7a849a070ec46cea2873de6c20bc7a7c79f8e0b3
[binutils-gdb.git] / gas / config / tc-sh.c
1 /* tc-sh.c -- Assemble code for the Hitachi Super-H
2
3 Copyright (C) 1993, 94, 95, 1996 Free Software Foundation.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*
23 Written By Steve Chamberlain
24 sac@cygnus.com
25 */
26
27 #include <stdio.h>
28 #include "as.h"
29 #include "bfd.h"
30 #include "subsegs.h"
31 #define DEFINE_TABLE
32 #include "opcodes/sh-opc.h"
33 #include <ctype.h>
34 const char comment_chars[] = "!";
35 const char line_separator_chars[] = ";";
36 const char line_comment_chars[] = "!#";
37
38 static void s_uses PARAMS ((int));
39
40 /* This table describes all the machine specific pseudo-ops the assembler
41 has to support. The fields are:
42 pseudo-op name without dot
43 function to call to execute this pseudo-op
44 Integer arg to pass to the function
45 */
46
47 void cons ();
48 void s_align_bytes ();
49
50 int shl = 0;
51
52 static void
53 little (ignore)
54 int ignore;
55 {
56 shl = 1;
57 target_big_endian = 0;
58 }
59
60 const pseudo_typeS md_pseudo_table[] =
61 {
62 {"int", cons, 4},
63 {"word", cons, 2},
64 {"form", listing_psize, 0},
65 {"little", little, 0},
66 {"heading", listing_title, 0},
67 {"import", s_ignore, 0},
68 {"page", listing_eject, 0},
69 {"program", s_ignore, 0},
70 {"uses", s_uses, 0},
71 {0, 0, 0}
72 };
73
74 /*int md_reloc_size; */
75
76 int sh_relax; /* set if -relax seen */
77
78 const char EXP_CHARS[] = "eE";
79
80 /* Chars that mean this number is a floating point constant */
81 /* As in 0f12.456 */
82 /* or 0d1.2345e12 */
83 const char FLT_CHARS[] = "rRsSfFdDxXpP";
84
85 #define C(a,b) ENCODE_RELAX(a,b)
86
87 #define JREG 14 /* Register used as a temp when relaxing */
88 #define ENCODE_RELAX(what,length) (((what) << 4) + (length))
89 #define GET_WHAT(x) ((x>>4))
90
91 /* These are the two types of relaxable instrction */
92 #define COND_JUMP 1
93 #define UNCOND_JUMP 2
94
95 #define UNDEF_DISP 0
96 #define COND8 1
97 #define COND12 2
98 #define COND32 3
99 #define UNCOND12 1
100 #define UNCOND32 2
101 #define UNDEF_WORD_DISP 4
102 #define END 5
103
104 #define UNCOND12 1
105 #define UNCOND32 2
106
107 /* Branch displacements are from the address of the branch plus
108 four, thus all minimum and maximum values have 4 added to them. */
109 #define COND8_F 258
110 #define COND8_M -252
111 #define COND8_LENGTH 2
112
113 /* There is one extra instruction before the branch, so we must add
114 two more bytes to account for it. */
115 #define COND12_F 4100
116 #define COND12_M -4090
117 #define COND12_LENGTH 6
118
119 /* ??? The minimum and maximum values are wrong, but this does not matter
120 since this relocation type is not supported yet. */
121 #define COND32_F (1<<30)
122 #define COND32_M -(1<<30)
123 #define COND32_LENGTH 14
124
125 #define UNCOND12_F 4098
126 #define UNCOND12_M -4092
127 #define UNCOND12_LENGTH 2
128
129 /* ??? The minimum and maximum values are wrong, but this does not matter
130 since this relocation type is not supported yet. */
131 #define UNCOND32_F (1<<30)
132 #define UNCOND32_M -(1<<30)
133 #define UNCOND32_LENGTH 14
134
135 const relax_typeS md_relax_table[C (END, 0)] = {
136 { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 },
137 { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 },
138
139 { 0 },
140 /* C (COND_JUMP, COND8) */
141 { COND8_F, COND8_M, COND8_LENGTH, C (COND_JUMP, COND12) },
142 /* C (COND_JUMP, COND12) */
143 { COND12_F, COND12_M, COND12_LENGTH, C (COND_JUMP, COND32), },
144 /* C (COND_JUMP, COND32) */
145 { COND32_F, COND32_M, COND32_LENGTH, 0, },
146 { 0 }, { 0 }, { 0 }, { 0 },
147 { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 },
148
149 { 0 },
150 /* C (UNCOND_JUMP, UNCOND12) */
151 { UNCOND12_F, UNCOND12_M, UNCOND12_LENGTH, C (UNCOND_JUMP, UNCOND32), },
152 /* C (UNCOND_JUMP, UNCOND32) */
153 { UNCOND32_F, UNCOND32_M, UNCOND32_LENGTH, 0, },
154 { 0 }, { 0 }, { 0 }, { 0 }, { 0 },
155 { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 },
156 };
157
158 static struct hash_control *opcode_hash_control; /* Opcode mnemonics */
159
160 /*
161 This function is called once, at assembler startup time. This should
162 set up all the tables, etc that the MD part of the assembler needs
163 */
164
165 void
166 md_begin ()
167 {
168 sh_opcode_info *opcode;
169 char *prev_name = "";
170
171 if (! shl)
172 target_big_endian = 1;
173
174 opcode_hash_control = hash_new ();
175
176 /* Insert unique names into hash table */
177 for (opcode = sh_table; opcode->name; opcode++)
178 {
179 if (strcmp (prev_name, opcode->name))
180 {
181 prev_name = opcode->name;
182 hash_insert (opcode_hash_control, opcode->name, (char *) opcode);
183 }
184 else
185 {
186 /* Make all the opcodes with the same name point to the same
187 string */
188 opcode->name = prev_name;
189 }
190 }
191 }
192
193 static int reg_m;
194 static int reg_n;
195 static int reg_b;
196
197 static expressionS immediate; /* absolute expression */
198
199 typedef struct
200 {
201 sh_arg_type type;
202 int reg;
203 }
204
205 sh_operand_info;
206
207 /* try and parse a reg name, returns number of chars consumed */
208 static int
209 parse_reg (src, mode, reg)
210 char *src;
211 int *mode;
212 int *reg;
213 {
214 /* We use !isalnum for the next character after the register name, to
215 make sure that we won't accidentally recognize a symbol name such as
216 'sram' as being a reference to the register 'sr'. */
217
218 if (src[0] == 'r')
219 {
220 if (src[1] >= '0' && src[1] <= '7' && strncmp(&src[2], "_bank", 5) == 0
221 && ! isalnum (src[7]))
222 {
223 *mode = A_REG_B;
224 *reg = (src[1] - '0');
225 return 7;
226 }
227 }
228
229 if (src[0] == 'r')
230 {
231 if (src[1] == '1')
232 {
233 if (src[2] >= '0' && src[2] <= '5' && ! isalnum (src[3]))
234 {
235 *mode = A_REG_N;
236 *reg = 10 + src[2] - '0';
237 return 3;
238 }
239 }
240 if (src[1] >= '0' && src[1] <= '9' && ! isalnum (src[2]))
241 {
242 *mode = A_REG_N;
243 *reg = (src[1] - '0');
244 return 2;
245 }
246 }
247
248 if (src[0] == 's' && src[1] == 's' && src[2] == 'r' && ! isalnum (src[3]))
249 {
250 *mode = A_SSR;
251 return 3;
252 }
253
254 if (src[0] == 's' && src[1] == 'p' && src[2] == 'c' && ! isalnum (src[3]))
255 {
256 *mode = A_SPC;
257 return 3;
258 }
259
260 if (src[0] == 's' && src[1] == 'r' && ! isalnum (src[2]))
261 {
262 *mode = A_SR;
263 return 2;
264 }
265
266 if (src[0] == 's' && src[1] == 'p' && ! isalnum (src[2]))
267 {
268 *mode = A_REG_N;
269 *reg = 15;
270 return 2;
271 }
272
273 if (src[0] == 'p' && src[1] == 'r' && ! isalnum (src[2]))
274 {
275 *mode = A_PR;
276 return 2;
277 }
278 if (src[0] == 'p' && src[1] == 'c' && ! isalnum (src[2]))
279 {
280 *mode = A_DISP_PC;
281 return 2;
282 }
283 if (src[0] == 'g' && src[1] == 'b' && src[2] == 'r' && ! isalnum (src[3]))
284 {
285 *mode = A_GBR;
286 return 3;
287 }
288 if (src[0] == 'v' && src[1] == 'b' && src[2] == 'r' && ! isalnum (src[3]))
289 {
290 *mode = A_VBR;
291 return 3;
292 }
293
294 if (src[0] == 'm' && src[1] == 'a' && src[2] == 'c' && ! isalnum (src[4]))
295 {
296 if (src[3] == 'l')
297 {
298 *mode = A_MACL;
299 return 4;
300 }
301 if (src[3] == 'h')
302 {
303 *mode = A_MACH;
304 return 4;
305 }
306 }
307 if (src[0] == 'f' && src[1] == 'r')
308 {
309 if (src[2] == '1')
310 {
311 if (src[3] >= '0' && src[3] <= '5' && ! isalnum (src[4]))
312 {
313 *mode = F_REG_N;
314 *reg = 10 + src[3] - '0';
315 return 4;
316 }
317 }
318 if (src[2] >= '0' && src[2] <= '9' && ! isalnum (src[3]))
319 {
320 *mode = F_REG_N;
321 *reg = (src[2] - '0');
322 return 3;
323 }
324 }
325 if (src[0] == 'f' && src[1] == 'p' && src[2] == 'u' && src[3] == 'l'
326 && ! isalnum (src[4]))
327 {
328 *mode = FPUL_N;
329 return 4;
330 }
331
332 if (src[0] == 'f' && src[1] == 'p' && src[2] == 's' && src[3] == 'c'
333 && src[4] == 'r' && ! isalnum (src[5]))
334 {
335 *mode = FPSCR_N;
336 return 5;
337 }
338
339 return 0;
340 }
341
342 static symbolS *dot()
343 {
344 const char *fake;
345
346 /* JF: '.' is pseudo symbol with value of current location
347 in current segment. */
348 fake = FAKE_LABEL_NAME;
349 return symbol_new (fake,
350 now_seg,
351 (valueT) frag_now_fix (),
352 frag_now);
353
354 }
355
356
357 static
358 char *
359 parse_exp (s)
360 char *s;
361 {
362 char *save;
363 char *new;
364
365 save = input_line_pointer;
366 input_line_pointer = s;
367 expression (&immediate);
368 if (immediate.X_op == O_absent)
369 as_bad ("missing operand");
370 new = input_line_pointer;
371 input_line_pointer = save;
372 return new;
373 }
374
375
376 /* The many forms of operand:
377
378 Rn Register direct
379 @Rn Register indirect
380 @Rn+ Autoincrement
381 @-Rn Autodecrement
382 @(disp:4,Rn)
383 @(disp:8,GBR)
384 @(disp:8,PC)
385
386 @(R0,Rn)
387 @(R0,GBR)
388
389 disp:8
390 disp:12
391 #imm8
392 pr, gbr, vbr, macl, mach
393
394 */
395
396 static
397 char *
398 parse_at (src, op)
399 char *src;
400 sh_operand_info *op;
401 {
402 int len;
403 int mode;
404 src++;
405 if (src[0] == '-')
406 {
407 /* Must be predecrement */
408 src++;
409
410 len = parse_reg (src, &mode, &(op->reg));
411 if (mode != A_REG_N)
412 as_bad ("illegal register after @-");
413
414 op->type = A_DEC_N;
415 src += len;
416 }
417 else if (src[0] == '(')
418 {
419 /* Could be @(disp, rn), @(disp, gbr), @(disp, pc), @(r0, gbr) or
420 @(r0, rn) */
421 src++;
422 len = parse_reg (src, &mode, &(op->reg));
423 if (len && mode == A_REG_N)
424 {
425 src += len;
426 if (op->reg != 0)
427 {
428 as_bad ("must be @(r0,...)");
429 }
430 if (src[0] == ',')
431 src++;
432 /* Now can be rn or gbr */
433 len = parse_reg (src, &mode, &(op->reg));
434 if (mode == A_GBR)
435 {
436 op->type = A_R0_GBR;
437 }
438 else if (mode == A_REG_N)
439 {
440 op->type = A_IND_R0_REG_N;
441 }
442 else
443 {
444 as_bad ("syntax error in @(r0,...)");
445 }
446 }
447 else
448 {
449 /* Must be an @(disp,.. thing) */
450 src = parse_exp (src);
451 if (src[0] == ',')
452 src++;
453 /* Now can be rn, gbr or pc */
454 len = parse_reg (src, &mode, &op->reg);
455 if (len)
456 {
457 if (mode == A_REG_N)
458 {
459 op->type = A_DISP_REG_N;
460 }
461 else if (mode == A_GBR)
462 {
463 op->type = A_DISP_GBR;
464 }
465 else if (mode == A_DISP_PC)
466 {
467 /* Turn a plain @(4,pc) into @(.+4,pc) */
468 if (immediate.X_op == O_constant) {
469 immediate.X_add_symbol = dot();
470 immediate.X_op = O_symbol;
471 }
472 op->type = A_DISP_PC;
473 }
474 else
475 {
476 as_bad ("syntax error in @(disp,[Rn, gbr, pc])");
477 }
478 }
479 else
480 {
481 as_bad ("syntax error in @(disp,[Rn, gbr, pc])");
482 }
483 }
484 src += len;
485 if (src[0] != ')')
486 as_bad ("expecting )");
487 else
488 src++;
489 }
490 else
491 {
492 src += parse_reg (src, &mode, &(op->reg));
493 if (mode != A_REG_N)
494 {
495 as_bad ("illegal register after @");
496 }
497 if (src[0] == '+')
498 {
499 op->type = A_INC_N;
500 src++;
501 }
502 else
503 {
504 op->type = A_IND_N;
505 }
506 }
507 return src;
508 }
509
510 static void
511 get_operand (ptr, op)
512 char **ptr;
513 sh_operand_info *op;
514 {
515 char *src = *ptr;
516 int mode = -1;
517 unsigned int len;
518
519 if (src[0] == '#')
520 {
521 src++;
522 *ptr = parse_exp (src);
523 op->type = A_IMM;
524 return;
525 }
526
527 else if (src[0] == '@')
528 {
529 *ptr = parse_at (src, op);
530 return;
531 }
532 len = parse_reg (src, &mode, &(op->reg));
533 if (len)
534 {
535 *ptr = src + len;
536 op->type = mode;
537 return;
538 }
539 else
540 {
541 /* Not a reg, the only thing left is a displacement */
542 *ptr = parse_exp (src);
543 op->type = A_DISP_PC;
544 return;
545 }
546 }
547
548 static
549 char *
550 get_operands (info, args, operand)
551 sh_opcode_info *info;
552 char *args;
553 sh_operand_info *operand;
554
555 {
556 char *ptr = args;
557 if (info->arg[0])
558 {
559 ptr++;
560
561 get_operand (&ptr, operand + 0);
562 if (info->arg[1])
563 {
564 if (*ptr == ',')
565 {
566 ptr++;
567 }
568 get_operand (&ptr, operand + 1);
569 if (info->arg[2])
570 {
571 if (*ptr == ',')
572 {
573 ptr++;
574 }
575 get_operand (&ptr, operand + 2);
576 }
577 else
578 {
579 operand[2].type = 0;
580 }
581 }
582 else
583 {
584 operand[1].type = 0;
585 operand[2].type = 0;
586 }
587 }
588 else
589 {
590 operand[0].type = 0;
591 operand[1].type = 0;
592 operand[2].type = 0;
593 }
594 return ptr;
595 }
596
597 /* Passed a pointer to a list of opcodes which use different
598 addressing modes, return the opcode which matches the opcodes
599 provided
600 */
601
602 static
603 sh_opcode_info *
604 get_specific (opcode, operands)
605 sh_opcode_info *opcode;
606 sh_operand_info *operands;
607 {
608 sh_opcode_info *this_try = opcode;
609 char *name = opcode->name;
610 int n = 0;
611 while (opcode->name)
612 {
613 this_try = opcode++;
614 if (this_try->name != name)
615 {
616 /* We've looked so far down the table that we've run out of
617 opcodes with the same name */
618 return 0;
619 }
620 /* look at both operands needed by the opcodes and provided by
621 the user - since an arg test will often fail on the same arg
622 again and again, we'll try and test the last failing arg the
623 first on each opcode try */
624
625 for (n = 0; this_try->arg[n]; n++)
626 {
627 sh_operand_info *user = operands + n;
628 sh_arg_type arg = this_try->arg[n];
629 switch (arg)
630 {
631 case A_IMM:
632 case A_BDISP12:
633 case A_BDISP8:
634 case A_DISP_GBR:
635 case A_DISP_PC:
636 case A_MACH:
637 case A_PR:
638 case A_MACL:
639 if (user->type != arg)
640 goto fail;
641 break;
642 case A_R0:
643 /* opcode needs r0 */
644 if (user->type != A_REG_N || user->reg != 0)
645 goto fail;
646 break;
647 case A_R0_GBR:
648 if (user->type != A_R0_GBR || user->reg != 0)
649 goto fail;
650 break;
651 case F_FR0:
652 if (user->type != F_REG_N || user->reg != 0)
653 goto fail;
654 break;
655
656 case A_REG_N:
657 case A_INC_N:
658 case A_DEC_N:
659 case A_IND_N:
660 case A_IND_R0_REG_N:
661 case A_DISP_REG_N:
662 case F_REG_N:
663 case FPUL_N:
664 case FPSCR_N:
665 /* Opcode needs rn */
666 if (user->type != arg)
667 goto fail;
668 reg_n = user->reg;
669 break;
670 case A_GBR:
671 case A_SR:
672 case A_VBR:
673 case A_SSR:
674 case A_SPC:
675 if (user->type != arg)
676 goto fail;
677 break;
678
679 case A_REG_B:
680 if (user->type != arg)
681 goto fail;
682 reg_b = user->reg;
683 break;
684
685 case A_REG_M:
686 case A_INC_M:
687 case A_DEC_M:
688 case A_IND_M:
689 case A_IND_R0_REG_M:
690 case A_DISP_REG_M:
691 /* Opcode needs rn */
692 if (user->type != arg - A_REG_M + A_REG_N)
693 goto fail;
694 reg_m = user->reg;
695 break;
696
697 case F_REG_M:
698 case FPUL_M:
699 case FPSCR_M:
700 /* Opcode needs rn */
701 if (user->type != arg - F_REG_M + F_REG_N)
702 goto fail;
703 reg_m = user->reg;
704 break;
705
706 default:
707 printf ("unhandled %d\n", arg);
708 goto fail;
709 }
710 }
711 return this_try;
712 fail:;
713 }
714
715 return 0;
716 }
717
718 int
719 check (operand, low, high)
720 expressionS *operand;
721 int low;
722 int high;
723 {
724 if (operand->X_op != O_constant
725 || operand->X_add_number < low
726 || operand->X_add_number > high)
727 {
728 as_bad ("operand must be absolute in range %d..%d", low, high);
729 }
730 return operand->X_add_number;
731 }
732
733
734 static void
735 insert (where, how, pcrel)
736 char *where;
737 int how;
738 int pcrel;
739 {
740 fix_new_exp (frag_now,
741 where - frag_now->fr_literal,
742 2,
743 &immediate,
744 pcrel,
745 how);
746 }
747
748 static void
749 build_relax (opcode)
750 sh_opcode_info *opcode;
751 {
752 int high_byte = target_big_endian ? 0 : 1;
753 char *p;
754
755 if (opcode->arg[0] == A_BDISP8)
756 {
757 p = frag_var (rs_machine_dependent,
758 md_relax_table[C (COND_JUMP, COND32)].rlx_length,
759 md_relax_table[C (COND_JUMP, COND8)].rlx_length,
760 C (COND_JUMP, 0),
761 immediate.X_add_symbol,
762 immediate.X_add_number,
763 0);
764 p[high_byte] = (opcode->nibbles[0] << 4) | (opcode->nibbles[1]);
765 }
766 else if (opcode->arg[0] == A_BDISP12)
767 {
768 p = frag_var (rs_machine_dependent,
769 md_relax_table[C (UNCOND_JUMP, UNCOND32)].rlx_length,
770 md_relax_table[C (UNCOND_JUMP, UNCOND12)].rlx_length,
771 C (UNCOND_JUMP, 0),
772 immediate.X_add_symbol,
773 immediate.X_add_number,
774 0);
775 p[high_byte] = (opcode->nibbles[0] << 4);
776 }
777
778 }
779
780 /* Now we know what sort of opcodes it is, lets build the bytes -
781 */
782 static void
783 build_Mytes (opcode, operand)
784 sh_opcode_info *opcode;
785 sh_operand_info *operand;
786
787 {
788 int index;
789 char nbuf[4];
790 char *output = frag_more (2);
791 int low_byte = target_big_endian ? 1 : 0;
792 nbuf[0] = 0;
793 nbuf[1] = 0;
794 nbuf[2] = 0;
795 nbuf[3] = 0;
796
797 for (index = 0; index < 4; index++)
798 {
799 sh_nibble_type i = opcode->nibbles[index];
800 if (i < 16)
801 {
802 nbuf[index] = i;
803 }
804 else
805 {
806 switch (i)
807 {
808 case REG_N:
809 nbuf[index] = reg_n;
810 break;
811 case REG_M:
812 nbuf[index] = reg_m;
813 break;
814 case REG_B:
815 nbuf[index] = reg_b | 0x08;
816 break;
817 case DISP_4:
818 insert (output + low_byte, R_SH_IMM4, 0);
819 break;
820 case IMM_4BY4:
821 insert (output + low_byte, R_SH_IMM4BY4, 0);
822 break;
823 case IMM_4BY2:
824 insert (output + low_byte, R_SH_IMM4BY2, 0);
825 break;
826 case IMM_4:
827 insert (output + low_byte, R_SH_IMM4, 0);
828 break;
829 case IMM_8BY4:
830 insert (output + low_byte, R_SH_IMM8BY4, 0);
831 break;
832 case IMM_8BY2:
833 insert (output + low_byte, R_SH_IMM8BY2, 0);
834 break;
835 case IMM_8:
836 insert (output + low_byte, R_SH_IMM8, 0);
837 break;
838 case PCRELIMM_8BY4:
839 insert (output, R_SH_PCRELIMM8BY4, 1);
840 break;
841 case PCRELIMM_8BY2:
842 insert (output, R_SH_PCRELIMM8BY2, 1);
843 break;
844 default:
845 printf ("failed for %d\n", i);
846 }
847 }
848 }
849 if (! target_big_endian) {
850 output[1] = (nbuf[0] << 4) | (nbuf[1]);
851 output[0] = (nbuf[2] << 4) | (nbuf[3]);
852 }
853 else {
854 output[0] = (nbuf[0] << 4) | (nbuf[1]);
855 output[1] = (nbuf[2] << 4) | (nbuf[3]);
856 }
857 }
858
859 /* This is the guts of the machine-dependent assembler. STR points to a
860 machine dependent instruction. This function is supposed to emit
861 the frags/bytes it assembles to.
862 */
863
864 void
865 md_assemble (str)
866 char *str;
867 {
868 unsigned char *op_start;
869 unsigned char *op_end;
870 sh_operand_info operand[3];
871 sh_opcode_info *opcode;
872 char name[20];
873 int nlen = 0;
874 /* Drop leading whitespace */
875 while (*str == ' ')
876 str++;
877
878 /* find the op code end */
879 for (op_start = op_end = (unsigned char *) (str);
880 *op_end
881 && nlen < 20
882 && !is_end_of_line[*op_end] && *op_end != ' ';
883 op_end++)
884 {
885 name[nlen] = op_start[nlen];
886 nlen++;
887 }
888 name[nlen] = 0;
889
890 if (nlen == 0)
891 {
892 as_bad ("can't find opcode ");
893 }
894
895 opcode = (sh_opcode_info *) hash_find (opcode_hash_control, name);
896
897 if (opcode == NULL)
898 {
899 as_bad ("unknown opcode");
900 return;
901 }
902
903 if (opcode->arg[0] == A_BDISP12
904 || opcode->arg[0] == A_BDISP8)
905 {
906 parse_exp (op_end + 1);
907 build_relax (opcode);
908 }
909 else
910 {
911 if (opcode->arg[0] != A_END)
912 {
913 get_operands (opcode, op_end, operand);
914 }
915 opcode = get_specific (opcode, operand);
916
917 if (opcode == 0)
918 {
919 /* Couldn't find an opcode which matched the operands */
920 char *where = frag_more (2);
921
922 where[0] = 0x0;
923 where[1] = 0x0;
924 as_bad ("invalid operands for opcode");
925 return;
926 }
927
928 build_Mytes (opcode, operand);
929 }
930
931 }
932
933 void
934 DEFUN (tc_crawl_symbol_chain, (headers),
935 object_headers * headers)
936 {
937 printf ("call to tc_crawl_symbol_chain \n");
938 }
939
940 symbolS *
941 DEFUN (md_undefined_symbol, (name),
942 char *name)
943 {
944 return 0;
945 }
946
947 void
948 DEFUN (tc_headers_hook, (headers),
949 object_headers * headers)
950 {
951 printf ("call to tc_headers_hook \n");
952 }
953
954 /* Various routines to kill one day */
955 /* Equal to MAX_PRECISION in atof-ieee.c */
956 #define MAX_LITTLENUMS 6
957
958 /* Turn a string in input_line_pointer into a floating point constant of type
959 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
960 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
961 */
962 char *
963 md_atof (type, litP, sizeP)
964 int type;
965 char *litP;
966 int *sizeP;
967 {
968 int prec;
969 LITTLENUM_TYPE words[4];
970 char *t;
971 int i;
972
973 switch (type)
974 {
975 case 'f':
976 prec = 2;
977 break;
978
979 case 'd':
980 prec = 4;
981 break;
982
983 default:
984 *sizeP = 0;
985 return "bad call to md_atof";
986 }
987
988 t = atof_ieee (input_line_pointer, type, words);
989 if (t)
990 input_line_pointer = t;
991
992 *sizeP = prec * 2;
993
994 if (! target_big_endian)
995 {
996 for (i = prec - 1; i >= 0; i--)
997 {
998 md_number_to_chars (litP, (valueT) words[i], 2);
999 litP += 2;
1000 }
1001 }
1002 else
1003 {
1004 for (i = 0; i < prec; i++)
1005 {
1006 md_number_to_chars (litP, (valueT) words[i], 2);
1007 litP += 2;
1008 }
1009 }
1010
1011 return NULL;
1012 }
1013
1014 /* Handle the .uses pseudo-op. This pseudo-op is used just before a
1015 call instruction. It refers to a label of the instruction which
1016 loads the register which the call uses. We use it to generate a
1017 special reloc for the linker. */
1018
1019 static void
1020 s_uses (ignore)
1021 int ignore;
1022 {
1023 expressionS ex;
1024
1025 if (! sh_relax)
1026 as_warn (".uses pseudo-op seen when not relaxing");
1027
1028 expression (&ex);
1029
1030 if (ex.X_op != O_symbol || ex.X_add_number != 0)
1031 {
1032 as_bad ("bad .uses format");
1033 ignore_rest_of_line ();
1034 return;
1035 }
1036
1037 fix_new_exp (frag_now, frag_now_fix (), 2, &ex, 1, R_SH_USES);
1038
1039 demand_empty_rest_of_line ();
1040 }
1041 \f
1042 CONST char *md_shortopts = "";
1043 struct option md_longopts[] = {
1044
1045 #define OPTION_RELAX (OPTION_MD_BASE)
1046 #define OPTION_LITTLE (OPTION_MD_BASE+1)
1047
1048 {"relax", no_argument, NULL, OPTION_RELAX},
1049 {"little", no_argument, NULL, OPTION_LITTLE},
1050 {NULL, no_argument, NULL, 0}
1051 };
1052 size_t md_longopts_size = sizeof(md_longopts);
1053
1054 int
1055 md_parse_option (c, arg)
1056 int c;
1057 char *arg;
1058 {
1059 switch (c)
1060 {
1061 case OPTION_RELAX:
1062 sh_relax = 1;
1063 break;
1064 case OPTION_LITTLE:
1065 shl = 1;
1066 target_big_endian = 0;
1067 break;
1068
1069 default:
1070 return 0;
1071 }
1072
1073 return 1;
1074 }
1075
1076 void
1077 md_show_usage (stream)
1078 FILE *stream;
1079 {
1080 fprintf(stream, "\
1081 SH options:\n\
1082 -little generate little endian code\n\
1083 -relax alter jump instructions for long displacements\n");
1084 }
1085 \f
1086 int md_short_jump_size;
1087
1088 void
1089 tc_Nout_fix_to_chars ()
1090 {
1091 printf ("call to tc_Nout_fix_to_chars \n");
1092 abort ();
1093 }
1094
1095 void
1096 md_create_short_jump (ptr, from_Nddr, to_Nddr, frag, to_symbol)
1097 char *ptr;
1098 addressT from_Nddr;
1099 addressT to_Nddr;
1100 fragS *frag;
1101 symbolS *to_symbol;
1102 {
1103 as_fatal ("failed sanity check.");
1104 }
1105
1106 void
1107 md_create_long_jump (ptr, from_Nddr, to_Nddr, frag, to_symbol)
1108 char *ptr;
1109 addressT from_Nddr, to_Nddr;
1110 fragS *frag;
1111 symbolS *to_symbol;
1112 {
1113 as_fatal ("failed sanity check.");
1114 }
1115
1116 /* This is function is called after the symbol table has been
1117 completed, but before md_convert_frag has been called. If we have
1118 seen any .uses pseudo-ops, they point to an instruction which loads
1119 a register with the address of a function. We look through the
1120 fixups to find where the function address is being loaded from. We
1121 then generate a COUNT reloc giving the number of times that
1122 function address is referred to. The linker uses this information
1123 when doing relaxing, to decide when it can eliminate the stored
1124 function address entirely. */
1125
1126 void
1127 sh_coff_frob_file ()
1128 {
1129 int iseg;
1130
1131 if (! sh_relax)
1132 return;
1133
1134 for (iseg = SEG_E0; iseg < SEG_UNKNOWN; iseg++)
1135 {
1136 fixS *fix;
1137
1138 for (fix = segment_info[iseg].fix_root; fix != NULL; fix = fix->fx_next)
1139 {
1140 symbolS *sym;
1141 bfd_vma val;
1142 fixS *fscan;
1143 int iscan;
1144 int count;
1145
1146 if (fix->fx_r_type != R_SH_USES)
1147 continue;
1148
1149 /* The R_SH_USES reloc should refer to a defined local
1150 symbol in the same section. */
1151 sym = fix->fx_addsy;
1152 if (sym == NULL
1153 || fix->fx_subsy != NULL
1154 || fix->fx_addnumber != 0
1155 || S_GET_SEGMENT (sym) != iseg
1156 || S_GET_STORAGE_CLASS (sym) == C_EXT)
1157 {
1158 as_warn_where (fix->fx_file, fix->fx_line,
1159 ".uses does not refer to a local symbol in the same section");
1160 continue;
1161 }
1162
1163 /* Look through the fixups again, this time looking for one
1164 at the same location as sym. */
1165 val = S_GET_VALUE (sym);
1166 for (fscan = segment_info[iseg].fix_root;
1167 fscan != NULL;
1168 fscan = fscan->fx_next)
1169 if (val == fscan->fx_frag->fr_address + fscan->fx_where)
1170 break;
1171 if (fscan == NULL)
1172 {
1173 as_warn_where (fix->fx_file, fix->fx_line,
1174 "can't find fixup pointed to by .uses");
1175 continue;
1176 }
1177
1178 if (fscan->fx_tcbit)
1179 {
1180 /* We've already done this one. */
1181 continue;
1182 }
1183
1184 /* fscan should also be a fixup to a local symbol in the same
1185 section. */
1186 sym = fscan->fx_addsy;
1187 if (sym == NULL
1188 || fscan->fx_subsy != NULL
1189 || fscan->fx_addnumber != 0
1190 || S_GET_SEGMENT (sym) != iseg
1191 || S_GET_STORAGE_CLASS (sym) == C_EXT)
1192 {
1193 as_warn_where (fix->fx_file, fix->fx_line,
1194 ".uses target does not refer to a local symbol in the same section");
1195 continue;
1196 }
1197
1198 /* Now we look through all the fixups of all the sections,
1199 counting the number of times we find a reference to sym. */
1200 count = 0;
1201 for (iscan = SEG_E0; iscan < SEG_UNKNOWN; iscan++)
1202 {
1203 for (fscan = segment_info[iscan].fix_root;
1204 fscan != NULL;
1205 fscan = fscan->fx_next)
1206 {
1207 if (fscan->fx_addsy == sym)
1208 {
1209 ++count;
1210 fscan->fx_tcbit = 1;
1211 }
1212 }
1213 }
1214
1215 if (count < 1)
1216 abort ();
1217
1218 /* Generate a R_SH_COUNT fixup at the location of sym. We
1219 have already adjusted the value of sym to include the
1220 fragment address, so we undo that adjustment here. */
1221 subseg_change (iseg, 0);
1222 fix_new (sym->sy_frag, S_GET_VALUE (sym) - sym->sy_frag->fr_address,
1223 4, &abs_symbol, count, 0, R_SH_COUNT);
1224 }
1225 }
1226 }
1227
1228 /* Called after relaxing. Set the correct sizes of the fragments, and
1229 create relocs so that md_apply_fix will fill in the correct values. */
1230
1231 void
1232 md_convert_frag (headers, seg, fragP)
1233 object_headers *headers;
1234 segT seg;
1235 fragS *fragP;
1236 {
1237 int donerelax = 0;
1238
1239 switch (fragP->fr_subtype)
1240 {
1241 case C (COND_JUMP, COND8):
1242 subseg_change (seg, 0);
1243 fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset,
1244 1, R_SH_PCDISP8BY2);
1245 fragP->fr_fix += 2;
1246 fragP->fr_var = 0;
1247 break;
1248
1249 case C (UNCOND_JUMP, UNCOND12):
1250 subseg_change (seg, 0);
1251 fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset,
1252 1, R_SH_PCDISP);
1253 fragP->fr_fix += 2;
1254 fragP->fr_var = 0;
1255 break;
1256
1257 case C (UNCOND_JUMP, UNCOND32):
1258 case C (UNCOND_JUMP, UNDEF_WORD_DISP):
1259 if (fragP->fr_symbol == NULL)
1260 as_bad ("at 0x%lx, displacement overflows 12-bit field",
1261 (unsigned long) fragP->fr_address);
1262 else
1263 as_bad ("at 0x%lx, displacement to %sdefined symbol %s overflows 12-bit field",
1264 (unsigned long) fragP->fr_address,
1265 S_IS_DEFINED (fragP->fr_symbol) ? "" : "un",
1266 S_GET_NAME (fragP->fr_symbol));
1267
1268 #if 0 /* This code works, but generates poor code and the compiler
1269 should never produce a sequence that requires it to be used. */
1270
1271 /* A jump wont fit in 12 bits, make code which looks like
1272 bra foo
1273 mov.w @(0, PC), r14
1274 .long disp
1275 foo: bra @r14
1276 */
1277 int t = buffer[0] & 0x10;
1278
1279 buffer[highbyte] = 0xa0; /* branch over move and disp */
1280 buffer[lowbyte] = 3;
1281 buffer[highbyte+2] = 0xd0 | JREG; /* Build mov insn */
1282 buffer[lowbyte+2] = 0x00;
1283
1284 buffer[highbyte+4] = 0; /* space for 32 bit jump disp */
1285 buffer[lowbyte+4] = 0;
1286 buffer[highbyte+6] = 0;
1287 buffer[lowbyte+6] = 0;
1288
1289 buffer[highbyte+8] = 0x40 | JREG; /* Build jmp @JREG */
1290 buffer[lowbyte+8] = t ? 0xb : 0x2b;
1291
1292 buffer[highbyte+10] = 0x20; /* build nop */
1293 buffer[lowbyte+10] = 0x0b;
1294
1295 /* Make reloc for the long disp */
1296 fix_new (fragP,
1297 fragP->fr_fix + 4,
1298 4,
1299 fragP->fr_symbol,
1300 fragP->fr_offset,
1301 0,
1302 R_SH_IMM32);
1303 fragP->fr_fix += UNCOND32_LENGTH;
1304 fragP->fr_var = 0;
1305 donerelax = 1;
1306 #endif
1307
1308 break;
1309
1310 case C (COND_JUMP, COND12):
1311 /* A bcond won't fit, so turn it into a b!cond; bra disp; nop */
1312 {
1313 unsigned char *buffer =
1314 (unsigned char *) (fragP->fr_fix + fragP->fr_literal);
1315 int highbyte = target_big_endian ? 0 : 1;
1316 int lowbyte = target_big_endian ? 1 : 0;
1317
1318 /* Toggle the true/false bit of the bcond. */
1319 buffer[highbyte] ^= 0x2;
1320
1321 /* Build a relocation to six bytes farther on. */
1322 subseg_change (seg, 0);
1323 fix_new (fragP, fragP->fr_fix, 2,
1324 segment_info[seg].dot,
1325 fragP->fr_address + fragP->fr_fix + 6,
1326 1, R_SH_PCDISP8BY2);
1327
1328 /* Set up a jump instruction. */
1329 buffer[highbyte + 2] = 0xa0;
1330 buffer[lowbyte + 2] = 0;
1331 fix_new (fragP, fragP->fr_fix + 2, 2, fragP->fr_symbol,
1332 fragP->fr_offset, 1, R_SH_PCDISP);
1333
1334 /* Fill in a NOP instruction. */
1335 buffer[highbyte + 4] = 0x0;
1336 buffer[lowbyte + 4] = 0x9;
1337
1338 fragP->fr_fix += 6;
1339 fragP->fr_var = 0;
1340 donerelax = 1;
1341 }
1342 break;
1343
1344 case C (COND_JUMP, COND32):
1345 case C (COND_JUMP, UNDEF_WORD_DISP):
1346 if (fragP->fr_symbol == NULL)
1347 as_bad ("at %0xlx, displacement overflows 8-bit field",
1348 (unsigned long) fragP->fr_address);
1349 else
1350 as_bad ("at 0x%lx, displacement to %sdefined symbol %s overflows 8-bit field ",
1351 (unsigned long) fragP->fr_address,
1352 S_IS_DEFINED (fragP->fr_symbol) ? "" : "un",
1353 S_GET_NAME (fragP->fr_symbol));
1354
1355 #if 0 /* This code works, but generates poor code, and the compiler
1356 should never produce a sequence that requires it to be used. */
1357
1358 /* A bcond won't fit and it won't go into a 12 bit
1359 displacement either, the code sequence looks like:
1360 b!cond foop
1361 mov.w @(n, PC), r14
1362 jmp @r14
1363 nop
1364 .long where
1365 foop:
1366 */
1367
1368 buffer[0] ^= 0x2; /* Toggle T/F bit */
1369 #define JREG 14
1370 buffer[1] = 5; /* branch over mov, jump, nop and ptr */
1371 buffer[2] = 0xd0 | JREG; /* Build mov insn */
1372 buffer[3] = 0x2;
1373 buffer[4] = 0x40 | JREG; /* Build jmp @JREG */
1374 buffer[5] = 0x0b;
1375 buffer[6] = 0x20; /* build nop */
1376 buffer[7] = 0x0b;
1377 buffer[8] = 0; /* space for 32 bit jump disp */
1378 buffer[9] = 0;
1379 buffer[10] = 0;
1380 buffer[11] = 0;
1381 buffer[12] = 0;
1382 buffer[13] = 0;
1383 /* Make reloc for the long disp */
1384 fix_new (fragP,
1385 fragP->fr_fix + 8,
1386 4,
1387 fragP->fr_symbol,
1388 fragP->fr_offset,
1389 0,
1390 R_SH_IMM32);
1391 fragP->fr_fix += COND32_LENGTH;
1392 fragP->fr_var = 0;
1393 donerelax = 1;
1394 #endif
1395
1396 break;
1397
1398 default:
1399 abort ();
1400 }
1401
1402 if (donerelax && !sh_relax)
1403 as_warn ("Offset doesn't fit at 0x%lx, trying to get to %s+0x%lx",
1404 (unsigned long) fragP->fr_address,
1405 fragP->fr_symbol ? S_GET_NAME(fragP->fr_symbol): "",
1406 (unsigned long) fragP->fr_offset);
1407 }
1408
1409 valueT
1410 DEFUN (md_section_align, (seg, size),
1411 segT seg AND
1412 valueT size)
1413 {
1414 return ((size + (1 << section_alignment[(int) seg]) - 1)
1415 & (-1 << section_alignment[(int) seg]));
1416
1417 }
1418
1419 /* When relaxing, we need to output a reloc for any .align directive
1420 that requests alignment to a four byte boundary or larger. */
1421
1422 void
1423 sh_handle_align (frag)
1424 fragS *frag;
1425 {
1426 if (sh_relax
1427 && frag->fr_type == rs_align
1428 && frag->fr_address + frag->fr_fix > 0
1429 && frag->fr_offset > 1
1430 && now_seg != bss_section)
1431 fix_new (frag, frag->fr_fix, 2, &abs_symbol, frag->fr_offset, 0,
1432 R_SH_ALIGN);
1433 }
1434
1435 /* This macro decides whether a particular reloc is an entry in a
1436 switch table. It is used when relaxing, because the linker needs
1437 to know about all such entries so that it can adjust them if
1438 necessary. */
1439
1440 #define SWITCH_TABLE(fix) \
1441 ((fix)->fx_addsy != NULL \
1442 && (fix)->fx_subsy != NULL \
1443 && S_GET_SEGMENT ((fix)->fx_addsy) == text_section \
1444 && S_GET_SEGMENT ((fix)->fx_subsy) == text_section \
1445 && ((fix)->fx_r_type == R_SH_IMM32 \
1446 || (fix)->fx_r_type == R_SH_IMM16 \
1447 || ((fix)->fx_r_type == 0 \
1448 && ((fix)->fx_size == 2 \
1449 || (fix)->fx_size == 4))))
1450
1451 /* See whether we need to force a relocation into the output file.
1452 This is used to force out switch and PC relative relocations when
1453 relaxing. */
1454
1455 int
1456 sh_force_relocation (fix)
1457 fixS *fix;
1458 {
1459 if (! sh_relax)
1460 return 0;
1461
1462 return (fix->fx_pcrel
1463 || SWITCH_TABLE (fix)
1464 || fix->fx_r_type == R_SH_COUNT
1465 || fix->fx_r_type == R_SH_ALIGN);
1466 }
1467
1468 /* Apply a fixup to the object file. */
1469
1470 void
1471 md_apply_fix (fixP, val)
1472 fixS *fixP;
1473 long val;
1474 {
1475 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
1476 int lowbyte = target_big_endian ? 1 : 0;
1477 int highbyte = target_big_endian ? 0 : 1;
1478
1479 if (fixP->fx_r_type == 0)
1480 {
1481 if (fixP->fx_size == 2)
1482 fixP->fx_r_type = R_SH_IMM16;
1483 else if (fixP->fx_size == 4)
1484 fixP->fx_r_type = R_SH_IMM32;
1485 else if (fixP->fx_size == 1)
1486 fixP->fx_r_type = R_SH_IMM8;
1487 else
1488 abort ();
1489 }
1490
1491 switch (fixP->fx_r_type)
1492 {
1493 case R_SH_IMM4:
1494 *buf = (*buf & 0xf0) | (val & 0xf);
1495 break;
1496
1497 case R_SH_IMM4BY2:
1498 *buf = (*buf & 0xf0) | ((val >> 1) & 0xf);
1499 break;
1500
1501 case R_SH_IMM4BY4:
1502 *buf = (*buf & 0xf0) | ((val >> 2) & 0xf);
1503 break;
1504
1505 case R_SH_IMM8BY2:
1506 *buf = val >> 1;
1507 break;
1508
1509 case R_SH_IMM8BY4:
1510 *buf = val >> 2;
1511 break;
1512
1513 case R_SH_IMM8:
1514 *buf++ = val;
1515 break;
1516
1517 case R_SH_PCRELIMM8BY4:
1518 /* The lower two bits of the PC are cleared before the
1519 displacement is added in. We can assume that the destination
1520 is on a 4 byte bounday. If this instruction is also on a 4
1521 byte boundary, then we want
1522 (target - here) / 4
1523 and target - here is a multiple of 4.
1524 Otherwise, we are on a 2 byte boundary, and we want
1525 (target - (here - 2)) / 4
1526 and target - here is not a multiple of 4. Computing
1527 (target - (here - 2)) / 4 == (target - here + 2) / 4
1528 works for both cases, since in the first case the addition of
1529 2 will be removed by the division. target - here is in the
1530 variable val. */
1531 val = (val + 2) / 4;
1532 if (val & ~0xff)
1533 as_bad_where (fixP->fx_file, fixP->fx_line, "pcrel too far");
1534 buf[lowbyte] = val;
1535 break;
1536
1537 case R_SH_PCRELIMM8BY2:
1538 val /= 2;
1539 if (val & ~0xff)
1540 as_bad_where (fixP->fx_file, fixP->fx_line, "pcrel too far");
1541 buf[lowbyte] = val;
1542 break;
1543
1544 case R_SH_PCDISP8BY2:
1545 val /= 2;
1546 if (val < -0x80 || val > 0x7f)
1547 as_bad_where (fixP->fx_file, fixP->fx_line, "pcrel too far");
1548 buf[lowbyte] = val;
1549 break;
1550
1551 case R_SH_PCDISP:
1552 val /= 2;
1553 if (val < -0x800 || val >= 0x7ff)
1554 as_bad_where (fixP->fx_file, fixP->fx_line, "pcrel too far");
1555 buf[lowbyte] = val & 0xff;
1556 buf[highbyte] |= (val >> 8) & 0xf;
1557 break;
1558
1559 case R_SH_IMM32:
1560 if (! target_big_endian)
1561 {
1562 *buf++ = val >> 0;
1563 *buf++ = val >> 8;
1564 *buf++ = val >> 16;
1565 *buf++ = val >> 24;
1566 }
1567 else
1568 {
1569 *buf++ = val >> 24;
1570 *buf++ = val >> 16;
1571 *buf++ = val >> 8;
1572 *buf++ = val >> 0;
1573 }
1574 break;
1575
1576 case R_SH_IMM16:
1577 if (! target_big_endian)
1578 {
1579 *buf++ = val >> 0;
1580 *buf++ = val >> 8;
1581 }
1582 else
1583 {
1584 *buf++ = val >> 8;
1585 *buf++ = val >> 0;
1586 }
1587 break;
1588
1589 case R_SH_USES:
1590 /* Pass the value into sh_coff_reloc_mangle. */
1591 fixP->fx_addnumber = val;
1592 break;
1593
1594 case R_SH_COUNT:
1595 case R_SH_ALIGN:
1596 /* Nothing to do here. */
1597 break;
1598
1599 default:
1600 abort ();
1601 }
1602 }
1603
1604 int md_long_jump_size;
1605
1606 /* Called just before address relaxation. Return the length
1607 by which a fragment must grow to reach it's destination. */
1608
1609 int
1610 md_estimate_size_before_relax (fragP, segment_type)
1611 register fragS *fragP;
1612 register segT segment_type;
1613 {
1614 switch (fragP->fr_subtype)
1615 {
1616 case C (UNCOND_JUMP, UNDEF_DISP):
1617 /* used to be a branch to somewhere which was unknown */
1618 if (!fragP->fr_symbol)
1619 {
1620 fragP->fr_subtype = C (UNCOND_JUMP, UNCOND12);
1621 fragP->fr_var = md_relax_table[C (UNCOND_JUMP, UNCOND12)].rlx_length;
1622 }
1623 else if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
1624 {
1625 fragP->fr_subtype = C (UNCOND_JUMP, UNCOND12);
1626 fragP->fr_var = md_relax_table[C (UNCOND_JUMP, UNCOND12)].rlx_length;
1627 }
1628 else
1629 {
1630 fragP->fr_subtype = C (UNCOND_JUMP, UNDEF_WORD_DISP);
1631 fragP->fr_var = md_relax_table[C (UNCOND_JUMP, UNCOND32)].rlx_length;
1632 return md_relax_table[C (UNCOND_JUMP, UNCOND32)].rlx_length;
1633 }
1634 break;
1635
1636 default:
1637 abort ();
1638 case C (COND_JUMP, UNDEF_DISP):
1639 /* used to be a branch to somewhere which was unknown */
1640 if (fragP->fr_symbol
1641 && S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
1642 {
1643 /* Got a symbol and it's defined in this segment, become byte
1644 sized - maybe it will fix up */
1645 fragP->fr_subtype = C (COND_JUMP, COND8);
1646 fragP->fr_var = md_relax_table[C (COND_JUMP, COND8)].rlx_length;
1647 }
1648 else if (fragP->fr_symbol)
1649 {
1650 /* Its got a segment, but its not ours, so it will always be long */
1651 fragP->fr_subtype = C (COND_JUMP, UNDEF_WORD_DISP);
1652 fragP->fr_var = md_relax_table[C (COND_JUMP, COND32)].rlx_length;
1653 return md_relax_table[C (COND_JUMP, COND32)].rlx_length;
1654 }
1655 else
1656 {
1657 /* We know the abs value */
1658 fragP->fr_subtype = C (COND_JUMP, COND8);
1659 fragP->fr_var = md_relax_table[C (COND_JUMP, COND8)].rlx_length;
1660 }
1661
1662 break;
1663 }
1664 return fragP->fr_var;
1665 }
1666
1667 /* Put number into target byte order */
1668
1669 void
1670 md_number_to_chars (ptr, use, nbytes)
1671 char *ptr;
1672 valueT use;
1673 int nbytes;
1674 {
1675 if (! target_big_endian)
1676 number_to_chars_littleendian (ptr, use, nbytes);
1677 else
1678 number_to_chars_bigendian (ptr, use, nbytes);
1679 }
1680
1681 long
1682 md_pcrel_from (fixP)
1683 fixS *fixP;
1684 {
1685 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address + 2;
1686 }
1687
1688 int
1689 tc_coff_sizemachdep (frag)
1690 fragS *frag;
1691 {
1692 return md_relax_table[frag->fr_subtype].rlx_length;
1693 }
1694
1695 /* When we align the .text section, insert the correct NOP pattern. */
1696
1697 int
1698 sh_do_align (n, fill, len)
1699 int n;
1700 const char *fill;
1701 int len;
1702 {
1703 if ((fill == NULL || (*fill == 0 && len == 1))
1704 && (now_seg == text_section
1705 #ifdef BFD_ASSEMBLER
1706 || (now_seg->flags & SEC_CODE) != 0
1707 #endif
1708 || strcmp (obj_segment_name (now_seg), ".init") == 0))
1709 {
1710 static const unsigned char big_nop_pattern[] = { 0x00, 0x09 };
1711 static const unsigned char little_nop_pattern[] = { 0x09, 0x00 };
1712
1713 /* First align to a 2 byte boundary, in case there is an odd
1714 .byte. */
1715 frag_align (1, 0);
1716 if (target_big_endian)
1717 frag_align_pattern (n, big_nop_pattern, sizeof big_nop_pattern);
1718 else
1719 frag_align_pattern (n, little_nop_pattern, sizeof little_nop_pattern);
1720 return 1;
1721 }
1722
1723 return 0;
1724 }
1725
1726 #ifdef OBJ_COFF
1727
1728 /* Adjust a reloc for the SH. This is similar to the generic code,
1729 but does some minor tweaking. */
1730
1731 void
1732 sh_coff_reloc_mangle (seg, fix, intr, paddr)
1733 segment_info_type *seg;
1734 fixS *fix;
1735 struct internal_reloc *intr;
1736 unsigned int paddr;
1737 {
1738 symbolS *symbol_ptr = fix->fx_addsy;
1739 symbolS *dot;
1740
1741 intr->r_vaddr = paddr + fix->fx_frag->fr_address + fix->fx_where;
1742
1743 if (! SWITCH_TABLE (fix))
1744 {
1745 intr->r_type = fix->fx_r_type;
1746 intr->r_offset = 0;
1747 }
1748 else
1749 {
1750 know (sh_relax);
1751
1752 if (fix->fx_r_type == R_SH_IMM16)
1753 intr->r_type = R_SH_SWITCH16;
1754 else if (fix->fx_r_type == R_SH_IMM32)
1755 intr->r_type = R_SH_SWITCH32;
1756 else
1757 abort ();
1758
1759 /* For a switch reloc, we set r_offset to the difference between
1760 the reloc address and the subtrahend. When the linker is
1761 doing relaxing, it can use the determine the starting and
1762 ending points of the switch difference expression. */
1763 intr->r_offset = intr->r_vaddr - S_GET_VALUE (fix->fx_subsy);
1764 }
1765
1766 /* PC relative relocs are always against the current section. */
1767 if (symbol_ptr == NULL)
1768 {
1769 switch (fix->fx_r_type)
1770 {
1771 case R_SH_PCRELIMM8BY2:
1772 case R_SH_PCRELIMM8BY4:
1773 case R_SH_PCDISP8BY2:
1774 case R_SH_PCDISP:
1775 case R_SH_USES:
1776 symbol_ptr = seg->dot;
1777 break;
1778 default:
1779 break;
1780 }
1781 }
1782
1783 if (fix->fx_r_type == R_SH_USES)
1784 {
1785 /* We can't store the offset in the object file, since this
1786 reloc does not take up any space, so we store it in r_offset.
1787 The fx_addnumber field was set in md_apply_fix. */
1788 intr->r_offset = fix->fx_addnumber;
1789 }
1790 else if (fix->fx_r_type == R_SH_COUNT)
1791 {
1792 /* We can't store the count in the object file, since this reloc
1793 does not take up any space, so we store it in r_offset. The
1794 fx_offset field was set when the fixup was created in
1795 sh_coff_frob_file. */
1796 intr->r_offset = fix->fx_offset;
1797 /* This reloc is always absolute. */
1798 symbol_ptr = NULL;
1799 }
1800 else if (fix->fx_r_type == R_SH_ALIGN)
1801 {
1802 /* Store the alignment in the r_offset field. */
1803 intr->r_offset = fix->fx_offset;
1804 /* This reloc is always absolute. */
1805 symbol_ptr = NULL;
1806 }
1807
1808 /* Turn the segment of the symbol into an offset. */
1809 if (symbol_ptr != NULL)
1810 {
1811 dot = segment_info[S_GET_SEGMENT (symbol_ptr)].dot;
1812 if (dot != NULL)
1813 intr->r_symndx = dot->sy_number;
1814 else
1815 intr->r_symndx = symbol_ptr->sy_number;
1816 }
1817 else
1818 intr->r_symndx = -1;
1819 }
1820
1821 #endif