gas: xtensa: rewrite xg_relax_trampoline
[binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "as.h"
22 #include <limits.h>
23 #include "sb.h"
24 #include "safe-ctype.h"
25 #include "tc-xtensa.h"
26 #include "subsegs.h"
27 #include "xtensa-relax.h"
28 #include "dwarf2dbg.h"
29 #include "xtensa-istack.h"
30 #include "struc-symbol.h"
31 #include "xtensa-config.h"
32 #include "elf/xtensa.h"
33
34 /* Provide default values for new configuration settings. */
35 #ifndef XSHAL_ABI
36 #define XSHAL_ABI 0
37 #endif
38
39 #ifndef uint32
40 #define uint32 unsigned int
41 #endif
42 #ifndef int32
43 #define int32 signed int
44 #endif
45
46 /* Notes:
47
48 Naming conventions (used somewhat inconsistently):
49 The xtensa_ functions are exported
50 The xg_ functions are internal
51
52 We also have a couple of different extensibility mechanisms.
53 1) The idiom replacement:
54 This is used when a line is first parsed to
55 replace an instruction pattern with another instruction
56 It is currently limited to replacements of instructions
57 with constant operands.
58 2) The xtensa-relax.c mechanism that has stronger instruction
59 replacement patterns. When an instruction's immediate field
60 does not fit the next instruction sequence is attempted.
61 In addition, "narrow" opcodes are supported this way. */
62
63
64 /* Define characters with special meanings to GAS. */
65 const char comment_chars[] = "#";
66 const char line_comment_chars[] = "#";
67 const char line_separator_chars[] = ";";
68 const char EXP_CHARS[] = "eE";
69 const char FLT_CHARS[] = "rRsSfFdDxXpP";
70
71
72 /* Flags to indicate whether the hardware supports the density and
73 absolute literals options. */
74
75 bfd_boolean density_supported;
76 bfd_boolean absolute_literals_supported;
77
78 static vliw_insn cur_vinsn;
79
80 unsigned xtensa_num_pipe_stages;
81 unsigned xtensa_fetch_width;
82
83 static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
84
85 /* Some functions are only valid in the front end. This variable
86 allows us to assert that we haven't crossed over into the
87 back end. */
88 static bfd_boolean past_xtensa_end = FALSE;
89
90 /* Flags for properties of the last instruction in a segment. */
91 #define FLAG_IS_A0_WRITER 0x1
92 #define FLAG_IS_BAD_LOOPEND 0x2
93
94
95 /* We define a special segment names ".literal" to place literals
96 into. The .fini and .init sections are special because they
97 contain code that is moved together by the linker. We give them
98 their own special .fini.literal and .init.literal sections. */
99
100 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
101 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
102 #define INIT_SECTION_NAME xtensa_section_rename (".init")
103 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
104
105
106 /* This type is used for the directive_stack to keep track of the
107 state of the literal collection pools. If lit_prefix is set, it is
108 used to determine the literal section names; otherwise, the literal
109 sections are determined based on the current text section. The
110 lit_seg and lit4_seg fields cache these literal sections, with the
111 current_text_seg field used a tag to indicate whether the cached
112 values are valid. */
113
114 typedef struct lit_state_struct
115 {
116 char *lit_prefix;
117 segT current_text_seg;
118 segT lit_seg;
119 segT lit4_seg;
120 } lit_state;
121
122 static lit_state default_lit_sections;
123
124
125 /* We keep a list of literal segments. The seg_list type is the node
126 for this list. The literal_head pointer is the head of the list,
127 with the literal_head_h dummy node at the start. */
128
129 typedef struct seg_list_struct
130 {
131 struct seg_list_struct *next;
132 segT seg;
133 } seg_list;
134
135 static seg_list literal_head_h;
136 static seg_list *literal_head = &literal_head_h;
137
138
139 /* Lists of symbols. We keep a list of symbols that label the current
140 instruction, so that we can adjust the symbols when inserting alignment
141 for various instructions. We also keep a list of all the symbols on
142 literals, so that we can fix up those symbols when the literals are
143 later moved into the text sections. */
144
145 typedef struct sym_list_struct
146 {
147 struct sym_list_struct *next;
148 symbolS *sym;
149 } sym_list;
150
151 static sym_list *insn_labels = NULL;
152 static sym_list *free_insn_labels = NULL;
153 static sym_list *saved_insn_labels = NULL;
154
155 static sym_list *literal_syms;
156
157
158 /* Flags to determine whether to prefer const16 or l32r
159 if both options are available. */
160 int prefer_const16 = 0;
161 int prefer_l32r = 0;
162
163 /* Global flag to indicate when we are emitting literals. */
164 int generating_literals = 0;
165
166 /* The following PROPERTY table definitions are copied from
167 <elf/xtensa.h> and must be kept in sync with the code there. */
168
169 /* Flags in the property tables to specify whether blocks of memory
170 are literals, instructions, data, or unreachable. For
171 instructions, blocks that begin loop targets and branch targets are
172 designated. Blocks that do not allow density, instruction
173 reordering or transformation are also specified. Finally, for
174 branch targets, branch target alignment priority is included.
175 Alignment of the next block is specified in the current block
176 and the size of the current block does not include any fill required
177 to align to the next block. */
178
179 #define XTENSA_PROP_LITERAL 0x00000001
180 #define XTENSA_PROP_INSN 0x00000002
181 #define XTENSA_PROP_DATA 0x00000004
182 #define XTENSA_PROP_UNREACHABLE 0x00000008
183 /* Instruction only properties at beginning of code. */
184 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
185 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
186 /* Instruction only properties about code. */
187 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
188 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
189 /* Historically, NO_TRANSFORM was a property of instructions,
190 but it should apply to literals under certain circumstances. */
191 #define XTENSA_PROP_NO_TRANSFORM 0x00000100
192
193 /* Branch target alignment information. This transmits information
194 to the linker optimization about the priority of aligning a
195 particular block for branch target alignment: None, low priority,
196 high priority, or required. These only need to be checked in
197 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
198 Common usage is
199
200 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
201 case XTENSA_PROP_BT_ALIGN_NONE:
202 case XTENSA_PROP_BT_ALIGN_LOW:
203 case XTENSA_PROP_BT_ALIGN_HIGH:
204 case XTENSA_PROP_BT_ALIGN_REQUIRE:
205 */
206 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
207
208 /* No branch target alignment. */
209 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
210 /* Low priority branch target alignment. */
211 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
212 /* High priority branch target alignment. */
213 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
214 /* Required branch target alignment. */
215 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
216
217 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
218 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
219 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
220
221
222 /* Alignment is specified in the block BEFORE the one that needs
223 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
224 get the required alignment specified as a power of 2. Use
225 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
226 alignment. Be careful of side effects since the SET will evaluate
227 flags twice. Also, note that the SIZE of a block in the property
228 table does not include the alignment size, so the alignment fill
229 must be calculated to determine if two blocks are contiguous.
230 TEXT_ALIGN is not currently implemented but is a placeholder for a
231 possible future implementation. */
232
233 #define XTENSA_PROP_ALIGN 0x00000800
234
235 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
236
237 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
238 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
239 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
240
241 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
242
243
244 /* Structure for saving instruction and alignment per-fragment data
245 that will be written to the object file. This structure is
246 equivalent to the actual data that will be written out to the file
247 but is easier to use. We provide a conversion to file flags
248 in frag_flags_to_number. */
249
250 typedef struct frag_flags_struct frag_flags;
251
252 struct frag_flags_struct
253 {
254 /* is_literal should only be used after xtensa_move_literals.
255 If you need to check if you are generating a literal fragment,
256 then use the generating_literals global. */
257
258 unsigned is_literal : 1;
259 unsigned is_insn : 1;
260 unsigned is_data : 1;
261 unsigned is_unreachable : 1;
262
263 /* is_specific_opcode implies no_transform. */
264 unsigned is_no_transform : 1;
265
266 struct
267 {
268 unsigned is_loop_target : 1;
269 unsigned is_branch_target : 1; /* Branch targets have a priority. */
270 unsigned bt_align_priority : 2;
271
272 unsigned is_no_density : 1;
273 /* no_longcalls flag does not need to be placed in the object file. */
274
275 unsigned is_no_reorder : 1;
276
277 /* Uses absolute literal addressing for l32r. */
278 unsigned is_abslit : 1;
279 } insn;
280 unsigned is_align : 1;
281 unsigned alignment : 5;
282 };
283
284
285 /* Structure for saving information about a block of property data
286 for frags that have the same flags. */
287 struct xtensa_block_info_struct
288 {
289 segT sec;
290 bfd_vma offset;
291 size_t size;
292 frag_flags flags;
293 struct xtensa_block_info_struct *next;
294 };
295
296
297 /* Structure for saving the current state before emitting literals. */
298 typedef struct emit_state_struct
299 {
300 const char *name;
301 segT now_seg;
302 subsegT now_subseg;
303 int generating_literals;
304 } emit_state;
305
306
307 /* Opcode placement information */
308
309 typedef unsigned long long bitfield;
310 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
311 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
312 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
313
314 #define MAX_FORMATS 32
315
316 typedef struct op_placement_info_struct
317 {
318 int num_formats;
319 /* A number describing how restrictive the issue is for this
320 opcode. For example, an opcode that fits lots of different
321 formats has a high freedom, as does an opcode that fits
322 only one format but many slots in that format. The most
323 restrictive is the opcode that fits only one slot in one
324 format. */
325 int issuef;
326 xtensa_format narrowest;
327 char narrowest_size;
328 char narrowest_slot;
329
330 /* formats is a bitfield with the Nth bit set
331 if the opcode fits in the Nth xtensa_format. */
332 bitfield formats;
333
334 /* slots[N]'s Mth bit is set if the op fits in the
335 Mth slot of the Nth xtensa_format. */
336 bitfield slots[MAX_FORMATS];
337
338 /* A count of the number of slots in a given format
339 an op can fit (i.e., the bitcount of the slot field above). */
340 char slots_in_format[MAX_FORMATS];
341
342 } op_placement_info, *op_placement_info_table;
343
344 op_placement_info_table op_placement_table;
345
346
347 /* Extra expression types. */
348
349 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
350 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
351 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
352 #define O_pcrel O_md4 /* value is a PC-relative offset */
353 #define O_tlsfunc O_md5 /* TLS_FUNC/TLSDESC_FN relocation */
354 #define O_tlsarg O_md6 /* TLS_ARG/TLSDESC_ARG relocation */
355 #define O_tlscall O_md7 /* TLS_CALL relocation */
356 #define O_tpoff O_md8 /* TPOFF relocation */
357 #define O_dtpoff O_md9 /* DTPOFF relocation */
358
359 struct suffix_reloc_map
360 {
361 const char *suffix;
362 int length;
363 bfd_reloc_code_real_type reloc;
364 operatorT operator;
365 };
366
367 #define SUFFIX_MAP(str, reloc, op) { str, sizeof (str) - 1, reloc, op }
368
369 static struct suffix_reloc_map suffix_relocs[] =
370 {
371 SUFFIX_MAP ("l", BFD_RELOC_LO16, O_lo16),
372 SUFFIX_MAP ("h", BFD_RELOC_HI16, O_hi16),
373 SUFFIX_MAP ("plt", BFD_RELOC_XTENSA_PLT, O_pltrel),
374 SUFFIX_MAP ("pcrel", BFD_RELOC_32_PCREL, O_pcrel),
375 SUFFIX_MAP ("tlsfunc", BFD_RELOC_XTENSA_TLS_FUNC, O_tlsfunc),
376 SUFFIX_MAP ("tlsarg", BFD_RELOC_XTENSA_TLS_ARG, O_tlsarg),
377 SUFFIX_MAP ("tlscall", BFD_RELOC_XTENSA_TLS_CALL, O_tlscall),
378 SUFFIX_MAP ("tpoff", BFD_RELOC_XTENSA_TLS_TPOFF, O_tpoff),
379 SUFFIX_MAP ("dtpoff", BFD_RELOC_XTENSA_TLS_DTPOFF, O_dtpoff),
380 };
381
382
383 /* Directives. */
384
385 typedef enum
386 {
387 directive_none = 0,
388 directive_literal,
389 directive_density,
390 directive_transform,
391 directive_freeregs,
392 directive_longcalls,
393 directive_literal_prefix,
394 directive_schedule,
395 directive_absolute_literals,
396 directive_last_directive
397 } directiveE;
398
399 typedef struct
400 {
401 const char *name;
402 bfd_boolean can_be_negated;
403 } directive_infoS;
404
405 const directive_infoS directive_info[] =
406 {
407 { "none", FALSE },
408 { "literal", FALSE },
409 { "density", TRUE },
410 { "transform", TRUE },
411 { "freeregs", FALSE },
412 { "longcalls", TRUE },
413 { "literal_prefix", FALSE },
414 { "schedule", TRUE },
415 { "absolute-literals", TRUE }
416 };
417
418 bfd_boolean directive_state[] =
419 {
420 FALSE, /* none */
421 FALSE, /* literal */
422 FALSE, /* density */
423 TRUE, /* transform */
424 FALSE, /* freeregs */
425 FALSE, /* longcalls */
426 FALSE, /* literal_prefix */
427 FALSE, /* schedule */
428 FALSE /* absolute_literals */
429 };
430
431 /* A circular list of all potential and actual literal pool locations
432 in a segment. */
433 struct litpool_frag
434 {
435 struct litpool_frag *next;
436 struct litpool_frag *prev;
437 fragS *fragP;
438 addressT addr;
439 short priority; /* 1, 2, or 3 -- 1 is highest */
440 short original_priority;
441 };
442
443 /* Map a segment to its litpool_frag list. */
444 struct litpool_seg
445 {
446 struct litpool_seg *next;
447 asection *seg;
448 struct litpool_frag frag_list;
449 int frag_count; /* since last litpool location */
450 };
451
452 static struct litpool_seg litpool_seg_list;
453
454
455 /* Directive functions. */
456
457 static void xtensa_begin_directive (int);
458 static void xtensa_end_directive (int);
459 static void xtensa_literal_prefix (void);
460 static void xtensa_literal_position (int);
461 static void xtensa_literal_pseudo (int);
462 static void xtensa_frequency_pseudo (int);
463 static void xtensa_elf_cons (int);
464 static void xtensa_leb128 (int);
465
466 /* Parsing and Idiom Translation. */
467
468 static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
469
470 /* Various Other Internal Functions. */
471
472 extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
473 static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
474 static void xtensa_mark_literal_pool_location (void);
475 static addressT get_expanded_loop_offset (xtensa_opcode);
476 static fragS *get_literal_pool_location (segT);
477 static void set_literal_pool_location (segT, fragS *);
478 static void xtensa_set_frag_assembly_state (fragS *);
479 static void finish_vinsn (vliw_insn *);
480 static bfd_boolean emit_single_op (TInsn *);
481 static int total_frag_text_expansion (fragS *);
482 static bfd_boolean use_trampolines = TRUE;
483 static void xtensa_check_frag_count (void);
484 static void xtensa_create_trampoline_frag (bfd_boolean);
485 static void xtensa_maybe_create_trampoline_frag (void);
486 struct trampoline_frag;
487 static int init_trampoline_frag (fragS *);
488 static fixS *xg_append_jump (fragS *fragP, symbolS *sym, offsetT offset);
489 static void xtensa_maybe_create_literal_pool_frag (bfd_boolean, bfd_boolean);
490 static bfd_boolean auto_litpools = FALSE;
491 static int auto_litpool_limit = 10000;
492
493 /* Alignment Functions. */
494
495 static int get_text_align_power (unsigned);
496 static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
497 static int branch_align_power (segT);
498
499 /* Helpers for xtensa_relax_frag(). */
500
501 static long relax_frag_add_nop (fragS *);
502
503 /* Accessors for additional per-subsegment information. */
504
505 static unsigned get_last_insn_flags (segT, subsegT);
506 static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
507 static float get_subseg_total_freq (segT, subsegT);
508 static float get_subseg_target_freq (segT, subsegT);
509 static void set_subseg_freq (segT, subsegT, float, float);
510
511 /* Segment list functions. */
512
513 static void xtensa_move_literals (void);
514 static void xtensa_reorder_segments (void);
515 static void xtensa_switch_to_literal_fragment (emit_state *);
516 static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
517 static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
518 static void xtensa_restore_emit_state (emit_state *);
519 static segT cache_literal_section (bfd_boolean);
520
521 /* op_placement_info functions. */
522
523 static void init_op_placement_info_table (void);
524 extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
525 static int xg_get_single_size (xtensa_opcode);
526 static xtensa_format xg_get_single_format (xtensa_opcode);
527 static int xg_get_single_slot (xtensa_opcode);
528
529 /* TInsn and IStack functions. */
530
531 static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
532 static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
533 static bfd_boolean tinsn_has_complex_operands (const TInsn *);
534 static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
535 static bfd_boolean tinsn_check_arguments (const TInsn *);
536 static void tinsn_from_chars (TInsn *, char *, int);
537 static void tinsn_immed_from_frag (TInsn *, fragS *, int);
538 static int get_num_stack_text_bytes (IStack *);
539 static int get_num_stack_literal_bytes (IStack *);
540 static bfd_boolean tinsn_to_slotbuf (xtensa_format, int, TInsn *, xtensa_insnbuf);
541
542 /* vliw_insn functions. */
543
544 static void xg_init_vinsn (vliw_insn *);
545 static void xg_copy_vinsn (vliw_insn *, vliw_insn *);
546 static void xg_clear_vinsn (vliw_insn *);
547 static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
548 static void xg_free_vinsn (vliw_insn *);
549 static bfd_boolean vinsn_to_insnbuf
550 (vliw_insn *, char *, fragS *, bfd_boolean);
551 static void vinsn_from_chars (vliw_insn *, char *);
552
553 /* Expression Utilities. */
554
555 bfd_boolean expr_is_const (const expressionS *);
556 offsetT get_expr_const (const expressionS *);
557 void set_expr_const (expressionS *, offsetT);
558 bfd_boolean expr_is_register (const expressionS *);
559 offsetT get_expr_register (const expressionS *);
560 void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
561 bfd_boolean expr_is_equal (expressionS *, expressionS *);
562 static void copy_expr (expressionS *, const expressionS *);
563
564 /* Section renaming. */
565
566 static void build_section_rename (const char *);
567
568
569 /* ISA imported from bfd. */
570 extern xtensa_isa xtensa_default_isa;
571
572 extern int target_big_endian;
573
574 static xtensa_opcode xtensa_addi_opcode;
575 static xtensa_opcode xtensa_addmi_opcode;
576 static xtensa_opcode xtensa_call0_opcode;
577 static xtensa_opcode xtensa_call4_opcode;
578 static xtensa_opcode xtensa_call8_opcode;
579 static xtensa_opcode xtensa_call12_opcode;
580 static xtensa_opcode xtensa_callx0_opcode;
581 static xtensa_opcode xtensa_callx4_opcode;
582 static xtensa_opcode xtensa_callx8_opcode;
583 static xtensa_opcode xtensa_callx12_opcode;
584 static xtensa_opcode xtensa_const16_opcode;
585 static xtensa_opcode xtensa_entry_opcode;
586 static xtensa_opcode xtensa_extui_opcode;
587 static xtensa_opcode xtensa_movi_opcode;
588 static xtensa_opcode xtensa_movi_n_opcode;
589 static xtensa_opcode xtensa_isync_opcode;
590 static xtensa_opcode xtensa_j_opcode;
591 static xtensa_opcode xtensa_jx_opcode;
592 static xtensa_opcode xtensa_l32r_opcode;
593 static xtensa_opcode xtensa_loop_opcode;
594 static xtensa_opcode xtensa_loopnez_opcode;
595 static xtensa_opcode xtensa_loopgtz_opcode;
596 static xtensa_opcode xtensa_nop_opcode;
597 static xtensa_opcode xtensa_nop_n_opcode;
598 static xtensa_opcode xtensa_or_opcode;
599 static xtensa_opcode xtensa_ret_opcode;
600 static xtensa_opcode xtensa_ret_n_opcode;
601 static xtensa_opcode xtensa_retw_opcode;
602 static xtensa_opcode xtensa_retw_n_opcode;
603 static xtensa_opcode xtensa_rsr_lcount_opcode;
604 static xtensa_opcode xtensa_waiti_opcode;
605 static int config_max_slots = 0;
606
607 \f
608 /* Command-line Options. */
609
610 bfd_boolean use_literal_section = TRUE;
611 enum flix_level produce_flix = FLIX_ALL;
612 static bfd_boolean align_targets = TRUE;
613 static bfd_boolean warn_unaligned_branch_targets = FALSE;
614 static bfd_boolean has_a0_b_retw = FALSE;
615 static bfd_boolean workaround_a0_b_retw = FALSE;
616 static bfd_boolean workaround_b_j_loop_end = FALSE;
617 static bfd_boolean workaround_short_loop = FALSE;
618 static bfd_boolean maybe_has_short_loop = FALSE;
619 static bfd_boolean workaround_close_loop_end = FALSE;
620 static bfd_boolean maybe_has_close_loop_end = FALSE;
621 static bfd_boolean enforce_three_byte_loop_align = FALSE;
622
623 /* When workaround_short_loops is TRUE, all loops with early exits must
624 have at least 3 instructions. workaround_all_short_loops is a modifier
625 to the workaround_short_loop flag. In addition to the
626 workaround_short_loop actions, all straightline loopgtz and loopnez
627 must have at least 3 instructions. */
628
629 static bfd_boolean workaround_all_short_loops = FALSE;
630
631
632 static void
633 xtensa_setup_hw_workarounds (int earliest, int latest)
634 {
635 if (earliest > latest)
636 as_fatal (_("illegal range of target hardware versions"));
637
638 /* Enable all workarounds for pre-T1050.0 hardware. */
639 if (earliest < 105000 || latest < 105000)
640 {
641 workaround_a0_b_retw |= TRUE;
642 workaround_b_j_loop_end |= TRUE;
643 workaround_short_loop |= TRUE;
644 workaround_close_loop_end |= TRUE;
645 workaround_all_short_loops |= TRUE;
646 enforce_three_byte_loop_align = TRUE;
647 }
648 }
649
650
651 enum
652 {
653 option_density = OPTION_MD_BASE,
654 option_no_density,
655
656 option_flix,
657 option_no_generate_flix,
658 option_no_flix,
659
660 option_relax,
661 option_no_relax,
662
663 option_link_relax,
664 option_no_link_relax,
665
666 option_generics,
667 option_no_generics,
668
669 option_transform,
670 option_no_transform,
671
672 option_text_section_literals,
673 option_no_text_section_literals,
674
675 option_absolute_literals,
676 option_no_absolute_literals,
677
678 option_align_targets,
679 option_no_align_targets,
680
681 option_warn_unaligned_targets,
682
683 option_longcalls,
684 option_no_longcalls,
685
686 option_workaround_a0_b_retw,
687 option_no_workaround_a0_b_retw,
688
689 option_workaround_b_j_loop_end,
690 option_no_workaround_b_j_loop_end,
691
692 option_workaround_short_loop,
693 option_no_workaround_short_loop,
694
695 option_workaround_all_short_loops,
696 option_no_workaround_all_short_loops,
697
698 option_workaround_close_loop_end,
699 option_no_workaround_close_loop_end,
700
701 option_no_workarounds,
702
703 option_rename_section_name,
704
705 option_prefer_l32r,
706 option_prefer_const16,
707
708 option_target_hardware,
709
710 option_trampolines,
711 option_no_trampolines,
712
713 option_auto_litpools,
714 option_no_auto_litpools,
715 option_auto_litpool_limit,
716 };
717
718 const char *md_shortopts = "";
719
720 struct option md_longopts[] =
721 {
722 { "density", no_argument, NULL, option_density },
723 { "no-density", no_argument, NULL, option_no_density },
724
725 { "flix", no_argument, NULL, option_flix },
726 { "no-generate-flix", no_argument, NULL, option_no_generate_flix },
727 { "no-allow-flix", no_argument, NULL, option_no_flix },
728
729 /* Both "relax" and "generics" are deprecated and treated as equivalent
730 to the "transform" option. */
731 { "relax", no_argument, NULL, option_relax },
732 { "no-relax", no_argument, NULL, option_no_relax },
733 { "generics", no_argument, NULL, option_generics },
734 { "no-generics", no_argument, NULL, option_no_generics },
735
736 { "transform", no_argument, NULL, option_transform },
737 { "no-transform", no_argument, NULL, option_no_transform },
738 { "text-section-literals", no_argument, NULL, option_text_section_literals },
739 { "no-text-section-literals", no_argument, NULL,
740 option_no_text_section_literals },
741 { "absolute-literals", no_argument, NULL, option_absolute_literals },
742 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
743 /* This option was changed from -align-target to -target-align
744 because it conflicted with the "-al" option. */
745 { "target-align", no_argument, NULL, option_align_targets },
746 { "no-target-align", no_argument, NULL, option_no_align_targets },
747 { "warn-unaligned-targets", no_argument, NULL,
748 option_warn_unaligned_targets },
749 { "longcalls", no_argument, NULL, option_longcalls },
750 { "no-longcalls", no_argument, NULL, option_no_longcalls },
751
752 { "no-workaround-a0-b-retw", no_argument, NULL,
753 option_no_workaround_a0_b_retw },
754 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
755
756 { "no-workaround-b-j-loop-end", no_argument, NULL,
757 option_no_workaround_b_j_loop_end },
758 { "workaround-b-j-loop-end", no_argument, NULL,
759 option_workaround_b_j_loop_end },
760
761 { "no-workaround-short-loops", no_argument, NULL,
762 option_no_workaround_short_loop },
763 { "workaround-short-loops", no_argument, NULL,
764 option_workaround_short_loop },
765
766 { "no-workaround-all-short-loops", no_argument, NULL,
767 option_no_workaround_all_short_loops },
768 { "workaround-all-short-loop", no_argument, NULL,
769 option_workaround_all_short_loops },
770
771 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
772 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
773
774 { "no-workarounds", no_argument, NULL, option_no_workarounds },
775
776 { "no-workaround-close-loop-end", no_argument, NULL,
777 option_no_workaround_close_loop_end },
778 { "workaround-close-loop-end", no_argument, NULL,
779 option_workaround_close_loop_end },
780
781 { "rename-section", required_argument, NULL, option_rename_section_name },
782
783 { "link-relax", no_argument, NULL, option_link_relax },
784 { "no-link-relax", no_argument, NULL, option_no_link_relax },
785
786 { "target-hardware", required_argument, NULL, option_target_hardware },
787
788 { "trampolines", no_argument, NULL, option_trampolines },
789 { "no-trampolines", no_argument, NULL, option_no_trampolines },
790
791 { "auto-litpools", no_argument, NULL, option_auto_litpools },
792 { "no-auto-litpools", no_argument, NULL, option_no_auto_litpools },
793 { "auto-litpool-limit", required_argument, NULL, option_auto_litpool_limit },
794
795 { NULL, no_argument, NULL, 0 }
796 };
797
798 size_t md_longopts_size = sizeof md_longopts;
799
800
801 int
802 md_parse_option (int c, const char *arg)
803 {
804 switch (c)
805 {
806 case option_density:
807 as_warn (_("--density option is ignored"));
808 return 1;
809 case option_no_density:
810 as_warn (_("--no-density option is ignored"));
811 return 1;
812 case option_link_relax:
813 linkrelax = 1;
814 return 1;
815 case option_no_link_relax:
816 linkrelax = 0;
817 return 1;
818 case option_flix:
819 produce_flix = FLIX_ALL;
820 return 1;
821 case option_no_generate_flix:
822 produce_flix = FLIX_NO_GENERATE;
823 return 1;
824 case option_no_flix:
825 produce_flix = FLIX_NONE;
826 return 1;
827 case option_generics:
828 as_warn (_("--generics is deprecated; use --transform instead"));
829 return md_parse_option (option_transform, arg);
830 case option_no_generics:
831 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
832 return md_parse_option (option_no_transform, arg);
833 case option_relax:
834 as_warn (_("--relax is deprecated; use --transform instead"));
835 return md_parse_option (option_transform, arg);
836 case option_no_relax:
837 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
838 return md_parse_option (option_no_transform, arg);
839 case option_longcalls:
840 directive_state[directive_longcalls] = TRUE;
841 return 1;
842 case option_no_longcalls:
843 directive_state[directive_longcalls] = FALSE;
844 return 1;
845 case option_text_section_literals:
846 use_literal_section = FALSE;
847 return 1;
848 case option_no_text_section_literals:
849 use_literal_section = TRUE;
850 return 1;
851 case option_absolute_literals:
852 if (!absolute_literals_supported)
853 {
854 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
855 return 0;
856 }
857 directive_state[directive_absolute_literals] = TRUE;
858 return 1;
859 case option_no_absolute_literals:
860 directive_state[directive_absolute_literals] = FALSE;
861 return 1;
862
863 case option_workaround_a0_b_retw:
864 workaround_a0_b_retw = TRUE;
865 return 1;
866 case option_no_workaround_a0_b_retw:
867 workaround_a0_b_retw = FALSE;
868 return 1;
869 case option_workaround_b_j_loop_end:
870 workaround_b_j_loop_end = TRUE;
871 return 1;
872 case option_no_workaround_b_j_loop_end:
873 workaround_b_j_loop_end = FALSE;
874 return 1;
875
876 case option_workaround_short_loop:
877 workaround_short_loop = TRUE;
878 return 1;
879 case option_no_workaround_short_loop:
880 workaround_short_loop = FALSE;
881 return 1;
882
883 case option_workaround_all_short_loops:
884 workaround_all_short_loops = TRUE;
885 return 1;
886 case option_no_workaround_all_short_loops:
887 workaround_all_short_loops = FALSE;
888 return 1;
889
890 case option_workaround_close_loop_end:
891 workaround_close_loop_end = TRUE;
892 return 1;
893 case option_no_workaround_close_loop_end:
894 workaround_close_loop_end = FALSE;
895 return 1;
896
897 case option_no_workarounds:
898 workaround_a0_b_retw = FALSE;
899 workaround_b_j_loop_end = FALSE;
900 workaround_short_loop = FALSE;
901 workaround_all_short_loops = FALSE;
902 workaround_close_loop_end = FALSE;
903 return 1;
904
905 case option_align_targets:
906 align_targets = TRUE;
907 return 1;
908 case option_no_align_targets:
909 align_targets = FALSE;
910 return 1;
911
912 case option_warn_unaligned_targets:
913 warn_unaligned_branch_targets = TRUE;
914 return 1;
915
916 case option_rename_section_name:
917 build_section_rename (arg);
918 return 1;
919
920 case 'Q':
921 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
922 should be emitted or not. FIXME: Not implemented. */
923 return 1;
924
925 case option_prefer_l32r:
926 if (prefer_const16)
927 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
928 prefer_l32r = 1;
929 return 1;
930
931 case option_prefer_const16:
932 if (prefer_l32r)
933 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
934 prefer_const16 = 1;
935 return 1;
936
937 case option_target_hardware:
938 {
939 int earliest, latest = 0;
940 char *end;
941 if (*arg == 0 || *arg == '-')
942 as_fatal (_("invalid target hardware version"));
943
944 earliest = strtol (arg, &end, 0);
945
946 if (*end == 0)
947 latest = earliest;
948 else if (*end == '-')
949 {
950 if (*++end == 0)
951 as_fatal (_("invalid target hardware version"));
952 latest = strtol (end, &end, 0);
953 }
954 if (*end != 0)
955 as_fatal (_("invalid target hardware version"));
956
957 xtensa_setup_hw_workarounds (earliest, latest);
958 return 1;
959 }
960
961 case option_transform:
962 /* This option has no affect other than to use the defaults,
963 which are already set. */
964 return 1;
965
966 case option_no_transform:
967 /* This option turns off all transformations of any kind.
968 However, because we want to preserve the state of other
969 directives, we only change its own field. Thus, before
970 you perform any transformation, always check if transform
971 is available. If you use the functions we provide for this
972 purpose, you will be ok. */
973 directive_state[directive_transform] = FALSE;
974 return 1;
975
976 case option_trampolines:
977 use_trampolines = TRUE;
978 return 1;
979
980 case option_no_trampolines:
981 use_trampolines = FALSE;
982 return 1;
983
984 case option_auto_litpools:
985 auto_litpools = TRUE;
986 use_literal_section = FALSE;
987 return 1;
988
989 case option_no_auto_litpools:
990 auto_litpools = FALSE;
991 auto_litpool_limit = -1;
992 return 1;
993
994 case option_auto_litpool_limit:
995 {
996 int value = 0;
997 char *end;
998 if (auto_litpool_limit < 0)
999 as_fatal (_("no-auto-litpools is incompatible with auto-litpool-limit"));
1000 if (*arg == 0 || *arg == '-')
1001 as_fatal (_("invalid auto-litpool-limit argument"));
1002 value = strtol (arg, &end, 10);
1003 if (*end != 0)
1004 as_fatal (_("invalid auto-litpool-limit argument"));
1005 if (value < 100 || value > 10000)
1006 as_fatal (_("invalid auto-litpool-limit argument (range is 100-10000)"));
1007 auto_litpool_limit = value;
1008 auto_litpools = TRUE;
1009 use_literal_section = FALSE;
1010 return 1;
1011 }
1012
1013 default:
1014 return 0;
1015 }
1016 }
1017
1018
1019 void
1020 md_show_usage (FILE *stream)
1021 {
1022 fputs ("\n\
1023 Xtensa options:\n\
1024 --[no-]text-section-literals\n\
1025 [Do not] put literals in the text section\n\
1026 --[no-]absolute-literals\n\
1027 [Do not] default to use non-PC-relative literals\n\
1028 --[no-]target-align [Do not] try to align branch targets\n\
1029 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
1030 --[no-]transform [Do not] transform instructions\n\
1031 --flix both allow hand-written and generate flix bundles\n\
1032 --no-generate-flix allow hand-written but do not generate\n\
1033 flix bundles\n\
1034 --no-allow-flix neither allow hand-written nor generate\n\
1035 flix bundles\n\
1036 --rename-section old=new Rename section 'old' to 'new'\n\
1037 --[no-]trampolines [Do not] generate trampolines (jumps to jumps)\n\
1038 when jumps do not reach their targets\n\
1039 --[no-]auto-litpools [Do not] automatically create literal pools\n\
1040 --auto-litpool-limit=<value>\n\
1041 (range 100-10000) Maximum number of blocks of\n\
1042 instructions to emit between literal pool\n\
1043 locations; implies --auto-litpools flag\n", stream);
1044 }
1045
1046 \f
1047 /* Functions related to the list of current label symbols. */
1048
1049 static void
1050 xtensa_add_insn_label (symbolS *sym)
1051 {
1052 sym_list *l;
1053
1054 if (!free_insn_labels)
1055 l = XNEW (sym_list);
1056 else
1057 {
1058 l = free_insn_labels;
1059 free_insn_labels = l->next;
1060 }
1061
1062 l->sym = sym;
1063 l->next = insn_labels;
1064 insn_labels = l;
1065 }
1066
1067
1068 static void
1069 xtensa_clear_insn_labels (void)
1070 {
1071 sym_list **pl;
1072
1073 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1074 ;
1075 *pl = insn_labels;
1076 insn_labels = NULL;
1077 }
1078
1079
1080 static void
1081 xtensa_move_labels (fragS *new_frag, valueT new_offset)
1082 {
1083 sym_list *lit;
1084
1085 for (lit = insn_labels; lit; lit = lit->next)
1086 {
1087 symbolS *lit_sym = lit->sym;
1088 S_SET_VALUE (lit_sym, new_offset);
1089 symbol_set_frag (lit_sym, new_frag);
1090 }
1091 }
1092
1093 \f
1094 /* Directive data and functions. */
1095
1096 typedef struct state_stackS_struct
1097 {
1098 directiveE directive;
1099 bfd_boolean negated;
1100 bfd_boolean old_state;
1101 const char *file;
1102 unsigned int line;
1103 const void *datum;
1104 struct state_stackS_struct *prev;
1105 } state_stackS;
1106
1107 state_stackS *directive_state_stack;
1108
1109 const pseudo_typeS md_pseudo_table[] =
1110 {
1111 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1112 { "literal_position", xtensa_literal_position, 0 },
1113 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1114 { "long", xtensa_elf_cons, 4 },
1115 { "word", xtensa_elf_cons, 4 },
1116 { "4byte", xtensa_elf_cons, 4 },
1117 { "short", xtensa_elf_cons, 2 },
1118 { "2byte", xtensa_elf_cons, 2 },
1119 { "sleb128", xtensa_leb128, 1},
1120 { "uleb128", xtensa_leb128, 0},
1121 { "begin", xtensa_begin_directive, 0 },
1122 { "end", xtensa_end_directive, 0 },
1123 { "literal", xtensa_literal_pseudo, 0 },
1124 { "frequency", xtensa_frequency_pseudo, 0 },
1125 { NULL, 0, 0 },
1126 };
1127
1128
1129 static bfd_boolean
1130 use_transform (void)
1131 {
1132 /* After md_end, you should be checking frag by frag, rather
1133 than state directives. */
1134 gas_assert (!past_xtensa_end);
1135 return directive_state[directive_transform];
1136 }
1137
1138
1139 static bfd_boolean
1140 do_align_targets (void)
1141 {
1142 /* Do not use this function after md_end; just look at align_targets
1143 instead. There is no target-align directive, so alignment is either
1144 enabled for all frags or not done at all. */
1145 gas_assert (!past_xtensa_end);
1146 return align_targets && use_transform ();
1147 }
1148
1149
1150 static void
1151 directive_push (directiveE directive, bfd_boolean negated, const void *datum)
1152 {
1153 const char *file;
1154 unsigned int line;
1155 state_stackS *stack = XNEW (state_stackS);
1156
1157 file = as_where (&line);
1158
1159 stack->directive = directive;
1160 stack->negated = negated;
1161 stack->old_state = directive_state[directive];
1162 stack->file = file;
1163 stack->line = line;
1164 stack->datum = datum;
1165 stack->prev = directive_state_stack;
1166 directive_state_stack = stack;
1167
1168 directive_state[directive] = !negated;
1169 }
1170
1171
1172 static void
1173 directive_pop (directiveE *directive,
1174 bfd_boolean *negated,
1175 const char **file,
1176 unsigned int *line,
1177 const void **datum)
1178 {
1179 state_stackS *top = directive_state_stack;
1180
1181 if (!directive_state_stack)
1182 {
1183 as_bad (_("unmatched .end directive"));
1184 *directive = directive_none;
1185 return;
1186 }
1187
1188 directive_state[directive_state_stack->directive] = top->old_state;
1189 *directive = top->directive;
1190 *negated = top->negated;
1191 *file = top->file;
1192 *line = top->line;
1193 *datum = top->datum;
1194 directive_state_stack = top->prev;
1195 free (top);
1196 }
1197
1198
1199 static void
1200 directive_balance (void)
1201 {
1202 while (directive_state_stack)
1203 {
1204 directiveE directive;
1205 bfd_boolean negated;
1206 const char *file;
1207 unsigned int line;
1208 const void *datum;
1209
1210 directive_pop (&directive, &negated, &file, &line, &datum);
1211 as_warn_where ((char *) file, line,
1212 _(".begin directive with no matching .end directive"));
1213 }
1214 }
1215
1216
1217 static bfd_boolean
1218 inside_directive (directiveE dir)
1219 {
1220 state_stackS *top = directive_state_stack;
1221
1222 while (top && top->directive != dir)
1223 top = top->prev;
1224
1225 return (top != NULL);
1226 }
1227
1228
1229 static void
1230 get_directive (directiveE *directive, bfd_boolean *negated)
1231 {
1232 int len;
1233 unsigned i;
1234 const char *directive_string;
1235
1236 if (strncmp (input_line_pointer, "no-", 3) != 0)
1237 *negated = FALSE;
1238 else
1239 {
1240 *negated = TRUE;
1241 input_line_pointer += 3;
1242 }
1243
1244 len = strspn (input_line_pointer,
1245 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1246
1247 /* This code is a hack to make .begin [no-][generics|relax] exactly
1248 equivalent to .begin [no-]transform. We should remove it when
1249 we stop accepting those options. */
1250
1251 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1252 {
1253 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1254 directive_string = "transform";
1255 }
1256 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1257 {
1258 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1259 directive_string = "transform";
1260 }
1261 else
1262 directive_string = input_line_pointer;
1263
1264 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1265 {
1266 if (strncmp (directive_string, directive_info[i].name, len) == 0)
1267 {
1268 input_line_pointer += len;
1269 *directive = (directiveE) i;
1270 if (*negated && !directive_info[i].can_be_negated)
1271 as_bad (_("directive %s cannot be negated"),
1272 directive_info[i].name);
1273 return;
1274 }
1275 }
1276
1277 as_bad (_("unknown directive"));
1278 *directive = (directiveE) XTENSA_UNDEFINED;
1279 }
1280
1281
1282 static void
1283 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
1284 {
1285 directiveE directive;
1286 bfd_boolean negated;
1287 emit_state *state;
1288 lit_state *ls;
1289
1290 get_directive (&directive, &negated);
1291 if (directive == (directiveE) XTENSA_UNDEFINED)
1292 {
1293 discard_rest_of_line ();
1294 return;
1295 }
1296
1297 if (cur_vinsn.inside_bundle)
1298 as_bad (_("directives are not valid inside bundles"));
1299
1300 switch (directive)
1301 {
1302 case directive_literal:
1303 if (!inside_directive (directive_literal))
1304 {
1305 /* Previous labels go with whatever follows this directive, not with
1306 the literal, so save them now. */
1307 saved_insn_labels = insn_labels;
1308 insn_labels = NULL;
1309 }
1310 as_warn (_(".begin literal is deprecated; use .literal instead"));
1311 state = XNEW (emit_state);
1312 xtensa_switch_to_literal_fragment (state);
1313 directive_push (directive_literal, negated, state);
1314 break;
1315
1316 case directive_literal_prefix:
1317 /* Have to flush pending output because a movi relaxed to an l32r
1318 might produce a literal. */
1319 md_flush_pending_output ();
1320 /* Check to see if the current fragment is a literal
1321 fragment. If it is, then this operation is not allowed. */
1322 if (generating_literals)
1323 {
1324 as_bad (_("cannot set literal_prefix inside literal fragment"));
1325 return;
1326 }
1327
1328 /* Allocate the literal state for this section and push
1329 onto the directive stack. */
1330 ls = XNEW (lit_state);
1331 gas_assert (ls);
1332
1333 *ls = default_lit_sections;
1334 directive_push (directive_literal_prefix, negated, ls);
1335
1336 /* Process the new prefix. */
1337 xtensa_literal_prefix ();
1338 break;
1339
1340 case directive_freeregs:
1341 /* This information is currently unused, but we'll accept the statement
1342 and just discard the rest of the line. This won't check the syntax,
1343 but it will accept every correct freeregs directive. */
1344 input_line_pointer += strcspn (input_line_pointer, "\n");
1345 directive_push (directive_freeregs, negated, 0);
1346 break;
1347
1348 case directive_schedule:
1349 md_flush_pending_output ();
1350 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1351 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1352 directive_push (directive_schedule, negated, 0);
1353 xtensa_set_frag_assembly_state (frag_now);
1354 break;
1355
1356 case directive_density:
1357 as_warn (_(".begin [no-]density is ignored"));
1358 break;
1359
1360 case directive_absolute_literals:
1361 md_flush_pending_output ();
1362 if (!absolute_literals_supported && !negated)
1363 {
1364 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1365 break;
1366 }
1367 xtensa_set_frag_assembly_state (frag_now);
1368 directive_push (directive, negated, 0);
1369 break;
1370
1371 default:
1372 md_flush_pending_output ();
1373 xtensa_set_frag_assembly_state (frag_now);
1374 directive_push (directive, negated, 0);
1375 break;
1376 }
1377
1378 demand_empty_rest_of_line ();
1379 }
1380
1381
1382 static void
1383 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
1384 {
1385 directiveE begin_directive, end_directive;
1386 bfd_boolean begin_negated, end_negated;
1387 const char *file;
1388 unsigned int line;
1389 emit_state *state;
1390 emit_state **state_ptr;
1391 lit_state *s;
1392
1393 if (cur_vinsn.inside_bundle)
1394 as_bad (_("directives are not valid inside bundles"));
1395
1396 get_directive (&end_directive, &end_negated);
1397
1398 md_flush_pending_output ();
1399
1400 switch ((int) end_directive)
1401 {
1402 case XTENSA_UNDEFINED:
1403 discard_rest_of_line ();
1404 return;
1405
1406 case (int) directive_density:
1407 as_warn (_(".end [no-]density is ignored"));
1408 demand_empty_rest_of_line ();
1409 break;
1410
1411 case (int) directive_absolute_literals:
1412 if (!absolute_literals_supported && !end_negated)
1413 {
1414 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1415 demand_empty_rest_of_line ();
1416 return;
1417 }
1418 break;
1419
1420 default:
1421 break;
1422 }
1423
1424 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
1425 directive_pop (&begin_directive, &begin_negated, &file, &line,
1426 (const void **) state_ptr);
1427
1428 if (begin_directive != directive_none)
1429 {
1430 if (begin_directive != end_directive || begin_negated != end_negated)
1431 {
1432 as_bad (_("does not match begin %s%s at %s:%d"),
1433 begin_negated ? "no-" : "",
1434 directive_info[begin_directive].name, file, line);
1435 }
1436 else
1437 {
1438 switch (end_directive)
1439 {
1440 case directive_literal:
1441 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1442 xtensa_restore_emit_state (state);
1443 xtensa_set_frag_assembly_state (frag_now);
1444 free (state);
1445 if (!inside_directive (directive_literal))
1446 {
1447 /* Restore the list of current labels. */
1448 xtensa_clear_insn_labels ();
1449 insn_labels = saved_insn_labels;
1450 }
1451 break;
1452
1453 case directive_literal_prefix:
1454 /* Restore the default collection sections from saved state. */
1455 s = (lit_state *) state;
1456 gas_assert (s);
1457 default_lit_sections = *s;
1458
1459 /* Free the state storage. */
1460 free (s->lit_prefix);
1461 free (s);
1462 break;
1463
1464 case directive_schedule:
1465 case directive_freeregs:
1466 break;
1467
1468 default:
1469 xtensa_set_frag_assembly_state (frag_now);
1470 break;
1471 }
1472 }
1473 }
1474
1475 demand_empty_rest_of_line ();
1476 }
1477
1478
1479 /* Place an aligned literal fragment at the current location. */
1480
1481 static void
1482 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
1483 {
1484 md_flush_pending_output ();
1485
1486 if (inside_directive (directive_literal))
1487 as_warn (_(".literal_position inside literal directive; ignoring"));
1488 xtensa_mark_literal_pool_location ();
1489
1490 demand_empty_rest_of_line ();
1491 xtensa_clear_insn_labels ();
1492 }
1493
1494
1495 /* Support .literal label, expr, ... */
1496
1497 static void
1498 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
1499 {
1500 emit_state state;
1501 char *p, *base_name;
1502 char c;
1503 segT dest_seg;
1504
1505 if (inside_directive (directive_literal))
1506 {
1507 as_bad (_(".literal not allowed inside .begin literal region"));
1508 ignore_rest_of_line ();
1509 return;
1510 }
1511
1512 md_flush_pending_output ();
1513
1514 /* Previous labels go with whatever follows this directive, not with
1515 the literal, so save them now. */
1516 saved_insn_labels = insn_labels;
1517 insn_labels = NULL;
1518
1519 /* If we are using text-section literals, then this is the right value... */
1520 dest_seg = now_seg;
1521
1522 base_name = input_line_pointer;
1523
1524 xtensa_switch_to_literal_fragment (&state);
1525
1526 /* ...but if we aren't using text-section-literals, then we
1527 need to put them in the section we just switched to. */
1528 if (use_literal_section || directive_state[directive_absolute_literals])
1529 dest_seg = now_seg;
1530
1531 /* FIXME, despite the previous comments, dest_seg is unused... */
1532 (void) dest_seg;
1533
1534 /* All literals are aligned to four-byte boundaries. */
1535 frag_align (2, 0, 0);
1536 record_alignment (now_seg, 2);
1537
1538 c = get_symbol_name (&base_name);
1539 /* Just after name is now '\0'. */
1540 p = input_line_pointer;
1541 *p = c;
1542 SKIP_WHITESPACE_AFTER_NAME ();
1543
1544 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1545 {
1546 as_bad (_("expected comma or colon after symbol name; "
1547 "rest of line ignored"));
1548 ignore_rest_of_line ();
1549 xtensa_restore_emit_state (&state);
1550 return;
1551 }
1552
1553 *p = 0;
1554 colon (base_name);
1555 *p = c;
1556
1557 input_line_pointer++; /* skip ',' or ':' */
1558
1559 xtensa_elf_cons (4);
1560
1561 xtensa_restore_emit_state (&state);
1562
1563 /* Restore the list of current labels. */
1564 xtensa_clear_insn_labels ();
1565 insn_labels = saved_insn_labels;
1566 }
1567
1568
1569 static void
1570 xtensa_literal_prefix (void)
1571 {
1572 char *name;
1573 int len;
1574
1575 /* Parse the new prefix from the input_line_pointer. */
1576 SKIP_WHITESPACE ();
1577 len = strspn (input_line_pointer,
1578 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1579 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1580
1581 /* Get a null-terminated copy of the name. */
1582 name = xmemdup0 (input_line_pointer, len);
1583
1584 /* Skip the name in the input line. */
1585 input_line_pointer += len;
1586
1587 default_lit_sections.lit_prefix = name;
1588
1589 /* Clear cached literal sections, since the prefix has changed. */
1590 default_lit_sections.lit_seg = NULL;
1591 default_lit_sections.lit4_seg = NULL;
1592 }
1593
1594
1595 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1596
1597 static void
1598 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
1599 {
1600 float fall_through_f, target_f;
1601
1602 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1603 if (fall_through_f < 0)
1604 {
1605 as_bad (_("fall through frequency must be greater than 0"));
1606 ignore_rest_of_line ();
1607 return;
1608 }
1609
1610 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1611 if (target_f < 0)
1612 {
1613 as_bad (_("branch target frequency must be greater than 0"));
1614 ignore_rest_of_line ();
1615 return;
1616 }
1617
1618 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
1619
1620 demand_empty_rest_of_line ();
1621 }
1622
1623
1624 /* Like normal .long/.short/.word, except support @plt, etc.
1625 Clobbers input_line_pointer, checks end-of-line. */
1626
1627 static void
1628 xtensa_elf_cons (int nbytes)
1629 {
1630 expressionS exp;
1631 bfd_reloc_code_real_type reloc;
1632
1633 md_flush_pending_output ();
1634
1635 if (cur_vinsn.inside_bundle)
1636 as_bad (_("directives are not valid inside bundles"));
1637
1638 if (is_it_end_of_statement ())
1639 {
1640 demand_empty_rest_of_line ();
1641 return;
1642 }
1643
1644 do
1645 {
1646 expression (&exp);
1647 if (exp.X_op == O_symbol
1648 && *input_line_pointer == '@'
1649 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1650 != BFD_RELOC_NONE))
1651 {
1652 reloc_howto_type *reloc_howto =
1653 bfd_reloc_type_lookup (stdoutput, reloc);
1654
1655 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1656 as_bad (_("unsupported relocation"));
1657 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1658 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1659 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1660 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1661 as_bad (_("opcode-specific %s relocation used outside "
1662 "an instruction"), reloc_howto->name);
1663 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1664 as_bad (ngettext ("%s relocations do not fit in %d byte",
1665 "%s relocations do not fit in %d bytes",
1666 nbytes),
1667 reloc_howto->name, nbytes);
1668 else if (reloc == BFD_RELOC_XTENSA_TLS_FUNC
1669 || reloc == BFD_RELOC_XTENSA_TLS_ARG
1670 || reloc == BFD_RELOC_XTENSA_TLS_CALL)
1671 as_bad (_("invalid use of %s relocation"), reloc_howto->name);
1672 else
1673 {
1674 char *p = frag_more ((int) nbytes);
1675 xtensa_set_frag_assembly_state (frag_now);
1676 fix_new_exp (frag_now, p - frag_now->fr_literal,
1677 nbytes, &exp, reloc_howto->pc_relative, reloc);
1678 }
1679 }
1680 else
1681 {
1682 xtensa_set_frag_assembly_state (frag_now);
1683 emit_expr (&exp, (unsigned int) nbytes);
1684 }
1685 }
1686 while (*input_line_pointer++ == ',');
1687
1688 input_line_pointer--; /* Put terminator back into stream. */
1689 demand_empty_rest_of_line ();
1690 }
1691
1692 static bfd_boolean is_leb128_expr;
1693
1694 static void
1695 xtensa_leb128 (int sign)
1696 {
1697 is_leb128_expr = TRUE;
1698 s_leb128 (sign);
1699 is_leb128_expr = FALSE;
1700 }
1701
1702 \f
1703 /* Parsing and Idiom Translation. */
1704
1705 /* Parse @plt, etc. and return the desired relocation. */
1706 static bfd_reloc_code_real_type
1707 xtensa_elf_suffix (char **str_p, expressionS *exp_p)
1708 {
1709 char ident[20];
1710 char *str = *str_p;
1711 char *str2;
1712 int ch;
1713 int len;
1714 unsigned int i;
1715
1716 if (*str++ != '@')
1717 return BFD_RELOC_NONE;
1718
1719 for (ch = *str, str2 = ident;
1720 (str2 < ident + sizeof (ident) - 1
1721 && (ISALNUM (ch) || ch == '@'));
1722 ch = *++str)
1723 {
1724 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1725 }
1726
1727 *str2 = '\0';
1728 len = str2 - ident;
1729
1730 ch = ident[0];
1731 for (i = 0; i < ARRAY_SIZE (suffix_relocs); i++)
1732 if (ch == suffix_relocs[i].suffix[0]
1733 && len == suffix_relocs[i].length
1734 && memcmp (ident, suffix_relocs[i].suffix, suffix_relocs[i].length) == 0)
1735 {
1736 /* Now check for "identifier@suffix+constant". */
1737 if (*str == '-' || *str == '+')
1738 {
1739 char *orig_line = input_line_pointer;
1740 expressionS new_exp;
1741
1742 input_line_pointer = str;
1743 expression (&new_exp);
1744 if (new_exp.X_op == O_constant)
1745 {
1746 exp_p->X_add_number += new_exp.X_add_number;
1747 str = input_line_pointer;
1748 }
1749
1750 if (&input_line_pointer != str_p)
1751 input_line_pointer = orig_line;
1752 }
1753
1754 *str_p = str;
1755 return suffix_relocs[i].reloc;
1756 }
1757
1758 return BFD_RELOC_UNUSED;
1759 }
1760
1761
1762 /* Find the matching operator type. */
1763 static operatorT
1764 map_suffix_reloc_to_operator (bfd_reloc_code_real_type reloc)
1765 {
1766 operatorT operator = O_illegal;
1767 unsigned int i;
1768
1769 for (i = 0; i < ARRAY_SIZE (suffix_relocs); i++)
1770 {
1771 if (suffix_relocs[i].reloc == reloc)
1772 {
1773 operator = suffix_relocs[i].operator;
1774 break;
1775 }
1776 }
1777 gas_assert (operator != O_illegal);
1778 return operator;
1779 }
1780
1781
1782 /* Find the matching reloc type. */
1783 static bfd_reloc_code_real_type
1784 map_operator_to_reloc (unsigned char operator, bfd_boolean is_literal)
1785 {
1786 unsigned int i;
1787 bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED;
1788
1789 for (i = 0; i < ARRAY_SIZE (suffix_relocs); i++)
1790 {
1791 if (suffix_relocs[i].operator == operator)
1792 {
1793 reloc = suffix_relocs[i].reloc;
1794 break;
1795 }
1796 }
1797
1798 if (is_literal)
1799 {
1800 if (reloc == BFD_RELOC_XTENSA_TLS_FUNC)
1801 return BFD_RELOC_XTENSA_TLSDESC_FN;
1802 else if (reloc == BFD_RELOC_XTENSA_TLS_ARG)
1803 return BFD_RELOC_XTENSA_TLSDESC_ARG;
1804 }
1805
1806 if (reloc == BFD_RELOC_UNUSED)
1807 return BFD_RELOC_32;
1808
1809 return reloc;
1810 }
1811
1812
1813 static const char *
1814 expression_end (const char *name)
1815 {
1816 while (1)
1817 {
1818 switch (*name)
1819 {
1820 case '}':
1821 case ';':
1822 case '\0':
1823 case ',':
1824 case ':':
1825 return name;
1826 case ' ':
1827 case '\t':
1828 ++name;
1829 continue;
1830 default:
1831 return 0;
1832 }
1833 }
1834 }
1835
1836
1837 #define ERROR_REG_NUM ((unsigned) -1)
1838
1839 static unsigned
1840 tc_get_register (const char *prefix)
1841 {
1842 unsigned reg;
1843 const char *next_expr;
1844 const char *old_line_pointer;
1845
1846 SKIP_WHITESPACE ();
1847 old_line_pointer = input_line_pointer;
1848
1849 if (*input_line_pointer == '$')
1850 ++input_line_pointer;
1851
1852 /* Accept "sp" as a synonym for "a1". */
1853 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1854 && expression_end (input_line_pointer + 2))
1855 {
1856 input_line_pointer += 2;
1857 return 1; /* AR[1] */
1858 }
1859
1860 while (*input_line_pointer++ == *prefix++)
1861 ;
1862 --input_line_pointer;
1863 --prefix;
1864
1865 if (*prefix)
1866 {
1867 as_bad (_("bad register name: %s"), old_line_pointer);
1868 return ERROR_REG_NUM;
1869 }
1870
1871 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1872 {
1873 as_bad (_("bad register number: %s"), input_line_pointer);
1874 return ERROR_REG_NUM;
1875 }
1876
1877 reg = 0;
1878
1879 while (ISDIGIT ((int) *input_line_pointer))
1880 reg = reg * 10 + *input_line_pointer++ - '0';
1881
1882 if (!(next_expr = expression_end (input_line_pointer)))
1883 {
1884 as_bad (_("bad register name: %s"), old_line_pointer);
1885 return ERROR_REG_NUM;
1886 }
1887
1888 input_line_pointer = (char *) next_expr;
1889
1890 return reg;
1891 }
1892
1893
1894 static void
1895 expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
1896 {
1897 xtensa_isa isa = xtensa_default_isa;
1898
1899 /* Check if this is an immediate operand. */
1900 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
1901 {
1902 bfd_reloc_code_real_type reloc;
1903 segT t = expression (tok);
1904
1905 if (t == absolute_section
1906 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
1907 {
1908 gas_assert (tok->X_op == O_constant);
1909 tok->X_op = O_symbol;
1910 tok->X_add_symbol = &abs_symbol;
1911 }
1912
1913 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1914 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1915 != BFD_RELOC_NONE))
1916 {
1917 switch (reloc)
1918 {
1919 case BFD_RELOC_LO16:
1920 if (tok->X_op == O_constant)
1921 {
1922 tok->X_add_number &= 0xffff;
1923 return;
1924 }
1925 break;
1926 case BFD_RELOC_HI16:
1927 if (tok->X_op == O_constant)
1928 {
1929 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1930 return;
1931 }
1932 break;
1933 case BFD_RELOC_UNUSED:
1934 as_bad (_("unsupported relocation"));
1935 return;
1936 case BFD_RELOC_32_PCREL:
1937 as_bad (_("pcrel relocation not allowed in an instruction"));
1938 return;
1939 default:
1940 break;
1941 }
1942 tok->X_op = map_suffix_reloc_to_operator (reloc);
1943 }
1944 }
1945 else
1946 {
1947 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1948 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
1949
1950 if (reg != ERROR_REG_NUM) /* Already errored */
1951 {
1952 uint32 buf = reg;
1953 if (xtensa_operand_encode (isa, opc, opnd, &buf))
1954 as_bad (_("register number out of range"));
1955 }
1956
1957 tok->X_op = O_register;
1958 tok->X_add_symbol = 0;
1959 tok->X_add_number = reg;
1960 }
1961 }
1962
1963
1964 /* Split up the arguments for an opcode or pseudo-op. */
1965
1966 static int
1967 tokenize_arguments (char **args, char *str)
1968 {
1969 char *old_input_line_pointer;
1970 bfd_boolean saw_comma = FALSE;
1971 bfd_boolean saw_arg = FALSE;
1972 bfd_boolean saw_colon = FALSE;
1973 int num_args = 0;
1974 char *arg_end, *arg;
1975 int arg_len;
1976
1977 /* Save and restore input_line_pointer around this function. */
1978 old_input_line_pointer = input_line_pointer;
1979 input_line_pointer = str;
1980
1981 while (*input_line_pointer)
1982 {
1983 SKIP_WHITESPACE ();
1984 switch (*input_line_pointer)
1985 {
1986 case '\0':
1987 case '}':
1988 goto fini;
1989
1990 case ':':
1991 input_line_pointer++;
1992 if (saw_comma || saw_colon || !saw_arg)
1993 goto err;
1994 saw_colon = TRUE;
1995 break;
1996
1997 case ',':
1998 input_line_pointer++;
1999 if (saw_comma || saw_colon || !saw_arg)
2000 goto err;
2001 saw_comma = TRUE;
2002 break;
2003
2004 default:
2005 if (!saw_comma && !saw_colon && saw_arg)
2006 goto err;
2007
2008 arg_end = input_line_pointer + 1;
2009 while (!expression_end (arg_end))
2010 arg_end += 1;
2011
2012 arg_len = arg_end - input_line_pointer;
2013 arg = XNEWVEC (char, (saw_colon ? 1 : 0) + arg_len + 1);
2014 args[num_args] = arg;
2015
2016 if (saw_colon)
2017 *arg++ = ':';
2018 strncpy (arg, input_line_pointer, arg_len);
2019 arg[arg_len] = '\0';
2020
2021 input_line_pointer = arg_end;
2022 num_args += 1;
2023 saw_comma = FALSE;
2024 saw_colon = FALSE;
2025 saw_arg = TRUE;
2026 break;
2027 }
2028 }
2029
2030 fini:
2031 if (saw_comma || saw_colon)
2032 goto err;
2033 input_line_pointer = old_input_line_pointer;
2034 return num_args;
2035
2036 err:
2037 if (saw_comma)
2038 as_bad (_("extra comma"));
2039 else if (saw_colon)
2040 as_bad (_("extra colon"));
2041 else if (!saw_arg)
2042 as_bad (_("missing argument"));
2043 else
2044 as_bad (_("missing comma or colon"));
2045 input_line_pointer = old_input_line_pointer;
2046 return -1;
2047 }
2048
2049
2050 /* Parse the arguments to an opcode. Return TRUE on error. */
2051
2052 static bfd_boolean
2053 parse_arguments (TInsn *insn, int num_args, char **arg_strings)
2054 {
2055 expressionS *tok, *last_tok;
2056 xtensa_opcode opcode = insn->opcode;
2057 bfd_boolean had_error = TRUE;
2058 xtensa_isa isa = xtensa_default_isa;
2059 int n, num_regs = 0;
2060 int opcode_operand_count;
2061 int opnd_cnt, last_opnd_cnt;
2062 unsigned int next_reg = 0;
2063 char *old_input_line_pointer;
2064
2065 if (insn->insn_type == ITYPE_LITERAL)
2066 opcode_operand_count = 1;
2067 else
2068 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
2069
2070 tok = insn->tok;
2071 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
2072
2073 /* Save and restore input_line_pointer around this function. */
2074 old_input_line_pointer = input_line_pointer;
2075
2076 last_tok = 0;
2077 last_opnd_cnt = -1;
2078 opnd_cnt = 0;
2079
2080 /* Skip invisible operands. */
2081 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
2082 {
2083 opnd_cnt += 1;
2084 tok++;
2085 }
2086
2087 for (n = 0; n < num_args; n++)
2088 {
2089 input_line_pointer = arg_strings[n];
2090 if (*input_line_pointer == ':')
2091 {
2092 xtensa_regfile opnd_rf;
2093 input_line_pointer++;
2094 if (num_regs == 0)
2095 goto err;
2096 gas_assert (opnd_cnt > 0);
2097 num_regs--;
2098 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
2099 if (next_reg
2100 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
2101 as_warn (_("incorrect register number, ignoring"));
2102 next_reg++;
2103 }
2104 else
2105 {
2106 if (opnd_cnt >= opcode_operand_count)
2107 {
2108 as_warn (_("too many arguments"));
2109 goto err;
2110 }
2111 gas_assert (opnd_cnt < MAX_INSN_ARGS);
2112
2113 expression_maybe_register (opcode, opnd_cnt, tok);
2114 next_reg = tok->X_add_number + 1;
2115
2116 if (tok->X_op == O_illegal || tok->X_op == O_absent)
2117 goto err;
2118 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
2119 {
2120 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
2121 /* minus 1 because we are seeing one right now */
2122 }
2123 else
2124 num_regs = 0;
2125
2126 last_tok = tok;
2127 last_opnd_cnt = opnd_cnt;
2128 demand_empty_rest_of_line ();
2129
2130 do
2131 {
2132 opnd_cnt += 1;
2133 tok++;
2134 }
2135 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2136 }
2137 }
2138
2139 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2140 goto err;
2141
2142 insn->ntok = tok - insn->tok;
2143 had_error = FALSE;
2144
2145 err:
2146 input_line_pointer = old_input_line_pointer;
2147 return had_error;
2148 }
2149
2150
2151 static int
2152 get_invisible_operands (TInsn *insn)
2153 {
2154 xtensa_isa isa = xtensa_default_isa;
2155 static xtensa_insnbuf slotbuf = NULL;
2156 xtensa_format fmt;
2157 xtensa_opcode opc = insn->opcode;
2158 int slot, opnd, fmt_found;
2159 unsigned val;
2160
2161 if (!slotbuf)
2162 slotbuf = xtensa_insnbuf_alloc (isa);
2163
2164 /* Find format/slot where this can be encoded. */
2165 fmt_found = 0;
2166 slot = 0;
2167 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2168 {
2169 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2170 {
2171 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2172 {
2173 fmt_found = 1;
2174 break;
2175 }
2176 }
2177 if (fmt_found) break;
2178 }
2179
2180 if (!fmt_found)
2181 {
2182 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2183 return -1;
2184 }
2185
2186 /* First encode all the visible operands
2187 (to deal with shared field operands). */
2188 for (opnd = 0; opnd < insn->ntok; opnd++)
2189 {
2190 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2191 && (insn->tok[opnd].X_op == O_register
2192 || insn->tok[opnd].X_op == O_constant))
2193 {
2194 val = insn->tok[opnd].X_add_number;
2195 xtensa_operand_encode (isa, opc, opnd, &val);
2196 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2197 }
2198 }
2199
2200 /* Then pull out the values for the invisible ones. */
2201 for (opnd = 0; opnd < insn->ntok; opnd++)
2202 {
2203 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2204 {
2205 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2206 xtensa_operand_decode (isa, opc, opnd, &val);
2207 insn->tok[opnd].X_add_number = val;
2208 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2209 insn->tok[opnd].X_op = O_register;
2210 else
2211 insn->tok[opnd].X_op = O_constant;
2212 }
2213 }
2214
2215 return 0;
2216 }
2217
2218
2219 static void
2220 xg_reverse_shift_count (char **cnt_argp)
2221 {
2222 char *cnt_arg, *new_arg;
2223 cnt_arg = *cnt_argp;
2224
2225 /* replace the argument with "31-(argument)" */
2226 new_arg = concat ("31-(", cnt_arg, ")", (char *) NULL);
2227
2228 free (cnt_arg);
2229 *cnt_argp = new_arg;
2230 }
2231
2232
2233 /* If "arg" is a constant expression, return non-zero with the value
2234 in *valp. */
2235
2236 static int
2237 xg_arg_is_constant (char *arg, offsetT *valp)
2238 {
2239 expressionS exp;
2240 char *save_ptr = input_line_pointer;
2241
2242 input_line_pointer = arg;
2243 expression (&exp);
2244 input_line_pointer = save_ptr;
2245
2246 if (exp.X_op == O_constant)
2247 {
2248 *valp = exp.X_add_number;
2249 return 1;
2250 }
2251
2252 return 0;
2253 }
2254
2255
2256 static void
2257 xg_replace_opname (char **popname, const char *newop)
2258 {
2259 free (*popname);
2260 *popname = xstrdup (newop);
2261 }
2262
2263
2264 static int
2265 xg_check_num_args (int *pnum_args,
2266 int expected_num,
2267 char *opname,
2268 char **arg_strings)
2269 {
2270 int num_args = *pnum_args;
2271
2272 if (num_args < expected_num)
2273 {
2274 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2275 num_args, opname, expected_num);
2276 return -1;
2277 }
2278
2279 if (num_args > expected_num)
2280 {
2281 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2282 num_args, opname, expected_num);
2283 while (num_args-- > expected_num)
2284 {
2285 free (arg_strings[num_args]);
2286 arg_strings[num_args] = 0;
2287 }
2288 *pnum_args = expected_num;
2289 return -1;
2290 }
2291
2292 return 0;
2293 }
2294
2295
2296 /* If the register is not specified as part of the opcode,
2297 then get it from the operand and move it to the opcode. */
2298
2299 static int
2300 xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
2301 {
2302 xtensa_isa isa = xtensa_default_isa;
2303 xtensa_sysreg sr;
2304 char *opname, *new_opname;
2305 const char *sr_name;
2306 int is_user, is_write;
2307
2308 opname = *popname;
2309 if (*opname == '_')
2310 opname += 1;
2311 is_user = (opname[1] == 'u');
2312 is_write = (opname[0] == 'w');
2313
2314 /* Opname == [rw]ur or [rwx]sr... */
2315
2316 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2317 return -1;
2318
2319 /* Check if the argument is a symbolic register name. */
2320 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2321 /* Handle WSR to "INTSET" as a special case. */
2322 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2323 && !strcasecmp (arg_strings[1], "intset"))
2324 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2325 if (sr == XTENSA_UNDEFINED
2326 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2327 {
2328 /* Maybe it's a register number.... */
2329 offsetT val;
2330 if (!xg_arg_is_constant (arg_strings[1], &val))
2331 {
2332 as_bad (_("invalid register '%s' for '%s' instruction"),
2333 arg_strings[1], opname);
2334 return -1;
2335 }
2336 sr = xtensa_sysreg_lookup (isa, val, is_user);
2337 if (sr == XTENSA_UNDEFINED)
2338 {
2339 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2340 (long) val, opname);
2341 return -1;
2342 }
2343 }
2344
2345 /* Remove the last argument, which is now part of the opcode. */
2346 free (arg_strings[1]);
2347 arg_strings[1] = 0;
2348 *pnum_args = 1;
2349
2350 /* Translate the opcode. */
2351 sr_name = xtensa_sysreg_name (isa, sr);
2352 /* Another special case for "WSR.INTSET".... */
2353 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2354 sr_name = "intset";
2355 new_opname = concat (*popname, ".", sr_name, (char *) NULL);
2356 free (*popname);
2357 *popname = new_opname;
2358
2359 return 0;
2360 }
2361
2362
2363 static int
2364 xtensa_translate_old_userreg_ops (char **popname)
2365 {
2366 xtensa_isa isa = xtensa_default_isa;
2367 xtensa_sysreg sr;
2368 char *opname, *new_opname;
2369 const char *sr_name;
2370 bfd_boolean has_underbar = FALSE;
2371
2372 opname = *popname;
2373 if (opname[0] == '_')
2374 {
2375 has_underbar = TRUE;
2376 opname += 1;
2377 }
2378
2379 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2380 if (sr != XTENSA_UNDEFINED)
2381 {
2382 /* The new default name ("nnn") is different from the old default
2383 name ("URnnn"). The old default is handled below, and we don't
2384 want to recognize [RW]nnn, so do nothing if the name is the (new)
2385 default. */
2386 static char namebuf[10];
2387 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2388 if (strcmp (namebuf, opname + 1) == 0)
2389 return 0;
2390 }
2391 else
2392 {
2393 offsetT val;
2394 char *end;
2395
2396 /* Only continue if the reg name is "URnnn". */
2397 if (opname[1] != 'u' || opname[2] != 'r')
2398 return 0;
2399 val = strtoul (opname + 3, &end, 10);
2400 if (*end != '\0')
2401 return 0;
2402
2403 sr = xtensa_sysreg_lookup (isa, val, 1);
2404 if (sr == XTENSA_UNDEFINED)
2405 {
2406 as_bad (_("invalid register number (%ld) for '%s'"),
2407 (long) val, opname);
2408 return -1;
2409 }
2410 }
2411
2412 /* Translate the opcode. */
2413 sr_name = xtensa_sysreg_name (isa, sr);
2414 new_opname = XNEWVEC (char, strlen (sr_name) + 6);
2415 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2416 opname[0], sr_name);
2417 free (*popname);
2418 *popname = new_opname;
2419
2420 return 0;
2421 }
2422
2423
2424 static int
2425 xtensa_translate_zero_immed (const char *old_op,
2426 const char *new_op,
2427 char **popname,
2428 int *pnum_args,
2429 char **arg_strings)
2430 {
2431 char *opname;
2432 offsetT val;
2433
2434 opname = *popname;
2435 gas_assert (opname[0] != '_');
2436
2437 if (strcmp (opname, old_op) != 0)
2438 return 0;
2439
2440 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2441 return -1;
2442 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2443 {
2444 xg_replace_opname (popname, new_op);
2445 free (arg_strings[1]);
2446 arg_strings[1] = arg_strings[2];
2447 arg_strings[2] = 0;
2448 *pnum_args = 2;
2449 }
2450
2451 return 0;
2452 }
2453
2454
2455 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2456 Returns non-zero if an error was found. */
2457
2458 static int
2459 xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
2460 {
2461 char *opname = *popname;
2462 bfd_boolean has_underbar = FALSE;
2463
2464 if (*opname == '_')
2465 {
2466 has_underbar = TRUE;
2467 opname += 1;
2468 }
2469
2470 if (strcmp (opname, "mov") == 0)
2471 {
2472 if (use_transform () && !has_underbar && density_supported)
2473 xg_replace_opname (popname, "mov.n");
2474 else
2475 {
2476 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2477 return -1;
2478 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2479 arg_strings[2] = xstrdup (arg_strings[1]);
2480 *pnum_args = 3;
2481 }
2482 return 0;
2483 }
2484
2485 if (strcmp (opname, "bbsi.l") == 0)
2486 {
2487 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2488 return -1;
2489 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2490 if (target_big_endian)
2491 xg_reverse_shift_count (&arg_strings[1]);
2492 return 0;
2493 }
2494
2495 if (strcmp (opname, "bbci.l") == 0)
2496 {
2497 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2498 return -1;
2499 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2500 if (target_big_endian)
2501 xg_reverse_shift_count (&arg_strings[1]);
2502 return 0;
2503 }
2504
2505 /* Don't do anything special with NOPs inside FLIX instructions. They
2506 are handled elsewhere. Real NOP instructions are always available
2507 in configurations with FLIX, so this should never be an issue but
2508 check for it anyway. */
2509 if (!cur_vinsn.inside_bundle && xtensa_nop_opcode == XTENSA_UNDEFINED
2510 && strcmp (opname, "nop") == 0)
2511 {
2512 if (use_transform () && !has_underbar && density_supported)
2513 xg_replace_opname (popname, "nop.n");
2514 else
2515 {
2516 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2517 return -1;
2518 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2519 arg_strings[0] = xstrdup ("a1");
2520 arg_strings[1] = xstrdup ("a1");
2521 arg_strings[2] = xstrdup ("a1");
2522 *pnum_args = 3;
2523 }
2524 return 0;
2525 }
2526
2527 /* Recognize [RW]UR and [RWX]SR. */
2528 if ((((opname[0] == 'r' || opname[0] == 'w')
2529 && (opname[1] == 'u' || opname[1] == 's'))
2530 || (opname[0] == 'x' && opname[1] == 's'))
2531 && opname[2] == 'r'
2532 && opname[3] == '\0')
2533 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2534
2535 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2536 [RW]<name> if <name> is the non-default name of a user register. */
2537 if ((opname[0] == 'r' || opname[0] == 'w')
2538 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2539 return xtensa_translate_old_userreg_ops (popname);
2540
2541 /* Relax branches that don't allow comparisons against an immediate value
2542 of zero to the corresponding branches with implicit zero immediates. */
2543 if (!has_underbar && use_transform ())
2544 {
2545 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2546 pnum_args, arg_strings))
2547 return -1;
2548
2549 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2550 pnum_args, arg_strings))
2551 return -1;
2552
2553 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2554 pnum_args, arg_strings))
2555 return -1;
2556
2557 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2558 pnum_args, arg_strings))
2559 return -1;
2560 }
2561
2562 return 0;
2563 }
2564
2565 \f
2566 /* Functions for dealing with the Xtensa ISA. */
2567
2568 /* Currently the assembler only allows us to use a single target per
2569 fragment. Because of this, only one operand for a given
2570 instruction may be symbolic. If there is a PC-relative operand,
2571 the last one is chosen. Otherwise, the result is the number of the
2572 last immediate operand, and if there are none of those, we fail and
2573 return -1. */
2574
2575 static int
2576 get_relaxable_immed (xtensa_opcode opcode)
2577 {
2578 int last_immed = -1;
2579 int noperands, opi;
2580
2581 if (opcode == XTENSA_UNDEFINED)
2582 return -1;
2583
2584 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2585 for (opi = noperands - 1; opi >= 0; opi--)
2586 {
2587 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2588 continue;
2589 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2590 return opi;
2591 if (last_immed == -1
2592 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2593 last_immed = opi;
2594 }
2595 return last_immed;
2596 }
2597
2598
2599 static xtensa_opcode
2600 get_opcode_from_buf (const char *buf, int slot)
2601 {
2602 static xtensa_insnbuf insnbuf = NULL;
2603 static xtensa_insnbuf slotbuf = NULL;
2604 xtensa_isa isa = xtensa_default_isa;
2605 xtensa_format fmt;
2606
2607 if (!insnbuf)
2608 {
2609 insnbuf = xtensa_insnbuf_alloc (isa);
2610 slotbuf = xtensa_insnbuf_alloc (isa);
2611 }
2612
2613 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
2614 fmt = xtensa_format_decode (isa, insnbuf);
2615 if (fmt == XTENSA_UNDEFINED)
2616 return XTENSA_UNDEFINED;
2617
2618 if (slot >= xtensa_format_num_slots (isa, fmt))
2619 return XTENSA_UNDEFINED;
2620
2621 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2622 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
2623 }
2624
2625
2626 #ifdef TENSILICA_DEBUG
2627
2628 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2629
2630 static void
2631 xtensa_print_insn_table (void)
2632 {
2633 int num_opcodes, num_operands;
2634 xtensa_opcode opcode;
2635 xtensa_isa isa = xtensa_default_isa;
2636
2637 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2638 for (opcode = 0; opcode < num_opcodes; opcode++)
2639 {
2640 int opn;
2641 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2642 num_operands = xtensa_opcode_num_operands (isa, opcode);
2643 for (opn = 0; opn < num_operands; opn++)
2644 {
2645 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2646 continue;
2647 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2648 {
2649 xtensa_regfile opnd_rf =
2650 xtensa_operand_regfile (isa, opcode, opn);
2651 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2652 }
2653 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2654 fputs ("[lLr] ", stderr);
2655 else
2656 fputs ("i ", stderr);
2657 }
2658 fprintf (stderr, "\n");
2659 }
2660 }
2661
2662
2663 static void
2664 print_vliw_insn (xtensa_insnbuf vbuf)
2665 {
2666 xtensa_isa isa = xtensa_default_isa;
2667 xtensa_format f = xtensa_format_decode (isa, vbuf);
2668 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2669 int op;
2670
2671 fprintf (stderr, "format = %d\n", f);
2672
2673 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2674 {
2675 xtensa_opcode opcode;
2676 const char *opname;
2677 int operands;
2678
2679 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2680 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2681 opname = xtensa_opcode_name (isa, opcode);
2682
2683 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2684 fprintf (stderr, " operands = ");
2685 for (operands = 0;
2686 operands < xtensa_opcode_num_operands (isa, opcode);
2687 operands++)
2688 {
2689 unsigned int val;
2690 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2691 continue;
2692 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2693 xtensa_operand_decode (isa, opcode, operands, &val);
2694 fprintf (stderr, "%d ", val);
2695 }
2696 fprintf (stderr, "\n");
2697 }
2698 xtensa_insnbuf_free (isa, sbuf);
2699 }
2700
2701 #endif /* TENSILICA_DEBUG */
2702
2703
2704 static bfd_boolean
2705 is_direct_call_opcode (xtensa_opcode opcode)
2706 {
2707 xtensa_isa isa = xtensa_default_isa;
2708 int n, num_operands;
2709
2710 if (xtensa_opcode_is_call (isa, opcode) != 1)
2711 return FALSE;
2712
2713 num_operands = xtensa_opcode_num_operands (isa, opcode);
2714 for (n = 0; n < num_operands; n++)
2715 {
2716 if (xtensa_operand_is_register (isa, opcode, n) == 0
2717 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2718 return TRUE;
2719 }
2720 return FALSE;
2721 }
2722
2723
2724 /* Convert from BFD relocation type code to slot and operand number.
2725 Returns non-zero on failure. */
2726
2727 static int
2728 decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
2729 {
2730 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2731 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
2732 {
2733 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2734 *is_alt = FALSE;
2735 }
2736 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2737 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
2738 {
2739 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2740 *is_alt = TRUE;
2741 }
2742 else
2743 return -1;
2744
2745 return 0;
2746 }
2747
2748
2749 /* Convert from slot number to BFD relocation type code for the
2750 standard PC-relative relocations. Return BFD_RELOC_NONE on
2751 failure. */
2752
2753 static bfd_reloc_code_real_type
2754 encode_reloc (int slot)
2755 {
2756 if (slot < 0 || slot > 14)
2757 return BFD_RELOC_NONE;
2758
2759 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
2760 }
2761
2762
2763 /* Convert from slot numbers to BFD relocation type code for the
2764 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2765
2766 static bfd_reloc_code_real_type
2767 encode_alt_reloc (int slot)
2768 {
2769 if (slot < 0 || slot > 14)
2770 return BFD_RELOC_NONE;
2771
2772 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
2773 }
2774
2775
2776 static void
2777 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2778 xtensa_format fmt,
2779 int slot,
2780 xtensa_opcode opcode,
2781 int operand,
2782 uint32 value,
2783 const char *file,
2784 unsigned int line)
2785 {
2786 uint32 valbuf = value;
2787
2788 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
2789 {
2790 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2791 == 1)
2792 as_bad_where ((char *) file, line,
2793 _("operand %d of '%s' has out of range value '%u'"),
2794 operand + 1,
2795 xtensa_opcode_name (xtensa_default_isa, opcode),
2796 value);
2797 else
2798 as_bad_where ((char *) file, line,
2799 _("operand %d of '%s' has invalid value '%u'"),
2800 operand + 1,
2801 xtensa_opcode_name (xtensa_default_isa, opcode),
2802 value);
2803 return;
2804 }
2805
2806 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2807 slotbuf, valbuf);
2808 }
2809
2810
2811 static uint32
2812 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2813 xtensa_format fmt,
2814 int slot,
2815 xtensa_opcode opcode,
2816 int opnum)
2817 {
2818 uint32 val = 0;
2819 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2820 fmt, slot, slotbuf, &val);
2821 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2822 return val;
2823 }
2824
2825 \f
2826 /* Checks for rules from xtensa-relax tables. */
2827
2828 /* The routine xg_instruction_matches_option_term must return TRUE
2829 when a given option term is true. The meaning of all of the option
2830 terms is given interpretation by this function. */
2831
2832 static bfd_boolean
2833 xg_instruction_matches_option_term (TInsn *insn, const ReqOrOption *option)
2834 {
2835 if (strcmp (option->option_name, "realnop") == 0
2836 || strncmp (option->option_name, "IsaUse", 6) == 0)
2837 {
2838 /* These conditions were evaluated statically when building the
2839 relaxation table. There's no need to reevaluate them now. */
2840 return TRUE;
2841 }
2842 else if (strcmp (option->option_name, "FREEREG") == 0)
2843 return insn->extra_arg.X_op == O_register;
2844 else
2845 {
2846 as_fatal (_("internal error: unknown option name '%s'"),
2847 option->option_name);
2848 }
2849 }
2850
2851
2852 static bfd_boolean
2853 xg_instruction_matches_or_options (TInsn *insn,
2854 const ReqOrOptionList *or_option)
2855 {
2856 const ReqOrOption *option;
2857 /* Must match each of the AND terms. */
2858 for (option = or_option; option != NULL; option = option->next)
2859 {
2860 if (xg_instruction_matches_option_term (insn, option))
2861 return TRUE;
2862 }
2863 return FALSE;
2864 }
2865
2866
2867 static bfd_boolean
2868 xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
2869 {
2870 const ReqOption *req_options;
2871 /* Must match each of the AND terms. */
2872 for (req_options = options;
2873 req_options != NULL;
2874 req_options = req_options->next)
2875 {
2876 /* Must match one of the OR clauses. */
2877 if (!xg_instruction_matches_or_options (insn,
2878 req_options->or_option_terms))
2879 return FALSE;
2880 }
2881 return TRUE;
2882 }
2883
2884
2885 /* Return the transition rule that matches or NULL if none matches. */
2886
2887 static bfd_boolean
2888 xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
2889 {
2890 PreconditionList *condition_l;
2891
2892 if (rule->opcode != insn->opcode)
2893 return FALSE;
2894
2895 for (condition_l = rule->conditions;
2896 condition_l != NULL;
2897 condition_l = condition_l->next)
2898 {
2899 expressionS *exp1;
2900 expressionS *exp2;
2901 Precondition *cond = condition_l->precond;
2902
2903 switch (cond->typ)
2904 {
2905 case OP_CONSTANT:
2906 /* The expression must be the constant. */
2907 gas_assert (cond->op_num < insn->ntok);
2908 exp1 = &insn->tok[cond->op_num];
2909 if (expr_is_const (exp1))
2910 {
2911 switch (cond->cmp)
2912 {
2913 case OP_EQUAL:
2914 if (get_expr_const (exp1) != cond->op_data)
2915 return FALSE;
2916 break;
2917 case OP_NOTEQUAL:
2918 if (get_expr_const (exp1) == cond->op_data)
2919 return FALSE;
2920 break;
2921 default:
2922 return FALSE;
2923 }
2924 }
2925 else if (expr_is_register (exp1))
2926 {
2927 switch (cond->cmp)
2928 {
2929 case OP_EQUAL:
2930 if (get_expr_register (exp1) != cond->op_data)
2931 return FALSE;
2932 break;
2933 case OP_NOTEQUAL:
2934 if (get_expr_register (exp1) == cond->op_data)
2935 return FALSE;
2936 break;
2937 default:
2938 return FALSE;
2939 }
2940 }
2941 else
2942 return FALSE;
2943 break;
2944
2945 case OP_OPERAND:
2946 gas_assert (cond->op_num < insn->ntok);
2947 gas_assert (cond->op_data < insn->ntok);
2948 exp1 = &insn->tok[cond->op_num];
2949 exp2 = &insn->tok[cond->op_data];
2950
2951 switch (cond->cmp)
2952 {
2953 case OP_EQUAL:
2954 if (!expr_is_equal (exp1, exp2))
2955 return FALSE;
2956 break;
2957 case OP_NOTEQUAL:
2958 if (expr_is_equal (exp1, exp2))
2959 return FALSE;
2960 break;
2961 }
2962 break;
2963
2964 case OP_LITERAL:
2965 case OP_LABEL:
2966 default:
2967 return FALSE;
2968 }
2969 }
2970 if (!xg_instruction_matches_options (insn, rule->options))
2971 return FALSE;
2972
2973 return TRUE;
2974 }
2975
2976
2977 static int
2978 transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2979 {
2980 bfd_boolean a_greater = FALSE;
2981 bfd_boolean b_greater = FALSE;
2982
2983 ReqOptionList *l_a = a->options;
2984 ReqOptionList *l_b = b->options;
2985
2986 /* We only care if they both are the same except for
2987 a const16 vs. an l32r. */
2988
2989 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2990 {
2991 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2992 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2993 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2994 {
2995 if (l_or_a->is_true != l_or_b->is_true)
2996 return 0;
2997 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2998 {
2999 /* This is the case we care about. */
3000 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
3001 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
3002 {
3003 if (prefer_const16)
3004 a_greater = TRUE;
3005 else
3006 b_greater = TRUE;
3007 }
3008 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
3009 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
3010 {
3011 if (prefer_const16)
3012 b_greater = TRUE;
3013 else
3014 a_greater = TRUE;
3015 }
3016 else
3017 return 0;
3018 }
3019 l_or_a = l_or_a->next;
3020 l_or_b = l_or_b->next;
3021 }
3022 if (l_or_a || l_or_b)
3023 return 0;
3024
3025 l_a = l_a->next;
3026 l_b = l_b->next;
3027 }
3028 if (l_a || l_b)
3029 return 0;
3030
3031 /* Incomparable if the substitution was used differently in two cases. */
3032 if (a_greater && b_greater)
3033 return 0;
3034
3035 if (b_greater)
3036 return 1;
3037 if (a_greater)
3038 return -1;
3039
3040 return 0;
3041 }
3042
3043
3044 static TransitionRule *
3045 xg_instruction_match (TInsn *insn)
3046 {
3047 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
3048 TransitionList *l;
3049 gas_assert (insn->opcode < table->num_opcodes);
3050
3051 /* Walk through all of the possible transitions. */
3052 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3053 {
3054 TransitionRule *rule = l->rule;
3055 if (xg_instruction_matches_rule (insn, rule))
3056 return rule;
3057 }
3058 return NULL;
3059 }
3060
3061 \f
3062 /* Various Other Internal Functions. */
3063
3064 static bfd_boolean
3065 is_unique_insn_expansion (TransitionRule *r)
3066 {
3067 if (!r->to_instr || r->to_instr->next != NULL)
3068 return FALSE;
3069 if (r->to_instr->typ != INSTR_INSTR)
3070 return FALSE;
3071 return TRUE;
3072 }
3073
3074
3075 /* Check if there is exactly one relaxation for INSN that converts it to
3076 another instruction of equal or larger size. If so, and if TARG is
3077 non-null, go ahead and generate the relaxed instruction into TARG. If
3078 NARROW_ONLY is true, then only consider relaxations that widen a narrow
3079 instruction, i.e., ignore relaxations that convert to an instruction of
3080 equal size. In some contexts where this function is used, only
3081 a single widening is allowed and the NARROW_ONLY argument is used to
3082 exclude cases like ADDI being "widened" to an ADDMI, which may
3083 later be relaxed to an ADDMI/ADDI pair. */
3084
3085 bfd_boolean
3086 xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
3087 {
3088 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3089 TransitionList *l;
3090 TransitionRule *match = 0;
3091
3092 gas_assert (insn->insn_type == ITYPE_INSN);
3093 gas_assert (insn->opcode < table->num_opcodes);
3094
3095 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3096 {
3097 TransitionRule *rule = l->rule;
3098
3099 if (xg_instruction_matches_rule (insn, rule)
3100 && is_unique_insn_expansion (rule)
3101 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
3102 <= xg_get_single_size (rule->to_instr->opcode)))
3103 {
3104 if (match)
3105 return FALSE;
3106 match = rule;
3107 }
3108 }
3109 if (!match)
3110 return FALSE;
3111
3112 if (targ)
3113 xg_build_to_insn (targ, insn, match->to_instr);
3114 return TRUE;
3115 }
3116
3117
3118 /* Return the maximum number of bytes this opcode can expand to. */
3119
3120 static int
3121 xg_get_max_insn_widen_size (xtensa_opcode opcode)
3122 {
3123 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3124 TransitionList *l;
3125 int max_size = xg_get_single_size (opcode);
3126
3127 gas_assert (opcode < table->num_opcodes);
3128
3129 for (l = table->table[opcode]; l != NULL; l = l->next)
3130 {
3131 TransitionRule *rule = l->rule;
3132 BuildInstr *build_list;
3133 int this_size = 0;
3134
3135 if (!rule)
3136 continue;
3137 build_list = rule->to_instr;
3138 if (is_unique_insn_expansion (rule))
3139 {
3140 gas_assert (build_list->typ == INSTR_INSTR);
3141 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3142 }
3143 else
3144 for (; build_list != NULL; build_list = build_list->next)
3145 {
3146 switch (build_list->typ)
3147 {
3148 case INSTR_INSTR:
3149 this_size += xg_get_single_size (build_list->opcode);
3150 break;
3151 case INSTR_LITERAL_DEF:
3152 case INSTR_LABEL_DEF:
3153 default:
3154 break;
3155 }
3156 }
3157 if (this_size > max_size)
3158 max_size = this_size;
3159 }
3160 return max_size;
3161 }
3162
3163
3164 /* Return the maximum number of literal bytes this opcode can generate. */
3165
3166 static int
3167 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
3168 {
3169 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3170 TransitionList *l;
3171 int max_size = 0;
3172
3173 gas_assert (opcode < table->num_opcodes);
3174
3175 for (l = table->table[opcode]; l != NULL; l = l->next)
3176 {
3177 TransitionRule *rule = l->rule;
3178 BuildInstr *build_list;
3179 int this_size = 0;
3180
3181 if (!rule)
3182 continue;
3183 build_list = rule->to_instr;
3184 if (is_unique_insn_expansion (rule))
3185 {
3186 gas_assert (build_list->typ == INSTR_INSTR);
3187 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3188 }
3189 else
3190 for (; build_list != NULL; build_list = build_list->next)
3191 {
3192 switch (build_list->typ)
3193 {
3194 case INSTR_LITERAL_DEF:
3195 /* Hard-coded 4-byte literal. */
3196 this_size += 4;
3197 break;
3198 case INSTR_INSTR:
3199 case INSTR_LABEL_DEF:
3200 default:
3201 break;
3202 }
3203 }
3204 if (this_size > max_size)
3205 max_size = this_size;
3206 }
3207 return max_size;
3208 }
3209
3210
3211 static bfd_boolean
3212 xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3213 {
3214 int steps_taken = 0;
3215 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3216 TransitionList *l;
3217
3218 gas_assert (insn->insn_type == ITYPE_INSN);
3219 gas_assert (insn->opcode < table->num_opcodes);
3220
3221 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3222 {
3223 TransitionRule *rule = l->rule;
3224
3225 if (xg_instruction_matches_rule (insn, rule))
3226 {
3227 if (steps_taken == lateral_steps)
3228 return TRUE;
3229 steps_taken++;
3230 }
3231 }
3232 return FALSE;
3233 }
3234
3235
3236 static symbolS *
3237 get_special_literal_symbol (void)
3238 {
3239 static symbolS *sym = NULL;
3240
3241 if (sym == NULL)
3242 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3243 return sym;
3244 }
3245
3246
3247 static symbolS *
3248 get_special_label_symbol (void)
3249 {
3250 static symbolS *sym = NULL;
3251
3252 if (sym == NULL)
3253 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3254 return sym;
3255 }
3256
3257
3258 static bfd_boolean
3259 xg_valid_literal_expression (const expressionS *exp)
3260 {
3261 switch (exp->X_op)
3262 {
3263 case O_constant:
3264 case O_symbol:
3265 case O_big:
3266 case O_uminus:
3267 case O_subtract:
3268 case O_pltrel:
3269 case O_pcrel:
3270 case O_tlsfunc:
3271 case O_tlsarg:
3272 case O_tpoff:
3273 case O_dtpoff:
3274 return TRUE;
3275 default:
3276 return FALSE;
3277 }
3278 }
3279
3280
3281 /* This will check to see if the value can be converted into the
3282 operand type. It will return TRUE if it does not fit. */
3283
3284 static bfd_boolean
3285 xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3286 {
3287 uint32 valbuf = value;
3288 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3289 return TRUE;
3290 return FALSE;
3291 }
3292
3293
3294 /* Assumes: All immeds are constants. Check that all constants fit
3295 into their immeds; return FALSE if not. */
3296
3297 static bfd_boolean
3298 xg_immeds_fit (const TInsn *insn)
3299 {
3300 xtensa_isa isa = xtensa_default_isa;
3301 int i;
3302
3303 int n = insn->ntok;
3304 gas_assert (insn->insn_type == ITYPE_INSN);
3305 for (i = 0; i < n; ++i)
3306 {
3307 const expressionS *exp = &insn->tok[i];
3308
3309 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3310 continue;
3311
3312 switch (exp->X_op)
3313 {
3314 case O_register:
3315 case O_constant:
3316 if (xg_check_operand (exp->X_add_number, insn->opcode, i))
3317 return FALSE;
3318 break;
3319
3320 default:
3321 /* The symbol should have a fixup associated with it. */
3322 gas_assert (FALSE);
3323 break;
3324 }
3325 }
3326 return TRUE;
3327 }
3328
3329
3330 /* This should only be called after we have an initial
3331 estimate of the addresses. */
3332
3333 static bfd_boolean
3334 xg_symbolic_immeds_fit (const TInsn *insn,
3335 segT pc_seg,
3336 fragS *pc_frag,
3337 offsetT pc_offset,
3338 long stretch)
3339 {
3340 xtensa_isa isa = xtensa_default_isa;
3341 symbolS *symbolP;
3342 fragS *sym_frag;
3343 offsetT target, pc;
3344 uint32 new_offset;
3345 int i;
3346 int n = insn->ntok;
3347
3348 gas_assert (insn->insn_type == ITYPE_INSN);
3349
3350 for (i = 0; i < n; ++i)
3351 {
3352 const expressionS *exp = &insn->tok[i];
3353
3354 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3355 continue;
3356
3357 switch (exp->X_op)
3358 {
3359 case O_register:
3360 case O_constant:
3361 if (xg_check_operand (exp->X_add_number, insn->opcode, i))
3362 return FALSE;
3363 break;
3364
3365 case O_lo16:
3366 case O_hi16:
3367 /* Check for the worst case. */
3368 if (xg_check_operand (0xffff, insn->opcode, i))
3369 return FALSE;
3370 break;
3371
3372 case O_symbol:
3373 /* We only allow symbols for PC-relative references.
3374 If pc_frag == 0, then we don't have frag locations yet. */
3375 if (pc_frag == 0
3376 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
3377 return FALSE;
3378
3379 /* If it is a weak symbol or a symbol in a different section,
3380 it cannot be known to fit at assembly time. */
3381 if (S_IS_WEAK (exp->X_add_symbol)
3382 || S_GET_SEGMENT (exp->X_add_symbol) != pc_seg)
3383 {
3384 /* For a direct call with --no-longcalls, be optimistic and
3385 assume it will be in range. If the symbol is weak and
3386 undefined, it may remain undefined at link-time, in which
3387 case it will have a zero value and almost certainly be out
3388 of range for a direct call; thus, relax for undefined weak
3389 symbols even if longcalls is not enabled. */
3390 if (is_direct_call_opcode (insn->opcode)
3391 && ! pc_frag->tc_frag_data.use_longcalls
3392 && (! S_IS_WEAK (exp->X_add_symbol)
3393 || S_IS_DEFINED (exp->X_add_symbol)))
3394 return TRUE;
3395
3396 return FALSE;
3397 }
3398
3399 symbolP = exp->X_add_symbol;
3400 sym_frag = symbol_get_frag (symbolP);
3401 target = S_GET_VALUE (symbolP) + exp->X_add_number;
3402 pc = pc_frag->fr_address + pc_offset;
3403
3404 /* If frag has yet to be reached on this pass, assume it
3405 will move by STRETCH just as we did. If this is not so,
3406 it will be because some frag between grows, and that will
3407 force another pass. Beware zero-length frags. There
3408 should be a faster way to do this. */
3409
3410 if (stretch != 0
3411 && sym_frag->relax_marker != pc_frag->relax_marker
3412 && S_GET_SEGMENT (symbolP) == pc_seg)
3413 {
3414 target += stretch;
3415 }
3416
3417 new_offset = target;
3418 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3419 if (xg_check_operand (new_offset, insn->opcode, i))
3420 return FALSE;
3421 break;
3422
3423 default:
3424 /* The symbol should have a fixup associated with it. */
3425 return FALSE;
3426 }
3427 }
3428
3429 return TRUE;
3430 }
3431
3432
3433 /* Return TRUE on success. */
3434
3435 static bfd_boolean
3436 xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
3437 {
3438 BuildOp *op;
3439 symbolS *sym;
3440
3441 tinsn_init (targ);
3442 targ->debug_line = insn->debug_line;
3443 targ->loc_directive_seen = insn->loc_directive_seen;
3444 switch (bi->typ)
3445 {
3446 case INSTR_INSTR:
3447 op = bi->ops;
3448 targ->opcode = bi->opcode;
3449 targ->insn_type = ITYPE_INSN;
3450 targ->is_specific_opcode = FALSE;
3451
3452 for (; op != NULL; op = op->next)
3453 {
3454 int op_num = op->op_num;
3455 int op_data = op->op_data;
3456
3457 gas_assert (op->op_num < MAX_INSN_ARGS);
3458
3459 if (targ->ntok <= op_num)
3460 targ->ntok = op_num + 1;
3461
3462 switch (op->typ)
3463 {
3464 case OP_CONSTANT:
3465 set_expr_const (&targ->tok[op_num], op_data);
3466 break;
3467 case OP_OPERAND:
3468 gas_assert (op_data < insn->ntok);
3469 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3470 break;
3471 case OP_FREEREG:
3472 if (insn->extra_arg.X_op != O_register)
3473 return FALSE;
3474 copy_expr (&targ->tok[op_num], &insn->extra_arg);
3475 break;
3476 case OP_LITERAL:
3477 sym = get_special_literal_symbol ();
3478 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3479 if (insn->tok[op_data].X_op == O_tlsfunc
3480 || insn->tok[op_data].X_op == O_tlsarg)
3481 copy_expr (&targ->extra_arg, &insn->tok[op_data]);
3482 break;
3483 case OP_LABEL:
3484 sym = get_special_label_symbol ();
3485 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3486 break;
3487 case OP_OPERAND_HI16U:
3488 case OP_OPERAND_LOW16U:
3489 gas_assert (op_data < insn->ntok);
3490 if (expr_is_const (&insn->tok[op_data]))
3491 {
3492 long val;
3493 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3494 val = xg_apply_userdef_op_fn (op->typ,
3495 targ->tok[op_num].
3496 X_add_number);
3497 targ->tok[op_num].X_add_number = val;
3498 }
3499 else
3500 {
3501 /* For const16 we can create relocations for these. */
3502 if (targ->opcode == XTENSA_UNDEFINED
3503 || (targ->opcode != xtensa_const16_opcode))
3504 return FALSE;
3505 gas_assert (op_data < insn->ntok);
3506 /* Need to build a O_lo16 or O_hi16. */
3507 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3508 if (targ->tok[op_num].X_op == O_symbol)
3509 {
3510 if (op->typ == OP_OPERAND_HI16U)
3511 targ->tok[op_num].X_op = O_hi16;
3512 else if (op->typ == OP_OPERAND_LOW16U)
3513 targ->tok[op_num].X_op = O_lo16;
3514 else
3515 return FALSE;
3516 }
3517 }
3518 break;
3519 default:
3520 /* currently handles:
3521 OP_OPERAND_LOW8
3522 OP_OPERAND_HI24S
3523 OP_OPERAND_F32MINUS */
3524 if (xg_has_userdef_op_fn (op->typ))
3525 {
3526 gas_assert (op_data < insn->ntok);
3527 if (expr_is_const (&insn->tok[op_data]))
3528 {
3529 long val;
3530 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3531 val = xg_apply_userdef_op_fn (op->typ,
3532 targ->tok[op_num].
3533 X_add_number);
3534 targ->tok[op_num].X_add_number = val;
3535 }
3536 else
3537 return FALSE; /* We cannot use a relocation for this. */
3538 break;
3539 }
3540 gas_assert (0);
3541 break;
3542 }
3543 }
3544 break;
3545
3546 case INSTR_LITERAL_DEF:
3547 op = bi->ops;
3548 targ->opcode = XTENSA_UNDEFINED;
3549 targ->insn_type = ITYPE_LITERAL;
3550 targ->is_specific_opcode = FALSE;
3551 for (; op != NULL; op = op->next)
3552 {
3553 int op_num = op->op_num;
3554 int op_data = op->op_data;
3555 gas_assert (op->op_num < MAX_INSN_ARGS);
3556
3557 if (targ->ntok <= op_num)
3558 targ->ntok = op_num + 1;
3559
3560 switch (op->typ)
3561 {
3562 case OP_OPERAND:
3563 gas_assert (op_data < insn->ntok);
3564 /* We can only pass resolvable literals through. */
3565 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3566 return FALSE;
3567 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3568 break;
3569 case OP_LITERAL:
3570 case OP_CONSTANT:
3571 case OP_LABEL:
3572 default:
3573 gas_assert (0);
3574 break;
3575 }
3576 }
3577 break;
3578
3579 case INSTR_LABEL_DEF:
3580 op = bi->ops;
3581 targ->opcode = XTENSA_UNDEFINED;
3582 targ->insn_type = ITYPE_LABEL;
3583 targ->is_specific_opcode = FALSE;
3584 /* Literal with no ops is a label? */
3585 gas_assert (op == NULL);
3586 break;
3587
3588 default:
3589 gas_assert (0);
3590 }
3591
3592 return TRUE;
3593 }
3594
3595
3596 /* Return TRUE on success. */
3597
3598 static bfd_boolean
3599 xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
3600 {
3601 for (; bi != NULL; bi = bi->next)
3602 {
3603 TInsn *next_insn = istack_push_space (istack);
3604
3605 if (!xg_build_to_insn (next_insn, insn, bi))
3606 return FALSE;
3607 }
3608 return TRUE;
3609 }
3610
3611
3612 /* Return TRUE on valid expansion. */
3613
3614 static bfd_boolean
3615 xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
3616 {
3617 int stack_size = istack->ninsn;
3618 int steps_taken = 0;
3619 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3620 TransitionList *l;
3621
3622 gas_assert (insn->insn_type == ITYPE_INSN);
3623 gas_assert (insn->opcode < table->num_opcodes);
3624
3625 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3626 {
3627 TransitionRule *rule = l->rule;
3628
3629 if (xg_instruction_matches_rule (insn, rule))
3630 {
3631 if (lateral_steps == steps_taken)
3632 {
3633 int i;
3634
3635 /* This is it. Expand the rule to the stack. */
3636 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3637 return FALSE;
3638
3639 /* Check to see if it fits. */
3640 for (i = stack_size; i < istack->ninsn; i++)
3641 {
3642 TInsn *tinsn = &istack->insn[i];
3643
3644 if (tinsn->insn_type == ITYPE_INSN
3645 && !tinsn_has_symbolic_operands (tinsn)
3646 && !xg_immeds_fit (tinsn))
3647 {
3648 istack->ninsn = stack_size;
3649 return FALSE;
3650 }
3651 }
3652 return TRUE;
3653 }
3654 steps_taken++;
3655 }
3656 }
3657 return FALSE;
3658 }
3659
3660 \f
3661 /* Relax the assembly instruction at least "min_steps".
3662 Return the number of steps taken.
3663
3664 For relaxation to correctly terminate, every relaxation chain must
3665 terminate in one of two ways:
3666
3667 1. If the chain from one instruction to the next consists entirely of
3668 single instructions, then the chain *must* handle all possible
3669 immediates without failing. It must not ever fail because an
3670 immediate is out of range. The MOVI.N -> MOVI -> L32R relaxation
3671 chain is one example. L32R loads 32 bits, and there cannot be an
3672 immediate larger than 32 bits, so it satisfies this condition.
3673 Single instruction relaxation chains are as defined by
3674 xg_is_single_relaxable_instruction.
3675
3676 2. Otherwise, the chain must end in a multi-instruction expansion: e.g.,
3677 BNEZ.N -> BNEZ -> BNEZ.W15 -> BENZ.N/J
3678
3679 Strictly speaking, in most cases you can violate condition 1 and be OK
3680 -- in particular when the last two instructions have the same single
3681 size. But nevertheless, you should guarantee the above two conditions.
3682
3683 We could fix this so that single-instruction expansions correctly
3684 terminate when they can't handle the range, but the error messages are
3685 worse, and it actually turns out that in every case but one (18-bit wide
3686 branches), you need a multi-instruction expansion to get the full range
3687 anyway. And because 18-bit branches are handled identically to 15-bit
3688 branches, there isn't any point in changing it. */
3689
3690 static int
3691 xg_assembly_relax (IStack *istack,
3692 TInsn *insn,
3693 segT pc_seg,
3694 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3695 offsetT pc_offset, /* offset in fragment */
3696 int min_steps, /* minimum conversion steps */
3697 long stretch) /* number of bytes stretched so far */
3698 {
3699 int steps_taken = 0;
3700
3701 /* Some of its immeds don't fit. Try to build a relaxed version.
3702 This may go through a couple of stages of single instruction
3703 transformations before we get there. */
3704
3705 TInsn single_target;
3706 TInsn current_insn;
3707 int lateral_steps = 0;
3708 int istack_size = istack->ninsn;
3709
3710 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3711 && steps_taken >= min_steps)
3712 {
3713 istack_push (istack, insn);
3714 return steps_taken;
3715 }
3716 current_insn = *insn;
3717
3718 /* Walk through all of the single instruction expansions. */
3719 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
3720 {
3721 steps_taken++;
3722 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3723 stretch))
3724 {
3725 if (steps_taken >= min_steps)
3726 {
3727 istack_push (istack, &single_target);
3728 return steps_taken;
3729 }
3730 }
3731 current_insn = single_target;
3732 }
3733
3734 /* Now check for a multi-instruction expansion. */
3735 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3736 {
3737 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3738 stretch))
3739 {
3740 if (steps_taken >= min_steps)
3741 {
3742 istack_push (istack, &current_insn);
3743 return steps_taken;
3744 }
3745 }
3746 steps_taken++;
3747 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3748 {
3749 if (steps_taken >= min_steps)
3750 return steps_taken;
3751 }
3752 lateral_steps++;
3753 istack->ninsn = istack_size;
3754 }
3755
3756 /* It's not going to work -- use the original. */
3757 istack_push (istack, insn);
3758 return steps_taken;
3759 }
3760
3761
3762 static void
3763 xg_finish_frag (char *last_insn,
3764 enum xtensa_relax_statesE frag_state,
3765 enum xtensa_relax_statesE slot0_state,
3766 int max_growth,
3767 bfd_boolean is_insn)
3768 {
3769 /* Finish off this fragment so that it has at LEAST the desired
3770 max_growth. If it doesn't fit in this fragment, close this one
3771 and start a new one. In either case, return a pointer to the
3772 beginning of the growth area. */
3773
3774 fragS *old_frag;
3775
3776 frag_grow (max_growth);
3777 old_frag = frag_now;
3778
3779 frag_now->fr_opcode = last_insn;
3780 if (is_insn)
3781 frag_now->tc_frag_data.is_insn = TRUE;
3782
3783 frag_var (rs_machine_dependent, max_growth, max_growth,
3784 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3785
3786 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3787 xtensa_set_frag_assembly_state (frag_now);
3788
3789 /* Just to make sure that we did not split it up. */
3790 gas_assert (old_frag->fr_next == frag_now);
3791 }
3792
3793
3794 /* Return TRUE if the target frag is one of the next non-empty frags. */
3795
3796 static bfd_boolean
3797 is_next_frag_target (const fragS *fragP, const fragS *target)
3798 {
3799 if (fragP == NULL)
3800 return FALSE;
3801
3802 for (; fragP; fragP = fragP->fr_next)
3803 {
3804 if (fragP == target)
3805 return TRUE;
3806 if (fragP->fr_fix != 0)
3807 return FALSE;
3808 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3809 return FALSE;
3810 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3811 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3812 return FALSE;
3813 if (fragP->fr_type == rs_space)
3814 return FALSE;
3815 }
3816 return FALSE;
3817 }
3818
3819
3820 static bfd_boolean
3821 is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
3822 {
3823 xtensa_isa isa = xtensa_default_isa;
3824 int i;
3825 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3826 int target_op = -1;
3827 symbolS *sym;
3828 fragS *target_frag;
3829
3830 if (xtensa_opcode_is_branch (isa, insn->opcode) != 1
3831 && xtensa_opcode_is_jump (isa, insn->opcode) != 1)
3832 return FALSE;
3833
3834 for (i = 0; i < num_ops; i++)
3835 {
3836 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
3837 {
3838 target_op = i;
3839 break;
3840 }
3841 }
3842 if (target_op == -1)
3843 return FALSE;
3844
3845 if (insn->ntok <= target_op)
3846 return FALSE;
3847
3848 if (insn->tok[target_op].X_op != O_symbol)
3849 return FALSE;
3850
3851 sym = insn->tok[target_op].X_add_symbol;
3852 if (sym == NULL)
3853 return FALSE;
3854
3855 if (insn->tok[target_op].X_add_number != 0)
3856 return FALSE;
3857
3858 target_frag = symbol_get_frag (sym);
3859 if (target_frag == NULL)
3860 return FALSE;
3861
3862 if (is_next_frag_target (fragP->fr_next, target_frag)
3863 && S_GET_VALUE (sym) == target_frag->fr_address)
3864 return TRUE;
3865
3866 return FALSE;
3867 }
3868
3869
3870 static void
3871 xg_add_branch_and_loop_targets (TInsn *insn)
3872 {
3873 xtensa_isa isa = xtensa_default_isa;
3874 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3875
3876 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3877 {
3878 int i = 1;
3879 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3880 && insn->tok[i].X_op == O_symbol)
3881 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3882 return;
3883 }
3884
3885 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3886 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3887 {
3888 int i;
3889
3890 for (i = 0; i < insn->ntok && i < num_ops; i++)
3891 {
3892 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3893 && insn->tok[i].X_op == O_symbol)
3894 {
3895 symbolS *sym = insn->tok[i].X_add_symbol;
3896 symbol_get_tc (sym)->is_branch_target = TRUE;
3897 if (S_IS_DEFINED (sym))
3898 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3899 }
3900 }
3901 }
3902 }
3903
3904
3905 /* Return FALSE if no error. */
3906
3907 static bfd_boolean
3908 xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
3909 {
3910 int num_ops = 0;
3911 BuildOp *b_op;
3912
3913 switch (instr_spec->typ)
3914 {
3915 case INSTR_INSTR:
3916 new_insn->insn_type = ITYPE_INSN;
3917 new_insn->opcode = instr_spec->opcode;
3918 break;
3919 case INSTR_LITERAL_DEF:
3920 new_insn->insn_type = ITYPE_LITERAL;
3921 new_insn->opcode = XTENSA_UNDEFINED;
3922 break;
3923 case INSTR_LABEL_DEF:
3924 abort ();
3925 }
3926 new_insn->is_specific_opcode = FALSE;
3927 new_insn->debug_line = old_insn->debug_line;
3928 new_insn->loc_directive_seen = old_insn->loc_directive_seen;
3929
3930 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3931 {
3932 expressionS *exp;
3933 const expressionS *src_exp;
3934
3935 num_ops++;
3936 switch (b_op->typ)
3937 {
3938 case OP_CONSTANT:
3939 /* The expression must be the constant. */
3940 gas_assert (b_op->op_num < MAX_INSN_ARGS);
3941 exp = &new_insn->tok[b_op->op_num];
3942 set_expr_const (exp, b_op->op_data);
3943 break;
3944
3945 case OP_OPERAND:
3946 gas_assert (b_op->op_num < MAX_INSN_ARGS);
3947 gas_assert (b_op->op_data < (unsigned) old_insn->ntok);
3948 src_exp = &old_insn->tok[b_op->op_data];
3949 exp = &new_insn->tok[b_op->op_num];
3950 copy_expr (exp, src_exp);
3951 break;
3952
3953 case OP_LITERAL:
3954 case OP_LABEL:
3955 as_bad (_("can't handle generation of literal/labels yet"));
3956 gas_assert (0);
3957
3958 default:
3959 as_bad (_("can't handle undefined OP TYPE"));
3960 gas_assert (0);
3961 }
3962 }
3963
3964 new_insn->ntok = num_ops;
3965 return FALSE;
3966 }
3967
3968
3969 /* Return TRUE if it was simplified. */
3970
3971 static bfd_boolean
3972 xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
3973 {
3974 TransitionRule *rule;
3975 BuildInstr *insn_spec;
3976
3977 if (old_insn->is_specific_opcode || !density_supported)
3978 return FALSE;
3979
3980 rule = xg_instruction_match (old_insn);
3981 if (rule == NULL)
3982 return FALSE;
3983
3984 insn_spec = rule->to_instr;
3985 /* There should only be one. */
3986 gas_assert (insn_spec != NULL);
3987 gas_assert (insn_spec->next == NULL);
3988 if (insn_spec->next != NULL)
3989 return FALSE;
3990
3991 xg_build_token_insn (insn_spec, old_insn, new_insn);
3992
3993 return TRUE;
3994 }
3995
3996
3997 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3998 l32i.n. (2) Check the number of operands. (3) Place the instruction
3999 tokens into the stack or relax it and place multiple
4000 instructions/literals onto the stack. Return FALSE if no error. */
4001
4002 static bfd_boolean
4003 xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
4004 {
4005 int noperands;
4006 TInsn new_insn;
4007 bfd_boolean do_expand;
4008
4009 tinsn_init (&new_insn);
4010
4011 /* Narrow it if we can. xg_simplify_insn now does all the
4012 appropriate checking (e.g., for the density option). */
4013 if (xg_simplify_insn (orig_insn, &new_insn))
4014 orig_insn = &new_insn;
4015
4016 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
4017 orig_insn->opcode);
4018 if (orig_insn->ntok < noperands)
4019 {
4020 as_bad (ngettext ("found %d operand for '%s': Expected %d",
4021 "found %d operands for '%s': Expected %d",
4022 orig_insn->ntok),
4023 orig_insn->ntok,
4024 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
4025 noperands);
4026 return TRUE;
4027 }
4028 if (orig_insn->ntok > noperands)
4029 as_warn (ngettext ("found %d operand for '%s': Expected %d",
4030 "found %d operands for '%s': Expected %d",
4031 orig_insn->ntok),
4032 orig_insn->ntok,
4033 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
4034 noperands);
4035
4036 /* If there are not enough operands, we will assert above. If there
4037 are too many, just cut out the extras here. */
4038 orig_insn->ntok = noperands;
4039
4040 if (tinsn_has_invalid_symbolic_operands (orig_insn))
4041 return TRUE;
4042
4043 /* Special case for extui opcode which has constraints not handled
4044 by the ordinary operand encoding checks. The number of operands
4045 and related syntax issues have already been checked. */
4046 if (orig_insn->opcode == xtensa_extui_opcode)
4047 {
4048 int shiftimm = orig_insn->tok[2].X_add_number;
4049 int maskimm = orig_insn->tok[3].X_add_number;
4050 if (shiftimm + maskimm > 32)
4051 {
4052 as_bad (_("immediate operands sum to greater than 32"));
4053 return TRUE;
4054 }
4055 }
4056
4057 /* If the instruction will definitely need to be relaxed, it is better
4058 to expand it now for better scheduling. Decide whether to expand
4059 now.... */
4060 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
4061
4062 /* Calls should be expanded to longcalls only in the backend relaxation
4063 so that the assembly scheduler will keep the L32R/CALLX instructions
4064 adjacent. */
4065 if (is_direct_call_opcode (orig_insn->opcode))
4066 do_expand = FALSE;
4067
4068 if (tinsn_has_symbolic_operands (orig_insn))
4069 {
4070 /* The values of symbolic operands are not known yet, so only expand
4071 now if an operand is "complex" (e.g., difference of symbols) and
4072 will have to be stored as a literal regardless of the value. */
4073 if (!tinsn_has_complex_operands (orig_insn))
4074 do_expand = FALSE;
4075 }
4076 else if (xg_immeds_fit (orig_insn))
4077 do_expand = FALSE;
4078
4079 if (do_expand)
4080 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
4081 else
4082 istack_push (istack, orig_insn);
4083
4084 return FALSE;
4085 }
4086
4087
4088 /* Return TRUE if the section flags are marked linkonce
4089 or the name is .gnu.linkonce.*. */
4090
4091 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
4092
4093 static bfd_boolean
4094 get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
4095 {
4096 flagword flags, link_once_flags;
4097
4098 flags = bfd_get_section_flags (abfd, sec);
4099 link_once_flags = (flags & SEC_LINK_ONCE);
4100
4101 /* Flags might not be set yet. */
4102 if (!link_once_flags
4103 && strncmp (segment_name (sec), ".gnu.linkonce.", linkonce_len) == 0)
4104 link_once_flags = SEC_LINK_ONCE;
4105
4106 return (link_once_flags != 0);
4107 }
4108
4109
4110 static void
4111 xtensa_add_literal_sym (symbolS *sym)
4112 {
4113 sym_list *l;
4114
4115 l = XNEW (sym_list);
4116 l->sym = sym;
4117 l->next = literal_syms;
4118 literal_syms = l;
4119 }
4120
4121
4122 static symbolS *
4123 xtensa_create_literal_symbol (segT sec, fragS *frag)
4124 {
4125 static int lit_num = 0;
4126 static char name[256];
4127 symbolS *symbolP;
4128
4129 sprintf (name, ".L_lit_sym%d", lit_num);
4130
4131 /* Create a local symbol. If it is in a linkonce section, we have to
4132 be careful to make sure that if it is used in a relocation that the
4133 symbol will be in the output file. */
4134 if (get_is_linkonce_section (stdoutput, sec))
4135 {
4136 symbolP = symbol_new (name, sec, 0, frag);
4137 S_CLEAR_EXTERNAL (symbolP);
4138 /* symbolP->local = 1; */
4139 }
4140 else
4141 symbolP = symbol_new (name, sec, 0, frag);
4142
4143 xtensa_add_literal_sym (symbolP);
4144
4145 lit_num++;
4146 return symbolP;
4147 }
4148
4149
4150 /* Currently all literals that are generated here are 32-bit L32R targets. */
4151
4152 static symbolS *
4153 xg_assemble_literal (/* const */ TInsn *insn)
4154 {
4155 emit_state state;
4156 symbolS *lit_sym = NULL;
4157 bfd_reloc_code_real_type reloc;
4158 bfd_boolean pcrel = FALSE;
4159 char *p;
4160
4161 /* size = 4 for L32R. It could easily be larger when we move to
4162 larger constants. Add a parameter later. */
4163 offsetT litsize = 4;
4164 offsetT litalign = 2; /* 2^2 = 4 */
4165 expressionS saved_loc;
4166 expressionS * emit_val;
4167
4168 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4169
4170 gas_assert (insn->insn_type == ITYPE_LITERAL);
4171 gas_assert (insn->ntok == 1); /* must be only one token here */
4172
4173 xtensa_switch_to_literal_fragment (&state);
4174
4175 emit_val = &insn->tok[0];
4176 if (emit_val->X_op == O_big)
4177 {
4178 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4179 if (size > litsize)
4180 {
4181 /* This happens when someone writes a "movi a2, big_number". */
4182 as_bad_where (frag_now->fr_file, frag_now->fr_line,
4183 _("invalid immediate"));
4184 xtensa_restore_emit_state (&state);
4185 return NULL;
4186 }
4187 }
4188
4189 /* Force a 4-byte align here. Note that this opens a new frag, so all
4190 literals done with this function have a frag to themselves. That's
4191 important for the way text section literals work. */
4192 frag_align (litalign, 0, 0);
4193 record_alignment (now_seg, litalign);
4194
4195 switch (emit_val->X_op)
4196 {
4197 case O_pcrel:
4198 pcrel = TRUE;
4199 /* fall through */
4200 case O_pltrel:
4201 case O_tlsfunc:
4202 case O_tlsarg:
4203 case O_tpoff:
4204 case O_dtpoff:
4205 p = frag_more (litsize);
4206 xtensa_set_frag_assembly_state (frag_now);
4207 reloc = map_operator_to_reloc (emit_val->X_op, TRUE);
4208 if (emit_val->X_add_symbol)
4209 emit_val->X_op = O_symbol;
4210 else
4211 emit_val->X_op = O_constant;
4212 fix_new_exp (frag_now, p - frag_now->fr_literal,
4213 litsize, emit_val, pcrel, reloc);
4214 break;
4215
4216 default:
4217 emit_expr (emit_val, litsize);
4218 break;
4219 }
4220
4221 gas_assert (frag_now->tc_frag_data.literal_frag == NULL);
4222 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4223 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4224 lit_sym = frag_now->fr_symbol;
4225
4226 /* Go back. */
4227 xtensa_restore_emit_state (&state);
4228 return lit_sym;
4229 }
4230
4231
4232 static void
4233 xg_assemble_literal_space (/* const */ int size, int slot)
4234 {
4235 emit_state state;
4236 /* We might have to do something about this alignment. It only
4237 takes effect if something is placed here. */
4238 offsetT litalign = 2; /* 2^2 = 4 */
4239 fragS *lit_saved_frag;
4240
4241 gas_assert (size % 4 == 0);
4242
4243 xtensa_switch_to_literal_fragment (&state);
4244
4245 /* Force a 4-byte align here. */
4246 frag_align (litalign, 0, 0);
4247 record_alignment (now_seg, litalign);
4248
4249 frag_grow (size);
4250
4251 lit_saved_frag = frag_now;
4252 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4253 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4254 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
4255
4256 /* Go back. */
4257 xtensa_restore_emit_state (&state);
4258 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
4259 }
4260
4261
4262 /* Put in a fixup record based on the opcode.
4263 Return TRUE on success. */
4264
4265 static bfd_boolean
4266 xg_add_opcode_fix (TInsn *tinsn,
4267 int opnum,
4268 xtensa_format fmt,
4269 int slot,
4270 expressionS *exp,
4271 fragS *fragP,
4272 offsetT offset)
4273 {
4274 xtensa_opcode opcode = tinsn->opcode;
4275 bfd_reloc_code_real_type reloc;
4276 reloc_howto_type *howto;
4277 int fmt_length;
4278 fixS *the_fix;
4279
4280 reloc = BFD_RELOC_NONE;
4281
4282 /* First try the special cases for "alternate" relocs. */
4283 if (opcode == xtensa_l32r_opcode)
4284 {
4285 if (fragP->tc_frag_data.use_absolute_literals)
4286 reloc = encode_alt_reloc (slot);
4287 }
4288 else if (opcode == xtensa_const16_opcode)
4289 {
4290 if (exp->X_op == O_lo16)
4291 {
4292 reloc = encode_reloc (slot);
4293 exp->X_op = O_symbol;
4294 }
4295 else if (exp->X_op == O_hi16)
4296 {
4297 reloc = encode_alt_reloc (slot);
4298 exp->X_op = O_symbol;
4299 }
4300 }
4301
4302 if (opnum != get_relaxable_immed (opcode))
4303 {
4304 as_bad (_("invalid relocation for operand %i of '%s'"),
4305 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4306 return FALSE;
4307 }
4308
4309 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4310 into the symbol table where the generic portions of the assembler
4311 won't know what to do with them. */
4312 if (exp->X_op == O_lo16 || exp->X_op == O_hi16)
4313 {
4314 as_bad (_("invalid expression for operand %i of '%s'"),
4315 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4316 return FALSE;
4317 }
4318
4319 /* Next try the generic relocs. */
4320 if (reloc == BFD_RELOC_NONE)
4321 reloc = encode_reloc (slot);
4322 if (reloc == BFD_RELOC_NONE)
4323 {
4324 as_bad (_("invalid relocation in instruction slot %i"), slot);
4325 return FALSE;
4326 }
4327
4328 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4329 if (!howto)
4330 {
4331 as_bad (_("undefined symbol for opcode \"%s\""),
4332 xtensa_opcode_name (xtensa_default_isa, opcode));
4333 return FALSE;
4334 }
4335
4336 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4337 the_fix = fix_new_exp (fragP, offset, fmt_length, exp,
4338 howto->pc_relative, reloc);
4339 the_fix->fx_no_overflow = 1;
4340 the_fix->tc_fix_data.X_add_symbol = exp->X_add_symbol;
4341 the_fix->tc_fix_data.X_add_number = exp->X_add_number;
4342 the_fix->tc_fix_data.slot = slot;
4343
4344 return TRUE;
4345 }
4346
4347
4348 static bfd_boolean
4349 xg_emit_insn_to_buf (TInsn *tinsn,
4350 char *buf,
4351 fragS *fragP,
4352 offsetT offset,
4353 bfd_boolean build_fix)
4354 {
4355 static xtensa_insnbuf insnbuf = NULL;
4356 bfd_boolean has_symbolic_immed = FALSE;
4357 bfd_boolean ok = TRUE;
4358
4359 if (!insnbuf)
4360 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4361
4362 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4363 if (has_symbolic_immed && build_fix)
4364 {
4365 /* Add a fixup. */
4366 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4367 int slot = xg_get_single_slot (tinsn->opcode);
4368 int opnum = get_relaxable_immed (tinsn->opcode);
4369 expressionS *exp = &tinsn->tok[opnum];
4370
4371 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
4372 ok = FALSE;
4373 }
4374 fragP->tc_frag_data.is_insn = TRUE;
4375 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4376 (unsigned char *) buf, 0);
4377 return ok;
4378 }
4379
4380
4381 static void
4382 xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
4383 {
4384 symbolS *sym = get_special_literal_symbol ();
4385 int i;
4386 if (lit_sym == 0)
4387 return;
4388 gas_assert (insn->insn_type == ITYPE_INSN);
4389 for (i = 0; i < insn->ntok; i++)
4390 if (insn->tok[i].X_add_symbol == sym)
4391 insn->tok[i].X_add_symbol = lit_sym;
4392
4393 }
4394
4395
4396 static void
4397 xg_resolve_labels (TInsn *insn, symbolS *label_sym)
4398 {
4399 symbolS *sym = get_special_label_symbol ();
4400 int i;
4401 for (i = 0; i < insn->ntok; i++)
4402 if (insn->tok[i].X_add_symbol == sym)
4403 insn->tok[i].X_add_symbol = label_sym;
4404
4405 }
4406
4407
4408 /* Return TRUE if the instruction can write to the specified
4409 integer register. */
4410
4411 static bfd_boolean
4412 is_register_writer (const TInsn *insn, const char *regset, int regnum)
4413 {
4414 int i;
4415 int num_ops;
4416 xtensa_isa isa = xtensa_default_isa;
4417
4418 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
4419
4420 for (i = 0; i < num_ops; i++)
4421 {
4422 char inout;
4423 inout = xtensa_operand_inout (isa, insn->opcode, i);
4424 if ((inout == 'o' || inout == 'm')
4425 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
4426 {
4427 xtensa_regfile opnd_rf =
4428 xtensa_operand_regfile (isa, insn->opcode, i);
4429 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
4430 {
4431 if ((insn->tok[i].X_op == O_register)
4432 && (insn->tok[i].X_add_number == regnum))
4433 return TRUE;
4434 }
4435 }
4436 }
4437 return FALSE;
4438 }
4439
4440
4441 static bfd_boolean
4442 is_bad_loopend_opcode (const TInsn *tinsn)
4443 {
4444 xtensa_opcode opcode = tinsn->opcode;
4445
4446 if (opcode == XTENSA_UNDEFINED)
4447 return FALSE;
4448
4449 if (opcode == xtensa_call0_opcode
4450 || opcode == xtensa_callx0_opcode
4451 || opcode == xtensa_call4_opcode
4452 || opcode == xtensa_callx4_opcode
4453 || opcode == xtensa_call8_opcode
4454 || opcode == xtensa_callx8_opcode
4455 || opcode == xtensa_call12_opcode
4456 || opcode == xtensa_callx12_opcode
4457 || opcode == xtensa_isync_opcode
4458 || opcode == xtensa_ret_opcode
4459 || opcode == xtensa_ret_n_opcode
4460 || opcode == xtensa_retw_opcode
4461 || opcode == xtensa_retw_n_opcode
4462 || opcode == xtensa_waiti_opcode
4463 || opcode == xtensa_rsr_lcount_opcode)
4464 return TRUE;
4465
4466 return FALSE;
4467 }
4468
4469
4470 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4471 This allows the debugger to add unaligned labels.
4472 Also, the assembler generates stabs labels that need
4473 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4474
4475 static bfd_boolean
4476 is_unaligned_label (symbolS *sym)
4477 {
4478 const char *name = S_GET_NAME (sym);
4479 static size_t fake_size = 0;
4480
4481 if (name
4482 && name[0] == '.'
4483 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4484 return TRUE;
4485
4486 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4487 if (fake_size == 0)
4488 fake_size = strlen (FAKE_LABEL_NAME);
4489
4490 if (name
4491 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4492 && (name[fake_size] == 'F'
4493 || name[fake_size] == 'L'
4494 || (name[fake_size] == 'e'
4495 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4496 return TRUE;
4497
4498 return FALSE;
4499 }
4500
4501
4502 static fragS *
4503 next_non_empty_frag (const fragS *fragP)
4504 {
4505 fragS *next_fragP = fragP->fr_next;
4506
4507 /* Sometimes an empty will end up here due storage allocation issues.
4508 So we have to skip until we find something legit. */
4509 while (next_fragP && next_fragP->fr_fix == 0)
4510 next_fragP = next_fragP->fr_next;
4511
4512 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4513 return NULL;
4514
4515 return next_fragP;
4516 }
4517
4518
4519 static bfd_boolean
4520 next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
4521 {
4522 xtensa_opcode out_opcode;
4523 const fragS *next_fragP = next_non_empty_frag (fragP);
4524
4525 if (next_fragP == NULL)
4526 return FALSE;
4527
4528 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4529 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4530 {
4531 *opcode = out_opcode;
4532 return TRUE;
4533 }
4534 return FALSE;
4535 }
4536
4537
4538 static int
4539 frag_format_size (const fragS *fragP)
4540 {
4541 static xtensa_insnbuf insnbuf = NULL;
4542 xtensa_isa isa = xtensa_default_isa;
4543 xtensa_format fmt;
4544 int fmt_size;
4545
4546 if (!insnbuf)
4547 insnbuf = xtensa_insnbuf_alloc (isa);
4548
4549 if (fragP == NULL)
4550 return XTENSA_UNDEFINED;
4551
4552 xtensa_insnbuf_from_chars (isa, insnbuf,
4553 (unsigned char *) fragP->fr_literal, 0);
4554
4555 fmt = xtensa_format_decode (isa, insnbuf);
4556 if (fmt == XTENSA_UNDEFINED)
4557 return XTENSA_UNDEFINED;
4558 fmt_size = xtensa_format_length (isa, fmt);
4559
4560 /* If the next format won't be changing due to relaxation, just
4561 return the length of the first format. */
4562 if (fragP->fr_opcode != fragP->fr_literal)
4563 return fmt_size;
4564
4565 /* If during relaxation we have to pull an instruction out of a
4566 multi-slot instruction, we will return the more conservative
4567 number. This works because alignment on bigger instructions
4568 is more restrictive than alignment on smaller instructions.
4569 This is more conservative than we would like, but it happens
4570 infrequently. */
4571
4572 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4573 return fmt_size;
4574
4575 /* If we aren't doing one of our own relaxations or it isn't
4576 slot-based, then the insn size won't change. */
4577 if (fragP->fr_type != rs_machine_dependent)
4578 return fmt_size;
4579 if (fragP->fr_subtype != RELAX_SLOTS)
4580 return fmt_size;
4581
4582 /* If an instruction is about to grow, return the longer size. */
4583 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4584 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2
4585 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP3)
4586 {
4587 /* For most frags at RELAX_IMMED_STEPX, with X > 0, the first
4588 instruction in the relaxed version is of length 3. (The case
4589 where we have to pull the instruction out of a FLIX bundle
4590 is handled conservatively above.) However, frags with opcodes
4591 that are expanding to wide branches end up having formats that
4592 are not determinable by the RELAX_IMMED_STEPX enumeration, and
4593 we can't tell directly what format the relaxer picked. This
4594 is a wart in the design of the relaxer that should someday be
4595 fixed, but would require major changes, or at least should
4596 be accompanied by major changes to make use of that data.
4597
4598 In any event, we can tell that we are expanding from a single-slot
4599 format to a wider one with the logic below. */
4600
4601 int i;
4602 int relaxed_size = fmt_size + fragP->tc_frag_data.text_expansion[0];
4603
4604 for (i = 0; i < xtensa_isa_num_formats (isa); i++)
4605 {
4606 if (relaxed_size == xtensa_format_length (isa, i))
4607 return relaxed_size;
4608 }
4609
4610 return 3;
4611 }
4612
4613 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4614 return 2 + fragP->tc_frag_data.text_expansion[0];
4615
4616 return fmt_size;
4617 }
4618
4619
4620 static int
4621 next_frag_format_size (const fragS *fragP)
4622 {
4623 const fragS *next_fragP = next_non_empty_frag (fragP);
4624 return frag_format_size (next_fragP);
4625 }
4626
4627
4628 /* In early Xtensa Processors, for reasons that are unclear, the ISA
4629 required two-byte instructions to be treated as three-byte instructions
4630 for loop instruction alignment. This restriction was removed beginning
4631 with Xtensa LX. Now the only requirement on loop instruction alignment
4632 is that the first instruction of the loop must appear at an address that
4633 does not cross a fetch boundary. */
4634
4635 static int
4636 get_loop_align_size (int insn_size)
4637 {
4638 if (insn_size == XTENSA_UNDEFINED)
4639 return xtensa_fetch_width;
4640
4641 if (enforce_three_byte_loop_align && insn_size == 2)
4642 return 3;
4643
4644 return insn_size;
4645 }
4646
4647
4648 /* If the next legit fragment is an end-of-loop marker,
4649 switch its state so it will instantiate a NOP. */
4650
4651 static void
4652 update_next_frag_state (fragS *fragP)
4653 {
4654 fragS *next_fragP = fragP->fr_next;
4655 fragS *new_target = NULL;
4656
4657 if (align_targets)
4658 {
4659 /* We are guaranteed there will be one of these... */
4660 while (!(next_fragP->fr_type == rs_machine_dependent
4661 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4662 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4663 next_fragP = next_fragP->fr_next;
4664
4665 gas_assert (next_fragP->fr_type == rs_machine_dependent
4666 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4667 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4668
4669 /* ...and one of these. */
4670 new_target = next_fragP->fr_next;
4671 while (!(new_target->fr_type == rs_machine_dependent
4672 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4673 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4674 new_target = new_target->fr_next;
4675
4676 gas_assert (new_target->fr_type == rs_machine_dependent
4677 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4678 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4679 }
4680
4681 while (next_fragP && next_fragP->fr_fix == 0)
4682 {
4683 if (next_fragP->fr_type == rs_machine_dependent
4684 && next_fragP->fr_subtype == RELAX_LOOP_END)
4685 {
4686 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4687 return;
4688 }
4689
4690 next_fragP = next_fragP->fr_next;
4691 }
4692 }
4693
4694
4695 static bfd_boolean
4696 next_frag_is_branch_target (const fragS *fragP)
4697 {
4698 /* Sometimes an empty will end up here due to storage allocation issues,
4699 so we have to skip until we find something legit. */
4700 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4701 {
4702 if (fragP->tc_frag_data.is_branch_target)
4703 return TRUE;
4704 if (fragP->fr_fix != 0)
4705 break;
4706 }
4707 return FALSE;
4708 }
4709
4710
4711 static bfd_boolean
4712 next_frag_is_loop_target (const fragS *fragP)
4713 {
4714 /* Sometimes an empty will end up here due storage allocation issues.
4715 So we have to skip until we find something legit. */
4716 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4717 {
4718 if (fragP->tc_frag_data.is_loop_target)
4719 return TRUE;
4720 if (fragP->fr_fix != 0)
4721 break;
4722 }
4723 return FALSE;
4724 }
4725
4726
4727 /* As specified in the relaxation table, when a loop instruction is
4728 relaxed, there are 24 bytes between the loop instruction itself and
4729 the first instruction in the loop. */
4730
4731 #define RELAXED_LOOP_INSN_BYTES 24
4732
4733 static addressT
4734 next_frag_pre_opcode_bytes (const fragS *fragp)
4735 {
4736 const fragS *next_fragp = fragp->fr_next;
4737 xtensa_opcode next_opcode;
4738
4739 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
4740 return 0;
4741
4742 /* Sometimes an empty will end up here due to storage allocation issues,
4743 so we have to skip until we find something legit. */
4744 while (next_fragp->fr_fix == 0)
4745 next_fragp = next_fragp->fr_next;
4746
4747 if (next_fragp->fr_type != rs_machine_dependent)
4748 return 0;
4749
4750 /* There is some implicit knowledge encoded in here.
4751 The LOOP instructions that are NOT RELAX_IMMED have
4752 been relaxed. Note that we can assume that the LOOP
4753 instruction is in slot 0 because loops aren't bundleable. */
4754 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
4755 return get_expanded_loop_offset (next_opcode) + RELAXED_LOOP_INSN_BYTES;
4756
4757 return 0;
4758 }
4759
4760
4761 /* Mark a location where we can later insert literal frags. Update
4762 the section's literal_pool_loc, so subsequent literals can be
4763 placed nearest to their use. */
4764
4765 static void
4766 xtensa_mark_literal_pool_location (void)
4767 {
4768 /* Any labels pointing to the current location need
4769 to be adjusted to after the literal pool. */
4770 emit_state s;
4771 fragS *pool_location;
4772
4773 if (use_literal_section)
4774 return;
4775
4776 /* We stash info in these frags so we can later move the literal's
4777 fixes into this frchain's fix list. */
4778 pool_location = frag_now;
4779 frag_now->tc_frag_data.lit_frchain = frchain_now;
4780 frag_now->tc_frag_data.literal_frag = frag_now;
4781 /* Just record this frag. */
4782 xtensa_maybe_create_literal_pool_frag (FALSE, FALSE);
4783 frag_variant (rs_machine_dependent, 0, 0,
4784 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4785 xtensa_set_frag_assembly_state (frag_now);
4786 frag_now->tc_frag_data.lit_seg = now_seg;
4787 frag_variant (rs_machine_dependent, 0, 0,
4788 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4789 xtensa_set_frag_assembly_state (frag_now);
4790
4791 /* Now put a frag into the literal pool that points to this location. */
4792 set_literal_pool_location (now_seg, pool_location);
4793 xtensa_switch_to_non_abs_literal_fragment (&s);
4794 frag_align (2, 0, 0);
4795 record_alignment (now_seg, 2);
4796
4797 /* Close whatever frag is there. */
4798 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4799 xtensa_set_frag_assembly_state (frag_now);
4800 frag_now->tc_frag_data.literal_frag = pool_location;
4801 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4802 xtensa_restore_emit_state (&s);
4803 xtensa_set_frag_assembly_state (frag_now);
4804 }
4805
4806
4807 /* Build a nop of the correct size into tinsn. */
4808
4809 static void
4810 build_nop (TInsn *tinsn, int size)
4811 {
4812 tinsn_init (tinsn);
4813 switch (size)
4814 {
4815 case 2:
4816 tinsn->opcode = xtensa_nop_n_opcode;
4817 tinsn->ntok = 0;
4818 if (tinsn->opcode == XTENSA_UNDEFINED)
4819 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4820 break;
4821
4822 case 3:
4823 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4824 {
4825 tinsn->opcode = xtensa_or_opcode;
4826 set_expr_const (&tinsn->tok[0], 1);
4827 set_expr_const (&tinsn->tok[1], 1);
4828 set_expr_const (&tinsn->tok[2], 1);
4829 tinsn->ntok = 3;
4830 }
4831 else
4832 tinsn->opcode = xtensa_nop_opcode;
4833
4834 gas_assert (tinsn->opcode != XTENSA_UNDEFINED);
4835 }
4836 }
4837
4838
4839 /* Assemble a NOP of the requested size in the buffer. User must have
4840 allocated "buf" with at least "size" bytes. */
4841
4842 static void
4843 assemble_nop (int size, char *buf)
4844 {
4845 static xtensa_insnbuf insnbuf = NULL;
4846 TInsn tinsn;
4847
4848 build_nop (&tinsn, size);
4849
4850 if (!insnbuf)
4851 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4852
4853 tinsn_to_insnbuf (&tinsn, insnbuf);
4854 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4855 (unsigned char *) buf, 0);
4856 }
4857
4858
4859 /* Return the number of bytes for the offset of the expanded loop
4860 instruction. This should be incorporated into the relaxation
4861 specification but is hard-coded here. This is used to auto-align
4862 the loop instruction. It is invalid to call this function if the
4863 configuration does not have loops or if the opcode is not a loop
4864 opcode. */
4865
4866 static addressT
4867 get_expanded_loop_offset (xtensa_opcode opcode)
4868 {
4869 /* This is the OFFSET of the loop instruction in the expanded loop.
4870 This MUST correspond directly to the specification of the loop
4871 expansion. It will be validated on fragment conversion. */
4872 gas_assert (opcode != XTENSA_UNDEFINED);
4873 if (opcode == xtensa_loop_opcode)
4874 return 0;
4875 if (opcode == xtensa_loopnez_opcode)
4876 return 3;
4877 if (opcode == xtensa_loopgtz_opcode)
4878 return 6;
4879 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4880 return 0;
4881 }
4882
4883
4884 static fragS *
4885 get_literal_pool_location (segT seg)
4886 {
4887 struct litpool_seg *lps = litpool_seg_list.next;
4888 struct litpool_frag *lpf;
4889 for ( ; lps && lps->seg->id != seg->id; lps = lps->next)
4890 ;
4891 if (lps)
4892 {
4893 for (lpf = lps->frag_list.prev; lpf->fragP; lpf = lpf->prev)
4894 { /* Skip "candidates" for now. */
4895 if (lpf->fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN &&
4896 lpf->priority == 1)
4897 return lpf->fragP;
4898 }
4899 /* Must convert a lower-priority pool. */
4900 for (lpf = lps->frag_list.prev; lpf->fragP; lpf = lpf->prev)
4901 {
4902 if (lpf->fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN)
4903 return lpf->fragP;
4904 }
4905 /* Still no match -- try for a low priority pool. */
4906 for (lpf = lps->frag_list.prev; lpf->fragP; lpf = lpf->prev)
4907 {
4908 if (lpf->fragP->fr_subtype == RELAX_LITERAL_POOL_CANDIDATE_BEGIN)
4909 return lpf->fragP;
4910 }
4911 }
4912 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4913 }
4914
4915
4916 static void
4917 set_literal_pool_location (segT seg, fragS *literal_pool_loc)
4918 {
4919 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4920 }
4921
4922
4923 /* Set frag assembly state should be called when a new frag is
4924 opened and after a frag has been closed. */
4925
4926 static void
4927 xtensa_set_frag_assembly_state (fragS *fragP)
4928 {
4929 if (!density_supported)
4930 fragP->tc_frag_data.is_no_density = TRUE;
4931
4932 /* This function is called from subsegs_finish, which is called
4933 after xtensa_end, so we can't use "use_transform" or
4934 "use_schedule" here. */
4935 if (!directive_state[directive_transform])
4936 fragP->tc_frag_data.is_no_transform = TRUE;
4937 if (directive_state[directive_longcalls])
4938 fragP->tc_frag_data.use_longcalls = TRUE;
4939 fragP->tc_frag_data.use_absolute_literals =
4940 directive_state[directive_absolute_literals];
4941 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4942 }
4943
4944
4945 static bfd_boolean
4946 relaxable_section (asection *sec)
4947 {
4948 return ((sec->flags & SEC_DEBUGGING) == 0
4949 && strcmp (sec->name, ".eh_frame") != 0);
4950 }
4951
4952
4953 static void
4954 xtensa_mark_frags_for_org (void)
4955 {
4956 segT *seclist;
4957
4958 /* Walk over each fragment of all of the current segments. If we find
4959 a .org frag in any of the segments, mark all frags prior to it as
4960 "no transform", which will prevent linker optimizations from messing
4961 up the .org distance. This should be done after
4962 xtensa_find_unmarked_state_frags, because we don't want to worry here
4963 about that function trashing the data we save here. */
4964
4965 for (seclist = &stdoutput->sections;
4966 seclist && *seclist;
4967 seclist = &(*seclist)->next)
4968 {
4969 segT sec = *seclist;
4970 segment_info_type *seginfo;
4971 fragS *fragP;
4972 flagword flags;
4973 flags = bfd_get_section_flags (stdoutput, sec);
4974 if (flags & SEC_DEBUGGING)
4975 continue;
4976 if (!(flags & SEC_ALLOC))
4977 continue;
4978
4979 seginfo = seg_info (sec);
4980 if (seginfo && seginfo->frchainP)
4981 {
4982 fragS *last_fragP = seginfo->frchainP->frch_root;
4983 for (fragP = seginfo->frchainP->frch_root; fragP;
4984 fragP = fragP->fr_next)
4985 {
4986 /* cvt_frag_to_fill has changed the fr_type of org frags to
4987 rs_fill, so use the value as cached in rs_subtype here. */
4988 if (fragP->fr_subtype == RELAX_ORG)
4989 {
4990 while (last_fragP != fragP->fr_next)
4991 {
4992 last_fragP->tc_frag_data.is_no_transform = TRUE;
4993 last_fragP = last_fragP->fr_next;
4994 }
4995 }
4996 }
4997 }
4998 }
4999 }
5000
5001
5002 static void
5003 xtensa_find_unmarked_state_frags (void)
5004 {
5005 segT *seclist;
5006
5007 /* Walk over each fragment of all of the current segments. For each
5008 unmarked fragment, mark it with the same info as the previous
5009 fragment. */
5010 for (seclist = &stdoutput->sections;
5011 seclist && *seclist;
5012 seclist = &(*seclist)->next)
5013 {
5014 segT sec = *seclist;
5015 segment_info_type *seginfo;
5016 fragS *fragP;
5017 flagword flags;
5018 flags = bfd_get_section_flags (stdoutput, sec);
5019 if (flags & SEC_DEBUGGING)
5020 continue;
5021 if (!(flags & SEC_ALLOC))
5022 continue;
5023
5024 seginfo = seg_info (sec);
5025 if (seginfo && seginfo->frchainP)
5026 {
5027 fragS *last_fragP = 0;
5028 for (fragP = seginfo->frchainP->frch_root; fragP;
5029 fragP = fragP->fr_next)
5030 {
5031 if (fragP->fr_fix != 0
5032 && !fragP->tc_frag_data.is_assembly_state_set)
5033 {
5034 if (last_fragP == 0)
5035 {
5036 as_warn_where (fragP->fr_file, fragP->fr_line,
5037 _("assembly state not set for first frag in section %s"),
5038 sec->name);
5039 }
5040 else
5041 {
5042 fragP->tc_frag_data.is_assembly_state_set = TRUE;
5043 fragP->tc_frag_data.is_no_density =
5044 last_fragP->tc_frag_data.is_no_density;
5045 fragP->tc_frag_data.is_no_transform =
5046 last_fragP->tc_frag_data.is_no_transform;
5047 fragP->tc_frag_data.use_longcalls =
5048 last_fragP->tc_frag_data.use_longcalls;
5049 fragP->tc_frag_data.use_absolute_literals =
5050 last_fragP->tc_frag_data.use_absolute_literals;
5051 }
5052 }
5053 if (fragP->tc_frag_data.is_assembly_state_set)
5054 last_fragP = fragP;
5055 }
5056 }
5057 }
5058 }
5059
5060
5061 static void
5062 xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
5063 asection *sec,
5064 void *unused ATTRIBUTE_UNUSED)
5065 {
5066 flagword flags = bfd_get_section_flags (abfd, sec);
5067 segment_info_type *seginfo = seg_info (sec);
5068 fragS *frag = seginfo->frchainP->frch_root;
5069
5070 if (flags & SEC_CODE)
5071 {
5072 xtensa_isa isa = xtensa_default_isa;
5073 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
5074 while (frag != NULL)
5075 {
5076 if (frag->tc_frag_data.is_branch_target)
5077 {
5078 int op_size;
5079 addressT branch_align, frag_addr;
5080 xtensa_format fmt;
5081
5082 xtensa_insnbuf_from_chars
5083 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
5084 fmt = xtensa_format_decode (isa, insnbuf);
5085 op_size = xtensa_format_length (isa, fmt);
5086 branch_align = 1 << branch_align_power (sec);
5087 frag_addr = frag->fr_address % branch_align;
5088 if (frag_addr + op_size > branch_align)
5089 as_warn_where (frag->fr_file, frag->fr_line,
5090 _("unaligned branch target: %d bytes at 0x%lx"),
5091 op_size, (long) frag->fr_address);
5092 }
5093 frag = frag->fr_next;
5094 }
5095 xtensa_insnbuf_free (isa, insnbuf);
5096 }
5097 }
5098
5099
5100 static void
5101 xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
5102 asection *sec,
5103 void *unused ATTRIBUTE_UNUSED)
5104 {
5105 flagword flags = bfd_get_section_flags (abfd, sec);
5106 segment_info_type *seginfo = seg_info (sec);
5107 fragS *frag = seginfo->frchainP->frch_root;
5108 xtensa_isa isa = xtensa_default_isa;
5109
5110 if (flags & SEC_CODE)
5111 {
5112 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
5113 while (frag != NULL)
5114 {
5115 if (frag->tc_frag_data.is_first_loop_insn)
5116 {
5117 int op_size;
5118 addressT frag_addr;
5119 xtensa_format fmt;
5120
5121 if (frag->fr_fix == 0)
5122 frag = next_non_empty_frag (frag);
5123
5124 if (frag)
5125 {
5126 xtensa_insnbuf_from_chars
5127 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
5128 fmt = xtensa_format_decode (isa, insnbuf);
5129 op_size = xtensa_format_length (isa, fmt);
5130 frag_addr = frag->fr_address % xtensa_fetch_width;
5131
5132 if (frag_addr + op_size > xtensa_fetch_width)
5133 as_warn_where (frag->fr_file, frag->fr_line,
5134 _("unaligned loop: %d bytes at 0x%lx"),
5135 op_size, (long) frag->fr_address);
5136 }
5137 }
5138 frag = frag->fr_next;
5139 }
5140 xtensa_insnbuf_free (isa, insnbuf);
5141 }
5142 }
5143
5144
5145 static int
5146 xg_apply_fix_value (fixS *fixP, valueT val)
5147 {
5148 xtensa_isa isa = xtensa_default_isa;
5149 static xtensa_insnbuf insnbuf = NULL;
5150 static xtensa_insnbuf slotbuf = NULL;
5151 xtensa_format fmt;
5152 int slot;
5153 bfd_boolean alt_reloc;
5154 xtensa_opcode opcode;
5155 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5156
5157 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc)
5158 || alt_reloc)
5159 as_fatal (_("unexpected fix"));
5160
5161 if (!insnbuf)
5162 {
5163 insnbuf = xtensa_insnbuf_alloc (isa);
5164 slotbuf = xtensa_insnbuf_alloc (isa);
5165 }
5166
5167 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5168 fmt = xtensa_format_decode (isa, insnbuf);
5169 if (fmt == XTENSA_UNDEFINED)
5170 as_fatal (_("undecodable fix"));
5171 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5172 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5173 if (opcode == XTENSA_UNDEFINED)
5174 as_fatal (_("undecodable fix"));
5175
5176 /* CONST16 immediates are not PC-relative, despite the fact that we
5177 reuse the normal PC-relative operand relocations for the low part
5178 of a CONST16 operand. */
5179 if (opcode == xtensa_const16_opcode)
5180 return 0;
5181
5182 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
5183 get_relaxable_immed (opcode), val,
5184 fixP->fx_file, fixP->fx_line);
5185
5186 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
5187 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5188
5189 return 1;
5190 }
5191
5192 \f
5193 /* External Functions and Other GAS Hooks. */
5194
5195 const char *
5196 xtensa_target_format (void)
5197 {
5198 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
5199 }
5200
5201
5202 void
5203 xtensa_file_arch_init (bfd *abfd)
5204 {
5205 bfd_set_private_flags (abfd, 0x100 | 0x200);
5206 }
5207
5208
5209 void
5210 md_number_to_chars (char *buf, valueT val, int n)
5211 {
5212 if (target_big_endian)
5213 number_to_chars_bigendian (buf, val, n);
5214 else
5215 number_to_chars_littleendian (buf, val, n);
5216 }
5217
5218 static void
5219 xg_init_global_config (void)
5220 {
5221 target_big_endian = XCHAL_HAVE_BE;
5222
5223 density_supported = XCHAL_HAVE_DENSITY;
5224 absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
5225 xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
5226
5227 directive_state[directive_density] = XCHAL_HAVE_DENSITY;
5228 directive_state[directive_absolute_literals] = XSHAL_USE_ABSOLUTE_LITERALS;
5229 }
5230
5231 void
5232 xtensa_init (int argc ATTRIBUTE_UNUSED, char **argv ATTRIBUTE_UNUSED)
5233 {
5234 xg_init_global_config ();
5235 }
5236
5237 /* This function is called once, at assembler startup time. It should
5238 set up all the tables, etc. that the MD part of the assembler will
5239 need. */
5240
5241 void
5242 md_begin (void)
5243 {
5244 segT current_section = now_seg;
5245 int current_subsec = now_subseg;
5246 xtensa_isa isa;
5247 int i;
5248
5249 xtensa_default_isa = xtensa_isa_init (0, 0);
5250 isa = xtensa_default_isa;
5251
5252 linkrelax = 1;
5253
5254 /* Set up the literal sections. */
5255 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
5256
5257 subseg_set (current_section, current_subsec);
5258
5259 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
5260 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
5261 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
5262 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
5263 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
5264 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
5265 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
5266 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
5267 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
5268 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
5269 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
5270 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
5271 xtensa_extui_opcode = xtensa_opcode_lookup (isa, "extui");
5272 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
5273 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
5274 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
5275 xtensa_j_opcode = xtensa_opcode_lookup (isa, "j");
5276 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
5277 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
5278 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
5279 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
5280 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
5281 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
5282 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
5283 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
5284 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
5285 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
5286 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
5287 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
5288 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
5289 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
5290
5291 for (i = 0; i < xtensa_isa_num_formats (isa); i++)
5292 {
5293 int format_slots = xtensa_format_num_slots (isa, i);
5294 if (format_slots > config_max_slots)
5295 config_max_slots = format_slots;
5296 }
5297
5298 xg_init_vinsn (&cur_vinsn);
5299
5300 xtensa_num_pipe_stages = xtensa_isa_num_pipe_stages (isa);
5301
5302 init_op_placement_info_table ();
5303
5304 /* Set up the assembly state. */
5305 if (!frag_now->tc_frag_data.is_assembly_state_set)
5306 xtensa_set_frag_assembly_state (frag_now);
5307 }
5308
5309
5310 /* TC_INIT_FIX_DATA hook */
5311
5312 void
5313 xtensa_init_fix_data (fixS *x)
5314 {
5315 x->tc_fix_data.slot = 0;
5316 x->tc_fix_data.X_add_symbol = NULL;
5317 x->tc_fix_data.X_add_number = 0;
5318 }
5319
5320
5321 /* tc_frob_label hook */
5322
5323 void
5324 xtensa_frob_label (symbolS *sym)
5325 {
5326 float freq;
5327
5328 if (cur_vinsn.inside_bundle)
5329 {
5330 as_bad (_("labels are not valid inside bundles"));
5331 return;
5332 }
5333
5334 freq = get_subseg_target_freq (now_seg, now_subseg);
5335
5336 /* Since the label was already attached to a frag associated with the
5337 previous basic block, it now needs to be reset to the current frag. */
5338 symbol_set_frag (sym, frag_now);
5339 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5340
5341 if (generating_literals)
5342 xtensa_add_literal_sym (sym);
5343 else
5344 xtensa_add_insn_label (sym);
5345
5346 if (symbol_get_tc (sym)->is_loop_target)
5347 {
5348 if ((get_last_insn_flags (now_seg, now_subseg)
5349 & FLAG_IS_BAD_LOOPEND) != 0)
5350 as_bad (_("invalid last instruction for a zero-overhead loop"));
5351
5352 xtensa_set_frag_assembly_state (frag_now);
5353 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5354 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5355
5356 xtensa_set_frag_assembly_state (frag_now);
5357 xtensa_move_labels (frag_now, 0);
5358 }
5359
5360 /* No target aligning in the absolute section. */
5361 if (now_seg != absolute_section
5362 && !is_unaligned_label (sym)
5363 && !generating_literals)
5364 {
5365 xtensa_set_frag_assembly_state (frag_now);
5366
5367 if (do_align_targets ())
5368 frag_var (rs_machine_dependent, 0, (int) freq,
5369 RELAX_DESIRE_ALIGN_IF_TARGET, frag_now->fr_symbol,
5370 frag_now->fr_offset, NULL);
5371 else
5372 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
5373 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5374 xtensa_set_frag_assembly_state (frag_now);
5375 xtensa_move_labels (frag_now, 0);
5376 }
5377
5378 /* We need to mark the following properties even if we aren't aligning. */
5379
5380 /* If the label is already known to be a branch target, i.e., a
5381 forward branch, mark the frag accordingly. Backward branches
5382 are handled by xg_add_branch_and_loop_targets. */
5383 if (symbol_get_tc (sym)->is_branch_target)
5384 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5385
5386 /* Loops only go forward, so they can be identified here. */
5387 if (symbol_get_tc (sym)->is_loop_target)
5388 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
5389
5390 dwarf2_emit_label (sym);
5391 }
5392
5393
5394 /* tc_unrecognized_line hook */
5395
5396 int
5397 xtensa_unrecognized_line (int ch)
5398 {
5399 switch (ch)
5400 {
5401 case '{' :
5402 if (cur_vinsn.inside_bundle == 0)
5403 {
5404 /* PR8110: Cannot emit line number info inside a FLIX bundle
5405 when using --gstabs. Temporarily disable debug info. */
5406 generate_lineno_debug ();
5407 if (debug_type == DEBUG_STABS)
5408 {
5409 xt_saved_debug_type = debug_type;
5410 debug_type = DEBUG_NONE;
5411 }
5412
5413 cur_vinsn.inside_bundle = 1;
5414 }
5415 else
5416 {
5417 as_bad (_("extra opening brace"));
5418 return 0;
5419 }
5420 break;
5421
5422 case '}' :
5423 if (cur_vinsn.inside_bundle)
5424 finish_vinsn (&cur_vinsn);
5425 else
5426 {
5427 as_bad (_("extra closing brace"));
5428 return 0;
5429 }
5430 break;
5431 default:
5432 as_bad (_("syntax error"));
5433 return 0;
5434 }
5435 return 1;
5436 }
5437
5438
5439 /* md_flush_pending_output hook */
5440
5441 void
5442 xtensa_flush_pending_output (void)
5443 {
5444 /* This line fixes a bug where automatically generated gstabs info
5445 separates a function label from its entry instruction, ending up
5446 with the literal position between the function label and the entry
5447 instruction and crashing code. It only happens with --gstabs and
5448 --text-section-literals, and when several other obscure relaxation
5449 conditions are met. */
5450 if (outputting_stabs_line_debug)
5451 return;
5452
5453 if (cur_vinsn.inside_bundle)
5454 as_bad (_("missing closing brace"));
5455
5456 /* If there is a non-zero instruction fragment, close it. */
5457 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5458 {
5459 frag_wane (frag_now);
5460 frag_new (0);
5461 xtensa_set_frag_assembly_state (frag_now);
5462 }
5463 frag_now->tc_frag_data.is_insn = FALSE;
5464
5465 xtensa_clear_insn_labels ();
5466 }
5467
5468
5469 /* We had an error while parsing an instruction. The string might look
5470 like this: "insn arg1, arg2 }". If so, we need to see the closing
5471 brace and reset some fields. Otherwise, the vinsn never gets closed
5472 and the num_slots field will grow past the end of the array of slots,
5473 and bad things happen. */
5474
5475 static void
5476 error_reset_cur_vinsn (void)
5477 {
5478 if (cur_vinsn.inside_bundle)
5479 {
5480 if (*input_line_pointer == '}'
5481 || *(input_line_pointer - 1) == '}'
5482 || *(input_line_pointer - 2) == '}')
5483 xg_clear_vinsn (&cur_vinsn);
5484 }
5485 }
5486
5487
5488 void
5489 md_assemble (char *str)
5490 {
5491 xtensa_isa isa = xtensa_default_isa;
5492 char *opname;
5493 unsigned opnamelen;
5494 bfd_boolean has_underbar = FALSE;
5495 char *arg_strings[MAX_INSN_ARGS];
5496 int num_args;
5497 TInsn orig_insn; /* Original instruction from the input. */
5498
5499 tinsn_init (&orig_insn);
5500
5501 /* Split off the opcode. */
5502 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5503 opname = xstrndup (str, opnamelen);
5504
5505 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5506 if (num_args == -1)
5507 {
5508 as_bad (_("syntax error"));
5509 return;
5510 }
5511
5512 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5513 return;
5514
5515 /* Check for an underbar prefix. */
5516 if (*opname == '_')
5517 {
5518 has_underbar = TRUE;
5519 opname += 1;
5520 }
5521
5522 orig_insn.insn_type = ITYPE_INSN;
5523 orig_insn.ntok = 0;
5524 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
5525 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5526
5527 /* Special case: Check for "CALLXn.TLS" pseudo op. If found, grab its
5528 extra argument and set the opcode to "CALLXn". */
5529 if (orig_insn.opcode == XTENSA_UNDEFINED
5530 && strncasecmp (opname, "callx", 5) == 0)
5531 {
5532 unsigned long window_size;
5533 char *suffix;
5534
5535 window_size = strtoul (opname + 5, &suffix, 10);
5536 if (suffix != opname + 5
5537 && (window_size == 0
5538 || window_size == 4
5539 || window_size == 8
5540 || window_size == 12)
5541 && strcasecmp (suffix, ".tls") == 0)
5542 {
5543 switch (window_size)
5544 {
5545 case 0: orig_insn.opcode = xtensa_callx0_opcode; break;
5546 case 4: orig_insn.opcode = xtensa_callx4_opcode; break;
5547 case 8: orig_insn.opcode = xtensa_callx8_opcode; break;
5548 case 12: orig_insn.opcode = xtensa_callx12_opcode; break;
5549 }
5550
5551 if (num_args != 2)
5552 as_bad (_("wrong number of operands for '%s'"), opname);
5553 else
5554 {
5555 bfd_reloc_code_real_type reloc;
5556 char *old_input_line_pointer;
5557 expressionS *tok = &orig_insn.extra_arg;
5558
5559 old_input_line_pointer = input_line_pointer;
5560 input_line_pointer = arg_strings[num_args - 1];
5561
5562 expression (tok);
5563 if (tok->X_op == O_symbol
5564 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
5565 == BFD_RELOC_XTENSA_TLS_CALL))
5566 tok->X_op = map_suffix_reloc_to_operator (reloc);
5567 else
5568 as_bad (_("bad relocation expression for '%s'"), opname);
5569
5570 input_line_pointer = old_input_line_pointer;
5571 num_args -= 1;
5572 }
5573 }
5574 }
5575
5576 /* Special case: Check for "j.l" pseudo op. */
5577 if (orig_insn.opcode == XTENSA_UNDEFINED
5578 && strncasecmp (opname, "j.l", 3) == 0)
5579 {
5580 if (num_args != 2)
5581 as_bad (_("wrong number of operands for '%s'"), opname);
5582 else
5583 {
5584 char *old_input_line_pointer;
5585 expressionS *tok = &orig_insn.extra_arg;
5586
5587 old_input_line_pointer = input_line_pointer;
5588 input_line_pointer = arg_strings[num_args - 1];
5589
5590 expression_maybe_register (xtensa_jx_opcode, 0, tok);
5591 input_line_pointer = old_input_line_pointer;
5592
5593 num_args -= 1;
5594 orig_insn.opcode = xtensa_j_opcode;
5595 }
5596 }
5597
5598 if (orig_insn.opcode == XTENSA_UNDEFINED)
5599 {
5600 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5601 if (fmt == XTENSA_UNDEFINED)
5602 {
5603 as_bad (_("unknown opcode or format name '%s'"), opname);
5604 error_reset_cur_vinsn ();
5605 return;
5606 }
5607 if (!cur_vinsn.inside_bundle)
5608 {
5609 as_bad (_("format names only valid inside bundles"));
5610 error_reset_cur_vinsn ();
5611 return;
5612 }
5613 if (cur_vinsn.format != XTENSA_UNDEFINED)
5614 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5615 opname);
5616 cur_vinsn.format = fmt;
5617 free (has_underbar ? opname - 1 : opname);
5618 error_reset_cur_vinsn ();
5619 return;
5620 }
5621
5622 /* Parse the arguments. */
5623 if (parse_arguments (&orig_insn, num_args, arg_strings))
5624 {
5625 as_bad (_("syntax error"));
5626 error_reset_cur_vinsn ();
5627 return;
5628 }
5629
5630 /* Free the opcode and argument strings, now that they've been parsed. */
5631 free (has_underbar ? opname - 1 : opname);
5632 opname = 0;
5633 while (num_args-- > 0)
5634 free (arg_strings[num_args]);
5635
5636 /* Get expressions for invisible operands. */
5637 if (get_invisible_operands (&orig_insn))
5638 {
5639 error_reset_cur_vinsn ();
5640 return;
5641 }
5642
5643 /* Check for the right number and type of arguments. */
5644 if (tinsn_check_arguments (&orig_insn))
5645 {
5646 error_reset_cur_vinsn ();
5647 return;
5648 }
5649
5650 /* Record the line number for each TInsn, because a FLIX bundle may be
5651 spread across multiple input lines and individual instructions may be
5652 moved around in some cases. */
5653 orig_insn.loc_directive_seen = dwarf2_loc_directive_seen;
5654 dwarf2_where (&orig_insn.debug_line);
5655 dwarf2_consume_line_info ();
5656
5657 xg_add_branch_and_loop_targets (&orig_insn);
5658
5659 /* Check that immediate value for ENTRY is >= 16. */
5660 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
5661 {
5662 expressionS *exp = &orig_insn.tok[2];
5663 if (exp->X_op == O_constant && exp->X_add_number < 16)
5664 as_warn (_("entry instruction with stack decrement < 16"));
5665 }
5666
5667 /* Finish it off:
5668 assemble_tokens (opcode, tok, ntok);
5669 expand the tokens from the orig_insn into the
5670 stack of instructions that will not expand
5671 unless required at relaxation time. */
5672
5673 if (!cur_vinsn.inside_bundle)
5674 emit_single_op (&orig_insn);
5675 else /* We are inside a bundle. */
5676 {
5677 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5678 cur_vinsn.num_slots++;
5679 if (*input_line_pointer == '}'
5680 || *(input_line_pointer - 1) == '}'
5681 || *(input_line_pointer - 2) == '}')
5682 finish_vinsn (&cur_vinsn);
5683 }
5684
5685 /* We've just emitted a new instruction so clear the list of labels. */
5686 xtensa_clear_insn_labels ();
5687
5688 xtensa_check_frag_count ();
5689 }
5690
5691
5692 /* HANDLE_ALIGN hook */
5693
5694 /* For a .align directive, we mark the previous block with the alignment
5695 information. This will be placed in the object file in the
5696 property section corresponding to this section. */
5697
5698 void
5699 xtensa_handle_align (fragS *fragP)
5700 {
5701 if (linkrelax
5702 && ! fragP->tc_frag_data.is_literal
5703 && (fragP->fr_type == rs_align
5704 || fragP->fr_type == rs_align_code)
5705 && fragP->fr_offset > 0
5706 && now_seg != bss_section)
5707 {
5708 fragP->tc_frag_data.is_align = TRUE;
5709 fragP->tc_frag_data.alignment = fragP->fr_offset;
5710 }
5711
5712 if (fragP->fr_type == rs_align_test)
5713 {
5714 int count;
5715 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5716 if (count != 0)
5717 as_bad_where (fragP->fr_file, fragP->fr_line,
5718 _("unaligned entry instruction"));
5719 }
5720
5721 if (linkrelax && fragP->fr_type == rs_org)
5722 fragP->fr_subtype = RELAX_ORG;
5723 }
5724
5725
5726 /* TC_FRAG_INIT hook */
5727
5728 void
5729 xtensa_frag_init (fragS *frag)
5730 {
5731 xtensa_set_frag_assembly_state (frag);
5732 }
5733
5734
5735 symbolS *
5736 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
5737 {
5738 return NULL;
5739 }
5740
5741
5742 /* Round up a section size to the appropriate boundary. */
5743
5744 valueT
5745 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5746 {
5747 return size; /* Byte alignment is fine. */
5748 }
5749
5750
5751 long
5752 md_pcrel_from (fixS *fixP)
5753 {
5754 char *insn_p;
5755 static xtensa_insnbuf insnbuf = NULL;
5756 static xtensa_insnbuf slotbuf = NULL;
5757 int opnum;
5758 uint32 opnd_value;
5759 xtensa_opcode opcode;
5760 xtensa_format fmt;
5761 int slot;
5762 xtensa_isa isa = xtensa_default_isa;
5763 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5764 bfd_boolean alt_reloc;
5765
5766 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5767 return 0;
5768
5769 if (fixP->fx_r_type == BFD_RELOC_32_PCREL)
5770 return addr;
5771
5772 if (!insnbuf)
5773 {
5774 insnbuf = xtensa_insnbuf_alloc (isa);
5775 slotbuf = xtensa_insnbuf_alloc (isa);
5776 }
5777
5778 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5779 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
5780 fmt = xtensa_format_decode (isa, insnbuf);
5781
5782 if (fmt == XTENSA_UNDEFINED)
5783 as_fatal (_("bad instruction format"));
5784
5785 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5786 as_fatal (_("invalid relocation"));
5787
5788 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5789 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5790
5791 /* Check for "alternate" relocations (operand not specified). None
5792 of the current uses for these are really PC-relative. */
5793 if (alt_reloc || opcode == xtensa_const16_opcode)
5794 {
5795 if (opcode != xtensa_l32r_opcode
5796 && opcode != xtensa_const16_opcode)
5797 as_fatal (_("invalid relocation for '%s' instruction"),
5798 xtensa_opcode_name (isa, opcode));
5799 return 0;
5800 }
5801
5802 opnum = get_relaxable_immed (opcode);
5803 opnd_value = 0;
5804 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5805 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
5806 {
5807 as_bad_where (fixP->fx_file,
5808 fixP->fx_line,
5809 _("invalid relocation for operand %d of '%s'"),
5810 opnum, xtensa_opcode_name (isa, opcode));
5811 return 0;
5812 }
5813 return 0 - opnd_value;
5814 }
5815
5816
5817 /* TC_FORCE_RELOCATION hook */
5818
5819 int
5820 xtensa_force_relocation (fixS *fix)
5821 {
5822 switch (fix->fx_r_type)
5823 {
5824 case BFD_RELOC_XTENSA_ASM_EXPAND:
5825 case BFD_RELOC_XTENSA_SLOT0_ALT:
5826 case BFD_RELOC_XTENSA_SLOT1_ALT:
5827 case BFD_RELOC_XTENSA_SLOT2_ALT:
5828 case BFD_RELOC_XTENSA_SLOT3_ALT:
5829 case BFD_RELOC_XTENSA_SLOT4_ALT:
5830 case BFD_RELOC_XTENSA_SLOT5_ALT:
5831 case BFD_RELOC_XTENSA_SLOT6_ALT:
5832 case BFD_RELOC_XTENSA_SLOT7_ALT:
5833 case BFD_RELOC_XTENSA_SLOT8_ALT:
5834 case BFD_RELOC_XTENSA_SLOT9_ALT:
5835 case BFD_RELOC_XTENSA_SLOT10_ALT:
5836 case BFD_RELOC_XTENSA_SLOT11_ALT:
5837 case BFD_RELOC_XTENSA_SLOT12_ALT:
5838 case BFD_RELOC_XTENSA_SLOT13_ALT:
5839 case BFD_RELOC_XTENSA_SLOT14_ALT:
5840 return 1;
5841 default:
5842 break;
5843 }
5844
5845 if (linkrelax && fix->fx_addsy
5846 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5847 return 1;
5848
5849 return generic_force_reloc (fix);
5850 }
5851
5852
5853 /* TC_VALIDATE_FIX_SUB hook */
5854
5855 int
5856 xtensa_validate_fix_sub (fixS *fix)
5857 {
5858 segT add_symbol_segment, sub_symbol_segment;
5859
5860 /* The difference of two symbols should be resolved by the assembler when
5861 linkrelax is not set. If the linker may relax the section containing
5862 the symbols, then an Xtensa DIFF relocation must be generated so that
5863 the linker knows to adjust the difference value. */
5864 if (!linkrelax || fix->fx_addsy == NULL)
5865 return 0;
5866
5867 /* Make sure both symbols are in the same segment, and that segment is
5868 "normal" and relaxable. If the segment is not "normal", then the
5869 fix is not valid. If the segment is not "relaxable", then the fix
5870 should have been handled earlier. */
5871 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5872 if (! SEG_NORMAL (add_symbol_segment) ||
5873 ! relaxable_section (add_symbol_segment))
5874 return 0;
5875 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5876 return (sub_symbol_segment == add_symbol_segment);
5877 }
5878
5879
5880 /* NO_PSEUDO_DOT hook */
5881
5882 /* This function has nothing to do with pseudo dots, but this is the
5883 nearest macro to where the check needs to take place. FIXME: This
5884 seems wrong. */
5885
5886 bfd_boolean
5887 xtensa_check_inside_bundle (void)
5888 {
5889 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5890 as_bad (_("directives are not valid inside bundles"));
5891
5892 /* This function must always return FALSE because it is called via a
5893 macro that has nothing to do with bundling. */
5894 return FALSE;
5895 }
5896
5897
5898 /* md_elf_section_change_hook */
5899
5900 void
5901 xtensa_elf_section_change_hook (void)
5902 {
5903 /* Set up the assembly state. */
5904 if (!frag_now->tc_frag_data.is_assembly_state_set)
5905 xtensa_set_frag_assembly_state (frag_now);
5906 }
5907
5908
5909 /* tc_fix_adjustable hook */
5910
5911 bfd_boolean
5912 xtensa_fix_adjustable (fixS *fixP)
5913 {
5914 /* We need the symbol name for the VTABLE entries. */
5915 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5916 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5917 return 0;
5918
5919 return 1;
5920 }
5921
5922
5923 /* tc_symbol_new_hook */
5924
5925 symbolS *expr_symbols = NULL;
5926
5927 void
5928 xtensa_symbol_new_hook (symbolS *sym)
5929 {
5930 if (is_leb128_expr && S_GET_SEGMENT (sym) == expr_section)
5931 {
5932 symbol_get_tc (sym)->next_expr_symbol = expr_symbols;
5933 expr_symbols = sym;
5934 }
5935 }
5936
5937
5938 void
5939 md_apply_fix (fixS *fixP, valueT *valP, segT seg)
5940 {
5941 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5942 valueT val = 0;
5943
5944 /* Subtracted symbols are only allowed for a few relocation types, and
5945 unless linkrelax is enabled, they should not make it to this point. */
5946 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
5947 || fixP->fx_r_type == BFD_RELOC_16
5948 || fixP->fx_r_type == BFD_RELOC_8)))
5949 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
5950
5951 switch (fixP->fx_r_type)
5952 {
5953 case BFD_RELOC_32_PCREL:
5954 case BFD_RELOC_32:
5955 case BFD_RELOC_16:
5956 case BFD_RELOC_8:
5957 if (fixP->fx_subsy)
5958 {
5959 switch (fixP->fx_r_type)
5960 {
5961 case BFD_RELOC_8:
5962 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5963 fixP->fx_signed = 0;
5964 break;
5965 case BFD_RELOC_16:
5966 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5967 fixP->fx_signed = 0;
5968 break;
5969 case BFD_RELOC_32:
5970 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5971 fixP->fx_signed = 0;
5972 break;
5973 default:
5974 break;
5975 }
5976
5977 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5978 - S_GET_VALUE (fixP->fx_subsy));
5979
5980 /* The difference value gets written out, and the DIFF reloc
5981 identifies the address of the subtracted symbol (i.e., the one
5982 with the lowest address). */
5983 *valP = val;
5984 fixP->fx_offset -= val;
5985 fixP->fx_subsy = NULL;
5986 }
5987 else if (! fixP->fx_addsy)
5988 {
5989 val = *valP;
5990 fixP->fx_done = 1;
5991 }
5992 /* fall through */
5993
5994 case BFD_RELOC_XTENSA_PLT:
5995 md_number_to_chars (fixpos, val, fixP->fx_size);
5996 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5997 break;
5998
5999 case BFD_RELOC_XTENSA_TLSDESC_FN:
6000 case BFD_RELOC_XTENSA_TLSDESC_ARG:
6001 case BFD_RELOC_XTENSA_TLS_TPOFF:
6002 case BFD_RELOC_XTENSA_TLS_DTPOFF:
6003 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6004 md_number_to_chars (fixpos, 0, fixP->fx_size);
6005 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
6006 break;
6007
6008 case BFD_RELOC_XTENSA_SLOT0_OP:
6009 case BFD_RELOC_XTENSA_SLOT1_OP:
6010 case BFD_RELOC_XTENSA_SLOT2_OP:
6011 case BFD_RELOC_XTENSA_SLOT3_OP:
6012 case BFD_RELOC_XTENSA_SLOT4_OP:
6013 case BFD_RELOC_XTENSA_SLOT5_OP:
6014 case BFD_RELOC_XTENSA_SLOT6_OP:
6015 case BFD_RELOC_XTENSA_SLOT7_OP:
6016 case BFD_RELOC_XTENSA_SLOT8_OP:
6017 case BFD_RELOC_XTENSA_SLOT9_OP:
6018 case BFD_RELOC_XTENSA_SLOT10_OP:
6019 case BFD_RELOC_XTENSA_SLOT11_OP:
6020 case BFD_RELOC_XTENSA_SLOT12_OP:
6021 case BFD_RELOC_XTENSA_SLOT13_OP:
6022 case BFD_RELOC_XTENSA_SLOT14_OP:
6023 if (linkrelax)
6024 {
6025 /* Write the tentative value of a PC-relative relocation to a
6026 local symbol into the instruction. The value will be ignored
6027 by the linker, and it makes the object file disassembly
6028 readable when all branch targets are encoded in relocations. */
6029
6030 gas_assert (fixP->fx_addsy);
6031 if (S_GET_SEGMENT (fixP->fx_addsy) == seg
6032 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
6033 {
6034 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
6035 - md_pcrel_from (fixP));
6036 (void) xg_apply_fix_value (fixP, val);
6037 }
6038 }
6039 else if (! fixP->fx_addsy)
6040 {
6041 val = *valP;
6042 if (xg_apply_fix_value (fixP, val))
6043 fixP->fx_done = 1;
6044 }
6045 break;
6046
6047 case BFD_RELOC_XTENSA_ASM_EXPAND:
6048 case BFD_RELOC_XTENSA_TLS_FUNC:
6049 case BFD_RELOC_XTENSA_TLS_ARG:
6050 case BFD_RELOC_XTENSA_TLS_CALL:
6051 case BFD_RELOC_XTENSA_SLOT0_ALT:
6052 case BFD_RELOC_XTENSA_SLOT1_ALT:
6053 case BFD_RELOC_XTENSA_SLOT2_ALT:
6054 case BFD_RELOC_XTENSA_SLOT3_ALT:
6055 case BFD_RELOC_XTENSA_SLOT4_ALT:
6056 case BFD_RELOC_XTENSA_SLOT5_ALT:
6057 case BFD_RELOC_XTENSA_SLOT6_ALT:
6058 case BFD_RELOC_XTENSA_SLOT7_ALT:
6059 case BFD_RELOC_XTENSA_SLOT8_ALT:
6060 case BFD_RELOC_XTENSA_SLOT9_ALT:
6061 case BFD_RELOC_XTENSA_SLOT10_ALT:
6062 case BFD_RELOC_XTENSA_SLOT11_ALT:
6063 case BFD_RELOC_XTENSA_SLOT12_ALT:
6064 case BFD_RELOC_XTENSA_SLOT13_ALT:
6065 case BFD_RELOC_XTENSA_SLOT14_ALT:
6066 /* These all need to be resolved at link-time. Do nothing now. */
6067 break;
6068
6069 case BFD_RELOC_VTABLE_INHERIT:
6070 case BFD_RELOC_VTABLE_ENTRY:
6071 fixP->fx_done = 0;
6072 break;
6073
6074 default:
6075 as_bad (_("unhandled local relocation fix %s"),
6076 bfd_get_reloc_code_name (fixP->fx_r_type));
6077 }
6078 }
6079
6080
6081 const char *
6082 md_atof (int type, char *litP, int *sizeP)
6083 {
6084 return ieee_md_atof (type, litP, sizeP, target_big_endian);
6085 }
6086
6087
6088 int
6089 md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
6090 {
6091 return total_frag_text_expansion (fragP);
6092 }
6093
6094
6095 /* Translate internal representation of relocation info to BFD target
6096 format. */
6097
6098 arelent *
6099 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
6100 {
6101 arelent *reloc;
6102
6103 reloc = XNEW (arelent);
6104 reloc->sym_ptr_ptr = XNEW (asymbol *);
6105 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6106 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6107
6108 /* Make sure none of our internal relocations make it this far.
6109 They'd better have been fully resolved by this point. */
6110 gas_assert ((int) fixp->fx_r_type > 0);
6111
6112 reloc->addend = fixp->fx_offset;
6113
6114 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
6115 if (reloc->howto == NULL)
6116 {
6117 as_bad_where (fixp->fx_file, fixp->fx_line,
6118 _("cannot represent `%s' relocation in object file"),
6119 bfd_get_reloc_code_name (fixp->fx_r_type));
6120 free (reloc->sym_ptr_ptr);
6121 free (reloc);
6122 return NULL;
6123 }
6124
6125 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
6126 as_fatal (_("internal error; cannot generate `%s' relocation"),
6127 bfd_get_reloc_code_name (fixp->fx_r_type));
6128
6129 return reloc;
6130 }
6131
6132 \f
6133 /* Checks for resource conflicts between instructions. */
6134
6135 /* The func unit stuff could be implemented as bit-vectors rather
6136 than the iterative approach here. If it ends up being too
6137 slow, we will switch it. */
6138
6139 resource_table *
6140 new_resource_table (void *data,
6141 int cycles,
6142 int nu,
6143 unit_num_copies_func uncf,
6144 opcode_num_units_func onuf,
6145 opcode_funcUnit_use_unit_func ouuf,
6146 opcode_funcUnit_use_stage_func ousf)
6147 {
6148 int i;
6149 resource_table *rt = XNEW (resource_table);
6150 rt->data = data;
6151 rt->cycles = cycles;
6152 rt->allocated_cycles = cycles;
6153 rt->num_units = nu;
6154 rt->unit_num_copies = uncf;
6155 rt->opcode_num_units = onuf;
6156 rt->opcode_unit_use = ouuf;
6157 rt->opcode_unit_stage = ousf;
6158
6159 rt->units = XCNEWVEC (unsigned char *, cycles);
6160 for (i = 0; i < cycles; i++)
6161 rt->units[i] = XCNEWVEC (unsigned char, nu);
6162
6163 return rt;
6164 }
6165
6166
6167 void
6168 clear_resource_table (resource_table *rt)
6169 {
6170 int i, j;
6171 for (i = 0; i < rt->allocated_cycles; i++)
6172 for (j = 0; j < rt->num_units; j++)
6173 rt->units[i][j] = 0;
6174 }
6175
6176
6177 /* We never shrink it, just fake it into thinking so. */
6178
6179 void
6180 resize_resource_table (resource_table *rt, int cycles)
6181 {
6182 int i, old_cycles;
6183
6184 rt->cycles = cycles;
6185 if (cycles <= rt->allocated_cycles)
6186 return;
6187
6188 old_cycles = rt->allocated_cycles;
6189 rt->allocated_cycles = cycles;
6190
6191 rt->units = XRESIZEVEC (unsigned char *, rt->units, rt->allocated_cycles);
6192 for (i = 0; i < old_cycles; i++)
6193 rt->units[i] = XRESIZEVEC (unsigned char, rt->units[i], rt->num_units);
6194 for (i = old_cycles; i < cycles; i++)
6195 rt->units[i] = XCNEWVEC (unsigned char, rt->num_units);
6196 }
6197
6198
6199 bfd_boolean
6200 resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
6201 {
6202 int i;
6203 int uses = (rt->opcode_num_units) (rt->data, opcode);
6204
6205 for (i = 0; i < uses; i++)
6206 {
6207 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6208 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6209 int copies_in_use = rt->units[stage + cycle][unit];
6210 int copies = (rt->unit_num_copies) (rt->data, unit);
6211 if (copies_in_use >= copies)
6212 return FALSE;
6213 }
6214 return TRUE;
6215 }
6216
6217
6218 void
6219 reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6220 {
6221 int i;
6222 int uses = (rt->opcode_num_units) (rt->data, opcode);
6223
6224 for (i = 0; i < uses; i++)
6225 {
6226 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6227 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6228 /* Note that this allows resources to be oversubscribed. That's
6229 essential to the way the optional scheduler works.
6230 resources_available reports when a resource is over-subscribed,
6231 so it's easy to tell. */
6232 rt->units[stage + cycle][unit]++;
6233 }
6234 }
6235
6236
6237 void
6238 release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6239 {
6240 int i;
6241 int uses = (rt->opcode_num_units) (rt->data, opcode);
6242
6243 for (i = 0; i < uses; i++)
6244 {
6245 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6246 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6247 gas_assert (rt->units[stage + cycle][unit] > 0);
6248 rt->units[stage + cycle][unit]--;
6249 }
6250 }
6251
6252
6253 /* Wrapper functions make parameterized resource reservation
6254 more convenient. */
6255
6256 int
6257 opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
6258 {
6259 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6260 return use->unit;
6261 }
6262
6263
6264 int
6265 opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
6266 {
6267 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6268 return use->stage;
6269 }
6270
6271
6272 /* Note that this function does not check issue constraints, but
6273 solely whether the hardware is available to execute the given
6274 instructions together. It also doesn't check if the tinsns
6275 write the same state, or access the same tieports. That is
6276 checked by check_t1_t2_reads_and_writes. */
6277
6278 static bfd_boolean
6279 resources_conflict (vliw_insn *vinsn)
6280 {
6281 int i;
6282 static resource_table *rt = NULL;
6283
6284 /* This is the most common case by far. Optimize it. */
6285 if (vinsn->num_slots == 1)
6286 return FALSE;
6287
6288 if (rt == NULL)
6289 {
6290 xtensa_isa isa = xtensa_default_isa;
6291 rt = new_resource_table
6292 (isa, xtensa_num_pipe_stages,
6293 xtensa_isa_num_funcUnits (isa),
6294 (unit_num_copies_func) xtensa_funcUnit_num_copies,
6295 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
6296 opcode_funcUnit_use_unit,
6297 opcode_funcUnit_use_stage);
6298 }
6299
6300 clear_resource_table (rt);
6301
6302 for (i = 0; i < vinsn->num_slots; i++)
6303 {
6304 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
6305 return TRUE;
6306 reserve_resources (rt, vinsn->slots[i].opcode, 0);
6307 }
6308
6309 return FALSE;
6310 }
6311
6312 \f
6313 /* finish_vinsn, emit_single_op and helper functions. */
6314
6315 static bfd_boolean find_vinsn_conflicts (vliw_insn *);
6316 static xtensa_format xg_find_narrowest_format (vliw_insn *);
6317 static void xg_assemble_vliw_tokens (vliw_insn *);
6318
6319
6320 /* We have reached the end of a bundle; emit into the frag. */
6321
6322 static void
6323 finish_vinsn (vliw_insn *vinsn)
6324 {
6325 IStack slotstack;
6326 int i;
6327 int slots;
6328
6329 if (find_vinsn_conflicts (vinsn))
6330 {
6331 xg_clear_vinsn (vinsn);
6332 return;
6333 }
6334
6335 /* First, find a format that works. */
6336 if (vinsn->format == XTENSA_UNDEFINED)
6337 vinsn->format = xg_find_narrowest_format (vinsn);
6338
6339 slots = xtensa_format_num_slots (xtensa_default_isa, vinsn->format);
6340 if (slots > 1
6341 && produce_flix == FLIX_NONE)
6342 {
6343 as_bad (_("The option \"--no-allow-flix\" prohibits multi-slot flix."));
6344 xg_clear_vinsn (vinsn);
6345 return;
6346 }
6347
6348 if (vinsn->format == XTENSA_UNDEFINED)
6349 {
6350 as_bad (_("couldn't find a valid instruction format"));
6351 fprintf (stderr, _(" ops were: "));
6352 for (i = 0; i < vinsn->num_slots; i++)
6353 fprintf (stderr, _(" %s;"),
6354 xtensa_opcode_name (xtensa_default_isa,
6355 vinsn->slots[i].opcode));
6356 fprintf (stderr, _("\n"));
6357 xg_clear_vinsn (vinsn);
6358 return;
6359 }
6360
6361 if (vinsn->num_slots != slots)
6362 {
6363 as_bad (_("mismatch for format '%s': #slots = %d, #opcodes = %d"),
6364 xtensa_format_name (xtensa_default_isa, vinsn->format),
6365 slots, vinsn->num_slots);
6366 xg_clear_vinsn (vinsn);
6367 return;
6368 }
6369
6370 if (resources_conflict (vinsn))
6371 {
6372 as_bad (_("illegal resource usage in bundle"));
6373 fprintf (stderr, " ops were: ");
6374 for (i = 0; i < vinsn->num_slots; i++)
6375 fprintf (stderr, " %s;",
6376 xtensa_opcode_name (xtensa_default_isa,
6377 vinsn->slots[i].opcode));
6378 fprintf (stderr, "\n");
6379 xg_clear_vinsn (vinsn);
6380 return;
6381 }
6382
6383 for (i = 0; i < vinsn->num_slots; i++)
6384 {
6385 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
6386 {
6387 symbolS *lit_sym = NULL;
6388 int j;
6389 bfd_boolean e = FALSE;
6390 bfd_boolean saved_density = density_supported;
6391
6392 /* We don't want to narrow ops inside multi-slot bundles. */
6393 if (vinsn->num_slots > 1)
6394 density_supported = FALSE;
6395
6396 istack_init (&slotstack);
6397 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
6398 {
6399 vinsn->slots[i].opcode =
6400 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6401 vinsn->format, i);
6402 vinsn->slots[i].ntok = 0;
6403 }
6404
6405 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6406 {
6407 e = TRUE;
6408 continue;
6409 }
6410
6411 density_supported = saved_density;
6412
6413 if (e)
6414 {
6415 xg_clear_vinsn (vinsn);
6416 return;
6417 }
6418
6419 for (j = 0; j < slotstack.ninsn; j++)
6420 {
6421 TInsn *insn = &slotstack.insn[j];
6422 if (insn->insn_type == ITYPE_LITERAL)
6423 {
6424 gas_assert (lit_sym == NULL);
6425 lit_sym = xg_assemble_literal (insn);
6426 }
6427 else
6428 {
6429 gas_assert (insn->insn_type == ITYPE_INSN);
6430 if (lit_sym)
6431 xg_resolve_literals (insn, lit_sym);
6432 if (j != slotstack.ninsn - 1)
6433 emit_single_op (insn);
6434 }
6435 }
6436
6437 if (vinsn->num_slots > 1)
6438 {
6439 if (opcode_fits_format_slot
6440 (slotstack.insn[slotstack.ninsn - 1].opcode,
6441 vinsn->format, i))
6442 {
6443 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6444 }
6445 else
6446 {
6447 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6448 if (vinsn->format == XTENSA_UNDEFINED)
6449 vinsn->slots[i].opcode = xtensa_nop_opcode;
6450 else
6451 vinsn->slots[i].opcode
6452 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6453 vinsn->format, i);
6454
6455 vinsn->slots[i].ntok = 0;
6456 }
6457 }
6458 else
6459 {
6460 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6461 vinsn->format = XTENSA_UNDEFINED;
6462 }
6463 }
6464 }
6465
6466 /* Now check resource conflicts on the modified bundle. */
6467 if (resources_conflict (vinsn))
6468 {
6469 as_bad (_("illegal resource usage in bundle"));
6470 fprintf (stderr, " ops were: ");
6471 for (i = 0; i < vinsn->num_slots; i++)
6472 fprintf (stderr, " %s;",
6473 xtensa_opcode_name (xtensa_default_isa,
6474 vinsn->slots[i].opcode));
6475 fprintf (stderr, "\n");
6476 xg_clear_vinsn (vinsn);
6477 return;
6478 }
6479
6480 /* First, find a format that works. */
6481 if (vinsn->format == XTENSA_UNDEFINED)
6482 vinsn->format = xg_find_narrowest_format (vinsn);
6483
6484 xg_assemble_vliw_tokens (vinsn);
6485
6486 xg_clear_vinsn (vinsn);
6487
6488 xtensa_check_frag_count ();
6489 }
6490
6491
6492 /* Given an vliw instruction, what conflicts are there in register
6493 usage and in writes to states and queues?
6494
6495 This function does two things:
6496 1. Reports an error when a vinsn contains illegal combinations
6497 of writes to registers states or queues.
6498 2. Marks individual tinsns as not relaxable if the combination
6499 contains antidependencies.
6500
6501 Job 2 handles things like swap semantics in instructions that need
6502 to be relaxed. For example,
6503
6504 addi a0, a1, 100000
6505
6506 normally would be relaxed to
6507
6508 l32r a0, some_label
6509 add a0, a1, a0
6510
6511 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6512
6513 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6514
6515 then we can't relax it into
6516
6517 l32r a0, some_label
6518 { add a0, a1, a0 ; add a2, a0, a4 ; }
6519
6520 because the value of a0 is trashed before the second add can read it. */
6521
6522 static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6523
6524 static bfd_boolean
6525 find_vinsn_conflicts (vliw_insn *vinsn)
6526 {
6527 int i, j;
6528 int branches = 0;
6529 xtensa_isa isa = xtensa_default_isa;
6530
6531 gas_assert (!past_xtensa_end);
6532
6533 for (i = 0 ; i < vinsn->num_slots; i++)
6534 {
6535 TInsn *op1 = &vinsn->slots[i];
6536 if (op1->is_specific_opcode)
6537 op1->keep_wide = TRUE;
6538 else
6539 op1->keep_wide = FALSE;
6540 }
6541
6542 for (i = 0 ; i < vinsn->num_slots; i++)
6543 {
6544 TInsn *op1 = &vinsn->slots[i];
6545
6546 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6547 branches++;
6548
6549 for (j = 0; j < vinsn->num_slots; j++)
6550 {
6551 if (i != j)
6552 {
6553 TInsn *op2 = &vinsn->slots[j];
6554 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6555 switch (conflict_type)
6556 {
6557 case 'c':
6558 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6559 xtensa_opcode_name (isa, op1->opcode), i,
6560 xtensa_opcode_name (isa, op2->opcode), j);
6561 return TRUE;
6562 case 'd':
6563 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6564 xtensa_opcode_name (isa, op1->opcode), i,
6565 xtensa_opcode_name (isa, op2->opcode), j);
6566 return TRUE;
6567 case 'e':
6568 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
6569 xtensa_opcode_name (isa, op1->opcode), i,
6570 xtensa_opcode_name (isa, op2->opcode), j);
6571 return TRUE;
6572 case 'f':
6573 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
6574 xtensa_opcode_name (isa, op1->opcode), i,
6575 xtensa_opcode_name (isa, op2->opcode), j);
6576 return TRUE;
6577 default:
6578 /* Everything is OK. */
6579 break;
6580 }
6581 op2->is_specific_opcode = (op2->is_specific_opcode
6582 || conflict_type == 'a');
6583 }
6584 }
6585 }
6586
6587 if (branches > 1)
6588 {
6589 as_bad (_("multiple branches or jumps in the same bundle"));
6590 return TRUE;
6591 }
6592
6593 return FALSE;
6594 }
6595
6596
6597 /* Check how the state used by t1 and t2 relate.
6598 Cases found are:
6599
6600 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6601 case B: no relationship between what is read and written (both could
6602 read the same reg though)
6603 case C: t1 writes a register t2 writes (a register conflict within a
6604 bundle)
6605 case D: t1 writes a state that t2 also writes
6606 case E: t1 writes a tie queue that t2 also writes
6607 case F: two volatile queue accesses
6608 */
6609
6610 static char
6611 check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
6612 {
6613 xtensa_isa isa = xtensa_default_isa;
6614 xtensa_regfile t1_regfile, t2_regfile;
6615 int t1_reg, t2_reg;
6616 int t1_base_reg, t1_last_reg;
6617 int t2_base_reg, t2_last_reg;
6618 char t1_inout, t2_inout;
6619 int i, j;
6620 char conflict = 'b';
6621 int t1_states;
6622 int t2_states;
6623 int t1_interfaces;
6624 int t2_interfaces;
6625 bfd_boolean t1_volatile = FALSE;
6626 bfd_boolean t2_volatile = FALSE;
6627
6628 /* Check registers. */
6629 for (j = 0; j < t2->ntok; j++)
6630 {
6631 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6632 continue;
6633
6634 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6635 t2_base_reg = t2->tok[j].X_add_number;
6636 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6637
6638 for (i = 0; i < t1->ntok; i++)
6639 {
6640 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6641 continue;
6642
6643 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6644
6645 if (t1_regfile != t2_regfile)
6646 continue;
6647
6648 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6649 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6650
6651 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6652 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6653 {
6654 if (t1_inout == 'm' || t1_inout == 'o'
6655 || t2_inout == 'm' || t2_inout == 'o')
6656 {
6657 conflict = 'a';
6658 continue;
6659 }
6660 }
6661
6662 t1_base_reg = t1->tok[i].X_add_number;
6663 t1_last_reg = (t1_base_reg
6664 + xtensa_operand_num_regs (isa, t1->opcode, i));
6665
6666 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6667 {
6668 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6669 {
6670 if (t1_reg != t2_reg)
6671 continue;
6672
6673 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6674 {
6675 conflict = 'a';
6676 continue;
6677 }
6678
6679 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6680 {
6681 conflict = 'a';
6682 continue;
6683 }
6684
6685 if (t1_inout != 'i' && t2_inout != 'i')
6686 return 'c';
6687 }
6688 }
6689 }
6690 }
6691
6692 /* Check states. */
6693 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6694 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6695 for (j = 0; j < t2_states; j++)
6696 {
6697 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6698 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6699 for (i = 0; i < t1_states; i++)
6700 {
6701 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6702 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
6703 if (t1_so != t2_so || xtensa_state_is_shared_or (isa, t1_so) == 1)
6704 continue;
6705
6706 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6707 {
6708 conflict = 'a';
6709 continue;
6710 }
6711
6712 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6713 {
6714 conflict = 'a';
6715 continue;
6716 }
6717
6718 if (t1_inout != 'i' && t2_inout != 'i')
6719 return 'd';
6720 }
6721 }
6722
6723 /* Check tieports. */
6724 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6725 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
6726 for (j = 0; j < t2_interfaces; j++)
6727 {
6728 xtensa_interface t2_int
6729 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
6730 int t2_class = xtensa_interface_class_id (isa, t2_int);
6731
6732 t2_inout = xtensa_interface_inout (isa, t2_int);
6733 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
6734 t2_volatile = TRUE;
6735
6736 for (i = 0; i < t1_interfaces; i++)
6737 {
6738 xtensa_interface t1_int
6739 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
6740 int t1_class = xtensa_interface_class_id (isa, t1_int);
6741
6742 t1_inout = xtensa_interface_inout (isa, t1_int);
6743 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
6744 t1_volatile = TRUE;
6745
6746 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6747 return 'f';
6748
6749 if (t1_int != t2_int)
6750 continue;
6751
6752 if (t2_inout == 'i' && t1_inout == 'o')
6753 {
6754 conflict = 'a';
6755 continue;
6756 }
6757
6758 if (t1_inout == 'i' && t2_inout == 'o')
6759 {
6760 conflict = 'a';
6761 continue;
6762 }
6763
6764 if (t1_inout != 'i' && t2_inout != 'i')
6765 return 'e';
6766 }
6767 }
6768
6769 return conflict;
6770 }
6771
6772
6773 static xtensa_format
6774 xg_find_narrowest_format (vliw_insn *vinsn)
6775 {
6776 /* Right now we assume that the ops within the vinsn are properly
6777 ordered for the slots that the programmer wanted them in. In
6778 other words, we don't rearrange the ops in hopes of finding a
6779 better format. The scheduler handles that. */
6780
6781 xtensa_isa isa = xtensa_default_isa;
6782 xtensa_format format;
6783 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6784
6785 if (vinsn->num_slots == 1)
6786 return xg_get_single_format (vinsn->slots[0].opcode);
6787
6788 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6789 {
6790 vliw_insn v_copy;
6791 xg_copy_vinsn (&v_copy, vinsn);
6792 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6793 {
6794 int slot;
6795 int fit = 0;
6796 for (slot = 0; slot < v_copy.num_slots; slot++)
6797 {
6798 if (v_copy.slots[slot].opcode == nop_opcode)
6799 {
6800 v_copy.slots[slot].opcode =
6801 xtensa_format_slot_nop_opcode (isa, format, slot);
6802 v_copy.slots[slot].ntok = 0;
6803 }
6804
6805 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6806 format, slot))
6807 fit++;
6808 else if (v_copy.num_slots > 1)
6809 {
6810 TInsn widened;
6811 /* Try the widened version. */
6812 if (!v_copy.slots[slot].keep_wide
6813 && !v_copy.slots[slot].is_specific_opcode
6814 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6815 &widened, TRUE)
6816 && opcode_fits_format_slot (widened.opcode,
6817 format, slot))
6818 {
6819 v_copy.slots[slot] = widened;
6820 fit++;
6821 }
6822 }
6823 }
6824 if (fit == v_copy.num_slots)
6825 {
6826 xg_copy_vinsn (vinsn, &v_copy);
6827 xtensa_format_encode (isa, format, vinsn->insnbuf);
6828 vinsn->format = format;
6829 break;
6830 }
6831 }
6832 }
6833
6834 if (format == xtensa_isa_num_formats (isa))
6835 return XTENSA_UNDEFINED;
6836
6837 return format;
6838 }
6839
6840
6841 /* Return the additional space needed in a frag
6842 for possible relaxations of any ops in a VLIW insn.
6843 Also fill out the relaxations that might be required of
6844 each tinsn in the vinsn. */
6845
6846 static int
6847 relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
6848 {
6849 bfd_boolean finish_frag = FALSE;
6850 int extra_space = 0;
6851 int slot;
6852
6853 for (slot = 0; slot < vinsn->num_slots; slot++)
6854 {
6855 TInsn *tinsn = &vinsn->slots[slot];
6856 if (!tinsn_has_symbolic_operands (tinsn))
6857 {
6858 /* A narrow instruction could be widened later to help
6859 alignment issues. */
6860 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
6861 && !tinsn->is_specific_opcode
6862 && vinsn->num_slots == 1)
6863 {
6864 /* Difference in bytes between narrow and wide insns... */
6865 extra_space += 1;
6866 tinsn->subtype = RELAX_NARROW;
6867 }
6868 }
6869 else
6870 {
6871 if (workaround_b_j_loop_end
6872 && tinsn->opcode == xtensa_jx_opcode
6873 && use_transform ())
6874 {
6875 /* Add 2 of these. */
6876 extra_space += 3; /* for the nop size */
6877 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6878 }
6879
6880 /* Need to assemble it with space for the relocation. */
6881 if (xg_is_relaxable_insn (tinsn, 0)
6882 && !tinsn->is_specific_opcode)
6883 {
6884 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6885 int max_literal_size =
6886 xg_get_max_insn_widen_literal_size (tinsn->opcode);
6887
6888 tinsn->literal_space = max_literal_size;
6889
6890 tinsn->subtype = RELAX_IMMED;
6891 extra_space += max_size;
6892 }
6893 else
6894 {
6895 /* A fix record will be added for this instruction prior
6896 to relaxation, so make it end the frag. */
6897 finish_frag = TRUE;
6898 }
6899 }
6900 }
6901 *pfinish_frag = finish_frag;
6902 return extra_space;
6903 }
6904
6905
6906 static void
6907 bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
6908 {
6909 xtensa_isa isa = xtensa_default_isa;
6910 int slot, chosen_slot;
6911
6912 vinsn->format = xg_get_single_format (tinsn->opcode);
6913 gas_assert (vinsn->format != XTENSA_UNDEFINED);
6914 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
6915
6916 chosen_slot = xg_get_single_slot (tinsn->opcode);
6917 for (slot = 0; slot < vinsn->num_slots; slot++)
6918 {
6919 if (slot == chosen_slot)
6920 vinsn->slots[slot] = *tinsn;
6921 else
6922 {
6923 vinsn->slots[slot].opcode =
6924 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6925 vinsn->slots[slot].ntok = 0;
6926 vinsn->slots[slot].insn_type = ITYPE_INSN;
6927 }
6928 }
6929 }
6930
6931
6932 static bfd_boolean
6933 emit_single_op (TInsn *orig_insn)
6934 {
6935 int i;
6936 IStack istack; /* put instructions into here */
6937 symbolS *lit_sym = NULL;
6938 symbolS *label_sym = NULL;
6939
6940 istack_init (&istack);
6941
6942 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
6943 Because the scheduling and bundling characteristics of movi and
6944 l32r or const16 are so different, we can do much better if we relax
6945 it prior to scheduling and bundling, rather than after. */
6946 if ((orig_insn->opcode == xtensa_movi_opcode
6947 || orig_insn->opcode == xtensa_movi_n_opcode)
6948 && !cur_vinsn.inside_bundle
6949 && (orig_insn->tok[1].X_op == O_symbol
6950 || orig_insn->tok[1].X_op == O_pltrel
6951 || orig_insn->tok[1].X_op == O_tlsfunc
6952 || orig_insn->tok[1].X_op == O_tlsarg
6953 || orig_insn->tok[1].X_op == O_tpoff
6954 || orig_insn->tok[1].X_op == O_dtpoff)
6955 && !orig_insn->is_specific_opcode && use_transform ())
6956 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6957 else
6958 if (xg_expand_assembly_insn (&istack, orig_insn))
6959 return TRUE;
6960
6961 for (i = 0; i < istack.ninsn; i++)
6962 {
6963 TInsn *insn = &istack.insn[i];
6964 switch (insn->insn_type)
6965 {
6966 case ITYPE_LITERAL:
6967 gas_assert (lit_sym == NULL);
6968 lit_sym = xg_assemble_literal (insn);
6969 break;
6970 case ITYPE_LABEL:
6971 {
6972 static int relaxed_sym_idx = 0;
6973 char *label = XNEWVEC (char, strlen (FAKE_LABEL_NAME) + 12);
6974 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6975 colon (label);
6976 gas_assert (label_sym == NULL);
6977 label_sym = symbol_find_or_make (label);
6978 gas_assert (label_sym);
6979 free (label);
6980 }
6981 break;
6982 case ITYPE_INSN:
6983 {
6984 vliw_insn v;
6985 if (lit_sym)
6986 xg_resolve_literals (insn, lit_sym);
6987 if (label_sym)
6988 xg_resolve_labels (insn, label_sym);
6989 xg_init_vinsn (&v);
6990 bundle_tinsn (insn, &v);
6991 finish_vinsn (&v);
6992 xg_free_vinsn (&v);
6993 }
6994 break;
6995 default:
6996 gas_assert (0);
6997 break;
6998 }
6999 }
7000 return FALSE;
7001 }
7002
7003
7004 static int
7005 total_frag_text_expansion (fragS *fragP)
7006 {
7007 int slot;
7008 int total_expansion = 0;
7009
7010 for (slot = 0; slot < config_max_slots; slot++)
7011 total_expansion += fragP->tc_frag_data.text_expansion[slot];
7012
7013 return total_expansion;
7014 }
7015
7016
7017 /* Emit a vliw instruction to the current fragment. */
7018
7019 static void
7020 xg_assemble_vliw_tokens (vliw_insn *vinsn)
7021 {
7022 bfd_boolean finish_frag;
7023 bfd_boolean is_jump = FALSE;
7024 bfd_boolean is_branch = FALSE;
7025 xtensa_isa isa = xtensa_default_isa;
7026 int insn_size;
7027 int extra_space;
7028 char *f = NULL;
7029 int slot;
7030 struct dwarf2_line_info debug_line;
7031 bfd_boolean loc_directive_seen = FALSE;
7032 TInsn *tinsn;
7033
7034 memset (&debug_line, 0, sizeof (struct dwarf2_line_info));
7035
7036 if (generating_literals)
7037 {
7038 static int reported = 0;
7039 if (reported < 4)
7040 as_bad_where (frag_now->fr_file, frag_now->fr_line,
7041 _("cannot assemble into a literal fragment"));
7042 if (reported == 3)
7043 as_bad (_("..."));
7044 reported++;
7045 return;
7046 }
7047
7048 if (frag_now_fix () != 0
7049 && (! frag_now->tc_frag_data.is_insn
7050 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7051 || (!use_transform ()) != frag_now->tc_frag_data.is_no_transform
7052 || (directive_state[directive_longcalls]
7053 != frag_now->tc_frag_data.use_longcalls)
7054 || (directive_state[directive_absolute_literals]
7055 != frag_now->tc_frag_data.use_absolute_literals)))
7056 {
7057 frag_wane (frag_now);
7058 frag_new (0);
7059 xtensa_set_frag_assembly_state (frag_now);
7060 }
7061
7062 if (workaround_a0_b_retw
7063 && vinsn->num_slots == 1
7064 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
7065 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
7066 && use_transform ())
7067 {
7068 has_a0_b_retw = TRUE;
7069
7070 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
7071 After the first assembly pass we will check all of them and
7072 add a nop if needed. */
7073 frag_now->tc_frag_data.is_insn = TRUE;
7074 frag_var (rs_machine_dependent, 4, 4,
7075 RELAX_ADD_NOP_IF_A0_B_RETW,
7076 frag_now->fr_symbol,
7077 frag_now->fr_offset,
7078 NULL);
7079 xtensa_set_frag_assembly_state (frag_now);
7080 frag_now->tc_frag_data.is_insn = TRUE;
7081 frag_var (rs_machine_dependent, 4, 4,
7082 RELAX_ADD_NOP_IF_A0_B_RETW,
7083 frag_now->fr_symbol,
7084 frag_now->fr_offset,
7085 NULL);
7086 xtensa_set_frag_assembly_state (frag_now);
7087 }
7088
7089 for (slot = 0; slot < vinsn->num_slots; slot++)
7090 {
7091 tinsn = &vinsn->slots[slot];
7092
7093 /* See if the instruction implies an aligned section. */
7094 if (xtensa_opcode_is_loop (isa, tinsn->opcode) == 1)
7095 record_alignment (now_seg, 2);
7096
7097 /* Determine the best line number for debug info. */
7098 if ((tinsn->loc_directive_seen || !loc_directive_seen)
7099 && (tinsn->debug_line.filenum != debug_line.filenum
7100 || tinsn->debug_line.line < debug_line.line
7101 || tinsn->debug_line.column < debug_line.column))
7102 debug_line = tinsn->debug_line;
7103 if (tinsn->loc_directive_seen)
7104 loc_directive_seen = TRUE;
7105 }
7106
7107 /* Special cases for instructions that force an alignment... */
7108 /* None of these opcodes are bundle-able. */
7109 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
7110 {
7111 int max_fill;
7112
7113 /* Remember the symbol that marks the end of the loop in the frag
7114 that marks the start of the loop. This way we can easily find
7115 the end of the loop at the beginning, without adding special code
7116 to mark the loop instructions themselves. */
7117 symbolS *target_sym = NULL;
7118 if (vinsn->slots[0].tok[1].X_op == O_symbol)
7119 target_sym = vinsn->slots[0].tok[1].X_add_symbol;
7120
7121 xtensa_set_frag_assembly_state (frag_now);
7122 frag_now->tc_frag_data.is_insn = TRUE;
7123
7124 max_fill = get_text_align_max_fill_size
7125 (get_text_align_power (xtensa_fetch_width),
7126 TRUE, frag_now->tc_frag_data.is_no_density);
7127
7128 if (use_transform ())
7129 frag_var (rs_machine_dependent, max_fill, max_fill,
7130 RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7131 else
7132 frag_var (rs_machine_dependent, 0, 0,
7133 RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7134 xtensa_set_frag_assembly_state (frag_now);
7135 }
7136
7137 if (vinsn->slots[0].opcode == xtensa_entry_opcode
7138 && !vinsn->slots[0].is_specific_opcode)
7139 {
7140 xtensa_mark_literal_pool_location ();
7141 xtensa_move_labels (frag_now, 0);
7142 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
7143 }
7144
7145 if (vinsn->num_slots == 1)
7146 {
7147 if (workaround_a0_b_retw && use_transform ())
7148 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
7149 is_register_writer (&vinsn->slots[0], "a", 0));
7150
7151 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
7152 is_bad_loopend_opcode (&vinsn->slots[0]));
7153 }
7154 else
7155 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
7156
7157 insn_size = xtensa_format_length (isa, vinsn->format);
7158
7159 extra_space = relaxation_requirements (vinsn, &finish_frag);
7160
7161 /* vinsn_to_insnbuf will produce the error. */
7162 if (vinsn->format != XTENSA_UNDEFINED)
7163 {
7164 f = frag_more (insn_size + extra_space);
7165 xtensa_set_frag_assembly_state (frag_now);
7166 frag_now->tc_frag_data.is_insn = TRUE;
7167 }
7168
7169 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
7170 if (vinsn->format == XTENSA_UNDEFINED)
7171 return;
7172
7173 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
7174
7175 if (debug_type == DEBUG_DWARF2 || loc_directive_seen)
7176 dwarf2_gen_line_info (frag_now_fix () - (insn_size + extra_space),
7177 &debug_line);
7178
7179 for (slot = 0; slot < vinsn->num_slots; slot++)
7180 {
7181 tinsn = &vinsn->slots[slot];
7182 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
7183 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
7184 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
7185 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
7186 if (tinsn->opcode == xtensa_l32r_opcode)
7187 {
7188 frag_now->tc_frag_data.literal_frags[slot] =
7189 tinsn->tok[1].X_add_symbol->sy_frag;
7190 }
7191 if (tinsn->literal_space != 0)
7192 xg_assemble_literal_space (tinsn->literal_space, slot);
7193 frag_now->tc_frag_data.free_reg[slot] = tinsn->extra_arg;
7194
7195 if (tinsn->subtype == RELAX_NARROW)
7196 gas_assert (vinsn->num_slots == 1);
7197 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
7198 is_jump = TRUE;
7199 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
7200 is_branch = TRUE;
7201
7202 if (tinsn->subtype || tinsn->symbol || tinsn->offset
7203 || tinsn->literal_frag || is_jump || is_branch)
7204 finish_frag = TRUE;
7205 }
7206
7207 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7208 frag_now->tc_frag_data.is_specific_opcode = TRUE;
7209
7210 if (finish_frag)
7211 {
7212 frag_variant (rs_machine_dependent,
7213 extra_space, extra_space, RELAX_SLOTS,
7214 frag_now->fr_symbol, frag_now->fr_offset, f);
7215 xtensa_set_frag_assembly_state (frag_now);
7216 }
7217
7218 /* Special cases for loops:
7219 close_loop_end should be inserted AFTER short_loop.
7220 Make sure that CLOSE loops are processed BEFORE short_loops
7221 when converting them. */
7222
7223 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
7224 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1
7225 && !vinsn->slots[0].is_specific_opcode)
7226 {
7227 if (workaround_short_loop && use_transform ())
7228 {
7229 maybe_has_short_loop = TRUE;
7230 frag_now->tc_frag_data.is_insn = TRUE;
7231 frag_var (rs_machine_dependent, 4, 4,
7232 RELAX_ADD_NOP_IF_SHORT_LOOP,
7233 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7234 frag_now->tc_frag_data.is_insn = TRUE;
7235 frag_var (rs_machine_dependent, 4, 4,
7236 RELAX_ADD_NOP_IF_SHORT_LOOP,
7237 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7238 }
7239
7240 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
7241 loop at least 12 bytes away from another loop's end. */
7242 if (workaround_close_loop_end && use_transform ())
7243 {
7244 maybe_has_close_loop_end = TRUE;
7245 frag_now->tc_frag_data.is_insn = TRUE;
7246 frag_var (rs_machine_dependent, 12, 12,
7247 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
7248 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7249 }
7250 }
7251
7252 if (use_transform ())
7253 {
7254 if (is_jump)
7255 {
7256 gas_assert (finish_frag);
7257 frag_var (rs_machine_dependent,
7258 xtensa_fetch_width, xtensa_fetch_width,
7259 RELAX_UNREACHABLE,
7260 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7261 xtensa_set_frag_assembly_state (frag_now);
7262 xtensa_maybe_create_trampoline_frag ();
7263 /* Always create one here. */
7264 xtensa_maybe_create_literal_pool_frag (TRUE, FALSE);
7265 }
7266 else if (is_branch && do_align_targets ())
7267 {
7268 gas_assert (finish_frag);
7269 frag_var (rs_machine_dependent,
7270 xtensa_fetch_width, xtensa_fetch_width,
7271 RELAX_MAYBE_UNREACHABLE,
7272 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7273 xtensa_set_frag_assembly_state (frag_now);
7274 frag_var (rs_machine_dependent,
7275 0, 0,
7276 RELAX_MAYBE_DESIRE_ALIGN,
7277 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7278 xtensa_set_frag_assembly_state (frag_now);
7279 }
7280 }
7281
7282 /* Now, if the original opcode was a call... */
7283 if (do_align_targets ()
7284 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
7285 {
7286 float freq = get_subseg_total_freq (now_seg, now_subseg);
7287 frag_now->tc_frag_data.is_insn = TRUE;
7288 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
7289 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7290 xtensa_set_frag_assembly_state (frag_now);
7291 }
7292
7293 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7294 {
7295 frag_wane (frag_now);
7296 frag_new (0);
7297 xtensa_set_frag_assembly_state (frag_now);
7298 }
7299 }
7300
7301 \f
7302 /* xtensa_end and helper functions. */
7303
7304 static void xtensa_cleanup_align_frags (void);
7305 static void xtensa_fix_target_frags (void);
7306 static void xtensa_mark_narrow_branches (void);
7307 static void xtensa_mark_zcl_first_insns (void);
7308 static void xtensa_mark_difference_of_two_symbols (void);
7309 static void xtensa_fix_a0_b_retw_frags (void);
7310 static void xtensa_fix_b_j_loop_end_frags (void);
7311 static void xtensa_fix_close_loop_end_frags (void);
7312 static void xtensa_fix_short_loop_frags (void);
7313 static void xtensa_sanity_check (void);
7314 static void xtensa_add_config_info (void);
7315
7316 void
7317 xtensa_end (void)
7318 {
7319 directive_balance ();
7320 xtensa_flush_pending_output ();
7321
7322 past_xtensa_end = TRUE;
7323
7324 xtensa_move_literals ();
7325
7326 xtensa_reorder_segments ();
7327 xtensa_cleanup_align_frags ();
7328 xtensa_fix_target_frags ();
7329 if (workaround_a0_b_retw && has_a0_b_retw)
7330 xtensa_fix_a0_b_retw_frags ();
7331 if (workaround_b_j_loop_end)
7332 xtensa_fix_b_j_loop_end_frags ();
7333
7334 /* "close_loop_end" should be processed BEFORE "short_loop". */
7335 if (workaround_close_loop_end && maybe_has_close_loop_end)
7336 xtensa_fix_close_loop_end_frags ();
7337
7338 if (workaround_short_loop && maybe_has_short_loop)
7339 xtensa_fix_short_loop_frags ();
7340 if (align_targets)
7341 xtensa_mark_narrow_branches ();
7342 xtensa_mark_zcl_first_insns ();
7343
7344 xtensa_sanity_check ();
7345
7346 xtensa_add_config_info ();
7347
7348 xtensa_check_frag_count ();
7349 }
7350
7351 struct trampoline_index
7352 {
7353 fragS **entry;
7354 size_t n_entries;
7355 size_t n_max;
7356 };
7357
7358 struct trampoline_seg
7359 {
7360 struct trampoline_seg *next;
7361 asection *seg;
7362 struct trampoline_index index;
7363 };
7364
7365 static struct trampoline_seg trampoline_seg_list;
7366 #define J_RANGE (128 * 1024)
7367 #define J_MARGIN 4096
7368
7369 static int unreachable_count = 0;
7370
7371
7372 static void
7373 xtensa_maybe_create_trampoline_frag (void)
7374 {
7375 if (!use_trampolines)
7376 return;
7377
7378 /* We create an area for possible trampolines every 10 unreachable frags.
7379 These are preferred over the ones not preceded by an unreachable frag,
7380 because we don't have to jump around them. This function is called after
7381 each RELAX_UNREACHABLE frag is created. */
7382
7383 if (++unreachable_count > 10)
7384 {
7385 xtensa_create_trampoline_frag (FALSE);
7386 clear_frag_count ();
7387 unreachable_count = 0;
7388 }
7389 }
7390
7391 static void
7392 xtensa_check_frag_count (void)
7393 {
7394 if (!use_trampolines || frag_now->tc_frag_data.is_no_transform)
7395 return;
7396
7397 /* We create an area for possible trampolines every 8000 frags or so. This
7398 is an estimate based on the max range of a "j" insn (+/-128K) divided
7399 by a typical frag byte count (16), minus a few for safety. This function
7400 is called after each source line is processed. */
7401
7402 if (get_frag_count () > 8000)
7403 {
7404 xtensa_create_trampoline_frag (TRUE);
7405 clear_frag_count ();
7406 unreachable_count = 0;
7407 }
7408
7409 /* We create an area for a possible literal pool every N (default 5000)
7410 frags or so. */
7411 xtensa_maybe_create_literal_pool_frag (TRUE, TRUE);
7412 }
7413
7414 static xtensa_insnbuf trampoline_buf = NULL;
7415 static xtensa_insnbuf trampoline_slotbuf = NULL;
7416
7417 static xtensa_insnbuf litpool_buf = NULL;
7418 static xtensa_insnbuf litpool_slotbuf = NULL;
7419
7420 #define TRAMPOLINE_FRAG_SIZE 3000
7421
7422 static struct trampoline_seg *
7423 find_trampoline_seg (asection *seg)
7424 {
7425 struct trampoline_seg *ts = trampoline_seg_list.next;
7426
7427 for ( ; ts; ts = ts->next)
7428 {
7429 if (ts->seg == seg)
7430 return ts;
7431 }
7432
7433 return NULL;
7434 }
7435
7436 static size_t xg_find_trampoline (const struct trampoline_index *idx,
7437 addressT addr)
7438 {
7439 size_t a = 0;
7440 size_t b = idx->n_entries;
7441
7442 while (b - a > 1)
7443 {
7444 size_t c = (a + b) / 2;
7445
7446 if (idx->entry[c]->fr_address <= addr)
7447 a = c;
7448 else
7449 b = c;
7450 }
7451 return a;
7452 }
7453
7454 static void xg_add_trampoline_to_index (struct trampoline_index *idx,
7455 fragS *fragP)
7456 {
7457 if (idx->n_entries == idx->n_max)
7458 {
7459 idx->n_max = (idx->n_entries + 1) * 2;
7460 idx->entry = xrealloc (idx->entry,
7461 sizeof (*idx->entry) * idx->n_max);
7462 }
7463 idx->entry[idx->n_entries] = fragP;
7464 ++idx->n_entries;
7465 }
7466
7467 static void xg_remove_trampoline_from_index (struct trampoline_index *idx,
7468 size_t i)
7469 {
7470 gas_assert (i < idx->n_entries);
7471 memmove (idx->entry + i, idx->entry + i + 1,
7472 (idx->n_entries - i - 1) * sizeof (*idx->entry));
7473 --idx->n_entries;
7474 }
7475
7476 static void xg_add_trampoline_to_seg (struct trampoline_seg *ts,
7477 fragS *fragP)
7478 {
7479 xg_add_trampoline_to_index (&ts->index, fragP);
7480 }
7481
7482 static void
7483 xtensa_create_trampoline_frag (bfd_boolean needs_jump_around)
7484 {
7485 /* Emit a frag where we can place intermediate jump instructions,
7486 in case we need to jump farther than 128K bytes.
7487 Each jump instruction takes three bytes.
7488 We allocate enough for 1000 trampolines in each frag.
7489 If that's not enough, oh well. */
7490
7491 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
7492 char *varP;
7493 fragS *fragP;
7494 int size = TRAMPOLINE_FRAG_SIZE;
7495
7496 if (ts == NULL)
7497 {
7498 ts = XCNEW(struct trampoline_seg);
7499 ts->next = trampoline_seg_list.next;
7500 trampoline_seg_list.next = ts;
7501 ts->seg = now_seg;
7502 }
7503
7504 frag_wane (frag_now);
7505 frag_new (0);
7506 xtensa_set_frag_assembly_state (frag_now);
7507 varP = frag_var (rs_machine_dependent, size, size, RELAX_TRAMPOLINE, NULL, 0, NULL);
7508 fragP = (fragS *)(varP - SIZEOF_STRUCT_FRAG);
7509 if (trampoline_buf == NULL)
7510 {
7511 trampoline_buf = xtensa_insnbuf_alloc (xtensa_default_isa);
7512 trampoline_slotbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7513 }
7514 fragP->tc_frag_data.needs_jump_around = needs_jump_around;
7515 xg_add_trampoline_to_seg (ts, fragP);
7516 }
7517
7518 static bfd_boolean xg_is_trampoline_frag_full (const fragS *fragP)
7519 {
7520 return fragP->fr_var < 3;
7521 }
7522
7523 void dump_trampolines (void);
7524
7525 void
7526 dump_trampolines (void)
7527 {
7528 struct trampoline_seg *ts = trampoline_seg_list.next;
7529
7530 for ( ; ts; ts = ts->next)
7531 {
7532 size_t i;
7533 asection *seg = ts->seg;
7534
7535 if (seg == NULL)
7536 continue;
7537 fprintf(stderr, "SECTION %s\n", seg->name);
7538
7539 for (i = 0; i < ts->index.n_entries; ++i)
7540 {
7541 fragS *tf = ts->index.entry[i];
7542
7543 fprintf(stderr, " 0x%08x: fix=%d, jump_around=%s\n",
7544 (int)tf->fr_address, (int)tf->fr_fix,
7545 tf->tc_frag_data.needs_jump_around ? "T" : "F");
7546 }
7547 }
7548 }
7549
7550 static void dump_litpools (void) __attribute__ ((unused));
7551
7552 static void
7553 dump_litpools (void)
7554 {
7555 struct litpool_seg *lps = litpool_seg_list.next;
7556 struct litpool_frag *lpf;
7557
7558 for ( ; lps ; lps = lps->next )
7559 {
7560 printf("litpool seg %s\n", lps->seg->name);
7561 for ( lpf = lps->frag_list.next; lpf->fragP; lpf = lpf->next )
7562 {
7563 fragS *litfrag = lpf->fragP->fr_next;
7564 int count = 0;
7565 while (litfrag && litfrag->fr_subtype != RELAX_LITERAL_POOL_END)
7566 {
7567 if (litfrag->fr_fix == 4)
7568 count++;
7569 litfrag = litfrag->fr_next;
7570 }
7571 printf(" %ld <%d:%d> (%d) [%d]: ",
7572 lpf->addr, lpf->priority, lpf->original_priority,
7573 lpf->fragP->fr_line, count);
7574 //dump_frag(lpf->fragP);
7575 }
7576 }
7577 }
7578
7579 static void
7580 xtensa_maybe_create_literal_pool_frag (bfd_boolean create,
7581 bfd_boolean only_if_needed)
7582 {
7583 struct litpool_seg *lps = litpool_seg_list.next;
7584 fragS *fragP;
7585 struct litpool_frag *lpf;
7586 bfd_boolean needed = FALSE;
7587
7588 if (use_literal_section || !auto_litpools)
7589 return;
7590
7591 for ( ; lps ; lps = lps->next )
7592 {
7593 if (lps->seg == now_seg)
7594 break;
7595 }
7596
7597 if (lps == NULL)
7598 {
7599 lps = XCNEW (struct litpool_seg);
7600 lps->next = litpool_seg_list.next;
7601 litpool_seg_list.next = lps;
7602 lps->seg = now_seg;
7603 lps->frag_list.next = &lps->frag_list;
7604 lps->frag_list.prev = &lps->frag_list;
7605 /* Put candidate literal pool at the beginning of every section,
7606 so that even when section starts with literal load there's a
7607 literal pool available. */
7608 lps->frag_count = auto_litpool_limit;
7609 }
7610
7611 lps->frag_count++;
7612
7613 if (create)
7614 {
7615 if (only_if_needed)
7616 {
7617 if (past_xtensa_end || !use_transform() ||
7618 frag_now->tc_frag_data.is_no_transform)
7619 {
7620 return;
7621 }
7622 if (auto_litpool_limit <= 0)
7623 {
7624 /* Don't create a litpool based only on frag count. */
7625 return;
7626 }
7627 else if (lps->frag_count > auto_litpool_limit)
7628 {
7629 needed = TRUE;
7630 }
7631 else
7632 {
7633 return;
7634 }
7635 }
7636 else
7637 {
7638 needed = TRUE;
7639 }
7640 }
7641
7642 if (needed)
7643 {
7644 int size = (only_if_needed) ? 3 : 0; /* Space for a "j" insn. */
7645 /* Create a potential site for a literal pool. */
7646 frag_wane (frag_now);
7647 frag_new (0);
7648 xtensa_set_frag_assembly_state (frag_now);
7649 fragP = frag_now;
7650 fragP->tc_frag_data.lit_frchain = frchain_now;
7651 fragP->tc_frag_data.literal_frag = fragP;
7652 frag_var (rs_machine_dependent, size, size,
7653 (only_if_needed) ?
7654 RELAX_LITERAL_POOL_CANDIDATE_BEGIN :
7655 RELAX_LITERAL_POOL_BEGIN,
7656 NULL, 0, NULL);
7657 frag_now->tc_frag_data.lit_seg = now_seg;
7658 frag_variant (rs_machine_dependent, 0, 0,
7659 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
7660 xtensa_set_frag_assembly_state (frag_now);
7661 }
7662 else
7663 {
7664 /* RELAX_LITERAL_POOL_BEGIN frag is being created;
7665 just record it here. */
7666 fragP = frag_now;
7667 }
7668
7669 lpf = XNEW (struct litpool_frag);
7670 /* Insert at tail of circular list. */
7671 lpf->addr = 0;
7672 lps->frag_list.prev->next = lpf;
7673 lpf->next = &lps->frag_list;
7674 lpf->prev = lps->frag_list.prev;
7675 lps->frag_list.prev = lpf;
7676 lpf->fragP = fragP;
7677 lpf->priority = (needed) ? (only_if_needed) ? 3 : 2 : 1;
7678 lpf->original_priority = lpf->priority;
7679
7680 lps->frag_count = 0;
7681 }
7682
7683 static void
7684 xtensa_cleanup_align_frags (void)
7685 {
7686 frchainS *frchP;
7687 asection *s;
7688
7689 for (s = stdoutput->sections; s; s = s->next)
7690 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7691 {
7692 fragS *fragP;
7693 /* Walk over all of the fragments in a subsection. */
7694 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7695 {
7696 if ((fragP->fr_type == rs_align
7697 || fragP->fr_type == rs_align_code
7698 || (fragP->fr_type == rs_machine_dependent
7699 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
7700 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
7701 && fragP->fr_fix == 0)
7702 {
7703 fragS *next = fragP->fr_next;
7704
7705 while (next
7706 && next->fr_fix == 0
7707 && next->fr_type == rs_machine_dependent
7708 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7709 {
7710 frag_wane (next);
7711 next = next->fr_next;
7712 }
7713 }
7714 /* If we don't widen branch targets, then they
7715 will be easier to align. */
7716 if (fragP->tc_frag_data.is_branch_target
7717 && fragP->fr_opcode == fragP->fr_literal
7718 && fragP->fr_type == rs_machine_dependent
7719 && fragP->fr_subtype == RELAX_SLOTS
7720 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
7721 frag_wane (fragP);
7722 if (fragP->fr_type == rs_machine_dependent
7723 && fragP->fr_subtype == RELAX_UNREACHABLE)
7724 fragP->tc_frag_data.is_unreachable = TRUE;
7725 }
7726 }
7727 }
7728
7729
7730 /* Re-process all of the fragments looking to convert all of the
7731 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7732 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7733 Otherwise, convert to a .fill 0. */
7734
7735 static void
7736 xtensa_fix_target_frags (void)
7737 {
7738 frchainS *frchP;
7739 asection *s;
7740
7741 /* When this routine is called, all of the subsections are still intact
7742 so we walk over subsections instead of sections. */
7743 for (s = stdoutput->sections; s; s = s->next)
7744 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7745 {
7746 fragS *fragP;
7747
7748 /* Walk over all of the fragments in a subsection. */
7749 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7750 {
7751 if (fragP->fr_type == rs_machine_dependent
7752 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7753 {
7754 if (next_frag_is_branch_target (fragP))
7755 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7756 else
7757 frag_wane (fragP);
7758 }
7759 }
7760 }
7761 }
7762
7763
7764 static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7765
7766 static void
7767 xtensa_mark_narrow_branches (void)
7768 {
7769 frchainS *frchP;
7770 asection *s;
7771
7772 for (s = stdoutput->sections; s; s = s->next)
7773 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7774 {
7775 fragS *fragP;
7776 /* Walk over all of the fragments in a subsection. */
7777 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7778 {
7779 if (fragP->fr_type == rs_machine_dependent
7780 && fragP->fr_subtype == RELAX_SLOTS
7781 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7782 {
7783 vliw_insn vinsn;
7784
7785 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7786 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7787
7788 if (vinsn.num_slots == 1
7789 && xtensa_opcode_is_branch (xtensa_default_isa,
7790 vinsn.slots[0].opcode) == 1
7791 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7792 && is_narrow_branch_guaranteed_in_range (fragP,
7793 &vinsn.slots[0]))
7794 {
7795 fragP->fr_subtype = RELAX_SLOTS;
7796 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7797 fragP->tc_frag_data.is_aligning_branch = 1;
7798 }
7799 }
7800 }
7801 }
7802 }
7803
7804
7805 /* A branch is typically widened only when its target is out of
7806 range. However, we would like to widen them to align a subsequent
7807 branch target when possible.
7808
7809 Because the branch relaxation code is so convoluted, the optimal solution
7810 (combining the two cases) is difficult to get right in all circumstances.
7811 We therefore go with an "almost as good" solution, where we only
7812 use for alignment narrow branches that definitely will not expand to a
7813 jump and a branch. These functions find and mark these cases. */
7814
7815 /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7816 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7817 We start counting beginning with the frag after the 2-byte branch, so the
7818 maximum offset is (4 - 2) + 63 = 65. */
7819 #define MAX_IMMED6 65
7820
7821 static offsetT unrelaxed_frag_max_size (fragS *);
7822
7823 static bfd_boolean
7824 is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
7825 {
7826 const expressionS *exp = &tinsn->tok[1];
7827 symbolS *symbolP = exp->X_add_symbol;
7828 offsetT max_distance = exp->X_add_number;
7829 fragS *target_frag;
7830
7831 if (exp->X_op != O_symbol)
7832 return FALSE;
7833
7834 target_frag = symbol_get_frag (symbolP);
7835
7836 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7837 if (is_branch_jmp_to_next (tinsn, fragP))
7838 return FALSE;
7839
7840 /* The branch doesn't branch over it's own frag,
7841 but over the subsequent ones. */
7842 fragP = fragP->fr_next;
7843 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7844 {
7845 max_distance += unrelaxed_frag_max_size (fragP);
7846 fragP = fragP->fr_next;
7847 }
7848 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7849 return TRUE;
7850 return FALSE;
7851 }
7852
7853
7854 static void
7855 xtensa_mark_zcl_first_insns (void)
7856 {
7857 frchainS *frchP;
7858 asection *s;
7859
7860 for (s = stdoutput->sections; s; s = s->next)
7861 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7862 {
7863 fragS *fragP;
7864 /* Walk over all of the fragments in a subsection. */
7865 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7866 {
7867 if (fragP->fr_type == rs_machine_dependent
7868 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7869 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7870 {
7871 /* Find the loop frag. */
7872 fragS *loop_frag = next_non_empty_frag (fragP);
7873 /* Find the first insn frag. */
7874 fragS *targ_frag = next_non_empty_frag (loop_frag);
7875
7876 /* Handle a corner case that comes up in hardware
7877 diagnostics. The original assembly looks like this:
7878
7879 loop aX, LabelA
7880 <empty_frag>--not found by next_non_empty_frag
7881 loop aY, LabelB
7882
7883 Depending on the start address, the assembler may or
7884 may not change it to look something like this:
7885
7886 loop aX, LabelA
7887 nop--frag isn't empty anymore
7888 loop aY, LabelB
7889
7890 So set up to check the alignment of the nop if it
7891 exists */
7892 while (loop_frag != targ_frag)
7893 {
7894 if (loop_frag->fr_type == rs_machine_dependent
7895 && (loop_frag->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7896 || loop_frag->fr_subtype
7897 == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7898 targ_frag = loop_frag;
7899 else
7900 loop_frag = loop_frag->fr_next;
7901 }
7902
7903 /* Of course, sometimes (mostly for toy test cases) a
7904 zero-cost loop instruction is the last in a section. */
7905 if (targ_frag)
7906 {
7907 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7908 /* Do not widen a frag that is the first instruction of a
7909 zero-cost loop. It makes that loop harder to align. */
7910 if (targ_frag->fr_type == rs_machine_dependent
7911 && targ_frag->fr_subtype == RELAX_SLOTS
7912 && (targ_frag->tc_frag_data.slot_subtypes[0]
7913 == RELAX_NARROW))
7914 {
7915 if (targ_frag->tc_frag_data.is_aligning_branch)
7916 targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
7917 else
7918 {
7919 frag_wane (targ_frag);
7920 targ_frag->tc_frag_data.slot_subtypes[0] = 0;
7921 }
7922 }
7923 }
7924 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7925 frag_wane (fragP);
7926 }
7927 }
7928 }
7929 }
7930
7931
7932 /* When a difference-of-symbols expression is encoded as a uleb128 or
7933 sleb128 value, the linker is unable to adjust that value to account for
7934 link-time relaxation. Mark all the code between such symbols so that
7935 its size cannot be changed by linker relaxation. */
7936
7937 static void
7938 xtensa_mark_difference_of_two_symbols (void)
7939 {
7940 symbolS *expr_sym;
7941
7942 for (expr_sym = expr_symbols; expr_sym;
7943 expr_sym = symbol_get_tc (expr_sym)->next_expr_symbol)
7944 {
7945 expressionS *exp = symbol_get_value_expression (expr_sym);
7946
7947 if (exp->X_op == O_subtract)
7948 {
7949 symbolS *left = exp->X_add_symbol;
7950 symbolS *right = exp->X_op_symbol;
7951
7952 /* Difference of two symbols not in the same section
7953 are handled with relocations in the linker. */
7954 if (S_GET_SEGMENT (left) == S_GET_SEGMENT (right))
7955 {
7956 fragS *start;
7957 fragS *end;
7958 fragS *walk;
7959
7960 if (symbol_get_frag (left)->fr_address
7961 <= symbol_get_frag (right)->fr_address)
7962 {
7963 start = symbol_get_frag (left);
7964 end = symbol_get_frag (right);
7965 }
7966 else
7967 {
7968 start = symbol_get_frag (right);
7969 end = symbol_get_frag (left);
7970 }
7971
7972 if (start->tc_frag_data.no_transform_end != NULL)
7973 walk = start->tc_frag_data.no_transform_end;
7974 else
7975 walk = start;
7976 do
7977 {
7978 walk->tc_frag_data.is_no_transform = 1;
7979 walk = walk->fr_next;
7980 }
7981 while (walk && walk->fr_address < end->fr_address);
7982
7983 start->tc_frag_data.no_transform_end = walk;
7984 }
7985 }
7986 }
7987 }
7988
7989
7990 /* Re-process all of the fragments looking to convert all of the
7991 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7992 conditional branch or a retw/retw.n, convert this frag to one that
7993 will generate a NOP. In any case close it off with a .fill 0. */
7994
7995 static bfd_boolean next_instrs_are_b_retw (fragS *);
7996
7997 static void
7998 xtensa_fix_a0_b_retw_frags (void)
7999 {
8000 frchainS *frchP;
8001 asection *s;
8002
8003 /* When this routine is called, all of the subsections are still intact
8004 so we walk over subsections instead of sections. */
8005 for (s = stdoutput->sections; s; s = s->next)
8006 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8007 {
8008 fragS *fragP;
8009
8010 /* Walk over all of the fragments in a subsection. */
8011 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8012 {
8013 if (fragP->fr_type == rs_machine_dependent
8014 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
8015 {
8016 if (next_instrs_are_b_retw (fragP))
8017 {
8018 if (fragP->tc_frag_data.is_no_transform)
8019 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
8020 else
8021 relax_frag_add_nop (fragP);
8022 }
8023 frag_wane (fragP);
8024 }
8025 }
8026 }
8027 }
8028
8029
8030 static bfd_boolean
8031 next_instrs_are_b_retw (fragS *fragP)
8032 {
8033 xtensa_opcode opcode;
8034 xtensa_format fmt;
8035 const fragS *next_fragP = next_non_empty_frag (fragP);
8036 static xtensa_insnbuf insnbuf = NULL;
8037 static xtensa_insnbuf slotbuf = NULL;
8038 xtensa_isa isa = xtensa_default_isa;
8039 int offset = 0;
8040 int slot;
8041 bfd_boolean branch_seen = FALSE;
8042
8043 if (!insnbuf)
8044 {
8045 insnbuf = xtensa_insnbuf_alloc (isa);
8046 slotbuf = xtensa_insnbuf_alloc (isa);
8047 }
8048
8049 if (next_fragP == NULL)
8050 return FALSE;
8051
8052 /* Check for the conditional branch. */
8053 xtensa_insnbuf_from_chars
8054 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
8055 fmt = xtensa_format_decode (isa, insnbuf);
8056 if (fmt == XTENSA_UNDEFINED)
8057 return FALSE;
8058
8059 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
8060 {
8061 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
8062 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
8063
8064 branch_seen = (branch_seen
8065 || xtensa_opcode_is_branch (isa, opcode) == 1);
8066 }
8067
8068 if (!branch_seen)
8069 return FALSE;
8070
8071 offset += xtensa_format_length (isa, fmt);
8072 if (offset == next_fragP->fr_fix)
8073 {
8074 next_fragP = next_non_empty_frag (next_fragP);
8075 offset = 0;
8076 }
8077
8078 if (next_fragP == NULL)
8079 return FALSE;
8080
8081 /* Check for the retw/retw.n. */
8082 xtensa_insnbuf_from_chars
8083 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
8084 fmt = xtensa_format_decode (isa, insnbuf);
8085
8086 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
8087 have no problems. */
8088 if (fmt == XTENSA_UNDEFINED
8089 || xtensa_format_num_slots (isa, fmt) != 1)
8090 return FALSE;
8091
8092 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
8093 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
8094
8095 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
8096 return TRUE;
8097
8098 return FALSE;
8099 }
8100
8101
8102 /* Re-process all of the fragments looking to convert all of the
8103 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
8104 loop end label, convert this frag to one that will generate a NOP.
8105 In any case close it off with a .fill 0. */
8106
8107 static bfd_boolean next_instr_is_loop_end (fragS *);
8108
8109 static void
8110 xtensa_fix_b_j_loop_end_frags (void)
8111 {
8112 frchainS *frchP;
8113 asection *s;
8114
8115 /* When this routine is called, all of the subsections are still intact
8116 so we walk over subsections instead of sections. */
8117 for (s = stdoutput->sections; s; s = s->next)
8118 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8119 {
8120 fragS *fragP;
8121
8122 /* Walk over all of the fragments in a subsection. */
8123 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8124 {
8125 if (fragP->fr_type == rs_machine_dependent
8126 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
8127 {
8128 if (next_instr_is_loop_end (fragP))
8129 {
8130 if (fragP->tc_frag_data.is_no_transform)
8131 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
8132 else
8133 relax_frag_add_nop (fragP);
8134 }
8135 frag_wane (fragP);
8136 }
8137 }
8138 }
8139 }
8140
8141
8142 static bfd_boolean
8143 next_instr_is_loop_end (fragS *fragP)
8144 {
8145 const fragS *next_fragP;
8146
8147 if (next_frag_is_loop_target (fragP))
8148 return FALSE;
8149
8150 next_fragP = next_non_empty_frag (fragP);
8151 if (next_fragP == NULL)
8152 return FALSE;
8153
8154 if (!next_frag_is_loop_target (next_fragP))
8155 return FALSE;
8156
8157 /* If the size is >= 3 then there is more than one instruction here.
8158 The hardware bug will not fire. */
8159 if (next_fragP->fr_fix > 3)
8160 return FALSE;
8161
8162 return TRUE;
8163 }
8164
8165
8166 /* Re-process all of the fragments looking to convert all of the
8167 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
8168 not MY loop's loop end within 12 bytes, add enough nops here to
8169 make it at least 12 bytes away. In any case close it off with a
8170 .fill 0. */
8171
8172 static offsetT min_bytes_to_other_loop_end
8173 (fragS *, fragS *, offsetT);
8174
8175 static void
8176 xtensa_fix_close_loop_end_frags (void)
8177 {
8178 frchainS *frchP;
8179 asection *s;
8180
8181 /* When this routine is called, all of the subsections are still intact
8182 so we walk over subsections instead of sections. */
8183 for (s = stdoutput->sections; s; s = s->next)
8184 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8185 {
8186 fragS *fragP;
8187
8188 fragS *current_target = NULL;
8189
8190 /* Walk over all of the fragments in a subsection. */
8191 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8192 {
8193 if (fragP->fr_type == rs_machine_dependent
8194 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
8195 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
8196 current_target = symbol_get_frag (fragP->fr_symbol);
8197
8198 if (current_target
8199 && fragP->fr_type == rs_machine_dependent
8200 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
8201 {
8202 offsetT min_bytes;
8203 int bytes_added = 0;
8204
8205 #define REQUIRED_LOOP_DIVIDING_BYTES 12
8206 /* Max out at 12. */
8207 min_bytes = min_bytes_to_other_loop_end
8208 (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES);
8209
8210 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
8211 {
8212 if (fragP->tc_frag_data.is_no_transform)
8213 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
8214 else
8215 {
8216 while (min_bytes + bytes_added
8217 < REQUIRED_LOOP_DIVIDING_BYTES)
8218 {
8219 int length = 3;
8220
8221 if (fragP->fr_var < length)
8222 as_fatal (_("fr_var %lu < length %d"),
8223 (long) fragP->fr_var, length);
8224 else
8225 {
8226 assemble_nop (length,
8227 fragP->fr_literal + fragP->fr_fix);
8228 fragP->fr_fix += length;
8229 fragP->fr_var -= length;
8230 }
8231 bytes_added += length;
8232 }
8233 }
8234 }
8235 frag_wane (fragP);
8236 }
8237 gas_assert (fragP->fr_type != rs_machine_dependent
8238 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
8239 }
8240 }
8241 }
8242
8243
8244 static offsetT unrelaxed_frag_min_size (fragS *);
8245
8246 static offsetT
8247 min_bytes_to_other_loop_end (fragS *fragP,
8248 fragS *current_target,
8249 offsetT max_size)
8250 {
8251 offsetT offset = 0;
8252 fragS *current_fragP;
8253
8254 for (current_fragP = fragP;
8255 current_fragP;
8256 current_fragP = current_fragP->fr_next)
8257 {
8258 if (current_fragP->tc_frag_data.is_loop_target
8259 && current_fragP != current_target)
8260 return offset;
8261
8262 offset += unrelaxed_frag_min_size (current_fragP);
8263
8264 if (offset >= max_size)
8265 return max_size;
8266 }
8267 return max_size;
8268 }
8269
8270
8271 static offsetT
8272 unrelaxed_frag_min_size (fragS *fragP)
8273 {
8274 offsetT size = fragP->fr_fix;
8275
8276 /* Add fill size. */
8277 if (fragP->fr_type == rs_fill)
8278 size += fragP->fr_offset;
8279
8280 return size;
8281 }
8282
8283
8284 static offsetT
8285 unrelaxed_frag_max_size (fragS *fragP)
8286 {
8287 offsetT size = fragP->fr_fix;
8288 switch (fragP->fr_type)
8289 {
8290 case 0:
8291 /* Empty frags created by the obstack allocation scheme
8292 end up with type 0. */
8293 break;
8294 case rs_fill:
8295 case rs_org:
8296 case rs_space:
8297 size += fragP->fr_offset;
8298 break;
8299 case rs_align:
8300 case rs_align_code:
8301 case rs_align_test:
8302 case rs_leb128:
8303 case rs_cfa:
8304 case rs_dwarf2dbg:
8305 /* No further adjustments needed. */
8306 break;
8307 case rs_machine_dependent:
8308 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
8309 size += fragP->fr_var;
8310 break;
8311 default:
8312 /* We had darn well better know how big it is. */
8313 gas_assert (0);
8314 break;
8315 }
8316
8317 return size;
8318 }
8319
8320
8321 /* Re-process all of the fragments looking to convert all
8322 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
8323
8324 A)
8325 1) the instruction size count to the loop end label
8326 is too short (<= 2 instructions),
8327 2) loop has a jump or branch in it
8328
8329 or B)
8330 1) workaround_all_short_loops is TRUE
8331 2) The generating loop was a 'loopgtz' or 'loopnez'
8332 3) the instruction size count to the loop end label is too short
8333 (<= 2 instructions)
8334 then convert this frag (and maybe the next one) to generate a NOP.
8335 In any case close it off with a .fill 0. */
8336
8337 static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
8338 static bfd_boolean branch_before_loop_end (fragS *);
8339
8340 static void
8341 xtensa_fix_short_loop_frags (void)
8342 {
8343 frchainS *frchP;
8344 asection *s;
8345
8346 /* When this routine is called, all of the subsections are still intact
8347 so we walk over subsections instead of sections. */
8348 for (s = stdoutput->sections; s; s = s->next)
8349 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8350 {
8351 fragS *fragP;
8352 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
8353
8354 /* Walk over all of the fragments in a subsection. */
8355 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8356 {
8357 if (fragP->fr_type == rs_machine_dependent
8358 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
8359 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
8360 {
8361 TInsn t_insn;
8362 fragS *loop_frag = next_non_empty_frag (fragP);
8363 tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0);
8364 current_opcode = t_insn.opcode;
8365 gas_assert (xtensa_opcode_is_loop (xtensa_default_isa,
8366 current_opcode) == 1);
8367 }
8368
8369 if (fragP->fr_type == rs_machine_dependent
8370 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
8371 {
8372 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
8373 && (branch_before_loop_end (fragP->fr_next)
8374 || (workaround_all_short_loops
8375 && current_opcode != XTENSA_UNDEFINED
8376 && current_opcode != xtensa_loop_opcode)))
8377 {
8378 if (fragP->tc_frag_data.is_no_transform)
8379 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
8380 else
8381 relax_frag_add_nop (fragP);
8382 }
8383 frag_wane (fragP);
8384 }
8385 }
8386 }
8387 }
8388
8389
8390 static int unrelaxed_frag_min_insn_count (fragS *);
8391
8392 static int
8393 count_insns_to_loop_end (fragS *base_fragP,
8394 bfd_boolean count_relax_add,
8395 int max_count)
8396 {
8397 fragS *fragP = NULL;
8398 int insn_count = 0;
8399
8400 fragP = base_fragP;
8401
8402 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
8403 {
8404 insn_count += unrelaxed_frag_min_insn_count (fragP);
8405 if (insn_count >= max_count)
8406 return max_count;
8407
8408 if (count_relax_add)
8409 {
8410 if (fragP->fr_type == rs_machine_dependent
8411 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
8412 {
8413 /* In order to add the appropriate number of
8414 NOPs, we count an instruction for downstream
8415 occurrences. */
8416 insn_count++;
8417 if (insn_count >= max_count)
8418 return max_count;
8419 }
8420 }
8421 }
8422 return insn_count;
8423 }
8424
8425
8426 static int
8427 unrelaxed_frag_min_insn_count (fragS *fragP)
8428 {
8429 xtensa_isa isa = xtensa_default_isa;
8430 static xtensa_insnbuf insnbuf = NULL;
8431 int insn_count = 0;
8432 int offset = 0;
8433
8434 if (!fragP->tc_frag_data.is_insn)
8435 return insn_count;
8436
8437 if (!insnbuf)
8438 insnbuf = xtensa_insnbuf_alloc (isa);
8439
8440 /* Decode the fixed instructions. */
8441 while (offset < fragP->fr_fix)
8442 {
8443 xtensa_format fmt;
8444
8445 xtensa_insnbuf_from_chars
8446 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
8447 fmt = xtensa_format_decode (isa, insnbuf);
8448
8449 if (fmt == XTENSA_UNDEFINED)
8450 {
8451 as_fatal (_("undecodable instruction in instruction frag"));
8452 return insn_count;
8453 }
8454 offset += xtensa_format_length (isa, fmt);
8455 insn_count++;
8456 }
8457
8458 return insn_count;
8459 }
8460
8461
8462 static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
8463
8464 static bfd_boolean
8465 branch_before_loop_end (fragS *base_fragP)
8466 {
8467 fragS *fragP;
8468
8469 for (fragP = base_fragP;
8470 fragP && !fragP->tc_frag_data.is_loop_target;
8471 fragP = fragP->fr_next)
8472 {
8473 if (unrelaxed_frag_has_b_j (fragP))
8474 return TRUE;
8475 }
8476 return FALSE;
8477 }
8478
8479
8480 static bfd_boolean
8481 unrelaxed_frag_has_b_j (fragS *fragP)
8482 {
8483 static xtensa_insnbuf insnbuf = NULL;
8484 xtensa_isa isa = xtensa_default_isa;
8485 int offset = 0;
8486
8487 if (!fragP->tc_frag_data.is_insn)
8488 return FALSE;
8489
8490 if (!insnbuf)
8491 insnbuf = xtensa_insnbuf_alloc (isa);
8492
8493 /* Decode the fixed instructions. */
8494 while (offset < fragP->fr_fix)
8495 {
8496 xtensa_format fmt;
8497 int slot;
8498
8499 xtensa_insnbuf_from_chars
8500 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
8501 fmt = xtensa_format_decode (isa, insnbuf);
8502 if (fmt == XTENSA_UNDEFINED)
8503 return FALSE;
8504
8505 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
8506 {
8507 xtensa_opcode opcode =
8508 get_opcode_from_buf (fragP->fr_literal + offset, slot);
8509 if (xtensa_opcode_is_branch (isa, opcode) == 1
8510 || xtensa_opcode_is_jump (isa, opcode) == 1)
8511 return TRUE;
8512 }
8513 offset += xtensa_format_length (isa, fmt);
8514 }
8515 return FALSE;
8516 }
8517
8518
8519 /* Checks to be made after initial assembly but before relaxation. */
8520
8521 static bfd_boolean is_empty_loop (const TInsn *, fragS *);
8522 static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
8523
8524 static void
8525 xtensa_sanity_check (void)
8526 {
8527 const char *file_name;
8528 unsigned line;
8529 frchainS *frchP;
8530 asection *s;
8531
8532 file_name = as_where (&line);
8533 for (s = stdoutput->sections; s; s = s->next)
8534 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8535 {
8536 fragS *fragP;
8537
8538 /* Walk over all of the fragments in a subsection. */
8539 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8540 {
8541 if (fragP->fr_type == rs_machine_dependent
8542 && fragP->fr_subtype == RELAX_SLOTS
8543 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
8544 {
8545 static xtensa_insnbuf insnbuf = NULL;
8546 TInsn t_insn;
8547
8548 if (fragP->fr_opcode != NULL)
8549 {
8550 if (!insnbuf)
8551 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
8552 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
8553 tinsn_immed_from_frag (&t_insn, fragP, 0);
8554
8555 if (xtensa_opcode_is_loop (xtensa_default_isa,
8556 t_insn.opcode) == 1)
8557 {
8558 if (is_empty_loop (&t_insn, fragP))
8559 {
8560 new_logical_line (fragP->fr_file, fragP->fr_line);
8561 as_bad (_("invalid empty loop"));
8562 }
8563 if (!is_local_forward_loop (&t_insn, fragP))
8564 {
8565 new_logical_line (fragP->fr_file, fragP->fr_line);
8566 as_bad (_("loop target does not follow "
8567 "loop instruction in section"));
8568 }
8569 }
8570 }
8571 }
8572 }
8573 }
8574 new_logical_line (file_name, line);
8575 }
8576
8577
8578 #define LOOP_IMMED_OPN 1
8579
8580 /* Return TRUE if the loop target is the next non-zero fragment. */
8581
8582 static bfd_boolean
8583 is_empty_loop (const TInsn *insn, fragS *fragP)
8584 {
8585 const expressionS *exp;
8586 symbolS *symbolP;
8587 fragS *next_fragP;
8588
8589 if (insn->insn_type != ITYPE_INSN)
8590 return FALSE;
8591
8592 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8593 return FALSE;
8594
8595 if (insn->ntok <= LOOP_IMMED_OPN)
8596 return FALSE;
8597
8598 exp = &insn->tok[LOOP_IMMED_OPN];
8599
8600 if (exp->X_op != O_symbol)
8601 return FALSE;
8602
8603 symbolP = exp->X_add_symbol;
8604 if (!symbolP)
8605 return FALSE;
8606
8607 if (symbol_get_frag (symbolP) == NULL)
8608 return FALSE;
8609
8610 if (S_GET_VALUE (symbolP) != 0)
8611 return FALSE;
8612
8613 /* Walk through the zero-size fragments from this one. If we find
8614 the target fragment, then this is a zero-size loop. */
8615
8616 for (next_fragP = fragP->fr_next;
8617 next_fragP != NULL;
8618 next_fragP = next_fragP->fr_next)
8619 {
8620 if (next_fragP == symbol_get_frag (symbolP))
8621 return TRUE;
8622 if (next_fragP->fr_fix != 0)
8623 return FALSE;
8624 }
8625 return FALSE;
8626 }
8627
8628
8629 static bfd_boolean
8630 is_local_forward_loop (const TInsn *insn, fragS *fragP)
8631 {
8632 const expressionS *exp;
8633 symbolS *symbolP;
8634 fragS *next_fragP;
8635
8636 if (insn->insn_type != ITYPE_INSN)
8637 return FALSE;
8638
8639 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8640 return FALSE;
8641
8642 if (insn->ntok <= LOOP_IMMED_OPN)
8643 return FALSE;
8644
8645 exp = &insn->tok[LOOP_IMMED_OPN];
8646
8647 if (exp->X_op != O_symbol)
8648 return FALSE;
8649
8650 symbolP = exp->X_add_symbol;
8651 if (!symbolP)
8652 return FALSE;
8653
8654 if (symbol_get_frag (symbolP) == NULL)
8655 return FALSE;
8656
8657 /* Walk through fragments until we find the target.
8658 If we do not find the target, then this is an invalid loop. */
8659
8660 for (next_fragP = fragP->fr_next;
8661 next_fragP != NULL;
8662 next_fragP = next_fragP->fr_next)
8663 {
8664 if (next_fragP == symbol_get_frag (symbolP))
8665 return TRUE;
8666 }
8667
8668 return FALSE;
8669 }
8670
8671
8672 #define XTINFO_NAME "Xtensa_Info"
8673 #define XTINFO_NAMESZ 12
8674 #define XTINFO_TYPE 1
8675
8676 static void
8677 xtensa_add_config_info (void)
8678 {
8679 asection *info_sec;
8680 char *data, *p;
8681 int sz;
8682
8683 info_sec = subseg_new (".xtensa.info", 0);
8684 bfd_set_section_flags (stdoutput, info_sec, SEC_HAS_CONTENTS | SEC_READONLY);
8685
8686 data = XNEWVEC (char, 100);
8687 sprintf (data, "USE_ABSOLUTE_LITERALS=%d\nABI=%d\n",
8688 XSHAL_USE_ABSOLUTE_LITERALS, XSHAL_ABI);
8689 sz = strlen (data) + 1;
8690
8691 /* Add enough null terminators to pad to a word boundary. */
8692 do
8693 data[sz++] = 0;
8694 while ((sz & 3) != 0);
8695
8696 /* Follow the standard note section layout:
8697 First write the length of the name string. */
8698 p = frag_more (4);
8699 md_number_to_chars (p, (valueT) XTINFO_NAMESZ, 4);
8700
8701 /* Next comes the length of the "descriptor", i.e., the actual data. */
8702 p = frag_more (4);
8703 md_number_to_chars (p, (valueT) sz, 4);
8704
8705 /* Write the note type. */
8706 p = frag_more (4);
8707 md_number_to_chars (p, (valueT) XTINFO_TYPE, 4);
8708
8709 /* Write the name field. */
8710 p = frag_more (XTINFO_NAMESZ);
8711 memcpy (p, XTINFO_NAME, XTINFO_NAMESZ);
8712
8713 /* Finally, write the descriptor. */
8714 p = frag_more (sz);
8715 memcpy (p, data, sz);
8716
8717 free (data);
8718 }
8719
8720 \f
8721 /* Alignment Functions. */
8722
8723 static int
8724 get_text_align_power (unsigned target_size)
8725 {
8726 if (target_size <= 4)
8727 return 2;
8728
8729 if (target_size <= 8)
8730 return 3;
8731
8732 if (target_size <= 16)
8733 return 4;
8734
8735 if (target_size <= 32)
8736 return 5;
8737
8738 if (target_size <= 64)
8739 return 6;
8740
8741 if (target_size <= 128)
8742 return 7;
8743
8744 if (target_size <= 256)
8745 return 8;
8746
8747 if (target_size <= 512)
8748 return 9;
8749
8750 if (target_size <= 1024)
8751 return 10;
8752
8753 gas_assert (0);
8754 return 0;
8755 }
8756
8757
8758 static int
8759 get_text_align_max_fill_size (int align_pow,
8760 bfd_boolean use_nops,
8761 bfd_boolean use_no_density)
8762 {
8763 if (!use_nops)
8764 return (1 << align_pow);
8765 if (use_no_density)
8766 return 3 * (1 << align_pow);
8767
8768 return 1 + (1 << align_pow);
8769 }
8770
8771
8772 /* Calculate the minimum bytes of fill needed at "address" to align a
8773 target instruction of size "target_size" so that it does not cross a
8774 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
8775 the fill can be an arbitrary number of bytes. Otherwise, the space must
8776 be filled by NOP instructions. */
8777
8778 static int
8779 get_text_align_fill_size (addressT address,
8780 int align_pow,
8781 int target_size,
8782 bfd_boolean use_nops,
8783 bfd_boolean use_no_density)
8784 {
8785 addressT alignment, fill, fill_limit, fill_step;
8786 bfd_boolean skip_one = FALSE;
8787
8788 alignment = (1 << align_pow);
8789 gas_assert (target_size > 0 && alignment >= (addressT) target_size);
8790
8791 if (!use_nops)
8792 {
8793 fill_limit = alignment;
8794 fill_step = 1;
8795 }
8796 else if (!use_no_density)
8797 {
8798 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
8799 fill_limit = alignment * 2;
8800 fill_step = 1;
8801 skip_one = TRUE;
8802 }
8803 else
8804 {
8805 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
8806 fill_limit = alignment * 3;
8807 fill_step = 3;
8808 }
8809
8810 /* Try all fill sizes until finding one that works. */
8811 for (fill = 0; fill < fill_limit; fill += fill_step)
8812 {
8813 if (skip_one && fill == 1)
8814 continue;
8815 if ((address + fill) >> align_pow
8816 == (address + fill + target_size - 1) >> align_pow)
8817 return fill;
8818 }
8819 gas_assert (0);
8820 return 0;
8821 }
8822
8823
8824 static int
8825 branch_align_power (segT sec)
8826 {
8827 /* If the Xtensa processor has a fetch width of X, and
8828 the section is aligned to at least that boundary, then a branch
8829 target need only fit within that aligned block of memory to avoid
8830 a stall. Otherwise, try to fit branch targets within 4-byte
8831 aligned blocks (which may be insufficient, e.g., if the section
8832 has no alignment, but it's good enough). */
8833 int fetch_align = get_text_align_power(xtensa_fetch_width);
8834 int sec_align = get_recorded_alignment (sec);
8835
8836 if (sec_align >= fetch_align)
8837 return fetch_align;
8838
8839 return 2;
8840 }
8841
8842
8843 /* This will assert if it is not possible. */
8844
8845 static int
8846 get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
8847 {
8848 int count = 0;
8849
8850 if (use_no_density)
8851 {
8852 gas_assert (fill_size % 3 == 0);
8853 return (fill_size / 3);
8854 }
8855
8856 gas_assert (fill_size != 1); /* Bad argument. */
8857
8858 while (fill_size > 1)
8859 {
8860 int insn_size = 3;
8861 if (fill_size == 2 || fill_size == 4)
8862 insn_size = 2;
8863 fill_size -= insn_size;
8864 count++;
8865 }
8866 gas_assert (fill_size != 1); /* Bad algorithm. */
8867 return count;
8868 }
8869
8870
8871 static int
8872 get_text_align_nth_nop_size (offsetT fill_size,
8873 int n,
8874 bfd_boolean use_no_density)
8875 {
8876 int count = 0;
8877
8878 if (use_no_density)
8879 return 3;
8880
8881 gas_assert (fill_size != 1); /* Bad argument. */
8882
8883 while (fill_size > 1)
8884 {
8885 int insn_size = 3;
8886 if (fill_size == 2 || fill_size == 4)
8887 insn_size = 2;
8888 fill_size -= insn_size;
8889 count++;
8890 if (n + 1 == count)
8891 return insn_size;
8892 }
8893 gas_assert (0);
8894 return 0;
8895 }
8896
8897
8898 /* For the given fragment, find the appropriate address
8899 for it to begin at if we are using NOPs to align it. */
8900
8901 static addressT
8902 get_noop_aligned_address (fragS *fragP, addressT address)
8903 {
8904 /* The rule is: get next fragment's FIRST instruction. Find
8905 the smallest number of bytes that need to be added to
8906 ensure that the next fragment's FIRST instruction will fit
8907 in a single word.
8908
8909 E.G., 2 bytes : 0, 1, 2 mod 4
8910 3 bytes: 0, 1 mod 4
8911
8912 If the FIRST instruction MIGHT be relaxed,
8913 assume that it will become a 3-byte instruction.
8914
8915 Note again here that LOOP instructions are not bundleable,
8916 and this relaxation only applies to LOOP opcodes. */
8917
8918 int fill_size = 0;
8919 int first_insn_size;
8920 int loop_insn_size;
8921 addressT pre_opcode_bytes;
8922 int align_power;
8923 fragS *first_insn;
8924 xtensa_opcode opcode;
8925 bfd_boolean is_loop;
8926
8927 gas_assert (fragP->fr_type == rs_machine_dependent);
8928 gas_assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
8929
8930 /* Find the loop frag. */
8931 first_insn = next_non_empty_frag (fragP);
8932 /* Now find the first insn frag. */
8933 first_insn = next_non_empty_frag (first_insn);
8934
8935 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8936 gas_assert (is_loop);
8937 loop_insn_size = xg_get_single_size (opcode);
8938
8939 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8940 pre_opcode_bytes += loop_insn_size;
8941
8942 /* For loops, the alignment depends on the size of the
8943 instruction following the loop, not the LOOP instruction. */
8944
8945 if (first_insn == NULL)
8946 first_insn_size = xtensa_fetch_width;
8947 else
8948 first_insn_size = get_loop_align_size (frag_format_size (first_insn));
8949
8950 /* If it was 8, then we'll need a larger alignment for the section. */
8951 align_power = get_text_align_power (first_insn_size);
8952 record_alignment (now_seg, align_power);
8953
8954 fill_size = get_text_align_fill_size
8955 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8956 fragP->tc_frag_data.is_no_density);
8957
8958 return address + fill_size;
8959 }
8960
8961
8962 /* 3 mechanisms for relaxing an alignment:
8963
8964 Align to a power of 2.
8965 Align so the next fragment's instruction does not cross a word boundary.
8966 Align the current instruction so that if the next instruction
8967 were 3 bytes, it would not cross a word boundary.
8968
8969 We can align with:
8970
8971 zeros - This is easy; always insert zeros.
8972 nops - 3-byte and 2-byte instructions
8973 2 - 2-byte nop
8974 3 - 3-byte nop
8975 4 - 2 2-byte nops
8976 >=5 : 3-byte instruction + fn (n-3)
8977 widening - widen previous instructions. */
8978
8979 static offsetT
8980 get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
8981 {
8982 addressT target_address, loop_insn_offset;
8983 int target_size;
8984 xtensa_opcode loop_opcode;
8985 bfd_boolean is_loop;
8986 int align_power;
8987 offsetT opt_diff;
8988 offsetT branch_align;
8989 fragS *loop_frag;
8990
8991 gas_assert (fragP->fr_type == rs_machine_dependent);
8992 switch (fragP->fr_subtype)
8993 {
8994 case RELAX_DESIRE_ALIGN:
8995 target_size = next_frag_format_size (fragP);
8996 if (target_size == XTENSA_UNDEFINED)
8997 target_size = 3;
8998 align_power = branch_align_power (now_seg);
8999 branch_align = 1 << align_power;
9000 /* Don't count on the section alignment being as large as the target. */
9001 if (target_size > branch_align)
9002 target_size = branch_align;
9003 opt_diff = get_text_align_fill_size (address, align_power,
9004 target_size, FALSE, FALSE);
9005
9006 *max_diff = (opt_diff + branch_align
9007 - (target_size + ((address + opt_diff) % branch_align)));
9008 gas_assert (*max_diff >= opt_diff);
9009 return opt_diff;
9010
9011 case RELAX_ALIGN_NEXT_OPCODE:
9012 /* The next non-empty frag after this one holds the LOOP instruction
9013 that needs to be aligned. The required alignment depends on the
9014 size of the next non-empty frag after the loop frag, i.e., the
9015 first instruction in the loop. */
9016 loop_frag = next_non_empty_frag (fragP);
9017 target_size = get_loop_align_size (next_frag_format_size (loop_frag));
9018 loop_insn_offset = 0;
9019 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
9020 gas_assert (is_loop);
9021
9022 /* If the loop has been expanded then the LOOP instruction
9023 could be at an offset from this fragment. */
9024 if (loop_frag->tc_frag_data.slot_subtypes[0] != RELAX_IMMED)
9025 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
9026
9027 /* In an ideal world, which is what we are shooting for here,
9028 we wouldn't need to use any NOPs immediately prior to the
9029 LOOP instruction. If this approach fails, relax_frag_loop_align
9030 will call get_noop_aligned_address. */
9031 target_address =
9032 address + loop_insn_offset + xg_get_single_size (loop_opcode);
9033 align_power = get_text_align_power (target_size);
9034 opt_diff = get_text_align_fill_size (target_address, align_power,
9035 target_size, FALSE, FALSE);
9036
9037 *max_diff = xtensa_fetch_width
9038 - ((target_address + opt_diff) % xtensa_fetch_width)
9039 - target_size + opt_diff;
9040 gas_assert (*max_diff >= opt_diff);
9041 return opt_diff;
9042
9043 default:
9044 break;
9045 }
9046 gas_assert (0);
9047 return 0;
9048 }
9049
9050 \f
9051 /* md_relax_frag Hook and Helper Functions. */
9052
9053 static long relax_frag_loop_align (fragS *, long);
9054 static long relax_frag_for_align (fragS *, long);
9055 static long relax_frag_immed
9056 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
9057
9058 /* Get projected address for the first fulcrum on a path from source to
9059 target. */
9060 static addressT xg_get_fulcrum (addressT source, addressT target)
9061 {
9062 offsetT delta = target - source;
9063 int n;
9064
9065 n = (labs (delta) + J_RANGE - J_MARGIN - 1) / (J_RANGE - J_MARGIN);
9066 return source + delta / n;
9067 }
9068
9069 /* Given trampoline index, source and target of a jump find the best
9070 candidate trampoline for the first fulcrum. The best trampoline is
9071 the one in the reach of "j' instruction from the source, closest to
9072 the projected fulcrum address, and preferrably w/o a jump around or
9073 with already initialized jump around. */
9074 static size_t xg_find_best_trampoline (struct trampoline_index *idx,
9075 addressT source, addressT target)
9076 {
9077 addressT fulcrum = xg_get_fulcrum (source, target);
9078 size_t dist = 0;
9079 size_t best = -1;
9080 size_t base_tr = xg_find_trampoline (idx, fulcrum);
9081 int checked = 1;
9082
9083 /* Check trampoline frags around the base_tr to find the best. */
9084 for (dist = 0; checked; ++dist)
9085 {
9086 int i;
9087 size_t tr = base_tr - dist;
9088
9089 checked = 0;
9090
9091 /* Trampolines are checked in the following order:
9092 base_tr, base_tr + 1, base_tr - 1, base_tr + 2, base_tr - 2 */
9093 for (i = 0; i < 2; ++i, tr = base_tr + dist + 1)
9094 if (tr < idx->n_entries)
9095 {
9096 fragS *trampoline_frag = idx->entry[tr];
9097 offsetT off;
9098
9099 /* Don't check trampolines outside source - target interval. */
9100 if ((trampoline_frag->fr_address < source &&
9101 trampoline_frag->fr_address < target) ||
9102 (trampoline_frag->fr_address > source &&
9103 trampoline_frag->fr_address > target))
9104 continue;
9105
9106 off = trampoline_frag->fr_address - fulcrum;
9107 /* Stop if some trampoline is found and the search is more than
9108 J_RANGE / 4 from the projected fulcrum. A trampoline w/o jump
9109 around is nice, but it shouldn't have much overhead. */
9110 if (best < idx->n_entries && labs (off) > J_RANGE / 4)
9111 return best;
9112
9113 off = trampoline_frag->fr_address - source;
9114 if (labs (off) < J_RANGE - J_MARGIN)
9115 {
9116 ++checked;
9117 /* Stop if a trampoline w/o jump around is found or initialized
9118 trampoline with jump around is found. */
9119 if (!trampoline_frag->tc_frag_data.needs_jump_around ||
9120 trampoline_frag->fr_fix)
9121 return tr;
9122 else if (best >= idx->n_entries)
9123 best = tr;
9124 }
9125 }
9126 }
9127
9128 if (best < idx->n_entries)
9129 return best;
9130 else
9131 as_fatal (_("cannot find suitable trampoline"));
9132 }
9133
9134 static fixS *xg_relax_fixup (struct trampoline_index *idx, fixS *fixP)
9135 {
9136 symbolS *s = fixP->fx_addsy;
9137 addressT source = fixP->fx_frag->fr_address;
9138 addressT target = S_GET_VALUE (s) + fixP->fx_offset;
9139 size_t tr = xg_find_best_trampoline (idx, source, target);
9140 fragS *trampoline_frag = idx->entry[tr];
9141 fixS *newfixP;
9142
9143 init_trampoline_frag (trampoline_frag);
9144 newfixP = xg_append_jump (trampoline_frag,
9145 fixP->fx_addsy, fixP->fx_offset);
9146
9147 /* Adjust the fixup for the original "j" instruction to
9148 point to the newly added jump. */
9149 fixP->fx_addsy = trampoline_frag->fr_symbol;
9150 fixP->fx_offset = trampoline_frag->fr_fix - 3;
9151 fixP->tc_fix_data.X_add_symbol = trampoline_frag->fr_symbol;
9152 fixP->tc_fix_data.X_add_number = trampoline_frag->fr_fix - 3;
9153
9154 trampoline_frag->tc_frag_data.relax_seen = FALSE;
9155
9156 if (xg_is_trampoline_frag_full (trampoline_frag))
9157 xg_remove_trampoline_from_index (idx, tr);
9158
9159 return newfixP;
9160 }
9161
9162 static bfd_boolean xg_is_relaxable_fixup (fixS *fixP)
9163 {
9164 xtensa_isa isa = xtensa_default_isa;
9165 addressT addr = fixP->fx_frag->fr_address;
9166 addressT target;
9167 offsetT delta;
9168 symbolS *s = fixP->fx_addsy;
9169 int slot;
9170 xtensa_format fmt;
9171 xtensa_opcode opcode;
9172
9173 if (fixP->fx_r_type < BFD_RELOC_XTENSA_SLOT0_OP ||
9174 fixP->fx_r_type > BFD_RELOC_XTENSA_SLOT14_OP)
9175 return FALSE;
9176
9177 target = S_GET_VALUE (s) + fixP->fx_offset;
9178 delta = target - addr;
9179
9180 if (labs (delta) < J_RANGE - J_MARGIN)
9181 return FALSE;
9182
9183 xtensa_insnbuf_from_chars (isa, trampoline_buf,
9184 (unsigned char *) fixP->fx_frag->fr_literal +
9185 fixP->fx_where, 0);
9186 fmt = xtensa_format_decode (isa, trampoline_buf);
9187 gas_assert (fmt != XTENSA_UNDEFINED);
9188 slot = fixP->tc_fix_data.slot;
9189 xtensa_format_get_slot (isa, fmt, slot, trampoline_buf, trampoline_slotbuf);
9190 opcode = xtensa_opcode_decode (isa, fmt, slot, trampoline_slotbuf);
9191 return opcode == xtensa_j_opcode;
9192 }
9193
9194 static void xg_relax_fixups (struct trampoline_seg *ts)
9195 {
9196 struct trampoline_index *idx = &ts->index;
9197 segment_info_type *seginfo = seg_info (now_seg);
9198 fixS *fx;
9199
9200 for (fx = seginfo->fix_root; fx; fx = fx->fx_next)
9201 {
9202 fixS *fixP = fx;
9203
9204 while (xg_is_relaxable_fixup (fixP))
9205 fixP = xg_relax_fixup (idx, fixP);
9206 }
9207 }
9208
9209 /* Given a trampoline frag relax all jumps that might want to use this
9210 trampoline. Only do real work once per relaxation cycle, when
9211 xg_relax_trampoline is called for the first trampoline in the now_seg.
9212 Don't use stretch, don't update new_stretch: place fulcrums with a
9213 slack to tolerate code movement. In the worst case if a jump between
9214 two trampolines wouldn't reach the next relaxation pass will fix it. */
9215 static void xg_relax_trampoline (fragS *fragP, long stretch ATTRIBUTE_UNUSED,
9216 long *new_stretch ATTRIBUTE_UNUSED)
9217 {
9218 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9219
9220 if (ts->index.n_entries && ts->index.entry[0] == fragP)
9221 xg_relax_fixups (ts);
9222 }
9223
9224 /* Return the number of bytes added to this fragment, given that the
9225 input has been stretched already by "stretch". */
9226
9227 long
9228 xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
9229 {
9230 xtensa_isa isa = xtensa_default_isa;
9231 int unreported = fragP->tc_frag_data.unreported_expansion;
9232 long new_stretch = 0;
9233 const char *file_name;
9234 unsigned line;
9235 int lit_size;
9236 static xtensa_insnbuf vbuf = NULL;
9237 int slot, num_slots;
9238 xtensa_format fmt;
9239
9240 file_name = as_where (&line);
9241 new_logical_line (fragP->fr_file, fragP->fr_line);
9242
9243 fragP->tc_frag_data.unreported_expansion = 0;
9244
9245 switch (fragP->fr_subtype)
9246 {
9247 case RELAX_ALIGN_NEXT_OPCODE:
9248 /* Always convert. */
9249 if (fragP->tc_frag_data.relax_seen)
9250 new_stretch = relax_frag_loop_align (fragP, stretch);
9251 break;
9252
9253 case RELAX_LOOP_END:
9254 /* Do nothing. */
9255 break;
9256
9257 case RELAX_LOOP_END_ADD_NOP:
9258 /* Add a NOP and switch to .fill 0. */
9259 new_stretch = relax_frag_add_nop (fragP);
9260 frag_wane (fragP);
9261 break;
9262
9263 case RELAX_DESIRE_ALIGN:
9264 /* Do nothing. The narrowing before this frag will either align
9265 it or not. */
9266 break;
9267
9268 case RELAX_LITERAL:
9269 case RELAX_LITERAL_FINAL:
9270 return 0;
9271
9272 case RELAX_LITERAL_NR:
9273 lit_size = 4;
9274 fragP->fr_subtype = RELAX_LITERAL_FINAL;
9275 gas_assert (unreported == lit_size);
9276 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
9277 fragP->fr_var -= lit_size;
9278 fragP->fr_fix += lit_size;
9279 new_stretch = 4;
9280 break;
9281
9282 case RELAX_SLOTS:
9283 if (vbuf == NULL)
9284 vbuf = xtensa_insnbuf_alloc (isa);
9285
9286 xtensa_insnbuf_from_chars
9287 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
9288 fmt = xtensa_format_decode (isa, vbuf);
9289 num_slots = xtensa_format_num_slots (isa, fmt);
9290
9291 for (slot = 0; slot < num_slots; slot++)
9292 {
9293 switch (fragP->tc_frag_data.slot_subtypes[slot])
9294 {
9295 case RELAX_NARROW:
9296 if (fragP->tc_frag_data.relax_seen)
9297 new_stretch += relax_frag_for_align (fragP, stretch);
9298 break;
9299
9300 case RELAX_IMMED:
9301 case RELAX_IMMED_STEP1:
9302 case RELAX_IMMED_STEP2:
9303 case RELAX_IMMED_STEP3:
9304 /* Place the immediate. */
9305 new_stretch += relax_frag_immed
9306 (now_seg, fragP, stretch,
9307 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
9308 fmt, slot, stretched_p, FALSE);
9309 break;
9310
9311 default:
9312 /* This is OK; see the note in xg_assemble_vliw_tokens. */
9313 break;
9314 }
9315 }
9316 break;
9317
9318 case RELAX_LITERAL_POOL_BEGIN:
9319 if (fragP->fr_var != 0)
9320 {
9321 /* We have a converted "candidate" literal pool;
9322 assemble a jump around it. */
9323 TInsn insn;
9324 if (!litpool_slotbuf)
9325 {
9326 litpool_buf = xtensa_insnbuf_alloc (isa);
9327 litpool_slotbuf = xtensa_insnbuf_alloc (isa);
9328 }
9329 new_stretch += 3;
9330 fragP->tc_frag_data.relax_seen = FALSE; /* Need another pass. */
9331 fragP->tc_frag_data.is_insn = TRUE;
9332 tinsn_init (&insn);
9333 insn.insn_type = ITYPE_INSN;
9334 insn.opcode = xtensa_j_opcode;
9335 insn.ntok = 1;
9336 set_expr_symbol_offset (&insn.tok[0], fragP->fr_symbol,
9337 fragP->fr_fix);
9338 fmt = xg_get_single_format (xtensa_j_opcode);
9339 tinsn_to_slotbuf (fmt, 0, &insn, litpool_slotbuf);
9340 xtensa_format_set_slot (isa, fmt, 0, litpool_buf, litpool_slotbuf);
9341 xtensa_insnbuf_to_chars (isa, litpool_buf,
9342 (unsigned char *)fragP->fr_literal +
9343 fragP->fr_fix, 3);
9344 fragP->fr_fix += 3;
9345 fragP->fr_var -= 3;
9346 /* Add a fix-up. */
9347 fix_new (fragP, 0, 3, fragP->fr_symbol, 0, TRUE,
9348 BFD_RELOC_XTENSA_SLOT0_OP);
9349 }
9350 break;
9351
9352 case RELAX_LITERAL_POOL_END:
9353 case RELAX_LITERAL_POOL_CANDIDATE_BEGIN:
9354 case RELAX_MAYBE_UNREACHABLE:
9355 case RELAX_MAYBE_DESIRE_ALIGN:
9356 /* No relaxation required. */
9357 break;
9358
9359 case RELAX_FILL_NOP:
9360 case RELAX_UNREACHABLE:
9361 if (fragP->tc_frag_data.relax_seen)
9362 new_stretch += relax_frag_for_align (fragP, stretch);
9363 break;
9364
9365 case RELAX_TRAMPOLINE:
9366 if (fragP->tc_frag_data.relax_seen)
9367 xg_relax_trampoline (fragP, stretch, &new_stretch);
9368 break;
9369
9370 default:
9371 as_bad (_("bad relaxation state"));
9372 }
9373
9374 /* Tell gas we need another relaxation pass. */
9375 if (! fragP->tc_frag_data.relax_seen)
9376 {
9377 fragP->tc_frag_data.relax_seen = TRUE;
9378 *stretched_p = 1;
9379 }
9380
9381 new_logical_line (file_name, line);
9382 return new_stretch;
9383 }
9384
9385
9386 static long
9387 relax_frag_loop_align (fragS *fragP, long stretch)
9388 {
9389 addressT old_address, old_next_address, old_size;
9390 addressT new_address, new_next_address, new_size;
9391 addressT growth;
9392
9393 /* All the frags with relax_frag_for_alignment prior to this one in the
9394 section have been done, hopefully eliminating the need for a NOP here.
9395 But, this will put it in if necessary. */
9396
9397 /* Calculate the old address of this fragment and the next fragment. */
9398 old_address = fragP->fr_address - stretch;
9399 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
9400 fragP->tc_frag_data.text_expansion[0]);
9401 old_size = old_next_address - old_address;
9402
9403 /* Calculate the new address of this fragment and the next fragment. */
9404 new_address = fragP->fr_address;
9405 new_next_address =
9406 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
9407 new_size = new_next_address - new_address;
9408
9409 growth = new_size - old_size;
9410
9411 /* Fix up the text_expansion field and return the new growth. */
9412 fragP->tc_frag_data.text_expansion[0] += growth;
9413 return growth;
9414 }
9415
9416
9417 /* Add a NOP instruction. */
9418
9419 static long
9420 relax_frag_add_nop (fragS *fragP)
9421 {
9422 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
9423 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
9424 assemble_nop (length, nop_buf);
9425 fragP->tc_frag_data.is_insn = TRUE;
9426
9427 if (fragP->fr_var < length)
9428 {
9429 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
9430 return 0;
9431 }
9432
9433 fragP->fr_fix += length;
9434 fragP->fr_var -= length;
9435 return length;
9436 }
9437
9438
9439 static long future_alignment_required (fragS *, long);
9440
9441 static long
9442 relax_frag_for_align (fragS *fragP, long stretch)
9443 {
9444 /* Overview of the relaxation procedure for alignment:
9445 We can widen with NOPs or by widening instructions or by filling
9446 bytes after jump instructions. Find the opportune places and widen
9447 them if necessary. */
9448
9449 long stretch_me;
9450 long diff;
9451
9452 gas_assert (fragP->fr_subtype == RELAX_FILL_NOP
9453 || fragP->fr_subtype == RELAX_UNREACHABLE
9454 || (fragP->fr_subtype == RELAX_SLOTS
9455 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
9456
9457 stretch_me = future_alignment_required (fragP, stretch);
9458 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
9459 if (diff == 0)
9460 return 0;
9461
9462 if (diff < 0)
9463 {
9464 /* We expanded on a previous pass. Can we shrink now? */
9465 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
9466 if (shrink <= stretch && stretch > 0)
9467 {
9468 fragP->tc_frag_data.text_expansion[0] = stretch_me;
9469 return -shrink;
9470 }
9471 return 0;
9472 }
9473
9474 /* Below here, diff > 0. */
9475 fragP->tc_frag_data.text_expansion[0] = stretch_me;
9476
9477 return diff;
9478 }
9479
9480
9481 /* Return the address of the next frag that should be aligned.
9482
9483 By "address" we mean the address it _would_ be at if there
9484 is no action taken to align it between here and the target frag.
9485 In other words, if no narrows and no fill nops are used between
9486 here and the frag to align, _even_if_ some of the frags we use
9487 to align targets have already expanded on a previous relaxation
9488 pass.
9489
9490 Also, count each frag that may be used to help align the target.
9491
9492 Return 0 if there are no frags left in the chain that need to be
9493 aligned. */
9494
9495 static addressT
9496 find_address_of_next_align_frag (fragS **fragPP,
9497 int *wide_nops,
9498 int *narrow_nops,
9499 int *widens,
9500 bfd_boolean *paddable)
9501 {
9502 fragS *fragP = *fragPP;
9503 addressT address = fragP->fr_address;
9504
9505 /* Do not reset the counts to 0. */
9506
9507 while (fragP)
9508 {
9509 /* Limit this to a small search. */
9510 if (*widens >= (int) xtensa_fetch_width)
9511 {
9512 *fragPP = fragP;
9513 return 0;
9514 }
9515 address += fragP->fr_fix;
9516
9517 if (fragP->fr_type == rs_fill)
9518 address += fragP->fr_offset * fragP->fr_var;
9519 else if (fragP->fr_type == rs_machine_dependent)
9520 {
9521 switch (fragP->fr_subtype)
9522 {
9523 case RELAX_UNREACHABLE:
9524 *paddable = TRUE;
9525 break;
9526
9527 case RELAX_FILL_NOP:
9528 (*wide_nops)++;
9529 if (!fragP->tc_frag_data.is_no_density)
9530 (*narrow_nops)++;
9531 break;
9532
9533 case RELAX_SLOTS:
9534 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
9535 {
9536 (*widens)++;
9537 break;
9538 }
9539 address += total_frag_text_expansion (fragP);
9540 break;
9541
9542 case RELAX_IMMED:
9543 address += fragP->tc_frag_data.text_expansion[0];
9544 break;
9545
9546 case RELAX_ALIGN_NEXT_OPCODE:
9547 case RELAX_DESIRE_ALIGN:
9548 *fragPP = fragP;
9549 return address;
9550
9551 case RELAX_MAYBE_UNREACHABLE:
9552 case RELAX_MAYBE_DESIRE_ALIGN:
9553 /* Do nothing. */
9554 break;
9555
9556 default:
9557 /* Just punt if we don't know the type. */
9558 *fragPP = fragP;
9559 return 0;
9560 }
9561 }
9562 else
9563 {
9564 /* Just punt if we don't know the type. */
9565 *fragPP = fragP;
9566 return 0;
9567 }
9568 fragP = fragP->fr_next;
9569 }
9570
9571 *fragPP = fragP;
9572 return 0;
9573 }
9574
9575
9576 static long bytes_to_stretch (fragS *, int, int, int, int);
9577
9578 static long
9579 future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
9580 {
9581 fragS *this_frag = fragP;
9582 long address;
9583 int num_widens = 0;
9584 int wide_nops = 0;
9585 int narrow_nops = 0;
9586 bfd_boolean paddable = FALSE;
9587 offsetT local_opt_diff;
9588 offsetT opt_diff;
9589 offsetT max_diff;
9590 int stretch_amount = 0;
9591 int local_stretch_amount;
9592 int global_stretch_amount;
9593
9594 address = find_address_of_next_align_frag
9595 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
9596
9597 if (!address)
9598 {
9599 if (this_frag->tc_frag_data.is_aligning_branch)
9600 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
9601 else
9602 frag_wane (this_frag);
9603 }
9604 else
9605 {
9606 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
9607 opt_diff = local_opt_diff;
9608 gas_assert (opt_diff >= 0);
9609 gas_assert (max_diff >= opt_diff);
9610 if (max_diff == 0)
9611 return 0;
9612
9613 if (fragP)
9614 fragP = fragP->fr_next;
9615
9616 while (fragP && opt_diff < max_diff && address)
9617 {
9618 /* We only use these to determine if we can exit early
9619 because there will be plenty of ways to align future
9620 align frags. */
9621 int glob_widens = 0;
9622 int dnn = 0;
9623 int dw = 0;
9624 bfd_boolean glob_pad = 0;
9625 address = find_address_of_next_align_frag
9626 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
9627 /* If there is a padable portion, then skip. */
9628 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
9629 address = 0;
9630
9631 if (address)
9632 {
9633 offsetT next_m_diff;
9634 offsetT next_o_diff;
9635
9636 /* Downrange frags haven't had stretch added to them yet. */
9637 address += stretch;
9638
9639 /* The address also includes any text expansion from this
9640 frag in a previous pass, but we don't want that. */
9641 address -= this_frag->tc_frag_data.text_expansion[0];
9642
9643 /* Assume we are going to move at least opt_diff. In
9644 reality, we might not be able to, but assuming that
9645 we will helps catch cases where moving opt_diff pushes
9646 the next target from aligned to unaligned. */
9647 address += opt_diff;
9648
9649 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
9650
9651 /* Now cleanup for the adjustments to address. */
9652 next_o_diff += opt_diff;
9653 next_m_diff += opt_diff;
9654 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
9655 opt_diff = next_o_diff;
9656 if (next_m_diff < max_diff)
9657 max_diff = next_m_diff;
9658 fragP = fragP->fr_next;
9659 }
9660 }
9661
9662 /* If there are enough wideners in between, do it. */
9663 if (paddable)
9664 {
9665 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
9666 {
9667 gas_assert (opt_diff <= (signed) xtensa_fetch_width);
9668 return opt_diff;
9669 }
9670 return 0;
9671 }
9672 local_stretch_amount
9673 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
9674 num_widens, local_opt_diff);
9675 global_stretch_amount
9676 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
9677 num_widens, opt_diff);
9678 /* If the condition below is true, then the frag couldn't
9679 stretch the correct amount for the global case, so we just
9680 optimize locally. We'll rely on the subsequent frags to get
9681 the correct alignment in the global case. */
9682 if (global_stretch_amount < local_stretch_amount)
9683 stretch_amount = local_stretch_amount;
9684 else
9685 stretch_amount = global_stretch_amount;
9686
9687 if (this_frag->fr_subtype == RELAX_SLOTS
9688 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
9689 gas_assert (stretch_amount <= 1);
9690 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
9691 {
9692 if (this_frag->tc_frag_data.is_no_density)
9693 gas_assert (stretch_amount == 3 || stretch_amount == 0);
9694 else
9695 gas_assert (stretch_amount <= 3);
9696 }
9697 }
9698 return stretch_amount;
9699 }
9700
9701
9702 /* The idea: widen everything you can to get a target or loop aligned,
9703 then start using NOPs.
9704
9705 wide_nops = the number of wide NOPs available for aligning
9706 narrow_nops = the number of narrow NOPs available for aligning
9707 (a subset of wide_nops)
9708 widens = the number of narrow instructions that should be widened
9709
9710 */
9711
9712 static long
9713 bytes_to_stretch (fragS *this_frag,
9714 int wide_nops,
9715 int narrow_nops,
9716 int num_widens,
9717 int desired_diff)
9718 {
9719 int nops_needed;
9720 int nop_bytes;
9721 int extra_bytes;
9722 int bytes_short = desired_diff - num_widens;
9723
9724 gas_assert (desired_diff >= 0
9725 && desired_diff < (signed) xtensa_fetch_width);
9726 if (desired_diff == 0)
9727 return 0;
9728
9729 gas_assert (wide_nops > 0 || num_widens > 0);
9730
9731 /* Always prefer widening to NOP-filling. */
9732 if (bytes_short < 0)
9733 {
9734 /* There are enough RELAX_NARROW frags after this one
9735 to align the target without widening this frag in any way. */
9736 return 0;
9737 }
9738
9739 if (bytes_short == 0)
9740 {
9741 /* Widen every narrow between here and the align target
9742 and the align target will be properly aligned. */
9743 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9744 return 0;
9745 else
9746 return 1;
9747 }
9748
9749 /* From here we will need at least one NOP to get an alignment.
9750 However, we may not be able to align at all, in which case,
9751 don't widen. */
9752 nops_needed = desired_diff / 3;
9753
9754 /* If there aren't enough nops, don't widen. */
9755 if (nops_needed > wide_nops)
9756 return 0;
9757
9758 /* First try it with all wide nops. */
9759 nop_bytes = nops_needed * 3;
9760 extra_bytes = desired_diff - nop_bytes;
9761
9762 if (nop_bytes + num_widens >= desired_diff)
9763 {
9764 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9765 return 3;
9766 else if (num_widens == extra_bytes)
9767 return 1;
9768 return 0;
9769 }
9770
9771 /* Add a narrow nop. */
9772 nops_needed++;
9773 nop_bytes += 2;
9774 extra_bytes -= 2;
9775 if (narrow_nops == 0 || nops_needed > wide_nops)
9776 return 0;
9777
9778 if (nop_bytes + num_widens >= desired_diff && extra_bytes >= 0)
9779 {
9780 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9781 return !this_frag->tc_frag_data.is_no_density ? 2 : 3;
9782 else if (num_widens == extra_bytes)
9783 return 1;
9784 return 0;
9785 }
9786
9787 /* Replace a wide nop with a narrow nop--we can get here if
9788 extra_bytes was negative in the previous conditional. */
9789 if (narrow_nops == 1)
9790 return 0;
9791 nop_bytes--;
9792 extra_bytes++;
9793 if (nop_bytes + num_widens >= desired_diff)
9794 {
9795 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9796 return !this_frag->tc_frag_data.is_no_density ? 2 : 3;
9797 else if (num_widens == extra_bytes)
9798 return 1;
9799 return 0;
9800 }
9801
9802 /* If we can't satisfy any of the above cases, then we can't align
9803 using padding or fill nops. */
9804 return 0;
9805 }
9806
9807
9808 static fragS *
9809 search_trampolines (TInsn *tinsn, fragS *fragP, bfd_boolean unreachable_only)
9810 {
9811 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9812 fragS *tf = NULL;
9813 size_t i;
9814 fragS *best_tf = NULL;
9815 offsetT best_delta = 0;
9816 offsetT best_addr = 0;
9817 symbolS *sym = tinsn->tok[0].X_add_symbol;
9818 offsetT target = S_GET_VALUE (sym) + tinsn->tok[0].X_add_number;
9819 offsetT addr = fragP->fr_address;
9820 offsetT lower = (addr < target) ? addr : target;
9821 offsetT upper = (addr > target) ? addr : target;
9822 offsetT delta = upper - lower;
9823 offsetT midpoint = lower + delta / 2;
9824 offsetT this_delta = -1;
9825 offsetT this_addr = -1;
9826
9827 if (!ts)
9828 return NULL;
9829
9830 if (delta > 2 * J_RANGE)
9831 {
9832 /* One trampoline won't do; we need multiple.
9833 Choose the farthest trampoline that's still in range of the original
9834 and let a later pass finish the job. */
9835 for (i = 0; i < ts->index.n_entries; ++i)
9836 {
9837 tf = ts->index.entry[i];
9838 this_addr = tf->fr_address + tf->fr_fix;
9839 if (upper == addr)
9840 {
9841 /* Backward jump. */
9842 if (addr - this_addr < J_RANGE)
9843 break;
9844 }
9845 else if (i + 1 < ts->index.n_entries)
9846 {
9847 /* Forward jump. */
9848 fragS *next = ts->index.entry[i + 1];
9849 offsetT next_addr = next->fr_address + next->fr_fix;
9850
9851 if (next_addr - addr > J_RANGE)
9852 break;
9853 }
9854 else
9855 {
9856 break;
9857 }
9858 }
9859 if (i < ts->index.n_entries &&
9860 labs (addr - this_addr) < J_RANGE)
9861 return tf;
9862
9863 return NULL;
9864 }
9865
9866 for (i = 0; i < ts->index.n_entries; ++i)
9867 {
9868 tf = ts->index.entry[i];
9869 this_addr = tf->fr_address + tf->fr_fix;
9870 this_delta = labs (this_addr - midpoint);
9871 if (unreachable_only && tf->tc_frag_data.needs_jump_around)
9872 continue;
9873 if (!best_tf || this_delta < best_delta)
9874 {
9875 best_tf = tf;
9876 best_delta = this_delta;
9877 best_addr = this_addr;
9878 }
9879 }
9880
9881 if (best_tf &&
9882 best_delta < J_RANGE &&
9883 labs(best_addr - lower) < J_RANGE &&
9884 labs(best_addr - upper) < J_RANGE)
9885 return best_tf;
9886
9887 return NULL; /* No suitable trampoline found. */
9888 }
9889
9890
9891 static fragS *
9892 get_best_trampoline (TInsn *tinsn, fragS *fragP)
9893 {
9894 fragS *tf = NULL;
9895
9896 tf = search_trampolines (tinsn, fragP, TRUE); /* Try unreachable first. */
9897
9898 if (tf == NULL)
9899 tf = search_trampolines (tinsn, fragP, FALSE); /* Try ones needing a jump-around, too. */
9900
9901 return tf;
9902 }
9903
9904
9905 /* Append jump to sym + offset to the end of the trampoline frag fragP.
9906 Adjust fragP's jump around if it's present. Adjust fragP's fr_fix/fr_var
9907 and finish the frag if it's full (but don't remove it from the trampoline
9908 frag index). Return fixup for the newly created jump. */
9909 static fixS *xg_append_jump (fragS *fragP, symbolS *sym, offsetT offset)
9910 {
9911 fixS *fixP;
9912 TInsn insn;
9913 xtensa_format fmt;
9914 xtensa_isa isa = xtensa_default_isa;
9915
9916 gas_assert (fragP->fr_var >= 3);
9917 tinsn_init (&insn);
9918 insn.insn_type = ITYPE_INSN;
9919 insn.opcode = xtensa_j_opcode;
9920 insn.ntok = 1;
9921 set_expr_symbol_offset (&insn.tok[0], sym, offset);
9922 fmt = xg_get_single_format (xtensa_j_opcode);
9923 tinsn_to_slotbuf (fmt, 0, &insn, trampoline_slotbuf);
9924 xtensa_format_set_slot (isa, fmt, 0, trampoline_buf, trampoline_slotbuf);
9925 xtensa_insnbuf_to_chars (isa, trampoline_buf,
9926 (unsigned char *)fragP->fr_literal + fragP->fr_fix, 3);
9927 fixP = fix_new (fragP, fragP->fr_fix, 3, sym, offset, TRUE,
9928 BFD_RELOC_XTENSA_SLOT0_OP);
9929 fixP->tc_fix_data.slot = 0;
9930
9931 fragP->fr_fix += 3;
9932 fragP->fr_var -= 3;
9933
9934 /* Adjust the jump around this trampoline (if present). */
9935 if (fragP->tc_frag_data.jump_around_fix)
9936 fragP->tc_frag_data.jump_around_fix->fx_offset += 3;
9937
9938 /* Do we have room for more? */
9939 if (xg_is_trampoline_frag_full (fragP))
9940 {
9941 frag_wane (fragP);
9942 fragP->fr_subtype = 0;
9943 }
9944
9945 return fixP;
9946 }
9947
9948
9949 static int
9950 init_trampoline_frag (fragS *fp)
9951 {
9952 int growth = 0;
9953
9954 if (fp->fr_fix == 0)
9955 {
9956 symbolS *lsym;
9957 char label[10 + 2 * sizeof(fp)];
9958
9959 sprintf (label, ".L0_TR_%p", fp);
9960 lsym = (symbolS *)local_symbol_make (label, now_seg, 0, fp);
9961 fp->fr_symbol = lsym;
9962 if (fp->tc_frag_data.needs_jump_around)
9963 {
9964 fp->tc_frag_data.jump_around_fix = xg_append_jump (fp, lsym, 3);
9965 growth = 3;
9966 }
9967 }
9968 return growth;
9969 }
9970
9971
9972 static int
9973 add_jump_to_trampoline (fragS *tramp, fragS *origfrag)
9974 {
9975 int i, slot = -1;
9976
9977 for (i = 0; i < MAX_SLOTS; ++i)
9978 if (origfrag->tc_frag_data.slot_symbols[i])
9979 {
9980 gas_assert (slot == -1);
9981 slot = i;
9982 }
9983
9984 gas_assert (slot >= 0 && slot < MAX_SLOTS);
9985
9986 /* Assemble a jump to the target label in the trampoline frag. */
9987 xg_append_jump (tramp,
9988 origfrag->tc_frag_data.slot_symbols[slot],
9989 origfrag->tc_frag_data.slot_offsets[slot]);
9990
9991 /* Modify the original j to point here. */
9992 origfrag->tc_frag_data.slot_symbols[slot] = tramp->fr_symbol;
9993 origfrag->tc_frag_data.slot_offsets[slot] = tramp->fr_fix - 3;
9994
9995 /* If trampoline is full, remove it from the list. */
9996 if (xg_is_trampoline_frag_full (tramp))
9997 {
9998 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9999 size_t tr = xg_find_trampoline (&ts->index, tramp->fr_address);
10000
10001 gas_assert (ts->index.entry[tr] == tramp);
10002 xg_remove_trampoline_from_index (&ts->index, tr);
10003 }
10004
10005 return 3;
10006 }
10007
10008
10009 static long
10010 relax_frag_immed (segT segP,
10011 fragS *fragP,
10012 long stretch,
10013 int min_steps,
10014 xtensa_format fmt,
10015 int slot,
10016 int *stretched_p,
10017 bfd_boolean estimate_only)
10018 {
10019 TInsn tinsn;
10020 int old_size;
10021 bfd_boolean negatable_branch = FALSE;
10022 bfd_boolean branch_jmp_to_next = FALSE;
10023 bfd_boolean from_wide_insn = FALSE;
10024 xtensa_isa isa = xtensa_default_isa;
10025 IStack istack;
10026 offsetT frag_offset;
10027 int num_steps;
10028 int num_text_bytes, num_literal_bytes;
10029 int literal_diff, total_text_diff, this_text_diff;
10030
10031 gas_assert (fragP->fr_opcode != NULL);
10032
10033 xg_clear_vinsn (&cur_vinsn);
10034 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
10035 if (cur_vinsn.num_slots > 1)
10036 from_wide_insn = TRUE;
10037
10038 tinsn = cur_vinsn.slots[slot];
10039 tinsn_immed_from_frag (&tinsn, fragP, slot);
10040
10041 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode) == 1)
10042 return 0;
10043
10044 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
10045 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
10046
10047 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
10048
10049 old_size = xtensa_format_length (isa, fmt);
10050
10051 /* Special case: replace a branch to the next instruction with a NOP.
10052 This is required to work around a hardware bug in T1040.0 and also
10053 serves as an optimization. */
10054
10055 if (branch_jmp_to_next
10056 && ((old_size == 2) || (old_size == 3))
10057 && !next_frag_is_loop_target (fragP))
10058 return 0;
10059
10060 /* Here is the fun stuff: Get the immediate field from this
10061 instruction. If it fits, we are done. If not, find the next
10062 instruction sequence that fits. */
10063
10064 frag_offset = fragP->fr_opcode - fragP->fr_literal;
10065 istack_init (&istack);
10066 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
10067 min_steps, stretch);
10068 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
10069
10070 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
10071
10072 /* Figure out the number of bytes needed. */
10073 num_literal_bytes = get_num_stack_literal_bytes (&istack);
10074 literal_diff
10075 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
10076 num_text_bytes = get_num_stack_text_bytes (&istack);
10077
10078 if (from_wide_insn)
10079 {
10080 int first = 0;
10081 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
10082 first++;
10083
10084 num_text_bytes += old_size;
10085 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
10086 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
10087 else
10088 {
10089 /* The first instruction in the relaxed sequence will go after
10090 the current wide instruction, and thus its symbolic immediates
10091 might not fit. */
10092
10093 istack_init (&istack);
10094 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP,
10095 frag_offset + old_size,
10096 min_steps, stretch + old_size);
10097 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
10098
10099 fragP->tc_frag_data.slot_subtypes[slot]
10100 = (int) RELAX_IMMED + num_steps;
10101
10102 num_literal_bytes = get_num_stack_literal_bytes (&istack);
10103 literal_diff
10104 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
10105
10106 num_text_bytes = get_num_stack_text_bytes (&istack) + old_size;
10107 }
10108 }
10109
10110 total_text_diff = num_text_bytes - old_size;
10111 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
10112
10113 /* It MUST get larger. If not, we could get an infinite loop. */
10114 gas_assert (num_text_bytes >= 0);
10115 gas_assert (literal_diff >= 0);
10116 gas_assert (total_text_diff >= 0);
10117
10118 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
10119 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
10120 gas_assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
10121 gas_assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
10122
10123 /* Find the associated expandable literal for this. */
10124 if (literal_diff != 0)
10125 {
10126 fragS *lit_fragP = fragP->tc_frag_data.literal_frags[slot];
10127 if (lit_fragP)
10128 {
10129 gas_assert (literal_diff == 4);
10130 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
10131
10132 /* We expect that the literal section state has NOT been
10133 modified yet. */
10134 gas_assert (lit_fragP->fr_type == rs_machine_dependent
10135 && lit_fragP->fr_subtype == RELAX_LITERAL);
10136 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
10137
10138 /* We need to mark this section for another iteration
10139 of relaxation. */
10140 (*stretched_p)++;
10141 }
10142 }
10143
10144 if (negatable_branch && istack.ninsn > 1)
10145 update_next_frag_state (fragP);
10146
10147 /* If last insn is a jump, and it cannot reach its target, try to find a trampoline. */
10148 if (istack.ninsn > 2 &&
10149 istack.insn[istack.ninsn - 1].insn_type == ITYPE_LABEL &&
10150 istack.insn[istack.ninsn - 2].insn_type == ITYPE_INSN &&
10151 istack.insn[istack.ninsn - 2].opcode == xtensa_j_opcode)
10152 {
10153 TInsn *jinsn = &istack.insn[istack.ninsn - 2];
10154
10155 if (!xg_symbolic_immeds_fit (jinsn, segP, fragP, fragP->fr_offset, total_text_diff))
10156 {
10157 fragS *tf = get_best_trampoline (jinsn, fragP);
10158
10159 if (tf)
10160 {
10161 this_text_diff += init_trampoline_frag (tf);
10162 this_text_diff += add_jump_to_trampoline (tf, fragP);
10163 }
10164 else
10165 {
10166 /* If target symbol is undefined, assume it will reach once linked. */
10167 expressionS *exp = &istack.insn[istack.ninsn - 2].tok[0];
10168
10169 if (exp->X_op == O_symbol && S_IS_DEFINED (exp->X_add_symbol))
10170 {
10171 as_bad_where (fragP->fr_file, fragP->fr_line,
10172 _("jump target out of range; no usable trampoline found"));
10173 }
10174 }
10175 }
10176 }
10177
10178 return this_text_diff;
10179 }
10180
10181 \f
10182 /* md_convert_frag Hook and Helper Functions. */
10183
10184 static void convert_frag_align_next_opcode (fragS *);
10185 static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
10186 static void convert_frag_fill_nop (fragS *);
10187 static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
10188
10189 void
10190 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
10191 {
10192 static xtensa_insnbuf vbuf = NULL;
10193 xtensa_isa isa = xtensa_default_isa;
10194 int slot;
10195 int num_slots;
10196 xtensa_format fmt;
10197 const char *file_name;
10198 unsigned line;
10199
10200 file_name = as_where (&line);
10201 new_logical_line (fragp->fr_file, fragp->fr_line);
10202
10203 switch (fragp->fr_subtype)
10204 {
10205 case RELAX_ALIGN_NEXT_OPCODE:
10206 /* Always convert. */
10207 convert_frag_align_next_opcode (fragp);
10208 break;
10209
10210 case RELAX_DESIRE_ALIGN:
10211 /* Do nothing. If not aligned already, too bad. */
10212 break;
10213
10214 case RELAX_LITERAL:
10215 case RELAX_LITERAL_FINAL:
10216 break;
10217
10218 case RELAX_SLOTS:
10219 if (vbuf == NULL)
10220 vbuf = xtensa_insnbuf_alloc (isa);
10221
10222 xtensa_insnbuf_from_chars
10223 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
10224 fmt = xtensa_format_decode (isa, vbuf);
10225 num_slots = xtensa_format_num_slots (isa, fmt);
10226
10227 for (slot = 0; slot < num_slots; slot++)
10228 {
10229 switch (fragp->tc_frag_data.slot_subtypes[slot])
10230 {
10231 case RELAX_NARROW:
10232 convert_frag_narrow (sec, fragp, fmt, slot);
10233 break;
10234
10235 case RELAX_IMMED:
10236 case RELAX_IMMED_STEP1:
10237 case RELAX_IMMED_STEP2:
10238 case RELAX_IMMED_STEP3:
10239 /* Place the immediate. */
10240 convert_frag_immed
10241 (sec, fragp,
10242 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
10243 fmt, slot);
10244 break;
10245
10246 default:
10247 /* This is OK because some slots could have
10248 relaxations and others have none. */
10249 break;
10250 }
10251 }
10252 break;
10253
10254 case RELAX_UNREACHABLE:
10255 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
10256 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
10257 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
10258 frag_wane (fragp);
10259 break;
10260
10261 case RELAX_MAYBE_UNREACHABLE:
10262 case RELAX_MAYBE_DESIRE_ALIGN:
10263 frag_wane (fragp);
10264 break;
10265
10266 case RELAX_FILL_NOP:
10267 convert_frag_fill_nop (fragp);
10268 break;
10269
10270 case RELAX_LITERAL_NR:
10271 if (use_literal_section)
10272 {
10273 /* This should have been handled during relaxation. When
10274 relaxing a code segment, literals sometimes need to be
10275 added to the corresponding literal segment. If that
10276 literal segment has already been relaxed, then we end up
10277 in this situation. Marking the literal segments as data
10278 would make this happen less often (since GAS always relaxes
10279 code before data), but we could still get into trouble if
10280 there are instructions in a segment that is not marked as
10281 containing code. Until we can implement a better solution,
10282 cheat and adjust the addresses of all the following frags.
10283 This could break subsequent alignments, but the linker's
10284 literal coalescing will do that anyway. */
10285
10286 fragS *f;
10287 fragp->fr_subtype = RELAX_LITERAL_FINAL;
10288 gas_assert (fragp->tc_frag_data.unreported_expansion == 4);
10289 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
10290 fragp->fr_var -= 4;
10291 fragp->fr_fix += 4;
10292 for (f = fragp->fr_next; f; f = f->fr_next)
10293 f->fr_address += 4;
10294 }
10295 else
10296 as_bad (_("invalid relaxation fragment result"));
10297 break;
10298
10299 case RELAX_TRAMPOLINE:
10300 break;
10301 }
10302
10303 fragp->fr_var = 0;
10304 new_logical_line (file_name, line);
10305 }
10306
10307
10308 static void
10309 convert_frag_align_next_opcode (fragS *fragp)
10310 {
10311 char *nop_buf; /* Location for Writing. */
10312 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
10313 addressT aligned_address;
10314 offsetT fill_size;
10315 int nop, nop_count;
10316
10317 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
10318 fragp->fr_fix);
10319 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
10320 nop_count = get_text_align_nop_count (fill_size, use_no_density);
10321 nop_buf = fragp->fr_literal + fragp->fr_fix;
10322
10323 for (nop = 0; nop < nop_count; nop++)
10324 {
10325 int nop_size;
10326 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
10327
10328 assemble_nop (nop_size, nop_buf);
10329 nop_buf += nop_size;
10330 }
10331
10332 fragp->fr_fix += fill_size;
10333 fragp->fr_var -= fill_size;
10334 }
10335
10336
10337 static void
10338 convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
10339 {
10340 TInsn tinsn, single_target;
10341 int size, old_size, diff;
10342 offsetT frag_offset;
10343
10344 gas_assert (slot == 0);
10345 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
10346
10347 if (fragP->tc_frag_data.is_aligning_branch == 1)
10348 {
10349 gas_assert (fragP->tc_frag_data.text_expansion[0] == 1
10350 || fragP->tc_frag_data.text_expansion[0] == 0);
10351 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
10352 fmt, slot);
10353 return;
10354 }
10355
10356 if (fragP->tc_frag_data.text_expansion[0] == 0)
10357 {
10358 /* No conversion. */
10359 fragP->fr_var = 0;
10360 return;
10361 }
10362
10363 gas_assert (fragP->fr_opcode != NULL);
10364
10365 /* Frags in this relaxation state should only contain
10366 single instruction bundles. */
10367 tinsn_immed_from_frag (&tinsn, fragP, 0);
10368
10369 /* Just convert it to a wide form.... */
10370 size = 0;
10371 old_size = xg_get_single_size (tinsn.opcode);
10372
10373 tinsn_init (&single_target);
10374 frag_offset = fragP->fr_opcode - fragP->fr_literal;
10375
10376 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
10377 {
10378 as_bad (_("unable to widen instruction"));
10379 return;
10380 }
10381
10382 size = xg_get_single_size (single_target.opcode);
10383 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
10384 frag_offset, TRUE);
10385
10386 diff = size - old_size;
10387 gas_assert (diff >= 0);
10388 gas_assert (diff <= fragP->fr_var);
10389 fragP->fr_var -= diff;
10390 fragP->fr_fix += diff;
10391
10392 /* clean it up */
10393 fragP->fr_var = 0;
10394 }
10395
10396
10397 static void
10398 convert_frag_fill_nop (fragS *fragP)
10399 {
10400 char *loc = &fragP->fr_literal[fragP->fr_fix];
10401 int size = fragP->tc_frag_data.text_expansion[0];
10402 gas_assert ((unsigned) size == (fragP->fr_next->fr_address
10403 - fragP->fr_address - fragP->fr_fix));
10404 if (size == 0)
10405 {
10406 /* No conversion. */
10407 fragP->fr_var = 0;
10408 return;
10409 }
10410 assemble_nop (size, loc);
10411 fragP->tc_frag_data.is_insn = TRUE;
10412 fragP->fr_var -= size;
10413 fragP->fr_fix += size;
10414 frag_wane (fragP);
10415 }
10416
10417
10418 static fixS *fix_new_exp_in_seg
10419 (segT, subsegT, fragS *, int, int, expressionS *, int,
10420 bfd_reloc_code_real_type);
10421 static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
10422
10423 static void
10424 convert_frag_immed (segT segP,
10425 fragS *fragP,
10426 int min_steps,
10427 xtensa_format fmt,
10428 int slot)
10429 {
10430 char *immed_instr = fragP->fr_opcode;
10431 TInsn orig_tinsn;
10432 bfd_boolean expanded = FALSE;
10433 bfd_boolean branch_jmp_to_next = FALSE;
10434 char *fr_opcode = fragP->fr_opcode;
10435 xtensa_isa isa = xtensa_default_isa;
10436 bfd_boolean from_wide_insn = FALSE;
10437 int bytes;
10438 bfd_boolean is_loop;
10439
10440 gas_assert (fr_opcode != NULL);
10441
10442 xg_clear_vinsn (&cur_vinsn);
10443
10444 vinsn_from_chars (&cur_vinsn, fr_opcode);
10445 if (cur_vinsn.num_slots > 1)
10446 from_wide_insn = TRUE;
10447
10448 orig_tinsn = cur_vinsn.slots[slot];
10449 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
10450
10451 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
10452
10453 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
10454 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
10455
10456 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
10457 {
10458 /* Conversion just inserts a NOP and marks the fix as completed. */
10459 bytes = xtensa_format_length (isa, fmt);
10460 if (bytes >= 4)
10461 {
10462 cur_vinsn.slots[slot].opcode =
10463 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
10464 cur_vinsn.slots[slot].ntok = 0;
10465 }
10466 else
10467 {
10468 bytes += fragP->tc_frag_data.text_expansion[0];
10469 gas_assert (bytes == 2 || bytes == 3);
10470 build_nop (&cur_vinsn.slots[0], bytes);
10471 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
10472 }
10473 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
10474 xtensa_insnbuf_to_chars
10475 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
10476 fragP->fr_var = 0;
10477 }
10478 else
10479 {
10480 /* Here is the fun stuff: Get the immediate field from this
10481 instruction. If it fits, we're done. If not, find the next
10482 instruction sequence that fits. */
10483
10484 IStack istack;
10485 int i;
10486 symbolS *lit_sym = NULL;
10487 int total_size = 0;
10488 int target_offset = 0;
10489 int old_size;
10490 int diff;
10491 symbolS *gen_label = NULL;
10492 offsetT frag_offset;
10493 bfd_boolean first = TRUE;
10494
10495 /* It does not fit. Find something that does and
10496 convert immediately. */
10497 frag_offset = fr_opcode - fragP->fr_literal;
10498 istack_init (&istack);
10499 xg_assembly_relax (&istack, &orig_tinsn,
10500 segP, fragP, frag_offset, min_steps, 0);
10501
10502 old_size = xtensa_format_length (isa, fmt);
10503
10504 /* Assemble this right inline. */
10505
10506 /* First, create the mapping from a label name to the REAL label. */
10507 target_offset = 0;
10508 for (i = 0; i < istack.ninsn; i++)
10509 {
10510 TInsn *tinsn = &istack.insn[i];
10511 fragS *lit_frag;
10512
10513 switch (tinsn->insn_type)
10514 {
10515 case ITYPE_LITERAL:
10516 if (lit_sym != NULL)
10517 as_bad (_("multiple literals in expansion"));
10518 /* First find the appropriate space in the literal pool. */
10519 lit_frag = fragP->tc_frag_data.literal_frags[slot];
10520 if (lit_frag == NULL)
10521 as_bad (_("no registered fragment for literal"));
10522 if (tinsn->ntok != 1)
10523 as_bad (_("number of literal tokens != 1"));
10524
10525 /* Set the literal symbol and add a fixup. */
10526 lit_sym = lit_frag->fr_symbol;
10527 break;
10528
10529 case ITYPE_LABEL:
10530 if (align_targets && !is_loop)
10531 {
10532 fragS *unreach = fragP->fr_next;
10533 while (!(unreach->fr_type == rs_machine_dependent
10534 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
10535 || unreach->fr_subtype == RELAX_UNREACHABLE)))
10536 {
10537 unreach = unreach->fr_next;
10538 }
10539
10540 gas_assert (unreach->fr_type == rs_machine_dependent
10541 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
10542 || unreach->fr_subtype == RELAX_UNREACHABLE));
10543
10544 target_offset += unreach->tc_frag_data.text_expansion[0];
10545 }
10546 gas_assert (gen_label == NULL);
10547 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
10548 fr_opcode - fragP->fr_literal
10549 + target_offset, fragP);
10550 break;
10551
10552 case ITYPE_INSN:
10553 if (first && from_wide_insn)
10554 {
10555 target_offset += xtensa_format_length (isa, fmt);
10556 first = FALSE;
10557 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10558 target_offset += xg_get_single_size (tinsn->opcode);
10559 }
10560 else
10561 target_offset += xg_get_single_size (tinsn->opcode);
10562 break;
10563 }
10564 }
10565
10566 total_size = 0;
10567 first = TRUE;
10568 for (i = 0; i < istack.ninsn; i++)
10569 {
10570 TInsn *tinsn = &istack.insn[i];
10571 fragS *lit_frag;
10572 int size;
10573 segT target_seg;
10574 bfd_reloc_code_real_type reloc_type;
10575
10576 switch (tinsn->insn_type)
10577 {
10578 case ITYPE_LITERAL:
10579 lit_frag = fragP->tc_frag_data.literal_frags[slot];
10580 /* Already checked. */
10581 gas_assert (lit_frag != NULL);
10582 gas_assert (lit_sym != NULL);
10583 gas_assert (tinsn->ntok == 1);
10584 /* Add a fixup. */
10585 target_seg = S_GET_SEGMENT (lit_sym);
10586 gas_assert (target_seg);
10587 reloc_type = map_operator_to_reloc (tinsn->tok[0].X_op, TRUE);
10588 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
10589 &tinsn->tok[0], FALSE, reloc_type);
10590 break;
10591
10592 case ITYPE_LABEL:
10593 break;
10594
10595 case ITYPE_INSN:
10596 xg_resolve_labels (tinsn, gen_label);
10597 xg_resolve_literals (tinsn, lit_sym);
10598 if (from_wide_insn && first)
10599 {
10600 first = FALSE;
10601 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10602 {
10603 cur_vinsn.slots[slot] = *tinsn;
10604 }
10605 else
10606 {
10607 cur_vinsn.slots[slot].opcode =
10608 xtensa_format_slot_nop_opcode (isa, fmt, slot);
10609 cur_vinsn.slots[slot].ntok = 0;
10610 }
10611 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
10612 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
10613 (unsigned char *) immed_instr, 0);
10614 fragP->tc_frag_data.is_insn = TRUE;
10615 size = xtensa_format_length (isa, fmt);
10616 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10617 {
10618 xg_emit_insn_to_buf
10619 (tinsn, immed_instr + size, fragP,
10620 immed_instr - fragP->fr_literal + size, TRUE);
10621 size += xg_get_single_size (tinsn->opcode);
10622 }
10623 }
10624 else
10625 {
10626 size = xg_get_single_size (tinsn->opcode);
10627 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
10628 immed_instr - fragP->fr_literal, TRUE);
10629 }
10630 immed_instr += size;
10631 total_size += size;
10632 break;
10633 }
10634 }
10635
10636 diff = total_size - old_size;
10637 gas_assert (diff >= 0);
10638 if (diff != 0)
10639 expanded = TRUE;
10640 gas_assert (diff <= fragP->fr_var);
10641 fragP->fr_var -= diff;
10642 fragP->fr_fix += diff;
10643 }
10644
10645 /* Check for undefined immediates in LOOP instructions. */
10646 if (is_loop)
10647 {
10648 symbolS *sym;
10649 sym = orig_tinsn.tok[1].X_add_symbol;
10650 if (sym != NULL && !S_IS_DEFINED (sym))
10651 {
10652 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
10653 return;
10654 }
10655 sym = orig_tinsn.tok[1].X_op_symbol;
10656 if (sym != NULL && !S_IS_DEFINED (sym))
10657 {
10658 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
10659 return;
10660 }
10661 }
10662
10663 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
10664 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
10665
10666 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
10667 {
10668 /* Add an expansion note on the expanded instruction. */
10669 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
10670 &orig_tinsn.tok[0], TRUE,
10671 BFD_RELOC_XTENSA_ASM_EXPAND);
10672 }
10673 }
10674
10675
10676 /* Add a new fix expression into the desired segment. We have to
10677 switch to that segment to do this. */
10678
10679 static fixS *
10680 fix_new_exp_in_seg (segT new_seg,
10681 subsegT new_subseg,
10682 fragS *frag,
10683 int where,
10684 int size,
10685 expressionS *exp,
10686 int pcrel,
10687 bfd_reloc_code_real_type r_type)
10688 {
10689 fixS *new_fix;
10690 segT seg = now_seg;
10691 subsegT subseg = now_subseg;
10692
10693 gas_assert (new_seg != 0);
10694 subseg_set (new_seg, new_subseg);
10695
10696 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
10697 subseg_set (seg, subseg);
10698 return new_fix;
10699 }
10700
10701
10702 /* Relax a loop instruction so that it can span loop >256 bytes.
10703
10704 loop as, .L1
10705 .L0:
10706 rsr as, LEND
10707 wsr as, LBEG
10708 addi as, as, lo8 (label-.L1)
10709 addmi as, as, mid8 (label-.L1)
10710 wsr as, LEND
10711 isync
10712 rsr as, LCOUNT
10713 addi as, as, 1
10714 .L1:
10715 <<body>>
10716 label:
10717 */
10718
10719 static void
10720 convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
10721 {
10722 TInsn loop_insn;
10723 TInsn addi_insn;
10724 TInsn addmi_insn;
10725 unsigned long target;
10726 static xtensa_insnbuf insnbuf = NULL;
10727 unsigned int loop_length, loop_length_hi, loop_length_lo;
10728 xtensa_isa isa = xtensa_default_isa;
10729 addressT loop_offset;
10730 addressT addi_offset = 9;
10731 addressT addmi_offset = 12;
10732 fragS *next_fragP;
10733 int target_count;
10734
10735 if (!insnbuf)
10736 insnbuf = xtensa_insnbuf_alloc (isa);
10737
10738 /* Get the loop offset. */
10739 loop_offset = get_expanded_loop_offset (tinsn->opcode);
10740
10741 /* Validate that there really is a LOOP at the loop_offset. Because
10742 loops are not bundleable, we can assume that the instruction will be
10743 in slot 0. */
10744 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
10745 tinsn_immed_from_frag (&loop_insn, fragP, 0);
10746
10747 gas_assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
10748 addi_offset += loop_offset;
10749 addmi_offset += loop_offset;
10750
10751 gas_assert (tinsn->ntok == 2);
10752 if (tinsn->tok[1].X_op == O_constant)
10753 target = tinsn->tok[1].X_add_number;
10754 else if (tinsn->tok[1].X_op == O_symbol)
10755 {
10756 /* Find the fragment. */
10757 symbolS *sym = tinsn->tok[1].X_add_symbol;
10758 gas_assert (S_GET_SEGMENT (sym) == segP
10759 || S_GET_SEGMENT (sym) == absolute_section);
10760 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
10761 }
10762 else
10763 {
10764 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
10765 target = 0;
10766 }
10767
10768 loop_length = target - (fragP->fr_address + fragP->fr_fix);
10769 loop_length_hi = loop_length & ~0x0ff;
10770 loop_length_lo = loop_length & 0x0ff;
10771 if (loop_length_lo >= 128)
10772 {
10773 loop_length_lo -= 256;
10774 loop_length_hi += 256;
10775 }
10776
10777 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
10778 32512. If the loop is larger than that, then we just fail. */
10779 if (loop_length_hi > 32512)
10780 as_bad_where (fragP->fr_file, fragP->fr_line,
10781 _("loop too long for LOOP instruction"));
10782
10783 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
10784 gas_assert (addi_insn.opcode == xtensa_addi_opcode);
10785
10786 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
10787 gas_assert (addmi_insn.opcode == xtensa_addmi_opcode);
10788
10789 set_expr_const (&addi_insn.tok[2], loop_length_lo);
10790 tinsn_to_insnbuf (&addi_insn, insnbuf);
10791
10792 fragP->tc_frag_data.is_insn = TRUE;
10793 xtensa_insnbuf_to_chars
10794 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
10795
10796 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
10797 tinsn_to_insnbuf (&addmi_insn, insnbuf);
10798 xtensa_insnbuf_to_chars
10799 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
10800
10801 /* Walk through all of the frags from here to the loop end
10802 and mark them as no_transform to keep them from being modified
10803 by the linker. If we ever have a relocation for the
10804 addi/addmi of the difference of two symbols we can remove this. */
10805
10806 target_count = 0;
10807 for (next_fragP = fragP; next_fragP != NULL;
10808 next_fragP = next_fragP->fr_next)
10809 {
10810 next_fragP->tc_frag_data.is_no_transform = TRUE;
10811 if (next_fragP->tc_frag_data.is_loop_target)
10812 target_count++;
10813 if (target_count == 2)
10814 break;
10815 }
10816 }
10817
10818 \f
10819 /* A map that keeps information on a per-subsegment basis. This is
10820 maintained during initial assembly, but is invalid once the
10821 subsegments are smashed together. I.E., it cannot be used during
10822 the relaxation. */
10823
10824 typedef struct subseg_map_struct
10825 {
10826 /* the key */
10827 segT seg;
10828 subsegT subseg;
10829
10830 /* the data */
10831 unsigned flags;
10832 float total_freq; /* fall-through + branch target frequency */
10833 float target_freq; /* branch target frequency alone */
10834
10835 struct subseg_map_struct *next;
10836 } subseg_map;
10837
10838
10839 static subseg_map *sseg_map = NULL;
10840
10841 static subseg_map *
10842 get_subseg_info (segT seg, subsegT subseg)
10843 {
10844 subseg_map *subseg_e;
10845
10846 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
10847 {
10848 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
10849 break;
10850 }
10851 return subseg_e;
10852 }
10853
10854
10855 static subseg_map *
10856 add_subseg_info (segT seg, subsegT subseg)
10857 {
10858 subseg_map *subseg_e = XNEW (subseg_map);
10859 memset (subseg_e, 0, sizeof (subseg_map));
10860 subseg_e->seg = seg;
10861 subseg_e->subseg = subseg;
10862 subseg_e->flags = 0;
10863 /* Start off considering every branch target very important. */
10864 subseg_e->target_freq = 1.0;
10865 subseg_e->total_freq = 1.0;
10866 subseg_e->next = sseg_map;
10867 sseg_map = subseg_e;
10868 return subseg_e;
10869 }
10870
10871
10872 static unsigned
10873 get_last_insn_flags (segT seg, subsegT subseg)
10874 {
10875 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10876 if (subseg_e)
10877 return subseg_e->flags;
10878 return 0;
10879 }
10880
10881
10882 static void
10883 set_last_insn_flags (segT seg,
10884 subsegT subseg,
10885 unsigned fl,
10886 bfd_boolean val)
10887 {
10888 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10889 if (! subseg_e)
10890 subseg_e = add_subseg_info (seg, subseg);
10891 if (val)
10892 subseg_e->flags |= fl;
10893 else
10894 subseg_e->flags &= ~fl;
10895 }
10896
10897
10898 static float
10899 get_subseg_total_freq (segT seg, subsegT subseg)
10900 {
10901 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10902 if (subseg_e)
10903 return subseg_e->total_freq;
10904 return 1.0;
10905 }
10906
10907
10908 static float
10909 get_subseg_target_freq (segT seg, subsegT subseg)
10910 {
10911 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10912 if (subseg_e)
10913 return subseg_e->target_freq;
10914 return 1.0;
10915 }
10916
10917
10918 static void
10919 set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
10920 {
10921 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10922 if (! subseg_e)
10923 subseg_e = add_subseg_info (seg, subseg);
10924 subseg_e->total_freq = total_f;
10925 subseg_e->target_freq = target_f;
10926 }
10927
10928 \f
10929 /* Segment Lists and emit_state Stuff. */
10930
10931 static void
10932 xtensa_move_seg_list_to_beginning (seg_list *head)
10933 {
10934 head = head->next;
10935 while (head)
10936 {
10937 segT literal_section = head->seg;
10938
10939 /* Move the literal section to the front of the section list. */
10940 gas_assert (literal_section);
10941 if (literal_section != stdoutput->sections)
10942 {
10943 bfd_section_list_remove (stdoutput, literal_section);
10944 bfd_section_list_prepend (stdoutput, literal_section);
10945 }
10946 head = head->next;
10947 }
10948 }
10949
10950
10951 static void mark_literal_frags (seg_list *);
10952
10953 static void
10954 xg_promote_candidate_litpool (struct litpool_seg *lps,
10955 struct litpool_frag *lp)
10956 {
10957 fragS *poolbeg;
10958 fragS *poolend;
10959 symbolS *lsym;
10960 char label[10 + 2 * sizeof (fragS *)];
10961
10962 poolbeg = lp->fragP;
10963 lp->priority = 1;
10964 poolbeg->fr_subtype = RELAX_LITERAL_POOL_BEGIN;
10965 poolend = poolbeg->fr_next;
10966 gas_assert (poolend->fr_type == rs_machine_dependent &&
10967 poolend->fr_subtype == RELAX_LITERAL_POOL_END);
10968 /* Create a local symbol pointing to the
10969 end of the pool. */
10970 sprintf (label, ".L0_LT_%p", poolbeg);
10971 lsym = (symbolS *)local_symbol_make (label, lps->seg,
10972 0, poolend);
10973 poolbeg->fr_symbol = lsym;
10974 /* Rest is done in xtensa_relax_frag. */
10975 }
10976
10977 static void
10978 xtensa_move_literals (void)
10979 {
10980 seg_list *segment;
10981 frchainS *frchain_from, *frchain_to;
10982 fragS *search_frag, *next_frag, *literal_pool, *insert_after;
10983 fragS **frag_splice;
10984 emit_state state;
10985 segT dest_seg;
10986 fixS *fix, *next_fix, **fix_splice;
10987 sym_list *lit;
10988 struct litpool_seg *lps;
10989 const char *init_name = INIT_SECTION_NAME;
10990 const char *fini_name = FINI_SECTION_NAME;
10991 int init_name_len = strlen(init_name);
10992 int fini_name_len = strlen(fini_name);
10993
10994 mark_literal_frags (literal_head->next);
10995
10996 if (use_literal_section)
10997 return;
10998
10999 /* Assign addresses (rough estimates) to the potential literal pool locations
11000 and create new ones if the gaps are too large. */
11001
11002 for (lps = litpool_seg_list.next; lps; lps = lps->next)
11003 {
11004 frchainS *frchP = seg_info (lps->seg)->frchainP;
11005 struct litpool_frag *lpf = lps->frag_list.next;
11006 addressT addr = 0;
11007
11008 for ( ; frchP; frchP = frchP->frch_next)
11009 {
11010 fragS *fragP;
11011 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
11012 {
11013 if (lpf && fragP == lpf->fragP)
11014 {
11015 gas_assert(fragP->fr_type == rs_machine_dependent &&
11016 (fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN ||
11017 fragP->fr_subtype == RELAX_LITERAL_POOL_CANDIDATE_BEGIN));
11018 /* Found a litpool location. */
11019 lpf->addr = addr;
11020 lpf = lpf->next;
11021 }
11022 if (fragP->fr_type == rs_machine_dependent &&
11023 fragP->fr_subtype == RELAX_SLOTS)
11024 {
11025 int slot;
11026 for (slot = 0; slot < MAX_SLOTS; slot++)
11027 {
11028 if (fragP->tc_frag_data.literal_frags[slot])
11029 {
11030 /* L32R; point its literal to the nearest litpool
11031 preferring non-"candidate" positions to avoid
11032 the jump-around. */
11033 fragS *litfrag = fragP->tc_frag_data.literal_frags[slot];
11034 struct litpool_frag *lp = lpf->prev;
11035 if (!lp->fragP)
11036 {
11037 break;
11038 }
11039 while (lp->fragP->fr_subtype ==
11040 RELAX_LITERAL_POOL_CANDIDATE_BEGIN)
11041 {
11042 lp = lp->prev;
11043 if (lp->fragP == NULL)
11044 {
11045 /* End of list; have to bite the bullet.
11046 Take the nearest. */
11047 lp = lpf->prev;
11048 break;
11049 }
11050 /* Does it (conservatively) reach? */
11051 if (addr - lp->addr <= 128 * 1024)
11052 {
11053 if (lp->fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN)
11054 {
11055 /* Found a good one. */
11056 break;
11057 }
11058 else if (lp->prev->fragP &&
11059 addr - lp->prev->addr > 128 * 1024)
11060 {
11061 /* This is still a "candidate" but the next one
11062 will be too far away, so revert to the nearest
11063 one, convert it and add the jump around. */
11064 lp = lpf->prev;
11065 break;
11066 }
11067 }
11068 }
11069
11070 /* Convert candidate and add the jump around. */
11071 if (lp->fragP->fr_subtype ==
11072 RELAX_LITERAL_POOL_CANDIDATE_BEGIN)
11073 xg_promote_candidate_litpool (lps, lp);
11074
11075 if (! litfrag->tc_frag_data.literal_frag)
11076 {
11077 /* Take earliest use of this literal to avoid
11078 forward refs. */
11079 litfrag->tc_frag_data.literal_frag = lp->fragP;
11080 }
11081 }
11082 }
11083 }
11084 addr += fragP->fr_fix;
11085 if (fragP->fr_type == rs_fill)
11086 addr += fragP->fr_offset;
11087 }
11088 }
11089 }
11090
11091 for (segment = literal_head->next; segment; segment = segment->next)
11092 {
11093 const char *seg_name = segment_name (segment->seg);
11094
11095 /* Keep the literals for .init and .fini in separate sections. */
11096 if ((!memcmp (seg_name, init_name, init_name_len) &&
11097 !strcmp (seg_name + init_name_len, ".literal")) ||
11098 (!memcmp (seg_name, fini_name, fini_name_len) &&
11099 !strcmp (seg_name + fini_name_len, ".literal")))
11100 continue;
11101
11102 frchain_from = seg_info (segment->seg)->frchainP;
11103 search_frag = frchain_from->frch_root;
11104 literal_pool = NULL;
11105 frchain_to = NULL;
11106 frag_splice = &(frchain_from->frch_root);
11107
11108 while (search_frag && !search_frag->tc_frag_data.literal_frag)
11109 {
11110 gas_assert (search_frag->fr_fix == 0
11111 || search_frag->fr_type == rs_align);
11112 search_frag = search_frag->fr_next;
11113 }
11114
11115 if (!search_frag)
11116 {
11117 search_frag = frchain_from->frch_root;
11118 as_bad_where (search_frag->fr_file, search_frag->fr_line,
11119 _("literal pool location required for text-section-literals; specify with .literal_position"));
11120 continue;
11121 }
11122
11123 gas_assert (search_frag->tc_frag_data.literal_frag->fr_subtype
11124 == RELAX_LITERAL_POOL_BEGIN);
11125 xtensa_switch_section_emit_state (&state, segment->seg, 0);
11126
11127 /* Make sure that all the frags in this series are closed, and
11128 that there is at least one left over of zero-size. This
11129 prevents us from making a segment with an frchain without any
11130 frags in it. */
11131 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11132 xtensa_set_frag_assembly_state (frag_now);
11133 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11134 xtensa_set_frag_assembly_state (frag_now);
11135
11136 while (search_frag != frag_now)
11137 {
11138 next_frag = search_frag->fr_next;
11139 if (search_frag->tc_frag_data.literal_frag)
11140 {
11141 literal_pool = search_frag->tc_frag_data.literal_frag;
11142 gas_assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
11143 frchain_to = literal_pool->tc_frag_data.lit_frchain;
11144 gas_assert (frchain_to);
11145 }
11146
11147 if (search_frag->fr_type == rs_fill && search_frag->fr_fix == 0)
11148 {
11149 /* Skip empty fill frags. */
11150 *frag_splice = next_frag;
11151 search_frag = next_frag;
11152 continue;
11153 }
11154
11155 if (search_frag->fr_type == rs_align)
11156 {
11157 /* Skip alignment frags, because the pool as a whole will be
11158 aligned if used, and we don't want to force alignment if the
11159 pool is unused. */
11160 *frag_splice = next_frag;
11161 search_frag = next_frag;
11162 continue;
11163 }
11164
11165 /* First, move the frag out of the literal section and
11166 to the appropriate place. */
11167
11168 /* Insert an alignment frag at start of pool. */
11169 if (literal_pool->fr_next->fr_type == rs_machine_dependent &&
11170 literal_pool->fr_next->fr_subtype == RELAX_LITERAL_POOL_END)
11171 {
11172 segT pool_seg = literal_pool->fr_next->tc_frag_data.lit_seg;
11173 emit_state prev_state;
11174 fragS *prev_frag;
11175 fragS *align_frag;
11176 xtensa_switch_section_emit_state (&prev_state, pool_seg, 0);
11177 prev_frag = frag_now;
11178 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11179 align_frag = frag_now;
11180 frag_align (2, 0, 0);
11181 /* Splice it into the right place. */
11182 prev_frag->fr_next = align_frag->fr_next;
11183 align_frag->fr_next = literal_pool->fr_next;
11184 literal_pool->fr_next = align_frag;
11185 /* Insert after this one. */
11186 literal_pool->tc_frag_data.literal_frag = align_frag;
11187 xtensa_restore_emit_state (&prev_state);
11188 }
11189 insert_after = literal_pool->tc_frag_data.literal_frag;
11190 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
11191 /* Skip align frag. */
11192 if (insert_after->fr_next->fr_type == rs_align)
11193 {
11194 insert_after = insert_after->fr_next;
11195 }
11196
11197 *frag_splice = next_frag;
11198 search_frag->fr_next = insert_after->fr_next;
11199 insert_after->fr_next = search_frag;
11200 search_frag->tc_frag_data.lit_seg = dest_seg;
11201 literal_pool->tc_frag_data.literal_frag = search_frag;
11202
11203 /* Now move any fixups associated with this frag to the
11204 right section. */
11205 fix = frchain_from->fix_root;
11206 fix_splice = &(frchain_from->fix_root);
11207 while (fix)
11208 {
11209 next_fix = fix->fx_next;
11210 if (fix->fx_frag == search_frag)
11211 {
11212 *fix_splice = next_fix;
11213 fix->fx_next = frchain_to->fix_root;
11214 frchain_to->fix_root = fix;
11215 if (frchain_to->fix_tail == NULL)
11216 frchain_to->fix_tail = fix;
11217 }
11218 else
11219 fix_splice = &(fix->fx_next);
11220 fix = next_fix;
11221 }
11222 search_frag = next_frag;
11223 }
11224
11225 if (frchain_from->fix_root != NULL)
11226 {
11227 frchain_from = seg_info (segment->seg)->frchainP;
11228 as_warn (_("fixes not all moved from %s"), segment->seg->name);
11229
11230 gas_assert (frchain_from->fix_root == NULL);
11231 }
11232 frchain_from->fix_tail = NULL;
11233 xtensa_restore_emit_state (&state);
11234 }
11235
11236 /* Now fix up the SEGMENT value for all the literal symbols. */
11237 for (lit = literal_syms; lit; lit = lit->next)
11238 {
11239 symbolS *lit_sym = lit->sym;
11240 segT dseg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
11241 if (dseg)
11242 S_SET_SEGMENT (lit_sym, dseg);
11243 }
11244 }
11245
11246
11247 /* Walk over all the frags for segments in a list and mark them as
11248 containing literals. As clunky as this is, we can't rely on frag_var
11249 and frag_variant to get called in all situations. */
11250
11251 static void
11252 mark_literal_frags (seg_list *segment)
11253 {
11254 frchainS *frchain_from;
11255 fragS *search_frag;
11256
11257 while (segment)
11258 {
11259 frchain_from = seg_info (segment->seg)->frchainP;
11260 search_frag = frchain_from->frch_root;
11261 while (search_frag)
11262 {
11263 search_frag->tc_frag_data.is_literal = TRUE;
11264 search_frag = search_frag->fr_next;
11265 }
11266 segment = segment->next;
11267 }
11268 }
11269
11270
11271 static void
11272 xtensa_reorder_seg_list (seg_list *head, segT after)
11273 {
11274 /* Move all of the sections in the section list to come
11275 after "after" in the gnu segment list. */
11276
11277 head = head->next;
11278 while (head)
11279 {
11280 segT literal_section = head->seg;
11281
11282 /* Move the literal section after "after". */
11283 gas_assert (literal_section);
11284 if (literal_section != after)
11285 {
11286 bfd_section_list_remove (stdoutput, literal_section);
11287 bfd_section_list_insert_after (stdoutput, after, literal_section);
11288 }
11289
11290 head = head->next;
11291 }
11292 }
11293
11294
11295 /* Push all the literal segments to the end of the gnu list. */
11296
11297 static void
11298 xtensa_reorder_segments (void)
11299 {
11300 segT sec;
11301 segT last_sec = 0;
11302 int old_count = 0;
11303 int new_count = 0;
11304
11305 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
11306 {
11307 last_sec = sec;
11308 old_count++;
11309 }
11310
11311 /* Now that we have the last section, push all the literal
11312 sections to the end. */
11313 xtensa_reorder_seg_list (literal_head, last_sec);
11314
11315 /* Now perform the final error check. */
11316 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
11317 new_count++;
11318 gas_assert (new_count == old_count);
11319 }
11320
11321
11322 /* Change the emit state (seg, subseg, and frag related stuff) to the
11323 correct location. Return a emit_state which can be passed to
11324 xtensa_restore_emit_state to return to current fragment. */
11325
11326 static void
11327 xtensa_switch_to_literal_fragment (emit_state *result)
11328 {
11329 if (directive_state[directive_absolute_literals])
11330 {
11331 segT lit4_seg = cache_literal_section (TRUE);
11332 xtensa_switch_section_emit_state (result, lit4_seg, 0);
11333 }
11334 else
11335 xtensa_switch_to_non_abs_literal_fragment (result);
11336
11337 /* Do a 4-byte align here. */
11338 frag_align (2, 0, 0);
11339 record_alignment (now_seg, 2);
11340 }
11341
11342
11343 static void
11344 xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
11345 {
11346 fragS *pool_location = get_literal_pool_location (now_seg);
11347 segT lit_seg;
11348 bfd_boolean is_init =
11349 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
11350 bfd_boolean is_fini =
11351 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
11352
11353 if (pool_location == NULL
11354 && !use_literal_section
11355 && !is_init && ! is_fini)
11356 {
11357 if (!auto_litpools)
11358 {
11359 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
11360 }
11361 xtensa_maybe_create_literal_pool_frag (TRUE, TRUE);
11362 pool_location = get_literal_pool_location (now_seg);
11363 }
11364
11365 lit_seg = cache_literal_section (FALSE);
11366 xtensa_switch_section_emit_state (result, lit_seg, 0);
11367
11368 if (!use_literal_section
11369 && !is_init && !is_fini
11370 && get_literal_pool_location (now_seg) != pool_location)
11371 {
11372 /* Close whatever frag is there. */
11373 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11374 xtensa_set_frag_assembly_state (frag_now);
11375 frag_now->tc_frag_data.literal_frag = pool_location;
11376 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11377 xtensa_set_frag_assembly_state (frag_now);
11378 }
11379 }
11380
11381
11382 /* Call this function before emitting data into the literal section.
11383 This is a helper function for xtensa_switch_to_literal_fragment.
11384 This is similar to a .section new_now_seg subseg. */
11385
11386 static void
11387 xtensa_switch_section_emit_state (emit_state *state,
11388 segT new_now_seg,
11389 subsegT new_now_subseg)
11390 {
11391 state->name = now_seg->name;
11392 state->now_seg = now_seg;
11393 state->now_subseg = now_subseg;
11394 state->generating_literals = generating_literals;
11395 generating_literals++;
11396 subseg_set (new_now_seg, new_now_subseg);
11397 }
11398
11399
11400 /* Use to restore the emitting into the normal place. */
11401
11402 static void
11403 xtensa_restore_emit_state (emit_state *state)
11404 {
11405 generating_literals = state->generating_literals;
11406 subseg_set (state->now_seg, state->now_subseg);
11407 }
11408
11409
11410 /* Predicate function used to look up a section in a particular group. */
11411
11412 static bfd_boolean
11413 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11414 {
11415 const char *gname = inf;
11416 const char *group_name = elf_group_name (sec);
11417
11418 return (group_name == gname
11419 || (group_name != NULL
11420 && gname != NULL
11421 && strcmp (group_name, gname) == 0));
11422 }
11423
11424
11425 /* Get the literal section to be used for the current text section.
11426 The result may be cached in the default_lit_sections structure. */
11427
11428 static segT
11429 cache_literal_section (bfd_boolean use_abs_literals)
11430 {
11431 const char *text_name, *group_name = 0;
11432 const char *base_name, *suffix;
11433 char *name;
11434 segT *pcached;
11435 segT seg, current_section;
11436 int current_subsec;
11437 bfd_boolean linkonce = FALSE;
11438
11439 /* Save the current section/subsection. */
11440 current_section = now_seg;
11441 current_subsec = now_subseg;
11442
11443 /* Clear the cached values if they are no longer valid. */
11444 if (now_seg != default_lit_sections.current_text_seg)
11445 {
11446 default_lit_sections.current_text_seg = now_seg;
11447 default_lit_sections.lit_seg = NULL;
11448 default_lit_sections.lit4_seg = NULL;
11449 }
11450
11451 /* Check if the literal section is already cached. */
11452 if (use_abs_literals)
11453 pcached = &default_lit_sections.lit4_seg;
11454 else
11455 pcached = &default_lit_sections.lit_seg;
11456
11457 if (*pcached)
11458 return *pcached;
11459
11460 text_name = default_lit_sections.lit_prefix;
11461 if (! text_name || ! *text_name)
11462 {
11463 text_name = segment_name (current_section);
11464 group_name = elf_group_name (current_section);
11465 linkonce = (current_section->flags & SEC_LINK_ONCE) != 0;
11466 }
11467
11468 base_name = use_abs_literals ? ".lit4" : ".literal";
11469 if (group_name)
11470 {
11471 name = concat (base_name, ".", group_name, (char *) NULL);
11472 }
11473 else if (strncmp (text_name, ".gnu.linkonce.", linkonce_len) == 0)
11474 {
11475 suffix = strchr (text_name + linkonce_len, '.');
11476
11477 name = concat (".gnu.linkonce", base_name, suffix ? suffix : "",
11478 (char *) NULL);
11479 linkonce = TRUE;
11480 }
11481 else
11482 {
11483 /* If the section name begins or ends with ".text", then replace
11484 that portion instead of appending an additional suffix. */
11485 size_t len = strlen (text_name);
11486 if (len >= 5
11487 && (strcmp (text_name + len - 5, ".text") == 0
11488 || strncmp (text_name, ".text", 5) == 0))
11489 len -= 5;
11490
11491 name = XNEWVEC (char, len + strlen (base_name) + 1);
11492 if (strncmp (text_name, ".text", 5) == 0)
11493 {
11494 strcpy (name, base_name);
11495 strcat (name, text_name + 5);
11496 }
11497 else
11498 {
11499 strcpy (name, text_name);
11500 strcpy (name + len, base_name);
11501 }
11502 }
11503
11504 /* Canonicalize section names to allow renaming literal sections.
11505 The group name, if any, came from the current text section and
11506 has already been canonicalized. */
11507 name = tc_canonicalize_symbol_name (name);
11508
11509 seg = bfd_get_section_by_name_if (stdoutput, name, match_section_group,
11510 (void *) group_name);
11511 if (! seg)
11512 {
11513 flagword flags;
11514
11515 seg = subseg_force_new (name, 0);
11516
11517 if (! use_abs_literals)
11518 {
11519 /* Add the newly created literal segment to the list. */
11520 seg_list *n = XNEW (seg_list);
11521 n->seg = seg;
11522 n->next = literal_head->next;
11523 literal_head->next = n;
11524 }
11525
11526 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_ALLOC | SEC_LOAD
11527 | (linkonce ? (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD) : 0)
11528 | (use_abs_literals ? SEC_DATA : SEC_CODE));
11529
11530 elf_group_name (seg) = group_name;
11531
11532 bfd_set_section_flags (stdoutput, seg, flags);
11533 bfd_set_section_alignment (stdoutput, seg, 2);
11534 }
11535
11536 *pcached = seg;
11537 subseg_set (current_section, current_subsec);
11538 return seg;
11539 }
11540
11541 \f
11542 /* Property Tables Stuff. */
11543
11544 #define XTENSA_INSN_SEC_NAME ".xt.insn"
11545 #define XTENSA_LIT_SEC_NAME ".xt.lit"
11546 #define XTENSA_PROP_SEC_NAME ".xt.prop"
11547
11548 typedef bfd_boolean (*frag_predicate) (const fragS *);
11549 typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
11550
11551 static bfd_boolean get_frag_is_literal (const fragS *);
11552 static void xtensa_create_property_segments
11553 (frag_predicate, frag_predicate, const char *, xt_section_type);
11554 static void xtensa_create_xproperty_segments
11555 (frag_flags_fn, const char *, xt_section_type);
11556 static bfd_boolean exclude_section_from_property_tables (segT);
11557 static bfd_boolean section_has_property (segT, frag_predicate);
11558 static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
11559 static void add_xt_block_frags
11560 (segT, xtensa_block_info **, frag_predicate, frag_predicate);
11561 static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
11562 static void xtensa_frag_flags_init (frag_flags *);
11563 static void get_frag_property_flags (const fragS *, frag_flags *);
11564 static flagword frag_flags_to_number (const frag_flags *);
11565 static void add_xt_prop_frags (segT, xtensa_block_info **, frag_flags_fn);
11566
11567 /* Set up property tables after relaxation. */
11568
11569 void
11570 xtensa_post_relax_hook (void)
11571 {
11572 xtensa_move_seg_list_to_beginning (literal_head);
11573
11574 xtensa_find_unmarked_state_frags ();
11575 xtensa_mark_frags_for_org ();
11576 xtensa_mark_difference_of_two_symbols ();
11577
11578 xtensa_create_property_segments (get_frag_is_literal,
11579 NULL,
11580 XTENSA_LIT_SEC_NAME,
11581 xt_literal_sec);
11582 xtensa_create_xproperty_segments (get_frag_property_flags,
11583 XTENSA_PROP_SEC_NAME,
11584 xt_prop_sec);
11585
11586 if (warn_unaligned_branch_targets)
11587 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
11588 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
11589 }
11590
11591
11592 /* This function is only meaningful after xtensa_move_literals. */
11593
11594 static bfd_boolean
11595 get_frag_is_literal (const fragS *fragP)
11596 {
11597 gas_assert (fragP != NULL);
11598 return fragP->tc_frag_data.is_literal;
11599 }
11600
11601
11602 static void
11603 xtensa_create_property_segments (frag_predicate property_function,
11604 frag_predicate end_property_function,
11605 const char *section_name_base,
11606 xt_section_type sec_type)
11607 {
11608 segT *seclist;
11609
11610 /* Walk over all of the current segments.
11611 Walk over each fragment
11612 For each non-empty fragment,
11613 Build a property record (append where possible). */
11614
11615 for (seclist = &stdoutput->sections;
11616 seclist && *seclist;
11617 seclist = &(*seclist)->next)
11618 {
11619 segT sec = *seclist;
11620
11621 if (exclude_section_from_property_tables (sec))
11622 continue;
11623
11624 if (section_has_property (sec, property_function))
11625 {
11626 segment_info_type *xt_seg_info;
11627 xtensa_block_info **xt_blocks;
11628 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
11629
11630 prop_sec->output_section = prop_sec;
11631 subseg_set (prop_sec, 0);
11632 xt_seg_info = seg_info (prop_sec);
11633 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
11634
11635 /* Walk over all of the frchains here and add new sections. */
11636 add_xt_block_frags (sec, xt_blocks, property_function,
11637 end_property_function);
11638 }
11639 }
11640
11641 /* Now we fill them out.... */
11642
11643 for (seclist = &stdoutput->sections;
11644 seclist && *seclist;
11645 seclist = &(*seclist)->next)
11646 {
11647 segment_info_type *seginfo;
11648 xtensa_block_info *block;
11649 segT sec = *seclist;
11650
11651 seginfo = seg_info (sec);
11652 block = seginfo->tc_segment_info_data.blocks[sec_type];
11653
11654 if (block)
11655 {
11656 xtensa_block_info *cur_block;
11657 int num_recs = 0;
11658 bfd_size_type rec_size;
11659
11660 for (cur_block = block; cur_block; cur_block = cur_block->next)
11661 num_recs++;
11662
11663 rec_size = num_recs * 8;
11664 bfd_set_section_size (stdoutput, sec, rec_size);
11665
11666 if (num_recs)
11667 {
11668 char *frag_data;
11669 int i;
11670
11671 subseg_set (sec, 0);
11672 frag_data = frag_more (rec_size);
11673 cur_block = block;
11674 for (i = 0; i < num_recs; i++)
11675 {
11676 fixS *fix;
11677
11678 /* Write the fixup. */
11679 gas_assert (cur_block);
11680 fix = fix_new (frag_now, i * 8, 4,
11681 section_symbol (cur_block->sec),
11682 cur_block->offset,
11683 FALSE, BFD_RELOC_32);
11684 fix->fx_file = "<internal>";
11685 fix->fx_line = 0;
11686
11687 /* Write the length. */
11688 md_number_to_chars (&frag_data[4 + i * 8],
11689 cur_block->size, 4);
11690 cur_block = cur_block->next;
11691 }
11692 frag_wane (frag_now);
11693 frag_new (0);
11694 frag_wane (frag_now);
11695 }
11696 }
11697 }
11698 }
11699
11700
11701 static void
11702 xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
11703 const char *section_name_base,
11704 xt_section_type sec_type)
11705 {
11706 segT *seclist;
11707
11708 /* Walk over all of the current segments.
11709 Walk over each fragment.
11710 For each fragment that has instructions,
11711 build an instruction record (append where possible). */
11712
11713 for (seclist = &stdoutput->sections;
11714 seclist && *seclist;
11715 seclist = &(*seclist)->next)
11716 {
11717 segT sec = *seclist;
11718
11719 if (exclude_section_from_property_tables (sec))
11720 continue;
11721
11722 if (section_has_xproperty (sec, flag_fn))
11723 {
11724 segment_info_type *xt_seg_info;
11725 xtensa_block_info **xt_blocks;
11726 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
11727
11728 prop_sec->output_section = prop_sec;
11729 subseg_set (prop_sec, 0);
11730 xt_seg_info = seg_info (prop_sec);
11731 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
11732
11733 /* Walk over all of the frchains here and add new sections. */
11734 add_xt_prop_frags (sec, xt_blocks, flag_fn);
11735 }
11736 }
11737
11738 /* Now we fill them out.... */
11739
11740 for (seclist = &stdoutput->sections;
11741 seclist && *seclist;
11742 seclist = &(*seclist)->next)
11743 {
11744 segment_info_type *seginfo;
11745 xtensa_block_info *block;
11746 segT sec = *seclist;
11747
11748 seginfo = seg_info (sec);
11749 block = seginfo->tc_segment_info_data.blocks[sec_type];
11750
11751 if (block)
11752 {
11753 xtensa_block_info *cur_block;
11754 int num_recs = 0;
11755 bfd_size_type rec_size;
11756
11757 for (cur_block = block; cur_block; cur_block = cur_block->next)
11758 num_recs++;
11759
11760 rec_size = num_recs * (8 + 4);
11761 bfd_set_section_size (stdoutput, sec, rec_size);
11762 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
11763
11764 if (num_recs)
11765 {
11766 char *frag_data;
11767 int i;
11768
11769 subseg_set (sec, 0);
11770 frag_data = frag_more (rec_size);
11771 cur_block = block;
11772 for (i = 0; i < num_recs; i++)
11773 {
11774 fixS *fix;
11775
11776 /* Write the fixup. */
11777 gas_assert (cur_block);
11778 fix = fix_new (frag_now, i * 12, 4,
11779 section_symbol (cur_block->sec),
11780 cur_block->offset,
11781 FALSE, BFD_RELOC_32);
11782 fix->fx_file = "<internal>";
11783 fix->fx_line = 0;
11784
11785 /* Write the length. */
11786 md_number_to_chars (&frag_data[4 + i * 12],
11787 cur_block->size, 4);
11788 md_number_to_chars (&frag_data[8 + i * 12],
11789 frag_flags_to_number (&cur_block->flags),
11790 sizeof (flagword));
11791 cur_block = cur_block->next;
11792 }
11793 frag_wane (frag_now);
11794 frag_new (0);
11795 frag_wane (frag_now);
11796 }
11797 }
11798 }
11799 }
11800
11801
11802 static bfd_boolean
11803 exclude_section_from_property_tables (segT sec)
11804 {
11805 flagword flags = bfd_get_section_flags (stdoutput, sec);
11806
11807 /* Sections that don't contribute to the memory footprint are excluded. */
11808 if ((flags & SEC_DEBUGGING)
11809 || !(flags & SEC_ALLOC)
11810 || (flags & SEC_MERGE))
11811 return TRUE;
11812
11813 /* Linker cie and fde optimizations mess up property entries for
11814 eh_frame sections, but there is nothing inside them relevant to
11815 property tables anyway. */
11816 if (strcmp (sec->name, ".eh_frame") == 0)
11817 return TRUE;
11818
11819 return FALSE;
11820 }
11821
11822
11823 static bfd_boolean
11824 section_has_property (segT sec, frag_predicate property_function)
11825 {
11826 segment_info_type *seginfo = seg_info (sec);
11827 fragS *fragP;
11828
11829 if (seginfo && seginfo->frchainP)
11830 {
11831 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
11832 {
11833 if (property_function (fragP)
11834 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
11835 return TRUE;
11836 }
11837 }
11838 return FALSE;
11839 }
11840
11841
11842 static bfd_boolean
11843 section_has_xproperty (segT sec, frag_flags_fn property_function)
11844 {
11845 segment_info_type *seginfo = seg_info (sec);
11846 fragS *fragP;
11847
11848 if (seginfo && seginfo->frchainP)
11849 {
11850 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
11851 {
11852 frag_flags prop_flags;
11853 property_function (fragP, &prop_flags);
11854 if (!xtensa_frag_flags_is_empty (&prop_flags))
11855 return TRUE;
11856 }
11857 }
11858 return FALSE;
11859 }
11860
11861
11862 /* Two types of block sections exist right now: literal and insns. */
11863
11864 static void
11865 add_xt_block_frags (segT sec,
11866 xtensa_block_info **xt_block,
11867 frag_predicate property_function,
11868 frag_predicate end_property_function)
11869 {
11870 fragS *fragP;
11871
11872 /* Build it if needed. */
11873 while (*xt_block != NULL)
11874 xt_block = &(*xt_block)->next;
11875 /* We are either at NULL at the beginning or at the end. */
11876
11877 /* Walk through the frags. */
11878 if (seg_info (sec)->frchainP)
11879 {
11880 for (fragP = seg_info (sec)->frchainP->frch_root;
11881 fragP;
11882 fragP = fragP->fr_next)
11883 {
11884 if (property_function (fragP)
11885 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
11886 {
11887 if (*xt_block != NULL)
11888 {
11889 if ((*xt_block)->offset + (*xt_block)->size
11890 == fragP->fr_address)
11891 (*xt_block)->size += fragP->fr_fix;
11892 else
11893 xt_block = &((*xt_block)->next);
11894 }
11895 if (*xt_block == NULL)
11896 {
11897 xtensa_block_info *new_block = XNEW (xtensa_block_info);
11898 new_block->sec = sec;
11899 new_block->offset = fragP->fr_address;
11900 new_block->size = fragP->fr_fix;
11901 new_block->next = NULL;
11902 xtensa_frag_flags_init (&new_block->flags);
11903 *xt_block = new_block;
11904 }
11905 if (end_property_function
11906 && end_property_function (fragP))
11907 {
11908 xt_block = &((*xt_block)->next);
11909 }
11910 }
11911 }
11912 }
11913 }
11914
11915
11916 /* Break the encapsulation of add_xt_prop_frags here. */
11917
11918 static bfd_boolean
11919 xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
11920 {
11921 if (prop_flags->is_literal
11922 || prop_flags->is_insn
11923 || prop_flags->is_data
11924 || prop_flags->is_unreachable)
11925 return FALSE;
11926 return TRUE;
11927 }
11928
11929
11930 static void
11931 xtensa_frag_flags_init (frag_flags *prop_flags)
11932 {
11933 memset (prop_flags, 0, sizeof (frag_flags));
11934 }
11935
11936
11937 static void
11938 get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
11939 {
11940 xtensa_frag_flags_init (prop_flags);
11941 if (fragP->tc_frag_data.is_literal)
11942 prop_flags->is_literal = TRUE;
11943 if (fragP->tc_frag_data.is_specific_opcode
11944 || fragP->tc_frag_data.is_no_transform)
11945 {
11946 prop_flags->is_no_transform = TRUE;
11947 if (xtensa_frag_flags_is_empty (prop_flags))
11948 prop_flags->is_data = TRUE;
11949 }
11950 if (fragP->tc_frag_data.is_unreachable)
11951 prop_flags->is_unreachable = TRUE;
11952 else if (fragP->tc_frag_data.is_insn)
11953 {
11954 prop_flags->is_insn = TRUE;
11955 if (fragP->tc_frag_data.is_loop_target)
11956 prop_flags->insn.is_loop_target = TRUE;
11957 if (fragP->tc_frag_data.is_branch_target)
11958 prop_flags->insn.is_branch_target = TRUE;
11959 if (fragP->tc_frag_data.is_no_density)
11960 prop_flags->insn.is_no_density = TRUE;
11961 if (fragP->tc_frag_data.use_absolute_literals)
11962 prop_flags->insn.is_abslit = TRUE;
11963 }
11964 if (fragP->tc_frag_data.is_align)
11965 {
11966 prop_flags->is_align = TRUE;
11967 prop_flags->alignment = fragP->tc_frag_data.alignment;
11968 if (xtensa_frag_flags_is_empty (prop_flags))
11969 prop_flags->is_data = TRUE;
11970 }
11971 }
11972
11973
11974 static flagword
11975 frag_flags_to_number (const frag_flags *prop_flags)
11976 {
11977 flagword num = 0;
11978 if (prop_flags->is_literal)
11979 num |= XTENSA_PROP_LITERAL;
11980 if (prop_flags->is_insn)
11981 num |= XTENSA_PROP_INSN;
11982 if (prop_flags->is_data)
11983 num |= XTENSA_PROP_DATA;
11984 if (prop_flags->is_unreachable)
11985 num |= XTENSA_PROP_UNREACHABLE;
11986 if (prop_flags->insn.is_loop_target)
11987 num |= XTENSA_PROP_INSN_LOOP_TARGET;
11988 if (prop_flags->insn.is_branch_target)
11989 {
11990 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
11991 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
11992 }
11993
11994 if (prop_flags->insn.is_no_density)
11995 num |= XTENSA_PROP_INSN_NO_DENSITY;
11996 if (prop_flags->is_no_transform)
11997 num |= XTENSA_PROP_NO_TRANSFORM;
11998 if (prop_flags->insn.is_no_reorder)
11999 num |= XTENSA_PROP_INSN_NO_REORDER;
12000 if (prop_flags->insn.is_abslit)
12001 num |= XTENSA_PROP_INSN_ABSLIT;
12002
12003 if (prop_flags->is_align)
12004 {
12005 num |= XTENSA_PROP_ALIGN;
12006 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
12007 }
12008
12009 return num;
12010 }
12011
12012
12013 static bfd_boolean
12014 xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
12015 const frag_flags *prop_flags_2)
12016 {
12017 /* Cannot combine with an end marker. */
12018
12019 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
12020 return FALSE;
12021 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
12022 return FALSE;
12023 if (prop_flags_1->is_data != prop_flags_2->is_data)
12024 return FALSE;
12025
12026 if (prop_flags_1->is_insn)
12027 {
12028 /* Properties of the beginning of the frag. */
12029 if (prop_flags_2->insn.is_loop_target)
12030 return FALSE;
12031 if (prop_flags_2->insn.is_branch_target)
12032 return FALSE;
12033 if (prop_flags_1->insn.is_no_density !=
12034 prop_flags_2->insn.is_no_density)
12035 return FALSE;
12036 if (prop_flags_1->is_no_transform !=
12037 prop_flags_2->is_no_transform)
12038 return FALSE;
12039 if (prop_flags_1->insn.is_no_reorder !=
12040 prop_flags_2->insn.is_no_reorder)
12041 return FALSE;
12042 if (prop_flags_1->insn.is_abslit !=
12043 prop_flags_2->insn.is_abslit)
12044 return FALSE;
12045 }
12046
12047 if (prop_flags_1->is_align)
12048 return FALSE;
12049
12050 return TRUE;
12051 }
12052
12053
12054 static bfd_vma
12055 xt_block_aligned_size (const xtensa_block_info *xt_block)
12056 {
12057 bfd_vma end_addr;
12058 unsigned align_bits;
12059
12060 if (!xt_block->flags.is_align)
12061 return xt_block->size;
12062
12063 end_addr = xt_block->offset + xt_block->size;
12064 align_bits = xt_block->flags.alignment;
12065 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
12066 return end_addr - xt_block->offset;
12067 }
12068
12069
12070 static bfd_boolean
12071 xtensa_xt_block_combine (xtensa_block_info *xt_block,
12072 const xtensa_block_info *xt_block_2)
12073 {
12074 if (xt_block->sec != xt_block_2->sec)
12075 return FALSE;
12076 if (xt_block->offset + xt_block_aligned_size (xt_block)
12077 != xt_block_2->offset)
12078 return FALSE;
12079
12080 if (xt_block_2->size == 0
12081 && (!xt_block_2->flags.is_unreachable
12082 || xt_block->flags.is_unreachable))
12083 {
12084 if (xt_block_2->flags.is_align
12085 && xt_block->flags.is_align)
12086 {
12087 /* Nothing needed. */
12088 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
12089 return TRUE;
12090 }
12091 else
12092 {
12093 if (xt_block_2->flags.is_align)
12094 {
12095 /* Push alignment to previous entry. */
12096 xt_block->flags.is_align = xt_block_2->flags.is_align;
12097 xt_block->flags.alignment = xt_block_2->flags.alignment;
12098 }
12099 return TRUE;
12100 }
12101 }
12102 if (!xtensa_frag_flags_combinable (&xt_block->flags,
12103 &xt_block_2->flags))
12104 return FALSE;
12105
12106 xt_block->size += xt_block_2->size;
12107
12108 if (xt_block_2->flags.is_align)
12109 {
12110 xt_block->flags.is_align = TRUE;
12111 xt_block->flags.alignment = xt_block_2->flags.alignment;
12112 }
12113
12114 return TRUE;
12115 }
12116
12117
12118 static void
12119 add_xt_prop_frags (segT sec,
12120 xtensa_block_info **xt_block,
12121 frag_flags_fn property_function)
12122 {
12123 fragS *fragP;
12124
12125 /* Build it if needed. */
12126 while (*xt_block != NULL)
12127 {
12128 xt_block = &(*xt_block)->next;
12129 }
12130 /* We are either at NULL at the beginning or at the end. */
12131
12132 /* Walk through the frags. */
12133 if (seg_info (sec)->frchainP)
12134 {
12135 for (fragP = seg_info (sec)->frchainP->frch_root; fragP;
12136 fragP = fragP->fr_next)
12137 {
12138 xtensa_block_info tmp_block;
12139 tmp_block.sec = sec;
12140 tmp_block.offset = fragP->fr_address;
12141 tmp_block.size = fragP->fr_fix;
12142 tmp_block.next = NULL;
12143 property_function (fragP, &tmp_block.flags);
12144
12145 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
12146 /* && fragP->fr_fix != 0) */
12147 {
12148 if ((*xt_block) == NULL
12149 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
12150 {
12151 xtensa_block_info *new_block;
12152 if ((*xt_block) != NULL)
12153 xt_block = &(*xt_block)->next;
12154 new_block = XNEW (xtensa_block_info);
12155 *new_block = tmp_block;
12156 *xt_block = new_block;
12157 }
12158 }
12159 }
12160 }
12161 }
12162
12163 \f
12164 /* op_placement_info_table */
12165
12166 /* op_placement_info makes it easier to determine which
12167 ops can go in which slots. */
12168
12169 static void
12170 init_op_placement_info_table (void)
12171 {
12172 xtensa_isa isa = xtensa_default_isa;
12173 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
12174 xtensa_opcode opcode;
12175 xtensa_format fmt;
12176 int slot;
12177 int num_opcodes = xtensa_isa_num_opcodes (isa);
12178
12179 op_placement_table = XNEWVEC (op_placement_info, num_opcodes);
12180 gas_assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
12181
12182 for (opcode = 0; opcode < num_opcodes; opcode++)
12183 {
12184 op_placement_info *opi = &op_placement_table[opcode];
12185 /* FIXME: Make tinsn allocation dynamic. */
12186 if (xtensa_opcode_num_operands (isa, opcode) > MAX_INSN_ARGS)
12187 as_fatal (_("too many operands in instruction"));
12188 opi->narrowest = XTENSA_UNDEFINED;
12189 opi->narrowest_size = 0x7F;
12190 opi->narrowest_slot = 0;
12191 opi->formats = 0;
12192 opi->num_formats = 0;
12193 opi->issuef = 0;
12194 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
12195 {
12196 opi->slots[fmt] = 0;
12197 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
12198 {
12199 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
12200 {
12201 int fmt_length = xtensa_format_length (isa, fmt);
12202 opi->issuef++;
12203 set_bit (fmt, opi->formats);
12204 set_bit (slot, opi->slots[fmt]);
12205 if (fmt_length < opi->narrowest_size
12206 || (fmt_length == opi->narrowest_size
12207 && (xtensa_format_num_slots (isa, fmt)
12208 < xtensa_format_num_slots (isa,
12209 opi->narrowest))))
12210 {
12211 opi->narrowest = fmt;
12212 opi->narrowest_size = fmt_length;
12213 opi->narrowest_slot = slot;
12214 }
12215 }
12216 }
12217 if (opi->formats)
12218 opi->num_formats++;
12219 }
12220 }
12221 xtensa_insnbuf_free (isa, ibuf);
12222 }
12223
12224
12225 bfd_boolean
12226 opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
12227 {
12228 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
12229 }
12230
12231
12232 /* If the opcode is available in a single slot format, return its size. */
12233
12234 static int
12235 xg_get_single_size (xtensa_opcode opcode)
12236 {
12237 return op_placement_table[opcode].narrowest_size;
12238 }
12239
12240
12241 static xtensa_format
12242 xg_get_single_format (xtensa_opcode opcode)
12243 {
12244 return op_placement_table[opcode].narrowest;
12245 }
12246
12247
12248 static int
12249 xg_get_single_slot (xtensa_opcode opcode)
12250 {
12251 return op_placement_table[opcode].narrowest_slot;
12252 }
12253
12254 \f
12255 /* Instruction Stack Functions (from "xtensa-istack.h"). */
12256
12257 void
12258 istack_init (IStack *stack)
12259 {
12260 stack->ninsn = 0;
12261 }
12262
12263
12264 bfd_boolean
12265 istack_empty (IStack *stack)
12266 {
12267 return (stack->ninsn == 0);
12268 }
12269
12270
12271 bfd_boolean
12272 istack_full (IStack *stack)
12273 {
12274 return (stack->ninsn == MAX_ISTACK);
12275 }
12276
12277
12278 /* Return a pointer to the top IStack entry.
12279 It is an error to call this if istack_empty () is TRUE. */
12280
12281 TInsn *
12282 istack_top (IStack *stack)
12283 {
12284 int rec = stack->ninsn - 1;
12285 gas_assert (!istack_empty (stack));
12286 return &stack->insn[rec];
12287 }
12288
12289
12290 /* Add a new TInsn to an IStack.
12291 It is an error to call this if istack_full () is TRUE. */
12292
12293 void
12294 istack_push (IStack *stack, TInsn *insn)
12295 {
12296 int rec = stack->ninsn;
12297 gas_assert (!istack_full (stack));
12298 stack->insn[rec] = *insn;
12299 stack->ninsn++;
12300 }
12301
12302
12303 /* Clear space for the next TInsn on the IStack and return a pointer
12304 to it. It is an error to call this if istack_full () is TRUE. */
12305
12306 TInsn *
12307 istack_push_space (IStack *stack)
12308 {
12309 int rec = stack->ninsn;
12310 TInsn *insn;
12311 gas_assert (!istack_full (stack));
12312 insn = &stack->insn[rec];
12313 tinsn_init (insn);
12314 stack->ninsn++;
12315 return insn;
12316 }
12317
12318
12319 /* Remove the last pushed instruction. It is an error to call this if
12320 istack_empty () returns TRUE. */
12321
12322 void
12323 istack_pop (IStack *stack)
12324 {
12325 int rec = stack->ninsn - 1;
12326 gas_assert (!istack_empty (stack));
12327 stack->ninsn--;
12328 tinsn_init (&stack->insn[rec]);
12329 }
12330
12331 \f
12332 /* TInsn functions. */
12333
12334 void
12335 tinsn_init (TInsn *dst)
12336 {
12337 memset (dst, 0, sizeof (TInsn));
12338 }
12339
12340
12341 /* Return TRUE if ANY of the operands in the insn are symbolic. */
12342
12343 static bfd_boolean
12344 tinsn_has_symbolic_operands (const TInsn *insn)
12345 {
12346 int i;
12347 int n = insn->ntok;
12348
12349 gas_assert (insn->insn_type == ITYPE_INSN);
12350
12351 for (i = 0; i < n; ++i)
12352 {
12353 switch (insn->tok[i].X_op)
12354 {
12355 case O_register:
12356 case O_constant:
12357 break;
12358 default:
12359 return TRUE;
12360 }
12361 }
12362 return FALSE;
12363 }
12364
12365
12366 bfd_boolean
12367 tinsn_has_invalid_symbolic_operands (const TInsn *insn)
12368 {
12369 xtensa_isa isa = xtensa_default_isa;
12370 int i;
12371 int n = insn->ntok;
12372
12373 gas_assert (insn->insn_type == ITYPE_INSN);
12374
12375 for (i = 0; i < n; ++i)
12376 {
12377 switch (insn->tok[i].X_op)
12378 {
12379 case O_register:
12380 case O_constant:
12381 break;
12382 case O_big:
12383 case O_illegal:
12384 case O_absent:
12385 /* Errors for these types are caught later. */
12386 break;
12387 case O_hi16:
12388 case O_lo16:
12389 default:
12390 /* Symbolic immediates are only allowed on the last immediate
12391 operand. At this time, CONST16 is the only opcode where we
12392 support non-PC-relative relocations. */
12393 if (i != get_relaxable_immed (insn->opcode)
12394 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
12395 && insn->opcode != xtensa_const16_opcode))
12396 {
12397 as_bad (_("invalid symbolic operand"));
12398 return TRUE;
12399 }
12400 }
12401 }
12402 return FALSE;
12403 }
12404
12405
12406 /* For assembly code with complex expressions (e.g. subtraction),
12407 we have to build them in the literal pool so that
12408 their results are calculated correctly after relaxation.
12409 The relaxation only handles expressions that
12410 boil down to SYMBOL + OFFSET. */
12411
12412 static bfd_boolean
12413 tinsn_has_complex_operands (const TInsn *insn)
12414 {
12415 int i;
12416 int n = insn->ntok;
12417 gas_assert (insn->insn_type == ITYPE_INSN);
12418 for (i = 0; i < n; ++i)
12419 {
12420 switch (insn->tok[i].X_op)
12421 {
12422 case O_register:
12423 case O_constant:
12424 case O_symbol:
12425 case O_lo16:
12426 case O_hi16:
12427 break;
12428 default:
12429 return TRUE;
12430 }
12431 }
12432 return FALSE;
12433 }
12434
12435
12436 /* Encode a TInsn opcode and its constant operands into slotbuf.
12437 Return TRUE if there is a symbol in the immediate field. This
12438 function assumes that:
12439 1) The number of operands are correct.
12440 2) The insn_type is ITYPE_INSN.
12441 3) The opcode can be encoded in the specified format and slot.
12442 4) Operands are either O_constant or O_symbol, and all constants fit. */
12443
12444 static bfd_boolean
12445 tinsn_to_slotbuf (xtensa_format fmt,
12446 int slot,
12447 TInsn *tinsn,
12448 xtensa_insnbuf slotbuf)
12449 {
12450 xtensa_isa isa = xtensa_default_isa;
12451 xtensa_opcode opcode = tinsn->opcode;
12452 bfd_boolean has_fixup = FALSE;
12453 int noperands = xtensa_opcode_num_operands (isa, opcode);
12454 int i;
12455
12456 gas_assert (tinsn->insn_type == ITYPE_INSN);
12457 if (noperands != tinsn->ntok)
12458 as_fatal (_("operand number mismatch"));
12459
12460 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
12461 {
12462 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
12463 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
12464 return FALSE;
12465 }
12466
12467 for (i = 0; i < noperands; i++)
12468 {
12469 expressionS *exp = &tinsn->tok[i];
12470 int rc;
12471 unsigned line;
12472 const char *file_name;
12473 uint32 opnd_value;
12474
12475 switch (exp->X_op)
12476 {
12477 case O_register:
12478 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
12479 break;
12480 /* The register number has already been checked in
12481 expression_maybe_register, so we don't need to check here. */
12482 opnd_value = exp->X_add_number;
12483 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
12484 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
12485 opnd_value);
12486 if (rc != 0)
12487 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
12488 break;
12489
12490 case O_constant:
12491 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
12492 break;
12493 file_name = as_where (&line);
12494 /* It is a constant and we called this function
12495 then we have to try to fit it. */
12496 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
12497 exp->X_add_number, file_name, line);
12498 break;
12499
12500 default:
12501 has_fixup = TRUE;
12502 break;
12503 }
12504 }
12505
12506 return has_fixup;
12507 }
12508
12509
12510 /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
12511 into a multi-slot instruction, fill the other slots with NOPs.
12512 Return TRUE if there is a symbol in the immediate field. See also the
12513 assumptions listed for tinsn_to_slotbuf. */
12514
12515 static bfd_boolean
12516 tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
12517 {
12518 static xtensa_insnbuf slotbuf = 0;
12519 static vliw_insn vinsn;
12520 xtensa_isa isa = xtensa_default_isa;
12521 bfd_boolean has_fixup = FALSE;
12522 int i;
12523
12524 if (!slotbuf)
12525 {
12526 slotbuf = xtensa_insnbuf_alloc (isa);
12527 xg_init_vinsn (&vinsn);
12528 }
12529
12530 xg_clear_vinsn (&vinsn);
12531
12532 bundle_tinsn (tinsn, &vinsn);
12533
12534 xtensa_format_encode (isa, vinsn.format, insnbuf);
12535
12536 for (i = 0; i < vinsn.num_slots; i++)
12537 {
12538 /* Only one slot may have a fix-up because the rest contains NOPs. */
12539 has_fixup |=
12540 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
12541 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
12542 }
12543
12544 return has_fixup;
12545 }
12546
12547
12548 /* Check the instruction arguments. Return TRUE on failure. */
12549
12550 static bfd_boolean
12551 tinsn_check_arguments (const TInsn *insn)
12552 {
12553 xtensa_isa isa = xtensa_default_isa;
12554 xtensa_opcode opcode = insn->opcode;
12555 xtensa_regfile t1_regfile, t2_regfile;
12556 int t1_reg, t2_reg;
12557 int t1_base_reg, t1_last_reg;
12558 int t2_base_reg, t2_last_reg;
12559 char t1_inout, t2_inout;
12560 int i, j;
12561
12562 if (opcode == XTENSA_UNDEFINED)
12563 {
12564 as_bad (_("invalid opcode"));
12565 return TRUE;
12566 }
12567
12568 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
12569 {
12570 as_bad (_("too few operands"));
12571 return TRUE;
12572 }
12573
12574 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
12575 {
12576 as_bad (_("too many operands"));
12577 return TRUE;
12578 }
12579
12580 /* Check registers. */
12581 for (j = 0; j < insn->ntok; j++)
12582 {
12583 if (xtensa_operand_is_register (isa, insn->opcode, j) != 1)
12584 continue;
12585
12586 t2_regfile = xtensa_operand_regfile (isa, insn->opcode, j);
12587 t2_base_reg = insn->tok[j].X_add_number;
12588 t2_last_reg
12589 = t2_base_reg + xtensa_operand_num_regs (isa, insn->opcode, j);
12590
12591 for (i = 0; i < insn->ntok; i++)
12592 {
12593 if (i == j)
12594 continue;
12595
12596 if (xtensa_operand_is_register (isa, insn->opcode, i) != 1)
12597 continue;
12598
12599 t1_regfile = xtensa_operand_regfile (isa, insn->opcode, i);
12600
12601 if (t1_regfile != t2_regfile)
12602 continue;
12603
12604 t1_inout = xtensa_operand_inout (isa, insn->opcode, i);
12605 t2_inout = xtensa_operand_inout (isa, insn->opcode, j);
12606
12607 t1_base_reg = insn->tok[i].X_add_number;
12608 t1_last_reg = (t1_base_reg
12609 + xtensa_operand_num_regs (isa, insn->opcode, i));
12610
12611 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
12612 {
12613 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
12614 {
12615 if (t1_reg != t2_reg)
12616 continue;
12617
12618 if (t1_inout != 'i' && t2_inout != 'i')
12619 {
12620 as_bad (_("multiple writes to the same register"));
12621 return TRUE;
12622 }
12623 }
12624 }
12625 }
12626 }
12627 return FALSE;
12628 }
12629
12630
12631 /* Load an instruction from its encoded form. */
12632
12633 static void
12634 tinsn_from_chars (TInsn *tinsn, char *f, int slot)
12635 {
12636 vliw_insn vinsn;
12637
12638 xg_init_vinsn (&vinsn);
12639 vinsn_from_chars (&vinsn, f);
12640
12641 *tinsn = vinsn.slots[slot];
12642 xg_free_vinsn (&vinsn);
12643 }
12644
12645
12646 static void
12647 tinsn_from_insnbuf (TInsn *tinsn,
12648 xtensa_insnbuf slotbuf,
12649 xtensa_format fmt,
12650 int slot)
12651 {
12652 int i;
12653 xtensa_isa isa = xtensa_default_isa;
12654
12655 /* Find the immed. */
12656 tinsn_init (tinsn);
12657 tinsn->insn_type = ITYPE_INSN;
12658 tinsn->is_specific_opcode = FALSE; /* must not be specific */
12659 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
12660 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
12661 for (i = 0; i < tinsn->ntok; i++)
12662 {
12663 set_expr_const (&tinsn->tok[i],
12664 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
12665 tinsn->opcode, i));
12666 }
12667 }
12668
12669
12670 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
12671
12672 static void
12673 tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
12674 {
12675 xtensa_opcode opcode = tinsn->opcode;
12676 int opnum;
12677
12678 if (fragP->tc_frag_data.slot_symbols[slot])
12679 {
12680 opnum = get_relaxable_immed (opcode);
12681 gas_assert (opnum >= 0);
12682 set_expr_symbol_offset (&tinsn->tok[opnum],
12683 fragP->tc_frag_data.slot_symbols[slot],
12684 fragP->tc_frag_data.slot_offsets[slot]);
12685 }
12686 tinsn->extra_arg = fragP->tc_frag_data.free_reg[slot];
12687 }
12688
12689
12690 static int
12691 get_num_stack_text_bytes (IStack *istack)
12692 {
12693 int i;
12694 int text_bytes = 0;
12695
12696 for (i = 0; i < istack->ninsn; i++)
12697 {
12698 TInsn *tinsn = &istack->insn[i];
12699 if (tinsn->insn_type == ITYPE_INSN)
12700 text_bytes += xg_get_single_size (tinsn->opcode);
12701 }
12702 return text_bytes;
12703 }
12704
12705
12706 static int
12707 get_num_stack_literal_bytes (IStack *istack)
12708 {
12709 int i;
12710 int lit_bytes = 0;
12711
12712 for (i = 0; i < istack->ninsn; i++)
12713 {
12714 TInsn *tinsn = &istack->insn[i];
12715 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
12716 lit_bytes += 4;
12717 }
12718 return lit_bytes;
12719 }
12720
12721 \f
12722 /* vliw_insn functions. */
12723
12724 static void
12725 xg_init_vinsn (vliw_insn *v)
12726 {
12727 int i;
12728 xtensa_isa isa = xtensa_default_isa;
12729
12730 xg_clear_vinsn (v);
12731
12732 v->insnbuf = xtensa_insnbuf_alloc (isa);
12733 if (v->insnbuf == NULL)
12734 as_fatal (_("out of memory"));
12735
12736 for (i = 0; i < config_max_slots; i++)
12737 {
12738 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
12739 if (v->slotbuf[i] == NULL)
12740 as_fatal (_("out of memory"));
12741 }
12742 }
12743
12744
12745 static void
12746 xg_clear_vinsn (vliw_insn *v)
12747 {
12748 int i;
12749
12750 memset (v, 0, offsetof (vliw_insn, slots)
12751 + sizeof(TInsn) * config_max_slots);
12752
12753 v->format = XTENSA_UNDEFINED;
12754 v->num_slots = 0;
12755 v->inside_bundle = FALSE;
12756
12757 if (xt_saved_debug_type != DEBUG_NONE)
12758 debug_type = xt_saved_debug_type;
12759
12760 for (i = 0; i < config_max_slots; i++)
12761 v->slots[i].opcode = XTENSA_UNDEFINED;
12762 }
12763
12764
12765 static void
12766 xg_copy_vinsn (vliw_insn *dst, vliw_insn *src)
12767 {
12768 memcpy (dst, src,
12769 offsetof(vliw_insn, slots) + src->num_slots * sizeof(TInsn));
12770 dst->insnbuf = src->insnbuf;
12771 memcpy (dst->slotbuf, src->slotbuf, src->num_slots * sizeof(xtensa_insnbuf));
12772 }
12773
12774
12775 static bfd_boolean
12776 vinsn_has_specific_opcodes (vliw_insn *v)
12777 {
12778 int i;
12779
12780 for (i = 0; i < v->num_slots; i++)
12781 {
12782 if (v->slots[i].is_specific_opcode)
12783 return TRUE;
12784 }
12785 return FALSE;
12786 }
12787
12788
12789 static void
12790 xg_free_vinsn (vliw_insn *v)
12791 {
12792 int i;
12793 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
12794 for (i = 0; i < config_max_slots; i++)
12795 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
12796 }
12797
12798
12799 /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
12800 operands. See also the assumptions listed for tinsn_to_slotbuf. */
12801
12802 static bfd_boolean
12803 vinsn_to_insnbuf (vliw_insn *vinsn,
12804 char *frag_offset,
12805 fragS *fragP,
12806 bfd_boolean record_fixup)
12807 {
12808 xtensa_isa isa = xtensa_default_isa;
12809 xtensa_format fmt = vinsn->format;
12810 xtensa_insnbuf insnbuf = vinsn->insnbuf;
12811 int slot;
12812 bfd_boolean has_fixup = FALSE;
12813
12814 xtensa_format_encode (isa, fmt, insnbuf);
12815
12816 for (slot = 0; slot < vinsn->num_slots; slot++)
12817 {
12818 TInsn *tinsn = &vinsn->slots[slot];
12819 expressionS *extra_arg = &tinsn->extra_arg;
12820 bfd_boolean tinsn_has_fixup =
12821 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
12822 vinsn->slotbuf[slot]);
12823
12824 xtensa_format_set_slot (isa, fmt, slot,
12825 insnbuf, vinsn->slotbuf[slot]);
12826 if (extra_arg->X_op != O_illegal && extra_arg->X_op != O_register)
12827 {
12828 if (vinsn->num_slots != 1)
12829 as_bad (_("TLS relocation not allowed in FLIX bundle"));
12830 else if (record_fixup)
12831 /* Instructions that generate TLS relocations should always be
12832 relaxed in the front-end. If "record_fixup" is set, then this
12833 function is being called during back-end relaxation, so flag
12834 the unexpected behavior as an error. */
12835 as_bad (_("unexpected TLS relocation"));
12836 else
12837 fix_new (fragP, frag_offset - fragP->fr_literal,
12838 xtensa_format_length (isa, fmt),
12839 extra_arg->X_add_symbol, extra_arg->X_add_number,
12840 FALSE, map_operator_to_reloc (extra_arg->X_op, FALSE));
12841 }
12842 if (tinsn_has_fixup)
12843 {
12844 int i;
12845 xtensa_opcode opcode = tinsn->opcode;
12846 int noperands = xtensa_opcode_num_operands (isa, opcode);
12847 has_fixup = TRUE;
12848
12849 for (i = 0; i < noperands; i++)
12850 {
12851 expressionS* exp = &tinsn->tok[i];
12852 switch (exp->X_op)
12853 {
12854 case O_symbol:
12855 case O_lo16:
12856 case O_hi16:
12857 if (get_relaxable_immed (opcode) == i)
12858 {
12859 /* Add a fix record for the instruction, except if this
12860 function is being called prior to relaxation, i.e.,
12861 if record_fixup is false, and the instruction might
12862 be relaxed later. */
12863 if (record_fixup
12864 || tinsn->is_specific_opcode
12865 || !xg_is_relaxable_insn (tinsn, 0))
12866 {
12867 xg_add_opcode_fix (tinsn, i, fmt, slot, exp, fragP,
12868 frag_offset - fragP->fr_literal);
12869 }
12870 else
12871 {
12872 if (exp->X_op != O_symbol)
12873 as_bad (_("invalid operand"));
12874 tinsn->symbol = exp->X_add_symbol;
12875 tinsn->offset = exp->X_add_number;
12876 }
12877 }
12878 else
12879 as_bad (_("symbolic operand not allowed"));
12880 break;
12881
12882 case O_constant:
12883 case O_register:
12884 break;
12885
12886 default:
12887 as_bad (_("expression too complex"));
12888 break;
12889 }
12890 }
12891 }
12892 }
12893
12894 return has_fixup;
12895 }
12896
12897
12898 static void
12899 vinsn_from_chars (vliw_insn *vinsn, char *f)
12900 {
12901 static xtensa_insnbuf insnbuf = NULL;
12902 static xtensa_insnbuf slotbuf = NULL;
12903 int i;
12904 xtensa_format fmt;
12905 xtensa_isa isa = xtensa_default_isa;
12906
12907 if (!insnbuf)
12908 {
12909 insnbuf = xtensa_insnbuf_alloc (isa);
12910 slotbuf = xtensa_insnbuf_alloc (isa);
12911 }
12912
12913 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
12914 fmt = xtensa_format_decode (isa, insnbuf);
12915 if (fmt == XTENSA_UNDEFINED)
12916 as_fatal (_("cannot decode instruction format"));
12917 vinsn->format = fmt;
12918 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
12919
12920 for (i = 0; i < vinsn->num_slots; i++)
12921 {
12922 TInsn *tinsn = &vinsn->slots[i];
12923 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
12924 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
12925 }
12926 }
12927
12928 \f
12929 /* Expression utilities. */
12930
12931 /* Return TRUE if the expression is an integer constant. */
12932
12933 bfd_boolean
12934 expr_is_const (const expressionS *s)
12935 {
12936 return (s->X_op == O_constant);
12937 }
12938
12939
12940 /* Get the expression constant.
12941 Calling this is illegal if expr_is_const () returns TRUE. */
12942
12943 offsetT
12944 get_expr_const (const expressionS *s)
12945 {
12946 gas_assert (expr_is_const (s));
12947 return s->X_add_number;
12948 }
12949
12950
12951 /* Set the expression to a constant value. */
12952
12953 void
12954 set_expr_const (expressionS *s, offsetT val)
12955 {
12956 s->X_op = O_constant;
12957 s->X_add_number = val;
12958 s->X_add_symbol = NULL;
12959 s->X_op_symbol = NULL;
12960 }
12961
12962
12963 bfd_boolean
12964 expr_is_register (const expressionS *s)
12965 {
12966 return (s->X_op == O_register);
12967 }
12968
12969
12970 /* Get the expression constant.
12971 Calling this is illegal if expr_is_const () returns TRUE. */
12972
12973 offsetT
12974 get_expr_register (const expressionS *s)
12975 {
12976 gas_assert (expr_is_register (s));
12977 return s->X_add_number;
12978 }
12979
12980
12981 /* Set the expression to a symbol + constant offset. */
12982
12983 void
12984 set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
12985 {
12986 s->X_op = O_symbol;
12987 s->X_add_symbol = sym;
12988 s->X_op_symbol = NULL; /* unused */
12989 s->X_add_number = offset;
12990 }
12991
12992
12993 /* Return TRUE if the two expressions are equal. */
12994
12995 bfd_boolean
12996 expr_is_equal (expressionS *s1, expressionS *s2)
12997 {
12998 if (s1->X_op != s2->X_op)
12999 return FALSE;
13000 if (s1->X_add_symbol != s2->X_add_symbol)
13001 return FALSE;
13002 if (s1->X_op_symbol != s2->X_op_symbol)
13003 return FALSE;
13004 if (s1->X_add_number != s2->X_add_number)
13005 return FALSE;
13006 return TRUE;
13007 }
13008
13009
13010 static void
13011 copy_expr (expressionS *dst, const expressionS *src)
13012 {
13013 memcpy (dst, src, sizeof (expressionS));
13014 }
13015
13016 \f
13017 /* Support for the "--rename-section" option. */
13018
13019 struct rename_section_struct
13020 {
13021 const char *old_name;
13022 char *new_name;
13023 struct rename_section_struct *next;
13024 };
13025
13026 static struct rename_section_struct *section_rename;
13027
13028
13029 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
13030 entries to the section_rename list. Note: Specifying multiple
13031 renamings separated by colons is not documented and is retained only
13032 for backward compatibility. */
13033
13034 static void
13035 build_section_rename (const char *arg)
13036 {
13037 struct rename_section_struct *r;
13038 char *this_arg = NULL;
13039 char *next_arg = NULL;
13040
13041 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
13042 {
13043 char *old_name, *new_name;
13044
13045 if (this_arg)
13046 {
13047 next_arg = strchr (this_arg, ':');
13048 if (next_arg)
13049 {
13050 *next_arg = '\0';
13051 next_arg++;
13052 }
13053 }
13054
13055 old_name = this_arg;
13056 new_name = strchr (this_arg, '=');
13057
13058 if (*old_name == '\0')
13059 {
13060 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
13061 continue;
13062 }
13063 if (!new_name || new_name[1] == '\0')
13064 {
13065 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
13066 old_name);
13067 continue;
13068 }
13069 *new_name = '\0';
13070 new_name++;
13071
13072 /* Check for invalid section renaming. */
13073 for (r = section_rename; r != NULL; r = r->next)
13074 {
13075 if (strcmp (r->old_name, old_name) == 0)
13076 as_bad (_("section %s renamed multiple times"), old_name);
13077 if (strcmp (r->new_name, new_name) == 0)
13078 as_bad (_("multiple sections remapped to output section %s"),
13079 new_name);
13080 }
13081
13082 /* Now add it. */
13083 r = XNEW (struct rename_section_struct);
13084 r->old_name = xstrdup (old_name);
13085 r->new_name = xstrdup (new_name);
13086 r->next = section_rename;
13087 section_rename = r;
13088 }
13089 }
13090
13091
13092 char *
13093 xtensa_section_rename (const char *name)
13094 {
13095 struct rename_section_struct *r = section_rename;
13096
13097 for (r = section_rename; r != NULL; r = r->next)
13098 {
13099 if (strcmp (r->old_name, name) == 0)
13100 return r->new_name;
13101 }
13102
13103 return (char *) name;
13104 }