sem_ch3.adb, [...]: Remove the word kludge from ada sources.
[gcc.git] / gcc / ada / exp_aggr.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Util; use Exp_Util;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Lib; use Lib;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Ttypes; use Ttypes;
52 with Sem; use Sem;
53 with Sem_Aggr; use Sem_Aggr;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Ch3; use Sem_Ch3;
56 with Sem_Eval; use Sem_Eval;
57 with Sem_Res; use Sem_Res;
58 with Sem_Util; use Sem_Util;
59 with Sinfo; use Sinfo;
60 with Snames; use Snames;
61 with Stand; use Stand;
62 with Stringt; use Stringt;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Uintp; use Uintp;
66
67 package body Exp_Aggr is
68
69 type Case_Bounds is record
70 Choice_Lo : Node_Id;
71 Choice_Hi : Node_Id;
72 Choice_Node : Node_Id;
73 end record;
74
75 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
76 -- Table type used by Check_Case_Choices procedure
77
78 function Has_Default_Init_Comps (N : Node_Id) return Boolean;
79 -- N is an aggregate (record or array). Checks the presence of default
80 -- initialization (<>) in any component (Ada 2005: AI-287).
81
82 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
83 -- Returns true if N is an aggregate used to initialize the components
84 -- of a statically allocated dispatch table.
85
86 function Must_Slide
87 (Obj_Type : Entity_Id;
88 Typ : Entity_Id) return Boolean;
89 -- A static array aggregate in an object declaration can in most cases be
90 -- expanded in place. The one exception is when the aggregate is given
91 -- with component associations that specify different bounds from those of
92 -- the type definition in the object declaration. In this pathological
93 -- case the aggregate must slide, and we must introduce an intermediate
94 -- temporary to hold it.
95 --
96 -- The same holds in an assignment to one-dimensional array of arrays,
97 -- when a component may be given with bounds that differ from those of the
98 -- component type.
99
100 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
101 -- Sort the Case Table using the Lower Bound of each Choice as the key.
102 -- A simple insertion sort is used since the number of choices in a case
103 -- statement of variant part will usually be small and probably in near
104 -- sorted order.
105
106 procedure Collect_Initialization_Statements
107 (Obj : Entity_Id;
108 N : Node_Id;
109 Node_After : Node_Id);
110 -- If Obj is not frozen, collect actions inserted after N until, but not
111 -- including, Node_After, for initialization of Obj, and move them to an
112 -- expression with actions, which becomes the Initialization_Statements for
113 -- Obj.
114
115 ------------------------------------------------------
116 -- Local subprograms for Record Aggregate Expansion --
117 ------------------------------------------------------
118
119 function Build_Record_Aggr_Code
120 (N : Node_Id;
121 Typ : Entity_Id;
122 Lhs : Node_Id) return List_Id;
123 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
124 -- aggregate. Target is an expression containing the location on which the
125 -- component by component assignments will take place. Returns the list of
126 -- assignments plus all other adjustments needed for tagged and controlled
127 -- types.
128
129 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
130 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
131 -- aggregate (which can only be a record type, this procedure is only used
132 -- for record types). Transform the given aggregate into a sequence of
133 -- assignments performed component by component.
134
135 procedure Expand_Record_Aggregate
136 (N : Node_Id;
137 Orig_Tag : Node_Id := Empty;
138 Parent_Expr : Node_Id := Empty);
139 -- This is the top level procedure for record aggregate expansion.
140 -- Expansion for record aggregates needs expand aggregates for tagged
141 -- record types. Specifically Expand_Record_Aggregate adds the Tag
142 -- field in front of the Component_Association list that was created
143 -- during resolution by Resolve_Record_Aggregate.
144 --
145 -- N is the record aggregate node.
146 -- Orig_Tag is the value of the Tag that has to be provided for this
147 -- specific aggregate. It carries the tag corresponding to the type
148 -- of the outermost aggregate during the recursive expansion
149 -- Parent_Expr is the ancestor part of the original extension
150 -- aggregate
151
152 function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
153 -- Return true if one of the components is of a discriminated type with
154 -- defaults. An aggregate for a type with mutable components must be
155 -- expanded into individual assignments.
156
157 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
158 -- If the type of the aggregate is a type extension with renamed discrimi-
159 -- nants, we must initialize the hidden discriminants of the parent.
160 -- Otherwise, the target object must not be initialized. The discriminants
161 -- are initialized by calling the initialization procedure for the type.
162 -- This is incorrect if the initialization of other components has any
163 -- side effects. We restrict this call to the case where the parent type
164 -- has a variant part, because this is the only case where the hidden
165 -- discriminants are accessed, namely when calling discriminant checking
166 -- functions of the parent type, and when applying a stream attribute to
167 -- an object of the derived type.
168
169 -----------------------------------------------------
170 -- Local Subprograms for Array Aggregate Expansion --
171 -----------------------------------------------------
172
173 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
174 -- Very large static aggregates present problems to the back-end, and are
175 -- transformed into assignments and loops. This function verifies that the
176 -- total number of components of an aggregate is acceptable for rewriting
177 -- into a purely positional static form. Aggr_Size_OK must be called before
178 -- calling Flatten.
179 --
180 -- This function also detects and warns about one-component aggregates that
181 -- appear in a non-static context. Even if the component value is static,
182 -- such an aggregate must be expanded into an assignment.
183
184 function Backend_Processing_Possible (N : Node_Id) return Boolean;
185 -- This function checks if array aggregate N can be processed directly
186 -- by the backend. If this is the case, True is returned.
187
188 function Build_Array_Aggr_Code
189 (N : Node_Id;
190 Ctype : Entity_Id;
191 Index : Node_Id;
192 Into : Node_Id;
193 Scalar_Comp : Boolean;
194 Indexes : List_Id := No_List) return List_Id;
195 -- This recursive routine returns a list of statements containing the
196 -- loops and assignments that are needed for the expansion of the array
197 -- aggregate N.
198 --
199 -- N is the (sub-)aggregate node to be expanded into code. This node has
200 -- been fully analyzed, and its Etype is properly set.
201 --
202 -- Index is the index node corresponding to the array sub-aggregate N
203 --
204 -- Into is the target expression into which we are copying the aggregate.
205 -- Note that this node may not have been analyzed yet, and so the Etype
206 -- field may not be set.
207 --
208 -- Scalar_Comp is True if the component type of the aggregate is scalar
209 --
210 -- Indexes is the current list of expressions used to index the object we
211 -- are writing into.
212
213 procedure Convert_Array_Aggr_In_Allocator
214 (Decl : Node_Id;
215 Aggr : Node_Id;
216 Target : Node_Id);
217 -- If the aggregate appears within an allocator and can be expanded in
218 -- place, this routine generates the individual assignments to components
219 -- of the designated object. This is an optimization over the general
220 -- case, where a temporary is first created on the stack and then used to
221 -- construct the allocated object on the heap.
222
223 procedure Convert_To_Positional
224 (N : Node_Id;
225 Max_Others_Replicate : Nat := 5;
226 Handle_Bit_Packed : Boolean := False);
227 -- If possible, convert named notation to positional notation. This
228 -- conversion is possible only in some static cases. If the conversion is
229 -- possible, then N is rewritten with the analyzed converted aggregate.
230 -- The parameter Max_Others_Replicate controls the maximum number of
231 -- values corresponding to an others choice that will be converted to
232 -- positional notation (the default of 5 is the normal limit, and reflects
233 -- the fact that normally the loop is better than a lot of separate
234 -- assignments). Note that this limit gets overridden in any case if
235 -- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
236 -- set. The parameter Handle_Bit_Packed is usually set False (since we do
237 -- not expect the back end to handle bit packed arrays, so the normal case
238 -- of conversion is pointless), but in the special case of a call from
239 -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
240 -- these are cases we handle in there.
241
242 -- It would seem worthwhile to have a higher default value for Max_Others_
243 -- replicate, but aggregates in the compiler make this impossible: the
244 -- compiler bootstrap fails if Max_Others_Replicate is greater than 25.
245 -- This is unexpected ???
246
247 procedure Expand_Array_Aggregate (N : Node_Id);
248 -- This is the top-level routine to perform array aggregate expansion.
249 -- N is the N_Aggregate node to be expanded.
250
251 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean;
252 -- For two-dimensional packed aggregates with constant bounds and constant
253 -- components, it is preferable to pack the inner aggregates because the
254 -- whole matrix can then be presented to the back-end as a one-dimensional
255 -- list of literals. This is much more efficient than expanding into single
256 -- component assignments. This function determines if the type Typ is for
257 -- an array that is suitable for this optimization: it returns True if Typ
258 -- is a two dimensional bit packed array with component size 1, 2, or 4.
259
260 function Late_Expansion
261 (N : Node_Id;
262 Typ : Entity_Id;
263 Target : Node_Id) return List_Id;
264 -- This routine implements top-down expansion of nested aggregates. In
265 -- doing so, it avoids the generation of temporaries at each level. N is
266 -- a nested record or array aggregate with the Expansion_Delayed flag.
267 -- Typ is the expected type of the aggregate. Target is a (duplicatable)
268 -- expression that will hold the result of the aggregate expansion.
269
270 function Make_OK_Assignment_Statement
271 (Sloc : Source_Ptr;
272 Name : Node_Id;
273 Expression : Node_Id) return Node_Id;
274 -- This is like Make_Assignment_Statement, except that Assignment_OK
275 -- is set in the left operand. All assignments built by this unit use
276 -- this routine. This is needed to deal with assignments to initialized
277 -- constants that are done in place.
278
279 function Number_Of_Choices (N : Node_Id) return Nat;
280 -- Returns the number of discrete choices (not including the others choice
281 -- if present) contained in (sub-)aggregate N.
282
283 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
284 -- Given an array aggregate, this function handles the case of a packed
285 -- array aggregate with all constant values, where the aggregate can be
286 -- evaluated at compile time. If this is possible, then N is rewritten
287 -- to be its proper compile time value with all the components properly
288 -- assembled. The expression is analyzed and resolved and True is returned.
289 -- If this transformation is not possible, N is unchanged and False is
290 -- returned.
291
292 function Safe_Slice_Assignment (N : Node_Id) return Boolean;
293 -- If a slice assignment has an aggregate with a single others_choice,
294 -- the assignment can be done in place even if bounds are not static,
295 -- by converting it into a loop over the discrete range of the slice.
296
297 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean;
298 -- If the type of the aggregate is a two-dimensional bit_packed array
299 -- it may be transformed into an array of bytes with constant values,
300 -- and presented to the back-end as a static value. The function returns
301 -- false if this transformation cannot be performed. THis is similar to,
302 -- and reuses part of the machinery in Packed_Array_Aggregate_Handled.
303
304 ------------------
305 -- Aggr_Size_OK --
306 ------------------
307
308 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
309 Lo : Node_Id;
310 Hi : Node_Id;
311 Indx : Node_Id;
312 Siz : Int;
313 Lov : Uint;
314 Hiv : Uint;
315
316 Max_Aggr_Size : Nat;
317 -- Determines the maximum size of an array aggregate produced by
318 -- converting named to positional notation (e.g. from others clauses).
319 -- This avoids running away with attempts to convert huge aggregates,
320 -- which hit memory limits in the backend.
321
322 function Component_Count (T : Entity_Id) return Int;
323 -- The limit is applied to the total number of components that the
324 -- aggregate will have, which is the number of static expressions
325 -- that will appear in the flattened array. This requires a recursive
326 -- computation of the number of scalar components of the structure.
327
328 ---------------------
329 -- Component_Count --
330 ---------------------
331
332 function Component_Count (T : Entity_Id) return Int is
333 Res : Int := 0;
334 Comp : Entity_Id;
335
336 begin
337 if Is_Scalar_Type (T) then
338 return 1;
339
340 elsif Is_Record_Type (T) then
341 Comp := First_Component (T);
342 while Present (Comp) loop
343 Res := Res + Component_Count (Etype (Comp));
344 Next_Component (Comp);
345 end loop;
346
347 return Res;
348
349 elsif Is_Array_Type (T) then
350 declare
351 Lo : constant Node_Id :=
352 Type_Low_Bound (Etype (First_Index (T)));
353 Hi : constant Node_Id :=
354 Type_High_Bound (Etype (First_Index (T)));
355
356 Siz : constant Int := Component_Count (Component_Type (T));
357
358 begin
359 if not Compile_Time_Known_Value (Lo)
360 or else not Compile_Time_Known_Value (Hi)
361 then
362 return 0;
363 else
364 return
365 Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
366 end if;
367 end;
368
369 else
370 -- Can only be a null for an access type
371
372 return 1;
373 end if;
374 end Component_Count;
375
376 -- Start of processing for Aggr_Size_OK
377
378 begin
379 -- The normal aggregate limit is 50000, but we increase this limit to
380 -- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code) or
381 -- Restrictions (No_Implicit_Loops) is specified, since in either case
382 -- we are at risk of declaring the program illegal because of this
383 -- limit. We also increase the limit when Static_Elaboration_Desired,
384 -- given that this means that objects are intended to be placed in data
385 -- memory.
386
387 -- We also increase the limit if the aggregate is for a packed two-
388 -- dimensional array, because if components are static it is much more
389 -- efficient to construct a one-dimensional equivalent array with static
390 -- components.
391
392 -- Conversely, we decrease the maximum size if none of the above
393 -- requirements apply, and if the aggregate has a single component
394 -- association, which will be more efficient if implemented with a loop.
395
396 -- Finally, we use a small limit in CodePeer mode where we favor loops
397 -- instead of thousands of single assignments (from large aggregates).
398
399 Max_Aggr_Size := 50000;
400
401 if CodePeer_Mode then
402 Max_Aggr_Size := 100;
403
404 elsif Restriction_Active (No_Elaboration_Code)
405 or else Restriction_Active (No_Implicit_Loops)
406 or else Is_Two_Dim_Packed_Array (Typ)
407 or else ((Ekind (Current_Scope) = E_Package
408 and then Static_Elaboration_Desired (Current_Scope)))
409 then
410 Max_Aggr_Size := 2 ** 24;
411
412 elsif No (Expressions (N))
413 and then No (Next (First (Component_Associations (N))))
414 then
415 Max_Aggr_Size := 5000;
416 end if;
417
418 Siz := Component_Count (Component_Type (Typ));
419
420 Indx := First_Index (Typ);
421 while Present (Indx) loop
422 Lo := Type_Low_Bound (Etype (Indx));
423 Hi := Type_High_Bound (Etype (Indx));
424
425 -- Bounds need to be known at compile time
426
427 if not Compile_Time_Known_Value (Lo)
428 or else not Compile_Time_Known_Value (Hi)
429 then
430 return False;
431 end if;
432
433 Lov := Expr_Value (Lo);
434 Hiv := Expr_Value (Hi);
435
436 -- A flat array is always safe
437
438 if Hiv < Lov then
439 return True;
440 end if;
441
442 -- One-component aggregates are suspicious, and if the context type
443 -- is an object declaration with non-static bounds it will trip gcc;
444 -- such an aggregate must be expanded into a single assignment.
445
446 if Hiv = Lov
447 and then Nkind (Parent (N)) = N_Object_Declaration
448 then
449 declare
450 Index_Type : constant Entity_Id :=
451 Etype
452 (First_Index (Etype (Defining_Identifier (Parent (N)))));
453 Indx : Node_Id;
454
455 begin
456 if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
457 or else not Compile_Time_Known_Value
458 (Type_High_Bound (Index_Type))
459 then
460 if Present (Component_Associations (N)) then
461 Indx :=
462 First (Choices (First (Component_Associations (N))));
463
464 if Is_Entity_Name (Indx)
465 and then not Is_Type (Entity (Indx))
466 then
467 Error_Msg_N
468 ("single component aggregate in "
469 & "non-static context??", Indx);
470 Error_Msg_N ("\maybe subtype name was meant??", Indx);
471 end if;
472 end if;
473
474 return False;
475 end if;
476 end;
477 end if;
478
479 declare
480 Rng : constant Uint := Hiv - Lov + 1;
481
482 begin
483 -- Check if size is too large
484
485 if not UI_Is_In_Int_Range (Rng) then
486 return False;
487 end if;
488
489 Siz := Siz * UI_To_Int (Rng);
490 end;
491
492 if Siz <= 0
493 or else Siz > Max_Aggr_Size
494 then
495 return False;
496 end if;
497
498 -- Bounds must be in integer range, for later array construction
499
500 if not UI_Is_In_Int_Range (Lov)
501 or else
502 not UI_Is_In_Int_Range (Hiv)
503 then
504 return False;
505 end if;
506
507 Next_Index (Indx);
508 end loop;
509
510 return True;
511 end Aggr_Size_OK;
512
513 ---------------------------------
514 -- Backend_Processing_Possible --
515 ---------------------------------
516
517 -- Backend processing by Gigi/gcc is possible only if all the following
518 -- conditions are met:
519
520 -- 1. N is fully positional
521
522 -- 2. N is not a bit-packed array aggregate;
523
524 -- 3. The size of N's array type must be known at compile time. Note
525 -- that this implies that the component size is also known
526
527 -- 4. The array type of N does not follow the Fortran layout convention
528 -- or if it does it must be 1 dimensional.
529
530 -- 5. The array component type may not be tagged (which could necessitate
531 -- reassignment of proper tags).
532
533 -- 6. The array component type must not have unaligned bit components
534
535 -- 7. None of the components of the aggregate may be bit unaligned
536 -- components.
537
538 -- 8. There cannot be delayed components, since we do not know enough
539 -- at this stage to know if back end processing is possible.
540
541 -- 9. There cannot be any discriminated record components, since the
542 -- back end cannot handle this complex case.
543
544 -- 10. No controlled actions need to be generated for components
545
546 -- 11. For a VM back end, the array should have no aliased components
547
548 function Backend_Processing_Possible (N : Node_Id) return Boolean is
549 Typ : constant Entity_Id := Etype (N);
550 -- Typ is the correct constrained array subtype of the aggregate
551
552 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
553 -- This routine checks components of aggregate N, enforcing checks
554 -- 1, 7, 8, and 9. In the multi-dimensional case, these checks are
555 -- performed on subaggregates. The Index value is the current index
556 -- being checked in the multi-dimensional case.
557
558 ---------------------
559 -- Component_Check --
560 ---------------------
561
562 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
563 Expr : Node_Id;
564
565 begin
566 -- Checks 1: (no component associations)
567
568 if Present (Component_Associations (N)) then
569 return False;
570 end if;
571
572 -- Checks on components
573
574 -- Recurse to check subaggregates, which may appear in qualified
575 -- expressions. If delayed, the front-end will have to expand.
576 -- If the component is a discriminated record, treat as non-static,
577 -- as the back-end cannot handle this properly.
578
579 Expr := First (Expressions (N));
580 while Present (Expr) loop
581
582 -- Checks 8: (no delayed components)
583
584 if Is_Delayed_Aggregate (Expr) then
585 return False;
586 end if;
587
588 -- Checks 9: (no discriminated records)
589
590 if Present (Etype (Expr))
591 and then Is_Record_Type (Etype (Expr))
592 and then Has_Discriminants (Etype (Expr))
593 then
594 return False;
595 end if;
596
597 -- Checks 7. Component must not be bit aligned component
598
599 if Possible_Bit_Aligned_Component (Expr) then
600 return False;
601 end if;
602
603 -- Recursion to following indexes for multiple dimension case
604
605 if Present (Next_Index (Index))
606 and then not Component_Check (Expr, Next_Index (Index))
607 then
608 return False;
609 end if;
610
611 -- All checks for that component finished, on to next
612
613 Next (Expr);
614 end loop;
615
616 return True;
617 end Component_Check;
618
619 -- Start of processing for Backend_Processing_Possible
620
621 begin
622 -- Checks 2 (array not bit packed) and 10 (no controlled actions)
623
624 if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
625 return False;
626 end if;
627
628 -- If component is limited, aggregate must be expanded because each
629 -- component assignment must be built in place.
630
631 if Is_Limited_View (Component_Type (Typ)) then
632 return False;
633 end if;
634
635 -- Checks 4 (array must not be multi-dimensional Fortran case)
636
637 if Convention (Typ) = Convention_Fortran
638 and then Number_Dimensions (Typ) > 1
639 then
640 return False;
641 end if;
642
643 -- Checks 3 (size of array must be known at compile time)
644
645 if not Size_Known_At_Compile_Time (Typ) then
646 return False;
647 end if;
648
649 -- Checks on components
650
651 if not Component_Check (N, First_Index (Typ)) then
652 return False;
653 end if;
654
655 -- Checks 5 (if the component type is tagged, then we may need to do
656 -- tag adjustments. Perhaps this should be refined to check for any
657 -- component associations that actually need tag adjustment, similar
658 -- to the test in Component_Not_OK_For_Backend for record aggregates
659 -- with tagged components, but not clear whether it's worthwhile ???;
660 -- in the case of the JVM, object tags are handled implicitly)
661
662 if Is_Tagged_Type (Component_Type (Typ))
663 and then Tagged_Type_Expansion
664 then
665 return False;
666 end if;
667
668 -- Checks 6 (component type must not have bit aligned components)
669
670 if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
671 return False;
672 end if;
673
674 -- Checks 11: Array aggregates with aliased components are currently
675 -- not well supported by the VM backend; disable temporarily this
676 -- backend processing until it is definitely supported.
677
678 if VM_Target /= No_VM
679 and then Has_Aliased_Components (Base_Type (Typ))
680 then
681 return False;
682 end if;
683
684 -- Backend processing is possible
685
686 Set_Size_Known_At_Compile_Time (Etype (N), True);
687 return True;
688 end Backend_Processing_Possible;
689
690 ---------------------------
691 -- Build_Array_Aggr_Code --
692 ---------------------------
693
694 -- The code that we generate from a one dimensional aggregate is
695
696 -- 1. If the sub-aggregate contains discrete choices we
697
698 -- (a) Sort the discrete choices
699
700 -- (b) Otherwise for each discrete choice that specifies a range we
701 -- emit a loop. If a range specifies a maximum of three values, or
702 -- we are dealing with an expression we emit a sequence of
703 -- assignments instead of a loop.
704
705 -- (c) Generate the remaining loops to cover the others choice if any
706
707 -- 2. If the aggregate contains positional elements we
708
709 -- (a) translate the positional elements in a series of assignments
710
711 -- (b) Generate a final loop to cover the others choice if any.
712 -- Note that this final loop has to be a while loop since the case
713
714 -- L : Integer := Integer'Last;
715 -- H : Integer := Integer'Last;
716 -- A : array (L .. H) := (1, others =>0);
717
718 -- cannot be handled by a for loop. Thus for the following
719
720 -- array (L .. H) := (.. positional elements.., others =>E);
721
722 -- we always generate something like:
723
724 -- J : Index_Type := Index_Of_Last_Positional_Element;
725 -- while J < H loop
726 -- J := Index_Base'Succ (J)
727 -- Tmp (J) := E;
728 -- end loop;
729
730 function Build_Array_Aggr_Code
731 (N : Node_Id;
732 Ctype : Entity_Id;
733 Index : Node_Id;
734 Into : Node_Id;
735 Scalar_Comp : Boolean;
736 Indexes : List_Id := No_List) return List_Id
737 is
738 Loc : constant Source_Ptr := Sloc (N);
739 Index_Base : constant Entity_Id := Base_Type (Etype (Index));
740 Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
741 Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
742
743 function Add (Val : Int; To : Node_Id) return Node_Id;
744 -- Returns an expression where Val is added to expression To, unless
745 -- To+Val is provably out of To's base type range. To must be an
746 -- already analyzed expression.
747
748 function Empty_Range (L, H : Node_Id) return Boolean;
749 -- Returns True if the range defined by L .. H is certainly empty
750
751 function Equal (L, H : Node_Id) return Boolean;
752 -- Returns True if L = H for sure
753
754 function Index_Base_Name return Node_Id;
755 -- Returns a new reference to the index type name
756
757 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
758 -- Ind must be a side-effect free expression. If the input aggregate
759 -- N to Build_Loop contains no sub-aggregates, then this function
760 -- returns the assignment statement:
761 --
762 -- Into (Indexes, Ind) := Expr;
763 --
764 -- Otherwise we call Build_Code recursively
765 --
766 -- Ada 2005 (AI-287): In case of default initialized component, Expr
767 -- is empty and we generate a call to the corresponding IP subprogram.
768
769 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
770 -- Nodes L and H must be side-effect free expressions.
771 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
772 -- This routine returns the for loop statement
773 --
774 -- for J in Index_Base'(L) .. Index_Base'(H) loop
775 -- Into (Indexes, J) := Expr;
776 -- end loop;
777 --
778 -- Otherwise we call Build_Code recursively.
779 -- As an optimization if the loop covers 3 or less scalar elements we
780 -- generate a sequence of assignments.
781
782 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
783 -- Nodes L and H must be side-effect free expressions.
784 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
785 -- This routine returns the while loop statement
786 --
787 -- J : Index_Base := L;
788 -- while J < H loop
789 -- J := Index_Base'Succ (J);
790 -- Into (Indexes, J) := Expr;
791 -- end loop;
792 --
793 -- Otherwise we call Build_Code recursively
794
795 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
796 function Local_Expr_Value (E : Node_Id) return Uint;
797 -- These two Local routines are used to replace the corresponding ones
798 -- in sem_eval because while processing the bounds of an aggregate with
799 -- discrete choices whose index type is an enumeration, we build static
800 -- expressions not recognized by Compile_Time_Known_Value as such since
801 -- they have not yet been analyzed and resolved. All the expressions in
802 -- question are things like Index_Base_Name'Val (Const) which we can
803 -- easily recognize as being constant.
804
805 ---------
806 -- Add --
807 ---------
808
809 function Add (Val : Int; To : Node_Id) return Node_Id is
810 Expr_Pos : Node_Id;
811 Expr : Node_Id;
812 To_Pos : Node_Id;
813 U_To : Uint;
814 U_Val : constant Uint := UI_From_Int (Val);
815
816 begin
817 -- Note: do not try to optimize the case of Val = 0, because
818 -- we need to build a new node with the proper Sloc value anyway.
819
820 -- First test if we can do constant folding
821
822 if Local_Compile_Time_Known_Value (To) then
823 U_To := Local_Expr_Value (To) + Val;
824
825 -- Determine if our constant is outside the range of the index.
826 -- If so return an Empty node. This empty node will be caught
827 -- by Empty_Range below.
828
829 if Compile_Time_Known_Value (Index_Base_L)
830 and then U_To < Expr_Value (Index_Base_L)
831 then
832 return Empty;
833
834 elsif Compile_Time_Known_Value (Index_Base_H)
835 and then U_To > Expr_Value (Index_Base_H)
836 then
837 return Empty;
838 end if;
839
840 Expr_Pos := Make_Integer_Literal (Loc, U_To);
841 Set_Is_Static_Expression (Expr_Pos);
842
843 if not Is_Enumeration_Type (Index_Base) then
844 Expr := Expr_Pos;
845
846 -- If we are dealing with enumeration return
847 -- Index_Base'Val (Expr_Pos)
848
849 else
850 Expr :=
851 Make_Attribute_Reference
852 (Loc,
853 Prefix => Index_Base_Name,
854 Attribute_Name => Name_Val,
855 Expressions => New_List (Expr_Pos));
856 end if;
857
858 return Expr;
859 end if;
860
861 -- If we are here no constant folding possible
862
863 if not Is_Enumeration_Type (Index_Base) then
864 Expr :=
865 Make_Op_Add (Loc,
866 Left_Opnd => Duplicate_Subexpr (To),
867 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
868
869 -- If we are dealing with enumeration return
870 -- Index_Base'Val (Index_Base'Pos (To) + Val)
871
872 else
873 To_Pos :=
874 Make_Attribute_Reference
875 (Loc,
876 Prefix => Index_Base_Name,
877 Attribute_Name => Name_Pos,
878 Expressions => New_List (Duplicate_Subexpr (To)));
879
880 Expr_Pos :=
881 Make_Op_Add (Loc,
882 Left_Opnd => To_Pos,
883 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
884
885 Expr :=
886 Make_Attribute_Reference
887 (Loc,
888 Prefix => Index_Base_Name,
889 Attribute_Name => Name_Val,
890 Expressions => New_List (Expr_Pos));
891 end if;
892
893 return Expr;
894 end Add;
895
896 -----------------
897 -- Empty_Range --
898 -----------------
899
900 function Empty_Range (L, H : Node_Id) return Boolean is
901 Is_Empty : Boolean := False;
902 Low : Node_Id;
903 High : Node_Id;
904
905 begin
906 -- First check if L or H were already detected as overflowing the
907 -- index base range type by function Add above. If this is so Add
908 -- returns the empty node.
909
910 if No (L) or else No (H) then
911 return True;
912 end if;
913
914 for J in 1 .. 3 loop
915 case J is
916
917 -- L > H range is empty
918
919 when 1 =>
920 Low := L;
921 High := H;
922
923 -- B_L > H range must be empty
924
925 when 2 =>
926 Low := Index_Base_L;
927 High := H;
928
929 -- L > B_H range must be empty
930
931 when 3 =>
932 Low := L;
933 High := Index_Base_H;
934 end case;
935
936 if Local_Compile_Time_Known_Value (Low)
937 and then Local_Compile_Time_Known_Value (High)
938 then
939 Is_Empty :=
940 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
941 end if;
942
943 exit when Is_Empty;
944 end loop;
945
946 return Is_Empty;
947 end Empty_Range;
948
949 -----------
950 -- Equal --
951 -----------
952
953 function Equal (L, H : Node_Id) return Boolean is
954 begin
955 if L = H then
956 return True;
957
958 elsif Local_Compile_Time_Known_Value (L)
959 and then Local_Compile_Time_Known_Value (H)
960 then
961 return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
962 end if;
963
964 return False;
965 end Equal;
966
967 ----------------
968 -- Gen_Assign --
969 ----------------
970
971 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
972 L : constant List_Id := New_List;
973 A : Node_Id;
974
975 New_Indexes : List_Id;
976 Indexed_Comp : Node_Id;
977 Expr_Q : Node_Id;
978 Comp_Type : Entity_Id := Empty;
979
980 function Add_Loop_Actions (Lis : List_Id) return List_Id;
981 -- Collect insert_actions generated in the construction of a
982 -- loop, and prepend them to the sequence of assignments to
983 -- complete the eventual body of the loop.
984
985 ----------------------
986 -- Add_Loop_Actions --
987 ----------------------
988
989 function Add_Loop_Actions (Lis : List_Id) return List_Id is
990 Res : List_Id;
991
992 begin
993 -- Ada 2005 (AI-287): Do nothing else in case of default
994 -- initialized component.
995
996 if No (Expr) then
997 return Lis;
998
999 elsif Nkind (Parent (Expr)) = N_Component_Association
1000 and then Present (Loop_Actions (Parent (Expr)))
1001 then
1002 Append_List (Lis, Loop_Actions (Parent (Expr)));
1003 Res := Loop_Actions (Parent (Expr));
1004 Set_Loop_Actions (Parent (Expr), No_List);
1005 return Res;
1006
1007 else
1008 return Lis;
1009 end if;
1010 end Add_Loop_Actions;
1011
1012 -- Start of processing for Gen_Assign
1013
1014 begin
1015 if No (Indexes) then
1016 New_Indexes := New_List;
1017 else
1018 New_Indexes := New_Copy_List_Tree (Indexes);
1019 end if;
1020
1021 Append_To (New_Indexes, Ind);
1022
1023 if Present (Next_Index (Index)) then
1024 return
1025 Add_Loop_Actions (
1026 Build_Array_Aggr_Code
1027 (N => Expr,
1028 Ctype => Ctype,
1029 Index => Next_Index (Index),
1030 Into => Into,
1031 Scalar_Comp => Scalar_Comp,
1032 Indexes => New_Indexes));
1033 end if;
1034
1035 -- If we get here then we are at a bottom-level (sub-)aggregate
1036
1037 Indexed_Comp :=
1038 Checks_Off
1039 (Make_Indexed_Component (Loc,
1040 Prefix => New_Copy_Tree (Into),
1041 Expressions => New_Indexes));
1042
1043 Set_Assignment_OK (Indexed_Comp);
1044
1045 -- Ada 2005 (AI-287): In case of default initialized component, Expr
1046 -- is not present (and therefore we also initialize Expr_Q to empty).
1047
1048 if No (Expr) then
1049 Expr_Q := Empty;
1050 elsif Nkind (Expr) = N_Qualified_Expression then
1051 Expr_Q := Expression (Expr);
1052 else
1053 Expr_Q := Expr;
1054 end if;
1055
1056 if Present (Etype (N))
1057 and then Etype (N) /= Any_Composite
1058 then
1059 Comp_Type := Component_Type (Etype (N));
1060 pragma Assert (Comp_Type = Ctype); -- AI-287
1061
1062 elsif Present (Next (First (New_Indexes))) then
1063
1064 -- Ada 2005 (AI-287): Do nothing in case of default initialized
1065 -- component because we have received the component type in
1066 -- the formal parameter Ctype.
1067
1068 -- ??? Some assert pragmas have been added to check if this new
1069 -- formal can be used to replace this code in all cases.
1070
1071 if Present (Expr) then
1072
1073 -- This is a multidimensional array. Recover the component
1074 -- type from the outermost aggregate, because subaggregates
1075 -- do not have an assigned type.
1076
1077 declare
1078 P : Node_Id;
1079
1080 begin
1081 P := Parent (Expr);
1082 while Present (P) loop
1083 if Nkind (P) = N_Aggregate
1084 and then Present (Etype (P))
1085 then
1086 Comp_Type := Component_Type (Etype (P));
1087 exit;
1088
1089 else
1090 P := Parent (P);
1091 end if;
1092 end loop;
1093
1094 pragma Assert (Comp_Type = Ctype); -- AI-287
1095 end;
1096 end if;
1097 end if;
1098
1099 -- Ada 2005 (AI-287): We only analyze the expression in case of non-
1100 -- default initialized components (otherwise Expr_Q is not present).
1101
1102 if Present (Expr_Q)
1103 and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
1104 then
1105 -- At this stage the Expression may not have been analyzed yet
1106 -- because the array aggregate code has not been updated to use
1107 -- the Expansion_Delayed flag and avoid analysis altogether to
1108 -- solve the same problem (see Resolve_Aggr_Expr). So let us do
1109 -- the analysis of non-array aggregates now in order to get the
1110 -- value of Expansion_Delayed flag for the inner aggregate ???
1111
1112 if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
1113 Analyze_And_Resolve (Expr_Q, Comp_Type);
1114 end if;
1115
1116 if Is_Delayed_Aggregate (Expr_Q) then
1117
1118 -- This is either a subaggregate of a multidimensional array,
1119 -- or a component of an array type whose component type is
1120 -- also an array. In the latter case, the expression may have
1121 -- component associations that provide different bounds from
1122 -- those of the component type, and sliding must occur. Instead
1123 -- of decomposing the current aggregate assignment, force the
1124 -- re-analysis of the assignment, so that a temporary will be
1125 -- generated in the usual fashion, and sliding will take place.
1126
1127 if Nkind (Parent (N)) = N_Assignment_Statement
1128 and then Is_Array_Type (Comp_Type)
1129 and then Present (Component_Associations (Expr_Q))
1130 and then Must_Slide (Comp_Type, Etype (Expr_Q))
1131 then
1132 Set_Expansion_Delayed (Expr_Q, False);
1133 Set_Analyzed (Expr_Q, False);
1134
1135 else
1136 return
1137 Add_Loop_Actions (
1138 Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
1139 end if;
1140 end if;
1141 end if;
1142
1143 -- Ada 2005 (AI-287): In case of default initialized component, call
1144 -- the initialization subprogram associated with the component type.
1145 -- If the component type is an access type, add an explicit null
1146 -- assignment, because for the back-end there is an initialization
1147 -- present for the whole aggregate, and no default initialization
1148 -- will take place.
1149
1150 -- In addition, if the component type is controlled, we must call
1151 -- its Initialize procedure explicitly, because there is no explicit
1152 -- object creation that will invoke it otherwise.
1153
1154 if No (Expr) then
1155 if Present (Base_Init_Proc (Base_Type (Ctype)))
1156 or else Has_Task (Base_Type (Ctype))
1157 then
1158 Append_List_To (L,
1159 Build_Initialization_Call (Loc,
1160 Id_Ref => Indexed_Comp,
1161 Typ => Ctype,
1162 With_Default_Init => True));
1163
1164 elsif Is_Access_Type (Ctype) then
1165 Append_To (L,
1166 Make_Assignment_Statement (Loc,
1167 Name => Indexed_Comp,
1168 Expression => Make_Null (Loc)));
1169 end if;
1170
1171 if Needs_Finalization (Ctype) then
1172 Append_To (L,
1173 Make_Init_Call (
1174 Obj_Ref => New_Copy_Tree (Indexed_Comp),
1175 Typ => Ctype));
1176 end if;
1177
1178 else
1179 A :=
1180 Make_OK_Assignment_Statement (Loc,
1181 Name => Indexed_Comp,
1182 Expression => New_Copy_Tree (Expr));
1183
1184 -- The target of the assignment may not have been initialized,
1185 -- so it is not possible to call Finalize as expected in normal
1186 -- controlled assignments. We must also avoid using the primitive
1187 -- _assign (which depends on a valid target, and may for example
1188 -- perform discriminant checks on it).
1189
1190 -- Both Finalize and usage of _assign are disabled by setting
1191 -- No_Ctrl_Actions on the assignment. The rest of the controlled
1192 -- actions are done manually with the proper finalization list
1193 -- coming from the context.
1194
1195 Set_No_Ctrl_Actions (A);
1196
1197 -- If this is an aggregate for an array of arrays, each
1198 -- sub-aggregate will be expanded as well, and even with
1199 -- No_Ctrl_Actions the assignments of inner components will
1200 -- require attachment in their assignments to temporaries. These
1201 -- temporaries must be finalized for each subaggregate, to prevent
1202 -- multiple attachments of the same temporary location to same
1203 -- finalization chain (and consequently circular lists). To ensure
1204 -- that finalization takes place for each subaggregate we wrap the
1205 -- assignment in a block.
1206
1207 if Present (Comp_Type)
1208 and then Needs_Finalization (Comp_Type)
1209 and then Is_Array_Type (Comp_Type)
1210 and then Present (Expr)
1211 then
1212 A :=
1213 Make_Block_Statement (Loc,
1214 Handled_Statement_Sequence =>
1215 Make_Handled_Sequence_Of_Statements (Loc,
1216 Statements => New_List (A)));
1217 end if;
1218
1219 Append_To (L, A);
1220
1221 -- Adjust the tag if tagged (because of possible view
1222 -- conversions), unless compiling for a VM where tags
1223 -- are implicit.
1224
1225 if Present (Comp_Type)
1226 and then Is_Tagged_Type (Comp_Type)
1227 and then Tagged_Type_Expansion
1228 then
1229 declare
1230 Full_Typ : constant Entity_Id := Underlying_Type (Comp_Type);
1231
1232 begin
1233 A :=
1234 Make_OK_Assignment_Statement (Loc,
1235 Name =>
1236 Make_Selected_Component (Loc,
1237 Prefix => New_Copy_Tree (Indexed_Comp),
1238 Selector_Name =>
1239 New_Occurrence_Of
1240 (First_Tag_Component (Full_Typ), Loc)),
1241
1242 Expression =>
1243 Unchecked_Convert_To (RTE (RE_Tag),
1244 New_Occurrence_Of
1245 (Node (First_Elmt (Access_Disp_Table (Full_Typ))),
1246 Loc)));
1247
1248 Append_To (L, A);
1249 end;
1250 end if;
1251
1252 -- Adjust and attach the component to the proper final list, which
1253 -- can be the controller of the outer record object or the final
1254 -- list associated with the scope.
1255
1256 -- If the component is itself an array of controlled types, whose
1257 -- value is given by a sub-aggregate, then the attach calls have
1258 -- been generated when individual subcomponent are assigned, and
1259 -- must not be done again to prevent malformed finalization chains
1260 -- (see comments above, concerning the creation of a block to hold
1261 -- inner finalization actions).
1262
1263 if Present (Comp_Type)
1264 and then Needs_Finalization (Comp_Type)
1265 and then not Is_Limited_Type (Comp_Type)
1266 and then not
1267 (Is_Array_Type (Comp_Type)
1268 and then Is_Controlled (Component_Type (Comp_Type))
1269 and then Nkind (Expr) = N_Aggregate)
1270 then
1271 Append_To (L,
1272 Make_Adjust_Call (
1273 Obj_Ref => New_Copy_Tree (Indexed_Comp),
1274 Typ => Comp_Type));
1275 end if;
1276 end if;
1277
1278 return Add_Loop_Actions (L);
1279 end Gen_Assign;
1280
1281 --------------
1282 -- Gen_Loop --
1283 --------------
1284
1285 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
1286 L_J : Node_Id;
1287
1288 L_L : Node_Id;
1289 -- Index_Base'(L)
1290
1291 L_H : Node_Id;
1292 -- Index_Base'(H)
1293
1294 L_Range : Node_Id;
1295 -- Index_Base'(L) .. Index_Base'(H)
1296
1297 L_Iteration_Scheme : Node_Id;
1298 -- L_J in Index_Base'(L) .. Index_Base'(H)
1299
1300 L_Body : List_Id;
1301 -- The statements to execute in the loop
1302
1303 S : constant List_Id := New_List;
1304 -- List of statements
1305
1306 Tcopy : Node_Id;
1307 -- Copy of expression tree, used for checking purposes
1308
1309 begin
1310 -- If loop bounds define an empty range return the null statement
1311
1312 if Empty_Range (L, H) then
1313 Append_To (S, Make_Null_Statement (Loc));
1314
1315 -- Ada 2005 (AI-287): Nothing else need to be done in case of
1316 -- default initialized component.
1317
1318 if No (Expr) then
1319 null;
1320
1321 else
1322 -- The expression must be type-checked even though no component
1323 -- of the aggregate will have this value. This is done only for
1324 -- actual components of the array, not for subaggregates. Do
1325 -- the check on a copy, because the expression may be shared
1326 -- among several choices, some of which might be non-null.
1327
1328 if Present (Etype (N))
1329 and then Is_Array_Type (Etype (N))
1330 and then No (Next_Index (Index))
1331 then
1332 Expander_Mode_Save_And_Set (False);
1333 Tcopy := New_Copy_Tree (Expr);
1334 Set_Parent (Tcopy, N);
1335 Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1336 Expander_Mode_Restore;
1337 end if;
1338 end if;
1339
1340 return S;
1341
1342 -- If loop bounds are the same then generate an assignment
1343
1344 elsif Equal (L, H) then
1345 return Gen_Assign (New_Copy_Tree (L), Expr);
1346
1347 -- If H - L <= 2 then generate a sequence of assignments when we are
1348 -- processing the bottom most aggregate and it contains scalar
1349 -- components.
1350
1351 elsif No (Next_Index (Index))
1352 and then Scalar_Comp
1353 and then Local_Compile_Time_Known_Value (L)
1354 and then Local_Compile_Time_Known_Value (H)
1355 and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
1356 then
1357
1358 Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1359 Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1360
1361 if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1362 Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1363 end if;
1364
1365 return S;
1366 end if;
1367
1368 -- Otherwise construct the loop, starting with the loop index L_J
1369
1370 L_J := Make_Temporary (Loc, 'J', L);
1371
1372 -- Construct "L .. H" in Index_Base. We use a qualified expression
1373 -- for the bound to convert to the index base, but we don't need
1374 -- to do that if we already have the base type at hand.
1375
1376 if Etype (L) = Index_Base then
1377 L_L := L;
1378 else
1379 L_L :=
1380 Make_Qualified_Expression (Loc,
1381 Subtype_Mark => Index_Base_Name,
1382 Expression => L);
1383 end if;
1384
1385 if Etype (H) = Index_Base then
1386 L_H := H;
1387 else
1388 L_H :=
1389 Make_Qualified_Expression (Loc,
1390 Subtype_Mark => Index_Base_Name,
1391 Expression => H);
1392 end if;
1393
1394 L_Range :=
1395 Make_Range (Loc,
1396 Low_Bound => L_L,
1397 High_Bound => L_H);
1398
1399 -- Construct "for L_J in Index_Base range L .. H"
1400
1401 L_Iteration_Scheme :=
1402 Make_Iteration_Scheme
1403 (Loc,
1404 Loop_Parameter_Specification =>
1405 Make_Loop_Parameter_Specification
1406 (Loc,
1407 Defining_Identifier => L_J,
1408 Discrete_Subtype_Definition => L_Range));
1409
1410 -- Construct the statements to execute in the loop body
1411
1412 L_Body := Gen_Assign (New_Occurrence_Of (L_J, Loc), Expr);
1413
1414 -- Construct the final loop
1415
1416 Append_To (S, Make_Implicit_Loop_Statement
1417 (Node => N,
1418 Identifier => Empty,
1419 Iteration_Scheme => L_Iteration_Scheme,
1420 Statements => L_Body));
1421
1422 -- A small optimization: if the aggregate is initialized with a box
1423 -- and the component type has no initialization procedure, remove the
1424 -- useless empty loop.
1425
1426 if Nkind (First (S)) = N_Loop_Statement
1427 and then Is_Empty_List (Statements (First (S)))
1428 then
1429 return New_List (Make_Null_Statement (Loc));
1430 else
1431 return S;
1432 end if;
1433 end Gen_Loop;
1434
1435 ---------------
1436 -- Gen_While --
1437 ---------------
1438
1439 -- The code built is
1440
1441 -- W_J : Index_Base := L;
1442 -- while W_J < H loop
1443 -- W_J := Index_Base'Succ (W);
1444 -- L_Body;
1445 -- end loop;
1446
1447 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
1448 W_J : Node_Id;
1449
1450 W_Decl : Node_Id;
1451 -- W_J : Base_Type := L;
1452
1453 W_Iteration_Scheme : Node_Id;
1454 -- while W_J < H
1455
1456 W_Index_Succ : Node_Id;
1457 -- Index_Base'Succ (J)
1458
1459 W_Increment : Node_Id;
1460 -- W_J := Index_Base'Succ (W)
1461
1462 W_Body : constant List_Id := New_List;
1463 -- The statements to execute in the loop
1464
1465 S : constant List_Id := New_List;
1466 -- list of statement
1467
1468 begin
1469 -- If loop bounds define an empty range or are equal return null
1470
1471 if Empty_Range (L, H) or else Equal (L, H) then
1472 Append_To (S, Make_Null_Statement (Loc));
1473 return S;
1474 end if;
1475
1476 -- Build the decl of W_J
1477
1478 W_J := Make_Temporary (Loc, 'J', L);
1479 W_Decl :=
1480 Make_Object_Declaration
1481 (Loc,
1482 Defining_Identifier => W_J,
1483 Object_Definition => Index_Base_Name,
1484 Expression => L);
1485
1486 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1487 -- that in this particular case L is a fresh Expr generated by
1488 -- Add which we are the only ones to use.
1489
1490 Append_To (S, W_Decl);
1491
1492 -- Construct " while W_J < H"
1493
1494 W_Iteration_Scheme :=
1495 Make_Iteration_Scheme
1496 (Loc,
1497 Condition => Make_Op_Lt
1498 (Loc,
1499 Left_Opnd => New_Occurrence_Of (W_J, Loc),
1500 Right_Opnd => New_Copy_Tree (H)));
1501
1502 -- Construct the statements to execute in the loop body
1503
1504 W_Index_Succ :=
1505 Make_Attribute_Reference
1506 (Loc,
1507 Prefix => Index_Base_Name,
1508 Attribute_Name => Name_Succ,
1509 Expressions => New_List (New_Occurrence_Of (W_J, Loc)));
1510
1511 W_Increment :=
1512 Make_OK_Assignment_Statement
1513 (Loc,
1514 Name => New_Occurrence_Of (W_J, Loc),
1515 Expression => W_Index_Succ);
1516
1517 Append_To (W_Body, W_Increment);
1518 Append_List_To (W_Body,
1519 Gen_Assign (New_Occurrence_Of (W_J, Loc), Expr));
1520
1521 -- Construct the final loop
1522
1523 Append_To (S, Make_Implicit_Loop_Statement
1524 (Node => N,
1525 Identifier => Empty,
1526 Iteration_Scheme => W_Iteration_Scheme,
1527 Statements => W_Body));
1528
1529 return S;
1530 end Gen_While;
1531
1532 ---------------------
1533 -- Index_Base_Name --
1534 ---------------------
1535
1536 function Index_Base_Name return Node_Id is
1537 begin
1538 return New_Occurrence_Of (Index_Base, Sloc (N));
1539 end Index_Base_Name;
1540
1541 ------------------------------------
1542 -- Local_Compile_Time_Known_Value --
1543 ------------------------------------
1544
1545 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1546 begin
1547 return Compile_Time_Known_Value (E)
1548 or else
1549 (Nkind (E) = N_Attribute_Reference
1550 and then Attribute_Name (E) = Name_Val
1551 and then Compile_Time_Known_Value (First (Expressions (E))));
1552 end Local_Compile_Time_Known_Value;
1553
1554 ----------------------
1555 -- Local_Expr_Value --
1556 ----------------------
1557
1558 function Local_Expr_Value (E : Node_Id) return Uint is
1559 begin
1560 if Compile_Time_Known_Value (E) then
1561 return Expr_Value (E);
1562 else
1563 return Expr_Value (First (Expressions (E)));
1564 end if;
1565 end Local_Expr_Value;
1566
1567 -- Build_Array_Aggr_Code Variables
1568
1569 Assoc : Node_Id;
1570 Choice : Node_Id;
1571 Expr : Node_Id;
1572 Typ : Entity_Id;
1573
1574 Others_Expr : Node_Id := Empty;
1575 Others_Box_Present : Boolean := False;
1576
1577 Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
1578 Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
1579 -- The aggregate bounds of this specific sub-aggregate. Note that if
1580 -- the code generated by Build_Array_Aggr_Code is executed then these
1581 -- bounds are OK. Otherwise a Constraint_Error would have been raised.
1582
1583 Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1584 Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
1585 -- After Duplicate_Subexpr these are side-effect free
1586
1587 Low : Node_Id;
1588 High : Node_Id;
1589
1590 Nb_Choices : Nat := 0;
1591 Table : Case_Table_Type (1 .. Number_Of_Choices (N));
1592 -- Used to sort all the different choice values
1593
1594 Nb_Elements : Int;
1595 -- Number of elements in the positional aggregate
1596
1597 New_Code : constant List_Id := New_List;
1598
1599 -- Start of processing for Build_Array_Aggr_Code
1600
1601 begin
1602 -- First before we start, a special case. if we have a bit packed
1603 -- array represented as a modular type, then clear the value to
1604 -- zero first, to ensure that unused bits are properly cleared.
1605
1606 Typ := Etype (N);
1607
1608 if Present (Typ)
1609 and then Is_Bit_Packed_Array (Typ)
1610 and then Is_Modular_Integer_Type (Packed_Array_Type (Typ))
1611 then
1612 Append_To (New_Code,
1613 Make_Assignment_Statement (Loc,
1614 Name => New_Copy_Tree (Into),
1615 Expression =>
1616 Unchecked_Convert_To (Typ,
1617 Make_Integer_Literal (Loc, Uint_0))));
1618 end if;
1619
1620 -- If the component type contains tasks, we need to build a Master
1621 -- entity in the current scope, because it will be needed if build-
1622 -- in-place functions are called in the expanded code.
1623
1624 if Nkind (Parent (N)) = N_Object_Declaration
1625 and then Has_Task (Typ)
1626 then
1627 Build_Master_Entity (Defining_Identifier (Parent (N)));
1628 end if;
1629
1630 -- STEP 1: Process component associations
1631
1632 -- For those associations that may generate a loop, initialize
1633 -- Loop_Actions to collect inserted actions that may be crated.
1634
1635 -- Skip this if no component associations
1636
1637 if No (Expressions (N)) then
1638
1639 -- STEP 1 (a): Sort the discrete choices
1640
1641 Assoc := First (Component_Associations (N));
1642 while Present (Assoc) loop
1643 Choice := First (Choices (Assoc));
1644 while Present (Choice) loop
1645 if Nkind (Choice) = N_Others_Choice then
1646 Set_Loop_Actions (Assoc, New_List);
1647
1648 if Box_Present (Assoc) then
1649 Others_Box_Present := True;
1650 else
1651 Others_Expr := Expression (Assoc);
1652 end if;
1653 exit;
1654 end if;
1655
1656 Get_Index_Bounds (Choice, Low, High);
1657
1658 if Low /= High then
1659 Set_Loop_Actions (Assoc, New_List);
1660 end if;
1661
1662 Nb_Choices := Nb_Choices + 1;
1663 if Box_Present (Assoc) then
1664 Table (Nb_Choices) := (Choice_Lo => Low,
1665 Choice_Hi => High,
1666 Choice_Node => Empty);
1667 else
1668 Table (Nb_Choices) := (Choice_Lo => Low,
1669 Choice_Hi => High,
1670 Choice_Node => Expression (Assoc));
1671 end if;
1672 Next (Choice);
1673 end loop;
1674
1675 Next (Assoc);
1676 end loop;
1677
1678 -- If there is more than one set of choices these must be static
1679 -- and we can therefore sort them. Remember that Nb_Choices does not
1680 -- account for an others choice.
1681
1682 if Nb_Choices > 1 then
1683 Sort_Case_Table (Table);
1684 end if;
1685
1686 -- STEP 1 (b): take care of the whole set of discrete choices
1687
1688 for J in 1 .. Nb_Choices loop
1689 Low := Table (J).Choice_Lo;
1690 High := Table (J).Choice_Hi;
1691 Expr := Table (J).Choice_Node;
1692 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
1693 end loop;
1694
1695 -- STEP 1 (c): generate the remaining loops to cover others choice
1696 -- We don't need to generate loops over empty gaps, but if there is
1697 -- a single empty range we must analyze the expression for semantics
1698
1699 if Present (Others_Expr) or else Others_Box_Present then
1700 declare
1701 First : Boolean := True;
1702
1703 begin
1704 for J in 0 .. Nb_Choices loop
1705 if J = 0 then
1706 Low := Aggr_Low;
1707 else
1708 Low := Add (1, To => Table (J).Choice_Hi);
1709 end if;
1710
1711 if J = Nb_Choices then
1712 High := Aggr_High;
1713 else
1714 High := Add (-1, To => Table (J + 1).Choice_Lo);
1715 end if;
1716
1717 -- If this is an expansion within an init proc, make
1718 -- sure that discriminant references are replaced by
1719 -- the corresponding discriminal.
1720
1721 if Inside_Init_Proc then
1722 if Is_Entity_Name (Low)
1723 and then Ekind (Entity (Low)) = E_Discriminant
1724 then
1725 Set_Entity (Low, Discriminal (Entity (Low)));
1726 end if;
1727
1728 if Is_Entity_Name (High)
1729 and then Ekind (Entity (High)) = E_Discriminant
1730 then
1731 Set_Entity (High, Discriminal (Entity (High)));
1732 end if;
1733 end if;
1734
1735 if First
1736 or else not Empty_Range (Low, High)
1737 then
1738 First := False;
1739 Append_List
1740 (Gen_Loop (Low, High, Others_Expr), To => New_Code);
1741 end if;
1742 end loop;
1743 end;
1744 end if;
1745
1746 -- STEP 2: Process positional components
1747
1748 else
1749 -- STEP 2 (a): Generate the assignments for each positional element
1750 -- Note that here we have to use Aggr_L rather than Aggr_Low because
1751 -- Aggr_L is analyzed and Add wants an analyzed expression.
1752
1753 Expr := First (Expressions (N));
1754 Nb_Elements := -1;
1755 while Present (Expr) loop
1756 Nb_Elements := Nb_Elements + 1;
1757 Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
1758 To => New_Code);
1759 Next (Expr);
1760 end loop;
1761
1762 -- STEP 2 (b): Generate final loop if an others choice is present
1763 -- Here Nb_Elements gives the offset of the last positional element.
1764
1765 if Present (Component_Associations (N)) then
1766 Assoc := Last (Component_Associations (N));
1767
1768 -- Ada 2005 (AI-287)
1769
1770 if Box_Present (Assoc) then
1771 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1772 Aggr_High,
1773 Empty),
1774 To => New_Code);
1775 else
1776 Expr := Expression (Assoc);
1777
1778 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1779 Aggr_High,
1780 Expr), -- AI-287
1781 To => New_Code);
1782 end if;
1783 end if;
1784 end if;
1785
1786 return New_Code;
1787 end Build_Array_Aggr_Code;
1788
1789 ----------------------------
1790 -- Build_Record_Aggr_Code --
1791 ----------------------------
1792
1793 function Build_Record_Aggr_Code
1794 (N : Node_Id;
1795 Typ : Entity_Id;
1796 Lhs : Node_Id) return List_Id
1797 is
1798 Loc : constant Source_Ptr := Sloc (N);
1799 L : constant List_Id := New_List;
1800 N_Typ : constant Entity_Id := Etype (N);
1801
1802 Comp : Node_Id;
1803 Instr : Node_Id;
1804 Ref : Node_Id;
1805 Target : Entity_Id;
1806 Comp_Type : Entity_Id;
1807 Selector : Entity_Id;
1808 Comp_Expr : Node_Id;
1809 Expr_Q : Node_Id;
1810
1811 -- If this is an internal aggregate, the External_Final_List is an
1812 -- expression for the controller record of the enclosing type.
1813
1814 -- If the current aggregate has several controlled components, this
1815 -- expression will appear in several calls to attach to the finali-
1816 -- zation list, and it must not be shared.
1817
1818 Ancestor_Is_Expression : Boolean := False;
1819 Ancestor_Is_Subtype_Mark : Boolean := False;
1820
1821 Init_Typ : Entity_Id := Empty;
1822
1823 Finalization_Done : Boolean := False;
1824 -- True if Generate_Finalization_Actions has already been called; calls
1825 -- after the first do nothing.
1826
1827 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
1828 -- Returns the value that the given discriminant of an ancestor type
1829 -- should receive (in the absence of a conflict with the value provided
1830 -- by an ancestor part of an extension aggregate).
1831
1832 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
1833 -- Check that each of the discriminant values defined by the ancestor
1834 -- part of an extension aggregate match the corresponding values
1835 -- provided by either an association of the aggregate or by the
1836 -- constraint imposed by a parent type (RM95-4.3.2(8)).
1837
1838 function Compatible_Int_Bounds
1839 (Agg_Bounds : Node_Id;
1840 Typ_Bounds : Node_Id) return Boolean;
1841 -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
1842 -- assumed that both bounds are integer ranges.
1843
1844 procedure Generate_Finalization_Actions;
1845 -- Deal with the various controlled type data structure initializations
1846 -- (but only if it hasn't been done already).
1847
1848 function Get_Constraint_Association (T : Entity_Id) return Node_Id;
1849 -- Returns the first discriminant association in the constraint
1850 -- associated with T, if any, otherwise returns Empty.
1851
1852 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
1853 -- If Typ is derived, and constrains discriminants of the parent type,
1854 -- these discriminants are not components of the aggregate, and must be
1855 -- initialized. The assignments are appended to List.
1856
1857 function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id;
1858 -- If the ancestor part is an unconstrained type and further ancestors
1859 -- do not provide discriminants for it, check aggregate components for
1860 -- values of the discriminants.
1861
1862 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
1863 -- Check whether Bounds is a range node and its lower and higher bounds
1864 -- are integers literals.
1865
1866 ---------------------------------
1867 -- Ancestor_Discriminant_Value --
1868 ---------------------------------
1869
1870 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
1871 Assoc : Node_Id;
1872 Assoc_Elmt : Elmt_Id;
1873 Aggr_Comp : Entity_Id;
1874 Corresp_Disc : Entity_Id;
1875 Current_Typ : Entity_Id := Base_Type (Typ);
1876 Parent_Typ : Entity_Id;
1877 Parent_Disc : Entity_Id;
1878 Save_Assoc : Node_Id := Empty;
1879
1880 begin
1881 -- First check any discriminant associations to see if any of them
1882 -- provide a value for the discriminant.
1883
1884 if Present (Discriminant_Specifications (Parent (Current_Typ))) then
1885 Assoc := First (Component_Associations (N));
1886 while Present (Assoc) loop
1887 Aggr_Comp := Entity (First (Choices (Assoc)));
1888
1889 if Ekind (Aggr_Comp) = E_Discriminant then
1890 Save_Assoc := Expression (Assoc);
1891
1892 Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
1893 while Present (Corresp_Disc) loop
1894
1895 -- If found a corresponding discriminant then return the
1896 -- value given in the aggregate. (Note: this is not
1897 -- correct in the presence of side effects. ???)
1898
1899 if Disc = Corresp_Disc then
1900 return Duplicate_Subexpr (Expression (Assoc));
1901 end if;
1902
1903 Corresp_Disc :=
1904 Corresponding_Discriminant (Corresp_Disc);
1905 end loop;
1906 end if;
1907
1908 Next (Assoc);
1909 end loop;
1910 end if;
1911
1912 -- No match found in aggregate, so chain up parent types to find
1913 -- a constraint that defines the value of the discriminant.
1914
1915 Parent_Typ := Etype (Current_Typ);
1916 while Current_Typ /= Parent_Typ loop
1917 if Has_Discriminants (Parent_Typ)
1918 and then not Has_Unknown_Discriminants (Parent_Typ)
1919 then
1920 Parent_Disc := First_Discriminant (Parent_Typ);
1921
1922 -- We either get the association from the subtype indication
1923 -- of the type definition itself, or from the discriminant
1924 -- constraint associated with the type entity (which is
1925 -- preferable, but it's not always present ???)
1926
1927 if Is_Empty_Elmt_List (
1928 Discriminant_Constraint (Current_Typ))
1929 then
1930 Assoc := Get_Constraint_Association (Current_Typ);
1931 Assoc_Elmt := No_Elmt;
1932 else
1933 Assoc_Elmt :=
1934 First_Elmt (Discriminant_Constraint (Current_Typ));
1935 Assoc := Node (Assoc_Elmt);
1936 end if;
1937
1938 -- Traverse the discriminants of the parent type looking
1939 -- for one that corresponds.
1940
1941 while Present (Parent_Disc) and then Present (Assoc) loop
1942 Corresp_Disc := Parent_Disc;
1943 while Present (Corresp_Disc)
1944 and then Disc /= Corresp_Disc
1945 loop
1946 Corresp_Disc :=
1947 Corresponding_Discriminant (Corresp_Disc);
1948 end loop;
1949
1950 if Disc = Corresp_Disc then
1951 if Nkind (Assoc) = N_Discriminant_Association then
1952 Assoc := Expression (Assoc);
1953 end if;
1954
1955 -- If the located association directly denotes
1956 -- a discriminant, then use the value of a saved
1957 -- association of the aggregate. This is an approach
1958 -- used to handle certain cases involving multiple
1959 -- discriminants mapped to a single discriminant of
1960 -- a descendant. It's not clear how to locate the
1961 -- appropriate discriminant value for such cases. ???
1962
1963 if Is_Entity_Name (Assoc)
1964 and then Ekind (Entity (Assoc)) = E_Discriminant
1965 then
1966 Assoc := Save_Assoc;
1967 end if;
1968
1969 return Duplicate_Subexpr (Assoc);
1970 end if;
1971
1972 Next_Discriminant (Parent_Disc);
1973
1974 if No (Assoc_Elmt) then
1975 Next (Assoc);
1976 else
1977 Next_Elmt (Assoc_Elmt);
1978 if Present (Assoc_Elmt) then
1979 Assoc := Node (Assoc_Elmt);
1980 else
1981 Assoc := Empty;
1982 end if;
1983 end if;
1984 end loop;
1985 end if;
1986
1987 Current_Typ := Parent_Typ;
1988 Parent_Typ := Etype (Current_Typ);
1989 end loop;
1990
1991 -- In some cases there's no ancestor value to locate (such as
1992 -- when an ancestor part given by an expression defines the
1993 -- discriminant value).
1994
1995 return Empty;
1996 end Ancestor_Discriminant_Value;
1997
1998 ----------------------------------
1999 -- Check_Ancestor_Discriminants --
2000 ----------------------------------
2001
2002 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
2003 Discr : Entity_Id;
2004 Disc_Value : Node_Id;
2005 Cond : Node_Id;
2006
2007 begin
2008 Discr := First_Discriminant (Base_Type (Anc_Typ));
2009 while Present (Discr) loop
2010 Disc_Value := Ancestor_Discriminant_Value (Discr);
2011
2012 if Present (Disc_Value) then
2013 Cond := Make_Op_Ne (Loc,
2014 Left_Opnd =>
2015 Make_Selected_Component (Loc,
2016 Prefix => New_Copy_Tree (Target),
2017 Selector_Name => New_Occurrence_Of (Discr, Loc)),
2018 Right_Opnd => Disc_Value);
2019
2020 Append_To (L,
2021 Make_Raise_Constraint_Error (Loc,
2022 Condition => Cond,
2023 Reason => CE_Discriminant_Check_Failed));
2024 end if;
2025
2026 Next_Discriminant (Discr);
2027 end loop;
2028 end Check_Ancestor_Discriminants;
2029
2030 ---------------------------
2031 -- Compatible_Int_Bounds --
2032 ---------------------------
2033
2034 function Compatible_Int_Bounds
2035 (Agg_Bounds : Node_Id;
2036 Typ_Bounds : Node_Id) return Boolean
2037 is
2038 Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
2039 Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
2040 Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
2041 Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
2042 begin
2043 return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
2044 end Compatible_Int_Bounds;
2045
2046 --------------------------------
2047 -- Get_Constraint_Association --
2048 --------------------------------
2049
2050 function Get_Constraint_Association (T : Entity_Id) return Node_Id is
2051 Indic : Node_Id;
2052 Typ : Entity_Id;
2053
2054 begin
2055 Typ := T;
2056
2057 -- Handle private types in instances
2058
2059 if In_Instance
2060 and then Is_Private_Type (Typ)
2061 and then Present (Full_View (Typ))
2062 then
2063 Typ := Full_View (Typ);
2064 end if;
2065
2066 Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
2067
2068 -- ??? Also need to cover case of a type mark denoting a subtype
2069 -- with constraint.
2070
2071 if Nkind (Indic) = N_Subtype_Indication
2072 and then Present (Constraint (Indic))
2073 then
2074 return First (Constraints (Constraint (Indic)));
2075 end if;
2076
2077 return Empty;
2078 end Get_Constraint_Association;
2079
2080 -------------------------------------
2081 -- Get_Explicit_Discriminant_Value --
2082 -------------------------------------
2083
2084 function Get_Explicit_Discriminant_Value
2085 (D : Entity_Id) return Node_Id
2086 is
2087 Assoc : Node_Id;
2088 Choice : Node_Id;
2089 Val : Node_Id;
2090
2091 begin
2092 -- The aggregate has been normalized and all associations have a
2093 -- single choice.
2094
2095 Assoc := First (Component_Associations (N));
2096 while Present (Assoc) loop
2097 Choice := First (Choices (Assoc));
2098
2099 if Chars (Choice) = Chars (D) then
2100 Val := Expression (Assoc);
2101 Remove (Assoc);
2102 return Val;
2103 end if;
2104
2105 Next (Assoc);
2106 end loop;
2107
2108 return Empty;
2109 end Get_Explicit_Discriminant_Value;
2110
2111 -------------------------------
2112 -- Init_Hidden_Discriminants --
2113 -------------------------------
2114
2115 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
2116 Btype : Entity_Id;
2117 Parent_Type : Entity_Id;
2118 Disc : Entity_Id;
2119 Discr_Val : Elmt_Id;
2120
2121 begin
2122 Btype := Base_Type (Typ);
2123 while Is_Derived_Type (Btype)
2124 and then Present (Stored_Constraint (Btype))
2125 loop
2126 Parent_Type := Etype (Btype);
2127
2128 Disc := First_Discriminant (Parent_Type);
2129 Discr_Val := First_Elmt (Stored_Constraint (Base_Type (Typ)));
2130 while Present (Discr_Val) loop
2131
2132 -- Only those discriminants of the parent that are not
2133 -- renamed by discriminants of the derived type need to
2134 -- be added explicitly.
2135
2136 if not Is_Entity_Name (Node (Discr_Val))
2137 or else Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
2138 then
2139 Comp_Expr :=
2140 Make_Selected_Component (Loc,
2141 Prefix => New_Copy_Tree (Target),
2142 Selector_Name => New_Occurrence_Of (Disc, Loc));
2143
2144 Instr :=
2145 Make_OK_Assignment_Statement (Loc,
2146 Name => Comp_Expr,
2147 Expression => New_Copy_Tree (Node (Discr_Val)));
2148
2149 Set_No_Ctrl_Actions (Instr);
2150 Append_To (List, Instr);
2151 end if;
2152
2153 Next_Discriminant (Disc);
2154 Next_Elmt (Discr_Val);
2155 end loop;
2156
2157 Btype := Base_Type (Parent_Type);
2158 end loop;
2159 end Init_Hidden_Discriminants;
2160
2161 -------------------------
2162 -- Is_Int_Range_Bounds --
2163 -------------------------
2164
2165 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2166 begin
2167 return Nkind (Bounds) = N_Range
2168 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
2169 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2170 end Is_Int_Range_Bounds;
2171
2172 -----------------------------------
2173 -- Generate_Finalization_Actions --
2174 -----------------------------------
2175
2176 procedure Generate_Finalization_Actions is
2177 begin
2178 -- Do the work only the first time this is called
2179
2180 if Finalization_Done then
2181 return;
2182 end if;
2183
2184 Finalization_Done := True;
2185
2186 -- Determine the external finalization list. It is either the
2187 -- finalization list of the outer-scope or the one coming from
2188 -- an outer aggregate. When the target is not a temporary, the
2189 -- proper scope is the scope of the target rather than the
2190 -- potentially transient current scope.
2191
2192 if Is_Controlled (Typ)
2193 and then Ancestor_Is_Subtype_Mark
2194 then
2195 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2196 Set_Assignment_OK (Ref);
2197
2198 Append_To (L,
2199 Make_Procedure_Call_Statement (Loc,
2200 Name =>
2201 New_Occurrence_Of
2202 (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2203 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2204 end if;
2205 end Generate_Finalization_Actions;
2206
2207 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
2208 -- If default expression of a component mentions a discriminant of the
2209 -- type, it must be rewritten as the discriminant of the target object.
2210
2211 function Replace_Type (Expr : Node_Id) return Traverse_Result;
2212 -- If the aggregate contains a self-reference, traverse each expression
2213 -- to replace a possible self-reference with a reference to the proper
2214 -- component of the target of the assignment.
2215
2216 --------------------------
2217 -- Rewrite_Discriminant --
2218 --------------------------
2219
2220 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2221 begin
2222 if Is_Entity_Name (Expr)
2223 and then Present (Entity (Expr))
2224 and then Ekind (Entity (Expr)) = E_In_Parameter
2225 and then Present (Discriminal_Link (Entity (Expr)))
2226 and then Scope (Discriminal_Link (Entity (Expr)))
2227 = Base_Type (Etype (N))
2228 then
2229 Rewrite (Expr,
2230 Make_Selected_Component (Loc,
2231 Prefix => New_Copy_Tree (Lhs),
2232 Selector_Name => Make_Identifier (Loc, Chars (Expr))));
2233 end if;
2234 return OK;
2235 end Rewrite_Discriminant;
2236
2237 ------------------
2238 -- Replace_Type --
2239 ------------------
2240
2241 function Replace_Type (Expr : Node_Id) return Traverse_Result is
2242 begin
2243 -- Note regarding the Root_Type test below: Aggregate components for
2244 -- self-referential types include attribute references to the current
2245 -- instance, of the form: Typ'access, etc.. These references are
2246 -- rewritten as references to the target of the aggregate: the
2247 -- left-hand side of an assignment, the entity in a declaration,
2248 -- or a temporary. Without this test, we would improperly extended
2249 -- this rewriting to attribute references whose prefix was not the
2250 -- type of the aggregate.
2251
2252 if Nkind (Expr) = N_Attribute_Reference
2253 and then Is_Entity_Name (Prefix (Expr))
2254 and then Is_Type (Entity (Prefix (Expr)))
2255 and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
2256 then
2257 if Is_Entity_Name (Lhs) then
2258 Rewrite (Prefix (Expr),
2259 New_Occurrence_Of (Entity (Lhs), Loc));
2260
2261 elsif Nkind (Lhs) = N_Selected_Component then
2262 Rewrite (Expr,
2263 Make_Attribute_Reference (Loc,
2264 Attribute_Name => Name_Unrestricted_Access,
2265 Prefix => New_Copy_Tree (Lhs)));
2266 Set_Analyzed (Parent (Expr), False);
2267
2268 else
2269 Rewrite (Expr,
2270 Make_Attribute_Reference (Loc,
2271 Attribute_Name => Name_Unrestricted_Access,
2272 Prefix => New_Copy_Tree (Lhs)));
2273 Set_Analyzed (Parent (Expr), False);
2274 end if;
2275 end if;
2276
2277 return OK;
2278 end Replace_Type;
2279
2280 procedure Replace_Self_Reference is
2281 new Traverse_Proc (Replace_Type);
2282
2283 procedure Replace_Discriminants is
2284 new Traverse_Proc (Rewrite_Discriminant);
2285
2286 -- Start of processing for Build_Record_Aggr_Code
2287
2288 begin
2289 if Has_Self_Reference (N) then
2290 Replace_Self_Reference (N);
2291 end if;
2292
2293 -- If the target of the aggregate is class-wide, we must convert it
2294 -- to the actual type of the aggregate, so that the proper components
2295 -- are visible. We know already that the types are compatible.
2296
2297 if Present (Etype (Lhs))
2298 and then Is_Class_Wide_Type (Etype (Lhs))
2299 then
2300 Target := Unchecked_Convert_To (Typ, Lhs);
2301 else
2302 Target := Lhs;
2303 end if;
2304
2305 -- Deal with the ancestor part of extension aggregates or with the
2306 -- discriminants of the root type.
2307
2308 if Nkind (N) = N_Extension_Aggregate then
2309 declare
2310 Ancestor : constant Node_Id := Ancestor_Part (N);
2311 Assign : List_Id;
2312
2313 begin
2314 -- If the ancestor part is a subtype mark "T", we generate
2315
2316 -- init-proc (T (tmp)); if T is constrained and
2317 -- init-proc (S (tmp)); where S applies an appropriate
2318 -- constraint if T is unconstrained
2319
2320 if Is_Entity_Name (Ancestor)
2321 and then Is_Type (Entity (Ancestor))
2322 then
2323 Ancestor_Is_Subtype_Mark := True;
2324
2325 if Is_Constrained (Entity (Ancestor)) then
2326 Init_Typ := Entity (Ancestor);
2327
2328 -- For an ancestor part given by an unconstrained type mark,
2329 -- create a subtype constrained by appropriate corresponding
2330 -- discriminant values coming from either associations of the
2331 -- aggregate or a constraint on a parent type. The subtype will
2332 -- be used to generate the correct default value for the
2333 -- ancestor part.
2334
2335 elsif Has_Discriminants (Entity (Ancestor)) then
2336 declare
2337 Anc_Typ : constant Entity_Id := Entity (Ancestor);
2338 Anc_Constr : constant List_Id := New_List;
2339 Discrim : Entity_Id;
2340 Disc_Value : Node_Id;
2341 New_Indic : Node_Id;
2342 Subt_Decl : Node_Id;
2343
2344 begin
2345 Discrim := First_Discriminant (Anc_Typ);
2346 while Present (Discrim) loop
2347 Disc_Value := Ancestor_Discriminant_Value (Discrim);
2348
2349 -- If no usable discriminant in ancestors, check
2350 -- whether aggregate has an explicit value for it.
2351
2352 if No (Disc_Value) then
2353 Disc_Value :=
2354 Get_Explicit_Discriminant_Value (Discrim);
2355 end if;
2356
2357 Append_To (Anc_Constr, Disc_Value);
2358 Next_Discriminant (Discrim);
2359 end loop;
2360
2361 New_Indic :=
2362 Make_Subtype_Indication (Loc,
2363 Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2364 Constraint =>
2365 Make_Index_Or_Discriminant_Constraint (Loc,
2366 Constraints => Anc_Constr));
2367
2368 Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2369
2370 Subt_Decl :=
2371 Make_Subtype_Declaration (Loc,
2372 Defining_Identifier => Init_Typ,
2373 Subtype_Indication => New_Indic);
2374
2375 -- Itypes must be analyzed with checks off Declaration
2376 -- must have a parent for proper handling of subsidiary
2377 -- actions.
2378
2379 Set_Parent (Subt_Decl, N);
2380 Analyze (Subt_Decl, Suppress => All_Checks);
2381 end;
2382 end if;
2383
2384 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2385 Set_Assignment_OK (Ref);
2386
2387 if not Is_Interface (Init_Typ) then
2388 Append_List_To (L,
2389 Build_Initialization_Call (Loc,
2390 Id_Ref => Ref,
2391 Typ => Init_Typ,
2392 In_Init_Proc => Within_Init_Proc,
2393 With_Default_Init => Has_Default_Init_Comps (N)
2394 or else
2395 Has_Task (Base_Type (Init_Typ))));
2396
2397 if Is_Constrained (Entity (Ancestor))
2398 and then Has_Discriminants (Entity (Ancestor))
2399 then
2400 Check_Ancestor_Discriminants (Entity (Ancestor));
2401 end if;
2402 end if;
2403
2404 -- Handle calls to C++ constructors
2405
2406 elsif Is_CPP_Constructor_Call (Ancestor) then
2407 Init_Typ := Etype (Ancestor);
2408 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2409 Set_Assignment_OK (Ref);
2410
2411 Append_List_To (L,
2412 Build_Initialization_Call (Loc,
2413 Id_Ref => Ref,
2414 Typ => Init_Typ,
2415 In_Init_Proc => Within_Init_Proc,
2416 With_Default_Init => Has_Default_Init_Comps (N),
2417 Constructor_Ref => Ancestor));
2418
2419 -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
2420 -- limited type, a recursive call expands the ancestor. Note that
2421 -- in the limited case, the ancestor part must be either a
2422 -- function call (possibly qualified, or wrapped in an unchecked
2423 -- conversion) or aggregate (definitely qualified).
2424 -- The ancestor part can also be a function call (that may be
2425 -- transformed into an explicit dereference) or a qualification
2426 -- of one such.
2427
2428 elsif Is_Limited_Type (Etype (Ancestor))
2429 and then Nkind_In (Unqualify (Ancestor), N_Aggregate,
2430 N_Extension_Aggregate)
2431 then
2432 Ancestor_Is_Expression := True;
2433
2434 -- Set up finalization data for enclosing record, because
2435 -- controlled subcomponents of the ancestor part will be
2436 -- attached to it.
2437
2438 Generate_Finalization_Actions;
2439
2440 Append_List_To (L,
2441 Build_Record_Aggr_Code
2442 (N => Unqualify (Ancestor),
2443 Typ => Etype (Unqualify (Ancestor)),
2444 Lhs => Target));
2445
2446 -- If the ancestor part is an expression "E", we generate
2447
2448 -- T (tmp) := E;
2449
2450 -- In Ada 2005, this includes the case of a (possibly qualified)
2451 -- limited function call. The assignment will turn into a
2452 -- build-in-place function call (for further details, see
2453 -- Make_Build_In_Place_Call_In_Assignment).
2454
2455 else
2456 Ancestor_Is_Expression := True;
2457 Init_Typ := Etype (Ancestor);
2458
2459 -- If the ancestor part is an aggregate, force its full
2460 -- expansion, which was delayed.
2461
2462 if Nkind_In (Unqualify (Ancestor), N_Aggregate,
2463 N_Extension_Aggregate)
2464 then
2465 Set_Analyzed (Ancestor, False);
2466 Set_Analyzed (Expression (Ancestor), False);
2467 end if;
2468
2469 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2470 Set_Assignment_OK (Ref);
2471
2472 -- Make the assignment without usual controlled actions, since
2473 -- we only want to Adjust afterwards, but not to Finalize
2474 -- beforehand. Add manual Adjust when necessary.
2475
2476 Assign := New_List (
2477 Make_OK_Assignment_Statement (Loc,
2478 Name => Ref,
2479 Expression => Ancestor));
2480 Set_No_Ctrl_Actions (First (Assign));
2481
2482 -- Assign the tag now to make sure that the dispatching call in
2483 -- the subsequent deep_adjust works properly (unless VM_Target,
2484 -- where tags are implicit).
2485
2486 if Tagged_Type_Expansion then
2487 Instr :=
2488 Make_OK_Assignment_Statement (Loc,
2489 Name =>
2490 Make_Selected_Component (Loc,
2491 Prefix => New_Copy_Tree (Target),
2492 Selector_Name =>
2493 New_Occurrence_Of
2494 (First_Tag_Component (Base_Type (Typ)), Loc)),
2495
2496 Expression =>
2497 Unchecked_Convert_To (RTE (RE_Tag),
2498 New_Occurrence_Of
2499 (Node (First_Elmt
2500 (Access_Disp_Table (Base_Type (Typ)))),
2501 Loc)));
2502
2503 Set_Assignment_OK (Name (Instr));
2504 Append_To (Assign, Instr);
2505
2506 -- Ada 2005 (AI-251): If tagged type has progenitors we must
2507 -- also initialize tags of the secondary dispatch tables.
2508
2509 if Has_Interfaces (Base_Type (Typ)) then
2510 Init_Secondary_Tags
2511 (Typ => Base_Type (Typ),
2512 Target => Target,
2513 Stmts_List => Assign);
2514 end if;
2515 end if;
2516
2517 -- Call Adjust manually
2518
2519 if Needs_Finalization (Etype (Ancestor))
2520 and then not Is_Limited_Type (Etype (Ancestor))
2521 then
2522 Append_To (Assign,
2523 Make_Adjust_Call (
2524 Obj_Ref => New_Copy_Tree (Ref),
2525 Typ => Etype (Ancestor)));
2526 end if;
2527
2528 Append_To (L,
2529 Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
2530
2531 if Has_Discriminants (Init_Typ) then
2532 Check_Ancestor_Discriminants (Init_Typ);
2533 end if;
2534 end if;
2535 end;
2536
2537 -- Generate assignments of hidden discriminants. If the base type is
2538 -- an unchecked union, the discriminants are unknown to the back-end
2539 -- and absent from a value of the type, so assignments for them are
2540 -- not emitted.
2541
2542 if Has_Discriminants (Typ)
2543 and then not Is_Unchecked_Union (Base_Type (Typ))
2544 then
2545 Init_Hidden_Discriminants (Typ, L);
2546 end if;
2547
2548 -- Normal case (not an extension aggregate)
2549
2550 else
2551 -- Generate the discriminant expressions, component by component.
2552 -- If the base type is an unchecked union, the discriminants are
2553 -- unknown to the back-end and absent from a value of the type, so
2554 -- assignments for them are not emitted.
2555
2556 if Has_Discriminants (Typ)
2557 and then not Is_Unchecked_Union (Base_Type (Typ))
2558 then
2559 Init_Hidden_Discriminants (Typ, L);
2560
2561 -- Generate discriminant init values for the visible discriminants
2562
2563 declare
2564 Discriminant : Entity_Id;
2565 Discriminant_Value : Node_Id;
2566
2567 begin
2568 Discriminant := First_Stored_Discriminant (Typ);
2569 while Present (Discriminant) loop
2570 Comp_Expr :=
2571 Make_Selected_Component (Loc,
2572 Prefix => New_Copy_Tree (Target),
2573 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2574
2575 Discriminant_Value :=
2576 Get_Discriminant_Value (
2577 Discriminant,
2578 N_Typ,
2579 Discriminant_Constraint (N_Typ));
2580
2581 Instr :=
2582 Make_OK_Assignment_Statement (Loc,
2583 Name => Comp_Expr,
2584 Expression => New_Copy_Tree (Discriminant_Value));
2585
2586 Set_No_Ctrl_Actions (Instr);
2587 Append_To (L, Instr);
2588
2589 Next_Stored_Discriminant (Discriminant);
2590 end loop;
2591 end;
2592 end if;
2593 end if;
2594
2595 -- For CPP types we generate an implicit call to the C++ default
2596 -- constructor to ensure the proper initialization of the _Tag
2597 -- component.
2598
2599 if Is_CPP_Class (Root_Type (Typ))
2600 and then CPP_Num_Prims (Typ) > 0
2601 then
2602 Invoke_Constructor : declare
2603 CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ);
2604
2605 procedure Invoke_IC_Proc (T : Entity_Id);
2606 -- Recursive routine used to climb to parents. Required because
2607 -- parents must be initialized before descendants to ensure
2608 -- propagation of inherited C++ slots.
2609
2610 --------------------
2611 -- Invoke_IC_Proc --
2612 --------------------
2613
2614 procedure Invoke_IC_Proc (T : Entity_Id) is
2615 begin
2616 -- Avoid generating extra calls. Initialization required
2617 -- only for types defined from the level of derivation of
2618 -- type of the constructor and the type of the aggregate.
2619
2620 if T = CPP_Parent then
2621 return;
2622 end if;
2623
2624 Invoke_IC_Proc (Etype (T));
2625
2626 -- Generate call to the IC routine
2627
2628 if Present (CPP_Init_Proc (T)) then
2629 Append_To (L,
2630 Make_Procedure_Call_Statement (Loc,
2631 New_Occurrence_Of (CPP_Init_Proc (T), Loc)));
2632 end if;
2633 end Invoke_IC_Proc;
2634
2635 -- Start of processing for Invoke_Constructor
2636
2637 begin
2638 -- Implicit invocation of the C++ constructor
2639
2640 if Nkind (N) = N_Aggregate then
2641 Append_To (L,
2642 Make_Procedure_Call_Statement (Loc,
2643 Name =>
2644 New_Occurrence_Of
2645 (Base_Init_Proc (CPP_Parent), Loc),
2646 Parameter_Associations => New_List (
2647 Unchecked_Convert_To (CPP_Parent,
2648 New_Copy_Tree (Lhs)))));
2649 end if;
2650
2651 Invoke_IC_Proc (Typ);
2652 end Invoke_Constructor;
2653 end if;
2654
2655 -- Generate the assignments, component by component
2656
2657 -- tmp.comp1 := Expr1_From_Aggr;
2658 -- tmp.comp2 := Expr2_From_Aggr;
2659 -- ....
2660
2661 Comp := First (Component_Associations (N));
2662 while Present (Comp) loop
2663 Selector := Entity (First (Choices (Comp)));
2664
2665 -- C++ constructors
2666
2667 if Is_CPP_Constructor_Call (Expression (Comp)) then
2668 Append_List_To (L,
2669 Build_Initialization_Call (Loc,
2670 Id_Ref => Make_Selected_Component (Loc,
2671 Prefix => New_Copy_Tree (Target),
2672 Selector_Name =>
2673 New_Occurrence_Of (Selector, Loc)),
2674 Typ => Etype (Selector),
2675 Enclos_Type => Typ,
2676 With_Default_Init => True,
2677 Constructor_Ref => Expression (Comp)));
2678
2679 -- Ada 2005 (AI-287): For each default-initialized component generate
2680 -- a call to the corresponding IP subprogram if available.
2681
2682 elsif Box_Present (Comp)
2683 and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
2684 then
2685 if Ekind (Selector) /= E_Discriminant then
2686 Generate_Finalization_Actions;
2687 end if;
2688
2689 -- Ada 2005 (AI-287): If the component type has tasks then
2690 -- generate the activation chain and master entities (except
2691 -- in case of an allocator because in that case these entities
2692 -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
2693
2694 declare
2695 Ctype : constant Entity_Id := Etype (Selector);
2696 Inside_Allocator : Boolean := False;
2697 P : Node_Id := Parent (N);
2698
2699 begin
2700 if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
2701 while Present (P) loop
2702 if Nkind (P) = N_Allocator then
2703 Inside_Allocator := True;
2704 exit;
2705 end if;
2706
2707 P := Parent (P);
2708 end loop;
2709
2710 if not Inside_Init_Proc and not Inside_Allocator then
2711 Build_Activation_Chain_Entity (N);
2712 end if;
2713 end if;
2714 end;
2715
2716 Append_List_To (L,
2717 Build_Initialization_Call (Loc,
2718 Id_Ref => Make_Selected_Component (Loc,
2719 Prefix => New_Copy_Tree (Target),
2720 Selector_Name =>
2721 New_Occurrence_Of (Selector, Loc)),
2722 Typ => Etype (Selector),
2723 Enclos_Type => Typ,
2724 With_Default_Init => True));
2725
2726 -- Prepare for component assignment
2727
2728 elsif Ekind (Selector) /= E_Discriminant
2729 or else Nkind (N) = N_Extension_Aggregate
2730 then
2731 -- All the discriminants have now been assigned
2732
2733 -- This is now a good moment to initialize and attach all the
2734 -- controllers. Their position may depend on the discriminants.
2735
2736 if Ekind (Selector) /= E_Discriminant then
2737 Generate_Finalization_Actions;
2738 end if;
2739
2740 Comp_Type := Underlying_Type (Etype (Selector));
2741 Comp_Expr :=
2742 Make_Selected_Component (Loc,
2743 Prefix => New_Copy_Tree (Target),
2744 Selector_Name => New_Occurrence_Of (Selector, Loc));
2745
2746 if Nkind (Expression (Comp)) = N_Qualified_Expression then
2747 Expr_Q := Expression (Expression (Comp));
2748 else
2749 Expr_Q := Expression (Comp);
2750 end if;
2751
2752 -- Now either create the assignment or generate the code for the
2753 -- inner aggregate top-down.
2754
2755 if Is_Delayed_Aggregate (Expr_Q) then
2756
2757 -- We have the following case of aggregate nesting inside
2758 -- an object declaration:
2759
2760 -- type Arr_Typ is array (Integer range <>) of ...;
2761
2762 -- type Rec_Typ (...) is record
2763 -- Obj_Arr_Typ : Arr_Typ (A .. B);
2764 -- end record;
2765
2766 -- Obj_Rec_Typ : Rec_Typ := (...,
2767 -- Obj_Arr_Typ => (X => (...), Y => (...)));
2768
2769 -- The length of the ranges of the aggregate and Obj_Add_Typ
2770 -- are equal (B - A = Y - X), but they do not coincide (X /=
2771 -- A and B /= Y). This case requires array sliding which is
2772 -- performed in the following manner:
2773
2774 -- subtype Arr_Sub is Arr_Typ (X .. Y);
2775 -- Temp : Arr_Sub;
2776 -- Temp (X) := (...);
2777 -- ...
2778 -- Temp (Y) := (...);
2779 -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
2780
2781 if Ekind (Comp_Type) = E_Array_Subtype
2782 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
2783 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
2784 and then not
2785 Compatible_Int_Bounds
2786 (Agg_Bounds => Aggregate_Bounds (Expr_Q),
2787 Typ_Bounds => First_Index (Comp_Type))
2788 then
2789 -- Create the array subtype with bounds equal to those of
2790 -- the corresponding aggregate.
2791
2792 declare
2793 SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
2794
2795 SubD : constant Node_Id :=
2796 Make_Subtype_Declaration (Loc,
2797 Defining_Identifier => SubE,
2798 Subtype_Indication =>
2799 Make_Subtype_Indication (Loc,
2800 Subtype_Mark =>
2801 New_Occurrence_Of (Etype (Comp_Type), Loc),
2802 Constraint =>
2803 Make_Index_Or_Discriminant_Constraint
2804 (Loc,
2805 Constraints => New_List (
2806 New_Copy_Tree
2807 (Aggregate_Bounds (Expr_Q))))));
2808
2809 -- Create a temporary array of the above subtype which
2810 -- will be used to capture the aggregate assignments.
2811
2812 TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
2813
2814 TmpD : constant Node_Id :=
2815 Make_Object_Declaration (Loc,
2816 Defining_Identifier => TmpE,
2817 Object_Definition => New_Occurrence_Of (SubE, Loc));
2818
2819 begin
2820 Set_No_Initialization (TmpD);
2821 Append_To (L, SubD);
2822 Append_To (L, TmpD);
2823
2824 -- Expand aggregate into assignments to the temp array
2825
2826 Append_List_To (L,
2827 Late_Expansion (Expr_Q, Comp_Type,
2828 New_Occurrence_Of (TmpE, Loc)));
2829
2830 -- Slide
2831
2832 Append_To (L,
2833 Make_Assignment_Statement (Loc,
2834 Name => New_Copy_Tree (Comp_Expr),
2835 Expression => New_Occurrence_Of (TmpE, Loc)));
2836 end;
2837
2838 -- Normal case (sliding not required)
2839
2840 else
2841 Append_List_To (L,
2842 Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
2843 end if;
2844
2845 -- Expr_Q is not delayed aggregate
2846
2847 else
2848 if Has_Discriminants (Typ) then
2849 Replace_Discriminants (Expr_Q);
2850 end if;
2851
2852 Instr :=
2853 Make_OK_Assignment_Statement (Loc,
2854 Name => Comp_Expr,
2855 Expression => Expr_Q);
2856
2857 Set_No_Ctrl_Actions (Instr);
2858 Append_To (L, Instr);
2859
2860 -- Adjust the tag if tagged (because of possible view
2861 -- conversions), unless compiling for a VM where tags are
2862 -- implicit.
2863
2864 -- tmp.comp._tag := comp_typ'tag;
2865
2866 if Is_Tagged_Type (Comp_Type)
2867 and then Tagged_Type_Expansion
2868 then
2869 Instr :=
2870 Make_OK_Assignment_Statement (Loc,
2871 Name =>
2872 Make_Selected_Component (Loc,
2873 Prefix => New_Copy_Tree (Comp_Expr),
2874 Selector_Name =>
2875 New_Occurrence_Of
2876 (First_Tag_Component (Comp_Type), Loc)),
2877
2878 Expression =>
2879 Unchecked_Convert_To (RTE (RE_Tag),
2880 New_Occurrence_Of
2881 (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
2882 Loc)));
2883
2884 Append_To (L, Instr);
2885 end if;
2886
2887 -- Generate:
2888 -- Adjust (tmp.comp);
2889
2890 if Needs_Finalization (Comp_Type)
2891 and then not Is_Limited_Type (Comp_Type)
2892 then
2893 Append_To (L,
2894 Make_Adjust_Call (
2895 Obj_Ref => New_Copy_Tree (Comp_Expr),
2896 Typ => Comp_Type));
2897 end if;
2898 end if;
2899
2900 -- ???
2901
2902 elsif Ekind (Selector) = E_Discriminant
2903 and then Nkind (N) /= N_Extension_Aggregate
2904 and then Nkind (Parent (N)) = N_Component_Association
2905 and then Is_Constrained (Typ)
2906 then
2907 -- We must check that the discriminant value imposed by the
2908 -- context is the same as the value given in the subaggregate,
2909 -- because after the expansion into assignments there is no
2910 -- record on which to perform a regular discriminant check.
2911
2912 declare
2913 D_Val : Elmt_Id;
2914 Disc : Entity_Id;
2915
2916 begin
2917 D_Val := First_Elmt (Discriminant_Constraint (Typ));
2918 Disc := First_Discriminant (Typ);
2919 while Chars (Disc) /= Chars (Selector) loop
2920 Next_Discriminant (Disc);
2921 Next_Elmt (D_Val);
2922 end loop;
2923
2924 pragma Assert (Present (D_Val));
2925
2926 -- This check cannot performed for components that are
2927 -- constrained by a current instance, because this is not a
2928 -- value that can be compared with the actual constraint.
2929
2930 if Nkind (Node (D_Val)) /= N_Attribute_Reference
2931 or else not Is_Entity_Name (Prefix (Node (D_Val)))
2932 or else not Is_Type (Entity (Prefix (Node (D_Val))))
2933 then
2934 Append_To (L,
2935 Make_Raise_Constraint_Error (Loc,
2936 Condition =>
2937 Make_Op_Ne (Loc,
2938 Left_Opnd => New_Copy_Tree (Node (D_Val)),
2939 Right_Opnd => Expression (Comp)),
2940 Reason => CE_Discriminant_Check_Failed));
2941
2942 else
2943 -- Find self-reference in previous discriminant assignment,
2944 -- and replace with proper expression.
2945
2946 declare
2947 Ass : Node_Id;
2948
2949 begin
2950 Ass := First (L);
2951 while Present (Ass) loop
2952 if Nkind (Ass) = N_Assignment_Statement
2953 and then Nkind (Name (Ass)) = N_Selected_Component
2954 and then Chars (Selector_Name (Name (Ass))) =
2955 Chars (Disc)
2956 then
2957 Set_Expression
2958 (Ass, New_Copy_Tree (Expression (Comp)));
2959 exit;
2960 end if;
2961 Next (Ass);
2962 end loop;
2963 end;
2964 end if;
2965 end;
2966 end if;
2967
2968 Next (Comp);
2969 end loop;
2970
2971 -- If the type is tagged, the tag needs to be initialized (unless
2972 -- compiling for the Java VM where tags are implicit). It is done
2973 -- late in the initialization process because in some cases, we call
2974 -- the init proc of an ancestor which will not leave out the right tag
2975
2976 if Ancestor_Is_Expression then
2977 null;
2978
2979 -- For CPP types we generated a call to the C++ default constructor
2980 -- before the components have been initialized to ensure the proper
2981 -- initialization of the _Tag component (see above).
2982
2983 elsif Is_CPP_Class (Typ) then
2984 null;
2985
2986 elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
2987 Instr :=
2988 Make_OK_Assignment_Statement (Loc,
2989 Name =>
2990 Make_Selected_Component (Loc,
2991 Prefix => New_Copy_Tree (Target),
2992 Selector_Name =>
2993 New_Occurrence_Of
2994 (First_Tag_Component (Base_Type (Typ)), Loc)),
2995
2996 Expression =>
2997 Unchecked_Convert_To (RTE (RE_Tag),
2998 New_Occurrence_Of
2999 (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
3000 Loc)));
3001
3002 Append_To (L, Instr);
3003
3004 -- Ada 2005 (AI-251): If the tagged type has been derived from
3005 -- abstract interfaces we must also initialize the tags of the
3006 -- secondary dispatch tables.
3007
3008 if Has_Interfaces (Base_Type (Typ)) then
3009 Init_Secondary_Tags
3010 (Typ => Base_Type (Typ),
3011 Target => Target,
3012 Stmts_List => L);
3013 end if;
3014 end if;
3015
3016 -- If the controllers have not been initialized yet (by lack of non-
3017 -- discriminant components), let's do it now.
3018
3019 Generate_Finalization_Actions;
3020
3021 return L;
3022 end Build_Record_Aggr_Code;
3023
3024 ---------------------------------------
3025 -- Collect_Initialization_Statements --
3026 ---------------------------------------
3027
3028 procedure Collect_Initialization_Statements
3029 (Obj : Entity_Id;
3030 N : Node_Id;
3031 Node_After : Node_Id)
3032 is
3033 Loc : constant Source_Ptr := Sloc (N);
3034 Init_Actions : constant List_Id := New_List;
3035 Init_Node : Node_Id;
3036 Comp_Stmt : Node_Id;
3037
3038 begin
3039 -- Nothing to do if Obj is already frozen, as in this case we known we
3040 -- won't need to move the initialization statements about later on.
3041
3042 if Is_Frozen (Obj) then
3043 return;
3044 end if;
3045
3046 Init_Node := N;
3047 while Next (Init_Node) /= Node_After loop
3048 Append_To (Init_Actions, Remove_Next (Init_Node));
3049 end loop;
3050
3051 if not Is_Empty_List (Init_Actions) then
3052 Comp_Stmt := Make_Compound_Statement (Loc, Actions => Init_Actions);
3053 Insert_Action_After (Init_Node, Comp_Stmt);
3054 Set_Initialization_Statements (Obj, Comp_Stmt);
3055 end if;
3056 end Collect_Initialization_Statements;
3057
3058 -------------------------------
3059 -- Convert_Aggr_In_Allocator --
3060 -------------------------------
3061
3062 procedure Convert_Aggr_In_Allocator
3063 (Alloc : Node_Id;
3064 Decl : Node_Id;
3065 Aggr : Node_Id)
3066 is
3067 Loc : constant Source_Ptr := Sloc (Aggr);
3068 Typ : constant Entity_Id := Etype (Aggr);
3069 Temp : constant Entity_Id := Defining_Identifier (Decl);
3070
3071 Occ : constant Node_Id :=
3072 Unchecked_Convert_To (Typ,
3073 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Temp, Loc)));
3074
3075 begin
3076 if Is_Array_Type (Typ) then
3077 Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
3078
3079 elsif Has_Default_Init_Comps (Aggr) then
3080 declare
3081 L : constant List_Id := New_List;
3082 Init_Stmts : List_Id;
3083
3084 begin
3085 Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
3086
3087 if Has_Task (Typ) then
3088 Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
3089 Insert_Actions (Alloc, L);
3090 else
3091 Insert_Actions (Alloc, Init_Stmts);
3092 end if;
3093 end;
3094
3095 else
3096 Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
3097 end if;
3098 end Convert_Aggr_In_Allocator;
3099
3100 --------------------------------
3101 -- Convert_Aggr_In_Assignment --
3102 --------------------------------
3103
3104 procedure Convert_Aggr_In_Assignment (N : Node_Id) is
3105 Aggr : Node_Id := Expression (N);
3106 Typ : constant Entity_Id := Etype (Aggr);
3107 Occ : constant Node_Id := New_Copy_Tree (Name (N));
3108
3109 begin
3110 if Nkind (Aggr) = N_Qualified_Expression then
3111 Aggr := Expression (Aggr);
3112 end if;
3113
3114 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3115 end Convert_Aggr_In_Assignment;
3116
3117 ---------------------------------
3118 -- Convert_Aggr_In_Object_Decl --
3119 ---------------------------------
3120
3121 procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
3122 Obj : constant Entity_Id := Defining_Identifier (N);
3123 Aggr : Node_Id := Expression (N);
3124 Loc : constant Source_Ptr := Sloc (Aggr);
3125 Typ : constant Entity_Id := Etype (Aggr);
3126 Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
3127
3128 function Discriminants_Ok return Boolean;
3129 -- If the object type is constrained, the discriminants in the
3130 -- aggregate must be checked against the discriminants of the subtype.
3131 -- This cannot be done using Apply_Discriminant_Checks because after
3132 -- expansion there is no aggregate left to check.
3133
3134 ----------------------
3135 -- Discriminants_Ok --
3136 ----------------------
3137
3138 function Discriminants_Ok return Boolean is
3139 Cond : Node_Id := Empty;
3140 Check : Node_Id;
3141 D : Entity_Id;
3142 Disc1 : Elmt_Id;
3143 Disc2 : Elmt_Id;
3144 Val1 : Node_Id;
3145 Val2 : Node_Id;
3146
3147 begin
3148 D := First_Discriminant (Typ);
3149 Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3150 Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
3151 while Present (Disc1) and then Present (Disc2) loop
3152 Val1 := Node (Disc1);
3153 Val2 := Node (Disc2);
3154
3155 if not Is_OK_Static_Expression (Val1)
3156 or else not Is_OK_Static_Expression (Val2)
3157 then
3158 Check := Make_Op_Ne (Loc,
3159 Left_Opnd => Duplicate_Subexpr (Val1),
3160 Right_Opnd => Duplicate_Subexpr (Val2));
3161
3162 if No (Cond) then
3163 Cond := Check;
3164
3165 else
3166 Cond := Make_Or_Else (Loc,
3167 Left_Opnd => Cond,
3168 Right_Opnd => Check);
3169 end if;
3170
3171 elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3172 Apply_Compile_Time_Constraint_Error (Aggr,
3173 Msg => "incorrect value for discriminant&??",
3174 Reason => CE_Discriminant_Check_Failed,
3175 Ent => D);
3176 return False;
3177 end if;
3178
3179 Next_Discriminant (D);
3180 Next_Elmt (Disc1);
3181 Next_Elmt (Disc2);
3182 end loop;
3183
3184 -- If any discriminant constraint is non-static, emit a check
3185
3186 if Present (Cond) then
3187 Insert_Action (N,
3188 Make_Raise_Constraint_Error (Loc,
3189 Condition => Cond,
3190 Reason => CE_Discriminant_Check_Failed));
3191 end if;
3192
3193 return True;
3194 end Discriminants_Ok;
3195
3196 -- Start of processing for Convert_Aggr_In_Object_Decl
3197
3198 begin
3199 Set_Assignment_OK (Occ);
3200
3201 if Nkind (Aggr) = N_Qualified_Expression then
3202 Aggr := Expression (Aggr);
3203 end if;
3204
3205 if Has_Discriminants (Typ)
3206 and then Typ /= Etype (Obj)
3207 and then Is_Constrained (Etype (Obj))
3208 and then not Discriminants_Ok
3209 then
3210 return;
3211 end if;
3212
3213 -- If the context is an extended return statement, it has its own
3214 -- finalization machinery (i.e. works like a transient scope) and
3215 -- we do not want to create an additional one, because objects on
3216 -- the finalization list of the return must be moved to the caller's
3217 -- finalization list to complete the return.
3218
3219 -- However, if the aggregate is limited, it is built in place, and the
3220 -- controlled components are not assigned to intermediate temporaries
3221 -- so there is no need for a transient scope in this case either.
3222
3223 if Requires_Transient_Scope (Typ)
3224 and then Ekind (Current_Scope) /= E_Return_Statement
3225 and then not Is_Limited_Type (Typ)
3226 then
3227 Establish_Transient_Scope
3228 (Aggr,
3229 Sec_Stack =>
3230 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3231 end if;
3232
3233 declare
3234 Node_After : constant Node_Id := Next (N);
3235 begin
3236 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3237 Collect_Initialization_Statements (Obj, N, Node_After);
3238 end;
3239 Set_No_Initialization (N);
3240 Initialize_Discriminants (N, Typ);
3241 end Convert_Aggr_In_Object_Decl;
3242
3243 -------------------------------------
3244 -- Convert_Array_Aggr_In_Allocator --
3245 -------------------------------------
3246
3247 procedure Convert_Array_Aggr_In_Allocator
3248 (Decl : Node_Id;
3249 Aggr : Node_Id;
3250 Target : Node_Id)
3251 is
3252 Aggr_Code : List_Id;
3253 Typ : constant Entity_Id := Etype (Aggr);
3254 Ctyp : constant Entity_Id := Component_Type (Typ);
3255
3256 begin
3257 -- The target is an explicit dereference of the allocated object.
3258 -- Generate component assignments to it, as for an aggregate that
3259 -- appears on the right-hand side of an assignment statement.
3260
3261 Aggr_Code :=
3262 Build_Array_Aggr_Code (Aggr,
3263 Ctype => Ctyp,
3264 Index => First_Index (Typ),
3265 Into => Target,
3266 Scalar_Comp => Is_Scalar_Type (Ctyp));
3267
3268 Insert_Actions_After (Decl, Aggr_Code);
3269 end Convert_Array_Aggr_In_Allocator;
3270
3271 ----------------------------
3272 -- Convert_To_Assignments --
3273 ----------------------------
3274
3275 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
3276 Loc : constant Source_Ptr := Sloc (N);
3277 T : Entity_Id;
3278 Temp : Entity_Id;
3279
3280 Aggr_Code : List_Id;
3281 Instr : Node_Id;
3282 Target_Expr : Node_Id;
3283 Parent_Kind : Node_Kind;
3284 Unc_Decl : Boolean := False;
3285 Parent_Node : Node_Id;
3286
3287 begin
3288 pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
3289 pragma Assert (Is_Record_Type (Typ));
3290
3291 Parent_Node := Parent (N);
3292 Parent_Kind := Nkind (Parent_Node);
3293
3294 if Parent_Kind = N_Qualified_Expression then
3295
3296 -- Check if we are in a unconstrained declaration because in this
3297 -- case the current delayed expansion mechanism doesn't work when
3298 -- the declared object size depend on the initializing expr.
3299
3300 begin
3301 Parent_Node := Parent (Parent_Node);
3302 Parent_Kind := Nkind (Parent_Node);
3303
3304 if Parent_Kind = N_Object_Declaration then
3305 Unc_Decl :=
3306 not Is_Entity_Name (Object_Definition (Parent_Node))
3307 or else Has_Discriminants
3308 (Entity (Object_Definition (Parent_Node)))
3309 or else Is_Class_Wide_Type
3310 (Entity (Object_Definition (Parent_Node)));
3311 end if;
3312 end;
3313 end if;
3314
3315 -- Just set the Delay flag in the cases where the transformation will be
3316 -- done top down from above.
3317
3318 if False
3319
3320 -- Internal aggregate (transformed when expanding the parent)
3321
3322 or else Parent_Kind = N_Aggregate
3323 or else Parent_Kind = N_Extension_Aggregate
3324 or else Parent_Kind = N_Component_Association
3325
3326 -- Allocator (see Convert_Aggr_In_Allocator)
3327
3328 or else Parent_Kind = N_Allocator
3329
3330 -- Object declaration (see Convert_Aggr_In_Object_Decl)
3331
3332 or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
3333
3334 -- Safe assignment (see Convert_Aggr_Assignments). So far only the
3335 -- assignments in init procs are taken into account.
3336
3337 or else (Parent_Kind = N_Assignment_Statement
3338 and then Inside_Init_Proc)
3339
3340 -- (Ada 2005) An inherently limited type in a return statement,
3341 -- which will be handled in a build-in-place fashion, and may be
3342 -- rewritten as an extended return and have its own finalization
3343 -- machinery. In the case of a simple return, the aggregate needs
3344 -- to be delayed until the scope for the return statement has been
3345 -- created, so that any finalization chain will be associated with
3346 -- that scope. For extended returns, we delay expansion to avoid the
3347 -- creation of an unwanted transient scope that could result in
3348 -- premature finalization of the return object (which is built in
3349 -- in place within the caller's scope).
3350
3351 or else
3352 (Is_Limited_View (Typ)
3353 and then
3354 (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
3355 or else Nkind (Parent_Node) = N_Simple_Return_Statement))
3356 then
3357 Set_Expansion_Delayed (N);
3358 return;
3359 end if;
3360
3361 if Requires_Transient_Scope (Typ) then
3362 Establish_Transient_Scope (N, Sec_Stack => Needs_Finalization (Typ));
3363 end if;
3364
3365 -- If the aggregate is non-limited, create a temporary. If it is limited
3366 -- and the context is an assignment, this is a subaggregate for an
3367 -- enclosing aggregate being expanded. It must be built in place, so use
3368 -- the target of the current assignment.
3369
3370 if Is_Limited_Type (Typ)
3371 and then Nkind (Parent (N)) = N_Assignment_Statement
3372 then
3373 Target_Expr := New_Copy_Tree (Name (Parent (N)));
3374 Insert_Actions (Parent (N),
3375 Build_Record_Aggr_Code (N, Typ, Target_Expr));
3376 Rewrite (Parent (N), Make_Null_Statement (Loc));
3377
3378 else
3379 Temp := Make_Temporary (Loc, 'A', N);
3380
3381 -- If the type inherits unknown discriminants, use the view with
3382 -- known discriminants if available.
3383
3384 if Has_Unknown_Discriminants (Typ)
3385 and then Present (Underlying_Record_View (Typ))
3386 then
3387 T := Underlying_Record_View (Typ);
3388 else
3389 T := Typ;
3390 end if;
3391
3392 Instr :=
3393 Make_Object_Declaration (Loc,
3394 Defining_Identifier => Temp,
3395 Object_Definition => New_Occurrence_Of (T, Loc));
3396
3397 Set_No_Initialization (Instr);
3398 Insert_Action (N, Instr);
3399 Initialize_Discriminants (Instr, T);
3400
3401 Target_Expr := New_Occurrence_Of (Temp, Loc);
3402 Aggr_Code := Build_Record_Aggr_Code (N, T, Target_Expr);
3403
3404 -- Save the last assignment statement associated with the aggregate
3405 -- when building a controlled object. This reference is utilized by
3406 -- the finalization machinery when marking an object as successfully
3407 -- initialized.
3408
3409 if Needs_Finalization (T) then
3410 Set_Last_Aggregate_Assignment (Temp, Last (Aggr_Code));
3411 end if;
3412
3413 Insert_Actions (N, Aggr_Code);
3414 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3415 Analyze_And_Resolve (N, T);
3416 end if;
3417 end Convert_To_Assignments;
3418
3419 ---------------------------
3420 -- Convert_To_Positional --
3421 ---------------------------
3422
3423 procedure Convert_To_Positional
3424 (N : Node_Id;
3425 Max_Others_Replicate : Nat := 5;
3426 Handle_Bit_Packed : Boolean := False)
3427 is
3428 Typ : constant Entity_Id := Etype (N);
3429
3430 Static_Components : Boolean := True;
3431
3432 procedure Check_Static_Components;
3433 -- Check whether all components of the aggregate are compile-time known
3434 -- values, and can be passed as is to the back-end without further
3435 -- expansion.
3436
3437 function Flatten
3438 (N : Node_Id;
3439 Ix : Node_Id;
3440 Ixb : Node_Id) return Boolean;
3441 -- Convert the aggregate into a purely positional form if possible. On
3442 -- entry the bounds of all dimensions are known to be static, and the
3443 -- total number of components is safe enough to expand.
3444
3445 function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
3446 -- Return True iff the array N is flat (which is not trivial in the case
3447 -- of multidimensional aggregates).
3448
3449 -----------------------------
3450 -- Check_Static_Components --
3451 -----------------------------
3452
3453 procedure Check_Static_Components is
3454 Expr : Node_Id;
3455
3456 begin
3457 Static_Components := True;
3458
3459 if Nkind (N) = N_String_Literal then
3460 null;
3461
3462 elsif Present (Expressions (N)) then
3463 Expr := First (Expressions (N));
3464 while Present (Expr) loop
3465 if Nkind (Expr) /= N_Aggregate
3466 or else not Compile_Time_Known_Aggregate (Expr)
3467 or else Expansion_Delayed (Expr)
3468 then
3469 Static_Components := False;
3470 exit;
3471 end if;
3472
3473 Next (Expr);
3474 end loop;
3475 end if;
3476
3477 if Nkind (N) = N_Aggregate
3478 and then Present (Component_Associations (N))
3479 then
3480 Expr := First (Component_Associations (N));
3481 while Present (Expr) loop
3482 if Nkind_In (Expression (Expr), N_Integer_Literal,
3483 N_Real_Literal)
3484 then
3485 null;
3486
3487 elsif Is_Entity_Name (Expression (Expr))
3488 and then Present (Entity (Expression (Expr)))
3489 and then Ekind (Entity (Expression (Expr))) =
3490 E_Enumeration_Literal
3491 then
3492 null;
3493
3494 elsif Nkind (Expression (Expr)) /= N_Aggregate
3495 or else not Compile_Time_Known_Aggregate (Expression (Expr))
3496 or else Expansion_Delayed (Expression (Expr))
3497 then
3498 Static_Components := False;
3499 exit;
3500 end if;
3501
3502 Next (Expr);
3503 end loop;
3504 end if;
3505 end Check_Static_Components;
3506
3507 -------------
3508 -- Flatten --
3509 -------------
3510
3511 function Flatten
3512 (N : Node_Id;
3513 Ix : Node_Id;
3514 Ixb : Node_Id) return Boolean
3515 is
3516 Loc : constant Source_Ptr := Sloc (N);
3517 Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
3518 Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
3519 Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
3520 Lov : Uint;
3521 Hiv : Uint;
3522
3523 Others_Present : Boolean := False;
3524
3525 begin
3526 if Nkind (Original_Node (N)) = N_String_Literal then
3527 return True;
3528 end if;
3529
3530 if not Compile_Time_Known_Value (Lo)
3531 or else not Compile_Time_Known_Value (Hi)
3532 then
3533 return False;
3534 end if;
3535
3536 Lov := Expr_Value (Lo);
3537 Hiv := Expr_Value (Hi);
3538
3539 -- Check if there is an others choice
3540
3541 if Present (Component_Associations (N)) then
3542 declare
3543 Assoc : Node_Id;
3544 Choice : Node_Id;
3545
3546 begin
3547 Assoc := First (Component_Associations (N));
3548 while Present (Assoc) loop
3549
3550 -- If this is a box association, flattening is in general
3551 -- not possible because at this point we cannot tell if the
3552 -- default is static or even exists.
3553
3554 if Box_Present (Assoc) then
3555 return False;
3556 end if;
3557
3558 Choice := First (Choices (Assoc));
3559
3560 while Present (Choice) loop
3561 if Nkind (Choice) = N_Others_Choice then
3562 Others_Present := True;
3563 end if;
3564
3565 Next (Choice);
3566 end loop;
3567
3568 Next (Assoc);
3569 end loop;
3570 end;
3571 end if;
3572
3573 -- If the low bound is not known at compile time and others is not
3574 -- present we can proceed since the bounds can be obtained from the
3575 -- aggregate.
3576
3577 -- Note: This case is required in VM platforms since their backends
3578 -- normalize array indexes in the range 0 .. N-1. Hence, if we do
3579 -- not flat an array whose bounds cannot be obtained from the type
3580 -- of the index the backend has no way to properly generate the code.
3581 -- See ACATS c460010 for an example.
3582
3583 if Hiv < Lov
3584 or else (not Compile_Time_Known_Value (Blo)
3585 and then Others_Present)
3586 then
3587 return False;
3588 end if;
3589
3590 -- Determine if set of alternatives is suitable for conversion and
3591 -- build an array containing the values in sequence.
3592
3593 declare
3594 Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
3595 of Node_Id := (others => Empty);
3596 -- The values in the aggregate sorted appropriately
3597
3598 Vlist : List_Id;
3599 -- Same data as Vals in list form
3600
3601 Rep_Count : Nat;
3602 -- Used to validate Max_Others_Replicate limit
3603
3604 Elmt : Node_Id;
3605 Num : Int := UI_To_Int (Lov);
3606 Choice_Index : Int;
3607 Choice : Node_Id;
3608 Lo, Hi : Node_Id;
3609
3610 begin
3611 if Present (Expressions (N)) then
3612 Elmt := First (Expressions (N));
3613 while Present (Elmt) loop
3614 if Nkind (Elmt) = N_Aggregate
3615 and then Present (Next_Index (Ix))
3616 and then
3617 not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
3618 then
3619 return False;
3620 end if;
3621
3622 Vals (Num) := Relocate_Node (Elmt);
3623 Num := Num + 1;
3624
3625 Next (Elmt);
3626 end loop;
3627 end if;
3628
3629 if No (Component_Associations (N)) then
3630 return True;
3631 end if;
3632
3633 Elmt := First (Component_Associations (N));
3634
3635 if Nkind (Expression (Elmt)) = N_Aggregate then
3636 if Present (Next_Index (Ix))
3637 and then
3638 not Flatten
3639 (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
3640 then
3641 return False;
3642 end if;
3643 end if;
3644
3645 Component_Loop : while Present (Elmt) loop
3646 Choice := First (Choices (Elmt));
3647 Choice_Loop : while Present (Choice) loop
3648
3649 -- If we have an others choice, fill in the missing elements
3650 -- subject to the limit established by Max_Others_Replicate.
3651
3652 if Nkind (Choice) = N_Others_Choice then
3653 Rep_Count := 0;
3654
3655 for J in Vals'Range loop
3656 if No (Vals (J)) then
3657 Vals (J) := New_Copy_Tree (Expression (Elmt));
3658 Rep_Count := Rep_Count + 1;
3659
3660 -- Check for maximum others replication. Note that
3661 -- we skip this test if either of the restrictions
3662 -- No_Elaboration_Code or No_Implicit_Loops is
3663 -- active, if this is a preelaborable unit or
3664 -- a predefined unit, or if the unit must be
3665 -- placed in data memory. This also ensures that
3666 -- predefined units get the same level of constant
3667 -- folding in Ada 95 and Ada 2005, where their
3668 -- categorization has changed.
3669
3670 declare
3671 P : constant Entity_Id :=
3672 Cunit_Entity (Current_Sem_Unit);
3673
3674 begin
3675 -- Check if duplication OK and if so continue
3676 -- processing.
3677
3678 if Restriction_Active (No_Elaboration_Code)
3679 or else Restriction_Active (No_Implicit_Loops)
3680 or else
3681 (Ekind (Current_Scope) = E_Package
3682 and then
3683 Static_Elaboration_Desired
3684 (Current_Scope))
3685 or else Is_Preelaborated (P)
3686 or else (Ekind (P) = E_Package_Body
3687 and then
3688 Is_Preelaborated (Spec_Entity (P)))
3689 or else
3690 Is_Predefined_File_Name
3691 (Unit_File_Name (Get_Source_Unit (P)))
3692 then
3693 null;
3694
3695 -- If duplication not OK, then we return False
3696 -- if the replication count is too high
3697
3698 elsif Rep_Count > Max_Others_Replicate then
3699 return False;
3700
3701 -- Continue on if duplication not OK, but the
3702 -- replication count is not excessive.
3703
3704 else
3705 null;
3706 end if;
3707 end;
3708 end if;
3709 end loop;
3710
3711 exit Component_Loop;
3712
3713 -- Case of a subtype mark, identifier or expanded name
3714
3715 elsif Is_Entity_Name (Choice)
3716 and then Is_Type (Entity (Choice))
3717 then
3718 Lo := Type_Low_Bound (Etype (Choice));
3719 Hi := Type_High_Bound (Etype (Choice));
3720
3721 -- Case of subtype indication
3722
3723 elsif Nkind (Choice) = N_Subtype_Indication then
3724 Lo := Low_Bound (Range_Expression (Constraint (Choice)));
3725 Hi := High_Bound (Range_Expression (Constraint (Choice)));
3726
3727 -- Case of a range
3728
3729 elsif Nkind (Choice) = N_Range then
3730 Lo := Low_Bound (Choice);
3731 Hi := High_Bound (Choice);
3732
3733 -- Normal subexpression case
3734
3735 else pragma Assert (Nkind (Choice) in N_Subexpr);
3736 if not Compile_Time_Known_Value (Choice) then
3737 return False;
3738
3739 else
3740 Choice_Index := UI_To_Int (Expr_Value (Choice));
3741 if Choice_Index in Vals'Range then
3742 Vals (Choice_Index) :=
3743 New_Copy_Tree (Expression (Elmt));
3744 goto Continue;
3745
3746 else
3747 -- Choice is statically out-of-range, will be
3748 -- rewritten to raise Constraint_Error.
3749
3750 return False;
3751 end if;
3752 end if;
3753 end if;
3754
3755 -- Range cases merge with Lo,Hi set
3756
3757 if not Compile_Time_Known_Value (Lo)
3758 or else
3759 not Compile_Time_Known_Value (Hi)
3760 then
3761 return False;
3762 else
3763 for J in UI_To_Int (Expr_Value (Lo)) ..
3764 UI_To_Int (Expr_Value (Hi))
3765 loop
3766 Vals (J) := New_Copy_Tree (Expression (Elmt));
3767 end loop;
3768 end if;
3769
3770 <<Continue>>
3771 Next (Choice);
3772 end loop Choice_Loop;
3773
3774 Next (Elmt);
3775 end loop Component_Loop;
3776
3777 -- If we get here the conversion is possible
3778
3779 Vlist := New_List;
3780 for J in Vals'Range loop
3781 Append (Vals (J), Vlist);
3782 end loop;
3783
3784 Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
3785 Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
3786 return True;
3787 end;
3788 end Flatten;
3789
3790 -------------
3791 -- Is_Flat --
3792 -------------
3793
3794 function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
3795 Elmt : Node_Id;
3796
3797 begin
3798 if Dims = 0 then
3799 return True;
3800
3801 elsif Nkind (N) = N_Aggregate then
3802 if Present (Component_Associations (N)) then
3803 return False;
3804
3805 else
3806 Elmt := First (Expressions (N));
3807 while Present (Elmt) loop
3808 if not Is_Flat (Elmt, Dims - 1) then
3809 return False;
3810 end if;
3811
3812 Next (Elmt);
3813 end loop;
3814
3815 return True;
3816 end if;
3817 else
3818 return True;
3819 end if;
3820 end Is_Flat;
3821
3822 -- Start of processing for Convert_To_Positional
3823
3824 begin
3825 -- Ada 2005 (AI-287): Do not convert in case of default initialized
3826 -- components because in this case will need to call the corresponding
3827 -- IP procedure.
3828
3829 if Has_Default_Init_Comps (N) then
3830 return;
3831 end if;
3832
3833 if Is_Flat (N, Number_Dimensions (Typ)) then
3834 return;
3835 end if;
3836
3837 if Is_Bit_Packed_Array (Typ)
3838 and then not Handle_Bit_Packed
3839 then
3840 return;
3841 end if;
3842
3843 -- Do not convert to positional if controlled components are involved
3844 -- since these require special processing
3845
3846 if Has_Controlled_Component (Typ) then
3847 return;
3848 end if;
3849
3850 Check_Static_Components;
3851
3852 -- If the size is known, or all the components are static, try to
3853 -- build a fully positional aggregate.
3854
3855 -- The size of the type may not be known for an aggregate with
3856 -- discriminated array components, but if the components are static
3857 -- it is still possible to verify statically that the length is
3858 -- compatible with the upper bound of the type, and therefore it is
3859 -- worth flattening such aggregates as well.
3860
3861 -- For now the back-end expands these aggregates into individual
3862 -- assignments to the target anyway, but it is conceivable that
3863 -- it will eventually be able to treat such aggregates statically???
3864
3865 if Aggr_Size_OK (N, Typ)
3866 and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
3867 then
3868 if Static_Components then
3869 Set_Compile_Time_Known_Aggregate (N);
3870 Set_Expansion_Delayed (N, False);
3871 end if;
3872
3873 Analyze_And_Resolve (N, Typ);
3874 end if;
3875
3876 -- Is Static_Eaboration_Desired has been specified, diagnose aggregates
3877 -- that will still require initialization code.
3878
3879 if (Ekind (Current_Scope) = E_Package
3880 and then Static_Elaboration_Desired (Current_Scope))
3881 and then Nkind (Parent (N)) = N_Object_Declaration
3882 then
3883 declare
3884 Expr : Node_Id;
3885
3886 begin
3887 if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then
3888 Expr := First (Expressions (N));
3889 while Present (Expr) loop
3890 if Nkind_In (Expr, N_Integer_Literal, N_Real_Literal)
3891 or else
3892 (Is_Entity_Name (Expr)
3893 and then Ekind (Entity (Expr)) = E_Enumeration_Literal)
3894 then
3895 null;
3896
3897 else
3898 Error_Msg_N
3899 ("non-static object requires elaboration code??", N);
3900 exit;
3901 end if;
3902
3903 Next (Expr);
3904 end loop;
3905
3906 if Present (Component_Associations (N)) then
3907 Error_Msg_N ("object requires elaboration code??", N);
3908 end if;
3909 end if;
3910 end;
3911 end if;
3912 end Convert_To_Positional;
3913
3914 ----------------------------
3915 -- Expand_Array_Aggregate --
3916 ----------------------------
3917
3918 -- Array aggregate expansion proceeds as follows:
3919
3920 -- 1. If requested we generate code to perform all the array aggregate
3921 -- bound checks, specifically
3922
3923 -- (a) Check that the index range defined by aggregate bounds is
3924 -- compatible with corresponding index subtype.
3925
3926 -- (b) If an others choice is present check that no aggregate
3927 -- index is outside the bounds of the index constraint.
3928
3929 -- (c) For multidimensional arrays make sure that all subaggregates
3930 -- corresponding to the same dimension have the same bounds.
3931
3932 -- 2. Check for packed array aggregate which can be converted to a
3933 -- constant so that the aggregate disappears completely.
3934
3935 -- 3. Check case of nested aggregate. Generally nested aggregates are
3936 -- handled during the processing of the parent aggregate.
3937
3938 -- 4. Check if the aggregate can be statically processed. If this is the
3939 -- case pass it as is to Gigi. Note that a necessary condition for
3940 -- static processing is that the aggregate be fully positional.
3941
3942 -- 5. If in place aggregate expansion is possible (i.e. no need to create
3943 -- a temporary) then mark the aggregate as such and return. Otherwise
3944 -- create a new temporary and generate the appropriate initialization
3945 -- code.
3946
3947 procedure Expand_Array_Aggregate (N : Node_Id) is
3948 Loc : constant Source_Ptr := Sloc (N);
3949
3950 Typ : constant Entity_Id := Etype (N);
3951 Ctyp : constant Entity_Id := Component_Type (Typ);
3952 -- Typ is the correct constrained array subtype of the aggregate
3953 -- Ctyp is the corresponding component type.
3954
3955 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
3956 -- Number of aggregate index dimensions
3957
3958 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
3959 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
3960 -- Low and High bounds of the constraint for each aggregate index
3961
3962 Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
3963 -- The type of each index
3964
3965 Maybe_In_Place_OK : Boolean;
3966 -- If the type is neither controlled nor packed and the aggregate
3967 -- is the expression in an assignment, assignment in place may be
3968 -- possible, provided other conditions are met on the LHS.
3969
3970 Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
3971 (others => False);
3972 -- If Others_Present (J) is True, then there is an others choice
3973 -- in one of the sub-aggregates of N at dimension J.
3974
3975 procedure Build_Constrained_Type (Positional : Boolean);
3976 -- If the subtype is not static or unconstrained, build a constrained
3977 -- type using the computable sizes of the aggregate and its sub-
3978 -- aggregates.
3979
3980 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
3981 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
3982 -- by Index_Bounds.
3983
3984 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
3985 -- Checks that in a multi-dimensional array aggregate all subaggregates
3986 -- corresponding to the same dimension have the same bounds.
3987 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
3988 -- corresponding to the sub-aggregate.
3989
3990 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
3991 -- Computes the values of array Others_Present. Sub_Aggr is the
3992 -- array sub-aggregate we start the computation from. Dim is the
3993 -- dimension corresponding to the sub-aggregate.
3994
3995 function In_Place_Assign_OK return Boolean;
3996 -- Simple predicate to determine whether an aggregate assignment can
3997 -- be done in place, because none of the new values can depend on the
3998 -- components of the target of the assignment.
3999
4000 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
4001 -- Checks that if an others choice is present in any sub-aggregate no
4002 -- aggregate index is outside the bounds of the index constraint.
4003 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
4004 -- corresponding to the sub-aggregate.
4005
4006 function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
4007 -- In addition to Maybe_In_Place_OK, in order for an aggregate to be
4008 -- built directly into the target of the assignment it must be free
4009 -- of side-effects.
4010
4011 ----------------------------
4012 -- Build_Constrained_Type --
4013 ----------------------------
4014
4015 procedure Build_Constrained_Type (Positional : Boolean) is
4016 Loc : constant Source_Ptr := Sloc (N);
4017 Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
4018 Comp : Node_Id;
4019 Decl : Node_Id;
4020 Typ : constant Entity_Id := Etype (N);
4021 Indexes : constant List_Id := New_List;
4022 Num : Int;
4023 Sub_Agg : Node_Id;
4024
4025 begin
4026 -- If the aggregate is purely positional, all its subaggregates
4027 -- have the same size. We collect the dimensions from the first
4028 -- subaggregate at each level.
4029
4030 if Positional then
4031 Sub_Agg := N;
4032
4033 for D in 1 .. Number_Dimensions (Typ) loop
4034 Sub_Agg := First (Expressions (Sub_Agg));
4035
4036 Comp := Sub_Agg;
4037 Num := 0;
4038 while Present (Comp) loop
4039 Num := Num + 1;
4040 Next (Comp);
4041 end loop;
4042
4043 Append_To (Indexes,
4044 Make_Range (Loc,
4045 Low_Bound => Make_Integer_Literal (Loc, 1),
4046 High_Bound => Make_Integer_Literal (Loc, Num)));
4047 end loop;
4048
4049 else
4050 -- We know the aggregate type is unconstrained and the aggregate
4051 -- is not processable by the back end, therefore not necessarily
4052 -- positional. Retrieve each dimension bounds (computed earlier).
4053
4054 for D in 1 .. Number_Dimensions (Typ) loop
4055 Append (
4056 Make_Range (Loc,
4057 Low_Bound => Aggr_Low (D),
4058 High_Bound => Aggr_High (D)),
4059 Indexes);
4060 end loop;
4061 end if;
4062
4063 Decl :=
4064 Make_Full_Type_Declaration (Loc,
4065 Defining_Identifier => Agg_Type,
4066 Type_Definition =>
4067 Make_Constrained_Array_Definition (Loc,
4068 Discrete_Subtype_Definitions => Indexes,
4069 Component_Definition =>
4070 Make_Component_Definition (Loc,
4071 Aliased_Present => False,
4072 Subtype_Indication =>
4073 New_Occurrence_Of (Component_Type (Typ), Loc))));
4074
4075 Insert_Action (N, Decl);
4076 Analyze (Decl);
4077 Set_Etype (N, Agg_Type);
4078 Set_Is_Itype (Agg_Type);
4079 Freeze_Itype (Agg_Type, N);
4080 end Build_Constrained_Type;
4081
4082 ------------------
4083 -- Check_Bounds --
4084 ------------------
4085
4086 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
4087 Aggr_Lo : Node_Id;
4088 Aggr_Hi : Node_Id;
4089
4090 Ind_Lo : Node_Id;
4091 Ind_Hi : Node_Id;
4092
4093 Cond : Node_Id := Empty;
4094
4095 begin
4096 Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
4097 Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
4098
4099 -- Generate the following test:
4100 --
4101 -- [constraint_error when
4102 -- Aggr_Lo <= Aggr_Hi and then
4103 -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
4104
4105 -- As an optimization try to see if some tests are trivially vacuous
4106 -- because we are comparing an expression against itself.
4107
4108 if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
4109 Cond := Empty;
4110
4111 elsif Aggr_Hi = Ind_Hi then
4112 Cond :=
4113 Make_Op_Lt (Loc,
4114 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4115 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
4116
4117 elsif Aggr_Lo = Ind_Lo then
4118 Cond :=
4119 Make_Op_Gt (Loc,
4120 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4121 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
4122
4123 else
4124 Cond :=
4125 Make_Or_Else (Loc,
4126 Left_Opnd =>
4127 Make_Op_Lt (Loc,
4128 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4129 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
4130
4131 Right_Opnd =>
4132 Make_Op_Gt (Loc,
4133 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
4134 Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
4135 end if;
4136
4137 if Present (Cond) then
4138 Cond :=
4139 Make_And_Then (Loc,
4140 Left_Opnd =>
4141 Make_Op_Le (Loc,
4142 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4143 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
4144
4145 Right_Opnd => Cond);
4146
4147 Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
4148 Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
4149 Insert_Action (N,
4150 Make_Raise_Constraint_Error (Loc,
4151 Condition => Cond,
4152 Reason => CE_Range_Check_Failed));
4153 end if;
4154 end Check_Bounds;
4155
4156 ----------------------------
4157 -- Check_Same_Aggr_Bounds --
4158 ----------------------------
4159
4160 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
4161 Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
4162 Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
4163 -- The bounds of this specific sub-aggregate
4164
4165 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4166 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4167 -- The bounds of the aggregate for this dimension
4168
4169 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4170 -- The index type for this dimension.xxx
4171
4172 Cond : Node_Id := Empty;
4173 Assoc : Node_Id;
4174 Expr : Node_Id;
4175
4176 begin
4177 -- If index checks are on generate the test
4178
4179 -- [constraint_error when
4180 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
4181
4182 -- As an optimization try to see if some tests are trivially vacuos
4183 -- because we are comparing an expression against itself. Also for
4184 -- the first dimension the test is trivially vacuous because there
4185 -- is just one aggregate for dimension 1.
4186
4187 if Index_Checks_Suppressed (Ind_Typ) then
4188 Cond := Empty;
4189
4190 elsif Dim = 1
4191 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
4192 then
4193 Cond := Empty;
4194
4195 elsif Aggr_Hi = Sub_Hi then
4196 Cond :=
4197 Make_Op_Ne (Loc,
4198 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4199 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
4200
4201 elsif Aggr_Lo = Sub_Lo then
4202 Cond :=
4203 Make_Op_Ne (Loc,
4204 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4205 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
4206
4207 else
4208 Cond :=
4209 Make_Or_Else (Loc,
4210 Left_Opnd =>
4211 Make_Op_Ne (Loc,
4212 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4213 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
4214
4215 Right_Opnd =>
4216 Make_Op_Ne (Loc,
4217 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
4218 Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
4219 end if;
4220
4221 if Present (Cond) then
4222 Insert_Action (N,
4223 Make_Raise_Constraint_Error (Loc,
4224 Condition => Cond,
4225 Reason => CE_Length_Check_Failed));
4226 end if;
4227
4228 -- Now look inside the sub-aggregate to see if there is more work
4229
4230 if Dim < Aggr_Dimension then
4231
4232 -- Process positional components
4233
4234 if Present (Expressions (Sub_Aggr)) then
4235 Expr := First (Expressions (Sub_Aggr));
4236 while Present (Expr) loop
4237 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4238 Next (Expr);
4239 end loop;
4240 end if;
4241
4242 -- Process component associations
4243
4244 if Present (Component_Associations (Sub_Aggr)) then
4245 Assoc := First (Component_Associations (Sub_Aggr));
4246 while Present (Assoc) loop
4247 Expr := Expression (Assoc);
4248 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4249 Next (Assoc);
4250 end loop;
4251 end if;
4252 end if;
4253 end Check_Same_Aggr_Bounds;
4254
4255 ----------------------------
4256 -- Compute_Others_Present --
4257 ----------------------------
4258
4259 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
4260 Assoc : Node_Id;
4261 Expr : Node_Id;
4262
4263 begin
4264 if Present (Component_Associations (Sub_Aggr)) then
4265 Assoc := Last (Component_Associations (Sub_Aggr));
4266
4267 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4268 Others_Present (Dim) := True;
4269 end if;
4270 end if;
4271
4272 -- Now look inside the sub-aggregate to see if there is more work
4273
4274 if Dim < Aggr_Dimension then
4275
4276 -- Process positional components
4277
4278 if Present (Expressions (Sub_Aggr)) then
4279 Expr := First (Expressions (Sub_Aggr));
4280 while Present (Expr) loop
4281 Compute_Others_Present (Expr, Dim + 1);
4282 Next (Expr);
4283 end loop;
4284 end if;
4285
4286 -- Process component associations
4287
4288 if Present (Component_Associations (Sub_Aggr)) then
4289 Assoc := First (Component_Associations (Sub_Aggr));
4290 while Present (Assoc) loop
4291 Expr := Expression (Assoc);
4292 Compute_Others_Present (Expr, Dim + 1);
4293 Next (Assoc);
4294 end loop;
4295 end if;
4296 end if;
4297 end Compute_Others_Present;
4298
4299 ------------------------
4300 -- In_Place_Assign_OK --
4301 ------------------------
4302
4303 function In_Place_Assign_OK return Boolean is
4304 Aggr_In : Node_Id;
4305 Aggr_Lo : Node_Id;
4306 Aggr_Hi : Node_Id;
4307 Obj_In : Node_Id;
4308 Obj_Lo : Node_Id;
4309 Obj_Hi : Node_Id;
4310
4311 function Safe_Aggregate (Aggr : Node_Id) return Boolean;
4312 -- Check recursively that each component of a (sub)aggregate does
4313 -- not depend on the variable being assigned to.
4314
4315 function Safe_Component (Expr : Node_Id) return Boolean;
4316 -- Verify that an expression cannot depend on the variable being
4317 -- assigned to. Room for improvement here (but less than before).
4318
4319 --------------------
4320 -- Safe_Aggregate --
4321 --------------------
4322
4323 function Safe_Aggregate (Aggr : Node_Id) return Boolean is
4324 Expr : Node_Id;
4325
4326 begin
4327 if Present (Expressions (Aggr)) then
4328 Expr := First (Expressions (Aggr));
4329 while Present (Expr) loop
4330 if Nkind (Expr) = N_Aggregate then
4331 if not Safe_Aggregate (Expr) then
4332 return False;
4333 end if;
4334
4335 elsif not Safe_Component (Expr) then
4336 return False;
4337 end if;
4338
4339 Next (Expr);
4340 end loop;
4341 end if;
4342
4343 if Present (Component_Associations (Aggr)) then
4344 Expr := First (Component_Associations (Aggr));
4345 while Present (Expr) loop
4346 if Nkind (Expression (Expr)) = N_Aggregate then
4347 if not Safe_Aggregate (Expression (Expr)) then
4348 return False;
4349 end if;
4350
4351 -- If association has a box, no way to determine yet
4352 -- whether default can be assigned in place.
4353
4354 elsif Box_Present (Expr) then
4355 return False;
4356
4357 elsif not Safe_Component (Expression (Expr)) then
4358 return False;
4359 end if;
4360
4361 Next (Expr);
4362 end loop;
4363 end if;
4364
4365 return True;
4366 end Safe_Aggregate;
4367
4368 --------------------
4369 -- Safe_Component --
4370 --------------------
4371
4372 function Safe_Component (Expr : Node_Id) return Boolean is
4373 Comp : Node_Id := Expr;
4374
4375 function Check_Component (Comp : Node_Id) return Boolean;
4376 -- Do the recursive traversal, after copy
4377
4378 ---------------------
4379 -- Check_Component --
4380 ---------------------
4381
4382 function Check_Component (Comp : Node_Id) return Boolean is
4383 begin
4384 if Is_Overloaded (Comp) then
4385 return False;
4386 end if;
4387
4388 return Compile_Time_Known_Value (Comp)
4389
4390 or else (Is_Entity_Name (Comp)
4391 and then Present (Entity (Comp))
4392 and then No (Renamed_Object (Entity (Comp))))
4393
4394 or else (Nkind (Comp) = N_Attribute_Reference
4395 and then Check_Component (Prefix (Comp)))
4396
4397 or else (Nkind (Comp) in N_Binary_Op
4398 and then Check_Component (Left_Opnd (Comp))
4399 and then Check_Component (Right_Opnd (Comp)))
4400
4401 or else (Nkind (Comp) in N_Unary_Op
4402 and then Check_Component (Right_Opnd (Comp)))
4403
4404 or else (Nkind (Comp) = N_Selected_Component
4405 and then Check_Component (Prefix (Comp)))
4406
4407 or else (Nkind (Comp) = N_Unchecked_Type_Conversion
4408 and then Check_Component (Expression (Comp)));
4409 end Check_Component;
4410
4411 -- Start of processing for Safe_Component
4412
4413 begin
4414 -- If the component appears in an association that may
4415 -- correspond to more than one element, it is not analyzed
4416 -- before the expansion into assignments, to avoid side effects.
4417 -- We analyze, but do not resolve the copy, to obtain sufficient
4418 -- entity information for the checks that follow. If component is
4419 -- overloaded we assume an unsafe function call.
4420
4421 if not Analyzed (Comp) then
4422 if Is_Overloaded (Expr) then
4423 return False;
4424
4425 elsif Nkind (Expr) = N_Aggregate
4426 and then not Is_Others_Aggregate (Expr)
4427 then
4428 return False;
4429
4430 elsif Nkind (Expr) = N_Allocator then
4431
4432 -- For now, too complex to analyze
4433
4434 return False;
4435 end if;
4436
4437 Comp := New_Copy_Tree (Expr);
4438 Set_Parent (Comp, Parent (Expr));
4439 Analyze (Comp);
4440 end if;
4441
4442 if Nkind (Comp) = N_Aggregate then
4443 return Safe_Aggregate (Comp);
4444 else
4445 return Check_Component (Comp);
4446 end if;
4447 end Safe_Component;
4448
4449 -- Start of processing for In_Place_Assign_OK
4450
4451 begin
4452 if Present (Component_Associations (N)) then
4453
4454 -- On assignment, sliding can take place, so we cannot do the
4455 -- assignment in place unless the bounds of the aggregate are
4456 -- statically equal to those of the target.
4457
4458 -- If the aggregate is given by an others choice, the bounds
4459 -- are derived from the left-hand side, and the assignment is
4460 -- safe if the expression is.
4461
4462 if Is_Others_Aggregate (N) then
4463 return
4464 Safe_Component
4465 (Expression (First (Component_Associations (N))));
4466 end if;
4467
4468 Aggr_In := First_Index (Etype (N));
4469
4470 if Nkind (Parent (N)) = N_Assignment_Statement then
4471 Obj_In := First_Index (Etype (Name (Parent (N))));
4472
4473 else
4474 -- Context is an allocator. Check bounds of aggregate
4475 -- against given type in qualified expression.
4476
4477 pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
4478 Obj_In :=
4479 First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
4480 end if;
4481
4482 while Present (Aggr_In) loop
4483 Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
4484 Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
4485
4486 if not Compile_Time_Known_Value (Aggr_Lo)
4487 or else not Compile_Time_Known_Value (Aggr_Hi)
4488 or else not Compile_Time_Known_Value (Obj_Lo)
4489 or else not Compile_Time_Known_Value (Obj_Hi)
4490 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
4491 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
4492 then
4493 return False;
4494 end if;
4495
4496 Next_Index (Aggr_In);
4497 Next_Index (Obj_In);
4498 end loop;
4499 end if;
4500
4501 -- Now check the component values themselves
4502
4503 return Safe_Aggregate (N);
4504 end In_Place_Assign_OK;
4505
4506 ------------------
4507 -- Others_Check --
4508 ------------------
4509
4510 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
4511 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4512 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4513 -- The bounds of the aggregate for this dimension
4514
4515 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4516 -- The index type for this dimension
4517
4518 Need_To_Check : Boolean := False;
4519
4520 Choices_Lo : Node_Id := Empty;
4521 Choices_Hi : Node_Id := Empty;
4522 -- The lowest and highest discrete choices for a named sub-aggregate
4523
4524 Nb_Choices : Int := -1;
4525 -- The number of discrete non-others choices in this sub-aggregate
4526
4527 Nb_Elements : Uint := Uint_0;
4528 -- The number of elements in a positional aggregate
4529
4530 Cond : Node_Id := Empty;
4531
4532 Assoc : Node_Id;
4533 Choice : Node_Id;
4534 Expr : Node_Id;
4535
4536 begin
4537 -- Check if we have an others choice. If we do make sure that this
4538 -- sub-aggregate contains at least one element in addition to the
4539 -- others choice.
4540
4541 if Range_Checks_Suppressed (Ind_Typ) then
4542 Need_To_Check := False;
4543
4544 elsif Present (Expressions (Sub_Aggr))
4545 and then Present (Component_Associations (Sub_Aggr))
4546 then
4547 Need_To_Check := True;
4548
4549 elsif Present (Component_Associations (Sub_Aggr)) then
4550 Assoc := Last (Component_Associations (Sub_Aggr));
4551
4552 if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
4553 Need_To_Check := False;
4554
4555 else
4556 -- Count the number of discrete choices. Start with -1 because
4557 -- the others choice does not count.
4558
4559 Nb_Choices := -1;
4560 Assoc := First (Component_Associations (Sub_Aggr));
4561 while Present (Assoc) loop
4562 Choice := First (Choices (Assoc));
4563 while Present (Choice) loop
4564 Nb_Choices := Nb_Choices + 1;
4565 Next (Choice);
4566 end loop;
4567
4568 Next (Assoc);
4569 end loop;
4570
4571 -- If there is only an others choice nothing to do
4572
4573 Need_To_Check := (Nb_Choices > 0);
4574 end if;
4575
4576 else
4577 Need_To_Check := False;
4578 end if;
4579
4580 -- If we are dealing with a positional sub-aggregate with an others
4581 -- choice then compute the number or positional elements.
4582
4583 if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
4584 Expr := First (Expressions (Sub_Aggr));
4585 Nb_Elements := Uint_0;
4586 while Present (Expr) loop
4587 Nb_Elements := Nb_Elements + 1;
4588 Next (Expr);
4589 end loop;
4590
4591 -- If the aggregate contains discrete choices and an others choice
4592 -- compute the smallest and largest discrete choice values.
4593
4594 elsif Need_To_Check then
4595 Compute_Choices_Lo_And_Choices_Hi : declare
4596
4597 Table : Case_Table_Type (1 .. Nb_Choices);
4598 -- Used to sort all the different choice values
4599
4600 J : Pos := 1;
4601 Low : Node_Id;
4602 High : Node_Id;
4603
4604 begin
4605 Assoc := First (Component_Associations (Sub_Aggr));
4606 while Present (Assoc) loop
4607 Choice := First (Choices (Assoc));
4608 while Present (Choice) loop
4609 if Nkind (Choice) = N_Others_Choice then
4610 exit;
4611 end if;
4612
4613 Get_Index_Bounds (Choice, Low, High);
4614 Table (J).Choice_Lo := Low;
4615 Table (J).Choice_Hi := High;
4616
4617 J := J + 1;
4618 Next (Choice);
4619 end loop;
4620
4621 Next (Assoc);
4622 end loop;
4623
4624 -- Sort the discrete choices
4625
4626 Sort_Case_Table (Table);
4627
4628 Choices_Lo := Table (1).Choice_Lo;
4629 Choices_Hi := Table (Nb_Choices).Choice_Hi;
4630 end Compute_Choices_Lo_And_Choices_Hi;
4631 end if;
4632
4633 -- If no others choice in this sub-aggregate, or the aggregate
4634 -- comprises only an others choice, nothing to do.
4635
4636 if not Need_To_Check then
4637 Cond := Empty;
4638
4639 -- If we are dealing with an aggregate containing an others choice
4640 -- and positional components, we generate the following test:
4641
4642 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
4643 -- Ind_Typ'Pos (Aggr_Hi)
4644 -- then
4645 -- raise Constraint_Error;
4646 -- end if;
4647
4648 elsif Nb_Elements > Uint_0 then
4649 Cond :=
4650 Make_Op_Gt (Loc,
4651 Left_Opnd =>
4652 Make_Op_Add (Loc,
4653 Left_Opnd =>
4654 Make_Attribute_Reference (Loc,
4655 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
4656 Attribute_Name => Name_Pos,
4657 Expressions =>
4658 New_List
4659 (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
4660 Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
4661
4662 Right_Opnd =>
4663 Make_Attribute_Reference (Loc,
4664 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
4665 Attribute_Name => Name_Pos,
4666 Expressions => New_List (
4667 Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
4668
4669 -- If we are dealing with an aggregate containing an others choice
4670 -- and discrete choices we generate the following test:
4671
4672 -- [constraint_error when
4673 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
4674
4675 else
4676 Cond :=
4677 Make_Or_Else (Loc,
4678 Left_Opnd =>
4679 Make_Op_Lt (Loc,
4680 Left_Opnd =>
4681 Duplicate_Subexpr_Move_Checks (Choices_Lo),
4682 Right_Opnd =>
4683 Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
4684
4685 Right_Opnd =>
4686 Make_Op_Gt (Loc,
4687 Left_Opnd =>
4688 Duplicate_Subexpr (Choices_Hi),
4689 Right_Opnd =>
4690 Duplicate_Subexpr (Aggr_Hi)));
4691 end if;
4692
4693 if Present (Cond) then
4694 Insert_Action (N,
4695 Make_Raise_Constraint_Error (Loc,
4696 Condition => Cond,
4697 Reason => CE_Length_Check_Failed));
4698 -- Questionable reason code, shouldn't that be a
4699 -- CE_Range_Check_Failed ???
4700 end if;
4701
4702 -- Now look inside the sub-aggregate to see if there is more work
4703
4704 if Dim < Aggr_Dimension then
4705
4706 -- Process positional components
4707
4708 if Present (Expressions (Sub_Aggr)) then
4709 Expr := First (Expressions (Sub_Aggr));
4710 while Present (Expr) loop
4711 Others_Check (Expr, Dim + 1);
4712 Next (Expr);
4713 end loop;
4714 end if;
4715
4716 -- Process component associations
4717
4718 if Present (Component_Associations (Sub_Aggr)) then
4719 Assoc := First (Component_Associations (Sub_Aggr));
4720 while Present (Assoc) loop
4721 Expr := Expression (Assoc);
4722 Others_Check (Expr, Dim + 1);
4723 Next (Assoc);
4724 end loop;
4725 end if;
4726 end if;
4727 end Others_Check;
4728
4729 -------------------------
4730 -- Safe_Left_Hand_Side --
4731 -------------------------
4732
4733 function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
4734 function Is_Safe_Index (Indx : Node_Id) return Boolean;
4735 -- If the left-hand side includes an indexed component, check that
4736 -- the indexes are free of side-effect.
4737
4738 -------------------
4739 -- Is_Safe_Index --
4740 -------------------
4741
4742 function Is_Safe_Index (Indx : Node_Id) return Boolean is
4743 begin
4744 if Is_Entity_Name (Indx) then
4745 return True;
4746
4747 elsif Nkind (Indx) = N_Integer_Literal then
4748 return True;
4749
4750 elsif Nkind (Indx) = N_Function_Call
4751 and then Is_Entity_Name (Name (Indx))
4752 and then
4753 Has_Pragma_Pure_Function (Entity (Name (Indx)))
4754 then
4755 return True;
4756
4757 elsif Nkind (Indx) = N_Type_Conversion
4758 and then Is_Safe_Index (Expression (Indx))
4759 then
4760 return True;
4761
4762 else
4763 return False;
4764 end if;
4765 end Is_Safe_Index;
4766
4767 -- Start of processing for Safe_Left_Hand_Side
4768
4769 begin
4770 if Is_Entity_Name (N) then
4771 return True;
4772
4773 elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
4774 and then Safe_Left_Hand_Side (Prefix (N))
4775 then
4776 return True;
4777
4778 elsif Nkind (N) = N_Indexed_Component
4779 and then Safe_Left_Hand_Side (Prefix (N))
4780 and then
4781 Is_Safe_Index (First (Expressions (N)))
4782 then
4783 return True;
4784
4785 elsif Nkind (N) = N_Unchecked_Type_Conversion then
4786 return Safe_Left_Hand_Side (Expression (N));
4787
4788 else
4789 return False;
4790 end if;
4791 end Safe_Left_Hand_Side;
4792
4793 -- Local variables
4794
4795 Tmp : Entity_Id;
4796 -- Holds the temporary aggregate value
4797
4798 Tmp_Decl : Node_Id;
4799 -- Holds the declaration of Tmp
4800
4801 Aggr_Code : List_Id;
4802 Parent_Node : Node_Id;
4803 Parent_Kind : Node_Kind;
4804
4805 -- Start of processing for Expand_Array_Aggregate
4806
4807 begin
4808 -- Do not touch the special aggregates of attributes used for Asm calls
4809
4810 if Is_RTE (Ctyp, RE_Asm_Input_Operand)
4811 or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
4812 then
4813 return;
4814
4815 -- Do not expand an aggregate for an array type which contains tasks if
4816 -- the aggregate is associated with an unexpanded return statement of a
4817 -- build-in-place function. The aggregate is expanded when the related
4818 -- return statement (rewritten into an extended return) is processed.
4819 -- This delay ensures that any temporaries and initialization code
4820 -- generated for the aggregate appear in the proper return block and
4821 -- use the correct _chain and _master.
4822
4823 elsif Has_Task (Base_Type (Etype (N)))
4824 and then Nkind (Parent (N)) = N_Simple_Return_Statement
4825 and then Is_Build_In_Place_Function
4826 (Return_Applies_To (Return_Statement_Entity (Parent (N))))
4827 then
4828 return;
4829 end if;
4830
4831 -- If the semantic analyzer has determined that aggregate N will raise
4832 -- Constraint_Error at run time, then the aggregate node has been
4833 -- replaced with an N_Raise_Constraint_Error node and we should
4834 -- never get here.
4835
4836 pragma Assert (not Raises_Constraint_Error (N));
4837
4838 -- STEP 1a
4839
4840 -- Check that the index range defined by aggregate bounds is
4841 -- compatible with corresponding index subtype.
4842
4843 Index_Compatibility_Check : declare
4844 Aggr_Index_Range : Node_Id := First_Index (Typ);
4845 -- The current aggregate index range
4846
4847 Index_Constraint : Node_Id := First_Index (Etype (Typ));
4848 -- The corresponding index constraint against which we have to
4849 -- check the above aggregate index range.
4850
4851 begin
4852 Compute_Others_Present (N, 1);
4853
4854 for J in 1 .. Aggr_Dimension loop
4855 -- There is no need to emit a check if an others choice is
4856 -- present for this array aggregate dimension since in this
4857 -- case one of N's sub-aggregates has taken its bounds from the
4858 -- context and these bounds must have been checked already. In
4859 -- addition all sub-aggregates corresponding to the same
4860 -- dimension must all have the same bounds (checked in (c) below).
4861
4862 if not Range_Checks_Suppressed (Etype (Index_Constraint))
4863 and then not Others_Present (J)
4864 then
4865 -- We don't use Checks.Apply_Range_Check here because it emits
4866 -- a spurious check. Namely it checks that the range defined by
4867 -- the aggregate bounds is non empty. But we know this already
4868 -- if we get here.
4869
4870 Check_Bounds (Aggr_Index_Range, Index_Constraint);
4871 end if;
4872
4873 -- Save the low and high bounds of the aggregate index as well as
4874 -- the index type for later use in checks (b) and (c) below.
4875
4876 Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
4877 Aggr_High (J) := High_Bound (Aggr_Index_Range);
4878
4879 Aggr_Index_Typ (J) := Etype (Index_Constraint);
4880
4881 Next_Index (Aggr_Index_Range);
4882 Next_Index (Index_Constraint);
4883 end loop;
4884 end Index_Compatibility_Check;
4885
4886 -- STEP 1b
4887
4888 -- If an others choice is present check that no aggregate index is
4889 -- outside the bounds of the index constraint.
4890
4891 Others_Check (N, 1);
4892
4893 -- STEP 1c
4894
4895 -- For multidimensional arrays make sure that all subaggregates
4896 -- corresponding to the same dimension have the same bounds.
4897
4898 if Aggr_Dimension > 1 then
4899 Check_Same_Aggr_Bounds (N, 1);
4900 end if;
4901
4902 -- STEP 1d
4903
4904 -- If we have a default component value, or simple initialization is
4905 -- required for the component type, then we replace <> in component
4906 -- associations by the required default value.
4907
4908 declare
4909 Default_Val : Node_Id;
4910 Assoc : Node_Id;
4911
4912 begin
4913 if (Present (Default_Aspect_Component_Value (Typ))
4914 or else Needs_Simple_Initialization (Ctyp))
4915 and then Present (Component_Associations (N))
4916 then
4917 Assoc := First (Component_Associations (N));
4918 while Present (Assoc) loop
4919 if Nkind (Assoc) = N_Component_Association
4920 and then Box_Present (Assoc)
4921 then
4922 Set_Box_Present (Assoc, False);
4923
4924 if Present (Default_Aspect_Component_Value (Typ)) then
4925 Default_Val := Default_Aspect_Component_Value (Typ);
4926 else
4927 Default_Val := Get_Simple_Init_Val (Ctyp, N);
4928 end if;
4929
4930 Set_Expression (Assoc, New_Copy_Tree (Default_Val));
4931 Analyze_And_Resolve (Expression (Assoc), Ctyp);
4932 end if;
4933
4934 Next (Assoc);
4935 end loop;
4936 end if;
4937 end;
4938
4939 -- STEP 2
4940
4941 -- Here we test for is packed array aggregate that we can handle at
4942 -- compile time. If so, return with transformation done. Note that we do
4943 -- this even if the aggregate is nested, because once we have done this
4944 -- processing, there is no more nested aggregate.
4945
4946 if Packed_Array_Aggregate_Handled (N) then
4947 return;
4948 end if;
4949
4950 -- At this point we try to convert to positional form
4951
4952 if Ekind (Current_Scope) = E_Package
4953 and then Static_Elaboration_Desired (Current_Scope)
4954 then
4955 Convert_To_Positional (N, Max_Others_Replicate => 100);
4956 else
4957 Convert_To_Positional (N);
4958 end if;
4959
4960 -- if the result is no longer an aggregate (e.g. it may be a string
4961 -- literal, or a temporary which has the needed value), then we are
4962 -- done, since there is no longer a nested aggregate.
4963
4964 if Nkind (N) /= N_Aggregate then
4965 return;
4966
4967 -- We are also done if the result is an analyzed aggregate, indicating
4968 -- that Convert_To_Positional succeeded and reanalyzed the rewritten
4969 -- aggregate.
4970
4971 elsif Analyzed (N)
4972 and then N /= Original_Node (N)
4973 then
4974 return;
4975 end if;
4976
4977 -- If all aggregate components are compile-time known and the aggregate
4978 -- has been flattened, nothing left to do. The same occurs if the
4979 -- aggregate is used to initialize the components of a statically
4980 -- allocated dispatch table.
4981
4982 if Compile_Time_Known_Aggregate (N)
4983 or else Is_Static_Dispatch_Table_Aggregate (N)
4984 then
4985 Set_Expansion_Delayed (N, False);
4986 return;
4987 end if;
4988
4989 -- Now see if back end processing is possible
4990
4991 if Backend_Processing_Possible (N) then
4992
4993 -- If the aggregate is static but the constraints are not, build
4994 -- a static subtype for the aggregate, so that Gigi can place it
4995 -- in static memory. Perform an unchecked_conversion to the non-
4996 -- static type imposed by the context.
4997
4998 declare
4999 Itype : constant Entity_Id := Etype (N);
5000 Index : Node_Id;
5001 Needs_Type : Boolean := False;
5002
5003 begin
5004 Index := First_Index (Itype);
5005 while Present (Index) loop
5006 if not Is_Static_Subtype (Etype (Index)) then
5007 Needs_Type := True;
5008 exit;
5009 else
5010 Next_Index (Index);
5011 end if;
5012 end loop;
5013
5014 if Needs_Type then
5015 Build_Constrained_Type (Positional => True);
5016 Rewrite (N, Unchecked_Convert_To (Itype, N));
5017 Analyze (N);
5018 end if;
5019 end;
5020
5021 return;
5022 end if;
5023
5024 -- STEP 3
5025
5026 -- Delay expansion for nested aggregates: it will be taken care of
5027 -- when the parent aggregate is expanded.
5028
5029 Parent_Node := Parent (N);
5030 Parent_Kind := Nkind (Parent_Node);
5031
5032 if Parent_Kind = N_Qualified_Expression then
5033 Parent_Node := Parent (Parent_Node);
5034 Parent_Kind := Nkind (Parent_Node);
5035 end if;
5036
5037 if Parent_Kind = N_Aggregate
5038 or else Parent_Kind = N_Extension_Aggregate
5039 or else Parent_Kind = N_Component_Association
5040 or else (Parent_Kind = N_Object_Declaration
5041 and then Needs_Finalization (Typ))
5042 or else (Parent_Kind = N_Assignment_Statement
5043 and then Inside_Init_Proc)
5044 then
5045 if Static_Array_Aggregate (N)
5046 or else Compile_Time_Known_Aggregate (N)
5047 then
5048 Set_Expansion_Delayed (N, False);
5049 return;
5050 else
5051 Set_Expansion_Delayed (N);
5052 return;
5053 end if;
5054 end if;
5055
5056 -- STEP 4
5057
5058 -- Look if in place aggregate expansion is possible
5059
5060 -- For object declarations we build the aggregate in place, unless
5061 -- the array is bit-packed or the component is controlled.
5062
5063 -- For assignments we do the assignment in place if all the component
5064 -- associations have compile-time known values. For other cases we
5065 -- create a temporary. The analysis for safety of on-line assignment
5066 -- is delicate, i.e. we don't know how to do it fully yet ???
5067
5068 -- For allocators we assign to the designated object in place if the
5069 -- aggregate meets the same conditions as other in-place assignments.
5070 -- In this case the aggregate may not come from source but was created
5071 -- for default initialization, e.g. with Initialize_Scalars.
5072
5073 if Requires_Transient_Scope (Typ) then
5074 Establish_Transient_Scope
5075 (N, Sec_Stack => Has_Controlled_Component (Typ));
5076 end if;
5077
5078 if Has_Default_Init_Comps (N) then
5079 Maybe_In_Place_OK := False;
5080
5081 elsif Is_Bit_Packed_Array (Typ)
5082 or else Has_Controlled_Component (Typ)
5083 then
5084 Maybe_In_Place_OK := False;
5085
5086 else
5087 Maybe_In_Place_OK :=
5088 (Nkind (Parent (N)) = N_Assignment_Statement
5089 and then Comes_From_Source (N)
5090 and then In_Place_Assign_OK)
5091
5092 or else
5093 (Nkind (Parent (Parent (N))) = N_Allocator
5094 and then In_Place_Assign_OK);
5095 end if;
5096
5097 -- If this is an array of tasks, it will be expanded into build-in-place
5098 -- assignments. Build an activation chain for the tasks now.
5099
5100 if Has_Task (Etype (N)) then
5101 Build_Activation_Chain_Entity (N);
5102 end if;
5103
5104 -- Perform in-place expansion of aggregate in an object declaration.
5105 -- Note: actions generated for the aggregate will be captured in an
5106 -- expression-with-actions statement so that they can be transferred
5107 -- to freeze actions later if there is an address clause for the
5108 -- object. (Note: we don't use a block statement because this would
5109 -- cause generated freeze nodes to be elaborated in the wrong scope).
5110
5111 -- Should document these individual tests ???
5112
5113 if not Has_Default_Init_Comps (N)
5114 and then Comes_From_Source (Parent_Node)
5115 and then Parent_Kind = N_Object_Declaration
5116 and then not
5117 Must_Slide (Etype (Defining_Identifier (Parent_Node)), Typ)
5118 and then N = Expression (Parent_Node)
5119 and then not Is_Bit_Packed_Array (Typ)
5120 and then not Has_Controlled_Component (Typ)
5121 then
5122 Tmp := Defining_Identifier (Parent (N));
5123 Set_No_Initialization (Parent (N));
5124 Set_Expression (Parent (N), Empty);
5125
5126 -- Set the type of the entity, for use in the analysis of the
5127 -- subsequent indexed assignments. If the nominal type is not
5128 -- constrained, build a subtype from the known bounds of the
5129 -- aggregate. If the declaration has a subtype mark, use it,
5130 -- otherwise use the itype of the aggregate.
5131
5132 if not Is_Constrained (Typ) then
5133 Build_Constrained_Type (Positional => False);
5134 elsif Is_Entity_Name (Object_Definition (Parent (N)))
5135 and then Is_Constrained (Entity (Object_Definition (Parent (N))))
5136 then
5137 Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
5138 else
5139 Set_Size_Known_At_Compile_Time (Typ, False);
5140 Set_Etype (Tmp, Typ);
5141 end if;
5142
5143 elsif Maybe_In_Place_OK
5144 and then Nkind (Parent (N)) = N_Qualified_Expression
5145 and then Nkind (Parent (Parent (N))) = N_Allocator
5146 then
5147 Set_Expansion_Delayed (N);
5148 return;
5149
5150 -- In the remaining cases the aggregate is the RHS of an assignment
5151
5152 elsif Maybe_In_Place_OK
5153 and then Safe_Left_Hand_Side (Name (Parent (N)))
5154 then
5155 Tmp := Name (Parent (N));
5156
5157 if Etype (Tmp) /= Etype (N) then
5158 Apply_Length_Check (N, Etype (Tmp));
5159
5160 if Nkind (N) = N_Raise_Constraint_Error then
5161
5162 -- Static error, nothing further to expand
5163
5164 return;
5165 end if;
5166 end if;
5167
5168 elsif Maybe_In_Place_OK
5169 and then Nkind (Name (Parent (N))) = N_Slice
5170 and then Safe_Slice_Assignment (N)
5171 then
5172 -- Safe_Slice_Assignment rewrites assignment as a loop
5173
5174 return;
5175
5176 -- Step 5
5177
5178 -- In place aggregate expansion is not possible
5179
5180 else
5181 Maybe_In_Place_OK := False;
5182 Tmp := Make_Temporary (Loc, 'A', N);
5183 Tmp_Decl :=
5184 Make_Object_Declaration
5185 (Loc,
5186 Defining_Identifier => Tmp,
5187 Object_Definition => New_Occurrence_Of (Typ, Loc));
5188 Set_No_Initialization (Tmp_Decl, True);
5189
5190 -- If we are within a loop, the temporary will be pushed on the
5191 -- stack at each iteration. If the aggregate is the expression for an
5192 -- allocator, it will be immediately copied to the heap and can
5193 -- be reclaimed at once. We create a transient scope around the
5194 -- aggregate for this purpose.
5195
5196 if Ekind (Current_Scope) = E_Loop
5197 and then Nkind (Parent (Parent (N))) = N_Allocator
5198 then
5199 Establish_Transient_Scope (N, False);
5200 end if;
5201
5202 Insert_Action (N, Tmp_Decl);
5203 end if;
5204
5205 -- Construct and insert the aggregate code. We can safely suppress index
5206 -- checks because this code is guaranteed not to raise CE on index
5207 -- checks. However we should *not* suppress all checks.
5208
5209 declare
5210 Target : Node_Id;
5211
5212 begin
5213 if Nkind (Tmp) = N_Defining_Identifier then
5214 Target := New_Occurrence_Of (Tmp, Loc);
5215
5216 else
5217
5218 if Has_Default_Init_Comps (N) then
5219
5220 -- Ada 2005 (AI-287): This case has not been analyzed???
5221
5222 raise Program_Error;
5223 end if;
5224
5225 -- Name in assignment is explicit dereference
5226
5227 Target := New_Copy (Tmp);
5228 end if;
5229
5230 Aggr_Code :=
5231 Build_Array_Aggr_Code (N,
5232 Ctype => Ctyp,
5233 Index => First_Index (Typ),
5234 Into => Target,
5235 Scalar_Comp => Is_Scalar_Type (Ctyp));
5236 end;
5237
5238 if Comes_From_Source (Tmp) then
5239 declare
5240 Node_After : constant Node_Id := Next (Parent_Node);
5241
5242 begin
5243 Insert_Actions_After (Parent_Node, Aggr_Code);
5244
5245 if Parent_Kind = N_Object_Declaration then
5246 Collect_Initialization_Statements
5247 (Obj => Tmp, N => Parent_Node, Node_After => Node_After);
5248 end if;
5249 end;
5250
5251 else
5252 Insert_Actions (N, Aggr_Code);
5253 end if;
5254
5255 -- If the aggregate has been assigned in place, remove the original
5256 -- assignment.
5257
5258 if Nkind (Parent (N)) = N_Assignment_Statement
5259 and then Maybe_In_Place_OK
5260 then
5261 Rewrite (Parent (N), Make_Null_Statement (Loc));
5262
5263 elsif Nkind (Parent (N)) /= N_Object_Declaration
5264 or else Tmp /= Defining_Identifier (Parent (N))
5265 then
5266 Rewrite (N, New_Occurrence_Of (Tmp, Loc));
5267 Analyze_And_Resolve (N, Typ);
5268 end if;
5269 end Expand_Array_Aggregate;
5270
5271 ------------------------
5272 -- Expand_N_Aggregate --
5273 ------------------------
5274
5275 procedure Expand_N_Aggregate (N : Node_Id) is
5276 begin
5277 -- Record aggregate case
5278
5279 if Is_Record_Type (Etype (N)) then
5280 Expand_Record_Aggregate (N);
5281
5282 -- Array aggregate case
5283
5284 else
5285 -- A special case, if we have a string subtype with bounds 1 .. N,
5286 -- where N is known at compile time, and the aggregate is of the
5287 -- form (others => 'x'), with a single choice and no expressions,
5288 -- and N is less than 80 (an arbitrary limit for now), then replace
5289 -- the aggregate by the equivalent string literal (but do not mark
5290 -- it as static since it is not).
5291
5292 -- Note: this entire circuit is redundant with respect to code in
5293 -- Expand_Array_Aggregate that collapses others choices to positional
5294 -- form, but there are two problems with that circuit:
5295
5296 -- a) It is limited to very small cases due to ill-understood
5297 -- interactions with bootstrapping. That limit is removed by
5298 -- use of the No_Implicit_Loops restriction.
5299
5300 -- b) It incorrectly ends up with the resulting expressions being
5301 -- considered static when they are not. For example, the
5302 -- following test should fail:
5303
5304 -- pragma Restrictions (No_Implicit_Loops);
5305 -- package NonSOthers4 is
5306 -- B : constant String (1 .. 6) := (others => 'A');
5307 -- DH : constant String (1 .. 8) := B & "BB";
5308 -- X : Integer;
5309 -- pragma Export (C, X, Link_Name => DH);
5310 -- end;
5311
5312 -- But it succeeds (DH looks static to pragma Export)
5313
5314 -- To be sorted out ???
5315
5316 if Present (Component_Associations (N)) then
5317 declare
5318 CA : constant Node_Id := First (Component_Associations (N));
5319 MX : constant := 80;
5320
5321 begin
5322 if Nkind (First (Choices (CA))) = N_Others_Choice
5323 and then Nkind (Expression (CA)) = N_Character_Literal
5324 and then No (Expressions (N))
5325 then
5326 declare
5327 T : constant Entity_Id := Etype (N);
5328 X : constant Node_Id := First_Index (T);
5329 EC : constant Node_Id := Expression (CA);
5330 CV : constant Uint := Char_Literal_Value (EC);
5331 CC : constant Int := UI_To_Int (CV);
5332
5333 begin
5334 if Nkind (X) = N_Range
5335 and then Compile_Time_Known_Value (Low_Bound (X))
5336 and then Expr_Value (Low_Bound (X)) = 1
5337 and then Compile_Time_Known_Value (High_Bound (X))
5338 then
5339 declare
5340 Hi : constant Uint := Expr_Value (High_Bound (X));
5341
5342 begin
5343 if Hi <= MX then
5344 Start_String;
5345
5346 for J in 1 .. UI_To_Int (Hi) loop
5347 Store_String_Char (Char_Code (CC));
5348 end loop;
5349
5350 Rewrite (N,
5351 Make_String_Literal (Sloc (N),
5352 Strval => End_String));
5353
5354 if CC >= Int (2 ** 16) then
5355 Set_Has_Wide_Wide_Character (N);
5356 elsif CC >= Int (2 ** 8) then
5357 Set_Has_Wide_Character (N);
5358 end if;
5359
5360 Analyze_And_Resolve (N, T);
5361 Set_Is_Static_Expression (N, False);
5362 return;
5363 end if;
5364 end;
5365 end if;
5366 end;
5367 end if;
5368 end;
5369 end if;
5370
5371 -- Not that special case, so normal expansion of array aggregate
5372
5373 Expand_Array_Aggregate (N);
5374 end if;
5375 exception
5376 when RE_Not_Available =>
5377 return;
5378 end Expand_N_Aggregate;
5379
5380 ----------------------------------
5381 -- Expand_N_Extension_Aggregate --
5382 ----------------------------------
5383
5384 -- If the ancestor part is an expression, add a component association for
5385 -- the parent field. If the type of the ancestor part is not the direct
5386 -- parent of the expected type, build recursively the needed ancestors.
5387 -- If the ancestor part is a subtype_mark, replace aggregate with a decla-
5388 -- ration for a temporary of the expected type, followed by individual
5389 -- assignments to the given components.
5390
5391 procedure Expand_N_Extension_Aggregate (N : Node_Id) is
5392 Loc : constant Source_Ptr := Sloc (N);
5393 A : constant Node_Id := Ancestor_Part (N);
5394 Typ : constant Entity_Id := Etype (N);
5395
5396 begin
5397 -- If the ancestor is a subtype mark, an init proc must be called
5398 -- on the resulting object which thus has to be materialized in
5399 -- the front-end
5400
5401 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
5402 Convert_To_Assignments (N, Typ);
5403
5404 -- The extension aggregate is transformed into a record aggregate
5405 -- of the following form (c1 and c2 are inherited components)
5406
5407 -- (Exp with c3 => a, c4 => b)
5408 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
5409
5410 else
5411 Set_Etype (N, Typ);
5412
5413 if Tagged_Type_Expansion then
5414 Expand_Record_Aggregate (N,
5415 Orig_Tag =>
5416 New_Occurrence_Of
5417 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
5418 Parent_Expr => A);
5419
5420 -- No tag is needed in the case of a VM
5421
5422 else
5423 Expand_Record_Aggregate (N, Parent_Expr => A);
5424 end if;
5425 end if;
5426
5427 exception
5428 when RE_Not_Available =>
5429 return;
5430 end Expand_N_Extension_Aggregate;
5431
5432 -----------------------------
5433 -- Expand_Record_Aggregate --
5434 -----------------------------
5435
5436 procedure Expand_Record_Aggregate
5437 (N : Node_Id;
5438 Orig_Tag : Node_Id := Empty;
5439 Parent_Expr : Node_Id := Empty)
5440 is
5441 Loc : constant Source_Ptr := Sloc (N);
5442 Comps : constant List_Id := Component_Associations (N);
5443 Typ : constant Entity_Id := Etype (N);
5444 Base_Typ : constant Entity_Id := Base_Type (Typ);
5445
5446 Static_Components : Boolean := True;
5447 -- Flag to indicate whether all components are compile-time known,
5448 -- and the aggregate can be constructed statically and handled by
5449 -- the back-end.
5450
5451 function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
5452 -- Returns true if N is an expression of composite type which can be
5453 -- fully evaluated at compile time without raising constraint error.
5454 -- Such expressions can be passed as is to Gigi without any expansion.
5455 --
5456 -- This returns true for N_Aggregate with Compile_Time_Known_Aggregate
5457 -- set and constants whose expression is such an aggregate, recursively.
5458
5459 function Component_Not_OK_For_Backend return Boolean;
5460 -- Check for presence of a component which makes it impossible for the
5461 -- backend to process the aggregate, thus requiring the use of a series
5462 -- of assignment statements. Cases checked for are a nested aggregate
5463 -- needing Late_Expansion, the presence of a tagged component which may
5464 -- need tag adjustment, and a bit unaligned component reference.
5465 --
5466 -- We also force expansion into assignments if a component is of a
5467 -- mutable type (including a private type with discriminants) because
5468 -- in that case the size of the component to be copied may be smaller
5469 -- than the side of the target, and there is no simple way for gigi
5470 -- to compute the size of the object to be copied.
5471 --
5472 -- NOTE: This is part of the ongoing work to define precisely the
5473 -- interface between front-end and back-end handling of aggregates.
5474 -- In general it is desirable to pass aggregates as they are to gigi,
5475 -- in order to minimize elaboration code. This is one case where the
5476 -- semantics of Ada complicate the analysis and lead to anomalies in
5477 -- the gcc back-end if the aggregate is not expanded into assignments.
5478
5479 function Has_Visible_Private_Ancestor (Id : E) return Boolean;
5480 -- If any ancestor of the current type is private, the aggregate
5481 -- cannot be built in place. We cannot rely on Has_Private_Ancestor,
5482 -- because it will not be set when type and its parent are in the
5483 -- same scope, and the parent component needs expansion.
5484
5485 function Top_Level_Aggregate (N : Node_Id) return Node_Id;
5486 -- For nested aggregates return the ultimate enclosing aggregate; for
5487 -- non-nested aggregates return N.
5488
5489 ----------------------------------------
5490 -- Compile_Time_Known_Composite_Value --
5491 ----------------------------------------
5492
5493 function Compile_Time_Known_Composite_Value
5494 (N : Node_Id) return Boolean
5495 is
5496 begin
5497 -- If we have an entity name, then see if it is the name of a
5498 -- constant and if so, test the corresponding constant value.
5499
5500 if Is_Entity_Name (N) then
5501 declare
5502 E : constant Entity_Id := Entity (N);
5503 V : Node_Id;
5504 begin
5505 if Ekind (E) /= E_Constant then
5506 return False;
5507 else
5508 V := Constant_Value (E);
5509 return Present (V)
5510 and then Compile_Time_Known_Composite_Value (V);
5511 end if;
5512 end;
5513
5514 -- We have a value, see if it is compile time known
5515
5516 else
5517 if Nkind (N) = N_Aggregate then
5518 return Compile_Time_Known_Aggregate (N);
5519 end if;
5520
5521 -- All other types of values are not known at compile time
5522
5523 return False;
5524 end if;
5525
5526 end Compile_Time_Known_Composite_Value;
5527
5528 ----------------------------------
5529 -- Component_Not_OK_For_Backend --
5530 ----------------------------------
5531
5532 function Component_Not_OK_For_Backend return Boolean is
5533 C : Node_Id;
5534 Expr_Q : Node_Id;
5535
5536 begin
5537 if No (Comps) then
5538 return False;
5539 end if;
5540
5541 C := First (Comps);
5542 while Present (C) loop
5543
5544 -- If the component has box initialization, expansion is needed
5545 -- and component is not ready for backend.
5546
5547 if Box_Present (C) then
5548 return True;
5549 end if;
5550
5551 if Nkind (Expression (C)) = N_Qualified_Expression then
5552 Expr_Q := Expression (Expression (C));
5553 else
5554 Expr_Q := Expression (C);
5555 end if;
5556
5557 -- Return true if the aggregate has any associations for tagged
5558 -- components that may require tag adjustment.
5559
5560 -- These are cases where the source expression may have a tag that
5561 -- could differ from the component tag (e.g., can occur for type
5562 -- conversions and formal parameters). (Tag adjustment not needed
5563 -- if VM_Target because object tags are implicit in the machine.)
5564
5565 if Is_Tagged_Type (Etype (Expr_Q))
5566 and then (Nkind (Expr_Q) = N_Type_Conversion
5567 or else (Is_Entity_Name (Expr_Q)
5568 and then
5569 Ekind (Entity (Expr_Q)) in Formal_Kind))
5570 and then Tagged_Type_Expansion
5571 then
5572 Static_Components := False;
5573 return True;
5574
5575 elsif Is_Delayed_Aggregate (Expr_Q) then
5576 Static_Components := False;
5577 return True;
5578
5579 elsif Possible_Bit_Aligned_Component (Expr_Q) then
5580 Static_Components := False;
5581 return True;
5582 end if;
5583
5584 if Is_Elementary_Type (Etype (Expr_Q)) then
5585 if not Compile_Time_Known_Value (Expr_Q) then
5586 Static_Components := False;
5587 end if;
5588
5589 elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
5590 Static_Components := False;
5591
5592 if Is_Private_Type (Etype (Expr_Q))
5593 and then Has_Discriminants (Etype (Expr_Q))
5594 then
5595 return True;
5596 end if;
5597 end if;
5598
5599 Next (C);
5600 end loop;
5601
5602 return False;
5603 end Component_Not_OK_For_Backend;
5604
5605 -----------------------------------
5606 -- Has_Visible_Private_Ancestor --
5607 -----------------------------------
5608
5609 function Has_Visible_Private_Ancestor (Id : E) return Boolean is
5610 R : constant Entity_Id := Root_Type (Id);
5611 T1 : Entity_Id := Id;
5612
5613 begin
5614 loop
5615 if Is_Private_Type (T1) then
5616 return True;
5617
5618 elsif T1 = R then
5619 return False;
5620
5621 else
5622 T1 := Etype (T1);
5623 end if;
5624 end loop;
5625 end Has_Visible_Private_Ancestor;
5626
5627 -------------------------
5628 -- Top_Level_Aggregate --
5629 -------------------------
5630
5631 function Top_Level_Aggregate (N : Node_Id) return Node_Id is
5632 Aggr : Node_Id;
5633
5634 begin
5635 Aggr := N;
5636 while Present (Parent (Aggr))
5637 and then Nkind_In (Parent (Aggr), N_Component_Association,
5638 N_Aggregate)
5639 loop
5640 Aggr := Parent (Aggr);
5641 end loop;
5642
5643 return Aggr;
5644 end Top_Level_Aggregate;
5645
5646 -- Local variables
5647
5648 Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
5649 Tag_Value : Node_Id;
5650 Comp : Entity_Id;
5651 New_Comp : Node_Id;
5652
5653 -- Start of processing for Expand_Record_Aggregate
5654
5655 begin
5656 -- If the aggregate is to be assigned to an atomic variable, we
5657 -- have to prevent a piecemeal assignment even if the aggregate
5658 -- is to be expanded. We create a temporary for the aggregate, and
5659 -- assign the temporary instead, so that the back end can generate
5660 -- an atomic move for it.
5661
5662 if Is_Atomic (Typ)
5663 and then Comes_From_Source (Parent (N))
5664 and then Is_Atomic_Aggregate (N, Typ)
5665 then
5666 return;
5667
5668 -- No special management required for aggregates used to initialize
5669 -- statically allocated dispatch tables
5670
5671 elsif Is_Static_Dispatch_Table_Aggregate (N) then
5672 return;
5673 end if;
5674
5675 -- Ada 2005 (AI-318-2): We need to convert to assignments if components
5676 -- are build-in-place function calls. The assignments will each turn
5677 -- into a build-in-place function call. If components are all static,
5678 -- we can pass the aggregate to the backend regardless of limitedness.
5679
5680 -- Extension aggregates, aggregates in extended return statements, and
5681 -- aggregates for C++ imported types must be expanded.
5682
5683 if Ada_Version >= Ada_2005 and then Is_Limited_View (Typ) then
5684 if not Nkind_In (Parent (N), N_Object_Declaration,
5685 N_Component_Association)
5686 then
5687 Convert_To_Assignments (N, Typ);
5688
5689 elsif Nkind (N) = N_Extension_Aggregate
5690 or else Convention (Typ) = Convention_CPP
5691 then
5692 Convert_To_Assignments (N, Typ);
5693
5694 elsif not Size_Known_At_Compile_Time (Typ)
5695 or else Component_Not_OK_For_Backend
5696 or else not Static_Components
5697 then
5698 Convert_To_Assignments (N, Typ);
5699
5700 else
5701 Set_Compile_Time_Known_Aggregate (N);
5702 Set_Expansion_Delayed (N, False);
5703 end if;
5704
5705 -- Gigi doesn't properly handle temporaries of variable size so we
5706 -- generate it in the front-end
5707
5708 elsif not Size_Known_At_Compile_Time (Typ)
5709 and then Tagged_Type_Expansion
5710 then
5711 Convert_To_Assignments (N, Typ);
5712
5713 -- An aggregate used to initialize a controlled object must be turned
5714 -- into component assignments as the components themselves may require
5715 -- finalization actions such as adjustment.
5716
5717 elsif Needs_Finalization (Typ) then
5718 Convert_To_Assignments (N, Typ);
5719
5720 -- Ada 2005 (AI-287): In case of default initialized components we
5721 -- convert the aggregate into assignments.
5722
5723 elsif Has_Default_Init_Comps (N) then
5724 Convert_To_Assignments (N, Typ);
5725
5726 -- Check components
5727
5728 elsif Component_Not_OK_For_Backend then
5729 Convert_To_Assignments (N, Typ);
5730
5731 -- If an ancestor is private, some components are not inherited and we
5732 -- cannot expand into a record aggregate.
5733
5734 elsif Has_Visible_Private_Ancestor (Typ) then
5735 Convert_To_Assignments (N, Typ);
5736
5737 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
5738 -- is not able to handle the aggregate for Late_Request.
5739
5740 elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
5741 Convert_To_Assignments (N, Typ);
5742
5743 -- If the tagged types covers interface types we need to initialize all
5744 -- hidden components containing pointers to secondary dispatch tables.
5745
5746 elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
5747 Convert_To_Assignments (N, Typ);
5748
5749 -- If some components are mutable, the size of the aggregate component
5750 -- may be distinct from the default size of the type component, so
5751 -- we need to expand to insure that the back-end copies the proper
5752 -- size of the data. However, if the aggregate is the initial value of
5753 -- a constant, the target is immutable and might be built statically
5754 -- if components are appropriate.
5755
5756 elsif Has_Mutable_Components (Typ)
5757 and then
5758 (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
5759 or else not Constant_Present (Parent (Top_Level_Aggr))
5760 or else not Static_Components)
5761 then
5762 Convert_To_Assignments (N, Typ);
5763
5764 -- If the type involved has bit aligned components, then we are not sure
5765 -- that the back end can handle this case correctly.
5766
5767 elsif Type_May_Have_Bit_Aligned_Components (Typ) then
5768 Convert_To_Assignments (N, Typ);
5769
5770 -- In all other cases, build a proper aggregate to be handled by gigi
5771
5772 else
5773 if Nkind (N) = N_Aggregate then
5774
5775 -- If the aggregate is static and can be handled by the back-end,
5776 -- nothing left to do.
5777
5778 if Static_Components then
5779 Set_Compile_Time_Known_Aggregate (N);
5780 Set_Expansion_Delayed (N, False);
5781 end if;
5782 end if;
5783
5784 -- If no discriminants, nothing special to do
5785
5786 if not Has_Discriminants (Typ) then
5787 null;
5788
5789 -- Case of discriminants present
5790
5791 elsif Is_Derived_Type (Typ) then
5792
5793 -- For untagged types, non-stored discriminants are replaced
5794 -- with stored discriminants, which are the ones that gigi uses
5795 -- to describe the type and its components.
5796
5797 Generate_Aggregate_For_Derived_Type : declare
5798 Constraints : constant List_Id := New_List;
5799 First_Comp : Node_Id;
5800 Discriminant : Entity_Id;
5801 Decl : Node_Id;
5802 Num_Disc : Int := 0;
5803 Num_Gird : Int := 0;
5804
5805 procedure Prepend_Stored_Values (T : Entity_Id);
5806 -- Scan the list of stored discriminants of the type, and add
5807 -- their values to the aggregate being built.
5808
5809 ---------------------------
5810 -- Prepend_Stored_Values --
5811 ---------------------------
5812
5813 procedure Prepend_Stored_Values (T : Entity_Id) is
5814 begin
5815 Discriminant := First_Stored_Discriminant (T);
5816 while Present (Discriminant) loop
5817 New_Comp :=
5818 Make_Component_Association (Loc,
5819 Choices =>
5820 New_List (New_Occurrence_Of (Discriminant, Loc)),
5821
5822 Expression =>
5823 New_Copy_Tree (
5824 Get_Discriminant_Value (
5825 Discriminant,
5826 Typ,
5827 Discriminant_Constraint (Typ))));
5828
5829 if No (First_Comp) then
5830 Prepend_To (Component_Associations (N), New_Comp);
5831 else
5832 Insert_After (First_Comp, New_Comp);
5833 end if;
5834
5835 First_Comp := New_Comp;
5836 Next_Stored_Discriminant (Discriminant);
5837 end loop;
5838 end Prepend_Stored_Values;
5839
5840 -- Start of processing for Generate_Aggregate_For_Derived_Type
5841
5842 begin
5843 -- Remove the associations for the discriminant of derived type
5844
5845 First_Comp := First (Component_Associations (N));
5846 while Present (First_Comp) loop
5847 Comp := First_Comp;
5848 Next (First_Comp);
5849
5850 if Ekind (Entity
5851 (First (Choices (Comp)))) = E_Discriminant
5852 then
5853 Remove (Comp);
5854 Num_Disc := Num_Disc + 1;
5855 end if;
5856 end loop;
5857
5858 -- Insert stored discriminant associations in the correct
5859 -- order. If there are more stored discriminants than new
5860 -- discriminants, there is at least one new discriminant that
5861 -- constrains more than one of the stored discriminants. In
5862 -- this case we need to construct a proper subtype of the
5863 -- parent type, in order to supply values to all the
5864 -- components. Otherwise there is one-one correspondence
5865 -- between the constraints and the stored discriminants.
5866
5867 First_Comp := Empty;
5868
5869 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
5870 while Present (Discriminant) loop
5871 Num_Gird := Num_Gird + 1;
5872 Next_Stored_Discriminant (Discriminant);
5873 end loop;
5874
5875 -- Case of more stored discriminants than new discriminants
5876
5877 if Num_Gird > Num_Disc then
5878
5879 -- Create a proper subtype of the parent type, which is the
5880 -- proper implementation type for the aggregate, and convert
5881 -- it to the intended target type.
5882
5883 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
5884 while Present (Discriminant) loop
5885 New_Comp :=
5886 New_Copy_Tree (
5887 Get_Discriminant_Value (
5888 Discriminant,
5889 Typ,
5890 Discriminant_Constraint (Typ)));
5891 Append (New_Comp, Constraints);
5892 Next_Stored_Discriminant (Discriminant);
5893 end loop;
5894
5895 Decl :=
5896 Make_Subtype_Declaration (Loc,
5897 Defining_Identifier => Make_Temporary (Loc, 'T'),
5898 Subtype_Indication =>
5899 Make_Subtype_Indication (Loc,
5900 Subtype_Mark =>
5901 New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
5902 Constraint =>
5903 Make_Index_Or_Discriminant_Constraint
5904 (Loc, Constraints)));
5905
5906 Insert_Action (N, Decl);
5907 Prepend_Stored_Values (Base_Type (Typ));
5908
5909 Set_Etype (N, Defining_Identifier (Decl));
5910 Set_Analyzed (N);
5911
5912 Rewrite (N, Unchecked_Convert_To (Typ, N));
5913 Analyze (N);
5914
5915 -- Case where we do not have fewer new discriminants than
5916 -- stored discriminants, so in this case we can simply use the
5917 -- stored discriminants of the subtype.
5918
5919 else
5920 Prepend_Stored_Values (Typ);
5921 end if;
5922 end Generate_Aggregate_For_Derived_Type;
5923 end if;
5924
5925 if Is_Tagged_Type (Typ) then
5926
5927 -- In the tagged case, _parent and _tag component must be created
5928
5929 -- Reset Null_Present unconditionally. Tagged records always have
5930 -- at least one field (the tag or the parent).
5931
5932 Set_Null_Record_Present (N, False);
5933
5934 -- When the current aggregate comes from the expansion of an
5935 -- extension aggregate, the parent expr is replaced by an
5936 -- aggregate formed by selected components of this expr.
5937
5938 if Present (Parent_Expr)
5939 and then Is_Empty_List (Comps)
5940 then
5941 Comp := First_Component_Or_Discriminant (Typ);
5942 while Present (Comp) loop
5943
5944 -- Skip all expander-generated components
5945
5946 if
5947 not Comes_From_Source (Original_Record_Component (Comp))
5948 then
5949 null;
5950
5951 else
5952 New_Comp :=
5953 Make_Selected_Component (Loc,
5954 Prefix =>
5955 Unchecked_Convert_To (Typ,
5956 Duplicate_Subexpr (Parent_Expr, True)),
5957
5958 Selector_Name => New_Occurrence_Of (Comp, Loc));
5959
5960 Append_To (Comps,
5961 Make_Component_Association (Loc,
5962 Choices =>
5963 New_List (New_Occurrence_Of (Comp, Loc)),
5964 Expression =>
5965 New_Comp));
5966
5967 Analyze_And_Resolve (New_Comp, Etype (Comp));
5968 end if;
5969
5970 Next_Component_Or_Discriminant (Comp);
5971 end loop;
5972 end if;
5973
5974 -- Compute the value for the Tag now, if the type is a root it
5975 -- will be included in the aggregate right away, otherwise it will
5976 -- be propagated to the parent aggregate.
5977
5978 if Present (Orig_Tag) then
5979 Tag_Value := Orig_Tag;
5980 elsif not Tagged_Type_Expansion then
5981 Tag_Value := Empty;
5982 else
5983 Tag_Value :=
5984 New_Occurrence_Of
5985 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
5986 end if;
5987
5988 -- For a derived type, an aggregate for the parent is formed with
5989 -- all the inherited components.
5990
5991 if Is_Derived_Type (Typ) then
5992
5993 declare
5994 First_Comp : Node_Id;
5995 Parent_Comps : List_Id;
5996 Parent_Aggr : Node_Id;
5997 Parent_Name : Node_Id;
5998
5999 begin
6000 -- Remove the inherited component association from the
6001 -- aggregate and store them in the parent aggregate
6002
6003 First_Comp := First (Component_Associations (N));
6004 Parent_Comps := New_List;
6005 while Present (First_Comp)
6006 and then Scope (Original_Record_Component (
6007 Entity (First (Choices (First_Comp))))) /= Base_Typ
6008 loop
6009 Comp := First_Comp;
6010 Next (First_Comp);
6011 Remove (Comp);
6012 Append (Comp, Parent_Comps);
6013 end loop;
6014
6015 Parent_Aggr := Make_Aggregate (Loc,
6016 Component_Associations => Parent_Comps);
6017 Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
6018
6019 -- Find the _parent component
6020
6021 Comp := First_Component (Typ);
6022 while Chars (Comp) /= Name_uParent loop
6023 Comp := Next_Component (Comp);
6024 end loop;
6025
6026 Parent_Name := New_Occurrence_Of (Comp, Loc);
6027
6028 -- Insert the parent aggregate
6029
6030 Prepend_To (Component_Associations (N),
6031 Make_Component_Association (Loc,
6032 Choices => New_List (Parent_Name),
6033 Expression => Parent_Aggr));
6034
6035 -- Expand recursively the parent propagating the right Tag
6036
6037 Expand_Record_Aggregate
6038 (Parent_Aggr, Tag_Value, Parent_Expr);
6039
6040 -- The ancestor part may be a nested aggregate that has
6041 -- delayed expansion: recheck now.
6042
6043 if Component_Not_OK_For_Backend then
6044 Convert_To_Assignments (N, Typ);
6045 end if;
6046 end;
6047
6048 -- For a root type, the tag component is added (unless compiling
6049 -- for the VMs, where tags are implicit).
6050
6051 elsif Tagged_Type_Expansion then
6052 declare
6053 Tag_Name : constant Node_Id :=
6054 New_Occurrence_Of (First_Tag_Component (Typ), Loc);
6055 Typ_Tag : constant Entity_Id := RTE (RE_Tag);
6056 Conv_Node : constant Node_Id :=
6057 Unchecked_Convert_To (Typ_Tag, Tag_Value);
6058
6059 begin
6060 Set_Etype (Conv_Node, Typ_Tag);
6061 Prepend_To (Component_Associations (N),
6062 Make_Component_Association (Loc,
6063 Choices => New_List (Tag_Name),
6064 Expression => Conv_Node));
6065 end;
6066 end if;
6067 end if;
6068 end if;
6069
6070 end Expand_Record_Aggregate;
6071
6072 ----------------------------
6073 -- Has_Default_Init_Comps --
6074 ----------------------------
6075
6076 function Has_Default_Init_Comps (N : Node_Id) return Boolean is
6077 Comps : constant List_Id := Component_Associations (N);
6078 C : Node_Id;
6079 Expr : Node_Id;
6080 begin
6081 pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
6082
6083 if No (Comps) then
6084 return False;
6085 end if;
6086
6087 if Has_Self_Reference (N) then
6088 return True;
6089 end if;
6090
6091 -- Check if any direct component has default initialized components
6092
6093 C := First (Comps);
6094 while Present (C) loop
6095 if Box_Present (C) then
6096 return True;
6097 end if;
6098
6099 Next (C);
6100 end loop;
6101
6102 -- Recursive call in case of aggregate expression
6103
6104 C := First (Comps);
6105 while Present (C) loop
6106 Expr := Expression (C);
6107
6108 if Present (Expr)
6109 and then
6110 Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
6111 and then Has_Default_Init_Comps (Expr)
6112 then
6113 return True;
6114 end if;
6115
6116 Next (C);
6117 end loop;
6118
6119 return False;
6120 end Has_Default_Init_Comps;
6121
6122 --------------------------
6123 -- Is_Delayed_Aggregate --
6124 --------------------------
6125
6126 function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
6127 Node : Node_Id := N;
6128 Kind : Node_Kind := Nkind (Node);
6129
6130 begin
6131 if Kind = N_Qualified_Expression then
6132 Node := Expression (Node);
6133 Kind := Nkind (Node);
6134 end if;
6135
6136 if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
6137 return False;
6138 else
6139 return Expansion_Delayed (Node);
6140 end if;
6141 end Is_Delayed_Aggregate;
6142
6143 ----------------------------------------
6144 -- Is_Static_Dispatch_Table_Aggregate --
6145 ----------------------------------------
6146
6147 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
6148 Typ : constant Entity_Id := Base_Type (Etype (N));
6149
6150 begin
6151 return Static_Dispatch_Tables
6152 and then Tagged_Type_Expansion
6153 and then RTU_Loaded (Ada_Tags)
6154
6155 -- Avoid circularity when rebuilding the compiler
6156
6157 and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
6158 and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
6159 or else
6160 Typ = RTE (RE_Address_Array)
6161 or else
6162 Typ = RTE (RE_Type_Specific_Data)
6163 or else
6164 Typ = RTE (RE_Tag_Table)
6165 or else
6166 (RTE_Available (RE_Interface_Data)
6167 and then Typ = RTE (RE_Interface_Data))
6168 or else
6169 (RTE_Available (RE_Interfaces_Array)
6170 and then Typ = RTE (RE_Interfaces_Array))
6171 or else
6172 (RTE_Available (RE_Interface_Data_Element)
6173 and then Typ = RTE (RE_Interface_Data_Element)));
6174 end Is_Static_Dispatch_Table_Aggregate;
6175
6176 -----------------------------
6177 -- Is_Two_Dim_Packed_Array --
6178 -----------------------------
6179
6180 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is
6181 C : constant Int := UI_To_Int (Component_Size (Typ));
6182 begin
6183 return Number_Dimensions (Typ) = 2
6184 and then Is_Bit_Packed_Array (Typ)
6185 and then (C = 1 or else C = 2 or else C = 4);
6186 end Is_Two_Dim_Packed_Array;
6187
6188 --------------------
6189 -- Late_Expansion --
6190 --------------------
6191
6192 function Late_Expansion
6193 (N : Node_Id;
6194 Typ : Entity_Id;
6195 Target : Node_Id) return List_Id
6196 is
6197 Aggr_Code : List_Id;
6198
6199 begin
6200 if Is_Record_Type (Etype (N)) then
6201 Aggr_Code := Build_Record_Aggr_Code (N, Typ, Target);
6202
6203 -- Save the last assignment statement associated with the aggregate
6204 -- when building a controlled object. This reference is utilized by
6205 -- the finalization machinery when marking an object as successfully
6206 -- initialized.
6207
6208 if Needs_Finalization (Typ)
6209 and then Is_Entity_Name (Target)
6210 and then Present (Entity (Target))
6211 and then Ekind (Entity (Target)) = E_Variable
6212 then
6213 Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
6214 end if;
6215
6216 return Aggr_Code;
6217
6218 else pragma Assert (Is_Array_Type (Etype (N)));
6219 return
6220 Build_Array_Aggr_Code
6221 (N => N,
6222 Ctype => Component_Type (Etype (N)),
6223 Index => First_Index (Typ),
6224 Into => Target,
6225 Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
6226 Indexes => No_List);
6227 end if;
6228 end Late_Expansion;
6229
6230 ----------------------------------
6231 -- Make_OK_Assignment_Statement --
6232 ----------------------------------
6233
6234 function Make_OK_Assignment_Statement
6235 (Sloc : Source_Ptr;
6236 Name : Node_Id;
6237 Expression : Node_Id) return Node_Id
6238 is
6239 begin
6240 Set_Assignment_OK (Name);
6241
6242 return Make_Assignment_Statement (Sloc, Name, Expression);
6243 end Make_OK_Assignment_Statement;
6244
6245 -----------------------
6246 -- Number_Of_Choices --
6247 -----------------------
6248
6249 function Number_Of_Choices (N : Node_Id) return Nat is
6250 Assoc : Node_Id;
6251 Choice : Node_Id;
6252
6253 Nb_Choices : Nat := 0;
6254
6255 begin
6256 if Present (Expressions (N)) then
6257 return 0;
6258 end if;
6259
6260 Assoc := First (Component_Associations (N));
6261 while Present (Assoc) loop
6262 Choice := First (Choices (Assoc));
6263 while Present (Choice) loop
6264 if Nkind (Choice) /= N_Others_Choice then
6265 Nb_Choices := Nb_Choices + 1;
6266 end if;
6267
6268 Next (Choice);
6269 end loop;
6270
6271 Next (Assoc);
6272 end loop;
6273
6274 return Nb_Choices;
6275 end Number_Of_Choices;
6276
6277 ------------------------------------
6278 -- Packed_Array_Aggregate_Handled --
6279 ------------------------------------
6280
6281 -- The current version of this procedure will handle at compile time
6282 -- any array aggregate that meets these conditions:
6283
6284 -- One and two dimensional, bit packed
6285 -- Underlying packed type is modular type
6286 -- Bounds are within 32-bit Int range
6287 -- All bounds and values are static
6288
6289 -- Note: for now, in the 2-D case, we only handle component sizes of
6290 -- 1, 2, 4 (cases where an integral number of elements occupies a byte).
6291
6292 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
6293 Loc : constant Source_Ptr := Sloc (N);
6294 Typ : constant Entity_Id := Etype (N);
6295 Ctyp : constant Entity_Id := Component_Type (Typ);
6296
6297 Not_Handled : exception;
6298 -- Exception raised if this aggregate cannot be handled
6299
6300 begin
6301 -- Handle one- or two dimensional bit packed array
6302
6303 if not Is_Bit_Packed_Array (Typ)
6304 or else Number_Dimensions (Typ) > 2
6305 then
6306 return False;
6307 end if;
6308
6309 -- If two-dimensional, check whether it can be folded, and transformed
6310 -- into a one-dimensional aggregate for the Packed_Array_Type of the
6311 -- original type.
6312
6313 if Number_Dimensions (Typ) = 2 then
6314 return Two_Dim_Packed_Array_Handled (N);
6315 end if;
6316
6317 if not Is_Modular_Integer_Type (Packed_Array_Type (Typ)) then
6318 return False;
6319 end if;
6320
6321 if not Is_Scalar_Type (Component_Type (Typ))
6322 and then Has_Non_Standard_Rep (Component_Type (Typ))
6323 then
6324 return False;
6325 end if;
6326
6327 declare
6328 Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
6329
6330 Lo : Node_Id;
6331 Hi : Node_Id;
6332 -- Bounds of index type
6333
6334 Lob : Uint;
6335 Hib : Uint;
6336 -- Values of bounds if compile time known
6337
6338 function Get_Component_Val (N : Node_Id) return Uint;
6339 -- Given a expression value N of the component type Ctyp, returns a
6340 -- value of Csiz (component size) bits representing this value. If
6341 -- the value is non-static or any other reason exists why the value
6342 -- cannot be returned, then Not_Handled is raised.
6343
6344 -----------------------
6345 -- Get_Component_Val --
6346 -----------------------
6347
6348 function Get_Component_Val (N : Node_Id) return Uint is
6349 Val : Uint;
6350
6351 begin
6352 -- We have to analyze the expression here before doing any further
6353 -- processing here. The analysis of such expressions is deferred
6354 -- till expansion to prevent some problems of premature analysis.
6355
6356 Analyze_And_Resolve (N, Ctyp);
6357
6358 -- Must have a compile time value. String literals have to be
6359 -- converted into temporaries as well, because they cannot easily
6360 -- be converted into their bit representation.
6361
6362 if not Compile_Time_Known_Value (N)
6363 or else Nkind (N) = N_String_Literal
6364 then
6365 raise Not_Handled;
6366 end if;
6367
6368 Val := Expr_Rep_Value (N);
6369
6370 -- Adjust for bias, and strip proper number of bits
6371
6372 if Has_Biased_Representation (Ctyp) then
6373 Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
6374 end if;
6375
6376 return Val mod Uint_2 ** Csiz;
6377 end Get_Component_Val;
6378
6379 -- Here we know we have a one dimensional bit packed array
6380
6381 begin
6382 Get_Index_Bounds (First_Index (Typ), Lo, Hi);
6383
6384 -- Cannot do anything if bounds are dynamic
6385
6386 if not Compile_Time_Known_Value (Lo)
6387 or else
6388 not Compile_Time_Known_Value (Hi)
6389 then
6390 return False;
6391 end if;
6392
6393 -- Or are silly out of range of int bounds
6394
6395 Lob := Expr_Value (Lo);
6396 Hib := Expr_Value (Hi);
6397
6398 if not UI_Is_In_Int_Range (Lob)
6399 or else
6400 not UI_Is_In_Int_Range (Hib)
6401 then
6402 return False;
6403 end if;
6404
6405 -- At this stage we have a suitable aggregate for handling at compile
6406 -- time. The only remaining checks are that the values of expressions
6407 -- in the aggregate are compile-time known (checks are performed by
6408 -- Get_Component_Val), and that any subtypes or ranges are statically
6409 -- known.
6410
6411 -- If the aggregate is not fully positional at this stage, then
6412 -- convert it to positional form. Either this will fail, in which
6413 -- case we can do nothing, or it will succeed, in which case we have
6414 -- succeeded in handling the aggregate and transforming it into a
6415 -- modular value, or it will stay an aggregate, in which case we
6416 -- have failed to create a packed value for it.
6417
6418 if Present (Component_Associations (N)) then
6419 Convert_To_Positional
6420 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6421 return Nkind (N) /= N_Aggregate;
6422 end if;
6423
6424 -- Otherwise we are all positional, so convert to proper value
6425
6426 declare
6427 Lov : constant Int := UI_To_Int (Lob);
6428 Hiv : constant Int := UI_To_Int (Hib);
6429
6430 Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
6431 -- The length of the array (number of elements)
6432
6433 Aggregate_Val : Uint;
6434 -- Value of aggregate. The value is set in the low order bits of
6435 -- this value. For the little-endian case, the values are stored
6436 -- from low-order to high-order and for the big-endian case the
6437 -- values are stored from high-order to low-order. Note that gigi
6438 -- will take care of the conversions to left justify the value in
6439 -- the big endian case (because of left justified modular type
6440 -- processing), so we do not have to worry about that here.
6441
6442 Lit : Node_Id;
6443 -- Integer literal for resulting constructed value
6444
6445 Shift : Nat;
6446 -- Shift count from low order for next value
6447
6448 Incr : Int;
6449 -- Shift increment for loop
6450
6451 Expr : Node_Id;
6452 -- Next expression from positional parameters of aggregate
6453
6454 Left_Justified : Boolean;
6455 -- Set True if we are filling the high order bits of the target
6456 -- value (i.e. the value is left justified).
6457
6458 begin
6459 -- For little endian, we fill up the low order bits of the target
6460 -- value. For big endian we fill up the high order bits of the
6461 -- target value (which is a left justified modular value).
6462
6463 Left_Justified := Bytes_Big_Endian;
6464
6465 -- Switch justification if using -gnatd8
6466
6467 if Debug_Flag_8 then
6468 Left_Justified := not Left_Justified;
6469 end if;
6470
6471 -- Switch justfification if reverse storage order
6472
6473 if Reverse_Storage_Order (Base_Type (Typ)) then
6474 Left_Justified := not Left_Justified;
6475 end if;
6476
6477 if Left_Justified then
6478 Shift := Csiz * (Len - 1);
6479 Incr := -Csiz;
6480 else
6481 Shift := 0;
6482 Incr := +Csiz;
6483 end if;
6484
6485 -- Loop to set the values
6486
6487 if Len = 0 then
6488 Aggregate_Val := Uint_0;
6489 else
6490 Expr := First (Expressions (N));
6491 Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
6492
6493 for J in 2 .. Len loop
6494 Shift := Shift + Incr;
6495 Next (Expr);
6496 Aggregate_Val :=
6497 Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
6498 end loop;
6499 end if;
6500
6501 -- Now we can rewrite with the proper value
6502
6503 Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val);
6504 Set_Print_In_Hex (Lit);
6505
6506 -- Construct the expression using this literal. Note that it is
6507 -- important to qualify the literal with its proper modular type
6508 -- since universal integer does not have the required range and
6509 -- also this is a left justified modular type, which is important
6510 -- in the big-endian case.
6511
6512 Rewrite (N,
6513 Unchecked_Convert_To (Typ,
6514 Make_Qualified_Expression (Loc,
6515 Subtype_Mark =>
6516 New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
6517 Expression => Lit)));
6518
6519 Analyze_And_Resolve (N, Typ);
6520 return True;
6521 end;
6522 end;
6523
6524 exception
6525 when Not_Handled =>
6526 return False;
6527 end Packed_Array_Aggregate_Handled;
6528
6529 ----------------------------
6530 -- Has_Mutable_Components --
6531 ----------------------------
6532
6533 function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
6534 Comp : Entity_Id;
6535
6536 begin
6537 Comp := First_Component (Typ);
6538 while Present (Comp) loop
6539 if Is_Record_Type (Etype (Comp))
6540 and then Has_Discriminants (Etype (Comp))
6541 and then not Is_Constrained (Etype (Comp))
6542 then
6543 return True;
6544 end if;
6545
6546 Next_Component (Comp);
6547 end loop;
6548
6549 return False;
6550 end Has_Mutable_Components;
6551
6552 ------------------------------
6553 -- Initialize_Discriminants --
6554 ------------------------------
6555
6556 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
6557 Loc : constant Source_Ptr := Sloc (N);
6558 Bas : constant Entity_Id := Base_Type (Typ);
6559 Par : constant Entity_Id := Etype (Bas);
6560 Decl : constant Node_Id := Parent (Par);
6561 Ref : Node_Id;
6562
6563 begin
6564 if Is_Tagged_Type (Bas)
6565 and then Is_Derived_Type (Bas)
6566 and then Has_Discriminants (Par)
6567 and then Has_Discriminants (Bas)
6568 and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
6569 and then Nkind (Decl) = N_Full_Type_Declaration
6570 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
6571 and then Present
6572 (Variant_Part (Component_List (Type_Definition (Decl))))
6573 and then Nkind (N) /= N_Extension_Aggregate
6574 then
6575
6576 -- Call init proc to set discriminants.
6577 -- There should eventually be a special procedure for this ???
6578
6579 Ref := New_Occurrence_Of (Defining_Identifier (N), Loc);
6580 Insert_Actions_After (N,
6581 Build_Initialization_Call (Sloc (N), Ref, Typ));
6582 end if;
6583 end Initialize_Discriminants;
6584
6585 ----------------
6586 -- Must_Slide --
6587 ----------------
6588
6589 function Must_Slide
6590 (Obj_Type : Entity_Id;
6591 Typ : Entity_Id) return Boolean
6592 is
6593 L1, L2, H1, H2 : Node_Id;
6594 begin
6595 -- No sliding if the type of the object is not established yet, if it is
6596 -- an unconstrained type whose actual subtype comes from the aggregate,
6597 -- or if the two types are identical.
6598
6599 if not Is_Array_Type (Obj_Type) then
6600 return False;
6601
6602 elsif not Is_Constrained (Obj_Type) then
6603 return False;
6604
6605 elsif Typ = Obj_Type then
6606 return False;
6607
6608 else
6609 -- Sliding can only occur along the first dimension
6610
6611 Get_Index_Bounds (First_Index (Typ), L1, H1);
6612 Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
6613
6614 if not Is_Static_Expression (L1)
6615 or else not Is_Static_Expression (L2)
6616 or else not Is_Static_Expression (H1)
6617 or else not Is_Static_Expression (H2)
6618 then
6619 return False;
6620 else
6621 return Expr_Value (L1) /= Expr_Value (L2)
6622 or else
6623 Expr_Value (H1) /= Expr_Value (H2);
6624 end if;
6625 end if;
6626 end Must_Slide;
6627
6628 ---------------------------
6629 -- Safe_Slice_Assignment --
6630 ---------------------------
6631
6632 function Safe_Slice_Assignment (N : Node_Id) return Boolean is
6633 Loc : constant Source_Ptr := Sloc (Parent (N));
6634 Pref : constant Node_Id := Prefix (Name (Parent (N)));
6635 Range_Node : constant Node_Id := Discrete_Range (Name (Parent (N)));
6636 Expr : Node_Id;
6637 L_J : Entity_Id;
6638 L_Iter : Node_Id;
6639 L_Body : Node_Id;
6640 Stat : Node_Id;
6641
6642 begin
6643 -- Generate: for J in Range loop Pref (J) := Expr; end loop;
6644
6645 if Comes_From_Source (N)
6646 and then No (Expressions (N))
6647 and then Nkind (First (Choices (First (Component_Associations (N)))))
6648 = N_Others_Choice
6649 then
6650 Expr := Expression (First (Component_Associations (N)));
6651 L_J := Make_Temporary (Loc, 'J');
6652
6653 L_Iter :=
6654 Make_Iteration_Scheme (Loc,
6655 Loop_Parameter_Specification =>
6656 Make_Loop_Parameter_Specification
6657 (Loc,
6658 Defining_Identifier => L_J,
6659 Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
6660
6661 L_Body :=
6662 Make_Assignment_Statement (Loc,
6663 Name =>
6664 Make_Indexed_Component (Loc,
6665 Prefix => Relocate_Node (Pref),
6666 Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
6667 Expression => Relocate_Node (Expr));
6668
6669 -- Construct the final loop
6670
6671 Stat :=
6672 Make_Implicit_Loop_Statement
6673 (Node => Parent (N),
6674 Identifier => Empty,
6675 Iteration_Scheme => L_Iter,
6676 Statements => New_List (L_Body));
6677
6678 -- Set type of aggregate to be type of lhs in assignment,
6679 -- to suppress redundant length checks.
6680
6681 Set_Etype (N, Etype (Name (Parent (N))));
6682
6683 Rewrite (Parent (N), Stat);
6684 Analyze (Parent (N));
6685 return True;
6686
6687 else
6688 return False;
6689 end if;
6690 end Safe_Slice_Assignment;
6691
6692 ----------------------------------
6693 -- Two_Dim_Packed_Array_Handled --
6694 ----------------------------------
6695
6696 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is
6697 Loc : constant Source_Ptr := Sloc (N);
6698 Typ : constant Entity_Id := Etype (N);
6699 Ctyp : constant Entity_Id := Component_Type (Typ);
6700 Comp_Size : constant Int := UI_To_Int (Component_Size (Typ));
6701 Packed_Array : constant Entity_Id := Packed_Array_Type (Base_Type (Typ));
6702
6703 One_Comp : Node_Id;
6704 -- Expression in original aggregate
6705
6706 One_Dim : Node_Id;
6707 -- One-dimensional subaggregate
6708
6709 begin
6710
6711 -- For now, only deal with cases where an integral number of elements
6712 -- fit in a single byte. This includes the most common boolean case.
6713
6714 if not (Comp_Size = 1 or else
6715 Comp_Size = 2 or else
6716 Comp_Size = 4)
6717 then
6718 return False;
6719 end if;
6720
6721 Convert_To_Positional
6722 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6723
6724 -- Verify that all components are static
6725
6726 if Nkind (N) = N_Aggregate
6727 and then Compile_Time_Known_Aggregate (N)
6728 then
6729 null;
6730
6731 -- The aggregate may have been re-analyzed and converted already
6732
6733 elsif Nkind (N) /= N_Aggregate then
6734 return True;
6735
6736 -- If component associations remain, the aggregate is not static
6737
6738 elsif Present (Component_Associations (N)) then
6739 return False;
6740
6741 else
6742 One_Dim := First (Expressions (N));
6743 while Present (One_Dim) loop
6744 if Present (Component_Associations (One_Dim)) then
6745 return False;
6746 end if;
6747
6748 One_Comp := First (Expressions (One_Dim));
6749 while Present (One_Comp) loop
6750 if not Is_OK_Static_Expression (One_Comp) then
6751 return False;
6752 end if;
6753
6754 Next (One_Comp);
6755 end loop;
6756
6757 Next (One_Dim);
6758 end loop;
6759 end if;
6760
6761 -- Two-dimensional aggregate is now fully positional so pack one
6762 -- dimension to create a static one-dimensional array, and rewrite
6763 -- as an unchecked conversion to the original type.
6764
6765 declare
6766 Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array));
6767 -- The packed array type is a byte array
6768
6769 Packed_Num : Int;
6770 -- Number of components accumulated in current byte
6771
6772 Comps : List_Id;
6773 -- Assembled list of packed values for equivalent aggregate
6774
6775 Comp_Val : Uint;
6776 -- integer value of component
6777
6778 Incr : Int;
6779 -- Step size for packing
6780
6781 Init_Shift : Int;
6782 -- Endian-dependent start position for packing
6783
6784 Shift : Int;
6785 -- Current insertion position
6786
6787 Val : Int;
6788 -- Component of packed array being assembled.
6789
6790 begin
6791 Comps := New_List;
6792 Val := 0;
6793 Packed_Num := 0;
6794
6795 -- Account for endianness. See corresponding comment in
6796 -- Packed_Array_Aggregate_Handled concerning the following.
6797
6798 if Bytes_Big_Endian
6799 xor Debug_Flag_8
6800 xor Reverse_Storage_Order (Base_Type (Typ))
6801 then
6802 Init_Shift := Byte_Size - Comp_Size;
6803 Incr := -Comp_Size;
6804 else
6805 Init_Shift := 0;
6806 Incr := +Comp_Size;
6807 end if;
6808
6809 Shift := Init_Shift;
6810 One_Dim := First (Expressions (N));
6811
6812 -- Iterate over each subaggregate
6813
6814 while Present (One_Dim) loop
6815 One_Comp := First (Expressions (One_Dim));
6816
6817 while Present (One_Comp) loop
6818 if Packed_Num = Byte_Size / Comp_Size then
6819
6820 -- Byte is complete, add to list of expressions
6821
6822 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
6823 Val := 0;
6824 Shift := Init_Shift;
6825 Packed_Num := 0;
6826
6827 else
6828 Comp_Val := Expr_Rep_Value (One_Comp);
6829
6830 -- Adjust for bias, and strip proper number of bits
6831
6832 if Has_Biased_Representation (Ctyp) then
6833 Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp));
6834 end if;
6835
6836 Comp_Val := Comp_Val mod Uint_2 ** Comp_Size;
6837 Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift);
6838 Shift := Shift + Incr;
6839 One_Comp := Next (One_Comp);
6840 Packed_Num := Packed_Num + 1;
6841 end if;
6842 end loop;
6843
6844 One_Dim := Next (One_Dim);
6845 end loop;
6846
6847 if Packed_Num > 0 then
6848
6849 -- Add final incomplete byte if present
6850
6851 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
6852 end if;
6853
6854 Rewrite (N,
6855 Unchecked_Convert_To (Typ,
6856 Make_Qualified_Expression (Loc,
6857 Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc),
6858 Expression =>
6859 Make_Aggregate (Loc, Expressions => Comps))));
6860 Analyze_And_Resolve (N);
6861 return True;
6862 end;
6863 end Two_Dim_Packed_Array_Handled;
6864
6865 ---------------------
6866 -- Sort_Case_Table --
6867 ---------------------
6868
6869 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
6870 L : constant Int := Case_Table'First;
6871 U : constant Int := Case_Table'Last;
6872 K : Int;
6873 J : Int;
6874 T : Case_Bounds;
6875
6876 begin
6877 K := L;
6878 while K /= U loop
6879 T := Case_Table (K + 1);
6880
6881 J := K + 1;
6882 while J /= L
6883 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
6884 Expr_Value (T.Choice_Lo)
6885 loop
6886 Case_Table (J) := Case_Table (J - 1);
6887 J := J - 1;
6888 end loop;
6889
6890 Case_Table (J) := T;
6891 K := K + 1;
6892 end loop;
6893 end Sort_Case_Table;
6894
6895 ----------------------------
6896 -- Static_Array_Aggregate --
6897 ----------------------------
6898
6899 function Static_Array_Aggregate (N : Node_Id) return Boolean is
6900 Bounds : constant Node_Id := Aggregate_Bounds (N);
6901
6902 Typ : constant Entity_Id := Etype (N);
6903 Comp_Type : constant Entity_Id := Component_Type (Typ);
6904 Agg : Node_Id;
6905 Expr : Node_Id;
6906 Lo : Node_Id;
6907 Hi : Node_Id;
6908
6909 begin
6910 if Is_Tagged_Type (Typ)
6911 or else Is_Controlled (Typ)
6912 or else Is_Packed (Typ)
6913 then
6914 return False;
6915 end if;
6916
6917 if Present (Bounds)
6918 and then Nkind (Bounds) = N_Range
6919 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
6920 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
6921 then
6922 Lo := Low_Bound (Bounds);
6923 Hi := High_Bound (Bounds);
6924
6925 if No (Component_Associations (N)) then
6926
6927 -- Verify that all components are static integers
6928
6929 Expr := First (Expressions (N));
6930 while Present (Expr) loop
6931 if Nkind (Expr) /= N_Integer_Literal then
6932 return False;
6933 end if;
6934
6935 Next (Expr);
6936 end loop;
6937
6938 return True;
6939
6940 else
6941 -- We allow only a single named association, either a static
6942 -- range or an others_clause, with a static expression.
6943
6944 Expr := First (Component_Associations (N));
6945
6946 if Present (Expressions (N)) then
6947 return False;
6948
6949 elsif Present (Next (Expr)) then
6950 return False;
6951
6952 elsif Present (Next (First (Choices (Expr)))) then
6953 return False;
6954
6955 else
6956 -- The aggregate is static if all components are literals,
6957 -- or else all its components are static aggregates for the
6958 -- component type. We also limit the size of a static aggregate
6959 -- to prevent runaway static expressions.
6960
6961 if Is_Array_Type (Comp_Type)
6962 or else Is_Record_Type (Comp_Type)
6963 then
6964 if Nkind (Expression (Expr)) /= N_Aggregate
6965 or else
6966 not Compile_Time_Known_Aggregate (Expression (Expr))
6967 then
6968 return False;
6969 end if;
6970
6971 elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
6972 return False;
6973 end if;
6974
6975 if not Aggr_Size_OK (N, Typ) then
6976 return False;
6977 end if;
6978
6979 -- Create a positional aggregate with the right number of
6980 -- copies of the expression.
6981
6982 Agg := Make_Aggregate (Sloc (N), New_List, No_List);
6983
6984 for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
6985 loop
6986 Append_To
6987 (Expressions (Agg), New_Copy (Expression (Expr)));
6988
6989 -- The copied expression must be analyzed and resolved.
6990 -- Besides setting the type, this ensures that static
6991 -- expressions are appropriately marked as such.
6992
6993 Analyze_And_Resolve
6994 (Last (Expressions (Agg)), Component_Type (Typ));
6995 end loop;
6996
6997 Set_Aggregate_Bounds (Agg, Bounds);
6998 Set_Etype (Agg, Typ);
6999 Set_Analyzed (Agg);
7000 Rewrite (N, Agg);
7001 Set_Compile_Time_Known_Aggregate (N);
7002
7003 return True;
7004 end if;
7005 end if;
7006
7007 else
7008 return False;
7009 end if;
7010 end Static_Array_Aggregate;
7011
7012 end Exp_Aggr;