* config/tc-arm.c (arm_cpus): Add entry for ARM Cortex-M0.
[binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
2 @c 2008, 2009 Free Software Foundation, Inc.
3 @c This is part of the GAS manual.
4 @c For copying conditions, see the file as.texinfo.
5
6 @ifset GENERIC
7 @page
8 @node ARM-Dependent
9 @chapter ARM Dependent Features
10 @end ifset
11
12 @ifclear GENERIC
13 @node Machine Dependencies
14 @chapter ARM Dependent Features
15 @end ifclear
16
17 @cindex ARM support
18 @cindex Thumb support
19 @menu
20 * ARM Options:: Options
21 * ARM Syntax:: Syntax
22 * ARM Floating Point:: Floating Point
23 * ARM Directives:: ARM Machine Directives
24 * ARM Opcodes:: Opcodes
25 * ARM Mapping Symbols:: Mapping Symbols
26 * ARM Unwinding Tutorial:: Unwinding
27 @end menu
28
29 @node ARM Options
30 @section Options
31 @cindex ARM options (none)
32 @cindex options for ARM (none)
33
34 @table @code
35
36 @cindex @code{-mcpu=} command line option, ARM
37 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
38 This option specifies the target processor. The assembler will issue an
39 error message if an attempt is made to assemble an instruction which
40 will not execute on the target processor. The following processor names are
41 recognized:
42 @code{arm1},
43 @code{arm2},
44 @code{arm250},
45 @code{arm3},
46 @code{arm6},
47 @code{arm60},
48 @code{arm600},
49 @code{arm610},
50 @code{arm620},
51 @code{arm7},
52 @code{arm7m},
53 @code{arm7d},
54 @code{arm7dm},
55 @code{arm7di},
56 @code{arm7dmi},
57 @code{arm70},
58 @code{arm700},
59 @code{arm700i},
60 @code{arm710},
61 @code{arm710t},
62 @code{arm720},
63 @code{arm720t},
64 @code{arm740t},
65 @code{arm710c},
66 @code{arm7100},
67 @code{arm7500},
68 @code{arm7500fe},
69 @code{arm7t},
70 @code{arm7tdmi},
71 @code{arm7tdmi-s},
72 @code{arm8},
73 @code{arm810},
74 @code{strongarm},
75 @code{strongarm1},
76 @code{strongarm110},
77 @code{strongarm1100},
78 @code{strongarm1110},
79 @code{arm9},
80 @code{arm920},
81 @code{arm920t},
82 @code{arm922t},
83 @code{arm940t},
84 @code{arm9tdmi},
85 @code{fa526} (Faraday FA526 processor),
86 @code{fa626} (Faraday FA626 processor),
87 @code{arm9e},
88 @code{arm926e},
89 @code{arm926ej-s},
90 @code{arm946e-r0},
91 @code{arm946e},
92 @code{arm946e-s},
93 @code{arm966e-r0},
94 @code{arm966e},
95 @code{arm966e-s},
96 @code{arm968e-s},
97 @code{arm10t},
98 @code{arm10tdmi},
99 @code{arm10e},
100 @code{arm1020},
101 @code{arm1020t},
102 @code{arm1020e},
103 @code{arm1022e},
104 @code{arm1026ej-s},
105 @code{fa626te} (Faraday FA626TE processor),
106 @code{fa726te} (Faraday FA726TE processor),
107 @code{arm1136j-s},
108 @code{arm1136jf-s},
109 @code{arm1156t2-s},
110 @code{arm1156t2f-s},
111 @code{arm1176jz-s},
112 @code{arm1176jzf-s},
113 @code{mpcore},
114 @code{mpcorenovfp},
115 @code{cortex-a8},
116 @code{cortex-a9},
117 @code{cortex-r4},
118 @code{cortex-m3},
119 @code{cortex-m1},
120 @code{cortex-m0},
121 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
122 @code{i80200} (Intel XScale processor)
123 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
124 and
125 @code{xscale}.
126 The special name @code{all} may be used to allow the
127 assembler to accept instructions valid for any ARM processor.
128
129 In addition to the basic instruction set, the assembler can be told to
130 accept various extension mnemonics that extend the processor using the
131 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
132 is equivalent to specifying @code{-mcpu=ep9312}. The following extensions
133 are currently supported:
134 @code{+maverick}
135 @code{+iwmmxt}
136 and
137 @code{+xscale}.
138
139 @cindex @code{-march=} command line option, ARM
140 @item -march=@var{architecture}[+@var{extension}@dots{}]
141 This option specifies the target architecture. The assembler will issue
142 an error message if an attempt is made to assemble an instruction which
143 will not execute on the target architecture. The following architecture
144 names are recognized:
145 @code{armv1},
146 @code{armv2},
147 @code{armv2a},
148 @code{armv2s},
149 @code{armv3},
150 @code{armv3m},
151 @code{armv4},
152 @code{armv4xm},
153 @code{armv4t},
154 @code{armv4txm},
155 @code{armv5},
156 @code{armv5t},
157 @code{armv5txm},
158 @code{armv5te},
159 @code{armv5texp},
160 @code{armv6},
161 @code{armv6j},
162 @code{armv6k},
163 @code{armv6z},
164 @code{armv6zk},
165 @code{armv7},
166 @code{armv7-a},
167 @code{armv7-r},
168 @code{armv7-m},
169 @code{iwmmxt}
170 and
171 @code{xscale}.
172 If both @code{-mcpu} and
173 @code{-march} are specified, the assembler will use
174 the setting for @code{-mcpu}.
175
176 The architecture option can be extended with the same instruction set
177 extension options as the @code{-mcpu} option.
178
179 @cindex @code{-mfpu=} command line option, ARM
180 @item -mfpu=@var{floating-point-format}
181
182 This option specifies the floating point format to assemble for. The
183 assembler will issue an error message if an attempt is made to assemble
184 an instruction which will not execute on the target floating point unit.
185 The following format options are recognized:
186 @code{softfpa},
187 @code{fpe},
188 @code{fpe2},
189 @code{fpe3},
190 @code{fpa},
191 @code{fpa10},
192 @code{fpa11},
193 @code{arm7500fe},
194 @code{softvfp},
195 @code{softvfp+vfp},
196 @code{vfp},
197 @code{vfp10},
198 @code{vfp10-r0},
199 @code{vfp9},
200 @code{vfpxd},
201 @code{vfpv2}
202 @code{vfpv3}
203 @code{vfpv3-d16}
204 @code{arm1020t},
205 @code{arm1020e},
206 @code{arm1136jf-s},
207 @code{maverick}
208 and
209 @code{neon}.
210
211 In addition to determining which instructions are assembled, this option
212 also affects the way in which the @code{.double} assembler directive behaves
213 when assembling little-endian code.
214
215 The default is dependent on the processor selected. For Architecture 5 or
216 later, the default is to assembler for VFP instructions; for earlier
217 architectures the default is to assemble for FPA instructions.
218
219 @cindex @code{-mthumb} command line option, ARM
220 @item -mthumb
221 This option specifies that the assembler should start assembling Thumb
222 instructions; that is, it should behave as though the file starts with a
223 @code{.code 16} directive.
224
225 @cindex @code{-mthumb-interwork} command line option, ARM
226 @item -mthumb-interwork
227 This option specifies that the output generated by the assembler should
228 be marked as supporting interworking.
229
230 @cindex @code{-mapcs} command line option, ARM
231 @item -mapcs @code{[26|32]}
232 This option specifies that the output generated by the assembler should
233 be marked as supporting the indicated version of the Arm Procedure.
234 Calling Standard.
235
236 @cindex @code{-matpcs} command line option, ARM
237 @item -matpcs
238 This option specifies that the output generated by the assembler should
239 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
240 enabled this option will cause the assembler to create an empty
241 debugging section in the object file called .arm.atpcs. Debuggers can
242 use this to determine the ABI being used by.
243
244 @cindex @code{-mapcs-float} command line option, ARM
245 @item -mapcs-float
246 This indicates the floating point variant of the APCS should be
247 used. In this variant floating point arguments are passed in FP
248 registers rather than integer registers.
249
250 @cindex @code{-mapcs-reentrant} command line option, ARM
251 @item -mapcs-reentrant
252 This indicates that the reentrant variant of the APCS should be used.
253 This variant supports position independent code.
254
255 @cindex @code{-mfloat-abi=} command line option, ARM
256 @item -mfloat-abi=@var{abi}
257 This option specifies that the output generated by the assembler should be
258 marked as using specified floating point ABI.
259 The following values are recognized:
260 @code{soft},
261 @code{softfp}
262 and
263 @code{hard}.
264
265 @cindex @code{-eabi=} command line option, ARM
266 @item -meabi=@var{ver}
267 This option specifies which EABI version the produced object files should
268 conform to.
269 The following values are recognized:
270 @code{gnu},
271 @code{4}
272 and
273 @code{5}.
274
275 @cindex @code{-EB} command line option, ARM
276 @item -EB
277 This option specifies that the output generated by the assembler should
278 be marked as being encoded for a big-endian processor.
279
280 @cindex @code{-EL} command line option, ARM
281 @item -EL
282 This option specifies that the output generated by the assembler should
283 be marked as being encoded for a little-endian processor.
284
285 @cindex @code{-k} command line option, ARM
286 @cindex PIC code generation for ARM
287 @item -k
288 This option specifies that the output of the assembler should be marked
289 as position-independent code (PIC).
290
291 @cindex @code{--fix-v4bx} command line option, ARM
292 @item --fix-v4bx
293 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
294 the linker option of the same name.
295
296 @cindex @code{-mwarn-deprecated} command line option, ARM
297 @item -mwarn-deprecated
298 @itemx -mno-warn-deprecated
299 Enable or disable warnings about using deprecated options or
300 features. The default is to warn.
301
302 @end table
303
304
305 @node ARM Syntax
306 @section Syntax
307 @menu
308 * ARM-Chars:: Special Characters
309 * ARM-Regs:: Register Names
310 * ARM-Relocations:: Relocations
311 @end menu
312
313 @node ARM-Chars
314 @subsection Special Characters
315
316 @cindex line comment character, ARM
317 @cindex ARM line comment character
318 The presence of a @samp{@@} on a line indicates the start of a comment
319 that extends to the end of the current line. If a @samp{#} appears as
320 the first character of a line, the whole line is treated as a comment.
321
322 @cindex line separator, ARM
323 @cindex statement separator, ARM
324 @cindex ARM line separator
325 The @samp{;} character can be used instead of a newline to separate
326 statements.
327
328 @cindex immediate character, ARM
329 @cindex ARM immediate character
330 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
331
332 @cindex identifiers, ARM
333 @cindex ARM identifiers
334 *TODO* Explain about /data modifier on symbols.
335
336 @node ARM-Regs
337 @subsection Register Names
338
339 @cindex ARM register names
340 @cindex register names, ARM
341 *TODO* Explain about ARM register naming, and the predefined names.
342
343 @node ARM Floating Point
344 @section Floating Point
345
346 @cindex floating point, ARM (@sc{ieee})
347 @cindex ARM floating point (@sc{ieee})
348 The ARM family uses @sc{ieee} floating-point numbers.
349
350 @node ARM-Relocations
351 @subsection ARM relocation generation
352
353 @cindex data relocations, ARM
354 @cindex ARM data relocations
355 Specific data relocations can be generated by putting the relocation name
356 in parentheses after the symbol name. For example:
357
358 @smallexample
359 .word foo(TARGET1)
360 @end smallexample
361
362 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
363 @var{foo}.
364 The following relocations are supported:
365 @code{GOT},
366 @code{GOTOFF},
367 @code{TARGET1},
368 @code{TARGET2},
369 @code{SBREL},
370 @code{TLSGD},
371 @code{TLSLDM},
372 @code{TLSLDO},
373 @code{GOTTPOFF}
374 and
375 @code{TPOFF}.
376
377 For compatibility with older toolchains the assembler also accepts
378 @code{(PLT)} after branch targets. This will generate the deprecated
379 @samp{R_ARM_PLT32} relocation.
380
381 @cindex MOVW and MOVT relocations, ARM
382 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
383 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
384 respectively. For example to load the 32-bit address of foo into r0:
385
386 @smallexample
387 MOVW r0, #:lower16:foo
388 MOVT r0, #:upper16:foo
389 @end smallexample
390
391 @node ARM Directives
392 @section ARM Machine Directives
393
394 @cindex machine directives, ARM
395 @cindex ARM machine directives
396 @table @code
397
398 @c AAAAAAAAAAAAAAAAAAAAAAAAA
399
400 @cindex @code{.2byte} directive, ARM
401 @cindex @code{.4byte} directive, ARM
402 @cindex @code{.8byte} directive, ARM
403 @item .2byte @var{expression} [, @var{expression}]*
404 @itemx .4byte @var{expression} [, @var{expression}]*
405 @itemx .8byte @var{expression} [, @var{expression}]*
406 These directives write 2, 4 or 8 byte values to the output section.
407
408 @cindex @code{.align} directive, ARM
409 @item .align @var{expression} [, @var{expression}]
410 This is the generic @var{.align} directive. For the ARM however if the
411 first argument is zero (ie no alignment is needed) the assembler will
412 behave as if the argument had been 2 (ie pad to the next four byte
413 boundary). This is for compatibility with ARM's own assembler.
414
415 @cindex @code{.arch} directive, ARM
416 @item .arch @var{name}
417 Select the target architecture. Valid values for @var{name} are the same as
418 for the @option{-march} commandline option.
419
420 @cindex @code{.arm} directive, ARM
421 @item .arm
422 This performs the same action as @var{.code 32}.
423
424 @anchor{arm_pad}
425 @cindex @code{.pad} directive, ARM
426 @item .pad #@var{count}
427 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
428 A positive value indicates the function prologue allocated stack space by
429 decrementing the stack pointer.
430
431 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
432
433 @cindex @code{.bss} directive, ARM
434 @item .bss
435 This directive switches to the @code{.bss} section.
436
437 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
438
439 @cindex @code{.cantunwind} directive, ARM
440 @item .cantunwind
441 Prevents unwinding through the current function. No personality routine
442 or exception table data is required or permitted.
443
444 @cindex @code{.code} directive, ARM
445 @item .code @code{[16|32]}
446 This directive selects the instruction set being generated. The value 16
447 selects Thumb, with the value 32 selecting ARM.
448
449 @cindex @code{.cpu} directive, ARM
450 @item .cpu @var{name}
451 Select the target processor. Valid values for @var{name} are the same as
452 for the @option{-mcpu} commandline option.
453
454 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
455
456 @cindex @code{.dn} and @code{.qn} directives, ARM
457 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
458 @item @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
459
460 The @code{dn} and @code{qn} directives are used to create typed
461 and/or indexed register aliases for use in Advanced SIMD Extension
462 (Neon) instructions. The former should be used to create aliases
463 of double-precision registers, and the latter to create aliases of
464 quad-precision registers.
465
466 If these directives are used to create typed aliases, those aliases can
467 be used in Neon instructions instead of writing types after the mnemonic
468 or after each operand. For example:
469
470 @smallexample
471 x .dn d2.f32
472 y .dn d3.f32
473 z .dn d4.f32[1]
474 vmul x,y,z
475 @end smallexample
476
477 This is equivalent to writing the following:
478
479 @smallexample
480 vmul.f32 d2,d3,d4[1]
481 @end smallexample
482
483 Aliases created using @code{dn} or @code{qn} can be destroyed using
484 @code{unreq}.
485
486 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
487
488 @cindex @code{.eabi_attribute} directive, ARM
489 @item .eabi_attribute @var{tag}, @var{value}
490 Set the EABI object attribute @var{tag} to @var{value}.
491
492 The @var{tag} is either an attribute number, or one of the following:
493 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
494 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
495 @code{Tag_THUMB_ISA_use}, @code{Tag_VFP_arch}, @code{Tag_WMMX_arch},
496 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
497 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
498 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
499 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
500 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
501 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
502 @code{Tag_ABI_align8_needed}, @code{Tag_ABI_align8_preserved},
503 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
504 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
505 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
506 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
507 @code{Tag_VFP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
508 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
509 @code{Tag_conformance}, @code{Tag_T2EE_use},
510 @code{Tag_Virtualization_use}, @code{Tag_MPextension_use}
511
512 The @var{value} is either a @code{number}, @code{"string"}, or
513 @code{number, "string"} depending on the tag.
514
515 @cindex @code{.even} directive, ARM
516 @item .even
517 This directive aligns to an even-numbered address.
518
519 @cindex @code{.extend} directive, ARM
520 @cindex @code{.ldouble} directive, ARM
521 @item .extend @var{expression} [, @var{expression}]*
522 @itemx .ldouble @var{expression} [, @var{expression}]*
523 These directives write 12byte long double floating-point values to the
524 output section. These are not compatible with current ARM processors
525 or ABIs.
526
527 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
528
529 @anchor{arm_fnend}
530 @cindex @code{.fnend} directive, ARM
531 @item .fnend
532 Marks the end of a function with an unwind table entry. The unwind index
533 table entry is created when this directive is processed.
534
535 If no personality routine has been specified then standard personality
536 routine 0 or 1 will be used, depending on the number of unwind opcodes
537 required.
538
539 @anchor{arm_fnstart}
540 @cindex @code{.fnstart} directive, ARM
541 @item .fnstart
542 Marks the start of a function with an unwind table entry.
543
544 @cindex @code{.force_thumb} directive, ARM
545 @item .force_thumb
546 This directive forces the selection of Thumb instructions, even if the
547 target processor does not support those instructions
548
549 @cindex @code{.fpu} directive, ARM
550 @item .fpu @var{name}
551 Select the floating-point unit to assemble for. Valid values for @var{name}
552 are the same as for the @option{-mfpu} commandline option.
553
554 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
555 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
556
557 @cindex @code{.handlerdata} directive, ARM
558 @item .handlerdata
559 Marks the end of the current function, and the start of the exception table
560 entry for that function. Anything between this directive and the
561 @code{.fnend} directive will be added to the exception table entry.
562
563 Must be preceded by a @code{.personality} or @code{.personalityindex}
564 directive.
565
566 @c IIIIIIIIIIIIIIIIIIIIIIIIII
567 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
568 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
569 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
570
571 @item .ldouble @var{expression} [, @var{expression}]*
572 See @code{.extend}.
573
574 @cindex @code{.ltorg} directive, ARM
575 @item .ltorg
576 This directive causes the current contents of the literal pool to be
577 dumped into the current section (which is assumed to be the .text
578 section) at the current location (aligned to a word boundary).
579 @code{GAS} maintains a separate literal pool for each section and each
580 sub-section. The @code{.ltorg} directive will only affect the literal
581 pool of the current section and sub-section. At the end of assembly
582 all remaining, un-empty literal pools will automatically be dumped.
583
584 Note - older versions of @code{GAS} would dump the current literal
585 pool any time a section change occurred. This is no longer done, since
586 it prevents accurate control of the placement of literal pools.
587
588 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
589
590 @cindex @code{.movsp} directive, ARM
591 @item .movsp @var{reg} [, #@var{offset}]
592 Tell the unwinder that @var{reg} contains an offset from the current
593 stack pointer. If @var{offset} is not specified then it is assumed to be
594 zero.
595
596 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
597 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
598
599 @cindex @code{.object_arch} directive, ARM
600 @item .object_arch @var{name}
601 Override the architecture recorded in the EABI object attribute section.
602 Valid values for @var{name} are the same as for the @code{.arch} directive.
603 Typically this is useful when code uses runtime detection of CPU features.
604
605 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
606
607 @cindex @code{.packed} directive, ARM
608 @item .packed @var{expression} [, @var{expression}]*
609 This directive writes 12-byte packed floating-point values to the
610 output section. These are not compatible with current ARM processors
611 or ABIs.
612
613 @cindex @code{.pad} directive, ARM
614 @item .pad #@var{count}
615 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
616 A positive value indicates the function prologue allocated stack space by
617 decrementing the stack pointer.
618
619 @cindex @code{.personality} directive, ARM
620 @item .personality @var{name}
621 Sets the personality routine for the current function to @var{name}.
622
623 @cindex @code{.personalityindex} directive, ARM
624 @item .personalityindex @var{index}
625 Sets the personality routine for the current function to the EABI standard
626 routine number @var{index}
627
628 @cindex @code{.pool} directive, ARM
629 @item .pool
630 This is a synonym for .ltorg.
631
632 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
633 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
634
635 @cindex @code{.req} directive, ARM
636 @item @var{name} .req @var{register name}
637 This creates an alias for @var{register name} called @var{name}. For
638 example:
639
640 @smallexample
641 foo .req r0
642 @end smallexample
643
644 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
645
646 @anchor{arm_save}
647 @cindex @code{.save} directive, ARM
648 @item .save @var{reglist}
649 Generate unwinder annotations to restore the registers in @var{reglist}.
650 The format of @var{reglist} is the same as the corresponding store-multiple
651 instruction.
652
653 @smallexample
654 @exdent @emph{core registers}
655 .save @{r4, r5, r6, lr@}
656 stmfd sp!, @{r4, r5, r6, lr@}
657 @exdent @emph{FPA registers}
658 .save f4, 2
659 sfmfd f4, 2, [sp]!
660 @exdent @emph{VFP registers}
661 .save @{d8, d9, d10@}
662 fstmdx sp!, @{d8, d9, d10@}
663 @exdent @emph{iWMMXt registers}
664 .save @{wr10, wr11@}
665 wstrd wr11, [sp, #-8]!
666 wstrd wr10, [sp, #-8]!
667 or
668 .save wr11
669 wstrd wr11, [sp, #-8]!
670 .save wr10
671 wstrd wr10, [sp, #-8]!
672 @end smallexample
673
674 @anchor{arm_setfp}
675 @cindex @code{.setfp} directive, ARM
676 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
677 Make all unwinder annotations relative to a frame pointer. Without this
678 the unwinder will use offsets from the stack pointer.
679
680 The syntax of this directive is the same as the @code{sub} or @code{mov}
681 instruction used to set the frame pointer. @var{spreg} must be either
682 @code{sp} or mentioned in a previous @code{.movsp} directive.
683
684 @smallexample
685 .movsp ip
686 mov ip, sp
687 @dots{}
688 .setfp fp, ip, #4
689 sub fp, ip, #4
690 @end smallexample
691
692 @cindex @code{.secrel32} directive, ARM
693 @item .secrel32 @var{expression} [, @var{expression}]*
694 This directive emits relocations that evaluate to the section-relative
695 offset of each expression's symbol. This directive is only supported
696 for PE targets.
697
698 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
699
700 @cindex @code{.thumb} directive, ARM
701 @item .thumb
702 This performs the same action as @var{.code 16}.
703
704 @cindex @code{.thumb_func} directive, ARM
705 @item .thumb_func
706 This directive specifies that the following symbol is the name of a
707 Thumb encoded function. This information is necessary in order to allow
708 the assembler and linker to generate correct code for interworking
709 between Arm and Thumb instructions and should be used even if
710 interworking is not going to be performed. The presence of this
711 directive also implies @code{.thumb}
712
713 This directive is not neccessary when generating EABI objects. On these
714 targets the encoding is implicit when generating Thumb code.
715
716 @cindex @code{.thumb_set} directive, ARM
717 @item .thumb_set
718 This performs the equivalent of a @code{.set} directive in that it
719 creates a symbol which is an alias for another symbol (possibly not yet
720 defined). This directive also has the added property in that it marks
721 the aliased symbol as being a thumb function entry point, in the same
722 way that the @code{.thumb_func} directive does.
723
724 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
725
726 @cindex @code{.unreq} directive, ARM
727 @item .unreq @var{alias-name}
728 This undefines a register alias which was previously defined using the
729 @code{req}, @code{dn} or @code{qn} directives. For example:
730
731 @smallexample
732 foo .req r0
733 .unreq foo
734 @end smallexample
735
736 An error occurs if the name is undefined. Note - this pseudo op can
737 be used to delete builtin in register name aliases (eg 'r0'). This
738 should only be done if it is really necessary.
739
740 @cindex @code{.unwind_raw} directive, ARM
741 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
742 Insert one of more arbitary unwind opcode bytes, which are known to adjust
743 the stack pointer by @var{offset} bytes.
744
745 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
746 @code{.save @{r0@}}
747
748 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
749
750 @cindex @code{.vsave} directive, ARM
751 @item .vsave @var{vfp-reglist}
752 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
753 using FLDMD. Also works for VFPv3 registers
754 that are to be restored using VLDM.
755 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
756 instruction.
757
758 @smallexample
759 @exdent @emph{VFP registers}
760 .vsave @{d8, d9, d10@}
761 fstmdd sp!, @{d8, d9, d10@}
762 @exdent @emph{VFPv3 registers}
763 .vsave @{d15, d16, d17@}
764 vstm sp!, @{d15, d16, d17@}
765 @end smallexample
766
767 Since FLDMX and FSTMX are now deprecated, this directive should be
768 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
769
770 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
771 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
772 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
773 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
774
775 @end table
776
777 @node ARM Opcodes
778 @section Opcodes
779
780 @cindex ARM opcodes
781 @cindex opcodes for ARM
782 @code{@value{AS}} implements all the standard ARM opcodes. It also
783 implements several pseudo opcodes, including several synthetic load
784 instructions.
785
786 @table @code
787
788 @cindex @code{NOP} pseudo op, ARM
789 @item NOP
790 @smallexample
791 nop
792 @end smallexample
793
794 This pseudo op will always evaluate to a legal ARM instruction that does
795 nothing. Currently it will evaluate to MOV r0, r0.
796
797 @cindex @code{LDR reg,=<label>} pseudo op, ARM
798 @item LDR
799 @smallexample
800 ldr <register> , = <expression>
801 @end smallexample
802
803 If expression evaluates to a numeric constant then a MOV or MVN
804 instruction will be used in place of the LDR instruction, if the
805 constant can be generated by either of these instructions. Otherwise
806 the constant will be placed into the nearest literal pool (if it not
807 already there) and a PC relative LDR instruction will be generated.
808
809 @cindex @code{ADR reg,<label>} pseudo op, ARM
810 @item ADR
811 @smallexample
812 adr <register> <label>
813 @end smallexample
814
815 This instruction will load the address of @var{label} into the indicated
816 register. The instruction will evaluate to a PC relative ADD or SUB
817 instruction depending upon where the label is located. If the label is
818 out of range, or if it is not defined in the same file (and section) as
819 the ADR instruction, then an error will be generated. This instruction
820 will not make use of the literal pool.
821
822 @cindex @code{ADRL reg,<label>} pseudo op, ARM
823 @item ADRL
824 @smallexample
825 adrl <register> <label>
826 @end smallexample
827
828 This instruction will load the address of @var{label} into the indicated
829 register. The instruction will evaluate to one or two PC relative ADD
830 or SUB instructions depending upon where the label is located. If a
831 second instruction is not needed a NOP instruction will be generated in
832 its place, so that this instruction is always 8 bytes long.
833
834 If the label is out of range, or if it is not defined in the same file
835 (and section) as the ADRL instruction, then an error will be generated.
836 This instruction will not make use of the literal pool.
837
838 @end table
839
840 For information on the ARM or Thumb instruction sets, see @cite{ARM
841 Software Development Toolkit Reference Manual}, Advanced RISC Machines
842 Ltd.
843
844 @node ARM Mapping Symbols
845 @section Mapping Symbols
846
847 The ARM ELF specification requires that special symbols be inserted
848 into object files to mark certain features:
849
850 @table @code
851
852 @cindex @code{$a}
853 @item $a
854 At the start of a region of code containing ARM instructions.
855
856 @cindex @code{$t}
857 @item $t
858 At the start of a region of code containing THUMB instructions.
859
860 @cindex @code{$d}
861 @item $d
862 At the start of a region of data.
863
864 @end table
865
866 The assembler will automatically insert these symbols for you - there
867 is no need to code them yourself. Support for tagging symbols ($b,
868 $f, $p and $m) which is also mentioned in the current ARM ELF
869 specification is not implemented. This is because they have been
870 dropped from the new EABI and so tools cannot rely upon their
871 presence.
872
873 @node ARM Unwinding Tutorial
874 @section Unwinding
875
876 The ABI for the ARM Architecture specifies a standard format for
877 exception unwind information. This information is used when an
878 exception is thrown to determine where control should be transferred.
879 In particular, the unwind information is used to determine which
880 function called the function that threw the exception, and which
881 function called that one, and so forth. This information is also used
882 to restore the values of callee-saved registers in the function
883 catching the exception.
884
885 If you are writing functions in assembly code, and those functions
886 call other functions that throw exceptions, you must use assembly
887 pseudo ops to ensure that appropriate exception unwind information is
888 generated. Otherwise, if one of the functions called by your assembly
889 code throws an exception, the run-time library will be unable to
890 unwind the stack through your assembly code and your program will not
891 behave correctly.
892
893 To illustrate the use of these pseudo ops, we will examine the code
894 that G++ generates for the following C++ input:
895
896 @verbatim
897 void callee (int *);
898
899 int
900 caller ()
901 {
902 int i;
903 callee (&i);
904 return i;
905 }
906 @end verbatim
907
908 This example does not show how to throw or catch an exception from
909 assembly code. That is a much more complex operation and should
910 always be done in a high-level language, such as C++, that directly
911 supports exceptions.
912
913 The code generated by one particular version of G++ when compiling the
914 example above is:
915
916 @verbatim
917 _Z6callerv:
918 .fnstart
919 .LFB2:
920 @ Function supports interworking.
921 @ args = 0, pretend = 0, frame = 8
922 @ frame_needed = 1, uses_anonymous_args = 0
923 stmfd sp!, {fp, lr}
924 .save {fp, lr}
925 .LCFI0:
926 .setfp fp, sp, #4
927 add fp, sp, #4
928 .LCFI1:
929 .pad #8
930 sub sp, sp, #8
931 .LCFI2:
932 sub r3, fp, #8
933 mov r0, r3
934 bl _Z6calleePi
935 ldr r3, [fp, #-8]
936 mov r0, r3
937 sub sp, fp, #4
938 ldmfd sp!, {fp, lr}
939 bx lr
940 .LFE2:
941 .fnend
942 @end verbatim
943
944 Of course, the sequence of instructions varies based on the options
945 you pass to GCC and on the version of GCC in use. The exact
946 instructions are not important since we are focusing on the pseudo ops
947 that are used to generate unwind information.
948
949 An important assumption made by the unwinder is that the stack frame
950 does not change during the body of the function. In particular, since
951 we assume that the assembly code does not itself throw an exception,
952 the only point where an exception can be thrown is from a call, such
953 as the @code{bl} instruction above. At each call site, the same saved
954 registers (including @code{lr}, which indicates the return address)
955 must be located in the same locations relative to the frame pointer.
956
957 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
958 op appears immediately before the first instruction of the function
959 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
960 op appears immediately after the last instruction of the function.
961 These pseudo ops specify the range of the function.
962
963 Only the order of the other pseudos ops (e.g., @code{.setfp} or
964 @code{.pad}) matters; their exact locations are irrelevant. In the
965 example above, the compiler emits the pseudo ops with particular
966 instructions. That makes it easier to understand the code, but it is
967 not required for correctness. It would work just as well to emit all
968 of the pseudo ops other than @code{.fnend} in the same order, but
969 immediately after @code{.fnstart}.
970
971 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
972 indicates registers that have been saved to the stack so that they can
973 be restored before the function returns. The argument to the
974 @code{.save} pseudo op is a list of registers to save. If a register
975 is ``callee-saved'' (as specified by the ABI) and is modified by the
976 function you are writing, then your code must save the value before it
977 is modified and restore the original value before the function
978 returns. If an exception is thrown, the run-time library restores the
979 values of these registers from their locations on the stack before
980 returning control to the exception handler. (Of course, if an
981 exception is not thrown, the function that contains the @code{.save}
982 pseudo op restores these registers in the function epilogue, as is
983 done with the @code{ldmfd} instruction above.)
984
985 You do not have to save callee-saved registers at the very beginning
986 of the function and you do not need to use the @code{.save} pseudo op
987 immediately following the point at which the registers are saved.
988 However, if you modify a callee-saved register, you must save it on
989 the stack before modifying it and before calling any functions which
990 might throw an exception. And, you must use the @code{.save} pseudo
991 op to indicate that you have done so.
992
993 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
994 modification of the stack pointer that does not save any registers.
995 The argument is the number of bytes (in decimal) that are subtracted
996 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
997 subtracting from the stack pointer increases the size of the stack.)
998
999 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1000 indicates the register that contains the frame pointer. The first
1001 argument is the register that is set, which is typically @code{fp}.
1002 The second argument indicates the register from which the frame
1003 pointer takes its value. The third argument, if present, is the value
1004 (in decimal) added to the register specified by the second argument to
1005 compute the value of the frame pointer. You should not modify the
1006 frame pointer in the body of the function.
1007
1008 If you do not use a frame pointer, then you should not use the
1009 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1010 should avoid modifying the stack pointer outside of the function
1011 prologue. Otherwise, the run-time library will be unable to find
1012 saved registers when it is unwinding the stack.
1013
1014 The pseudo ops described above are sufficient for writing assembly
1015 code that calls functions which may throw exceptions. If you need to
1016 know more about the object-file format used to represent unwind
1017 information, you may consult the @cite{Exception Handling ABI for the
1018 ARM Architecture} available from @uref{http://infocenter.arm.com}.