gas: Update commit 4780e5e4933
[binutils-gdb.git] / gas / doc / as.texi
1 \input texinfo @c -*-Texinfo-*-
2 @c Copyright (C) 1991-2021 Free Software Foundation, Inc.
3 @c UPDATE!! On future updates--
4 @c (1) check for new machine-dep cmdline options in
5 @c md_parse_option definitions in config/tc-*.c
6 @c (2) for platform-specific directives, examine md_pseudo_op
7 @c in config/tc-*.c
8 @c (3) for object-format specific directives, examine obj_pseudo_op
9 @c in config/obj-*.c
10 @c (4) portable directives in potable[] in read.c
11 @c %**start of header
12 @setfilename as.info
13 @c ---config---
14 @macro gcctabopt{body}
15 @code{\body\}
16 @end macro
17 @c defaults, config file may override:
18 @set have-stabs
19 @c ---
20 @c man begin NAME
21 @c ---
22 @include asconfig.texi
23 @include bfdver.texi
24 @c ---
25 @c man end
26 @c ---
27 @c common OR combinations of conditions
28 @ifset COFF
29 @set COFF-ELF
30 @end ifset
31 @ifset ELF
32 @set COFF-ELF
33 @end ifset
34 @ifset AOUT
35 @set aout
36 @end ifset
37 @ifset ARM/Thumb
38 @set ARM
39 @end ifset
40 @ifset Blackfin
41 @set Blackfin
42 @end ifset
43 @ifset BPF
44 @set BPF
45 @end ifset
46 @ifset H8/300
47 @set H8
48 @end ifset
49 @ifset SH
50 @set H8
51 @end ifset
52 @ifset HPPA
53 @set abnormal-separator
54 @end ifset
55 @c ------------
56 @ifset GENERIC
57 @settitle Using @value{AS}
58 @end ifset
59 @ifclear GENERIC
60 @settitle Using @value{AS} (@value{TARGET})
61 @end ifclear
62 @setchapternewpage odd
63 @c %**end of header
64
65 @c @smallbook
66 @c @set SMALL
67 @c WARE! Some of the machine-dependent sections contain tables of machine
68 @c instructions. Except in multi-column format, these tables look silly.
69 @c Unfortunately, Texinfo doesn't have a general-purpose multi-col format, so
70 @c the multi-col format is faked within @example sections.
71 @c
72 @c Again unfortunately, the natural size that fits on a page, for these tables,
73 @c is different depending on whether or not smallbook is turned on.
74 @c This matters, because of order: text flow switches columns at each page
75 @c break.
76 @c
77 @c The format faked in this source works reasonably well for smallbook,
78 @c not well for the default large-page format. This manual expects that if you
79 @c turn on @smallbook, you will also uncomment the "@set SMALL" to enable the
80 @c tables in question. You can turn on one without the other at your
81 @c discretion, of course.
82 @ifinfo
83 @set SMALL
84 @c the insn tables look just as silly in info files regardless of smallbook,
85 @c might as well show 'em anyways.
86 @end ifinfo
87
88 @ifnottex
89 @dircategory Software development
90 @direntry
91 * As: (as). The GNU assembler.
92 * Gas: (as). The GNU assembler.
93 @end direntry
94 @end ifnottex
95
96 @finalout
97 @syncodeindex ky cp
98
99 @copying
100 This file documents the GNU Assembler "@value{AS}".
101
102 @c man begin COPYRIGHT
103 Copyright @copyright{} 1991-2021 Free Software Foundation, Inc.
104
105 Permission is granted to copy, distribute and/or modify this document
106 under the terms of the GNU Free Documentation License, Version 1.3
107 or any later version published by the Free Software Foundation;
108 with no Invariant Sections, with no Front-Cover Texts, and with no
109 Back-Cover Texts. A copy of the license is included in the
110 section entitled ``GNU Free Documentation License''.
111
112 @c man end
113 @end copying
114
115 @titlepage
116 @title Using @value{AS}
117 @subtitle The @sc{gnu} Assembler
118 @ifclear GENERIC
119 @subtitle for the @value{TARGET} family
120 @end ifclear
121 @ifset VERSION_PACKAGE
122 @sp 1
123 @subtitle @value{VERSION_PACKAGE}
124 @end ifset
125 @sp 1
126 @subtitle Version @value{VERSION}
127 @sp 1
128 @sp 13
129 The Free Software Foundation Inc.@: thanks The Nice Computer
130 Company of Australia for loaning Dean Elsner to write the
131 first (Vax) version of @command{as} for Project @sc{gnu}.
132 The proprietors, management and staff of TNCCA thank FSF for
133 distracting the boss while they got some work
134 done.
135 @sp 3
136 @author Dean Elsner, Jay Fenlason & friends
137 @page
138 @tex
139 {\parskip=0pt
140 \hfill {\it Using {\tt @value{AS}}}\par
141 \hfill Edited by Cygnus Support\par
142 }
143 %"boxit" macro for figures:
144 %Modified from Knuth's ``boxit'' macro from TeXbook (answer to exercise 21.3)
145 \gdef\boxit#1#2{\vbox{\hrule\hbox{\vrule\kern3pt
146 \vbox{\parindent=0pt\parskip=0pt\hsize=#1\kern3pt\strut\hfil
147 #2\hfil\strut\kern3pt}\kern3pt\vrule}\hrule}}%box with visible outline
148 \gdef\ibox#1#2{\hbox to #1{#2\hfil}\kern8pt}% invisible box
149 @end tex
150
151 @vskip 0pt plus 1filll
152 Copyright @copyright{} 1991-2021 Free Software Foundation, Inc.
153
154 Permission is granted to copy, distribute and/or modify this document
155 under the terms of the GNU Free Documentation License, Version 1.3
156 or any later version published by the Free Software Foundation;
157 with no Invariant Sections, with no Front-Cover Texts, and with no
158 Back-Cover Texts. A copy of the license is included in the
159 section entitled ``GNU Free Documentation License''.
160
161 @end titlepage
162 @contents
163
164 @ifnottex
165 @node Top
166 @top Using @value{AS}
167
168 This file is a user guide to the @sc{gnu} assembler @command{@value{AS}}
169 @ifset VERSION_PACKAGE
170 @value{VERSION_PACKAGE}
171 @end ifset
172 version @value{VERSION}.
173 @ifclear GENERIC
174 This version of the file describes @command{@value{AS}} configured to generate
175 code for @value{TARGET} architectures.
176 @end ifclear
177
178 This document is distributed under the terms of the GNU Free
179 Documentation License. A copy of the license is included in the
180 section entitled ``GNU Free Documentation License''.
181
182 @menu
183 * Overview:: Overview
184 * Invoking:: Command-Line Options
185 * Syntax:: Syntax
186 * Sections:: Sections and Relocation
187 * Symbols:: Symbols
188 * Expressions:: Expressions
189 * Pseudo Ops:: Assembler Directives
190 @ifset ELF
191 * Object Attributes:: Object Attributes
192 @end ifset
193 * Machine Dependencies:: Machine Dependent Features
194 * Reporting Bugs:: Reporting Bugs
195 * Acknowledgements:: Who Did What
196 * GNU Free Documentation License:: GNU Free Documentation License
197 * AS Index:: AS Index
198 @end menu
199 @end ifnottex
200
201 @node Overview
202 @chapter Overview
203 @iftex
204 This manual is a user guide to the @sc{gnu} assembler @command{@value{AS}}.
205 @ifclear GENERIC
206 This version of the manual describes @command{@value{AS}} configured to generate
207 code for @value{TARGET} architectures.
208 @end ifclear
209 @end iftex
210
211 @cindex invocation summary
212 @cindex option summary
213 @cindex summary of options
214 Here is a brief summary of how to invoke @command{@value{AS}}. For details,
215 see @ref{Invoking,,Command-Line Options}.
216
217 @c man title AS the portable GNU assembler.
218
219 @ignore
220 @c man begin SEEALSO
221 gcc(1), ld(1), and the Info entries for @file{binutils} and @file{ld}.
222 @c man end
223 @end ignore
224
225 @c We don't use deffn and friends for the following because they seem
226 @c to be limited to one line for the header.
227 @smallexample
228 @c man begin SYNOPSIS
229 @value{AS} [@b{-a}[@b{cdghlns}][=@var{file}]] [@b{--alternate}] [@b{-D}]
230 [@b{--compress-debug-sections}] [@b{--nocompress-debug-sections}]
231 [@b{--debug-prefix-map} @var{old}=@var{new}]
232 [@b{--defsym} @var{sym}=@var{val}] [@b{-f}] [@b{-g}] [@b{--gstabs}]
233 [@b{--gstabs+}] [@b{--gdwarf-<N>}] [@b{--gdwarf-sections}]
234 [@b{--gdwarf-cie-version}=@var{VERSION}]
235 [@b{--help}] [@b{-I} @var{dir}] [@b{-J}]
236 [@b{-K}] [@b{-L}] [@b{--listing-lhs-width}=@var{NUM}]
237 [@b{--listing-lhs-width2}=@var{NUM}] [@b{--listing-rhs-width}=@var{NUM}]
238 [@b{--listing-cont-lines}=@var{NUM}] [@b{--keep-locals}]
239 [@b{--no-pad-sections}]
240 [@b{-o} @var{objfile}] [@b{-R}]
241 [@b{--statistics}]
242 [@b{-v}] [@b{-version}] [@b{--version}]
243 [@b{-W}] [@b{--warn}] [@b{--fatal-warnings}] [@b{-w}] [@b{-x}]
244 [@b{-Z}] [@b{@@@var{FILE}}]
245 [@b{--sectname-subst}] [@b{--size-check=[error|warning]}]
246 [@b{--elf-stt-common=[no|yes]}]
247 [@b{--generate-missing-build-notes=[no|yes]}]
248 [@b{--multibyte-handling=[allow|warn|warn-sym-only]}]
249 [@b{--target-help}] [@var{target-options}]
250 [@b{--}|@var{files} @dots{}]
251 @c
252 @c man end
253 @c Target dependent options are listed below. Keep the list sorted.
254 @c Add an empty line for separation.
255 @c man begin TARGET
256 @ifset AARCH64
257
258 @emph{Target AArch64 options:}
259 [@b{-EB}|@b{-EL}]
260 [@b{-mabi}=@var{ABI}]
261 @end ifset
262 @ifset ALPHA
263
264 @emph{Target Alpha options:}
265 [@b{-m@var{cpu}}]
266 [@b{-mdebug} | @b{-no-mdebug}]
267 [@b{-replace} | @b{-noreplace}]
268 [@b{-relax}] [@b{-g}] [@b{-G@var{size}}]
269 [@b{-F}] [@b{-32addr}]
270 @end ifset
271 @ifset ARC
272
273 @emph{Target ARC options:}
274 [@b{-mcpu=@var{cpu}}]
275 [@b{-mA6}|@b{-mARC600}|@b{-mARC601}|@b{-mA7}|@b{-mARC700}|@b{-mEM}|@b{-mHS}]
276 [@b{-mcode-density}]
277 [@b{-mrelax}]
278 [@b{-EB}|@b{-EL}]
279 @end ifset
280 @ifset ARM
281
282 @emph{Target ARM options:}
283 @c Don't document the deprecated options
284 [@b{-mcpu}=@var{processor}[+@var{extension}@dots{}]]
285 [@b{-march}=@var{architecture}[+@var{extension}@dots{}]]
286 [@b{-mfpu}=@var{floating-point-format}]
287 [@b{-mfloat-abi}=@var{abi}]
288 [@b{-meabi}=@var{ver}]
289 [@b{-mthumb}]
290 [@b{-EB}|@b{-EL}]
291 [@b{-mapcs-32}|@b{-mapcs-26}|@b{-mapcs-float}|
292 @b{-mapcs-reentrant}]
293 [@b{-mthumb-interwork}] [@b{-k}]
294 @end ifset
295 @ifset Blackfin
296
297 @emph{Target Blackfin options:}
298 [@b{-mcpu}=@var{processor}[-@var{sirevision}]]
299 [@b{-mfdpic}]
300 [@b{-mno-fdpic}]
301 [@b{-mnopic}]
302 @end ifset
303 @ifset BPF
304
305 @emph{Target BPF options:}
306 [@b{-EL}] [@b{-EB}]
307 @end ifset
308 @ifset CRIS
309
310 @emph{Target CRIS options:}
311 [@b{--underscore} | @b{--no-underscore}]
312 [@b{--pic}] [@b{-N}]
313 [@b{--emulation=criself} | @b{--emulation=crisaout}]
314 [@b{--march=v0_v10} | @b{--march=v10} | @b{--march=v32} | @b{--march=common_v10_v32}]
315 @c Deprecated -- deliberately not documented.
316 @c [@b{-h}] [@b{-H}]
317 @end ifset
318 @ifset CSKY
319
320 @emph{Target C-SKY options:}
321 [@b{-march=@var{arch}}] [@b{-mcpu=@var{cpu}}]
322 [@b{-EL}] [@b{-mlittle-endian}] [@b{-EB}] [@b{-mbig-endian}]
323 [@b{-fpic}] [@b{-pic}]
324 [@b{-mljump}] [@b{-mno-ljump}]
325 [@b{-force2bsr}] [@b{-mforce2bsr}] [@b{-no-force2bsr}] [@b{-mno-force2bsr}]
326 [@b{-jsri2bsr}] [@b{-mjsri2bsr}] [@b{-no-jsri2bsr }] [@b{-mno-jsri2bsr}]
327 [@b{-mnolrw }] [@b{-mno-lrw}]
328 [@b{-melrw}] [@b{-mno-elrw}]
329 [@b{-mlaf }] [@b{-mliterals-after-func}]
330 [@b{-mno-laf}] [@b{-mno-literals-after-func}]
331 [@b{-mlabr}] [@b{-mliterals-after-br}]
332 [@b{-mno-labr}] [@b{-mnoliterals-after-br}]
333 [@b{-mistack}] [@b{-mno-istack}]
334 [@b{-mhard-float}] [@b{-mmp}] [@b{-mcp}] [@b{-mcache}]
335 [@b{-msecurity}] [@b{-mtrust}]
336 [@b{-mdsp}] [@b{-medsp}] [@b{-mvdsp}]
337 @end ifset
338 @ifset D10V
339
340 @emph{Target D10V options:}
341 [@b{-O}]
342 @end ifset
343 @ifset D30V
344
345 @emph{Target D30V options:}
346 [@b{-O}|@b{-n}|@b{-N}]
347 @end ifset
348 @ifset EPIPHANY
349
350 @emph{Target EPIPHANY options:}
351 [@b{-mepiphany}|@b{-mepiphany16}]
352 @end ifset
353 @ifset H8
354
355 @emph{Target H8/300 options:}
356 [-h-tick-hex]
357 @end ifset
358 @ifset HPPA
359 @c HPPA has no machine-dependent assembler options (yet).
360 @end ifset
361 @ifset I80386
362
363 @emph{Target i386 options:}
364 [@b{--32}|@b{--x32}|@b{--64}] [@b{-n}]
365 [@b{-march}=@var{CPU}[+@var{EXTENSION}@dots{}]] [@b{-mtune}=@var{CPU}]
366 @end ifset
367 @ifset IA64
368
369 @emph{Target IA-64 options:}
370 [@b{-mconstant-gp}|@b{-mauto-pic}]
371 [@b{-milp32}|@b{-milp64}|@b{-mlp64}|@b{-mp64}]
372 [@b{-mle}|@b{mbe}]
373 [@b{-mtune=itanium1}|@b{-mtune=itanium2}]
374 [@b{-munwind-check=warning}|@b{-munwind-check=error}]
375 [@b{-mhint.b=ok}|@b{-mhint.b=warning}|@b{-mhint.b=error}]
376 [@b{-x}|@b{-xexplicit}] [@b{-xauto}] [@b{-xdebug}]
377 @end ifset
378 @ifset IP2K
379
380 @emph{Target IP2K options:}
381 [@b{-mip2022}|@b{-mip2022ext}]
382 @end ifset
383 @ifset LOONGARCH
384
385 @emph{Target LOONGARCH options:}
386 [@b{-fpic}|@b{-fPIC}|@b{-fno-pic}]
387 @end ifset
388 @ifset M32C
389
390 @emph{Target M32C options:}
391 [@b{-m32c}|@b{-m16c}] [-relax] [-h-tick-hex]
392 @end ifset
393 @ifset M32R
394
395 @emph{Target M32R options:}
396 [@b{--m32rx}|@b{--[no-]warn-explicit-parallel-conflicts}|
397 @b{--W[n]p}]
398 @end ifset
399 @ifset M680X0
400
401 @emph{Target M680X0 options:}
402 [@b{-l}] [@b{-m68000}|@b{-m68010}|@b{-m68020}|@dots{}]
403 @end ifset
404 @ifset M68HC11
405
406 @emph{Target M68HC11 options:}
407 [@b{-m68hc11}|@b{-m68hc12}|@b{-m68hcs12}|@b{-mm9s12x}|@b{-mm9s12xg}]
408 [@b{-mshort}|@b{-mlong}]
409 [@b{-mshort-double}|@b{-mlong-double}]
410 [@b{--force-long-branches}] [@b{--short-branches}]
411 [@b{--strict-direct-mode}] [@b{--print-insn-syntax}]
412 [@b{--print-opcodes}] [@b{--generate-example}]
413 @end ifset
414 @ifset MCORE
415
416 @emph{Target MCORE options:}
417 [@b{-jsri2bsr}] [@b{-sifilter}] [@b{-relax}]
418 [@b{-mcpu=[210|340]}]
419 @end ifset
420 @ifset METAG
421
422 @emph{Target Meta options:}
423 [@b{-mcpu=@var{cpu}}] [@b{-mfpu=@var{cpu}}] [@b{-mdsp=@var{cpu}}]
424 @end ifset
425 @ifset MICROBLAZE
426 @emph{Target MICROBLAZE options:}
427 @c MicroBlaze has no machine-dependent assembler options.
428 @end ifset
429 @ifset MIPS
430
431 @emph{Target MIPS options:}
432 [@b{-nocpp}] [@b{-EL}] [@b{-EB}] [@b{-O}[@var{optimization level}]]
433 [@b{-g}[@var{debug level}]] [@b{-G} @var{num}] [@b{-KPIC}] [@b{-call_shared}]
434 [@b{-non_shared}] [@b{-xgot} [@b{-mvxworks-pic}]
435 [@b{-mabi}=@var{ABI}] [@b{-32}] [@b{-n32}] [@b{-64}] [@b{-mfp32}] [@b{-mgp32}]
436 [@b{-mfp64}] [@b{-mgp64}] [@b{-mfpxx}]
437 [@b{-modd-spreg}] [@b{-mno-odd-spreg}]
438 [@b{-march}=@var{CPU}] [@b{-mtune}=@var{CPU}] [@b{-mips1}] [@b{-mips2}]
439 [@b{-mips3}] [@b{-mips4}] [@b{-mips5}] [@b{-mips32}] [@b{-mips32r2}]
440 [@b{-mips32r3}] [@b{-mips32r5}] [@b{-mips32r6}] [@b{-mips64}] [@b{-mips64r2}]
441 [@b{-mips64r3}] [@b{-mips64r5}] [@b{-mips64r6}]
442 [@b{-construct-floats}] [@b{-no-construct-floats}]
443 [@b{-mignore-branch-isa}] [@b{-mno-ignore-branch-isa}]
444 [@b{-mnan=@var{encoding}}]
445 [@b{-trap}] [@b{-no-break}] [@b{-break}] [@b{-no-trap}]
446 [@b{-mips16}] [@b{-no-mips16}]
447 [@b{-mmips16e2}] [@b{-mno-mips16e2}]
448 [@b{-mmicromips}] [@b{-mno-micromips}]
449 [@b{-msmartmips}] [@b{-mno-smartmips}]
450 [@b{-mips3d}] [@b{-no-mips3d}]
451 [@b{-mdmx}] [@b{-no-mdmx}]
452 [@b{-mdsp}] [@b{-mno-dsp}]
453 [@b{-mdspr2}] [@b{-mno-dspr2}]
454 [@b{-mdspr3}] [@b{-mno-dspr3}]
455 [@b{-mmsa}] [@b{-mno-msa}]
456 [@b{-mxpa}] [@b{-mno-xpa}]
457 [@b{-mmt}] [@b{-mno-mt}]
458 [@b{-mmcu}] [@b{-mno-mcu}]
459 [@b{-mcrc}] [@b{-mno-crc}]
460 [@b{-mginv}] [@b{-mno-ginv}]
461 [@b{-mloongson-mmi}] [@b{-mno-loongson-mmi}]
462 [@b{-mloongson-cam}] [@b{-mno-loongson-cam}]
463 [@b{-mloongson-ext}] [@b{-mno-loongson-ext}]
464 [@b{-mloongson-ext2}] [@b{-mno-loongson-ext2}]
465 [@b{-minsn32}] [@b{-mno-insn32}]
466 [@b{-mfix7000}] [@b{-mno-fix7000}]
467 [@b{-mfix-rm7000}] [@b{-mno-fix-rm7000}]
468 [@b{-mfix-vr4120}] [@b{-mno-fix-vr4120}]
469 [@b{-mfix-vr4130}] [@b{-mno-fix-vr4130}]
470 [@b{-mfix-r5900}] [@b{-mno-fix-r5900}]
471 [@b{-mdebug}] [@b{-no-mdebug}]
472 [@b{-mpdr}] [@b{-mno-pdr}]
473 @end ifset
474 @ifset MMIX
475
476 @emph{Target MMIX options:}
477 [@b{--fixed-special-register-names}] [@b{--globalize-symbols}]
478 [@b{--gnu-syntax}] [@b{--relax}] [@b{--no-predefined-symbols}]
479 [@b{--no-expand}] [@b{--no-merge-gregs}] [@b{-x}]
480 [@b{--linker-allocated-gregs}]
481 @end ifset
482 @ifset NIOSII
483
484 @emph{Target Nios II options:}
485 [@b{-relax-all}] [@b{-relax-section}] [@b{-no-relax}]
486 [@b{-EB}] [@b{-EL}]
487 @end ifset
488 @ifset NDS32
489
490 @emph{Target NDS32 options:}
491 [@b{-EL}] [@b{-EB}] [@b{-O}] [@b{-Os}] [@b{-mcpu=@var{cpu}}]
492 [@b{-misa=@var{isa}}] [@b{-mabi=@var{abi}}] [@b{-mall-ext}]
493 [@b{-m[no-]16-bit}] [@b{-m[no-]perf-ext}] [@b{-m[no-]perf2-ext}]
494 [@b{-m[no-]string-ext}] [@b{-m[no-]dsp-ext}] [@b{-m[no-]mac}] [@b{-m[no-]div}]
495 [@b{-m[no-]audio-isa-ext}] [@b{-m[no-]fpu-sp-ext}] [@b{-m[no-]fpu-dp-ext}]
496 [@b{-m[no-]fpu-fma}] [@b{-mfpu-freg=@var{FREG}}] [@b{-mreduced-regs}]
497 [@b{-mfull-regs}] [@b{-m[no-]dx-regs}] [@b{-mpic}] [@b{-mno-relax}]
498 [@b{-mb2bb}]
499 @end ifset
500 @ifset OPENRISC
501 @c OpenRISC has no machine-dependent assembler options.
502 @end ifset
503 @ifset PDP11
504
505 @emph{Target PDP11 options:}
506 [@b{-mpic}|@b{-mno-pic}] [@b{-mall}] [@b{-mno-extensions}]
507 [@b{-m}@var{extension}|@b{-mno-}@var{extension}]
508 [@b{-m}@var{cpu}] [@b{-m}@var{machine}]
509 @end ifset
510 @ifset PJ
511
512 @emph{Target picoJava options:}
513 [@b{-mb}|@b{-me}]
514 @end ifset
515 @ifset PPC
516
517 @emph{Target PowerPC options:}
518 [@b{-a32}|@b{-a64}]
519 [@b{-mpwrx}|@b{-mpwr2}|@b{-mpwr}|@b{-m601}|@b{-mppc}|@b{-mppc32}|@b{-m603}|@b{-m604}|@b{-m403}|@b{-m405}|
520 @b{-m440}|@b{-m464}|@b{-m476}|@b{-m7400}|@b{-m7410}|@b{-m7450}|@b{-m7455}|@b{-m750cl}|@b{-mgekko}|
521 @b{-mbroadway}|@b{-mppc64}|@b{-m620}|@b{-me500}|@b{-e500x2}|@b{-me500mc}|@b{-me500mc64}|@b{-me5500}|
522 @b{-me6500}|@b{-mppc64bridge}|@b{-mbooke}|@b{-mpower4}|@b{-mpwr4}|@b{-mpower5}|@b{-mpwr5}|@b{-mpwr5x}|
523 @b{-mpower6}|@b{-mpwr6}|@b{-mpower7}|@b{-mpwr7}|@b{-mpower8}|@b{-mpwr8}|@b{-mpower9}|@b{-mpwr9}@b{-ma2}|
524 @b{-mcell}|@b{-mspe}|@b{-mspe2}|@b{-mtitan}|@b{-me300}|@b{-mcom}]
525 [@b{-many}] [@b{-maltivec}|@b{-mvsx}|@b{-mhtm}|@b{-mvle}]
526 [@b{-mregnames}|@b{-mno-regnames}]
527 [@b{-mrelocatable}|@b{-mrelocatable-lib}|@b{-K PIC}] [@b{-memb}]
528 [@b{-mlittle}|@b{-mlittle-endian}|@b{-le}|@b{-mbig}|@b{-mbig-endian}|@b{-be}]
529 [@b{-msolaris}|@b{-mno-solaris}]
530 [@b{-nops=@var{count}}]
531 @end ifset
532 @ifset PRU
533
534 @emph{Target PRU options:}
535 [@b{-link-relax}]
536 [@b{-mnolink-relax}]
537 [@b{-mno-warn-regname-label}]
538 @end ifset
539 @ifset RISCV
540
541 @emph{Target RISC-V options:}
542 [@b{-fpic}|@b{-fPIC}|@b{-fno-pic}]
543 [@b{-march}=@var{ISA}]
544 [@b{-mabi}=@var{ABI}]
545 [@b{-mlittle-endian}|@b{-mbig-endian}]
546 @end ifset
547 @ifset RL78
548
549 @emph{Target RL78 options:}
550 [@b{-mg10}]
551 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
552 @end ifset
553 @ifset RX
554
555 @emph{Target RX options:}
556 [@b{-mlittle-endian}|@b{-mbig-endian}]
557 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
558 [@b{-muse-conventional-section-names}]
559 [@b{-msmall-data-limit}]
560 [@b{-mpid}]
561 [@b{-mrelax}]
562 [@b{-mint-register=@var{number}}]
563 [@b{-mgcc-abi}|@b{-mrx-abi}]
564 @end ifset
565 @ifset S390
566
567 @emph{Target s390 options:}
568 [@b{-m31}|@b{-m64}] [@b{-mesa}|@b{-mzarch}] [@b{-march}=@var{CPU}]
569 [@b{-mregnames}|@b{-mno-regnames}]
570 [@b{-mwarn-areg-zero}]
571 @end ifset
572 @ifset SCORE
573
574 @emph{Target SCORE options:}
575 [@b{-EB}][@b{-EL}][@b{-FIXDD}][@b{-NWARN}]
576 [@b{-SCORE5}][@b{-SCORE5U}][@b{-SCORE7}][@b{-SCORE3}]
577 [@b{-march=score7}][@b{-march=score3}]
578 [@b{-USE_R1}][@b{-KPIC}][@b{-O0}][@b{-G} @var{num}][@b{-V}]
579 @end ifset
580 @ifset SPARC
581
582 @emph{Target SPARC options:}
583 @c The order here is important. See c-sparc.texi.
584 [@b{-Av6}|@b{-Av7}|@b{-Av8}|@b{-Aleon}|@b{-Asparclet}|@b{-Asparclite}
585 @b{-Av8plus}|@b{-Av8plusa}|@b{-Av8plusb}|@b{-Av8plusc}|@b{-Av8plusd}
586 @b{-Av8plusv}|@b{-Av8plusm}|@b{-Av9}|@b{-Av9a}|@b{-Av9b}|@b{-Av9c}
587 @b{-Av9d}|@b{-Av9e}|@b{-Av9v}|@b{-Av9m}|@b{-Asparc}|@b{-Asparcvis}
588 @b{-Asparcvis2}|@b{-Asparcfmaf}|@b{-Asparcima}|@b{-Asparcvis3}
589 @b{-Asparcvisr}|@b{-Asparc5}]
590 [@b{-xarch=v8plus}|@b{-xarch=v8plusa}]|@b{-xarch=v8plusb}|@b{-xarch=v8plusc}
591 @b{-xarch=v8plusd}|@b{-xarch=v8plusv}|@b{-xarch=v8plusm}|@b{-xarch=v9}
592 @b{-xarch=v9a}|@b{-xarch=v9b}|@b{-xarch=v9c}|@b{-xarch=v9d}|@b{-xarch=v9e}
593 @b{-xarch=v9v}|@b{-xarch=v9m}|@b{-xarch=sparc}|@b{-xarch=sparcvis}
594 @b{-xarch=sparcvis2}|@b{-xarch=sparcfmaf}|@b{-xarch=sparcima}
595 @b{-xarch=sparcvis3}|@b{-xarch=sparcvisr}|@b{-xarch=sparc5}
596 @b{-bump}]
597 [@b{-32}|@b{-64}]
598 [@b{--enforce-aligned-data}][@b{--dcti-couples-detect}]
599 @end ifset
600 @ifset TIC54X
601
602 @emph{Target TIC54X options:}
603 [@b{-mcpu=54[123589]}|@b{-mcpu=54[56]lp}] [@b{-mfar-mode}|@b{-mf}]
604 [@b{-merrors-to-file} @var{<filename>}|@b{-me} @var{<filename>}]
605 @end ifset
606 @ifset TIC6X
607
608 @emph{Target TIC6X options:}
609 [@b{-march=@var{arch}}] [@b{-mbig-endian}|@b{-mlittle-endian}]
610 [@b{-mdsbt}|@b{-mno-dsbt}] [@b{-mpid=no}|@b{-mpid=near}|@b{-mpid=far}]
611 [@b{-mpic}|@b{-mno-pic}]
612 @end ifset
613 @ifset TILEGX
614
615 @emph{Target TILE-Gx options:}
616 [@b{-m32}|@b{-m64}][@b{-EB}][@b{-EL}]
617 @end ifset
618 @ifset TILEPRO
619 @c TILEPro has no machine-dependent assembler options
620 @end ifset
621 @ifset VISIUM
622
623 @emph{Target Visium options:}
624 [@b{-mtune=@var{arch}}]
625 @end ifset
626 @ifset XTENSA
627
628 @emph{Target Xtensa options:}
629 [@b{--[no-]text-section-literals}] [@b{--[no-]auto-litpools}]
630 [@b{--[no-]absolute-literals}]
631 [@b{--[no-]target-align}] [@b{--[no-]longcalls}]
632 [@b{--[no-]transform}]
633 [@b{--rename-section} @var{oldname}=@var{newname}]
634 [@b{--[no-]trampolines}]
635 [@b{--abi-windowed}|@b{--abi-call0}]
636 @end ifset
637 @ifset Z80
638
639 @emph{Target Z80 options:}
640 [@b{-march=@var{CPU}@var{[-EXT]}@var{[+EXT]}}]
641 [@b{-local-prefix=}@var{PREFIX}]
642 [@b{-colonless}]
643 [@b{-sdcc}]
644 [@b{-fp-s=}@var{FORMAT}]
645 [@b{-fp-d=}@var{FORMAT}]
646 @end ifset
647 @ifset Z8000
648
649 @c Z8000 has no machine-dependent assembler options
650 @end ifset
651
652 @c man end
653 @end smallexample
654
655 @c man begin OPTIONS
656
657 @table @gcctabopt
658 @include at-file.texi
659
660 @item -a[cdghlmns]
661 Turn on listings, in any of a variety of ways:
662
663 @table @gcctabopt
664 @item -ac
665 omit false conditionals
666
667 @item -ad
668 omit debugging directives
669
670 @item -ag
671 include general information, like @value{AS} version and options passed
672
673 @item -ah
674 include high-level source
675
676 @item -al
677 include assembly
678
679 @item -am
680 include macro expansions
681
682 @item -an
683 omit forms processing
684
685 @item -as
686 include symbols
687
688 @item =file
689 set the name of the listing file
690 @end table
691
692 You may combine these options; for example, use @samp{-aln} for assembly
693 listing without forms processing. The @samp{=file} option, if used, must be
694 the last one. By itself, @samp{-a} defaults to @samp{-ahls}.
695
696 @item --alternate
697 Begin in alternate macro mode.
698 @ifclear man
699 @xref{Altmacro,,@code{.altmacro}}.
700 @end ifclear
701
702 @item --compress-debug-sections
703 Compress DWARF debug sections using zlib with SHF_COMPRESSED from the
704 ELF ABI. The resulting object file may not be compatible with older
705 linkers and object file utilities. Note if compression would make a
706 given section @emph{larger} then it is not compressed.
707
708 @ifset ELF
709 @cindex @samp{--compress-debug-sections=} option
710 @item --compress-debug-sections=none
711 @itemx --compress-debug-sections=zlib
712 @itemx --compress-debug-sections=zlib-gnu
713 @itemx --compress-debug-sections=zlib-gabi
714 These options control how DWARF debug sections are compressed.
715 @option{--compress-debug-sections=none} is equivalent to
716 @option{--nocompress-debug-sections}.
717 @option{--compress-debug-sections=zlib} and
718 @option{--compress-debug-sections=zlib-gabi} are equivalent to
719 @option{--compress-debug-sections}.
720 @option{--compress-debug-sections=zlib-gnu} compresses DWARF debug
721 sections using zlib. The debug sections are renamed to begin with
722 @samp{.zdebug}. Note if compression would make a given section
723 @emph{larger} then it is not compressed nor renamed.
724
725 @end ifset
726
727 @item --nocompress-debug-sections
728 Do not compress DWARF debug sections. This is usually the default for all
729 targets except the x86/x86_64, but a configure time option can be used to
730 override this.
731
732 @item -D
733 Ignored. This option is accepted for script compatibility with calls to
734 other assemblers.
735
736 @item --debug-prefix-map @var{old}=@var{new}
737 When assembling files in directory @file{@var{old}}, record debugging
738 information describing them as in @file{@var{new}} instead.
739
740 @item --defsym @var{sym}=@var{value}
741 Define the symbol @var{sym} to be @var{value} before assembling the input file.
742 @var{value} must be an integer constant. As in C, a leading @samp{0x}
743 indicates a hexadecimal value, and a leading @samp{0} indicates an octal
744 value. The value of the symbol can be overridden inside a source file via the
745 use of a @code{.set} pseudo-op.
746
747 @item -f
748 ``fast''---skip whitespace and comment preprocessing (assume source is
749 compiler output).
750
751 @item -g
752 @itemx --gen-debug
753 Generate debugging information for each assembler source line using whichever
754 debug format is preferred by the target. This currently means either STABS,
755 ECOFF or DWARF2. When the debug format is DWARF then a @code{.debug_info} and
756 @code{.debug_line} section is only emitted when the assembly file doesn't
757 generate one itself.
758
759 @item --gstabs
760 Generate stabs debugging information for each assembler line. This
761 may help debugging assembler code, if the debugger can handle it.
762
763 @item --gstabs+
764 Generate stabs debugging information for each assembler line, with GNU
765 extensions that probably only gdb can handle, and that could make other
766 debuggers crash or refuse to read your program. This
767 may help debugging assembler code. Currently the only GNU extension is
768 the location of the current working directory at assembling time.
769
770 @item --gdwarf-2
771 Generate DWARF2 debugging information for each assembler line. This
772 may help debugging assembler code, if the debugger can handle it. Note---this
773 option is only supported by some targets, not all of them.
774
775 @item --gdwarf-3
776 This option is the same as the @option{--gdwarf-2} option, except that it
777 allows for the possibility of the generation of extra debug information as per
778 version 3 of the DWARF specification. Note - enabling this option does not
779 guarantee the generation of any extra information, the choice to do so is on a
780 per target basis.
781
782 @item --gdwarf-4
783 This option is the same as the @option{--gdwarf-2} option, except that it
784 allows for the possibility of the generation of extra debug information as per
785 version 4 of the DWARF specification. Note - enabling this option does not
786 guarantee the generation of any extra information, the choice to do so is on a
787 per target basis.
788
789 @item --gdwarf-5
790 This option is the same as the @option{--gdwarf-2} option, except that it
791 allows for the possibility of the generation of extra debug information as per
792 version 5 of the DWARF specification. Note - enabling this option does not
793 guarantee the generation of any extra information, the choice to do so is on a
794 per target basis.
795
796 @item --gdwarf-sections
797 Instead of creating a .debug_line section, create a series of
798 .debug_line.@var{foo} sections where @var{foo} is the name of the
799 corresponding code section. For example a code section called @var{.text.func}
800 will have its dwarf line number information placed into a section called
801 @var{.debug_line.text.func}. If the code section is just called @var{.text}
802 then debug line section will still be called just @var{.debug_line} without any
803 suffix.
804
805 @item --gdwarf-cie-version=@var{version}
806 Control which version of DWARF Common Information Entries (CIEs) are produced.
807 When this flag is not specificed the default is version 1, though some targets
808 can modify this default. Other possible values for @var{version} are 3 or 4.
809
810 @ifset ELF
811 @item --size-check=error
812 @itemx --size-check=warning
813 Issue an error or warning for invalid ELF .size directive.
814
815 @item --elf-stt-common=no
816 @itemx --elf-stt-common=yes
817 These options control whether the ELF assembler should generate common
818 symbols with the @code{STT_COMMON} type. The default can be controlled
819 by a configure option @option{--enable-elf-stt-common}.
820
821 @item --generate-missing-build-notes=yes
822 @itemx --generate-missing-build-notes=no
823 These options control whether the ELF assembler should generate GNU Build
824 attribute notes if none are present in the input sources.
825 The default can be controlled by the @option{--enable-generate-build-notes}
826 configure option.
827
828 @end ifset
829
830 @item --help
831 Print a summary of the command-line options and exit.
832
833 @item --target-help
834 Print a summary of all target specific options and exit.
835
836 @item -I @var{dir}
837 Add directory @var{dir} to the search list for @code{.include} directives.
838
839 @item -J
840 Don't warn about signed overflow.
841
842 @item -K
843 @ifclear DIFF-TBL-KLUGE
844 This option is accepted but has no effect on the @value{TARGET} family.
845 @end ifclear
846 @ifset DIFF-TBL-KLUGE
847 Issue warnings when difference tables altered for long displacements.
848 @end ifset
849
850 @item -L
851 @itemx --keep-locals
852 Keep (in the symbol table) local symbols. These symbols start with
853 system-specific local label prefixes, typically @samp{.L} for ELF systems
854 or @samp{L} for traditional a.out systems.
855 @ifclear man
856 @xref{Symbol Names}.
857 @end ifclear
858
859 @item --listing-lhs-width=@var{number}
860 Set the maximum width, in words, of the output data column for an assembler
861 listing to @var{number}.
862
863 @item --listing-lhs-width2=@var{number}
864 Set the maximum width, in words, of the output data column for continuation
865 lines in an assembler listing to @var{number}.
866
867 @item --listing-rhs-width=@var{number}
868 Set the maximum width of an input source line, as displayed in a listing, to
869 @var{number} bytes.
870
871 @item --listing-cont-lines=@var{number}
872 Set the maximum number of lines printed in a listing for a single line of input
873 to @var{number} + 1.
874
875 @item --multibyte-handling=allow
876 @itemx --multibyte-handling=warn
877 @itemx --multibyte-handling=warn-sym-only
878 Controls how the assembler handles multibyte characters in the input. The
879 default (which can be restored by using the @option{allow} argument) is to
880 allow such characters without complaint. Using the @option{warn} argument will
881 make the assembler generate a warning message whenever any multibyte character
882 is encountered. Using the @option{warn-sym-only} argument will only cause a
883 warning to be generated when a symbol is defined with a name that contains
884 multibyte characters. (References to undefined symbols will not generate a
885 warning).
886
887 @item --no-pad-sections
888 Stop the assembler for padding the ends of output sections to the alignment
889 of that section. The default is to pad the sections, but this can waste space
890 which might be needed on targets which have tight memory constraints.
891
892 @item -o @var{objfile}
893 Name the object-file output from @command{@value{AS}} @var{objfile}.
894
895 @item -R
896 Fold the data section into the text section.
897
898 @ifset ELF
899 @item --sectname-subst
900 Honor substitution sequences in section names.
901 @ifclear man
902 @xref{Section Name Substitutions,,@code{.section @var{name}}}.
903 @end ifclear
904 @end ifset
905
906 @item --statistics
907 Print the maximum space (in bytes) and total time (in seconds) used by
908 assembly.
909
910 @item --strip-local-absolute
911 Remove local absolute symbols from the outgoing symbol table.
912
913 @item -v
914 @itemx -version
915 Print the @command{as} version.
916
917 @item --version
918 Print the @command{as} version and exit.
919
920 @item -W
921 @itemx --no-warn
922 Suppress warning messages.
923
924 @item --fatal-warnings
925 Treat warnings as errors.
926
927 @item --warn
928 Don't suppress warning messages or treat them as errors.
929
930 @item -w
931 Ignored.
932
933 @item -x
934 Ignored.
935
936 @item -Z
937 Generate an object file even after errors.
938
939 @item -- | @var{files} @dots{}
940 Standard input, or source files to assemble.
941
942 @end table
943 @c man end
944
945 @ifset AARCH64
946
947 @ifclear man
948 @xref{AArch64 Options}, for the options available when @value{AS} is configured
949 for the 64-bit mode of the ARM Architecture (AArch64).
950 @end ifclear
951
952 @ifset man
953 @c man begin OPTIONS
954 The following options are available when @value{AS} is configured for the
955 64-bit mode of the ARM Architecture (AArch64).
956 @c man end
957 @c man begin INCLUDE
958 @include c-aarch64.texi
959 @c ended inside the included file
960 @end ifset
961
962 @end ifset
963
964 @ifset ALPHA
965
966 @ifclear man
967 @xref{Alpha Options}, for the options available when @value{AS} is configured
968 for an Alpha processor.
969 @end ifclear
970
971 @ifset man
972 @c man begin OPTIONS
973 The following options are available when @value{AS} is configured for an Alpha
974 processor.
975 @c man end
976 @c man begin INCLUDE
977 @include c-alpha.texi
978 @c ended inside the included file
979 @end ifset
980
981 @end ifset
982
983 @c man begin OPTIONS
984 @ifset ARC
985 The following options are available when @value{AS} is configured for an ARC
986 processor.
987
988 @table @gcctabopt
989 @item -mcpu=@var{cpu}
990 This option selects the core processor variant.
991 @item -EB | -EL
992 Select either big-endian (-EB) or little-endian (-EL) output.
993 @item -mcode-density
994 Enable Code Density extension instructions.
995 @end table
996 @end ifset
997
998 @ifset ARM
999 The following options are available when @value{AS} is configured for the ARM
1000 processor family.
1001
1002 @table @gcctabopt
1003 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
1004 Specify which ARM processor variant is the target.
1005 @item -march=@var{architecture}[+@var{extension}@dots{}]
1006 Specify which ARM architecture variant is used by the target.
1007 @item -mfpu=@var{floating-point-format}
1008 Select which Floating Point architecture is the target.
1009 @item -mfloat-abi=@var{abi}
1010 Select which floating point ABI is in use.
1011 @item -mthumb
1012 Enable Thumb only instruction decoding.
1013 @item -mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
1014 Select which procedure calling convention is in use.
1015 @item -EB | -EL
1016 Select either big-endian (-EB) or little-endian (-EL) output.
1017 @item -mthumb-interwork
1018 Specify that the code has been generated with interworking between Thumb and
1019 ARM code in mind.
1020 @item -mccs
1021 Turns on CodeComposer Studio assembly syntax compatibility mode.
1022 @item -k
1023 Specify that PIC code has been generated.
1024 @end table
1025 @end ifset
1026 @c man end
1027
1028 @ifset Blackfin
1029
1030 @ifclear man
1031 @xref{Blackfin Options}, for the options available when @value{AS} is
1032 configured for the Blackfin processor family.
1033 @end ifclear
1034
1035 @ifset man
1036 @c man begin OPTIONS
1037 The following options are available when @value{AS} is configured for
1038 the Blackfin processor family.
1039 @c man end
1040 @c man begin INCLUDE
1041 @include c-bfin.texi
1042 @c ended inside the included file
1043 @end ifset
1044
1045 @end ifset
1046
1047 @ifset BPF
1048
1049 @ifclear man
1050 @xref{BPF Options}, for the options available when @value{AS} is
1051 configured for the Linux kernel BPF processor family.
1052 @end ifclear
1053
1054 @ifset man
1055 @c man begin OPTIONS
1056 The following options are available when @value{AS} is configured for
1057 the Linux kernel BPF processor family.
1058 @c man end
1059 @c man begin INCLUDE
1060 @include c-bpf.texi
1061 @c ended inside the included file
1062 @end ifset
1063
1064 @end ifset
1065
1066 @c man begin OPTIONS
1067 @ifset CRIS
1068 See the info pages for documentation of the CRIS-specific options.
1069 @end ifset
1070
1071 @ifset CSKY
1072
1073 @ifclear man
1074 @xref{C-SKY Options}, for the options available when @value{AS} is
1075 configured for the C-SKY processor family.
1076 @end ifclear
1077
1078 @ifset man
1079 @c man begin OPTIONS
1080 The following options are available when @value{AS} is configured for
1081 the C-SKY processor family.
1082 @c man end
1083 @c man begin INCLUDE
1084 @include c-csky.texi
1085 @c ended inside the included file
1086 @end ifset
1087
1088 @end ifset
1089
1090 @ifset D10V
1091 The following options are available when @value{AS} is configured for
1092 a D10V processor.
1093 @table @gcctabopt
1094 @cindex D10V optimization
1095 @cindex optimization, D10V
1096 @item -O
1097 Optimize output by parallelizing instructions.
1098 @end table
1099 @end ifset
1100
1101 @ifset D30V
1102 The following options are available when @value{AS} is configured for a D30V
1103 processor.
1104 @table @gcctabopt
1105 @cindex D30V optimization
1106 @cindex optimization, D30V
1107 @item -O
1108 Optimize output by parallelizing instructions.
1109
1110 @cindex D30V nops
1111 @item -n
1112 Warn when nops are generated.
1113
1114 @cindex D30V nops after 32-bit multiply
1115 @item -N
1116 Warn when a nop after a 32-bit multiply instruction is generated.
1117 @end table
1118 @end ifset
1119 @c man end
1120
1121 @ifset EPIPHANY
1122 The following options are available when @value{AS} is configured for the
1123 Adapteva EPIPHANY series.
1124
1125 @ifclear man
1126 @xref{Epiphany Options}, for the options available when @value{AS} is
1127 configured for an Epiphany processor.
1128 @end ifclear
1129
1130 @ifset man
1131 @c man begin OPTIONS
1132 The following options are available when @value{AS} is configured for
1133 an Epiphany processor.
1134 @c man end
1135 @c man begin INCLUDE
1136 @include c-epiphany.texi
1137 @c ended inside the included file
1138 @end ifset
1139
1140 @end ifset
1141
1142 @ifset H8300
1143
1144 @ifclear man
1145 @xref{H8/300 Options}, for the options available when @value{AS} is configured
1146 for an H8/300 processor.
1147 @end ifclear
1148
1149 @ifset man
1150 @c man begin OPTIONS
1151 The following options are available when @value{AS} is configured for an H8/300
1152 processor.
1153 @c man end
1154 @c man begin INCLUDE
1155 @include c-h8300.texi
1156 @c ended inside the included file
1157 @end ifset
1158
1159 @end ifset
1160
1161 @ifset I80386
1162
1163 @ifclear man
1164 @xref{i386-Options}, for the options available when @value{AS} is
1165 configured for an i386 processor.
1166 @end ifclear
1167
1168 @ifset man
1169 @c man begin OPTIONS
1170 The following options are available when @value{AS} is configured for
1171 an i386 processor.
1172 @c man end
1173 @c man begin INCLUDE
1174 @include c-i386.texi
1175 @c ended inside the included file
1176 @end ifset
1177
1178 @end ifset
1179
1180 @c man begin OPTIONS
1181 @ifset IP2K
1182 The following options are available when @value{AS} is configured for the
1183 Ubicom IP2K series.
1184
1185 @table @gcctabopt
1186
1187 @item -mip2022ext
1188 Specifies that the extended IP2022 instructions are allowed.
1189
1190 @item -mip2022
1191 Restores the default behaviour, which restricts the permitted instructions to
1192 just the basic IP2022 ones.
1193
1194 @end table
1195 @end ifset
1196
1197 @ifset M32C
1198 The following options are available when @value{AS} is configured for the
1199 Renesas M32C and M16C processors.
1200
1201 @table @gcctabopt
1202
1203 @item -m32c
1204 Assemble M32C instructions.
1205
1206 @item -m16c
1207 Assemble M16C instructions (the default).
1208
1209 @item -relax
1210 Enable support for link-time relaxations.
1211
1212 @item -h-tick-hex
1213 Support H'00 style hex constants in addition to 0x00 style.
1214
1215 @end table
1216 @end ifset
1217
1218 @ifset M32R
1219 The following options are available when @value{AS} is configured for the
1220 Renesas M32R (formerly Mitsubishi M32R) series.
1221
1222 @table @gcctabopt
1223
1224 @item --m32rx
1225 Specify which processor in the M32R family is the target. The default
1226 is normally the M32R, but this option changes it to the M32RX.
1227
1228 @item --warn-explicit-parallel-conflicts or --Wp
1229 Produce warning messages when questionable parallel constructs are
1230 encountered.
1231
1232 @item --no-warn-explicit-parallel-conflicts or --Wnp
1233 Do not produce warning messages when questionable parallel constructs are
1234 encountered.
1235
1236 @end table
1237 @end ifset
1238
1239 @ifset M680X0
1240 The following options are available when @value{AS} is configured for the
1241 Motorola 68000 series.
1242
1243 @table @gcctabopt
1244
1245 @item -l
1246 Shorten references to undefined symbols, to one word instead of two.
1247
1248 @item -m68000 | -m68008 | -m68010 | -m68020 | -m68030
1249 @itemx | -m68040 | -m68060 | -m68302 | -m68331 | -m68332
1250 @itemx | -m68333 | -m68340 | -mcpu32 | -m5200
1251 Specify what processor in the 68000 family is the target. The default
1252 is normally the 68020, but this can be changed at configuration time.
1253
1254 @item -m68881 | -m68882 | -mno-68881 | -mno-68882
1255 The target machine does (or does not) have a floating-point coprocessor.
1256 The default is to assume a coprocessor for 68020, 68030, and cpu32. Although
1257 the basic 68000 is not compatible with the 68881, a combination of the
1258 two can be specified, since it's possible to do emulation of the
1259 coprocessor instructions with the main processor.
1260
1261 @item -m68851 | -mno-68851
1262 The target machine does (or does not) have a memory-management
1263 unit coprocessor. The default is to assume an MMU for 68020 and up.
1264
1265 @end table
1266 @end ifset
1267
1268 @ifset NIOSII
1269
1270 @ifclear man
1271 @xref{Nios II Options}, for the options available when @value{AS} is configured
1272 for an Altera Nios II processor.
1273 @end ifclear
1274
1275 @ifset man
1276 @c man begin OPTIONS
1277 The following options are available when @value{AS} is configured for an
1278 Altera Nios II processor.
1279 @c man end
1280 @c man begin INCLUDE
1281 @include c-nios2.texi
1282 @c ended inside the included file
1283 @end ifset
1284 @end ifset
1285
1286 @ifset PDP11
1287
1288 For details about the PDP-11 machine dependent features options,
1289 see @ref{PDP-11-Options}.
1290
1291 @table @gcctabopt
1292 @item -mpic | -mno-pic
1293 Generate position-independent (or position-dependent) code. The
1294 default is @option{-mpic}.
1295
1296 @item -mall
1297 @itemx -mall-extensions
1298 Enable all instruction set extensions. This is the default.
1299
1300 @item -mno-extensions
1301 Disable all instruction set extensions.
1302
1303 @item -m@var{extension} | -mno-@var{extension}
1304 Enable (or disable) a particular instruction set extension.
1305
1306 @item -m@var{cpu}
1307 Enable the instruction set extensions supported by a particular CPU, and
1308 disable all other extensions.
1309
1310 @item -m@var{machine}
1311 Enable the instruction set extensions supported by a particular machine
1312 model, and disable all other extensions.
1313 @end table
1314
1315 @end ifset
1316
1317 @ifset PJ
1318 The following options are available when @value{AS} is configured for
1319 a picoJava processor.
1320
1321 @table @gcctabopt
1322
1323 @cindex PJ endianness
1324 @cindex endianness, PJ
1325 @cindex big endian output, PJ
1326 @item -mb
1327 Generate ``big endian'' format output.
1328
1329 @cindex little endian output, PJ
1330 @item -ml
1331 Generate ``little endian'' format output.
1332
1333 @end table
1334 @end ifset
1335
1336 @ifset PRU
1337
1338 @ifclear man
1339 @xref{PRU Options}, for the options available when @value{AS} is configured
1340 for a PRU processor.
1341 @end ifclear
1342
1343 @ifset man
1344 @c man begin OPTIONS
1345 The following options are available when @value{AS} is configured for a
1346 PRU processor.
1347 @c man end
1348 @c man begin INCLUDE
1349 @include c-pru.texi
1350 @c ended inside the included file
1351 @end ifset
1352 @end ifset
1353
1354 @ifset M68HC11
1355 The following options are available when @value{AS} is configured for the
1356 Motorola 68HC11 or 68HC12 series.
1357
1358 @table @gcctabopt
1359
1360 @item -m68hc11 | -m68hc12 | -m68hcs12 | -mm9s12x | -mm9s12xg
1361 Specify what processor is the target. The default is
1362 defined by the configuration option when building the assembler.
1363
1364 @item --xgate-ramoffset
1365 Instruct the linker to offset RAM addresses from S12X address space into
1366 XGATE address space.
1367
1368 @item -mshort
1369 Specify to use the 16-bit integer ABI.
1370
1371 @item -mlong
1372 Specify to use the 32-bit integer ABI.
1373
1374 @item -mshort-double
1375 Specify to use the 32-bit double ABI.
1376
1377 @item -mlong-double
1378 Specify to use the 64-bit double ABI.
1379
1380 @item --force-long-branches
1381 Relative branches are turned into absolute ones. This concerns
1382 conditional branches, unconditional branches and branches to a
1383 sub routine.
1384
1385 @item -S | --short-branches
1386 Do not turn relative branches into absolute ones
1387 when the offset is out of range.
1388
1389 @item --strict-direct-mode
1390 Do not turn the direct addressing mode into extended addressing mode
1391 when the instruction does not support direct addressing mode.
1392
1393 @item --print-insn-syntax
1394 Print the syntax of instruction in case of error.
1395
1396 @item --print-opcodes
1397 Print the list of instructions with syntax and then exit.
1398
1399 @item --generate-example
1400 Print an example of instruction for each possible instruction and then exit.
1401 This option is only useful for testing @command{@value{AS}}.
1402
1403 @end table
1404 @end ifset
1405
1406 @ifset SPARC
1407 The following options are available when @command{@value{AS}} is configured
1408 for the SPARC architecture:
1409
1410 @table @gcctabopt
1411 @item -Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
1412 @itemx -Av8plus | -Av8plusa | -Av9 | -Av9a
1413 Explicitly select a variant of the SPARC architecture.
1414
1415 @samp{-Av8plus} and @samp{-Av8plusa} select a 32 bit environment.
1416 @samp{-Av9} and @samp{-Av9a} select a 64 bit environment.
1417
1418 @samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
1419 UltraSPARC extensions.
1420
1421 @item -xarch=v8plus | -xarch=v8plusa
1422 For compatibility with the Solaris v9 assembler. These options are
1423 equivalent to -Av8plus and -Av8plusa, respectively.
1424
1425 @item -bump
1426 Warn when the assembler switches to another architecture.
1427 @end table
1428 @end ifset
1429
1430 @ifset TIC54X
1431 The following options are available when @value{AS} is configured for the 'c54x
1432 architecture.
1433
1434 @table @gcctabopt
1435 @item -mfar-mode
1436 Enable extended addressing mode. All addresses and relocations will assume
1437 extended addressing (usually 23 bits).
1438 @item -mcpu=@var{CPU_VERSION}
1439 Sets the CPU version being compiled for.
1440 @item -merrors-to-file @var{FILENAME}
1441 Redirect error output to a file, for broken systems which don't support such
1442 behaviour in the shell.
1443 @end table
1444 @end ifset
1445
1446 @ifset MIPS
1447 @c man begin OPTIONS
1448 The following options are available when @value{AS} is configured for
1449 a MIPS processor.
1450
1451 @table @gcctabopt
1452 @item -G @var{num}
1453 This option sets the largest size of an object that can be referenced
1454 implicitly with the @code{gp} register. It is only accepted for targets that
1455 use ECOFF format, such as a DECstation running Ultrix. The default value is 8.
1456
1457 @cindex MIPS endianness
1458 @cindex endianness, MIPS
1459 @cindex big endian output, MIPS
1460 @item -EB
1461 Generate ``big endian'' format output.
1462
1463 @cindex little endian output, MIPS
1464 @item -EL
1465 Generate ``little endian'' format output.
1466
1467 @cindex MIPS ISA
1468 @item -mips1
1469 @itemx -mips2
1470 @itemx -mips3
1471 @itemx -mips4
1472 @itemx -mips5
1473 @itemx -mips32
1474 @itemx -mips32r2
1475 @itemx -mips32r3
1476 @itemx -mips32r5
1477 @itemx -mips32r6
1478 @itemx -mips64
1479 @itemx -mips64r2
1480 @itemx -mips64r3
1481 @itemx -mips64r5
1482 @itemx -mips64r6
1483 Generate code for a particular MIPS Instruction Set Architecture level.
1484 @samp{-mips1} is an alias for @samp{-march=r3000}, @samp{-mips2} is an
1485 alias for @samp{-march=r6000}, @samp{-mips3} is an alias for
1486 @samp{-march=r4000} and @samp{-mips4} is an alias for @samp{-march=r8000}.
1487 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips32r3},
1488 @samp{-mips32r5}, @samp{-mips32r6}, @samp{-mips64}, @samp{-mips64r2},
1489 @samp{-mips64r3}, @samp{-mips64r5}, and @samp{-mips64r6} correspond to generic
1490 MIPS V, MIPS32, MIPS32 Release 2, MIPS32 Release 3, MIPS32 Release 5, MIPS32
1491 Release 6, MIPS64, MIPS64 Release 2, MIPS64 Release 3, MIPS64 Release 5, and
1492 MIPS64 Release 6 ISA processors, respectively.
1493
1494 @item -march=@var{cpu}
1495 Generate code for a particular MIPS CPU.
1496
1497 @item -mtune=@var{cpu}
1498 Schedule and tune for a particular MIPS CPU.
1499
1500 @item -mfix7000
1501 @itemx -mno-fix7000
1502 Cause nops to be inserted if the read of the destination register
1503 of an mfhi or mflo instruction occurs in the following two instructions.
1504
1505 @item -mfix-rm7000
1506 @itemx -mno-fix-rm7000
1507 Cause nops to be inserted if a dmult or dmultu instruction is
1508 followed by a load instruction.
1509
1510 @item -mfix-r5900
1511 @itemx -mno-fix-r5900
1512 Do not attempt to schedule the preceding instruction into the delay slot
1513 of a branch instruction placed at the end of a short loop of six
1514 instructions or fewer and always schedule a @code{nop} instruction there
1515 instead. The short loop bug under certain conditions causes loops to
1516 execute only once or twice, due to a hardware bug in the R5900 chip.
1517
1518 @item -mdebug
1519 @itemx -no-mdebug
1520 Cause stabs-style debugging output to go into an ECOFF-style .mdebug
1521 section instead of the standard ELF .stabs sections.
1522
1523 @item -mpdr
1524 @itemx -mno-pdr
1525 Control generation of @code{.pdr} sections.
1526
1527 @item -mgp32
1528 @itemx -mfp32
1529 The register sizes are normally inferred from the ISA and ABI, but these
1530 flags force a certain group of registers to be treated as 32 bits wide at
1531 all times. @samp{-mgp32} controls the size of general-purpose registers
1532 and @samp{-mfp32} controls the size of floating-point registers.
1533
1534 @item -mgp64
1535 @itemx -mfp64
1536 The register sizes are normally inferred from the ISA and ABI, but these
1537 flags force a certain group of registers to be treated as 64 bits wide at
1538 all times. @samp{-mgp64} controls the size of general-purpose registers
1539 and @samp{-mfp64} controls the size of floating-point registers.
1540
1541 @item -mfpxx
1542 The register sizes are normally inferred from the ISA and ABI, but using
1543 this flag in combination with @samp{-mabi=32} enables an ABI variant
1544 which will operate correctly with floating-point registers which are
1545 32 or 64 bits wide.
1546
1547 @item -modd-spreg
1548 @itemx -mno-odd-spreg
1549 Enable use of floating-point operations on odd-numbered single-precision
1550 registers when supported by the ISA. @samp{-mfpxx} implies
1551 @samp{-mno-odd-spreg}, otherwise the default is @samp{-modd-spreg}.
1552
1553 @item -mips16
1554 @itemx -no-mips16
1555 Generate code for the MIPS 16 processor. This is equivalent to putting
1556 @code{.module mips16} at the start of the assembly file. @samp{-no-mips16}
1557 turns off this option.
1558
1559 @item -mmips16e2
1560 @itemx -mno-mips16e2
1561 Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent
1562 to putting @code{.module mips16e2} at the start of the assembly file.
1563 @samp{-mno-mips16e2} turns off this option.
1564
1565 @item -mmicromips
1566 @itemx -mno-micromips
1567 Generate code for the microMIPS processor. This is equivalent to putting
1568 @code{.module micromips} at the start of the assembly file.
1569 @samp{-mno-micromips} turns off this option. This is equivalent to putting
1570 @code{.module nomicromips} at the start of the assembly file.
1571
1572 @item -msmartmips
1573 @itemx -mno-smartmips
1574 Enables the SmartMIPS extension to the MIPS32 instruction set. This is
1575 equivalent to putting @code{.module smartmips} at the start of the assembly
1576 file. @samp{-mno-smartmips} turns off this option.
1577
1578 @item -mips3d
1579 @itemx -no-mips3d
1580 Generate code for the MIPS-3D Application Specific Extension.
1581 This tells the assembler to accept MIPS-3D instructions.
1582 @samp{-no-mips3d} turns off this option.
1583
1584 @item -mdmx
1585 @itemx -no-mdmx
1586 Generate code for the MDMX Application Specific Extension.
1587 This tells the assembler to accept MDMX instructions.
1588 @samp{-no-mdmx} turns off this option.
1589
1590 @item -mdsp
1591 @itemx -mno-dsp
1592 Generate code for the DSP Release 1 Application Specific Extension.
1593 This tells the assembler to accept DSP Release 1 instructions.
1594 @samp{-mno-dsp} turns off this option.
1595
1596 @item -mdspr2
1597 @itemx -mno-dspr2
1598 Generate code for the DSP Release 2 Application Specific Extension.
1599 This option implies @samp{-mdsp}.
1600 This tells the assembler to accept DSP Release 2 instructions.
1601 @samp{-mno-dspr2} turns off this option.
1602
1603 @item -mdspr3
1604 @itemx -mno-dspr3
1605 Generate code for the DSP Release 3 Application Specific Extension.
1606 This option implies @samp{-mdsp} and @samp{-mdspr2}.
1607 This tells the assembler to accept DSP Release 3 instructions.
1608 @samp{-mno-dspr3} turns off this option.
1609
1610 @item -mmsa
1611 @itemx -mno-msa
1612 Generate code for the MIPS SIMD Architecture Extension.
1613 This tells the assembler to accept MSA instructions.
1614 @samp{-mno-msa} turns off this option.
1615
1616 @item -mxpa
1617 @itemx -mno-xpa
1618 Generate code for the MIPS eXtended Physical Address (XPA) Extension.
1619 This tells the assembler to accept XPA instructions.
1620 @samp{-mno-xpa} turns off this option.
1621
1622 @item -mmt
1623 @itemx -mno-mt
1624 Generate code for the MT Application Specific Extension.
1625 This tells the assembler to accept MT instructions.
1626 @samp{-mno-mt} turns off this option.
1627
1628 @item -mmcu
1629 @itemx -mno-mcu
1630 Generate code for the MCU Application Specific Extension.
1631 This tells the assembler to accept MCU instructions.
1632 @samp{-mno-mcu} turns off this option.
1633
1634 @item -mcrc
1635 @itemx -mno-crc
1636 Generate code for the MIPS cyclic redundancy check (CRC) Application
1637 Specific Extension. This tells the assembler to accept CRC instructions.
1638 @samp{-mno-crc} turns off this option.
1639
1640 @item -mginv
1641 @itemx -mno-ginv
1642 Generate code for the Global INValidate (GINV) Application Specific
1643 Extension. This tells the assembler to accept GINV instructions.
1644 @samp{-mno-ginv} turns off this option.
1645
1646 @item -mloongson-mmi
1647 @itemx -mno-loongson-mmi
1648 Generate code for the Loongson MultiMedia extensions Instructions (MMI)
1649 Application Specific Extension. This tells the assembler to accept MMI
1650 instructions.
1651 @samp{-mno-loongson-mmi} turns off this option.
1652
1653 @item -mloongson-cam
1654 @itemx -mno-loongson-cam
1655 Generate code for the Loongson Content Address Memory (CAM) instructions.
1656 This tells the assembler to accept Loongson CAM instructions.
1657 @samp{-mno-loongson-cam} turns off this option.
1658
1659 @item -mloongson-ext
1660 @itemx -mno-loongson-ext
1661 Generate code for the Loongson EXTensions (EXT) instructions.
1662 This tells the assembler to accept Loongson EXT instructions.
1663 @samp{-mno-loongson-ext} turns off this option.
1664
1665 @item -mloongson-ext2
1666 @itemx -mno-loongson-ext2
1667 Generate code for the Loongson EXTensions R2 (EXT2) instructions.
1668 This option implies @samp{-mloongson-ext}.
1669 This tells the assembler to accept Loongson EXT2 instructions.
1670 @samp{-mno-loongson-ext2} turns off this option.
1671
1672 @item -minsn32
1673 @itemx -mno-insn32
1674 Only use 32-bit instruction encodings when generating code for the
1675 microMIPS processor. This option inhibits the use of any 16-bit
1676 instructions. This is equivalent to putting @code{.set insn32} at
1677 the start of the assembly file. @samp{-mno-insn32} turns off this
1678 option. This is equivalent to putting @code{.set noinsn32} at the
1679 start of the assembly file. By default @samp{-mno-insn32} is
1680 selected, allowing all instructions to be used.
1681
1682 @item --construct-floats
1683 @itemx --no-construct-floats
1684 The @samp{--no-construct-floats} option disables the construction of
1685 double width floating point constants by loading the two halves of the
1686 value into the two single width floating point registers that make up
1687 the double width register. By default @samp{--construct-floats} is
1688 selected, allowing construction of these floating point constants.
1689
1690 @item --relax-branch
1691 @itemx --no-relax-branch
1692 The @samp{--relax-branch} option enables the relaxation of out-of-range
1693 branches. By default @samp{--no-relax-branch} is selected, causing any
1694 out-of-range branches to produce an error.
1695
1696 @item -mignore-branch-isa
1697 @itemx -mno-ignore-branch-isa
1698 Ignore branch checks for invalid transitions between ISA modes. The
1699 semantics of branches does not provide for an ISA mode switch, so in
1700 most cases the ISA mode a branch has been encoded for has to be the
1701 same as the ISA mode of the branch's target label. Therefore GAS has
1702 checks implemented that verify in branch assembly that the two ISA
1703 modes match. @samp{-mignore-branch-isa} disables these checks. By
1704 default @samp{-mno-ignore-branch-isa} is selected, causing any invalid
1705 branch requiring a transition between ISA modes to produce an error.
1706
1707 @item -mnan=@var{encoding}
1708 Select between the IEEE 754-2008 (@option{-mnan=2008}) or the legacy
1709 (@option{-mnan=legacy}) NaN encoding format. The latter is the default.
1710
1711 @cindex emulation
1712 @item --emulation=@var{name}
1713 This option was formerly used to switch between ELF and ECOFF output
1714 on targets like IRIX 5 that supported both. MIPS ECOFF support was
1715 removed in GAS 2.24, so the option now serves little purpose.
1716 It is retained for backwards compatibility.
1717
1718 The available configuration names are: @samp{mipself}, @samp{mipslelf} and
1719 @samp{mipsbelf}. Choosing @samp{mipself} now has no effect, since the output
1720 is always ELF. @samp{mipslelf} and @samp{mipsbelf} select little- and
1721 big-endian output respectively, but @samp{-EL} and @samp{-EB} are now the
1722 preferred options instead.
1723
1724 @item -nocpp
1725 @command{@value{AS}} ignores this option. It is accepted for compatibility with
1726 the native tools.
1727
1728 @item --trap
1729 @itemx --no-trap
1730 @itemx --break
1731 @itemx --no-break
1732 Control how to deal with multiplication overflow and division by zero.
1733 @samp{--trap} or @samp{--no-break} (which are synonyms) take a trap exception
1734 (and only work for Instruction Set Architecture level 2 and higher);
1735 @samp{--break} or @samp{--no-trap} (also synonyms, and the default) take a
1736 break exception.
1737
1738 @item -n
1739 When this option is used, @command{@value{AS}} will issue a warning every
1740 time it generates a nop instruction from a macro.
1741 @end table
1742 @c man end
1743 @end ifset
1744
1745 @ifset MCORE
1746 The following options are available when @value{AS} is configured for
1747 an MCore processor.
1748
1749 @table @gcctabopt
1750 @item -jsri2bsr
1751 @itemx -nojsri2bsr
1752 Enable or disable the JSRI to BSR transformation. By default this is enabled.
1753 The command-line option @samp{-nojsri2bsr} can be used to disable it.
1754
1755 @item -sifilter
1756 @itemx -nosifilter
1757 Enable or disable the silicon filter behaviour. By default this is disabled.
1758 The default can be overridden by the @samp{-sifilter} command-line option.
1759
1760 @item -relax
1761 Alter jump instructions for long displacements.
1762
1763 @item -mcpu=[210|340]
1764 Select the cpu type on the target hardware. This controls which instructions
1765 can be assembled.
1766
1767 @item -EB
1768 Assemble for a big endian target.
1769
1770 @item -EL
1771 Assemble for a little endian target.
1772
1773 @end table
1774 @end ifset
1775 @c man end
1776
1777 @ifset LOONGARCH
1778
1779 @ifclear man
1780 @xref{LoongArch-Options}, for the options available when @value{AS} is configured
1781 for a LoongArch processor.
1782 @end ifclear
1783
1784 @ifset man
1785 @c man begin OPTIONS
1786 The following options are available when @value{AS} is configured for a
1787 LoongArch processor.
1788 @c man end
1789 @c man begin INCLUDE
1790 @include c-loongarch.texi
1791 @c ended inside the included file
1792 @end ifset
1793
1794 @end ifset
1795
1796 @ifset METAG
1797
1798 @ifclear man
1799 @xref{Meta Options}, for the options available when @value{AS} is configured
1800 for a Meta processor.
1801 @end ifclear
1802
1803 @ifset man
1804 @c man begin OPTIONS
1805 The following options are available when @value{AS} is configured for a
1806 Meta processor.
1807 @c man end
1808 @c man begin INCLUDE
1809 @include c-metag.texi
1810 @c ended inside the included file
1811 @end ifset
1812
1813 @end ifset
1814
1815 @c man begin OPTIONS
1816 @ifset MMIX
1817 See the info pages for documentation of the MMIX-specific options.
1818 @end ifset
1819
1820 @ifset NDS32
1821
1822 @ifclear man
1823 @xref{NDS32 Options}, for the options available when @value{AS} is configured
1824 for a NDS32 processor.
1825 @end ifclear
1826 @c ended inside the included file
1827 @end ifset
1828
1829 @ifset man
1830 @c man begin OPTIONS
1831 The following options are available when @value{AS} is configured for a
1832 NDS32 processor.
1833 @c man end
1834 @c man begin INCLUDE
1835 @include c-nds32.texi
1836 @c ended inside the included file
1837 @end ifset
1838
1839 @c man end
1840 @ifset PPC
1841
1842 @ifclear man
1843 @xref{PowerPC-Opts}, for the options available when @value{AS} is configured
1844 for a PowerPC processor.
1845 @end ifclear
1846
1847 @ifset man
1848 @c man begin OPTIONS
1849 The following options are available when @value{AS} is configured for a
1850 PowerPC processor.
1851 @c man end
1852 @c man begin INCLUDE
1853 @include c-ppc.texi
1854 @c ended inside the included file
1855 @end ifset
1856
1857 @end ifset
1858
1859 @ifset RISCV
1860
1861 @ifclear man
1862 @xref{RISC-V-Options}, for the options available when @value{AS} is configured
1863 for a RISC-V processor.
1864 @end ifclear
1865
1866 @ifset man
1867 @c man begin OPTIONS
1868 The following options are available when @value{AS} is configured for a
1869 RISC-V processor.
1870 @c man end
1871 @c man begin INCLUDE
1872 @include c-riscv.texi
1873 @c ended inside the included file
1874 @end ifset
1875
1876 @end ifset
1877
1878 @c man begin OPTIONS
1879 @ifset RX
1880 See the info pages for documentation of the RX-specific options.
1881 @end ifset
1882
1883 @ifset S390
1884 The following options are available when @value{AS} is configured for the s390
1885 processor family.
1886
1887 @table @gcctabopt
1888 @item -m31
1889 @itemx -m64
1890 Select the word size, either 31/32 bits or 64 bits.
1891 @item -mesa
1892 @item -mzarch
1893 Select the architecture mode, either the Enterprise System
1894 Architecture (esa) or the z/Architecture mode (zarch).
1895 @item -march=@var{processor}
1896 Specify which s390 processor variant is the target, @samp{g5} (or
1897 @samp{arch3}), @samp{g6}, @samp{z900} (or @samp{arch5}), @samp{z990} (or
1898 @samp{arch6}), @samp{z9-109}, @samp{z9-ec} (or @samp{arch7}), @samp{z10} (or
1899 @samp{arch8}), @samp{z196} (or @samp{arch9}), @samp{zEC12} (or @samp{arch10}),
1900 @samp{z13} (or @samp{arch11}), @samp{z14} (or @samp{arch12}), or @samp{z15}
1901 (or @samp{arch13}).
1902 @item -mregnames
1903 @itemx -mno-regnames
1904 Allow or disallow symbolic names for registers.
1905 @item -mwarn-areg-zero
1906 Warn whenever the operand for a base or index register has been specified
1907 but evaluates to zero.
1908 @end table
1909 @end ifset
1910 @c man end
1911
1912 @ifset TIC6X
1913
1914 @ifclear man
1915 @xref{TIC6X Options}, for the options available when @value{AS} is configured
1916 for a TMS320C6000 processor.
1917 @end ifclear
1918
1919 @ifset man
1920 @c man begin OPTIONS
1921 The following options are available when @value{AS} is configured for a
1922 TMS320C6000 processor.
1923 @c man end
1924 @c man begin INCLUDE
1925 @include c-tic6x.texi
1926 @c ended inside the included file
1927 @end ifset
1928
1929 @end ifset
1930
1931 @ifset TILEGX
1932
1933 @ifclear man
1934 @xref{TILE-Gx Options}, for the options available when @value{AS} is configured
1935 for a TILE-Gx processor.
1936 @end ifclear
1937
1938 @ifset man
1939 @c man begin OPTIONS
1940 The following options are available when @value{AS} is configured for a TILE-Gx
1941 processor.
1942 @c man end
1943 @c man begin INCLUDE
1944 @include c-tilegx.texi
1945 @c ended inside the included file
1946 @end ifset
1947
1948 @end ifset
1949
1950 @ifset VISIUM
1951
1952 @ifclear man
1953 @xref{Visium Options}, for the options available when @value{AS} is configured
1954 for a Visium processor.
1955 @end ifclear
1956
1957 @ifset man
1958 @c man begin OPTIONS
1959 The following option is available when @value{AS} is configured for a Visium
1960 processor.
1961 @c man end
1962 @c man begin INCLUDE
1963 @include c-visium.texi
1964 @c ended inside the included file
1965 @end ifset
1966
1967 @end ifset
1968
1969 @ifset XTENSA
1970
1971 @ifclear man
1972 @xref{Xtensa Options}, for the options available when @value{AS} is configured
1973 for an Xtensa processor.
1974 @end ifclear
1975
1976 @ifset man
1977 @c man begin OPTIONS
1978 The following options are available when @value{AS} is configured for an
1979 Xtensa processor.
1980 @c man end
1981 @c man begin INCLUDE
1982 @include c-xtensa.texi
1983 @c ended inside the included file
1984 @end ifset
1985
1986 @end ifset
1987
1988 @ifset Z80
1989
1990 @ifclear man
1991 @xref{Z80 Options}, for the options available when @value{AS} is configured
1992 for an Z80 processor.
1993 @end ifclear
1994
1995 @ifset man
1996 @c man begin OPTIONS
1997 The following options are available when @value{AS} is configured for an
1998 Z80 processor.
1999 @c man end
2000 @c man begin INCLUDE
2001 @include c-z80.texi
2002 @c ended inside the included file
2003 @end ifset
2004
2005 @end ifset
2006
2007 @menu
2008 * Manual:: Structure of this Manual
2009 * GNU Assembler:: The GNU Assembler
2010 * Object Formats:: Object File Formats
2011 * Command Line:: Command Line
2012 * Input Files:: Input Files
2013 * Object:: Output (Object) File
2014 * Errors:: Error and Warning Messages
2015 @end menu
2016
2017 @node Manual
2018 @section Structure of this Manual
2019
2020 @cindex manual, structure and purpose
2021 This manual is intended to describe what you need to know to use
2022 @sc{gnu} @command{@value{AS}}. We cover the syntax expected in source files, including
2023 notation for symbols, constants, and expressions; the directives that
2024 @command{@value{AS}} understands; and of course how to invoke @command{@value{AS}}.
2025
2026 @ifclear GENERIC
2027 We also cover special features in the @value{TARGET}
2028 configuration of @command{@value{AS}}, including assembler directives.
2029 @end ifclear
2030 @ifset GENERIC
2031 This manual also describes some of the machine-dependent features of
2032 various flavors of the assembler.
2033 @end ifset
2034
2035 @cindex machine instructions (not covered)
2036 On the other hand, this manual is @emph{not} intended as an introduction
2037 to programming in assembly language---let alone programming in general!
2038 In a similar vein, we make no attempt to introduce the machine
2039 architecture; we do @emph{not} describe the instruction set, standard
2040 mnemonics, registers or addressing modes that are standard to a
2041 particular architecture.
2042 @ifset GENERIC
2043 You may want to consult the manufacturer's
2044 machine architecture manual for this information.
2045 @end ifset
2046 @ifclear GENERIC
2047 @ifset H8/300
2048 For information on the H8/300 machine instruction set, see @cite{H8/300
2049 Series Programming Manual}. For the H8/300H, see @cite{H8/300H Series
2050 Programming Manual} (Renesas).
2051 @end ifset
2052 @ifset SH
2053 For information on the Renesas (formerly Hitachi) / SuperH SH machine instruction set,
2054 see @cite{SH-Microcomputer User's Manual} (Renesas) or
2055 @cite{SH-4 32-bit CPU Core Architecture} (SuperH) and
2056 @cite{SuperH (SH) 64-Bit RISC Series} (SuperH).
2057 @end ifset
2058 @ifset Z8000
2059 For information on the Z8000 machine instruction set, see @cite{Z8000 CPU Technical Manual}
2060 @end ifset
2061 @end ifclear
2062
2063 @c I think this is premature---doc@cygnus.com, 17jan1991
2064 @ignore
2065 Throughout this manual, we assume that you are running @dfn{GNU},
2066 the portable operating system from the @dfn{Free Software
2067 Foundation, Inc.}. This restricts our attention to certain kinds of
2068 computer (in particular, the kinds of computers that @sc{gnu} can run on);
2069 once this assumption is granted examples and definitions need less
2070 qualification.
2071
2072 @command{@value{AS}} is part of a team of programs that turn a high-level
2073 human-readable series of instructions into a low-level
2074 computer-readable series of instructions. Different versions of
2075 @command{@value{AS}} are used for different kinds of computer.
2076 @end ignore
2077
2078 @c There used to be a section "Terminology" here, which defined
2079 @c "contents", "byte", "word", and "long". Defining "word" to any
2080 @c particular size is confusing when the .word directive may generate 16
2081 @c bits on one machine and 32 bits on another; in general, for the user
2082 @c version of this manual, none of these terms seem essential to define.
2083 @c They were used very little even in the former draft of the manual;
2084 @c this draft makes an effort to avoid them (except in names of
2085 @c directives).
2086
2087 @node GNU Assembler
2088 @section The GNU Assembler
2089
2090 @c man begin DESCRIPTION
2091
2092 @sc{gnu} @command{as} is really a family of assemblers.
2093 @ifclear GENERIC
2094 This manual describes @command{@value{AS}}, a member of that family which is
2095 configured for the @value{TARGET} architectures.
2096 @end ifclear
2097 If you use (or have used) the @sc{gnu} assembler on one architecture, you
2098 should find a fairly similar environment when you use it on another
2099 architecture. Each version has much in common with the others,
2100 including object file formats, most assembler directives (often called
2101 @dfn{pseudo-ops}) and assembler syntax.@refill
2102
2103 @cindex purpose of @sc{gnu} assembler
2104 @command{@value{AS}} is primarily intended to assemble the output of the
2105 @sc{gnu} C compiler @code{@value{GCC}} for use by the linker
2106 @code{@value{LD}}. Nevertheless, we've tried to make @command{@value{AS}}
2107 assemble correctly everything that other assemblers for the same
2108 machine would assemble.
2109 @ifset VAX
2110 Any exceptions are documented explicitly (@pxref{Machine Dependencies}).
2111 @end ifset
2112 @ifset M680X0
2113 @c This remark should appear in generic version of manual; assumption
2114 @c here is that generic version sets M680x0.
2115 This doesn't mean @command{@value{AS}} always uses the same syntax as another
2116 assembler for the same architecture; for example, we know of several
2117 incompatible versions of 680x0 assembly language syntax.
2118 @end ifset
2119
2120 @c man end
2121
2122 Unlike older assemblers, @command{@value{AS}} is designed to assemble a source
2123 program in one pass of the source file. This has a subtle impact on the
2124 @kbd{.org} directive (@pxref{Org,,@code{.org}}).
2125
2126 @node Object Formats
2127 @section Object File Formats
2128
2129 @cindex object file format
2130 The @sc{gnu} assembler can be configured to produce several alternative
2131 object file formats. For the most part, this does not affect how you
2132 write assembly language programs; but directives for debugging symbols
2133 are typically different in different file formats. @xref{Symbol
2134 Attributes,,Symbol Attributes}.
2135 @ifclear GENERIC
2136 @ifclear MULTI-OBJ
2137 For the @value{TARGET} target, @command{@value{AS}} is configured to produce
2138 @value{OBJ-NAME} format object files.
2139 @end ifclear
2140 @c The following should exhaust all configs that set MULTI-OBJ, ideally
2141 @ifset HPPA
2142 On the @value{TARGET}, @command{@value{AS}} can be configured to produce either
2143 SOM or ELF format object files.
2144 @end ifset
2145 @end ifclear
2146
2147 @node Command Line
2148 @section Command Line
2149
2150 @cindex command line conventions
2151
2152 After the program name @command{@value{AS}}, the command line may contain
2153 options and file names. Options may appear in any order, and may be
2154 before, after, or between file names. The order of file names is
2155 significant.
2156
2157 @cindex standard input, as input file
2158 @kindex --
2159 @file{--} (two hyphens) by itself names the standard input file
2160 explicitly, as one of the files for @command{@value{AS}} to assemble.
2161
2162 @cindex options, command line
2163 Except for @samp{--} any command-line argument that begins with a
2164 hyphen (@samp{-}) is an option. Each option changes the behavior of
2165 @command{@value{AS}}. No option changes the way another option works. An
2166 option is a @samp{-} followed by one or more letters; the case of
2167 the letter is important. All options are optional.
2168
2169 Some options expect exactly one file name to follow them. The file
2170 name may either immediately follow the option's letter (compatible
2171 with older assemblers) or it may be the next command argument (@sc{gnu}
2172 standard). These two command lines are equivalent:
2173
2174 @smallexample
2175 @value{AS} -o my-object-file.o mumble.s
2176 @value{AS} -omy-object-file.o mumble.s
2177 @end smallexample
2178
2179 @node Input Files
2180 @section Input Files
2181
2182 @cindex input
2183 @cindex source program
2184 @cindex files, input
2185 We use the phrase @dfn{source program}, abbreviated @dfn{source}, to
2186 describe the program input to one run of @command{@value{AS}}. The program may
2187 be in one or more files; how the source is partitioned into files
2188 doesn't change the meaning of the source.
2189
2190 @c I added "con" prefix to "catenation" just to prove I can overcome my
2191 @c APL training... doc@cygnus.com
2192 The source program is a concatenation of the text in all the files, in the
2193 order specified.
2194
2195 @c man begin DESCRIPTION
2196 Each time you run @command{@value{AS}} it assembles exactly one source
2197 program. The source program is made up of one or more files.
2198 (The standard input is also a file.)
2199
2200 You give @command{@value{AS}} a command line that has zero or more input file
2201 names. The input files are read (from left file name to right). A
2202 command-line argument (in any position) that has no special meaning
2203 is taken to be an input file name.
2204
2205 If you give @command{@value{AS}} no file names it attempts to read one input file
2206 from the @command{@value{AS}} standard input, which is normally your terminal. You
2207 may have to type @key{ctl-D} to tell @command{@value{AS}} there is no more program
2208 to assemble.
2209
2210 Use @samp{--} if you need to explicitly name the standard input file
2211 in your command line.
2212
2213 If the source is empty, @command{@value{AS}} produces a small, empty object
2214 file.
2215
2216 @c man end
2217
2218 @subheading Filenames and Line-numbers
2219
2220 @cindex input file linenumbers
2221 @cindex line numbers, in input files
2222 There are two ways of locating a line in the input file (or files) and
2223 either may be used in reporting error messages. One way refers to a line
2224 number in a physical file; the other refers to a line number in a
2225 ``logical'' file. @xref{Errors, ,Error and Warning Messages}.
2226
2227 @dfn{Physical files} are those files named in the command line given
2228 to @command{@value{AS}}.
2229
2230 @dfn{Logical files} are simply names declared explicitly by assembler
2231 directives; they bear no relation to physical files. Logical file names help
2232 error messages reflect the original source file, when @command{@value{AS}} source
2233 is itself synthesized from other files. @command{@value{AS}} understands the
2234 @samp{#} directives emitted by the @code{@value{GCC}} preprocessor. See also
2235 @ref{File,,@code{.file}}.
2236
2237 @node Object
2238 @section Output (Object) File
2239
2240 @cindex object file
2241 @cindex output file
2242 @kindex a.out
2243 @kindex .o
2244 Every time you run @command{@value{AS}} it produces an output file, which is
2245 your assembly language program translated into numbers. This file
2246 is the object file. Its default name is @code{a.out}.
2247 You can give it another name by using the @option{-o} option. Conventionally,
2248 object file names end with @file{.o}. The default name is used for historical
2249 reasons: older assemblers were capable of assembling self-contained programs
2250 directly into a runnable program. (For some formats, this isn't currently
2251 possible, but it can be done for the @code{a.out} format.)
2252
2253 @cindex linker
2254 @kindex ld
2255 The object file is meant for input to the linker @code{@value{LD}}. It contains
2256 assembled program code, information to help @code{@value{LD}} integrate
2257 the assembled program into a runnable file, and (optionally) symbolic
2258 information for the debugger.
2259
2260 @c link above to some info file(s) like the description of a.out.
2261 @c don't forget to describe @sc{gnu} info as well as Unix lossage.
2262
2263 @node Errors
2264 @section Error and Warning Messages
2265
2266 @c man begin DESCRIPTION
2267
2268 @cindex error messages
2269 @cindex warning messages
2270 @cindex messages from assembler
2271 @command{@value{AS}} may write warnings and error messages to the standard error
2272 file (usually your terminal). This should not happen when a compiler
2273 runs @command{@value{AS}} automatically. Warnings report an assumption made so
2274 that @command{@value{AS}} could keep assembling a flawed program; errors report a
2275 grave problem that stops the assembly.
2276
2277 @c man end
2278
2279 @cindex format of warning messages
2280 Warning messages have the format
2281
2282 @smallexample
2283 file_name:@b{NNN}:Warning Message Text
2284 @end smallexample
2285
2286 @noindent
2287 @cindex file names and line numbers, in warnings/errors
2288 (where @b{NNN} is a line number). If both a logical file name
2289 (@pxref{File,,@code{.file}}) and a logical line number
2290 @ifset GENERIC
2291 (@pxref{Line,,@code{.line}})
2292 @end ifset
2293 have been given then they will be used, otherwise the file name and line number
2294 in the current assembler source file will be used. The message text is
2295 intended to be self explanatory (in the grand Unix tradition).
2296
2297 Note the file name must be set via the logical version of the @code{.file}
2298 directive, not the DWARF2 version of the @code{.file} directive. For example:
2299
2300 @smallexample
2301 .file 2 "bar.c"
2302 error_assembler_source
2303 .file "foo.c"
2304 .line 30
2305 error_c_source
2306 @end smallexample
2307
2308 produces this output:
2309
2310 @smallexample
2311 Assembler messages:
2312 asm.s:2: Error: no such instruction: `error_assembler_source'
2313 foo.c:31: Error: no such instruction: `error_c_source'
2314 @end smallexample
2315
2316 @cindex format of error messages
2317 Error messages have the format
2318
2319 @smallexample
2320 file_name:@b{NNN}:FATAL:Error Message Text
2321 @end smallexample
2322
2323 The file name and line number are derived as for warning
2324 messages. The actual message text may be rather less explanatory
2325 because many of them aren't supposed to happen.
2326
2327 @node Invoking
2328 @chapter Command-Line Options
2329
2330 @cindex options, all versions of assembler
2331 This chapter describes command-line options available in @emph{all}
2332 versions of the @sc{gnu} assembler; see @ref{Machine Dependencies},
2333 for options specific
2334 @ifclear GENERIC
2335 to the @value{TARGET} target.
2336 @end ifclear
2337 @ifset GENERIC
2338 to particular machine architectures.
2339 @end ifset
2340
2341 @c man begin DESCRIPTION
2342
2343 If you are invoking @command{@value{AS}} via the @sc{gnu} C compiler,
2344 you can use the @samp{-Wa} option to pass arguments through to the assembler.
2345 The assembler arguments must be separated from each other (and the @samp{-Wa})
2346 by commas. For example:
2347
2348 @smallexample
2349 gcc -c -g -O -Wa,-alh,-L file.c
2350 @end smallexample
2351
2352 @noindent
2353 This passes two options to the assembler: @samp{-alh} (emit a listing to
2354 standard output with high-level and assembly source) and @samp{-L} (retain
2355 local symbols in the symbol table).
2356
2357 Usually you do not need to use this @samp{-Wa} mechanism, since many compiler
2358 command-line options are automatically passed to the assembler by the compiler.
2359 (You can call the @sc{gnu} compiler driver with the @samp{-v} option to see
2360 precisely what options it passes to each compilation pass, including the
2361 assembler.)
2362
2363 @c man end
2364
2365 @menu
2366 * a:: -a[cdghlns] enable listings
2367 * alternate:: --alternate enable alternate macro syntax
2368 * D:: -D for compatibility
2369 * f:: -f to work faster
2370 * I:: -I for .include search path
2371 @ifclear DIFF-TBL-KLUGE
2372 * K:: -K for compatibility
2373 @end ifclear
2374 @ifset DIFF-TBL-KLUGE
2375 * K:: -K for difference tables
2376 @end ifset
2377
2378 * L:: -L to retain local symbols
2379 * listing:: --listing-XXX to configure listing output
2380 * M:: -M or --mri to assemble in MRI compatibility mode
2381 * MD:: --MD for dependency tracking
2382 * no-pad-sections:: --no-pad-sections to stop section padding
2383 * o:: -o to name the object file
2384 * R:: -R to join data and text sections
2385 * statistics:: --statistics to see statistics about assembly
2386 * traditional-format:: --traditional-format for compatible output
2387 * v:: -v to announce version
2388 * W:: -W, --no-warn, --warn, --fatal-warnings to control warnings
2389 * Z:: -Z to make object file even after errors
2390 @end menu
2391
2392 @node a
2393 @section Enable Listings: @option{-a[cdghlns]}
2394
2395 @kindex -a
2396 @kindex -ac
2397 @kindex -ad
2398 @kindex -ag
2399 @kindex -ah
2400 @kindex -al
2401 @kindex -an
2402 @kindex -as
2403 @cindex listings, enabling
2404 @cindex assembly listings, enabling
2405
2406 These options enable listing output from the assembler. By itself,
2407 @samp{-a} requests high-level, assembly, and symbols listing.
2408 You can use other letters to select specific options for the list:
2409 @samp{-ah} requests a high-level language listing,
2410 @samp{-al} requests an output-program assembly listing, and
2411 @samp{-as} requests a symbol table listing.
2412 High-level listings require that a compiler debugging option like
2413 @samp{-g} be used, and that assembly listings (@samp{-al}) be requested
2414 also.
2415
2416 Use the @samp{-ag} option to print a first section with general assembly
2417 information, like @value{AS} version, switches passed, or time stamp.
2418
2419 Use the @samp{-ac} option to omit false conditionals from a listing. Any lines
2420 which are not assembled because of a false @code{.if} (or @code{.ifdef}, or any
2421 other conditional), or a true @code{.if} followed by an @code{.else}, will be
2422 omitted from the listing.
2423
2424 Use the @samp{-ad} option to omit debugging directives from the
2425 listing.
2426
2427 Once you have specified one of these options, you can further control
2428 listing output and its appearance using the directives @code{.list},
2429 @code{.nolist}, @code{.psize}, @code{.eject}, @code{.title}, and
2430 @code{.sbttl}.
2431 The @samp{-an} option turns off all forms processing.
2432 If you do not request listing output with one of the @samp{-a} options, the
2433 listing-control directives have no effect.
2434
2435 The letters after @samp{-a} may be combined into one option,
2436 @emph{e.g.}, @samp{-aln}.
2437
2438 Note if the assembler source is coming from the standard input (e.g.,
2439 because it
2440 is being created by @code{@value{GCC}} and the @samp{-pipe} command-line switch
2441 is being used) then the listing will not contain any comments or preprocessor
2442 directives. This is because the listing code buffers input source lines from
2443 stdin only after they have been preprocessed by the assembler. This reduces
2444 memory usage and makes the code more efficient.
2445
2446 @node alternate
2447 @section @option{--alternate}
2448
2449 @kindex --alternate
2450 Begin in alternate macro mode, see @ref{Altmacro,,@code{.altmacro}}.
2451
2452 @node D
2453 @section @option{-D}
2454
2455 @kindex -D
2456 This option has no effect whatsoever, but it is accepted to make it more
2457 likely that scripts written for other assemblers also work with
2458 @command{@value{AS}}.
2459
2460 @node f
2461 @section Work Faster: @option{-f}
2462
2463 @kindex -f
2464 @cindex trusted compiler
2465 @cindex faster processing (@option{-f})
2466 @samp{-f} should only be used when assembling programs written by a
2467 (trusted) compiler. @samp{-f} stops the assembler from doing whitespace
2468 and comment preprocessing on
2469 the input file(s) before assembling them. @xref{Preprocessing,
2470 ,Preprocessing}.
2471
2472 @quotation
2473 @emph{Warning:} if you use @samp{-f} when the files actually need to be
2474 preprocessed (if they contain comments, for example), @command{@value{AS}} does
2475 not work correctly.
2476 @end quotation
2477
2478 @node I
2479 @section @code{.include} Search Path: @option{-I} @var{path}
2480
2481 @kindex -I @var{path}
2482 @cindex paths for @code{.include}
2483 @cindex search path for @code{.include}
2484 @cindex @code{include} directive search path
2485 Use this option to add a @var{path} to the list of directories
2486 @command{@value{AS}} searches for files specified in @code{.include}
2487 directives (@pxref{Include,,@code{.include}}). You may use @option{-I} as
2488 many times as necessary to include a variety of paths. The current
2489 working directory is always searched first; after that, @command{@value{AS}}
2490 searches any @samp{-I} directories in the same order as they were
2491 specified (left to right) on the command line.
2492
2493 @node K
2494 @section Difference Tables: @option{-K}
2495
2496 @kindex -K
2497 @ifclear DIFF-TBL-KLUGE
2498 On the @value{TARGET} family, this option is allowed, but has no effect. It is
2499 permitted for compatibility with the @sc{gnu} assembler on other platforms,
2500 where it can be used to warn when the assembler alters the machine code
2501 generated for @samp{.word} directives in difference tables. The @value{TARGET}
2502 family does not have the addressing limitations that sometimes lead to this
2503 alteration on other platforms.
2504 @end ifclear
2505
2506 @ifset DIFF-TBL-KLUGE
2507 @cindex difference tables, warning
2508 @cindex warning for altered difference tables
2509 @command{@value{AS}} sometimes alters the code emitted for directives of the
2510 form @samp{.word @var{sym1}-@var{sym2}}. @xref{Word,,@code{.word}}.
2511 You can use the @samp{-K} option if you want a warning issued when this
2512 is done.
2513 @end ifset
2514
2515 @node L
2516 @section Include Local Symbols: @option{-L}
2517
2518 @kindex -L
2519 @cindex local symbols, retaining in output
2520 Symbols beginning with system-specific local label prefixes, typically
2521 @samp{.L} for ELF systems or @samp{L} for traditional a.out systems, are
2522 called @dfn{local symbols}. @xref{Symbol Names}. Normally you do not see
2523 such symbols when debugging, because they are intended for the use of
2524 programs (like compilers) that compose assembler programs, not for your
2525 notice. Normally both @command{@value{AS}} and @code{@value{LD}} discard
2526 such symbols, so you do not normally debug with them.
2527
2528 This option tells @command{@value{AS}} to retain those local symbols
2529 in the object file. Usually if you do this you also tell the linker
2530 @code{@value{LD}} to preserve those symbols.
2531
2532 @node listing
2533 @section Configuring listing output: @option{--listing}
2534
2535 The listing feature of the assembler can be enabled via the command-line switch
2536 @samp{-a} (@pxref{a}). This feature combines the input source file(s) with a
2537 hex dump of the corresponding locations in the output object file, and displays
2538 them as a listing file. The format of this listing can be controlled by
2539 directives inside the assembler source (i.e., @code{.list} (@pxref{List}),
2540 @code{.title} (@pxref{Title}), @code{.sbttl} (@pxref{Sbttl}),
2541 @code{.psize} (@pxref{Psize}), and
2542 @code{.eject} (@pxref{Eject}) and also by the following switches:
2543
2544 @table @gcctabopt
2545 @item --listing-lhs-width=@samp{number}
2546 @kindex --listing-lhs-width
2547 @cindex Width of first line disassembly output
2548 Sets the maximum width, in words, of the first line of the hex byte dump. This
2549 dump appears on the left hand side of the listing output.
2550
2551 @item --listing-lhs-width2=@samp{number}
2552 @kindex --listing-lhs-width2
2553 @cindex Width of continuation lines of disassembly output
2554 Sets the maximum width, in words, of any further lines of the hex byte dump for
2555 a given input source line. If this value is not specified, it defaults to being
2556 the same as the value specified for @samp{--listing-lhs-width}. If neither
2557 switch is used the default is to one.
2558
2559 @item --listing-rhs-width=@samp{number}
2560 @kindex --listing-rhs-width
2561 @cindex Width of source line output
2562 Sets the maximum width, in characters, of the source line that is displayed
2563 alongside the hex dump. The default value for this parameter is 100. The
2564 source line is displayed on the right hand side of the listing output.
2565
2566 @item --listing-cont-lines=@samp{number}
2567 @kindex --listing-cont-lines
2568 @cindex Maximum number of continuation lines
2569 Sets the maximum number of continuation lines of hex dump that will be
2570 displayed for a given single line of source input. The default value is 4.
2571 @end table
2572
2573 @node M
2574 @section Assemble in MRI Compatibility Mode: @option{-M}
2575
2576 @kindex -M
2577 @cindex MRI compatibility mode
2578 The @option{-M} or @option{--mri} option selects MRI compatibility mode. This
2579 changes the syntax and pseudo-op handling of @command{@value{AS}} to make it
2580 compatible with the @code{ASM68K} assembler from Microtec Research.
2581 The exact nature of the
2582 MRI syntax will not be documented here; see the MRI manuals for more
2583 information. Note in particular that the handling of macros and macro
2584 arguments is somewhat different. The purpose of this option is to permit
2585 assembling existing MRI assembler code using @command{@value{AS}}.
2586
2587 The MRI compatibility is not complete. Certain operations of the MRI assembler
2588 depend upon its object file format, and can not be supported using other object
2589 file formats. Supporting these would require enhancing each object file format
2590 individually. These are:
2591
2592 @itemize @bullet
2593 @item global symbols in common section
2594
2595 The m68k MRI assembler supports common sections which are merged by the linker.
2596 Other object file formats do not support this. @command{@value{AS}} handles
2597 common sections by treating them as a single common symbol. It permits local
2598 symbols to be defined within a common section, but it can not support global
2599 symbols, since it has no way to describe them.
2600
2601 @item complex relocations
2602
2603 The MRI assemblers support relocations against a negated section address, and
2604 relocations which combine the start addresses of two or more sections. These
2605 are not support by other object file formats.
2606
2607 @item @code{END} pseudo-op specifying start address
2608
2609 The MRI @code{END} pseudo-op permits the specification of a start address.
2610 This is not supported by other object file formats. The start address may
2611 instead be specified using the @option{-e} option to the linker, or in a linker
2612 script.
2613
2614 @item @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops
2615
2616 The MRI @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops assign a module
2617 name to the output file. This is not supported by other object file formats.
2618
2619 @item @code{ORG} pseudo-op
2620
2621 The m68k MRI @code{ORG} pseudo-op begins an absolute section at a given
2622 address. This differs from the usual @command{@value{AS}} @code{.org} pseudo-op,
2623 which changes the location within the current section. Absolute sections are
2624 not supported by other object file formats. The address of a section may be
2625 assigned within a linker script.
2626 @end itemize
2627
2628 There are some other features of the MRI assembler which are not supported by
2629 @command{@value{AS}}, typically either because they are difficult or because they
2630 seem of little consequence. Some of these may be supported in future releases.
2631
2632 @itemize @bullet
2633
2634 @item EBCDIC strings
2635
2636 EBCDIC strings are not supported.
2637
2638 @item packed binary coded decimal
2639
2640 Packed binary coded decimal is not supported. This means that the @code{DC.P}
2641 and @code{DCB.P} pseudo-ops are not supported.
2642
2643 @item @code{FEQU} pseudo-op
2644
2645 The m68k @code{FEQU} pseudo-op is not supported.
2646
2647 @item @code{NOOBJ} pseudo-op
2648
2649 The m68k @code{NOOBJ} pseudo-op is not supported.
2650
2651 @item @code{OPT} branch control options
2652
2653 The m68k @code{OPT} branch control options---@code{B}, @code{BRS}, @code{BRB},
2654 @code{BRL}, and @code{BRW}---are ignored. @command{@value{AS}} automatically
2655 relaxes all branches, whether forward or backward, to an appropriate size, so
2656 these options serve no purpose.
2657
2658 @item @code{OPT} list control options
2659
2660 The following m68k @code{OPT} list control options are ignored: @code{C},
2661 @code{CEX}, @code{CL}, @code{CRE}, @code{E}, @code{G}, @code{I}, @code{M},
2662 @code{MEX}, @code{MC}, @code{MD}, @code{X}.
2663
2664 @item other @code{OPT} options
2665
2666 The following m68k @code{OPT} options are ignored: @code{NEST}, @code{O},
2667 @code{OLD}, @code{OP}, @code{P}, @code{PCO}, @code{PCR}, @code{PCS}, @code{R}.
2668
2669 @item @code{OPT} @code{D} option is default
2670
2671 The m68k @code{OPT} @code{D} option is the default, unlike the MRI assembler.
2672 @code{OPT NOD} may be used to turn it off.
2673
2674 @item @code{XREF} pseudo-op.
2675
2676 The m68k @code{XREF} pseudo-op is ignored.
2677
2678 @end itemize
2679
2680 @node MD
2681 @section Dependency Tracking: @option{--MD}
2682
2683 @kindex --MD
2684 @cindex dependency tracking
2685 @cindex make rules
2686
2687 @command{@value{AS}} can generate a dependency file for the file it creates. This
2688 file consists of a single rule suitable for @code{make} describing the
2689 dependencies of the main source file.
2690
2691 The rule is written to the file named in its argument.
2692
2693 This feature is used in the automatic updating of makefiles.
2694
2695 @node no-pad-sections
2696 @section Output Section Padding
2697 @kindex --no-pad-sections
2698 @cindex output section padding
2699 Normally the assembler will pad the end of each output section up to its
2700 alignment boundary. But this can waste space, which can be significant on
2701 memory constrained targets. So the @option{--no-pad-sections} option will
2702 disable this behaviour.
2703
2704 @node o
2705 @section Name the Object File: @option{-o}
2706
2707 @kindex -o
2708 @cindex naming object file
2709 @cindex object file name
2710 There is always one object file output when you run @command{@value{AS}}. By
2711 default it has the name @file{a.out}.
2712 You use this option (which takes exactly one filename) to give the
2713 object file a different name.
2714
2715 Whatever the object file is called, @command{@value{AS}} overwrites any
2716 existing file of the same name.
2717
2718 @node R
2719 @section Join Data and Text Sections: @option{-R}
2720
2721 @kindex -R
2722 @cindex data and text sections, joining
2723 @cindex text and data sections, joining
2724 @cindex joining text and data sections
2725 @cindex merging text and data sections
2726 @option{-R} tells @command{@value{AS}} to write the object file as if all
2727 data-section data lives in the text section. This is only done at
2728 the very last moment: your binary data are the same, but data
2729 section parts are relocated differently. The data section part of
2730 your object file is zero bytes long because all its bytes are
2731 appended to the text section. (@xref{Sections,,Sections and Relocation}.)
2732
2733 When you specify @option{-R} it would be possible to generate shorter
2734 address displacements (because we do not have to cross between text and
2735 data section). We refrain from doing this simply for compatibility with
2736 older versions of @command{@value{AS}}. In future, @option{-R} may work this way.
2737
2738 @ifset COFF-ELF
2739 When @command{@value{AS}} is configured for COFF or ELF output,
2740 this option is only useful if you use sections named @samp{.text} and
2741 @samp{.data}.
2742 @end ifset
2743
2744 @ifset HPPA
2745 @option{-R} is not supported for any of the HPPA targets. Using
2746 @option{-R} generates a warning from @command{@value{AS}}.
2747 @end ifset
2748
2749 @node statistics
2750 @section Display Assembly Statistics: @option{--statistics}
2751
2752 @kindex --statistics
2753 @cindex statistics, about assembly
2754 @cindex time, total for assembly
2755 @cindex space used, maximum for assembly
2756 Use @samp{--statistics} to display two statistics about the resources used by
2757 @command{@value{AS}}: the maximum amount of space allocated during the assembly
2758 (in bytes), and the total execution time taken for the assembly (in @sc{cpu}
2759 seconds).
2760
2761 @node traditional-format
2762 @section Compatible Output: @option{--traditional-format}
2763
2764 @kindex --traditional-format
2765 For some targets, the output of @command{@value{AS}} is different in some ways
2766 from the output of some existing assembler. This switch requests
2767 @command{@value{AS}} to use the traditional format instead.
2768
2769 For example, it disables the exception frame optimizations which
2770 @command{@value{AS}} normally does by default on @code{@value{GCC}} output.
2771
2772 @node v
2773 @section Announce Version: @option{-v}
2774
2775 @kindex -v
2776 @kindex -version
2777 @cindex assembler version
2778 @cindex version of assembler
2779 You can find out what version of as is running by including the
2780 option @samp{-v} (which you can also spell as @samp{-version}) on the
2781 command line.
2782
2783 @node W
2784 @section Control Warnings: @option{-W}, @option{--warn}, @option{--no-warn}, @option{--fatal-warnings}
2785
2786 @command{@value{AS}} should never give a warning or error message when
2787 assembling compiler output. But programs written by people often
2788 cause @command{@value{AS}} to give a warning that a particular assumption was
2789 made. All such warnings are directed to the standard error file.
2790
2791 @kindex -W
2792 @kindex --no-warn
2793 @cindex suppressing warnings
2794 @cindex warnings, suppressing
2795 If you use the @option{-W} and @option{--no-warn} options, no warnings are issued.
2796 This only affects the warning messages: it does not change any particular of
2797 how @command{@value{AS}} assembles your file. Errors, which stop the assembly,
2798 are still reported.
2799
2800 @kindex --fatal-warnings
2801 @cindex errors, caused by warnings
2802 @cindex warnings, causing error
2803 If you use the @option{--fatal-warnings} option, @command{@value{AS}} considers
2804 files that generate warnings to be in error.
2805
2806 @kindex --warn
2807 @cindex warnings, switching on
2808 You can switch these options off again by specifying @option{--warn}, which
2809 causes warnings to be output as usual.
2810
2811 @node Z
2812 @section Generate Object File in Spite of Errors: @option{-Z}
2813 @cindex object file, after errors
2814 @cindex errors, continuing after
2815 After an error message, @command{@value{AS}} normally produces no output. If for
2816 some reason you are interested in object file output even after
2817 @command{@value{AS}} gives an error message on your program, use the @samp{-Z}
2818 option. If there are any errors, @command{@value{AS}} continues anyways, and
2819 writes an object file after a final warning message of the form @samp{@var{n}
2820 errors, @var{m} warnings, generating bad object file.}
2821
2822 @node Syntax
2823 @chapter Syntax
2824
2825 @cindex machine-independent syntax
2826 @cindex syntax, machine-independent
2827 This chapter describes the machine-independent syntax allowed in a
2828 source file. @command{@value{AS}} syntax is similar to what many other
2829 assemblers use; it is inspired by the BSD 4.2
2830 @ifclear VAX
2831 assembler.
2832 @end ifclear
2833 @ifset VAX
2834 assembler, except that @command{@value{AS}} does not assemble Vax bit-fields.
2835 @end ifset
2836
2837 @menu
2838 * Preprocessing:: Preprocessing
2839 * Whitespace:: Whitespace
2840 * Comments:: Comments
2841 * Symbol Intro:: Symbols
2842 * Statements:: Statements
2843 * Constants:: Constants
2844 @end menu
2845
2846 @node Preprocessing
2847 @section Preprocessing
2848
2849 @cindex preprocessing
2850 The @command{@value{AS}} internal preprocessor:
2851 @itemize @bullet
2852 @cindex whitespace, removed by preprocessor
2853 @item
2854 adjusts and removes extra whitespace. It leaves one space or tab before
2855 the keywords on a line, and turns any other whitespace on the line into
2856 a single space.
2857
2858 @cindex comments, removed by preprocessor
2859 @item
2860 removes all comments, replacing them with a single space, or an
2861 appropriate number of newlines.
2862
2863 @cindex constants, converted by preprocessor
2864 @item
2865 converts character constants into the appropriate numeric values.
2866 @end itemize
2867
2868 It does not do macro processing, include file handling, or
2869 anything else you may get from your C compiler's preprocessor. You can
2870 do include file processing with the @code{.include} directive
2871 (@pxref{Include,,@code{.include}}). You can use the @sc{gnu} C compiler driver
2872 to get other ``CPP'' style preprocessing by giving the input file a
2873 @samp{.S} suffix. @url{https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html#Overall-Options,
2874 See the 'Options Controlling the Kind of Output' section of the GCC manual for
2875 more details}
2876
2877 Excess whitespace, comments, and character constants
2878 cannot be used in the portions of the input text that are not
2879 preprocessed.
2880
2881 @cindex turning preprocessing on and off
2882 @cindex preprocessing, turning on and off
2883 @kindex #NO_APP
2884 @kindex #APP
2885 If the first line of an input file is @code{#NO_APP} or if you use the
2886 @samp{-f} option, whitespace and comments are not removed from the input file.
2887 Within an input file, you can ask for whitespace and comment removal in
2888 specific portions of the by putting a line that says @code{#APP} before the
2889 text that may contain whitespace or comments, and putting a line that says
2890 @code{#NO_APP} after this text. This feature is mainly intend to support
2891 @code{asm} statements in compilers whose output is otherwise free of comments
2892 and whitespace.
2893
2894 @node Whitespace
2895 @section Whitespace
2896
2897 @cindex whitespace
2898 @dfn{Whitespace} is one or more blanks or tabs, in any order.
2899 Whitespace is used to separate symbols, and to make programs neater for
2900 people to read. Unless within character constants
2901 (@pxref{Characters,,Character Constants}), any whitespace means the same
2902 as exactly one space.
2903
2904 @node Comments
2905 @section Comments
2906
2907 @cindex comments
2908 There are two ways of rendering comments to @command{@value{AS}}. In both
2909 cases the comment is equivalent to one space.
2910
2911 Anything from @samp{/*} through the next @samp{*/} is a comment.
2912 This means you may not nest these comments.
2913
2914 @smallexample
2915 /*
2916 The only way to include a newline ('\n') in a comment
2917 is to use this sort of comment.
2918 */
2919
2920 /* This sort of comment does not nest. */
2921 @end smallexample
2922
2923 @cindex line comment character
2924 Anything from a @dfn{line comment} character up to the next newline is
2925 considered a comment and is ignored. The line comment character is target
2926 specific, and some targets multiple comment characters. Some targets also have
2927 line comment characters that only work if they are the first character on a
2928 line. Some targets use a sequence of two characters to introduce a line
2929 comment. Some targets can also change their line comment characters depending
2930 upon command-line options that have been used. For more details see the
2931 @emph{Syntax} section in the documentation for individual targets.
2932
2933 If the line comment character is the hash sign (@samp{#}) then it still has the
2934 special ability to enable and disable preprocessing (@pxref{Preprocessing}) and
2935 to specify logical line numbers:
2936
2937 @kindex #
2938 @cindex lines starting with @code{#}
2939 @cindex logical line numbers
2940 To be compatible with past assemblers, lines that begin with @samp{#} have a
2941 special interpretation. Following the @samp{#} should be an absolute
2942 expression (@pxref{Expressions}): the logical line number of the @emph{next}
2943 line. Then a string (@pxref{Strings, ,Strings}) is allowed: if present it is a
2944 new logical file name. The rest of the line, if any, should be whitespace.
2945
2946 If the first non-whitespace characters on the line are not numeric,
2947 the line is ignored. (Just like a comment.)
2948
2949 @smallexample
2950 # This is an ordinary comment.
2951 # 42-6 "new_file_name" # New logical file name
2952 # This is logical line # 36.
2953 @end smallexample
2954 This feature is deprecated, and may disappear from future versions
2955 of @command{@value{AS}}.
2956
2957 @node Symbol Intro
2958 @section Symbols
2959
2960 @cindex characters used in symbols
2961 @ifclear SPECIAL-SYMS
2962 A @dfn{symbol} is one or more characters chosen from the set of all
2963 letters (both upper and lower case), digits and the three characters
2964 @samp{_.$}.
2965 @end ifclear
2966 @ifset SPECIAL-SYMS
2967 @ifclear GENERIC
2968 @ifset H8
2969 A @dfn{symbol} is one or more characters chosen from the set of all
2970 letters (both upper and lower case), digits and the three characters
2971 @samp{._$}. (Save that, on the H8/300 only, you may not use @samp{$} in
2972 symbol names.)
2973 @end ifset
2974 @end ifclear
2975 @end ifset
2976 @ifset GENERIC
2977 On most machines, you can also use @code{$} in symbol names; exceptions
2978 are noted in @ref{Machine Dependencies}.
2979 @end ifset
2980 No symbol may begin with a digit. Case is significant.
2981 There is no length limit; all characters are significant. Multibyte characters
2982 are supported, but note that the setting of the
2983 @option{--multibyte-handling} option might prevent their use. Symbols
2984 are delimited by characters not in that set, or by the beginning of a file
2985 (since the source program must end with a newline, the end of a file is not a
2986 possible symbol delimiter). @xref{Symbols}.
2987
2988 Symbol names may also be enclosed in double quote @code{"} characters. In such
2989 cases any characters are allowed, except for the NUL character. If a double
2990 quote character is to be included in the symbol name it must be preceded by a
2991 backslash @code{\} character.
2992 @cindex length of symbols
2993
2994 @node Statements
2995 @section Statements
2996
2997 @cindex statements, structure of
2998 @cindex line separator character
2999 @cindex statement separator character
3000
3001 A @dfn{statement} ends at a newline character (@samp{\n}) or a
3002 @dfn{line separator character}. The line separator character is target
3003 specific and described in the @emph{Syntax} section of each
3004 target's documentation. Not all targets support a line separator character.
3005 The newline or line separator character is considered to be part of the
3006 preceding statement. Newlines and separators within character constants are an
3007 exception: they do not end statements.
3008
3009 @cindex newline, required at file end
3010 @cindex EOF, newline must precede
3011 It is an error to end any statement with end-of-file: the last
3012 character of any input file should be a newline.@refill
3013
3014 An empty statement is allowed, and may include whitespace. It is ignored.
3015
3016 @cindex instructions and directives
3017 @cindex directives and instructions
3018 @c "key symbol" is not used elsewhere in the document; seems pedantic to
3019 @c @defn{} it in that case, as was done previously... doc@cygnus.com,
3020 @c 13feb91.
3021 A statement begins with zero or more labels, optionally followed by a
3022 key symbol which determines what kind of statement it is. The key
3023 symbol determines the syntax of the rest of the statement. If the
3024 symbol begins with a dot @samp{.} then the statement is an assembler
3025 directive: typically valid for any computer. If the symbol begins with
3026 a letter the statement is an assembly language @dfn{instruction}: it
3027 assembles into a machine language instruction.
3028 @ifset GENERIC
3029 Different versions of @command{@value{AS}} for different computers
3030 recognize different instructions. In fact, the same symbol may
3031 represent a different instruction in a different computer's assembly
3032 language.@refill
3033 @end ifset
3034
3035 @cindex @code{:} (label)
3036 @cindex label (@code{:})
3037 A label is a symbol immediately followed by a colon (@code{:}).
3038 Whitespace before a label or after a colon is permitted, but you may not
3039 have whitespace between a label's symbol and its colon. @xref{Labels}.
3040
3041 @ifset HPPA
3042 For HPPA targets, labels need not be immediately followed by a colon, but
3043 the definition of a label must begin in column zero. This also implies that
3044 only one label may be defined on each line.
3045 @end ifset
3046
3047 @smallexample
3048 label: .directive followed by something
3049 another_label: # This is an empty statement.
3050 instruction operand_1, operand_2, @dots{}
3051 @end smallexample
3052
3053 @node Constants
3054 @section Constants
3055
3056 @cindex constants
3057 A constant is a number, written so that its value is known by
3058 inspection, without knowing any context. Like this:
3059 @smallexample
3060 @group
3061 .byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
3062 .ascii "Ring the bell\7" # A string constant.
3063 .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
3064 .float 0f-314159265358979323846264338327\
3065 95028841971.693993751E-40 # - pi, a flonum.
3066 @end group
3067 @end smallexample
3068
3069 @menu
3070 * Characters:: Character Constants
3071 * Numbers:: Number Constants
3072 @end menu
3073
3074 @node Characters
3075 @subsection Character Constants
3076
3077 @cindex character constants
3078 @cindex constants, character
3079 There are two kinds of character constants. A @dfn{character} stands
3080 for one character in one byte and its value may be used in
3081 numeric expressions. String constants (properly called string
3082 @emph{literals}) are potentially many bytes and their values may not be
3083 used in arithmetic expressions.
3084
3085 @menu
3086 * Strings:: Strings
3087 * Chars:: Characters
3088 @end menu
3089
3090 @node Strings
3091 @subsubsection Strings
3092
3093 @cindex string constants
3094 @cindex constants, string
3095 A @dfn{string} is written between double-quotes. It may contain
3096 double-quotes or null characters. The way to get special characters
3097 into a string is to @dfn{escape} these characters: precede them with
3098 a backslash @samp{\} character. For example @samp{\\} represents
3099 one backslash: the first @code{\} is an escape which tells
3100 @command{@value{AS}} to interpret the second character literally as a backslash
3101 (which prevents @command{@value{AS}} from recognizing the second @code{\} as an
3102 escape character). The complete list of escapes follows.
3103
3104 @cindex escape codes, character
3105 @cindex character escape codes
3106 @c NOTE: Cindex entries must not start with a backlash character.
3107 @c NOTE: This confuses the pdf2texi script when it is creating the
3108 @c NOTE: index based upon the first character and so it generates:
3109 @c NOTE: \initial {\\}
3110 @c NOTE: which then results in the error message:
3111 @c NOTE: Argument of \\ has an extra }.
3112 @c NOTE: So in the index entries below a space character has been
3113 @c NOTE: prepended to avoid this problem.
3114 @table @kbd
3115 @c @item \a
3116 @c Mnemonic for ACKnowledge; for ASCII this is octal code 007.
3117 @c
3118 @cindex @code{ \b} (backspace character)
3119 @cindex backspace (@code{\b})
3120 @item \b
3121 Mnemonic for backspace; for ASCII this is octal code 010.
3122
3123 @c @item \e
3124 @c Mnemonic for EOText; for ASCII this is octal code 004.
3125 @c
3126 @cindex @code{ \f} (formfeed character)
3127 @cindex formfeed (@code{\f})
3128 @item backslash-f
3129 Mnemonic for FormFeed; for ASCII this is octal code 014.
3130
3131 @cindex @code{ \n} (newline character)
3132 @cindex newline (@code{\n})
3133 @item \n
3134 Mnemonic for newline; for ASCII this is octal code 012.
3135
3136 @c @item \p
3137 @c Mnemonic for prefix; for ASCII this is octal code 033, usually known as @code{escape}.
3138 @c
3139 @cindex @code{ \r} (carriage return character)
3140 @cindex carriage return (@code{backslash-r})
3141 @item \r
3142 Mnemonic for carriage-Return; for ASCII this is octal code 015.
3143
3144 @c @item \s
3145 @c Mnemonic for space; for ASCII this is octal code 040. Included for compliance with
3146 @c other assemblers.
3147 @c
3148 @cindex @code{ \t} (tab)
3149 @cindex tab (@code{\t})
3150 @item \t
3151 Mnemonic for horizontal Tab; for ASCII this is octal code 011.
3152
3153 @c @item \v
3154 @c Mnemonic for Vertical tab; for ASCII this is octal code 013.
3155 @c @item \x @var{digit} @var{digit} @var{digit}
3156 @c A hexadecimal character code. The numeric code is 3 hexadecimal digits.
3157 @c
3158 @cindex @code{ \@var{ddd}} (octal character code)
3159 @cindex octal character code (@code{\@var{ddd}})
3160 @item \ @var{digit} @var{digit} @var{digit}
3161 An octal character code. The numeric code is 3 octal digits.
3162 For compatibility with other Unix systems, 8 and 9 are accepted as digits:
3163 for example, @code{\008} has the value 010, and @code{\009} the value 011.
3164
3165 @cindex @code{ \@var{xd...}} (hex character code)
3166 @cindex hex character code (@code{\@var{xd...}})
3167 @item \@code{x} @var{hex-digits...}
3168 A hex character code. All trailing hex digits are combined. Either upper or
3169 lower case @code{x} works.
3170
3171 @cindex @code{ \\} (@samp{\} character)
3172 @cindex backslash (@code{\\})
3173 @item \\
3174 Represents one @samp{\} character.
3175
3176 @c @item \'
3177 @c Represents one @samp{'} (accent acute) character.
3178 @c This is needed in single character literals
3179 @c (@xref{Characters,,Character Constants}.) to represent
3180 @c a @samp{'}.
3181 @c
3182 @cindex @code{ \"} (doublequote character)
3183 @cindex doublequote (@code{\"})
3184 @item \"
3185 Represents one @samp{"} character. Needed in strings to represent
3186 this character, because an unescaped @samp{"} would end the string.
3187
3188 @item \ @var{anything-else}
3189 Any other character when escaped by @kbd{\} gives a warning, but
3190 assembles as if the @samp{\} was not present. The idea is that if
3191 you used an escape sequence you clearly didn't want the literal
3192 interpretation of the following character. However @command{@value{AS}} has no
3193 other interpretation, so @command{@value{AS}} knows it is giving you the wrong
3194 code and warns you of the fact.
3195 @end table
3196
3197 Which characters are escapable, and what those escapes represent,
3198 varies widely among assemblers. The current set is what we think
3199 the BSD 4.2 assembler recognizes, and is a subset of what most C
3200 compilers recognize. If you are in doubt, do not use an escape
3201 sequence.
3202
3203 @node Chars
3204 @subsubsection Characters
3205
3206 @cindex single character constant
3207 @cindex character, single
3208 @cindex constant, single character
3209 A single character may be written as a single quote immediately followed by
3210 that character. Some backslash escapes apply to characters, @code{\b},
3211 @code{\f}, @code{\n}, @code{\r}, @code{\t}, and @code{\"} with the same meaning
3212 as for strings, plus @code{\'} for a single quote. So if you want to write the
3213 character backslash, you must write @kbd{'\\} where the first @code{\} escapes
3214 the second @code{\}. As you can see, the quote is an acute accent, not a grave
3215 accent. A newline
3216 @ifclear GENERIC
3217 @ifclear abnormal-separator
3218 (or semicolon @samp{;})
3219 @end ifclear
3220 @ifset abnormal-separator
3221 @ifset H8
3222 (or dollar sign @samp{$}, for the H8/300; or semicolon @samp{;} for the
3223 Renesas SH)
3224 @end ifset
3225 @end ifset
3226 @end ifclear
3227 immediately following an acute accent is taken as a literal character
3228 and does not count as the end of a statement. The value of a character
3229 constant in a numeric expression is the machine's byte-wide code for
3230 that character. @command{@value{AS}} assumes your character code is ASCII:
3231 @kbd{'A} means 65, @kbd{'B} means 66, and so on. @refill
3232
3233 @node Numbers
3234 @subsection Number Constants
3235
3236 @cindex constants, number
3237 @cindex number constants
3238 @command{@value{AS}} distinguishes three kinds of numbers according to how they
3239 are stored in the target machine. @emph{Integers} are numbers that
3240 would fit into an @code{int} in the C language. @emph{Bignums} are
3241 integers, but they are stored in more than 32 bits. @emph{Flonums}
3242 are floating point numbers, described below.
3243
3244 @menu
3245 * Integers:: Integers
3246 * Bignums:: Bignums
3247 * Flonums:: Flonums
3248 @ifclear GENERIC
3249 @end ifclear
3250 @end menu
3251
3252 @node Integers
3253 @subsubsection Integers
3254 @cindex integers
3255 @cindex constants, integer
3256
3257 @cindex binary integers
3258 @cindex integers, binary
3259 A binary integer is @samp{0b} or @samp{0B} followed by zero or more of
3260 the binary digits @samp{01}.
3261
3262 @cindex octal integers
3263 @cindex integers, octal
3264 An octal integer is @samp{0} followed by zero or more of the octal
3265 digits (@samp{01234567}).
3266
3267 @cindex decimal integers
3268 @cindex integers, decimal
3269 A decimal integer starts with a non-zero digit followed by zero or
3270 more digits (@samp{0123456789}).
3271
3272 @cindex hexadecimal integers
3273 @cindex integers, hexadecimal
3274 A hexadecimal integer is @samp{0x} or @samp{0X} followed by one or
3275 more hexadecimal digits chosen from @samp{0123456789abcdefABCDEF}.
3276
3277 Integers have the usual values. To denote a negative integer, use
3278 the prefix operator @samp{-} discussed under expressions
3279 (@pxref{Prefix Ops,,Prefix Operators}).
3280
3281 @node Bignums
3282 @subsubsection Bignums
3283
3284 @cindex bignums
3285 @cindex constants, bignum
3286 A @dfn{bignum} has the same syntax and semantics as an integer
3287 except that the number (or its negative) takes more than 32 bits to
3288 represent in binary. The distinction is made because in some places
3289 integers are permitted while bignums are not.
3290
3291 @node Flonums
3292 @subsubsection Flonums
3293 @cindex flonums
3294 @cindex floating point numbers
3295 @cindex constants, floating point
3296
3297 @cindex precision, floating point
3298 A @dfn{flonum} represents a floating point number. The translation is
3299 indirect: a decimal floating point number from the text is converted by
3300 @command{@value{AS}} to a generic binary floating point number of more than
3301 sufficient precision. This generic floating point number is converted
3302 to a particular computer's floating point format (or formats) by a
3303 portion of @command{@value{AS}} specialized to that computer.
3304
3305 A flonum is written by writing (in order)
3306 @itemize @bullet
3307 @item
3308 The digit @samp{0}.
3309 @ifset HPPA
3310 (@samp{0} is optional on the HPPA.)
3311 @end ifset
3312
3313 @item
3314 A letter, to tell @command{@value{AS}} the rest of the number is a flonum.
3315 @ifset GENERIC
3316 @kbd{e} is recommended. Case is not important.
3317 @ignore
3318 @c FIXME: verify if flonum syntax really this vague for most cases
3319 (Any otherwise illegal letter works here, but that might be changed. Vax BSD
3320 4.2 assembler seems to allow any of @samp{defghDEFGH}.)
3321 @end ignore
3322
3323 On the H8/300 and Renesas / SuperH SH architectures, the letter must be
3324 one of the letters @samp{DFPRSX} (in upper or lower case).
3325
3326 On the ARC, the letter must be one of the letters @samp{DFRS}
3327 (in upper or lower case).
3328
3329 On the HPPA architecture, the letter must be @samp{E} (upper case only).
3330 @end ifset
3331 @ifclear GENERIC
3332 @ifset ARC
3333 One of the letters @samp{DFRS} (in upper or lower case).
3334 @end ifset
3335 @ifset H8
3336 One of the letters @samp{DFPRSX} (in upper or lower case).
3337 @end ifset
3338 @ifset HPPA
3339 The letter @samp{E} (upper case only).
3340 @end ifset
3341 @end ifclear
3342
3343 @item
3344 An optional sign: either @samp{+} or @samp{-}.
3345
3346 @item
3347 An optional @dfn{integer part}: zero or more decimal digits.
3348
3349 @item
3350 An optional @dfn{fractional part}: @samp{.} followed by zero
3351 or more decimal digits.
3352
3353 @item
3354 An optional exponent, consisting of:
3355
3356 @itemize @bullet
3357 @item
3358 An @samp{E} or @samp{e}.
3359 @c I can't find a config where "EXP_CHARS" is other than 'eE', but in
3360 @c principle this can perfectly well be different on different targets.
3361 @item
3362 Optional sign: either @samp{+} or @samp{-}.
3363 @item
3364 One or more decimal digits.
3365 @end itemize
3366
3367 @end itemize
3368
3369 At least one of the integer part or the fractional part must be
3370 present. The floating point number has the usual base-10 value.
3371
3372 @command{@value{AS}} does all processing using integers. Flonums are computed
3373 independently of any floating point hardware in the computer running
3374 @command{@value{AS}}.
3375
3376 @node Sections
3377 @chapter Sections and Relocation
3378 @cindex sections
3379 @cindex relocation
3380
3381 @menu
3382 * Secs Background:: Background
3383 * Ld Sections:: Linker Sections
3384 * As Sections:: Assembler Internal Sections
3385 * Sub-Sections:: Sub-Sections
3386 * bss:: bss Section
3387 @end menu
3388
3389 @node Secs Background
3390 @section Background
3391
3392 Roughly, a section is a range of addresses, with no gaps; all data
3393 ``in'' those addresses is treated the same for some particular purpose.
3394 For example there may be a ``read only'' section.
3395
3396 @cindex linker, and assembler
3397 @cindex assembler, and linker
3398 The linker @code{@value{LD}} reads many object files (partial programs) and
3399 combines their contents to form a runnable program. When @command{@value{AS}}
3400 emits an object file, the partial program is assumed to start at address 0.
3401 @code{@value{LD}} assigns the final addresses for the partial program, so that
3402 different partial programs do not overlap. This is actually an
3403 oversimplification, but it suffices to explain how @command{@value{AS}} uses
3404 sections.
3405
3406 @code{@value{LD}} moves blocks of bytes of your program to their run-time
3407 addresses. These blocks slide to their run-time addresses as rigid
3408 units; their length does not change and neither does the order of bytes
3409 within them. Such a rigid unit is called a @emph{section}. Assigning
3410 run-time addresses to sections is called @dfn{relocation}. It includes
3411 the task of adjusting mentions of object-file addresses so they refer to
3412 the proper run-time addresses.
3413 @ifset H8
3414 For the H8/300, and for the Renesas / SuperH SH,
3415 @command{@value{AS}} pads sections if needed to
3416 ensure they end on a word (sixteen bit) boundary.
3417 @end ifset
3418
3419 @cindex standard assembler sections
3420 An object file written by @command{@value{AS}} has at least three sections, any
3421 of which may be empty. These are named @dfn{text}, @dfn{data} and
3422 @dfn{bss} sections.
3423
3424 @ifset COFF-ELF
3425 @ifset GENERIC
3426 When it generates COFF or ELF output,
3427 @end ifset
3428 @command{@value{AS}} can also generate whatever other named sections you specify
3429 using the @samp{.section} directive (@pxref{Section,,@code{.section}}).
3430 If you do not use any directives that place output in the @samp{.text}
3431 or @samp{.data} sections, these sections still exist, but are empty.
3432 @end ifset
3433
3434 @ifset HPPA
3435 @ifset GENERIC
3436 When @command{@value{AS}} generates SOM or ELF output for the HPPA,
3437 @end ifset
3438 @command{@value{AS}} can also generate whatever other named sections you
3439 specify using the @samp{.space} and @samp{.subspace} directives. See
3440 @cite{HP9000 Series 800 Assembly Language Reference Manual}
3441 (HP 92432-90001) for details on the @samp{.space} and @samp{.subspace}
3442 assembler directives.
3443
3444 @ifset SOM
3445 Additionally, @command{@value{AS}} uses different names for the standard
3446 text, data, and bss sections when generating SOM output. Program text
3447 is placed into the @samp{$CODE$} section, data into @samp{$DATA$}, and
3448 BSS into @samp{$BSS$}.
3449 @end ifset
3450 @end ifset
3451
3452 Within the object file, the text section starts at address @code{0}, the
3453 data section follows, and the bss section follows the data section.
3454
3455 @ifset HPPA
3456 When generating either SOM or ELF output files on the HPPA, the text
3457 section starts at address @code{0}, the data section at address
3458 @code{0x4000000}, and the bss section follows the data section.
3459 @end ifset
3460
3461 To let @code{@value{LD}} know which data changes when the sections are
3462 relocated, and how to change that data, @command{@value{AS}} also writes to the
3463 object file details of the relocation needed. To perform relocation
3464 @code{@value{LD}} must know, each time an address in the object
3465 file is mentioned:
3466 @itemize @bullet
3467 @item
3468 Where in the object file is the beginning of this reference to
3469 an address?
3470 @item
3471 How long (in bytes) is this reference?
3472 @item
3473 Which section does the address refer to? What is the numeric value of
3474 @display
3475 (@var{address}) @minus{} (@var{start-address of section})?
3476 @end display
3477 @item
3478 Is the reference to an address ``Program-Counter relative''?
3479 @end itemize
3480
3481 @cindex addresses, format of
3482 @cindex section-relative addressing
3483 In fact, every address @command{@value{AS}} ever uses is expressed as
3484 @display
3485 (@var{section}) + (@var{offset into section})
3486 @end display
3487 @noindent
3488 Further, most expressions @command{@value{AS}} computes have this section-relative
3489 nature.
3490 @ifset SOM
3491 (For some object formats, such as SOM for the HPPA, some expressions are
3492 symbol-relative instead.)
3493 @end ifset
3494
3495 In this manual we use the notation @{@var{secname} @var{N}@} to mean ``offset
3496 @var{N} into section @var{secname}.''
3497
3498 Apart from text, data and bss sections you need to know about the
3499 @dfn{absolute} section. When @code{@value{LD}} mixes partial programs,
3500 addresses in the absolute section remain unchanged. For example, address
3501 @code{@{absolute 0@}} is ``relocated'' to run-time address 0 by
3502 @code{@value{LD}}. Although the linker never arranges two partial programs'
3503 data sections with overlapping addresses after linking, @emph{by definition}
3504 their absolute sections must overlap. Address @code{@{absolute@ 239@}} in one
3505 part of a program is always the same address when the program is running as
3506 address @code{@{absolute@ 239@}} in any other part of the program.
3507
3508 The idea of sections is extended to the @dfn{undefined} section. Any
3509 address whose section is unknown at assembly time is by definition
3510 rendered @{undefined @var{U}@}---where @var{U} is filled in later.
3511 Since numbers are always defined, the only way to generate an undefined
3512 address is to mention an undefined symbol. A reference to a named
3513 common block would be such a symbol: its value is unknown at assembly
3514 time so it has section @emph{undefined}.
3515
3516 By analogy the word @emph{section} is used to describe groups of sections in
3517 the linked program. @code{@value{LD}} puts all partial programs' text
3518 sections in contiguous addresses in the linked program. It is
3519 customary to refer to the @emph{text section} of a program, meaning all
3520 the addresses of all partial programs' text sections. Likewise for
3521 data and bss sections.
3522
3523 Some sections are manipulated by @code{@value{LD}}; others are invented for
3524 use of @command{@value{AS}} and have no meaning except during assembly.
3525
3526 @node Ld Sections
3527 @section Linker Sections
3528 @code{@value{LD}} deals with just four kinds of sections, summarized below.
3529
3530 @table @strong
3531
3532 @ifset COFF-ELF
3533 @cindex named sections
3534 @cindex sections, named
3535 @item named sections
3536 @end ifset
3537 @ifset aout
3538 @cindex text section
3539 @cindex data section
3540 @itemx text section
3541 @itemx data section
3542 @end ifset
3543 These sections hold your program. @command{@value{AS}} and @code{@value{LD}} treat them as
3544 separate but equal sections. Anything you can say of one section is
3545 true of another.
3546 @c @ifset aout
3547 When the program is running, however, it is
3548 customary for the text section to be unalterable. The
3549 text section is often shared among processes: it contains
3550 instructions, constants and the like. The data section of a running
3551 program is usually alterable: for example, C variables would be stored
3552 in the data section.
3553 @c @end ifset
3554
3555 @cindex bss section
3556 @item bss section
3557 This section contains zeroed bytes when your program begins running. It
3558 is used to hold uninitialized variables or common storage. The length of
3559 each partial program's bss section is important, but because it starts
3560 out containing zeroed bytes there is no need to store explicit zero
3561 bytes in the object file. The bss section was invented to eliminate
3562 those explicit zeros from object files.
3563
3564 @cindex absolute section
3565 @item absolute section
3566 Address 0 of this section is always ``relocated'' to runtime address 0.
3567 This is useful if you want to refer to an address that @code{@value{LD}} must
3568 not change when relocating. In this sense we speak of absolute
3569 addresses being ``unrelocatable'': they do not change during relocation.
3570
3571 @cindex undefined section
3572 @item undefined section
3573 This ``section'' is a catch-all for address references to objects not in
3574 the preceding sections.
3575 @c FIXME: ref to some other doc on obj-file formats could go here.
3576 @end table
3577
3578 @cindex relocation example
3579 An idealized example of three relocatable sections follows.
3580 @ifset COFF-ELF
3581 The example uses the traditional section names @samp{.text} and @samp{.data}.
3582 @end ifset
3583 Memory addresses are on the horizontal axis.
3584
3585 @c TEXI2ROFF-KILL
3586 @ifnottex
3587 @c END TEXI2ROFF-KILL
3588 @smallexample
3589 +-----+----+--+
3590 partial program # 1: |ttttt|dddd|00|
3591 +-----+----+--+
3592
3593 text data bss
3594 seg. seg. seg.
3595
3596 +---+---+---+
3597 partial program # 2: |TTT|DDD|000|
3598 +---+---+---+
3599
3600 +--+---+-----+--+----+---+-----+~~
3601 linked program: | |TTT|ttttt| |dddd|DDD|00000|
3602 +--+---+-----+--+----+---+-----+~~
3603
3604 addresses: 0 @dots{}
3605 @end smallexample
3606 @c TEXI2ROFF-KILL
3607 @end ifnottex
3608 @need 5000
3609 @tex
3610 \bigskip
3611 \line{\it Partial program \#1: \hfil}
3612 \line{\ibox{2.5cm}{\tt text}\ibox{2cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3613 \line{\boxit{2.5cm}{\tt ttttt}\boxit{2cm}{\tt dddd}\boxit{1cm}{\tt 00}\hfil}
3614
3615 \line{\it Partial program \#2: \hfil}
3616 \line{\ibox{1cm}{\tt text}\ibox{1.5cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3617 \line{\boxit{1cm}{\tt TTT}\boxit{1.5cm}{\tt DDDD}\boxit{1cm}{\tt 000}\hfil}
3618
3619 \line{\it linked program: \hfil}
3620 \line{\ibox{.5cm}{}\ibox{1cm}{\tt text}\ibox{2.5cm}{}\ibox{.75cm}{}\ibox{2cm}{\tt data}\ibox{1.5cm}{}\ibox{2cm}{\tt bss}\hfil}
3621 \line{\boxit{.5cm}{}\boxit{1cm}{\tt TTT}\boxit{2.5cm}{\tt
3622 ttttt}\boxit{.75cm}{}\boxit{2cm}{\tt dddd}\boxit{1.5cm}{\tt
3623 DDDD}\boxit{2cm}{\tt 00000}\ \dots\hfil}
3624
3625 \line{\it addresses: \hfil}
3626 \line{0\dots\hfil}
3627
3628 @end tex
3629 @c END TEXI2ROFF-KILL
3630
3631 @node As Sections
3632 @section Assembler Internal Sections
3633
3634 @cindex internal assembler sections
3635 @cindex sections in messages, internal
3636 These sections are meant only for the internal use of @command{@value{AS}}. They
3637 have no meaning at run-time. You do not really need to know about these
3638 sections for most purposes; but they can be mentioned in @command{@value{AS}}
3639 warning messages, so it might be helpful to have an idea of their
3640 meanings to @command{@value{AS}}. These sections are used to permit the
3641 value of every expression in your assembly language program to be a
3642 section-relative address.
3643
3644 @table @b
3645 @cindex assembler internal logic error
3646 @item ASSEMBLER-INTERNAL-LOGIC-ERROR!
3647 An internal assembler logic error has been found. This means there is a
3648 bug in the assembler.
3649
3650 @cindex expr (internal section)
3651 @item expr section
3652 The assembler stores complex expression internally as combinations of
3653 symbols. When it needs to represent an expression as a symbol, it puts
3654 it in the expr section.
3655 @c FIXME item debug
3656 @c FIXME item transfer[t] vector preload
3657 @c FIXME item transfer[t] vector postload
3658 @c FIXME item register
3659 @end table
3660
3661 @node Sub-Sections
3662 @section Sub-Sections
3663
3664 @cindex numbered subsections
3665 @cindex grouping data
3666 @ifset aout
3667 Assembled bytes
3668 @ifset COFF-ELF
3669 conventionally
3670 @end ifset
3671 fall into two sections: text and data.
3672 @end ifset
3673 You may have separate groups of
3674 @ifset GENERIC
3675 data in named sections
3676 @end ifset
3677 @ifclear GENERIC
3678 @ifclear aout
3679 data in named sections
3680 @end ifclear
3681 @ifset aout
3682 text or data
3683 @end ifset
3684 @end ifclear
3685 that you want to end up near to each other in the object file, even though they
3686 are not contiguous in the assembler source. @command{@value{AS}} allows you to
3687 use @dfn{subsections} for this purpose. Within each section, there can be
3688 numbered subsections with values from 0 to 8192. Objects assembled into the
3689 same subsection go into the object file together with other objects in the same
3690 subsection. For example, a compiler might want to store constants in the text
3691 section, but might not want to have them interspersed with the program being
3692 assembled. In this case, the compiler could issue a @samp{.text 0} before each
3693 section of code being output, and a @samp{.text 1} before each group of
3694 constants being output.
3695
3696 Subsections are optional. If you do not use subsections, everything
3697 goes in subsection number zero.
3698
3699 @ifset GENERIC
3700 Each subsection is zero-padded up to a multiple of four bytes.
3701 (Subsections may be padded a different amount on different flavors
3702 of @command{@value{AS}}.)
3703 @end ifset
3704 @ifclear GENERIC
3705 @ifset H8
3706 On the H8/300 platform, each subsection is zero-padded to a word
3707 boundary (two bytes).
3708 The same is true on the Renesas SH.
3709 @end ifset
3710 @end ifclear
3711
3712 Subsections appear in your object file in numeric order, lowest numbered
3713 to highest. (All this to be compatible with other people's assemblers.)
3714 The object file contains no representation of subsections; @code{@value{LD}} and
3715 other programs that manipulate object files see no trace of them.
3716 They just see all your text subsections as a text section, and all your
3717 data subsections as a data section.
3718
3719 To specify which subsection you want subsequent statements assembled
3720 into, use a numeric argument to specify it, in a @samp{.text
3721 @var{expression}} or a @samp{.data @var{expression}} statement.
3722 @ifset COFF
3723 @ifset GENERIC
3724 When generating COFF output, you
3725 @end ifset
3726 @ifclear GENERIC
3727 You
3728 @end ifclear
3729 can also use an extra subsection
3730 argument with arbitrary named sections: @samp{.section @var{name},
3731 @var{expression}}.
3732 @end ifset
3733 @ifset ELF
3734 @ifset GENERIC
3735 When generating ELF output, you
3736 @end ifset
3737 @ifclear GENERIC
3738 You
3739 @end ifclear
3740 can also use the @code{.subsection} directive (@pxref{SubSection})
3741 to specify a subsection: @samp{.subsection @var{expression}}.
3742 @end ifset
3743 @var{Expression} should be an absolute expression
3744 (@pxref{Expressions}). If you just say @samp{.text} then @samp{.text 0}
3745 is assumed. Likewise @samp{.data} means @samp{.data 0}. Assembly
3746 begins in @code{text 0}. For instance:
3747 @smallexample
3748 .text 0 # The default subsection is text 0 anyway.
3749 .ascii "This lives in the first text subsection. *"
3750 .text 1
3751 .ascii "But this lives in the second text subsection."
3752 .data 0
3753 .ascii "This lives in the data section,"
3754 .ascii "in the first data subsection."
3755 .text 0
3756 .ascii "This lives in the first text section,"
3757 .ascii "immediately following the asterisk (*)."
3758 @end smallexample
3759
3760 Each section has a @dfn{location counter} incremented by one for every byte
3761 assembled into that section. Because subsections are merely a convenience
3762 restricted to @command{@value{AS}} there is no concept of a subsection location
3763 counter. There is no way to directly manipulate a location counter---but the
3764 @code{.align} directive changes it, and any label definition captures its
3765 current value. The location counter of the section where statements are being
3766 assembled is said to be the @dfn{active} location counter.
3767
3768 @node bss
3769 @section bss Section
3770
3771 @cindex bss section
3772 @cindex common variable storage
3773 The bss section is used for local common variable storage.
3774 You may allocate address space in the bss section, but you may
3775 not dictate data to load into it before your program executes. When
3776 your program starts running, all the contents of the bss
3777 section are zeroed bytes.
3778
3779 The @code{.lcomm} pseudo-op defines a symbol in the bss section; see
3780 @ref{Lcomm,,@code{.lcomm}}.
3781
3782 The @code{.comm} pseudo-op may be used to declare a common symbol, which is
3783 another form of uninitialized symbol; see @ref{Comm,,@code{.comm}}.
3784
3785 @ifset GENERIC
3786 When assembling for a target which supports multiple sections, such as ELF or
3787 COFF, you may switch into the @code{.bss} section and define symbols as usual;
3788 see @ref{Section,,@code{.section}}. You may only assemble zero values into the
3789 section. Typically the section will only contain symbol definitions and
3790 @code{.skip} directives (@pxref{Skip,,@code{.skip}}).
3791 @end ifset
3792
3793 @node Symbols
3794 @chapter Symbols
3795
3796 @cindex symbols
3797 Symbols are a central concept: the programmer uses symbols to name
3798 things, the linker uses symbols to link, and the debugger uses symbols
3799 to debug.
3800
3801 @quotation
3802 @cindex debuggers, and symbol order
3803 @emph{Warning:} @command{@value{AS}} does not place symbols in the object file in
3804 the same order they were declared. This may break some debuggers.
3805 @end quotation
3806
3807 @menu
3808 * Labels:: Labels
3809 * Setting Symbols:: Giving Symbols Other Values
3810 * Symbol Names:: Symbol Names
3811 * Dot:: The Special Dot Symbol
3812 * Symbol Attributes:: Symbol Attributes
3813 @end menu
3814
3815 @node Labels
3816 @section Labels
3817
3818 @cindex labels
3819 A @dfn{label} is written as a symbol immediately followed by a colon
3820 @samp{:}. The symbol then represents the current value of the
3821 active location counter, and is, for example, a suitable instruction
3822 operand. You are warned if you use the same symbol to represent two
3823 different locations: the first definition overrides any other
3824 definitions.
3825
3826 @ifset HPPA
3827 On the HPPA, the usual form for a label need not be immediately followed by a
3828 colon, but instead must start in column zero. Only one label may be defined on
3829 a single line. To work around this, the HPPA version of @command{@value{AS}} also
3830 provides a special directive @code{.label} for defining labels more flexibly.
3831 @end ifset
3832
3833 @node Setting Symbols
3834 @section Giving Symbols Other Values
3835
3836 @cindex assigning values to symbols
3837 @cindex symbol values, assigning
3838 A symbol can be given an arbitrary value by writing a symbol, followed
3839 by an equals sign @samp{=}, followed by an expression
3840 (@pxref{Expressions}). This is equivalent to using the @code{.set}
3841 directive. @xref{Set,,@code{.set}}. In the same way, using a double
3842 equals sign @samp{=}@samp{=} here represents an equivalent of the
3843 @code{.eqv} directive. @xref{Eqv,,@code{.eqv}}.
3844
3845 @ifset Blackfin
3846 Blackfin does not support symbol assignment with @samp{=}.
3847 @end ifset
3848
3849 @node Symbol Names
3850 @section Symbol Names
3851
3852 @cindex symbol names
3853 @cindex names, symbol
3854 @ifclear SPECIAL-SYMS
3855 Symbol names begin with a letter or with one of @samp{._}. On most
3856 machines, you can also use @code{$} in symbol names; exceptions are
3857 noted in @ref{Machine Dependencies}. That character may be followed by any
3858 string of digits, letters, dollar signs (unless otherwise noted for a
3859 particular target machine), and underscores.
3860 @end ifclear
3861 @ifset SPECIAL-SYMS
3862 @ifset H8
3863 Symbol names begin with a letter or with one of @samp{._}. On the
3864 Renesas SH you can also use @code{$} in symbol names. That
3865 character may be followed by any string of digits, letters, dollar signs (save
3866 on the H8/300), and underscores.
3867 @end ifset
3868 @end ifset
3869
3870 Case of letters is significant: @code{foo} is a different symbol name
3871 than @code{Foo}.
3872
3873 Symbol names do not start with a digit. An exception to this rule is made for
3874 Local Labels. See below.
3875
3876 Multibyte characters are supported, but note that the setting of the
3877 @option{multibyte-handling} option might prevent their use.
3878 To generate a symbol name containing
3879 multibyte characters enclose it within double quotes and use escape codes. cf
3880 @xref{Strings}. Generating a multibyte symbol name from a label is not
3881 currently supported.
3882
3883 Since multibyte symbol names are unusual, and could possibly be used
3884 maliciously, @command{@value{AS}} provides a command line option
3885 (@option{--multibyte-handling=warn-sym-only}) which can be used to generate a
3886 warning message whenever a symbol name containing multibyte characters is defined.
3887
3888 Each symbol has exactly one name. Each name in an assembly language program
3889 refers to exactly one symbol. You may use that symbol name any number of times
3890 in a program.
3891
3892 @subheading Local Symbol Names
3893
3894 @cindex local symbol names
3895 @cindex symbol names, local
3896 A local symbol is any symbol beginning with certain local label prefixes.
3897 By default, the local label prefix is @samp{.L} for ELF systems or
3898 @samp{L} for traditional a.out systems, but each target may have its own
3899 set of local label prefixes.
3900 @ifset HPPA
3901 On the HPPA local symbols begin with @samp{L$}.
3902 @end ifset
3903
3904 Local symbols are defined and used within the assembler, but they are
3905 normally not saved in object files. Thus, they are not visible when debugging.
3906 You may use the @samp{-L} option (@pxref{L, ,Include Local Symbols})
3907 to retain the local symbols in the object files.
3908
3909 @subheading Local Labels
3910
3911 @cindex local labels
3912 @cindex temporary symbol names
3913 @cindex symbol names, temporary
3914 Local labels are different from local symbols. Local labels help compilers and
3915 programmers use names temporarily. They create symbols which are guaranteed to
3916 be unique over the entire scope of the input source code and which can be
3917 referred to by a simple notation. To define a local label, write a label of
3918 the form @samp{@b{N}:} (where @b{N} represents any non-negative integer).
3919 To refer to the most recent previous definition of that label write
3920 @samp{@b{N}b}, using the same number as when you defined the label. To refer
3921 to the next definition of a local label, write @samp{@b{N}f}. The @samp{b}
3922 stands for ``backwards'' and the @samp{f} stands for ``forwards''.
3923
3924 There is no restriction on how you can use these labels, and you can reuse them
3925 too. So that it is possible to repeatedly define the same local label (using
3926 the same number @samp{@b{N}}), although you can only refer to the most recently
3927 defined local label of that number (for a backwards reference) or the next
3928 definition of a specific local label for a forward reference. It is also worth
3929 noting that the first 10 local labels (@samp{@b{0:}}@dots{}@samp{@b{9:}}) are
3930 implemented in a slightly more efficient manner than the others.
3931
3932 Here is an example:
3933
3934 @smallexample
3935 1: branch 1f
3936 2: branch 1b
3937 1: branch 2f
3938 2: branch 1b
3939 @end smallexample
3940
3941 Which is the equivalent of:
3942
3943 @smallexample
3944 label_1: branch label_3
3945 label_2: branch label_1
3946 label_3: branch label_4
3947 label_4: branch label_3
3948 @end smallexample
3949
3950 Local label names are only a notational device. They are immediately
3951 transformed into more conventional symbol names before the assembler uses them.
3952 The symbol names are stored in the symbol table, appear in error messages, and
3953 are optionally emitted to the object file. The names are constructed using
3954 these parts:
3955
3956 @table @code
3957 @item @emph{local label prefix}
3958 All local symbols begin with the system-specific local label prefix.
3959 Normally both @command{@value{AS}} and @code{@value{LD}} forget symbols
3960 that start with the local label prefix. These labels are
3961 used for symbols you are never intended to see. If you use the
3962 @samp{-L} option then @command{@value{AS}} retains these symbols in the
3963 object file. If you also instruct @code{@value{LD}} to retain these symbols,
3964 you may use them in debugging.
3965
3966 @item @var{number}
3967 This is the number that was used in the local label definition. So if the
3968 label is written @samp{55:} then the number is @samp{55}.
3969
3970 @item @kbd{C-B}
3971 This unusual character is included so you do not accidentally invent a symbol
3972 of the same name. The character has ASCII value of @samp{\002} (control-B).
3973
3974 @item @emph{ordinal number}
3975 This is a serial number to keep the labels distinct. The first definition of
3976 @samp{0:} gets the number @samp{1}. The 15th definition of @samp{0:} gets the
3977 number @samp{15}, and so on. Likewise the first definition of @samp{1:} gets
3978 the number @samp{1} and its 15th definition gets @samp{15} as well.
3979 @end table
3980
3981 So for example, the first @code{1:} may be named @code{.L1@kbd{C-B}1}, and
3982 the 44th @code{3:} may be named @code{.L3@kbd{C-B}44}.
3983
3984 @subheading Dollar Local Labels
3985 @cindex dollar local symbols
3986
3987 On some targets @code{@value{AS}} also supports an even more local form of
3988 local labels called dollar labels. These labels go out of scope (i.e., they
3989 become undefined) as soon as a non-local label is defined. Thus they remain
3990 valid for only a small region of the input source code. Normal local labels,
3991 by contrast, remain in scope for the entire file, or until they are redefined
3992 by another occurrence of the same local label.
3993
3994 Dollar labels are defined in exactly the same way as ordinary local labels,
3995 except that they have a dollar sign suffix to their numeric value, e.g.,
3996 @samp{@b{55$:}}.
3997
3998 They can also be distinguished from ordinary local labels by their transformed
3999 names which use ASCII character @samp{\001} (control-A) as the magic character
4000 to distinguish them from ordinary labels. For example, the fifth definition of
4001 @samp{6$} may be named @samp{.L6@kbd{C-A}5}.
4002
4003 @node Dot
4004 @section The Special Dot Symbol
4005
4006 @cindex dot (symbol)
4007 @cindex @code{.} (symbol)
4008 @cindex current address
4009 @cindex location counter
4010 The special symbol @samp{.} refers to the current address that
4011 @command{@value{AS}} is assembling into. Thus, the expression @samp{melvin:
4012 .long .} defines @code{melvin} to contain its own address.
4013 Assigning a value to @code{.} is treated the same as a @code{.org}
4014 directive.
4015 @ifclear no-space-dir
4016 Thus, the expression @samp{.=.+4} is the same as saying
4017 @samp{.space 4}.
4018 @end ifclear
4019
4020 @node Symbol Attributes
4021 @section Symbol Attributes
4022
4023 @cindex symbol attributes
4024 @cindex attributes, symbol
4025 Every symbol has, as well as its name, the attributes ``Value'' and
4026 ``Type''. Depending on output format, symbols can also have auxiliary
4027 attributes.
4028 @ifset INTERNALS
4029 The detailed definitions are in @file{a.out.h}.
4030 @end ifset
4031
4032 If you use a symbol without defining it, @command{@value{AS}} assumes zero for
4033 all these attributes, and probably won't warn you. This makes the
4034 symbol an externally defined symbol, which is generally what you
4035 would want.
4036
4037 @menu
4038 * Symbol Value:: Value
4039 * Symbol Type:: Type
4040 @ifset aout
4041 * a.out Symbols:: Symbol Attributes: @code{a.out}
4042 @end ifset
4043 @ifset COFF
4044 * COFF Symbols:: Symbol Attributes for COFF
4045 @end ifset
4046 @ifset SOM
4047 * SOM Symbols:: Symbol Attributes for SOM
4048 @end ifset
4049 @end menu
4050
4051 @node Symbol Value
4052 @subsection Value
4053
4054 @cindex value of a symbol
4055 @cindex symbol value
4056 The value of a symbol is (usually) 32 bits. For a symbol which labels a
4057 location in the text, data, bss or absolute sections the value is the
4058 number of addresses from the start of that section to the label.
4059 Naturally for text, data and bss sections the value of a symbol changes
4060 as @code{@value{LD}} changes section base addresses during linking. Absolute
4061 symbols' values do not change during linking: that is why they are
4062 called absolute.
4063
4064 The value of an undefined symbol is treated in a special way. If it is
4065 0 then the symbol is not defined in this assembler source file, and
4066 @code{@value{LD}} tries to determine its value from other files linked into the
4067 same program. You make this kind of symbol simply by mentioning a symbol
4068 name without defining it. A non-zero value represents a @code{.comm}
4069 common declaration. The value is how much common storage to reserve, in
4070 bytes (addresses). The symbol refers to the first address of the
4071 allocated storage.
4072
4073 @node Symbol Type
4074 @subsection Type
4075
4076 @cindex type of a symbol
4077 @cindex symbol type
4078 The type attribute of a symbol contains relocation (section)
4079 information, any flag settings indicating that a symbol is external, and
4080 (optionally), other information for linkers and debuggers. The exact
4081 format depends on the object-code output format in use.
4082
4083 @ifset aout
4084 @node a.out Symbols
4085 @subsection Symbol Attributes: @code{a.out}
4086
4087 @cindex @code{a.out} symbol attributes
4088 @cindex symbol attributes, @code{a.out}
4089
4090 @menu
4091 * Symbol Desc:: Descriptor
4092 * Symbol Other:: Other
4093 @end menu
4094
4095 @node Symbol Desc
4096 @subsubsection Descriptor
4097
4098 @cindex descriptor, of @code{a.out} symbol
4099 This is an arbitrary 16-bit value. You may establish a symbol's
4100 descriptor value by using a @code{.desc} statement
4101 (@pxref{Desc,,@code{.desc}}). A descriptor value means nothing to
4102 @command{@value{AS}}.
4103
4104 @node Symbol Other
4105 @subsubsection Other
4106
4107 @cindex other attribute, of @code{a.out} symbol
4108 This is an arbitrary 8-bit value. It means nothing to @command{@value{AS}}.
4109 @end ifset
4110
4111 @ifset COFF
4112 @node COFF Symbols
4113 @subsection Symbol Attributes for COFF
4114
4115 @cindex COFF symbol attributes
4116 @cindex symbol attributes, COFF
4117
4118 The COFF format supports a multitude of auxiliary symbol attributes;
4119 like the primary symbol attributes, they are set between @code{.def} and
4120 @code{.endef} directives.
4121
4122 @subsubsection Primary Attributes
4123
4124 @cindex primary attributes, COFF symbols
4125 The symbol name is set with @code{.def}; the value and type,
4126 respectively, with @code{.val} and @code{.type}.
4127
4128 @subsubsection Auxiliary Attributes
4129
4130 @cindex auxiliary attributes, COFF symbols
4131 The @command{@value{AS}} directives @code{.dim}, @code{.line}, @code{.scl},
4132 @code{.size}, @code{.tag}, and @code{.weak} can generate auxiliary symbol
4133 table information for COFF.
4134 @end ifset
4135
4136 @ifset SOM
4137 @node SOM Symbols
4138 @subsection Symbol Attributes for SOM
4139
4140 @cindex SOM symbol attributes
4141 @cindex symbol attributes, SOM
4142
4143 The SOM format for the HPPA supports a multitude of symbol attributes set with
4144 the @code{.EXPORT} and @code{.IMPORT} directives.
4145
4146 The attributes are described in @cite{HP9000 Series 800 Assembly
4147 Language Reference Manual} (HP 92432-90001) under the @code{IMPORT} and
4148 @code{EXPORT} assembler directive documentation.
4149 @end ifset
4150
4151 @node Expressions
4152 @chapter Expressions
4153
4154 @cindex expressions
4155 @cindex addresses
4156 @cindex numeric values
4157 An @dfn{expression} specifies an address or numeric value.
4158 Whitespace may precede and/or follow an expression.
4159
4160 The result of an expression must be an absolute number, or else an offset into
4161 a particular section. If an expression is not absolute, and there is not
4162 enough information when @command{@value{AS}} sees the expression to know its
4163 section, a second pass over the source program might be necessary to interpret
4164 the expression---but the second pass is currently not implemented.
4165 @command{@value{AS}} aborts with an error message in this situation.
4166
4167 @menu
4168 * Empty Exprs:: Empty Expressions
4169 * Integer Exprs:: Integer Expressions
4170 @end menu
4171
4172 @node Empty Exprs
4173 @section Empty Expressions
4174
4175 @cindex empty expressions
4176 @cindex expressions, empty
4177 An empty expression has no value: it is just whitespace or null.
4178 Wherever an absolute expression is required, you may omit the
4179 expression, and @command{@value{AS}} assumes a value of (absolute) 0. This
4180 is compatible with other assemblers.
4181
4182 @node Integer Exprs
4183 @section Integer Expressions
4184
4185 @cindex integer expressions
4186 @cindex expressions, integer
4187 An @dfn{integer expression} is one or more @emph{arguments} delimited
4188 by @emph{operators}.
4189
4190 @menu
4191 * Arguments:: Arguments
4192 * Operators:: Operators
4193 * Prefix Ops:: Prefix Operators
4194 * Infix Ops:: Infix Operators
4195 @end menu
4196
4197 @node Arguments
4198 @subsection Arguments
4199
4200 @cindex expression arguments
4201 @cindex arguments in expressions
4202 @cindex operands in expressions
4203 @cindex arithmetic operands
4204 @dfn{Arguments} are symbols, numbers or subexpressions. In other
4205 contexts arguments are sometimes called ``arithmetic operands''. In
4206 this manual, to avoid confusing them with the ``instruction operands'' of
4207 the machine language, we use the term ``argument'' to refer to parts of
4208 expressions only, reserving the word ``operand'' to refer only to machine
4209 instruction operands.
4210
4211 Symbols are evaluated to yield @{@var{section} @var{NNN}@} where
4212 @var{section} is one of text, data, bss, absolute,
4213 or undefined. @var{NNN} is a signed, 2's complement 32 bit
4214 integer.
4215
4216 Numbers are usually integers.
4217
4218 A number can be a flonum or bignum. In this case, you are warned
4219 that only the low order 32 bits are used, and @command{@value{AS}} pretends
4220 these 32 bits are an integer. You may write integer-manipulating
4221 instructions that act on exotic constants, compatible with other
4222 assemblers.
4223
4224 @cindex subexpressions
4225 Subexpressions are a left parenthesis @samp{(} followed by an integer
4226 expression, followed by a right parenthesis @samp{)}; or a prefix
4227 operator followed by an argument.
4228
4229 @node Operators
4230 @subsection Operators
4231
4232 @cindex operators, in expressions
4233 @cindex arithmetic functions
4234 @cindex functions, in expressions
4235 @dfn{Operators} are arithmetic functions, like @code{+} or @code{%}. Prefix
4236 operators are followed by an argument. Infix operators appear
4237 between their arguments. Operators may be preceded and/or followed by
4238 whitespace.
4239
4240 @node Prefix Ops
4241 @subsection Prefix Operator
4242
4243 @cindex prefix operators
4244 @command{@value{AS}} has the following @dfn{prefix operators}. They each take
4245 one argument, which must be absolute.
4246
4247 @c the tex/end tex stuff surrounding this small table is meant to make
4248 @c it align, on the printed page, with the similar table in the next
4249 @c section (which is inside an enumerate).
4250 @tex
4251 \global\advance\leftskip by \itemindent
4252 @end tex
4253
4254 @table @code
4255 @item -
4256 @dfn{Negation}. Two's complement negation.
4257 @item ~
4258 @dfn{Complementation}. Bitwise not.
4259 @end table
4260
4261 @tex
4262 \global\advance\leftskip by -\itemindent
4263 @end tex
4264
4265 @node Infix Ops
4266 @subsection Infix Operators
4267
4268 @cindex infix operators
4269 @cindex operators, permitted arguments
4270 @dfn{Infix operators} take two arguments, one on either side. Operators
4271 have precedence, but operations with equal precedence are performed left
4272 to right. Apart from @code{+} or @option{-}, both arguments must be
4273 absolute, and the result is absolute.
4274
4275 @enumerate
4276 @cindex operator precedence
4277 @cindex precedence of operators
4278
4279 @item
4280 Highest Precedence
4281
4282 @table @code
4283 @item *
4284 @dfn{Multiplication}.
4285
4286 @item /
4287 @dfn{Division}. Truncation is the same as the C operator @samp{/}
4288
4289 @item %
4290 @dfn{Remainder}.
4291
4292 @item <<
4293 @dfn{Shift Left}. Same as the C operator @samp{<<}.
4294
4295 @item >>
4296 @dfn{Shift Right}. Same as the C operator @samp{>>}.
4297 @end table
4298
4299 @item
4300 Intermediate precedence
4301
4302 @table @code
4303 @item |
4304
4305 @dfn{Bitwise Inclusive Or}.
4306
4307 @item &
4308 @dfn{Bitwise And}.
4309
4310 @item ^
4311 @dfn{Bitwise Exclusive Or}.
4312
4313 @item !
4314 @dfn{Bitwise Or Not}.
4315 @end table
4316
4317 @item
4318 Low Precedence
4319
4320 @table @code
4321 @cindex addition, permitted arguments
4322 @cindex plus, permitted arguments
4323 @cindex arguments for addition
4324 @item +
4325 @dfn{Addition}. If either argument is absolute, the result has the section of
4326 the other argument. You may not add together arguments from different
4327 sections.
4328
4329 @cindex subtraction, permitted arguments
4330 @cindex minus, permitted arguments
4331 @cindex arguments for subtraction
4332 @item -
4333 @dfn{Subtraction}. If the right argument is absolute, the
4334 result has the section of the left argument.
4335 If both arguments are in the same section, the result is absolute.
4336 You may not subtract arguments from different sections.
4337 @c FIXME is there still something useful to say about undefined - undefined ?
4338
4339 @cindex comparison expressions
4340 @cindex expressions, comparison
4341 @item ==
4342 @dfn{Is Equal To}
4343 @item <>
4344 @itemx !=
4345 @dfn{Is Not Equal To}
4346 @item <
4347 @dfn{Is Less Than}
4348 @item >
4349 @dfn{Is Greater Than}
4350 @item >=
4351 @dfn{Is Greater Than Or Equal To}
4352 @item <=
4353 @dfn{Is Less Than Or Equal To}
4354
4355 The comparison operators can be used as infix operators. A true results has a
4356 value of -1 whereas a false result has a value of 0. Note, these operators
4357 perform signed comparisons.
4358 @end table
4359
4360 @item Lowest Precedence
4361
4362 @table @code
4363 @item &&
4364 @dfn{Logical And}.
4365
4366 @item ||
4367 @dfn{Logical Or}.
4368
4369 These two logical operations can be used to combine the results of sub
4370 expressions. Note, unlike the comparison operators a true result returns a
4371 value of 1 but a false results does still return 0. Also note that the logical
4372 or operator has a slightly lower precedence than logical and.
4373
4374 @end table
4375 @end enumerate
4376
4377 In short, it's only meaningful to add or subtract the @emph{offsets} in an
4378 address; you can only have a defined section in one of the two arguments.
4379
4380 @node Pseudo Ops
4381 @chapter Assembler Directives
4382
4383 @cindex directives, machine independent
4384 @cindex pseudo-ops, machine independent
4385 @cindex machine independent directives
4386 All assembler directives have names that begin with a period (@samp{.}).
4387 The names are case insensitive for most targets, and usually written
4388 in lower case.
4389
4390 This chapter discusses directives that are available regardless of the
4391 target machine configuration for the @sc{gnu} assembler.
4392 @ifset GENERIC
4393 Some machine configurations provide additional directives.
4394 @xref{Machine Dependencies}.
4395 @end ifset
4396 @ifclear GENERIC
4397 @ifset machine-directives
4398 @xref{Machine Dependencies}, for additional directives.
4399 @end ifset
4400 @end ifclear
4401
4402 @menu
4403 * Abort:: @code{.abort}
4404 @ifset COFF
4405 * ABORT (COFF):: @code{.ABORT}
4406 @end ifset
4407
4408 * Align:: @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4409 * Altmacro:: @code{.altmacro}
4410 * Ascii:: @code{.ascii "@var{string}"}@dots{}
4411 * Asciz:: @code{.asciz "@var{string}"}@dots{}
4412 * Attach_to_group:: @code{.attach_to_group @var{name}}
4413 * Balign:: @code{.balign [@var{abs-expr}[, @var{abs-expr}]]}
4414 * Bss:: @code{.bss @var{subsection}}
4415 * Bundle directives:: @code{.bundle_align_mode @var{abs-expr}}, etc
4416 * Byte:: @code{.byte @var{expressions}}
4417 * CFI directives:: @code{.cfi_startproc [simple]}, @code{.cfi_endproc}, etc.
4418 * Comm:: @code{.comm @var{symbol} , @var{length} }
4419 * Data:: @code{.data @var{subsection}}
4420 * Dc:: @code{.dc[@var{size}] @var{expressions}}
4421 * Dcb:: @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
4422 * Ds:: @code{.ds[@var{size}] @var{number} [,@var{fill}]}
4423 @ifset COFF
4424 * Def:: @code{.def @var{name}}
4425 @end ifset
4426 @ifset aout
4427 * Desc:: @code{.desc @var{symbol}, @var{abs-expression}}
4428 @end ifset
4429 @ifset COFF
4430 * Dim:: @code{.dim}
4431 @end ifset
4432
4433 * Double:: @code{.double @var{flonums}}
4434 * Eject:: @code{.eject}
4435 * Else:: @code{.else}
4436 * Elseif:: @code{.elseif}
4437 * End:: @code{.end}
4438 @ifset COFF
4439 * Endef:: @code{.endef}
4440 @end ifset
4441
4442 * Endfunc:: @code{.endfunc}
4443 * Endif:: @code{.endif}
4444 * Equ:: @code{.equ @var{symbol}, @var{expression}}
4445 * Equiv:: @code{.equiv @var{symbol}, @var{expression}}
4446 * Eqv:: @code{.eqv @var{symbol}, @var{expression}}
4447 * Err:: @code{.err}
4448 * Error:: @code{.error @var{string}}
4449 * Exitm:: @code{.exitm}
4450 * Extern:: @code{.extern}
4451 * Fail:: @code{.fail}
4452 * File:: @code{.file}
4453 * Fill:: @code{.fill @var{repeat} , @var{size} , @var{value}}
4454 * Float:: @code{.float @var{flonums}}
4455 * Func:: @code{.func}
4456 * Global:: @code{.global @var{symbol}}, @code{.globl @var{symbol}}
4457 @ifset ELF
4458 * Gnu_attribute:: @code{.gnu_attribute @var{tag},@var{value}}
4459 * Hidden:: @code{.hidden @var{names}}
4460 @end ifset
4461
4462 * hword:: @code{.hword @var{expressions}}
4463 * Ident:: @code{.ident}
4464 * If:: @code{.if @var{absolute expression}}
4465 * Incbin:: @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
4466 * Include:: @code{.include "@var{file}"}
4467 * Int:: @code{.int @var{expressions}}
4468 @ifset ELF
4469 * Internal:: @code{.internal @var{names}}
4470 @end ifset
4471
4472 * Irp:: @code{.irp @var{symbol},@var{values}}@dots{}
4473 * Irpc:: @code{.irpc @var{symbol},@var{values}}@dots{}
4474 * Lcomm:: @code{.lcomm @var{symbol} , @var{length}}
4475 * Lflags:: @code{.lflags}
4476 @ifclear no-line-dir
4477 * Line:: @code{.line @var{line-number}}
4478 @end ifclear
4479
4480 * Linkonce:: @code{.linkonce [@var{type}]}
4481 * List:: @code{.list}
4482 * Ln:: @code{.ln @var{line-number}}
4483 * Loc:: @code{.loc @var{fileno} @var{lineno}}
4484 * Loc_mark_labels:: @code{.loc_mark_labels @var{enable}}
4485 @ifset ELF
4486 * Local:: @code{.local @var{names}}
4487 @end ifset
4488
4489 * Long:: @code{.long @var{expressions}}
4490 @ignore
4491 * Lsym:: @code{.lsym @var{symbol}, @var{expression}}
4492 @end ignore
4493
4494 * Macro:: @code{.macro @var{name} @var{args}}@dots{}
4495 * MRI:: @code{.mri @var{val}}
4496 * Noaltmacro:: @code{.noaltmacro}
4497 * Nolist:: @code{.nolist}
4498 * Nop:: @code{.nop}
4499 * Nops:: @code{.nops @var{size}[, @var{control}]}
4500 * Octa:: @code{.octa @var{bignums}}
4501 * Offset:: @code{.offset @var{loc}}
4502 * Org:: @code{.org @var{new-lc}, @var{fill}}
4503 * P2align:: @code{.p2align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4504 @ifset ELF
4505 * PopSection:: @code{.popsection}
4506 * Previous:: @code{.previous}
4507 @end ifset
4508
4509 * Print:: @code{.print @var{string}}
4510 @ifset ELF
4511 * Protected:: @code{.protected @var{names}}
4512 @end ifset
4513
4514 * Psize:: @code{.psize @var{lines}, @var{columns}}
4515 * Purgem:: @code{.purgem @var{name}}
4516 @ifset ELF
4517 * PushSection:: @code{.pushsection @var{name}}
4518 @end ifset
4519
4520 * Quad:: @code{.quad @var{bignums}}
4521 * Reloc:: @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
4522 * Rept:: @code{.rept @var{count}}
4523 * Sbttl:: @code{.sbttl "@var{subheading}"}
4524 @ifset COFF
4525 * Scl:: @code{.scl @var{class}}
4526 @end ifset
4527 @ifset COFF-ELF
4528 * Section:: @code{.section @var{name}[, @var{flags}]}
4529 @end ifset
4530
4531 * Set:: @code{.set @var{symbol}, @var{expression}}
4532 * Short:: @code{.short @var{expressions}}
4533 * Single:: @code{.single @var{flonums}}
4534 @ifset COFF-ELF
4535 * Size:: @code{.size [@var{name} , @var{expression}]}
4536 @end ifset
4537 @ifclear no-space-dir
4538 * Skip:: @code{.skip @var{size} [,@var{fill}]}
4539 @end ifclear
4540
4541 * Sleb128:: @code{.sleb128 @var{expressions}}
4542 @ifclear no-space-dir
4543 * Space:: @code{.space @var{size} [,@var{fill}]}
4544 @end ifclear
4545 @ifset have-stabs
4546 * Stab:: @code{.stabd, .stabn, .stabs}
4547 @end ifset
4548
4549 * String:: @code{.string "@var{str}"}, @code{.string8 "@var{str}"}, @code{.string16 "@var{str}"}, @code{.string32 "@var{str}"}, @code{.string64 "@var{str}"}
4550 * Struct:: @code{.struct @var{expression}}
4551 @ifset ELF
4552 * SubSection:: @code{.subsection}
4553 * Symver:: @code{.symver @var{name},@var{name2@@nodename}[,@var{visibility}]}
4554 @end ifset
4555
4556 @ifset COFF
4557 * Tag:: @code{.tag @var{structname}}
4558 @end ifset
4559
4560 * Text:: @code{.text @var{subsection}}
4561 * Title:: @code{.title "@var{heading}"}
4562 @ifset ELF
4563 * Tls_common:: @code{.tls_common @var{symbol}, @var{length}[, @var{alignment}]}
4564 @end ifset
4565 @ifset COFF-ELF
4566 * Type:: @code{.type <@var{int} | @var{name} , @var{type description}>}
4567 @end ifset
4568
4569 * Uleb128:: @code{.uleb128 @var{expressions}}
4570 @ifset COFF
4571 * Val:: @code{.val @var{addr}}
4572 @end ifset
4573
4574 @ifset ELF
4575 * Version:: @code{.version "@var{string}"}
4576 * VTableEntry:: @code{.vtable_entry @var{table}, @var{offset}}
4577 * VTableInherit:: @code{.vtable_inherit @var{child}, @var{parent}}
4578 @end ifset
4579
4580 * Warning:: @code{.warning @var{string}}
4581 * Weak:: @code{.weak @var{names}}
4582 * Weakref:: @code{.weakref @var{alias}, @var{symbol}}
4583 * Word:: @code{.word @var{expressions}}
4584 @ifclear no-space-dir
4585 * Zero:: @code{.zero @var{size}}
4586 @end ifclear
4587 * 2byte:: @code{.2byte @var{expressions}}
4588 * 4byte:: @code{.4byte @var{expressions}}
4589 * 8byte:: @code{.8byte @var{bignums}}
4590 * Deprecated:: Deprecated Directives
4591 @end menu
4592
4593 @node Abort
4594 @section @code{.abort}
4595
4596 @cindex @code{abort} directive
4597 @cindex stopping the assembly
4598 This directive stops the assembly immediately. It is for
4599 compatibility with other assemblers. The original idea was that the
4600 assembly language source would be piped into the assembler. If the sender
4601 of the source quit, it could use this directive tells @command{@value{AS}} to
4602 quit also. One day @code{.abort} will not be supported.
4603
4604 @ifset COFF
4605 @node ABORT (COFF)
4606 @section @code{.ABORT} (COFF)
4607
4608 @cindex @code{ABORT} directive
4609 When producing COFF output, @command{@value{AS}} accepts this directive as a
4610 synonym for @samp{.abort}.
4611
4612 @end ifset
4613
4614 @node Align
4615 @section @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4616
4617 @cindex padding the location counter
4618 @cindex @code{align} directive
4619 Pad the location counter (in the current subsection) to a particular storage
4620 boundary. The first expression (which must be absolute) is the alignment
4621 required, as described below. If this expression is omitted then a default
4622 value of 0 is used, effectively disabling alignment requirements.
4623
4624 The second expression (also absolute) gives the fill value to be stored in the
4625 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4626 padding bytes are normally zero. However, on most systems, if the section is
4627 marked as containing code and the fill value is omitted, the space is filled
4628 with no-op instructions.
4629
4630 The third expression is also absolute, and is also optional. If it is present,
4631 it is the maximum number of bytes that should be skipped by this alignment
4632 directive. If doing the alignment would require skipping more bytes than the
4633 specified maximum, then the alignment is not done at all. You can omit the
4634 fill value (the second argument) entirely by simply using two commas after the
4635 required alignment; this can be useful if you want the alignment to be filled
4636 with no-op instructions when appropriate.
4637
4638 The way the required alignment is specified varies from system to system.
4639 For the arc, hppa, i386 using ELF, iq2000, m68k, or1k,
4640 s390, sparc, tic4x and xtensa, the first expression is the
4641 alignment request in bytes. For example @samp{.align 8} advances
4642 the location counter until it is a multiple of 8. If the location counter
4643 is already a multiple of 8, no change is needed. For the tic54x, the
4644 first expression is the alignment request in words.
4645
4646 For other systems, including ppc, i386 using a.out format, arm and
4647 strongarm, it is the
4648 number of low-order zero bits the location counter must have after
4649 advancement. For example @samp{.align 3} advances the location
4650 counter until it is a multiple of 8. If the location counter is already a
4651 multiple of 8, no change is needed.
4652
4653 This inconsistency is due to the different behaviors of the various
4654 native assemblers for these systems which GAS must emulate.
4655 GAS also provides @code{.balign} and @code{.p2align} directives,
4656 described later, which have a consistent behavior across all
4657 architectures (but are specific to GAS).
4658
4659 @node Altmacro
4660 @section @code{.altmacro}
4661 Enable alternate macro mode, enabling:
4662
4663 @ftable @code
4664 @item LOCAL @var{name} [ , @dots{} ]
4665 One additional directive, @code{LOCAL}, is available. It is used to
4666 generate a string replacement for each of the @var{name} arguments, and
4667 replace any instances of @var{name} in each macro expansion. The
4668 replacement string is unique in the assembly, and different for each
4669 separate macro expansion. @code{LOCAL} allows you to write macros that
4670 define symbols, without fear of conflict between separate macro expansions.
4671
4672 @item String delimiters
4673 You can write strings delimited in these other ways besides
4674 @code{"@var{string}"}:
4675
4676 @table @code
4677 @item '@var{string}'
4678 You can delimit strings with single-quote characters.
4679
4680 @item <@var{string}>
4681 You can delimit strings with matching angle brackets.
4682 @end table
4683
4684 @item single-character string escape
4685 To include any single character literally in a string (even if the
4686 character would otherwise have some special meaning), you can prefix the
4687 character with @samp{!} (an exclamation mark). For example, you can
4688 write @samp{<4.3 !> 5.4!!>} to get the literal text @samp{4.3 > 5.4!}.
4689
4690 @item Expression results as strings
4691 You can write @samp{%@var{expr}} to evaluate the expression @var{expr}
4692 and use the result as a string.
4693 @end ftable
4694
4695 @node Ascii
4696 @section @code{.ascii "@var{string}"}@dots{}
4697
4698 @cindex @code{ascii} directive
4699 @cindex string literals
4700 @code{.ascii} expects zero or more string literals (@pxref{Strings})
4701 separated by commas. It assembles each string (with no automatic
4702 trailing zero byte) into consecutive addresses.
4703
4704 @node Asciz
4705 @section @code{.asciz "@var{string}"}@dots{}
4706
4707 @cindex @code{asciz} directive
4708 @cindex zero-terminated strings
4709 @cindex null-terminated strings
4710 @code{.asciz} is just like @code{.ascii}, but each string is followed by
4711 a zero byte. The ``z'' in @samp{.asciz} stands for ``zero''. Note that
4712 multiple string arguments not separated by commas will be concatenated
4713 together and only one final zero byte will be stored.
4714
4715 @node Attach_to_group
4716 @section @code{.attach_to_group @var{name}}
4717 Attaches the current section to the named group. This is like declaring
4718 the section with the @code{G} attribute, but can be done after the section
4719 has been created. Note if the group section does not exist at the point that
4720 this directive is used then it will be created.
4721
4722 @node Balign
4723 @section @code{.balign[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4724
4725 @cindex padding the location counter given number of bytes
4726 @cindex @code{balign} directive
4727 Pad the location counter (in the current subsection) to a particular
4728 storage boundary. The first expression (which must be absolute) is the
4729 alignment request in bytes. For example @samp{.balign 8} advances
4730 the location counter until it is a multiple of 8. If the location counter
4731 is already a multiple of 8, no change is needed. If the expression is omitted
4732 then a default value of 0 is used, effectively disabling alignment requirements.
4733
4734 The second expression (also absolute) gives the fill value to be stored in the
4735 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4736 padding bytes are normally zero. However, on most systems, if the section is
4737 marked as containing code and the fill value is omitted, the space is filled
4738 with no-op instructions.
4739
4740 The third expression is also absolute, and is also optional. If it is present,
4741 it is the maximum number of bytes that should be skipped by this alignment
4742 directive. If doing the alignment would require skipping more bytes than the
4743 specified maximum, then the alignment is not done at all. You can omit the
4744 fill value (the second argument) entirely by simply using two commas after the
4745 required alignment; this can be useful if you want the alignment to be filled
4746 with no-op instructions when appropriate.
4747
4748 @cindex @code{balignw} directive
4749 @cindex @code{balignl} directive
4750 The @code{.balignw} and @code{.balignl} directives are variants of the
4751 @code{.balign} directive. The @code{.balignw} directive treats the fill
4752 pattern as a two byte word value. The @code{.balignl} directives treats the
4753 fill pattern as a four byte longword value. For example, @code{.balignw
4754 4,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
4755 filled in with the value 0x368d (the exact placement of the bytes depends upon
4756 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
4757 undefined.
4758
4759 @node Bss
4760 @section @code{.bss @var{subsection}}
4761 @cindex @code{bss} directive
4762
4763 @code{.bss} tells @command{@value{AS}} to assemble the following statements
4764 onto the end of the bss section.
4765 @ifset ELF
4766 For ELF based targets an optional @var{subsection} expression (which must
4767 evaluate to a positive integer) can be provided. In this case the statements
4768 are appended to the end of the indicated bss subsection.
4769 @end ifset
4770
4771 @node Bundle directives
4772 @section Bundle directives
4773 @subsection @code{.bundle_align_mode @var{abs-expr}}
4774 @cindex @code{bundle_align_mode} directive
4775 @cindex bundle
4776 @cindex instruction bundle
4777 @cindex aligned instruction bundle
4778 @code{.bundle_align_mode} enables or disables @dfn{aligned instruction
4779 bundle} mode. In this mode, sequences of adjacent instructions are grouped
4780 into fixed-sized @dfn{bundles}. If the argument is zero, this mode is
4781 disabled (which is the default state). If the argument it not zero, it
4782 gives the size of an instruction bundle as a power of two (as for the
4783 @code{.p2align} directive, @pxref{P2align}).
4784
4785 For some targets, it's an ABI requirement that no instruction may span a
4786 certain aligned boundary. A @dfn{bundle} is simply a sequence of
4787 instructions that starts on an aligned boundary. For example, if
4788 @var{abs-expr} is @code{5} then the bundle size is 32, so each aligned
4789 chunk of 32 bytes is a bundle. When aligned instruction bundle mode is in
4790 effect, no single instruction may span a boundary between bundles. If an
4791 instruction would start too close to the end of a bundle for the length of
4792 that particular instruction to fit within the bundle, then the space at the
4793 end of that bundle is filled with no-op instructions so the instruction
4794 starts in the next bundle. As a corollary, it's an error if any single
4795 instruction's encoding is longer than the bundle size.
4796
4797 @subsection @code{.bundle_lock} and @code{.bundle_unlock}
4798 @cindex @code{bundle_lock} directive
4799 @cindex @code{bundle_unlock} directive
4800 The @code{.bundle_lock} and directive @code{.bundle_unlock} directives
4801 allow explicit control over instruction bundle padding. These directives
4802 are only valid when @code{.bundle_align_mode} has been used to enable
4803 aligned instruction bundle mode. It's an error if they appear when
4804 @code{.bundle_align_mode} has not been used at all, or when the last
4805 directive was @w{@code{.bundle_align_mode 0}}.
4806
4807 @cindex bundle-locked
4808 For some targets, it's an ABI requirement that certain instructions may
4809 appear only as part of specified permissible sequences of multiple
4810 instructions, all within the same bundle. A pair of @code{.bundle_lock}
4811 and @code{.bundle_unlock} directives define a @dfn{bundle-locked}
4812 instruction sequence. For purposes of aligned instruction bundle mode, a
4813 sequence starting with @code{.bundle_lock} and ending with
4814 @code{.bundle_unlock} is treated as a single instruction. That is, the
4815 entire sequence must fit into a single bundle and may not span a bundle
4816 boundary. If necessary, no-op instructions will be inserted before the
4817 first instruction of the sequence so that the whole sequence starts on an
4818 aligned bundle boundary. It's an error if the sequence is longer than the
4819 bundle size.
4820
4821 For convenience when using @code{.bundle_lock} and @code{.bundle_unlock}
4822 inside assembler macros (@pxref{Macro}), bundle-locked sequences may be
4823 nested. That is, a second @code{.bundle_lock} directive before the next
4824 @code{.bundle_unlock} directive has no effect except that it must be
4825 matched by another closing @code{.bundle_unlock} so that there is the
4826 same number of @code{.bundle_lock} and @code{.bundle_unlock} directives.
4827
4828 @node Byte
4829 @section @code{.byte @var{expressions}}
4830
4831 @cindex @code{byte} directive
4832 @cindex integers, one byte
4833 @code{.byte} expects zero or more expressions, separated by commas.
4834 Each expression is assembled into the next byte.
4835
4836 @node CFI directives
4837 @section CFI directives
4838 @subsection @code{.cfi_sections @var{section_list}}
4839 @cindex @code{cfi_sections} directive
4840 @code{.cfi_sections} may be used to specify whether CFI directives
4841 should emit @code{.eh_frame} section and/or @code{.debug_frame} section.
4842 If @var{section_list} is @code{.eh_frame}, @code{.eh_frame} is emitted,
4843 if @var{section_list} is @code{.debug_frame}, @code{.debug_frame} is emitted.
4844 To emit both use @code{.eh_frame, .debug_frame}. The default if this
4845 directive is not used is @code{.cfi_sections .eh_frame}.
4846
4847 On targets that support compact unwinding tables these can be generated
4848 by specifying @code{.eh_frame_entry} instead of @code{.eh_frame}.
4849
4850 Some targets may support an additional name, such as @code{.c6xabi.exidx}
4851 which is used by the @value{TIC6X} target.
4852
4853 The @code{.cfi_sections} directive can be repeated, with the same or different
4854 arguments, provided that CFI generation has not yet started. Once CFI
4855 generation has started however the section list is fixed and any attempts to
4856 redefine it will result in an error.
4857
4858 @subsection @code{.cfi_startproc [simple]}
4859 @cindex @code{cfi_startproc} directive
4860 @code{.cfi_startproc} is used at the beginning of each function that
4861 should have an entry in @code{.eh_frame}. It initializes some internal
4862 data structures. Don't forget to close the function by
4863 @code{.cfi_endproc}.
4864
4865 Unless @code{.cfi_startproc} is used along with parameter @code{simple}
4866 it also emits some architecture dependent initial CFI instructions.
4867
4868 @subsection @code{.cfi_endproc}
4869 @cindex @code{cfi_endproc} directive
4870 @code{.cfi_endproc} is used at the end of a function where it closes its
4871 unwind entry previously opened by
4872 @code{.cfi_startproc}, and emits it to @code{.eh_frame}.
4873
4874 @subsection @code{.cfi_personality @var{encoding} [, @var{exp}]}
4875 @cindex @code{cfi_personality} directive
4876 @code{.cfi_personality} defines personality routine and its encoding.
4877 @var{encoding} must be a constant determining how the personality
4878 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), second
4879 argument is not present, otherwise second argument should be
4880 a constant or a symbol name. When using indirect encodings,
4881 the symbol provided should be the location where personality
4882 can be loaded from, not the personality routine itself.
4883 The default after @code{.cfi_startproc} is @code{.cfi_personality 0xff},
4884 no personality routine.
4885
4886 @subsection @code{.cfi_personality_id @var{id}}
4887 @cindex @code{cfi_personality_id} directive
4888 @code{cfi_personality_id} defines a personality routine by its index as
4889 defined in a compact unwinding format.
4890 Only valid when generating compact EH frames (i.e.
4891 with @code{.cfi_sections eh_frame_entry}.
4892
4893 @subsection @code{.cfi_fde_data [@var{opcode1} [, @dots{}]]}
4894 @cindex @code{cfi_fde_data} directive
4895 @code{cfi_fde_data} is used to describe the compact unwind opcodes to be
4896 used for the current function. These are emitted inline in the
4897 @code{.eh_frame_entry} section if small enough and there is no LSDA, or
4898 in the @code{.gnu.extab} section otherwise.
4899 Only valid when generating compact EH frames (i.e.
4900 with @code{.cfi_sections eh_frame_entry}.
4901
4902 @subsection @code{.cfi_lsda @var{encoding} [, @var{exp}]}
4903 @code{.cfi_lsda} defines LSDA and its encoding.
4904 @var{encoding} must be a constant determining how the LSDA
4905 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), the second
4906 argument is not present, otherwise the second argument should be a constant
4907 or a symbol name. The default after @code{.cfi_startproc} is @code{.cfi_lsda 0xff},
4908 meaning that no LSDA is present.
4909
4910 @subsection @code{.cfi_inline_lsda} [@var{align}]
4911 @code{.cfi_inline_lsda} marks the start of a LSDA data section and
4912 switches to the corresponding @code{.gnu.extab} section.
4913 Must be preceded by a CFI block containing a @code{.cfi_lsda} directive.
4914 Only valid when generating compact EH frames (i.e.
4915 with @code{.cfi_sections eh_frame_entry}.
4916
4917 The table header and unwinding opcodes will be generated at this point,
4918 so that they are immediately followed by the LSDA data. The symbol
4919 referenced by the @code{.cfi_lsda} directive should still be defined
4920 in case a fallback FDE based encoding is used. The LSDA data is terminated
4921 by a section directive.
4922
4923 The optional @var{align} argument specifies the alignment required.
4924 The alignment is specified as a power of two, as with the
4925 @code{.p2align} directive.
4926
4927 @subsection @code{.cfi_def_cfa @var{register}, @var{offset}}
4928 @code{.cfi_def_cfa} defines a rule for computing CFA as: @i{take
4929 address from @var{register} and add @var{offset} to it}.
4930
4931 @subsection @code{.cfi_def_cfa_register @var{register}}
4932 @code{.cfi_def_cfa_register} modifies a rule for computing CFA. From
4933 now on @var{register} will be used instead of the old one. Offset
4934 remains the same.
4935
4936 @subsection @code{.cfi_def_cfa_offset @var{offset}}
4937 @code{.cfi_def_cfa_offset} modifies a rule for computing CFA. Register
4938 remains the same, but @var{offset} is new. Note that it is the
4939 absolute offset that will be added to a defined register to compute
4940 CFA address.
4941
4942 @subsection @code{.cfi_adjust_cfa_offset @var{offset}}
4943 Same as @code{.cfi_def_cfa_offset} but @var{offset} is a relative
4944 value that is added/subtracted from the previous offset.
4945
4946 @subsection @code{.cfi_offset @var{register}, @var{offset}}
4947 Previous value of @var{register} is saved at offset @var{offset} from
4948 CFA.
4949
4950 @subsection @code{.cfi_val_offset @var{register}, @var{offset}}
4951 Previous value of @var{register} is CFA + @var{offset}.
4952
4953 @subsection @code{.cfi_rel_offset @var{register}, @var{offset}}
4954 Previous value of @var{register} is saved at offset @var{offset} from
4955 the current CFA register. This is transformed to @code{.cfi_offset}
4956 using the known displacement of the CFA register from the CFA.
4957 This is often easier to use, because the number will match the
4958 code it's annotating.
4959
4960 @subsection @code{.cfi_register @var{register1}, @var{register2}}
4961 Previous value of @var{register1} is saved in register @var{register2}.
4962
4963 @subsection @code{.cfi_restore @var{register}}
4964 @code{.cfi_restore} says that the rule for @var{register} is now the
4965 same as it was at the beginning of the function, after all initial
4966 instruction added by @code{.cfi_startproc} were executed.
4967
4968 @subsection @code{.cfi_undefined @var{register}}
4969 From now on the previous value of @var{register} can't be restored anymore.
4970
4971 @subsection @code{.cfi_same_value @var{register}}
4972 Current value of @var{register} is the same like in the previous frame,
4973 i.e. no restoration needed.
4974
4975 @subsection @code{.cfi_remember_state} and @code{.cfi_restore_state}
4976 @code{.cfi_remember_state} pushes the set of rules for every register onto an
4977 implicit stack, while @code{.cfi_restore_state} pops them off the stack and
4978 places them in the current row. This is useful for situations where you have
4979 multiple @code{.cfi_*} directives that need to be undone due to the control
4980 flow of the program. For example, we could have something like this (assuming
4981 the CFA is the value of @code{rbp}):
4982
4983 @smallexample
4984 je label
4985 popq %rbx
4986 .cfi_restore %rbx
4987 popq %r12
4988 .cfi_restore %r12
4989 popq %rbp
4990 .cfi_restore %rbp
4991 .cfi_def_cfa %rsp, 8
4992 ret
4993 label:
4994 /* Do something else */
4995 @end smallexample
4996
4997 Here, we want the @code{.cfi} directives to affect only the rows corresponding
4998 to the instructions before @code{label}. This means we'd have to add multiple
4999 @code{.cfi} directives after @code{label} to recreate the original save
5000 locations of the registers, as well as setting the CFA back to the value of
5001 @code{rbp}. This would be clumsy, and result in a larger binary size. Instead,
5002 we can write:
5003
5004 @smallexample
5005 je label
5006 popq %rbx
5007 .cfi_remember_state
5008 .cfi_restore %rbx
5009 popq %r12
5010 .cfi_restore %r12
5011 popq %rbp
5012 .cfi_restore %rbp
5013 .cfi_def_cfa %rsp, 8
5014 ret
5015 label:
5016 .cfi_restore_state
5017 /* Do something else */
5018 @end smallexample
5019
5020 That way, the rules for the instructions after @code{label} will be the same
5021 as before the first @code{.cfi_restore} without having to use multiple
5022 @code{.cfi} directives.
5023
5024 @subsection @code{.cfi_return_column @var{register}}
5025 Change return column @var{register}, i.e. the return address is either
5026 directly in @var{register} or can be accessed by rules for @var{register}.
5027
5028 @subsection @code{.cfi_signal_frame}
5029 Mark current function as signal trampoline.
5030
5031 @subsection @code{.cfi_window_save}
5032 SPARC register window has been saved.
5033
5034 @subsection @code{.cfi_escape} @var{expression}[, @dots{}]
5035 Allows the user to add arbitrary bytes to the unwind info. One
5036 might use this to add OS-specific CFI opcodes, or generic CFI
5037 opcodes that GAS does not yet support.
5038
5039 @subsection @code{.cfi_val_encoded_addr @var{register}, @var{encoding}, @var{label}}
5040 The current value of @var{register} is @var{label}. The value of @var{label}
5041 will be encoded in the output file according to @var{encoding}; see the
5042 description of @code{.cfi_personality} for details on this encoding.
5043
5044 The usefulness of equating a register to a fixed label is probably
5045 limited to the return address register. Here, it can be useful to
5046 mark a code segment that has only one return address which is reached
5047 by a direct branch and no copy of the return address exists in memory
5048 or another register.
5049
5050 @node Comm
5051 @section @code{.comm @var{symbol} , @var{length} }
5052
5053 @cindex @code{comm} directive
5054 @cindex symbol, common
5055 @code{.comm} declares a common symbol named @var{symbol}. When linking, a
5056 common symbol in one object file may be merged with a defined or common symbol
5057 of the same name in another object file. If @code{@value{LD}} does not see a
5058 definition for the symbol--just one or more common symbols--then it will
5059 allocate @var{length} bytes of uninitialized memory. @var{length} must be an
5060 absolute expression. If @code{@value{LD}} sees multiple common symbols with
5061 the same name, and they do not all have the same size, it will allocate space
5062 using the largest size.
5063
5064 @ifset COFF-ELF
5065 When using ELF or (as a GNU extension) PE, the @code{.comm} directive takes
5066 an optional third argument. This is the desired alignment of the symbol,
5067 specified for ELF as a byte boundary (for example, an alignment of 16 means
5068 that the least significant 4 bits of the address should be zero), and for PE
5069 as a power of two (for example, an alignment of 5 means aligned to a 32-byte
5070 boundary). The alignment must be an absolute expression, and it must be a
5071 power of two. If @code{@value{LD}} allocates uninitialized memory for the
5072 common symbol, it will use the alignment when placing the symbol. If no
5073 alignment is specified, @command{@value{AS}} will set the alignment to the
5074 largest power of two less than or equal to the size of the symbol, up to a
5075 maximum of 16 on ELF, or the default section alignment of 4 on PE@footnote{This
5076 is not the same as the executable image file alignment controlled by @code{@value{LD}}'s
5077 @samp{--section-alignment} option; image file sections in PE are aligned to
5078 multiples of 4096, which is far too large an alignment for ordinary variables.
5079 It is rather the default alignment for (non-debug) sections within object
5080 (@samp{*.o}) files, which are less strictly aligned.}.
5081 @end ifset
5082
5083 @ifset HPPA
5084 The syntax for @code{.comm} differs slightly on the HPPA. The syntax is
5085 @samp{@var{symbol} .comm, @var{length}}; @var{symbol} is optional.
5086 @end ifset
5087
5088 @node Data
5089 @section @code{.data @var{subsection}}
5090 @cindex @code{data} directive
5091
5092 @code{.data} tells @command{@value{AS}} to assemble the following statements onto the
5093 end of the data subsection numbered @var{subsection} (which is an
5094 absolute expression). If @var{subsection} is omitted, it defaults
5095 to zero.
5096
5097 @node Dc
5098 @section @code{.dc[@var{size}] @var{expressions}}
5099 @cindex @code{dc} directive
5100
5101 The @code{.dc} directive expects zero or more @var{expressions} separated by
5102 commas. These expressions are evaluated and their values inserted into the
5103 current section. The size of the emitted value depends upon the suffix to the
5104 @code{.dc} directive:
5105
5106 @table @code
5107 @item @samp{.a}
5108 Emits N-bit values, where N is the size of an address on the target system.
5109 @item @samp{.b}
5110 Emits 8-bit values.
5111 @item @samp{.d}
5112 Emits double precision floating-point values.
5113 @item @samp{.l}
5114 Emits 32-bit values.
5115 @item @samp{.s}
5116 Emits single precision floating-point values.
5117 @item @samp{.w}
5118 Emits 16-bit values.
5119 Note - this is true even on targets where the @code{.word} directive would emit
5120 32-bit values.
5121 @item @samp{.x}
5122 Emits long double precision floating-point values.
5123 @end table
5124
5125 If no suffix is used then @samp{.w} is assumed.
5126
5127 The byte ordering is target dependent, as is the size and format of floating
5128 point values.
5129
5130 @node Dcb
5131 @section @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
5132 @cindex @code{dcb} directive
5133 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5134 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5135 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5136 @var{size} suffix, if present, must be one of:
5137
5138 @table @code
5139 @item @samp{.b}
5140 Emits single byte values.
5141 @item @samp{.d}
5142 Emits double-precision floating point values.
5143 @item @samp{.l}
5144 Emits 4-byte values.
5145 @item @samp{.s}
5146 Emits single-precision floating point values.
5147 @item @samp{.w}
5148 Emits 2-byte values.
5149 @item @samp{.x}
5150 Emits long double-precision floating point values.
5151 @end table
5152
5153 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5154
5155 The byte ordering is target dependent, as is the size and format of floating
5156 point values.
5157
5158 @node Ds
5159 @section @code{.ds[@var{size}] @var{number} [,@var{fill}]}
5160 @cindex @code{ds} directive
5161 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5162 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5163 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5164 @var{size} suffix, if present, must be one of:
5165
5166 @table @code
5167 @item @samp{.b}
5168 Emits single byte values.
5169 @item @samp{.d}
5170 Emits 8-byte values.
5171 @item @samp{.l}
5172 Emits 4-byte values.
5173 @item @samp{.p}
5174 Emits values with size matching packed-decimal floating-point ones.
5175 @item @samp{.s}
5176 Emits 4-byte values.
5177 @item @samp{.w}
5178 Emits 2-byte values.
5179 @item @samp{.x}
5180 Emits values with size matching long double precision floating-point ones.
5181 @end table
5182
5183 Note - unlike the @code{.dcb} directive the @samp{.d}, @samp{.s} and @samp{.x}
5184 suffixes do not indicate that floating-point values are to be inserted.
5185
5186 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5187
5188 The byte ordering is target dependent.
5189
5190
5191 @ifset COFF
5192 @node Def
5193 @section @code{.def @var{name}}
5194
5195 @cindex @code{def} directive
5196 @cindex COFF symbols, debugging
5197 @cindex debugging COFF symbols
5198 Begin defining debugging information for a symbol @var{name}; the
5199 definition extends until the @code{.endef} directive is encountered.
5200 @end ifset
5201
5202 @ifset aout
5203 @node Desc
5204 @section @code{.desc @var{symbol}, @var{abs-expression}}
5205
5206 @cindex @code{desc} directive
5207 @cindex COFF symbol descriptor
5208 @cindex symbol descriptor, COFF
5209 This directive sets the descriptor of the symbol (@pxref{Symbol Attributes})
5210 to the low 16 bits of an absolute expression.
5211
5212 @ifset COFF
5213 The @samp{.desc} directive is not available when @command{@value{AS}} is
5214 configured for COFF output; it is only for @code{a.out} or @code{b.out}
5215 object format. For the sake of compatibility, @command{@value{AS}} accepts
5216 it, but produces no output, when configured for COFF.
5217 @end ifset
5218 @end ifset
5219
5220 @ifset COFF
5221 @node Dim
5222 @section @code{.dim}
5223
5224 @cindex @code{dim} directive
5225 @cindex COFF auxiliary symbol information
5226 @cindex auxiliary symbol information, COFF
5227 This directive is generated by compilers to include auxiliary debugging
5228 information in the symbol table. It is only permitted inside
5229 @code{.def}/@code{.endef} pairs.
5230 @end ifset
5231
5232 @node Double
5233 @section @code{.double @var{flonums}}
5234
5235 @cindex @code{double} directive
5236 @cindex floating point numbers (double)
5237 @code{.double} expects zero or more flonums, separated by commas. It
5238 assembles floating point numbers.
5239 @ifset GENERIC
5240 The exact kind of floating point numbers emitted depends on how
5241 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
5242 @end ifset
5243 @ifclear GENERIC
5244 @ifset IEEEFLOAT
5245 On the @value{TARGET} family @samp{.double} emits 64-bit floating-point numbers
5246 in @sc{ieee} format.
5247 @end ifset
5248 @end ifclear
5249
5250 @node Eject
5251 @section @code{.eject}
5252
5253 @cindex @code{eject} directive
5254 @cindex new page, in listings
5255 @cindex page, in listings
5256 @cindex listing control: new page
5257 Force a page break at this point, when generating assembly listings.
5258
5259 @node Else
5260 @section @code{.else}
5261
5262 @cindex @code{else} directive
5263 @code{.else} is part of the @command{@value{AS}} support for conditional
5264 assembly; see @ref{If,,@code{.if}}. It marks the beginning of a section
5265 of code to be assembled if the condition for the preceding @code{.if}
5266 was false.
5267
5268 @node Elseif
5269 @section @code{.elseif}
5270
5271 @cindex @code{elseif} directive
5272 @code{.elseif} is part of the @command{@value{AS}} support for conditional
5273 assembly; see @ref{If,,@code{.if}}. It is shorthand for beginning a new
5274 @code{.if} block that would otherwise fill the entire @code{.else} section.
5275
5276 @node End
5277 @section @code{.end}
5278
5279 @cindex @code{end} directive
5280 @code{.end} marks the end of the assembly file. @command{@value{AS}} does not
5281 process anything in the file past the @code{.end} directive.
5282
5283 @ifset COFF
5284 @node Endef
5285 @section @code{.endef}
5286
5287 @cindex @code{endef} directive
5288 This directive flags the end of a symbol definition begun with
5289 @code{.def}.
5290 @end ifset
5291
5292 @node Endfunc
5293 @section @code{.endfunc}
5294 @cindex @code{endfunc} directive
5295 @code{.endfunc} marks the end of a function specified with @code{.func}.
5296
5297 @node Endif
5298 @section @code{.endif}
5299
5300 @cindex @code{endif} directive
5301 @code{.endif} is part of the @command{@value{AS}} support for conditional assembly;
5302 it marks the end of a block of code that is only assembled
5303 conditionally. @xref{If,,@code{.if}}.
5304
5305 @node Equ
5306 @section @code{.equ @var{symbol}, @var{expression}}
5307
5308 @cindex @code{equ} directive
5309 @cindex assigning values to symbols
5310 @cindex symbols, assigning values to
5311 This directive sets the value of @var{symbol} to @var{expression}.
5312 It is synonymous with @samp{.set}; see @ref{Set,,@code{.set}}.
5313
5314 @ifset HPPA
5315 The syntax for @code{equ} on the HPPA is
5316 @samp{@var{symbol} .equ @var{expression}}.
5317 @end ifset
5318
5319 @ifset Z80
5320 The syntax for @code{equ} on the Z80 is
5321 @samp{@var{symbol} equ @var{expression}}.
5322 On the Z80 it is an error if @var{symbol} is already defined,
5323 but the symbol is not protected from later redefinition.
5324 Compare @ref{Equiv}.
5325 @end ifset
5326
5327 @node Equiv
5328 @section @code{.equiv @var{symbol}, @var{expression}}
5329 @cindex @code{equiv} directive
5330 The @code{.equiv} directive is like @code{.equ} and @code{.set}, except that
5331 the assembler will signal an error if @var{symbol} is already defined. Note a
5332 symbol which has been referenced but not actually defined is considered to be
5333 undefined.
5334
5335 Except for the contents of the error message, this is roughly equivalent to
5336 @smallexample
5337 .ifdef SYM
5338 .err
5339 .endif
5340 .equ SYM,VAL
5341 @end smallexample
5342 plus it protects the symbol from later redefinition.
5343
5344 @node Eqv
5345 @section @code{.eqv @var{symbol}, @var{expression}}
5346 @cindex @code{eqv} directive
5347 The @code{.eqv} directive is like @code{.equiv}, but no attempt is made to
5348 evaluate the expression or any part of it immediately. Instead each time
5349 the resulting symbol is used in an expression, a snapshot of its current
5350 value is taken.
5351
5352 @node Err
5353 @section @code{.err}
5354 @cindex @code{err} directive
5355 If @command{@value{AS}} assembles a @code{.err} directive, it will print an error
5356 message and, unless the @option{-Z} option was used, it will not generate an
5357 object file. This can be used to signal an error in conditionally compiled code.
5358
5359 @node Error
5360 @section @code{.error "@var{string}"}
5361 @cindex error directive
5362
5363 Similarly to @code{.err}, this directive emits an error, but you can specify a
5364 string that will be emitted as the error message. If you don't specify the
5365 message, it defaults to @code{".error directive invoked in source file"}.
5366 @xref{Errors, ,Error and Warning Messages}.
5367
5368 @smallexample
5369 .error "This code has not been assembled and tested."
5370 @end smallexample
5371
5372 @node Exitm
5373 @section @code{.exitm}
5374 Exit early from the current macro definition. @xref{Macro}.
5375
5376 @node Extern
5377 @section @code{.extern}
5378
5379 @cindex @code{extern} directive
5380 @code{.extern} is accepted in the source program---for compatibility
5381 with other assemblers---but it is ignored. @command{@value{AS}} treats
5382 all undefined symbols as external.
5383
5384 @node Fail
5385 @section @code{.fail @var{expression}}
5386
5387 @cindex @code{fail} directive
5388 Generates an error or a warning. If the value of the @var{expression} is 500
5389 or more, @command{@value{AS}} will print a warning message. If the value is less
5390 than 500, @command{@value{AS}} will print an error message. The message will
5391 include the value of @var{expression}. This can occasionally be useful inside
5392 complex nested macros or conditional assembly.
5393
5394 @node File
5395 @section @code{.file}
5396 @cindex @code{file} directive
5397
5398 @ifclear no-file-dir
5399 There are two different versions of the @code{.file} directive. Targets
5400 that support DWARF2 line number information use the DWARF2 version of
5401 @code{.file}. Other targets use the default version.
5402
5403 @subheading Default Version
5404
5405 @cindex logical file name
5406 @cindex file name, logical
5407 This version of the @code{.file} directive tells @command{@value{AS}} that we
5408 are about to start a new logical file. The syntax is:
5409
5410 @smallexample
5411 .file @var{string}
5412 @end smallexample
5413
5414 @var{string} is the new file name. In general, the filename is
5415 recognized whether or not it is surrounded by quotes @samp{"}; but if you wish
5416 to specify an empty file name, you must give the quotes--@code{""}. This
5417 statement may go away in future: it is only recognized to be compatible with
5418 old @command{@value{AS}} programs.
5419
5420 @subheading DWARF2 Version
5421 @end ifclear
5422
5423 When emitting DWARF2 line number information, @code{.file} assigns filenames
5424 to the @code{.debug_line} file name table. The syntax is:
5425
5426 @smallexample
5427 .file @var{fileno} @var{filename}
5428 @end smallexample
5429
5430 The @var{fileno} operand should be a unique positive integer to use as the
5431 index of the entry in the table. The @var{filename} operand is a C string
5432 literal enclosed in double quotes. The @var{filename} can include directory
5433 elements. If it does, then the directory will be added to the directory table
5434 and the basename will be added to the file table.
5435
5436 The detail of filename indices is exposed to the user because the filename
5437 table is shared with the @code{.debug_info} section of the DWARF2 debugging
5438 information, and thus the user must know the exact indices that table
5439 entries will have.
5440
5441 If DWARF5 support has been enabled via the @option{-gdwarf-5} option then
5442 an extended version of @code{.file} is also allowed:
5443
5444 @smallexample
5445 .file @var{fileno} [@var{dirname}] @var{filename} [md5 @var{value}]
5446 @end smallexample
5447
5448 With this version a separate directory name is allowed, although if this is
5449 used then @var{filename} should not contain any directory component, except
5450 for @var{fileno} equal to 0: in this case, @var{dirname} is expected to be
5451 the current directory and @var{filename} the currently processed file, and
5452 the latter need not be located in the former. In addtion an MD5 hash value
5453 of the contents of @var{filename} can be provided. This will be stored in
5454 the the file table as well, and can be used by tools reading the debug
5455 information to verify that the contents of the source file match the
5456 contents of the compiled file.
5457
5458 @node Fill
5459 @section @code{.fill @var{repeat} , @var{size} , @var{value}}
5460
5461 @cindex @code{fill} directive
5462 @cindex writing patterns in memory
5463 @cindex patterns, writing in memory
5464 @var{repeat}, @var{size} and @var{value} are absolute expressions.
5465 This emits @var{repeat} copies of @var{size} bytes. @var{Repeat}
5466 may be zero or more. @var{Size} may be zero or more, but if it is
5467 more than 8, then it is deemed to have the value 8, compatible with
5468 other people's assemblers. The contents of each @var{repeat} bytes
5469 is taken from an 8-byte number. The highest order 4 bytes are
5470 zero. The lowest order 4 bytes are @var{value} rendered in the
5471 byte-order of an integer on the computer @command{@value{AS}} is assembling for.
5472 Each @var{size} bytes in a repetition is taken from the lowest order
5473 @var{size} bytes of this number. Again, this bizarre behavior is
5474 compatible with other people's assemblers.
5475
5476 @var{size} and @var{value} are optional.
5477 If the second comma and @var{value} are absent, @var{value} is
5478 assumed zero. If the first comma and following tokens are absent,
5479 @var{size} is assumed to be 1.
5480
5481 @node Float
5482 @section @code{.float @var{flonums}}
5483
5484 @cindex floating point numbers (single)
5485 @cindex @code{float} directive
5486 This directive assembles zero or more flonums, separated by commas. It
5487 has the same effect as @code{.single}.
5488 @ifset GENERIC
5489 The exact kind of floating point numbers emitted depends on how
5490 @command{@value{AS}} is configured.
5491 @xref{Machine Dependencies}.
5492 @end ifset
5493 @ifclear GENERIC
5494 @ifset IEEEFLOAT
5495 On the @value{TARGET} family, @code{.float} emits 32-bit floating point numbers
5496 in @sc{ieee} format.
5497 @end ifset
5498 @end ifclear
5499
5500 @node Func
5501 @section @code{.func @var{name}[,@var{label}]}
5502 @cindex @code{func} directive
5503 @code{.func} emits debugging information to denote function @var{name}, and
5504 is ignored unless the file is assembled with debugging enabled.
5505 Only @samp{--gstabs[+]} is currently supported.
5506 @var{label} is the entry point of the function and if omitted @var{name}
5507 prepended with the @samp{leading char} is used.
5508 @samp{leading char} is usually @code{_} or nothing, depending on the target.
5509 All functions are currently defined to have @code{void} return type.
5510 The function must be terminated with @code{.endfunc}.
5511
5512 @node Global
5513 @section @code{.global @var{symbol}}, @code{.globl @var{symbol}}
5514
5515 @cindex @code{global} directive
5516 @cindex symbol, making visible to linker
5517 @code{.global} makes the symbol visible to @code{@value{LD}}. If you define
5518 @var{symbol} in your partial program, its value is made available to
5519 other partial programs that are linked with it. Otherwise,
5520 @var{symbol} takes its attributes from a symbol of the same name
5521 from another file linked into the same program.
5522
5523 Both spellings (@samp{.globl} and @samp{.global}) are accepted, for
5524 compatibility with other assemblers.
5525
5526 @ifset HPPA
5527 On the HPPA, @code{.global} is not always enough to make it accessible to other
5528 partial programs. You may need the HPPA-only @code{.EXPORT} directive as well.
5529 @xref{HPPA Directives, ,HPPA Assembler Directives}.
5530 @end ifset
5531
5532 @ifset ELF
5533 @node Gnu_attribute
5534 @section @code{.gnu_attribute @var{tag},@var{value}}
5535 Record a @sc{gnu} object attribute for this file. @xref{Object Attributes}.
5536
5537 @node Hidden
5538 @section @code{.hidden @var{names}}
5539
5540 @cindex @code{hidden} directive
5541 @cindex visibility
5542 This is one of the ELF visibility directives. The other two are
5543 @code{.internal} (@pxref{Internal,,@code{.internal}}) and
5544 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5545
5546 This directive overrides the named symbols default visibility (which is set by
5547 their binding: local, global or weak). The directive sets the visibility to
5548 @code{hidden} which means that the symbols are not visible to other components.
5549 Such symbols are always considered to be @code{protected} as well.
5550 @end ifset
5551
5552 @node hword
5553 @section @code{.hword @var{expressions}}
5554
5555 @cindex @code{hword} directive
5556 @cindex integers, 16-bit
5557 @cindex numbers, 16-bit
5558 @cindex sixteen bit integers
5559 This expects zero or more @var{expressions}, and emits
5560 a 16 bit number for each.
5561
5562 @ifset GENERIC
5563 This directive is a synonym for @samp{.short}; depending on the target
5564 architecture, it may also be a synonym for @samp{.word}.
5565 @end ifset
5566 @ifclear GENERIC
5567 @ifset W32
5568 This directive is a synonym for @samp{.short}.
5569 @end ifset
5570 @ifset W16
5571 This directive is a synonym for both @samp{.short} and @samp{.word}.
5572 @end ifset
5573 @end ifclear
5574
5575 @node Ident
5576 @section @code{.ident}
5577
5578 @cindex @code{ident} directive
5579
5580 This directive is used by some assemblers to place tags in object files. The
5581 behavior of this directive varies depending on the target. When using the
5582 a.out object file format, @command{@value{AS}} simply accepts the directive for
5583 source-file compatibility with existing assemblers, but does not emit anything
5584 for it. When using COFF, comments are emitted to the @code{.comment} or
5585 @code{.rdata} section, depending on the target. When using ELF, comments are
5586 emitted to the @code{.comment} section.
5587
5588 @node If
5589 @section @code{.if @var{absolute expression}}
5590
5591 @cindex conditional assembly
5592 @cindex @code{if} directive
5593 @code{.if} marks the beginning of a section of code which is only
5594 considered part of the source program being assembled if the argument
5595 (which must be an @var{absolute expression}) is non-zero. The end of
5596 the conditional section of code must be marked by @code{.endif}
5597 (@pxref{Endif,,@code{.endif}}); optionally, you may include code for the
5598 alternative condition, flagged by @code{.else} (@pxref{Else,,@code{.else}}).
5599 If you have several conditions to check, @code{.elseif} may be used to avoid
5600 nesting blocks if/else within each subsequent @code{.else} block.
5601
5602 The following variants of @code{.if} are also supported:
5603 @table @code
5604 @cindex @code{ifdef} directive
5605 @item .ifdef @var{symbol}
5606 Assembles the following section of code if the specified @var{symbol}
5607 has been defined. Note a symbol which has been referenced but not yet defined
5608 is considered to be undefined.
5609
5610 @cindex @code{ifb} directive
5611 @item .ifb @var{text}
5612 Assembles the following section of code if the operand is blank (empty).
5613
5614 @cindex @code{ifc} directive
5615 @item .ifc @var{string1},@var{string2}
5616 Assembles the following section of code if the two strings are the same. The
5617 strings may be optionally quoted with single quotes. If they are not quoted,
5618 the first string stops at the first comma, and the second string stops at the
5619 end of the line. Strings which contain whitespace should be quoted. The
5620 string comparison is case sensitive.
5621
5622 @cindex @code{ifeq} directive
5623 @item .ifeq @var{absolute expression}
5624 Assembles the following section of code if the argument is zero.
5625
5626 @cindex @code{ifeqs} directive
5627 @item .ifeqs @var{string1},@var{string2}
5628 Another form of @code{.ifc}. The strings must be quoted using double quotes.
5629
5630 @cindex @code{ifge} directive
5631 @item .ifge @var{absolute expression}
5632 Assembles the following section of code if the argument is greater than or
5633 equal to zero.
5634
5635 @cindex @code{ifgt} directive
5636 @item .ifgt @var{absolute expression}
5637 Assembles the following section of code if the argument is greater than zero.
5638
5639 @cindex @code{ifle} directive
5640 @item .ifle @var{absolute expression}
5641 Assembles the following section of code if the argument is less than or equal
5642 to zero.
5643
5644 @cindex @code{iflt} directive
5645 @item .iflt @var{absolute expression}
5646 Assembles the following section of code if the argument is less than zero.
5647
5648 @cindex @code{ifnb} directive
5649 @item .ifnb @var{text}
5650 Like @code{.ifb}, but the sense of the test is reversed: this assembles the
5651 following section of code if the operand is non-blank (non-empty).
5652
5653 @cindex @code{ifnc} directive
5654 @item .ifnc @var{string1},@var{string2}.
5655 Like @code{.ifc}, but the sense of the test is reversed: this assembles the
5656 following section of code if the two strings are not the same.
5657
5658 @cindex @code{ifndef} directive
5659 @cindex @code{ifnotdef} directive
5660 @item .ifndef @var{symbol}
5661 @itemx .ifnotdef @var{symbol}
5662 Assembles the following section of code if the specified @var{symbol}
5663 has not been defined. Both spelling variants are equivalent. Note a symbol
5664 which has been referenced but not yet defined is considered to be undefined.
5665
5666 @cindex @code{ifne} directive
5667 @item .ifne @var{absolute expression}
5668 Assembles the following section of code if the argument is not equal to zero
5669 (in other words, this is equivalent to @code{.if}).
5670
5671 @cindex @code{ifnes} directive
5672 @item .ifnes @var{string1},@var{string2}
5673 Like @code{.ifeqs}, but the sense of the test is reversed: this assembles the
5674 following section of code if the two strings are not the same.
5675 @end table
5676
5677 @node Incbin
5678 @section @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
5679
5680 @cindex @code{incbin} directive
5681 @cindex binary files, including
5682 The @code{incbin} directive includes @var{file} verbatim at the current
5683 location. You can control the search paths used with the @samp{-I} command-line
5684 option (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5685 around @var{file}.
5686
5687 The @var{skip} argument skips a number of bytes from the start of the
5688 @var{file}. The @var{count} argument indicates the maximum number of bytes to
5689 read. Note that the data is not aligned in any way, so it is the user's
5690 responsibility to make sure that proper alignment is provided both before and
5691 after the @code{incbin} directive.
5692
5693 @node Include
5694 @section @code{.include "@var{file}"}
5695
5696 @cindex @code{include} directive
5697 @cindex supporting files, including
5698 @cindex files, including
5699 This directive provides a way to include supporting files at specified
5700 points in your source program. The code from @var{file} is assembled as
5701 if it followed the point of the @code{.include}; when the end of the
5702 included file is reached, assembly of the original file continues. You
5703 can control the search paths used with the @samp{-I} command-line option
5704 (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5705 around @var{file}.
5706
5707 @node Int
5708 @section @code{.int @var{expressions}}
5709
5710 @cindex @code{int} directive
5711 @cindex integers, 32-bit
5712 Expect zero or more @var{expressions}, of any section, separated by commas.
5713 For each expression, emit a number that, at run time, is the value of that
5714 expression. The byte order and bit size of the number depends on what kind
5715 of target the assembly is for.
5716
5717 @ifclear GENERIC
5718 @ifset H8
5719 On most forms of the H8/300, @code{.int} emits 16-bit
5720 integers. On the H8/300H and the Renesas SH, however, @code{.int} emits
5721 32-bit integers.
5722 @end ifset
5723 @end ifclear
5724
5725 @ifset ELF
5726 @node Internal
5727 @section @code{.internal @var{names}}
5728
5729 @cindex @code{internal} directive
5730 @cindex visibility
5731 This is one of the ELF visibility directives. The other two are
5732 @code{.hidden} (@pxref{Hidden,,@code{.hidden}}) and
5733 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5734
5735 This directive overrides the named symbols default visibility (which is set by
5736 their binding: local, global or weak). The directive sets the visibility to
5737 @code{internal} which means that the symbols are considered to be @code{hidden}
5738 (i.e., not visible to other components), and that some extra, processor specific
5739 processing must also be performed upon the symbols as well.
5740 @end ifset
5741
5742 @node Irp
5743 @section @code{.irp @var{symbol},@var{values}}@dots{}
5744
5745 @cindex @code{irp} directive
5746 Evaluate a sequence of statements assigning different values to @var{symbol}.
5747 The sequence of statements starts at the @code{.irp} directive, and is
5748 terminated by an @code{.endr} directive. For each @var{value}, @var{symbol} is
5749 set to @var{value}, and the sequence of statements is assembled. If no
5750 @var{value} is listed, the sequence of statements is assembled once, with
5751 @var{symbol} set to the null string. To refer to @var{symbol} within the
5752 sequence of statements, use @var{\symbol}.
5753
5754 For example, assembling
5755
5756 @example
5757 .irp param,1,2,3
5758 move d\param,sp@@-
5759 .endr
5760 @end example
5761
5762 is equivalent to assembling
5763
5764 @example
5765 move d1,sp@@-
5766 move d2,sp@@-
5767 move d3,sp@@-
5768 @end example
5769
5770 For some caveats with the spelling of @var{symbol}, see also @ref{Macro}.
5771
5772 @node Irpc
5773 @section @code{.irpc @var{symbol},@var{values}}@dots{}
5774
5775 @cindex @code{irpc} directive
5776 Evaluate a sequence of statements assigning different values to @var{symbol}.
5777 The sequence of statements starts at the @code{.irpc} directive, and is
5778 terminated by an @code{.endr} directive. For each character in @var{value},
5779 @var{symbol} is set to the character, and the sequence of statements is
5780 assembled. If no @var{value} is listed, the sequence of statements is
5781 assembled once, with @var{symbol} set to the null string. To refer to
5782 @var{symbol} within the sequence of statements, use @var{\symbol}.
5783
5784 For example, assembling
5785
5786 @example
5787 .irpc param,123
5788 move d\param,sp@@-
5789 .endr
5790 @end example
5791
5792 is equivalent to assembling
5793
5794 @example
5795 move d1,sp@@-
5796 move d2,sp@@-
5797 move d3,sp@@-
5798 @end example
5799
5800 For some caveats with the spelling of @var{symbol}, see also the discussion
5801 at @xref{Macro}.
5802
5803 @node Lcomm
5804 @section @code{.lcomm @var{symbol} , @var{length}}
5805
5806 @cindex @code{lcomm} directive
5807 @cindex local common symbols
5808 @cindex symbols, local common
5809 Reserve @var{length} (an absolute expression) bytes for a local common
5810 denoted by @var{symbol}. The section and value of @var{symbol} are
5811 those of the new local common. The addresses are allocated in the bss
5812 section, so that at run-time the bytes start off zeroed. @var{Symbol}
5813 is not declared global (@pxref{Global,,@code{.global}}), so is normally
5814 not visible to @code{@value{LD}}.
5815
5816 @ifset GENERIC
5817 Some targets permit a third argument to be used with @code{.lcomm}. This
5818 argument specifies the desired alignment of the symbol in the bss section.
5819 @end ifset
5820
5821 @ifset HPPA
5822 The syntax for @code{.lcomm} differs slightly on the HPPA. The syntax is
5823 @samp{@var{symbol} .lcomm, @var{length}}; @var{symbol} is optional.
5824 @end ifset
5825
5826 @node Lflags
5827 @section @code{.lflags}
5828
5829 @cindex @code{lflags} directive (ignored)
5830 @command{@value{AS}} accepts this directive, for compatibility with other
5831 assemblers, but ignores it.
5832
5833 @ifclear no-line-dir
5834 @node Line
5835 @section @code{.line @var{line-number}}
5836
5837 @cindex @code{line} directive
5838 @cindex logical line number
5839 @ifset aout
5840 Change the logical line number. @var{line-number} must be an absolute
5841 expression. The next line has that logical line number. Therefore any other
5842 statements on the current line (after a statement separator character) are
5843 reported as on logical line number @var{line-number} @minus{} 1. One day
5844 @command{@value{AS}} will no longer support this directive: it is recognized only
5845 for compatibility with existing assembler programs.
5846 @end ifset
5847
5848 Even though this is a directive associated with the @code{a.out} or
5849 @code{b.out} object-code formats, @command{@value{AS}} still recognizes it
5850 when producing COFF output, and treats @samp{.line} as though it
5851 were the COFF @samp{.ln} @emph{if} it is found outside a
5852 @code{.def}/@code{.endef} pair.
5853
5854 Inside a @code{.def}, @samp{.line} is, instead, one of the directives
5855 used by compilers to generate auxiliary symbol information for
5856 debugging.
5857 @end ifclear
5858
5859 @node Linkonce
5860 @section @code{.linkonce [@var{type}]}
5861 @cindex COMDAT
5862 @cindex @code{linkonce} directive
5863 @cindex common sections
5864 Mark the current section so that the linker only includes a single copy of it.
5865 This may be used to include the same section in several different object files,
5866 but ensure that the linker will only include it once in the final output file.
5867 The @code{.linkonce} pseudo-op must be used for each instance of the section.
5868 Duplicate sections are detected based on the section name, so it should be
5869 unique.
5870
5871 This directive is only supported by a few object file formats; as of this
5872 writing, the only object file format which supports it is the Portable
5873 Executable format used on Windows NT.
5874
5875 The @var{type} argument is optional. If specified, it must be one of the
5876 following strings. For example:
5877 @smallexample
5878 .linkonce same_size
5879 @end smallexample
5880 Not all types may be supported on all object file formats.
5881
5882 @table @code
5883 @item discard
5884 Silently discard duplicate sections. This is the default.
5885
5886 @item one_only
5887 Warn if there are duplicate sections, but still keep only one copy.
5888
5889 @item same_size
5890 Warn if any of the duplicates have different sizes.
5891
5892 @item same_contents
5893 Warn if any of the duplicates do not have exactly the same contents.
5894 @end table
5895
5896 @node List
5897 @section @code{.list}
5898
5899 @cindex @code{list} directive
5900 @cindex listing control, turning on
5901 Control (in conjunction with the @code{.nolist} directive) whether or
5902 not assembly listings are generated. These two directives maintain an
5903 internal counter (which is zero initially). @code{.list} increments the
5904 counter, and @code{.nolist} decrements it. Assembly listings are
5905 generated whenever the counter is greater than zero.
5906
5907 By default, listings are disabled. When you enable them (with the
5908 @samp{-a} command-line option; @pxref{Invoking,,Command-Line Options}),
5909 the initial value of the listing counter is one.
5910
5911 @node Ln
5912 @section @code{.ln @var{line-number}}
5913
5914 @cindex @code{ln} directive
5915 @ifclear no-line-dir
5916 @samp{.ln} is a synonym for @samp{.line}.
5917 @end ifclear
5918 @ifset no-line-dir
5919 Tell @command{@value{AS}} to change the logical line number. @var{line-number}
5920 must be an absolute expression. The next line has that logical
5921 line number, so any other statements on the current line (after a
5922 statement separator character @code{;}) are reported as on logical
5923 line number @var{line-number} @minus{} 1.
5924 @end ifset
5925
5926 @node Loc
5927 @section @code{.loc @var{fileno} @var{lineno} [@var{column}] [@var{options}]}
5928 @cindex @code{loc} directive
5929 When emitting DWARF2 line number information,
5930 the @code{.loc} directive will add a row to the @code{.debug_line} line
5931 number matrix corresponding to the immediately following assembly
5932 instruction. The @var{fileno}, @var{lineno}, and optional @var{column}
5933 arguments will be applied to the @code{.debug_line} state machine before
5934 the row is added. It is an error for the input assembly file to generate
5935 a non-empty @code{.debug_line} and also use @code{loc} directives.
5936
5937 The @var{options} are a sequence of the following tokens in any order:
5938
5939 @table @code
5940 @item basic_block
5941 This option will set the @code{basic_block} register in the
5942 @code{.debug_line} state machine to @code{true}.
5943
5944 @item prologue_end
5945 This option will set the @code{prologue_end} register in the
5946 @code{.debug_line} state machine to @code{true}.
5947
5948 @item epilogue_begin
5949 This option will set the @code{epilogue_begin} register in the
5950 @code{.debug_line} state machine to @code{true}.
5951
5952 @item is_stmt @var{value}
5953 This option will set the @code{is_stmt} register in the
5954 @code{.debug_line} state machine to @code{value}, which must be
5955 either 0 or 1.
5956
5957 @item isa @var{value}
5958 This directive will set the @code{isa} register in the @code{.debug_line}
5959 state machine to @var{value}, which must be an unsigned integer.
5960
5961 @item discriminator @var{value}
5962 This directive will set the @code{discriminator} register in the @code{.debug_line}
5963 state machine to @var{value}, which must be an unsigned integer.
5964
5965 @item view @var{value}
5966 This option causes a row to be added to @code{.debug_line} in reference to the
5967 current address (which might not be the same as that of the following assembly
5968 instruction), and to associate @var{value} with the @code{view} register in the
5969 @code{.debug_line} state machine. If @var{value} is a label, both the
5970 @code{view} register and the label are set to the number of prior @code{.loc}
5971 directives at the same program location. If @var{value} is the literal
5972 @code{0}, the @code{view} register is set to zero, and the assembler asserts
5973 that there aren't any prior @code{.loc} directives at the same program
5974 location. If @var{value} is the literal @code{-0}, the assembler arrange for
5975 the @code{view} register to be reset in this row, even if there are prior
5976 @code{.loc} directives at the same program location.
5977
5978 @end table
5979
5980 @node Loc_mark_labels
5981 @section @code{.loc_mark_labels @var{enable}}
5982 @cindex @code{loc_mark_labels} directive
5983 When emitting DWARF2 line number information,
5984 the @code{.loc_mark_labels} directive makes the assembler emit an entry
5985 to the @code{.debug_line} line number matrix with the @code{basic_block}
5986 register in the state machine set whenever a code label is seen.
5987 The @var{enable} argument should be either 1 or 0, to enable or disable
5988 this function respectively.
5989
5990 @ifset ELF
5991 @node Local
5992 @section @code{.local @var{names}}
5993
5994 @cindex @code{local} directive
5995 This directive, which is available for ELF targets, marks each symbol in
5996 the comma-separated list of @code{names} as a local symbol so that it
5997 will not be externally visible. If the symbols do not already exist,
5998 they will be created.
5999
6000 For targets where the @code{.lcomm} directive (@pxref{Lcomm}) does not
6001 accept an alignment argument, which is the case for most ELF targets,
6002 the @code{.local} directive can be used in combination with @code{.comm}
6003 (@pxref{Comm}) to define aligned local common data.
6004 @end ifset
6005
6006 @node Long
6007 @section @code{.long @var{expressions}}
6008
6009 @cindex @code{long} directive
6010 @code{.long} is the same as @samp{.int}. @xref{Int,,@code{.int}}.
6011
6012 @ignore
6013 @c no one seems to know what this is for or whether this description is
6014 @c what it really ought to do
6015 @node Lsym
6016 @section @code{.lsym @var{symbol}, @var{expression}}
6017
6018 @cindex @code{lsym} directive
6019 @cindex symbol, not referenced in assembly
6020 @code{.lsym} creates a new symbol named @var{symbol}, but does not put it in
6021 the hash table, ensuring it cannot be referenced by name during the
6022 rest of the assembly. This sets the attributes of the symbol to be
6023 the same as the expression value:
6024 @smallexample
6025 @var{other} = @var{descriptor} = 0
6026 @var{type} = @r{(section of @var{expression})}
6027 @var{value} = @var{expression}
6028 @end smallexample
6029 @noindent
6030 The new symbol is not flagged as external.
6031 @end ignore
6032
6033 @node Macro
6034 @section @code{.macro}
6035
6036 @cindex macros
6037 The commands @code{.macro} and @code{.endm} allow you to define macros that
6038 generate assembly output. For example, this definition specifies a macro
6039 @code{sum} that puts a sequence of numbers into memory:
6040
6041 @example
6042 .macro sum from=0, to=5
6043 .long \from
6044 .if \to-\from
6045 sum "(\from+1)",\to
6046 .endif
6047 .endm
6048 @end example
6049
6050 @noindent
6051 With that definition, @samp{SUM 0,5} is equivalent to this assembly input:
6052
6053 @example
6054 .long 0
6055 .long 1
6056 .long 2
6057 .long 3
6058 .long 4
6059 .long 5
6060 @end example
6061
6062 @ftable @code
6063 @item .macro @var{macname}
6064 @itemx .macro @var{macname} @var{macargs} @dots{}
6065 @cindex @code{macro} directive
6066 Begin the definition of a macro called @var{macname}. If your macro
6067 definition requires arguments, specify their names after the macro name,
6068 separated by commas or spaces. You can qualify the macro argument to
6069 indicate whether all invocations must specify a non-blank value (through
6070 @samp{:@code{req}}), or whether it takes all of the remaining arguments
6071 (through @samp{:@code{vararg}}). You can supply a default value for any
6072 macro argument by following the name with @samp{=@var{deflt}}. You
6073 cannot define two macros with the same @var{macname} unless it has been
6074 subject to the @code{.purgem} directive (@pxref{Purgem}) between the two
6075 definitions. For example, these are all valid @code{.macro} statements:
6076
6077 @table @code
6078 @item .macro comm
6079 Begin the definition of a macro called @code{comm}, which takes no
6080 arguments.
6081
6082 @item .macro plus1 p, p1
6083 @itemx .macro plus1 p p1
6084 Either statement begins the definition of a macro called @code{plus1},
6085 which takes two arguments; within the macro definition, write
6086 @samp{\p} or @samp{\p1} to evaluate the arguments.
6087
6088 @item .macro reserve_str p1=0 p2
6089 Begin the definition of a macro called @code{reserve_str}, with two
6090 arguments. The first argument has a default value, but not the second.
6091 After the definition is complete, you can call the macro either as
6092 @samp{reserve_str @var{a},@var{b}} (with @samp{\p1} evaluating to
6093 @var{a} and @samp{\p2} evaluating to @var{b}), or as @samp{reserve_str
6094 ,@var{b}} (with @samp{\p1} evaluating as the default, in this case
6095 @samp{0}, and @samp{\p2} evaluating to @var{b}).
6096
6097 @item .macro m p1:req, p2=0, p3:vararg
6098 Begin the definition of a macro called @code{m}, with at least three
6099 arguments. The first argument must always have a value specified, but
6100 not the second, which instead has a default value. The third formal
6101 will get assigned all remaining arguments specified at invocation time.
6102
6103 When you call a macro, you can specify the argument values either by
6104 position, or by keyword. For example, @samp{sum 9,17} is equivalent to
6105 @samp{sum to=17, from=9}.
6106
6107 @end table
6108
6109 Note that since each of the @var{macargs} can be an identifier exactly
6110 as any other one permitted by the target architecture, there may be
6111 occasional problems if the target hand-crafts special meanings to certain
6112 characters when they occur in a special position. For example, if the colon
6113 (@code{:}) is generally permitted to be part of a symbol name, but the
6114 architecture specific code special-cases it when occurring as the final
6115 character of a symbol (to denote a label), then the macro parameter
6116 replacement code will have no way of knowing that and consider the whole
6117 construct (including the colon) an identifier, and check only this
6118 identifier for being the subject to parameter substitution. So for example
6119 this macro definition:
6120
6121 @example
6122 .macro label l
6123 \l:
6124 .endm
6125 @end example
6126
6127 might not work as expected. Invoking @samp{label foo} might not create a label
6128 called @samp{foo} but instead just insert the text @samp{\l:} into the
6129 assembler source, probably generating an error about an unrecognised
6130 identifier.
6131
6132 Similarly problems might occur with the period character (@samp{.})
6133 which is often allowed inside opcode names (and hence identifier names). So
6134 for example constructing a macro to build an opcode from a base name and a
6135 length specifier like this:
6136
6137 @example
6138 .macro opcode base length
6139 \base.\length
6140 .endm
6141 @end example
6142
6143 and invoking it as @samp{opcode store l} will not create a @samp{store.l}
6144 instruction but instead generate some kind of error as the assembler tries to
6145 interpret the text @samp{\base.\length}.
6146
6147 There are several possible ways around this problem:
6148
6149 @table @code
6150 @item Insert white space
6151 If it is possible to use white space characters then this is the simplest
6152 solution. eg:
6153
6154 @example
6155 .macro label l
6156 \l :
6157 .endm
6158 @end example
6159
6160 @item Use @samp{\()}
6161 The string @samp{\()} can be used to separate the end of a macro argument from
6162 the following text. eg:
6163
6164 @example
6165 .macro opcode base length
6166 \base\().\length
6167 .endm
6168 @end example
6169
6170 @item Use the alternate macro syntax mode
6171 In the alternative macro syntax mode the ampersand character (@samp{&}) can be
6172 used as a separator. eg:
6173
6174 @example
6175 .altmacro
6176 .macro label l
6177 l&:
6178 .endm
6179 @end example
6180 @end table
6181
6182 Note: this problem of correctly identifying string parameters to pseudo ops
6183 also applies to the identifiers used in @code{.irp} (@pxref{Irp})
6184 and @code{.irpc} (@pxref{Irpc}) as well.
6185
6186 @item .endm
6187 @cindex @code{endm} directive
6188 Mark the end of a macro definition.
6189
6190 @item .exitm
6191 @cindex @code{exitm} directive
6192 Exit early from the current macro definition.
6193
6194 @cindex number of macros executed
6195 @cindex macros, count executed
6196 @item \@@
6197 @command{@value{AS}} maintains a counter of how many macros it has
6198 executed in this pseudo-variable; you can copy that number to your
6199 output with @samp{\@@}, but @emph{only within a macro definition}.
6200
6201 @item LOCAL @var{name} [ , @dots{} ]
6202 @emph{Warning: @code{LOCAL} is only available if you select ``alternate
6203 macro syntax'' with @samp{--alternate} or @code{.altmacro}.}
6204 @xref{Altmacro,,@code{.altmacro}}.
6205 @end ftable
6206
6207 @node MRI
6208 @section @code{.mri @var{val}}
6209
6210 @cindex @code{mri} directive
6211 @cindex MRI mode, temporarily
6212 If @var{val} is non-zero, this tells @command{@value{AS}} to enter MRI mode. If
6213 @var{val} is zero, this tells @command{@value{AS}} to exit MRI mode. This change
6214 affects code assembled until the next @code{.mri} directive, or until the end
6215 of the file. @xref{M, MRI mode, MRI mode}.
6216
6217 @node Noaltmacro
6218 @section @code{.noaltmacro}
6219 Disable alternate macro mode. @xref{Altmacro}.
6220
6221 @node Nolist
6222 @section @code{.nolist}
6223
6224 @cindex @code{nolist} directive
6225 @cindex listing control, turning off
6226 Control (in conjunction with the @code{.list} directive) whether or
6227 not assembly listings are generated. These two directives maintain an
6228 internal counter (which is zero initially). @code{.list} increments the
6229 counter, and @code{.nolist} decrements it. Assembly listings are
6230 generated whenever the counter is greater than zero.
6231
6232 @node Nop
6233 @section @code{.nop [@var{size}]}
6234
6235 @cindex @code{nop} directive
6236 @cindex filling memory with no-op instructions
6237 This directive emits no-op instructions. It is provided on all architectures,
6238 allowing the creation of architecture neutral tests involving actual code. The
6239 size of the generated instruction is target specific, but if the optional
6240 @var{size} argument is given and resolves to an absolute positive value at that
6241 point in assembly (no forward expressions allowed) then the fewest no-op
6242 instructions are emitted that equal or exceed a total @var{size} in bytes.
6243 @code{.nop} does affect the generation of DWARF debug line information.
6244 Some targets do not support using @code{.nop} with @var{size}.
6245
6246 @node Nops
6247 @section @code{.nops @var{size}[, @var{control}]}
6248
6249 @cindex @code{nops} directive
6250 @cindex filling memory with no-op instructions
6251 This directive emits no-op instructions. It is specific to the Intel 80386 and
6252 AMD x86-64 targets. It takes a @var{size} argument and generates @var{size}
6253 bytes of no-op instructions. @var{size} must be absolute and positive. These
6254 bytes do not affect the generation of DWARF debug line information.
6255
6256 The optional @var{control} argument specifies a size limit for a single no-op
6257 instruction. If not provided then a value of 0 is assumed. The valid values
6258 of @var{control} are between 0 and 4 in 16-bit mode, between 0 and 7 when
6259 tuning for older processors in 32-bit mode, between 0 and 11 in 64-bit mode or
6260 when tuning for newer processors in 32-bit mode. When 0 is used, the no-op
6261 instruction size limit is set to the maximum supported size.
6262
6263 @node Octa
6264 @section @code{.octa @var{bignums}}
6265
6266 @c FIXME: double size emitted for "octa" on some? Or warn?
6267 @cindex @code{octa} directive
6268 @cindex integer, 16-byte
6269 @cindex sixteen byte integer
6270 This directive expects zero or more bignums, separated by commas. For each
6271 bignum, it emits a 16-byte integer.
6272
6273 The term ``octa'' comes from contexts in which a ``word'' is two bytes;
6274 hence @emph{octa}-word for 16 bytes.
6275
6276 @node Offset
6277 @section @code{.offset @var{loc}}
6278
6279 @cindex @code{offset} directive
6280 Set the location counter to @var{loc} in the absolute section. @var{loc} must
6281 be an absolute expression. This directive may be useful for defining
6282 symbols with absolute values. Do not confuse it with the @code{.org}
6283 directive.
6284
6285 @node Org
6286 @section @code{.org @var{new-lc} , @var{fill}}
6287
6288 @cindex @code{org} directive
6289 @cindex location counter, advancing
6290 @cindex advancing location counter
6291 @cindex current address, advancing
6292 Advance the location counter of the current section to
6293 @var{new-lc}. @var{new-lc} is either an absolute expression or an
6294 expression with the same section as the current subsection. That is,
6295 you can't use @code{.org} to cross sections: if @var{new-lc} has the
6296 wrong section, the @code{.org} directive is ignored. To be compatible
6297 with former assemblers, if the section of @var{new-lc} is absolute,
6298 @command{@value{AS}} issues a warning, then pretends the section of @var{new-lc}
6299 is the same as the current subsection.
6300
6301 @code{.org} may only increase the location counter, or leave it
6302 unchanged; you cannot use @code{.org} to move the location counter
6303 backwards.
6304
6305 @c double negative used below "not undefined" because this is a specific
6306 @c reference to "undefined" (as SEG_UNKNOWN is called in this manual)
6307 @c section. doc@cygnus.com 18feb91
6308 Because @command{@value{AS}} tries to assemble programs in one pass, @var{new-lc}
6309 may not be undefined. If you really detest this restriction we eagerly await
6310 a chance to share your improved assembler.
6311
6312 Beware that the origin is relative to the start of the section, not
6313 to the start of the subsection. This is compatible with other
6314 people's assemblers.
6315
6316 When the location counter (of the current subsection) is advanced, the
6317 intervening bytes are filled with @var{fill} which should be an
6318 absolute expression. If the comma and @var{fill} are omitted,
6319 @var{fill} defaults to zero.
6320
6321 @node P2align
6322 @section @code{.p2align[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
6323
6324 @cindex padding the location counter given a power of two
6325 @cindex @code{p2align} directive
6326 Pad the location counter (in the current subsection) to a particular
6327 storage boundary. The first expression (which must be absolute) is the
6328 number of low-order zero bits the location counter must have after
6329 advancement. For example @samp{.p2align 3} advances the location
6330 counter until it is a multiple of 8. If the location counter is already a
6331 multiple of 8, no change is needed. If the expression is omitted then a
6332 default value of 0 is used, effectively disabling alignment requirements.
6333
6334 The second expression (also absolute) gives the fill value to be stored in the
6335 padding bytes. It (and the comma) may be omitted. If it is omitted, the
6336 padding bytes are normally zero. However, on most systems, if the section is
6337 marked as containing code and the fill value is omitted, the space is filled
6338 with no-op instructions.
6339
6340 The third expression is also absolute, and is also optional. If it is present,
6341 it is the maximum number of bytes that should be skipped by this alignment
6342 directive. If doing the alignment would require skipping more bytes than the
6343 specified maximum, then the alignment is not done at all. You can omit the
6344 fill value (the second argument) entirely by simply using two commas after the
6345 required alignment; this can be useful if you want the alignment to be filled
6346 with no-op instructions when appropriate.
6347
6348 @cindex @code{p2alignw} directive
6349 @cindex @code{p2alignl} directive
6350 The @code{.p2alignw} and @code{.p2alignl} directives are variants of the
6351 @code{.p2align} directive. The @code{.p2alignw} directive treats the fill
6352 pattern as a two byte word value. The @code{.p2alignl} directives treats the
6353 fill pattern as a four byte longword value. For example, @code{.p2alignw
6354 2,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
6355 filled in with the value 0x368d (the exact placement of the bytes depends upon
6356 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
6357 undefined.
6358
6359 @ifset ELF
6360 @node PopSection
6361 @section @code{.popsection}
6362
6363 @cindex @code{popsection} directive
6364 @cindex Section Stack
6365 This is one of the ELF section stack manipulation directives. The others are
6366 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6367 @code{.pushsection} (@pxref{PushSection}), and @code{.previous}
6368 (@pxref{Previous}).
6369
6370 This directive replaces the current section (and subsection) with the top
6371 section (and subsection) on the section stack. This section is popped off the
6372 stack.
6373 @end ifset
6374
6375 @ifset ELF
6376 @node Previous
6377 @section @code{.previous}
6378
6379 @cindex @code{previous} directive
6380 @cindex Section Stack
6381 This is one of the ELF section stack manipulation directives. The others are
6382 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6383 @code{.pushsection} (@pxref{PushSection}), and @code{.popsection}
6384 (@pxref{PopSection}).
6385
6386 This directive swaps the current section (and subsection) with most recently
6387 referenced section/subsection pair prior to this one. Multiple
6388 @code{.previous} directives in a row will flip between two sections (and their
6389 subsections). For example:
6390
6391 @smallexample
6392 .section A
6393 .subsection 1
6394 .word 0x1234
6395 .subsection 2
6396 .word 0x5678
6397 .previous
6398 .word 0x9abc
6399 @end smallexample
6400
6401 Will place 0x1234 and 0x9abc into subsection 1 and 0x5678 into subsection 2 of
6402 section A. Whilst:
6403
6404 @smallexample
6405 .section A
6406 .subsection 1
6407 # Now in section A subsection 1
6408 .word 0x1234
6409 .section B
6410 .subsection 0
6411 # Now in section B subsection 0
6412 .word 0x5678
6413 .subsection 1
6414 # Now in section B subsection 1
6415 .word 0x9abc
6416 .previous
6417 # Now in section B subsection 0
6418 .word 0xdef0
6419 @end smallexample
6420
6421 Will place 0x1234 into section A, 0x5678 and 0xdef0 into subsection 0 of
6422 section B and 0x9abc into subsection 1 of section B.
6423
6424 In terms of the section stack, this directive swaps the current section with
6425 the top section on the section stack.
6426 @end ifset
6427
6428 @node Print
6429 @section @code{.print @var{string}}
6430
6431 @cindex @code{print} directive
6432 @command{@value{AS}} will print @var{string} on the standard output during
6433 assembly. You must put @var{string} in double quotes.
6434
6435 @ifset ELF
6436 @node Protected
6437 @section @code{.protected @var{names}}
6438
6439 @cindex @code{protected} directive
6440 @cindex visibility
6441 This is one of the ELF visibility directives. The other two are
6442 @code{.hidden} (@pxref{Hidden}) and @code{.internal} (@pxref{Internal}).
6443
6444 This directive overrides the named symbols default visibility (which is set by
6445 their binding: local, global or weak). The directive sets the visibility to
6446 @code{protected} which means that any references to the symbols from within the
6447 components that defines them must be resolved to the definition in that
6448 component, even if a definition in another component would normally preempt
6449 this.
6450 @end ifset
6451
6452 @node Psize
6453 @section @code{.psize @var{lines} , @var{columns}}
6454
6455 @cindex @code{psize} directive
6456 @cindex listing control: paper size
6457 @cindex paper size, for listings
6458 Use this directive to declare the number of lines---and, optionally, the
6459 number of columns---to use for each page, when generating listings.
6460
6461 If you do not use @code{.psize}, listings use a default line-count
6462 of 60. You may omit the comma and @var{columns} specification; the
6463 default width is 200 columns.
6464
6465 @command{@value{AS}} generates formfeeds whenever the specified number of
6466 lines is exceeded (or whenever you explicitly request one, using
6467 @code{.eject}).
6468
6469 If you specify @var{lines} as @code{0}, no formfeeds are generated save
6470 those explicitly specified with @code{.eject}.
6471
6472 @node Purgem
6473 @section @code{.purgem @var{name}}
6474
6475 @cindex @code{purgem} directive
6476 Undefine the macro @var{name}, so that later uses of the string will not be
6477 expanded. @xref{Macro}.
6478
6479 @ifset ELF
6480 @node PushSection
6481 @section @code{.pushsection @var{name} [, @var{subsection}] [, "@var{flags}"[, @@@var{type}[,@var{arguments}]]]}
6482
6483 @cindex @code{pushsection} directive
6484 @cindex Section Stack
6485 This is one of the ELF section stack manipulation directives. The others are
6486 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6487 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
6488 (@pxref{Previous}).
6489
6490 This directive pushes the current section (and subsection) onto the
6491 top of the section stack, and then replaces the current section and
6492 subsection with @code{name} and @code{subsection}. The optional
6493 @code{flags}, @code{type} and @code{arguments} are treated the same
6494 as in the @code{.section} (@pxref{Section}) directive.
6495 @end ifset
6496
6497 @node Quad
6498 @section @code{.quad @var{bignums}}
6499
6500 @cindex @code{quad} directive
6501 @code{.quad} expects zero or more bignums, separated by commas. For
6502 each bignum, it emits
6503 @ifclear bignum-16
6504 an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a
6505 warning message; and just takes the lowest order 8 bytes of the bignum.
6506 @cindex eight-byte integer
6507 @cindex integer, 8-byte
6508
6509 The term ``quad'' comes from contexts in which a ``word'' is two bytes;
6510 hence @emph{quad}-word for 8 bytes.
6511 @end ifclear
6512 @ifset bignum-16
6513 a 16-byte integer. If the bignum won't fit in 16 bytes, it prints a
6514 warning message; and just takes the lowest order 16 bytes of the bignum.
6515 @cindex sixteen-byte integer
6516 @cindex integer, 16-byte
6517 @end ifset
6518
6519 @node Reloc
6520 @section @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
6521
6522 @cindex @code{reloc} directive
6523 Generate a relocation at @var{offset} of type @var{reloc_name} with value
6524 @var{expression}. If @var{offset} is a number, the relocation is generated in
6525 the current section. If @var{offset} is an expression that resolves to a
6526 symbol plus offset, the relocation is generated in the given symbol's section.
6527 @var{expression}, if present, must resolve to a symbol plus addend or to an
6528 absolute value, but note that not all targets support an addend. e.g. ELF REL
6529 targets such as i386 store an addend in the section contents rather than in the
6530 relocation. This low level interface does not support addends stored in the
6531 section.
6532
6533 @node Rept
6534 @section @code{.rept @var{count}}
6535
6536 @cindex @code{rept} directive
6537 Repeat the sequence of lines between the @code{.rept} directive and the next
6538 @code{.endr} directive @var{count} times.
6539
6540 For example, assembling
6541
6542 @example
6543 .rept 3
6544 .long 0
6545 .endr
6546 @end example
6547
6548 is equivalent to assembling
6549
6550 @example
6551 .long 0
6552 .long 0
6553 .long 0
6554 @end example
6555
6556 A count of zero is allowed, but nothing is generated. Negative counts are not
6557 allowed and if encountered will be treated as if they were zero.
6558
6559 @node Sbttl
6560 @section @code{.sbttl "@var{subheading}"}
6561
6562 @cindex @code{sbttl} directive
6563 @cindex subtitles for listings
6564 @cindex listing control: subtitle
6565 Use @var{subheading} as the title (third line, immediately after the
6566 title line) when generating assembly listings.
6567
6568 This directive affects subsequent pages, as well as the current page if
6569 it appears within ten lines of the top of a page.
6570
6571 @ifset COFF
6572 @node Scl
6573 @section @code{.scl @var{class}}
6574
6575 @cindex @code{scl} directive
6576 @cindex symbol storage class (COFF)
6577 @cindex COFF symbol storage class
6578 Set the storage-class value for a symbol. This directive may only be
6579 used inside a @code{.def}/@code{.endef} pair. Storage class may flag
6580 whether a symbol is static or external, or it may record further
6581 symbolic debugging information.
6582 @end ifset
6583
6584 @ifset COFF-ELF
6585 @node Section
6586 @section @code{.section @var{name}}
6587
6588 @cindex named section
6589 Use the @code{.section} directive to assemble the following code into a section
6590 named @var{name}.
6591
6592 This directive is only supported for targets that actually support arbitrarily
6593 named sections; on @code{a.out} targets, for example, it is not accepted, even
6594 with a standard @code{a.out} section name.
6595
6596 @ifset COFF
6597 @ifset ELF
6598 @c only print the extra heading if both COFF and ELF are set
6599 @subheading COFF Version
6600 @end ifset
6601
6602 @cindex @code{section} directive (COFF version)
6603 For COFF targets, the @code{.section} directive is used in one of the following
6604 ways:
6605
6606 @smallexample
6607 .section @var{name}[, "@var{flags}"]
6608 .section @var{name}[, @var{subsection}]
6609 @end smallexample
6610
6611 If the optional argument is quoted, it is taken as flags to use for the
6612 section. Each flag is a single character. The following flags are recognized:
6613
6614 @table @code
6615 @item b
6616 bss section (uninitialized data)
6617 @item n
6618 section is not loaded
6619 @item w
6620 writable section
6621 @item d
6622 data section
6623 @item e
6624 exclude section from linking
6625 @item r
6626 read-only section
6627 @item x
6628 executable section
6629 @item s
6630 shared section (meaningful for PE targets)
6631 @item a
6632 ignored. (For compatibility with the ELF version)
6633 @item y
6634 section is not readable (meaningful for PE targets)
6635 @item 0-9
6636 single-digit power-of-two section alignment (GNU extension)
6637 @end table
6638
6639 If no flags are specified, the default flags depend upon the section name. If
6640 the section name is not recognized, the default will be for the section to be
6641 loaded and writable. Note the @code{n} and @code{w} flags remove attributes
6642 from the section, rather than adding them, so if they are used on their own it
6643 will be as if no flags had been specified at all.
6644
6645 If the optional argument to the @code{.section} directive is not quoted, it is
6646 taken as a subsection number (@pxref{Sub-Sections}).
6647 @end ifset
6648
6649 @ifset ELF
6650 @ifset COFF
6651 @c only print the extra heading if both COFF and ELF are set
6652 @subheading ELF Version
6653 @end ifset
6654
6655 @cindex Section Stack
6656 This is one of the ELF section stack manipulation directives. The others are
6657 @code{.subsection} (@pxref{SubSection}), @code{.pushsection}
6658 (@pxref{PushSection}), @code{.popsection} (@pxref{PopSection}), and
6659 @code{.previous} (@pxref{Previous}).
6660
6661 @cindex @code{section} directive (ELF version)
6662 For ELF targets, the @code{.section} directive is used like this:
6663
6664 @smallexample
6665 .section @var{name} [, "@var{flags}"[, @@@var{type}[,@var{flag_specific_arguments}]]]
6666 @end smallexample
6667
6668 @anchor{Section Name Substitutions}
6669 @kindex --sectname-subst
6670 @cindex section name substitution
6671 If the @samp{--sectname-subst} command-line option is provided, the @var{name}
6672 argument may contain a substitution sequence. Only @code{%S} is supported
6673 at the moment, and substitutes the current section name. For example:
6674
6675 @smallexample
6676 .macro exception_code
6677 .section %S.exception
6678 [exception code here]
6679 .previous
6680 .endm
6681
6682 .text
6683 [code]
6684 exception_code
6685 [...]
6686
6687 .section .init
6688 [init code]
6689 exception_code
6690 [...]
6691 @end smallexample
6692
6693 The two @code{exception_code} invocations above would create the
6694 @code{.text.exception} and @code{.init.exception} sections respectively.
6695 This is useful e.g. to discriminate between ancillary sections that are
6696 tied to setup code to be discarded after use from ancillary sections that
6697 need to stay resident without having to define multiple @code{exception_code}
6698 macros just for that purpose.
6699
6700 The optional @var{flags} argument is a quoted string which may contain any
6701 combination of the following characters:
6702
6703 @table @code
6704 @item a
6705 section is allocatable
6706 @item d
6707 section is a GNU_MBIND section
6708 @item e
6709 section is excluded from executable and shared library.
6710 @item o
6711 section references a symbol defined in another section (the linked-to
6712 section) in the same file.
6713 @item w
6714 section is writable
6715 @item x
6716 section is executable
6717 @item M
6718 section is mergeable
6719 @item S
6720 section contains zero terminated strings
6721 @item G
6722 section is a member of a section group
6723 @item T
6724 section is used for thread-local-storage
6725 @item ?
6726 section is a member of the previously-current section's group, if any
6727 @item R
6728 retained section (apply SHF_GNU_RETAIN to prevent linker garbage
6729 collection, GNU ELF extension)
6730 @item @code{<number>}
6731 a numeric value indicating the bits to be set in the ELF section header's flags
6732 field. Note - if one or more of the alphabetic characters described above is
6733 also included in the flags field, their bit values will be ORed into the
6734 resulting value.
6735 @item @code{<target specific>}
6736 some targets extend this list with their own flag characters
6737 @end table
6738
6739 Note - once a section's flags have been set they cannot be changed. There are
6740 a few exceptions to this rule however. Processor and application specific
6741 flags can be added to an already defined section. The @code{.interp},
6742 @code{.strtab} and @code{.symtab} sections can have the allocate flag
6743 (@code{a}) set after they are initially defined, and the @code{.note-GNU-stack}
6744 section may have the executable (@code{x}) flag added. Also note that the
6745 @code{.attach_to_group} directive can be used to add a section to a group even
6746 if the section was not originally declared to be part of that group.
6747
6748 The optional @var{type} argument may contain one of the following constants:
6749
6750 @table @code
6751 @item @@progbits
6752 section contains data
6753 @item @@nobits
6754 section does not contain data (i.e., section only occupies space)
6755 @item @@note
6756 section contains data which is used by things other than the program
6757 @item @@init_array
6758 section contains an array of pointers to init functions
6759 @item @@fini_array
6760 section contains an array of pointers to finish functions
6761 @item @@preinit_array
6762 section contains an array of pointers to pre-init functions
6763 @item @@@code{<number>}
6764 a numeric value to be set as the ELF section header's type field.
6765 @item @@@code{<target specific>}
6766 some targets extend this list with their own types
6767 @end table
6768
6769 Many targets only support the first three section types. The type may be
6770 enclosed in double quotes if necessary.
6771
6772 Note on targets where the @code{@@} character is the start of a comment (eg
6773 ARM) then another character is used instead. For example the ARM port uses the
6774 @code{%} character.
6775
6776 Note - some sections, eg @code{.text} and @code{.data} are considered to be
6777 special and have fixed types. Any attempt to declare them with a different
6778 type will generate an error from the assembler.
6779
6780 If @var{flags} contains the @code{M} symbol then the @var{type} argument must
6781 be specified as well as an extra argument---@var{entsize}---like this:
6782
6783 @smallexample
6784 .section @var{name} , "@var{flags}"M, @@@var{type}, @var{entsize}
6785 @end smallexample
6786
6787 Sections with the @code{M} flag but not @code{S} flag must contain fixed size
6788 constants, each @var{entsize} octets long. Sections with both @code{M} and
6789 @code{S} must contain zero terminated strings where each character is
6790 @var{entsize} bytes long. The linker may remove duplicates within sections with
6791 the same name, same entity size and same flags. @var{entsize} must be an
6792 absolute expression. For sections with both @code{M} and @code{S}, a string
6793 which is a suffix of a larger string is considered a duplicate. Thus
6794 @code{"def"} will be merged with @code{"abcdef"}; A reference to the first
6795 @code{"def"} will be changed to a reference to @code{"abcdef"+3}.
6796
6797 If @var{flags} contains the @code{o} flag, then the @var{type} argument
6798 must be present along with an additional field like this:
6799
6800 @smallexample
6801 .section @var{name},"@var{flags}"o,@@@var{type},@var{SymbolName}|@var{SectionIndex}
6802 @end smallexample
6803
6804 The @var{SymbolName} field specifies the symbol name which the section
6805 references. Alternatively a numeric @var{SectionIndex} can be provided. This
6806 is not generally a good idea as section indicies are rarely known at assembly
6807 time, but the facility is provided for testing purposes. An index of zero is
6808 allowed. It indicates that the linked-to section has already been discarded.
6809
6810 Note: If both the @var{M} and @var{o} flags are present, then the fields
6811 for the Merge flag should come first, like this:
6812
6813 @smallexample
6814 .section @var{name},"@var{flags}"Mo,@@@var{type},@var{entsize},@var{SymbolName}
6815 @end smallexample
6816
6817 If @var{flags} contains the @code{G} symbol then the @var{type} argument must
6818 be present along with an additional field like this:
6819
6820 @smallexample
6821 .section @var{name} , "@var{flags}"G, @@@var{type}, @var{GroupName}[, @var{linkage}]
6822 @end smallexample
6823
6824 The @var{GroupName} field specifies the name of the section group to which this
6825 particular section belongs. The optional linkage field can contain:
6826
6827 @table @code
6828 @item comdat
6829 indicates that only one copy of this section should be retained
6830 @item .gnu.linkonce
6831 an alias for comdat
6832 @end table
6833
6834 Note: if both the @var{M} and @var{G} flags are present then the fields for
6835 the Merge flag should come first, like this:
6836
6837 @smallexample
6838 .section @var{name} , "@var{flags}"MG, @@@var{type}, @var{entsize}, @var{GroupName}[, @var{linkage}]
6839 @end smallexample
6840
6841 If both @code{o} flag and @code{G} flag are present, then the
6842 @var{SymbolName} field for @code{o} comes first, like this:
6843
6844 @smallexample
6845 .section @var{name},"@var{flags}"oG,@@@var{type},@var{SymbolName},@var{GroupName}[,@var{linkage}]
6846 @end smallexample
6847
6848 If @var{flags} contains the @code{?} symbol then it may not also contain the
6849 @code{G} symbol and the @var{GroupName} or @var{linkage} fields should not be
6850 present. Instead, @code{?} says to consider the section that's current before
6851 this directive. If that section used @code{G}, then the new section will use
6852 @code{G} with those same @var{GroupName} and @var{linkage} fields implicitly.
6853 If not, then the @code{?} symbol has no effect.
6854
6855 The optional @var{unique,@code{<number>}} argument must come last. It
6856 assigns @var{@code{<number>}} as a unique section ID to distinguish
6857 different sections with the same section name like these:
6858
6859 @smallexample
6860 .section @var{name},"@var{flags}",@@@var{type},@var{unique,@code{<number>}}
6861 .section @var{name},"@var{flags}"G,@@@var{type},@var{GroupName},[@var{linkage}],@var{unique,@code{<number>}}
6862 .section @var{name},"@var{flags}"MG,@@@var{type},@var{entsize},@var{GroupName}[,@var{linkage}],@var{unique,@code{<number>}}
6863 @end smallexample
6864
6865 The valid values of @var{@code{<number>}} are between 0 and 4294967295.
6866
6867 If no flags are specified, the default flags depend upon the section name. If
6868 the section name is not recognized, the default will be for the section to have
6869 none of the above flags: it will not be allocated in memory, nor writable, nor
6870 executable. The section will contain data.
6871
6872 For ELF targets, the assembler supports another type of @code{.section}
6873 directive for compatibility with the Solaris assembler:
6874
6875 @smallexample
6876 .section "@var{name}"[, @var{flags}...]
6877 @end smallexample
6878
6879 Note that the section name is quoted. There may be a sequence of comma
6880 separated flags:
6881
6882 @table @code
6883 @item #alloc
6884 section is allocatable
6885 @item #write
6886 section is writable
6887 @item #execinstr
6888 section is executable
6889 @item #exclude
6890 section is excluded from executable and shared library.
6891 @item #tls
6892 section is used for thread local storage
6893 @end table
6894
6895 This directive replaces the current section and subsection. See the
6896 contents of the gas testsuite directory @code{gas/testsuite/gas/elf} for
6897 some examples of how this directive and the other section stack directives
6898 work.
6899 @end ifset
6900 @end ifset
6901
6902 @node Set
6903 @section @code{.set @var{symbol}, @var{expression}}
6904
6905 @cindex @code{set} directive
6906 @cindex symbol value, setting
6907 Set the value of @var{symbol} to @var{expression}. This
6908 changes @var{symbol}'s value and type to conform to
6909 @var{expression}. If @var{symbol} was flagged as external, it remains
6910 flagged (@pxref{Symbol Attributes}).
6911
6912 You may @code{.set} a symbol many times in the same assembly provided that the
6913 values given to the symbol are constants. Values that are based on expressions
6914 involving other symbols are allowed, but some targets may restrict this to only
6915 being done once per assembly. This is because those targets do not set the
6916 addresses of symbols at assembly time, but rather delay the assignment until a
6917 final link is performed. This allows the linker a chance to change the code in
6918 the files, changing the location of, and the relative distance between, various
6919 different symbols.
6920
6921 If you @code{.set} a global symbol, the value stored in the object
6922 file is the last value stored into it.
6923
6924 @ifset Z80
6925 On Z80 @code{set} is a real instruction, use @code{.set} or
6926 @samp{@var{symbol} defl @var{expression}} instead.
6927 @end ifset
6928
6929 @node Short
6930 @section @code{.short @var{expressions}}
6931
6932 @cindex @code{short} directive
6933 @ifset GENERIC
6934 @code{.short} is normally the same as @samp{.word}.
6935 @xref{Word,,@code{.word}}.
6936
6937 In some configurations, however, @code{.short} and @code{.word} generate
6938 numbers of different lengths. @xref{Machine Dependencies}.
6939 @end ifset
6940 @ifclear GENERIC
6941 @ifset W16
6942 @code{.short} is the same as @samp{.word}. @xref{Word,,@code{.word}}.
6943 @end ifset
6944 @ifset W32
6945 This expects zero or more @var{expressions}, and emits
6946 a 16 bit number for each.
6947 @end ifset
6948 @end ifclear
6949
6950 @node Single
6951 @section @code{.single @var{flonums}}
6952
6953 @cindex @code{single} directive
6954 @cindex floating point numbers (single)
6955 This directive assembles zero or more flonums, separated by commas. It
6956 has the same effect as @code{.float}.
6957 @ifset GENERIC
6958 The exact kind of floating point numbers emitted depends on how
6959 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
6960 @end ifset
6961 @ifclear GENERIC
6962 @ifset IEEEFLOAT
6963 On the @value{TARGET} family, @code{.single} emits 32-bit floating point
6964 numbers in @sc{ieee} format.
6965 @end ifset
6966 @end ifclear
6967
6968 @ifset COFF-ELF
6969 @node Size
6970 @section @code{.size}
6971
6972 This directive is used to set the size associated with a symbol.
6973
6974 @ifset COFF
6975 @ifset ELF
6976 @c only print the extra heading if both COFF and ELF are set
6977 @subheading COFF Version
6978 @end ifset
6979
6980 @cindex @code{size} directive (COFF version)
6981 For COFF targets, the @code{.size} directive is only permitted inside
6982 @code{.def}/@code{.endef} pairs. It is used like this:
6983
6984 @smallexample
6985 .size @var{expression}
6986 @end smallexample
6987
6988 @end ifset
6989
6990 @ifset ELF
6991 @ifset COFF
6992 @c only print the extra heading if both COFF and ELF are set
6993 @subheading ELF Version
6994 @end ifset
6995
6996 @cindex @code{size} directive (ELF version)
6997 For ELF targets, the @code{.size} directive is used like this:
6998
6999 @smallexample
7000 .size @var{name} , @var{expression}
7001 @end smallexample
7002
7003 This directive sets the size associated with a symbol @var{name}.
7004 The size in bytes is computed from @var{expression} which can make use of label
7005 arithmetic. This directive is typically used to set the size of function
7006 symbols.
7007 @end ifset
7008 @end ifset
7009
7010 @ifclear no-space-dir
7011 @node Skip
7012 @section @code{.skip @var{size} [,@var{fill}]}
7013
7014 @cindex @code{skip} directive
7015 @cindex filling memory
7016 This directive emits @var{size} bytes, each of value @var{fill}. Both
7017 @var{size} and @var{fill} are absolute expressions. If the comma and
7018 @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same as
7019 @samp{.space}.
7020 @end ifclear
7021
7022 @node Sleb128
7023 @section @code{.sleb128 @var{expressions}}
7024
7025 @cindex @code{sleb128} directive
7026 @var{sleb128} stands for ``signed little endian base 128.'' This is a
7027 compact, variable length representation of numbers used by the DWARF
7028 symbolic debugging format. @xref{Uleb128, ,@code{.uleb128}}.
7029
7030 @ifclear no-space-dir
7031 @node Space
7032 @section @code{.space @var{size} [,@var{fill}]}
7033
7034 @cindex @code{space} directive
7035 @cindex filling memory
7036 This directive emits @var{size} bytes, each of value @var{fill}. Both
7037 @var{size} and @var{fill} are absolute expressions. If the comma
7038 and @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same
7039 as @samp{.skip}.
7040
7041 @ifset HPPA
7042 @quotation
7043 @emph{Warning:} @code{.space} has a completely different meaning for HPPA
7044 targets; use @code{.block} as a substitute. See @cite{HP9000 Series 800
7045 Assembly Language Reference Manual} (HP 92432-90001) for the meaning of the
7046 @code{.space} directive. @xref{HPPA Directives,,HPPA Assembler Directives},
7047 for a summary.
7048 @end quotation
7049 @end ifset
7050 @end ifclear
7051
7052 @ifset have-stabs
7053 @node Stab
7054 @section @code{.stabd, .stabn, .stabs}
7055
7056 @cindex symbolic debuggers, information for
7057 @cindex @code{stab@var{x}} directives
7058 There are three directives that begin @samp{.stab}.
7059 All emit symbols (@pxref{Symbols}), for use by symbolic debuggers.
7060 The symbols are not entered in the @command{@value{AS}} hash table: they
7061 cannot be referenced elsewhere in the source file.
7062 Up to five fields are required:
7063
7064 @table @var
7065 @item string
7066 This is the symbol's name. It may contain any character except
7067 @samp{\000}, so is more general than ordinary symbol names. Some
7068 debuggers used to code arbitrarily complex structures into symbol names
7069 using this field.
7070
7071 @item type
7072 An absolute expression. The symbol's type is set to the low 8 bits of
7073 this expression. Any bit pattern is permitted, but @code{@value{LD}}
7074 and debuggers choke on silly bit patterns.
7075
7076 @item other
7077 An absolute expression. The symbol's ``other'' attribute is set to the
7078 low 8 bits of this expression.
7079
7080 @item desc
7081 An absolute expression. The symbol's descriptor is set to the low 16
7082 bits of this expression.
7083
7084 @item value
7085 An absolute expression which becomes the symbol's value.
7086 @end table
7087
7088 If a warning is detected while reading a @code{.stabd}, @code{.stabn},
7089 or @code{.stabs} statement, the symbol has probably already been created;
7090 you get a half-formed symbol in your object file. This is
7091 compatible with earlier assemblers!
7092
7093 @table @code
7094 @cindex @code{stabd} directive
7095 @item .stabd @var{type} , @var{other} , @var{desc}
7096
7097 The ``name'' of the symbol generated is not even an empty string.
7098 It is a null pointer, for compatibility. Older assemblers used a
7099 null pointer so they didn't waste space in object files with empty
7100 strings.
7101
7102 The symbol's value is set to the location counter,
7103 relocatably. When your program is linked, the value of this symbol
7104 is the address of the location counter when the @code{.stabd} was
7105 assembled.
7106
7107 @cindex @code{stabn} directive
7108 @item .stabn @var{type} , @var{other} , @var{desc} , @var{value}
7109 The name of the symbol is set to the empty string @code{""}.
7110
7111 @cindex @code{stabs} directive
7112 @item .stabs @var{string} , @var{type} , @var{other} , @var{desc} , @var{value}
7113 All five fields are specified.
7114 @end table
7115 @end ifset
7116 @c end have-stabs
7117
7118 @node String
7119 @section @code{.string} "@var{str}", @code{.string8} "@var{str}", @code{.string16}
7120 "@var{str}", @code{.string32} "@var{str}", @code{.string64} "@var{str}"
7121
7122 @cindex string, copying to object file
7123 @cindex string8, copying to object file
7124 @cindex string16, copying to object file
7125 @cindex string32, copying to object file
7126 @cindex string64, copying to object file
7127 @cindex @code{string} directive
7128 @cindex @code{string8} directive
7129 @cindex @code{string16} directive
7130 @cindex @code{string32} directive
7131 @cindex @code{string64} directive
7132
7133 Copy the characters in @var{str} to the object file. You may specify more than
7134 one string to copy, separated by commas. Unless otherwise specified for a
7135 particular machine, the assembler marks the end of each string with a 0 byte.
7136 You can use any of the escape sequences described in @ref{Strings,,Strings}.
7137
7138 The variants @code{string16}, @code{string32} and @code{string64} differ from
7139 the @code{string} pseudo opcode in that each 8-bit character from @var{str} is
7140 copied and expanded to 16, 32 or 64 bits respectively. The expanded characters
7141 are stored in target endianness byte order.
7142
7143 Example:
7144 @smallexample
7145 .string32 "BYE"
7146 expands to:
7147 .string "B\0\0\0Y\0\0\0E\0\0\0" /* On little endian targets. */
7148 .string "\0\0\0B\0\0\0Y\0\0\0E" /* On big endian targets. */
7149 @end smallexample
7150
7151
7152 @node Struct
7153 @section @code{.struct @var{expression}}
7154
7155 @cindex @code{struct} directive
7156 Switch to the absolute section, and set the section offset to @var{expression},
7157 which must be an absolute expression. You might use this as follows:
7158 @smallexample
7159 .struct 0
7160 field1:
7161 .struct field1 + 4
7162 field2:
7163 .struct field2 + 4
7164 field3:
7165 @end smallexample
7166 This would define the symbol @code{field1} to have the value 0, the symbol
7167 @code{field2} to have the value 4, and the symbol @code{field3} to have the
7168 value 8. Assembly would be left in the absolute section, and you would need to
7169 use a @code{.section} directive of some sort to change to some other section
7170 before further assembly.
7171
7172 @ifset ELF
7173 @node SubSection
7174 @section @code{.subsection @var{name}}
7175
7176 @cindex @code{subsection} directive
7177 @cindex Section Stack
7178 This is one of the ELF section stack manipulation directives. The others are
7179 @code{.section} (@pxref{Section}), @code{.pushsection} (@pxref{PushSection}),
7180 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
7181 (@pxref{Previous}).
7182
7183 This directive replaces the current subsection with @code{name}. The current
7184 section is not changed. The replaced subsection is put onto the section stack
7185 in place of the then current top of stack subsection.
7186 @end ifset
7187
7188 @ifset ELF
7189 @node Symver
7190 @section @code{.symver}
7191 @cindex @code{symver} directive
7192 @cindex symbol versioning
7193 @cindex versions of symbols
7194 Use the @code{.symver} directive to bind symbols to specific version nodes
7195 within a source file. This is only supported on ELF platforms, and is
7196 typically used when assembling files to be linked into a shared library.
7197 There are cases where it may make sense to use this in objects to be bound
7198 into an application itself so as to override a versioned symbol from a
7199 shared library.
7200
7201 For ELF targets, the @code{.symver} directive can be used like this:
7202 @smallexample
7203 .symver @var{name}, @var{name2@@nodename}[ ,@var{visibility}]
7204 @end smallexample
7205 If the original symbol @var{name} is defined within the file
7206 being assembled, the @code{.symver} directive effectively creates a symbol
7207 alias with the name @var{name2@@nodename}, and in fact the main reason that we
7208 just don't try and create a regular alias is that the @var{@@} character isn't
7209 permitted in symbol names. The @var{name2} part of the name is the actual name
7210 of the symbol by which it will be externally referenced. The name @var{name}
7211 itself is merely a name of convenience that is used so that it is possible to
7212 have definitions for multiple versions of a function within a single source
7213 file, and so that the compiler can unambiguously know which version of a
7214 function is being mentioned. The @var{nodename} portion of the alias should be
7215 the name of a node specified in the version script supplied to the linker when
7216 building a shared library. If you are attempting to override a versioned
7217 symbol from a shared library, then @var{nodename} should correspond to the
7218 nodename of the symbol you are trying to override. The optional argument
7219 @var{visibility} updates the visibility of the original symbol. The valid
7220 visibilities are @code{local}, @code{hidden}, and @code{remove}. The
7221 @code{local} visibility makes the original symbol a local symbol
7222 (@pxref{Local}). The @code{hidden} visibility sets the visibility of the
7223 original symbol to @code{hidden} (@pxref{Hidden}). The @code{remove}
7224 visibility removes the original symbol from the symbol table. If visibility
7225 isn't specified, the original symbol is unchanged.
7226
7227 If the symbol @var{name} is not defined within the file being assembled, all
7228 references to @var{name} will be changed to @var{name2@@nodename}. If no
7229 reference to @var{name} is made, @var{name2@@nodename} will be removed from the
7230 symbol table.
7231
7232 Another usage of the @code{.symver} directive is:
7233 @smallexample
7234 .symver @var{name}, @var{name2@@@@nodename}
7235 @end smallexample
7236 In this case, the symbol @var{name} must exist and be defined within
7237 the file being assembled. It is similar to @var{name2@@nodename}. The
7238 difference is @var{name2@@@@nodename} will also be used to resolve
7239 references to @var{name2} by the linker.
7240
7241 The third usage of the @code{.symver} directive is:
7242 @smallexample
7243 .symver @var{name}, @var{name2@@@@@@nodename}
7244 @end smallexample
7245 When @var{name} is not defined within the
7246 file being assembled, it is treated as @var{name2@@nodename}. When
7247 @var{name} is defined within the file being assembled, the symbol
7248 name, @var{name}, will be changed to @var{name2@@@@nodename}.
7249 @end ifset
7250
7251 @ifset COFF
7252 @node Tag
7253 @section @code{.tag @var{structname}}
7254
7255 @cindex COFF structure debugging
7256 @cindex structure debugging, COFF
7257 @cindex @code{tag} directive
7258 This directive is generated by compilers to include auxiliary debugging
7259 information in the symbol table. It is only permitted inside
7260 @code{.def}/@code{.endef} pairs. Tags are used to link structure
7261 definitions in the symbol table with instances of those structures.
7262 @end ifset
7263
7264 @node Text
7265 @section @code{.text @var{subsection}}
7266
7267 @cindex @code{text} directive
7268 Tells @command{@value{AS}} to assemble the following statements onto the end of
7269 the text subsection numbered @var{subsection}, which is an absolute
7270 expression. If @var{subsection} is omitted, subsection number zero
7271 is used.
7272
7273 @node Title
7274 @section @code{.title "@var{heading}"}
7275
7276 @cindex @code{title} directive
7277 @cindex listing control: title line
7278 Use @var{heading} as the title (second line, immediately after the
7279 source file name and pagenumber) when generating assembly listings.
7280
7281 This directive affects subsequent pages, as well as the current page if
7282 it appears within ten lines of the top of a page.
7283
7284 @ifset ELF
7285 @node Tls_common
7286 @section @code{.tls_common @var{symbol}, @var{length}[, @var{alignment}]}
7287
7288 @cindex @code{tls_common} directive
7289 This directive behaves in the same way as the @code{.comm} directive
7290 (@pxref{Comm}) except that @var{symbol} has type of STT_TLS instead of
7291 STT_OBJECT.
7292 @end ifset
7293
7294 @ifset COFF-ELF
7295 @node Type
7296 @section @code{.type}
7297
7298 This directive is used to set the type of a symbol.
7299
7300 @ifset COFF
7301 @ifset ELF
7302 @c only print the extra heading if both COFF and ELF are set
7303 @subheading COFF Version
7304 @end ifset
7305
7306 @cindex COFF symbol type
7307 @cindex symbol type, COFF
7308 @cindex @code{type} directive (COFF version)
7309 For COFF targets, this directive is permitted only within
7310 @code{.def}/@code{.endef} pairs. It is used like this:
7311
7312 @smallexample
7313 .type @var{int}
7314 @end smallexample
7315
7316 This records the integer @var{int} as the type attribute of a symbol table
7317 entry.
7318
7319 @end ifset
7320
7321 @ifset ELF
7322 @ifset COFF
7323 @c only print the extra heading if both COFF and ELF are set
7324 @subheading ELF Version
7325 @end ifset
7326
7327 @cindex ELF symbol type
7328 @cindex symbol type, ELF
7329 @cindex @code{type} directive (ELF version)
7330 For ELF targets, the @code{.type} directive is used like this:
7331
7332 @smallexample
7333 .type @var{name} , @var{type description}
7334 @end smallexample
7335
7336 This sets the type of symbol @var{name} to be either a
7337 function symbol or an object symbol. There are five different syntaxes
7338 supported for the @var{type description} field, in order to provide
7339 compatibility with various other assemblers.
7340
7341 Because some of the characters used in these syntaxes (such as @samp{@@} and
7342 @samp{#}) are comment characters for some architectures, some of the syntaxes
7343 below do not work on all architectures. The first variant will be accepted by
7344 the GNU assembler on all architectures so that variant should be used for
7345 maximum portability, if you do not need to assemble your code with other
7346 assemblers.
7347
7348 The syntaxes supported are:
7349
7350 @smallexample
7351 .type <name> STT_<TYPE_IN_UPPER_CASE>
7352 .type <name>,#<type>
7353 .type <name>,@@<type>
7354 .type <name>,%<type>
7355 .type <name>,"<type>"
7356 @end smallexample
7357
7358 The types supported are:
7359
7360 @table @gcctabopt
7361 @item STT_FUNC
7362 @itemx function
7363 Mark the symbol as being a function name.
7364
7365 @item STT_GNU_IFUNC
7366 @itemx gnu_indirect_function
7367 Mark the symbol as an indirect function when evaluated during reloc
7368 processing. (This is only supported on assemblers targeting GNU systems).
7369
7370 @item STT_OBJECT
7371 @itemx object
7372 Mark the symbol as being a data object.
7373
7374 @item STT_TLS
7375 @itemx tls_object
7376 Mark the symbol as being a thread-local data object.
7377
7378 @item STT_COMMON
7379 @itemx common
7380 Mark the symbol as being a common data object.
7381
7382 @item STT_NOTYPE
7383 @itemx notype
7384 Does not mark the symbol in any way. It is supported just for completeness.
7385
7386 @item gnu_unique_object
7387 Marks the symbol as being a globally unique data object. The dynamic linker
7388 will make sure that in the entire process there is just one symbol with this
7389 name and type in use. (This is only supported on assemblers targeting GNU
7390 systems).
7391
7392 @end table
7393
7394 Changing between incompatible types other than from/to STT_NOTYPE will
7395 result in a diagnostic. An intermediate change to STT_NOTYPE will silence
7396 this.
7397
7398 Note: Some targets support extra types in addition to those listed above.
7399
7400 @end ifset
7401 @end ifset
7402
7403 @node Uleb128
7404 @section @code{.uleb128 @var{expressions}}
7405
7406 @cindex @code{uleb128} directive
7407 @var{uleb128} stands for ``unsigned little endian base 128.'' This is a
7408 compact, variable length representation of numbers used by the DWARF
7409 symbolic debugging format. @xref{Sleb128, ,@code{.sleb128}}.
7410
7411 @ifset COFF
7412 @node Val
7413 @section @code{.val @var{addr}}
7414
7415 @cindex @code{val} directive
7416 @cindex COFF value attribute
7417 @cindex value attribute, COFF
7418 This directive, permitted only within @code{.def}/@code{.endef} pairs,
7419 records the address @var{addr} as the value attribute of a symbol table
7420 entry.
7421 @end ifset
7422
7423 @ifset ELF
7424 @node Version
7425 @section @code{.version "@var{string}"}
7426
7427 @cindex @code{version} directive
7428 This directive creates a @code{.note} section and places into it an ELF
7429 formatted note of type NT_VERSION. The note's name is set to @code{string}.
7430 @end ifset
7431
7432 @ifset ELF
7433 @node VTableEntry
7434 @section @code{.vtable_entry @var{table}, @var{offset}}
7435
7436 @cindex @code{vtable_entry} directive
7437 This directive finds or creates a symbol @code{table} and creates a
7438 @code{VTABLE_ENTRY} relocation for it with an addend of @code{offset}.
7439
7440 @node VTableInherit
7441 @section @code{.vtable_inherit @var{child}, @var{parent}}
7442
7443 @cindex @code{vtable_inherit} directive
7444 This directive finds the symbol @code{child} and finds or creates the symbol
7445 @code{parent} and then creates a @code{VTABLE_INHERIT} relocation for the
7446 parent whose addend is the value of the child symbol. As a special case the
7447 parent name of @code{0} is treated as referring to the @code{*ABS*} section.
7448 @end ifset
7449
7450 @node Warning
7451 @section @code{.warning "@var{string}"}
7452 @cindex warning directive
7453 Similar to the directive @code{.error}
7454 (@pxref{Error,,@code{.error "@var{string}"}}), but just emits a warning.
7455
7456 @node Weak
7457 @section @code{.weak @var{names}}
7458
7459 @cindex @code{weak} directive
7460 This directive sets the weak attribute on the comma separated list of symbol
7461 @code{names}. If the symbols do not already exist, they will be created.
7462
7463 On COFF targets other than PE, weak symbols are a GNU extension. This
7464 directive sets the weak attribute on the comma separated list of symbol
7465 @code{names}. If the symbols do not already exist, they will be created.
7466
7467 On the PE target, weak symbols are supported natively as weak aliases.
7468 When a weak symbol is created that is not an alias, GAS creates an
7469 alternate symbol to hold the default value.
7470
7471 @node Weakref
7472 @section @code{.weakref @var{alias}, @var{target}}
7473
7474 @cindex @code{weakref} directive
7475 This directive creates an alias to the target symbol that enables the symbol to
7476 be referenced with weak-symbol semantics, but without actually making it weak.
7477 If direct references or definitions of the symbol are present, then the symbol
7478 will not be weak, but if all references to it are through weak references, the
7479 symbol will be marked as weak in the symbol table.
7480
7481 The effect is equivalent to moving all references to the alias to a separate
7482 assembly source file, renaming the alias to the symbol in it, declaring the
7483 symbol as weak there, and running a reloadable link to merge the object files
7484 resulting from the assembly of the new source file and the old source file that
7485 had the references to the alias removed.
7486
7487 The alias itself never makes to the symbol table, and is entirely handled
7488 within the assembler.
7489
7490 @node Word
7491 @section @code{.word @var{expressions}}
7492
7493 @cindex @code{word} directive
7494 This directive expects zero or more @var{expressions}, of any section,
7495 separated by commas.
7496 @ifclear GENERIC
7497 @ifset W32
7498 For each expression, @command{@value{AS}} emits a 32-bit number.
7499 @end ifset
7500 @ifset W16
7501 For each expression, @command{@value{AS}} emits a 16-bit number.
7502 @end ifset
7503 @end ifclear
7504 @ifset GENERIC
7505
7506 The size of the number emitted, and its byte order,
7507 depend on what target computer the assembly is for.
7508 @end ifset
7509
7510 @c on sparc the "special treatment to support compilers" doesn't
7511 @c happen---32-bit addressability, period; no long/short jumps.
7512 @ifset DIFF-TBL-KLUGE
7513 @cindex difference tables altered
7514 @cindex altered difference tables
7515 @quotation
7516 @emph{Warning: Special Treatment to support Compilers}
7517 @end quotation
7518
7519 @ifset GENERIC
7520 Machines with a 32-bit address space, but that do less than 32-bit
7521 addressing, require the following special treatment. If the machine of
7522 interest to you does 32-bit addressing (or doesn't require it;
7523 @pxref{Machine Dependencies}), you can ignore this issue.
7524
7525 @end ifset
7526 In order to assemble compiler output into something that works,
7527 @command{@value{AS}} occasionally does strange things to @samp{.word} directives.
7528 Directives of the form @samp{.word sym1-sym2} are often emitted by
7529 compilers as part of jump tables. Therefore, when @command{@value{AS}} assembles a
7530 directive of the form @samp{.word sym1-sym2}, and the difference between
7531 @code{sym1} and @code{sym2} does not fit in 16 bits, @command{@value{AS}}
7532 creates a @dfn{secondary jump table}, immediately before the next label.
7533 This secondary jump table is preceded by a short-jump to the
7534 first byte after the secondary table. This short-jump prevents the flow
7535 of control from accidentally falling into the new table. Inside the
7536 table is a long-jump to @code{sym2}. The original @samp{.word}
7537 contains @code{sym1} minus the address of the long-jump to
7538 @code{sym2}.
7539
7540 If there were several occurrences of @samp{.word sym1-sym2} before the
7541 secondary jump table, all of them are adjusted. If there was a
7542 @samp{.word sym3-sym4}, that also did not fit in sixteen bits, a
7543 long-jump to @code{sym4} is included in the secondary jump table,
7544 and the @code{.word} directives are adjusted to contain @code{sym3}
7545 minus the address of the long-jump to @code{sym4}; and so on, for as many
7546 entries in the original jump table as necessary.
7547
7548 @ifset INTERNALS
7549 @emph{This feature may be disabled by compiling @command{@value{AS}} with the
7550 @samp{-DWORKING_DOT_WORD} option.} This feature is likely to confuse
7551 assembly language programmers.
7552 @end ifset
7553 @end ifset
7554 @c end DIFF-TBL-KLUGE
7555
7556 @ifclear no-space-dir
7557 @node Zero
7558 @section @code{.zero @var{size}}
7559
7560 @cindex @code{zero} directive
7561 @cindex filling memory with zero bytes
7562 This directive emits @var{size} 0-valued bytes. @var{size} must be an absolute
7563 expression. This directive is actually an alias for the @samp{.skip} directive
7564 so it can take an optional second argument of the value to store in the bytes
7565 instead of zero. Using @samp{.zero} in this way would be confusing however.
7566 @end ifclear
7567
7568 @node 2byte
7569 @section @code{.2byte @var{expression} [, @var{expression}]*}
7570 @cindex @code{2byte} directive
7571 @cindex two-byte integer
7572 @cindex integer, 2-byte
7573
7574 This directive expects zero or more expressions, separated by commas. If there
7575 are no expressions then the directive does nothing. Otherwise each expression
7576 is evaluated in turn and placed in the next two bytes of the current output
7577 section, using the endian model of the target. If an expression will not fit
7578 in two bytes, a warning message is displayed and the least significant two
7579 bytes of the expression's value are used. If an expression cannot be evaluated
7580 at assembly time then relocations will be generated in order to compute the
7581 value at link time.
7582
7583 This directive does not apply any alignment before or after inserting the
7584 values. As a result of this, if relocations are generated, they may be
7585 different from those used for inserting values with a guaranteed alignment.
7586
7587 @node 4byte
7588 @section @code{.4byte @var{expression} [, @var{expression}]*}
7589 @cindex @code{4byte} directive
7590 @cindex four-byte integer
7591 @cindex integer, 4-byte
7592
7593 Like the @option{.2byte} directive, except that it inserts unaligned, four byte
7594 long values into the output.
7595
7596 @node 8byte
7597 @section @code{.8byte @var{expression} [, @var{expression}]*}
7598 @cindex @code{8byte} directive
7599 @cindex eight-byte integer
7600 @cindex integer, 8-byte
7601
7602 Like the @option{.2byte} directive, except that it inserts unaligned, eight
7603 byte long bignum values into the output.
7604
7605 @node Deprecated
7606 @section Deprecated Directives
7607
7608 @cindex deprecated directives
7609 @cindex obsolescent directives
7610 One day these directives won't work.
7611 They are included for compatibility with older assemblers.
7612 @table @t
7613 @item .abort
7614 @item .line
7615 @end table
7616
7617 @ifset ELF
7618 @node Object Attributes
7619 @chapter Object Attributes
7620 @cindex object attributes
7621
7622 @command{@value{AS}} assembles source files written for a specific architecture
7623 into object files for that architecture. But not all object files are alike.
7624 Many architectures support incompatible variations. For instance, floating
7625 point arguments might be passed in floating point registers if the object file
7626 requires hardware floating point support---or floating point arguments might be
7627 passed in integer registers if the object file supports processors with no
7628 hardware floating point unit. Or, if two objects are built for different
7629 generations of the same architecture, the combination may require the
7630 newer generation at run-time.
7631
7632 This information is useful during and after linking. At link time,
7633 @command{@value{LD}} can warn about incompatible object files. After link
7634 time, tools like @command{gdb} can use it to process the linked file
7635 correctly.
7636
7637 Compatibility information is recorded as a series of object attributes. Each
7638 attribute has a @dfn{vendor}, @dfn{tag}, and @dfn{value}. The vendor is a
7639 string, and indicates who sets the meaning of the tag. The tag is an integer,
7640 and indicates what property the attribute describes. The value may be a string
7641 or an integer, and indicates how the property affects this object. Missing
7642 attributes are the same as attributes with a zero value or empty string value.
7643
7644 Object attributes were developed as part of the ABI for the ARM Architecture.
7645 The file format is documented in @cite{ELF for the ARM Architecture}.
7646
7647 @menu
7648 * GNU Object Attributes:: @sc{gnu} Object Attributes
7649 * Defining New Object Attributes:: Defining New Object Attributes
7650 @end menu
7651
7652 @node GNU Object Attributes
7653 @section @sc{gnu} Object Attributes
7654
7655 The @code{.gnu_attribute} directive records an object attribute
7656 with vendor @samp{gnu}.
7657
7658 Except for @samp{Tag_compatibility}, which has both an integer and a string for
7659 its value, @sc{gnu} attributes have a string value if the tag number is odd and
7660 an integer value if the tag number is even. The second bit (@code{@var{tag} &
7661 2} is set for architecture-independent attributes and clear for
7662 architecture-dependent ones.
7663
7664 @subsection Common @sc{gnu} attributes
7665
7666 These attributes are valid on all architectures.
7667
7668 @table @r
7669 @item Tag_compatibility (32)
7670 The compatibility attribute takes an integer flag value and a vendor name. If
7671 the flag value is 0, the file is compatible with other toolchains. If it is 1,
7672 then the file is only compatible with the named toolchain. If it is greater
7673 than 1, the file can only be processed by other toolchains under some private
7674 arrangement indicated by the flag value and the vendor name.
7675 @end table
7676
7677 @subsection M680x0 Attributes
7678
7679 @table @r
7680 @item Tag_GNU_M68K_ABI_FP (4)
7681 The floating-point ABI used by this object file. The value will be:
7682
7683 @itemize @bullet
7684 @item
7685 0 for files not affected by the floating-point ABI.
7686 @item
7687 1 for files using double-precision hardware floating-point ABI.
7688 @item
7689 2 for files using the software floating-point ABI.
7690 @end itemize
7691 @end table
7692
7693 @subsection MIPS Attributes
7694
7695 @table @r
7696 @item Tag_GNU_MIPS_ABI_FP (4)
7697 The floating-point ABI used by this object file. The value will be:
7698
7699 @itemize @bullet
7700 @item
7701 0 for files not affected by the floating-point ABI.
7702 @item
7703 1 for files using the hardware floating-point ABI with a standard
7704 double-precision FPU.
7705 @item
7706 2 for files using the hardware floating-point ABI with a single-precision FPU.
7707 @item
7708 3 for files using the software floating-point ABI.
7709 @item
7710 4 for files using the deprecated hardware floating-point ABI which used 64-bit
7711 floating-point registers, 32-bit general-purpose registers and increased the
7712 number of callee-saved floating-point registers.
7713 @item
7714 5 for files using the hardware floating-point ABI with a double-precision FPU
7715 with either 32-bit or 64-bit floating-point registers and 32-bit
7716 general-purpose registers.
7717 @item
7718 6 for files using the hardware floating-point ABI with 64-bit floating-point
7719 registers and 32-bit general-purpose registers.
7720 @item
7721 7 for files using the hardware floating-point ABI with 64-bit floating-point
7722 registers, 32-bit general-purpose registers and a rule that forbids the
7723 direct use of odd-numbered single-precision floating-point registers.
7724 @end itemize
7725 @end table
7726
7727 @subsection PowerPC Attributes
7728
7729 @table @r
7730 @item Tag_GNU_Power_ABI_FP (4)
7731 The floating-point ABI used by this object file. The value will be:
7732
7733 @itemize @bullet
7734 @item
7735 0 for files not affected by the floating-point ABI.
7736 @item
7737 1 for files using double-precision hardware floating-point ABI.
7738 @item
7739 2 for files using the software floating-point ABI.
7740 @item
7741 3 for files using single-precision hardware floating-point ABI.
7742 @end itemize
7743
7744 @item Tag_GNU_Power_ABI_Vector (8)
7745 The vector ABI used by this object file. The value will be:
7746
7747 @itemize @bullet
7748 @item
7749 0 for files not affected by the vector ABI.
7750 @item
7751 1 for files using general purpose registers to pass vectors.
7752 @item
7753 2 for files using AltiVec registers to pass vectors.
7754 @item
7755 3 for files using SPE registers to pass vectors.
7756 @end itemize
7757 @end table
7758
7759 @subsection IBM z Systems Attributes
7760
7761 @table @r
7762 @item Tag_GNU_S390_ABI_Vector (8)
7763 The vector ABI used by this object file. The value will be:
7764
7765 @itemize @bullet
7766 @item
7767 0 for files not affected by the vector ABI.
7768 @item
7769 1 for files using software vector ABI.
7770 @item
7771 2 for files using hardware vector ABI.
7772 @end itemize
7773 @end table
7774
7775 @subsection MSP430 Attributes
7776
7777 @table @r
7778 @item Tag_GNU_MSP430_Data_Region (4)
7779 The data region used by this object file. The value will be:
7780
7781 @itemize @bullet
7782 @item
7783 0 for files not using the large memory model.
7784 @item
7785 1 for files which have been compiled with the condition that all
7786 data is in the lower memory region, i.e. below address 0x10000.
7787 @item
7788 2 for files which allow data to be placed in the full 20-bit memory range.
7789 @end itemize
7790 @end table
7791
7792 @node Defining New Object Attributes
7793 @section Defining New Object Attributes
7794
7795 If you want to define a new @sc{gnu} object attribute, here are the places you
7796 will need to modify. New attributes should be discussed on the @samp{binutils}
7797 mailing list.
7798
7799 @itemize @bullet
7800 @item
7801 This manual, which is the official register of attributes.
7802 @item
7803 The header for your architecture @file{include/elf}, to define the tag.
7804 @item
7805 The @file{bfd} support file for your architecture, to merge the attribute
7806 and issue any appropriate link warnings.
7807 @item
7808 Test cases in @file{ld/testsuite} for merging and link warnings.
7809 @item
7810 @file{binutils/readelf.c} to display your attribute.
7811 @item
7812 GCC, if you want the compiler to mark the attribute automatically.
7813 @end itemize
7814
7815 @end ifset
7816
7817 @ifset GENERIC
7818 @node Machine Dependencies
7819 @chapter Machine Dependent Features
7820
7821 @cindex machine dependencies
7822 The machine instruction sets are (almost by definition) different on
7823 each machine where @command{@value{AS}} runs. Floating point representations
7824 vary as well, and @command{@value{AS}} often supports a few additional
7825 directives or command-line options for compatibility with other
7826 assemblers on a particular platform. Finally, some versions of
7827 @command{@value{AS}} support special pseudo-instructions for branch
7828 optimization.
7829
7830 This chapter discusses most of these differences, though it does not
7831 include details on any machine's instruction set. For details on that
7832 subject, see the hardware manufacturer's manual.
7833
7834 @menu
7835 @ifset AARCH64
7836 * AArch64-Dependent:: AArch64 Dependent Features
7837 @end ifset
7838 @ifset ALPHA
7839 * Alpha-Dependent:: Alpha Dependent Features
7840 @end ifset
7841 @ifset ARC
7842 * ARC-Dependent:: ARC Dependent Features
7843 @end ifset
7844 @ifset ARM
7845 * ARM-Dependent:: ARM Dependent Features
7846 @end ifset
7847 @ifset AVR
7848 * AVR-Dependent:: AVR Dependent Features
7849 @end ifset
7850 @ifset Blackfin
7851 * Blackfin-Dependent:: Blackfin Dependent Features
7852 @end ifset
7853 @ifset BPF
7854 * BPF-Dependent:: BPF Dependent Features
7855 @end ifset
7856 @ifset CR16
7857 * CR16-Dependent:: CR16 Dependent Features
7858 @end ifset
7859 @ifset CRIS
7860 * CRIS-Dependent:: CRIS Dependent Features
7861 @end ifset
7862 @ifset CSKY
7863 * C-SKY-Dependent:: C-SKY Dependent Features
7864 @end ifset
7865 @ifset D10V
7866 * D10V-Dependent:: D10V Dependent Features
7867 @end ifset
7868 @ifset D30V
7869 * D30V-Dependent:: D30V Dependent Features
7870 @end ifset
7871 @ifset EPIPHANY
7872 * Epiphany-Dependent:: EPIPHANY Dependent Features
7873 @end ifset
7874 @ifset H8/300
7875 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7876 @end ifset
7877 @ifset HPPA
7878 * HPPA-Dependent:: HPPA Dependent Features
7879 @end ifset
7880 @ifset I80386
7881 * i386-Dependent:: Intel 80386 and AMD x86-64 Dependent Features
7882 @end ifset
7883 @ifset IA64
7884 * IA-64-Dependent:: Intel IA-64 Dependent Features
7885 @end ifset
7886 @ifset IP2K
7887 * IP2K-Dependent:: IP2K Dependent Features
7888 @end ifset
7889 @ifset LOONGARCH
7890 * LoongArch-Dependent:: LoongArch Dependent Features
7891 @end ifset
7892 @ifset LM32
7893 * LM32-Dependent:: LM32 Dependent Features
7894 @end ifset
7895 @ifset M32C
7896 * M32C-Dependent:: M32C Dependent Features
7897 @end ifset
7898 @ifset M32R
7899 * M32R-Dependent:: M32R Dependent Features
7900 @end ifset
7901 @ifset M680X0
7902 * M68K-Dependent:: M680x0 Dependent Features
7903 @end ifset
7904 @ifset M68HC11
7905 * M68HC11-Dependent:: M68HC11 and 68HC12 Dependent Features
7906 @end ifset
7907 @ifset S12Z
7908 * S12Z-Dependent:: S12Z Dependent Features
7909 @end ifset
7910 @ifset METAG
7911 * Meta-Dependent :: Meta Dependent Features
7912 @end ifset
7913 @ifset MICROBLAZE
7914 * MicroBlaze-Dependent:: MICROBLAZE Dependent Features
7915 @end ifset
7916 @ifset MIPS
7917 * MIPS-Dependent:: MIPS Dependent Features
7918 @end ifset
7919 @ifset MMIX
7920 * MMIX-Dependent:: MMIX Dependent Features
7921 @end ifset
7922 @ifset MSP430
7923 * MSP430-Dependent:: MSP430 Dependent Features
7924 @end ifset
7925 @ifset NDS32
7926 * NDS32-Dependent:: Andes NDS32 Dependent Features
7927 @end ifset
7928 @ifset NIOSII
7929 * NiosII-Dependent:: Altera Nios II Dependent Features
7930 @end ifset
7931 @ifset NS32K
7932 * NS32K-Dependent:: NS32K Dependent Features
7933 @end ifset
7934 @ifset OPENRISC
7935 * OpenRISC-Dependent:: OpenRISC 1000 Features
7936 @end ifset
7937 @ifset PDP11
7938 * PDP-11-Dependent:: PDP-11 Dependent Features
7939 @end ifset
7940 @ifset PJ
7941 * PJ-Dependent:: picoJava Dependent Features
7942 @end ifset
7943 @ifset PPC
7944 * PPC-Dependent:: PowerPC Dependent Features
7945 @end ifset
7946 @ifset PRU
7947 * PRU-Dependent:: PRU Dependent Features
7948 @end ifset
7949 @ifset RISCV
7950 * RISC-V-Dependent:: RISC-V Dependent Features
7951 @end ifset
7952 @ifset RL78
7953 * RL78-Dependent:: RL78 Dependent Features
7954 @end ifset
7955 @ifset RX
7956 * RX-Dependent:: RX Dependent Features
7957 @end ifset
7958 @ifset S390
7959 * S/390-Dependent:: IBM S/390 Dependent Features
7960 @end ifset
7961 @ifset SCORE
7962 * SCORE-Dependent:: SCORE Dependent Features
7963 @end ifset
7964 @ifset SH
7965 * SH-Dependent:: Renesas / SuperH SH Dependent Features
7966 @end ifset
7967 @ifset SPARC
7968 * Sparc-Dependent:: SPARC Dependent Features
7969 @end ifset
7970 @ifset TIC54X
7971 * TIC54X-Dependent:: TI TMS320C54x Dependent Features
7972 @end ifset
7973 @ifset TIC6X
7974 * TIC6X-Dependent :: TI TMS320C6x Dependent Features
7975 @end ifset
7976 @ifset TILEGX
7977 * TILE-Gx-Dependent :: Tilera TILE-Gx Dependent Features
7978 @end ifset
7979 @ifset TILEPRO
7980 * TILEPro-Dependent :: Tilera TILEPro Dependent Features
7981 @end ifset
7982 @ifset V850
7983 * V850-Dependent:: V850 Dependent Features
7984 @end ifset
7985 @ifset VAX
7986 * Vax-Dependent:: VAX Dependent Features
7987 @end ifset
7988 @ifset VISIUM
7989 * Visium-Dependent:: Visium Dependent Features
7990 @end ifset
7991 @ifset WASM32
7992 * WebAssembly-Dependent:: WebAssembly Dependent Features
7993 @end ifset
7994 @ifset XGATE
7995 * XGATE-Dependent:: XGATE Dependent Features
7996 @end ifset
7997 @ifset XSTORMY16
7998 * XSTORMY16-Dependent:: XStormy16 Dependent Features
7999 @end ifset
8000 @ifset XTENSA
8001 * Xtensa-Dependent:: Xtensa Dependent Features
8002 @end ifset
8003 @ifset Z80
8004 * Z80-Dependent:: Z80 Dependent Features
8005 @end ifset
8006 @ifset Z8000
8007 * Z8000-Dependent:: Z8000 Dependent Features
8008 @end ifset
8009 @end menu
8010
8011 @lowersections
8012 @end ifset
8013
8014 @c The following major nodes are *sections* in the GENERIC version, *chapters*
8015 @c in single-cpu versions. This is mainly achieved by @lowersections. There is a
8016 @c peculiarity: to preserve cross-references, there must be a node called
8017 @c "Machine Dependencies". Hence the conditional nodenames in each
8018 @c major node below. Node defaulting in makeinfo requires adjacency of
8019 @c node and sectioning commands; hence the repetition of @chapter BLAH
8020 @c in both conditional blocks.
8021
8022 @ifset AARCH64
8023 @include c-aarch64.texi
8024 @end ifset
8025
8026 @ifset ALPHA
8027 @include c-alpha.texi
8028 @end ifset
8029
8030 @ifset ARC
8031 @include c-arc.texi
8032 @end ifset
8033
8034 @ifset ARM
8035 @include c-arm.texi
8036 @end ifset
8037
8038 @ifset AVR
8039 @include c-avr.texi
8040 @end ifset
8041
8042 @ifset Blackfin
8043 @include c-bfin.texi
8044 @end ifset
8045
8046 @ifset BPF
8047 @include c-bpf.texi
8048 @end ifset
8049
8050 @ifset CR16
8051 @include c-cr16.texi
8052 @end ifset
8053
8054 @ifset CRIS
8055 @include c-cris.texi
8056 @end ifset
8057
8058 @ifset CSKY
8059 @include c-csky.texi
8060 @end ifset
8061
8062 @ifset Renesas-all
8063 @ifclear GENERIC
8064 @node Machine Dependencies
8065 @chapter Machine Dependent Features
8066
8067 The machine instruction sets are different on each Renesas chip family,
8068 and there are also some syntax differences among the families. This
8069 chapter describes the specific @command{@value{AS}} features for each
8070 family.
8071
8072 @menu
8073 * H8/300-Dependent:: Renesas H8/300 Dependent Features
8074 * SH-Dependent:: Renesas SH Dependent Features
8075 @end menu
8076 @lowersections
8077 @end ifclear
8078 @end ifset
8079
8080 @ifset D10V
8081 @include c-d10v.texi
8082 @end ifset
8083
8084 @ifset D30V
8085 @include c-d30v.texi
8086 @end ifset
8087
8088 @ifset EPIPHANY
8089 @include c-epiphany.texi
8090 @end ifset
8091
8092 @ifset H8/300
8093 @include c-h8300.texi
8094 @end ifset
8095
8096 @ifset HPPA
8097 @include c-hppa.texi
8098 @end ifset
8099
8100 @ifset I80386
8101 @include c-i386.texi
8102 @end ifset
8103
8104 @ifset IA64
8105 @include c-ia64.texi
8106 @end ifset
8107
8108 @ifset IP2K
8109 @include c-ip2k.texi
8110 @end ifset
8111
8112 @ifset LM32
8113 @include c-lm32.texi
8114 @end ifset
8115
8116 @ifset LOONGARCH
8117 @include c-loongarch.texi
8118 @end ifset
8119
8120 @ifset M32C
8121 @include c-m32c.texi
8122 @end ifset
8123
8124 @ifset M32R
8125 @include c-m32r.texi
8126 @end ifset
8127
8128 @ifset M680X0
8129 @include c-m68k.texi
8130 @end ifset
8131
8132 @ifset M68HC11
8133 @include c-m68hc11.texi
8134 @end ifset
8135
8136 @ifset S12Z
8137 @include c-s12z.texi
8138 @end ifset
8139
8140 @ifset METAG
8141 @include c-metag.texi
8142 @end ifset
8143
8144 @ifset MICROBLAZE
8145 @include c-microblaze.texi
8146 @end ifset
8147
8148 @ifset MIPS
8149 @include c-mips.texi
8150 @end ifset
8151
8152 @ifset MMIX
8153 @include c-mmix.texi
8154 @end ifset
8155
8156 @ifset MSP430
8157 @include c-msp430.texi
8158 @end ifset
8159
8160 @ifset NDS32
8161 @include c-nds32.texi
8162 @end ifset
8163
8164 @ifset NIOSII
8165 @include c-nios2.texi
8166 @end ifset
8167
8168 @ifset NS32K
8169 @include c-ns32k.texi
8170 @end ifset
8171
8172 @ifset OPENRISC
8173 @include c-or1k.texi
8174 @end ifset
8175
8176 @ifset PDP11
8177 @include c-pdp11.texi
8178 @end ifset
8179
8180 @ifset PJ
8181 @include c-pj.texi
8182 @end ifset
8183
8184 @ifset PPC
8185 @include c-ppc.texi
8186 @end ifset
8187
8188 @ifset PRU
8189 @include c-pru.texi
8190 @end ifset
8191
8192 @ifset RISCV
8193 @include c-riscv.texi
8194 @end ifset
8195
8196 @ifset RL78
8197 @include c-rl78.texi
8198 @end ifset
8199
8200 @ifset RX
8201 @include c-rx.texi
8202 @end ifset
8203
8204 @ifset S390
8205 @include c-s390.texi
8206 @end ifset
8207
8208 @ifset SCORE
8209 @include c-score.texi
8210 @end ifset
8211
8212 @ifset SH
8213 @include c-sh.texi
8214 @end ifset
8215
8216 @ifset SPARC
8217 @include c-sparc.texi
8218 @end ifset
8219
8220 @ifset TIC54X
8221 @include c-tic54x.texi
8222 @end ifset
8223
8224 @ifset TIC6X
8225 @include c-tic6x.texi
8226 @end ifset
8227
8228 @ifset TILEGX
8229 @include c-tilegx.texi
8230 @end ifset
8231
8232 @ifset TILEPRO
8233 @include c-tilepro.texi
8234 @end ifset
8235
8236 @ifset V850
8237 @include c-v850.texi
8238 @end ifset
8239
8240 @ifset VAX
8241 @include c-vax.texi
8242 @end ifset
8243
8244 @ifset VISIUM
8245 @include c-visium.texi
8246 @end ifset
8247
8248 @ifset WASM32
8249 @include c-wasm32.texi
8250 @end ifset
8251
8252 @ifset XGATE
8253 @include c-xgate.texi
8254 @end ifset
8255
8256 @ifset XSTORMY16
8257 @include c-xstormy16.texi
8258 @end ifset
8259
8260 @ifset XTENSA
8261 @include c-xtensa.texi
8262 @end ifset
8263
8264 @ifset Z80
8265 @include c-z80.texi
8266 @end ifset
8267
8268 @ifset Z8000
8269 @include c-z8k.texi
8270 @end ifset
8271
8272 @ifset GENERIC
8273 @c reverse effect of @down at top of generic Machine-Dep chapter
8274 @raisesections
8275 @end ifset
8276
8277 @node Reporting Bugs
8278 @chapter Reporting Bugs
8279 @cindex bugs in assembler
8280 @cindex reporting bugs in assembler
8281
8282 Your bug reports play an essential role in making @command{@value{AS}} reliable.
8283
8284 Reporting a bug may help you by bringing a solution to your problem, or it may
8285 not. But in any case the principal function of a bug report is to help the
8286 entire community by making the next version of @command{@value{AS}} work better.
8287 Bug reports are your contribution to the maintenance of @command{@value{AS}}.
8288
8289 In order for a bug report to serve its purpose, you must include the
8290 information that enables us to fix the bug.
8291
8292 @menu
8293 * Bug Criteria:: Have you found a bug?
8294 * Bug Reporting:: How to report bugs
8295 @end menu
8296
8297 @node Bug Criteria
8298 @section Have You Found a Bug?
8299 @cindex bug criteria
8300
8301 If you are not sure whether you have found a bug, here are some guidelines:
8302
8303 @itemize @bullet
8304 @cindex fatal signal
8305 @cindex assembler crash
8306 @cindex crash of assembler
8307 @item
8308 If the assembler gets a fatal signal, for any input whatever, that is a
8309 @command{@value{AS}} bug. Reliable assemblers never crash.
8310
8311 @cindex error on valid input
8312 @item
8313 If @command{@value{AS}} produces an error message for valid input, that is a bug.
8314
8315 @cindex invalid input
8316 @item
8317 If @command{@value{AS}} does not produce an error message for invalid input, that
8318 is a bug. However, you should note that your idea of ``invalid input'' might
8319 be our idea of ``an extension'' or ``support for traditional practice''.
8320
8321 @item
8322 If you are an experienced user of assemblers, your suggestions for improvement
8323 of @command{@value{AS}} are welcome in any case.
8324 @end itemize
8325
8326 @node Bug Reporting
8327 @section How to Report Bugs
8328 @cindex bug reports
8329 @cindex assembler bugs, reporting
8330
8331 A number of companies and individuals offer support for @sc{gnu} products. If
8332 you obtained @command{@value{AS}} from a support organization, we recommend you
8333 contact that organization first.
8334
8335 You can find contact information for many support companies and
8336 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
8337 distribution.
8338
8339 @ifset BUGURL
8340 In any event, we also recommend that you send bug reports for @command{@value{AS}}
8341 to @value{BUGURL}.
8342 @end ifset
8343
8344 The fundamental principle of reporting bugs usefully is this:
8345 @strong{report all the facts}. If you are not sure whether to state a
8346 fact or leave it out, state it!
8347
8348 Often people omit facts because they think they know what causes the problem
8349 and assume that some details do not matter. Thus, you might assume that the
8350 name of a symbol you use in an example does not matter. Well, probably it does
8351 not, but one cannot be sure. Perhaps the bug is a stray memory reference which
8352 happens to fetch from the location where that name is stored in memory;
8353 perhaps, if the name were different, the contents of that location would fool
8354 the assembler into doing the right thing despite the bug. Play it safe and
8355 give a specific, complete example. That is the easiest thing for you to do,
8356 and the most helpful.
8357
8358 Keep in mind that the purpose of a bug report is to enable us to fix the bug if
8359 it is new to us. Therefore, always write your bug reports on the assumption
8360 that the bug has not been reported previously.
8361
8362 Sometimes people give a few sketchy facts and ask, ``Does this ring a
8363 bell?'' This cannot help us fix a bug, so it is basically useless. We
8364 respond by asking for enough details to enable us to investigate.
8365 You might as well expedite matters by sending them to begin with.
8366
8367 To enable us to fix the bug, you should include all these things:
8368
8369 @itemize @bullet
8370 @item
8371 The version of @command{@value{AS}}. @command{@value{AS}} announces it if you start
8372 it with the @samp{--version} argument.
8373
8374 Without this, we will not know whether there is any point in looking for
8375 the bug in the current version of @command{@value{AS}}.
8376
8377 @item
8378 Any patches you may have applied to the @command{@value{AS}} source.
8379
8380 @item
8381 The type of machine you are using, and the operating system name and
8382 version number.
8383
8384 @item
8385 What compiler (and its version) was used to compile @command{@value{AS}}---e.g.
8386 ``@code{gcc-2.7}''.
8387
8388 @item
8389 The command arguments you gave the assembler to assemble your example and
8390 observe the bug. To guarantee you will not omit something important, list them
8391 all. A copy of the Makefile (or the output from make) is sufficient.
8392
8393 If we were to try to guess the arguments, we would probably guess wrong
8394 and then we might not encounter the bug.
8395
8396 @item
8397 A complete input file that will reproduce the bug. If the bug is observed when
8398 the assembler is invoked via a compiler, send the assembler source, not the
8399 high level language source. Most compilers will produce the assembler source
8400 when run with the @samp{-S} option. If you are using @code{@value{GCC}}, use
8401 the options @samp{-v --save-temps}; this will save the assembler source in a
8402 file with an extension of @file{.s}, and also show you exactly how
8403 @command{@value{AS}} is being run.
8404
8405 @item
8406 A description of what behavior you observe that you believe is
8407 incorrect. For example, ``It gets a fatal signal.''
8408
8409 Of course, if the bug is that @command{@value{AS}} gets a fatal signal, then we
8410 will certainly notice it. But if the bug is incorrect output, we might not
8411 notice unless it is glaringly wrong. You might as well not give us a chance to
8412 make a mistake.
8413
8414 Even if the problem you experience is a fatal signal, you should still say so
8415 explicitly. Suppose something strange is going on, such as, your copy of
8416 @command{@value{AS}} is out of sync, or you have encountered a bug in the C
8417 library on your system. (This has happened!) Your copy might crash and ours
8418 would not. If you told us to expect a crash, then when ours fails to crash, we
8419 would know that the bug was not happening for us. If you had not told us to
8420 expect a crash, then we would not be able to draw any conclusion from our
8421 observations.
8422
8423 @item
8424 If you wish to suggest changes to the @command{@value{AS}} source, send us context
8425 diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or @samp{-p}
8426 option. Always send diffs from the old file to the new file. If you even
8427 discuss something in the @command{@value{AS}} source, refer to it by context, not
8428 by line number.
8429
8430 The line numbers in our development sources will not match those in your
8431 sources. Your line numbers would convey no useful information to us.
8432 @end itemize
8433
8434 Here are some things that are not necessary:
8435
8436 @itemize @bullet
8437 @item
8438 A description of the envelope of the bug.
8439
8440 Often people who encounter a bug spend a lot of time investigating
8441 which changes to the input file will make the bug go away and which
8442 changes will not affect it.
8443
8444 This is often time consuming and not very useful, because the way we
8445 will find the bug is by running a single example under the debugger
8446 with breakpoints, not by pure deduction from a series of examples.
8447 We recommend that you save your time for something else.
8448
8449 Of course, if you can find a simpler example to report @emph{instead}
8450 of the original one, that is a convenience for us. Errors in the
8451 output will be easier to spot, running under the debugger will take
8452 less time, and so on.
8453
8454 However, simplification is not vital; if you do not want to do this,
8455 report the bug anyway and send us the entire test case you used.
8456
8457 @item
8458 A patch for the bug.
8459
8460 A patch for the bug does help us if it is a good one. But do not omit
8461 the necessary information, such as the test case, on the assumption that
8462 a patch is all we need. We might see problems with your patch and decide
8463 to fix the problem another way, or we might not understand it at all.
8464
8465 Sometimes with a program as complicated as @command{@value{AS}} it is very hard to
8466 construct an example that will make the program follow a certain path through
8467 the code. If you do not send us the example, we will not be able to construct
8468 one, so we will not be able to verify that the bug is fixed.
8469
8470 And if we cannot understand what bug you are trying to fix, or why your
8471 patch should be an improvement, we will not install it. A test case will
8472 help us to understand.
8473
8474 @item
8475 A guess about what the bug is or what it depends on.
8476
8477 Such guesses are usually wrong. Even we cannot guess right about such
8478 things without first using the debugger to find the facts.
8479 @end itemize
8480
8481 @node Acknowledgements
8482 @chapter Acknowledgements
8483
8484 If you have contributed to GAS and your name isn't listed here,
8485 it is not meant as a slight. We just don't know about it. Send mail to the
8486 maintainer, and we'll correct the situation. Currently
8487 @c (October 2012),
8488 the maintainer is Nick Clifton (email address @code{nickc@@redhat.com}).
8489
8490 Dean Elsner wrote the original @sc{gnu} assembler for the VAX.@footnote{Any
8491 more details?}
8492
8493 Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug
8494 information and the 68k series machines, most of the preprocessing pass, and
8495 extensive changes in @file{messages.c}, @file{input-file.c}, @file{write.c}.
8496
8497 K. Richard Pixley maintained GAS for a while, adding various enhancements and
8498 many bug fixes, including merging support for several processors, breaking GAS
8499 up to handle multiple object file format back ends (including heavy rewrite,
8500 testing, an integration of the coff and b.out back ends), adding configuration
8501 including heavy testing and verification of cross assemblers and file splits
8502 and renaming, converted GAS to strictly ANSI C including full prototypes, added
8503 support for m680[34]0 and cpu32, did considerable work on i960 including a COFF
8504 port (including considerable amounts of reverse engineering), a SPARC opcode
8505 file rewrite, DECstation, rs6000, and hp300hpux host ports, updated ``know''
8506 assertions and made them work, much other reorganization, cleanup, and lint.
8507
8508 Ken Raeburn wrote the high-level BFD interface code to replace most of the code
8509 in format-specific I/O modules.
8510
8511 The original VMS support was contributed by David L. Kashtan. Eric Youngdale
8512 has done much work with it since.
8513
8514 The Intel 80386 machine description was written by Eliot Dresselhaus.
8515
8516 Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
8517
8518 The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
8519 University and Torbjorn Granlund of the Swedish Institute of Computer Science.
8520
8521 Keith Knowles at the Open Software Foundation wrote the original MIPS back end
8522 (@file{tc-mips.c}, @file{tc-mips.h}), and contributed Rose format support
8523 (which hasn't been merged in yet). Ralph Campbell worked with the MIPS code to
8524 support a.out format.
8525
8526 Support for the Zilog Z8k and Renesas H8/300 processors (tc-z8k,
8527 tc-h8300), and IEEE 695 object file format (obj-ieee), was written by
8528 Steve Chamberlain of Cygnus Support. Steve also modified the COFF back end to
8529 use BFD for some low-level operations, for use with the H8/300 and AMD 29k
8530 targets.
8531
8532 John Gilmore built the AMD 29000 support, added @code{.include} support, and
8533 simplified the configuration of which versions accept which directives. He
8534 updated the 68k machine description so that Motorola's opcodes always produced
8535 fixed-size instructions (e.g., @code{jsr}), while synthetic instructions
8536 remained shrinkable (@code{jbsr}). John fixed many bugs, including true tested
8537 cross-compilation support, and one bug in relaxation that took a week and
8538 required the proverbial one-bit fix.
8539
8540 Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the
8541 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO Unix),
8542 added support for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and
8543 PowerPC assembler, and made a few other minor patches.
8544
8545 Steve Chamberlain made GAS able to generate listings.
8546
8547 Hewlett-Packard contributed support for the HP9000/300.
8548
8549 Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM)
8550 along with a fairly extensive HPPA testsuite (for both SOM and ELF object
8551 formats). This work was supported by both the Center for Software Science at
8552 the University of Utah and Cygnus Support.
8553
8554 Support for ELF format files has been worked on by Mark Eichin of Cygnus
8555 Support (original, incomplete implementation for SPARC), Pete Hoogenboom and
8556 Jeff Law at the University of Utah (HPPA mainly), Michael Meissner of the Open
8557 Software Foundation (i386 mainly), and Ken Raeburn of Cygnus Support (sparc,
8558 and some initial 64-bit support).
8559
8560 Linas Vepstas added GAS support for the ESA/390 ``IBM 370'' architecture.
8561
8562 Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
8563 support for openVMS/Alpha.
8564
8565 Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic*
8566 flavors.
8567
8568 David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Tensilica,
8569 Inc.@: added support for Xtensa processors.
8570
8571 Several engineers at Cygnus Support have also provided many small bug fixes and
8572 configuration enhancements.
8573
8574 Jon Beniston added support for the Lattice Mico32 architecture.
8575
8576 Many others have contributed large or small bugfixes and enhancements. If
8577 you have contributed significant work and are not mentioned on this list, and
8578 want to be, let us know. Some of the history has been lost; we are not
8579 intentionally leaving anyone out.
8580
8581 @node GNU Free Documentation License
8582 @appendix GNU Free Documentation License
8583 @include fdl.texi
8584
8585 @node AS Index
8586 @unnumbered AS Index
8587
8588 @printindex cp
8589
8590 @bye
8591 @c Local Variables:
8592 @c fill-column: 79
8593 @c End: