x86: introduce .hfloat directive
[binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2021 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{iamcu},
116 @code{k6},
117 @code{k6_2},
118 @code{athlon},
119 @code{opteron},
120 @code{k8},
121 @code{amdfam10},
122 @code{bdver1},
123 @code{bdver2},
124 @code{bdver3},
125 @code{bdver4},
126 @code{znver1},
127 @code{znver2},
128 @code{znver3},
129 @code{btver1},
130 @code{btver2},
131 @code{generic32} and
132 @code{generic64}.
133
134 In addition to the basic instruction set, the assembler can be told to
135 accept various extension mnemonics. For example,
136 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
137 @var{vmx}. The following extensions are currently supported:
138 @code{8087},
139 @code{287},
140 @code{387},
141 @code{687},
142 @code{no87},
143 @code{no287},
144 @code{no387},
145 @code{no687},
146 @code{cmov},
147 @code{nocmov},
148 @code{fxsr},
149 @code{nofxsr},
150 @code{mmx},
151 @code{nommx},
152 @code{sse},
153 @code{sse2},
154 @code{sse3},
155 @code{sse4a},
156 @code{ssse3},
157 @code{sse4.1},
158 @code{sse4.2},
159 @code{sse4},
160 @code{nosse},
161 @code{nosse2},
162 @code{nosse3},
163 @code{nosse4a},
164 @code{nossse3},
165 @code{nosse4.1},
166 @code{nosse4.2},
167 @code{nosse4},
168 @code{avx},
169 @code{avx2},
170 @code{noavx},
171 @code{noavx2},
172 @code{adx},
173 @code{rdseed},
174 @code{prfchw},
175 @code{smap},
176 @code{mpx},
177 @code{sha},
178 @code{rdpid},
179 @code{ptwrite},
180 @code{cet},
181 @code{gfni},
182 @code{vaes},
183 @code{vpclmulqdq},
184 @code{prefetchwt1},
185 @code{clflushopt},
186 @code{se1},
187 @code{clwb},
188 @code{movdiri},
189 @code{movdir64b},
190 @code{enqcmd},
191 @code{serialize},
192 @code{tsxldtrk},
193 @code{kl},
194 @code{nokl},
195 @code{widekl},
196 @code{nowidekl},
197 @code{hreset},
198 @code{avx512f},
199 @code{avx512cd},
200 @code{avx512er},
201 @code{avx512pf},
202 @code{avx512vl},
203 @code{avx512bw},
204 @code{avx512dq},
205 @code{avx512ifma},
206 @code{avx512vbmi},
207 @code{avx512_4fmaps},
208 @code{avx512_4vnniw},
209 @code{avx512_vpopcntdq},
210 @code{avx512_vbmi2},
211 @code{avx512_vnni},
212 @code{avx512_bitalg},
213 @code{avx512_vp2intersect},
214 @code{tdx},
215 @code{avx512_bf16},
216 @code{avx_vnni},
217 @code{avx512_fp16},
218 @code{noavx512f},
219 @code{noavx512cd},
220 @code{noavx512er},
221 @code{noavx512pf},
222 @code{noavx512vl},
223 @code{noavx512bw},
224 @code{noavx512dq},
225 @code{noavx512ifma},
226 @code{noavx512vbmi},
227 @code{noavx512_4fmaps},
228 @code{noavx512_4vnniw},
229 @code{noavx512_vpopcntdq},
230 @code{noavx512_vbmi2},
231 @code{noavx512_vnni},
232 @code{noavx512_bitalg},
233 @code{noavx512_vp2intersect},
234 @code{notdx},
235 @code{noavx512_bf16},
236 @code{noavx_vnni},
237 @code{noavx512_fp16},
238 @code{noenqcmd},
239 @code{noserialize},
240 @code{notsxldtrk},
241 @code{amx_int8},
242 @code{noamx_int8},
243 @code{amx_bf16},
244 @code{noamx_bf16},
245 @code{amx_tile},
246 @code{noamx_tile},
247 @code{nouintr},
248 @code{nohreset},
249 @code{vmx},
250 @code{vmfunc},
251 @code{smx},
252 @code{xsave},
253 @code{xsaveopt},
254 @code{xsavec},
255 @code{xsaves},
256 @code{aes},
257 @code{pclmul},
258 @code{fsgsbase},
259 @code{rdrnd},
260 @code{f16c},
261 @code{bmi2},
262 @code{fma},
263 @code{movbe},
264 @code{ept},
265 @code{lzcnt},
266 @code{popcnt},
267 @code{hle},
268 @code{rtm},
269 @code{invpcid},
270 @code{clflush},
271 @code{mwaitx},
272 @code{clzero},
273 @code{wbnoinvd},
274 @code{pconfig},
275 @code{waitpkg},
276 @code{uintr},
277 @code{cldemote},
278 @code{rdpru},
279 @code{mcommit},
280 @code{sev_es},
281 @code{lwp},
282 @code{fma4},
283 @code{xop},
284 @code{cx16},
285 @code{syscall},
286 @code{rdtscp},
287 @code{3dnow},
288 @code{3dnowa},
289 @code{sse4a},
290 @code{sse5},
291 @code{snp},
292 @code{invlpgb},
293 @code{tlbsync},
294 @code{svme} and
295 @code{padlock}.
296 Note that rather than extending a basic instruction set, the extension
297 mnemonics starting with @code{no} revoke the respective functionality.
298
299 When the @code{.arch} directive is used with @option{-march}, the
300 @code{.arch} directive will take precedent.
301
302 @cindex @samp{-mtune=} option, i386
303 @cindex @samp{-mtune=} option, x86-64
304 @item -mtune=@var{CPU}
305 This option specifies a processor to optimize for. When used in
306 conjunction with the @option{-march} option, only instructions
307 of the processor specified by the @option{-march} option will be
308 generated.
309
310 Valid @var{CPU} values are identical to the processor list of
311 @option{-march=@var{CPU}}.
312
313 @cindex @samp{-msse2avx} option, i386
314 @cindex @samp{-msse2avx} option, x86-64
315 @item -msse2avx
316 This option specifies that the assembler should encode SSE instructions
317 with VEX prefix.
318
319 @cindex @samp{-msse-check=} option, i386
320 @cindex @samp{-msse-check=} option, x86-64
321 @item -msse-check=@var{none}
322 @itemx -msse-check=@var{warning}
323 @itemx -msse-check=@var{error}
324 These options control if the assembler should check SSE instructions.
325 @option{-msse-check=@var{none}} will make the assembler not to check SSE
326 instructions, which is the default. @option{-msse-check=@var{warning}}
327 will make the assembler issue a warning for any SSE instruction.
328 @option{-msse-check=@var{error}} will make the assembler issue an error
329 for any SSE instruction.
330
331 @cindex @samp{-mavxscalar=} option, i386
332 @cindex @samp{-mavxscalar=} option, x86-64
333 @item -mavxscalar=@var{128}
334 @itemx -mavxscalar=@var{256}
335 These options control how the assembler should encode scalar AVX
336 instructions. @option{-mavxscalar=@var{128}} will encode scalar
337 AVX instructions with 128bit vector length, which is the default.
338 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
339 with 256bit vector length.
340
341 WARNING: Don't use this for production code - due to CPU errata the
342 resulting code may not work on certain models.
343
344 @cindex @samp{-mvexwig=} option, i386
345 @cindex @samp{-mvexwig=} option, x86-64
346 @item -mvexwig=@var{0}
347 @itemx -mvexwig=@var{1}
348 These options control how the assembler should encode VEX.W-ignored (WIG)
349 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
350 instructions with vex.w = 0, which is the default.
351 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
352 vex.w = 1.
353
354 WARNING: Don't use this for production code - due to CPU errata the
355 resulting code may not work on certain models.
356
357 @cindex @samp{-mevexlig=} option, i386
358 @cindex @samp{-mevexlig=} option, x86-64
359 @item -mevexlig=@var{128}
360 @itemx -mevexlig=@var{256}
361 @itemx -mevexlig=@var{512}
362 These options control how the assembler should encode length-ignored
363 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
364 EVEX instructions with 128bit vector length, which is the default.
365 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
366 encode LIG EVEX instructions with 256bit and 512bit vector length,
367 respectively.
368
369 @cindex @samp{-mevexwig=} option, i386
370 @cindex @samp{-mevexwig=} option, x86-64
371 @item -mevexwig=@var{0}
372 @itemx -mevexwig=@var{1}
373 These options control how the assembler should encode w-ignored (WIG)
374 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
375 EVEX instructions with evex.w = 0, which is the default.
376 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
377 evex.w = 1.
378
379 @cindex @samp{-mmnemonic=} option, i386
380 @cindex @samp{-mmnemonic=} option, x86-64
381 @item -mmnemonic=@var{att}
382 @itemx -mmnemonic=@var{intel}
383 This option specifies instruction mnemonic for matching instructions.
384 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
385 take precedent.
386
387 @cindex @samp{-msyntax=} option, i386
388 @cindex @samp{-msyntax=} option, x86-64
389 @item -msyntax=@var{att}
390 @itemx -msyntax=@var{intel}
391 This option specifies instruction syntax when processing instructions.
392 The @code{.att_syntax} and @code{.intel_syntax} directives will
393 take precedent.
394
395 @cindex @samp{-mnaked-reg} option, i386
396 @cindex @samp{-mnaked-reg} option, x86-64
397 @item -mnaked-reg
398 This option specifies that registers don't require a @samp{%} prefix.
399 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
400
401 @cindex @samp{-madd-bnd-prefix} option, i386
402 @cindex @samp{-madd-bnd-prefix} option, x86-64
403 @item -madd-bnd-prefix
404 This option forces the assembler to add BND prefix to all branches, even
405 if such prefix was not explicitly specified in the source code.
406
407 @cindex @samp{-mshared} option, i386
408 @cindex @samp{-mshared} option, x86-64
409 @item -mno-shared
410 On ELF target, the assembler normally optimizes out non-PLT relocations
411 against defined non-weak global branch targets with default visibility.
412 The @samp{-mshared} option tells the assembler to generate code which
413 may go into a shared library where all non-weak global branch targets
414 with default visibility can be preempted. The resulting code is
415 slightly bigger. This option only affects the handling of branch
416 instructions.
417
418 @cindex @samp{-mbig-obj} option, i386
419 @cindex @samp{-mbig-obj} option, x86-64
420 @item -mbig-obj
421 On PE/COFF target this option forces the use of big object file
422 format, which allows more than 32768 sections.
423
424 @cindex @samp{-momit-lock-prefix=} option, i386
425 @cindex @samp{-momit-lock-prefix=} option, x86-64
426 @item -momit-lock-prefix=@var{no}
427 @itemx -momit-lock-prefix=@var{yes}
428 These options control how the assembler should encode lock prefix.
429 This option is intended as a workaround for processors, that fail on
430 lock prefix. This option can only be safely used with single-core,
431 single-thread computers
432 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
433 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
434 which is the default.
435
436 @cindex @samp{-mfence-as-lock-add=} option, i386
437 @cindex @samp{-mfence-as-lock-add=} option, x86-64
438 @item -mfence-as-lock-add=@var{no}
439 @itemx -mfence-as-lock-add=@var{yes}
440 These options control how the assembler should encode lfence, mfence and
441 sfence.
442 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
443 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
444 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
445 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
446 sfence as usual, which is the default.
447
448 @cindex @samp{-mrelax-relocations=} option, i386
449 @cindex @samp{-mrelax-relocations=} option, x86-64
450 @item -mrelax-relocations=@var{no}
451 @itemx -mrelax-relocations=@var{yes}
452 These options control whether the assembler should generate relax
453 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
454 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
455 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
456 @option{-mrelax-relocations=@var{no}} will not generate relax
457 relocations. The default can be controlled by a configure option
458 @option{--enable-x86-relax-relocations}.
459
460 @cindex @samp{-malign-branch-boundary=} option, i386
461 @cindex @samp{-malign-branch-boundary=} option, x86-64
462 @item -malign-branch-boundary=@var{NUM}
463 This option controls how the assembler should align branches with segment
464 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
465 no less than 16. Branches will be aligned within @var{NUM} byte
466 boundary. @option{-malign-branch-boundary=0}, which is the default,
467 doesn't align branches.
468
469 @cindex @samp{-malign-branch=} option, i386
470 @cindex @samp{-malign-branch=} option, x86-64
471 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
472 This option specifies types of branches to align. @var{TYPE} is
473 combination of @samp{jcc}, which aligns conditional jumps,
474 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
475 which aligns unconditional jumps, @samp{call} which aligns calls,
476 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
477 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
478
479 @cindex @samp{-malign-branch-prefix-size=} option, i386
480 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
481 @item -malign-branch-prefix-size=@var{NUM}
482 This option specifies the maximum number of prefixes on an instruction
483 to align branches. @var{NUM} should be between 0 and 5. The default
484 @var{NUM} is 5.
485
486 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
487 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
488 @item -mbranches-within-32B-boundaries
489 This option aligns conditional jumps, fused conditional jumps and
490 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
491 on an instruction. It is equivalent to
492 @option{-malign-branch-boundary=32}
493 @option{-malign-branch=jcc+fused+jmp}
494 @option{-malign-branch-prefix-size=5}.
495 The default doesn't align branches.
496
497 @cindex @samp{-mlfence-after-load=} option, i386
498 @cindex @samp{-mlfence-after-load=} option, x86-64
499 @item -mlfence-after-load=@var{no}
500 @itemx -mlfence-after-load=@var{yes}
501 These options control whether the assembler should generate lfence
502 after load instructions. @option{-mlfence-after-load=@var{yes}} will
503 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
504 lfence, which is the default.
505
506 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
507 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
508 @item -mlfence-before-indirect-branch=@var{none}
509 @item -mlfence-before-indirect-branch=@var{all}
510 @item -mlfence-before-indirect-branch=@var{register}
511 @itemx -mlfence-before-indirect-branch=@var{memory}
512 These options control whether the assembler should generate lfence
513 before indirect near branch instructions.
514 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
515 before indirect near branch via register and issue a warning before
516 indirect near branch via memory.
517 It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
518 there's no explicit @option{-mlfence-before-ret=}.
519 @option{-mlfence-before-indirect-branch=@var{register}} will generate
520 lfence before indirect near branch via register.
521 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
522 warning before indirect near branch via memory.
523 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
524 lfence nor issue warning, which is the default. Note that lfence won't
525 be generated before indirect near branch via register with
526 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
527 after loading branch target register.
528
529 @cindex @samp{-mlfence-before-ret=} option, i386
530 @cindex @samp{-mlfence-before-ret=} option, x86-64
531 @item -mlfence-before-ret=@var{none}
532 @item -mlfence-before-ret=@var{shl}
533 @item -mlfence-before-ret=@var{or}
534 @item -mlfence-before-ret=@var{yes}
535 @itemx -mlfence-before-ret=@var{not}
536 These options control whether the assembler should generate lfence
537 before ret. @option{-mlfence-before-ret=@var{or}} will generate
538 generate or instruction with lfence.
539 @option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
540 with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
541 instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
542 generate lfence, which is the default.
543
544 @cindex @samp{-mx86-used-note=} option, i386
545 @cindex @samp{-mx86-used-note=} option, x86-64
546 @item -mx86-used-note=@var{no}
547 @itemx -mx86-used-note=@var{yes}
548 These options control whether the assembler should generate
549 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
550 GNU property notes. The default can be controlled by the
551 @option{--enable-x86-used-note} configure option.
552
553 @cindex @samp{-mevexrcig=} option, i386
554 @cindex @samp{-mevexrcig=} option, x86-64
555 @item -mevexrcig=@var{rne}
556 @itemx -mevexrcig=@var{rd}
557 @itemx -mevexrcig=@var{ru}
558 @itemx -mevexrcig=@var{rz}
559 These options control how the assembler should encode SAE-only
560 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
561 of EVEX instruction with 00, which is the default.
562 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
563 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
564 with 01, 10 and 11 RC bits, respectively.
565
566 @cindex @samp{-mamd64} option, x86-64
567 @cindex @samp{-mintel64} option, x86-64
568 @item -mamd64
569 @itemx -mintel64
570 This option specifies that the assembler should accept only AMD64 or
571 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
572 only and AMD64 ISAs.
573
574 @cindex @samp{-O0} option, i386
575 @cindex @samp{-O0} option, x86-64
576 @cindex @samp{-O} option, i386
577 @cindex @samp{-O} option, x86-64
578 @cindex @samp{-O1} option, i386
579 @cindex @samp{-O1} option, x86-64
580 @cindex @samp{-O2} option, i386
581 @cindex @samp{-O2} option, x86-64
582 @cindex @samp{-Os} option, i386
583 @cindex @samp{-Os} option, x86-64
584 @item -O0 | -O | -O1 | -O2 | -Os
585 Optimize instruction encoding with smaller instruction size. @samp{-O}
586 and @samp{-O1} encode 64-bit register load instructions with 64-bit
587 immediate as 32-bit register load instructions with 31-bit or 32-bits
588 immediates, encode 64-bit register clearing instructions with 32-bit
589 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
590 register clearing instructions with 128-bit VEX vector register
591 clearing instructions, encode 128-bit/256-bit EVEX vector
592 register load/store instructions with VEX vector register load/store
593 instructions, and encode 128-bit/256-bit EVEX packed integer logical
594 instructions with 128-bit/256-bit VEX packed integer logical.
595
596 @samp{-O2} includes @samp{-O1} optimization plus encodes
597 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
598 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
599 instructions with commutative source operands will also have their
600 source operands swapped if this allows using the 2-byte VEX prefix form
601 instead of the 3-byte one. Certain forms of AND as well as OR with the
602 same (register) operand specified twice will also be changed to TEST.
603
604 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
605 and 64-bit register tests with immediate as 8-bit register test with
606 immediate. @samp{-O0} turns off this optimization.
607
608 @end table
609 @c man end
610
611 @node i386-Directives
612 @section x86 specific Directives
613
614 @cindex machine directives, x86
615 @cindex x86 machine directives
616 @table @code
617
618 @cindex @code{lcomm} directive, COFF
619 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
620 Reserve @var{length} (an absolute expression) bytes for a local common
621 denoted by @var{symbol}. The section and value of @var{symbol} are
622 those of the new local common. The addresses are allocated in the bss
623 section, so that at run-time the bytes start off zeroed. Since
624 @var{symbol} is not declared global, it is normally not visible to
625 @code{@value{LD}}. The optional third parameter, @var{alignment},
626 specifies the desired alignment of the symbol in the bss section.
627
628 This directive is only available for COFF based x86 targets.
629
630 @cindex @code{largecomm} directive, ELF
631 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
632 This directive behaves in the same way as the @code{comm} directive
633 except that the data is placed into the @var{.lbss} section instead of
634 the @var{.bss} section @ref{Comm}.
635
636 The directive is intended to be used for data which requires a large
637 amount of space, and it is only available for ELF based x86_64
638 targets.
639
640 @cindex @code{value} directive
641 @item .value @var{expression} [, @var{expression}]
642 This directive behaves in the same way as the @code{.short} directive,
643 taking a series of comma separated expressions and storing them as
644 two-byte wide values into the current section.
645
646 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
647
648 @end table
649
650 @node i386-Syntax
651 @section i386 Syntactical Considerations
652 @menu
653 * i386-Variations:: AT&T Syntax versus Intel Syntax
654 * i386-Chars:: Special Characters
655 @end menu
656
657 @node i386-Variations
658 @subsection AT&T Syntax versus Intel Syntax
659
660 @cindex i386 intel_syntax pseudo op
661 @cindex intel_syntax pseudo op, i386
662 @cindex i386 att_syntax pseudo op
663 @cindex att_syntax pseudo op, i386
664 @cindex i386 syntax compatibility
665 @cindex syntax compatibility, i386
666 @cindex x86-64 intel_syntax pseudo op
667 @cindex intel_syntax pseudo op, x86-64
668 @cindex x86-64 att_syntax pseudo op
669 @cindex att_syntax pseudo op, x86-64
670 @cindex x86-64 syntax compatibility
671 @cindex syntax compatibility, x86-64
672
673 @code{@value{AS}} now supports assembly using Intel assembler syntax.
674 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
675 back to the usual AT&T mode for compatibility with the output of
676 @code{@value{GCC}}. Either of these directives may have an optional
677 argument, @code{prefix}, or @code{noprefix} specifying whether registers
678 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
679 different from Intel syntax. We mention these differences because
680 almost all 80386 documents use Intel syntax. Notable differences
681 between the two syntaxes are:
682
683 @cindex immediate operands, i386
684 @cindex i386 immediate operands
685 @cindex register operands, i386
686 @cindex i386 register operands
687 @cindex jump/call operands, i386
688 @cindex i386 jump/call operands
689 @cindex operand delimiters, i386
690
691 @cindex immediate operands, x86-64
692 @cindex x86-64 immediate operands
693 @cindex register operands, x86-64
694 @cindex x86-64 register operands
695 @cindex jump/call operands, x86-64
696 @cindex x86-64 jump/call operands
697 @cindex operand delimiters, x86-64
698 @itemize @bullet
699 @item
700 AT&T immediate operands are preceded by @samp{$}; Intel immediate
701 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
702 AT&T register operands are preceded by @samp{%}; Intel register operands
703 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
704 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
705
706 @cindex i386 source, destination operands
707 @cindex source, destination operands; i386
708 @cindex x86-64 source, destination operands
709 @cindex source, destination operands; x86-64
710 @item
711 AT&T and Intel syntax use the opposite order for source and destination
712 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
713 @samp{source, dest} convention is maintained for compatibility with
714 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
715 instructions with 2 immediate operands, such as the @samp{enter}
716 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
717
718 @cindex mnemonic suffixes, i386
719 @cindex sizes operands, i386
720 @cindex i386 size suffixes
721 @cindex mnemonic suffixes, x86-64
722 @cindex sizes operands, x86-64
723 @cindex x86-64 size suffixes
724 @item
725 In AT&T syntax the size of memory operands is determined from the last
726 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
727 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
728 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
729 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
730 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
731 no other way to disambiguate an instruction. Intel syntax accomplishes this by
732 prefixing memory operands (@emph{not} the instruction mnemonics) with
733 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
734 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
735 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
736 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
737 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
738
739 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
740 instruction with the 64-bit displacement or immediate operand.
741
742 @cindex return instructions, i386
743 @cindex i386 jump, call, return
744 @cindex return instructions, x86-64
745 @cindex x86-64 jump, call, return
746 @item
747 Immediate form long jumps and calls are
748 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
749 Intel syntax is
750 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
751 instruction
752 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
753 @samp{ret far @var{stack-adjust}}.
754
755 @cindex sections, i386
756 @cindex i386 sections
757 @cindex sections, x86-64
758 @cindex x86-64 sections
759 @item
760 The AT&T assembler does not provide support for multiple section
761 programs. Unix style systems expect all programs to be single sections.
762 @end itemize
763
764 @node i386-Chars
765 @subsection Special Characters
766
767 @cindex line comment character, i386
768 @cindex i386 line comment character
769 The presence of a @samp{#} appearing anywhere on a line indicates the
770 start of a comment that extends to the end of that line.
771
772 If a @samp{#} appears as the first character of a line then the whole
773 line is treated as a comment, but in this case the line can also be a
774 logical line number directive (@pxref{Comments}) or a preprocessor
775 control command (@pxref{Preprocessing}).
776
777 If the @option{--divide} command-line option has not been specified
778 then the @samp{/} character appearing anywhere on a line also
779 introduces a line comment.
780
781 @cindex line separator, i386
782 @cindex statement separator, i386
783 @cindex i386 line separator
784 The @samp{;} character can be used to separate statements on the same
785 line.
786
787 @node i386-Mnemonics
788 @section i386-Mnemonics
789 @subsection Instruction Naming
790
791 @cindex i386 instruction naming
792 @cindex instruction naming, i386
793 @cindex x86-64 instruction naming
794 @cindex instruction naming, x86-64
795
796 Instruction mnemonics are suffixed with one character modifiers which
797 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
798 and @samp{q} specify byte, word, long and quadruple word operands. If
799 no suffix is specified by an instruction then @code{@value{AS}} tries to
800 fill in the missing suffix based on the destination register operand
801 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
802 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
803 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
804 assembler which assumes that a missing mnemonic suffix implies long
805 operand size. (This incompatibility does not affect compiler output
806 since compilers always explicitly specify the mnemonic suffix.)
807
808 When there is no sizing suffix and no (suitable) register operands to
809 deduce the size of memory operands, with a few exceptions and where long
810 operand size is possible in the first place, operand size will default
811 to long in 32- and 64-bit modes. Similarly it will default to short in
812 16-bit mode. Noteworthy exceptions are
813
814 @itemize @bullet
815 @item
816 Instructions with an implicit on-stack operand as well as branches,
817 which default to quad in 64-bit mode.
818
819 @item
820 Sign- and zero-extending moves, which default to byte size source
821 operands.
822
823 @item
824 Floating point insns with integer operands, which default to short (for
825 perhaps historical reasons).
826
827 @item
828 CRC32 with a 64-bit destination, which defaults to a quad source
829 operand.
830
831 @end itemize
832
833 @cindex encoding options, i386
834 @cindex encoding options, x86-64
835
836 Different encoding options can be specified via pseudo prefixes:
837
838 @itemize @bullet
839 @item
840 @samp{@{disp8@}} -- prefer 8-bit displacement.
841
842 @item
843 @samp{@{disp32@}} -- prefer 32-bit displacement.
844
845 @item
846 @samp{@{disp16@}} -- prefer 16-bit displacement.
847
848 @item
849 @samp{@{load@}} -- prefer load-form instruction.
850
851 @item
852 @samp{@{store@}} -- prefer store-form instruction.
853
854 @item
855 @samp{@{vex@}} -- encode with VEX prefix.
856
857 @item
858 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
859
860 @item
861 @samp{@{evex@}} -- encode with EVEX prefix.
862
863 @item
864 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
865 instructions (x86-64 only). Note that this differs from the @samp{rex}
866 prefix which generates REX prefix unconditionally.
867
868 @item
869 @samp{@{nooptimize@}} -- disable instruction size optimization.
870 @end itemize
871
872 Mnemonics of Intel VNNI instructions are encoded with the EVEX prefix
873 by default. The pseudo @samp{@{vex@}} prefix can be used to encode
874 mnemonics of Intel VNNI instructions with the VEX prefix.
875
876 @cindex conversion instructions, i386
877 @cindex i386 conversion instructions
878 @cindex conversion instructions, x86-64
879 @cindex x86-64 conversion instructions
880 The Intel-syntax conversion instructions
881
882 @itemize @bullet
883 @item
884 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
885
886 @item
887 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
888
889 @item
890 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
891
892 @item
893 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
894
895 @item
896 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
897 (x86-64 only),
898
899 @item
900 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
901 @samp{%rdx:%rax} (x86-64 only),
902 @end itemize
903
904 @noindent
905 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
906 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
907 instructions.
908
909 @cindex extension instructions, i386
910 @cindex i386 extension instructions
911 @cindex extension instructions, x86-64
912 @cindex x86-64 extension instructions
913 The Intel-syntax extension instructions
914
915 @itemize @bullet
916 @item
917 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
918
919 @item
920 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
921
922 @item
923 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
924 (x86-64 only).
925
926 @item
927 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
928
929 @item
930 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
931 (x86-64 only).
932
933 @item
934 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
935 (x86-64 only).
936
937 @item
938 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
939
940 @item
941 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
942
943 @item
944 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
945 (x86-64 only).
946
947 @item
948 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
949
950 @item
951 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
952 (x86-64 only).
953 @end itemize
954
955 @noindent
956 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
957 @samp{movsbq/movsxb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
958 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
959 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
960 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
961
962 @cindex jump instructions, i386
963 @cindex call instructions, i386
964 @cindex jump instructions, x86-64
965 @cindex call instructions, x86-64
966 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
967 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
968 convention.
969
970 @subsection AT&T Mnemonic versus Intel Mnemonic
971
972 @cindex i386 mnemonic compatibility
973 @cindex mnemonic compatibility, i386
974
975 @code{@value{AS}} supports assembly using Intel mnemonic.
976 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
977 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
978 syntax for compatibility with the output of @code{@value{GCC}}.
979 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
980 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
981 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
982 assembler with different mnemonics from those in Intel IA32 specification.
983 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
984
985 @itemize @bullet
986 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
987 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
988 destination register with both AT&T and Intel mnemonics.
989 @end itemize
990
991 @node i386-Regs
992 @section Register Naming
993
994 @cindex i386 registers
995 @cindex registers, i386
996 @cindex x86-64 registers
997 @cindex registers, x86-64
998 Register operands are always prefixed with @samp{%}. The 80386 registers
999 consist of
1000
1001 @itemize @bullet
1002 @item
1003 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
1004 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
1005 frame pointer), and @samp{%esp} (the stack pointer).
1006
1007 @item
1008 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
1009 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
1010
1011 @item
1012 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
1013 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
1014 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
1015 @samp{%cx}, and @samp{%dx})
1016
1017 @item
1018 the 6 section registers @samp{%cs} (code section), @samp{%ds}
1019 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
1020 and @samp{%gs}.
1021
1022 @item
1023 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
1024 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
1025
1026 @item
1027 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
1028 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
1029
1030 @item
1031 the 2 test registers @samp{%tr6} and @samp{%tr7}.
1032
1033 @item
1034 the 8 floating point register stack @samp{%st} or equivalently
1035 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1036 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
1037 These registers are overloaded by 8 MMX registers @samp{%mm0},
1038 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1039 @samp{%mm6} and @samp{%mm7}.
1040
1041 @item
1042 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1043 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1044 @end itemize
1045
1046 The AMD x86-64 architecture extends the register set by:
1047
1048 @itemize @bullet
1049 @item
1050 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1051 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1052 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1053 pointer)
1054
1055 @item
1056 the 8 extended registers @samp{%r8}--@samp{%r15}.
1057
1058 @item
1059 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1060
1061 @item
1062 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1063
1064 @item
1065 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1066
1067 @item
1068 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1069
1070 @item
1071 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1072
1073 @item
1074 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1075 @end itemize
1076
1077 With the AVX extensions more registers were made available:
1078
1079 @itemize @bullet
1080
1081 @item
1082 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1083 available in 32-bit mode). The bottom 128 bits are overlaid with the
1084 @samp{xmm0}--@samp{xmm15} registers.
1085
1086 @end itemize
1087
1088 The AVX512 extensions added the following registers:
1089
1090 @itemize @bullet
1091
1092 @item
1093 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1094 available in 32-bit mode). The bottom 128 bits are overlaid with the
1095 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1096 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1097
1098 @item
1099 the 8 mask registers @samp{%k0}--@samp{%k7}.
1100
1101 @end itemize
1102
1103 @node i386-Prefixes
1104 @section Instruction Prefixes
1105
1106 @cindex i386 instruction prefixes
1107 @cindex instruction prefixes, i386
1108 @cindex prefixes, i386
1109 Instruction prefixes are used to modify the following instruction. They
1110 are used to repeat string instructions, to provide section overrides, to
1111 perform bus lock operations, and to change operand and address sizes.
1112 (Most instructions that normally operate on 32-bit operands will use
1113 16-bit operands if the instruction has an ``operand size'' prefix.)
1114 Instruction prefixes are best written on the same line as the instruction
1115 they act upon. For example, the @samp{scas} (scan string) instruction is
1116 repeated with:
1117
1118 @smallexample
1119 repne scas %es:(%edi),%al
1120 @end smallexample
1121
1122 You may also place prefixes on the lines immediately preceding the
1123 instruction, but this circumvents checks that @code{@value{AS}} does
1124 with prefixes, and will not work with all prefixes.
1125
1126 Here is a list of instruction prefixes:
1127
1128 @cindex section override prefixes, i386
1129 @itemize @bullet
1130 @item
1131 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1132 @samp{fs}, @samp{gs}. These are automatically added by specifying
1133 using the @var{section}:@var{memory-operand} form for memory references.
1134
1135 @cindex size prefixes, i386
1136 @item
1137 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1138 change 32-bit operands/addresses into 16-bit operands/addresses,
1139 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1140 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1141 @emph{must} appear on the same line of code as the instruction they
1142 modify. For example, in a 16-bit @code{.code16} section, you might
1143 write:
1144
1145 @smallexample
1146 addr32 jmpl *(%ebx)
1147 @end smallexample
1148
1149 @cindex bus lock prefixes, i386
1150 @cindex inhibiting interrupts, i386
1151 @item
1152 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1153 the instruction it precedes. (This is only valid with certain
1154 instructions; see a 80386 manual for details).
1155
1156 @cindex coprocessor wait, i386
1157 @item
1158 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1159 complete the current instruction. This should never be needed for the
1160 80386/80387 combination.
1161
1162 @cindex repeat prefixes, i386
1163 @item
1164 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1165 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1166 times if the current address size is 16-bits).
1167 @cindex REX prefixes, i386
1168 @item
1169 The @samp{rex} family of prefixes is used by x86-64 to encode
1170 extensions to i386 instruction set. The @samp{rex} prefix has four
1171 bits --- an operand size overwrite (@code{64}) used to change operand size
1172 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1173 register set.
1174
1175 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1176 instruction emits @samp{rex} prefix with all the bits set. By omitting
1177 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1178 prefixes as well. Normally, there is no need to write the prefixes
1179 explicitly, since gas will automatically generate them based on the
1180 instruction operands.
1181 @end itemize
1182
1183 @node i386-Memory
1184 @section Memory References
1185
1186 @cindex i386 memory references
1187 @cindex memory references, i386
1188 @cindex x86-64 memory references
1189 @cindex memory references, x86-64
1190 An Intel syntax indirect memory reference of the form
1191
1192 @smallexample
1193 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1194 @end smallexample
1195
1196 @noindent
1197 is translated into the AT&T syntax
1198
1199 @smallexample
1200 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1201 @end smallexample
1202
1203 @noindent
1204 where @var{base} and @var{index} are the optional 32-bit base and
1205 index registers, @var{disp} is the optional displacement, and
1206 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1207 to calculate the address of the operand. If no @var{scale} is
1208 specified, @var{scale} is taken to be 1. @var{section} specifies the
1209 optional section register for the memory operand, and may override the
1210 default section register (see a 80386 manual for section register
1211 defaults). Note that section overrides in AT&T syntax @emph{must}
1212 be preceded by a @samp{%}. If you specify a section override which
1213 coincides with the default section register, @code{@value{AS}} does @emph{not}
1214 output any section register override prefixes to assemble the given
1215 instruction. Thus, section overrides can be specified to emphasize which
1216 section register is used for a given memory operand.
1217
1218 Here are some examples of Intel and AT&T style memory references:
1219
1220 @table @asis
1221 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1222 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1223 missing, and the default section is used (@samp{%ss} for addressing with
1224 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1225
1226 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1227 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1228 @samp{foo}. All other fields are missing. The section register here
1229 defaults to @samp{%ds}.
1230
1231 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1232 This uses the value pointed to by @samp{foo} as a memory operand.
1233 Note that @var{base} and @var{index} are both missing, but there is only
1234 @emph{one} @samp{,}. This is a syntactic exception.
1235
1236 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1237 This selects the contents of the variable @samp{foo} with section
1238 register @var{section} being @samp{%gs}.
1239 @end table
1240
1241 Absolute (as opposed to PC relative) call and jump operands must be
1242 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1243 always chooses PC relative addressing for jump/call labels.
1244
1245 Any instruction that has a memory operand, but no register operand,
1246 @emph{must} specify its size (byte, word, long, or quadruple) with an
1247 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1248 respectively).
1249
1250 The x86-64 architecture adds an RIP (instruction pointer relative)
1251 addressing. This addressing mode is specified by using @samp{rip} as a
1252 base register. Only constant offsets are valid. For example:
1253
1254 @table @asis
1255 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1256 Points to the address 1234 bytes past the end of the current
1257 instruction.
1258
1259 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1260 Points to the @code{symbol} in RIP relative way, this is shorter than
1261 the default absolute addressing.
1262 @end table
1263
1264 Other addressing modes remain unchanged in x86-64 architecture, except
1265 registers used are 64-bit instead of 32-bit.
1266
1267 @node i386-Jumps
1268 @section Handling of Jump Instructions
1269
1270 @cindex jump optimization, i386
1271 @cindex i386 jump optimization
1272 @cindex jump optimization, x86-64
1273 @cindex x86-64 jump optimization
1274 Jump instructions are always optimized to use the smallest possible
1275 displacements. This is accomplished by using byte (8-bit) displacement
1276 jumps whenever the target is sufficiently close. If a byte displacement
1277 is insufficient a long displacement is used. We do not support
1278 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1279 instruction with the @samp{data16} instruction prefix), since the 80386
1280 insists upon masking @samp{%eip} to 16 bits after the word displacement
1281 is added. (See also @pxref{i386-Arch})
1282
1283 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1284 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1285 displacements, so that if you use these instructions (@code{@value{GCC}} does
1286 not use them) you may get an error message (and incorrect code). The AT&T
1287 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1288 to
1289
1290 @smallexample
1291 jcxz cx_zero
1292 jmp cx_nonzero
1293 cx_zero: jmp foo
1294 cx_nonzero:
1295 @end smallexample
1296
1297 @node i386-Float
1298 @section Floating Point
1299
1300 @cindex i386 floating point
1301 @cindex floating point, i386
1302 @cindex x86-64 floating point
1303 @cindex floating point, x86-64
1304 All 80387 floating point types except packed BCD are supported.
1305 (BCD support may be added without much difficulty). These data
1306 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1307 double (64-bit), and extended (80-bit) precision floating point.
1308 Each supported type has an instruction mnemonic suffix and a constructor
1309 associated with it. Instruction mnemonic suffixes specify the operand's
1310 data type. Constructors build these data types into memory.
1311
1312 @cindex @code{float} directive, i386
1313 @cindex @code{single} directive, i386
1314 @cindex @code{double} directive, i386
1315 @cindex @code{tfloat} directive, i386
1316 @cindex @code{hfloat} directive, i386
1317 @cindex @code{float} directive, x86-64
1318 @cindex @code{single} directive, x86-64
1319 @cindex @code{double} directive, x86-64
1320 @cindex @code{tfloat} directive, x86-64
1321 @cindex @code{hfloat} directive, x86-64
1322 @itemize @bullet
1323 @item
1324 Floating point constructors are @samp{.float} or @samp{.single},
1325 @samp{.double}, @samp{.tfloat}, and @samp{.hfloat} for 32-, 64-, 80-, and
1326 16-bit formats respectively. The former three correspond to instruction
1327 mnemonic suffixes @samp{s}, @samp{l}, and @samp{t}. @samp{t} stands for
1328 80-bit (ten byte) real. The 80387 only supports this format via the
1329 @samp{fldt} (load 80-bit real to stack top) and @samp{fstpt} (store 80-bit
1330 real and pop stack) instructions.
1331
1332 @cindex @code{word} directive, i386
1333 @cindex @code{long} directive, i386
1334 @cindex @code{int} directive, i386
1335 @cindex @code{quad} directive, i386
1336 @cindex @code{word} directive, x86-64
1337 @cindex @code{long} directive, x86-64
1338 @cindex @code{int} directive, x86-64
1339 @cindex @code{quad} directive, x86-64
1340 @item
1341 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1342 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1343 corresponding instruction mnemonic suffixes are @samp{s} (short),
1344 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1345 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1346 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1347 stack) instructions.
1348 @end itemize
1349
1350 Register to register operations should not use instruction mnemonic suffixes.
1351 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1352 wrote @samp{fst %st, %st(1)}, since all register to register operations
1353 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1354 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1355 then stores the result in the 4 byte location @samp{mem})
1356
1357 @node i386-SIMD
1358 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1359
1360 @cindex MMX, i386
1361 @cindex 3DNow!, i386
1362 @cindex SIMD, i386
1363 @cindex MMX, x86-64
1364 @cindex 3DNow!, x86-64
1365 @cindex SIMD, x86-64
1366
1367 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1368 instructions for integer data), available on Intel's Pentium MMX
1369 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1370 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1371 instruction set (SIMD instructions for 32-bit floating point data)
1372 available on AMD's K6-2 processor and possibly others in the future.
1373
1374 Currently, @code{@value{AS}} does not support Intel's floating point
1375 SIMD, Katmai (KNI).
1376
1377 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1378 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1379 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1380 floating point values. The MMX registers cannot be used at the same time
1381 as the floating point stack.
1382
1383 See Intel and AMD documentation, keeping in mind that the operand order in
1384 instructions is reversed from the Intel syntax.
1385
1386 @node i386-LWP
1387 @section AMD's Lightweight Profiling Instructions
1388
1389 @cindex LWP, i386
1390 @cindex LWP, x86-64
1391
1392 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1393 instruction set, available on AMD's Family 15h (Orochi) processors.
1394
1395 LWP enables applications to collect and manage performance data, and
1396 react to performance events. The collection of performance data
1397 requires no context switches. LWP runs in the context of a thread and
1398 so several counters can be used independently across multiple threads.
1399 LWP can be used in both 64-bit and legacy 32-bit modes.
1400
1401 For detailed information on the LWP instruction set, see the
1402 @cite{AMD Lightweight Profiling Specification} available at
1403 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1404
1405 @node i386-BMI
1406 @section Bit Manipulation Instructions
1407
1408 @cindex BMI, i386
1409 @cindex BMI, x86-64
1410
1411 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1412
1413 BMI instructions provide several instructions implementing individual
1414 bit manipulation operations such as isolation, masking, setting, or
1415 resetting.
1416
1417 @c Need to add a specification citation here when available.
1418
1419 @node i386-TBM
1420 @section AMD's Trailing Bit Manipulation Instructions
1421
1422 @cindex TBM, i386
1423 @cindex TBM, x86-64
1424
1425 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1426 instruction set, available on AMD's BDVER2 processors (Trinity and
1427 Viperfish).
1428
1429 TBM instructions provide instructions implementing individual bit
1430 manipulation operations such as isolating, masking, setting, resetting,
1431 complementing, and operations on trailing zeros and ones.
1432
1433 @c Need to add a specification citation here when available.
1434
1435 @node i386-16bit
1436 @section Writing 16-bit Code
1437
1438 @cindex i386 16-bit code
1439 @cindex 16-bit code, i386
1440 @cindex real-mode code, i386
1441 @cindex @code{code16gcc} directive, i386
1442 @cindex @code{code16} directive, i386
1443 @cindex @code{code32} directive, i386
1444 @cindex @code{code64} directive, i386
1445 @cindex @code{code64} directive, x86-64
1446 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1447 or 64-bit x86-64 code depending on the default configuration,
1448 it also supports writing code to run in real mode or in 16-bit protected
1449 mode code segments. To do this, put a @samp{.code16} or
1450 @samp{.code16gcc} directive before the assembly language instructions to
1451 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1452 32-bit code with the @samp{.code32} directive or 64-bit code with the
1453 @samp{.code64} directive.
1454
1455 @samp{.code16gcc} provides experimental support for generating 16-bit
1456 code from gcc, and differs from @samp{.code16} in that @samp{call},
1457 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1458 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1459 default to 32-bit size. This is so that the stack pointer is
1460 manipulated in the same way over function calls, allowing access to
1461 function parameters at the same stack offsets as in 32-bit mode.
1462 @samp{.code16gcc} also automatically adds address size prefixes where
1463 necessary to use the 32-bit addressing modes that gcc generates.
1464
1465 The code which @code{@value{AS}} generates in 16-bit mode will not
1466 necessarily run on a 16-bit pre-80386 processor. To write code that
1467 runs on such a processor, you must refrain from using @emph{any} 32-bit
1468 constructs which require @code{@value{AS}} to output address or operand
1469 size prefixes.
1470
1471 Note that writing 16-bit code instructions by explicitly specifying a
1472 prefix or an instruction mnemonic suffix within a 32-bit code section
1473 generates different machine instructions than those generated for a
1474 16-bit code segment. In a 32-bit code section, the following code
1475 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1476 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1477
1478 @smallexample
1479 pushw $4
1480 @end smallexample
1481
1482 The same code in a 16-bit code section would generate the machine
1483 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1484 is correct since the processor default operand size is assumed to be 16
1485 bits in a 16-bit code section.
1486
1487 @node i386-Arch
1488 @section Specifying CPU Architecture
1489
1490 @cindex arch directive, i386
1491 @cindex i386 arch directive
1492 @cindex arch directive, x86-64
1493 @cindex x86-64 arch directive
1494
1495 @code{@value{AS}} may be told to assemble for a particular CPU
1496 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1497 directive enables a warning when gas detects an instruction that is not
1498 supported on the CPU specified. The choices for @var{cpu_type} are:
1499
1500 @multitable @columnfractions .20 .20 .20 .20
1501 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1502 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1503 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1504 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1505 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1506 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1507 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1508 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{znver3}
1509 @item @samp{btver1} @tab @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1510 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1511 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1512 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1513 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1514 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1515 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1516 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1517 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1518 @item @samp{.hle}
1519 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1520 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1521 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1522 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1523 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1524 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1525 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1526 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1527 @item @samp{.tdx} @tab @samp{.avx_vnni} @tab @samp{.avx512_fp16}
1528 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1529 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1530 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1531 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1532 @item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_tile}
1533 @item @samp{.kl} @tab @samp{.widekl} @tab @samp{.uintr} @tab @samp{.hreset}
1534 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1535 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1536 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1537 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1538 @item @samp{.mcommit} @tab @samp{.sev_es} @tab @samp{.snp} @tab @samp{.invlpgb}
1539 @item @samp{.tlbsync}
1540 @end multitable
1541
1542 Apart from the warning, there are only two other effects on
1543 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1544 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1545 will automatically use a two byte opcode sequence. The larger three
1546 byte opcode sequence is used on the 486 (and when no architecture is
1547 specified) because it executes faster on the 486. Note that you can
1548 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1549 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1550 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1551 conditional jumps will be promoted when necessary to a two instruction
1552 sequence consisting of a conditional jump of the opposite sense around
1553 an unconditional jump to the target.
1554
1555 Following the CPU architecture (but not a sub-architecture, which are those
1556 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1557 control automatic promotion of conditional jumps. @samp{jumps} is the
1558 default, and enables jump promotion; All external jumps will be of the long
1559 variety, and file-local jumps will be promoted as necessary.
1560 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1561 byte offset jumps, and warns about file-local conditional jumps that
1562 @code{@value{AS}} promotes.
1563 Unconditional jumps are treated as for @samp{jumps}.
1564
1565 For example
1566
1567 @smallexample
1568 .arch i8086,nojumps
1569 @end smallexample
1570
1571 @node i386-ISA
1572 @section AMD64 ISA vs. Intel64 ISA
1573
1574 There are some discrepancies between AMD64 and Intel64 ISAs.
1575
1576 @itemize @bullet
1577 @item For @samp{movsxd} with 16-bit destination register, AMD64
1578 supports 32-bit source operand and Intel64 supports 16-bit source
1579 operand.
1580
1581 @item For far branches (with explicit memory operand), both ISAs support
1582 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1583 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1584 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1585 syntax.
1586
1587 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1588 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1589 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1590 operands).
1591
1592 @end itemize
1593
1594 @node i386-Bugs
1595 @section AT&T Syntax bugs
1596
1597 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1598 assemblers, generate floating point instructions with reversed source
1599 and destination registers in certain cases. Unfortunately, gcc and
1600 possibly many other programs use this reversed syntax, so we're stuck
1601 with it.
1602
1603 For example
1604
1605 @smallexample
1606 fsub %st,%st(3)
1607 @end smallexample
1608 @noindent
1609 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1610 than the expected @samp{%st(3) - %st}. This happens with all the
1611 non-commutative arithmetic floating point operations with two register
1612 operands where the source register is @samp{%st} and the destination
1613 register is @samp{%st(i)}.
1614
1615 @node i386-Notes
1616 @section Notes
1617
1618 @cindex i386 @code{mul}, @code{imul} instructions
1619 @cindex @code{mul} instruction, i386
1620 @cindex @code{imul} instruction, i386
1621 @cindex @code{mul} instruction, x86-64
1622 @cindex @code{imul} instruction, x86-64
1623 There is some trickery concerning the @samp{mul} and @samp{imul}
1624 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1625 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1626 for @samp{imul}) can be output only in the one operand form. Thus,
1627 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1628 the expanding multiply would clobber the @samp{%edx} register, and this
1629 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1630 64-bit product in @samp{%edx:%eax}.
1631
1632 We have added a two operand form of @samp{imul} when the first operand
1633 is an immediate mode expression and the second operand is a register.
1634 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1635 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1636 $69, %eax, %eax}.
1637