragp, asection *sec, int update)
12907 {
12908 bfd_boolean toofar;
12909 int length;
12910
12911 if (fragp
12912 && S_IS_DEFINED (fragp->fr_symbol)
12913 && sec == S_GET_SEGMENT (fragp->fr_symbol))
12914 {
12915 addressT addr;
12916 offsetT val;
12917
12918 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
12919
12920 addr = fragp->fr_address + fragp->fr_fix + 4;
12921
12922 val -= addr;
12923
12924 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
12925 }
12926 else if (fragp)
12927 /* If the symbol is not defined or it's in a different segment,
12928 assume the user knows what's going on and emit a short
12929 branch. */
12930 toofar = FALSE;
12931 else
12932 toofar = TRUE;
12933
12934 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
12935 fragp->fr_subtype
12936 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
12937 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
12938 RELAX_BRANCH_LINK (fragp->fr_subtype),
12939 toofar);
12940
12941 length = 4;
12942 if (toofar)
12943 {
12944 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
12945 length += 8;
12946
12947 if (mips_pic != NO_PIC)
12948 {
12949 /* Additional space for PIC loading of target address. */
12950 length += 8;
12951 if (mips_opts.isa == ISA_MIPS1)
12952 /* Additional space for $at-stabilizing nop. */
12953 length += 4;
12954 }
12955
12956 /* If branch is conditional. */
12957 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
12958 length += 8;
12959 }
12960
12961 return length;
12962 }
12963
12964 /* Estimate the size of a frag before relaxing. Unless this is the
12965 mips16, we are not really relaxing here, and the final size is
12966 encoded in the subtype information. For the mips16, we have to
12967 decide whether we are using an extended opcode or not. */
12968
12969 int
12970 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
12971 {
12972 int change;
12973
12974 if (RELAX_BRANCH_P (fragp->fr_subtype))
12975 {
12976
12977 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
12978
12979 return fragp->fr_var;
12980 }
12981
12982 if (RELAX_MIPS16_P (fragp->fr_subtype))
12983 /* We don't want to modify the EXTENDED bit here; it might get us
12984 into infinite loops. We change it only in mips_relax_frag(). */
12985 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
12986
12987 if (mips_pic == NO_PIC)
12988 change = nopic_need_relax (fragp->fr_symbol, 0);
12989 else if (mips_pic == SVR4_PIC)
12990 change = pic_need_relax (fragp->fr_symbol, segtype);
12991 else
12992 abort ();
12993
12994 if (change)
12995 {
12996 fragp->fr_subtype |= RELAX_USE_SECOND;
12997 return -RELAX_FIRST (fragp->fr_subtype);
12998 }
12999 else
13000 return -RELAX_SECOND (fragp->fr_subtype);
13001 }
13002
13003 /* This is called to see whether a reloc against a defined symbol
13004 should be converted into a reloc against a section. Don't adjust
13005 MIPS16 jump relocations, so we don't have to worry about the format
13006 of the offset in the .o file. Don't adjust relocations against
13007 mips16 symbols, so that the linker can find them if it needs to set
13008 up a stub. */
13009
13010 int
13011 mips_fix_adjustable (fixS *fixp)
13012 {
13013 if (fixp->fx_r_type == BFD_RELOC_MIPS16_JMP)
13014 return 0;
13015
13016 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
13017 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13018 return 0;
13019
13020 if (fixp->fx_addsy == NULL)
13021 return 1;
13022
13023 #ifdef OBJ_ELF
13024 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
13025 && S_GET_OTHER (fixp->fx_addsy) == STO_MIPS16
13026 && fixp->fx_subsy == NULL)
13027 return 0;
13028 #endif
13029
13030 return 1;
13031 }
13032
13033 /* Translate internal representation of relocation info to BFD target
13034 format. */
13035
13036 arelent **
13037 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13038 {
13039 static arelent *retval[4];
13040 arelent *reloc;
13041 bfd_reloc_code_real_type code;
13042
13043 memset (retval, 0, sizeof(retval));
13044 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
13045 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
13046 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13047 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
13048
13049 if (mips_pic == EMBEDDED_PIC
13050 && SWITCH_TABLE (fixp))
13051 {
13052 /* For a switch table entry we use a special reloc. The addend
13053 is actually the difference between the reloc address and the
13054 subtrahend. */
13055 reloc->addend = reloc->address - S_GET_VALUE (fixp->fx_subsy);
13056 if (OUTPUT_FLAVOR != bfd_target_ecoff_flavour)
13057 as_fatal (_("Double check fx_r_type in tc-mips.c:tc_gen_reloc"));
13058 fixp->fx_r_type = BFD_RELOC_GPREL32;
13059 }
13060 else if (fixp->fx_pcrel)
13061 {
13062 bfd_vma pcrel_address;
13063
13064 /* Set PCREL_ADDRESS to this relocation's "PC". The PC for high
13065 high-part relocs is the address of the low-part reloc. */
13066 if (fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S)
13067 {
13068 assert (fixp->fx_next != NULL
13069 && fixp->fx_next->fx_r_type == BFD_RELOC_PCREL_LO16);
13070 pcrel_address = (fixp->fx_next->fx_where
13071 + fixp->fx_next->fx_frag->fr_address);
13072 }
13073 else
13074 pcrel_address = reloc->address;
13075
13076 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
13077 {
13078 /* At this point, fx_addnumber is "symbol offset - pcrel_address".
13079 Relocations want only the symbol offset. */
13080 reloc->addend = fixp->fx_addnumber + pcrel_address;
13081 }
13082 else if (fixp->fx_r_type == BFD_RELOC_PCREL_LO16
13083 || fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S)
13084 {
13085 /* We use a special addend for an internal RELLO or RELHI reloc. */
13086 if (symbol_section_p (fixp->fx_addsy))
13087 reloc->addend = pcrel_address - S_GET_VALUE (fixp->fx_subsy);
13088 else
13089 reloc->addend = fixp->fx_addnumber + pcrel_address;
13090 }
13091 else
13092 {
13093 if (OUTPUT_FLAVOR != bfd_target_aout_flavour)
13094 /* A gruesome hack which is a result of the gruesome gas reloc
13095 handling. */
13096 reloc->addend = pcrel_address;
13097 else
13098 reloc->addend = -pcrel_address;
13099 }
13100 }
13101 else
13102 reloc->addend = fixp->fx_addnumber;
13103
13104 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
13105 entry to be used in the relocation's section offset. */
13106 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13107 {
13108 reloc->address = reloc->addend;
13109 reloc->addend = 0;
13110 }
13111
13112 /* Since DIFF_EXPR_OK is defined in tc-mips.h, it is possible that
13113 fixup_segment converted a non-PC relative reloc into a PC
13114 relative reloc. In such a case, we need to convert the reloc
13115 code. */
13116 code = fixp->fx_r_type;
13117 if (fixp->fx_pcrel)
13118 {
13119 switch (code)
13120 {
13121 case BFD_RELOC_8:
13122 code = BFD_RELOC_8_PCREL;
13123 break;
13124 case BFD_RELOC_16:
13125 code = BFD_RELOC_16_PCREL;
13126 break;
13127 case BFD_RELOC_32:
13128 code = BFD_RELOC_32_PCREL;
13129 break;
13130 case BFD_RELOC_64:
13131 code = BFD_RELOC_64_PCREL;
13132 break;
13133 case BFD_RELOC_8_PCREL:
13134 case BFD_RELOC_16_PCREL:
13135 case BFD_RELOC_32_PCREL:
13136 case BFD_RELOC_64_PCREL:
13137 case BFD_RELOC_16_PCREL_S2:
13138 case BFD_RELOC_PCREL_HI16_S:
13139 case BFD_RELOC_PCREL_LO16:
13140 break;
13141 default:
13142 as_bad_where (fixp->fx_file, fixp->fx_line,
13143 _("Cannot make %s relocation PC relative"),
13144 bfd_get_reloc_code_name (code));
13145 }
13146 }
13147
13148 /* To support a PC relative reloc when generating embedded PIC code
13149 for ECOFF, we use a Cygnus extension. We check for that here to
13150 make sure that we don't let such a reloc escape normally. */
13151 if ((OUTPUT_FLAVOR == bfd_target_ecoff_flavour
13152 || OUTPUT_FLAVOR == bfd_target_elf_flavour)
13153 && code == BFD_RELOC_16_PCREL_S2
13154 && mips_pic != EMBEDDED_PIC)
13155 reloc->howto = NULL;
13156 else
13157 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
13158
13159 if (reloc->howto == NULL)
13160 {
13161 as_bad_where (fixp->fx_file, fixp->fx_line,
13162 _("Can not represent %s relocation in this object file format"),
13163 bfd_get_reloc_code_name (code));
13164 retval[0] = NULL;
13165 }
13166
13167 return retval;
13168 }
13169
13170 /* Relax a machine dependent frag. This returns the amount by which
13171 the current size of the frag should change. */
13172
13173 int
13174 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
13175 {
13176 if (RELAX_BRANCH_P (fragp->fr_subtype))
13177 {
13178 offsetT old_var = fragp->fr_var;
13179
13180 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
13181
13182 return fragp->fr_var - old_var;
13183 }
13184
13185 if (! RELAX_MIPS16_P (fragp->fr_subtype))
13186 return 0;
13187
13188 if (mips16_extended_frag (fragp, NULL, stretch))
13189 {
13190 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13191 return 0;
13192 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
13193 return 2;
13194 }
13195 else
13196 {
13197 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13198 return 0;
13199 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
13200 return -2;
13201 }
13202
13203 return 0;
13204 }
13205
13206 /* Convert a machine dependent frag. */
13207
13208 void
13209 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
13210 {
13211 if (RELAX_BRANCH_P (fragp->fr_subtype))
13212 {
13213 bfd_byte *buf;
13214 unsigned long insn;
13215 expressionS exp;
13216 fixS *fixp;
13217
13218 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
13219
13220 if (target_big_endian)
13221 insn = bfd_getb32 (buf);
13222 else
13223 insn = bfd_getl32 (buf);
13224
13225 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
13226 {
13227 /* We generate a fixup instead of applying it right now
13228 because, if there are linker relaxations, we're going to
13229 need the relocations. */
13230 exp.X_op = O_symbol;
13231 exp.X_add_symbol = fragp->fr_symbol;
13232 exp.X_add_number = fragp->fr_offset;
13233
13234 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13235 4, &exp, 1,
13236 BFD_RELOC_16_PCREL_S2);
13237 fixp->fx_file = fragp->fr_file;
13238 fixp->fx_line = fragp->fr_line;
13239
13240 md_number_to_chars (buf, insn, 4);
13241 buf += 4;
13242 }
13243 else
13244 {
13245 int i;
13246
13247 as_warn_where (fragp->fr_file, fragp->fr_line,
13248 _("relaxed out-of-range branch into a jump"));
13249
13250 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
13251 goto uncond;
13252
13253 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13254 {
13255 /* Reverse the branch. */
13256 switch ((insn >> 28) & 0xf)
13257 {
13258 case 4:
13259 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
13260 have the condition reversed by tweaking a single
13261 bit, and their opcodes all have 0x4???????. */
13262 assert ((insn & 0xf1000000) == 0x41000000);
13263 insn ^= 0x00010000;
13264 break;
13265
13266 case 0:
13267 /* bltz 0x04000000 bgez 0x04010000
13268 bltzal 0x04100000 bgezal 0x04110000 */
13269 assert ((insn & 0xfc0e0000) == 0x04000000);
13270 insn ^= 0x00010000;
13271 break;
13272
13273 case 1:
13274 /* beq 0x10000000 bne 0x14000000
13275 blez 0x18000000 bgtz 0x1c000000 */
13276 insn ^= 0x04000000;
13277 break;
13278
13279 default:
13280 abort ();
13281 }
13282 }
13283
13284 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
13285 {
13286 /* Clear the and-link bit. */
13287 assert ((insn & 0xfc1c0000) == 0x04100000);
13288
13289 /* bltzal 0x04100000 bgezal 0x04110000
13290 bltzall 0x04120000 bgezall 0x04130000 */
13291 insn &= ~0x00100000;
13292 }
13293
13294 /* Branch over the branch (if the branch was likely) or the
13295 full jump (not likely case). Compute the offset from the
13296 current instruction to branch to. */
13297 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13298 i = 16;
13299 else
13300 {
13301 /* How many bytes in instructions we've already emitted? */
13302 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
13303 /* How many bytes in instructions from here to the end? */
13304 i = fragp->fr_var - i;
13305 }
13306 /* Convert to instruction count. */
13307 i >>= 2;
13308 /* Branch counts from the next instruction. */
13309 i--;
13310 insn |= i;
13311 /* Branch over the jump. */
13312 md_number_to_chars (buf, insn, 4);
13313 buf += 4;
13314
13315 /* Nop */
13316 md_number_to_chars (buf, 0, 4);
13317 buf += 4;
13318
13319 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13320 {
13321 /* beql $0, $0, 2f */
13322 insn = 0x50000000;
13323 /* Compute the PC offset from the current instruction to
13324 the end of the variable frag. */
13325 /* How many bytes in instructions we've already emitted? */
13326 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
13327 /* How many bytes in instructions from here to the end? */
13328 i = fragp->fr_var - i;
13329 /* Convert to instruction count. */
13330 i >>= 2;
13331 /* Don't decrement i, because we want to branch over the
13332 delay slot. */
13333
13334 insn |= i;
13335 md_number_to_chars (buf, insn, 4);
13336 buf += 4;
13337
13338 md_number_to_chars (buf, 0, 4);
13339 buf += 4;
13340 }
13341
13342 uncond:
13343 if (mips_pic == NO_PIC)
13344 {
13345 /* j or jal. */
13346 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
13347 ? 0x0c000000 : 0x08000000);
13348 exp.X_op = O_symbol;
13349 exp.X_add_symbol = fragp->fr_symbol;
13350 exp.X_add_number = fragp->fr_offset;
13351
13352 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13353 4, &exp, 0, BFD_RELOC_MIPS_JMP);
13354 fixp->fx_file = fragp->fr_file;
13355 fixp->fx_line = fragp->fr_line;
13356
13357 md_number_to_chars (buf, insn, 4);
13358 buf += 4;
13359 }
13360 else
13361 {
13362 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
13363 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
13364 exp.X_op = O_symbol;
13365 exp.X_add_symbol = fragp->fr_symbol;
13366 exp.X_add_number = fragp->fr_offset;
13367
13368 if (fragp->fr_offset)
13369 {
13370 exp.X_add_symbol = make_expr_symbol (&exp);
13371 exp.X_add_number = 0;
13372 }
13373
13374 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13375 4, &exp, 0, BFD_RELOC_MIPS_GOT16);
13376 fixp->fx_file = fragp->fr_file;
13377 fixp->fx_line = fragp->fr_line;
13378
13379 md_number_to_chars (buf, insn, 4);
13380 buf += 4;
13381
13382 if (mips_opts.isa == ISA_MIPS1)
13383 {
13384 /* nop */
13385 md_number_to_chars (buf, 0, 4);
13386 buf += 4;
13387 }
13388
13389 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
13390 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
13391
13392 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13393 4, &exp, 0, BFD_RELOC_LO16);
13394 fixp->fx_file = fragp->fr_file;
13395 fixp->fx_line = fragp->fr_line;
13396
13397 md_number_to_chars (buf, insn, 4);
13398 buf += 4;
13399
13400 /* j(al)r $at. */
13401 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
13402 insn = 0x0020f809;
13403 else
13404 insn = 0x00200008;
13405
13406 md_number_to_chars (buf, insn, 4);
13407 buf += 4;
13408 }
13409 }
13410
13411 assert (buf == (bfd_byte *)fragp->fr_literal
13412 + fragp->fr_fix + fragp->fr_var);
13413
13414 fragp->fr_fix += fragp->fr_var;
13415
13416 return;
13417 }
13418
13419 if (RELAX_MIPS16_P (fragp->fr_subtype))
13420 {
13421 int type;
13422 register const struct mips16_immed_operand *op;
13423 bfd_boolean small, ext;
13424 offsetT val;
13425 bfd_byte *buf;
13426 unsigned long insn;
13427 bfd_boolean use_extend;
13428 unsigned short extend;
13429
13430 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13431 op = mips16_immed_operands;
13432 while (op->type != type)
13433 ++op;
13434
13435 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13436 {
13437 small = FALSE;
13438 ext = TRUE;
13439 }
13440 else
13441 {
13442 small = TRUE;
13443 ext = FALSE;
13444 }
13445
13446 resolve_symbol_value (fragp->fr_symbol);
13447 val = S_GET_VALUE (fragp->fr_symbol);
13448 if (op->pcrel)
13449 {
13450 addressT addr;
13451
13452 addr = fragp->fr_address + fragp->fr_fix;
13453
13454 /* The rules for the base address of a PC relative reloc are
13455 complicated; see mips16_extended_frag. */
13456 if (type == 'p' || type == 'q')
13457 {
13458 addr += 2;
13459 if (ext)
13460 addr += 2;
13461 /* Ignore the low bit in the target, since it will be
13462 set for a text label. */
13463 if ((val & 1) != 0)
13464 --val;
13465 }
13466 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13467 addr -= 4;
13468 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13469 addr -= 2;
13470
13471 addr &= ~ (addressT) ((1 << op->shift) - 1);
13472 val -= addr;
13473
13474 /* Make sure the section winds up with the alignment we have
13475 assumed. */
13476 if (op->shift > 0)
13477 record_alignment (asec, op->shift);
13478 }
13479
13480 if (ext
13481 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
13482 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
13483 as_warn_where (fragp->fr_file, fragp->fr_line,
13484 _("extended instruction in delay slot"));
13485
13486 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
13487
13488 if (target_big_endian)
13489 insn = bfd_getb16 (buf);
13490 else
13491 insn = bfd_getl16 (buf);
13492
13493 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
13494 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
13495 small, ext, &insn, &use_extend, &extend);
13496
13497 if (use_extend)
13498 {
13499 md_number_to_chars (buf, 0xf000 | extend, 2);
13500 fragp->fr_fix += 2;
13501 buf += 2;
13502 }
13503
13504 md_number_to_chars (buf, insn, 2);
13505 fragp->fr_fix += 2;
13506 buf += 2;
13507 }
13508 else
13509 {
13510 int first, second;
13511 fixS *fixp;
13512
13513 first = RELAX_FIRST (fragp->fr_subtype);
13514 second = RELAX_SECOND (fragp->fr_subtype);
13515 fixp = (fixS *) fragp->fr_opcode;
13516
13517 /* Possibly emit a warning if we've chosen the longer option. */
13518 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
13519 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
13520 {
13521 const char *msg = macro_warning (fragp->fr_subtype);
13522 if (msg != 0)
13523 as_warn_where (fragp->fr_file, fragp->fr_line, msg);
13524 }
13525
13526 /* Go through all the fixups for the first sequence. Disable them
13527 (by marking them as done) if we're going to use the second
13528 sequence instead. */
13529 while (fixp
13530 && fixp->fx_frag == fragp
13531 && fixp->fx_where < fragp->fr_fix - second)
13532 {
13533 if (fragp->fr_subtype & RELAX_USE_SECOND)
13534 fixp->fx_done = 1;
13535 fixp = fixp->fx_next;
13536 }
13537
13538 /* Go through the fixups for the second sequence. Disable them if
13539 we're going to use the first sequence, otherwise adjust their
13540 addresses to account for the relaxation. */
13541 while (fixp && fixp->fx_frag == fragp)
13542 {
13543 if (fragp->fr_subtype & RELAX_USE_SECOND)
13544 fixp->fx_where -= first;
13545 else
13546 fixp->fx_done = 1;
13547 fixp = fixp->fx_next;
13548 }
13549
13550 /* Now modify the frag contents. */
13551 if (fragp->fr_subtype & RELAX_USE_SECOND)
13552 {
13553 char *start;
13554
13555 start = fragp->fr_literal + fragp->fr_fix - first - second;
13556 memmove (start, start + first, second);
13557 fragp->fr_fix -= first;
13558 }
13559 else
13560 fragp->fr_fix -= second;
13561 }
13562 }
13563
13564 #ifdef OBJ_ELF
13565
13566 /* This function is called after the relocs have been generated.
13567 We've been storing mips16 text labels as odd. Here we convert them
13568 back to even for the convenience of the debugger. */
13569
13570 void
13571 mips_frob_file_after_relocs (void)
13572 {
13573 asymbol **syms;
13574 unsigned int count, i;
13575
13576 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
13577 return;
13578
13579 syms = bfd_get_outsymbols (stdoutput);
13580 count = bfd_get_symcount (stdoutput);
13581 for (i = 0; i < count; i++, syms++)
13582 {
13583 if (elf_symbol (*syms)->internal_elf_sym.st_other == STO_MIPS16
13584 && ((*syms)->value & 1) != 0)
13585 {
13586 (*syms)->value &= ~1;
13587 /* If the symbol has an odd size, it was probably computed
13588 incorrectly, so adjust that as well. */
13589 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
13590 ++elf_symbol (*syms)->internal_elf_sym.st_size;
13591 }
13592 }
13593 }
13594
13595 #endif
13596
13597 /* This function is called whenever a label is defined. It is used
13598 when handling branch delays; if a branch has a label, we assume we
13599 can not move it. */
13600
13601 void
13602 mips_define_label (symbolS *sym)
13603 {
13604 struct insn_label_list *l;
13605
13606 if (free_insn_labels == NULL)
13607 l = (struct insn_label_list *) xmalloc (sizeof *l);
13608 else
13609 {
13610 l = free_insn_labels;
13611 free_insn_labels = l->next;
13612 }
13613
13614 l->label = sym;
13615 l->next = insn_labels;
13616 insn_labels = l;
13617 }
13618 \f
13619 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13620
13621 /* Some special processing for a MIPS ELF file. */
13622
13623 void
13624 mips_elf_final_processing (void)
13625 {
13626 /* Write out the register information. */
13627 if (mips_abi != N64_ABI)
13628 {
13629 Elf32_RegInfo s;
13630
13631 s.ri_gprmask = mips_gprmask;
13632 s.ri_cprmask[0] = mips_cprmask[0];
13633 s.ri_cprmask[1] = mips_cprmask[1];
13634 s.ri_cprmask[2] = mips_cprmask[2];
13635 s.ri_cprmask[3] = mips_cprmask[3];
13636 /* The gp_value field is set by the MIPS ELF backend. */
13637
13638 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
13639 ((Elf32_External_RegInfo *)
13640 mips_regmask_frag));
13641 }
13642 else
13643 {
13644 Elf64_Internal_RegInfo s;
13645
13646 s.ri_gprmask = mips_gprmask;
13647 s.ri_pad = 0;
13648 s.ri_cprmask[0] = mips_cprmask[0];
13649 s.ri_cprmask[1] = mips_cprmask[1];
13650 s.ri_cprmask[2] = mips_cprmask[2];
13651 s.ri_cprmask[3] = mips_cprmask[3];
13652 /* The gp_value field is set by the MIPS ELF backend. */
13653
13654 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
13655 ((Elf64_External_RegInfo *)
13656 mips_regmask_frag));
13657 }
13658
13659 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
13660 sort of BFD interface for this. */
13661 if (mips_any_noreorder)
13662 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
13663 if (mips_pic != NO_PIC)
13664 {
13665 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
13666 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
13667 }
13668 if (mips_abicalls)
13669 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
13670
13671 /* Set MIPS ELF flags for ASEs. */
13672 if (file_ase_mips16)
13673 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
13674 #if 0 /* XXX FIXME */
13675 if (file_ase_mips3d)
13676 elf_elfheader (stdoutput)->e_flags |= ???;
13677 #endif
13678 if (file_ase_mdmx)
13679 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
13680
13681 /* Set the MIPS ELF ABI flags. */
13682 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
13683 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
13684 else if (mips_abi == O64_ABI)
13685 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
13686 else if (mips_abi == EABI_ABI)
13687 {
13688 if (!file_mips_gp32)
13689 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
13690 else
13691 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
13692 }
13693 else if (mips_abi == N32_ABI)
13694 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
13695
13696 /* Nothing to do for N64_ABI. */
13697
13698 if (mips_32bitmode)
13699 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
13700 }
13701
13702 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
13703 \f
13704 typedef struct proc {
13705 symbolS *isym;
13706 unsigned long reg_mask;
13707 unsigned long reg_offset;
13708 unsigned long fpreg_mask;
13709 unsigned long fpreg_offset;
13710 unsigned long frame_offset;
13711 unsigned long frame_reg;
13712 unsigned long pc_reg;
13713 } procS;
13714
13715 static procS cur_proc;
13716 static procS *cur_proc_ptr;
13717 static int numprocs;
13718
13719 /* Fill in an rs_align_code fragment. */
13720
13721 void
13722 mips_handle_align (fragS *fragp)
13723 {
13724 if (fragp->fr_type != rs_align_code)
13725 return;
13726
13727 if (mips_opts.mips16)
13728 {
13729 static const unsigned char be_nop[] = { 0x65, 0x00 };
13730 static const unsigned char le_nop[] = { 0x00, 0x65 };
13731
13732 int bytes;
13733 char *p;
13734
13735 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
13736 p = fragp->fr_literal + fragp->fr_fix;
13737
13738 if (bytes & 1)
13739 {
13740 *p++ = 0;
13741 fragp->fr_fix++;
13742 }
13743
13744 memcpy (p, (target_big_endian ? be_nop : le_nop), 2);
13745 fragp->fr_var = 2;
13746 }
13747
13748 /* For mips32, a nop is a zero, which we trivially get by doing nothing. */
13749 }
13750
13751 static void
13752 md_obj_begin (void)
13753 {
13754 }
13755
13756 static void
13757 md_obj_end (void)
13758 {
13759 /* check for premature end, nesting errors, etc */
13760 if (cur_proc_ptr)
13761 as_warn (_("missing .end at end of assembly"));
13762 }
13763
13764 static long
13765 get_number (void)
13766 {
13767 int negative = 0;
13768 long val = 0;
13769
13770 if (*input_line_pointer == '-')
13771 {
13772 ++input_line_pointer;
13773 negative = 1;
13774 }
13775 if (!ISDIGIT (*input_line_pointer))
13776 as_bad (_("expected simple number"));
13777 if (input_line_pointer[0] == '0')
13778 {
13779 if (input_line_pointer[1] == 'x')
13780 {
13781 input_line_pointer += 2;
13782 while (ISXDIGIT (*input_line_pointer))
13783 {
13784 val <<= 4;
13785 val |= hex_value (*input_line_pointer++);
13786 }
13787 return negative ? -val : val;
13788 }
13789 else
13790 {
13791 ++input_line_pointer;
13792 while (ISDIGIT (*input_line_pointer))
13793 {
13794 val <<= 3;
13795 val |= *input_line_pointer++ - '0';
13796 }
13797 return negative ? -val : val;
13798 }
13799 }
13800 if (!ISDIGIT (*input_line_pointer))
13801 {
13802 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
13803 *input_line_pointer, *input_line_pointer);
13804 as_warn (_("invalid number"));
13805 return -1;
13806 }
13807 while (ISDIGIT (*input_line_pointer))
13808 {
13809 val *= 10;
13810 val += *input_line_pointer++ - '0';
13811 }
13812 return negative ? -val : val;
13813 }
13814
13815 /* The .file directive; just like the usual .file directive, but there
13816 is an initial number which is the ECOFF file index. In the non-ECOFF
13817 case .file implies DWARF-2. */
13818
13819 static void
13820 s_mips_file (int x ATTRIBUTE_UNUSED)
13821 {
13822 static int first_file_directive = 0;
13823
13824 if (ECOFF_DEBUGGING)
13825 {
13826 get_number ();
13827 s_app_file (0);
13828 }
13829 else
13830 {
13831 char *filename;
13832
13833 filename = dwarf2_directive_file (0);
13834
13835 /* Versions of GCC up to 3.1 start files with a ".file"
13836 directive even for stabs output. Make sure that this
13837 ".file" is handled. Note that you need a version of GCC
13838 after 3.1 in order to support DWARF-2 on MIPS. */
13839 if (filename != NULL && ! first_file_directive)
13840 {
13841 (void) new_logical_line (filename, -1);
13842 s_app_file_string (filename);
13843 }
13844 first_file_directive = 1;
13845 }
13846 }
13847
13848 /* The .loc directive, implying DWARF-2. */
13849
13850 static void
13851 s_mips_loc (int x ATTRIBUTE_UNUSED)
13852 {
13853 if (!ECOFF_DEBUGGING)
13854 dwarf2_directive_loc (0);
13855 }
13856
13857 /* The .end directive. */
13858
13859 static void
13860 s_mips_end (int x ATTRIBUTE_UNUSED)
13861 {
13862 symbolS *p;
13863
13864 /* Following functions need their own .frame and .cprestore directives. */
13865 mips_frame_reg_valid = 0;
13866 mips_cprestore_valid = 0;
13867
13868 if (!is_end_of_line[(unsigned char) *input_line_pointer])
13869 {
13870 p = get_symbol ();
13871 demand_empty_rest_of_line ();
13872 }
13873 else
13874 p = NULL;
13875
13876 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
13877 as_warn (_(".end not in text section"));
13878
13879 if (!cur_proc_ptr)
13880 {
13881 as_warn (_(".end directive without a preceding .ent directive."));
13882 demand_empty_rest_of_line ();
13883 return;
13884 }
13885
13886 if (p != NULL)
13887 {
13888 assert (S_GET_NAME (p));
13889 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->isym)))
13890 as_warn (_(".end symbol does not match .ent symbol."));
13891
13892 if (debug_type == DEBUG_STABS)
13893 stabs_generate_asm_endfunc (S_GET_NAME (p),
13894 S_GET_NAME (p));
13895 }
13896 else
13897 as_warn (_(".end directive missing or unknown symbol"));
13898
13899 #ifdef OBJ_ELF
13900 /* Generate a .pdr section. */
13901 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING
13902 && mips_flag_pdr)
13903 {
13904 segT saved_seg = now_seg;
13905 subsegT saved_subseg = now_subseg;
13906 valueT dot;
13907 expressionS exp;
13908 char *fragp;
13909
13910 dot = frag_now_fix ();
13911
13912 #ifdef md_flush_pending_output
13913 md_flush_pending_output ();
13914 #endif
13915
13916 assert (pdr_seg);
13917 subseg_set (pdr_seg, 0);
13918
13919 /* Write the symbol. */
13920 exp.X_op = O_symbol;
13921 exp.X_add_symbol = p;
13922 exp.X_add_number = 0;
13923 emit_expr (&exp, 4);
13924
13925 fragp = frag_more (7 * 4);
13926
13927 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
13928 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
13929 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
13930 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
13931 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
13932 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
13933 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
13934
13935 subseg_set (saved_seg, saved_subseg);
13936 }
13937 #endif /* OBJ_ELF */
13938
13939 cur_proc_ptr = NULL;
13940 }
13941
13942 /* The .aent and .ent directives. */
13943
13944 static void
13945 s_mips_ent (int aent)
13946 {
13947 symbolS *symbolP;
13948
13949 symbolP = get_symbol ();
13950 if (*input_line_pointer == ',')
13951 ++input_line_pointer;
13952 SKIP_WHITESPACE ();
13953 if (ISDIGIT (*input_line_pointer)
13954 || *input_line_pointer == '-')
13955 get_number ();
13956
13957 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
13958 as_warn (_(".ent or .aent not in text section."));
13959
13960 if (!aent && cur_proc_ptr)
13961 as_warn (_("missing .end"));
13962
13963 if (!aent)
13964 {
13965 /* This function needs its own .frame and .cprestore directives. */
13966 mips_frame_reg_valid = 0;
13967 mips_cprestore_valid = 0;
13968
13969 cur_proc_ptr = &cur_proc;
13970 memset (cur_proc_ptr, '\0', sizeof (procS));
13971
13972 cur_proc_ptr->isym = symbolP;
13973
13974 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
13975
13976 ++numprocs;
13977
13978 if (debug_type == DEBUG_STABS)
13979 stabs_generate_asm_func (S_GET_NAME (symbolP),
13980 S_GET_NAME (symbolP));
13981 }
13982
13983 demand_empty_rest_of_line ();
13984 }
13985
13986 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
13987 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
13988 s_mips_frame is used so that we can set the PDR information correctly.
13989 We can't use the ecoff routines because they make reference to the ecoff
13990 symbol table (in the mdebug section). */
13991
13992 static void
13993 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
13994 {
13995 #ifdef OBJ_ELF
13996 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
13997 {
13998 long val;
13999
14000 if (cur_proc_ptr == (procS *) NULL)
14001 {
14002 as_warn (_(".frame outside of .ent"));
14003 demand_empty_rest_of_line ();
14004 return;
14005 }
14006
14007 cur_proc_ptr->frame_reg = tc_get_register (1);
14008
14009 SKIP_WHITESPACE ();
14010 if (*input_line_pointer++ != ','
14011 || get_absolute_expression_and_terminator (&val) != ',')
14012 {
14013 as_warn (_("Bad .frame directive"));
14014 --input_line_pointer;
14015 demand_empty_rest_of_line ();
14016 return;
14017 }
14018
14019 cur_proc_ptr->frame_offset = val;
14020 cur_proc_ptr->pc_reg = tc_get_register (0);
14021
14022 demand_empty_rest_of_line ();
14023 }
14024 else
14025 #endif /* OBJ_ELF */
14026 s_ignore (ignore);
14027 }
14028
14029 /* The .fmask and .mask directives. If the mdebug section is present
14030 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
14031 embedded targets, s_mips_mask is used so that we can set the PDR
14032 information correctly. We can't use the ecoff routines because they
14033 make reference to the ecoff symbol table (in the mdebug section). */
14034
14035 static void
14036 s_mips_mask (int reg_type)
14037 {
14038 #ifdef OBJ_ELF
14039 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
14040 {
14041 long mask, off;
14042
14043 if (cur_proc_ptr == (procS *) NULL)
14044 {
14045 as_warn (_(".mask/.fmask outside of .ent"));
14046 demand_empty_rest_of_line ();
14047 return;
14048 }
14049
14050 if (get_absolute_expression_and_terminator (&mask) != ',')
14051 {
14052 as_warn (_("Bad .mask/.fmask directive"));
14053 --input_line_pointer;
14054 demand_empty_rest_of_line ();
14055 return;
14056 }
14057
14058 off = get_absolute_expression ();
14059
14060 if (reg_type == 'F')
14061 {
14062 cur_proc_ptr->fpreg_mask = mask;
14063 cur_proc_ptr->fpreg_offset = off;
14064 }
14065 else
14066 {
14067 cur_proc_ptr->reg_mask = mask;
14068 cur_proc_ptr->reg_offset = off;
14069 }
14070
14071 demand_empty_rest_of_line ();
14072 }
14073 else
14074 #endif /* OBJ_ELF */
14075 s_ignore (reg_type);
14076 }
14077
14078 /* The .loc directive. */
14079
14080 #if 0
14081 static void
14082 s_loc (int x)
14083 {
14084 symbolS *symbolP;
14085 int lineno;
14086 int addroff;
14087
14088 assert (now_seg == text_section);
14089
14090 lineno = get_number ();
14091 addroff = frag_now_fix ();
14092
14093 symbolP = symbol_new ("", N_SLINE, addroff, frag_now);
14094 S_SET_TYPE (symbolP, N_SLINE);
14095 S_SET_OTHER (symbolP, 0);
14096 S_SET_DESC (symbolP, lineno);
14097 symbolP->sy_segment = now_seg;
14098 }
14099 #endif
14100
14101 /* A table describing all the processors gas knows about. Names are
14102 matched in the order listed.
14103
14104 To ease comparison, please keep this table in the same order as
14105 gcc's mips_cpu_info_table[]. */
14106 static const struct mips_cpu_info mips_cpu_info_table[] =
14107 {
14108 /* Entries for generic ISAs */
14109 { "mips1", 1, ISA_MIPS1, CPU_R3000 },
14110 { "mips2", 1, ISA_MIPS2, CPU_R6000 },
14111 { "mips3", 1, ISA_MIPS3, CPU_R4000 },
14112 { "mips4", 1, ISA_MIPS4, CPU_R8000 },
14113 { "mips5", 1, ISA_MIPS5, CPU_MIPS5 },
14114 { "mips32", 1, ISA_MIPS32, CPU_MIPS32 },
14115 { "mips32r2", 1, ISA_MIPS32R2, CPU_MIPS32R2 },
14116 { "mips64", 1, ISA_MIPS64, CPU_MIPS64 },
14117 { "mips64r2", 1, ISA_MIPS64R2, CPU_MIPS64R2 },
14118
14119 /* MIPS I */
14120 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
14121 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
14122 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
14123
14124 /* MIPS II */
14125 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
14126
14127 /* MIPS III */
14128 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
14129 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
14130 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
14131 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
14132 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
14133 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
14134 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
14135 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
14136 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
14137 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
14138 { "orion", 0, ISA_MIPS3, CPU_R4600 },
14139 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
14140
14141 /* MIPS IV */
14142 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
14143 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
14144 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
14145 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
14146 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
14147 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
14148 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
14149 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
14150 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
14151 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
14152 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
14153 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
14154 { "rm9000", 0, ISA_MIPS4, CPU_RM7000 },
14155
14156 /* MIPS 32 */
14157 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
14158 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
14159 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
14160
14161 /* MIPS 64 */
14162 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
14163 { "20kc", 0, ISA_MIPS64, CPU_MIPS64 },
14164
14165 /* Broadcom SB-1 CPU core */
14166 { "sb1", 0, ISA_MIPS64, CPU_SB1 },
14167
14168 /* End marker */
14169 { NULL, 0, 0, 0 }
14170 };
14171
14172
14173 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
14174 with a final "000" replaced by "k". Ignore case.
14175
14176 Note: this function is shared between GCC and GAS. */
14177
14178 static bfd_boolean
14179 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
14180 {
14181 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
14182 given++, canonical++;
14183
14184 return ((*given == 0 && *canonical == 0)
14185 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
14186 }
14187
14188
14189 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
14190 CPU name. We've traditionally allowed a lot of variation here.
14191
14192 Note: this function is shared between GCC and GAS. */
14193
14194 static bfd_boolean
14195 mips_matching_cpu_name_p (const char *canonical, const char *given)
14196 {
14197 /* First see if the name matches exactly, or with a final "000"
14198 turned into "k". */
14199 if (mips_strict_matching_cpu_name_p (canonical, given))
14200 return TRUE;
14201
14202 /* If not, try comparing based on numerical designation alone.
14203 See if GIVEN is an unadorned number, or 'r' followed by a number. */
14204 if (TOLOWER (*given) == 'r')
14205 given++;
14206 if (!ISDIGIT (*given))
14207 return FALSE;
14208
14209 /* Skip over some well-known prefixes in the canonical name,
14210 hoping to find a number there too. */
14211 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
14212 canonical += 2;
14213 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
14214 canonical += 2;
14215 else if (TOLOWER (canonical[0]) == 'r')
14216 canonical += 1;
14217
14218 return mips_strict_matching_cpu_name_p (canonical, given);
14219 }
14220
14221
14222 /* Parse an option that takes the name of a processor as its argument.
14223 OPTION is the name of the option and CPU_STRING is the argument.
14224 Return the corresponding processor enumeration if the CPU_STRING is
14225 recognized, otherwise report an error and return null.
14226
14227 A similar function exists in GCC. */
14228
14229 static const struct mips_cpu_info *
14230 mips_parse_cpu (const char *option, const char *cpu_string)
14231 {
14232 const struct mips_cpu_info *p;
14233
14234 /* 'from-abi' selects the most compatible architecture for the given
14235 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
14236 EABIs, we have to decide whether we're using the 32-bit or 64-bit
14237 version. Look first at the -mgp options, if given, otherwise base
14238 the choice on MIPS_DEFAULT_64BIT.
14239
14240 Treat NO_ABI like the EABIs. One reason to do this is that the
14241 plain 'mips' and 'mips64' configs have 'from-abi' as their default
14242 architecture. This code picks MIPS I for 'mips' and MIPS III for
14243 'mips64', just as we did in the days before 'from-abi'. */
14244 if (strcasecmp (cpu_string, "from-abi") == 0)
14245 {
14246 if (ABI_NEEDS_32BIT_REGS (mips_abi))
14247 return mips_cpu_info_from_isa (ISA_MIPS1);
14248
14249 if (ABI_NEEDS_64BIT_REGS (mips_abi))
14250 return mips_cpu_info_from_isa (ISA_MIPS3);
14251
14252 if (file_mips_gp32 >= 0)
14253 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
14254
14255 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
14256 ? ISA_MIPS3
14257 : ISA_MIPS1);
14258 }
14259
14260 /* 'default' has traditionally been a no-op. Probably not very useful. */
14261 if (strcasecmp (cpu_string, "default") == 0)
14262 return 0;
14263
14264 for (p = mips_cpu_info_table; p->name != 0; p++)
14265 if (mips_matching_cpu_name_p (p->name, cpu_string))
14266 return p;
14267
14268 as_bad ("Bad value (%s) for %s", cpu_string, option);
14269 return 0;
14270 }
14271
14272 /* Return the canonical processor information for ISA (a member of the
14273 ISA_MIPS* enumeration). */
14274
14275 static const struct mips_cpu_info *
14276 mips_cpu_info_from_isa (int isa)
14277 {
14278 int i;
14279
14280 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14281 if (mips_cpu_info_table[i].is_isa
14282 && isa == mips_cpu_info_table[i].isa)
14283 return (&mips_cpu_info_table[i]);
14284
14285 return NULL;
14286 }
14287
14288 static const struct mips_cpu_info *
14289 mips_cpu_info_from_arch (int arch)
14290 {
14291 int i;
14292
14293 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14294 if (arch == mips_cpu_info_table[i].cpu)
14295 return (&mips_cpu_info_table[i]);
14296
14297 return NULL;
14298 }
14299 \f
14300 static void
14301 show (FILE *stream, const char *string, int *col_p, int *first_p)
14302 {
14303 if (*first_p)
14304 {
14305 fprintf (stream, "%24s", "");
14306 *col_p = 24;
14307 }
14308 else
14309 {
14310 fprintf (stream, ", ");
14311 *col_p += 2;
14312 }
14313
14314 if (*col_p + strlen (string) > 72)
14315 {
14316 fprintf (stream, "\n%24s", "");
14317 *col_p = 24;
14318 }
14319
14320 fprintf (stream, "%s", string);
14321 *col_p += strlen (string);
14322
14323 *first_p = 0;
14324 }
14325
14326 void
14327 md_show_usage (FILE *stream)
14328 {
14329 int column, first;
14330 size_t i;
14331
14332 fprintf (stream, _("\
14333 MIPS options:\n\
14334 -membedded-pic generate embedded position independent code\n\
14335 -EB generate big endian output\n\
14336 -EL generate little endian output\n\
14337 -g, -g2 do not remove unneeded NOPs or swap branches\n\
14338 -G NUM allow referencing objects up to NUM bytes\n\
14339 implicitly with the gp register [default 8]\n"));
14340 fprintf (stream, _("\
14341 -mips1 generate MIPS ISA I instructions\n\
14342 -mips2 generate MIPS ISA II instructions\n\
14343 -mips3 generate MIPS ISA III instructions\n\
14344 -mips4 generate MIPS ISA IV instructions\n\
14345 -mips5 generate MIPS ISA V instructions\n\
14346 -mips32 generate MIPS32 ISA instructions\n\
14347 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
14348 -mips64 generate MIPS64 ISA instructions\n\
14349 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
14350 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
14351
14352 first = 1;
14353
14354 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14355 show (stream, mips_cpu_info_table[i].name, &column, &first);
14356 show (stream, "from-abi", &column, &first);
14357 fputc ('\n', stream);
14358
14359 fprintf (stream, _("\
14360 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
14361 -no-mCPU don't generate code specific to CPU.\n\
14362 For -mCPU and -no-mCPU, CPU must be one of:\n"));
14363
14364 first = 1;
14365
14366 show (stream, "3900", &column, &first);
14367 show (stream, "4010", &column, &first);
14368 show (stream, "4100", &column, &first);
14369 show (stream, "4650", &column, &first);
14370 fputc ('\n', stream);
14371
14372 fprintf (stream, _("\
14373 -mips16 generate mips16 instructions\n\
14374 -no-mips16 do not generate mips16 instructions\n"));
14375 fprintf (stream, _("\
14376 -mfix-vr4120 work around certain VR4120 errata\n\
14377 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
14378 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
14379 -O0 remove unneeded NOPs, do not swap branches\n\
14380 -O remove unneeded NOPs and swap branches\n\
14381 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
14382 --trap, --no-break trap exception on div by 0 and mult overflow\n\
14383 --break, --no-trap break exception on div by 0 and mult overflow\n"));
14384 #ifdef OBJ_ELF
14385 fprintf (stream, _("\
14386 -KPIC, -call_shared generate SVR4 position independent code\n\
14387 -non_shared do not generate position independent code\n\
14388 -xgot assume a 32 bit GOT\n\
14389 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
14390 -mabi=ABI create ABI conformant object file for:\n"));
14391
14392 first = 1;
14393
14394 show (stream, "32", &column, &first);
14395 show (stream, "o64", &column, &first);
14396 show (stream, "n32", &column, &first);
14397 show (stream, "64", &column, &first);
14398 show (stream, "eabi", &column, &first);
14399
14400 fputc ('\n', stream);
14401
14402 fprintf (stream, _("\
14403 -32 create o32 ABI object file (default)\n\
14404 -n32 create n32 ABI object file\n\
14405 -64 create 64 ABI object file\n"));
14406 #endif
14407 }
14408
14409 enum dwarf2_format
14410 mips_dwarf2_format (void)
14411 {
14412 if (mips_abi == N64_ABI)
14413 {
14414 #ifdef TE_IRIX
14415 return dwarf2_format_64bit_irix;
14416 #else
14417 return dwarf2_format_64bit;
14418 #endif
14419 }
14420 else
14421 return dwarf2_format_32bit;
14422 }
14423
14424 int
14425 mips_dwarf2_addr_size (void)
14426 {
14427 if (mips_abi == N64_ABI)
14428 return 8;
14429 /* GCC for 64-bit targets turns on mlong64 giving
14430 us 64-bit addresses. */
14431 else if (mips_abi == EABI_ABI && !file_mips_gp32)
14432 return 8;
14433 else
14434 return 4;
14435 }