a54ebe8b297dfce475701bc0b6693256ad0b02ff
[gcc.git] / gcc / ada / exp_aggr.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Util; use Exp_Util;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Tss; use Exp_Tss;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Namet; use Namet;
44 with Nmake; use Nmake;
45 with Nlists; use Nlists;
46 with Opt; use Opt;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Ttypes; use Ttypes;
51 with Sem; use Sem;
52 with Sem_Aggr; use Sem_Aggr;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Ch3; use Sem_Ch3;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Util; use Sem_Util;
58 with Sinfo; use Sinfo;
59 with Snames; use Snames;
60 with Stand; use Stand;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
64
65 package body Exp_Aggr is
66
67 type Case_Bounds is record
68 Choice_Lo : Node_Id;
69 Choice_Hi : Node_Id;
70 Choice_Node : Node_Id;
71 end record;
72
73 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
74 -- Table type used by Check_Case_Choices procedure
75
76 function Has_Default_Init_Comps (N : Node_Id) return Boolean;
77 -- N is an aggregate (record or array). Checks the presence of default
78 -- initialization (<>) in any component (Ada 2005: AI-287).
79
80 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
81 -- Returns true if N is an aggregate used to initialize the components
82 -- of an statically allocated dispatch table.
83
84 function Must_Slide
85 (Obj_Type : Entity_Id;
86 Typ : Entity_Id) return Boolean;
87 -- A static array aggregate in an object declaration can in most cases be
88 -- expanded in place. The one exception is when the aggregate is given
89 -- with component associations that specify different bounds from those of
90 -- the type definition in the object declaration. In this pathological
91 -- case the aggregate must slide, and we must introduce an intermediate
92 -- temporary to hold it.
93 --
94 -- The same holds in an assignment to one-dimensional array of arrays,
95 -- when a component may be given with bounds that differ from those of the
96 -- component type.
97
98 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
99 -- Sort the Case Table using the Lower Bound of each Choice as the key.
100 -- A simple insertion sort is used since the number of choices in a case
101 -- statement of variant part will usually be small and probably in near
102 -- sorted order.
103
104 ------------------------------------------------------
105 -- Local subprograms for Record Aggregate Expansion --
106 ------------------------------------------------------
107
108 function Build_Record_Aggr_Code
109 (N : Node_Id;
110 Typ : Entity_Id;
111 Lhs : Node_Id;
112 Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id;
113 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
114 -- aggregate. Target is an expression containing the location on which the
115 -- component by component assignments will take place. Returns the list of
116 -- assignments plus all other adjustments needed for tagged and controlled
117 -- types. Is_Limited_Ancestor_Expansion indicates that the function has
118 -- been called recursively to expand the limited ancestor to avoid copying
119 -- it.
120
121 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
122 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
123 -- aggregate (which can only be a record type, this procedure is only used
124 -- for record types). Transform the given aggregate into a sequence of
125 -- assignments performed component by component.
126
127 procedure Expand_Record_Aggregate
128 (N : Node_Id;
129 Orig_Tag : Node_Id := Empty;
130 Parent_Expr : Node_Id := Empty);
131 -- This is the top level procedure for record aggregate expansion.
132 -- Expansion for record aggregates needs expand aggregates for tagged
133 -- record types. Specifically Expand_Record_Aggregate adds the Tag
134 -- field in front of the Component_Association list that was created
135 -- during resolution by Resolve_Record_Aggregate.
136 --
137 -- N is the record aggregate node.
138 -- Orig_Tag is the value of the Tag that has to be provided for this
139 -- specific aggregate. It carries the tag corresponding to the type
140 -- of the outermost aggregate during the recursive expansion
141 -- Parent_Expr is the ancestor part of the original extension
142 -- aggregate
143
144 function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
145 -- Return true if one of the component is of a discriminated type with
146 -- defaults. An aggregate for a type with mutable components must be
147 -- expanded into individual assignments.
148
149 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
150 -- If the type of the aggregate is a type extension with renamed discrimi-
151 -- nants, we must initialize the hidden discriminants of the parent.
152 -- Otherwise, the target object must not be initialized. The discriminants
153 -- are initialized by calling the initialization procedure for the type.
154 -- This is incorrect if the initialization of other components has any
155 -- side effects. We restrict this call to the case where the parent type
156 -- has a variant part, because this is the only case where the hidden
157 -- discriminants are accessed, namely when calling discriminant checking
158 -- functions of the parent type, and when applying a stream attribute to
159 -- an object of the derived type.
160
161 -----------------------------------------------------
162 -- Local Subprograms for Array Aggregate Expansion --
163 -----------------------------------------------------
164
165 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
166 -- Very large static aggregates present problems to the back-end, and are
167 -- transformed into assignments and loops. This function verifies that the
168 -- total number of components of an aggregate is acceptable for rewriting
169 -- into a purely positional static form. Aggr_Size_OK must be called before
170 -- calling Flatten.
171 --
172 -- This function also detects and warns about one-component aggregates that
173 -- appear in a non-static context. Even if the component value is static,
174 -- such an aggregate must be expanded into an assignment.
175
176 function Backend_Processing_Possible (N : Node_Id) return Boolean;
177 -- This function checks if array aggregate N can be processed directly
178 -- by the backend. If this is the case True is returned.
179
180 function Build_Array_Aggr_Code
181 (N : Node_Id;
182 Ctype : Entity_Id;
183 Index : Node_Id;
184 Into : Node_Id;
185 Scalar_Comp : Boolean;
186 Indexes : List_Id := No_List) return List_Id;
187 -- This recursive routine returns a list of statements containing the
188 -- loops and assignments that are needed for the expansion of the array
189 -- aggregate N.
190 --
191 -- N is the (sub-)aggregate node to be expanded into code. This node has
192 -- been fully analyzed, and its Etype is properly set.
193 --
194 -- Index is the index node corresponding to the array sub-aggregate N
195 --
196 -- Into is the target expression into which we are copying the aggregate.
197 -- Note that this node may not have been analyzed yet, and so the Etype
198 -- field may not be set.
199 --
200 -- Scalar_Comp is True if the component type of the aggregate is scalar
201 --
202 -- Indexes is the current list of expressions used to index the object we
203 -- are writing into.
204
205 procedure Convert_Array_Aggr_In_Allocator
206 (Decl : Node_Id;
207 Aggr : Node_Id;
208 Target : Node_Id);
209 -- If the aggregate appears within an allocator and can be expanded in
210 -- place, this routine generates the individual assignments to components
211 -- of the designated object. This is an optimization over the general
212 -- case, where a temporary is first created on the stack and then used to
213 -- construct the allocated object on the heap.
214
215 procedure Convert_To_Positional
216 (N : Node_Id;
217 Max_Others_Replicate : Nat := 5;
218 Handle_Bit_Packed : Boolean := False);
219 -- If possible, convert named notation to positional notation. This
220 -- conversion is possible only in some static cases. If the conversion is
221 -- possible, then N is rewritten with the analyzed converted aggregate.
222 -- The parameter Max_Others_Replicate controls the maximum number of
223 -- values corresponding to an others choice that will be converted to
224 -- positional notation (the default of 5 is the normal limit, and reflects
225 -- the fact that normally the loop is better than a lot of separate
226 -- assignments). Note that this limit gets overridden in any case if
227 -- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
228 -- set. The parameter Handle_Bit_Packed is usually set False (since we do
229 -- not expect the back end to handle bit packed arrays, so the normal case
230 -- of conversion is pointless), but in the special case of a call from
231 -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
232 -- these are cases we handle in there.
233
234 procedure Expand_Array_Aggregate (N : Node_Id);
235 -- This is the top-level routine to perform array aggregate expansion.
236 -- N is the N_Aggregate node to be expanded.
237
238 function Late_Expansion
239 (N : Node_Id;
240 Typ : Entity_Id;
241 Target : Node_Id) return List_Id;
242 -- This routine implements top-down expansion of nested aggregates. In
243 -- doing so, it avoids the generation of temporaries at each level. N is a
244 -- nested (record or array) aggregate that has been marked with 'Delay_
245 -- Expansion'. Typ is the expected type of the aggregate. Target is a
246 -- (duplicable) expression that will hold the result of the aggregate
247 -- expansion.
248
249 function Make_OK_Assignment_Statement
250 (Sloc : Source_Ptr;
251 Name : Node_Id;
252 Expression : Node_Id) return Node_Id;
253 -- This is like Make_Assignment_Statement, except that Assignment_OK
254 -- is set in the left operand. All assignments built by this unit
255 -- use this routine. This is needed to deal with assignments to
256 -- initialized constants that are done in place.
257
258 function Number_Of_Choices (N : Node_Id) return Nat;
259 -- Returns the number of discrete choices (not including the others choice
260 -- if present) contained in (sub-)aggregate N.
261
262 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
263 -- Given an array aggregate, this function handles the case of a packed
264 -- array aggregate with all constant values, where the aggregate can be
265 -- evaluated at compile time. If this is possible, then N is rewritten
266 -- to be its proper compile time value with all the components properly
267 -- assembled. The expression is analyzed and resolved and True is
268 -- returned. If this transformation is not possible, N is unchanged
269 -- and False is returned
270
271 function Safe_Slice_Assignment (N : Node_Id) return Boolean;
272 -- If a slice assignment has an aggregate with a single others_choice,
273 -- the assignment can be done in place even if bounds are not static,
274 -- by converting it into a loop over the discrete range of the slice.
275
276 ------------------
277 -- Aggr_Size_OK --
278 ------------------
279
280 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
281 Lo : Node_Id;
282 Hi : Node_Id;
283 Indx : Node_Id;
284 Siz : Int;
285 Lov : Uint;
286 Hiv : Uint;
287
288 -- The following constant determines the maximum size of an array
289 -- aggregate produced by converting named to positional notation (e.g.
290 -- from others clauses). This avoids running away with attempts to
291 -- convert huge aggregates, which hit memory limits in the backend.
292
293 -- The normal limit is 5000, but we increase this limit to 2**24 (about
294 -- 16 million) if Restrictions (No_Elaboration_Code) or Restrictions
295 -- (No_Implicit_Loops) is specified, since in either case, we are at
296 -- risk of declaring the program illegal because of this limit.
297
298 Max_Aggr_Size : constant Nat :=
299 5000 + (2 ** 24 - 5000) *
300 Boolean'Pos
301 (Restriction_Active (No_Elaboration_Code)
302 or else
303 Restriction_Active (No_Implicit_Loops));
304
305 function Component_Count (T : Entity_Id) return Int;
306 -- The limit is applied to the total number of components that the
307 -- aggregate will have, which is the number of static expressions
308 -- that will appear in the flattened array. This requires a recursive
309 -- computation of the number of scalar components of the structure.
310
311 ---------------------
312 -- Component_Count --
313 ---------------------
314
315 function Component_Count (T : Entity_Id) return Int is
316 Res : Int := 0;
317 Comp : Entity_Id;
318
319 begin
320 if Is_Scalar_Type (T) then
321 return 1;
322
323 elsif Is_Record_Type (T) then
324 Comp := First_Component (T);
325 while Present (Comp) loop
326 Res := Res + Component_Count (Etype (Comp));
327 Next_Component (Comp);
328 end loop;
329
330 return Res;
331
332 elsif Is_Array_Type (T) then
333 declare
334 Lo : constant Node_Id :=
335 Type_Low_Bound (Etype (First_Index (T)));
336 Hi : constant Node_Id :=
337 Type_High_Bound (Etype (First_Index (T)));
338
339 Siz : constant Int := Component_Count (Component_Type (T));
340
341 begin
342 if not Compile_Time_Known_Value (Lo)
343 or else not Compile_Time_Known_Value (Hi)
344 then
345 return 0;
346 else
347 return
348 Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
349 end if;
350 end;
351
352 else
353 -- Can only be a null for an access type
354
355 return 1;
356 end if;
357 end Component_Count;
358
359 -- Start of processing for Aggr_Size_OK
360
361 begin
362 Siz := Component_Count (Component_Type (Typ));
363
364 Indx := First_Index (Typ);
365 while Present (Indx) loop
366 Lo := Type_Low_Bound (Etype (Indx));
367 Hi := Type_High_Bound (Etype (Indx));
368
369 -- Bounds need to be known at compile time
370
371 if not Compile_Time_Known_Value (Lo)
372 or else not Compile_Time_Known_Value (Hi)
373 then
374 return False;
375 end if;
376
377 Lov := Expr_Value (Lo);
378 Hiv := Expr_Value (Hi);
379
380 -- A flat array is always safe
381
382 if Hiv < Lov then
383 return True;
384 end if;
385
386 -- One-component aggregates are suspicious, and if the context type
387 -- is an object declaration with non-static bounds it will trip gcc;
388 -- such an aggregate must be expanded into a single assignment.
389
390 if Hiv = Lov
391 and then Nkind (Parent (N)) = N_Object_Declaration
392 then
393 declare
394 Index_Type : constant Entity_Id :=
395 Etype
396 (First_Index
397 (Etype (Defining_Identifier (Parent (N)))));
398 Indx : Node_Id;
399
400 begin
401 if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
402 or else not Compile_Time_Known_Value
403 (Type_High_Bound (Index_Type))
404 then
405 if Present (Component_Associations (N)) then
406 Indx :=
407 First (Choices (First (Component_Associations (N))));
408 if Is_Entity_Name (Indx)
409 and then not Is_Type (Entity (Indx))
410 then
411 Error_Msg_N
412 ("single component aggregate in non-static context?",
413 Indx);
414 Error_Msg_N ("\maybe subtype name was meant?", Indx);
415 end if;
416 end if;
417
418 return False;
419 end if;
420 end;
421 end if;
422
423 declare
424 Rng : constant Uint := Hiv - Lov + 1;
425
426 begin
427 -- Check if size is too large
428
429 if not UI_Is_In_Int_Range (Rng) then
430 return False;
431 end if;
432
433 Siz := Siz * UI_To_Int (Rng);
434 end;
435
436 if Siz <= 0
437 or else Siz > Max_Aggr_Size
438 then
439 return False;
440 end if;
441
442 -- Bounds must be in integer range, for later array construction
443
444 if not UI_Is_In_Int_Range (Lov)
445 or else
446 not UI_Is_In_Int_Range (Hiv)
447 then
448 return False;
449 end if;
450
451 Next_Index (Indx);
452 end loop;
453
454 return True;
455 end Aggr_Size_OK;
456
457 ---------------------------------
458 -- Backend_Processing_Possible --
459 ---------------------------------
460
461 -- Backend processing by Gigi/gcc is possible only if all the following
462 -- conditions are met:
463
464 -- 1. N is fully positional
465
466 -- 2. N is not a bit-packed array aggregate;
467
468 -- 3. The size of N's array type must be known at compile time. Note
469 -- that this implies that the component size is also known
470
471 -- 4. The array type of N does not follow the Fortran layout convention
472 -- or if it does it must be 1 dimensional.
473
474 -- 5. The array component type may not be tagged (which could necessitate
475 -- reassignment of proper tags).
476
477 -- 6. The array component type must not have unaligned bit components
478
479 -- 7. None of the components of the aggregate may be bit unaligned
480 -- components.
481
482 -- 8. There cannot be delayed components, since we do not know enough
483 -- at this stage to know if back end processing is possible.
484
485 -- 9. There cannot be any discriminated record components, since the
486 -- back end cannot handle this complex case.
487
488 -- 10. No controlled actions need to be generated for components
489
490 -- 11. For a VM back end, the array should have no aliased components
491
492 function Backend_Processing_Possible (N : Node_Id) return Boolean is
493 Typ : constant Entity_Id := Etype (N);
494 -- Typ is the correct constrained array subtype of the aggregate
495
496 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
497 -- This routine checks components of aggregate N, enforcing checks
498 -- 1, 7, 8, and 9. In the multi-dimensional case, these checks are
499 -- performed on subaggregates. The Index value is the current index
500 -- being checked in the multi-dimensional case.
501
502 ---------------------
503 -- Component_Check --
504 ---------------------
505
506 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
507 Expr : Node_Id;
508
509 begin
510 -- Checks 1: (no component associations)
511
512 if Present (Component_Associations (N)) then
513 return False;
514 end if;
515
516 -- Checks on components
517
518 -- Recurse to check subaggregates, which may appear in qualified
519 -- expressions. If delayed, the front-end will have to expand.
520 -- If the component is a discriminated record, treat as non-static,
521 -- as the back-end cannot handle this properly.
522
523 Expr := First (Expressions (N));
524 while Present (Expr) loop
525
526 -- Checks 8: (no delayed components)
527
528 if Is_Delayed_Aggregate (Expr) then
529 return False;
530 end if;
531
532 -- Checks 9: (no discriminated records)
533
534 if Present (Etype (Expr))
535 and then Is_Record_Type (Etype (Expr))
536 and then Has_Discriminants (Etype (Expr))
537 then
538 return False;
539 end if;
540
541 -- Checks 7. Component must not be bit aligned component
542
543 if Possible_Bit_Aligned_Component (Expr) then
544 return False;
545 end if;
546
547 -- Recursion to following indexes for multiple dimension case
548
549 if Present (Next_Index (Index))
550 and then not Component_Check (Expr, Next_Index (Index))
551 then
552 return False;
553 end if;
554
555 -- All checks for that component finished, on to next
556
557 Next (Expr);
558 end loop;
559
560 return True;
561 end Component_Check;
562
563 -- Start of processing for Backend_Processing_Possible
564
565 begin
566 -- Checks 2 (array not bit packed) and 10 (no controlled actions)
567
568 if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
569 return False;
570 end if;
571
572 -- If component is limited, aggregate must be expanded because each
573 -- component assignment must be built in place.
574
575 if Is_Immutably_Limited_Type (Component_Type (Typ)) then
576 return False;
577 end if;
578
579 -- Checks 4 (array must not be multi-dimensional Fortran case)
580
581 if Convention (Typ) = Convention_Fortran
582 and then Number_Dimensions (Typ) > 1
583 then
584 return False;
585 end if;
586
587 -- Checks 3 (size of array must be known at compile time)
588
589 if not Size_Known_At_Compile_Time (Typ) then
590 return False;
591 end if;
592
593 -- Checks on components
594
595 if not Component_Check (N, First_Index (Typ)) then
596 return False;
597 end if;
598
599 -- Checks 5 (if the component type is tagged, then we may need to do
600 -- tag adjustments. Perhaps this should be refined to check for any
601 -- component associations that actually need tag adjustment, similar
602 -- to the test in Component_Not_OK_For_Backend for record aggregates
603 -- with tagged components, but not clear whether it's worthwhile ???;
604 -- in the case of the JVM, object tags are handled implicitly)
605
606 if Is_Tagged_Type (Component_Type (Typ))
607 and then Tagged_Type_Expansion
608 then
609 return False;
610 end if;
611
612 -- Checks 6 (component type must not have bit aligned components)
613
614 if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
615 return False;
616 end if;
617
618 -- Checks 11: Array aggregates with aliased components are currently
619 -- not well supported by the VM backend; disable temporarily this
620 -- backend processing until it is definitely supported.
621
622 if VM_Target /= No_VM
623 and then Has_Aliased_Components (Base_Type (Typ))
624 then
625 return False;
626 end if;
627
628 -- Backend processing is possible
629
630 Set_Size_Known_At_Compile_Time (Etype (N), True);
631 return True;
632 end Backend_Processing_Possible;
633
634 ---------------------------
635 -- Build_Array_Aggr_Code --
636 ---------------------------
637
638 -- The code that we generate from a one dimensional aggregate is
639
640 -- 1. If the sub-aggregate contains discrete choices we
641
642 -- (a) Sort the discrete choices
643
644 -- (b) Otherwise for each discrete choice that specifies a range we
645 -- emit a loop. If a range specifies a maximum of three values, or
646 -- we are dealing with an expression we emit a sequence of
647 -- assignments instead of a loop.
648
649 -- (c) Generate the remaining loops to cover the others choice if any
650
651 -- 2. If the aggregate contains positional elements we
652
653 -- (a) translate the positional elements in a series of assignments
654
655 -- (b) Generate a final loop to cover the others choice if any.
656 -- Note that this final loop has to be a while loop since the case
657
658 -- L : Integer := Integer'Last;
659 -- H : Integer := Integer'Last;
660 -- A : array (L .. H) := (1, others =>0);
661
662 -- cannot be handled by a for loop. Thus for the following
663
664 -- array (L .. H) := (.. positional elements.., others =>E);
665
666 -- we always generate something like:
667
668 -- J : Index_Type := Index_Of_Last_Positional_Element;
669 -- while J < H loop
670 -- J := Index_Base'Succ (J)
671 -- Tmp (J) := E;
672 -- end loop;
673
674 function Build_Array_Aggr_Code
675 (N : Node_Id;
676 Ctype : Entity_Id;
677 Index : Node_Id;
678 Into : Node_Id;
679 Scalar_Comp : Boolean;
680 Indexes : List_Id := No_List) return List_Id
681 is
682 Loc : constant Source_Ptr := Sloc (N);
683 Index_Base : constant Entity_Id := Base_Type (Etype (Index));
684 Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
685 Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
686
687 function Add (Val : Int; To : Node_Id) return Node_Id;
688 -- Returns an expression where Val is added to expression To, unless
689 -- To+Val is provably out of To's base type range. To must be an
690 -- already analyzed expression.
691
692 function Empty_Range (L, H : Node_Id) return Boolean;
693 -- Returns True if the range defined by L .. H is certainly empty
694
695 function Equal (L, H : Node_Id) return Boolean;
696 -- Returns True if L = H for sure
697
698 function Index_Base_Name return Node_Id;
699 -- Returns a new reference to the index type name
700
701 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
702 -- Ind must be a side-effect free expression. If the input aggregate
703 -- N to Build_Loop contains no sub-aggregates, then this function
704 -- returns the assignment statement:
705 --
706 -- Into (Indexes, Ind) := Expr;
707 --
708 -- Otherwise we call Build_Code recursively
709 --
710 -- Ada 2005 (AI-287): In case of default initialized component, Expr
711 -- is empty and we generate a call to the corresponding IP subprogram.
712
713 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
714 -- Nodes L and H must be side-effect free expressions.
715 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
716 -- This routine returns the for loop statement
717 --
718 -- for J in Index_Base'(L) .. Index_Base'(H) loop
719 -- Into (Indexes, J) := Expr;
720 -- end loop;
721 --
722 -- Otherwise we call Build_Code recursively.
723 -- As an optimization if the loop covers 3 or less scalar elements we
724 -- generate a sequence of assignments.
725
726 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
727 -- Nodes L and H must be side-effect free expressions.
728 -- If the input aggregate N to Build_Loop contains no sub-aggregates,
729 -- This routine returns the while loop statement
730 --
731 -- J : Index_Base := L;
732 -- while J < H loop
733 -- J := Index_Base'Succ (J);
734 -- Into (Indexes, J) := Expr;
735 -- end loop;
736 --
737 -- Otherwise we call Build_Code recursively
738
739 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
740 function Local_Expr_Value (E : Node_Id) return Uint;
741 -- These two Local routines are used to replace the corresponding ones
742 -- in sem_eval because while processing the bounds of an aggregate with
743 -- discrete choices whose index type is an enumeration, we build static
744 -- expressions not recognized by Compile_Time_Known_Value as such since
745 -- they have not yet been analyzed and resolved. All the expressions in
746 -- question are things like Index_Base_Name'Val (Const) which we can
747 -- easily recognize as being constant.
748
749 ---------
750 -- Add --
751 ---------
752
753 function Add (Val : Int; To : Node_Id) return Node_Id is
754 Expr_Pos : Node_Id;
755 Expr : Node_Id;
756 To_Pos : Node_Id;
757 U_To : Uint;
758 U_Val : constant Uint := UI_From_Int (Val);
759
760 begin
761 -- Note: do not try to optimize the case of Val = 0, because
762 -- we need to build a new node with the proper Sloc value anyway.
763
764 -- First test if we can do constant folding
765
766 if Local_Compile_Time_Known_Value (To) then
767 U_To := Local_Expr_Value (To) + Val;
768
769 -- Determine if our constant is outside the range of the index.
770 -- If so return an Empty node. This empty node will be caught
771 -- by Empty_Range below.
772
773 if Compile_Time_Known_Value (Index_Base_L)
774 and then U_To < Expr_Value (Index_Base_L)
775 then
776 return Empty;
777
778 elsif Compile_Time_Known_Value (Index_Base_H)
779 and then U_To > Expr_Value (Index_Base_H)
780 then
781 return Empty;
782 end if;
783
784 Expr_Pos := Make_Integer_Literal (Loc, U_To);
785 Set_Is_Static_Expression (Expr_Pos);
786
787 if not Is_Enumeration_Type (Index_Base) then
788 Expr := Expr_Pos;
789
790 -- If we are dealing with enumeration return
791 -- Index_Base'Val (Expr_Pos)
792
793 else
794 Expr :=
795 Make_Attribute_Reference
796 (Loc,
797 Prefix => Index_Base_Name,
798 Attribute_Name => Name_Val,
799 Expressions => New_List (Expr_Pos));
800 end if;
801
802 return Expr;
803 end if;
804
805 -- If we are here no constant folding possible
806
807 if not Is_Enumeration_Type (Index_Base) then
808 Expr :=
809 Make_Op_Add (Loc,
810 Left_Opnd => Duplicate_Subexpr (To),
811 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
812
813 -- If we are dealing with enumeration return
814 -- Index_Base'Val (Index_Base'Pos (To) + Val)
815
816 else
817 To_Pos :=
818 Make_Attribute_Reference
819 (Loc,
820 Prefix => Index_Base_Name,
821 Attribute_Name => Name_Pos,
822 Expressions => New_List (Duplicate_Subexpr (To)));
823
824 Expr_Pos :=
825 Make_Op_Add (Loc,
826 Left_Opnd => To_Pos,
827 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
828
829 Expr :=
830 Make_Attribute_Reference
831 (Loc,
832 Prefix => Index_Base_Name,
833 Attribute_Name => Name_Val,
834 Expressions => New_List (Expr_Pos));
835 end if;
836
837 return Expr;
838 end Add;
839
840 -----------------
841 -- Empty_Range --
842 -----------------
843
844 function Empty_Range (L, H : Node_Id) return Boolean is
845 Is_Empty : Boolean := False;
846 Low : Node_Id;
847 High : Node_Id;
848
849 begin
850 -- First check if L or H were already detected as overflowing the
851 -- index base range type by function Add above. If this is so Add
852 -- returns the empty node.
853
854 if No (L) or else No (H) then
855 return True;
856 end if;
857
858 for J in 1 .. 3 loop
859 case J is
860
861 -- L > H range is empty
862
863 when 1 =>
864 Low := L;
865 High := H;
866
867 -- B_L > H range must be empty
868
869 when 2 =>
870 Low := Index_Base_L;
871 High := H;
872
873 -- L > B_H range must be empty
874
875 when 3 =>
876 Low := L;
877 High := Index_Base_H;
878 end case;
879
880 if Local_Compile_Time_Known_Value (Low)
881 and then Local_Compile_Time_Known_Value (High)
882 then
883 Is_Empty :=
884 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
885 end if;
886
887 exit when Is_Empty;
888 end loop;
889
890 return Is_Empty;
891 end Empty_Range;
892
893 -----------
894 -- Equal --
895 -----------
896
897 function Equal (L, H : Node_Id) return Boolean is
898 begin
899 if L = H then
900 return True;
901
902 elsif Local_Compile_Time_Known_Value (L)
903 and then Local_Compile_Time_Known_Value (H)
904 then
905 return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
906 end if;
907
908 return False;
909 end Equal;
910
911 ----------------
912 -- Gen_Assign --
913 ----------------
914
915 function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
916 L : constant List_Id := New_List;
917 A : Node_Id;
918
919 New_Indexes : List_Id;
920 Indexed_Comp : Node_Id;
921 Expr_Q : Node_Id;
922 Comp_Type : Entity_Id := Empty;
923
924 function Add_Loop_Actions (Lis : List_Id) return List_Id;
925 -- Collect insert_actions generated in the construction of a
926 -- loop, and prepend them to the sequence of assignments to
927 -- complete the eventual body of the loop.
928
929 ----------------------
930 -- Add_Loop_Actions --
931 ----------------------
932
933 function Add_Loop_Actions (Lis : List_Id) return List_Id is
934 Res : List_Id;
935
936 begin
937 -- Ada 2005 (AI-287): Do nothing else in case of default
938 -- initialized component.
939
940 if No (Expr) then
941 return Lis;
942
943 elsif Nkind (Parent (Expr)) = N_Component_Association
944 and then Present (Loop_Actions (Parent (Expr)))
945 then
946 Append_List (Lis, Loop_Actions (Parent (Expr)));
947 Res := Loop_Actions (Parent (Expr));
948 Set_Loop_Actions (Parent (Expr), No_List);
949 return Res;
950
951 else
952 return Lis;
953 end if;
954 end Add_Loop_Actions;
955
956 -- Start of processing for Gen_Assign
957
958 begin
959 if No (Indexes) then
960 New_Indexes := New_List;
961 else
962 New_Indexes := New_Copy_List_Tree (Indexes);
963 end if;
964
965 Append_To (New_Indexes, Ind);
966
967 if Present (Next_Index (Index)) then
968 return
969 Add_Loop_Actions (
970 Build_Array_Aggr_Code
971 (N => Expr,
972 Ctype => Ctype,
973 Index => Next_Index (Index),
974 Into => Into,
975 Scalar_Comp => Scalar_Comp,
976 Indexes => New_Indexes));
977 end if;
978
979 -- If we get here then we are at a bottom-level (sub-)aggregate
980
981 Indexed_Comp :=
982 Checks_Off
983 (Make_Indexed_Component (Loc,
984 Prefix => New_Copy_Tree (Into),
985 Expressions => New_Indexes));
986
987 Set_Assignment_OK (Indexed_Comp);
988
989 -- Ada 2005 (AI-287): In case of default initialized component, Expr
990 -- is not present (and therefore we also initialize Expr_Q to empty).
991
992 if No (Expr) then
993 Expr_Q := Empty;
994 elsif Nkind (Expr) = N_Qualified_Expression then
995 Expr_Q := Expression (Expr);
996 else
997 Expr_Q := Expr;
998 end if;
999
1000 if Present (Etype (N))
1001 and then Etype (N) /= Any_Composite
1002 then
1003 Comp_Type := Component_Type (Etype (N));
1004 pragma Assert (Comp_Type = Ctype); -- AI-287
1005
1006 elsif Present (Next (First (New_Indexes))) then
1007
1008 -- Ada 2005 (AI-287): Do nothing in case of default initialized
1009 -- component because we have received the component type in
1010 -- the formal parameter Ctype.
1011
1012 -- ??? Some assert pragmas have been added to check if this new
1013 -- formal can be used to replace this code in all cases.
1014
1015 if Present (Expr) then
1016
1017 -- This is a multidimensional array. Recover the component
1018 -- type from the outermost aggregate, because subaggregates
1019 -- do not have an assigned type.
1020
1021 declare
1022 P : Node_Id;
1023
1024 begin
1025 P := Parent (Expr);
1026 while Present (P) loop
1027 if Nkind (P) = N_Aggregate
1028 and then Present (Etype (P))
1029 then
1030 Comp_Type := Component_Type (Etype (P));
1031 exit;
1032
1033 else
1034 P := Parent (P);
1035 end if;
1036 end loop;
1037
1038 pragma Assert (Comp_Type = Ctype); -- AI-287
1039 end;
1040 end if;
1041 end if;
1042
1043 -- Ada 2005 (AI-287): We only analyze the expression in case of non-
1044 -- default initialized components (otherwise Expr_Q is not present).
1045
1046 if Present (Expr_Q)
1047 and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
1048 then
1049 -- At this stage the Expression may not have been analyzed yet
1050 -- because the array aggregate code has not been updated to use
1051 -- the Expansion_Delayed flag and avoid analysis altogether to
1052 -- solve the same problem (see Resolve_Aggr_Expr). So let us do
1053 -- the analysis of non-array aggregates now in order to get the
1054 -- value of Expansion_Delayed flag for the inner aggregate ???
1055
1056 if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
1057 Analyze_And_Resolve (Expr_Q, Comp_Type);
1058 end if;
1059
1060 if Is_Delayed_Aggregate (Expr_Q) then
1061
1062 -- This is either a subaggregate of a multidimensional array,
1063 -- or a component of an array type whose component type is
1064 -- also an array. In the latter case, the expression may have
1065 -- component associations that provide different bounds from
1066 -- those of the component type, and sliding must occur. Instead
1067 -- of decomposing the current aggregate assignment, force the
1068 -- re-analysis of the assignment, so that a temporary will be
1069 -- generated in the usual fashion, and sliding will take place.
1070
1071 if Nkind (Parent (N)) = N_Assignment_Statement
1072 and then Is_Array_Type (Comp_Type)
1073 and then Present (Component_Associations (Expr_Q))
1074 and then Must_Slide (Comp_Type, Etype (Expr_Q))
1075 then
1076 Set_Expansion_Delayed (Expr_Q, False);
1077 Set_Analyzed (Expr_Q, False);
1078
1079 else
1080 return
1081 Add_Loop_Actions (
1082 Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
1083 end if;
1084 end if;
1085 end if;
1086
1087 -- Ada 2005 (AI-287): In case of default initialized component, call
1088 -- the initialization subprogram associated with the component type.
1089 -- If the component type is an access type, add an explicit null
1090 -- assignment, because for the back-end there is an initialization
1091 -- present for the whole aggregate, and no default initialization
1092 -- will take place.
1093
1094 -- In addition, if the component type is controlled, we must call
1095 -- its Initialize procedure explicitly, because there is no explicit
1096 -- object creation that will invoke it otherwise.
1097
1098 if No (Expr) then
1099 if Present (Base_Init_Proc (Base_Type (Ctype)))
1100 or else Has_Task (Base_Type (Ctype))
1101 then
1102 Append_List_To (L,
1103 Build_Initialization_Call (Loc,
1104 Id_Ref => Indexed_Comp,
1105 Typ => Ctype,
1106 With_Default_Init => True));
1107
1108 elsif Is_Access_Type (Ctype) then
1109 Append_To (L,
1110 Make_Assignment_Statement (Loc,
1111 Name => Indexed_Comp,
1112 Expression => Make_Null (Loc)));
1113 end if;
1114
1115 if Needs_Finalization (Ctype) then
1116 Append_To (L,
1117 Make_Init_Call (
1118 Obj_Ref => New_Copy_Tree (Indexed_Comp),
1119 Typ => Ctype));
1120 end if;
1121
1122 else
1123 -- Now generate the assignment with no associated controlled
1124 -- actions since the target of the assignment may not have been
1125 -- initialized, it is not possible to Finalize it as expected by
1126 -- normal controlled assignment. The rest of the controlled
1127 -- actions are done manually with the proper finalization list
1128 -- coming from the context.
1129
1130 A :=
1131 Make_OK_Assignment_Statement (Loc,
1132 Name => Indexed_Comp,
1133 Expression => New_Copy_Tree (Expr));
1134
1135 if Present (Comp_Type) and then Needs_Finalization (Comp_Type) then
1136 Set_No_Ctrl_Actions (A);
1137
1138 -- If this is an aggregate for an array of arrays, each
1139 -- sub-aggregate will be expanded as well, and even with
1140 -- No_Ctrl_Actions the assignments of inner components will
1141 -- require attachment in their assignments to temporaries.
1142 -- These temporaries must be finalized for each subaggregate,
1143 -- to prevent multiple attachments of the same temporary
1144 -- location to same finalization chain (and consequently
1145 -- circular lists). To ensure that finalization takes place
1146 -- for each subaggregate we wrap the assignment in a block.
1147
1148 if Is_Array_Type (Comp_Type)
1149 and then Nkind (Expr) = N_Aggregate
1150 then
1151 A :=
1152 Make_Block_Statement (Loc,
1153 Handled_Statement_Sequence =>
1154 Make_Handled_Sequence_Of_Statements (Loc,
1155 Statements => New_List (A)));
1156 end if;
1157 end if;
1158
1159 Append_To (L, A);
1160
1161 -- Adjust the tag if tagged (because of possible view
1162 -- conversions), unless compiling for a VM where
1163 -- tags are implicit.
1164
1165 if Present (Comp_Type)
1166 and then Is_Tagged_Type (Comp_Type)
1167 and then Tagged_Type_Expansion
1168 then
1169 declare
1170 Full_Typ : constant Entity_Id := Underlying_Type (Comp_Type);
1171
1172 begin
1173 A :=
1174 Make_OK_Assignment_Statement (Loc,
1175 Name =>
1176 Make_Selected_Component (Loc,
1177 Prefix => New_Copy_Tree (Indexed_Comp),
1178 Selector_Name =>
1179 New_Reference_To
1180 (First_Tag_Component (Full_Typ), Loc)),
1181
1182 Expression =>
1183 Unchecked_Convert_To (RTE (RE_Tag),
1184 New_Reference_To
1185 (Node (First_Elmt (Access_Disp_Table (Full_Typ))),
1186 Loc)));
1187
1188 Append_To (L, A);
1189 end;
1190 end if;
1191
1192 -- Adjust and attach the component to the proper final list, which
1193 -- can be the controller of the outer record object or the final
1194 -- list associated with the scope.
1195
1196 -- If the component is itself an array of controlled types, whose
1197 -- value is given by a sub-aggregate, then the attach calls have
1198 -- been generated when individual subcomponent are assigned, and
1199 -- must not be done again to prevent malformed finalization chains
1200 -- (see comments above, concerning the creation of a block to hold
1201 -- inner finalization actions).
1202
1203 if Present (Comp_Type)
1204 and then Needs_Finalization (Comp_Type)
1205 and then not Is_Limited_Type (Comp_Type)
1206 and then not
1207 (Is_Array_Type (Comp_Type)
1208 and then Is_Controlled (Component_Type (Comp_Type))
1209 and then Nkind (Expr) = N_Aggregate)
1210 then
1211 Append_To (L,
1212 Make_Adjust_Call (
1213 Obj_Ref => New_Copy_Tree (Indexed_Comp),
1214 Typ => Comp_Type));
1215 end if;
1216 end if;
1217
1218 return Add_Loop_Actions (L);
1219 end Gen_Assign;
1220
1221 --------------
1222 -- Gen_Loop --
1223 --------------
1224
1225 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
1226 L_J : Node_Id;
1227
1228 L_L : Node_Id;
1229 -- Index_Base'(L)
1230
1231 L_H : Node_Id;
1232 -- Index_Base'(H)
1233
1234 L_Range : Node_Id;
1235 -- Index_Base'(L) .. Index_Base'(H)
1236
1237 L_Iteration_Scheme : Node_Id;
1238 -- L_J in Index_Base'(L) .. Index_Base'(H)
1239
1240 L_Body : List_Id;
1241 -- The statements to execute in the loop
1242
1243 S : constant List_Id := New_List;
1244 -- List of statements
1245
1246 Tcopy : Node_Id;
1247 -- Copy of expression tree, used for checking purposes
1248
1249 begin
1250 -- If loop bounds define an empty range return the null statement
1251
1252 if Empty_Range (L, H) then
1253 Append_To (S, Make_Null_Statement (Loc));
1254
1255 -- Ada 2005 (AI-287): Nothing else need to be done in case of
1256 -- default initialized component.
1257
1258 if No (Expr) then
1259 null;
1260
1261 else
1262 -- The expression must be type-checked even though no component
1263 -- of the aggregate will have this value. This is done only for
1264 -- actual components of the array, not for subaggregates. Do
1265 -- the check on a copy, because the expression may be shared
1266 -- among several choices, some of which might be non-null.
1267
1268 if Present (Etype (N))
1269 and then Is_Array_Type (Etype (N))
1270 and then No (Next_Index (Index))
1271 then
1272 Expander_Mode_Save_And_Set (False);
1273 Tcopy := New_Copy_Tree (Expr);
1274 Set_Parent (Tcopy, N);
1275 Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1276 Expander_Mode_Restore;
1277 end if;
1278 end if;
1279
1280 return S;
1281
1282 -- If loop bounds are the same then generate an assignment
1283
1284 elsif Equal (L, H) then
1285 return Gen_Assign (New_Copy_Tree (L), Expr);
1286
1287 -- If H - L <= 2 then generate a sequence of assignments when we are
1288 -- processing the bottom most aggregate and it contains scalar
1289 -- components.
1290
1291 elsif No (Next_Index (Index))
1292 and then Scalar_Comp
1293 and then Local_Compile_Time_Known_Value (L)
1294 and then Local_Compile_Time_Known_Value (H)
1295 and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
1296 then
1297
1298 Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1299 Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1300
1301 if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1302 Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1303 end if;
1304
1305 return S;
1306 end if;
1307
1308 -- Otherwise construct the loop, starting with the loop index L_J
1309
1310 L_J := Make_Temporary (Loc, 'J', L);
1311
1312 -- Construct "L .. H" in Index_Base. We use a qualified expression
1313 -- for the bound to convert to the index base, but we don't need
1314 -- to do that if we already have the base type at hand.
1315
1316 if Etype (L) = Index_Base then
1317 L_L := L;
1318 else
1319 L_L :=
1320 Make_Qualified_Expression (Loc,
1321 Subtype_Mark => Index_Base_Name,
1322 Expression => L);
1323 end if;
1324
1325 if Etype (H) = Index_Base then
1326 L_H := H;
1327 else
1328 L_H :=
1329 Make_Qualified_Expression (Loc,
1330 Subtype_Mark => Index_Base_Name,
1331 Expression => H);
1332 end if;
1333
1334 L_Range :=
1335 Make_Range (Loc,
1336 Low_Bound => L_L,
1337 High_Bound => L_H);
1338
1339 -- Construct "for L_J in Index_Base range L .. H"
1340
1341 L_Iteration_Scheme :=
1342 Make_Iteration_Scheme
1343 (Loc,
1344 Loop_Parameter_Specification =>
1345 Make_Loop_Parameter_Specification
1346 (Loc,
1347 Defining_Identifier => L_J,
1348 Discrete_Subtype_Definition => L_Range));
1349
1350 -- Construct the statements to execute in the loop body
1351
1352 L_Body := Gen_Assign (New_Reference_To (L_J, Loc), Expr);
1353
1354 -- Construct the final loop
1355
1356 Append_To (S, Make_Implicit_Loop_Statement
1357 (Node => N,
1358 Identifier => Empty,
1359 Iteration_Scheme => L_Iteration_Scheme,
1360 Statements => L_Body));
1361
1362 -- A small optimization: if the aggregate is initialized with a box
1363 -- and the component type has no initialization procedure, remove the
1364 -- useless empty loop.
1365
1366 if Nkind (First (S)) = N_Loop_Statement
1367 and then Is_Empty_List (Statements (First (S)))
1368 then
1369 return New_List (Make_Null_Statement (Loc));
1370 else
1371 return S;
1372 end if;
1373 end Gen_Loop;
1374
1375 ---------------
1376 -- Gen_While --
1377 ---------------
1378
1379 -- The code built is
1380
1381 -- W_J : Index_Base := L;
1382 -- while W_J < H loop
1383 -- W_J := Index_Base'Succ (W);
1384 -- L_Body;
1385 -- end loop;
1386
1387 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
1388 W_J : Node_Id;
1389
1390 W_Decl : Node_Id;
1391 -- W_J : Base_Type := L;
1392
1393 W_Iteration_Scheme : Node_Id;
1394 -- while W_J < H
1395
1396 W_Index_Succ : Node_Id;
1397 -- Index_Base'Succ (J)
1398
1399 W_Increment : Node_Id;
1400 -- W_J := Index_Base'Succ (W)
1401
1402 W_Body : constant List_Id := New_List;
1403 -- The statements to execute in the loop
1404
1405 S : constant List_Id := New_List;
1406 -- list of statement
1407
1408 begin
1409 -- If loop bounds define an empty range or are equal return null
1410
1411 if Empty_Range (L, H) or else Equal (L, H) then
1412 Append_To (S, Make_Null_Statement (Loc));
1413 return S;
1414 end if;
1415
1416 -- Build the decl of W_J
1417
1418 W_J := Make_Temporary (Loc, 'J', L);
1419 W_Decl :=
1420 Make_Object_Declaration
1421 (Loc,
1422 Defining_Identifier => W_J,
1423 Object_Definition => Index_Base_Name,
1424 Expression => L);
1425
1426 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1427 -- that in this particular case L is a fresh Expr generated by
1428 -- Add which we are the only ones to use.
1429
1430 Append_To (S, W_Decl);
1431
1432 -- Construct " while W_J < H"
1433
1434 W_Iteration_Scheme :=
1435 Make_Iteration_Scheme
1436 (Loc,
1437 Condition => Make_Op_Lt
1438 (Loc,
1439 Left_Opnd => New_Reference_To (W_J, Loc),
1440 Right_Opnd => New_Copy_Tree (H)));
1441
1442 -- Construct the statements to execute in the loop body
1443
1444 W_Index_Succ :=
1445 Make_Attribute_Reference
1446 (Loc,
1447 Prefix => Index_Base_Name,
1448 Attribute_Name => Name_Succ,
1449 Expressions => New_List (New_Reference_To (W_J, Loc)));
1450
1451 W_Increment :=
1452 Make_OK_Assignment_Statement
1453 (Loc,
1454 Name => New_Reference_To (W_J, Loc),
1455 Expression => W_Index_Succ);
1456
1457 Append_To (W_Body, W_Increment);
1458 Append_List_To (W_Body,
1459 Gen_Assign (New_Reference_To (W_J, Loc), Expr));
1460
1461 -- Construct the final loop
1462
1463 Append_To (S, Make_Implicit_Loop_Statement
1464 (Node => N,
1465 Identifier => Empty,
1466 Iteration_Scheme => W_Iteration_Scheme,
1467 Statements => W_Body));
1468
1469 return S;
1470 end Gen_While;
1471
1472 ---------------------
1473 -- Index_Base_Name --
1474 ---------------------
1475
1476 function Index_Base_Name return Node_Id is
1477 begin
1478 return New_Reference_To (Index_Base, Sloc (N));
1479 end Index_Base_Name;
1480
1481 ------------------------------------
1482 -- Local_Compile_Time_Known_Value --
1483 ------------------------------------
1484
1485 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1486 begin
1487 return Compile_Time_Known_Value (E)
1488 or else
1489 (Nkind (E) = N_Attribute_Reference
1490 and then Attribute_Name (E) = Name_Val
1491 and then Compile_Time_Known_Value (First (Expressions (E))));
1492 end Local_Compile_Time_Known_Value;
1493
1494 ----------------------
1495 -- Local_Expr_Value --
1496 ----------------------
1497
1498 function Local_Expr_Value (E : Node_Id) return Uint is
1499 begin
1500 if Compile_Time_Known_Value (E) then
1501 return Expr_Value (E);
1502 else
1503 return Expr_Value (First (Expressions (E)));
1504 end if;
1505 end Local_Expr_Value;
1506
1507 -- Build_Array_Aggr_Code Variables
1508
1509 Assoc : Node_Id;
1510 Choice : Node_Id;
1511 Expr : Node_Id;
1512 Typ : Entity_Id;
1513
1514 Others_Expr : Node_Id := Empty;
1515 Others_Box_Present : Boolean := False;
1516
1517 Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
1518 Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
1519 -- The aggregate bounds of this specific sub-aggregate. Note that if
1520 -- the code generated by Build_Array_Aggr_Code is executed then these
1521 -- bounds are OK. Otherwise a Constraint_Error would have been raised.
1522
1523 Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1524 Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
1525 -- After Duplicate_Subexpr these are side-effect free
1526
1527 Low : Node_Id;
1528 High : Node_Id;
1529
1530 Nb_Choices : Nat := 0;
1531 Table : Case_Table_Type (1 .. Number_Of_Choices (N));
1532 -- Used to sort all the different choice values
1533
1534 Nb_Elements : Int;
1535 -- Number of elements in the positional aggregate
1536
1537 New_Code : constant List_Id := New_List;
1538
1539 -- Start of processing for Build_Array_Aggr_Code
1540
1541 begin
1542 -- First before we start, a special case. if we have a bit packed
1543 -- array represented as a modular type, then clear the value to
1544 -- zero first, to ensure that unused bits are properly cleared.
1545
1546 Typ := Etype (N);
1547
1548 if Present (Typ)
1549 and then Is_Bit_Packed_Array (Typ)
1550 and then Is_Modular_Integer_Type (Packed_Array_Type (Typ))
1551 then
1552 Append_To (New_Code,
1553 Make_Assignment_Statement (Loc,
1554 Name => New_Copy_Tree (Into),
1555 Expression =>
1556 Unchecked_Convert_To (Typ,
1557 Make_Integer_Literal (Loc, Uint_0))));
1558 end if;
1559
1560 -- If the component type contains tasks, we need to build a Master
1561 -- entity in the current scope, because it will be needed if build-
1562 -- in-place functions are called in the expanded code.
1563
1564 if Nkind (Parent (N)) = N_Object_Declaration
1565 and then Has_Task (Typ)
1566 then
1567 Build_Master_Entity (Defining_Identifier (Parent (N)));
1568 end if;
1569
1570 -- STEP 1: Process component associations
1571
1572 -- For those associations that may generate a loop, initialize
1573 -- Loop_Actions to collect inserted actions that may be crated.
1574
1575 -- Skip this if no component associations
1576
1577 if No (Expressions (N)) then
1578
1579 -- STEP 1 (a): Sort the discrete choices
1580
1581 Assoc := First (Component_Associations (N));
1582 while Present (Assoc) loop
1583 Choice := First (Choices (Assoc));
1584 while Present (Choice) loop
1585 if Nkind (Choice) = N_Others_Choice then
1586 Set_Loop_Actions (Assoc, New_List);
1587
1588 if Box_Present (Assoc) then
1589 Others_Box_Present := True;
1590 else
1591 Others_Expr := Expression (Assoc);
1592 end if;
1593 exit;
1594 end if;
1595
1596 Get_Index_Bounds (Choice, Low, High);
1597
1598 if Low /= High then
1599 Set_Loop_Actions (Assoc, New_List);
1600 end if;
1601
1602 Nb_Choices := Nb_Choices + 1;
1603 if Box_Present (Assoc) then
1604 Table (Nb_Choices) := (Choice_Lo => Low,
1605 Choice_Hi => High,
1606 Choice_Node => Empty);
1607 else
1608 Table (Nb_Choices) := (Choice_Lo => Low,
1609 Choice_Hi => High,
1610 Choice_Node => Expression (Assoc));
1611 end if;
1612 Next (Choice);
1613 end loop;
1614
1615 Next (Assoc);
1616 end loop;
1617
1618 -- If there is more than one set of choices these must be static
1619 -- and we can therefore sort them. Remember that Nb_Choices does not
1620 -- account for an others choice.
1621
1622 if Nb_Choices > 1 then
1623 Sort_Case_Table (Table);
1624 end if;
1625
1626 -- STEP 1 (b): take care of the whole set of discrete choices
1627
1628 for J in 1 .. Nb_Choices loop
1629 Low := Table (J).Choice_Lo;
1630 High := Table (J).Choice_Hi;
1631 Expr := Table (J).Choice_Node;
1632 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
1633 end loop;
1634
1635 -- STEP 1 (c): generate the remaining loops to cover others choice
1636 -- We don't need to generate loops over empty gaps, but if there is
1637 -- a single empty range we must analyze the expression for semantics
1638
1639 if Present (Others_Expr) or else Others_Box_Present then
1640 declare
1641 First : Boolean := True;
1642
1643 begin
1644 for J in 0 .. Nb_Choices loop
1645 if J = 0 then
1646 Low := Aggr_Low;
1647 else
1648 Low := Add (1, To => Table (J).Choice_Hi);
1649 end if;
1650
1651 if J = Nb_Choices then
1652 High := Aggr_High;
1653 else
1654 High := Add (-1, To => Table (J + 1).Choice_Lo);
1655 end if;
1656
1657 -- If this is an expansion within an init proc, make
1658 -- sure that discriminant references are replaced by
1659 -- the corresponding discriminal.
1660
1661 if Inside_Init_Proc then
1662 if Is_Entity_Name (Low)
1663 and then Ekind (Entity (Low)) = E_Discriminant
1664 then
1665 Set_Entity (Low, Discriminal (Entity (Low)));
1666 end if;
1667
1668 if Is_Entity_Name (High)
1669 and then Ekind (Entity (High)) = E_Discriminant
1670 then
1671 Set_Entity (High, Discriminal (Entity (High)));
1672 end if;
1673 end if;
1674
1675 if First
1676 or else not Empty_Range (Low, High)
1677 then
1678 First := False;
1679 Append_List
1680 (Gen_Loop (Low, High, Others_Expr), To => New_Code);
1681 end if;
1682 end loop;
1683 end;
1684 end if;
1685
1686 -- STEP 2: Process positional components
1687
1688 else
1689 -- STEP 2 (a): Generate the assignments for each positional element
1690 -- Note that here we have to use Aggr_L rather than Aggr_Low because
1691 -- Aggr_L is analyzed and Add wants an analyzed expression.
1692
1693 Expr := First (Expressions (N));
1694 Nb_Elements := -1;
1695 while Present (Expr) loop
1696 Nb_Elements := Nb_Elements + 1;
1697 Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
1698 To => New_Code);
1699 Next (Expr);
1700 end loop;
1701
1702 -- STEP 2 (b): Generate final loop if an others choice is present
1703 -- Here Nb_Elements gives the offset of the last positional element.
1704
1705 if Present (Component_Associations (N)) then
1706 Assoc := Last (Component_Associations (N));
1707
1708 -- Ada 2005 (AI-287)
1709
1710 if Box_Present (Assoc) then
1711 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1712 Aggr_High,
1713 Empty),
1714 To => New_Code);
1715 else
1716 Expr := Expression (Assoc);
1717
1718 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1719 Aggr_High,
1720 Expr), -- AI-287
1721 To => New_Code);
1722 end if;
1723 end if;
1724 end if;
1725
1726 return New_Code;
1727 end Build_Array_Aggr_Code;
1728
1729 ----------------------------
1730 -- Build_Record_Aggr_Code --
1731 ----------------------------
1732
1733 function Build_Record_Aggr_Code
1734 (N : Node_Id;
1735 Typ : Entity_Id;
1736 Lhs : Node_Id;
1737 Is_Limited_Ancestor_Expansion : Boolean := False) return List_Id
1738 is
1739 Loc : constant Source_Ptr := Sloc (N);
1740 L : constant List_Id := New_List;
1741 N_Typ : constant Entity_Id := Etype (N);
1742
1743 Comp : Node_Id;
1744 Instr : Node_Id;
1745 Ref : Node_Id;
1746 Target : Entity_Id;
1747 Comp_Type : Entity_Id;
1748 Selector : Entity_Id;
1749 Comp_Expr : Node_Id;
1750 Expr_Q : Node_Id;
1751
1752 -- If this is an internal aggregate, the External_Final_List is an
1753 -- expression for the controller record of the enclosing type.
1754
1755 -- If the current aggregate has several controlled components, this
1756 -- expression will appear in several calls to attach to the finali-
1757 -- zation list, and it must not be shared.
1758
1759 Ancestor_Is_Expression : Boolean := False;
1760 Ancestor_Is_Subtype_Mark : Boolean := False;
1761
1762 Init_Typ : Entity_Id := Empty;
1763
1764 Finalization_Done : Boolean := False;
1765 -- True if Generate_Finalization_Actions has already been called; calls
1766 -- after the first do nothing.
1767
1768 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
1769 -- Returns the value that the given discriminant of an ancestor type
1770 -- should receive (in the absence of a conflict with the value provided
1771 -- by an ancestor part of an extension aggregate).
1772
1773 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
1774 -- Check that each of the discriminant values defined by the ancestor
1775 -- part of an extension aggregate match the corresponding values
1776 -- provided by either an association of the aggregate or by the
1777 -- constraint imposed by a parent type (RM95-4.3.2(8)).
1778
1779 function Compatible_Int_Bounds
1780 (Agg_Bounds : Node_Id;
1781 Typ_Bounds : Node_Id) return Boolean;
1782 -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
1783 -- assumed that both bounds are integer ranges.
1784
1785 procedure Generate_Finalization_Actions;
1786 -- Deal with the various controlled type data structure initializations
1787 -- (but only if it hasn't been done already).
1788
1789 function Get_Constraint_Association (T : Entity_Id) return Node_Id;
1790 -- Returns the first discriminant association in the constraint
1791 -- associated with T, if any, otherwise returns Empty.
1792
1793 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
1794 -- If Typ is derived, and constrains discriminants of the parent type,
1795 -- these discriminants are not components of the aggregate, and must be
1796 -- initialized. The assignments are appended to List.
1797
1798 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
1799 -- Check whether Bounds is a range node and its lower and higher bounds
1800 -- are integers literals.
1801
1802 ---------------------------------
1803 -- Ancestor_Discriminant_Value --
1804 ---------------------------------
1805
1806 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
1807 Assoc : Node_Id;
1808 Assoc_Elmt : Elmt_Id;
1809 Aggr_Comp : Entity_Id;
1810 Corresp_Disc : Entity_Id;
1811 Current_Typ : Entity_Id := Base_Type (Typ);
1812 Parent_Typ : Entity_Id;
1813 Parent_Disc : Entity_Id;
1814 Save_Assoc : Node_Id := Empty;
1815
1816 begin
1817 -- First check any discriminant associations to see if any of them
1818 -- provide a value for the discriminant.
1819
1820 if Present (Discriminant_Specifications (Parent (Current_Typ))) then
1821 Assoc := First (Component_Associations (N));
1822 while Present (Assoc) loop
1823 Aggr_Comp := Entity (First (Choices (Assoc)));
1824
1825 if Ekind (Aggr_Comp) = E_Discriminant then
1826 Save_Assoc := Expression (Assoc);
1827
1828 Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
1829 while Present (Corresp_Disc) loop
1830
1831 -- If found a corresponding discriminant then return the
1832 -- value given in the aggregate. (Note: this is not
1833 -- correct in the presence of side effects. ???)
1834
1835 if Disc = Corresp_Disc then
1836 return Duplicate_Subexpr (Expression (Assoc));
1837 end if;
1838
1839 Corresp_Disc :=
1840 Corresponding_Discriminant (Corresp_Disc);
1841 end loop;
1842 end if;
1843
1844 Next (Assoc);
1845 end loop;
1846 end if;
1847
1848 -- No match found in aggregate, so chain up parent types to find
1849 -- a constraint that defines the value of the discriminant.
1850
1851 Parent_Typ := Etype (Current_Typ);
1852 while Current_Typ /= Parent_Typ loop
1853 if Has_Discriminants (Parent_Typ)
1854 and then not Has_Unknown_Discriminants (Parent_Typ)
1855 then
1856 Parent_Disc := First_Discriminant (Parent_Typ);
1857
1858 -- We either get the association from the subtype indication
1859 -- of the type definition itself, or from the discriminant
1860 -- constraint associated with the type entity (which is
1861 -- preferable, but it's not always present ???)
1862
1863 if Is_Empty_Elmt_List (
1864 Discriminant_Constraint (Current_Typ))
1865 then
1866 Assoc := Get_Constraint_Association (Current_Typ);
1867 Assoc_Elmt := No_Elmt;
1868 else
1869 Assoc_Elmt :=
1870 First_Elmt (Discriminant_Constraint (Current_Typ));
1871 Assoc := Node (Assoc_Elmt);
1872 end if;
1873
1874 -- Traverse the discriminants of the parent type looking
1875 -- for one that corresponds.
1876
1877 while Present (Parent_Disc) and then Present (Assoc) loop
1878 Corresp_Disc := Parent_Disc;
1879 while Present (Corresp_Disc)
1880 and then Disc /= Corresp_Disc
1881 loop
1882 Corresp_Disc :=
1883 Corresponding_Discriminant (Corresp_Disc);
1884 end loop;
1885
1886 if Disc = Corresp_Disc then
1887 if Nkind (Assoc) = N_Discriminant_Association then
1888 Assoc := Expression (Assoc);
1889 end if;
1890
1891 -- If the located association directly denotes a
1892 -- discriminant, then use the value of a saved
1893 -- association of the aggregate. This is a kludge to
1894 -- handle certain cases involving multiple discriminants
1895 -- mapped to a single discriminant of a descendant. It's
1896 -- not clear how to locate the appropriate discriminant
1897 -- value for such cases. ???
1898
1899 if Is_Entity_Name (Assoc)
1900 and then Ekind (Entity (Assoc)) = E_Discriminant
1901 then
1902 Assoc := Save_Assoc;
1903 end if;
1904
1905 return Duplicate_Subexpr (Assoc);
1906 end if;
1907
1908 Next_Discriminant (Parent_Disc);
1909
1910 if No (Assoc_Elmt) then
1911 Next (Assoc);
1912 else
1913 Next_Elmt (Assoc_Elmt);
1914 if Present (Assoc_Elmt) then
1915 Assoc := Node (Assoc_Elmt);
1916 else
1917 Assoc := Empty;
1918 end if;
1919 end if;
1920 end loop;
1921 end if;
1922
1923 Current_Typ := Parent_Typ;
1924 Parent_Typ := Etype (Current_Typ);
1925 end loop;
1926
1927 -- In some cases there's no ancestor value to locate (such as
1928 -- when an ancestor part given by an expression defines the
1929 -- discriminant value).
1930
1931 return Empty;
1932 end Ancestor_Discriminant_Value;
1933
1934 ----------------------------------
1935 -- Check_Ancestor_Discriminants --
1936 ----------------------------------
1937
1938 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
1939 Discr : Entity_Id;
1940 Disc_Value : Node_Id;
1941 Cond : Node_Id;
1942
1943 begin
1944 Discr := First_Discriminant (Base_Type (Anc_Typ));
1945 while Present (Discr) loop
1946 Disc_Value := Ancestor_Discriminant_Value (Discr);
1947
1948 if Present (Disc_Value) then
1949 Cond := Make_Op_Ne (Loc,
1950 Left_Opnd =>
1951 Make_Selected_Component (Loc,
1952 Prefix => New_Copy_Tree (Target),
1953 Selector_Name => New_Occurrence_Of (Discr, Loc)),
1954 Right_Opnd => Disc_Value);
1955
1956 Append_To (L,
1957 Make_Raise_Constraint_Error (Loc,
1958 Condition => Cond,
1959 Reason => CE_Discriminant_Check_Failed));
1960 end if;
1961
1962 Next_Discriminant (Discr);
1963 end loop;
1964 end Check_Ancestor_Discriminants;
1965
1966 ---------------------------
1967 -- Compatible_Int_Bounds --
1968 ---------------------------
1969
1970 function Compatible_Int_Bounds
1971 (Agg_Bounds : Node_Id;
1972 Typ_Bounds : Node_Id) return Boolean
1973 is
1974 Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
1975 Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
1976 Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
1977 Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
1978 begin
1979 return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
1980 end Compatible_Int_Bounds;
1981
1982 --------------------------------
1983 -- Get_Constraint_Association --
1984 --------------------------------
1985
1986 function Get_Constraint_Association (T : Entity_Id) return Node_Id is
1987 Typ_Def : constant Node_Id := Type_Definition (Parent (T));
1988 Indic : constant Node_Id := Subtype_Indication (Typ_Def);
1989
1990 begin
1991 -- ??? Also need to cover case of a type mark denoting a subtype
1992 -- with constraint.
1993
1994 if Nkind (Indic) = N_Subtype_Indication
1995 and then Present (Constraint (Indic))
1996 then
1997 return First (Constraints (Constraint (Indic)));
1998 end if;
1999
2000 return Empty;
2001 end Get_Constraint_Association;
2002
2003 -------------------------------
2004 -- Init_Hidden_Discriminants --
2005 -------------------------------
2006
2007 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
2008 Btype : Entity_Id;
2009 Parent_Type : Entity_Id;
2010 Disc : Entity_Id;
2011 Discr_Val : Elmt_Id;
2012
2013 begin
2014 Btype := Base_Type (Typ);
2015 while Is_Derived_Type (Btype)
2016 and then Present (Stored_Constraint (Btype))
2017 loop
2018 Parent_Type := Etype (Btype);
2019
2020 Disc := First_Discriminant (Parent_Type);
2021 Discr_Val := First_Elmt (Stored_Constraint (Base_Type (Typ)));
2022 while Present (Discr_Val) loop
2023
2024 -- Only those discriminants of the parent that are not
2025 -- renamed by discriminants of the derived type need to
2026 -- be added explicitly.
2027
2028 if not Is_Entity_Name (Node (Discr_Val))
2029 or else Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
2030 then
2031 Comp_Expr :=
2032 Make_Selected_Component (Loc,
2033 Prefix => New_Copy_Tree (Target),
2034 Selector_Name => New_Occurrence_Of (Disc, Loc));
2035
2036 Instr :=
2037 Make_OK_Assignment_Statement (Loc,
2038 Name => Comp_Expr,
2039 Expression => New_Copy_Tree (Node (Discr_Val)));
2040
2041 Set_No_Ctrl_Actions (Instr);
2042 Append_To (List, Instr);
2043 end if;
2044
2045 Next_Discriminant (Disc);
2046 Next_Elmt (Discr_Val);
2047 end loop;
2048
2049 Btype := Base_Type (Parent_Type);
2050 end loop;
2051 end Init_Hidden_Discriminants;
2052
2053 -------------------------
2054 -- Is_Int_Range_Bounds --
2055 -------------------------
2056
2057 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2058 begin
2059 return Nkind (Bounds) = N_Range
2060 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
2061 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2062 end Is_Int_Range_Bounds;
2063
2064 -----------------------------------
2065 -- Generate_Finalization_Actions --
2066 -----------------------------------
2067
2068 procedure Generate_Finalization_Actions is
2069 begin
2070 -- Do the work only the first time this is called
2071
2072 if Finalization_Done then
2073 return;
2074 end if;
2075
2076 Finalization_Done := True;
2077
2078 -- Determine the external finalization list. It is either the
2079 -- finalization list of the outer-scope or the one coming from
2080 -- an outer aggregate. When the target is not a temporary, the
2081 -- proper scope is the scope of the target rather than the
2082 -- potentially transient current scope.
2083
2084 if Is_Controlled (Typ)
2085 and then Ancestor_Is_Subtype_Mark
2086 then
2087 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2088 Set_Assignment_OK (Ref);
2089
2090 Append_To (L,
2091 Make_Procedure_Call_Statement (Loc,
2092 Name =>
2093 New_Reference_To
2094 (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2095 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2096 end if;
2097 end Generate_Finalization_Actions;
2098
2099 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
2100 -- If default expression of a component mentions a discriminant of the
2101 -- type, it must be rewritten as the discriminant of the target object.
2102
2103 function Replace_Type (Expr : Node_Id) return Traverse_Result;
2104 -- If the aggregate contains a self-reference, traverse each expression
2105 -- to replace a possible self-reference with a reference to the proper
2106 -- component of the target of the assignment.
2107
2108 --------------------------
2109 -- Rewrite_Discriminant --
2110 --------------------------
2111
2112 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2113 begin
2114 if Is_Entity_Name (Expr)
2115 and then Present (Entity (Expr))
2116 and then Ekind (Entity (Expr)) = E_In_Parameter
2117 and then Present (Discriminal_Link (Entity (Expr)))
2118 and then Scope (Discriminal_Link (Entity (Expr)))
2119 = Base_Type (Etype (N))
2120 then
2121 Rewrite (Expr,
2122 Make_Selected_Component (Loc,
2123 Prefix => New_Copy_Tree (Lhs),
2124 Selector_Name => Make_Identifier (Loc, Chars (Expr))));
2125 end if;
2126 return OK;
2127 end Rewrite_Discriminant;
2128
2129 ------------------
2130 -- Replace_Type --
2131 ------------------
2132
2133 function Replace_Type (Expr : Node_Id) return Traverse_Result is
2134 begin
2135 -- Note regarding the Root_Type test below: Aggregate components for
2136 -- self-referential types include attribute references to the current
2137 -- instance, of the form: Typ'access, etc.. These references are
2138 -- rewritten as references to the target of the aggregate: the
2139 -- left-hand side of an assignment, the entity in a declaration,
2140 -- or a temporary. Without this test, we would improperly extended
2141 -- this rewriting to attribute references whose prefix was not the
2142 -- type of the aggregate.
2143
2144 if Nkind (Expr) = N_Attribute_Reference
2145 and then Is_Entity_Name (Prefix (Expr))
2146 and then Is_Type (Entity (Prefix (Expr)))
2147 and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
2148 then
2149 if Is_Entity_Name (Lhs) then
2150 Rewrite (Prefix (Expr),
2151 New_Occurrence_Of (Entity (Lhs), Loc));
2152
2153 elsif Nkind (Lhs) = N_Selected_Component then
2154 Rewrite (Expr,
2155 Make_Attribute_Reference (Loc,
2156 Attribute_Name => Name_Unrestricted_Access,
2157 Prefix => New_Copy_Tree (Prefix (Lhs))));
2158 Set_Analyzed (Parent (Expr), False);
2159
2160 else
2161 Rewrite (Expr,
2162 Make_Attribute_Reference (Loc,
2163 Attribute_Name => Name_Unrestricted_Access,
2164 Prefix => New_Copy_Tree (Lhs)));
2165 Set_Analyzed (Parent (Expr), False);
2166 end if;
2167 end if;
2168
2169 return OK;
2170 end Replace_Type;
2171
2172 procedure Replace_Self_Reference is
2173 new Traverse_Proc (Replace_Type);
2174
2175 procedure Replace_Discriminants is
2176 new Traverse_Proc (Rewrite_Discriminant);
2177
2178 -- Start of processing for Build_Record_Aggr_Code
2179
2180 begin
2181 if Has_Self_Reference (N) then
2182 Replace_Self_Reference (N);
2183 end if;
2184
2185 -- If the target of the aggregate is class-wide, we must convert it
2186 -- to the actual type of the aggregate, so that the proper components
2187 -- are visible. We know already that the types are compatible.
2188
2189 if Present (Etype (Lhs))
2190 and then Is_Class_Wide_Type (Etype (Lhs))
2191 then
2192 Target := Unchecked_Convert_To (Typ, Lhs);
2193 else
2194 Target := Lhs;
2195 end if;
2196
2197 -- Deal with the ancestor part of extension aggregates or with the
2198 -- discriminants of the root type.
2199
2200 if Nkind (N) = N_Extension_Aggregate then
2201 declare
2202 Ancestor : constant Node_Id := Ancestor_Part (N);
2203 Assign : List_Id;
2204
2205 begin
2206 -- If the ancestor part is a subtype mark "T", we generate
2207
2208 -- init-proc (T (tmp)); if T is constrained and
2209 -- init-proc (S (tmp)); where S applies an appropriate
2210 -- constraint if T is unconstrained
2211
2212 if Is_Entity_Name (Ancestor)
2213 and then Is_Type (Entity (Ancestor))
2214 then
2215 Ancestor_Is_Subtype_Mark := True;
2216
2217 if Is_Constrained (Entity (Ancestor)) then
2218 Init_Typ := Entity (Ancestor);
2219
2220 -- For an ancestor part given by an unconstrained type mark,
2221 -- create a subtype constrained by appropriate corresponding
2222 -- discriminant values coming from either associations of the
2223 -- aggregate or a constraint on a parent type. The subtype will
2224 -- be used to generate the correct default value for the
2225 -- ancestor part.
2226
2227 elsif Has_Discriminants (Entity (Ancestor)) then
2228 declare
2229 Anc_Typ : constant Entity_Id := Entity (Ancestor);
2230 Anc_Constr : constant List_Id := New_List;
2231 Discrim : Entity_Id;
2232 Disc_Value : Node_Id;
2233 New_Indic : Node_Id;
2234 Subt_Decl : Node_Id;
2235
2236 begin
2237 Discrim := First_Discriminant (Anc_Typ);
2238 while Present (Discrim) loop
2239 Disc_Value := Ancestor_Discriminant_Value (Discrim);
2240 Append_To (Anc_Constr, Disc_Value);
2241 Next_Discriminant (Discrim);
2242 end loop;
2243
2244 New_Indic :=
2245 Make_Subtype_Indication (Loc,
2246 Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2247 Constraint =>
2248 Make_Index_Or_Discriminant_Constraint (Loc,
2249 Constraints => Anc_Constr));
2250
2251 Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2252
2253 Subt_Decl :=
2254 Make_Subtype_Declaration (Loc,
2255 Defining_Identifier => Init_Typ,
2256 Subtype_Indication => New_Indic);
2257
2258 -- Itypes must be analyzed with checks off Declaration
2259 -- must have a parent for proper handling of subsidiary
2260 -- actions.
2261
2262 Set_Parent (Subt_Decl, N);
2263 Analyze (Subt_Decl, Suppress => All_Checks);
2264 end;
2265 end if;
2266
2267 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2268 Set_Assignment_OK (Ref);
2269
2270 if not Is_Interface (Init_Typ) then
2271 Append_List_To (L,
2272 Build_Initialization_Call (Loc,
2273 Id_Ref => Ref,
2274 Typ => Init_Typ,
2275 In_Init_Proc => Within_Init_Proc,
2276 With_Default_Init => Has_Default_Init_Comps (N)
2277 or else
2278 Has_Task (Base_Type (Init_Typ))));
2279
2280 if Is_Constrained (Entity (Ancestor))
2281 and then Has_Discriminants (Entity (Ancestor))
2282 then
2283 Check_Ancestor_Discriminants (Entity (Ancestor));
2284 end if;
2285 end if;
2286
2287 -- Handle calls to C++ constructors
2288
2289 elsif Is_CPP_Constructor_Call (Ancestor) then
2290 Init_Typ := Etype (Ancestor);
2291 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2292 Set_Assignment_OK (Ref);
2293
2294 Append_List_To (L,
2295 Build_Initialization_Call (Loc,
2296 Id_Ref => Ref,
2297 Typ => Init_Typ,
2298 In_Init_Proc => Within_Init_Proc,
2299 With_Default_Init => Has_Default_Init_Comps (N),
2300 Constructor_Ref => Ancestor));
2301
2302 -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
2303 -- limited type, a recursive call expands the ancestor. Note that
2304 -- in the limited case, the ancestor part must be either a
2305 -- function call (possibly qualified, or wrapped in an unchecked
2306 -- conversion) or aggregate (definitely qualified).
2307 -- The ancestor part can also be a function call (that may be
2308 -- transformed into an explicit dereference) or a qualification
2309 -- of one such.
2310
2311 elsif Is_Limited_Type (Etype (Ancestor))
2312 and then Nkind_In (Unqualify (Ancestor), N_Aggregate,
2313 N_Extension_Aggregate)
2314 then
2315 Ancestor_Is_Expression := True;
2316
2317 -- Set up finalization data for enclosing record, because
2318 -- controlled subcomponents of the ancestor part will be
2319 -- attached to it.
2320
2321 Generate_Finalization_Actions;
2322
2323 Append_List_To (L,
2324 Build_Record_Aggr_Code (
2325 N => Unqualify (Ancestor),
2326 Typ => Etype (Unqualify (Ancestor)),
2327 Lhs => Target,
2328 Is_Limited_Ancestor_Expansion => True));
2329
2330 -- If the ancestor part is an expression "E", we generate
2331
2332 -- T (tmp) := E;
2333
2334 -- In Ada 2005, this includes the case of a (possibly qualified)
2335 -- limited function call. The assignment will turn into a
2336 -- build-in-place function call (for further details, see
2337 -- Make_Build_In_Place_Call_In_Assignment).
2338
2339 else
2340 Ancestor_Is_Expression := True;
2341 Init_Typ := Etype (Ancestor);
2342
2343 -- If the ancestor part is an aggregate, force its full
2344 -- expansion, which was delayed.
2345
2346 if Nkind_In (Unqualify (Ancestor), N_Aggregate,
2347 N_Extension_Aggregate)
2348 then
2349 Set_Analyzed (Ancestor, False);
2350 Set_Analyzed (Expression (Ancestor), False);
2351 end if;
2352
2353 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2354 Set_Assignment_OK (Ref);
2355
2356 -- Make the assignment without usual controlled actions since
2357 -- we only want the post adjust but not the pre finalize here
2358 -- Add manual adjust when necessary.
2359
2360 Assign := New_List (
2361 Make_OK_Assignment_Statement (Loc,
2362 Name => Ref,
2363 Expression => Ancestor));
2364 Set_No_Ctrl_Actions (First (Assign));
2365
2366 -- Assign the tag now to make sure that the dispatching call in
2367 -- the subsequent deep_adjust works properly (unless VM_Target,
2368 -- where tags are implicit).
2369
2370 if Tagged_Type_Expansion then
2371 Instr :=
2372 Make_OK_Assignment_Statement (Loc,
2373 Name =>
2374 Make_Selected_Component (Loc,
2375 Prefix => New_Copy_Tree (Target),
2376 Selector_Name =>
2377 New_Reference_To
2378 (First_Tag_Component (Base_Type (Typ)), Loc)),
2379
2380 Expression =>
2381 Unchecked_Convert_To (RTE (RE_Tag),
2382 New_Reference_To
2383 (Node (First_Elmt
2384 (Access_Disp_Table (Base_Type (Typ)))),
2385 Loc)));
2386
2387 Set_Assignment_OK (Name (Instr));
2388 Append_To (Assign, Instr);
2389
2390 -- Ada 2005 (AI-251): If tagged type has progenitors we must
2391 -- also initialize tags of the secondary dispatch tables.
2392
2393 if Has_Interfaces (Base_Type (Typ)) then
2394 Init_Secondary_Tags
2395 (Typ => Base_Type (Typ),
2396 Target => Target,
2397 Stmts_List => Assign);
2398 end if;
2399 end if;
2400
2401 -- Call Adjust manually
2402
2403 if Needs_Finalization (Etype (Ancestor))
2404 and then not Is_Limited_Type (Etype (Ancestor))
2405 then
2406 Append_To (Assign,
2407 Make_Adjust_Call (
2408 Obj_Ref => New_Copy_Tree (Ref),
2409 Typ => Etype (Ancestor)));
2410 end if;
2411
2412 Append_To (L,
2413 Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
2414
2415 if Has_Discriminants (Init_Typ) then
2416 Check_Ancestor_Discriminants (Init_Typ);
2417 end if;
2418 end if;
2419 end;
2420
2421 -- Generate assignments of hidden assignments. If the base type is an
2422 -- unchecked union, the discriminants are unknown to the back-end and
2423 -- absent from a value of the type, so assignments for them are not
2424 -- emitted.
2425
2426 if Has_Discriminants (Typ)
2427 and then not Is_Unchecked_Union (Base_Type (Typ))
2428 then
2429 Init_Hidden_Discriminants (Typ, L);
2430 end if;
2431
2432 -- Normal case (not an extension aggregate)
2433
2434 else
2435 -- Generate the discriminant expressions, component by component.
2436 -- If the base type is an unchecked union, the discriminants are
2437 -- unknown to the back-end and absent from a value of the type, so
2438 -- assignments for them are not emitted.
2439
2440 if Has_Discriminants (Typ)
2441 and then not Is_Unchecked_Union (Base_Type (Typ))
2442 then
2443 Init_Hidden_Discriminants (Typ, L);
2444
2445 -- Generate discriminant init values for the visible discriminants
2446
2447 declare
2448 Discriminant : Entity_Id;
2449 Discriminant_Value : Node_Id;
2450
2451 begin
2452 Discriminant := First_Stored_Discriminant (Typ);
2453 while Present (Discriminant) loop
2454 Comp_Expr :=
2455 Make_Selected_Component (Loc,
2456 Prefix => New_Copy_Tree (Target),
2457 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2458
2459 Discriminant_Value :=
2460 Get_Discriminant_Value (
2461 Discriminant,
2462 N_Typ,
2463 Discriminant_Constraint (N_Typ));
2464
2465 Instr :=
2466 Make_OK_Assignment_Statement (Loc,
2467 Name => Comp_Expr,
2468 Expression => New_Copy_Tree (Discriminant_Value));
2469
2470 Set_No_Ctrl_Actions (Instr);
2471 Append_To (L, Instr);
2472
2473 Next_Stored_Discriminant (Discriminant);
2474 end loop;
2475 end;
2476 end if;
2477 end if;
2478
2479 -- For CPP types we generate an implicit call to the C++ default
2480 -- constructor to ensure the proper initialization of the _Tag
2481 -- component.
2482
2483 if Is_CPP_Class (Root_Type (Typ))
2484 and then CPP_Num_Prims (Typ) > 0
2485 then
2486 Invoke_Constructor : declare
2487 CPP_Parent : constant Entity_Id :=
2488 Enclosing_CPP_Parent (Typ);
2489
2490 procedure Invoke_IC_Proc (T : Entity_Id);
2491 -- Recursive routine used to climb to parents. Required because
2492 -- parents must be initialized before descendants to ensure
2493 -- propagation of inherited C++ slots.
2494
2495 --------------------
2496 -- Invoke_IC_Proc --
2497 --------------------
2498
2499 procedure Invoke_IC_Proc (T : Entity_Id) is
2500 begin
2501 -- Avoid generating extra calls. Initialization required
2502 -- only for types defined from the level of derivation of
2503 -- type of the constructor and the type of the aggregate.
2504
2505 if T = CPP_Parent then
2506 return;
2507 end if;
2508
2509 Invoke_IC_Proc (Etype (T));
2510
2511 -- Generate call to the IC routine
2512
2513 if Present (CPP_Init_Proc (T)) then
2514 Append_To (L,
2515 Make_Procedure_Call_Statement (Loc,
2516 New_Reference_To (CPP_Init_Proc (T), Loc)));
2517 end if;
2518 end Invoke_IC_Proc;
2519
2520 -- Start of processing for Invoke_Constructor
2521
2522 begin
2523 -- Implicit invocation of the C++ constructor
2524
2525 if Nkind (N) = N_Aggregate then
2526 Append_To (L,
2527 Make_Procedure_Call_Statement (Loc,
2528 Name =>
2529 New_Reference_To
2530 (Base_Init_Proc (CPP_Parent), Loc),
2531 Parameter_Associations => New_List (
2532 Unchecked_Convert_To (CPP_Parent,
2533 New_Copy_Tree (Lhs)))));
2534 end if;
2535
2536 Invoke_IC_Proc (Typ);
2537 end Invoke_Constructor;
2538 end if;
2539
2540 -- Generate the assignments, component by component
2541
2542 -- tmp.comp1 := Expr1_From_Aggr;
2543 -- tmp.comp2 := Expr2_From_Aggr;
2544 -- ....
2545
2546 Comp := First (Component_Associations (N));
2547 while Present (Comp) loop
2548 Selector := Entity (First (Choices (Comp)));
2549
2550 -- C++ constructors
2551
2552 if Is_CPP_Constructor_Call (Expression (Comp)) then
2553 Append_List_To (L,
2554 Build_Initialization_Call (Loc,
2555 Id_Ref => Make_Selected_Component (Loc,
2556 Prefix => New_Copy_Tree (Target),
2557 Selector_Name =>
2558 New_Occurrence_Of (Selector, Loc)),
2559 Typ => Etype (Selector),
2560 Enclos_Type => Typ,
2561 With_Default_Init => True,
2562 Constructor_Ref => Expression (Comp)));
2563
2564 -- Ada 2005 (AI-287): For each default-initialized component generate
2565 -- a call to the corresponding IP subprogram if available.
2566
2567 elsif Box_Present (Comp)
2568 and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
2569 then
2570 if Ekind (Selector) /= E_Discriminant then
2571 Generate_Finalization_Actions;
2572 end if;
2573
2574 -- Ada 2005 (AI-287): If the component type has tasks then
2575 -- generate the activation chain and master entities (except
2576 -- in case of an allocator because in that case these entities
2577 -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
2578
2579 declare
2580 Ctype : constant Entity_Id := Etype (Selector);
2581 Inside_Allocator : Boolean := False;
2582 P : Node_Id := Parent (N);
2583
2584 begin
2585 if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
2586 while Present (P) loop
2587 if Nkind (P) = N_Allocator then
2588 Inside_Allocator := True;
2589 exit;
2590 end if;
2591
2592 P := Parent (P);
2593 end loop;
2594
2595 if not Inside_Init_Proc and not Inside_Allocator then
2596 Build_Activation_Chain_Entity (N);
2597 end if;
2598 end if;
2599 end;
2600
2601 Append_List_To (L,
2602 Build_Initialization_Call (Loc,
2603 Id_Ref => Make_Selected_Component (Loc,
2604 Prefix => New_Copy_Tree (Target),
2605 Selector_Name =>
2606 New_Occurrence_Of (Selector, Loc)),
2607 Typ => Etype (Selector),
2608 Enclos_Type => Typ,
2609 With_Default_Init => True));
2610
2611 -- Prepare for component assignment
2612
2613 elsif Ekind (Selector) /= E_Discriminant
2614 or else Nkind (N) = N_Extension_Aggregate
2615 then
2616 -- All the discriminants have now been assigned
2617
2618 -- This is now a good moment to initialize and attach all the
2619 -- controllers. Their position may depend on the discriminants.
2620
2621 if Ekind (Selector) /= E_Discriminant then
2622 Generate_Finalization_Actions;
2623 end if;
2624
2625 Comp_Type := Underlying_Type (Etype (Selector));
2626 Comp_Expr :=
2627 Make_Selected_Component (Loc,
2628 Prefix => New_Copy_Tree (Target),
2629 Selector_Name => New_Occurrence_Of (Selector, Loc));
2630
2631 if Nkind (Expression (Comp)) = N_Qualified_Expression then
2632 Expr_Q := Expression (Expression (Comp));
2633 else
2634 Expr_Q := Expression (Comp);
2635 end if;
2636
2637 -- Now either create the assignment or generate the code for the
2638 -- inner aggregate top-down.
2639
2640 if Is_Delayed_Aggregate (Expr_Q) then
2641
2642 -- We have the following case of aggregate nesting inside
2643 -- an object declaration:
2644
2645 -- type Arr_Typ is array (Integer range <>) of ...;
2646
2647 -- type Rec_Typ (...) is record
2648 -- Obj_Arr_Typ : Arr_Typ (A .. B);
2649 -- end record;
2650
2651 -- Obj_Rec_Typ : Rec_Typ := (...,
2652 -- Obj_Arr_Typ => (X => (...), Y => (...)));
2653
2654 -- The length of the ranges of the aggregate and Obj_Add_Typ
2655 -- are equal (B - A = Y - X), but they do not coincide (X /=
2656 -- A and B /= Y). This case requires array sliding which is
2657 -- performed in the following manner:
2658
2659 -- subtype Arr_Sub is Arr_Typ (X .. Y);
2660 -- Temp : Arr_Sub;
2661 -- Temp (X) := (...);
2662 -- ...
2663 -- Temp (Y) := (...);
2664 -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
2665
2666 if Ekind (Comp_Type) = E_Array_Subtype
2667 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
2668 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
2669 and then not
2670 Compatible_Int_Bounds
2671 (Agg_Bounds => Aggregate_Bounds (Expr_Q),
2672 Typ_Bounds => First_Index (Comp_Type))
2673 then
2674 -- Create the array subtype with bounds equal to those of
2675 -- the corresponding aggregate.
2676
2677 declare
2678 SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
2679
2680 SubD : constant Node_Id :=
2681 Make_Subtype_Declaration (Loc,
2682 Defining_Identifier => SubE,
2683 Subtype_Indication =>
2684 Make_Subtype_Indication (Loc,
2685 Subtype_Mark =>
2686 New_Reference_To
2687 (Etype (Comp_Type), Loc),
2688 Constraint =>
2689 Make_Index_Or_Discriminant_Constraint
2690 (Loc,
2691 Constraints => New_List (
2692 New_Copy_Tree
2693 (Aggregate_Bounds (Expr_Q))))));
2694
2695 -- Create a temporary array of the above subtype which
2696 -- will be used to capture the aggregate assignments.
2697
2698 TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
2699
2700 TmpD : constant Node_Id :=
2701 Make_Object_Declaration (Loc,
2702 Defining_Identifier => TmpE,
2703 Object_Definition =>
2704 New_Reference_To (SubE, Loc));
2705
2706 begin
2707 Set_No_Initialization (TmpD);
2708 Append_To (L, SubD);
2709 Append_To (L, TmpD);
2710
2711 -- Expand aggregate into assignments to the temp array
2712
2713 Append_List_To (L,
2714 Late_Expansion (Expr_Q, Comp_Type,
2715 New_Reference_To (TmpE, Loc)));
2716
2717 -- Slide
2718
2719 Append_To (L,
2720 Make_Assignment_Statement (Loc,
2721 Name => New_Copy_Tree (Comp_Expr),
2722 Expression => New_Reference_To (TmpE, Loc)));
2723 end;
2724
2725 -- Normal case (sliding not required)
2726
2727 else
2728 Append_List_To (L,
2729 Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
2730 end if;
2731
2732 -- Expr_Q is not delayed aggregate
2733
2734 else
2735 if Has_Discriminants (Typ) then
2736 Replace_Discriminants (Expr_Q);
2737 end if;
2738
2739 Instr :=
2740 Make_OK_Assignment_Statement (Loc,
2741 Name => Comp_Expr,
2742 Expression => Expr_Q);
2743
2744 Set_No_Ctrl_Actions (Instr);
2745 Append_To (L, Instr);
2746
2747 -- Adjust the tag if tagged (because of possible view
2748 -- conversions), unless compiling for a VM where tags are
2749 -- implicit.
2750
2751 -- tmp.comp._tag := comp_typ'tag;
2752
2753 if Is_Tagged_Type (Comp_Type)
2754 and then Tagged_Type_Expansion
2755 then
2756 Instr :=
2757 Make_OK_Assignment_Statement (Loc,
2758 Name =>
2759 Make_Selected_Component (Loc,
2760 Prefix => New_Copy_Tree (Comp_Expr),
2761 Selector_Name =>
2762 New_Reference_To
2763 (First_Tag_Component (Comp_Type), Loc)),
2764
2765 Expression =>
2766 Unchecked_Convert_To (RTE (RE_Tag),
2767 New_Reference_To
2768 (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
2769 Loc)));
2770
2771 Append_To (L, Instr);
2772 end if;
2773
2774 -- Generate:
2775 -- Adjust (tmp.comp);
2776
2777 if Needs_Finalization (Comp_Type)
2778 and then not Is_Limited_Type (Comp_Type)
2779 then
2780 Append_To (L,
2781 Make_Adjust_Call (
2782 Obj_Ref => New_Copy_Tree (Comp_Expr),
2783 Typ => Comp_Type));
2784 end if;
2785 end if;
2786
2787 -- ???
2788
2789 elsif Ekind (Selector) = E_Discriminant
2790 and then Nkind (N) /= N_Extension_Aggregate
2791 and then Nkind (Parent (N)) = N_Component_Association
2792 and then Is_Constrained (Typ)
2793 then
2794 -- We must check that the discriminant value imposed by the
2795 -- context is the same as the value given in the subaggregate,
2796 -- because after the expansion into assignments there is no
2797 -- record on which to perform a regular discriminant check.
2798
2799 declare
2800 D_Val : Elmt_Id;
2801 Disc : Entity_Id;
2802
2803 begin
2804 D_Val := First_Elmt (Discriminant_Constraint (Typ));
2805 Disc := First_Discriminant (Typ);
2806 while Chars (Disc) /= Chars (Selector) loop
2807 Next_Discriminant (Disc);
2808 Next_Elmt (D_Val);
2809 end loop;
2810
2811 pragma Assert (Present (D_Val));
2812
2813 -- This check cannot performed for components that are
2814 -- constrained by a current instance, because this is not a
2815 -- value that can be compared with the actual constraint.
2816
2817 if Nkind (Node (D_Val)) /= N_Attribute_Reference
2818 or else not Is_Entity_Name (Prefix (Node (D_Val)))
2819 or else not Is_Type (Entity (Prefix (Node (D_Val))))
2820 then
2821 Append_To (L,
2822 Make_Raise_Constraint_Error (Loc,
2823 Condition =>
2824 Make_Op_Ne (Loc,
2825 Left_Opnd => New_Copy_Tree (Node (D_Val)),
2826 Right_Opnd => Expression (Comp)),
2827 Reason => CE_Discriminant_Check_Failed));
2828
2829 else
2830 -- Find self-reference in previous discriminant assignment,
2831 -- and replace with proper expression.
2832
2833 declare
2834 Ass : Node_Id;
2835
2836 begin
2837 Ass := First (L);
2838 while Present (Ass) loop
2839 if Nkind (Ass) = N_Assignment_Statement
2840 and then Nkind (Name (Ass)) = N_Selected_Component
2841 and then Chars (Selector_Name (Name (Ass))) =
2842 Chars (Disc)
2843 then
2844 Set_Expression
2845 (Ass, New_Copy_Tree (Expression (Comp)));
2846 exit;
2847 end if;
2848 Next (Ass);
2849 end loop;
2850 end;
2851 end if;
2852 end;
2853 end if;
2854
2855 Next (Comp);
2856 end loop;
2857
2858 -- If the type is tagged, the tag needs to be initialized (unless
2859 -- compiling for the Java VM where tags are implicit). It is done
2860 -- late in the initialization process because in some cases, we call
2861 -- the init proc of an ancestor which will not leave out the right tag
2862
2863 if Ancestor_Is_Expression then
2864 null;
2865
2866 -- For CPP types we generated a call to the C++ default constructor
2867 -- before the components have been initialized to ensure the proper
2868 -- initialization of the _Tag component (see above).
2869
2870 elsif Is_CPP_Class (Typ) then
2871 null;
2872
2873 elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
2874 Instr :=
2875 Make_OK_Assignment_Statement (Loc,
2876 Name =>
2877 Make_Selected_Component (Loc,
2878 Prefix => New_Copy_Tree (Target),
2879 Selector_Name =>
2880 New_Reference_To
2881 (First_Tag_Component (Base_Type (Typ)), Loc)),
2882
2883 Expression =>
2884 Unchecked_Convert_To (RTE (RE_Tag),
2885 New_Reference_To
2886 (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
2887 Loc)));
2888
2889 Append_To (L, Instr);
2890
2891 -- Ada 2005 (AI-251): If the tagged type has been derived from
2892 -- abstract interfaces we must also initialize the tags of the
2893 -- secondary dispatch tables.
2894
2895 if Has_Interfaces (Base_Type (Typ)) then
2896 Init_Secondary_Tags
2897 (Typ => Base_Type (Typ),
2898 Target => Target,
2899 Stmts_List => L);
2900 end if;
2901 end if;
2902
2903 -- If the controllers have not been initialized yet (by lack of non-
2904 -- discriminant components), let's do it now.
2905
2906 Generate_Finalization_Actions;
2907
2908 return L;
2909 end Build_Record_Aggr_Code;
2910
2911 -------------------------------
2912 -- Convert_Aggr_In_Allocator --
2913 -------------------------------
2914
2915 procedure Convert_Aggr_In_Allocator
2916 (Alloc : Node_Id;
2917 Decl : Node_Id;
2918 Aggr : Node_Id)
2919 is
2920 Loc : constant Source_Ptr := Sloc (Aggr);
2921 Typ : constant Entity_Id := Etype (Aggr);
2922 Temp : constant Entity_Id := Defining_Identifier (Decl);
2923
2924 Occ : constant Node_Id :=
2925 Unchecked_Convert_To (Typ,
2926 Make_Explicit_Dereference (Loc,
2927 New_Reference_To (Temp, Loc)));
2928
2929 begin
2930 if Is_Array_Type (Typ) then
2931 Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
2932
2933 elsif Has_Default_Init_Comps (Aggr) then
2934 declare
2935 L : constant List_Id := New_List;
2936 Init_Stmts : List_Id;
2937
2938 begin
2939 Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
2940
2941 if Has_Task (Typ) then
2942 Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
2943 Insert_Actions (Alloc, L);
2944 else
2945 Insert_Actions (Alloc, Init_Stmts);
2946 end if;
2947 end;
2948
2949 else
2950 Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
2951 end if;
2952 end Convert_Aggr_In_Allocator;
2953
2954 --------------------------------
2955 -- Convert_Aggr_In_Assignment --
2956 --------------------------------
2957
2958 procedure Convert_Aggr_In_Assignment (N : Node_Id) is
2959 Aggr : Node_Id := Expression (N);
2960 Typ : constant Entity_Id := Etype (Aggr);
2961 Occ : constant Node_Id := New_Copy_Tree (Name (N));
2962
2963 begin
2964 if Nkind (Aggr) = N_Qualified_Expression then
2965 Aggr := Expression (Aggr);
2966 end if;
2967
2968 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
2969 end Convert_Aggr_In_Assignment;
2970
2971 ---------------------------------
2972 -- Convert_Aggr_In_Object_Decl --
2973 ---------------------------------
2974
2975 procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
2976 Obj : constant Entity_Id := Defining_Identifier (N);
2977 Aggr : Node_Id := Expression (N);
2978 Loc : constant Source_Ptr := Sloc (Aggr);
2979 Typ : constant Entity_Id := Etype (Aggr);
2980 Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
2981
2982 function Discriminants_Ok return Boolean;
2983 -- If the object type is constrained, the discriminants in the
2984 -- aggregate must be checked against the discriminants of the subtype.
2985 -- This cannot be done using Apply_Discriminant_Checks because after
2986 -- expansion there is no aggregate left to check.
2987
2988 ----------------------
2989 -- Discriminants_Ok --
2990 ----------------------
2991
2992 function Discriminants_Ok return Boolean is
2993 Cond : Node_Id := Empty;
2994 Check : Node_Id;
2995 D : Entity_Id;
2996 Disc1 : Elmt_Id;
2997 Disc2 : Elmt_Id;
2998 Val1 : Node_Id;
2999 Val2 : Node_Id;
3000
3001 begin
3002 D := First_Discriminant (Typ);
3003 Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3004 Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
3005 while Present (Disc1) and then Present (Disc2) loop
3006 Val1 := Node (Disc1);
3007 Val2 := Node (Disc2);
3008
3009 if not Is_OK_Static_Expression (Val1)
3010 or else not Is_OK_Static_Expression (Val2)
3011 then
3012 Check := Make_Op_Ne (Loc,
3013 Left_Opnd => Duplicate_Subexpr (Val1),
3014 Right_Opnd => Duplicate_Subexpr (Val2));
3015
3016 if No (Cond) then
3017 Cond := Check;
3018
3019 else
3020 Cond := Make_Or_Else (Loc,
3021 Left_Opnd => Cond,
3022 Right_Opnd => Check);
3023 end if;
3024
3025 elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3026 Apply_Compile_Time_Constraint_Error (Aggr,
3027 Msg => "incorrect value for discriminant&?",
3028 Reason => CE_Discriminant_Check_Failed,
3029 Ent => D);
3030 return False;
3031 end if;
3032
3033 Next_Discriminant (D);
3034 Next_Elmt (Disc1);
3035 Next_Elmt (Disc2);
3036 end loop;
3037
3038 -- If any discriminant constraint is non-static, emit a check
3039
3040 if Present (Cond) then
3041 Insert_Action (N,
3042 Make_Raise_Constraint_Error (Loc,
3043 Condition => Cond,
3044 Reason => CE_Discriminant_Check_Failed));
3045 end if;
3046
3047 return True;
3048 end Discriminants_Ok;
3049
3050 -- Start of processing for Convert_Aggr_In_Object_Decl
3051
3052 begin
3053 Set_Assignment_OK (Occ);
3054
3055 if Nkind (Aggr) = N_Qualified_Expression then
3056 Aggr := Expression (Aggr);
3057 end if;
3058
3059 if Has_Discriminants (Typ)
3060 and then Typ /= Etype (Obj)
3061 and then Is_Constrained (Etype (Obj))
3062 and then not Discriminants_Ok
3063 then
3064 return;
3065 end if;
3066
3067 -- If the context is an extended return statement, it has its own
3068 -- finalization machinery (i.e. works like a transient scope) and
3069 -- we do not want to create an additional one, because objects on
3070 -- the finalization list of the return must be moved to the caller's
3071 -- finalization list to complete the return.
3072
3073 -- However, if the aggregate is limited, it is built in place, and the
3074 -- controlled components are not assigned to intermediate temporaries
3075 -- so there is no need for a transient scope in this case either.
3076
3077 if Requires_Transient_Scope (Typ)
3078 and then Ekind (Current_Scope) /= E_Return_Statement
3079 and then not Is_Limited_Type (Typ)
3080 then
3081 Establish_Transient_Scope
3082 (Aggr,
3083 Sec_Stack =>
3084 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3085 end if;
3086
3087 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3088 Set_No_Initialization (N);
3089 Initialize_Discriminants (N, Typ);
3090 end Convert_Aggr_In_Object_Decl;
3091
3092 -------------------------------------
3093 -- Convert_Array_Aggr_In_Allocator --
3094 -------------------------------------
3095
3096 procedure Convert_Array_Aggr_In_Allocator
3097 (Decl : Node_Id;
3098 Aggr : Node_Id;
3099 Target : Node_Id)
3100 is
3101 Aggr_Code : List_Id;
3102 Typ : constant Entity_Id := Etype (Aggr);
3103 Ctyp : constant Entity_Id := Component_Type (Typ);
3104
3105 begin
3106 -- The target is an explicit dereference of the allocated object.
3107 -- Generate component assignments to it, as for an aggregate that
3108 -- appears on the right-hand side of an assignment statement.
3109
3110 Aggr_Code :=
3111 Build_Array_Aggr_Code (Aggr,
3112 Ctype => Ctyp,
3113 Index => First_Index (Typ),
3114 Into => Target,
3115 Scalar_Comp => Is_Scalar_Type (Ctyp));
3116
3117 Insert_Actions_After (Decl, Aggr_Code);
3118 end Convert_Array_Aggr_In_Allocator;
3119
3120 ----------------------------
3121 -- Convert_To_Assignments --
3122 ----------------------------
3123
3124 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
3125 Loc : constant Source_Ptr := Sloc (N);
3126 T : Entity_Id;
3127 Temp : Entity_Id;
3128
3129 Instr : Node_Id;
3130 Target_Expr : Node_Id;
3131 Parent_Kind : Node_Kind;
3132 Unc_Decl : Boolean := False;
3133 Parent_Node : Node_Id;
3134
3135 begin
3136 pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
3137 pragma Assert (Is_Record_Type (Typ));
3138
3139 Parent_Node := Parent (N);
3140 Parent_Kind := Nkind (Parent_Node);
3141
3142 if Parent_Kind = N_Qualified_Expression then
3143
3144 -- Check if we are in a unconstrained declaration because in this
3145 -- case the current delayed expansion mechanism doesn't work when
3146 -- the declared object size depend on the initializing expr.
3147
3148 begin
3149 Parent_Node := Parent (Parent_Node);
3150 Parent_Kind := Nkind (Parent_Node);
3151
3152 if Parent_Kind = N_Object_Declaration then
3153 Unc_Decl :=
3154 not Is_Entity_Name (Object_Definition (Parent_Node))
3155 or else Has_Discriminants
3156 (Entity (Object_Definition (Parent_Node)))
3157 or else Is_Class_Wide_Type
3158 (Entity (Object_Definition (Parent_Node)));
3159 end if;
3160 end;
3161 end if;
3162
3163 -- Just set the Delay flag in the cases where the transformation will be
3164 -- done top down from above.
3165
3166 if False
3167
3168 -- Internal aggregate (transformed when expanding the parent)
3169
3170 or else Parent_Kind = N_Aggregate
3171 or else Parent_Kind = N_Extension_Aggregate
3172 or else Parent_Kind = N_Component_Association
3173
3174 -- Allocator (see Convert_Aggr_In_Allocator)
3175
3176 or else Parent_Kind = N_Allocator
3177
3178 -- Object declaration (see Convert_Aggr_In_Object_Decl)
3179
3180 or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
3181
3182 -- Safe assignment (see Convert_Aggr_Assignments). So far only the
3183 -- assignments in init procs are taken into account.
3184
3185 or else (Parent_Kind = N_Assignment_Statement
3186 and then Inside_Init_Proc)
3187
3188 -- (Ada 2005) An inherently limited type in a return statement,
3189 -- which will be handled in a build-in-place fashion, and may be
3190 -- rewritten as an extended return and have its own finalization
3191 -- machinery. In the case of a simple return, the aggregate needs
3192 -- to be delayed until the scope for the return statement has been
3193 -- created, so that any finalization chain will be associated with
3194 -- that scope. For extended returns, we delay expansion to avoid the
3195 -- creation of an unwanted transient scope that could result in
3196 -- premature finalization of the return object (which is built in
3197 -- in place within the caller's scope).
3198
3199 or else
3200 (Is_Immutably_Limited_Type (Typ)
3201 and then
3202 (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
3203 or else Nkind (Parent_Node) = N_Simple_Return_Statement))
3204 then
3205 Set_Expansion_Delayed (N);
3206 return;
3207 end if;
3208
3209 if Requires_Transient_Scope (Typ) then
3210 Establish_Transient_Scope
3211 (N, Sec_Stack =>
3212 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3213 end if;
3214
3215 -- If the aggregate is non-limited, create a temporary. If it is limited
3216 -- and the context is an assignment, this is a subaggregate for an
3217 -- enclosing aggregate being expanded. It must be built in place, so use
3218 -- the target of the current assignment.
3219
3220 if Is_Limited_Type (Typ)
3221 and then Nkind (Parent (N)) = N_Assignment_Statement
3222 then
3223 Target_Expr := New_Copy_Tree (Name (Parent (N)));
3224 Insert_Actions (Parent (N),
3225 Build_Record_Aggr_Code (N, Typ, Target_Expr));
3226 Rewrite (Parent (N), Make_Null_Statement (Loc));
3227
3228 else
3229 Temp := Make_Temporary (Loc, 'A', N);
3230
3231 -- If the type inherits unknown discriminants, use the view with
3232 -- known discriminants if available.
3233
3234 if Has_Unknown_Discriminants (Typ)
3235 and then Present (Underlying_Record_View (Typ))
3236 then
3237 T := Underlying_Record_View (Typ);
3238 else
3239 T := Typ;
3240 end if;
3241
3242 Instr :=
3243 Make_Object_Declaration (Loc,
3244 Defining_Identifier => Temp,
3245 Object_Definition => New_Occurrence_Of (T, Loc));
3246
3247 Set_No_Initialization (Instr);
3248 Insert_Action (N, Instr);
3249 Initialize_Discriminants (Instr, T);
3250 Target_Expr := New_Occurrence_Of (Temp, Loc);
3251 Insert_Actions (N, Build_Record_Aggr_Code (N, T, Target_Expr));
3252 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3253 Analyze_And_Resolve (N, T);
3254 end if;
3255 end Convert_To_Assignments;
3256
3257 ---------------------------
3258 -- Convert_To_Positional --
3259 ---------------------------
3260
3261 procedure Convert_To_Positional
3262 (N : Node_Id;
3263 Max_Others_Replicate : Nat := 5;
3264 Handle_Bit_Packed : Boolean := False)
3265 is
3266 Typ : constant Entity_Id := Etype (N);
3267
3268 Static_Components : Boolean := True;
3269
3270 procedure Check_Static_Components;
3271 -- Check whether all components of the aggregate are compile-time known
3272 -- values, and can be passed as is to the back-end without further
3273 -- expansion.
3274
3275 function Flatten
3276 (N : Node_Id;
3277 Ix : Node_Id;
3278 Ixb : Node_Id) return Boolean;
3279 -- Convert the aggregate into a purely positional form if possible. On
3280 -- entry the bounds of all dimensions are known to be static, and the
3281 -- total number of components is safe enough to expand.
3282
3283 function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
3284 -- Return True iff the array N is flat (which is not trivial in the case
3285 -- of multidimensional aggregates).
3286
3287 -----------------------------
3288 -- Check_Static_Components --
3289 -----------------------------
3290
3291 procedure Check_Static_Components is
3292 Expr : Node_Id;
3293
3294 begin
3295 Static_Components := True;
3296
3297 if Nkind (N) = N_String_Literal then
3298 null;
3299
3300 elsif Present (Expressions (N)) then
3301 Expr := First (Expressions (N));
3302 while Present (Expr) loop
3303 if Nkind (Expr) /= N_Aggregate
3304 or else not Compile_Time_Known_Aggregate (Expr)
3305 or else Expansion_Delayed (Expr)
3306 then
3307 Static_Components := False;
3308 exit;
3309 end if;
3310
3311 Next (Expr);
3312 end loop;
3313 end if;
3314
3315 if Nkind (N) = N_Aggregate
3316 and then Present (Component_Associations (N))
3317 then
3318 Expr := First (Component_Associations (N));
3319 while Present (Expr) loop
3320 if Nkind_In (Expression (Expr), N_Integer_Literal,
3321 N_Real_Literal)
3322 then
3323 null;
3324
3325 elsif Is_Entity_Name (Expression (Expr))
3326 and then Present (Entity (Expression (Expr)))
3327 and then Ekind (Entity (Expression (Expr))) =
3328 E_Enumeration_Literal
3329 then
3330 null;
3331
3332 elsif Nkind (Expression (Expr)) /= N_Aggregate
3333 or else not Compile_Time_Known_Aggregate (Expression (Expr))
3334 or else Expansion_Delayed (Expression (Expr))
3335 then
3336 Static_Components := False;
3337 exit;
3338 end if;
3339
3340 Next (Expr);
3341 end loop;
3342 end if;
3343 end Check_Static_Components;
3344
3345 -------------
3346 -- Flatten --
3347 -------------
3348
3349 function Flatten
3350 (N : Node_Id;
3351 Ix : Node_Id;
3352 Ixb : Node_Id) return Boolean
3353 is
3354 Loc : constant Source_Ptr := Sloc (N);
3355 Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
3356 Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
3357 Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
3358 Lov : Uint;
3359 Hiv : Uint;
3360
3361 Others_Present : Boolean := False;
3362
3363 begin
3364 if Nkind (Original_Node (N)) = N_String_Literal then
3365 return True;
3366 end if;
3367
3368 if not Compile_Time_Known_Value (Lo)
3369 or else not Compile_Time_Known_Value (Hi)
3370 then
3371 return False;
3372 end if;
3373
3374 Lov := Expr_Value (Lo);
3375 Hiv := Expr_Value (Hi);
3376
3377 -- Check if there is an others choice
3378
3379 if Present (Component_Associations (N)) then
3380 declare
3381 Assoc : Node_Id;
3382 Choice : Node_Id;
3383
3384 begin
3385 Assoc := First (Component_Associations (N));
3386 while Present (Assoc) loop
3387 Choice := First (Choices (Assoc));
3388
3389 while Present (Choice) loop
3390 if Nkind (Choice) = N_Others_Choice then
3391 Others_Present := True;
3392 end if;
3393
3394 Next (Choice);
3395 end loop;
3396
3397 Next (Assoc);
3398 end loop;
3399 end;
3400 end if;
3401
3402 -- If the low bound is not known at compile time and others is not
3403 -- present we can proceed since the bounds can be obtained from the
3404 -- aggregate.
3405
3406 -- Note: This case is required in VM platforms since their backends
3407 -- normalize array indexes in the range 0 .. N-1. Hence, if we do
3408 -- not flat an array whose bounds cannot be obtained from the type
3409 -- of the index the backend has no way to properly generate the code.
3410 -- See ACATS c460010 for an example.
3411
3412 if Hiv < Lov
3413 or else (not Compile_Time_Known_Value (Blo)
3414 and then Others_Present)
3415 then
3416 return False;
3417 end if;
3418
3419 -- Determine if set of alternatives is suitable for conversion and
3420 -- build an array containing the values in sequence.
3421
3422 declare
3423 Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
3424 of Node_Id := (others => Empty);
3425 -- The values in the aggregate sorted appropriately
3426
3427 Vlist : List_Id;
3428 -- Same data as Vals in list form
3429
3430 Rep_Count : Nat;
3431 -- Used to validate Max_Others_Replicate limit
3432
3433 Elmt : Node_Id;
3434 Num : Int := UI_To_Int (Lov);
3435 Choice_Index : Int;
3436 Choice : Node_Id;
3437 Lo, Hi : Node_Id;
3438
3439 begin
3440 if Present (Expressions (N)) then
3441 Elmt := First (Expressions (N));
3442 while Present (Elmt) loop
3443 if Nkind (Elmt) = N_Aggregate
3444 and then Present (Next_Index (Ix))
3445 and then
3446 not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
3447 then
3448 return False;
3449 end if;
3450
3451 Vals (Num) := Relocate_Node (Elmt);
3452 Num := Num + 1;
3453
3454 Next (Elmt);
3455 end loop;
3456 end if;
3457
3458 if No (Component_Associations (N)) then
3459 return True;
3460 end if;
3461
3462 Elmt := First (Component_Associations (N));
3463
3464 if Nkind (Expression (Elmt)) = N_Aggregate then
3465 if Present (Next_Index (Ix))
3466 and then
3467 not Flatten
3468 (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
3469 then
3470 return False;
3471 end if;
3472 end if;
3473
3474 Component_Loop : while Present (Elmt) loop
3475 Choice := First (Choices (Elmt));
3476 Choice_Loop : while Present (Choice) loop
3477
3478 -- If we have an others choice, fill in the missing elements
3479 -- subject to the limit established by Max_Others_Replicate.
3480
3481 if Nkind (Choice) = N_Others_Choice then
3482 Rep_Count := 0;
3483
3484 for J in Vals'Range loop
3485 if No (Vals (J)) then
3486 Vals (J) := New_Copy_Tree (Expression (Elmt));
3487 Rep_Count := Rep_Count + 1;
3488
3489 -- Check for maximum others replication. Note that
3490 -- we skip this test if either of the restrictions
3491 -- No_Elaboration_Code or No_Implicit_Loops is
3492 -- active, if this is a preelaborable unit or a
3493 -- predefined unit. This ensures that predefined
3494 -- units get the same level of constant folding in
3495 -- Ada 95 and Ada 05, where their categorization
3496 -- has changed.
3497
3498 declare
3499 P : constant Entity_Id :=
3500 Cunit_Entity (Current_Sem_Unit);
3501
3502 begin
3503 -- Check if duplication OK and if so continue
3504 -- processing.
3505
3506 if Restriction_Active (No_Elaboration_Code)
3507 or else Restriction_Active (No_Implicit_Loops)
3508 or else Is_Preelaborated (P)
3509 or else (Ekind (P) = E_Package_Body
3510 and then
3511 Is_Preelaborated (Spec_Entity (P)))
3512 or else
3513 Is_Predefined_File_Name
3514 (Unit_File_Name (Get_Source_Unit (P)))
3515 then
3516 null;
3517
3518 -- If duplication not OK, then we return False
3519 -- if the replication count is too high
3520
3521 elsif Rep_Count > Max_Others_Replicate then
3522 return False;
3523
3524 -- Continue on if duplication not OK, but the
3525 -- replication count is not excessive.
3526
3527 else
3528 null;
3529 end if;
3530 end;
3531 end if;
3532 end loop;
3533
3534 exit Component_Loop;
3535
3536 -- Case of a subtype mark, identifier or expanded name
3537
3538 elsif Is_Entity_Name (Choice)
3539 and then Is_Type (Entity (Choice))
3540 then
3541 Lo := Type_Low_Bound (Etype (Choice));
3542 Hi := Type_High_Bound (Etype (Choice));
3543
3544 -- Case of subtype indication
3545
3546 elsif Nkind (Choice) = N_Subtype_Indication then
3547 Lo := Low_Bound (Range_Expression (Constraint (Choice)));
3548 Hi := High_Bound (Range_Expression (Constraint (Choice)));
3549
3550 -- Case of a range
3551
3552 elsif Nkind (Choice) = N_Range then
3553 Lo := Low_Bound (Choice);
3554 Hi := High_Bound (Choice);
3555
3556 -- Normal subexpression case
3557
3558 else pragma Assert (Nkind (Choice) in N_Subexpr);
3559 if not Compile_Time_Known_Value (Choice) then
3560 return False;
3561
3562 else
3563 Choice_Index := UI_To_Int (Expr_Value (Choice));
3564 if Choice_Index in Vals'Range then
3565 Vals (Choice_Index) :=
3566 New_Copy_Tree (Expression (Elmt));
3567 goto Continue;
3568
3569 else
3570 -- Choice is statically out-of-range, will be
3571 -- rewritten to raise Constraint_Error.
3572
3573 return False;
3574 end if;
3575 end if;
3576 end if;
3577
3578 -- Range cases merge with Lo,Hi set
3579
3580 if not Compile_Time_Known_Value (Lo)
3581 or else
3582 not Compile_Time_Known_Value (Hi)
3583 then
3584 return False;
3585 else
3586 for J in UI_To_Int (Expr_Value (Lo)) ..
3587 UI_To_Int (Expr_Value (Hi))
3588 loop
3589 Vals (J) := New_Copy_Tree (Expression (Elmt));
3590 end loop;
3591 end if;
3592
3593 <<Continue>>
3594 Next (Choice);
3595 end loop Choice_Loop;
3596
3597 Next (Elmt);
3598 end loop Component_Loop;
3599
3600 -- If we get here the conversion is possible
3601
3602 Vlist := New_List;
3603 for J in Vals'Range loop
3604 Append (Vals (J), Vlist);
3605 end loop;
3606
3607 Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
3608 Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
3609 return True;
3610 end;
3611 end Flatten;
3612
3613 -------------
3614 -- Is_Flat --
3615 -------------
3616
3617 function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
3618 Elmt : Node_Id;
3619
3620 begin
3621 if Dims = 0 then
3622 return True;
3623
3624 elsif Nkind (N) = N_Aggregate then
3625 if Present (Component_Associations (N)) then
3626 return False;
3627
3628 else
3629 Elmt := First (Expressions (N));
3630 while Present (Elmt) loop
3631 if not Is_Flat (Elmt, Dims - 1) then
3632 return False;
3633 end if;
3634
3635 Next (Elmt);
3636 end loop;
3637
3638 return True;
3639 end if;
3640 else
3641 return True;
3642 end if;
3643 end Is_Flat;
3644
3645 -- Start of processing for Convert_To_Positional
3646
3647 begin
3648 -- Ada 2005 (AI-287): Do not convert in case of default initialized
3649 -- components because in this case will need to call the corresponding
3650 -- IP procedure.
3651
3652 if Has_Default_Init_Comps (N) then
3653 return;
3654 end if;
3655
3656 if Is_Flat (N, Number_Dimensions (Typ)) then
3657 return;
3658 end if;
3659
3660 if Is_Bit_Packed_Array (Typ)
3661 and then not Handle_Bit_Packed
3662 then
3663 return;
3664 end if;
3665
3666 -- Do not convert to positional if controlled components are involved
3667 -- since these require special processing
3668
3669 if Has_Controlled_Component (Typ) then
3670 return;
3671 end if;
3672
3673 Check_Static_Components;
3674
3675 -- If the size is known, or all the components are static, try to
3676 -- build a fully positional aggregate.
3677
3678 -- The size of the type may not be known for an aggregate with
3679 -- discriminated array components, but if the components are static
3680 -- it is still possible to verify statically that the length is
3681 -- compatible with the upper bound of the type, and therefore it is
3682 -- worth flattening such aggregates as well.
3683
3684 -- For now the back-end expands these aggregates into individual
3685 -- assignments to the target anyway, but it is conceivable that
3686 -- it will eventually be able to treat such aggregates statically???
3687
3688 if Aggr_Size_OK (N, Typ)
3689 and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
3690 then
3691 if Static_Components then
3692 Set_Compile_Time_Known_Aggregate (N);
3693 Set_Expansion_Delayed (N, False);
3694 end if;
3695
3696 Analyze_And_Resolve (N, Typ);
3697 end if;
3698 end Convert_To_Positional;
3699
3700 ----------------------------
3701 -- Expand_Array_Aggregate --
3702 ----------------------------
3703
3704 -- Array aggregate expansion proceeds as follows:
3705
3706 -- 1. If requested we generate code to perform all the array aggregate
3707 -- bound checks, specifically
3708
3709 -- (a) Check that the index range defined by aggregate bounds is
3710 -- compatible with corresponding index subtype.
3711
3712 -- (b) If an others choice is present check that no aggregate
3713 -- index is outside the bounds of the index constraint.
3714
3715 -- (c) For multidimensional arrays make sure that all subaggregates
3716 -- corresponding to the same dimension have the same bounds.
3717
3718 -- 2. Check for packed array aggregate which can be converted to a
3719 -- constant so that the aggregate disappeares completely.
3720
3721 -- 3. Check case of nested aggregate. Generally nested aggregates are
3722 -- handled during the processing of the parent aggregate.
3723
3724 -- 4. Check if the aggregate can be statically processed. If this is the
3725 -- case pass it as is to Gigi. Note that a necessary condition for
3726 -- static processing is that the aggregate be fully positional.
3727
3728 -- 5. If in place aggregate expansion is possible (i.e. no need to create
3729 -- a temporary) then mark the aggregate as such and return. Otherwise
3730 -- create a new temporary and generate the appropriate initialization
3731 -- code.
3732
3733 procedure Expand_Array_Aggregate (N : Node_Id) is
3734 Loc : constant Source_Ptr := Sloc (N);
3735
3736 Typ : constant Entity_Id := Etype (N);
3737 Ctyp : constant Entity_Id := Component_Type (Typ);
3738 -- Typ is the correct constrained array subtype of the aggregate
3739 -- Ctyp is the corresponding component type.
3740
3741 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
3742 -- Number of aggregate index dimensions
3743
3744 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
3745 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
3746 -- Low and High bounds of the constraint for each aggregate index
3747
3748 Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
3749 -- The type of each index
3750
3751 Maybe_In_Place_OK : Boolean;
3752 -- If the type is neither controlled nor packed and the aggregate
3753 -- is the expression in an assignment, assignment in place may be
3754 -- possible, provided other conditions are met on the LHS.
3755
3756 Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
3757 (others => False);
3758 -- If Others_Present (J) is True, then there is an others choice
3759 -- in one of the sub-aggregates of N at dimension J.
3760
3761 procedure Build_Constrained_Type (Positional : Boolean);
3762 -- If the subtype is not static or unconstrained, build a constrained
3763 -- type using the computable sizes of the aggregate and its sub-
3764 -- aggregates.
3765
3766 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
3767 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
3768 -- by Index_Bounds.
3769
3770 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
3771 -- Checks that in a multi-dimensional array aggregate all subaggregates
3772 -- corresponding to the same dimension have the same bounds.
3773 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
3774 -- corresponding to the sub-aggregate.
3775
3776 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
3777 -- Computes the values of array Others_Present. Sub_Aggr is the
3778 -- array sub-aggregate we start the computation from. Dim is the
3779 -- dimension corresponding to the sub-aggregate.
3780
3781 function In_Place_Assign_OK return Boolean;
3782 -- Simple predicate to determine whether an aggregate assignment can
3783 -- be done in place, because none of the new values can depend on the
3784 -- components of the target of the assignment.
3785
3786 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
3787 -- Checks that if an others choice is present in any sub-aggregate no
3788 -- aggregate index is outside the bounds of the index constraint.
3789 -- Sub_Aggr is an array sub-aggregate. Dim is the dimension
3790 -- corresponding to the sub-aggregate.
3791
3792 function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
3793 -- In addition to Maybe_In_Place_OK, in order for an aggregate to be
3794 -- built directly into the target of the assignment it must be free
3795 -- of side-effects.
3796
3797 ----------------------------
3798 -- Build_Constrained_Type --
3799 ----------------------------
3800
3801 procedure Build_Constrained_Type (Positional : Boolean) is
3802 Loc : constant Source_Ptr := Sloc (N);
3803 Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
3804 Comp : Node_Id;
3805 Decl : Node_Id;
3806 Typ : constant Entity_Id := Etype (N);
3807 Indexes : constant List_Id := New_List;
3808 Num : Int;
3809 Sub_Agg : Node_Id;
3810
3811 begin
3812 -- If the aggregate is purely positional, all its subaggregates
3813 -- have the same size. We collect the dimensions from the first
3814 -- subaggregate at each level.
3815
3816 if Positional then
3817 Sub_Agg := N;
3818
3819 for D in 1 .. Number_Dimensions (Typ) loop
3820 Sub_Agg := First (Expressions (Sub_Agg));
3821
3822 Comp := Sub_Agg;
3823 Num := 0;
3824 while Present (Comp) loop
3825 Num := Num + 1;
3826 Next (Comp);
3827 end loop;
3828
3829 Append_To (Indexes,
3830 Make_Range (Loc,
3831 Low_Bound => Make_Integer_Literal (Loc, 1),
3832 High_Bound => Make_Integer_Literal (Loc, Num)));
3833 end loop;
3834
3835 else
3836 -- We know the aggregate type is unconstrained and the aggregate
3837 -- is not processable by the back end, therefore not necessarily
3838 -- positional. Retrieve each dimension bounds (computed earlier).
3839
3840 for D in 1 .. Number_Dimensions (Typ) loop
3841 Append (
3842 Make_Range (Loc,
3843 Low_Bound => Aggr_Low (D),
3844 High_Bound => Aggr_High (D)),
3845 Indexes);
3846 end loop;
3847 end if;
3848
3849 Decl :=
3850 Make_Full_Type_Declaration (Loc,
3851 Defining_Identifier => Agg_Type,
3852 Type_Definition =>
3853 Make_Constrained_Array_Definition (Loc,
3854 Discrete_Subtype_Definitions => Indexes,
3855 Component_Definition =>
3856 Make_Component_Definition (Loc,
3857 Aliased_Present => False,
3858 Subtype_Indication =>
3859 New_Occurrence_Of (Component_Type (Typ), Loc))));
3860
3861 Insert_Action (N, Decl);
3862 Analyze (Decl);
3863 Set_Etype (N, Agg_Type);
3864 Set_Is_Itype (Agg_Type);
3865 Freeze_Itype (Agg_Type, N);
3866 end Build_Constrained_Type;
3867
3868 ------------------
3869 -- Check_Bounds --
3870 ------------------
3871
3872 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
3873 Aggr_Lo : Node_Id;
3874 Aggr_Hi : Node_Id;
3875
3876 Ind_Lo : Node_Id;
3877 Ind_Hi : Node_Id;
3878
3879 Cond : Node_Id := Empty;
3880
3881 begin
3882 Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
3883 Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
3884
3885 -- Generate the following test:
3886 --
3887 -- [constraint_error when
3888 -- Aggr_Lo <= Aggr_Hi and then
3889 -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
3890
3891 -- As an optimization try to see if some tests are trivially vacuous
3892 -- because we are comparing an expression against itself.
3893
3894 if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
3895 Cond := Empty;
3896
3897 elsif Aggr_Hi = Ind_Hi then
3898 Cond :=
3899 Make_Op_Lt (Loc,
3900 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3901 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
3902
3903 elsif Aggr_Lo = Ind_Lo then
3904 Cond :=
3905 Make_Op_Gt (Loc,
3906 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
3907 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
3908
3909 else
3910 Cond :=
3911 Make_Or_Else (Loc,
3912 Left_Opnd =>
3913 Make_Op_Lt (Loc,
3914 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3915 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
3916
3917 Right_Opnd =>
3918 Make_Op_Gt (Loc,
3919 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
3920 Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
3921 end if;
3922
3923 if Present (Cond) then
3924 Cond :=
3925 Make_And_Then (Loc,
3926 Left_Opnd =>
3927 Make_Op_Le (Loc,
3928 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3929 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
3930
3931 Right_Opnd => Cond);
3932
3933 Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
3934 Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
3935 Insert_Action (N,
3936 Make_Raise_Constraint_Error (Loc,
3937 Condition => Cond,
3938 Reason => CE_Length_Check_Failed));
3939 end if;
3940 end Check_Bounds;
3941
3942 ----------------------------
3943 -- Check_Same_Aggr_Bounds --
3944 ----------------------------
3945
3946 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
3947 Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
3948 Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
3949 -- The bounds of this specific sub-aggregate
3950
3951 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
3952 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
3953 -- The bounds of the aggregate for this dimension
3954
3955 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3956 -- The index type for this dimension.xxx
3957
3958 Cond : Node_Id := Empty;
3959 Assoc : Node_Id;
3960 Expr : Node_Id;
3961
3962 begin
3963 -- If index checks are on generate the test
3964
3965 -- [constraint_error when
3966 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
3967
3968 -- As an optimization try to see if some tests are trivially vacuos
3969 -- because we are comparing an expression against itself. Also for
3970 -- the first dimension the test is trivially vacuous because there
3971 -- is just one aggregate for dimension 1.
3972
3973 if Index_Checks_Suppressed (Ind_Typ) then
3974 Cond := Empty;
3975
3976 elsif Dim = 1
3977 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
3978 then
3979 Cond := Empty;
3980
3981 elsif Aggr_Hi = Sub_Hi then
3982 Cond :=
3983 Make_Op_Ne (Loc,
3984 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3985 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
3986
3987 elsif Aggr_Lo = Sub_Lo then
3988 Cond :=
3989 Make_Op_Ne (Loc,
3990 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
3991 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
3992
3993 else
3994 Cond :=
3995 Make_Or_Else (Loc,
3996 Left_Opnd =>
3997 Make_Op_Ne (Loc,
3998 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
3999 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
4000
4001 Right_Opnd =>
4002 Make_Op_Ne (Loc,
4003 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
4004 Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
4005 end if;
4006
4007 if Present (Cond) then
4008 Insert_Action (N,
4009 Make_Raise_Constraint_Error (Loc,
4010 Condition => Cond,
4011 Reason => CE_Length_Check_Failed));
4012 end if;
4013
4014 -- Now look inside the sub-aggregate to see if there is more work
4015
4016 if Dim < Aggr_Dimension then
4017
4018 -- Process positional components
4019
4020 if Present (Expressions (Sub_Aggr)) then
4021 Expr := First (Expressions (Sub_Aggr));
4022 while Present (Expr) loop
4023 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4024 Next (Expr);
4025 end loop;
4026 end if;
4027
4028 -- Process component associations
4029
4030 if Present (Component_Associations (Sub_Aggr)) then
4031 Assoc := First (Component_Associations (Sub_Aggr));
4032 while Present (Assoc) loop
4033 Expr := Expression (Assoc);
4034 Check_Same_Aggr_Bounds (Expr, Dim + 1);
4035 Next (Assoc);
4036 end loop;
4037 end if;
4038 end if;
4039 end Check_Same_Aggr_Bounds;
4040
4041 ----------------------------
4042 -- Compute_Others_Present --
4043 ----------------------------
4044
4045 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
4046 Assoc : Node_Id;
4047 Expr : Node_Id;
4048
4049 begin
4050 if Present (Component_Associations (Sub_Aggr)) then
4051 Assoc := Last (Component_Associations (Sub_Aggr));
4052
4053 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4054 Others_Present (Dim) := True;
4055 end if;
4056 end if;
4057
4058 -- Now look inside the sub-aggregate to see if there is more work
4059
4060 if Dim < Aggr_Dimension then
4061
4062 -- Process positional components
4063
4064 if Present (Expressions (Sub_Aggr)) then
4065 Expr := First (Expressions (Sub_Aggr));
4066 while Present (Expr) loop
4067 Compute_Others_Present (Expr, Dim + 1);
4068 Next (Expr);
4069 end loop;
4070 end if;
4071
4072 -- Process component associations
4073
4074 if Present (Component_Associations (Sub_Aggr)) then
4075 Assoc := First (Component_Associations (Sub_Aggr));
4076 while Present (Assoc) loop
4077 Expr := Expression (Assoc);
4078 Compute_Others_Present (Expr, Dim + 1);
4079 Next (Assoc);
4080 end loop;
4081 end if;
4082 end if;
4083 end Compute_Others_Present;
4084
4085 ------------------------
4086 -- In_Place_Assign_OK --
4087 ------------------------
4088
4089 function In_Place_Assign_OK return Boolean is
4090 Aggr_In : Node_Id;
4091 Aggr_Lo : Node_Id;
4092 Aggr_Hi : Node_Id;
4093 Obj_In : Node_Id;
4094 Obj_Lo : Node_Id;
4095 Obj_Hi : Node_Id;
4096
4097 function Safe_Aggregate (Aggr : Node_Id) return Boolean;
4098 -- Check recursively that each component of a (sub)aggregate does
4099 -- not depend on the variable being assigned to.
4100
4101 function Safe_Component (Expr : Node_Id) return Boolean;
4102 -- Verify that an expression cannot depend on the variable being
4103 -- assigned to. Room for improvement here (but less than before).
4104
4105 --------------------
4106 -- Safe_Aggregate --
4107 --------------------
4108
4109 function Safe_Aggregate (Aggr : Node_Id) return Boolean is
4110 Expr : Node_Id;
4111
4112 begin
4113 if Present (Expressions (Aggr)) then
4114 Expr := First (Expressions (Aggr));
4115 while Present (Expr) loop
4116 if Nkind (Expr) = N_Aggregate then
4117 if not Safe_Aggregate (Expr) then
4118 return False;
4119 end if;
4120
4121 elsif not Safe_Component (Expr) then
4122 return False;
4123 end if;
4124
4125 Next (Expr);
4126 end loop;
4127 end if;
4128
4129 if Present (Component_Associations (Aggr)) then
4130 Expr := First (Component_Associations (Aggr));
4131 while Present (Expr) loop
4132 if Nkind (Expression (Expr)) = N_Aggregate then
4133 if not Safe_Aggregate (Expression (Expr)) then
4134 return False;
4135 end if;
4136
4137 elsif not Safe_Component (Expression (Expr)) then
4138 return False;
4139 end if;
4140
4141 Next (Expr);
4142 end loop;
4143 end if;
4144
4145 return True;
4146 end Safe_Aggregate;
4147
4148 --------------------
4149 -- Safe_Component --
4150 --------------------
4151
4152 function Safe_Component (Expr : Node_Id) return Boolean is
4153 Comp : Node_Id := Expr;
4154
4155 function Check_Component (Comp : Node_Id) return Boolean;
4156 -- Do the recursive traversal, after copy
4157
4158 ---------------------
4159 -- Check_Component --
4160 ---------------------
4161
4162 function Check_Component (Comp : Node_Id) return Boolean is
4163 begin
4164 if Is_Overloaded (Comp) then
4165 return False;
4166 end if;
4167
4168 return Compile_Time_Known_Value (Comp)
4169
4170 or else (Is_Entity_Name (Comp)
4171 and then Present (Entity (Comp))
4172 and then No (Renamed_Object (Entity (Comp))))
4173
4174 or else (Nkind (Comp) = N_Attribute_Reference
4175 and then Check_Component (Prefix (Comp)))
4176
4177 or else (Nkind (Comp) in N_Binary_Op
4178 and then Check_Component (Left_Opnd (Comp))
4179 and then Check_Component (Right_Opnd (Comp)))
4180
4181 or else (Nkind (Comp) in N_Unary_Op
4182 and then Check_Component (Right_Opnd (Comp)))
4183
4184 or else (Nkind (Comp) = N_Selected_Component
4185 and then Check_Component (Prefix (Comp)))
4186
4187 or else (Nkind (Comp) = N_Unchecked_Type_Conversion
4188 and then Check_Component (Expression (Comp)));
4189 end Check_Component;
4190
4191 -- Start of processing for Safe_Component
4192
4193 begin
4194 -- If the component appears in an association that may
4195 -- correspond to more than one element, it is not analyzed
4196 -- before the expansion into assignments, to avoid side effects.
4197 -- We analyze, but do not resolve the copy, to obtain sufficient
4198 -- entity information for the checks that follow. If component is
4199 -- overloaded we assume an unsafe function call.
4200
4201 if not Analyzed (Comp) then
4202 if Is_Overloaded (Expr) then
4203 return False;
4204
4205 elsif Nkind (Expr) = N_Aggregate
4206 and then not Is_Others_Aggregate (Expr)
4207 then
4208 return False;
4209
4210 elsif Nkind (Expr) = N_Allocator then
4211
4212 -- For now, too complex to analyze
4213
4214 return False;
4215 end if;
4216
4217 Comp := New_Copy_Tree (Expr);
4218 Set_Parent (Comp, Parent (Expr));
4219 Analyze (Comp);
4220 end if;
4221
4222 if Nkind (Comp) = N_Aggregate then
4223 return Safe_Aggregate (Comp);
4224 else
4225 return Check_Component (Comp);
4226 end if;
4227 end Safe_Component;
4228
4229 -- Start of processing for In_Place_Assign_OK
4230
4231 begin
4232 if Present (Component_Associations (N)) then
4233
4234 -- On assignment, sliding can take place, so we cannot do the
4235 -- assignment in place unless the bounds of the aggregate are
4236 -- statically equal to those of the target.
4237
4238 -- If the aggregate is given by an others choice, the bounds
4239 -- are derived from the left-hand side, and the assignment is
4240 -- safe if the expression is.
4241
4242 if Is_Others_Aggregate (N) then
4243 return
4244 Safe_Component
4245 (Expression (First (Component_Associations (N))));
4246 end if;
4247
4248 Aggr_In := First_Index (Etype (N));
4249
4250 if Nkind (Parent (N)) = N_Assignment_Statement then
4251 Obj_In := First_Index (Etype (Name (Parent (N))));
4252
4253 else
4254 -- Context is an allocator. Check bounds of aggregate
4255 -- against given type in qualified expression.
4256
4257 pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
4258 Obj_In :=
4259 First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
4260 end if;
4261
4262 while Present (Aggr_In) loop
4263 Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
4264 Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
4265
4266 if not Compile_Time_Known_Value (Aggr_Lo)
4267 or else not Compile_Time_Known_Value (Aggr_Hi)
4268 or else not Compile_Time_Known_Value (Obj_Lo)
4269 or else not Compile_Time_Known_Value (Obj_Hi)
4270 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
4271 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
4272 then
4273 return False;
4274 end if;
4275
4276 Next_Index (Aggr_In);
4277 Next_Index (Obj_In);
4278 end loop;
4279 end if;
4280
4281 -- Now check the component values themselves
4282
4283 return Safe_Aggregate (N);
4284 end In_Place_Assign_OK;
4285
4286 ------------------
4287 -- Others_Check --
4288 ------------------
4289
4290 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
4291 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4292 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4293 -- The bounds of the aggregate for this dimension
4294
4295 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4296 -- The index type for this dimension
4297
4298 Need_To_Check : Boolean := False;
4299
4300 Choices_Lo : Node_Id := Empty;
4301 Choices_Hi : Node_Id := Empty;
4302 -- The lowest and highest discrete choices for a named sub-aggregate
4303
4304 Nb_Choices : Int := -1;
4305 -- The number of discrete non-others choices in this sub-aggregate
4306
4307 Nb_Elements : Uint := Uint_0;
4308 -- The number of elements in a positional aggregate
4309
4310 Cond : Node_Id := Empty;
4311
4312 Assoc : Node_Id;
4313 Choice : Node_Id;
4314 Expr : Node_Id;
4315
4316 begin
4317 -- Check if we have an others choice. If we do make sure that this
4318 -- sub-aggregate contains at least one element in addition to the
4319 -- others choice.
4320
4321 if Range_Checks_Suppressed (Ind_Typ) then
4322 Need_To_Check := False;
4323
4324 elsif Present (Expressions (Sub_Aggr))
4325 and then Present (Component_Associations (Sub_Aggr))
4326 then
4327 Need_To_Check := True;
4328
4329 elsif Present (Component_Associations (Sub_Aggr)) then
4330 Assoc := Last (Component_Associations (Sub_Aggr));
4331
4332 if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
4333 Need_To_Check := False;
4334
4335 else
4336 -- Count the number of discrete choices. Start with -1 because
4337 -- the others choice does not count.
4338
4339 Nb_Choices := -1;
4340 Assoc := First (Component_Associations (Sub_Aggr));
4341 while Present (Assoc) loop
4342 Choice := First (Choices (Assoc));
4343 while Present (Choice) loop
4344 Nb_Choices := Nb_Choices + 1;
4345 Next (Choice);
4346 end loop;
4347
4348 Next (Assoc);
4349 end loop;
4350
4351 -- If there is only an others choice nothing to do
4352
4353 Need_To_Check := (Nb_Choices > 0);
4354 end if;
4355
4356 else
4357 Need_To_Check := False;
4358 end if;
4359
4360 -- If we are dealing with a positional sub-aggregate with an others
4361 -- choice then compute the number or positional elements.
4362
4363 if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
4364 Expr := First (Expressions (Sub_Aggr));
4365 Nb_Elements := Uint_0;
4366 while Present (Expr) loop
4367 Nb_Elements := Nb_Elements + 1;
4368 Next (Expr);
4369 end loop;
4370
4371 -- If the aggregate contains discrete choices and an others choice
4372 -- compute the smallest and largest discrete choice values.
4373
4374 elsif Need_To_Check then
4375 Compute_Choices_Lo_And_Choices_Hi : declare
4376
4377 Table : Case_Table_Type (1 .. Nb_Choices);
4378 -- Used to sort all the different choice values
4379
4380 J : Pos := 1;
4381 Low : Node_Id;
4382 High : Node_Id;
4383
4384 begin
4385 Assoc := First (Component_Associations (Sub_Aggr));
4386 while Present (Assoc) loop
4387 Choice := First (Choices (Assoc));
4388 while Present (Choice) loop
4389 if Nkind (Choice) = N_Others_Choice then
4390 exit;
4391 end if;
4392
4393 Get_Index_Bounds (Choice, Low, High);
4394 Table (J).Choice_Lo := Low;
4395 Table (J).Choice_Hi := High;
4396
4397 J := J + 1;
4398 Next (Choice);
4399 end loop;
4400
4401 Next (Assoc);
4402 end loop;
4403
4404 -- Sort the discrete choices
4405
4406 Sort_Case_Table (Table);
4407
4408 Choices_Lo := Table (1).Choice_Lo;
4409 Choices_Hi := Table (Nb_Choices).Choice_Hi;
4410 end Compute_Choices_Lo_And_Choices_Hi;
4411 end if;
4412
4413 -- If no others choice in this sub-aggregate, or the aggregate
4414 -- comprises only an others choice, nothing to do.
4415
4416 if not Need_To_Check then
4417 Cond := Empty;
4418
4419 -- If we are dealing with an aggregate containing an others choice
4420 -- and positional components, we generate the following test:
4421
4422 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
4423 -- Ind_Typ'Pos (Aggr_Hi)
4424 -- then
4425 -- raise Constraint_Error;
4426 -- end if;
4427
4428 elsif Nb_Elements > Uint_0 then
4429 Cond :=
4430 Make_Op_Gt (Loc,
4431 Left_Opnd =>
4432 Make_Op_Add (Loc,
4433 Left_Opnd =>
4434 Make_Attribute_Reference (Loc,
4435 Prefix => New_Reference_To (Ind_Typ, Loc),
4436 Attribute_Name => Name_Pos,
4437 Expressions =>
4438 New_List
4439 (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
4440 Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
4441
4442 Right_Opnd =>
4443 Make_Attribute_Reference (Loc,
4444 Prefix => New_Reference_To (Ind_Typ, Loc),
4445 Attribute_Name => Name_Pos,
4446 Expressions => New_List (
4447 Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
4448
4449 -- If we are dealing with an aggregate containing an others choice
4450 -- and discrete choices we generate the following test:
4451
4452 -- [constraint_error when
4453 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
4454
4455 else
4456 Cond :=
4457 Make_Or_Else (Loc,
4458 Left_Opnd =>
4459 Make_Op_Lt (Loc,
4460 Left_Opnd =>
4461 Duplicate_Subexpr_Move_Checks (Choices_Lo),
4462 Right_Opnd =>
4463 Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
4464
4465 Right_Opnd =>
4466 Make_Op_Gt (Loc,
4467 Left_Opnd =>
4468 Duplicate_Subexpr (Choices_Hi),
4469 Right_Opnd =>
4470 Duplicate_Subexpr (Aggr_Hi)));
4471 end if;
4472
4473 if Present (Cond) then
4474 Insert_Action (N,
4475 Make_Raise_Constraint_Error (Loc,
4476 Condition => Cond,
4477 Reason => CE_Length_Check_Failed));
4478 -- Questionable reason code, shouldn't that be a
4479 -- CE_Range_Check_Failed ???
4480 end if;
4481
4482 -- Now look inside the sub-aggregate to see if there is more work
4483
4484 if Dim < Aggr_Dimension then
4485
4486 -- Process positional components
4487
4488 if Present (Expressions (Sub_Aggr)) then
4489 Expr := First (Expressions (Sub_Aggr));
4490 while Present (Expr) loop
4491 Others_Check (Expr, Dim + 1);
4492 Next (Expr);
4493 end loop;
4494 end if;
4495
4496 -- Process component associations
4497
4498 if Present (Component_Associations (Sub_Aggr)) then
4499 Assoc := First (Component_Associations (Sub_Aggr));
4500 while Present (Assoc) loop
4501 Expr := Expression (Assoc);
4502 Others_Check (Expr, Dim + 1);
4503 Next (Assoc);
4504 end loop;
4505 end if;
4506 end if;
4507 end Others_Check;
4508
4509 -------------------------
4510 -- Safe_Left_Hand_Side --
4511 -------------------------
4512
4513 function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
4514 function Is_Safe_Index (Indx : Node_Id) return Boolean;
4515 -- If the left-hand side includes an indexed component, check that
4516 -- the indexes are free of side-effect.
4517
4518 -------------------
4519 -- Is_Safe_Index --
4520 -------------------
4521
4522 function Is_Safe_Index (Indx : Node_Id) return Boolean is
4523 begin
4524 if Is_Entity_Name (Indx) then
4525 return True;
4526
4527 elsif Nkind (Indx) = N_Integer_Literal then
4528 return True;
4529
4530 elsif Nkind (Indx) = N_Function_Call
4531 and then Is_Entity_Name (Name (Indx))
4532 and then
4533 Has_Pragma_Pure_Function (Entity (Name (Indx)))
4534 then
4535 return True;
4536
4537 elsif Nkind (Indx) = N_Type_Conversion
4538 and then Is_Safe_Index (Expression (Indx))
4539 then
4540 return True;
4541
4542 else
4543 return False;
4544 end if;
4545 end Is_Safe_Index;
4546
4547 -- Start of processing for Safe_Left_Hand_Side
4548
4549 begin
4550 if Is_Entity_Name (N) then
4551 return True;
4552
4553 elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
4554 and then Safe_Left_Hand_Side (Prefix (N))
4555 then
4556 return True;
4557
4558 elsif Nkind (N) = N_Indexed_Component
4559 and then Safe_Left_Hand_Side (Prefix (N))
4560 and then
4561 Is_Safe_Index (First (Expressions (N)))
4562 then
4563 return True;
4564
4565 elsif Nkind (N) = N_Unchecked_Type_Conversion then
4566 return Safe_Left_Hand_Side (Expression (N));
4567
4568 else
4569 return False;
4570 end if;
4571 end Safe_Left_Hand_Side;
4572
4573 -- Local variables
4574
4575 Tmp : Entity_Id;
4576 -- Holds the temporary aggregate value
4577
4578 Tmp_Decl : Node_Id;
4579 -- Holds the declaration of Tmp
4580
4581 Aggr_Code : List_Id;
4582 Parent_Node : Node_Id;
4583 Parent_Kind : Node_Kind;
4584
4585 -- Start of processing for Expand_Array_Aggregate
4586
4587 begin
4588 -- Do not touch the special aggregates of attributes used for Asm calls
4589
4590 if Is_RTE (Ctyp, RE_Asm_Input_Operand)
4591 or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
4592 then
4593 return;
4594 end if;
4595
4596 -- If the semantic analyzer has determined that aggregate N will raise
4597 -- Constraint_Error at run time, then the aggregate node has been
4598 -- replaced with an N_Raise_Constraint_Error node and we should
4599 -- never get here.
4600
4601 pragma Assert (not Raises_Constraint_Error (N));
4602
4603 -- STEP 1a
4604
4605 -- Check that the index range defined by aggregate bounds is
4606 -- compatible with corresponding index subtype.
4607
4608 Index_Compatibility_Check : declare
4609 Aggr_Index_Range : Node_Id := First_Index (Typ);
4610 -- The current aggregate index range
4611
4612 Index_Constraint : Node_Id := First_Index (Etype (Typ));
4613 -- The corresponding index constraint against which we have to
4614 -- check the above aggregate index range.
4615
4616 begin
4617 Compute_Others_Present (N, 1);
4618
4619 for J in 1 .. Aggr_Dimension loop
4620 -- There is no need to emit a check if an others choice is
4621 -- present for this array aggregate dimension since in this
4622 -- case one of N's sub-aggregates has taken its bounds from the
4623 -- context and these bounds must have been checked already. In
4624 -- addition all sub-aggregates corresponding to the same
4625 -- dimension must all have the same bounds (checked in (c) below).
4626
4627 if not Range_Checks_Suppressed (Etype (Index_Constraint))
4628 and then not Others_Present (J)
4629 then
4630 -- We don't use Checks.Apply_Range_Check here because it emits
4631 -- a spurious check. Namely it checks that the range defined by
4632 -- the aggregate bounds is non empty. But we know this already
4633 -- if we get here.
4634
4635 Check_Bounds (Aggr_Index_Range, Index_Constraint);
4636 end if;
4637
4638 -- Save the low and high bounds of the aggregate index as well as
4639 -- the index type for later use in checks (b) and (c) below.
4640
4641 Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
4642 Aggr_High (J) := High_Bound (Aggr_Index_Range);
4643
4644 Aggr_Index_Typ (J) := Etype (Index_Constraint);
4645
4646 Next_Index (Aggr_Index_Range);
4647 Next_Index (Index_Constraint);
4648 end loop;
4649 end Index_Compatibility_Check;
4650
4651 -- STEP 1b
4652
4653 -- If an others choice is present check that no aggregate index is
4654 -- outside the bounds of the index constraint.
4655
4656 Others_Check (N, 1);
4657
4658 -- STEP 1c
4659
4660 -- For multidimensional arrays make sure that all subaggregates
4661 -- corresponding to the same dimension have the same bounds.
4662
4663 if Aggr_Dimension > 1 then
4664 Check_Same_Aggr_Bounds (N, 1);
4665 end if;
4666
4667 -- STEP 2
4668
4669 -- Here we test for is packed array aggregate that we can handle at
4670 -- compile time. If so, return with transformation done. Note that we do
4671 -- this even if the aggregate is nested, because once we have done this
4672 -- processing, there is no more nested aggregate!
4673
4674 if Packed_Array_Aggregate_Handled (N) then
4675 return;
4676 end if;
4677
4678 -- At this point we try to convert to positional form
4679
4680 if Ekind (Current_Scope) = E_Package
4681 and then Static_Elaboration_Desired (Current_Scope)
4682 then
4683 Convert_To_Positional (N, Max_Others_Replicate => 100);
4684
4685 else
4686 Convert_To_Positional (N);
4687 end if;
4688
4689 -- if the result is no longer an aggregate (e.g. it may be a string
4690 -- literal, or a temporary which has the needed value), then we are
4691 -- done, since there is no longer a nested aggregate.
4692
4693 if Nkind (N) /= N_Aggregate then
4694 return;
4695
4696 -- We are also done if the result is an analyzed aggregate
4697 -- This case could use more comments ???
4698
4699 elsif Analyzed (N)
4700 and then N /= Original_Node (N)
4701 then
4702 return;
4703 end if;
4704
4705 -- If all aggregate components are compile-time known and the aggregate
4706 -- has been flattened, nothing left to do. The same occurs if the
4707 -- aggregate is used to initialize the components of an statically
4708 -- allocated dispatch table.
4709
4710 if Compile_Time_Known_Aggregate (N)
4711 or else Is_Static_Dispatch_Table_Aggregate (N)
4712 then
4713 Set_Expansion_Delayed (N, False);
4714 return;
4715 end if;
4716
4717 -- Now see if back end processing is possible
4718
4719 if Backend_Processing_Possible (N) then
4720
4721 -- If the aggregate is static but the constraints are not, build
4722 -- a static subtype for the aggregate, so that Gigi can place it
4723 -- in static memory. Perform an unchecked_conversion to the non-
4724 -- static type imposed by the context.
4725
4726 declare
4727 Itype : constant Entity_Id := Etype (N);
4728 Index : Node_Id;
4729 Needs_Type : Boolean := False;
4730
4731 begin
4732 Index := First_Index (Itype);
4733 while Present (Index) loop
4734 if not Is_Static_Subtype (Etype (Index)) then
4735 Needs_Type := True;
4736 exit;
4737 else
4738 Next_Index (Index);
4739 end if;
4740 end loop;
4741
4742 if Needs_Type then
4743 Build_Constrained_Type (Positional => True);
4744 Rewrite (N, Unchecked_Convert_To (Itype, N));
4745 Analyze (N);
4746 end if;
4747 end;
4748
4749 return;
4750 end if;
4751
4752 -- STEP 3
4753
4754 -- Delay expansion for nested aggregates: it will be taken care of
4755 -- when the parent aggregate is expanded.
4756
4757 Parent_Node := Parent (N);
4758 Parent_Kind := Nkind (Parent_Node);
4759
4760 if Parent_Kind = N_Qualified_Expression then
4761 Parent_Node := Parent (Parent_Node);
4762 Parent_Kind := Nkind (Parent_Node);
4763 end if;
4764
4765 if Parent_Kind = N_Aggregate
4766 or else Parent_Kind = N_Extension_Aggregate
4767 or else Parent_Kind = N_Component_Association
4768 or else (Parent_Kind = N_Object_Declaration
4769 and then Needs_Finalization (Typ))
4770 or else (Parent_Kind = N_Assignment_Statement
4771 and then Inside_Init_Proc)
4772 then
4773 if Static_Array_Aggregate (N)
4774 or else Compile_Time_Known_Aggregate (N)
4775 then
4776 Set_Expansion_Delayed (N, False);
4777 return;
4778 else
4779 Set_Expansion_Delayed (N);
4780 return;
4781 end if;
4782 end if;
4783
4784 -- STEP 4
4785
4786 -- Look if in place aggregate expansion is possible
4787
4788 -- For object declarations we build the aggregate in place, unless
4789 -- the array is bit-packed or the component is controlled.
4790
4791 -- For assignments we do the assignment in place if all the component
4792 -- associations have compile-time known values. For other cases we
4793 -- create a temporary. The analysis for safety of on-line assignment
4794 -- is delicate, i.e. we don't know how to do it fully yet ???
4795
4796 -- For allocators we assign to the designated object in place if the
4797 -- aggregate meets the same conditions as other in-place assignments.
4798 -- In this case the aggregate may not come from source but was created
4799 -- for default initialization, e.g. with Initialize_Scalars.
4800
4801 if Requires_Transient_Scope (Typ) then
4802 Establish_Transient_Scope
4803 (N, Sec_Stack => Has_Controlled_Component (Typ));
4804 end if;
4805
4806 if Has_Default_Init_Comps (N) then
4807 Maybe_In_Place_OK := False;
4808
4809 elsif Is_Bit_Packed_Array (Typ)
4810 or else Has_Controlled_Component (Typ)
4811 then
4812 Maybe_In_Place_OK := False;
4813
4814 else
4815 Maybe_In_Place_OK :=
4816 (Nkind (Parent (N)) = N_Assignment_Statement
4817 and then Comes_From_Source (N)
4818 and then In_Place_Assign_OK)
4819
4820 or else
4821 (Nkind (Parent (Parent (N))) = N_Allocator
4822 and then In_Place_Assign_OK);
4823 end if;
4824
4825 -- If this is an array of tasks, it will be expanded into build-in-place
4826 -- assignments. Build an activation chain for the tasks now.
4827
4828 if Has_Task (Etype (N)) then
4829 Build_Activation_Chain_Entity (N);
4830 end if;
4831
4832 -- Should document these individual tests ???
4833
4834 if not Has_Default_Init_Comps (N)
4835 and then Comes_From_Source (Parent (N))
4836 and then Nkind (Parent (N)) = N_Object_Declaration
4837 and then not
4838 Must_Slide (Etype (Defining_Identifier (Parent (N))), Typ)
4839 and then N = Expression (Parent (N))
4840 and then not Is_Bit_Packed_Array (Typ)
4841 and then not Has_Controlled_Component (Typ)
4842
4843 -- If the aggregate is the expression in an object declaration, it
4844 -- cannot be expanded in place. Lookahead in the current declarative
4845 -- part to find an address clause for the object being declared. If
4846 -- one is present, we cannot build in place. Unclear comment???
4847
4848 and then not Has_Following_Address_Clause (Parent (N))
4849 then
4850 Tmp := Defining_Identifier (Parent (N));
4851 Set_No_Initialization (Parent (N));
4852 Set_Expression (Parent (N), Empty);
4853
4854 -- Set the type of the entity, for use in the analysis of the
4855 -- subsequent indexed assignments. If the nominal type is not
4856 -- constrained, build a subtype from the known bounds of the
4857 -- aggregate. If the declaration has a subtype mark, use it,
4858 -- otherwise use the itype of the aggregate.
4859
4860 if not Is_Constrained (Typ) then
4861 Build_Constrained_Type (Positional => False);
4862 elsif Is_Entity_Name (Object_Definition (Parent (N)))
4863 and then Is_Constrained (Entity (Object_Definition (Parent (N))))
4864 then
4865 Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
4866 else
4867 Set_Size_Known_At_Compile_Time (Typ, False);
4868 Set_Etype (Tmp, Typ);
4869 end if;
4870
4871 elsif Maybe_In_Place_OK
4872 and then Nkind (Parent (N)) = N_Qualified_Expression
4873 and then Nkind (Parent (Parent (N))) = N_Allocator
4874 then
4875 Set_Expansion_Delayed (N);
4876 return;
4877
4878 -- In the remaining cases the aggregate is the RHS of an assignment
4879
4880 elsif Maybe_In_Place_OK
4881 and then Safe_Left_Hand_Side (Name (Parent (N)))
4882 then
4883 Tmp := Name (Parent (N));
4884
4885 if Etype (Tmp) /= Etype (N) then
4886 Apply_Length_Check (N, Etype (Tmp));
4887
4888 if Nkind (N) = N_Raise_Constraint_Error then
4889
4890 -- Static error, nothing further to expand
4891
4892 return;
4893 end if;
4894 end if;
4895
4896 elsif Maybe_In_Place_OK
4897 and then Nkind (Name (Parent (N))) = N_Slice
4898 and then Safe_Slice_Assignment (N)
4899 then
4900 -- Safe_Slice_Assignment rewrites assignment as a loop
4901
4902 return;
4903
4904 -- Step 5
4905
4906 -- In place aggregate expansion is not possible
4907
4908 else
4909 Maybe_In_Place_OK := False;
4910 Tmp := Make_Temporary (Loc, 'A', N);
4911 Tmp_Decl :=
4912 Make_Object_Declaration
4913 (Loc,
4914 Defining_Identifier => Tmp,
4915 Object_Definition => New_Occurrence_Of (Typ, Loc));
4916 Set_No_Initialization (Tmp_Decl, True);
4917
4918 -- If we are within a loop, the temporary will be pushed on the
4919 -- stack at each iteration. If the aggregate is the expression for an
4920 -- allocator, it will be immediately copied to the heap and can
4921 -- be reclaimed at once. We create a transient scope around the
4922 -- aggregate for this purpose.
4923
4924 if Ekind (Current_Scope) = E_Loop
4925 and then Nkind (Parent (Parent (N))) = N_Allocator
4926 then
4927 Establish_Transient_Scope (N, False);
4928 end if;
4929
4930 Insert_Action (N, Tmp_Decl);
4931 end if;
4932
4933 -- Construct and insert the aggregate code. We can safely suppress index
4934 -- checks because this code is guaranteed not to raise CE on index
4935 -- checks. However we should *not* suppress all checks.
4936
4937 declare
4938 Target : Node_Id;
4939
4940 begin
4941 if Nkind (Tmp) = N_Defining_Identifier then
4942 Target := New_Reference_To (Tmp, Loc);
4943
4944 else
4945
4946 if Has_Default_Init_Comps (N) then
4947
4948 -- Ada 2005 (AI-287): This case has not been analyzed???
4949
4950 raise Program_Error;
4951 end if;
4952
4953 -- Name in assignment is explicit dereference
4954
4955 Target := New_Copy (Tmp);
4956 end if;
4957
4958 Aggr_Code :=
4959 Build_Array_Aggr_Code (N,
4960 Ctype => Ctyp,
4961 Index => First_Index (Typ),
4962 Into => Target,
4963 Scalar_Comp => Is_Scalar_Type (Ctyp));
4964 end;
4965
4966 if Comes_From_Source (Tmp) then
4967 Insert_Actions_After (Parent (N), Aggr_Code);
4968
4969 else
4970 Insert_Actions (N, Aggr_Code);
4971 end if;
4972
4973 -- If the aggregate has been assigned in place, remove the original
4974 -- assignment.
4975
4976 if Nkind (Parent (N)) = N_Assignment_Statement
4977 and then Maybe_In_Place_OK
4978 then
4979 Rewrite (Parent (N), Make_Null_Statement (Loc));
4980
4981 elsif Nkind (Parent (N)) /= N_Object_Declaration
4982 or else Tmp /= Defining_Identifier (Parent (N))
4983 then
4984 Rewrite (N, New_Occurrence_Of (Tmp, Loc));
4985 Analyze_And_Resolve (N, Typ);
4986 end if;
4987 end Expand_Array_Aggregate;
4988
4989 ------------------------
4990 -- Expand_N_Aggregate --
4991 ------------------------
4992
4993 procedure Expand_N_Aggregate (N : Node_Id) is
4994 begin
4995 if Is_Record_Type (Etype (N)) then
4996 Expand_Record_Aggregate (N);
4997 else
4998 Expand_Array_Aggregate (N);
4999 end if;
5000 exception
5001 when RE_Not_Available =>
5002 return;
5003 end Expand_N_Aggregate;
5004
5005 ----------------------------------
5006 -- Expand_N_Extension_Aggregate --
5007 ----------------------------------
5008
5009 -- If the ancestor part is an expression, add a component association for
5010 -- the parent field. If the type of the ancestor part is not the direct
5011 -- parent of the expected type, build recursively the needed ancestors.
5012 -- If the ancestor part is a subtype_mark, replace aggregate with a decla-
5013 -- ration for a temporary of the expected type, followed by individual
5014 -- assignments to the given components.
5015
5016 procedure Expand_N_Extension_Aggregate (N : Node_Id) is
5017 Loc : constant Source_Ptr := Sloc (N);
5018 A : constant Node_Id := Ancestor_Part (N);
5019 Typ : constant Entity_Id := Etype (N);
5020
5021 begin
5022 -- If the ancestor is a subtype mark, an init proc must be called
5023 -- on the resulting object which thus has to be materialized in
5024 -- the front-end
5025
5026 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
5027 Convert_To_Assignments (N, Typ);
5028
5029 -- The extension aggregate is transformed into a record aggregate
5030 -- of the following form (c1 and c2 are inherited components)
5031
5032 -- (Exp with c3 => a, c4 => b)
5033 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
5034
5035 else
5036 Set_Etype (N, Typ);
5037
5038 if Tagged_Type_Expansion then
5039 Expand_Record_Aggregate (N,
5040 Orig_Tag =>
5041 New_Occurrence_Of
5042 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
5043 Parent_Expr => A);
5044
5045 -- No tag is needed in the case of a VM
5046
5047 else
5048 Expand_Record_Aggregate (N, Parent_Expr => A);
5049 end if;
5050 end if;
5051
5052 exception
5053 when RE_Not_Available =>
5054 return;
5055 end Expand_N_Extension_Aggregate;
5056
5057 -----------------------------
5058 -- Expand_Record_Aggregate --
5059 -----------------------------
5060
5061 procedure Expand_Record_Aggregate
5062 (N : Node_Id;
5063 Orig_Tag : Node_Id := Empty;
5064 Parent_Expr : Node_Id := Empty)
5065 is
5066 Loc : constant Source_Ptr := Sloc (N);
5067 Comps : constant List_Id := Component_Associations (N);
5068 Typ : constant Entity_Id := Etype (N);
5069 Base_Typ : constant Entity_Id := Base_Type (Typ);
5070
5071 Static_Components : Boolean := True;
5072 -- Flag to indicate whether all components are compile-time known,
5073 -- and the aggregate can be constructed statically and handled by
5074 -- the back-end.
5075
5076 function Component_Not_OK_For_Backend return Boolean;
5077 -- Check for presence of component which makes it impossible for the
5078 -- backend to process the aggregate, thus requiring the use of a series
5079 -- of assignment statements. Cases checked for are a nested aggregate
5080 -- needing Late_Expansion, the presence of a tagged component which may
5081 -- need tag adjustment, and a bit unaligned component reference.
5082 --
5083 -- We also force expansion into assignments if a component is of a
5084 -- mutable type (including a private type with discriminants) because
5085 -- in that case the size of the component to be copied may be smaller
5086 -- than the side of the target, and there is no simple way for gigi
5087 -- to compute the size of the object to be copied.
5088 --
5089 -- NOTE: This is part of the ongoing work to define precisely the
5090 -- interface between front-end and back-end handling of aggregates.
5091 -- In general it is desirable to pass aggregates as they are to gigi,
5092 -- in order to minimize elaboration code. This is one case where the
5093 -- semantics of Ada complicate the analysis and lead to anomalies in
5094 -- the gcc back-end if the aggregate is not expanded into assignments.
5095
5096 function Has_Visible_Private_Ancestor (Id : E) return Boolean;
5097 -- If any ancestor of the current type is private, the aggregate
5098 -- cannot be built in place. We canot rely on Has_Private_Ancestor,
5099 -- because it will not be set when type and its parent are in the
5100 -- same scope, and the parent component needs expansion.
5101
5102 function Top_Level_Aggregate (N : Node_Id) return Node_Id;
5103 -- For nested aggregates return the ultimate enclosing aggregate; for
5104 -- non-nested aggregates return N.
5105
5106 ----------------------------------
5107 -- Component_Not_OK_For_Backend --
5108 ----------------------------------
5109
5110 function Component_Not_OK_For_Backend return Boolean is
5111 C : Node_Id;
5112 Expr_Q : Node_Id;
5113
5114 begin
5115 if No (Comps) then
5116 return False;
5117 end if;
5118
5119 C := First (Comps);
5120 while Present (C) loop
5121
5122 -- If the component has box initialization, expansion is needed
5123 -- and component is not ready for backend.
5124
5125 if Box_Present (C) then
5126 return True;
5127 end if;
5128
5129 if Nkind (Expression (C)) = N_Qualified_Expression then
5130 Expr_Q := Expression (Expression (C));
5131 else
5132 Expr_Q := Expression (C);
5133 end if;
5134
5135 -- Return true if the aggregate has any associations for tagged
5136 -- components that may require tag adjustment.
5137
5138 -- These are cases where the source expression may have a tag that
5139 -- could differ from the component tag (e.g., can occur for type
5140 -- conversions and formal parameters). (Tag adjustment not needed
5141 -- if VM_Target because object tags are implicit in the machine.)
5142
5143 if Is_Tagged_Type (Etype (Expr_Q))
5144 and then (Nkind (Expr_Q) = N_Type_Conversion
5145 or else (Is_Entity_Name (Expr_Q)
5146 and then
5147 Ekind (Entity (Expr_Q)) in Formal_Kind))
5148 and then Tagged_Type_Expansion
5149 then
5150 Static_Components := False;
5151 return True;
5152
5153 elsif Is_Delayed_Aggregate (Expr_Q) then
5154 Static_Components := False;
5155 return True;
5156
5157 elsif Possible_Bit_Aligned_Component (Expr_Q) then
5158 Static_Components := False;
5159 return True;
5160 end if;
5161
5162 if Is_Scalar_Type (Etype (Expr_Q)) then
5163 if not Compile_Time_Known_Value (Expr_Q) then
5164 Static_Components := False;
5165 end if;
5166
5167 elsif Nkind (Expr_Q) /= N_Aggregate
5168 or else not Compile_Time_Known_Aggregate (Expr_Q)
5169 then
5170 Static_Components := False;
5171
5172 if Is_Private_Type (Etype (Expr_Q))
5173 and then Has_Discriminants (Etype (Expr_Q))
5174 then
5175 return True;
5176 end if;
5177 end if;
5178
5179 Next (C);
5180 end loop;
5181
5182 return False;
5183 end Component_Not_OK_For_Backend;
5184
5185 -----------------------------------
5186 -- Has_Visible_Private_Ancestor --
5187 -----------------------------------
5188
5189 function Has_Visible_Private_Ancestor (Id : E) return Boolean is
5190 R : constant Entity_Id := Root_Type (Id);
5191 T1 : Entity_Id := Id;
5192
5193 begin
5194 loop
5195 if Is_Private_Type (T1) then
5196 return True;
5197
5198 elsif T1 = R then
5199 return False;
5200
5201 else
5202 T1 := Etype (T1);
5203 end if;
5204 end loop;
5205 end Has_Visible_Private_Ancestor;
5206
5207 -------------------------
5208 -- Top_Level_Aggregate --
5209 -------------------------
5210
5211 function Top_Level_Aggregate (N : Node_Id) return Node_Id is
5212 Aggr : Node_Id;
5213
5214 begin
5215 Aggr := N;
5216 while Present (Parent (Aggr))
5217 and then Nkind_In (Parent (Aggr), N_Component_Association,
5218 N_Aggregate)
5219 loop
5220 Aggr := Parent (Aggr);
5221 end loop;
5222
5223 return Aggr;
5224 end Top_Level_Aggregate;
5225
5226 -- Local variables
5227
5228 Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
5229 Tag_Value : Node_Id;
5230 Comp : Entity_Id;
5231 New_Comp : Node_Id;
5232
5233 -- Start of processing for Expand_Record_Aggregate
5234
5235 begin
5236 -- If the aggregate is to be assigned to an atomic variable, we
5237 -- have to prevent a piecemeal assignment even if the aggregate
5238 -- is to be expanded. We create a temporary for the aggregate, and
5239 -- assign the temporary instead, so that the back end can generate
5240 -- an atomic move for it.
5241
5242 if Is_Atomic (Typ)
5243 and then Comes_From_Source (Parent (N))
5244 and then Is_Atomic_Aggregate (N, Typ)
5245 then
5246 return;
5247
5248 -- No special management required for aggregates used to initialize
5249 -- statically allocated dispatch tables
5250
5251 elsif Is_Static_Dispatch_Table_Aggregate (N) then
5252 return;
5253 end if;
5254
5255 -- Ada 2005 (AI-318-2): We need to convert to assignments if components
5256 -- are build-in-place function calls. The assignments will each turn
5257 -- into a build-in-place function call. If components are all static,
5258 -- we can pass the aggregate to the backend regardless of limitedness.
5259
5260 -- Extension aggregates, aggregates in extended return statements, and
5261 -- aggregates for C++ imported types must be expanded.
5262
5263 if Ada_Version >= Ada_2005 and then Is_Immutably_Limited_Type (Typ) then
5264 if not Nkind_In (Parent (N), N_Object_Declaration,
5265 N_Component_Association)
5266 then
5267 Convert_To_Assignments (N, Typ);
5268
5269 elsif Nkind (N) = N_Extension_Aggregate
5270 or else Convention (Typ) = Convention_CPP
5271 then
5272 Convert_To_Assignments (N, Typ);
5273
5274 elsif not Size_Known_At_Compile_Time (Typ)
5275 or else Component_Not_OK_For_Backend
5276 or else not Static_Components
5277 then
5278 Convert_To_Assignments (N, Typ);
5279
5280 else
5281 Set_Compile_Time_Known_Aggregate (N);
5282 Set_Expansion_Delayed (N, False);
5283 end if;
5284
5285 -- Gigi doesn't properly handle temporaries of variable size so we
5286 -- generate it in the front-end
5287
5288 elsif not Size_Known_At_Compile_Time (Typ)
5289 and then Tagged_Type_Expansion
5290 then
5291 Convert_To_Assignments (N, Typ);
5292
5293 -- Temporaries for controlled aggregates need to be attached to a final
5294 -- chain in order to be properly finalized, so it has to be created in
5295 -- the front-end
5296
5297 elsif Is_Controlled (Typ)
5298 or else Has_Controlled_Component (Base_Type (Typ))
5299 then
5300 Convert_To_Assignments (N, Typ);
5301
5302 -- Ada 2005 (AI-287): In case of default initialized components we
5303 -- convert the aggregate into assignments.
5304
5305 elsif Has_Default_Init_Comps (N) then
5306 Convert_To_Assignments (N, Typ);
5307
5308 -- Check components
5309
5310 elsif Component_Not_OK_For_Backend then
5311 Convert_To_Assignments (N, Typ);
5312
5313 -- If an ancestor is private, some components are not inherited and
5314 -- we cannot expand into a record aggregate
5315
5316 elsif Has_Visible_Private_Ancestor (Typ) then
5317 Convert_To_Assignments (N, Typ);
5318
5319 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
5320 -- is not able to handle the aggregate for Late_Request.
5321
5322 elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
5323 Convert_To_Assignments (N, Typ);
5324
5325 -- If the tagged types covers interface types we need to initialize all
5326 -- hidden components containing pointers to secondary dispatch tables.
5327
5328 elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
5329 Convert_To_Assignments (N, Typ);
5330
5331 -- If some components are mutable, the size of the aggregate component
5332 -- may be distinct from the default size of the type component, so
5333 -- we need to expand to insure that the back-end copies the proper
5334 -- size of the data. However, if the aggregate is the initial value of
5335 -- a constant, the target is immutable and may be built statically.
5336
5337 elsif Has_Mutable_Components (Typ)
5338 and then
5339 (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
5340 or else not Constant_Present (Parent (Top_Level_Aggr)))
5341 then
5342 Convert_To_Assignments (N, Typ);
5343
5344 -- If the type involved has any non-bit aligned components, then we are
5345 -- not sure that the back end can handle this case correctly.
5346
5347 elsif Type_May_Have_Bit_Aligned_Components (Typ) then
5348 Convert_To_Assignments (N, Typ);
5349
5350 -- In all other cases, build a proper aggregate handlable by gigi
5351
5352 else
5353 if Nkind (N) = N_Aggregate then
5354
5355 -- If the aggregate is static and can be handled by the back-end,
5356 -- nothing left to do.
5357
5358 if Static_Components then
5359 Set_Compile_Time_Known_Aggregate (N);
5360 Set_Expansion_Delayed (N, False);
5361 end if;
5362 end if;
5363
5364 -- If no discriminants, nothing special to do
5365
5366 if not Has_Discriminants (Typ) then
5367 null;
5368
5369 -- Case of discriminants present
5370
5371 elsif Is_Derived_Type (Typ) then
5372
5373 -- For untagged types, non-stored discriminants are replaced
5374 -- with stored discriminants, which are the ones that gigi uses
5375 -- to describe the type and its components.
5376
5377 Generate_Aggregate_For_Derived_Type : declare
5378 Constraints : constant List_Id := New_List;
5379 First_Comp : Node_Id;
5380 Discriminant : Entity_Id;
5381 Decl : Node_Id;
5382 Num_Disc : Int := 0;
5383 Num_Gird : Int := 0;
5384
5385 procedure Prepend_Stored_Values (T : Entity_Id);
5386 -- Scan the list of stored discriminants of the type, and add
5387 -- their values to the aggregate being built.
5388
5389 ---------------------------
5390 -- Prepend_Stored_Values --
5391 ---------------------------
5392
5393 procedure Prepend_Stored_Values (T : Entity_Id) is
5394 begin
5395 Discriminant := First_Stored_Discriminant (T);
5396 while Present (Discriminant) loop
5397 New_Comp :=
5398 Make_Component_Association (Loc,
5399 Choices =>
5400 New_List (New_Occurrence_Of (Discriminant, Loc)),
5401
5402 Expression =>
5403 New_Copy_Tree (
5404 Get_Discriminant_Value (
5405 Discriminant,
5406 Typ,
5407 Discriminant_Constraint (Typ))));
5408
5409 if No (First_Comp) then
5410 Prepend_To (Component_Associations (N), New_Comp);
5411 else
5412 Insert_After (First_Comp, New_Comp);
5413 end if;
5414
5415 First_Comp := New_Comp;
5416 Next_Stored_Discriminant (Discriminant);
5417 end loop;
5418 end Prepend_Stored_Values;
5419
5420 -- Start of processing for Generate_Aggregate_For_Derived_Type
5421
5422 begin
5423 -- Remove the associations for the discriminant of derived type
5424
5425 First_Comp := First (Component_Associations (N));
5426 while Present (First_Comp) loop
5427 Comp := First_Comp;
5428 Next (First_Comp);
5429
5430 if Ekind (Entity
5431 (First (Choices (Comp)))) = E_Discriminant
5432 then
5433 Remove (Comp);
5434 Num_Disc := Num_Disc + 1;
5435 end if;
5436 end loop;
5437
5438 -- Insert stored discriminant associations in the correct
5439 -- order. If there are more stored discriminants than new
5440 -- discriminants, there is at least one new discriminant that
5441 -- constrains more than one of the stored discriminants. In
5442 -- this case we need to construct a proper subtype of the
5443 -- parent type, in order to supply values to all the
5444 -- components. Otherwise there is one-one correspondence
5445 -- between the constraints and the stored discriminants.
5446
5447 First_Comp := Empty;
5448
5449 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
5450 while Present (Discriminant) loop
5451 Num_Gird := Num_Gird + 1;
5452 Next_Stored_Discriminant (Discriminant);
5453 end loop;
5454
5455 -- Case of more stored discriminants than new discriminants
5456
5457 if Num_Gird > Num_Disc then
5458
5459 -- Create a proper subtype of the parent type, which is the
5460 -- proper implementation type for the aggregate, and convert
5461 -- it to the intended target type.
5462
5463 Discriminant := First_Stored_Discriminant (Base_Type (Typ));
5464 while Present (Discriminant) loop
5465 New_Comp :=
5466 New_Copy_Tree (
5467 Get_Discriminant_Value (
5468 Discriminant,
5469 Typ,
5470 Discriminant_Constraint (Typ)));
5471 Append (New_Comp, Constraints);
5472 Next_Stored_Discriminant (Discriminant);
5473 end loop;
5474
5475 Decl :=
5476 Make_Subtype_Declaration (Loc,
5477 Defining_Identifier => Make_Temporary (Loc, 'T'),
5478 Subtype_Indication =>
5479 Make_Subtype_Indication (Loc,
5480 Subtype_Mark =>
5481 New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
5482 Constraint =>
5483 Make_Index_Or_Discriminant_Constraint
5484 (Loc, Constraints)));
5485
5486 Insert_Action (N, Decl);
5487 Prepend_Stored_Values (Base_Type (Typ));
5488
5489 Set_Etype (N, Defining_Identifier (Decl));
5490 Set_Analyzed (N);
5491
5492 Rewrite (N, Unchecked_Convert_To (Typ, N));
5493 Analyze (N);
5494
5495 -- Case where we do not have fewer new discriminants than
5496 -- stored discriminants, so in this case we can simply use the
5497 -- stored discriminants of the subtype.
5498
5499 else
5500 Prepend_Stored_Values (Typ);
5501 end if;
5502 end Generate_Aggregate_For_Derived_Type;
5503 end if;
5504
5505 if Is_Tagged_Type (Typ) then
5506
5507 -- The tagged case, _parent and _tag component must be created
5508
5509 -- Reset null_present unconditionally. tagged records always have
5510 -- at least one field (the tag or the parent)
5511
5512 Set_Null_Record_Present (N, False);
5513
5514 -- When the current aggregate comes from the expansion of an
5515 -- extension aggregate, the parent expr is replaced by an
5516 -- aggregate formed by selected components of this expr
5517
5518 if Present (Parent_Expr)
5519 and then Is_Empty_List (Comps)
5520 then
5521 Comp := First_Component_Or_Discriminant (Typ);
5522 while Present (Comp) loop
5523
5524 -- Skip all expander-generated components
5525
5526 if
5527 not Comes_From_Source (Original_Record_Component (Comp))
5528 then
5529 null;
5530
5531 else
5532 New_Comp :=
5533 Make_Selected_Component (Loc,
5534 Prefix =>
5535 Unchecked_Convert_To (Typ,
5536 Duplicate_Subexpr (Parent_Expr, True)),
5537
5538 Selector_Name => New_Occurrence_Of (Comp, Loc));
5539
5540 Append_To (Comps,
5541 Make_Component_Association (Loc,
5542 Choices =>
5543 New_List (New_Occurrence_Of (Comp, Loc)),
5544 Expression =>
5545 New_Comp));
5546
5547 Analyze_And_Resolve (New_Comp, Etype (Comp));
5548 end if;
5549
5550 Next_Component_Or_Discriminant (Comp);
5551 end loop;
5552 end if;
5553
5554 -- Compute the value for the Tag now, if the type is a root it
5555 -- will be included in the aggregate right away, otherwise it will
5556 -- be propagated to the parent aggregate
5557
5558 if Present (Orig_Tag) then
5559 Tag_Value := Orig_Tag;
5560 elsif not Tagged_Type_Expansion then
5561 Tag_Value := Empty;
5562 else
5563 Tag_Value :=
5564 New_Occurrence_Of
5565 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
5566 end if;
5567
5568 -- For a derived type, an aggregate for the parent is formed with
5569 -- all the inherited components.
5570
5571 if Is_Derived_Type (Typ) then
5572
5573 declare
5574 First_Comp : Node_Id;
5575 Parent_Comps : List_Id;
5576 Parent_Aggr : Node_Id;
5577 Parent_Name : Node_Id;
5578
5579 begin
5580 -- Remove the inherited component association from the
5581 -- aggregate and store them in the parent aggregate
5582
5583 First_Comp := First (Component_Associations (N));
5584 Parent_Comps := New_List;
5585 while Present (First_Comp)
5586 and then Scope (Original_Record_Component (
5587 Entity (First (Choices (First_Comp))))) /= Base_Typ
5588 loop
5589 Comp := First_Comp;
5590 Next (First_Comp);
5591 Remove (Comp);
5592 Append (Comp, Parent_Comps);
5593 end loop;
5594
5595 Parent_Aggr := Make_Aggregate (Loc,
5596 Component_Associations => Parent_Comps);
5597 Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
5598
5599 -- Find the _parent component
5600
5601 Comp := First_Component (Typ);
5602 while Chars (Comp) /= Name_uParent loop
5603 Comp := Next_Component (Comp);
5604 end loop;
5605
5606 Parent_Name := New_Occurrence_Of (Comp, Loc);
5607
5608 -- Insert the parent aggregate
5609
5610 Prepend_To (Component_Associations (N),
5611 Make_Component_Association (Loc,
5612 Choices => New_List (Parent_Name),
5613 Expression => Parent_Aggr));
5614
5615 -- Expand recursively the parent propagating the right Tag
5616
5617 Expand_Record_Aggregate (
5618 Parent_Aggr, Tag_Value, Parent_Expr);
5619 end;
5620
5621 -- For a root type, the tag component is added (unless compiling
5622 -- for the VMs, where tags are implicit).
5623
5624 elsif Tagged_Type_Expansion then
5625 declare
5626 Tag_Name : constant Node_Id :=
5627 New_Occurrence_Of
5628 (First_Tag_Component (Typ), Loc);
5629 Typ_Tag : constant Entity_Id := RTE (RE_Tag);
5630 Conv_Node : constant Node_Id :=
5631 Unchecked_Convert_To (Typ_Tag, Tag_Value);
5632
5633 begin
5634 Set_Etype (Conv_Node, Typ_Tag);
5635 Prepend_To (Component_Associations (N),
5636 Make_Component_Association (Loc,
5637 Choices => New_List (Tag_Name),
5638 Expression => Conv_Node));
5639 end;
5640 end if;
5641 end if;
5642 end if;
5643
5644 end Expand_Record_Aggregate;
5645
5646 ----------------------------
5647 -- Has_Default_Init_Comps --
5648 ----------------------------
5649
5650 function Has_Default_Init_Comps (N : Node_Id) return Boolean is
5651 Comps : constant List_Id := Component_Associations (N);
5652 C : Node_Id;
5653 Expr : Node_Id;
5654 begin
5655 pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
5656
5657 if No (Comps) then
5658 return False;
5659 end if;
5660
5661 if Has_Self_Reference (N) then
5662 return True;
5663 end if;
5664
5665 -- Check if any direct component has default initialized components
5666
5667 C := First (Comps);
5668 while Present (C) loop
5669 if Box_Present (C) then
5670 return True;
5671 end if;
5672
5673 Next (C);
5674 end loop;
5675
5676 -- Recursive call in case of aggregate expression
5677
5678 C := First (Comps);
5679 while Present (C) loop
5680 Expr := Expression (C);
5681
5682 if Present (Expr)
5683 and then
5684 Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
5685 and then Has_Default_Init_Comps (Expr)
5686 then
5687 return True;
5688 end if;
5689
5690 Next (C);
5691 end loop;
5692
5693 return False;
5694 end Has_Default_Init_Comps;
5695
5696 --------------------------
5697 -- Is_Delayed_Aggregate --
5698 --------------------------
5699
5700 function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
5701 Node : Node_Id := N;
5702 Kind : Node_Kind := Nkind (Node);
5703
5704 begin
5705 if Kind = N_Qualified_Expression then
5706 Node := Expression (Node);
5707 Kind := Nkind (Node);
5708 end if;
5709
5710 if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
5711 return False;
5712 else
5713 return Expansion_Delayed (Node);
5714 end if;
5715 end Is_Delayed_Aggregate;
5716
5717 ----------------------------------------
5718 -- Is_Static_Dispatch_Table_Aggregate --
5719 ----------------------------------------
5720
5721 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
5722 Typ : constant Entity_Id := Base_Type (Etype (N));
5723
5724 begin
5725 return Static_Dispatch_Tables
5726 and then Tagged_Type_Expansion
5727 and then RTU_Loaded (Ada_Tags)
5728
5729 -- Avoid circularity when rebuilding the compiler
5730
5731 and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
5732 and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
5733 or else
5734 Typ = RTE (RE_Address_Array)
5735 or else
5736 Typ = RTE (RE_Type_Specific_Data)
5737 or else
5738 Typ = RTE (RE_Tag_Table)
5739 or else
5740 (RTE_Available (RE_Interface_Data)
5741 and then Typ = RTE (RE_Interface_Data))
5742 or else
5743 (RTE_Available (RE_Interfaces_Array)
5744 and then Typ = RTE (RE_Interfaces_Array))
5745 or else
5746 (RTE_Available (RE_Interface_Data_Element)
5747 and then Typ = RTE (RE_Interface_Data_Element)));
5748 end Is_Static_Dispatch_Table_Aggregate;
5749
5750 --------------------
5751 -- Late_Expansion --
5752 --------------------
5753
5754 function Late_Expansion
5755 (N : Node_Id;
5756 Typ : Entity_Id;
5757 Target : Node_Id) return List_Id
5758 is
5759 begin
5760 if Is_Record_Type (Etype (N)) then
5761 return Build_Record_Aggr_Code (N, Typ, Target);
5762
5763 else pragma Assert (Is_Array_Type (Etype (N)));
5764 return
5765 Build_Array_Aggr_Code
5766 (N => N,
5767 Ctype => Component_Type (Etype (N)),
5768 Index => First_Index (Typ),
5769 Into => Target,
5770 Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
5771 Indexes => No_List);
5772 end if;
5773 end Late_Expansion;
5774
5775 ----------------------------------
5776 -- Make_OK_Assignment_Statement --
5777 ----------------------------------
5778
5779 function Make_OK_Assignment_Statement
5780 (Sloc : Source_Ptr;
5781 Name : Node_Id;
5782 Expression : Node_Id) return Node_Id
5783 is
5784 begin
5785 Set_Assignment_OK (Name);
5786
5787 return Make_Assignment_Statement (Sloc, Name, Expression);
5788 end Make_OK_Assignment_Statement;
5789
5790 -----------------------
5791 -- Number_Of_Choices --
5792 -----------------------
5793
5794 function Number_Of_Choices (N : Node_Id) return Nat is
5795 Assoc : Node_Id;
5796 Choice : Node_Id;
5797
5798 Nb_Choices : Nat := 0;
5799
5800 begin
5801 if Present (Expressions (N)) then
5802 return 0;
5803 end if;
5804
5805 Assoc := First (Component_Associations (N));
5806 while Present (Assoc) loop
5807 Choice := First (Choices (Assoc));
5808 while Present (Choice) loop
5809 if Nkind (Choice) /= N_Others_Choice then
5810 Nb_Choices := Nb_Choices + 1;
5811 end if;
5812
5813 Next (Choice);
5814 end loop;
5815
5816 Next (Assoc);
5817 end loop;
5818
5819 return Nb_Choices;
5820 end Number_Of_Choices;
5821
5822 ------------------------------------
5823 -- Packed_Array_Aggregate_Handled --
5824 ------------------------------------
5825
5826 -- The current version of this procedure will handle at compile time
5827 -- any array aggregate that meets these conditions:
5828
5829 -- One dimensional, bit packed
5830 -- Underlying packed type is modular type
5831 -- Bounds are within 32-bit Int range
5832 -- All bounds and values are static
5833
5834 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
5835 Loc : constant Source_Ptr := Sloc (N);
5836 Typ : constant Entity_Id := Etype (N);
5837 Ctyp : constant Entity_Id := Component_Type (Typ);
5838
5839 Not_Handled : exception;
5840 -- Exception raised if this aggregate cannot be handled
5841
5842 begin
5843 -- For now, handle only one dimensional bit packed arrays
5844
5845 if not Is_Bit_Packed_Array (Typ)
5846 or else Number_Dimensions (Typ) > 1
5847 or else not Is_Modular_Integer_Type (Packed_Array_Type (Typ))
5848 then
5849 return False;
5850 end if;
5851
5852 if not Is_Scalar_Type (Component_Type (Typ))
5853 and then Has_Non_Standard_Rep (Component_Type (Typ))
5854 then
5855 return False;
5856 end if;
5857
5858 declare
5859 Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
5860
5861 Lo : Node_Id;
5862 Hi : Node_Id;
5863 -- Bounds of index type
5864
5865 Lob : Uint;
5866 Hib : Uint;
5867 -- Values of bounds if compile time known
5868
5869 function Get_Component_Val (N : Node_Id) return Uint;
5870 -- Given a expression value N of the component type Ctyp, returns a
5871 -- value of Csiz (component size) bits representing this value. If
5872 -- the value is non-static or any other reason exists why the value
5873 -- cannot be returned, then Not_Handled is raised.
5874
5875 -----------------------
5876 -- Get_Component_Val --
5877 -----------------------
5878
5879 function Get_Component_Val (N : Node_Id) return Uint is
5880 Val : Uint;
5881
5882 begin
5883 -- We have to analyze the expression here before doing any further
5884 -- processing here. The analysis of such expressions is deferred
5885 -- till expansion to prevent some problems of premature analysis.
5886
5887 Analyze_And_Resolve (N, Ctyp);
5888
5889 -- Must have a compile time value. String literals have to be
5890 -- converted into temporaries as well, because they cannot easily
5891 -- be converted into their bit representation.
5892
5893 if not Compile_Time_Known_Value (N)
5894 or else Nkind (N) = N_String_Literal
5895 then
5896 raise Not_Handled;
5897 end if;
5898
5899 Val := Expr_Rep_Value (N);
5900
5901 -- Adjust for bias, and strip proper number of bits
5902
5903 if Has_Biased_Representation (Ctyp) then
5904 Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
5905 end if;
5906
5907 return Val mod Uint_2 ** Csiz;
5908 end Get_Component_Val;
5909
5910 -- Here we know we have a one dimensional bit packed array
5911
5912 begin
5913 Get_Index_Bounds (First_Index (Typ), Lo, Hi);
5914
5915 -- Cannot do anything if bounds are dynamic
5916
5917 if not Compile_Time_Known_Value (Lo)
5918 or else
5919 not Compile_Time_Known_Value (Hi)
5920 then
5921 return False;
5922 end if;
5923
5924 -- Or are silly out of range of int bounds
5925
5926 Lob := Expr_Value (Lo);
5927 Hib := Expr_Value (Hi);
5928
5929 if not UI_Is_In_Int_Range (Lob)
5930 or else
5931 not UI_Is_In_Int_Range (Hib)
5932 then
5933 return False;
5934 end if;
5935
5936 -- At this stage we have a suitable aggregate for handling at compile
5937 -- time (the only remaining checks are that the values of expressions
5938 -- in the aggregate are compile time known (check is performed by
5939 -- Get_Component_Val), and that any subtypes or ranges are statically
5940 -- known.
5941
5942 -- If the aggregate is not fully positional at this stage, then
5943 -- convert it to positional form. Either this will fail, in which
5944 -- case we can do nothing, or it will succeed, in which case we have
5945 -- succeeded in handling the aggregate, or it will stay an aggregate,
5946 -- in which case we have failed to handle this case.
5947
5948 if Present (Component_Associations (N)) then
5949 Convert_To_Positional
5950 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
5951 return Nkind (N) /= N_Aggregate;
5952 end if;
5953
5954 -- Otherwise we are all positional, so convert to proper value
5955
5956 declare
5957 Lov : constant Int := UI_To_Int (Lob);
5958 Hiv : constant Int := UI_To_Int (Hib);
5959
5960 Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
5961 -- The length of the array (number of elements)
5962
5963 Aggregate_Val : Uint;
5964 -- Value of aggregate. The value is set in the low order bits of
5965 -- this value. For the little-endian case, the values are stored
5966 -- from low-order to high-order and for the big-endian case the
5967 -- values are stored from high-order to low-order. Note that gigi
5968 -- will take care of the conversions to left justify the value in
5969 -- the big endian case (because of left justified modular type
5970 -- processing), so we do not have to worry about that here.
5971
5972 Lit : Node_Id;
5973 -- Integer literal for resulting constructed value
5974
5975 Shift : Nat;
5976 -- Shift count from low order for next value
5977
5978 Incr : Int;
5979 -- Shift increment for loop
5980
5981 Expr : Node_Id;
5982 -- Next expression from positional parameters of aggregate
5983
5984 begin
5985 -- For little endian, we fill up the low order bits of the target
5986 -- value. For big endian we fill up the high order bits of the
5987 -- target value (which is a left justified modular value).
5988
5989 if Bytes_Big_Endian xor Debug_Flag_8 then
5990 Shift := Csiz * (Len - 1);
5991 Incr := -Csiz;
5992 else
5993 Shift := 0;
5994 Incr := +Csiz;
5995 end if;
5996
5997 -- Loop to set the values
5998
5999 if Len = 0 then
6000 Aggregate_Val := Uint_0;
6001 else
6002 Expr := First (Expressions (N));
6003 Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
6004
6005 for J in 2 .. Len loop
6006 Shift := Shift + Incr;
6007 Next (Expr);
6008 Aggregate_Val :=
6009 Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
6010 end loop;
6011 end if;
6012
6013 -- Now we can rewrite with the proper value
6014
6015 Lit :=
6016 Make_Integer_Literal (Loc,
6017 Intval => Aggregate_Val);
6018 Set_Print_In_Hex (Lit);
6019
6020 -- Construct the expression using this literal. Note that it is
6021 -- important to qualify the literal with its proper modular type
6022 -- since universal integer does not have the required range and
6023 -- also this is a left justified modular type, which is important
6024 -- in the big-endian case.
6025
6026 Rewrite (N,
6027 Unchecked_Convert_To (Typ,
6028 Make_Qualified_Expression (Loc,
6029 Subtype_Mark =>
6030 New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
6031 Expression => Lit)));
6032
6033 Analyze_And_Resolve (N, Typ);
6034 return True;
6035 end;
6036 end;
6037
6038 exception
6039 when Not_Handled =>
6040 return False;
6041 end Packed_Array_Aggregate_Handled;
6042
6043 ----------------------------
6044 -- Has_Mutable_Components --
6045 ----------------------------
6046
6047 function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
6048 Comp : Entity_Id;
6049
6050 begin
6051 Comp := First_Component (Typ);
6052 while Present (Comp) loop
6053 if Is_Record_Type (Etype (Comp))
6054 and then Has_Discriminants (Etype (Comp))
6055 and then not Is_Constrained (Etype (Comp))
6056 then
6057 return True;
6058 end if;
6059
6060 Next_Component (Comp);
6061 end loop;
6062
6063 return False;
6064 end Has_Mutable_Components;
6065
6066 ------------------------------
6067 -- Initialize_Discriminants --
6068 ------------------------------
6069
6070 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
6071 Loc : constant Source_Ptr := Sloc (N);
6072 Bas : constant Entity_Id := Base_Type (Typ);
6073 Par : constant Entity_Id := Etype (Bas);
6074 Decl : constant Node_Id := Parent (Par);
6075 Ref : Node_Id;
6076
6077 begin
6078 if Is_Tagged_Type (Bas)
6079 and then Is_Derived_Type (Bas)
6080 and then Has_Discriminants (Par)
6081 and then Has_Discriminants (Bas)
6082 and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
6083 and then Nkind (Decl) = N_Full_Type_Declaration
6084 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
6085 and then Present
6086 (Variant_Part (Component_List (Type_Definition (Decl))))
6087 and then Nkind (N) /= N_Extension_Aggregate
6088 then
6089
6090 -- Call init proc to set discriminants.
6091 -- There should eventually be a special procedure for this ???
6092
6093 Ref := New_Reference_To (Defining_Identifier (N), Loc);
6094 Insert_Actions_After (N,
6095 Build_Initialization_Call (Sloc (N), Ref, Typ));
6096 end if;
6097 end Initialize_Discriminants;
6098
6099 ----------------
6100 -- Must_Slide --
6101 ----------------
6102
6103 function Must_Slide
6104 (Obj_Type : Entity_Id;
6105 Typ : Entity_Id) return Boolean
6106 is
6107 L1, L2, H1, H2 : Node_Id;
6108 begin
6109 -- No sliding if the type of the object is not established yet, if it is
6110 -- an unconstrained type whose actual subtype comes from the aggregate,
6111 -- or if the two types are identical.
6112
6113 if not Is_Array_Type (Obj_Type) then
6114 return False;
6115
6116 elsif not Is_Constrained (Obj_Type) then
6117 return False;
6118
6119 elsif Typ = Obj_Type then
6120 return False;
6121
6122 else
6123 -- Sliding can only occur along the first dimension
6124
6125 Get_Index_Bounds (First_Index (Typ), L1, H1);
6126 Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
6127
6128 if not Is_Static_Expression (L1)
6129 or else not Is_Static_Expression (L2)
6130 or else not Is_Static_Expression (H1)
6131 or else not Is_Static_Expression (H2)
6132 then
6133 return False;
6134 else
6135 return Expr_Value (L1) /= Expr_Value (L2)
6136 or else Expr_Value (H1) /= Expr_Value (H2);
6137 end if;
6138 end if;
6139 end Must_Slide;
6140
6141 ---------------------------
6142 -- Safe_Slice_Assignment --
6143 ---------------------------
6144
6145 function Safe_Slice_Assignment (N : Node_Id) return Boolean is
6146 Loc : constant Source_Ptr := Sloc (Parent (N));
6147 Pref : constant Node_Id := Prefix (Name (Parent (N)));
6148 Range_Node : constant Node_Id := Discrete_Range (Name (Parent (N)));
6149 Expr : Node_Id;
6150 L_J : Entity_Id;
6151 L_Iter : Node_Id;
6152 L_Body : Node_Id;
6153 Stat : Node_Id;
6154
6155 begin
6156 -- Generate: for J in Range loop Pref (J) := Expr; end loop;
6157
6158 if Comes_From_Source (N)
6159 and then No (Expressions (N))
6160 and then Nkind (First (Choices (First (Component_Associations (N)))))
6161 = N_Others_Choice
6162 then
6163 Expr := Expression (First (Component_Associations (N)));
6164 L_J := Make_Temporary (Loc, 'J');
6165
6166 L_Iter :=
6167 Make_Iteration_Scheme (Loc,
6168 Loop_Parameter_Specification =>
6169 Make_Loop_Parameter_Specification
6170 (Loc,
6171 Defining_Identifier => L_J,
6172 Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
6173
6174 L_Body :=
6175 Make_Assignment_Statement (Loc,
6176 Name =>
6177 Make_Indexed_Component (Loc,
6178 Prefix => Relocate_Node (Pref),
6179 Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
6180 Expression => Relocate_Node (Expr));
6181
6182 -- Construct the final loop
6183
6184 Stat :=
6185 Make_Implicit_Loop_Statement
6186 (Node => Parent (N),
6187 Identifier => Empty,
6188 Iteration_Scheme => L_Iter,
6189 Statements => New_List (L_Body));
6190
6191 -- Set type of aggregate to be type of lhs in assignment,
6192 -- to suppress redundant length checks.
6193
6194 Set_Etype (N, Etype (Name (Parent (N))));
6195
6196 Rewrite (Parent (N), Stat);
6197 Analyze (Parent (N));
6198 return True;
6199
6200 else
6201 return False;
6202 end if;
6203 end Safe_Slice_Assignment;
6204
6205 ---------------------
6206 -- Sort_Case_Table --
6207 ---------------------
6208
6209 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
6210 L : constant Int := Case_Table'First;
6211 U : constant Int := Case_Table'Last;
6212 K : Int;
6213 J : Int;
6214 T : Case_Bounds;
6215
6216 begin
6217 K := L;
6218 while K /= U loop
6219 T := Case_Table (K + 1);
6220
6221 J := K + 1;
6222 while J /= L
6223 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
6224 Expr_Value (T.Choice_Lo)
6225 loop
6226 Case_Table (J) := Case_Table (J - 1);
6227 J := J - 1;
6228 end loop;
6229
6230 Case_Table (J) := T;
6231 K := K + 1;
6232 end loop;
6233 end Sort_Case_Table;
6234
6235 ----------------------------
6236 -- Static_Array_Aggregate --
6237 ----------------------------
6238
6239 function Static_Array_Aggregate (N : Node_Id) return Boolean is
6240 Bounds : constant Node_Id := Aggregate_Bounds (N);
6241
6242 Typ : constant Entity_Id := Etype (N);
6243 Comp_Type : constant Entity_Id := Component_Type (Typ);
6244 Agg : Node_Id;
6245 Expr : Node_Id;
6246 Lo : Node_Id;
6247 Hi : Node_Id;
6248
6249 begin
6250 if Is_Tagged_Type (Typ)
6251 or else Is_Controlled (Typ)
6252 or else Is_Packed (Typ)
6253 then
6254 return False;
6255 end if;
6256
6257 if Present (Bounds)
6258 and then Nkind (Bounds) = N_Range
6259 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
6260 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
6261 then
6262 Lo := Low_Bound (Bounds);
6263 Hi := High_Bound (Bounds);
6264
6265 if No (Component_Associations (N)) then
6266
6267 -- Verify that all components are static integers
6268
6269 Expr := First (Expressions (N));
6270 while Present (Expr) loop
6271 if Nkind (Expr) /= N_Integer_Literal then
6272 return False;
6273 end if;
6274
6275 Next (Expr);
6276 end loop;
6277
6278 return True;
6279
6280 else
6281 -- We allow only a single named association, either a static
6282 -- range or an others_clause, with a static expression.
6283
6284 Expr := First (Component_Associations (N));
6285
6286 if Present (Expressions (N)) then
6287 return False;
6288
6289 elsif Present (Next (Expr)) then
6290 return False;
6291
6292 elsif Present (Next (First (Choices (Expr)))) then
6293 return False;
6294
6295 else
6296 -- The aggregate is static if all components are literals,
6297 -- or else all its components are static aggregates for the
6298 -- component type. We also limit the size of a static aggregate
6299 -- to prevent runaway static expressions.
6300
6301 if Is_Array_Type (Comp_Type)
6302 or else Is_Record_Type (Comp_Type)
6303 then
6304 if Nkind (Expression (Expr)) /= N_Aggregate
6305 or else
6306 not Compile_Time_Known_Aggregate (Expression (Expr))
6307 then
6308 return False;
6309 end if;
6310
6311 elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
6312 return False;
6313 end if;
6314
6315 if not Aggr_Size_OK (N, Typ) then
6316 return False;
6317 end if;
6318
6319 -- Create a positional aggregate with the right number of
6320 -- copies of the expression.
6321
6322 Agg := Make_Aggregate (Sloc (N), New_List, No_List);
6323
6324 for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
6325 loop
6326 Append_To
6327 (Expressions (Agg), New_Copy (Expression (Expr)));
6328
6329 -- The copied expression must be analyzed and resolved.
6330 -- Besides setting the type, this ensures that static
6331 -- expressions are appropriately marked as such.
6332
6333 Analyze_And_Resolve
6334 (Last (Expressions (Agg)), Component_Type (Typ));
6335 end loop;
6336
6337 Set_Aggregate_Bounds (Agg, Bounds);
6338 Set_Etype (Agg, Typ);
6339 Set_Analyzed (Agg);
6340 Rewrite (N, Agg);
6341 Set_Compile_Time_Known_Aggregate (N);
6342
6343 return True;
6344 end if;
6345 end if;
6346
6347 else
6348 return False;
6349 end if;
6350 end Static_Array_Aggregate;
6351
6352 end Exp_Aggr;