x86: Don't disable SSE4a when disabling SSE4
[binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{iamcu},
116 @code{k6},
117 @code{k6_2},
118 @code{athlon},
119 @code{opteron},
120 @code{k8},
121 @code{amdfam10},
122 @code{bdver1},
123 @code{bdver2},
124 @code{bdver3},
125 @code{bdver4},
126 @code{znver1},
127 @code{znver2},
128 @code{btver1},
129 @code{btver2},
130 @code{generic32} and
131 @code{generic64}.
132
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
137 @code{8087},
138 @code{287},
139 @code{387},
140 @code{687},
141 @code{no87},
142 @code{no287},
143 @code{no387},
144 @code{no687},
145 @code{cmov},
146 @code{nocmov},
147 @code{fxsr},
148 @code{nofxsr},
149 @code{mmx},
150 @code{nommx},
151 @code{sse},
152 @code{sse2},
153 @code{sse3},
154 @code{sse4a},
155 @code{ssse3},
156 @code{sse4.1},
157 @code{sse4.2},
158 @code{sse4},
159 @code{nosse},
160 @code{nosse2},
161 @code{nosse3},
162 @code{nosse4a},
163 @code{nossse3},
164 @code{nosse4.1},
165 @code{nosse4.2},
166 @code{nosse4},
167 @code{avx},
168 @code{avx2},
169 @code{noavx},
170 @code{noavx2},
171 @code{adx},
172 @code{rdseed},
173 @code{prfchw},
174 @code{smap},
175 @code{mpx},
176 @code{sha},
177 @code{rdpid},
178 @code{ptwrite},
179 @code{cet},
180 @code{gfni},
181 @code{vaes},
182 @code{vpclmulqdq},
183 @code{prefetchwt1},
184 @code{clflushopt},
185 @code{se1},
186 @code{clwb},
187 @code{movdiri},
188 @code{movdir64b},
189 @code{enqcmd},
190 @code{avx512f},
191 @code{avx512cd},
192 @code{avx512er},
193 @code{avx512pf},
194 @code{avx512vl},
195 @code{avx512bw},
196 @code{avx512dq},
197 @code{avx512ifma},
198 @code{avx512vbmi},
199 @code{avx512_4fmaps},
200 @code{avx512_4vnniw},
201 @code{avx512_vpopcntdq},
202 @code{avx512_vbmi2},
203 @code{avx512_vnni},
204 @code{avx512_bitalg},
205 @code{avx512_bf16},
206 @code{noavx512f},
207 @code{noavx512cd},
208 @code{noavx512er},
209 @code{noavx512pf},
210 @code{noavx512vl},
211 @code{noavx512bw},
212 @code{noavx512dq},
213 @code{noavx512ifma},
214 @code{noavx512vbmi},
215 @code{noavx512_4fmaps},
216 @code{noavx512_4vnniw},
217 @code{noavx512_vpopcntdq},
218 @code{noavx512_vbmi2},
219 @code{noavx512_vnni},
220 @code{noavx512_bitalg},
221 @code{noavx512_vp2intersect},
222 @code{noavx512_bf16},
223 @code{noenqcmd},
224 @code{vmx},
225 @code{vmfunc},
226 @code{smx},
227 @code{xsave},
228 @code{xsaveopt},
229 @code{xsavec},
230 @code{xsaves},
231 @code{aes},
232 @code{pclmul},
233 @code{fsgsbase},
234 @code{rdrnd},
235 @code{f16c},
236 @code{bmi2},
237 @code{fma},
238 @code{movbe},
239 @code{ept},
240 @code{lzcnt},
241 @code{hle},
242 @code{rtm},
243 @code{invpcid},
244 @code{clflush},
245 @code{mwaitx},
246 @code{clzero},
247 @code{wbnoinvd},
248 @code{pconfig},
249 @code{waitpkg},
250 @code{cldemote},
251 @code{rdpru},
252 @code{mcommit},
253 @code{lwp},
254 @code{fma4},
255 @code{xop},
256 @code{cx16},
257 @code{syscall},
258 @code{rdtscp},
259 @code{3dnow},
260 @code{3dnowa},
261 @code{sse4a},
262 @code{sse5},
263 @code{svme},
264 @code{abm} and
265 @code{padlock}.
266 Note that rather than extending a basic instruction set, the extension
267 mnemonics starting with @code{no} revoke the respective functionality.
268
269 When the @code{.arch} directive is used with @option{-march}, the
270 @code{.arch} directive will take precedent.
271
272 @cindex @samp{-mtune=} option, i386
273 @cindex @samp{-mtune=} option, x86-64
274 @item -mtune=@var{CPU}
275 This option specifies a processor to optimize for. When used in
276 conjunction with the @option{-march} option, only instructions
277 of the processor specified by the @option{-march} option will be
278 generated.
279
280 Valid @var{CPU} values are identical to the processor list of
281 @option{-march=@var{CPU}}.
282
283 @cindex @samp{-msse2avx} option, i386
284 @cindex @samp{-msse2avx} option, x86-64
285 @item -msse2avx
286 This option specifies that the assembler should encode SSE instructions
287 with VEX prefix.
288
289 @cindex @samp{-msse-check=} option, i386
290 @cindex @samp{-msse-check=} option, x86-64
291 @item -msse-check=@var{none}
292 @itemx -msse-check=@var{warning}
293 @itemx -msse-check=@var{error}
294 These options control if the assembler should check SSE instructions.
295 @option{-msse-check=@var{none}} will make the assembler not to check SSE
296 instructions, which is the default. @option{-msse-check=@var{warning}}
297 will make the assembler issue a warning for any SSE instruction.
298 @option{-msse-check=@var{error}} will make the assembler issue an error
299 for any SSE instruction.
300
301 @cindex @samp{-mavxscalar=} option, i386
302 @cindex @samp{-mavxscalar=} option, x86-64
303 @item -mavxscalar=@var{128}
304 @itemx -mavxscalar=@var{256}
305 These options control how the assembler should encode scalar AVX
306 instructions. @option{-mavxscalar=@var{128}} will encode scalar
307 AVX instructions with 128bit vector length, which is the default.
308 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
309 with 256bit vector length.
310
311 WARNING: Don't use this for production code - due to CPU errata the
312 resulting code may not work on certain models.
313
314 @cindex @samp{-mvexwig=} option, i386
315 @cindex @samp{-mvexwig=} option, x86-64
316 @item -mvexwig=@var{0}
317 @itemx -mvexwig=@var{1}
318 These options control how the assembler should encode VEX.W-ignored (WIG)
319 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
320 instructions with vex.w = 0, which is the default.
321 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
322 vex.w = 1.
323
324 WARNING: Don't use this for production code - due to CPU errata the
325 resulting code may not work on certain models.
326
327 @cindex @samp{-mevexlig=} option, i386
328 @cindex @samp{-mevexlig=} option, x86-64
329 @item -mevexlig=@var{128}
330 @itemx -mevexlig=@var{256}
331 @itemx -mevexlig=@var{512}
332 These options control how the assembler should encode length-ignored
333 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
334 EVEX instructions with 128bit vector length, which is the default.
335 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
336 encode LIG EVEX instructions with 256bit and 512bit vector length,
337 respectively.
338
339 @cindex @samp{-mevexwig=} option, i386
340 @cindex @samp{-mevexwig=} option, x86-64
341 @item -mevexwig=@var{0}
342 @itemx -mevexwig=@var{1}
343 These options control how the assembler should encode w-ignored (WIG)
344 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
345 EVEX instructions with evex.w = 0, which is the default.
346 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
347 evex.w = 1.
348
349 @cindex @samp{-mmnemonic=} option, i386
350 @cindex @samp{-mmnemonic=} option, x86-64
351 @item -mmnemonic=@var{att}
352 @itemx -mmnemonic=@var{intel}
353 This option specifies instruction mnemonic for matching instructions.
354 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
355 take precedent.
356
357 @cindex @samp{-msyntax=} option, i386
358 @cindex @samp{-msyntax=} option, x86-64
359 @item -msyntax=@var{att}
360 @itemx -msyntax=@var{intel}
361 This option specifies instruction syntax when processing instructions.
362 The @code{.att_syntax} and @code{.intel_syntax} directives will
363 take precedent.
364
365 @cindex @samp{-mnaked-reg} option, i386
366 @cindex @samp{-mnaked-reg} option, x86-64
367 @item -mnaked-reg
368 This option specifies that registers don't require a @samp{%} prefix.
369 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
370
371 @cindex @samp{-madd-bnd-prefix} option, i386
372 @cindex @samp{-madd-bnd-prefix} option, x86-64
373 @item -madd-bnd-prefix
374 This option forces the assembler to add BND prefix to all branches, even
375 if such prefix was not explicitly specified in the source code.
376
377 @cindex @samp{-mshared} option, i386
378 @cindex @samp{-mshared} option, x86-64
379 @item -mno-shared
380 On ELF target, the assembler normally optimizes out non-PLT relocations
381 against defined non-weak global branch targets with default visibility.
382 The @samp{-mshared} option tells the assembler to generate code which
383 may go into a shared library where all non-weak global branch targets
384 with default visibility can be preempted. The resulting code is
385 slightly bigger. This option only affects the handling of branch
386 instructions.
387
388 @cindex @samp{-mbig-obj} option, x86-64
389 @item -mbig-obj
390 On x86-64 PE/COFF target this option forces the use of big object file
391 format, which allows more than 32768 sections.
392
393 @cindex @samp{-momit-lock-prefix=} option, i386
394 @cindex @samp{-momit-lock-prefix=} option, x86-64
395 @item -momit-lock-prefix=@var{no}
396 @itemx -momit-lock-prefix=@var{yes}
397 These options control how the assembler should encode lock prefix.
398 This option is intended as a workaround for processors, that fail on
399 lock prefix. This option can only be safely used with single-core,
400 single-thread computers
401 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
402 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
403 which is the default.
404
405 @cindex @samp{-mfence-as-lock-add=} option, i386
406 @cindex @samp{-mfence-as-lock-add=} option, x86-64
407 @item -mfence-as-lock-add=@var{no}
408 @itemx -mfence-as-lock-add=@var{yes}
409 These options control how the assembler should encode lfence, mfence and
410 sfence.
411 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
412 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
413 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
414 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
415 sfence as usual, which is the default.
416
417 @cindex @samp{-mrelax-relocations=} option, i386
418 @cindex @samp{-mrelax-relocations=} option, x86-64
419 @item -mrelax-relocations=@var{no}
420 @itemx -mrelax-relocations=@var{yes}
421 These options control whether the assembler should generate relax
422 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
423 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
424 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
425 @option{-mrelax-relocations=@var{no}} will not generate relax
426 relocations. The default can be controlled by a configure option
427 @option{--enable-x86-relax-relocations}.
428
429 @cindex @samp{-malign-branch-boundary=} option, i386
430 @cindex @samp{-malign-branch-boundary=} option, x86-64
431 @item -malign-branch-boundary=@var{NUM}
432 This option controls how the assembler should align branches with segment
433 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
434 no less than 16. Branches will be aligned within @var{NUM} byte
435 boundary. @option{-malign-branch-boundary=0}, which is the default,
436 doesn't align branches.
437
438 @cindex @samp{-malign-branch=} option, i386
439 @cindex @samp{-malign-branch=} option, x86-64
440 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
441 This option specifies types of branches to align. @var{TYPE} is
442 combination of @samp{jcc}, which aligns conditional jumps,
443 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
444 which aligns unconditional jumps, @samp{call} which aligns calls,
445 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
446 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
447
448 @cindex @samp{-malign-branch-prefix-size=} option, i386
449 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
450 @item -malign-branch-prefix-size=@var{NUM}
451 This option specifies the maximum number of prefixes on an instruction
452 to align branches. @var{NUM} should be between 0 and 5. The default
453 @var{NUM} is 5.
454
455 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
456 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
457 @item -mbranches-within-32B-boundaries
458 This option aligns conditional jumps, fused conditional jumps and
459 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
460 on an instruction. It is equivalent to
461 @option{-malign-branch-boundary=32}
462 @option{-malign-branch=jcc+fused+jmp}
463 @option{-malign-branch-prefix-size=5}.
464 The default doesn't align branches.
465
466 @cindex @samp{-mx86-used-note=} option, i386
467 @cindex @samp{-mx86-used-note=} option, x86-64
468 @item -mx86-used-note=@var{no}
469 @itemx -mx86-used-note=@var{yes}
470 These options control whether the assembler should generate
471 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
472 GNU property notes. The default can be controlled by the
473 @option{--enable-x86-used-note} configure option.
474
475 @cindex @samp{-mevexrcig=} option, i386
476 @cindex @samp{-mevexrcig=} option, x86-64
477 @item -mevexrcig=@var{rne}
478 @itemx -mevexrcig=@var{rd}
479 @itemx -mevexrcig=@var{ru}
480 @itemx -mevexrcig=@var{rz}
481 These options control how the assembler should encode SAE-only
482 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
483 of EVEX instruction with 00, which is the default.
484 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
485 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
486 with 01, 10 and 11 RC bits, respectively.
487
488 @cindex @samp{-mamd64} option, x86-64
489 @cindex @samp{-mintel64} option, x86-64
490 @item -mamd64
491 @itemx -mintel64
492 This option specifies that the assembler should accept only AMD64 or
493 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
494 only and AMD64 ISAs.
495
496 @cindex @samp{-O0} option, i386
497 @cindex @samp{-O0} option, x86-64
498 @cindex @samp{-O} option, i386
499 @cindex @samp{-O} option, x86-64
500 @cindex @samp{-O1} option, i386
501 @cindex @samp{-O1} option, x86-64
502 @cindex @samp{-O2} option, i386
503 @cindex @samp{-O2} option, x86-64
504 @cindex @samp{-Os} option, i386
505 @cindex @samp{-Os} option, x86-64
506 @item -O0 | -O | -O1 | -O2 | -Os
507 Optimize instruction encoding with smaller instruction size. @samp{-O}
508 and @samp{-O1} encode 64-bit register load instructions with 64-bit
509 immediate as 32-bit register load instructions with 31-bit or 32-bits
510 immediates, encode 64-bit register clearing instructions with 32-bit
511 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
512 register clearing instructions with 128-bit VEX vector register
513 clearing instructions, encode 128-bit/256-bit EVEX vector
514 register load/store instructions with VEX vector register load/store
515 instructions, and encode 128-bit/256-bit EVEX packed integer logical
516 instructions with 128-bit/256-bit VEX packed integer logical.
517
518 @samp{-O2} includes @samp{-O1} optimization plus encodes
519 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
520 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
521 instructions with commutative source operands will also have their
522 source operands swapped if this allows using the 2-byte VEX prefix form
523 instead of the 3-byte one. Certain forms of AND as well as OR with the
524 same (register) operand specified twice will also be changed to TEST.
525
526 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
527 and 64-bit register tests with immediate as 8-bit register test with
528 immediate. @samp{-O0} turns off this optimization.
529
530 @end table
531 @c man end
532
533 @node i386-Directives
534 @section x86 specific Directives
535
536 @cindex machine directives, x86
537 @cindex x86 machine directives
538 @table @code
539
540 @cindex @code{lcomm} directive, COFF
541 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
542 Reserve @var{length} (an absolute expression) bytes for a local common
543 denoted by @var{symbol}. The section and value of @var{symbol} are
544 those of the new local common. The addresses are allocated in the bss
545 section, so that at run-time the bytes start off zeroed. Since
546 @var{symbol} is not declared global, it is normally not visible to
547 @code{@value{LD}}. The optional third parameter, @var{alignment},
548 specifies the desired alignment of the symbol in the bss section.
549
550 This directive is only available for COFF based x86 targets.
551
552 @cindex @code{largecomm} directive, ELF
553 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
554 This directive behaves in the same way as the @code{comm} directive
555 except that the data is placed into the @var{.lbss} section instead of
556 the @var{.bss} section @ref{Comm}.
557
558 The directive is intended to be used for data which requires a large
559 amount of space, and it is only available for ELF based x86_64
560 targets.
561
562 @cindex @code{value} directive
563 @item .value @var{expression} [, @var{expression}]
564 This directive behaves in the same way as the @code{.short} directive,
565 taking a series of comma separated expressions and storing them as
566 two-byte wide values into the current section.
567
568 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
569
570 @end table
571
572 @node i386-Syntax
573 @section i386 Syntactical Considerations
574 @menu
575 * i386-Variations:: AT&T Syntax versus Intel Syntax
576 * i386-Chars:: Special Characters
577 @end menu
578
579 @node i386-Variations
580 @subsection AT&T Syntax versus Intel Syntax
581
582 @cindex i386 intel_syntax pseudo op
583 @cindex intel_syntax pseudo op, i386
584 @cindex i386 att_syntax pseudo op
585 @cindex att_syntax pseudo op, i386
586 @cindex i386 syntax compatibility
587 @cindex syntax compatibility, i386
588 @cindex x86-64 intel_syntax pseudo op
589 @cindex intel_syntax pseudo op, x86-64
590 @cindex x86-64 att_syntax pseudo op
591 @cindex att_syntax pseudo op, x86-64
592 @cindex x86-64 syntax compatibility
593 @cindex syntax compatibility, x86-64
594
595 @code{@value{AS}} now supports assembly using Intel assembler syntax.
596 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
597 back to the usual AT&T mode for compatibility with the output of
598 @code{@value{GCC}}. Either of these directives may have an optional
599 argument, @code{prefix}, or @code{noprefix} specifying whether registers
600 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
601 different from Intel syntax. We mention these differences because
602 almost all 80386 documents use Intel syntax. Notable differences
603 between the two syntaxes are:
604
605 @cindex immediate operands, i386
606 @cindex i386 immediate operands
607 @cindex register operands, i386
608 @cindex i386 register operands
609 @cindex jump/call operands, i386
610 @cindex i386 jump/call operands
611 @cindex operand delimiters, i386
612
613 @cindex immediate operands, x86-64
614 @cindex x86-64 immediate operands
615 @cindex register operands, x86-64
616 @cindex x86-64 register operands
617 @cindex jump/call operands, x86-64
618 @cindex x86-64 jump/call operands
619 @cindex operand delimiters, x86-64
620 @itemize @bullet
621 @item
622 AT&T immediate operands are preceded by @samp{$}; Intel immediate
623 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
624 AT&T register operands are preceded by @samp{%}; Intel register operands
625 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
626 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
627
628 @cindex i386 source, destination operands
629 @cindex source, destination operands; i386
630 @cindex x86-64 source, destination operands
631 @cindex source, destination operands; x86-64
632 @item
633 AT&T and Intel syntax use the opposite order for source and destination
634 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
635 @samp{source, dest} convention is maintained for compatibility with
636 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
637 instructions with 2 immediate operands, such as the @samp{enter}
638 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
639
640 @cindex mnemonic suffixes, i386
641 @cindex sizes operands, i386
642 @cindex i386 size suffixes
643 @cindex mnemonic suffixes, x86-64
644 @cindex sizes operands, x86-64
645 @cindex x86-64 size suffixes
646 @item
647 In AT&T syntax the size of memory operands is determined from the last
648 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
649 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
650 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
651 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
652 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
653 no other way to disambiguate an instruction. Intel syntax accomplishes this by
654 prefixing memory operands (@emph{not} the instruction mnemonics) with
655 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
656 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
657 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
658 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
659 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
660
661 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
662 instruction with the 64-bit displacement or immediate operand.
663
664 @cindex return instructions, i386
665 @cindex i386 jump, call, return
666 @cindex return instructions, x86-64
667 @cindex x86-64 jump, call, return
668 @item
669 Immediate form long jumps and calls are
670 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
671 Intel syntax is
672 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
673 instruction
674 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
675 @samp{ret far @var{stack-adjust}}.
676
677 @cindex sections, i386
678 @cindex i386 sections
679 @cindex sections, x86-64
680 @cindex x86-64 sections
681 @item
682 The AT&T assembler does not provide support for multiple section
683 programs. Unix style systems expect all programs to be single sections.
684 @end itemize
685
686 @node i386-Chars
687 @subsection Special Characters
688
689 @cindex line comment character, i386
690 @cindex i386 line comment character
691 The presence of a @samp{#} appearing anywhere on a line indicates the
692 start of a comment that extends to the end of that line.
693
694 If a @samp{#} appears as the first character of a line then the whole
695 line is treated as a comment, but in this case the line can also be a
696 logical line number directive (@pxref{Comments}) or a preprocessor
697 control command (@pxref{Preprocessing}).
698
699 If the @option{--divide} command-line option has not been specified
700 then the @samp{/} character appearing anywhere on a line also
701 introduces a line comment.
702
703 @cindex line separator, i386
704 @cindex statement separator, i386
705 @cindex i386 line separator
706 The @samp{;} character can be used to separate statements on the same
707 line.
708
709 @node i386-Mnemonics
710 @section i386-Mnemonics
711 @subsection Instruction Naming
712
713 @cindex i386 instruction naming
714 @cindex instruction naming, i386
715 @cindex x86-64 instruction naming
716 @cindex instruction naming, x86-64
717
718 Instruction mnemonics are suffixed with one character modifiers which
719 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
720 and @samp{q} specify byte, word, long and quadruple word operands. If
721 no suffix is specified by an instruction then @code{@value{AS}} tries to
722 fill in the missing suffix based on the destination register operand
723 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
724 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
725 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
726 assembler which assumes that a missing mnemonic suffix implies long
727 operand size. (This incompatibility does not affect compiler output
728 since compilers always explicitly specify the mnemonic suffix.)
729
730 When there is no sizing suffix and no (suitable) register operands to
731 deduce the size of memory operands, with a few exceptions and where long
732 operand size is possible in the first place, operand size will default
733 to long in 32- and 64-bit modes. Similarly it will default to short in
734 16-bit mode. Noteworthy exceptions are
735
736 @itemize @bullet
737 @item
738 Instructions with an implicit on-stack operand as well as branches,
739 which default to quad in 64-bit mode.
740
741 @item
742 Sign- and zero-extending moves, which default to byte size source
743 operands.
744
745 @item
746 Floating point insns with integer operands, which default to short (for
747 perhaps historical reasons).
748
749 @item
750 CRC32 with a 64-bit destination, which defaults to a quad source
751 operand.
752
753 @end itemize
754
755 @cindex encoding options, i386
756 @cindex encoding options, x86-64
757
758 Different encoding options can be specified via pseudo prefixes:
759
760 @itemize @bullet
761 @item
762 @samp{@{disp8@}} -- prefer 8-bit displacement.
763
764 @item
765 @samp{@{disp32@}} -- prefer 32-bit displacement.
766
767 @item
768 @samp{@{load@}} -- prefer load-form instruction.
769
770 @item
771 @samp{@{store@}} -- prefer store-form instruction.
772
773 @item
774 @samp{@{vex@}} -- encode with VEX prefix.
775
776 @item
777 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
778
779 @item
780 @samp{@{evex@}} -- encode with EVEX prefix.
781
782 @item
783 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
784 instructions (x86-64 only). Note that this differs from the @samp{rex}
785 prefix which generates REX prefix unconditionally.
786
787 @item
788 @samp{@{nooptimize@}} -- disable instruction size optimization.
789 @end itemize
790
791 @cindex conversion instructions, i386
792 @cindex i386 conversion instructions
793 @cindex conversion instructions, x86-64
794 @cindex x86-64 conversion instructions
795 The Intel-syntax conversion instructions
796
797 @itemize @bullet
798 @item
799 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
800
801 @item
802 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
803
804 @item
805 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
806
807 @item
808 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
809
810 @item
811 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
812 (x86-64 only),
813
814 @item
815 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
816 @samp{%rdx:%rax} (x86-64 only),
817 @end itemize
818
819 @noindent
820 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
821 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
822 instructions.
823
824 @cindex extension instructions, i386
825 @cindex i386 extension instructions
826 @cindex extension instructions, x86-64
827 @cindex x86-64 extension instructions
828 The Intel-syntax extension instructions
829
830 @itemize @bullet
831 @item
832 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
833
834 @item
835 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
836
837 @item
838 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
839 (x86-64 only).
840
841 @item
842 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
843
844 @item
845 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
846 (x86-64 only).
847
848 @item
849 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
850 (x86-64 only).
851
852 @item
853 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
854
855 @item
856 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
857
858 @item
859 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
860 (x86-64 only).
861
862 @item
863 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
864
865 @item
866 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
867 (x86-64 only).
868 @end itemize
869
870 @noindent
871 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
872 @samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
873 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
874 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
875 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
876
877 @cindex jump instructions, i386
878 @cindex call instructions, i386
879 @cindex jump instructions, x86-64
880 @cindex call instructions, x86-64
881 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
882 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
883 convention.
884
885 @subsection AT&T Mnemonic versus Intel Mnemonic
886
887 @cindex i386 mnemonic compatibility
888 @cindex mnemonic compatibility, i386
889
890 @code{@value{AS}} supports assembly using Intel mnemonic.
891 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
892 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
893 syntax for compatibility with the output of @code{@value{GCC}}.
894 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
895 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
896 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
897 assembler with different mnemonics from those in Intel IA32 specification.
898 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
899
900 @itemize @bullet
901 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
902 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
903 destination register with both AT&T and Intel mnemonics.
904 @end itemize
905
906 @node i386-Regs
907 @section Register Naming
908
909 @cindex i386 registers
910 @cindex registers, i386
911 @cindex x86-64 registers
912 @cindex registers, x86-64
913 Register operands are always prefixed with @samp{%}. The 80386 registers
914 consist of
915
916 @itemize @bullet
917 @item
918 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
919 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
920 frame pointer), and @samp{%esp} (the stack pointer).
921
922 @item
923 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
924 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
925
926 @item
927 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
928 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
929 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
930 @samp{%cx}, and @samp{%dx})
931
932 @item
933 the 6 section registers @samp{%cs} (code section), @samp{%ds}
934 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
935 and @samp{%gs}.
936
937 @item
938 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
939 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
940
941 @item
942 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
943 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
944
945 @item
946 the 2 test registers @samp{%tr6} and @samp{%tr7}.
947
948 @item
949 the 8 floating point register stack @samp{%st} or equivalently
950 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
951 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
952 These registers are overloaded by 8 MMX registers @samp{%mm0},
953 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
954 @samp{%mm6} and @samp{%mm7}.
955
956 @item
957 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
958 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
959 @end itemize
960
961 The AMD x86-64 architecture extends the register set by:
962
963 @itemize @bullet
964 @item
965 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
966 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
967 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
968 pointer)
969
970 @item
971 the 8 extended registers @samp{%r8}--@samp{%r15}.
972
973 @item
974 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
975
976 @item
977 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
978
979 @item
980 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
981
982 @item
983 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
984
985 @item
986 the 8 debug registers: @samp{%db8}--@samp{%db15}.
987
988 @item
989 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
990 @end itemize
991
992 With the AVX extensions more registers were made available:
993
994 @itemize @bullet
995
996 @item
997 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
998 available in 32-bit mode). The bottom 128 bits are overlaid with the
999 @samp{xmm0}--@samp{xmm15} registers.
1000
1001 @end itemize
1002
1003 The AVX2 extensions made in 64-bit mode more registers available:
1004
1005 @itemize @bullet
1006
1007 @item
1008 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1009 registers @samp{%ymm16}--@samp{%ymm31}.
1010
1011 @end itemize
1012
1013 The AVX512 extensions added the following registers:
1014
1015 @itemize @bullet
1016
1017 @item
1018 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1019 available in 32-bit mode). The bottom 128 bits are overlaid with the
1020 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1021 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1022
1023 @item
1024 the 8 mask registers @samp{%k0}--@samp{%k7}.
1025
1026 @end itemize
1027
1028 @node i386-Prefixes
1029 @section Instruction Prefixes
1030
1031 @cindex i386 instruction prefixes
1032 @cindex instruction prefixes, i386
1033 @cindex prefixes, i386
1034 Instruction prefixes are used to modify the following instruction. They
1035 are used to repeat string instructions, to provide section overrides, to
1036 perform bus lock operations, and to change operand and address sizes.
1037 (Most instructions that normally operate on 32-bit operands will use
1038 16-bit operands if the instruction has an ``operand size'' prefix.)
1039 Instruction prefixes are best written on the same line as the instruction
1040 they act upon. For example, the @samp{scas} (scan string) instruction is
1041 repeated with:
1042
1043 @smallexample
1044 repne scas %es:(%edi),%al
1045 @end smallexample
1046
1047 You may also place prefixes on the lines immediately preceding the
1048 instruction, but this circumvents checks that @code{@value{AS}} does
1049 with prefixes, and will not work with all prefixes.
1050
1051 Here is a list of instruction prefixes:
1052
1053 @cindex section override prefixes, i386
1054 @itemize @bullet
1055 @item
1056 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1057 @samp{fs}, @samp{gs}. These are automatically added by specifying
1058 using the @var{section}:@var{memory-operand} form for memory references.
1059
1060 @cindex size prefixes, i386
1061 @item
1062 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1063 change 32-bit operands/addresses into 16-bit operands/addresses,
1064 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1065 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1066 @emph{must} appear on the same line of code as the instruction they
1067 modify. For example, in a 16-bit @code{.code16} section, you might
1068 write:
1069
1070 @smallexample
1071 addr32 jmpl *(%ebx)
1072 @end smallexample
1073
1074 @cindex bus lock prefixes, i386
1075 @cindex inhibiting interrupts, i386
1076 @item
1077 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1078 the instruction it precedes. (This is only valid with certain
1079 instructions; see a 80386 manual for details).
1080
1081 @cindex coprocessor wait, i386
1082 @item
1083 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1084 complete the current instruction. This should never be needed for the
1085 80386/80387 combination.
1086
1087 @cindex repeat prefixes, i386
1088 @item
1089 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1090 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1091 times if the current address size is 16-bits).
1092 @cindex REX prefixes, i386
1093 @item
1094 The @samp{rex} family of prefixes is used by x86-64 to encode
1095 extensions to i386 instruction set. The @samp{rex} prefix has four
1096 bits --- an operand size overwrite (@code{64}) used to change operand size
1097 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1098 register set.
1099
1100 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1101 instruction emits @samp{rex} prefix with all the bits set. By omitting
1102 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1103 prefixes as well. Normally, there is no need to write the prefixes
1104 explicitly, since gas will automatically generate them based on the
1105 instruction operands.
1106 @end itemize
1107
1108 @node i386-Memory
1109 @section Memory References
1110
1111 @cindex i386 memory references
1112 @cindex memory references, i386
1113 @cindex x86-64 memory references
1114 @cindex memory references, x86-64
1115 An Intel syntax indirect memory reference of the form
1116
1117 @smallexample
1118 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1119 @end smallexample
1120
1121 @noindent
1122 is translated into the AT&T syntax
1123
1124 @smallexample
1125 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1126 @end smallexample
1127
1128 @noindent
1129 where @var{base} and @var{index} are the optional 32-bit base and
1130 index registers, @var{disp} is the optional displacement, and
1131 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1132 to calculate the address of the operand. If no @var{scale} is
1133 specified, @var{scale} is taken to be 1. @var{section} specifies the
1134 optional section register for the memory operand, and may override the
1135 default section register (see a 80386 manual for section register
1136 defaults). Note that section overrides in AT&T syntax @emph{must}
1137 be preceded by a @samp{%}. If you specify a section override which
1138 coincides with the default section register, @code{@value{AS}} does @emph{not}
1139 output any section register override prefixes to assemble the given
1140 instruction. Thus, section overrides can be specified to emphasize which
1141 section register is used for a given memory operand.
1142
1143 Here are some examples of Intel and AT&T style memory references:
1144
1145 @table @asis
1146 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1147 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1148 missing, and the default section is used (@samp{%ss} for addressing with
1149 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1150
1151 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1152 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1153 @samp{foo}. All other fields are missing. The section register here
1154 defaults to @samp{%ds}.
1155
1156 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1157 This uses the value pointed to by @samp{foo} as a memory operand.
1158 Note that @var{base} and @var{index} are both missing, but there is only
1159 @emph{one} @samp{,}. This is a syntactic exception.
1160
1161 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1162 This selects the contents of the variable @samp{foo} with section
1163 register @var{section} being @samp{%gs}.
1164 @end table
1165
1166 Absolute (as opposed to PC relative) call and jump operands must be
1167 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1168 always chooses PC relative addressing for jump/call labels.
1169
1170 Any instruction that has a memory operand, but no register operand,
1171 @emph{must} specify its size (byte, word, long, or quadruple) with an
1172 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1173 respectively).
1174
1175 The x86-64 architecture adds an RIP (instruction pointer relative)
1176 addressing. This addressing mode is specified by using @samp{rip} as a
1177 base register. Only constant offsets are valid. For example:
1178
1179 @table @asis
1180 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1181 Points to the address 1234 bytes past the end of the current
1182 instruction.
1183
1184 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1185 Points to the @code{symbol} in RIP relative way, this is shorter than
1186 the default absolute addressing.
1187 @end table
1188
1189 Other addressing modes remain unchanged in x86-64 architecture, except
1190 registers used are 64-bit instead of 32-bit.
1191
1192 @node i386-Jumps
1193 @section Handling of Jump Instructions
1194
1195 @cindex jump optimization, i386
1196 @cindex i386 jump optimization
1197 @cindex jump optimization, x86-64
1198 @cindex x86-64 jump optimization
1199 Jump instructions are always optimized to use the smallest possible
1200 displacements. This is accomplished by using byte (8-bit) displacement
1201 jumps whenever the target is sufficiently close. If a byte displacement
1202 is insufficient a long displacement is used. We do not support
1203 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1204 instruction with the @samp{data16} instruction prefix), since the 80386
1205 insists upon masking @samp{%eip} to 16 bits after the word displacement
1206 is added. (See also @pxref{i386-Arch})
1207
1208 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1209 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1210 displacements, so that if you use these instructions (@code{@value{GCC}} does
1211 not use them) you may get an error message (and incorrect code). The AT&T
1212 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1213 to
1214
1215 @smallexample
1216 jcxz cx_zero
1217 jmp cx_nonzero
1218 cx_zero: jmp foo
1219 cx_nonzero:
1220 @end smallexample
1221
1222 @node i386-Float
1223 @section Floating Point
1224
1225 @cindex i386 floating point
1226 @cindex floating point, i386
1227 @cindex x86-64 floating point
1228 @cindex floating point, x86-64
1229 All 80387 floating point types except packed BCD are supported.
1230 (BCD support may be added without much difficulty). These data
1231 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1232 double (64-bit), and extended (80-bit) precision floating point.
1233 Each supported type has an instruction mnemonic suffix and a constructor
1234 associated with it. Instruction mnemonic suffixes specify the operand's
1235 data type. Constructors build these data types into memory.
1236
1237 @cindex @code{float} directive, i386
1238 @cindex @code{single} directive, i386
1239 @cindex @code{double} directive, i386
1240 @cindex @code{tfloat} directive, i386
1241 @cindex @code{float} directive, x86-64
1242 @cindex @code{single} directive, x86-64
1243 @cindex @code{double} directive, x86-64
1244 @cindex @code{tfloat} directive, x86-64
1245 @itemize @bullet
1246 @item
1247 Floating point constructors are @samp{.float} or @samp{.single},
1248 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1249 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1250 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1251 only supports this format via the @samp{fldt} (load 80-bit real to stack
1252 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1253
1254 @cindex @code{word} directive, i386
1255 @cindex @code{long} directive, i386
1256 @cindex @code{int} directive, i386
1257 @cindex @code{quad} directive, i386
1258 @cindex @code{word} directive, x86-64
1259 @cindex @code{long} directive, x86-64
1260 @cindex @code{int} directive, x86-64
1261 @cindex @code{quad} directive, x86-64
1262 @item
1263 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1264 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1265 corresponding instruction mnemonic suffixes are @samp{s} (single),
1266 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1267 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1268 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1269 stack) instructions.
1270 @end itemize
1271
1272 Register to register operations should not use instruction mnemonic suffixes.
1273 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1274 wrote @samp{fst %st, %st(1)}, since all register to register operations
1275 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1276 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1277 then stores the result in the 4 byte location @samp{mem})
1278
1279 @node i386-SIMD
1280 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1281
1282 @cindex MMX, i386
1283 @cindex 3DNow!, i386
1284 @cindex SIMD, i386
1285 @cindex MMX, x86-64
1286 @cindex 3DNow!, x86-64
1287 @cindex SIMD, x86-64
1288
1289 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1290 instructions for integer data), available on Intel's Pentium MMX
1291 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1292 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1293 instruction set (SIMD instructions for 32-bit floating point data)
1294 available on AMD's K6-2 processor and possibly others in the future.
1295
1296 Currently, @code{@value{AS}} does not support Intel's floating point
1297 SIMD, Katmai (KNI).
1298
1299 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1300 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1301 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1302 floating point values. The MMX registers cannot be used at the same time
1303 as the floating point stack.
1304
1305 See Intel and AMD documentation, keeping in mind that the operand order in
1306 instructions is reversed from the Intel syntax.
1307
1308 @node i386-LWP
1309 @section AMD's Lightweight Profiling Instructions
1310
1311 @cindex LWP, i386
1312 @cindex LWP, x86-64
1313
1314 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1315 instruction set, available on AMD's Family 15h (Orochi) processors.
1316
1317 LWP enables applications to collect and manage performance data, and
1318 react to performance events. The collection of performance data
1319 requires no context switches. LWP runs in the context of a thread and
1320 so several counters can be used independently across multiple threads.
1321 LWP can be used in both 64-bit and legacy 32-bit modes.
1322
1323 For detailed information on the LWP instruction set, see the
1324 @cite{AMD Lightweight Profiling Specification} available at
1325 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1326
1327 @node i386-BMI
1328 @section Bit Manipulation Instructions
1329
1330 @cindex BMI, i386
1331 @cindex BMI, x86-64
1332
1333 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1334
1335 BMI instructions provide several instructions implementing individual
1336 bit manipulation operations such as isolation, masking, setting, or
1337 resetting.
1338
1339 @c Need to add a specification citation here when available.
1340
1341 @node i386-TBM
1342 @section AMD's Trailing Bit Manipulation Instructions
1343
1344 @cindex TBM, i386
1345 @cindex TBM, x86-64
1346
1347 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1348 instruction set, available on AMD's BDVER2 processors (Trinity and
1349 Viperfish).
1350
1351 TBM instructions provide instructions implementing individual bit
1352 manipulation operations such as isolating, masking, setting, resetting,
1353 complementing, and operations on trailing zeros and ones.
1354
1355 @c Need to add a specification citation here when available.
1356
1357 @node i386-16bit
1358 @section Writing 16-bit Code
1359
1360 @cindex i386 16-bit code
1361 @cindex 16-bit code, i386
1362 @cindex real-mode code, i386
1363 @cindex @code{code16gcc} directive, i386
1364 @cindex @code{code16} directive, i386
1365 @cindex @code{code32} directive, i386
1366 @cindex @code{code64} directive, i386
1367 @cindex @code{code64} directive, x86-64
1368 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1369 or 64-bit x86-64 code depending on the default configuration,
1370 it also supports writing code to run in real mode or in 16-bit protected
1371 mode code segments. To do this, put a @samp{.code16} or
1372 @samp{.code16gcc} directive before the assembly language instructions to
1373 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1374 32-bit code with the @samp{.code32} directive or 64-bit code with the
1375 @samp{.code64} directive.
1376
1377 @samp{.code16gcc} provides experimental support for generating 16-bit
1378 code from gcc, and differs from @samp{.code16} in that @samp{call},
1379 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1380 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1381 default to 32-bit size. This is so that the stack pointer is
1382 manipulated in the same way over function calls, allowing access to
1383 function parameters at the same stack offsets as in 32-bit mode.
1384 @samp{.code16gcc} also automatically adds address size prefixes where
1385 necessary to use the 32-bit addressing modes that gcc generates.
1386
1387 The code which @code{@value{AS}} generates in 16-bit mode will not
1388 necessarily run on a 16-bit pre-80386 processor. To write code that
1389 runs on such a processor, you must refrain from using @emph{any} 32-bit
1390 constructs which require @code{@value{AS}} to output address or operand
1391 size prefixes.
1392
1393 Note that writing 16-bit code instructions by explicitly specifying a
1394 prefix or an instruction mnemonic suffix within a 32-bit code section
1395 generates different machine instructions than those generated for a
1396 16-bit code segment. In a 32-bit code section, the following code
1397 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1398 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1399
1400 @smallexample
1401 pushw $4
1402 @end smallexample
1403
1404 The same code in a 16-bit code section would generate the machine
1405 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1406 is correct since the processor default operand size is assumed to be 16
1407 bits in a 16-bit code section.
1408
1409 @node i386-Arch
1410 @section Specifying CPU Architecture
1411
1412 @cindex arch directive, i386
1413 @cindex i386 arch directive
1414 @cindex arch directive, x86-64
1415 @cindex x86-64 arch directive
1416
1417 @code{@value{AS}} may be told to assemble for a particular CPU
1418 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1419 directive enables a warning when gas detects an instruction that is not
1420 supported on the CPU specified. The choices for @var{cpu_type} are:
1421
1422 @multitable @columnfractions .20 .20 .20 .20
1423 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1424 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1425 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1426 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1427 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1428 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1429 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1430 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1431 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1432 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1433 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @samp{.sse4a}
1434 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1435 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1436 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1437 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1438 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1439 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1440 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1441 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1442 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1443 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1444 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1445 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1446 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1447 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1448 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1449 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1450 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1451 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1452 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1453 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1454 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1455 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1456 @item @samp{.mcommit}
1457 @end multitable
1458
1459 Apart from the warning, there are only two other effects on
1460 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1461 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1462 will automatically use a two byte opcode sequence. The larger three
1463 byte opcode sequence is used on the 486 (and when no architecture is
1464 specified) because it executes faster on the 486. Note that you can
1465 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1466 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1467 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1468 conditional jumps will be promoted when necessary to a two instruction
1469 sequence consisting of a conditional jump of the opposite sense around
1470 an unconditional jump to the target.
1471
1472 Following the CPU architecture (but not a sub-architecture, which are those
1473 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1474 control automatic promotion of conditional jumps. @samp{jumps} is the
1475 default, and enables jump promotion; All external jumps will be of the long
1476 variety, and file-local jumps will be promoted as necessary.
1477 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1478 byte offset jumps, and warns about file-local conditional jumps that
1479 @code{@value{AS}} promotes.
1480 Unconditional jumps are treated as for @samp{jumps}.
1481
1482 For example
1483
1484 @smallexample
1485 .arch i8086,nojumps
1486 @end smallexample
1487
1488 @node i386-ISA
1489 @section AMD64 ISA vs. Intel64 ISA
1490
1491 There are some discrepancies between AMD64 and Intel64 ISAs.
1492
1493 @itemize @bullet
1494 @item For @samp{movsxd} with 16-bit destination register, AMD64
1495 supports 32-bit source operand and Intel64 supports 16-bit source
1496 operand.
1497
1498 @item For far branches (with explicit memory operand), both ISAs support
1499 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1500 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1501 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1502 syntax.
1503
1504 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1505 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1506 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1507 operands).
1508
1509 @end itemize
1510
1511 @node i386-Bugs
1512 @section AT&T Syntax bugs
1513
1514 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1515 assemblers, generate floating point instructions with reversed source
1516 and destination registers in certain cases. Unfortunately, gcc and
1517 possibly many other programs use this reversed syntax, so we're stuck
1518 with it.
1519
1520 For example
1521
1522 @smallexample
1523 fsub %st,%st(3)
1524 @end smallexample
1525 @noindent
1526 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1527 than the expected @samp{%st(3) - %st}. This happens with all the
1528 non-commutative arithmetic floating point operations with two register
1529 operands where the source register is @samp{%st} and the destination
1530 register is @samp{%st(i)}.
1531
1532 @node i386-Notes
1533 @section Notes
1534
1535 @cindex i386 @code{mul}, @code{imul} instructions
1536 @cindex @code{mul} instruction, i386
1537 @cindex @code{imul} instruction, i386
1538 @cindex @code{mul} instruction, x86-64
1539 @cindex @code{imul} instruction, x86-64
1540 There is some trickery concerning the @samp{mul} and @samp{imul}
1541 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1542 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1543 for @samp{imul}) can be output only in the one operand form. Thus,
1544 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1545 the expanding multiply would clobber the @samp{%edx} register, and this
1546 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1547 64-bit product in @samp{%edx:%eax}.
1548
1549 We have added a two operand form of @samp{imul} when the first operand
1550 is an immediate mode expression and the second operand is a register.
1551 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1552 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1553 $69, %eax, %eax}.
1554