ecd92167b9a9e59cbcac64fcd2b319ea0d6b552d
[binutils-gdb.git] / gas / config / tc-vax.c
1 /* tc-vax.c - vax-specific -
2 Copyright (C) 1987, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "as.h"
21
22 #include "vax-inst.h"
23 #include "obstack.h" /* For FRAG_APPEND_1_CHAR macro in "frags.h" */
24
25 /* These chars start a comment anywhere in a source file (except inside
26 another comment */
27 const char comment_chars[] = "#";
28
29 /* These chars only start a comment at the beginning of a line. */
30 /* Note that for the VAX the are the same as comment_chars above. */
31 const char line_comment_chars[] = "#";
32
33 const char line_separator_chars[] = "";
34
35 /* Chars that can be used to separate mant from exp in floating point nums */
36 const char EXP_CHARS[] = "eE";
37
38 /* Chars that mean this number is a floating point constant */
39 /* as in 0f123.456 */
40 /* or 0H1.234E-12 (see exp chars above) */
41 const char FLT_CHARS[] = "dDfFgGhH";
42
43 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
44 changed in read.c . Ideally it shouldn't have to know about it at all,
45 but nothing is ideal around here. */
46
47 /* Hold details of an operand expression */
48 static expressionS exp_of_operand[VIT_MAX_OPERANDS];
49 static segT seg_of_operand[VIT_MAX_OPERANDS];
50
51 /* A vax instruction after decoding. */
52 static struct vit v;
53
54 /* Hold details of big operands. */
55 LITTLENUM_TYPE big_operand_bits[VIT_MAX_OPERANDS][SIZE_OF_LARGE_NUMBER];
56 FLONUM_TYPE float_operand[VIT_MAX_OPERANDS];
57 /* Above is made to point into big_operand_bits by md_begin(). */
58 \f
59 /*
60 * For VAX, relative addresses of "just the right length" are easy.
61 * The branch displacement is always the last operand, even in
62 * synthetic instructions.
63 * For VAX, we encode the relax_substateTs (in e.g. fr_substate) as:
64 *
65 * 4 3 2 1 0 bit number
66 * ---/ /--+-------+-------+-------+-------+-------+
67 * | what state ? | how long ? |
68 * ---/ /--+-------+-------+-------+-------+-------+
69 *
70 * The "how long" bits are 00=byte, 01=word, 10=long.
71 * This is a Un*x convention.
72 * Not all lengths are legit for a given value of (what state).
73 * The "how long" refers merely to the displacement length.
74 * The address usually has some constant bytes in it as well.
75 *
76
77 groups for VAX address relaxing.
78
79 1. "foo" pc-relative.
80 length of byte, word, long
81
82 2a. J<cond> where <cond> is a simple flag test.
83 length of byte, word, long.
84 VAX opcodes are: (Hex)
85 bneq/bnequ 12
86 beql/beqlu 13
87 bgtr 14
88 bleq 15
89 bgeq 18
90 blss 19
91 bgtru 1a
92 blequ 1b
93 bvc 1c
94 bvs 1d
95 bgequ/bcc 1e
96 blssu/bcs 1f
97 Always, you complement 0th bit to reverse condition.
98 Always, 1-byte opcode, then 1-byte displacement.
99
100 2b. J<cond> where cond tests a memory bit.
101 length of byte, word, long.
102 Vax opcodes are: (Hex)
103 bbs e0
104 bbc e1
105 bbss e2
106 bbcs e3
107 bbsc e4
108 bbcc e5
109 bbssi e6
110 bbcci e7
111 Always, you complement 0th bit to reverse condition.
112 Always, 1-byte opcde, longword-address, byte-address, 1-byte-displacement
113
114 2c. J<cond> where cond tests low-order memory bit
115 length of byte,word,long.
116 Vax opcodes are: (Hex)
117 blbs e8
118 blbc e9
119 Always, you complement 0th bit to reverse condition.
120 Always, 1-byte opcode, longword-address, 1-byte displacement.
121
122 3. Jbs/Jbr.
123 length of byte,word,long.
124 Vax opcodes are: (Hex)
125 bsbb 10
126 brb 11
127 These are like (2) but there is no condition to reverse.
128 Always, 1 byte opcode, then displacement/absolute.
129
130 4a. JacbX
131 length of word, long.
132 Vax opcodes are: (Hex)
133 acbw 3d
134 acbf 4f
135 acbd 6f
136 abcb 9d
137 acbl f1
138 acbg 4ffd
139 acbh 6ffd
140 Always, we cannot reverse the sense of the branch; we have a word
141 displacement.
142 The double-byte op-codes don't hurt: we never want to modify the
143 opcode, so we don't care how many bytes are between the opcode and
144 the operand.
145
146 4b. JXobXXX
147 length of long, long, byte.
148 Vax opcodes are: (Hex)
149 aoblss f2
150 aobleq f3
151 sobgeq f4
152 sobgtr f5
153 Always, we cannot reverse the sense of the branch; we have a byte
154 displacement.
155
156 The only time we need to modify the opcode is for class 2 instructions.
157 After relax() we may complement the lowest order bit of such instruction
158 to reverse sense of branch.
159
160 For class 2 instructions, we store context of "where is the opcode literal".
161 We can change an opcode's lowest order bit without breaking anything else.
162
163 We sometimes store context in the operand literal. This way we can figure out
164 after relax() what the original addressing mode was.
165 */
166 \f
167 /* These displacements are relative to the start address of the
168 displacement. The first letter is Byte, Word. 2nd letter is
169 Forward, Backward. */
170 #define BF (1+ 127)
171 #define BB (1+-128)
172 #define WF (2+ 32767)
173 #define WB (2+-32768)
174 /* Dont need LF, LB because they always reach. [They are coded as 0.] */
175
176
177 #define C(a,b) ENCODE_RELAX(a,b)
178 /* This macro has no side-effects. */
179 #define ENCODE_RELAX(what,length) (((what) << 2) + (length))
180
181 const relax_typeS
182 md_relax_table[] =
183 {
184 {1, 1, 0, 0}, /* error sentinel 0,0 */
185 {1, 1, 0, 0}, /* unused 0,1 */
186 {1, 1, 0, 0}, /* unused 0,2 */
187 {1, 1, 0, 0}, /* unused 0,3 */
188 {BF + 1, BB + 1, 2, C (1, 1)},/* B^"foo" 1,0 */
189 {WF + 1, WB + 1, 3, C (1, 2)},/* W^"foo" 1,1 */
190 {0, 0, 5, 0}, /* L^"foo" 1,2 */
191 {1, 1, 0, 0}, /* unused 1,3 */
192 {BF, BB, 1, C (2, 1)}, /* b<cond> B^"foo" 2,0 */
193 {WF + 2, WB + 2, 4, C (2, 2)},/* br.+? brw X 2,1 */
194 {0, 0, 7, 0}, /* br.+? jmp X 2,2 */
195 {1, 1, 0, 0}, /* unused 2,3 */
196 {BF, BB, 1, C (3, 1)}, /* brb B^foo 3,0 */
197 {WF, WB, 2, C (3, 2)}, /* brw W^foo 3,1 */
198 {0, 0, 5, 0}, /* Jmp L^foo 3,2 */
199 {1, 1, 0, 0}, /* unused 3,3 */
200 {1, 1, 0, 0}, /* unused 4,0 */
201 {WF, WB, 2, C (4, 2)}, /* acb_ ^Wfoo 4,1 */
202 {0, 0, 10, 0}, /* acb_,br,jmp L^foo4,2 */
203 {1, 1, 0, 0}, /* unused 4,3 */
204 {BF, BB, 1, C (5, 1)}, /* Xob___,,foo 5,0 */
205 {WF + 4, WB + 4, 6, C (5, 2)},/* Xob.+2,brb.+3,brw5,1 */
206 {0, 0, 9, 0}, /* Xob.+2,brb.+6,jmp5,2 */
207 };
208
209 #undef C
210 #undef BF
211 #undef BB
212 #undef WF
213 #undef WB
214
215 void float_cons ();
216
217 const pseudo_typeS md_pseudo_table[] =
218 {
219 {"dfloat", float_cons, 'd'},
220 {"ffloat", float_cons, 'f'},
221 {"gfloat", float_cons, 'g'},
222 {"hfloat", float_cons, 'h'},
223 {0},
224 };
225
226 #define STATE_PC_RELATIVE (1)
227 #define STATE_CONDITIONAL_BRANCH (2)
228 #define STATE_ALWAYS_BRANCH (3) /* includes BSB... */
229 #define STATE_COMPLEX_BRANCH (4)
230 #define STATE_COMPLEX_HOP (5)
231
232 #define STATE_BYTE (0)
233 #define STATE_WORD (1)
234 #define STATE_LONG (2)
235 #define STATE_UNDF (3) /* Symbol undefined in pass1 */
236
237
238 #define min(a, b) ((a) < (b) ? (a) : (b))
239
240 int flonum_gen2vax PARAMS ((char format_letter, FLONUM_TYPE * f,
241 LITTLENUM_TYPE * words));
242 static const char *vip_begin PARAMS ((int, char *, char *, char *));
243 static void vip_op_defaults PARAMS ((char *immediate, char *indirect,
244 char *displen));
245 static void vip_op PARAMS ((char *, struct vop *));
246 static void vip PARAMS ((struct vit *, char *));
247
248 void
249 md_begin ()
250 {
251 const char *errtxt;
252 FLONUM_TYPE *fP;
253 int i;
254
255 if (errtxt = vip_begin (1, "$", "*", "`"))
256 {
257 as_fatal ("VIP_BEGIN error:%s", errtxt);
258 }
259
260 for (i = 0, fP = float_operand;
261 fP < float_operand + VIT_MAX_OPERANDS;
262 i++, fP++)
263 {
264 fP->low = &big_operand_bits[i][0];
265 fP->high = &big_operand_bits[i][SIZE_OF_LARGE_NUMBER - 1];
266 }
267 }
268 \f
269 void
270 md_number_to_chars (con, value, nbytes)
271 char con[];
272 valueT value;
273 int nbytes;
274 {
275 number_to_chars_littleendian (con, value, nbytes);
276 }
277
278 /* Fix up some data or instructions after we find out the value of a symbol
279 that they reference. */
280
281 void /* Knows about order of bytes in address. */
282 md_apply_fix (fixP, value)
283 fixS *fixP;
284 long value;
285 {
286 number_to_chars_littleendian (fixP->fx_where + fixP->fx_frag->fr_literal,
287 (valueT) value, fixP->fx_size);
288 }
289
290 long
291 md_chars_to_number (con, nbytes)
292 unsigned char con[]; /* Low order byte 1st. */
293 int nbytes; /* Number of bytes in the input. */
294 {
295 long retval;
296 for (retval = 0, con += nbytes - 1; nbytes--; con--)
297 {
298 retval <<= BITS_PER_CHAR;
299 retval |= *con;
300 }
301 return retval;
302 }
303 \f
304 /* vax:md_assemble() emit frags for 1 instruction */
305
306 void
307 md_assemble (instruction_string)
308 char *instruction_string; /* A string: assemble 1 instruction. */
309 {
310 /* Non-zero if operand expression's segment is not known yet. */
311 int is_undefined;
312
313 int length_code;
314 char *p;
315 /* An operand. Scans all operands. */
316 struct vop *operandP;
317 char *save_input_line_pointer;
318 /* What used to live after an expression. */
319 char c_save;
320 /* 1: instruction_string bad for all passes. */
321 int goofed;
322 /* Points to slot just after last operand. */
323 struct vop *end_operandP;
324 /* Points to expression values for this operand. */
325 expressionS *expP;
326 segT *segP;
327
328 /* These refer to an instruction operand expression. */
329 /* Target segment of the address. */
330 segT to_seg;
331 valueT this_add_number;
332 /* Positive (minuend) symbol. */
333 struct symbol *this_add_symbol;
334 /* As a number. */
335 long opcode_as_number;
336 /* Least significant byte 1st. */
337 char *opcode_as_chars;
338 /* As an array of characters. */
339 /* Least significant byte 1st */
340 char *opcode_low_byteP;
341 /* length (bytes) meant by vop_short. */
342 int length;
343 /* 0, or 1 if '@' is in addressing mode. */
344 int at;
345 /* From vop_nbytes: vax_operand_width (in bytes) */
346 int nbytes;
347 FLONUM_TYPE *floatP;
348 LITTLENUM_TYPE literal_float[8];
349 /* Big enough for any floating point literal. */
350
351 vip (&v, instruction_string);
352
353 /*
354 * Now we try to find as many as_warn()s as we can. If we do any as_warn()s
355 * then goofed=1. Notice that we don't make any frags yet.
356 * Should goofed be 1, then this instruction will wedge in any pass,
357 * and we can safely flush it, without causing interpass symbol phase
358 * errors. That is, without changing label values in different passes.
359 */
360 if (goofed = (*v.vit_error))
361 {
362 as_warn ("Ignoring statement due to \"%s\"", v.vit_error);
363 }
364 /*
365 * We need to use expression() and friends, which require us to diddle
366 * input_line_pointer. So we save it and restore it later.
367 */
368 save_input_line_pointer = input_line_pointer;
369 for (operandP = v.vit_operand,
370 expP = exp_of_operand,
371 segP = seg_of_operand,
372 floatP = float_operand,
373 end_operandP = v.vit_operand + v.vit_operands;
374
375 operandP < end_operandP;
376
377 operandP++, expP++, segP++, floatP++)
378 { /* for each operand */
379 if (operandP->vop_error)
380 {
381 as_warn ("Ignoring statement because \"%s\"", operandP->vop_error);
382 goofed = 1;
383 }
384 else
385 {
386 /* statement has no syntax goofs: lets sniff the expression */
387 int can_be_short = 0; /* 1 if a bignum can be reduced to a short literal. */
388
389 input_line_pointer = operandP->vop_expr_begin;
390 c_save = operandP->vop_expr_end[1];
391 operandP->vop_expr_end[1] = '\0';
392 /* If to_seg == SEG_PASS1, expression() will have set need_pass_2 = 1. */
393 *segP = expression (expP);
394 switch (expP->X_op)
395 {
396 case O_absent:
397 /* for BSD4.2 compatibility, missing expression is absolute 0 */
398 expP->X_op = O_constant;
399 expP->X_add_number = 0;
400 /* For SEG_ABSOLUTE, we shouldn't need to set X_op_symbol,
401 X_add_symbol to any particular value. But, we will program
402 defensively. Since this situation occurs rarely so it costs
403 us little to do, and stops Dean worrying about the origin of
404 random bits in expressionS's. */
405 expP->X_add_symbol = NULL;
406 expP->X_op_symbol = NULL;
407 break;
408
409 case O_symbol:
410 case O_constant:
411 break;
412
413 default:
414 /*
415 * Major bug. We can't handle the case of a
416 * SEG_OP expression in a VIT_OPCODE_SYNTHETIC
417 * variable-length instruction.
418 * We don't have a frag type that is smart enough to
419 * relax a SEG_OP, and so we just force all
420 * SEG_OPs to behave like SEG_PASS1s.
421 * Clearly, if there is a demand we can invent a new or
422 * modified frag type and then coding up a frag for this
423 * case will be easy. SEG_OP was invented for the
424 * .words after a CASE opcode, and was never intended for
425 * instruction operands.
426 */
427 need_pass_2 = 1;
428 as_warn ("Can't relocate expression");
429 break;
430
431 case O_big:
432 /* Preserve the bits. */
433 if (expP->X_add_number > 0)
434 {
435 bignum_copy (generic_bignum, expP->X_add_number,
436 floatP->low, SIZE_OF_LARGE_NUMBER);
437 }
438 else
439 {
440 know (expP->X_add_number < 0);
441 flonum_copy (&generic_floating_point_number,
442 floatP);
443 if (strchr ("s i", operandP->vop_short))
444 {
445 /* Could possibly become S^# */
446 flonum_gen2vax (-expP->X_add_number, floatP, literal_float);
447 switch (-expP->X_add_number)
448 {
449 case 'f':
450 can_be_short =
451 (literal_float[0] & 0xFC0F) == 0x4000
452 && literal_float[1] == 0;
453 break;
454
455 case 'd':
456 can_be_short =
457 (literal_float[0] & 0xFC0F) == 0x4000
458 && literal_float[1] == 0
459 && literal_float[2] == 0
460 && literal_float[3] == 0;
461 break;
462
463 case 'g':
464 can_be_short =
465 (literal_float[0] & 0xFF81) == 0x4000
466 && literal_float[1] == 0
467 && literal_float[2] == 0
468 && literal_float[3] == 0;
469 break;
470
471 case 'h':
472 can_be_short = ((literal_float[0] & 0xFFF8) == 0x4000
473 && (literal_float[1] & 0xE000) == 0
474 && literal_float[2] == 0
475 && literal_float[3] == 0
476 && literal_float[4] == 0
477 && literal_float[5] == 0
478 && literal_float[6] == 0
479 && literal_float[7] == 0);
480 break;
481
482 default:
483 BAD_CASE (-expP->X_add_number);
484 break;
485 } /* switch (float type) */
486 } /* if (could want to become S^#...) */
487 } /* bignum or flonum ? */
488
489 if (operandP->vop_short == 's'
490 || operandP->vop_short == 'i'
491 || (operandP->vop_short == ' '
492 && operandP->vop_reg == 0xF
493 && (operandP->vop_mode & 0xE) == 0x8))
494 {
495 /* Saw a '#'. */
496 if (operandP->vop_short == ' ')
497 {
498 /* We must chose S^ or I^. */
499 if (expP->X_add_number > 0)
500 {
501 /* Bignum: Short literal impossible. */
502 operandP->vop_short = 'i';
503 operandP->vop_mode = 8;
504 operandP->vop_reg = 0xF; /* VAX PC. */
505 }
506 else
507 {
508 /* Flonum: Try to do it. */
509 if (can_be_short)
510 {
511 operandP->vop_short = 's';
512 operandP->vop_mode = 0;
513 operandP->vop_ndx = -1;
514 operandP->vop_reg = -1;
515 expP->X_op = O_constant;
516 }
517 else
518 {
519 operandP->vop_short = 'i';
520 operandP->vop_mode = 8;
521 operandP->vop_reg = 0xF; /* VAX PC */
522 }
523 } /* bignum or flonum ? */
524 } /* if #, but no S^ or I^ seen. */
525 /* No more ' ' case: either 's' or 'i'. */
526 if (operandP->vop_short == 's')
527 {
528 /* Wants to be a short literal. */
529 if (expP->X_add_number > 0)
530 {
531 as_warn ("Bignum not permitted in short literal. Immediate mode assumed.");
532 operandP->vop_short = 'i';
533 operandP->vop_mode = 8;
534 operandP->vop_reg = 0xF; /* VAX PC. */
535 }
536 else
537 {
538 if (!can_be_short)
539 {
540 as_warn ("Can't do flonum short literal: immediate mode used.");
541 operandP->vop_short = 'i';
542 operandP->vop_mode = 8;
543 operandP->vop_reg = 0xF; /* VAX PC. */
544 }
545 else
546 { /* Encode short literal now. */
547 int temp = 0;
548
549 switch (-expP->X_add_number)
550 {
551 case 'f':
552 case 'd':
553 temp = literal_float[0] >> 4;
554 break;
555
556 case 'g':
557 temp = literal_float[0] >> 1;
558 break;
559
560 case 'h':
561 temp = ((literal_float[0] << 3) & 070)
562 | ((literal_float[1] >> 13) & 07);
563 break;
564
565 default:
566 BAD_CASE (-expP->X_add_number);
567 break;
568 }
569
570 floatP->low[0] = temp & 077;
571 floatP->low[1] = 0;
572 } /* if can be short literal float */
573 } /* flonum or bignum ? */
574 }
575 else
576 { /* I^# seen: set it up if float. */
577 if (expP->X_add_number < 0)
578 {
579 memcpy (floatP->low, literal_float, sizeof (literal_float));
580 }
581 } /* if S^# seen. */
582 }
583 else
584 {
585 as_warn ("A bignum/flonum may not be a displacement: 0x%x used",
586 expP->X_add_number = 0x80000000);
587 /* Chosen so luser gets the most offset bits to patch later. */
588 }
589 expP->X_add_number = floatP->low[0]
590 | ((LITTLENUM_MASK & (floatP->low[1])) << LITTLENUM_NUMBER_OF_BITS);
591 /*
592 * For the SEG_BIG case we have:
593 * If vop_short == 's' then a short floating literal is in the
594 * lowest 6 bits of floatP -> low [0], which is
595 * big_operand_bits [---] [0].
596 * If vop_short == 'i' then the appropriate number of elements
597 * of big_operand_bits [---] [...] are set up with the correct
598 * bits.
599 * Also, just in case width is byte word or long, we copy the lowest
600 * 32 bits of the number to X_add_number.
601 */
602 break;
603 }
604 if (input_line_pointer != operandP->vop_expr_end + 1)
605 {
606 as_warn ("Junk at end of expression \"%s\"", input_line_pointer);
607 goofed = 1;
608 }
609 operandP->vop_expr_end[1] = c_save;
610 }
611 } /* for(each operand) */
612
613 input_line_pointer = save_input_line_pointer;
614
615 if (need_pass_2 || goofed)
616 {
617 return;
618 }
619
620
621 /* Emit op-code. */
622 /* Remember where it is, in case we want to modify the op-code later. */
623 opcode_low_byteP = frag_more (v.vit_opcode_nbytes);
624 memcpy (opcode_low_byteP, v.vit_opcode, v.vit_opcode_nbytes);
625 opcode_as_number = md_chars_to_number (opcode_as_chars = v.vit_opcode, 4);
626 for (operandP = v.vit_operand,
627 expP = exp_of_operand,
628 segP = seg_of_operand,
629 floatP = float_operand,
630 end_operandP = v.vit_operand + v.vit_operands;
631
632 operandP < end_operandP;
633
634 operandP++,
635 floatP++,
636 segP++,
637 expP++)
638 {
639 if (operandP->vop_ndx >= 0)
640 {
641 /* indexed addressing byte */
642 /* Legality of indexed mode already checked: it is OK */
643 FRAG_APPEND_1_CHAR (0x40 + operandP->vop_ndx);
644 } /* if(vop_ndx>=0) */
645
646 /* Here to make main operand frag(s). */
647 this_add_number = expP->X_add_number;
648 this_add_symbol = expP->X_add_symbol;
649 to_seg = *segP;
650 is_undefined = (to_seg == SEG_UNKNOWN);
651 know (to_seg == SEG_UNKNOWN
652 || to_seg == SEG_ABSOLUTE
653 || to_seg == SEG_DATA
654 || to_seg == SEG_TEXT
655 || to_seg == SEG_BSS
656 || to_seg == SEG_BIG);
657 at = operandP->vop_mode & 1;
658 length = (operandP->vop_short == 'b'
659 ? 1 : (operandP->vop_short == 'w'
660 ? 2 : (operandP->vop_short == 'l'
661 ? 4 : 0)));
662 nbytes = operandP->vop_nbytes;
663 if (operandP->vop_access == 'b')
664 {
665 if (to_seg == now_seg || is_undefined)
666 {
667 /* If is_undefined, then it might BECOME now_seg. */
668 if (nbytes)
669 {
670 p = frag_more (nbytes);
671 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
672 this_add_symbol, this_add_number, 1, NO_RELOC);
673 }
674 else
675 { /* to_seg==now_seg || to_seg == SEG_UNKNOWN */
676 /* nbytes==0 */
677 length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
678 if (opcode_as_number & VIT_OPCODE_SPECIAL)
679 {
680 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
681 {
682 /* br or jsb */
683 frag_var (rs_machine_dependent, 5, 1,
684 ENCODE_RELAX (STATE_ALWAYS_BRANCH, length_code),
685 this_add_symbol, this_add_number,
686 opcode_low_byteP);
687 }
688 else
689 {
690 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
691 {
692 length_code = STATE_WORD;
693 /* JF: There is no state_byte for this one! */
694 frag_var (rs_machine_dependent, 10, 2,
695 ENCODE_RELAX (STATE_COMPLEX_BRANCH, length_code),
696 this_add_symbol, this_add_number,
697 opcode_low_byteP);
698 }
699 else
700 {
701 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
702 frag_var (rs_machine_dependent, 9, 1,
703 ENCODE_RELAX (STATE_COMPLEX_HOP, length_code),
704 this_add_symbol, this_add_number,
705 opcode_low_byteP);
706 }
707 }
708 }
709 else
710 {
711 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
712 frag_var (rs_machine_dependent, 7, 1,
713 ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
714 this_add_symbol, this_add_number,
715 opcode_low_byteP);
716 }
717 }
718 }
719 else
720 {
721 /* to_seg != now_seg && to_seg != SEG_UNKNOWN */
722 /*
723 * --- SEG FLOAT MAY APPEAR HERE ----
724 */
725 if (to_seg == SEG_ABSOLUTE)
726 {
727 if (nbytes)
728 {
729 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
730 p = frag_more (nbytes);
731 /* Conventional relocation. */
732 fix_new (frag_now, p - frag_now->fr_literal,
733 nbytes, &abs_symbol, this_add_number,
734 1, NO_RELOC);
735 }
736 else
737 {
738 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
739 if (opcode_as_number & VIT_OPCODE_SPECIAL)
740 {
741 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
742 {
743 /* br or jsb */
744 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
745 know (opcode_as_chars[1] == 0);
746 p = frag_more (5);
747 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
748 md_number_to_chars (p + 1, this_add_number, 4);
749 /* Now (eg) JMP @#foo or JSB @#foo. */
750 }
751 else
752 {
753 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
754 {
755 p = frag_more (10);
756 p[0] = 2;
757 p[1] = 0;
758 p[2] = VAX_BRB;
759 p[3] = 6;
760 p[4] = VAX_JMP;
761 p[5] = VAX_ABSOLUTE_MODE; /* @#... */
762 md_number_to_chars (p + 6, this_add_number, 4);
763 /*
764 * Now (eg) ACBx 1f
765 * BRB 2f
766 * 1: JMP @#foo
767 * 2:
768 */
769 }
770 else
771 {
772 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
773 p = frag_more (9);
774 p[0] = 2;
775 p[1] = VAX_BRB;
776 p[2] = 6;
777 p[3] = VAX_JMP;
778 p[4] = VAX_PC_RELATIVE_MODE + 1; /* @#... */
779 md_number_to_chars (p + 5, this_add_number, 4);
780 /*
781 * Now (eg) xOBxxx 1f
782 * BRB 2f
783 * 1: JMP @#foo
784 * 2:
785 */
786 }
787 }
788 }
789 else
790 {
791 /* b<cond> */
792 *opcode_low_byteP ^= 1;
793 /* To reverse the condition in a VAX branch,
794 complement the lowest order bit. */
795 p = frag_more (7);
796 p[0] = 6;
797 p[1] = VAX_JMP;
798 p[2] = VAX_ABSOLUTE_MODE; /* @#... */
799 md_number_to_chars (p + 3, this_add_number, 4);
800 /*
801 * Now (eg) BLEQ 1f
802 * JMP @#foo
803 * 1:
804 */
805 }
806 }
807 }
808 else
809 {
810 /* to_seg != now_seg && to_seg != SEG_UNKNOWN && to_Seg != SEG_ABSOLUTE */
811 if (nbytes > 0)
812 {
813 /* Pc-relative. Conventional relocation. */
814 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
815 p = frag_more (nbytes);
816 fix_new (frag_now, p - frag_now->fr_literal,
817 nbytes, &abs_symbol, this_add_number,
818 1, NO_RELOC);
819 }
820 else
821 {
822 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
823 if (opcode_as_number & VIT_OPCODE_SPECIAL)
824 {
825 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
826 {
827 /* br or jsb */
828 know (opcode_as_chars[1] == 0);
829 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
830 p = frag_more (5);
831 p[0] = VAX_PC_RELATIVE_MODE;
832 fix_new (frag_now,
833 p + 1 - frag_now->fr_literal, 4,
834 this_add_symbol,
835 this_add_number, 1, NO_RELOC);
836 /* Now eg JMP foo or JSB foo. */
837 }
838 else
839 {
840 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
841 {
842 p = frag_more (10);
843 p[0] = 0;
844 p[1] = 2;
845 p[2] = VAX_BRB;
846 p[3] = 6;
847 p[4] = VAX_JMP;
848 p[5] = VAX_PC_RELATIVE_MODE;
849 fix_new (frag_now,
850 p + 6 - frag_now->fr_literal, 4,
851 this_add_symbol,
852 this_add_number, 1, NO_RELOC);
853 /*
854 * Now (eg) ACBx 1f
855 * BRB 2f
856 * 1: JMP foo
857 * 2:
858 */
859 }
860 else
861 {
862 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
863 p = frag_more (10);
864 p[0] = 2;
865 p[1] = VAX_BRB;
866 p[2] = 6;
867 p[3] = VAX_JMP;
868 p[4] = VAX_PC_RELATIVE_MODE;
869 fix_new (frag_now,
870 p + 5 - frag_now->fr_literal,
871 4, this_add_symbol,
872 this_add_number, 1, NO_RELOC);
873 /*
874 * Now (eg) xOBxxx 1f
875 * BRB 2f
876 * 1: JMP foo
877 * 2:
878 */
879 }
880 }
881 }
882 else
883 {
884 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
885 *opcode_low_byteP ^= 1; /* Reverse branch condition. */
886 p = frag_more (7);
887 p[0] = 6;
888 p[1] = VAX_JMP;
889 p[2] = VAX_PC_RELATIVE_MODE;
890 fix_new (frag_now, p + 3 - frag_now->fr_literal,
891 4, this_add_symbol,
892 this_add_number, 1, NO_RELOC);
893 }
894 }
895 }
896 }
897 }
898 else
899 {
900 know (operandP->vop_access != 'b'); /* So it is ordinary operand. */
901 know (operandP->vop_access != ' '); /* ' ' target-independent: elsewhere. */
902 know (operandP->vop_access == 'a'
903 || operandP->vop_access == 'm'
904 || operandP->vop_access == 'r'
905 || operandP->vop_access == 'v'
906 || operandP->vop_access == 'w');
907 if (operandP->vop_short == 's')
908 {
909 if (to_seg == SEG_ABSOLUTE)
910 {
911 if (this_add_number < 0 || this_add_number >= 64)
912 {
913 as_warn ("Short literal overflow(%d.), immediate mode assumed.", this_add_number);
914 operandP->vop_short = 'i';
915 operandP->vop_mode = 8;
916 operandP->vop_reg = 0xF;
917 }
918 }
919 else
920 {
921 as_warn ("Forced short literal to immediate mode. now_seg=%s to_seg=%s",
922 segment_name (now_seg), segment_name (to_seg));
923 operandP->vop_short = 'i';
924 operandP->vop_mode = 8;
925 operandP->vop_reg = 0xF;
926 }
927 }
928 if (operandP->vop_reg >= 0 && (operandP->vop_mode < 8
929 || (operandP->vop_reg != 0xF && operandP->vop_mode < 10)))
930 {
931 /* One byte operand. */
932 know (operandP->vop_mode > 3);
933 FRAG_APPEND_1_CHAR (operandP->vop_mode << 4 | operandP->vop_reg);
934 /* All 1-bytes except S^# happen here. */
935 }
936 else
937 {
938 /* {@}{q^}foo{(Rn)} or S^#foo */
939 if (operandP->vop_reg == -1 && operandP->vop_short != 's')
940 {
941 /* "{@}{q^}foo" */
942 if (to_seg == now_seg)
943 {
944 if (length == 0)
945 {
946 know (operandP->vop_short == ' ');
947 p = frag_var (rs_machine_dependent, 10, 2,
948 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE),
949 this_add_symbol, this_add_number,
950 opcode_low_byteP);
951 know (operandP->vop_mode == 10 + at);
952 *p = at << 4;
953 /* At is the only context we need to carry
954 to other side of relax() process. Must
955 be in the correct bit position of VAX
956 operand spec. byte. */
957 }
958 else
959 {
960 know (length);
961 know (operandP->vop_short != ' ');
962 p = frag_more (length + 1);
963 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
964 fix_new (frag_now, p + 1 - frag_now->fr_literal,
965 length, this_add_symbol,
966 this_add_number, 1, NO_RELOC);
967 }
968 }
969 else
970 { /* to_seg != now_seg */
971 if (this_add_symbol == NULL)
972 {
973 know (to_seg == SEG_ABSOLUTE);
974 /* Do @#foo: simpler relocation than foo-.(pc) anyway. */
975 p = frag_more (5);
976 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
977 md_number_to_chars (p + 1, this_add_number, 4);
978 if (length && length != 4)
979 {
980 as_warn ("Length specification ignored. Address mode 9F used");
981 }
982 }
983 else
984 {
985 /* {@}{q^}other_seg */
986 know ((length == 0 && operandP->vop_short == ' ')
987 || (length > 0 && operandP->vop_short != ' '));
988 if (is_undefined)
989 {
990 /*
991 * We have a SEG_UNKNOWN symbol. It might
992 * turn out to be in the same segment as
993 * the instruction, permitting relaxation.
994 */
995 p = frag_var (rs_machine_dependent, 5, 2,
996 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF),
997 this_add_symbol, this_add_number,
998 0);
999 p[0] = at << 4;
1000 }
1001 else
1002 {
1003 if (length == 0)
1004 {
1005 know (operandP->vop_short == ' ');
1006 length = 4; /* Longest possible. */
1007 }
1008 p = frag_more (length + 1);
1009 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
1010 md_number_to_chars (p + 1, this_add_number, length);
1011 fix_new (frag_now,
1012 p + 1 - frag_now->fr_literal,
1013 length, this_add_symbol,
1014 this_add_number, 1, NO_RELOC);
1015 }
1016 }
1017 }
1018 }
1019 else
1020 {
1021 /* {@}{q^}foo(Rn) or S^# or I^# or # */
1022 if (operandP->vop_mode < 0xA)
1023 {
1024 /* # or S^# or I^# */
1025 if (length == 0
1026 && to_seg == SEG_ABSOLUTE
1027 && operandP->vop_mode == 8 /* No '@'. */
1028 && this_add_number < 64
1029 && this_add_number >= 0)
1030 {
1031 operandP->vop_short = 's';
1032 }
1033 if (operandP->vop_short == 's')
1034 {
1035 FRAG_APPEND_1_CHAR (this_add_number);
1036 }
1037 else
1038 {
1039 /* I^#... */
1040 know (nbytes);
1041 p = frag_more (nbytes + 1);
1042 know (operandP->vop_reg == 0xF);
1043 p[0] = (operandP->vop_mode << 4) | 0xF;
1044 if (to_seg == SEG_ABSOLUTE)
1045 {
1046 /*
1047 * If nbytes > 4, then we are scrod. We
1048 * don't know if the high order bytes
1049 * are to be 0xFF or 0x00. BSD4.2 & RMS
1050 * say use 0x00. OK --- but this
1051 * assembler needs ANOTHER rewrite to
1052 * cope properly with this bug. */
1053 md_number_to_chars (p + 1, this_add_number, min (4, nbytes));
1054 if (nbytes > 4)
1055 {
1056 memset (p + 5, '\0', nbytes - 4);
1057 }
1058 }
1059 else
1060 {
1061 if (expP->X_op == O_big)
1062 {
1063 /*
1064 * Problem here is to get the bytes
1065 * in the right order. We stored
1066 * our constant as LITTLENUMs, not
1067 * bytes. */
1068 LITTLENUM_TYPE *lP;
1069
1070 lP = floatP->low;
1071 if (nbytes & 1)
1072 {
1073 know (nbytes == 1);
1074 p[1] = *lP;
1075 }
1076 else
1077 {
1078 for (p++; nbytes; nbytes -= 2, p += 2, lP++)
1079 {
1080 md_number_to_chars (p, *lP, 2);
1081 }
1082 }
1083 }
1084 else
1085 {
1086 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1087 nbytes, this_add_symbol,
1088 this_add_number, 0, NO_RELOC);
1089 }
1090 }
1091 }
1092 }
1093 else
1094 { /* {@}{q^}foo(Rn) */
1095 know ((length == 0 && operandP->vop_short == ' ')
1096 || (length > 0 && operandP->vop_short != ' '));
1097 if (length == 0)
1098 {
1099 if (to_seg == SEG_ABSOLUTE)
1100 {
1101 long test;
1102
1103 test = this_add_number;
1104
1105 if (test < 0)
1106 test = ~test;
1107
1108 length = test & 0xffff8000 ? 4
1109 : test & 0xffffff80 ? 2
1110 : 1;
1111 }
1112 else
1113 {
1114 length = 4;
1115 }
1116 }
1117 p = frag_more (1 + length);
1118 know (operandP->vop_reg >= 0);
1119 p[0] = operandP->vop_reg
1120 | ((at | "?\12\14?\16"[length]) << 4);
1121 if (to_seg == SEG_ABSOLUTE)
1122 {
1123 md_number_to_chars (p + 1, this_add_number, length);
1124 }
1125 else
1126 {
1127 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1128 length, this_add_symbol,
1129 this_add_number, 0, NO_RELOC);
1130 }
1131 }
1132 }
1133 } /* if(single-byte-operand) */
1134 }
1135 } /* for(operandP) */
1136 } /* vax_assemble() */
1137 \f
1138 /*
1139 * md_estimate_size_before_relax()
1140 *
1141 * Called just before relax().
1142 * Any symbol that is now undefined will not become defined.
1143 * Return the correct fr_subtype in the frag.
1144 * Return the initial "guess for fr_var" to caller.
1145 * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
1146 * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
1147 * Although it may not be explicit in the frag, pretend fr_var starts with a
1148 * 0 value.
1149 */
1150 int
1151 md_estimate_size_before_relax (fragP, segment)
1152 fragS *fragP;
1153 segT segment;
1154 {
1155 char *p;
1156 int old_fr_fix;
1157
1158 old_fr_fix = fragP->fr_fix;
1159 switch (fragP->fr_subtype)
1160 {
1161 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF):
1162 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1163 { /* A relaxable case. */
1164 fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE);
1165 }
1166 else
1167 {
1168 p = fragP->fr_literal + old_fr_fix;
1169 p[0] |= VAX_PC_RELATIVE_MODE; /* Preserve @ bit. */
1170 fragP->fr_fix += 1 + 4;
1171 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
1172 fragP->fr_offset, 1, NO_RELOC);
1173 frag_wane (fragP);
1174 }
1175 break;
1176
1177 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF):
1178 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1179 {
1180 fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
1181 }
1182 else
1183 {
1184 p = fragP->fr_literal + old_fr_fix;
1185 *fragP->fr_opcode ^= 1; /* Reverse sense of branch. */
1186 p[0] = 6;
1187 p[1] = VAX_JMP;
1188 p[2] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1189 fragP->fr_fix += 1 + 1 + 1 + 4;
1190 fix_new (fragP, old_fr_fix + 3, 4, fragP->fr_symbol,
1191 fragP->fr_offset, 1, NO_RELOC);
1192 frag_wane (fragP);
1193 }
1194 break;
1195
1196 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_UNDF):
1197 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1198 {
1199 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD);
1200 }
1201 else
1202 {
1203 p = fragP->fr_literal + old_fr_fix;
1204 p[0] = 2;
1205 p[1] = 0;
1206 p[2] = VAX_BRB;
1207 p[3] = 6;
1208 p[4] = VAX_JMP;
1209 p[5] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1210 fragP->fr_fix += 2 + 2 + 1 + 1 + 4;
1211 fix_new (fragP, old_fr_fix + 6, 4, fragP->fr_symbol,
1212 fragP->fr_offset, 1, NO_RELOC);
1213 frag_wane (fragP);
1214 }
1215 break;
1216
1217 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_UNDF):
1218 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1219 {
1220 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE);
1221 }
1222 else
1223 {
1224 p = fragP->fr_literal + old_fr_fix;
1225 p[0] = 2;
1226 p[1] = VAX_BRB;
1227 p[2] = 6;
1228 p[3] = VAX_JMP;
1229 p[4] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1230 fragP->fr_fix += 1 + 2 + 1 + 1 + 4;
1231 fix_new (fragP, old_fr_fix + 5, 4, fragP->fr_symbol,
1232 fragP->fr_offset, 1, NO_RELOC);
1233 frag_wane (fragP);
1234 }
1235 break;
1236
1237 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_UNDF):
1238 if (S_GET_SEGMENT (fragP->fr_symbol) == segment)
1239 {
1240 fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE);
1241 }
1242 else
1243 {
1244 p = fragP->fr_literal + old_fr_fix;
1245 *fragP->fr_opcode += VAX_WIDEN_LONG;
1246 p[0] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1247 fragP->fr_fix += 1 + 4;
1248 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
1249 fragP->fr_offset, 1, NO_RELOC);
1250 frag_wane (fragP);
1251 }
1252 break;
1253
1254 default:
1255 break;
1256 }
1257 return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
1258 } /* md_estimate_size_before_relax() */
1259 \f
1260 /*
1261 * md_convert_frag();
1262 *
1263 * Called after relax() is finished.
1264 * In: Address of frag.
1265 * fr_type == rs_machine_dependent.
1266 * fr_subtype is what the address relaxed to.
1267 *
1268 * Out: Any fixSs and constants are set up.
1269 * Caller will turn frag into a ".space 0".
1270 */
1271 void
1272 md_convert_frag (headers, fragP)
1273 object_headers *headers;
1274 fragS *fragP;
1275 {
1276 char *addressP; /* -> _var to change. */
1277 char *opcodeP; /* -> opcode char(s) to change. */
1278 short int length_code; /* 2=long 1=word 0=byte */
1279 short int extension = 0; /* Size of relaxed address. */
1280 /* Added to fr_fix: incl. ALL var chars. */
1281 symbolS *symbolP;
1282 long where;
1283 long address_of_var;
1284 /* Where, in file space, is _var of *fragP? */
1285 long target_address = 0;
1286 /* Where, in file space, does addr point? */
1287
1288 know (fragP->fr_type == rs_machine_dependent);
1289 length_code = fragP->fr_subtype & 3; /* depends on ENCODE_RELAX() */
1290 know (length_code >= 0 && length_code < 3);
1291 where = fragP->fr_fix;
1292 addressP = fragP->fr_literal + where;
1293 opcodeP = fragP->fr_opcode;
1294 symbolP = fragP->fr_symbol;
1295 know (symbolP);
1296 target_address = S_GET_VALUE (symbolP) + fragP->fr_offset;
1297 address_of_var = fragP->fr_address + where;
1298
1299 switch (fragP->fr_subtype)
1300 {
1301
1302 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE):
1303 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1304 addressP[0] |= 0xAF; /* Byte displacement. */
1305 addressP[1] = target_address - (address_of_var + 2);
1306 extension = 2;
1307 break;
1308
1309 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD):
1310 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1311 addressP[0] |= 0xCF; /* Word displacement. */
1312 md_number_to_chars (addressP + 1, target_address - (address_of_var + 3), 2);
1313 extension = 3;
1314 break;
1315
1316 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG):
1317 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1318 addressP[0] |= 0xEF; /* Long word displacement. */
1319 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1320 extension = 5;
1321 break;
1322
1323 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
1324 addressP[0] = target_address - (address_of_var + 1);
1325 extension = 1;
1326 break;
1327
1328 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
1329 opcodeP[0] ^= 1; /* Reverse sense of test. */
1330 addressP[0] = 3;
1331 addressP[1] = VAX_BRB + VAX_WIDEN_WORD;
1332 md_number_to_chars (addressP + 2, target_address - (address_of_var + 4), 2);
1333 extension = 4;
1334 break;
1335
1336 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG):
1337 opcodeP[0] ^= 1; /* Reverse sense of test. */
1338 addressP[0] = 6;
1339 addressP[1] = VAX_JMP;
1340 addressP[2] = VAX_PC_RELATIVE_MODE;
1341 md_number_to_chars (addressP + 3, target_address, 4);
1342 extension = 7;
1343 break;
1344
1345 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE):
1346 addressP[0] = target_address - (address_of_var + 1);
1347 extension = 1;
1348 break;
1349
1350 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD):
1351 opcodeP[0] += VAX_WIDEN_WORD; /* brb -> brw, bsbb -> bsbw */
1352 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1353 extension = 2;
1354 break;
1355
1356 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG):
1357 opcodeP[0] += VAX_WIDEN_LONG; /* brb -> jmp, bsbb -> jsb */
1358 addressP[0] = VAX_PC_RELATIVE_MODE;
1359 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1360 extension = 5;
1361 break;
1362
1363 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD):
1364 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1365 extension = 2;
1366 break;
1367
1368 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_LONG):
1369 addressP[0] = 2;
1370 addressP[1] = 0;
1371 addressP[2] = VAX_BRB;
1372 addressP[3] = 6;
1373 addressP[4] = VAX_JMP;
1374 addressP[5] = VAX_PC_RELATIVE_MODE;
1375 md_number_to_chars (addressP + 6, target_address, 4);
1376 extension = 10;
1377 break;
1378
1379 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE):
1380 addressP[0] = target_address - (address_of_var + 1);
1381 extension = 1;
1382 break;
1383
1384 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_WORD):
1385 addressP[0] = 2;
1386 addressP[1] = VAX_BRB;
1387 addressP[2] = 3;
1388 addressP[3] = VAX_BRW;
1389 md_number_to_chars (addressP + 4, target_address - (address_of_var + 6), 2);
1390 extension = 6;
1391 break;
1392
1393 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_LONG):
1394 addressP[0] = 2;
1395 addressP[1] = VAX_BRB;
1396 addressP[2] = 6;
1397 addressP[3] = VAX_JMP;
1398 addressP[4] = VAX_PC_RELATIVE_MODE;
1399 md_number_to_chars (addressP + 5, target_address, 4);
1400 extension = 9;
1401 break;
1402
1403 default:
1404 BAD_CASE (fragP->fr_subtype);
1405 break;
1406 }
1407 fragP->fr_fix += extension;
1408 } /* md_convert_frag() */
1409
1410 /* Translate internal format of relocation info into target format.
1411
1412 On vax: first 4 bytes are normal unsigned long, next three bytes
1413 are symbolnum, least sig. byte first. Last byte is broken up with
1414 the upper nibble as nuthin, bit 3 as extern, bits 2 & 1 as length, and
1415 bit 0 as pcrel. */
1416 #ifdef comment
1417 void
1418 md_ri_to_chars (the_bytes, ri)
1419 char *the_bytes;
1420 struct reloc_info_generic ri;
1421 {
1422 /* this is easy */
1423 md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
1424 /* now the fun stuff */
1425 the_bytes[6] = (ri.r_symbolnum >> 16) & 0x0ff;
1426 the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff;
1427 the_bytes[4] = ri.r_symbolnum & 0x0ff;
1428 the_bytes[7] = (((ri.r_extern << 3) & 0x08) | ((ri.r_length << 1) & 0x06) |
1429 ((ri.r_pcrel << 0) & 0x01)) & 0x0F;
1430 }
1431
1432 #endif /* comment */
1433
1434 void
1435 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
1436 char *where;
1437 fixS *fixP;
1438 relax_addressT segment_address_in_file;
1439 {
1440 /*
1441 * In: length of relocation (or of address) in chars: 1, 2 or 4.
1442 * Out: GNU LD relocation length code: 0, 1, or 2.
1443 */
1444
1445 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
1446 long r_symbolnum;
1447
1448 know (fixP->fx_addsy != NULL);
1449
1450 md_number_to_chars (where,
1451 fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
1452 4);
1453
1454 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
1455 ? S_GET_TYPE (fixP->fx_addsy)
1456 : fixP->fx_addsy->sy_number);
1457
1458 where[6] = (r_symbolnum >> 16) & 0x0ff;
1459 where[5] = (r_symbolnum >> 8) & 0x0ff;
1460 where[4] = r_symbolnum & 0x0ff;
1461 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
1462 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
1463 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
1464 }
1465
1466 /*
1467 * BUGS, GRIPES, APOLOGIA, etc.
1468 *
1469 * The opcode table 'votstrs' needs to be sorted on opcode frequency.
1470 * That is, AFTER we hash it with hash_...(), we want most-used opcodes
1471 * to come out of the hash table faster.
1472 *
1473 * I am sorry to inflict yet another VAX assembler on the world, but
1474 * RMS says we must do everything from scratch, to prevent pin-heads
1475 * restricting this software.
1476 */
1477
1478 /*
1479 * This is a vaguely modular set of routines in C to parse VAX
1480 * assembly code using DEC mnemonics. It is NOT un*x specific.
1481 *
1482 * The idea here is that the assembler has taken care of all:
1483 * labels
1484 * macros
1485 * listing
1486 * pseudo-ops
1487 * line continuation
1488 * comments
1489 * condensing any whitespace down to exactly one space
1490 * and all we have to do is parse 1 line into a vax instruction
1491 * partially formed. We will accept a line, and deliver:
1492 * an error message (hopefully empty)
1493 * a skeleton VAX instruction (tree structure)
1494 * textual pointers to all the operand expressions
1495 * a warning message that notes a silly operand (hopefully empty)
1496 */
1497 \f
1498 /*
1499 * E D I T H I S T O R Y
1500 *
1501 * 17may86 Dean Elsner. Bug if line ends immediately after opcode.
1502 * 30apr86 Dean Elsner. New vip_op() uses arg block so change call.
1503 * 6jan86 Dean Elsner. Crock vip_begin() to call vip_op_defaults().
1504 * 2jan86 Dean Elsner. Invent synthetic opcodes.
1505 * Widen vax_opcodeT to 32 bits. Use a bit for VIT_OPCODE_SYNTHETIC,
1506 * which means this is not a real opcode, it is like a macro; it will
1507 * be relax()ed into 1 or more instructions.
1508 * Use another bit for VIT_OPCODE_SPECIAL if the op-code is not optimised
1509 * like a regular branch instruction. Option added to vip_begin():
1510 * exclude synthetic opcodes. Invent synthetic_votstrs[].
1511 * 31dec85 Dean Elsner. Invent vit_opcode_nbytes.
1512 * Also make vit_opcode into a char[]. We now have n-byte vax opcodes,
1513 * so caller's don't have to know the difference between a 1-byte & a
1514 * 2-byte op-code. Still need vax_opcodeT concept, so we know how
1515 * big an object must be to hold an op.code.
1516 * 30dec85 Dean Elsner. Widen typedef vax_opcodeT in "vax-inst.h"
1517 * because vax opcodes may be 16 bits. Our crufty C compiler was
1518 * happily initialising 8-bit vot_codes with 16-bit numbers!
1519 * (Wouldn't the 'phone company like to compress data so easily!)
1520 * 29dec85 Dean Elsner. New static table vax_operand_width_size[].
1521 * Invented so we know hw many bytes a "I^#42" needs in its immediate
1522 * operand. Revised struct vop in "vax-inst.h": explicitly include
1523 * byte length of each operand, and it's letter-code datum type.
1524 * 17nov85 Dean Elsner. Name Change.
1525 * Due to ar(1) truncating names, we learned the hard way that
1526 * "vax-inst-parse.c" -> "vax-inst-parse." dropping the "o" off
1527 * the archived object name. SO... we shortened the name of this
1528 * source file, and changed the makefile.
1529 */
1530
1531 /* handle of the OPCODE hash table */
1532 static struct hash_control *op_hash;
1533
1534 /*
1535 * In: 1 character, from "bdfghloqpw" being the data-type of an operand
1536 * of a vax instruction.
1537 *
1538 * Out: the length of an operand of that type, in bytes.
1539 * Special branch operands types "-?!" have length 0.
1540 */
1541
1542 static const short int vax_operand_width_size[256] =
1543 {
1544
1545 #define _ 0
1546 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1547 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1548 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1549 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1550 _, _, 1, _, 8, _, 4, 8, 16, _, _, _, 4, _, _, 16, /* ..b.d.fgh...l..o */
1551 _, 8, _, _, _, _, _, 2, _, _, _, _, _, _, _, _, /* .q.....w........ */
1552 _, _, 1, _, 8, _, 4, 8, 16, _, _, _, 4, _, _, 16, /* ..b.d.fgh...l..o */
1553 _, 8, _, _, _, _, _, 2, _, _, _, _, _, _, _, _, /* .q.....w........ */
1554 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1555 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1556 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1557 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1558 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1559 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1560 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1561 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _};
1562 #undef _
1563 \f
1564 /*
1565 * This perversion encodes all the vax opcodes as a bunch of strings.
1566 * RMS says we should build our hash-table at run-time. Hmm.
1567 * Please would someone arrange these in decreasing frequency of opcode?
1568 * Because of the way hash_...() works, the most frequently used opcode
1569 * should be textually first and so on.
1570 *
1571 * Input for this table was 'vax.opcodes', awk(1)ed by 'vax.opcodes.c.awk' .
1572 * So change 'vax.opcodes', then re-generate this table.
1573 */
1574
1575 #include "opcode/vax.h"
1576 \f
1577 /*
1578 * This is a table of optional op-codes. All of them represent
1579 * 'synthetic' instructions that seem popular.
1580 *
1581 * Here we make some pseudo op-codes. Every code has a bit set to say
1582 * it is synthetic. This lets you catch them if you want to
1583 * ban these opcodes. They are mnemonics for "elastic" instructions
1584 * that are supposed to assemble into the fewest bytes needed to do a
1585 * branch, or to do a conditional branch, or whatever.
1586 *
1587 * The opcode is in the usual place [low-order n*8 bits]. This means
1588 * that if you mask off the bucky bits, the usual rules apply about
1589 * how long the opcode is.
1590 *
1591 * All VAX branch displacements come at the end of the instruction.
1592 * For simple branches (1-byte opcode + 1-byte displacement) the last
1593 * operand is coded 'b?' where the "data type" '?' is a clue that we
1594 * may reverse the sense of the branch (complement lowest order bit)
1595 * and branch around a jump. This is by far the most common case.
1596 * That is why the VIT_OPCODE_SYNTHETIC bit is set: it says this is
1597 * a 0-byte op-code followed by 2 or more bytes of operand address.
1598 *
1599 * If the op-code has VIT_OPCODE_SPECIAL set, then we have a more unusual
1600 * case.
1601 *
1602 * For JBSB & JBR the treatment is the similar, except (1) we have a 'bw'
1603 * option before (2) we can directly JSB/JMP because there is no condition.
1604 * These operands have 'b-' as their access/data type.
1605 *
1606 * That leaves a bunch of random opcodes: JACBx, JxOBxxx. In these
1607 * cases, we do the same idea. JACBxxx are all marked with a 'b!'
1608 * JAOBxxx & JSOBxxx are marked with a 'b:'.
1609 *
1610 */
1611 #if (VIT_OPCODE_SYNTHETIC != 0x80000000)
1612 You have just broken the encoding below, which assumes the sign bit
1613 means 'I am an imaginary instruction'.
1614 #endif
1615
1616 #if (VIT_OPCODE_SPECIAL != 0x40000000)
1617 You have just broken the encoding below, which assumes the 0x40 M bit means
1618 'I am not to be "optimised" the way normal branches are'.
1619 #endif
1620
1621 static const struct vot
1622 synthetic_votstrs[] =
1623 {
1624 {"jbsb", {"b-", 0xC0000010}}, /* BSD 4.2 */
1625 /* jsb used already */
1626 {"jbr", {"b-", 0xC0000011}}, /* BSD 4.2 */
1627 {"jr", {"b-", 0xC0000011}}, /* consistent */
1628 {"jneq", {"b?", 0x80000012}},
1629 {"jnequ", {"b?", 0x80000012}},
1630 {"jeql", {"b?", 0x80000013}},
1631 {"jeqlu", {"b?", 0x80000013}},
1632 {"jgtr", {"b?", 0x80000014}},
1633 {"jleq", {"b?", 0x80000015}},
1634 /* un-used opcodes here */
1635 {"jgeq", {"b?", 0x80000018}},
1636 {"jlss", {"b?", 0x80000019}},
1637 {"jgtru", {"b?", 0x8000001a}},
1638 {"jlequ", {"b?", 0x8000001b}},
1639 {"jvc", {"b?", 0x8000001c}},
1640 {"jvs", {"b?", 0x8000001d}},
1641 {"jgequ", {"b?", 0x8000001e}},
1642 {"jcc", {"b?", 0x8000001e}},
1643 {"jlssu", {"b?", 0x8000001f}},
1644 {"jcs", {"b?", 0x8000001f}},
1645
1646 {"jacbw", {"rwrwmwb!", 0xC000003d}},
1647 {"jacbf", {"rfrfmfb!", 0xC000004f}},
1648 {"jacbd", {"rdrdmdb!", 0xC000006f}},
1649 {"jacbb", {"rbrbmbb!", 0xC000009d}},
1650 {"jacbl", {"rlrlmlb!", 0xC00000f1}},
1651 {"jacbg", {"rgrgmgb!", 0xC0004ffd}},
1652 {"jacbh", {"rhrhmhb!", 0xC0006ffd}},
1653
1654 {"jbs", {"rlvbb?", 0x800000e0}},
1655 {"jbc", {"rlvbb?", 0x800000e1}},
1656 {"jbss", {"rlvbb?", 0x800000e2}},
1657 {"jbcs", {"rlvbb?", 0x800000e3}},
1658 {"jbsc", {"rlvbb?", 0x800000e4}},
1659 {"jbcc", {"rlvbb?", 0x800000e5}},
1660 {"jbssi", {"rlvbb?", 0x800000e6}},
1661 {"jbcci", {"rlvbb?", 0x800000e7}},
1662 {"jlbs", {"rlb?", 0x800000e8}},
1663 {"jlbc", {"rlb?", 0x800000e9}},
1664
1665 {"jaoblss", {"rlmlb:", 0xC00000f2}},
1666 {"jaobleq", {"rlmlb:", 0xC00000f3}},
1667 {"jsobgeq", {"mlb:", 0xC00000f4}},
1668 {"jsobgtr", {"mlb:", 0xC00000f5}},
1669
1670 /* CASEx has no branch addresses in our conception of it. */
1671 /* You should use ".word ..." statements after the "case ...". */
1672
1673 {"", ""} /* empty is end sentinel */
1674
1675 }; /* synthetic_votstrs */
1676 \f
1677 /*
1678 * v i p _ b e g i n ( )
1679 *
1680 * Call me once before you decode any lines.
1681 * I decode votstrs into a hash table at op_hash (which I create).
1682 * I return an error text or null.
1683 * If you want, I will include the 'synthetic' jXXX instructions in the
1684 * instruction table.
1685 * You must nominate metacharacters for eg DEC's "#", "@", "^".
1686 */
1687
1688 static const char *
1689 vip_begin (synthetic_too, immediate, indirect, displen)
1690 int synthetic_too; /* 1 means include jXXX op-codes. */
1691 char *immediate, *indirect, *displen;
1692 {
1693 const struct vot *vP; /* scan votstrs */
1694 const char *retval = 0; /* error text */
1695
1696 op_hash = hash_new ();
1697
1698 for (vP = votstrs; *vP->vot_name && !retval; vP++)
1699 retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
1700
1701 if (synthetic_too)
1702 for (vP = synthetic_votstrs; *vP->vot_name && !retval; vP++)
1703 retval = hash_insert (op_hash, vP->vot_name, (PTR) &vP->vot_detail);
1704
1705 #ifndef CONST_TABLE
1706 vip_op_defaults (immediate, indirect, displen);
1707 #endif
1708
1709 return retval;
1710 }
1711
1712
1713 /*
1714 * v i p ( )
1715 *
1716 * This converts a string into a vax instruction.
1717 * The string must be a bare single instruction in dec-vax (with BSD4 frobs)
1718 * format.
1719 * It provides some error messages: at most one fatal error message (which
1720 * stops the scan) and at most one warning message for each operand.
1721 * The vax instruction is returned in exploded form, since we have no
1722 * knowledge of how you parse (or evaluate) your expressions.
1723 * We do however strip off and decode addressing modes and operation
1724 * mnemonic.
1725 *
1726 * The exploded instruction is returned to a struct vit of your choice.
1727 * #include "vax-inst.h" to know what a struct vit is.
1728 *
1729 * This function's value is a string. If it is not "" then an internal
1730 * logic error was found: read this code to assign meaning to the string.
1731 * No argument string should generate such an error string:
1732 * it means a bug in our code, not in the user's text.
1733 *
1734 * You MUST have called vip_begin() once before using this function.
1735 */
1736
1737 static void
1738 vip (vitP, instring)
1739 struct vit *vitP; /* We build an exploded instruction here. */
1740 char *instring; /* Text of a vax instruction: we modify. */
1741 {
1742 /* How to bit-encode this opcode. */
1743 struct vot_wot *vwP;
1744 /* 1/skip whitespace.2/scan vot_how */
1745 char *p;
1746 char *q;
1747 /* counts number of operands seen */
1748 unsigned char count;
1749 /* scan operands in struct vit */
1750 struct vop *operandp;
1751 /* error over all operands */
1752 char *alloperr;
1753 /* Remember char, (we clobber it with '\0' temporarily). */
1754 char c;
1755 /* Op-code of this instruction. */
1756 vax_opcodeT oc;
1757
1758 if (*instring == ' ')
1759 ++instring; /* Skip leading whitespace. */
1760 for (p = instring; *p && *p != ' '; p++);; /* MUST end in end-of-string or exactly 1 space. */
1761 /* Scanned up to end of operation-code. */
1762 /* Operation-code is ended with whitespace. */
1763 if (p - instring == 0)
1764 {
1765 vitP->vit_error = "No operator";
1766 count = 0;
1767 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1768 }
1769 else
1770 {
1771 c = *p;
1772 *p = '\0';
1773 /*
1774 * Here with instring pointing to what better be an op-name, and p
1775 * pointing to character just past that.
1776 * We trust instring points to an op-name, with no whitespace.
1777 */
1778 vwP = (struct vot_wot *) hash_find (op_hash, instring);
1779 *p = c; /* Restore char after op-code. */
1780 if (vwP == 0)
1781 {
1782 vitP->vit_error = "Unknown operator";
1783 count = 0;
1784 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1785 }
1786 else
1787 {
1788 /*
1789 * We found a match! So lets pick up as many operands as the
1790 * instruction wants, and even gripe if there are too many.
1791 * We expect comma to seperate each operand.
1792 * We let instring track the text, while p tracks a part of the
1793 * struct vot.
1794 */
1795 /*
1796 * The lines below know about 2-byte opcodes starting FD,FE or FF.
1797 * They also understand synthetic opcodes. Note:
1798 * we return 32 bits of opcode, including bucky bits, BUT
1799 * an opcode length is either 8 or 16 bits for vit_opcode_nbytes.
1800 */
1801 oc = vwP->vot_code; /* The op-code. */
1802 vitP->vit_opcode_nbytes = (oc & 0xFF) >= 0xFD ? 2 : 1;
1803 md_number_to_chars (vitP->vit_opcode, oc, 4);
1804 count = 0; /* no operands seen yet */
1805 instring = p; /* point just past operation code */
1806 alloperr = "";
1807 for (p = vwP->vot_how, operandp = vitP->vit_operand;
1808 !(alloperr && *alloperr) && *p;
1809 operandp++, p += 2)
1810 {
1811 /*
1812 * Here to parse one operand. Leave instring pointing just
1813 * past any one ',' that marks the end of this operand.
1814 */
1815 if (!p[1])
1816 as_fatal ("odd number of bytes in operand description");
1817 else if (*instring)
1818 {
1819 for (q = instring; (c = *q) && c != ','; q++)
1820 ;
1821 /*
1822 * Q points to ',' or '\0' that ends argument. C is that
1823 * character.
1824 */
1825 *q = 0;
1826 operandp->vop_width = p[1];
1827 operandp->vop_nbytes = vax_operand_width_size[p[1]];
1828 operandp->vop_access = p[0];
1829 vip_op (instring, operandp);
1830 *q = c; /* Restore input text. */
1831 if (operandp->vop_error)
1832 alloperr = "Bad operand";
1833 instring = q + (c ? 1 : 0); /* next operand (if any) */
1834 count++; /* won another argument, may have an operr */
1835 }
1836 else
1837 alloperr = "Not enough operands";
1838 }
1839 if (!*alloperr)
1840 {
1841 if (*instring == ' ')
1842 instring++; /* Skip whitespace. */
1843 if (*instring)
1844 alloperr = "Too many operands";
1845 }
1846 vitP->vit_error = alloperr;
1847 }
1848 }
1849 vitP->vit_operands = count;
1850 }
1851 \f
1852 #ifdef test
1853
1854 /*
1855 * Test program for above.
1856 */
1857
1858 struct vit myvit; /* build an exploded vax instruction here */
1859 char answer[100]; /* human types a line of vax assembler here */
1860 char *mybug; /* "" or an internal logic diagnostic */
1861 int mycount; /* number of operands */
1862 struct vop *myvop; /* scan operands from myvit */
1863 int mysynth; /* 1 means want synthetic opcodes. */
1864 char my_immediate[200];
1865 char my_indirect[200];
1866 char my_displen[200];
1867
1868 main ()
1869 {
1870 char *p;
1871
1872 printf ("0 means no synthetic instructions. ");
1873 printf ("Value for vip_begin? ");
1874 gets (answer);
1875 sscanf (answer, "%d", &mysynth);
1876 printf ("Synthetic opcodes %s be included.\n", mysynth ? "will" : "will not");
1877 printf ("enter immediate symbols eg enter # ");
1878 gets (my_immediate);
1879 printf ("enter indirect symbols eg enter @ ");
1880 gets (my_indirect);
1881 printf ("enter displen symbols eg enter ^ ");
1882 gets (my_displen);
1883 if (p = vip_begin (mysynth, my_immediate, my_indirect, my_displen))
1884 {
1885 error ("vip_begin=%s", p);
1886 }
1887 printf ("An empty input line will quit you from the vax instruction parser\n");
1888 for (;;)
1889 {
1890 printf ("vax instruction: ");
1891 fflush (stdout);
1892 gets (answer);
1893 if (!*answer)
1894 {
1895 break; /* out of for each input text loop */
1896 }
1897 vip (&myvit, answer);
1898 if (*myvit.vit_error)
1899 {
1900 printf ("ERR:\"%s\"\n", myvit.vit_error);
1901 }
1902 printf ("opcode=");
1903 for (mycount = myvit.vit_opcode_nbytes, p = myvit.vit_opcode;
1904 mycount;
1905 mycount--, p++
1906 )
1907 {
1908 printf ("%02x ", *p & 0xFF);
1909 }
1910 printf (" operand count=%d.\n", mycount = myvit.vit_operands);
1911 for (myvop = myvit.vit_operand; mycount; mycount--, myvop++)
1912 {
1913 printf ("mode=%xx reg=%xx ndx=%xx len='%c'=%c%c%d. expr=\"",
1914 myvop->vop_mode, myvop->vop_reg, myvop->vop_ndx,
1915 myvop->vop_short, myvop->vop_access, myvop->vop_width,
1916 myvop->vop_nbytes);
1917 for (p = myvop->vop_expr_begin; p <= myvop->vop_expr_end; p++)
1918 {
1919 putchar (*p);
1920 }
1921 printf ("\"\n");
1922 if (myvop->vop_error)
1923 {
1924 printf (" err:\"%s\"\n", myvop->vop_error);
1925 }
1926 if (myvop->vop_warn)
1927 {
1928 printf (" wrn:\"%s\"\n", myvop->vop_warn);
1929 }
1930 }
1931 }
1932 vip_end ();
1933 exit ();
1934 }
1935
1936 #endif /* #ifdef test */
1937
1938 /* end of vax_ins_parse.c */
1939
1940 /* vax_reg_parse.c - convert a VAX register name to a number */
1941
1942 /* Copyright (C) 1987 Free Software Foundation, Inc. A part of GNU. */
1943
1944 /*
1945 * v a x _ r e g _ p a r s e ( )
1946 *
1947 * Take 3 char.s, the last of which may be `\0` (non-existent)
1948 * and return the VAX register number that they represent.
1949 *
1950 * Return -1 if they don't form a register name. Good names return
1951 * a number from 0:15 inclusive.
1952 *
1953 * Case is not important in a name.
1954 *
1955 * Register names understood are:
1956 *
1957 * R0
1958 * R1
1959 * R2
1960 * R3
1961 * R4
1962 * R5
1963 * R6
1964 * R7
1965 * R8
1966 * R9
1967 * R10
1968 * R11
1969 * R12 AP
1970 * R13 FP
1971 * R14 SP
1972 * R15 PC
1973 *
1974 */
1975
1976 #include <ctype.h>
1977 #define AP (12)
1978 #define FP (13)
1979 #define SP (14)
1980 #define PC (15)
1981 \f
1982 int /* return -1 or 0:15 */
1983 vax_reg_parse (c1, c2, c3) /* 3 chars of register name */
1984 char c1, c2, c3; /* c3 == 0 if 2-character reg name */
1985 {
1986 int retval; /* return -1:15 */
1987
1988 retval = -1;
1989
1990 if (isupper (c1))
1991 c1 = tolower (c1);
1992 if (isupper (c2))
1993 c2 = tolower (c2);
1994 if (isdigit (c2) && c1 == 'r')
1995 {
1996 retval = c2 - '0';
1997 if (isdigit (c3))
1998 {
1999 retval = retval * 10 + c3 - '0';
2000 retval = (retval > 15) ? -1 : retval;
2001 /* clamp the register value to 1 hex digit */
2002 }
2003 else if (c3)
2004 retval = -1; /* c3 must be '\0' or a digit */
2005 }
2006 else if (c3) /* There are no three letter regs */
2007 retval = -1;
2008 else if (c2 == 'p')
2009 {
2010 switch (c1)
2011 {
2012 case 's':
2013 retval = SP;
2014 break;
2015 case 'f':
2016 retval = FP;
2017 break;
2018 case 'a':
2019 retval = AP;
2020 break;
2021 default:
2022 retval = -1;
2023 }
2024 }
2025 else if (c1 == 'p' && c2 == 'c')
2026 retval = PC;
2027 else
2028 retval = -1;
2029 return (retval);
2030 }
2031
2032 /*
2033 * v i p _ o p ( )
2034 *
2035 * Parse a vax operand in DEC assembler notation.
2036 * For speed, expect a string of whitespace to be reduced to a single ' '.
2037 * This is the case for GNU AS, and is easy for other DEC-compatible
2038 * assemblers.
2039 *
2040 * Knowledge about DEC VAX assembler operand notation lives here.
2041 * This doesn't even know what a register name is, except it believes
2042 * all register names are 2 or 3 characters, and lets vax_reg_parse() say
2043 * what number each name represents.
2044 * It does, however, know that PC, SP etc are special registers so it can
2045 * detect addressing modes that are silly for those registers.
2046 *
2047 * Where possible, it delivers 1 fatal or 1 warning message if the operand
2048 * is suspect. Exactly what we test for is still evolving.
2049 */
2050
2051 /*
2052 * B u g s
2053 *
2054 * Arg block.
2055 *
2056 * There were a number of 'mismatched argument type' bugs to vip_op.
2057 * The most general solution is to typedef each (of many) arguments.
2058 * We used instead a typedef'd argument block. This is less modular
2059 * than using seperate return pointers for each result, but runs faster
2060 * on most engines, and seems to keep programmers happy. It will have
2061 * to be done properly if we ever want to use vip_op as a general-purpose
2062 * module (it was designed to be).
2063 *
2064 * G^
2065 *
2066 * Doesn't support DEC "G^" format operands. These always take 5 bytes
2067 * to express, and code as modes 8F or 9F. Reason: "G^" deprives you of
2068 * optimising to (say) a "B^" if you are lucky in the way you link.
2069 * When someone builds a linker smart enough to convert "G^" to "B^", "W^"
2070 * whenever possible, then we should implement it.
2071 * If there is some other use for "G^", feel free to code it in!
2072 *
2073 *
2074 * speed
2075 *
2076 * If I nested if()s more, I could avoid testing (*err) which would save
2077 * time, space and page faults. I didn't nest all those if()s for clarity
2078 * and because I think the mode testing can be re-arranged 1st to test the
2079 * commoner constructs 1st. Does anybody have statistics on this?
2080 *
2081 *
2082 *
2083 * error messages
2084 *
2085 * In future, we should be able to 'compose' error messages in a scratch area
2086 * and give the user MUCH more informative error messages. Although this takes
2087 * a little more code at run-time, it will make this module much more self-
2088 * documenting. As an example of what sucks now: most error messages have
2089 * hardwired into them the DEC VAX metacharacters "#^@" which are nothing like
2090 * the Un*x characters "$`*", that most users will expect from this AS.
2091 */
2092 \f
2093 /*
2094 * The input is a string, ending with '\0'.
2095 *
2096 * We also require a 'hint' of what kind of operand is expected: so
2097 * we can remind caller not to write into literals for instance.
2098 *
2099 * The output is a skeletal instruction.
2100 *
2101 * The algorithm has two parts.
2102 * 1. extract the syntactic features (parse off all the @^#-()+[] mode crud);
2103 * 2. express the @^#-()+[] as some parameters suited to further analysis.
2104 *
2105 * 2nd step is where we detect the googles of possible invalid combinations
2106 * a human (or compiler) might write. Note that if we do a half-way
2107 * decent assembler, we don't know how long to make (eg) displacement
2108 * fields when we first meet them (because they may not have defined values).
2109 * So we must wait until we know how many bits are needed for each address,
2110 * then we can know both length and opcodes of instructions.
2111 * For reason(s) above, we will pass to our caller a 'broken' instruction
2112 * of these major components, from which our caller can generate instructions:
2113 * - displacement length I^ S^ L^ B^ W^ unspecified
2114 * - mode (many)
2115 * - register R0-R15 or absent
2116 * - index register R0-R15 or absent
2117 * - expression text what we don't parse
2118 * - error text(s) why we couldn't understand the operand
2119 */
2120
2121 /*
2122 * To decode output of this, test errtxt. If errtxt[0] == '\0', then
2123 * we had no errors that prevented parsing. Also, if we ever report
2124 * an internal bug, errtxt[0] is set non-zero. So one test tells you
2125 * if the other outputs are to be taken seriously.
2126 */
2127
2128
2129 /*
2130 * Because this module is useful for both VMS and UN*X style assemblers
2131 * and because of the variety of UN*X assemblers we must recognise
2132 * the different conventions for assembler operand notation. For example
2133 * VMS says "#42" for immediate mode, while most UN*X say "$42".
2134 * We permit arbitrary sets of (single) characters to represent the
2135 * 3 concepts that DEC writes '#', '@', '^'.
2136 */
2137
2138 /* character tests */
2139 #define VIP_IMMEDIATE 01 /* Character is like DEC # */
2140 #define VIP_INDIRECT 02 /* Char is like DEC @ */
2141 #define VIP_DISPLEN 04 /* Char is like DEC ^ */
2142
2143 #define IMMEDIATEP(c) (vip_metacharacters [(c)&0xff]&VIP_IMMEDIATE)
2144 #define INDIRECTP(c) (vip_metacharacters [(c)&0xff]&VIP_INDIRECT)
2145 #define DISPLENP(c) (vip_metacharacters [(c)&0xff]&VIP_DISPLEN)
2146
2147 /* We assume 8 bits per byte. Use vip_op_defaults() to set these up BEFORE we
2148 * are ever called.
2149 */
2150
2151 #if defined(CONST_TABLE)
2152 #define _ 0,
2153 #define I VIP_IMMEDIATE,
2154 #define S VIP_INDIRECT,
2155 #define D VIP_DISPLEN,
2156 static const char
2157 vip_metacharacters[256] =
2158 {
2159 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O*/
2160 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */
2161 _ _ _ _ I _ _ _ _ _ S _ _ _ _ _ /* sp ! " # $ % & ' ( ) * + , - . / */
2162 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*0 1 2 3 4 5 6 7 8 9 : ; < = > ?*/
2163 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*@ A B C D E F G H I J K L M N O*/
2164 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*P Q R S T U V W X Y Z [ \ ] ^ _*/
2165 D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*` a b c d e f g h i j k l m n o*/
2166 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*p q r s t u v w x y z { | } ~ ^?*/
2167
2168 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2169 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2170 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2171 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2172 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2173 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2174 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2175 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2176 };
2177 #undef _
2178 #undef I
2179 #undef S
2180 #undef D
2181 #else
2182 static char vip_metacharacters[256];
2183
2184 static void
2185 vip_op_1 (bit, syms)
2186 int bit;
2187 char *syms;
2188 {
2189 unsigned char t;
2190
2191 while (t = *syms++)
2192 vip_metacharacters[t] |= bit;
2193 }
2194
2195 /* Can be called any time. More arguments may appear in future. */
2196 static void
2197 vip_op_defaults (immediate, indirect, displen)
2198 char *immediate;
2199 char *indirect;
2200 char *displen;
2201 {
2202 vip_op_1 (VIP_IMMEDIATE, immediate);
2203 vip_op_1 (VIP_INDIRECT, indirect);
2204 vip_op_1 (VIP_DISPLEN, displen);
2205 }
2206
2207 #endif
2208 \f
2209
2210 /*
2211 * Dec defines the semantics of address modes (and values)
2212 * by a two-letter code, explained here.
2213 *
2214 * letter 1: access type
2215 *
2216 * a address calculation - no data access, registers forbidden
2217 * b branch displacement
2218 * m read - let go of bus - write back "modify"
2219 * r read
2220 * v bit field address: like 'a' but registers are OK
2221 * w write
2222 * space no operator (eg ".long foo") [our convention]
2223 *
2224 * letter 2: data type (i.e. width, alignment)
2225 *
2226 * b byte
2227 * d double precision floating point (D format)
2228 * f single precision floating point (F format)
2229 * g G format floating
2230 * h H format floating
2231 * l longword
2232 * o octaword
2233 * q quadword
2234 * w word
2235 * ? simple synthetic branch operand
2236 * - unconditional synthetic JSB/JSR operand
2237 * ! complex synthetic branch operand
2238 *
2239 * The '-?!' letter 2's are not for external consumption. They are used
2240 * for various assemblers. Generally, all unknown widths are assumed 0.
2241 * We don't limit your choice of width character.
2242 *
2243 * DEC operands are hard work to parse. For example, '@' as the first
2244 * character means indirect (deferred) mode but elswhere it is a shift
2245 * operator.
2246 * The long-winded explanation of how this is supposed to work is
2247 * cancelled. Read a DEC vax manual.
2248 * We try hard not to parse anything that MIGHT be part of the expression
2249 * buried in that syntax. For example if we see @...(Rn) we don't check
2250 * for '-' before the '(' because mode @-(Rn) does not exist.
2251 *
2252 * After parsing we have:
2253 *
2254 * at 1 if leading '@' (or Un*x '*')
2255 * len takes one value from " bilsw". eg B^ -> 'b'.
2256 * hash 1 if leading '#' (or Un*x '$')
2257 * expr_begin, expr_end the expression we did not parse
2258 * even though we don't interpret it, we make use
2259 * of its presence or absence.
2260 * sign -1: -(Rn) 0: absent +1: (Rn)+
2261 * paren 1 if () are around register
2262 * reg major register number 0:15 -1 means absent
2263 * ndx index register number 0:15 -1 means absent
2264 *
2265 * Again, I dare not explain it: just trace ALL the code!
2266 */
2267 \f
2268 static void
2269 vip_op (optext, vopP)
2270 /* user's input string e.g.: "@B^foo@bar(AP)[FP]:" */
2271 char *optext;
2272 /* Input fields: vop_access, vop_width.
2273 Output fields: _ndx, _reg, _mode, _short, _warn,
2274 _error _expr_begin, _expr_end, _nbytes.
2275 vop_nbytes : number of bytes in a datum. */
2276 struct vop *vopP;
2277 {
2278 /* track operand text forward */
2279 char *p;
2280 /* track operand text backward */
2281 char *q;
2282 /* 1 if leading '@' ('*') seen */
2283 int at;
2284 /* one of " bilsw" */
2285 char len;
2286 /* 1 if leading '#' ('$') seen */
2287 int hash;
2288 /* -1, 0 or +1 */
2289 int sign = 0;
2290 /* 1 if () surround register */
2291 int paren = 0;
2292 /* register number, -1:absent */
2293 int reg = 0;
2294 /* index register number -1:absent */
2295 int ndx = 0;
2296 /* report illegal operand, ""==OK */
2297 /* " " is a FAKE error: means we won */
2298 /* ANY err that begins with ' ' is a fake. */
2299 /* " " is converted to "" before return */
2300 char *err;
2301 /* warn about weird modes pf address */
2302 char *wrn;
2303 /* preserve q in case we backup */
2304 char *oldq = NULL;
2305 /* build up 4-bit operand mode here */
2306 /* note: index mode is in ndx, this is */
2307 /* the major mode of operand address */
2308 int mode = 0;
2309 /*
2310 * Notice how we move wrong-arg-type bugs INSIDE this module: if we
2311 * get the types wrong below, we lose at compile time rather than at
2312 * lint or run time.
2313 */
2314 char access; /* vop_access. */
2315 char width; /* vop_width. */
2316
2317 access = vopP->vop_access;
2318 width = vopP->vop_width;
2319 /* None of our code bugs (yet), no user text errors, no warnings
2320 even. */
2321 err = wrn = 0;
2322
2323 p = optext;
2324
2325 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2326 p++; /* skip over whitespace */
2327
2328 if (at = INDIRECTP (*p))
2329 { /* 1 if *p=='@'(or '*' for Un*x) */
2330 p++; /* at is determined */
2331 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2332 p++; /* skip over whitespace */
2333 }
2334
2335 /*
2336 * This code is subtle. It tries to detect all legal (letter)'^'
2337 * but it doesn't waste time explicitly testing for premature '\0' because
2338 * this case is rejected as a mismatch against either (letter) or '^'.
2339 */
2340 {
2341 char c;
2342
2343 c = *p;
2344 if (isupper (c))
2345 c = tolower (c);
2346 if (DISPLENP (p[1]) && strchr ("bilws", len = c))
2347 p += 2; /* skip (letter) '^' */
2348 else /* no (letter) '^' seen */
2349 len = ' '; /* len is determined */
2350 }
2351
2352 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2353 p++; /* skip over whitespace */
2354
2355 if (hash = IMMEDIATEP (*p)) /* 1 if *p=='#' ('$' for Un*x) */
2356 p++; /* hash is determined */
2357
2358 /*
2359 * p points to what may be the beginning of an expression.
2360 * We have peeled off the front all that is peelable.
2361 * We know at, len, hash.
2362 *
2363 * Lets point q at the end of the text and parse that (backwards).
2364 */
2365
2366 for (q = p; *q; q++)
2367 ;
2368 q--; /* now q points at last char of text */
2369 \f
2370 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2371 q--;
2372 /* reverse over whitespace, but don't */
2373 /* run back over *p */
2374
2375 /*
2376 * As a matter of policy here, we look for [Rn], although both Rn and S^#
2377 * forbid [Rn]. This is because it is easy, and because only a sick
2378 * cyborg would have [...] trailing an expression in a VAX-like assembler.
2379 * A meticulous parser would first check for Rn followed by '(' or '['
2380 * and not parse a trailing ']' if it found another. We just ban expressions
2381 * ending in ']'.
2382 */
2383 if (*q == ']')
2384 {
2385 while (q >= p && *q != '[')
2386 q--;
2387 /* either q<p or we got matching '[' */
2388 if (q < p)
2389 err = "no '[' to match ']'";
2390 else
2391 {
2392 /*
2393 * Confusers like "[]" will eventually lose with a bad register
2394 * name error. So again we don't need to check for early '\0'.
2395 */
2396 if (q[3] == ']')
2397 ndx = vax_reg_parse (q[1], q[2], 0);
2398 else if (q[4] == ']')
2399 ndx = vax_reg_parse (q[1], q[2], q[3]);
2400 else
2401 ndx = -1;
2402 /*
2403 * Since we saw a ']' we will demand a register name in the [].
2404 * If luser hasn't given us one: be rude.
2405 */
2406 if (ndx < 0)
2407 err = "bad register in []";
2408 else if (ndx == PC)
2409 err = "[PC] index banned";
2410 else
2411 q--; /* point q just before "[...]" */
2412 }
2413 }
2414 else
2415 ndx = -1; /* no ']', so no iNDeX register */
2416
2417 /*
2418 * If err = "..." then we lost: run away.
2419 * Otherwise ndx == -1 if there was no "[...]".
2420 * Otherwise, ndx is index register number, and q points before "[...]".
2421 */
2422 \f
2423 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2424 q--;
2425 /* reverse over whitespace, but don't */
2426 /* run back over *p */
2427 if (!err || !*err)
2428 {
2429 sign = 0; /* no ()+ or -() seen yet */
2430
2431 if (q > p + 3 && *q == '+' && q[-1] == ')')
2432 {
2433 sign = 1; /* we saw a ")+" */
2434 q--; /* q points to ')' */
2435 }
2436
2437 if (*q == ')' && q > p + 2)
2438 {
2439 paren = 1; /* assume we have "(...)" */
2440 while (q >= p && *q != '(')
2441 q--;
2442 /* either q<p or we got matching '(' */
2443 if (q < p)
2444 err = "no '(' to match ')'";
2445 else
2446 {
2447 /*
2448 * Confusers like "()" will eventually lose with a bad register
2449 * name error. So again we don't need to check for early '\0'.
2450 */
2451 if (q[3] == ')')
2452 reg = vax_reg_parse (q[1], q[2], 0);
2453 else if (q[4] == ')')
2454 reg = vax_reg_parse (q[1], q[2], q[3]);
2455 else
2456 reg = -1;
2457 /*
2458 * Since we saw a ')' we will demand a register name in the ')'.
2459 * This is nasty: why can't our hypothetical assembler permit
2460 * parenthesised expressions? BECAUSE I AM LAZY! That is why.
2461 * Abuse luser if we didn't spy a register name.
2462 */
2463 if (reg < 0)
2464 {
2465 /* JF allow parenthasized expressions. I hope this works */
2466 paren = 0;
2467 while (*q != ')')
2468 q++;
2469 /* err = "unknown register in ()"; */
2470 }
2471 else
2472 q--; /* point just before '(' of "(...)" */
2473 /*
2474 * If err == "..." then we lost. Run away.
2475 * Otherwise if reg >= 0 then we saw (Rn).
2476 */
2477 }
2478 /*
2479 * If err == "..." then we lost.
2480 * Otherwise paren==1 and reg = register in "()".
2481 */
2482 }
2483 else
2484 paren = 0;
2485 /*
2486 * If err == "..." then we lost.
2487 * Otherwise, q points just before "(Rn)", if any.
2488 * If there was a "(...)" then paren==1, and reg is the register.
2489 */
2490 \f
2491 /*
2492 * We should only seek '-' of "-(...)" if:
2493 * we saw "(...)" paren == 1
2494 * we have no errors so far ! *err
2495 * we did not see '+' of "(...)+" sign < 1
2496 * We don't check len. We want a specific error message later if
2497 * user tries "x^...-(Rn)". This is a feature not a bug.
2498 */
2499 if (!err || !*err)
2500 {
2501 if (paren && sign < 1)/* !sign is adequate test */
2502 {
2503 if (*q == '-')
2504 {
2505 sign = -1;
2506 q--;
2507 }
2508 }
2509 /*
2510 * We have back-tracked over most
2511 * of the crud at the end of an operand.
2512 * Unless err, we know: sign, paren. If paren, we know reg.
2513 * The last case is of an expression "Rn".
2514 * This is worth hunting for if !err, !paren.
2515 * We wouldn't be here if err.
2516 * We remember to save q, in case we didn't want "Rn" anyway.
2517 */
2518 if (!paren)
2519 {
2520 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2521 q--;
2522 /* reverse over whitespace, but don't */
2523 /* run back over *p */
2524 if (q > p && q < p + 3) /* room for Rn or Rnn exactly? */
2525 reg = vax_reg_parse (p[0], p[1], q < p + 2 ? 0 : p[2]);
2526 else
2527 reg = -1; /* always comes here if no register at all */
2528 /*
2529 * Here with a definitive reg value.
2530 */
2531 if (reg >= 0)
2532 {
2533 oldq = q;
2534 q = p - 1;
2535 }
2536 }
2537 }
2538 }
2539 /*
2540 * have reg. -1:absent; else 0:15
2541 */
2542
2543 /*
2544 * We have: err, at, len, hash, ndx, sign, paren, reg.
2545 * Also, any remaining expression is from *p through *q inclusive.
2546 * Should there be no expression, q==p-1. So expression length = q-p+1.
2547 * This completes the first part: parsing the operand text.
2548 */
2549 \f
2550 /*
2551 * We now want to boil the data down, checking consistency on the way.
2552 * We want: len, mode, reg, ndx, err, p, q, wrn, bug.
2553 * We will deliver a 4-bit reg, and a 4-bit mode.
2554 */
2555
2556 /*
2557 * Case of branch operand. Different. No L^B^W^I^S^ allowed for instance.
2558 *
2559 * in: at ?
2560 * len ?
2561 * hash ?
2562 * p:q ?
2563 * sign ?
2564 * paren ?
2565 * reg ?
2566 * ndx ?
2567 *
2568 * out: mode 0
2569 * reg -1
2570 * len ' '
2571 * p:q whatever was input
2572 * ndx -1
2573 * err " " or error message, and other outputs trashed
2574 */
2575 /* branch operands have restricted forms */
2576 if ((!err || !*err) && access == 'b')
2577 {
2578 if (at || hash || sign || paren || ndx >= 0 || reg >= 0 || len != ' ')
2579 err = "invalid branch operand";
2580 else
2581 err = " ";
2582 }
2583 \f
2584 /* Since nobody seems to use it: comment this 'feature'(?) out for now. */
2585 #ifdef NEVER
2586 /*
2587 * Case of stand-alone operand. e.g. ".long foo"
2588 *
2589 * in: at ?
2590 * len ?
2591 * hash ?
2592 * p:q ?
2593 * sign ?
2594 * paren ?
2595 * reg ?
2596 * ndx ?
2597 *
2598 * out: mode 0
2599 * reg -1
2600 * len ' '
2601 * p:q whatever was input
2602 * ndx -1
2603 * err " " or error message, and other outputs trashed
2604 */
2605 if ((!err || !*err) && access == ' ')
2606 {
2607 if (at)
2608 err = "address prohibits @";
2609 else if (hash)
2610 err = "address prohibits #";
2611 else if (sign)
2612 {
2613 if (sign < 0)
2614 err = "address prohibits -()";
2615 else
2616 err = "address prohibits ()+";
2617 }
2618 else if (paren)
2619 err = "address prohibits ()";
2620 else if (ndx >= 0)
2621 err = "address prohibits []";
2622 else if (reg >= 0)
2623 err = "address prohibits register";
2624 else if (len != ' ')
2625 err = "address prohibits displacement length specifier";
2626 else
2627 {
2628 err = " "; /* succeed */
2629 mode = 0;
2630 }
2631 }
2632 #endif /*#Ifdef NEVER*/
2633 \f
2634 /*
2635 * Case of S^#.
2636 *
2637 * in: at 0
2638 * len 's' definition
2639 * hash 1 demand
2640 * p:q demand not empty
2641 * sign 0 by paren==0
2642 * paren 0 by "()" scan logic because "S^" seen
2643 * reg -1 or nn by mistake
2644 * ndx -1
2645 *
2646 * out: mode 0
2647 * reg -1
2648 * len 's'
2649 * exp
2650 * ndx -1
2651 */
2652 if ((!err || !*err) && len == 's')
2653 {
2654 if (!hash || paren || at || ndx >= 0)
2655 err = "invalid operand of S^#";
2656 else
2657 {
2658 if (reg >= 0)
2659 {
2660 /*
2661 * SHIT! we saw S^#Rnn ! put the Rnn back in
2662 * expression. KLUDGE! Use oldq so we don't
2663 * need to know exact length of reg name.
2664 */
2665 q = oldq;
2666 reg = 0;
2667 }
2668 /*
2669 * We have all the expression we will ever get.
2670 */
2671 if (p > q)
2672 err = "S^# needs expression";
2673 else if (access == 'r')
2674 {
2675 err = " "; /* WIN! */
2676 mode = 0;
2677 }
2678 else
2679 err = "S^# may only read-access";
2680 }
2681 }
2682 \f
2683 /*
2684 * Case of -(Rn), which is weird case.
2685 *
2686 * in: at 0
2687 * len '
2688 * hash 0
2689 * p:q q<p
2690 * sign -1 by definition
2691 * paren 1 by definition
2692 * reg present by definition
2693 * ndx optional
2694 *
2695 * out: mode 7
2696 * reg present
2697 * len ' '
2698 * exp "" enforce empty expression
2699 * ndx optional warn if same as reg
2700 */
2701 if ((!err || !*err) && sign < 0)
2702 {
2703 if (len != ' ' || hash || at || p <= q)
2704 err = "invalid operand of -()";
2705 else
2706 {
2707 err = " "; /* win */
2708 mode = 7;
2709 if (reg == PC)
2710 wrn = "-(PC) unpredictable";
2711 else if (reg == ndx)
2712 wrn = "[]index same as -()register: unpredictable";
2713 }
2714 }
2715 \f
2716 /*
2717 * We convert "(Rn)" to "@Rn" for our convenience.
2718 * (I hope this is convenient: has someone got a better way to parse this?)
2719 * A side-effect of this is that "@Rn" is a valid operand.
2720 */
2721 if (paren && !sign && !hash && !at && len == ' ' && p > q)
2722 {
2723 at = 1;
2724 paren = 0;
2725 }
2726
2727 /*
2728 * Case of (Rn)+, which is slightly different.
2729 *
2730 * in: at
2731 * len ' '
2732 * hash 0
2733 * p:q q<p
2734 * sign +1 by definition
2735 * paren 1 by definition
2736 * reg present by definition
2737 * ndx optional
2738 *
2739 * out: mode 8+@
2740 * reg present
2741 * len ' '
2742 * exp "" enforce empty expression
2743 * ndx optional warn if same as reg
2744 */
2745 if ((!err || !*err) && sign > 0)
2746 {
2747 if (len != ' ' || hash || p <= q)
2748 err = "invalid operand of ()+";
2749 else
2750 {
2751 err = " "; /* win */
2752 mode = 8 + (at ? 1 : 0);
2753 if (reg == PC)
2754 wrn = "(PC)+ unpredictable";
2755 else if (reg == ndx)
2756 wrn = "[]index same as ()+register: unpredictable";
2757 }
2758 }
2759 \f
2760 /*
2761 * Case of #, without S^.
2762 *
2763 * in: at
2764 * len ' ' or 'i'
2765 * hash 1 by definition
2766 * p:q
2767 * sign 0
2768 * paren 0
2769 * reg absent
2770 * ndx optional
2771 *
2772 * out: mode 8+@
2773 * reg PC
2774 * len ' ' or 'i'
2775 * exp
2776 * ndx optional
2777 */
2778 if ((!err || !*err) && hash)
2779 {
2780 if (len != 'i' && len != ' ')
2781 err = "# conflicts length";
2782 else if (paren)
2783 err = "# bars register";
2784 else
2785 {
2786 if (reg >= 0)
2787 {
2788 /*
2789 * SHIT! we saw #Rnn! Put the Rnn back into the expression.
2790 * By using oldq, we don't need to know how long Rnn was.
2791 * KLUDGE!
2792 */
2793 q = oldq;
2794 reg = -1; /* no register any more */
2795 }
2796 err = " "; /* win */
2797
2798 /* JF a bugfix, I think! */
2799 if (at && access == 'a')
2800 vopP->vop_nbytes = 4;
2801
2802 mode = (at ? 9 : 8);
2803 reg = PC;
2804 if ((access == 'm' || access == 'w') && !at)
2805 wrn = "writing or modifying # is unpredictable";
2806 }
2807 }
2808 /*
2809 * If !*err, then sign == 0
2810 * hash == 0
2811 */
2812 \f
2813 /*
2814 * Case of Rn. We seperate this one because it has a few special
2815 * errors the remaining modes lack.
2816 *
2817 * in: at optional
2818 * len ' '
2819 * hash 0 by program logic
2820 * p:q empty
2821 * sign 0 by program logic
2822 * paren 0 by definition
2823 * reg present by definition
2824 * ndx optional
2825 *
2826 * out: mode 5+@
2827 * reg present
2828 * len ' ' enforce no length
2829 * exp "" enforce empty expression
2830 * ndx optional warn if same as reg
2831 */
2832 if ((!err || !*err) && !paren && reg >= 0)
2833 {
2834 if (len != ' ')
2835 err = "length not needed";
2836 else if (at)
2837 {
2838 err = " "; /* win */
2839 mode = 6; /* @Rn */
2840 }
2841 else if (ndx >= 0)
2842 err = "can't []index a register, because it has no address";
2843 else if (access == 'a')
2844 err = "a register has no address";
2845 else
2846 {
2847 /*
2848 * Idea here is to detect from length of datum
2849 * and from register number if we will touch PC.
2850 * Warn if we do.
2851 * vop_nbytes is number of bytes in operand.
2852 * Compute highest byte affected, compare to PC0.
2853 */
2854 if ((vopP->vop_nbytes + reg * 4) > 60)
2855 wrn = "PC part of operand unpredictable";
2856 err = " "; /* win */
2857 mode = 5; /* Rn */
2858 }
2859 }
2860 /*
2861 * If !*err, sign == 0
2862 * hash == 0
2863 * paren == 1 OR reg==-1
2864 */
2865 \f
2866 /*
2867 * Rest of cases fit into one bunch.
2868 *
2869 * in: at optional
2870 * len ' ' or 'b' or 'w' or 'l'
2871 * hash 0 by program logic
2872 * p:q expected (empty is not an error)
2873 * sign 0 by program logic
2874 * paren optional
2875 * reg optional
2876 * ndx optional
2877 *
2878 * out: mode 10 + @ + len
2879 * reg optional
2880 * len ' ' or 'b' or 'w' or 'l'
2881 * exp maybe empty
2882 * ndx optional warn if same as reg
2883 */
2884 if (!err || !*err)
2885 {
2886 err = " "; /* win (always) */
2887 mode = 10 + (at ? 1 : 0);
2888 switch (len)
2889 {
2890 case 'l':
2891 mode += 2;
2892 case 'w':
2893 mode += 2;
2894 case ' ': /* assumed B^ until our caller changes it */
2895 case 'b':
2896 break;
2897 }
2898 }
2899
2900 /*
2901 * here with completely specified mode
2902 * len
2903 * reg
2904 * expression p,q
2905 * ndx
2906 */
2907
2908 if (*err == ' ')
2909 err = 0; /* " " is no longer an error */
2910
2911 vopP->vop_mode = mode;
2912 vopP->vop_reg = reg;
2913 vopP->vop_short = len;
2914 vopP->vop_expr_begin = p;
2915 vopP->vop_expr_end = q;
2916 vopP->vop_ndx = ndx;
2917 vopP->vop_error = err;
2918 vopP->vop_warn = wrn;
2919 }
2920 \f
2921 /*
2922
2923 Summary of vip_op outputs.
2924
2925 mode reg len ndx
2926 (Rn) => @Rn
2927 {@}Rn 5+@ n ' ' optional
2928 branch operand 0 -1 ' ' -1
2929 S^#foo 0 -1 's' -1
2930 -(Rn) 7 n ' ' optional
2931 {@}(Rn)+ 8+@ n ' ' optional
2932 {@}#foo, no S^ 8+@ PC " i" optional
2933 {@}{q^}{(Rn)} 10+@+q option " bwl" optional
2934
2935 */
2936 \f
2937 #ifdef TEST /* #Define to use this testbed. */
2938
2939 /*
2940 * Follows a test program for this function.
2941 * We declare arrays non-local in case some of our tiny-minded machines
2942 * default to small stacks. Also, helps with some debuggers.
2943 */
2944
2945 #include <stdio.h>
2946
2947 char answer[100]; /* human types into here */
2948 char *p; /* */
2949 char *myerr;
2950 char *mywrn;
2951 char *mybug;
2952 char myaccess;
2953 char mywidth;
2954 char mymode;
2955 char myreg;
2956 char mylen;
2957 char *myleft;
2958 char *myright;
2959 char myndx;
2960 int my_operand_length;
2961 char my_immediate[200];
2962 char my_indirect[200];
2963 char my_displen[200];
2964
2965 main ()
2966 {
2967 printf ("enter immediate symbols eg enter # ");
2968 gets (my_immediate);
2969 printf ("enter indirect symbols eg enter @ ");
2970 gets (my_indirect);
2971 printf ("enter displen symbols eg enter ^ ");
2972 gets (my_displen);
2973 vip_op_defaults (my_immediate, my_indirect, my_displen);
2974 for (;;)
2975 {
2976 printf ("access,width (eg 'ab' or 'wh') [empty line to quit] : ");
2977 fflush (stdout);
2978 gets (answer);
2979 if (!answer[0])
2980 exit (0);
2981 myaccess = answer[0];
2982 mywidth = answer[1];
2983 switch (mywidth)
2984 {
2985 case 'b':
2986 my_operand_length = 1;
2987 break;
2988 case 'd':
2989 my_operand_length = 8;
2990 break;
2991 case 'f':
2992 my_operand_length = 4;
2993 break;
2994 case 'g':
2995 my_operand_length = 16;
2996 break;
2997 case 'h':
2998 my_operand_length = 32;
2999 break;
3000 case 'l':
3001 my_operand_length = 4;
3002 break;
3003 case 'o':
3004 my_operand_length = 16;
3005 break;
3006 case 'q':
3007 my_operand_length = 8;
3008 break;
3009 case 'w':
3010 my_operand_length = 2;
3011 break;
3012 case '!':
3013 case '?':
3014 case '-':
3015 my_operand_length = 0;
3016 break;
3017
3018 default:
3019 my_operand_length = 2;
3020 printf ("I dn't understand access width %c\n", mywidth);
3021 break;
3022 }
3023 printf ("VAX assembler instruction operand: ");
3024 fflush (stdout);
3025 gets (answer);
3026 mybug = vip_op (answer, myaccess, mywidth, my_operand_length,
3027 &mymode, &myreg, &mylen, &myleft, &myright, &myndx,
3028 &myerr, &mywrn);
3029 if (*myerr)
3030 {
3031 printf ("error: \"%s\"\n", myerr);
3032 if (*mybug)
3033 printf (" bug: \"%s\"\n", mybug);
3034 }
3035 else
3036 {
3037 if (*mywrn)
3038 printf ("warning: \"%s\"\n", mywrn);
3039 mumble ("mode", mymode);
3040 mumble ("register", myreg);
3041 mumble ("index", myndx);
3042 printf ("width:'%c' ", mylen);
3043 printf ("expression: \"");
3044 while (myleft <= myright)
3045 putchar (*myleft++);
3046 printf ("\"\n");
3047 }
3048 }
3049 }
3050
3051 mumble (text, value)
3052 char *text;
3053 int value;
3054 {
3055 printf ("%s:", text);
3056 if (value >= 0)
3057 printf ("%xx", value);
3058 else
3059 printf ("ABSENT");
3060 printf (" ");
3061 }
3062
3063 #endif /* ifdef TEST */
3064
3065 /* end: vip_op.c */
3066
3067 const int md_short_jump_size = 3;
3068 const int md_long_jump_size = 6;
3069 const int md_reloc_size = 8; /* Size of relocation record */
3070
3071 void
3072 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3073 char *ptr;
3074 addressT from_addr, to_addr;
3075 fragS *frag;
3076 symbolS *to_symbol;
3077 {
3078 valueT offset;
3079
3080 offset = to_addr - (from_addr + 1);
3081 *ptr++ = 0x31;
3082 md_number_to_chars (ptr, offset, 2);
3083 }
3084
3085 void
3086 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3087 char *ptr;
3088 addressT from_addr, to_addr;
3089 fragS *frag;
3090 symbolS *to_symbol;
3091 {
3092 valueT offset;
3093
3094 offset = to_addr - S_GET_VALUE (to_symbol);
3095 *ptr++ = 0x17;
3096 *ptr++ = 0x9F;
3097 md_number_to_chars (ptr, offset, 4);
3098 fix_new (frag, ptr - frag->fr_literal, 4, to_symbol, (long) 0, 0, NO_RELOC);
3099 }
3100 \f
3101 #ifdef OBJ_VMS
3102 CONST char *md_shortopts = "d:STt:V+h:H";
3103 #else
3104 CONST char *md_shortopts = "d:STt:V";
3105 #endif
3106 struct option md_longopts[] = {
3107 {NULL, no_argument, NULL, 0}
3108 };
3109 size_t md_longopts_size = sizeof(md_longopts);
3110
3111 int
3112 md_parse_option (c, arg)
3113 int c;
3114 char *arg;
3115 {
3116 switch (c)
3117 {
3118 case 'S':
3119 as_warn ("SYMBOL TABLE not implemented");
3120 break;
3121
3122 case 'T':
3123 as_warn ("TOKEN TRACE not implemented");
3124 break;
3125
3126 case 'd':
3127 as_warn ("Displacement length %s ignored!", arg);
3128 break;
3129
3130 case 't':
3131 as_warn ("I don't need or use temp. file \"%s\".", arg);
3132 break;
3133
3134 case 'V':
3135 as_warn ("I don't use an interpass file! -V ignored");
3136 break;
3137
3138 #ifdef OBJ_VMS
3139 case '+': /* For g++ */
3140 break;
3141
3142 case 'h': /* No hashing of mixed-case names */
3143 {
3144 extern char vms_name_mapping;
3145 vms_name_mapping = atoi (arg);
3146 }
3147 break;
3148
3149 case 'H': /* Show new symbol after hash truncation */
3150 break;
3151 #endif
3152
3153 default:
3154 return 0;
3155 }
3156
3157 return 1;
3158 }
3159
3160 void
3161 md_show_usage (stream)
3162 FILE *stream;
3163 {
3164 fprintf(stream, "\
3165 VAX options:\n\
3166 -d LENGTH ignored\n\
3167 -J ignored\n\
3168 -S ignored\n\
3169 -t FILE ignored\n\
3170 -T ignored\n\
3171 -V ignored\n");
3172 }
3173 \f
3174 /* We have no need to default values of symbols. */
3175
3176 /* ARGSUSED */
3177 symbolS *
3178 md_undefined_symbol (name)
3179 char *name;
3180 {
3181 return 0;
3182 }
3183
3184 /* Parse an operand that is machine-specific.
3185 We just return without modifying the expression if we have nothing
3186 to do. */
3187
3188 /* ARGSUSED */
3189 void
3190 md_operand (expressionP)
3191 expressionS *expressionP;
3192 {
3193 }
3194
3195 /* Round up a section size to the appropriate boundary. */
3196 valueT
3197 md_section_align (segment, size)
3198 segT segment;
3199 valueT size;
3200 {
3201 return size; /* Byte alignment is fine */
3202 }
3203
3204 /* Exactly what point is a PC-relative offset relative TO?
3205 On the vax, they're relative to the address of the offset, plus
3206 its size. (??? Is this right? FIXME-SOON) */
3207 long
3208 md_pcrel_from (fixP)
3209 fixS *fixP;
3210 {
3211 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
3212 }
3213
3214 /* end of tc-vax.c */