gas: sparc: fix relaxation of CALL instruction into branches in a.out targets
[binutils-gdb.git] / gas / config / tc-sparc.c
1 /* tc-sparc.c -- Assemble for the SPARC
2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
3 This file is part of GAS, the GNU Assembler.
4
5 GAS is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3, or (at your option)
8 any later version.
9
10 GAS is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public
16 License along with GAS; see the file COPYING. If not, write
17 to the Free Software Foundation, 51 Franklin Street - Fifth Floor,
18 Boston, MA 02110-1301, USA. */
19
20 #include "as.h"
21 #include "safe-ctype.h"
22 #include "subsegs.h"
23
24 #include "opcode/sparc.h"
25 #include "dw2gencfi.h"
26
27 #ifdef OBJ_ELF
28 #include "elf/sparc.h"
29 #include "dwarf2dbg.h"
30 #endif
31
32 /* Some ancient Sun C compilers would not take such hex constants as
33 unsigned, and would end up sign-extending them to form an offsetT,
34 so use these constants instead. */
35 #define U0xffffffff ((((unsigned long) 1 << 16) << 16) - 1)
36 #define U0x80000000 ((((unsigned long) 1 << 16) << 15))
37
38 static int sparc_ip (char *, const struct sparc_opcode **);
39 static int parse_sparc_asi (char **, const sparc_asi **);
40 static int parse_keyword_arg (int (*) (const char *), char **, int *);
41 static int parse_const_expr_arg (char **, int *);
42 static int get_expression (char *);
43
44 /* Default architecture. */
45 /* ??? The default value should be V8, but sparclite support was added
46 by making it the default. GCC now passes -Asparclite, so maybe sometime in
47 the future we can set this to V8. */
48 #ifndef DEFAULT_ARCH
49 #define DEFAULT_ARCH "sparclite"
50 #endif
51 static const char *default_arch = DEFAULT_ARCH;
52
53 /* Non-zero if the initial values of `max_architecture' and `sparc_arch_size'
54 have been set. */
55 static int default_init_p;
56
57 /* Current architecture. We don't bump up unless necessary. */
58 static enum sparc_opcode_arch_val current_architecture = SPARC_OPCODE_ARCH_V6;
59
60 /* The maximum architecture level we can bump up to.
61 In a 32 bit environment, don't allow bumping up to v9 by default.
62 The native assembler works this way. The user is required to pass
63 an explicit argument before we'll create v9 object files. However, if
64 we don't see any v9 insns, a v8plus object file is not created. */
65 static enum sparc_opcode_arch_val max_architecture;
66
67 /* Either 32 or 64, selects file format. */
68 static int sparc_arch_size;
69 /* Initial (default) value, recorded separately in case a user option
70 changes the value before md_show_usage is called. */
71 static int default_arch_size;
72
73 #ifdef OBJ_ELF
74 /* The currently selected v9 memory model. Currently only used for
75 ELF. */
76 static enum { MM_TSO, MM_PSO, MM_RMO } sparc_memory_model = MM_RMO;
77
78 #ifndef TE_SOLARIS
79 /* Bitmask of instruction types seen so far, used to populate the
80 GNU attributes section with hwcap information. */
81 static bfd_uint64_t hwcap_seen;
82 #endif
83 #endif
84
85 static bfd_uint64_t hwcap_allowed;
86
87 static int architecture_requested;
88 static int warn_on_bump;
89
90 /* If warn_on_bump and the needed architecture is higher than this
91 architecture, issue a warning. */
92 static enum sparc_opcode_arch_val warn_after_architecture;
93
94 /* Non-zero if the assembler should generate error if an undeclared
95 g[23] register has been used in -64. */
96 static int no_undeclared_regs;
97
98 /* Non-zero if the assembler should generate a warning if an
99 unpredictable DCTI (delayed control transfer instruction) couple is
100 found. */
101 static int dcti_couples_detect;
102
103 /* Non-zero if we should try to relax jumps and calls. */
104 static int sparc_relax;
105
106 /* Non-zero if we are generating PIC code. */
107 int sparc_pic_code;
108
109 /* Non-zero if we should give an error when misaligned data is seen. */
110 static int enforce_aligned_data;
111
112 extern int target_big_endian;
113
114 static int target_little_endian_data;
115
116 /* Symbols for global registers on v9. */
117 static symbolS *globals[8];
118
119 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
120 int sparc_cie_data_alignment;
121
122 /* V9 and 86x have big and little endian data, but instructions are always big
123 endian. The sparclet has bi-endian support but both data and insns have
124 the same endianness. Global `target_big_endian' is used for data.
125 The following macro is used for instructions. */
126 #ifndef INSN_BIG_ENDIAN
127 #define INSN_BIG_ENDIAN (target_big_endian \
128 || default_arch_type == sparc86x \
129 || SPARC_OPCODE_ARCH_V9_P (max_architecture))
130 #endif
131
132 /* Handle of the OPCODE hash table. */
133 static struct hash_control *op_hash;
134
135 static void s_data1 (void);
136 static void s_seg (int);
137 static void s_proc (int);
138 static void s_reserve (int);
139 static void s_common (int);
140 static void s_empty (int);
141 static void s_uacons (int);
142 static void s_ncons (int);
143 #ifdef OBJ_ELF
144 static void s_register (int);
145 #endif
146
147 const pseudo_typeS md_pseudo_table[] =
148 {
149 {"align", s_align_bytes, 0}, /* Defaulting is invalid (0). */
150 {"common", s_common, 0},
151 {"empty", s_empty, 0},
152 {"global", s_globl, 0},
153 {"half", cons, 2},
154 {"nword", s_ncons, 0},
155 {"optim", s_ignore, 0},
156 {"proc", s_proc, 0},
157 {"reserve", s_reserve, 0},
158 {"seg", s_seg, 0},
159 {"skip", s_space, 0},
160 {"word", cons, 4},
161 {"xword", cons, 8},
162 {"uahalf", s_uacons, 2},
163 {"uaword", s_uacons, 4},
164 {"uaxword", s_uacons, 8},
165 #ifdef OBJ_ELF
166 /* These are specific to sparc/svr4. */
167 {"2byte", s_uacons, 2},
168 {"4byte", s_uacons, 4},
169 {"8byte", s_uacons, 8},
170 {"register", s_register, 0},
171 #endif
172 {NULL, 0, 0},
173 };
174
175 /* This array holds the chars that always start a comment. If the
176 pre-processor is disabled, these aren't very useful. */
177 const char comment_chars[] = "!"; /* JF removed '|' from
178 comment_chars. */
179
180 /* This array holds the chars that only start a comment at the beginning of
181 a line. If the line seems to have the form '# 123 filename'
182 .line and .file directives will appear in the pre-processed output. */
183 /* Note that input_file.c hand checks for '#' at the beginning of the
184 first line of the input file. This is because the compiler outputs
185 #NO_APP at the beginning of its output. */
186 /* Also note that comments started like this one will always
187 work if '/' isn't otherwise defined. */
188 const char line_comment_chars[] = "#";
189
190 const char line_separator_chars[] = ";";
191
192 /* Chars that can be used to separate mant from exp in floating point
193 nums. */
194 const char EXP_CHARS[] = "eE";
195
196 /* Chars that mean this number is a floating point constant.
197 As in 0f12.456
198 or 0d1.2345e12 */
199 const char FLT_CHARS[] = "rRsSfFdDxXpP";
200
201 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
202 changed in read.c. Ideally it shouldn't have to know about it at all,
203 but nothing is ideal around here. */
204
205 #define isoctal(c) ((unsigned) ((c) - '0') < 8)
206
207 struct sparc_it
208 {
209 const char *error;
210 unsigned long opcode;
211 struct nlist *nlistp;
212 expressionS exp;
213 expressionS exp2;
214 int pcrel;
215 bfd_reloc_code_real_type reloc;
216 };
217
218 struct sparc_it the_insn, set_insn;
219
220 static void output_insn (const struct sparc_opcode *, struct sparc_it *);
221 \f
222 /* Table of arguments to -A.
223 The sparc_opcode_arch table in sparc-opc.c is insufficient and incorrect
224 for this use. That table is for opcodes only. This table is for opcodes
225 and file formats. */
226
227 enum sparc_arch_types {v6, v7, v8, leon, sparclet, sparclite, sparc86x, v8plus,
228 v8plusa, v9, v9a, v9b, v9_64};
229
230 static struct sparc_arch {
231 const char *name;
232 const char *opcode_arch;
233 enum sparc_arch_types arch_type;
234 /* Default word size, as specified during configuration.
235 A value of zero means can't be used to specify default architecture. */
236 int default_arch_size;
237 /* Allowable arg to -A? */
238 int user_option_p;
239 /* Extra hardware capabilities allowed. These are added to the
240 hardware capabilities associated with the opcode
241 architecture. */
242 int hwcap_allowed;
243 int hwcap2_allowed;
244 } sparc_arch_table[] = {
245 { "v6", "v6", v6, 0, 1, 0, 0 },
246 { "v7", "v7", v7, 0, 1, 0, 0 },
247 { "v8", "v8", v8, 32, 1, 0, 0 },
248 { "v8a", "v8", v8, 32, 1, 0, 0 },
249 { "sparc", "v9", v9, 0, 1, HWCAP_V8PLUS, 0 },
250 { "sparcvis", "v9a", v9, 0, 1, 0, 0 },
251 { "sparcvis2", "v9b", v9, 0, 1, 0, 0 },
252 { "sparcfmaf", "v9b", v9, 0, 1, HWCAP_FMAF, 0 },
253 { "sparcima", "v9b", v9, 0, 1, HWCAP_FMAF|HWCAP_IMA, 0 },
254 { "sparcvis3", "v9b", v9, 0, 1, HWCAP_FMAF|HWCAP_VIS3|HWCAP_HPC, 0 },
255 { "sparcvis3r", "v9b", v9, 0, 1, HWCAP_FMAF|HWCAP_VIS3|HWCAP_HPC|HWCAP_FJFMAU, 0 },
256
257 { "sparc4", "v9v", v9, 0, 1, 0, 0 },
258 { "sparc5", "v9m", v9, 0, 1, 0, 0 },
259
260 { "leon", "leon", leon, 32, 1, 0, 0 },
261 { "sparclet", "sparclet", sparclet, 32, 1, 0, 0 },
262 { "sparclite", "sparclite", sparclite, 32, 1, 0, 0 },
263 { "sparc86x", "sparclite", sparc86x, 32, 1, 0, 0 },
264
265 { "v8plus", "v9", v9, 0, 1, HWCAP_V8PLUS, 0 },
266 { "v8plusa", "v9a", v9, 0, 1, HWCAP_V8PLUS, 0 },
267 { "v8plusb", "v9b", v9, 0, 1, HWCAP_V8PLUS, 0 },
268 { "v8plusc", "v9c", v9, 0, 1, HWCAP_V8PLUS, 0 },
269 { "v8plusd", "v9d", v9, 0, 1, HWCAP_V8PLUS, 0 },
270 { "v8pluse", "v9e", v9, 0, 1, HWCAP_V8PLUS, 0 },
271 { "v8plusv", "v9v", v9, 0, 1, HWCAP_V8PLUS, 0 },
272 { "v8plusm", "v9m", v9, 0, 1, HWCAP_V8PLUS, 0 },
273
274 { "v9", "v9", v9, 0, 1, 0, 0 },
275 { "v9a", "v9a", v9, 0, 1, 0, 0 },
276 { "v9b", "v9b", v9, 0, 1, 0, 0 },
277 { "v9c", "v9c", v9, 0, 1, 0, 0 },
278 { "v9d", "v9d", v9, 0, 1, 0, 0 },
279 { "v9e", "v9e", v9, 0, 1, 0, 0 },
280 { "v9v", "v9v", v9, 0, 1, 0, 0 },
281 { "v9m", "v9m", v9, 0, 1, 0, 0 },
282
283 /* This exists to allow configure.tgt to pass one
284 value to specify both the default machine and default word size. */
285 { "v9-64", "v9", v9, 64, 0, 0, 0 },
286 { NULL, NULL, v8, 0, 0, 0, 0 }
287 };
288
289 /* Variant of default_arch */
290 static enum sparc_arch_types default_arch_type;
291
292 static struct sparc_arch *
293 lookup_arch (const char *name)
294 {
295 struct sparc_arch *sa;
296
297 for (sa = &sparc_arch_table[0]; sa->name != NULL; sa++)
298 if (strcmp (sa->name, name) == 0)
299 break;
300 if (sa->name == NULL)
301 return NULL;
302 return sa;
303 }
304
305 /* Initialize the default opcode arch and word size from the default
306 architecture name. */
307
308 static void
309 init_default_arch (void)
310 {
311 struct sparc_arch *sa = lookup_arch (default_arch);
312
313 if (sa == NULL
314 || sa->default_arch_size == 0)
315 as_fatal (_("Invalid default architecture, broken assembler."));
316
317 max_architecture = sparc_opcode_lookup_arch (sa->opcode_arch);
318 if (max_architecture == SPARC_OPCODE_ARCH_BAD)
319 as_fatal (_("Bad opcode table, broken assembler."));
320 default_arch_size = sparc_arch_size = sa->default_arch_size;
321 default_init_p = 1;
322 default_arch_type = sa->arch_type;
323 }
324
325 /* Called by TARGET_FORMAT. */
326
327 const char *
328 sparc_target_format (void)
329 {
330 /* We don't get a chance to initialize anything before we're called,
331 so handle that now. */
332 if (! default_init_p)
333 init_default_arch ();
334
335 #ifdef OBJ_AOUT
336 #ifdef TE_NetBSD
337 return "a.out-sparc-netbsd";
338 #else
339 #ifdef TE_SPARCAOUT
340 if (target_big_endian)
341 return "a.out-sunos-big";
342 else if (default_arch_type == sparc86x && target_little_endian_data)
343 return "a.out-sunos-big";
344 else
345 return "a.out-sparc-little";
346 #else
347 return "a.out-sunos-big";
348 #endif
349 #endif
350 #endif
351
352 #ifdef OBJ_BOUT
353 return "b.out.big";
354 #endif
355
356 #ifdef OBJ_COFF
357 #ifdef TE_LYNX
358 return "coff-sparc-lynx";
359 #else
360 return "coff-sparc";
361 #endif
362 #endif
363
364 #ifdef TE_VXWORKS
365 return "elf32-sparc-vxworks";
366 #endif
367
368 #ifdef OBJ_ELF
369 return sparc_arch_size == 64 ? ELF64_TARGET_FORMAT : ELF_TARGET_FORMAT;
370 #endif
371
372 abort ();
373 }
374 \f
375 /* md_parse_option
376 * Invocation line includes a switch not recognized by the base assembler.
377 * See if it's a processor-specific option. These are:
378 *
379 * -bump
380 * Warn on architecture bumps. See also -A.
381 *
382 * -Av6, -Av7, -Av8, -Aleon, -Asparclite, -Asparclet
383 * Standard 32 bit architectures.
384 * -Av9, -Av9a, -Av9b
385 * Sparc64 in either a 32 or 64 bit world (-32/-64 says which).
386 * This used to only mean 64 bits, but properly specifying it
387 * complicated gcc's ASM_SPECs, so now opcode selection is
388 * specified orthogonally to word size (except when specifying
389 * the default, but that is an internal implementation detail).
390 * -Av8plus, -Av8plusa, -Av8plusb
391 * Same as -Av9{,a,b}.
392 * -xarch=v8plus, -xarch=v8plusa, -xarch=v8plusb
393 * Same as -Av8plus{,a,b} -32, for compatibility with Sun's
394 * assembler.
395 * -xarch=v9, -xarch=v9a, -xarch=v9b
396 * Same as -Av9{,a,b} -64, for compatibility with Sun's
397 * assembler.
398 *
399 * Select the architecture and possibly the file format.
400 * Instructions or features not supported by the selected
401 * architecture cause fatal errors.
402 *
403 * The default is to start at v6, and bump the architecture up
404 * whenever an instruction is seen at a higher level. In 32 bit
405 * environments, v9 is not bumped up to, the user must pass
406 * -Av8plus{,a,b}.
407 *
408 * If -bump is specified, a warning is printing when bumping to
409 * higher levels.
410 *
411 * If an architecture is specified, all instructions must match
412 * that architecture. Any higher level instructions are flagged
413 * as errors. Note that in the 32 bit environment specifying
414 * -Av8plus does not automatically create a v8plus object file, a
415 * v9 insn must be seen.
416 *
417 * If both an architecture and -bump are specified, the
418 * architecture starts at the specified level, but bumps are
419 * warnings. Note that we can't set `current_architecture' to
420 * the requested level in this case: in the 32 bit environment,
421 * we still must avoid creating v8plus object files unless v9
422 * insns are seen.
423 *
424 * Note:
425 * Bumping between incompatible architectures is always an
426 * error. For example, from sparclite to v9.
427 */
428
429 #ifdef OBJ_ELF
430 const char *md_shortopts = "A:K:VQ:sq";
431 #else
432 #ifdef OBJ_AOUT
433 const char *md_shortopts = "A:k";
434 #else
435 const char *md_shortopts = "A:";
436 #endif
437 #endif
438 struct option md_longopts[] = {
439 #define OPTION_BUMP (OPTION_MD_BASE)
440 {"bump", no_argument, NULL, OPTION_BUMP},
441 #define OPTION_SPARC (OPTION_MD_BASE + 1)
442 {"sparc", no_argument, NULL, OPTION_SPARC},
443 #define OPTION_XARCH (OPTION_MD_BASE + 2)
444 {"xarch", required_argument, NULL, OPTION_XARCH},
445 #ifdef OBJ_ELF
446 #define OPTION_32 (OPTION_MD_BASE + 3)
447 {"32", no_argument, NULL, OPTION_32},
448 #define OPTION_64 (OPTION_MD_BASE + 4)
449 {"64", no_argument, NULL, OPTION_64},
450 #define OPTION_TSO (OPTION_MD_BASE + 5)
451 {"TSO", no_argument, NULL, OPTION_TSO},
452 #define OPTION_PSO (OPTION_MD_BASE + 6)
453 {"PSO", no_argument, NULL, OPTION_PSO},
454 #define OPTION_RMO (OPTION_MD_BASE + 7)
455 {"RMO", no_argument, NULL, OPTION_RMO},
456 #endif
457 #ifdef SPARC_BIENDIAN
458 #define OPTION_LITTLE_ENDIAN (OPTION_MD_BASE + 8)
459 {"EL", no_argument, NULL, OPTION_LITTLE_ENDIAN},
460 #define OPTION_BIG_ENDIAN (OPTION_MD_BASE + 9)
461 {"EB", no_argument, NULL, OPTION_BIG_ENDIAN},
462 #endif
463 #define OPTION_ENFORCE_ALIGNED_DATA (OPTION_MD_BASE + 10)
464 {"enforce-aligned-data", no_argument, NULL, OPTION_ENFORCE_ALIGNED_DATA},
465 #define OPTION_LITTLE_ENDIAN_DATA (OPTION_MD_BASE + 11)
466 {"little-endian-data", no_argument, NULL, OPTION_LITTLE_ENDIAN_DATA},
467 #ifdef OBJ_ELF
468 #define OPTION_NO_UNDECLARED_REGS (OPTION_MD_BASE + 12)
469 {"no-undeclared-regs", no_argument, NULL, OPTION_NO_UNDECLARED_REGS},
470 #define OPTION_UNDECLARED_REGS (OPTION_MD_BASE + 13)
471 {"undeclared-regs", no_argument, NULL, OPTION_UNDECLARED_REGS},
472 #endif
473 #define OPTION_RELAX (OPTION_MD_BASE + 14)
474 {"relax", no_argument, NULL, OPTION_RELAX},
475 #define OPTION_NO_RELAX (OPTION_MD_BASE + 15)
476 {"no-relax", no_argument, NULL, OPTION_NO_RELAX},
477 #define OPTION_DCTI_COUPLES_DETECT (OPTION_MD_BASE + 16)
478 {"dcti-couples-detect", no_argument, NULL, OPTION_DCTI_COUPLES_DETECT},
479 {NULL, no_argument, NULL, 0}
480 };
481
482 size_t md_longopts_size = sizeof (md_longopts);
483
484 int
485 md_parse_option (int c, const char *arg)
486 {
487 /* We don't get a chance to initialize anything before we're called,
488 so handle that now. */
489 if (! default_init_p)
490 init_default_arch ();
491
492 switch (c)
493 {
494 case OPTION_BUMP:
495 warn_on_bump = 1;
496 warn_after_architecture = SPARC_OPCODE_ARCH_V6;
497 break;
498
499 case OPTION_XARCH:
500 #ifdef OBJ_ELF
501 if (!strncmp (arg, "v9", 2))
502 md_parse_option (OPTION_64, NULL);
503 else
504 {
505 if (!strncmp (arg, "v8", 2)
506 || !strncmp (arg, "v7", 2)
507 || !strncmp (arg, "v6", 2)
508 || !strcmp (arg, "sparclet")
509 || !strcmp (arg, "sparclite")
510 || !strcmp (arg, "sparc86x"))
511 md_parse_option (OPTION_32, NULL);
512 }
513 #endif
514 /* Fall through. */
515
516 case 'A':
517 {
518 struct sparc_arch *sa;
519 enum sparc_opcode_arch_val opcode_arch;
520
521 sa = lookup_arch (arg);
522 if (sa == NULL
523 || ! sa->user_option_p)
524 {
525 if (c == OPTION_XARCH)
526 as_bad (_("invalid architecture -xarch=%s"), arg);
527 else
528 as_bad (_("invalid architecture -A%s"), arg);
529 return 0;
530 }
531
532 opcode_arch = sparc_opcode_lookup_arch (sa->opcode_arch);
533 if (opcode_arch == SPARC_OPCODE_ARCH_BAD)
534 as_fatal (_("Bad opcode table, broken assembler."));
535
536 if (!architecture_requested
537 || opcode_arch > max_architecture)
538 max_architecture = opcode_arch;
539
540 /* The allowed hardware capabilities are the implied by the
541 opcodes arch plus any extra capabilities defined in the GAS
542 arch. */
543 hwcap_allowed
544 = (hwcap_allowed
545 | (((bfd_uint64_t) sparc_opcode_archs[opcode_arch].hwcaps2) << 32)
546 | (((bfd_uint64_t) sa->hwcap2_allowed) << 32)
547 | sparc_opcode_archs[opcode_arch].hwcaps
548 | sa->hwcap_allowed);
549 architecture_requested = 1;
550 }
551 break;
552
553 case OPTION_SPARC:
554 /* Ignore -sparc, used by SunOS make default .s.o rule. */
555 break;
556
557 case OPTION_ENFORCE_ALIGNED_DATA:
558 enforce_aligned_data = 1;
559 break;
560
561 #ifdef SPARC_BIENDIAN
562 case OPTION_LITTLE_ENDIAN:
563 target_big_endian = 0;
564 if (default_arch_type != sparclet)
565 as_fatal ("This target does not support -EL");
566 break;
567 case OPTION_LITTLE_ENDIAN_DATA:
568 target_little_endian_data = 1;
569 target_big_endian = 0;
570 if (default_arch_type != sparc86x
571 && default_arch_type != v9)
572 as_fatal ("This target does not support --little-endian-data");
573 break;
574 case OPTION_BIG_ENDIAN:
575 target_big_endian = 1;
576 break;
577 #endif
578
579 #ifdef OBJ_AOUT
580 case 'k':
581 sparc_pic_code = 1;
582 break;
583 #endif
584
585 #ifdef OBJ_ELF
586 case OPTION_32:
587 case OPTION_64:
588 {
589 const char **list, **l;
590
591 sparc_arch_size = c == OPTION_32 ? 32 : 64;
592 list = bfd_target_list ();
593 for (l = list; *l != NULL; l++)
594 {
595 if (sparc_arch_size == 32)
596 {
597 if (CONST_STRNEQ (*l, "elf32-sparc"))
598 break;
599 }
600 else
601 {
602 if (CONST_STRNEQ (*l, "elf64-sparc"))
603 break;
604 }
605 }
606 if (*l == NULL)
607 as_fatal (_("No compiled in support for %d bit object file format"),
608 sparc_arch_size);
609 free (list);
610
611 if (sparc_arch_size == 64
612 && max_architecture < SPARC_OPCODE_ARCH_V9)
613 max_architecture = SPARC_OPCODE_ARCH_V9;
614 }
615 break;
616
617 case OPTION_TSO:
618 sparc_memory_model = MM_TSO;
619 break;
620
621 case OPTION_PSO:
622 sparc_memory_model = MM_PSO;
623 break;
624
625 case OPTION_RMO:
626 sparc_memory_model = MM_RMO;
627 break;
628
629 case 'V':
630 print_version_id ();
631 break;
632
633 case 'Q':
634 /* Qy - do emit .comment
635 Qn - do not emit .comment. */
636 break;
637
638 case 's':
639 /* Use .stab instead of .stab.excl. */
640 break;
641
642 case 'q':
643 /* quick -- Native assembler does fewer checks. */
644 break;
645
646 case 'K':
647 if (strcmp (arg, "PIC") != 0)
648 as_warn (_("Unrecognized option following -K"));
649 else
650 sparc_pic_code = 1;
651 break;
652
653 case OPTION_NO_UNDECLARED_REGS:
654 no_undeclared_regs = 1;
655 break;
656
657 case OPTION_UNDECLARED_REGS:
658 no_undeclared_regs = 0;
659 break;
660 #endif
661
662 case OPTION_RELAX:
663 sparc_relax = 1;
664 break;
665
666 case OPTION_NO_RELAX:
667 sparc_relax = 0;
668 break;
669
670 case OPTION_DCTI_COUPLES_DETECT:
671 dcti_couples_detect = 1;
672 break;
673
674 default:
675 return 0;
676 }
677
678 return 1;
679 }
680
681 void
682 md_show_usage (FILE *stream)
683 {
684 const struct sparc_arch *arch;
685 int column;
686
687 /* We don't get a chance to initialize anything before we're called,
688 so handle that now. */
689 if (! default_init_p)
690 init_default_arch ();
691
692 fprintf (stream, _("SPARC options:\n"));
693 column = 0;
694 for (arch = &sparc_arch_table[0]; arch->name; arch++)
695 {
696 if (!arch->user_option_p)
697 continue;
698 if (arch != &sparc_arch_table[0])
699 fprintf (stream, " | ");
700 if (column + strlen (arch->name) > 70)
701 {
702 column = 0;
703 fputc ('\n', stream);
704 }
705 column += 5 + 2 + strlen (arch->name);
706 fprintf (stream, "-A%s", arch->name);
707 }
708 for (arch = &sparc_arch_table[0]; arch->name; arch++)
709 {
710 if (!arch->user_option_p)
711 continue;
712 fprintf (stream, " | ");
713 if (column + strlen (arch->name) > 65)
714 {
715 column = 0;
716 fputc ('\n', stream);
717 }
718 column += 5 + 7 + strlen (arch->name);
719 fprintf (stream, "-xarch=%s", arch->name);
720 }
721 fprintf (stream, _("\n\
722 specify variant of SPARC architecture\n\
723 -bump warn when assembler switches architectures\n\
724 -sparc ignored\n\
725 --enforce-aligned-data force .long, etc., to be aligned correctly\n\
726 -relax relax jumps and branches (default)\n\
727 -no-relax avoid changing any jumps and branches\n"));
728 #ifdef OBJ_AOUT
729 fprintf (stream, _("\
730 -k generate PIC\n"));
731 #endif
732 #ifdef OBJ_ELF
733 fprintf (stream, _("\
734 -32 create 32 bit object file\n\
735 -64 create 64 bit object file\n"));
736 fprintf (stream, _("\
737 [default is %d]\n"), default_arch_size);
738 fprintf (stream, _("\
739 -TSO use Total Store Ordering\n\
740 -PSO use Partial Store Ordering\n\
741 -RMO use Relaxed Memory Ordering\n"));
742 fprintf (stream, _("\
743 [default is %s]\n"), (default_arch_size == 64) ? "RMO" : "TSO");
744 fprintf (stream, _("\
745 -KPIC generate PIC\n\
746 -V print assembler version number\n\
747 -undeclared-regs ignore application global register usage without\n\
748 appropriate .register directive (default)\n\
749 -no-undeclared-regs force error on application global register usage\n\
750 without appropriate .register directive\n\
751 --dcti-couples-detect warn when an unpredictable DCTI couple is found\n\
752 -q ignored\n\
753 -Qy, -Qn ignored\n\
754 -s ignored\n"));
755 #endif
756 #ifdef SPARC_BIENDIAN
757 fprintf (stream, _("\
758 -EL generate code for a little endian machine\n\
759 -EB generate code for a big endian machine\n\
760 --little-endian-data generate code for a machine having big endian\n\
761 instructions and little endian data.\n"));
762 #endif
763 }
764 \f
765 /* Native operand size opcode translation. */
766 static struct
767 {
768 const char *name;
769 const char *name32;
770 const char *name64;
771 } native_op_table[] =
772 {
773 {"ldn", "ld", "ldx"},
774 {"ldna", "lda", "ldxa"},
775 {"stn", "st", "stx"},
776 {"stna", "sta", "stxa"},
777 {"slln", "sll", "sllx"},
778 {"srln", "srl", "srlx"},
779 {"sran", "sra", "srax"},
780 {"casn", "cas", "casx"},
781 {"casna", "casa", "casxa"},
782 {"clrn", "clr", "clrx"},
783 {NULL, NULL, NULL},
784 };
785 \f
786 /* sparc64 privileged and hyperprivileged registers. */
787
788 struct priv_reg_entry
789 {
790 const char *name;
791 int regnum;
792 };
793
794 struct priv_reg_entry priv_reg_table[] =
795 {
796 {"tpc", 0},
797 {"tnpc", 1},
798 {"tstate", 2},
799 {"tt", 3},
800 {"tick", 4},
801 {"tba", 5},
802 {"pstate", 6},
803 {"tl", 7},
804 {"pil", 8},
805 {"cwp", 9},
806 {"cansave", 10},
807 {"canrestore", 11},
808 {"cleanwin", 12},
809 {"otherwin", 13},
810 {"wstate", 14},
811 {"fq", 15},
812 {"gl", 16},
813 {"pmcdper", 23},
814 {"ver", 31},
815 {NULL, -1}, /* End marker. */
816 };
817
818 struct priv_reg_entry hpriv_reg_table[] =
819 {
820 {"hpstate", 0},
821 {"htstate", 1},
822 {"hintp", 3},
823 {"htba", 5},
824 {"hver", 6},
825 {"hmcdper", 23},
826 {"hmcddfr", 24},
827 {"hva_mask_nz", 27},
828 {"hstick_offset", 28},
829 {"hstick_enable", 29},
830 {"hstick_cmpr", 31},
831 {NULL, -1}, /* End marker. */
832 };
833
834 /* v9a or later specific ancillary state registers. */
835
836 struct priv_reg_entry v9a_asr_table[] =
837 {
838 {"tick_cmpr", 23},
839 {"sys_tick_cmpr", 25},
840 {"sys_tick", 24},
841 {"stick_cmpr", 25},
842 {"stick", 24},
843 {"softint_clear", 21},
844 {"softint_set", 20},
845 {"softint", 22},
846 {"set_softint", 20},
847 {"pause", 27},
848 {"pic", 17},
849 {"pcr", 16},
850 {"mwait", 28},
851 {"gsr", 19},
852 {"dcr", 18},
853 {"cfr", 26},
854 {"clear_softint", 21},
855 {NULL, -1}, /* End marker. */
856 };
857
858 static int
859 cmp_reg_entry (const void *parg, const void *qarg)
860 {
861 const struct priv_reg_entry *p = (const struct priv_reg_entry *) parg;
862 const struct priv_reg_entry *q = (const struct priv_reg_entry *) qarg;
863
864 if (p->name == q->name)
865 return 0;
866 else if (p->name == NULL)
867 return 1;
868 else if (q->name == NULL)
869 return -1;
870 else
871 return strcmp (q->name, p->name);
872 }
873 \f
874 /* sparc %-pseudo-operations. */
875
876
877 #define F_POP_V9 0x1 /* The pseudo-op is for v9 only. */
878 #define F_POP_PCREL 0x2 /* The pseudo-op can be used in pc-relative
879 contexts. */
880 #define F_POP_TLS_CALL 0x4 /* The pseudo-op marks a tls call. */
881 #define F_POP_POSTFIX 0x8 /* The pseudo-op should appear after the
882 last operand of an
883 instruction. (Generally they can appear
884 anywhere an immediate operand is
885 expected. */
886 struct pop_entry
887 {
888 /* The name as it appears in assembler. */
889 const char *name;
890 /* The reloc this pseudo-op translates to. */
891 bfd_reloc_code_real_type reloc;
892 /* Flags. See F_POP_* above. */
893 int flags;
894 };
895
896 struct pop_entry pop_table[] =
897 {
898 { "hix", BFD_RELOC_SPARC_HIX22, F_POP_V9 },
899 { "lox", BFD_RELOC_SPARC_LOX10, F_POP_V9 },
900 { "hi", BFD_RELOC_HI22, F_POP_PCREL },
901 { "lo", BFD_RELOC_LO10, F_POP_PCREL },
902 { "pc22", BFD_RELOC_SPARC_PC22, F_POP_PCREL },
903 { "pc10", BFD_RELOC_SPARC_PC10, F_POP_PCREL },
904 { "hh", BFD_RELOC_SPARC_HH22, F_POP_V9|F_POP_PCREL },
905 { "hm", BFD_RELOC_SPARC_HM10, F_POP_V9|F_POP_PCREL },
906 { "lm", BFD_RELOC_SPARC_LM22, F_POP_V9|F_POP_PCREL },
907 { "h34", BFD_RELOC_SPARC_H34, F_POP_V9 },
908 { "l34", BFD_RELOC_SPARC_L44, F_POP_V9 },
909 { "h44", BFD_RELOC_SPARC_H44, F_POP_V9 },
910 { "m44", BFD_RELOC_SPARC_M44, F_POP_V9 },
911 { "l44", BFD_RELOC_SPARC_L44, F_POP_V9 },
912 { "uhi", BFD_RELOC_SPARC_HH22, F_POP_V9 },
913 { "ulo", BFD_RELOC_SPARC_HM10, F_POP_V9 },
914 { "tgd_hi22", BFD_RELOC_SPARC_TLS_GD_HI22, 0 },
915 { "tgd_lo10", BFD_RELOC_SPARC_TLS_GD_LO10, 0 },
916 { "tldm_hi22", BFD_RELOC_SPARC_TLS_LDM_HI22, 0 },
917 { "tldm_lo10", BFD_RELOC_SPARC_TLS_LDM_LO10, 0 },
918 { "tldo_hix22", BFD_RELOC_SPARC_TLS_LDO_HIX22, 0 },
919 { "tldo_lox10", BFD_RELOC_SPARC_TLS_LDO_LOX10, 0 },
920 { "tie_hi22", BFD_RELOC_SPARC_TLS_IE_HI22, 0 },
921 { "tie_lo10", BFD_RELOC_SPARC_TLS_IE_LO10, 0 },
922 { "tle_hix22", BFD_RELOC_SPARC_TLS_LE_HIX22, 0 },
923 { "tle_lox10", BFD_RELOC_SPARC_TLS_LE_LOX10, 0 },
924 { "gdop_hix22", BFD_RELOC_SPARC_GOTDATA_OP_HIX22, 0 },
925 { "gdop_lox10", BFD_RELOC_SPARC_GOTDATA_OP_LOX10, 0 },
926 { "tgd_add", BFD_RELOC_SPARC_TLS_GD_ADD, F_POP_POSTFIX },
927 { "tgd_call", BFD_RELOC_SPARC_TLS_GD_CALL, F_POP_POSTFIX|F_POP_TLS_CALL },
928 { "tldm_add", BFD_RELOC_SPARC_TLS_LDM_ADD, F_POP_POSTFIX },
929 { "tldm_call", BFD_RELOC_SPARC_TLS_LDM_CALL, F_POP_POSTFIX|F_POP_TLS_CALL },
930 { "tldo_add", BFD_RELOC_SPARC_TLS_LDO_ADD, F_POP_POSTFIX },
931 { "tie_ldx", BFD_RELOC_SPARC_TLS_IE_LDX, F_POP_POSTFIX },
932 { "tie_ld", BFD_RELOC_SPARC_TLS_IE_LD, F_POP_POSTFIX },
933 { "tie_add", BFD_RELOC_SPARC_TLS_IE_ADD, F_POP_POSTFIX },
934 { "gdop", BFD_RELOC_SPARC_GOTDATA_OP, F_POP_POSTFIX }
935 };
936 \f
937 /* Table of %-names that can appear in a sparc assembly program. This
938 table is initialized in md_begin and contains entries for each
939 privileged/hyperprivileged/alternate register and %-pseudo-op. */
940
941 enum perc_entry_type
942 {
943 perc_entry_none = 0,
944 perc_entry_reg,
945 perc_entry_post_pop,
946 perc_entry_imm_pop
947 };
948
949 struct perc_entry
950 {
951 /* Entry type. */
952 enum perc_entry_type type;
953 /* Name of the %-entity. */
954 const char *name;
955 /* strlen (name). */
956 int len;
957 /* Value. Either a pop or a reg depending on type.*/
958 union
959 {
960 struct pop_entry *pop;
961 struct priv_reg_entry *reg;
962 };
963 };
964
965 #define NUM_PERC_ENTRIES \
966 (((sizeof (priv_reg_table) / sizeof (priv_reg_table[0])) - 1) \
967 + ((sizeof (hpriv_reg_table) / sizeof (hpriv_reg_table[0])) - 1) \
968 + ((sizeof (v9a_asr_table) / sizeof (v9a_asr_table[0])) - 1) \
969 + ARRAY_SIZE (pop_table) \
970 + 1)
971
972 struct perc_entry perc_table[NUM_PERC_ENTRIES];
973
974 static int
975 cmp_perc_entry (const void *parg, const void *qarg)
976 {
977 const struct perc_entry *p = (const struct perc_entry *) parg;
978 const struct perc_entry *q = (const struct perc_entry *) qarg;
979
980 if (p->name == q->name)
981 return 0;
982 else if (p->name == NULL)
983 return 1;
984 else if (q->name == NULL)
985 return -1;
986 else
987 return strcmp (q->name, p->name);
988 }
989 \f
990 /* This function is called once, at assembler startup time. It should
991 set up all the tables, etc. that the MD part of the assembler will
992 need. */
993
994 void
995 md_begin (void)
996 {
997 const char *retval = NULL;
998 int lose = 0;
999 unsigned int i = 0;
1000
1001 /* We don't get a chance to initialize anything before md_parse_option
1002 is called, and it may not be called, so handle default initialization
1003 now if not already done. */
1004 if (! default_init_p)
1005 init_default_arch ();
1006
1007 sparc_cie_data_alignment = sparc_arch_size == 64 ? -8 : -4;
1008 op_hash = hash_new ();
1009
1010 while (i < (unsigned int) sparc_num_opcodes)
1011 {
1012 const char *name = sparc_opcodes[i].name;
1013 retval = hash_insert (op_hash, name, (void *) &sparc_opcodes[i]);
1014 if (retval != NULL)
1015 {
1016 as_bad (_("Internal error: can't hash `%s': %s\n"),
1017 sparc_opcodes[i].name, retval);
1018 lose = 1;
1019 }
1020 do
1021 {
1022 if (sparc_opcodes[i].match & sparc_opcodes[i].lose)
1023 {
1024 as_bad (_("Internal error: losing opcode: `%s' \"%s\"\n"),
1025 sparc_opcodes[i].name, sparc_opcodes[i].args);
1026 lose = 1;
1027 }
1028 ++i;
1029 }
1030 while (i < (unsigned int) sparc_num_opcodes
1031 && !strcmp (sparc_opcodes[i].name, name));
1032 }
1033
1034 for (i = 0; native_op_table[i].name; i++)
1035 {
1036 const struct sparc_opcode *insn;
1037 const char *name = ((sparc_arch_size == 32)
1038 ? native_op_table[i].name32
1039 : native_op_table[i].name64);
1040 insn = (struct sparc_opcode *) hash_find (op_hash, name);
1041 if (insn == NULL)
1042 {
1043 as_bad (_("Internal error: can't find opcode `%s' for `%s'\n"),
1044 name, native_op_table[i].name);
1045 lose = 1;
1046 }
1047 else
1048 {
1049 retval = hash_insert (op_hash, native_op_table[i].name,
1050 (void *) insn);
1051 if (retval != NULL)
1052 {
1053 as_bad (_("Internal error: can't hash `%s': %s\n"),
1054 sparc_opcodes[i].name, retval);
1055 lose = 1;
1056 }
1057 }
1058 }
1059
1060 if (lose)
1061 as_fatal (_("Broken assembler. No assembly attempted."));
1062
1063 qsort (priv_reg_table, sizeof (priv_reg_table) / sizeof (priv_reg_table[0]),
1064 sizeof (priv_reg_table[0]), cmp_reg_entry);
1065 qsort (hpriv_reg_table, sizeof (hpriv_reg_table) / sizeof (hpriv_reg_table[0]),
1066 sizeof (hpriv_reg_table[0]), cmp_reg_entry);
1067 qsort (v9a_asr_table, sizeof (v9a_asr_table) / sizeof (v9a_asr_table[0]),
1068 sizeof (v9a_asr_table[0]), cmp_reg_entry);
1069
1070 /* If -bump, record the architecture level at which we start issuing
1071 warnings. The behaviour is different depending upon whether an
1072 architecture was explicitly specified. If it wasn't, we issue warnings
1073 for all upwards bumps. If it was, we don't start issuing warnings until
1074 we need to bump beyond the requested architecture or when we bump between
1075 conflicting architectures. */
1076
1077 if (warn_on_bump
1078 && architecture_requested)
1079 {
1080 /* `max_architecture' records the requested architecture.
1081 Issue warnings if we go above it. */
1082 warn_after_architecture = max_architecture;
1083 }
1084
1085 /* Find the highest architecture level that doesn't conflict with
1086 the requested one. */
1087
1088 if (warn_on_bump
1089 || !architecture_requested)
1090 {
1091 enum sparc_opcode_arch_val current_max_architecture
1092 = max_architecture;
1093
1094 for (max_architecture = SPARC_OPCODE_ARCH_MAX;
1095 max_architecture > warn_after_architecture;
1096 --max_architecture)
1097 if (! SPARC_OPCODE_CONFLICT_P (max_architecture,
1098 current_max_architecture))
1099 break;
1100 }
1101
1102 /* Prepare the tables of %-pseudo-ops. */
1103 {
1104 struct priv_reg_entry *reg_tables[]
1105 = {priv_reg_table, hpriv_reg_table, v9a_asr_table, NULL};
1106 struct priv_reg_entry **reg_table;
1107 int entry = 0;
1108
1109 /* Add registers. */
1110 for (reg_table = reg_tables; reg_table[0]; reg_table++)
1111 {
1112 struct priv_reg_entry *reg;
1113 for (reg = *reg_table; reg->name; reg++)
1114 {
1115 struct perc_entry *p = &perc_table[entry++];
1116 p->type = perc_entry_reg;
1117 p->name = reg->name;
1118 p->len = strlen (reg->name);
1119 p->reg = reg;
1120 }
1121 }
1122
1123 /* Add %-pseudo-ops. */
1124 for (i = 0; i < ARRAY_SIZE (pop_table); i++)
1125 {
1126 struct perc_entry *p = &perc_table[entry++];
1127 p->type = (pop_table[i].flags & F_POP_POSTFIX
1128 ? perc_entry_post_pop : perc_entry_imm_pop);
1129 p->name = pop_table[i].name;
1130 p->len = strlen (pop_table[i].name);
1131 p->pop = &pop_table[i];
1132 }
1133
1134 /* Last entry is the sentinel. */
1135 perc_table[entry].type = perc_entry_none;
1136
1137 qsort (perc_table, sizeof (perc_table) / sizeof (perc_table[0]),
1138 sizeof (perc_table[0]), cmp_perc_entry);
1139
1140 }
1141 }
1142
1143 /* Called after all assembly has been done. */
1144
1145 void
1146 sparc_md_end (void)
1147 {
1148 unsigned long mach = bfd_mach_sparc;
1149 #if defined(OBJ_ELF) && !defined(TE_SOLARIS)
1150 int hwcaps, hwcaps2;
1151 #endif
1152
1153 if (sparc_arch_size == 64)
1154 switch (current_architecture)
1155 {
1156 case SPARC_OPCODE_ARCH_V9A: mach = bfd_mach_sparc_v9a; break;
1157 case SPARC_OPCODE_ARCH_V9B: mach = bfd_mach_sparc_v9b; break;
1158 case SPARC_OPCODE_ARCH_V9C: mach = bfd_mach_sparc_v9c; break;
1159 case SPARC_OPCODE_ARCH_V9D: mach = bfd_mach_sparc_v9d; break;
1160 case SPARC_OPCODE_ARCH_V9E: mach = bfd_mach_sparc_v9e; break;
1161 case SPARC_OPCODE_ARCH_V9V: mach = bfd_mach_sparc_v9v; break;
1162 case SPARC_OPCODE_ARCH_V9M: mach = bfd_mach_sparc_v9m; break;
1163 default: mach = bfd_mach_sparc_v9; break;
1164 }
1165 else
1166 switch (current_architecture)
1167 {
1168 case SPARC_OPCODE_ARCH_SPARCLET: mach = bfd_mach_sparc_sparclet; break;
1169 case SPARC_OPCODE_ARCH_V9: mach = bfd_mach_sparc_v8plus; break;
1170 case SPARC_OPCODE_ARCH_V9A: mach = bfd_mach_sparc_v8plusa; break;
1171 case SPARC_OPCODE_ARCH_V9B: mach = bfd_mach_sparc_v8plusb; break;
1172 case SPARC_OPCODE_ARCH_V9C: mach = bfd_mach_sparc_v8plusc; break;
1173 case SPARC_OPCODE_ARCH_V9D: mach = bfd_mach_sparc_v8plusd; break;
1174 case SPARC_OPCODE_ARCH_V9E: mach = bfd_mach_sparc_v8pluse; break;
1175 case SPARC_OPCODE_ARCH_V9V: mach = bfd_mach_sparc_v8plusv; break;
1176 case SPARC_OPCODE_ARCH_V9M: mach = bfd_mach_sparc_v8plusm; break;
1177 /* The sparclite is treated like a normal sparc. Perhaps it shouldn't
1178 be but for now it is (since that's the way it's always been
1179 treated). */
1180 default: break;
1181 }
1182 bfd_set_arch_mach (stdoutput, bfd_arch_sparc, mach);
1183
1184 #if defined(OBJ_ELF) && !defined(TE_SOLARIS)
1185 hwcaps = hwcap_seen & U0xffffffff;
1186 hwcaps2 = hwcap_seen >> 32;
1187
1188 if (hwcaps)
1189 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU, Tag_GNU_Sparc_HWCAPS, hwcaps);
1190 if (hwcaps2)
1191 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU, Tag_GNU_Sparc_HWCAPS2, hwcaps2);
1192 #endif
1193 }
1194 \f
1195 /* Return non-zero if VAL is in the range -(MAX+1) to MAX. */
1196
1197 static inline int
1198 in_signed_range (bfd_signed_vma val, bfd_signed_vma max)
1199 {
1200 if (max <= 0)
1201 abort ();
1202 /* Sign-extend the value from the architecture word size, so that
1203 0xffffffff is always considered -1 on sparc32. */
1204 if (sparc_arch_size == 32)
1205 {
1206 bfd_signed_vma sign = (bfd_signed_vma) 1 << 31;
1207 val = ((val & U0xffffffff) ^ sign) - sign;
1208 }
1209 if (val > max)
1210 return 0;
1211 if (val < ~max)
1212 return 0;
1213 return 1;
1214 }
1215
1216 /* Return non-zero if VAL is in the range 0 to MAX. */
1217
1218 static inline int
1219 in_unsigned_range (bfd_vma val, bfd_vma max)
1220 {
1221 if (val > max)
1222 return 0;
1223 return 1;
1224 }
1225
1226 /* Return non-zero if VAL is in the range -(MAX/2+1) to MAX.
1227 (e.g. -15 to +31). */
1228
1229 static inline int
1230 in_bitfield_range (bfd_signed_vma val, bfd_signed_vma max)
1231 {
1232 if (max <= 0)
1233 abort ();
1234 if (val > max)
1235 return 0;
1236 if (val < ~(max >> 1))
1237 return 0;
1238 return 1;
1239 }
1240
1241 static int
1242 sparc_ffs (unsigned int mask)
1243 {
1244 int i;
1245
1246 if (mask == 0)
1247 return -1;
1248
1249 for (i = 0; (mask & 1) == 0; ++i)
1250 mask >>= 1;
1251 return i;
1252 }
1253
1254 /* Implement big shift right. */
1255 static bfd_vma
1256 BSR (bfd_vma val, int amount)
1257 {
1258 if (sizeof (bfd_vma) <= 4 && amount >= 32)
1259 as_fatal (_("Support for 64-bit arithmetic not compiled in."));
1260 return val >> amount;
1261 }
1262 \f
1263 /* For communication between sparc_ip and get_expression. */
1264 static char *expr_end;
1265
1266 /* Values for `special_case'.
1267 Instructions that require weird handling because they're longer than
1268 4 bytes. */
1269 #define SPECIAL_CASE_NONE 0
1270 #define SPECIAL_CASE_SET 1
1271 #define SPECIAL_CASE_SETSW 2
1272 #define SPECIAL_CASE_SETX 3
1273 /* FIXME: sparc-opc.c doesn't have necessary "S" trigger to enable this. */
1274 #define SPECIAL_CASE_FDIV 4
1275
1276 /* Bit masks of various insns. */
1277 #define NOP_INSN 0x01000000
1278 #define OR_INSN 0x80100000
1279 #define XOR_INSN 0x80180000
1280 #define FMOVS_INSN 0x81A00020
1281 #define SETHI_INSN 0x01000000
1282 #define SLLX_INSN 0x81281000
1283 #define SRA_INSN 0x81380000
1284
1285 /* The last instruction to be assembled. */
1286 static const struct sparc_opcode *last_insn;
1287 /* The assembled opcode of `last_insn'. */
1288 static unsigned long last_opcode;
1289 \f
1290 /* Handle the set and setuw synthetic instructions. */
1291
1292 static void
1293 synthetize_setuw (const struct sparc_opcode *insn)
1294 {
1295 int need_hi22_p = 0;
1296 int rd = (the_insn.opcode & RD (~0)) >> 25;
1297
1298 if (the_insn.exp.X_op == O_constant)
1299 {
1300 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
1301 {
1302 if (sizeof (offsetT) > 4
1303 && (the_insn.exp.X_add_number < 0
1304 || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1305 as_warn (_("set: number not in 0..4294967295 range"));
1306 }
1307 else
1308 {
1309 if (sizeof (offsetT) > 4
1310 && (the_insn.exp.X_add_number < -(offsetT) U0x80000000
1311 || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1312 as_warn (_("set: number not in -2147483648..4294967295 range"));
1313 the_insn.exp.X_add_number = (int) the_insn.exp.X_add_number;
1314 }
1315 }
1316
1317 /* See if operand is absolute and small; skip sethi if so. */
1318 if (the_insn.exp.X_op != O_constant
1319 || the_insn.exp.X_add_number >= (1 << 12)
1320 || the_insn.exp.X_add_number < -(1 << 12))
1321 {
1322 the_insn.opcode = (SETHI_INSN | RD (rd)
1323 | ((the_insn.exp.X_add_number >> 10)
1324 & (the_insn.exp.X_op == O_constant
1325 ? 0x3fffff : 0)));
1326 the_insn.reloc = (the_insn.exp.X_op != O_constant
1327 ? BFD_RELOC_HI22 : BFD_RELOC_NONE);
1328 output_insn (insn, &the_insn);
1329 need_hi22_p = 1;
1330 }
1331
1332 /* See if operand has no low-order bits; skip OR if so. */
1333 if (the_insn.exp.X_op != O_constant
1334 || (need_hi22_p && (the_insn.exp.X_add_number & 0x3FF) != 0)
1335 || ! need_hi22_p)
1336 {
1337 the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (rd) : 0)
1338 | RD (rd) | IMMED
1339 | (the_insn.exp.X_add_number
1340 & (the_insn.exp.X_op != O_constant
1341 ? 0 : need_hi22_p ? 0x3ff : 0x1fff)));
1342 the_insn.reloc = (the_insn.exp.X_op != O_constant
1343 ? BFD_RELOC_LO10 : BFD_RELOC_NONE);
1344 output_insn (insn, &the_insn);
1345 }
1346 }
1347
1348 /* Handle the setsw synthetic instruction. */
1349
1350 static void
1351 synthetize_setsw (const struct sparc_opcode *insn)
1352 {
1353 int low32, rd, opc;
1354
1355 rd = (the_insn.opcode & RD (~0)) >> 25;
1356
1357 if (the_insn.exp.X_op != O_constant)
1358 {
1359 synthetize_setuw (insn);
1360
1361 /* Need to sign extend it. */
1362 the_insn.opcode = (SRA_INSN | RS1 (rd) | RD (rd));
1363 the_insn.reloc = BFD_RELOC_NONE;
1364 output_insn (insn, &the_insn);
1365 return;
1366 }
1367
1368 if (sizeof (offsetT) > 4
1369 && (the_insn.exp.X_add_number < -(offsetT) U0x80000000
1370 || the_insn.exp.X_add_number > (offsetT) U0xffffffff))
1371 as_warn (_("setsw: number not in -2147483648..4294967295 range"));
1372
1373 low32 = the_insn.exp.X_add_number;
1374
1375 if (low32 >= 0)
1376 {
1377 synthetize_setuw (insn);
1378 return;
1379 }
1380
1381 opc = OR_INSN;
1382
1383 the_insn.reloc = BFD_RELOC_NONE;
1384 /* See if operand is absolute and small; skip sethi if so. */
1385 if (low32 < -(1 << 12))
1386 {
1387 the_insn.opcode = (SETHI_INSN | RD (rd)
1388 | (((~the_insn.exp.X_add_number) >> 10) & 0x3fffff));
1389 output_insn (insn, &the_insn);
1390 low32 = 0x1c00 | (low32 & 0x3ff);
1391 opc = RS1 (rd) | XOR_INSN;
1392 }
1393
1394 the_insn.opcode = (opc | RD (rd) | IMMED
1395 | (low32 & 0x1fff));
1396 output_insn (insn, &the_insn);
1397 }
1398
1399 /* Handle the setx synthetic instruction. */
1400
1401 static void
1402 synthetize_setx (const struct sparc_opcode *insn)
1403 {
1404 int upper32, lower32;
1405 int tmpreg = (the_insn.opcode & RS1 (~0)) >> 14;
1406 int dstreg = (the_insn.opcode & RD (~0)) >> 25;
1407 int upper_dstreg;
1408 int need_hh22_p = 0, need_hm10_p = 0, need_hi22_p = 0, need_lo10_p = 0;
1409 int need_xor10_p = 0;
1410
1411 #define SIGNEXT32(x) ((((x) & U0xffffffff) ^ U0x80000000) - U0x80000000)
1412 lower32 = SIGNEXT32 (the_insn.exp.X_add_number);
1413 upper32 = SIGNEXT32 (BSR (the_insn.exp.X_add_number, 32));
1414 #undef SIGNEXT32
1415
1416 upper_dstreg = tmpreg;
1417 /* The tmp reg should not be the dst reg. */
1418 if (tmpreg == dstreg)
1419 as_warn (_("setx: temporary register same as destination register"));
1420
1421 /* ??? Obviously there are other optimizations we can do
1422 (e.g. sethi+shift for 0x1f0000000) and perhaps we shouldn't be
1423 doing some of these. Later. If you do change things, try to
1424 change all of this to be table driven as well. */
1425 /* What to output depends on the number if it's constant.
1426 Compute that first, then output what we've decided upon. */
1427 if (the_insn.exp.X_op != O_constant)
1428 {
1429 if (sparc_arch_size == 32)
1430 {
1431 /* When arch size is 32, we want setx to be equivalent
1432 to setuw for anything but constants. */
1433 the_insn.exp.X_add_number &= 0xffffffff;
1434 synthetize_setuw (insn);
1435 return;
1436 }
1437 need_hh22_p = need_hm10_p = need_hi22_p = need_lo10_p = 1;
1438 lower32 = 0;
1439 upper32 = 0;
1440 }
1441 else
1442 {
1443 /* Reset X_add_number, we've extracted it as upper32/lower32.
1444 Otherwise fixup_segment will complain about not being able to
1445 write an 8 byte number in a 4 byte field. */
1446 the_insn.exp.X_add_number = 0;
1447
1448 /* Only need hh22 if `or' insn can't handle constant. */
1449 if (upper32 < -(1 << 12) || upper32 >= (1 << 12))
1450 need_hh22_p = 1;
1451
1452 /* Does bottom part (after sethi) have bits? */
1453 if ((need_hh22_p && (upper32 & 0x3ff) != 0)
1454 /* No hh22, but does upper32 still have bits we can't set
1455 from lower32? */
1456 || (! need_hh22_p && upper32 != 0 && upper32 != -1))
1457 need_hm10_p = 1;
1458
1459 /* If the lower half is all zero, we build the upper half directly
1460 into the dst reg. */
1461 if (lower32 != 0
1462 /* Need lower half if number is zero or 0xffffffff00000000. */
1463 || (! need_hh22_p && ! need_hm10_p))
1464 {
1465 /* No need for sethi if `or' insn can handle constant. */
1466 if (lower32 < -(1 << 12) || lower32 >= (1 << 12)
1467 /* Note that we can't use a negative constant in the `or'
1468 insn unless the upper 32 bits are all ones. */
1469 || (lower32 < 0 && upper32 != -1)
1470 || (lower32 >= 0 && upper32 == -1))
1471 need_hi22_p = 1;
1472
1473 if (need_hi22_p && upper32 == -1)
1474 need_xor10_p = 1;
1475
1476 /* Does bottom part (after sethi) have bits? */
1477 else if ((need_hi22_p && (lower32 & 0x3ff) != 0)
1478 /* No sethi. */
1479 || (! need_hi22_p && (lower32 & 0x1fff) != 0)
1480 /* Need `or' if we didn't set anything else. */
1481 || (! need_hi22_p && ! need_hh22_p && ! need_hm10_p))
1482 need_lo10_p = 1;
1483 }
1484 else
1485 /* Output directly to dst reg if lower 32 bits are all zero. */
1486 upper_dstreg = dstreg;
1487 }
1488
1489 if (!upper_dstreg && dstreg)
1490 as_warn (_("setx: illegal temporary register g0"));
1491
1492 if (need_hh22_p)
1493 {
1494 the_insn.opcode = (SETHI_INSN | RD (upper_dstreg)
1495 | ((upper32 >> 10) & 0x3fffff));
1496 the_insn.reloc = (the_insn.exp.X_op != O_constant
1497 ? BFD_RELOC_SPARC_HH22 : BFD_RELOC_NONE);
1498 output_insn (insn, &the_insn);
1499 }
1500
1501 if (need_hi22_p)
1502 {
1503 the_insn.opcode = (SETHI_INSN | RD (dstreg)
1504 | (((need_xor10_p ? ~lower32 : lower32)
1505 >> 10) & 0x3fffff));
1506 the_insn.reloc = (the_insn.exp.X_op != O_constant
1507 ? BFD_RELOC_SPARC_LM22 : BFD_RELOC_NONE);
1508 output_insn (insn, &the_insn);
1509 }
1510
1511 if (need_hm10_p)
1512 {
1513 the_insn.opcode = (OR_INSN
1514 | (need_hh22_p ? RS1 (upper_dstreg) : 0)
1515 | RD (upper_dstreg)
1516 | IMMED
1517 | (upper32 & (need_hh22_p ? 0x3ff : 0x1fff)));
1518 the_insn.reloc = (the_insn.exp.X_op != O_constant
1519 ? BFD_RELOC_SPARC_HM10 : BFD_RELOC_NONE);
1520 output_insn (insn, &the_insn);
1521 }
1522
1523 if (need_lo10_p)
1524 {
1525 /* FIXME: One nice optimization to do here is to OR the low part
1526 with the highpart if hi22 isn't needed and the low part is
1527 positive. */
1528 the_insn.opcode = (OR_INSN | (need_hi22_p ? RS1 (dstreg) : 0)
1529 | RD (dstreg)
1530 | IMMED
1531 | (lower32 & (need_hi22_p ? 0x3ff : 0x1fff)));
1532 the_insn.reloc = (the_insn.exp.X_op != O_constant
1533 ? BFD_RELOC_LO10 : BFD_RELOC_NONE);
1534 output_insn (insn, &the_insn);
1535 }
1536
1537 /* If we needed to build the upper part, shift it into place. */
1538 if (need_hh22_p || need_hm10_p)
1539 {
1540 the_insn.opcode = (SLLX_INSN | RS1 (upper_dstreg) | RD (upper_dstreg)
1541 | IMMED | 32);
1542 the_insn.reloc = BFD_RELOC_NONE;
1543 output_insn (insn, &the_insn);
1544 }
1545
1546 /* To get -1 in upper32, we do sethi %hi(~x), r; xor r, -0x400 | x, r. */
1547 if (need_xor10_p)
1548 {
1549 the_insn.opcode = (XOR_INSN | RS1 (dstreg) | RD (dstreg) | IMMED
1550 | 0x1c00 | (lower32 & 0x3ff));
1551 the_insn.reloc = BFD_RELOC_NONE;
1552 output_insn (insn, &the_insn);
1553 }
1554
1555 /* If we needed to build both upper and lower parts, OR them together. */
1556 else if ((need_hh22_p || need_hm10_p) && (need_hi22_p || need_lo10_p))
1557 {
1558 the_insn.opcode = (OR_INSN | RS1 (dstreg) | RS2 (upper_dstreg)
1559 | RD (dstreg));
1560 the_insn.reloc = BFD_RELOC_NONE;
1561 output_insn (insn, &the_insn);
1562 }
1563 }
1564 \f
1565 /* Main entry point to assemble one instruction. */
1566
1567 void
1568 md_assemble (char *str)
1569 {
1570 const struct sparc_opcode *insn;
1571 int special_case;
1572
1573 know (str);
1574 special_case = sparc_ip (str, &insn);
1575 if (insn == NULL)
1576 return;
1577
1578 /* Certain instructions may not appear on delay slots. Check for
1579 these situations. */
1580 if (last_insn != NULL
1581 && (last_insn->flags & F_DELAYED) != 0)
1582 {
1583 /* Before SPARC V9 the effect of having a delayed branch
1584 instruction in the delay slot of a conditional delayed branch
1585 was undefined.
1586
1587 In SPARC V9 DCTI couples are well defined.
1588
1589 However, starting with the UltraSPARC Architecture 2005, DCTI
1590 couples (of all kind) are deprecated and should not be used,
1591 as they may be slow or behave differently to what the
1592 programmer expects. */
1593 if (dcti_couples_detect
1594 && (insn->flags & F_DELAYED) != 0
1595 && ((max_architecture < SPARC_OPCODE_ARCH_V9
1596 && (last_insn->flags & F_CONDBR) != 0)
1597 || max_architecture >= SPARC_OPCODE_ARCH_V9C))
1598 as_warn (_("unpredictable DCTI couple"));
1599
1600
1601 /* We warn about attempts to put a floating point branch in a
1602 delay slot, unless the delay slot has been annulled. */
1603 if ((insn->flags & F_FBR) != 0
1604 /* ??? This test isn't completely accurate. We assume anything with
1605 F_{UNBR,CONDBR,FBR} set is annullable. */
1606 && ((last_insn->flags & (F_UNBR | F_CONDBR | F_FBR)) == 0
1607 || (last_opcode & ANNUL) == 0))
1608 as_warn (_("FP branch in delay slot"));
1609 }
1610
1611 /* SPARC before v9 requires a nop instruction between a floating
1612 point instruction and a floating point branch. We insert one
1613 automatically, with a warning. */
1614 if (max_architecture < SPARC_OPCODE_ARCH_V9
1615 && last_insn != NULL
1616 && (insn->flags & F_FBR) != 0
1617 && (last_insn->flags & F_FLOAT) != 0)
1618 {
1619 struct sparc_it nop_insn;
1620
1621 nop_insn.opcode = NOP_INSN;
1622 nop_insn.reloc = BFD_RELOC_NONE;
1623 output_insn (insn, &nop_insn);
1624 as_warn (_("FP branch preceded by FP instruction; NOP inserted"));
1625 }
1626
1627 switch (special_case)
1628 {
1629 case SPECIAL_CASE_NONE:
1630 /* Normal insn. */
1631 output_insn (insn, &the_insn);
1632 break;
1633
1634 case SPECIAL_CASE_SETSW:
1635 synthetize_setsw (insn);
1636 break;
1637
1638 case SPECIAL_CASE_SET:
1639 synthetize_setuw (insn);
1640 break;
1641
1642 case SPECIAL_CASE_SETX:
1643 synthetize_setx (insn);
1644 break;
1645
1646 case SPECIAL_CASE_FDIV:
1647 {
1648 int rd = (the_insn.opcode >> 25) & 0x1f;
1649
1650 output_insn (insn, &the_insn);
1651
1652 /* According to information leaked from Sun, the "fdiv" instructions
1653 on early SPARC machines would produce incorrect results sometimes.
1654 The workaround is to add an fmovs of the destination register to
1655 itself just after the instruction. This was true on machines
1656 with Weitek 1165 float chips, such as the Sun-4/260 and /280. */
1657 gas_assert (the_insn.reloc == BFD_RELOC_NONE);
1658 the_insn.opcode = FMOVS_INSN | rd | RD (rd);
1659 output_insn (insn, &the_insn);
1660 return;
1661 }
1662
1663 default:
1664 as_fatal (_("failed special case insn sanity check"));
1665 }
1666 }
1667
1668 static const char *
1669 get_hwcap_name (bfd_uint64_t mask)
1670 {
1671 if (mask & HWCAP_MUL32)
1672 return "mul32";
1673 if (mask & HWCAP_DIV32)
1674 return "div32";
1675 if (mask & HWCAP_FSMULD)
1676 return "fsmuld";
1677 if (mask & HWCAP_V8PLUS)
1678 return "v8plus";
1679 if (mask & HWCAP_POPC)
1680 return "popc";
1681 if (mask & HWCAP_VIS)
1682 return "vis";
1683 if (mask & HWCAP_VIS2)
1684 return "vis2";
1685 if (mask & HWCAP_ASI_BLK_INIT)
1686 return "ASIBlkInit";
1687 if (mask & HWCAP_FMAF)
1688 return "fmaf";
1689 if (mask & HWCAP_VIS3)
1690 return "vis3";
1691 if (mask & HWCAP_HPC)
1692 return "hpc";
1693 if (mask & HWCAP_RANDOM)
1694 return "random";
1695 if (mask & HWCAP_TRANS)
1696 return "trans";
1697 if (mask & HWCAP_FJFMAU)
1698 return "fjfmau";
1699 if (mask & HWCAP_IMA)
1700 return "ima";
1701 if (mask & HWCAP_ASI_CACHE_SPARING)
1702 return "cspare";
1703 if (mask & HWCAP_AES)
1704 return "aes";
1705 if (mask & HWCAP_DES)
1706 return "des";
1707 if (mask & HWCAP_KASUMI)
1708 return "kasumi";
1709 if (mask & HWCAP_CAMELLIA)
1710 return "camellia";
1711 if (mask & HWCAP_MD5)
1712 return "md5";
1713 if (mask & HWCAP_SHA1)
1714 return "sha1";
1715 if (mask & HWCAP_SHA256)
1716 return "sha256";
1717 if (mask & HWCAP_SHA512)
1718 return "sha512";
1719 if (mask & HWCAP_MPMUL)
1720 return "mpmul";
1721 if (mask & HWCAP_MONT)
1722 return "mont";
1723 if (mask & HWCAP_PAUSE)
1724 return "pause";
1725 if (mask & HWCAP_CBCOND)
1726 return "cbcond";
1727 if (mask & HWCAP_CRC32C)
1728 return "crc32c";
1729
1730 mask = mask >> 32;
1731 if (mask & HWCAP2_FJATHPLUS)
1732 return "fjathplus";
1733 if (mask & HWCAP2_VIS3B)
1734 return "vis3b";
1735 if (mask & HWCAP2_ADP)
1736 return "adp";
1737 if (mask & HWCAP2_SPARC5)
1738 return "sparc5";
1739 if (mask & HWCAP2_MWAIT)
1740 return "mwait";
1741 if (mask & HWCAP2_XMPMUL)
1742 return "xmpmul";
1743 if (mask & HWCAP2_XMONT)
1744 return "xmont";
1745 if (mask & HWCAP2_NSEC)
1746 return "nsec";
1747
1748 return "UNKNOWN";
1749 }
1750
1751 /* Subroutine of md_assemble to do the actual parsing. */
1752
1753 static int
1754 sparc_ip (char *str, const struct sparc_opcode **pinsn)
1755 {
1756 const char *error_message = "";
1757 char *s;
1758 const char *args;
1759 char c;
1760 const struct sparc_opcode *insn;
1761 char *argsStart;
1762 unsigned long opcode;
1763 unsigned int mask = 0;
1764 int match = 0;
1765 int comma = 0;
1766 int v9_arg_p;
1767 int special_case = SPECIAL_CASE_NONE;
1768 const sparc_asi *sasi = NULL;
1769
1770 s = str;
1771 if (ISLOWER (*s))
1772 {
1773 do
1774 ++s;
1775 while (ISLOWER (*s) || ISDIGIT (*s) || *s == '_');
1776 }
1777
1778 switch (*s)
1779 {
1780 case '\0':
1781 break;
1782
1783 case ',':
1784 comma = 1;
1785 /* Fall through. */
1786
1787 case ' ':
1788 *s++ = '\0';
1789 break;
1790
1791 default:
1792 as_bad (_("Unknown opcode: `%s'"), str);
1793 *pinsn = NULL;
1794 return special_case;
1795 }
1796 insn = (struct sparc_opcode *) hash_find (op_hash, str);
1797 *pinsn = insn;
1798 if (insn == NULL)
1799 {
1800 as_bad (_("Unknown opcode: `%s'"), str);
1801 return special_case;
1802 }
1803 if (comma)
1804 {
1805 *--s = ',';
1806 }
1807
1808 argsStart = s;
1809 for (;;)
1810 {
1811 opcode = insn->match;
1812 memset (&the_insn, '\0', sizeof (the_insn));
1813 the_insn.reloc = BFD_RELOC_NONE;
1814 v9_arg_p = 0;
1815
1816 /* Build the opcode, checking as we go to make sure that the
1817 operands match. */
1818 for (args = insn->args;; ++args)
1819 {
1820 switch (*args)
1821 {
1822 case 'K':
1823 {
1824 int kmask = 0;
1825
1826 /* Parse a series of masks. */
1827 if (*s == '#')
1828 {
1829 while (*s == '#')
1830 {
1831 int jmask;
1832
1833 if (! parse_keyword_arg (sparc_encode_membar, &s,
1834 &jmask))
1835 {
1836 error_message = _(": invalid membar mask name");
1837 goto error;
1838 }
1839 kmask |= jmask;
1840 while (*s == ' ')
1841 ++s;
1842 if (*s == '|' || *s == '+')
1843 ++s;
1844 while (*s == ' ')
1845 ++s;
1846 }
1847 }
1848 else
1849 {
1850 if (! parse_const_expr_arg (&s, &kmask))
1851 {
1852 error_message = _(": invalid membar mask expression");
1853 goto error;
1854 }
1855 if (kmask < 0 || kmask > 127)
1856 {
1857 error_message = _(": invalid membar mask number");
1858 goto error;
1859 }
1860 }
1861
1862 opcode |= MEMBAR (kmask);
1863 continue;
1864 }
1865
1866 case '3':
1867 {
1868 int smask = 0;
1869
1870 if (! parse_const_expr_arg (&s, &smask))
1871 {
1872 error_message = _(": invalid siam mode expression");
1873 goto error;
1874 }
1875 if (smask < 0 || smask > 7)
1876 {
1877 error_message = _(": invalid siam mode number");
1878 goto error;
1879 }
1880 opcode |= smask;
1881 continue;
1882 }
1883
1884 case '*':
1885 {
1886 int fcn = 0;
1887
1888 /* Parse a prefetch function. */
1889 if (*s == '#')
1890 {
1891 if (! parse_keyword_arg (sparc_encode_prefetch, &s, &fcn))
1892 {
1893 error_message = _(": invalid prefetch function name");
1894 goto error;
1895 }
1896 }
1897 else
1898 {
1899 if (! parse_const_expr_arg (&s, &fcn))
1900 {
1901 error_message = _(": invalid prefetch function expression");
1902 goto error;
1903 }
1904 if (fcn < 0 || fcn > 31)
1905 {
1906 error_message = _(": invalid prefetch function number");
1907 goto error;
1908 }
1909 }
1910 opcode |= RD (fcn);
1911 continue;
1912 }
1913
1914 case '!':
1915 case '?':
1916 /* Parse a sparc64 privileged register. */
1917 if (*s == '%')
1918 {
1919 struct priv_reg_entry *p;
1920 unsigned int len = 9999999; /* Init to make gcc happy. */
1921
1922 s += 1;
1923 for (p = priv_reg_table; p->name; p++)
1924 if (p->name[0] == s[0])
1925 {
1926 len = strlen (p->name);
1927 if (strncmp (p->name, s, len) == 0)
1928 break;
1929 }
1930
1931 if (!p->name)
1932 {
1933 error_message = _(": unrecognizable privileged register");
1934 goto error;
1935 }
1936
1937 if (((opcode >> (*args == '?' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
1938 {
1939 error_message = _(": unrecognizable privileged register");
1940 goto error;
1941 }
1942
1943 s += len;
1944 continue;
1945 }
1946 else
1947 {
1948 error_message = _(": unrecognizable privileged register");
1949 goto error;
1950 }
1951
1952 case '$':
1953 case '%':
1954 /* Parse a sparc64 hyperprivileged register. */
1955 if (*s == '%')
1956 {
1957 struct priv_reg_entry *p;
1958 unsigned int len = 9999999; /* Init to make gcc happy. */
1959
1960 s += 1;
1961 for (p = hpriv_reg_table; p->name; p++)
1962 if (p->name[0] == s[0])
1963 {
1964 len = strlen (p->name);
1965 if (strncmp (p->name, s, len) == 0)
1966 break;
1967 }
1968
1969 if (!p->name)
1970 {
1971 error_message = _(": unrecognizable hyperprivileged register");
1972 goto error;
1973 }
1974
1975 if (((opcode >> (*args == '$' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
1976 {
1977 error_message = _(": unrecognizable hyperprivileged register");
1978 goto error;
1979 }
1980
1981 s += len;
1982 continue;
1983 }
1984 else
1985 {
1986 error_message = _(": unrecognizable hyperprivileged register");
1987 goto error;
1988 }
1989
1990 case '_':
1991 case '/':
1992 /* Parse a v9a or later ancillary state register. */
1993 if (*s == '%')
1994 {
1995 struct priv_reg_entry *p;
1996 unsigned int len = 9999999; /* Init to make gcc happy. */
1997
1998 s += 1;
1999 for (p = v9a_asr_table; p->name; p++)
2000 if (p->name[0] == s[0])
2001 {
2002 len = strlen (p->name);
2003 if (strncmp (p->name, s, len) == 0)
2004 break;
2005 }
2006
2007 if (!p->name)
2008 {
2009 error_message = _(": unrecognizable ancillary state register");
2010 goto error;
2011 }
2012
2013 if (((opcode >> (*args == '/' ? 14 : 25)) & 0x1f) != (unsigned) p->regnum)
2014 {
2015 error_message = _(": unrecognizable ancillary state register");
2016 goto error;
2017 }
2018
2019 s += len;
2020 continue;
2021 }
2022 else
2023 {
2024 error_message = _(": unrecognizable ancillary state register");
2025 goto error;
2026 }
2027
2028 case 'M':
2029 case 'm':
2030 if (strncmp (s, "%asr", 4) == 0)
2031 {
2032 s += 4;
2033
2034 if (ISDIGIT (*s))
2035 {
2036 long num = 0;
2037
2038 while (ISDIGIT (*s))
2039 {
2040 num = num * 10 + *s - '0';
2041 ++s;
2042 }
2043
2044 /* We used to check here for the asr number to
2045 be between 16 and 31 in V9 and later, as
2046 mandated by the section C.1.1 "Register
2047 Names" in the SPARC spec. However, we
2048 decided to remove this restriction as a) it
2049 introduces problems when new V9 asr registers
2050 are introduced, b) the Solaris assembler
2051 doesn't implement this restriction and c) the
2052 restriction will go away in future revisions
2053 of the Oracle SPARC Architecture. */
2054
2055 if (num < 0 || 31 < num)
2056 {
2057 error_message = _(": asr number must be between 0 and 31");
2058 goto error;
2059 }
2060
2061 opcode |= (*args == 'M' ? RS1 (num) : RD (num));
2062 continue;
2063 }
2064 else
2065 {
2066 error_message = _(": expecting %asrN");
2067 goto error;
2068 }
2069 } /* if %asr */
2070 break;
2071
2072 case 'I':
2073 the_insn.reloc = BFD_RELOC_SPARC_11;
2074 goto immediate;
2075
2076 case 'j':
2077 the_insn.reloc = BFD_RELOC_SPARC_10;
2078 goto immediate;
2079
2080 case ')':
2081 if (*s == ' ')
2082 s++;
2083 if ((s[0] == '0' && s[1] == 'x' && ISXDIGIT (s[2]))
2084 || ISDIGIT (*s))
2085 {
2086 long num = 0;
2087
2088 if (s[0] == '0' && s[1] == 'x')
2089 {
2090 s += 2;
2091 while (ISXDIGIT (*s))
2092 {
2093 num <<= 4;
2094 num |= hex_value (*s);
2095 ++s;
2096 }
2097 }
2098 else
2099 {
2100 while (ISDIGIT (*s))
2101 {
2102 num = num * 10 + *s - '0';
2103 ++s;
2104 }
2105 }
2106 if (num < 0 || num > 31)
2107 {
2108 error_message = _(": crypto immediate must be between 0 and 31");
2109 goto error;
2110 }
2111
2112 opcode |= RS3 (num);
2113 continue;
2114 }
2115 else
2116 {
2117 error_message = _(": expecting crypto immediate");
2118 goto error;
2119 }
2120
2121 case 'X':
2122 /* V8 systems don't understand BFD_RELOC_SPARC_5. */
2123 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2124 the_insn.reloc = BFD_RELOC_SPARC_5;
2125 else
2126 the_insn.reloc = BFD_RELOC_SPARC13;
2127 /* These fields are unsigned, but for upward compatibility,
2128 allow negative values as well. */
2129 goto immediate;
2130
2131 case 'Y':
2132 /* V8 systems don't understand BFD_RELOC_SPARC_6. */
2133 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2134 the_insn.reloc = BFD_RELOC_SPARC_6;
2135 else
2136 the_insn.reloc = BFD_RELOC_SPARC13;
2137 /* These fields are unsigned, but for upward compatibility,
2138 allow negative values as well. */
2139 goto immediate;
2140
2141 case 'k':
2142 the_insn.reloc = /* RELOC_WDISP2_14 */ BFD_RELOC_SPARC_WDISP16;
2143 the_insn.pcrel = 1;
2144 goto immediate;
2145
2146 case '=':
2147 the_insn.reloc = /* RELOC_WDISP2_8 */ BFD_RELOC_SPARC_WDISP10;
2148 the_insn.pcrel = 1;
2149 goto immediate;
2150
2151 case 'G':
2152 the_insn.reloc = BFD_RELOC_SPARC_WDISP19;
2153 the_insn.pcrel = 1;
2154 goto immediate;
2155
2156 case 'N':
2157 if (*s == 'p' && s[1] == 'n')
2158 {
2159 s += 2;
2160 continue;
2161 }
2162 break;
2163
2164 case 'T':
2165 if (*s == 'p' && s[1] == 't')
2166 {
2167 s += 2;
2168 continue;
2169 }
2170 break;
2171
2172 case 'z':
2173 if (*s == ' ')
2174 {
2175 ++s;
2176 }
2177 if ((strncmp (s, "%icc", 4) == 0)
2178 || (sparc_arch_size == 32 && strncmp (s, "%ncc", 4) == 0))
2179 {
2180 s += 4;
2181 continue;
2182 }
2183 break;
2184
2185 case 'Z':
2186 if (*s == ' ')
2187 {
2188 ++s;
2189 }
2190 if ((strncmp (s, "%xcc", 4) == 0)
2191 || (sparc_arch_size == 64 && strncmp (s, "%ncc", 4) == 0))
2192 {
2193 s += 4;
2194 continue;
2195 }
2196 break;
2197
2198 case '6':
2199 if (*s == ' ')
2200 {
2201 ++s;
2202 }
2203 if (strncmp (s, "%fcc0", 5) == 0)
2204 {
2205 s += 5;
2206 continue;
2207 }
2208 break;
2209
2210 case '7':
2211 if (*s == ' ')
2212 {
2213 ++s;
2214 }
2215 if (strncmp (s, "%fcc1", 5) == 0)
2216 {
2217 s += 5;
2218 continue;
2219 }
2220 break;
2221
2222 case '8':
2223 if (*s == ' ')
2224 {
2225 ++s;
2226 }
2227 if (strncmp (s, "%fcc2", 5) == 0)
2228 {
2229 s += 5;
2230 continue;
2231 }
2232 break;
2233
2234 case '9':
2235 if (*s == ' ')
2236 {
2237 ++s;
2238 }
2239 if (strncmp (s, "%fcc3", 5) == 0)
2240 {
2241 s += 5;
2242 continue;
2243 }
2244 break;
2245
2246 case 'P':
2247 if (strncmp (s, "%pc", 3) == 0)
2248 {
2249 s += 3;
2250 continue;
2251 }
2252 break;
2253
2254 case 'W':
2255 if (strncmp (s, "%tick", 5) == 0)
2256 {
2257 s += 5;
2258 continue;
2259 }
2260 break;
2261
2262 case '\0': /* End of args. */
2263 if (s[0] == ',' && s[1] == '%')
2264 {
2265 char *s1;
2266 int npar = 0;
2267 const struct perc_entry *p;
2268
2269 for (p = perc_table; p->type != perc_entry_none; p++)
2270 if ((p->type == perc_entry_post_pop || p->type == perc_entry_reg)
2271 && strncmp (s + 2, p->name, p->len) == 0)
2272 break;
2273 if (p->type == perc_entry_none || p->type == perc_entry_reg)
2274 break;
2275
2276 if (s[p->len + 2] != '(')
2277 {
2278 as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2279 return special_case;
2280 }
2281
2282 if (! (p->pop->flags & F_POP_TLS_CALL)
2283 && the_insn.reloc != BFD_RELOC_NONE)
2284 {
2285 as_bad (_("Illegal operands: %%%s cannot be used together with other relocs in the insn ()"),
2286 p->name);
2287 return special_case;
2288 }
2289
2290 if ((p->pop->flags & F_POP_TLS_CALL)
2291 && (the_insn.reloc != BFD_RELOC_32_PCREL_S2
2292 || the_insn.exp.X_add_number != 0
2293 || the_insn.exp.X_add_symbol
2294 != symbol_find_or_make ("__tls_get_addr")))
2295 {
2296 as_bad (_("Illegal operands: %%%s can be only used with call __tls_get_addr"),
2297 p->name);
2298 return special_case;
2299 }
2300
2301 the_insn.reloc = p->pop->reloc;
2302 memset (&the_insn.exp, 0, sizeof (the_insn.exp));
2303 s += p->len + 3;
2304
2305 for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2306 if (*s1 == '(')
2307 npar++;
2308 else if (*s1 == ')')
2309 {
2310 if (!npar)
2311 break;
2312 npar--;
2313 }
2314
2315 if (*s1 != ')')
2316 {
2317 as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2318 return special_case;
2319 }
2320
2321 *s1 = '\0';
2322 (void) get_expression (s);
2323 *s1 = ')';
2324 s = s1 + 1;
2325 }
2326 if (*s == '\0')
2327 match = 1;
2328 break;
2329
2330 case '+':
2331 if (*s == '+')
2332 {
2333 ++s;
2334 continue;
2335 }
2336 if (*s == '-')
2337 {
2338 continue;
2339 }
2340 break;
2341
2342 case '[': /* These must match exactly. */
2343 case ']':
2344 case ',':
2345 case ' ':
2346 if (*s++ == *args)
2347 continue;
2348 break;
2349
2350 case '#': /* Must be at least one digit. */
2351 if (ISDIGIT (*s++))
2352 {
2353 while (ISDIGIT (*s))
2354 {
2355 ++s;
2356 }
2357 continue;
2358 }
2359 break;
2360
2361 case 'C': /* Coprocessor state register. */
2362 if (strncmp (s, "%csr", 4) == 0)
2363 {
2364 s += 4;
2365 continue;
2366 }
2367 break;
2368
2369 case 'b': /* Next operand is a coprocessor register. */
2370 case 'c':
2371 case 'D':
2372 if (*s++ == '%' && *s++ == 'c' && ISDIGIT (*s))
2373 {
2374 mask = *s++;
2375 if (ISDIGIT (*s))
2376 {
2377 mask = 10 * (mask - '0') + (*s++ - '0');
2378 if (mask >= 32)
2379 {
2380 break;
2381 }
2382 }
2383 else
2384 {
2385 mask -= '0';
2386 }
2387 switch (*args)
2388 {
2389
2390 case 'b':
2391 opcode |= mask << 14;
2392 continue;
2393
2394 case 'c':
2395 opcode |= mask;
2396 continue;
2397
2398 case 'D':
2399 opcode |= mask << 25;
2400 continue;
2401 }
2402 }
2403 break;
2404
2405 case 'r': /* next operand must be a register */
2406 case 'O':
2407 case '1':
2408 case '2':
2409 case 'd':
2410 if (*s++ == '%')
2411 {
2412 switch (c = *s++)
2413 {
2414
2415 case 'f': /* frame pointer */
2416 if (*s++ == 'p')
2417 {
2418 mask = 0x1e;
2419 break;
2420 }
2421 goto error;
2422
2423 case 'g': /* global register */
2424 c = *s++;
2425 if (isoctal (c))
2426 {
2427 mask = c - '0';
2428 break;
2429 }
2430 goto error;
2431
2432 case 'i': /* in register */
2433 c = *s++;
2434 if (isoctal (c))
2435 {
2436 mask = c - '0' + 24;
2437 break;
2438 }
2439 goto error;
2440
2441 case 'l': /* local register */
2442 c = *s++;
2443 if (isoctal (c))
2444 {
2445 mask = (c - '0' + 16);
2446 break;
2447 }
2448 goto error;
2449
2450 case 'o': /* out register */
2451 c = *s++;
2452 if (isoctal (c))
2453 {
2454 mask = (c - '0' + 8);
2455 break;
2456 }
2457 goto error;
2458
2459 case 's': /* stack pointer */
2460 if (*s++ == 'p')
2461 {
2462 mask = 0xe;
2463 break;
2464 }
2465 goto error;
2466
2467 case 'r': /* any register */
2468 if (!ISDIGIT ((c = *s++)))
2469 {
2470 goto error;
2471 }
2472 /* FALLTHROUGH */
2473 case '0':
2474 case '1':
2475 case '2':
2476 case '3':
2477 case '4':
2478 case '5':
2479 case '6':
2480 case '7':
2481 case '8':
2482 case '9':
2483 if (ISDIGIT (*s))
2484 {
2485 if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32)
2486 {
2487 goto error;
2488 }
2489 }
2490 else
2491 {
2492 c -= '0';
2493 }
2494 mask = c;
2495 break;
2496
2497 default:
2498 goto error;
2499 }
2500
2501 if ((mask & ~1) == 2 && sparc_arch_size == 64
2502 && no_undeclared_regs && ! globals[mask])
2503 as_bad (_("detected global register use not covered by .register pseudo-op"));
2504
2505 /* Got the register, now figure out where
2506 it goes in the opcode. */
2507 switch (*args)
2508 {
2509 case '1':
2510 opcode |= mask << 14;
2511 continue;
2512
2513 case '2':
2514 opcode |= mask;
2515 continue;
2516
2517 case 'd':
2518 opcode |= mask << 25;
2519 continue;
2520
2521 case 'r':
2522 opcode |= (mask << 25) | (mask << 14);
2523 continue;
2524
2525 case 'O':
2526 opcode |= (mask << 25) | (mask << 0);
2527 continue;
2528 }
2529 }
2530 break;
2531
2532 case 'e': /* next operand is a floating point register */
2533 case 'v':
2534 case 'V':
2535
2536 case 'f':
2537 case 'B':
2538 case 'R':
2539
2540 case '4':
2541 case '5':
2542
2543 case 'g':
2544 case 'H':
2545 case 'J':
2546 case '}':
2547 {
2548 char format;
2549
2550 if (*s++ == '%'
2551 && ((format = *s) == 'f'
2552 || format == 'd'
2553 || format == 'q')
2554 && ISDIGIT (*++s))
2555 {
2556 for (mask = 0; ISDIGIT (*s); ++s)
2557 {
2558 mask = 10 * mask + (*s - '0');
2559 } /* read the number */
2560
2561 if ((*args == 'v'
2562 || *args == 'B'
2563 || *args == '5'
2564 || *args == 'H'
2565 || format == 'd')
2566 && (mask & 1))
2567 {
2568 /* register must be even numbered */
2569 break;
2570 }
2571
2572 if ((*args == 'V'
2573 || *args == 'R'
2574 || *args == 'J'
2575 || format == 'q')
2576 && (mask & 3))
2577 {
2578 /* register must be multiple of 4 */
2579 break;
2580 }
2581
2582 if (mask >= 64)
2583 {
2584 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2585 error_message = _(": There are only 64 f registers; [0-63]");
2586 else
2587 error_message = _(": There are only 32 f registers; [0-31]");
2588 goto error;
2589 } /* on error */
2590 else if (mask >= 32)
2591 {
2592 if (SPARC_OPCODE_ARCH_V9_P (max_architecture))
2593 {
2594 if (*args == 'e' || *args == 'f' || *args == 'g')
2595 {
2596 error_message
2597 = _(": There are only 32 single precision f registers; [0-31]");
2598 goto error;
2599 }
2600 v9_arg_p = 1;
2601 mask -= 31; /* wrap high bit */
2602 }
2603 else
2604 {
2605 error_message = _(": There are only 32 f registers; [0-31]");
2606 goto error;
2607 }
2608 }
2609 }
2610 else
2611 {
2612 break;
2613 } /* if not an 'f' register. */
2614
2615 if (*args == '}' && mask != RS2 (opcode))
2616 {
2617 error_message
2618 = _(": Instruction requires frs2 and frsd must be the same register");
2619 goto error;
2620 }
2621
2622 switch (*args)
2623 {
2624 case 'v':
2625 case 'V':
2626 case 'e':
2627 opcode |= RS1 (mask);
2628 continue;
2629
2630 case 'f':
2631 case 'B':
2632 case 'R':
2633 opcode |= RS2 (mask);
2634 continue;
2635
2636 case '4':
2637 case '5':
2638 opcode |= RS3 (mask);
2639 continue;
2640
2641 case 'g':
2642 case 'H':
2643 case 'J':
2644 case '}':
2645 opcode |= RD (mask);
2646 continue;
2647 } /* Pack it in. */
2648
2649 know (0);
2650 break;
2651 } /* float arg */
2652
2653 case 'F':
2654 if (strncmp (s, "%fsr", 4) == 0)
2655 {
2656 s += 4;
2657 continue;
2658 }
2659 break;
2660
2661 case '(':
2662 if (strncmp (s, "%efsr", 5) == 0)
2663 {
2664 s += 5;
2665 continue;
2666 }
2667 break;
2668
2669 case '0': /* 64 bit immediate (set, setsw, setx insn) */
2670 the_insn.reloc = BFD_RELOC_NONE; /* reloc handled elsewhere */
2671 goto immediate;
2672
2673 case 'l': /* 22 bit PC relative immediate */
2674 the_insn.reloc = BFD_RELOC_SPARC_WDISP22;
2675 the_insn.pcrel = 1;
2676 goto immediate;
2677
2678 case 'L': /* 30 bit immediate */
2679 the_insn.reloc = BFD_RELOC_32_PCREL_S2;
2680 the_insn.pcrel = 1;
2681 goto immediate;
2682
2683 case 'h':
2684 case 'n': /* 22 bit immediate */
2685 the_insn.reloc = BFD_RELOC_SPARC22;
2686 goto immediate;
2687
2688 case 'i': /* 13 bit immediate */
2689 the_insn.reloc = BFD_RELOC_SPARC13;
2690
2691 /* fallthrough */
2692
2693 immediate:
2694 if (*s == ' ')
2695 s++;
2696
2697 {
2698 char *s1;
2699 const char *op_arg = NULL;
2700 static expressionS op_exp;
2701 bfd_reloc_code_real_type old_reloc = the_insn.reloc;
2702
2703 /* Check for %hi, etc. */
2704 if (*s == '%')
2705 {
2706 const struct perc_entry *p;
2707
2708 for (p = perc_table; p->type != perc_entry_none; p++)
2709 if ((p->type == perc_entry_imm_pop || p->type == perc_entry_reg)
2710 && strncmp (s + 1, p->name, p->len) == 0)
2711 break;
2712 if (p->type == perc_entry_none || p->type == perc_entry_reg)
2713 break;
2714
2715 if (s[p->len + 1] != '(')
2716 {
2717 as_bad (_("Illegal operands: %%%s requires arguments in ()"), p->name);
2718 return special_case;
2719 }
2720
2721 op_arg = p->name;
2722 the_insn.reloc = p->pop->reloc;
2723 s += p->len + 2;
2724 v9_arg_p = p->pop->flags & F_POP_V9;
2725 }
2726
2727 /* Note that if the get_expression() fails, we will still
2728 have created U entries in the symbol table for the
2729 'symbols' in the input string. Try not to create U
2730 symbols for registers, etc. */
2731
2732 /* This stuff checks to see if the expression ends in
2733 +%reg. If it does, it removes the register from
2734 the expression, and re-sets 's' to point to the
2735 right place. */
2736
2737 if (op_arg)
2738 {
2739 int npar = 0;
2740
2741 for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2742 if (*s1 == '(')
2743 npar++;
2744 else if (*s1 == ')')
2745 {
2746 if (!npar)
2747 break;
2748 npar--;
2749 }
2750
2751 if (*s1 != ')')
2752 {
2753 as_bad (_("Illegal operands: %%%s requires arguments in ()"), op_arg);
2754 return special_case;
2755 }
2756
2757 *s1 = '\0';
2758 (void) get_expression (s);
2759 *s1 = ')';
2760 if (expr_end != s1)
2761 {
2762 as_bad (_("Expression inside %%%s could not be parsed"), op_arg);
2763 return special_case;
2764 }
2765 s = s1 + 1;
2766 if (*s == ',' || *s == ']' || !*s)
2767 continue;
2768 if (*s != '+' && *s != '-')
2769 {
2770 as_bad (_("Illegal operands: Can't do arithmetics other than + and - involving %%%s()"), op_arg);
2771 return special_case;
2772 }
2773 *s1 = '0';
2774 s = s1;
2775 op_exp = the_insn.exp;
2776 memset (&the_insn.exp, 0, sizeof (the_insn.exp));
2777 }
2778
2779 for (s1 = s; *s1 && *s1 != ',' && *s1 != ']'; s1++)
2780 ;
2781
2782 if (s1 != s && ISDIGIT (s1[-1]))
2783 {
2784 if (s1[-2] == '%' && s1[-3] == '+')
2785 s1 -= 3;
2786 else if (strchr ("golir0123456789", s1[-2]) && s1[-3] == '%' && s1[-4] == '+')
2787 s1 -= 4;
2788 else if (s1[-3] == 'r' && s1[-4] == '%' && s1[-5] == '+')
2789 s1 -= 5;
2790 else
2791 s1 = NULL;
2792 if (s1)
2793 {
2794 *s1 = '\0';
2795 if (op_arg && s1 == s + 1)
2796 the_insn.exp.X_op = O_absent;
2797 else
2798 (void) get_expression (s);
2799 *s1 = '+';
2800 if (op_arg)
2801 *s = ')';
2802 s = s1;
2803 }
2804 }
2805 else
2806 s1 = NULL;
2807
2808 if (!s1)
2809 {
2810 (void) get_expression (s);
2811 if (op_arg)
2812 *s = ')';
2813 s = expr_end;
2814 }
2815
2816 if (op_arg)
2817 {
2818 the_insn.exp2 = the_insn.exp;
2819 the_insn.exp = op_exp;
2820 if (the_insn.exp2.X_op == O_absent)
2821 the_insn.exp2.X_op = O_illegal;
2822 else if (the_insn.exp.X_op == O_absent)
2823 {
2824 the_insn.exp = the_insn.exp2;
2825 the_insn.exp2.X_op = O_illegal;
2826 }
2827 else if (the_insn.exp.X_op == O_constant)
2828 {
2829 valueT val = the_insn.exp.X_add_number;
2830 switch (the_insn.reloc)
2831 {
2832 default:
2833 break;
2834
2835 case BFD_RELOC_SPARC_HH22:
2836 val = BSR (val, 32);
2837 /* Fall through. */
2838
2839 case BFD_RELOC_SPARC_LM22:
2840 case BFD_RELOC_HI22:
2841 val = (val >> 10) & 0x3fffff;
2842 break;
2843
2844 case BFD_RELOC_SPARC_HM10:
2845 val = BSR (val, 32);
2846 /* Fall through. */
2847
2848 case BFD_RELOC_LO10:
2849 val &= 0x3ff;
2850 break;
2851
2852 case BFD_RELOC_SPARC_H34:
2853 val >>= 12;
2854 val &= 0x3fffff;
2855 break;
2856
2857 case BFD_RELOC_SPARC_H44:
2858 val >>= 22;
2859 val &= 0x3fffff;
2860 break;
2861
2862 case BFD_RELOC_SPARC_M44:
2863 val >>= 12;
2864 val &= 0x3ff;
2865 break;
2866
2867 case BFD_RELOC_SPARC_L44:
2868 val &= 0xfff;
2869 break;
2870
2871 case BFD_RELOC_SPARC_HIX22:
2872 val = ~val;
2873 val = (val >> 10) & 0x3fffff;
2874 break;
2875
2876 case BFD_RELOC_SPARC_LOX10:
2877 val = (val & 0x3ff) | 0x1c00;
2878 break;
2879 }
2880 the_insn.exp = the_insn.exp2;
2881 the_insn.exp.X_add_number += val;
2882 the_insn.exp2.X_op = O_illegal;
2883 the_insn.reloc = old_reloc;
2884 }
2885 else if (the_insn.exp2.X_op != O_constant)
2886 {
2887 as_bad (_("Illegal operands: Can't add non-constant expression to %%%s()"), op_arg);
2888 return special_case;
2889 }
2890 else
2891 {
2892 if (old_reloc != BFD_RELOC_SPARC13
2893 || the_insn.reloc != BFD_RELOC_LO10
2894 || sparc_arch_size != 64
2895 || sparc_pic_code)
2896 {
2897 as_bad (_("Illegal operands: Can't do arithmetics involving %%%s() of a relocatable symbol"), op_arg);
2898 return special_case;
2899 }
2900 the_insn.reloc = BFD_RELOC_SPARC_OLO10;
2901 }
2902 }
2903 }
2904 /* Check for constants that don't require emitting a reloc. */
2905 if (the_insn.exp.X_op == O_constant
2906 && the_insn.exp.X_add_symbol == 0
2907 && the_insn.exp.X_op_symbol == 0)
2908 {
2909 /* For pc-relative call instructions, we reject
2910 constants to get better code. */
2911 if (the_insn.pcrel
2912 && the_insn.reloc == BFD_RELOC_32_PCREL_S2
2913 && in_signed_range (the_insn.exp.X_add_number, 0x3fff))
2914 {
2915 error_message = _(": PC-relative operand can't be a constant");
2916 goto error;
2917 }
2918
2919 if (the_insn.reloc >= BFD_RELOC_SPARC_TLS_GD_HI22
2920 && the_insn.reloc <= BFD_RELOC_SPARC_TLS_TPOFF64)
2921 {
2922 error_message = _(": TLS operand can't be a constant");
2923 goto error;
2924 }
2925
2926 /* Constants that won't fit are checked in md_apply_fix
2927 and bfd_install_relocation.
2928 ??? It would be preferable to install the constants
2929 into the insn here and save having to create a fixS
2930 for each one. There already exists code to handle
2931 all the various cases (e.g. in md_apply_fix and
2932 bfd_install_relocation) so duplicating all that code
2933 here isn't right. */
2934
2935 /* This is a special case to handle cbcond instructions
2936 properly, which can need two relocations. The first
2937 one is for the 5-bit immediate field and the latter
2938 is going to be for the WDISP10 branch part. We
2939 handle the R_SPARC_5 immediate directly here so that
2940 we don't need to add support for multiple relocations
2941 in one instruction just yet. */
2942 if (the_insn.reloc == BFD_RELOC_SPARC_5
2943 && ((insn->match & OP(0x3)) == 0))
2944 {
2945 valueT val = the_insn.exp.X_add_number;
2946
2947 the_insn.reloc = BFD_RELOC_NONE;
2948 if (! in_bitfield_range (val, 0x1f))
2949 {
2950 error_message = _(": Immediate value in cbcond is out of range.");
2951 goto error;
2952 }
2953 opcode |= val & 0x1f;
2954 }
2955 }
2956
2957 continue;
2958
2959 case 'a':
2960 if (*s++ == 'a')
2961 {
2962 opcode |= ANNUL;
2963 continue;
2964 }
2965 break;
2966
2967 case 'A':
2968 {
2969 int asi = 0;
2970
2971 /* Parse an asi. */
2972 if (*s == '#')
2973 {
2974 if (! parse_sparc_asi (&s, &sasi))
2975 {
2976 error_message = _(": invalid ASI name");
2977 goto error;
2978 }
2979 asi = sasi->value;
2980 }
2981 else
2982 {
2983 if (! parse_const_expr_arg (&s, &asi))
2984 {
2985 error_message = _(": invalid ASI expression");
2986 goto error;
2987 }
2988 if (asi < 0 || asi > 255)
2989 {
2990 error_message = _(": invalid ASI number");
2991 goto error;
2992 }
2993 }
2994 opcode |= ASI (asi);
2995 continue;
2996 } /* Alternate space. */
2997
2998 case 'p':
2999 if (strncmp (s, "%psr", 4) == 0)
3000 {
3001 s += 4;
3002 continue;
3003 }
3004 break;
3005
3006 case 'q': /* Floating point queue. */
3007 if (strncmp (s, "%fq", 3) == 0)
3008 {
3009 s += 3;
3010 continue;
3011 }
3012 break;
3013
3014 case 'Q': /* Coprocessor queue. */
3015 if (strncmp (s, "%cq", 3) == 0)
3016 {
3017 s += 3;
3018 continue;
3019 }
3020 break;
3021
3022 case 'S':
3023 if (strcmp (str, "set") == 0
3024 || strcmp (str, "setuw") == 0)
3025 {
3026 special_case = SPECIAL_CASE_SET;
3027 continue;
3028 }
3029 else if (strcmp (str, "setsw") == 0)
3030 {
3031 special_case = SPECIAL_CASE_SETSW;
3032 continue;
3033 }
3034 else if (strcmp (str, "setx") == 0)
3035 {
3036 special_case = SPECIAL_CASE_SETX;
3037 continue;
3038 }
3039 else if (strncmp (str, "fdiv", 4) == 0)
3040 {
3041 special_case = SPECIAL_CASE_FDIV;
3042 continue;
3043 }
3044 break;
3045
3046 case 'o':
3047 if (strncmp (s, "%asi", 4) != 0)
3048 break;
3049 s += 4;
3050 continue;
3051
3052 case 's':
3053 if (strncmp (s, "%fprs", 5) != 0)
3054 break;
3055 s += 5;
3056 continue;
3057
3058 case '{':
3059 if (strncmp (s, "%mcdper",7) != 0)
3060 break;
3061 s += 7;
3062 continue;
3063
3064 case 'E':
3065 if (strncmp (s, "%ccr", 4) != 0)
3066 break;
3067 s += 4;
3068 continue;
3069
3070 case 't':
3071 if (strncmp (s, "%tbr", 4) != 0)
3072 break;
3073 s += 4;
3074 continue;
3075
3076 case 'w':
3077 if (strncmp (s, "%wim", 4) != 0)
3078 break;
3079 s += 4;
3080 continue;
3081
3082 case 'x':
3083 {
3084 char *push = input_line_pointer;
3085 expressionS e;
3086
3087 input_line_pointer = s;
3088 expression (&e);
3089 if (e.X_op == O_constant)
3090 {
3091 int n = e.X_add_number;
3092 if (n != e.X_add_number || (n & ~0x1ff) != 0)
3093 as_bad (_("OPF immediate operand out of range (0-0x1ff)"));
3094 else
3095 opcode |= e.X_add_number << 5;
3096 }
3097 else
3098 as_bad (_("non-immediate OPF operand, ignored"));
3099 s = input_line_pointer;
3100 input_line_pointer = push;
3101 continue;
3102 }
3103
3104 case 'y':
3105 if (strncmp (s, "%y", 2) != 0)
3106 break;
3107 s += 2;
3108 continue;
3109
3110 case 'u':
3111 case 'U':
3112 {
3113 /* Parse a sparclet cpreg. */
3114 int cpreg;
3115 if (! parse_keyword_arg (sparc_encode_sparclet_cpreg, &s, &cpreg))
3116 {
3117 error_message = _(": invalid cpreg name");
3118 goto error;
3119 }
3120 opcode |= (*args == 'U' ? RS1 (cpreg) : RD (cpreg));
3121 continue;
3122 }
3123
3124 default:
3125 as_fatal (_("failed sanity check."));
3126 } /* switch on arg code. */
3127
3128 /* Break out of for() loop. */
3129 break;
3130 } /* For each arg that we expect. */
3131
3132 error:
3133 if (match == 0)
3134 {
3135 /* Args don't match. */
3136 if (&insn[1] - sparc_opcodes < sparc_num_opcodes
3137 && (insn->name == insn[1].name
3138 || !strcmp (insn->name, insn[1].name)))
3139 {
3140 ++insn;
3141 s = argsStart;
3142 continue;
3143 }
3144 else
3145 {
3146 as_bad (_("Illegal operands%s"), error_message);
3147 return special_case;
3148 }
3149 }
3150 else
3151 {
3152 /* We have a match. Now see if the architecture is OK. */
3153 /* String to use in case of architecture warning. */
3154 const char *msg_str = str;
3155 int needed_arch_mask = insn->architecture;
3156
3157 /* Include the ASI architecture needed as well */
3158 if (sasi && needed_arch_mask > sasi->architecture)
3159 {
3160 needed_arch_mask = sasi->architecture;
3161 msg_str = sasi->name;
3162 }
3163
3164 bfd_uint64_t hwcaps
3165 = (((bfd_uint64_t) insn->hwcaps2) << 32) | insn->hwcaps;
3166
3167 #if defined(OBJ_ELF) && !defined(TE_SOLARIS)
3168 if (hwcaps)
3169 hwcap_seen |= hwcaps;
3170 #endif
3171 if (v9_arg_p)
3172 {
3173 needed_arch_mask &=
3174 ~(SPARC_OPCODE_ARCH_MASK (SPARC_OPCODE_ARCH_V9) - 1);
3175 if (! needed_arch_mask)
3176 needed_arch_mask =
3177 SPARC_OPCODE_ARCH_MASK (SPARC_OPCODE_ARCH_V9);
3178 }
3179
3180 if (needed_arch_mask
3181 & SPARC_OPCODE_SUPPORTED (current_architecture))
3182 /* OK. */
3183 ;
3184 /* Can we bump up the architecture? */
3185 else if (needed_arch_mask
3186 & SPARC_OPCODE_SUPPORTED (max_architecture))
3187 {
3188 enum sparc_opcode_arch_val needed_architecture =
3189 sparc_ffs (SPARC_OPCODE_SUPPORTED (max_architecture)
3190 & needed_arch_mask);
3191
3192 gas_assert (needed_architecture <= SPARC_OPCODE_ARCH_MAX);
3193 if (warn_on_bump
3194 && needed_architecture > warn_after_architecture)
3195 {
3196 as_warn (_("architecture bumped from \"%s\" to \"%s\" on \"%s\""),
3197 sparc_opcode_archs[current_architecture].name,
3198 sparc_opcode_archs[needed_architecture].name,
3199 msg_str);
3200 warn_after_architecture = needed_architecture;
3201 }
3202 current_architecture = needed_architecture;
3203 hwcap_allowed
3204 = (hwcap_allowed
3205 | hwcaps
3206 | (((bfd_uint64_t) sparc_opcode_archs[current_architecture].hwcaps2) << 32)
3207 | sparc_opcode_archs[current_architecture].hwcaps);
3208 }
3209 /* Conflict. */
3210 /* ??? This seems to be a bit fragile. What if the next entry in
3211 the opcode table is the one we want and it is supported?
3212 It is possible to arrange the table today so that this can't
3213 happen but what about tomorrow? */
3214 else
3215 {
3216 int arch, printed_one_p = 0;
3217 char *p;
3218 char required_archs[SPARC_OPCODE_ARCH_MAX * 16];
3219
3220 /* Create a list of the architectures that support the insn. */
3221 needed_arch_mask &= ~SPARC_OPCODE_SUPPORTED (max_architecture);
3222 p = required_archs;
3223 arch = sparc_ffs (needed_arch_mask);
3224 while ((1 << arch) <= needed_arch_mask)
3225 {
3226 if ((1 << arch) & needed_arch_mask)
3227 {
3228 if (printed_one_p)
3229 *p++ = '|';
3230 strcpy (p, sparc_opcode_archs[arch].name);
3231 p += strlen (p);
3232 printed_one_p = 1;
3233 }
3234 ++arch;
3235 }
3236
3237 as_bad (_("Architecture mismatch on \"%s %s\"."), str, argsStart);
3238 as_tsktsk (_("(Requires %s; requested architecture is %s.)"),
3239 required_archs,
3240 sparc_opcode_archs[max_architecture].name);
3241 return special_case;
3242 }
3243
3244 /* Make sure the hwcaps used by the instruction are
3245 currently enabled. */
3246 if (hwcaps & ~hwcap_allowed)
3247 {
3248 const char *hwcap_name = get_hwcap_name(hwcaps & ~hwcap_allowed);
3249
3250 as_bad (_("Hardware capability \"%s\" not enabled for \"%s\"."),
3251 hwcap_name, str);
3252 return special_case;
3253 }
3254 } /* If no match. */
3255
3256 break;
3257 } /* Forever looking for a match. */
3258
3259 the_insn.opcode = opcode;
3260 return special_case;
3261 }
3262
3263 static char *
3264 skip_over_keyword (char *q)
3265 {
3266 for (q = q + (*q == '#' || *q == '%');
3267 ISALNUM (*q) || *q == '_';
3268 ++q)
3269 continue;
3270 return q;
3271 }
3272
3273 static int
3274 parse_sparc_asi (char **input_pointer_p, const sparc_asi **value_p)
3275 {
3276 const sparc_asi *value;
3277 char c, *p, *q;
3278
3279 p = *input_pointer_p;
3280 q = skip_over_keyword(p);
3281 c = *q;
3282 *q = 0;
3283 value = sparc_encode_asi (p);
3284 *q = c;
3285 if (value == NULL)
3286 return 0;
3287 *value_p = value;
3288 *input_pointer_p = q;
3289 return 1;
3290 }
3291
3292 /* Parse an argument that can be expressed as a keyword.
3293 (eg: #StoreStore or %ccfr).
3294 The result is a boolean indicating success.
3295 If successful, INPUT_POINTER is updated. */
3296
3297 static int
3298 parse_keyword_arg (int (*lookup_fn) (const char *),
3299 char **input_pointerP,
3300 int *valueP)
3301 {
3302 int value;
3303 char c, *p, *q;
3304
3305 p = *input_pointerP;
3306 q = skip_over_keyword(p);
3307 c = *q;
3308 *q = 0;
3309 value = (*lookup_fn) (p);
3310 *q = c;
3311 if (value == -1)
3312 return 0;
3313 *valueP = value;
3314 *input_pointerP = q;
3315 return 1;
3316 }
3317
3318 /* Parse an argument that is a constant expression.
3319 The result is a boolean indicating success. */
3320
3321 static int
3322 parse_const_expr_arg (char **input_pointerP, int *valueP)
3323 {
3324 char *save = input_line_pointer;
3325 expressionS exp;
3326
3327 input_line_pointer = *input_pointerP;
3328 /* The next expression may be something other than a constant
3329 (say if we're not processing the right variant of the insn).
3330 Don't call expression unless we're sure it will succeed as it will
3331 signal an error (which we want to defer until later). */
3332 /* FIXME: It might be better to define md_operand and have it recognize
3333 things like %asi, etc. but continuing that route through to the end
3334 is a lot of work. */
3335 if (*input_line_pointer == '%')
3336 {
3337 input_line_pointer = save;
3338 return 0;
3339 }
3340 expression (&exp);
3341 *input_pointerP = input_line_pointer;
3342 input_line_pointer = save;
3343 if (exp.X_op != O_constant)
3344 return 0;
3345 *valueP = exp.X_add_number;
3346 return 1;
3347 }
3348
3349 /* Subroutine of sparc_ip to parse an expression. */
3350
3351 static int
3352 get_expression (char *str)
3353 {
3354 char *save_in;
3355 segT seg;
3356
3357 save_in = input_line_pointer;
3358 input_line_pointer = str;
3359 seg = expression (&the_insn.exp);
3360 if (seg != absolute_section
3361 && seg != text_section
3362 && seg != data_section
3363 && seg != bss_section
3364 && seg != undefined_section)
3365 {
3366 the_insn.error = _("bad segment");
3367 expr_end = input_line_pointer;
3368 input_line_pointer = save_in;
3369 return 1;
3370 }
3371 expr_end = input_line_pointer;
3372 input_line_pointer = save_in;
3373 return 0;
3374 }
3375
3376 /* Subroutine of md_assemble to output one insn. */
3377
3378 static void
3379 output_insn (const struct sparc_opcode *insn, struct sparc_it *theinsn)
3380 {
3381 char *toP = frag_more (4);
3382
3383 /* Put out the opcode. */
3384 if (INSN_BIG_ENDIAN)
3385 number_to_chars_bigendian (toP, (valueT) theinsn->opcode, 4);
3386 else
3387 number_to_chars_littleendian (toP, (valueT) theinsn->opcode, 4);
3388
3389 /* Put out the symbol-dependent stuff. */
3390 if (theinsn->reloc != BFD_RELOC_NONE)
3391 {
3392 fixS *fixP = fix_new_exp (frag_now, /* Which frag. */
3393 (toP - frag_now->fr_literal), /* Where. */
3394 4, /* Size. */
3395 &theinsn->exp,
3396 theinsn->pcrel,
3397 theinsn->reloc);
3398 /* Turn off overflow checking in fixup_segment. We'll do our
3399 own overflow checking in md_apply_fix. This is necessary because
3400 the insn size is 4 and fixup_segment will signal an overflow for
3401 large 8 byte quantities. */
3402 fixP->fx_no_overflow = 1;
3403 if (theinsn->reloc == BFD_RELOC_SPARC_OLO10)
3404 fixP->tc_fix_data = theinsn->exp2.X_add_number;
3405 }
3406
3407 last_insn = insn;
3408 last_opcode = theinsn->opcode;
3409
3410 #ifdef OBJ_ELF
3411 dwarf2_emit_insn (4);
3412 #endif
3413 }
3414 \f
3415 const char *
3416 md_atof (int type, char *litP, int *sizeP)
3417 {
3418 return ieee_md_atof (type, litP, sizeP, target_big_endian);
3419 }
3420
3421 /* Write a value out to the object file, using the appropriate
3422 endianness. */
3423
3424 void
3425 md_number_to_chars (char *buf, valueT val, int n)
3426 {
3427 if (target_big_endian)
3428 number_to_chars_bigendian (buf, val, n);
3429 else if (target_little_endian_data
3430 && ((n == 4 || n == 2) && ~now_seg->flags & SEC_ALLOC))
3431 /* Output debug words, which are not in allocated sections, as big
3432 endian. */
3433 number_to_chars_bigendian (buf, val, n);
3434 else if (target_little_endian_data || ! target_big_endian)
3435 number_to_chars_littleendian (buf, val, n);
3436 }
3437 \f
3438 /* Apply a fixS to the frags, now that we know the value it ought to
3439 hold. */
3440
3441 void
3442 md_apply_fix (fixS *fixP, valueT *valP, segT segment ATTRIBUTE_UNUSED)
3443 {
3444 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
3445 offsetT val = * (offsetT *) valP;
3446 long insn;
3447
3448 gas_assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
3449
3450 fixP->fx_addnumber = val; /* Remember value for emit_reloc. */
3451
3452 #ifdef OBJ_ELF
3453 /* SPARC ELF relocations don't use an addend in the data field. */
3454 if (fixP->fx_addsy != NULL)
3455 {
3456 switch (fixP->fx_r_type)
3457 {
3458 case BFD_RELOC_SPARC_TLS_GD_HI22:
3459 case BFD_RELOC_SPARC_TLS_GD_LO10:
3460 case BFD_RELOC_SPARC_TLS_GD_ADD:
3461 case BFD_RELOC_SPARC_TLS_GD_CALL:
3462 case BFD_RELOC_SPARC_TLS_LDM_HI22:
3463 case BFD_RELOC_SPARC_TLS_LDM_LO10:
3464 case BFD_RELOC_SPARC_TLS_LDM_ADD:
3465 case BFD_RELOC_SPARC_TLS_LDM_CALL:
3466 case BFD_RELOC_SPARC_TLS_LDO_HIX22:
3467 case BFD_RELOC_SPARC_TLS_LDO_LOX10:
3468 case BFD_RELOC_SPARC_TLS_LDO_ADD:
3469 case BFD_RELOC_SPARC_TLS_IE_HI22:
3470 case BFD_RELOC_SPARC_TLS_IE_LO10:
3471 case BFD_RELOC_SPARC_TLS_IE_LD:
3472 case BFD_RELOC_SPARC_TLS_IE_LDX:
3473 case BFD_RELOC_SPARC_TLS_IE_ADD:
3474 case BFD_RELOC_SPARC_TLS_LE_HIX22:
3475 case BFD_RELOC_SPARC_TLS_LE_LOX10:
3476 case BFD_RELOC_SPARC_TLS_DTPMOD32:
3477 case BFD_RELOC_SPARC_TLS_DTPMOD64:
3478 case BFD_RELOC_SPARC_TLS_DTPOFF32:
3479 case BFD_RELOC_SPARC_TLS_DTPOFF64:
3480 case BFD_RELOC_SPARC_TLS_TPOFF32:
3481 case BFD_RELOC_SPARC_TLS_TPOFF64:
3482 S_SET_THREAD_LOCAL (fixP->fx_addsy);
3483
3484 default:
3485 break;
3486 }
3487
3488 return;
3489 }
3490 #endif
3491
3492 /* This is a hack. There should be a better way to
3493 handle this. Probably in terms of howto fields, once
3494 we can look at these fixups in terms of howtos. */
3495 if (fixP->fx_r_type == BFD_RELOC_32_PCREL_S2 && fixP->fx_addsy)
3496 val += fixP->fx_where + fixP->fx_frag->fr_address;
3497
3498 #ifdef OBJ_AOUT
3499 /* FIXME: More ridiculous gas reloc hacking. If we are going to
3500 generate a reloc, then we just want to let the reloc addend set
3501 the value. We do not want to also stuff the addend into the
3502 object file. Including the addend in the object file works when
3503 doing a static link, because the linker will ignore the object
3504 file contents. However, the dynamic linker does not ignore the
3505 object file contents. */
3506 if (fixP->fx_addsy != NULL
3507 && fixP->fx_r_type != BFD_RELOC_32_PCREL_S2)
3508 val = 0;
3509
3510 /* When generating PIC code, we do not want an addend for a reloc
3511 against a local symbol. We adjust fx_addnumber to cancel out the
3512 value already included in val, and to also cancel out the
3513 adjustment which bfd_install_relocation will create. */
3514 if (sparc_pic_code
3515 && fixP->fx_r_type != BFD_RELOC_32_PCREL_S2
3516 && fixP->fx_addsy != NULL
3517 && ! S_IS_COMMON (fixP->fx_addsy)
3518 && symbol_section_p (fixP->fx_addsy))
3519 fixP->fx_addnumber -= 2 * S_GET_VALUE (fixP->fx_addsy);
3520
3521 /* When generating PIC code, we need to fiddle to get
3522 bfd_install_relocation to do the right thing for a PC relative
3523 reloc against a local symbol which we are going to keep. */
3524 if (sparc_pic_code
3525 && fixP->fx_r_type == BFD_RELOC_32_PCREL_S2
3526 && fixP->fx_addsy != NULL
3527 && (S_IS_EXTERNAL (fixP->fx_addsy)
3528 || S_IS_WEAK (fixP->fx_addsy))
3529 && S_IS_DEFINED (fixP->fx_addsy)
3530 && ! S_IS_COMMON (fixP->fx_addsy))
3531 {
3532 val = 0;
3533 fixP->fx_addnumber -= 2 * S_GET_VALUE (fixP->fx_addsy);
3534 }
3535 #endif
3536
3537 /* If this is a data relocation, just output VAL. */
3538
3539 if (fixP->fx_r_type == BFD_RELOC_8)
3540 {
3541 md_number_to_chars (buf, val, 1);
3542 }
3543 else if (fixP->fx_r_type == BFD_RELOC_16
3544 || fixP->fx_r_type == BFD_RELOC_SPARC_UA16)
3545 {
3546 md_number_to_chars (buf, val, 2);
3547 }
3548 else if (fixP->fx_r_type == BFD_RELOC_32
3549 || fixP->fx_r_type == BFD_RELOC_SPARC_UA32
3550 || fixP->fx_r_type == BFD_RELOC_SPARC_REV32)
3551 {
3552 md_number_to_chars (buf, val, 4);
3553 }
3554 else if (fixP->fx_r_type == BFD_RELOC_64
3555 || fixP->fx_r_type == BFD_RELOC_SPARC_UA64)
3556 {
3557 md_number_to_chars (buf, val, 8);
3558 }
3559 else if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3560 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3561 {
3562 fixP->fx_done = 0;
3563 return;
3564 }
3565 else
3566 {
3567 /* It's a relocation against an instruction. */
3568
3569 if (INSN_BIG_ENDIAN)
3570 insn = bfd_getb32 ((unsigned char *) buf);
3571 else
3572 insn = bfd_getl32 ((unsigned char *) buf);
3573
3574 switch (fixP->fx_r_type)
3575 {
3576 case BFD_RELOC_32_PCREL_S2:
3577 val = val >> 2;
3578 /* FIXME: This increment-by-one deserves a comment of why it's
3579 being done! */
3580 if (! sparc_pic_code
3581 || fixP->fx_addsy == NULL
3582 || symbol_section_p (fixP->fx_addsy))
3583 ++val;
3584
3585 insn |= val & 0x3fffffff;
3586
3587 /* See if we have a delay slot. In that case we attempt to
3588 optimize several cases transforming CALL instructions
3589 into branches. But we can only do that if the relocation
3590 can be completely resolved here, i.e. if no undefined
3591 symbol is associated with it. */
3592 if (sparc_relax && fixP->fx_addsy == NULL
3593 && fixP->fx_where + 8 <= fixP->fx_frag->fr_fix)
3594 {
3595 #define G0 0
3596 #define O7 15
3597 #define XCC (2 << 20)
3598 #define COND(x) (((x)&0xf)<<25)
3599 #define CONDA COND(0x8)
3600 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
3601 #define INSN_BA (F2(0,2) | CONDA)
3602 #define INSN_OR F3(2, 0x2, 0)
3603 #define INSN_NOP F2(0,4)
3604
3605 long delay;
3606
3607 /* If the instruction is a call with either:
3608 restore
3609 arithmetic instruction with rd == %o7
3610 where rs1 != %o7 and rs2 if it is register != %o7
3611 then we can optimize if the call destination is near
3612 by changing the call into a branch always. */
3613 if (INSN_BIG_ENDIAN)
3614 delay = bfd_getb32 ((unsigned char *) buf + 4);
3615 else
3616 delay = bfd_getl32 ((unsigned char *) buf + 4);
3617 if ((insn & OP (~0)) != OP (1) || (delay & OP (~0)) != OP (2))
3618 break;
3619 if ((delay & OP3 (~0)) != OP3 (0x3d) /* Restore. */
3620 && ((delay & OP3 (0x28)) != 0 /* Arithmetic. */
3621 || ((delay & RD (~0)) != RD (O7))))
3622 break;
3623 if ((delay & RS1 (~0)) == RS1 (O7)
3624 || ((delay & F3I (~0)) == 0
3625 && (delay & RS2 (~0)) == RS2 (O7)))
3626 break;
3627 /* Ensure the branch will fit into simm22. */
3628 if ((val & 0x3fe00000)
3629 && (val & 0x3fe00000) != 0x3fe00000)
3630 break;
3631 /* Check if the arch is v9 and branch will fit
3632 into simm19. */
3633 if (((val & 0x3c0000) == 0
3634 || (val & 0x3c0000) == 0x3c0000)
3635 && (sparc_arch_size == 64
3636 || current_architecture >= SPARC_OPCODE_ARCH_V9))
3637 /* ba,pt %xcc */
3638 insn = INSN_BPA | (val & 0x7ffff);
3639 else
3640 /* ba */
3641 insn = INSN_BA | (val & 0x3fffff);
3642 if (fixP->fx_where >= 4
3643 && ((delay & (0xffffffff ^ RS1 (~0)))
3644 == (INSN_OR | RD (O7) | RS2 (G0))))
3645 {
3646 long setter;
3647 int reg;
3648
3649 if (INSN_BIG_ENDIAN)
3650 setter = bfd_getb32 ((unsigned char *) buf - 4);
3651 else
3652 setter = bfd_getl32 ((unsigned char *) buf - 4);
3653 if ((setter & (0xffffffff ^ RD (~0)))
3654 != (INSN_OR | RS1 (O7) | RS2 (G0)))
3655 break;
3656 /* The sequence was
3657 or %o7, %g0, %rN
3658 call foo
3659 or %rN, %g0, %o7
3660
3661 If call foo was replaced with ba, replace
3662 or %rN, %g0, %o7 with nop. */
3663 reg = (delay & RS1 (~0)) >> 14;
3664 if (reg != ((setter & RD (~0)) >> 25)
3665 || reg == G0 || reg == O7)
3666 break;
3667
3668 if (INSN_BIG_ENDIAN)
3669 bfd_putb32 (INSN_NOP, (unsigned char *) buf + 4);
3670 else
3671 bfd_putl32 (INSN_NOP, (unsigned char *) buf + 4);
3672 }
3673 }
3674 break;
3675
3676 case BFD_RELOC_SPARC_11:
3677 if (! in_signed_range (val, 0x7ff))
3678 as_bad_where (fixP->fx_file, fixP->fx_line,
3679 _("relocation overflow"));
3680 insn |= val & 0x7ff;
3681 break;
3682
3683 case BFD_RELOC_SPARC_10:
3684 if (! in_signed_range (val, 0x3ff))
3685 as_bad_where (fixP->fx_file, fixP->fx_line,
3686 _("relocation overflow"));
3687 insn |= val & 0x3ff;
3688 break;
3689
3690 case BFD_RELOC_SPARC_7:
3691 if (! in_bitfield_range (val, 0x7f))
3692 as_bad_where (fixP->fx_file, fixP->fx_line,
3693 _("relocation overflow"));
3694 insn |= val & 0x7f;
3695 break;
3696
3697 case BFD_RELOC_SPARC_6:
3698 if (! in_bitfield_range (val, 0x3f))
3699 as_bad_where (fixP->fx_file, fixP->fx_line,
3700 _("relocation overflow"));
3701 insn |= val & 0x3f;
3702 break;
3703
3704 case BFD_RELOC_SPARC_5:
3705 if (! in_bitfield_range (val, 0x1f))
3706 as_bad_where (fixP->fx_file, fixP->fx_line,
3707 _("relocation overflow"));
3708 insn |= val & 0x1f;
3709 break;
3710
3711 case BFD_RELOC_SPARC_WDISP10:
3712 if ((val & 3)
3713 || val >= 0x007fc
3714 || val <= -(offsetT) 0x808)
3715 as_bad_where (fixP->fx_file, fixP->fx_line,
3716 _("relocation overflow"));
3717 /* FIXME: The +1 deserves a comment. */
3718 val = (val >> 2) + 1;
3719 insn |= ((val & 0x300) << 11)
3720 | ((val & 0xff) << 5);
3721 break;
3722
3723 case BFD_RELOC_SPARC_WDISP16:
3724 if ((val & 3)
3725 || val >= 0x1fffc
3726 || val <= -(offsetT) 0x20008)
3727 as_bad_where (fixP->fx_file, fixP->fx_line,
3728 _("relocation overflow"));
3729 /* FIXME: The +1 deserves a comment. */
3730 val = (val >> 2) + 1;
3731 insn |= ((val & 0xc000) << 6) | (val & 0x3fff);
3732 break;
3733
3734 case BFD_RELOC_SPARC_WDISP19:
3735 if ((val & 3)
3736 || val >= 0xffffc
3737 || val <= -(offsetT) 0x100008)
3738 as_bad_where (fixP->fx_file, fixP->fx_line,
3739 _("relocation overflow"));
3740 /* FIXME: The +1 deserves a comment. */
3741 val = (val >> 2) + 1;
3742 insn |= val & 0x7ffff;
3743 break;
3744
3745 case BFD_RELOC_SPARC_HH22:
3746 val = BSR (val, 32);
3747 /* Fall through. */
3748
3749 case BFD_RELOC_SPARC_LM22:
3750 case BFD_RELOC_HI22:
3751 if (!fixP->fx_addsy)
3752 insn |= (val >> 10) & 0x3fffff;
3753 else
3754 /* FIXME: Need comment explaining why we do this. */
3755 insn &= ~0xffff;
3756 break;
3757
3758 case BFD_RELOC_SPARC22:
3759 if (val & ~0x003fffff)
3760 as_bad_where (fixP->fx_file, fixP->fx_line,
3761 _("relocation overflow"));
3762 insn |= (val & 0x3fffff);
3763 break;
3764
3765 case BFD_RELOC_SPARC_HM10:
3766 val = BSR (val, 32);
3767 /* Fall through. */
3768
3769 case BFD_RELOC_LO10:
3770 if (!fixP->fx_addsy)
3771 insn |= val & 0x3ff;
3772 else
3773 /* FIXME: Need comment explaining why we do this. */
3774 insn &= ~0xff;
3775 break;
3776
3777 case BFD_RELOC_SPARC_OLO10:
3778 val &= 0x3ff;
3779 val += fixP->tc_fix_data;
3780 /* Fall through. */
3781
3782 case BFD_RELOC_SPARC13:
3783 if (! in_signed_range (val, 0x1fff))
3784 as_bad_where (fixP->fx_file, fixP->fx_line,
3785 _("relocation overflow"));
3786 insn |= val & 0x1fff;
3787 break;
3788
3789 case BFD_RELOC_SPARC_WDISP22:
3790 val = (val >> 2) + 1;
3791 /* Fall through. */
3792 case BFD_RELOC_SPARC_BASE22:
3793 insn |= val & 0x3fffff;
3794 break;
3795
3796 case BFD_RELOC_SPARC_H34:
3797 if (!fixP->fx_addsy)
3798 {
3799 bfd_vma tval = val;
3800 tval >>= 12;
3801 insn |= tval & 0x3fffff;
3802 }
3803 break;
3804
3805 case BFD_RELOC_SPARC_H44:
3806 if (!fixP->fx_addsy)
3807 {
3808 bfd_vma tval = val;
3809 tval >>= 22;
3810 insn |= tval & 0x3fffff;
3811 }
3812 break;
3813
3814 case BFD_RELOC_SPARC_M44:
3815 if (!fixP->fx_addsy)
3816 insn |= (val >> 12) & 0x3ff;
3817 break;
3818
3819 case BFD_RELOC_SPARC_L44:
3820 if (!fixP->fx_addsy)
3821 insn |= val & 0xfff;
3822 break;
3823
3824 case BFD_RELOC_SPARC_HIX22:
3825 if (!fixP->fx_addsy)
3826 {
3827 val ^= ~(offsetT) 0;
3828 insn |= (val >> 10) & 0x3fffff;
3829 }
3830 break;
3831
3832 case BFD_RELOC_SPARC_LOX10:
3833 if (!fixP->fx_addsy)
3834 insn |= 0x1c00 | (val & 0x3ff);
3835 break;
3836
3837 case BFD_RELOC_NONE:
3838 default:
3839 as_bad_where (fixP->fx_file, fixP->fx_line,
3840 _("bad or unhandled relocation type: 0x%02x"),
3841 fixP->fx_r_type);
3842 break;
3843 }
3844
3845 if (INSN_BIG_ENDIAN)
3846 bfd_putb32 (insn, (unsigned char *) buf);
3847 else
3848 bfd_putl32 (insn, (unsigned char *) buf);
3849 }
3850
3851 /* Are we finished with this relocation now? */
3852 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
3853 fixP->fx_done = 1;
3854 }
3855
3856 /* Translate internal representation of relocation info to BFD target
3857 format. */
3858
3859 arelent **
3860 tc_gen_reloc (asection *section, fixS *fixp)
3861 {
3862 static arelent *relocs[3];
3863 arelent *reloc;
3864 bfd_reloc_code_real_type code;
3865
3866 relocs[0] = reloc = XNEW (arelent);
3867 relocs[1] = NULL;
3868
3869 reloc->sym_ptr_ptr = XNEW (asymbol *);
3870 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
3871 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
3872
3873 switch (fixp->fx_r_type)
3874 {
3875 case BFD_RELOC_16:
3876 case BFD_RELOC_32:
3877 case BFD_RELOC_HI22:
3878 case BFD_RELOC_LO10:
3879 case BFD_RELOC_32_PCREL_S2:
3880 case BFD_RELOC_SPARC13:
3881 case BFD_RELOC_SPARC22:
3882 case BFD_RELOC_SPARC_PC22:
3883 case BFD_RELOC_SPARC_PC10:
3884 case BFD_RELOC_SPARC_BASE13:
3885 case BFD_RELOC_SPARC_WDISP10:
3886 case BFD_RELOC_SPARC_WDISP16:
3887 case BFD_RELOC_SPARC_WDISP19:
3888 case BFD_RELOC_SPARC_WDISP22:
3889 case BFD_RELOC_64:
3890 case BFD_RELOC_SPARC_5:
3891 case BFD_RELOC_SPARC_6:
3892 case BFD_RELOC_SPARC_7:
3893 case BFD_RELOC_SPARC_10:
3894 case BFD_RELOC_SPARC_11:
3895 case BFD_RELOC_SPARC_HH22:
3896 case BFD_RELOC_SPARC_HM10:
3897 case BFD_RELOC_SPARC_LM22:
3898 case BFD_RELOC_SPARC_PC_HH22:
3899 case BFD_RELOC_SPARC_PC_HM10:
3900 case BFD_RELOC_SPARC_PC_LM22:
3901 case BFD_RELOC_SPARC_H34:
3902 case BFD_RELOC_SPARC_H44:
3903 case BFD_RELOC_SPARC_M44:
3904 case BFD_RELOC_SPARC_L44:
3905 case BFD_RELOC_SPARC_HIX22:
3906 case BFD_RELOC_SPARC_LOX10:
3907 case BFD_RELOC_SPARC_REV32:
3908 case BFD_RELOC_SPARC_OLO10:
3909 case BFD_RELOC_SPARC_UA16:
3910 case BFD_RELOC_SPARC_UA32:
3911 case BFD_RELOC_SPARC_UA64:
3912 case BFD_RELOC_8_PCREL:
3913 case BFD_RELOC_16_PCREL:
3914 case BFD_RELOC_32_PCREL:
3915 case BFD_RELOC_64_PCREL:
3916 case BFD_RELOC_SPARC_PLT32:
3917 case BFD_RELOC_SPARC_PLT64:
3918 case BFD_RELOC_VTABLE_ENTRY:
3919 case BFD_RELOC_VTABLE_INHERIT:
3920 case BFD_RELOC_SPARC_TLS_GD_HI22:
3921 case BFD_RELOC_SPARC_TLS_GD_LO10:
3922 case BFD_RELOC_SPARC_TLS_GD_ADD:
3923 case BFD_RELOC_SPARC_TLS_GD_CALL:
3924 case BFD_RELOC_SPARC_TLS_LDM_HI22:
3925 case BFD_RELOC_SPARC_TLS_LDM_LO10:
3926 case BFD_RELOC_SPARC_TLS_LDM_ADD:
3927 case BFD_RELOC_SPARC_TLS_LDM_CALL:
3928 case BFD_RELOC_SPARC_TLS_LDO_HIX22:
3929 case BFD_RELOC_SPARC_TLS_LDO_LOX10:
3930 case BFD_RELOC_SPARC_TLS_LDO_ADD:
3931 case BFD_RELOC_SPARC_TLS_IE_HI22:
3932 case BFD_RELOC_SPARC_TLS_IE_LO10:
3933 case BFD_RELOC_SPARC_TLS_IE_LD:
3934 case BFD_RELOC_SPARC_TLS_IE_LDX:
3935 case BFD_RELOC_SPARC_TLS_IE_ADD:
3936 case BFD_RELOC_SPARC_TLS_LE_HIX22:
3937 case BFD_RELOC_SPARC_TLS_LE_LOX10:
3938 case BFD_RELOC_SPARC_TLS_DTPOFF32:
3939 case BFD_RELOC_SPARC_TLS_DTPOFF64:
3940 case BFD_RELOC_SPARC_GOTDATA_OP_HIX22:
3941 case BFD_RELOC_SPARC_GOTDATA_OP_LOX10:
3942 case BFD_RELOC_SPARC_GOTDATA_OP:
3943 code = fixp->fx_r_type;
3944 break;
3945 default:
3946 abort ();
3947 return NULL;
3948 }
3949
3950 #if defined (OBJ_ELF) || defined (OBJ_AOUT)
3951 /* If we are generating PIC code, we need to generate a different
3952 set of relocs. */
3953
3954 #ifdef OBJ_ELF
3955 #define GOT_NAME "_GLOBAL_OFFSET_TABLE_"
3956 #else
3957 #define GOT_NAME "__GLOBAL_OFFSET_TABLE_"
3958 #endif
3959 #ifdef TE_VXWORKS
3960 #define GOTT_BASE "__GOTT_BASE__"
3961 #define GOTT_INDEX "__GOTT_INDEX__"
3962 #endif
3963
3964 /* This code must be parallel to the OBJ_ELF tc_fix_adjustable. */
3965
3966 if (sparc_pic_code)
3967 {
3968 switch (code)
3969 {
3970 case BFD_RELOC_32_PCREL_S2:
3971 if (generic_force_reloc (fixp))
3972 code = BFD_RELOC_SPARC_WPLT30;
3973 break;
3974 case BFD_RELOC_HI22:
3975 code = BFD_RELOC_SPARC_GOT22;
3976 if (fixp->fx_addsy != NULL)
3977 {
3978 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0)
3979 code = BFD_RELOC_SPARC_PC22;
3980 #ifdef TE_VXWORKS
3981 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_BASE) == 0
3982 || strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_INDEX) == 0)
3983 code = BFD_RELOC_HI22; /* Unchanged. */
3984 #endif
3985 }
3986 break;
3987 case BFD_RELOC_LO10:
3988 code = BFD_RELOC_SPARC_GOT10;
3989 if (fixp->fx_addsy != NULL)
3990 {
3991 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOT_NAME) == 0)
3992 code = BFD_RELOC_SPARC_PC10;
3993 #ifdef TE_VXWORKS
3994 if (strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_BASE) == 0
3995 || strcmp (S_GET_NAME (fixp->fx_addsy), GOTT_INDEX) == 0)
3996 code = BFD_RELOC_LO10; /* Unchanged. */
3997 #endif
3998 }
3999 break;
4000 case BFD_RELOC_SPARC13:
4001 code = BFD_RELOC_SPARC_GOT13;
4002 break;
4003 default:
4004 break;
4005 }
4006 }
4007 #endif /* defined (OBJ_ELF) || defined (OBJ_AOUT) */
4008
4009 /* Nothing is aligned in DWARF debugging sections. */
4010 if (bfd_get_section_flags (stdoutput, section) & SEC_DEBUGGING)
4011 switch (code)
4012 {
4013 case BFD_RELOC_16: code = BFD_RELOC_SPARC_UA16; break;
4014 case BFD_RELOC_32: code = BFD_RELOC_SPARC_UA32; break;
4015 case BFD_RELOC_64: code = BFD_RELOC_SPARC_UA64; break;
4016 default: break;
4017 }
4018
4019 if (code == BFD_RELOC_SPARC_OLO10)
4020 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_LO10);
4021 else
4022 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
4023 if (reloc->howto == 0)
4024 {
4025 as_bad_where (fixp->fx_file, fixp->fx_line,
4026 _("internal error: can't export reloc type %d (`%s')"),
4027 fixp->fx_r_type, bfd_get_reloc_code_name (code));
4028 xfree (reloc);
4029 relocs[0] = NULL;
4030 return relocs;
4031 }
4032
4033 /* @@ Why fx_addnumber sometimes and fx_offset other times? */
4034 #ifdef OBJ_AOUT
4035
4036 if (reloc->howto->pc_relative == 0
4037 || code == BFD_RELOC_SPARC_PC10
4038 || code == BFD_RELOC_SPARC_PC22)
4039 reloc->addend = fixp->fx_addnumber;
4040 else if (sparc_pic_code
4041 && fixp->fx_r_type == BFD_RELOC_32_PCREL_S2
4042 && fixp->fx_addsy != NULL
4043 && (S_IS_EXTERNAL (fixp->fx_addsy)
4044 || S_IS_WEAK (fixp->fx_addsy))
4045 && S_IS_DEFINED (fixp->fx_addsy)
4046 && ! S_IS_COMMON (fixp->fx_addsy))
4047 reloc->addend = fixp->fx_addnumber;
4048 else
4049 reloc->addend = fixp->fx_offset - reloc->address;
4050
4051 #else /* elf or coff */
4052
4053 if (code != BFD_RELOC_32_PCREL_S2
4054 && code != BFD_RELOC_SPARC_WDISP22
4055 && code != BFD_RELOC_SPARC_WDISP16
4056 && code != BFD_RELOC_SPARC_WDISP19
4057 && code != BFD_RELOC_SPARC_WDISP10
4058 && code != BFD_RELOC_SPARC_WPLT30
4059 && code != BFD_RELOC_SPARC_TLS_GD_CALL
4060 && code != BFD_RELOC_SPARC_TLS_LDM_CALL)
4061 reloc->addend = fixp->fx_addnumber;
4062 else if (symbol_section_p (fixp->fx_addsy))
4063 reloc->addend = (section->vma
4064 + fixp->fx_addnumber
4065 + md_pcrel_from (fixp));
4066 else
4067 reloc->addend = fixp->fx_offset;
4068 #endif
4069
4070 /* We expand R_SPARC_OLO10 to R_SPARC_LO10 and R_SPARC_13
4071 on the same location. */
4072 if (code == BFD_RELOC_SPARC_OLO10)
4073 {
4074 relocs[1] = reloc = XNEW (arelent);
4075 relocs[2] = NULL;
4076
4077 reloc->sym_ptr_ptr = XNEW (asymbol *);
4078 *reloc->sym_ptr_ptr
4079 = symbol_get_bfdsym (section_symbol (absolute_section));
4080 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
4081 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_SPARC13);
4082 reloc->addend = fixp->tc_fix_data;
4083 }
4084
4085 return relocs;
4086 }
4087 \f
4088 /* We have no need to default values of symbols. */
4089
4090 symbolS *
4091 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
4092 {
4093 return 0;
4094 }
4095
4096 /* Round up a section size to the appropriate boundary. */
4097
4098 valueT
4099 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
4100 {
4101 #ifndef OBJ_ELF
4102 /* This is not right for ELF; a.out wants it, and COFF will force
4103 the alignment anyways. */
4104 valueT align = ((valueT) 1
4105 << (valueT) bfd_get_section_alignment (stdoutput, segment));
4106 valueT newsize;
4107
4108 /* Turn alignment value into a mask. */
4109 align--;
4110 newsize = (size + align) & ~align;
4111 return newsize;
4112 #else
4113 return size;
4114 #endif
4115 }
4116
4117 /* Exactly what point is a PC-relative offset relative TO?
4118 On the sparc, they're relative to the address of the offset, plus
4119 its size. This gets us to the following instruction.
4120 (??? Is this right? FIXME-SOON) */
4121 long
4122 md_pcrel_from (fixS *fixP)
4123 {
4124 long ret;
4125
4126 ret = fixP->fx_where + fixP->fx_frag->fr_address;
4127 if (! sparc_pic_code
4128 || fixP->fx_addsy == NULL
4129 || symbol_section_p (fixP->fx_addsy))
4130 ret += fixP->fx_size;
4131 return ret;
4132 }
4133 \f
4134 /* Return log2 (VALUE), or -1 if VALUE is not an exact positive power
4135 of two. */
4136
4137 static int
4138 mylog2 (int value)
4139 {
4140 int shift;
4141
4142 if (value <= 0)
4143 return -1;
4144
4145 for (shift = 0; (value & 1) == 0; value >>= 1)
4146 ++shift;
4147
4148 return (value == 1) ? shift : -1;
4149 }
4150
4151 /* Sort of like s_lcomm. */
4152
4153 #ifndef OBJ_ELF
4154 static int max_alignment = 15;
4155 #endif
4156
4157 static void
4158 s_reserve (int ignore ATTRIBUTE_UNUSED)
4159 {
4160 char *name;
4161 char *p;
4162 char c;
4163 int align;
4164 int size;
4165 int temp;
4166 symbolS *symbolP;
4167
4168 c = get_symbol_name (&name);
4169 p = input_line_pointer;
4170 *p = c;
4171 SKIP_WHITESPACE_AFTER_NAME ();
4172
4173 if (*input_line_pointer != ',')
4174 {
4175 as_bad (_("Expected comma after name"));
4176 ignore_rest_of_line ();
4177 return;
4178 }
4179
4180 ++input_line_pointer;
4181
4182 if ((size = get_absolute_expression ()) < 0)
4183 {
4184 as_bad (_("BSS length (%d.) <0! Ignored."), size);
4185 ignore_rest_of_line ();
4186 return;
4187 } /* Bad length. */
4188
4189 *p = 0;
4190 symbolP = symbol_find_or_make (name);
4191 *p = c;
4192
4193 if (strncmp (input_line_pointer, ",\"bss\"", 6) != 0
4194 && strncmp (input_line_pointer, ",\".bss\"", 7) != 0)
4195 {
4196 as_bad (_("bad .reserve segment -- expected BSS segment"));
4197 return;
4198 }
4199
4200 if (input_line_pointer[2] == '.')
4201 input_line_pointer += 7;
4202 else
4203 input_line_pointer += 6;
4204 SKIP_WHITESPACE ();
4205
4206 if (*input_line_pointer == ',')
4207 {
4208 ++input_line_pointer;
4209
4210 SKIP_WHITESPACE ();
4211 if (*input_line_pointer == '\n')
4212 {
4213 as_bad (_("missing alignment"));
4214 ignore_rest_of_line ();
4215 return;
4216 }
4217
4218 align = (int) get_absolute_expression ();
4219
4220 #ifndef OBJ_ELF
4221 if (align > max_alignment)
4222 {
4223 align = max_alignment;
4224 as_warn (_("alignment too large; assuming %d"), align);
4225 }
4226 #endif
4227
4228 if (align < 0)
4229 {
4230 as_bad (_("negative alignment"));
4231 ignore_rest_of_line ();
4232 return;
4233 }
4234
4235 if (align != 0)
4236 {
4237 temp = mylog2 (align);
4238 if (temp < 0)
4239 {
4240 as_bad (_("alignment not a power of 2"));
4241 ignore_rest_of_line ();
4242 return;
4243 }
4244
4245 align = temp;
4246 }
4247
4248 record_alignment (bss_section, align);
4249 }
4250 else
4251 align = 0;
4252
4253 if (!S_IS_DEFINED (symbolP)
4254 #ifdef OBJ_AOUT
4255 && S_GET_OTHER (symbolP) == 0
4256 && S_GET_DESC (symbolP) == 0
4257 #endif
4258 )
4259 {
4260 if (! need_pass_2)
4261 {
4262 char *pfrag;
4263 segT current_seg = now_seg;
4264 subsegT current_subseg = now_subseg;
4265
4266 /* Switch to bss. */
4267 subseg_set (bss_section, 1);
4268
4269 if (align)
4270 /* Do alignment. */
4271 frag_align (align, 0, 0);
4272
4273 /* Detach from old frag. */
4274 if (S_GET_SEGMENT (symbolP) == bss_section)
4275 symbol_get_frag (symbolP)->fr_symbol = NULL;
4276
4277 symbol_set_frag (symbolP, frag_now);
4278 pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
4279 (offsetT) size, (char *) 0);
4280 *pfrag = 0;
4281
4282 S_SET_SEGMENT (symbolP, bss_section);
4283
4284 subseg_set (current_seg, current_subseg);
4285
4286 #ifdef OBJ_ELF
4287 S_SET_SIZE (symbolP, size);
4288 #endif
4289 }
4290 }
4291 else
4292 {
4293 as_warn (_("Ignoring attempt to re-define symbol %s"),
4294 S_GET_NAME (symbolP));
4295 }
4296
4297 demand_empty_rest_of_line ();
4298 }
4299
4300 static void
4301 s_common (int ignore ATTRIBUTE_UNUSED)
4302 {
4303 char *name;
4304 char c;
4305 char *p;
4306 offsetT temp, size;
4307 symbolS *symbolP;
4308
4309 c = get_symbol_name (&name);
4310 /* Just after name is now '\0'. */
4311 p = input_line_pointer;
4312 *p = c;
4313 SKIP_WHITESPACE_AFTER_NAME ();
4314 if (*input_line_pointer != ',')
4315 {
4316 as_bad (_("Expected comma after symbol-name"));
4317 ignore_rest_of_line ();
4318 return;
4319 }
4320
4321 /* Skip ','. */
4322 input_line_pointer++;
4323
4324 if ((temp = get_absolute_expression ()) < 0)
4325 {
4326 as_bad (_(".COMMon length (%lu) out of range ignored"),
4327 (unsigned long) temp);
4328 ignore_rest_of_line ();
4329 return;
4330 }
4331 size = temp;
4332 *p = 0;
4333 symbolP = symbol_find_or_make (name);
4334 *p = c;
4335 if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP))
4336 {
4337 as_bad (_("Ignoring attempt to re-define symbol"));
4338 ignore_rest_of_line ();
4339 return;
4340 }
4341 if (S_GET_VALUE (symbolP) != 0)
4342 {
4343 if (S_GET_VALUE (symbolP) != (valueT) size)
4344 {
4345 as_warn (_("Length of .comm \"%s\" is already %ld. Not changed to %ld."),
4346 S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), (long) size);
4347 }
4348 }
4349 else
4350 {
4351 #ifndef OBJ_ELF
4352 S_SET_VALUE (symbolP, (valueT) size);
4353 S_SET_EXTERNAL (symbolP);
4354 #endif
4355 }
4356 know (symbol_get_frag (symbolP) == &zero_address_frag);
4357 if (*input_line_pointer != ',')
4358 {
4359 as_bad (_("Expected comma after common length"));
4360 ignore_rest_of_line ();
4361 return;
4362 }
4363 input_line_pointer++;
4364 SKIP_WHITESPACE ();
4365 if (*input_line_pointer != '"')
4366 {
4367 temp = get_absolute_expression ();
4368
4369 #ifndef OBJ_ELF
4370 if (temp > max_alignment)
4371 {
4372 temp = max_alignment;
4373 as_warn (_("alignment too large; assuming %ld"), (long) temp);
4374 }
4375 #endif
4376
4377 if (temp < 0)
4378 {
4379 as_bad (_("negative alignment"));
4380 ignore_rest_of_line ();
4381 return;
4382 }
4383
4384 #ifdef OBJ_ELF
4385 if (symbol_get_obj (symbolP)->local)
4386 {
4387 segT old_sec;
4388 int old_subsec;
4389 int align;
4390
4391 old_sec = now_seg;
4392 old_subsec = now_subseg;
4393
4394 if (temp == 0)
4395 align = 0;
4396 else
4397 align = mylog2 (temp);
4398
4399 if (align < 0)
4400 {
4401 as_bad (_("alignment not a power of 2"));
4402 ignore_rest_of_line ();
4403 return;
4404 }
4405
4406 record_alignment (bss_section, align);
4407 subseg_set (bss_section, 0);
4408 if (align)
4409 frag_align (align, 0, 0);
4410 if (S_GET_SEGMENT (symbolP) == bss_section)
4411 symbol_get_frag (symbolP)->fr_symbol = 0;
4412 symbol_set_frag (symbolP, frag_now);
4413 p = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
4414 (offsetT) size, (char *) 0);
4415 *p = 0;
4416 S_SET_SEGMENT (symbolP, bss_section);
4417 S_CLEAR_EXTERNAL (symbolP);
4418 S_SET_SIZE (symbolP, size);
4419 subseg_set (old_sec, old_subsec);
4420 }
4421 else
4422 #endif /* OBJ_ELF */
4423 {
4424 allocate_common:
4425 S_SET_VALUE (symbolP, (valueT) size);
4426 #ifdef OBJ_ELF
4427 S_SET_ALIGN (symbolP, temp);
4428 S_SET_SIZE (symbolP, size);
4429 #endif
4430 S_SET_EXTERNAL (symbolP);
4431 S_SET_SEGMENT (symbolP, bfd_com_section_ptr);
4432 }
4433 }
4434 else
4435 {
4436 input_line_pointer++;
4437 /* @@ Some use the dot, some don't. Can we get some consistency?? */
4438 if (*input_line_pointer == '.')
4439 input_line_pointer++;
4440 /* @@ Some say data, some say bss. */
4441 if (strncmp (input_line_pointer, "bss\"", 4)
4442 && strncmp (input_line_pointer, "data\"", 5))
4443 {
4444 while (*--input_line_pointer != '"')
4445 ;
4446 input_line_pointer--;
4447 goto bad_common_segment;
4448 }
4449 while (*input_line_pointer++ != '"')
4450 ;
4451 goto allocate_common;
4452 }
4453
4454 symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
4455
4456 demand_empty_rest_of_line ();
4457 return;
4458
4459 {
4460 bad_common_segment:
4461 p = input_line_pointer;
4462 while (*p && *p != '\n')
4463 p++;
4464 c = *p;
4465 *p = '\0';
4466 as_bad (_("bad .common segment %s"), input_line_pointer + 1);
4467 *p = c;
4468 input_line_pointer = p;
4469 ignore_rest_of_line ();
4470 return;
4471 }
4472 }
4473
4474 /* Handle the .empty pseudo-op. This suppresses the warnings about
4475 invalid delay slot usage. */
4476
4477 static void
4478 s_empty (int ignore ATTRIBUTE_UNUSED)
4479 {
4480 /* The easy way to implement is to just forget about the last
4481 instruction. */
4482 last_insn = NULL;
4483 }
4484
4485 static void
4486 s_seg (int ignore ATTRIBUTE_UNUSED)
4487 {
4488
4489 if (strncmp (input_line_pointer, "\"text\"", 6) == 0)
4490 {
4491 input_line_pointer += 6;
4492 s_text (0);
4493 return;
4494 }
4495 if (strncmp (input_line_pointer, "\"data\"", 6) == 0)
4496 {
4497 input_line_pointer += 6;
4498 s_data (0);
4499 return;
4500 }
4501 if (strncmp (input_line_pointer, "\"data1\"", 7) == 0)
4502 {
4503 input_line_pointer += 7;
4504 s_data1 ();
4505 return;
4506 }
4507 if (strncmp (input_line_pointer, "\"bss\"", 5) == 0)
4508 {
4509 input_line_pointer += 5;
4510 /* We only support 2 segments -- text and data -- for now, so
4511 things in the "bss segment" will have to go into data for now.
4512 You can still allocate SEG_BSS stuff with .lcomm or .reserve. */
4513 subseg_set (data_section, 255); /* FIXME-SOMEDAY. */
4514 return;
4515 }
4516 as_bad (_("Unknown segment type"));
4517 demand_empty_rest_of_line ();
4518 }
4519
4520 static void
4521 s_data1 (void)
4522 {
4523 subseg_set (data_section, 1);
4524 demand_empty_rest_of_line ();
4525 }
4526
4527 static void
4528 s_proc (int ignore ATTRIBUTE_UNUSED)
4529 {
4530 while (!is_end_of_line[(unsigned char) *input_line_pointer])
4531 {
4532 ++input_line_pointer;
4533 }
4534 ++input_line_pointer;
4535 }
4536
4537 /* This static variable is set by s_uacons to tell sparc_cons_align
4538 that the expression does not need to be aligned. */
4539
4540 static int sparc_no_align_cons = 0;
4541
4542 /* This handles the unaligned space allocation pseudo-ops, such as
4543 .uaword. .uaword is just like .word, but the value does not need
4544 to be aligned. */
4545
4546 static void
4547 s_uacons (int bytes)
4548 {
4549 /* Tell sparc_cons_align not to align this value. */
4550 sparc_no_align_cons = 1;
4551 cons (bytes);
4552 sparc_no_align_cons = 0;
4553 }
4554
4555 /* This handles the native word allocation pseudo-op .nword.
4556 For sparc_arch_size 32 it is equivalent to .word, for
4557 sparc_arch_size 64 it is equivalent to .xword. */
4558
4559 static void
4560 s_ncons (int bytes ATTRIBUTE_UNUSED)
4561 {
4562 cons (sparc_arch_size == 32 ? 4 : 8);
4563 }
4564
4565 #ifdef OBJ_ELF
4566 /* Handle the SPARC ELF .register pseudo-op. This sets the binding of a
4567 global register.
4568 The syntax is:
4569
4570 .register %g[2367],{#scratch|symbolname|#ignore}
4571 */
4572
4573 static void
4574 s_register (int ignore ATTRIBUTE_UNUSED)
4575 {
4576 char c;
4577 int reg;
4578 int flags;
4579 char *regname;
4580
4581 if (input_line_pointer[0] != '%'
4582 || input_line_pointer[1] != 'g'
4583 || ((input_line_pointer[2] & ~1) != '2'
4584 && (input_line_pointer[2] & ~1) != '6')
4585 || input_line_pointer[3] != ',')
4586 as_bad (_("register syntax is .register %%g[2367],{#scratch|symbolname|#ignore}"));
4587 reg = input_line_pointer[2] - '0';
4588 input_line_pointer += 4;
4589
4590 if (*input_line_pointer == '#')
4591 {
4592 ++input_line_pointer;
4593 c = get_symbol_name (&regname);
4594 if (strcmp (regname, "scratch") && strcmp (regname, "ignore"))
4595 as_bad (_("register syntax is .register %%g[2367],{#scratch|symbolname|#ignore}"));
4596 if (regname[0] == 'i')
4597 regname = NULL;
4598 else
4599 regname = (char *) "";
4600 }
4601 else
4602 {
4603 c = get_symbol_name (&regname);
4604 }
4605
4606 if (sparc_arch_size == 64)
4607 {
4608 if (globals[reg])
4609 {
4610 if ((regname && globals[reg] != (symbolS *) 1
4611 && strcmp (S_GET_NAME (globals[reg]), regname))
4612 || ((regname != NULL) ^ (globals[reg] != (symbolS *) 1)))
4613 as_bad (_("redefinition of global register"));
4614 }
4615 else
4616 {
4617 if (regname == NULL)
4618 globals[reg] = (symbolS *) 1;
4619 else
4620 {
4621 if (*regname)
4622 {
4623 if (symbol_find (regname))
4624 as_bad (_("Register symbol %s already defined."),
4625 regname);
4626 }
4627 globals[reg] = symbol_make (regname);
4628 flags = symbol_get_bfdsym (globals[reg])->flags;
4629 if (! *regname)
4630 flags = flags & ~(BSF_GLOBAL|BSF_LOCAL|BSF_WEAK);
4631 if (! (flags & (BSF_GLOBAL|BSF_LOCAL|BSF_WEAK)))
4632 flags |= BSF_GLOBAL;
4633 symbol_get_bfdsym (globals[reg])->flags = flags;
4634 S_SET_VALUE (globals[reg], (valueT) reg);
4635 S_SET_ALIGN (globals[reg], reg);
4636 S_SET_SIZE (globals[reg], 0);
4637 /* Although we actually want undefined_section here,
4638 we have to use absolute_section, because otherwise
4639 generic as code will make it a COM section.
4640 We fix this up in sparc_adjust_symtab. */
4641 S_SET_SEGMENT (globals[reg], absolute_section);
4642 S_SET_OTHER (globals[reg], 0);
4643 elf_symbol (symbol_get_bfdsym (globals[reg]))
4644 ->internal_elf_sym.st_info =
4645 ELF_ST_INFO(STB_GLOBAL, STT_REGISTER);
4646 elf_symbol (symbol_get_bfdsym (globals[reg]))
4647 ->internal_elf_sym.st_shndx = SHN_UNDEF;
4648 }
4649 }
4650 }
4651
4652 (void) restore_line_pointer (c);
4653
4654 demand_empty_rest_of_line ();
4655 }
4656
4657 /* Adjust the symbol table. We set undefined sections for STT_REGISTER
4658 symbols which need it. */
4659
4660 void
4661 sparc_adjust_symtab (void)
4662 {
4663 symbolS *sym;
4664
4665 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
4666 {
4667 if (ELF_ST_TYPE (elf_symbol (symbol_get_bfdsym (sym))
4668 ->internal_elf_sym.st_info) != STT_REGISTER)
4669 continue;
4670
4671 if (ELF_ST_TYPE (elf_symbol (symbol_get_bfdsym (sym))
4672 ->internal_elf_sym.st_shndx != SHN_UNDEF))
4673 continue;
4674
4675 S_SET_SEGMENT (sym, undefined_section);
4676 }
4677 }
4678 #endif
4679
4680 /* If the --enforce-aligned-data option is used, we require .word,
4681 et. al., to be aligned correctly. We do it by setting up an
4682 rs_align_code frag, and checking in HANDLE_ALIGN to make sure that
4683 no unexpected alignment was introduced.
4684
4685 The SunOS and Solaris native assemblers enforce aligned data by
4686 default. We don't want to do that, because gcc can deliberately
4687 generate misaligned data if the packed attribute is used. Instead,
4688 we permit misaligned data by default, and permit the user to set an
4689 option to check for it. */
4690
4691 void
4692 sparc_cons_align (int nbytes)
4693 {
4694 int nalign;
4695
4696 /* Only do this if we are enforcing aligned data. */
4697 if (! enforce_aligned_data)
4698 return;
4699
4700 /* Don't align if this is an unaligned pseudo-op. */
4701 if (sparc_no_align_cons)
4702 return;
4703
4704 nalign = mylog2 (nbytes);
4705 if (nalign == 0)
4706 return;
4707
4708 gas_assert (nalign > 0);
4709
4710 if (now_seg == absolute_section)
4711 {
4712 if ((abs_section_offset & ((1 << nalign) - 1)) != 0)
4713 as_bad (_("misaligned data"));
4714 return;
4715 }
4716
4717 frag_var (rs_align_test, 1, 1, (relax_substateT) 0,
4718 (symbolS *) NULL, (offsetT) nalign, (char *) NULL);
4719
4720 record_alignment (now_seg, nalign);
4721 }
4722
4723 /* This is called from HANDLE_ALIGN in tc-sparc.h. */
4724
4725 void
4726 sparc_handle_align (fragS *fragp)
4727 {
4728 int count, fix;
4729 char *p;
4730
4731 count = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
4732
4733 switch (fragp->fr_type)
4734 {
4735 case rs_align_test:
4736 if (count != 0)
4737 as_bad_where (fragp->fr_file, fragp->fr_line, _("misaligned data"));
4738 break;
4739
4740 case rs_align_code:
4741 p = fragp->fr_literal + fragp->fr_fix;
4742 fix = 0;
4743
4744 if (count & 3)
4745 {
4746 fix = count & 3;
4747 memset (p, 0, fix);
4748 p += fix;
4749 count -= fix;
4750 }
4751
4752 if (SPARC_OPCODE_ARCH_V9_P (max_architecture) && count > 8)
4753 {
4754 unsigned wval = (0x30680000 | count >> 2); /* ba,a,pt %xcc, 1f */
4755 if (INSN_BIG_ENDIAN)
4756 number_to_chars_bigendian (p, wval, 4);
4757 else
4758 number_to_chars_littleendian (p, wval, 4);
4759 p += 4;
4760 count -= 4;
4761 fix += 4;
4762 }
4763
4764 if (INSN_BIG_ENDIAN)
4765 number_to_chars_bigendian (p, 0x01000000, 4);
4766 else
4767 number_to_chars_littleendian (p, 0x01000000, 4);
4768
4769 fragp->fr_fix += fix;
4770 fragp->fr_var = 4;
4771 break;
4772
4773 default:
4774 break;
4775 }
4776 }
4777
4778 #ifdef OBJ_ELF
4779 /* Some special processing for a Sparc ELF file. */
4780
4781 void
4782 sparc_elf_final_processing (void)
4783 {
4784 /* Set the Sparc ELF flag bits. FIXME: There should probably be some
4785 sort of BFD interface for this. */
4786 if (sparc_arch_size == 64)
4787 {
4788 switch (sparc_memory_model)
4789 {
4790 case MM_RMO:
4791 elf_elfheader (stdoutput)->e_flags |= EF_SPARCV9_RMO;
4792 break;
4793 case MM_PSO:
4794 elf_elfheader (stdoutput)->e_flags |= EF_SPARCV9_PSO;
4795 break;
4796 default:
4797 break;
4798 }
4799 }
4800 else if (current_architecture >= SPARC_OPCODE_ARCH_V9)
4801 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_32PLUS;
4802 if (current_architecture == SPARC_OPCODE_ARCH_V9A)
4803 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_SUN_US1;
4804 else if (current_architecture == SPARC_OPCODE_ARCH_V9B)
4805 elf_elfheader (stdoutput)->e_flags |= EF_SPARC_SUN_US1|EF_SPARC_SUN_US3;
4806 }
4807
4808 const char *
4809 sparc_cons (expressionS *exp, int size)
4810 {
4811 char *save;
4812 const char *sparc_cons_special_reloc = NULL;
4813
4814 SKIP_WHITESPACE ();
4815 save = input_line_pointer;
4816 if (input_line_pointer[0] == '%'
4817 && input_line_pointer[1] == 'r'
4818 && input_line_pointer[2] == '_')
4819 {
4820 if (strncmp (input_line_pointer + 3, "disp", 4) == 0)
4821 {
4822 input_line_pointer += 7;
4823 sparc_cons_special_reloc = "disp";
4824 }
4825 else if (strncmp (input_line_pointer + 3, "plt", 3) == 0)
4826 {
4827 if (size != 4 && size != 8)
4828 as_bad (_("Illegal operands: %%r_plt in %d-byte data field"), size);
4829 else
4830 {
4831 input_line_pointer += 6;
4832 sparc_cons_special_reloc = "plt";
4833 }
4834 }
4835 else if (strncmp (input_line_pointer + 3, "tls_dtpoff", 10) == 0)
4836 {
4837 if (size != 4 && size != 8)
4838 as_bad (_("Illegal operands: %%r_tls_dtpoff in %d-byte data field"), size);
4839 else
4840 {
4841 input_line_pointer += 13;
4842 sparc_cons_special_reloc = "tls_dtpoff";
4843 }
4844 }
4845 if (sparc_cons_special_reloc)
4846 {
4847 int bad = 0;
4848
4849 switch (size)
4850 {
4851 case 1:
4852 if (*input_line_pointer != '8')
4853 bad = 1;
4854 input_line_pointer--;
4855 break;
4856 case 2:
4857 if (input_line_pointer[0] != '1' || input_line_pointer[1] != '6')
4858 bad = 1;
4859 break;
4860 case 4:
4861 if (input_line_pointer[0] != '3' || input_line_pointer[1] != '2')
4862 bad = 1;
4863 break;
4864 case 8:
4865 if (input_line_pointer[0] != '6' || input_line_pointer[1] != '4')
4866 bad = 1;
4867 break;
4868 default:
4869 bad = 1;
4870 break;
4871 }
4872
4873 if (bad)
4874 {
4875 as_bad (_("Illegal operands: Only %%r_%s%d allowed in %d-byte data fields"),
4876 sparc_cons_special_reloc, size * 8, size);
4877 }
4878 else
4879 {
4880 input_line_pointer += 2;
4881 if (*input_line_pointer != '(')
4882 {
4883 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4884 sparc_cons_special_reloc, size * 8);
4885 bad = 1;
4886 }
4887 }
4888
4889 if (bad)
4890 {
4891 input_line_pointer = save;
4892 sparc_cons_special_reloc = NULL;
4893 }
4894 else
4895 {
4896 int c;
4897 char *end = ++input_line_pointer;
4898 int npar = 0;
4899
4900 while (! is_end_of_line[(c = *end)])
4901 {
4902 if (c == '(')
4903 npar++;
4904 else if (c == ')')
4905 {
4906 if (!npar)
4907 break;
4908 npar--;
4909 }
4910 end++;
4911 }
4912
4913 if (c != ')')
4914 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4915 sparc_cons_special_reloc, size * 8);
4916 else
4917 {
4918 *end = '\0';
4919 expression (exp);
4920 *end = c;
4921 if (input_line_pointer != end)
4922 {
4923 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
4924 sparc_cons_special_reloc, size * 8);
4925 }
4926 else
4927 {
4928 input_line_pointer++;
4929 SKIP_WHITESPACE ();
4930 c = *input_line_pointer;
4931 if (! is_end_of_line[c] && c != ',')
4932 as_bad (_("Illegal operands: garbage after %%r_%s%d()"),
4933 sparc_cons_special_reloc, size * 8);
4934 }
4935 }
4936 }
4937 }
4938 }
4939 if (sparc_cons_special_reloc == NULL)
4940 expression (exp);
4941 return sparc_cons_special_reloc;
4942 }
4943
4944 #endif
4945
4946 /* This is called by emit_expr via TC_CONS_FIX_NEW when creating a
4947 reloc for a cons. We could use the definition there, except that
4948 we want to handle little endian relocs specially. */
4949
4950 void
4951 cons_fix_new_sparc (fragS *frag,
4952 int where,
4953 unsigned int nbytes,
4954 expressionS *exp,
4955 const char *sparc_cons_special_reloc)
4956 {
4957 bfd_reloc_code_real_type r;
4958
4959 r = (nbytes == 1 ? BFD_RELOC_8 :
4960 (nbytes == 2 ? BFD_RELOC_16 :
4961 (nbytes == 4 ? BFD_RELOC_32 : BFD_RELOC_64)));
4962
4963 if (target_little_endian_data
4964 && nbytes == 4
4965 && now_seg->flags & SEC_ALLOC)
4966 r = BFD_RELOC_SPARC_REV32;
4967
4968 #ifdef TE_SOLARIS
4969 /* The Solaris linker does not allow R_SPARC_UA64
4970 relocations for 32-bit executables. */
4971 if (!target_little_endian_data
4972 && sparc_arch_size != 64
4973 && r == BFD_RELOC_64)
4974 r = BFD_RELOC_32;
4975 #endif
4976
4977 if (sparc_cons_special_reloc)
4978 {
4979 if (*sparc_cons_special_reloc == 'd')
4980 switch (nbytes)
4981 {
4982 case 1: r = BFD_RELOC_8_PCREL; break;
4983 case 2: r = BFD_RELOC_16_PCREL; break;
4984 case 4: r = BFD_RELOC_32_PCREL; break;
4985 case 8: r = BFD_RELOC_64_PCREL; break;
4986 default: abort ();
4987 }
4988 else if (*sparc_cons_special_reloc == 'p')
4989 switch (nbytes)
4990 {
4991 case 4: r = BFD_RELOC_SPARC_PLT32; break;
4992 case 8: r = BFD_RELOC_SPARC_PLT64; break;
4993 }
4994 else
4995 switch (nbytes)
4996 {
4997 case 4: r = BFD_RELOC_SPARC_TLS_DTPOFF32; break;
4998 case 8: r = BFD_RELOC_SPARC_TLS_DTPOFF64; break;
4999 }
5000 }
5001 else if (sparc_no_align_cons
5002 || /* PR 20803 - relocs in the .eh_frame section
5003 need to support unaligned access. */
5004 strcmp (now_seg->name, ".eh_frame") == 0)
5005 {
5006 switch (nbytes)
5007 {
5008 case 2: r = BFD_RELOC_SPARC_UA16; break;
5009 case 4: r = BFD_RELOC_SPARC_UA32; break;
5010 #ifdef TE_SOLARIS
5011 /* The Solaris linker does not allow R_SPARC_UA64
5012 relocations for 32-bit executables. */
5013 case 8: r = sparc_arch_size == 64 ?
5014 BFD_RELOC_SPARC_UA64 : BFD_RELOC_SPARC_UA32; break;
5015 #else
5016 case 8: r = BFD_RELOC_SPARC_UA64; break;
5017 #endif
5018 default: abort ();
5019 }
5020 }
5021
5022 fix_new_exp (frag, where, (int) nbytes, exp, 0, r);
5023 }
5024
5025 void
5026 sparc_cfi_frame_initial_instructions (void)
5027 {
5028 cfi_add_CFA_def_cfa (14, sparc_arch_size == 64 ? 0x7ff : 0);
5029 }
5030
5031 int
5032 sparc_regname_to_dw2regnum (char *regname)
5033 {
5034 char *q;
5035 int i;
5036
5037 if (!regname[0])
5038 return -1;
5039
5040 switch (regname[0])
5041 {
5042 case 'g': i = 0; break;
5043 case 'o': i = 1; break;
5044 case 'l': i = 2; break;
5045 case 'i': i = 3; break;
5046 default: i = -1; break;
5047 }
5048 if (i != -1)
5049 {
5050 if (regname[1] < '0' || regname[1] > '8' || regname[2])
5051 return -1;
5052 return i * 8 + regname[1] - '0';
5053 }
5054 if (regname[0] == 's' && regname[1] == 'p' && !regname[2])
5055 return 14;
5056 if (regname[0] == 'f' && regname[1] == 'p' && !regname[2])
5057 return 30;
5058 if (regname[0] == 'f' || regname[0] == 'r')
5059 {
5060 unsigned int regnum;
5061
5062 regnum = strtoul (regname + 1, &q, 10);
5063 if (q == NULL || *q)
5064 return -1;
5065 if (regnum >= ((regname[0] == 'f'
5066 && SPARC_OPCODE_ARCH_V9_P (max_architecture))
5067 ? 64 : 32))
5068 return -1;
5069 if (regname[0] == 'f')
5070 {
5071 regnum += 32;
5072 if (regnum >= 64 && (regnum & 1))
5073 return -1;
5074 }
5075 return regnum;
5076 }
5077 return -1;
5078 }
5079
5080 void
5081 sparc_cfi_emit_pcrel_expr (expressionS *exp, unsigned int nbytes)
5082 {
5083 sparc_no_align_cons = 1;
5084 emit_expr_with_reloc (exp, nbytes, "disp");
5085 sparc_no_align_cons = 0;
5086 }