[multiple changes]
[gcc.git] / gcc / ada / exp_attr.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ A T T R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Exp_Atag; use Exp_Atag;
31 with Exp_Ch2; use Exp_Ch2;
32 with Exp_Ch3; use Exp_Ch3;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch9; use Exp_Ch9;
35 with Exp_Dist; use Exp_Dist;
36 with Exp_Imgv; use Exp_Imgv;
37 with Exp_Pakd; use Exp_Pakd;
38 with Exp_Strm; use Exp_Strm;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Exp_VFpt; use Exp_VFpt;
42 with Fname; use Fname;
43 with Freeze; use Freeze;
44 with Gnatvsn; use Gnatvsn;
45 with Itypes; use Itypes;
46 with Lib; use Lib;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Nlists; use Nlists;
50 with Opt; use Opt;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Eval; use Sem_Eval;
60 with Sem_Res; use Sem_Res;
61 with Sem_Util; use Sem_Util;
62 with Sinfo; use Sinfo;
63 with Snames; use Snames;
64 with Stand; use Stand;
65 with Stringt; use Stringt;
66 with Targparm; use Targparm;
67 with Tbuild; use Tbuild;
68 with Ttypes; use Ttypes;
69 with Uintp; use Uintp;
70 with Uname; use Uname;
71 with Validsw; use Validsw;
72
73 package body Exp_Attr is
74
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
78
79 function Build_Array_VS_Func
80 (A_Type : Entity_Id;
81 Nod : Node_Id) return Entity_Id;
82 -- Build function to test Valid_Scalars for array type A_Type. Nod is the
83 -- Valid_Scalars attribute node, used to insert the function body, and the
84 -- value returned is the entity of the constructed function body. We do not
85 -- bother to generate a separate spec for this subprogram.
86
87 procedure Compile_Stream_Body_In_Scope
88 (N : Node_Id;
89 Decl : Node_Id;
90 Arr : Entity_Id;
91 Check : Boolean);
92 -- The body for a stream subprogram may be generated outside of the scope
93 -- of the type. If the type is fully private, it may depend on the full
94 -- view of other types (e.g. indexes) that are currently private as well.
95 -- We install the declarations of the package in which the type is declared
96 -- before compiling the body in what is its proper environment. The Check
97 -- parameter indicates if checks are to be suppressed for the stream body.
98 -- We suppress checks for array/record reads, since the rule is that these
99 -- are like assignments, out of range values due to uninitialized storage,
100 -- or other invalid values do NOT cause a Constraint_Error to be raised.
101
102 procedure Expand_Access_To_Protected_Op
103 (N : Node_Id;
104 Pref : Node_Id;
105 Typ : Entity_Id);
106 -- An attribute reference to a protected subprogram is transformed into
107 -- a pair of pointers: one to the object, and one to the operations.
108 -- This expansion is performed for 'Access and for 'Unrestricted_Access.
109
110 procedure Expand_Fpt_Attribute
111 (N : Node_Id;
112 Pkg : RE_Id;
113 Nam : Name_Id;
114 Args : List_Id);
115 -- This procedure expands a call to a floating-point attribute function.
116 -- N is the attribute reference node, and Args is a list of arguments to
117 -- be passed to the function call. Pkg identifies the package containing
118 -- the appropriate instantiation of System.Fat_Gen. Float arguments in Args
119 -- have already been converted to the floating-point type for which Pkg was
120 -- instantiated. The Nam argument is the relevant attribute processing
121 -- routine to be called. This is the same as the attribute name, except in
122 -- the Unaligned_Valid case.
123
124 procedure Expand_Fpt_Attribute_R (N : Node_Id);
125 -- This procedure expands a call to a floating-point attribute function
126 -- that takes a single floating-point argument. The function to be called
127 -- is always the same as the attribute name.
128
129 procedure Expand_Fpt_Attribute_RI (N : Node_Id);
130 -- This procedure expands a call to a floating-point attribute function
131 -- that takes one floating-point argument and one integer argument. The
132 -- function to be called is always the same as the attribute name.
133
134 procedure Expand_Fpt_Attribute_RR (N : Node_Id);
135 -- This procedure expands a call to a floating-point attribute function
136 -- that takes two floating-point arguments. The function to be called
137 -- is always the same as the attribute name.
138
139 procedure Expand_Pred_Succ (N : Node_Id);
140 -- Handles expansion of Pred or Succ attributes for case of non-real
141 -- operand with overflow checking required.
142
143 procedure Expand_Update_Attribute (N : Node_Id);
144 -- Handle the expansion of attribute Update
145
146 function Get_Index_Subtype (N : Node_Id) return Entity_Id;
147 -- Used for Last, Last, and Length, when the prefix is an array type.
148 -- Obtains the corresponding index subtype.
149
150 procedure Find_Fat_Info
151 (T : Entity_Id;
152 Fat_Type : out Entity_Id;
153 Fat_Pkg : out RE_Id);
154 -- Given a floating-point type T, identifies the package containing the
155 -- attributes for this type (returned in Fat_Pkg), and the corresponding
156 -- type for which this package was instantiated from Fat_Gen. Error if T
157 -- is not a floating-point type.
158
159 function Find_Stream_Subprogram
160 (Typ : Entity_Id;
161 Nam : TSS_Name_Type) return Entity_Id;
162 -- Returns the stream-oriented subprogram attribute for Typ. For tagged
163 -- types, the corresponding primitive operation is looked up, else the
164 -- appropriate TSS from the type itself, or from its closest ancestor
165 -- defining it, is returned. In both cases, inheritance of representation
166 -- aspects is thus taken into account.
167
168 function Full_Base (T : Entity_Id) return Entity_Id;
169 -- The stream functions need to examine the underlying representation of
170 -- composite types. In some cases T may be non-private but its base type
171 -- is, in which case the function returns the corresponding full view.
172
173 function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id;
174 -- Given a type, find a corresponding stream convert pragma that applies to
175 -- the implementation base type of this type (Typ). If found, return the
176 -- pragma node, otherwise return Empty if no pragma is found.
177
178 function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean;
179 -- Utility for array attributes, returns true on packed constrained
180 -- arrays, and on access to same.
181
182 function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean;
183 -- Returns true iff the given node refers to an attribute call that
184 -- can be expanded directly by the back end and does not need front end
185 -- expansion. Typically used for rounding and truncation attributes that
186 -- appear directly inside a conversion to integer.
187
188 -------------------------
189 -- Build_Array_VS_Func --
190 -------------------------
191
192 function Build_Array_VS_Func
193 (A_Type : Entity_Id;
194 Nod : Node_Id) return Entity_Id
195 is
196 Loc : constant Source_Ptr := Sloc (Nod);
197 Comp_Type : constant Entity_Id := Component_Type (A_Type);
198 Body_Stmts : List_Id;
199 Index_List : List_Id;
200 Func_Id : Entity_Id;
201 Formals : List_Id;
202
203 function Test_Component return List_Id;
204 -- Create one statement to test validity of one component designated by
205 -- a full set of indexes. Returns statement list containing test.
206
207 function Test_One_Dimension (N : Int) return List_Id;
208 -- Create loop to test one dimension of the array. The single statement
209 -- in the loop body tests the inner dimensions if any, or else the
210 -- single component. Note that this procedure is called recursively,
211 -- with N being the dimension to be initialized. A call with N greater
212 -- than the number of dimensions simply generates the component test,
213 -- terminating the recursion. Returns statement list containing tests.
214
215 --------------------
216 -- Test_Component --
217 --------------------
218
219 function Test_Component return List_Id is
220 Comp : Node_Id;
221 Anam : Name_Id;
222
223 begin
224 Comp :=
225 Make_Indexed_Component (Loc,
226 Prefix => Make_Identifier (Loc, Name_uA),
227 Expressions => Index_List);
228
229 if Is_Scalar_Type (Comp_Type) then
230 Anam := Name_Valid;
231 else
232 Anam := Name_Valid_Scalars;
233 end if;
234
235 return New_List (
236 Make_If_Statement (Loc,
237 Condition =>
238 Make_Op_Not (Loc,
239 Right_Opnd =>
240 Make_Attribute_Reference (Loc,
241 Attribute_Name => Anam,
242 Prefix => Comp)),
243 Then_Statements => New_List (
244 Make_Simple_Return_Statement (Loc,
245 Expression => New_Occurrence_Of (Standard_False, Loc)))));
246 end Test_Component;
247
248 ------------------------
249 -- Test_One_Dimension --
250 ------------------------
251
252 function Test_One_Dimension (N : Int) return List_Id is
253 Index : Entity_Id;
254
255 begin
256 -- If all dimensions dealt with, we simply test the component
257
258 if N > Number_Dimensions (A_Type) then
259 return Test_Component;
260
261 -- Here we generate the required loop
262
263 else
264 Index :=
265 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
266
267 Append (New_Reference_To (Index, Loc), Index_List);
268
269 return New_List (
270 Make_Implicit_Loop_Statement (Nod,
271 Identifier => Empty,
272 Iteration_Scheme =>
273 Make_Iteration_Scheme (Loc,
274 Loop_Parameter_Specification =>
275 Make_Loop_Parameter_Specification (Loc,
276 Defining_Identifier => Index,
277 Discrete_Subtype_Definition =>
278 Make_Attribute_Reference (Loc,
279 Prefix => Make_Identifier (Loc, Name_uA),
280 Attribute_Name => Name_Range,
281 Expressions => New_List (
282 Make_Integer_Literal (Loc, N))))),
283 Statements => Test_One_Dimension (N + 1)),
284 Make_Simple_Return_Statement (Loc,
285 Expression => New_Occurrence_Of (Standard_True, Loc)));
286 end if;
287 end Test_One_Dimension;
288
289 -- Start of processing for Build_Array_VS_Func
290
291 begin
292 Index_List := New_List;
293 Func_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
294
295 Body_Stmts := Test_One_Dimension (1);
296
297 -- Parameter is always (A : A_Typ)
298
299 Formals := New_List (
300 Make_Parameter_Specification (Loc,
301 Defining_Identifier => Make_Defining_Identifier (Loc, Name_uA),
302 In_Present => True,
303 Out_Present => False,
304 Parameter_Type => New_Reference_To (A_Type, Loc)));
305
306 -- Build body
307
308 Set_Ekind (Func_Id, E_Function);
309 Set_Is_Internal (Func_Id);
310
311 Insert_Action (Nod,
312 Make_Subprogram_Body (Loc,
313 Specification =>
314 Make_Function_Specification (Loc,
315 Defining_Unit_Name => Func_Id,
316 Parameter_Specifications => Formals,
317 Result_Definition =>
318 New_Occurrence_Of (Standard_Boolean, Loc)),
319 Declarations => New_List,
320 Handled_Statement_Sequence =>
321 Make_Handled_Sequence_Of_Statements (Loc,
322 Statements => Body_Stmts)));
323
324 if not Debug_Generated_Code then
325 Set_Debug_Info_Off (Func_Id);
326 end if;
327
328 return Func_Id;
329 end Build_Array_VS_Func;
330
331 ----------------------------------
332 -- Compile_Stream_Body_In_Scope --
333 ----------------------------------
334
335 procedure Compile_Stream_Body_In_Scope
336 (N : Node_Id;
337 Decl : Node_Id;
338 Arr : Entity_Id;
339 Check : Boolean)
340 is
341 Installed : Boolean := False;
342 Scop : constant Entity_Id := Scope (Arr);
343 Curr : constant Entity_Id := Current_Scope;
344
345 begin
346 if Is_Hidden (Arr)
347 and then not In_Open_Scopes (Scop)
348 and then Ekind (Scop) = E_Package
349 then
350 Push_Scope (Scop);
351 Install_Visible_Declarations (Scop);
352 Install_Private_Declarations (Scop);
353 Installed := True;
354
355 -- The entities in the package are now visible, but the generated
356 -- stream entity must appear in the current scope (usually an
357 -- enclosing stream function) so that itypes all have their proper
358 -- scopes.
359
360 Push_Scope (Curr);
361 end if;
362
363 if Check then
364 Insert_Action (N, Decl);
365 else
366 Insert_Action (N, Decl, Suppress => All_Checks);
367 end if;
368
369 if Installed then
370
371 -- Remove extra copy of current scope, and package itself
372
373 Pop_Scope;
374 End_Package_Scope (Scop);
375 end if;
376 end Compile_Stream_Body_In_Scope;
377
378 -----------------------------------
379 -- Expand_Access_To_Protected_Op --
380 -----------------------------------
381
382 procedure Expand_Access_To_Protected_Op
383 (N : Node_Id;
384 Pref : Node_Id;
385 Typ : Entity_Id)
386 is
387 -- The value of the attribute_reference is a record containing two
388 -- fields: an access to the protected object, and an access to the
389 -- subprogram itself. The prefix is a selected component.
390
391 Loc : constant Source_Ptr := Sloc (N);
392 Agg : Node_Id;
393 Btyp : constant Entity_Id := Base_Type (Typ);
394 Sub : Entity_Id;
395 Sub_Ref : Node_Id;
396 E_T : constant Entity_Id := Equivalent_Type (Btyp);
397 Acc : constant Entity_Id :=
398 Etype (Next_Component (First_Component (E_T)));
399 Obj_Ref : Node_Id;
400 Curr : Entity_Id;
401
402 function May_Be_External_Call return Boolean;
403 -- If the 'Access is to a local operation, but appears in a context
404 -- where it may lead to a call from outside the object, we must treat
405 -- this as an external call. Clearly we cannot tell without full
406 -- flow analysis, and a subsequent call that uses this 'Access may
407 -- lead to a bounded error (trying to seize locks twice, e.g.). For
408 -- now we treat 'Access as a potential external call if it is an actual
409 -- in a call to an outside subprogram.
410
411 --------------------------
412 -- May_Be_External_Call --
413 --------------------------
414
415 function May_Be_External_Call return Boolean is
416 Subp : Entity_Id;
417 Par : Node_Id := Parent (N);
418
419 begin
420 -- Account for the case where the Access attribute is part of a
421 -- named parameter association.
422
423 if Nkind (Par) = N_Parameter_Association then
424 Par := Parent (Par);
425 end if;
426
427 if Nkind (Par) in N_Subprogram_Call
428 and then Is_Entity_Name (Name (Par))
429 then
430 Subp := Entity (Name (Par));
431 return not In_Open_Scopes (Scope (Subp));
432 else
433 return False;
434 end if;
435 end May_Be_External_Call;
436
437 -- Start of processing for Expand_Access_To_Protected_Op
438
439 begin
440 -- Within the body of the protected type, the prefix designates a local
441 -- operation, and the object is the first parameter of the corresponding
442 -- protected body of the current enclosing operation.
443
444 if Is_Entity_Name (Pref) then
445 if May_Be_External_Call then
446 Sub :=
447 New_Occurrence_Of (External_Subprogram (Entity (Pref)), Loc);
448 else
449 Sub :=
450 New_Occurrence_Of
451 (Protected_Body_Subprogram (Entity (Pref)), Loc);
452 end if;
453
454 -- Don't traverse the scopes when the attribute occurs within an init
455 -- proc, because we directly use the _init formal of the init proc in
456 -- that case.
457
458 Curr := Current_Scope;
459 if not Is_Init_Proc (Curr) then
460 pragma Assert (In_Open_Scopes (Scope (Entity (Pref))));
461
462 while Scope (Curr) /= Scope (Entity (Pref)) loop
463 Curr := Scope (Curr);
464 end loop;
465 end if;
466
467 -- In case of protected entries the first formal of its Protected_
468 -- Body_Subprogram is the address of the object.
469
470 if Ekind (Curr) = E_Entry then
471 Obj_Ref :=
472 New_Occurrence_Of
473 (First_Formal
474 (Protected_Body_Subprogram (Curr)), Loc);
475
476 -- If the current scope is an init proc, then use the address of the
477 -- _init formal as the object reference.
478
479 elsif Is_Init_Proc (Curr) then
480 Obj_Ref :=
481 Make_Attribute_Reference (Loc,
482 Prefix => New_Occurrence_Of (First_Formal (Curr), Loc),
483 Attribute_Name => Name_Address);
484
485 -- In case of protected subprograms the first formal of its
486 -- Protected_Body_Subprogram is the object and we get its address.
487
488 else
489 Obj_Ref :=
490 Make_Attribute_Reference (Loc,
491 Prefix =>
492 New_Occurrence_Of
493 (First_Formal
494 (Protected_Body_Subprogram (Curr)), Loc),
495 Attribute_Name => Name_Address);
496 end if;
497
498 -- Case where the prefix is not an entity name. Find the
499 -- version of the protected operation to be called from
500 -- outside the protected object.
501
502 else
503 Sub :=
504 New_Occurrence_Of
505 (External_Subprogram
506 (Entity (Selector_Name (Pref))), Loc);
507
508 Obj_Ref :=
509 Make_Attribute_Reference (Loc,
510 Prefix => Relocate_Node (Prefix (Pref)),
511 Attribute_Name => Name_Address);
512 end if;
513
514 Sub_Ref :=
515 Make_Attribute_Reference (Loc,
516 Prefix => Sub,
517 Attribute_Name => Name_Access);
518
519 -- We set the type of the access reference to the already generated
520 -- access_to_subprogram type, and declare the reference analyzed, to
521 -- prevent further expansion when the enclosing aggregate is analyzed.
522
523 Set_Etype (Sub_Ref, Acc);
524 Set_Analyzed (Sub_Ref);
525
526 Agg :=
527 Make_Aggregate (Loc,
528 Expressions => New_List (Obj_Ref, Sub_Ref));
529
530 -- Sub_Ref has been marked as analyzed, but we still need to make sure
531 -- Sub is correctly frozen.
532
533 Freeze_Before (N, Entity (Sub));
534
535 Rewrite (N, Agg);
536 Analyze_And_Resolve (N, E_T);
537
538 -- For subsequent analysis, the node must retain its type. The backend
539 -- will replace it with the equivalent type where needed.
540
541 Set_Etype (N, Typ);
542 end Expand_Access_To_Protected_Op;
543
544 --------------------------
545 -- Expand_Fpt_Attribute --
546 --------------------------
547
548 procedure Expand_Fpt_Attribute
549 (N : Node_Id;
550 Pkg : RE_Id;
551 Nam : Name_Id;
552 Args : List_Id)
553 is
554 Loc : constant Source_Ptr := Sloc (N);
555 Typ : constant Entity_Id := Etype (N);
556 Fnm : Node_Id;
557
558 begin
559 -- The function name is the selected component Attr_xxx.yyy where
560 -- Attr_xxx is the package name, and yyy is the argument Nam.
561
562 -- Note: it would be more usual to have separate RE entries for each
563 -- of the entities in the Fat packages, but first they have identical
564 -- names (so we would have to have lots of renaming declarations to
565 -- meet the normal RE rule of separate names for all runtime entities),
566 -- and second there would be an awful lot of them!
567
568 Fnm :=
569 Make_Selected_Component (Loc,
570 Prefix => New_Reference_To (RTE (Pkg), Loc),
571 Selector_Name => Make_Identifier (Loc, Nam));
572
573 -- The generated call is given the provided set of parameters, and then
574 -- wrapped in a conversion which converts the result to the target type
575 -- We use the base type as the target because a range check may be
576 -- required.
577
578 Rewrite (N,
579 Unchecked_Convert_To (Base_Type (Etype (N)),
580 Make_Function_Call (Loc,
581 Name => Fnm,
582 Parameter_Associations => Args)));
583
584 Analyze_And_Resolve (N, Typ);
585 end Expand_Fpt_Attribute;
586
587 ----------------------------
588 -- Expand_Fpt_Attribute_R --
589 ----------------------------
590
591 -- The single argument is converted to its root type to call the
592 -- appropriate runtime function, with the actual call being built
593 -- by Expand_Fpt_Attribute
594
595 procedure Expand_Fpt_Attribute_R (N : Node_Id) is
596 E1 : constant Node_Id := First (Expressions (N));
597 Ftp : Entity_Id;
598 Pkg : RE_Id;
599 begin
600 Find_Fat_Info (Etype (E1), Ftp, Pkg);
601 Expand_Fpt_Attribute
602 (N, Pkg, Attribute_Name (N),
603 New_List (Unchecked_Convert_To (Ftp, Relocate_Node (E1))));
604 end Expand_Fpt_Attribute_R;
605
606 -----------------------------
607 -- Expand_Fpt_Attribute_RI --
608 -----------------------------
609
610 -- The first argument is converted to its root type and the second
611 -- argument is converted to standard long long integer to call the
612 -- appropriate runtime function, with the actual call being built
613 -- by Expand_Fpt_Attribute
614
615 procedure Expand_Fpt_Attribute_RI (N : Node_Id) is
616 E1 : constant Node_Id := First (Expressions (N));
617 Ftp : Entity_Id;
618 Pkg : RE_Id;
619 E2 : constant Node_Id := Next (E1);
620 begin
621 Find_Fat_Info (Etype (E1), Ftp, Pkg);
622 Expand_Fpt_Attribute
623 (N, Pkg, Attribute_Name (N),
624 New_List (
625 Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
626 Unchecked_Convert_To (Standard_Integer, Relocate_Node (E2))));
627 end Expand_Fpt_Attribute_RI;
628
629 -----------------------------
630 -- Expand_Fpt_Attribute_RR --
631 -----------------------------
632
633 -- The two arguments are converted to their root types to call the
634 -- appropriate runtime function, with the actual call being built
635 -- by Expand_Fpt_Attribute
636
637 procedure Expand_Fpt_Attribute_RR (N : Node_Id) is
638 E1 : constant Node_Id := First (Expressions (N));
639 Ftp : Entity_Id;
640 Pkg : RE_Id;
641 E2 : constant Node_Id := Next (E1);
642 begin
643 Find_Fat_Info (Etype (E1), Ftp, Pkg);
644 Expand_Fpt_Attribute
645 (N, Pkg, Attribute_Name (N),
646 New_List (
647 Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
648 Unchecked_Convert_To (Ftp, Relocate_Node (E2))));
649 end Expand_Fpt_Attribute_RR;
650
651 ----------------------------------
652 -- Expand_N_Attribute_Reference --
653 ----------------------------------
654
655 procedure Expand_N_Attribute_Reference (N : Node_Id) is
656 Loc : constant Source_Ptr := Sloc (N);
657 Typ : constant Entity_Id := Etype (N);
658 Btyp : constant Entity_Id := Base_Type (Typ);
659 Pref : constant Node_Id := Prefix (N);
660 Ptyp : constant Entity_Id := Etype (Pref);
661 Exprs : constant List_Id := Expressions (N);
662 Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
663
664 procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id);
665 -- Rewrites a stream attribute for Read, Write or Output with the
666 -- procedure call. Pname is the entity for the procedure to call.
667
668 ------------------------------
669 -- Rewrite_Stream_Proc_Call --
670 ------------------------------
671
672 procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id) is
673 Item : constant Node_Id := Next (First (Exprs));
674 Formal : constant Entity_Id := Next_Formal (First_Formal (Pname));
675 Formal_Typ : constant Entity_Id := Etype (Formal);
676 Is_Written : constant Boolean := (Ekind (Formal) /= E_In_Parameter);
677
678 begin
679 -- The expansion depends on Item, the second actual, which is
680 -- the object being streamed in or out.
681
682 -- If the item is a component of a packed array type, and
683 -- a conversion is needed on exit, we introduce a temporary to
684 -- hold the value, because otherwise the packed reference will
685 -- not be properly expanded.
686
687 if Nkind (Item) = N_Indexed_Component
688 and then Is_Packed (Base_Type (Etype (Prefix (Item))))
689 and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
690 and then Is_Written
691 then
692 declare
693 Temp : constant Entity_Id := Make_Temporary (Loc, 'V');
694 Decl : Node_Id;
695 Assn : Node_Id;
696
697 begin
698 Decl :=
699 Make_Object_Declaration (Loc,
700 Defining_Identifier => Temp,
701 Object_Definition =>
702 New_Occurrence_Of (Formal_Typ, Loc));
703 Set_Etype (Temp, Formal_Typ);
704
705 Assn :=
706 Make_Assignment_Statement (Loc,
707 Name => New_Copy_Tree (Item),
708 Expression =>
709 Unchecked_Convert_To
710 (Etype (Item), New_Occurrence_Of (Temp, Loc)));
711
712 Rewrite (Item, New_Occurrence_Of (Temp, Loc));
713 Insert_Actions (N,
714 New_List (
715 Decl,
716 Make_Procedure_Call_Statement (Loc,
717 Name => New_Occurrence_Of (Pname, Loc),
718 Parameter_Associations => Exprs),
719 Assn));
720
721 Rewrite (N, Make_Null_Statement (Loc));
722 return;
723 end;
724 end if;
725
726 -- For the class-wide dispatching cases, and for cases in which
727 -- the base type of the second argument matches the base type of
728 -- the corresponding formal parameter (that is to say the stream
729 -- operation is not inherited), we are all set, and can use the
730 -- argument unchanged.
731
732 -- For all other cases we do an unchecked conversion of the second
733 -- parameter to the type of the formal of the procedure we are
734 -- calling. This deals with the private type cases, and with going
735 -- to the root type as required in elementary type case.
736
737 if not Is_Class_Wide_Type (Entity (Pref))
738 and then not Is_Class_Wide_Type (Etype (Item))
739 and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
740 then
741 Rewrite (Item,
742 Unchecked_Convert_To (Formal_Typ, Relocate_Node (Item)));
743
744 -- For untagged derived types set Assignment_OK, to prevent
745 -- copies from being created when the unchecked conversion
746 -- is expanded (which would happen in Remove_Side_Effects
747 -- if Expand_N_Unchecked_Conversion were allowed to call
748 -- Force_Evaluation). The copy could violate Ada semantics
749 -- in cases such as an actual that is an out parameter.
750 -- Note that this approach is also used in exp_ch7 for calls
751 -- to controlled type operations to prevent problems with
752 -- actuals wrapped in unchecked conversions.
753
754 if Is_Untagged_Derivation (Etype (Expression (Item))) then
755 Set_Assignment_OK (Item);
756 end if;
757 end if;
758
759 -- The stream operation to call maybe a renaming created by
760 -- an attribute definition clause, and may not be frozen yet.
761 -- Ensure that it has the necessary extra formals.
762
763 if not Is_Frozen (Pname) then
764 Create_Extra_Formals (Pname);
765 end if;
766
767 -- And now rewrite the call
768
769 Rewrite (N,
770 Make_Procedure_Call_Statement (Loc,
771 Name => New_Occurrence_Of (Pname, Loc),
772 Parameter_Associations => Exprs));
773
774 Analyze (N);
775 end Rewrite_Stream_Proc_Call;
776
777 -- Start of processing for Expand_N_Attribute_Reference
778
779 begin
780 -- Do required validity checking, if enabled. Do not apply check to
781 -- output parameters of an Asm instruction, since the value of this
782 -- is not set till after the attribute has been elaborated, and do
783 -- not apply the check to the arguments of a 'Read or 'Input attribute
784 -- reference since the scalar argument is an OUT scalar.
785
786 if Validity_Checks_On and then Validity_Check_Operands
787 and then Id /= Attribute_Asm_Output
788 and then Id /= Attribute_Read
789 and then Id /= Attribute_Input
790 then
791 declare
792 Expr : Node_Id;
793 begin
794 Expr := First (Expressions (N));
795 while Present (Expr) loop
796 Ensure_Valid (Expr);
797 Next (Expr);
798 end loop;
799 end;
800 end if;
801
802 -- Ada 2005 (AI-318-02): If attribute prefix is a call to a build-in-
803 -- place function, then a temporary return object needs to be created
804 -- and access to it must be passed to the function. Currently we limit
805 -- such functions to those with inherently limited result subtypes, but
806 -- eventually we plan to expand the functions that are treated as
807 -- build-in-place to include other composite result types.
808
809 if Ada_Version >= Ada_2005
810 and then Is_Build_In_Place_Function_Call (Pref)
811 then
812 Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
813 end if;
814
815 -- If prefix is a protected type name, this is a reference to the
816 -- current instance of the type. For a component definition, nothing
817 -- to do (expansion will occur in the init proc). In other contexts,
818 -- rewrite into reference to current instance.
819
820 if Is_Protected_Self_Reference (Pref)
821 and then not
822 (Nkind_In (Parent (N), N_Index_Or_Discriminant_Constraint,
823 N_Discriminant_Association)
824 and then Nkind (Parent (Parent (Parent (Parent (N))))) =
825 N_Component_Definition)
826
827 -- No action needed for these attributes since the current instance
828 -- will be rewritten to be the name of the _object parameter
829 -- associated with the enclosing protected subprogram (see below).
830
831 and then Id /= Attribute_Access
832 and then Id /= Attribute_Unchecked_Access
833 and then Id /= Attribute_Unrestricted_Access
834 then
835 Rewrite (Pref, Concurrent_Ref (Pref));
836 Analyze (Pref);
837 end if;
838
839 -- Remaining processing depends on specific attribute
840
841 -- Note: individual sections of the following case statement are
842 -- allowed to assume there is no code after the case statement, and
843 -- are legitimately allowed to execute return statements if they have
844 -- nothing more to do.
845
846 case Id is
847
848 -- Attributes related to Ada 2012 iterators (placeholder ???)
849
850 when Attribute_Constant_Indexing |
851 Attribute_Default_Iterator |
852 Attribute_Implicit_Dereference |
853 Attribute_Iterator_Element |
854 Attribute_Variable_Indexing =>
855 null;
856
857 -- Internal attributes used to deal with Ada 2012 delayed aspects. These
858 -- were already rejected by the parser. Thus they shouldn't appear here.
859
860 when Internal_Attribute_Id =>
861 raise Program_Error;
862
863 ------------
864 -- Access --
865 ------------
866
867 when Attribute_Access |
868 Attribute_Unchecked_Access |
869 Attribute_Unrestricted_Access =>
870
871 Access_Cases : declare
872 Ref_Object : constant Node_Id := Get_Referenced_Object (Pref);
873 Btyp_DDT : Entity_Id;
874
875 function Enclosing_Object (N : Node_Id) return Node_Id;
876 -- If N denotes a compound name (selected component, indexed
877 -- component, or slice), returns the name of the outermost such
878 -- enclosing object. Otherwise returns N. If the object is a
879 -- renaming, then the renamed object is returned.
880
881 ----------------------
882 -- Enclosing_Object --
883 ----------------------
884
885 function Enclosing_Object (N : Node_Id) return Node_Id is
886 Obj_Name : Node_Id;
887
888 begin
889 Obj_Name := N;
890 while Nkind_In (Obj_Name, N_Selected_Component,
891 N_Indexed_Component,
892 N_Slice)
893 loop
894 Obj_Name := Prefix (Obj_Name);
895 end loop;
896
897 return Get_Referenced_Object (Obj_Name);
898 end Enclosing_Object;
899
900 -- Local declarations
901
902 Enc_Object : constant Node_Id := Enclosing_Object (Ref_Object);
903
904 -- Start of processing for Access_Cases
905
906 begin
907 Btyp_DDT := Designated_Type (Btyp);
908
909 -- Handle designated types that come from the limited view
910
911 if Ekind (Btyp_DDT) = E_Incomplete_Type
912 and then From_With_Type (Btyp_DDT)
913 and then Present (Non_Limited_View (Btyp_DDT))
914 then
915 Btyp_DDT := Non_Limited_View (Btyp_DDT);
916
917 elsif Is_Class_Wide_Type (Btyp_DDT)
918 and then Ekind (Etype (Btyp_DDT)) = E_Incomplete_Type
919 and then From_With_Type (Etype (Btyp_DDT))
920 and then Present (Non_Limited_View (Etype (Btyp_DDT)))
921 and then Present (Class_Wide_Type
922 (Non_Limited_View (Etype (Btyp_DDT))))
923 then
924 Btyp_DDT :=
925 Class_Wide_Type (Non_Limited_View (Etype (Btyp_DDT)));
926 end if;
927
928 -- In order to improve the text of error messages, the designated
929 -- type of access-to-subprogram itypes is set by the semantics as
930 -- the associated subprogram entity (see sem_attr). Now we replace
931 -- such node with the proper E_Subprogram_Type itype.
932
933 if Id = Attribute_Unrestricted_Access
934 and then Is_Subprogram (Directly_Designated_Type (Typ))
935 then
936 -- The following conditions ensure that this special management
937 -- is done only for "Address!(Prim'Unrestricted_Access)" nodes.
938 -- At this stage other cases in which the designated type is
939 -- still a subprogram (instead of an E_Subprogram_Type) are
940 -- wrong because the semantics must have overridden the type of
941 -- the node with the type imposed by the context.
942
943 if Nkind (Parent (N)) = N_Unchecked_Type_Conversion
944 and then Etype (Parent (N)) = RTE (RE_Prim_Ptr)
945 then
946 Set_Etype (N, RTE (RE_Prim_Ptr));
947
948 else
949 declare
950 Subp : constant Entity_Id :=
951 Directly_Designated_Type (Typ);
952 Etyp : Entity_Id;
953 Extra : Entity_Id := Empty;
954 New_Formal : Entity_Id;
955 Old_Formal : Entity_Id := First_Formal (Subp);
956 Subp_Typ : Entity_Id;
957
958 begin
959 Subp_Typ := Create_Itype (E_Subprogram_Type, N);
960 Set_Etype (Subp_Typ, Etype (Subp));
961 Set_Returns_By_Ref (Subp_Typ, Returns_By_Ref (Subp));
962
963 if Present (Old_Formal) then
964 New_Formal := New_Copy (Old_Formal);
965 Set_First_Entity (Subp_Typ, New_Formal);
966
967 loop
968 Set_Scope (New_Formal, Subp_Typ);
969 Etyp := Etype (New_Formal);
970
971 -- Handle itypes. There is no need to duplicate
972 -- here the itypes associated with record types
973 -- (i.e the implicit full view of private types).
974
975 if Is_Itype (Etyp)
976 and then Ekind (Base_Type (Etyp)) /= E_Record_Type
977 then
978 Extra := New_Copy (Etyp);
979 Set_Parent (Extra, New_Formal);
980 Set_Etype (New_Formal, Extra);
981 Set_Scope (Extra, Subp_Typ);
982 end if;
983
984 Extra := New_Formal;
985 Next_Formal (Old_Formal);
986 exit when No (Old_Formal);
987
988 Set_Next_Entity (New_Formal,
989 New_Copy (Old_Formal));
990 Next_Entity (New_Formal);
991 end loop;
992
993 Set_Next_Entity (New_Formal, Empty);
994 Set_Last_Entity (Subp_Typ, Extra);
995 end if;
996
997 -- Now that the explicit formals have been duplicated,
998 -- any extra formals needed by the subprogram must be
999 -- created.
1000
1001 if Present (Extra) then
1002 Set_Extra_Formal (Extra, Empty);
1003 end if;
1004
1005 Create_Extra_Formals (Subp_Typ);
1006 Set_Directly_Designated_Type (Typ, Subp_Typ);
1007 end;
1008 end if;
1009 end if;
1010
1011 if Is_Access_Protected_Subprogram_Type (Btyp) then
1012 Expand_Access_To_Protected_Op (N, Pref, Typ);
1013
1014 -- If prefix is a type name, this is a reference to the current
1015 -- instance of the type, within its initialization procedure.
1016
1017 elsif Is_Entity_Name (Pref)
1018 and then Is_Type (Entity (Pref))
1019 then
1020 declare
1021 Par : Node_Id;
1022 Formal : Entity_Id;
1023
1024 begin
1025 -- If the current instance name denotes a task type, then
1026 -- the access attribute is rewritten to be the name of the
1027 -- "_task" parameter associated with the task type's task
1028 -- procedure. An unchecked conversion is applied to ensure
1029 -- a type match in cases of expander-generated calls (e.g.
1030 -- init procs).
1031
1032 if Is_Task_Type (Entity (Pref)) then
1033 Formal :=
1034 First_Entity (Get_Task_Body_Procedure (Entity (Pref)));
1035 while Present (Formal) loop
1036 exit when Chars (Formal) = Name_uTask;
1037 Next_Entity (Formal);
1038 end loop;
1039
1040 pragma Assert (Present (Formal));
1041
1042 Rewrite (N,
1043 Unchecked_Convert_To (Typ,
1044 New_Occurrence_Of (Formal, Loc)));
1045 Set_Etype (N, Typ);
1046
1047 elsif Is_Protected_Type (Entity (Pref)) then
1048
1049 -- No action needed for current instance located in a
1050 -- component definition (expansion will occur in the
1051 -- init proc)
1052
1053 if Is_Protected_Type (Current_Scope) then
1054 null;
1055
1056 -- If the current instance reference is located in a
1057 -- protected subprogram or entry then rewrite the access
1058 -- attribute to be the name of the "_object" parameter.
1059 -- An unchecked conversion is applied to ensure a type
1060 -- match in cases of expander-generated calls (e.g. init
1061 -- procs).
1062
1063 else
1064 Formal :=
1065 First_Entity
1066 (Protected_Body_Subprogram (Current_Scope));
1067 Rewrite (N,
1068 Unchecked_Convert_To (Typ,
1069 New_Occurrence_Of (Formal, Loc)));
1070 Set_Etype (N, Typ);
1071 end if;
1072
1073 -- The expression must appear in a default expression,
1074 -- (which in the initialization procedure is the right-hand
1075 -- side of an assignment), and not in a discriminant
1076 -- constraint.
1077
1078 else
1079 Par := Parent (N);
1080 while Present (Par) loop
1081 exit when Nkind (Par) = N_Assignment_Statement;
1082
1083 if Nkind (Par) = N_Component_Declaration then
1084 return;
1085 end if;
1086
1087 Par := Parent (Par);
1088 end loop;
1089
1090 if Present (Par) then
1091 Rewrite (N,
1092 Make_Attribute_Reference (Loc,
1093 Prefix => Make_Identifier (Loc, Name_uInit),
1094 Attribute_Name => Attribute_Name (N)));
1095
1096 Analyze_And_Resolve (N, Typ);
1097 end if;
1098 end if;
1099 end;
1100
1101 -- If the prefix of an Access attribute is a dereference of an
1102 -- access parameter (or a renaming of such a dereference, or a
1103 -- subcomponent of such a dereference) and the context is a
1104 -- general access type (including the type of an object or
1105 -- component with an access_definition, but not the anonymous
1106 -- type of an access parameter or access discriminant), then
1107 -- apply an accessibility check to the access parameter. We used
1108 -- to rewrite the access parameter as a type conversion, but that
1109 -- could only be done if the immediate prefix of the Access
1110 -- attribute was the dereference, and didn't handle cases where
1111 -- the attribute is applied to a subcomponent of the dereference,
1112 -- since there's generally no available, appropriate access type
1113 -- to convert to in that case. The attribute is passed as the
1114 -- point to insert the check, because the access parameter may
1115 -- come from a renaming, possibly in a different scope, and the
1116 -- check must be associated with the attribute itself.
1117
1118 elsif Id = Attribute_Access
1119 and then Nkind (Enc_Object) = N_Explicit_Dereference
1120 and then Is_Entity_Name (Prefix (Enc_Object))
1121 and then (Ekind (Btyp) = E_General_Access_Type
1122 or else Is_Local_Anonymous_Access (Btyp))
1123 and then Ekind (Entity (Prefix (Enc_Object))) in Formal_Kind
1124 and then Ekind (Etype (Entity (Prefix (Enc_Object))))
1125 = E_Anonymous_Access_Type
1126 and then Present (Extra_Accessibility
1127 (Entity (Prefix (Enc_Object))))
1128 then
1129 Apply_Accessibility_Check (Prefix (Enc_Object), Typ, N);
1130
1131 -- Ada 2005 (AI-251): If the designated type is an interface we
1132 -- add an implicit conversion to force the displacement of the
1133 -- pointer to reference the secondary dispatch table.
1134
1135 elsif Is_Interface (Btyp_DDT)
1136 and then (Comes_From_Source (N)
1137 or else Comes_From_Source (Ref_Object)
1138 or else (Nkind (Ref_Object) in N_Has_Chars
1139 and then Chars (Ref_Object) = Name_uInit))
1140 then
1141 if Nkind (Ref_Object) /= N_Explicit_Dereference then
1142
1143 -- No implicit conversion required if types match, or if
1144 -- the prefix is the class_wide_type of the interface. In
1145 -- either case passing an object of the interface type has
1146 -- already set the pointer correctly.
1147
1148 if Btyp_DDT = Etype (Ref_Object)
1149 or else (Is_Class_Wide_Type (Etype (Ref_Object))
1150 and then
1151 Class_Wide_Type (Btyp_DDT) = Etype (Ref_Object))
1152 then
1153 null;
1154
1155 else
1156 Rewrite (Prefix (N),
1157 Convert_To (Btyp_DDT,
1158 New_Copy_Tree (Prefix (N))));
1159
1160 Analyze_And_Resolve (Prefix (N), Btyp_DDT);
1161 end if;
1162
1163 -- When the object is an explicit dereference, convert the
1164 -- dereference's prefix.
1165
1166 else
1167 declare
1168 Obj_DDT : constant Entity_Id :=
1169 Base_Type
1170 (Directly_Designated_Type
1171 (Etype (Prefix (Ref_Object))));
1172 begin
1173 -- No implicit conversion required if designated types
1174 -- match, or if we have an unrestricted access.
1175
1176 if Obj_DDT /= Btyp_DDT
1177 and then Id /= Attribute_Unrestricted_Access
1178 and then not (Is_Class_Wide_Type (Obj_DDT)
1179 and then Etype (Obj_DDT) = Btyp_DDT)
1180 then
1181 Rewrite (N,
1182 Convert_To (Typ,
1183 New_Copy_Tree (Prefix (Ref_Object))));
1184 Analyze_And_Resolve (N, Typ);
1185 end if;
1186 end;
1187 end if;
1188 end if;
1189 end Access_Cases;
1190
1191 --------------
1192 -- Adjacent --
1193 --------------
1194
1195 -- Transforms 'Adjacent into a call to the floating-point attribute
1196 -- function Adjacent in Fat_xxx (where xxx is the root type)
1197
1198 when Attribute_Adjacent =>
1199 Expand_Fpt_Attribute_RR (N);
1200
1201 -------------
1202 -- Address --
1203 -------------
1204
1205 when Attribute_Address => Address : declare
1206 Task_Proc : Entity_Id;
1207
1208 begin
1209 -- If the prefix is a task or a task type, the useful address is that
1210 -- of the procedure for the task body, i.e. the actual program unit.
1211 -- We replace the original entity with that of the procedure.
1212
1213 if Is_Entity_Name (Pref)
1214 and then Is_Task_Type (Entity (Pref))
1215 then
1216 Task_Proc := Next_Entity (Root_Type (Ptyp));
1217
1218 while Present (Task_Proc) loop
1219 exit when Ekind (Task_Proc) = E_Procedure
1220 and then Etype (First_Formal (Task_Proc)) =
1221 Corresponding_Record_Type (Ptyp);
1222 Next_Entity (Task_Proc);
1223 end loop;
1224
1225 if Present (Task_Proc) then
1226 Set_Entity (Pref, Task_Proc);
1227 Set_Etype (Pref, Etype (Task_Proc));
1228 end if;
1229
1230 -- Similarly, the address of a protected operation is the address
1231 -- of the corresponding protected body, regardless of the protected
1232 -- object from which it is selected.
1233
1234 elsif Nkind (Pref) = N_Selected_Component
1235 and then Is_Subprogram (Entity (Selector_Name (Pref)))
1236 and then Is_Protected_Type (Scope (Entity (Selector_Name (Pref))))
1237 then
1238 Rewrite (Pref,
1239 New_Occurrence_Of (
1240 External_Subprogram (Entity (Selector_Name (Pref))), Loc));
1241
1242 elsif Nkind (Pref) = N_Explicit_Dereference
1243 and then Ekind (Ptyp) = E_Subprogram_Type
1244 and then Convention (Ptyp) = Convention_Protected
1245 then
1246 -- The prefix is be a dereference of an access_to_protected_
1247 -- subprogram. The desired address is the second component of
1248 -- the record that represents the access.
1249
1250 declare
1251 Addr : constant Entity_Id := Etype (N);
1252 Ptr : constant Node_Id := Prefix (Pref);
1253 T : constant Entity_Id :=
1254 Equivalent_Type (Base_Type (Etype (Ptr)));
1255
1256 begin
1257 Rewrite (N,
1258 Unchecked_Convert_To (Addr,
1259 Make_Selected_Component (Loc,
1260 Prefix => Unchecked_Convert_To (T, Ptr),
1261 Selector_Name => New_Occurrence_Of (
1262 Next_Entity (First_Entity (T)), Loc))));
1263
1264 Analyze_And_Resolve (N, Addr);
1265 end;
1266
1267 -- Ada 2005 (AI-251): Class-wide interface objects are always
1268 -- "displaced" to reference the tag associated with the interface
1269 -- type. In order to obtain the real address of such objects we
1270 -- generate a call to a run-time subprogram that returns the base
1271 -- address of the object.
1272
1273 -- This processing is not needed in the VM case, where dispatching
1274 -- issues are taken care of by the virtual machine.
1275
1276 elsif Is_Class_Wide_Type (Ptyp)
1277 and then Is_Interface (Ptyp)
1278 and then Tagged_Type_Expansion
1279 and then not (Nkind (Pref) in N_Has_Entity
1280 and then Is_Subprogram (Entity (Pref)))
1281 then
1282 Rewrite (N,
1283 Make_Function_Call (Loc,
1284 Name => New_Reference_To (RTE (RE_Base_Address), Loc),
1285 Parameter_Associations => New_List (
1286 Relocate_Node (N))));
1287 Analyze (N);
1288 return;
1289 end if;
1290
1291 -- Deal with packed array reference, other cases are handled by
1292 -- the back end.
1293
1294 if Involves_Packed_Array_Reference (Pref) then
1295 Expand_Packed_Address_Reference (N);
1296 end if;
1297 end Address;
1298
1299 ---------------
1300 -- Alignment --
1301 ---------------
1302
1303 when Attribute_Alignment => Alignment : declare
1304 New_Node : Node_Id;
1305
1306 begin
1307 -- For class-wide types, X'Class'Alignment is transformed into a
1308 -- direct reference to the Alignment of the class type, so that the
1309 -- back end does not have to deal with the X'Class'Alignment
1310 -- reference.
1311
1312 if Is_Entity_Name (Pref)
1313 and then Is_Class_Wide_Type (Entity (Pref))
1314 then
1315 Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
1316 return;
1317
1318 -- For x'Alignment applied to an object of a class wide type,
1319 -- transform X'Alignment into a call to the predefined primitive
1320 -- operation _Alignment applied to X.
1321
1322 elsif Is_Class_Wide_Type (Ptyp) then
1323 New_Node :=
1324 Make_Attribute_Reference (Loc,
1325 Prefix => Pref,
1326 Attribute_Name => Name_Tag);
1327
1328 if VM_Target = No_VM then
1329 New_Node := Build_Get_Alignment (Loc, New_Node);
1330 else
1331 New_Node :=
1332 Make_Function_Call (Loc,
1333 Name => New_Reference_To (RTE (RE_Get_Alignment), Loc),
1334 Parameter_Associations => New_List (New_Node));
1335 end if;
1336
1337 -- Case where the context is a specific integer type with which
1338 -- the original attribute was compatible. The function has a
1339 -- specific type as well, so to preserve the compatibility we
1340 -- must convert explicitly.
1341
1342 if Typ /= Standard_Integer then
1343 New_Node := Convert_To (Typ, New_Node);
1344 end if;
1345
1346 Rewrite (N, New_Node);
1347 Analyze_And_Resolve (N, Typ);
1348 return;
1349
1350 -- For all other cases, we just have to deal with the case of
1351 -- the fact that the result can be universal.
1352
1353 else
1354 Apply_Universal_Integer_Attribute_Checks (N);
1355 end if;
1356 end Alignment;
1357
1358 ---------------
1359 -- AST_Entry --
1360 ---------------
1361
1362 when Attribute_AST_Entry => AST_Entry : declare
1363 Ttyp : Entity_Id;
1364 T_Id : Node_Id;
1365 Eent : Entity_Id;
1366
1367 Entry_Ref : Node_Id;
1368 -- The reference to the entry or entry family
1369
1370 Index : Node_Id;
1371 -- The index expression for an entry family reference, or
1372 -- the Empty if Entry_Ref references a simple entry.
1373
1374 begin
1375 if Nkind (Pref) = N_Indexed_Component then
1376 Entry_Ref := Prefix (Pref);
1377 Index := First (Expressions (Pref));
1378 else
1379 Entry_Ref := Pref;
1380 Index := Empty;
1381 end if;
1382
1383 -- Get expression for Task_Id and the entry entity
1384
1385 if Nkind (Entry_Ref) = N_Selected_Component then
1386 T_Id :=
1387 Make_Attribute_Reference (Loc,
1388 Attribute_Name => Name_Identity,
1389 Prefix => Prefix (Entry_Ref));
1390
1391 Ttyp := Etype (Prefix (Entry_Ref));
1392 Eent := Entity (Selector_Name (Entry_Ref));
1393
1394 else
1395 T_Id :=
1396 Make_Function_Call (Loc,
1397 Name => New_Occurrence_Of (RTE (RE_Current_Task), Loc));
1398
1399 Eent := Entity (Entry_Ref);
1400
1401 -- We have to find the enclosing task to get the task type
1402 -- There must be one, since we already validated this earlier
1403
1404 Ttyp := Current_Scope;
1405 while not Is_Task_Type (Ttyp) loop
1406 Ttyp := Scope (Ttyp);
1407 end loop;
1408 end if;
1409
1410 -- Now rewrite the attribute with a call to Create_AST_Handler
1411
1412 Rewrite (N,
1413 Make_Function_Call (Loc,
1414 Name => New_Occurrence_Of (RTE (RE_Create_AST_Handler), Loc),
1415 Parameter_Associations => New_List (
1416 T_Id,
1417 Entry_Index_Expression (Loc, Eent, Index, Ttyp))));
1418
1419 Analyze_And_Resolve (N, RTE (RE_AST_Handler));
1420 end AST_Entry;
1421
1422 ---------
1423 -- Bit --
1424 ---------
1425
1426 -- We compute this if a packed array reference was present, otherwise we
1427 -- leave the computation up to the back end.
1428
1429 when Attribute_Bit =>
1430 if Involves_Packed_Array_Reference (Pref) then
1431 Expand_Packed_Bit_Reference (N);
1432 else
1433 Apply_Universal_Integer_Attribute_Checks (N);
1434 end if;
1435
1436 ------------------
1437 -- Bit_Position --
1438 ------------------
1439
1440 -- We compute this if a component clause was present, otherwise we leave
1441 -- the computation up to the back end, since we don't know what layout
1442 -- will be chosen.
1443
1444 -- Note that the attribute can apply to a naked record component
1445 -- in generated code (i.e. the prefix is an identifier that
1446 -- references the component or discriminant entity).
1447
1448 when Attribute_Bit_Position => Bit_Position : declare
1449 CE : Entity_Id;
1450
1451 begin
1452 if Nkind (Pref) = N_Identifier then
1453 CE := Entity (Pref);
1454 else
1455 CE := Entity (Selector_Name (Pref));
1456 end if;
1457
1458 if Known_Static_Component_Bit_Offset (CE) then
1459 Rewrite (N,
1460 Make_Integer_Literal (Loc,
1461 Intval => Component_Bit_Offset (CE)));
1462 Analyze_And_Resolve (N, Typ);
1463
1464 else
1465 Apply_Universal_Integer_Attribute_Checks (N);
1466 end if;
1467 end Bit_Position;
1468
1469 ------------------
1470 -- Body_Version --
1471 ------------------
1472
1473 -- A reference to P'Body_Version or P'Version is expanded to
1474
1475 -- Vnn : Unsigned;
1476 -- pragma Import (C, Vnn, "uuuuT");
1477 -- ...
1478 -- Get_Version_String (Vnn)
1479
1480 -- where uuuu is the unit name (dots replaced by double underscore)
1481 -- and T is B for the cases of Body_Version, or Version applied to a
1482 -- subprogram acting as its own spec, and S for Version applied to a
1483 -- subprogram spec or package. This sequence of code references the
1484 -- unsigned constant created in the main program by the binder.
1485
1486 -- A special exception occurs for Standard, where the string returned
1487 -- is a copy of the library string in gnatvsn.ads.
1488
1489 when Attribute_Body_Version | Attribute_Version => Version : declare
1490 E : constant Entity_Id := Make_Temporary (Loc, 'V');
1491 Pent : Entity_Id;
1492 S : String_Id;
1493
1494 begin
1495 -- If not library unit, get to containing library unit
1496
1497 Pent := Entity (Pref);
1498 while Pent /= Standard_Standard
1499 and then Scope (Pent) /= Standard_Standard
1500 and then not Is_Child_Unit (Pent)
1501 loop
1502 Pent := Scope (Pent);
1503 end loop;
1504
1505 -- Special case Standard and Standard.ASCII
1506
1507 if Pent = Standard_Standard or else Pent = Standard_ASCII then
1508 Rewrite (N,
1509 Make_String_Literal (Loc,
1510 Strval => Verbose_Library_Version));
1511
1512 -- All other cases
1513
1514 else
1515 -- Build required string constant
1516
1517 Get_Name_String (Get_Unit_Name (Pent));
1518
1519 Start_String;
1520 for J in 1 .. Name_Len - 2 loop
1521 if Name_Buffer (J) = '.' then
1522 Store_String_Chars ("__");
1523 else
1524 Store_String_Char (Get_Char_Code (Name_Buffer (J)));
1525 end if;
1526 end loop;
1527
1528 -- Case of subprogram acting as its own spec, always use body
1529
1530 if Nkind (Declaration_Node (Pent)) in N_Subprogram_Specification
1531 and then Nkind (Parent (Declaration_Node (Pent))) =
1532 N_Subprogram_Body
1533 and then Acts_As_Spec (Parent (Declaration_Node (Pent)))
1534 then
1535 Store_String_Chars ("B");
1536
1537 -- Case of no body present, always use spec
1538
1539 elsif not Unit_Requires_Body (Pent) then
1540 Store_String_Chars ("S");
1541
1542 -- Otherwise use B for Body_Version, S for spec
1543
1544 elsif Id = Attribute_Body_Version then
1545 Store_String_Chars ("B");
1546 else
1547 Store_String_Chars ("S");
1548 end if;
1549
1550 S := End_String;
1551 Lib.Version_Referenced (S);
1552
1553 -- Insert the object declaration
1554
1555 Insert_Actions (N, New_List (
1556 Make_Object_Declaration (Loc,
1557 Defining_Identifier => E,
1558 Object_Definition =>
1559 New_Occurrence_Of (RTE (RE_Unsigned), Loc))));
1560
1561 -- Set entity as imported with correct external name
1562
1563 Set_Is_Imported (E);
1564 Set_Interface_Name (E, Make_String_Literal (Loc, S));
1565
1566 -- Set entity as internal to ensure proper Sprint output of its
1567 -- implicit importation.
1568
1569 Set_Is_Internal (E);
1570
1571 -- And now rewrite original reference
1572
1573 Rewrite (N,
1574 Make_Function_Call (Loc,
1575 Name => New_Reference_To (RTE (RE_Get_Version_String), Loc),
1576 Parameter_Associations => New_List (
1577 New_Occurrence_Of (E, Loc))));
1578 end if;
1579
1580 Analyze_And_Resolve (N, RTE (RE_Version_String));
1581 end Version;
1582
1583 -------------
1584 -- Ceiling --
1585 -------------
1586
1587 -- Transforms 'Ceiling into a call to the floating-point attribute
1588 -- function Ceiling in Fat_xxx (where xxx is the root type)
1589
1590 when Attribute_Ceiling =>
1591 Expand_Fpt_Attribute_R (N);
1592
1593 --------------
1594 -- Callable --
1595 --------------
1596
1597 -- Transforms 'Callable attribute into a call to the Callable function
1598
1599 when Attribute_Callable => Callable :
1600 begin
1601 -- We have an object of a task interface class-wide type as a prefix
1602 -- to Callable. Generate:
1603 -- callable (Task_Id (Pref._disp_get_task_id));
1604
1605 if Ada_Version >= Ada_2005
1606 and then Ekind (Ptyp) = E_Class_Wide_Type
1607 and then Is_Interface (Ptyp)
1608 and then Is_Task_Interface (Ptyp)
1609 then
1610 Rewrite (N,
1611 Make_Function_Call (Loc,
1612 Name =>
1613 New_Reference_To (RTE (RE_Callable), Loc),
1614 Parameter_Associations => New_List (
1615 Make_Unchecked_Type_Conversion (Loc,
1616 Subtype_Mark =>
1617 New_Reference_To (RTE (RO_ST_Task_Id), Loc),
1618 Expression =>
1619 Make_Selected_Component (Loc,
1620 Prefix =>
1621 New_Copy_Tree (Pref),
1622 Selector_Name =>
1623 Make_Identifier (Loc, Name_uDisp_Get_Task_Id))))));
1624
1625 else
1626 Rewrite (N,
1627 Build_Call_With_Task (Pref, RTE (RE_Callable)));
1628 end if;
1629
1630 Analyze_And_Resolve (N, Standard_Boolean);
1631 end Callable;
1632
1633 ------------
1634 -- Caller --
1635 ------------
1636
1637 -- Transforms 'Caller attribute into a call to either the
1638 -- Task_Entry_Caller or the Protected_Entry_Caller function.
1639
1640 when Attribute_Caller => Caller : declare
1641 Id_Kind : constant Entity_Id := RTE (RO_AT_Task_Id);
1642 Ent : constant Entity_Id := Entity (Pref);
1643 Conctype : constant Entity_Id := Scope (Ent);
1644 Nest_Depth : Integer := 0;
1645 Name : Node_Id;
1646 S : Entity_Id;
1647
1648 begin
1649 -- Protected case
1650
1651 if Is_Protected_Type (Conctype) then
1652 case Corresponding_Runtime_Package (Conctype) is
1653 when System_Tasking_Protected_Objects_Entries =>
1654 Name :=
1655 New_Reference_To
1656 (RTE (RE_Protected_Entry_Caller), Loc);
1657
1658 when System_Tasking_Protected_Objects_Single_Entry =>
1659 Name :=
1660 New_Reference_To
1661 (RTE (RE_Protected_Single_Entry_Caller), Loc);
1662
1663 when others =>
1664 raise Program_Error;
1665 end case;
1666
1667 Rewrite (N,
1668 Unchecked_Convert_To (Id_Kind,
1669 Make_Function_Call (Loc,
1670 Name => Name,
1671 Parameter_Associations => New_List (
1672 New_Reference_To
1673 (Find_Protection_Object (Current_Scope), Loc)))));
1674
1675 -- Task case
1676
1677 else
1678 -- Determine the nesting depth of the E'Caller attribute, that
1679 -- is, how many accept statements are nested within the accept
1680 -- statement for E at the point of E'Caller. The runtime uses
1681 -- this depth to find the specified entry call.
1682
1683 for J in reverse 0 .. Scope_Stack.Last loop
1684 S := Scope_Stack.Table (J).Entity;
1685
1686 -- We should not reach the scope of the entry, as it should
1687 -- already have been checked in Sem_Attr that this attribute
1688 -- reference is within a matching accept statement.
1689
1690 pragma Assert (S /= Conctype);
1691
1692 if S = Ent then
1693 exit;
1694
1695 elsif Is_Entry (S) then
1696 Nest_Depth := Nest_Depth + 1;
1697 end if;
1698 end loop;
1699
1700 Rewrite (N,
1701 Unchecked_Convert_To (Id_Kind,
1702 Make_Function_Call (Loc,
1703 Name =>
1704 New_Reference_To (RTE (RE_Task_Entry_Caller), Loc),
1705 Parameter_Associations => New_List (
1706 Make_Integer_Literal (Loc,
1707 Intval => Int (Nest_Depth))))));
1708 end if;
1709
1710 Analyze_And_Resolve (N, Id_Kind);
1711 end Caller;
1712
1713 -------------
1714 -- Compose --
1715 -------------
1716
1717 -- Transforms 'Compose into a call to the floating-point attribute
1718 -- function Compose in Fat_xxx (where xxx is the root type)
1719
1720 -- Note: we strictly should have special code here to deal with the
1721 -- case of absurdly negative arguments (less than Integer'First)
1722 -- which will return a (signed) zero value, but it hardly seems
1723 -- worth the effort. Absurdly large positive arguments will raise
1724 -- constraint error which is fine.
1725
1726 when Attribute_Compose =>
1727 Expand_Fpt_Attribute_RI (N);
1728
1729 -----------------
1730 -- Constrained --
1731 -----------------
1732
1733 when Attribute_Constrained => Constrained : declare
1734 Formal_Ent : constant Entity_Id := Param_Entity (Pref);
1735
1736 function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean;
1737 -- Ada 2005 (AI-363): Returns True if the object name Obj denotes a
1738 -- view of an aliased object whose subtype is constrained.
1739
1740 ---------------------------------
1741 -- Is_Constrained_Aliased_View --
1742 ---------------------------------
1743
1744 function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean is
1745 E : Entity_Id;
1746
1747 begin
1748 if Is_Entity_Name (Obj) then
1749 E := Entity (Obj);
1750
1751 if Present (Renamed_Object (E)) then
1752 return Is_Constrained_Aliased_View (Renamed_Object (E));
1753 else
1754 return Is_Aliased (E) and then Is_Constrained (Etype (E));
1755 end if;
1756
1757 else
1758 return Is_Aliased_View (Obj)
1759 and then
1760 (Is_Constrained (Etype (Obj))
1761 or else
1762 (Nkind (Obj) = N_Explicit_Dereference
1763 and then
1764 not Effectively_Has_Constrained_Partial_View
1765 (Typ => Base_Type (Etype (Obj)),
1766 Scop => Current_Scope)));
1767 end if;
1768 end Is_Constrained_Aliased_View;
1769
1770 -- Start of processing for Constrained
1771
1772 begin
1773 -- Reference to a parameter where the value is passed as an extra
1774 -- actual, corresponding to the extra formal referenced by the
1775 -- Extra_Constrained field of the corresponding formal. If this
1776 -- is an entry in-parameter, it is replaced by a constant renaming
1777 -- for which Extra_Constrained is never created.
1778
1779 if Present (Formal_Ent)
1780 and then Ekind (Formal_Ent) /= E_Constant
1781 and then Present (Extra_Constrained (Formal_Ent))
1782 then
1783 Rewrite (N,
1784 New_Occurrence_Of
1785 (Extra_Constrained (Formal_Ent), Sloc (N)));
1786
1787 -- For variables with a Extra_Constrained field, we use the
1788 -- corresponding entity.
1789
1790 elsif Nkind (Pref) = N_Identifier
1791 and then Ekind (Entity (Pref)) = E_Variable
1792 and then Present (Extra_Constrained (Entity (Pref)))
1793 then
1794 Rewrite (N,
1795 New_Occurrence_Of
1796 (Extra_Constrained (Entity (Pref)), Sloc (N)));
1797
1798 -- For all other entity names, we can tell at compile time
1799
1800 elsif Is_Entity_Name (Pref) then
1801 declare
1802 Ent : constant Entity_Id := Entity (Pref);
1803 Res : Boolean;
1804
1805 begin
1806 -- (RM J.4) obsolescent cases
1807
1808 if Is_Type (Ent) then
1809
1810 -- Private type
1811
1812 if Is_Private_Type (Ent) then
1813 Res := not Has_Discriminants (Ent)
1814 or else Is_Constrained (Ent);
1815
1816 -- It not a private type, must be a generic actual type
1817 -- that corresponded to a private type. We know that this
1818 -- correspondence holds, since otherwise the reference
1819 -- within the generic template would have been illegal.
1820
1821 else
1822 if Is_Composite_Type (Underlying_Type (Ent)) then
1823 Res := Is_Constrained (Ent);
1824 else
1825 Res := True;
1826 end if;
1827 end if;
1828
1829 -- If the prefix is not a variable or is aliased, then
1830 -- definitely true; if it's a formal parameter without an
1831 -- associated extra formal, then treat it as constrained.
1832
1833 -- Ada 2005 (AI-363): An aliased prefix must be known to be
1834 -- constrained in order to set the attribute to True.
1835
1836 elsif not Is_Variable (Pref)
1837 or else Present (Formal_Ent)
1838 or else (Ada_Version < Ada_2005
1839 and then Is_Aliased_View (Pref))
1840 or else (Ada_Version >= Ada_2005
1841 and then Is_Constrained_Aliased_View (Pref))
1842 then
1843 Res := True;
1844
1845 -- Variable case, look at type to see if it is constrained.
1846 -- Note that the one case where this is not accurate (the
1847 -- procedure formal case), has been handled above.
1848
1849 -- We use the Underlying_Type here (and below) in case the
1850 -- type is private without discriminants, but the full type
1851 -- has discriminants. This case is illegal, but we generate it
1852 -- internally for passing to the Extra_Constrained parameter.
1853
1854 else
1855 -- In Ada 2012, test for case of a limited tagged type, in
1856 -- which case the attribute is always required to return
1857 -- True. The underlying type is tested, to make sure we also
1858 -- return True for cases where there is an unconstrained
1859 -- object with an untagged limited partial view which has
1860 -- defaulted discriminants (such objects always produce a
1861 -- False in earlier versions of Ada). (Ada 2012: AI05-0214)
1862
1863 Res := Is_Constrained (Underlying_Type (Etype (Ent)))
1864 or else
1865 (Ada_Version >= Ada_2012
1866 and then Is_Tagged_Type (Underlying_Type (Ptyp))
1867 and then Is_Limited_Type (Ptyp));
1868 end if;
1869
1870 Rewrite (N, New_Reference_To (Boolean_Literals (Res), Loc));
1871 end;
1872
1873 -- Prefix is not an entity name. These are also cases where we can
1874 -- always tell at compile time by looking at the form and type of the
1875 -- prefix. If an explicit dereference of an object with constrained
1876 -- partial view, this is unconstrained (Ada 2005: AI95-0363). If the
1877 -- underlying type is a limited tagged type, then Constrained is
1878 -- required to always return True (Ada 2012: AI05-0214).
1879
1880 else
1881 Rewrite (N,
1882 New_Reference_To (
1883 Boolean_Literals (
1884 not Is_Variable (Pref)
1885 or else
1886 (Nkind (Pref) = N_Explicit_Dereference
1887 and then
1888 not Effectively_Has_Constrained_Partial_View
1889 (Typ => Base_Type (Ptyp),
1890 Scop => Current_Scope))
1891 or else Is_Constrained (Underlying_Type (Ptyp))
1892 or else (Ada_Version >= Ada_2012
1893 and then Is_Tagged_Type (Underlying_Type (Ptyp))
1894 and then Is_Limited_Type (Ptyp))),
1895 Loc));
1896 end if;
1897
1898 Analyze_And_Resolve (N, Standard_Boolean);
1899 end Constrained;
1900
1901 ---------------
1902 -- Copy_Sign --
1903 ---------------
1904
1905 -- Transforms 'Copy_Sign into a call to the floating-point attribute
1906 -- function Copy_Sign in Fat_xxx (where xxx is the root type)
1907
1908 when Attribute_Copy_Sign =>
1909 Expand_Fpt_Attribute_RR (N);
1910
1911 -----------
1912 -- Count --
1913 -----------
1914
1915 -- Transforms 'Count attribute into a call to the Count function
1916
1917 when Attribute_Count => Count : declare
1918 Call : Node_Id;
1919 Conctyp : Entity_Id;
1920 Entnam : Node_Id;
1921 Entry_Id : Entity_Id;
1922 Index : Node_Id;
1923 Name : Node_Id;
1924
1925 begin
1926 -- If the prefix is a member of an entry family, retrieve both
1927 -- entry name and index. For a simple entry there is no index.
1928
1929 if Nkind (Pref) = N_Indexed_Component then
1930 Entnam := Prefix (Pref);
1931 Index := First (Expressions (Pref));
1932 else
1933 Entnam := Pref;
1934 Index := Empty;
1935 end if;
1936
1937 Entry_Id := Entity (Entnam);
1938
1939 -- Find the concurrent type in which this attribute is referenced
1940 -- (there had better be one).
1941
1942 Conctyp := Current_Scope;
1943 while not Is_Concurrent_Type (Conctyp) loop
1944 Conctyp := Scope (Conctyp);
1945 end loop;
1946
1947 -- Protected case
1948
1949 if Is_Protected_Type (Conctyp) then
1950 case Corresponding_Runtime_Package (Conctyp) is
1951 when System_Tasking_Protected_Objects_Entries =>
1952 Name := New_Reference_To (RTE (RE_Protected_Count), Loc);
1953
1954 Call :=
1955 Make_Function_Call (Loc,
1956 Name => Name,
1957 Parameter_Associations => New_List (
1958 New_Reference_To
1959 (Find_Protection_Object (Current_Scope), Loc),
1960 Entry_Index_Expression
1961 (Loc, Entry_Id, Index, Scope (Entry_Id))));
1962
1963 when System_Tasking_Protected_Objects_Single_Entry =>
1964 Name :=
1965 New_Reference_To (RTE (RE_Protected_Count_Entry), Loc);
1966
1967 Call :=
1968 Make_Function_Call (Loc,
1969 Name => Name,
1970 Parameter_Associations => New_List (
1971 New_Reference_To
1972 (Find_Protection_Object (Current_Scope), Loc)));
1973
1974 when others =>
1975 raise Program_Error;
1976 end case;
1977
1978 -- Task case
1979
1980 else
1981 Call :=
1982 Make_Function_Call (Loc,
1983 Name => New_Reference_To (RTE (RE_Task_Count), Loc),
1984 Parameter_Associations => New_List (
1985 Entry_Index_Expression (Loc,
1986 Entry_Id, Index, Scope (Entry_Id))));
1987 end if;
1988
1989 -- The call returns type Natural but the context is universal integer
1990 -- so any integer type is allowed. The attribute was already resolved
1991 -- so its Etype is the required result type. If the base type of the
1992 -- context type is other than Standard.Integer we put in a conversion
1993 -- to the required type. This can be a normal typed conversion since
1994 -- both input and output types of the conversion are integer types
1995
1996 if Base_Type (Typ) /= Base_Type (Standard_Integer) then
1997 Rewrite (N, Convert_To (Typ, Call));
1998 else
1999 Rewrite (N, Call);
2000 end if;
2001
2002 Analyze_And_Resolve (N, Typ);
2003 end Count;
2004
2005 ---------------------
2006 -- Descriptor_Size --
2007 ---------------------
2008
2009 when Attribute_Descriptor_Size =>
2010
2011 -- Attribute Descriptor_Size is handled by the back end when applied
2012 -- to an unconstrained array type.
2013
2014 if Is_Array_Type (Ptyp)
2015 and then not Is_Constrained (Ptyp)
2016 then
2017 Apply_Universal_Integer_Attribute_Checks (N);
2018
2019 -- For any other type, the descriptor size is 0 because there is no
2020 -- actual descriptor, but the result is not formally static.
2021
2022 else
2023 Rewrite (N, Make_Integer_Literal (Loc, 0));
2024 Analyze (N);
2025 Set_Is_Static_Expression (N, False);
2026 end if;
2027
2028 ---------------
2029 -- Elab_Body --
2030 ---------------
2031
2032 -- This processing is shared by Elab_Spec
2033
2034 -- What we do is to insert the following declarations
2035
2036 -- procedure tnn;
2037 -- pragma Import (C, enn, "name___elabb/s");
2038
2039 -- and then the Elab_Body/Spec attribute is replaced by a reference
2040 -- to this defining identifier.
2041
2042 when Attribute_Elab_Body |
2043 Attribute_Elab_Spec =>
2044
2045 -- Leave attribute unexpanded in CodePeer mode: the gnat2scil
2046 -- back-end knows how to handle these attributes directly.
2047
2048 if CodePeer_Mode then
2049 return;
2050 end if;
2051
2052 Elab_Body : declare
2053 Ent : constant Entity_Id := Make_Temporary (Loc, 'E');
2054 Str : String_Id;
2055 Lang : Node_Id;
2056
2057 procedure Make_Elab_String (Nod : Node_Id);
2058 -- Given Nod, an identifier, or a selected component, put the
2059 -- image into the current string literal, with double underline
2060 -- between components.
2061
2062 ----------------------
2063 -- Make_Elab_String --
2064 ----------------------
2065
2066 procedure Make_Elab_String (Nod : Node_Id) is
2067 begin
2068 if Nkind (Nod) = N_Selected_Component then
2069 Make_Elab_String (Prefix (Nod));
2070
2071 case VM_Target is
2072 when JVM_Target =>
2073 Store_String_Char ('$');
2074 when CLI_Target =>
2075 Store_String_Char ('.');
2076 when No_VM =>
2077 Store_String_Char ('_');
2078 Store_String_Char ('_');
2079 end case;
2080
2081 Get_Name_String (Chars (Selector_Name (Nod)));
2082
2083 else
2084 pragma Assert (Nkind (Nod) = N_Identifier);
2085 Get_Name_String (Chars (Nod));
2086 end if;
2087
2088 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2089 end Make_Elab_String;
2090
2091 -- Start of processing for Elab_Body/Elab_Spec
2092
2093 begin
2094 -- First we need to prepare the string literal for the name of
2095 -- the elaboration routine to be referenced.
2096
2097 Start_String;
2098 Make_Elab_String (Pref);
2099
2100 if VM_Target = No_VM then
2101 Store_String_Chars ("___elab");
2102 Lang := Make_Identifier (Loc, Name_C);
2103 else
2104 Store_String_Chars ("._elab");
2105 Lang := Make_Identifier (Loc, Name_Ada);
2106 end if;
2107
2108 if Id = Attribute_Elab_Body then
2109 Store_String_Char ('b');
2110 else
2111 Store_String_Char ('s');
2112 end if;
2113
2114 Str := End_String;
2115
2116 Insert_Actions (N, New_List (
2117 Make_Subprogram_Declaration (Loc,
2118 Specification =>
2119 Make_Procedure_Specification (Loc,
2120 Defining_Unit_Name => Ent)),
2121
2122 Make_Pragma (Loc,
2123 Chars => Name_Import,
2124 Pragma_Argument_Associations => New_List (
2125 Make_Pragma_Argument_Association (Loc, Expression => Lang),
2126
2127 Make_Pragma_Argument_Association (Loc,
2128 Expression => Make_Identifier (Loc, Chars (Ent))),
2129
2130 Make_Pragma_Argument_Association (Loc,
2131 Expression => Make_String_Literal (Loc, Str))))));
2132
2133 Set_Entity (N, Ent);
2134 Rewrite (N, New_Occurrence_Of (Ent, Loc));
2135 end Elab_Body;
2136
2137 --------------------
2138 -- Elab_Subp_Body --
2139 --------------------
2140
2141 -- Always ignored. In CodePeer mode, gnat2scil knows how to handle
2142 -- this attribute directly, and if we are not in CodePeer mode it is
2143 -- entirely ignored ???
2144
2145 when Attribute_Elab_Subp_Body =>
2146 return;
2147
2148 ----------------
2149 -- Elaborated --
2150 ----------------
2151
2152 -- Elaborated is always True for preelaborated units, predefined units,
2153 -- pure units and units which have Elaborate_Body pragmas. These units
2154 -- have no elaboration entity.
2155
2156 -- Note: The Elaborated attribute is never passed to the back end
2157
2158 when Attribute_Elaborated => Elaborated : declare
2159 Ent : constant Entity_Id := Entity (Pref);
2160
2161 begin
2162 if Present (Elaboration_Entity (Ent)) then
2163 Rewrite (N,
2164 Make_Op_Ne (Loc,
2165 Left_Opnd =>
2166 New_Occurrence_Of (Elaboration_Entity (Ent), Loc),
2167 Right_Opnd =>
2168 Make_Integer_Literal (Loc, Uint_0)));
2169 Analyze_And_Resolve (N, Typ);
2170 else
2171 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
2172 end if;
2173 end Elaborated;
2174
2175 --------------
2176 -- Enum_Rep --
2177 --------------
2178
2179 when Attribute_Enum_Rep => Enum_Rep :
2180 begin
2181 -- X'Enum_Rep (Y) expands to
2182
2183 -- target-type (Y)
2184
2185 -- This is simply a direct conversion from the enumeration type to
2186 -- the target integer type, which is treated by the back end as a
2187 -- normal integer conversion, treating the enumeration type as an
2188 -- integer, which is exactly what we want! We set Conversion_OK to
2189 -- make sure that the analyzer does not complain about what otherwise
2190 -- might be an illegal conversion.
2191
2192 if Is_Non_Empty_List (Exprs) then
2193 Rewrite (N,
2194 OK_Convert_To (Typ, Relocate_Node (First (Exprs))));
2195
2196 -- X'Enum_Rep where X is an enumeration literal is replaced by
2197 -- the literal value.
2198
2199 elsif Ekind (Entity (Pref)) = E_Enumeration_Literal then
2200 Rewrite (N,
2201 Make_Integer_Literal (Loc, Enumeration_Rep (Entity (Pref))));
2202
2203 -- If this is a renaming of a literal, recover the representation
2204 -- of the original.
2205
2206 elsif Ekind (Entity (Pref)) = E_Constant
2207 and then Present (Renamed_Object (Entity (Pref)))
2208 and then
2209 Ekind (Entity (Renamed_Object (Entity (Pref))))
2210 = E_Enumeration_Literal
2211 then
2212 Rewrite (N,
2213 Make_Integer_Literal (Loc,
2214 Enumeration_Rep (Entity (Renamed_Object (Entity (Pref))))));
2215
2216 -- X'Enum_Rep where X is an object does a direct unchecked conversion
2217 -- of the object value, as described for the type case above.
2218
2219 else
2220 Rewrite (N,
2221 OK_Convert_To (Typ, Relocate_Node (Pref)));
2222 end if;
2223
2224 Set_Etype (N, Typ);
2225 Analyze_And_Resolve (N, Typ);
2226 end Enum_Rep;
2227
2228 --------------
2229 -- Enum_Val --
2230 --------------
2231
2232 when Attribute_Enum_Val => Enum_Val : declare
2233 Expr : Node_Id;
2234 Btyp : constant Entity_Id := Base_Type (Ptyp);
2235
2236 begin
2237 -- X'Enum_Val (Y) expands to
2238
2239 -- [constraint_error when _rep_to_pos (Y, False) = -1, msg]
2240 -- X!(Y);
2241
2242 Expr := Unchecked_Convert_To (Ptyp, First (Exprs));
2243
2244 Insert_Action (N,
2245 Make_Raise_Constraint_Error (Loc,
2246 Condition =>
2247 Make_Op_Eq (Loc,
2248 Left_Opnd =>
2249 Make_Function_Call (Loc,
2250 Name =>
2251 New_Reference_To (TSS (Btyp, TSS_Rep_To_Pos), Loc),
2252 Parameter_Associations => New_List (
2253 Relocate_Node (Duplicate_Subexpr (Expr)),
2254 New_Occurrence_Of (Standard_False, Loc))),
2255
2256 Right_Opnd => Make_Integer_Literal (Loc, -1)),
2257 Reason => CE_Range_Check_Failed));
2258
2259 Rewrite (N, Expr);
2260 Analyze_And_Resolve (N, Ptyp);
2261 end Enum_Val;
2262
2263 --------------
2264 -- Exponent --
2265 --------------
2266
2267 -- Transforms 'Exponent into a call to the floating-point attribute
2268 -- function Exponent in Fat_xxx (where xxx is the root type)
2269
2270 when Attribute_Exponent =>
2271 Expand_Fpt_Attribute_R (N);
2272
2273 ------------------
2274 -- External_Tag --
2275 ------------------
2276
2277 -- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
2278
2279 when Attribute_External_Tag => External_Tag :
2280 begin
2281 Rewrite (N,
2282 Make_Function_Call (Loc,
2283 Name => New_Reference_To (RTE (RE_External_Tag), Loc),
2284 Parameter_Associations => New_List (
2285 Make_Attribute_Reference (Loc,
2286 Attribute_Name => Name_Tag,
2287 Prefix => Prefix (N)))));
2288
2289 Analyze_And_Resolve (N, Standard_String);
2290 end External_Tag;
2291
2292 -----------
2293 -- First --
2294 -----------
2295
2296 when Attribute_First =>
2297
2298 -- If the prefix type is a constrained packed array type which
2299 -- already has a Packed_Array_Type representation defined, then
2300 -- replace this attribute with a direct reference to 'First of the
2301 -- appropriate index subtype (since otherwise the back end will try
2302 -- to give us the value of 'First for this implementation type).
2303
2304 if Is_Constrained_Packed_Array (Ptyp) then
2305 Rewrite (N,
2306 Make_Attribute_Reference (Loc,
2307 Attribute_Name => Name_First,
2308 Prefix => New_Reference_To (Get_Index_Subtype (N), Loc)));
2309 Analyze_And_Resolve (N, Typ);
2310
2311 elsif Is_Access_Type (Ptyp) then
2312 Apply_Access_Check (N);
2313 end if;
2314
2315 ---------------
2316 -- First_Bit --
2317 ---------------
2318
2319 -- Compute this if component clause was present, otherwise we leave the
2320 -- computation to be completed in the back-end, since we don't know what
2321 -- layout will be chosen.
2322
2323 when Attribute_First_Bit => First_Bit_Attr : declare
2324 CE : constant Entity_Id := Entity (Selector_Name (Pref));
2325
2326 begin
2327 -- In Ada 2005 (or later) if we have the standard nondefault
2328 -- bit order, then we return the original value as given in
2329 -- the component clause (RM 2005 13.5.2(3/2)).
2330
2331 if Present (Component_Clause (CE))
2332 and then Ada_Version >= Ada_2005
2333 and then not Reverse_Bit_Order (Scope (CE))
2334 then
2335 Rewrite (N,
2336 Make_Integer_Literal (Loc,
2337 Intval => Expr_Value (First_Bit (Component_Clause (CE)))));
2338 Analyze_And_Resolve (N, Typ);
2339
2340 -- Otherwise (Ada 83/95 or Ada 2005 or later with reverse bit order),
2341 -- rewrite with normalized value if we know it statically.
2342
2343 elsif Known_Static_Component_Bit_Offset (CE) then
2344 Rewrite (N,
2345 Make_Integer_Literal (Loc,
2346 Component_Bit_Offset (CE) mod System_Storage_Unit));
2347 Analyze_And_Resolve (N, Typ);
2348
2349 -- Otherwise left to back end, just do universal integer checks
2350
2351 else
2352 Apply_Universal_Integer_Attribute_Checks (N);
2353 end if;
2354 end First_Bit_Attr;
2355
2356 -----------------
2357 -- Fixed_Value --
2358 -----------------
2359
2360 -- We transform:
2361
2362 -- fixtype'Fixed_Value (integer-value)
2363
2364 -- into
2365
2366 -- fixtype(integer-value)
2367
2368 -- We do all the required analysis of the conversion here, because we do
2369 -- not want this to go through the fixed-point conversion circuits. Note
2370 -- that the back end always treats fixed-point as equivalent to the
2371 -- corresponding integer type anyway.
2372
2373 when Attribute_Fixed_Value => Fixed_Value :
2374 begin
2375 Rewrite (N,
2376 Make_Type_Conversion (Loc,
2377 Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
2378 Expression => Relocate_Node (First (Exprs))));
2379 Set_Etype (N, Entity (Pref));
2380 Set_Analyzed (N);
2381
2382 -- Note: it might appear that a properly analyzed unchecked conversion
2383 -- would be just fine here, but that's not the case, since the full
2384 -- range checks performed by the following call are critical!
2385
2386 Apply_Type_Conversion_Checks (N);
2387 end Fixed_Value;
2388
2389 -----------
2390 -- Floor --
2391 -----------
2392
2393 -- Transforms 'Floor into a call to the floating-point attribute
2394 -- function Floor in Fat_xxx (where xxx is the root type)
2395
2396 when Attribute_Floor =>
2397 Expand_Fpt_Attribute_R (N);
2398
2399 ----------
2400 -- Fore --
2401 ----------
2402
2403 -- For the fixed-point type Typ:
2404
2405 -- Typ'Fore
2406
2407 -- expands into
2408
2409 -- Result_Type (System.Fore (Universal_Real (Type'First)),
2410 -- Universal_Real (Type'Last))
2411
2412 -- Note that we know that the type is a non-static subtype, or Fore
2413 -- would have itself been computed dynamically in Eval_Attribute.
2414
2415 when Attribute_Fore => Fore : begin
2416 Rewrite (N,
2417 Convert_To (Typ,
2418 Make_Function_Call (Loc,
2419 Name => New_Reference_To (RTE (RE_Fore), Loc),
2420
2421 Parameter_Associations => New_List (
2422 Convert_To (Universal_Real,
2423 Make_Attribute_Reference (Loc,
2424 Prefix => New_Reference_To (Ptyp, Loc),
2425 Attribute_Name => Name_First)),
2426
2427 Convert_To (Universal_Real,
2428 Make_Attribute_Reference (Loc,
2429 Prefix => New_Reference_To (Ptyp, Loc),
2430 Attribute_Name => Name_Last))))));
2431
2432 Analyze_And_Resolve (N, Typ);
2433 end Fore;
2434
2435 --------------
2436 -- Fraction --
2437 --------------
2438
2439 -- Transforms 'Fraction into a call to the floating-point attribute
2440 -- function Fraction in Fat_xxx (where xxx is the root type)
2441
2442 when Attribute_Fraction =>
2443 Expand_Fpt_Attribute_R (N);
2444
2445 --------------
2446 -- From_Any --
2447 --------------
2448
2449 when Attribute_From_Any => From_Any : declare
2450 P_Type : constant Entity_Id := Etype (Pref);
2451 Decls : constant List_Id := New_List;
2452 begin
2453 Rewrite (N,
2454 Build_From_Any_Call (P_Type,
2455 Relocate_Node (First (Exprs)),
2456 Decls));
2457 Insert_Actions (N, Decls);
2458 Analyze_And_Resolve (N, P_Type);
2459 end From_Any;
2460
2461 --------------
2462 -- Identity --
2463 --------------
2464
2465 -- For an exception returns a reference to the exception data:
2466 -- Exception_Id!(Prefix'Reference)
2467
2468 -- For a task it returns a reference to the _task_id component of
2469 -- corresponding record:
2470
2471 -- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
2472
2473 -- in Ada.Task_Identification
2474
2475 when Attribute_Identity => Identity : declare
2476 Id_Kind : Entity_Id;
2477
2478 begin
2479 if Ptyp = Standard_Exception_Type then
2480 Id_Kind := RTE (RE_Exception_Id);
2481
2482 if Present (Renamed_Object (Entity (Pref))) then
2483 Set_Entity (Pref, Renamed_Object (Entity (Pref)));
2484 end if;
2485
2486 Rewrite (N,
2487 Unchecked_Convert_To (Id_Kind, Make_Reference (Loc, Pref)));
2488 else
2489 Id_Kind := RTE (RO_AT_Task_Id);
2490
2491 -- If the prefix is a task interface, the Task_Id is obtained
2492 -- dynamically through a dispatching call, as for other task
2493 -- attributes applied to interfaces.
2494
2495 if Ada_Version >= Ada_2005
2496 and then Ekind (Ptyp) = E_Class_Wide_Type
2497 and then Is_Interface (Ptyp)
2498 and then Is_Task_Interface (Ptyp)
2499 then
2500 Rewrite (N,
2501 Unchecked_Convert_To (Id_Kind,
2502 Make_Selected_Component (Loc,
2503 Prefix =>
2504 New_Copy_Tree (Pref),
2505 Selector_Name =>
2506 Make_Identifier (Loc, Name_uDisp_Get_Task_Id))));
2507
2508 else
2509 Rewrite (N,
2510 Unchecked_Convert_To (Id_Kind, Concurrent_Ref (Pref)));
2511 end if;
2512 end if;
2513
2514 Analyze_And_Resolve (N, Id_Kind);
2515 end Identity;
2516
2517 -----------
2518 -- Image --
2519 -----------
2520
2521 -- Image attribute is handled in separate unit Exp_Imgv
2522
2523 when Attribute_Image =>
2524 Exp_Imgv.Expand_Image_Attribute (N);
2525
2526 ---------
2527 -- Img --
2528 ---------
2529
2530 -- X'Img is expanded to typ'Image (X), where typ is the type of X
2531
2532 when Attribute_Img => Img :
2533 begin
2534 Rewrite (N,
2535 Make_Attribute_Reference (Loc,
2536 Prefix => New_Reference_To (Ptyp, Loc),
2537 Attribute_Name => Name_Image,
2538 Expressions => New_List (Relocate_Node (Pref))));
2539
2540 Analyze_And_Resolve (N, Standard_String);
2541 end Img;
2542
2543 -----------
2544 -- Input --
2545 -----------
2546
2547 when Attribute_Input => Input : declare
2548 P_Type : constant Entity_Id := Entity (Pref);
2549 B_Type : constant Entity_Id := Base_Type (P_Type);
2550 U_Type : constant Entity_Id := Underlying_Type (P_Type);
2551 Strm : constant Node_Id := First (Exprs);
2552 Fname : Entity_Id;
2553 Decl : Node_Id;
2554 Call : Node_Id;
2555 Prag : Node_Id;
2556 Arg2 : Node_Id;
2557 Rfunc : Node_Id;
2558
2559 Cntrl : Node_Id := Empty;
2560 -- Value for controlling argument in call. Always Empty except in
2561 -- the dispatching (class-wide type) case, where it is a reference
2562 -- to the dummy object initialized to the right internal tag.
2563
2564 procedure Freeze_Stream_Subprogram (F : Entity_Id);
2565 -- The expansion of the attribute reference may generate a call to
2566 -- a user-defined stream subprogram that is frozen by the call. This
2567 -- can lead to access-before-elaboration problem if the reference
2568 -- appears in an object declaration and the subprogram body has not
2569 -- been seen. The freezing of the subprogram requires special code
2570 -- because it appears in an expanded context where expressions do
2571 -- not freeze their constituents.
2572
2573 ------------------------------
2574 -- Freeze_Stream_Subprogram --
2575 ------------------------------
2576
2577 procedure Freeze_Stream_Subprogram (F : Entity_Id) is
2578 Decl : constant Node_Id := Unit_Declaration_Node (F);
2579 Bod : Node_Id;
2580
2581 begin
2582 -- If this is user-defined subprogram, the corresponding
2583 -- stream function appears as a renaming-as-body, and the
2584 -- user subprogram must be retrieved by tree traversal.
2585
2586 if Present (Decl)
2587 and then Nkind (Decl) = N_Subprogram_Declaration
2588 and then Present (Corresponding_Body (Decl))
2589 then
2590 Bod := Corresponding_Body (Decl);
2591
2592 if Nkind (Unit_Declaration_Node (Bod)) =
2593 N_Subprogram_Renaming_Declaration
2594 then
2595 Set_Is_Frozen (Entity (Name (Unit_Declaration_Node (Bod))));
2596 end if;
2597 end if;
2598 end Freeze_Stream_Subprogram;
2599
2600 -- Start of processing for Input
2601
2602 begin
2603 -- If no underlying type, we have an error that will be diagnosed
2604 -- elsewhere, so here we just completely ignore the expansion.
2605
2606 if No (U_Type) then
2607 return;
2608 end if;
2609
2610 -- If there is a TSS for Input, just call it
2611
2612 Fname := Find_Stream_Subprogram (P_Type, TSS_Stream_Input);
2613
2614 if Present (Fname) then
2615 null;
2616
2617 else
2618 -- If there is a Stream_Convert pragma, use it, we rewrite
2619
2620 -- sourcetyp'Input (stream)
2621
2622 -- as
2623
2624 -- sourcetyp (streamread (strmtyp'Input (stream)));
2625
2626 -- where streamread is the given Read function that converts an
2627 -- argument of type strmtyp to type sourcetyp or a type from which
2628 -- it is derived (extra conversion required for the derived case).
2629
2630 Prag := Get_Stream_Convert_Pragma (P_Type);
2631
2632 if Present (Prag) then
2633 Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
2634 Rfunc := Entity (Expression (Arg2));
2635
2636 Rewrite (N,
2637 Convert_To (B_Type,
2638 Make_Function_Call (Loc,
2639 Name => New_Occurrence_Of (Rfunc, Loc),
2640 Parameter_Associations => New_List (
2641 Make_Attribute_Reference (Loc,
2642 Prefix =>
2643 New_Occurrence_Of
2644 (Etype (First_Formal (Rfunc)), Loc),
2645 Attribute_Name => Name_Input,
2646 Expressions => Exprs)))));
2647
2648 Analyze_And_Resolve (N, B_Type);
2649 return;
2650
2651 -- Elementary types
2652
2653 elsif Is_Elementary_Type (U_Type) then
2654
2655 -- A special case arises if we have a defined _Read routine,
2656 -- since in this case we are required to call this routine.
2657
2658 if Present (TSS (Base_Type (U_Type), TSS_Stream_Read)) then
2659 Build_Record_Or_Elementary_Input_Function
2660 (Loc, U_Type, Decl, Fname);
2661 Insert_Action (N, Decl);
2662
2663 -- For normal cases, we call the I_xxx routine directly
2664
2665 else
2666 Rewrite (N, Build_Elementary_Input_Call (N));
2667 Analyze_And_Resolve (N, P_Type);
2668 return;
2669 end if;
2670
2671 -- Array type case
2672
2673 elsif Is_Array_Type (U_Type) then
2674 Build_Array_Input_Function (Loc, U_Type, Decl, Fname);
2675 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
2676
2677 -- Dispatching case with class-wide type
2678
2679 elsif Is_Class_Wide_Type (P_Type) then
2680
2681 -- No need to do anything else compiling under restriction
2682 -- No_Dispatching_Calls. During the semantic analysis we
2683 -- already notified such violation.
2684
2685 if Restriction_Active (No_Dispatching_Calls) then
2686 return;
2687 end if;
2688
2689 declare
2690 Rtyp : constant Entity_Id := Root_Type (P_Type);
2691 Dnn : Entity_Id;
2692 Decl : Node_Id;
2693 Expr : Node_Id;
2694
2695 begin
2696 -- Read the internal tag (RM 13.13.2(34)) and use it to
2697 -- initialize a dummy tag object:
2698
2699 -- Dnn : Ada.Tags.Tag :=
2700 -- Descendant_Tag (String'Input (Strm), P_Type);
2701
2702 -- This dummy object is used only to provide a controlling
2703 -- argument for the eventual _Input call. Descendant_Tag is
2704 -- called rather than Internal_Tag to ensure that we have a
2705 -- tag for a type that is descended from the prefix type and
2706 -- declared at the same accessibility level (the exception
2707 -- Tag_Error will be raised otherwise). The level check is
2708 -- required for Ada 2005 because tagged types can be
2709 -- extended in nested scopes (AI-344).
2710
2711 Expr :=
2712 Make_Function_Call (Loc,
2713 Name =>
2714 New_Occurrence_Of (RTE (RE_Descendant_Tag), Loc),
2715 Parameter_Associations => New_List (
2716 Make_Attribute_Reference (Loc,
2717 Prefix => New_Occurrence_Of (Standard_String, Loc),
2718 Attribute_Name => Name_Input,
2719 Expressions => New_List (
2720 Relocate_Node (Duplicate_Subexpr (Strm)))),
2721 Make_Attribute_Reference (Loc,
2722 Prefix => New_Reference_To (P_Type, Loc),
2723 Attribute_Name => Name_Tag)));
2724
2725 Dnn := Make_Temporary (Loc, 'D', Expr);
2726
2727 Decl :=
2728 Make_Object_Declaration (Loc,
2729 Defining_Identifier => Dnn,
2730 Object_Definition =>
2731 New_Occurrence_Of (RTE (RE_Tag), Loc),
2732 Expression => Expr);
2733
2734 Insert_Action (N, Decl);
2735
2736 -- Now we need to get the entity for the call, and construct
2737 -- a function call node, where we preset a reference to Dnn
2738 -- as the controlling argument (doing an unchecked convert
2739 -- to the class-wide tagged type to make it look like a real
2740 -- tagged object).
2741
2742 Fname := Find_Prim_Op (Rtyp, TSS_Stream_Input);
2743 Cntrl :=
2744 Unchecked_Convert_To (P_Type,
2745 New_Occurrence_Of (Dnn, Loc));
2746 Set_Etype (Cntrl, P_Type);
2747 Set_Parent (Cntrl, N);
2748 end;
2749
2750 -- For tagged types, use the primitive Input function
2751
2752 elsif Is_Tagged_Type (U_Type) then
2753 Fname := Find_Prim_Op (U_Type, TSS_Stream_Input);
2754
2755 -- All other record type cases, including protected records. The
2756 -- latter only arise for expander generated code for handling
2757 -- shared passive partition access.
2758
2759 else
2760 pragma Assert
2761 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
2762
2763 -- Ada 2005 (AI-216): Program_Error is raised executing default
2764 -- implementation of the Input attribute of an unchecked union
2765 -- type if the type lacks default discriminant values.
2766
2767 if Is_Unchecked_Union (Base_Type (U_Type))
2768 and then No (Discriminant_Constraint (U_Type))
2769 then
2770 Insert_Action (N,
2771 Make_Raise_Program_Error (Loc,
2772 Reason => PE_Unchecked_Union_Restriction));
2773
2774 return;
2775 end if;
2776
2777 -- Build the type's Input function, passing the subtype rather
2778 -- than its base type, because checks are needed in the case of
2779 -- constrained discriminants (see Ada 2012 AI05-0192).
2780
2781 Build_Record_Or_Elementary_Input_Function
2782 (Loc, U_Type, Decl, Fname);
2783 Insert_Action (N, Decl);
2784
2785 if Nkind (Parent (N)) = N_Object_Declaration
2786 and then Is_Record_Type (U_Type)
2787 then
2788 -- The stream function may contain calls to user-defined
2789 -- Read procedures for individual components.
2790
2791 declare
2792 Comp : Entity_Id;
2793 Func : Entity_Id;
2794
2795 begin
2796 Comp := First_Component (U_Type);
2797 while Present (Comp) loop
2798 Func :=
2799 Find_Stream_Subprogram
2800 (Etype (Comp), TSS_Stream_Read);
2801
2802 if Present (Func) then
2803 Freeze_Stream_Subprogram (Func);
2804 end if;
2805
2806 Next_Component (Comp);
2807 end loop;
2808 end;
2809 end if;
2810 end if;
2811 end if;
2812
2813 -- If we fall through, Fname is the function to be called. The result
2814 -- is obtained by calling the appropriate function, then converting
2815 -- the result. The conversion does a subtype check.
2816
2817 Call :=
2818 Make_Function_Call (Loc,
2819 Name => New_Occurrence_Of (Fname, Loc),
2820 Parameter_Associations => New_List (
2821 Relocate_Node (Strm)));
2822
2823 Set_Controlling_Argument (Call, Cntrl);
2824 Rewrite (N, Unchecked_Convert_To (P_Type, Call));
2825 Analyze_And_Resolve (N, P_Type);
2826
2827 if Nkind (Parent (N)) = N_Object_Declaration then
2828 Freeze_Stream_Subprogram (Fname);
2829 end if;
2830 end Input;
2831
2832 -------------------
2833 -- Integer_Value --
2834 -------------------
2835
2836 -- We transform
2837
2838 -- inttype'Fixed_Value (fixed-value)
2839
2840 -- into
2841
2842 -- inttype(integer-value))
2843
2844 -- we do all the required analysis of the conversion here, because we do
2845 -- not want this to go through the fixed-point conversion circuits. Note
2846 -- that the back end always treats fixed-point as equivalent to the
2847 -- corresponding integer type anyway.
2848
2849 when Attribute_Integer_Value => Integer_Value :
2850 begin
2851 Rewrite (N,
2852 Make_Type_Conversion (Loc,
2853 Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
2854 Expression => Relocate_Node (First (Exprs))));
2855 Set_Etype (N, Entity (Pref));
2856 Set_Analyzed (N);
2857
2858 -- Note: it might appear that a properly analyzed unchecked conversion
2859 -- would be just fine here, but that's not the case, since the full
2860 -- range checks performed by the following call are critical!
2861
2862 Apply_Type_Conversion_Checks (N);
2863 end Integer_Value;
2864
2865 -------------------
2866 -- Invalid_Value --
2867 -------------------
2868
2869 when Attribute_Invalid_Value =>
2870 Rewrite (N, Get_Simple_Init_Val (Ptyp, N));
2871
2872 ----------
2873 -- Last --
2874 ----------
2875
2876 when Attribute_Last =>
2877
2878 -- If the prefix type is a constrained packed array type which
2879 -- already has a Packed_Array_Type representation defined, then
2880 -- replace this attribute with a direct reference to 'Last of the
2881 -- appropriate index subtype (since otherwise the back end will try
2882 -- to give us the value of 'Last for this implementation type).
2883
2884 if Is_Constrained_Packed_Array (Ptyp) then
2885 Rewrite (N,
2886 Make_Attribute_Reference (Loc,
2887 Attribute_Name => Name_Last,
2888 Prefix => New_Reference_To (Get_Index_Subtype (N), Loc)));
2889 Analyze_And_Resolve (N, Typ);
2890
2891 elsif Is_Access_Type (Ptyp) then
2892 Apply_Access_Check (N);
2893 end if;
2894
2895 --------------
2896 -- Last_Bit --
2897 --------------
2898
2899 -- We compute this if a component clause was present, otherwise we leave
2900 -- the computation up to the back end, since we don't know what layout
2901 -- will be chosen.
2902
2903 when Attribute_Last_Bit => Last_Bit_Attr : declare
2904 CE : constant Entity_Id := Entity (Selector_Name (Pref));
2905
2906 begin
2907 -- In Ada 2005 (or later) if we have the standard nondefault
2908 -- bit order, then we return the original value as given in
2909 -- the component clause (RM 2005 13.5.2(4/2)).
2910
2911 if Present (Component_Clause (CE))
2912 and then Ada_Version >= Ada_2005
2913 and then not Reverse_Bit_Order (Scope (CE))
2914 then
2915 Rewrite (N,
2916 Make_Integer_Literal (Loc,
2917 Intval => Expr_Value (Last_Bit (Component_Clause (CE)))));
2918 Analyze_And_Resolve (N, Typ);
2919
2920 -- Otherwise (Ada 83/95 or Ada 2005 or later with reverse bit order),
2921 -- rewrite with normalized value if we know it statically.
2922
2923 elsif Known_Static_Component_Bit_Offset (CE)
2924 and then Known_Static_Esize (CE)
2925 then
2926 Rewrite (N,
2927 Make_Integer_Literal (Loc,
2928 Intval => (Component_Bit_Offset (CE) mod System_Storage_Unit)
2929 + Esize (CE) - 1));
2930 Analyze_And_Resolve (N, Typ);
2931
2932 -- Otherwise leave to back end, just apply universal integer checks
2933
2934 else
2935 Apply_Universal_Integer_Attribute_Checks (N);
2936 end if;
2937 end Last_Bit_Attr;
2938
2939 ------------------
2940 -- Leading_Part --
2941 ------------------
2942
2943 -- Transforms 'Leading_Part into a call to the floating-point attribute
2944 -- function Leading_Part in Fat_xxx (where xxx is the root type)
2945
2946 -- Note: strictly, we should generate special case code to deal with
2947 -- absurdly large positive arguments (greater than Integer'Last), which
2948 -- result in returning the first argument unchanged, but it hardly seems
2949 -- worth the effort. We raise constraint error for absurdly negative
2950 -- arguments which is fine.
2951
2952 when Attribute_Leading_Part =>
2953 Expand_Fpt_Attribute_RI (N);
2954
2955 ------------
2956 -- Length --
2957 ------------
2958
2959 when Attribute_Length => Length : declare
2960 Ityp : Entity_Id;
2961 Xnum : Uint;
2962
2963 begin
2964 -- Processing for packed array types
2965
2966 if Is_Array_Type (Ptyp) and then Is_Packed (Ptyp) then
2967 Ityp := Get_Index_Subtype (N);
2968
2969 -- If the index type, Ityp, is an enumeration type with holes,
2970 -- then we calculate X'Length explicitly using
2971
2972 -- Typ'Max
2973 -- (0, Ityp'Pos (X'Last (N)) -
2974 -- Ityp'Pos (X'First (N)) + 1);
2975
2976 -- Since the bounds in the template are the representation values
2977 -- and the back end would get the wrong value.
2978
2979 if Is_Enumeration_Type (Ityp)
2980 and then Present (Enum_Pos_To_Rep (Base_Type (Ityp)))
2981 then
2982 if No (Exprs) then
2983 Xnum := Uint_1;
2984 else
2985 Xnum := Expr_Value (First (Expressions (N)));
2986 end if;
2987
2988 Rewrite (N,
2989 Make_Attribute_Reference (Loc,
2990 Prefix => New_Occurrence_Of (Typ, Loc),
2991 Attribute_Name => Name_Max,
2992 Expressions => New_List
2993 (Make_Integer_Literal (Loc, 0),
2994
2995 Make_Op_Add (Loc,
2996 Left_Opnd =>
2997 Make_Op_Subtract (Loc,
2998 Left_Opnd =>
2999 Make_Attribute_Reference (Loc,
3000 Prefix => New_Occurrence_Of (Ityp, Loc),
3001 Attribute_Name => Name_Pos,
3002
3003 Expressions => New_List (
3004 Make_Attribute_Reference (Loc,
3005 Prefix => Duplicate_Subexpr (Pref),
3006 Attribute_Name => Name_Last,
3007 Expressions => New_List (
3008 Make_Integer_Literal (Loc, Xnum))))),
3009
3010 Right_Opnd =>
3011 Make_Attribute_Reference (Loc,
3012 Prefix => New_Occurrence_Of (Ityp, Loc),
3013 Attribute_Name => Name_Pos,
3014
3015 Expressions => New_List (
3016 Make_Attribute_Reference (Loc,
3017 Prefix =>
3018 Duplicate_Subexpr_No_Checks (Pref),
3019 Attribute_Name => Name_First,
3020 Expressions => New_List (
3021 Make_Integer_Literal (Loc, Xnum)))))),
3022
3023 Right_Opnd => Make_Integer_Literal (Loc, 1)))));
3024
3025 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
3026 return;
3027
3028 -- If the prefix type is a constrained packed array type which
3029 -- already has a Packed_Array_Type representation defined, then
3030 -- replace this attribute with a direct reference to 'Range_Length
3031 -- of the appropriate index subtype (since otherwise the back end
3032 -- will try to give us the value of 'Length for this
3033 -- implementation type).
3034
3035 elsif Is_Constrained (Ptyp) then
3036 Rewrite (N,
3037 Make_Attribute_Reference (Loc,
3038 Attribute_Name => Name_Range_Length,
3039 Prefix => New_Reference_To (Ityp, Loc)));
3040 Analyze_And_Resolve (N, Typ);
3041 end if;
3042
3043 -- Access type case
3044
3045 elsif Is_Access_Type (Ptyp) then
3046 Apply_Access_Check (N);
3047
3048 -- If the designated type is a packed array type, then we convert
3049 -- the reference to:
3050
3051 -- typ'Max (0, 1 +
3052 -- xtyp'Pos (Pref'Last (Expr)) -
3053 -- xtyp'Pos (Pref'First (Expr)));
3054
3055 -- This is a bit complex, but it is the easiest thing to do that
3056 -- works in all cases including enum types with holes xtyp here
3057 -- is the appropriate index type.
3058
3059 declare
3060 Dtyp : constant Entity_Id := Designated_Type (Ptyp);
3061 Xtyp : Entity_Id;
3062
3063 begin
3064 if Is_Array_Type (Dtyp) and then Is_Packed (Dtyp) then
3065 Xtyp := Get_Index_Subtype (N);
3066
3067 Rewrite (N,
3068 Make_Attribute_Reference (Loc,
3069 Prefix => New_Occurrence_Of (Typ, Loc),
3070 Attribute_Name => Name_Max,
3071 Expressions => New_List (
3072 Make_Integer_Literal (Loc, 0),
3073
3074 Make_Op_Add (Loc,
3075 Make_Integer_Literal (Loc, 1),
3076 Make_Op_Subtract (Loc,
3077 Left_Opnd =>
3078 Make_Attribute_Reference (Loc,
3079 Prefix => New_Occurrence_Of (Xtyp, Loc),
3080 Attribute_Name => Name_Pos,
3081 Expressions => New_List (
3082 Make_Attribute_Reference (Loc,
3083 Prefix => Duplicate_Subexpr (Pref),
3084 Attribute_Name => Name_Last,
3085 Expressions =>
3086 New_Copy_List (Exprs)))),
3087
3088 Right_Opnd =>
3089 Make_Attribute_Reference (Loc,
3090 Prefix => New_Occurrence_Of (Xtyp, Loc),
3091 Attribute_Name => Name_Pos,
3092 Expressions => New_List (
3093 Make_Attribute_Reference (Loc,
3094 Prefix =>
3095 Duplicate_Subexpr_No_Checks (Pref),
3096 Attribute_Name => Name_First,
3097 Expressions =>
3098 New_Copy_List (Exprs)))))))));
3099
3100 Analyze_And_Resolve (N, Typ);
3101 end if;
3102 end;
3103
3104 -- Otherwise leave it to the back end
3105
3106 else
3107 Apply_Universal_Integer_Attribute_Checks (N);
3108 end if;
3109 end Length;
3110
3111 -- The expansion of this attribute is carried out when the target loop
3112 -- is processed. See Expand_Loop_Entry_Attributes for details.
3113
3114 when Attribute_Loop_Entry =>
3115 null;
3116
3117 -------------
3118 -- Machine --
3119 -------------
3120
3121 -- Transforms 'Machine into a call to the floating-point attribute
3122 -- function Machine in Fat_xxx (where xxx is the root type)
3123
3124 when Attribute_Machine =>
3125 Expand_Fpt_Attribute_R (N);
3126
3127 ----------------------
3128 -- Machine_Rounding --
3129 ----------------------
3130
3131 -- Transforms 'Machine_Rounding into a call to the floating-point
3132 -- attribute function Machine_Rounding in Fat_xxx (where xxx is the root
3133 -- type). Expansion is avoided for cases the back end can handle
3134 -- directly.
3135
3136 when Attribute_Machine_Rounding =>
3137 if not Is_Inline_Floating_Point_Attribute (N) then
3138 Expand_Fpt_Attribute_R (N);
3139 end if;
3140
3141 ------------------
3142 -- Machine_Size --
3143 ------------------
3144
3145 -- Machine_Size is equivalent to Object_Size, so transform it into
3146 -- Object_Size and that way the back end never sees Machine_Size.
3147
3148 when Attribute_Machine_Size =>
3149 Rewrite (N,
3150 Make_Attribute_Reference (Loc,
3151 Prefix => Prefix (N),
3152 Attribute_Name => Name_Object_Size));
3153
3154 Analyze_And_Resolve (N, Typ);
3155
3156 --------------
3157 -- Mantissa --
3158 --------------
3159
3160 -- The only case that can get this far is the dynamic case of the old
3161 -- Ada 83 Mantissa attribute for the fixed-point case. For this case,
3162 -- we expand:
3163
3164 -- typ'Mantissa
3165
3166 -- into
3167
3168 -- ityp (System.Mantissa.Mantissa_Value
3169 -- (Integer'Integer_Value (typ'First),
3170 -- Integer'Integer_Value (typ'Last)));
3171
3172 when Attribute_Mantissa => Mantissa : begin
3173 Rewrite (N,
3174 Convert_To (Typ,
3175 Make_Function_Call (Loc,
3176 Name => New_Occurrence_Of (RTE (RE_Mantissa_Value), Loc),
3177
3178 Parameter_Associations => New_List (
3179
3180 Make_Attribute_Reference (Loc,
3181 Prefix => New_Occurrence_Of (Standard_Integer, Loc),
3182 Attribute_Name => Name_Integer_Value,
3183 Expressions => New_List (
3184
3185 Make_Attribute_Reference (Loc,
3186 Prefix => New_Occurrence_Of (Ptyp, Loc),
3187 Attribute_Name => Name_First))),
3188
3189 Make_Attribute_Reference (Loc,
3190 Prefix => New_Occurrence_Of (Standard_Integer, Loc),
3191 Attribute_Name => Name_Integer_Value,
3192 Expressions => New_List (
3193
3194 Make_Attribute_Reference (Loc,
3195 Prefix => New_Occurrence_Of (Ptyp, Loc),
3196 Attribute_Name => Name_Last)))))));
3197
3198 Analyze_And_Resolve (N, Typ);
3199 end Mantissa;
3200
3201 ----------------------------------
3202 -- Max_Size_In_Storage_Elements --
3203 ----------------------------------
3204
3205 when Attribute_Max_Size_In_Storage_Elements => declare
3206 Typ : constant Entity_Id := Etype (N);
3207 Attr : Node_Id;
3208
3209 Conversion_Added : Boolean := False;
3210 -- A flag which tracks whether the original attribute has been
3211 -- wrapped inside a type conversion.
3212
3213 begin
3214 Apply_Universal_Integer_Attribute_Checks (N);
3215
3216 -- The universal integer check may sometimes add a type conversion,
3217 -- retrieve the original attribute reference from the expression.
3218
3219 Attr := N;
3220 if Nkind (Attr) = N_Type_Conversion then
3221 Attr := Expression (Attr);
3222 Conversion_Added := True;
3223 end if;
3224
3225 -- Heap-allocated controlled objects contain two extra pointers which
3226 -- are not part of the actual type. Transform the attribute reference
3227 -- into a runtime expression to add the size of the hidden header.
3228
3229 -- Do not perform this expansion on .NET/JVM targets because the
3230 -- two pointers are already present in the type.
3231
3232 if VM_Target = No_VM
3233 and then Nkind (Attr) = N_Attribute_Reference
3234 and then Needs_Finalization (Ptyp)
3235 and then not Header_Size_Added (Attr)
3236 then
3237 Set_Header_Size_Added (Attr);
3238
3239 -- Generate:
3240 -- P'Max_Size_In_Storage_Elements +
3241 -- Universal_Integer
3242 -- (Header_Size_With_Padding (Ptyp'Alignment))
3243
3244 Rewrite (Attr,
3245 Make_Op_Add (Loc,
3246 Left_Opnd => Relocate_Node (Attr),
3247 Right_Opnd =>
3248 Convert_To (Universal_Integer,
3249 Make_Function_Call (Loc,
3250 Name =>
3251 New_Reference_To
3252 (RTE (RE_Header_Size_With_Padding), Loc),
3253
3254 Parameter_Associations => New_List (
3255 Make_Attribute_Reference (Loc,
3256 Prefix =>
3257 New_Reference_To (Ptyp, Loc),
3258 Attribute_Name => Name_Alignment))))));
3259
3260 -- Add a conversion to the target type
3261
3262 if not Conversion_Added then
3263 Rewrite (Attr,
3264 Make_Type_Conversion (Loc,
3265 Subtype_Mark => New_Reference_To (Typ, Loc),
3266 Expression => Relocate_Node (Attr)));
3267 end if;
3268
3269 Analyze (Attr);
3270 return;
3271 end if;
3272 end;
3273
3274 --------------------
3275 -- Mechanism_Code --
3276 --------------------
3277
3278 when Attribute_Mechanism_Code =>
3279
3280 -- We must replace the prefix in the renamed case
3281
3282 if Is_Entity_Name (Pref)
3283 and then Present (Alias (Entity (Pref)))
3284 then
3285 Set_Renamed_Subprogram (Pref, Alias (Entity (Pref)));
3286 end if;
3287
3288 ---------
3289 -- Mod --
3290 ---------
3291
3292 when Attribute_Mod => Mod_Case : declare
3293 Arg : constant Node_Id := Relocate_Node (First (Exprs));
3294 Hi : constant Node_Id := Type_High_Bound (Etype (Arg));
3295 Modv : constant Uint := Modulus (Btyp);
3296
3297 begin
3298
3299 -- This is not so simple. The issue is what type to use for the
3300 -- computation of the modular value.
3301
3302 -- The easy case is when the modulus value is within the bounds
3303 -- of the signed integer type of the argument. In this case we can
3304 -- just do the computation in that signed integer type, and then
3305 -- do an ordinary conversion to the target type.
3306
3307 if Modv <= Expr_Value (Hi) then
3308 Rewrite (N,
3309 Convert_To (Btyp,
3310 Make_Op_Mod (Loc,
3311 Left_Opnd => Arg,
3312 Right_Opnd => Make_Integer_Literal (Loc, Modv))));
3313
3314 -- Here we know that the modulus is larger than type'Last of the
3315 -- integer type. There are two cases to consider:
3316
3317 -- a) The integer value is non-negative. In this case, it is
3318 -- returned as the result (since it is less than the modulus).
3319
3320 -- b) The integer value is negative. In this case, we know that the
3321 -- result is modulus + value, where the value might be as small as
3322 -- -modulus. The trouble is what type do we use to do the subtract.
3323 -- No type will do, since modulus can be as big as 2**64, and no
3324 -- integer type accommodates this value. Let's do bit of algebra
3325
3326 -- modulus + value
3327 -- = modulus - (-value)
3328 -- = (modulus - 1) - (-value - 1)
3329
3330 -- Now modulus - 1 is certainly in range of the modular type.
3331 -- -value is in the range 1 .. modulus, so -value -1 is in the
3332 -- range 0 .. modulus-1 which is in range of the modular type.
3333 -- Furthermore, (-value - 1) can be expressed as -(value + 1)
3334 -- which we can compute using the integer base type.
3335
3336 -- Once this is done we analyze the if expression without range
3337 -- checks, because we know everything is in range, and we want
3338 -- to prevent spurious warnings on either branch.
3339
3340 else
3341 Rewrite (N,
3342 Make_If_Expression (Loc,
3343 Expressions => New_List (
3344 Make_Op_Ge (Loc,
3345 Left_Opnd => Duplicate_Subexpr (Arg),
3346 Right_Opnd => Make_Integer_Literal (Loc, 0)),
3347
3348 Convert_To (Btyp,
3349 Duplicate_Subexpr_No_Checks (Arg)),
3350
3351 Make_Op_Subtract (Loc,
3352 Left_Opnd =>
3353 Make_Integer_Literal (Loc,
3354 Intval => Modv - 1),
3355 Right_Opnd =>
3356 Convert_To (Btyp,
3357 Make_Op_Minus (Loc,
3358 Right_Opnd =>
3359 Make_Op_Add (Loc,
3360 Left_Opnd => Duplicate_Subexpr_No_Checks (Arg),
3361 Right_Opnd =>
3362 Make_Integer_Literal (Loc,
3363 Intval => 1))))))));
3364
3365 end if;
3366
3367 Analyze_And_Resolve (N, Btyp, Suppress => All_Checks);
3368 end Mod_Case;
3369
3370 -----------
3371 -- Model --
3372 -----------
3373
3374 -- Transforms 'Model into a call to the floating-point attribute
3375 -- function Model in Fat_xxx (where xxx is the root type)
3376
3377 when Attribute_Model =>
3378 Expand_Fpt_Attribute_R (N);
3379
3380 -----------------
3381 -- Object_Size --
3382 -----------------
3383
3384 -- The processing for Object_Size shares the processing for Size
3385
3386 ---------
3387 -- Old --
3388 ---------
3389
3390 when Attribute_Old => Old : declare
3391 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', Pref);
3392 Subp : Node_Id;
3393 Asn_Stm : Node_Id;
3394
3395 begin
3396 -- If assertions are disabled, no need to create the declaration
3397 -- that preserves the value.
3398
3399 if not Assertions_Enabled then
3400 return;
3401 end if;
3402
3403 -- Find the nearest subprogram body, ignoring _Preconditions
3404
3405 Subp := N;
3406 loop
3407 Subp := Parent (Subp);
3408 exit when Nkind (Subp) = N_Subprogram_Body
3409 and then Chars (Defining_Entity (Subp)) /= Name_uPostconditions;
3410 end loop;
3411
3412 -- Insert the initialized object declaration at the start of the
3413 -- subprogram's declarations.
3414
3415 Asn_Stm :=
3416 Make_Object_Declaration (Loc,
3417 Defining_Identifier => Tnn,
3418 Constant_Present => True,
3419 Object_Definition => New_Occurrence_Of (Etype (N), Loc),
3420 Expression => Pref);
3421
3422 -- Push the subprogram's scope, so that the object will be analyzed
3423 -- in that context (rather than the context of the Precondition
3424 -- subprogram) and will have its Scope set properly.
3425
3426 if Present (Corresponding_Spec (Subp)) then
3427 Push_Scope (Corresponding_Spec (Subp));
3428 else
3429 Push_Scope (Defining_Entity (Subp));
3430 end if;
3431
3432 if Is_Empty_List (Declarations (Subp)) then
3433 Set_Declarations (Subp, New_List (Asn_Stm));
3434 Analyze (Asn_Stm);
3435 else
3436 Insert_Action (First (Declarations (Subp)), Asn_Stm);
3437 end if;
3438
3439 Pop_Scope;
3440
3441 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
3442 end Old;
3443
3444 ----------------------
3445 -- Overlaps_Storage --
3446 ----------------------
3447
3448 when Attribute_Overlaps_Storage => Overlaps_Storage : declare
3449 Loc : constant Source_Ptr := Sloc (N);
3450
3451 X : constant Node_Id := Prefix (N);
3452 Y : constant Node_Id := First (Expressions (N));
3453 -- The argumens
3454
3455 X_Addr, Y_Addr : Node_Id;
3456 -- the expressions for their integer addresses
3457
3458 X_Size, Y_Size : Node_Id;
3459 -- the expressions for their sizes
3460
3461 Cond : Node_Id;
3462
3463 begin
3464 -- Attribute expands into:
3465
3466 -- if X'Address < Y'address then
3467 -- (X'address + X'Size - 1) >= Y'address
3468 -- else
3469 -- (Y'address + Y'size - 1) >= X'Address
3470 -- end if;
3471
3472 -- with the proper address operations. We convert addresses to
3473 -- integer addresses to use predefined arithmetic. The size is
3474 -- expressed in storage units.
3475
3476 X_Addr :=
3477 Unchecked_Convert_To (RTE (RE_Integer_Address),
3478 Make_Attribute_Reference (Loc,
3479 Attribute_Name => Name_Address,
3480 Prefix => New_Copy_Tree (X)));
3481
3482 Y_Addr :=
3483 Unchecked_Convert_To (RTE (RE_Integer_Address),
3484 Make_Attribute_Reference (Loc,
3485 Attribute_Name => Name_Address,
3486 Prefix => New_Copy_Tree (Y)));
3487
3488 X_Size :=
3489 Make_Op_Divide (Loc,
3490 Left_Opnd =>
3491 Make_Attribute_Reference (Loc,
3492 Attribute_Name => Name_Size,
3493 Prefix => New_Copy_Tree (X)),
3494 Right_Opnd =>
3495 Make_Integer_Literal (Loc, System_Storage_Unit));
3496
3497 Y_Size :=
3498 Make_Op_Divide (Loc,
3499 Left_Opnd =>
3500 Make_Attribute_Reference (Loc,
3501 Attribute_Name => Name_Size,
3502 Prefix => New_Copy_Tree (Y)),
3503 Right_Opnd =>
3504 Make_Integer_Literal (Loc, System_Storage_Unit));
3505
3506 Cond :=
3507 Make_Op_Le (Loc,
3508 Left_Opnd => X_Addr,
3509 Right_Opnd => Y_Addr);
3510
3511 Rewrite (N,
3512 Make_If_Expression (Loc,
3513 New_List (
3514 Cond,
3515
3516 Make_Op_Ge (Loc,
3517 Left_Opnd =>
3518 Make_Op_Add (Loc,
3519 Left_Opnd => X_Addr,
3520 Right_Opnd =>
3521 Make_Op_Subtract (Loc,
3522 Left_Opnd => X_Size,
3523 Right_Opnd => Make_Integer_Literal (Loc, 1))),
3524 Right_Opnd => Y_Addr),
3525
3526 Make_Op_Ge (Loc,
3527 Make_Op_Add (Loc,
3528 Left_Opnd => Y_Addr,
3529 Right_Opnd =>
3530 Make_Op_Subtract (Loc,
3531 Left_Opnd => Y_Size,
3532 Right_Opnd => Make_Integer_Literal (Loc, 1))),
3533 Right_Opnd => X_Addr))));
3534
3535 Analyze_And_Resolve (N, Standard_Boolean);
3536 end Overlaps_Storage;
3537
3538 ------------
3539 -- Output --
3540 ------------
3541
3542 when Attribute_Output => Output : declare
3543 P_Type : constant Entity_Id := Entity (Pref);
3544 U_Type : constant Entity_Id := Underlying_Type (P_Type);
3545 Pname : Entity_Id;
3546 Decl : Node_Id;
3547 Prag : Node_Id;
3548 Arg3 : Node_Id;
3549 Wfunc : Node_Id;
3550
3551 begin
3552 -- If no underlying type, we have an error that will be diagnosed
3553 -- elsewhere, so here we just completely ignore the expansion.
3554
3555 if No (U_Type) then
3556 return;
3557 end if;
3558
3559 -- If TSS for Output is present, just call it
3560
3561 Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Output);
3562
3563 if Present (Pname) then
3564 null;
3565
3566 else
3567 -- If there is a Stream_Convert pragma, use it, we rewrite
3568
3569 -- sourcetyp'Output (stream, Item)
3570
3571 -- as
3572
3573 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
3574
3575 -- where strmwrite is the given Write function that converts an
3576 -- argument of type sourcetyp or a type acctyp, from which it is
3577 -- derived to type strmtyp. The conversion to acttyp is required
3578 -- for the derived case.
3579
3580 Prag := Get_Stream_Convert_Pragma (P_Type);
3581
3582 if Present (Prag) then
3583 Arg3 :=
3584 Next (Next (First (Pragma_Argument_Associations (Prag))));
3585 Wfunc := Entity (Expression (Arg3));
3586
3587 Rewrite (N,
3588 Make_Attribute_Reference (Loc,
3589 Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
3590 Attribute_Name => Name_Output,
3591 Expressions => New_List (
3592 Relocate_Node (First (Exprs)),
3593 Make_Function_Call (Loc,
3594 Name => New_Occurrence_Of (Wfunc, Loc),
3595 Parameter_Associations => New_List (
3596 OK_Convert_To (Etype (First_Formal (Wfunc)),
3597 Relocate_Node (Next (First (Exprs)))))))));
3598
3599 Analyze (N);
3600 return;
3601
3602 -- For elementary types, we call the W_xxx routine directly.
3603 -- Note that the effect of Write and Output is identical for
3604 -- the case of an elementary type, since there are no
3605 -- discriminants or bounds.
3606
3607 elsif Is_Elementary_Type (U_Type) then
3608
3609 -- A special case arises if we have a defined _Write routine,
3610 -- since in this case we are required to call this routine.
3611
3612 if Present (TSS (Base_Type (U_Type), TSS_Stream_Write)) then
3613 Build_Record_Or_Elementary_Output_Procedure
3614 (Loc, U_Type, Decl, Pname);
3615 Insert_Action (N, Decl);
3616
3617 -- For normal cases, we call the W_xxx routine directly
3618
3619 else
3620 Rewrite (N, Build_Elementary_Write_Call (N));
3621 Analyze (N);
3622 return;
3623 end if;
3624
3625 -- Array type case
3626
3627 elsif Is_Array_Type (U_Type) then
3628 Build_Array_Output_Procedure (Loc, U_Type, Decl, Pname);
3629 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
3630
3631 -- Class-wide case, first output external tag, then dispatch
3632 -- to the appropriate primitive Output function (RM 13.13.2(31)).
3633
3634 elsif Is_Class_Wide_Type (P_Type) then
3635
3636 -- No need to do anything else compiling under restriction
3637 -- No_Dispatching_Calls. During the semantic analysis we
3638 -- already notified such violation.
3639
3640 if Restriction_Active (No_Dispatching_Calls) then
3641 return;
3642 end if;
3643
3644 Tag_Write : declare
3645 Strm : constant Node_Id := First (Exprs);
3646 Item : constant Node_Id := Next (Strm);
3647
3648 begin
3649 -- Ada 2005 (AI-344): Check that the accessibility level
3650 -- of the type of the output object is not deeper than
3651 -- that of the attribute's prefix type.
3652
3653 -- if Get_Access_Level (Item'Tag)
3654 -- /= Get_Access_Level (P_Type'Tag)
3655 -- then
3656 -- raise Tag_Error;
3657 -- end if;
3658
3659 -- String'Output (Strm, External_Tag (Item'Tag));
3660
3661 -- We cannot figure out a practical way to implement this
3662 -- accessibility check on virtual machines, so we omit it.
3663
3664 if Ada_Version >= Ada_2005
3665 and then Tagged_Type_Expansion
3666 then
3667 Insert_Action (N,
3668 Make_Implicit_If_Statement (N,
3669 Condition =>
3670 Make_Op_Ne (Loc,
3671 Left_Opnd =>
3672 Build_Get_Access_Level (Loc,
3673 Make_Attribute_Reference (Loc,
3674 Prefix =>
3675 Relocate_Node (
3676 Duplicate_Subexpr (Item,
3677 Name_Req => True)),
3678 Attribute_Name => Name_Tag)),
3679
3680 Right_Opnd =>
3681 Make_Integer_Literal (Loc,
3682 Type_Access_Level (P_Type))),
3683
3684 Then_Statements =>
3685 New_List (Make_Raise_Statement (Loc,
3686 New_Occurrence_Of (
3687 RTE (RE_Tag_Error), Loc)))));
3688 end if;
3689
3690 Insert_Action (N,
3691 Make_Attribute_Reference (Loc,
3692 Prefix => New_Occurrence_Of (Standard_String, Loc),
3693 Attribute_Name => Name_Output,
3694 Expressions => New_List (
3695 Relocate_Node (Duplicate_Subexpr (Strm)),
3696 Make_Function_Call (Loc,
3697 Name =>
3698 New_Occurrence_Of (RTE (RE_External_Tag), Loc),
3699 Parameter_Associations => New_List (
3700 Make_Attribute_Reference (Loc,
3701 Prefix =>
3702 Relocate_Node
3703 (Duplicate_Subexpr (Item, Name_Req => True)),
3704 Attribute_Name => Name_Tag))))));
3705 end Tag_Write;
3706
3707 Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
3708
3709 -- Tagged type case, use the primitive Output function
3710
3711 elsif Is_Tagged_Type (U_Type) then
3712 Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
3713
3714 -- All other record type cases, including protected records.
3715 -- The latter only arise for expander generated code for
3716 -- handling shared passive partition access.
3717
3718 else
3719 pragma Assert
3720 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
3721
3722 -- Ada 2005 (AI-216): Program_Error is raised when executing
3723 -- the default implementation of the Output attribute of an
3724 -- unchecked union type if the type lacks default discriminant
3725 -- values.
3726
3727 if Is_Unchecked_Union (Base_Type (U_Type))
3728 and then No (Discriminant_Constraint (U_Type))
3729 then
3730 Insert_Action (N,
3731 Make_Raise_Program_Error (Loc,
3732 Reason => PE_Unchecked_Union_Restriction));
3733
3734 return;
3735 end if;
3736
3737 Build_Record_Or_Elementary_Output_Procedure
3738 (Loc, Base_Type (U_Type), Decl, Pname);
3739 Insert_Action (N, Decl);
3740 end if;
3741 end if;
3742
3743 -- If we fall through, Pname is the name of the procedure to call
3744
3745 Rewrite_Stream_Proc_Call (Pname);
3746 end Output;
3747
3748 ---------
3749 -- Pos --
3750 ---------
3751
3752 -- For enumeration types with a standard representation, Pos is
3753 -- handled by the back end.
3754
3755 -- For enumeration types, with a non-standard representation we generate
3756 -- a call to the _Rep_To_Pos function created when the type was frozen.
3757 -- The call has the form
3758
3759 -- _rep_to_pos (expr, flag)
3760
3761 -- The parameter flag is True if range checks are enabled, causing
3762 -- Program_Error to be raised if the expression has an invalid
3763 -- representation, and False if range checks are suppressed.
3764
3765 -- For integer types, Pos is equivalent to a simple integer
3766 -- conversion and we rewrite it as such
3767
3768 when Attribute_Pos => Pos :
3769 declare
3770 Etyp : Entity_Id := Base_Type (Entity (Pref));
3771
3772 begin
3773 -- Deal with zero/non-zero boolean values
3774
3775 if Is_Boolean_Type (Etyp) then
3776 Adjust_Condition (First (Exprs));
3777 Etyp := Standard_Boolean;
3778 Set_Prefix (N, New_Occurrence_Of (Standard_Boolean, Loc));
3779 end if;
3780
3781 -- Case of enumeration type
3782
3783 if Is_Enumeration_Type (Etyp) then
3784
3785 -- Non-standard enumeration type (generate call)
3786
3787 if Present (Enum_Pos_To_Rep (Etyp)) then
3788 Append_To (Exprs, Rep_To_Pos_Flag (Etyp, Loc));
3789 Rewrite (N,
3790 Convert_To (Typ,
3791 Make_Function_Call (Loc,
3792 Name =>
3793 New_Reference_To (TSS (Etyp, TSS_Rep_To_Pos), Loc),
3794 Parameter_Associations => Exprs)));
3795
3796 Analyze_And_Resolve (N, Typ);
3797
3798 -- Standard enumeration type (do universal integer check)
3799
3800 else
3801 Apply_Universal_Integer_Attribute_Checks (N);
3802 end if;
3803
3804 -- Deal with integer types (replace by conversion)
3805
3806 elsif Is_Integer_Type (Etyp) then
3807 Rewrite (N, Convert_To (Typ, First (Exprs)));
3808 Analyze_And_Resolve (N, Typ);
3809 end if;
3810
3811 end Pos;
3812
3813 --------------
3814 -- Position --
3815 --------------
3816
3817 -- We compute this if a component clause was present, otherwise we leave
3818 -- the computation up to the back end, since we don't know what layout
3819 -- will be chosen.
3820
3821 when Attribute_Position => Position_Attr :
3822 declare
3823 CE : constant Entity_Id := Entity (Selector_Name (Pref));
3824
3825 begin
3826 if Present (Component_Clause (CE)) then
3827
3828 -- In Ada 2005 (or later) if we have the standard nondefault
3829 -- bit order, then we return the original value as given in
3830 -- the component clause (RM 2005 13.5.2(2/2)).
3831
3832 if Ada_Version >= Ada_2005
3833 and then not Reverse_Bit_Order (Scope (CE))
3834 then
3835 Rewrite (N,
3836 Make_Integer_Literal (Loc,
3837 Intval => Expr_Value (Position (Component_Clause (CE)))));
3838
3839 -- Otherwise (Ada 83 or 95, or reverse bit order specified in
3840 -- later Ada version), return the normalized value.
3841
3842 else
3843 Rewrite (N,
3844 Make_Integer_Literal (Loc,
3845 Intval => Component_Bit_Offset (CE) / System_Storage_Unit));
3846 end if;
3847
3848 Analyze_And_Resolve (N, Typ);
3849
3850 -- If back end is doing things, just apply universal integer checks
3851
3852 else
3853 Apply_Universal_Integer_Attribute_Checks (N);
3854 end if;
3855 end Position_Attr;
3856
3857 ----------
3858 -- Pred --
3859 ----------
3860
3861 -- 1. Deal with enumeration types with holes
3862 -- 2. For floating-point, generate call to attribute function
3863 -- 3. For other cases, deal with constraint checking
3864
3865 when Attribute_Pred => Pred :
3866 declare
3867 Etyp : constant Entity_Id := Base_Type (Ptyp);
3868
3869 begin
3870
3871 -- For enumeration types with non-standard representations, we
3872 -- expand typ'Pred (x) into
3873
3874 -- Pos_To_Rep (Rep_To_Pos (x) - 1)
3875
3876 -- If the representation is contiguous, we compute instead
3877 -- Lit1 + Rep_to_Pos (x -1), to catch invalid representations.
3878 -- The conversion function Enum_Pos_To_Rep is defined on the
3879 -- base type, not the subtype, so we have to use the base type
3880 -- explicitly for this and other enumeration attributes.
3881
3882 if Is_Enumeration_Type (Ptyp)
3883 and then Present (Enum_Pos_To_Rep (Etyp))
3884 then
3885 if Has_Contiguous_Rep (Etyp) then
3886 Rewrite (N,
3887 Unchecked_Convert_To (Ptyp,
3888 Make_Op_Add (Loc,
3889 Left_Opnd =>
3890 Make_Integer_Literal (Loc,
3891 Enumeration_Rep (First_Literal (Ptyp))),
3892 Right_Opnd =>
3893 Make_Function_Call (Loc,
3894 Name =>
3895 New_Reference_To
3896 (TSS (Etyp, TSS_Rep_To_Pos), Loc),
3897
3898 Parameter_Associations =>
3899 New_List (
3900 Unchecked_Convert_To (Ptyp,
3901 Make_Op_Subtract (Loc,
3902 Left_Opnd =>
3903 Unchecked_Convert_To (Standard_Integer,
3904 Relocate_Node (First (Exprs))),
3905 Right_Opnd =>
3906 Make_Integer_Literal (Loc, 1))),
3907 Rep_To_Pos_Flag (Ptyp, Loc))))));
3908
3909 else
3910 -- Add Boolean parameter True, to request program errror if
3911 -- we have a bad representation on our hands. If checks are
3912 -- suppressed, then add False instead
3913
3914 Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
3915 Rewrite (N,
3916 Make_Indexed_Component (Loc,
3917 Prefix =>
3918 New_Reference_To
3919 (Enum_Pos_To_Rep (Etyp), Loc),
3920 Expressions => New_List (
3921 Make_Op_Subtract (Loc,
3922 Left_Opnd =>
3923 Make_Function_Call (Loc,
3924 Name =>
3925 New_Reference_To
3926 (TSS (Etyp, TSS_Rep_To_Pos), Loc),
3927 Parameter_Associations => Exprs),
3928 Right_Opnd => Make_Integer_Literal (Loc, 1)))));
3929 end if;
3930
3931 Analyze_And_Resolve (N, Typ);
3932
3933 -- For floating-point, we transform 'Pred into a call to the Pred
3934 -- floating-point attribute function in Fat_xxx (xxx is root type)
3935
3936 elsif Is_Floating_Point_Type (Ptyp) then
3937 Expand_Fpt_Attribute_R (N);
3938 Analyze_And_Resolve (N, Typ);
3939
3940 -- For modular types, nothing to do (no overflow, since wraps)
3941
3942 elsif Is_Modular_Integer_Type (Ptyp) then
3943 null;
3944
3945 -- For other types, if argument is marked as needing a range check or
3946 -- overflow checking is enabled, we must generate a check.
3947
3948 elsif not Overflow_Checks_Suppressed (Ptyp)
3949 or else Do_Range_Check (First (Exprs))
3950 then
3951 Set_Do_Range_Check (First (Exprs), False);
3952 Expand_Pred_Succ (N);
3953 end if;
3954 end Pred;
3955
3956 --------------
3957 -- Priority --
3958 --------------
3959
3960 -- Ada 2005 (AI-327): Dynamic ceiling priorities
3961
3962 -- We rewrite X'Priority as the following run-time call:
3963
3964 -- Get_Ceiling (X._Object)
3965
3966 -- Note that although X'Priority is notionally an object, it is quite
3967 -- deliberately not defined as an aliased object in the RM. This means
3968 -- that it works fine to rewrite it as a call, without having to worry
3969 -- about complications that would other arise from X'Priority'Access,
3970 -- which is illegal, because of the lack of aliasing.
3971
3972 when Attribute_Priority =>
3973 declare
3974 Call : Node_Id;
3975 Conctyp : Entity_Id;
3976 Object_Parm : Node_Id;
3977 Subprg : Entity_Id;
3978 RT_Subprg_Name : Node_Id;
3979
3980 begin
3981 -- Look for the enclosing concurrent type
3982
3983 Conctyp := Current_Scope;
3984 while not Is_Concurrent_Type (Conctyp) loop
3985 Conctyp := Scope (Conctyp);
3986 end loop;
3987
3988 pragma Assert (Is_Protected_Type (Conctyp));
3989
3990 -- Generate the actual of the call
3991
3992 Subprg := Current_Scope;
3993 while not Present (Protected_Body_Subprogram (Subprg)) loop
3994 Subprg := Scope (Subprg);
3995 end loop;
3996
3997 -- Use of 'Priority inside protected entries and barriers (in
3998 -- both cases the type of the first formal of their expanded
3999 -- subprogram is Address)
4000
4001 if Etype (First_Entity (Protected_Body_Subprogram (Subprg)))
4002 = RTE (RE_Address)
4003 then
4004 declare
4005 New_Itype : Entity_Id;
4006
4007 begin
4008 -- In the expansion of protected entries the type of the
4009 -- first formal of the Protected_Body_Subprogram is an
4010 -- Address. In order to reference the _object component
4011 -- we generate:
4012
4013 -- type T is access p__ptTV;
4014 -- freeze T []
4015
4016 New_Itype := Create_Itype (E_Access_Type, N);
4017 Set_Etype (New_Itype, New_Itype);
4018 Set_Directly_Designated_Type (New_Itype,
4019 Corresponding_Record_Type (Conctyp));
4020 Freeze_Itype (New_Itype, N);
4021
4022 -- Generate:
4023 -- T!(O)._object'unchecked_access
4024
4025 Object_Parm :=
4026 Make_Attribute_Reference (Loc,
4027 Prefix =>
4028 Make_Selected_Component (Loc,
4029 Prefix =>
4030 Unchecked_Convert_To (New_Itype,
4031 New_Reference_To
4032 (First_Entity
4033 (Protected_Body_Subprogram (Subprg)),
4034 Loc)),
4035 Selector_Name =>
4036 Make_Identifier (Loc, Name_uObject)),
4037 Attribute_Name => Name_Unchecked_Access);
4038 end;
4039
4040 -- Use of 'Priority inside a protected subprogram
4041
4042 else
4043 Object_Parm :=
4044 Make_Attribute_Reference (Loc,
4045 Prefix =>
4046 Make_Selected_Component (Loc,
4047 Prefix => New_Reference_To
4048 (First_Entity
4049 (Protected_Body_Subprogram (Subprg)),
4050 Loc),
4051 Selector_Name => Make_Identifier (Loc, Name_uObject)),
4052 Attribute_Name => Name_Unchecked_Access);
4053 end if;
4054
4055 -- Select the appropriate run-time subprogram
4056
4057 if Number_Entries (Conctyp) = 0 then
4058 RT_Subprg_Name :=
4059 New_Reference_To (RTE (RE_Get_Ceiling), Loc);
4060 else
4061 RT_Subprg_Name :=
4062 New_Reference_To (RTE (RO_PE_Get_Ceiling), Loc);
4063 end if;
4064
4065 Call :=
4066 Make_Function_Call (Loc,
4067 Name => RT_Subprg_Name,
4068 Parameter_Associations => New_List (Object_Parm));
4069
4070 Rewrite (N, Call);
4071
4072 -- Avoid the generation of extra checks on the pointer to the
4073 -- protected object.
4074
4075 Analyze_And_Resolve (N, Typ, Suppress => Access_Check);
4076 end;
4077
4078 ------------------
4079 -- Range_Length --
4080 ------------------
4081
4082 when Attribute_Range_Length => Range_Length : begin
4083
4084 -- The only special processing required is for the case where
4085 -- Range_Length is applied to an enumeration type with holes.
4086 -- In this case we transform
4087
4088 -- X'Range_Length
4089
4090 -- to
4091
4092 -- X'Pos (X'Last) - X'Pos (X'First) + 1
4093
4094 -- So that the result reflects the proper Pos values instead
4095 -- of the underlying representations.
4096
4097 if Is_Enumeration_Type (Ptyp)
4098 and then Has_Non_Standard_Rep (Ptyp)
4099 then
4100 Rewrite (N,
4101 Make_Op_Add (Loc,
4102 Left_Opnd =>
4103 Make_Op_Subtract (Loc,
4104 Left_Opnd =>
4105 Make_Attribute_Reference (Loc,
4106 Attribute_Name => Name_Pos,
4107 Prefix => New_Occurrence_Of (Ptyp, Loc),
4108 Expressions => New_List (
4109 Make_Attribute_Reference (Loc,
4110 Attribute_Name => Name_Last,
4111 Prefix => New_Occurrence_Of (Ptyp, Loc)))),
4112
4113 Right_Opnd =>
4114 Make_Attribute_Reference (Loc,
4115 Attribute_Name => Name_Pos,
4116 Prefix => New_Occurrence_Of (Ptyp, Loc),
4117 Expressions => New_List (
4118 Make_Attribute_Reference (Loc,
4119 Attribute_Name => Name_First,
4120 Prefix => New_Occurrence_Of (Ptyp, Loc))))),
4121
4122 Right_Opnd => Make_Integer_Literal (Loc, 1)));
4123
4124 Analyze_And_Resolve (N, Typ);
4125
4126 -- For all other cases, the attribute is handled by the back end, but
4127 -- we need to deal with the case of the range check on a universal
4128 -- integer.
4129
4130 else
4131 Apply_Universal_Integer_Attribute_Checks (N);
4132 end if;
4133 end Range_Length;
4134
4135 ----------
4136 -- Read --
4137 ----------
4138
4139 when Attribute_Read => Read : declare
4140 P_Type : constant Entity_Id := Entity (Pref);
4141 B_Type : constant Entity_Id := Base_Type (P_Type);
4142 U_Type : constant Entity_Id := Underlying_Type (P_Type);
4143 Pname : Entity_Id;
4144 Decl : Node_Id;
4145 Prag : Node_Id;
4146 Arg2 : Node_Id;
4147 Rfunc : Node_Id;
4148 Lhs : Node_Id;
4149 Rhs : Node_Id;
4150
4151 begin
4152 -- If no underlying type, we have an error that will be diagnosed
4153 -- elsewhere, so here we just completely ignore the expansion.
4154
4155 if No (U_Type) then
4156 return;
4157 end if;
4158
4159 -- The simple case, if there is a TSS for Read, just call it
4160
4161 Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Read);
4162
4163 if Present (Pname) then
4164 null;
4165
4166 else
4167 -- If there is a Stream_Convert pragma, use it, we rewrite
4168
4169 -- sourcetyp'Read (stream, Item)
4170
4171 -- as
4172
4173 -- Item := sourcetyp (strmread (strmtyp'Input (Stream)));
4174
4175 -- where strmread is the given Read function that converts an
4176 -- argument of type strmtyp to type sourcetyp or a type from which
4177 -- it is derived. The conversion to sourcetyp is required in the
4178 -- latter case.
4179
4180 -- A special case arises if Item is a type conversion in which
4181 -- case, we have to expand to:
4182
4183 -- Itemx := typex (strmread (strmtyp'Input (Stream)));
4184
4185 -- where Itemx is the expression of the type conversion (i.e.
4186 -- the actual object), and typex is the type of Itemx.
4187
4188 Prag := Get_Stream_Convert_Pragma (P_Type);
4189
4190 if Present (Prag) then
4191 Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
4192 Rfunc := Entity (Expression (Arg2));
4193 Lhs := Relocate_Node (Next (First (Exprs)));
4194 Rhs :=
4195 OK_Convert_To (B_Type,
4196 Make_Function_Call (Loc,
4197 Name => New_Occurrence_Of (Rfunc, Loc),
4198 Parameter_Associations => New_List (
4199 Make_Attribute_Reference (Loc,
4200 Prefix =>
4201 New_Occurrence_Of
4202 (Etype (First_Formal (Rfunc)), Loc),
4203 Attribute_Name => Name_Input,
4204 Expressions => New_List (
4205 Relocate_Node (First (Exprs)))))));
4206
4207 if Nkind (Lhs) = N_Type_Conversion then
4208 Lhs := Expression (Lhs);
4209 Rhs := Convert_To (Etype (Lhs), Rhs);
4210 end if;
4211
4212 Rewrite (N,
4213 Make_Assignment_Statement (Loc,
4214 Name => Lhs,
4215 Expression => Rhs));
4216 Set_Assignment_OK (Lhs);
4217 Analyze (N);
4218 return;
4219
4220 -- For elementary types, we call the I_xxx routine using the first
4221 -- parameter and then assign the result into the second parameter.
4222 -- We set Assignment_OK to deal with the conversion case.
4223
4224 elsif Is_Elementary_Type (U_Type) then
4225 declare
4226 Lhs : Node_Id;
4227 Rhs : Node_Id;
4228
4229 begin
4230 Lhs := Relocate_Node (Next (First (Exprs)));
4231 Rhs := Build_Elementary_Input_Call (N);
4232
4233 if Nkind (Lhs) = N_Type_Conversion then
4234 Lhs := Expression (Lhs);
4235 Rhs := Convert_To (Etype (Lhs), Rhs);
4236 end if;
4237
4238 Set_Assignment_OK (Lhs);
4239
4240 Rewrite (N,
4241 Make_Assignment_Statement (Loc,
4242 Name => Lhs,
4243 Expression => Rhs));
4244
4245 Analyze (N);
4246 return;
4247 end;
4248
4249 -- Array type case
4250
4251 elsif Is_Array_Type (U_Type) then
4252 Build_Array_Read_Procedure (N, U_Type, Decl, Pname);
4253 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
4254
4255 -- Tagged type case, use the primitive Read function. Note that
4256 -- this will dispatch in the class-wide case which is what we want
4257
4258 elsif Is_Tagged_Type (U_Type) then
4259 Pname := Find_Prim_Op (U_Type, TSS_Stream_Read);
4260
4261 -- All other record type cases, including protected records. The
4262 -- latter only arise for expander generated code for handling
4263 -- shared passive partition access.
4264
4265 else
4266 pragma Assert
4267 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
4268
4269 -- Ada 2005 (AI-216): Program_Error is raised when executing
4270 -- the default implementation of the Read attribute of an
4271 -- Unchecked_Union type.
4272
4273 if Is_Unchecked_Union (Base_Type (U_Type)) then
4274 Insert_Action (N,
4275 Make_Raise_Program_Error (Loc,
4276 Reason => PE_Unchecked_Union_Restriction));
4277 end if;
4278
4279 if Has_Discriminants (U_Type)
4280 and then Present
4281 (Discriminant_Default_Value (First_Discriminant (U_Type)))
4282 then
4283 Build_Mutable_Record_Read_Procedure
4284 (Loc, Full_Base (U_Type), Decl, Pname);
4285 else
4286 Build_Record_Read_Procedure
4287 (Loc, Full_Base (U_Type), Decl, Pname);
4288 end if;
4289
4290 -- Suppress checks, uninitialized or otherwise invalid
4291 -- data does not cause constraint errors to be raised for
4292 -- a complete record read.
4293
4294 Insert_Action (N, Decl, All_Checks);
4295 end if;
4296 end if;
4297
4298 Rewrite_Stream_Proc_Call (Pname);
4299 end Read;
4300
4301 ---------
4302 -- Ref --
4303 ---------
4304
4305 -- Ref is identical to To_Address, see To_Address for processing
4306
4307 ---------------
4308 -- Remainder --
4309 ---------------
4310
4311 -- Transforms 'Remainder into a call to the floating-point attribute
4312 -- function Remainder in Fat_xxx (where xxx is the root type)
4313
4314 when Attribute_Remainder =>
4315 Expand_Fpt_Attribute_RR (N);
4316
4317 ------------
4318 -- Result --
4319 ------------
4320
4321 -- Transform 'Result into reference to _Result formal. At the point
4322 -- where a legal 'Result attribute is expanded, we know that we are in
4323 -- the context of a _Postcondition function with a _Result parameter.
4324
4325 when Attribute_Result =>
4326 Rewrite (N, Make_Identifier (Loc, Chars => Name_uResult));
4327 Analyze_And_Resolve (N, Typ);
4328
4329 -----------
4330 -- Round --
4331 -----------
4332
4333 -- The handling of the Round attribute is quite delicate. The processing
4334 -- in Sem_Attr introduced a conversion to universal real, reflecting the
4335 -- semantics of Round, but we do not want anything to do with universal
4336 -- real at runtime, since this corresponds to using floating-point
4337 -- arithmetic.
4338
4339 -- What we have now is that the Etype of the Round attribute correctly
4340 -- indicates the final result type. The operand of the Round is the
4341 -- conversion to universal real, described above, and the operand of
4342 -- this conversion is the actual operand of Round, which may be the
4343 -- special case of a fixed point multiplication or division (Etype =
4344 -- universal fixed)
4345
4346 -- The exapander will expand first the operand of the conversion, then
4347 -- the conversion, and finally the round attribute itself, since we
4348 -- always work inside out. But we cannot simply process naively in this
4349 -- order. In the semantic world where universal fixed and real really
4350 -- exist and have infinite precision, there is no problem, but in the
4351 -- implementation world, where universal real is a floating-point type,
4352 -- we would get the wrong result.
4353
4354 -- So the approach is as follows. First, when expanding a multiply or
4355 -- divide whose type is universal fixed, we do nothing at all, instead
4356 -- deferring the operation till later.
4357
4358 -- The actual processing is done in Expand_N_Type_Conversion which
4359 -- handles the special case of Round by looking at its parent to see if
4360 -- it is a Round attribute, and if it is, handling the conversion (or
4361 -- its fixed multiply/divide child) in an appropriate manner.
4362
4363 -- This means that by the time we get to expanding the Round attribute
4364 -- itself, the Round is nothing more than a type conversion (and will
4365 -- often be a null type conversion), so we just replace it with the
4366 -- appropriate conversion operation.
4367
4368 when Attribute_Round =>
4369 Rewrite (N,
4370 Convert_To (Etype (N), Relocate_Node (First (Exprs))));
4371 Analyze_And_Resolve (N);
4372
4373 --------------
4374 -- Rounding --
4375 --------------
4376
4377 -- Transforms 'Rounding into a call to the floating-point attribute
4378 -- function Rounding in Fat_xxx (where xxx is the root type)
4379
4380 when Attribute_Rounding =>
4381 Expand_Fpt_Attribute_R (N);
4382
4383 ------------------
4384 -- Same_Storage --
4385 ------------------
4386
4387 when Attribute_Same_Storage => Same_Storage : declare
4388 Loc : constant Source_Ptr := Sloc (N);
4389
4390 X : constant Node_Id := Prefix (N);
4391 Y : constant Node_Id := First (Expressions (N));
4392 -- The arguments
4393
4394 X_Addr, Y_Addr : Node_Id;
4395 -- Rhe expressions for their addresses
4396
4397 X_Size, Y_Size : Node_Id;
4398 -- Rhe expressions for their sizes
4399
4400 begin
4401 -- The attribute is expanded as:
4402
4403 -- (X'address = Y'address)
4404 -- and then (X'Size = Y'Size)
4405
4406 -- If both arguments have the same Etype the second conjunct can be
4407 -- omitted.
4408
4409 X_Addr :=
4410 Make_Attribute_Reference (Loc,
4411 Attribute_Name => Name_Address,
4412 Prefix => New_Copy_Tree (X));
4413
4414 Y_Addr :=
4415 Make_Attribute_Reference (Loc,
4416 Attribute_Name => Name_Address,
4417 Prefix => New_Copy_Tree (Y));
4418
4419 X_Size :=
4420 Make_Attribute_Reference (Loc,
4421 Attribute_Name => Name_Size,
4422 Prefix => New_Copy_Tree (X));
4423
4424 Y_Size :=
4425 Make_Attribute_Reference (Loc,
4426 Attribute_Name => Name_Size,
4427 Prefix => New_Copy_Tree (Y));
4428
4429 if Etype (X) = Etype (Y) then
4430 Rewrite (N,
4431 (Make_Op_Eq (Loc,
4432 Left_Opnd => X_Addr,
4433 Right_Opnd => Y_Addr)));
4434 else
4435 Rewrite (N,
4436 Make_Op_And (Loc,
4437 Left_Opnd =>
4438 Make_Op_Eq (Loc,
4439 Left_Opnd => X_Addr,
4440 Right_Opnd => Y_Addr),
4441 Right_Opnd =>
4442 Make_Op_Eq (Loc,
4443 Left_Opnd => X_Size,
4444 Right_Opnd => Y_Size)));
4445 end if;
4446
4447 Analyze_And_Resolve (N, Standard_Boolean);
4448 end Same_Storage;
4449
4450 -------------
4451 -- Scaling --
4452 -------------
4453
4454 -- Transforms 'Scaling into a call to the floating-point attribute
4455 -- function Scaling in Fat_xxx (where xxx is the root type)
4456
4457 when Attribute_Scaling =>
4458 Expand_Fpt_Attribute_RI (N);
4459
4460 -------------------------
4461 -- Simple_Storage_Pool --
4462 -------------------------
4463
4464 when Attribute_Simple_Storage_Pool =>
4465 Rewrite (N,
4466 Make_Type_Conversion (Loc,
4467 Subtype_Mark => New_Reference_To (Etype (N), Loc),
4468 Expression => New_Reference_To (Entity (N), Loc)));
4469 Analyze_And_Resolve (N, Typ);
4470
4471 ----------
4472 -- Size --
4473 ----------
4474
4475 when Attribute_Size |
4476 Attribute_Object_Size |
4477 Attribute_Value_Size |
4478 Attribute_VADS_Size => Size :
4479
4480 declare
4481 Siz : Uint;
4482 New_Node : Node_Id;
4483
4484 begin
4485 -- Processing for VADS_Size case. Note that this processing removes
4486 -- all traces of VADS_Size from the tree, and completes all required
4487 -- processing for VADS_Size by translating the attribute reference
4488 -- to an appropriate Size or Object_Size reference.
4489
4490 if Id = Attribute_VADS_Size
4491 or else (Use_VADS_Size and then Id = Attribute_Size)
4492 then
4493 -- If the size is specified, then we simply use the specified
4494 -- size. This applies to both types and objects. The size of an
4495 -- object can be specified in the following ways:
4496
4497 -- An explicit size object is given for an object
4498 -- A component size is specified for an indexed component
4499 -- A component clause is specified for a selected component
4500 -- The object is a component of a packed composite object
4501
4502 -- If the size is specified, then VADS_Size of an object
4503
4504 if (Is_Entity_Name (Pref)
4505 and then Present (Size_Clause (Entity (Pref))))
4506 or else
4507 (Nkind (Pref) = N_Component_Clause
4508 and then (Present (Component_Clause
4509 (Entity (Selector_Name (Pref))))
4510 or else Is_Packed (Etype (Prefix (Pref)))))
4511 or else
4512 (Nkind (Pref) = N_Indexed_Component
4513 and then (Component_Size (Etype (Prefix (Pref))) /= 0
4514 or else Is_Packed (Etype (Prefix (Pref)))))
4515 then
4516 Set_Attribute_Name (N, Name_Size);
4517
4518 -- Otherwise if we have an object rather than a type, then the
4519 -- VADS_Size attribute applies to the type of the object, rather
4520 -- than the object itself. This is one of the respects in which
4521 -- VADS_Size differs from Size.
4522
4523 else
4524 if (not Is_Entity_Name (Pref)
4525 or else not Is_Type (Entity (Pref)))
4526 and then (Is_Scalar_Type (Ptyp) or else Is_Constrained (Ptyp))
4527 then
4528 Rewrite (Pref, New_Occurrence_Of (Ptyp, Loc));
4529 end if;
4530
4531 -- For a scalar type for which no size was explicitly given,
4532 -- VADS_Size means Object_Size. This is the other respect in
4533 -- which VADS_Size differs from Size.
4534
4535 if Is_Scalar_Type (Ptyp) and then No (Size_Clause (Ptyp)) then
4536 Set_Attribute_Name (N, Name_Object_Size);
4537
4538 -- In all other cases, Size and VADS_Size are the sane
4539
4540 else
4541 Set_Attribute_Name (N, Name_Size);
4542 end if;
4543 end if;
4544 end if;
4545
4546 -- For class-wide types, X'Class'Size is transformed into a direct
4547 -- reference to the Size of the class type, so that the back end does
4548 -- not have to deal with the X'Class'Size reference.
4549
4550 if Is_Entity_Name (Pref)
4551 and then Is_Class_Wide_Type (Entity (Pref))
4552 then
4553 Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
4554 return;
4555
4556 -- For X'Size applied to an object of a class-wide type, transform
4557 -- X'Size into a call to the primitive operation _Size applied to X.
4558
4559 elsif Is_Class_Wide_Type (Ptyp)
4560 or else (Id = Attribute_Size
4561 and then Is_Tagged_Type (Ptyp)
4562 and then Has_Unknown_Discriminants (Ptyp))
4563 then
4564 -- No need to do anything else compiling under restriction
4565 -- No_Dispatching_Calls. During the semantic analysis we
4566 -- already notified such violation.
4567
4568 if Restriction_Active (No_Dispatching_Calls) then
4569 return;
4570 end if;
4571
4572 New_Node :=
4573 Make_Function_Call (Loc,
4574 Name => New_Reference_To
4575 (Find_Prim_Op (Ptyp, Name_uSize), Loc),
4576 Parameter_Associations => New_List (Pref));
4577
4578 if Typ /= Standard_Long_Long_Integer then
4579
4580 -- The context is a specific integer type with which the
4581 -- original attribute was compatible. The function has a
4582 -- specific type as well, so to preserve the compatibility
4583 -- we must convert explicitly.
4584
4585 New_Node := Convert_To (Typ, New_Node);
4586 end if;
4587
4588 Rewrite (N, New_Node);
4589 Analyze_And_Resolve (N, Typ);
4590 return;
4591
4592 -- Case of known RM_Size of a type
4593
4594 elsif (Id = Attribute_Size or else Id = Attribute_Value_Size)
4595 and then Is_Entity_Name (Pref)
4596 and then Is_Type (Entity (Pref))
4597 and then Known_Static_RM_Size (Entity (Pref))
4598 then
4599 Siz := RM_Size (Entity (Pref));
4600
4601 -- Case of known Esize of a type
4602
4603 elsif Id = Attribute_Object_Size
4604 and then Is_Entity_Name (Pref)
4605 and then Is_Type (Entity (Pref))
4606 and then Known_Static_Esize (Entity (Pref))
4607 then
4608 Siz := Esize (Entity (Pref));
4609
4610 -- Case of known size of object
4611
4612 elsif Id = Attribute_Size
4613 and then Is_Entity_Name (Pref)
4614 and then Is_Object (Entity (Pref))
4615 and then Known_Esize (Entity (Pref))
4616 and then Known_Static_Esize (Entity (Pref))
4617 then
4618 Siz := Esize (Entity (Pref));
4619
4620 -- For an array component, we can do Size in the front end
4621 -- if the component_size of the array is set.
4622
4623 elsif Nkind (Pref) = N_Indexed_Component then
4624 Siz := Component_Size (Etype (Prefix (Pref)));
4625
4626 -- For a record component, we can do Size in the front end if there
4627 -- is a component clause, or if the record is packed and the
4628 -- component's size is known at compile time.
4629
4630 elsif Nkind (Pref) = N_Selected_Component then
4631 declare
4632 Rec : constant Entity_Id := Etype (Prefix (Pref));
4633 Comp : constant Entity_Id := Entity (Selector_Name (Pref));
4634
4635 begin
4636 if Present (Component_Clause (Comp)) then
4637 Siz := Esize (Comp);
4638
4639 elsif Is_Packed (Rec) then
4640 Siz := RM_Size (Ptyp);
4641
4642 else
4643 Apply_Universal_Integer_Attribute_Checks (N);
4644 return;
4645 end if;
4646 end;
4647
4648 -- All other cases are handled by the back end
4649
4650 else
4651 Apply_Universal_Integer_Attribute_Checks (N);
4652
4653 -- If Size is applied to a formal parameter that is of a packed
4654 -- array subtype, then apply Size to the actual subtype.
4655
4656 if Is_Entity_Name (Pref)
4657 and then Is_Formal (Entity (Pref))
4658 and then Is_Array_Type (Ptyp)
4659 and then Is_Packed (Ptyp)
4660 then
4661 Rewrite (N,
4662 Make_Attribute_Reference (Loc,
4663 Prefix =>
4664 New_Occurrence_Of (Get_Actual_Subtype (Pref), Loc),
4665 Attribute_Name => Name_Size));
4666 Analyze_And_Resolve (N, Typ);
4667 end if;
4668
4669 -- If Size applies to a dereference of an access to unconstrained
4670 -- packed array, the back end needs to see its unconstrained
4671 -- nominal type, but also a hint to the actual constrained type.
4672
4673 if Nkind (Pref) = N_Explicit_Dereference
4674 and then Is_Array_Type (Ptyp)
4675 and then not Is_Constrained (Ptyp)
4676 and then Is_Packed (Ptyp)
4677 then
4678 Set_Actual_Designated_Subtype (Pref,
4679 Get_Actual_Subtype (Pref));
4680 end if;
4681
4682 return;
4683 end if;
4684
4685 -- Common processing for record and array component case
4686
4687 if Siz /= No_Uint and then Siz /= 0 then
4688 declare
4689 CS : constant Boolean := Comes_From_Source (N);
4690
4691 begin
4692 Rewrite (N, Make_Integer_Literal (Loc, Siz));
4693
4694 -- This integer literal is not a static expression. We do not
4695 -- call Analyze_And_Resolve here, because this would activate
4696 -- the circuit for deciding that a static value was out of
4697 -- range, and we don't want that.
4698
4699 -- So just manually set the type, mark the expression as non-
4700 -- static, and then ensure that the result is checked properly
4701 -- if the attribute comes from source (if it was internally
4702 -- generated, we never need a constraint check).
4703
4704 Set_Etype (N, Typ);
4705 Set_Is_Static_Expression (N, False);
4706
4707 if CS then
4708 Apply_Constraint_Check (N, Typ);
4709 end if;
4710 end;
4711 end if;
4712 end Size;
4713
4714 ------------------
4715 -- Storage_Pool --
4716 ------------------
4717
4718 when Attribute_Storage_Pool =>
4719 Rewrite (N,
4720 Make_Type_Conversion (Loc,
4721 Subtype_Mark => New_Reference_To (Etype (N), Loc),
4722 Expression => New_Reference_To (Entity (N), Loc)));
4723 Analyze_And_Resolve (N, Typ);
4724
4725 ------------------
4726 -- Storage_Size --
4727 ------------------
4728
4729 when Attribute_Storage_Size => Storage_Size : declare
4730 Alloc_Op : Entity_Id := Empty;
4731
4732 begin
4733
4734 -- Access type case, always go to the root type
4735
4736 -- The case of access types results in a value of zero for the case
4737 -- where no storage size attribute clause has been given. If a
4738 -- storage size has been given, then the attribute is converted
4739 -- to a reference to the variable used to hold this value.
4740
4741 if Is_Access_Type (Ptyp) then
4742 if Present (Storage_Size_Variable (Root_Type (Ptyp))) then
4743 Rewrite (N,
4744 Make_Attribute_Reference (Loc,
4745 Prefix => New_Reference_To (Typ, Loc),
4746 Attribute_Name => Name_Max,
4747 Expressions => New_List (
4748 Make_Integer_Literal (Loc, 0),
4749 Convert_To (Typ,
4750 New_Reference_To
4751 (Storage_Size_Variable (Root_Type (Ptyp)), Loc)))));
4752
4753 elsif Present (Associated_Storage_Pool (Root_Type (Ptyp))) then
4754
4755 -- If the access type is associated with a simple storage pool
4756 -- object, then attempt to locate the optional Storage_Size
4757 -- function of the simple storage pool type. If not found,
4758 -- then the result will default to zero.
4759
4760 if Present (Get_Rep_Pragma (Root_Type (Ptyp),
4761 Name_Simple_Storage_Pool_Type))
4762 then
4763 declare
4764 Pool_Type : constant Entity_Id :=
4765 Base_Type (Etype (Entity (N)));
4766
4767 begin
4768 Alloc_Op := Get_Name_Entity_Id (Name_Storage_Size);
4769 while Present (Alloc_Op) loop
4770 if Scope (Alloc_Op) = Scope (Pool_Type)
4771 and then Present (First_Formal (Alloc_Op))
4772 and then Etype (First_Formal (Alloc_Op)) = Pool_Type
4773 then
4774 exit;
4775 end if;
4776
4777 Alloc_Op := Homonym (Alloc_Op);
4778 end loop;
4779 end;
4780
4781 -- In the normal Storage_Pool case, retrieve the primitive
4782 -- function associated with the pool type.
4783
4784 else
4785 Alloc_Op :=
4786 Find_Prim_Op
4787 (Etype (Associated_Storage_Pool (Root_Type (Ptyp))),
4788 Attribute_Name (N));
4789 end if;
4790
4791 -- If Storage_Size wasn't found (can only occur in the simple
4792 -- storage pool case), then simply use zero for the result.
4793
4794 if not Present (Alloc_Op) then
4795 Rewrite (N, Make_Integer_Literal (Loc, 0));
4796
4797 -- Otherwise, rewrite the allocator as a call to pool type's
4798 -- Storage_Size function.
4799
4800 else
4801 Rewrite (N,
4802 OK_Convert_To (Typ,
4803 Make_Function_Call (Loc,
4804 Name =>
4805 New_Reference_To (Alloc_Op, Loc),
4806
4807 Parameter_Associations => New_List (
4808 New_Reference_To
4809 (Associated_Storage_Pool
4810 (Root_Type (Ptyp)), Loc)))));
4811 end if;
4812
4813 else
4814 Rewrite (N, Make_Integer_Literal (Loc, 0));
4815 end if;
4816
4817 Analyze_And_Resolve (N, Typ);
4818
4819 -- For tasks, we retrieve the size directly from the TCB. The
4820 -- size may depend on a discriminant of the type, and therefore
4821 -- can be a per-object expression, so type-level information is
4822 -- not sufficient in general. There are four cases to consider:
4823
4824 -- a) If the attribute appears within a task body, the designated
4825 -- TCB is obtained by a call to Self.
4826
4827 -- b) If the prefix of the attribute is the name of a task object,
4828 -- the designated TCB is the one stored in the corresponding record.
4829
4830 -- c) If the prefix is a task type, the size is obtained from the
4831 -- size variable created for each task type
4832
4833 -- d) If no storage_size was specified for the type , there is no
4834 -- size variable, and the value is a system-specific default.
4835
4836 else
4837 if In_Open_Scopes (Ptyp) then
4838
4839 -- Storage_Size (Self)
4840
4841 Rewrite (N,
4842 Convert_To (Typ,
4843 Make_Function_Call (Loc,
4844 Name =>
4845 New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
4846 Parameter_Associations =>
4847 New_List (
4848 Make_Function_Call (Loc,
4849 Name =>
4850 New_Reference_To (RTE (RE_Self), Loc))))));
4851
4852 elsif not Is_Entity_Name (Pref)
4853 or else not Is_Type (Entity (Pref))
4854 then
4855 -- Storage_Size (Rec (Obj).Size)
4856
4857 Rewrite (N,
4858 Convert_To (Typ,
4859 Make_Function_Call (Loc,
4860 Name =>
4861 New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
4862 Parameter_Associations =>
4863 New_List (
4864 Make_Selected_Component (Loc,
4865 Prefix =>
4866 Unchecked_Convert_To (
4867 Corresponding_Record_Type (Ptyp),
4868 New_Copy_Tree (Pref)),
4869 Selector_Name =>
4870 Make_Identifier (Loc, Name_uTask_Id))))));
4871
4872 elsif Present (Storage_Size_Variable (Ptyp)) then
4873
4874 -- Static storage size pragma given for type: retrieve value
4875 -- from its allocated storage variable.
4876
4877 Rewrite (N,
4878 Convert_To (Typ,
4879 Make_Function_Call (Loc,
4880 Name => New_Occurrence_Of (
4881 RTE (RE_Adjust_Storage_Size), Loc),
4882 Parameter_Associations =>
4883 New_List (
4884 New_Reference_To (
4885 Storage_Size_Variable (Ptyp), Loc)))));
4886 else
4887 -- Get system default
4888
4889 Rewrite (N,
4890 Convert_To (Typ,
4891 Make_Function_Call (Loc,
4892 Name =>
4893 New_Occurrence_Of (
4894 RTE (RE_Default_Stack_Size), Loc))));
4895 end if;
4896
4897 Analyze_And_Resolve (N, Typ);
4898 end if;
4899 end Storage_Size;
4900
4901 -----------------
4902 -- Stream_Size --
4903 -----------------
4904
4905 when Attribute_Stream_Size =>
4906 Rewrite (N,
4907 Make_Integer_Literal (Loc, Intval => Get_Stream_Size (Ptyp)));
4908 Analyze_And_Resolve (N, Typ);
4909
4910 ----------
4911 -- Succ --
4912 ----------
4913
4914 -- 1. Deal with enumeration types with holes
4915 -- 2. For floating-point, generate call to attribute function
4916 -- 3. For other cases, deal with constraint checking
4917
4918 when Attribute_Succ => Succ : declare
4919 Etyp : constant Entity_Id := Base_Type (Ptyp);
4920
4921 begin
4922
4923 -- For enumeration types with non-standard representations, we
4924 -- expand typ'Succ (x) into
4925
4926 -- Pos_To_Rep (Rep_To_Pos (x) + 1)
4927
4928 -- If the representation is contiguous, we compute instead
4929 -- Lit1 + Rep_to_Pos (x+1), to catch invalid representations.
4930
4931 if Is_Enumeration_Type (Ptyp)
4932 and then Present (Enum_Pos_To_Rep (Etyp))
4933 then
4934 if Has_Contiguous_Rep (Etyp) then
4935 Rewrite (N,
4936 Unchecked_Convert_To (Ptyp,
4937 Make_Op_Add (Loc,
4938 Left_Opnd =>
4939 Make_Integer_Literal (Loc,
4940 Enumeration_Rep (First_Literal (Ptyp))),
4941 Right_Opnd =>
4942 Make_Function_Call (Loc,
4943 Name =>
4944 New_Reference_To
4945 (TSS (Etyp, TSS_Rep_To_Pos), Loc),
4946
4947 Parameter_Associations =>
4948 New_List (
4949 Unchecked_Convert_To (Ptyp,
4950 Make_Op_Add (Loc,
4951 Left_Opnd =>
4952 Unchecked_Convert_To (Standard_Integer,
4953 Relocate_Node (First (Exprs))),
4954 Right_Opnd =>
4955 Make_Integer_Literal (Loc, 1))),
4956 Rep_To_Pos_Flag (Ptyp, Loc))))));
4957 else
4958 -- Add Boolean parameter True, to request program errror if
4959 -- we have a bad representation on our hands. Add False if
4960 -- checks are suppressed.
4961
4962 Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
4963 Rewrite (N,
4964 Make_Indexed_Component (Loc,
4965 Prefix =>
4966 New_Reference_To
4967 (Enum_Pos_To_Rep (Etyp), Loc),
4968 Expressions => New_List (
4969 Make_Op_Add (Loc,
4970 Left_Opnd =>
4971 Make_Function_Call (Loc,
4972 Name =>
4973 New_Reference_To
4974 (TSS (Etyp, TSS_Rep_To_Pos), Loc),
4975 Parameter_Associations => Exprs),
4976 Right_Opnd => Make_Integer_Literal (Loc, 1)))));
4977 end if;
4978
4979 Analyze_And_Resolve (N, Typ);
4980
4981 -- For floating-point, we transform 'Succ into a call to the Succ
4982 -- floating-point attribute function in Fat_xxx (xxx is root type)
4983
4984 elsif Is_Floating_Point_Type (Ptyp) then
4985 Expand_Fpt_Attribute_R (N);
4986 Analyze_And_Resolve (N, Typ);
4987
4988 -- For modular types, nothing to do (no overflow, since wraps)
4989
4990 elsif Is_Modular_Integer_Type (Ptyp) then
4991 null;
4992
4993 -- For other types, if argument is marked as needing a range check or
4994 -- overflow checking is enabled, we must generate a check.
4995
4996 elsif not Overflow_Checks_Suppressed (Ptyp)
4997 or else Do_Range_Check (First (Exprs))
4998 then
4999 Set_Do_Range_Check (First (Exprs), False);
5000 Expand_Pred_Succ (N);
5001 end if;
5002 end Succ;
5003
5004 ---------
5005 -- Tag --
5006 ---------
5007
5008 -- Transforms X'Tag into a direct reference to the tag of X
5009
5010 when Attribute_Tag => Tag : declare
5011 Ttyp : Entity_Id;
5012 Prefix_Is_Type : Boolean;
5013
5014 begin
5015 if Is_Entity_Name (Pref) and then Is_Type (Entity (Pref)) then
5016 Ttyp := Entity (Pref);
5017 Prefix_Is_Type := True;
5018 else
5019 Ttyp := Ptyp;
5020 Prefix_Is_Type := False;
5021 end if;
5022
5023 if Is_Class_Wide_Type (Ttyp) then
5024 Ttyp := Root_Type (Ttyp);
5025 end if;
5026
5027 Ttyp := Underlying_Type (Ttyp);
5028
5029 -- Ada 2005: The type may be a synchronized tagged type, in which
5030 -- case the tag information is stored in the corresponding record.
5031
5032 if Is_Concurrent_Type (Ttyp) then
5033 Ttyp := Corresponding_Record_Type (Ttyp);
5034 end if;
5035
5036 if Prefix_Is_Type then
5037
5038 -- For VMs we leave the type attribute unexpanded because
5039 -- there's not a dispatching table to reference.
5040
5041 if Tagged_Type_Expansion then
5042 Rewrite (N,
5043 Unchecked_Convert_To (RTE (RE_Tag),
5044 New_Reference_To
5045 (Node (First_Elmt (Access_Disp_Table (Ttyp))), Loc)));
5046 Analyze_And_Resolve (N, RTE (RE_Tag));
5047 end if;
5048
5049 -- Ada 2005 (AI-251): The use of 'Tag in the sources always
5050 -- references the primary tag of the actual object. If 'Tag is
5051 -- applied to class-wide interface objects we generate code that
5052 -- displaces "this" to reference the base of the object.
5053
5054 elsif Comes_From_Source (N)
5055 and then Is_Class_Wide_Type (Etype (Prefix (N)))
5056 and then Is_Interface (Etype (Prefix (N)))
5057 then
5058 -- Generate:
5059 -- (To_Tag_Ptr (Prefix'Address)).all
5060
5061 -- Note that Prefix'Address is recursively expanded into a call
5062 -- to Base_Address (Obj.Tag)
5063
5064 -- Not needed for VM targets, since all handled by the VM
5065
5066 if Tagged_Type_Expansion then
5067 Rewrite (N,
5068 Make_Explicit_Dereference (Loc,
5069 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
5070 Make_Attribute_Reference (Loc,
5071 Prefix => Relocate_Node (Pref),
5072 Attribute_Name => Name_Address))));
5073 Analyze_And_Resolve (N, RTE (RE_Tag));
5074 end if;
5075
5076 else
5077 Rewrite (N,
5078 Make_Selected_Component (Loc,
5079 Prefix => Relocate_Node (Pref),
5080 Selector_Name =>
5081 New_Reference_To (First_Tag_Component (Ttyp), Loc)));
5082 Analyze_And_Resolve (N, RTE (RE_Tag));
5083 end if;
5084 end Tag;
5085
5086 ----------------
5087 -- Terminated --
5088 ----------------
5089
5090 -- Transforms 'Terminated attribute into a call to Terminated function
5091
5092 when Attribute_Terminated => Terminated :
5093 begin
5094 -- The prefix of Terminated is of a task interface class-wide type.
5095 -- Generate:
5096 -- terminated (Task_Id (Pref._disp_get_task_id));
5097
5098 if Ada_Version >= Ada_2005
5099 and then Ekind (Ptyp) = E_Class_Wide_Type
5100 and then Is_Interface (Ptyp)
5101 and then Is_Task_Interface (Ptyp)
5102 then
5103 Rewrite (N,
5104 Make_Function_Call (Loc,
5105 Name =>
5106 New_Reference_To (RTE (RE_Terminated), Loc),
5107 Parameter_Associations => New_List (
5108 Make_Unchecked_Type_Conversion (Loc,
5109 Subtype_Mark =>
5110 New_Reference_To (RTE (RO_ST_Task_Id), Loc),
5111 Expression =>
5112 Make_Selected_Component (Loc,
5113 Prefix =>
5114 New_Copy_Tree (Pref),
5115 Selector_Name =>
5116 Make_Identifier (Loc, Name_uDisp_Get_Task_Id))))));
5117
5118 elsif Restricted_Profile then
5119 Rewrite (N,
5120 Build_Call_With_Task (Pref, RTE (RE_Restricted_Terminated)));
5121
5122 else
5123 Rewrite (N,
5124 Build_Call_With_Task (Pref, RTE (RE_Terminated)));
5125 end if;
5126
5127 Analyze_And_Resolve (N, Standard_Boolean);
5128 end Terminated;
5129
5130 ----------------
5131 -- To_Address --
5132 ----------------
5133
5134 -- Transforms System'To_Address (X) and System.Address'Ref (X) into
5135 -- unchecked conversion from (integral) type of X to type address.
5136
5137 when Attribute_To_Address | Attribute_Ref =>
5138 Rewrite (N,
5139 Unchecked_Convert_To (RTE (RE_Address),
5140 Relocate_Node (First (Exprs))));
5141 Analyze_And_Resolve (N, RTE (RE_Address));
5142
5143 ------------
5144 -- To_Any --
5145 ------------
5146
5147 when Attribute_To_Any => To_Any : declare
5148 P_Type : constant Entity_Id := Etype (Pref);
5149 Decls : constant List_Id := New_List;
5150 begin
5151 Rewrite (N,
5152 Build_To_Any_Call
5153 (Loc,
5154 Convert_To (P_Type,
5155 Relocate_Node (First (Exprs))), Decls));
5156 Insert_Actions (N, Decls);
5157 Analyze_And_Resolve (N, RTE (RE_Any));
5158 end To_Any;
5159
5160 ----------------
5161 -- Truncation --
5162 ----------------
5163
5164 -- Transforms 'Truncation into a call to the floating-point attribute
5165 -- function Truncation in Fat_xxx (where xxx is the root type).
5166 -- Expansion is avoided for cases the back end can handle directly.
5167
5168 when Attribute_Truncation =>
5169 if not Is_Inline_Floating_Point_Attribute (N) then
5170 Expand_Fpt_Attribute_R (N);
5171 end if;
5172
5173 --------------
5174 -- TypeCode --
5175 --------------
5176
5177 when Attribute_TypeCode => TypeCode : declare
5178 P_Type : constant Entity_Id := Etype (Pref);
5179 Decls : constant List_Id := New_List;
5180 begin
5181 Rewrite (N, Build_TypeCode_Call (Loc, P_Type, Decls));
5182 Insert_Actions (N, Decls);
5183 Analyze_And_Resolve (N, RTE (RE_TypeCode));
5184 end TypeCode;
5185
5186 -----------------------
5187 -- Unbiased_Rounding --
5188 -----------------------
5189
5190 -- Transforms 'Unbiased_Rounding into a call to the floating-point
5191 -- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
5192 -- root type). Expansion is avoided for cases the back end can handle
5193 -- directly.
5194
5195 when Attribute_Unbiased_Rounding =>
5196 if not Is_Inline_Floating_Point_Attribute (N) then
5197 Expand_Fpt_Attribute_R (N);
5198 end if;
5199
5200 -----------------
5201 -- UET_Address --
5202 -----------------
5203
5204 when Attribute_UET_Address => UET_Address : declare
5205 Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
5206
5207 begin
5208 Insert_Action (N,
5209 Make_Object_Declaration (Loc,
5210 Defining_Identifier => Ent,
5211 Aliased_Present => True,
5212 Object_Definition =>
5213 New_Occurrence_Of (RTE (RE_Address), Loc)));
5214
5215 -- Construct name __gnat_xxx__SDP, where xxx is the unit name
5216 -- in normal external form.
5217
5218 Get_External_Unit_Name_String (Get_Unit_Name (Pref));
5219 Name_Buffer (1 + 7 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
5220 Name_Len := Name_Len + 7;
5221 Name_Buffer (1 .. 7) := "__gnat_";
5222 Name_Buffer (Name_Len + 1 .. Name_Len + 5) := "__SDP";
5223 Name_Len := Name_Len + 5;
5224
5225 Set_Is_Imported (Ent);
5226 Set_Interface_Name (Ent,
5227 Make_String_Literal (Loc,
5228 Strval => String_From_Name_Buffer));
5229
5230 -- Set entity as internal to ensure proper Sprint output of its
5231 -- implicit importation.
5232
5233 Set_Is_Internal (Ent);
5234
5235 Rewrite (N,
5236 Make_Attribute_Reference (Loc,
5237 Prefix => New_Occurrence_Of (Ent, Loc),
5238 Attribute_Name => Name_Address));
5239
5240 Analyze_And_Resolve (N, Typ);
5241 end UET_Address;
5242
5243 ------------
5244 -- Update --
5245 ------------
5246
5247 when Attribute_Update =>
5248 Expand_Update_Attribute (N);
5249
5250 ---------------
5251 -- VADS_Size --
5252 ---------------
5253
5254 -- The processing for VADS_Size is shared with Size
5255
5256 ---------
5257 -- Val --
5258 ---------
5259
5260 -- For enumeration types with a standard representation, and for all
5261 -- other types, Val is handled by the back end. For enumeration types
5262 -- with a non-standard representation we use the _Pos_To_Rep array that
5263 -- was created when the type was frozen.
5264
5265 when Attribute_Val => Val : declare
5266 Etyp : constant Entity_Id := Base_Type (Entity (Pref));
5267
5268 begin
5269 if Is_Enumeration_Type (Etyp)
5270 and then Present (Enum_Pos_To_Rep (Etyp))
5271 then
5272 if Has_Contiguous_Rep (Etyp) then
5273 declare
5274 Rep_Node : constant Node_Id :=
5275 Unchecked_Convert_To (Etyp,
5276 Make_Op_Add (Loc,
5277 Left_Opnd =>
5278 Make_Integer_Literal (Loc,
5279 Enumeration_Rep (First_Literal (Etyp))),
5280 Right_Opnd =>
5281 (Convert_To (Standard_Integer,
5282 Relocate_Node (First (Exprs))))));
5283
5284 begin
5285 Rewrite (N,
5286 Unchecked_Convert_To (Etyp,
5287 Make_Op_Add (Loc,
5288 Left_Opnd =>
5289 Make_Integer_Literal (Loc,
5290 Enumeration_Rep (First_Literal (Etyp))),
5291 Right_Opnd =>
5292 Make_Function_Call (Loc,
5293 Name =>
5294 New_Reference_To
5295 (TSS (Etyp, TSS_Rep_To_Pos), Loc),
5296 Parameter_Associations => New_List (
5297 Rep_Node,
5298 Rep_To_Pos_Flag (Etyp, Loc))))));
5299 end;
5300
5301 else
5302 Rewrite (N,
5303 Make_Indexed_Component (Loc,
5304 Prefix => New_Reference_To (Enum_Pos_To_Rep (Etyp), Loc),
5305 Expressions => New_List (
5306 Convert_To (Standard_Integer,
5307 Relocate_Node (First (Exprs))))));
5308 end if;
5309
5310 Analyze_And_Resolve (N, Typ);
5311
5312 -- If the argument is marked as requiring a range check then generate
5313 -- it here.
5314
5315 elsif Do_Range_Check (First (Exprs)) then
5316 Set_Do_Range_Check (First (Exprs), False);
5317 Generate_Range_Check (First (Exprs), Etyp, CE_Range_Check_Failed);
5318 end if;
5319 end Val;
5320
5321 -----------
5322 -- Valid --
5323 -----------
5324
5325 -- The code for valid is dependent on the particular types involved.
5326 -- See separate sections below for the generated code in each case.
5327
5328 when Attribute_Valid => Valid : declare
5329 Btyp : Entity_Id := Base_Type (Ptyp);
5330 Tst : Node_Id;
5331
5332 Save_Validity_Checks_On : constant Boolean := Validity_Checks_On;
5333 -- Save the validity checking mode. We always turn off validity
5334 -- checking during process of 'Valid since this is one place
5335 -- where we do not want the implicit validity checks to intefere
5336 -- with the explicit validity check that the programmer is doing.
5337
5338 function Make_Range_Test return Node_Id;
5339 -- Build the code for a range test of the form
5340 -- Btyp!(Pref) in Btyp!(Ptyp'First) .. Btyp!(Ptyp'Last)
5341
5342 ---------------------
5343 -- Make_Range_Test --
5344 ---------------------
5345
5346 function Make_Range_Test return Node_Id is
5347 Temp : constant Node_Id := Duplicate_Subexpr (Pref);
5348
5349 begin
5350 -- The value whose validity is being checked has been captured in
5351 -- an object declaration. We certainly don't want this object to
5352 -- appear valid because the declaration initializes it!
5353
5354 if Is_Entity_Name (Temp) then
5355 Set_Is_Known_Valid (Entity (Temp), False);
5356 end if;
5357
5358 return
5359 Make_In (Loc,
5360 Left_Opnd =>
5361 Unchecked_Convert_To (Btyp, Temp),
5362 Right_Opnd =>
5363 Make_Range (Loc,
5364 Low_Bound =>
5365 Unchecked_Convert_To (Btyp,
5366 Make_Attribute_Reference (Loc,
5367 Prefix => New_Occurrence_Of (Ptyp, Loc),
5368 Attribute_Name => Name_First)),
5369 High_Bound =>
5370 Unchecked_Convert_To (Btyp,
5371 Make_Attribute_Reference (Loc,
5372 Prefix => New_Occurrence_Of (Ptyp, Loc),
5373 Attribute_Name => Name_Last))));
5374 end Make_Range_Test;
5375
5376 -- Start of processing for Attribute_Valid
5377
5378 begin
5379 -- Do not expand sourced code 'Valid reference in CodePeer mode,
5380 -- will be handled by the back-end directly.
5381
5382 if CodePeer_Mode and then Comes_From_Source (N) then
5383 return;
5384 end if;
5385
5386 -- Turn off validity checks. We do not want any implicit validity
5387 -- checks to intefere with the explicit check from the attribute
5388
5389 Validity_Checks_On := False;
5390
5391 -- Retrieve the base type. Handle the case where the base type is a
5392 -- private enumeration type.
5393
5394 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5395 Btyp := Full_View (Btyp);
5396 end if;
5397
5398 -- Floating-point case. This case is handled by the Valid attribute
5399 -- code in the floating-point attribute run-time library.
5400
5401 if Is_Floating_Point_Type (Ptyp) then
5402 declare
5403 Pkg : RE_Id;
5404 Ftp : Entity_Id;
5405
5406 begin
5407 case Float_Rep (Btyp) is
5408
5409 -- For vax fpt types, call appropriate routine in special
5410 -- vax floating point unit. No need to worry about loads in
5411 -- this case, since these types have no signalling NaN's.
5412
5413 when VAX_Native => Expand_Vax_Valid (N);
5414
5415 -- The AAMP back end handles Valid for floating-point types
5416
5417 when AAMP =>
5418 Analyze_And_Resolve (Pref, Ptyp);
5419 Set_Etype (N, Standard_Boolean);
5420 Set_Analyzed (N);
5421
5422 when IEEE_Binary =>
5423 Find_Fat_Info (Ptyp, Ftp, Pkg);
5424
5425 -- If the floating-point object might be unaligned, we
5426 -- need to call the special routine Unaligned_Valid,
5427 -- which makes the needed copy, being careful not to
5428 -- load the value into any floating-point register.
5429 -- The argument in this case is obj'Address (see
5430 -- Unaligned_Valid routine in Fat_Gen).
5431
5432 if Is_Possibly_Unaligned_Object (Pref) then
5433 Expand_Fpt_Attribute
5434 (N, Pkg, Name_Unaligned_Valid,
5435 New_List (
5436 Make_Attribute_Reference (Loc,
5437 Prefix => Relocate_Node (Pref),
5438 Attribute_Name => Name_Address)));
5439
5440 -- In the normal case where we are sure the object is
5441 -- aligned, we generate a call to Valid, and the argument
5442 -- in this case is obj'Unrestricted_Access (after
5443 -- converting obj to the right floating-point type).
5444
5445 else
5446 Expand_Fpt_Attribute
5447 (N, Pkg, Name_Valid,
5448 New_List (
5449 Make_Attribute_Reference (Loc,
5450 Prefix => Unchecked_Convert_To (Ftp, Pref),
5451 Attribute_Name => Name_Unrestricted_Access)));
5452 end if;
5453 end case;
5454
5455 -- One more task, we still need a range check. Required
5456 -- only if we have a constraint, since the Valid routine
5457 -- catches infinities properly (infinities are never valid).
5458
5459 -- The way we do the range check is simply to create the
5460 -- expression: Valid (N) and then Base_Type(Pref) in Typ.
5461
5462 if not Subtypes_Statically_Match (Ptyp, Btyp) then
5463 Rewrite (N,
5464 Make_And_Then (Loc,
5465 Left_Opnd => Relocate_Node (N),
5466 Right_Opnd =>
5467 Make_In (Loc,
5468 Left_Opnd => Convert_To (Btyp, Pref),
5469 Right_Opnd => New_Occurrence_Of (Ptyp, Loc))));
5470 end if;
5471 end;
5472
5473 -- Enumeration type with holes
5474
5475 -- For enumeration types with holes, the Pos value constructed by
5476 -- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
5477 -- second argument of False returns minus one for an invalid value,
5478 -- and the non-negative pos value for a valid value, so the
5479 -- expansion of X'Valid is simply:
5480
5481 -- type(X)'Pos (X) >= 0
5482
5483 -- We can't quite generate it that way because of the requirement
5484 -- for the non-standard second argument of False in the resulting
5485 -- rep_to_pos call, so we have to explicitly create:
5486
5487 -- _rep_to_pos (X, False) >= 0
5488
5489 -- If we have an enumeration subtype, we also check that the
5490 -- value is in range:
5491
5492 -- _rep_to_pos (X, False) >= 0
5493 -- and then
5494 -- (X >= type(X)'First and then type(X)'Last <= X)
5495
5496 elsif Is_Enumeration_Type (Ptyp)
5497 and then Present (Enum_Pos_To_Rep (Btyp))
5498 then
5499 Tst :=
5500 Make_Op_Ge (Loc,
5501 Left_Opnd =>
5502 Make_Function_Call (Loc,
5503 Name =>
5504 New_Reference_To (TSS (Btyp, TSS_Rep_To_Pos), Loc),
5505 Parameter_Associations => New_List (
5506 Pref,
5507 New_Occurrence_Of (Standard_False, Loc))),
5508 Right_Opnd => Make_Integer_Literal (Loc, 0));
5509
5510 if Ptyp /= Btyp
5511 and then
5512 (Type_Low_Bound (Ptyp) /= Type_Low_Bound (Btyp)
5513 or else
5514 Type_High_Bound (Ptyp) /= Type_High_Bound (Btyp))
5515 then
5516 -- The call to Make_Range_Test will create declarations
5517 -- that need a proper insertion point, but Pref is now
5518 -- attached to a node with no ancestor. Attach to tree
5519 -- even if it is to be rewritten below.
5520
5521 Set_Parent (Tst, Parent (N));
5522
5523 Tst :=
5524 Make_And_Then (Loc,
5525 Left_Opnd => Make_Range_Test,
5526 Right_Opnd => Tst);
5527 end if;
5528
5529 Rewrite (N, Tst);
5530
5531 -- Fortran convention booleans
5532
5533 -- For the very special case of Fortran convention booleans, the
5534 -- value is always valid, since it is an integer with the semantics
5535 -- that non-zero is true, and any value is permissible.
5536
5537 elsif Is_Boolean_Type (Ptyp)
5538 and then Convention (Ptyp) = Convention_Fortran
5539 then
5540 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
5541
5542 -- For biased representations, we will be doing an unchecked
5543 -- conversion without unbiasing the result. That means that the range
5544 -- test has to take this into account, and the proper form of the
5545 -- test is:
5546
5547 -- Btyp!(Pref) < Btyp!(Ptyp'Range_Length)
5548
5549 elsif Has_Biased_Representation (Ptyp) then
5550 Btyp := RTE (RE_Unsigned_32);
5551 Rewrite (N,
5552 Make_Op_Lt (Loc,
5553 Left_Opnd =>
5554 Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)),
5555 Right_Opnd =>
5556 Unchecked_Convert_To (Btyp,
5557 Make_Attribute_Reference (Loc,
5558 Prefix => New_Occurrence_Of (Ptyp, Loc),
5559 Attribute_Name => Name_Range_Length))));
5560
5561 -- For all other scalar types, what we want logically is a
5562 -- range test:
5563
5564 -- X in type(X)'First .. type(X)'Last
5565
5566 -- But that's precisely what won't work because of possible
5567 -- unwanted optimization (and indeed the basic motivation for
5568 -- the Valid attribute is exactly that this test does not work!)
5569 -- What will work is:
5570
5571 -- Btyp!(X) >= Btyp!(type(X)'First)
5572 -- and then
5573 -- Btyp!(X) <= Btyp!(type(X)'Last)
5574
5575 -- where Btyp is an integer type large enough to cover the full
5576 -- range of possible stored values (i.e. it is chosen on the basis
5577 -- of the size of the type, not the range of the values). We write
5578 -- this as two tests, rather than a range check, so that static
5579 -- evaluation will easily remove either or both of the checks if
5580 -- they can be -statically determined to be true (this happens
5581 -- when the type of X is static and the range extends to the full
5582 -- range of stored values).
5583
5584 -- Unsigned types. Note: it is safe to consider only whether the
5585 -- subtype is unsigned, since we will in that case be doing all
5586 -- unsigned comparisons based on the subtype range. Since we use the
5587 -- actual subtype object size, this is appropriate.
5588
5589 -- For example, if we have
5590
5591 -- subtype x is integer range 1 .. 200;
5592 -- for x'Object_Size use 8;
5593
5594 -- Now the base type is signed, but objects of this type are bits
5595 -- unsigned, and doing an unsigned test of the range 1 to 200 is
5596 -- correct, even though a value greater than 127 looks signed to a
5597 -- signed comparison.
5598
5599 elsif Is_Unsigned_Type (Ptyp) then
5600 if Esize (Ptyp) <= 32 then
5601 Btyp := RTE (RE_Unsigned_32);
5602 else
5603 Btyp := RTE (RE_Unsigned_64);
5604 end if;
5605
5606 Rewrite (N, Make_Range_Test);
5607
5608 -- Signed types
5609
5610 else
5611 if Esize (Ptyp) <= Esize (Standard_Integer) then
5612 Btyp := Standard_Integer;
5613 else
5614 Btyp := Universal_Integer;
5615 end if;
5616
5617 Rewrite (N, Make_Range_Test);
5618 end if;
5619
5620 -- If a predicate is present, then we do the predicate test, even if
5621 -- within the predicate function (infinite recursion is warned about
5622 -- in Sem_Attr in that case).
5623
5624 declare
5625 Pred_Func : constant Entity_Id := Predicate_Function (Ptyp);
5626
5627 begin
5628 if Present (Pred_Func) then
5629 Rewrite (N,
5630 Make_And_Then (Loc,
5631 Left_Opnd => Relocate_Node (N),
5632 Right_Opnd => Make_Predicate_Call (Ptyp, Pref)));
5633 end if;
5634 end;
5635
5636 Analyze_And_Resolve (N, Standard_Boolean);
5637 Validity_Checks_On := Save_Validity_Checks_On;
5638 end Valid;
5639
5640 -------------------
5641 -- Valid_Scalars --
5642 -------------------
5643
5644 when Attribute_Valid_Scalars => Valid_Scalars : declare
5645 Ftyp : Entity_Id;
5646
5647 begin
5648 if Present (Underlying_Type (Ptyp)) then
5649 Ftyp := Underlying_Type (Ptyp);
5650 else
5651 Ftyp := Ptyp;
5652 end if;
5653
5654 -- For scalar types, Valid_Scalars is the same as Valid
5655
5656 if Is_Scalar_Type (Ftyp) then
5657 Rewrite (N,
5658 Make_Attribute_Reference (Loc,
5659 Attribute_Name => Name_Valid,
5660 Prefix => Pref));
5661 Analyze_And_Resolve (N, Standard_Boolean);
5662
5663 -- For array types, we construct a function that determines if there
5664 -- are any non-valid scalar subcomponents, and call the function.
5665 -- We only do this for arrays whose component type needs checking
5666
5667 elsif Is_Array_Type (Ftyp)
5668 and then not No_Scalar_Parts (Component_Type (Ftyp))
5669 then
5670 Rewrite (N,
5671 Make_Function_Call (Loc,
5672 Name =>
5673 New_Occurrence_Of (Build_Array_VS_Func (Ftyp, N), Loc),
5674 Parameter_Associations => New_List (Pref)));
5675
5676 Analyze_And_Resolve (N, Standard_Boolean);
5677
5678 -- For record types, we build a big if expression, applying Valid or
5679 -- Valid_Scalars as appropriate to all relevant components.
5680
5681 elsif (Is_Record_Type (Ptyp) or else Has_Discriminants (Ptyp))
5682 and then not No_Scalar_Parts (Ptyp)
5683 then
5684 declare
5685 C : Entity_Id;
5686 X : Node_Id;
5687 A : Name_Id;
5688
5689 begin
5690 X := New_Occurrence_Of (Standard_True, Loc);
5691 C := First_Component_Or_Discriminant (Ptyp);
5692 while Present (C) loop
5693 if No_Scalar_Parts (Etype (C)) then
5694 goto Continue;
5695 elsif Is_Scalar_Type (Etype (C)) then
5696 A := Name_Valid;
5697 else
5698 A := Name_Valid_Scalars;
5699 end if;
5700
5701 X :=
5702 Make_And_Then (Loc,
5703 Left_Opnd => X,
5704 Right_Opnd =>
5705 Make_Attribute_Reference (Loc,
5706 Attribute_Name => A,
5707 Prefix =>
5708 Make_Selected_Component (Loc,
5709 Prefix =>
5710 Duplicate_Subexpr (Pref, Name_Req => True),
5711 Selector_Name =>
5712 New_Occurrence_Of (C, Loc))));
5713 <<Continue>>
5714 Next_Component_Or_Discriminant (C);
5715 end loop;
5716
5717 Rewrite (N, X);
5718 Analyze_And_Resolve (N, Standard_Boolean);
5719 end;
5720
5721 -- For all other types, result is True (but not static)
5722
5723 else
5724 Rewrite (N, New_Occurrence_Of (Standard_Boolean, Loc));
5725 Analyze_And_Resolve (N, Standard_Boolean);
5726 Set_Is_Static_Expression (N, False);
5727 end if;
5728 end Valid_Scalars;
5729
5730 -----------
5731 -- Value --
5732 -----------
5733
5734 -- Value attribute is handled in separate unit Exp_Imgv
5735
5736 when Attribute_Value =>
5737 Exp_Imgv.Expand_Value_Attribute (N);
5738
5739 -----------------
5740 -- Value_Size --
5741 -----------------
5742
5743 -- The processing for Value_Size shares the processing for Size
5744
5745 -------------
5746 -- Version --
5747 -------------
5748
5749 -- The processing for Version shares the processing for Body_Version
5750
5751 ----------------
5752 -- Wide_Image --
5753 ----------------
5754
5755 -- Wide_Image attribute is handled in separate unit Exp_Imgv
5756
5757 when Attribute_Wide_Image =>
5758 Exp_Imgv.Expand_Wide_Image_Attribute (N);
5759
5760 ---------------------
5761 -- Wide_Wide_Image --
5762 ---------------------
5763
5764 -- Wide_Wide_Image attribute is handled in separate unit Exp_Imgv
5765
5766 when Attribute_Wide_Wide_Image =>
5767 Exp_Imgv.Expand_Wide_Wide_Image_Attribute (N);
5768
5769 ----------------
5770 -- Wide_Value --
5771 ----------------
5772
5773 -- We expand typ'Wide_Value (X) into
5774
5775 -- typ'Value
5776 -- (Wide_String_To_String (X, Wide_Character_Encoding_Method))
5777
5778 -- Wide_String_To_String is a runtime function that converts its wide
5779 -- string argument to String, converting any non-translatable characters
5780 -- into appropriate escape sequences. This preserves the required
5781 -- semantics of Wide_Value in all cases, and results in a very simple
5782 -- implementation approach.
5783
5784 -- Note: for this approach to be fully standard compliant for the cases
5785 -- where typ is Wide_Character and Wide_Wide_Character, the encoding
5786 -- method must cover the entire character range (e.g. UTF-8). But that
5787 -- is a reasonable requirement when dealing with encoded character
5788 -- sequences. Presumably if one of the restrictive encoding mechanisms
5789 -- is in use such as Shift-JIS, then characters that cannot be
5790 -- represented using this encoding will not appear in any case.
5791
5792 when Attribute_Wide_Value => Wide_Value :
5793 begin
5794 Rewrite (N,
5795 Make_Attribute_Reference (Loc,
5796 Prefix => Pref,
5797 Attribute_Name => Name_Value,
5798
5799 Expressions => New_List (
5800 Make_Function_Call (Loc,
5801 Name =>
5802 New_Reference_To (RTE (RE_Wide_String_To_String), Loc),
5803
5804 Parameter_Associations => New_List (
5805 Relocate_Node (First (Exprs)),
5806 Make_Integer_Literal (Loc,
5807 Intval => Int (Wide_Character_Encoding_Method)))))));
5808
5809 Analyze_And_Resolve (N, Typ);
5810 end Wide_Value;
5811
5812 ---------------------
5813 -- Wide_Wide_Value --
5814 ---------------------
5815
5816 -- We expand typ'Wide_Value_Value (X) into
5817
5818 -- typ'Value
5819 -- (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
5820
5821 -- Wide_Wide_String_To_String is a runtime function that converts its
5822 -- wide string argument to String, converting any non-translatable
5823 -- characters into appropriate escape sequences. This preserves the
5824 -- required semantics of Wide_Wide_Value in all cases, and results in a
5825 -- very simple implementation approach.
5826
5827 -- It's not quite right where typ = Wide_Wide_Character, because the
5828 -- encoding method may not cover the whole character type ???
5829
5830 when Attribute_Wide_Wide_Value => Wide_Wide_Value :
5831 begin
5832 Rewrite (N,
5833 Make_Attribute_Reference (Loc,
5834 Prefix => Pref,
5835 Attribute_Name => Name_Value,
5836
5837 Expressions => New_List (
5838 Make_Function_Call (Loc,
5839 Name =>
5840 New_Reference_To (RTE (RE_Wide_Wide_String_To_String), Loc),
5841
5842 Parameter_Associations => New_List (
5843 Relocate_Node (First (Exprs)),
5844 Make_Integer_Literal (Loc,
5845 Intval => Int (Wide_Character_Encoding_Method)))))));
5846
5847 Analyze_And_Resolve (N, Typ);
5848 end Wide_Wide_Value;
5849
5850 ---------------------
5851 -- Wide_Wide_Width --
5852 ---------------------
5853
5854 -- Wide_Wide_Width attribute is handled in separate unit Exp_Imgv
5855
5856 when Attribute_Wide_Wide_Width =>
5857 Exp_Imgv.Expand_Width_Attribute (N, Wide_Wide);
5858
5859 ----------------
5860 -- Wide_Width --
5861 ----------------
5862
5863 -- Wide_Width attribute is handled in separate unit Exp_Imgv
5864
5865 when Attribute_Wide_Width =>
5866 Exp_Imgv.Expand_Width_Attribute (N, Wide);
5867
5868 -----------
5869 -- Width --
5870 -----------
5871
5872 -- Width attribute is handled in separate unit Exp_Imgv
5873
5874 when Attribute_Width =>
5875 Exp_Imgv.Expand_Width_Attribute (N, Normal);
5876
5877 -----------
5878 -- Write --
5879 -----------
5880
5881 when Attribute_Write => Write : declare
5882 P_Type : constant Entity_Id := Entity (Pref);
5883 U_Type : constant Entity_Id := Underlying_Type (P_Type);
5884 Pname : Entity_Id;
5885 Decl : Node_Id;
5886 Prag : Node_Id;
5887 Arg3 : Node_Id;
5888 Wfunc : Node_Id;
5889
5890 begin
5891 -- If no underlying type, we have an error that will be diagnosed
5892 -- elsewhere, so here we just completely ignore the expansion.
5893
5894 if No (U_Type) then
5895 return;
5896 end if;
5897
5898 -- The simple case, if there is a TSS for Write, just call it
5899
5900 Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Write);
5901
5902 if Present (Pname) then
5903 null;
5904
5905 else
5906 -- If there is a Stream_Convert pragma, use it, we rewrite
5907
5908 -- sourcetyp'Output (stream, Item)
5909
5910 -- as
5911
5912 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
5913
5914 -- where strmwrite is the given Write function that converts an
5915 -- argument of type sourcetyp or a type acctyp, from which it is
5916 -- derived to type strmtyp. The conversion to acttyp is required
5917 -- for the derived case.
5918
5919 Prag := Get_Stream_Convert_Pragma (P_Type);
5920
5921 if Present (Prag) then
5922 Arg3 :=
5923 Next (Next (First (Pragma_Argument_Associations (Prag))));
5924 Wfunc := Entity (Expression (Arg3));
5925
5926 Rewrite (N,
5927 Make_Attribute_Reference (Loc,
5928 Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
5929 Attribute_Name => Name_Output,
5930 Expressions => New_List (
5931 Relocate_Node (First (Exprs)),
5932 Make_Function_Call (Loc,
5933 Name => New_Occurrence_Of (Wfunc, Loc),
5934 Parameter_Associations => New_List (
5935 OK_Convert_To (Etype (First_Formal (Wfunc)),
5936 Relocate_Node (Next (First (Exprs)))))))));
5937
5938 Analyze (N);
5939 return;
5940
5941 -- For elementary types, we call the W_xxx routine directly
5942
5943 elsif Is_Elementary_Type (U_Type) then
5944 Rewrite (N, Build_Elementary_Write_Call (N));
5945 Analyze (N);
5946 return;
5947
5948 -- Array type case
5949
5950 elsif Is_Array_Type (U_Type) then
5951 Build_Array_Write_Procedure (N, U_Type, Decl, Pname);
5952 Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
5953
5954 -- Tagged type case, use the primitive Write function. Note that
5955 -- this will dispatch in the class-wide case which is what we want
5956
5957 elsif Is_Tagged_Type (U_Type) then
5958 Pname := Find_Prim_Op (U_Type, TSS_Stream_Write);
5959
5960 -- All other record type cases, including protected records.
5961 -- The latter only arise for expander generated code for
5962 -- handling shared passive partition access.
5963
5964 else
5965 pragma Assert
5966 (Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
5967
5968 -- Ada 2005 (AI-216): Program_Error is raised when executing
5969 -- the default implementation of the Write attribute of an
5970 -- Unchecked_Union type. However, if the 'Write reference is
5971 -- within the generated Output stream procedure, Write outputs
5972 -- the components, and the default values of the discriminant
5973 -- are streamed by the Output procedure itself.
5974
5975 if Is_Unchecked_Union (Base_Type (U_Type))
5976 and not Is_TSS (Current_Scope, TSS_Stream_Output)
5977 then
5978 Insert_Action (N,
5979 Make_Raise_Program_Error (Loc,
5980 Reason => PE_Unchecked_Union_Restriction));
5981 end if;
5982
5983 if Has_Discriminants (U_Type)
5984 and then Present
5985 (Discriminant_Default_Value (First_Discriminant (U_Type)))
5986 then
5987 Build_Mutable_Record_Write_Procedure
5988 (Loc, Full_Base (U_Type), Decl, Pname);
5989 else
5990 Build_Record_Write_Procedure
5991 (Loc, Full_Base (U_Type), Decl, Pname);
5992 end if;
5993
5994 Insert_Action (N, Decl);
5995 end if;
5996 end if;
5997
5998 -- If we fall through, Pname is the procedure to be called
5999
6000 Rewrite_Stream_Proc_Call (Pname);
6001 end Write;
6002
6003 -- Component_Size is handled by the back end, unless the component size
6004 -- is known at compile time, which is always true in the packed array
6005 -- case. It is important that the packed array case is handled in the
6006 -- front end (see Eval_Attribute) since the back end would otherwise get
6007 -- confused by the equivalent packed array type.
6008
6009 when Attribute_Component_Size =>
6010 null;
6011
6012 -- The following attributes are handled by the back end (except that
6013 -- static cases have already been evaluated during semantic processing,
6014 -- but in any case the back end should not count on this). The one bit
6015 -- of special processing required is that these attributes typically
6016 -- generate conditionals in the code, so we need to check the relevant
6017 -- restriction.
6018
6019 when Attribute_Max |
6020 Attribute_Min =>
6021 Check_Restriction (No_Implicit_Conditionals, N);
6022
6023 -- The following attributes are handled by the back end (except that
6024 -- static cases have already been evaluated during semantic processing,
6025 -- but in any case the back end should not count on this).
6026
6027 -- The back end also handles the non-class-wide cases of Size
6028
6029 when Attribute_Bit_Order |
6030 Attribute_Code_Address |
6031 Attribute_Definite |
6032 Attribute_Null_Parameter |
6033 Attribute_Passed_By_Reference |
6034 Attribute_Pool_Address |
6035 Attribute_Scalar_Storage_Order =>
6036 null;
6037
6038 -- The following attributes are also handled by the back end, but return
6039 -- a universal integer result, so may need a conversion for checking
6040 -- that the result is in range.
6041
6042 when Attribute_Aft |
6043 Attribute_Max_Alignment_For_Allocation =>
6044 Apply_Universal_Integer_Attribute_Checks (N);
6045
6046 -- The following attributes should not appear at this stage, since they
6047 -- have already been handled by the analyzer (and properly rewritten
6048 -- with corresponding values or entities to represent the right values)
6049
6050 when Attribute_Abort_Signal |
6051 Attribute_Address_Size |
6052 Attribute_Atomic_Always_Lock_Free |
6053 Attribute_Base |
6054 Attribute_Class |
6055 Attribute_Compiler_Version |
6056 Attribute_Default_Bit_Order |
6057 Attribute_Delta |
6058 Attribute_Denorm |
6059 Attribute_Digits |
6060 Attribute_Emax |
6061 Attribute_Enabled |
6062 Attribute_Epsilon |
6063 Attribute_Fast_Math |
6064 Attribute_First_Valid |
6065 Attribute_Has_Access_Values |
6066 Attribute_Has_Discriminants |
6067 Attribute_Has_Tagged_Values |
6068 Attribute_Large |
6069 Attribute_Last_Valid |
6070 Attribute_Lock_Free |
6071 Attribute_Machine_Emax |
6072 Attribute_Machine_Emin |
6073 Attribute_Machine_Mantissa |
6074 Attribute_Machine_Overflows |
6075 Attribute_Machine_Radix |
6076 Attribute_Machine_Rounds |
6077 Attribute_Maximum_Alignment |
6078 Attribute_Model_Emin |
6079 Attribute_Model_Epsilon |
6080 Attribute_Model_Mantissa |
6081 Attribute_Model_Small |
6082 Attribute_Modulus |
6083 Attribute_Partition_ID |
6084 Attribute_Range |
6085 Attribute_Safe_Emax |
6086 Attribute_Safe_First |
6087 Attribute_Safe_Large |
6088 Attribute_Safe_Last |
6089 Attribute_Safe_Small |
6090 Attribute_Scale |
6091 Attribute_Signed_Zeros |
6092 Attribute_Small |
6093 Attribute_Storage_Unit |
6094 Attribute_Stub_Type |
6095 Attribute_System_Allocator_Alignment |
6096 Attribute_Target_Name |
6097 Attribute_Type_Class |
6098 Attribute_Type_Key |
6099 Attribute_Unconstrained_Array |
6100 Attribute_Universal_Literal_String |
6101 Attribute_Wchar_T_Size |
6102 Attribute_Word_Size =>
6103 raise Program_Error;
6104
6105 -- The Asm_Input and Asm_Output attributes are not expanded at this
6106 -- stage, but will be eliminated in the expansion of the Asm call, see
6107 -- Exp_Intr for details. So the back end will never see these either.
6108
6109 when Attribute_Asm_Input |
6110 Attribute_Asm_Output =>
6111 null;
6112 end case;
6113
6114 -- Note: as mentioned earlier, individual sections of the above case
6115 -- statement assume there is no code after the case statement, and are
6116 -- legitimately allowed to execute return statements if they have nothing
6117 -- more to do, so DO NOT add code at this point.
6118
6119 exception
6120 when RE_Not_Available =>
6121 return;
6122 end Expand_N_Attribute_Reference;
6123
6124 ----------------------
6125 -- Expand_Pred_Succ --
6126 ----------------------
6127
6128 -- For typ'Pred (exp), we generate the check
6129
6130 -- [constraint_error when exp = typ'Base'First]
6131
6132 -- Similarly, for typ'Succ (exp), we generate the check
6133
6134 -- [constraint_error when exp = typ'Base'Last]
6135
6136 -- These checks are not generated for modular types, since the proper
6137 -- semantics for Succ and Pred on modular types is to wrap, not raise CE.
6138 -- We also suppress these checks if we are the right side of an assignment
6139 -- statement or the expression of an object declaration, where the flag
6140 -- Suppress_Assignment_Checks is set for the assignment/declaration.
6141
6142 procedure Expand_Pred_Succ (N : Node_Id) is
6143 Loc : constant Source_Ptr := Sloc (N);
6144 P : constant Node_Id := Parent (N);
6145 Cnam : Name_Id;
6146
6147 begin
6148 if Attribute_Name (N) = Name_Pred then
6149 Cnam := Name_First;
6150 else
6151 Cnam := Name_Last;
6152 end if;
6153
6154 if not Nkind_In (P, N_Assignment_Statement, N_Object_Declaration)
6155 or else not Suppress_Assignment_Checks (P)
6156 then
6157 Insert_Action (N,
6158 Make_Raise_Constraint_Error (Loc,
6159 Condition =>
6160 Make_Op_Eq (Loc,
6161 Left_Opnd =>
6162 Duplicate_Subexpr_Move_Checks (First (Expressions (N))),
6163 Right_Opnd =>
6164 Make_Attribute_Reference (Loc,
6165 Prefix =>
6166 New_Reference_To (Base_Type (Etype (Prefix (N))), Loc),
6167 Attribute_Name => Cnam)),
6168 Reason => CE_Overflow_Check_Failed));
6169 end if;
6170 end Expand_Pred_Succ;
6171
6172 -----------------------------
6173 -- Expand_Update_Attribute --
6174 -----------------------------
6175
6176 procedure Expand_Update_Attribute (N : Node_Id) is
6177 procedure Process_Component_Or_Element_Update
6178 (Temp : Entity_Id;
6179 Comp : Node_Id;
6180 Expr : Node_Id;
6181 Typ : Entity_Id);
6182 -- Generate the statements necessary to update a single component or an
6183 -- element of the prefix. The code is inserted before the attribute N.
6184 -- Temp denotes the entity of the anonymous object created to reflect
6185 -- the changes in values. Comp is the component/index expression to be
6186 -- updated. Expr is an expression yielding the new value of Comp. Typ
6187 -- is the type of the prefix of attribute Update.
6188
6189 procedure Process_Range_Update
6190 (Temp : Entity_Id;
6191 Comp : Node_Id;
6192 Expr : Node_Id);
6193 -- Generate the statements necessary to update a slice of the prefix.
6194 -- The code is inserted before the attribute N. Temp denotes the entity
6195 -- of the anonymous object created to reflect the changes in values.
6196 -- Comp is range of the slice to be updated. Expr is an expression
6197 -- yielding the new value of Comp.
6198
6199 -----------------------------------------
6200 -- Process_Component_Or_Element_Update --
6201 -----------------------------------------
6202
6203 procedure Process_Component_Or_Element_Update
6204 (Temp : Entity_Id;
6205 Comp : Node_Id;
6206 Expr : Node_Id;
6207 Typ : Entity_Id)
6208 is
6209 Loc : constant Source_Ptr := Sloc (Comp);
6210 Exprs : List_Id;
6211 LHS : Node_Id;
6212
6213 begin
6214 -- An array element may be modified by the following relations
6215 -- depending on the number of dimensions:
6216
6217 -- 1 => Expr -- one dimensional update
6218 -- (1, ..., N) => Expr -- multi dimensional update
6219
6220 -- The above forms are converted in assignment statements where the
6221 -- left hand side is an indexed component:
6222
6223 -- Temp (1) := Expr; -- one dimensional update
6224 -- Temp (1, ..., N) := Expr; -- multi dimensional update
6225
6226 if Is_Array_Type (Typ) then
6227
6228 -- The index expressions of a multi dimensional array update
6229 -- appear as an aggregate.
6230
6231 if Nkind (Comp) = N_Aggregate then
6232 Exprs := New_Copy_List_Tree (Expressions (Comp));
6233 else
6234 Exprs := New_List (Relocate_Node (Comp));
6235 end if;
6236
6237 LHS :=
6238 Make_Indexed_Component (Loc,
6239 Prefix => New_Reference_To (Temp, Loc),
6240 Expressions => Exprs);
6241
6242 -- A record component update appears in the following form:
6243
6244 -- Comp => Expr
6245
6246 -- The above relation is transformed into an assignment statement
6247 -- where the left hand side is a selected component:
6248
6249 -- Temp.Comp := Expr;
6250
6251 else pragma Assert (Is_Record_Type (Typ));
6252 LHS :=
6253 Make_Selected_Component (Loc,
6254 Prefix => New_Reference_To (Temp, Loc),
6255 Selector_Name => Relocate_Node (Comp));
6256 end if;
6257
6258 Insert_Action (N,
6259 Make_Assignment_Statement (Loc,
6260 Name => LHS,
6261 Expression => Relocate_Node (Expr)));
6262 end Process_Component_Or_Element_Update;
6263
6264 --------------------------
6265 -- Process_Range_Update --
6266 --------------------------
6267
6268 procedure Process_Range_Update
6269 (Temp : Entity_Id;
6270 Comp : Node_Id;
6271 Expr : Node_Id)
6272 is
6273 Loc : constant Source_Ptr := Sloc (Comp);
6274 Index : Entity_Id;
6275
6276 begin
6277 -- A range update appears as
6278
6279 -- (Low .. High => Expr)
6280
6281 -- The above construct is transformed into a loop that iterates over
6282 -- the given range and modifies the corresponding array values to the
6283 -- value of Expr:
6284
6285 -- for Index in Low .. High loop
6286 -- Temp (Index) := Expr;
6287 -- end loop;
6288
6289 Index := Make_Temporary (Loc, 'I');
6290
6291 Insert_Action (N,
6292 Make_Loop_Statement (Loc,
6293 Iteration_Scheme =>
6294 Make_Iteration_Scheme (Loc,
6295 Loop_Parameter_Specification =>
6296 Make_Loop_Parameter_Specification (Loc,
6297 Defining_Identifier => Index,
6298 Discrete_Subtype_Definition => Relocate_Node (Comp))),
6299
6300 Statements => New_List (
6301 Make_Assignment_Statement (Loc,
6302 Name =>
6303 Make_Indexed_Component (Loc,
6304 Prefix => New_Reference_To (Temp, Loc),
6305 Expressions => New_List (New_Reference_To (Index, Loc))),
6306 Expression => Relocate_Node (Expr))),
6307
6308 End_Label => Empty));
6309 end Process_Range_Update;
6310
6311 -- Local variables
6312
6313 Aggr : constant Node_Id := First (Expressions (N));
6314 Loc : constant Source_Ptr := Sloc (N);
6315 Pref : constant Node_Id := Prefix (N);
6316 Typ : constant Entity_Id := Etype (Pref);
6317 Assoc : Node_Id;
6318 Comp : Node_Id;
6319 Expr : Node_Id;
6320 Temp : Entity_Id;
6321
6322 -- Start of processing for Expand_Update_Attribute
6323
6324 begin
6325 -- Create the anonymous object that stores the value of the prefix and
6326 -- reflects subsequent changes in value. Generate:
6327
6328 -- Temp : <type of Pref> := Pref;
6329
6330 Temp := Make_Temporary (Loc, 'T');
6331
6332 Insert_Action (N,
6333 Make_Object_Declaration (Loc,
6334 Defining_Identifier => Temp,
6335 Object_Definition => New_Reference_To (Typ, Loc),
6336 Expression => Relocate_Node (Pref)));
6337
6338 -- Process the update aggregate
6339
6340 Assoc := First (Component_Associations (Aggr));
6341 while Present (Assoc) loop
6342 Comp := First (Choices (Assoc));
6343 Expr := Expression (Assoc);
6344 while Present (Comp) loop
6345 if Nkind (Comp) = N_Range then
6346 Process_Range_Update (Temp, Comp, Expr);
6347 else
6348 Process_Component_Or_Element_Update (Temp, Comp, Expr, Typ);
6349 end if;
6350
6351 Next (Comp);
6352 end loop;
6353
6354 Next (Assoc);
6355 end loop;
6356
6357 -- The attribute is replaced by a reference to the anonymous object
6358
6359 Rewrite (N, New_Reference_To (Temp, Loc));
6360 Analyze (N);
6361 end Expand_Update_Attribute;
6362
6363 -------------------
6364 -- Find_Fat_Info --
6365 -------------------
6366
6367 procedure Find_Fat_Info
6368 (T : Entity_Id;
6369 Fat_Type : out Entity_Id;
6370 Fat_Pkg : out RE_Id)
6371 is
6372 Btyp : constant Entity_Id := Base_Type (T);
6373 Rtyp : constant Entity_Id := Root_Type (T);
6374 Digs : constant Nat := UI_To_Int (Digits_Value (Btyp));
6375
6376 begin
6377 -- If the base type is VAX float, then get appropriate VAX float type
6378
6379 if Vax_Float (Btyp) then
6380 case Digs is
6381 when 6 =>
6382 Fat_Type := RTE (RE_Fat_VAX_F);
6383 Fat_Pkg := RE_Attr_VAX_F_Float;
6384
6385 when 9 =>
6386 Fat_Type := RTE (RE_Fat_VAX_D);
6387 Fat_Pkg := RE_Attr_VAX_D_Float;
6388
6389 when 15 =>
6390 Fat_Type := RTE (RE_Fat_VAX_G);
6391 Fat_Pkg := RE_Attr_VAX_G_Float;
6392
6393 when others =>
6394 raise Program_Error;
6395 end case;
6396
6397 -- If root type is VAX float, this is the case where the library has
6398 -- been recompiled in VAX float mode, and we have an IEEE float type.
6399 -- This is when we use the special IEEE Fat packages.
6400
6401 elsif Vax_Float (Rtyp) then
6402 case Digs is
6403 when 6 =>
6404 Fat_Type := RTE (RE_Fat_IEEE_Short);
6405 Fat_Pkg := RE_Attr_IEEE_Short;
6406
6407 when 15 =>
6408 Fat_Type := RTE (RE_Fat_IEEE_Long);
6409 Fat_Pkg := RE_Attr_IEEE_Long;
6410
6411 when others =>
6412 raise Program_Error;
6413 end case;
6414
6415 -- If neither the base type nor the root type is VAX_Native then VAX
6416 -- float is out of the picture, and we can just use the root type.
6417
6418 else
6419 Fat_Type := Rtyp;
6420
6421 if Fat_Type = Standard_Short_Float then
6422 Fat_Pkg := RE_Attr_Short_Float;
6423
6424 elsif Fat_Type = Standard_Float then
6425 Fat_Pkg := RE_Attr_Float;
6426
6427 elsif Fat_Type = Standard_Long_Float then
6428 Fat_Pkg := RE_Attr_Long_Float;
6429
6430 elsif Fat_Type = Standard_Long_Long_Float then
6431 Fat_Pkg := RE_Attr_Long_Long_Float;
6432
6433 -- Universal real (which is its own root type) is treated as being
6434 -- equivalent to Standard.Long_Long_Float, since it is defined to
6435 -- have the same precision as the longest Float type.
6436
6437 elsif Fat_Type = Universal_Real then
6438 Fat_Type := Standard_Long_Long_Float;
6439 Fat_Pkg := RE_Attr_Long_Long_Float;
6440
6441 else
6442 raise Program_Error;
6443 end if;
6444 end if;
6445 end Find_Fat_Info;
6446
6447 ----------------------------
6448 -- Find_Stream_Subprogram --
6449 ----------------------------
6450
6451 function Find_Stream_Subprogram
6452 (Typ : Entity_Id;
6453 Nam : TSS_Name_Type) return Entity_Id
6454 is
6455 Base_Typ : constant Entity_Id := Base_Type (Typ);
6456 Ent : constant Entity_Id := TSS (Typ, Nam);
6457
6458 function Is_Available (Entity : RE_Id) return Boolean;
6459 pragma Inline (Is_Available);
6460 -- Function to check whether the specified run-time call is available
6461 -- in the run time used. In the case of a configurable run time, it
6462 -- is normal that some subprograms are not there.
6463
6464 -- I don't understand this routine at all, why is this not just a
6465 -- call to RTE_Available? And if for some reason we need a different
6466 -- routine with different semantics, why is not in Rtsfind ???
6467
6468 ------------------
6469 -- Is_Available --
6470 ------------------
6471
6472 function Is_Available (Entity : RE_Id) return Boolean is
6473 begin
6474 -- Assume that the unit will always be available when using a
6475 -- "normal" (not configurable) run time.
6476
6477 return not Configurable_Run_Time_Mode
6478 or else RTE_Available (Entity);
6479 end Is_Available;
6480
6481 -- Start of processing for Find_Stream_Subprogram
6482
6483 begin
6484 if Present (Ent) then
6485 return Ent;
6486 end if;
6487
6488 -- Stream attributes for strings are expanded into library calls. The
6489 -- following checks are disabled when the run-time is not available or
6490 -- when compiling predefined types due to bootstrap issues. As a result,
6491 -- the compiler will generate in-place stream routines for string types
6492 -- that appear in GNAT's library, but will generate calls via rtsfind
6493 -- to library routines for user code.
6494
6495 -- ??? For now, disable this code for JVM, since this generates a
6496 -- VerifyError exception at run time on e.g. c330001.
6497
6498 -- This is disabled for AAMP, to avoid creating dependences on files not
6499 -- supported in the AAMP library (such as s-fileio.adb).
6500
6501 -- Note: In the case of using a configurable run time, it is very likely
6502 -- that stream routines for string types are not present (they require
6503 -- file system support). In this case, the specific stream routines for
6504 -- strings are not used, relying on the regular stream mechanism
6505 -- instead. That is why we include the test Is_Available when dealing
6506 -- with these cases.
6507
6508 if VM_Target /= JVM_Target
6509 and then not AAMP_On_Target
6510 and then
6511 not Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
6512 then
6513 -- String as defined in package Ada
6514
6515 if Base_Typ = Standard_String then
6516 if Restriction_Active (No_Stream_Optimizations) then
6517 if Nam = TSS_Stream_Input
6518 and then Is_Available (RE_String_Input)
6519 then
6520 return RTE (RE_String_Input);
6521
6522 elsif Nam = TSS_Stream_Output
6523 and then Is_Available (RE_String_Output)
6524 then
6525 return RTE (RE_String_Output);
6526
6527 elsif Nam = TSS_Stream_Read
6528 and then Is_Available (RE_String_Read)
6529 then
6530 return RTE (RE_String_Read);
6531
6532 elsif Nam = TSS_Stream_Write
6533 and then Is_Available (RE_String_Write)
6534 then
6535 return RTE (RE_String_Write);
6536
6537 elsif Nam /= TSS_Stream_Input and then
6538 Nam /= TSS_Stream_Output and then
6539 Nam /= TSS_Stream_Read and then
6540 Nam /= TSS_Stream_Write
6541 then
6542 raise Program_Error;
6543 end if;
6544
6545 else
6546 if Nam = TSS_Stream_Input
6547 and then Is_Available (RE_String_Input_Blk_IO)
6548 then
6549 return RTE (RE_String_Input_Blk_IO);
6550
6551 elsif Nam = TSS_Stream_Output
6552 and then Is_Available (RE_String_Output_Blk_IO)
6553 then
6554 return RTE (RE_String_Output_Blk_IO);
6555
6556 elsif Nam = TSS_Stream_Read
6557 and then Is_Available (RE_String_Read_Blk_IO)
6558 then
6559 return RTE (RE_String_Read_Blk_IO);
6560
6561 elsif Nam = TSS_Stream_Write
6562 and then Is_Available (RE_String_Write_Blk_IO)
6563 then
6564 return RTE (RE_String_Write_Blk_IO);
6565
6566 elsif Nam /= TSS_Stream_Input and then
6567 Nam /= TSS_Stream_Output and then
6568 Nam /= TSS_Stream_Read and then
6569 Nam /= TSS_Stream_Write
6570 then
6571 raise Program_Error;
6572 end if;
6573 end if;
6574
6575 -- Wide_String as defined in package Ada
6576
6577 elsif Base_Typ = Standard_Wide_String then
6578 if Restriction_Active (No_Stream_Optimizations) then
6579 if Nam = TSS_Stream_Input
6580 and then Is_Available (RE_Wide_String_Input)
6581 then
6582 return RTE (RE_Wide_String_Input);
6583
6584 elsif Nam = TSS_Stream_Output
6585 and then Is_Available (RE_Wide_String_Output)
6586 then
6587 return RTE (RE_Wide_String_Output);
6588
6589 elsif Nam = TSS_Stream_Read
6590 and then Is_Available (RE_Wide_String_Read)
6591 then
6592 return RTE (RE_Wide_String_Read);
6593
6594 elsif Nam = TSS_Stream_Write
6595 and then Is_Available (RE_Wide_String_Write)
6596 then
6597 return RTE (RE_Wide_String_Write);
6598
6599 elsif Nam /= TSS_Stream_Input and then
6600 Nam /= TSS_Stream_Output and then
6601 Nam /= TSS_Stream_Read and then
6602 Nam /= TSS_Stream_Write
6603 then
6604 raise Program_Error;
6605 end if;
6606
6607 else
6608 if Nam = TSS_Stream_Input
6609 and then Is_Available (RE_Wide_String_Input_Blk_IO)
6610 then
6611 return RTE (RE_Wide_String_Input_Blk_IO);
6612
6613 elsif Nam = TSS_Stream_Output
6614 and then Is_Available (RE_Wide_String_Output_Blk_IO)
6615 then
6616 return RTE (RE_Wide_String_Output_Blk_IO);
6617
6618 elsif Nam = TSS_Stream_Read
6619 and then Is_Available (RE_Wide_String_Read_Blk_IO)
6620 then
6621 return RTE (RE_Wide_String_Read_Blk_IO);
6622
6623 elsif Nam = TSS_Stream_Write
6624 and then Is_Available (RE_Wide_String_Write_Blk_IO)
6625 then
6626 return RTE (RE_Wide_String_Write_Blk_IO);
6627
6628 elsif Nam /= TSS_Stream_Input and then
6629 Nam /= TSS_Stream_Output and then
6630 Nam /= TSS_Stream_Read and then
6631 Nam /= TSS_Stream_Write
6632 then
6633 raise Program_Error;
6634 end if;
6635 end if;
6636
6637 -- Wide_Wide_String as defined in package Ada
6638
6639 elsif Base_Typ = Standard_Wide_Wide_String then
6640 if Restriction_Active (No_Stream_Optimizations) then
6641 if Nam = TSS_Stream_Input
6642 and then Is_Available (RE_Wide_Wide_String_Input)
6643 then
6644 return RTE (RE_Wide_Wide_String_Input);
6645
6646 elsif Nam = TSS_Stream_Output
6647 and then Is_Available (RE_Wide_Wide_String_Output)
6648 then
6649 return RTE (RE_Wide_Wide_String_Output);
6650
6651 elsif Nam = TSS_Stream_Read
6652 and then Is_Available (RE_Wide_Wide_String_Read)
6653 then
6654 return RTE (RE_Wide_Wide_String_Read);
6655
6656 elsif Nam = TSS_Stream_Write
6657 and then Is_Available (RE_Wide_Wide_String_Write)
6658 then
6659 return RTE (RE_Wide_Wide_String_Write);
6660
6661 elsif Nam /= TSS_Stream_Input and then
6662 Nam /= TSS_Stream_Output and then
6663 Nam /= TSS_Stream_Read and then
6664 Nam /= TSS_Stream_Write
6665 then
6666 raise Program_Error;
6667 end if;
6668
6669 else
6670 if Nam = TSS_Stream_Input
6671 and then Is_Available (RE_Wide_Wide_String_Input_Blk_IO)
6672 then
6673 return RTE (RE_Wide_Wide_String_Input_Blk_IO);
6674
6675 elsif Nam = TSS_Stream_Output
6676 and then Is_Available (RE_Wide_Wide_String_Output_Blk_IO)
6677 then
6678 return RTE (RE_Wide_Wide_String_Output_Blk_IO);
6679
6680 elsif Nam = TSS_Stream_Read
6681 and then Is_Available (RE_Wide_Wide_String_Read_Blk_IO)
6682 then
6683 return RTE (RE_Wide_Wide_String_Read_Blk_IO);
6684
6685 elsif Nam = TSS_Stream_Write
6686 and then Is_Available (RE_Wide_Wide_String_Write_Blk_IO)
6687 then
6688 return RTE (RE_Wide_Wide_String_Write_Blk_IO);
6689
6690 elsif Nam /= TSS_Stream_Input and then
6691 Nam /= TSS_Stream_Output and then
6692 Nam /= TSS_Stream_Read and then
6693 Nam /= TSS_Stream_Write
6694 then
6695 raise Program_Error;
6696 end if;
6697 end if;
6698 end if;
6699 end if;
6700
6701 if Is_Tagged_Type (Typ)
6702 and then Is_Derived_Type (Typ)
6703 then
6704 return Find_Prim_Op (Typ, Nam);
6705 else
6706 return Find_Inherited_TSS (Typ, Nam);
6707 end if;
6708 end Find_Stream_Subprogram;
6709
6710 ---------------
6711 -- Full_Base --
6712 ---------------
6713
6714 function Full_Base (T : Entity_Id) return Entity_Id is
6715 BT : Entity_Id;
6716
6717 begin
6718 BT := Base_Type (T);
6719
6720 if Is_Private_Type (BT)
6721 and then Present (Full_View (BT))
6722 then
6723 BT := Full_View (BT);
6724 end if;
6725
6726 return BT;
6727 end Full_Base;
6728
6729 -----------------------
6730 -- Get_Index_Subtype --
6731 -----------------------
6732
6733 function Get_Index_Subtype (N : Node_Id) return Node_Id is
6734 P_Type : Entity_Id := Etype (Prefix (N));
6735 Indx : Node_Id;
6736 J : Int;
6737
6738 begin
6739 if Is_Access_Type (P_Type) then
6740 P_Type := Designated_Type (P_Type);
6741 end if;
6742
6743 if No (Expressions (N)) then
6744 J := 1;
6745 else
6746 J := UI_To_Int (Expr_Value (First (Expressions (N))));
6747 end if;
6748
6749 Indx := First_Index (P_Type);
6750 while J > 1 loop
6751 Next_Index (Indx);
6752 J := J - 1;
6753 end loop;
6754
6755 return Etype (Indx);
6756 end Get_Index_Subtype;
6757
6758 -------------------------------
6759 -- Get_Stream_Convert_Pragma --
6760 -------------------------------
6761
6762 function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id is
6763 Typ : Entity_Id;
6764 N : Node_Id;
6765
6766 begin
6767 -- Note: we cannot use Get_Rep_Pragma here because of the peculiarity
6768 -- that a stream convert pragma for a tagged type is not inherited from
6769 -- its parent. Probably what is wrong here is that it is basically
6770 -- incorrect to consider a stream convert pragma to be a representation
6771 -- pragma at all ???
6772
6773 N := First_Rep_Item (Implementation_Base_Type (T));
6774 while Present (N) loop
6775 if Nkind (N) = N_Pragma
6776 and then Pragma_Name (N) = Name_Stream_Convert
6777 then
6778 -- For tagged types this pragma is not inherited, so we
6779 -- must verify that it is defined for the given type and
6780 -- not an ancestor.
6781
6782 Typ :=
6783 Entity (Expression (First (Pragma_Argument_Associations (N))));
6784
6785 if not Is_Tagged_Type (T)
6786 or else T = Typ
6787 or else (Is_Private_Type (Typ) and then T = Full_View (Typ))
6788 then
6789 return N;
6790 end if;
6791 end if;
6792
6793 Next_Rep_Item (N);
6794 end loop;
6795
6796 return Empty;
6797 end Get_Stream_Convert_Pragma;
6798
6799 ---------------------------------
6800 -- Is_Constrained_Packed_Array --
6801 ---------------------------------
6802
6803 function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean is
6804 Arr : Entity_Id := Typ;
6805
6806 begin
6807 if Is_Access_Type (Arr) then
6808 Arr := Designated_Type (Arr);
6809 end if;
6810
6811 return Is_Array_Type (Arr)
6812 and then Is_Constrained (Arr)
6813 and then Present (Packed_Array_Type (Arr));
6814 end Is_Constrained_Packed_Array;
6815
6816 ----------------------------------------
6817 -- Is_Inline_Floating_Point_Attribute --
6818 ----------------------------------------
6819
6820 function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean is
6821 Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
6822
6823 begin
6824 if Nkind (Parent (N)) /= N_Type_Conversion
6825 or else not Is_Integer_Type (Etype (Parent (N)))
6826 then
6827 return False;
6828 end if;
6829
6830 -- Should also support 'Machine_Rounding and 'Unbiased_Rounding, but
6831 -- required back end support has not been implemented yet ???
6832
6833 return Id = Attribute_Truncation;
6834 end Is_Inline_Floating_Point_Attribute;
6835
6836 end Exp_Attr;