Document the .value directive supported by the x86 and x86_64 assemblers.
[binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics. For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}. The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{enqcmd},
187 @code{avx512f},
188 @code{avx512cd},
189 @code{avx512er},
190 @code{avx512pf},
191 @code{avx512vl},
192 @code{avx512bw},
193 @code{avx512dq},
194 @code{avx512ifma},
195 @code{avx512vbmi},
196 @code{avx512_4fmaps},
197 @code{avx512_4vnniw},
198 @code{avx512_vpopcntdq},
199 @code{avx512_vbmi2},
200 @code{avx512_vnni},
201 @code{avx512_bitalg},
202 @code{avx512_bf16},
203 @code{noavx512f},
204 @code{noavx512cd},
205 @code{noavx512er},
206 @code{noavx512pf},
207 @code{noavx512vl},
208 @code{noavx512bw},
209 @code{noavx512dq},
210 @code{noavx512ifma},
211 @code{noavx512vbmi},
212 @code{noavx512_4fmaps},
213 @code{noavx512_4vnniw},
214 @code{noavx512_vpopcntdq},
215 @code{noavx512_vbmi2},
216 @code{noavx512_vnni},
217 @code{noavx512_bitalg},
218 @code{noavx512_vp2intersect},
219 @code{noavx512_bf16},
220 @code{noenqcmd},
221 @code{vmx},
222 @code{vmfunc},
223 @code{smx},
224 @code{xsave},
225 @code{xsaveopt},
226 @code{xsavec},
227 @code{xsaves},
228 @code{aes},
229 @code{pclmul},
230 @code{fsgsbase},
231 @code{rdrnd},
232 @code{f16c},
233 @code{bmi2},
234 @code{fma},
235 @code{movbe},
236 @code{ept},
237 @code{lzcnt},
238 @code{hle},
239 @code{rtm},
240 @code{invpcid},
241 @code{clflush},
242 @code{mwaitx},
243 @code{clzero},
244 @code{wbnoinvd},
245 @code{pconfig},
246 @code{waitpkg},
247 @code{cldemote},
248 @code{lwp},
249 @code{fma4},
250 @code{xop},
251 @code{cx16},
252 @code{syscall},
253 @code{rdtscp},
254 @code{3dnow},
255 @code{3dnowa},
256 @code{sse4a},
257 @code{sse5},
258 @code{svme},
259 @code{abm} and
260 @code{padlock}.
261 Note that rather than extending a basic instruction set, the extension
262 mnemonics starting with @code{no} revoke the respective functionality.
263
264 When the @code{.arch} directive is used with @option{-march}, the
265 @code{.arch} directive will take precedent.
266
267 @cindex @samp{-mtune=} option, i386
268 @cindex @samp{-mtune=} option, x86-64
269 @item -mtune=@var{CPU}
270 This option specifies a processor to optimize for. When used in
271 conjunction with the @option{-march} option, only instructions
272 of the processor specified by the @option{-march} option will be
273 generated.
274
275 Valid @var{CPU} values are identical to the processor list of
276 @option{-march=@var{CPU}}.
277
278 @cindex @samp{-msse2avx} option, i386
279 @cindex @samp{-msse2avx} option, x86-64
280 @item -msse2avx
281 This option specifies that the assembler should encode SSE instructions
282 with VEX prefix.
283
284 @cindex @samp{-msse-check=} option, i386
285 @cindex @samp{-msse-check=} option, x86-64
286 @item -msse-check=@var{none}
287 @itemx -msse-check=@var{warning}
288 @itemx -msse-check=@var{error}
289 These options control if the assembler should check SSE instructions.
290 @option{-msse-check=@var{none}} will make the assembler not to check SSE
291 instructions, which is the default. @option{-msse-check=@var{warning}}
292 will make the assembler issue a warning for any SSE instruction.
293 @option{-msse-check=@var{error}} will make the assembler issue an error
294 for any SSE instruction.
295
296 @cindex @samp{-mavxscalar=} option, i386
297 @cindex @samp{-mavxscalar=} option, x86-64
298 @item -mavxscalar=@var{128}
299 @itemx -mavxscalar=@var{256}
300 These options control how the assembler should encode scalar AVX
301 instructions. @option{-mavxscalar=@var{128}} will encode scalar
302 AVX instructions with 128bit vector length, which is the default.
303 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
304 with 256bit vector length.
305
306 WARNING: Don't use this for production code - due to CPU errata the
307 resulting code may not work on certain models.
308
309 @cindex @samp{-mvexwig=} option, i386
310 @cindex @samp{-mvexwig=} option, x86-64
311 @item -mvexwig=@var{0}
312 @itemx -mvexwig=@var{1}
313 These options control how the assembler should encode VEX.W-ignored (WIG)
314 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
315 instructions with vex.w = 0, which is the default.
316 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
317 vex.w = 1.
318
319 WARNING: Don't use this for production code - due to CPU errata the
320 resulting code may not work on certain models.
321
322 @cindex @samp{-mevexlig=} option, i386
323 @cindex @samp{-mevexlig=} option, x86-64
324 @item -mevexlig=@var{128}
325 @itemx -mevexlig=@var{256}
326 @itemx -mevexlig=@var{512}
327 These options control how the assembler should encode length-ignored
328 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
329 EVEX instructions with 128bit vector length, which is the default.
330 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
331 encode LIG EVEX instructions with 256bit and 512bit vector length,
332 respectively.
333
334 @cindex @samp{-mevexwig=} option, i386
335 @cindex @samp{-mevexwig=} option, x86-64
336 @item -mevexwig=@var{0}
337 @itemx -mevexwig=@var{1}
338 These options control how the assembler should encode w-ignored (WIG)
339 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
340 EVEX instructions with evex.w = 0, which is the default.
341 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
342 evex.w = 1.
343
344 @cindex @samp{-mmnemonic=} option, i386
345 @cindex @samp{-mmnemonic=} option, x86-64
346 @item -mmnemonic=@var{att}
347 @itemx -mmnemonic=@var{intel}
348 This option specifies instruction mnemonic for matching instructions.
349 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
350 take precedent.
351
352 @cindex @samp{-msyntax=} option, i386
353 @cindex @samp{-msyntax=} option, x86-64
354 @item -msyntax=@var{att}
355 @itemx -msyntax=@var{intel}
356 This option specifies instruction syntax when processing instructions.
357 The @code{.att_syntax} and @code{.intel_syntax} directives will
358 take precedent.
359
360 @cindex @samp{-mnaked-reg} option, i386
361 @cindex @samp{-mnaked-reg} option, x86-64
362 @item -mnaked-reg
363 This option specifies that registers don't require a @samp{%} prefix.
364 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
365
366 @cindex @samp{-madd-bnd-prefix} option, i386
367 @cindex @samp{-madd-bnd-prefix} option, x86-64
368 @item -madd-bnd-prefix
369 This option forces the assembler to add BND prefix to all branches, even
370 if such prefix was not explicitly specified in the source code.
371
372 @cindex @samp{-mshared} option, i386
373 @cindex @samp{-mshared} option, x86-64
374 @item -mno-shared
375 On ELF target, the assembler normally optimizes out non-PLT relocations
376 against defined non-weak global branch targets with default visibility.
377 The @samp{-mshared} option tells the assembler to generate code which
378 may go into a shared library where all non-weak global branch targets
379 with default visibility can be preempted. The resulting code is
380 slightly bigger. This option only affects the handling of branch
381 instructions.
382
383 @cindex @samp{-mbig-obj} option, x86-64
384 @item -mbig-obj
385 On x86-64 PE/COFF target this option forces the use of big object file
386 format, which allows more than 32768 sections.
387
388 @cindex @samp{-momit-lock-prefix=} option, i386
389 @cindex @samp{-momit-lock-prefix=} option, x86-64
390 @item -momit-lock-prefix=@var{no}
391 @itemx -momit-lock-prefix=@var{yes}
392 These options control how the assembler should encode lock prefix.
393 This option is intended as a workaround for processors, that fail on
394 lock prefix. This option can only be safely used with single-core,
395 single-thread computers
396 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
397 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
398 which is the default.
399
400 @cindex @samp{-mfence-as-lock-add=} option, i386
401 @cindex @samp{-mfence-as-lock-add=} option, x86-64
402 @item -mfence-as-lock-add=@var{no}
403 @itemx -mfence-as-lock-add=@var{yes}
404 These options control how the assembler should encode lfence, mfence and
405 sfence.
406 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
407 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
408 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
409 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
410 sfence as usual, which is the default.
411
412 @cindex @samp{-mrelax-relocations=} option, i386
413 @cindex @samp{-mrelax-relocations=} option, x86-64
414 @item -mrelax-relocations=@var{no}
415 @itemx -mrelax-relocations=@var{yes}
416 These options control whether the assembler should generate relax
417 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
418 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
419 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
420 @option{-mrelax-relocations=@var{no}} will not generate relax
421 relocations. The default can be controlled by a configure option
422 @option{--enable-x86-relax-relocations}.
423
424 @cindex @samp{-mx86-used-note=} option, i386
425 @cindex @samp{-mx86-used-note=} option, x86-64
426 @item -mx86-used-note=@var{no}
427 @itemx -mx86-used-note=@var{yes}
428 These options control whether the assembler should generate
429 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
430 GNU property notes. The default can be controlled by the
431 @option{--enable-x86-used-note} configure option.
432
433 @cindex @samp{-mevexrcig=} option, i386
434 @cindex @samp{-mevexrcig=} option, x86-64
435 @item -mevexrcig=@var{rne}
436 @itemx -mevexrcig=@var{rd}
437 @itemx -mevexrcig=@var{ru}
438 @itemx -mevexrcig=@var{rz}
439 These options control how the assembler should encode SAE-only
440 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
441 of EVEX instruction with 00, which is the default.
442 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
443 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
444 with 01, 10 and 11 RC bits, respectively.
445
446 @cindex @samp{-mamd64} option, x86-64
447 @cindex @samp{-mintel64} option, x86-64
448 @item -mamd64
449 @itemx -mintel64
450 This option specifies that the assembler should accept only AMD64 or
451 Intel64 ISA in 64-bit mode. The default is to accept both.
452
453 @cindex @samp{-O0} option, i386
454 @cindex @samp{-O0} option, x86-64
455 @cindex @samp{-O} option, i386
456 @cindex @samp{-O} option, x86-64
457 @cindex @samp{-O1} option, i386
458 @cindex @samp{-O1} option, x86-64
459 @cindex @samp{-O2} option, i386
460 @cindex @samp{-O2} option, x86-64
461 @cindex @samp{-Os} option, i386
462 @cindex @samp{-Os} option, x86-64
463 @item -O0 | -O | -O1 | -O2 | -Os
464 Optimize instruction encoding with smaller instruction size. @samp{-O}
465 and @samp{-O1} encode 64-bit register load instructions with 64-bit
466 immediate as 32-bit register load instructions with 31-bit or 32-bits
467 immediates, encode 64-bit register clearing instructions with 32-bit
468 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
469 register clearing instructions with 128-bit VEX vector register
470 clearing instructions, encode 128-bit/256-bit EVEX vector
471 register load/store instructions with VEX vector register load/store
472 instructions, and encode 128-bit/256-bit EVEX packed integer logical
473 instructions with 128-bit/256-bit VEX packed integer logical.
474
475 @samp{-O2} includes @samp{-O1} optimization plus encodes
476 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
477 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
478 instructions with commutative source operands will also have their
479 source operands swapped if this allows using the 2-byte VEX prefix form
480 instead of the 3-byte one. Certain forms of AND as well as OR with the
481 same (register) operand specified twice will also be changed to TEST.
482
483 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
484 and 64-bit register tests with immediate as 8-bit register test with
485 immediate. @samp{-O0} turns off this optimization.
486
487 @end table
488 @c man end
489
490 @node i386-Directives
491 @section x86 specific Directives
492
493 @cindex machine directives, x86
494 @cindex x86 machine directives
495 @table @code
496
497 @cindex @code{lcomm} directive, COFF
498 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
499 Reserve @var{length} (an absolute expression) bytes for a local common
500 denoted by @var{symbol}. The section and value of @var{symbol} are
501 those of the new local common. The addresses are allocated in the bss
502 section, so that at run-time the bytes start off zeroed. Since
503 @var{symbol} is not declared global, it is normally not visible to
504 @code{@value{LD}}. The optional third parameter, @var{alignment},
505 specifies the desired alignment of the symbol in the bss section.
506
507 This directive is only available for COFF based x86 targets.
508
509 @cindex @code{largecomm} directive, ELF
510 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
511 This directive behaves in the same way as the @code{comm} directive
512 except that the data is placed into the @var{.lbss} section instead of
513 the @var{.bss} section @ref{Comm}.
514
515 The directive is intended to be used for data which requires a large
516 amount of space, and it is only available for ELF based x86_64
517 targets.
518
519 @cindex @code{value} directive
520 @item .value @var{expression} [, @var{expression}]
521 This directive behaves in the same way as the @code{.short} directive,
522 taking a series of comma separated expressions and storing them as
523 two-byte wide values into the current section.
524
525 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
526
527 @end table
528
529 @node i386-Syntax
530 @section i386 Syntactical Considerations
531 @menu
532 * i386-Variations:: AT&T Syntax versus Intel Syntax
533 * i386-Chars:: Special Characters
534 @end menu
535
536 @node i386-Variations
537 @subsection AT&T Syntax versus Intel Syntax
538
539 @cindex i386 intel_syntax pseudo op
540 @cindex intel_syntax pseudo op, i386
541 @cindex i386 att_syntax pseudo op
542 @cindex att_syntax pseudo op, i386
543 @cindex i386 syntax compatibility
544 @cindex syntax compatibility, i386
545 @cindex x86-64 intel_syntax pseudo op
546 @cindex intel_syntax pseudo op, x86-64
547 @cindex x86-64 att_syntax pseudo op
548 @cindex att_syntax pseudo op, x86-64
549 @cindex x86-64 syntax compatibility
550 @cindex syntax compatibility, x86-64
551
552 @code{@value{AS}} now supports assembly using Intel assembler syntax.
553 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
554 back to the usual AT&T mode for compatibility with the output of
555 @code{@value{GCC}}. Either of these directives may have an optional
556 argument, @code{prefix}, or @code{noprefix} specifying whether registers
557 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
558 different from Intel syntax. We mention these differences because
559 almost all 80386 documents use Intel syntax. Notable differences
560 between the two syntaxes are:
561
562 @cindex immediate operands, i386
563 @cindex i386 immediate operands
564 @cindex register operands, i386
565 @cindex i386 register operands
566 @cindex jump/call operands, i386
567 @cindex i386 jump/call operands
568 @cindex operand delimiters, i386
569
570 @cindex immediate operands, x86-64
571 @cindex x86-64 immediate operands
572 @cindex register operands, x86-64
573 @cindex x86-64 register operands
574 @cindex jump/call operands, x86-64
575 @cindex x86-64 jump/call operands
576 @cindex operand delimiters, x86-64
577 @itemize @bullet
578 @item
579 AT&T immediate operands are preceded by @samp{$}; Intel immediate
580 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
581 AT&T register operands are preceded by @samp{%}; Intel register operands
582 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
583 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
584
585 @cindex i386 source, destination operands
586 @cindex source, destination operands; i386
587 @cindex x86-64 source, destination operands
588 @cindex source, destination operands; x86-64
589 @item
590 AT&T and Intel syntax use the opposite order for source and destination
591 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
592 @samp{source, dest} convention is maintained for compatibility with
593 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
594 instructions with 2 immediate operands, such as the @samp{enter}
595 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
596
597 @cindex mnemonic suffixes, i386
598 @cindex sizes operands, i386
599 @cindex i386 size suffixes
600 @cindex mnemonic suffixes, x86-64
601 @cindex sizes operands, x86-64
602 @cindex x86-64 size suffixes
603 @item
604 In AT&T syntax the size of memory operands is determined from the last
605 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
606 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
607 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
608 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
609 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
610 no other way to disambiguate an instruction. Intel syntax accomplishes this by
611 prefixing memory operands (@emph{not} the instruction mnemonics) with
612 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
613 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
614 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
615 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
616 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
617
618 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
619 instruction with the 64-bit displacement or immediate operand.
620
621 @cindex return instructions, i386
622 @cindex i386 jump, call, return
623 @cindex return instructions, x86-64
624 @cindex x86-64 jump, call, return
625 @item
626 Immediate form long jumps and calls are
627 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
628 Intel syntax is
629 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
630 instruction
631 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
632 @samp{ret far @var{stack-adjust}}.
633
634 @cindex sections, i386
635 @cindex i386 sections
636 @cindex sections, x86-64
637 @cindex x86-64 sections
638 @item
639 The AT&T assembler does not provide support for multiple section
640 programs. Unix style systems expect all programs to be single sections.
641 @end itemize
642
643 @node i386-Chars
644 @subsection Special Characters
645
646 @cindex line comment character, i386
647 @cindex i386 line comment character
648 The presence of a @samp{#} appearing anywhere on a line indicates the
649 start of a comment that extends to the end of that line.
650
651 If a @samp{#} appears as the first character of a line then the whole
652 line is treated as a comment, but in this case the line can also be a
653 logical line number directive (@pxref{Comments}) or a preprocessor
654 control command (@pxref{Preprocessing}).
655
656 If the @option{--divide} command-line option has not been specified
657 then the @samp{/} character appearing anywhere on a line also
658 introduces a line comment.
659
660 @cindex line separator, i386
661 @cindex statement separator, i386
662 @cindex i386 line separator
663 The @samp{;} character can be used to separate statements on the same
664 line.
665
666 @node i386-Mnemonics
667 @section i386-Mnemonics
668 @subsection Instruction Naming
669
670 @cindex i386 instruction naming
671 @cindex instruction naming, i386
672 @cindex x86-64 instruction naming
673 @cindex instruction naming, x86-64
674
675 Instruction mnemonics are suffixed with one character modifiers which
676 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
677 and @samp{q} specify byte, word, long and quadruple word operands. If
678 no suffix is specified by an instruction then @code{@value{AS}} tries to
679 fill in the missing suffix based on the destination register operand
680 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
681 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
682 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
683 assembler which assumes that a missing mnemonic suffix implies long
684 operand size. (This incompatibility does not affect compiler output
685 since compilers always explicitly specify the mnemonic suffix.)
686
687 Almost all instructions have the same names in AT&T and Intel format.
688 There are a few exceptions. The sign extend and zero extend
689 instructions need two sizes to specify them. They need a size to
690 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
691 is accomplished by using two instruction mnemonic suffixes in AT&T
692 syntax. Base names for sign extend and zero extend are
693 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
694 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
695 are tacked on to this base name, the @emph{from} suffix before the
696 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
697 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
698 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
699 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
700 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
701 quadruple word).
702
703 @cindex encoding options, i386
704 @cindex encoding options, x86-64
705
706 Different encoding options can be specified via pseudo prefixes:
707
708 @itemize @bullet
709 @item
710 @samp{@{disp8@}} -- prefer 8-bit displacement.
711
712 @item
713 @samp{@{disp32@}} -- prefer 32-bit displacement.
714
715 @item
716 @samp{@{load@}} -- prefer load-form instruction.
717
718 @item
719 @samp{@{store@}} -- prefer store-form instruction.
720
721 @item
722 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
723
724 @item
725 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
726
727 @item
728 @samp{@{evex@}} -- encode with EVEX prefix.
729
730 @item
731 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
732 instructions (x86-64 only). Note that this differs from the @samp{rex}
733 prefix which generates REX prefix unconditionally.
734
735 @item
736 @samp{@{nooptimize@}} -- disable instruction size optimization.
737 @end itemize
738
739 @cindex conversion instructions, i386
740 @cindex i386 conversion instructions
741 @cindex conversion instructions, x86-64
742 @cindex x86-64 conversion instructions
743 The Intel-syntax conversion instructions
744
745 @itemize @bullet
746 @item
747 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
748
749 @item
750 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
751
752 @item
753 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
754
755 @item
756 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
757
758 @item
759 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
760 (x86-64 only),
761
762 @item
763 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
764 @samp{%rdx:%rax} (x86-64 only),
765 @end itemize
766
767 @noindent
768 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
769 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
770 instructions.
771
772 @cindex jump instructions, i386
773 @cindex call instructions, i386
774 @cindex jump instructions, x86-64
775 @cindex call instructions, x86-64
776 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
777 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
778 convention.
779
780 @subsection AT&T Mnemonic versus Intel Mnemonic
781
782 @cindex i386 mnemonic compatibility
783 @cindex mnemonic compatibility, i386
784
785 @code{@value{AS}} supports assembly using Intel mnemonic.
786 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
787 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
788 syntax for compatibility with the output of @code{@value{GCC}}.
789 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
790 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
791 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
792 assembler with different mnemonics from those in Intel IA32 specification.
793 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
794
795 @node i386-Regs
796 @section Register Naming
797
798 @cindex i386 registers
799 @cindex registers, i386
800 @cindex x86-64 registers
801 @cindex registers, x86-64
802 Register operands are always prefixed with @samp{%}. The 80386 registers
803 consist of
804
805 @itemize @bullet
806 @item
807 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
808 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
809 frame pointer), and @samp{%esp} (the stack pointer).
810
811 @item
812 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
813 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
814
815 @item
816 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
817 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
818 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
819 @samp{%cx}, and @samp{%dx})
820
821 @item
822 the 6 section registers @samp{%cs} (code section), @samp{%ds}
823 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
824 and @samp{%gs}.
825
826 @item
827 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
828 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
829
830 @item
831 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
832 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
833
834 @item
835 the 2 test registers @samp{%tr6} and @samp{%tr7}.
836
837 @item
838 the 8 floating point register stack @samp{%st} or equivalently
839 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
840 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
841 These registers are overloaded by 8 MMX registers @samp{%mm0},
842 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
843 @samp{%mm6} and @samp{%mm7}.
844
845 @item
846 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
847 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
848 @end itemize
849
850 The AMD x86-64 architecture extends the register set by:
851
852 @itemize @bullet
853 @item
854 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
855 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
856 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
857 pointer)
858
859 @item
860 the 8 extended registers @samp{%r8}--@samp{%r15}.
861
862 @item
863 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
864
865 @item
866 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
867
868 @item
869 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
870
871 @item
872 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
873
874 @item
875 the 8 debug registers: @samp{%db8}--@samp{%db15}.
876
877 @item
878 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
879 @end itemize
880
881 With the AVX extensions more registers were made available:
882
883 @itemize @bullet
884
885 @item
886 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
887 available in 32-bit mode). The bottom 128 bits are overlaid with the
888 @samp{xmm0}--@samp{xmm15} registers.
889
890 @end itemize
891
892 The AVX2 extensions made in 64-bit mode more registers available:
893
894 @itemize @bullet
895
896 @item
897 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
898 registers @samp{%ymm16}--@samp{%ymm31}.
899
900 @end itemize
901
902 The AVX512 extensions added the following registers:
903
904 @itemize @bullet
905
906 @item
907 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
908 available in 32-bit mode). The bottom 128 bits are overlaid with the
909 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
910 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
911
912 @item
913 the 8 mask registers @samp{%k0}--@samp{%k7}.
914
915 @end itemize
916
917 @node i386-Prefixes
918 @section Instruction Prefixes
919
920 @cindex i386 instruction prefixes
921 @cindex instruction prefixes, i386
922 @cindex prefixes, i386
923 Instruction prefixes are used to modify the following instruction. They
924 are used to repeat string instructions, to provide section overrides, to
925 perform bus lock operations, and to change operand and address sizes.
926 (Most instructions that normally operate on 32-bit operands will use
927 16-bit operands if the instruction has an ``operand size'' prefix.)
928 Instruction prefixes are best written on the same line as the instruction
929 they act upon. For example, the @samp{scas} (scan string) instruction is
930 repeated with:
931
932 @smallexample
933 repne scas %es:(%edi),%al
934 @end smallexample
935
936 You may also place prefixes on the lines immediately preceding the
937 instruction, but this circumvents checks that @code{@value{AS}} does
938 with prefixes, and will not work with all prefixes.
939
940 Here is a list of instruction prefixes:
941
942 @cindex section override prefixes, i386
943 @itemize @bullet
944 @item
945 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
946 @samp{fs}, @samp{gs}. These are automatically added by specifying
947 using the @var{section}:@var{memory-operand} form for memory references.
948
949 @cindex size prefixes, i386
950 @item
951 Operand/Address size prefixes @samp{data16} and @samp{addr16}
952 change 32-bit operands/addresses into 16-bit operands/addresses,
953 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
954 @code{.code16} section) into 32-bit operands/addresses. These prefixes
955 @emph{must} appear on the same line of code as the instruction they
956 modify. For example, in a 16-bit @code{.code16} section, you might
957 write:
958
959 @smallexample
960 addr32 jmpl *(%ebx)
961 @end smallexample
962
963 @cindex bus lock prefixes, i386
964 @cindex inhibiting interrupts, i386
965 @item
966 The bus lock prefix @samp{lock} inhibits interrupts during execution of
967 the instruction it precedes. (This is only valid with certain
968 instructions; see a 80386 manual for details).
969
970 @cindex coprocessor wait, i386
971 @item
972 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
973 complete the current instruction. This should never be needed for the
974 80386/80387 combination.
975
976 @cindex repeat prefixes, i386
977 @item
978 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
979 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
980 times if the current address size is 16-bits).
981 @cindex REX prefixes, i386
982 @item
983 The @samp{rex} family of prefixes is used by x86-64 to encode
984 extensions to i386 instruction set. The @samp{rex} prefix has four
985 bits --- an operand size overwrite (@code{64}) used to change operand size
986 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
987 register set.
988
989 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
990 instruction emits @samp{rex} prefix with all the bits set. By omitting
991 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
992 prefixes as well. Normally, there is no need to write the prefixes
993 explicitly, since gas will automatically generate them based on the
994 instruction operands.
995 @end itemize
996
997 @node i386-Memory
998 @section Memory References
999
1000 @cindex i386 memory references
1001 @cindex memory references, i386
1002 @cindex x86-64 memory references
1003 @cindex memory references, x86-64
1004 An Intel syntax indirect memory reference of the form
1005
1006 @smallexample
1007 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1008 @end smallexample
1009
1010 @noindent
1011 is translated into the AT&T syntax
1012
1013 @smallexample
1014 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1015 @end smallexample
1016
1017 @noindent
1018 where @var{base} and @var{index} are the optional 32-bit base and
1019 index registers, @var{disp} is the optional displacement, and
1020 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1021 to calculate the address of the operand. If no @var{scale} is
1022 specified, @var{scale} is taken to be 1. @var{section} specifies the
1023 optional section register for the memory operand, and may override the
1024 default section register (see a 80386 manual for section register
1025 defaults). Note that section overrides in AT&T syntax @emph{must}
1026 be preceded by a @samp{%}. If you specify a section override which
1027 coincides with the default section register, @code{@value{AS}} does @emph{not}
1028 output any section register override prefixes to assemble the given
1029 instruction. Thus, section overrides can be specified to emphasize which
1030 section register is used for a given memory operand.
1031
1032 Here are some examples of Intel and AT&T style memory references:
1033
1034 @table @asis
1035 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1036 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1037 missing, and the default section is used (@samp{%ss} for addressing with
1038 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1039
1040 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1041 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1042 @samp{foo}. All other fields are missing. The section register here
1043 defaults to @samp{%ds}.
1044
1045 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1046 This uses the value pointed to by @samp{foo} as a memory operand.
1047 Note that @var{base} and @var{index} are both missing, but there is only
1048 @emph{one} @samp{,}. This is a syntactic exception.
1049
1050 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1051 This selects the contents of the variable @samp{foo} with section
1052 register @var{section} being @samp{%gs}.
1053 @end table
1054
1055 Absolute (as opposed to PC relative) call and jump operands must be
1056 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1057 always chooses PC relative addressing for jump/call labels.
1058
1059 Any instruction that has a memory operand, but no register operand,
1060 @emph{must} specify its size (byte, word, long, or quadruple) with an
1061 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1062 respectively).
1063
1064 The x86-64 architecture adds an RIP (instruction pointer relative)
1065 addressing. This addressing mode is specified by using @samp{rip} as a
1066 base register. Only constant offsets are valid. For example:
1067
1068 @table @asis
1069 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1070 Points to the address 1234 bytes past the end of the current
1071 instruction.
1072
1073 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1074 Points to the @code{symbol} in RIP relative way, this is shorter than
1075 the default absolute addressing.
1076 @end table
1077
1078 Other addressing modes remain unchanged in x86-64 architecture, except
1079 registers used are 64-bit instead of 32-bit.
1080
1081 @node i386-Jumps
1082 @section Handling of Jump Instructions
1083
1084 @cindex jump optimization, i386
1085 @cindex i386 jump optimization
1086 @cindex jump optimization, x86-64
1087 @cindex x86-64 jump optimization
1088 Jump instructions are always optimized to use the smallest possible
1089 displacements. This is accomplished by using byte (8-bit) displacement
1090 jumps whenever the target is sufficiently close. If a byte displacement
1091 is insufficient a long displacement is used. We do not support
1092 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1093 instruction with the @samp{data16} instruction prefix), since the 80386
1094 insists upon masking @samp{%eip} to 16 bits after the word displacement
1095 is added. (See also @pxref{i386-Arch})
1096
1097 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1098 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1099 displacements, so that if you use these instructions (@code{@value{GCC}} does
1100 not use them) you may get an error message (and incorrect code). The AT&T
1101 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1102 to
1103
1104 @smallexample
1105 jcxz cx_zero
1106 jmp cx_nonzero
1107 cx_zero: jmp foo
1108 cx_nonzero:
1109 @end smallexample
1110
1111 @node i386-Float
1112 @section Floating Point
1113
1114 @cindex i386 floating point
1115 @cindex floating point, i386
1116 @cindex x86-64 floating point
1117 @cindex floating point, x86-64
1118 All 80387 floating point types except packed BCD are supported.
1119 (BCD support may be added without much difficulty). These data
1120 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1121 double (64-bit), and extended (80-bit) precision floating point.
1122 Each supported type has an instruction mnemonic suffix and a constructor
1123 associated with it. Instruction mnemonic suffixes specify the operand's
1124 data type. Constructors build these data types into memory.
1125
1126 @cindex @code{float} directive, i386
1127 @cindex @code{single} directive, i386
1128 @cindex @code{double} directive, i386
1129 @cindex @code{tfloat} directive, i386
1130 @cindex @code{float} directive, x86-64
1131 @cindex @code{single} directive, x86-64
1132 @cindex @code{double} directive, x86-64
1133 @cindex @code{tfloat} directive, x86-64
1134 @itemize @bullet
1135 @item
1136 Floating point constructors are @samp{.float} or @samp{.single},
1137 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1138 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1139 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1140 only supports this format via the @samp{fldt} (load 80-bit real to stack
1141 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1142
1143 @cindex @code{word} directive, i386
1144 @cindex @code{long} directive, i386
1145 @cindex @code{int} directive, i386
1146 @cindex @code{quad} directive, i386
1147 @cindex @code{word} directive, x86-64
1148 @cindex @code{long} directive, x86-64
1149 @cindex @code{int} directive, x86-64
1150 @cindex @code{quad} directive, x86-64
1151 @item
1152 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1153 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1154 corresponding instruction mnemonic suffixes are @samp{s} (single),
1155 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1156 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1157 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1158 stack) instructions.
1159 @end itemize
1160
1161 Register to register operations should not use instruction mnemonic suffixes.
1162 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1163 wrote @samp{fst %st, %st(1)}, since all register to register operations
1164 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1165 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1166 then stores the result in the 4 byte location @samp{mem})
1167
1168 @node i386-SIMD
1169 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1170
1171 @cindex MMX, i386
1172 @cindex 3DNow!, i386
1173 @cindex SIMD, i386
1174 @cindex MMX, x86-64
1175 @cindex 3DNow!, x86-64
1176 @cindex SIMD, x86-64
1177
1178 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1179 instructions for integer data), available on Intel's Pentium MMX
1180 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1181 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1182 instruction set (SIMD instructions for 32-bit floating point data)
1183 available on AMD's K6-2 processor and possibly others in the future.
1184
1185 Currently, @code{@value{AS}} does not support Intel's floating point
1186 SIMD, Katmai (KNI).
1187
1188 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1189 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1190 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1191 floating point values. The MMX registers cannot be used at the same time
1192 as the floating point stack.
1193
1194 See Intel and AMD documentation, keeping in mind that the operand order in
1195 instructions is reversed from the Intel syntax.
1196
1197 @node i386-LWP
1198 @section AMD's Lightweight Profiling Instructions
1199
1200 @cindex LWP, i386
1201 @cindex LWP, x86-64
1202
1203 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1204 instruction set, available on AMD's Family 15h (Orochi) processors.
1205
1206 LWP enables applications to collect and manage performance data, and
1207 react to performance events. The collection of performance data
1208 requires no context switches. LWP runs in the context of a thread and
1209 so several counters can be used independently across multiple threads.
1210 LWP can be used in both 64-bit and legacy 32-bit modes.
1211
1212 For detailed information on the LWP instruction set, see the
1213 @cite{AMD Lightweight Profiling Specification} available at
1214 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1215
1216 @node i386-BMI
1217 @section Bit Manipulation Instructions
1218
1219 @cindex BMI, i386
1220 @cindex BMI, x86-64
1221
1222 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1223
1224 BMI instructions provide several instructions implementing individual
1225 bit manipulation operations such as isolation, masking, setting, or
1226 resetting.
1227
1228 @c Need to add a specification citation here when available.
1229
1230 @node i386-TBM
1231 @section AMD's Trailing Bit Manipulation Instructions
1232
1233 @cindex TBM, i386
1234 @cindex TBM, x86-64
1235
1236 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1237 instruction set, available on AMD's BDVER2 processors (Trinity and
1238 Viperfish).
1239
1240 TBM instructions provide instructions implementing individual bit
1241 manipulation operations such as isolating, masking, setting, resetting,
1242 complementing, and operations on trailing zeros and ones.
1243
1244 @c Need to add a specification citation here when available.
1245
1246 @node i386-16bit
1247 @section Writing 16-bit Code
1248
1249 @cindex i386 16-bit code
1250 @cindex 16-bit code, i386
1251 @cindex real-mode code, i386
1252 @cindex @code{code16gcc} directive, i386
1253 @cindex @code{code16} directive, i386
1254 @cindex @code{code32} directive, i386
1255 @cindex @code{code64} directive, i386
1256 @cindex @code{code64} directive, x86-64
1257 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1258 or 64-bit x86-64 code depending on the default configuration,
1259 it also supports writing code to run in real mode or in 16-bit protected
1260 mode code segments. To do this, put a @samp{.code16} or
1261 @samp{.code16gcc} directive before the assembly language instructions to
1262 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1263 32-bit code with the @samp{.code32} directive or 64-bit code with the
1264 @samp{.code64} directive.
1265
1266 @samp{.code16gcc} provides experimental support for generating 16-bit
1267 code from gcc, and differs from @samp{.code16} in that @samp{call},
1268 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1269 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1270 default to 32-bit size. This is so that the stack pointer is
1271 manipulated in the same way over function calls, allowing access to
1272 function parameters at the same stack offsets as in 32-bit mode.
1273 @samp{.code16gcc} also automatically adds address size prefixes where
1274 necessary to use the 32-bit addressing modes that gcc generates.
1275
1276 The code which @code{@value{AS}} generates in 16-bit mode will not
1277 necessarily run on a 16-bit pre-80386 processor. To write code that
1278 runs on such a processor, you must refrain from using @emph{any} 32-bit
1279 constructs which require @code{@value{AS}} to output address or operand
1280 size prefixes.
1281
1282 Note that writing 16-bit code instructions by explicitly specifying a
1283 prefix or an instruction mnemonic suffix within a 32-bit code section
1284 generates different machine instructions than those generated for a
1285 16-bit code segment. In a 32-bit code section, the following code
1286 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1287 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1288
1289 @smallexample
1290 pushw $4
1291 @end smallexample
1292
1293 The same code in a 16-bit code section would generate the machine
1294 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1295 is correct since the processor default operand size is assumed to be 16
1296 bits in a 16-bit code section.
1297
1298 @node i386-Arch
1299 @section Specifying CPU Architecture
1300
1301 @cindex arch directive, i386
1302 @cindex i386 arch directive
1303 @cindex arch directive, x86-64
1304 @cindex x86-64 arch directive
1305
1306 @code{@value{AS}} may be told to assemble for a particular CPU
1307 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1308 directive enables a warning when gas detects an instruction that is not
1309 supported on the CPU specified. The choices for @var{cpu_type} are:
1310
1311 @multitable @columnfractions .20 .20 .20 .20
1312 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1313 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1314 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1315 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1316 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1317 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1318 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1319 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1320 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1321 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1322 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1323 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1324 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1325 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1326 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1327 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1328 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1329 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1330 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1331 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1332 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1333 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1334 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1335 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1336 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1337 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1338 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1339 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1340 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1341 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1342 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1343 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1344 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1345 @end multitable
1346
1347 Apart from the warning, there are only two other effects on
1348 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1349 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1350 will automatically use a two byte opcode sequence. The larger three
1351 byte opcode sequence is used on the 486 (and when no architecture is
1352 specified) because it executes faster on the 486. Note that you can
1353 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1354 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1355 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1356 conditional jumps will be promoted when necessary to a two instruction
1357 sequence consisting of a conditional jump of the opposite sense around
1358 an unconditional jump to the target.
1359
1360 Following the CPU architecture (but not a sub-architecture, which are those
1361 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1362 control automatic promotion of conditional jumps. @samp{jumps} is the
1363 default, and enables jump promotion; All external jumps will be of the long
1364 variety, and file-local jumps will be promoted as necessary.
1365 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1366 byte offset jumps, and warns about file-local conditional jumps that
1367 @code{@value{AS}} promotes.
1368 Unconditional jumps are treated as for @samp{jumps}.
1369
1370 For example
1371
1372 @smallexample
1373 .arch i8086,nojumps
1374 @end smallexample
1375
1376 @node i386-Bugs
1377 @section AT&T Syntax bugs
1378
1379 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1380 assemblers, generate floating point instructions with reversed source
1381 and destination registers in certain cases. Unfortunately, gcc and
1382 possibly many other programs use this reversed syntax, so we're stuck
1383 with it.
1384
1385 For example
1386
1387 @smallexample
1388 fsub %st,%st(3)
1389 @end smallexample
1390 @noindent
1391 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1392 than the expected @samp{%st(3) - %st}. This happens with all the
1393 non-commutative arithmetic floating point operations with two register
1394 operands where the source register is @samp{%st} and the destination
1395 register is @samp{%st(i)}.
1396
1397 @node i386-Notes
1398 @section Notes
1399
1400 @cindex i386 @code{mul}, @code{imul} instructions
1401 @cindex @code{mul} instruction, i386
1402 @cindex @code{imul} instruction, i386
1403 @cindex @code{mul} instruction, x86-64
1404 @cindex @code{imul} instruction, x86-64
1405 There is some trickery concerning the @samp{mul} and @samp{imul}
1406 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1407 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1408 for @samp{imul}) can be output only in the one operand form. Thus,
1409 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1410 the expanding multiply would clobber the @samp{%edx} register, and this
1411 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1412 64-bit product in @samp{%edx:%eax}.
1413
1414 We have added a two operand form of @samp{imul} when the first operand
1415 is an immediate mode expression and the second operand is a register.
1416 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1417 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1418 $69, %eax, %eax}.
1419