[MIPS] Add Loongson 3A2000/3A3000 proccessor support.
[binutils-gdb.git] / gas / doc / c-mips.texi
1 @c Copyright (C) 1991-2018 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @ifset GENERIC
5 @page
6 @node MIPS-Dependent
7 @chapter MIPS Dependent Features
8 @end ifset
9 @ifclear GENERIC
10 @node Machine Dependencies
11 @chapter MIPS Dependent Features
12 @end ifclear
13
14 @cindex MIPS processor
15 @sc{gnu} @code{@value{AS}} for MIPS architectures supports several
16 different MIPS processors, and MIPS ISA levels I through V, MIPS32,
17 and MIPS64. For information about the MIPS instruction set, see
18 @cite{MIPS RISC Architecture}, by Kane and Heindrich (Prentice-Hall).
19 For an overview of MIPS assembly conventions, see ``Appendix D:
20 Assembly Language Programming'' in the same work.
21
22 @menu
23 * MIPS Options:: Assembler options
24 * MIPS Macros:: High-level assembly macros
25 * MIPS Symbol Sizes:: Directives to override the size of symbols
26 * MIPS Small Data:: Controlling the use of small data accesses
27 * MIPS ISA:: Directives to override the ISA level
28 * MIPS assembly options:: Directives to control code generation
29 * MIPS autoextend:: Directives for extending MIPS 16 bit instructions
30 * MIPS insn:: Directive to mark data as an instruction
31 * MIPS FP ABIs:: Marking which FP ABI is in use
32 * MIPS NaN Encodings:: Directives to record which NaN encoding is being used
33 * MIPS Option Stack:: Directives to save and restore options
34 * MIPS ASE Instruction Generation Overrides:: Directives to control
35 generation of MIPS ASE instructions
36 * MIPS Floating-Point:: Directives to override floating-point options
37 * MIPS Syntax:: MIPS specific syntactical considerations
38 @end menu
39
40 @node MIPS Options
41 @section Assembler options
42
43 The MIPS configurations of @sc{gnu} @code{@value{AS}} support these
44 special options:
45
46 @table @code
47 @cindex @code{-G} option (MIPS)
48 @item -G @var{num}
49 Set the ``small data'' limit to @var{n} bytes. The default limit is 8 bytes.
50 @xref{MIPS Small Data,, Controlling the use of small data accesses}.
51
52 @cindex @code{-EB} option (MIPS)
53 @cindex @code{-EL} option (MIPS)
54 @cindex MIPS big-endian output
55 @cindex MIPS little-endian output
56 @cindex big-endian output, MIPS
57 @cindex little-endian output, MIPS
58 @item -EB
59 @itemx -EL
60 Any MIPS configuration of @code{@value{AS}} can select big-endian or
61 little-endian output at run time (unlike the other @sc{gnu} development
62 tools, which must be configured for one or the other). Use @samp{-EB}
63 to select big-endian output, and @samp{-EL} for little-endian.
64
65 @item -KPIC
66 @cindex PIC selection, MIPS
67 @cindex @option{-KPIC} option, MIPS
68 Generate SVR4-style PIC. This option tells the assembler to generate
69 SVR4-style position-independent macro expansions. It also tells the
70 assembler to mark the output file as PIC.
71
72 @item -mvxworks-pic
73 @cindex @option{-mvxworks-pic} option, MIPS
74 Generate VxWorks PIC. This option tells the assembler to generate
75 VxWorks-style position-independent macro expansions.
76
77 @cindex MIPS architecture options
78 @item -mips1
79 @itemx -mips2
80 @itemx -mips3
81 @itemx -mips4
82 @itemx -mips5
83 @itemx -mips32
84 @itemx -mips32r2
85 @itemx -mips32r3
86 @itemx -mips32r5
87 @itemx -mips32r6
88 @itemx -mips64
89 @itemx -mips64r2
90 @itemx -mips64r3
91 @itemx -mips64r5
92 @itemx -mips64r6
93 Generate code for a particular MIPS Instruction Set Architecture level.
94 @samp{-mips1} corresponds to the R2000 and R3000 processors,
95 @samp{-mips2} to the R6000 processor, @samp{-mips3} to the
96 R4000 processor, and @samp{-mips4} to the R8000 and R10000 processors.
97 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips32r3},
98 @samp{-mips32r5}, @samp{-mips32r6}, @samp{-mips64}, @samp{-mips64r2},
99 @samp{-mips64r3}, @samp{-mips64r5}, and @samp{-mips64r6} correspond to
100 generic MIPS V, MIPS32, MIPS32 Release 2, MIPS32 Release 3, MIPS32
101 Release 5, MIPS32 Release 6, MIPS64, and MIPS64 Release 2, MIPS64
102 Release 3, MIPS64 Release 5, and MIPS64 Release 6 ISA processors,
103 respectively. You can also switch instruction sets during the assembly;
104 see @ref{MIPS ISA, Directives to override the ISA level}.
105
106 @item -mgp32
107 @itemx -mfp32
108 Some macros have different expansions for 32-bit and 64-bit registers.
109 The register sizes are normally inferred from the ISA and ABI, but these
110 flags force a certain group of registers to be treated as 32 bits wide at
111 all times. @samp{-mgp32} controls the size of general-purpose registers
112 and @samp{-mfp32} controls the size of floating-point registers.
113
114 The @code{.set gp=32} and @code{.set fp=32} directives allow the size
115 of registers to be changed for parts of an object. The default value is
116 restored by @code{.set gp=default} and @code{.set fp=default}.
117
118 On some MIPS variants there is a 32-bit mode flag; when this flag is
119 set, 64-bit instructions generate a trap. Also, some 32-bit OSes only
120 save the 32-bit registers on a context switch, so it is essential never
121 to use the 64-bit registers.
122
123 @item -mgp64
124 @itemx -mfp64
125 Assume that 64-bit registers are available. This is provided in the
126 interests of symmetry with @samp{-mgp32} and @samp{-mfp32}.
127
128 The @code{.set gp=64} and @code{.set fp=64} directives allow the size
129 of registers to be changed for parts of an object. The default value is
130 restored by @code{.set gp=default} and @code{.set fp=default}.
131
132 @item -mfpxx
133 Make no assumptions about whether 32-bit or 64-bit floating-point
134 registers are available. This is provided to support having modules
135 compatible with either @samp{-mfp32} or @samp{-mfp64}. This option can
136 only be used with MIPS II and above.
137
138 The @code{.set fp=xx} directive allows a part of an object to be marked
139 as not making assumptions about 32-bit or 64-bit FP registers. The
140 default value is restored by @code{.set fp=default}.
141
142 @item -modd-spreg
143 @itemx -mno-odd-spreg
144 Enable use of floating-point operations on odd-numbered single-precision
145 registers when supported by the ISA. @samp{-mfpxx} implies
146 @samp{-mno-odd-spreg}, otherwise the default is @samp{-modd-spreg}
147
148 @item -mips16
149 @itemx -no-mips16
150 Generate code for the MIPS 16 processor. This is equivalent to putting
151 @code{.module mips16} at the start of the assembly file. @samp{-no-mips16}
152 turns off this option.
153
154 @item -mmips16e2
155 @itemx -mno-mips16e2
156 Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent
157 to putting @code{.module mips16e2} at the start of the assembly file.
158 @samp{-mno-mips16e2} turns off this option.
159
160 @item -mmicromips
161 @itemx -mno-micromips
162 Generate code for the microMIPS processor. This is equivalent to putting
163 @code{.module micromips} at the start of the assembly file.
164 @samp{-mno-micromips} turns off this option. This is equivalent to putting
165 @code{.module nomicromips} at the start of the assembly file.
166
167 @item -msmartmips
168 @itemx -mno-smartmips
169 Enables the SmartMIPS extensions to the MIPS32 instruction set, which
170 provides a number of new instructions which target smartcard and
171 cryptographic applications. This is equivalent to putting
172 @code{.module smartmips} at the start of the assembly file.
173 @samp{-mno-smartmips} turns off this option.
174
175 @item -mips3d
176 @itemx -no-mips3d
177 Generate code for the MIPS-3D Application Specific Extension.
178 This tells the assembler to accept MIPS-3D instructions.
179 @samp{-no-mips3d} turns off this option.
180
181 @item -mdmx
182 @itemx -no-mdmx
183 Generate code for the MDMX Application Specific Extension.
184 This tells the assembler to accept MDMX instructions.
185 @samp{-no-mdmx} turns off this option.
186
187 @item -mdsp
188 @itemx -mno-dsp
189 Generate code for the DSP Release 1 Application Specific Extension.
190 This tells the assembler to accept DSP Release 1 instructions.
191 @samp{-mno-dsp} turns off this option.
192
193 @item -mdspr2
194 @itemx -mno-dspr2
195 Generate code for the DSP Release 2 Application Specific Extension.
196 This option implies @samp{-mdsp}.
197 This tells the assembler to accept DSP Release 2 instructions.
198 @samp{-mno-dspr2} turns off this option.
199
200 @item -mdspr3
201 @itemx -mno-dspr3
202 Generate code for the DSP Release 3 Application Specific Extension.
203 This option implies @samp{-mdsp} and @samp{-mdspr2}.
204 This tells the assembler to accept DSP Release 3 instructions.
205 @samp{-mno-dspr3} turns off this option.
206
207 @item -mmt
208 @itemx -mno-mt
209 Generate code for the MT Application Specific Extension.
210 This tells the assembler to accept MT instructions.
211 @samp{-mno-mt} turns off this option.
212
213 @item -mmcu
214 @itemx -mno-mcu
215 Generate code for the MCU Application Specific Extension.
216 This tells the assembler to accept MCU instructions.
217 @samp{-mno-mcu} turns off this option.
218
219 @item -mmsa
220 @itemx -mno-msa
221 Generate code for the MIPS SIMD Architecture Extension.
222 This tells the assembler to accept MSA instructions.
223 @samp{-mno-msa} turns off this option.
224
225 @item -mxpa
226 @itemx -mno-xpa
227 Generate code for the MIPS eXtended Physical Address (XPA) Extension.
228 This tells the assembler to accept XPA instructions.
229 @samp{-mno-xpa} turns off this option.
230
231 @item -mvirt
232 @itemx -mno-virt
233 Generate code for the Virtualization Application Specific Extension.
234 This tells the assembler to accept Virtualization instructions.
235 @samp{-mno-virt} turns off this option.
236
237 @item -mcrc
238 @itemx -mno-crc
239 Generate code for the cyclic redundancy check (CRC) Application Specific
240 Extension. This tells the assembler to accept CRC instructions.
241 @samp{-mno-crc} turns off this option.
242
243 @item -mginv
244 @itemx -mno-ginv
245 Generate code for the Global INValidate (GINV) Application Specific
246 Extension. This tells the assembler to accept GINV instructions.
247 @samp{-mno-ginv} turns off this option.
248
249 @item -mloongson-mmi
250 @itemx -mno-loongson-mmi
251 Generate code for the Loongson MultiMedia extensions Instructions (MMI)
252 Application Specific Extension. This tells the assembler to accept MMI
253 instructions.
254 @samp{-mno-loongson-mmi} turns off this option.
255
256 @item -mloongson-cam
257 @itemx -mno-loongson-cam
258 Generate code for the Loongson Content Address Memory (CAM)
259 Application Specific Extension. This tells the assembler to accept CAM
260 instructions.
261 @samp{-mno-loongson-cam} turns off this option.
262
263 @item -mloongson-ext
264 @itemx -mno-loongson-ext
265 Generate code for the Loongson EXTensions (EXT) instructions
266 Application Specific Extension. This tells the assembler to accept EXT
267 instructions.
268 @samp{-mno-loongson-ext} turns off this option.
269
270 @item -mloongson-ext2
271 @itemx -mno-loongson-ext2
272 Generate code for the Loongson EXTensions R2 (EXT2) instructions
273 Application Specific Extension. This tells the assembler to accept EXT2
274 instructions.
275 @samp{-mno-loongson-ext2} turns off this option.
276
277 @item -minsn32
278 @itemx -mno-insn32
279 Only use 32-bit instruction encodings when generating code for the
280 microMIPS processor. This option inhibits the use of any 16-bit
281 instructions. This is equivalent to putting @code{.set insn32} at
282 the start of the assembly file. @samp{-mno-insn32} turns off this
283 option. This is equivalent to putting @code{.set noinsn32} at the
284 start of the assembly file. By default @samp{-mno-insn32} is
285 selected, allowing all instructions to be used.
286
287 @item -mfix7000
288 @itemx -mno-fix7000
289 Cause nops to be inserted if the read of the destination register
290 of an mfhi or mflo instruction occurs in the following two instructions.
291
292 @item -mfix-rm7000
293 @itemx -mno-fix-rm7000
294 Cause nops to be inserted if a dmult or dmultu instruction is
295 followed by a load instruction.
296
297 @item -mfix-loongson2f-jump
298 @itemx -mno-fix-loongson2f-jump
299 Eliminate instruction fetch from outside 256M region to work around the
300 Loongson2F @samp{jump} instructions. Without it, under extreme cases,
301 the kernel may crash. The issue has been solved in latest processor
302 batches, but this fix has no side effect to them.
303
304 @item -mfix-loongson2f-nop
305 @itemx -mno-fix-loongson2f-nop
306 Replace nops by @code{or at,at,zero} to work around the Loongson2F
307 @samp{nop} errata. Without it, under extreme cases, the CPU might
308 deadlock. The issue has been solved in later Loongson2F batches, but
309 this fix has no side effect to them.
310
311 @item -mfix-vr4120
312 @itemx -mno-fix-vr4120
313 Insert nops to work around certain VR4120 errata. This option is
314 intended to be used on GCC-generated code: it is not designed to catch
315 all problems in hand-written assembler code.
316
317 @item -mfix-vr4130
318 @itemx -mno-fix-vr4130
319 Insert nops to work around the VR4130 @samp{mflo}/@samp{mfhi} errata.
320
321 @item -mfix-24k
322 @itemx -mno-fix-24k
323 Insert nops to work around the 24K @samp{eret}/@samp{deret} errata.
324
325 @item -mfix-cn63xxp1
326 @itemx -mno-fix-cn63xxp1
327 Replace @code{pref} hints 0 - 4 and 6 - 24 with hint 28 to work around
328 certain CN63XXP1 errata.
329
330 @item -m4010
331 @itemx -no-m4010
332 Generate code for the LSI R4010 chip. This tells the assembler to
333 accept the R4010-specific instructions (@samp{addciu}, @samp{ffc},
334 etc.), and to not schedule @samp{nop} instructions around accesses to
335 the @samp{HI} and @samp{LO} registers. @samp{-no-m4010} turns off this
336 option.
337
338 @item -m4650
339 @itemx -no-m4650
340 Generate code for the MIPS R4650 chip. This tells the assembler to accept
341 the @samp{mad} and @samp{madu} instruction, and to not schedule @samp{nop}
342 instructions around accesses to the @samp{HI} and @samp{LO} registers.
343 @samp{-no-m4650} turns off this option.
344
345 @item -m3900
346 @itemx -no-m3900
347 @itemx -m4100
348 @itemx -no-m4100
349 For each option @samp{-m@var{nnnn}}, generate code for the MIPS
350 R@var{nnnn} chip. This tells the assembler to accept instructions
351 specific to that chip, and to schedule for that chip's hazards.
352
353 @item -march=@var{cpu}
354 Generate code for a particular MIPS CPU. It is exactly equivalent to
355 @samp{-m@var{cpu}}, except that there are more value of @var{cpu}
356 understood. Valid @var{cpu} value are:
357
358 @quotation
359 2000,
360 3000,
361 3900,
362 4000,
363 4010,
364 4100,
365 4111,
366 vr4120,
367 vr4130,
368 vr4181,
369 4300,
370 4400,
371 4600,
372 4650,
373 5000,
374 rm5200,
375 rm5230,
376 rm5231,
377 rm5261,
378 rm5721,
379 vr5400,
380 vr5500,
381 6000,
382 rm7000,
383 8000,
384 rm9000,
385 10000,
386 12000,
387 14000,
388 16000,
389 4kc,
390 4km,
391 4kp,
392 4ksc,
393 4kec,
394 4kem,
395 4kep,
396 4ksd,
397 m4k,
398 m4kp,
399 m14k,
400 m14kc,
401 m14ke,
402 m14kec,
403 24kc,
404 24kf2_1,
405 24kf,
406 24kf1_1,
407 24kec,
408 24kef2_1,
409 24kef,
410 24kef1_1,
411 34kc,
412 34kf2_1,
413 34kf,
414 34kf1_1,
415 34kn,
416 74kc,
417 74kf2_1,
418 74kf,
419 74kf1_1,
420 74kf3_2,
421 1004kc,
422 1004kf2_1,
423 1004kf,
424 1004kf1_1,
425 interaptiv,
426 interaptiv-mr2,
427 m5100,
428 m5101,
429 p5600,
430 5kc,
431 5kf,
432 20kc,
433 25kf,
434 sb1,
435 sb1a,
436 i6400,
437 p6600,
438 loongson2e,
439 loongson2f,
440 gs464,
441 gs464e,
442 octeon,
443 octeon+,
444 octeon2,
445 octeon3,
446 xlr,
447 xlp
448 @end quotation
449
450 For compatibility reasons, @samp{@var{n}x} and @samp{@var{b}fx} are
451 accepted as synonyms for @samp{@var{n}f1_1}. These values are
452 deprecated.
453
454 @item -mtune=@var{cpu}
455 Schedule and tune for a particular MIPS CPU. Valid @var{cpu} values are
456 identical to @samp{-march=@var{cpu}}.
457
458 @item -mabi=@var{abi}
459 Record which ABI the source code uses. The recognized arguments
460 are: @samp{32}, @samp{n32}, @samp{o64}, @samp{64} and @samp{eabi}.
461
462 @item -msym32
463 @itemx -mno-sym32
464 @cindex -msym32
465 @cindex -mno-sym32
466 Equivalent to adding @code{.set sym32} or @code{.set nosym32} to
467 the beginning of the assembler input. @xref{MIPS Symbol Sizes}.
468
469 @cindex @code{-nocpp} ignored (MIPS)
470 @item -nocpp
471 This option is ignored. It is accepted for command-line compatibility with
472 other assemblers, which use it to turn off C style preprocessing. With
473 @sc{gnu} @code{@value{AS}}, there is no need for @samp{-nocpp}, because the
474 @sc{gnu} assembler itself never runs the C preprocessor.
475
476 @item -msoft-float
477 @itemx -mhard-float
478 Disable or enable floating-point instructions. Note that by default
479 floating-point instructions are always allowed even with CPU targets
480 that don't have support for these instructions.
481
482 @item -msingle-float
483 @itemx -mdouble-float
484 Disable or enable double-precision floating-point operations. Note
485 that by default double-precision floating-point operations are always
486 allowed even with CPU targets that don't have support for these
487 operations.
488
489 @item --construct-floats
490 @itemx --no-construct-floats
491 The @code{--no-construct-floats} option disables the construction of
492 double width floating point constants by loading the two halves of the
493 value into the two single width floating point registers that make up
494 the double width register. This feature is useful if the processor
495 support the FR bit in its status register, and this bit is known (by
496 the programmer) to be set. This bit prevents the aliasing of the double
497 width register by the single width registers.
498
499 By default @code{--construct-floats} is selected, allowing construction
500 of these floating point constants.
501
502 @item --relax-branch
503 @itemx --no-relax-branch
504 The @samp{--relax-branch} option enables the relaxation of out-of-range
505 branches. Any branches whose target cannot be reached directly are
506 converted to a small instruction sequence including an inverse-condition
507 branch to the physically next instruction, and a jump to the original
508 target is inserted between the two instructions. In PIC code the jump
509 will involve further instructions for address calculation.
510
511 The @code{BC1ANY2F}, @code{BC1ANY2T}, @code{BC1ANY4F}, @code{BC1ANY4T},
512 @code{BPOSGE32} and @code{BPOSGE64} instructions are excluded from
513 relaxation, because they have no complementing counterparts. They could
514 be relaxed with the use of a longer sequence involving another branch,
515 however this has not been implemented and if their target turns out of
516 reach, they produce an error even if branch relaxation is enabled.
517
518 Also no MIPS16 branches are ever relaxed.
519
520 By default @samp{--no-relax-branch} is selected, causing any out-of-range
521 branches to produce an error.
522
523 @item -mignore-branch-isa
524 @itemx -mno-ignore-branch-isa
525 Ignore branch checks for invalid transitions between ISA modes.
526
527 The semantics of branches does not provide for an ISA mode switch, so in
528 most cases the ISA mode a branch has been encoded for has to be the same
529 as the ISA mode of the branch's target label. If the ISA modes do not
530 match, then such a branch, if taken, will cause the ISA mode to remain
531 unchanged and instructions that follow will be executed in the wrong ISA
532 mode causing the program to misbehave or crash.
533
534 In the case of the @code{BAL} instruction it may be possible to relax
535 it to an equivalent @code{JALX} instruction so that the ISA mode is
536 switched at the run time as required. For other branches no relaxation
537 is possible and therefore GAS has checks implemented that verify in
538 branch assembly that the two ISA modes match, and report an error
539 otherwise so that the problem with code can be diagnosed at the assembly
540 time rather than at the run time.
541
542 However some assembly code, including generated code produced by some
543 versions of GCC, may incorrectly include branches to data labels, which
544 appear to require a mode switch but are either dead or immediately
545 followed by valid instructions encoded for the same ISA the branch has
546 been encoded for. While not strictly correct at the source level such
547 code will execute as intended, so to help with these cases
548 @samp{-mignore-branch-isa} is supported which disables ISA mode checks
549 for branches.
550
551 By default @samp{-mno-ignore-branch-isa} is selected, causing any invalid
552 branch requiring a transition between ISA modes to produce an error.
553
554 @cindex @option{-mnan=} command-line option, MIPS
555 @item -mnan=@var{encoding}
556 This option indicates whether the source code uses the IEEE 2008
557 NaN encoding (@option{-mnan=2008}) or the original MIPS encoding
558 (@option{-mnan=legacy}). It is equivalent to adding a @code{.nan}
559 directive to the beginning of the source file. @xref{MIPS NaN Encodings}.
560
561 @option{-mnan=legacy} is the default if no @option{-mnan} option or
562 @code{.nan} directive is used.
563
564 @item --trap
565 @itemx --no-break
566 @c FIXME! (1) reflect these options (next item too) in option summaries;
567 @c (2) stop teasing, say _which_ instructions expanded _how_.
568 @code{@value{AS}} automatically macro expands certain division and
569 multiplication instructions to check for overflow and division by zero. This
570 option causes @code{@value{AS}} to generate code to take a trap exception
571 rather than a break exception when an error is detected. The trap instructions
572 are only supported at Instruction Set Architecture level 2 and higher.
573
574 @item --break
575 @itemx --no-trap
576 Generate code to take a break exception rather than a trap exception when an
577 error is detected. This is the default.
578
579 @item -mpdr
580 @itemx -mno-pdr
581 Control generation of @code{.pdr} sections. Off by default on IRIX, on
582 elsewhere.
583
584 @item -mshared
585 @itemx -mno-shared
586 When generating code using the Unix calling conventions (selected by
587 @samp{-KPIC} or @samp{-mcall_shared}), gas will normally generate code
588 which can go into a shared library. The @samp{-mno-shared} option
589 tells gas to generate code which uses the calling convention, but can
590 not go into a shared library. The resulting code is slightly more
591 efficient. This option only affects the handling of the
592 @samp{.cpload} and @samp{.cpsetup} pseudo-ops.
593 @end table
594
595 @node MIPS Macros
596 @section High-level assembly macros
597
598 MIPS assemblers have traditionally provided a wider range of
599 instructions than the MIPS architecture itself. These extra
600 instructions are usually referred to as ``macro'' instructions
601 @footnote{The term ``macro'' is somewhat overloaded here, since
602 these macros have no relation to those defined by @code{.macro},
603 @pxref{Macro,, @code{.macro}}.}.
604
605 Some MIPS macro instructions extend an underlying architectural instruction
606 while others are entirely new. An example of the former type is @code{and},
607 which allows the third operand to be either a register or an arbitrary
608 immediate value. Examples of the latter type include @code{bgt}, which
609 branches to the third operand when the first operand is greater than
610 the second operand, and @code{ulh}, which implements an unaligned
611 2-byte load.
612
613 One of the most common extensions provided by macros is to expand
614 memory offsets to the full address range (32 or 64 bits) and to allow
615 symbolic offsets such as @samp{my_data + 4} to be used in place of
616 integer constants. For example, the architectural instruction
617 @code{lbu} allows only a signed 16-bit offset, whereas the macro
618 @code{lbu} allows code such as @samp{lbu $4,array+32769($5)}.
619 The implementation of these symbolic offsets depends on several factors,
620 such as whether the assembler is generating SVR4-style PIC (selected by
621 @option{-KPIC}, @pxref{MIPS Options,, Assembler options}), the size of symbols
622 (@pxref{MIPS Symbol Sizes,, Directives to override the size of symbols}),
623 and the small data limit (@pxref{MIPS Small Data,, Controlling the use
624 of small data accesses}).
625
626 @kindex @code{.set macro}
627 @kindex @code{.set nomacro}
628 Sometimes it is undesirable to have one assembly instruction expand
629 to several machine instructions. The directive @code{.set nomacro}
630 tells the assembler to warn when this happens. @code{.set macro}
631 restores the default behavior.
632
633 @cindex @code{at} register, MIPS
634 @kindex @code{.set at=@var{reg}}
635 Some macro instructions need a temporary register to store intermediate
636 results. This register is usually @code{$1}, also known as @code{$at},
637 but it can be changed to any core register @var{reg} using
638 @code{.set at=@var{reg}}. Note that @code{$at} always refers
639 to @code{$1} regardless of which register is being used as the
640 temporary register.
641
642 @kindex @code{.set at}
643 @kindex @code{.set noat}
644 Implicit uses of the temporary register in macros could interfere with
645 explicit uses in the assembly code. The assembler therefore warns
646 whenever it sees an explicit use of the temporary register. The directive
647 @code{.set noat} silences this warning while @code{.set at} restores
648 the default behavior. It is safe to use @code{.set noat} while
649 @code{.set nomacro} is in effect since single-instruction macros
650 never need a temporary register.
651
652 Note that while the @sc{gnu} assembler provides these macros for compatibility,
653 it does not make any attempt to optimize them with the surrounding code.
654
655 @node MIPS Symbol Sizes
656 @section Directives to override the size of symbols
657
658 @kindex @code{.set sym32}
659 @kindex @code{.set nosym32}
660 The n64 ABI allows symbols to have any 64-bit value. Although this
661 provides a great deal of flexibility, it means that some macros have
662 much longer expansions than their 32-bit counterparts. For example,
663 the non-PIC expansion of @samp{dla $4,sym} is usually:
664
665 @smallexample
666 lui $4,%highest(sym)
667 lui $1,%hi(sym)
668 daddiu $4,$4,%higher(sym)
669 daddiu $1,$1,%lo(sym)
670 dsll32 $4,$4,0
671 daddu $4,$4,$1
672 @end smallexample
673
674 whereas the 32-bit expansion is simply:
675
676 @smallexample
677 lui $4,%hi(sym)
678 daddiu $4,$4,%lo(sym)
679 @end smallexample
680
681 n64 code is sometimes constructed in such a way that all symbolic
682 constants are known to have 32-bit values, and in such cases, it's
683 preferable to use the 32-bit expansion instead of the 64-bit
684 expansion.
685
686 You can use the @code{.set sym32} directive to tell the assembler
687 that, from this point on, all expressions of the form
688 @samp{@var{symbol}} or @samp{@var{symbol} + @var{offset}}
689 have 32-bit values. For example:
690
691 @smallexample
692 .set sym32
693 dla $4,sym
694 lw $4,sym+16
695 sw $4,sym+0x8000($4)
696 @end smallexample
697
698 will cause the assembler to treat @samp{sym}, @code{sym+16} and
699 @code{sym+0x8000} as 32-bit values. The handling of non-symbolic
700 addresses is not affected.
701
702 The directive @code{.set nosym32} ends a @code{.set sym32} block and
703 reverts to the normal behavior. It is also possible to change the
704 symbol size using the command-line options @option{-msym32} and
705 @option{-mno-sym32}.
706
707 These options and directives are always accepted, but at present,
708 they have no effect for anything other than n64.
709
710 @node MIPS Small Data
711 @section Controlling the use of small data accesses
712
713 @c This section deliberately glosses over the possibility of using -G
714 @c in SVR4-style PIC, as could be done on IRIX. We don't support that.
715 @cindex small data, MIPS
716 @cindex @code{gp} register, MIPS
717 It often takes several instructions to load the address of a symbol.
718 For example, when @samp{addr} is a 32-bit symbol, the non-PIC expansion
719 of @samp{dla $4,addr} is usually:
720
721 @smallexample
722 lui $4,%hi(addr)
723 daddiu $4,$4,%lo(addr)
724 @end smallexample
725
726 The sequence is much longer when @samp{addr} is a 64-bit symbol.
727 @xref{MIPS Symbol Sizes,, Directives to override the size of symbols}.
728
729 In order to cut down on this overhead, most embedded MIPS systems
730 set aside a 64-kilobyte ``small data'' area and guarantee that all
731 data of size @var{n} and smaller will be placed in that area.
732 The limit @var{n} is passed to both the assembler and the linker
733 using the command-line option @option{-G @var{n}}, @pxref{MIPS Options,,
734 Assembler options}. Note that the same value of @var{n} must be used
735 when linking and when assembling all input files to the link; any
736 inconsistency could cause a relocation overflow error.
737
738 The size of an object in the @code{.bss} section is set by the
739 @code{.comm} or @code{.lcomm} directive that defines it. The size of
740 an external object may be set with the @code{.extern} directive. For
741 example, @samp{.extern sym,4} declares that the object at @code{sym}
742 is 4 bytes in length, while leaving @code{sym} otherwise undefined.
743
744 When no @option{-G} option is given, the default limit is 8 bytes.
745 The option @option{-G 0} prevents any data from being automatically
746 classified as small.
747
748 It is also possible to mark specific objects as small by putting them
749 in the special sections @code{.sdata} and @code{.sbss}, which are
750 ``small'' counterparts of @code{.data} and @code{.bss} respectively.
751 The toolchain will treat such data as small regardless of the
752 @option{-G} setting.
753
754 On startup, systems that support a small data area are expected to
755 initialize register @code{$28}, also known as @code{$gp}, in such a
756 way that small data can be accessed using a 16-bit offset from that
757 register. For example, when @samp{addr} is small data,
758 the @samp{dla $4,addr} instruction above is equivalent to:
759
760 @smallexample
761 daddiu $4,$28,%gp_rel(addr)
762 @end smallexample
763
764 Small data is not supported for SVR4-style PIC.
765
766 @node MIPS ISA
767 @section Directives to override the ISA level
768
769 @cindex MIPS ISA override
770 @kindex @code{.set mips@var{n}}
771 @sc{gnu} @code{@value{AS}} supports an additional directive to change
772 the MIPS Instruction Set Architecture level on the fly: @code{.set
773 mips@var{n}}. @var{n} should be a number from 0 to 5, or 32, 32r2, 32r3,
774 32r5, 32r6, 64, 64r2, 64r3, 64r5 or 64r6.
775 The values other than 0 make the assembler accept instructions
776 for the corresponding ISA level, from that point on in the
777 assembly. @code{.set mips@var{n}} affects not only which instructions
778 are permitted, but also how certain macros are expanded. @code{.set
779 mips0} restores the ISA level to its original level: either the
780 level you selected with command-line options, or the default for your
781 configuration. You can use this feature to permit specific MIPS III
782 instructions while assembling in 32 bit mode. Use this directive with
783 care!
784
785 @cindex MIPS CPU override
786 @kindex @code{.set arch=@var{cpu}}
787 The @code{.set arch=@var{cpu}} directive provides even finer control.
788 It changes the effective CPU target and allows the assembler to use
789 instructions specific to a particular CPU. All CPUs supported by the
790 @samp{-march} command-line option are also selectable by this directive.
791 The original value is restored by @code{.set arch=default}.
792
793 The directive @code{.set mips16} puts the assembler into MIPS 16 mode,
794 in which it will assemble instructions for the MIPS 16 processor. Use
795 @code{.set nomips16} to return to normal 32 bit mode.
796
797 Traditional MIPS assemblers do not support this directive.
798
799 The directive @code{.set micromips} puts the assembler into microMIPS mode,
800 in which it will assemble instructions for the microMIPS processor. Use
801 @code{.set nomicromips} to return to normal 32 bit mode.
802
803 Traditional MIPS assemblers do not support this directive.
804
805 @node MIPS assembly options
806 @section Directives to control code generation
807
808 @cindex MIPS directives to override command-line options
809 @kindex @code{.module}
810 The @code{.module} directive allows command-line options to be set directly
811 from assembly. The format of the directive matches the @code{.set}
812 directive but only those options which are relevant to a whole module are
813 supported. The effect of a @code{.module} directive is the same as the
814 corresponding command-line option. Where @code{.set} directives support
815 returning to a default then the @code{.module} directives do not as they
816 define the defaults.
817
818 These module-level directives must appear first in assembly.
819
820 Traditional MIPS assemblers do not support this directive.
821
822 @cindex MIPS 32-bit microMIPS instruction generation override
823 @kindex @code{.set insn32}
824 @kindex @code{.set noinsn32}
825 The directive @code{.set insn32} makes the assembler only use 32-bit
826 instruction encodings when generating code for the microMIPS processor.
827 This directive inhibits the use of any 16-bit instructions from that
828 point on in the assembly. The @code{.set noinsn32} directive allows
829 16-bit instructions to be accepted.
830
831 Traditional MIPS assemblers do not support this directive.
832
833 @node MIPS autoextend
834 @section Directives for extending MIPS 16 bit instructions
835
836 @kindex @code{.set autoextend}
837 @kindex @code{.set noautoextend}
838 By default, MIPS 16 instructions are automatically extended to 32 bits
839 when necessary. The directive @code{.set noautoextend} will turn this
840 off. When @code{.set noautoextend} is in effect, any 32 bit instruction
841 must be explicitly extended with the @code{.e} modifier (e.g.,
842 @code{li.e $4,1000}). The directive @code{.set autoextend} may be used
843 to once again automatically extend instructions when necessary.
844
845 This directive is only meaningful when in MIPS 16 mode. Traditional
846 MIPS assemblers do not support this directive.
847
848 @node MIPS insn
849 @section Directive to mark data as an instruction
850
851 @kindex @code{.insn}
852 The @code{.insn} directive tells @code{@value{AS}} that the following
853 data is actually instructions. This makes a difference in MIPS 16 and
854 microMIPS modes: when loading the address of a label which precedes
855 instructions, @code{@value{AS}} automatically adds 1 to the value, so
856 that jumping to the loaded address will do the right thing.
857
858 @kindex @code{.global}
859 The @code{.global} and @code{.globl} directives supported by
860 @code{@value{AS}} will by default mark the symbol as pointing to a
861 region of data not code. This means that, for example, any
862 instructions following such a symbol will not be disassembled by
863 @code{objdump} as it will regard them as data. To change this
864 behavior an optional section name can be placed after the symbol name
865 in the @code{.global} directive. If this section exists and is known
866 to be a code section, then the symbol will be marked as pointing at
867 code not data. Ie the syntax for the directive is:
868
869 @code{.global @var{symbol}[ @var{section}][, @var{symbol}[ @var{section}]] ...},
870
871 Here is a short example:
872
873 @example
874 .global foo .text, bar, baz .data
875 foo:
876 nop
877 bar:
878 .word 0x0
879 baz:
880 .word 0x1
881
882 @end example
883
884 @node MIPS FP ABIs
885 @section Directives to control the FP ABI
886 @menu
887 * MIPS FP ABI History:: History of FP ABIs
888 * MIPS FP ABI Variants:: Supported FP ABIs
889 * MIPS FP ABI Selection:: Automatic selection of FP ABI
890 * MIPS FP ABI Compatibility:: Linking different FP ABI variants
891 @end menu
892
893 @node MIPS FP ABI History
894 @subsection History of FP ABIs
895 @cindex @code{.gnu_attribute 4, @var{n}} directive, MIPS
896 @cindex @code{.gnu_attribute Tag_GNU_MIPS_ABI_FP, @var{n}} directive, MIPS
897 The MIPS ABIs support a variety of different floating-point extensions
898 where calling-convention and register sizes vary for floating-point data.
899 The extensions exist to support a wide variety of optional architecture
900 features. The resulting ABI variants are generally incompatible with each
901 other and must be tracked carefully.
902
903 Traditionally the use of an explicit @code{.gnu_attribute 4, @var{n}}
904 directive is used to indicate which ABI is in use by a specific module.
905 It was then left to the user to ensure that command-line options and the
906 selected ABI were compatible with some potential for inconsistencies.
907
908 @node MIPS FP ABI Variants
909 @subsection Supported FP ABIs
910 The supported floating-point ABI variants are:
911
912 @table @code
913 @item 0 - No floating-point
914 This variant is used to indicate that floating-point is not used within
915 the module at all and therefore has no impact on the ABI. This is the
916 default.
917
918 @item 1 - Double-precision
919 This variant indicates that double-precision support is used. For 64-bit
920 ABIs this means that 64-bit wide floating-point registers are required.
921 For 32-bit ABIs this means that 32-bit wide floating-point registers are
922 required and double-precision operations use pairs of registers.
923
924 @item 2 - Single-precision
925 This variant indicates that single-precision support is used. Double
926 precision operations will be supported via soft-float routines.
927
928 @item 3 - Soft-float
929 This variant indicates that although floating-point support is used all
930 operations are emulated in software. This means the ABI is modified to
931 pass all floating-point data in general-purpose registers.
932
933 @item 4 - Deprecated
934 This variant existed as an initial attempt at supporting 64-bit wide
935 floating-point registers for O32 ABI on a MIPS32r2 CPU. This has been
936 superseded by 5, 6 and 7.
937
938 @item 5 - Double-precision 32-bit CPU, 32-bit or 64-bit FPU
939 This variant is used by 32-bit ABIs to indicate that the floating-point
940 code in the module has been designed to operate correctly with either
941 32-bit wide or 64-bit wide floating-point registers. Double-precision
942 support is used. Only O32 currently supports this variant and requires
943 a minimum architecture of MIPS II.
944
945 @item 6 - Double-precision 32-bit FPU, 64-bit FPU
946 This variant is used by 32-bit ABIs to indicate that the floating-point
947 code in the module requires 64-bit wide floating-point registers.
948 Double-precision support is used. Only O32 currently supports this
949 variant and requires a minimum architecture of MIPS32r2.
950
951 @item 7 - Double-precision compat 32-bit FPU, 64-bit FPU
952 This variant is used by 32-bit ABIs to indicate that the floating-point
953 code in the module requires 64-bit wide floating-point registers.
954 Double-precision support is used. This differs from the previous ABI
955 as it restricts use of odd-numbered single-precision registers. Only
956 O32 currently supports this variant and requires a minimum architecture
957 of MIPS32r2.
958 @end table
959
960 @node MIPS FP ABI Selection
961 @subsection Automatic selection of FP ABI
962 @cindex @code{.module fp=@var{nn}} directive, MIPS
963 In order to simplify and add safety to the process of selecting the
964 correct floating-point ABI, the assembler will automatically infer the
965 correct @code{.gnu_attribute 4, @var{n}} directive based on command-line
966 options and @code{.module} overrides. Where an explicit
967 @code{.gnu_attribute 4, @var{n}} directive has been seen then a warning
968 will be raised if it does not match an inferred setting.
969
970 The floating-point ABI is inferred as follows. If @samp{-msoft-float}
971 has been used the module will be marked as soft-float. If
972 @samp{-msingle-float} has been used then the module will be marked as
973 single-precision. The remaining ABIs are then selected based
974 on the FP register width. Double-precision is selected if the width
975 of GP and FP registers match and the special double-precision variants
976 for 32-bit ABIs are then selected depending on @samp{-mfpxx},
977 @samp{-mfp64} and @samp{-mno-odd-spreg}.
978
979 @node MIPS FP ABI Compatibility
980 @subsection Linking different FP ABI variants
981 Modules using the default FP ABI (no floating-point) can be linked with
982 any other (singular) FP ABI variant.
983
984 Special compatibility support exists for O32 with the four
985 double-precision FP ABI variants. The @samp{-mfpxx} FP ABI is specifically
986 designed to be compatible with the standard double-precision ABI and the
987 @samp{-mfp64} FP ABIs. This makes it desirable for O32 modules to be
988 built as @samp{-mfpxx} to ensure the maximum compatibility with other
989 modules produced for more specific needs. The only FP ABIs which cannot
990 be linked together are the standard double-precision ABI and the full
991 @samp{-mfp64} ABI with @samp{-modd-spreg}.
992
993 @node MIPS NaN Encodings
994 @section Directives to record which NaN encoding is being used
995
996 @cindex MIPS IEEE 754 NaN data encoding selection
997 @cindex @code{.nan} directive, MIPS
998 The IEEE 754 floating-point standard defines two types of not-a-number
999 (NaN) data: ``signalling'' NaNs and ``quiet'' NaNs. The original version
1000 of the standard did not specify how these two types should be
1001 distinguished. Most implementations followed the i387 model, in which
1002 the first bit of the significand is set for quiet NaNs and clear for
1003 signalling NaNs. However, the original MIPS implementation assigned the
1004 opposite meaning to the bit, so that it was set for signalling NaNs and
1005 clear for quiet NaNs.
1006
1007 The 2008 revision of the standard formally suggested the i387 choice
1008 and as from Sep 2012 the current release of the MIPS architecture
1009 therefore optionally supports that form. Code that uses one NaN encoding
1010 would usually be incompatible with code that uses the other NaN encoding,
1011 so MIPS ELF objects have a flag (@code{EF_MIPS_NAN2008}) to record which
1012 encoding is being used.
1013
1014 Assembly files can use the @code{.nan} directive to select between the
1015 two encodings. @samp{.nan 2008} says that the assembly file uses the
1016 IEEE 754-2008 encoding while @samp{.nan legacy} says that the file uses
1017 the original MIPS encoding. If several @code{.nan} directives are given,
1018 the final setting is the one that is used.
1019
1020 The command-line options @option{-mnan=legacy} and @option{-mnan=2008}
1021 can be used instead of @samp{.nan legacy} and @samp{.nan 2008}
1022 respectively. However, any @code{.nan} directive overrides the
1023 command-line setting.
1024
1025 @samp{.nan legacy} is the default if no @code{.nan} directive or
1026 @option{-mnan} option is given.
1027
1028 Note that @sc{gnu} @code{@value{AS}} does not produce NaNs itself and
1029 therefore these directives do not affect code generation. They simply
1030 control the setting of the @code{EF_MIPS_NAN2008} flag.
1031
1032 Traditional MIPS assemblers do not support these directives.
1033
1034 @node MIPS Option Stack
1035 @section Directives to save and restore options
1036
1037 @cindex MIPS option stack
1038 @kindex @code{.set push}
1039 @kindex @code{.set pop}
1040 The directives @code{.set push} and @code{.set pop} may be used to save
1041 and restore the current settings for all the options which are
1042 controlled by @code{.set}. The @code{.set push} directive saves the
1043 current settings on a stack. The @code{.set pop} directive pops the
1044 stack and restores the settings.
1045
1046 These directives can be useful inside an macro which must change an
1047 option such as the ISA level or instruction reordering but does not want
1048 to change the state of the code which invoked the macro.
1049
1050 Traditional MIPS assemblers do not support these directives.
1051
1052 @node MIPS ASE Instruction Generation Overrides
1053 @section Directives to control generation of MIPS ASE instructions
1054
1055 @cindex MIPS MIPS-3D instruction generation override
1056 @kindex @code{.set mips3d}
1057 @kindex @code{.set nomips3d}
1058 The directive @code{.set mips3d} makes the assembler accept instructions
1059 from the MIPS-3D Application Specific Extension from that point on
1060 in the assembly. The @code{.set nomips3d} directive prevents MIPS-3D
1061 instructions from being accepted.
1062
1063 @cindex SmartMIPS instruction generation override
1064 @kindex @code{.set smartmips}
1065 @kindex @code{.set nosmartmips}
1066 The directive @code{.set smartmips} makes the assembler accept
1067 instructions from the SmartMIPS Application Specific Extension to the
1068 MIPS32 ISA from that point on in the assembly. The
1069 @code{.set nosmartmips} directive prevents SmartMIPS instructions from
1070 being accepted.
1071
1072 @cindex MIPS MDMX instruction generation override
1073 @kindex @code{.set mdmx}
1074 @kindex @code{.set nomdmx}
1075 The directive @code{.set mdmx} makes the assembler accept instructions
1076 from the MDMX Application Specific Extension from that point on
1077 in the assembly. The @code{.set nomdmx} directive prevents MDMX
1078 instructions from being accepted.
1079
1080 @cindex MIPS DSP Release 1 instruction generation override
1081 @kindex @code{.set dsp}
1082 @kindex @code{.set nodsp}
1083 The directive @code{.set dsp} makes the assembler accept instructions
1084 from the DSP Release 1 Application Specific Extension from that point
1085 on in the assembly. The @code{.set nodsp} directive prevents DSP
1086 Release 1 instructions from being accepted.
1087
1088 @cindex MIPS DSP Release 2 instruction generation override
1089 @kindex @code{.set dspr2}
1090 @kindex @code{.set nodspr2}
1091 The directive @code{.set dspr2} makes the assembler accept instructions
1092 from the DSP Release 2 Application Specific Extension from that point
1093 on in the assembly. This directive implies @code{.set dsp}. The
1094 @code{.set nodspr2} directive prevents DSP Release 2 instructions from
1095 being accepted.
1096
1097 @cindex MIPS DSP Release 3 instruction generation override
1098 @kindex @code{.set dspr3}
1099 @kindex @code{.set nodspr3}
1100 The directive @code{.set dspr3} makes the assembler accept instructions
1101 from the DSP Release 3 Application Specific Extension from that point
1102 on in the assembly. This directive implies @code{.set dsp} and
1103 @code{.set dspr2}. The @code{.set nodspr3} directive prevents DSP
1104 Release 3 instructions from being accepted.
1105
1106 @cindex MIPS MT instruction generation override
1107 @kindex @code{.set mt}
1108 @kindex @code{.set nomt}
1109 The directive @code{.set mt} makes the assembler accept instructions
1110 from the MT Application Specific Extension from that point on
1111 in the assembly. The @code{.set nomt} directive prevents MT
1112 instructions from being accepted.
1113
1114 @cindex MIPS MCU instruction generation override
1115 @kindex @code{.set mcu}
1116 @kindex @code{.set nomcu}
1117 The directive @code{.set mcu} makes the assembler accept instructions
1118 from the MCU Application Specific Extension from that point on
1119 in the assembly. The @code{.set nomcu} directive prevents MCU
1120 instructions from being accepted.
1121
1122 @cindex MIPS SIMD Architecture instruction generation override
1123 @kindex @code{.set msa}
1124 @kindex @code{.set nomsa}
1125 The directive @code{.set msa} makes the assembler accept instructions
1126 from the MIPS SIMD Architecture Extension from that point on
1127 in the assembly. The @code{.set nomsa} directive prevents MSA
1128 instructions from being accepted.
1129
1130 @cindex Virtualization instruction generation override
1131 @kindex @code{.set virt}
1132 @kindex @code{.set novirt}
1133 The directive @code{.set virt} makes the assembler accept instructions
1134 from the Virtualization Application Specific Extension from that point
1135 on in the assembly. The @code{.set novirt} directive prevents Virtualization
1136 instructions from being accepted.
1137
1138 @cindex MIPS eXtended Physical Address (XPA) instruction generation override
1139 @kindex @code{.set xpa}
1140 @kindex @code{.set noxpa}
1141 The directive @code{.set xpa} makes the assembler accept instructions
1142 from the XPA Extension from that point on in the assembly. The
1143 @code{.set noxpa} directive prevents XPA instructions from being accepted.
1144
1145 @cindex MIPS16e2 instruction generation override
1146 @kindex @code{.set mips16e2}
1147 @kindex @code{.set nomips16e2}
1148 The directive @code{.set mips16e2} makes the assembler accept instructions
1149 from the MIPS16e2 Application Specific Extension from that point on in the
1150 assembly, whenever in MIPS16 mode. The @code{.set nomips16e2} directive
1151 prevents MIPS16e2 instructions from being accepted, in MIPS16 mode. Neither
1152 directive affects the state of MIPS16 mode being active itself which has
1153 separate controls.
1154
1155 @cindex MIPS cyclic redundancy check (CRC) instruction generation override
1156 @kindex @code{.set crc}
1157 @kindex @code{.set nocrc}
1158 The directive @code{.set crc} makes the assembler accept instructions
1159 from the CRC Extension from that point on in the assembly. The
1160 @code{.set nocrc} directive prevents CRC instructions from being accepted.
1161
1162 @cindex MIPS Global INValidate (GINV) instruction generation override
1163 @kindex @code{.set ginv}
1164 @kindex @code{.set noginv}
1165 The directive @code{.set ginv} makes the assembler accept instructions
1166 from the GINV Extension from that point on in the assembly. The
1167 @code{.set noginv} directive prevents GINV instructions from being accepted.
1168
1169 @cindex Loongson MultiMedia extensions Instructions (MMI) generation override
1170 @kindex @code{.set loongson-mmi}
1171 @kindex @code{.set noloongson-mmi}
1172 The directive @code{.set loongson-mmi} makes the assembler accept
1173 instructions from the MMI Extension from that point on in the assembly.
1174 The @code{.set noloongson-mmi} directive prevents MMI instructions from
1175 being accepted.
1176
1177 @cindex Loongson Content Address Memory (CAM) generation override
1178 @kindex @code{.set loongson-cam}
1179 @kindex @code{.set noloongson-cam}
1180 The directive @code{.set loongson-cam} makes the assembler accept
1181 instructions from the Loongson CAM from that point on in the assembly.
1182 The @code{.set noloongson-cam} directive prevents Loongson CAM instructions
1183 from being accepted.
1184
1185 @cindex Loongson EXTensions (EXT) instructions generation override
1186 @kindex @code{.set loongson-ext}
1187 @kindex @code{.set noloongson-ext}
1188 The directive @code{.set loongson-ext} makes the assembler accept
1189 instructions from the Loongson EXT from that point on in the assembly.
1190 The @code{.set noloongson-ext} directive prevents Loongson EXT instructions
1191 from being accepted.
1192
1193 @cindex Loongson EXTensions R2 (EXT2) instructions generation override
1194 @kindex @code{.set loongson-ext2}
1195 @kindex @code{.set noloongson-ext2}
1196 The directive @code{.set loongson-ext2} makes the assembler accept
1197 instructions from the Loongson EXT2 from that point on in the assembly.
1198 This directive implies @code{.set loognson-ext}.
1199 The @code{.set noloongson-ext2} directive prevents Loongson EXT2 instructions
1200 from being accepted.
1201
1202 Traditional MIPS assemblers do not support these directives.
1203
1204 @node MIPS Floating-Point
1205 @section Directives to override floating-point options
1206
1207 @cindex Disable floating-point instructions
1208 @kindex @code{.set softfloat}
1209 @kindex @code{.set hardfloat}
1210 The directives @code{.set softfloat} and @code{.set hardfloat} provide
1211 finer control of disabling and enabling float-point instructions.
1212 These directives always override the default (that hard-float
1213 instructions are accepted) or the command-line options
1214 (@samp{-msoft-float} and @samp{-mhard-float}).
1215
1216 @cindex Disable single-precision floating-point operations
1217 @kindex @code{.set singlefloat}
1218 @kindex @code{.set doublefloat}
1219 The directives @code{.set singlefloat} and @code{.set doublefloat}
1220 provide finer control of disabling and enabling double-precision
1221 float-point operations. These directives always override the default
1222 (that double-precision operations are accepted) or the command-line
1223 options (@samp{-msingle-float} and @samp{-mdouble-float}).
1224
1225 Traditional MIPS assemblers do not support these directives.
1226
1227 @node MIPS Syntax
1228 @section Syntactical considerations for the MIPS assembler
1229 @menu
1230 * MIPS-Chars:: Special Characters
1231 @end menu
1232
1233 @node MIPS-Chars
1234 @subsection Special Characters
1235
1236 @cindex line comment character, MIPS
1237 @cindex MIPS line comment character
1238 The presence of a @samp{#} on a line indicates the start of a comment
1239 that extends to the end of the current line.
1240
1241 If a @samp{#} appears as the first character of a line, the whole line
1242 is treated as a comment, but in this case the line can also be a
1243 logical line number directive (@pxref{Comments}) or a
1244 preprocessor control command (@pxref{Preprocessing}).
1245
1246 @cindex line separator, MIPS
1247 @cindex statement separator, MIPS
1248 @cindex MIPS line separator
1249 The @samp{;} character can be used to separate statements on the same
1250 line.