gas 0f handling
[binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* This is really a branch office of as-read.c. I split it out to clearly
22 distinguish the world of expressions from the world of statements.
23 (It also gives smaller files to re-compile.)
24 Here, "operand"s are of expressions, not instructions. */
25
26 #define min(a, b) ((a) < (b) ? (a) : (b))
27
28 #include "as.h"
29 #include "safe-ctype.h"
30
31 #ifdef HAVE_LIMITS_H
32 #include <limits.h>
33 #endif
34 #ifndef CHAR_BIT
35 #define CHAR_BIT 8
36 #endif
37
38 static void floating_constant (expressionS * expressionP);
39 static valueT generic_bignum_to_int32 (void);
40 #ifdef BFD64
41 static valueT generic_bignum_to_int64 (void);
42 #endif
43 static void integer_constant (int radix, expressionS * expressionP);
44 static void mri_char_constant (expressionS *);
45 static void clean_up_expression (expressionS * expressionP);
46 static segT operand (expressionS *, enum expr_mode);
47 static operatorT operatorf (int *);
48
49 extern const char EXP_CHARS[], FLT_CHARS[];
50
51 /* We keep a mapping of expression symbols to file positions, so that
52 we can provide better error messages. */
53
54 struct expr_symbol_line {
55 struct expr_symbol_line *next;
56 symbolS *sym;
57 char *file;
58 unsigned int line;
59 };
60
61 static struct expr_symbol_line *expr_symbol_lines;
62 \f
63 /* Build a dummy symbol to hold a complex expression. This is how we
64 build expressions up out of other expressions. The symbol is put
65 into the fake section expr_section. */
66
67 symbolS *
68 make_expr_symbol (expressionS *expressionP)
69 {
70 expressionS zero;
71 symbolS *symbolP;
72 struct expr_symbol_line *n;
73
74 if (expressionP->X_op == O_symbol
75 && expressionP->X_add_number == 0)
76 return expressionP->X_add_symbol;
77
78 if (expressionP->X_op == O_big)
79 {
80 /* This won't work, because the actual value is stored in
81 generic_floating_point_number or generic_bignum, and we are
82 going to lose it if we haven't already. */
83 if (expressionP->X_add_number > 0)
84 as_bad (_("bignum invalid"));
85 else
86 as_bad (_("floating point number invalid"));
87 zero.X_op = O_constant;
88 zero.X_add_number = 0;
89 zero.X_unsigned = 0;
90 zero.X_extrabit = 0;
91 clean_up_expression (&zero);
92 expressionP = &zero;
93 }
94
95 /* Putting constant symbols in absolute_section rather than
96 expr_section is convenient for the old a.out code, for which
97 S_GET_SEGMENT does not always retrieve the value put in by
98 S_SET_SEGMENT. */
99 symbolP = symbol_create (FAKE_LABEL_NAME,
100 (expressionP->X_op == O_constant
101 ? absolute_section
102 : expressionP->X_op == O_register
103 ? reg_section
104 : expr_section),
105 0, &zero_address_frag);
106 symbol_set_value_expression (symbolP, expressionP);
107
108 if (expressionP->X_op == O_constant)
109 resolve_symbol_value (symbolP);
110
111 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
112 n->sym = symbolP;
113 as_where (&n->file, &n->line);
114 n->next = expr_symbol_lines;
115 expr_symbol_lines = n;
116
117 return symbolP;
118 }
119
120 /* Return the file and line number for an expr symbol. Return
121 non-zero if something was found, 0 if no information is known for
122 the symbol. */
123
124 int
125 expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline)
126 {
127 struct expr_symbol_line *l;
128
129 for (l = expr_symbol_lines; l != NULL; l = l->next)
130 {
131 if (l->sym == sym)
132 {
133 *pfile = l->file;
134 *pline = l->line;
135 return 1;
136 }
137 }
138
139 return 0;
140 }
141 \f
142 /* Utilities for building expressions.
143 Since complex expressions are recorded as symbols for use in other
144 expressions these return a symbolS * and not an expressionS *.
145 These explicitly do not take an "add_number" argument. */
146 /* ??? For completeness' sake one might want expr_build_symbol.
147 It would just return its argument. */
148
149 /* Build an expression for an unsigned constant.
150 The corresponding one for signed constants is missing because
151 there's currently no need for it. One could add an unsigned_p flag
152 but that seems more clumsy. */
153
154 symbolS *
155 expr_build_uconstant (offsetT value)
156 {
157 expressionS e;
158
159 e.X_op = O_constant;
160 e.X_add_number = value;
161 e.X_unsigned = 1;
162 e.X_extrabit = 0;
163 return make_expr_symbol (&e);
164 }
165
166 /* Build an expression for the current location ('.'). */
167
168 symbolS *
169 expr_build_dot (void)
170 {
171 expressionS e;
172
173 current_location (&e);
174 return symbol_clone_if_forward_ref (make_expr_symbol (&e));
175 }
176 \f
177 /* Build any floating-point literal here.
178 Also build any bignum literal here. */
179
180 /* Seems atof_machine can backscan through generic_bignum and hit whatever
181 happens to be loaded before it in memory. And its way too complicated
182 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
183 and never write into the early words, thus they'll always be zero.
184 I hate Dean's floating-point code. Bleh. */
185 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
186
187 FLONUM_TYPE generic_floating_point_number = {
188 &generic_bignum[6], /* low. (JF: Was 0) */
189 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
190 0, /* leader. */
191 0, /* exponent. */
192 0 /* sign. */
193 };
194
195 \f
196 static void
197 floating_constant (expressionS *expressionP)
198 {
199 /* input_line_pointer -> floating-point constant. */
200 int error_code;
201
202 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
203 &generic_floating_point_number);
204
205 if (error_code)
206 {
207 if (error_code == ERROR_EXPONENT_OVERFLOW)
208 {
209 as_bad (_("bad floating-point constant: exponent overflow"));
210 }
211 else
212 {
213 as_bad (_("bad floating-point constant: unknown error code=%d"),
214 error_code);
215 }
216 }
217 expressionP->X_op = O_big;
218 /* input_line_pointer -> just after constant, which may point to
219 whitespace. */
220 expressionP->X_add_number = -1;
221 }
222
223 static valueT
224 generic_bignum_to_int32 (void)
225 {
226 valueT number =
227 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
228 | (generic_bignum[0] & LITTLENUM_MASK);
229 number &= 0xffffffff;
230 return number;
231 }
232
233 #ifdef BFD64
234 static valueT
235 generic_bignum_to_int64 (void)
236 {
237 valueT number =
238 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
239 << LITTLENUM_NUMBER_OF_BITS)
240 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
241 << LITTLENUM_NUMBER_OF_BITS)
242 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
243 << LITTLENUM_NUMBER_OF_BITS)
244 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
245 return number;
246 }
247 #endif
248
249 static void
250 integer_constant (int radix, expressionS *expressionP)
251 {
252 char *start; /* Start of number. */
253 char *suffix = NULL;
254 char c;
255 valueT number; /* Offset or (absolute) value. */
256 short int digit; /* Value of next digit in current radix. */
257 short int maxdig = 0; /* Highest permitted digit value. */
258 int too_many_digits = 0; /* If we see >= this number of. */
259 char *name; /* Points to name of symbol. */
260 symbolS *symbolP; /* Points to symbol. */
261
262 int small; /* True if fits in 32 bits. */
263
264 /* May be bignum, or may fit in 32 bits. */
265 /* Most numbers fit into 32 bits, and we want this case to be fast.
266 so we pretend it will fit into 32 bits. If, after making up a 32
267 bit number, we realise that we have scanned more digits than
268 comfortably fit into 32 bits, we re-scan the digits coding them
269 into a bignum. For decimal and octal numbers we are
270 conservative: Some numbers may be assumed bignums when in fact
271 they do fit into 32 bits. Numbers of any radix can have excess
272 leading zeros: We strive to recognise this and cast them back
273 into 32 bits. We must check that the bignum really is more than
274 32 bits, and change it back to a 32-bit number if it fits. The
275 number we are looking for is expected to be positive, but if it
276 fits into 32 bits as an unsigned number, we let it be a 32-bit
277 number. The cavalier approach is for speed in ordinary cases. */
278 /* This has been extended for 64 bits. We blindly assume that if
279 you're compiling in 64-bit mode, the target is a 64-bit machine.
280 This should be cleaned up. */
281
282 #ifdef BFD64
283 #define valuesize 64
284 #else /* includes non-bfd case, mostly */
285 #define valuesize 32
286 #endif
287
288 if (is_end_of_line[(unsigned char) *input_line_pointer])
289 {
290 expressionP->X_op = O_absent;
291 return;
292 }
293
294 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
295 {
296 int flt = 0;
297
298 /* In MRI mode, the number may have a suffix indicating the
299 radix. For that matter, it might actually be a floating
300 point constant. */
301 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
302 {
303 if (*suffix == 'e' || *suffix == 'E')
304 flt = 1;
305 }
306
307 if (suffix == input_line_pointer)
308 {
309 radix = 10;
310 suffix = NULL;
311 }
312 else
313 {
314 c = *--suffix;
315 c = TOUPPER (c);
316 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
317 we distinguish between 'B' and 'b'. This is the case for
318 Z80. */
319 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
320 radix = 2;
321 else if (c == 'D')
322 radix = 10;
323 else if (c == 'O' || c == 'Q')
324 radix = 8;
325 else if (c == 'H')
326 radix = 16;
327 else if (suffix[1] == '.' || c == 'E' || flt)
328 {
329 floating_constant (expressionP);
330 return;
331 }
332 else
333 {
334 radix = 10;
335 suffix = NULL;
336 }
337 }
338 }
339
340 switch (radix)
341 {
342 case 2:
343 maxdig = 2;
344 too_many_digits = valuesize + 1;
345 break;
346 case 8:
347 maxdig = radix = 8;
348 too_many_digits = (valuesize + 2) / 3 + 1;
349 break;
350 case 16:
351 maxdig = radix = 16;
352 too_many_digits = (valuesize + 3) / 4 + 1;
353 break;
354 case 10:
355 maxdig = radix = 10;
356 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
357 }
358 #undef valuesize
359 start = input_line_pointer;
360 c = *input_line_pointer++;
361 for (number = 0;
362 (digit = hex_value (c)) < maxdig;
363 c = *input_line_pointer++)
364 {
365 number = number * radix + digit;
366 }
367 /* c contains character after number. */
368 /* input_line_pointer->char after c. */
369 small = (input_line_pointer - start - 1) < too_many_digits;
370
371 if (radix == 16 && c == '_')
372 {
373 /* This is literal of the form 0x333_0_12345678_1.
374 This example is equivalent to 0x00000333000000001234567800000001. */
375
376 int num_little_digits = 0;
377 int i;
378 input_line_pointer = start; /* -> 1st digit. */
379
380 know (LITTLENUM_NUMBER_OF_BITS == 16);
381
382 for (c = '_'; c == '_'; num_little_digits += 2)
383 {
384
385 /* Convert one 64-bit word. */
386 int ndigit = 0;
387 number = 0;
388 for (c = *input_line_pointer++;
389 (digit = hex_value (c)) < maxdig;
390 c = *(input_line_pointer++))
391 {
392 number = number * radix + digit;
393 ndigit++;
394 }
395
396 /* Check for 8 digit per word max. */
397 if (ndigit > 8)
398 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
399
400 /* Add this chunk to the bignum.
401 Shift things down 2 little digits. */
402 know (LITTLENUM_NUMBER_OF_BITS == 16);
403 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
404 i >= 2;
405 i--)
406 generic_bignum[i] = generic_bignum[i - 2];
407
408 /* Add the new digits as the least significant new ones. */
409 generic_bignum[0] = number & 0xffffffff;
410 generic_bignum[1] = number >> 16;
411 }
412
413 /* Again, c is char after number, input_line_pointer->after c. */
414
415 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
416 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
417
418 gas_assert (num_little_digits >= 4);
419
420 if (num_little_digits != 8)
421 as_bad (_("a bignum with underscores must have exactly 4 words"));
422
423 /* We might have some leading zeros. These can be trimmed to give
424 us a change to fit this constant into a small number. */
425 while (generic_bignum[num_little_digits - 1] == 0
426 && num_little_digits > 1)
427 num_little_digits--;
428
429 if (num_little_digits <= 2)
430 {
431 /* will fit into 32 bits. */
432 number = generic_bignum_to_int32 ();
433 small = 1;
434 }
435 #ifdef BFD64
436 else if (num_little_digits <= 4)
437 {
438 /* Will fit into 64 bits. */
439 number = generic_bignum_to_int64 ();
440 small = 1;
441 }
442 #endif
443 else
444 {
445 small = 0;
446
447 /* Number of littlenums in the bignum. */
448 number = num_little_digits;
449 }
450 }
451 else if (!small)
452 {
453 /* We saw a lot of digits. manufacture a bignum the hard way. */
454 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
455 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
456 long carry;
457
458 leader = generic_bignum;
459 generic_bignum[0] = 0;
460 generic_bignum[1] = 0;
461 generic_bignum[2] = 0;
462 generic_bignum[3] = 0;
463 input_line_pointer = start; /* -> 1st digit. */
464 c = *input_line_pointer++;
465 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
466 {
467 for (pointer = generic_bignum; pointer <= leader; pointer++)
468 {
469 long work;
470
471 work = carry + radix * *pointer;
472 *pointer = work & LITTLENUM_MASK;
473 carry = work >> LITTLENUM_NUMBER_OF_BITS;
474 }
475 if (carry)
476 {
477 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
478 {
479 /* Room to grow a longer bignum. */
480 *++leader = carry;
481 }
482 }
483 }
484 /* Again, c is char after number. */
485 /* input_line_pointer -> after c. */
486 know (LITTLENUM_NUMBER_OF_BITS == 16);
487 if (leader < generic_bignum + 2)
488 {
489 /* Will fit into 32 bits. */
490 number = generic_bignum_to_int32 ();
491 small = 1;
492 }
493 #ifdef BFD64
494 else if (leader < generic_bignum + 4)
495 {
496 /* Will fit into 64 bits. */
497 number = generic_bignum_to_int64 ();
498 small = 1;
499 }
500 #endif
501 else
502 {
503 /* Number of littlenums in the bignum. */
504 number = leader - generic_bignum + 1;
505 }
506 }
507
508 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
509 && suffix != NULL
510 && input_line_pointer - 1 == suffix)
511 c = *input_line_pointer++;
512
513 if (small)
514 {
515 /* Here with number, in correct radix. c is the next char.
516 Note that unlike un*x, we allow "011f" "0x9f" to both mean
517 the same as the (conventional) "9f".
518 This is simply easier than checking for strict canonical
519 form. Syntax sux! */
520
521 if (LOCAL_LABELS_FB && c == 'b')
522 {
523 /* Backward ref to local label.
524 Because it is backward, expect it to be defined. */
525 /* Construct a local label. */
526 name = fb_label_name ((int) number, 0);
527
528 /* Seen before, or symbol is defined: OK. */
529 symbolP = symbol_find (name);
530 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
531 {
532 /* Local labels are never absolute. Don't waste time
533 checking absoluteness. */
534 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
535
536 expressionP->X_op = O_symbol;
537 expressionP->X_add_symbol = symbolP;
538 }
539 else
540 {
541 /* Either not seen or not defined. */
542 /* @@ Should print out the original string instead of
543 the parsed number. */
544 as_bad (_("backward ref to unknown label \"%d:\""),
545 (int) number);
546 expressionP->X_op = O_constant;
547 }
548
549 expressionP->X_add_number = 0;
550 } /* case 'b' */
551 else if (LOCAL_LABELS_FB && c == 'f')
552 {
553 /* Forward reference. Expect symbol to be undefined or
554 unknown. undefined: seen it before. unknown: never seen
555 it before.
556
557 Construct a local label name, then an undefined symbol.
558 Don't create a xseg frag for it: caller may do that.
559 Just return it as never seen before. */
560 name = fb_label_name ((int) number, 1);
561 symbolP = symbol_find_or_make (name);
562 /* We have no need to check symbol properties. */
563 #ifndef many_segments
564 /* Since "know" puts its arg into a "string", we
565 can't have newlines in the argument. */
566 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
567 #endif
568 expressionP->X_op = O_symbol;
569 expressionP->X_add_symbol = symbolP;
570 expressionP->X_add_number = 0;
571 } /* case 'f' */
572 else if (LOCAL_LABELS_DOLLAR && c == '$')
573 {
574 /* If the dollar label is *currently* defined, then this is just
575 another reference to it. If it is not *currently* defined,
576 then this is a fresh instantiation of that number, so create
577 it. */
578
579 if (dollar_label_defined ((long) number))
580 {
581 name = dollar_label_name ((long) number, 0);
582 symbolP = symbol_find (name);
583 know (symbolP != NULL);
584 }
585 else
586 {
587 name = dollar_label_name ((long) number, 1);
588 symbolP = symbol_find_or_make (name);
589 }
590
591 expressionP->X_op = O_symbol;
592 expressionP->X_add_symbol = symbolP;
593 expressionP->X_add_number = 0;
594 } /* case '$' */
595 else
596 {
597 expressionP->X_op = O_constant;
598 expressionP->X_add_number = number;
599 input_line_pointer--; /* Restore following character. */
600 } /* Really just a number. */
601 }
602 else
603 {
604 /* Not a small number. */
605 expressionP->X_op = O_big;
606 expressionP->X_add_number = number; /* Number of littlenums. */
607 input_line_pointer--; /* -> char following number. */
608 }
609 }
610
611 /* Parse an MRI multi character constant. */
612
613 static void
614 mri_char_constant (expressionS *expressionP)
615 {
616 int i;
617
618 if (*input_line_pointer == '\''
619 && input_line_pointer[1] != '\'')
620 {
621 expressionP->X_op = O_constant;
622 expressionP->X_add_number = 0;
623 return;
624 }
625
626 /* In order to get the correct byte ordering, we must build the
627 number in reverse. */
628 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
629 {
630 int j;
631
632 generic_bignum[i] = 0;
633 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
634 {
635 if (*input_line_pointer == '\'')
636 {
637 if (input_line_pointer[1] != '\'')
638 break;
639 ++input_line_pointer;
640 }
641 generic_bignum[i] <<= 8;
642 generic_bignum[i] += *input_line_pointer;
643 ++input_line_pointer;
644 }
645
646 if (i < SIZE_OF_LARGE_NUMBER - 1)
647 {
648 /* If there is more than one littlenum, left justify the
649 last one to make it match the earlier ones. If there is
650 only one, we can just use the value directly. */
651 for (; j < CHARS_PER_LITTLENUM; j++)
652 generic_bignum[i] <<= 8;
653 }
654
655 if (*input_line_pointer == '\''
656 && input_line_pointer[1] != '\'')
657 break;
658 }
659
660 if (i < 0)
661 {
662 as_bad (_("character constant too large"));
663 i = 0;
664 }
665
666 if (i > 0)
667 {
668 int c;
669 int j;
670
671 c = SIZE_OF_LARGE_NUMBER - i;
672 for (j = 0; j < c; j++)
673 generic_bignum[j] = generic_bignum[i + j];
674 i = c;
675 }
676
677 know (LITTLENUM_NUMBER_OF_BITS == 16);
678 if (i > 2)
679 {
680 expressionP->X_op = O_big;
681 expressionP->X_add_number = i;
682 }
683 else
684 {
685 expressionP->X_op = O_constant;
686 if (i < 2)
687 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
688 else
689 expressionP->X_add_number =
690 (((generic_bignum[1] & LITTLENUM_MASK)
691 << LITTLENUM_NUMBER_OF_BITS)
692 | (generic_bignum[0] & LITTLENUM_MASK));
693 }
694
695 /* Skip the final closing quote. */
696 ++input_line_pointer;
697 }
698
699 /* Return an expression representing the current location. This
700 handles the magic symbol `.'. */
701
702 void
703 current_location (expressionS *expressionp)
704 {
705 if (now_seg == absolute_section)
706 {
707 expressionp->X_op = O_constant;
708 expressionp->X_add_number = abs_section_offset;
709 }
710 else
711 {
712 expressionp->X_op = O_symbol;
713 expressionp->X_add_symbol = &dot_symbol;
714 expressionp->X_add_number = 0;
715 }
716 }
717
718 /* In: Input_line_pointer points to 1st char of operand, which may
719 be a space.
720
721 Out: An expressionS.
722 The operand may have been empty: in this case X_op == O_absent.
723 Input_line_pointer->(next non-blank) char after operand. */
724
725 static segT
726 operand (expressionS *expressionP, enum expr_mode mode)
727 {
728 char c;
729 symbolS *symbolP; /* Points to symbol. */
730 char *name; /* Points to name of symbol. */
731 segT segment;
732
733 /* All integers are regarded as unsigned unless they are negated.
734 This is because the only thing which cares whether a number is
735 unsigned is the code in emit_expr which extends constants into
736 bignums. It should only sign extend negative numbers, so that
737 something like ``.quad 0x80000000'' is not sign extended even
738 though it appears negative if valueT is 32 bits. */
739 expressionP->X_unsigned = 1;
740 expressionP->X_extrabit = 0;
741
742 /* Digits, assume it is a bignum. */
743
744 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
745 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
746
747 if (is_end_of_line[(unsigned char) c])
748 goto eol;
749
750 switch (c)
751 {
752 case '1':
753 case '2':
754 case '3':
755 case '4':
756 case '5':
757 case '6':
758 case '7':
759 case '8':
760 case '9':
761 input_line_pointer--;
762
763 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
764 ? 0 : 10,
765 expressionP);
766 break;
767
768 #ifdef LITERAL_PREFIXDOLLAR_HEX
769 case '$':
770 /* $L is the start of a local label, not a hex constant. */
771 if (* input_line_pointer == 'L')
772 goto isname;
773 integer_constant (16, expressionP);
774 break;
775 #endif
776
777 #ifdef LITERAL_PREFIXPERCENT_BIN
778 case '%':
779 integer_constant (2, expressionP);
780 break;
781 #endif
782
783 case '0':
784 /* Non-decimal radix. */
785
786 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
787 {
788 char *s;
789
790 /* Check for a hex or float constant. */
791 for (s = input_line_pointer; hex_p (*s); s++)
792 ;
793 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
794 {
795 --input_line_pointer;
796 integer_constant (0, expressionP);
797 break;
798 }
799 }
800 c = *input_line_pointer;
801 switch (c)
802 {
803 case 'o':
804 case 'O':
805 case 'q':
806 case 'Q':
807 case '8':
808 case '9':
809 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
810 {
811 integer_constant (0, expressionP);
812 break;
813 }
814 /* Fall through. */
815 default:
816 default_case:
817 if (c && strchr (FLT_CHARS, c))
818 {
819 input_line_pointer++;
820 floating_constant (expressionP);
821 expressionP->X_add_number = - TOLOWER (c);
822 }
823 else
824 {
825 /* The string was only zero. */
826 expressionP->X_op = O_constant;
827 expressionP->X_add_number = 0;
828 }
829
830 break;
831
832 case 'x':
833 case 'X':
834 if (flag_m68k_mri)
835 goto default_case;
836 input_line_pointer++;
837 integer_constant (16, expressionP);
838 break;
839
840 case 'b':
841 if (LOCAL_LABELS_FB && !flag_m68k_mri
842 && input_line_pointer[1] != '0'
843 && input_line_pointer[1] != '1')
844 {
845 /* Parse this as a back reference to label 0. */
846 input_line_pointer--;
847 integer_constant (10, expressionP);
848 break;
849 }
850 /* Otherwise, parse this as a binary number. */
851 /* Fall through. */
852 case 'B':
853 if (input_line_pointer[1] == '0'
854 || input_line_pointer[1] == '1')
855 {
856 input_line_pointer++;
857 integer_constant (2, expressionP);
858 break;
859 }
860 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
861 input_line_pointer++;
862 goto default_case;
863
864 case '0':
865 case '1':
866 case '2':
867 case '3':
868 case '4':
869 case '5':
870 case '6':
871 case '7':
872 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
873 ? 0 : 8,
874 expressionP);
875 break;
876
877 case 'f':
878 if (LOCAL_LABELS_FB)
879 {
880 int is_label = 1;
881
882 /* If it says "0f" and it could possibly be a floating point
883 number, make it one. Otherwise, make it a local label,
884 and try to deal with parsing the rest later. */
885 if (!is_end_of_line[(unsigned char) input_line_pointer[1]]
886 && strchr (FLT_CHARS, 'f') != NULL)
887 {
888 char *cp = input_line_pointer + 1;
889
890 atof_generic (&cp, ".", EXP_CHARS,
891 &generic_floating_point_number);
892
893 /* Was nothing parsed, or does it look like an
894 expression? */
895 is_label = (cp == input_line_pointer + 1
896 || (cp == input_line_pointer + 2
897 && (cp[-1] == '-' || cp[-1] == '+'))
898 || *cp == 'f'
899 || *cp == 'b');
900 }
901 if (is_label)
902 {
903 input_line_pointer--;
904 integer_constant (10, expressionP);
905 break;
906 }
907 }
908 /* Fall through. */
909
910 case 'd':
911 case 'D':
912 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
913 {
914 integer_constant (0, expressionP);
915 break;
916 }
917 /* Fall through. */
918 case 'F':
919 case 'r':
920 case 'e':
921 case 'E':
922 case 'g':
923 case 'G':
924 input_line_pointer++;
925 floating_constant (expressionP);
926 expressionP->X_add_number = - TOLOWER (c);
927 break;
928
929 case '$':
930 if (LOCAL_LABELS_DOLLAR)
931 {
932 integer_constant (10, expressionP);
933 break;
934 }
935 else
936 goto default_case;
937 }
938
939 break;
940
941 #ifndef NEED_INDEX_OPERATOR
942 case '[':
943 # ifdef md_need_index_operator
944 if (md_need_index_operator())
945 goto de_fault;
946 # endif
947 /* FALLTHROUGH */
948 #endif
949 case '(':
950 /* Didn't begin with digit & not a name. */
951 segment = expr (0, expressionP, mode);
952 /* expression () will pass trailing whitespace. */
953 if ((c == '(' && *input_line_pointer != ')')
954 || (c == '[' && *input_line_pointer != ']'))
955 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
956 else
957 input_line_pointer++;
958 SKIP_WHITESPACE ();
959 /* Here with input_line_pointer -> char after "(...)". */
960 return segment;
961
962 #ifdef TC_M68K
963 case 'E':
964 if (! flag_m68k_mri || *input_line_pointer != '\'')
965 goto de_fault;
966 as_bad (_("EBCDIC constants are not supported"));
967 /* Fall through. */
968 case 'A':
969 if (! flag_m68k_mri || *input_line_pointer != '\'')
970 goto de_fault;
971 ++input_line_pointer;
972 /* Fall through. */
973 #endif
974 case '\'':
975 if (! flag_m68k_mri)
976 {
977 /* Warning: to conform to other people's assemblers NO
978 ESCAPEMENT is permitted for a single quote. The next
979 character, parity errors and all, is taken as the value
980 of the operand. VERY KINKY. */
981 expressionP->X_op = O_constant;
982 expressionP->X_add_number = *input_line_pointer++;
983 break;
984 }
985
986 mri_char_constant (expressionP);
987 break;
988
989 #ifdef TC_M68K
990 case '"':
991 /* Double quote is the bitwise not operator in MRI mode. */
992 if (! flag_m68k_mri)
993 goto de_fault;
994 /* Fall through. */
995 #endif
996 case '~':
997 /* '~' is permitted to start a label on the Delta. */
998 if (is_name_beginner (c))
999 goto isname;
1000 case '!':
1001 case '-':
1002 case '+':
1003 {
1004 #ifdef md_operator
1005 unary:
1006 #endif
1007 operand (expressionP, mode);
1008 if (expressionP->X_op == O_constant)
1009 {
1010 /* input_line_pointer -> char after operand. */
1011 if (c == '-')
1012 {
1013 expressionP->X_add_number
1014 = - (addressT) expressionP->X_add_number;
1015 /* Notice: '-' may overflow: no warning is given.
1016 This is compatible with other people's
1017 assemblers. Sigh. */
1018 expressionP->X_unsigned = 0;
1019 if (expressionP->X_add_number)
1020 expressionP->X_extrabit ^= 1;
1021 }
1022 else if (c == '~' || c == '"')
1023 expressionP->X_add_number = ~ expressionP->X_add_number;
1024 else if (c == '!')
1025 expressionP->X_add_number = ! expressionP->X_add_number;
1026 }
1027 else if (expressionP->X_op == O_big
1028 && expressionP->X_add_number <= 0
1029 && c == '-'
1030 && (generic_floating_point_number.sign == '+'
1031 || generic_floating_point_number.sign == 'P'))
1032 {
1033 /* Negative flonum (eg, -1.000e0). */
1034 if (generic_floating_point_number.sign == '+')
1035 generic_floating_point_number.sign = '-';
1036 else
1037 generic_floating_point_number.sign = 'N';
1038 }
1039 else if (expressionP->X_op == O_big
1040 && expressionP->X_add_number > 0)
1041 {
1042 int i;
1043
1044 if (c == '~' || c == '-')
1045 {
1046 for (i = 0; i < expressionP->X_add_number; ++i)
1047 generic_bignum[i] = ~generic_bignum[i];
1048
1049 /* Extend the bignum to at least the size of .octa. */
1050 if (expressionP->X_add_number < SIZE_OF_LARGE_NUMBER)
1051 {
1052 expressionP->X_add_number = SIZE_OF_LARGE_NUMBER;
1053 for (; i < expressionP->X_add_number; ++i)
1054 generic_bignum[i] = ~(LITTLENUM_TYPE) 0;
1055 }
1056
1057 if (c == '-')
1058 for (i = 0; i < expressionP->X_add_number; ++i)
1059 {
1060 generic_bignum[i] += 1;
1061 if (generic_bignum[i])
1062 break;
1063 }
1064 }
1065 else if (c == '!')
1066 {
1067 for (i = 0; i < expressionP->X_add_number; ++i)
1068 if (generic_bignum[i] != 0)
1069 break;
1070 expressionP->X_add_number = i >= expressionP->X_add_number;
1071 expressionP->X_op = O_constant;
1072 expressionP->X_unsigned = 1;
1073 expressionP->X_extrabit = 0;
1074 }
1075 }
1076 else if (expressionP->X_op != O_illegal
1077 && expressionP->X_op != O_absent)
1078 {
1079 if (c != '+')
1080 {
1081 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1082 if (c == '-')
1083 expressionP->X_op = O_uminus;
1084 else if (c == '~' || c == '"')
1085 expressionP->X_op = O_bit_not;
1086 else
1087 expressionP->X_op = O_logical_not;
1088 expressionP->X_add_number = 0;
1089 }
1090 }
1091 else
1092 as_warn (_("Unary operator %c ignored because bad operand follows"),
1093 c);
1094 }
1095 break;
1096
1097 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1098 case '$':
1099 /* '$' is the program counter when in MRI mode, or when
1100 DOLLAR_DOT is defined. */
1101 #ifndef DOLLAR_DOT
1102 if (! flag_m68k_mri)
1103 goto de_fault;
1104 #endif
1105 if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
1106 {
1107 /* In MRI mode and on Z80, '$' is also used as the prefix
1108 for a hexadecimal constant. */
1109 integer_constant (16, expressionP);
1110 break;
1111 }
1112
1113 if (is_part_of_name (*input_line_pointer))
1114 goto isname;
1115
1116 current_location (expressionP);
1117 break;
1118 #endif
1119
1120 case '.':
1121 if (!is_part_of_name (*input_line_pointer))
1122 {
1123 current_location (expressionP);
1124 break;
1125 }
1126 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1127 && ! is_part_of_name (input_line_pointer[8]))
1128 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1129 && ! is_part_of_name (input_line_pointer[7])))
1130 {
1131 int start;
1132
1133 start = (input_line_pointer[1] == 't'
1134 || input_line_pointer[1] == 'T');
1135 input_line_pointer += start ? 8 : 7;
1136 SKIP_WHITESPACE ();
1137 if (*input_line_pointer != '(')
1138 as_bad (_("syntax error in .startof. or .sizeof."));
1139 else
1140 {
1141 char *buf;
1142
1143 ++input_line_pointer;
1144 SKIP_WHITESPACE ();
1145 name = input_line_pointer;
1146 c = get_symbol_end ();
1147
1148 buf = (char *) xmalloc (strlen (name) + 10);
1149 if (start)
1150 sprintf (buf, ".startof.%s", name);
1151 else
1152 sprintf (buf, ".sizeof.%s", name);
1153 symbolP = symbol_make (buf);
1154 free (buf);
1155
1156 expressionP->X_op = O_symbol;
1157 expressionP->X_add_symbol = symbolP;
1158 expressionP->X_add_number = 0;
1159
1160 *input_line_pointer = c;
1161 SKIP_WHITESPACE ();
1162 if (*input_line_pointer != ')')
1163 as_bad (_("syntax error in .startof. or .sizeof."));
1164 else
1165 ++input_line_pointer;
1166 }
1167 break;
1168 }
1169 else
1170 {
1171 goto isname;
1172 }
1173
1174 case ',':
1175 eol:
1176 /* Can't imagine any other kind of operand. */
1177 expressionP->X_op = O_absent;
1178 input_line_pointer--;
1179 break;
1180
1181 #ifdef TC_M68K
1182 case '%':
1183 if (! flag_m68k_mri)
1184 goto de_fault;
1185 integer_constant (2, expressionP);
1186 break;
1187
1188 case '@':
1189 if (! flag_m68k_mri)
1190 goto de_fault;
1191 integer_constant (8, expressionP);
1192 break;
1193
1194 case ':':
1195 if (! flag_m68k_mri)
1196 goto de_fault;
1197
1198 /* In MRI mode, this is a floating point constant represented
1199 using hexadecimal digits. */
1200
1201 ++input_line_pointer;
1202 integer_constant (16, expressionP);
1203 break;
1204
1205 case '*':
1206 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1207 goto de_fault;
1208
1209 current_location (expressionP);
1210 break;
1211 #endif
1212
1213 default:
1214 #if defined(md_need_index_operator) || defined(TC_M68K)
1215 de_fault:
1216 #endif
1217 if (is_name_beginner (c)) /* Here if did not begin with a digit. */
1218 {
1219 /* Identifier begins here.
1220 This is kludged for speed, so code is repeated. */
1221 isname:
1222 name = --input_line_pointer;
1223 c = get_symbol_end ();
1224
1225 #ifdef md_operator
1226 {
1227 operatorT op = md_operator (name, 1, &c);
1228
1229 switch (op)
1230 {
1231 case O_uminus:
1232 *input_line_pointer = c;
1233 c = '-';
1234 goto unary;
1235 case O_bit_not:
1236 *input_line_pointer = c;
1237 c = '~';
1238 goto unary;
1239 case O_logical_not:
1240 *input_line_pointer = c;
1241 c = '!';
1242 goto unary;
1243 case O_illegal:
1244 as_bad (_("invalid use of operator \"%s\""), name);
1245 break;
1246 default:
1247 break;
1248 }
1249 if (op != O_absent && op != O_illegal)
1250 {
1251 *input_line_pointer = c;
1252 expr (9, expressionP, mode);
1253 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1254 expressionP->X_op_symbol = NULL;
1255 expressionP->X_add_number = 0;
1256 expressionP->X_op = op;
1257 break;
1258 }
1259 }
1260 #endif
1261
1262 #ifdef md_parse_name
1263 /* This is a hook for the backend to parse certain names
1264 specially in certain contexts. If a name always has a
1265 specific value, it can often be handled by simply
1266 entering it in the symbol table. */
1267 if (md_parse_name (name, expressionP, mode, &c))
1268 {
1269 *input_line_pointer = c;
1270 break;
1271 }
1272 #endif
1273
1274 #ifdef TC_I960
1275 /* The MRI i960 assembler permits
1276 lda sizeof code,g13
1277 FIXME: This should use md_parse_name. */
1278 if (flag_mri
1279 && (strcasecmp (name, "sizeof") == 0
1280 || strcasecmp (name, "startof") == 0))
1281 {
1282 int start;
1283 char *buf;
1284
1285 start = (name[1] == 't'
1286 || name[1] == 'T');
1287
1288 *input_line_pointer = c;
1289 SKIP_WHITESPACE ();
1290
1291 name = input_line_pointer;
1292 c = get_symbol_end ();
1293
1294 buf = (char *) xmalloc (strlen (name) + 10);
1295 if (start)
1296 sprintf (buf, ".startof.%s", name);
1297 else
1298 sprintf (buf, ".sizeof.%s", name);
1299 symbolP = symbol_make (buf);
1300 free (buf);
1301
1302 expressionP->X_op = O_symbol;
1303 expressionP->X_add_symbol = symbolP;
1304 expressionP->X_add_number = 0;
1305
1306 *input_line_pointer = c;
1307 SKIP_WHITESPACE ();
1308
1309 break;
1310 }
1311 #endif
1312
1313 symbolP = symbol_find_or_make (name);
1314
1315 /* If we have an absolute symbol or a reg, then we know its
1316 value now. */
1317 segment = S_GET_SEGMENT (symbolP);
1318 if (mode != expr_defer
1319 && segment == absolute_section
1320 && !S_FORCE_RELOC (symbolP, 0))
1321 {
1322 expressionP->X_op = O_constant;
1323 expressionP->X_add_number = S_GET_VALUE (symbolP);
1324 }
1325 else if (mode != expr_defer && segment == reg_section)
1326 {
1327 expressionP->X_op = O_register;
1328 expressionP->X_add_number = S_GET_VALUE (symbolP);
1329 }
1330 else
1331 {
1332 expressionP->X_op = O_symbol;
1333 expressionP->X_add_symbol = symbolP;
1334 expressionP->X_add_number = 0;
1335 }
1336 *input_line_pointer = c;
1337 }
1338 else
1339 {
1340 /* Let the target try to parse it. Success is indicated by changing
1341 the X_op field to something other than O_absent and pointing
1342 input_line_pointer past the expression. If it can't parse the
1343 expression, X_op and input_line_pointer should be unchanged. */
1344 expressionP->X_op = O_absent;
1345 --input_line_pointer;
1346 md_operand (expressionP);
1347 if (expressionP->X_op == O_absent)
1348 {
1349 ++input_line_pointer;
1350 as_bad (_("bad expression"));
1351 expressionP->X_op = O_constant;
1352 expressionP->X_add_number = 0;
1353 }
1354 }
1355 break;
1356 }
1357
1358 /* It is more 'efficient' to clean up the expressionS when they are
1359 created. Doing it here saves lines of code. */
1360 clean_up_expression (expressionP);
1361 SKIP_WHITESPACE (); /* -> 1st char after operand. */
1362 know (*input_line_pointer != ' ');
1363
1364 /* The PA port needs this information. */
1365 if (expressionP->X_add_symbol)
1366 symbol_mark_used (expressionP->X_add_symbol);
1367
1368 if (mode != expr_defer)
1369 {
1370 expressionP->X_add_symbol
1371 = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
1372 expressionP->X_op_symbol
1373 = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
1374 }
1375
1376 switch (expressionP->X_op)
1377 {
1378 default:
1379 return absolute_section;
1380 case O_symbol:
1381 return S_GET_SEGMENT (expressionP->X_add_symbol);
1382 case O_register:
1383 return reg_section;
1384 }
1385 }
1386 \f
1387 /* Internal. Simplify a struct expression for use by expr (). */
1388
1389 /* In: address of an expressionS.
1390 The X_op field of the expressionS may only take certain values.
1391 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1392
1393 Out: expressionS may have been modified:
1394 Unused fields zeroed to help expr (). */
1395
1396 static void
1397 clean_up_expression (expressionS *expressionP)
1398 {
1399 switch (expressionP->X_op)
1400 {
1401 case O_illegal:
1402 case O_absent:
1403 expressionP->X_add_number = 0;
1404 /* Fall through. */
1405 case O_big:
1406 case O_constant:
1407 case O_register:
1408 expressionP->X_add_symbol = NULL;
1409 /* Fall through. */
1410 case O_symbol:
1411 case O_uminus:
1412 case O_bit_not:
1413 expressionP->X_op_symbol = NULL;
1414 break;
1415 default:
1416 break;
1417 }
1418 }
1419 \f
1420 /* Expression parser. */
1421
1422 /* We allow an empty expression, and just assume (absolute,0) silently.
1423 Unary operators and parenthetical expressions are treated as operands.
1424 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1425
1426 We used to do an aho/ullman shift-reduce parser, but the logic got so
1427 warped that I flushed it and wrote a recursive-descent parser instead.
1428 Now things are stable, would anybody like to write a fast parser?
1429 Most expressions are either register (which does not even reach here)
1430 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1431 So I guess it doesn't really matter how inefficient more complex expressions
1432 are parsed.
1433
1434 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1435 Also, we have consumed any leading or trailing spaces (operand does that)
1436 and done all intervening operators.
1437
1438 This returns the segment of the result, which will be
1439 absolute_section or the segment of a symbol. */
1440
1441 #undef __
1442 #define __ O_illegal
1443 #ifndef O_SINGLE_EQ
1444 #define O_SINGLE_EQ O_illegal
1445 #endif
1446
1447 /* Maps ASCII -> operators. */
1448 static const operatorT op_encoding[256] = {
1449 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1450 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1451
1452 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1453 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1454 __, __, __, __, __, __, __, __,
1455 __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
1456 __, __, __, __, __, __, __, __,
1457 __, __, __, __, __, __, __, __,
1458 __, __, __, __, __, __, __, __,
1459 __, __, __,
1460 #ifdef NEED_INDEX_OPERATOR
1461 O_index,
1462 #else
1463 __,
1464 #endif
1465 __, __, O_bit_exclusive_or, __,
1466 __, __, __, __, __, __, __, __,
1467 __, __, __, __, __, __, __, __,
1468 __, __, __, __, __, __, __, __,
1469 __, __, __, __, O_bit_inclusive_or, __, __, __,
1470
1471 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1472 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1473 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1474 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1475 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1476 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1477 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1478 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1479 };
1480
1481 /* Rank Examples
1482 0 operand, (expression)
1483 1 ||
1484 2 &&
1485 3 == <> < <= >= >
1486 4 + -
1487 5 used for * / % in MRI mode
1488 6 & ^ ! |
1489 7 * / % << >>
1490 8 unary - unary ~
1491 */
1492 static operator_rankT op_rank[O_max] = {
1493 0, /* O_illegal */
1494 0, /* O_absent */
1495 0, /* O_constant */
1496 0, /* O_symbol */
1497 0, /* O_symbol_rva */
1498 0, /* O_register */
1499 0, /* O_big */
1500 9, /* O_uminus */
1501 9, /* O_bit_not */
1502 9, /* O_logical_not */
1503 8, /* O_multiply */
1504 8, /* O_divide */
1505 8, /* O_modulus */
1506 8, /* O_left_shift */
1507 8, /* O_right_shift */
1508 7, /* O_bit_inclusive_or */
1509 7, /* O_bit_or_not */
1510 7, /* O_bit_exclusive_or */
1511 7, /* O_bit_and */
1512 5, /* O_add */
1513 5, /* O_subtract */
1514 4, /* O_eq */
1515 4, /* O_ne */
1516 4, /* O_lt */
1517 4, /* O_le */
1518 4, /* O_ge */
1519 4, /* O_gt */
1520 3, /* O_logical_and */
1521 2, /* O_logical_or */
1522 1, /* O_index */
1523 };
1524
1525 /* Unfortunately, in MRI mode for the m68k, multiplication and
1526 division have lower precedence than the bit wise operators. This
1527 function sets the operator precedences correctly for the current
1528 mode. Also, MRI uses a different bit_not operator, and this fixes
1529 that as well. */
1530
1531 #define STANDARD_MUL_PRECEDENCE 8
1532 #define MRI_MUL_PRECEDENCE 6
1533
1534 void
1535 expr_set_precedence (void)
1536 {
1537 if (flag_m68k_mri)
1538 {
1539 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1540 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1541 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1542 }
1543 else
1544 {
1545 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1546 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1547 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1548 }
1549 }
1550
1551 void
1552 expr_set_rank (operatorT op, operator_rankT rank)
1553 {
1554 gas_assert (op >= O_md1 && op < ARRAY_SIZE (op_rank));
1555 op_rank[op] = rank;
1556 }
1557
1558 /* Initialize the expression parser. */
1559
1560 void
1561 expr_begin (void)
1562 {
1563 expr_set_precedence ();
1564
1565 /* Verify that X_op field is wide enough. */
1566 {
1567 expressionS e;
1568 e.X_op = O_max;
1569 gas_assert (e.X_op == O_max);
1570 }
1571 }
1572 \f
1573 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1574 sets NUM_CHARS to the number of characters in the operator.
1575 Does not advance INPUT_LINE_POINTER. */
1576
1577 static inline operatorT
1578 operatorf (int *num_chars)
1579 {
1580 int c;
1581 operatorT ret;
1582
1583 c = *input_line_pointer & 0xff;
1584 *num_chars = 1;
1585
1586 if (is_end_of_line[c])
1587 return O_illegal;
1588
1589 #ifdef md_operator
1590 if (is_name_beginner (c))
1591 {
1592 char *name = input_line_pointer;
1593 char ec = get_symbol_end ();
1594
1595 ret = md_operator (name, 2, &ec);
1596 switch (ret)
1597 {
1598 case O_absent:
1599 *input_line_pointer = ec;
1600 input_line_pointer = name;
1601 break;
1602 case O_uminus:
1603 case O_bit_not:
1604 case O_logical_not:
1605 as_bad (_("invalid use of operator \"%s\""), name);
1606 ret = O_illegal;
1607 /* FALLTHROUGH */
1608 default:
1609 *input_line_pointer = ec;
1610 *num_chars = input_line_pointer - name;
1611 input_line_pointer = name;
1612 return ret;
1613 }
1614 }
1615 #endif
1616
1617 switch (c)
1618 {
1619 default:
1620 ret = op_encoding[c];
1621 #ifdef md_operator
1622 if (ret == O_illegal)
1623 {
1624 char *start = input_line_pointer;
1625
1626 ret = md_operator (NULL, 2, NULL);
1627 if (ret != O_illegal)
1628 *num_chars = input_line_pointer - start;
1629 input_line_pointer = start;
1630 }
1631 #endif
1632 return ret;
1633
1634 case '+':
1635 case '-':
1636 return op_encoding[c];
1637
1638 case '<':
1639 switch (input_line_pointer[1])
1640 {
1641 default:
1642 return op_encoding[c];
1643 case '<':
1644 ret = O_left_shift;
1645 break;
1646 case '>':
1647 ret = O_ne;
1648 break;
1649 case '=':
1650 ret = O_le;
1651 break;
1652 }
1653 *num_chars = 2;
1654 return ret;
1655
1656 case '=':
1657 if (input_line_pointer[1] != '=')
1658 return op_encoding[c];
1659
1660 *num_chars = 2;
1661 return O_eq;
1662
1663 case '>':
1664 switch (input_line_pointer[1])
1665 {
1666 default:
1667 return op_encoding[c];
1668 case '>':
1669 ret = O_right_shift;
1670 break;
1671 case '=':
1672 ret = O_ge;
1673 break;
1674 }
1675 *num_chars = 2;
1676 return ret;
1677
1678 case '!':
1679 switch (input_line_pointer[1])
1680 {
1681 case '!':
1682 /* We accept !! as equivalent to ^ for MRI compatibility. */
1683 *num_chars = 2;
1684 return O_bit_exclusive_or;
1685 case '=':
1686 /* We accept != as equivalent to <>. */
1687 *num_chars = 2;
1688 return O_ne;
1689 default:
1690 if (flag_m68k_mri)
1691 return O_bit_inclusive_or;
1692 return op_encoding[c];
1693 }
1694
1695 case '|':
1696 if (input_line_pointer[1] != '|')
1697 return op_encoding[c];
1698
1699 *num_chars = 2;
1700 return O_logical_or;
1701
1702 case '&':
1703 if (input_line_pointer[1] != '&')
1704 return op_encoding[c];
1705
1706 *num_chars = 2;
1707 return O_logical_and;
1708 }
1709
1710 /* NOTREACHED */
1711 }
1712
1713 /* Implement "word-size + 1 bit" addition for
1714 {resultP->X_extrabit:resultP->X_add_number} + {rhs_highbit:amount}. This
1715 is used so that the full range of unsigned word values and the full range of
1716 signed word values can be represented in an O_constant expression, which is
1717 useful e.g. for .sleb128 directives. */
1718
1719 void
1720 add_to_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1721 {
1722 valueT ures = resultP->X_add_number;
1723 valueT uamount = amount;
1724
1725 resultP->X_add_number += amount;
1726
1727 resultP->X_extrabit ^= rhs_highbit;
1728
1729 if (ures + uamount < ures)
1730 resultP->X_extrabit ^= 1;
1731 }
1732
1733 /* Similarly, for subtraction. */
1734
1735 void
1736 subtract_from_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1737 {
1738 valueT ures = resultP->X_add_number;
1739 valueT uamount = amount;
1740
1741 resultP->X_add_number -= amount;
1742
1743 resultP->X_extrabit ^= rhs_highbit;
1744
1745 if (ures < uamount)
1746 resultP->X_extrabit ^= 1;
1747 }
1748
1749 /* Parse an expression. */
1750
1751 segT
1752 expr (int rankarg, /* Larger # is higher rank. */
1753 expressionS *resultP, /* Deliver result here. */
1754 enum expr_mode mode /* Controls behavior. */)
1755 {
1756 operator_rankT rank = (operator_rankT) rankarg;
1757 segT retval;
1758 expressionS right;
1759 operatorT op_left;
1760 operatorT op_right;
1761 int op_chars;
1762
1763 know (rankarg >= 0);
1764
1765 /* Save the value of dot for the fixup code. */
1766 if (rank == 0)
1767 {
1768 dot_value = frag_now_fix ();
1769 dot_frag = frag_now;
1770 }
1771
1772 retval = operand (resultP, mode);
1773
1774 /* operand () gobbles spaces. */
1775 know (*input_line_pointer != ' ');
1776
1777 op_left = operatorf (&op_chars);
1778 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1779 {
1780 segT rightseg;
1781 offsetT frag_off;
1782
1783 input_line_pointer += op_chars; /* -> after operator. */
1784
1785 right.X_md = 0;
1786 rightseg = expr (op_rank[(int) op_left], &right, mode);
1787 if (right.X_op == O_absent)
1788 {
1789 as_warn (_("missing operand; zero assumed"));
1790 right.X_op = O_constant;
1791 right.X_add_number = 0;
1792 right.X_add_symbol = NULL;
1793 right.X_op_symbol = NULL;
1794 }
1795
1796 know (*input_line_pointer != ' ');
1797
1798 if (op_left == O_index)
1799 {
1800 if (*input_line_pointer != ']')
1801 as_bad ("missing right bracket");
1802 else
1803 {
1804 ++input_line_pointer;
1805 SKIP_WHITESPACE ();
1806 }
1807 }
1808
1809 op_right = operatorf (&op_chars);
1810
1811 know (op_right == O_illegal || op_left == O_index
1812 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1813 know ((int) op_left >= (int) O_multiply);
1814 #ifndef md_operator
1815 know ((int) op_left <= (int) O_index);
1816 #else
1817 know ((int) op_left < (int) O_max);
1818 #endif
1819
1820 /* input_line_pointer->after right-hand quantity. */
1821 /* left-hand quantity in resultP. */
1822 /* right-hand quantity in right. */
1823 /* operator in op_left. */
1824
1825 if (resultP->X_op == O_big)
1826 {
1827 if (resultP->X_add_number > 0)
1828 as_warn (_("left operand is a bignum; integer 0 assumed"));
1829 else
1830 as_warn (_("left operand is a float; integer 0 assumed"));
1831 resultP->X_op = O_constant;
1832 resultP->X_add_number = 0;
1833 resultP->X_add_symbol = NULL;
1834 resultP->X_op_symbol = NULL;
1835 }
1836 if (right.X_op == O_big)
1837 {
1838 if (right.X_add_number > 0)
1839 as_warn (_("right operand is a bignum; integer 0 assumed"));
1840 else
1841 as_warn (_("right operand is a float; integer 0 assumed"));
1842 right.X_op = O_constant;
1843 right.X_add_number = 0;
1844 right.X_add_symbol = NULL;
1845 right.X_op_symbol = NULL;
1846 }
1847
1848 /* Optimize common cases. */
1849 #ifdef md_optimize_expr
1850 if (md_optimize_expr (resultP, op_left, &right))
1851 {
1852 /* Skip. */
1853 ;
1854 }
1855 else
1856 #endif
1857 #ifndef md_register_arithmetic
1858 # define md_register_arithmetic 1
1859 #endif
1860 if (op_left == O_add && right.X_op == O_constant
1861 && (md_register_arithmetic || resultP->X_op != O_register))
1862 {
1863 /* X + constant. */
1864 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1865 }
1866 /* This case comes up in PIC code. */
1867 else if (op_left == O_subtract
1868 && right.X_op == O_symbol
1869 && resultP->X_op == O_symbol
1870 && retval == rightseg
1871 #ifdef md_allow_local_subtract
1872 && md_allow_local_subtract (resultP, & right, rightseg)
1873 #endif
1874 && ((SEG_NORMAL (rightseg)
1875 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
1876 && !S_FORCE_RELOC (right.X_add_symbol, 0))
1877 || right.X_add_symbol == resultP->X_add_symbol)
1878 && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
1879 symbol_get_frag (right.X_add_symbol),
1880 &frag_off))
1881 {
1882 offsetT symval_diff = S_GET_VALUE (resultP->X_add_symbol)
1883 - S_GET_VALUE (right.X_add_symbol);
1884 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1885 subtract_from_result (resultP, frag_off / OCTETS_PER_BYTE, 0);
1886 add_to_result (resultP, symval_diff, symval_diff < 0);
1887 resultP->X_op = O_constant;
1888 resultP->X_add_symbol = 0;
1889 }
1890 else if (op_left == O_subtract && right.X_op == O_constant
1891 && (md_register_arithmetic || resultP->X_op != O_register))
1892 {
1893 /* X - constant. */
1894 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1895 }
1896 else if (op_left == O_add && resultP->X_op == O_constant
1897 && (md_register_arithmetic || right.X_op != O_register))
1898 {
1899 /* Constant + X. */
1900 resultP->X_op = right.X_op;
1901 resultP->X_add_symbol = right.X_add_symbol;
1902 resultP->X_op_symbol = right.X_op_symbol;
1903 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1904 retval = rightseg;
1905 }
1906 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1907 {
1908 /* Constant OP constant. */
1909 offsetT v = right.X_add_number;
1910 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1911 {
1912 as_warn (_("division by zero"));
1913 v = 1;
1914 }
1915 if ((valueT) v >= sizeof(valueT) * CHAR_BIT
1916 && (op_left == O_left_shift || op_left == O_right_shift))
1917 {
1918 as_warn_value_out_of_range (_("shift count"), v, 0,
1919 sizeof(valueT) * CHAR_BIT - 1,
1920 NULL, 0);
1921 resultP->X_add_number = v = 0;
1922 }
1923 switch (op_left)
1924 {
1925 default: goto general;
1926 case O_multiply: resultP->X_add_number *= v; break;
1927 case O_divide: resultP->X_add_number /= v; break;
1928 case O_modulus: resultP->X_add_number %= v; break;
1929 case O_left_shift: resultP->X_add_number <<= v; break;
1930 case O_right_shift:
1931 /* We always use unsigned shifts, to avoid relying on
1932 characteristics of the compiler used to compile gas. */
1933 resultP->X_add_number =
1934 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1935 break;
1936 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1937 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1938 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1939 case O_bit_and: resultP->X_add_number &= v; break;
1940 /* Constant + constant (O_add) is handled by the
1941 previous if statement for constant + X, so is omitted
1942 here. */
1943 case O_subtract:
1944 subtract_from_result (resultP, v, 0);
1945 break;
1946 case O_eq:
1947 resultP->X_add_number =
1948 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1949 break;
1950 case O_ne:
1951 resultP->X_add_number =
1952 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1953 break;
1954 case O_lt:
1955 resultP->X_add_number =
1956 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1957 break;
1958 case O_le:
1959 resultP->X_add_number =
1960 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1961 break;
1962 case O_ge:
1963 resultP->X_add_number =
1964 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1965 break;
1966 case O_gt:
1967 resultP->X_add_number =
1968 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1969 break;
1970 case O_logical_and:
1971 resultP->X_add_number = resultP->X_add_number && v;
1972 break;
1973 case O_logical_or:
1974 resultP->X_add_number = resultP->X_add_number || v;
1975 break;
1976 }
1977 }
1978 else if (resultP->X_op == O_symbol
1979 && right.X_op == O_symbol
1980 && (op_left == O_add
1981 || op_left == O_subtract
1982 || (resultP->X_add_number == 0
1983 && right.X_add_number == 0)))
1984 {
1985 /* Symbol OP symbol. */
1986 resultP->X_op = op_left;
1987 resultP->X_op_symbol = right.X_add_symbol;
1988 if (op_left == O_add)
1989 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1990 else if (op_left == O_subtract)
1991 {
1992 subtract_from_result (resultP, right.X_add_number,
1993 right.X_extrabit);
1994 if (retval == rightseg
1995 && SEG_NORMAL (retval)
1996 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
1997 && !S_FORCE_RELOC (right.X_add_symbol, 0))
1998 {
1999 retval = absolute_section;
2000 rightseg = absolute_section;
2001 }
2002 }
2003 }
2004 else
2005 {
2006 general:
2007 /* The general case. */
2008 resultP->X_add_symbol = make_expr_symbol (resultP);
2009 resultP->X_op_symbol = make_expr_symbol (&right);
2010 resultP->X_op = op_left;
2011 resultP->X_add_number = 0;
2012 resultP->X_unsigned = 1;
2013 resultP->X_extrabit = 0;
2014 }
2015
2016 if (retval != rightseg)
2017 {
2018 if (retval == undefined_section)
2019 ;
2020 else if (rightseg == undefined_section)
2021 retval = rightseg;
2022 else if (retval == expr_section)
2023 ;
2024 else if (rightseg == expr_section)
2025 retval = rightseg;
2026 else if (retval == reg_section)
2027 ;
2028 else if (rightseg == reg_section)
2029 retval = rightseg;
2030 else if (rightseg == absolute_section)
2031 ;
2032 else if (retval == absolute_section)
2033 retval = rightseg;
2034 #ifdef DIFF_EXPR_OK
2035 else if (op_left == O_subtract)
2036 ;
2037 #endif
2038 else
2039 as_bad (_("operation combines symbols in different segments"));
2040 }
2041
2042 op_left = op_right;
2043 } /* While next operator is >= this rank. */
2044
2045 /* The PA port needs this information. */
2046 if (resultP->X_add_symbol)
2047 symbol_mark_used (resultP->X_add_symbol);
2048
2049 if (rank == 0 && mode == expr_evaluate)
2050 resolve_expression (resultP);
2051
2052 return resultP->X_op == O_constant ? absolute_section : retval;
2053 }
2054
2055 /* Resolve an expression without changing any symbols/sub-expressions
2056 used. */
2057
2058 int
2059 resolve_expression (expressionS *expressionP)
2060 {
2061 /* Help out with CSE. */
2062 valueT final_val = expressionP->X_add_number;
2063 symbolS *add_symbol = expressionP->X_add_symbol;
2064 symbolS *orig_add_symbol = add_symbol;
2065 symbolS *op_symbol = expressionP->X_op_symbol;
2066 operatorT op = expressionP->X_op;
2067 valueT left, right;
2068 segT seg_left, seg_right;
2069 fragS *frag_left, *frag_right;
2070 offsetT frag_off;
2071
2072 switch (op)
2073 {
2074 default:
2075 return 0;
2076
2077 case O_constant:
2078 case O_register:
2079 left = 0;
2080 break;
2081
2082 case O_symbol:
2083 case O_symbol_rva:
2084 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2085 return 0;
2086
2087 break;
2088
2089 case O_uminus:
2090 case O_bit_not:
2091 case O_logical_not:
2092 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2093 return 0;
2094
2095 if (seg_left != absolute_section)
2096 return 0;
2097
2098 if (op == O_logical_not)
2099 left = !left;
2100 else if (op == O_uminus)
2101 left = -left;
2102 else
2103 left = ~left;
2104 op = O_constant;
2105 break;
2106
2107 case O_multiply:
2108 case O_divide:
2109 case O_modulus:
2110 case O_left_shift:
2111 case O_right_shift:
2112 case O_bit_inclusive_or:
2113 case O_bit_or_not:
2114 case O_bit_exclusive_or:
2115 case O_bit_and:
2116 case O_add:
2117 case O_subtract:
2118 case O_eq:
2119 case O_ne:
2120 case O_lt:
2121 case O_le:
2122 case O_ge:
2123 case O_gt:
2124 case O_logical_and:
2125 case O_logical_or:
2126 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
2127 || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
2128 return 0;
2129
2130 /* Simplify addition or subtraction of a constant by folding the
2131 constant into X_add_number. */
2132 if (op == O_add)
2133 {
2134 if (seg_right == absolute_section)
2135 {
2136 final_val += right;
2137 op = O_symbol;
2138 break;
2139 }
2140 else if (seg_left == absolute_section)
2141 {
2142 final_val += left;
2143 left = right;
2144 seg_left = seg_right;
2145 add_symbol = op_symbol;
2146 orig_add_symbol = expressionP->X_op_symbol;
2147 op = O_symbol;
2148 break;
2149 }
2150 }
2151 else if (op == O_subtract)
2152 {
2153 if (seg_right == absolute_section)
2154 {
2155 final_val -= right;
2156 op = O_symbol;
2157 break;
2158 }
2159 }
2160
2161 /* Equality and non-equality tests are permitted on anything.
2162 Subtraction, and other comparison operators are permitted if
2163 both operands are in the same section.
2164 Shifts by constant zero are permitted on anything.
2165 Multiplies, bit-ors, and bit-ands with constant zero are
2166 permitted on anything.
2167 Multiplies and divides by constant one are permitted on
2168 anything.
2169 Binary operations with both operands being the same register
2170 or undefined symbol are permitted if the result doesn't depend
2171 on the input value.
2172 Otherwise, both operands must be absolute. We already handled
2173 the case of addition or subtraction of a constant above. */
2174 frag_off = 0;
2175 if (!(seg_left == absolute_section
2176 && seg_right == absolute_section)
2177 && !(op == O_eq || op == O_ne)
2178 && !((op == O_subtract
2179 || op == O_lt || op == O_le || op == O_ge || op == O_gt)
2180 && seg_left == seg_right
2181 && (finalize_syms
2182 || frag_offset_fixed_p (frag_left, frag_right, &frag_off))
2183 && (seg_left != reg_section || left == right)
2184 && (seg_left != undefined_section || add_symbol == op_symbol)))
2185 {
2186 if ((seg_left == absolute_section && left == 0)
2187 || (seg_right == absolute_section && right == 0))
2188 {
2189 if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
2190 {
2191 if (!(seg_right == absolute_section && right == 0))
2192 {
2193 seg_left = seg_right;
2194 left = right;
2195 add_symbol = op_symbol;
2196 orig_add_symbol = expressionP->X_op_symbol;
2197 }
2198 op = O_symbol;
2199 break;
2200 }
2201 else if (op == O_left_shift || op == O_right_shift)
2202 {
2203 if (!(seg_left == absolute_section && left == 0))
2204 {
2205 op = O_symbol;
2206 break;
2207 }
2208 }
2209 else if (op != O_multiply
2210 && op != O_bit_or_not && op != O_bit_and)
2211 return 0;
2212 }
2213 else if (op == O_multiply
2214 && seg_left == absolute_section && left == 1)
2215 {
2216 seg_left = seg_right;
2217 left = right;
2218 add_symbol = op_symbol;
2219 orig_add_symbol = expressionP->X_op_symbol;
2220 op = O_symbol;
2221 break;
2222 }
2223 else if ((op == O_multiply || op == O_divide)
2224 && seg_right == absolute_section && right == 1)
2225 {
2226 op = O_symbol;
2227 break;
2228 }
2229 else if (!(left == right
2230 && ((seg_left == reg_section && seg_right == reg_section)
2231 || (seg_left == undefined_section
2232 && seg_right == undefined_section
2233 && add_symbol == op_symbol))))
2234 return 0;
2235 else if (op == O_bit_and || op == O_bit_inclusive_or)
2236 {
2237 op = O_symbol;
2238 break;
2239 }
2240 else if (op != O_bit_exclusive_or && op != O_bit_or_not)
2241 return 0;
2242 }
2243
2244 right += frag_off / OCTETS_PER_BYTE;
2245 switch (op)
2246 {
2247 case O_add: left += right; break;
2248 case O_subtract: left -= right; break;
2249 case O_multiply: left *= right; break;
2250 case O_divide:
2251 if (right == 0)
2252 return 0;
2253 left = (offsetT) left / (offsetT) right;
2254 break;
2255 case O_modulus:
2256 if (right == 0)
2257 return 0;
2258 left = (offsetT) left % (offsetT) right;
2259 break;
2260 case O_left_shift: left <<= right; break;
2261 case O_right_shift: left >>= right; break;
2262 case O_bit_inclusive_or: left |= right; break;
2263 case O_bit_or_not: left |= ~right; break;
2264 case O_bit_exclusive_or: left ^= right; break;
2265 case O_bit_and: left &= right; break;
2266 case O_eq:
2267 case O_ne:
2268 left = (left == right
2269 && seg_left == seg_right
2270 && (finalize_syms || frag_left == frag_right)
2271 && (seg_left != undefined_section
2272 || add_symbol == op_symbol)
2273 ? ~ (valueT) 0 : 0);
2274 if (op == O_ne)
2275 left = ~left;
2276 break;
2277 case O_lt:
2278 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
2279 break;
2280 case O_le:
2281 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
2282 break;
2283 case O_ge:
2284 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
2285 break;
2286 case O_gt:
2287 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
2288 break;
2289 case O_logical_and: left = left && right; break;
2290 case O_logical_or: left = left || right; break;
2291 default: abort ();
2292 }
2293
2294 op = O_constant;
2295 break;
2296 }
2297
2298 if (op == O_symbol)
2299 {
2300 if (seg_left == absolute_section)
2301 op = O_constant;
2302 else if (seg_left == reg_section && final_val == 0)
2303 op = O_register;
2304 else if (!symbol_same_p (add_symbol, orig_add_symbol))
2305 final_val += left;
2306 expressionP->X_add_symbol = add_symbol;
2307 }
2308 expressionP->X_op = op;
2309
2310 if (op == O_constant || op == O_register)
2311 final_val += left;
2312 expressionP->X_add_number = final_val;
2313
2314 return 1;
2315 }
2316 \f
2317 /* This lives here because it belongs equally in expr.c & read.c.
2318 expr.c is just a branch office read.c anyway, and putting it
2319 here lessens the crowd at read.c.
2320
2321 Assume input_line_pointer is at start of symbol name.
2322 Advance input_line_pointer past symbol name.
2323 Turn that character into a '\0', returning its former value.
2324 This allows a string compare (RMS wants symbol names to be strings)
2325 of the symbol name.
2326 There will always be a char following symbol name, because all good
2327 lines end in end-of-line. */
2328
2329 char
2330 get_symbol_end (void)
2331 {
2332 char c;
2333
2334 /* We accept \001 in a name in case this is being called with a
2335 constructed string. */
2336 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
2337 {
2338 while (is_part_of_name (c = *input_line_pointer++)
2339 || c == '\001')
2340 ;
2341 if (is_name_ender (c))
2342 c = *input_line_pointer++;
2343 }
2344 *--input_line_pointer = 0;
2345 return (c);
2346 }
2347
2348 unsigned int
2349 get_single_number (void)
2350 {
2351 expressionS exp;
2352 operand (&exp, expr_normal);
2353 return exp.X_add_number;
2354 }