use xstrdup, xmemdup0 and concat more
[binutils-gdb.git] / gas / config / xtensa-relax.c
1 /* Table of relaxations for Xtensa assembly.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 /* This file contains the code for generating runtime data structures
22 for relaxation pattern matching from statically specified strings.
23 Each action contains an instruction pattern to match and
24 preconditions for the match as well as an expansion if the pattern
25 matches. The preconditions can specify that two operands are the
26 same or an operand is a specific constant or register. The expansion
27 uses the bound variables from the pattern to specify that specific
28 operands from the pattern should be used in the result.
29
30 The code determines whether the condition applies to a constant or
31 a register depending on the type of the operand. You may get
32 unexpected results if you don't match the rule against the operand
33 type correctly.
34
35 The patterns match a language like:
36
37 INSN_PATTERN ::= INSN_TEMPL ( '|' PRECOND )* ( '?' OPTIONPRED )*
38 INSN_TEMPL ::= OPCODE ' ' [ OPERAND (',' OPERAND)* ]
39 OPCODE ::= id
40 OPERAND ::= CONSTANT | VARIABLE | SPECIALFN '(' VARIABLE ')'
41 SPECIALFN ::= 'HI24S' | 'F32MINUS' | 'LOW8'
42 | 'HI16' | 'LOW16'
43 VARIABLE ::= '%' id
44 PRECOND ::= OPERAND CMPOP OPERAND
45 CMPOP ::= '==' | '!='
46 OPTIONPRED ::= OPTIONNAME ('+' OPTIONNAME)
47 OPTIONNAME ::= '"' id '"'
48
49 The replacement language
50 INSN_REPL ::= INSN_LABEL_LIT ( ';' INSN_LABEL_LIT )*
51 INSN_LABEL_LIT ::= INSN_TEMPL
52 | 'LABEL'
53 | 'LITERAL' VARIABLE
54
55 The operands in a PRECOND must be constants or variables bound by
56 the INSN_PATTERN.
57
58 The configuration options define a predicate on the availability of
59 options which must be TRUE for this rule to be valid. Examples are
60 requiring "density" for replacements with density instructions,
61 requiring "const16" for replacements that require const16
62 instructions, etc. The names are interpreted by the assembler to a
63 truth value for a particular frag.
64
65 The operands in the INSN_REPL must be constants, variables bound in
66 the associated INSN_PATTERN, special variables that are bound in
67 the INSN_REPL by LABEL or LITERAL definitions, or special value
68 manipulation functions.
69
70 A simple example of a replacement pattern:
71 {"movi.n %as,%imm", "movi %as,%imm"} would convert the narrow
72 movi.n instruction to the wide movi instruction.
73
74 A more complex example of a branch around:
75 {"beqz %as,%label", "bnez %as,%LABEL;j %label;LABEL"}
76 would convert a branch to a negated branch to the following instruction
77 with a jump to the original label.
78
79 An Xtensa-specific example that generates a literal:
80 {"movi %at,%imm", "LITERAL %imm; l32r %at,%LITERAL"}
81 will convert a movi instruction to an l32r of a literal
82 literal defined in the literal pool.
83
84 Even more complex is a conversion of a load with immediate offset
85 to a load of a freshly generated literal, an explicit add and
86 a load with 0 offset. This transformation is only valid, though
87 when the first and second operands are not the same as specified
88 by the "| %at!=%as" precondition clause.
89 {"l32i %at,%as,%imm | %at!=%as",
90 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l32i %at,%at,0"}
91
92 There is special case for loop instructions here, but because we do
93 not currently have the ability to represent the difference of two
94 symbols, the conversion requires special code in the assembler to
95 write the operands of the addi/addmi pair representing the
96 difference of the old and new loop end label. */
97
98 #include "as.h"
99 #include "xtensa-isa.h"
100 #include "xtensa-relax.h"
101 #include <stddef.h>
102 #include "xtensa-config.h"
103
104 #ifndef XCHAL_HAVE_WIDE_BRANCHES
105 #define XCHAL_HAVE_WIDE_BRANCHES 0
106 #endif
107
108 /* Imported from bfd. */
109 extern xtensa_isa xtensa_default_isa;
110
111 /* The opname_list is a small list of names that we use for opcode and
112 operand variable names to simplify ownership of these commonly used
113 strings. Strings entered in the table can be compared by pointer
114 equality. */
115
116 typedef struct opname_list_struct opname_list;
117 typedef opname_list opname_e;
118
119 struct opname_list_struct
120 {
121 char *opname;
122 opname_list *next;
123 };
124
125 static opname_list *local_opnames = NULL;
126
127
128 /* The "opname_map" and its element structure "opname_map_e" are used
129 for binding an operand number to a name or a constant. */
130
131 typedef struct opname_map_e_struct opname_map_e;
132 typedef struct opname_map_struct opname_map;
133
134 struct opname_map_e_struct
135 {
136 const char *operand_name; /* If null, then use constant_value. */
137 int operand_num;
138 unsigned constant_value;
139 opname_map_e *next;
140 };
141
142 struct opname_map_struct
143 {
144 opname_map_e *head;
145 opname_map_e **tail;
146 };
147
148 /* The "precond_list" and its element structure "precond_e" represents
149 explicit preconditions comparing operand variables and constants.
150 In the "precond_e" structure, a variable is identified by the name
151 in the "opname" field. If that field is NULL, then the operand
152 is the constant in field "opval". */
153
154 typedef struct precond_e_struct precond_e;
155 typedef struct precond_list_struct precond_list;
156
157 struct precond_e_struct
158 {
159 const char *opname1;
160 unsigned opval1;
161 CmpOp cmpop;
162 const char *opname2;
163 unsigned opval2;
164 precond_e *next;
165 };
166
167 struct precond_list_struct
168 {
169 precond_e *head;
170 precond_e **tail;
171 };
172
173
174 /* The insn_templ represents the INSN_TEMPL instruction template. It
175 is an opcode name with a list of operands. These are used for
176 instruction patterns and replacement patterns. */
177
178 typedef struct insn_templ_struct insn_templ;
179 struct insn_templ_struct
180 {
181 const char *opcode_name;
182 opname_map operand_map;
183 };
184
185
186 /* The insn_pattern represents an INSN_PATTERN instruction pattern.
187 It is an instruction template with preconditions that specify when
188 it actually matches a given instruction. */
189
190 typedef struct insn_pattern_struct insn_pattern;
191 struct insn_pattern_struct
192 {
193 insn_templ t;
194 precond_list preconds;
195 ReqOptionList *options;
196 };
197
198
199 /* The "insn_repl" and associated element structure "insn_repl_e"
200 instruction replacement list is a list of
201 instructions/LITERALS/LABELS with constant operands or operands
202 with names bound to the operand names in the associated pattern. */
203
204 typedef struct insn_repl_e_struct insn_repl_e;
205 struct insn_repl_e_struct
206 {
207 insn_templ t;
208 insn_repl_e *next;
209 };
210
211 typedef struct insn_repl_struct insn_repl;
212 struct insn_repl_struct
213 {
214 insn_repl_e *head;
215 insn_repl_e **tail;
216 };
217
218
219 /* The split_rec is a vector of allocated char * pointers. */
220
221 typedef struct split_rec_struct split_rec;
222 struct split_rec_struct
223 {
224 char **vec;
225 int count;
226 };
227
228 /* The "string_pattern_pair" is a set of pairs containing instruction
229 patterns and replacement strings. */
230
231 typedef struct string_pattern_pair_struct string_pattern_pair;
232 struct string_pattern_pair_struct
233 {
234 const char *pattern;
235 const char *replacement;
236 };
237
238 \f
239 /* The widen_spec_list is a list of valid substitutions that generate
240 wider representations. These are generally used to specify
241 replacements for instructions whose immediates do not fit their
242 encodings. A valid transition may require multiple steps of
243 one-to-one instruction replacements with a final multiple
244 instruction replacement. As an example, here are the transitions
245 required to replace an 'addi.n' with an 'addi', 'addmi'.
246
247 addi.n a4, 0x1010
248 => addi a4, 0x1010
249 => addmi a4, 0x1010
250 => addmi a4, 0x1000, addi a4, 0x10.
251
252 See the comments in xg_assembly_relax for some important details
253 regarding how these chains must be built. */
254
255 static string_pattern_pair widen_spec_list[] =
256 {
257 {"add.n %ar,%as,%at ? IsaUseDensityInstruction", "add %ar,%as,%at"},
258 {"addi.n %ar,%as,%imm ? IsaUseDensityInstruction", "addi %ar,%as,%imm"},
259 {"beqz.n %as,%label ? IsaUseDensityInstruction", "beqz %as,%label"},
260 {"bnez.n %as,%label ? IsaUseDensityInstruction", "bnez %as,%label"},
261 {"l32i.n %at,%as,%imm ? IsaUseDensityInstruction", "l32i %at,%as,%imm"},
262 {"mov.n %at,%as ? IsaUseDensityInstruction", "or %at,%as,%as"},
263 {"movi.n %as,%imm ? IsaUseDensityInstruction", "movi %as,%imm"},
264 {"nop.n ? IsaUseDensityInstruction ? realnop", "nop"},
265 {"nop.n ? IsaUseDensityInstruction ? no-realnop", "or 1,1,1"},
266 {"ret.n %as ? IsaUseDensityInstruction", "ret %as"},
267 {"retw.n %as ? IsaUseDensityInstruction", "retw %as"},
268 {"s32i.n %at,%as,%imm ? IsaUseDensityInstruction", "s32i %at,%as,%imm"},
269 {"srli %at,%as,%imm", "extui %at,%as,%imm,F32MINUS(%imm)"},
270 {"slli %ar,%as,0", "or %ar,%as,%as"},
271
272 /* Widening with literals or const16. */
273 {"movi %at,%imm ? IsaUseL32R ",
274 "LITERAL %imm; l32r %at,%LITERAL"},
275 {"movi %at,%imm ? IsaUseConst16",
276 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm)"},
277
278 {"addi %ar,%as,%imm", "addmi %ar,%as,%imm"},
279 /* LOW8 is the low 8 bits of the Immed
280 MID8S is the middle 8 bits of the Immed */
281 {"addmi %ar,%as,%imm", "addmi %ar,%as,HI24S(%imm); addi %ar,%ar,LOW8(%imm)"},
282
283 /* In the end convert to either an l32r or const16. */
284 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseL32R",
285 "LITERAL %imm; l32r %ar,%LITERAL; add %ar,%as,%ar"},
286 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseConst16",
287 "const16 %ar,HI16U(%imm); const16 %ar,LOW16U(%imm); add %ar,%as,%ar"},
288
289 /* Widening the load instructions with too-large immediates */
290 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
291 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l8ui %at,%at,0"},
292 {"l16si %at,%as,%imm | %at!=%as ? IsaUseL32R",
293 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l16si %at,%at,0"},
294 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
295 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l16ui %at,%at,0"},
296 {"l32i %at,%as,%imm | %at!=%as ? IsaUseL32R",
297 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l32i %at,%at,0"},
298
299 /* Widening load instructions with const16s. */
300 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
301 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l8ui %at,%at,0"},
302 {"l16si %at,%as,%imm | %at!=%as ? IsaUseConst16",
303 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16si %at,%at,0"},
304 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
305 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16ui %at,%at,0"},
306 {"l32i %at,%as,%imm | %at!=%as ? IsaUseConst16",
307 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l32i %at,%at,0"},
308
309 /* This is only PART of the loop instruction. In addition,
310 hardcoded into its use is a modification of the final operand in
311 the instruction in bytes 9 and 12. */
312 {"loop %as,%label | %as!=1 ? IsaUseLoops",
313 "loop %as,%LABEL;"
314 "rsr.lend %as;" /* LEND */
315 "wsr.lbeg %as;" /* LBEG */
316 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
317 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
318 "wsr.lend %as;"
319 "isync;"
320 "rsr.lcount %as;" /* LCOUNT */
321 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
322 "LABEL"},
323 {"loopgtz %as,%label | %as!=1 ? IsaUseLoops",
324 "beqz %as,%label;"
325 "bltz %as,%label;"
326 "loopgtz %as,%LABEL;"
327 "rsr.lend %as;" /* LEND */
328 "wsr.lbeg %as;" /* LBEG */
329 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
330 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
331 "wsr.lend %as;"
332 "isync;"
333 "rsr.lcount %as;" /* LCOUNT */
334 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
335 "LABEL"},
336 {"loopnez %as,%label | %as!=1 ? IsaUseLoops",
337 "beqz %as,%label;"
338 "loopnez %as,%LABEL;"
339 "rsr.lend %as;" /* LEND */
340 "wsr.lbeg %as;" /* LBEG */
341 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
342 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
343 "wsr.lend %as;"
344 "isync;"
345 "rsr.lcount %as;" /* LCOUNT */
346 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
347 "LABEL"},
348
349 /* Relaxing to wide branches. Order is important here. With wide
350 branches, there is more than one correct relaxation for an
351 out-of-range branch. Put the wide branch relaxations first in the
352 table since they are more efficient than the branch-around
353 relaxations. */
354
355 {"beqz %as,%label ? IsaUseWideBranches", "WIDE.beqz %as,%label"},
356 {"bnez %as,%label ? IsaUseWideBranches", "WIDE.bnez %as,%label"},
357 {"bgez %as,%label ? IsaUseWideBranches", "WIDE.bgez %as,%label"},
358 {"bltz %as,%label ? IsaUseWideBranches", "WIDE.bltz %as,%label"},
359 {"beqi %as,%imm,%label ? IsaUseWideBranches", "WIDE.beqi %as,%imm,%label"},
360 {"bnei %as,%imm,%label ? IsaUseWideBranches", "WIDE.bnei %as,%imm,%label"},
361 {"bgei %as,%imm,%label ? IsaUseWideBranches", "WIDE.bgei %as,%imm,%label"},
362 {"blti %as,%imm,%label ? IsaUseWideBranches", "WIDE.blti %as,%imm,%label"},
363 {"bgeui %as,%imm,%label ? IsaUseWideBranches", "WIDE.bgeui %as,%imm,%label"},
364 {"bltui %as,%imm,%label ? IsaUseWideBranches", "WIDE.bltui %as,%imm,%label"},
365 {"bbci %as,%imm,%label ? IsaUseWideBranches", "WIDE.bbci %as,%imm,%label"},
366 {"bbsi %as,%imm,%label ? IsaUseWideBranches", "WIDE.bbsi %as,%imm,%label"},
367 {"beq %as,%at,%label ? IsaUseWideBranches", "WIDE.beq %as,%at,%label"},
368 {"bne %as,%at,%label ? IsaUseWideBranches", "WIDE.bne %as,%at,%label"},
369 {"bge %as,%at,%label ? IsaUseWideBranches", "WIDE.bge %as,%at,%label"},
370 {"blt %as,%at,%label ? IsaUseWideBranches", "WIDE.blt %as,%at,%label"},
371 {"bgeu %as,%at,%label ? IsaUseWideBranches", "WIDE.bgeu %as,%at,%label"},
372 {"bltu %as,%at,%label ? IsaUseWideBranches", "WIDE.bltu %as,%at,%label"},
373 {"bany %as,%at,%label ? IsaUseWideBranches", "WIDE.bany %as,%at,%label"},
374 {"bnone %as,%at,%label ? IsaUseWideBranches", "WIDE.bnone %as,%at,%label"},
375 {"ball %as,%at,%label ? IsaUseWideBranches", "WIDE.ball %as,%at,%label"},
376 {"bnall %as,%at,%label ? IsaUseWideBranches", "WIDE.bnall %as,%at,%label"},
377 {"bbc %as,%at,%label ? IsaUseWideBranches", "WIDE.bbc %as,%at,%label"},
378 {"bbs %as,%at,%label ? IsaUseWideBranches", "WIDE.bbs %as,%at,%label"},
379
380 /* Widening branch comparisons eq/ne to zero. Prefer relaxing to narrow
381 branches if the density option is available. */
382 {"beqz %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%LABEL;j %label;LABEL"},
383 {"bnez %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%LABEL;j %label;LABEL"},
384 {"beqz %as,%label", "bnez %as,%LABEL;j %label;LABEL"},
385 {"bnez %as,%label", "beqz %as,%LABEL;j %label;LABEL"},
386 {"WIDE.beqz %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%LABEL;j %label;LABEL"},
387 {"WIDE.bnez %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%LABEL;j %label;LABEL"},
388 {"WIDE.beqz %as,%label", "bnez %as,%LABEL;j %label;LABEL"},
389 {"WIDE.bnez %as,%label", "beqz %as,%LABEL;j %label;LABEL"},
390
391 /* Widening expect-taken branches. */
392 {"beqzt %as,%label ? IsaUsePredictedBranches", "bnez %as,%LABEL;j %label;LABEL"},
393 {"bnezt %as,%label ? IsaUsePredictedBranches", "beqz %as,%LABEL;j %label;LABEL"},
394 {"beqt %as,%at,%label ? IsaUsePredictedBranches", "bne %as,%at,%LABEL;j %label;LABEL"},
395 {"bnet %as,%at,%label ? IsaUsePredictedBranches", "beq %as,%at,%LABEL;j %label;LABEL"},
396
397 /* Widening branches from the Xtensa boolean option. */
398 {"bt %bs,%label ? IsaUseBooleans", "bf %bs,%LABEL;j %label;LABEL"},
399 {"bf %bs,%label ? IsaUseBooleans", "bt %bs,%LABEL;j %label;LABEL"},
400
401 /* Other branch-around-jump widenings. */
402 {"bgez %as,%label", "bltz %as,%LABEL;j %label;LABEL"},
403 {"bltz %as,%label", "bgez %as,%LABEL;j %label;LABEL"},
404 {"beqi %as,%imm,%label", "bnei %as,%imm,%LABEL;j %label;LABEL"},
405 {"bnei %as,%imm,%label", "beqi %as,%imm,%LABEL;j %label;LABEL"},
406 {"bgei %as,%imm,%label", "blti %as,%imm,%LABEL;j %label;LABEL"},
407 {"blti %as,%imm,%label", "bgei %as,%imm,%LABEL;j %label;LABEL"},
408 {"bgeui %as,%imm,%label", "bltui %as,%imm,%LABEL;j %label;LABEL"},
409 {"bltui %as,%imm,%label", "bgeui %as,%imm,%LABEL;j %label;LABEL"},
410 {"bbci %as,%imm,%label", "bbsi %as,%imm,%LABEL;j %label;LABEL"},
411 {"bbsi %as,%imm,%label", "bbci %as,%imm,%LABEL;j %label;LABEL"},
412 {"beq %as,%at,%label", "bne %as,%at,%LABEL;j %label;LABEL"},
413 {"bne %as,%at,%label", "beq %as,%at,%LABEL;j %label;LABEL"},
414 {"bge %as,%at,%label", "blt %as,%at,%LABEL;j %label;LABEL"},
415 {"blt %as,%at,%label", "bge %as,%at,%LABEL;j %label;LABEL"},
416 {"bgeu %as,%at,%label", "bltu %as,%at,%LABEL;j %label;LABEL"},
417 {"bltu %as,%at,%label", "bgeu %as,%at,%LABEL;j %label;LABEL"},
418 {"bany %as,%at,%label", "bnone %as,%at,%LABEL;j %label;LABEL"},
419 {"bnone %as,%at,%label", "bany %as,%at,%LABEL;j %label;LABEL"},
420 {"ball %as,%at,%label", "bnall %as,%at,%LABEL;j %label;LABEL"},
421 {"bnall %as,%at,%label", "ball %as,%at,%LABEL;j %label;LABEL"},
422 {"bbc %as,%at,%label", "bbs %as,%at,%LABEL;j %label;LABEL"},
423 {"bbs %as,%at,%label", "bbc %as,%at,%LABEL;j %label;LABEL"},
424
425 {"WIDE.bgez %as,%label", "bltz %as,%LABEL;j %label;LABEL"},
426 {"WIDE.bltz %as,%label", "bgez %as,%LABEL;j %label;LABEL"},
427 {"WIDE.beqi %as,%imm,%label", "bnei %as,%imm,%LABEL;j %label;LABEL"},
428 {"WIDE.bnei %as,%imm,%label", "beqi %as,%imm,%LABEL;j %label;LABEL"},
429 {"WIDE.bgei %as,%imm,%label", "blti %as,%imm,%LABEL;j %label;LABEL"},
430 {"WIDE.blti %as,%imm,%label", "bgei %as,%imm,%LABEL;j %label;LABEL"},
431 {"WIDE.bgeui %as,%imm,%label", "bltui %as,%imm,%LABEL;j %label;LABEL"},
432 {"WIDE.bltui %as,%imm,%label", "bgeui %as,%imm,%LABEL;j %label;LABEL"},
433 {"WIDE.bbci %as,%imm,%label", "bbsi %as,%imm,%LABEL;j %label;LABEL"},
434 {"WIDE.bbsi %as,%imm,%label", "bbci %as,%imm,%LABEL;j %label;LABEL"},
435 {"WIDE.beq %as,%at,%label", "bne %as,%at,%LABEL;j %label;LABEL"},
436 {"WIDE.bne %as,%at,%label", "beq %as,%at,%LABEL;j %label;LABEL"},
437 {"WIDE.bge %as,%at,%label", "blt %as,%at,%LABEL;j %label;LABEL"},
438 {"WIDE.blt %as,%at,%label", "bge %as,%at,%LABEL;j %label;LABEL"},
439 {"WIDE.bgeu %as,%at,%label", "bltu %as,%at,%LABEL;j %label;LABEL"},
440 {"WIDE.bltu %as,%at,%label", "bgeu %as,%at,%LABEL;j %label;LABEL"},
441 {"WIDE.bany %as,%at,%label", "bnone %as,%at,%LABEL;j %label;LABEL"},
442 {"WIDE.bnone %as,%at,%label", "bany %as,%at,%LABEL;j %label;LABEL"},
443 {"WIDE.ball %as,%at,%label", "bnall %as,%at,%LABEL;j %label;LABEL"},
444 {"WIDE.bnall %as,%at,%label", "ball %as,%at,%LABEL;j %label;LABEL"},
445 {"WIDE.bbc %as,%at,%label", "bbs %as,%at,%LABEL;j %label;LABEL"},
446 {"WIDE.bbs %as,%at,%label", "bbc %as,%at,%LABEL;j %label;LABEL"},
447
448 /* Expanding calls with literals. */
449 {"call0 %label,%ar0 ? IsaUseL32R",
450 "LITERAL %label; l32r a0,%LITERAL; callx0 a0,%ar0"},
451 {"call4 %label,%ar4 ? IsaUseL32R",
452 "LITERAL %label; l32r a4,%LITERAL; callx4 a4,%ar4"},
453 {"call8 %label,%ar8 ? IsaUseL32R",
454 "LITERAL %label; l32r a8,%LITERAL; callx8 a8,%ar8"},
455 {"call12 %label,%ar12 ? IsaUseL32R",
456 "LITERAL %label; l32r a12,%LITERAL; callx12 a12,%ar12"},
457
458 /* Expanding calls with const16. */
459 {"call0 %label,%ar0 ? IsaUseConst16",
460 "const16 a0,HI16U(%label); const16 a0,LOW16U(%label); callx0 a0,%ar0"},
461 {"call4 %label,%ar4 ? IsaUseConst16",
462 "const16 a4,HI16U(%label); const16 a4,LOW16U(%label); callx4 a4,%ar4"},
463 {"call8 %label,%ar8 ? IsaUseConst16",
464 "const16 a8,HI16U(%label); const16 a8,LOW16U(%label); callx8 a8,%ar8"},
465 {"call12 %label,%ar12 ? IsaUseConst16",
466 "const16 a12,HI16U(%label); const16 a12,LOW16U(%label); callx12 a12,%ar12"},
467
468 /* Expanding j.l with literals. */
469 {"j %label ? FREEREG ? IsaUseL32R",
470 "LITERAL %label; l32r FREEREG,%LITERAL; jx FREEREG"},
471 /* Expanding j.l with const16. */
472 {"j %label ? FREEREG ? IsaUseConst16",
473 "const16 FREEREG,HI16U(%label); const16 FREEREG,LOW16U(%label); jx FREEREG"},
474 };
475
476 #define WIDEN_COUNT (sizeof (widen_spec_list) / sizeof (string_pattern_pair))
477
478
479 /* The simplify_spec_list specifies simplifying transformations that
480 will reduce the instruction width or otherwise simplify an
481 instruction. These are usually applied before relaxation in the
482 assembler. It is always legal to simplify. Even for "addi as, 0",
483 the "addi.n as, 0" will eventually be widened back to an "addi 0"
484 after the widening table is applied. Note: The usage of this table
485 has changed somewhat so that it is entirely specific to "narrowing"
486 instructions to use the density option. This table is not used at
487 all when the density option is not available. */
488
489 string_pattern_pair simplify_spec_list[] =
490 {
491 {"add %ar,%as,%at ? IsaUseDensityInstruction", "add.n %ar,%as,%at"},
492 {"addi.n %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
493 {"addi %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
494 {"addi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
495 {"addmi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
496 {"beqz %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%label"},
497 {"bnez %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%label"},
498 {"l32i %at,%as,%imm ? IsaUseDensityInstruction", "l32i.n %at,%as,%imm"},
499 {"movi %as,%imm ? IsaUseDensityInstruction", "movi.n %as,%imm"},
500 {"nop ? realnop ? IsaUseDensityInstruction", "nop.n"},
501 {"or %ar,%as,%at | %ar==%as | %as==%at ? IsaUseDensityInstruction", "nop.n"},
502 {"or %ar,%as,%at | %ar!=%as | %as==%at ? IsaUseDensityInstruction", "mov.n %ar,%as"},
503 {"ret %as ? IsaUseDensityInstruction", "ret.n %as"},
504 {"retw %as ? IsaUseDensityInstruction", "retw.n %as"},
505 {"s32i %at,%as,%imm ? IsaUseDensityInstruction", "s32i.n %at,%as,%imm"},
506 {"slli %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"}
507 };
508
509 #define SIMPLIFY_COUNT \
510 (sizeof (simplify_spec_list) / sizeof (string_pattern_pair))
511
512 \f
513 /* Externally visible functions. */
514
515 extern bfd_boolean xg_has_userdef_op_fn (OpType);
516 extern long xg_apply_userdef_op_fn (OpType, long);
517
518
519 static void
520 append_transition (TransitionTable *tt,
521 xtensa_opcode opcode,
522 TransitionRule *t,
523 transition_cmp_fn cmp)
524 {
525 TransitionList *tl = (TransitionList *) xmalloc (sizeof (TransitionList));
526 TransitionList *prev;
527 TransitionList **t_p;
528 gas_assert (tt != NULL);
529 gas_assert (opcode < tt->num_opcodes);
530
531 prev = tt->table[opcode];
532 tl->rule = t;
533 tl->next = NULL;
534 if (prev == NULL)
535 {
536 tt->table[opcode] = tl;
537 return;
538 }
539
540 for (t_p = &tt->table[opcode]; (*t_p) != NULL; t_p = &(*t_p)->next)
541 {
542 if (cmp && cmp (t, (*t_p)->rule) < 0)
543 {
544 /* Insert it here. */
545 tl->next = *t_p;
546 *t_p = tl;
547 return;
548 }
549 }
550 (*t_p) = tl;
551 }
552
553
554 static void
555 append_condition (TransitionRule *tr, Precondition *cond)
556 {
557 PreconditionList *pl =
558 (PreconditionList *) xmalloc (sizeof (PreconditionList));
559 PreconditionList *prev = tr->conditions;
560 PreconditionList *nxt;
561
562 pl->precond = cond;
563 pl->next = NULL;
564 if (prev == NULL)
565 {
566 tr->conditions = pl;
567 return;
568 }
569 nxt = prev->next;
570 while (nxt != NULL)
571 {
572 prev = nxt;
573 nxt = nxt->next;
574 }
575 prev->next = pl;
576 }
577
578
579 static void
580 append_value_condition (TransitionRule *tr,
581 CmpOp cmp,
582 unsigned op1,
583 unsigned op2)
584 {
585 Precondition *cond = (Precondition *) xmalloc (sizeof (Precondition));
586
587 cond->cmp = cmp;
588 cond->op_num = op1;
589 cond->typ = OP_OPERAND;
590 cond->op_data = op2;
591 append_condition (tr, cond);
592 }
593
594
595 static void
596 append_constant_value_condition (TransitionRule *tr,
597 CmpOp cmp,
598 unsigned op1,
599 unsigned cnst)
600 {
601 Precondition *cond = (Precondition *) xmalloc (sizeof (Precondition));
602
603 cond->cmp = cmp;
604 cond->op_num = op1;
605 cond->typ = OP_CONSTANT;
606 cond->op_data = cnst;
607 append_condition (tr, cond);
608 }
609
610
611 static void
612 append_build_insn (TransitionRule *tr, BuildInstr *bi)
613 {
614 BuildInstr *prev = tr->to_instr;
615 BuildInstr *nxt;
616
617 bi->next = NULL;
618 if (prev == NULL)
619 {
620 tr->to_instr = bi;
621 return;
622 }
623 nxt = prev->next;
624 while (nxt != 0)
625 {
626 prev = nxt;
627 nxt = prev->next;
628 }
629 prev->next = bi;
630 }
631
632
633 static void
634 append_op (BuildInstr *bi, BuildOp *b_op)
635 {
636 BuildOp *prev = bi->ops;
637 BuildOp *nxt;
638
639 if (prev == NULL)
640 {
641 bi->ops = b_op;
642 return;
643 }
644 nxt = prev->next;
645 while (nxt != NULL)
646 {
647 prev = nxt;
648 nxt = nxt->next;
649 }
650 prev->next = b_op;
651 }
652
653
654 static void
655 append_literal_op (BuildInstr *bi, unsigned op1, unsigned src_op)
656 {
657 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
658
659 b_op->op_num = op1;
660 b_op->typ = OP_LITERAL;
661 b_op->op_data = src_op;
662 b_op->next = NULL;
663 append_op (bi, b_op);
664 }
665
666
667 static void
668 append_label_op (BuildInstr *bi, unsigned op1)
669 {
670 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
671
672 b_op->op_num = op1;
673 b_op->typ = OP_LABEL;
674 b_op->op_data = 0;
675 b_op->next = NULL;
676 append_op (bi, b_op);
677 }
678
679
680 static void
681 append_constant_op (BuildInstr *bi, unsigned op1, unsigned cnst)
682 {
683 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
684
685 b_op->op_num = op1;
686 b_op->typ = OP_CONSTANT;
687 b_op->op_data = cnst;
688 b_op->next = NULL;
689 append_op (bi, b_op);
690 }
691
692
693 static void
694 append_field_op (BuildInstr *bi, unsigned op1, unsigned src_op)
695 {
696 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
697
698 b_op->op_num = op1;
699 b_op->typ = OP_OPERAND;
700 b_op->op_data = src_op;
701 b_op->next = NULL;
702 append_op (bi, b_op);
703 }
704
705
706 /* These could be generated but are not currently. */
707
708 static void
709 append_user_fn_field_op (BuildInstr *bi,
710 unsigned op1,
711 OpType typ,
712 unsigned src_op)
713 {
714 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
715
716 b_op->op_num = op1;
717 b_op->typ = typ;
718 b_op->op_data = src_op;
719 b_op->next = NULL;
720 append_op (bi, b_op);
721 }
722
723
724 /* These operand functions are the semantics of user-defined
725 operand functions. */
726
727 static long
728 operand_function_HI24S (long a)
729 {
730 if (a & 0x80)
731 return (a & (~0xff)) + 0x100;
732 else
733 return (a & (~0xff));
734 }
735
736
737 static long
738 operand_function_F32MINUS (long a)
739 {
740 return (32 - a);
741 }
742
743
744 static long
745 operand_function_LOW8 (long a)
746 {
747 if (a & 0x80)
748 return (a & 0xff) | ~0xff;
749 else
750 return (a & 0xff);
751 }
752
753
754 static long
755 operand_function_LOW16U (long a)
756 {
757 return (a & 0xffff);
758 }
759
760
761 static long
762 operand_function_HI16U (long a)
763 {
764 unsigned long b = a & 0xffff0000;
765 return (long) (b >> 16);
766 }
767
768
769 bfd_boolean
770 xg_has_userdef_op_fn (OpType op)
771 {
772 switch (op)
773 {
774 case OP_OPERAND_F32MINUS:
775 case OP_OPERAND_LOW8:
776 case OP_OPERAND_HI24S:
777 case OP_OPERAND_LOW16U:
778 case OP_OPERAND_HI16U:
779 return TRUE;
780 default:
781 break;
782 }
783 return FALSE;
784 }
785
786
787 long
788 xg_apply_userdef_op_fn (OpType op, long a)
789 {
790 switch (op)
791 {
792 case OP_OPERAND_F32MINUS:
793 return operand_function_F32MINUS (a);
794 case OP_OPERAND_LOW8:
795 return operand_function_LOW8 (a);
796 case OP_OPERAND_HI24S:
797 return operand_function_HI24S (a);
798 case OP_OPERAND_LOW16U:
799 return operand_function_LOW16U (a);
800 case OP_OPERAND_HI16U:
801 return operand_function_HI16U (a);
802 default:
803 break;
804 }
805 return FALSE;
806 }
807
808
809 /* Generate a transition table. */
810
811 static const char *
812 enter_opname_n (const char *name, int len)
813 {
814 opname_e *op;
815
816 for (op = local_opnames; op != NULL; op = op->next)
817 {
818 if (strlen (op->opname) == (unsigned) len
819 && strncmp (op->opname, name, len) == 0)
820 return op->opname;
821 }
822 op = (opname_e *) xmalloc (sizeof (opname_e));
823 op->opname = xmemdup0 (name, len);
824 return op->opname;
825 }
826
827
828 static const char *
829 enter_opname (const char *name)
830 {
831 opname_e *op;
832
833 for (op = local_opnames; op != NULL; op = op->next)
834 {
835 if (strcmp (op->opname, name) == 0)
836 return op->opname;
837 }
838 op = (opname_e *) xmalloc (sizeof (opname_e));
839 op->opname = xstrdup (name);
840 return op->opname;
841 }
842
843
844 static void
845 init_opname_map (opname_map *m)
846 {
847 m->head = NULL;
848 m->tail = &m->head;
849 }
850
851
852 static void
853 clear_opname_map (opname_map *m)
854 {
855 opname_map_e *e;
856
857 while (m->head != NULL)
858 {
859 e = m->head;
860 m->head = e->next;
861 free (e);
862 }
863 m->tail = &m->head;
864 }
865
866
867 static bfd_boolean
868 same_operand_name (const opname_map_e *m1, const opname_map_e *m2)
869 {
870 if (m1->operand_name == NULL || m2->operand_name == NULL)
871 return FALSE;
872 return (m1->operand_name == m2->operand_name);
873 }
874
875
876 static opname_map_e *
877 get_opmatch (opname_map *map, const char *operand_name)
878 {
879 opname_map_e *m;
880
881 for (m = map->head; m != NULL; m = m->next)
882 {
883 if (strcmp (m->operand_name, operand_name) == 0)
884 return m;
885 }
886 return NULL;
887 }
888
889
890 static bfd_boolean
891 op_is_constant (const opname_map_e *m1)
892 {
893 return (m1->operand_name == NULL);
894 }
895
896
897 static unsigned
898 op_get_constant (const opname_map_e *m1)
899 {
900 gas_assert (m1->operand_name == NULL);
901 return m1->constant_value;
902 }
903
904
905 static void
906 init_precond_list (precond_list *l)
907 {
908 l->head = NULL;
909 l->tail = &l->head;
910 }
911
912
913 static void
914 clear_precond_list (precond_list *l)
915 {
916 precond_e *e;
917
918 while (l->head != NULL)
919 {
920 e = l->head;
921 l->head = e->next;
922 free (e);
923 }
924 l->tail = &l->head;
925 }
926
927
928 static void
929 init_insn_templ (insn_templ *t)
930 {
931 t->opcode_name = NULL;
932 init_opname_map (&t->operand_map);
933 }
934
935
936 static void
937 clear_insn_templ (insn_templ *t)
938 {
939 clear_opname_map (&t->operand_map);
940 }
941
942
943 static void
944 init_insn_pattern (insn_pattern *p)
945 {
946 init_insn_templ (&p->t);
947 init_precond_list (&p->preconds);
948 p->options = NULL;
949 }
950
951
952 static void
953 clear_insn_pattern (insn_pattern *p)
954 {
955 clear_insn_templ (&p->t);
956 clear_precond_list (&p->preconds);
957 }
958
959
960 static void
961 init_insn_repl (insn_repl *r)
962 {
963 r->head = NULL;
964 r->tail = &r->head;
965 }
966
967
968 static void
969 clear_insn_repl (insn_repl *r)
970 {
971 insn_repl_e *e;
972
973 while (r->head != NULL)
974 {
975 e = r->head;
976 r->head = e->next;
977 clear_insn_templ (&e->t);
978 }
979 r->tail = &r->head;
980 }
981
982
983 static int
984 insn_templ_operand_count (const insn_templ *t)
985 {
986 int i = 0;
987 const opname_map_e *op;
988
989 for (op = t->operand_map.head; op != NULL; op = op->next, i++)
990 ;
991 return i;
992 }
993
994
995 /* Convert a string to a number. E.G.: parse_constant("10", &num) */
996
997 static bfd_boolean
998 parse_constant (const char *in, unsigned *val_p)
999 {
1000 unsigned val = 0;
1001 const char *p;
1002
1003 if (in == NULL)
1004 return FALSE;
1005 p = in;
1006
1007 while (*p != '\0')
1008 {
1009 if (*p >= '0' && *p <= '9')
1010 val = val * 10 + (*p - '0');
1011 else
1012 return FALSE;
1013 ++p;
1014 }
1015 *val_p = val;
1016 return TRUE;
1017 }
1018
1019
1020 static bfd_boolean
1021 parse_special_fn (const char *name,
1022 const char **fn_name_p,
1023 const char **arg_name_p)
1024 {
1025 const char *p_start;
1026 const char *p_end;
1027
1028 p_start = strchr (name, '(');
1029 if (p_start == NULL)
1030 return FALSE;
1031
1032 p_end = strchr (p_start, ')');
1033
1034 if (p_end == NULL)
1035 return FALSE;
1036
1037 if (p_end[1] != '\0')
1038 return FALSE;
1039
1040 *fn_name_p = enter_opname_n (name, p_start - name);
1041 *arg_name_p = enter_opname_n (p_start + 1, p_end - p_start - 1);
1042 return TRUE;
1043 }
1044
1045
1046 static const char *
1047 skip_white (const char *p)
1048 {
1049 if (p == NULL)
1050 return p;
1051 while (*p == ' ')
1052 ++p;
1053 return p;
1054 }
1055
1056
1057 static void
1058 trim_whitespace (char *in)
1059 {
1060 char *last_white = NULL;
1061 char *p = in;
1062
1063 while (p && *p != '\0')
1064 {
1065 while (*p == ' ')
1066 {
1067 if (last_white == NULL)
1068 last_white = p;
1069 p++;
1070 }
1071 if (*p != '\0')
1072 {
1073 last_white = NULL;
1074 p++;
1075 }
1076 }
1077 if (last_white)
1078 *last_white = '\0';
1079 }
1080
1081
1082 /* Split a string into component strings where "c" is the
1083 delimiter. Place the result in the split_rec. */
1084
1085 static void
1086 split_string (split_rec *rec,
1087 const char *in,
1088 char c,
1089 bfd_boolean elide_whitespace)
1090 {
1091 int cnt = 0;
1092 int i;
1093 const char *p = in;
1094
1095 while (p != NULL && *p != '\0')
1096 {
1097 cnt++;
1098 p = strchr (p, c);
1099 if (p)
1100 p++;
1101 }
1102 rec->count = cnt;
1103 rec->vec = NULL;
1104
1105 if (rec->count == 0)
1106 return;
1107
1108 rec->vec = (char **) xmalloc (sizeof (char *) * cnt);
1109 for (i = 0; i < cnt; i++)
1110 rec->vec[i] = 0;
1111
1112 p = in;
1113 for (i = 0; i < cnt; i++)
1114 {
1115 const char *q;
1116 int len;
1117
1118 q = p;
1119 if (elide_whitespace)
1120 q = skip_white (q);
1121
1122 p = strchr (q, c);
1123 if (p == NULL)
1124 rec->vec[i] = xstrdup (q);
1125 else
1126 {
1127 len = p - q;
1128 rec->vec[i] = xmemdup0 (q, len);
1129 p++;
1130 }
1131
1132 if (elide_whitespace)
1133 trim_whitespace (rec->vec[i]);
1134 }
1135 }
1136
1137
1138 static void
1139 clear_split_rec (split_rec *rec)
1140 {
1141 int i;
1142
1143 for (i = 0; i < rec->count; i++)
1144 free (rec->vec[i]);
1145
1146 if (rec->count > 0)
1147 free (rec->vec);
1148 }
1149
1150
1151 /* Initialize a split record. The split record must be initialized
1152 before split_string is called. */
1153
1154 static void
1155 init_split_rec (split_rec *rec)
1156 {
1157 rec->vec = NULL;
1158 rec->count = 0;
1159 }
1160
1161
1162 /* Parse an instruction template like "insn op1, op2, op3". */
1163
1164 static bfd_boolean
1165 parse_insn_templ (const char *s, insn_templ *t)
1166 {
1167 const char *p = s;
1168 int insn_name_len;
1169 split_rec oprec;
1170 int i;
1171
1172 /* First find the first whitespace. */
1173
1174 init_split_rec (&oprec);
1175
1176 p = skip_white (p);
1177 insn_name_len = strcspn (s, " ");
1178 if (insn_name_len == 0)
1179 return FALSE;
1180
1181 init_insn_templ (t);
1182 t->opcode_name = enter_opname_n (p, insn_name_len);
1183
1184 p = p + insn_name_len;
1185
1186 /* Split by ',' and skip beginning and trailing whitespace. */
1187 split_string (&oprec, p, ',', TRUE);
1188
1189 for (i = 0; i < oprec.count; i++)
1190 {
1191 const char *opname = oprec.vec[i];
1192 opname_map_e *e = (opname_map_e *) xmalloc (sizeof (opname_map_e));
1193 e->next = NULL;
1194 e->operand_name = NULL;
1195 e->constant_value = 0;
1196 e->operand_num = i;
1197
1198 /* If it begins with a number, assume that it is a number. */
1199 if (opname && opname[0] >= '0' && opname[0] <= '9')
1200 {
1201 unsigned val;
1202
1203 if (parse_constant (opname, &val))
1204 e->constant_value = val;
1205 else
1206 {
1207 free (e);
1208 clear_split_rec (&oprec);
1209 clear_insn_templ (t);
1210 return FALSE;
1211 }
1212 }
1213 else
1214 e->operand_name = enter_opname (oprec.vec[i]);
1215
1216 *t->operand_map.tail = e;
1217 t->operand_map.tail = &e->next;
1218 }
1219 clear_split_rec (&oprec);
1220 return TRUE;
1221 }
1222
1223
1224 static bfd_boolean
1225 parse_precond (const char *s, precond_e *precond)
1226 {
1227 /* All preconditions are currently of the form:
1228 a == b or a != b or a == k (where k is a constant).
1229 Later we may use some special functions like DENSITY == 1
1230 to identify when density is available. */
1231
1232 const char *p = s;
1233 int len;
1234 precond->opname1 = NULL;
1235 precond->opval1 = 0;
1236 precond->cmpop = OP_EQUAL;
1237 precond->opname2 = NULL;
1238 precond->opval2 = 0;
1239 precond->next = NULL;
1240
1241 p = skip_white (p);
1242
1243 len = strcspn (p, " !=");
1244
1245 if (len == 0)
1246 return FALSE;
1247
1248 precond->opname1 = enter_opname_n (p, len);
1249 p = p + len;
1250 p = skip_white (p);
1251
1252 /* Check for "==" and "!=". */
1253 if (strncmp (p, "==", 2) == 0)
1254 precond->cmpop = OP_EQUAL;
1255 else if (strncmp (p, "!=", 2) == 0)
1256 precond->cmpop = OP_NOTEQUAL;
1257 else
1258 return FALSE;
1259
1260 p = p + 2;
1261 p = skip_white (p);
1262
1263 /* No trailing whitespace from earlier parsing. */
1264 if (p[0] >= '0' && p[0] <= '9')
1265 {
1266 unsigned val;
1267 if (parse_constant (p, &val))
1268 precond->opval2 = val;
1269 else
1270 return FALSE;
1271 }
1272 else
1273 precond->opname2 = enter_opname (p);
1274 return TRUE;
1275 }
1276
1277
1278 static void
1279 clear_req_or_option_list (ReqOrOption **r_p)
1280 {
1281 if (*r_p == NULL)
1282 return;
1283
1284 free ((*r_p)->option_name);
1285 clear_req_or_option_list (&(*r_p)->next);
1286 *r_p = NULL;
1287 }
1288
1289
1290 static void
1291 clear_req_option_list (ReqOption **r_p)
1292 {
1293 if (*r_p == NULL)
1294 return;
1295
1296 clear_req_or_option_list (&(*r_p)->or_option_terms);
1297 clear_req_option_list (&(*r_p)->next);
1298 *r_p = NULL;
1299 }
1300
1301
1302 static ReqOrOption *
1303 clone_req_or_option_list (ReqOrOption *req_or_option)
1304 {
1305 ReqOrOption *new_req_or_option;
1306
1307 if (req_or_option == NULL)
1308 return NULL;
1309
1310 new_req_or_option = (ReqOrOption *) xmalloc (sizeof (ReqOrOption));
1311 new_req_or_option->option_name = xstrdup (req_or_option->option_name);
1312 new_req_or_option->is_true = req_or_option->is_true;
1313 new_req_or_option->next = NULL;
1314 new_req_or_option->next = clone_req_or_option_list (req_or_option->next);
1315 return new_req_or_option;
1316 }
1317
1318
1319 static ReqOption *
1320 clone_req_option_list (ReqOption *req_option)
1321 {
1322 ReqOption *new_req_option;
1323
1324 if (req_option == NULL)
1325 return NULL;
1326
1327 new_req_option = (ReqOption *) xmalloc (sizeof (ReqOption));
1328 new_req_option->or_option_terms = NULL;
1329 new_req_option->next = NULL;
1330 new_req_option->or_option_terms =
1331 clone_req_or_option_list (req_option->or_option_terms);
1332 new_req_option->next = clone_req_option_list (req_option->next);
1333 return new_req_option;
1334 }
1335
1336
1337 static bfd_boolean
1338 parse_option_cond (const char *s, ReqOption *option)
1339 {
1340 int i;
1341 split_rec option_term_rec;
1342
1343 /* All option or conditions are of the form:
1344 optionA + no-optionB + ...
1345 "Ands" are divided by "?". */
1346
1347 init_split_rec (&option_term_rec);
1348 split_string (&option_term_rec, s, '+', TRUE);
1349
1350 if (option_term_rec.count == 0)
1351 {
1352 clear_split_rec (&option_term_rec);
1353 return FALSE;
1354 }
1355
1356 for (i = 0; i < option_term_rec.count; i++)
1357 {
1358 char *option_name = option_term_rec.vec[i];
1359 bfd_boolean is_true = TRUE;
1360 ReqOrOption *req;
1361 ReqOrOption **r_p;
1362
1363 if (strncmp (option_name, "no-", 3) == 0)
1364 {
1365 option_name = xstrdup (&option_name[3]);
1366 is_true = FALSE;
1367 }
1368 else
1369 option_name = xstrdup (option_name);
1370
1371 req = (ReqOrOption *) xmalloc (sizeof (ReqOrOption));
1372 req->option_name = option_name;
1373 req->is_true = is_true;
1374 req->next = NULL;
1375
1376 /* Append to list. */
1377 for (r_p = &option->or_option_terms; (*r_p) != NULL;
1378 r_p = &(*r_p)->next)
1379 ;
1380 (*r_p) = req;
1381 }
1382 return TRUE;
1383 }
1384
1385
1386 /* Parse a string like:
1387 "insn op1, op2, op3, op4 | op1 != op2 | op2 == op3 | op4 == 1".
1388 I.E., instruction "insn" with 4 operands where operand 1 and 2 are not
1389 the same and operand 2 and 3 are the same and operand 4 is 1.
1390
1391 or:
1392
1393 "insn op1 | op1 == 1 / density + boolean / no-useroption".
1394 i.e. instruction "insn" with 1 operands where operand 1 is 1
1395 when "density" or "boolean" options are available and
1396 "useroption" is not available.
1397
1398 Because the current implementation of this parsing scheme uses
1399 split_string, it requires that '|' and '?' are only used as
1400 delimiters for predicates and required options. */
1401
1402 static bfd_boolean
1403 parse_insn_pattern (const char *in, insn_pattern *insn)
1404 {
1405 split_rec rec;
1406 split_rec optionrec;
1407 int i;
1408
1409 init_insn_pattern (insn);
1410
1411 init_split_rec (&optionrec);
1412 split_string (&optionrec, in, '?', TRUE);
1413 if (optionrec.count == 0)
1414 {
1415 clear_split_rec (&optionrec);
1416 return FALSE;
1417 }
1418
1419 init_split_rec (&rec);
1420
1421 split_string (&rec, optionrec.vec[0], '|', TRUE);
1422
1423 if (rec.count == 0)
1424 {
1425 clear_split_rec (&rec);
1426 clear_split_rec (&optionrec);
1427 return FALSE;
1428 }
1429
1430 if (!parse_insn_templ (rec.vec[0], &insn->t))
1431 {
1432 clear_split_rec (&rec);
1433 clear_split_rec (&optionrec);
1434 return FALSE;
1435 }
1436
1437 for (i = 1; i < rec.count; i++)
1438 {
1439 precond_e *cond = (precond_e *) xmalloc (sizeof (precond_e));
1440
1441 if (!parse_precond (rec.vec[i], cond))
1442 {
1443 clear_split_rec (&rec);
1444 clear_split_rec (&optionrec);
1445 clear_insn_pattern (insn);
1446 return FALSE;
1447 }
1448
1449 /* Append the condition. */
1450 *insn->preconds.tail = cond;
1451 insn->preconds.tail = &cond->next;
1452 }
1453
1454 for (i = 1; i < optionrec.count; i++)
1455 {
1456 /* Handle the option conditions. */
1457 ReqOption **r_p;
1458 ReqOption *req_option = (ReqOption *) xmalloc (sizeof (ReqOption));
1459 req_option->or_option_terms = NULL;
1460 req_option->next = NULL;
1461
1462 if (!parse_option_cond (optionrec.vec[i], req_option))
1463 {
1464 clear_split_rec (&rec);
1465 clear_split_rec (&optionrec);
1466 clear_insn_pattern (insn);
1467 clear_req_option_list (&req_option);
1468 return FALSE;
1469 }
1470
1471 /* Append the condition. */
1472 for (r_p = &insn->options; (*r_p) != NULL; r_p = &(*r_p)->next)
1473 ;
1474
1475 (*r_p) = req_option;
1476 }
1477
1478 clear_split_rec (&rec);
1479 clear_split_rec (&optionrec);
1480 return TRUE;
1481 }
1482
1483
1484 static bfd_boolean
1485 parse_insn_repl (const char *in, insn_repl *r_p)
1486 {
1487 /* This is a list of instruction templates separated by ';'. */
1488 split_rec rec;
1489 int i;
1490
1491 split_string (&rec, in, ';', TRUE);
1492
1493 for (i = 0; i < rec.count; i++)
1494 {
1495 insn_repl_e *e = (insn_repl_e *) xmalloc (sizeof (insn_repl_e));
1496
1497 e->next = NULL;
1498
1499 if (!parse_insn_templ (rec.vec[i], &e->t))
1500 {
1501 free (e);
1502 clear_insn_repl (r_p);
1503 return FALSE;
1504 }
1505 *r_p->tail = e;
1506 r_p->tail = &e->next;
1507 }
1508 return TRUE;
1509 }
1510
1511
1512 static bfd_boolean
1513 transition_applies (insn_pattern *initial_insn,
1514 const char *from_string ATTRIBUTE_UNUSED,
1515 const char *to_string ATTRIBUTE_UNUSED)
1516 {
1517 ReqOption *req_option;
1518
1519 for (req_option = initial_insn->options;
1520 req_option != NULL;
1521 req_option = req_option->next)
1522 {
1523 ReqOrOption *req_or_option = req_option->or_option_terms;
1524
1525 if (req_or_option == NULL
1526 || req_or_option->next != NULL)
1527 continue;
1528
1529 if (strncmp (req_or_option->option_name, "IsaUse", 6) == 0)
1530 {
1531 bfd_boolean option_available = FALSE;
1532 char *option_name = req_or_option->option_name + 6;
1533 if (!strcmp (option_name, "DensityInstruction"))
1534 option_available = (XCHAL_HAVE_DENSITY == 1);
1535 else if (!strcmp (option_name, "L32R"))
1536 option_available = (XCHAL_HAVE_L32R == 1);
1537 else if (!strcmp (option_name, "Const16"))
1538 option_available = (XCHAL_HAVE_CONST16 == 1);
1539 else if (!strcmp (option_name, "Loops"))
1540 option_available = (XCHAL_HAVE_LOOPS == 1);
1541 else if (!strcmp (option_name, "WideBranches"))
1542 option_available
1543 = (XCHAL_HAVE_WIDE_BRANCHES == 1 && produce_flix == FLIX_ALL);
1544 else if (!strcmp (option_name, "PredictedBranches"))
1545 option_available
1546 = (XCHAL_HAVE_PREDICTED_BRANCHES == 1
1547 && produce_flix == FLIX_ALL);
1548 else if (!strcmp (option_name, "Booleans"))
1549 option_available = (XCHAL_HAVE_BOOLEANS == 1);
1550 else
1551 as_warn (_("invalid configuration option '%s' in transition rule '%s'"),
1552 req_or_option->option_name, from_string);
1553 if ((option_available ^ req_or_option->is_true) != 0)
1554 return FALSE;
1555 }
1556 else if (strcmp (req_or_option->option_name, "realnop") == 0)
1557 {
1558 bfd_boolean nop_available =
1559 (xtensa_opcode_lookup (xtensa_default_isa, "nop")
1560 != XTENSA_UNDEFINED);
1561 if ((nop_available ^ req_or_option->is_true) != 0)
1562 return FALSE;
1563 }
1564 }
1565 return TRUE;
1566 }
1567
1568
1569 static bfd_boolean
1570 wide_branch_opcode (const char *opcode_name,
1571 const char *suffix,
1572 xtensa_opcode *popcode)
1573 {
1574 xtensa_isa isa = xtensa_default_isa;
1575 xtensa_opcode opcode;
1576 static char wbr_name_buf[20];
1577
1578 if (strncmp (opcode_name, "WIDE.", 5) != 0)
1579 return FALSE;
1580
1581 strcpy (wbr_name_buf, opcode_name + 5);
1582 strcat (wbr_name_buf, suffix);
1583 opcode = xtensa_opcode_lookup (isa, wbr_name_buf);
1584 if (opcode != XTENSA_UNDEFINED)
1585 {
1586 *popcode = opcode;
1587 return TRUE;
1588 }
1589
1590 return FALSE;
1591 }
1592
1593
1594 static TransitionRule *
1595 build_transition (insn_pattern *initial_insn,
1596 insn_repl *replace_insns,
1597 const char *from_string,
1598 const char *to_string)
1599 {
1600 TransitionRule *tr = NULL;
1601 xtensa_opcode opcode;
1602 xtensa_isa isa = xtensa_default_isa;
1603 BuildInstr *literal_bi;
1604
1605 opname_map_e *op1;
1606 opname_map_e *op2;
1607
1608 precond_e *precond;
1609 insn_repl_e *r;
1610
1611 if (!wide_branch_opcode (initial_insn->t.opcode_name, ".w18", &opcode)
1612 && !wide_branch_opcode (initial_insn->t.opcode_name, ".w15", &opcode))
1613 opcode = xtensa_opcode_lookup (isa, initial_insn->t.opcode_name);
1614
1615 if (opcode == XTENSA_UNDEFINED)
1616 {
1617 /* It is OK to not be able to translate some of these opcodes. */
1618 return NULL;
1619 }
1620
1621
1622 if (xtensa_opcode_num_operands (isa, opcode)
1623 != insn_templ_operand_count (&initial_insn->t))
1624 {
1625 /* This is also OK because there are opcodes that
1626 have different numbers of operands on different
1627 architecture variations. */
1628 return NULL;
1629 }
1630
1631 tr = (TransitionRule *) xmalloc (sizeof (TransitionRule));
1632 tr->opcode = opcode;
1633 tr->conditions = NULL;
1634 tr->to_instr = NULL;
1635
1636 /* Build the conditions. First, equivalent operand condition.... */
1637 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1638 {
1639 for (op2 = op1->next; op2 != NULL; op2 = op2->next)
1640 {
1641 if (same_operand_name (op1, op2))
1642 {
1643 append_value_condition (tr, OP_EQUAL,
1644 op1->operand_num, op2->operand_num);
1645 }
1646 }
1647 }
1648
1649 /* Now the condition that an operand value must be a constant.... */
1650 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1651 {
1652 if (op_is_constant (op1))
1653 {
1654 append_constant_value_condition (tr,
1655 OP_EQUAL,
1656 op1->operand_num,
1657 op_get_constant (op1));
1658 }
1659 }
1660
1661
1662 /* Now add the explicit preconditions listed after the "|" in the spec.
1663 These are currently very limited, so we do a special case
1664 parse for them. We expect spaces, opname != opname. */
1665 for (precond = initial_insn->preconds.head;
1666 precond != NULL;
1667 precond = precond->next)
1668 {
1669 op1 = NULL;
1670 op2 = NULL;
1671
1672 if (precond->opname1)
1673 {
1674 op1 = get_opmatch (&initial_insn->t.operand_map, precond->opname1);
1675 if (op1 == NULL)
1676 as_fatal (_("opcode '%s': no bound opname '%s' "
1677 "for precondition in '%s'"),
1678 xtensa_opcode_name (isa, opcode),
1679 precond->opname1, from_string);
1680 }
1681
1682 if (precond->opname2)
1683 {
1684 op2 = get_opmatch (&initial_insn->t.operand_map, precond->opname2);
1685 if (op2 == NULL)
1686 as_fatal (_("opcode '%s': no bound opname '%s' "
1687 "for precondition in %s"),
1688 xtensa_opcode_name (isa, opcode),
1689 precond->opname2, from_string);
1690 }
1691
1692 if (op1 == NULL && op2 == NULL)
1693 as_fatal (_("opcode '%s': precondition only contains "
1694 "constants in '%s'"),
1695 xtensa_opcode_name (isa, opcode), from_string);
1696 else if (op1 != NULL && op2 != NULL)
1697 append_value_condition (tr, precond->cmpop,
1698 op1->operand_num, op2->operand_num);
1699 else if (op2 == NULL)
1700 append_constant_value_condition (tr, precond->cmpop,
1701 op1->operand_num, precond->opval2);
1702 else
1703 append_constant_value_condition (tr, precond->cmpop,
1704 op2->operand_num, precond->opval1);
1705 }
1706
1707 tr->options = clone_req_option_list (initial_insn->options);
1708
1709 /* Generate the replacement instructions. Some of these
1710 "instructions" are actually labels and literals. There can be at
1711 most one literal and at most one label. A literal must be defined
1712 (e.g., "LITERAL %imm") before use (e.g., "%LITERAL"). The labels
1713 can be used before they are defined. Also there are a number of
1714 special operands (e.g., HI24S). */
1715
1716 literal_bi = NULL;
1717 for (r = replace_insns->head; r != NULL; r = r->next)
1718 {
1719 BuildInstr *bi;
1720 const char *opcode_name;
1721 int operand_count;
1722 opname_map_e *op;
1723 const char *fn_name;
1724 const char *operand_arg_name;
1725
1726 bi = (BuildInstr *) xmalloc (sizeof (BuildInstr));
1727 append_build_insn (tr, bi);
1728
1729 bi->opcode = XTENSA_UNDEFINED;
1730 bi->ops = NULL;
1731 bi->next = NULL;
1732
1733 opcode_name = r->t.opcode_name;
1734 operand_count = insn_templ_operand_count (&r->t);
1735
1736 if (strcmp (opcode_name, "LITERAL") == 0)
1737 {
1738 bi->typ = INSTR_LITERAL_DEF;
1739 if (operand_count != 1)
1740 as_fatal (_("expected one operand for generated literal"));
1741 literal_bi = bi;
1742 }
1743 else if (strcmp (opcode_name, "LABEL") == 0)
1744 {
1745 bi->typ = INSTR_LABEL_DEF;
1746 if (operand_count != 0)
1747 as_fatal (_("expected 0 operands for generated label"));
1748 }
1749 else
1750 {
1751 bi->typ = INSTR_INSTR;
1752 if (wide_branch_opcode (opcode_name, ".w18", &bi->opcode)
1753 || wide_branch_opcode (opcode_name, ".w15", &bi->opcode))
1754 opcode_name = xtensa_opcode_name (isa, bi->opcode);
1755 else
1756 bi->opcode = xtensa_opcode_lookup (isa, opcode_name);
1757
1758 if (bi->opcode == XTENSA_UNDEFINED)
1759 {
1760 as_warn (_("invalid opcode '%s' in transition rule '%s'"),
1761 opcode_name, to_string);
1762 return NULL;
1763 }
1764
1765 /* Check for the right number of ops. */
1766 if (xtensa_opcode_num_operands (isa, bi->opcode)
1767 != (int) operand_count)
1768 as_fatal (_("opcode '%s': replacement does not have %d ops"),
1769 opcode_name,
1770 xtensa_opcode_num_operands (isa, bi->opcode));
1771 }
1772
1773 for (op = r->t.operand_map.head; op != NULL; op = op->next)
1774 {
1775 unsigned idnum;
1776
1777 if (op_is_constant (op))
1778 append_constant_op (bi, op->operand_num, op_get_constant (op));
1779 else if (strcmp (op->operand_name, "%LITERAL") == 0)
1780 {
1781 if (! literal_bi || ! literal_bi->ops || literal_bi->ops->next)
1782 as_fatal (_("opcode '%s': cannot find literal definition"),
1783 opcode_name);
1784 append_literal_op (bi, op->operand_num,
1785 literal_bi->ops->op_data);
1786 }
1787 else if (strcmp (op->operand_name, "%LABEL") == 0)
1788 append_label_op (bi, op->operand_num);
1789 else if (op->operand_name[0] == 'a'
1790 && parse_constant (op->operand_name + 1, &idnum))
1791 append_constant_op (bi, op->operand_num, idnum);
1792 else if (op->operand_name[0] == '%')
1793 {
1794 opname_map_e *orig_op;
1795 orig_op = get_opmatch (&initial_insn->t.operand_map,
1796 op->operand_name);
1797 if (orig_op == NULL)
1798 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1799 opcode_name, op->operand_name, to_string);
1800 append_field_op (bi, op->operand_num, orig_op->operand_num);
1801 }
1802 else if (strcmp (op->operand_name, "FREEREG") == 0)
1803 {
1804 append_user_fn_field_op (bi, op->operand_num, OP_FREEREG, 0);
1805 }
1806 else if (parse_special_fn (op->operand_name,
1807 &fn_name, &operand_arg_name))
1808 {
1809 opname_map_e *orig_op;
1810 OpType typ = OP_CONSTANT;
1811
1812 if (strcmp (fn_name, "LOW8") == 0)
1813 typ = OP_OPERAND_LOW8;
1814 else if (strcmp (fn_name, "HI24S") == 0)
1815 typ = OP_OPERAND_HI24S;
1816 else if (strcmp (fn_name, "F32MINUS") == 0)
1817 typ = OP_OPERAND_F32MINUS;
1818 else if (strcmp (fn_name, "LOW16U") == 0)
1819 typ = OP_OPERAND_LOW16U;
1820 else if (strcmp (fn_name, "HI16U") == 0)
1821 typ = OP_OPERAND_HI16U;
1822 else
1823 as_fatal (_("unknown user-defined function %s"), fn_name);
1824
1825 orig_op = get_opmatch (&initial_insn->t.operand_map,
1826 operand_arg_name);
1827 if (orig_op == NULL)
1828 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1829 opcode_name, op->operand_name, to_string);
1830 append_user_fn_field_op (bi, op->operand_num,
1831 typ, orig_op->operand_num);
1832 }
1833 else
1834 as_fatal (_("opcode %s: could not parse operand '%s' in '%s'"),
1835 opcode_name, op->operand_name, to_string);
1836 }
1837 }
1838
1839 return tr;
1840 }
1841
1842
1843 static TransitionTable *
1844 build_transition_table (const string_pattern_pair *transitions,
1845 int transition_count,
1846 transition_cmp_fn cmp)
1847 {
1848 TransitionTable *table = NULL;
1849 int num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
1850 int i, tnum;
1851
1852 if (table != NULL)
1853 return table;
1854
1855 /* Otherwise, build it now. */
1856 table = (TransitionTable *) xmalloc (sizeof (TransitionTable));
1857 table->num_opcodes = num_opcodes;
1858 table->table =
1859 (TransitionList **) xmalloc (sizeof (TransitionTable *) * num_opcodes);
1860
1861 for (i = 0; i < num_opcodes; i++)
1862 table->table[i] = NULL;
1863
1864 for (tnum = 0; tnum < transition_count; tnum++)
1865 {
1866 const char *from_string = transitions[tnum].pattern;
1867 const char *to_string = transitions[tnum].replacement;
1868
1869 insn_pattern initial_insn;
1870 insn_repl replace_insns;
1871 TransitionRule *tr;
1872
1873 init_insn_pattern (&initial_insn);
1874 if (!parse_insn_pattern (from_string, &initial_insn))
1875 as_fatal (_("could not parse INSN_PATTERN '%s'"), from_string);
1876
1877 init_insn_repl (&replace_insns);
1878 if (!parse_insn_repl (to_string, &replace_insns))
1879 as_fatal (_("could not parse INSN_REPL '%s'"), to_string);
1880
1881 if (transition_applies (&initial_insn, from_string, to_string))
1882 {
1883 tr = build_transition (&initial_insn, &replace_insns,
1884 from_string, to_string);
1885 if (tr)
1886 append_transition (table, tr->opcode, tr, cmp);
1887 else
1888 {
1889 #if TENSILICA_DEBUG
1890 as_warn (_("could not build transition for %s => %s"),
1891 from_string, to_string);
1892 #endif
1893 }
1894 }
1895
1896 clear_insn_repl (&replace_insns);
1897 clear_insn_pattern (&initial_insn);
1898 }
1899 return table;
1900 }
1901
1902 \f
1903 extern TransitionTable *
1904 xg_build_widen_table (transition_cmp_fn cmp)
1905 {
1906 static TransitionTable *table = NULL;
1907 if (table == NULL)
1908 table = build_transition_table (widen_spec_list, WIDEN_COUNT, cmp);
1909 return table;
1910 }
1911
1912
1913 extern TransitionTable *
1914 xg_build_simplify_table (transition_cmp_fn cmp)
1915 {
1916 static TransitionTable *table = NULL;
1917 if (table == NULL)
1918 table = build_transition_table (simplify_spec_list, SIMPLIFY_COUNT, cmp);
1919 return table;
1920 }