* config/tc-mips.c (mips_set_options): Add ase_mt for MT instructions.
[binutils-gdb.git] / gas / doc / as.texinfo
1 \input texinfo @c -*-Texinfo-*-
2 @c Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 @c 2001, 2002, 2003, 2004, 2005
4 @c Free Software Foundation, Inc.
5 @c UPDATE!! On future updates--
6 @c (1) check for new machine-dep cmdline options in
7 @c md_parse_option definitions in config/tc-*.c
8 @c (2) for platform-specific directives, examine md_pseudo_op
9 @c in config/tc-*.c
10 @c (3) for object-format specific directives, examine obj_pseudo_op
11 @c in config/obj-*.c
12 @c (4) portable directives in potable[] in read.c
13 @c %**start of header
14 @setfilename as.info
15 @c ---config---
16 @macro gcctabopt{body}
17 @code{\body\}
18 @end macro
19 @c defaults, config file may override:
20 @set have-stabs
21 @c ---
22 @c man begin NAME
23 @c ---
24 @include asconfig.texi
25 @include gasver.texi
26 @c ---
27 @c man end
28 @c ---
29 @c common OR combinations of conditions
30 @ifset COFF
31 @set COFF-ELF
32 @end ifset
33 @ifset ELF
34 @set COFF-ELF
35 @end ifset
36 @ifset AOUT
37 @set aout-bout
38 @end ifset
39 @ifset ARM/Thumb
40 @set ARM
41 @end ifset
42 @ifset BOUT
43 @set aout-bout
44 @end ifset
45 @ifset H8/300
46 @set H8
47 @end ifset
48 @ifset SH
49 @set H8
50 @end ifset
51 @ifset HPPA
52 @set abnormal-separator
53 @end ifset
54 @c ------------
55 @ifset GENERIC
56 @settitle Using @value{AS}
57 @end ifset
58 @ifclear GENERIC
59 @settitle Using @value{AS} (@value{TARGET})
60 @end ifclear
61 @setchapternewpage odd
62 @c %**end of header
63
64 @c @smallbook
65 @c @set SMALL
66 @c WARE! Some of the machine-dependent sections contain tables of machine
67 @c instructions. Except in multi-column format, these tables look silly.
68 @c Unfortunately, Texinfo doesn't have a general-purpose multi-col format, so
69 @c the multi-col format is faked within @example sections.
70 @c
71 @c Again unfortunately, the natural size that fits on a page, for these tables,
72 @c is different depending on whether or not smallbook is turned on.
73 @c This matters, because of order: text flow switches columns at each page
74 @c break.
75 @c
76 @c The format faked in this source works reasonably well for smallbook,
77 @c not well for the default large-page format. This manual expects that if you
78 @c turn on @smallbook, you will also uncomment the "@set SMALL" to enable the
79 @c tables in question. You can turn on one without the other at your
80 @c discretion, of course.
81 @ifinfo
82 @set SMALL
83 @c the insn tables look just as silly in info files regardless of smallbook,
84 @c might as well show 'em anyways.
85 @end ifinfo
86
87 @ifinfo
88 @format
89 START-INFO-DIR-ENTRY
90 * As: (as). The GNU assembler.
91 * Gas: (as). The GNU assembler.
92 END-INFO-DIR-ENTRY
93 @end format
94 @end ifinfo
95
96 @finalout
97 @syncodeindex ky cp
98
99 @ifinfo
100 This file documents the GNU Assembler "@value{AS}".
101
102 @c man begin COPYRIGHT
103 Copyright (C) 1991, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001, 2002 Free Software Foundation, Inc.
104
105 Permission is granted to copy, distribute and/or modify this document
106 under the terms of the GNU Free Documentation License, Version 1.1
107 or any later version published by the Free Software Foundation;
108 with no Invariant Sections, with no Front-Cover Texts, and with no
109 Back-Cover Texts. A copy of the license is included in the
110 section entitled ``GNU Free Documentation License''.
111
112 @c man end
113
114 @ignore
115 Permission is granted to process this file through Tex and print the
116 results, provided the printed document carries copying permission
117 notice identical to this one except for the removal of this paragraph
118 (this paragraph not being relevant to the printed manual).
119
120 @end ignore
121 @end ifinfo
122
123 @titlepage
124 @title Using @value{AS}
125 @subtitle The @sc{gnu} Assembler
126 @ifclear GENERIC
127 @subtitle for the @value{TARGET} family
128 @end ifclear
129 @sp 1
130 @subtitle Version @value{VERSION}
131 @sp 1
132 @sp 13
133 The Free Software Foundation Inc. thanks The Nice Computer
134 Company of Australia for loaning Dean Elsner to write the
135 first (Vax) version of @command{as} for Project @sc{gnu}.
136 The proprietors, management and staff of TNCCA thank FSF for
137 distracting the boss while they got some work
138 done.
139 @sp 3
140 @author Dean Elsner, Jay Fenlason & friends
141 @page
142 @tex
143 {\parskip=0pt
144 \hfill {\it Using {\tt @value{AS}}}\par
145 \hfill Edited by Cygnus Support\par
146 }
147 %"boxit" macro for figures:
148 %Modified from Knuth's ``boxit'' macro from TeXbook (answer to exercise 21.3)
149 \gdef\boxit#1#2{\vbox{\hrule\hbox{\vrule\kern3pt
150 \vbox{\parindent=0pt\parskip=0pt\hsize=#1\kern3pt\strut\hfil
151 #2\hfil\strut\kern3pt}\kern3pt\vrule}\hrule}}%box with visible outline
152 \gdef\ibox#1#2{\hbox to #1{#2\hfil}\kern8pt}% invisible box
153 @end tex
154
155 @vskip 0pt plus 1filll
156 Copyright @copyright{} 1991, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001, 2002 Free Software Foundation, Inc.
157
158 Permission is granted to copy, distribute and/or modify this document
159 under the terms of the GNU Free Documentation License, Version 1.1
160 or any later version published by the Free Software Foundation;
161 with no Invariant Sections, with no Front-Cover Texts, and with no
162 Back-Cover Texts. A copy of the license is included in the
163 section entitled ``GNU Free Documentation License''.
164
165 @end titlepage
166
167 @ifnottex
168 @node Top
169 @top Using @value{AS}
170
171 This file is a user guide to the @sc{gnu} assembler @command{@value{AS}} version
172 @value{VERSION}.
173 @ifclear GENERIC
174 This version of the file describes @command{@value{AS}} configured to generate
175 code for @value{TARGET} architectures.
176 @end ifclear
177
178 This document is distributed under the terms of the GNU Free
179 Documentation License. A copy of the license is included in the
180 section entitled ``GNU Free Documentation License''.
181
182 @menu
183 * Overview:: Overview
184 * Invoking:: Command-Line Options
185 * Syntax:: Syntax
186 * Sections:: Sections and Relocation
187 * Symbols:: Symbols
188 * Expressions:: Expressions
189 * Pseudo Ops:: Assembler Directives
190 * Machine Dependencies:: Machine Dependent Features
191 * Reporting Bugs:: Reporting Bugs
192 * Acknowledgements:: Who Did What
193 * GNU Free Documentation License:: GNU Free Documentation License
194 * Index:: Index
195 @end menu
196 @end ifnottex
197
198 @node Overview
199 @chapter Overview
200 @iftex
201 This manual is a user guide to the @sc{gnu} assembler @command{@value{AS}}.
202 @ifclear GENERIC
203 This version of the manual describes @command{@value{AS}} configured to generate
204 code for @value{TARGET} architectures.
205 @end ifclear
206 @end iftex
207
208 @cindex invocation summary
209 @cindex option summary
210 @cindex summary of options
211 Here is a brief summary of how to invoke @command{@value{AS}}. For details,
212 @pxref{Invoking,,Command-Line Options}.
213
214 @c man title AS the portable GNU assembler.
215
216 @ignore
217 @c man begin SEEALSO
218 gcc(1), ld(1), and the Info entries for @file{binutils} and @file{ld}.
219 @c man end
220 @end ignore
221
222 @c We don't use deffn and friends for the following because they seem
223 @c to be limited to one line for the header.
224 @smallexample
225 @c man begin SYNOPSIS
226 @value{AS} [@b{-a}[@b{cdhlns}][=@var{file}]] [@b{--alternate}] [@b{-D}]
227 [@b{--defsym} @var{sym}=@var{val}] [@b{-f}] [@b{-g}] [@b{--gstabs}]
228 [@b{--gstabs+}] [@b{--gdwarf-2}] [@b{--help}] [@b{-I} @var{dir}] [@b{-J}]
229 [@b{-K}] [@b{-L}] [@b{--listing-lhs-width}=@var{NUM}]
230 [@b{--listing-lhs-width2}=@var{NUM}] [@b{--listing-rhs-width}=@var{NUM}]
231 [@b{--listing-cont-lines}=@var{NUM}] [@b{--keep-locals}] [@b{-o}
232 @var{objfile}] [@b{-R}] [@b{--reduce-memory-overheads}] [@b{--statistics}]
233 [@b{-v}] [@b{-version}] [@b{--version}] [@b{-W}] [@b{--warn}]
234 [@b{--fatal-warnings}] [@b{-w}] [@b{-x}] [@b{-Z}] [@b{--target-help}]
235 [@var{target-options}] [@b{--}|@var{files} @dots{}]
236 @c
237 @c Target dependent options are listed below. Keep the list sorted.
238 @c Add an empty line for separation.
239 @ifset ALPHA
240
241 @emph{Target Alpha options:}
242 [@b{-m@var{cpu}}]
243 [@b{-mdebug} | @b{-no-mdebug}]
244 [@b{-relax}] [@b{-g}] [@b{-G@var{size}}]
245 [@b{-F}] [@b{-32addr}]
246 @end ifset
247 @ifset ARC
248
249 @emph{Target ARC options:}
250 [@b{-marc[5|6|7|8]}]
251 [@b{-EB}|@b{-EL}]
252 @end ifset
253 @ifset ARM
254
255 @emph{Target ARM options:}
256 @c Don't document the deprecated options
257 [@b{-mcpu}=@var{processor}[+@var{extension}@dots{}]]
258 [@b{-march}=@var{architecture}[+@var{extension}@dots{}]]
259 [@b{-mfpu}=@var{floating-point-format}]
260 [@b{-mfloat-abi}=@var{abi}]
261 [@b{-meabi}=@var{ver}]
262 [@b{-mthumb}]
263 [@b{-EB}|@b{-EL}]
264 [@b{-mapcs-32}|@b{-mapcs-26}|@b{-mapcs-float}|
265 @b{-mapcs-reentrant}]
266 [@b{-mthumb-interwork}] [@b{-k}]
267 @end ifset
268 @ifset CRIS
269
270 @emph{Target CRIS options:}
271 [@b{--underscore} | @b{--no-underscore}]
272 [@b{--pic}] [@b{-N}]
273 [@b{--emulation=criself} | @b{--emulation=crisaout}]
274 [@b{--march=v0_v10} | @b{--march=v10} | @b{--march=v32} | @b{--march=common_v10_v32}]
275 @c Deprecated -- deliberately not documented.
276 @c [@b{-h}] [@b{-H}]
277 @end ifset
278 @ifset D10V
279
280 @emph{Target D10V options:}
281 [@b{-O}]
282 @end ifset
283 @ifset D30V
284
285 @emph{Target D30V options:}
286 [@b{-O}|@b{-n}|@b{-N}]
287 @end ifset
288 @ifset H8
289 @c Renesas family chips have no machine-dependent assembler options
290 @end ifset
291 @ifset HPPA
292 @c HPPA has no machine-dependent assembler options (yet).
293 @end ifset
294 @ifset I80386
295
296 @emph{Target i386 options:}
297 [@b{--32}|@b{--64}] [@b{-n}]
298 @end ifset
299 @ifset I960
300
301 @emph{Target i960 options:}
302 @c see md_parse_option in tc-i960.c
303 [@b{-ACA}|@b{-ACA_A}|@b{-ACB}|@b{-ACC}|@b{-AKA}|@b{-AKB}|
304 @b{-AKC}|@b{-AMC}]
305 [@b{-b}] [@b{-no-relax}]
306 @end ifset
307 @ifset IA64
308
309 @emph{Target IA-64 options:}
310 [@b{-mconstant-gp}|@b{-mauto-pic}]
311 [@b{-milp32}|@b{-milp64}|@b{-mlp64}|@b{-mp64}]
312 [@b{-mle}|@b{mbe}]
313 [@b{-mtune=itanium1}|@b{-mtune=itanium2}]
314 [@b{-munwind-check=warning}|@b{-munwind-check=error}]
315 [@b{-mhint.b=ok}|@b{-mhint.b=warning}|@b{-mhint.b=error}]
316 [@b{-x}|@b{-xexplicit}] [@b{-xauto}] [@b{-xdebug}]
317 @end ifset
318 @ifset IP2K
319
320 @emph{Target IP2K options:}
321 [@b{-mip2022}|@b{-mip2022ext}]
322 @end ifset
323 @ifset M32C
324
325 @emph{Target M32C options:}
326 [@b{-m32c}|@b{-m16c}]
327 @end ifset
328 @ifset M32R
329
330 @emph{Target M32R options:}
331 [@b{--m32rx}|@b{--[no-]warn-explicit-parallel-conflicts}|
332 @b{--W[n]p}]
333 @end ifset
334 @ifset M680X0
335
336 @emph{Target M680X0 options:}
337 [@b{-l}] [@b{-m68000}|@b{-m68010}|@b{-m68020}|@dots{}]
338 @end ifset
339 @ifset M68HC11
340
341 @emph{Target M68HC11 options:}
342 [@b{-m68hc11}|@b{-m68hc12}|@b{-m68hcs12}]
343 [@b{-mshort}|@b{-mlong}]
344 [@b{-mshort-double}|@b{-mlong-double}]
345 [@b{--force-long-branchs}] [@b{--short-branchs}]
346 [@b{--strict-direct-mode}] [@b{--print-insn-syntax}]
347 [@b{--print-opcodes}] [@b{--generate-example}]
348 @end ifset
349 @ifset MCORE
350
351 @emph{Target MCORE options:}
352 [@b{-jsri2bsr}] [@b{-sifilter}] [@b{-relax}]
353 [@b{-mcpu=[210|340]}]
354 @end ifset
355 @ifset MIPS
356
357 @emph{Target MIPS options:}
358 [@b{-nocpp}] [@b{-EL}] [@b{-EB}] [@b{-O}[@var{optimization level}]]
359 [@b{-g}[@var{debug level}]] [@b{-G} @var{num}] [@b{-KPIC}] [@b{-call_shared}]
360 [@b{-non_shared}] [@b{-xgot}]
361 [@b{-mabi}=@var{ABI}] [@b{-32}] [@b{-n32}] [@b{-64}] [@b{-mfp32}] [@b{-mgp32}]
362 [@b{-march}=@var{CPU}] [@b{-mtune}=@var{CPU}] [@b{-mips1}] [@b{-mips2}]
363 [@b{-mips3}] [@b{-mips4}] [@b{-mips5}] [@b{-mips32}] [@b{-mips32r2}]
364 [@b{-mips64}] [@b{-mips64r2}]
365 [@b{-construct-floats}] [@b{-no-construct-floats}]
366 [@b{-trap}] [@b{-no-break}] [@b{-break}] [@b{-no-trap}]
367 [@b{-mfix7000}] [@b{-mno-fix7000}]
368 [@b{-mips16}] [@b{-no-mips16}]
369 [@b{-mips3d}] [@b{-no-mips3d}]
370 [@b{-mdmx}] [@b{-no-mdmx}]
371 [@b{-mmt}] [@b{-mno-mt}]
372 [@b{-mdebug}] [@b{-no-mdebug}]
373 [@b{-mpdr}] [@b{-mno-pdr}]
374 @end ifset
375 @ifset MMIX
376
377 @emph{Target MMIX options:}
378 [@b{--fixed-special-register-names}] [@b{--globalize-symbols}]
379 [@b{--gnu-syntax}] [@b{--relax}] [@b{--no-predefined-symbols}]
380 [@b{--no-expand}] [@b{--no-merge-gregs}] [@b{-x}]
381 [@b{--linker-allocated-gregs}]
382 @end ifset
383 @ifset PDP11
384
385 @emph{Target PDP11 options:}
386 [@b{-mpic}|@b{-mno-pic}] [@b{-mall}] [@b{-mno-extensions}]
387 [@b{-m}@var{extension}|@b{-mno-}@var{extension}]
388 [@b{-m}@var{cpu}] [@b{-m}@var{machine}]
389 @end ifset
390 @ifset PJ
391
392 @emph{Target picoJava options:}
393 [@b{-mb}|@b{-me}]
394 @end ifset
395 @ifset PPC
396
397 @emph{Target PowerPC options:}
398 [@b{-mpwrx}|@b{-mpwr2}|@b{-mpwr}|@b{-m601}|@b{-mppc}|@b{-mppc32}|@b{-m603}|@b{-m604}|
399 @b{-m403}|@b{-m405}|@b{-mppc64}|@b{-m620}|@b{-mppc64bridge}|@b{-mbooke}|
400 @b{-mbooke32}|@b{-mbooke64}]
401 [@b{-mcom}|@b{-many}|@b{-maltivec}] [@b{-memb}]
402 [@b{-mregnames}|@b{-mno-regnames}]
403 [@b{-mrelocatable}|@b{-mrelocatable-lib}]
404 [@b{-mlittle}|@b{-mlittle-endian}|@b{-mbig}|@b{-mbig-endian}]
405 [@b{-msolaris}|@b{-mno-solaris}]
406 @end ifset
407 @ifset SPARC
408
409 @emph{Target SPARC options:}
410 @c The order here is important. See c-sparc.texi.
411 [@b{-Av6}|@b{-Av7}|@b{-Av8}|@b{-Asparclet}|@b{-Asparclite}
412 @b{-Av8plus}|@b{-Av8plusa}|@b{-Av9}|@b{-Av9a}]
413 [@b{-xarch=v8plus}|@b{-xarch=v8plusa}] [@b{-bump}]
414 [@b{-32}|@b{-64}]
415 @end ifset
416 @ifset TIC54X
417
418 @emph{Target TIC54X options:}
419 [@b{-mcpu=54[123589]}|@b{-mcpu=54[56]lp}] [@b{-mfar-mode}|@b{-mf}]
420 [@b{-merrors-to-file} @var{<filename>}|@b{-me} @var{<filename>}]
421 @end ifset
422 @ifset Z8000
423 @c Z8000 has no machine-dependent assembler options
424 @end ifset
425 @ifset XTENSA
426
427 @emph{Target Xtensa options:}
428 [@b{--[no-]text-section-literals}] [@b{--[no-]absolute-literals}]
429 [@b{--[no-]target-align}] [@b{--[no-]longcalls}]
430 [@b{--[no-]transform}]
431 [@b{--rename-section} @var{oldname}=@var{newname}]
432 @end ifset
433 @c man end
434 @end smallexample
435
436 @c man begin OPTIONS
437
438 @table @gcctabopt
439 @item -a[cdhlmns]
440 Turn on listings, in any of a variety of ways:
441
442 @table @gcctabopt
443 @item -ac
444 omit false conditionals
445
446 @item -ad
447 omit debugging directives
448
449 @item -ah
450 include high-level source
451
452 @item -al
453 include assembly
454
455 @item -am
456 include macro expansions
457
458 @item -an
459 omit forms processing
460
461 @item -as
462 include symbols
463
464 @item =file
465 set the name of the listing file
466 @end table
467
468 You may combine these options; for example, use @samp{-aln} for assembly
469 listing without forms processing. The @samp{=file} option, if used, must be
470 the last one. By itself, @samp{-a} defaults to @samp{-ahls}.
471
472 @item --alternate
473 Begin in alternate macro mode, see @ref{Altmacro,,@code{.altmacro}}.
474
475 @item -D
476 Ignored. This option is accepted for script compatibility with calls to
477 other assemblers.
478
479 @item --defsym @var{sym}=@var{value}
480 Define the symbol @var{sym} to be @var{value} before assembling the input file.
481 @var{value} must be an integer constant. As in C, a leading @samp{0x}
482 indicates a hexadecimal value, and a leading @samp{0} indicates an octal value.
483
484 @item -f
485 ``fast''---skip whitespace and comment preprocessing (assume source is
486 compiler output).
487
488 @item -g
489 @itemx --gen-debug
490 Generate debugging information for each assembler source line using whichever
491 debug format is preferred by the target. This currently means either STABS,
492 ECOFF or DWARF2.
493
494 @item --gstabs
495 Generate stabs debugging information for each assembler line. This
496 may help debugging assembler code, if the debugger can handle it.
497
498 @item --gstabs+
499 Generate stabs debugging information for each assembler line, with GNU
500 extensions that probably only gdb can handle, and that could make other
501 debuggers crash or refuse to read your program. This
502 may help debugging assembler code. Currently the only GNU extension is
503 the location of the current working directory at assembling time.
504
505 @item --gdwarf-2
506 Generate DWARF2 debugging information for each assembler line. This
507 may help debugging assembler code, if the debugger can handle it. Note---this
508 option is only supported by some targets, not all of them.
509
510 @item --help
511 Print a summary of the command line options and exit.
512
513 @item --target-help
514 Print a summary of all target specific options and exit.
515
516 @item -I @var{dir}
517 Add directory @var{dir} to the search list for @code{.include} directives.
518
519 @item -J
520 Don't warn about signed overflow.
521
522 @item -K
523 @ifclear DIFF-TBL-KLUGE
524 This option is accepted but has no effect on the @value{TARGET} family.
525 @end ifclear
526 @ifset DIFF-TBL-KLUGE
527 Issue warnings when difference tables altered for long displacements.
528 @end ifset
529
530 @item -L
531 @itemx --keep-locals
532 Keep (in the symbol table) local symbols. On traditional a.out systems
533 these start with @samp{L}, but different systems have different local
534 label prefixes.
535
536 @item --listing-lhs-width=@var{number}
537 Set the maximum width, in words, of the output data column for an assembler
538 listing to @var{number}.
539
540 @item --listing-lhs-width2=@var{number}
541 Set the maximum width, in words, of the output data column for continuation
542 lines in an assembler listing to @var{number}.
543
544 @item --listing-rhs-width=@var{number}
545 Set the maximum width of an input source line, as displayed in a listing, to
546 @var{number} bytes.
547
548 @item --listing-cont-lines=@var{number}
549 Set the maximum number of lines printed in a listing for a single line of input
550 to @var{number} + 1.
551
552 @item -o @var{objfile}
553 Name the object-file output from @command{@value{AS}} @var{objfile}.
554
555 @item -R
556 Fold the data section into the text section.
557
558 @kindex --hash-size=@var{number}
559 Set the default size of GAS's hash tables to a prime number close to
560 @var{number}. Increasing this value can reduce the length of time it takes the
561 assembler to perform its tasks, at the expense of increasing the assembler's
562 memory requirements. Similarly reducing this value can reduce the memory
563 requirements at the expense of speed.
564
565 @item --reduce-memory-overheads
566 This option reduces GAS's memory requirements, at the expense of making the
567 assembly processes slower. Currently this switch is a synonym for
568 @samp{--hash-size=4051}, but in the future it may have other effects as well.
569
570 @item --statistics
571 Print the maximum space (in bytes) and total time (in seconds) used by
572 assembly.
573
574 @item --strip-local-absolute
575 Remove local absolute symbols from the outgoing symbol table.
576
577 @item -v
578 @itemx -version
579 Print the @command{as} version.
580
581 @item --version
582 Print the @command{as} version and exit.
583
584 @item -W
585 @itemx --no-warn
586 Suppress warning messages.
587
588 @item --fatal-warnings
589 Treat warnings as errors.
590
591 @item --warn
592 Don't suppress warning messages or treat them as errors.
593
594 @item -w
595 Ignored.
596
597 @item -x
598 Ignored.
599
600 @item -Z
601 Generate an object file even after errors.
602
603 @item -- | @var{files} @dots{}
604 Standard input, or source files to assemble.
605
606 @end table
607
608 @ifset ARC
609 The following options are available when @value{AS} is configured for
610 an ARC processor.
611
612 @table @gcctabopt
613 @item -marc[5|6|7|8]
614 This option selects the core processor variant.
615 @item -EB | -EL
616 Select either big-endian (-EB) or little-endian (-EL) output.
617 @end table
618 @end ifset
619
620 @ifset ARM
621 The following options are available when @value{AS} is configured for the ARM
622 processor family.
623
624 @table @gcctabopt
625 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
626 Specify which ARM processor variant is the target.
627 @item -march=@var{architecture}[+@var{extension}@dots{}]
628 Specify which ARM architecture variant is used by the target.
629 @item -mfpu=@var{floating-point-format}
630 Select which Floating Point architecture is the target.
631 @item -mfloat-abi=@var{abi}
632 Select which floating point ABI is in use.
633 @item -mthumb
634 Enable Thumb only instruction decoding.
635 @item -mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
636 Select which procedure calling convention is in use.
637 @item -EB | -EL
638 Select either big-endian (-EB) or little-endian (-EL) output.
639 @item -mthumb-interwork
640 Specify that the code has been generated with interworking between Thumb and
641 ARM code in mind.
642 @item -k
643 Specify that PIC code has been generated.
644 @end table
645 @end ifset
646
647 @ifset CRIS
648 See the info pages for documentation of the CRIS-specific options.
649 @end ifset
650
651 @ifset D10V
652 The following options are available when @value{AS} is configured for
653 a D10V processor.
654 @table @gcctabopt
655 @cindex D10V optimization
656 @cindex optimization, D10V
657 @item -O
658 Optimize output by parallelizing instructions.
659 @end table
660 @end ifset
661
662 @ifset D30V
663 The following options are available when @value{AS} is configured for a D30V
664 processor.
665 @table @gcctabopt
666 @cindex D30V optimization
667 @cindex optimization, D30V
668 @item -O
669 Optimize output by parallelizing instructions.
670
671 @cindex D30V nops
672 @item -n
673 Warn when nops are generated.
674
675 @cindex D30V nops after 32-bit multiply
676 @item -N
677 Warn when a nop after a 32-bit multiply instruction is generated.
678 @end table
679 @end ifset
680
681 @ifset I960
682 The following options are available when @value{AS} is configured for the
683 Intel 80960 processor.
684
685 @table @gcctabopt
686 @item -ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
687 Specify which variant of the 960 architecture is the target.
688
689 @item -b
690 Add code to collect statistics about branches taken.
691
692 @item -no-relax
693 Do not alter compare-and-branch instructions for long displacements;
694 error if necessary.
695
696 @end table
697 @end ifset
698
699 @ifset IP2K
700 The following options are available when @value{AS} is configured for the
701 Ubicom IP2K series.
702
703 @table @gcctabopt
704
705 @item -mip2022ext
706 Specifies that the extended IP2022 instructions are allowed.
707
708 @item -mip2022
709 Restores the default behaviour, which restricts the permitted instructions to
710 just the basic IP2022 ones.
711
712 @end table
713 @end ifset
714
715 @ifset M32C
716 The following options are available when @value{AS} is configured for the
717 Renesas M32C and M16C processors.
718
719 @table @gcctabopt
720
721 @item -m32c
722 Assemble M32C instructions.
723
724 @item -m16c
725 Assemble M16C instructions (the default).
726
727 @end table
728 @end ifset
729
730 @ifset M32R
731 The following options are available when @value{AS} is configured for the
732 Renesas M32R (formerly Mitsubishi M32R) series.
733
734 @table @gcctabopt
735
736 @item --m32rx
737 Specify which processor in the M32R family is the target. The default
738 is normally the M32R, but this option changes it to the M32RX.
739
740 @item --warn-explicit-parallel-conflicts or --Wp
741 Produce warning messages when questionable parallel constructs are
742 encountered.
743
744 @item --no-warn-explicit-parallel-conflicts or --Wnp
745 Do not produce warning messages when questionable parallel constructs are
746 encountered.
747
748 @end table
749 @end ifset
750
751 @ifset M680X0
752 The following options are available when @value{AS} is configured for the
753 Motorola 68000 series.
754
755 @table @gcctabopt
756
757 @item -l
758 Shorten references to undefined symbols, to one word instead of two.
759
760 @item -m68000 | -m68008 | -m68010 | -m68020 | -m68030
761 @itemx | -m68040 | -m68060 | -m68302 | -m68331 | -m68332
762 @itemx | -m68333 | -m68340 | -mcpu32 | -m5200
763 Specify what processor in the 68000 family is the target. The default
764 is normally the 68020, but this can be changed at configuration time.
765
766 @item -m68881 | -m68882 | -mno-68881 | -mno-68882
767 The target machine does (or does not) have a floating-point coprocessor.
768 The default is to assume a coprocessor for 68020, 68030, and cpu32. Although
769 the basic 68000 is not compatible with the 68881, a combination of the
770 two can be specified, since it's possible to do emulation of the
771 coprocessor instructions with the main processor.
772
773 @item -m68851 | -mno-68851
774 The target machine does (or does not) have a memory-management
775 unit coprocessor. The default is to assume an MMU for 68020 and up.
776
777 @end table
778 @end ifset
779
780 @ifset PDP11
781
782 For details about the PDP-11 machine dependent features options,
783 see @ref{PDP-11-Options}.
784
785 @table @gcctabopt
786 @item -mpic | -mno-pic
787 Generate position-independent (or position-dependent) code. The
788 default is @option{-mpic}.
789
790 @item -mall
791 @itemx -mall-extensions
792 Enable all instruction set extensions. This is the default.
793
794 @item -mno-extensions
795 Disable all instruction set extensions.
796
797 @item -m@var{extension} | -mno-@var{extension}
798 Enable (or disable) a particular instruction set extension.
799
800 @item -m@var{cpu}
801 Enable the instruction set extensions supported by a particular CPU, and
802 disable all other extensions.
803
804 @item -m@var{machine}
805 Enable the instruction set extensions supported by a particular machine
806 model, and disable all other extensions.
807 @end table
808
809 @end ifset
810
811 @ifset PJ
812 The following options are available when @value{AS} is configured for
813 a picoJava processor.
814
815 @table @gcctabopt
816
817 @cindex PJ endianness
818 @cindex endianness, PJ
819 @cindex big endian output, PJ
820 @item -mb
821 Generate ``big endian'' format output.
822
823 @cindex little endian output, PJ
824 @item -ml
825 Generate ``little endian'' format output.
826
827 @end table
828 @end ifset
829
830 @ifset M68HC11
831 The following options are available when @value{AS} is configured for the
832 Motorola 68HC11 or 68HC12 series.
833
834 @table @gcctabopt
835
836 @item -m68hc11 | -m68hc12 | -m68hcs12
837 Specify what processor is the target. The default is
838 defined by the configuration option when building the assembler.
839
840 @item -mshort
841 Specify to use the 16-bit integer ABI.
842
843 @item -mlong
844 Specify to use the 32-bit integer ABI.
845
846 @item -mshort-double
847 Specify to use the 32-bit double ABI.
848
849 @item -mlong-double
850 Specify to use the 64-bit double ABI.
851
852 @item --force-long-branchs
853 Relative branches are turned into absolute ones. This concerns
854 conditional branches, unconditional branches and branches to a
855 sub routine.
856
857 @item -S | --short-branchs
858 Do not turn relative branchs into absolute ones
859 when the offset is out of range.
860
861 @item --strict-direct-mode
862 Do not turn the direct addressing mode into extended addressing mode
863 when the instruction does not support direct addressing mode.
864
865 @item --print-insn-syntax
866 Print the syntax of instruction in case of error.
867
868 @item --print-opcodes
869 print the list of instructions with syntax and then exit.
870
871 @item --generate-example
872 print an example of instruction for each possible instruction and then exit.
873 This option is only useful for testing @command{@value{AS}}.
874
875 @end table
876 @end ifset
877
878 @ifset SPARC
879 The following options are available when @command{@value{AS}} is configured
880 for the SPARC architecture:
881
882 @table @gcctabopt
883 @item -Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
884 @itemx -Av8plus | -Av8plusa | -Av9 | -Av9a
885 Explicitly select a variant of the SPARC architecture.
886
887 @samp{-Av8plus} and @samp{-Av8plusa} select a 32 bit environment.
888 @samp{-Av9} and @samp{-Av9a} select a 64 bit environment.
889
890 @samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
891 UltraSPARC extensions.
892
893 @item -xarch=v8plus | -xarch=v8plusa
894 For compatibility with the Solaris v9 assembler. These options are
895 equivalent to -Av8plus and -Av8plusa, respectively.
896
897 @item -bump
898 Warn when the assembler switches to another architecture.
899 @end table
900 @end ifset
901
902 @ifset TIC54X
903 The following options are available when @value{AS} is configured for the 'c54x
904 architecture.
905
906 @table @gcctabopt
907 @item -mfar-mode
908 Enable extended addressing mode. All addresses and relocations will assume
909 extended addressing (usually 23 bits).
910 @item -mcpu=@var{CPU_VERSION}
911 Sets the CPU version being compiled for.
912 @item -merrors-to-file @var{FILENAME}
913 Redirect error output to a file, for broken systems which don't support such
914 behaviour in the shell.
915 @end table
916 @end ifset
917
918 @ifset MIPS
919 The following options are available when @value{AS} is configured for
920 a @sc{mips} processor.
921
922 @table @gcctabopt
923 @item -G @var{num}
924 This option sets the largest size of an object that can be referenced
925 implicitly with the @code{gp} register. It is only accepted for targets that
926 use ECOFF format, such as a DECstation running Ultrix. The default value is 8.
927
928 @cindex MIPS endianness
929 @cindex endianness, MIPS
930 @cindex big endian output, MIPS
931 @item -EB
932 Generate ``big endian'' format output.
933
934 @cindex little endian output, MIPS
935 @item -EL
936 Generate ``little endian'' format output.
937
938 @cindex MIPS ISA
939 @item -mips1
940 @itemx -mips2
941 @itemx -mips3
942 @itemx -mips4
943 @itemx -mips5
944 @itemx -mips32
945 @itemx -mips32r2
946 @itemx -mips64
947 @itemx -mips64r2
948 Generate code for a particular @sc{mips} Instruction Set Architecture level.
949 @samp{-mips1} is an alias for @samp{-march=r3000}, @samp{-mips2} is an
950 alias for @samp{-march=r6000}, @samp{-mips3} is an alias for
951 @samp{-march=r4000} and @samp{-mips4} is an alias for @samp{-march=r8000}.
952 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips64}, and
953 @samp{-mips64r2}
954 correspond to generic
955 @samp{MIPS V}, @samp{MIPS32}, @samp{MIPS32 Release 2}, @samp{MIPS64},
956 and @samp{MIPS64 Release 2}
957 ISA processors, respectively.
958
959 @item -march=@var{CPU}
960 Generate code for a particular @sc{mips} cpu.
961
962 @item -mtune=@var{cpu}
963 Schedule and tune for a particular @sc{mips} cpu.
964
965 @item -mfix7000
966 @itemx -mno-fix7000
967 Cause nops to be inserted if the read of the destination register
968 of an mfhi or mflo instruction occurs in the following two instructions.
969
970 @item -mdebug
971 @itemx -no-mdebug
972 Cause stabs-style debugging output to go into an ECOFF-style .mdebug
973 section instead of the standard ELF .stabs sections.
974
975 @item -mpdr
976 @itemx -mno-pdr
977 Control generation of @code{.pdr} sections.
978
979 @item -mgp32
980 @itemx -mfp32
981 The register sizes are normally inferred from the ISA and ABI, but these
982 flags force a certain group of registers to be treated as 32 bits wide at
983 all times. @samp{-mgp32} controls the size of general-purpose registers
984 and @samp{-mfp32} controls the size of floating-point registers.
985
986 @item -mips16
987 @itemx -no-mips16
988 Generate code for the MIPS 16 processor. This is equivalent to putting
989 @code{.set mips16} at the start of the assembly file. @samp{-no-mips16}
990 turns off this option.
991
992 @item -mips3d
993 @itemx -no-mips3d
994 Generate code for the MIPS-3D Application Specific Extension.
995 This tells the assembler to accept MIPS-3D instructions.
996 @samp{-no-mips3d} turns off this option.
997
998 @item -mdmx
999 @itemx -no-mdmx
1000 Generate code for the MDMX Application Specific Extension.
1001 This tells the assembler to accept MDMX instructions.
1002 @samp{-no-mdmx} turns off this option.
1003
1004 @item -mmt
1005 @itemx -mno-mt
1006 Generate code for the MT Application Specific Extension.
1007 This tells the assembler to accept MT instructions.
1008 @samp{-mno-mt} turns off this option.
1009
1010 @item --construct-floats
1011 @itemx --no-construct-floats
1012 The @samp{--no-construct-floats} option disables the construction of
1013 double width floating point constants by loading the two halves of the
1014 value into the two single width floating point registers that make up
1015 the double width register. By default @samp{--construct-floats} is
1016 selected, allowing construction of these floating point constants.
1017
1018 @cindex emulation
1019 @item --emulation=@var{name}
1020 This option causes @command{@value{AS}} to emulate @command{@value{AS}} configured
1021 for some other target, in all respects, including output format (choosing
1022 between ELF and ECOFF only), handling of pseudo-opcodes which may generate
1023 debugging information or store symbol table information, and default
1024 endianness. The available configuration names are: @samp{mipsecoff},
1025 @samp{mipself}, @samp{mipslecoff}, @samp{mipsbecoff}, @samp{mipslelf},
1026 @samp{mipsbelf}. The first two do not alter the default endianness from that
1027 of the primary target for which the assembler was configured; the others change
1028 the default to little- or big-endian as indicated by the @samp{b} or @samp{l}
1029 in the name. Using @samp{-EB} or @samp{-EL} will override the endianness
1030 selection in any case.
1031
1032 This option is currently supported only when the primary target
1033 @command{@value{AS}} is configured for is a @sc{mips} ELF or ECOFF target.
1034 Furthermore, the primary target or others specified with
1035 @samp{--enable-targets=@dots{}} at configuration time must include support for
1036 the other format, if both are to be available. For example, the Irix 5
1037 configuration includes support for both.
1038
1039 Eventually, this option will support more configurations, with more
1040 fine-grained control over the assembler's behavior, and will be supported for
1041 more processors.
1042
1043 @item -nocpp
1044 @command{@value{AS}} ignores this option. It is accepted for compatibility with
1045 the native tools.
1046
1047 @item --trap
1048 @itemx --no-trap
1049 @itemx --break
1050 @itemx --no-break
1051 Control how to deal with multiplication overflow and division by zero.
1052 @samp{--trap} or @samp{--no-break} (which are synonyms) take a trap exception
1053 (and only work for Instruction Set Architecture level 2 and higher);
1054 @samp{--break} or @samp{--no-trap} (also synonyms, and the default) take a
1055 break exception.
1056
1057 @item -n
1058 When this option is used, @command{@value{AS}} will issue a warning every
1059 time it generates a nop instruction from a macro.
1060 @end table
1061 @end ifset
1062
1063 @ifset MCORE
1064 The following options are available when @value{AS} is configured for
1065 an MCore processor.
1066
1067 @table @gcctabopt
1068 @item -jsri2bsr
1069 @itemx -nojsri2bsr
1070 Enable or disable the JSRI to BSR transformation. By default this is enabled.
1071 The command line option @samp{-nojsri2bsr} can be used to disable it.
1072
1073 @item -sifilter
1074 @itemx -nosifilter
1075 Enable or disable the silicon filter behaviour. By default this is disabled.
1076 The default can be overridden by the @samp{-sifilter} command line option.
1077
1078 @item -relax
1079 Alter jump instructions for long displacements.
1080
1081 @item -mcpu=[210|340]
1082 Select the cpu type on the target hardware. This controls which instructions
1083 can be assembled.
1084
1085 @item -EB
1086 Assemble for a big endian target.
1087
1088 @item -EL
1089 Assemble for a little endian target.
1090
1091 @end table
1092 @end ifset
1093
1094 @ifset MMIX
1095 See the info pages for documentation of the MMIX-specific options.
1096 @end ifset
1097
1098 @ifset XTENSA
1099 The following options are available when @value{AS} is configured for
1100 an Xtensa processor.
1101
1102 @table @gcctabopt
1103 @item --text-section-literals | --no-text-section-literals
1104 With @option{--text-@-section-@-literals}, literal pools are interspersed
1105 in the text section. The default is
1106 @option{--no-@-text-@-section-@-literals}, which places literals in a
1107 separate section in the output file. These options only affect literals
1108 referenced via PC-relative @code{L32R} instructions; literals for
1109 absolute mode @code{L32R} instructions are handled separately.
1110
1111 @item --absolute-literals | --no-absolute-literals
1112 Indicate to the assembler whether @code{L32R} instructions use absolute
1113 or PC-relative addressing. The default is to assume absolute addressing
1114 if the Xtensa processor includes the absolute @code{L32R} addressing
1115 option. Otherwise, only the PC-relative @code{L32R} mode can be used.
1116
1117 @item --target-align | --no-target-align
1118 Enable or disable automatic alignment to reduce branch penalties at the
1119 expense of some code density. The default is @option{--target-@-align}.
1120
1121 @item --longcalls | --no-longcalls
1122 Enable or disable transformation of call instructions to allow calls
1123 across a greater range of addresses. The default is
1124 @option{--no-@-longcalls}.
1125
1126 @item --transform | --no-transform
1127 Enable or disable all assembler transformations of Xtensa instructions.
1128 The default is @option{--transform};
1129 @option{--no-transform} should be used only in the rare cases when the
1130 instructions must be exactly as specified in the assembly source.
1131 @end table
1132 @end ifset
1133
1134 @c man end
1135
1136 @menu
1137 * Manual:: Structure of this Manual
1138 * GNU Assembler:: The GNU Assembler
1139 * Object Formats:: Object File Formats
1140 * Command Line:: Command Line
1141 * Input Files:: Input Files
1142 * Object:: Output (Object) File
1143 * Errors:: Error and Warning Messages
1144 @end menu
1145
1146 @node Manual
1147 @section Structure of this Manual
1148
1149 @cindex manual, structure and purpose
1150 This manual is intended to describe what you need to know to use
1151 @sc{gnu} @command{@value{AS}}. We cover the syntax expected in source files, including
1152 notation for symbols, constants, and expressions; the directives that
1153 @command{@value{AS}} understands; and of course how to invoke @command{@value{AS}}.
1154
1155 @ifclear GENERIC
1156 We also cover special features in the @value{TARGET}
1157 configuration of @command{@value{AS}}, including assembler directives.
1158 @end ifclear
1159 @ifset GENERIC
1160 This manual also describes some of the machine-dependent features of
1161 various flavors of the assembler.
1162 @end ifset
1163
1164 @cindex machine instructions (not covered)
1165 On the other hand, this manual is @emph{not} intended as an introduction
1166 to programming in assembly language---let alone programming in general!
1167 In a similar vein, we make no attempt to introduce the machine
1168 architecture; we do @emph{not} describe the instruction set, standard
1169 mnemonics, registers or addressing modes that are standard to a
1170 particular architecture.
1171 @ifset GENERIC
1172 You may want to consult the manufacturer's
1173 machine architecture manual for this information.
1174 @end ifset
1175 @ifclear GENERIC
1176 @ifset H8/300
1177 For information on the H8/300 machine instruction set, see @cite{H8/300
1178 Series Programming Manual}. For the H8/300H, see @cite{H8/300H Series
1179 Programming Manual} (Renesas).
1180 @end ifset
1181 @ifset SH
1182 For information on the Renesas (formerly Hitachi) / SuperH SH machine instruction set,
1183 see @cite{SH-Microcomputer User's Manual} (Renesas) or
1184 @cite{SH-4 32-bit CPU Core Architecture} (SuperH) and
1185 @cite{SuperH (SH) 64-Bit RISC Series} (SuperH).
1186 @end ifset
1187 @ifset Z8000
1188 For information on the Z8000 machine instruction set, see @cite{Z8000 CPU Technical Manual}
1189 @end ifset
1190 @end ifclear
1191
1192 @c I think this is premature---doc@cygnus.com, 17jan1991
1193 @ignore
1194 Throughout this manual, we assume that you are running @dfn{GNU},
1195 the portable operating system from the @dfn{Free Software
1196 Foundation, Inc.}. This restricts our attention to certain kinds of
1197 computer (in particular, the kinds of computers that @sc{gnu} can run on);
1198 once this assumption is granted examples and definitions need less
1199 qualification.
1200
1201 @command{@value{AS}} is part of a team of programs that turn a high-level
1202 human-readable series of instructions into a low-level
1203 computer-readable series of instructions. Different versions of
1204 @command{@value{AS}} are used for different kinds of computer.
1205 @end ignore
1206
1207 @c There used to be a section "Terminology" here, which defined
1208 @c "contents", "byte", "word", and "long". Defining "word" to any
1209 @c particular size is confusing when the .word directive may generate 16
1210 @c bits on one machine and 32 bits on another; in general, for the user
1211 @c version of this manual, none of these terms seem essential to define.
1212 @c They were used very little even in the former draft of the manual;
1213 @c this draft makes an effort to avoid them (except in names of
1214 @c directives).
1215
1216 @node GNU Assembler
1217 @section The GNU Assembler
1218
1219 @c man begin DESCRIPTION
1220
1221 @sc{gnu} @command{as} is really a family of assemblers.
1222 @ifclear GENERIC
1223 This manual describes @command{@value{AS}}, a member of that family which is
1224 configured for the @value{TARGET} architectures.
1225 @end ifclear
1226 If you use (or have used) the @sc{gnu} assembler on one architecture, you
1227 should find a fairly similar environment when you use it on another
1228 architecture. Each version has much in common with the others,
1229 including object file formats, most assembler directives (often called
1230 @dfn{pseudo-ops}) and assembler syntax.@refill
1231
1232 @cindex purpose of @sc{gnu} assembler
1233 @command{@value{AS}} is primarily intended to assemble the output of the
1234 @sc{gnu} C compiler @code{@value{GCC}} for use by the linker
1235 @code{@value{LD}}. Nevertheless, we've tried to make @command{@value{AS}}
1236 assemble correctly everything that other assemblers for the same
1237 machine would assemble.
1238 @ifset VAX
1239 Any exceptions are documented explicitly (@pxref{Machine Dependencies}).
1240 @end ifset
1241 @ifset M680X0
1242 @c This remark should appear in generic version of manual; assumption
1243 @c here is that generic version sets M680x0.
1244 This doesn't mean @command{@value{AS}} always uses the same syntax as another
1245 assembler for the same architecture; for example, we know of several
1246 incompatible versions of 680x0 assembly language syntax.
1247 @end ifset
1248
1249 @c man end
1250
1251 Unlike older assemblers, @command{@value{AS}} is designed to assemble a source
1252 program in one pass of the source file. This has a subtle impact on the
1253 @kbd{.org} directive (@pxref{Org,,@code{.org}}).
1254
1255 @node Object Formats
1256 @section Object File Formats
1257
1258 @cindex object file format
1259 The @sc{gnu} assembler can be configured to produce several alternative
1260 object file formats. For the most part, this does not affect how you
1261 write assembly language programs; but directives for debugging symbols
1262 are typically different in different file formats. @xref{Symbol
1263 Attributes,,Symbol Attributes}.
1264 @ifclear GENERIC
1265 @ifclear MULTI-OBJ
1266 For the @value{TARGET} target, @command{@value{AS}} is configured to produce
1267 @value{OBJ-NAME} format object files.
1268 @end ifclear
1269 @c The following should exhaust all configs that set MULTI-OBJ, ideally
1270 @ifset I960
1271 On the @value{TARGET}, @command{@value{AS}} can be configured to produce either
1272 @code{b.out} or COFF format object files.
1273 @end ifset
1274 @ifset HPPA
1275 On the @value{TARGET}, @command{@value{AS}} can be configured to produce either
1276 SOM or ELF format object files.
1277 @end ifset
1278 @end ifclear
1279
1280 @node Command Line
1281 @section Command Line
1282
1283 @cindex command line conventions
1284
1285 After the program name @command{@value{AS}}, the command line may contain
1286 options and file names. Options may appear in any order, and may be
1287 before, after, or between file names. The order of file names is
1288 significant.
1289
1290 @cindex standard input, as input file
1291 @kindex --
1292 @file{--} (two hyphens) by itself names the standard input file
1293 explicitly, as one of the files for @command{@value{AS}} to assemble.
1294
1295 @cindex options, command line
1296 Except for @samp{--} any command line argument that begins with a
1297 hyphen (@samp{-}) is an option. Each option changes the behavior of
1298 @command{@value{AS}}. No option changes the way another option works. An
1299 option is a @samp{-} followed by one or more letters; the case of
1300 the letter is important. All options are optional.
1301
1302 Some options expect exactly one file name to follow them. The file
1303 name may either immediately follow the option's letter (compatible
1304 with older assemblers) or it may be the next command argument (@sc{gnu}
1305 standard). These two command lines are equivalent:
1306
1307 @smallexample
1308 @value{AS} -o my-object-file.o mumble.s
1309 @value{AS} -omy-object-file.o mumble.s
1310 @end smallexample
1311
1312 @node Input Files
1313 @section Input Files
1314
1315 @cindex input
1316 @cindex source program
1317 @cindex files, input
1318 We use the phrase @dfn{source program}, abbreviated @dfn{source}, to
1319 describe the program input to one run of @command{@value{AS}}. The program may
1320 be in one or more files; how the source is partitioned into files
1321 doesn't change the meaning of the source.
1322
1323 @c I added "con" prefix to "catenation" just to prove I can overcome my
1324 @c APL training... doc@cygnus.com
1325 The source program is a concatenation of the text in all the files, in the
1326 order specified.
1327
1328 @c man begin DESCRIPTION
1329 Each time you run @command{@value{AS}} it assembles exactly one source
1330 program. The source program is made up of one or more files.
1331 (The standard input is also a file.)
1332
1333 You give @command{@value{AS}} a command line that has zero or more input file
1334 names. The input files are read (from left file name to right). A
1335 command line argument (in any position) that has no special meaning
1336 is taken to be an input file name.
1337
1338 If you give @command{@value{AS}} no file names it attempts to read one input file
1339 from the @command{@value{AS}} standard input, which is normally your terminal. You
1340 may have to type @key{ctl-D} to tell @command{@value{AS}} there is no more program
1341 to assemble.
1342
1343 Use @samp{--} if you need to explicitly name the standard input file
1344 in your command line.
1345
1346 If the source is empty, @command{@value{AS}} produces a small, empty object
1347 file.
1348
1349 @c man end
1350
1351 @subheading Filenames and Line-numbers
1352
1353 @cindex input file linenumbers
1354 @cindex line numbers, in input files
1355 There are two ways of locating a line in the input file (or files) and
1356 either may be used in reporting error messages. One way refers to a line
1357 number in a physical file; the other refers to a line number in a
1358 ``logical'' file. @xref{Errors, ,Error and Warning Messages}.
1359
1360 @dfn{Physical files} are those files named in the command line given
1361 to @command{@value{AS}}.
1362
1363 @dfn{Logical files} are simply names declared explicitly by assembler
1364 directives; they bear no relation to physical files. Logical file names help
1365 error messages reflect the original source file, when @command{@value{AS}} source
1366 is itself synthesized from other files. @command{@value{AS}} understands the
1367 @samp{#} directives emitted by the @code{@value{GCC}} preprocessor. See also
1368 @ref{File,,@code{.file}}.
1369
1370 @node Object
1371 @section Output (Object) File
1372
1373 @cindex object file
1374 @cindex output file
1375 @kindex a.out
1376 @kindex .o
1377 Every time you run @command{@value{AS}} it produces an output file, which is
1378 your assembly language program translated into numbers. This file
1379 is the object file. Its default name is
1380 @ifclear BOUT
1381 @code{a.out}.
1382 @end ifclear
1383 @ifset BOUT
1384 @ifset GENERIC
1385 @code{a.out}, or
1386 @end ifset
1387 @code{b.out} when @command{@value{AS}} is configured for the Intel 80960.
1388 @end ifset
1389 You can give it another name by using the @option{-o} option. Conventionally,
1390 object file names end with @file{.o}. The default name is used for historical
1391 reasons: older assemblers were capable of assembling self-contained programs
1392 directly into a runnable program. (For some formats, this isn't currently
1393 possible, but it can be done for the @code{a.out} format.)
1394
1395 @cindex linker
1396 @kindex ld
1397 The object file is meant for input to the linker @code{@value{LD}}. It contains
1398 assembled program code, information to help @code{@value{LD}} integrate
1399 the assembled program into a runnable file, and (optionally) symbolic
1400 information for the debugger.
1401
1402 @c link above to some info file(s) like the description of a.out.
1403 @c don't forget to describe @sc{gnu} info as well as Unix lossage.
1404
1405 @node Errors
1406 @section Error and Warning Messages
1407
1408 @c man begin DESCRIPTION
1409
1410 @cindex error messages
1411 @cindex warning messages
1412 @cindex messages from assembler
1413 @command{@value{AS}} may write warnings and error messages to the standard error
1414 file (usually your terminal). This should not happen when a compiler
1415 runs @command{@value{AS}} automatically. Warnings report an assumption made so
1416 that @command{@value{AS}} could keep assembling a flawed program; errors report a
1417 grave problem that stops the assembly.
1418
1419 @c man end
1420
1421 @cindex format of warning messages
1422 Warning messages have the format
1423
1424 @smallexample
1425 file_name:@b{NNN}:Warning Message Text
1426 @end smallexample
1427
1428 @noindent
1429 @cindex line numbers, in warnings/errors
1430 (where @b{NNN} is a line number). If a logical file name has been given
1431 (@pxref{File,,@code{.file}}) it is used for the filename, otherwise the name of
1432 the current input file is used. If a logical line number was given
1433 @ifset GENERIC
1434 (@pxref{Line,,@code{.line}})
1435 @end ifset
1436 then it is used to calculate the number printed,
1437 otherwise the actual line in the current source file is printed. The
1438 message text is intended to be self explanatory (in the grand Unix
1439 tradition).
1440
1441 @cindex format of error messages
1442 Error messages have the format
1443 @smallexample
1444 file_name:@b{NNN}:FATAL:Error Message Text
1445 @end smallexample
1446 The file name and line number are derived as for warning
1447 messages. The actual message text may be rather less explanatory
1448 because many of them aren't supposed to happen.
1449
1450 @node Invoking
1451 @chapter Command-Line Options
1452
1453 @cindex options, all versions of assembler
1454 This chapter describes command-line options available in @emph{all}
1455 versions of the @sc{gnu} assembler; @pxref{Machine Dependencies}, for options specific
1456 @ifclear GENERIC
1457 to the @value{TARGET} target.
1458 @end ifclear
1459 @ifset GENERIC
1460 to particular machine architectures.
1461 @end ifset
1462
1463 @c man begin DESCRIPTION
1464
1465 If you are invoking @command{@value{AS}} via the @sc{gnu} C compiler,
1466 you can use the @samp{-Wa} option to pass arguments through to the assembler.
1467 The assembler arguments must be separated from each other (and the @samp{-Wa})
1468 by commas. For example:
1469
1470 @smallexample
1471 gcc -c -g -O -Wa,-alh,-L file.c
1472 @end smallexample
1473
1474 @noindent
1475 This passes two options to the assembler: @samp{-alh} (emit a listing to
1476 standard output with high-level and assembly source) and @samp{-L} (retain
1477 local symbols in the symbol table).
1478
1479 Usually you do not need to use this @samp{-Wa} mechanism, since many compiler
1480 command-line options are automatically passed to the assembler by the compiler.
1481 (You can call the @sc{gnu} compiler driver with the @samp{-v} option to see
1482 precisely what options it passes to each compilation pass, including the
1483 assembler.)
1484
1485 @c man end
1486
1487 @menu
1488 * a:: -a[cdhlns] enable listings
1489 * alternate:: --alternate enable alternate macro syntax
1490 * D:: -D for compatibility
1491 * f:: -f to work faster
1492 * I:: -I for .include search path
1493 @ifclear DIFF-TBL-KLUGE
1494 * K:: -K for compatibility
1495 @end ifclear
1496 @ifset DIFF-TBL-KLUGE
1497 * K:: -K for difference tables
1498 @end ifset
1499
1500 * L:: -L to retain local labels
1501 * listing:: --listing-XXX to configure listing output
1502 * M:: -M or --mri to assemble in MRI compatibility mode
1503 * MD:: --MD for dependency tracking
1504 * o:: -o to name the object file
1505 * R:: -R to join data and text sections
1506 * statistics:: --statistics to see statistics about assembly
1507 * traditional-format:: --traditional-format for compatible output
1508 * v:: -v to announce version
1509 * W:: -W, --no-warn, --warn, --fatal-warnings to control warnings
1510 * Z:: -Z to make object file even after errors
1511 @end menu
1512
1513 @node a
1514 @section Enable Listings: @option{-a[cdhlns]}
1515
1516 @kindex -a
1517 @kindex -ac
1518 @kindex -ad
1519 @kindex -ah
1520 @kindex -al
1521 @kindex -an
1522 @kindex -as
1523 @cindex listings, enabling
1524 @cindex assembly listings, enabling
1525
1526 These options enable listing output from the assembler. By itself,
1527 @samp{-a} requests high-level, assembly, and symbols listing.
1528 You can use other letters to select specific options for the list:
1529 @samp{-ah} requests a high-level language listing,
1530 @samp{-al} requests an output-program assembly listing, and
1531 @samp{-as} requests a symbol table listing.
1532 High-level listings require that a compiler debugging option like
1533 @samp{-g} be used, and that assembly listings (@samp{-al}) be requested
1534 also.
1535
1536 Use the @samp{-ac} option to omit false conditionals from a listing. Any lines
1537 which are not assembled because of a false @code{.if} (or @code{.ifdef}, or any
1538 other conditional), or a true @code{.if} followed by an @code{.else}, will be
1539 omitted from the listing.
1540
1541 Use the @samp{-ad} option to omit debugging directives from the
1542 listing.
1543
1544 Once you have specified one of these options, you can further control
1545 listing output and its appearance using the directives @code{.list},
1546 @code{.nolist}, @code{.psize}, @code{.eject}, @code{.title}, and
1547 @code{.sbttl}.
1548 The @samp{-an} option turns off all forms processing.
1549 If you do not request listing output with one of the @samp{-a} options, the
1550 listing-control directives have no effect.
1551
1552 The letters after @samp{-a} may be combined into one option,
1553 @emph{e.g.}, @samp{-aln}.
1554
1555 Note if the assembler source is coming from the standard input (eg because it
1556 is being created by @code{@value{GCC}} and the @samp{-pipe} command line switch
1557 is being used) then the listing will not contain any comments or preprocessor
1558 directives. This is because the listing code buffers input source lines from
1559 stdin only after they have been preprocessed by the assembler. This reduces
1560 memory usage and makes the code more efficient.
1561
1562 @node alternate
1563 @section @option{--alternate}
1564
1565 @kindex --alternate
1566 Begin in alternate macro mode, see @ref{Altmacro,,@code{.altmacro}}.
1567
1568 @node D
1569 @section @option{-D}
1570
1571 @kindex -D
1572 This option has no effect whatsoever, but it is accepted to make it more
1573 likely that scripts written for other assemblers also work with
1574 @command{@value{AS}}.
1575
1576 @node f
1577 @section Work Faster: @option{-f}
1578
1579 @kindex -f
1580 @cindex trusted compiler
1581 @cindex faster processing (@option{-f})
1582 @samp{-f} should only be used when assembling programs written by a
1583 (trusted) compiler. @samp{-f} stops the assembler from doing whitespace
1584 and comment preprocessing on
1585 the input file(s) before assembling them. @xref{Preprocessing,
1586 ,Preprocessing}.
1587
1588 @quotation
1589 @emph{Warning:} if you use @samp{-f} when the files actually need to be
1590 preprocessed (if they contain comments, for example), @command{@value{AS}} does
1591 not work correctly.
1592 @end quotation
1593
1594 @node I
1595 @section @code{.include} Search Path: @option{-I} @var{path}
1596
1597 @kindex -I @var{path}
1598 @cindex paths for @code{.include}
1599 @cindex search path for @code{.include}
1600 @cindex @code{include} directive search path
1601 Use this option to add a @var{path} to the list of directories
1602 @command{@value{AS}} searches for files specified in @code{.include}
1603 directives (@pxref{Include,,@code{.include}}). You may use @option{-I} as
1604 many times as necessary to include a variety of paths. The current
1605 working directory is always searched first; after that, @command{@value{AS}}
1606 searches any @samp{-I} directories in the same order as they were
1607 specified (left to right) on the command line.
1608
1609 @node K
1610 @section Difference Tables: @option{-K}
1611
1612 @kindex -K
1613 @ifclear DIFF-TBL-KLUGE
1614 On the @value{TARGET} family, this option is allowed, but has no effect. It is
1615 permitted for compatibility with the @sc{gnu} assembler on other platforms,
1616 where it can be used to warn when the assembler alters the machine code
1617 generated for @samp{.word} directives in difference tables. The @value{TARGET}
1618 family does not have the addressing limitations that sometimes lead to this
1619 alteration on other platforms.
1620 @end ifclear
1621
1622 @ifset DIFF-TBL-KLUGE
1623 @cindex difference tables, warning
1624 @cindex warning for altered difference tables
1625 @command{@value{AS}} sometimes alters the code emitted for directives of the form
1626 @samp{.word @var{sym1}-@var{sym2}}; @pxref{Word,,@code{.word}}.
1627 You can use the @samp{-K} option if you want a warning issued when this
1628 is done.
1629 @end ifset
1630
1631 @node L
1632 @section Include Local Labels: @option{-L}
1633
1634 @kindex -L
1635 @cindex local labels, retaining in output
1636 Labels beginning with @samp{L} (upper case only) are called @dfn{local
1637 labels}. @xref{Symbol Names}. Normally you do not see such labels when
1638 debugging, because they are intended for the use of programs (like
1639 compilers) that compose assembler programs, not for your notice.
1640 Normally both @command{@value{AS}} and @code{@value{LD}} discard such labels, so you do not
1641 normally debug with them.
1642
1643 This option tells @command{@value{AS}} to retain those @samp{L@dots{}} symbols
1644 in the object file. Usually if you do this you also tell the linker
1645 @code{@value{LD}} to preserve symbols whose names begin with @samp{L}.
1646
1647 By default, a local label is any label beginning with @samp{L}, but each
1648 target is allowed to redefine the local label prefix.
1649 @ifset HPPA
1650 On the HPPA local labels begin with @samp{L$}.
1651 @end ifset
1652
1653 @node listing
1654 @section Configuring listing output: @option{--listing}
1655
1656 The listing feature of the assembler can be enabled via the command line switch
1657 @samp{-a} (@pxref{a}). This feature combines the input source file(s) with a
1658 hex dump of the corresponding locations in the output object file, and displays
1659 them as a listing file. The format of this listing can be controlled by pseudo
1660 ops inside the assembler source (@pxref{List} @pxref{Title} @pxref{Sbttl}
1661 @pxref{Psize} @pxref{Eject}) and also by the following switches:
1662
1663 @table @gcctabopt
1664 @item --listing-lhs-width=@samp{number}
1665 @kindex --listing-lhs-width
1666 @cindex Width of first line disassembly output
1667 Sets the maximum width, in words, of the first line of the hex byte dump. This
1668 dump appears on the left hand side of the listing output.
1669
1670 @item --listing-lhs-width2=@samp{number}
1671 @kindex --listing-lhs-width2
1672 @cindex Width of continuation lines of disassembly output
1673 Sets the maximum width, in words, of any further lines of the hex byte dump for
1674 a given input source line. If this value is not specified, it defaults to being
1675 the same as the value specified for @samp{--listing-lhs-width}. If neither
1676 switch is used the default is to one.
1677
1678 @item --listing-rhs-width=@samp{number}
1679 @kindex --listing-rhs-width
1680 @cindex Width of source line output
1681 Sets the maximum width, in characters, of the source line that is displayed
1682 alongside the hex dump. The default value for this parameter is 100. The
1683 source line is displayed on the right hand side of the listing output.
1684
1685 @item --listing-cont-lines=@samp{number}
1686 @kindex --listing-cont-lines
1687 @cindex Maximum number of continuation lines
1688 Sets the maximum number of continuation lines of hex dump that will be
1689 displayed for a given single line of source input. The default value is 4.
1690 @end table
1691
1692 @node M
1693 @section Assemble in MRI Compatibility Mode: @option{-M}
1694
1695 @kindex -M
1696 @cindex MRI compatibility mode
1697 The @option{-M} or @option{--mri} option selects MRI compatibility mode. This
1698 changes the syntax and pseudo-op handling of @command{@value{AS}} to make it
1699 compatible with the @code{ASM68K} or the @code{ASM960} (depending upon the
1700 configured target) assembler from Microtec Research. The exact nature of the
1701 MRI syntax will not be documented here; see the MRI manuals for more
1702 information. Note in particular that the handling of macros and macro
1703 arguments is somewhat different. The purpose of this option is to permit
1704 assembling existing MRI assembler code using @command{@value{AS}}.
1705
1706 The MRI compatibility is not complete. Certain operations of the MRI assembler
1707 depend upon its object file format, and can not be supported using other object
1708 file formats. Supporting these would require enhancing each object file format
1709 individually. These are:
1710
1711 @itemize @bullet
1712 @item global symbols in common section
1713
1714 The m68k MRI assembler supports common sections which are merged by the linker.
1715 Other object file formats do not support this. @command{@value{AS}} handles
1716 common sections by treating them as a single common symbol. It permits local
1717 symbols to be defined within a common section, but it can not support global
1718 symbols, since it has no way to describe them.
1719
1720 @item complex relocations
1721
1722 The MRI assemblers support relocations against a negated section address, and
1723 relocations which combine the start addresses of two or more sections. These
1724 are not support by other object file formats.
1725
1726 @item @code{END} pseudo-op specifying start address
1727
1728 The MRI @code{END} pseudo-op permits the specification of a start address.
1729 This is not supported by other object file formats. The start address may
1730 instead be specified using the @option{-e} option to the linker, or in a linker
1731 script.
1732
1733 @item @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops
1734
1735 The MRI @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops assign a module
1736 name to the output file. This is not supported by other object file formats.
1737
1738 @item @code{ORG} pseudo-op
1739
1740 The m68k MRI @code{ORG} pseudo-op begins an absolute section at a given
1741 address. This differs from the usual @command{@value{AS}} @code{.org} pseudo-op,
1742 which changes the location within the current section. Absolute sections are
1743 not supported by other object file formats. The address of a section may be
1744 assigned within a linker script.
1745 @end itemize
1746
1747 There are some other features of the MRI assembler which are not supported by
1748 @command{@value{AS}}, typically either because they are difficult or because they
1749 seem of little consequence. Some of these may be supported in future releases.
1750
1751 @itemize @bullet
1752
1753 @item EBCDIC strings
1754
1755 EBCDIC strings are not supported.
1756
1757 @item packed binary coded decimal
1758
1759 Packed binary coded decimal is not supported. This means that the @code{DC.P}
1760 and @code{DCB.P} pseudo-ops are not supported.
1761
1762 @item @code{FEQU} pseudo-op
1763
1764 The m68k @code{FEQU} pseudo-op is not supported.
1765
1766 @item @code{NOOBJ} pseudo-op
1767
1768 The m68k @code{NOOBJ} pseudo-op is not supported.
1769
1770 @item @code{OPT} branch control options
1771
1772 The m68k @code{OPT} branch control options---@code{B}, @code{BRS}, @code{BRB},
1773 @code{BRL}, and @code{BRW}---are ignored. @command{@value{AS}} automatically
1774 relaxes all branches, whether forward or backward, to an appropriate size, so
1775 these options serve no purpose.
1776
1777 @item @code{OPT} list control options
1778
1779 The following m68k @code{OPT} list control options are ignored: @code{C},
1780 @code{CEX}, @code{CL}, @code{CRE}, @code{E}, @code{G}, @code{I}, @code{M},
1781 @code{MEX}, @code{MC}, @code{MD}, @code{X}.
1782
1783 @item other @code{OPT} options
1784
1785 The following m68k @code{OPT} options are ignored: @code{NEST}, @code{O},
1786 @code{OLD}, @code{OP}, @code{P}, @code{PCO}, @code{PCR}, @code{PCS}, @code{R}.
1787
1788 @item @code{OPT} @code{D} option is default
1789
1790 The m68k @code{OPT} @code{D} option is the default, unlike the MRI assembler.
1791 @code{OPT NOD} may be used to turn it off.
1792
1793 @item @code{XREF} pseudo-op.
1794
1795 The m68k @code{XREF} pseudo-op is ignored.
1796
1797 @item @code{.debug} pseudo-op
1798
1799 The i960 @code{.debug} pseudo-op is not supported.
1800
1801 @item @code{.extended} pseudo-op
1802
1803 The i960 @code{.extended} pseudo-op is not supported.
1804
1805 @item @code{.list} pseudo-op.
1806
1807 The various options of the i960 @code{.list} pseudo-op are not supported.
1808
1809 @item @code{.optimize} pseudo-op
1810
1811 The i960 @code{.optimize} pseudo-op is not supported.
1812
1813 @item @code{.output} pseudo-op
1814
1815 The i960 @code{.output} pseudo-op is not supported.
1816
1817 @item @code{.setreal} pseudo-op
1818
1819 The i960 @code{.setreal} pseudo-op is not supported.
1820
1821 @end itemize
1822
1823 @node MD
1824 @section Dependency Tracking: @option{--MD}
1825
1826 @kindex --MD
1827 @cindex dependency tracking
1828 @cindex make rules
1829
1830 @command{@value{AS}} can generate a dependency file for the file it creates. This
1831 file consists of a single rule suitable for @code{make} describing the
1832 dependencies of the main source file.
1833
1834 The rule is written to the file named in its argument.
1835
1836 This feature is used in the automatic updating of makefiles.
1837
1838 @node o
1839 @section Name the Object File: @option{-o}
1840
1841 @kindex -o
1842 @cindex naming object file
1843 @cindex object file name
1844 There is always one object file output when you run @command{@value{AS}}. By
1845 default it has the name
1846 @ifset GENERIC
1847 @ifset I960
1848 @file{a.out} (or @file{b.out}, for Intel 960 targets only).
1849 @end ifset
1850 @ifclear I960
1851 @file{a.out}.
1852 @end ifclear
1853 @end ifset
1854 @ifclear GENERIC
1855 @ifset I960
1856 @file{b.out}.
1857 @end ifset
1858 @ifclear I960
1859 @file{a.out}.
1860 @end ifclear
1861 @end ifclear
1862 You use this option (which takes exactly one filename) to give the
1863 object file a different name.
1864
1865 Whatever the object file is called, @command{@value{AS}} overwrites any
1866 existing file of the same name.
1867
1868 @node R
1869 @section Join Data and Text Sections: @option{-R}
1870
1871 @kindex -R
1872 @cindex data and text sections, joining
1873 @cindex text and data sections, joining
1874 @cindex joining text and data sections
1875 @cindex merging text and data sections
1876 @option{-R} tells @command{@value{AS}} to write the object file as if all
1877 data-section data lives in the text section. This is only done at
1878 the very last moment: your binary data are the same, but data
1879 section parts are relocated differently. The data section part of
1880 your object file is zero bytes long because all its bytes are
1881 appended to the text section. (@xref{Sections,,Sections and Relocation}.)
1882
1883 When you specify @option{-R} it would be possible to generate shorter
1884 address displacements (because we do not have to cross between text and
1885 data section). We refrain from doing this simply for compatibility with
1886 older versions of @command{@value{AS}}. In future, @option{-R} may work this way.
1887
1888 @ifset COFF-ELF
1889 When @command{@value{AS}} is configured for COFF or ELF output,
1890 this option is only useful if you use sections named @samp{.text} and
1891 @samp{.data}.
1892 @end ifset
1893
1894 @ifset HPPA
1895 @option{-R} is not supported for any of the HPPA targets. Using
1896 @option{-R} generates a warning from @command{@value{AS}}.
1897 @end ifset
1898
1899 @node statistics
1900 @section Display Assembly Statistics: @option{--statistics}
1901
1902 @kindex --statistics
1903 @cindex statistics, about assembly
1904 @cindex time, total for assembly
1905 @cindex space used, maximum for assembly
1906 Use @samp{--statistics} to display two statistics about the resources used by
1907 @command{@value{AS}}: the maximum amount of space allocated during the assembly
1908 (in bytes), and the total execution time taken for the assembly (in @sc{cpu}
1909 seconds).
1910
1911 @node traditional-format
1912 @section Compatible Output: @option{--traditional-format}
1913
1914 @kindex --traditional-format
1915 For some targets, the output of @command{@value{AS}} is different in some ways
1916 from the output of some existing assembler. This switch requests
1917 @command{@value{AS}} to use the traditional format instead.
1918
1919 For example, it disables the exception frame optimizations which
1920 @command{@value{AS}} normally does by default on @code{@value{GCC}} output.
1921
1922 @node v
1923 @section Announce Version: @option{-v}
1924
1925 @kindex -v
1926 @kindex -version
1927 @cindex assembler version
1928 @cindex version of assembler
1929 You can find out what version of as is running by including the
1930 option @samp{-v} (which you can also spell as @samp{-version}) on the
1931 command line.
1932
1933 @node W
1934 @section Control Warnings: @option{-W}, @option{--warn}, @option{--no-warn}, @option{--fatal-warnings}
1935
1936 @command{@value{AS}} should never give a warning or error message when
1937 assembling compiler output. But programs written by people often
1938 cause @command{@value{AS}} to give a warning that a particular assumption was
1939 made. All such warnings are directed to the standard error file.
1940
1941 @kindex -W
1942 @kindex --no-warn
1943 @cindex suppressing warnings
1944 @cindex warnings, suppressing
1945 If you use the @option{-W} and @option{--no-warn} options, no warnings are issued.
1946 This only affects the warning messages: it does not change any particular of
1947 how @command{@value{AS}} assembles your file. Errors, which stop the assembly,
1948 are still reported.
1949
1950 @kindex --fatal-warnings
1951 @cindex errors, caused by warnings
1952 @cindex warnings, causing error
1953 If you use the @option{--fatal-warnings} option, @command{@value{AS}} considers
1954 files that generate warnings to be in error.
1955
1956 @kindex --warn
1957 @cindex warnings, switching on
1958 You can switch these options off again by specifying @option{--warn}, which
1959 causes warnings to be output as usual.
1960
1961 @node Z
1962 @section Generate Object File in Spite of Errors: @option{-Z}
1963 @cindex object file, after errors
1964 @cindex errors, continuing after
1965 After an error message, @command{@value{AS}} normally produces no output. If for
1966 some reason you are interested in object file output even after
1967 @command{@value{AS}} gives an error message on your program, use the @samp{-Z}
1968 option. If there are any errors, @command{@value{AS}} continues anyways, and
1969 writes an object file after a final warning message of the form @samp{@var{n}
1970 errors, @var{m} warnings, generating bad object file.}
1971
1972 @node Syntax
1973 @chapter Syntax
1974
1975 @cindex machine-independent syntax
1976 @cindex syntax, machine-independent
1977 This chapter describes the machine-independent syntax allowed in a
1978 source file. @command{@value{AS}} syntax is similar to what many other
1979 assemblers use; it is inspired by the BSD 4.2
1980 @ifclear VAX
1981 assembler.
1982 @end ifclear
1983 @ifset VAX
1984 assembler, except that @command{@value{AS}} does not assemble Vax bit-fields.
1985 @end ifset
1986
1987 @menu
1988 * Preprocessing:: Preprocessing
1989 * Whitespace:: Whitespace
1990 * Comments:: Comments
1991 * Symbol Intro:: Symbols
1992 * Statements:: Statements
1993 * Constants:: Constants
1994 @end menu
1995
1996 @node Preprocessing
1997 @section Preprocessing
1998
1999 @cindex preprocessing
2000 The @command{@value{AS}} internal preprocessor:
2001 @itemize @bullet
2002 @cindex whitespace, removed by preprocessor
2003 @item
2004 adjusts and removes extra whitespace. It leaves one space or tab before
2005 the keywords on a line, and turns any other whitespace on the line into
2006 a single space.
2007
2008 @cindex comments, removed by preprocessor
2009 @item
2010 removes all comments, replacing them with a single space, or an
2011 appropriate number of newlines.
2012
2013 @cindex constants, converted by preprocessor
2014 @item
2015 converts character constants into the appropriate numeric values.
2016 @end itemize
2017
2018 It does not do macro processing, include file handling, or
2019 anything else you may get from your C compiler's preprocessor. You can
2020 do include file processing with the @code{.include} directive
2021 (@pxref{Include,,@code{.include}}). You can use the @sc{gnu} C compiler driver
2022 to get other ``CPP'' style preprocessing by giving the input file a
2023 @samp{.S} suffix. @xref{Overall Options,, Options Controlling the Kind of
2024 Output, gcc.info, Using GNU CC}.
2025
2026 Excess whitespace, comments, and character constants
2027 cannot be used in the portions of the input text that are not
2028 preprocessed.
2029
2030 @cindex turning preprocessing on and off
2031 @cindex preprocessing, turning on and off
2032 @kindex #NO_APP
2033 @kindex #APP
2034 If the first line of an input file is @code{#NO_APP} or if you use the
2035 @samp{-f} option, whitespace and comments are not removed from the input file.
2036 Within an input file, you can ask for whitespace and comment removal in
2037 specific portions of the by putting a line that says @code{#APP} before the
2038 text that may contain whitespace or comments, and putting a line that says
2039 @code{#NO_APP} after this text. This feature is mainly intend to support
2040 @code{asm} statements in compilers whose output is otherwise free of comments
2041 and whitespace.
2042
2043 @node Whitespace
2044 @section Whitespace
2045
2046 @cindex whitespace
2047 @dfn{Whitespace} is one or more blanks or tabs, in any order.
2048 Whitespace is used to separate symbols, and to make programs neater for
2049 people to read. Unless within character constants
2050 (@pxref{Characters,,Character Constants}), any whitespace means the same
2051 as exactly one space.
2052
2053 @node Comments
2054 @section Comments
2055
2056 @cindex comments
2057 There are two ways of rendering comments to @command{@value{AS}}. In both
2058 cases the comment is equivalent to one space.
2059
2060 Anything from @samp{/*} through the next @samp{*/} is a comment.
2061 This means you may not nest these comments.
2062
2063 @smallexample
2064 /*
2065 The only way to include a newline ('\n') in a comment
2066 is to use this sort of comment.
2067 */
2068
2069 /* This sort of comment does not nest. */
2070 @end smallexample
2071
2072 @cindex line comment character
2073 Anything from the @dfn{line comment} character to the next newline
2074 is considered a comment and is ignored. The line comment character is
2075 @ifset ARC
2076 @samp{;} on the ARC;
2077 @end ifset
2078 @ifset ARM
2079 @samp{@@} on the ARM;
2080 @end ifset
2081 @ifset H8/300
2082 @samp{;} for the H8/300 family;
2083 @end ifset
2084 @ifset HPPA
2085 @samp{;} for the HPPA;
2086 @end ifset
2087 @ifset I80386
2088 @samp{#} on the i386 and x86-64;
2089 @end ifset
2090 @ifset I960
2091 @samp{#} on the i960;
2092 @end ifset
2093 @ifset PDP11
2094 @samp{;} for the PDP-11;
2095 @end ifset
2096 @ifset PJ
2097 @samp{;} for picoJava;
2098 @end ifset
2099 @ifset PPC
2100 @samp{#} for Motorola PowerPC;
2101 @end ifset
2102 @ifset SH
2103 @samp{!} for the Renesas / SuperH SH;
2104 @end ifset
2105 @ifset SPARC
2106 @samp{!} on the SPARC;
2107 @end ifset
2108 @ifset IP2K
2109 @samp{#} on the ip2k;
2110 @end ifset
2111 @ifset M32C
2112 @samp{#} on the m32c;
2113 @end ifset
2114 @ifset M32R
2115 @samp{#} on the m32r;
2116 @end ifset
2117 @ifset M680X0
2118 @samp{|} on the 680x0;
2119 @end ifset
2120 @ifset M68HC11
2121 @samp{#} on the 68HC11 and 68HC12;
2122 @end ifset
2123 @ifset VAX
2124 @samp{#} on the Vax;
2125 @end ifset
2126 @ifset Z8000
2127 @samp{!} for the Z8000;
2128 @end ifset
2129 @ifset V850
2130 @samp{#} on the V850;
2131 @end ifset
2132 @ifset XTENSA
2133 @samp{#} for Xtensa systems;
2134 @end ifset
2135 see @ref{Machine Dependencies}. @refill
2136 @c FIXME What about i860?
2137
2138 @ifset GENERIC
2139 On some machines there are two different line comment characters. One
2140 character only begins a comment if it is the first non-whitespace character on
2141 a line, while the other always begins a comment.
2142 @end ifset
2143
2144 @ifset V850
2145 The V850 assembler also supports a double dash as starting a comment that
2146 extends to the end of the line.
2147
2148 @samp{--};
2149 @end ifset
2150
2151 @kindex #
2152 @cindex lines starting with @code{#}
2153 @cindex logical line numbers
2154 To be compatible with past assemblers, lines that begin with @samp{#} have a
2155 special interpretation. Following the @samp{#} should be an absolute
2156 expression (@pxref{Expressions}): the logical line number of the @emph{next}
2157 line. Then a string (@pxref{Strings,, Strings}) is allowed: if present it is a
2158 new logical file name. The rest of the line, if any, should be whitespace.
2159
2160 If the first non-whitespace characters on the line are not numeric,
2161 the line is ignored. (Just like a comment.)
2162
2163 @smallexample
2164 # This is an ordinary comment.
2165 # 42-6 "new_file_name" # New logical file name
2166 # This is logical line # 36.
2167 @end smallexample
2168 This feature is deprecated, and may disappear from future versions
2169 of @command{@value{AS}}.
2170
2171 @node Symbol Intro
2172 @section Symbols
2173
2174 @cindex characters used in symbols
2175 @ifclear SPECIAL-SYMS
2176 A @dfn{symbol} is one or more characters chosen from the set of all
2177 letters (both upper and lower case), digits and the three characters
2178 @samp{_.$}.
2179 @end ifclear
2180 @ifset SPECIAL-SYMS
2181 @ifclear GENERIC
2182 @ifset H8
2183 A @dfn{symbol} is one or more characters chosen from the set of all
2184 letters (both upper and lower case), digits and the three characters
2185 @samp{._$}. (Save that, on the H8/300 only, you may not use @samp{$} in
2186 symbol names.)
2187 @end ifset
2188 @end ifclear
2189 @end ifset
2190 @ifset GENERIC
2191 On most machines, you can also use @code{$} in symbol names; exceptions
2192 are noted in @ref{Machine Dependencies}.
2193 @end ifset
2194 No symbol may begin with a digit. Case is significant.
2195 There is no length limit: all characters are significant. Symbols are
2196 delimited by characters not in that set, or by the beginning of a file
2197 (since the source program must end with a newline, the end of a file is
2198 not a possible symbol delimiter). @xref{Symbols}.
2199 @cindex length of symbols
2200
2201 @node Statements
2202 @section Statements
2203
2204 @cindex statements, structure of
2205 @cindex line separator character
2206 @cindex statement separator character
2207 @ifclear GENERIC
2208 @ifclear abnormal-separator
2209 A @dfn{statement} ends at a newline character (@samp{\n}) or at a
2210 semicolon (@samp{;}). The newline or semicolon is considered part of
2211 the preceding statement. Newlines and semicolons within character
2212 constants are an exception: they do not end statements.
2213 @end ifclear
2214 @ifset abnormal-separator
2215 @ifset HPPA
2216 A @dfn{statement} ends at a newline character (@samp{\n}) or an exclamation
2217 point (@samp{!}). The newline or exclamation point is considered part of the
2218 preceding statement. Newlines and exclamation points within character
2219 constants are an exception: they do not end statements.
2220 @end ifset
2221 @ifset H8
2222 A @dfn{statement} ends at a newline character (@samp{\n}); or (for the
2223 H8/300) a dollar sign (@samp{$}); or (for the Renesas-SH) a semicolon
2224 (@samp{;}). The newline or separator character is considered part of
2225 the preceding statement. Newlines and separators within character
2226 constants are an exception: they do not end statements.
2227 @end ifset
2228 @end ifset
2229 @end ifclear
2230 @ifset GENERIC
2231 A @dfn{statement} ends at a newline character (@samp{\n}) or line
2232 separator character. (The line separator is usually @samp{;}, unless
2233 this conflicts with the comment character; @pxref{Machine Dependencies}.) The
2234 newline or separator character is considered part of the preceding
2235 statement. Newlines and separators within character constants are an
2236 exception: they do not end statements.
2237 @end ifset
2238
2239 @cindex newline, required at file end
2240 @cindex EOF, newline must precede
2241 It is an error to end any statement with end-of-file: the last
2242 character of any input file should be a newline.@refill
2243
2244 An empty statement is allowed, and may include whitespace. It is ignored.
2245
2246 @cindex instructions and directives
2247 @cindex directives and instructions
2248 @c "key symbol" is not used elsewhere in the document; seems pedantic to
2249 @c @defn{} it in that case, as was done previously... doc@cygnus.com,
2250 @c 13feb91.
2251 A statement begins with zero or more labels, optionally followed by a
2252 key symbol which determines what kind of statement it is. The key
2253 symbol determines the syntax of the rest of the statement. If the
2254 symbol begins with a dot @samp{.} then the statement is an assembler
2255 directive: typically valid for any computer. If the symbol begins with
2256 a letter the statement is an assembly language @dfn{instruction}: it
2257 assembles into a machine language instruction.
2258 @ifset GENERIC
2259 Different versions of @command{@value{AS}} for different computers
2260 recognize different instructions. In fact, the same symbol may
2261 represent a different instruction in a different computer's assembly
2262 language.@refill
2263 @end ifset
2264
2265 @cindex @code{:} (label)
2266 @cindex label (@code{:})
2267 A label is a symbol immediately followed by a colon (@code{:}).
2268 Whitespace before a label or after a colon is permitted, but you may not
2269 have whitespace between a label's symbol and its colon. @xref{Labels}.
2270
2271 @ifset HPPA
2272 For HPPA targets, labels need not be immediately followed by a colon, but
2273 the definition of a label must begin in column zero. This also implies that
2274 only one label may be defined on each line.
2275 @end ifset
2276
2277 @smallexample
2278 label: .directive followed by something
2279 another_label: # This is an empty statement.
2280 instruction operand_1, operand_2, @dots{}
2281 @end smallexample
2282
2283 @node Constants
2284 @section Constants
2285
2286 @cindex constants
2287 A constant is a number, written so that its value is known by
2288 inspection, without knowing any context. Like this:
2289 @smallexample
2290 @group
2291 .byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
2292 .ascii "Ring the bell\7" # A string constant.
2293 .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
2294 .float 0f-314159265358979323846264338327\
2295 95028841971.693993751E-40 # - pi, a flonum.
2296 @end group
2297 @end smallexample
2298
2299 @menu
2300 * Characters:: Character Constants
2301 * Numbers:: Number Constants
2302 @end menu
2303
2304 @node Characters
2305 @subsection Character Constants
2306
2307 @cindex character constants
2308 @cindex constants, character
2309 There are two kinds of character constants. A @dfn{character} stands
2310 for one character in one byte and its value may be used in
2311 numeric expressions. String constants (properly called string
2312 @emph{literals}) are potentially many bytes and their values may not be
2313 used in arithmetic expressions.
2314
2315 @menu
2316 * Strings:: Strings
2317 * Chars:: Characters
2318 @end menu
2319
2320 @node Strings
2321 @subsubsection Strings
2322
2323 @cindex string constants
2324 @cindex constants, string
2325 A @dfn{string} is written between double-quotes. It may contain
2326 double-quotes or null characters. The way to get special characters
2327 into a string is to @dfn{escape} these characters: precede them with
2328 a backslash @samp{\} character. For example @samp{\\} represents
2329 one backslash: the first @code{\} is an escape which tells
2330 @command{@value{AS}} to interpret the second character literally as a backslash
2331 (which prevents @command{@value{AS}} from recognizing the second @code{\} as an
2332 escape character). The complete list of escapes follows.
2333
2334 @cindex escape codes, character
2335 @cindex character escape codes
2336 @table @kbd
2337 @c @item \a
2338 @c Mnemonic for ACKnowledge; for ASCII this is octal code 007.
2339 @c
2340 @cindex @code{\b} (backspace character)
2341 @cindex backspace (@code{\b})
2342 @item \b
2343 Mnemonic for backspace; for ASCII this is octal code 010.
2344
2345 @c @item \e
2346 @c Mnemonic for EOText; for ASCII this is octal code 004.
2347 @c
2348 @cindex @code{\f} (formfeed character)
2349 @cindex formfeed (@code{\f})
2350 @item \f
2351 Mnemonic for FormFeed; for ASCII this is octal code 014.
2352
2353 @cindex @code{\n} (newline character)
2354 @cindex newline (@code{\n})
2355 @item \n
2356 Mnemonic for newline; for ASCII this is octal code 012.
2357
2358 @c @item \p
2359 @c Mnemonic for prefix; for ASCII this is octal code 033, usually known as @code{escape}.
2360 @c
2361 @cindex @code{\r} (carriage return character)
2362 @cindex carriage return (@code{\r})
2363 @item \r
2364 Mnemonic for carriage-Return; for ASCII this is octal code 015.
2365
2366 @c @item \s
2367 @c Mnemonic for space; for ASCII this is octal code 040. Included for compliance with
2368 @c other assemblers.
2369 @c
2370 @cindex @code{\t} (tab)
2371 @cindex tab (@code{\t})
2372 @item \t
2373 Mnemonic for horizontal Tab; for ASCII this is octal code 011.
2374
2375 @c @item \v
2376 @c Mnemonic for Vertical tab; for ASCII this is octal code 013.
2377 @c @item \x @var{digit} @var{digit} @var{digit}
2378 @c A hexadecimal character code. The numeric code is 3 hexadecimal digits.
2379 @c
2380 @cindex @code{\@var{ddd}} (octal character code)
2381 @cindex octal character code (@code{\@var{ddd}})
2382 @item \ @var{digit} @var{digit} @var{digit}
2383 An octal character code. The numeric code is 3 octal digits.
2384 For compatibility with other Unix systems, 8 and 9 are accepted as digits:
2385 for example, @code{\008} has the value 010, and @code{\009} the value 011.
2386
2387 @cindex @code{\@var{xd...}} (hex character code)
2388 @cindex hex character code (@code{\@var{xd...}})
2389 @item \@code{x} @var{hex-digits...}
2390 A hex character code. All trailing hex digits are combined. Either upper or
2391 lower case @code{x} works.
2392
2393 @cindex @code{\\} (@samp{\} character)
2394 @cindex backslash (@code{\\})
2395 @item \\
2396 Represents one @samp{\} character.
2397
2398 @c @item \'
2399 @c Represents one @samp{'} (accent acute) character.
2400 @c This is needed in single character literals
2401 @c (@xref{Characters,,Character Constants}.) to represent
2402 @c a @samp{'}.
2403 @c
2404 @cindex @code{\"} (doublequote character)
2405 @cindex doublequote (@code{\"})
2406 @item \"
2407 Represents one @samp{"} character. Needed in strings to represent
2408 this character, because an unescaped @samp{"} would end the string.
2409
2410 @item \ @var{anything-else}
2411 Any other character when escaped by @kbd{\} gives a warning, but
2412 assembles as if the @samp{\} was not present. The idea is that if
2413 you used an escape sequence you clearly didn't want the literal
2414 interpretation of the following character. However @command{@value{AS}} has no
2415 other interpretation, so @command{@value{AS}} knows it is giving you the wrong
2416 code and warns you of the fact.
2417 @end table
2418
2419 Which characters are escapable, and what those escapes represent,
2420 varies widely among assemblers. The current set is what we think
2421 the BSD 4.2 assembler recognizes, and is a subset of what most C
2422 compilers recognize. If you are in doubt, do not use an escape
2423 sequence.
2424
2425 @node Chars
2426 @subsubsection Characters
2427
2428 @cindex single character constant
2429 @cindex character, single
2430 @cindex constant, single character
2431 A single character may be written as a single quote immediately
2432 followed by that character. The same escapes apply to characters as
2433 to strings. So if you want to write the character backslash, you
2434 must write @kbd{'\\} where the first @code{\} escapes the second
2435 @code{\}. As you can see, the quote is an acute accent, not a
2436 grave accent. A newline
2437 @ifclear GENERIC
2438 @ifclear abnormal-separator
2439 (or semicolon @samp{;})
2440 @end ifclear
2441 @ifset abnormal-separator
2442 @ifset H8
2443 (or dollar sign @samp{$}, for the H8/300; or semicolon @samp{;} for the
2444 Renesas SH)
2445 @end ifset
2446 @end ifset
2447 @end ifclear
2448 immediately following an acute accent is taken as a literal character
2449 and does not count as the end of a statement. The value of a character
2450 constant in a numeric expression is the machine's byte-wide code for
2451 that character. @command{@value{AS}} assumes your character code is ASCII:
2452 @kbd{'A} means 65, @kbd{'B} means 66, and so on. @refill
2453
2454 @node Numbers
2455 @subsection Number Constants
2456
2457 @cindex constants, number
2458 @cindex number constants
2459 @command{@value{AS}} distinguishes three kinds of numbers according to how they
2460 are stored in the target machine. @emph{Integers} are numbers that
2461 would fit into an @code{int} in the C language. @emph{Bignums} are
2462 integers, but they are stored in more than 32 bits. @emph{Flonums}
2463 are floating point numbers, described below.
2464
2465 @menu
2466 * Integers:: Integers
2467 * Bignums:: Bignums
2468 * Flonums:: Flonums
2469 @ifclear GENERIC
2470 @ifset I960
2471 * Bit Fields:: Bit Fields
2472 @end ifset
2473 @end ifclear
2474 @end menu
2475
2476 @node Integers
2477 @subsubsection Integers
2478 @cindex integers
2479 @cindex constants, integer
2480
2481 @cindex binary integers
2482 @cindex integers, binary
2483 A binary integer is @samp{0b} or @samp{0B} followed by zero or more of
2484 the binary digits @samp{01}.
2485
2486 @cindex octal integers
2487 @cindex integers, octal
2488 An octal integer is @samp{0} followed by zero or more of the octal
2489 digits (@samp{01234567}).
2490
2491 @cindex decimal integers
2492 @cindex integers, decimal
2493 A decimal integer starts with a non-zero digit followed by zero or
2494 more digits (@samp{0123456789}).
2495
2496 @cindex hexadecimal integers
2497 @cindex integers, hexadecimal
2498 A hexadecimal integer is @samp{0x} or @samp{0X} followed by one or
2499 more hexadecimal digits chosen from @samp{0123456789abcdefABCDEF}.
2500
2501 Integers have the usual values. To denote a negative integer, use
2502 the prefix operator @samp{-} discussed under expressions
2503 (@pxref{Prefix Ops,,Prefix Operators}).
2504
2505 @node Bignums
2506 @subsubsection Bignums
2507
2508 @cindex bignums
2509 @cindex constants, bignum
2510 A @dfn{bignum} has the same syntax and semantics as an integer
2511 except that the number (or its negative) takes more than 32 bits to
2512 represent in binary. The distinction is made because in some places
2513 integers are permitted while bignums are not.
2514
2515 @node Flonums
2516 @subsubsection Flonums
2517 @cindex flonums
2518 @cindex floating point numbers
2519 @cindex constants, floating point
2520
2521 @cindex precision, floating point
2522 A @dfn{flonum} represents a floating point number. The translation is
2523 indirect: a decimal floating point number from the text is converted by
2524 @command{@value{AS}} to a generic binary floating point number of more than
2525 sufficient precision. This generic floating point number is converted
2526 to a particular computer's floating point format (or formats) by a
2527 portion of @command{@value{AS}} specialized to that computer.
2528
2529 A flonum is written by writing (in order)
2530 @itemize @bullet
2531 @item
2532 The digit @samp{0}.
2533 @ifset HPPA
2534 (@samp{0} is optional on the HPPA.)
2535 @end ifset
2536
2537 @item
2538 A letter, to tell @command{@value{AS}} the rest of the number is a flonum.
2539 @ifset GENERIC
2540 @kbd{e} is recommended. Case is not important.
2541 @ignore
2542 @c FIXME: verify if flonum syntax really this vague for most cases
2543 (Any otherwise illegal letter works here, but that might be changed. Vax BSD
2544 4.2 assembler seems to allow any of @samp{defghDEFGH}.)
2545 @end ignore
2546
2547 On the H8/300, Renesas / SuperH SH,
2548 and AMD 29K architectures, the letter must be
2549 one of the letters @samp{DFPRSX} (in upper or lower case).
2550
2551 On the ARC, the letter must be one of the letters @samp{DFRS}
2552 (in upper or lower case).
2553
2554 On the Intel 960 architecture, the letter must be
2555 one of the letters @samp{DFT} (in upper or lower case).
2556
2557 On the HPPA architecture, the letter must be @samp{E} (upper case only).
2558 @end ifset
2559 @ifclear GENERIC
2560 @ifset ARC
2561 One of the letters @samp{DFRS} (in upper or lower case).
2562 @end ifset
2563 @ifset H8
2564 One of the letters @samp{DFPRSX} (in upper or lower case).
2565 @end ifset
2566 @ifset HPPA
2567 The letter @samp{E} (upper case only).
2568 @end ifset
2569 @ifset I960
2570 One of the letters @samp{DFT} (in upper or lower case).
2571 @end ifset
2572 @end ifclear
2573
2574 @item
2575 An optional sign: either @samp{+} or @samp{-}.
2576
2577 @item
2578 An optional @dfn{integer part}: zero or more decimal digits.
2579
2580 @item
2581 An optional @dfn{fractional part}: @samp{.} followed by zero
2582 or more decimal digits.
2583
2584 @item
2585 An optional exponent, consisting of:
2586
2587 @itemize @bullet
2588 @item
2589 An @samp{E} or @samp{e}.
2590 @c I can't find a config where "EXP_CHARS" is other than 'eE', but in
2591 @c principle this can perfectly well be different on different targets.
2592 @item
2593 Optional sign: either @samp{+} or @samp{-}.
2594 @item
2595 One or more decimal digits.
2596 @end itemize
2597
2598 @end itemize
2599
2600 At least one of the integer part or the fractional part must be
2601 present. The floating point number has the usual base-10 value.
2602
2603 @command{@value{AS}} does all processing using integers. Flonums are computed
2604 independently of any floating point hardware in the computer running
2605 @command{@value{AS}}.
2606
2607 @ifclear GENERIC
2608 @ifset I960
2609 @c Bit fields are written as a general facility but are also controlled
2610 @c by a conditional-compilation flag---which is as of now (21mar91)
2611 @c turned on only by the i960 config of GAS.
2612 @node Bit Fields
2613 @subsubsection Bit Fields
2614
2615 @cindex bit fields
2616 @cindex constants, bit field
2617 You can also define numeric constants as @dfn{bit fields}.
2618 specify two numbers separated by a colon---
2619 @example
2620 @var{mask}:@var{value}
2621 @end example
2622 @noindent
2623 @command{@value{AS}} applies a bitwise @sc{and} between @var{mask} and
2624 @var{value}.
2625
2626 The resulting number is then packed
2627 @ifset GENERIC
2628 @c this conditional paren in case bit fields turned on elsewhere than 960
2629 (in host-dependent byte order)
2630 @end ifset
2631 into a field whose width depends on which assembler directive has the
2632 bit-field as its argument. Overflow (a result from the bitwise and
2633 requiring more binary digits to represent) is not an error; instead,
2634 more constants are generated, of the specified width, beginning with the
2635 least significant digits.@refill
2636
2637 The directives @code{.byte}, @code{.hword}, @code{.int}, @code{.long},
2638 @code{.short}, and @code{.word} accept bit-field arguments.
2639 @end ifset
2640 @end ifclear
2641
2642 @node Sections
2643 @chapter Sections and Relocation
2644 @cindex sections
2645 @cindex relocation
2646
2647 @menu
2648 * Secs Background:: Background
2649 * Ld Sections:: Linker Sections
2650 * As Sections:: Assembler Internal Sections
2651 * Sub-Sections:: Sub-Sections
2652 * bss:: bss Section
2653 @end menu
2654
2655 @node Secs Background
2656 @section Background
2657
2658 Roughly, a section is a range of addresses, with no gaps; all data
2659 ``in'' those addresses is treated the same for some particular purpose.
2660 For example there may be a ``read only'' section.
2661
2662 @cindex linker, and assembler
2663 @cindex assembler, and linker
2664 The linker @code{@value{LD}} reads many object files (partial programs) and
2665 combines their contents to form a runnable program. When @command{@value{AS}}
2666 emits an object file, the partial program is assumed to start at address 0.
2667 @code{@value{LD}} assigns the final addresses for the partial program, so that
2668 different partial programs do not overlap. This is actually an
2669 oversimplification, but it suffices to explain how @command{@value{AS}} uses
2670 sections.
2671
2672 @code{@value{LD}} moves blocks of bytes of your program to their run-time
2673 addresses. These blocks slide to their run-time addresses as rigid
2674 units; their length does not change and neither does the order of bytes
2675 within them. Such a rigid unit is called a @emph{section}. Assigning
2676 run-time addresses to sections is called @dfn{relocation}. It includes
2677 the task of adjusting mentions of object-file addresses so they refer to
2678 the proper run-time addresses.
2679 @ifset H8
2680 For the H8/300, and for the Renesas / SuperH SH,
2681 @command{@value{AS}} pads sections if needed to
2682 ensure they end on a word (sixteen bit) boundary.
2683 @end ifset
2684
2685 @cindex standard assembler sections
2686 An object file written by @command{@value{AS}} has at least three sections, any
2687 of which may be empty. These are named @dfn{text}, @dfn{data} and
2688 @dfn{bss} sections.
2689
2690 @ifset COFF-ELF
2691 @ifset GENERIC
2692 When it generates COFF or ELF output,
2693 @end ifset
2694 @command{@value{AS}} can also generate whatever other named sections you specify
2695 using the @samp{.section} directive (@pxref{Section,,@code{.section}}).
2696 If you do not use any directives that place output in the @samp{.text}
2697 or @samp{.data} sections, these sections still exist, but are empty.
2698 @end ifset
2699
2700 @ifset HPPA
2701 @ifset GENERIC
2702 When @command{@value{AS}} generates SOM or ELF output for the HPPA,
2703 @end ifset
2704 @command{@value{AS}} can also generate whatever other named sections you
2705 specify using the @samp{.space} and @samp{.subspace} directives. See
2706 @cite{HP9000 Series 800 Assembly Language Reference Manual}
2707 (HP 92432-90001) for details on the @samp{.space} and @samp{.subspace}
2708 assembler directives.
2709
2710 @ifset SOM
2711 Additionally, @command{@value{AS}} uses different names for the standard
2712 text, data, and bss sections when generating SOM output. Program text
2713 is placed into the @samp{$CODE$} section, data into @samp{$DATA$}, and
2714 BSS into @samp{$BSS$}.
2715 @end ifset
2716 @end ifset
2717
2718 Within the object file, the text section starts at address @code{0}, the
2719 data section follows, and the bss section follows the data section.
2720
2721 @ifset HPPA
2722 When generating either SOM or ELF output files on the HPPA, the text
2723 section starts at address @code{0}, the data section at address
2724 @code{0x4000000}, and the bss section follows the data section.
2725 @end ifset
2726
2727 To let @code{@value{LD}} know which data changes when the sections are
2728 relocated, and how to change that data, @command{@value{AS}} also writes to the
2729 object file details of the relocation needed. To perform relocation
2730 @code{@value{LD}} must know, each time an address in the object
2731 file is mentioned:
2732 @itemize @bullet
2733 @item
2734 Where in the object file is the beginning of this reference to
2735 an address?
2736 @item
2737 How long (in bytes) is this reference?
2738 @item
2739 Which section does the address refer to? What is the numeric value of
2740 @display
2741 (@var{address}) @minus{} (@var{start-address of section})?
2742 @end display
2743 @item
2744 Is the reference to an address ``Program-Counter relative''?
2745 @end itemize
2746
2747 @cindex addresses, format of
2748 @cindex section-relative addressing
2749 In fact, every address @command{@value{AS}} ever uses is expressed as
2750 @display
2751 (@var{section}) + (@var{offset into section})
2752 @end display
2753 @noindent
2754 Further, most expressions @command{@value{AS}} computes have this section-relative
2755 nature.
2756 @ifset SOM
2757 (For some object formats, such as SOM for the HPPA, some expressions are
2758 symbol-relative instead.)
2759 @end ifset
2760
2761 In this manual we use the notation @{@var{secname} @var{N}@} to mean ``offset
2762 @var{N} into section @var{secname}.''
2763
2764 Apart from text, data and bss sections you need to know about the
2765 @dfn{absolute} section. When @code{@value{LD}} mixes partial programs,
2766 addresses in the absolute section remain unchanged. For example, address
2767 @code{@{absolute 0@}} is ``relocated'' to run-time address 0 by
2768 @code{@value{LD}}. Although the linker never arranges two partial programs'
2769 data sections with overlapping addresses after linking, @emph{by definition}
2770 their absolute sections must overlap. Address @code{@{absolute@ 239@}} in one
2771 part of a program is always the same address when the program is running as
2772 address @code{@{absolute@ 239@}} in any other part of the program.
2773
2774 The idea of sections is extended to the @dfn{undefined} section. Any
2775 address whose section is unknown at assembly time is by definition
2776 rendered @{undefined @var{U}@}---where @var{U} is filled in later.
2777 Since numbers are always defined, the only way to generate an undefined
2778 address is to mention an undefined symbol. A reference to a named
2779 common block would be such a symbol: its value is unknown at assembly
2780 time so it has section @emph{undefined}.
2781
2782 By analogy the word @emph{section} is used to describe groups of sections in
2783 the linked program. @code{@value{LD}} puts all partial programs' text
2784 sections in contiguous addresses in the linked program. It is
2785 customary to refer to the @emph{text section} of a program, meaning all
2786 the addresses of all partial programs' text sections. Likewise for
2787 data and bss sections.
2788
2789 Some sections are manipulated by @code{@value{LD}}; others are invented for
2790 use of @command{@value{AS}} and have no meaning except during assembly.
2791
2792 @node Ld Sections
2793 @section Linker Sections
2794 @code{@value{LD}} deals with just four kinds of sections, summarized below.
2795
2796 @table @strong
2797
2798 @ifset COFF-ELF
2799 @cindex named sections
2800 @cindex sections, named
2801 @item named sections
2802 @end ifset
2803 @ifset aout-bout
2804 @cindex text section
2805 @cindex data section
2806 @itemx text section
2807 @itemx data section
2808 @end ifset
2809 These sections hold your program. @command{@value{AS}} and @code{@value{LD}} treat them as
2810 separate but equal sections. Anything you can say of one section is
2811 true of another.
2812 @c @ifset aout-bout
2813 When the program is running, however, it is
2814 customary for the text section to be unalterable. The
2815 text section is often shared among processes: it contains
2816 instructions, constants and the like. The data section of a running
2817 program is usually alterable: for example, C variables would be stored
2818 in the data section.
2819 @c @end ifset
2820
2821 @cindex bss section
2822 @item bss section
2823 This section contains zeroed bytes when your program begins running. It
2824 is used to hold uninitialized variables or common storage. The length of
2825 each partial program's bss section is important, but because it starts
2826 out containing zeroed bytes there is no need to store explicit zero
2827 bytes in the object file. The bss section was invented to eliminate
2828 those explicit zeros from object files.
2829
2830 @cindex absolute section
2831 @item absolute section
2832 Address 0 of this section is always ``relocated'' to runtime address 0.
2833 This is useful if you want to refer to an address that @code{@value{LD}} must
2834 not change when relocating. In this sense we speak of absolute
2835 addresses being ``unrelocatable'': they do not change during relocation.
2836
2837 @cindex undefined section
2838 @item undefined section
2839 This ``section'' is a catch-all for address references to objects not in
2840 the preceding sections.
2841 @c FIXME: ref to some other doc on obj-file formats could go here.
2842 @end table
2843
2844 @cindex relocation example
2845 An idealized example of three relocatable sections follows.
2846 @ifset COFF-ELF
2847 The example uses the traditional section names @samp{.text} and @samp{.data}.
2848 @end ifset
2849 Memory addresses are on the horizontal axis.
2850
2851 @c TEXI2ROFF-KILL
2852 @ifnottex
2853 @c END TEXI2ROFF-KILL
2854 @smallexample
2855 +-----+----+--+
2856 partial program # 1: |ttttt|dddd|00|
2857 +-----+----+--+
2858
2859 text data bss
2860 seg. seg. seg.
2861
2862 +---+---+---+
2863 partial program # 2: |TTT|DDD|000|
2864 +---+---+---+
2865
2866 +--+---+-----+--+----+---+-----+~~
2867 linked program: | |TTT|ttttt| |dddd|DDD|00000|
2868 +--+---+-----+--+----+---+-----+~~
2869
2870 addresses: 0 @dots{}
2871 @end smallexample
2872 @c TEXI2ROFF-KILL
2873 @end ifnottex
2874 @need 5000
2875 @tex
2876 \bigskip
2877 \line{\it Partial program \#1: \hfil}
2878 \line{\ibox{2.5cm}{\tt text}\ibox{2cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
2879 \line{\boxit{2.5cm}{\tt ttttt}\boxit{2cm}{\tt dddd}\boxit{1cm}{\tt 00}\hfil}
2880
2881 \line{\it Partial program \#2: \hfil}
2882 \line{\ibox{1cm}{\tt text}\ibox{1.5cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
2883 \line{\boxit{1cm}{\tt TTT}\boxit{1.5cm}{\tt DDDD}\boxit{1cm}{\tt 000}\hfil}
2884
2885 \line{\it linked program: \hfil}
2886 \line{\ibox{.5cm}{}\ibox{1cm}{\tt text}\ibox{2.5cm}{}\ibox{.75cm}{}\ibox{2cm}{\tt data}\ibox{1.5cm}{}\ibox{2cm}{\tt bss}\hfil}
2887 \line{\boxit{.5cm}{}\boxit{1cm}{\tt TTT}\boxit{2.5cm}{\tt
2888 ttttt}\boxit{.75cm}{}\boxit{2cm}{\tt dddd}\boxit{1.5cm}{\tt
2889 DDDD}\boxit{2cm}{\tt 00000}\ \dots\hfil}
2890
2891 \line{\it addresses: \hfil}
2892 \line{0\dots\hfil}
2893
2894 @end tex
2895 @c END TEXI2ROFF-KILL
2896
2897 @node As Sections
2898 @section Assembler Internal Sections
2899
2900 @cindex internal assembler sections
2901 @cindex sections in messages, internal
2902 These sections are meant only for the internal use of @command{@value{AS}}. They
2903 have no meaning at run-time. You do not really need to know about these
2904 sections for most purposes; but they can be mentioned in @command{@value{AS}}
2905 warning messages, so it might be helpful to have an idea of their
2906 meanings to @command{@value{AS}}. These sections are used to permit the
2907 value of every expression in your assembly language program to be a
2908 section-relative address.
2909
2910 @table @b
2911 @cindex assembler internal logic error
2912 @item ASSEMBLER-INTERNAL-LOGIC-ERROR!
2913 An internal assembler logic error has been found. This means there is a
2914 bug in the assembler.
2915
2916 @cindex expr (internal section)
2917 @item expr section
2918 The assembler stores complex expression internally as combinations of
2919 symbols. When it needs to represent an expression as a symbol, it puts
2920 it in the expr section.
2921 @c FIXME item debug
2922 @c FIXME item transfer[t] vector preload
2923 @c FIXME item transfer[t] vector postload
2924 @c FIXME item register
2925 @end table
2926
2927 @node Sub-Sections
2928 @section Sub-Sections
2929
2930 @cindex numbered subsections
2931 @cindex grouping data
2932 @ifset aout-bout
2933 Assembled bytes
2934 @ifset COFF-ELF
2935 conventionally
2936 @end ifset
2937 fall into two sections: text and data.
2938 @end ifset
2939 You may have separate groups of
2940 @ifset GENERIC
2941 data in named sections
2942 @end ifset
2943 @ifclear GENERIC
2944 @ifclear aout-bout
2945 data in named sections
2946 @end ifclear
2947 @ifset aout-bout
2948 text or data
2949 @end ifset
2950 @end ifclear
2951 that you want to end up near to each other in the object file, even though they
2952 are not contiguous in the assembler source. @command{@value{AS}} allows you to
2953 use @dfn{subsections} for this purpose. Within each section, there can be
2954 numbered subsections with values from 0 to 8192. Objects assembled into the
2955 same subsection go into the object file together with other objects in the same
2956 subsection. For example, a compiler might want to store constants in the text
2957 section, but might not want to have them interspersed with the program being
2958 assembled. In this case, the compiler could issue a @samp{.text 0} before each
2959 section of code being output, and a @samp{.text 1} before each group of
2960 constants being output.
2961
2962 Subsections are optional. If you do not use subsections, everything
2963 goes in subsection number zero.
2964
2965 @ifset GENERIC
2966 Each subsection is zero-padded up to a multiple of four bytes.
2967 (Subsections may be padded a different amount on different flavors
2968 of @command{@value{AS}}.)
2969 @end ifset
2970 @ifclear GENERIC
2971 @ifset H8
2972 On the H8/300 platform, each subsection is zero-padded to a word
2973 boundary (two bytes).
2974 The same is true on the Renesas SH.
2975 @end ifset
2976 @ifset I960
2977 @c FIXME section padding (alignment)?
2978 @c Rich Pixley says padding here depends on target obj code format; that
2979 @c doesn't seem particularly useful to say without further elaboration,
2980 @c so for now I say nothing about it. If this is a generic BFD issue,
2981 @c these paragraphs might need to vanish from this manual, and be
2982 @c discussed in BFD chapter of binutils (or some such).
2983 @end ifset
2984 @end ifclear
2985
2986 Subsections appear in your object file in numeric order, lowest numbered
2987 to highest. (All this to be compatible with other people's assemblers.)
2988 The object file contains no representation of subsections; @code{@value{LD}} and
2989 other programs that manipulate object files see no trace of them.
2990 They just see all your text subsections as a text section, and all your
2991 data subsections as a data section.
2992
2993 To specify which subsection you want subsequent statements assembled
2994 into, use a numeric argument to specify it, in a @samp{.text
2995 @var{expression}} or a @samp{.data @var{expression}} statement.
2996 @ifset COFF
2997 @ifset GENERIC
2998 When generating COFF output, you
2999 @end ifset
3000 @ifclear GENERIC
3001 You
3002 @end ifclear
3003 can also use an extra subsection
3004 argument with arbitrary named sections: @samp{.section @var{name},
3005 @var{expression}}.
3006 @end ifset
3007 @ifset ELF
3008 @ifset GENERIC
3009 When generating ELF output, you
3010 @end ifset
3011 @ifclear GENERIC
3012 You
3013 @end ifclear
3014 can also use the @code{.subsection} directive (@pxref{SubSection})
3015 to specify a subsection: @samp{.subsection @var{expression}}.
3016 @end ifset
3017 @var{Expression} should be an absolute expression.
3018 (@xref{Expressions}.) If you just say @samp{.text} then @samp{.text 0}
3019 is assumed. Likewise @samp{.data} means @samp{.data 0}. Assembly
3020 begins in @code{text 0}. For instance:
3021 @smallexample
3022 .text 0 # The default subsection is text 0 anyway.
3023 .ascii "This lives in the first text subsection. *"
3024 .text 1
3025 .ascii "But this lives in the second text subsection."
3026 .data 0
3027 .ascii "This lives in the data section,"
3028 .ascii "in the first data subsection."
3029 .text 0
3030 .ascii "This lives in the first text section,"
3031 .ascii "immediately following the asterisk (*)."
3032 @end smallexample
3033
3034 Each section has a @dfn{location counter} incremented by one for every byte
3035 assembled into that section. Because subsections are merely a convenience
3036 restricted to @command{@value{AS}} there is no concept of a subsection location
3037 counter. There is no way to directly manipulate a location counter---but the
3038 @code{.align} directive changes it, and any label definition captures its
3039 current value. The location counter of the section where statements are being
3040 assembled is said to be the @dfn{active} location counter.
3041
3042 @node bss
3043 @section bss Section
3044
3045 @cindex bss section
3046 @cindex common variable storage
3047 The bss section is used for local common variable storage.
3048 You may allocate address space in the bss section, but you may
3049 not dictate data to load into it before your program executes. When
3050 your program starts running, all the contents of the bss
3051 section are zeroed bytes.
3052
3053 The @code{.lcomm} pseudo-op defines a symbol in the bss section; see
3054 @ref{Lcomm,,@code{.lcomm}}.
3055
3056 The @code{.comm} pseudo-op may be used to declare a common symbol, which is
3057 another form of uninitialized symbol; see @xref{Comm,,@code{.comm}}.
3058
3059 @ifset GENERIC
3060 When assembling for a target which supports multiple sections, such as ELF or
3061 COFF, you may switch into the @code{.bss} section and define symbols as usual;
3062 see @ref{Section,,@code{.section}}. You may only assemble zero values into the
3063 section. Typically the section will only contain symbol definitions and
3064 @code{.skip} directives (@pxref{Skip,,@code{.skip}}).
3065 @end ifset
3066
3067 @node Symbols
3068 @chapter Symbols
3069
3070 @cindex symbols
3071 Symbols are a central concept: the programmer uses symbols to name
3072 things, the linker uses symbols to link, and the debugger uses symbols
3073 to debug.
3074
3075 @quotation
3076 @cindex debuggers, and symbol order
3077 @emph{Warning:} @command{@value{AS}} does not place symbols in the object file in
3078 the same order they were declared. This may break some debuggers.
3079 @end quotation
3080
3081 @menu
3082 * Labels:: Labels
3083 * Setting Symbols:: Giving Symbols Other Values
3084 * Symbol Names:: Symbol Names
3085 * Dot:: The Special Dot Symbol
3086 * Symbol Attributes:: Symbol Attributes
3087 @end menu
3088
3089 @node Labels
3090 @section Labels
3091
3092 @cindex labels
3093 A @dfn{label} is written as a symbol immediately followed by a colon
3094 @samp{:}. The symbol then represents the current value of the
3095 active location counter, and is, for example, a suitable instruction
3096 operand. You are warned if you use the same symbol to represent two
3097 different locations: the first definition overrides any other
3098 definitions.
3099
3100 @ifset HPPA
3101 On the HPPA, the usual form for a label need not be immediately followed by a
3102 colon, but instead must start in column zero. Only one label may be defined on
3103 a single line. To work around this, the HPPA version of @command{@value{AS}} also
3104 provides a special directive @code{.label} for defining labels more flexibly.
3105 @end ifset
3106
3107 @node Setting Symbols
3108 @section Giving Symbols Other Values
3109
3110 @cindex assigning values to symbols
3111 @cindex symbol values, assigning
3112 A symbol can be given an arbitrary value by writing a symbol, followed
3113 by an equals sign @samp{=}, followed by an expression
3114 (@pxref{Expressions}). This is equivalent to using the @code{.set}
3115 directive. @xref{Set,,@code{.set}}.
3116
3117 @node Symbol Names
3118 @section Symbol Names
3119
3120 @cindex symbol names
3121 @cindex names, symbol
3122 @ifclear SPECIAL-SYMS
3123 Symbol names begin with a letter or with one of @samp{._}. On most
3124 machines, you can also use @code{$} in symbol names; exceptions are
3125 noted in @ref{Machine Dependencies}. That character may be followed by any
3126 string of digits, letters, dollar signs (unless otherwise noted in
3127 @ref{Machine Dependencies}), and underscores.
3128 @end ifclear
3129 @ifset SPECIAL-SYMS
3130 @ifset H8
3131 Symbol names begin with a letter or with one of @samp{._}. On the
3132 Renesas SH you can also use @code{$} in symbol names. That
3133 character may be followed by any string of digits, letters, dollar signs (save
3134 on the H8/300), and underscores.
3135 @end ifset
3136 @end ifset
3137
3138 Case of letters is significant: @code{foo} is a different symbol name
3139 than @code{Foo}.
3140
3141 Each symbol has exactly one name. Each name in an assembly language program
3142 refers to exactly one symbol. You may use that symbol name any number of times
3143 in a program.
3144
3145 @subheading Local Symbol Names
3146
3147 @cindex local symbol names
3148 @cindex symbol names, local
3149 @cindex temporary symbol names
3150 @cindex symbol names, temporary
3151 Local symbols help compilers and programmers use names temporarily.
3152 They create symbols which are guaranteed to be unique over the entire scope of
3153 the input source code and which can be referred to by a simple notation.
3154 To define a local symbol, write a label of the form @samp{@b{N}:} (where @b{N}
3155 represents any positive integer). To refer to the most recent previous
3156 definition of that symbol write @samp{@b{N}b}, using the same number as when
3157 you defined the label. To refer to the next definition of a local label, write
3158 @samp{@b{N}f}--- The @samp{b} stands for``backwards'' and the @samp{f} stands
3159 for ``forwards''.
3160
3161 There is no restriction on how you can use these labels, and you can reuse them
3162 too. So that it is possible to repeatedly define the same local label (using
3163 the same number @samp{@b{N}}), although you can only refer to the most recently
3164 defined local label of that number (for a backwards reference) or the next
3165 definition of a specific local label for a forward reference. It is also worth
3166 noting that the first 10 local labels (@samp{@b{0:}}@dots{}@samp{@b{9:}}) are
3167 implemented in a slightly more efficient manner than the others.
3168
3169 Here is an example:
3170
3171 @smallexample
3172 1: branch 1f
3173 2: branch 1b
3174 1: branch 2f
3175 2: branch 1b
3176 @end smallexample
3177
3178 Which is the equivalent of:
3179
3180 @smallexample
3181 label_1: branch label_3
3182 label_2: branch label_1
3183 label_3: branch label_4
3184 label_4: branch label_3
3185 @end smallexample
3186
3187 Local symbol names are only a notational device. They are immediately
3188 transformed into more conventional symbol names before the assembler uses them.
3189 The symbol names stored in the symbol table, appearing in error messages and
3190 optionally emitted to the object file. The names are constructed using these
3191 parts:
3192
3193 @table @code
3194 @item L
3195 All local labels begin with @samp{L}. Normally both @command{@value{AS}} and
3196 @code{@value{LD}} forget symbols that start with @samp{L}. These labels are
3197 used for symbols you are never intended to see. If you use the
3198 @samp{-L} option then @command{@value{AS}} retains these symbols in the
3199 object file. If you also instruct @code{@value{LD}} to retain these symbols,
3200 you may use them in debugging.
3201
3202 @item @var{number}
3203 This is the number that was used in the local label definition. So if the
3204 label is written @samp{55:} then the number is @samp{55}.
3205
3206 @item @kbd{C-B}
3207 This unusual character is included so you do not accidentally invent a symbol
3208 of the same name. The character has ASCII value of @samp{\002} (control-B).
3209
3210 @item @emph{ordinal number}
3211 This is a serial number to keep the labels distinct. The first definition of
3212 @samp{0:} gets the number @samp{1}. The 15th definition of @samp{0:} gets the
3213 number @samp{15}, and so on. Likewise the first definition of @samp{1:} gets
3214 the number @samp{1} and its 15th defintion gets @samp{15} as well.
3215 @end table
3216
3217 So for example, the first @code{1:} is named @code{L1@kbd{C-B}1}, the 44th
3218 @code{3:} is named @code{L3@kbd{C-B}44}.
3219
3220 @subheading Dollar Local Labels
3221 @cindex dollar local symbols
3222
3223 @code{@value{AS}} also supports an even more local form of local labels called
3224 dollar labels. These labels go out of scope (ie they become undefined) as soon
3225 as a non-local label is defined. Thus they remain valid for only a small
3226 region of the input source code. Normal local labels, by contrast, remain in
3227 scope for the entire file, or until they are redefined by another occurrence of
3228 the same local label.
3229
3230 Dollar labels are defined in exactly the same way as ordinary local labels,
3231 except that instead of being terminated by a colon, they are terminated by a
3232 dollar sign. eg @samp{@b{55$}}.
3233
3234 They can also be distinguished from ordinary local labels by their transformed
3235 name which uses ASCII character @samp{\001} (control-A) as the magic character
3236 to distinguish them from ordinary labels. Thus the 5th defintion of @samp{6$}
3237 is named @samp{L6@kbd{C-A}5}.
3238
3239 @node Dot
3240 @section The Special Dot Symbol
3241
3242 @cindex dot (symbol)
3243 @cindex @code{.} (symbol)
3244 @cindex current address
3245 @cindex location counter
3246 The special symbol @samp{.} refers to the current address that
3247 @command{@value{AS}} is assembling into. Thus, the expression @samp{melvin:
3248 .long .} defines @code{melvin} to contain its own address.
3249 Assigning a value to @code{.} is treated the same as a @code{.org}
3250 directive. Thus, the expression @samp{.=.+4} is the same as saying
3251 @ifclear no-space-dir
3252 @samp{.space 4}.
3253 @end ifclear
3254
3255 @node Symbol Attributes
3256 @section Symbol Attributes
3257
3258 @cindex symbol attributes
3259 @cindex attributes, symbol
3260 Every symbol has, as well as its name, the attributes ``Value'' and
3261 ``Type''. Depending on output format, symbols can also have auxiliary
3262 attributes.
3263 @ifset INTERNALS
3264 The detailed definitions are in @file{a.out.h}.
3265 @end ifset
3266
3267 If you use a symbol without defining it, @command{@value{AS}} assumes zero for
3268 all these attributes, and probably won't warn you. This makes the
3269 symbol an externally defined symbol, which is generally what you
3270 would want.
3271
3272 @menu
3273 * Symbol Value:: Value
3274 * Symbol Type:: Type
3275 @ifset aout-bout
3276 @ifset GENERIC
3277 * a.out Symbols:: Symbol Attributes: @code{a.out}
3278 @end ifset
3279 @ifclear GENERIC
3280 @ifclear BOUT
3281 * a.out Symbols:: Symbol Attributes: @code{a.out}
3282 @end ifclear
3283 @ifset BOUT
3284 * a.out Symbols:: Symbol Attributes: @code{a.out}, @code{b.out}
3285 @end ifset
3286 @end ifclear
3287 @end ifset
3288 @ifset COFF
3289 * COFF Symbols:: Symbol Attributes for COFF
3290 @end ifset
3291 @ifset SOM
3292 * SOM Symbols:: Symbol Attributes for SOM
3293 @end ifset
3294 @end menu
3295
3296 @node Symbol Value
3297 @subsection Value
3298
3299 @cindex value of a symbol
3300 @cindex symbol value
3301 The value of a symbol is (usually) 32 bits. For a symbol which labels a
3302 location in the text, data, bss or absolute sections the value is the
3303 number of addresses from the start of that section to the label.
3304 Naturally for text, data and bss sections the value of a symbol changes
3305 as @code{@value{LD}} changes section base addresses during linking. Absolute
3306 symbols' values do not change during linking: that is why they are
3307 called absolute.
3308
3309 The value of an undefined symbol is treated in a special way. If it is
3310 0 then the symbol is not defined in this assembler source file, and
3311 @code{@value{LD}} tries to determine its value from other files linked into the
3312 same program. You make this kind of symbol simply by mentioning a symbol
3313 name without defining it. A non-zero value represents a @code{.comm}
3314 common declaration. The value is how much common storage to reserve, in
3315 bytes (addresses). The symbol refers to the first address of the
3316 allocated storage.
3317
3318 @node Symbol Type
3319 @subsection Type
3320
3321 @cindex type of a symbol
3322 @cindex symbol type
3323 The type attribute of a symbol contains relocation (section)
3324 information, any flag settings indicating that a symbol is external, and
3325 (optionally), other information for linkers and debuggers. The exact
3326 format depends on the object-code output format in use.
3327
3328 @ifset aout-bout
3329 @ifclear GENERIC
3330 @ifset BOUT
3331 @c The following avoids a "widow" subsection title. @group would be
3332 @c better if it were available outside examples.
3333 @need 1000
3334 @node a.out Symbols
3335 @subsection Symbol Attributes: @code{a.out}, @code{b.out}
3336
3337 @cindex @code{b.out} symbol attributes
3338 @cindex symbol attributes, @code{b.out}
3339 These symbol attributes appear only when @command{@value{AS}} is configured for
3340 one of the Berkeley-descended object output formats---@code{a.out} or
3341 @code{b.out}.
3342
3343 @end ifset
3344 @ifclear BOUT
3345 @node a.out Symbols
3346 @subsection Symbol Attributes: @code{a.out}
3347
3348 @cindex @code{a.out} symbol attributes
3349 @cindex symbol attributes, @code{a.out}
3350
3351 @end ifclear
3352 @end ifclear
3353 @ifset GENERIC
3354 @node a.out Symbols
3355 @subsection Symbol Attributes: @code{a.out}
3356
3357 @cindex @code{a.out} symbol attributes
3358 @cindex symbol attributes, @code{a.out}
3359
3360 @end ifset
3361 @menu
3362 * Symbol Desc:: Descriptor
3363 * Symbol Other:: Other
3364 @end menu
3365
3366 @node Symbol Desc
3367 @subsubsection Descriptor
3368
3369 @cindex descriptor, of @code{a.out} symbol
3370 This is an arbitrary 16-bit value. You may establish a symbol's
3371 descriptor value by using a @code{.desc} statement
3372 (@pxref{Desc,,@code{.desc}}). A descriptor value means nothing to
3373 @command{@value{AS}}.
3374
3375 @node Symbol Other
3376 @subsubsection Other
3377
3378 @cindex other attribute, of @code{a.out} symbol
3379 This is an arbitrary 8-bit value. It means nothing to @command{@value{AS}}.
3380 @end ifset
3381
3382 @ifset COFF
3383 @node COFF Symbols
3384 @subsection Symbol Attributes for COFF
3385
3386 @cindex COFF symbol attributes
3387 @cindex symbol attributes, COFF
3388
3389 The COFF format supports a multitude of auxiliary symbol attributes;
3390 like the primary symbol attributes, they are set between @code{.def} and
3391 @code{.endef} directives.
3392
3393 @subsubsection Primary Attributes
3394
3395 @cindex primary attributes, COFF symbols
3396 The symbol name is set with @code{.def}; the value and type,
3397 respectively, with @code{.val} and @code{.type}.
3398
3399 @subsubsection Auxiliary Attributes
3400
3401 @cindex auxiliary attributes, COFF symbols
3402 The @command{@value{AS}} directives @code{.dim}, @code{.line}, @code{.scl},
3403 @code{.size}, @code{.tag}, and @code{.weak} can generate auxiliary symbol
3404 table information for COFF.
3405 @end ifset
3406
3407 @ifset SOM
3408 @node SOM Symbols
3409 @subsection Symbol Attributes for SOM
3410
3411 @cindex SOM symbol attributes
3412 @cindex symbol attributes, SOM
3413
3414 The SOM format for the HPPA supports a multitude of symbol attributes set with
3415 the @code{.EXPORT} and @code{.IMPORT} directives.
3416
3417 The attributes are described in @cite{HP9000 Series 800 Assembly
3418 Language Reference Manual} (HP 92432-90001) under the @code{IMPORT} and
3419 @code{EXPORT} assembler directive documentation.
3420 @end ifset
3421
3422 @node Expressions
3423 @chapter Expressions
3424
3425 @cindex expressions
3426 @cindex addresses
3427 @cindex numeric values
3428 An @dfn{expression} specifies an address or numeric value.
3429 Whitespace may precede and/or follow an expression.
3430
3431 The result of an expression must be an absolute number, or else an offset into
3432 a particular section. If an expression is not absolute, and there is not
3433 enough information when @command{@value{AS}} sees the expression to know its
3434 section, a second pass over the source program might be necessary to interpret
3435 the expression---but the second pass is currently not implemented.
3436 @command{@value{AS}} aborts with an error message in this situation.
3437
3438 @menu
3439 * Empty Exprs:: Empty Expressions
3440 * Integer Exprs:: Integer Expressions
3441 @end menu
3442
3443 @node Empty Exprs
3444 @section Empty Expressions
3445
3446 @cindex empty expressions
3447 @cindex expressions, empty
3448 An empty expression has no value: it is just whitespace or null.
3449 Wherever an absolute expression is required, you may omit the
3450 expression, and @command{@value{AS}} assumes a value of (absolute) 0. This
3451 is compatible with other assemblers.
3452
3453 @node Integer Exprs
3454 @section Integer Expressions
3455
3456 @cindex integer expressions
3457 @cindex expressions, integer
3458 An @dfn{integer expression} is one or more @emph{arguments} delimited
3459 by @emph{operators}.
3460
3461 @menu
3462 * Arguments:: Arguments
3463 * Operators:: Operators
3464 * Prefix Ops:: Prefix Operators
3465 * Infix Ops:: Infix Operators
3466 @end menu
3467
3468 @node Arguments
3469 @subsection Arguments
3470
3471 @cindex expression arguments
3472 @cindex arguments in expressions
3473 @cindex operands in expressions
3474 @cindex arithmetic operands
3475 @dfn{Arguments} are symbols, numbers or subexpressions. In other
3476 contexts arguments are sometimes called ``arithmetic operands''. In
3477 this manual, to avoid confusing them with the ``instruction operands'' of
3478 the machine language, we use the term ``argument'' to refer to parts of
3479 expressions only, reserving the word ``operand'' to refer only to machine
3480 instruction operands.
3481
3482 Symbols are evaluated to yield @{@var{section} @var{NNN}@} where
3483 @var{section} is one of text, data, bss, absolute,
3484 or undefined. @var{NNN} is a signed, 2's complement 32 bit
3485 integer.
3486
3487 Numbers are usually integers.
3488
3489 A number can be a flonum or bignum. In this case, you are warned
3490 that only the low order 32 bits are used, and @command{@value{AS}} pretends
3491 these 32 bits are an integer. You may write integer-manipulating
3492 instructions that act on exotic constants, compatible with other
3493 assemblers.
3494
3495 @cindex subexpressions
3496 Subexpressions are a left parenthesis @samp{(} followed by an integer
3497 expression, followed by a right parenthesis @samp{)}; or a prefix
3498 operator followed by an argument.
3499
3500 @node Operators
3501 @subsection Operators
3502
3503 @cindex operators, in expressions
3504 @cindex arithmetic functions
3505 @cindex functions, in expressions
3506 @dfn{Operators} are arithmetic functions, like @code{+} or @code{%}. Prefix
3507 operators are followed by an argument. Infix operators appear
3508 between their arguments. Operators may be preceded and/or followed by
3509 whitespace.
3510
3511 @node Prefix Ops
3512 @subsection Prefix Operator
3513
3514 @cindex prefix operators
3515 @command{@value{AS}} has the following @dfn{prefix operators}. They each take
3516 one argument, which must be absolute.
3517
3518 @c the tex/end tex stuff surrounding this small table is meant to make
3519 @c it align, on the printed page, with the similar table in the next
3520 @c section (which is inside an enumerate).
3521 @tex
3522 \global\advance\leftskip by \itemindent
3523 @end tex
3524
3525 @table @code
3526 @item -
3527 @dfn{Negation}. Two's complement negation.
3528 @item ~
3529 @dfn{Complementation}. Bitwise not.
3530 @end table
3531
3532 @tex
3533 \global\advance\leftskip by -\itemindent
3534 @end tex
3535
3536 @node Infix Ops
3537 @subsection Infix Operators
3538
3539 @cindex infix operators
3540 @cindex operators, permitted arguments
3541 @dfn{Infix operators} take two arguments, one on either side. Operators
3542 have precedence, but operations with equal precedence are performed left
3543 to right. Apart from @code{+} or @option{-}, both arguments must be
3544 absolute, and the result is absolute.
3545
3546 @enumerate
3547 @cindex operator precedence
3548 @cindex precedence of operators
3549
3550 @item
3551 Highest Precedence
3552
3553 @table @code
3554 @item *
3555 @dfn{Multiplication}.
3556
3557 @item /
3558 @dfn{Division}. Truncation is the same as the C operator @samp{/}
3559
3560 @item %
3561 @dfn{Remainder}.
3562
3563 @item <
3564 @itemx <<
3565 @dfn{Shift Left}. Same as the C operator @samp{<<}.
3566
3567 @item >
3568 @itemx >>
3569 @dfn{Shift Right}. Same as the C operator @samp{>>}.
3570 @end table
3571
3572 @item
3573 Intermediate precedence
3574
3575 @table @code
3576 @item |
3577
3578 @dfn{Bitwise Inclusive Or}.
3579
3580 @item &
3581 @dfn{Bitwise And}.
3582
3583 @item ^
3584 @dfn{Bitwise Exclusive Or}.
3585
3586 @item !
3587 @dfn{Bitwise Or Not}.
3588 @end table
3589
3590 @item
3591 Low Precedence
3592
3593 @table @code
3594 @cindex addition, permitted arguments
3595 @cindex plus, permitted arguments
3596 @cindex arguments for addition
3597 @item +
3598 @dfn{Addition}. If either argument is absolute, the result has the section of
3599 the other argument. You may not add together arguments from different
3600 sections.
3601
3602 @cindex subtraction, permitted arguments
3603 @cindex minus, permitted arguments
3604 @cindex arguments for subtraction
3605 @item -
3606 @dfn{Subtraction}. If the right argument is absolute, the
3607 result has the section of the left argument.
3608 If both arguments are in the same section, the result is absolute.
3609 You may not subtract arguments from different sections.
3610 @c FIXME is there still something useful to say about undefined - undefined ?
3611
3612 @cindex comparison expressions
3613 @cindex expressions, comparison
3614 @item ==
3615 @dfn{Is Equal To}
3616 @item <>
3617 @dfn{Is Not Equal To}
3618 @item <
3619 @dfn{Is Less Than}
3620 @itemx >
3621 @dfn{Is Greater Than}
3622 @itemx >=
3623 @dfn{Is Greater Than Or Equal To}
3624 @itemx <=
3625 @dfn{Is Less Than Or Equal To}
3626
3627 The comparison operators can be used as infix operators. A true results has a
3628 value of -1 whereas a false result has a value of 0. Note, these operators
3629 perform signed comparisons.
3630 @end table
3631
3632 @item Lowest Precedence
3633
3634 @table @code
3635 @item &&
3636 @dfn{Logical And}.
3637
3638 @item ||
3639 @dfn{Logical Or}.
3640
3641 These two logical operations can be used to combine the results of sub
3642 expressions. Note, unlike the comparison operators a true result returns a
3643 value of 1 but a false results does still return 0. Also note that the logical
3644 or operator has a slightly lower precedence than logical and.
3645
3646 @end table
3647 @end enumerate
3648
3649 In short, it's only meaningful to add or subtract the @emph{offsets} in an
3650 address; you can only have a defined section in one of the two arguments.
3651
3652 @node Pseudo Ops
3653 @chapter Assembler Directives
3654
3655 @cindex directives, machine independent
3656 @cindex pseudo-ops, machine independent
3657 @cindex machine independent directives
3658 All assembler directives have names that begin with a period (@samp{.}).
3659 The rest of the name is letters, usually in lower case.
3660
3661 This chapter discusses directives that are available regardless of the
3662 target machine configuration for the @sc{gnu} assembler.
3663 @ifset GENERIC
3664 Some machine configurations provide additional directives.
3665 @xref{Machine Dependencies}.
3666 @end ifset
3667 @ifclear GENERIC
3668 @ifset machine-directives
3669 @xref{Machine Dependencies} for additional directives.
3670 @end ifset
3671 @end ifclear
3672
3673 @menu
3674 * Abort:: @code{.abort}
3675 @ifset COFF
3676 * ABORT:: @code{.ABORT}
3677 @end ifset
3678
3679 * Align:: @code{.align @var{abs-expr} , @var{abs-expr}}
3680 * Altmacro:: @code{.altmacro}
3681 * Ascii:: @code{.ascii "@var{string}"}@dots{}
3682 * Asciz:: @code{.asciz "@var{string}"}@dots{}
3683 * Balign:: @code{.balign @var{abs-expr} , @var{abs-expr}}
3684 * Byte:: @code{.byte @var{expressions}}
3685 * Comm:: @code{.comm @var{symbol} , @var{length} }
3686
3687 * CFI directives:: @code{.cfi_startproc}, @code{.cfi_endproc}, etc.
3688
3689 * Data:: @code{.data @var{subsection}}
3690 @ifset COFF
3691 * Def:: @code{.def @var{name}}
3692 @end ifset
3693 @ifset aout-bout
3694 * Desc:: @code{.desc @var{symbol}, @var{abs-expression}}
3695 @end ifset
3696 @ifset COFF
3697 * Dim:: @code{.dim}
3698 @end ifset
3699
3700 * Double:: @code{.double @var{flonums}}
3701 * Eject:: @code{.eject}
3702 * Else:: @code{.else}
3703 * Elseif:: @code{.elseif}
3704 * End:: @code{.end}
3705 @ifset COFF
3706 * Endef:: @code{.endef}
3707 @end ifset
3708
3709 * Endfunc:: @code{.endfunc}
3710 * Endif:: @code{.endif}
3711 * Equ:: @code{.equ @var{symbol}, @var{expression}}
3712 * Equiv:: @code{.equiv @var{symbol}, @var{expression}}
3713 * Err:: @code{.err}
3714 * Error:: @code{.error @var{string}}
3715 * Exitm:: @code{.exitm}
3716 * Extern:: @code{.extern}
3717 * Fail:: @code{.fail}
3718 @ifclear no-file-dir
3719 * File:: @code{.file @var{string}}
3720 @end ifclear
3721
3722 * Fill:: @code{.fill @var{repeat} , @var{size} , @var{value}}
3723 * Float:: @code{.float @var{flonums}}
3724 * Func:: @code{.func}
3725 * Global:: @code{.global @var{symbol}}, @code{.globl @var{symbol}}
3726 @ifset ELF
3727 * Hidden:: @code{.hidden @var{names}}
3728 @end ifset
3729
3730 * hword:: @code{.hword @var{expressions}}
3731 * Ident:: @code{.ident}
3732 * If:: @code{.if @var{absolute expression}}
3733 * Incbin:: @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
3734 * Include:: @code{.include "@var{file}"}
3735 * Int:: @code{.int @var{expressions}}
3736 @ifset ELF
3737 * Internal:: @code{.internal @var{names}}
3738 @end ifset
3739
3740 * Irp:: @code{.irp @var{symbol},@var{values}}@dots{}
3741 * Irpc:: @code{.irpc @var{symbol},@var{values}}@dots{}
3742 * Lcomm:: @code{.lcomm @var{symbol} , @var{length}}
3743 * Lflags:: @code{.lflags}
3744 @ifclear no-line-dir
3745 * Line:: @code{.line @var{line-number}}
3746 @end ifclear
3747
3748 * Ln:: @code{.ln @var{line-number}}
3749 * Linkonce:: @code{.linkonce [@var{type}]}
3750 * List:: @code{.list}
3751 * Long:: @code{.long @var{expressions}}
3752 @ignore
3753 * Lsym:: @code{.lsym @var{symbol}, @var{expression}}
3754 @end ignore
3755
3756 * Macro:: @code{.macro @var{name} @var{args}}@dots{}
3757 * MRI:: @code{.mri @var{val}}
3758 * Noaltmacro:: @code{.noaltmacro}
3759 * Nolist:: @code{.nolist}
3760 * Octa:: @code{.octa @var{bignums}}
3761 * Org:: @code{.org @var{new-lc} , @var{fill}}
3762 * P2align:: @code{.p2align @var{abs-expr} , @var{abs-expr}}
3763 @ifset ELF
3764 * PopSection:: @code{.popsection}
3765 * Previous:: @code{.previous}
3766 @end ifset
3767
3768 * Print:: @code{.print @var{string}}
3769 @ifset ELF
3770 * Protected:: @code{.protected @var{names}}
3771 @end ifset
3772
3773 * Psize:: @code{.psize @var{lines}, @var{columns}}
3774 * Purgem:: @code{.purgem @var{name}}
3775 @ifset ELF
3776 * PushSection:: @code{.pushsection @var{name}}
3777 @end ifset
3778
3779 * Quad:: @code{.quad @var{bignums}}
3780 * Rept:: @code{.rept @var{count}}
3781 * Sbttl:: @code{.sbttl "@var{subheading}"}
3782 @ifset COFF
3783 * Scl:: @code{.scl @var{class}}
3784 @end ifset
3785 @ifset COFF-ELF
3786 * Section:: @code{.section @var{name}}
3787 @end ifset
3788
3789 * Set:: @code{.set @var{symbol}, @var{expression}}
3790 * Short:: @code{.short @var{expressions}}
3791 * Single:: @code{.single @var{flonums}}
3792 @ifset COFF-ELF
3793 * Size:: @code{.size [@var{name} , @var{expression}]}
3794 @end ifset
3795
3796 * Skip:: @code{.skip @var{size} , @var{fill}}
3797 * Sleb128:: @code{.sleb128 @var{expressions}}
3798 * Space:: @code{.space @var{size} , @var{fill}}
3799 @ifset have-stabs
3800 * Stab:: @code{.stabd, .stabn, .stabs}
3801 @end ifset
3802
3803 * String:: @code{.string "@var{str}"}
3804 * Struct:: @code{.struct @var{expression}}
3805 @ifset ELF
3806 * SubSection:: @code{.subsection}
3807 * Symver:: @code{.symver @var{name},@var{name2@@nodename}}
3808 @end ifset
3809
3810 @ifset COFF
3811 * Tag:: @code{.tag @var{structname}}
3812 @end ifset
3813
3814 * Text:: @code{.text @var{subsection}}
3815 * Title:: @code{.title "@var{heading}"}
3816 @ifset COFF-ELF
3817 * Type:: @code{.type <@var{int} | @var{name} , @var{type description}>}
3818 @end ifset
3819
3820 * Uleb128:: @code{.uleb128 @var{expressions}}
3821 @ifset COFF
3822 * Val:: @code{.val @var{addr}}
3823 @end ifset
3824
3825 @ifset ELF
3826 * Version:: @code{.version "@var{string}"}
3827 * VTableEntry:: @code{.vtable_entry @var{table}, @var{offset}}
3828 * VTableInherit:: @code{.vtable_inherit @var{child}, @var{parent}}
3829 @end ifset
3830
3831 * Warning:: @code{.warning @var{string}}
3832 * Weak:: @code{.weak @var{names}}
3833 * Word:: @code{.word @var{expressions}}
3834 * Deprecated:: Deprecated Directives
3835 @end menu
3836
3837 @node Abort
3838 @section @code{.abort}
3839
3840 @cindex @code{abort} directive
3841 @cindex stopping the assembly
3842 This directive stops the assembly immediately. It is for
3843 compatibility with other assemblers. The original idea was that the
3844 assembly language source would be piped into the assembler. If the sender
3845 of the source quit, it could use this directive tells @command{@value{AS}} to
3846 quit also. One day @code{.abort} will not be supported.
3847
3848 @ifset COFF
3849 @node ABORT
3850 @section @code{.ABORT}
3851
3852 @cindex @code{ABORT} directive
3853 When producing COFF output, @command{@value{AS}} accepts this directive as a
3854 synonym for @samp{.abort}.
3855
3856 @ifset BOUT
3857 When producing @code{b.out} output, @command{@value{AS}} accepts this directive,
3858 but ignores it.
3859 @end ifset
3860 @end ifset
3861
3862 @node Align
3863 @section @code{.align @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
3864
3865 @cindex padding the location counter
3866 @cindex @code{align} directive
3867 Pad the location counter (in the current subsection) to a particular storage
3868 boundary. The first expression (which must be absolute) is the alignment
3869 required, as described below.
3870
3871 The second expression (also absolute) gives the fill value to be stored in the
3872 padding bytes. It (and the comma) may be omitted. If it is omitted, the
3873 padding bytes are normally zero. However, on some systems, if the section is
3874 marked as containing code and the fill value is omitted, the space is filled
3875 with no-op instructions.
3876
3877 The third expression is also absolute, and is also optional. If it is present,
3878 it is the maximum number of bytes that should be skipped by this alignment
3879 directive. If doing the alignment would require skipping more bytes than the
3880 specified maximum, then the alignment is not done at all. You can omit the
3881 fill value (the second argument) entirely by simply using two commas after the
3882 required alignment; this can be useful if you want the alignment to be filled
3883 with no-op instructions when appropriate.
3884
3885 The way the required alignment is specified varies from system to system.
3886 For the arc, hppa, i386 using ELF, i860, iq2000, m68k, or32,
3887 s390, sparc, tic4x, tic80 and xtensa, the first expression is the
3888 alignment request in bytes. For example @samp{.align 8} advances
3889 the location counter until it is a multiple of 8. If the location counter
3890 is already a multiple of 8, no change is needed. For the tic54x, the
3891 first expression is the alignment request in words.
3892
3893 For other systems, including the i386 using a.out format, and the arm and
3894 strongarm, it is the
3895 number of low-order zero bits the location counter must have after
3896 advancement. For example @samp{.align 3} advances the location
3897 counter until it a multiple of 8. If the location counter is already a
3898 multiple of 8, no change is needed.
3899
3900 This inconsistency is due to the different behaviors of the various
3901 native assemblers for these systems which GAS must emulate.
3902 GAS also provides @code{.balign} and @code{.p2align} directives,
3903 described later, which have a consistent behavior across all
3904 architectures (but are specific to GAS).
3905
3906 @node Ascii
3907 @section @code{.ascii "@var{string}"}@dots{}
3908
3909 @cindex @code{ascii} directive
3910 @cindex string literals
3911 @code{.ascii} expects zero or more string literals (@pxref{Strings})
3912 separated by commas. It assembles each string (with no automatic
3913 trailing zero byte) into consecutive addresses.
3914
3915 @node Asciz
3916 @section @code{.asciz "@var{string}"}@dots{}
3917
3918 @cindex @code{asciz} directive
3919 @cindex zero-terminated strings
3920 @cindex null-terminated strings
3921 @code{.asciz} is just like @code{.ascii}, but each string is followed by
3922 a zero byte. The ``z'' in @samp{.asciz} stands for ``zero''.
3923
3924 @node Balign
3925 @section @code{.balign[wl] @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
3926
3927 @cindex padding the location counter given number of bytes
3928 @cindex @code{balign} directive
3929 Pad the location counter (in the current subsection) to a particular
3930 storage boundary. The first expression (which must be absolute) is the
3931 alignment request in bytes. For example @samp{.balign 8} advances
3932 the location counter until it is a multiple of 8. If the location counter
3933 is already a multiple of 8, no change is needed.
3934
3935 The second expression (also absolute) gives the fill value to be stored in the
3936 padding bytes. It (and the comma) may be omitted. If it is omitted, the
3937 padding bytes are normally zero. However, on some systems, if the section is
3938 marked as containing code and the fill value is omitted, the space is filled
3939 with no-op instructions.
3940
3941 The third expression is also absolute, and is also optional. If it is present,
3942 it is the maximum number of bytes that should be skipped by this alignment
3943 directive. If doing the alignment would require skipping more bytes than the
3944 specified maximum, then the alignment is not done at all. You can omit the
3945 fill value (the second argument) entirely by simply using two commas after the
3946 required alignment; this can be useful if you want the alignment to be filled
3947 with no-op instructions when appropriate.
3948
3949 @cindex @code{balignw} directive
3950 @cindex @code{balignl} directive
3951 The @code{.balignw} and @code{.balignl} directives are variants of the
3952 @code{.balign} directive. The @code{.balignw} directive treats the fill
3953 pattern as a two byte word value. The @code{.balignl} directives treats the
3954 fill pattern as a four byte longword value. For example, @code{.balignw
3955 4,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
3956 filled in with the value 0x368d (the exact placement of the bytes depends upon
3957 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
3958 undefined.
3959
3960 @node Byte
3961 @section @code{.byte @var{expressions}}
3962
3963 @cindex @code{byte} directive
3964 @cindex integers, one byte
3965 @code{.byte} expects zero or more expressions, separated by commas.
3966 Each expression is assembled into the next byte.
3967
3968 @node Comm
3969 @section @code{.comm @var{symbol} , @var{length} }
3970
3971 @cindex @code{comm} directive
3972 @cindex symbol, common
3973 @code{.comm} declares a common symbol named @var{symbol}. When linking, a
3974 common symbol in one object file may be merged with a defined or common symbol
3975 of the same name in another object file. If @code{@value{LD}} does not see a
3976 definition for the symbol--just one or more common symbols--then it will
3977 allocate @var{length} bytes of uninitialized memory. @var{length} must be an
3978 absolute expression. If @code{@value{LD}} sees multiple common symbols with
3979 the same name, and they do not all have the same size, it will allocate space
3980 using the largest size.
3981
3982 @ifset ELF
3983 When using ELF, the @code{.comm} directive takes an optional third argument.
3984 This is the desired alignment of the symbol, specified as a byte boundary (for
3985 example, an alignment of 16 means that the least significant 4 bits of the
3986 address should be zero). The alignment must be an absolute expression, and it
3987 must be a power of two. If @code{@value{LD}} allocates uninitialized memory
3988 for the common symbol, it will use the alignment when placing the symbol. If
3989 no alignment is specified, @command{@value{AS}} will set the alignment to the
3990 largest power of two less than or equal to the size of the symbol, up to a
3991 maximum of 16.
3992 @end ifset
3993
3994 @ifset HPPA
3995 The syntax for @code{.comm} differs slightly on the HPPA. The syntax is
3996 @samp{@var{symbol} .comm, @var{length}}; @var{symbol} is optional.
3997 @end ifset
3998
3999 @node CFI directives
4000 @section @code{.cfi_startproc}
4001 @cindex @code{cfi_startproc} directive
4002 @code{.cfi_startproc} is used at the beginning of each function that
4003 should have an entry in @code{.eh_frame}. It initializes some internal
4004 data structures and emits architecture dependent initial CFI instructions.
4005 Don't forget to close the function by
4006 @code{.cfi_endproc}.
4007
4008 @section @code{.cfi_endproc}
4009 @cindex @code{cfi_endproc} directive
4010 @code{.cfi_endproc} is used at the end of a function where it closes its
4011 unwind entry previously opened by
4012 @code{.cfi_startproc}. and emits it to @code{.eh_frame}.
4013
4014 @section @code{.cfi_def_cfa @var{register}, @var{offset}}
4015 @code{.cfi_def_cfa} defines a rule for computing CFA as: @i{take
4016 address from @var{register} and add @var{offset} to it}.
4017
4018 @section @code{.cfi_def_cfa_register @var{register}}
4019 @code{.cfi_def_cfa_register} modifies a rule for computing CFA. From
4020 now on @var{register} will be used instead of the old one. Offset
4021 remains the same.
4022
4023 @section @code{.cfi_def_cfa_offset @var{offset}}
4024 @code{.cfi_def_cfa_offset} modifies a rule for computing CFA. Register
4025 remains the same, but @var{offset} is new. Note that it is the
4026 absolute offset that will be added to a defined register to compute
4027 CFA address.
4028
4029 @section @code{.cfi_adjust_cfa_offset @var{offset}}
4030 Same as @code{.cfi_def_cfa_offset} but @var{offset} is a relative
4031 value that is added/substracted from the previous offset.
4032
4033 @section @code{.cfi_offset @var{register}, @var{offset}}
4034 Previous value of @var{register} is saved at offset @var{offset} from
4035 CFA.
4036
4037 @section @code{.cfi_rel_offset @var{register}, @var{offset}}
4038 Previous value of @var{register} is saved at offset @var{offset} from
4039 the current CFA register. This is transformed to @code{.cfi_offset}
4040 using the known displacement of the CFA register from the CFA.
4041 This is often easier to use, because the number will match the
4042 code it's annotating.
4043
4044 @section @code{.cfi_window_save}
4045 SPARC register window has been saved.
4046
4047 @section @code{.cfi_escape} @var{expression}[, @dots{}]
4048 Allows the user to add arbitrary bytes to the unwind info. One
4049 might use this to add OS-specific CFI opcodes, or generic CFI
4050 opcodes that GAS does not yet support.
4051
4052 @node Data
4053 @section @code{.data @var{subsection}}
4054
4055 @cindex @code{data} directive
4056 @code{.data} tells @command{@value{AS}} to assemble the following statements onto the
4057 end of the data subsection numbered @var{subsection} (which is an
4058 absolute expression). If @var{subsection} is omitted, it defaults
4059 to zero.
4060
4061 @ifset COFF
4062 @node Def
4063 @section @code{.def @var{name}}
4064
4065 @cindex @code{def} directive
4066 @cindex COFF symbols, debugging
4067 @cindex debugging COFF symbols
4068 Begin defining debugging information for a symbol @var{name}; the
4069 definition extends until the @code{.endef} directive is encountered.
4070 @ifset BOUT
4071
4072 This directive is only observed when @command{@value{AS}} is configured for COFF
4073 format output; when producing @code{b.out}, @samp{.def} is recognized,
4074 but ignored.
4075 @end ifset
4076 @end ifset
4077
4078 @ifset aout-bout
4079 @node Desc
4080 @section @code{.desc @var{symbol}, @var{abs-expression}}
4081
4082 @cindex @code{desc} directive
4083 @cindex COFF symbol descriptor
4084 @cindex symbol descriptor, COFF
4085 This directive sets the descriptor of the symbol (@pxref{Symbol Attributes})
4086 to the low 16 bits of an absolute expression.
4087
4088 @ifset COFF
4089 The @samp{.desc} directive is not available when @command{@value{AS}} is
4090 configured for COFF output; it is only for @code{a.out} or @code{b.out}
4091 object format. For the sake of compatibility, @command{@value{AS}} accepts
4092 it, but produces no output, when configured for COFF.
4093 @end ifset
4094 @end ifset
4095
4096 @ifset COFF
4097 @node Dim
4098 @section @code{.dim}
4099
4100 @cindex @code{dim} directive
4101 @cindex COFF auxiliary symbol information
4102 @cindex auxiliary symbol information, COFF
4103 This directive is generated by compilers to include auxiliary debugging
4104 information in the symbol table. It is only permitted inside
4105 @code{.def}/@code{.endef} pairs.
4106 @ifset BOUT
4107
4108 @samp{.dim} is only meaningful when generating COFF format output; when
4109 @command{@value{AS}} is generating @code{b.out}, it accepts this directive but
4110 ignores it.
4111 @end ifset
4112 @end ifset
4113
4114 @node Double
4115 @section @code{.double @var{flonums}}
4116
4117 @cindex @code{double} directive
4118 @cindex floating point numbers (double)
4119 @code{.double} expects zero or more flonums, separated by commas. It
4120 assembles floating point numbers.
4121 @ifset GENERIC
4122 The exact kind of floating point numbers emitted depends on how
4123 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
4124 @end ifset
4125 @ifclear GENERIC
4126 @ifset IEEEFLOAT
4127 On the @value{TARGET} family @samp{.double} emits 64-bit floating-point numbers
4128 in @sc{ieee} format.
4129 @end ifset
4130 @end ifclear
4131
4132 @node Eject
4133 @section @code{.eject}
4134
4135 @cindex @code{eject} directive
4136 @cindex new page, in listings
4137 @cindex page, in listings
4138 @cindex listing control: new page
4139 Force a page break at this point, when generating assembly listings.
4140
4141 @node Else
4142 @section @code{.else}
4143
4144 @cindex @code{else} directive
4145 @code{.else} is part of the @command{@value{AS}} support for conditional
4146 assembly; @pxref{If,,@code{.if}}. It marks the beginning of a section
4147 of code to be assembled if the condition for the preceding @code{.if}
4148 was false.
4149
4150 @node Elseif
4151 @section @code{.elseif}
4152
4153 @cindex @code{elseif} directive
4154 @code{.elseif} is part of the @command{@value{AS}} support for conditional
4155 assembly; @pxref{If,,@code{.if}}. It is shorthand for beginning a new
4156 @code{.if} block that would otherwise fill the entire @code{.else} section.
4157
4158 @node End
4159 @section @code{.end}
4160
4161 @cindex @code{end} directive
4162 @code{.end} marks the end of the assembly file. @command{@value{AS}} does not
4163 process anything in the file past the @code{.end} directive.
4164
4165 @ifset COFF
4166 @node Endef
4167 @section @code{.endef}
4168
4169 @cindex @code{endef} directive
4170 This directive flags the end of a symbol definition begun with
4171 @code{.def}.
4172 @ifset BOUT
4173
4174 @samp{.endef} is only meaningful when generating COFF format output; if
4175 @command{@value{AS}} is configured to generate @code{b.out}, it accepts this
4176 directive but ignores it.
4177 @end ifset
4178 @end ifset
4179
4180 @node Endfunc
4181 @section @code{.endfunc}
4182 @cindex @code{endfunc} directive
4183 @code{.endfunc} marks the end of a function specified with @code{.func}.
4184
4185 @node Endif
4186 @section @code{.endif}
4187
4188 @cindex @code{endif} directive
4189 @code{.endif} is part of the @command{@value{AS}} support for conditional assembly;
4190 it marks the end of a block of code that is only assembled
4191 conditionally. @xref{If,,@code{.if}}.
4192
4193 @node Equ
4194 @section @code{.equ @var{symbol}, @var{expression}}
4195
4196 @cindex @code{equ} directive
4197 @cindex assigning values to symbols
4198 @cindex symbols, assigning values to
4199 This directive sets the value of @var{symbol} to @var{expression}.
4200 It is synonymous with @samp{.set}; @pxref{Set,,@code{.set}}.
4201
4202 @ifset HPPA
4203 The syntax for @code{equ} on the HPPA is
4204 @samp{@var{symbol} .equ @var{expression}}.
4205 @end ifset
4206
4207 @node Equiv
4208 @section @code{.equiv @var{symbol}, @var{expression}}
4209 @cindex @code{equiv} directive
4210 The @code{.equiv} directive is like @code{.equ} and @code{.set}, except that
4211 the assembler will signal an error if @var{symbol} is already defined. Note a
4212 symbol which has been referenced but not actually defined is considered to be
4213 undefined.
4214
4215 Except for the contents of the error message, this is roughly equivalent to
4216 @smallexample
4217 .ifdef SYM
4218 .err
4219 .endif
4220 .equ SYM,VAL
4221 @end smallexample
4222
4223 @node Err
4224 @section @code{.err}
4225 @cindex @code{err} directive
4226 If @command{@value{AS}} assembles a @code{.err} directive, it will print an error
4227 message and, unless the @option{-Z} option was used, it will not generate an
4228 object file. This can be used to signal error an conditionally compiled code.
4229
4230 @node Error
4231 @section @code{.error "@var{string}"}
4232 @cindex error directive
4233
4234 Similarly to @code{.err}, this directive emits an error, but you can specify a
4235 string that will be emitted as the error message. If you don't specify the
4236 message, it defaults to @code{".error directive invoked in source file"}.
4237 @xref{Errors, ,Error and Warning Messages}.
4238
4239 @smallexample
4240 .error "This code has not been assembled and tested."
4241 @end smallexample
4242
4243 @node Exitm
4244 @section @code{.exitm}
4245 Exit early from the current macro definition. @xref{Macro}.
4246
4247 @node Extern
4248 @section @code{.extern}
4249
4250 @cindex @code{extern} directive
4251 @code{.extern} is accepted in the source program---for compatibility
4252 with other assemblers---but it is ignored. @command{@value{AS}} treats
4253 all undefined symbols as external.
4254
4255 @node Fail
4256 @section @code{.fail @var{expression}}
4257
4258 @cindex @code{fail} directive
4259 Generates an error or a warning. If the value of the @var{expression} is 500
4260 or more, @command{@value{AS}} will print a warning message. If the value is less
4261 than 500, @command{@value{AS}} will print an error message. The message will
4262 include the value of @var{expression}. This can occasionally be useful inside
4263 complex nested macros or conditional assembly.
4264
4265 @ifclear no-file-dir
4266 @node File
4267 @section @code{.file @var{string}}
4268
4269 @cindex @code{file} directive
4270 @cindex logical file name
4271 @cindex file name, logical
4272 @code{.file} tells @command{@value{AS}} that we are about to start a new logical
4273 file. @var{string} is the new file name. In general, the filename is
4274 recognized whether or not it is surrounded by quotes @samp{"}; but if you wish
4275 to specify an empty file name, you must give the quotes--@code{""}. This
4276 statement may go away in future: it is only recognized to be compatible with
4277 old @command{@value{AS}} programs.
4278 @end ifclear
4279
4280 @node Fill
4281 @section @code{.fill @var{repeat} , @var{size} , @var{value}}
4282
4283 @cindex @code{fill} directive
4284 @cindex writing patterns in memory
4285 @cindex patterns, writing in memory
4286 @var{repeat}, @var{size} and @var{value} are absolute expressions.
4287 This emits @var{repeat} copies of @var{size} bytes. @var{Repeat}
4288 may be zero or more. @var{Size} may be zero or more, but if it is
4289 more than 8, then it is deemed to have the value 8, compatible with
4290 other people's assemblers. The contents of each @var{repeat} bytes
4291 is taken from an 8-byte number. The highest order 4 bytes are
4292 zero. The lowest order 4 bytes are @var{value} rendered in the
4293 byte-order of an integer on the computer @command{@value{AS}} is assembling for.
4294 Each @var{size} bytes in a repetition is taken from the lowest order
4295 @var{size} bytes of this number. Again, this bizarre behavior is
4296 compatible with other people's assemblers.
4297
4298 @var{size} and @var{value} are optional.
4299 If the second comma and @var{value} are absent, @var{value} is
4300 assumed zero. If the first comma and following tokens are absent,
4301 @var{size} is assumed to be 1.
4302
4303 @node Float
4304 @section @code{.float @var{flonums}}
4305
4306 @cindex floating point numbers (single)
4307 @cindex @code{float} directive
4308 This directive assembles zero or more flonums, separated by commas. It
4309 has the same effect as @code{.single}.
4310 @ifset GENERIC
4311 The exact kind of floating point numbers emitted depends on how
4312 @command{@value{AS}} is configured.
4313 @xref{Machine Dependencies}.
4314 @end ifset
4315 @ifclear GENERIC
4316 @ifset IEEEFLOAT
4317 On the @value{TARGET} family, @code{.float} emits 32-bit floating point numbers
4318 in @sc{ieee} format.
4319 @end ifset
4320 @end ifclear
4321
4322 @node Func
4323 @section @code{.func @var{name}[,@var{label}]}
4324 @cindex @code{func} directive
4325 @code{.func} emits debugging information to denote function @var{name}, and
4326 is ignored unless the file is assembled with debugging enabled.
4327 Only @samp{--gstabs[+]} is currently supported.
4328 @var{label} is the entry point of the function and if omitted @var{name}
4329 prepended with the @samp{leading char} is used.
4330 @samp{leading char} is usually @code{_} or nothing, depending on the target.
4331 All functions are currently defined to have @code{void} return type.
4332 The function must be terminated with @code{.endfunc}.
4333
4334 @node Global
4335 @section @code{.global @var{symbol}}, @code{.globl @var{symbol}}
4336
4337 @cindex @code{global} directive
4338 @cindex symbol, making visible to linker
4339 @code{.global} makes the symbol visible to @code{@value{LD}}. If you define
4340 @var{symbol} in your partial program, its value is made available to
4341 other partial programs that are linked with it. Otherwise,
4342 @var{symbol} takes its attributes from a symbol of the same name
4343 from another file linked into the same program.
4344
4345 Both spellings (@samp{.globl} and @samp{.global}) are accepted, for
4346 compatibility with other assemblers.
4347
4348 @ifset HPPA
4349 On the HPPA, @code{.global} is not always enough to make it accessible to other
4350 partial programs. You may need the HPPA-only @code{.EXPORT} directive as well.
4351 @xref{HPPA Directives,, HPPA Assembler Directives}.
4352 @end ifset
4353
4354 @ifset ELF
4355 @node Hidden
4356 @section @code{.hidden @var{names}}
4357
4358 @cindex @code{hidden} directive
4359 @cindex visibility
4360 This is one of the ELF visibility directives. The other two are
4361 @code{.internal} (@pxref{Internal,,@code{.internal}}) and
4362 @code{.protected} (@pxref{Protected,,@code{.protected}}).
4363
4364 This directive overrides the named symbols default visibility (which is set by
4365 their binding: local, global or weak). The directive sets the visibility to
4366 @code{hidden} which means that the symbols are not visible to other components.
4367 Such symbols are always considered to be @code{protected} as well.
4368 @end ifset
4369
4370 @node hword
4371 @section @code{.hword @var{expressions}}
4372
4373 @cindex @code{hword} directive
4374 @cindex integers, 16-bit
4375 @cindex numbers, 16-bit
4376 @cindex sixteen bit integers
4377 This expects zero or more @var{expressions}, and emits
4378 a 16 bit number for each.
4379
4380 @ifset GENERIC
4381 This directive is a synonym for @samp{.short}; depending on the target
4382 architecture, it may also be a synonym for @samp{.word}.
4383 @end ifset
4384 @ifclear GENERIC
4385 @ifset W32
4386 This directive is a synonym for @samp{.short}.
4387 @end ifset
4388 @ifset W16
4389 This directive is a synonym for both @samp{.short} and @samp{.word}.
4390 @end ifset
4391 @end ifclear
4392
4393 @node Ident
4394 @section @code{.ident}
4395
4396 @cindex @code{ident} directive
4397 This directive is used by some assemblers to place tags in object files.
4398 @command{@value{AS}} simply accepts the directive for source-file
4399 compatibility with such assemblers, but does not actually emit anything
4400 for it.
4401
4402 @node If
4403 @section @code{.if @var{absolute expression}}
4404
4405 @cindex conditional assembly
4406 @cindex @code{if} directive
4407 @code{.if} marks the beginning of a section of code which is only
4408 considered part of the source program being assembled if the argument
4409 (which must be an @var{absolute expression}) is non-zero. The end of
4410 the conditional section of code must be marked by @code{.endif}
4411 (@pxref{Endif,,@code{.endif}}); optionally, you may include code for the
4412 alternative condition, flagged by @code{.else} (@pxref{Else,,@code{.else}}).
4413 If you have several conditions to check, @code{.elseif} may be used to avoid
4414 nesting blocks if/else within each subsequent @code{.else} block.
4415
4416 The following variants of @code{.if} are also supported:
4417 @table @code
4418 @cindex @code{ifdef} directive
4419 @item .ifdef @var{symbol}
4420 Assembles the following section of code if the specified @var{symbol}
4421 has been defined. Note a symbol which has been referenced but not yet defined
4422 is considered to be undefined.
4423
4424 @cindex @code{ifb} directive
4425 @item .ifb @var{text}
4426 Assembles the following section of code if the operand is blank (empty).
4427
4428 @cindex @code{ifc} directive
4429 @item .ifc @var{string1},@var{string2}
4430 Assembles the following section of code if the two strings are the same. The
4431 strings may be optionally quoted with single quotes. If they are not quoted,
4432 the first string stops at the first comma, and the second string stops at the
4433 end of the line. Strings which contain whitespace should be quoted. The
4434 string comparison is case sensitive.
4435
4436 @cindex @code{ifeq} directive
4437 @item .ifeq @var{absolute expression}
4438 Assembles the following section of code if the argument is zero.
4439
4440 @cindex @code{ifeqs} directive
4441 @item .ifeqs @var{string1},@var{string2}
4442 Another form of @code{.ifc}. The strings must be quoted using double quotes.
4443
4444 @cindex @code{ifge} directive
4445 @item .ifge @var{absolute expression}
4446 Assembles the following section of code if the argument is greater than or
4447 equal to zero.
4448
4449 @cindex @code{ifgt} directive
4450 @item .ifgt @var{absolute expression}
4451 Assembles the following section of code if the argument is greater than zero.
4452
4453 @cindex @code{ifle} directive
4454 @item .ifle @var{absolute expression}
4455 Assembles the following section of code if the argument is less than or equal
4456 to zero.
4457
4458 @cindex @code{iflt} directive
4459 @item .iflt @var{absolute expression}
4460 Assembles the following section of code if the argument is less than zero.
4461
4462 @cindex @code{ifnb} directive
4463 @item .ifnb @var{text}
4464 Like @code{.ifb}, but the sense of the test is reversed: this assembles the
4465 following section of code if the operand is non-blank (non-empty).
4466
4467 @cindex @code{ifnc} directive
4468 @item .ifnc @var{string1},@var{string2}.
4469 Like @code{.ifc}, but the sense of the test is reversed: this assembles the
4470 following section of code if the two strings are not the same.
4471
4472 @cindex @code{ifndef} directive
4473 @cindex @code{ifnotdef} directive
4474 @item .ifndef @var{symbol}
4475 @itemx .ifnotdef @var{symbol}
4476 Assembles the following section of code if the specified @var{symbol}
4477 has not been defined. Both spelling variants are equivalent. Note a symbol
4478 which has been referenced but not yet defined is considered to be undefined.
4479
4480 @cindex @code{ifne} directive
4481 @item .ifne @var{absolute expression}
4482 Assembles the following section of code if the argument is not equal to zero
4483 (in other words, this is equivalent to @code{.if}).
4484
4485 @cindex @code{ifnes} directive
4486 @item .ifnes @var{string1},@var{string2}
4487 Like @code{.ifeqs}, but the sense of the test is reversed: this assembles the
4488 following section of code if the two strings are not the same.
4489 @end table
4490
4491 @node Incbin
4492 @section @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
4493
4494 @cindex @code{incbin} directive
4495 @cindex binary files, including
4496 The @code{incbin} directive includes @var{file} verbatim at the current
4497 location. You can control the search paths used with the @samp{-I} command-line
4498 option (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
4499 around @var{file}.
4500
4501 The @var{skip} argument skips a number of bytes from the start of the
4502 @var{file}. The @var{count} argument indicates the maximum number of bytes to
4503 read. Note that the data is not aligned in any way, so it is the user's
4504 responsibility to make sure that proper alignment is provided both before and
4505 after the @code{incbin} directive.
4506
4507 @node Include
4508 @section @code{.include "@var{file}"}
4509
4510 @cindex @code{include} directive
4511 @cindex supporting files, including
4512 @cindex files, including
4513 This directive provides a way to include supporting files at specified
4514 points in your source program. The code from @var{file} is assembled as
4515 if it followed the point of the @code{.include}; when the end of the
4516 included file is reached, assembly of the original file continues. You
4517 can control the search paths used with the @samp{-I} command-line option
4518 (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
4519 around @var{file}.
4520
4521 @node Int
4522 @section @code{.int @var{expressions}}
4523
4524 @cindex @code{int} directive
4525 @cindex integers, 32-bit
4526 Expect zero or more @var{expressions}, of any section, separated by commas.
4527 For each expression, emit a number that, at run time, is the value of that
4528 expression. The byte order and bit size of the number depends on what kind
4529 of target the assembly is for.
4530
4531 @ifclear GENERIC
4532 @ifset H8
4533 On most forms of the H8/300, @code{.int} emits 16-bit
4534 integers. On the H8/300H and the Renesas SH, however, @code{.int} emits
4535 32-bit integers.
4536 @end ifset
4537 @end ifclear
4538
4539 @ifset ELF
4540 @node Internal
4541 @section @code{.internal @var{names}}
4542
4543 @cindex @code{internal} directive
4544 @cindex visibility
4545 This is one of the ELF visibility directives. The other two are
4546 @code{.hidden} (@pxref{Hidden,,@code{.hidden}}) and
4547 @code{.protected} (@pxref{Protected,,@code{.protected}}).
4548
4549 This directive overrides the named symbols default visibility (which is set by
4550 their binding: local, global or weak). The directive sets the visibility to
4551 @code{internal} which means that the symbols are considered to be @code{hidden}
4552 (i.e., not visible to other components), and that some extra, processor specific
4553 processing must also be performed upon the symbols as well.
4554 @end ifset
4555
4556 @node Irp
4557 @section @code{.irp @var{symbol},@var{values}}@dots{}
4558
4559 @cindex @code{irp} directive
4560 Evaluate a sequence of statements assigning different values to @var{symbol}.
4561 The sequence of statements starts at the @code{.irp} directive, and is
4562 terminated by an @code{.endr} directive. For each @var{value}, @var{symbol} is
4563 set to @var{value}, and the sequence of statements is assembled. If no
4564 @var{value} is listed, the sequence of statements is assembled once, with
4565 @var{symbol} set to the null string. To refer to @var{symbol} within the
4566 sequence of statements, use @var{\symbol}.
4567
4568 For example, assembling
4569
4570 @example
4571 .irp param,1,2,3
4572 move d\param,sp@@-
4573 .endr
4574 @end example
4575
4576 is equivalent to assembling
4577
4578 @example
4579 move d1,sp@@-
4580 move d2,sp@@-
4581 move d3,sp@@-
4582 @end example
4583
4584 For some caveats with the spelling of @var{symbol}, see also the discussion
4585 at @xref{Macro}.
4586
4587 @node Irpc
4588 @section @code{.irpc @var{symbol},@var{values}}@dots{}
4589
4590 @cindex @code{irpc} directive
4591 Evaluate a sequence of statements assigning different values to @var{symbol}.
4592 The sequence of statements starts at the @code{.irpc} directive, and is
4593 terminated by an @code{.endr} directive. For each character in @var{value},
4594 @var{symbol} is set to the character, and the sequence of statements is
4595 assembled. If no @var{value} is listed, the sequence of statements is
4596 assembled once, with @var{symbol} set to the null string. To refer to
4597 @var{symbol} within the sequence of statements, use @var{\symbol}.
4598
4599 For example, assembling
4600
4601 @example
4602 .irpc param,123
4603 move d\param,sp@@-
4604 .endr
4605 @end example
4606
4607 is equivalent to assembling
4608
4609 @example
4610 move d1,sp@@-
4611 move d2,sp@@-
4612 move d3,sp@@-
4613 @end example
4614
4615 For some caveats with the spelling of @var{symbol}, see also the discussion
4616 at @xref{Macro}.
4617
4618 @node Lcomm
4619 @section @code{.lcomm @var{symbol} , @var{length}}
4620
4621 @cindex @code{lcomm} directive
4622 @cindex local common symbols
4623 @cindex symbols, local common
4624 Reserve @var{length} (an absolute expression) bytes for a local common
4625 denoted by @var{symbol}. The section and value of @var{symbol} are
4626 those of the new local common. The addresses are allocated in the bss
4627 section, so that at run-time the bytes start off zeroed. @var{Symbol}
4628 is not declared global (@pxref{Global,,@code{.global}}), so is normally
4629 not visible to @code{@value{LD}}.
4630
4631 @ifset GENERIC
4632 Some targets permit a third argument to be used with @code{.lcomm}. This
4633 argument specifies the desired alignment of the symbol in the bss section.
4634 @end ifset
4635
4636 @ifset HPPA
4637 The syntax for @code{.lcomm} differs slightly on the HPPA. The syntax is
4638 @samp{@var{symbol} .lcomm, @var{length}}; @var{symbol} is optional.
4639 @end ifset
4640
4641 @node Lflags
4642 @section @code{.lflags}
4643
4644 @cindex @code{lflags} directive (ignored)
4645 @command{@value{AS}} accepts this directive, for compatibility with other
4646 assemblers, but ignores it.
4647
4648 @ifclear no-line-dir
4649 @node Line
4650 @section @code{.line @var{line-number}}
4651
4652 @cindex @code{line} directive
4653 @end ifclear
4654 @ifset no-line-dir
4655 @node Ln
4656 @section @code{.ln @var{line-number}}
4657
4658 @cindex @code{ln} directive
4659 @end ifset
4660 @cindex logical line number
4661 @ifset aout-bout
4662 Change the logical line number. @var{line-number} must be an absolute
4663 expression. The next line has that logical line number. Therefore any other
4664 statements on the current line (after a statement separator character) are
4665 reported as on logical line number @var{line-number} @minus{} 1. One day
4666 @command{@value{AS}} will no longer support this directive: it is recognized only
4667 for compatibility with existing assembler programs.
4668
4669 @end ifset
4670
4671 @ifclear no-line-dir
4672 Even though this is a directive associated with the @code{a.out} or
4673 @code{b.out} object-code formats, @command{@value{AS}} still recognizes it
4674 when producing COFF output, and treats @samp{.line} as though it
4675 were the COFF @samp{.ln} @emph{if} it is found outside a
4676 @code{.def}/@code{.endef} pair.
4677
4678 Inside a @code{.def}, @samp{.line} is, instead, one of the directives
4679 used by compilers to generate auxiliary symbol information for
4680 debugging.
4681 @end ifclear
4682
4683 @node Linkonce
4684 @section @code{.linkonce [@var{type}]}
4685 @cindex COMDAT
4686 @cindex @code{linkonce} directive
4687 @cindex common sections
4688 Mark the current section so that the linker only includes a single copy of it.
4689 This may be used to include the same section in several different object files,
4690 but ensure that the linker will only include it once in the final output file.
4691 The @code{.linkonce} pseudo-op must be used for each instance of the section.
4692 Duplicate sections are detected based on the section name, so it should be
4693 unique.
4694
4695 This directive is only supported by a few object file formats; as of this
4696 writing, the only object file format which supports it is the Portable
4697 Executable format used on Windows NT.
4698
4699 The @var{type} argument is optional. If specified, it must be one of the
4700 following strings. For example:
4701 @smallexample
4702 .linkonce same_size
4703 @end smallexample
4704 Not all types may be supported on all object file formats.
4705
4706 @table @code
4707 @item discard
4708 Silently discard duplicate sections. This is the default.
4709
4710 @item one_only
4711 Warn if there are duplicate sections, but still keep only one copy.
4712
4713 @item same_size
4714 Warn if any of the duplicates have different sizes.
4715
4716 @item same_contents
4717 Warn if any of the duplicates do not have exactly the same contents.
4718 @end table
4719
4720 @node Ln
4721 @section @code{.ln @var{line-number}}
4722
4723 @cindex @code{ln} directive
4724 @ifclear no-line-dir
4725 @samp{.ln} is a synonym for @samp{.line}.
4726 @end ifclear
4727 @ifset no-line-dir
4728 Tell @command{@value{AS}} to change the logical line number. @var{line-number}
4729 must be an absolute expression. The next line has that logical
4730 line number, so any other statements on the current line (after a
4731 statement separator character @code{;}) are reported as on logical
4732 line number @var{line-number} @minus{} 1.
4733 @ifset BOUT
4734
4735 This directive is accepted, but ignored, when @command{@value{AS}} is
4736 configured for @code{b.out}; its effect is only associated with COFF
4737 output format.
4738 @end ifset
4739 @end ifset
4740
4741 @node MRI
4742 @section @code{.mri @var{val}}
4743
4744 @cindex @code{mri} directive
4745 @cindex MRI mode, temporarily
4746 If @var{val} is non-zero, this tells @command{@value{AS}} to enter MRI mode. If
4747 @var{val} is zero, this tells @command{@value{AS}} to exit MRI mode. This change
4748 affects code assembled until the next @code{.mri} directive, or until the end
4749 of the file. @xref{M, MRI mode, MRI mode}.
4750
4751 @node List
4752 @section @code{.list}
4753
4754 @cindex @code{list} directive
4755 @cindex listing control, turning on
4756 Control (in conjunction with the @code{.nolist} directive) whether or
4757 not assembly listings are generated. These two directives maintain an
4758 internal counter (which is zero initially). @code{.list} increments the
4759 counter, and @code{.nolist} decrements it. Assembly listings are
4760 generated whenever the counter is greater than zero.
4761
4762 By default, listings are disabled. When you enable them (with the
4763 @samp{-a} command line option; @pxref{Invoking,,Command-Line Options}),
4764 the initial value of the listing counter is one.
4765
4766 @node Long
4767 @section @code{.long @var{expressions}}
4768
4769 @cindex @code{long} directive
4770 @code{.long} is the same as @samp{.int}, @pxref{Int,,@code{.int}}.
4771
4772 @ignore
4773 @c no one seems to know what this is for or whether this description is
4774 @c what it really ought to do
4775 @node Lsym
4776 @section @code{.lsym @var{symbol}, @var{expression}}
4777
4778 @cindex @code{lsym} directive
4779 @cindex symbol, not referenced in assembly
4780 @code{.lsym} creates a new symbol named @var{symbol}, but does not put it in
4781 the hash table, ensuring it cannot be referenced by name during the
4782 rest of the assembly. This sets the attributes of the symbol to be
4783 the same as the expression value:
4784 @smallexample
4785 @var{other} = @var{descriptor} = 0
4786 @var{type} = @r{(section of @var{expression})}
4787 @var{value} = @var{expression}
4788 @end smallexample
4789 @noindent
4790 The new symbol is not flagged as external.
4791 @end ignore
4792
4793 @node Macro
4794 @section @code{.macro}
4795
4796 @cindex macros
4797 The commands @code{.macro} and @code{.endm} allow you to define macros that
4798 generate assembly output. For example, this definition specifies a macro
4799 @code{sum} that puts a sequence of numbers into memory:
4800
4801 @example
4802 .macro sum from=0, to=5
4803 .long \from
4804 .if \to-\from
4805 sum "(\from+1)",\to
4806 .endif
4807 .endm
4808 @end example
4809
4810 @noindent
4811 With that definition, @samp{SUM 0,5} is equivalent to this assembly input:
4812
4813 @example
4814 .long 0
4815 .long 1
4816 .long 2
4817 .long 3
4818 .long 4
4819 .long 5
4820 @end example
4821
4822 @ftable @code
4823 @item .macro @var{macname}
4824 @itemx .macro @var{macname} @var{macargs} @dots{}
4825 @cindex @code{macro} directive
4826 Begin the definition of a macro called @var{macname}. If your macro
4827 definition requires arguments, specify their names after the macro name,
4828 separated by commas or spaces. You can qualify the macro argument to
4829 indicate whether all invocations must specify a non-blank value (through
4830 @samp{:@code{req}}), or whether it takes all of the remaining arguments
4831 (through @samp{:@code{vararg}}). You can supply a default value for any
4832 macro argument by following the name with @samp{=@var{deflt}}. You
4833 cannot define two macros with the same @var{macname} unless it has been
4834 subject to the @code{.purgem} directive (@xref{Purgem}.) between the two
4835 definitions. For example, these are all valid @code{.macro} statements:
4836
4837 @table @code
4838 @item .macro comm
4839 Begin the definition of a macro called @code{comm}, which takes no
4840 arguments.
4841
4842 @item .macro plus1 p, p1
4843 @itemx .macro plus1 p p1
4844 Either statement begins the definition of a macro called @code{plus1},
4845 which takes two arguments; within the macro definition, write
4846 @samp{\p} or @samp{\p1} to evaluate the arguments.
4847
4848 @item .macro reserve_str p1=0 p2
4849 Begin the definition of a macro called @code{reserve_str}, with two
4850 arguments. The first argument has a default value, but not the second.
4851 After the definition is complete, you can call the macro either as
4852 @samp{reserve_str @var{a},@var{b}} (with @samp{\p1} evaluating to
4853 @var{a} and @samp{\p2} evaluating to @var{b}), or as @samp{reserve_str
4854 ,@var{b}} (with @samp{\p1} evaluating as the default, in this case
4855 @samp{0}, and @samp{\p2} evaluating to @var{b}).
4856 @end table
4857
4858 @item .macro m p1:req, p2=0, p3:vararg
4859 Begin the definition of a macro called @code{m}, with at least three
4860 arguments. The first argument must always have a value specified, but
4861 not the second, which instead has a default value. The third formal
4862 will get assigned all remaining arguments specified at invocation time.
4863
4864 When you call a macro, you can specify the argument values either by
4865 position, or by keyword. For example, @samp{sum 9,17} is equivalent to
4866 @samp{sum to=17, from=9}.
4867
4868 Note that since each of the @var{macargs} can be an identifier exactly
4869 as any other one permitted by the target architecture, there may be
4870 occasional problems if the target hand-crafts special meanings to certain
4871 characters when they occur in a special position. For example, if colon
4872 (@code{:}) is generally permitted to be part of a symbol name, but the
4873 architecture specific code special-cases it when occuring as the final
4874 character of a symbol (to denote a label), then the macro parameter
4875 replacement code will have no way of knowing that and consider the whole
4876 construct (including the colon) an identifier, and check only this
4877 identifier for being the subject to parameter substitution. In this
4878 example, besides the potential of just separating identifier and colon
4879 by white space, using alternate macro syntax (@xref{Altmacro}.) and
4880 ampersand (@code{&}) as the character to separate literal text from macro
4881 parameters (or macro parameters from one another) would provide a way to
4882 achieve the same effect:
4883
4884 @example
4885 .altmacro
4886 .macro label l
4887 l&:
4888 .endm
4889 @end example
4890
4891 This applies identically to the identifiers used in @code{.irp} (@xref{Irp}.)
4892 and @code{.irpc} (@xref{Irpc}.).
4893
4894 @item .endm
4895 @cindex @code{endm} directive
4896 Mark the end of a macro definition.
4897
4898 @item .exitm
4899 @cindex @code{exitm} directive
4900 Exit early from the current macro definition.
4901
4902 @cindex number of macros executed
4903 @cindex macros, count executed
4904 @item \@@
4905 @command{@value{AS}} maintains a counter of how many macros it has
4906 executed in this pseudo-variable; you can copy that number to your
4907 output with @samp{\@@}, but @emph{only within a macro definition}.
4908
4909 @item LOCAL @var{name} [ , @dots{} ]
4910 @emph{Warning: @code{LOCAL} is only available if you select ``alternate
4911 macro syntax'' with @samp{--alternate} or @code{.altmacro}.}
4912 @xref{Altmacro,,@code{.altmacro}}.
4913 @end ftable
4914
4915 @node Altmacro
4916 @section @code{.altmacro}
4917 Enable alternate macro mode, enabling:
4918
4919 @ftable @code
4920 @item LOCAL @var{name} [ , @dots{} ]
4921 One additional directive, @code{LOCAL}, is available. It is used to
4922 generate a string replacement for each of the @var{name} arguments, and
4923 replace any instances of @var{name} in each macro expansion. The
4924 replacement string is unique in the assembly, and different for each
4925 separate macro expansion. @code{LOCAL} allows you to write macros that
4926 define symbols, without fear of conflict between separate macro expansions.
4927
4928 @item String delimiters
4929 You can write strings delimited in these other ways besides
4930 @code{"@var{string}"}:
4931
4932 @table @code
4933 @item '@var{string}'
4934 You can delimit strings with single-quote charaters.
4935
4936 @item <@var{string}>
4937 You can delimit strings with matching angle brackets.
4938 @end table
4939
4940 @item single-character string escape
4941 To include any single character literally in a string (even if the
4942 character would otherwise have some special meaning), you can prefix the
4943 character with @samp{!} (an exclamation mark). For example, you can
4944 write @samp{<4.3 !> 5.4!!>} to get the literal text @samp{4.3 > 5.4!}.
4945
4946 @item Expression results as strings
4947 You can write @samp{%@var{expr}} to evaluate the expression @var{expr}
4948 and use the result as a string.
4949 @end ftable
4950
4951 @node Noaltmacro
4952 @section @code{.noaltmacro}
4953 Disable alternate macro mode. @ref{Altmacro}
4954
4955 @node Nolist
4956 @section @code{.nolist}
4957
4958 @cindex @code{nolist} directive
4959 @cindex listing control, turning off
4960 Control (in conjunction with the @code{.list} directive) whether or
4961 not assembly listings are generated. These two directives maintain an
4962 internal counter (which is zero initially). @code{.list} increments the
4963 counter, and @code{.nolist} decrements it. Assembly listings are
4964 generated whenever the counter is greater than zero.
4965
4966 @node Octa
4967 @section @code{.octa @var{bignums}}
4968
4969 @c FIXME: double size emitted for "octa" on i960, others? Or warn?
4970 @cindex @code{octa} directive
4971 @cindex integer, 16-byte
4972 @cindex sixteen byte integer
4973 This directive expects zero or more bignums, separated by commas. For each
4974 bignum, it emits a 16-byte integer.
4975
4976 The term ``octa'' comes from contexts in which a ``word'' is two bytes;
4977 hence @emph{octa}-word for 16 bytes.
4978
4979 @node Org
4980 @section @code{.org @var{new-lc} , @var{fill}}
4981
4982 @cindex @code{org} directive
4983 @cindex location counter, advancing
4984 @cindex advancing location counter
4985 @cindex current address, advancing
4986 Advance the location counter of the current section to
4987 @var{new-lc}. @var{new-lc} is either an absolute expression or an
4988 expression with the same section as the current subsection. That is,
4989 you can't use @code{.org} to cross sections: if @var{new-lc} has the
4990 wrong section, the @code{.org} directive is ignored. To be compatible
4991 with former assemblers, if the section of @var{new-lc} is absolute,
4992 @command{@value{AS}} issues a warning, then pretends the section of @var{new-lc}
4993 is the same as the current subsection.
4994
4995 @code{.org} may only increase the location counter, or leave it
4996 unchanged; you cannot use @code{.org} to move the location counter
4997 backwards.
4998
4999 @c double negative used below "not undefined" because this is a specific
5000 @c reference to "undefined" (as SEG_UNKNOWN is called in this manual)
5001 @c section. doc@cygnus.com 18feb91
5002 Because @command{@value{AS}} tries to assemble programs in one pass, @var{new-lc}
5003 may not be undefined. If you really detest this restriction we eagerly await
5004 a chance to share your improved assembler.
5005
5006 Beware that the origin is relative to the start of the section, not
5007 to the start of the subsection. This is compatible with other
5008 people's assemblers.
5009
5010 When the location counter (of the current subsection) is advanced, the
5011 intervening bytes are filled with @var{fill} which should be an
5012 absolute expression. If the comma and @var{fill} are omitted,
5013 @var{fill} defaults to zero.
5014
5015 @node P2align
5016 @section @code{.p2align[wl] @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
5017
5018 @cindex padding the location counter given a power of two
5019 @cindex @code{p2align} directive
5020 Pad the location counter (in the current subsection) to a particular
5021 storage boundary. The first expression (which must be absolute) is the
5022 number of low-order zero bits the location counter must have after
5023 advancement. For example @samp{.p2align 3} advances the location
5024 counter until it a multiple of 8. If the location counter is already a
5025 multiple of 8, no change is needed.
5026
5027 The second expression (also absolute) gives the fill value to be stored in the
5028 padding bytes. It (and the comma) may be omitted. If it is omitted, the
5029 padding bytes are normally zero. However, on some systems, if the section is
5030 marked as containing code and the fill value is omitted, the space is filled
5031 with no-op instructions.
5032
5033 The third expression is also absolute, and is also optional. If it is present,
5034 it is the maximum number of bytes that should be skipped by this alignment
5035 directive. If doing the alignment would require skipping more bytes than the
5036 specified maximum, then the alignment is not done at all. You can omit the
5037 fill value (the second argument) entirely by simply using two commas after the
5038 required alignment; this can be useful if you want the alignment to be filled
5039 with no-op instructions when appropriate.
5040
5041 @cindex @code{p2alignw} directive
5042 @cindex @code{p2alignl} directive
5043 The @code{.p2alignw} and @code{.p2alignl} directives are variants of the
5044 @code{.p2align} directive. The @code{.p2alignw} directive treats the fill
5045 pattern as a two byte word value. The @code{.p2alignl} directives treats the
5046 fill pattern as a four byte longword value. For example, @code{.p2alignw
5047 2,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
5048 filled in with the value 0x368d (the exact placement of the bytes depends upon
5049 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
5050 undefined.
5051
5052 @ifset ELF
5053 @node Previous
5054 @section @code{.previous}
5055
5056 @cindex @code{previous} directive
5057 @cindex Section Stack
5058 This is one of the ELF section stack manipulation directives. The others are
5059 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
5060 @code{.pushsection} (@pxref{PushSection}), and @code{.popsection}
5061 (@pxref{PopSection}).
5062
5063 This directive swaps the current section (and subsection) with most recently
5064 referenced section (and subsection) prior to this one. Multiple
5065 @code{.previous} directives in a row will flip between two sections (and their
5066 subsections).
5067
5068 In terms of the section stack, this directive swaps the current section with
5069 the top section on the section stack.
5070 @end ifset
5071
5072 @ifset ELF
5073 @node PopSection
5074 @section @code{.popsection}
5075
5076 @cindex @code{popsection} directive
5077 @cindex Section Stack
5078 This is one of the ELF section stack manipulation directives. The others are
5079 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
5080 @code{.pushsection} (@pxref{PushSection}), and @code{.previous}
5081 (@pxref{Previous}).
5082
5083 This directive replaces the current section (and subsection) with the top
5084 section (and subsection) on the section stack. This section is popped off the
5085 stack.
5086 @end ifset
5087
5088 @node Print
5089 @section @code{.print @var{string}}
5090
5091 @cindex @code{print} directive
5092 @command{@value{AS}} will print @var{string} on the standard output during
5093 assembly. You must put @var{string} in double quotes.
5094
5095 @ifset ELF
5096 @node Protected
5097 @section @code{.protected @var{names}}
5098
5099 @cindex @code{protected} directive
5100 @cindex visibility
5101 This is one of the ELF visibility directives. The other two are
5102 @code{.hidden} (@pxref{Hidden}) and @code{.internal} (@pxref{Internal}).
5103
5104 This directive overrides the named symbols default visibility (which is set by
5105 their binding: local, global or weak). The directive sets the visibility to
5106 @code{protected} which means that any references to the symbols from within the
5107 components that defines them must be resolved to the definition in that
5108 component, even if a definition in another component would normally preempt
5109 this.
5110 @end ifset
5111
5112 @node Psize
5113 @section @code{.psize @var{lines} , @var{columns}}
5114
5115 @cindex @code{psize} directive
5116 @cindex listing control: paper size
5117 @cindex paper size, for listings
5118 Use this directive to declare the number of lines---and, optionally, the
5119 number of columns---to use for each page, when generating listings.
5120
5121 If you do not use @code{.psize}, listings use a default line-count
5122 of 60. You may omit the comma and @var{columns} specification; the
5123 default width is 200 columns.
5124
5125 @command{@value{AS}} generates formfeeds whenever the specified number of
5126 lines is exceeded (or whenever you explicitly request one, using
5127 @code{.eject}).
5128
5129 If you specify @var{lines} as @code{0}, no formfeeds are generated save
5130 those explicitly specified with @code{.eject}.
5131
5132 @node Purgem
5133 @section @code{.purgem @var{name}}
5134
5135 @cindex @code{purgem} directive
5136 Undefine the macro @var{name}, so that later uses of the string will not be
5137 expanded. @xref{Macro}.
5138
5139 @ifset ELF
5140 @node PushSection
5141 @section @code{.pushsection @var{name} , @var{subsection}}
5142
5143 @cindex @code{pushsection} directive
5144 @cindex Section Stack
5145 This is one of the ELF section stack manipulation directives. The others are
5146 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
5147 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
5148 (@pxref{Previous}).
5149
5150 This directive pushes the current section (and subsection) onto the
5151 top of the section stack, and then replaces the current section and
5152 subsection with @code{name} and @code{subsection}.
5153 @end ifset
5154
5155 @node Quad
5156 @section @code{.quad @var{bignums}}
5157
5158 @cindex @code{quad} directive
5159 @code{.quad} expects zero or more bignums, separated by commas. For
5160 each bignum, it emits
5161 @ifclear bignum-16
5162 an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a
5163 warning message; and just takes the lowest order 8 bytes of the bignum.
5164 @cindex eight-byte integer
5165 @cindex integer, 8-byte
5166
5167 The term ``quad'' comes from contexts in which a ``word'' is two bytes;
5168 hence @emph{quad}-word for 8 bytes.
5169 @end ifclear
5170 @ifset bignum-16
5171 a 16-byte integer. If the bignum won't fit in 16 bytes, it prints a
5172 warning message; and just takes the lowest order 16 bytes of the bignum.
5173 @cindex sixteen-byte integer
5174 @cindex integer, 16-byte
5175 @end ifset
5176
5177 @node Rept
5178 @section @code{.rept @var{count}}
5179
5180 @cindex @code{rept} directive
5181 Repeat the sequence of lines between the @code{.rept} directive and the next
5182 @code{.endr} directive @var{count} times.
5183
5184 For example, assembling
5185
5186 @example
5187 .rept 3
5188 .long 0
5189 .endr
5190 @end example
5191
5192 is equivalent to assembling
5193
5194 @example
5195 .long 0
5196 .long 0
5197 .long 0
5198 @end example
5199
5200 @node Sbttl
5201 @section @code{.sbttl "@var{subheading}"}
5202
5203 @cindex @code{sbttl} directive
5204 @cindex subtitles for listings
5205 @cindex listing control: subtitle
5206 Use @var{subheading} as the title (third line, immediately after the
5207 title line) when generating assembly listings.
5208
5209 This directive affects subsequent pages, as well as the current page if
5210 it appears within ten lines of the top of a page.
5211
5212 @ifset COFF
5213 @node Scl
5214 @section @code{.scl @var{class}}
5215
5216 @cindex @code{scl} directive
5217 @cindex symbol storage class (COFF)
5218 @cindex COFF symbol storage class
5219 Set the storage-class value for a symbol. This directive may only be
5220 used inside a @code{.def}/@code{.endef} pair. Storage class may flag
5221 whether a symbol is static or external, or it may record further
5222 symbolic debugging information.
5223 @ifset BOUT
5224
5225 The @samp{.scl} directive is primarily associated with COFF output; when
5226 configured to generate @code{b.out} output format, @command{@value{AS}}
5227 accepts this directive but ignores it.
5228 @end ifset
5229 @end ifset
5230
5231 @ifset COFF-ELF
5232 @node Section
5233 @section @code{.section @var{name}}
5234
5235 @cindex named section
5236 Use the @code{.section} directive to assemble the following code into a section
5237 named @var{name}.
5238
5239 This directive is only supported for targets that actually support arbitrarily
5240 named sections; on @code{a.out} targets, for example, it is not accepted, even
5241 with a standard @code{a.out} section name.
5242
5243 @ifset COFF
5244 @ifset ELF
5245 @c only print the extra heading if both COFF and ELF are set
5246 @subheading COFF Version
5247 @end ifset
5248
5249 @cindex @code{section} directive (COFF version)
5250 For COFF targets, the @code{.section} directive is used in one of the following
5251 ways:
5252
5253 @smallexample
5254 .section @var{name}[, "@var{flags}"]
5255 .section @var{name}[, @var{subsegment}]
5256 @end smallexample
5257
5258 If the optional argument is quoted, it is taken as flags to use for the
5259 section. Each flag is a single character. The following flags are recognized:
5260 @table @code
5261 @item b
5262 bss section (uninitialized data)
5263 @item n
5264 section is not loaded
5265 @item w
5266 writable section
5267 @item d
5268 data section
5269 @item r
5270 read-only section
5271 @item x
5272 executable section
5273 @item s
5274 shared section (meaningful for PE targets)
5275 @item a
5276 ignored. (For compatibility with the ELF version)
5277 @end table
5278
5279 If no flags are specified, the default flags depend upon the section name. If
5280 the section name is not recognized, the default will be for the section to be
5281 loaded and writable. Note the @code{n} and @code{w} flags remove attributes
5282 from the section, rather than adding them, so if they are used on their own it
5283 will be as if no flags had been specified at all.
5284
5285 If the optional argument to the @code{.section} directive is not quoted, it is
5286 taken as a subsegment number (@pxref{Sub-Sections}).
5287 @end ifset
5288
5289 @ifset ELF
5290 @ifset COFF
5291 @c only print the extra heading if both COFF and ELF are set
5292 @subheading ELF Version
5293 @end ifset
5294
5295 @cindex Section Stack
5296 This is one of the ELF section stack manipulation directives. The others are
5297 @code{.subsection} (@pxref{SubSection}), @code{.pushsection}
5298 (@pxref{PushSection}), @code{.popsection} (@pxref{PopSection}), and
5299 @code{.previous} (@pxref{Previous}).
5300
5301 @cindex @code{section} directive (ELF version)
5302 For ELF targets, the @code{.section} directive is used like this:
5303
5304 @smallexample
5305 .section @var{name} [, "@var{flags}"[, @@@var{type}[,@var{flag_specific_arguments}]]
5306 @end smallexample
5307
5308 The optional @var{flags} argument is a quoted string which may contain any
5309 combination of the following characters:
5310 @table @code
5311 @item a
5312 section is allocatable
5313 @item w
5314 section is writable
5315 @item x
5316 section is executable
5317 @item M
5318 section is mergeable
5319 @item S
5320 section contains zero terminated strings
5321 @item G
5322 section is a member of a section group
5323 @item T
5324 section is used for thread-local-storage
5325 @end table
5326
5327 The optional @var{type} argument may contain one of the following constants:
5328 @table @code
5329 @item @@progbits
5330 section contains data
5331 @item @@nobits
5332 section does not contain data (i.e., section only occupies space)
5333 @item @@note
5334 section contains data which is used by things other than the program
5335 @item @@init_array
5336 section contains an array of pointers to init functions
5337 @item @@fini_array
5338 section contains an array of pointers to finish functions
5339 @item @@preinit_array
5340 section contains an array of pointers to pre-init functions
5341 @end table
5342
5343 Many targets only support the first three section types.
5344
5345 Note on targets where the @code{@@} character is the start of a comment (eg
5346 ARM) then another character is used instead. For example the ARM port uses the
5347 @code{%} character.
5348
5349 If @var{flags} contains the @code{M} symbol then the @var{type} argument must
5350 be specified as well as an extra argument - @var{entsize} - like this:
5351
5352 @smallexample
5353 .section @var{name} , "@var{flags}"M, @@@var{type}, @var{entsize}
5354 @end smallexample
5355
5356 Sections with the @code{M} flag but not @code{S} flag must contain fixed size
5357 constants, each @var{entsize} octets long. Sections with both @code{M} and
5358 @code{S} must contain zero terminated strings where each character is
5359 @var{entsize} bytes long. The linker may remove duplicates within sections with
5360 the same name, same entity size and same flags. @var{entsize} must be an
5361 absolute expression.
5362
5363 If @var{flags} contains the @code{G} symbol then the @var{type} argument must
5364 be present along with an additional field like this:
5365
5366 @smallexample
5367 .section @var{name} , "@var{flags}"G, @@@var{type}, @var{GroupName}[, @var{linkage}]
5368 @end smallexample
5369
5370 The @var{GroupName} field specifies the name of the section group to which this
5371 particular section belongs. The optional linkage field can contain:
5372 @table @code
5373 @item comdat
5374 indicates that only one copy of this section should be retained
5375 @item .gnu.linkonce
5376 an alias for comdat
5377 @end table
5378
5379 Note - if both the @var{M} and @var{G} flags are present then the fields for
5380 the Merge flag should come first, like this:
5381
5382 @smallexample
5383 .section @var{name} , "@var{flags}"MG, @@@var{type}, @var{entsize}, @var{GroupName}[, @var{linkage}]
5384 @end smallexample
5385
5386 If no flags are specified, the default flags depend upon the section name. If
5387 the section name is not recognized, the default will be for the section to have
5388 none of the above flags: it will not be allocated in memory, nor writable, nor
5389 executable. The section will contain data.
5390
5391 For ELF targets, the assembler supports another type of @code{.section}
5392 directive for compatibility with the Solaris assembler:
5393
5394 @smallexample
5395 .section "@var{name}"[, @var{flags}...]
5396 @end smallexample
5397
5398 Note that the section name is quoted. There may be a sequence of comma
5399 separated flags:
5400 @table @code
5401 @item #alloc
5402 section is allocatable
5403 @item #write
5404 section is writable
5405 @item #execinstr
5406 section is executable
5407 @item #tls
5408 section is used for thread local storage
5409 @end table
5410
5411 This directive replaces the current section and subsection. See the
5412 contents of the gas testsuite directory @code{gas/testsuite/gas/elf} for
5413 some examples of how this directive and the other section stack directives
5414 work.
5415 @end ifset
5416 @end ifset
5417
5418 @node Set
5419 @section @code{.set @var{symbol}, @var{expression}}
5420
5421 @cindex @code{set} directive
5422 @cindex symbol value, setting
5423 Set the value of @var{symbol} to @var{expression}. This
5424 changes @var{symbol}'s value and type to conform to
5425 @var{expression}. If @var{symbol} was flagged as external, it remains
5426 flagged (@pxref{Symbol Attributes}).
5427
5428 You may @code{.set} a symbol many times in the same assembly.
5429
5430 If you @code{.set} a global symbol, the value stored in the object
5431 file is the last value stored into it.
5432
5433 @ifset HPPA
5434 The syntax for @code{set} on the HPPA is
5435 @samp{@var{symbol} .set @var{expression}}.
5436 @end ifset
5437
5438 @node Short
5439 @section @code{.short @var{expressions}}
5440
5441 @cindex @code{short} directive
5442 @ifset GENERIC
5443 @code{.short} is normally the same as @samp{.word}.
5444 @xref{Word,,@code{.word}}.
5445
5446 In some configurations, however, @code{.short} and @code{.word} generate
5447 numbers of different lengths; @pxref{Machine Dependencies}.
5448 @end ifset
5449 @ifclear GENERIC
5450 @ifset W16
5451 @code{.short} is the same as @samp{.word}. @xref{Word,,@code{.word}}.
5452 @end ifset
5453 @ifset W32
5454 This expects zero or more @var{expressions}, and emits
5455 a 16 bit number for each.
5456 @end ifset
5457 @end ifclear
5458
5459 @node Single
5460 @section @code{.single @var{flonums}}
5461
5462 @cindex @code{single} directive
5463 @cindex floating point numbers (single)
5464 This directive assembles zero or more flonums, separated by commas. It
5465 has the same effect as @code{.float}.
5466 @ifset GENERIC
5467 The exact kind of floating point numbers emitted depends on how
5468 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
5469 @end ifset
5470 @ifclear GENERIC
5471 @ifset IEEEFLOAT
5472 On the @value{TARGET} family, @code{.single} emits 32-bit floating point
5473 numbers in @sc{ieee} format.
5474 @end ifset
5475 @end ifclear
5476
5477 @ifset COFF-ELF
5478 @node Size
5479 @section @code{.size}
5480
5481 This directive is used to set the size associated with a symbol.
5482
5483 @ifset COFF
5484 @ifset ELF
5485 @c only print the extra heading if both COFF and ELF are set
5486 @subheading COFF Version
5487 @end ifset
5488
5489 @cindex @code{size} directive (COFF version)
5490 For COFF targets, the @code{.size} directive is only permitted inside
5491 @code{.def}/@code{.endef} pairs. It is used like this:
5492
5493 @smallexample
5494 .size @var{expression}
5495 @end smallexample
5496
5497 @ifset BOUT
5498 @samp{.size} is only meaningful when generating COFF format output; when
5499 @command{@value{AS}} is generating @code{b.out}, it accepts this directive but
5500 ignores it.
5501 @end ifset
5502 @end ifset
5503
5504 @ifset ELF
5505 @ifset COFF
5506 @c only print the extra heading if both COFF and ELF are set
5507 @subheading ELF Version
5508 @end ifset
5509
5510 @cindex @code{size} directive (ELF version)
5511 For ELF targets, the @code{.size} directive is used like this:
5512
5513 @smallexample
5514 .size @var{name} , @var{expression}
5515 @end smallexample
5516
5517 This directive sets the size associated with a symbol @var{name}.
5518 The size in bytes is computed from @var{expression} which can make use of label
5519 arithmetic. This directive is typically used to set the size of function
5520 symbols.
5521 @end ifset
5522 @end ifset
5523
5524 @node Sleb128
5525 @section @code{.sleb128 @var{expressions}}
5526
5527 @cindex @code{sleb128} directive
5528 @var{sleb128} stands for ``signed little endian base 128.'' This is a
5529 compact, variable length representation of numbers used by the DWARF
5530 symbolic debugging format. @xref{Uleb128,@code{.uleb128}}.
5531
5532 @ifclear no-space-dir
5533 @node Skip
5534 @section @code{.skip @var{size} , @var{fill}}
5535
5536 @cindex @code{skip} directive
5537 @cindex filling memory
5538 This directive emits @var{size} bytes, each of value @var{fill}. Both
5539 @var{size} and @var{fill} are absolute expressions. If the comma and
5540 @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same as
5541 @samp{.space}.
5542
5543 @node Space
5544 @section @code{.space @var{size} , @var{fill}}
5545
5546 @cindex @code{space} directive
5547 @cindex filling memory
5548 This directive emits @var{size} bytes, each of value @var{fill}. Both
5549 @var{size} and @var{fill} are absolute expressions. If the comma
5550 and @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same
5551 as @samp{.skip}.
5552
5553 @ifset HPPA
5554 @quotation
5555 @emph{Warning:} @code{.space} has a completely different meaning for HPPA
5556 targets; use @code{.block} as a substitute. See @cite{HP9000 Series 800
5557 Assembly Language Reference Manual} (HP 92432-90001) for the meaning of the
5558 @code{.space} directive. @xref{HPPA Directives,,HPPA Assembler Directives},
5559 for a summary.
5560 @end quotation
5561 @end ifset
5562 @end ifclear
5563
5564 @ifset have-stabs
5565 @node Stab
5566 @section @code{.stabd, .stabn, .stabs}
5567
5568 @cindex symbolic debuggers, information for
5569 @cindex @code{stab@var{x}} directives
5570 There are three directives that begin @samp{.stab}.
5571 All emit symbols (@pxref{Symbols}), for use by symbolic debuggers.
5572 The symbols are not entered in the @command{@value{AS}} hash table: they
5573 cannot be referenced elsewhere in the source file.
5574 Up to five fields are required:
5575
5576 @table @var
5577 @item string
5578 This is the symbol's name. It may contain any character except
5579 @samp{\000}, so is more general than ordinary symbol names. Some
5580 debuggers used to code arbitrarily complex structures into symbol names
5581 using this field.
5582
5583 @item type
5584 An absolute expression. The symbol's type is set to the low 8 bits of
5585 this expression. Any bit pattern is permitted, but @code{@value{LD}}
5586 and debuggers choke on silly bit patterns.
5587
5588 @item other
5589 An absolute expression. The symbol's ``other'' attribute is set to the
5590 low 8 bits of this expression.
5591
5592 @item desc
5593 An absolute expression. The symbol's descriptor is set to the low 16
5594 bits of this expression.
5595
5596 @item value
5597 An absolute expression which becomes the symbol's value.
5598 @end table
5599
5600 If a warning is detected while reading a @code{.stabd}, @code{.stabn},
5601 or @code{.stabs} statement, the symbol has probably already been created;
5602 you get a half-formed symbol in your object file. This is
5603 compatible with earlier assemblers!
5604
5605 @table @code
5606 @cindex @code{stabd} directive
5607 @item .stabd @var{type} , @var{other} , @var{desc}
5608
5609 The ``name'' of the symbol generated is not even an empty string.
5610 It is a null pointer, for compatibility. Older assemblers used a
5611 null pointer so they didn't waste space in object files with empty
5612 strings.
5613
5614 The symbol's value is set to the location counter,
5615 relocatably. When your program is linked, the value of this symbol
5616 is the address of the location counter when the @code{.stabd} was
5617 assembled.
5618
5619 @cindex @code{stabn} directive
5620 @item .stabn @var{type} , @var{other} , @var{desc} , @var{value}
5621 The name of the symbol is set to the empty string @code{""}.
5622
5623 @cindex @code{stabs} directive
5624 @item .stabs @var{string} , @var{type} , @var{other} , @var{desc} , @var{value}
5625 All five fields are specified.
5626 @end table
5627 @end ifset
5628 @c end have-stabs
5629
5630 @node String
5631 @section @code{.string} "@var{str}"
5632
5633 @cindex string, copying to object file
5634 @cindex @code{string} directive
5635
5636 Copy the characters in @var{str} to the object file. You may specify more than
5637 one string to copy, separated by commas. Unless otherwise specified for a
5638 particular machine, the assembler marks the end of each string with a 0 byte.
5639 You can use any of the escape sequences described in @ref{Strings,,Strings}.
5640
5641 @node Struct
5642 @section @code{.struct @var{expression}}
5643
5644 @cindex @code{struct} directive
5645 Switch to the absolute section, and set the section offset to @var{expression},
5646 which must be an absolute expression. You might use this as follows:
5647 @smallexample
5648 .struct 0
5649 field1:
5650 .struct field1 + 4
5651 field2:
5652 .struct field2 + 4
5653 field3:
5654 @end smallexample
5655 This would define the symbol @code{field1} to have the value 0, the symbol
5656 @code{field2} to have the value 4, and the symbol @code{field3} to have the
5657 value 8. Assembly would be left in the absolute section, and you would need to
5658 use a @code{.section} directive of some sort to change to some other section
5659 before further assembly.
5660
5661 @ifset ELF
5662 @node SubSection
5663 @section @code{.subsection @var{name}}
5664
5665 @cindex @code{subsection} directive
5666 @cindex Section Stack
5667 This is one of the ELF section stack manipulation directives. The others are
5668 @code{.section} (@pxref{Section}), @code{.pushsection} (@pxref{PushSection}),
5669 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
5670 (@pxref{Previous}).
5671
5672 This directive replaces the current subsection with @code{name}. The current
5673 section is not changed. The replaced subsection is put onto the section stack
5674 in place of the then current top of stack subsection.
5675 @end ifset
5676
5677 @ifset ELF
5678 @node Symver
5679 @section @code{.symver}
5680 @cindex @code{symver} directive
5681 @cindex symbol versioning
5682 @cindex versions of symbols
5683 Use the @code{.symver} directive to bind symbols to specific version nodes
5684 within a source file. This is only supported on ELF platforms, and is
5685 typically used when assembling files to be linked into a shared library.
5686 There are cases where it may make sense to use this in objects to be bound
5687 into an application itself so as to override a versioned symbol from a
5688 shared library.
5689
5690 For ELF targets, the @code{.symver} directive can be used like this:
5691 @smallexample
5692 .symver @var{name}, @var{name2@@nodename}
5693 @end smallexample
5694 If the symbol @var{name} is defined within the file
5695 being assembled, the @code{.symver} directive effectively creates a symbol
5696 alias with the name @var{name2@@nodename}, and in fact the main reason that we
5697 just don't try and create a regular alias is that the @var{@@} character isn't
5698 permitted in symbol names. The @var{name2} part of the name is the actual name
5699 of the symbol by which it will be externally referenced. The name @var{name}
5700 itself is merely a name of convenience that is used so that it is possible to
5701 have definitions for multiple versions of a function within a single source
5702 file, and so that the compiler can unambiguously know which version of a
5703 function is being mentioned. The @var{nodename} portion of the alias should be
5704 the name of a node specified in the version script supplied to the linker when
5705 building a shared library. If you are attempting to override a versioned
5706 symbol from a shared library, then @var{nodename} should correspond to the
5707 nodename of the symbol you are trying to override.
5708
5709 If the symbol @var{name} is not defined within the file being assembled, all
5710 references to @var{name} will be changed to @var{name2@@nodename}. If no
5711 reference to @var{name} is made, @var{name2@@nodename} will be removed from the
5712 symbol table.
5713
5714 Another usage of the @code{.symver} directive is:
5715 @smallexample
5716 .symver @var{name}, @var{name2@@@@nodename}
5717 @end smallexample
5718 In this case, the symbol @var{name} must exist and be defined within
5719 the file being assembled. It is similar to @var{name2@@nodename}. The
5720 difference is @var{name2@@@@nodename} will also be used to resolve
5721 references to @var{name2} by the linker.
5722
5723 The third usage of the @code{.symver} directive is:
5724 @smallexample
5725 .symver @var{name}, @var{name2@@@@@@nodename}
5726 @end smallexample
5727 When @var{name} is not defined within the
5728 file being assembled, it is treated as @var{name2@@nodename}. When
5729 @var{name} is defined within the file being assembled, the symbol
5730 name, @var{name}, will be changed to @var{name2@@@@nodename}.
5731 @end ifset
5732
5733 @ifset COFF
5734 @node Tag
5735 @section @code{.tag @var{structname}}
5736
5737 @cindex COFF structure debugging
5738 @cindex structure debugging, COFF
5739 @cindex @code{tag} directive
5740 This directive is generated by compilers to include auxiliary debugging
5741 information in the symbol table. It is only permitted inside
5742 @code{.def}/@code{.endef} pairs. Tags are used to link structure
5743 definitions in the symbol table with instances of those structures.
5744 @ifset BOUT
5745
5746 @samp{.tag} is only used when generating COFF format output; when
5747 @command{@value{AS}} is generating @code{b.out}, it accepts this directive but
5748 ignores it.
5749 @end ifset
5750 @end ifset
5751
5752 @node Text
5753 @section @code{.text @var{subsection}}
5754
5755 @cindex @code{text} directive
5756 Tells @command{@value{AS}} to assemble the following statements onto the end of
5757 the text subsection numbered @var{subsection}, which is an absolute
5758 expression. If @var{subsection} is omitted, subsection number zero
5759 is used.
5760
5761 @node Title
5762 @section @code{.title "@var{heading}"}
5763
5764 @cindex @code{title} directive
5765 @cindex listing control: title line
5766 Use @var{heading} as the title (second line, immediately after the
5767 source file name and pagenumber) when generating assembly listings.
5768
5769 This directive affects subsequent pages, as well as the current page if
5770 it appears within ten lines of the top of a page.
5771
5772 @ifset COFF-ELF
5773 @node Type
5774 @section @code{.type}
5775
5776 This directive is used to set the type of a symbol.
5777
5778 @ifset COFF
5779 @ifset ELF
5780 @c only print the extra heading if both COFF and ELF are set
5781 @subheading COFF Version
5782 @end ifset
5783
5784 @cindex COFF symbol type
5785 @cindex symbol type, COFF
5786 @cindex @code{type} directive (COFF version)
5787 For COFF targets, this directive is permitted only within
5788 @code{.def}/@code{.endef} pairs. It is used like this:
5789
5790 @smallexample
5791 .type @var{int}
5792 @end smallexample
5793
5794 This records the integer @var{int} as the type attribute of a symbol table
5795 entry.
5796
5797 @ifset BOUT
5798 @samp{.type} is associated only with COFF format output; when
5799 @command{@value{AS}} is configured for @code{b.out} output, it accepts this
5800 directive but ignores it.
5801 @end ifset
5802 @end ifset
5803
5804 @ifset ELF
5805 @ifset COFF
5806 @c only print the extra heading if both COFF and ELF are set
5807 @subheading ELF Version
5808 @end ifset
5809
5810 @cindex ELF symbol type
5811 @cindex symbol type, ELF
5812 @cindex @code{type} directive (ELF version)
5813 For ELF targets, the @code{.type} directive is used like this:
5814
5815 @smallexample
5816 .type @var{name} , @var{type description}
5817 @end smallexample
5818
5819 This sets the type of symbol @var{name} to be either a
5820 function symbol or an object symbol. There are five different syntaxes
5821 supported for the @var{type description} field, in order to provide
5822 compatibility with various other assemblers. The syntaxes supported are:
5823
5824 @smallexample
5825 .type <name>,#function
5826 .type <name>,#object
5827
5828 .type <name>,@@function
5829 .type <name>,@@object
5830
5831 .type <name>,%function
5832 .type <name>,%object
5833
5834 .type <name>,"function"
5835 .type <name>,"object"
5836
5837 .type <name> STT_FUNCTION
5838 .type <name> STT_OBJECT
5839 @end smallexample
5840 @end ifset
5841 @end ifset
5842
5843 @node Uleb128
5844 @section @code{.uleb128 @var{expressions}}
5845
5846 @cindex @code{uleb128} directive
5847 @var{uleb128} stands for ``unsigned little endian base 128.'' This is a
5848 compact, variable length representation of numbers used by the DWARF
5849 symbolic debugging format. @xref{Sleb128,@code{.sleb128}}.
5850
5851 @ifset COFF
5852 @node Val
5853 @section @code{.val @var{addr}}
5854
5855 @cindex @code{val} directive
5856 @cindex COFF value attribute
5857 @cindex value attribute, COFF
5858 This directive, permitted only within @code{.def}/@code{.endef} pairs,
5859 records the address @var{addr} as the value attribute of a symbol table
5860 entry.
5861 @ifset BOUT
5862
5863 @samp{.val} is used only for COFF output; when @command{@value{AS}} is
5864 configured for @code{b.out}, it accepts this directive but ignores it.
5865 @end ifset
5866 @end ifset
5867
5868 @ifset ELF
5869 @node Version
5870 @section @code{.version "@var{string}"}
5871
5872 @cindex @code{version} directive
5873 This directive creates a @code{.note} section and places into it an ELF
5874 formatted note of type NT_VERSION. The note's name is set to @code{string}.
5875 @end ifset
5876
5877 @ifset ELF
5878 @node VTableEntry
5879 @section @code{.vtable_entry @var{table}, @var{offset}}
5880
5881 @cindex @code{vtable_entry} directive
5882 This directive finds or creates a symbol @code{table} and creates a
5883 @code{VTABLE_ENTRY} relocation for it with an addend of @code{offset}.
5884
5885 @node VTableInherit
5886 @section @code{.vtable_inherit @var{child}, @var{parent}}
5887
5888 @cindex @code{vtable_inherit} directive
5889 This directive finds the symbol @code{child} and finds or creates the symbol
5890 @code{parent} and then creates a @code{VTABLE_INHERIT} relocation for the
5891 parent whose addend is the value of the child symbol. As a special case the
5892 parent name of @code{0} is treated as refering the @code{*ABS*} section.
5893 @end ifset
5894
5895 @node Warning
5896 @section @code{.warning "@var{string}"}
5897 @cindex warning directive
5898 Similar to the directive @code{.error}
5899 (@pxref{Error,,@code{.error "@var{string}"}}), but just emits a warning.
5900
5901 @node Weak
5902 @section @code{.weak @var{names}}
5903
5904 @cindex @code{weak} directive
5905 This directive sets the weak attribute on the comma separated list of symbol
5906 @code{names}. If the symbols do not already exist, they will be created.
5907
5908 On COFF targets other than PE, weak symbols are a GNU extension. This
5909 directive sets the weak attribute on the comma separated list of symbol
5910 @code{names}. If the symbols do not already exist, they will be created.
5911
5912 On the PE target, weak symbols are supported natively as weak aliases.
5913 When a weak symbol is created that is not an alias, GAS creates an
5914 alternate symbol to hold the default value.
5915
5916 @node Word
5917 @section @code{.word @var{expressions}}
5918
5919 @cindex @code{word} directive
5920 This directive expects zero or more @var{expressions}, of any section,
5921 separated by commas.
5922 @ifclear GENERIC
5923 @ifset W32
5924 For each expression, @command{@value{AS}} emits a 32-bit number.
5925 @end ifset
5926 @ifset W16
5927 For each expression, @command{@value{AS}} emits a 16-bit number.
5928 @end ifset
5929 @end ifclear
5930 @ifset GENERIC
5931
5932 The size of the number emitted, and its byte order,
5933 depend on what target computer the assembly is for.
5934 @end ifset
5935
5936 @c on amd29k, i960, sparc the "special treatment to support compilers" doesn't
5937 @c happen---32-bit addressability, period; no long/short jumps.
5938 @ifset DIFF-TBL-KLUGE
5939 @cindex difference tables altered
5940 @cindex altered difference tables
5941 @quotation
5942 @emph{Warning: Special Treatment to support Compilers}
5943 @end quotation
5944
5945 @ifset GENERIC
5946 Machines with a 32-bit address space, but that do less than 32-bit
5947 addressing, require the following special treatment. If the machine of
5948 interest to you does 32-bit addressing (or doesn't require it;
5949 @pxref{Machine Dependencies}), you can ignore this issue.
5950
5951 @end ifset
5952 In order to assemble compiler output into something that works,
5953 @command{@value{AS}} occasionally does strange things to @samp{.word} directives.
5954 Directives of the form @samp{.word sym1-sym2} are often emitted by
5955 compilers as part of jump tables. Therefore, when @command{@value{AS}} assembles a
5956 directive of the form @samp{.word sym1-sym2}, and the difference between
5957 @code{sym1} and @code{sym2} does not fit in 16 bits, @command{@value{AS}}
5958 creates a @dfn{secondary jump table}, immediately before the next label.
5959 This secondary jump table is preceded by a short-jump to the
5960 first byte after the secondary table. This short-jump prevents the flow
5961 of control from accidentally falling into the new table. Inside the
5962 table is a long-jump to @code{sym2}. The original @samp{.word}
5963 contains @code{sym1} minus the address of the long-jump to
5964 @code{sym2}.
5965
5966 If there were several occurrences of @samp{.word sym1-sym2} before the
5967 secondary jump table, all of them are adjusted. If there was a
5968 @samp{.word sym3-sym4}, that also did not fit in sixteen bits, a
5969 long-jump to @code{sym4} is included in the secondary jump table,
5970 and the @code{.word} directives are adjusted to contain @code{sym3}
5971 minus the address of the long-jump to @code{sym4}; and so on, for as many
5972 entries in the original jump table as necessary.
5973
5974 @ifset INTERNALS
5975 @emph{This feature may be disabled by compiling @command{@value{AS}} with the
5976 @samp{-DWORKING_DOT_WORD} option.} This feature is likely to confuse
5977 assembly language programmers.
5978 @end ifset
5979 @end ifset
5980 @c end DIFF-TBL-KLUGE
5981
5982 @node Deprecated
5983 @section Deprecated Directives
5984
5985 @cindex deprecated directives
5986 @cindex obsolescent directives
5987 One day these directives won't work.
5988 They are included for compatibility with older assemblers.
5989 @table @t
5990 @item .abort
5991 @item .line
5992 @end table
5993
5994 @ifset GENERIC
5995 @node Machine Dependencies
5996 @chapter Machine Dependent Features
5997
5998 @cindex machine dependencies
5999 The machine instruction sets are (almost by definition) different on
6000 each machine where @command{@value{AS}} runs. Floating point representations
6001 vary as well, and @command{@value{AS}} often supports a few additional
6002 directives or command-line options for compatibility with other
6003 assemblers on a particular platform. Finally, some versions of
6004 @command{@value{AS}} support special pseudo-instructions for branch
6005 optimization.
6006
6007 This chapter discusses most of these differences, though it does not
6008 include details on any machine's instruction set. For details on that
6009 subject, see the hardware manufacturer's manual.
6010
6011 @menu
6012 @ifset ALPHA
6013 * Alpha-Dependent:: Alpha Dependent Features
6014 @end ifset
6015 @ifset ARC
6016 * ARC-Dependent:: ARC Dependent Features
6017 @end ifset
6018 @ifset ARM
6019 * ARM-Dependent:: ARM Dependent Features
6020 @end ifset
6021 @ifset CRIS
6022 * CRIS-Dependent:: CRIS Dependent Features
6023 @end ifset
6024 @ifset D10V
6025 * D10V-Dependent:: D10V Dependent Features
6026 @end ifset
6027 @ifset D30V
6028 * D30V-Dependent:: D30V Dependent Features
6029 @end ifset
6030 @ifset H8/300
6031 * H8/300-Dependent:: Renesas H8/300 Dependent Features
6032 @end ifset
6033 @ifset HPPA
6034 * HPPA-Dependent:: HPPA Dependent Features
6035 @end ifset
6036 @ifset I370
6037 * ESA/390-Dependent:: IBM ESA/390 Dependent Features
6038 @end ifset
6039 @ifset I80386
6040 * i386-Dependent:: Intel 80386 and AMD x86-64 Dependent Features
6041 @end ifset
6042 @ifset I860
6043 * i860-Dependent:: Intel 80860 Dependent Features
6044 @end ifset
6045 @ifset I960
6046 * i960-Dependent:: Intel 80960 Dependent Features
6047 @end ifset
6048 @ifset IA64
6049 * IA-64-Dependent:: Intel IA-64 Dependent Features
6050 @end ifset
6051 @ifset IP2K
6052 * IP2K-Dependent:: IP2K Dependent Features
6053 @end ifset
6054 @ifset M32C
6055 * M32C-Dependent:: M32C Dependent Features
6056 @end ifset
6057 @ifset M32R
6058 * M32R-Dependent:: M32R Dependent Features
6059 @end ifset
6060 @ifset M680X0
6061 * M68K-Dependent:: M680x0 Dependent Features
6062 @end ifset
6063 @ifset M68HC11
6064 * M68HC11-Dependent:: M68HC11 and 68HC12 Dependent Features
6065 @end ifset
6066 @ifset MIPS
6067 * MIPS-Dependent:: MIPS Dependent Features
6068 @end ifset
6069 @ifset MMIX
6070 * MMIX-Dependent:: MMIX Dependent Features
6071 @end ifset
6072 @ifset MSP430
6073 * MSP430-Dependent:: MSP430 Dependent Features
6074 @end ifset
6075 @ifset SH
6076 * SH-Dependent:: Renesas / SuperH SH Dependent Features
6077 * SH64-Dependent:: SuperH SH64 Dependent Features
6078 @end ifset
6079 @ifset PDP11
6080 * PDP-11-Dependent:: PDP-11 Dependent Features
6081 @end ifset
6082 @ifset PJ
6083 * PJ-Dependent:: picoJava Dependent Features
6084 @end ifset
6085 @ifset PPC
6086 * PPC-Dependent:: PowerPC Dependent Features
6087 @end ifset
6088 @ifset SPARC
6089 * Sparc-Dependent:: SPARC Dependent Features
6090 @end ifset
6091 @ifset TIC54X
6092 * TIC54X-Dependent:: TI TMS320C54x Dependent Features
6093 @end ifset
6094 @ifset V850
6095 * V850-Dependent:: V850 Dependent Features
6096 @end ifset
6097 @ifset XTENSA
6098 * Xtensa-Dependent:: Xtensa Dependent Features
6099 @end ifset
6100 @ifset Z8000
6101 * Z8000-Dependent:: Z8000 Dependent Features
6102 @end ifset
6103 @ifset VAX
6104 * Vax-Dependent:: VAX Dependent Features
6105 @end ifset
6106 @end menu
6107
6108 @lowersections
6109 @end ifset
6110
6111 @c The following major nodes are *sections* in the GENERIC version, *chapters*
6112 @c in single-cpu versions. This is mainly achieved by @lowersections. There is a
6113 @c peculiarity: to preserve cross-references, there must be a node called
6114 @c "Machine Dependencies". Hence the conditional nodenames in each
6115 @c major node below. Node defaulting in makeinfo requires adjacency of
6116 @c node and sectioning commands; hence the repetition of @chapter BLAH
6117 @c in both conditional blocks.
6118
6119 @ifset ALPHA
6120 @include c-alpha.texi
6121 @end ifset
6122
6123 @ifset ARC
6124 @include c-arc.texi
6125 @end ifset
6126
6127 @ifset ARM
6128 @include c-arm.texi
6129 @end ifset
6130
6131 @ifset CRIS
6132 @include c-cris.texi
6133 @end ifset
6134
6135 @ifset Renesas-all
6136 @ifclear GENERIC
6137 @node Machine Dependencies
6138 @chapter Machine Dependent Features
6139
6140 The machine instruction sets are different on each Renesas chip family,
6141 and there are also some syntax differences among the families. This
6142 chapter describes the specific @command{@value{AS}} features for each
6143 family.
6144
6145 @menu
6146 * H8/300-Dependent:: Renesas H8/300 Dependent Features
6147 * SH-Dependent:: Renesas SH Dependent Features
6148 @end menu
6149 @lowersections
6150 @end ifclear
6151 @end ifset
6152
6153 @ifset D10V
6154 @include c-d10v.texi
6155 @end ifset
6156
6157 @ifset D30V
6158 @include c-d30v.texi
6159 @end ifset
6160
6161 @ifset H8/300
6162 @include c-h8300.texi
6163 @end ifset
6164
6165 @ifset HPPA
6166 @include c-hppa.texi
6167 @end ifset
6168
6169 @ifset I370
6170 @include c-i370.texi
6171 @end ifset
6172
6173 @ifset I80386
6174 @include c-i386.texi
6175 @end ifset
6176
6177 @ifset I860
6178 @include c-i860.texi
6179 @end ifset
6180
6181 @ifset I960
6182 @include c-i960.texi
6183 @end ifset
6184
6185 @ifset IA64
6186 @include c-ia64.texi
6187 @end ifset
6188
6189 @ifset IP2K
6190 @include c-ip2k.texi
6191 @end ifset
6192
6193 @ifset M32C
6194 @include c-m32c.texi
6195 @end ifset
6196
6197 @ifset M32R
6198 @include c-m32r.texi
6199 @end ifset
6200
6201 @ifset M680X0
6202 @include c-m68k.texi
6203 @end ifset
6204
6205 @ifset M68HC11
6206 @include c-m68hc11.texi
6207 @end ifset
6208
6209 @ifset MIPS
6210 @include c-mips.texi
6211 @end ifset
6212
6213 @ifset MMIX
6214 @include c-mmix.texi
6215 @end ifset
6216
6217 @ifset MSP430
6218 @include c-msp430.texi
6219 @end ifset
6220
6221 @ifset NS32K
6222 @include c-ns32k.texi
6223 @end ifset
6224
6225 @ifset PDP11
6226 @include c-pdp11.texi
6227 @end ifset
6228
6229 @ifset PJ
6230 @include c-pj.texi
6231 @end ifset
6232
6233 @ifset PPC
6234 @include c-ppc.texi
6235 @end ifset
6236
6237 @ifset SH
6238 @include c-sh.texi
6239 @include c-sh64.texi
6240 @end ifset
6241
6242 @ifset SPARC
6243 @include c-sparc.texi
6244 @end ifset
6245
6246 @ifset TIC54X
6247 @include c-tic54x.texi
6248 @end ifset
6249
6250 @ifset Z8000
6251 @include c-z8k.texi
6252 @end ifset
6253
6254 @ifset VAX
6255 @include c-vax.texi
6256 @end ifset
6257
6258 @ifset V850
6259 @include c-v850.texi
6260 @end ifset
6261
6262 @ifset XTENSA
6263 @include c-xtensa.texi
6264 @end ifset
6265
6266 @ifset GENERIC
6267 @c reverse effect of @down at top of generic Machine-Dep chapter
6268 @raisesections
6269 @end ifset
6270
6271 @node Reporting Bugs
6272 @chapter Reporting Bugs
6273 @cindex bugs in assembler
6274 @cindex reporting bugs in assembler
6275
6276 Your bug reports play an essential role in making @command{@value{AS}} reliable.
6277
6278 Reporting a bug may help you by bringing a solution to your problem, or it may
6279 not. But in any case the principal function of a bug report is to help the
6280 entire community by making the next version of @command{@value{AS}} work better.
6281 Bug reports are your contribution to the maintenance of @command{@value{AS}}.
6282
6283 In order for a bug report to serve its purpose, you must include the
6284 information that enables us to fix the bug.
6285
6286 @menu
6287 * Bug Criteria:: Have you found a bug?
6288 * Bug Reporting:: How to report bugs
6289 @end menu
6290
6291 @node Bug Criteria
6292 @section Have You Found a Bug?
6293 @cindex bug criteria
6294
6295 If you are not sure whether you have found a bug, here are some guidelines:
6296
6297 @itemize @bullet
6298 @cindex fatal signal
6299 @cindex assembler crash
6300 @cindex crash of assembler
6301 @item
6302 If the assembler gets a fatal signal, for any input whatever, that is a
6303 @command{@value{AS}} bug. Reliable assemblers never crash.
6304
6305 @cindex error on valid input
6306 @item
6307 If @command{@value{AS}} produces an error message for valid input, that is a bug.
6308
6309 @cindex invalid input
6310 @item
6311 If @command{@value{AS}} does not produce an error message for invalid input, that
6312 is a bug. However, you should note that your idea of ``invalid input'' might
6313 be our idea of ``an extension'' or ``support for traditional practice''.
6314
6315 @item
6316 If you are an experienced user of assemblers, your suggestions for improvement
6317 of @command{@value{AS}} are welcome in any case.
6318 @end itemize
6319
6320 @node Bug Reporting
6321 @section How to Report Bugs
6322 @cindex bug reports
6323 @cindex assembler bugs, reporting
6324
6325 A number of companies and individuals offer support for @sc{gnu} products. If
6326 you obtained @command{@value{AS}} from a support organization, we recommend you
6327 contact that organization first.
6328
6329 You can find contact information for many support companies and
6330 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
6331 distribution.
6332
6333 In any event, we also recommend that you send bug reports for @command{@value{AS}}
6334 to @samp{bug-binutils@@gnu.org}.
6335
6336 The fundamental principle of reporting bugs usefully is this:
6337 @strong{report all the facts}. If you are not sure whether to state a
6338 fact or leave it out, state it!
6339
6340 Often people omit facts because they think they know what causes the problem
6341 and assume that some details do not matter. Thus, you might assume that the
6342 name of a symbol you use in an example does not matter. Well, probably it does
6343 not, but one cannot be sure. Perhaps the bug is a stray memory reference which
6344 happens to fetch from the location where that name is stored in memory;
6345 perhaps, if the name were different, the contents of that location would fool
6346 the assembler into doing the right thing despite the bug. Play it safe and
6347 give a specific, complete example. That is the easiest thing for you to do,
6348 and the most helpful.
6349
6350 Keep in mind that the purpose of a bug report is to enable us to fix the bug if
6351 it is new to us. Therefore, always write your bug reports on the assumption
6352 that the bug has not been reported previously.
6353
6354 Sometimes people give a few sketchy facts and ask, ``Does this ring a
6355 bell?'' This cannot help us fix a bug, so it is basically useless. We
6356 respond by asking for enough details to enable us to investigate.
6357 You might as well expedite matters by sending them to begin with.
6358
6359 To enable us to fix the bug, you should include all these things:
6360
6361 @itemize @bullet
6362 @item
6363 The version of @command{@value{AS}}. @command{@value{AS}} announces it if you start
6364 it with the @samp{--version} argument.
6365
6366 Without this, we will not know whether there is any point in looking for
6367 the bug in the current version of @command{@value{AS}}.
6368
6369 @item
6370 Any patches you may have applied to the @command{@value{AS}} source.
6371
6372 @item
6373 The type of machine you are using, and the operating system name and
6374 version number.
6375
6376 @item
6377 What compiler (and its version) was used to compile @command{@value{AS}}---e.g.
6378 ``@code{gcc-2.7}''.
6379
6380 @item
6381 The command arguments you gave the assembler to assemble your example and
6382 observe the bug. To guarantee you will not omit something important, list them
6383 all. A copy of the Makefile (or the output from make) is sufficient.
6384
6385 If we were to try to guess the arguments, we would probably guess wrong
6386 and then we might not encounter the bug.
6387
6388 @item
6389 A complete input file that will reproduce the bug. If the bug is observed when
6390 the assembler is invoked via a compiler, send the assembler source, not the
6391 high level language source. Most compilers will produce the assembler source
6392 when run with the @samp{-S} option. If you are using @code{@value{GCC}}, use
6393 the options @samp{-v --save-temps}; this will save the assembler source in a
6394 file with an extension of @file{.s}, and also show you exactly how
6395 @command{@value{AS}} is being run.
6396
6397 @item
6398 A description of what behavior you observe that you believe is
6399 incorrect. For example, ``It gets a fatal signal.''
6400
6401 Of course, if the bug is that @command{@value{AS}} gets a fatal signal, then we
6402 will certainly notice it. But if the bug is incorrect output, we might not
6403 notice unless it is glaringly wrong. You might as well not give us a chance to
6404 make a mistake.
6405
6406 Even if the problem you experience is a fatal signal, you should still say so
6407 explicitly. Suppose something strange is going on, such as, your copy of
6408 @command{@value{AS}} is out of synch, or you have encountered a bug in the C
6409 library on your system. (This has happened!) Your copy might crash and ours
6410 would not. If you told us to expect a crash, then when ours fails to crash, we
6411 would know that the bug was not happening for us. If you had not told us to
6412 expect a crash, then we would not be able to draw any conclusion from our
6413 observations.
6414
6415 @item
6416 If you wish to suggest changes to the @command{@value{AS}} source, send us context
6417 diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or @samp{-p}
6418 option. Always send diffs from the old file to the new file. If you even
6419 discuss something in the @command{@value{AS}} source, refer to it by context, not
6420 by line number.
6421
6422 The line numbers in our development sources will not match those in your
6423 sources. Your line numbers would convey no useful information to us.
6424 @end itemize
6425
6426 Here are some things that are not necessary:
6427
6428 @itemize @bullet
6429 @item
6430 A description of the envelope of the bug.
6431
6432 Often people who encounter a bug spend a lot of time investigating
6433 which changes to the input file will make the bug go away and which
6434 changes will not affect it.
6435
6436 This is often time consuming and not very useful, because the way we
6437 will find the bug is by running a single example under the debugger
6438 with breakpoints, not by pure deduction from a series of examples.
6439 We recommend that you save your time for something else.
6440
6441 Of course, if you can find a simpler example to report @emph{instead}
6442 of the original one, that is a convenience for us. Errors in the
6443 output will be easier to spot, running under the debugger will take
6444 less time, and so on.
6445
6446 However, simplification is not vital; if you do not want to do this,
6447 report the bug anyway and send us the entire test case you used.
6448
6449 @item
6450 A patch for the bug.
6451
6452 A patch for the bug does help us if it is a good one. But do not omit
6453 the necessary information, such as the test case, on the assumption that
6454 a patch is all we need. We might see problems with your patch and decide
6455 to fix the problem another way, or we might not understand it at all.
6456
6457 Sometimes with a program as complicated as @command{@value{AS}} it is very hard to
6458 construct an example that will make the program follow a certain path through
6459 the code. If you do not send us the example, we will not be able to construct
6460 one, so we will not be able to verify that the bug is fixed.
6461
6462 And if we cannot understand what bug you are trying to fix, or why your
6463 patch should be an improvement, we will not install it. A test case will
6464 help us to understand.
6465
6466 @item
6467 A guess about what the bug is or what it depends on.
6468
6469 Such guesses are usually wrong. Even we cannot guess right about such
6470 things without first using the debugger to find the facts.
6471 @end itemize
6472
6473 @node Acknowledgements
6474 @chapter Acknowledgements
6475
6476 If you have contributed to GAS and your name isn't listed here,
6477 it is not meant as a slight. We just don't know about it. Send mail to the
6478 maintainer, and we'll correct the situation. Currently
6479 @c (January 1994),
6480 the maintainer is Ken Raeburn (email address @code{raeburn@@cygnus.com}).
6481
6482 Dean Elsner wrote the original @sc{gnu} assembler for the VAX.@footnote{Any
6483 more details?}
6484
6485 Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug
6486 information and the 68k series machines, most of the preprocessing pass, and
6487 extensive changes in @file{messages.c}, @file{input-file.c}, @file{write.c}.
6488
6489 K. Richard Pixley maintained GAS for a while, adding various enhancements and
6490 many bug fixes, including merging support for several processors, breaking GAS
6491 up to handle multiple object file format back ends (including heavy rewrite,
6492 testing, an integration of the coff and b.out back ends), adding configuration
6493 including heavy testing and verification of cross assemblers and file splits
6494 and renaming, converted GAS to strictly ANSI C including full prototypes, added
6495 support for m680[34]0 and cpu32, did considerable work on i960 including a COFF
6496 port (including considerable amounts of reverse engineering), a SPARC opcode
6497 file rewrite, DECstation, rs6000, and hp300hpux host ports, updated ``know''
6498 assertions and made them work, much other reorganization, cleanup, and lint.
6499
6500 Ken Raeburn wrote the high-level BFD interface code to replace most of the code
6501 in format-specific I/O modules.
6502
6503 The original VMS support was contributed by David L. Kashtan. Eric Youngdale
6504 has done much work with it since.
6505
6506 The Intel 80386 machine description was written by Eliot Dresselhaus.
6507
6508 Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
6509
6510 The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
6511 University and Torbjorn Granlund of the Swedish Institute of Computer Science.
6512
6513 Keith Knowles at the Open Software Foundation wrote the original MIPS back end
6514 (@file{tc-mips.c}, @file{tc-mips.h}), and contributed Rose format support
6515 (which hasn't been merged in yet). Ralph Campbell worked with the MIPS code to
6516 support a.out format.
6517
6518 Support for the Zilog Z8k and Renesas H8/300 processors (tc-z8k,
6519 tc-h8300), and IEEE 695 object file format (obj-ieee), was written by
6520 Steve Chamberlain of Cygnus Support. Steve also modified the COFF back end to
6521 use BFD for some low-level operations, for use with the H8/300 and AMD 29k
6522 targets.
6523
6524 John Gilmore built the AMD 29000 support, added @code{.include} support, and
6525 simplified the configuration of which versions accept which directives. He
6526 updated the 68k machine description so that Motorola's opcodes always produced
6527 fixed-size instructions (e.g., @code{jsr}), while synthetic instructions
6528 remained shrinkable (@code{jbsr}). John fixed many bugs, including true tested
6529 cross-compilation support, and one bug in relaxation that took a week and
6530 required the proverbial one-bit fix.
6531
6532 Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the
6533 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO Unix),
6534 added support for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and
6535 PowerPC assembler, and made a few other minor patches.
6536
6537 Steve Chamberlain made GAS able to generate listings.
6538
6539 Hewlett-Packard contributed support for the HP9000/300.
6540
6541 Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM)
6542 along with a fairly extensive HPPA testsuite (for both SOM and ELF object
6543 formats). This work was supported by both the Center for Software Science at
6544 the University of Utah and Cygnus Support.
6545
6546 Support for ELF format files has been worked on by Mark Eichin of Cygnus
6547 Support (original, incomplete implementation for SPARC), Pete Hoogenboom and
6548 Jeff Law at the University of Utah (HPPA mainly), Michael Meissner of the Open
6549 Software Foundation (i386 mainly), and Ken Raeburn of Cygnus Support (sparc,
6550 and some initial 64-bit support).
6551
6552 Linas Vepstas added GAS support for the ESA/390 ``IBM 370'' architecture.
6553
6554 Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
6555 support for openVMS/Alpha.
6556
6557 Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic*
6558 flavors.
6559
6560 David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Tensilica,
6561 Inc. added support for Xtensa processors.
6562
6563 Several engineers at Cygnus Support have also provided many small bug fixes and
6564 configuration enhancements.
6565
6566 Many others have contributed large or small bugfixes and enhancements. If
6567 you have contributed significant work and are not mentioned on this list, and
6568 want to be, let us know. Some of the history has been lost; we are not
6569 intentionally leaving anyone out.
6570
6571 @include fdl.texi
6572
6573 @node Index
6574 @unnumbered Index
6575
6576 @printindex cp
6577
6578 @contents
6579 @bye
6580 @c Local Variables:
6581 @c fill-column: 79
6582 @c End: