* read.c: Standardize error/warning messages - don't capitalise, no
[binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* This is really a branch office of as-read.c. I split it out to clearly
24 distinguish the world of expressions from the world of statements.
25 (It also gives smaller files to re-compile.)
26 Here, "operand"s are of expressions, not instructions. */
27
28 #include <ctype.h>
29 #include <string.h>
30 #define min(a, b) ((a) < (b) ? (a) : (b))
31
32 #include "as.h"
33 #include "obstack.h"
34
35 static void floating_constant PARAMS ((expressionS * expressionP));
36 static valueT generic_bignum_to_int32 PARAMS ((void));
37 #ifdef BFD64
38 static valueT generic_bignum_to_int64 PARAMS ((void));
39 #endif
40 static void integer_constant PARAMS ((int radix, expressionS * expressionP));
41 static void mri_char_constant PARAMS ((expressionS *));
42 static void current_location PARAMS ((expressionS *));
43 static void clean_up_expression PARAMS ((expressionS * expressionP));
44 static segT operand PARAMS ((expressionS *));
45 static operatorT operator PARAMS ((int *));
46
47 extern const char EXP_CHARS[], FLT_CHARS[];
48
49 /* We keep a mapping of expression symbols to file positions, so that
50 we can provide better error messages. */
51
52 struct expr_symbol_line {
53 struct expr_symbol_line *next;
54 symbolS *sym;
55 char *file;
56 unsigned int line;
57 };
58
59 static struct expr_symbol_line *expr_symbol_lines;
60 \f
61 /* Build a dummy symbol to hold a complex expression. This is how we
62 build expressions up out of other expressions. The symbol is put
63 into the fake section expr_section. */
64
65 symbolS *
66 make_expr_symbol (expressionP)
67 expressionS *expressionP;
68 {
69 expressionS zero;
70 const char *fake;
71 symbolS *symbolP;
72 struct expr_symbol_line *n;
73
74 if (expressionP->X_op == O_symbol
75 && expressionP->X_add_number == 0)
76 return expressionP->X_add_symbol;
77
78 if (expressionP->X_op == O_big)
79 {
80 /* This won't work, because the actual value is stored in
81 generic_floating_point_number or generic_bignum, and we are
82 going to lose it if we haven't already. */
83 if (expressionP->X_add_number > 0)
84 as_bad (_("bignum invalid"));
85 else
86 as_bad (_("floating point number invalid"));
87 zero.X_op = O_constant;
88 zero.X_add_number = 0;
89 zero.X_unsigned = 0;
90 clean_up_expression (&zero);
91 expressionP = &zero;
92 }
93
94 fake = FAKE_LABEL_NAME;
95
96 /* Putting constant symbols in absolute_section rather than
97 expr_section is convenient for the old a.out code, for which
98 S_GET_SEGMENT does not always retrieve the value put in by
99 S_SET_SEGMENT. */
100 symbolP = symbol_create (fake,
101 (expressionP->X_op == O_constant
102 ? absolute_section
103 : expr_section),
104 0, &zero_address_frag);
105 symbol_set_value_expression (symbolP, expressionP);
106
107 if (expressionP->X_op == O_constant)
108 resolve_symbol_value (symbolP);
109
110 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
111 n->sym = symbolP;
112 as_where (&n->file, &n->line);
113 n->next = expr_symbol_lines;
114 expr_symbol_lines = n;
115
116 return symbolP;
117 }
118
119 /* Return the file and line number for an expr symbol. Return
120 non-zero if something was found, 0 if no information is known for
121 the symbol. */
122
123 int
124 expr_symbol_where (sym, pfile, pline)
125 symbolS *sym;
126 char **pfile;
127 unsigned int *pline;
128 {
129 register struct expr_symbol_line *l;
130
131 for (l = expr_symbol_lines; l != NULL; l = l->next)
132 {
133 if (l->sym == sym)
134 {
135 *pfile = l->file;
136 *pline = l->line;
137 return 1;
138 }
139 }
140
141 return 0;
142 }
143 \f
144 /* Utilities for building expressions.
145 Since complex expressions are recorded as symbols for use in other
146 expressions these return a symbolS * and not an expressionS *.
147 These explicitly do not take an "add_number" argument. */
148 /* ??? For completeness' sake one might want expr_build_symbol.
149 It would just return its argument. */
150
151 /* Build an expression for an unsigned constant.
152 The corresponding one for signed constants is missing because
153 there's currently no need for it. One could add an unsigned_p flag
154 but that seems more clumsy. */
155
156 symbolS *
157 expr_build_uconstant (value)
158 offsetT value;
159 {
160 expressionS e;
161
162 e.X_op = O_constant;
163 e.X_add_number = value;
164 e.X_unsigned = 1;
165 return make_expr_symbol (&e);
166 }
167
168 /* Build an expression for OP s1. */
169
170 symbolS *
171 expr_build_unary (op, s1)
172 operatorT op;
173 symbolS *s1;
174 {
175 expressionS e;
176
177 e.X_op = op;
178 e.X_add_symbol = s1;
179 e.X_add_number = 0;
180 return make_expr_symbol (&e);
181 }
182
183 /* Build an expression for s1 OP s2. */
184
185 symbolS *
186 expr_build_binary (op, s1, s2)
187 operatorT op;
188 symbolS *s1;
189 symbolS *s2;
190 {
191 expressionS e;
192
193 e.X_op = op;
194 e.X_add_symbol = s1;
195 e.X_op_symbol = s2;
196 e.X_add_number = 0;
197 return make_expr_symbol (&e);
198 }
199
200 /* Build an expression for the current location ('.'). */
201
202 symbolS *
203 expr_build_dot ()
204 {
205 expressionS e;
206
207 current_location (&e);
208 return make_expr_symbol (&e);
209 }
210 \f
211 /* Build any floating-point literal here.
212 Also build any bignum literal here. */
213
214 /* Seems atof_machine can backscan through generic_bignum and hit whatever
215 happens to be loaded before it in memory. And its way too complicated
216 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
217 and never write into the early words, thus they'll always be zero.
218 I hate Dean's floating-point code. Bleh. */
219 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
220
221 FLONUM_TYPE generic_floating_point_number = {
222 &generic_bignum[6], /* low. (JF: Was 0) */
223 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
224 0, /* leader. */
225 0, /* exponent. */
226 0 /* sign. */
227 };
228
229 /* If nonzero, we've been asked to assemble nan, +inf or -inf. */
230 int generic_floating_point_magic;
231 \f
232 static void
233 floating_constant (expressionP)
234 expressionS *expressionP;
235 {
236 /* input_line_pointer -> floating-point constant. */
237 int error_code;
238
239 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
240 &generic_floating_point_number);
241
242 if (error_code)
243 {
244 if (error_code == ERROR_EXPONENT_OVERFLOW)
245 {
246 as_bad (_("bad floating-point constant: exponent overflow"));
247 }
248 else
249 {
250 as_bad (_("bad floating-point constant: unknown error code=%d"),
251 error_code);
252 }
253 }
254 expressionP->X_op = O_big;
255 /* input_line_pointer -> just after constant, which may point to
256 whitespace. */
257 expressionP->X_add_number = -1;
258 }
259
260 static valueT
261 generic_bignum_to_int32 ()
262 {
263 valueT number =
264 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
265 | (generic_bignum[0] & LITTLENUM_MASK);
266 number &= 0xffffffff;
267 return number;
268 }
269
270 #ifdef BFD64
271 static valueT
272 generic_bignum_to_int64 ()
273 {
274 valueT number =
275 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
276 << LITTLENUM_NUMBER_OF_BITS)
277 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
278 << LITTLENUM_NUMBER_OF_BITS)
279 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
280 << LITTLENUM_NUMBER_OF_BITS)
281 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
282 return number;
283 }
284 #endif
285
286 static void
287 integer_constant (radix, expressionP)
288 int radix;
289 expressionS *expressionP;
290 {
291 char *start; /* Start of number. */
292 char *suffix = NULL;
293 char c;
294 valueT number; /* Offset or (absolute) value. */
295 short int digit; /* Value of next digit in current radix. */
296 short int maxdig = 0; /* Highest permitted digit value. */
297 int too_many_digits = 0; /* If we see >= this number of. */
298 char *name; /* Points to name of symbol. */
299 symbolS *symbolP; /* Points to symbol. */
300
301 int small; /* True if fits in 32 bits. */
302
303 /* May be bignum, or may fit in 32 bits. */
304 /* Most numbers fit into 32 bits, and we want this case to be fast.
305 so we pretend it will fit into 32 bits. If, after making up a 32
306 bit number, we realise that we have scanned more digits than
307 comfortably fit into 32 bits, we re-scan the digits coding them
308 into a bignum. For decimal and octal numbers we are
309 conservative: Some numbers may be assumed bignums when in fact
310 they do fit into 32 bits. Numbers of any radix can have excess
311 leading zeros: We strive to recognise this and cast them back
312 into 32 bits. We must check that the bignum really is more than
313 32 bits, and change it back to a 32-bit number if it fits. The
314 number we are looking for is expected to be positive, but if it
315 fits into 32 bits as an unsigned number, we let it be a 32-bit
316 number. The cavalier approach is for speed in ordinary cases. */
317 /* This has been extended for 64 bits. We blindly assume that if
318 you're compiling in 64-bit mode, the target is a 64-bit machine.
319 This should be cleaned up. */
320
321 #ifdef BFD64
322 #define valuesize 64
323 #else /* includes non-bfd case, mostly */
324 #define valuesize 32
325 #endif
326
327 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
328 {
329 int flt = 0;
330
331 /* In MRI mode, the number may have a suffix indicating the
332 radix. For that matter, it might actually be a floating
333 point constant. */
334 for (suffix = input_line_pointer;
335 isalnum ((unsigned char) *suffix);
336 suffix++)
337 {
338 if (*suffix == 'e' || *suffix == 'E')
339 flt = 1;
340 }
341
342 if (suffix == input_line_pointer)
343 {
344 radix = 10;
345 suffix = NULL;
346 }
347 else
348 {
349 c = *--suffix;
350 if (islower ((unsigned char) c))
351 c = toupper (c);
352 if (c == 'B')
353 radix = 2;
354 else if (c == 'D')
355 radix = 10;
356 else if (c == 'O' || c == 'Q')
357 radix = 8;
358 else if (c == 'H')
359 radix = 16;
360 else if (suffix[1] == '.' || c == 'E' || flt)
361 {
362 floating_constant (expressionP);
363 return;
364 }
365 else
366 {
367 radix = 10;
368 suffix = NULL;
369 }
370 }
371 }
372
373 switch (radix)
374 {
375 case 2:
376 maxdig = 2;
377 too_many_digits = valuesize + 1;
378 break;
379 case 8:
380 maxdig = radix = 8;
381 too_many_digits = (valuesize + 2) / 3 + 1;
382 break;
383 case 16:
384 maxdig = radix = 16;
385 too_many_digits = (valuesize + 3) / 4 + 1;
386 break;
387 case 10:
388 maxdig = radix = 10;
389 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
390 }
391 #undef valuesize
392 start = input_line_pointer;
393 c = *input_line_pointer++;
394 for (number = 0;
395 (digit = hex_value (c)) < maxdig;
396 c = *input_line_pointer++)
397 {
398 number = number * radix + digit;
399 }
400 /* c contains character after number. */
401 /* input_line_pointer->char after c. */
402 small = (input_line_pointer - start - 1) < too_many_digits;
403
404 if (radix == 16 && c == '_')
405 {
406 /* This is literal of the form 0x333_0_12345678_1.
407 This example is equivalent to 0x00000333000000001234567800000001. */
408
409 int num_little_digits = 0;
410 int i;
411 input_line_pointer = start; /* -> 1st digit. */
412
413 know (LITTLENUM_NUMBER_OF_BITS == 16);
414
415 for (c = '_'; c == '_'; num_little_digits += 2)
416 {
417
418 /* Convert one 64-bit word. */
419 int ndigit = 0;
420 number = 0;
421 for (c = *input_line_pointer++;
422 (digit = hex_value (c)) < maxdig;
423 c = *(input_line_pointer++))
424 {
425 number = number * radix + digit;
426 ndigit++;
427 }
428
429 /* Check for 8 digit per word max. */
430 if (ndigit > 8)
431 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
432
433 /* Add this chunk to the bignum.
434 Shift things down 2 little digits. */
435 know (LITTLENUM_NUMBER_OF_BITS == 16);
436 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
437 i >= 2;
438 i--)
439 generic_bignum[i] = generic_bignum[i - 2];
440
441 /* Add the new digits as the least significant new ones. */
442 generic_bignum[0] = number & 0xffffffff;
443 generic_bignum[1] = number >> 16;
444 }
445
446 /* Again, c is char after number, input_line_pointer->after c. */
447
448 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
449 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
450
451 assert (num_little_digits >= 4);
452
453 if (num_little_digits != 8)
454 as_bad (_("a bignum with underscores must have exactly 4 words"));
455
456 /* We might have some leading zeros. These can be trimmed to give
457 us a change to fit this constant into a small number. */
458 while (generic_bignum[num_little_digits - 1] == 0
459 && num_little_digits > 1)
460 num_little_digits--;
461
462 if (num_little_digits <= 2)
463 {
464 /* will fit into 32 bits. */
465 number = generic_bignum_to_int32 ();
466 small = 1;
467 }
468 #ifdef BFD64
469 else if (num_little_digits <= 4)
470 {
471 /* Will fit into 64 bits. */
472 number = generic_bignum_to_int64 ();
473 small = 1;
474 }
475 #endif
476 else
477 {
478 small = 0;
479
480 /* Number of littlenums in the bignum. */
481 number = num_little_digits;
482 }
483 }
484 else if (!small)
485 {
486 /* We saw a lot of digits. manufacture a bignum the hard way. */
487 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
488 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
489 long carry;
490
491 leader = generic_bignum;
492 generic_bignum[0] = 0;
493 generic_bignum[1] = 0;
494 generic_bignum[2] = 0;
495 generic_bignum[3] = 0;
496 input_line_pointer = start; /* -> 1st digit. */
497 c = *input_line_pointer++;
498 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
499 {
500 for (pointer = generic_bignum; pointer <= leader; pointer++)
501 {
502 long work;
503
504 work = carry + radix * *pointer;
505 *pointer = work & LITTLENUM_MASK;
506 carry = work >> LITTLENUM_NUMBER_OF_BITS;
507 }
508 if (carry)
509 {
510 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
511 {
512 /* Room to grow a longer bignum. */
513 *++leader = carry;
514 }
515 }
516 }
517 /* Again, c is char after number. */
518 /* input_line_pointer -> after c. */
519 know (LITTLENUM_NUMBER_OF_BITS == 16);
520 if (leader < generic_bignum + 2)
521 {
522 /* Will fit into 32 bits. */
523 number = generic_bignum_to_int32 ();
524 small = 1;
525 }
526 #ifdef BFD64
527 else if (leader < generic_bignum + 4)
528 {
529 /* Will fit into 64 bits. */
530 number = generic_bignum_to_int64 ();
531 small = 1;
532 }
533 #endif
534 else
535 {
536 /* Number of littlenums in the bignum. */
537 number = leader - generic_bignum + 1;
538 }
539 }
540
541 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
542 && suffix != NULL
543 && input_line_pointer - 1 == suffix)
544 c = *input_line_pointer++;
545
546 if (small)
547 {
548 /* Here with number, in correct radix. c is the next char.
549 Note that unlike un*x, we allow "011f" "0x9f" to both mean
550 the same as the (conventional) "9f".
551 This is simply easier than checking for strict canonical
552 form. Syntax sux! */
553
554 if (LOCAL_LABELS_FB && c == 'b')
555 {
556 /* Backward ref to local label.
557 Because it is backward, expect it to be defined. */
558 /* Construct a local label. */
559 name = fb_label_name ((int) number, 0);
560
561 /* Seen before, or symbol is defined: OK. */
562 symbolP = symbol_find (name);
563 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
564 {
565 /* Local labels are never absolute. Don't waste time
566 checking absoluteness. */
567 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
568
569 expressionP->X_op = O_symbol;
570 expressionP->X_add_symbol = symbolP;
571 }
572 else
573 {
574 /* Either not seen or not defined. */
575 /* @@ Should print out the original string instead of
576 the parsed number. */
577 as_bad (_("backward ref to unknown label \"%d:\""),
578 (int) number);
579 expressionP->X_op = O_constant;
580 }
581
582 expressionP->X_add_number = 0;
583 } /* case 'b' */
584 else if (LOCAL_LABELS_FB && c == 'f')
585 {
586 /* Forward reference. Expect symbol to be undefined or
587 unknown. undefined: seen it before. unknown: never seen
588 it before.
589
590 Construct a local label name, then an undefined symbol.
591 Don't create a xseg frag for it: caller may do that.
592 Just return it as never seen before. */
593 name = fb_label_name ((int) number, 1);
594 symbolP = symbol_find_or_make (name);
595 /* We have no need to check symbol properties. */
596 #ifndef many_segments
597 /* Since "know" puts its arg into a "string", we
598 can't have newlines in the argument. */
599 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
600 #endif
601 expressionP->X_op = O_symbol;
602 expressionP->X_add_symbol = symbolP;
603 expressionP->X_add_number = 0;
604 } /* case 'f' */
605 else if (LOCAL_LABELS_DOLLAR && c == '$')
606 {
607 /* If the dollar label is *currently* defined, then this is just
608 another reference to it. If it is not *currently* defined,
609 then this is a fresh instantiation of that number, so create
610 it. */
611
612 if (dollar_label_defined ((long) number))
613 {
614 name = dollar_label_name ((long) number, 0);
615 symbolP = symbol_find (name);
616 know (symbolP != NULL);
617 }
618 else
619 {
620 name = dollar_label_name ((long) number, 1);
621 symbolP = symbol_find_or_make (name);
622 }
623
624 expressionP->X_op = O_symbol;
625 expressionP->X_add_symbol = symbolP;
626 expressionP->X_add_number = 0;
627 } /* case '$' */
628 else
629 {
630 expressionP->X_op = O_constant;
631 #ifdef TARGET_WORD_SIZE
632 /* Sign extend NUMBER. */
633 number |= (-(number >> (TARGET_WORD_SIZE - 1))) << (TARGET_WORD_SIZE - 1);
634 #endif
635 expressionP->X_add_number = number;
636 input_line_pointer--; /* Restore following character. */
637 } /* Really just a number. */
638 }
639 else
640 {
641 /* Not a small number. */
642 expressionP->X_op = O_big;
643 expressionP->X_add_number = number; /* Number of littlenums. */
644 input_line_pointer--; /* -> char following number. */
645 }
646 }
647
648 /* Parse an MRI multi character constant. */
649
650 static void
651 mri_char_constant (expressionP)
652 expressionS *expressionP;
653 {
654 int i;
655
656 if (*input_line_pointer == '\''
657 && input_line_pointer[1] != '\'')
658 {
659 expressionP->X_op = O_constant;
660 expressionP->X_add_number = 0;
661 return;
662 }
663
664 /* In order to get the correct byte ordering, we must build the
665 number in reverse. */
666 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
667 {
668 int j;
669
670 generic_bignum[i] = 0;
671 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
672 {
673 if (*input_line_pointer == '\'')
674 {
675 if (input_line_pointer[1] != '\'')
676 break;
677 ++input_line_pointer;
678 }
679 generic_bignum[i] <<= 8;
680 generic_bignum[i] += *input_line_pointer;
681 ++input_line_pointer;
682 }
683
684 if (i < SIZE_OF_LARGE_NUMBER - 1)
685 {
686 /* If there is more than one littlenum, left justify the
687 last one to make it match the earlier ones. If there is
688 only one, we can just use the value directly. */
689 for (; j < CHARS_PER_LITTLENUM; j++)
690 generic_bignum[i] <<= 8;
691 }
692
693 if (*input_line_pointer == '\''
694 && input_line_pointer[1] != '\'')
695 break;
696 }
697
698 if (i < 0)
699 {
700 as_bad (_("character constant too large"));
701 i = 0;
702 }
703
704 if (i > 0)
705 {
706 int c;
707 int j;
708
709 c = SIZE_OF_LARGE_NUMBER - i;
710 for (j = 0; j < c; j++)
711 generic_bignum[j] = generic_bignum[i + j];
712 i = c;
713 }
714
715 know (LITTLENUM_NUMBER_OF_BITS == 16);
716 if (i > 2)
717 {
718 expressionP->X_op = O_big;
719 expressionP->X_add_number = i;
720 }
721 else
722 {
723 expressionP->X_op = O_constant;
724 if (i < 2)
725 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
726 else
727 expressionP->X_add_number =
728 (((generic_bignum[1] & LITTLENUM_MASK)
729 << LITTLENUM_NUMBER_OF_BITS)
730 | (generic_bignum[0] & LITTLENUM_MASK));
731 }
732
733 /* Skip the final closing quote. */
734 ++input_line_pointer;
735 }
736
737 /* Return an expression representing the current location. This
738 handles the magic symbol `.'. */
739
740 static void
741 current_location (expressionp)
742 expressionS *expressionp;
743 {
744 if (now_seg == absolute_section)
745 {
746 expressionp->X_op = O_constant;
747 expressionp->X_add_number = abs_section_offset;
748 }
749 else
750 {
751 symbolS *symbolp;
752
753 symbolp = symbol_new (FAKE_LABEL_NAME, now_seg,
754 (valueT) frag_now_fix (),
755 frag_now);
756 expressionp->X_op = O_symbol;
757 expressionp->X_add_symbol = symbolp;
758 expressionp->X_add_number = 0;
759 }
760 }
761
762 /* In: Input_line_pointer points to 1st char of operand, which may
763 be a space.
764
765 Out: A expressionS.
766 The operand may have been empty: in this case X_op == O_absent.
767 Input_line_pointer->(next non-blank) char after operand. */
768
769 static segT
770 operand (expressionP)
771 expressionS *expressionP;
772 {
773 char c;
774 symbolS *symbolP; /* Points to symbol. */
775 char *name; /* Points to name of symbol. */
776 segT segment;
777
778 /* All integers are regarded as unsigned unless they are negated.
779 This is because the only thing which cares whether a number is
780 unsigned is the code in emit_expr which extends constants into
781 bignums. It should only sign extend negative numbers, so that
782 something like ``.quad 0x80000000'' is not sign extended even
783 though it appears negative if valueT is 32 bits. */
784 expressionP->X_unsigned = 1;
785
786 /* Digits, assume it is a bignum. */
787
788 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
789 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
790
791 if (is_end_of_line[(unsigned char) c])
792 goto eol;
793
794 switch (c)
795 {
796 case '1':
797 case '2':
798 case '3':
799 case '4':
800 case '5':
801 case '6':
802 case '7':
803 case '8':
804 case '9':
805 input_line_pointer--;
806
807 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
808 ? 0 : 10,
809 expressionP);
810 break;
811
812 #ifdef LITERAL_PREFIXDOLLAR_HEX
813 case '$':
814 integer_constant (16, expressionP);
815 break;
816 #endif
817
818 #ifdef LITERAL_PREFIXPERCENT_BIN
819 case '%':
820 integer_constant (2, expressionP);
821 break;
822 #endif
823
824 case '0':
825 /* Non-decimal radix. */
826
827 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
828 {
829 char *s;
830
831 /* Check for a hex constant. */
832 for (s = input_line_pointer; hex_p (*s); s++)
833 ;
834 if (*s == 'h' || *s == 'H')
835 {
836 --input_line_pointer;
837 integer_constant (0, expressionP);
838 break;
839 }
840 }
841 c = *input_line_pointer;
842 switch (c)
843 {
844 case 'o':
845 case 'O':
846 case 'q':
847 case 'Q':
848 case '8':
849 case '9':
850 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
851 {
852 integer_constant (0, expressionP);
853 break;
854 }
855 /* Fall through. */
856 default:
857 default_case:
858 if (c && strchr (FLT_CHARS, c))
859 {
860 input_line_pointer++;
861 floating_constant (expressionP);
862 expressionP->X_add_number =
863 - (isupper ((unsigned char) c) ? tolower (c) : c);
864 }
865 else
866 {
867 /* The string was only zero. */
868 expressionP->X_op = O_constant;
869 expressionP->X_add_number = 0;
870 }
871
872 break;
873
874 case 'x':
875 case 'X':
876 if (flag_m68k_mri)
877 goto default_case;
878 input_line_pointer++;
879 integer_constant (16, expressionP);
880 break;
881
882 case 'b':
883 if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX))
884 {
885 /* This code used to check for '+' and '-' here, and, in
886 some conditions, fall through to call
887 integer_constant. However, that didn't make sense,
888 as integer_constant only accepts digits. */
889 /* Some of our code elsewhere does permit digits greater
890 than the expected base; for consistency, do the same
891 here. */
892 if (input_line_pointer[1] < '0'
893 || input_line_pointer[1] > '9')
894 {
895 /* Parse this as a back reference to label 0. */
896 input_line_pointer--;
897 integer_constant (10, expressionP);
898 break;
899 }
900 /* Otherwise, parse this as a binary number. */
901 }
902 /* Fall through. */
903 case 'B':
904 input_line_pointer++;
905 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
906 goto default_case;
907 integer_constant (2, expressionP);
908 break;
909
910 case '0':
911 case '1':
912 case '2':
913 case '3':
914 case '4':
915 case '5':
916 case '6':
917 case '7':
918 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
919 ? 0 : 8,
920 expressionP);
921 break;
922
923 case 'f':
924 if (LOCAL_LABELS_FB)
925 {
926 /* If it says "0f" and it could possibly be a floating point
927 number, make it one. Otherwise, make it a local label,
928 and try to deal with parsing the rest later. */
929 if (!input_line_pointer[1]
930 || (is_end_of_line[0xff & input_line_pointer[1]])
931 || strchr (FLT_CHARS, 'f') == NULL)
932 goto is_0f_label;
933 {
934 char *cp = input_line_pointer + 1;
935 int r = atof_generic (&cp, ".", EXP_CHARS,
936 &generic_floating_point_number);
937 switch (r)
938 {
939 case 0:
940 case ERROR_EXPONENT_OVERFLOW:
941 if (*cp == 'f' || *cp == 'b')
942 /* Looks like a difference expression. */
943 goto is_0f_label;
944 else if (cp == input_line_pointer + 1)
945 /* No characters has been accepted -- looks like
946 end of operand. */
947 goto is_0f_label;
948 else
949 goto is_0f_float;
950 default:
951 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
952 r);
953 }
954 }
955
956 /* Okay, now we've sorted it out. We resume at one of these
957 two labels, depending on what we've decided we're probably
958 looking at. */
959 is_0f_label:
960 input_line_pointer--;
961 integer_constant (10, expressionP);
962 break;
963
964 is_0f_float:
965 /* Fall through. */
966 ;
967 }
968
969 case 'd':
970 case 'D':
971 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
972 {
973 integer_constant (0, expressionP);
974 break;
975 }
976 /* Fall through. */
977 case 'F':
978 case 'r':
979 case 'e':
980 case 'E':
981 case 'g':
982 case 'G':
983 input_line_pointer++;
984 floating_constant (expressionP);
985 expressionP->X_add_number =
986 - (isupper ((unsigned char) c) ? tolower (c) : c);
987 break;
988
989 case '$':
990 if (LOCAL_LABELS_DOLLAR)
991 {
992 integer_constant (10, expressionP);
993 break;
994 }
995 else
996 goto default_case;
997 }
998
999 break;
1000
1001 case '(':
1002 #ifndef NEED_INDEX_OPERATOR
1003 case '[':
1004 #endif
1005 /* Didn't begin with digit & not a name. */
1006 segment = expression (expressionP);
1007 /* expression () will pass trailing whitespace. */
1008 if ((c == '(' && *input_line_pointer != ')')
1009 || (c == '[' && *input_line_pointer != ']'))
1010 {
1011 #ifdef RELAX_PAREN_GROUPING
1012 if (c != '(')
1013 #endif
1014 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
1015 }
1016 else
1017 input_line_pointer++;
1018 SKIP_WHITESPACE ();
1019 /* Here with input_line_pointer -> char after "(...)". */
1020 return segment;
1021
1022 #ifdef TC_M68K
1023 case 'E':
1024 if (! flag_m68k_mri || *input_line_pointer != '\'')
1025 goto de_fault;
1026 as_bad (_("EBCDIC constants are not supported"));
1027 /* Fall through. */
1028 case 'A':
1029 if (! flag_m68k_mri || *input_line_pointer != '\'')
1030 goto de_fault;
1031 ++input_line_pointer;
1032 /* Fall through. */
1033 #endif
1034 case '\'':
1035 if (! flag_m68k_mri)
1036 {
1037 /* Warning: to conform to other people's assemblers NO
1038 ESCAPEMENT is permitted for a single quote. The next
1039 character, parity errors and all, is taken as the value
1040 of the operand. VERY KINKY. */
1041 expressionP->X_op = O_constant;
1042 expressionP->X_add_number = *input_line_pointer++;
1043 break;
1044 }
1045
1046 mri_char_constant (expressionP);
1047 break;
1048
1049 case '+':
1050 (void) operand (expressionP);
1051 break;
1052
1053 #ifdef TC_M68K
1054 case '"':
1055 /* Double quote is the bitwise not operator in MRI mode. */
1056 if (! flag_m68k_mri)
1057 goto de_fault;
1058 /* Fall through. */
1059 #endif
1060 case '~':
1061 /* '~' is permitted to start a label on the Delta. */
1062 if (is_name_beginner (c))
1063 goto isname;
1064 case '!':
1065 case '-':
1066 {
1067 operand (expressionP);
1068 if (expressionP->X_op == O_constant)
1069 {
1070 /* input_line_pointer -> char after operand. */
1071 if (c == '-')
1072 {
1073 expressionP->X_add_number = - expressionP->X_add_number;
1074 /* Notice: '-' may overflow: no warning is given.
1075 This is compatible with other people's
1076 assemblers. Sigh. */
1077 expressionP->X_unsigned = 0;
1078 }
1079 else if (c == '~' || c == '"')
1080 expressionP->X_add_number = ~ expressionP->X_add_number;
1081 else
1082 expressionP->X_add_number = ! expressionP->X_add_number;
1083 }
1084 else if (expressionP->X_op != O_illegal
1085 && expressionP->X_op != O_absent)
1086 {
1087 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1088 if (c == '-')
1089 expressionP->X_op = O_uminus;
1090 else if (c == '~' || c == '"')
1091 expressionP->X_op = O_bit_not;
1092 else
1093 expressionP->X_op = O_logical_not;
1094 expressionP->X_add_number = 0;
1095 }
1096 else
1097 as_warn (_("Unary operator %c ignored because bad operand follows"),
1098 c);
1099 }
1100 break;
1101
1102 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1103 case '$':
1104 /* '$' is the program counter when in MRI mode, or when
1105 DOLLAR_DOT is defined. */
1106 #ifndef DOLLAR_DOT
1107 if (! flag_m68k_mri)
1108 goto de_fault;
1109 #endif
1110 if (flag_m68k_mri && hex_p (*input_line_pointer))
1111 {
1112 /* In MRI mode, '$' is also used as the prefix for a
1113 hexadecimal constant. */
1114 integer_constant (16, expressionP);
1115 break;
1116 }
1117
1118 if (is_part_of_name (*input_line_pointer))
1119 goto isname;
1120
1121 current_location (expressionP);
1122 break;
1123 #endif
1124
1125 case '.':
1126 if (!is_part_of_name (*input_line_pointer))
1127 {
1128 current_location (expressionP);
1129 break;
1130 }
1131 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1132 && ! is_part_of_name (input_line_pointer[8]))
1133 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1134 && ! is_part_of_name (input_line_pointer[7])))
1135 {
1136 int start;
1137
1138 start = (input_line_pointer[1] == 't'
1139 || input_line_pointer[1] == 'T');
1140 input_line_pointer += start ? 8 : 7;
1141 SKIP_WHITESPACE ();
1142 if (*input_line_pointer != '(')
1143 as_bad (_("syntax error in .startof. or .sizeof."));
1144 else
1145 {
1146 char *buf;
1147
1148 ++input_line_pointer;
1149 SKIP_WHITESPACE ();
1150 name = input_line_pointer;
1151 c = get_symbol_end ();
1152
1153 buf = (char *) xmalloc (strlen (name) + 10);
1154 if (start)
1155 sprintf (buf, ".startof.%s", name);
1156 else
1157 sprintf (buf, ".sizeof.%s", name);
1158 symbolP = symbol_make (buf);
1159 free (buf);
1160
1161 expressionP->X_op = O_symbol;
1162 expressionP->X_add_symbol = symbolP;
1163 expressionP->X_add_number = 0;
1164
1165 *input_line_pointer = c;
1166 SKIP_WHITESPACE ();
1167 if (*input_line_pointer != ')')
1168 as_bad (_("syntax error in .startof. or .sizeof."));
1169 else
1170 ++input_line_pointer;
1171 }
1172 break;
1173 }
1174 else
1175 {
1176 goto isname;
1177 }
1178
1179 case ',':
1180 eol:
1181 /* Can't imagine any other kind of operand. */
1182 expressionP->X_op = O_absent;
1183 input_line_pointer--;
1184 break;
1185
1186 #ifdef TC_M68K
1187 case '%':
1188 if (! flag_m68k_mri)
1189 goto de_fault;
1190 integer_constant (2, expressionP);
1191 break;
1192
1193 case '@':
1194 if (! flag_m68k_mri)
1195 goto de_fault;
1196 integer_constant (8, expressionP);
1197 break;
1198
1199 case ':':
1200 if (! flag_m68k_mri)
1201 goto de_fault;
1202
1203 /* In MRI mode, this is a floating point constant represented
1204 using hexadecimal digits. */
1205
1206 ++input_line_pointer;
1207 integer_constant (16, expressionP);
1208 break;
1209
1210 case '*':
1211 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1212 goto de_fault;
1213
1214 current_location (expressionP);
1215 break;
1216 #endif
1217
1218 default:
1219 #ifdef TC_M68K
1220 de_fault:
1221 #endif
1222 if (is_name_beginner (c)) /* Here if did not begin with a digit. */
1223 {
1224 /* Identifier begins here.
1225 This is kludged for speed, so code is repeated. */
1226 isname:
1227 name = --input_line_pointer;
1228 c = get_symbol_end ();
1229
1230 #ifdef md_parse_name
1231 /* This is a hook for the backend to parse certain names
1232 specially in certain contexts. If a name always has a
1233 specific value, it can often be handled by simply
1234 entering it in the symbol table. */
1235 if (md_parse_name (name, expressionP, &c))
1236 {
1237 *input_line_pointer = c;
1238 break;
1239 }
1240 #endif
1241
1242 #ifdef TC_I960
1243 /* The MRI i960 assembler permits
1244 lda sizeof code,g13
1245 FIXME: This should use md_parse_name. */
1246 if (flag_mri
1247 && (strcasecmp (name, "sizeof") == 0
1248 || strcasecmp (name, "startof") == 0))
1249 {
1250 int start;
1251 char *buf;
1252
1253 start = (name[1] == 't'
1254 || name[1] == 'T');
1255
1256 *input_line_pointer = c;
1257 SKIP_WHITESPACE ();
1258
1259 name = input_line_pointer;
1260 c = get_symbol_end ();
1261
1262 buf = (char *) xmalloc (strlen (name) + 10);
1263 if (start)
1264 sprintf (buf, ".startof.%s", name);
1265 else
1266 sprintf (buf, ".sizeof.%s", name);
1267 symbolP = symbol_make (buf);
1268 free (buf);
1269
1270 expressionP->X_op = O_symbol;
1271 expressionP->X_add_symbol = symbolP;
1272 expressionP->X_add_number = 0;
1273
1274 *input_line_pointer = c;
1275 SKIP_WHITESPACE ();
1276
1277 break;
1278 }
1279 #endif
1280
1281 symbolP = symbol_find_or_make (name);
1282
1283 /* If we have an absolute symbol or a reg, then we know its
1284 value now. */
1285 segment = S_GET_SEGMENT (symbolP);
1286 if (segment == absolute_section)
1287 {
1288 expressionP->X_op = O_constant;
1289 expressionP->X_add_number = S_GET_VALUE (symbolP);
1290 }
1291 else if (segment == reg_section)
1292 {
1293 expressionP->X_op = O_register;
1294 expressionP->X_add_number = S_GET_VALUE (symbolP);
1295 }
1296 else
1297 {
1298 expressionP->X_op = O_symbol;
1299 expressionP->X_add_symbol = symbolP;
1300 expressionP->X_add_number = 0;
1301 }
1302 *input_line_pointer = c;
1303 }
1304 else
1305 {
1306 /* Let the target try to parse it. Success is indicated by changing
1307 the X_op field to something other than O_absent and pointing
1308 input_line_pointer past the expression. If it can't parse the
1309 expression, X_op and input_line_pointer should be unchanged. */
1310 expressionP->X_op = O_absent;
1311 --input_line_pointer;
1312 md_operand (expressionP);
1313 if (expressionP->X_op == O_absent)
1314 {
1315 ++input_line_pointer;
1316 as_bad (_("bad expression"));
1317 expressionP->X_op = O_constant;
1318 expressionP->X_add_number = 0;
1319 }
1320 }
1321 break;
1322 }
1323
1324 /* It is more 'efficient' to clean up the expressionS when they are
1325 created. Doing it here saves lines of code. */
1326 clean_up_expression (expressionP);
1327 SKIP_WHITESPACE (); /* -> 1st char after operand. */
1328 know (*input_line_pointer != ' ');
1329
1330 /* The PA port needs this information. */
1331 if (expressionP->X_add_symbol)
1332 symbol_mark_used (expressionP->X_add_symbol);
1333
1334 switch (expressionP->X_op)
1335 {
1336 default:
1337 return absolute_section;
1338 case O_symbol:
1339 return S_GET_SEGMENT (expressionP->X_add_symbol);
1340 case O_register:
1341 return reg_section;
1342 }
1343 }
1344 \f
1345 /* Internal. Simplify a struct expression for use by expr (). */
1346
1347 /* In: address of a expressionS.
1348 The X_op field of the expressionS may only take certain values.
1349 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1350
1351 Out: expressionS may have been modified:
1352 'foo-foo' symbol references cancelled to 0, which changes X_op
1353 from O_subtract to O_constant.
1354 Unused fields zeroed to help expr (). */
1355
1356 static void
1357 clean_up_expression (expressionP)
1358 expressionS *expressionP;
1359 {
1360 switch (expressionP->X_op)
1361 {
1362 case O_illegal:
1363 case O_absent:
1364 expressionP->X_add_number = 0;
1365 /* Fall through. */
1366 case O_big:
1367 case O_constant:
1368 case O_register:
1369 expressionP->X_add_symbol = NULL;
1370 /* Fall through. */
1371 case O_symbol:
1372 case O_uminus:
1373 case O_bit_not:
1374 expressionP->X_op_symbol = NULL;
1375 break;
1376 case O_subtract:
1377 if (expressionP->X_op_symbol == expressionP->X_add_symbol
1378 || ((symbol_get_frag (expressionP->X_op_symbol)
1379 == symbol_get_frag (expressionP->X_add_symbol))
1380 && SEG_NORMAL (S_GET_SEGMENT (expressionP->X_add_symbol))
1381 && (S_GET_VALUE (expressionP->X_op_symbol)
1382 == S_GET_VALUE (expressionP->X_add_symbol))))
1383 {
1384 addressT diff = (S_GET_VALUE (expressionP->X_add_symbol)
1385 - S_GET_VALUE (expressionP->X_op_symbol));
1386
1387 expressionP->X_op = O_constant;
1388 expressionP->X_add_symbol = NULL;
1389 expressionP->X_op_symbol = NULL;
1390 expressionP->X_add_number += diff;
1391 }
1392 break;
1393 default:
1394 break;
1395 }
1396 }
1397 \f
1398 /* Expression parser. */
1399
1400 /* We allow an empty expression, and just assume (absolute,0) silently.
1401 Unary operators and parenthetical expressions are treated as operands.
1402 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1403
1404 We used to do a aho/ullman shift-reduce parser, but the logic got so
1405 warped that I flushed it and wrote a recursive-descent parser instead.
1406 Now things are stable, would anybody like to write a fast parser?
1407 Most expressions are either register (which does not even reach here)
1408 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1409 So I guess it doesn't really matter how inefficient more complex expressions
1410 are parsed.
1411
1412 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1413 Also, we have consumed any leading or trailing spaces (operand does that)
1414 and done all intervening operators.
1415
1416 This returns the segment of the result, which will be
1417 absolute_section or the segment of a symbol. */
1418
1419 #undef __
1420 #define __ O_illegal
1421
1422 /* Maps ASCII -> operators. */
1423 static const operatorT op_encoding[256] = {
1424 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1425 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1426
1427 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1428 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1429 __, __, __, __, __, __, __, __,
1430 __, __, __, __, O_lt, __, O_gt, __,
1431 __, __, __, __, __, __, __, __,
1432 __, __, __, __, __, __, __, __,
1433 __, __, __, __, __, __, __, __,
1434 __, __, __,
1435 #ifdef NEED_INDEX_OPERATOR
1436 O_index,
1437 #else
1438 __,
1439 #endif
1440 __, __, O_bit_exclusive_or, __,
1441 __, __, __, __, __, __, __, __,
1442 __, __, __, __, __, __, __, __,
1443 __, __, __, __, __, __, __, __,
1444 __, __, __, __, O_bit_inclusive_or, __, __, __,
1445
1446 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1447 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1448 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1449 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1450 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1451 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1452 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1453 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1454 };
1455
1456 /* Rank Examples
1457 0 operand, (expression)
1458 1 ||
1459 2 &&
1460 3 == <> < <= >= >
1461 4 + -
1462 5 used for * / % in MRI mode
1463 6 & ^ ! |
1464 7 * / % << >>
1465 8 unary - unary ~
1466 */
1467 static operator_rankT op_rank[] = {
1468 0, /* O_illegal */
1469 0, /* O_absent */
1470 0, /* O_constant */
1471 0, /* O_symbol */
1472 0, /* O_symbol_rva */
1473 0, /* O_register */
1474 0, /* O_big */
1475 9, /* O_uminus */
1476 9, /* O_bit_not */
1477 9, /* O_logical_not */
1478 8, /* O_multiply */
1479 8, /* O_divide */
1480 8, /* O_modulus */
1481 8, /* O_left_shift */
1482 8, /* O_right_shift */
1483 7, /* O_bit_inclusive_or */
1484 7, /* O_bit_or_not */
1485 7, /* O_bit_exclusive_or */
1486 7, /* O_bit_and */
1487 5, /* O_add */
1488 5, /* O_subtract */
1489 4, /* O_eq */
1490 4, /* O_ne */
1491 4, /* O_lt */
1492 4, /* O_le */
1493 4, /* O_ge */
1494 4, /* O_gt */
1495 3, /* O_logical_and */
1496 2, /* O_logical_or */
1497 1, /* O_index */
1498 0, /* O_md1 */
1499 0, /* O_md2 */
1500 0, /* O_md3 */
1501 0, /* O_md4 */
1502 0, /* O_md5 */
1503 0, /* O_md6 */
1504 0, /* O_md7 */
1505 0, /* O_md8 */
1506 0, /* O_md9 */
1507 0, /* O_md10 */
1508 0, /* O_md11 */
1509 0, /* O_md12 */
1510 0, /* O_md13 */
1511 0, /* O_md14 */
1512 0, /* O_md15 */
1513 0, /* O_md16 */
1514 };
1515
1516 /* Unfortunately, in MRI mode for the m68k, multiplication and
1517 division have lower precedence than the bit wise operators. This
1518 function sets the operator precedences correctly for the current
1519 mode. Also, MRI uses a different bit_not operator, and this fixes
1520 that as well. */
1521
1522 #define STANDARD_MUL_PRECEDENCE 8
1523 #define MRI_MUL_PRECEDENCE 6
1524
1525 void
1526 expr_set_precedence ()
1527 {
1528 if (flag_m68k_mri)
1529 {
1530 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1531 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1532 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1533 }
1534 else
1535 {
1536 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1537 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1538 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1539 }
1540 }
1541
1542 /* Initialize the expression parser. */
1543
1544 void
1545 expr_begin ()
1546 {
1547 expr_set_precedence ();
1548
1549 /* Verify that X_op field is wide enough. */
1550 {
1551 expressionS e;
1552 e.X_op = O_max;
1553 assert (e.X_op == O_max);
1554 }
1555 }
1556 \f
1557 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1558 sets NUM_CHARS to the number of characters in the operator.
1559 Does not advance INPUT_LINE_POINTER. */
1560
1561 static inline operatorT
1562 operator (num_chars)
1563 int *num_chars;
1564 {
1565 int c;
1566 operatorT ret;
1567
1568 c = *input_line_pointer & 0xff;
1569 *num_chars = 1;
1570
1571 if (is_end_of_line[c])
1572 return O_illegal;
1573
1574 switch (c)
1575 {
1576 default:
1577 return op_encoding[c];
1578
1579 case '<':
1580 switch (input_line_pointer[1])
1581 {
1582 default:
1583 return op_encoding[c];
1584 case '<':
1585 ret = O_left_shift;
1586 break;
1587 case '>':
1588 ret = O_ne;
1589 break;
1590 case '=':
1591 ret = O_le;
1592 break;
1593 }
1594 *num_chars = 2;
1595 return ret;
1596
1597 case '=':
1598 if (input_line_pointer[1] != '=')
1599 return op_encoding[c];
1600
1601 *num_chars = 2;
1602 return O_eq;
1603
1604 case '>':
1605 switch (input_line_pointer[1])
1606 {
1607 default:
1608 return op_encoding[c];
1609 case '>':
1610 ret = O_right_shift;
1611 break;
1612 case '=':
1613 ret = O_ge;
1614 break;
1615 }
1616 *num_chars = 2;
1617 return ret;
1618
1619 case '!':
1620 /* We accept !! as equivalent to ^ for MRI compatibility. */
1621 if (input_line_pointer[1] != '!')
1622 {
1623 if (flag_m68k_mri)
1624 return O_bit_inclusive_or;
1625 return op_encoding[c];
1626 }
1627 *num_chars = 2;
1628 return O_bit_exclusive_or;
1629
1630 case '|':
1631 if (input_line_pointer[1] != '|')
1632 return op_encoding[c];
1633
1634 *num_chars = 2;
1635 return O_logical_or;
1636
1637 case '&':
1638 if (input_line_pointer[1] != '&')
1639 return op_encoding[c];
1640
1641 *num_chars = 2;
1642 return O_logical_and;
1643 }
1644
1645 /* NOTREACHED */
1646 }
1647
1648 /* Parse an expression. */
1649
1650 segT
1651 expr (rankarg, resultP)
1652 int rankarg; /* Larger # is higher rank. */
1653 expressionS *resultP; /* Deliver result here. */
1654 {
1655 operator_rankT rank = (operator_rankT) rankarg;
1656 segT retval;
1657 expressionS right;
1658 operatorT op_left;
1659 operatorT op_right;
1660 int op_chars;
1661
1662 know (rank >= 0);
1663
1664 retval = operand (resultP);
1665
1666 /* operand () gobbles spaces. */
1667 know (*input_line_pointer != ' ');
1668
1669 op_left = operator (&op_chars);
1670 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1671 {
1672 segT rightseg;
1673
1674 input_line_pointer += op_chars; /* -> after operator. */
1675
1676 rightseg = expr (op_rank[(int) op_left], &right);
1677 if (right.X_op == O_absent)
1678 {
1679 as_warn (_("missing operand; zero assumed"));
1680 right.X_op = O_constant;
1681 right.X_add_number = 0;
1682 right.X_add_symbol = NULL;
1683 right.X_op_symbol = NULL;
1684 }
1685
1686 know (*input_line_pointer != ' ');
1687
1688 if (op_left == O_index)
1689 {
1690 if (*input_line_pointer != ']')
1691 as_bad ("missing right bracket");
1692 else
1693 {
1694 ++input_line_pointer;
1695 SKIP_WHITESPACE ();
1696 }
1697 }
1698
1699 if (retval == undefined_section)
1700 {
1701 if (SEG_NORMAL (rightseg))
1702 retval = rightseg;
1703 }
1704 else if (! SEG_NORMAL (retval))
1705 retval = rightseg;
1706 else if (SEG_NORMAL (rightseg)
1707 && retval != rightseg
1708 #ifdef DIFF_EXPR_OK
1709 && op_left != O_subtract
1710 #endif
1711 )
1712 as_bad (_("operation combines symbols in different segments"));
1713
1714 op_right = operator (&op_chars);
1715
1716 know (op_right == O_illegal
1717 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1718 know ((int) op_left >= (int) O_multiply
1719 && (int) op_left <= (int) O_logical_or);
1720
1721 /* input_line_pointer->after right-hand quantity. */
1722 /* left-hand quantity in resultP. */
1723 /* right-hand quantity in right. */
1724 /* operator in op_left. */
1725
1726 if (resultP->X_op == O_big)
1727 {
1728 if (resultP->X_add_number > 0)
1729 as_warn (_("left operand is a bignum; integer 0 assumed"));
1730 else
1731 as_warn (_("left operand is a float; integer 0 assumed"));
1732 resultP->X_op = O_constant;
1733 resultP->X_add_number = 0;
1734 resultP->X_add_symbol = NULL;
1735 resultP->X_op_symbol = NULL;
1736 }
1737 if (right.X_op == O_big)
1738 {
1739 if (right.X_add_number > 0)
1740 as_warn (_("right operand is a bignum; integer 0 assumed"));
1741 else
1742 as_warn (_("right operand is a float; integer 0 assumed"));
1743 right.X_op = O_constant;
1744 right.X_add_number = 0;
1745 right.X_add_symbol = NULL;
1746 right.X_op_symbol = NULL;
1747 }
1748
1749 /* Optimize common cases. */
1750 #ifdef md_optimize_expr
1751 if (md_optimize_expr (resultP, op_left, &right))
1752 {
1753 /* Skip. */
1754 ;
1755 }
1756 else
1757 #endif
1758 if (op_left == O_add && right.X_op == O_constant)
1759 {
1760 /* X + constant. */
1761 resultP->X_add_number += right.X_add_number;
1762 }
1763 /* This case comes up in PIC code. */
1764 else if (op_left == O_subtract
1765 && right.X_op == O_symbol
1766 && resultP->X_op == O_symbol
1767 && (symbol_get_frag (right.X_add_symbol)
1768 == symbol_get_frag (resultP->X_add_symbol))
1769 && SEG_NORMAL (S_GET_SEGMENT (right.X_add_symbol)))
1770
1771 {
1772 resultP->X_add_number -= right.X_add_number;
1773 resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
1774 - S_GET_VALUE (right.X_add_symbol));
1775 resultP->X_op = O_constant;
1776 resultP->X_add_symbol = 0;
1777 }
1778 else if (op_left == O_subtract && right.X_op == O_constant)
1779 {
1780 /* X - constant. */
1781 resultP->X_add_number -= right.X_add_number;
1782 }
1783 else if (op_left == O_add && resultP->X_op == O_constant)
1784 {
1785 /* Constant + X. */
1786 resultP->X_op = right.X_op;
1787 resultP->X_add_symbol = right.X_add_symbol;
1788 resultP->X_op_symbol = right.X_op_symbol;
1789 resultP->X_add_number += right.X_add_number;
1790 retval = rightseg;
1791 }
1792 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1793 {
1794 /* Constant OP constant. */
1795 offsetT v = right.X_add_number;
1796 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1797 {
1798 as_warn (_("division by zero"));
1799 v = 1;
1800 }
1801 switch (op_left)
1802 {
1803 default: abort ();
1804 case O_multiply: resultP->X_add_number *= v; break;
1805 case O_divide: resultP->X_add_number /= v; break;
1806 case O_modulus: resultP->X_add_number %= v; break;
1807 case O_left_shift: resultP->X_add_number <<= v; break;
1808 case O_right_shift:
1809 /* We always use unsigned shifts, to avoid relying on
1810 characteristics of the compiler used to compile gas. */
1811 resultP->X_add_number =
1812 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1813 break;
1814 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1815 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1816 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1817 case O_bit_and: resultP->X_add_number &= v; break;
1818 case O_add: resultP->X_add_number += v; break;
1819 case O_subtract: resultP->X_add_number -= v; break;
1820 case O_eq:
1821 resultP->X_add_number =
1822 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1823 break;
1824 case O_ne:
1825 resultP->X_add_number =
1826 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1827 break;
1828 case O_lt:
1829 resultP->X_add_number =
1830 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1831 break;
1832 case O_le:
1833 resultP->X_add_number =
1834 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1835 break;
1836 case O_ge:
1837 resultP->X_add_number =
1838 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1839 break;
1840 case O_gt:
1841 resultP->X_add_number =
1842 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1843 break;
1844 case O_logical_and:
1845 resultP->X_add_number = resultP->X_add_number && v;
1846 break;
1847 case O_logical_or:
1848 resultP->X_add_number = resultP->X_add_number || v;
1849 break;
1850 }
1851 }
1852 else if (resultP->X_op == O_symbol
1853 && right.X_op == O_symbol
1854 && (op_left == O_add
1855 || op_left == O_subtract
1856 || (resultP->X_add_number == 0
1857 && right.X_add_number == 0)))
1858 {
1859 /* Symbol OP symbol. */
1860 resultP->X_op = op_left;
1861 resultP->X_op_symbol = right.X_add_symbol;
1862 if (op_left == O_add)
1863 resultP->X_add_number += right.X_add_number;
1864 else if (op_left == O_subtract)
1865 resultP->X_add_number -= right.X_add_number;
1866 }
1867 else
1868 {
1869 /* The general case. */
1870 resultP->X_add_symbol = make_expr_symbol (resultP);
1871 resultP->X_op_symbol = make_expr_symbol (&right);
1872 resultP->X_op = op_left;
1873 resultP->X_add_number = 0;
1874 resultP->X_unsigned = 1;
1875 }
1876
1877 op_left = op_right;
1878 } /* While next operator is >= this rank. */
1879
1880 /* The PA port needs this information. */
1881 if (resultP->X_add_symbol)
1882 symbol_mark_used (resultP->X_add_symbol);
1883
1884 return resultP->X_op == O_constant ? absolute_section : retval;
1885 }
1886 \f
1887 /* This lives here because it belongs equally in expr.c & read.c.
1888 expr.c is just a branch office read.c anyway, and putting it
1889 here lessens the crowd at read.c.
1890
1891 Assume input_line_pointer is at start of symbol name.
1892 Advance input_line_pointer past symbol name.
1893 Turn that character into a '\0', returning its former value.
1894 This allows a string compare (RMS wants symbol names to be strings)
1895 of the symbol name.
1896 There will always be a char following symbol name, because all good
1897 lines end in end-of-line. */
1898
1899 char
1900 get_symbol_end ()
1901 {
1902 char c;
1903
1904 /* We accept \001 in a name in case this is being called with a
1905 constructed string. */
1906 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
1907 {
1908 while (is_part_of_name (c = *input_line_pointer++)
1909 || c == '\001')
1910 ;
1911 if (is_name_ender (c))
1912 c = *input_line_pointer++;
1913 }
1914 *--input_line_pointer = 0;
1915 return (c);
1916 }
1917
1918 unsigned int
1919 get_single_number ()
1920 {
1921 expressionS exp;
1922 operand (&exp);
1923 return exp.X_add_number;
1924 }