gas: documentation for the SPARC %dN and %qN fp registers notation
[binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2015 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a35},
123 @code{cortex-a53},
124 @code{cortex-a57},
125 @code{cortex-a72},
126 @code{cortex-r4},
127 @code{cortex-r4f},
128 @code{cortex-r5},
129 @code{cortex-r7},
130 @code{cortex-m7},
131 @code{cortex-m4},
132 @code{cortex-m3},
133 @code{cortex-m1},
134 @code{cortex-m0},
135 @code{cortex-m0plus},
136 @code{exynos-m1},
137 @code{marvell-pj4},
138 @code{marvell-whitney},
139 @code{qdf24xx},
140 @code{xgene1},
141 @code{xgene2},
142 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
143 @code{i80200} (Intel XScale processor)
144 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
145 and
146 @code{xscale}.
147 The special name @code{all} may be used to allow the
148 assembler to accept instructions valid for any ARM processor.
149
150 In addition to the basic instruction set, the assembler can be told to
151 accept various extension mnemonics that extend the processor using the
152 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
153 is equivalent to specifying @code{-mcpu=ep9312}.
154
155 Multiple extensions may be specified, separated by a @code{+}. The
156 extensions should be specified in ascending alphabetical order.
157
158 Some extensions may be restricted to particular architectures; this is
159 documented in the list of extensions below.
160
161 Extension mnemonics may also be removed from those the assembler accepts.
162 This is done be prepending @code{no} to the option that adds the extension.
163 Extensions that are removed should be listed after all extensions which have
164 been added, again in ascending alphabetical order. For example,
165 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
166
167
168 The following extensions are currently supported:
169 @code{crc}
170 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
171 @code{fp} (Floating Point Extensions for v8-A architecture),
172 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
173 @code{iwmmxt},
174 @code{iwmmxt2},
175 @code{xscale},
176 @code{maverick},
177 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
178 architectures),
179 @code{os} (Operating System for v6M architecture),
180 @code{sec} (Security Extensions for v6K and v7-A architectures),
181 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
182 @code{virt} (Virtualization Extensions for v7-A architecture, implies
183 @code{idiv}),
184 @code{pan} (Priviliged Access Never Extensions for v8-A architecture),
185 @code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
186 @code{simd})
187 and
188 @code{xscale}.
189
190 @cindex @code{-march=} command line option, ARM
191 @item -march=@var{architecture}[+@var{extension}@dots{}]
192 This option specifies the target architecture. The assembler will issue
193 an error message if an attempt is made to assemble an instruction which
194 will not execute on the target architecture. The following architecture
195 names are recognized:
196 @code{armv1},
197 @code{armv2},
198 @code{armv2a},
199 @code{armv2s},
200 @code{armv3},
201 @code{armv3m},
202 @code{armv4},
203 @code{armv4xm},
204 @code{armv4t},
205 @code{armv4txm},
206 @code{armv5},
207 @code{armv5t},
208 @code{armv5txm},
209 @code{armv5te},
210 @code{armv5texp},
211 @code{armv6},
212 @code{armv6j},
213 @code{armv6k},
214 @code{armv6z},
215 @code{armv6kz},
216 @code{armv6-m},
217 @code{armv6s-m},
218 @code{armv7},
219 @code{armv7-a},
220 @code{armv7ve},
221 @code{armv7-r},
222 @code{armv7-m},
223 @code{armv7e-m},
224 @code{armv8-a},
225 @code{armv8.1-a},
226 @code{armv8.2-a},
227 @code{iwmmxt}
228 @code{iwmmxt2}
229 and
230 @code{xscale}.
231 If both @code{-mcpu} and
232 @code{-march} are specified, the assembler will use
233 the setting for @code{-mcpu}.
234
235 The architecture option can be extended with the same instruction set
236 extension options as the @code{-mcpu} option.
237
238 @cindex @code{-mfpu=} command line option, ARM
239 @item -mfpu=@var{floating-point-format}
240
241 This option specifies the floating point format to assemble for. The
242 assembler will issue an error message if an attempt is made to assemble
243 an instruction which will not execute on the target floating point unit.
244 The following format options are recognized:
245 @code{softfpa},
246 @code{fpe},
247 @code{fpe2},
248 @code{fpe3},
249 @code{fpa},
250 @code{fpa10},
251 @code{fpa11},
252 @code{arm7500fe},
253 @code{softvfp},
254 @code{softvfp+vfp},
255 @code{vfp},
256 @code{vfp10},
257 @code{vfp10-r0},
258 @code{vfp9},
259 @code{vfpxd},
260 @code{vfpv2},
261 @code{vfpv3},
262 @code{vfpv3-fp16},
263 @code{vfpv3-d16},
264 @code{vfpv3-d16-fp16},
265 @code{vfpv3xd},
266 @code{vfpv3xd-d16},
267 @code{vfpv4},
268 @code{vfpv4-d16},
269 @code{fpv4-sp-d16},
270 @code{fpv5-sp-d16},
271 @code{fpv5-d16},
272 @code{fp-armv8},
273 @code{arm1020t},
274 @code{arm1020e},
275 @code{arm1136jf-s},
276 @code{maverick},
277 @code{neon},
278 @code{neon-vfpv4},
279 @code{neon-fp-armv8},
280 @code{crypto-neon-fp-armv8},
281 @code{neon-fp-armv8.1}
282 and
283 @code{crypto-neon-fp-armv8.1}.
284
285 In addition to determining which instructions are assembled, this option
286 also affects the way in which the @code{.double} assembler directive behaves
287 when assembling little-endian code.
288
289 The default is dependent on the processor selected. For Architecture 5 or
290 later, the default is to assembler for VFP instructions; for earlier
291 architectures the default is to assemble for FPA instructions.
292
293 @cindex @code{-mthumb} command line option, ARM
294 @item -mthumb
295 This option specifies that the assembler should start assembling Thumb
296 instructions; that is, it should behave as though the file starts with a
297 @code{.code 16} directive.
298
299 @cindex @code{-mthumb-interwork} command line option, ARM
300 @item -mthumb-interwork
301 This option specifies that the output generated by the assembler should
302 be marked as supporting interworking.
303
304 @cindex @code{-mimplicit-it} command line option, ARM
305 @item -mimplicit-it=never
306 @itemx -mimplicit-it=always
307 @itemx -mimplicit-it=arm
308 @itemx -mimplicit-it=thumb
309 The @code{-mimplicit-it} option controls the behavior of the assembler when
310 conditional instructions are not enclosed in IT blocks.
311 There are four possible behaviors.
312 If @code{never} is specified, such constructs cause a warning in ARM
313 code and an error in Thumb-2 code.
314 If @code{always} is specified, such constructs are accepted in both
315 ARM and Thumb-2 code, where the IT instruction is added implicitly.
316 If @code{arm} is specified, such constructs are accepted in ARM code
317 and cause an error in Thumb-2 code.
318 If @code{thumb} is specified, such constructs cause a warning in ARM
319 code and are accepted in Thumb-2 code. If you omit this option, the
320 behavior is equivalent to @code{-mimplicit-it=arm}.
321
322 @cindex @code{-mapcs-26} command line option, ARM
323 @cindex @code{-mapcs-32} command line option, ARM
324 @item -mapcs-26
325 @itemx -mapcs-32
326 These options specify that the output generated by the assembler should
327 be marked as supporting the indicated version of the Arm Procedure.
328 Calling Standard.
329
330 @cindex @code{-matpcs} command line option, ARM
331 @item -matpcs
332 This option specifies that the output generated by the assembler should
333 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
334 enabled this option will cause the assembler to create an empty
335 debugging section in the object file called .arm.atpcs. Debuggers can
336 use this to determine the ABI being used by.
337
338 @cindex @code{-mapcs-float} command line option, ARM
339 @item -mapcs-float
340 This indicates the floating point variant of the APCS should be
341 used. In this variant floating point arguments are passed in FP
342 registers rather than integer registers.
343
344 @cindex @code{-mapcs-reentrant} command line option, ARM
345 @item -mapcs-reentrant
346 This indicates that the reentrant variant of the APCS should be used.
347 This variant supports position independent code.
348
349 @cindex @code{-mfloat-abi=} command line option, ARM
350 @item -mfloat-abi=@var{abi}
351 This option specifies that the output generated by the assembler should be
352 marked as using specified floating point ABI.
353 The following values are recognized:
354 @code{soft},
355 @code{softfp}
356 and
357 @code{hard}.
358
359 @cindex @code{-eabi=} command line option, ARM
360 @item -meabi=@var{ver}
361 This option specifies which EABI version the produced object files should
362 conform to.
363 The following values are recognized:
364 @code{gnu},
365 @code{4}
366 and
367 @code{5}.
368
369 @cindex @code{-EB} command line option, ARM
370 @item -EB
371 This option specifies that the output generated by the assembler should
372 be marked as being encoded for a big-endian processor.
373
374 Note: If a program is being built for a system with big-endian data
375 and little-endian instructions then it should be assembled with the
376 @option{-EB} option, (all of it, code and data) and then linked with
377 the @option{--be8} option. This will reverse the endianness of the
378 instructions back to little-endian, but leave the data as big-endian.
379
380 @cindex @code{-EL} command line option, ARM
381 @item -EL
382 This option specifies that the output generated by the assembler should
383 be marked as being encoded for a little-endian processor.
384
385 @cindex @code{-k} command line option, ARM
386 @cindex PIC code generation for ARM
387 @item -k
388 This option specifies that the output of the assembler should be marked
389 as position-independent code (PIC).
390
391 @cindex @code{--fix-v4bx} command line option, ARM
392 @item --fix-v4bx
393 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
394 the linker option of the same name.
395
396 @cindex @code{-mwarn-deprecated} command line option, ARM
397 @item -mwarn-deprecated
398 @itemx -mno-warn-deprecated
399 Enable or disable warnings about using deprecated options or
400 features. The default is to warn.
401
402 @cindex @code{-mccs} command line option, ARM
403 @item -mccs
404 Turns on CodeComposer Studio assembly syntax compatibility mode.
405
406 @cindex @code{-mwarn-syms} command line option, ARM
407 @item -mwarn-syms
408 @itemx -mno-warn-syms
409 Enable or disable warnings about symbols that match the names of ARM
410 instructions. The default is to warn.
411
412 @end table
413
414
415 @node ARM Syntax
416 @section Syntax
417 @menu
418 * ARM-Instruction-Set:: Instruction Set
419 * ARM-Chars:: Special Characters
420 * ARM-Regs:: Register Names
421 * ARM-Relocations:: Relocations
422 * ARM-Neon-Alignment:: NEON Alignment Specifiers
423 @end menu
424
425 @node ARM-Instruction-Set
426 @subsection Instruction Set Syntax
427 Two slightly different syntaxes are support for ARM and THUMB
428 instructions. The default, @code{divided}, uses the old style where
429 ARM and THUMB instructions had their own, separate syntaxes. The new,
430 @code{unified} syntax, which can be selected via the @code{.syntax}
431 directive, and has the following main features:
432
433 @itemize @bullet
434 @item
435 Immediate operands do not require a @code{#} prefix.
436
437 @item
438 The @code{IT} instruction may appear, and if it does it is validated
439 against subsequent conditional affixes. In ARM mode it does not
440 generate machine code, in THUMB mode it does.
441
442 @item
443 For ARM instructions the conditional affixes always appear at the end
444 of the instruction. For THUMB instructions conditional affixes can be
445 used, but only inside the scope of an @code{IT} instruction.
446
447 @item
448 All of the instructions new to the V6T2 architecture (and later) are
449 available. (Only a few such instructions can be written in the
450 @code{divided} syntax).
451
452 @item
453 The @code{.N} and @code{.W} suffixes are recognized and honored.
454
455 @item
456 All instructions set the flags if and only if they have an @code{s}
457 affix.
458 @end itemize
459
460 @node ARM-Chars
461 @subsection Special Characters
462
463 @cindex line comment character, ARM
464 @cindex ARM line comment character
465 The presence of a @samp{@@} anywhere on a line indicates the start of
466 a comment that extends to the end of that line.
467
468 If a @samp{#} appears as the first character of a line then the whole
469 line is treated as a comment, but in this case the line could also be
470 a logical line number directive (@pxref{Comments}) or a preprocessor
471 control command (@pxref{Preprocessing}).
472
473 @cindex line separator, ARM
474 @cindex statement separator, ARM
475 @cindex ARM line separator
476 The @samp{;} character can be used instead of a newline to separate
477 statements.
478
479 @cindex immediate character, ARM
480 @cindex ARM immediate character
481 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
482
483 @cindex identifiers, ARM
484 @cindex ARM identifiers
485 *TODO* Explain about /data modifier on symbols.
486
487 @node ARM-Regs
488 @subsection Register Names
489
490 @cindex ARM register names
491 @cindex register names, ARM
492 *TODO* Explain about ARM register naming, and the predefined names.
493
494 @node ARM-Relocations
495 @subsection ARM relocation generation
496
497 @cindex data relocations, ARM
498 @cindex ARM data relocations
499 Specific data relocations can be generated by putting the relocation name
500 in parentheses after the symbol name. For example:
501
502 @smallexample
503 .word foo(TARGET1)
504 @end smallexample
505
506 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
507 @var{foo}.
508 The following relocations are supported:
509 @code{GOT},
510 @code{GOTOFF},
511 @code{TARGET1},
512 @code{TARGET2},
513 @code{SBREL},
514 @code{TLSGD},
515 @code{TLSLDM},
516 @code{TLSLDO},
517 @code{TLSDESC},
518 @code{TLSCALL},
519 @code{GOTTPOFF},
520 @code{GOT_PREL}
521 and
522 @code{TPOFF}.
523
524 For compatibility with older toolchains the assembler also accepts
525 @code{(PLT)} after branch targets. On legacy targets this will
526 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
527 targets it will encode either the @samp{R_ARM_CALL} or
528 @samp{R_ARM_JUMP24} relocation, as appropriate.
529
530 @cindex MOVW and MOVT relocations, ARM
531 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
532 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
533 respectively. For example to load the 32-bit address of foo into r0:
534
535 @smallexample
536 MOVW r0, #:lower16:foo
537 MOVT r0, #:upper16:foo
538 @end smallexample
539
540 @node ARM-Neon-Alignment
541 @subsection NEON Alignment Specifiers
542
543 @cindex alignment for NEON instructions
544 Some NEON load/store instructions allow an optional address
545 alignment qualifier.
546 The ARM documentation specifies that this is indicated by
547 @samp{@@ @var{align}}. However GAS already interprets
548 the @samp{@@} character as a "line comment" start,
549 so @samp{: @var{align}} is used instead. For example:
550
551 @smallexample
552 vld1.8 @{q0@}, [r0, :128]
553 @end smallexample
554
555 @node ARM Floating Point
556 @section Floating Point
557
558 @cindex floating point, ARM (@sc{ieee})
559 @cindex ARM floating point (@sc{ieee})
560 The ARM family uses @sc{ieee} floating-point numbers.
561
562 @node ARM Directives
563 @section ARM Machine Directives
564
565 @cindex machine directives, ARM
566 @cindex ARM machine directives
567 @table @code
568
569 @c AAAAAAAAAAAAAAAAAAAAAAAAA
570
571 @cindex @code{.2byte} directive, ARM
572 @cindex @code{.4byte} directive, ARM
573 @cindex @code{.8byte} directive, ARM
574 @item .2byte @var{expression} [, @var{expression}]*
575 @itemx .4byte @var{expression} [, @var{expression}]*
576 @itemx .8byte @var{expression} [, @var{expression}]*
577 These directives write 2, 4 or 8 byte values to the output section.
578
579 @cindex @code{.align} directive, ARM
580 @item .align @var{expression} [, @var{expression}]
581 This is the generic @var{.align} directive. For the ARM however if the
582 first argument is zero (ie no alignment is needed) the assembler will
583 behave as if the argument had been 2 (ie pad to the next four byte
584 boundary). This is for compatibility with ARM's own assembler.
585
586 @cindex @code{.arch} directive, ARM
587 @item .arch @var{name}
588 Select the target architecture. Valid values for @var{name} are the same as
589 for the @option{-march} commandline option.
590
591 Specifying @code{.arch} clears any previously selected architecture
592 extensions.
593
594 @cindex @code{.arch_extension} directive, ARM
595 @item .arch_extension @var{name}
596 Add or remove an architecture extension to the target architecture. Valid
597 values for @var{name} are the same as those accepted as architectural
598 extensions by the @option{-mcpu} commandline option.
599
600 @code{.arch_extension} may be used multiple times to add or remove extensions
601 incrementally to the architecture being compiled for.
602
603 @cindex @code{.arm} directive, ARM
604 @item .arm
605 This performs the same action as @var{.code 32}.
606
607 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
608
609 @cindex @code{.bss} directive, ARM
610 @item .bss
611 This directive switches to the @code{.bss} section.
612
613 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
614
615 @cindex @code{.cantunwind} directive, ARM
616 @item .cantunwind
617 Prevents unwinding through the current function. No personality routine
618 or exception table data is required or permitted.
619
620 @cindex @code{.code} directive, ARM
621 @item .code @code{[16|32]}
622 This directive selects the instruction set being generated. The value 16
623 selects Thumb, with the value 32 selecting ARM.
624
625 @cindex @code{.cpu} directive, ARM
626 @item .cpu @var{name}
627 Select the target processor. Valid values for @var{name} are the same as
628 for the @option{-mcpu} commandline option.
629
630 Specifying @code{.cpu} clears any previously selected architecture
631 extensions.
632
633 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
634
635 @cindex @code{.dn} and @code{.qn} directives, ARM
636 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
637 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
638
639 The @code{dn} and @code{qn} directives are used to create typed
640 and/or indexed register aliases for use in Advanced SIMD Extension
641 (Neon) instructions. The former should be used to create aliases
642 of double-precision registers, and the latter to create aliases of
643 quad-precision registers.
644
645 If these directives are used to create typed aliases, those aliases can
646 be used in Neon instructions instead of writing types after the mnemonic
647 or after each operand. For example:
648
649 @smallexample
650 x .dn d2.f32
651 y .dn d3.f32
652 z .dn d4.f32[1]
653 vmul x,y,z
654 @end smallexample
655
656 This is equivalent to writing the following:
657
658 @smallexample
659 vmul.f32 d2,d3,d4[1]
660 @end smallexample
661
662 Aliases created using @code{dn} or @code{qn} can be destroyed using
663 @code{unreq}.
664
665 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
666
667 @cindex @code{.eabi_attribute} directive, ARM
668 @item .eabi_attribute @var{tag}, @var{value}
669 Set the EABI object attribute @var{tag} to @var{value}.
670
671 The @var{tag} is either an attribute number, or one of the following:
672 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
673 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
674 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
675 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
676 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
677 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
678 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
679 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
680 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
681 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
682 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
683 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
684 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
685 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
686 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
687 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
688 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
689 @code{Tag_conformance}, @code{Tag_T2EE_use},
690 @code{Tag_Virtualization_use}
691
692 The @var{value} is either a @code{number}, @code{"string"}, or
693 @code{number, "string"} depending on the tag.
694
695 Note - the following legacy values are also accepted by @var{tag}:
696 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
697 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
698
699 @cindex @code{.even} directive, ARM
700 @item .even
701 This directive aligns to an even-numbered address.
702
703 @cindex @code{.extend} directive, ARM
704 @cindex @code{.ldouble} directive, ARM
705 @item .extend @var{expression} [, @var{expression}]*
706 @itemx .ldouble @var{expression} [, @var{expression}]*
707 These directives write 12byte long double floating-point values to the
708 output section. These are not compatible with current ARM processors
709 or ABIs.
710
711 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
712
713 @anchor{arm_fnend}
714 @cindex @code{.fnend} directive, ARM
715 @item .fnend
716 Marks the end of a function with an unwind table entry. The unwind index
717 table entry is created when this directive is processed.
718
719 If no personality routine has been specified then standard personality
720 routine 0 or 1 will be used, depending on the number of unwind opcodes
721 required.
722
723 @anchor{arm_fnstart}
724 @cindex @code{.fnstart} directive, ARM
725 @item .fnstart
726 Marks the start of a function with an unwind table entry.
727
728 @cindex @code{.force_thumb} directive, ARM
729 @item .force_thumb
730 This directive forces the selection of Thumb instructions, even if the
731 target processor does not support those instructions
732
733 @cindex @code{.fpu} directive, ARM
734 @item .fpu @var{name}
735 Select the floating-point unit to assemble for. Valid values for @var{name}
736 are the same as for the @option{-mfpu} commandline option.
737
738 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
739 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
740
741 @cindex @code{.handlerdata} directive, ARM
742 @item .handlerdata
743 Marks the end of the current function, and the start of the exception table
744 entry for that function. Anything between this directive and the
745 @code{.fnend} directive will be added to the exception table entry.
746
747 Must be preceded by a @code{.personality} or @code{.personalityindex}
748 directive.
749
750 @c IIIIIIIIIIIIIIIIIIIIIIIIII
751
752 @cindex @code{.inst} directive, ARM
753 @item .inst @var{opcode} [ , @dots{} ]
754 @itemx .inst.n @var{opcode} [ , @dots{} ]
755 @itemx .inst.w @var{opcode} [ , @dots{} ]
756 Generates the instruction corresponding to the numerical value @var{opcode}.
757 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
758 specified explicitly, overriding the normal encoding rules.
759
760 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
761 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
762 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
763
764 @item .ldouble @var{expression} [, @var{expression}]*
765 See @code{.extend}.
766
767 @cindex @code{.ltorg} directive, ARM
768 @item .ltorg
769 This directive causes the current contents of the literal pool to be
770 dumped into the current section (which is assumed to be the .text
771 section) at the current location (aligned to a word boundary).
772 @code{GAS} maintains a separate literal pool for each section and each
773 sub-section. The @code{.ltorg} directive will only affect the literal
774 pool of the current section and sub-section. At the end of assembly
775 all remaining, un-empty literal pools will automatically be dumped.
776
777 Note - older versions of @code{GAS} would dump the current literal
778 pool any time a section change occurred. This is no longer done, since
779 it prevents accurate control of the placement of literal pools.
780
781 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
782
783 @cindex @code{.movsp} directive, ARM
784 @item .movsp @var{reg} [, #@var{offset}]
785 Tell the unwinder that @var{reg} contains an offset from the current
786 stack pointer. If @var{offset} is not specified then it is assumed to be
787 zero.
788
789 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
790 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
791
792 @cindex @code{.object_arch} directive, ARM
793 @item .object_arch @var{name}
794 Override the architecture recorded in the EABI object attribute section.
795 Valid values for @var{name} are the same as for the @code{.arch} directive.
796 Typically this is useful when code uses runtime detection of CPU features.
797
798 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
799
800 @cindex @code{.packed} directive, ARM
801 @item .packed @var{expression} [, @var{expression}]*
802 This directive writes 12-byte packed floating-point values to the
803 output section. These are not compatible with current ARM processors
804 or ABIs.
805
806 @anchor{arm_pad}
807 @cindex @code{.pad} directive, ARM
808 @item .pad #@var{count}
809 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
810 A positive value indicates the function prologue allocated stack space by
811 decrementing the stack pointer.
812
813 @cindex @code{.personality} directive, ARM
814 @item .personality @var{name}
815 Sets the personality routine for the current function to @var{name}.
816
817 @cindex @code{.personalityindex} directive, ARM
818 @item .personalityindex @var{index}
819 Sets the personality routine for the current function to the EABI standard
820 routine number @var{index}
821
822 @cindex @code{.pool} directive, ARM
823 @item .pool
824 This is a synonym for .ltorg.
825
826 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
827 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
828
829 @cindex @code{.req} directive, ARM
830 @item @var{name} .req @var{register name}
831 This creates an alias for @var{register name} called @var{name}. For
832 example:
833
834 @smallexample
835 foo .req r0
836 @end smallexample
837
838 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
839
840 @anchor{arm_save}
841 @cindex @code{.save} directive, ARM
842 @item .save @var{reglist}
843 Generate unwinder annotations to restore the registers in @var{reglist}.
844 The format of @var{reglist} is the same as the corresponding store-multiple
845 instruction.
846
847 @smallexample
848 @exdent @emph{core registers}
849 .save @{r4, r5, r6, lr@}
850 stmfd sp!, @{r4, r5, r6, lr@}
851 @exdent @emph{FPA registers}
852 .save f4, 2
853 sfmfd f4, 2, [sp]!
854 @exdent @emph{VFP registers}
855 .save @{d8, d9, d10@}
856 fstmdx sp!, @{d8, d9, d10@}
857 @exdent @emph{iWMMXt registers}
858 .save @{wr10, wr11@}
859 wstrd wr11, [sp, #-8]!
860 wstrd wr10, [sp, #-8]!
861 or
862 .save wr11
863 wstrd wr11, [sp, #-8]!
864 .save wr10
865 wstrd wr10, [sp, #-8]!
866 @end smallexample
867
868 @anchor{arm_setfp}
869 @cindex @code{.setfp} directive, ARM
870 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
871 Make all unwinder annotations relative to a frame pointer. Without this
872 the unwinder will use offsets from the stack pointer.
873
874 The syntax of this directive is the same as the @code{add} or @code{mov}
875 instruction used to set the frame pointer. @var{spreg} must be either
876 @code{sp} or mentioned in a previous @code{.movsp} directive.
877
878 @smallexample
879 .movsp ip
880 mov ip, sp
881 @dots{}
882 .setfp fp, ip, #4
883 add fp, ip, #4
884 @end smallexample
885
886 @cindex @code{.secrel32} directive, ARM
887 @item .secrel32 @var{expression} [, @var{expression}]*
888 This directive emits relocations that evaluate to the section-relative
889 offset of each expression's symbol. This directive is only supported
890 for PE targets.
891
892 @cindex @code{.syntax} directive, ARM
893 @item .syntax [@code{unified} | @code{divided}]
894 This directive sets the Instruction Set Syntax as described in the
895 @ref{ARM-Instruction-Set} section.
896
897 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
898
899 @cindex @code{.thumb} directive, ARM
900 @item .thumb
901 This performs the same action as @var{.code 16}.
902
903 @cindex @code{.thumb_func} directive, ARM
904 @item .thumb_func
905 This directive specifies that the following symbol is the name of a
906 Thumb encoded function. This information is necessary in order to allow
907 the assembler and linker to generate correct code for interworking
908 between Arm and Thumb instructions and should be used even if
909 interworking is not going to be performed. The presence of this
910 directive also implies @code{.thumb}
911
912 This directive is not neccessary when generating EABI objects. On these
913 targets the encoding is implicit when generating Thumb code.
914
915 @cindex @code{.thumb_set} directive, ARM
916 @item .thumb_set
917 This performs the equivalent of a @code{.set} directive in that it
918 creates a symbol which is an alias for another symbol (possibly not yet
919 defined). This directive also has the added property in that it marks
920 the aliased symbol as being a thumb function entry point, in the same
921 way that the @code{.thumb_func} directive does.
922
923 @cindex @code{.tlsdescseq} directive, ARM
924 @item .tlsdescseq @var{tls-variable}
925 This directive is used to annotate parts of an inlined TLS descriptor
926 trampoline. Normally the trampoline is provided by the linker, and
927 this directive is not needed.
928
929 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
930
931 @cindex @code{.unreq} directive, ARM
932 @item .unreq @var{alias-name}
933 This undefines a register alias which was previously defined using the
934 @code{req}, @code{dn} or @code{qn} directives. For example:
935
936 @smallexample
937 foo .req r0
938 .unreq foo
939 @end smallexample
940
941 An error occurs if the name is undefined. Note - this pseudo op can
942 be used to delete builtin in register name aliases (eg 'r0'). This
943 should only be done if it is really necessary.
944
945 @cindex @code{.unwind_raw} directive, ARM
946 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
947 Insert one of more arbitary unwind opcode bytes, which are known to adjust
948 the stack pointer by @var{offset} bytes.
949
950 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
951 @code{.save @{r0@}}
952
953 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
954
955 @cindex @code{.vsave} directive, ARM
956 @item .vsave @var{vfp-reglist}
957 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
958 using FLDMD. Also works for VFPv3 registers
959 that are to be restored using VLDM.
960 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
961 instruction.
962
963 @smallexample
964 @exdent @emph{VFP registers}
965 .vsave @{d8, d9, d10@}
966 fstmdd sp!, @{d8, d9, d10@}
967 @exdent @emph{VFPv3 registers}
968 .vsave @{d15, d16, d17@}
969 vstm sp!, @{d15, d16, d17@}
970 @end smallexample
971
972 Since FLDMX and FSTMX are now deprecated, this directive should be
973 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
974
975 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
976 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
977 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
978 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
979
980 @end table
981
982 @node ARM Opcodes
983 @section Opcodes
984
985 @cindex ARM opcodes
986 @cindex opcodes for ARM
987 @code{@value{AS}} implements all the standard ARM opcodes. It also
988 implements several pseudo opcodes, including several synthetic load
989 instructions.
990
991 @table @code
992
993 @cindex @code{NOP} pseudo op, ARM
994 @item NOP
995 @smallexample
996 nop
997 @end smallexample
998
999 This pseudo op will always evaluate to a legal ARM instruction that does
1000 nothing. Currently it will evaluate to MOV r0, r0.
1001
1002 @cindex @code{LDR reg,=<label>} pseudo op, ARM
1003 @item LDR
1004 @smallexample
1005 ldr <register> , = <expression>
1006 @end smallexample
1007
1008 If expression evaluates to a numeric constant then a MOV or MVN
1009 instruction will be used in place of the LDR instruction, if the
1010 constant can be generated by either of these instructions. Otherwise
1011 the constant will be placed into the nearest literal pool (if it not
1012 already there) and a PC relative LDR instruction will be generated.
1013
1014 @cindex @code{ADR reg,<label>} pseudo op, ARM
1015 @item ADR
1016 @smallexample
1017 adr <register> <label>
1018 @end smallexample
1019
1020 This instruction will load the address of @var{label} into the indicated
1021 register. The instruction will evaluate to a PC relative ADD or SUB
1022 instruction depending upon where the label is located. If the label is
1023 out of range, or if it is not defined in the same file (and section) as
1024 the ADR instruction, then an error will be generated. This instruction
1025 will not make use of the literal pool.
1026
1027 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1028 @item ADRL
1029 @smallexample
1030 adrl <register> <label>
1031 @end smallexample
1032
1033 This instruction will load the address of @var{label} into the indicated
1034 register. The instruction will evaluate to one or two PC relative ADD
1035 or SUB instructions depending upon where the label is located. If a
1036 second instruction is not needed a NOP instruction will be generated in
1037 its place, so that this instruction is always 8 bytes long.
1038
1039 If the label is out of range, or if it is not defined in the same file
1040 (and section) as the ADRL instruction, then an error will be generated.
1041 This instruction will not make use of the literal pool.
1042
1043 @end table
1044
1045 For information on the ARM or Thumb instruction sets, see @cite{ARM
1046 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1047 Ltd.
1048
1049 @node ARM Mapping Symbols
1050 @section Mapping Symbols
1051
1052 The ARM ELF specification requires that special symbols be inserted
1053 into object files to mark certain features:
1054
1055 @table @code
1056
1057 @cindex @code{$a}
1058 @item $a
1059 At the start of a region of code containing ARM instructions.
1060
1061 @cindex @code{$t}
1062 @item $t
1063 At the start of a region of code containing THUMB instructions.
1064
1065 @cindex @code{$d}
1066 @item $d
1067 At the start of a region of data.
1068
1069 @end table
1070
1071 The assembler will automatically insert these symbols for you - there
1072 is no need to code them yourself. Support for tagging symbols ($b,
1073 $f, $p and $m) which is also mentioned in the current ARM ELF
1074 specification is not implemented. This is because they have been
1075 dropped from the new EABI and so tools cannot rely upon their
1076 presence.
1077
1078 @node ARM Unwinding Tutorial
1079 @section Unwinding
1080
1081 The ABI for the ARM Architecture specifies a standard format for
1082 exception unwind information. This information is used when an
1083 exception is thrown to determine where control should be transferred.
1084 In particular, the unwind information is used to determine which
1085 function called the function that threw the exception, and which
1086 function called that one, and so forth. This information is also used
1087 to restore the values of callee-saved registers in the function
1088 catching the exception.
1089
1090 If you are writing functions in assembly code, and those functions
1091 call other functions that throw exceptions, you must use assembly
1092 pseudo ops to ensure that appropriate exception unwind information is
1093 generated. Otherwise, if one of the functions called by your assembly
1094 code throws an exception, the run-time library will be unable to
1095 unwind the stack through your assembly code and your program will not
1096 behave correctly.
1097
1098 To illustrate the use of these pseudo ops, we will examine the code
1099 that G++ generates for the following C++ input:
1100
1101 @verbatim
1102 void callee (int *);
1103
1104 int
1105 caller ()
1106 {
1107 int i;
1108 callee (&i);
1109 return i;
1110 }
1111 @end verbatim
1112
1113 This example does not show how to throw or catch an exception from
1114 assembly code. That is a much more complex operation and should
1115 always be done in a high-level language, such as C++, that directly
1116 supports exceptions.
1117
1118 The code generated by one particular version of G++ when compiling the
1119 example above is:
1120
1121 @verbatim
1122 _Z6callerv:
1123 .fnstart
1124 .LFB2:
1125 @ Function supports interworking.
1126 @ args = 0, pretend = 0, frame = 8
1127 @ frame_needed = 1, uses_anonymous_args = 0
1128 stmfd sp!, {fp, lr}
1129 .save {fp, lr}
1130 .LCFI0:
1131 .setfp fp, sp, #4
1132 add fp, sp, #4
1133 .LCFI1:
1134 .pad #8
1135 sub sp, sp, #8
1136 .LCFI2:
1137 sub r3, fp, #8
1138 mov r0, r3
1139 bl _Z6calleePi
1140 ldr r3, [fp, #-8]
1141 mov r0, r3
1142 sub sp, fp, #4
1143 ldmfd sp!, {fp, lr}
1144 bx lr
1145 .LFE2:
1146 .fnend
1147 @end verbatim
1148
1149 Of course, the sequence of instructions varies based on the options
1150 you pass to GCC and on the version of GCC in use. The exact
1151 instructions are not important since we are focusing on the pseudo ops
1152 that are used to generate unwind information.
1153
1154 An important assumption made by the unwinder is that the stack frame
1155 does not change during the body of the function. In particular, since
1156 we assume that the assembly code does not itself throw an exception,
1157 the only point where an exception can be thrown is from a call, such
1158 as the @code{bl} instruction above. At each call site, the same saved
1159 registers (including @code{lr}, which indicates the return address)
1160 must be located in the same locations relative to the frame pointer.
1161
1162 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1163 op appears immediately before the first instruction of the function
1164 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1165 op appears immediately after the last instruction of the function.
1166 These pseudo ops specify the range of the function.
1167
1168 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1169 @code{.pad}) matters; their exact locations are irrelevant. In the
1170 example above, the compiler emits the pseudo ops with particular
1171 instructions. That makes it easier to understand the code, but it is
1172 not required for correctness. It would work just as well to emit all
1173 of the pseudo ops other than @code{.fnend} in the same order, but
1174 immediately after @code{.fnstart}.
1175
1176 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1177 indicates registers that have been saved to the stack so that they can
1178 be restored before the function returns. The argument to the
1179 @code{.save} pseudo op is a list of registers to save. If a register
1180 is ``callee-saved'' (as specified by the ABI) and is modified by the
1181 function you are writing, then your code must save the value before it
1182 is modified and restore the original value before the function
1183 returns. If an exception is thrown, the run-time library restores the
1184 values of these registers from their locations on the stack before
1185 returning control to the exception handler. (Of course, if an
1186 exception is not thrown, the function that contains the @code{.save}
1187 pseudo op restores these registers in the function epilogue, as is
1188 done with the @code{ldmfd} instruction above.)
1189
1190 You do not have to save callee-saved registers at the very beginning
1191 of the function and you do not need to use the @code{.save} pseudo op
1192 immediately following the point at which the registers are saved.
1193 However, if you modify a callee-saved register, you must save it on
1194 the stack before modifying it and before calling any functions which
1195 might throw an exception. And, you must use the @code{.save} pseudo
1196 op to indicate that you have done so.
1197
1198 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1199 modification of the stack pointer that does not save any registers.
1200 The argument is the number of bytes (in decimal) that are subtracted
1201 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1202 subtracting from the stack pointer increases the size of the stack.)
1203
1204 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1205 indicates the register that contains the frame pointer. The first
1206 argument is the register that is set, which is typically @code{fp}.
1207 The second argument indicates the register from which the frame
1208 pointer takes its value. The third argument, if present, is the value
1209 (in decimal) added to the register specified by the second argument to
1210 compute the value of the frame pointer. You should not modify the
1211 frame pointer in the body of the function.
1212
1213 If you do not use a frame pointer, then you should not use the
1214 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1215 should avoid modifying the stack pointer outside of the function
1216 prologue. Otherwise, the run-time library will be unable to find
1217 saved registers when it is unwinding the stack.
1218
1219 The pseudo ops described above are sufficient for writing assembly
1220 code that calls functions which may throw exceptions. If you need to
1221 know more about the object-file format used to represent unwind
1222 information, you may consult the @cite{Exception Handling ABI for the
1223 ARM Architecture} available from @uref{http://infocenter.arm.com}.