x86: introduce a state stack for .arch
[binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2022 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{znver2},
126 @code{znver3},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics. For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}. The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{sse4a},
154 @code{ssse3},
155 @code{sse4.1},
156 @code{sse4.2},
157 @code{sse4},
158 @code{nosse},
159 @code{nosse2},
160 @code{nosse3},
161 @code{nosse4a},
162 @code{nossse3},
163 @code{nosse4.1},
164 @code{nosse4.2},
165 @code{nosse4},
166 @code{avx},
167 @code{avx2},
168 @code{noavx},
169 @code{noavx2},
170 @code{adx},
171 @code{rdseed},
172 @code{prfchw},
173 @code{smap},
174 @code{mpx},
175 @code{sha},
176 @code{rdpid},
177 @code{ptwrite},
178 @code{cet},
179 @code{gfni},
180 @code{vaes},
181 @code{vpclmulqdq},
182 @code{prefetchwt1},
183 @code{clflushopt},
184 @code{se1},
185 @code{clwb},
186 @code{movdiri},
187 @code{movdir64b},
188 @code{enqcmd},
189 @code{serialize},
190 @code{tsxldtrk},
191 @code{kl},
192 @code{nokl},
193 @code{widekl},
194 @code{nowidekl},
195 @code{hreset},
196 @code{avx512f},
197 @code{avx512cd},
198 @code{avx512er},
199 @code{avx512pf},
200 @code{avx512vl},
201 @code{avx512bw},
202 @code{avx512dq},
203 @code{avx512ifma},
204 @code{avx512vbmi},
205 @code{avx512_4fmaps},
206 @code{avx512_4vnniw},
207 @code{avx512_vpopcntdq},
208 @code{avx512_vbmi2},
209 @code{avx512_vnni},
210 @code{avx512_bitalg},
211 @code{avx512_vp2intersect},
212 @code{tdx},
213 @code{avx512_bf16},
214 @code{avx_vnni},
215 @code{avx512_fp16},
216 @code{noavx512f},
217 @code{noavx512cd},
218 @code{noavx512er},
219 @code{noavx512pf},
220 @code{noavx512vl},
221 @code{noavx512bw},
222 @code{noavx512dq},
223 @code{noavx512ifma},
224 @code{noavx512vbmi},
225 @code{noavx512_4fmaps},
226 @code{noavx512_4vnniw},
227 @code{noavx512_vpopcntdq},
228 @code{noavx512_vbmi2},
229 @code{noavx512_vnni},
230 @code{noavx512_bitalg},
231 @code{noavx512_vp2intersect},
232 @code{notdx},
233 @code{noavx512_bf16},
234 @code{noavx_vnni},
235 @code{noavx512_fp16},
236 @code{noenqcmd},
237 @code{noserialize},
238 @code{notsxldtrk},
239 @code{amx_int8},
240 @code{noamx_int8},
241 @code{amx_bf16},
242 @code{noamx_bf16},
243 @code{amx_tile},
244 @code{noamx_tile},
245 @code{nouintr},
246 @code{nohreset},
247 @code{vmx},
248 @code{vmfunc},
249 @code{smx},
250 @code{xsave},
251 @code{xsaveopt},
252 @code{xsavec},
253 @code{xsaves},
254 @code{aes},
255 @code{pclmul},
256 @code{fsgsbase},
257 @code{rdrnd},
258 @code{f16c},
259 @code{bmi2},
260 @code{fma},
261 @code{movbe},
262 @code{ept},
263 @code{lzcnt},
264 @code{popcnt},
265 @code{hle},
266 @code{rtm},
267 @code{invpcid},
268 @code{clflush},
269 @code{mwaitx},
270 @code{clzero},
271 @code{wbnoinvd},
272 @code{pconfig},
273 @code{waitpkg},
274 @code{uintr},
275 @code{cldemote},
276 @code{rdpru},
277 @code{mcommit},
278 @code{sev_es},
279 @code{lwp},
280 @code{fma4},
281 @code{xop},
282 @code{cx16},
283 @code{syscall},
284 @code{rdtscp},
285 @code{3dnow},
286 @code{3dnowa},
287 @code{sse4a},
288 @code{sse5},
289 @code{snp},
290 @code{invlpgb},
291 @code{tlbsync},
292 @code{svme} and
293 @code{padlock}.
294 Note that rather than extending a basic instruction set, the extension
295 mnemonics starting with @code{no} revoke the respective functionality.
296
297 When the @code{.arch} directive is used with @option{-march}, the
298 @code{.arch} directive will take precedent.
299
300 @cindex @samp{-mtune=} option, i386
301 @cindex @samp{-mtune=} option, x86-64
302 @item -mtune=@var{CPU}
303 This option specifies a processor to optimize for. When used in
304 conjunction with the @option{-march} option, only instructions
305 of the processor specified by the @option{-march} option will be
306 generated.
307
308 Valid @var{CPU} values are identical to the processor list of
309 @option{-march=@var{CPU}}.
310
311 @cindex @samp{-msse2avx} option, i386
312 @cindex @samp{-msse2avx} option, x86-64
313 @item -msse2avx
314 This option specifies that the assembler should encode SSE instructions
315 with VEX prefix.
316
317 @cindex @samp{-muse-unaligned-vector-move} option, i386
318 @cindex @samp{-muse-unaligned-vector-move} option, x86-64
319 @item -muse-unaligned-vector-move
320 This option specifies that the assembler should encode aligned vector
321 move as unaligned vector move.
322
323 @cindex @samp{-msse-check=} option, i386
324 @cindex @samp{-msse-check=} option, x86-64
325 @item -msse-check=@var{none}
326 @itemx -msse-check=@var{warning}
327 @itemx -msse-check=@var{error}
328 These options control if the assembler should check SSE instructions.
329 @option{-msse-check=@var{none}} will make the assembler not to check SSE
330 instructions, which is the default. @option{-msse-check=@var{warning}}
331 will make the assembler issue a warning for any SSE instruction.
332 @option{-msse-check=@var{error}} will make the assembler issue an error
333 for any SSE instruction.
334
335 @cindex @samp{-mavxscalar=} option, i386
336 @cindex @samp{-mavxscalar=} option, x86-64
337 @item -mavxscalar=@var{128}
338 @itemx -mavxscalar=@var{256}
339 These options control how the assembler should encode scalar AVX
340 instructions. @option{-mavxscalar=@var{128}} will encode scalar
341 AVX instructions with 128bit vector length, which is the default.
342 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
343 with 256bit vector length.
344
345 WARNING: Don't use this for production code - due to CPU errata the
346 resulting code may not work on certain models.
347
348 @cindex @samp{-mvexwig=} option, i386
349 @cindex @samp{-mvexwig=} option, x86-64
350 @item -mvexwig=@var{0}
351 @itemx -mvexwig=@var{1}
352 These options control how the assembler should encode VEX.W-ignored (WIG)
353 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
354 instructions with vex.w = 0, which is the default.
355 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
356 vex.w = 1.
357
358 WARNING: Don't use this for production code - due to CPU errata the
359 resulting code may not work on certain models.
360
361 @cindex @samp{-mevexlig=} option, i386
362 @cindex @samp{-mevexlig=} option, x86-64
363 @item -mevexlig=@var{128}
364 @itemx -mevexlig=@var{256}
365 @itemx -mevexlig=@var{512}
366 These options control how the assembler should encode length-ignored
367 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
368 EVEX instructions with 128bit vector length, which is the default.
369 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
370 encode LIG EVEX instructions with 256bit and 512bit vector length,
371 respectively.
372
373 @cindex @samp{-mevexwig=} option, i386
374 @cindex @samp{-mevexwig=} option, x86-64
375 @item -mevexwig=@var{0}
376 @itemx -mevexwig=@var{1}
377 These options control how the assembler should encode w-ignored (WIG)
378 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
379 EVEX instructions with evex.w = 0, which is the default.
380 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
381 evex.w = 1.
382
383 @cindex @samp{-mmnemonic=} option, i386
384 @cindex @samp{-mmnemonic=} option, x86-64
385 @item -mmnemonic=@var{att}
386 @itemx -mmnemonic=@var{intel}
387 This option specifies instruction mnemonic for matching instructions.
388 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
389 take precedent.
390
391 @cindex @samp{-msyntax=} option, i386
392 @cindex @samp{-msyntax=} option, x86-64
393 @item -msyntax=@var{att}
394 @itemx -msyntax=@var{intel}
395 This option specifies instruction syntax when processing instructions.
396 The @code{.att_syntax} and @code{.intel_syntax} directives will
397 take precedent.
398
399 @cindex @samp{-mnaked-reg} option, i386
400 @cindex @samp{-mnaked-reg} option, x86-64
401 @item -mnaked-reg
402 This option specifies that registers don't require a @samp{%} prefix.
403 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
404
405 @cindex @samp{-madd-bnd-prefix} option, i386
406 @cindex @samp{-madd-bnd-prefix} option, x86-64
407 @item -madd-bnd-prefix
408 This option forces the assembler to add BND prefix to all branches, even
409 if such prefix was not explicitly specified in the source code.
410
411 @cindex @samp{-mshared} option, i386
412 @cindex @samp{-mshared} option, x86-64
413 @item -mno-shared
414 On ELF target, the assembler normally optimizes out non-PLT relocations
415 against defined non-weak global branch targets with default visibility.
416 The @samp{-mshared} option tells the assembler to generate code which
417 may go into a shared library where all non-weak global branch targets
418 with default visibility can be preempted. The resulting code is
419 slightly bigger. This option only affects the handling of branch
420 instructions.
421
422 @cindex @samp{-mbig-obj} option, i386
423 @cindex @samp{-mbig-obj} option, x86-64
424 @item -mbig-obj
425 On PE/COFF target this option forces the use of big object file
426 format, which allows more than 32768 sections.
427
428 @cindex @samp{-momit-lock-prefix=} option, i386
429 @cindex @samp{-momit-lock-prefix=} option, x86-64
430 @item -momit-lock-prefix=@var{no}
431 @itemx -momit-lock-prefix=@var{yes}
432 These options control how the assembler should encode lock prefix.
433 This option is intended as a workaround for processors, that fail on
434 lock prefix. This option can only be safely used with single-core,
435 single-thread computers
436 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
437 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
438 which is the default.
439
440 @cindex @samp{-mfence-as-lock-add=} option, i386
441 @cindex @samp{-mfence-as-lock-add=} option, x86-64
442 @item -mfence-as-lock-add=@var{no}
443 @itemx -mfence-as-lock-add=@var{yes}
444 These options control how the assembler should encode lfence, mfence and
445 sfence.
446 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
447 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
448 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
449 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
450 sfence as usual, which is the default.
451
452 @cindex @samp{-mrelax-relocations=} option, i386
453 @cindex @samp{-mrelax-relocations=} option, x86-64
454 @item -mrelax-relocations=@var{no}
455 @itemx -mrelax-relocations=@var{yes}
456 These options control whether the assembler should generate relax
457 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
458 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
459 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
460 @option{-mrelax-relocations=@var{no}} will not generate relax
461 relocations. The default can be controlled by a configure option
462 @option{--enable-x86-relax-relocations}.
463
464 @cindex @samp{-malign-branch-boundary=} option, i386
465 @cindex @samp{-malign-branch-boundary=} option, x86-64
466 @item -malign-branch-boundary=@var{NUM}
467 This option controls how the assembler should align branches with segment
468 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
469 no less than 16. Branches will be aligned within @var{NUM} byte
470 boundary. @option{-malign-branch-boundary=0}, which is the default,
471 doesn't align branches.
472
473 @cindex @samp{-malign-branch=} option, i386
474 @cindex @samp{-malign-branch=} option, x86-64
475 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
476 This option specifies types of branches to align. @var{TYPE} is
477 combination of @samp{jcc}, which aligns conditional jumps,
478 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
479 which aligns unconditional jumps, @samp{call} which aligns calls,
480 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
481 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
482
483 @cindex @samp{-malign-branch-prefix-size=} option, i386
484 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
485 @item -malign-branch-prefix-size=@var{NUM}
486 This option specifies the maximum number of prefixes on an instruction
487 to align branches. @var{NUM} should be between 0 and 5. The default
488 @var{NUM} is 5.
489
490 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
491 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
492 @item -mbranches-within-32B-boundaries
493 This option aligns conditional jumps, fused conditional jumps and
494 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
495 on an instruction. It is equivalent to
496 @option{-malign-branch-boundary=32}
497 @option{-malign-branch=jcc+fused+jmp}
498 @option{-malign-branch-prefix-size=5}.
499 The default doesn't align branches.
500
501 @cindex @samp{-mlfence-after-load=} option, i386
502 @cindex @samp{-mlfence-after-load=} option, x86-64
503 @item -mlfence-after-load=@var{no}
504 @itemx -mlfence-after-load=@var{yes}
505 These options control whether the assembler should generate lfence
506 after load instructions. @option{-mlfence-after-load=@var{yes}} will
507 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
508 lfence, which is the default.
509
510 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
511 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
512 @item -mlfence-before-indirect-branch=@var{none}
513 @item -mlfence-before-indirect-branch=@var{all}
514 @item -mlfence-before-indirect-branch=@var{register}
515 @itemx -mlfence-before-indirect-branch=@var{memory}
516 These options control whether the assembler should generate lfence
517 before indirect near branch instructions.
518 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
519 before indirect near branch via register and issue a warning before
520 indirect near branch via memory.
521 It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
522 there's no explicit @option{-mlfence-before-ret=}.
523 @option{-mlfence-before-indirect-branch=@var{register}} will generate
524 lfence before indirect near branch via register.
525 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
526 warning before indirect near branch via memory.
527 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
528 lfence nor issue warning, which is the default. Note that lfence won't
529 be generated before indirect near branch via register with
530 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
531 after loading branch target register.
532
533 @cindex @samp{-mlfence-before-ret=} option, i386
534 @cindex @samp{-mlfence-before-ret=} option, x86-64
535 @item -mlfence-before-ret=@var{none}
536 @item -mlfence-before-ret=@var{shl}
537 @item -mlfence-before-ret=@var{or}
538 @item -mlfence-before-ret=@var{yes}
539 @itemx -mlfence-before-ret=@var{not}
540 These options control whether the assembler should generate lfence
541 before ret. @option{-mlfence-before-ret=@var{or}} will generate
542 generate or instruction with lfence.
543 @option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
544 with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
545 instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
546 generate lfence, which is the default.
547
548 @cindex @samp{-mx86-used-note=} option, i386
549 @cindex @samp{-mx86-used-note=} option, x86-64
550 @item -mx86-used-note=@var{no}
551 @itemx -mx86-used-note=@var{yes}
552 These options control whether the assembler should generate
553 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
554 GNU property notes. The default can be controlled by the
555 @option{--enable-x86-used-note} configure option.
556
557 @cindex @samp{-mevexrcig=} option, i386
558 @cindex @samp{-mevexrcig=} option, x86-64
559 @item -mevexrcig=@var{rne}
560 @itemx -mevexrcig=@var{rd}
561 @itemx -mevexrcig=@var{ru}
562 @itemx -mevexrcig=@var{rz}
563 These options control how the assembler should encode SAE-only
564 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
565 of EVEX instruction with 00, which is the default.
566 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
567 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
568 with 01, 10 and 11 RC bits, respectively.
569
570 @cindex @samp{-mamd64} option, x86-64
571 @cindex @samp{-mintel64} option, x86-64
572 @item -mamd64
573 @itemx -mintel64
574 This option specifies that the assembler should accept only AMD64 or
575 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
576 only and AMD64 ISAs.
577
578 @cindex @samp{-O0} option, i386
579 @cindex @samp{-O0} option, x86-64
580 @cindex @samp{-O} option, i386
581 @cindex @samp{-O} option, x86-64
582 @cindex @samp{-O1} option, i386
583 @cindex @samp{-O1} option, x86-64
584 @cindex @samp{-O2} option, i386
585 @cindex @samp{-O2} option, x86-64
586 @cindex @samp{-Os} option, i386
587 @cindex @samp{-Os} option, x86-64
588 @item -O0 | -O | -O1 | -O2 | -Os
589 Optimize instruction encoding with smaller instruction size. @samp{-O}
590 and @samp{-O1} encode 64-bit register load instructions with 64-bit
591 immediate as 32-bit register load instructions with 31-bit or 32-bits
592 immediates, encode 64-bit register clearing instructions with 32-bit
593 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
594 register clearing instructions with 128-bit VEX vector register
595 clearing instructions, encode 128-bit/256-bit EVEX vector
596 register load/store instructions with VEX vector register load/store
597 instructions, and encode 128-bit/256-bit EVEX packed integer logical
598 instructions with 128-bit/256-bit VEX packed integer logical.
599
600 @samp{-O2} includes @samp{-O1} optimization plus encodes
601 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
602 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
603 instructions with commutative source operands will also have their
604 source operands swapped if this allows using the 2-byte VEX prefix form
605 instead of the 3-byte one. Certain forms of AND as well as OR with the
606 same (register) operand specified twice will also be changed to TEST.
607
608 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
609 and 64-bit register tests with immediate as 8-bit register test with
610 immediate. @samp{-O0} turns off this optimization.
611
612 @end table
613 @c man end
614
615 @node i386-Directives
616 @section x86 specific Directives
617
618 @cindex machine directives, x86
619 @cindex x86 machine directives
620 @table @code
621
622 @cindex @code{lcomm} directive, COFF
623 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
624 Reserve @var{length} (an absolute expression) bytes for a local common
625 denoted by @var{symbol}. The section and value of @var{symbol} are
626 those of the new local common. The addresses are allocated in the bss
627 section, so that at run-time the bytes start off zeroed. Since
628 @var{symbol} is not declared global, it is normally not visible to
629 @code{@value{LD}}. The optional third parameter, @var{alignment},
630 specifies the desired alignment of the symbol in the bss section.
631
632 This directive is only available for COFF based x86 targets.
633
634 @cindex @code{largecomm} directive, ELF
635 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
636 This directive behaves in the same way as the @code{comm} directive
637 except that the data is placed into the @var{.lbss} section instead of
638 the @var{.bss} section @ref{Comm}.
639
640 The directive is intended to be used for data which requires a large
641 amount of space, and it is only available for ELF based x86_64
642 targets.
643
644 @cindex @code{value} directive
645 @item .value @var{expression} [, @var{expression}]
646 This directive behaves in the same way as the @code{.short} directive,
647 taking a series of comma separated expressions and storing them as
648 two-byte wide values into the current section.
649
650 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
651
652 @end table
653
654 @node i386-Syntax
655 @section i386 Syntactical Considerations
656 @menu
657 * i386-Variations:: AT&T Syntax versus Intel Syntax
658 * i386-Chars:: Special Characters
659 @end menu
660
661 @node i386-Variations
662 @subsection AT&T Syntax versus Intel Syntax
663
664 @cindex i386 intel_syntax pseudo op
665 @cindex intel_syntax pseudo op, i386
666 @cindex i386 att_syntax pseudo op
667 @cindex att_syntax pseudo op, i386
668 @cindex i386 syntax compatibility
669 @cindex syntax compatibility, i386
670 @cindex x86-64 intel_syntax pseudo op
671 @cindex intel_syntax pseudo op, x86-64
672 @cindex x86-64 att_syntax pseudo op
673 @cindex att_syntax pseudo op, x86-64
674 @cindex x86-64 syntax compatibility
675 @cindex syntax compatibility, x86-64
676
677 @code{@value{AS}} now supports assembly using Intel assembler syntax.
678 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
679 back to the usual AT&T mode for compatibility with the output of
680 @code{@value{GCC}}. Either of these directives may have an optional
681 argument, @code{prefix}, or @code{noprefix} specifying whether registers
682 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
683 different from Intel syntax. We mention these differences because
684 almost all 80386 documents use Intel syntax. Notable differences
685 between the two syntaxes are:
686
687 @cindex immediate operands, i386
688 @cindex i386 immediate operands
689 @cindex register operands, i386
690 @cindex i386 register operands
691 @cindex jump/call operands, i386
692 @cindex i386 jump/call operands
693 @cindex operand delimiters, i386
694
695 @cindex immediate operands, x86-64
696 @cindex x86-64 immediate operands
697 @cindex register operands, x86-64
698 @cindex x86-64 register operands
699 @cindex jump/call operands, x86-64
700 @cindex x86-64 jump/call operands
701 @cindex operand delimiters, x86-64
702 @itemize @bullet
703 @item
704 AT&T immediate operands are preceded by @samp{$}; Intel immediate
705 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
706 AT&T register operands are preceded by @samp{%}; Intel register operands
707 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
708 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
709
710 @cindex i386 source, destination operands
711 @cindex source, destination operands; i386
712 @cindex x86-64 source, destination operands
713 @cindex source, destination operands; x86-64
714 @item
715 AT&T and Intel syntax use the opposite order for source and destination
716 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
717 @samp{source, dest} convention is maintained for compatibility with
718 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
719 instructions with 2 immediate operands, such as the @samp{enter}
720 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
721
722 @cindex mnemonic suffixes, i386
723 @cindex sizes operands, i386
724 @cindex i386 size suffixes
725 @cindex mnemonic suffixes, x86-64
726 @cindex sizes operands, x86-64
727 @cindex x86-64 size suffixes
728 @item
729 In AT&T syntax the size of memory operands is determined from the last
730 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
731 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
732 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
733 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
734 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
735 no other way to disambiguate an instruction. Intel syntax accomplishes this by
736 prefixing memory operands (@emph{not} the instruction mnemonics) with
737 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
738 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
739 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
740 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
741 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
742
743 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
744 instruction with the 64-bit displacement or immediate operand.
745
746 @cindex return instructions, i386
747 @cindex i386 jump, call, return
748 @cindex return instructions, x86-64
749 @cindex x86-64 jump, call, return
750 @item
751 Immediate form long jumps and calls are
752 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
753 Intel syntax is
754 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
755 instruction
756 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
757 @samp{ret far @var{stack-adjust}}.
758
759 @cindex sections, i386
760 @cindex i386 sections
761 @cindex sections, x86-64
762 @cindex x86-64 sections
763 @item
764 The AT&T assembler does not provide support for multiple section
765 programs. Unix style systems expect all programs to be single sections.
766 @end itemize
767
768 @node i386-Chars
769 @subsection Special Characters
770
771 @cindex line comment character, i386
772 @cindex i386 line comment character
773 The presence of a @samp{#} appearing anywhere on a line indicates the
774 start of a comment that extends to the end of that line.
775
776 If a @samp{#} appears as the first character of a line then the whole
777 line is treated as a comment, but in this case the line can also be a
778 logical line number directive (@pxref{Comments}) or a preprocessor
779 control command (@pxref{Preprocessing}).
780
781 If the @option{--divide} command-line option has not been specified
782 then the @samp{/} character appearing anywhere on a line also
783 introduces a line comment.
784
785 @cindex line separator, i386
786 @cindex statement separator, i386
787 @cindex i386 line separator
788 The @samp{;} character can be used to separate statements on the same
789 line.
790
791 @node i386-Mnemonics
792 @section i386-Mnemonics
793 @subsection Instruction Naming
794
795 @cindex i386 instruction naming
796 @cindex instruction naming, i386
797 @cindex x86-64 instruction naming
798 @cindex instruction naming, x86-64
799
800 Instruction mnemonics are suffixed with one character modifiers which
801 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
802 and @samp{q} specify byte, word, long and quadruple word operands. If
803 no suffix is specified by an instruction then @code{@value{AS}} tries to
804 fill in the missing suffix based on the destination register operand
805 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
806 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
807 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
808 assembler which assumes that a missing mnemonic suffix implies long
809 operand size. (This incompatibility does not affect compiler output
810 since compilers always explicitly specify the mnemonic suffix.)
811
812 When there is no sizing suffix and no (suitable) register operands to
813 deduce the size of memory operands, with a few exceptions and where long
814 operand size is possible in the first place, operand size will default
815 to long in 32- and 64-bit modes. Similarly it will default to short in
816 16-bit mode. Noteworthy exceptions are
817
818 @itemize @bullet
819 @item
820 Instructions with an implicit on-stack operand as well as branches,
821 which default to quad in 64-bit mode.
822
823 @item
824 Sign- and zero-extending moves, which default to byte size source
825 operands.
826
827 @item
828 Floating point insns with integer operands, which default to short (for
829 perhaps historical reasons).
830
831 @item
832 CRC32 with a 64-bit destination, which defaults to a quad source
833 operand.
834
835 @end itemize
836
837 @cindex encoding options, i386
838 @cindex encoding options, x86-64
839
840 Different encoding options can be specified via pseudo prefixes:
841
842 @itemize @bullet
843 @item
844 @samp{@{disp8@}} -- prefer 8-bit displacement.
845
846 @item
847 @samp{@{disp32@}} -- prefer 32-bit displacement.
848
849 @item
850 @samp{@{disp16@}} -- prefer 16-bit displacement.
851
852 @item
853 @samp{@{load@}} -- prefer load-form instruction.
854
855 @item
856 @samp{@{store@}} -- prefer store-form instruction.
857
858 @item
859 @samp{@{vex@}} -- encode with VEX prefix.
860
861 @item
862 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
863
864 @item
865 @samp{@{evex@}} -- encode with EVEX prefix.
866
867 @item
868 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
869 instructions (x86-64 only). Note that this differs from the @samp{rex}
870 prefix which generates REX prefix unconditionally.
871
872 @item
873 @samp{@{nooptimize@}} -- disable instruction size optimization.
874 @end itemize
875
876 Mnemonics of Intel VNNI instructions are encoded with the EVEX prefix
877 by default. The pseudo @samp{@{vex@}} prefix can be used to encode
878 mnemonics of Intel VNNI instructions with the VEX prefix.
879
880 @cindex conversion instructions, i386
881 @cindex i386 conversion instructions
882 @cindex conversion instructions, x86-64
883 @cindex x86-64 conversion instructions
884 The Intel-syntax conversion instructions
885
886 @itemize @bullet
887 @item
888 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
889
890 @item
891 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
892
893 @item
894 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
895
896 @item
897 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
898
899 @item
900 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
901 (x86-64 only),
902
903 @item
904 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
905 @samp{%rdx:%rax} (x86-64 only),
906 @end itemize
907
908 @noindent
909 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
910 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
911 instructions.
912
913 @cindex extension instructions, i386
914 @cindex i386 extension instructions
915 @cindex extension instructions, x86-64
916 @cindex x86-64 extension instructions
917 The Intel-syntax extension instructions
918
919 @itemize @bullet
920 @item
921 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
922
923 @item
924 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
925
926 @item
927 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
928 (x86-64 only).
929
930 @item
931 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
932
933 @item
934 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
935 (x86-64 only).
936
937 @item
938 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
939 (x86-64 only).
940
941 @item
942 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
943
944 @item
945 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
946
947 @item
948 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
949 (x86-64 only).
950
951 @item
952 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
953
954 @item
955 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
956 (x86-64 only).
957 @end itemize
958
959 @noindent
960 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
961 @samp{movsbq/movsxb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
962 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
963 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
964 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
965
966 @cindex jump instructions, i386
967 @cindex call instructions, i386
968 @cindex jump instructions, x86-64
969 @cindex call instructions, x86-64
970 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
971 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
972 convention.
973
974 @subsection AT&T Mnemonic versus Intel Mnemonic
975
976 @cindex i386 mnemonic compatibility
977 @cindex mnemonic compatibility, i386
978
979 @code{@value{AS}} supports assembly using Intel mnemonic.
980 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
981 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
982 syntax for compatibility with the output of @code{@value{GCC}}.
983 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
984 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
985 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
986 assembler with different mnemonics from those in Intel IA32 specification.
987 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
988
989 @itemize @bullet
990 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
991 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
992 destination register with both AT&T and Intel mnemonics.
993 @end itemize
994
995 @node i386-Regs
996 @section Register Naming
997
998 @cindex i386 registers
999 @cindex registers, i386
1000 @cindex x86-64 registers
1001 @cindex registers, x86-64
1002 Register operands are always prefixed with @samp{%}. The 80386 registers
1003 consist of
1004
1005 @itemize @bullet
1006 @item
1007 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
1008 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
1009 frame pointer), and @samp{%esp} (the stack pointer).
1010
1011 @item
1012 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
1013 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
1014
1015 @item
1016 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
1017 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
1018 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
1019 @samp{%cx}, and @samp{%dx})
1020
1021 @item
1022 the 6 section registers @samp{%cs} (code section), @samp{%ds}
1023 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
1024 and @samp{%gs}.
1025
1026 @item
1027 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
1028 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
1029
1030 @item
1031 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
1032 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
1033
1034 @item
1035 the 2 test registers @samp{%tr6} and @samp{%tr7}.
1036
1037 @item
1038 the 8 floating point register stack @samp{%st} or equivalently
1039 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1040 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
1041 These registers are overloaded by 8 MMX registers @samp{%mm0},
1042 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1043 @samp{%mm6} and @samp{%mm7}.
1044
1045 @item
1046 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1047 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1048 @end itemize
1049
1050 The AMD x86-64 architecture extends the register set by:
1051
1052 @itemize @bullet
1053 @item
1054 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1055 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1056 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1057 pointer)
1058
1059 @item
1060 the 8 extended registers @samp{%r8}--@samp{%r15}.
1061
1062 @item
1063 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1064
1065 @item
1066 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1067
1068 @item
1069 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1070
1071 @item
1072 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1073
1074 @item
1075 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1076
1077 @item
1078 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1079 @end itemize
1080
1081 With the AVX extensions more registers were made available:
1082
1083 @itemize @bullet
1084
1085 @item
1086 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1087 available in 32-bit mode). The bottom 128 bits are overlaid with the
1088 @samp{xmm0}--@samp{xmm15} registers.
1089
1090 @end itemize
1091
1092 The AVX512 extensions added the following registers:
1093
1094 @itemize @bullet
1095
1096 @item
1097 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1098 available in 32-bit mode). The bottom 128 bits are overlaid with the
1099 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1100 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1101
1102 @item
1103 the 8 mask registers @samp{%k0}--@samp{%k7}.
1104
1105 @end itemize
1106
1107 @node i386-Prefixes
1108 @section Instruction Prefixes
1109
1110 @cindex i386 instruction prefixes
1111 @cindex instruction prefixes, i386
1112 @cindex prefixes, i386
1113 Instruction prefixes are used to modify the following instruction. They
1114 are used to repeat string instructions, to provide section overrides, to
1115 perform bus lock operations, and to change operand and address sizes.
1116 (Most instructions that normally operate on 32-bit operands will use
1117 16-bit operands if the instruction has an ``operand size'' prefix.)
1118 Instruction prefixes are best written on the same line as the instruction
1119 they act upon. For example, the @samp{scas} (scan string) instruction is
1120 repeated with:
1121
1122 @smallexample
1123 repne scas %es:(%edi),%al
1124 @end smallexample
1125
1126 You may also place prefixes on the lines immediately preceding the
1127 instruction, but this circumvents checks that @code{@value{AS}} does
1128 with prefixes, and will not work with all prefixes.
1129
1130 Here is a list of instruction prefixes:
1131
1132 @cindex section override prefixes, i386
1133 @itemize @bullet
1134 @item
1135 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1136 @samp{fs}, @samp{gs}. These are automatically added by specifying
1137 using the @var{section}:@var{memory-operand} form for memory references.
1138
1139 @cindex size prefixes, i386
1140 @item
1141 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1142 change 32-bit operands/addresses into 16-bit operands/addresses,
1143 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1144 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1145 @emph{must} appear on the same line of code as the instruction they
1146 modify. For example, in a 16-bit @code{.code16} section, you might
1147 write:
1148
1149 @smallexample
1150 addr32 jmpl *(%ebx)
1151 @end smallexample
1152
1153 @cindex bus lock prefixes, i386
1154 @cindex inhibiting interrupts, i386
1155 @item
1156 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1157 the instruction it precedes. (This is only valid with certain
1158 instructions; see a 80386 manual for details).
1159
1160 @cindex coprocessor wait, i386
1161 @item
1162 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1163 complete the current instruction. This should never be needed for the
1164 80386/80387 combination.
1165
1166 @cindex repeat prefixes, i386
1167 @item
1168 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1169 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1170 times if the current address size is 16-bits).
1171 @cindex REX prefixes, i386
1172 @item
1173 The @samp{rex} family of prefixes is used by x86-64 to encode
1174 extensions to i386 instruction set. The @samp{rex} prefix has four
1175 bits --- an operand size overwrite (@code{64}) used to change operand size
1176 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1177 register set.
1178
1179 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1180 instruction emits @samp{rex} prefix with all the bits set. By omitting
1181 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1182 prefixes as well. Normally, there is no need to write the prefixes
1183 explicitly, since gas will automatically generate them based on the
1184 instruction operands.
1185 @end itemize
1186
1187 @node i386-Memory
1188 @section Memory References
1189
1190 @cindex i386 memory references
1191 @cindex memory references, i386
1192 @cindex x86-64 memory references
1193 @cindex memory references, x86-64
1194 An Intel syntax indirect memory reference of the form
1195
1196 @smallexample
1197 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1198 @end smallexample
1199
1200 @noindent
1201 is translated into the AT&T syntax
1202
1203 @smallexample
1204 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1205 @end smallexample
1206
1207 @noindent
1208 where @var{base} and @var{index} are the optional 32-bit base and
1209 index registers, @var{disp} is the optional displacement, and
1210 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1211 to calculate the address of the operand. If no @var{scale} is
1212 specified, @var{scale} is taken to be 1. @var{section} specifies the
1213 optional section register for the memory operand, and may override the
1214 default section register (see a 80386 manual for section register
1215 defaults). Note that section overrides in AT&T syntax @emph{must}
1216 be preceded by a @samp{%}. If you specify a section override which
1217 coincides with the default section register, @code{@value{AS}} does @emph{not}
1218 output any section register override prefixes to assemble the given
1219 instruction. Thus, section overrides can be specified to emphasize which
1220 section register is used for a given memory operand.
1221
1222 Here are some examples of Intel and AT&T style memory references:
1223
1224 @table @asis
1225 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1226 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1227 missing, and the default section is used (@samp{%ss} for addressing with
1228 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1229
1230 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1231 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1232 @samp{foo}. All other fields are missing. The section register here
1233 defaults to @samp{%ds}.
1234
1235 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1236 This uses the value pointed to by @samp{foo} as a memory operand.
1237 Note that @var{base} and @var{index} are both missing, but there is only
1238 @emph{one} @samp{,}. This is a syntactic exception.
1239
1240 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1241 This selects the contents of the variable @samp{foo} with section
1242 register @var{section} being @samp{%gs}.
1243 @end table
1244
1245 Absolute (as opposed to PC relative) call and jump operands must be
1246 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1247 always chooses PC relative addressing for jump/call labels.
1248
1249 Any instruction that has a memory operand, but no register operand,
1250 @emph{must} specify its size (byte, word, long, or quadruple) with an
1251 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1252 respectively).
1253
1254 The x86-64 architecture adds an RIP (instruction pointer relative)
1255 addressing. This addressing mode is specified by using @samp{rip} as a
1256 base register. Only constant offsets are valid. For example:
1257
1258 @table @asis
1259 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1260 Points to the address 1234 bytes past the end of the current
1261 instruction.
1262
1263 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1264 Points to the @code{symbol} in RIP relative way, this is shorter than
1265 the default absolute addressing.
1266 @end table
1267
1268 Other addressing modes remain unchanged in x86-64 architecture, except
1269 registers used are 64-bit instead of 32-bit.
1270
1271 @node i386-Jumps
1272 @section Handling of Jump Instructions
1273
1274 @cindex jump optimization, i386
1275 @cindex i386 jump optimization
1276 @cindex jump optimization, x86-64
1277 @cindex x86-64 jump optimization
1278 Jump instructions are always optimized to use the smallest possible
1279 displacements. This is accomplished by using byte (8-bit) displacement
1280 jumps whenever the target is sufficiently close. If a byte displacement
1281 is insufficient a long displacement is used. We do not support
1282 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1283 instruction with the @samp{data16} instruction prefix), since the 80386
1284 insists upon masking @samp{%eip} to 16 bits after the word displacement
1285 is added. (See also @pxref{i386-Arch})
1286
1287 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1288 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1289 displacements, so that if you use these instructions (@code{@value{GCC}} does
1290 not use them) you may get an error message (and incorrect code). The AT&T
1291 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1292 to
1293
1294 @smallexample
1295 jcxz cx_zero
1296 jmp cx_nonzero
1297 cx_zero: jmp foo
1298 cx_nonzero:
1299 @end smallexample
1300
1301 @node i386-Float
1302 @section Floating Point
1303
1304 @cindex i386 floating point
1305 @cindex floating point, i386
1306 @cindex x86-64 floating point
1307 @cindex floating point, x86-64
1308 All 80387 floating point types except packed BCD are supported.
1309 (BCD support may be added without much difficulty). These data
1310 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1311 double (64-bit), and extended (80-bit) precision floating point.
1312 Each supported type has an instruction mnemonic suffix and a constructor
1313 associated with it. Instruction mnemonic suffixes specify the operand's
1314 data type. Constructors build these data types into memory.
1315
1316 @cindex @code{float} directive, i386
1317 @cindex @code{single} directive, i386
1318 @cindex @code{double} directive, i386
1319 @cindex @code{tfloat} directive, i386
1320 @cindex @code{hfloat} directive, i386
1321 @cindex @code{bfloat16} directive, i386
1322 @cindex @code{float} directive, x86-64
1323 @cindex @code{single} directive, x86-64
1324 @cindex @code{double} directive, x86-64
1325 @cindex @code{tfloat} directive, x86-64
1326 @cindex @code{hfloat} directive, x86-64
1327 @cindex @code{bfloat16} directive, x86-64
1328 @itemize @bullet
1329 @item
1330 Floating point constructors are @samp{.float} or @samp{.single},
1331 @samp{.double}, @samp{.tfloat}, @samp{.hfloat}, and @samp{.bfloat16} for 32-,
1332 64-, 80-, and 16-bit (two flavors) formats respectively. The former three
1333 correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, and @samp{t}.
1334 @samp{t} stands for 80-bit (ten byte) real. The 80387 only supports this
1335 format via the @samp{fldt} (load 80-bit real to stack top) and @samp{fstpt}
1336 (store 80-bit real and pop stack) instructions.
1337
1338 @cindex @code{word} directive, i386
1339 @cindex @code{long} directive, i386
1340 @cindex @code{int} directive, i386
1341 @cindex @code{quad} directive, i386
1342 @cindex @code{word} directive, x86-64
1343 @cindex @code{long} directive, x86-64
1344 @cindex @code{int} directive, x86-64
1345 @cindex @code{quad} directive, x86-64
1346 @item
1347 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1348 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1349 corresponding instruction mnemonic suffixes are @samp{s} (short),
1350 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1351 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1352 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1353 stack) instructions.
1354 @end itemize
1355
1356 Register to register operations should not use instruction mnemonic suffixes.
1357 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1358 wrote @samp{fst %st, %st(1)}, since all register to register operations
1359 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1360 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1361 then stores the result in the 4 byte location @samp{mem})
1362
1363 @node i386-SIMD
1364 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1365
1366 @cindex MMX, i386
1367 @cindex 3DNow!, i386
1368 @cindex SIMD, i386
1369 @cindex MMX, x86-64
1370 @cindex 3DNow!, x86-64
1371 @cindex SIMD, x86-64
1372
1373 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1374 instructions for integer data), available on Intel's Pentium MMX
1375 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1376 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1377 instruction set (SIMD instructions for 32-bit floating point data)
1378 available on AMD's K6-2 processor and possibly others in the future.
1379
1380 Currently, @code{@value{AS}} does not support Intel's floating point
1381 SIMD, Katmai (KNI).
1382
1383 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1384 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1385 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1386 floating point values. The MMX registers cannot be used at the same time
1387 as the floating point stack.
1388
1389 See Intel and AMD documentation, keeping in mind that the operand order in
1390 instructions is reversed from the Intel syntax.
1391
1392 @node i386-LWP
1393 @section AMD's Lightweight Profiling Instructions
1394
1395 @cindex LWP, i386
1396 @cindex LWP, x86-64
1397
1398 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1399 instruction set, available on AMD's Family 15h (Orochi) processors.
1400
1401 LWP enables applications to collect and manage performance data, and
1402 react to performance events. The collection of performance data
1403 requires no context switches. LWP runs in the context of a thread and
1404 so several counters can be used independently across multiple threads.
1405 LWP can be used in both 64-bit and legacy 32-bit modes.
1406
1407 For detailed information on the LWP instruction set, see the
1408 @cite{AMD Lightweight Profiling Specification} available at
1409 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1410
1411 @node i386-BMI
1412 @section Bit Manipulation Instructions
1413
1414 @cindex BMI, i386
1415 @cindex BMI, x86-64
1416
1417 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1418
1419 BMI instructions provide several instructions implementing individual
1420 bit manipulation operations such as isolation, masking, setting, or
1421 resetting.
1422
1423 @c Need to add a specification citation here when available.
1424
1425 @node i386-TBM
1426 @section AMD's Trailing Bit Manipulation Instructions
1427
1428 @cindex TBM, i386
1429 @cindex TBM, x86-64
1430
1431 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1432 instruction set, available on AMD's BDVER2 processors (Trinity and
1433 Viperfish).
1434
1435 TBM instructions provide instructions implementing individual bit
1436 manipulation operations such as isolating, masking, setting, resetting,
1437 complementing, and operations on trailing zeros and ones.
1438
1439 @c Need to add a specification citation here when available.
1440
1441 @node i386-16bit
1442 @section Writing 16-bit Code
1443
1444 @cindex i386 16-bit code
1445 @cindex 16-bit code, i386
1446 @cindex real-mode code, i386
1447 @cindex @code{code16gcc} directive, i386
1448 @cindex @code{code16} directive, i386
1449 @cindex @code{code32} directive, i386
1450 @cindex @code{code64} directive, i386
1451 @cindex @code{code64} directive, x86-64
1452 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1453 or 64-bit x86-64 code depending on the default configuration,
1454 it also supports writing code to run in real mode or in 16-bit protected
1455 mode code segments. To do this, put a @samp{.code16} or
1456 @samp{.code16gcc} directive before the assembly language instructions to
1457 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1458 32-bit code with the @samp{.code32} directive or 64-bit code with the
1459 @samp{.code64} directive.
1460
1461 @samp{.code16gcc} provides experimental support for generating 16-bit
1462 code from gcc, and differs from @samp{.code16} in that @samp{call},
1463 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1464 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1465 default to 32-bit size. This is so that the stack pointer is
1466 manipulated in the same way over function calls, allowing access to
1467 function parameters at the same stack offsets as in 32-bit mode.
1468 @samp{.code16gcc} also automatically adds address size prefixes where
1469 necessary to use the 32-bit addressing modes that gcc generates.
1470
1471 The code which @code{@value{AS}} generates in 16-bit mode will not
1472 necessarily run on a 16-bit pre-80386 processor. To write code that
1473 runs on such a processor, you must refrain from using @emph{any} 32-bit
1474 constructs which require @code{@value{AS}} to output address or operand
1475 size prefixes.
1476
1477 Note that writing 16-bit code instructions by explicitly specifying a
1478 prefix or an instruction mnemonic suffix within a 32-bit code section
1479 generates different machine instructions than those generated for a
1480 16-bit code segment. In a 32-bit code section, the following code
1481 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1482 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1483
1484 @smallexample
1485 pushw $4
1486 @end smallexample
1487
1488 The same code in a 16-bit code section would generate the machine
1489 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1490 is correct since the processor default operand size is assumed to be 16
1491 bits in a 16-bit code section.
1492
1493 @node i386-Arch
1494 @section Specifying CPU Architecture
1495
1496 @cindex arch directive, i386
1497 @cindex i386 arch directive
1498 @cindex arch directive, x86-64
1499 @cindex x86-64 arch directive
1500
1501 @code{@value{AS}} may be told to assemble for a particular CPU
1502 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1503 directive enables a warning when gas detects an instruction that is not
1504 supported on the CPU specified. The choices for @var{cpu_type} are:
1505
1506 @multitable @columnfractions .20 .20 .20 .20
1507 @item @samp{default} @tab @samp{push} @tab @samp{pop}
1508 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1509 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1510 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1511 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1512 @item @samp{corei7} @tab @samp{iamcu}
1513 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1514 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1515 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{znver3}
1516 @item @samp{btver1} @tab @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1517 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1518 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1519 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1520 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1521 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1522 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1523 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1524 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1525 @item @samp{.hle}
1526 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1527 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1528 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1529 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1530 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1531 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1532 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1533 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1534 @item @samp{.tdx} @tab @samp{.avx_vnni} @tab @samp{.avx512_fp16}
1535 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @samp{.ibt}
1536 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1537 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1538 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1539 @item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_tile}
1540 @item @samp{.kl} @tab @samp{.widekl} @tab @samp{.uintr} @tab @samp{.hreset}
1541 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1542 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1543 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1544 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1545 @item @samp{.mcommit} @tab @samp{.sev_es} @tab @samp{.snp} @tab @samp{.invlpgb}
1546 @item @samp{.tlbsync}
1547 @end multitable
1548
1549 Apart from the warning, there are only two other effects on
1550 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1551 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1552 will automatically use a two byte opcode sequence. The larger three
1553 byte opcode sequence is used on the 486 (and when no architecture is
1554 specified) because it executes faster on the 486. Note that you can
1555 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1556 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1557 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1558 conditional jumps will be promoted when necessary to a two instruction
1559 sequence consisting of a conditional jump of the opposite sense around
1560 an unconditional jump to the target.
1561
1562 Following the CPU architecture (but not a sub-architecture, which are those
1563 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1564 control automatic promotion of conditional jumps. @samp{jumps} is the
1565 default, and enables jump promotion; All external jumps will be of the long
1566 variety, and file-local jumps will be promoted as necessary.
1567 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1568 byte offset jumps, and warns about file-local conditional jumps that
1569 @code{@value{AS}} promotes.
1570 Unconditional jumps are treated as for @samp{jumps}.
1571
1572 For example
1573
1574 @smallexample
1575 .arch i8086,nojumps
1576 @end smallexample
1577
1578 @node i386-ISA
1579 @section AMD64 ISA vs. Intel64 ISA
1580
1581 There are some discrepancies between AMD64 and Intel64 ISAs.
1582
1583 @itemize @bullet
1584 @item For @samp{movsxd} with 16-bit destination register, AMD64
1585 supports 32-bit source operand and Intel64 supports 16-bit source
1586 operand.
1587
1588 @item For far branches (with explicit memory operand), both ISAs support
1589 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1590 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1591 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1592 syntax.
1593
1594 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1595 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1596 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1597 operands).
1598
1599 @end itemize
1600
1601 @node i386-Bugs
1602 @section AT&T Syntax bugs
1603
1604 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1605 assemblers, generate floating point instructions with reversed source
1606 and destination registers in certain cases. Unfortunately, gcc and
1607 possibly many other programs use this reversed syntax, so we're stuck
1608 with it.
1609
1610 For example
1611
1612 @smallexample
1613 fsub %st,%st(3)
1614 @end smallexample
1615 @noindent
1616 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1617 than the expected @samp{%st(3) - %st}. This happens with all the
1618 non-commutative arithmetic floating point operations with two register
1619 operands where the source register is @samp{%st} and the destination
1620 register is @samp{%st(i)}.
1621
1622 @node i386-Notes
1623 @section Notes
1624
1625 @cindex i386 @code{mul}, @code{imul} instructions
1626 @cindex @code{mul} instruction, i386
1627 @cindex @code{imul} instruction, i386
1628 @cindex @code{mul} instruction, x86-64
1629 @cindex @code{imul} instruction, x86-64
1630 There is some trickery concerning the @samp{mul} and @samp{imul}
1631 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1632 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1633 for @samp{imul}) can be output only in the one operand form. Thus,
1634 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1635 the expanding multiply would clobber the @samp{%edx} register, and this
1636 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1637 64-bit product in @samp{%edx:%eax}.
1638
1639 We have added a two operand form of @samp{imul} when the first operand
1640 is an immediate mode expression and the second operand is a register.
1641 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1642 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1643 $69, %eax, %eax}.
1644