e30a9389f12e4137c65caa7c1777d86dba4dd680
[binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
2 @c 2008, 2009 Free Software Foundation, Inc.
3 @c This is part of the GAS manual.
4 @c For copying conditions, see the file as.texinfo.
5
6 @ifset GENERIC
7 @page
8 @node ARM-Dependent
9 @chapter ARM Dependent Features
10 @end ifset
11
12 @ifclear GENERIC
13 @node Machine Dependencies
14 @chapter ARM Dependent Features
15 @end ifclear
16
17 @cindex ARM support
18 @cindex Thumb support
19 @menu
20 * ARM Options:: Options
21 * ARM Syntax:: Syntax
22 * ARM Floating Point:: Floating Point
23 * ARM Directives:: ARM Machine Directives
24 * ARM Opcodes:: Opcodes
25 * ARM Mapping Symbols:: Mapping Symbols
26 * ARM Unwinding Tutorial:: Unwinding
27 @end menu
28
29 @node ARM Options
30 @section Options
31 @cindex ARM options (none)
32 @cindex options for ARM (none)
33
34 @table @code
35
36 @cindex @code{-mcpu=} command line option, ARM
37 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
38 This option specifies the target processor. The assembler will issue an
39 error message if an attempt is made to assemble an instruction which
40 will not execute on the target processor. The following processor names are
41 recognized:
42 @code{arm1},
43 @code{arm2},
44 @code{arm250},
45 @code{arm3},
46 @code{arm6},
47 @code{arm60},
48 @code{arm600},
49 @code{arm610},
50 @code{arm620},
51 @code{arm7},
52 @code{arm7m},
53 @code{arm7d},
54 @code{arm7dm},
55 @code{arm7di},
56 @code{arm7dmi},
57 @code{arm70},
58 @code{arm700},
59 @code{arm700i},
60 @code{arm710},
61 @code{arm710t},
62 @code{arm720},
63 @code{arm720t},
64 @code{arm740t},
65 @code{arm710c},
66 @code{arm7100},
67 @code{arm7500},
68 @code{arm7500fe},
69 @code{arm7t},
70 @code{arm7tdmi},
71 @code{arm7tdmi-s},
72 @code{arm8},
73 @code{arm810},
74 @code{strongarm},
75 @code{strongarm1},
76 @code{strongarm110},
77 @code{strongarm1100},
78 @code{strongarm1110},
79 @code{arm9},
80 @code{arm920},
81 @code{arm920t},
82 @code{arm922t},
83 @code{arm940t},
84 @code{arm9tdmi},
85 @code{fa526} (Faraday FA526 processor),
86 @code{fa626} (Faraday FA626 processor),
87 @code{arm9e},
88 @code{arm926e},
89 @code{arm926ej-s},
90 @code{arm946e-r0},
91 @code{arm946e},
92 @code{arm946e-s},
93 @code{arm966e-r0},
94 @code{arm966e},
95 @code{arm966e-s},
96 @code{arm968e-s},
97 @code{arm10t},
98 @code{arm10tdmi},
99 @code{arm10e},
100 @code{arm1020},
101 @code{arm1020t},
102 @code{arm1020e},
103 @code{arm1022e},
104 @code{arm1026ej-s},
105 @code{fa626te} (Faraday FA626TE processor),
106 @code{fa726te} (Faraday FA726TE processor),
107 @code{arm1136j-s},
108 @code{arm1136jf-s},
109 @code{arm1156t2-s},
110 @code{arm1156t2f-s},
111 @code{arm1176jz-s},
112 @code{arm1176jzf-s},
113 @code{mpcore},
114 @code{mpcorenovfp},
115 @code{cortex-a8},
116 @code{cortex-a9},
117 @code{cortex-r4},
118 @code{cortex-m3},
119 @code{cortex-m1},
120 @code{cortex-m0},
121 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
122 @code{i80200} (Intel XScale processor)
123 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
124 and
125 @code{xscale}.
126 The special name @code{all} may be used to allow the
127 assembler to accept instructions valid for any ARM processor.
128
129 In addition to the basic instruction set, the assembler can be told to
130 accept various extension mnemonics that extend the processor using the
131 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
132 is equivalent to specifying @code{-mcpu=ep9312}. The following extensions
133 are currently supported:
134 @code{+maverick}
135 @code{+iwmmxt}
136 and
137 @code{+xscale}.
138
139 @cindex @code{-march=} command line option, ARM
140 @item -march=@var{architecture}[+@var{extension}@dots{}]
141 This option specifies the target architecture. The assembler will issue
142 an error message if an attempt is made to assemble an instruction which
143 will not execute on the target architecture. The following architecture
144 names are recognized:
145 @code{armv1},
146 @code{armv2},
147 @code{armv2a},
148 @code{armv2s},
149 @code{armv3},
150 @code{armv3m},
151 @code{armv4},
152 @code{armv4xm},
153 @code{armv4t},
154 @code{armv4txm},
155 @code{armv5},
156 @code{armv5t},
157 @code{armv5txm},
158 @code{armv5te},
159 @code{armv5texp},
160 @code{armv6},
161 @code{armv6j},
162 @code{armv6k},
163 @code{armv6z},
164 @code{armv6zk},
165 @code{armv7},
166 @code{armv7-a},
167 @code{armv7-r},
168 @code{armv7-m},
169 @code{iwmmxt}
170 and
171 @code{xscale}.
172 If both @code{-mcpu} and
173 @code{-march} are specified, the assembler will use
174 the setting for @code{-mcpu}.
175
176 The architecture option can be extended with the same instruction set
177 extension options as the @code{-mcpu} option.
178
179 @cindex @code{-mfpu=} command line option, ARM
180 @item -mfpu=@var{floating-point-format}
181
182 This option specifies the floating point format to assemble for. The
183 assembler will issue an error message if an attempt is made to assemble
184 an instruction which will not execute on the target floating point unit.
185 The following format options are recognized:
186 @code{softfpa},
187 @code{fpe},
188 @code{fpe2},
189 @code{fpe3},
190 @code{fpa},
191 @code{fpa10},
192 @code{fpa11},
193 @code{arm7500fe},
194 @code{softvfp},
195 @code{softvfp+vfp},
196 @code{vfp},
197 @code{vfp10},
198 @code{vfp10-r0},
199 @code{vfp9},
200 @code{vfpxd},
201 @code{vfpv2}
202 @code{vfpv3}
203 @code{vfpv3-d16}
204 @code{arm1020t},
205 @code{arm1020e},
206 @code{arm1136jf-s},
207 @code{maverick}
208 and
209 @code{neon}.
210
211 In addition to determining which instructions are assembled, this option
212 also affects the way in which the @code{.double} assembler directive behaves
213 when assembling little-endian code.
214
215 The default is dependent on the processor selected. For Architecture 5 or
216 later, the default is to assembler for VFP instructions; for earlier
217 architectures the default is to assemble for FPA instructions.
218
219 @cindex @code{-mthumb} command line option, ARM
220 @item -mthumb
221 This option specifies that the assembler should start assembling Thumb
222 instructions; that is, it should behave as though the file starts with a
223 @code{.code 16} directive.
224
225 @cindex @code{-mthumb-interwork} command line option, ARM
226 @item -mthumb-interwork
227 This option specifies that the output generated by the assembler should
228 be marked as supporting interworking.
229
230 @cindex @code{-mimplicit-it} command line option, ARM
231 @item -mimplicit-it=never
232 @itemx -mimplicit-it=always
233 @itemx -mimplicit-it=arm
234 @itemx -mimplicit-it=thumb
235 The @code{-mimplicit-it} option controls the behavior of the assembler when
236 conditional instructions are not enclosed in IT blocks.
237 There are four possible behaviors.
238 If @code{never} is specified, such constructs cause a warning in ARM
239 code and an error in Thumb-2 code.
240 If @code{always} is specified, such constructs are accepted in both
241 ARM and Thumb-2 code, where the IT instruction is added implicitly.
242 If @code{arm} is specified, such constructs are accepted in ARM code
243 and cause an error in Thumb-2 code.
244 If @code{thumb} is specified, such constructs cause a warning in ARM
245 code and are accepted in Thumb-2 code. If you omit this option, the
246 behavior is equivalent to @code{-mimplicit-it=arm}.
247
248 @cindex @code{-mapcs} command line option, ARM
249 @item -mapcs @code{[26|32]}
250 This option specifies that the output generated by the assembler should
251 be marked as supporting the indicated version of the Arm Procedure.
252 Calling Standard.
253
254 @cindex @code{-matpcs} command line option, ARM
255 @item -matpcs
256 This option specifies that the output generated by the assembler should
257 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
258 enabled this option will cause the assembler to create an empty
259 debugging section in the object file called .arm.atpcs. Debuggers can
260 use this to determine the ABI being used by.
261
262 @cindex @code{-mapcs-float} command line option, ARM
263 @item -mapcs-float
264 This indicates the floating point variant of the APCS should be
265 used. In this variant floating point arguments are passed in FP
266 registers rather than integer registers.
267
268 @cindex @code{-mapcs-reentrant} command line option, ARM
269 @item -mapcs-reentrant
270 This indicates that the reentrant variant of the APCS should be used.
271 This variant supports position independent code.
272
273 @cindex @code{-mfloat-abi=} command line option, ARM
274 @item -mfloat-abi=@var{abi}
275 This option specifies that the output generated by the assembler should be
276 marked as using specified floating point ABI.
277 The following values are recognized:
278 @code{soft},
279 @code{softfp}
280 and
281 @code{hard}.
282
283 @cindex @code{-eabi=} command line option, ARM
284 @item -meabi=@var{ver}
285 This option specifies which EABI version the produced object files should
286 conform to.
287 The following values are recognized:
288 @code{gnu},
289 @code{4}
290 and
291 @code{5}.
292
293 @cindex @code{-EB} command line option, ARM
294 @item -EB
295 This option specifies that the output generated by the assembler should
296 be marked as being encoded for a big-endian processor.
297
298 @cindex @code{-EL} command line option, ARM
299 @item -EL
300 This option specifies that the output generated by the assembler should
301 be marked as being encoded for a little-endian processor.
302
303 @cindex @code{-k} command line option, ARM
304 @cindex PIC code generation for ARM
305 @item -k
306 This option specifies that the output of the assembler should be marked
307 as position-independent code (PIC).
308
309 @cindex @code{--fix-v4bx} command line option, ARM
310 @item --fix-v4bx
311 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
312 the linker option of the same name.
313
314 @cindex @code{-mwarn-deprecated} command line option, ARM
315 @item -mwarn-deprecated
316 @itemx -mno-warn-deprecated
317 Enable or disable warnings about using deprecated options or
318 features. The default is to warn.
319
320 @end table
321
322
323 @node ARM Syntax
324 @section Syntax
325 @menu
326 * ARM-Chars:: Special Characters
327 * ARM-Regs:: Register Names
328 * ARM-Relocations:: Relocations
329 @end menu
330
331 @node ARM-Chars
332 @subsection Special Characters
333
334 @cindex line comment character, ARM
335 @cindex ARM line comment character
336 The presence of a @samp{@@} on a line indicates the start of a comment
337 that extends to the end of the current line. If a @samp{#} appears as
338 the first character of a line, the whole line is treated as a comment.
339
340 @cindex line separator, ARM
341 @cindex statement separator, ARM
342 @cindex ARM line separator
343 The @samp{;} character can be used instead of a newline to separate
344 statements.
345
346 @cindex immediate character, ARM
347 @cindex ARM immediate character
348 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
349
350 @cindex identifiers, ARM
351 @cindex ARM identifiers
352 *TODO* Explain about /data modifier on symbols.
353
354 @node ARM-Regs
355 @subsection Register Names
356
357 @cindex ARM register names
358 @cindex register names, ARM
359 *TODO* Explain about ARM register naming, and the predefined names.
360
361 @node ARM Floating Point
362 @section Floating Point
363
364 @cindex floating point, ARM (@sc{ieee})
365 @cindex ARM floating point (@sc{ieee})
366 The ARM family uses @sc{ieee} floating-point numbers.
367
368 @node ARM-Relocations
369 @subsection ARM relocation generation
370
371 @cindex data relocations, ARM
372 @cindex ARM data relocations
373 Specific data relocations can be generated by putting the relocation name
374 in parentheses after the symbol name. For example:
375
376 @smallexample
377 .word foo(TARGET1)
378 @end smallexample
379
380 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
381 @var{foo}.
382 The following relocations are supported:
383 @code{GOT},
384 @code{GOTOFF},
385 @code{TARGET1},
386 @code{TARGET2},
387 @code{SBREL},
388 @code{TLSGD},
389 @code{TLSLDM},
390 @code{TLSLDO},
391 @code{GOTTPOFF}
392 and
393 @code{TPOFF}.
394
395 For compatibility with older toolchains the assembler also accepts
396 @code{(PLT)} after branch targets. This will generate the deprecated
397 @samp{R_ARM_PLT32} relocation.
398
399 @cindex MOVW and MOVT relocations, ARM
400 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
401 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
402 respectively. For example to load the 32-bit address of foo into r0:
403
404 @smallexample
405 MOVW r0, #:lower16:foo
406 MOVT r0, #:upper16:foo
407 @end smallexample
408
409 @node ARM Directives
410 @section ARM Machine Directives
411
412 @cindex machine directives, ARM
413 @cindex ARM machine directives
414 @table @code
415
416 @c AAAAAAAAAAAAAAAAAAAAAAAAA
417
418 @cindex @code{.2byte} directive, ARM
419 @cindex @code{.4byte} directive, ARM
420 @cindex @code{.8byte} directive, ARM
421 @item .2byte @var{expression} [, @var{expression}]*
422 @itemx .4byte @var{expression} [, @var{expression}]*
423 @itemx .8byte @var{expression} [, @var{expression}]*
424 These directives write 2, 4 or 8 byte values to the output section.
425
426 @cindex @code{.align} directive, ARM
427 @item .align @var{expression} [, @var{expression}]
428 This is the generic @var{.align} directive. For the ARM however if the
429 first argument is zero (ie no alignment is needed) the assembler will
430 behave as if the argument had been 2 (ie pad to the next four byte
431 boundary). This is for compatibility with ARM's own assembler.
432
433 @cindex @code{.arch} directive, ARM
434 @item .arch @var{name}
435 Select the target architecture. Valid values for @var{name} are the same as
436 for the @option{-march} commandline option.
437
438 @cindex @code{.arm} directive, ARM
439 @item .arm
440 This performs the same action as @var{.code 32}.
441
442 @anchor{arm_pad}
443 @cindex @code{.pad} directive, ARM
444 @item .pad #@var{count}
445 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
446 A positive value indicates the function prologue allocated stack space by
447 decrementing the stack pointer.
448
449 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
450
451 @cindex @code{.bss} directive, ARM
452 @item .bss
453 This directive switches to the @code{.bss} section.
454
455 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
456
457 @cindex @code{.cantunwind} directive, ARM
458 @item .cantunwind
459 Prevents unwinding through the current function. No personality routine
460 or exception table data is required or permitted.
461
462 @cindex @code{.code} directive, ARM
463 @item .code @code{[16|32]}
464 This directive selects the instruction set being generated. The value 16
465 selects Thumb, with the value 32 selecting ARM.
466
467 @cindex @code{.cpu} directive, ARM
468 @item .cpu @var{name}
469 Select the target processor. Valid values for @var{name} are the same as
470 for the @option{-mcpu} commandline option.
471
472 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
473
474 @cindex @code{.dn} and @code{.qn} directives, ARM
475 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
476 @item @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
477
478 The @code{dn} and @code{qn} directives are used to create typed
479 and/or indexed register aliases for use in Advanced SIMD Extension
480 (Neon) instructions. The former should be used to create aliases
481 of double-precision registers, and the latter to create aliases of
482 quad-precision registers.
483
484 If these directives are used to create typed aliases, those aliases can
485 be used in Neon instructions instead of writing types after the mnemonic
486 or after each operand. For example:
487
488 @smallexample
489 x .dn d2.f32
490 y .dn d3.f32
491 z .dn d4.f32[1]
492 vmul x,y,z
493 @end smallexample
494
495 This is equivalent to writing the following:
496
497 @smallexample
498 vmul.f32 d2,d3,d4[1]
499 @end smallexample
500
501 Aliases created using @code{dn} or @code{qn} can be destroyed using
502 @code{unreq}.
503
504 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
505
506 @cindex @code{.eabi_attribute} directive, ARM
507 @item .eabi_attribute @var{tag}, @var{value}
508 Set the EABI object attribute @var{tag} to @var{value}.
509
510 The @var{tag} is either an attribute number, or one of the following:
511 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
512 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
513 @code{Tag_THUMB_ISA_use}, @code{Tag_VFP_arch}, @code{Tag_WMMX_arch},
514 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
515 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
516 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
517 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
518 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
519 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
520 @code{Tag_ABI_align8_needed}, @code{Tag_ABI_align8_preserved},
521 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
522 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
523 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
524 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
525 @code{Tag_VFP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
526 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
527 @code{Tag_conformance}, @code{Tag_T2EE_use},
528 @code{Tag_Virtualization_use}, @code{Tag_MPextension_use}
529
530 The @var{value} is either a @code{number}, @code{"string"}, or
531 @code{number, "string"} depending on the tag.
532
533 @cindex @code{.even} directive, ARM
534 @item .even
535 This directive aligns to an even-numbered address.
536
537 @cindex @code{.extend} directive, ARM
538 @cindex @code{.ldouble} directive, ARM
539 @item .extend @var{expression} [, @var{expression}]*
540 @itemx .ldouble @var{expression} [, @var{expression}]*
541 These directives write 12byte long double floating-point values to the
542 output section. These are not compatible with current ARM processors
543 or ABIs.
544
545 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
546
547 @anchor{arm_fnend}
548 @cindex @code{.fnend} directive, ARM
549 @item .fnend
550 Marks the end of a function with an unwind table entry. The unwind index
551 table entry is created when this directive is processed.
552
553 If no personality routine has been specified then standard personality
554 routine 0 or 1 will be used, depending on the number of unwind opcodes
555 required.
556
557 @anchor{arm_fnstart}
558 @cindex @code{.fnstart} directive, ARM
559 @item .fnstart
560 Marks the start of a function with an unwind table entry.
561
562 @cindex @code{.force_thumb} directive, ARM
563 @item .force_thumb
564 This directive forces the selection of Thumb instructions, even if the
565 target processor does not support those instructions
566
567 @cindex @code{.fpu} directive, ARM
568 @item .fpu @var{name}
569 Select the floating-point unit to assemble for. Valid values for @var{name}
570 are the same as for the @option{-mfpu} commandline option.
571
572 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
573 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
574
575 @cindex @code{.handlerdata} directive, ARM
576 @item .handlerdata
577 Marks the end of the current function, and the start of the exception table
578 entry for that function. Anything between this directive and the
579 @code{.fnend} directive will be added to the exception table entry.
580
581 Must be preceded by a @code{.personality} or @code{.personalityindex}
582 directive.
583
584 @c IIIIIIIIIIIIIIIIIIIIIIIIII
585
586 @cindex @code{.inst} directive, ARM
587 @item .inst @var{opcode} [ , @dots{} ]
588 @item .inst.n @var{opcode} [ , @dots{} ]
589 @item .inst.w @var{opcode} [ , @dots{} ]
590 Generates the instruction corresponding to the numerical value @var{opcode}.
591 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
592 specified explicitly, overriding the normal encoding rules.
593
594 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
595 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
596 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
597
598 @item .ldouble @var{expression} [, @var{expression}]*
599 See @code{.extend}.
600
601 @cindex @code{.ltorg} directive, ARM
602 @item .ltorg
603 This directive causes the current contents of the literal pool to be
604 dumped into the current section (which is assumed to be the .text
605 section) at the current location (aligned to a word boundary).
606 @code{GAS} maintains a separate literal pool for each section and each
607 sub-section. The @code{.ltorg} directive will only affect the literal
608 pool of the current section and sub-section. At the end of assembly
609 all remaining, un-empty literal pools will automatically be dumped.
610
611 Note - older versions of @code{GAS} would dump the current literal
612 pool any time a section change occurred. This is no longer done, since
613 it prevents accurate control of the placement of literal pools.
614
615 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
616
617 @cindex @code{.movsp} directive, ARM
618 @item .movsp @var{reg} [, #@var{offset}]
619 Tell the unwinder that @var{reg} contains an offset from the current
620 stack pointer. If @var{offset} is not specified then it is assumed to be
621 zero.
622
623 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
624 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
625
626 @cindex @code{.object_arch} directive, ARM
627 @item .object_arch @var{name}
628 Override the architecture recorded in the EABI object attribute section.
629 Valid values for @var{name} are the same as for the @code{.arch} directive.
630 Typically this is useful when code uses runtime detection of CPU features.
631
632 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
633
634 @cindex @code{.packed} directive, ARM
635 @item .packed @var{expression} [, @var{expression}]*
636 This directive writes 12-byte packed floating-point values to the
637 output section. These are not compatible with current ARM processors
638 or ABIs.
639
640 @cindex @code{.pad} directive, ARM
641 @item .pad #@var{count}
642 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
643 A positive value indicates the function prologue allocated stack space by
644 decrementing the stack pointer.
645
646 @cindex @code{.personality} directive, ARM
647 @item .personality @var{name}
648 Sets the personality routine for the current function to @var{name}.
649
650 @cindex @code{.personalityindex} directive, ARM
651 @item .personalityindex @var{index}
652 Sets the personality routine for the current function to the EABI standard
653 routine number @var{index}
654
655 @cindex @code{.pool} directive, ARM
656 @item .pool
657 This is a synonym for .ltorg.
658
659 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
660 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
661
662 @cindex @code{.req} directive, ARM
663 @item @var{name} .req @var{register name}
664 This creates an alias for @var{register name} called @var{name}. For
665 example:
666
667 @smallexample
668 foo .req r0
669 @end smallexample
670
671 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
672
673 @anchor{arm_save}
674 @cindex @code{.save} directive, ARM
675 @item .save @var{reglist}
676 Generate unwinder annotations to restore the registers in @var{reglist}.
677 The format of @var{reglist} is the same as the corresponding store-multiple
678 instruction.
679
680 @smallexample
681 @exdent @emph{core registers}
682 .save @{r4, r5, r6, lr@}
683 stmfd sp!, @{r4, r5, r6, lr@}
684 @exdent @emph{FPA registers}
685 .save f4, 2
686 sfmfd f4, 2, [sp]!
687 @exdent @emph{VFP registers}
688 .save @{d8, d9, d10@}
689 fstmdx sp!, @{d8, d9, d10@}
690 @exdent @emph{iWMMXt registers}
691 .save @{wr10, wr11@}
692 wstrd wr11, [sp, #-8]!
693 wstrd wr10, [sp, #-8]!
694 or
695 .save wr11
696 wstrd wr11, [sp, #-8]!
697 .save wr10
698 wstrd wr10, [sp, #-8]!
699 @end smallexample
700
701 @anchor{arm_setfp}
702 @cindex @code{.setfp} directive, ARM
703 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
704 Make all unwinder annotations relative to a frame pointer. Without this
705 the unwinder will use offsets from the stack pointer.
706
707 The syntax of this directive is the same as the @code{sub} or @code{mov}
708 instruction used to set the frame pointer. @var{spreg} must be either
709 @code{sp} or mentioned in a previous @code{.movsp} directive.
710
711 @smallexample
712 .movsp ip
713 mov ip, sp
714 @dots{}
715 .setfp fp, ip, #4
716 sub fp, ip, #4
717 @end smallexample
718
719 @cindex @code{.secrel32} directive, ARM
720 @item .secrel32 @var{expression} [, @var{expression}]*
721 This directive emits relocations that evaluate to the section-relative
722 offset of each expression's symbol. This directive is only supported
723 for PE targets.
724
725 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
726
727 @cindex @code{.thumb} directive, ARM
728 @item .thumb
729 This performs the same action as @var{.code 16}.
730
731 @cindex @code{.thumb_func} directive, ARM
732 @item .thumb_func
733 This directive specifies that the following symbol is the name of a
734 Thumb encoded function. This information is necessary in order to allow
735 the assembler and linker to generate correct code for interworking
736 between Arm and Thumb instructions and should be used even if
737 interworking is not going to be performed. The presence of this
738 directive also implies @code{.thumb}
739
740 This directive is not neccessary when generating EABI objects. On these
741 targets the encoding is implicit when generating Thumb code.
742
743 @cindex @code{.thumb_set} directive, ARM
744 @item .thumb_set
745 This performs the equivalent of a @code{.set} directive in that it
746 creates a symbol which is an alias for another symbol (possibly not yet
747 defined). This directive also has the added property in that it marks
748 the aliased symbol as being a thumb function entry point, in the same
749 way that the @code{.thumb_func} directive does.
750
751 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
752
753 @cindex @code{.unreq} directive, ARM
754 @item .unreq @var{alias-name}
755 This undefines a register alias which was previously defined using the
756 @code{req}, @code{dn} or @code{qn} directives. For example:
757
758 @smallexample
759 foo .req r0
760 .unreq foo
761 @end smallexample
762
763 An error occurs if the name is undefined. Note - this pseudo op can
764 be used to delete builtin in register name aliases (eg 'r0'). This
765 should only be done if it is really necessary.
766
767 @cindex @code{.unwind_raw} directive, ARM
768 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
769 Insert one of more arbitary unwind opcode bytes, which are known to adjust
770 the stack pointer by @var{offset} bytes.
771
772 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
773 @code{.save @{r0@}}
774
775 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
776
777 @cindex @code{.vsave} directive, ARM
778 @item .vsave @var{vfp-reglist}
779 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
780 using FLDMD. Also works for VFPv3 registers
781 that are to be restored using VLDM.
782 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
783 instruction.
784
785 @smallexample
786 @exdent @emph{VFP registers}
787 .vsave @{d8, d9, d10@}
788 fstmdd sp!, @{d8, d9, d10@}
789 @exdent @emph{VFPv3 registers}
790 .vsave @{d15, d16, d17@}
791 vstm sp!, @{d15, d16, d17@}
792 @end smallexample
793
794 Since FLDMX and FSTMX are now deprecated, this directive should be
795 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
796
797 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
798 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
799 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
800 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
801
802 @end table
803
804 @node ARM Opcodes
805 @section Opcodes
806
807 @cindex ARM opcodes
808 @cindex opcodes for ARM
809 @code{@value{AS}} implements all the standard ARM opcodes. It also
810 implements several pseudo opcodes, including several synthetic load
811 instructions.
812
813 @table @code
814
815 @cindex @code{NOP} pseudo op, ARM
816 @item NOP
817 @smallexample
818 nop
819 @end smallexample
820
821 This pseudo op will always evaluate to a legal ARM instruction that does
822 nothing. Currently it will evaluate to MOV r0, r0.
823
824 @cindex @code{LDR reg,=<label>} pseudo op, ARM
825 @item LDR
826 @smallexample
827 ldr <register> , = <expression>
828 @end smallexample
829
830 If expression evaluates to a numeric constant then a MOV or MVN
831 instruction will be used in place of the LDR instruction, if the
832 constant can be generated by either of these instructions. Otherwise
833 the constant will be placed into the nearest literal pool (if it not
834 already there) and a PC relative LDR instruction will be generated.
835
836 @cindex @code{ADR reg,<label>} pseudo op, ARM
837 @item ADR
838 @smallexample
839 adr <register> <label>
840 @end smallexample
841
842 This instruction will load the address of @var{label} into the indicated
843 register. The instruction will evaluate to a PC relative ADD or SUB
844 instruction depending upon where the label is located. If the label is
845 out of range, or if it is not defined in the same file (and section) as
846 the ADR instruction, then an error will be generated. This instruction
847 will not make use of the literal pool.
848
849 @cindex @code{ADRL reg,<label>} pseudo op, ARM
850 @item ADRL
851 @smallexample
852 adrl <register> <label>
853 @end smallexample
854
855 This instruction will load the address of @var{label} into the indicated
856 register. The instruction will evaluate to one or two PC relative ADD
857 or SUB instructions depending upon where the label is located. If a
858 second instruction is not needed a NOP instruction will be generated in
859 its place, so that this instruction is always 8 bytes long.
860
861 If the label is out of range, or if it is not defined in the same file
862 (and section) as the ADRL instruction, then an error will be generated.
863 This instruction will not make use of the literal pool.
864
865 @end table
866
867 For information on the ARM or Thumb instruction sets, see @cite{ARM
868 Software Development Toolkit Reference Manual}, Advanced RISC Machines
869 Ltd.
870
871 @node ARM Mapping Symbols
872 @section Mapping Symbols
873
874 The ARM ELF specification requires that special symbols be inserted
875 into object files to mark certain features:
876
877 @table @code
878
879 @cindex @code{$a}
880 @item $a
881 At the start of a region of code containing ARM instructions.
882
883 @cindex @code{$t}
884 @item $t
885 At the start of a region of code containing THUMB instructions.
886
887 @cindex @code{$d}
888 @item $d
889 At the start of a region of data.
890
891 @end table
892
893 The assembler will automatically insert these symbols for you - there
894 is no need to code them yourself. Support for tagging symbols ($b,
895 $f, $p and $m) which is also mentioned in the current ARM ELF
896 specification is not implemented. This is because they have been
897 dropped from the new EABI and so tools cannot rely upon their
898 presence.
899
900 @node ARM Unwinding Tutorial
901 @section Unwinding
902
903 The ABI for the ARM Architecture specifies a standard format for
904 exception unwind information. This information is used when an
905 exception is thrown to determine where control should be transferred.
906 In particular, the unwind information is used to determine which
907 function called the function that threw the exception, and which
908 function called that one, and so forth. This information is also used
909 to restore the values of callee-saved registers in the function
910 catching the exception.
911
912 If you are writing functions in assembly code, and those functions
913 call other functions that throw exceptions, you must use assembly
914 pseudo ops to ensure that appropriate exception unwind information is
915 generated. Otherwise, if one of the functions called by your assembly
916 code throws an exception, the run-time library will be unable to
917 unwind the stack through your assembly code and your program will not
918 behave correctly.
919
920 To illustrate the use of these pseudo ops, we will examine the code
921 that G++ generates for the following C++ input:
922
923 @verbatim
924 void callee (int *);
925
926 int
927 caller ()
928 {
929 int i;
930 callee (&i);
931 return i;
932 }
933 @end verbatim
934
935 This example does not show how to throw or catch an exception from
936 assembly code. That is a much more complex operation and should
937 always be done in a high-level language, such as C++, that directly
938 supports exceptions.
939
940 The code generated by one particular version of G++ when compiling the
941 example above is:
942
943 @verbatim
944 _Z6callerv:
945 .fnstart
946 .LFB2:
947 @ Function supports interworking.
948 @ args = 0, pretend = 0, frame = 8
949 @ frame_needed = 1, uses_anonymous_args = 0
950 stmfd sp!, {fp, lr}
951 .save {fp, lr}
952 .LCFI0:
953 .setfp fp, sp, #4
954 add fp, sp, #4
955 .LCFI1:
956 .pad #8
957 sub sp, sp, #8
958 .LCFI2:
959 sub r3, fp, #8
960 mov r0, r3
961 bl _Z6calleePi
962 ldr r3, [fp, #-8]
963 mov r0, r3
964 sub sp, fp, #4
965 ldmfd sp!, {fp, lr}
966 bx lr
967 .LFE2:
968 .fnend
969 @end verbatim
970
971 Of course, the sequence of instructions varies based on the options
972 you pass to GCC and on the version of GCC in use. The exact
973 instructions are not important since we are focusing on the pseudo ops
974 that are used to generate unwind information.
975
976 An important assumption made by the unwinder is that the stack frame
977 does not change during the body of the function. In particular, since
978 we assume that the assembly code does not itself throw an exception,
979 the only point where an exception can be thrown is from a call, such
980 as the @code{bl} instruction above. At each call site, the same saved
981 registers (including @code{lr}, which indicates the return address)
982 must be located in the same locations relative to the frame pointer.
983
984 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
985 op appears immediately before the first instruction of the function
986 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
987 op appears immediately after the last instruction of the function.
988 These pseudo ops specify the range of the function.
989
990 Only the order of the other pseudos ops (e.g., @code{.setfp} or
991 @code{.pad}) matters; their exact locations are irrelevant. In the
992 example above, the compiler emits the pseudo ops with particular
993 instructions. That makes it easier to understand the code, but it is
994 not required for correctness. It would work just as well to emit all
995 of the pseudo ops other than @code{.fnend} in the same order, but
996 immediately after @code{.fnstart}.
997
998 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
999 indicates registers that have been saved to the stack so that they can
1000 be restored before the function returns. The argument to the
1001 @code{.save} pseudo op is a list of registers to save. If a register
1002 is ``callee-saved'' (as specified by the ABI) and is modified by the
1003 function you are writing, then your code must save the value before it
1004 is modified and restore the original value before the function
1005 returns. If an exception is thrown, the run-time library restores the
1006 values of these registers from their locations on the stack before
1007 returning control to the exception handler. (Of course, if an
1008 exception is not thrown, the function that contains the @code{.save}
1009 pseudo op restores these registers in the function epilogue, as is
1010 done with the @code{ldmfd} instruction above.)
1011
1012 You do not have to save callee-saved registers at the very beginning
1013 of the function and you do not need to use the @code{.save} pseudo op
1014 immediately following the point at which the registers are saved.
1015 However, if you modify a callee-saved register, you must save it on
1016 the stack before modifying it and before calling any functions which
1017 might throw an exception. And, you must use the @code{.save} pseudo
1018 op to indicate that you have done so.
1019
1020 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1021 modification of the stack pointer that does not save any registers.
1022 The argument is the number of bytes (in decimal) that are subtracted
1023 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1024 subtracting from the stack pointer increases the size of the stack.)
1025
1026 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1027 indicates the register that contains the frame pointer. The first
1028 argument is the register that is set, which is typically @code{fp}.
1029 The second argument indicates the register from which the frame
1030 pointer takes its value. The third argument, if present, is the value
1031 (in decimal) added to the register specified by the second argument to
1032 compute the value of the frame pointer. You should not modify the
1033 frame pointer in the body of the function.
1034
1035 If you do not use a frame pointer, then you should not use the
1036 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1037 should avoid modifying the stack pointer outside of the function
1038 prologue. Otherwise, the run-time library will be unable to find
1039 saved registers when it is unwinding the stack.
1040
1041 The pseudo ops described above are sufficient for writing assembly
1042 code that calls functions which may throw exceptions. If you need to
1043 know more about the object-file format used to represent unwind
1044 information, you may consult the @cite{Exception Handling ABI for the
1045 ARM Architecture} available from @uref{http://infocenter.arm.com}.