gas/
[binutils-gdb.git] / gas / config / tc-nios2.c
1 /* Altera Nios II assembler.
2 Copyright (C) 2012, 2013 Free Software Foundation, Inc.
3 Contributed by Nigel Gray (ngray@altera.com).
4 Contributed by Mentor Graphics, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 #include "as.h"
24 #include "opcode/nios2.h"
25 #include "elf/nios2.h"
26 #include "tc-nios2.h"
27 #include "bfd.h"
28 #include "dwarf2dbg.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31 #include "dw2gencfi.h"
32
33 #ifndef OBJ_ELF
34 /* We are not supporting any other target so we throw a compile time error. */
35 OBJ_ELF not defined
36 #endif
37
38 /* We can choose our endianness at run-time, regardless of configuration. */
39 extern int target_big_endian;
40
41 /* This array holds the chars that always start a comment. If the
42 pre-processor is disabled, these aren't very useful. */
43 const char comment_chars[] = "#";
44
45 /* This array holds the chars that only start a comment at the beginning of
46 a line. If the line seems to have the form '# 123 filename'
47 .line and .file directives will appear in the pre-processed output. */
48 /* Note that input_file.c hand checks for '#' at the beginning of the
49 first line of the input file. This is because the compiler outputs
50 #NO_APP at the beginning of its output. */
51 /* Also note that C style comments are always supported. */
52 const char line_comment_chars[] = "#";
53
54 /* This array holds machine specific line separator characters. */
55 const char line_separator_chars[] = ";";
56
57 /* Chars that can be used to separate mant from exp in floating point nums. */
58 const char EXP_CHARS[] = "eE";
59
60 /* Chars that mean this number is a floating point constant. */
61 /* As in 0f12.456 */
62 /* or 0d1.2345e12 */
63 const char FLT_CHARS[] = "rRsSfFdDxXpP";
64
65 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
66 changed in read.c. Ideally it shouldn't have to know about it at all,
67 but nothing is ideal around here. */
68
69 /* Machine-dependent command-line options. */
70
71 const char *md_shortopts = "r";
72
73 struct option md_longopts[] = {
74 #define OPTION_RELAX_ALL (OPTION_MD_BASE + 0)
75 {"relax-all", no_argument, NULL, OPTION_RELAX_ALL},
76 #define OPTION_NORELAX (OPTION_MD_BASE + 1)
77 {"no-relax", no_argument, NULL, OPTION_NORELAX},
78 #define OPTION_RELAX_SECTION (OPTION_MD_BASE + 2)
79 {"relax-section", no_argument, NULL, OPTION_RELAX_SECTION},
80 #define OPTION_EB (OPTION_MD_BASE + 3)
81 {"EB", no_argument, NULL, OPTION_EB},
82 #define OPTION_EL (OPTION_MD_BASE + 4)
83 {"EL", no_argument, NULL, OPTION_EL}
84 };
85
86 size_t md_longopts_size = sizeof (md_longopts);
87
88 /* The assembler supports three different relaxation modes, controlled by
89 command-line options. */
90 typedef enum
91 {
92 relax_section = 0,
93 relax_none,
94 relax_all
95 } relax_optionT;
96
97 /* Struct contains all assembler options set with .set. */
98 struct
99 {
100 /* .set noat -> noat = 1 allows assembly code to use at without warning
101 and macro expansions generate a warning.
102 .set at -> noat = 0, assembly code using at warn but macro expansions
103 do not generate warnings. */
104 bfd_boolean noat;
105
106 /* .set nobreak -> nobreak = 1 allows assembly code to use ba,bt without
107 warning.
108 .set break -> nobreak = 0, assembly code using ba,bt warns. */
109 bfd_boolean nobreak;
110
111 /* .cmd line option -relax-all allows all branches and calls to be replaced
112 with longer versions.
113 -no-relax inhibits branch/call conversion.
114 The default value is relax_section, which relaxes branches within
115 a section. */
116 relax_optionT relax;
117
118 } nios2_as_options = {FALSE, FALSE, relax_section};
119
120
121 typedef struct nios2_insn_reloc
122 {
123 /* Any expression in the instruction is parsed into this field,
124 which is passed to fix_new_exp() to generate a fixup. */
125 expressionS reloc_expression;
126
127 /* The type of the relocation to be applied. */
128 bfd_reloc_code_real_type reloc_type;
129
130 /* PC-relative. */
131 unsigned int reloc_pcrel;
132
133 /* The next relocation to be applied to the instruction. */
134 struct nios2_insn_reloc *reloc_next;
135 } nios2_insn_relocS;
136
137 /* This struct is used to hold state when assembling instructions. */
138 typedef struct nios2_insn_info
139 {
140 /* Assembled instruction. */
141 unsigned long insn_code;
142 /* Pointer to the relevant bit of the opcode table. */
143 const struct nios2_opcode *insn_nios2_opcode;
144 /* After parsing ptrs to the tokens in the instruction fill this array
145 it is terminated with a null pointer (hence the first +1).
146 The second +1 is because in some parts of the code the opcode
147 is not counted as a token, but still placed in this array. */
148 const char *insn_tokens[NIOS2_MAX_INSN_TOKENS + 1 + 1];
149
150 /* This holds information used to generate fixups
151 and eventually relocations if it is not null. */
152 nios2_insn_relocS *insn_reloc;
153 } nios2_insn_infoS;
154
155 /* This struct associates an argument assemble function with
156 an argument syntax string. Used by the assembler to find out
157 how to parse and assemble a set of instruction operands and
158 return the instruction field values. */
159 typedef struct nios2_arg_info
160 {
161 const char *args;
162 void (*assemble_args_func) (nios2_insn_infoS *insn_info);
163 } nios2_arg_infoS;
164
165 /* This struct is used to convert Nios II pseudo-ops into the
166 corresponding real op. */
167 typedef struct nios2_ps_insn_info
168 {
169 /* Map this pseudo_op... */
170 const char *pseudo_insn;
171
172 /* ...to this real instruction. */
173 const char *insn;
174
175 /* Call this function to modify the operands.... */
176 void (*arg_modifer_func) (char ** parsed_args, const char *arg, int num,
177 int start);
178
179 /* ...with these arguments. */
180 const char *arg_modifier;
181 int num;
182 int index;
183
184 /* If arg_modifier_func allocates new memory, provide this function
185 to free it afterwards. */
186 void (*arg_cleanup_func) (char **parsed_args, int num, int start);
187 } nios2_ps_insn_infoS;
188
189 /* Opcode hash table. */
190 static struct hash_control *nios2_opcode_hash = NULL;
191 #define nios2_opcode_lookup(NAME) \
192 ((struct nios2_opcode *) hash_find (nios2_opcode_hash, (NAME)))
193
194 /* Register hash table. */
195 static struct hash_control *nios2_reg_hash = NULL;
196 #define nios2_reg_lookup(NAME) \
197 ((struct nios2_reg *) hash_find (nios2_reg_hash, (NAME)))
198
199 /* Parse args hash table. */
200 static struct hash_control *nios2_arg_hash = NULL;
201 #define nios2_arg_lookup(NAME) \
202 ((nios2_arg_infoS *) hash_find (nios2_arg_hash, (NAME)))
203
204 /* Pseudo-op hash table. */
205 static struct hash_control *nios2_ps_hash = NULL;
206 #define nios2_ps_lookup(NAME) \
207 ((nios2_ps_insn_infoS *) hash_find (nios2_ps_hash, (NAME)))
208
209 /* The known current alignment of the current section. */
210 static int nios2_current_align;
211 static segT nios2_current_align_seg;
212
213 static int nios2_auto_align_on = 1;
214
215 /* The last seen label in the current section. This is used to auto-align
216 labels preceeding instructions. */
217 static symbolS *nios2_last_label;
218
219 #ifdef OBJ_ELF
220 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
221 symbolS *GOT_symbol;
222 #endif
223
224 \f
225 /** Utility routines. */
226 /* Function md_chars_to_number takes the sequence of
227 bytes in buf and returns the corresponding value
228 in an int. n must be 1, 2 or 4. */
229 static valueT
230 md_chars_to_number (char *buf, int n)
231 {
232 int i;
233 valueT val;
234
235 gas_assert (n == 1 || n == 2 || n == 4);
236
237 val = 0;
238 if (target_big_endian)
239 for (i = 0; i < n; ++i)
240 val = val | ((buf[i] & 0xff) << 8 * (n - (i + 1)));
241 else
242 for (i = 0; i < n; ++i)
243 val = val | ((buf[i] & 0xff) << 8 * i);
244 return val;
245 }
246
247
248 /* This function turns a C long int, short int or char
249 into the series of bytes that represent the number
250 on the target machine. */
251 void
252 md_number_to_chars (char *buf, valueT val, int n)
253 {
254 gas_assert (n == 1 || n == 2 || n == 4 || n == 8);
255 if (target_big_endian)
256 number_to_chars_bigendian (buf, val, n);
257 else
258 number_to_chars_littleendian (buf, val, n);
259 }
260
261 /* Turn a string in input_line_pointer into a floating point constant
262 of type TYPE, and store the appropriate bytes in *LITP. The number
263 of LITTLENUMS emitted is stored in *SIZEP. An error message is
264 returned, or NULL on OK. */
265 char *
266 md_atof (int type, char *litP, int *sizeP)
267 {
268 int prec;
269 LITTLENUM_TYPE words[4];
270 char *t;
271 int i;
272
273 switch (type)
274 {
275 case 'f':
276 prec = 2;
277 break;
278 case 'd':
279 prec = 4;
280 break;
281 default:
282 *sizeP = 0;
283 return _("bad call to md_atof");
284 }
285
286 t = atof_ieee (input_line_pointer, type, words);
287 if (t)
288 input_line_pointer = t;
289
290 *sizeP = prec * 2;
291
292 if (! target_big_endian)
293 for (i = prec - 1; i >= 0; i--, litP += 2)
294 md_number_to_chars (litP, (valueT) words[i], 2);
295 else
296 for (i = 0; i < prec; i++, litP += 2)
297 md_number_to_chars (litP, (valueT) words[i], 2);
298
299 return NULL;
300 }
301
302 /* Return true if STR starts with PREFIX, which should be a string literal. */
303 #define strprefix(STR, PREFIX) \
304 (strncmp ((STR), PREFIX, strlen (PREFIX)) == 0)
305
306 /* Return true if STR is prefixed with a control register name. */
307 static int
308 nios2_control_register_arg_p (const char *str)
309 {
310 return (strprefix (str, "ctl")
311 || strprefix (str, "cpuid")
312 || strprefix (str, "status")
313 || strprefix (str, "estatus")
314 || strprefix (str, "bstatus")
315 || strprefix (str, "ienable")
316 || strprefix (str, "ipending")
317 || strprefix (str, "exception")
318 || strprefix (str, "pteaddr")
319 || strprefix (str, "tlbacc")
320 || strprefix (str, "tlbmisc")
321 || strprefix (str, "eccinj")
322 || strprefix (str, "config")
323 || strprefix (str, "mpubase")
324 || strprefix (str, "mpuacc")
325 || strprefix (str, "badaddr"));
326 }
327
328 /* Return true if STR is prefixed with a special relocation operator. */
329 static int
330 nios2_special_relocation_p (const char *str)
331 {
332 return (strprefix (str, "%lo")
333 || strprefix (str, "%hi")
334 || strprefix (str, "%hiadj")
335 || strprefix (str, "%gprel")
336 || strprefix (str, "%got")
337 || strprefix (str, "%call")
338 || strprefix (str, "%gotoff_lo")
339 || strprefix (str, "%gotoff_hiadj")
340 || strprefix (str, "%tls_gd")
341 || strprefix (str, "%tls_ldm")
342 || strprefix (str, "%tls_ldo")
343 || strprefix (str, "%tls_ie")
344 || strprefix (str, "%tls_le")
345 || strprefix (str, "%gotoff"));
346 }
347
348 /* Checks whether the register name is a coprocessor
349 register - returns TRUE if it is, FALSE otherwise. */
350 static bfd_boolean
351 nios2_coproc_reg (const char *reg_name)
352 {
353 gas_assert (reg_name != NULL);
354
355 /* Check that we do have a valid register name and that it is a
356 coprocessor register.
357 It must begin with c, not be a control register, and be a valid
358 register name. */
359 if (strprefix (reg_name, "c")
360 && !strprefix (reg_name, "ctl")
361 && hash_find (nios2_reg_hash, reg_name) != NULL)
362 return TRUE;
363 else
364 return FALSE;
365 }
366
367 /* nop fill pattern for text section. */
368 static char const nop[4] = { 0x3a, 0x88, 0x01, 0x00 };
369
370 /* Handles all machine-dependent alignment needs. */
371 static void
372 nios2_align (int log_size, const char *pfill, symbolS *label)
373 {
374 int align;
375 long max_alignment = 15;
376
377 /* The front end is prone to changing segments out from under us
378 temporarily when -g is in effect. */
379 int switched_seg_p = (nios2_current_align_seg != now_seg);
380
381 align = log_size;
382 if (align > max_alignment)
383 {
384 align = max_alignment;
385 as_bad (_("Alignment too large: %d. assumed"), align);
386 }
387 else if (align < 0)
388 {
389 as_warn (_("Alignment negative: 0 assumed"));
390 align = 0;
391 }
392
393 if (align != 0)
394 {
395 if (subseg_text_p (now_seg) && align >= 2)
396 {
397 /* First, make sure we're on a four-byte boundary, in case
398 someone has been putting .byte values the text section. */
399 if (nios2_current_align < 2 || switched_seg_p)
400 frag_align (2, 0, 0);
401
402 /* Now fill in the alignment pattern. */
403 if (pfill != NULL)
404 frag_align_pattern (align, pfill, sizeof nop, 0);
405 else
406 frag_align (align, 0, 0);
407 }
408 else
409 frag_align (align, 0, 0);
410
411 if (!switched_seg_p)
412 nios2_current_align = align;
413
414 /* If the last label was in a different section we can't align it. */
415 if (label != NULL && !switched_seg_p)
416 {
417 symbolS *sym;
418 int label_seen = FALSE;
419 struct frag *old_frag;
420 valueT old_value;
421 valueT new_value;
422
423 gas_assert (S_GET_SEGMENT (label) == now_seg);
424
425 old_frag = symbol_get_frag (label);
426 old_value = S_GET_VALUE (label);
427 new_value = (valueT) frag_now_fix ();
428
429 /* It is possible to have more than one label at a particular
430 address, especially if debugging is enabled, so we must
431 take care to adjust all the labels at this address in this
432 fragment. To save time we search from the end of the symbol
433 list, backwards, since the symbols we are interested in are
434 almost certainly the ones that were most recently added.
435 Also to save time we stop searching once we have seen at least
436 one matching label, and we encounter a label that is no longer
437 in the target fragment. Note, this search is guaranteed to
438 find at least one match when sym == label, so no special case
439 code is necessary. */
440 for (sym = symbol_lastP; sym != NULL; sym = symbol_previous (sym))
441 if (symbol_get_frag (sym) == old_frag
442 && S_GET_VALUE (sym) == old_value)
443 {
444 label_seen = TRUE;
445 symbol_set_frag (sym, frag_now);
446 S_SET_VALUE (sym, new_value);
447 }
448 else if (label_seen && symbol_get_frag (sym) != old_frag)
449 break;
450 }
451 record_alignment (now_seg, align);
452 }
453 }
454
455 \f
456 /** Support for self-check mode. */
457
458 /* Mode of the assembler. */
459 typedef enum
460 {
461 NIOS2_MODE_ASSEMBLE, /* Ordinary operation. */
462 NIOS2_MODE_TEST /* Hidden mode used for self testing. */
463 } NIOS2_MODE;
464
465 static NIOS2_MODE nios2_mode = NIOS2_MODE_ASSEMBLE;
466
467 /* This function is used to in self-checking mode
468 to check the assembled instruction
469 opcode should be the assembled opcode, and exp_opcode
470 the parsed string representing the expected opcode. */
471 static void
472 nios2_check_assembly (unsigned int opcode, const char *exp_opcode)
473 {
474 if (nios2_mode == NIOS2_MODE_TEST)
475 {
476 if (exp_opcode == NULL)
477 as_bad (_("expecting opcode string in self test mode"));
478 else if (opcode != strtoul (exp_opcode, NULL, 16))
479 as_bad (_("assembly 0x%08x, expected %s"), opcode, exp_opcode);
480 }
481 }
482
483 \f
484 /** Support for machine-dependent assembler directives. */
485 /* Handle the .align pseudo-op. This aligns to a power of two. It
486 also adjusts any current instruction label. We treat this the same
487 way the MIPS port does: .align 0 turns off auto alignment. */
488 static void
489 s_nios2_align (int ignore ATTRIBUTE_UNUSED)
490 {
491 int align;
492 char fill;
493 const char *pfill = NULL;
494 long max_alignment = 15;
495
496 align = get_absolute_expression ();
497 if (align > max_alignment)
498 {
499 align = max_alignment;
500 as_bad (_("Alignment too large: %d. assumed"), align);
501 }
502 else if (align < 0)
503 {
504 as_warn (_("Alignment negative: 0 assumed"));
505 align = 0;
506 }
507
508 if (*input_line_pointer == ',')
509 {
510 input_line_pointer++;
511 fill = get_absolute_expression ();
512 pfill = (const char *) &fill;
513 }
514 else if (subseg_text_p (now_seg))
515 pfill = (const char *) &nop;
516 else
517 {
518 pfill = NULL;
519 nios2_last_label = NULL;
520 }
521
522 if (align != 0)
523 {
524 nios2_auto_align_on = 1;
525 nios2_align (align, pfill, nios2_last_label);
526 nios2_last_label = NULL;
527 }
528 else
529 nios2_auto_align_on = 0;
530
531 demand_empty_rest_of_line ();
532 }
533
534 /* Handle the .text pseudo-op. This is like the usual one, but it
535 clears the saved last label and resets known alignment. */
536 static void
537 s_nios2_text (int i)
538 {
539 s_text (i);
540 nios2_last_label = NULL;
541 nios2_current_align = 0;
542 nios2_current_align_seg = now_seg;
543 }
544
545 /* Handle the .data pseudo-op. This is like the usual one, but it
546 clears the saved last label and resets known alignment. */
547 static void
548 s_nios2_data (int i)
549 {
550 s_data (i);
551 nios2_last_label = NULL;
552 nios2_current_align = 0;
553 nios2_current_align_seg = now_seg;
554 }
555
556 /* Handle the .section pseudo-op. This is like the usual one, but it
557 clears the saved last label and resets known alignment. */
558 static void
559 s_nios2_section (int ignore)
560 {
561 obj_elf_section (ignore);
562 nios2_last_label = NULL;
563 nios2_current_align = 0;
564 nios2_current_align_seg = now_seg;
565 }
566
567 /* Explicitly unaligned cons. */
568 static void
569 s_nios2_ucons (int nbytes)
570 {
571 int hold;
572 hold = nios2_auto_align_on;
573 nios2_auto_align_on = 0;
574 cons (nbytes);
575 nios2_auto_align_on = hold;
576 }
577
578 /* Handle the .sdata directive. */
579 static void
580 s_nios2_sdata (int ignore ATTRIBUTE_UNUSED)
581 {
582 get_absolute_expression (); /* Ignored. */
583 subseg_new (".sdata", 0);
584 demand_empty_rest_of_line ();
585 }
586
587 /* .set sets assembler options eg noat/at and is also used
588 to set symbol values (.equ, .equiv ). */
589 static void
590 s_nios2_set (int equiv)
591 {
592 char *directive = input_line_pointer;
593 char delim = get_symbol_end ();
594 char *endline = input_line_pointer;
595 *endline = delim;
596
597 /* We only want to handle ".set XXX" if the
598 user has tried ".set XXX, YYY" they are not
599 trying a directive. This prevents
600 us from polluting the name space. */
601 SKIP_WHITESPACE ();
602 if (is_end_of_line[(unsigned char) *input_line_pointer])
603 {
604 bfd_boolean done = TRUE;
605 *endline = 0;
606
607 if (!strcmp (directive, "noat"))
608 nios2_as_options.noat = TRUE;
609 else if (!strcmp (directive, "at"))
610 nios2_as_options.noat = FALSE;
611 else if (!strcmp (directive, "nobreak"))
612 nios2_as_options.nobreak = TRUE;
613 else if (!strcmp (directive, "break"))
614 nios2_as_options.nobreak = FALSE;
615 else if (!strcmp (directive, "norelax"))
616 nios2_as_options.relax = relax_none;
617 else if (!strcmp (directive, "relaxsection"))
618 nios2_as_options.relax = relax_section;
619 else if (!strcmp (directive, "relaxall"))
620 nios2_as_options.relax = relax_all;
621 else
622 done = FALSE;
623
624 if (done)
625 {
626 *endline = delim;
627 demand_empty_rest_of_line ();
628 return;
629 }
630 }
631
632 /* If we fall through to here, either we have ".set XXX, YYY"
633 or we have ".set XXX" where XXX is unknown or we have
634 a syntax error. */
635 input_line_pointer = directive;
636 *endline = delim;
637 s_set (equiv);
638 }
639
640 /* Machine-dependent assembler directives.
641 Format of each entry is:
642 { "directive", handler_func, param } */
643 const pseudo_typeS md_pseudo_table[] = {
644 {"align", s_nios2_align, 0},
645 {"text", s_nios2_text, 0},
646 {"data", s_nios2_data, 0},
647 {"section", s_nios2_section, 0},
648 {"section.s", s_nios2_section, 0},
649 {"sect", s_nios2_section, 0},
650 {"sect.s", s_nios2_section, 0},
651 /* .dword and .half are included for compatibility with MIPS. */
652 {"dword", cons, 8},
653 {"half", cons, 2},
654 /* NIOS2 native word size is 4 bytes, so we override
655 the GAS default of 2. */
656 {"word", cons, 4},
657 /* Explicitly unaligned directives. */
658 {"2byte", s_nios2_ucons, 2},
659 {"4byte", s_nios2_ucons, 4},
660 {"8byte", s_nios2_ucons, 8},
661 {"16byte", s_nios2_ucons, 16},
662 #ifdef OBJ_ELF
663 {"sdata", s_nios2_sdata, 0},
664 #endif
665 {"set", s_nios2_set, 0},
666 {NULL, NULL, 0}
667 };
668
669 \f
670 /** Relaxation support. */
671
672 /* We support two relaxation modes: a limited PC-relative mode with
673 -relax-section (the default), and an absolute jump mode with -relax-all.
674
675 Nios II PC-relative branch instructions only support 16-bit offsets.
676 And, there's no good way to add a 32-bit constant to the PC without
677 using two registers.
678
679 To deal with this, for the pc-relative relaxation mode we convert
680 br label
681 into a series of 16-bit adds, like:
682 nextpc at
683 addi at, at, 32767
684 ...
685 addi at, at, remainder
686 jmp at
687
688 Similarly, conditional branches are converted from
689 b(condition) r, s, label
690 into a series like:
691 b(opposite condition) r, s, skip
692 nextpc at
693 addi at, at, 32767
694 ...
695 addi at, at, remainder
696 jmp at
697 skip:
698
699 The compiler can do a better job, either by converting the branch
700 directly into a JMP (going through the GOT for PIC) or by allocating
701 a second register for the 32-bit displacement.
702
703 For the -relax-all relaxation mode, the conversions are
704 movhi at, %hi(symbol+offset)
705 ori at, %lo(symbol+offset)
706 jmp at
707 and
708 b(opposite condition), r, s, skip
709 movhi at, %hi(symbol+offset)
710 ori at, %lo(symbol+offset)
711 jmp at
712 skip:
713 respectively.
714 */
715
716 /* Arbitrarily limit the number of addis we can insert; we need to be able
717 to specify the maximum growth size for each frag that contains a
718 relaxable branch. There's no point in specifying a huge number here
719 since that means the assembler needs to allocate that much extra
720 memory for every branch, and almost no real code will ever need it.
721 Plus, as already noted a better solution is to just use a jmp, or
722 allocate a second register to hold a 32-bit displacement.
723 FIXME: Rather than making this a constant, it could be controlled by
724 a command-line argument. */
725 #define RELAX_MAX_ADDI 32
726
727 /* The fr_subtype field represents the target-specific relocation state.
728 It has type relax_substateT (unsigned int). We use it to track the
729 number of addis necessary, plus a bit to track whether this is a
730 conditional branch.
731 Regardless of the smaller RELAX_MAX_ADDI limit, we reserve 16 bits
732 in the fr_subtype to encode the number of addis so that the whole
733 theoretically-valid range is representable.
734 For the -relax-all mode, N = 0 represents an in-range branch and N = 1
735 represents a branch that needs to be relaxed. */
736 #define UBRANCH (0 << 16)
737 #define CBRANCH (1 << 16)
738 #define IS_CBRANCH(SUBTYPE) ((SUBTYPE) & CBRANCH)
739 #define IS_UBRANCH(SUBTYPE) (!IS_CBRANCH (SUBTYPE))
740 #define UBRANCH_SUBTYPE(N) (UBRANCH | (N))
741 #define CBRANCH_SUBTYPE(N) (CBRANCH | (N))
742 #define SUBTYPE_ADDIS(SUBTYPE) ((SUBTYPE) & 0xffff)
743
744 /* For the -relax-section mode, unconditional branches require 2 extra i
745 nstructions besides the addis, conditional branches require 3. */
746 #define UBRANCH_ADDIS_TO_SIZE(N) (((N) + 2) * 4)
747 #define CBRANCH_ADDIS_TO_SIZE(N) (((N) + 3) * 4)
748
749 /* For the -relax-all mode, unconditional branches require 3 instructions
750 and conditional branches require 4. */
751 #define UBRANCH_JUMP_SIZE 12
752 #define CBRANCH_JUMP_SIZE 16
753
754 /* Maximum sizes of relaxation sequences. */
755 #define UBRANCH_MAX_SIZE \
756 (nios2_as_options.relax == relax_all \
757 ? UBRANCH_JUMP_SIZE \
758 : UBRANCH_ADDIS_TO_SIZE (RELAX_MAX_ADDI))
759 #define CBRANCH_MAX_SIZE \
760 (nios2_as_options.relax == relax_all \
761 ? CBRANCH_JUMP_SIZE \
762 : CBRANCH_ADDIS_TO_SIZE (RELAX_MAX_ADDI))
763
764 /* Register number of AT, the assembler temporary. */
765 #define AT_REGNUM 1
766
767 /* Determine how many bytes are required to represent the sequence
768 indicated by SUBTYPE. */
769 static int
770 nios2_relax_subtype_size (relax_substateT subtype)
771 {
772 int n = SUBTYPE_ADDIS (subtype);
773 if (n == 0)
774 /* Regular conditional/unconditional branch instruction. */
775 return 4;
776 else if (nios2_as_options.relax == relax_all)
777 return (IS_CBRANCH (subtype) ? CBRANCH_JUMP_SIZE : UBRANCH_JUMP_SIZE);
778 else if (IS_CBRANCH (subtype))
779 return CBRANCH_ADDIS_TO_SIZE (n);
780 else
781 return UBRANCH_ADDIS_TO_SIZE (n);
782 }
783
784 /* Estimate size of fragp before relaxation.
785 This could also examine the offset in fragp and adjust
786 fragp->fr_subtype, but we will do that in nios2_relax_frag anyway. */
787 int
788 md_estimate_size_before_relax (fragS *fragp, segT segment ATTRIBUTE_UNUSED)
789 {
790 return nios2_relax_subtype_size (fragp->fr_subtype);
791 }
792
793 /* Implement md_relax_frag, returning the change in size of the frag. */
794 long
795 nios2_relax_frag (segT segment, fragS *fragp, long stretch)
796 {
797 addressT target = fragp->fr_offset;
798 relax_substateT subtype = fragp->fr_subtype;
799 symbolS *symbolp = fragp->fr_symbol;
800
801 if (symbolp)
802 {
803 fragS *sym_frag = symbol_get_frag (symbolp);
804 offsetT offset;
805 int n;
806
807 target += S_GET_VALUE (symbolp);
808
809 /* See comments in write.c:relax_frag about handling of stretch. */
810 if (stretch != 0
811 && sym_frag->relax_marker != fragp->relax_marker)
812 {
813 if (stretch < 0 || sym_frag->region == fragp->region)
814 target += stretch;
815 else if (target < fragp->fr_address)
816 target = fragp->fr_next->fr_address + stretch;
817 }
818
819 /* We subtract 4 because all pc relative branches are
820 from the next instruction. */
821 offset = target - fragp->fr_address - fragp->fr_fix - 4;
822 if (offset >= -32768 && offset <= 32764)
823 /* Fits in PC-relative branch. */
824 n = 0;
825 else if (nios2_as_options.relax == relax_all)
826 /* Convert to jump. */
827 n = 1;
828 else if (nios2_as_options.relax == relax_section
829 && S_GET_SEGMENT (symbolp) == segment
830 && S_IS_DEFINED (symbolp))
831 /* Attempt a PC-relative relaxation on a branch to a defined
832 symbol in the same segment. */
833 {
834 /* The relaxation for conditional branches is offset by 4
835 bytes because we insert the inverted branch around the
836 sequence. */
837 if (IS_CBRANCH (subtype))
838 offset = offset - 4;
839 if (offset > 0)
840 n = offset / 32767 + 1;
841 else
842 n = offset / -32768 + 1;
843
844 /* Bail out immediately if relaxation has failed. If we try to
845 defer the diagnostic to md_convert_frag, some pathological test
846 cases (e.g. gcc/testsuite/gcc.c-torture/compile/20001226-1.c)
847 apparently never converge. By returning 0 here we could pretend
848 to the caller that nothing has changed, but that leaves things
849 in an inconsistent state when we get to md_convert_frag. */
850 if (n > RELAX_MAX_ADDI)
851 {
852 as_bad_where (fragp->fr_file, fragp->fr_line,
853 _("branch offset out of range\n"));
854 as_fatal (_("branch relaxation failed\n"));
855 }
856 }
857 else
858 /* We cannot handle this case, diagnose overflow later. */
859 return 0;
860
861 if (IS_CBRANCH (subtype))
862 fragp->fr_subtype = CBRANCH_SUBTYPE (n);
863 else
864 fragp->fr_subtype = UBRANCH_SUBTYPE (n);
865
866 return (nios2_relax_subtype_size (fragp->fr_subtype)
867 - nios2_relax_subtype_size (subtype));
868 }
869
870 /* If we got here, it's probably an error. */
871 return 0;
872 }
873
874
875 /* Complete fragp using the data from the relaxation pass. */
876 void
877 md_convert_frag (bfd *headers ATTRIBUTE_UNUSED, segT segment ATTRIBUTE_UNUSED,
878 fragS *fragp)
879 {
880 char *buffer = fragp->fr_literal + fragp->fr_fix;
881 relax_substateT subtype = fragp->fr_subtype;
882 int n = SUBTYPE_ADDIS (subtype);
883 addressT target = fragp->fr_offset;
884 symbolS *symbolp = fragp->fr_symbol;
885 offsetT offset;
886 unsigned int addend_mask, addi_mask;
887 offsetT addend, remainder;
888 int i;
889
890 /* If we didn't or can't relax, this is a regular branch instruction.
891 We just need to generate the fixup for the symbol and offset. */
892 if (n == 0)
893 {
894 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset, 1,
895 BFD_RELOC_16_PCREL);
896 fragp->fr_fix += 4;
897 return;
898 }
899
900 /* Replace the cbranch at fr_fix with one that has the opposite condition
901 in order to jump around the block of instructions we'll be adding. */
902 if (IS_CBRANCH (subtype))
903 {
904 unsigned int br_opcode;
905 int nbytes;
906
907 /* Account for the nextpc and jmp in the pc-relative case, or the two
908 load instructions and jump in the absolute case. */
909 if (nios2_as_options.relax == relax_section)
910 nbytes = (n + 2) * 4;
911 else
912 nbytes = 12;
913
914 br_opcode = md_chars_to_number (buffer, 4);
915 switch (br_opcode & OP_MASK_OP)
916 {
917 case OP_MATCH_BEQ:
918 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BNE;
919 break;
920 case OP_MATCH_BNE:
921 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BEQ ;
922 break;
923 case OP_MATCH_BGE:
924 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BLT ;
925 break;
926 case OP_MATCH_BGEU:
927 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BLTU ;
928 break;
929 case OP_MATCH_BLT:
930 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BGE ;
931 break;
932 case OP_MATCH_BLTU:
933 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BGEU ;
934 break;
935 default:
936 as_bad_where (fragp->fr_file, fragp->fr_line,
937 _("expecting conditional branch for relaxation\n"));
938 abort ();
939 }
940
941 br_opcode = br_opcode | (nbytes << OP_SH_IMM16);
942 md_number_to_chars (buffer, br_opcode, 4);
943 fragp->fr_fix += 4;
944 buffer += 4;
945 }
946
947 /* Load at for the PC-relative case. */
948 if (nios2_as_options.relax == relax_section)
949 {
950 /* Insert the nextpc instruction. */
951 md_number_to_chars (buffer,
952 OP_MATCH_NEXTPC | (AT_REGNUM << OP_SH_RRD), 4);
953 fragp->fr_fix += 4;
954 buffer += 4;
955
956 /* We need to know whether the offset is positive or negative. */
957 target += S_GET_VALUE (symbolp);
958 offset = target - fragp->fr_address - fragp->fr_fix;
959 if (offset > 0)
960 addend = 32767;
961 else
962 addend = -32768;
963 addend_mask = (((unsigned int)addend) & 0xffff) << OP_SH_IMM16;
964
965 /* Insert n-1 addi instructions. */
966 addi_mask = (OP_MATCH_ADDI
967 | (AT_REGNUM << OP_SH_IRD)
968 | (AT_REGNUM << OP_SH_IRS));
969 for (i = 0; i < n - 1; i ++)
970 {
971 md_number_to_chars (buffer, addi_mask | addend_mask, 4);
972 fragp->fr_fix += 4;
973 buffer += 4;
974 }
975
976 /* Insert the last addi instruction to hold the remainder. */
977 remainder = offset - addend * (n - 1);
978 gas_assert (remainder >= -32768 && remainder <= 32767);
979 addend_mask = (((unsigned int)remainder) & 0xffff) << OP_SH_IMM16;
980 md_number_to_chars (buffer, addi_mask | addend_mask, 4);
981 fragp->fr_fix += 4;
982 buffer += 4;
983 }
984
985 /* Load at for the absolute case. */
986 else
987 {
988 md_number_to_chars (buffer, OP_MATCH_ORHI | 0x00400000, 4);
989 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset,
990 0, BFD_RELOC_NIOS2_HI16);
991 fragp->fr_fix += 4;
992 buffer += 4;
993 md_number_to_chars (buffer, OP_MATCH_ORI | 0x08400000, 4);
994 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset,
995 0, BFD_RELOC_NIOS2_LO16);
996 fragp->fr_fix += 4;
997 buffer += 4;
998 }
999
1000 /* Insert the jmp instruction. */
1001 md_number_to_chars (buffer, OP_MATCH_JMP | (AT_REGNUM << OP_SH_RRS), 4);
1002 fragp->fr_fix += 4;
1003 buffer += 4;
1004 }
1005
1006 \f
1007 /** Fixups and overflow checking. */
1008
1009 /* Check a fixup for overflow. */
1010 static bfd_boolean
1011 nios2_check_overflow (valueT fixup, reloc_howto_type *howto)
1012 {
1013 /* Apply the rightshift before checking for overflow. */
1014 fixup = ((signed)fixup) >> howto->rightshift;
1015
1016 /* Check for overflow - return TRUE if overflow, FALSE if not. */
1017 switch (howto->complain_on_overflow)
1018 {
1019 case complain_overflow_dont:
1020 break;
1021 case complain_overflow_bitfield:
1022 if ((fixup >> howto->bitsize) != 0
1023 && ((signed) fixup >> howto->bitsize) != -1)
1024 return TRUE;
1025 break;
1026 case complain_overflow_signed:
1027 if ((fixup & 0x80000000) > 0)
1028 {
1029 /* Check for negative overflow. */
1030 if ((signed) fixup < ((signed) 0x80000000 >> howto->bitsize))
1031 return TRUE;
1032 }
1033 else
1034 {
1035 /* Check for positive overflow. */
1036 if (fixup >= ((unsigned) 1 << (howto->bitsize - 1)))
1037 return TRUE;
1038 }
1039 break;
1040 case complain_overflow_unsigned:
1041 if ((fixup >> howto->bitsize) != 0)
1042 return TRUE;
1043 break;
1044 default:
1045 as_bad (_("error checking for overflow - broken assembler"));
1046 break;
1047 }
1048 return FALSE;
1049 }
1050
1051 /* Emit diagnostic for fixup overflow. */
1052 static void
1053 nios2_diagnose_overflow (valueT fixup, reloc_howto_type *howto,
1054 fixS *fixP, valueT value)
1055 {
1056 if (fixP->fx_r_type == BFD_RELOC_8
1057 || fixP->fx_r_type == BFD_RELOC_16
1058 || fixP->fx_r_type == BFD_RELOC_32)
1059 /* These relocs are against data, not instructions. */
1060 as_bad_where (fixP->fx_file, fixP->fx_line,
1061 _("immediate value 0x%x truncated to 0x%x"),
1062 (unsigned int) fixup,
1063 (unsigned int) (~(~(valueT) 0 << howto->bitsize) & fixup));
1064 else
1065 {
1066 /* What opcode is the instruction? This will determine
1067 whether we check for overflow in immediate values
1068 and what error message we get. */
1069 const struct nios2_opcode *opcode;
1070 enum overflow_type overflow_msg_type;
1071 unsigned int range_min;
1072 unsigned int range_max;
1073 unsigned int address;
1074 gas_assert (fixP->fx_size == 4);
1075 opcode = nios2_find_opcode_hash (value);
1076 gas_assert (opcode);
1077 overflow_msg_type = opcode->overflow_msg;
1078 switch (overflow_msg_type)
1079 {
1080 case call_target_overflow:
1081 range_min
1082 = ((fixP->fx_frag->fr_address + fixP->fx_where) & 0xf0000000);
1083 range_max = range_min + 0x0fffffff;
1084 address = fixup | range_min;
1085
1086 as_bad_where (fixP->fx_file, fixP->fx_line,
1087 _("call target address 0x%08x out of range 0x%08x to 0x%08x"),
1088 address, range_min, range_max);
1089 break;
1090 case branch_target_overflow:
1091 as_bad_where (fixP->fx_file, fixP->fx_line,
1092 _("branch offset %d out of range %d to %d"),
1093 (int)fixup, -32768, 32767);
1094 break;
1095 case address_offset_overflow:
1096 as_bad_where (fixP->fx_file, fixP->fx_line,
1097 _("%s offset %d out of range %d to %d"),
1098 opcode->name, (int)fixup, -32768, 32767);
1099 break;
1100 case signed_immed16_overflow:
1101 as_bad_where (fixP->fx_file, fixP->fx_line,
1102 _("immediate value %d out of range %d to %d"),
1103 (int)fixup, -32768, 32767);
1104 break;
1105 case unsigned_immed16_overflow:
1106 as_bad_where (fixP->fx_file, fixP->fx_line,
1107 _("immediate value %u out of range %u to %u"),
1108 (unsigned int)fixup, 0, 65535);
1109 break;
1110 case unsigned_immed5_overflow:
1111 as_bad_where (fixP->fx_file, fixP->fx_line,
1112 _("immediate value %u out of range %u to %u"),
1113 (unsigned int)fixup, 0, 31);
1114 break;
1115 case custom_opcode_overflow:
1116 as_bad_where (fixP->fx_file, fixP->fx_line,
1117 _("custom instruction opcode %u out of range %u to %u"),
1118 (unsigned int)fixup, 0, 255);
1119 break;
1120 default:
1121 as_bad_where (fixP->fx_file, fixP->fx_line,
1122 _("overflow in immediate argument"));
1123 break;
1124 }
1125 }
1126 }
1127
1128 /* Apply a fixup to the object file. */
1129 void
1130 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
1131 {
1132 /* Assert that the fixup is one we can handle. */
1133 gas_assert (fixP != NULL && valP != NULL
1134 && (fixP->fx_r_type == BFD_RELOC_8
1135 || fixP->fx_r_type == BFD_RELOC_16
1136 || fixP->fx_r_type == BFD_RELOC_32
1137 || fixP->fx_r_type == BFD_RELOC_64
1138 || fixP->fx_r_type == BFD_RELOC_NIOS2_S16
1139 || fixP->fx_r_type == BFD_RELOC_NIOS2_U16
1140 || fixP->fx_r_type == BFD_RELOC_16_PCREL
1141 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALL26
1142 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM5
1143 || fixP->fx_r_type == BFD_RELOC_NIOS2_CACHE_OPX
1144 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM6
1145 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM8
1146 || fixP->fx_r_type == BFD_RELOC_NIOS2_HI16
1147 || fixP->fx_r_type == BFD_RELOC_NIOS2_LO16
1148 || fixP->fx_r_type == BFD_RELOC_NIOS2_HIADJ16
1149 || fixP->fx_r_type == BFD_RELOC_NIOS2_GPREL
1150 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1151 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
1152 || fixP->fx_r_type == BFD_RELOC_NIOS2_UJMP
1153 || fixP->fx_r_type == BFD_RELOC_NIOS2_CJMP
1154 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALLR
1155 || fixP->fx_r_type == BFD_RELOC_NIOS2_ALIGN
1156 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOT16
1157 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALL16
1158 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_LO
1159 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_HA
1160 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_GD16
1161 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LDM16
1162 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LDO16
1163 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_IE16
1164 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LE16
1165 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF
1166 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPREL
1167 /* Add other relocs here as we generate them. */
1168 ));
1169
1170 if (fixP->fx_r_type == BFD_RELOC_64)
1171 {
1172 /* We may reach here due to .8byte directives, but we never output
1173 BFD_RELOC_64; it must be resolved. */
1174 if (fixP->fx_addsy != NULL)
1175 as_bad_where (fixP->fx_file, fixP->fx_line,
1176 _("cannot create 64-bit relocation"));
1177 else
1178 {
1179 md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where,
1180 *valP, 8);
1181 fixP->fx_done = 1;
1182 }
1183 return;
1184 }
1185
1186 /* The value passed in valP can be the value of a fully
1187 resolved expression, or it can be the value of a partially
1188 resolved expression. In the former case, both fixP->fx_addsy
1189 and fixP->fx_subsy are NULL, and fixP->fx_offset == *valP, and
1190 we can fix up the instruction that fixP relates to.
1191 In the latter case, one or both of fixP->fx_addsy and
1192 fixP->fx_subsy are not NULL, and fixP->fx_offset may or may not
1193 equal *valP. We don't need to check for fixP->fx_subsy being null
1194 because the generic part of the assembler generates an error if
1195 it is not an absolute symbol. */
1196 if (fixP->fx_addsy != NULL)
1197 /* Partially resolved expression. */
1198 {
1199 fixP->fx_addnumber = fixP->fx_offset;
1200 fixP->fx_done = 0;
1201
1202 switch (fixP->fx_r_type)
1203 {
1204 case BFD_RELOC_NIOS2_TLS_GD16:
1205 case BFD_RELOC_NIOS2_TLS_LDM16:
1206 case BFD_RELOC_NIOS2_TLS_LDO16:
1207 case BFD_RELOC_NIOS2_TLS_IE16:
1208 case BFD_RELOC_NIOS2_TLS_LE16:
1209 case BFD_RELOC_NIOS2_TLS_DTPMOD:
1210 case BFD_RELOC_NIOS2_TLS_DTPREL:
1211 case BFD_RELOC_NIOS2_TLS_TPREL:
1212 S_SET_THREAD_LOCAL (fixP->fx_addsy);
1213 break;
1214 default:
1215 break;
1216 }
1217 }
1218 else
1219 /* Fully resolved fixup. */
1220 {
1221 reloc_howto_type *howto
1222 = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
1223
1224 if (howto == NULL)
1225 as_bad_where (fixP->fx_file, fixP->fx_line,
1226 _("relocation is not supported"));
1227 else
1228 {
1229 valueT fixup = *valP;
1230 valueT value;
1231 char *buf;
1232
1233 /* If this is a pc-relative relocation, we need to
1234 subtract the current offset within the object file
1235 FIXME : for some reason fixP->fx_pcrel isn't 1 when it should be
1236 so I'm using the howto structure instead to determine this. */
1237 if (howto->pc_relative == 1)
1238 fixup = fixup - (fixP->fx_frag->fr_address + fixP->fx_where + 4);
1239
1240 /* Get the instruction or data to be fixed up. */
1241 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
1242 value = md_chars_to_number (buf, fixP->fx_size);
1243
1244 /* Check for overflow, emitting a diagnostic if necessary. */
1245 if (nios2_check_overflow (fixup, howto))
1246 nios2_diagnose_overflow (fixup, howto, fixP, value);
1247
1248 /* Apply the right shift. */
1249 fixup = ((signed)fixup) >> howto->rightshift;
1250
1251 /* Truncate the fixup to right size. */
1252 switch (fixP->fx_r_type)
1253 {
1254 case BFD_RELOC_NIOS2_HI16:
1255 fixup = (fixup >> 16) & 0xFFFF;
1256 break;
1257 case BFD_RELOC_NIOS2_LO16:
1258 fixup = fixup & 0xFFFF;
1259 break;
1260 case BFD_RELOC_NIOS2_HIADJ16:
1261 fixup = ((fixup >> 16) & 0xFFFF) + ((fixup >> 15) & 0x01);
1262 break;
1263 default:
1264 {
1265 int n = sizeof (fixup) * 8 - howto->bitsize;
1266 fixup = (fixup << n) >> n;
1267 break;
1268 }
1269 }
1270
1271 /* Fix up the instruction. */
1272 value = (value & ~howto->dst_mask) | (fixup << howto->bitpos);
1273 md_number_to_chars (buf, value, fixP->fx_size);
1274 }
1275
1276 fixP->fx_done = 1;
1277 }
1278
1279 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT)
1280 {
1281 fixP->fx_done = 0;
1282 if (fixP->fx_addsy
1283 && !S_IS_DEFINED (fixP->fx_addsy) && !S_IS_WEAK (fixP->fx_addsy))
1284 S_SET_WEAK (fixP->fx_addsy);
1285 }
1286 else if (fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1287 fixP->fx_done = 0;
1288 }
1289
1290
1291 \f
1292 /** Instruction parsing support. */
1293
1294 /* Special relocation directive strings. */
1295
1296 struct nios2_special_relocS
1297 {
1298 const char *string;
1299 bfd_reloc_code_real_type reloc_type;
1300 };
1301
1302 struct nios2_special_relocS nios2_special_reloc[] = {
1303 {"%hiadj", BFD_RELOC_NIOS2_HIADJ16},
1304 {"%hi", BFD_RELOC_NIOS2_HI16},
1305 {"%lo", BFD_RELOC_NIOS2_LO16},
1306 {"%gprel", BFD_RELOC_NIOS2_GPREL},
1307 {"%call", BFD_RELOC_NIOS2_CALL16},
1308 {"%gotoff_lo", BFD_RELOC_NIOS2_GOTOFF_LO},
1309 {"%gotoff_hiadj", BFD_RELOC_NIOS2_GOTOFF_HA},
1310 {"%tls_gd", BFD_RELOC_NIOS2_TLS_GD16},
1311 {"%tls_ldm", BFD_RELOC_NIOS2_TLS_LDM16},
1312 {"%tls_ldo", BFD_RELOC_NIOS2_TLS_LDO16},
1313 {"%tls_ie", BFD_RELOC_NIOS2_TLS_IE16},
1314 {"%tls_le", BFD_RELOC_NIOS2_TLS_LE16},
1315 {"%gotoff", BFD_RELOC_NIOS2_GOTOFF},
1316 {"%got", BFD_RELOC_NIOS2_GOT16}
1317 };
1318
1319 #define NIOS2_NUM_SPECIAL_RELOCS \
1320 (sizeof(nios2_special_reloc)/sizeof(nios2_special_reloc[0]))
1321 const int nios2_num_special_relocs = NIOS2_NUM_SPECIAL_RELOCS;
1322
1323 /* Creates a new nios2_insn_relocS and returns a pointer to it. */
1324 static nios2_insn_relocS *
1325 nios2_insn_reloc_new (bfd_reloc_code_real_type reloc_type, unsigned int pcrel)
1326 {
1327 nios2_insn_relocS *retval;
1328 retval = (nios2_insn_relocS *) malloc (sizeof (nios2_insn_relocS));
1329 if (retval == NULL)
1330 {
1331 as_bad (_("can't create relocation"));
1332 abort ();
1333 }
1334
1335 /* Fill out the fields with default values. */
1336 retval->reloc_next = NULL;
1337 retval->reloc_type = reloc_type;
1338 retval->reloc_pcrel = pcrel;
1339 return retval;
1340 }
1341
1342 /* Frees up memory previously allocated by nios2_insn_reloc_new(). */
1343 /* FIXME: this is never called; memory leak? */
1344 #if 0
1345 static void
1346 nios2_insn_reloc_destroy (nios2_insn_relocS *reloc)
1347 {
1348 gas_assert (reloc != NULL);
1349 free (reloc);
1350 }
1351 #endif
1352
1353 /* The various nios2_assemble_* functions call this
1354 function to generate an expression from a string representing an expression.
1355 It then tries to evaluate the expression, and if it can, returns its value.
1356 If not, it creates a new nios2_insn_relocS and stores the expression and
1357 reloc_type for future use. */
1358 static unsigned long
1359 nios2_assemble_expression (const char *exprstr,
1360 nios2_insn_infoS *insn,
1361 nios2_insn_relocS *prev_reloc,
1362 bfd_reloc_code_real_type reloc_type,
1363 unsigned int pcrel)
1364 {
1365 nios2_insn_relocS *reloc;
1366 char *saved_line_ptr;
1367 unsigned short value;
1368 int i;
1369
1370 gas_assert (exprstr != NULL);
1371 gas_assert (insn != NULL);
1372
1373 /* Check for relocation operators.
1374 Change the relocation type and advance the ptr to the start of
1375 the expression proper. */
1376 for (i = 0; i < nios2_num_special_relocs; i++)
1377 if (strstr (exprstr, nios2_special_reloc[i].string) != NULL)
1378 {
1379 reloc_type = nios2_special_reloc[i].reloc_type;
1380 exprstr += strlen (nios2_special_reloc[i].string) + 1;
1381
1382 /* %lo and %hiadj have different meanings for PC-relative
1383 expressions. */
1384 if (pcrel)
1385 {
1386 if (reloc_type == BFD_RELOC_NIOS2_LO16)
1387 reloc_type = BFD_RELOC_NIOS2_PCREL_LO;
1388 if (reloc_type == BFD_RELOC_NIOS2_HIADJ16)
1389 reloc_type = BFD_RELOC_NIOS2_PCREL_HA;
1390 }
1391
1392 break;
1393 }
1394
1395 /* We potentially have a relocation. */
1396 reloc = nios2_insn_reloc_new (reloc_type, pcrel);
1397 if (prev_reloc != NULL)
1398 prev_reloc->reloc_next = reloc;
1399 else
1400 insn->insn_reloc = reloc;
1401
1402 /* Parse the expression string. */
1403 saved_line_ptr = input_line_pointer;
1404 input_line_pointer = (char *) exprstr;
1405 expression (&reloc->reloc_expression);
1406 input_line_pointer = saved_line_ptr;
1407
1408 /* This is redundant as the fixup will put this into
1409 the instruction, but it is included here so that
1410 self-test mode (-r) works. */
1411 value = 0;
1412 if (nios2_mode == NIOS2_MODE_TEST
1413 && reloc->reloc_expression.X_op == O_constant)
1414 value = reloc->reloc_expression.X_add_number;
1415
1416 return (unsigned long) value;
1417 }
1418
1419 /* Argument assemble functions.
1420 All take an instruction argument string, and a pointer
1421 to an instruction opcode. Upon return the insn_opcode
1422 has the relevant fields filled in to represent the arg
1423 string. The return value is NULL if successful, or
1424 an error message if an error was detected.
1425
1426 The naming conventions for these functions match the args template
1427 in the nios2_opcode structure, as documented in include/opcode/nios2.h.
1428 For example, nios2_assemble_args_dst is used for instructions with
1429 "d,s,t" args.
1430 See nios2_arg_info_structs below for the exact correspondence. */
1431
1432 static void
1433 nios2_assemble_args_dst (nios2_insn_infoS *insn_info)
1434 {
1435 if (insn_info->insn_tokens[1] != NULL
1436 && insn_info->insn_tokens[2] != NULL
1437 && insn_info->insn_tokens[3] != NULL)
1438 {
1439 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1440 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1441 struct nios2_reg *src2 = nios2_reg_lookup (insn_info->insn_tokens[3]);
1442
1443 if (dst == NULL)
1444 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1445 else
1446 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1447
1448 if (src1 == NULL)
1449 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1450 else
1451 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1452
1453 if (src2 == NULL)
1454 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1455 else
1456 SET_INSN_FIELD (RRT, insn_info->insn_code, src2->index);
1457
1458 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1459 }
1460 }
1461
1462 static void
1463 nios2_assemble_args_tsi (nios2_insn_infoS *insn_info)
1464 {
1465 if (insn_info->insn_tokens[1] != NULL &&
1466 insn_info->insn_tokens[2] != NULL && insn_info->insn_tokens[3] != NULL)
1467 {
1468 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1469 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1470 unsigned int src2
1471 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1472 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1473 0);
1474
1475 if (dst == NULL)
1476 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1477 else
1478 SET_INSN_FIELD (IRT, insn_info->insn_code, dst->index);
1479
1480 if (src1 == NULL)
1481 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1482 else
1483 SET_INSN_FIELD (IRS, insn_info->insn_code, src1->index);
1484
1485 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1486 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1487 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1488 }
1489 }
1490
1491 static void
1492 nios2_assemble_args_tsu (nios2_insn_infoS *insn_info)
1493 {
1494 if (insn_info->insn_tokens[1] != NULL
1495 && insn_info->insn_tokens[2] != NULL
1496 && insn_info->insn_tokens[3] != NULL)
1497 {
1498 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1499 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1500 unsigned int src2
1501 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1502 insn_info->insn_reloc, BFD_RELOC_NIOS2_U16,
1503 0);
1504
1505 if (dst == NULL)
1506 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1507 else
1508 SET_INSN_FIELD (IRT, insn_info->insn_code, dst->index);
1509
1510 if (src1 == NULL)
1511 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1512 else
1513 SET_INSN_FIELD (IRS, insn_info->insn_code, src1->index);
1514
1515 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1516 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1517 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1518 }
1519 }
1520
1521 static void
1522 nios2_assemble_args_sto (nios2_insn_infoS *insn_info)
1523 {
1524 if (insn_info->insn_tokens[1] != NULL
1525 && insn_info->insn_tokens[2] != NULL
1526 && insn_info->insn_tokens[3] != NULL)
1527 {
1528 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1529 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1530 unsigned int src2
1531 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1532 insn_info->insn_reloc, BFD_RELOC_16_PCREL,
1533 1);
1534
1535 if (dst == NULL)
1536 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1537 else
1538 SET_INSN_FIELD (IRS, insn_info->insn_code, dst->index);
1539
1540 if (src1 == NULL)
1541 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1542 else
1543 SET_INSN_FIELD (IRT, insn_info->insn_code, src1->index);
1544
1545 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1546 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1547 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1548 }
1549 }
1550
1551 static void
1552 nios2_assemble_args_o (nios2_insn_infoS *insn_info)
1553 {
1554 if (insn_info->insn_tokens[1] != NULL)
1555 {
1556 unsigned long immed
1557 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1558 insn_info->insn_reloc, BFD_RELOC_16_PCREL,
1559 1);
1560 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1561 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1562 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1563 }
1564 }
1565
1566 static void
1567 nios2_assemble_args_is (nios2_insn_infoS *insn_info)
1568 {
1569 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1570 {
1571 struct nios2_reg *addr_src = nios2_reg_lookup (insn_info->insn_tokens[2]);
1572 unsigned long immed
1573 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1574 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1575 0);
1576
1577 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1578
1579 if (addr_src == NULL)
1580 as_bad (_("unknown base register %s"), insn_info->insn_tokens[2]);
1581 else
1582 SET_INSN_FIELD (RRS, insn_info->insn_code, addr_src->index);
1583
1584 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1585 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1586 }
1587 }
1588
1589 static void
1590 nios2_assemble_args_m (nios2_insn_infoS *insn_info)
1591 {
1592 if (insn_info->insn_tokens[1] != NULL)
1593 {
1594 unsigned long immed
1595 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1596 insn_info->insn_reloc,
1597 BFD_RELOC_NIOS2_CALL26, 0);
1598
1599 SET_INSN_FIELD (IMM26, insn_info->insn_code, immed);
1600 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1601 SET_INSN_FIELD (IMM26, insn_info->insn_code, 0);
1602 }
1603 }
1604
1605 static void
1606 nios2_assemble_args_s (nios2_insn_infoS *insn_info)
1607 {
1608 if (insn_info->insn_tokens[1] != NULL)
1609 {
1610 struct nios2_reg *src = nios2_reg_lookup (insn_info->insn_tokens[1]);
1611 if (src == NULL)
1612 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1613 else
1614 SET_INSN_FIELD (RRS, insn_info->insn_code, src->index);
1615
1616 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1617 }
1618 }
1619
1620 static void
1621 nios2_assemble_args_tis (nios2_insn_infoS *insn_info)
1622 {
1623 if (insn_info->insn_tokens[1] != NULL
1624 && insn_info->insn_tokens[2] != NULL
1625 && insn_info->insn_tokens[3] != NULL)
1626 {
1627 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1628 struct nios2_reg *addr_src = nios2_reg_lookup (insn_info->insn_tokens[3]);
1629 unsigned long immed
1630 = nios2_assemble_expression (insn_info->insn_tokens[2], insn_info,
1631 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1632 0);
1633
1634 if (addr_src == NULL)
1635 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1636 else
1637 SET_INSN_FIELD (RRS, insn_info->insn_code, addr_src->index);
1638
1639 if (dst == NULL)
1640 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1641 else
1642 SET_INSN_FIELD (RRT, insn_info->insn_code, dst->index);
1643
1644 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1645 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1646 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1647 }
1648 }
1649
1650 static void
1651 nios2_assemble_args_dc (nios2_insn_infoS *insn_info)
1652 {
1653 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1654 {
1655 struct nios2_reg *ctl = nios2_reg_lookup (insn_info->insn_tokens[2]);
1656 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1657
1658 if (ctl == NULL)
1659 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1660 else
1661 SET_INSN_FIELD (RCTL, insn_info->insn_code, ctl->index);
1662
1663 if (dst == NULL)
1664 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1665 else
1666 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1667
1668 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1669 }
1670 }
1671
1672 static void
1673 nios2_assemble_args_cs (nios2_insn_infoS *insn_info)
1674 {
1675 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1676 {
1677 struct nios2_reg *ctl = nios2_reg_lookup (insn_info->insn_tokens[1]);
1678 struct nios2_reg *src = nios2_reg_lookup (insn_info->insn_tokens[2]);
1679
1680 if (ctl == NULL)
1681 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1682 else if (ctl->index == 4)
1683 as_bad (_("ipending control register (ctl4) is read-only\n"));
1684 else
1685 SET_INSN_FIELD (RCTL, insn_info->insn_code, ctl->index);
1686
1687 if (src == NULL)
1688 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1689 else
1690 SET_INSN_FIELD (RRS, insn_info->insn_code, src->index);
1691
1692 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1693 }
1694 }
1695
1696 static void
1697 nios2_assemble_args_ds (nios2_insn_infoS * insn_info)
1698 {
1699 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1700 {
1701 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1702 struct nios2_reg *src = nios2_reg_lookup (insn_info->insn_tokens[2]);
1703
1704 if (dst == NULL)
1705 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1706 else
1707 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1708
1709 if (src == NULL)
1710 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1711 else
1712 SET_INSN_FIELD (RRS, insn_info->insn_code, src->index);
1713
1714 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1715 }
1716 }
1717
1718 static void
1719 nios2_assemble_args_ldst (nios2_insn_infoS *insn_info)
1720 {
1721 if (insn_info->insn_tokens[1] != NULL
1722 && insn_info->insn_tokens[2] != NULL
1723 && insn_info->insn_tokens[3] != NULL
1724 && insn_info->insn_tokens[4] != NULL)
1725 {
1726 unsigned long custom_n
1727 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1728 insn_info->insn_reloc,
1729 BFD_RELOC_NIOS2_IMM8, 0);
1730
1731 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[2]);
1732 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[3]);
1733 struct nios2_reg *src2 = nios2_reg_lookup (insn_info->insn_tokens[4]);
1734
1735 SET_INSN_FIELD (CUSTOM_N, insn_info->insn_code, custom_n);
1736
1737 if (dst == NULL)
1738 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1739 else
1740 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1741
1742 if (src1 == NULL)
1743 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1744 else
1745 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1746
1747 if (src2 == NULL)
1748 as_bad (_("unknown register %s"), insn_info->insn_tokens[4]);
1749 else
1750 SET_INSN_FIELD (RRT, insn_info->insn_code, src2->index);
1751
1752 /* Set or clear the bits to indicate whether coprocessor registers are
1753 used. */
1754 if (nios2_coproc_reg (insn_info->insn_tokens[2]))
1755 SET_INSN_FIELD (CUSTOM_C, insn_info->insn_code, 0);
1756 else
1757 SET_INSN_FIELD (CUSTOM_C, insn_info->insn_code, 1);
1758
1759 if (nios2_coproc_reg (insn_info->insn_tokens[3]))
1760 SET_INSN_FIELD (CUSTOM_A, insn_info->insn_code, 0);
1761 else
1762 SET_INSN_FIELD (CUSTOM_A, insn_info->insn_code, 1);
1763
1764 if (nios2_coproc_reg (insn_info->insn_tokens[4]))
1765 SET_INSN_FIELD (CUSTOM_B, insn_info->insn_code, 0);
1766 else
1767 SET_INSN_FIELD (CUSTOM_B, insn_info->insn_code, 1);
1768
1769 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[5]);
1770 }
1771 }
1772
1773 static void
1774 nios2_assemble_args_none (nios2_insn_infoS *insn_info ATTRIBUTE_UNUSED)
1775 {
1776 /* Nothing to do. */
1777 }
1778
1779 static void
1780 nios2_assemble_args_dsj (nios2_insn_infoS *insn_info)
1781 {
1782 if (insn_info->insn_tokens[1] != NULL
1783 && insn_info->insn_tokens[2] != NULL
1784 && insn_info->insn_tokens[3] != NULL)
1785 {
1786 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1787 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1788
1789 /* A 5-bit constant expression. */
1790 unsigned int src2 =
1791 nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1792 insn_info->insn_reloc,
1793 BFD_RELOC_NIOS2_IMM5, 0);
1794
1795 if (dst == NULL)
1796 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1797 else
1798 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1799
1800 if (src1 == NULL)
1801 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1802 else
1803 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1804
1805 SET_INSN_FIELD (IMM5, insn_info->insn_code, src2);
1806 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1807 SET_INSN_FIELD (IMM5, insn_info->insn_code, 0);
1808 }
1809 }
1810
1811 static void
1812 nios2_assemble_args_d (nios2_insn_infoS *insn_info)
1813 {
1814 if (insn_info->insn_tokens[1] != NULL)
1815 {
1816 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1817
1818 if (dst == NULL)
1819 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1820 else
1821 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1822
1823 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1824 }
1825 }
1826
1827 static void
1828 nios2_assemble_args_b (nios2_insn_infoS *insn_info)
1829 {
1830 unsigned int imm5 = 0;
1831
1832 if (insn_info->insn_tokens[1] != NULL)
1833 {
1834 /* A 5-bit constant expression. */
1835 imm5 = nios2_assemble_expression (insn_info->insn_tokens[1],
1836 insn_info, insn_info->insn_reloc,
1837 BFD_RELOC_NIOS2_IMM5, 0);
1838 SET_INSN_FIELD (TRAP_IMM5, insn_info->insn_code, imm5);
1839 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1840 }
1841
1842 SET_INSN_FIELD (TRAP_IMM5, insn_info->insn_code, imm5);
1843
1844 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1845 }
1846
1847 /* This table associates pointers to functions that parse the arguments to an
1848 instruction and fill in the relevant fields of the instruction. */
1849 const nios2_arg_infoS nios2_arg_info_structs[] = {
1850 /* args, assemble_args_func */
1851 {"d,s,t", nios2_assemble_args_dst},
1852 {"d,s,t,E", nios2_assemble_args_dst},
1853 {"t,s,i", nios2_assemble_args_tsi},
1854 {"t,s,i,E", nios2_assemble_args_tsi},
1855 {"t,s,u", nios2_assemble_args_tsu},
1856 {"t,s,u,E", nios2_assemble_args_tsu},
1857 {"s,t,o", nios2_assemble_args_sto},
1858 {"s,t,o,E", nios2_assemble_args_sto},
1859 {"o", nios2_assemble_args_o},
1860 {"o,E", nios2_assemble_args_o},
1861 {"s", nios2_assemble_args_s},
1862 {"s,E", nios2_assemble_args_s},
1863 {"", nios2_assemble_args_none},
1864 {"E", nios2_assemble_args_none},
1865 {"i(s)", nios2_assemble_args_is},
1866 {"i(s)E", nios2_assemble_args_is},
1867 {"m", nios2_assemble_args_m},
1868 {"m,E", nios2_assemble_args_m},
1869 {"t,i(s)", nios2_assemble_args_tis},
1870 {"t,i(s)E", nios2_assemble_args_tis},
1871 {"d,c", nios2_assemble_args_dc},
1872 {"d,c,E", nios2_assemble_args_dc},
1873 {"c,s", nios2_assemble_args_cs},
1874 {"c,s,E", nios2_assemble_args_cs},
1875 {"d,s", nios2_assemble_args_ds},
1876 {"d,s,E", nios2_assemble_args_ds},
1877 {"l,d,s,t", nios2_assemble_args_ldst},
1878 {"l,d,s,t,E", nios2_assemble_args_ldst},
1879 {"d,s,j", nios2_assemble_args_dsj},
1880 {"d,s,j,E", nios2_assemble_args_dsj},
1881 {"d", nios2_assemble_args_d},
1882 {"d,E", nios2_assemble_args_d},
1883 {"b", nios2_assemble_args_b},
1884 {"b,E", nios2_assemble_args_b}
1885 };
1886
1887 #define NIOS2_NUM_ARGS \
1888 ((sizeof(nios2_arg_info_structs)/sizeof(nios2_arg_info_structs[0])))
1889 const int nios2_num_arg_info_structs = NIOS2_NUM_ARGS;
1890
1891 /* The function consume_arg takes a pointer into a string
1892 of instruction tokens (args) and a pointer into a string
1893 representing the expected sequence of tokens and separators.
1894 It checks whether the first argument in argstr is of the
1895 expected type, throwing an error if it is not, and returns
1896 the pointer argstr. */
1897 static char *
1898 nios2_consume_arg (nios2_insn_infoS *insn, char *argstr, const char *parsestr)
1899 {
1900 char *temp;
1901 int regno = -1;
1902
1903 switch (*parsestr)
1904 {
1905 case 'c':
1906 if (!nios2_control_register_arg_p (argstr))
1907 as_bad (_("expecting control register"));
1908 break;
1909 case 'd':
1910 case 's':
1911 case 't':
1912
1913 /* We check to make sure we don't have a control register. */
1914 if (nios2_control_register_arg_p (argstr))
1915 as_bad (_("illegal use of control register"));
1916
1917 /* And whether coprocessor registers are valid here. */
1918 if (nios2_coproc_reg (argstr)
1919 && insn->insn_nios2_opcode->match != OP_MATCH_CUSTOM)
1920 as_bad (_("illegal use of coprocessor register\n"));
1921
1922 /* Extract a register number if the register is of the
1923 form r[0-9]+, if it is a normal register, set
1924 regno to its number (0-31), else set regno to -1. */
1925 if (argstr[0] == 'r' && ISDIGIT (argstr[1]))
1926 {
1927 char *p = argstr;
1928
1929 ++p;
1930 regno = 0;
1931 do
1932 {
1933 regno *= 10;
1934 regno += *p - '0';
1935 ++p;
1936 }
1937 while (ISDIGIT (*p));
1938 }
1939 else
1940 regno = -1;
1941
1942 /* And whether we are using at. */
1943 if (!nios2_as_options.noat
1944 && (regno == 1 || strprefix (argstr, "at")))
1945 as_warn (_("Register at (r1) can sometimes be corrupted by assembler "
1946 "optimizations.\n"
1947 "Use .set noat to turn off those optimizations (and this "
1948 "warning)."));
1949
1950 /* And whether we are using oci registers. */
1951 if (!nios2_as_options.nobreak
1952 && (regno == 25 || strprefix (argstr, "bt")))
1953 as_warn (_("The debugger will corrupt bt (r25). If you don't need to "
1954 "debug this\n"
1955 "code then use .set nobreak to turn off this warning."));
1956
1957 if (!nios2_as_options.nobreak
1958 && (regno == 30 || strprefix (argstr, "ba")))
1959 as_warn (_("The debugger will corrupt ba (r30). If you don't need to "
1960 "debug this\n"
1961 "code then use .set nobreak to turn off this warning."));
1962 break;
1963 case 'i':
1964 case 'u':
1965 if (*argstr == '%')
1966 {
1967 if (nios2_special_relocation_p (argstr))
1968 {
1969 /* We zap the parentheses because we don't want them confused
1970 with separators. */
1971 temp = strchr (argstr, '(');
1972 if (temp != NULL)
1973 *temp = ' ';
1974 temp = strchr (argstr, ')');
1975 if (temp != NULL)
1976 *temp = ' ';
1977 }
1978 else
1979 as_bad (_("badly formed expression near %s"), argstr);
1980 }
1981 break;
1982 case 'm':
1983 case 'j':
1984 case 'l':
1985 case 'b':
1986 /* We can't have %hi, %lo or %hiadj here. */
1987 if (*argstr == '%')
1988 as_bad (_("badly formed expression near %s"), argstr);
1989 break;
1990 case 'o':
1991 break;
1992 default:
1993 BAD_CASE (*parsestr);
1994 break;
1995 }
1996
1997 return argstr;
1998 }
1999
2000 /* The function consume_separator takes a pointer into a string
2001 of instruction tokens (args) and a pointer into a string representing
2002 the expected sequence of tokens and separators. It finds the first
2003 instance of the character pointed to by separator in argstr, and
2004 returns a pointer to the next element of argstr, which is the
2005 following token in the sequence. */
2006 static char *
2007 nios2_consume_separator (char *argstr, const char *separator)
2008 {
2009 char *p;
2010
2011 /* If we have a opcode reg, expr(reg) type instruction, and
2012 * we are separating the expr from the (reg), we find the last
2013 * (, just in case the expression has parentheses. */
2014
2015 if (*separator == '(')
2016 p = strrchr (argstr, *separator);
2017 else
2018 p = strchr (argstr, *separator);
2019
2020 if (p != NULL)
2021 *p++ = 0;
2022 else
2023 as_bad (_("expecting %c near %s"), *separator, argstr);
2024 return p;
2025 }
2026
2027
2028 /* The principal argument parsing function which takes a string argstr
2029 representing the instruction arguments for insn, and extracts the argument
2030 tokens matching parsestr into parsed_args. */
2031 static void
2032 nios2_parse_args (nios2_insn_infoS *insn, char *argstr,
2033 const char *parsestr, char **parsed_args)
2034 {
2035 char *p;
2036 char *end = NULL;
2037 int i;
2038 p = argstr;
2039 i = 0;
2040 bfd_boolean terminate = FALSE;
2041
2042 /* This rest of this function is it too fragile and it mostly works,
2043 therefore special case this one. */
2044 if (*parsestr == 0 && argstr != 0)
2045 {
2046 as_bad (_("too many arguments"));
2047 parsed_args[0] = NULL;
2048 return;
2049 }
2050
2051 while (p != NULL && !terminate && i < NIOS2_MAX_INSN_TOKENS)
2052 {
2053 parsed_args[i] = nios2_consume_arg (insn, p, parsestr);
2054 ++parsestr;
2055 if (*parsestr != '\0')
2056 {
2057 p = nios2_consume_separator (p, parsestr);
2058 ++parsestr;
2059 }
2060 else
2061 {
2062 /* Check that the argument string has no trailing arguments. */
2063 /* If we've got a %lo etc relocation, we've zapped the parens with
2064 spaces. */
2065 if (nios2_special_relocation_p (p))
2066 end = strpbrk (p, ",");
2067 else
2068 end = strpbrk (p, " ,");
2069
2070 if (end != NULL)
2071 as_bad (_("too many arguments"));
2072 }
2073
2074 if (*parsestr == '\0' || (p != NULL && *p == '\0'))
2075 terminate = TRUE;
2076 ++i;
2077 }
2078
2079 parsed_args[i] = NULL;
2080
2081 /* The argument to break and trap instructions is optional; complain
2082 for other cases of missing arguments. */
2083 if (*parsestr != '\0'
2084 && insn->insn_nios2_opcode->match != OP_MATCH_BREAK
2085 && insn->insn_nios2_opcode->match != OP_MATCH_TRAP)
2086 as_bad (_("missing argument"));
2087 }
2088
2089
2090 \f
2091 /** Support for pseudo-op parsing. These are macro-like opcodes that
2092 expand into real insns by suitable fiddling with the operands. */
2093
2094 /* Append the string modifier to the string contained in the argument at
2095 parsed_args[ndx]. */
2096 static void
2097 nios2_modify_arg (char **parsed_args, const char *modifier,
2098 int unused ATTRIBUTE_UNUSED, int ndx)
2099 {
2100 char *tmp = parsed_args[ndx];
2101
2102 parsed_args[ndx]
2103 = (char *) malloc (strlen (parsed_args[ndx]) + strlen (modifier) + 1);
2104 strcpy (parsed_args[ndx], tmp);
2105 strcat (parsed_args[ndx], modifier);
2106 }
2107
2108 /* Modify parsed_args[ndx] by negating that argument. */
2109 static void
2110 nios2_negate_arg (char **parsed_args, const char *modifier ATTRIBUTE_UNUSED,
2111 int unused ATTRIBUTE_UNUSED, int ndx)
2112 {
2113 char *tmp = parsed_args[ndx];
2114
2115 parsed_args[ndx]
2116 = (char *) malloc (strlen ("~(") + strlen (parsed_args[ndx]) +
2117 strlen (")+1") + 1);
2118
2119 strcpy (parsed_args[ndx], "~(");
2120 strcat (parsed_args[ndx], tmp);
2121 strcat (parsed_args[ndx], ")+1");
2122 }
2123
2124 /* The function nios2_swap_args swaps the pointers at indices index_1 and
2125 index_2 in the array parsed_args[] - this is used for operand swapping
2126 for comparison operations. */
2127 static void
2128 nios2_swap_args (char **parsed_args, const char *unused ATTRIBUTE_UNUSED,
2129 int index_1, int index_2)
2130 {
2131 char *tmp;
2132 gas_assert (index_1 < NIOS2_MAX_INSN_TOKENS
2133 && index_2 < NIOS2_MAX_INSN_TOKENS);
2134 tmp = parsed_args[index_1];
2135 parsed_args[index_1] = parsed_args[index_2];
2136 parsed_args[index_2] = tmp;
2137 }
2138
2139 /* This function appends the string appnd to the array of strings in
2140 parsed_args num times starting at index start in the array. */
2141 static void
2142 nios2_append_arg (char **parsed_args, const char *appnd, int num,
2143 int start)
2144 {
2145 int i, count;
2146 char *tmp;
2147
2148 gas_assert ((start + num) < NIOS2_MAX_INSN_TOKENS);
2149
2150 if (nios2_mode == NIOS2_MODE_TEST)
2151 tmp = parsed_args[start];
2152 else
2153 tmp = NULL;
2154
2155 for (i = start, count = num; count > 0; ++i, --count)
2156 parsed_args[i] = (char *) appnd;
2157
2158 gas_assert (i == (start + num));
2159 parsed_args[i] = tmp;
2160 parsed_args[i + 1] = NULL;
2161 }
2162
2163 /* This function inserts the string insert num times in the array
2164 parsed_args, starting at the index start. */
2165 static void
2166 nios2_insert_arg (char **parsed_args, const char *insert, int num,
2167 int start)
2168 {
2169 int i, count;
2170
2171 gas_assert ((start + num) < NIOS2_MAX_INSN_TOKENS);
2172
2173 /* Move the existing arguments up to create space. */
2174 for (i = NIOS2_MAX_INSN_TOKENS; i - num >= start; --i)
2175 parsed_args[i] = parsed_args[i - num];
2176
2177 for (i = start, count = num; count > 0; ++i, --count)
2178 parsed_args[i] = (char *) insert;
2179 }
2180
2181 /* Cleanup function to free malloc'ed arg strings. */
2182 static void
2183 nios2_free_arg (char **parsed_args, int num ATTRIBUTE_UNUSED, int start)
2184 {
2185 if (parsed_args[start])
2186 {
2187 free (parsed_args[start]);
2188 parsed_args[start] = NULL;
2189 }
2190 }
2191
2192 /* This function swaps the pseudo-op for a real op. */
2193 static nios2_ps_insn_infoS*
2194 nios2_translate_pseudo_insn (nios2_insn_infoS *insn)
2195 {
2196
2197 nios2_ps_insn_infoS *ps_insn;
2198
2199 /* Find which real insn the pseudo-op transates to and
2200 switch the insn_info ptr to point to it. */
2201 ps_insn = nios2_ps_lookup (insn->insn_nios2_opcode->name);
2202
2203 if (ps_insn != NULL)
2204 {
2205 insn->insn_nios2_opcode = nios2_opcode_lookup (ps_insn->insn);
2206 insn->insn_tokens[0] = insn->insn_nios2_opcode->name;
2207 /* Modify the args so they work with the real insn. */
2208 ps_insn->arg_modifer_func ((char **) insn->insn_tokens,
2209 ps_insn->arg_modifier, ps_insn->num,
2210 ps_insn->index);
2211 }
2212 else
2213 /* we cannot recover from this. */
2214 as_fatal (_("unrecognized pseudo-instruction %s"),
2215 ps_insn->pseudo_insn);
2216 return ps_insn;
2217 }
2218
2219 /* Invoke the cleanup handler for pseudo-insn ps_insn on insn. */
2220 static void
2221 nios2_cleanup_pseudo_insn (nios2_insn_infoS *insn,
2222 nios2_ps_insn_infoS *ps_insn)
2223 {
2224 if (ps_insn->arg_cleanup_func)
2225 (ps_insn->arg_cleanup_func) ((char **) insn->insn_tokens,
2226 ps_insn->num, ps_insn->index);
2227 }
2228
2229 const nios2_ps_insn_infoS nios2_ps_insn_info_structs[] = {
2230 /* pseudo-op, real-op, arg, arg_modifier_func, num, index, arg_cleanup_func */
2231 {"mov", "add", nios2_append_arg, "zero", 1, 3, NULL},
2232 {"movi", "addi", nios2_insert_arg, "zero", 1, 2, NULL},
2233 {"movhi", "orhi", nios2_insert_arg, "zero", 1, 2, NULL},
2234 {"movui", "ori", nios2_insert_arg, "zero", 1, 2, NULL},
2235 {"movia", "orhi", nios2_insert_arg, "zero", 1, 2, NULL},
2236 {"nop", "add", nios2_append_arg, "zero", 3, 1, NULL},
2237 {"bgt", "blt", nios2_swap_args, "", 1, 2, NULL},
2238 {"bgtu", "bltu", nios2_swap_args, "", 1, 2, NULL},
2239 {"ble", "bge", nios2_swap_args, "", 1, 2, NULL},
2240 {"bleu", "bgeu", nios2_swap_args, "", 1, 2, NULL},
2241 {"cmpgt", "cmplt", nios2_swap_args, "", 2, 3, NULL},
2242 {"cmpgtu", "cmpltu", nios2_swap_args, "", 2, 3, NULL},
2243 {"cmple", "cmpge", nios2_swap_args, "", 2, 3, NULL},
2244 {"cmpleu", "cmpgeu", nios2_swap_args, "", 2, 3, NULL},
2245 {"cmpgti", "cmpgei", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2246 {"cmpgtui", "cmpgeui", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2247 {"cmplei", "cmplti", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2248 {"cmpleui", "cmpltui", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2249 {"subi", "addi", nios2_negate_arg, "", 0, 3, nios2_free_arg}
2250 /* Add further pseudo-ops here. */
2251 };
2252
2253 #define NIOS2_NUM_PSEUDO_INSNS \
2254 ((sizeof(nios2_ps_insn_info_structs)/ \
2255 sizeof(nios2_ps_insn_info_structs[0])))
2256 const int nios2_num_ps_insn_info_structs = NIOS2_NUM_PSEUDO_INSNS;
2257
2258 \f
2259 /** Assembler output support. */
2260
2261 static int
2262 can_evaluate_expr (nios2_insn_infoS *insn)
2263 {
2264 /* Remove this check for null and the invalid insn "ori r9, 1234" seg faults. */
2265 if (!insn->insn_reloc)
2266 /* ??? Ideally we should do something other than as_fatal here as we can
2267 continue to assemble.
2268 However this function (actually the output_* functions) should not
2269 have been called in the first place once an illegal instruction had
2270 been encountered. */
2271 as_fatal (_("Invalid instruction encountered, cannot recover. No assembly attempted."));
2272
2273 if (insn->insn_reloc->reloc_expression.X_op == O_constant)
2274 return 1;
2275
2276 return 0;
2277 }
2278
2279 static int
2280 get_expr_value (nios2_insn_infoS *insn)
2281 {
2282 int value = 0;
2283
2284 if (insn->insn_reloc->reloc_expression.X_op == O_constant)
2285 value = insn->insn_reloc->reloc_expression.X_add_number;
2286 return value;
2287 }
2288
2289 /* Output a normal instruction. */
2290 static void
2291 output_insn (nios2_insn_infoS *insn)
2292 {
2293 char *f;
2294 nios2_insn_relocS *reloc;
2295
2296 f = frag_more (4);
2297 /* This allocates enough space for the instruction
2298 and puts it in the current frag. */
2299 md_number_to_chars (f, insn->insn_code, 4);
2300 /* Emit debug info. */
2301 dwarf2_emit_insn (4);
2302 /* Create any fixups to be acted on later. */
2303 for (reloc = insn->insn_reloc; reloc != NULL; reloc = reloc->reloc_next)
2304 fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
2305 &reloc->reloc_expression, reloc->reloc_pcrel,
2306 reloc->reloc_type);
2307 }
2308
2309 /* Output an unconditional branch. */
2310 static void
2311 output_ubranch (nios2_insn_infoS *insn)
2312 {
2313 nios2_insn_relocS *reloc = insn->insn_reloc;
2314
2315 /* If the reloc is NULL, there was an error assembling the branch. */
2316 if (reloc != NULL)
2317 {
2318 symbolS *symp = reloc->reloc_expression.X_add_symbol;
2319 offsetT offset = reloc->reloc_expression.X_add_number;
2320 char *f;
2321
2322 /* Tag dwarf2 debug info to the address at the start of the insn.
2323 We must do it before frag_var() below closes off the frag. */
2324 dwarf2_emit_insn (0);
2325
2326 /* We create a machine dependent frag which can grow
2327 to accommodate the largest possible instruction sequence
2328 this may generate. */
2329 f = frag_var (rs_machine_dependent,
2330 UBRANCH_MAX_SIZE, 4, UBRANCH_SUBTYPE (0),
2331 symp, offset, NULL);
2332
2333 md_number_to_chars (f, insn->insn_code, 4);
2334
2335 /* We leave fixup generation to md_convert_frag. */
2336 }
2337 }
2338
2339 /* Output a conditional branch. */
2340 static void
2341 output_cbranch (nios2_insn_infoS *insn)
2342 {
2343 nios2_insn_relocS *reloc = insn->insn_reloc;
2344
2345 /* If the reloc is NULL, there was an error assembling the branch. */
2346 if (reloc != NULL)
2347 {
2348 symbolS *symp = reloc->reloc_expression.X_add_symbol;
2349 offsetT offset = reloc->reloc_expression.X_add_number;
2350 char *f;
2351
2352 /* Tag dwarf2 debug info to the address at the start of the insn.
2353 We must do it before frag_var() below closes off the frag. */
2354 dwarf2_emit_insn (0);
2355
2356 /* We create a machine dependent frag which can grow
2357 to accommodate the largest possible instruction sequence
2358 this may generate. */
2359 f = frag_var (rs_machine_dependent,
2360 CBRANCH_MAX_SIZE, 4, CBRANCH_SUBTYPE (0),
2361 symp, offset, NULL);
2362
2363 md_number_to_chars (f, insn->insn_code, 4);
2364
2365 /* We leave fixup generation to md_convert_frag. */
2366 }
2367 }
2368
2369 /* Output a call sequence. Since calls are not pc-relative for NIOS2,
2370 but are page-relative, we cannot tell at any stage in assembly
2371 whether a call will be out of range since a section may be linked
2372 at any address. So if we are relaxing, we convert all call instructions
2373 to long call sequences, and rely on the linker to relax them back to
2374 short calls. */
2375 static void
2376 output_call (nios2_insn_infoS *insn)
2377 {
2378 /* This allocates enough space for the instruction
2379 and puts it in the current frag. */
2380 char *f = frag_more (12);
2381 nios2_insn_relocS *reloc = insn->insn_reloc;
2382
2383 md_number_to_chars (f, OP_MATCH_ORHI | 0x00400000, 4);
2384 dwarf2_emit_insn (4);
2385 fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
2386 &reloc->reloc_expression, 0, BFD_RELOC_NIOS2_HI16);
2387 md_number_to_chars (f + 4, OP_MATCH_ORI | 0x08400000, 4);
2388 dwarf2_emit_insn (4);
2389 fix_new_exp (frag_now, f - frag_now->fr_literal + 4, 4,
2390 &reloc->reloc_expression, 0, BFD_RELOC_NIOS2_LO16);
2391 md_number_to_chars (f + 8, OP_MATCH_CALLR | 0x08000000, 4);
2392 dwarf2_emit_insn (4);
2393 }
2394
2395 /* Output an addi - will silently convert to
2396 orhi if rA = r0 and (expr & 0xffff0000) == 0. */
2397 static void
2398 output_addi (nios2_insn_infoS *insn)
2399 {
2400 if (can_evaluate_expr (insn))
2401 {
2402 int expr_val = get_expr_value (insn);
2403 if (GET_INSN_FIELD (RRS, insn->insn_code) == 0
2404 && (expr_val & 0xffff) == 0
2405 && expr_val != 0)
2406 {
2407 /* We really want a movhi (orhi) here. */
2408 insn->insn_code = (insn->insn_code & ~OP_MATCH_ADDI) | OP_MATCH_ORHI;
2409 insn->insn_reloc->reloc_expression.X_add_number =
2410 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2411 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2412 }
2413 }
2414
2415 /* Output an instruction. */
2416 output_insn (insn);
2417 }
2418
2419 static void
2420 output_andi (nios2_insn_infoS *insn)
2421 {
2422 if (can_evaluate_expr (insn))
2423 {
2424 int expr_val = get_expr_value (insn);
2425 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2426 {
2427 /* We really want a movhi (orhi) here. */
2428 insn->insn_code = (insn->insn_code & ~OP_MATCH_ANDI) | OP_MATCH_ANDHI;
2429 insn->insn_reloc->reloc_expression.X_add_number =
2430 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2431 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2432 }
2433 }
2434
2435 /* Output an instruction. */
2436 output_insn (insn);
2437 }
2438
2439 static void
2440 output_ori (nios2_insn_infoS *insn)
2441 {
2442 if (can_evaluate_expr (insn))
2443 {
2444 int expr_val = get_expr_value (insn);
2445 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2446 {
2447 /* We really want a movhi (orhi) here. */
2448 insn->insn_code = (insn->insn_code & ~OP_MATCH_ORI) | OP_MATCH_ORHI;
2449 insn->insn_reloc->reloc_expression.X_add_number =
2450 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2451 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2452 }
2453 }
2454
2455 /* Output an instruction. */
2456 output_insn (insn);
2457 }
2458
2459 static void
2460 output_xori (nios2_insn_infoS *insn)
2461 {
2462 if (can_evaluate_expr (insn))
2463 {
2464 int expr_val = get_expr_value (insn);
2465 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2466 {
2467 /* We really want a movhi (orhi) here. */
2468 insn->insn_code = (insn->insn_code & ~OP_MATCH_XORI) | OP_MATCH_XORHI;
2469 insn->insn_reloc->reloc_expression.X_add_number =
2470 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2471 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2472 }
2473 }
2474
2475 /* Output an instruction. */
2476 output_insn (insn);
2477 }
2478
2479
2480 /* Output a movhi/addi pair for the movia pseudo-op. */
2481 static void
2482 output_movia (nios2_insn_infoS *insn)
2483 {
2484 /* This allocates enough space for the instruction
2485 and puts it in the current frag. */
2486 char *f = frag_more (8);
2487 nios2_insn_relocS *reloc = insn->insn_reloc;
2488 unsigned long reg_index = GET_INSN_FIELD (IRT, insn->insn_code);
2489
2490 /* If the reloc is NULL, there was an error assembling the movia. */
2491 if (reloc != NULL)
2492 {
2493 md_number_to_chars (f, insn->insn_code, 4);
2494 dwarf2_emit_insn (4);
2495 md_number_to_chars (f + 4,
2496 (OP_MATCH_ADDI | (reg_index << OP_SH_IRT)
2497 | (reg_index << OP_SH_IRS)),
2498 4);
2499 dwarf2_emit_insn (4);
2500 fix_new (frag_now, f - frag_now->fr_literal, 4,
2501 reloc->reloc_expression.X_add_symbol,
2502 reloc->reloc_expression.X_add_number, 0,
2503 BFD_RELOC_NIOS2_HIADJ16);
2504 fix_new (frag_now, f + 4 - frag_now->fr_literal, 4,
2505 reloc->reloc_expression.X_add_symbol,
2506 reloc->reloc_expression.X_add_number, 0, BFD_RELOC_NIOS2_LO16);
2507 }
2508 }
2509
2510
2511 \f
2512 /** External interfaces. */
2513
2514 /* The following functions are called by machine-independent parts of
2515 the assembler. */
2516 int
2517 md_parse_option (int c, char *arg ATTRIBUTE_UNUSED)
2518 {
2519 switch (c)
2520 {
2521 case 'r':
2522 /* Hidden option for self-test mode. */
2523 nios2_mode = NIOS2_MODE_TEST;
2524 break;
2525 case OPTION_RELAX_ALL:
2526 nios2_as_options.relax = relax_all;
2527 break;
2528 case OPTION_NORELAX:
2529 nios2_as_options.relax = relax_none;
2530 break;
2531 case OPTION_RELAX_SECTION:
2532 nios2_as_options.relax = relax_section;
2533 break;
2534 case OPTION_EB:
2535 target_big_endian = 1;
2536 break;
2537 case OPTION_EL:
2538 target_big_endian = 0;
2539 break;
2540 default:
2541 return 0;
2542 break;
2543 }
2544
2545 return 1;
2546 }
2547
2548 /* Implement TARGET_FORMAT. We can choose to be big-endian or
2549 little-endian at runtime based on a switch. */
2550 const char *
2551 nios2_target_format (void)
2552 {
2553 return target_big_endian ? "elf32-bignios2" : "elf32-littlenios2";
2554 }
2555
2556 /* Machine-dependent usage message. */
2557 void
2558 md_show_usage (FILE *stream)
2559 {
2560 fprintf (stream, " NIOS2 options:\n"
2561 " -relax-all replace all branch and call "
2562 "instructions with jmp and callr sequences\n"
2563 " -relax-section replace identified out of range "
2564 "branches with jmp sequences (default)\n"
2565 " -no-relax do not replace any branches or calls\n"
2566 " -EB force big-endian byte ordering\n"
2567 " -EL force little-endian byte ordering\n");
2568 }
2569
2570 /* This function is called once, at assembler startup time.
2571 It should set up all the tables, etc. that the MD part of the
2572 assembler will need. */
2573 void
2574 md_begin (void)
2575 {
2576 int i;
2577 const char *inserted;
2578
2579 /* Create and fill a hashtable for the Nios II opcodes, registers and
2580 arguments. */
2581 nios2_opcode_hash = hash_new ();
2582 nios2_reg_hash = hash_new ();
2583 nios2_arg_hash = hash_new ();
2584 nios2_ps_hash = hash_new ();
2585
2586 for (i = 0; i < NUMOPCODES; ++i)
2587 {
2588 inserted
2589 = hash_insert (nios2_opcode_hash, nios2_opcodes[i].name,
2590 (PTR) & nios2_opcodes[i]);
2591 if (inserted != NULL)
2592 {
2593 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2594 nios2_opcodes[i].name, inserted);
2595 /* Probably a memory allocation problem? Give up now. */
2596 as_fatal (_("Broken assembler. No assembly attempted."));
2597 }
2598 }
2599
2600 for (i = 0; i < nios2_num_regs; ++i)
2601 {
2602 inserted
2603 = hash_insert (nios2_reg_hash, nios2_regs[i].name,
2604 (PTR) & nios2_regs[i]);
2605 if (inserted != NULL)
2606 {
2607 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2608 nios2_regs[i].name, inserted);
2609 /* Probably a memory allocation problem? Give up now. */
2610 as_fatal (_("Broken assembler. No assembly attempted."));
2611 }
2612
2613 }
2614
2615 for (i = 0; i < nios2_num_arg_info_structs; ++i)
2616 {
2617 inserted
2618 = hash_insert (nios2_arg_hash, nios2_arg_info_structs[i].args,
2619 (PTR) & nios2_arg_info_structs[i]);
2620 if (inserted != NULL)
2621 {
2622 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2623 nios2_arg_info_structs[i].args, inserted);
2624 /* Probably a memory allocation problem? Give up now. */
2625 as_fatal (_("Broken assembler. No assembly attempted."));
2626 }
2627 }
2628
2629 for (i = 0; i < nios2_num_ps_insn_info_structs; ++i)
2630 {
2631 inserted
2632 = hash_insert (nios2_ps_hash, nios2_ps_insn_info_structs[i].pseudo_insn,
2633 (PTR) & nios2_ps_insn_info_structs[i]);
2634 if (inserted != NULL)
2635 {
2636 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2637 nios2_ps_insn_info_structs[i].pseudo_insn, inserted);
2638 /* Probably a memory allocation problem? Give up now. */
2639 as_fatal (_("Broken assembler. No assembly attempted."));
2640 }
2641 }
2642
2643 /* Assembler option defaults. */
2644 nios2_as_options.noat = FALSE;
2645 nios2_as_options.nobreak = FALSE;
2646
2647 /* Debug information is incompatible with relaxation. */
2648 if (debug_type != DEBUG_UNSPECIFIED)
2649 nios2_as_options.relax = relax_none;
2650
2651 /* Initialize the alignment data. */
2652 nios2_current_align_seg = now_seg;
2653 nios2_last_label = NULL;
2654 nios2_current_align = 0;
2655 }
2656
2657
2658 /* Assembles a single line of Nios II assembly language. */
2659 void
2660 md_assemble (char *op_str)
2661 {
2662 char *argstr;
2663 char *op_strdup = NULL;
2664 nios2_arg_infoS *arg_info;
2665 unsigned long saved_pinfo = 0;
2666 nios2_insn_infoS thisinsn;
2667 nios2_insn_infoS *insn = &thisinsn;
2668
2669 /* Make sure we are aligned on a 4-byte boundary. */
2670 if (nios2_current_align < 2)
2671 nios2_align (2, NULL, nios2_last_label);
2672 else if (nios2_current_align > 2)
2673 nios2_current_align = 2;
2674 nios2_last_label = NULL;
2675
2676 /* We don't want to clobber to op_str
2677 because we want to be able to use it in messages. */
2678 op_strdup = strdup (op_str);
2679 insn->insn_tokens[0] = strtok (op_strdup, " ");
2680 argstr = strtok (NULL, "");
2681
2682 /* Assemble the opcode. */
2683 insn->insn_nios2_opcode = nios2_opcode_lookup (insn->insn_tokens[0]);
2684 insn->insn_reloc = NULL;
2685
2686 if (insn->insn_nios2_opcode != NULL)
2687 {
2688 nios2_ps_insn_infoS *ps_insn = NULL;
2689 /* Set the opcode for the instruction. */
2690 insn->insn_code = insn->insn_nios2_opcode->match;
2691
2692 /* Parse the arguments pointed to by argstr. */
2693 if (nios2_mode == NIOS2_MODE_ASSEMBLE)
2694 nios2_parse_args (insn, argstr, insn->insn_nios2_opcode->args,
2695 (char **) &insn->insn_tokens[1]);
2696 else
2697 nios2_parse_args (insn, argstr, insn->insn_nios2_opcode->args_test,
2698 (char **) &insn->insn_tokens[1]);
2699
2700 /* We need to preserve the MOVIA macro as this is clobbered by
2701 translate_pseudo_insn. */
2702 if (insn->insn_nios2_opcode->pinfo == NIOS2_INSN_MACRO_MOVIA)
2703 saved_pinfo = NIOS2_INSN_MACRO_MOVIA;
2704 /* If the instruction is an pseudo-instruction, we want to replace it
2705 with its real equivalent, and then continue. */
2706 if ((insn->insn_nios2_opcode->pinfo & NIOS2_INSN_MACRO)
2707 == NIOS2_INSN_MACRO)
2708 ps_insn = nios2_translate_pseudo_insn (insn);
2709
2710 /* Find the assemble function, and call it. */
2711 arg_info = nios2_arg_lookup (insn->insn_nios2_opcode->args);
2712 if (arg_info != NULL)
2713 {
2714 arg_info->assemble_args_func (insn);
2715
2716 if (nios2_as_options.relax != relax_none
2717 && !nios2_as_options.noat
2718 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_UBRANCH)
2719 output_ubranch (insn);
2720 else if (nios2_as_options.relax != relax_none
2721 && !nios2_as_options.noat
2722 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_CBRANCH)
2723 output_cbranch (insn);
2724 else if (nios2_as_options.relax == relax_all
2725 && !nios2_as_options.noat
2726 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_CALL
2727 && insn->insn_reloc
2728 && insn->insn_reloc->reloc_type == BFD_RELOC_NIOS2_CALL26)
2729 output_call (insn);
2730 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ANDI)
2731 output_andi (insn);
2732 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ORI)
2733 output_ori (insn);
2734 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_XORI)
2735 output_xori (insn);
2736 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ADDI)
2737 output_addi (insn);
2738 else if (saved_pinfo == NIOS2_INSN_MACRO_MOVIA)
2739 output_movia (insn);
2740 else
2741 output_insn (insn);
2742 if (ps_insn)
2743 nios2_cleanup_pseudo_insn (insn, ps_insn);
2744 }
2745 else
2746 {
2747 /* The assembler is broken. */
2748 fprintf (stderr,
2749 _("internal error: %s is not a valid argument syntax\n"),
2750 insn->insn_nios2_opcode->args);
2751 /* Probably a memory allocation problem. Give up now. */
2752 as_fatal (_("Broken assembler. No assembly attempted."));
2753 }
2754 }
2755 else
2756 /* Unrecognised instruction - error. */
2757 as_bad (_("unrecognised instruction %s"), insn->insn_tokens[0]);
2758
2759 /* Don't leak memory. */
2760 free (op_strdup);
2761 }
2762
2763 /* Round up section size. */
2764 valueT
2765 md_section_align (asection *seg ATTRIBUTE_UNUSED, valueT size)
2766 {
2767 /* I think byte alignment is fine here. */
2768 return size;
2769 }
2770
2771 /* Implement TC_FORCE_RELOCATION. */
2772 int
2773 nios2_force_relocation (fixS *fixp)
2774 {
2775 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2776 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2777 || fixp->fx_r_type == BFD_RELOC_NIOS2_ALIGN)
2778 return 1;
2779
2780 return generic_force_reloc (fixp);
2781 }
2782
2783 /* Implement tc_fix_adjustable. */
2784 int
2785 nios2_fix_adjustable (fixS *fixp)
2786 {
2787 if (fixp->fx_addsy == NULL)
2788 return 1;
2789
2790 #ifdef OBJ_ELF
2791 /* Prevent all adjustments to global symbols. */
2792 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
2793 && (S_IS_EXTERNAL (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy)))
2794 return 0;
2795 #endif
2796 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2797 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2798 return 0;
2799
2800 /* Preserve relocations against symbols with function type. */
2801 if (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION)
2802 return 0;
2803
2804 /* Don't allow symbols to be discarded on GOT related relocs. */
2805 if (fixp->fx_r_type == BFD_RELOC_NIOS2_GOT16
2806 || fixp->fx_r_type == BFD_RELOC_NIOS2_CALL16
2807 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_LO
2808 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_HA
2809 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_GD16
2810 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LDM16
2811 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LDO16
2812 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_IE16
2813 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LE16
2814 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPMOD
2815 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPREL
2816 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_TPREL
2817 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF)
2818 return 0;
2819
2820 return 1;
2821 }
2822
2823 /* Implement tc_frob_symbol. This is called in adjust_reloc_syms;
2824 it is used to remove *ABS* references from the symbol table. */
2825 int
2826 nios2_frob_symbol (symbolS *symp)
2827 {
2828 if ((OUTPUT_FLAVOR == bfd_target_elf_flavour
2829 && symp == section_symbol (absolute_section))
2830 || !S_IS_DEFINED (symp))
2831 return 1;
2832 else
2833 return 0;
2834 }
2835
2836 /* The function tc_gen_reloc creates a relocation structure for the
2837 fixup fixp, and returns a pointer to it. This structure is passed
2838 to bfd_install_relocation so that it can be written to the object
2839 file for linking. */
2840 arelent *
2841 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
2842 {
2843 arelent *reloc = (arelent *) xmalloc (sizeof (arelent));
2844 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2845 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2846
2847 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2848 reloc->addend = fixp->fx_offset; /* fixp->fx_addnumber; */
2849
2850 if (fixp->fx_pcrel)
2851 {
2852 switch (fixp->fx_r_type)
2853 {
2854 case BFD_RELOC_16:
2855 fixp->fx_r_type = BFD_RELOC_16_PCREL;
2856 break;
2857 case BFD_RELOC_NIOS2_LO16:
2858 fixp->fx_r_type = BFD_RELOC_NIOS2_PCREL_LO;
2859 break;
2860 case BFD_RELOC_NIOS2_HIADJ16:
2861 fixp->fx_r_type = BFD_RELOC_NIOS2_PCREL_HA;
2862 break;
2863 default:
2864 break;
2865 }
2866 }
2867
2868 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
2869 if (reloc->howto == NULL)
2870 {
2871 as_bad_where (fixp->fx_file, fixp->fx_line,
2872 _("can't represent relocation type %s"),
2873 bfd_get_reloc_code_name (fixp->fx_r_type));
2874
2875 /* Set howto to a garbage value so that we can keep going. */
2876 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
2877 gas_assert (reloc->howto != NULL);
2878 }
2879 return reloc;
2880 }
2881
2882 long
2883 md_pcrel_from (fixS *fixP ATTRIBUTE_UNUSED)
2884 {
2885 return 0;
2886 }
2887
2888 /* Called just before the assembler exits. */
2889 void
2890 md_end ()
2891 {
2892 /* FIXME - not yet implemented */
2893 }
2894
2895 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
2896 Otherwise we have no need to default values of symbols. */
2897 symbolS *
2898 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2899 {
2900 #ifdef OBJ_ELF
2901 if (name[0] == '_' && name[1] == 'G'
2902 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
2903 {
2904 if (!GOT_symbol)
2905 {
2906 if (symbol_find (name))
2907 as_bad ("GOT already in the symbol table");
2908
2909 GOT_symbol = symbol_new (name, undefined_section,
2910 (valueT) 0, &zero_address_frag);
2911 }
2912
2913 return GOT_symbol;
2914 }
2915 #endif
2916
2917 return 0;
2918 }
2919
2920 /* Implement tc_frob_label. */
2921 void
2922 nios2_frob_label (symbolS *lab)
2923 {
2924 /* Emit dwarf information. */
2925 dwarf2_emit_label (lab);
2926
2927 /* Update the label's address with the current output pointer. */
2928 symbol_set_frag (lab, frag_now);
2929 S_SET_VALUE (lab, (valueT) frag_now_fix ());
2930
2931 /* Record this label for future adjustment after we find out what
2932 kind of data it references, and the required alignment therewith. */
2933 nios2_last_label = lab;
2934 }
2935
2936 /* Implement md_cons_align. */
2937 void
2938 nios2_cons_align (int size)
2939 {
2940 int log_size = 0;
2941 const char *pfill = NULL;
2942
2943 while ((size >>= 1) != 0)
2944 ++log_size;
2945
2946 if (subseg_text_p (now_seg))
2947 pfill = (const char *) &nop;
2948 else
2949 pfill = NULL;
2950
2951 if (nios2_auto_align_on)
2952 nios2_align (log_size, pfill, NULL);
2953
2954 nios2_last_label = NULL;
2955 }
2956
2957 /* Map 's' to SHF_NIOS2_GPREL. */
2958 /* This is from the Alpha code tc-alpha.c. */
2959 int
2960 nios2_elf_section_letter (int letter, char **ptr_msg)
2961 {
2962 if (letter == 's')
2963 return SHF_NIOS2_GPREL;
2964
2965 *ptr_msg = _("Bad .section directive: want a,s,w,x,M,S,G,T in string");
2966 return -1;
2967 }
2968
2969 /* Map SHF_ALPHA_GPREL to SEC_SMALL_DATA. */
2970 /* This is from the Alpha code tc-alpha.c. */
2971 flagword
2972 nios2_elf_section_flags (flagword flags, int attr, int type ATTRIBUTE_UNUSED)
2973 {
2974 if (attr & SHF_NIOS2_GPREL)
2975 flags |= SEC_SMALL_DATA;
2976 return flags;
2977 }
2978
2979 /* Implement TC_PARSE_CONS_EXPRESSION to handle %tls_ldo(...) */
2980 static int nios2_tls_ldo_reloc;
2981
2982 void
2983 nios2_cons (expressionS *exp, int size)
2984 {
2985 nios2_tls_ldo_reloc = 0;
2986
2987 SKIP_WHITESPACE ();
2988 if (input_line_pointer[0] == '%')
2989 {
2990 if (strprefix (input_line_pointer + 1, "tls_ldo"))
2991 {
2992 if (size != 4)
2993 as_bad (_("Illegal operands: %%tls_ldo in %d-byte data field"),
2994 size);
2995 else
2996 {
2997 input_line_pointer += 8;
2998 nios2_tls_ldo_reloc = 1;
2999 }
3000 }
3001 if (nios2_tls_ldo_reloc)
3002 {
3003 SKIP_WHITESPACE ();
3004 if (input_line_pointer[0] != '(')
3005 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
3006 else
3007 {
3008 int c;
3009 char *end = ++input_line_pointer;
3010 int npar = 0;
3011
3012 for (c = *end; !is_end_of_line[c]; end++, c = *end)
3013 if (c == '(')
3014 npar++;
3015 else if (c == ')')
3016 {
3017 if (!npar)
3018 break;
3019 npar--;
3020 }
3021
3022 if (c != ')')
3023 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
3024 else
3025 {
3026 *end = '\0';
3027 expression (exp);
3028 *end = c;
3029 if (input_line_pointer != end)
3030 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
3031 else
3032 {
3033 input_line_pointer++;
3034 SKIP_WHITESPACE ();
3035 c = *input_line_pointer;
3036 if (! is_end_of_line[c] && c != ',')
3037 as_bad (_("Illegal operands: garbage after %%tls_ldo()"));
3038 }
3039 }
3040 }
3041 }
3042 }
3043 if (!nios2_tls_ldo_reloc)
3044 expression (exp);
3045 }
3046
3047 /* Implement TC_CONS_FIX_NEW. */
3048 void
3049 nios2_cons_fix_new (fragS *frag, int where, unsigned int nbytes,
3050 expressionS *exp)
3051 {
3052 bfd_reloc_code_real_type r;
3053
3054 r = (nbytes == 1 ? BFD_RELOC_8
3055 : (nbytes == 2 ? BFD_RELOC_16
3056 : (nbytes == 4 ? BFD_RELOC_32 : BFD_RELOC_64)));
3057
3058 if (nios2_tls_ldo_reloc)
3059 r = BFD_RELOC_NIOS2_TLS_DTPREL;
3060
3061 fix_new_exp (frag, where, (int) nbytes, exp, 0, r);
3062 nios2_tls_ldo_reloc = 0;
3063 }
3064
3065 /* Implement HANDLE_ALIGN. */
3066 void
3067 nios2_handle_align (fragS *fragp)
3068 {
3069 /* If we are expecting to relax in the linker, then we must output a
3070 relocation to tell the linker we are aligning code. */
3071 if (nios2_as_options.relax == relax_all
3072 && (fragp->fr_type == rs_align || fragp->fr_type == rs_align_code)
3073 && fragp->fr_address + fragp->fr_fix > 0
3074 && fragp->fr_offset > 1
3075 && now_seg != bss_section)
3076 fix_new (fragp, fragp->fr_fix, 0, &abs_symbol, fragp->fr_offset, 0,
3077 BFD_RELOC_NIOS2_ALIGN);
3078 }
3079
3080 /* Implement tc_regname_to_dw2regnum, to convert REGNAME to a DWARF-2
3081 register number. */
3082 int
3083 nios2_regname_to_dw2regnum (char *regname)
3084 {
3085 struct nios2_reg *r = nios2_reg_lookup (regname);
3086 if (r == NULL)
3087 return -1;
3088 return r->index;
3089 }
3090
3091 /* Implement tc_cfi_frame_initial_instructions, to initialize the DWARF-2
3092 unwind information for this procedure. */
3093 void
3094 nios2_frame_initial_instructions (void)
3095 {
3096 cfi_add_CFA_def_cfa (27, 0);
3097 }