x86: Extend assembler to generate GNU property notes
[binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2018 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics. For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}. The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{avx512f},
187 @code{avx512cd},
188 @code{avx512er},
189 @code{avx512pf},
190 @code{avx512vl},
191 @code{avx512bw},
192 @code{avx512dq},
193 @code{avx512ifma},
194 @code{avx512vbmi},
195 @code{avx512_4fmaps},
196 @code{avx512_4vnniw},
197 @code{avx512_vpopcntdq},
198 @code{avx512_vbmi2},
199 @code{avx512_vnni},
200 @code{avx512_bitalg},
201 @code{noavx512f},
202 @code{noavx512cd},
203 @code{noavx512er},
204 @code{noavx512pf},
205 @code{noavx512vl},
206 @code{noavx512bw},
207 @code{noavx512dq},
208 @code{noavx512ifma},
209 @code{noavx512vbmi},
210 @code{noavx512_4fmaps},
211 @code{noavx512_4vnniw},
212 @code{noavx512_vpopcntdq},
213 @code{noavx512_vbmi2},
214 @code{noavx512_vnni},
215 @code{noavx512_bitalg},
216 @code{vmx},
217 @code{vmfunc},
218 @code{smx},
219 @code{xsave},
220 @code{xsaveopt},
221 @code{xsavec},
222 @code{xsaves},
223 @code{aes},
224 @code{pclmul},
225 @code{fsgsbase},
226 @code{rdrnd},
227 @code{f16c},
228 @code{bmi2},
229 @code{fma},
230 @code{movbe},
231 @code{ept},
232 @code{lzcnt},
233 @code{hle},
234 @code{rtm},
235 @code{invpcid},
236 @code{clflush},
237 @code{mwaitx},
238 @code{clzero},
239 @code{wbnoinvd},
240 @code{pconfig},
241 @code{waitpkg},
242 @code{cldemote},
243 @code{lwp},
244 @code{fma4},
245 @code{xop},
246 @code{cx16},
247 @code{syscall},
248 @code{rdtscp},
249 @code{3dnow},
250 @code{3dnowa},
251 @code{sse4a},
252 @code{sse5},
253 @code{svme},
254 @code{abm} and
255 @code{padlock}.
256 Note that rather than extending a basic instruction set, the extension
257 mnemonics starting with @code{no} revoke the respective functionality.
258
259 When the @code{.arch} directive is used with @option{-march}, the
260 @code{.arch} directive will take precedent.
261
262 @cindex @samp{-mtune=} option, i386
263 @cindex @samp{-mtune=} option, x86-64
264 @item -mtune=@var{CPU}
265 This option specifies a processor to optimize for. When used in
266 conjunction with the @option{-march} option, only instructions
267 of the processor specified by the @option{-march} option will be
268 generated.
269
270 Valid @var{CPU} values are identical to the processor list of
271 @option{-march=@var{CPU}}.
272
273 @cindex @samp{-msse2avx} option, i386
274 @cindex @samp{-msse2avx} option, x86-64
275 @item -msse2avx
276 This option specifies that the assembler should encode SSE instructions
277 with VEX prefix.
278
279 @cindex @samp{-msse-check=} option, i386
280 @cindex @samp{-msse-check=} option, x86-64
281 @item -msse-check=@var{none}
282 @itemx -msse-check=@var{warning}
283 @itemx -msse-check=@var{error}
284 These options control if the assembler should check SSE instructions.
285 @option{-msse-check=@var{none}} will make the assembler not to check SSE
286 instructions, which is the default. @option{-msse-check=@var{warning}}
287 will make the assembler issue a warning for any SSE instruction.
288 @option{-msse-check=@var{error}} will make the assembler issue an error
289 for any SSE instruction.
290
291 @cindex @samp{-mavxscalar=} option, i386
292 @cindex @samp{-mavxscalar=} option, x86-64
293 @item -mavxscalar=@var{128}
294 @itemx -mavxscalar=@var{256}
295 These options control how the assembler should encode scalar AVX
296 instructions. @option{-mavxscalar=@var{128}} will encode scalar
297 AVX instructions with 128bit vector length, which is the default.
298 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
299 with 256bit vector length.
300
301 @cindex @samp{-mevexlig=} option, i386
302 @cindex @samp{-mevexlig=} option, x86-64
303 @item -mevexlig=@var{128}
304 @itemx -mevexlig=@var{256}
305 @itemx -mevexlig=@var{512}
306 These options control how the assembler should encode length-ignored
307 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
308 EVEX instructions with 128bit vector length, which is the default.
309 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
310 encode LIG EVEX instructions with 256bit and 512bit vector length,
311 respectively.
312
313 @cindex @samp{-mevexwig=} option, i386
314 @cindex @samp{-mevexwig=} option, x86-64
315 @item -mevexwig=@var{0}
316 @itemx -mevexwig=@var{1}
317 These options control how the assembler should encode w-ignored (WIG)
318 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
319 EVEX instructions with evex.w = 0, which is the default.
320 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
321 evex.w = 1.
322
323 @cindex @samp{-mmnemonic=} option, i386
324 @cindex @samp{-mmnemonic=} option, x86-64
325 @item -mmnemonic=@var{att}
326 @itemx -mmnemonic=@var{intel}
327 This option specifies instruction mnemonic for matching instructions.
328 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
329 take precedent.
330
331 @cindex @samp{-msyntax=} option, i386
332 @cindex @samp{-msyntax=} option, x86-64
333 @item -msyntax=@var{att}
334 @itemx -msyntax=@var{intel}
335 This option specifies instruction syntax when processing instructions.
336 The @code{.att_syntax} and @code{.intel_syntax} directives will
337 take precedent.
338
339 @cindex @samp{-mnaked-reg} option, i386
340 @cindex @samp{-mnaked-reg} option, x86-64
341 @item -mnaked-reg
342 This option specifies that registers don't require a @samp{%} prefix.
343 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
344
345 @cindex @samp{-madd-bnd-prefix} option, i386
346 @cindex @samp{-madd-bnd-prefix} option, x86-64
347 @item -madd-bnd-prefix
348 This option forces the assembler to add BND prefix to all branches, even
349 if such prefix was not explicitly specified in the source code.
350
351 @cindex @samp{-mshared} option, i386
352 @cindex @samp{-mshared} option, x86-64
353 @item -mno-shared
354 On ELF target, the assembler normally optimizes out non-PLT relocations
355 against defined non-weak global branch targets with default visibility.
356 The @samp{-mshared} option tells the assembler to generate code which
357 may go into a shared library where all non-weak global branch targets
358 with default visibility can be preempted. The resulting code is
359 slightly bigger. This option only affects the handling of branch
360 instructions.
361
362 @cindex @samp{-mbig-obj} option, x86-64
363 @item -mbig-obj
364 On x86-64 PE/COFF target this option forces the use of big object file
365 format, which allows more than 32768 sections.
366
367 @cindex @samp{-momit-lock-prefix=} option, i386
368 @cindex @samp{-momit-lock-prefix=} option, x86-64
369 @item -momit-lock-prefix=@var{no}
370 @itemx -momit-lock-prefix=@var{yes}
371 These options control how the assembler should encode lock prefix.
372 This option is intended as a workaround for processors, that fail on
373 lock prefix. This option can only be safely used with single-core,
374 single-thread computers
375 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
376 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
377 which is the default.
378
379 @cindex @samp{-mfence-as-lock-add=} option, i386
380 @cindex @samp{-mfence-as-lock-add=} option, x86-64
381 @item -mfence-as-lock-add=@var{no}
382 @itemx -mfence-as-lock-add=@var{yes}
383 These options control how the assembler should encode lfence, mfence and
384 sfence.
385 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
386 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
387 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
388 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
389 sfence as usual, which is the default.
390
391 @cindex @samp{-mrelax-relocations=} option, i386
392 @cindex @samp{-mrelax-relocations=} option, x86-64
393 @item -mrelax-relocations=@var{no}
394 @itemx -mrelax-relocations=@var{yes}
395 These options control whether the assembler should generate relax
396 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
397 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
398 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
399 @option{-mrelax-relocations=@var{no}} will not generate relax
400 relocations. The default can be controlled by a configure option
401 @option{--enable-x86-relax-relocations}.
402
403 @cindex @samp{-mx86-used-note=} option, i386
404 @cindex @samp{-mx86-used-note=} option, x86-64
405 @item -mx86-used-note=@var{no}
406 @itemx -mx86-used-note=@var{yes}
407 These options control whether the assembler should generate
408 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
409 GNU property notes. The default can be controlled by the
410 @option{--enable-x86-used-note} configure option.
411
412 @cindex @samp{-mevexrcig=} option, i386
413 @cindex @samp{-mevexrcig=} option, x86-64
414 @item -mevexrcig=@var{rne}
415 @itemx -mevexrcig=@var{rd}
416 @itemx -mevexrcig=@var{ru}
417 @itemx -mevexrcig=@var{rz}
418 These options control how the assembler should encode SAE-only
419 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
420 of EVEX instruction with 00, which is the default.
421 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
422 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
423 with 01, 10 and 11 RC bits, respectively.
424
425 @cindex @samp{-mamd64} option, x86-64
426 @cindex @samp{-mintel64} option, x86-64
427 @item -mamd64
428 @itemx -mintel64
429 This option specifies that the assembler should accept only AMD64 or
430 Intel64 ISA in 64-bit mode. The default is to accept both.
431
432 @cindex @samp{-O0} option, i386
433 @cindex @samp{-O0} option, x86-64
434 @cindex @samp{-O} option, i386
435 @cindex @samp{-O} option, x86-64
436 @cindex @samp{-O1} option, i386
437 @cindex @samp{-O1} option, x86-64
438 @cindex @samp{-O2} option, i386
439 @cindex @samp{-O2} option, x86-64
440 @cindex @samp{-Os} option, i386
441 @cindex @samp{-Os} option, x86-64
442 @item -O0 | -O | -O1 | -O2 | -Os
443 Optimize instruction encoding with smaller instruction size. @samp{-O}
444 and @samp{-O1} encode 64-bit register load instructions with 64-bit
445 immediate as 32-bit register load instructions with 31-bit or 32-bits
446 immediates and encode 64-bit register clearing instructions with 32-bit
447 register clearing instructions. @samp{-O2} includes @samp{-O1}
448 optimization plus encodes 256-bit and 512-bit vector register clearing
449 instructions with 128-bit vector register clearing instructions.
450 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
451 and 64-bit register tests with immediate as 8-bit register test with
452 immediate. @samp{-O0} turns off this optimization.
453
454 @end table
455 @c man end
456
457 @node i386-Directives
458 @section x86 specific Directives
459
460 @cindex machine directives, x86
461 @cindex x86 machine directives
462 @table @code
463
464 @cindex @code{lcomm} directive, COFF
465 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
466 Reserve @var{length} (an absolute expression) bytes for a local common
467 denoted by @var{symbol}. The section and value of @var{symbol} are
468 those of the new local common. The addresses are allocated in the bss
469 section, so that at run-time the bytes start off zeroed. Since
470 @var{symbol} is not declared global, it is normally not visible to
471 @code{@value{LD}}. The optional third parameter, @var{alignment},
472 specifies the desired alignment of the symbol in the bss section.
473
474 This directive is only available for COFF based x86 targets.
475
476 @cindex @code{largecomm} directive, ELF
477 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
478 This directive behaves in the same way as the @code{comm} directive
479 except that the data is placed into the @var{.lbss} section instead of
480 the @var{.bss} section @ref{Comm}.
481
482 The directive is intended to be used for data which requires a large
483 amount of space, and it is only available for ELF based x86_64
484 targets.
485
486 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
487
488 @end table
489
490 @node i386-Syntax
491 @section i386 Syntactical Considerations
492 @menu
493 * i386-Variations:: AT&T Syntax versus Intel Syntax
494 * i386-Chars:: Special Characters
495 @end menu
496
497 @node i386-Variations
498 @subsection AT&T Syntax versus Intel Syntax
499
500 @cindex i386 intel_syntax pseudo op
501 @cindex intel_syntax pseudo op, i386
502 @cindex i386 att_syntax pseudo op
503 @cindex att_syntax pseudo op, i386
504 @cindex i386 syntax compatibility
505 @cindex syntax compatibility, i386
506 @cindex x86-64 intel_syntax pseudo op
507 @cindex intel_syntax pseudo op, x86-64
508 @cindex x86-64 att_syntax pseudo op
509 @cindex att_syntax pseudo op, x86-64
510 @cindex x86-64 syntax compatibility
511 @cindex syntax compatibility, x86-64
512
513 @code{@value{AS}} now supports assembly using Intel assembler syntax.
514 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
515 back to the usual AT&T mode for compatibility with the output of
516 @code{@value{GCC}}. Either of these directives may have an optional
517 argument, @code{prefix}, or @code{noprefix} specifying whether registers
518 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
519 different from Intel syntax. We mention these differences because
520 almost all 80386 documents use Intel syntax. Notable differences
521 between the two syntaxes are:
522
523 @cindex immediate operands, i386
524 @cindex i386 immediate operands
525 @cindex register operands, i386
526 @cindex i386 register operands
527 @cindex jump/call operands, i386
528 @cindex i386 jump/call operands
529 @cindex operand delimiters, i386
530
531 @cindex immediate operands, x86-64
532 @cindex x86-64 immediate operands
533 @cindex register operands, x86-64
534 @cindex x86-64 register operands
535 @cindex jump/call operands, x86-64
536 @cindex x86-64 jump/call operands
537 @cindex operand delimiters, x86-64
538 @itemize @bullet
539 @item
540 AT&T immediate operands are preceded by @samp{$}; Intel immediate
541 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
542 AT&T register operands are preceded by @samp{%}; Intel register operands
543 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
544 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
545
546 @cindex i386 source, destination operands
547 @cindex source, destination operands; i386
548 @cindex x86-64 source, destination operands
549 @cindex source, destination operands; x86-64
550 @item
551 AT&T and Intel syntax use the opposite order for source and destination
552 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
553 @samp{source, dest} convention is maintained for compatibility with
554 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
555 instructions with 2 immediate operands, such as the @samp{enter}
556 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
557
558 @cindex mnemonic suffixes, i386
559 @cindex sizes operands, i386
560 @cindex i386 size suffixes
561 @cindex mnemonic suffixes, x86-64
562 @cindex sizes operands, x86-64
563 @cindex x86-64 size suffixes
564 @item
565 In AT&T syntax the size of memory operands is determined from the last
566 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
567 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
568 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
569 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
570 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
571 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
572 syntax.
573
574 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
575 instruction with the 64-bit displacement or immediate operand.
576
577 @cindex return instructions, i386
578 @cindex i386 jump, call, return
579 @cindex return instructions, x86-64
580 @cindex x86-64 jump, call, return
581 @item
582 Immediate form long jumps and calls are
583 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
584 Intel syntax is
585 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
586 instruction
587 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
588 @samp{ret far @var{stack-adjust}}.
589
590 @cindex sections, i386
591 @cindex i386 sections
592 @cindex sections, x86-64
593 @cindex x86-64 sections
594 @item
595 The AT&T assembler does not provide support for multiple section
596 programs. Unix style systems expect all programs to be single sections.
597 @end itemize
598
599 @node i386-Chars
600 @subsection Special Characters
601
602 @cindex line comment character, i386
603 @cindex i386 line comment character
604 The presence of a @samp{#} appearing anywhere on a line indicates the
605 start of a comment that extends to the end of that line.
606
607 If a @samp{#} appears as the first character of a line then the whole
608 line is treated as a comment, but in this case the line can also be a
609 logical line number directive (@pxref{Comments}) or a preprocessor
610 control command (@pxref{Preprocessing}).
611
612 If the @option{--divide} command-line option has not been specified
613 then the @samp{/} character appearing anywhere on a line also
614 introduces a line comment.
615
616 @cindex line separator, i386
617 @cindex statement separator, i386
618 @cindex i386 line separator
619 The @samp{;} character can be used to separate statements on the same
620 line.
621
622 @node i386-Mnemonics
623 @section i386-Mnemonics
624 @subsection Instruction Naming
625
626 @cindex i386 instruction naming
627 @cindex instruction naming, i386
628 @cindex x86-64 instruction naming
629 @cindex instruction naming, x86-64
630
631 Instruction mnemonics are suffixed with one character modifiers which
632 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
633 and @samp{q} specify byte, word, long and quadruple word operands. If
634 no suffix is specified by an instruction then @code{@value{AS}} tries to
635 fill in the missing suffix based on the destination register operand
636 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
637 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
638 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
639 assembler which assumes that a missing mnemonic suffix implies long
640 operand size. (This incompatibility does not affect compiler output
641 since compilers always explicitly specify the mnemonic suffix.)
642
643 Almost all instructions have the same names in AT&T and Intel format.
644 There are a few exceptions. The sign extend and zero extend
645 instructions need two sizes to specify them. They need a size to
646 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
647 is accomplished by using two instruction mnemonic suffixes in AT&T
648 syntax. Base names for sign extend and zero extend are
649 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
650 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
651 are tacked on to this base name, the @emph{from} suffix before the
652 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
653 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
654 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
655 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
656 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
657 quadruple word).
658
659 @cindex encoding options, i386
660 @cindex encoding options, x86-64
661
662 Different encoding options can be specified via pseudo prefixes:
663
664 @itemize @bullet
665 @item
666 @samp{@{disp8@}} -- prefer 8-bit displacement.
667
668 @item
669 @samp{@{disp32@}} -- prefer 32-bit displacement.
670
671 @item
672 @samp{@{load@}} -- prefer load-form instruction.
673
674 @item
675 @samp{@{store@}} -- prefer store-form instruction.
676
677 @item
678 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
679
680 @item
681 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
682
683 @item
684 @samp{@{evex@}} -- encode with EVEX prefix.
685
686 @item
687 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
688 instructions (x86-64 only). Note that this differs from the @samp{rex}
689 prefix which generates REX prefix unconditionally.
690
691 @item
692 @samp{@{nooptimize@}} -- disable instruction size optimization.
693 @end itemize
694
695 @cindex conversion instructions, i386
696 @cindex i386 conversion instructions
697 @cindex conversion instructions, x86-64
698 @cindex x86-64 conversion instructions
699 The Intel-syntax conversion instructions
700
701 @itemize @bullet
702 @item
703 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
704
705 @item
706 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
707
708 @item
709 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
710
711 @item
712 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
713
714 @item
715 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
716 (x86-64 only),
717
718 @item
719 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
720 @samp{%rdx:%rax} (x86-64 only),
721 @end itemize
722
723 @noindent
724 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
725 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
726 instructions.
727
728 @cindex jump instructions, i386
729 @cindex call instructions, i386
730 @cindex jump instructions, x86-64
731 @cindex call instructions, x86-64
732 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
733 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
734 convention.
735
736 @subsection AT&T Mnemonic versus Intel Mnemonic
737
738 @cindex i386 mnemonic compatibility
739 @cindex mnemonic compatibility, i386
740
741 @code{@value{AS}} supports assembly using Intel mnemonic.
742 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
743 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
744 syntax for compatibility with the output of @code{@value{GCC}}.
745 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
746 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
747 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
748 assembler with different mnemonics from those in Intel IA32 specification.
749 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
750
751 @node i386-Regs
752 @section Register Naming
753
754 @cindex i386 registers
755 @cindex registers, i386
756 @cindex x86-64 registers
757 @cindex registers, x86-64
758 Register operands are always prefixed with @samp{%}. The 80386 registers
759 consist of
760
761 @itemize @bullet
762 @item
763 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
764 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
765 frame pointer), and @samp{%esp} (the stack pointer).
766
767 @item
768 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
769 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
770
771 @item
772 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
773 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
774 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
775 @samp{%cx}, and @samp{%dx})
776
777 @item
778 the 6 section registers @samp{%cs} (code section), @samp{%ds}
779 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
780 and @samp{%gs}.
781
782 @item
783 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
784 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
785
786 @item
787 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
788 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
789
790 @item
791 the 2 test registers @samp{%tr6} and @samp{%tr7}.
792
793 @item
794 the 8 floating point register stack @samp{%st} or equivalently
795 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
796 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
797 These registers are overloaded by 8 MMX registers @samp{%mm0},
798 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
799 @samp{%mm6} and @samp{%mm7}.
800
801 @item
802 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
803 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
804 @end itemize
805
806 The AMD x86-64 architecture extends the register set by:
807
808 @itemize @bullet
809 @item
810 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
811 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
812 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
813 pointer)
814
815 @item
816 the 8 extended registers @samp{%r8}--@samp{%r15}.
817
818 @item
819 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
820
821 @item
822 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
823
824 @item
825 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
826
827 @item
828 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
829
830 @item
831 the 8 debug registers: @samp{%db8}--@samp{%db15}.
832
833 @item
834 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
835 @end itemize
836
837 With the AVX extensions more registers were made available:
838
839 @itemize @bullet
840
841 @item
842 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
843 available in 32-bit mode). The bottom 128 bits are overlaid with the
844 @samp{xmm0}--@samp{xmm15} registers.
845
846 @end itemize
847
848 The AVX2 extensions made in 64-bit mode more registers available:
849
850 @itemize @bullet
851
852 @item
853 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
854 registers @samp{%ymm16}--@samp{%ymm31}.
855
856 @end itemize
857
858 The AVX512 extensions added the following registers:
859
860 @itemize @bullet
861
862 @item
863 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
864 available in 32-bit mode). The bottom 128 bits are overlaid with the
865 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
866 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
867
868 @item
869 the 8 mask registers @samp{%k0}--@samp{%k7}.
870
871 @end itemize
872
873 @node i386-Prefixes
874 @section Instruction Prefixes
875
876 @cindex i386 instruction prefixes
877 @cindex instruction prefixes, i386
878 @cindex prefixes, i386
879 Instruction prefixes are used to modify the following instruction. They
880 are used to repeat string instructions, to provide section overrides, to
881 perform bus lock operations, and to change operand and address sizes.
882 (Most instructions that normally operate on 32-bit operands will use
883 16-bit operands if the instruction has an ``operand size'' prefix.)
884 Instruction prefixes are best written on the same line as the instruction
885 they act upon. For example, the @samp{scas} (scan string) instruction is
886 repeated with:
887
888 @smallexample
889 repne scas %es:(%edi),%al
890 @end smallexample
891
892 You may also place prefixes on the lines immediately preceding the
893 instruction, but this circumvents checks that @code{@value{AS}} does
894 with prefixes, and will not work with all prefixes.
895
896 Here is a list of instruction prefixes:
897
898 @cindex section override prefixes, i386
899 @itemize @bullet
900 @item
901 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
902 @samp{fs}, @samp{gs}. These are automatically added by specifying
903 using the @var{section}:@var{memory-operand} form for memory references.
904
905 @cindex size prefixes, i386
906 @item
907 Operand/Address size prefixes @samp{data16} and @samp{addr16}
908 change 32-bit operands/addresses into 16-bit operands/addresses,
909 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
910 @code{.code16} section) into 32-bit operands/addresses. These prefixes
911 @emph{must} appear on the same line of code as the instruction they
912 modify. For example, in a 16-bit @code{.code16} section, you might
913 write:
914
915 @smallexample
916 addr32 jmpl *(%ebx)
917 @end smallexample
918
919 @cindex bus lock prefixes, i386
920 @cindex inhibiting interrupts, i386
921 @item
922 The bus lock prefix @samp{lock} inhibits interrupts during execution of
923 the instruction it precedes. (This is only valid with certain
924 instructions; see a 80386 manual for details).
925
926 @cindex coprocessor wait, i386
927 @item
928 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
929 complete the current instruction. This should never be needed for the
930 80386/80387 combination.
931
932 @cindex repeat prefixes, i386
933 @item
934 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
935 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
936 times if the current address size is 16-bits).
937 @cindex REX prefixes, i386
938 @item
939 The @samp{rex} family of prefixes is used by x86-64 to encode
940 extensions to i386 instruction set. The @samp{rex} prefix has four
941 bits --- an operand size overwrite (@code{64}) used to change operand size
942 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
943 register set.
944
945 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
946 instruction emits @samp{rex} prefix with all the bits set. By omitting
947 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
948 prefixes as well. Normally, there is no need to write the prefixes
949 explicitly, since gas will automatically generate them based on the
950 instruction operands.
951 @end itemize
952
953 @node i386-Memory
954 @section Memory References
955
956 @cindex i386 memory references
957 @cindex memory references, i386
958 @cindex x86-64 memory references
959 @cindex memory references, x86-64
960 An Intel syntax indirect memory reference of the form
961
962 @smallexample
963 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
964 @end smallexample
965
966 @noindent
967 is translated into the AT&T syntax
968
969 @smallexample
970 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
971 @end smallexample
972
973 @noindent
974 where @var{base} and @var{index} are the optional 32-bit base and
975 index registers, @var{disp} is the optional displacement, and
976 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
977 to calculate the address of the operand. If no @var{scale} is
978 specified, @var{scale} is taken to be 1. @var{section} specifies the
979 optional section register for the memory operand, and may override the
980 default section register (see a 80386 manual for section register
981 defaults). Note that section overrides in AT&T syntax @emph{must}
982 be preceded by a @samp{%}. If you specify a section override which
983 coincides with the default section register, @code{@value{AS}} does @emph{not}
984 output any section register override prefixes to assemble the given
985 instruction. Thus, section overrides can be specified to emphasize which
986 section register is used for a given memory operand.
987
988 Here are some examples of Intel and AT&T style memory references:
989
990 @table @asis
991 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
992 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
993 missing, and the default section is used (@samp{%ss} for addressing with
994 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
995
996 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
997 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
998 @samp{foo}. All other fields are missing. The section register here
999 defaults to @samp{%ds}.
1000
1001 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1002 This uses the value pointed to by @samp{foo} as a memory operand.
1003 Note that @var{base} and @var{index} are both missing, but there is only
1004 @emph{one} @samp{,}. This is a syntactic exception.
1005
1006 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1007 This selects the contents of the variable @samp{foo} with section
1008 register @var{section} being @samp{%gs}.
1009 @end table
1010
1011 Absolute (as opposed to PC relative) call and jump operands must be
1012 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1013 always chooses PC relative addressing for jump/call labels.
1014
1015 Any instruction that has a memory operand, but no register operand,
1016 @emph{must} specify its size (byte, word, long, or quadruple) with an
1017 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1018 respectively).
1019
1020 The x86-64 architecture adds an RIP (instruction pointer relative)
1021 addressing. This addressing mode is specified by using @samp{rip} as a
1022 base register. Only constant offsets are valid. For example:
1023
1024 @table @asis
1025 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1026 Points to the address 1234 bytes past the end of the current
1027 instruction.
1028
1029 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1030 Points to the @code{symbol} in RIP relative way, this is shorter than
1031 the default absolute addressing.
1032 @end table
1033
1034 Other addressing modes remain unchanged in x86-64 architecture, except
1035 registers used are 64-bit instead of 32-bit.
1036
1037 @node i386-Jumps
1038 @section Handling of Jump Instructions
1039
1040 @cindex jump optimization, i386
1041 @cindex i386 jump optimization
1042 @cindex jump optimization, x86-64
1043 @cindex x86-64 jump optimization
1044 Jump instructions are always optimized to use the smallest possible
1045 displacements. This is accomplished by using byte (8-bit) displacement
1046 jumps whenever the target is sufficiently close. If a byte displacement
1047 is insufficient a long displacement is used. We do not support
1048 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1049 instruction with the @samp{data16} instruction prefix), since the 80386
1050 insists upon masking @samp{%eip} to 16 bits after the word displacement
1051 is added. (See also @pxref{i386-Arch})
1052
1053 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1054 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1055 displacements, so that if you use these instructions (@code{@value{GCC}} does
1056 not use them) you may get an error message (and incorrect code). The AT&T
1057 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1058 to
1059
1060 @smallexample
1061 jcxz cx_zero
1062 jmp cx_nonzero
1063 cx_zero: jmp foo
1064 cx_nonzero:
1065 @end smallexample
1066
1067 @node i386-Float
1068 @section Floating Point
1069
1070 @cindex i386 floating point
1071 @cindex floating point, i386
1072 @cindex x86-64 floating point
1073 @cindex floating point, x86-64
1074 All 80387 floating point types except packed BCD are supported.
1075 (BCD support may be added without much difficulty). These data
1076 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1077 double (64-bit), and extended (80-bit) precision floating point.
1078 Each supported type has an instruction mnemonic suffix and a constructor
1079 associated with it. Instruction mnemonic suffixes specify the operand's
1080 data type. Constructors build these data types into memory.
1081
1082 @cindex @code{float} directive, i386
1083 @cindex @code{single} directive, i386
1084 @cindex @code{double} directive, i386
1085 @cindex @code{tfloat} directive, i386
1086 @cindex @code{float} directive, x86-64
1087 @cindex @code{single} directive, x86-64
1088 @cindex @code{double} directive, x86-64
1089 @cindex @code{tfloat} directive, x86-64
1090 @itemize @bullet
1091 @item
1092 Floating point constructors are @samp{.float} or @samp{.single},
1093 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1094 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1095 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1096 only supports this format via the @samp{fldt} (load 80-bit real to stack
1097 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1098
1099 @cindex @code{word} directive, i386
1100 @cindex @code{long} directive, i386
1101 @cindex @code{int} directive, i386
1102 @cindex @code{quad} directive, i386
1103 @cindex @code{word} directive, x86-64
1104 @cindex @code{long} directive, x86-64
1105 @cindex @code{int} directive, x86-64
1106 @cindex @code{quad} directive, x86-64
1107 @item
1108 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1109 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1110 corresponding instruction mnemonic suffixes are @samp{s} (single),
1111 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1112 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1113 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1114 stack) instructions.
1115 @end itemize
1116
1117 Register to register operations should not use instruction mnemonic suffixes.
1118 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1119 wrote @samp{fst %st, %st(1)}, since all register to register operations
1120 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1121 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1122 then stores the result in the 4 byte location @samp{mem})
1123
1124 @node i386-SIMD
1125 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1126
1127 @cindex MMX, i386
1128 @cindex 3DNow!, i386
1129 @cindex SIMD, i386
1130 @cindex MMX, x86-64
1131 @cindex 3DNow!, x86-64
1132 @cindex SIMD, x86-64
1133
1134 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1135 instructions for integer data), available on Intel's Pentium MMX
1136 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1137 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1138 instruction set (SIMD instructions for 32-bit floating point data)
1139 available on AMD's K6-2 processor and possibly others in the future.
1140
1141 Currently, @code{@value{AS}} does not support Intel's floating point
1142 SIMD, Katmai (KNI).
1143
1144 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1145 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1146 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1147 floating point values. The MMX registers cannot be used at the same time
1148 as the floating point stack.
1149
1150 See Intel and AMD documentation, keeping in mind that the operand order in
1151 instructions is reversed from the Intel syntax.
1152
1153 @node i386-LWP
1154 @section AMD's Lightweight Profiling Instructions
1155
1156 @cindex LWP, i386
1157 @cindex LWP, x86-64
1158
1159 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1160 instruction set, available on AMD's Family 15h (Orochi) processors.
1161
1162 LWP enables applications to collect and manage performance data, and
1163 react to performance events. The collection of performance data
1164 requires no context switches. LWP runs in the context of a thread and
1165 so several counters can be used independently across multiple threads.
1166 LWP can be used in both 64-bit and legacy 32-bit modes.
1167
1168 For detailed information on the LWP instruction set, see the
1169 @cite{AMD Lightweight Profiling Specification} available at
1170 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1171
1172 @node i386-BMI
1173 @section Bit Manipulation Instructions
1174
1175 @cindex BMI, i386
1176 @cindex BMI, x86-64
1177
1178 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1179
1180 BMI instructions provide several instructions implementing individual
1181 bit manipulation operations such as isolation, masking, setting, or
1182 resetting.
1183
1184 @c Need to add a specification citation here when available.
1185
1186 @node i386-TBM
1187 @section AMD's Trailing Bit Manipulation Instructions
1188
1189 @cindex TBM, i386
1190 @cindex TBM, x86-64
1191
1192 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1193 instruction set, available on AMD's BDVER2 processors (Trinity and
1194 Viperfish).
1195
1196 TBM instructions provide instructions implementing individual bit
1197 manipulation operations such as isolating, masking, setting, resetting,
1198 complementing, and operations on trailing zeros and ones.
1199
1200 @c Need to add a specification citation here when available.
1201
1202 @node i386-16bit
1203 @section Writing 16-bit Code
1204
1205 @cindex i386 16-bit code
1206 @cindex 16-bit code, i386
1207 @cindex real-mode code, i386
1208 @cindex @code{code16gcc} directive, i386
1209 @cindex @code{code16} directive, i386
1210 @cindex @code{code32} directive, i386
1211 @cindex @code{code64} directive, i386
1212 @cindex @code{code64} directive, x86-64
1213 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1214 or 64-bit x86-64 code depending on the default configuration,
1215 it also supports writing code to run in real mode or in 16-bit protected
1216 mode code segments. To do this, put a @samp{.code16} or
1217 @samp{.code16gcc} directive before the assembly language instructions to
1218 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1219 32-bit code with the @samp{.code32} directive or 64-bit code with the
1220 @samp{.code64} directive.
1221
1222 @samp{.code16gcc} provides experimental support for generating 16-bit
1223 code from gcc, and differs from @samp{.code16} in that @samp{call},
1224 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1225 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1226 default to 32-bit size. This is so that the stack pointer is
1227 manipulated in the same way over function calls, allowing access to
1228 function parameters at the same stack offsets as in 32-bit mode.
1229 @samp{.code16gcc} also automatically adds address size prefixes where
1230 necessary to use the 32-bit addressing modes that gcc generates.
1231
1232 The code which @code{@value{AS}} generates in 16-bit mode will not
1233 necessarily run on a 16-bit pre-80386 processor. To write code that
1234 runs on such a processor, you must refrain from using @emph{any} 32-bit
1235 constructs which require @code{@value{AS}} to output address or operand
1236 size prefixes.
1237
1238 Note that writing 16-bit code instructions by explicitly specifying a
1239 prefix or an instruction mnemonic suffix within a 32-bit code section
1240 generates different machine instructions than those generated for a
1241 16-bit code segment. In a 32-bit code section, the following code
1242 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1243 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1244
1245 @smallexample
1246 pushw $4
1247 @end smallexample
1248
1249 The same code in a 16-bit code section would generate the machine
1250 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1251 is correct since the processor default operand size is assumed to be 16
1252 bits in a 16-bit code section.
1253
1254 @node i386-Arch
1255 @section Specifying CPU Architecture
1256
1257 @cindex arch directive, i386
1258 @cindex i386 arch directive
1259 @cindex arch directive, x86-64
1260 @cindex x86-64 arch directive
1261
1262 @code{@value{AS}} may be told to assemble for a particular CPU
1263 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1264 directive enables a warning when gas detects an instruction that is not
1265 supported on the CPU specified. The choices for @var{cpu_type} are:
1266
1267 @multitable @columnfractions .20 .20 .20 .20
1268 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1269 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1270 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1271 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1272 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1273 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1274 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1275 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1276 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1277 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1278 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1279 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1280 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1281 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1282 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1283 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1284 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1285 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1286 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1287 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1288 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1289 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1290 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1291 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1292 @item @samp{.avx512_bitalg}
1293 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1294 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1295 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1296 @item @samp{.movdiri} @tab @samp{.movdir64b}
1297 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1298 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1299 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1300 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1301 @end multitable
1302
1303 Apart from the warning, there are only two other effects on
1304 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1305 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1306 will automatically use a two byte opcode sequence. The larger three
1307 byte opcode sequence is used on the 486 (and when no architecture is
1308 specified) because it executes faster on the 486. Note that you can
1309 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1310 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1311 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1312 conditional jumps will be promoted when necessary to a two instruction
1313 sequence consisting of a conditional jump of the opposite sense around
1314 an unconditional jump to the target.
1315
1316 Following the CPU architecture (but not a sub-architecture, which are those
1317 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1318 control automatic promotion of conditional jumps. @samp{jumps} is the
1319 default, and enables jump promotion; All external jumps will be of the long
1320 variety, and file-local jumps will be promoted as necessary.
1321 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1322 byte offset jumps, and warns about file-local conditional jumps that
1323 @code{@value{AS}} promotes.
1324 Unconditional jumps are treated as for @samp{jumps}.
1325
1326 For example
1327
1328 @smallexample
1329 .arch i8086,nojumps
1330 @end smallexample
1331
1332 @node i386-Bugs
1333 @section AT&T Syntax bugs
1334
1335 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1336 assemblers, generate floating point instructions with reversed source
1337 and destination registers in certain cases. Unfortunately, gcc and
1338 possibly many other programs use this reversed syntax, so we're stuck
1339 with it.
1340
1341 For example
1342
1343 @smallexample
1344 fsub %st,%st(3)
1345 @end smallexample
1346 @noindent
1347 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1348 than the expected @samp{%st(3) - %st}. This happens with all the
1349 non-commutative arithmetic floating point operations with two register
1350 operands where the source register is @samp{%st} and the destination
1351 register is @samp{%st(i)}.
1352
1353 @node i386-Notes
1354 @section Notes
1355
1356 @cindex i386 @code{mul}, @code{imul} instructions
1357 @cindex @code{mul} instruction, i386
1358 @cindex @code{imul} instruction, i386
1359 @cindex @code{mul} instruction, x86-64
1360 @cindex @code{imul} instruction, x86-64
1361 There is some trickery concerning the @samp{mul} and @samp{imul}
1362 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1363 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1364 for @samp{imul}) can be output only in the one operand form. Thus,
1365 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1366 the expanding multiply would clobber the @samp{%edx} register, and this
1367 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1368 64-bit product in @samp{%edx:%eax}.
1369
1370 We have added a two operand form of @samp{imul} when the first operand
1371 is an immediate mode expression and the second operand is a register.
1372 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1373 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1374 $69, %eax, %eax}.
1375