4112254bd3014bee4645e399228ae997e1d8cc66
[gcc.git] / gcc / ada / exp_ch4.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Atag; use Exp_Atag;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Fixd; use Exp_Fixd;
40 with Exp_Pakd; use Exp_Pakd;
41 with Exp_Tss; use Exp_Tss;
42 with Exp_Util; use Exp_Util;
43 with Exp_VFpt; use Exp_VFpt;
44 with Freeze; use Freeze;
45 with Inline; use Inline;
46 with Namet; use Namet;
47 with Nlists; use Nlists;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Par_SCO; use Par_SCO;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch3; use Sem_Ch3;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Eval; use Sem_Eval;
61 with Sem_Res; use Sem_Res;
62 with Sem_SCIL; use Sem_SCIL;
63 with Sem_Type; use Sem_Type;
64 with Sem_Util; use Sem_Util;
65 with Sem_Warn; use Sem_Warn;
66 with Sinfo; use Sinfo;
67 with Snames; use Snames;
68 with Stand; use Stand;
69 with Targparm; use Targparm;
70 with Tbuild; use Tbuild;
71 with Ttypes; use Ttypes;
72 with Uintp; use Uintp;
73 with Urealp; use Urealp;
74 with Validsw; use Validsw;
75
76 package body Exp_Ch4 is
77
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
81
82 procedure Binary_Op_Validity_Checks (N : Node_Id);
83 pragma Inline (Binary_Op_Validity_Checks);
84 -- Performs validity checks for a binary operator
85
86 procedure Build_Boolean_Array_Proc_Call
87 (N : Node_Id;
88 Op1 : Node_Id;
89 Op2 : Node_Id);
90 -- If a boolean array assignment can be done in place, build call to
91 -- corresponding library procedure.
92
93 procedure Displace_Allocator_Pointer (N : Node_Id);
94 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
95 -- Expand_Allocator_Expression. Allocating class-wide interface objects
96 -- this routine displaces the pointer to the allocated object to reference
97 -- the component referencing the corresponding secondary dispatch table.
98
99 procedure Expand_Allocator_Expression (N : Node_Id);
100 -- Subsidiary to Expand_N_Allocator, for the case when the expression
101 -- is a qualified expression or an aggregate.
102
103 procedure Expand_Array_Comparison (N : Node_Id);
104 -- This routine handles expansion of the comparison operators (N_Op_Lt,
105 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
106 -- code for these operators is similar, differing only in the details of
107 -- the actual comparison call that is made. Special processing (call a
108 -- run-time routine)
109
110 function Expand_Array_Equality
111 (Nod : Node_Id;
112 Lhs : Node_Id;
113 Rhs : Node_Id;
114 Bodies : List_Id;
115 Typ : Entity_Id) return Node_Id;
116 -- Expand an array equality into a call to a function implementing this
117 -- equality, and a call to it. Loc is the location for the generated nodes.
118 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
119 -- on which to attach bodies of local functions that are created in the
120 -- process. It is the responsibility of the caller to insert those bodies
121 -- at the right place. Nod provides the Sloc value for the generated code.
122 -- Normally the types used for the generated equality routine are taken
123 -- from Lhs and Rhs. However, in some situations of generated code, the
124 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
125 -- the type to be used for the formal parameters.
126
127 procedure Expand_Boolean_Operator (N : Node_Id);
128 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
129 -- case of array type arguments.
130
131 procedure Expand_Short_Circuit_Operator (N : Node_Id);
132 -- Common expansion processing for short-circuit boolean operators
133
134 function Expand_Composite_Equality
135 (Nod : Node_Id;
136 Typ : Entity_Id;
137 Lhs : Node_Id;
138 Rhs : Node_Id;
139 Bodies : List_Id) return Node_Id;
140 -- Local recursive function used to expand equality for nested composite
141 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
142 -- to attach bodies of local functions that are created in the process.
143 -- This is the responsibility of the caller to insert those bodies at the
144 -- right place. Nod provides the Sloc value for generated code. Lhs and Rhs
145 -- are the left and right sides for the comparison, and Typ is the type of
146 -- the arrays to compare.
147
148 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
149 -- Routine to expand concatenation of a sequence of two or more operands
150 -- (in the list Operands) and replace node Cnode with the result of the
151 -- concatenation. The operands can be of any appropriate type, and can
152 -- include both arrays and singleton elements.
153
154 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
155 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
156 -- fixed. We do not have such a type at runtime, so the purpose of this
157 -- routine is to find the real type by looking up the tree. We also
158 -- determine if the operation must be rounded.
159
160 function Get_Allocator_Final_List
161 (N : Node_Id;
162 T : Entity_Id;
163 PtrT : Entity_Id) return Entity_Id;
164 -- If the designated type is controlled, build final_list expression for
165 -- created object. If context is an access parameter, create a local access
166 -- type to have a usable finalization list.
167
168 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
169 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
170 -- discriminants if it has a constrained nominal type, unless the object
171 -- is a component of an enclosing Unchecked_Union object that is subject
172 -- to a per-object constraint and the enclosing object lacks inferable
173 -- discriminants.
174 --
175 -- An expression of an Unchecked_Union type has inferable discriminants
176 -- if it is either a name of an object with inferable discriminants or a
177 -- qualified expression whose subtype mark denotes a constrained subtype.
178
179 procedure Insert_Dereference_Action (N : Node_Id);
180 -- N is an expression whose type is an access. When the type of the
181 -- associated storage pool is derived from Checked_Pool, generate a
182 -- call to the 'Dereference' primitive operation.
183
184 function Make_Array_Comparison_Op
185 (Typ : Entity_Id;
186 Nod : Node_Id) return Node_Id;
187 -- Comparisons between arrays are expanded in line. This function produces
188 -- the body of the implementation of (a > b), where a and b are one-
189 -- dimensional arrays of some discrete type. The original node is then
190 -- expanded into the appropriate call to this function. Nod provides the
191 -- Sloc value for the generated code.
192
193 function Make_Boolean_Array_Op
194 (Typ : Entity_Id;
195 N : Node_Id) return Node_Id;
196 -- Boolean operations on boolean arrays are expanded in line. This function
197 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
198 -- b). It is used only the normal case and not the packed case. The type
199 -- involved, Typ, is the Boolean array type, and the logical operations in
200 -- the body are simple boolean operations. Note that Typ is always a
201 -- constrained type (the caller has ensured this by using
202 -- Convert_To_Actual_Subtype if necessary).
203
204 procedure Rewrite_Comparison (N : Node_Id);
205 -- If N is the node for a comparison whose outcome can be determined at
206 -- compile time, then the node N can be rewritten with True or False. If
207 -- the outcome cannot be determined at compile time, the call has no
208 -- effect. If N is a type conversion, then this processing is applied to
209 -- its expression. If N is neither comparison nor a type conversion, the
210 -- call has no effect.
211
212 procedure Tagged_Membership
213 (N : Node_Id;
214 SCIL_Node : out Node_Id;
215 Result : out Node_Id);
216 -- Construct the expression corresponding to the tagged membership test.
217 -- Deals with a second operand being (or not) a class-wide type.
218
219 function Safe_In_Place_Array_Op
220 (Lhs : Node_Id;
221 Op1 : Node_Id;
222 Op2 : Node_Id) return Boolean;
223 -- In the context of an assignment, where the right-hand side is a boolean
224 -- operation on arrays, check whether operation can be performed in place.
225
226 procedure Unary_Op_Validity_Checks (N : Node_Id);
227 pragma Inline (Unary_Op_Validity_Checks);
228 -- Performs validity checks for a unary operator
229
230 -------------------------------
231 -- Binary_Op_Validity_Checks --
232 -------------------------------
233
234 procedure Binary_Op_Validity_Checks (N : Node_Id) is
235 begin
236 if Validity_Checks_On and Validity_Check_Operands then
237 Ensure_Valid (Left_Opnd (N));
238 Ensure_Valid (Right_Opnd (N));
239 end if;
240 end Binary_Op_Validity_Checks;
241
242 ------------------------------------
243 -- Build_Boolean_Array_Proc_Call --
244 ------------------------------------
245
246 procedure Build_Boolean_Array_Proc_Call
247 (N : Node_Id;
248 Op1 : Node_Id;
249 Op2 : Node_Id)
250 is
251 Loc : constant Source_Ptr := Sloc (N);
252 Kind : constant Node_Kind := Nkind (Expression (N));
253 Target : constant Node_Id :=
254 Make_Attribute_Reference (Loc,
255 Prefix => Name (N),
256 Attribute_Name => Name_Address);
257
258 Arg1 : constant Node_Id := Op1;
259 Arg2 : Node_Id := Op2;
260 Call_Node : Node_Id;
261 Proc_Name : Entity_Id;
262
263 begin
264 if Kind = N_Op_Not then
265 if Nkind (Op1) in N_Binary_Op then
266
267 -- Use negated version of the binary operators
268
269 if Nkind (Op1) = N_Op_And then
270 Proc_Name := RTE (RE_Vector_Nand);
271
272 elsif Nkind (Op1) = N_Op_Or then
273 Proc_Name := RTE (RE_Vector_Nor);
274
275 else pragma Assert (Nkind (Op1) = N_Op_Xor);
276 Proc_Name := RTE (RE_Vector_Xor);
277 end if;
278
279 Call_Node :=
280 Make_Procedure_Call_Statement (Loc,
281 Name => New_Occurrence_Of (Proc_Name, Loc),
282
283 Parameter_Associations => New_List (
284 Target,
285 Make_Attribute_Reference (Loc,
286 Prefix => Left_Opnd (Op1),
287 Attribute_Name => Name_Address),
288
289 Make_Attribute_Reference (Loc,
290 Prefix => Right_Opnd (Op1),
291 Attribute_Name => Name_Address),
292
293 Make_Attribute_Reference (Loc,
294 Prefix => Left_Opnd (Op1),
295 Attribute_Name => Name_Length)));
296
297 else
298 Proc_Name := RTE (RE_Vector_Not);
299
300 Call_Node :=
301 Make_Procedure_Call_Statement (Loc,
302 Name => New_Occurrence_Of (Proc_Name, Loc),
303 Parameter_Associations => New_List (
304 Target,
305
306 Make_Attribute_Reference (Loc,
307 Prefix => Op1,
308 Attribute_Name => Name_Address),
309
310 Make_Attribute_Reference (Loc,
311 Prefix => Op1,
312 Attribute_Name => Name_Length)));
313 end if;
314
315 else
316 -- We use the following equivalences:
317
318 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
319 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
320 -- (not X) xor (not Y) = X xor Y
321 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
322
323 if Nkind (Op1) = N_Op_Not then
324 if Kind = N_Op_And then
325 Proc_Name := RTE (RE_Vector_Nor);
326 elsif Kind = N_Op_Or then
327 Proc_Name := RTE (RE_Vector_Nand);
328 else
329 Proc_Name := RTE (RE_Vector_Xor);
330 end if;
331
332 else
333 if Kind = N_Op_And then
334 Proc_Name := RTE (RE_Vector_And);
335 elsif Kind = N_Op_Or then
336 Proc_Name := RTE (RE_Vector_Or);
337 elsif Nkind (Op2) = N_Op_Not then
338 Proc_Name := RTE (RE_Vector_Nxor);
339 Arg2 := Right_Opnd (Op2);
340 else
341 Proc_Name := RTE (RE_Vector_Xor);
342 end if;
343 end if;
344
345 Call_Node :=
346 Make_Procedure_Call_Statement (Loc,
347 Name => New_Occurrence_Of (Proc_Name, Loc),
348 Parameter_Associations => New_List (
349 Target,
350 Make_Attribute_Reference (Loc,
351 Prefix => Arg1,
352 Attribute_Name => Name_Address),
353 Make_Attribute_Reference (Loc,
354 Prefix => Arg2,
355 Attribute_Name => Name_Address),
356 Make_Attribute_Reference (Loc,
357 Prefix => Op1,
358 Attribute_Name => Name_Length)));
359 end if;
360
361 Rewrite (N, Call_Node);
362 Analyze (N);
363
364 exception
365 when RE_Not_Available =>
366 return;
367 end Build_Boolean_Array_Proc_Call;
368
369 --------------------------------
370 -- Displace_Allocator_Pointer --
371 --------------------------------
372
373 procedure Displace_Allocator_Pointer (N : Node_Id) is
374 Loc : constant Source_Ptr := Sloc (N);
375 Orig_Node : constant Node_Id := Original_Node (N);
376 Dtyp : Entity_Id;
377 Etyp : Entity_Id;
378 PtrT : Entity_Id;
379
380 begin
381 -- Do nothing in case of VM targets: the virtual machine will handle
382 -- interfaces directly.
383
384 if not Tagged_Type_Expansion then
385 return;
386 end if;
387
388 pragma Assert (Nkind (N) = N_Identifier
389 and then Nkind (Orig_Node) = N_Allocator);
390
391 PtrT := Etype (Orig_Node);
392 Dtyp := Available_View (Designated_Type (PtrT));
393 Etyp := Etype (Expression (Orig_Node));
394
395 if Is_Class_Wide_Type (Dtyp)
396 and then Is_Interface (Dtyp)
397 then
398 -- If the type of the allocator expression is not an interface type
399 -- we can generate code to reference the record component containing
400 -- the pointer to the secondary dispatch table.
401
402 if not Is_Interface (Etyp) then
403 declare
404 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
405
406 begin
407 -- 1) Get access to the allocated object
408
409 Rewrite (N,
410 Make_Explicit_Dereference (Loc,
411 Relocate_Node (N)));
412 Set_Etype (N, Etyp);
413 Set_Analyzed (N);
414
415 -- 2) Add the conversion to displace the pointer to reference
416 -- the secondary dispatch table.
417
418 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
419 Analyze_And_Resolve (N, Dtyp);
420
421 -- 3) The 'access to the secondary dispatch table will be used
422 -- as the value returned by the allocator.
423
424 Rewrite (N,
425 Make_Attribute_Reference (Loc,
426 Prefix => Relocate_Node (N),
427 Attribute_Name => Name_Access));
428 Set_Etype (N, Saved_Typ);
429 Set_Analyzed (N);
430 end;
431
432 -- If the type of the allocator expression is an interface type we
433 -- generate a run-time call to displace "this" to reference the
434 -- component containing the pointer to the secondary dispatch table
435 -- or else raise Constraint_Error if the actual object does not
436 -- implement the target interface. This case corresponds with the
437 -- following example:
438
439 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
440 -- begin
441 -- return new Iface_2'Class'(Obj);
442 -- end Op;
443
444 else
445 Rewrite (N,
446 Unchecked_Convert_To (PtrT,
447 Make_Function_Call (Loc,
448 Name => New_Reference_To (RTE (RE_Displace), Loc),
449 Parameter_Associations => New_List (
450 Unchecked_Convert_To (RTE (RE_Address),
451 Relocate_Node (N)),
452
453 New_Occurrence_Of
454 (Elists.Node
455 (First_Elmt
456 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
457 Loc)))));
458 Analyze_And_Resolve (N, PtrT);
459 end if;
460 end if;
461 end Displace_Allocator_Pointer;
462
463 ---------------------------------
464 -- Expand_Allocator_Expression --
465 ---------------------------------
466
467 procedure Expand_Allocator_Expression (N : Node_Id) is
468 Loc : constant Source_Ptr := Sloc (N);
469 Exp : constant Node_Id := Expression (Expression (N));
470 PtrT : constant Entity_Id := Etype (N);
471 DesigT : constant Entity_Id := Designated_Type (PtrT);
472
473 procedure Apply_Accessibility_Check
474 (Ref : Node_Id;
475 Built_In_Place : Boolean := False);
476 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
477 -- type, generate an accessibility check to verify that the level of the
478 -- type of the created object is not deeper than the level of the access
479 -- type. If the type of the qualified expression is class- wide, then
480 -- always generate the check (except in the case where it is known to be
481 -- unnecessary, see comment below). Otherwise, only generate the check
482 -- if the level of the qualified expression type is statically deeper
483 -- than the access type.
484 --
485 -- Although the static accessibility will generally have been performed
486 -- as a legality check, it won't have been done in cases where the
487 -- allocator appears in generic body, so a run-time check is needed in
488 -- general. One special case is when the access type is declared in the
489 -- same scope as the class-wide allocator, in which case the check can
490 -- never fail, so it need not be generated.
491 --
492 -- As an open issue, there seem to be cases where the static level
493 -- associated with the class-wide object's underlying type is not
494 -- sufficient to perform the proper accessibility check, such as for
495 -- allocators in nested subprograms or accept statements initialized by
496 -- class-wide formals when the actual originates outside at a deeper
497 -- static level. The nested subprogram case might require passing
498 -- accessibility levels along with class-wide parameters, and the task
499 -- case seems to be an actual gap in the language rules that needs to
500 -- be fixed by the ARG. ???
501
502 -------------------------------
503 -- Apply_Accessibility_Check --
504 -------------------------------
505
506 procedure Apply_Accessibility_Check
507 (Ref : Node_Id;
508 Built_In_Place : Boolean := False)
509 is
510 Ref_Node : Node_Id;
511
512 begin
513 -- Note: we skip the accessibility check for the VM case, since
514 -- there does not seem to be any practical way of implementing it.
515
516 if Ada_Version >= Ada_05
517 and then Tagged_Type_Expansion
518 and then Is_Class_Wide_Type (DesigT)
519 and then not Scope_Suppress (Accessibility_Check)
520 and then
521 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
522 or else
523 (Is_Class_Wide_Type (Etype (Exp))
524 and then Scope (PtrT) /= Current_Scope))
525 then
526 -- If the allocator was built in place Ref is already a reference
527 -- to the access object initialized to the result of the allocator
528 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). Otherwise
529 -- it is the entity associated with the object containing the
530 -- address of the allocated object.
531
532 if Built_In_Place then
533 Ref_Node := New_Copy (Ref);
534 else
535 Ref_Node := New_Reference_To (Ref, Loc);
536 end if;
537
538 Insert_Action (N,
539 Make_Raise_Program_Error (Loc,
540 Condition =>
541 Make_Op_Gt (Loc,
542 Left_Opnd =>
543 Build_Get_Access_Level (Loc,
544 Make_Attribute_Reference (Loc,
545 Prefix => Ref_Node,
546 Attribute_Name => Name_Tag)),
547 Right_Opnd =>
548 Make_Integer_Literal (Loc,
549 Type_Access_Level (PtrT))),
550 Reason => PE_Accessibility_Check_Failed));
551 end if;
552 end Apply_Accessibility_Check;
553
554 -- Local variables
555
556 Indic : constant Node_Id := Subtype_Mark (Expression (N));
557 T : constant Entity_Id := Entity (Indic);
558 Flist : Node_Id;
559 Node : Node_Id;
560 Temp : Entity_Id;
561
562 TagT : Entity_Id := Empty;
563 -- Type used as source for tag assignment
564
565 TagR : Node_Id := Empty;
566 -- Target reference for tag assignment
567
568 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
569
570 Tag_Assign : Node_Id;
571 Tmp_Node : Node_Id;
572
573 -- Start of processing for Expand_Allocator_Expression
574
575 begin
576 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
577
578 if Is_CPP_Constructor_Call (Exp) then
579
580 -- Generate:
581 -- Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn
582
583 -- Allocate the object with no expression
584
585 Node := Relocate_Node (N);
586 Set_Expression (Node, New_Reference_To (Etype (Exp), Loc));
587
588 -- Avoid its expansion to avoid generating a call to the default
589 -- C++ constructor
590
591 Set_Analyzed (Node);
592
593 Temp := Make_Temporary (Loc, 'P', N);
594
595 Insert_Action (N,
596 Make_Object_Declaration (Loc,
597 Defining_Identifier => Temp,
598 Constant_Present => True,
599 Object_Definition => New_Reference_To (PtrT, Loc),
600 Expression => Node));
601
602 Apply_Accessibility_Check (Temp);
603
604 -- Locate the enclosing list and insert the C++ constructor call
605
606 declare
607 P : Node_Id;
608
609 begin
610 P := Parent (Node);
611 while not Is_List_Member (P) loop
612 P := Parent (P);
613 end loop;
614
615 Insert_List_After_And_Analyze (P,
616 Build_Initialization_Call (Loc,
617 Id_Ref =>
618 Make_Explicit_Dereference (Loc,
619 Prefix => New_Reference_To (Temp, Loc)),
620 Typ => Etype (Exp),
621 Constructor_Ref => Exp));
622 end;
623
624 Rewrite (N, New_Reference_To (Temp, Loc));
625 Analyze_And_Resolve (N, PtrT);
626 return;
627 end if;
628
629 -- Ada 2005 (AI-318-02): If the initialization expression is a call
630 -- to a build-in-place function, then access to the allocated object
631 -- must be passed to the function. Currently we limit such functions
632 -- to those with constrained limited result subtypes, but eventually
633 -- we plan to expand the allowed forms of functions that are treated
634 -- as build-in-place.
635
636 if Ada_Version >= Ada_05
637 and then Is_Build_In_Place_Function_Call (Exp)
638 then
639 Make_Build_In_Place_Call_In_Allocator (N, Exp);
640 Apply_Accessibility_Check (N, Built_In_Place => True);
641 return;
642 end if;
643
644 -- Actions inserted before:
645 -- Temp : constant ptr_T := new T'(Expression);
646 -- <no CW> Temp._tag := T'tag;
647 -- <CTRL> Adjust (Finalizable (Temp.all));
648 -- <CTRL> Attach_To_Final_List (Finalizable (Temp.all));
649
650 -- We analyze by hand the new internal allocator to avoid
651 -- any recursion and inappropriate call to Initialize
652
653 -- We don't want to remove side effects when the expression must be
654 -- built in place. In the case of a build-in-place function call,
655 -- that could lead to a duplication of the call, which was already
656 -- substituted for the allocator.
657
658 if not Aggr_In_Place then
659 Remove_Side_Effects (Exp);
660 end if;
661
662 Temp := Make_Temporary (Loc, 'P', N);
663
664 -- For a class wide allocation generate the following code:
665
666 -- type Equiv_Record is record ... end record;
667 -- implicit subtype CW is <Class_Wide_Subytpe>;
668 -- temp : PtrT := new CW'(CW!(expr));
669
670 if Is_Class_Wide_Type (T) then
671 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
672
673 -- Ada 2005 (AI-251): If the expression is a class-wide interface
674 -- object we generate code to move up "this" to reference the
675 -- base of the object before allocating the new object.
676
677 -- Note that Exp'Address is recursively expanded into a call
678 -- to Base_Address (Exp.Tag)
679
680 if Is_Class_Wide_Type (Etype (Exp))
681 and then Is_Interface (Etype (Exp))
682 and then Tagged_Type_Expansion
683 then
684 Set_Expression
685 (Expression (N),
686 Unchecked_Convert_To (Entity (Indic),
687 Make_Explicit_Dereference (Loc,
688 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
689 Make_Attribute_Reference (Loc,
690 Prefix => Exp,
691 Attribute_Name => Name_Address)))));
692
693 else
694 Set_Expression
695 (Expression (N),
696 Unchecked_Convert_To (Entity (Indic), Exp));
697 end if;
698
699 Analyze_And_Resolve (Expression (N), Entity (Indic));
700 end if;
701
702 -- Keep separate the management of allocators returning interfaces
703
704 if not Is_Interface (Directly_Designated_Type (PtrT)) then
705 if Aggr_In_Place then
706 Tmp_Node :=
707 Make_Object_Declaration (Loc,
708 Defining_Identifier => Temp,
709 Object_Definition => New_Reference_To (PtrT, Loc),
710 Expression =>
711 Make_Allocator (Loc,
712 New_Reference_To (Etype (Exp), Loc)));
713
714 -- Copy the Comes_From_Source flag for the allocator we just
715 -- built, since logically this allocator is a replacement of
716 -- the original allocator node. This is for proper handling of
717 -- restriction No_Implicit_Heap_Allocations.
718
719 Set_Comes_From_Source
720 (Expression (Tmp_Node), Comes_From_Source (N));
721
722 Set_No_Initialization (Expression (Tmp_Node));
723 Insert_Action (N, Tmp_Node);
724
725 if Needs_Finalization (T)
726 and then Ekind (PtrT) = E_Anonymous_Access_Type
727 then
728 -- Create local finalization list for access parameter
729
730 Flist := Get_Allocator_Final_List (N, Base_Type (T), PtrT);
731 end if;
732
733 Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
734
735 else
736 Node := Relocate_Node (N);
737 Set_Analyzed (Node);
738 Insert_Action (N,
739 Make_Object_Declaration (Loc,
740 Defining_Identifier => Temp,
741 Constant_Present => True,
742 Object_Definition => New_Reference_To (PtrT, Loc),
743 Expression => Node));
744 end if;
745
746 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
747 -- interface type. In this case we use the type of the qualified
748 -- expression to allocate the object.
749
750 else
751 declare
752 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
753 New_Decl : Node_Id;
754
755 begin
756 New_Decl :=
757 Make_Full_Type_Declaration (Loc,
758 Defining_Identifier => Def_Id,
759 Type_Definition =>
760 Make_Access_To_Object_Definition (Loc,
761 All_Present => True,
762 Null_Exclusion_Present => False,
763 Constant_Present => False,
764 Subtype_Indication =>
765 New_Reference_To (Etype (Exp), Loc)));
766
767 Insert_Action (N, New_Decl);
768
769 -- Inherit the final chain to ensure that the expansion of the
770 -- aggregate is correct in case of controlled types
771
772 if Needs_Finalization (Directly_Designated_Type (PtrT)) then
773 Set_Associated_Final_Chain (Def_Id,
774 Associated_Final_Chain (PtrT));
775 end if;
776
777 -- Declare the object using the previous type declaration
778
779 if Aggr_In_Place then
780 Tmp_Node :=
781 Make_Object_Declaration (Loc,
782 Defining_Identifier => Temp,
783 Object_Definition => New_Reference_To (Def_Id, Loc),
784 Expression =>
785 Make_Allocator (Loc,
786 New_Reference_To (Etype (Exp), Loc)));
787
788 -- Copy the Comes_From_Source flag for the allocator we just
789 -- built, since logically this allocator is a replacement of
790 -- the original allocator node. This is for proper handling
791 -- of restriction No_Implicit_Heap_Allocations.
792
793 Set_Comes_From_Source
794 (Expression (Tmp_Node), Comes_From_Source (N));
795
796 Set_No_Initialization (Expression (Tmp_Node));
797 Insert_Action (N, Tmp_Node);
798
799 if Needs_Finalization (T)
800 and then Ekind (PtrT) = E_Anonymous_Access_Type
801 then
802 -- Create local finalization list for access parameter
803
804 Flist :=
805 Get_Allocator_Final_List (N, Base_Type (T), PtrT);
806 end if;
807
808 Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
809 else
810 Node := Relocate_Node (N);
811 Set_Analyzed (Node);
812 Insert_Action (N,
813 Make_Object_Declaration (Loc,
814 Defining_Identifier => Temp,
815 Constant_Present => True,
816 Object_Definition => New_Reference_To (Def_Id, Loc),
817 Expression => Node));
818 end if;
819
820 -- Generate an additional object containing the address of the
821 -- returned object. The type of this second object declaration
822 -- is the correct type required for the common processing that
823 -- is still performed by this subprogram. The displacement of
824 -- this pointer to reference the component associated with the
825 -- interface type will be done at the end of common processing.
826
827 New_Decl :=
828 Make_Object_Declaration (Loc,
829 Defining_Identifier => Make_Temporary (Loc, 'P'),
830 Object_Definition => New_Reference_To (PtrT, Loc),
831 Expression => Unchecked_Convert_To (PtrT,
832 New_Reference_To (Temp, Loc)));
833
834 Insert_Action (N, New_Decl);
835
836 Tmp_Node := New_Decl;
837 Temp := Defining_Identifier (New_Decl);
838 end;
839 end if;
840
841 Apply_Accessibility_Check (Temp);
842
843 -- Generate the tag assignment
844
845 -- Suppress the tag assignment when VM_Target because VM tags are
846 -- represented implicitly in objects.
847
848 if not Tagged_Type_Expansion then
849 null;
850
851 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
852 -- interface objects because in this case the tag does not change.
853
854 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
855 pragma Assert (Is_Class_Wide_Type
856 (Directly_Designated_Type (Etype (N))));
857 null;
858
859 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
860 TagT := T;
861 TagR := New_Reference_To (Temp, Loc);
862
863 elsif Is_Private_Type (T)
864 and then Is_Tagged_Type (Underlying_Type (T))
865 then
866 TagT := Underlying_Type (T);
867 TagR :=
868 Unchecked_Convert_To (Underlying_Type (T),
869 Make_Explicit_Dereference (Loc,
870 Prefix => New_Reference_To (Temp, Loc)));
871 end if;
872
873 if Present (TagT) then
874 Tag_Assign :=
875 Make_Assignment_Statement (Loc,
876 Name =>
877 Make_Selected_Component (Loc,
878 Prefix => TagR,
879 Selector_Name =>
880 New_Reference_To (First_Tag_Component (TagT), Loc)),
881
882 Expression =>
883 Unchecked_Convert_To (RTE (RE_Tag),
884 New_Reference_To
885 (Elists.Node (First_Elmt (Access_Disp_Table (TagT))),
886 Loc)));
887
888 -- The previous assignment has to be done in any case
889
890 Set_Assignment_OK (Name (Tag_Assign));
891 Insert_Action (N, Tag_Assign);
892 end if;
893
894 if Needs_Finalization (DesigT)
895 and then Needs_Finalization (T)
896 then
897 declare
898 Attach : Node_Id;
899 Apool : constant Entity_Id :=
900 Associated_Storage_Pool (PtrT);
901
902 begin
903 -- If it is an allocation on the secondary stack (i.e. a value
904 -- returned from a function), the object is attached on the
905 -- caller side as soon as the call is completed (see
906 -- Expand_Ctrl_Function_Call)
907
908 if Is_RTE (Apool, RE_SS_Pool) then
909 declare
910 F : constant Entity_Id := Make_Temporary (Loc, 'F');
911 begin
912 Insert_Action (N,
913 Make_Object_Declaration (Loc,
914 Defining_Identifier => F,
915 Object_Definition =>
916 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
917 Flist := New_Reference_To (F, Loc);
918 Attach := Make_Integer_Literal (Loc, 1);
919 end;
920
921 -- Normal case, not a secondary stack allocation
922
923 else
924 if Needs_Finalization (T)
925 and then Ekind (PtrT) = E_Anonymous_Access_Type
926 then
927 -- Create local finalization list for access parameter
928
929 Flist :=
930 Get_Allocator_Final_List (N, Base_Type (T), PtrT);
931 else
932 Flist := Find_Final_List (PtrT);
933 end if;
934
935 Attach := Make_Integer_Literal (Loc, 2);
936 end if;
937
938 -- Generate an Adjust call if the object will be moved. In Ada
939 -- 2005, the object may be inherently limited, in which case
940 -- there is no Adjust procedure, and the object is built in
941 -- place. In Ada 95, the object can be limited but not
942 -- inherently limited if this allocator came from a return
943 -- statement (we're allocating the result on the secondary
944 -- stack). In that case, the object will be moved, so we _do_
945 -- want to Adjust.
946
947 if not Aggr_In_Place
948 and then not Is_Inherently_Limited_Type (T)
949 then
950 Insert_Actions (N,
951 Make_Adjust_Call (
952 Ref =>
953
954 -- An unchecked conversion is needed in the classwide
955 -- case because the designated type can be an ancestor of
956 -- the subtype mark of the allocator.
957
958 Unchecked_Convert_To (T,
959 Make_Explicit_Dereference (Loc,
960 Prefix => New_Reference_To (Temp, Loc))),
961
962 Typ => T,
963 Flist_Ref => Flist,
964 With_Attach => Attach,
965 Allocator => True));
966 end if;
967 end;
968 end if;
969
970 Rewrite (N, New_Reference_To (Temp, Loc));
971 Analyze_And_Resolve (N, PtrT);
972
973 -- Ada 2005 (AI-251): Displace the pointer to reference the record
974 -- component containing the secondary dispatch table of the interface
975 -- type.
976
977 if Is_Interface (Directly_Designated_Type (PtrT)) then
978 Displace_Allocator_Pointer (N);
979 end if;
980
981 elsif Aggr_In_Place then
982 Temp := Make_Temporary (Loc, 'P', N);
983 Tmp_Node :=
984 Make_Object_Declaration (Loc,
985 Defining_Identifier => Temp,
986 Object_Definition => New_Reference_To (PtrT, Loc),
987 Expression => Make_Allocator (Loc,
988 New_Reference_To (Etype (Exp), Loc)));
989
990 -- Copy the Comes_From_Source flag for the allocator we just built,
991 -- since logically this allocator is a replacement of the original
992 -- allocator node. This is for proper handling of restriction
993 -- No_Implicit_Heap_Allocations.
994
995 Set_Comes_From_Source
996 (Expression (Tmp_Node), Comes_From_Source (N));
997
998 Set_No_Initialization (Expression (Tmp_Node));
999 Insert_Action (N, Tmp_Node);
1000 Convert_Aggr_In_Allocator (N, Tmp_Node, Exp);
1001 Rewrite (N, New_Reference_To (Temp, Loc));
1002 Analyze_And_Resolve (N, PtrT);
1003
1004 elsif Is_Access_Type (T)
1005 and then Can_Never_Be_Null (T)
1006 then
1007 Install_Null_Excluding_Check (Exp);
1008
1009 elsif Is_Access_Type (DesigT)
1010 and then Nkind (Exp) = N_Allocator
1011 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1012 then
1013 -- Apply constraint to designated subtype indication
1014
1015 Apply_Constraint_Check (Expression (Exp),
1016 Designated_Type (DesigT),
1017 No_Sliding => True);
1018
1019 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1020
1021 -- Propagate constraint_error to enclosing allocator
1022
1023 Rewrite (Exp, New_Copy (Expression (Exp)));
1024 end if;
1025 else
1026 -- If we have:
1027 -- type A is access T1;
1028 -- X : A := new T2'(...);
1029 -- T1 and T2 can be different subtypes, and we might need to check
1030 -- both constraints. First check against the type of the qualified
1031 -- expression.
1032
1033 Apply_Constraint_Check (Exp, T, No_Sliding => True);
1034
1035 if Do_Range_Check (Exp) then
1036 Set_Do_Range_Check (Exp, False);
1037 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1038 end if;
1039
1040 -- A check is also needed in cases where the designated subtype is
1041 -- constrained and differs from the subtype given in the qualified
1042 -- expression. Note that the check on the qualified expression does
1043 -- not allow sliding, but this check does (a relaxation from Ada 83).
1044
1045 if Is_Constrained (DesigT)
1046 and then not Subtypes_Statically_Match (T, DesigT)
1047 then
1048 Apply_Constraint_Check
1049 (Exp, DesigT, No_Sliding => False);
1050
1051 if Do_Range_Check (Exp) then
1052 Set_Do_Range_Check (Exp, False);
1053 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1054 end if;
1055 end if;
1056
1057 -- For an access to unconstrained packed array, GIGI needs to see an
1058 -- expression with a constrained subtype in order to compute the
1059 -- proper size for the allocator.
1060
1061 if Is_Array_Type (T)
1062 and then not Is_Constrained (T)
1063 and then Is_Packed (T)
1064 then
1065 declare
1066 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
1067 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1068 begin
1069 Insert_Action (Exp,
1070 Make_Subtype_Declaration (Loc,
1071 Defining_Identifier => ConstrT,
1072 Subtype_Indication =>
1073 Make_Subtype_From_Expr (Exp, T)));
1074 Freeze_Itype (ConstrT, Exp);
1075 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1076 end;
1077 end if;
1078
1079 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1080 -- to a build-in-place function, then access to the allocated object
1081 -- must be passed to the function. Currently we limit such functions
1082 -- to those with constrained limited result subtypes, but eventually
1083 -- we plan to expand the allowed forms of functions that are treated
1084 -- as build-in-place.
1085
1086 if Ada_Version >= Ada_05
1087 and then Is_Build_In_Place_Function_Call (Exp)
1088 then
1089 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1090 end if;
1091 end if;
1092
1093 exception
1094 when RE_Not_Available =>
1095 return;
1096 end Expand_Allocator_Expression;
1097
1098 -----------------------------
1099 -- Expand_Array_Comparison --
1100 -----------------------------
1101
1102 -- Expansion is only required in the case of array types. For the unpacked
1103 -- case, an appropriate runtime routine is called. For packed cases, and
1104 -- also in some other cases where a runtime routine cannot be called, the
1105 -- form of the expansion is:
1106
1107 -- [body for greater_nn; boolean_expression]
1108
1109 -- The body is built by Make_Array_Comparison_Op, and the form of the
1110 -- Boolean expression depends on the operator involved.
1111
1112 procedure Expand_Array_Comparison (N : Node_Id) is
1113 Loc : constant Source_Ptr := Sloc (N);
1114 Op1 : Node_Id := Left_Opnd (N);
1115 Op2 : Node_Id := Right_Opnd (N);
1116 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
1117 Ctyp : constant Entity_Id := Component_Type (Typ1);
1118
1119 Expr : Node_Id;
1120 Func_Body : Node_Id;
1121 Func_Name : Entity_Id;
1122
1123 Comp : RE_Id;
1124
1125 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1126 -- True for byte addressable target
1127
1128 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
1129 -- Returns True if the length of the given operand is known to be less
1130 -- than 4. Returns False if this length is known to be four or greater
1131 -- or is not known at compile time.
1132
1133 ------------------------
1134 -- Length_Less_Than_4 --
1135 ------------------------
1136
1137 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1138 Otyp : constant Entity_Id := Etype (Opnd);
1139
1140 begin
1141 if Ekind (Otyp) = E_String_Literal_Subtype then
1142 return String_Literal_Length (Otyp) < 4;
1143
1144 else
1145 declare
1146 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1147 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1148 Hi : constant Node_Id := Type_High_Bound (Ityp);
1149 Lov : Uint;
1150 Hiv : Uint;
1151
1152 begin
1153 if Compile_Time_Known_Value (Lo) then
1154 Lov := Expr_Value (Lo);
1155 else
1156 return False;
1157 end if;
1158
1159 if Compile_Time_Known_Value (Hi) then
1160 Hiv := Expr_Value (Hi);
1161 else
1162 return False;
1163 end if;
1164
1165 return Hiv < Lov + 3;
1166 end;
1167 end if;
1168 end Length_Less_Than_4;
1169
1170 -- Start of processing for Expand_Array_Comparison
1171
1172 begin
1173 -- Deal first with unpacked case, where we can call a runtime routine
1174 -- except that we avoid this for targets for which are not addressable
1175 -- by bytes, and for the JVM/CIL, since they do not support direct
1176 -- addressing of array components.
1177
1178 if not Is_Bit_Packed_Array (Typ1)
1179 and then Byte_Addressable
1180 and then VM_Target = No_VM
1181 then
1182 -- The call we generate is:
1183
1184 -- Compare_Array_xn[_Unaligned]
1185 -- (left'address, right'address, left'length, right'length) <op> 0
1186
1187 -- x = U for unsigned, S for signed
1188 -- n = 8,16,32,64 for component size
1189 -- Add _Unaligned if length < 4 and component size is 8.
1190 -- <op> is the standard comparison operator
1191
1192 if Component_Size (Typ1) = 8 then
1193 if Length_Less_Than_4 (Op1)
1194 or else
1195 Length_Less_Than_4 (Op2)
1196 then
1197 if Is_Unsigned_Type (Ctyp) then
1198 Comp := RE_Compare_Array_U8_Unaligned;
1199 else
1200 Comp := RE_Compare_Array_S8_Unaligned;
1201 end if;
1202
1203 else
1204 if Is_Unsigned_Type (Ctyp) then
1205 Comp := RE_Compare_Array_U8;
1206 else
1207 Comp := RE_Compare_Array_S8;
1208 end if;
1209 end if;
1210
1211 elsif Component_Size (Typ1) = 16 then
1212 if Is_Unsigned_Type (Ctyp) then
1213 Comp := RE_Compare_Array_U16;
1214 else
1215 Comp := RE_Compare_Array_S16;
1216 end if;
1217
1218 elsif Component_Size (Typ1) = 32 then
1219 if Is_Unsigned_Type (Ctyp) then
1220 Comp := RE_Compare_Array_U32;
1221 else
1222 Comp := RE_Compare_Array_S32;
1223 end if;
1224
1225 else pragma Assert (Component_Size (Typ1) = 64);
1226 if Is_Unsigned_Type (Ctyp) then
1227 Comp := RE_Compare_Array_U64;
1228 else
1229 Comp := RE_Compare_Array_S64;
1230 end if;
1231 end if;
1232
1233 Remove_Side_Effects (Op1, Name_Req => True);
1234 Remove_Side_Effects (Op2, Name_Req => True);
1235
1236 Rewrite (Op1,
1237 Make_Function_Call (Sloc (Op1),
1238 Name => New_Occurrence_Of (RTE (Comp), Loc),
1239
1240 Parameter_Associations => New_List (
1241 Make_Attribute_Reference (Loc,
1242 Prefix => Relocate_Node (Op1),
1243 Attribute_Name => Name_Address),
1244
1245 Make_Attribute_Reference (Loc,
1246 Prefix => Relocate_Node (Op2),
1247 Attribute_Name => Name_Address),
1248
1249 Make_Attribute_Reference (Loc,
1250 Prefix => Relocate_Node (Op1),
1251 Attribute_Name => Name_Length),
1252
1253 Make_Attribute_Reference (Loc,
1254 Prefix => Relocate_Node (Op2),
1255 Attribute_Name => Name_Length))));
1256
1257 Rewrite (Op2,
1258 Make_Integer_Literal (Sloc (Op2),
1259 Intval => Uint_0));
1260
1261 Analyze_And_Resolve (Op1, Standard_Integer);
1262 Analyze_And_Resolve (Op2, Standard_Integer);
1263 return;
1264 end if;
1265
1266 -- Cases where we cannot make runtime call
1267
1268 -- For (a <= b) we convert to not (a > b)
1269
1270 if Chars (N) = Name_Op_Le then
1271 Rewrite (N,
1272 Make_Op_Not (Loc,
1273 Right_Opnd =>
1274 Make_Op_Gt (Loc,
1275 Left_Opnd => Op1,
1276 Right_Opnd => Op2)));
1277 Analyze_And_Resolve (N, Standard_Boolean);
1278 return;
1279
1280 -- For < the Boolean expression is
1281 -- greater__nn (op2, op1)
1282
1283 elsif Chars (N) = Name_Op_Lt then
1284 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1285
1286 -- Switch operands
1287
1288 Op1 := Right_Opnd (N);
1289 Op2 := Left_Opnd (N);
1290
1291 -- For (a >= b) we convert to not (a < b)
1292
1293 elsif Chars (N) = Name_Op_Ge then
1294 Rewrite (N,
1295 Make_Op_Not (Loc,
1296 Right_Opnd =>
1297 Make_Op_Lt (Loc,
1298 Left_Opnd => Op1,
1299 Right_Opnd => Op2)));
1300 Analyze_And_Resolve (N, Standard_Boolean);
1301 return;
1302
1303 -- For > the Boolean expression is
1304 -- greater__nn (op1, op2)
1305
1306 else
1307 pragma Assert (Chars (N) = Name_Op_Gt);
1308 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1309 end if;
1310
1311 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1312 Expr :=
1313 Make_Function_Call (Loc,
1314 Name => New_Reference_To (Func_Name, Loc),
1315 Parameter_Associations => New_List (Op1, Op2));
1316
1317 Insert_Action (N, Func_Body);
1318 Rewrite (N, Expr);
1319 Analyze_And_Resolve (N, Standard_Boolean);
1320
1321 exception
1322 when RE_Not_Available =>
1323 return;
1324 end Expand_Array_Comparison;
1325
1326 ---------------------------
1327 -- Expand_Array_Equality --
1328 ---------------------------
1329
1330 -- Expand an equality function for multi-dimensional arrays. Here is an
1331 -- example of such a function for Nb_Dimension = 2
1332
1333 -- function Enn (A : atyp; B : btyp) return boolean is
1334 -- begin
1335 -- if (A'length (1) = 0 or else A'length (2) = 0)
1336 -- and then
1337 -- (B'length (1) = 0 or else B'length (2) = 0)
1338 -- then
1339 -- return True; -- RM 4.5.2(22)
1340 -- end if;
1341
1342 -- if A'length (1) /= B'length (1)
1343 -- or else
1344 -- A'length (2) /= B'length (2)
1345 -- then
1346 -- return False; -- RM 4.5.2(23)
1347 -- end if;
1348
1349 -- declare
1350 -- A1 : Index_T1 := A'first (1);
1351 -- B1 : Index_T1 := B'first (1);
1352 -- begin
1353 -- loop
1354 -- declare
1355 -- A2 : Index_T2 := A'first (2);
1356 -- B2 : Index_T2 := B'first (2);
1357 -- begin
1358 -- loop
1359 -- if A (A1, A2) /= B (B1, B2) then
1360 -- return False;
1361 -- end if;
1362
1363 -- exit when A2 = A'last (2);
1364 -- A2 := Index_T2'succ (A2);
1365 -- B2 := Index_T2'succ (B2);
1366 -- end loop;
1367 -- end;
1368
1369 -- exit when A1 = A'last (1);
1370 -- A1 := Index_T1'succ (A1);
1371 -- B1 := Index_T1'succ (B1);
1372 -- end loop;
1373 -- end;
1374
1375 -- return true;
1376 -- end Enn;
1377
1378 -- Note on the formal types used (atyp and btyp). If either of the arrays
1379 -- is of a private type, we use the underlying type, and do an unchecked
1380 -- conversion of the actual. If either of the arrays has a bound depending
1381 -- on a discriminant, then we use the base type since otherwise we have an
1382 -- escaped discriminant in the function.
1383
1384 -- If both arrays are constrained and have the same bounds, we can generate
1385 -- a loop with an explicit iteration scheme using a 'Range attribute over
1386 -- the first array.
1387
1388 function Expand_Array_Equality
1389 (Nod : Node_Id;
1390 Lhs : Node_Id;
1391 Rhs : Node_Id;
1392 Bodies : List_Id;
1393 Typ : Entity_Id) return Node_Id
1394 is
1395 Loc : constant Source_Ptr := Sloc (Nod);
1396 Decls : constant List_Id := New_List;
1397 Index_List1 : constant List_Id := New_List;
1398 Index_List2 : constant List_Id := New_List;
1399
1400 Actuals : List_Id;
1401 Formals : List_Id;
1402 Func_Name : Entity_Id;
1403 Func_Body : Node_Id;
1404
1405 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1406 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1407
1408 Ltyp : Entity_Id;
1409 Rtyp : Entity_Id;
1410 -- The parameter types to be used for the formals
1411
1412 function Arr_Attr
1413 (Arr : Entity_Id;
1414 Nam : Name_Id;
1415 Num : Int) return Node_Id;
1416 -- This builds the attribute reference Arr'Nam (Expr)
1417
1418 function Component_Equality (Typ : Entity_Id) return Node_Id;
1419 -- Create one statement to compare corresponding components, designated
1420 -- by a full set of indices.
1421
1422 function Get_Arg_Type (N : Node_Id) return Entity_Id;
1423 -- Given one of the arguments, computes the appropriate type to be used
1424 -- for that argument in the corresponding function formal
1425
1426 function Handle_One_Dimension
1427 (N : Int;
1428 Index : Node_Id) return Node_Id;
1429 -- This procedure returns the following code
1430 --
1431 -- declare
1432 -- Bn : Index_T := B'First (N);
1433 -- begin
1434 -- loop
1435 -- xxx
1436 -- exit when An = A'Last (N);
1437 -- An := Index_T'Succ (An)
1438 -- Bn := Index_T'Succ (Bn)
1439 -- end loop;
1440 -- end;
1441 --
1442 -- If both indices are constrained and identical, the procedure
1443 -- returns a simpler loop:
1444 --
1445 -- for An in A'Range (N) loop
1446 -- xxx
1447 -- end loop
1448 --
1449 -- N is the dimension for which we are generating a loop. Index is the
1450 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1451 -- xxx statement is either the loop or declare for the next dimension
1452 -- or if this is the last dimension the comparison of corresponding
1453 -- components of the arrays.
1454 --
1455 -- The actual way the code works is to return the comparison of
1456 -- corresponding components for the N+1 call. That's neater!
1457
1458 function Test_Empty_Arrays return Node_Id;
1459 -- This function constructs the test for both arrays being empty
1460 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1461 -- and then
1462 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1463
1464 function Test_Lengths_Correspond return Node_Id;
1465 -- This function constructs the test for arrays having different lengths
1466 -- in at least one index position, in which case the resulting code is:
1467
1468 -- A'length (1) /= B'length (1)
1469 -- or else
1470 -- A'length (2) /= B'length (2)
1471 -- or else
1472 -- ...
1473
1474 --------------
1475 -- Arr_Attr --
1476 --------------
1477
1478 function Arr_Attr
1479 (Arr : Entity_Id;
1480 Nam : Name_Id;
1481 Num : Int) return Node_Id
1482 is
1483 begin
1484 return
1485 Make_Attribute_Reference (Loc,
1486 Attribute_Name => Nam,
1487 Prefix => New_Reference_To (Arr, Loc),
1488 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
1489 end Arr_Attr;
1490
1491 ------------------------
1492 -- Component_Equality --
1493 ------------------------
1494
1495 function Component_Equality (Typ : Entity_Id) return Node_Id is
1496 Test : Node_Id;
1497 L, R : Node_Id;
1498
1499 begin
1500 -- if a(i1...) /= b(j1...) then return false; end if;
1501
1502 L :=
1503 Make_Indexed_Component (Loc,
1504 Prefix => Make_Identifier (Loc, Chars (A)),
1505 Expressions => Index_List1);
1506
1507 R :=
1508 Make_Indexed_Component (Loc,
1509 Prefix => Make_Identifier (Loc, Chars (B)),
1510 Expressions => Index_List2);
1511
1512 Test := Expand_Composite_Equality
1513 (Nod, Component_Type (Typ), L, R, Decls);
1514
1515 -- If some (sub)component is an unchecked_union, the whole operation
1516 -- will raise program error.
1517
1518 if Nkind (Test) = N_Raise_Program_Error then
1519
1520 -- This node is going to be inserted at a location where a
1521 -- statement is expected: clear its Etype so analysis will set
1522 -- it to the expected Standard_Void_Type.
1523
1524 Set_Etype (Test, Empty);
1525 return Test;
1526
1527 else
1528 return
1529 Make_Implicit_If_Statement (Nod,
1530 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
1531 Then_Statements => New_List (
1532 Make_Simple_Return_Statement (Loc,
1533 Expression => New_Occurrence_Of (Standard_False, Loc))));
1534 end if;
1535 end Component_Equality;
1536
1537 ------------------
1538 -- Get_Arg_Type --
1539 ------------------
1540
1541 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1542 T : Entity_Id;
1543 X : Node_Id;
1544
1545 begin
1546 T := Etype (N);
1547
1548 if No (T) then
1549 return Typ;
1550
1551 else
1552 T := Underlying_Type (T);
1553
1554 X := First_Index (T);
1555 while Present (X) loop
1556 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1557 or else
1558 Denotes_Discriminant (Type_High_Bound (Etype (X)))
1559 then
1560 T := Base_Type (T);
1561 exit;
1562 end if;
1563
1564 Next_Index (X);
1565 end loop;
1566
1567 return T;
1568 end if;
1569 end Get_Arg_Type;
1570
1571 --------------------------
1572 -- Handle_One_Dimension --
1573 ---------------------------
1574
1575 function Handle_One_Dimension
1576 (N : Int;
1577 Index : Node_Id) return Node_Id
1578 is
1579 Need_Separate_Indexes : constant Boolean :=
1580 Ltyp /= Rtyp
1581 or else not Is_Constrained (Ltyp);
1582 -- If the index types are identical, and we are working with
1583 -- constrained types, then we can use the same index for both
1584 -- of the arrays.
1585
1586 An : constant Entity_Id := Make_Temporary (Loc, 'A');
1587
1588 Bn : Entity_Id;
1589 Index_T : Entity_Id;
1590 Stm_List : List_Id;
1591 Loop_Stm : Node_Id;
1592
1593 begin
1594 if N > Number_Dimensions (Ltyp) then
1595 return Component_Equality (Ltyp);
1596 end if;
1597
1598 -- Case where we generate a loop
1599
1600 Index_T := Base_Type (Etype (Index));
1601
1602 if Need_Separate_Indexes then
1603 Bn := Make_Temporary (Loc, 'B');
1604 else
1605 Bn := An;
1606 end if;
1607
1608 Append (New_Reference_To (An, Loc), Index_List1);
1609 Append (New_Reference_To (Bn, Loc), Index_List2);
1610
1611 Stm_List := New_List (
1612 Handle_One_Dimension (N + 1, Next_Index (Index)));
1613
1614 if Need_Separate_Indexes then
1615
1616 -- Generate guard for loop, followed by increments of indices
1617
1618 Append_To (Stm_List,
1619 Make_Exit_Statement (Loc,
1620 Condition =>
1621 Make_Op_Eq (Loc,
1622 Left_Opnd => New_Reference_To (An, Loc),
1623 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1624
1625 Append_To (Stm_List,
1626 Make_Assignment_Statement (Loc,
1627 Name => New_Reference_To (An, Loc),
1628 Expression =>
1629 Make_Attribute_Reference (Loc,
1630 Prefix => New_Reference_To (Index_T, Loc),
1631 Attribute_Name => Name_Succ,
1632 Expressions => New_List (New_Reference_To (An, Loc)))));
1633
1634 Append_To (Stm_List,
1635 Make_Assignment_Statement (Loc,
1636 Name => New_Reference_To (Bn, Loc),
1637 Expression =>
1638 Make_Attribute_Reference (Loc,
1639 Prefix => New_Reference_To (Index_T, Loc),
1640 Attribute_Name => Name_Succ,
1641 Expressions => New_List (New_Reference_To (Bn, Loc)))));
1642 end if;
1643
1644 -- If separate indexes, we need a declare block for An and Bn, and a
1645 -- loop without an iteration scheme.
1646
1647 if Need_Separate_Indexes then
1648 Loop_Stm :=
1649 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
1650
1651 return
1652 Make_Block_Statement (Loc,
1653 Declarations => New_List (
1654 Make_Object_Declaration (Loc,
1655 Defining_Identifier => An,
1656 Object_Definition => New_Reference_To (Index_T, Loc),
1657 Expression => Arr_Attr (A, Name_First, N)),
1658
1659 Make_Object_Declaration (Loc,
1660 Defining_Identifier => Bn,
1661 Object_Definition => New_Reference_To (Index_T, Loc),
1662 Expression => Arr_Attr (B, Name_First, N))),
1663
1664 Handled_Statement_Sequence =>
1665 Make_Handled_Sequence_Of_Statements (Loc,
1666 Statements => New_List (Loop_Stm)));
1667
1668 -- If no separate indexes, return loop statement with explicit
1669 -- iteration scheme on its own
1670
1671 else
1672 Loop_Stm :=
1673 Make_Implicit_Loop_Statement (Nod,
1674 Statements => Stm_List,
1675 Iteration_Scheme =>
1676 Make_Iteration_Scheme (Loc,
1677 Loop_Parameter_Specification =>
1678 Make_Loop_Parameter_Specification (Loc,
1679 Defining_Identifier => An,
1680 Discrete_Subtype_Definition =>
1681 Arr_Attr (A, Name_Range, N))));
1682 return Loop_Stm;
1683 end if;
1684 end Handle_One_Dimension;
1685
1686 -----------------------
1687 -- Test_Empty_Arrays --
1688 -----------------------
1689
1690 function Test_Empty_Arrays return Node_Id is
1691 Alist : Node_Id;
1692 Blist : Node_Id;
1693
1694 Atest : Node_Id;
1695 Btest : Node_Id;
1696
1697 begin
1698 Alist := Empty;
1699 Blist := Empty;
1700 for J in 1 .. Number_Dimensions (Ltyp) loop
1701 Atest :=
1702 Make_Op_Eq (Loc,
1703 Left_Opnd => Arr_Attr (A, Name_Length, J),
1704 Right_Opnd => Make_Integer_Literal (Loc, 0));
1705
1706 Btest :=
1707 Make_Op_Eq (Loc,
1708 Left_Opnd => Arr_Attr (B, Name_Length, J),
1709 Right_Opnd => Make_Integer_Literal (Loc, 0));
1710
1711 if No (Alist) then
1712 Alist := Atest;
1713 Blist := Btest;
1714
1715 else
1716 Alist :=
1717 Make_Or_Else (Loc,
1718 Left_Opnd => Relocate_Node (Alist),
1719 Right_Opnd => Atest);
1720
1721 Blist :=
1722 Make_Or_Else (Loc,
1723 Left_Opnd => Relocate_Node (Blist),
1724 Right_Opnd => Btest);
1725 end if;
1726 end loop;
1727
1728 return
1729 Make_And_Then (Loc,
1730 Left_Opnd => Alist,
1731 Right_Opnd => Blist);
1732 end Test_Empty_Arrays;
1733
1734 -----------------------------
1735 -- Test_Lengths_Correspond --
1736 -----------------------------
1737
1738 function Test_Lengths_Correspond return Node_Id is
1739 Result : Node_Id;
1740 Rtest : Node_Id;
1741
1742 begin
1743 Result := Empty;
1744 for J in 1 .. Number_Dimensions (Ltyp) loop
1745 Rtest :=
1746 Make_Op_Ne (Loc,
1747 Left_Opnd => Arr_Attr (A, Name_Length, J),
1748 Right_Opnd => Arr_Attr (B, Name_Length, J));
1749
1750 if No (Result) then
1751 Result := Rtest;
1752 else
1753 Result :=
1754 Make_Or_Else (Loc,
1755 Left_Opnd => Relocate_Node (Result),
1756 Right_Opnd => Rtest);
1757 end if;
1758 end loop;
1759
1760 return Result;
1761 end Test_Lengths_Correspond;
1762
1763 -- Start of processing for Expand_Array_Equality
1764
1765 begin
1766 Ltyp := Get_Arg_Type (Lhs);
1767 Rtyp := Get_Arg_Type (Rhs);
1768
1769 -- For now, if the argument types are not the same, go to the base type,
1770 -- since the code assumes that the formals have the same type. This is
1771 -- fixable in future ???
1772
1773 if Ltyp /= Rtyp then
1774 Ltyp := Base_Type (Ltyp);
1775 Rtyp := Base_Type (Rtyp);
1776 pragma Assert (Ltyp = Rtyp);
1777 end if;
1778
1779 -- Build list of formals for function
1780
1781 Formals := New_List (
1782 Make_Parameter_Specification (Loc,
1783 Defining_Identifier => A,
1784 Parameter_Type => New_Reference_To (Ltyp, Loc)),
1785
1786 Make_Parameter_Specification (Loc,
1787 Defining_Identifier => B,
1788 Parameter_Type => New_Reference_To (Rtyp, Loc)));
1789
1790 Func_Name := Make_Temporary (Loc, 'E');
1791
1792 -- Build statement sequence for function
1793
1794 Func_Body :=
1795 Make_Subprogram_Body (Loc,
1796 Specification =>
1797 Make_Function_Specification (Loc,
1798 Defining_Unit_Name => Func_Name,
1799 Parameter_Specifications => Formals,
1800 Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
1801
1802 Declarations => Decls,
1803
1804 Handled_Statement_Sequence =>
1805 Make_Handled_Sequence_Of_Statements (Loc,
1806 Statements => New_List (
1807
1808 Make_Implicit_If_Statement (Nod,
1809 Condition => Test_Empty_Arrays,
1810 Then_Statements => New_List (
1811 Make_Simple_Return_Statement (Loc,
1812 Expression =>
1813 New_Occurrence_Of (Standard_True, Loc)))),
1814
1815 Make_Implicit_If_Statement (Nod,
1816 Condition => Test_Lengths_Correspond,
1817 Then_Statements => New_List (
1818 Make_Simple_Return_Statement (Loc,
1819 Expression =>
1820 New_Occurrence_Of (Standard_False, Loc)))),
1821
1822 Handle_One_Dimension (1, First_Index (Ltyp)),
1823
1824 Make_Simple_Return_Statement (Loc,
1825 Expression => New_Occurrence_Of (Standard_True, Loc)))));
1826
1827 Set_Has_Completion (Func_Name, True);
1828 Set_Is_Inlined (Func_Name);
1829
1830 -- If the array type is distinct from the type of the arguments, it
1831 -- is the full view of a private type. Apply an unchecked conversion
1832 -- to insure that analysis of the call succeeds.
1833
1834 declare
1835 L, R : Node_Id;
1836
1837 begin
1838 L := Lhs;
1839 R := Rhs;
1840
1841 if No (Etype (Lhs))
1842 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
1843 then
1844 L := OK_Convert_To (Ltyp, Lhs);
1845 end if;
1846
1847 if No (Etype (Rhs))
1848 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
1849 then
1850 R := OK_Convert_To (Rtyp, Rhs);
1851 end if;
1852
1853 Actuals := New_List (L, R);
1854 end;
1855
1856 Append_To (Bodies, Func_Body);
1857
1858 return
1859 Make_Function_Call (Loc,
1860 Name => New_Reference_To (Func_Name, Loc),
1861 Parameter_Associations => Actuals);
1862 end Expand_Array_Equality;
1863
1864 -----------------------------
1865 -- Expand_Boolean_Operator --
1866 -----------------------------
1867
1868 -- Note that we first get the actual subtypes of the operands, since we
1869 -- always want to deal with types that have bounds.
1870
1871 procedure Expand_Boolean_Operator (N : Node_Id) is
1872 Typ : constant Entity_Id := Etype (N);
1873
1874 begin
1875 -- Special case of bit packed array where both operands are known to be
1876 -- properly aligned. In this case we use an efficient run time routine
1877 -- to carry out the operation (see System.Bit_Ops).
1878
1879 if Is_Bit_Packed_Array (Typ)
1880 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
1881 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
1882 then
1883 Expand_Packed_Boolean_Operator (N);
1884 return;
1885 end if;
1886
1887 -- For the normal non-packed case, the general expansion is to build
1888 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
1889 -- and then inserting it into the tree. The original operator node is
1890 -- then rewritten as a call to this function. We also use this in the
1891 -- packed case if either operand is a possibly unaligned object.
1892
1893 declare
1894 Loc : constant Source_Ptr := Sloc (N);
1895 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
1896 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
1897 Func_Body : Node_Id;
1898 Func_Name : Entity_Id;
1899
1900 begin
1901 Convert_To_Actual_Subtype (L);
1902 Convert_To_Actual_Subtype (R);
1903 Ensure_Defined (Etype (L), N);
1904 Ensure_Defined (Etype (R), N);
1905 Apply_Length_Check (R, Etype (L));
1906
1907 if Nkind (N) = N_Op_Xor then
1908 Silly_Boolean_Array_Xor_Test (N, Etype (L));
1909 end if;
1910
1911 if Nkind (Parent (N)) = N_Assignment_Statement
1912 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
1913 then
1914 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
1915
1916 elsif Nkind (Parent (N)) = N_Op_Not
1917 and then Nkind (N) = N_Op_And
1918 and then
1919 Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
1920 then
1921 return;
1922 else
1923
1924 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
1925 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1926 Insert_Action (N, Func_Body);
1927
1928 -- Now rewrite the expression with a call
1929
1930 Rewrite (N,
1931 Make_Function_Call (Loc,
1932 Name => New_Reference_To (Func_Name, Loc),
1933 Parameter_Associations =>
1934 New_List (
1935 L,
1936 Make_Type_Conversion
1937 (Loc, New_Reference_To (Etype (L), Loc), R))));
1938
1939 Analyze_And_Resolve (N, Typ);
1940 end if;
1941 end;
1942 end Expand_Boolean_Operator;
1943
1944 -------------------------------
1945 -- Expand_Composite_Equality --
1946 -------------------------------
1947
1948 -- This function is only called for comparing internal fields of composite
1949 -- types when these fields are themselves composites. This is a special
1950 -- case because it is not possible to respect normal Ada visibility rules.
1951
1952 function Expand_Composite_Equality
1953 (Nod : Node_Id;
1954 Typ : Entity_Id;
1955 Lhs : Node_Id;
1956 Rhs : Node_Id;
1957 Bodies : List_Id) return Node_Id
1958 is
1959 Loc : constant Source_Ptr := Sloc (Nod);
1960 Full_Type : Entity_Id;
1961 Prim : Elmt_Id;
1962 Eq_Op : Entity_Id;
1963
1964 begin
1965 if Is_Private_Type (Typ) then
1966 Full_Type := Underlying_Type (Typ);
1967 else
1968 Full_Type := Typ;
1969 end if;
1970
1971 -- Defense against malformed private types with no completion the error
1972 -- will be diagnosed later by check_completion
1973
1974 if No (Full_Type) then
1975 return New_Reference_To (Standard_False, Loc);
1976 end if;
1977
1978 Full_Type := Base_Type (Full_Type);
1979
1980 if Is_Array_Type (Full_Type) then
1981
1982 -- If the operand is an elementary type other than a floating-point
1983 -- type, then we can simply use the built-in block bitwise equality,
1984 -- since the predefined equality operators always apply and bitwise
1985 -- equality is fine for all these cases.
1986
1987 if Is_Elementary_Type (Component_Type (Full_Type))
1988 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
1989 then
1990 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
1991
1992 -- For composite component types, and floating-point types, use the
1993 -- expansion. This deals with tagged component types (where we use
1994 -- the applicable equality routine) and floating-point, (where we
1995 -- need to worry about negative zeroes), and also the case of any
1996 -- composite type recursively containing such fields.
1997
1998 else
1999 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
2000 end if;
2001
2002 elsif Is_Tagged_Type (Full_Type) then
2003
2004 -- Call the primitive operation "=" of this type
2005
2006 if Is_Class_Wide_Type (Full_Type) then
2007 Full_Type := Root_Type (Full_Type);
2008 end if;
2009
2010 -- If this is derived from an untagged private type completed with a
2011 -- tagged type, it does not have a full view, so we use the primitive
2012 -- operations of the private type. This check should no longer be
2013 -- necessary when these types receive their full views ???
2014
2015 if Is_Private_Type (Typ)
2016 and then not Is_Tagged_Type (Typ)
2017 and then not Is_Controlled (Typ)
2018 and then Is_Derived_Type (Typ)
2019 and then No (Full_View (Typ))
2020 then
2021 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
2022 else
2023 Prim := First_Elmt (Primitive_Operations (Full_Type));
2024 end if;
2025
2026 loop
2027 Eq_Op := Node (Prim);
2028 exit when Chars (Eq_Op) = Name_Op_Eq
2029 and then Etype (First_Formal (Eq_Op)) =
2030 Etype (Next_Formal (First_Formal (Eq_Op)))
2031 and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
2032 Next_Elmt (Prim);
2033 pragma Assert (Present (Prim));
2034 end loop;
2035
2036 Eq_Op := Node (Prim);
2037
2038 return
2039 Make_Function_Call (Loc,
2040 Name => New_Reference_To (Eq_Op, Loc),
2041 Parameter_Associations =>
2042 New_List
2043 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2044 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2045
2046 elsif Is_Record_Type (Full_Type) then
2047 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
2048
2049 if Present (Eq_Op) then
2050 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2051
2052 -- Inherited equality from parent type. Convert the actuals to
2053 -- match signature of operation.
2054
2055 declare
2056 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
2057
2058 begin
2059 return
2060 Make_Function_Call (Loc,
2061 Name => New_Reference_To (Eq_Op, Loc),
2062 Parameter_Associations =>
2063 New_List (OK_Convert_To (T, Lhs),
2064 OK_Convert_To (T, Rhs)));
2065 end;
2066
2067 else
2068 -- Comparison between Unchecked_Union components
2069
2070 if Is_Unchecked_Union (Full_Type) then
2071 declare
2072 Lhs_Type : Node_Id := Full_Type;
2073 Rhs_Type : Node_Id := Full_Type;
2074 Lhs_Discr_Val : Node_Id;
2075 Rhs_Discr_Val : Node_Id;
2076
2077 begin
2078 -- Lhs subtype
2079
2080 if Nkind (Lhs) = N_Selected_Component then
2081 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2082 end if;
2083
2084 -- Rhs subtype
2085
2086 if Nkind (Rhs) = N_Selected_Component then
2087 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2088 end if;
2089
2090 -- Lhs of the composite equality
2091
2092 if Is_Constrained (Lhs_Type) then
2093
2094 -- Since the enclosing record type can never be an
2095 -- Unchecked_Union (this code is executed for records
2096 -- that do not have variants), we may reference its
2097 -- discriminant(s).
2098
2099 if Nkind (Lhs) = N_Selected_Component
2100 and then Has_Per_Object_Constraint (
2101 Entity (Selector_Name (Lhs)))
2102 then
2103 Lhs_Discr_Val :=
2104 Make_Selected_Component (Loc,
2105 Prefix => Prefix (Lhs),
2106 Selector_Name =>
2107 New_Copy (
2108 Get_Discriminant_Value (
2109 First_Discriminant (Lhs_Type),
2110 Lhs_Type,
2111 Stored_Constraint (Lhs_Type))));
2112
2113 else
2114 Lhs_Discr_Val := New_Copy (
2115 Get_Discriminant_Value (
2116 First_Discriminant (Lhs_Type),
2117 Lhs_Type,
2118 Stored_Constraint (Lhs_Type)));
2119
2120 end if;
2121 else
2122 -- It is not possible to infer the discriminant since
2123 -- the subtype is not constrained.
2124
2125 return
2126 Make_Raise_Program_Error (Loc,
2127 Reason => PE_Unchecked_Union_Restriction);
2128 end if;
2129
2130 -- Rhs of the composite equality
2131
2132 if Is_Constrained (Rhs_Type) then
2133 if Nkind (Rhs) = N_Selected_Component
2134 and then Has_Per_Object_Constraint (
2135 Entity (Selector_Name (Rhs)))
2136 then
2137 Rhs_Discr_Val :=
2138 Make_Selected_Component (Loc,
2139 Prefix => Prefix (Rhs),
2140 Selector_Name =>
2141 New_Copy (
2142 Get_Discriminant_Value (
2143 First_Discriminant (Rhs_Type),
2144 Rhs_Type,
2145 Stored_Constraint (Rhs_Type))));
2146
2147 else
2148 Rhs_Discr_Val := New_Copy (
2149 Get_Discriminant_Value (
2150 First_Discriminant (Rhs_Type),
2151 Rhs_Type,
2152 Stored_Constraint (Rhs_Type)));
2153
2154 end if;
2155 else
2156 return
2157 Make_Raise_Program_Error (Loc,
2158 Reason => PE_Unchecked_Union_Restriction);
2159 end if;
2160
2161 -- Call the TSS equality function with the inferred
2162 -- discriminant values.
2163
2164 return
2165 Make_Function_Call (Loc,
2166 Name => New_Reference_To (Eq_Op, Loc),
2167 Parameter_Associations => New_List (
2168 Lhs,
2169 Rhs,
2170 Lhs_Discr_Val,
2171 Rhs_Discr_Val));
2172 end;
2173 end if;
2174
2175 -- Shouldn't this be an else, we can't fall through the above
2176 -- IF, right???
2177
2178 return
2179 Make_Function_Call (Loc,
2180 Name => New_Reference_To (Eq_Op, Loc),
2181 Parameter_Associations => New_List (Lhs, Rhs));
2182 end if;
2183
2184 else
2185 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2186 end if;
2187
2188 else
2189 -- It can be a simple record or the full view of a scalar private
2190
2191 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2192 end if;
2193 end Expand_Composite_Equality;
2194
2195 ------------------------
2196 -- Expand_Concatenate --
2197 ------------------------
2198
2199 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2200 Loc : constant Source_Ptr := Sloc (Cnode);
2201
2202 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2203 -- Result type of concatenation
2204
2205 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2206 -- Component type. Elements of this component type can appear as one
2207 -- of the operands of concatenation as well as arrays.
2208
2209 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2210 -- Index subtype
2211
2212 Ityp : constant Entity_Id := Base_Type (Istyp);
2213 -- Index type. This is the base type of the index subtype, and is used
2214 -- for all computed bounds (which may be out of range of Istyp in the
2215 -- case of null ranges).
2216
2217 Artyp : Entity_Id;
2218 -- This is the type we use to do arithmetic to compute the bounds and
2219 -- lengths of operands. The choice of this type is a little subtle and
2220 -- is discussed in a separate section at the start of the body code.
2221
2222 Concatenation_Error : exception;
2223 -- Raised if concatenation is sure to raise a CE
2224
2225 Result_May_Be_Null : Boolean := True;
2226 -- Reset to False if at least one operand is encountered which is known
2227 -- at compile time to be non-null. Used for handling the special case
2228 -- of setting the high bound to the last operand high bound for a null
2229 -- result, thus ensuring a proper high bound in the super-flat case.
2230
2231 N : constant Nat := List_Length (Opnds);
2232 -- Number of concatenation operands including possibly null operands
2233
2234 NN : Nat := 0;
2235 -- Number of operands excluding any known to be null, except that the
2236 -- last operand is always retained, in case it provides the bounds for
2237 -- a null result.
2238
2239 Opnd : Node_Id;
2240 -- Current operand being processed in the loop through operands. After
2241 -- this loop is complete, always contains the last operand (which is not
2242 -- the same as Operands (NN), since null operands are skipped).
2243
2244 -- Arrays describing the operands, only the first NN entries of each
2245 -- array are set (NN < N when we exclude known null operands).
2246
2247 Is_Fixed_Length : array (1 .. N) of Boolean;
2248 -- True if length of corresponding operand known at compile time
2249
2250 Operands : array (1 .. N) of Node_Id;
2251 -- Set to the corresponding entry in the Opnds list (but note that null
2252 -- operands are excluded, so not all entries in the list are stored).
2253
2254 Fixed_Length : array (1 .. N) of Uint;
2255 -- Set to length of operand. Entries in this array are set only if the
2256 -- corresponding entry in Is_Fixed_Length is True.
2257
2258 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2259 -- Set to lower bound of operand. Either an integer literal in the case
2260 -- where the bound is known at compile time, else actual lower bound.
2261 -- The operand low bound is of type Ityp.
2262
2263 Var_Length : array (1 .. N) of Entity_Id;
2264 -- Set to an entity of type Natural that contains the length of an
2265 -- operand whose length is not known at compile time. Entries in this
2266 -- array are set only if the corresponding entry in Is_Fixed_Length
2267 -- is False. The entity is of type Artyp.
2268
2269 Aggr_Length : array (0 .. N) of Node_Id;
2270 -- The J'th entry in an expression node that represents the total length
2271 -- of operands 1 through J. It is either an integer literal node, or a
2272 -- reference to a constant entity with the right value, so it is fine
2273 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
2274 -- entry always is set to zero. The length is of type Artyp.
2275
2276 Low_Bound : Node_Id;
2277 -- A tree node representing the low bound of the result (of type Ityp).
2278 -- This is either an integer literal node, or an identifier reference to
2279 -- a constant entity initialized to the appropriate value.
2280
2281 Last_Opnd_High_Bound : Node_Id;
2282 -- A tree node representing the high bound of the last operand. This
2283 -- need only be set if the result could be null. It is used for the
2284 -- special case of setting the right high bound for a null result.
2285 -- This is of type Ityp.
2286
2287 High_Bound : Node_Id;
2288 -- A tree node representing the high bound of the result (of type Ityp)
2289
2290 Result : Node_Id;
2291 -- Result of the concatenation (of type Ityp)
2292
2293 Actions : constant List_Id := New_List;
2294 -- Collect actions to be inserted if Save_Space is False
2295
2296 Save_Space : Boolean;
2297 pragma Warnings (Off, Save_Space);
2298 -- Set to True if we are saving generated code space by calling routines
2299 -- in packages System.Concat_n.
2300
2301 Known_Non_Null_Operand_Seen : Boolean;
2302 -- Set True during generation of the assignements of operands into
2303 -- result once an operand known to be non-null has been seen.
2304
2305 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2306 -- This function makes an N_Integer_Literal node that is returned in
2307 -- analyzed form with the type set to Artyp. Importantly this literal
2308 -- is not flagged as static, so that if we do computations with it that
2309 -- result in statically detected out of range conditions, we will not
2310 -- generate error messages but instead warning messages.
2311
2312 function To_Artyp (X : Node_Id) return Node_Id;
2313 -- Given a node of type Ityp, returns the corresponding value of type
2314 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2315 -- For enum types, the Pos of the value is returned.
2316
2317 function To_Ityp (X : Node_Id) return Node_Id;
2318 -- The inverse function (uses Val in the case of enumeration types)
2319
2320 ------------------------
2321 -- Make_Artyp_Literal --
2322 ------------------------
2323
2324 function Make_Artyp_Literal (Val : Nat) return Node_Id is
2325 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
2326 begin
2327 Set_Etype (Result, Artyp);
2328 Set_Analyzed (Result, True);
2329 Set_Is_Static_Expression (Result, False);
2330 return Result;
2331 end Make_Artyp_Literal;
2332
2333 --------------
2334 -- To_Artyp --
2335 --------------
2336
2337 function To_Artyp (X : Node_Id) return Node_Id is
2338 begin
2339 if Ityp = Base_Type (Artyp) then
2340 return X;
2341
2342 elsif Is_Enumeration_Type (Ityp) then
2343 return
2344 Make_Attribute_Reference (Loc,
2345 Prefix => New_Occurrence_Of (Ityp, Loc),
2346 Attribute_Name => Name_Pos,
2347 Expressions => New_List (X));
2348
2349 else
2350 return Convert_To (Artyp, X);
2351 end if;
2352 end To_Artyp;
2353
2354 -------------
2355 -- To_Ityp --
2356 -------------
2357
2358 function To_Ityp (X : Node_Id) return Node_Id is
2359 begin
2360 if Is_Enumeration_Type (Ityp) then
2361 return
2362 Make_Attribute_Reference (Loc,
2363 Prefix => New_Occurrence_Of (Ityp, Loc),
2364 Attribute_Name => Name_Val,
2365 Expressions => New_List (X));
2366
2367 -- Case where we will do a type conversion
2368
2369 else
2370 if Ityp = Base_Type (Artyp) then
2371 return X;
2372 else
2373 return Convert_To (Ityp, X);
2374 end if;
2375 end if;
2376 end To_Ityp;
2377
2378 -- Local Declarations
2379
2380 Opnd_Typ : Entity_Id;
2381 Ent : Entity_Id;
2382 Len : Uint;
2383 J : Nat;
2384 Clen : Node_Id;
2385 Set : Boolean;
2386
2387 begin
2388 -- Choose an appropriate computational type
2389
2390 -- We will be doing calculations of lengths and bounds in this routine
2391 -- and computing one from the other in some cases, e.g. getting the high
2392 -- bound by adding the length-1 to the low bound.
2393
2394 -- We can't just use the index type, or even its base type for this
2395 -- purpose for two reasons. First it might be an enumeration type which
2396 -- is not suitable fo computations of any kind, and second it may simply
2397 -- not have enough range. For example if the index type is -128..+127
2398 -- then lengths can be up to 256, which is out of range of the type.
2399
2400 -- For enumeration types, we can simply use Standard_Integer, this is
2401 -- sufficient since the actual number of enumeration literals cannot
2402 -- possibly exceed the range of integer (remember we will be doing the
2403 -- arithmetic with POS values, not representation values).
2404
2405 if Is_Enumeration_Type (Ityp) then
2406 Artyp := Standard_Integer;
2407
2408 -- If index type is Positive, we use the standard unsigned type, to give
2409 -- more room on the top of the range, obviating the need for an overflow
2410 -- check when creating the upper bound. This is needed to avoid junk
2411 -- overflow checks in the common case of String types.
2412
2413 -- ??? Disabled for now
2414
2415 -- elsif Istyp = Standard_Positive then
2416 -- Artyp := Standard_Unsigned;
2417
2418 -- For modular types, we use a 32-bit modular type for types whose size
2419 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
2420 -- identity type, and for larger unsigned types we use 64-bits.
2421
2422 elsif Is_Modular_Integer_Type (Ityp) then
2423 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
2424 Artyp := Standard_Unsigned;
2425 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
2426 Artyp := Ityp;
2427 else
2428 Artyp := RTE (RE_Long_Long_Unsigned);
2429 end if;
2430
2431 -- Similar treatment for signed types
2432
2433 else
2434 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
2435 Artyp := Standard_Integer;
2436 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
2437 Artyp := Ityp;
2438 else
2439 Artyp := Standard_Long_Long_Integer;
2440 end if;
2441 end if;
2442
2443 -- Supply dummy entry at start of length array
2444
2445 Aggr_Length (0) := Make_Artyp_Literal (0);
2446
2447 -- Go through operands setting up the above arrays
2448
2449 J := 1;
2450 while J <= N loop
2451 Opnd := Remove_Head (Opnds);
2452 Opnd_Typ := Etype (Opnd);
2453
2454 -- The parent got messed up when we put the operands in a list,
2455 -- so now put back the proper parent for the saved operand.
2456
2457 Set_Parent (Opnd, Parent (Cnode));
2458
2459 -- Set will be True when we have setup one entry in the array
2460
2461 Set := False;
2462
2463 -- Singleton element (or character literal) case
2464
2465 if Base_Type (Opnd_Typ) = Ctyp then
2466 NN := NN + 1;
2467 Operands (NN) := Opnd;
2468 Is_Fixed_Length (NN) := True;
2469 Fixed_Length (NN) := Uint_1;
2470 Result_May_Be_Null := False;
2471
2472 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
2473 -- since we know that the result cannot be null).
2474
2475 Opnd_Low_Bound (NN) :=
2476 Make_Attribute_Reference (Loc,
2477 Prefix => New_Reference_To (Istyp, Loc),
2478 Attribute_Name => Name_First);
2479
2480 Set := True;
2481
2482 -- String literal case (can only occur for strings of course)
2483
2484 elsif Nkind (Opnd) = N_String_Literal then
2485 Len := String_Literal_Length (Opnd_Typ);
2486
2487 if Len /= 0 then
2488 Result_May_Be_Null := False;
2489 end if;
2490
2491 -- Capture last operand high bound if result could be null
2492
2493 if J = N and then Result_May_Be_Null then
2494 Last_Opnd_High_Bound :=
2495 Make_Op_Add (Loc,
2496 Left_Opnd =>
2497 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
2498 Right_Opnd => Make_Integer_Literal (Loc, 1));
2499 end if;
2500
2501 -- Skip null string literal
2502
2503 if J < N and then Len = 0 then
2504 goto Continue;
2505 end if;
2506
2507 NN := NN + 1;
2508 Operands (NN) := Opnd;
2509 Is_Fixed_Length (NN) := True;
2510
2511 -- Set length and bounds
2512
2513 Fixed_Length (NN) := Len;
2514
2515 Opnd_Low_Bound (NN) :=
2516 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
2517
2518 Set := True;
2519
2520 -- All other cases
2521
2522 else
2523 -- Check constrained case with known bounds
2524
2525 if Is_Constrained (Opnd_Typ) then
2526 declare
2527 Index : constant Node_Id := First_Index (Opnd_Typ);
2528 Indx_Typ : constant Entity_Id := Etype (Index);
2529 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
2530 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
2531
2532 begin
2533 -- Fixed length constrained array type with known at compile
2534 -- time bounds is last case of fixed length operand.
2535
2536 if Compile_Time_Known_Value (Lo)
2537 and then
2538 Compile_Time_Known_Value (Hi)
2539 then
2540 declare
2541 Loval : constant Uint := Expr_Value (Lo);
2542 Hival : constant Uint := Expr_Value (Hi);
2543 Len : constant Uint :=
2544 UI_Max (Hival - Loval + 1, Uint_0);
2545
2546 begin
2547 if Len > 0 then
2548 Result_May_Be_Null := False;
2549 end if;
2550
2551 -- Capture last operand bound if result could be null
2552
2553 if J = N and then Result_May_Be_Null then
2554 Last_Opnd_High_Bound :=
2555 Convert_To (Ityp,
2556 Make_Integer_Literal (Loc,
2557 Intval => Expr_Value (Hi)));
2558 end if;
2559
2560 -- Exclude null length case unless last operand
2561
2562 if J < N and then Len = 0 then
2563 goto Continue;
2564 end if;
2565
2566 NN := NN + 1;
2567 Operands (NN) := Opnd;
2568 Is_Fixed_Length (NN) := True;
2569 Fixed_Length (NN) := Len;
2570
2571 Opnd_Low_Bound (NN) := To_Ityp (
2572 Make_Integer_Literal (Loc,
2573 Intval => Expr_Value (Lo)));
2574
2575 Set := True;
2576 end;
2577 end if;
2578 end;
2579 end if;
2580
2581 -- All cases where the length is not known at compile time, or the
2582 -- special case of an operand which is known to be null but has a
2583 -- lower bound other than 1 or is other than a string type.
2584
2585 if not Set then
2586 NN := NN + 1;
2587
2588 -- Capture operand bounds
2589
2590 Opnd_Low_Bound (NN) :=
2591 Make_Attribute_Reference (Loc,
2592 Prefix =>
2593 Duplicate_Subexpr (Opnd, Name_Req => True),
2594 Attribute_Name => Name_First);
2595
2596 if J = N and Result_May_Be_Null then
2597 Last_Opnd_High_Bound :=
2598 Convert_To (Ityp,
2599 Make_Attribute_Reference (Loc,
2600 Prefix =>
2601 Duplicate_Subexpr (Opnd, Name_Req => True),
2602 Attribute_Name => Name_Last));
2603 end if;
2604
2605 -- Capture length of operand in entity
2606
2607 Operands (NN) := Opnd;
2608 Is_Fixed_Length (NN) := False;
2609
2610 Var_Length (NN) := Make_Temporary (Loc, 'L');
2611
2612 Append_To (Actions,
2613 Make_Object_Declaration (Loc,
2614 Defining_Identifier => Var_Length (NN),
2615 Constant_Present => True,
2616
2617 Object_Definition =>
2618 New_Occurrence_Of (Artyp, Loc),
2619
2620 Expression =>
2621 Make_Attribute_Reference (Loc,
2622 Prefix =>
2623 Duplicate_Subexpr (Opnd, Name_Req => True),
2624 Attribute_Name => Name_Length)));
2625 end if;
2626 end if;
2627
2628 -- Set next entry in aggregate length array
2629
2630 -- For first entry, make either integer literal for fixed length
2631 -- or a reference to the saved length for variable length.
2632
2633 if NN = 1 then
2634 if Is_Fixed_Length (1) then
2635 Aggr_Length (1) :=
2636 Make_Integer_Literal (Loc,
2637 Intval => Fixed_Length (1));
2638 else
2639 Aggr_Length (1) :=
2640 New_Reference_To (Var_Length (1), Loc);
2641 end if;
2642
2643 -- If entry is fixed length and only fixed lengths so far, make
2644 -- appropriate new integer literal adding new length.
2645
2646 elsif Is_Fixed_Length (NN)
2647 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
2648 then
2649 Aggr_Length (NN) :=
2650 Make_Integer_Literal (Loc,
2651 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
2652
2653 -- All other cases, construct an addition node for the length and
2654 -- create an entity initialized to this length.
2655
2656 else
2657 Ent := Make_Temporary (Loc, 'L');
2658
2659 if Is_Fixed_Length (NN) then
2660 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
2661 else
2662 Clen := New_Reference_To (Var_Length (NN), Loc);
2663 end if;
2664
2665 Append_To (Actions,
2666 Make_Object_Declaration (Loc,
2667 Defining_Identifier => Ent,
2668 Constant_Present => True,
2669
2670 Object_Definition =>
2671 New_Occurrence_Of (Artyp, Loc),
2672
2673 Expression =>
2674 Make_Op_Add (Loc,
2675 Left_Opnd => New_Copy (Aggr_Length (NN - 1)),
2676 Right_Opnd => Clen)));
2677
2678 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
2679 end if;
2680
2681 <<Continue>>
2682 J := J + 1;
2683 end loop;
2684
2685 -- If we have only skipped null operands, return the last operand
2686
2687 if NN = 0 then
2688 Result := Opnd;
2689 goto Done;
2690 end if;
2691
2692 -- If we have only one non-null operand, return it and we are done.
2693 -- There is one case in which this cannot be done, and that is when
2694 -- the sole operand is of the element type, in which case it must be
2695 -- converted to an array, and the easiest way of doing that is to go
2696 -- through the normal general circuit.
2697
2698 if NN = 1
2699 and then Base_Type (Etype (Operands (1))) /= Ctyp
2700 then
2701 Result := Operands (1);
2702 goto Done;
2703 end if;
2704
2705 -- Cases where we have a real concatenation
2706
2707 -- Next step is to find the low bound for the result array that we
2708 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
2709
2710 -- If the ultimate ancestor of the index subtype is a constrained array
2711 -- definition, then the lower bound is that of the index subtype as
2712 -- specified by (RM 4.5.3(6)).
2713
2714 -- The right test here is to go to the root type, and then the ultimate
2715 -- ancestor is the first subtype of this root type.
2716
2717 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
2718 Low_Bound :=
2719 Make_Attribute_Reference (Loc,
2720 Prefix =>
2721 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
2722 Attribute_Name => Name_First);
2723
2724 -- If the first operand in the list has known length we know that
2725 -- the lower bound of the result is the lower bound of this operand.
2726
2727 elsif Is_Fixed_Length (1) then
2728 Low_Bound := Opnd_Low_Bound (1);
2729
2730 -- OK, we don't know the lower bound, we have to build a horrible
2731 -- expression actions node of the form
2732
2733 -- if Cond1'Length /= 0 then
2734 -- Opnd1 low bound
2735 -- else
2736 -- if Opnd2'Length /= 0 then
2737 -- Opnd2 low bound
2738 -- else
2739 -- ...
2740
2741 -- The nesting ends either when we hit an operand whose length is known
2742 -- at compile time, or on reaching the last operand, whose low bound we
2743 -- take unconditionally whether or not it is null. It's easiest to do
2744 -- this with a recursive procedure:
2745
2746 else
2747 declare
2748 function Get_Known_Bound (J : Nat) return Node_Id;
2749 -- Returns the lower bound determined by operands J .. NN
2750
2751 ---------------------
2752 -- Get_Known_Bound --
2753 ---------------------
2754
2755 function Get_Known_Bound (J : Nat) return Node_Id is
2756 begin
2757 if Is_Fixed_Length (J) or else J = NN then
2758 return New_Copy (Opnd_Low_Bound (J));
2759
2760 else
2761 return
2762 Make_Conditional_Expression (Loc,
2763 Expressions => New_List (
2764
2765 Make_Op_Ne (Loc,
2766 Left_Opnd => New_Reference_To (Var_Length (J), Loc),
2767 Right_Opnd => Make_Integer_Literal (Loc, 0)),
2768
2769 New_Copy (Opnd_Low_Bound (J)),
2770 Get_Known_Bound (J + 1)));
2771 end if;
2772 end Get_Known_Bound;
2773
2774 begin
2775 Ent := Make_Temporary (Loc, 'L');
2776
2777 Append_To (Actions,
2778 Make_Object_Declaration (Loc,
2779 Defining_Identifier => Ent,
2780 Constant_Present => True,
2781 Object_Definition => New_Occurrence_Of (Ityp, Loc),
2782 Expression => Get_Known_Bound (1)));
2783
2784 Low_Bound := New_Reference_To (Ent, Loc);
2785 end;
2786 end if;
2787
2788 -- Now we can safely compute the upper bound, normally
2789 -- Low_Bound + Length - 1.
2790
2791 High_Bound :=
2792 To_Ityp (
2793 Make_Op_Add (Loc,
2794 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
2795 Right_Opnd =>
2796 Make_Op_Subtract (Loc,
2797 Left_Opnd => New_Copy (Aggr_Length (NN)),
2798 Right_Opnd => Make_Artyp_Literal (1))));
2799
2800 -- Note that calculation of the high bound may cause overflow in some
2801 -- very weird cases, so in the general case we need an overflow check on
2802 -- the high bound. We can avoid this for the common case of string types
2803 -- and other types whose index is Positive, since we chose a wider range
2804 -- for the arithmetic type.
2805
2806 if Istyp /= Standard_Positive then
2807 Activate_Overflow_Check (High_Bound);
2808 end if;
2809
2810 -- Handle the exceptional case where the result is null, in which case
2811 -- case the bounds come from the last operand (so that we get the proper
2812 -- bounds if the last operand is super-flat).
2813
2814 if Result_May_Be_Null then
2815 High_Bound :=
2816 Make_Conditional_Expression (Loc,
2817 Expressions => New_List (
2818 Make_Op_Eq (Loc,
2819 Left_Opnd => New_Copy (Aggr_Length (NN)),
2820 Right_Opnd => Make_Artyp_Literal (0)),
2821 Last_Opnd_High_Bound,
2822 High_Bound));
2823 end if;
2824
2825 -- Here is where we insert the saved up actions
2826
2827 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
2828
2829 -- Now we construct an array object with appropriate bounds. We mark
2830 -- the target as internal to prevent useless initialization when
2831 -- Initialize_Scalars is enabled.
2832
2833 Ent := Make_Temporary (Loc, 'S');
2834 Set_Is_Internal (Ent);
2835
2836 -- If the bound is statically known to be out of range, we do not want
2837 -- to abort, we want a warning and a runtime constraint error. Note that
2838 -- we have arranged that the result will not be treated as a static
2839 -- constant, so we won't get an illegality during this insertion.
2840
2841 Insert_Action (Cnode,
2842 Make_Object_Declaration (Loc,
2843 Defining_Identifier => Ent,
2844 Object_Definition =>
2845 Make_Subtype_Indication (Loc,
2846 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
2847 Constraint =>
2848 Make_Index_Or_Discriminant_Constraint (Loc,
2849 Constraints => New_List (
2850 Make_Range (Loc,
2851 Low_Bound => Low_Bound,
2852 High_Bound => High_Bound))))),
2853 Suppress => All_Checks);
2854
2855 -- If the result of the concatenation appears as the initializing
2856 -- expression of an object declaration, we can just rename the
2857 -- result, rather than copying it.
2858
2859 Set_OK_To_Rename (Ent);
2860
2861 -- Catch the static out of range case now
2862
2863 if Raises_Constraint_Error (High_Bound) then
2864 raise Concatenation_Error;
2865 end if;
2866
2867 -- Now we will generate the assignments to do the actual concatenation
2868
2869 -- There is one case in which we will not do this, namely when all the
2870 -- following conditions are met:
2871
2872 -- The result type is Standard.String
2873
2874 -- There are nine or fewer retained (non-null) operands
2875
2876 -- The optimization level is -O0
2877
2878 -- The corresponding System.Concat_n.Str_Concat_n routine is
2879 -- available in the run time.
2880
2881 -- The debug flag gnatd.c is not set
2882
2883 -- If all these conditions are met then we generate a call to the
2884 -- relevant concatenation routine. The purpose of this is to avoid
2885 -- undesirable code bloat at -O0.
2886
2887 if Atyp = Standard_String
2888 and then NN in 2 .. 9
2889 and then (Opt.Optimization_Level = 0 or else Debug_Flag_Dot_CC)
2890 and then not Debug_Flag_Dot_C
2891 then
2892 declare
2893 RR : constant array (Nat range 2 .. 9) of RE_Id :=
2894 (RE_Str_Concat_2,
2895 RE_Str_Concat_3,
2896 RE_Str_Concat_4,
2897 RE_Str_Concat_5,
2898 RE_Str_Concat_6,
2899 RE_Str_Concat_7,
2900 RE_Str_Concat_8,
2901 RE_Str_Concat_9);
2902
2903 begin
2904 if RTE_Available (RR (NN)) then
2905 declare
2906 Opnds : constant List_Id :=
2907 New_List (New_Occurrence_Of (Ent, Loc));
2908
2909 begin
2910 for J in 1 .. NN loop
2911 if Is_List_Member (Operands (J)) then
2912 Remove (Operands (J));
2913 end if;
2914
2915 if Base_Type (Etype (Operands (J))) = Ctyp then
2916 Append_To (Opnds,
2917 Make_Aggregate (Loc,
2918 Component_Associations => New_List (
2919 Make_Component_Association (Loc,
2920 Choices => New_List (
2921 Make_Integer_Literal (Loc, 1)),
2922 Expression => Operands (J)))));
2923
2924 else
2925 Append_To (Opnds, Operands (J));
2926 end if;
2927 end loop;
2928
2929 Insert_Action (Cnode,
2930 Make_Procedure_Call_Statement (Loc,
2931 Name => New_Reference_To (RTE (RR (NN)), Loc),
2932 Parameter_Associations => Opnds));
2933
2934 Result := New_Reference_To (Ent, Loc);
2935 goto Done;
2936 end;
2937 end if;
2938 end;
2939 end if;
2940
2941 -- Not special case so generate the assignments
2942
2943 Known_Non_Null_Operand_Seen := False;
2944
2945 for J in 1 .. NN loop
2946 declare
2947 Lo : constant Node_Id :=
2948 Make_Op_Add (Loc,
2949 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
2950 Right_Opnd => Aggr_Length (J - 1));
2951
2952 Hi : constant Node_Id :=
2953 Make_Op_Add (Loc,
2954 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
2955 Right_Opnd =>
2956 Make_Op_Subtract (Loc,
2957 Left_Opnd => Aggr_Length (J),
2958 Right_Opnd => Make_Artyp_Literal (1)));
2959
2960 begin
2961 -- Singleton case, simple assignment
2962
2963 if Base_Type (Etype (Operands (J))) = Ctyp then
2964 Known_Non_Null_Operand_Seen := True;
2965 Insert_Action (Cnode,
2966 Make_Assignment_Statement (Loc,
2967 Name =>
2968 Make_Indexed_Component (Loc,
2969 Prefix => New_Occurrence_Of (Ent, Loc),
2970 Expressions => New_List (To_Ityp (Lo))),
2971 Expression => Operands (J)),
2972 Suppress => All_Checks);
2973
2974 -- Array case, slice assignment, skipped when argument is fixed
2975 -- length and known to be null.
2976
2977 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
2978 declare
2979 Assign : Node_Id :=
2980 Make_Assignment_Statement (Loc,
2981 Name =>
2982 Make_Slice (Loc,
2983 Prefix =>
2984 New_Occurrence_Of (Ent, Loc),
2985 Discrete_Range =>
2986 Make_Range (Loc,
2987 Low_Bound => To_Ityp (Lo),
2988 High_Bound => To_Ityp (Hi))),
2989 Expression => Operands (J));
2990 begin
2991 if Is_Fixed_Length (J) then
2992 Known_Non_Null_Operand_Seen := True;
2993
2994 elsif not Known_Non_Null_Operand_Seen then
2995
2996 -- Here if operand length is not statically known and no
2997 -- operand known to be non-null has been processed yet.
2998 -- If operand length is 0, we do not need to perform the
2999 -- assignment, and we must avoid the evaluation of the
3000 -- high bound of the slice, since it may underflow if the
3001 -- low bound is Ityp'First.
3002
3003 Assign :=
3004 Make_Implicit_If_Statement (Cnode,
3005 Condition =>
3006 Make_Op_Ne (Loc,
3007 Left_Opnd =>
3008 New_Occurrence_Of (Var_Length (J), Loc),
3009 Right_Opnd => Make_Integer_Literal (Loc, 0)),
3010 Then_Statements =>
3011 New_List (Assign));
3012 end if;
3013
3014 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3015 end;
3016 end if;
3017 end;
3018 end loop;
3019
3020 -- Finally we build the result, which is a reference to the array object
3021
3022 Result := New_Reference_To (Ent, Loc);
3023
3024 <<Done>>
3025 Rewrite (Cnode, Result);
3026 Analyze_And_Resolve (Cnode, Atyp);
3027
3028 exception
3029 when Concatenation_Error =>
3030
3031 -- Kill warning generated for the declaration of the static out of
3032 -- range high bound, and instead generate a Constraint_Error with
3033 -- an appropriate specific message.
3034
3035 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3036 Apply_Compile_Time_Constraint_Error
3037 (N => Cnode,
3038 Msg => "concatenation result upper bound out of range?",
3039 Reason => CE_Range_Check_Failed);
3040 -- Set_Etype (Cnode, Atyp);
3041 end Expand_Concatenate;
3042
3043 ------------------------
3044 -- Expand_N_Allocator --
3045 ------------------------
3046
3047 procedure Expand_N_Allocator (N : Node_Id) is
3048 PtrT : constant Entity_Id := Etype (N);
3049 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
3050 Etyp : constant Entity_Id := Etype (Expression (N));
3051 Loc : constant Source_Ptr := Sloc (N);
3052 Desig : Entity_Id;
3053 Temp : Entity_Id;
3054 Nod : Node_Id;
3055
3056 procedure Complete_Coextension_Finalization;
3057 -- Generate finalization calls for all nested coextensions of N. This
3058 -- routine may allocate list controllers if necessary.
3059
3060 procedure Rewrite_Coextension (N : Node_Id);
3061 -- Static coextensions have the same lifetime as the entity they
3062 -- constrain. Such occurrences can be rewritten as aliased objects
3063 -- and their unrestricted access used instead of the coextension.
3064
3065 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
3066 -- Given a constrained array type E, returns a node representing the
3067 -- code to compute the size in storage elements for the given type.
3068 -- This is done without using the attribute (which malfunctions for
3069 -- large sizes ???)
3070
3071 ---------------------------------------
3072 -- Complete_Coextension_Finalization --
3073 ---------------------------------------
3074
3075 procedure Complete_Coextension_Finalization is
3076 Coext : Node_Id;
3077 Coext_Elmt : Elmt_Id;
3078 Flist : Node_Id;
3079 Ref : Node_Id;
3080
3081 function Inside_A_Return_Statement (N : Node_Id) return Boolean;
3082 -- Determine whether node N is part of a return statement
3083
3084 function Needs_Initialization_Call (N : Node_Id) return Boolean;
3085 -- Determine whether node N is a subtype indicator allocator which
3086 -- acts a coextension. Such coextensions need initialization.
3087
3088 -------------------------------
3089 -- Inside_A_Return_Statement --
3090 -------------------------------
3091
3092 function Inside_A_Return_Statement (N : Node_Id) return Boolean is
3093 P : Node_Id;
3094
3095 begin
3096 P := Parent (N);
3097 while Present (P) loop
3098 if Nkind_In
3099 (P, N_Extended_Return_Statement, N_Simple_Return_Statement)
3100 then
3101 return True;
3102
3103 -- Stop the traversal when we reach a subprogram body
3104
3105 elsif Nkind (P) = N_Subprogram_Body then
3106 return False;
3107 end if;
3108
3109 P := Parent (P);
3110 end loop;
3111
3112 return False;
3113 end Inside_A_Return_Statement;
3114
3115 -------------------------------
3116 -- Needs_Initialization_Call --
3117 -------------------------------
3118
3119 function Needs_Initialization_Call (N : Node_Id) return Boolean is
3120 Obj_Decl : Node_Id;
3121
3122 begin
3123 if Nkind (N) = N_Explicit_Dereference
3124 and then Nkind (Prefix (N)) = N_Identifier
3125 and then Nkind (Parent (Entity (Prefix (N)))) =
3126 N_Object_Declaration
3127 then
3128 Obj_Decl := Parent (Entity (Prefix (N)));
3129
3130 return
3131 Present (Expression (Obj_Decl))
3132 and then Nkind (Expression (Obj_Decl)) = N_Allocator
3133 and then Nkind (Expression (Expression (Obj_Decl))) /=
3134 N_Qualified_Expression;
3135 end if;
3136
3137 return False;
3138 end Needs_Initialization_Call;
3139
3140 -- Start of processing for Complete_Coextension_Finalization
3141
3142 begin
3143 -- When a coextension root is inside a return statement, we need to
3144 -- use the finalization chain of the function's scope. This does not
3145 -- apply for controlled named access types because in those cases we
3146 -- can use the finalization chain of the type itself.
3147
3148 if Inside_A_Return_Statement (N)
3149 and then
3150 (Ekind (PtrT) = E_Anonymous_Access_Type
3151 or else
3152 (Ekind (PtrT) = E_Access_Type
3153 and then No (Associated_Final_Chain (PtrT))))
3154 then
3155 declare
3156 Decl : Node_Id;
3157 Outer_S : Entity_Id;
3158 S : Entity_Id := Current_Scope;
3159
3160 begin
3161 while Present (S) and then S /= Standard_Standard loop
3162 if Ekind (S) = E_Function then
3163 Outer_S := Scope (S);
3164
3165 -- Retrieve the declaration of the body
3166
3167 Decl :=
3168 Parent
3169 (Parent
3170 (Corresponding_Body (Parent (Parent (S)))));
3171 exit;
3172 end if;
3173
3174 S := Scope (S);
3175 end loop;
3176
3177 -- Push the scope of the function body since we are inserting
3178 -- the list before the body, but we are currently in the body
3179 -- itself. Override the finalization list of PtrT since the
3180 -- finalization context is now different.
3181
3182 Push_Scope (Outer_S);
3183 Build_Final_List (Decl, PtrT);
3184 Pop_Scope;
3185 end;
3186
3187 -- The root allocator may not be controlled, but it still needs a
3188 -- finalization list for all nested coextensions.
3189
3190 elsif No (Associated_Final_Chain (PtrT)) then
3191 Build_Final_List (N, PtrT);
3192 end if;
3193
3194 Flist :=
3195 Make_Selected_Component (Loc,
3196 Prefix =>
3197 New_Reference_To (Associated_Final_Chain (PtrT), Loc),
3198 Selector_Name =>
3199 Make_Identifier (Loc, Name_F));
3200
3201 Coext_Elmt := First_Elmt (Coextensions (N));
3202 while Present (Coext_Elmt) loop
3203 Coext := Node (Coext_Elmt);
3204
3205 -- Generate:
3206 -- typ! (coext.all)
3207
3208 if Nkind (Coext) = N_Identifier then
3209 Ref :=
3210 Make_Unchecked_Type_Conversion (Loc,
3211 Subtype_Mark => New_Reference_To (Etype (Coext), Loc),
3212 Expression =>
3213 Make_Explicit_Dereference (Loc,
3214 Prefix => New_Copy_Tree (Coext)));
3215 else
3216 Ref := New_Copy_Tree (Coext);
3217 end if;
3218
3219 -- No initialization call if not allowed
3220
3221 Check_Restriction (No_Default_Initialization, N);
3222
3223 if not Restriction_Active (No_Default_Initialization) then
3224
3225 -- Generate:
3226 -- initialize (Ref)
3227 -- attach_to_final_list (Ref, Flist, 2)
3228
3229 if Needs_Initialization_Call (Coext) then
3230 Insert_Actions (N,
3231 Make_Init_Call (
3232 Ref => Ref,
3233 Typ => Etype (Coext),
3234 Flist_Ref => Flist,
3235 With_Attach => Make_Integer_Literal (Loc, Uint_2)));
3236
3237 -- Generate:
3238 -- attach_to_final_list (Ref, Flist, 2)
3239
3240 else
3241 Insert_Action (N,
3242 Make_Attach_Call (
3243 Obj_Ref => Ref,
3244 Flist_Ref => New_Copy_Tree (Flist),
3245 With_Attach => Make_Integer_Literal (Loc, Uint_2)));
3246 end if;
3247 end if;
3248
3249 Next_Elmt (Coext_Elmt);
3250 end loop;
3251 end Complete_Coextension_Finalization;
3252
3253 -------------------------
3254 -- Rewrite_Coextension --
3255 -------------------------
3256
3257 procedure Rewrite_Coextension (N : Node_Id) is
3258 Temp : constant Node_Id := Make_Temporary (Loc, 'C');
3259
3260 -- Generate:
3261 -- Cnn : aliased Etyp;
3262
3263 Decl : constant Node_Id :=
3264 Make_Object_Declaration (Loc,
3265 Defining_Identifier => Temp,
3266 Aliased_Present => True,
3267 Object_Definition =>
3268 New_Occurrence_Of (Etyp, Loc));
3269 Nod : Node_Id;
3270
3271 begin
3272 if Nkind (Expression (N)) = N_Qualified_Expression then
3273 Set_Expression (Decl, Expression (Expression (N)));
3274 end if;
3275
3276 -- Find the proper insertion node for the declaration
3277
3278 Nod := Parent (N);
3279 while Present (Nod) loop
3280 exit when Nkind (Nod) in N_Statement_Other_Than_Procedure_Call
3281 or else Nkind (Nod) = N_Procedure_Call_Statement
3282 or else Nkind (Nod) in N_Declaration;
3283 Nod := Parent (Nod);
3284 end loop;
3285
3286 Insert_Before (Nod, Decl);
3287 Analyze (Decl);
3288
3289 Rewrite (N,
3290 Make_Attribute_Reference (Loc,
3291 Prefix => New_Occurrence_Of (Temp, Loc),
3292 Attribute_Name => Name_Unrestricted_Access));
3293
3294 Analyze_And_Resolve (N, PtrT);
3295 end Rewrite_Coextension;
3296
3297 ------------------------------
3298 -- Size_In_Storage_Elements --
3299 ------------------------------
3300
3301 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
3302 begin
3303 -- Logically this just returns E'Max_Size_In_Storage_Elements.
3304 -- However, the reason for the existence of this function is
3305 -- to construct a test for sizes too large, which means near the
3306 -- 32-bit limit on a 32-bit machine, and precisely the trouble
3307 -- is that we get overflows when sizes are greater than 2**31.
3308
3309 -- So what we end up doing for array types is to use the expression:
3310
3311 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
3312
3313 -- which avoids this problem. All this is a big bogus, but it does
3314 -- mean we catch common cases of trying to allocate arrays that
3315 -- are too large, and which in the absence of a check results in
3316 -- undetected chaos ???
3317
3318 declare
3319 Len : Node_Id;
3320 Res : Node_Id;
3321
3322 begin
3323 for J in 1 .. Number_Dimensions (E) loop
3324 Len :=
3325 Make_Attribute_Reference (Loc,
3326 Prefix => New_Occurrence_Of (E, Loc),
3327 Attribute_Name => Name_Length,
3328 Expressions => New_List (
3329 Make_Integer_Literal (Loc, J)));
3330
3331 if J = 1 then
3332 Res := Len;
3333
3334 else
3335 Res :=
3336 Make_Op_Multiply (Loc,
3337 Left_Opnd => Res,
3338 Right_Opnd => Len);
3339 end if;
3340 end loop;
3341
3342 return
3343 Make_Op_Multiply (Loc,
3344 Left_Opnd => Len,
3345 Right_Opnd =>
3346 Make_Attribute_Reference (Loc,
3347 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
3348 Attribute_Name => Name_Max_Size_In_Storage_Elements));
3349 end;
3350 end Size_In_Storage_Elements;
3351
3352 -- Start of processing for Expand_N_Allocator
3353
3354 begin
3355 -- RM E.2.3(22). We enforce that the expected type of an allocator
3356 -- shall not be a remote access-to-class-wide-limited-private type
3357
3358 -- Why is this being done at expansion time, seems clearly wrong ???
3359
3360 Validate_Remote_Access_To_Class_Wide_Type (N);
3361
3362 -- Set the Storage Pool
3363
3364 Set_Storage_Pool (N, Associated_Storage_Pool (Root_Type (PtrT)));
3365
3366 if Present (Storage_Pool (N)) then
3367 if Is_RTE (Storage_Pool (N), RE_SS_Pool) then
3368 if VM_Target = No_VM then
3369 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
3370 end if;
3371
3372 elsif Is_Class_Wide_Type (Etype (Storage_Pool (N))) then
3373 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
3374
3375 else
3376 Set_Procedure_To_Call (N,
3377 Find_Prim_Op (Etype (Storage_Pool (N)), Name_Allocate));
3378 end if;
3379 end if;
3380
3381 -- Under certain circumstances we can replace an allocator by an access
3382 -- to statically allocated storage. The conditions, as noted in AARM
3383 -- 3.10 (10c) are as follows:
3384
3385 -- Size and initial value is known at compile time
3386 -- Access type is access-to-constant
3387
3388 -- The allocator is not part of a constraint on a record component,
3389 -- because in that case the inserted actions are delayed until the
3390 -- record declaration is fully analyzed, which is too late for the
3391 -- analysis of the rewritten allocator.
3392
3393 if Is_Access_Constant (PtrT)
3394 and then Nkind (Expression (N)) = N_Qualified_Expression
3395 and then Compile_Time_Known_Value (Expression (Expression (N)))
3396 and then Size_Known_At_Compile_Time (Etype (Expression
3397 (Expression (N))))
3398 and then not Is_Record_Type (Current_Scope)
3399 then
3400 -- Here we can do the optimization. For the allocator
3401
3402 -- new x'(y)
3403
3404 -- We insert an object declaration
3405
3406 -- Tnn : aliased x := y;
3407
3408 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
3409 -- marked as requiring static allocation.
3410
3411 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
3412 Desig := Subtype_Mark (Expression (N));
3413
3414 -- If context is constrained, use constrained subtype directly,
3415 -- so that the constant is not labelled as having a nominally
3416 -- unconstrained subtype.
3417
3418 if Entity (Desig) = Base_Type (Dtyp) then
3419 Desig := New_Occurrence_Of (Dtyp, Loc);
3420 end if;
3421
3422 Insert_Action (N,
3423 Make_Object_Declaration (Loc,
3424 Defining_Identifier => Temp,
3425 Aliased_Present => True,
3426 Constant_Present => Is_Access_Constant (PtrT),
3427 Object_Definition => Desig,
3428 Expression => Expression (Expression (N))));
3429
3430 Rewrite (N,
3431 Make_Attribute_Reference (Loc,
3432 Prefix => New_Occurrence_Of (Temp, Loc),
3433 Attribute_Name => Name_Unrestricted_Access));
3434
3435 Analyze_And_Resolve (N, PtrT);
3436
3437 -- We set the variable as statically allocated, since we don't want
3438 -- it going on the stack of the current procedure!
3439
3440 Set_Is_Statically_Allocated (Temp);
3441 return;
3442 end if;
3443
3444 -- Same if the allocator is an access discriminant for a local object:
3445 -- instead of an allocator we create a local value and constrain the
3446 -- the enclosing object with the corresponding access attribute.
3447
3448 if Is_Static_Coextension (N) then
3449 Rewrite_Coextension (N);
3450 return;
3451 end if;
3452
3453 -- The current allocator creates an object which may contain nested
3454 -- coextensions. Use the current allocator's finalization list to
3455 -- generate finalization call for all nested coextensions.
3456
3457 if Is_Coextension_Root (N) then
3458 Complete_Coextension_Finalization;
3459 end if;
3460
3461 -- Check for size too large, we do this because the back end misses
3462 -- proper checks here and can generate rubbish allocation calls when
3463 -- we are near the limit. We only do this for the 32-bit address case
3464 -- since that is from a practical point of view where we see a problem.
3465
3466 if System_Address_Size = 32
3467 and then not Storage_Checks_Suppressed (PtrT)
3468 and then not Storage_Checks_Suppressed (Dtyp)
3469 and then not Storage_Checks_Suppressed (Etyp)
3470 then
3471 -- The check we want to generate should look like
3472
3473 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
3474 -- raise Storage_Error;
3475 -- end if;
3476
3477 -- where 3.5 gigabytes is a constant large enough to accomodate any
3478 -- reasonable request for. But we can't do it this way because at
3479 -- least at the moment we don't compute this attribute right, and
3480 -- can silently give wrong results when the result gets large. Since
3481 -- this is all about large results, that's bad, so instead we only
3482 -- apply the check for constrained arrays, and manually compute the
3483 -- value of the attribute ???
3484
3485 if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
3486 Insert_Action (N,
3487 Make_Raise_Storage_Error (Loc,
3488 Condition =>
3489 Make_Op_Gt (Loc,
3490 Left_Opnd => Size_In_Storage_Elements (Etyp),
3491 Right_Opnd =>
3492 Make_Integer_Literal (Loc,
3493 Intval => Uint_7 * (Uint_2 ** 29))),
3494 Reason => SE_Object_Too_Large));
3495 end if;
3496 end if;
3497
3498 -- Handle case of qualified expression (other than optimization above)
3499 -- First apply constraint checks, because the bounds or discriminants
3500 -- in the aggregate might not match the subtype mark in the allocator.
3501
3502 if Nkind (Expression (N)) = N_Qualified_Expression then
3503 Apply_Constraint_Check
3504 (Expression (Expression (N)), Etype (Expression (N)));
3505
3506 Expand_Allocator_Expression (N);
3507 return;
3508 end if;
3509
3510 -- If the allocator is for a type which requires initialization, and
3511 -- there is no initial value (i.e. operand is a subtype indication
3512 -- rather than a qualified expression), then we must generate a call to
3513 -- the initialization routine using an expressions action node:
3514
3515 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
3516
3517 -- Here ptr_T is the pointer type for the allocator, and T is the
3518 -- subtype of the allocator. A special case arises if the designated
3519 -- type of the access type is a task or contains tasks. In this case
3520 -- the call to Init (Temp.all ...) is replaced by code that ensures
3521 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
3522 -- for details). In addition, if the type T is a task T, then the
3523 -- first argument to Init must be converted to the task record type.
3524
3525 declare
3526 T : constant Entity_Id := Entity (Expression (N));
3527 Init : Entity_Id;
3528 Arg1 : Node_Id;
3529 Args : List_Id;
3530 Decls : List_Id;
3531 Decl : Node_Id;
3532 Discr : Elmt_Id;
3533 Flist : Node_Id;
3534 Temp_Decl : Node_Id;
3535 Temp_Type : Entity_Id;
3536 Attach_Level : Uint;
3537
3538 begin
3539 if No_Initialization (N) then
3540 null;
3541
3542 -- Case of no initialization procedure present
3543
3544 elsif not Has_Non_Null_Base_Init_Proc (T) then
3545
3546 -- Case of simple initialization required
3547
3548 if Needs_Simple_Initialization (T) then
3549 Check_Restriction (No_Default_Initialization, N);
3550 Rewrite (Expression (N),
3551 Make_Qualified_Expression (Loc,
3552 Subtype_Mark => New_Occurrence_Of (T, Loc),
3553 Expression => Get_Simple_Init_Val (T, N)));
3554
3555 Analyze_And_Resolve (Expression (Expression (N)), T);
3556 Analyze_And_Resolve (Expression (N), T);
3557 Set_Paren_Count (Expression (Expression (N)), 1);
3558 Expand_N_Allocator (N);
3559
3560 -- No initialization required
3561
3562 else
3563 null;
3564 end if;
3565
3566 -- Case of initialization procedure present, must be called
3567
3568 else
3569 Check_Restriction (No_Default_Initialization, N);
3570
3571 if not Restriction_Active (No_Default_Initialization) then
3572 Init := Base_Init_Proc (T);
3573 Nod := N;
3574 Temp := Make_Temporary (Loc, 'P');
3575
3576 -- Construct argument list for the initialization routine call
3577
3578 Arg1 :=
3579 Make_Explicit_Dereference (Loc,
3580 Prefix => New_Reference_To (Temp, Loc));
3581 Set_Assignment_OK (Arg1);
3582 Temp_Type := PtrT;
3583
3584 -- The initialization procedure expects a specific type. if the
3585 -- context is access to class wide, indicate that the object
3586 -- being allocated has the right specific type.
3587
3588 if Is_Class_Wide_Type (Dtyp) then
3589 Arg1 := Unchecked_Convert_To (T, Arg1);
3590 end if;
3591
3592 -- If designated type is a concurrent type or if it is private
3593 -- type whose definition is a concurrent type, the first
3594 -- argument in the Init routine has to be unchecked conversion
3595 -- to the corresponding record type. If the designated type is
3596 -- a derived type, we also convert the argument to its root
3597 -- type.
3598
3599 if Is_Concurrent_Type (T) then
3600 Arg1 :=
3601 Unchecked_Convert_To (Corresponding_Record_Type (T), Arg1);
3602
3603 elsif Is_Private_Type (T)
3604 and then Present (Full_View (T))
3605 and then Is_Concurrent_Type (Full_View (T))
3606 then
3607 Arg1 :=
3608 Unchecked_Convert_To
3609 (Corresponding_Record_Type (Full_View (T)), Arg1);
3610
3611 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
3612 declare
3613 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
3614 begin
3615 Arg1 := OK_Convert_To (Etype (Ftyp), Arg1);
3616 Set_Etype (Arg1, Ftyp);
3617 end;
3618 end if;
3619
3620 Args := New_List (Arg1);
3621
3622 -- For the task case, pass the Master_Id of the access type as
3623 -- the value of the _Master parameter, and _Chain as the value
3624 -- of the _Chain parameter (_Chain will be defined as part of
3625 -- the generated code for the allocator).
3626
3627 -- In Ada 2005, the context may be a function that returns an
3628 -- anonymous access type. In that case the Master_Id has been
3629 -- created when expanding the function declaration.
3630
3631 if Has_Task (T) then
3632 if No (Master_Id (Base_Type (PtrT))) then
3633
3634 -- If we have a non-library level task with restriction
3635 -- No_Task_Hierarchy set, then no point in expanding.
3636
3637 if not Is_Library_Level_Entity (T)
3638 and then Restriction_Active (No_Task_Hierarchy)
3639 then
3640 return;
3641 end if;
3642
3643 -- The designated type was an incomplete type, and the
3644 -- access type did not get expanded. Salvage it now.
3645
3646 pragma Assert (Present (Parent (Base_Type (PtrT))));
3647 Expand_N_Full_Type_Declaration
3648 (Parent (Base_Type (PtrT)));
3649 end if;
3650
3651 -- If the context of the allocator is a declaration or an
3652 -- assignment, we can generate a meaningful image for it,
3653 -- even though subsequent assignments might remove the
3654 -- connection between task and entity. We build this image
3655 -- when the left-hand side is a simple variable, a simple
3656 -- indexed assignment or a simple selected component.
3657
3658 if Nkind (Parent (N)) = N_Assignment_Statement then
3659 declare
3660 Nam : constant Node_Id := Name (Parent (N));
3661
3662 begin
3663 if Is_Entity_Name (Nam) then
3664 Decls :=
3665 Build_Task_Image_Decls
3666 (Loc,
3667 New_Occurrence_Of
3668 (Entity (Nam), Sloc (Nam)), T);
3669
3670 elsif Nkind_In
3671 (Nam, N_Indexed_Component, N_Selected_Component)
3672 and then Is_Entity_Name (Prefix (Nam))
3673 then
3674 Decls :=
3675 Build_Task_Image_Decls
3676 (Loc, Nam, Etype (Prefix (Nam)));
3677 else
3678 Decls := Build_Task_Image_Decls (Loc, T, T);
3679 end if;
3680 end;
3681
3682 elsif Nkind (Parent (N)) = N_Object_Declaration then
3683 Decls :=
3684 Build_Task_Image_Decls
3685 (Loc, Defining_Identifier (Parent (N)), T);
3686
3687 else
3688 Decls := Build_Task_Image_Decls (Loc, T, T);
3689 end if;
3690
3691 Append_To (Args,
3692 New_Reference_To
3693 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
3694 Append_To (Args, Make_Identifier (Loc, Name_uChain));
3695
3696 Decl := Last (Decls);
3697 Append_To (Args,
3698 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
3699
3700 -- Has_Task is false, Decls not used
3701
3702 else
3703 Decls := No_List;
3704 end if;
3705
3706 -- Add discriminants if discriminated type
3707
3708 declare
3709 Dis : Boolean := False;
3710 Typ : Entity_Id;
3711
3712 begin
3713 if Has_Discriminants (T) then
3714 Dis := True;
3715 Typ := T;
3716
3717 elsif Is_Private_Type (T)
3718 and then Present (Full_View (T))
3719 and then Has_Discriminants (Full_View (T))
3720 then
3721 Dis := True;
3722 Typ := Full_View (T);
3723 end if;
3724
3725 if Dis then
3726
3727 -- If the allocated object will be constrained by the
3728 -- default values for discriminants, then build a subtype
3729 -- with those defaults, and change the allocated subtype
3730 -- to that. Note that this happens in fewer cases in Ada
3731 -- 2005 (AI-363).
3732
3733 if not Is_Constrained (Typ)
3734 and then Present (Discriminant_Default_Value
3735 (First_Discriminant (Typ)))
3736 and then (Ada_Version < Ada_05
3737 or else
3738 not Has_Constrained_Partial_View (Typ))
3739 then
3740 Typ := Build_Default_Subtype (Typ, N);
3741 Set_Expression (N, New_Reference_To (Typ, Loc));
3742 end if;
3743
3744 Discr := First_Elmt (Discriminant_Constraint (Typ));
3745 while Present (Discr) loop
3746 Nod := Node (Discr);
3747 Append (New_Copy_Tree (Node (Discr)), Args);
3748
3749 -- AI-416: when the discriminant constraint is an
3750 -- anonymous access type make sure an accessibility
3751 -- check is inserted if necessary (3.10.2(22.q/2))
3752
3753 if Ada_Version >= Ada_05
3754 and then
3755 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
3756 then
3757 Apply_Accessibility_Check
3758 (Nod, Typ, Insert_Node => Nod);
3759 end if;
3760
3761 Next_Elmt (Discr);
3762 end loop;
3763 end if;
3764 end;
3765
3766 -- We set the allocator as analyzed so that when we analyze the
3767 -- expression actions node, we do not get an unwanted recursive
3768 -- expansion of the allocator expression.
3769
3770 Set_Analyzed (N, True);
3771 Nod := Relocate_Node (N);
3772
3773 -- Here is the transformation:
3774 -- input: new T
3775 -- output: Temp : constant ptr_T := new T;
3776 -- Init (Temp.all, ...);
3777 -- <CTRL> Attach_To_Final_List (Finalizable (Temp.all));
3778 -- <CTRL> Initialize (Finalizable (Temp.all));
3779
3780 -- Here ptr_T is the pointer type for the allocator, and is the
3781 -- subtype of the allocator.
3782
3783 Temp_Decl :=
3784 Make_Object_Declaration (Loc,
3785 Defining_Identifier => Temp,
3786 Constant_Present => True,
3787 Object_Definition => New_Reference_To (Temp_Type, Loc),
3788 Expression => Nod);
3789
3790 Set_Assignment_OK (Temp_Decl);
3791 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
3792
3793 -- If the designated type is a task type or contains tasks,
3794 -- create block to activate created tasks, and insert
3795 -- declaration for Task_Image variable ahead of call.
3796
3797 if Has_Task (T) then
3798 declare
3799 L : constant List_Id := New_List;
3800 Blk : Node_Id;
3801 begin
3802 Build_Task_Allocate_Block (L, Nod, Args);
3803 Blk := Last (L);
3804 Insert_List_Before (First (Declarations (Blk)), Decls);
3805 Insert_Actions (N, L);
3806 end;
3807
3808 else
3809 Insert_Action (N,
3810 Make_Procedure_Call_Statement (Loc,
3811 Name => New_Reference_To (Init, Loc),
3812 Parameter_Associations => Args));
3813 end if;
3814
3815 if Needs_Finalization (T) then
3816
3817 -- Postpone the generation of a finalization call for the
3818 -- current allocator if it acts as a coextension.
3819
3820 if Is_Dynamic_Coextension (N) then
3821 if No (Coextensions (N)) then
3822 Set_Coextensions (N, New_Elmt_List);
3823 end if;
3824
3825 Append_Elmt (New_Copy_Tree (Arg1), Coextensions (N));
3826
3827 else
3828 Flist :=
3829 Get_Allocator_Final_List (N, Base_Type (T), PtrT);
3830
3831 -- Anonymous access types created for access parameters
3832 -- are attached to an explicitly constructed controller,
3833 -- which ensures that they can be finalized properly,
3834 -- even if their deallocation might not happen. The list
3835 -- associated with the controller is doubly-linked. For
3836 -- other anonymous access types, the object may end up
3837 -- on the global final list which is singly-linked.
3838 -- Work needed for access discriminants in Ada 2005 ???
3839
3840 if Ekind (PtrT) = E_Anonymous_Access_Type then
3841 Attach_Level := Uint_1;
3842 else
3843 Attach_Level := Uint_2;
3844 end if;
3845
3846 Insert_Actions (N,
3847 Make_Init_Call (
3848 Ref => New_Copy_Tree (Arg1),
3849 Typ => T,
3850 Flist_Ref => Flist,
3851 With_Attach => Make_Integer_Literal (Loc,
3852 Intval => Attach_Level)));
3853 end if;
3854 end if;
3855
3856 Rewrite (N, New_Reference_To (Temp, Loc));
3857 Analyze_And_Resolve (N, PtrT);
3858 end if;
3859 end if;
3860 end;
3861
3862 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
3863 -- object that has been rewritten as a reference, we displace "this"
3864 -- to reference properly its secondary dispatch table.
3865
3866 if Nkind (N) = N_Identifier
3867 and then Is_Interface (Dtyp)
3868 then
3869 Displace_Allocator_Pointer (N);
3870 end if;
3871
3872 exception
3873 when RE_Not_Available =>
3874 return;
3875 end Expand_N_Allocator;
3876
3877 -----------------------
3878 -- Expand_N_And_Then --
3879 -----------------------
3880
3881 procedure Expand_N_And_Then (N : Node_Id)
3882 renames Expand_Short_Circuit_Operator;
3883
3884 ------------------------------
3885 -- Expand_N_Case_Expression --
3886 ------------------------------
3887
3888 procedure Expand_N_Case_Expression (N : Node_Id) is
3889 Loc : constant Source_Ptr := Sloc (N);
3890 Typ : constant Entity_Id := Etype (N);
3891 Cstmt : Node_Id;
3892 Tnn : Entity_Id;
3893 Pnn : Entity_Id;
3894 Actions : List_Id;
3895 Ttyp : Entity_Id;
3896 Alt : Node_Id;
3897 Fexp : Node_Id;
3898
3899 begin
3900 -- We expand
3901
3902 -- case X is when A => AX, when B => BX ...
3903
3904 -- to
3905
3906 -- do
3907 -- Tnn : typ;
3908 -- case X is
3909 -- when A =>
3910 -- Tnn := AX;
3911 -- when B =>
3912 -- Tnn := BX;
3913 -- ...
3914 -- end case;
3915 -- in Tnn end;
3916
3917 -- However, this expansion is wrong for limited types, and also
3918 -- wrong for unconstrained types (since the bounds may not be the
3919 -- same in all branches). Furthermore it involves an extra copy
3920 -- for large objects. So we take care of this by using the following
3921 -- modified expansion for non-scalar types:
3922
3923 -- do
3924 -- type Pnn is access all typ;
3925 -- Tnn : Pnn;
3926 -- case X is
3927 -- when A =>
3928 -- T := AX'Unrestricted_Access;
3929 -- when B =>
3930 -- T := BX'Unrestricted_Access;
3931 -- ...
3932 -- end case;
3933 -- in Tnn.all end;
3934
3935 Cstmt :=
3936 Make_Case_Statement (Loc,
3937 Expression => Expression (N),
3938 Alternatives => New_List);
3939
3940 Actions := New_List;
3941
3942 -- Scalar case
3943
3944 if Is_Scalar_Type (Typ) then
3945 Ttyp := Typ;
3946
3947 else
3948 Pnn := Make_Temporary (Loc, 'P');
3949 Append_To (Actions,
3950 Make_Full_Type_Declaration (Loc,
3951 Defining_Identifier => Pnn,
3952 Type_Definition =>
3953 Make_Access_To_Object_Definition (Loc,
3954 All_Present => True,
3955 Subtype_Indication =>
3956 New_Reference_To (Typ, Loc))));
3957 Ttyp := Pnn;
3958 end if;
3959
3960 Tnn := Make_Temporary (Loc, 'T');
3961 Append_To (Actions,
3962 Make_Object_Declaration (Loc,
3963 Defining_Identifier => Tnn,
3964 Object_Definition => New_Occurrence_Of (Ttyp, Loc)));
3965
3966 -- Now process the alternatives
3967
3968 Alt := First (Alternatives (N));
3969 while Present (Alt) loop
3970 declare
3971 Aexp : Node_Id := Expression (Alt);
3972 Aloc : constant Source_Ptr := Sloc (Aexp);
3973
3974 begin
3975 if not Is_Scalar_Type (Typ) then
3976 Aexp :=
3977 Make_Attribute_Reference (Aloc,
3978 Prefix => Relocate_Node (Aexp),
3979 Attribute_Name => Name_Unrestricted_Access);
3980 end if;
3981
3982 Append_To
3983 (Alternatives (Cstmt),
3984 Make_Case_Statement_Alternative (Sloc (Alt),
3985 Discrete_Choices => Discrete_Choices (Alt),
3986 Statements => New_List (
3987 Make_Assignment_Statement (Aloc,
3988 Name => New_Occurrence_Of (Tnn, Loc),
3989 Expression => Aexp))));
3990 end;
3991
3992 Next (Alt);
3993 end loop;
3994
3995 Append_To (Actions, Cstmt);
3996
3997 -- Construct and return final expression with actions
3998
3999 if Is_Scalar_Type (Typ) then
4000 Fexp := New_Occurrence_Of (Tnn, Loc);
4001 else
4002 Fexp :=
4003 Make_Explicit_Dereference (Loc,
4004 Prefix => New_Occurrence_Of (Tnn, Loc));
4005 end if;
4006
4007 Rewrite (N,
4008 Make_Expression_With_Actions (Loc,
4009 Expression => Fexp,
4010 Actions => Actions));
4011
4012 Analyze_And_Resolve (N, Typ);
4013 end Expand_N_Case_Expression;
4014
4015 -------------------------------------
4016 -- Expand_N_Conditional_Expression --
4017 -------------------------------------
4018
4019 -- Deal with limited types and expression actions
4020
4021 procedure Expand_N_Conditional_Expression (N : Node_Id) is
4022 Loc : constant Source_Ptr := Sloc (N);
4023 Cond : constant Node_Id := First (Expressions (N));
4024 Thenx : constant Node_Id := Next (Cond);
4025 Elsex : constant Node_Id := Next (Thenx);
4026 Typ : constant Entity_Id := Etype (N);
4027
4028 Cnn : Entity_Id;
4029 Decl : Node_Id;
4030 New_If : Node_Id;
4031 New_N : Node_Id;
4032 P_Decl : Node_Id;
4033 Expr : Node_Id;
4034 Actions : List_Id;
4035
4036 begin
4037 -- Fold at compile time if condition known. We have already folded
4038 -- static conditional expressions, but it is possible to fold any
4039 -- case in which the condition is known at compile time, even though
4040 -- the result is non-static.
4041
4042 -- Note that we don't do the fold of such cases in Sem_Elab because
4043 -- it can cause infinite loops with the expander adding a conditional
4044 -- expression, and Sem_Elab circuitry removing it repeatedly.
4045
4046 if Compile_Time_Known_Value (Cond) then
4047 if Is_True (Expr_Value (Cond)) then
4048 Expr := Thenx;
4049 Actions := Then_Actions (N);
4050 else
4051 Expr := Elsex;
4052 Actions := Else_Actions (N);
4053 end if;
4054
4055 Remove (Expr);
4056
4057 if Present (Actions) then
4058
4059 -- If we are not allowed to use Expression_With_Actions, just
4060 -- skip the optimization, it is not critical for correctness.
4061
4062 if not Use_Expression_With_Actions then
4063 goto Skip_Optimization;
4064 end if;
4065
4066 Rewrite (N,
4067 Make_Expression_With_Actions (Loc,
4068 Expression => Relocate_Node (Expr),
4069 Actions => Actions));
4070 Analyze_And_Resolve (N, Typ);
4071
4072 else
4073 Rewrite (N, Relocate_Node (Expr));
4074 end if;
4075
4076 -- Note that the result is never static (legitimate cases of static
4077 -- conditional expressions were folded in Sem_Eval).
4078
4079 Set_Is_Static_Expression (N, False);
4080 return;
4081 end if;
4082
4083 <<Skip_Optimization>>
4084
4085 -- If the type is limited or unconstrained, we expand as follows to
4086 -- avoid any possibility of improper copies.
4087
4088 -- Note: it may be possible to avoid this special processing if the
4089 -- back end uses its own mechanisms for handling by-reference types ???
4090
4091 -- type Ptr is access all Typ;
4092 -- Cnn : Ptr;
4093 -- if cond then
4094 -- <<then actions>>
4095 -- Cnn := then-expr'Unrestricted_Access;
4096 -- else
4097 -- <<else actions>>
4098 -- Cnn := else-expr'Unrestricted_Access;
4099 -- end if;
4100
4101 -- and replace the conditional expresion by a reference to Cnn.all.
4102
4103 -- This special case can be skipped if the back end handles limited
4104 -- types properly and ensures that no incorrect copies are made.
4105
4106 if Is_By_Reference_Type (Typ)
4107 and then not Back_End_Handles_Limited_Types
4108 then
4109 Cnn := Make_Temporary (Loc, 'C', N);
4110
4111 P_Decl :=
4112 Make_Full_Type_Declaration (Loc,
4113 Defining_Identifier => Make_Temporary (Loc, 'A'),
4114 Type_Definition =>
4115 Make_Access_To_Object_Definition (Loc,
4116 All_Present => True,
4117 Subtype_Indication =>
4118 New_Reference_To (Typ, Loc)));
4119
4120 Insert_Action (N, P_Decl);
4121
4122 Decl :=
4123 Make_Object_Declaration (Loc,
4124 Defining_Identifier => Cnn,
4125 Object_Definition =>
4126 New_Occurrence_Of (Defining_Identifier (P_Decl), Loc));
4127
4128 New_If :=
4129 Make_Implicit_If_Statement (N,
4130 Condition => Relocate_Node (Cond),
4131
4132 Then_Statements => New_List (
4133 Make_Assignment_Statement (Sloc (Thenx),
4134 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
4135 Expression =>
4136 Make_Attribute_Reference (Loc,
4137 Attribute_Name => Name_Unrestricted_Access,
4138 Prefix => Relocate_Node (Thenx)))),
4139
4140 Else_Statements => New_List (
4141 Make_Assignment_Statement (Sloc (Elsex),
4142 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
4143 Expression =>
4144 Make_Attribute_Reference (Loc,
4145 Attribute_Name => Name_Unrestricted_Access,
4146 Prefix => Relocate_Node (Elsex)))));
4147
4148 New_N :=
4149 Make_Explicit_Dereference (Loc,
4150 Prefix => New_Occurrence_Of (Cnn, Loc));
4151
4152 -- For other types, we only need to expand if there are other actions
4153 -- associated with either branch.
4154
4155 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
4156
4157 -- We have two approaches to handling this. If we are allowed to use
4158 -- N_Expression_With_Actions, then we can just wrap the actions into
4159 -- the appropriate expression.
4160
4161 if Use_Expression_With_Actions then
4162 if Present (Then_Actions (N)) then
4163 Rewrite (Thenx,
4164 Make_Expression_With_Actions (Sloc (Thenx),
4165 Actions => Then_Actions (N),
4166 Expression => Relocate_Node (Thenx)));
4167 Set_Then_Actions (N, No_List);
4168 Analyze_And_Resolve (Thenx, Typ);
4169 end if;
4170
4171 if Present (Else_Actions (N)) then
4172 Rewrite (Elsex,
4173 Make_Expression_With_Actions (Sloc (Elsex),
4174 Actions => Else_Actions (N),
4175 Expression => Relocate_Node (Elsex)));
4176 Set_Else_Actions (N, No_List);
4177 Analyze_And_Resolve (Elsex, Typ);
4178 end if;
4179
4180 return;
4181
4182 -- if we can't use N_Expression_With_Actions nodes, then we insert
4183 -- the following sequence of actions (using Insert_Actions):
4184
4185 -- Cnn : typ;
4186 -- if cond then
4187 -- <<then actions>>
4188 -- Cnn := then-expr;
4189 -- else
4190 -- <<else actions>>
4191 -- Cnn := else-expr
4192 -- end if;
4193
4194 -- and replace the conditional expression by a reference to Cnn
4195
4196 else
4197 Cnn := Make_Temporary (Loc, 'C', N);
4198
4199 Decl :=
4200 Make_Object_Declaration (Loc,
4201 Defining_Identifier => Cnn,
4202 Object_Definition => New_Occurrence_Of (Typ, Loc));
4203
4204 New_If :=
4205 Make_Implicit_If_Statement (N,
4206 Condition => Relocate_Node (Cond),
4207
4208 Then_Statements => New_List (
4209 Make_Assignment_Statement (Sloc (Thenx),
4210 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
4211 Expression => Relocate_Node (Thenx))),
4212
4213 Else_Statements => New_List (
4214 Make_Assignment_Statement (Sloc (Elsex),
4215 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
4216 Expression => Relocate_Node (Elsex))));
4217
4218 Set_Assignment_OK (Name (First (Then_Statements (New_If))));
4219 Set_Assignment_OK (Name (First (Else_Statements (New_If))));
4220
4221 New_N := New_Occurrence_Of (Cnn, Loc);
4222 end if;
4223
4224 -- If no actions then no expansion needed, gigi will handle it using
4225 -- the same approach as a C conditional expression.
4226
4227 else
4228 return;
4229 end if;
4230
4231 -- Fall through here for either the limited expansion, or the case of
4232 -- inserting actions for non-limited types. In both these cases, we must
4233 -- move the SLOC of the parent If statement to the newly created one and
4234 -- change it to the SLOC of the expression which, after expansion, will
4235 -- correspond to what is being evaluated.
4236
4237 if Present (Parent (N))
4238 and then Nkind (Parent (N)) = N_If_Statement
4239 then
4240 Set_Sloc (New_If, Sloc (Parent (N)));
4241 Set_Sloc (Parent (N), Loc);
4242 end if;
4243
4244 -- Make sure Then_Actions and Else_Actions are appropriately moved
4245 -- to the new if statement.
4246
4247 if Present (Then_Actions (N)) then
4248 Insert_List_Before
4249 (First (Then_Statements (New_If)), Then_Actions (N));
4250 end if;
4251
4252 if Present (Else_Actions (N)) then
4253 Insert_List_Before
4254 (First (Else_Statements (New_If)), Else_Actions (N));
4255 end if;
4256
4257 Insert_Action (N, Decl);
4258 Insert_Action (N, New_If);
4259 Rewrite (N, New_N);
4260 Analyze_And_Resolve (N, Typ);
4261 end Expand_N_Conditional_Expression;
4262
4263 -----------------------------------
4264 -- Expand_N_Explicit_Dereference --
4265 -----------------------------------
4266
4267 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
4268 begin
4269 -- Insert explicit dereference call for the checked storage pool case
4270
4271 Insert_Dereference_Action (Prefix (N));
4272 end Expand_N_Explicit_Dereference;
4273
4274 -----------------
4275 -- Expand_N_In --
4276 -----------------
4277
4278 procedure Expand_N_In (N : Node_Id) is
4279 Loc : constant Source_Ptr := Sloc (N);
4280 Rtyp : constant Entity_Id := Etype (N);
4281 Lop : constant Node_Id := Left_Opnd (N);
4282 Rop : constant Node_Id := Right_Opnd (N);
4283 Static : constant Boolean := Is_OK_Static_Expression (N);
4284
4285 procedure Expand_Set_Membership;
4286 -- For each disjunct we create a simple equality or membership test.
4287 -- The whole membership is rewritten as a short-circuit disjunction.
4288
4289 ---------------------------
4290 -- Expand_Set_Membership --
4291 ---------------------------
4292
4293 procedure Expand_Set_Membership is
4294 Alt : Node_Id;
4295 Res : Node_Id;
4296
4297 function Make_Cond (Alt : Node_Id) return Node_Id;
4298 -- If the alternative is a subtype mark, create a simple membership
4299 -- test. Otherwise create an equality test for it.
4300
4301 ---------------
4302 -- Make_Cond --
4303 ---------------
4304
4305 function Make_Cond (Alt : Node_Id) return Node_Id is
4306 Cond : Node_Id;
4307 L : constant Node_Id := New_Copy (Lop);
4308 R : constant Node_Id := Relocate_Node (Alt);
4309
4310 begin
4311 if Is_Entity_Name (Alt)
4312 and then Is_Type (Entity (Alt))
4313 then
4314 Cond :=
4315 Make_In (Sloc (Alt),
4316 Left_Opnd => L,
4317 Right_Opnd => R);
4318 else
4319 Cond := Make_Op_Eq (Sloc (Alt),
4320 Left_Opnd => L,
4321 Right_Opnd => R);
4322 end if;
4323
4324 return Cond;
4325 end Make_Cond;
4326
4327 -- Start of proessing for Expand_N_In
4328
4329 begin
4330 Alt := Last (Alternatives (N));
4331 Res := Make_Cond (Alt);
4332
4333 Prev (Alt);
4334 while Present (Alt) loop
4335 Res :=
4336 Make_Or_Else (Sloc (Alt),
4337 Left_Opnd => Make_Cond (Alt),
4338 Right_Opnd => Res);
4339 Prev (Alt);
4340 end loop;
4341
4342 Rewrite (N, Res);
4343 Analyze_And_Resolve (N, Standard_Boolean);
4344 end Expand_Set_Membership;
4345
4346 procedure Substitute_Valid_Check;
4347 -- Replaces node N by Lop'Valid. This is done when we have an explicit
4348 -- test for the left operand being in range of its subtype.
4349
4350 ----------------------------
4351 -- Substitute_Valid_Check --
4352 ----------------------------
4353
4354 procedure Substitute_Valid_Check is
4355 begin
4356 Rewrite (N,
4357 Make_Attribute_Reference (Loc,
4358 Prefix => Relocate_Node (Lop),
4359 Attribute_Name => Name_Valid));
4360
4361 Analyze_And_Resolve (N, Rtyp);
4362
4363 Error_Msg_N ("?explicit membership test may be optimized away", N);
4364 Error_Msg_N -- CODEFIX
4365 ("\?use ''Valid attribute instead", N);
4366 return;
4367 end Substitute_Valid_Check;
4368
4369 -- Start of processing for Expand_N_In
4370
4371 begin
4372
4373 if Present (Alternatives (N)) then
4374 Remove_Side_Effects (Lop);
4375 Expand_Set_Membership;
4376 return;
4377 end if;
4378
4379 -- Check case of explicit test for an expression in range of its
4380 -- subtype. This is suspicious usage and we replace it with a 'Valid
4381 -- test and give a warning. For floating point types however, this
4382 -- is a standard way to check for finite numbers, and using 'Valid
4383 -- would typically be a pessimization
4384
4385 if Is_Scalar_Type (Etype (Lop))
4386 and then not Is_Floating_Point_Type (Etype (Lop))
4387 and then Nkind (Rop) in N_Has_Entity
4388 and then Etype (Lop) = Entity (Rop)
4389 and then Comes_From_Source (N)
4390 and then VM_Target = No_VM
4391 then
4392 Substitute_Valid_Check;
4393 return;
4394 end if;
4395
4396 -- Do validity check on operands
4397
4398 if Validity_Checks_On and Validity_Check_Operands then
4399 Ensure_Valid (Left_Opnd (N));
4400 Validity_Check_Range (Right_Opnd (N));
4401 end if;
4402
4403 -- Case of explicit range
4404
4405 if Nkind (Rop) = N_Range then
4406 declare
4407 Lo : constant Node_Id := Low_Bound (Rop);
4408 Hi : constant Node_Id := High_Bound (Rop);
4409
4410 Ltyp : constant Entity_Id := Etype (Lop);
4411
4412 Lo_Orig : constant Node_Id := Original_Node (Lo);
4413 Hi_Orig : constant Node_Id := Original_Node (Hi);
4414
4415 Lcheck : Compare_Result;
4416 Ucheck : Compare_Result;
4417
4418 Warn1 : constant Boolean :=
4419 Constant_Condition_Warnings
4420 and then Comes_From_Source (N)
4421 and then not In_Instance;
4422 -- This must be true for any of the optimization warnings, we
4423 -- clearly want to give them only for source with the flag on.
4424 -- We also skip these warnings in an instance since it may be
4425 -- the case that different instantiations have different ranges.
4426
4427 Warn2 : constant Boolean :=
4428 Warn1
4429 and then Nkind (Original_Node (Rop)) = N_Range
4430 and then Is_Integer_Type (Etype (Lo));
4431 -- For the case where only one bound warning is elided, we also
4432 -- insist on an explicit range and an integer type. The reason is
4433 -- that the use of enumeration ranges including an end point is
4434 -- common, as is the use of a subtype name, one of whose bounds
4435 -- is the same as the type of the expression.
4436
4437 begin
4438 -- If test is explicit x'first .. x'last, replace by valid check
4439
4440 if Is_Scalar_Type (Ltyp)
4441 and then Nkind (Lo_Orig) = N_Attribute_Reference
4442 and then Attribute_Name (Lo_Orig) = Name_First
4443 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
4444 and then Entity (Prefix (Lo_Orig)) = Ltyp
4445 and then Nkind (Hi_Orig) = N_Attribute_Reference
4446 and then Attribute_Name (Hi_Orig) = Name_Last
4447 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
4448 and then Entity (Prefix (Hi_Orig)) = Ltyp
4449 and then Comes_From_Source (N)
4450 and then VM_Target = No_VM
4451 then
4452 Substitute_Valid_Check;
4453 return;
4454 end if;
4455
4456 -- If bounds of type are known at compile time, and the end points
4457 -- are known at compile time and identical, this is another case
4458 -- for substituting a valid test. We only do this for discrete
4459 -- types, since it won't arise in practice for float types.
4460
4461 if Comes_From_Source (N)
4462 and then Is_Discrete_Type (Ltyp)
4463 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
4464 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
4465 and then Compile_Time_Known_Value (Lo)
4466 and then Compile_Time_Known_Value (Hi)
4467 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
4468 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
4469
4470 -- Kill warnings in instances, since they may be cases where we
4471 -- have a test in the generic that makes sense with some types
4472 -- and not with other types.
4473
4474 and then not In_Instance
4475 then
4476 Substitute_Valid_Check;
4477 return;
4478 end if;
4479
4480 -- If we have an explicit range, do a bit of optimization based
4481 -- on range analysis (we may be able to kill one or both checks).
4482
4483 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
4484 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
4485
4486 -- If either check is known to fail, replace result by False since
4487 -- the other check does not matter. Preserve the static flag for
4488 -- legality checks, because we are constant-folding beyond RM 4.9.
4489
4490 if Lcheck = LT or else Ucheck = GT then
4491 if Warn1 then
4492 Error_Msg_N ("?range test optimized away", N);
4493 Error_Msg_N ("\?value is known to be out of range", N);
4494 end if;
4495
4496 Rewrite (N,
4497 New_Reference_To (Standard_False, Loc));
4498 Analyze_And_Resolve (N, Rtyp);
4499 Set_Is_Static_Expression (N, Static);
4500
4501 return;
4502
4503 -- If both checks are known to succeed, replace result by True,
4504 -- since we know we are in range.
4505
4506 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
4507 if Warn1 then
4508 Error_Msg_N ("?range test optimized away", N);
4509 Error_Msg_N ("\?value is known to be in range", N);
4510 end if;
4511
4512 Rewrite (N,
4513 New_Reference_To (Standard_True, Loc));
4514 Analyze_And_Resolve (N, Rtyp);
4515 Set_Is_Static_Expression (N, Static);
4516
4517 return;
4518
4519 -- If lower bound check succeeds and upper bound check is not
4520 -- known to succeed or fail, then replace the range check with
4521 -- a comparison against the upper bound.
4522
4523 elsif Lcheck in Compare_GE then
4524 if Warn2 and then not In_Instance then
4525 Error_Msg_N ("?lower bound test optimized away", Lo);
4526 Error_Msg_N ("\?value is known to be in range", Lo);
4527 end if;
4528
4529 Rewrite (N,
4530 Make_Op_Le (Loc,
4531 Left_Opnd => Lop,
4532 Right_Opnd => High_Bound (Rop)));
4533 Analyze_And_Resolve (N, Rtyp);
4534
4535 return;
4536
4537 -- If upper bound check succeeds and lower bound check is not
4538 -- known to succeed or fail, then replace the range check with
4539 -- a comparison against the lower bound.
4540
4541 elsif Ucheck in Compare_LE then
4542 if Warn2 and then not In_Instance then
4543 Error_Msg_N ("?upper bound test optimized away", Hi);
4544 Error_Msg_N ("\?value is known to be in range", Hi);
4545 end if;
4546
4547 Rewrite (N,
4548 Make_Op_Ge (Loc,
4549 Left_Opnd => Lop,
4550 Right_Opnd => Low_Bound (Rop)));
4551 Analyze_And_Resolve (N, Rtyp);
4552
4553 return;
4554 end if;
4555
4556 -- We couldn't optimize away the range check, but there is one
4557 -- more issue. If we are checking constant conditionals, then we
4558 -- see if we can determine the outcome assuming everything is
4559 -- valid, and if so give an appropriate warning.
4560
4561 if Warn1 and then not Assume_No_Invalid_Values then
4562 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
4563 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
4564
4565 -- Result is out of range for valid value
4566
4567 if Lcheck = LT or else Ucheck = GT then
4568 Error_Msg_N
4569 ("?value can only be in range if it is invalid", N);
4570
4571 -- Result is in range for valid value
4572
4573 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
4574 Error_Msg_N
4575 ("?value can only be out of range if it is invalid", N);
4576
4577 -- Lower bound check succeeds if value is valid
4578
4579 elsif Warn2 and then Lcheck in Compare_GE then
4580 Error_Msg_N
4581 ("?lower bound check only fails if it is invalid", Lo);
4582
4583 -- Upper bound check succeeds if value is valid
4584
4585 elsif Warn2 and then Ucheck in Compare_LE then
4586 Error_Msg_N
4587 ("?upper bound check only fails for invalid values", Hi);
4588 end if;
4589 end if;
4590 end;
4591
4592 -- For all other cases of an explicit range, nothing to be done
4593
4594 return;
4595
4596 -- Here right operand is a subtype mark
4597
4598 else
4599 declare
4600 Typ : Entity_Id := Etype (Rop);
4601 Is_Acc : constant Boolean := Is_Access_Type (Typ);
4602 Cond : Node_Id := Empty;
4603 New_N : Node_Id;
4604 Obj : Node_Id := Lop;
4605 SCIL_Node : Node_Id;
4606
4607 begin
4608 Remove_Side_Effects (Obj);
4609
4610 -- For tagged type, do tagged membership operation
4611
4612 if Is_Tagged_Type (Typ) then
4613
4614 -- No expansion will be performed when VM_Target, as the VM
4615 -- back-ends will handle the membership tests directly (tags
4616 -- are not explicitly represented in Java objects, so the
4617 -- normal tagged membership expansion is not what we want).
4618
4619 if Tagged_Type_Expansion then
4620 Tagged_Membership (N, SCIL_Node, New_N);
4621 Rewrite (N, New_N);
4622 Analyze_And_Resolve (N, Rtyp);
4623
4624 -- Update decoration of relocated node referenced by the
4625 -- SCIL node.
4626
4627 if Generate_SCIL
4628 and then Present (SCIL_Node)
4629 then
4630 Set_SCIL_Related_Node (SCIL_Node, N);
4631 Insert_Action (N, SCIL_Node);
4632 end if;
4633 end if;
4634
4635 return;
4636
4637 -- If type is scalar type, rewrite as x in t'first .. t'last.
4638 -- This reason we do this is that the bounds may have the wrong
4639 -- type if they come from the original type definition. Also this
4640 -- way we get all the processing above for an explicit range.
4641
4642 elsif Is_Scalar_Type (Typ) then
4643 Rewrite (Rop,
4644 Make_Range (Loc,
4645 Low_Bound =>
4646 Make_Attribute_Reference (Loc,
4647 Attribute_Name => Name_First,
4648 Prefix => New_Reference_To (Typ, Loc)),
4649
4650 High_Bound =>
4651 Make_Attribute_Reference (Loc,
4652 Attribute_Name => Name_Last,
4653 Prefix => New_Reference_To (Typ, Loc))));
4654 Analyze_And_Resolve (N, Rtyp);
4655 return;
4656
4657 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
4658 -- a membership test if the subtype mark denotes a constrained
4659 -- Unchecked_Union subtype and the expression lacks inferable
4660 -- discriminants.
4661
4662 elsif Is_Unchecked_Union (Base_Type (Typ))
4663 and then Is_Constrained (Typ)
4664 and then not Has_Inferable_Discriminants (Lop)
4665 then
4666 Insert_Action (N,
4667 Make_Raise_Program_Error (Loc,
4668 Reason => PE_Unchecked_Union_Restriction));
4669
4670 -- Prevent Gigi from generating incorrect code by rewriting
4671 -- the test as a standard False.
4672
4673 Rewrite (N,
4674 New_Occurrence_Of (Standard_False, Loc));
4675
4676 return;
4677 end if;
4678
4679 -- Here we have a non-scalar type
4680
4681 if Is_Acc then
4682 Typ := Designated_Type (Typ);
4683 end if;
4684
4685 if not Is_Constrained (Typ) then
4686 Rewrite (N,
4687 New_Reference_To (Standard_True, Loc));
4688 Analyze_And_Resolve (N, Rtyp);
4689
4690 -- For the constrained array case, we have to check the subscripts
4691 -- for an exact match if the lengths are non-zero (the lengths
4692 -- must match in any case).
4693
4694 elsif Is_Array_Type (Typ) then
4695
4696 Check_Subscripts : declare
4697 function Construct_Attribute_Reference
4698 (E : Node_Id;
4699 Nam : Name_Id;
4700 Dim : Nat) return Node_Id;
4701 -- Build attribute reference E'Nam(Dim)
4702
4703 -----------------------------------
4704 -- Construct_Attribute_Reference --
4705 -----------------------------------
4706
4707 function Construct_Attribute_Reference
4708 (E : Node_Id;
4709 Nam : Name_Id;
4710 Dim : Nat) return Node_Id
4711 is
4712 begin
4713 return
4714 Make_Attribute_Reference (Loc,
4715 Prefix => E,
4716 Attribute_Name => Nam,
4717 Expressions => New_List (
4718 Make_Integer_Literal (Loc, Dim)));
4719 end Construct_Attribute_Reference;
4720
4721 -- Start of processing for Check_Subscripts
4722
4723 begin
4724 for J in 1 .. Number_Dimensions (Typ) loop
4725 Evolve_And_Then (Cond,
4726 Make_Op_Eq (Loc,
4727 Left_Opnd =>
4728 Construct_Attribute_Reference
4729 (Duplicate_Subexpr_No_Checks (Obj),
4730 Name_First, J),
4731 Right_Opnd =>
4732 Construct_Attribute_Reference
4733 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
4734
4735 Evolve_And_Then (Cond,
4736 Make_Op_Eq (Loc,
4737 Left_Opnd =>
4738 Construct_Attribute_Reference
4739 (Duplicate_Subexpr_No_Checks (Obj),
4740 Name_Last, J),
4741 Right_Opnd =>
4742 Construct_Attribute_Reference
4743 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
4744 end loop;
4745
4746 if Is_Acc then
4747 Cond :=
4748 Make_Or_Else (Loc,
4749 Left_Opnd =>
4750 Make_Op_Eq (Loc,
4751 Left_Opnd => Obj,
4752 Right_Opnd => Make_Null (Loc)),
4753 Right_Opnd => Cond);
4754 end if;
4755
4756 Rewrite (N, Cond);
4757 Analyze_And_Resolve (N, Rtyp);
4758 end Check_Subscripts;
4759
4760 -- These are the cases where constraint checks may be required,
4761 -- e.g. records with possible discriminants
4762
4763 else
4764 -- Expand the test into a series of discriminant comparisons.
4765 -- The expression that is built is the negation of the one that
4766 -- is used for checking discriminant constraints.
4767
4768 Obj := Relocate_Node (Left_Opnd (N));
4769
4770 if Has_Discriminants (Typ) then
4771 Cond := Make_Op_Not (Loc,
4772 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
4773
4774 if Is_Acc then
4775 Cond := Make_Or_Else (Loc,
4776 Left_Opnd =>
4777 Make_Op_Eq (Loc,
4778 Left_Opnd => Obj,
4779 Right_Opnd => Make_Null (Loc)),
4780 Right_Opnd => Cond);
4781 end if;
4782
4783 else
4784 Cond := New_Occurrence_Of (Standard_True, Loc);
4785 end if;
4786
4787 Rewrite (N, Cond);
4788 Analyze_And_Resolve (N, Rtyp);
4789 end if;
4790 end;
4791 end if;
4792 end Expand_N_In;
4793
4794 --------------------------------
4795 -- Expand_N_Indexed_Component --
4796 --------------------------------
4797
4798 procedure Expand_N_Indexed_Component (N : Node_Id) is
4799 Loc : constant Source_Ptr := Sloc (N);
4800 Typ : constant Entity_Id := Etype (N);
4801 P : constant Node_Id := Prefix (N);
4802 T : constant Entity_Id := Etype (P);
4803
4804 begin
4805 -- A special optimization, if we have an indexed component that is
4806 -- selecting from a slice, then we can eliminate the slice, since, for
4807 -- example, x (i .. j)(k) is identical to x(k). The only difference is
4808 -- the range check required by the slice. The range check for the slice
4809 -- itself has already been generated. The range check for the
4810 -- subscripting operation is ensured by converting the subject to
4811 -- the subtype of the slice.
4812
4813 -- This optimization not only generates better code, avoiding slice
4814 -- messing especially in the packed case, but more importantly bypasses
4815 -- some problems in handling this peculiar case, for example, the issue
4816 -- of dealing specially with object renamings.
4817
4818 if Nkind (P) = N_Slice then
4819 Rewrite (N,
4820 Make_Indexed_Component (Loc,
4821 Prefix => Prefix (P),
4822 Expressions => New_List (
4823 Convert_To
4824 (Etype (First_Index (Etype (P))),
4825 First (Expressions (N))))));
4826 Analyze_And_Resolve (N, Typ);
4827 return;
4828 end if;
4829
4830 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
4831 -- function, then additional actuals must be passed.
4832
4833 if Ada_Version >= Ada_05
4834 and then Is_Build_In_Place_Function_Call (P)
4835 then
4836 Make_Build_In_Place_Call_In_Anonymous_Context (P);
4837 end if;
4838
4839 -- If the prefix is an access type, then we unconditionally rewrite if
4840 -- as an explicit dereference. This simplifies processing for several
4841 -- cases, including packed array cases and certain cases in which checks
4842 -- must be generated. We used to try to do this only when it was
4843 -- necessary, but it cleans up the code to do it all the time.
4844
4845 if Is_Access_Type (T) then
4846 Insert_Explicit_Dereference (P);
4847 Analyze_And_Resolve (P, Designated_Type (T));
4848 end if;
4849
4850 -- Generate index and validity checks
4851
4852 Generate_Index_Checks (N);
4853
4854 if Validity_Checks_On and then Validity_Check_Subscripts then
4855 Apply_Subscript_Validity_Checks (N);
4856 end if;
4857
4858 -- All done for the non-packed case
4859
4860 if not Is_Packed (Etype (Prefix (N))) then
4861 return;
4862 end if;
4863
4864 -- For packed arrays that are not bit-packed (i.e. the case of an array
4865 -- with one or more index types with a non-contiguous enumeration type),
4866 -- we can always use the normal packed element get circuit.
4867
4868 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
4869 Expand_Packed_Element_Reference (N);
4870 return;
4871 end if;
4872
4873 -- For a reference to a component of a bit packed array, we have to
4874 -- convert it to a reference to the corresponding Packed_Array_Type.
4875 -- We only want to do this for simple references, and not for:
4876
4877 -- Left side of assignment, or prefix of left side of assignment, or
4878 -- prefix of the prefix, to handle packed arrays of packed arrays,
4879 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
4880
4881 -- Renaming objects in renaming associations
4882 -- This case is handled when a use of the renamed variable occurs
4883
4884 -- Actual parameters for a procedure call
4885 -- This case is handled in Exp_Ch6.Expand_Actuals
4886
4887 -- The second expression in a 'Read attribute reference
4888
4889 -- The prefix of an address or bit or size attribute reference
4890
4891 -- The following circuit detects these exceptions
4892
4893 declare
4894 Child : Node_Id := N;
4895 Parnt : Node_Id := Parent (N);
4896
4897 begin
4898 loop
4899 if Nkind (Parnt) = N_Unchecked_Expression then
4900 null;
4901
4902 elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
4903 N_Procedure_Call_Statement)
4904 or else (Nkind (Parnt) = N_Parameter_Association
4905 and then
4906 Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
4907 then
4908 return;
4909
4910 elsif Nkind (Parnt) = N_Attribute_Reference
4911 and then (Attribute_Name (Parnt) = Name_Address
4912 or else
4913 Attribute_Name (Parnt) = Name_Bit
4914 or else
4915 Attribute_Name (Parnt) = Name_Size)
4916 and then Prefix (Parnt) = Child
4917 then
4918 return;
4919
4920 elsif Nkind (Parnt) = N_Assignment_Statement
4921 and then Name (Parnt) = Child
4922 then
4923 return;
4924
4925 -- If the expression is an index of an indexed component, it must
4926 -- be expanded regardless of context.
4927
4928 elsif Nkind (Parnt) = N_Indexed_Component
4929 and then Child /= Prefix (Parnt)
4930 then
4931 Expand_Packed_Element_Reference (N);
4932 return;
4933
4934 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
4935 and then Name (Parent (Parnt)) = Parnt
4936 then
4937 return;
4938
4939 elsif Nkind (Parnt) = N_Attribute_Reference
4940 and then Attribute_Name (Parnt) = Name_Read
4941 and then Next (First (Expressions (Parnt))) = Child
4942 then
4943 return;
4944
4945 elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
4946 and then Prefix (Parnt) = Child
4947 then
4948 null;
4949
4950 else
4951 Expand_Packed_Element_Reference (N);
4952 return;
4953 end if;
4954
4955 -- Keep looking up tree for unchecked expression, or if we are the
4956 -- prefix of a possible assignment left side.
4957
4958 Child := Parnt;
4959 Parnt := Parent (Child);
4960 end loop;
4961 end;
4962 end Expand_N_Indexed_Component;
4963
4964 ---------------------
4965 -- Expand_N_Not_In --
4966 ---------------------
4967
4968 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
4969 -- can be done. This avoids needing to duplicate this expansion code.
4970
4971 procedure Expand_N_Not_In (N : Node_Id) is
4972 Loc : constant Source_Ptr := Sloc (N);
4973 Typ : constant Entity_Id := Etype (N);
4974 Cfs : constant Boolean := Comes_From_Source (N);
4975
4976 begin
4977 Rewrite (N,
4978 Make_Op_Not (Loc,
4979 Right_Opnd =>
4980 Make_In (Loc,
4981 Left_Opnd => Left_Opnd (N),
4982 Right_Opnd => Right_Opnd (N))));
4983
4984 -- If this is a set membership, preserve list of alternatives
4985
4986 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
4987
4988 -- We want this to appear as coming from source if original does (see
4989 -- transformations in Expand_N_In).
4990
4991 Set_Comes_From_Source (N, Cfs);
4992 Set_Comes_From_Source (Right_Opnd (N), Cfs);
4993
4994 -- Now analyze transformed node
4995
4996 Analyze_And_Resolve (N, Typ);
4997 end Expand_N_Not_In;
4998
4999 -------------------
5000 -- Expand_N_Null --
5001 -------------------
5002
5003 -- The only replacement required is for the case of a null of type that is
5004 -- an access to protected subprogram. We represent such access values as a
5005 -- record, and so we must replace the occurrence of null by the equivalent
5006 -- record (with a null address and a null pointer in it), so that the
5007 -- backend creates the proper value.
5008
5009 procedure Expand_N_Null (N : Node_Id) is
5010 Loc : constant Source_Ptr := Sloc (N);
5011 Typ : constant Entity_Id := Etype (N);
5012 Agg : Node_Id;
5013
5014 begin
5015 if Is_Access_Protected_Subprogram_Type (Typ) then
5016 Agg :=
5017 Make_Aggregate (Loc,
5018 Expressions => New_List (
5019 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
5020 Make_Null (Loc)));
5021
5022 Rewrite (N, Agg);
5023 Analyze_And_Resolve (N, Equivalent_Type (Typ));
5024
5025 -- For subsequent semantic analysis, the node must retain its type.
5026 -- Gigi in any case replaces this type by the corresponding record
5027 -- type before processing the node.
5028
5029 Set_Etype (N, Typ);
5030 end if;
5031
5032 exception
5033 when RE_Not_Available =>
5034 return;
5035 end Expand_N_Null;
5036
5037 ---------------------
5038 -- Expand_N_Op_Abs --
5039 ---------------------
5040
5041 procedure Expand_N_Op_Abs (N : Node_Id) is
5042 Loc : constant Source_Ptr := Sloc (N);
5043 Expr : constant Node_Id := Right_Opnd (N);
5044
5045 begin
5046 Unary_Op_Validity_Checks (N);
5047
5048 -- Deal with software overflow checking
5049
5050 if not Backend_Overflow_Checks_On_Target
5051 and then Is_Signed_Integer_Type (Etype (N))
5052 and then Do_Overflow_Check (N)
5053 then
5054 -- The only case to worry about is when the argument is equal to the
5055 -- largest negative number, so what we do is to insert the check:
5056
5057 -- [constraint_error when Expr = typ'Base'First]
5058
5059 -- with the usual Duplicate_Subexpr use coding for expr
5060
5061 Insert_Action (N,
5062 Make_Raise_Constraint_Error (Loc,
5063 Condition =>
5064 Make_Op_Eq (Loc,
5065 Left_Opnd => Duplicate_Subexpr (Expr),
5066 Right_Opnd =>
5067 Make_Attribute_Reference (Loc,
5068 Prefix =>
5069 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
5070 Attribute_Name => Name_First)),
5071 Reason => CE_Overflow_Check_Failed));
5072 end if;
5073
5074 -- Vax floating-point types case
5075
5076 if Vax_Float (Etype (N)) then
5077 Expand_Vax_Arith (N);
5078 end if;
5079 end Expand_N_Op_Abs;
5080
5081 ---------------------
5082 -- Expand_N_Op_Add --
5083 ---------------------
5084
5085 procedure Expand_N_Op_Add (N : Node_Id) is
5086 Typ : constant Entity_Id := Etype (N);
5087
5088 begin
5089 Binary_Op_Validity_Checks (N);
5090
5091 -- N + 0 = 0 + N = N for integer types
5092
5093 if Is_Integer_Type (Typ) then
5094 if Compile_Time_Known_Value (Right_Opnd (N))
5095 and then Expr_Value (Right_Opnd (N)) = Uint_0
5096 then
5097 Rewrite (N, Left_Opnd (N));
5098 return;
5099
5100 elsif Compile_Time_Known_Value (Left_Opnd (N))
5101 and then Expr_Value (Left_Opnd (N)) = Uint_0
5102 then
5103 Rewrite (N, Right_Opnd (N));
5104 return;
5105 end if;
5106 end if;
5107
5108 -- Arithmetic overflow checks for signed integer/fixed point types
5109
5110 if Is_Signed_Integer_Type (Typ)
5111 or else Is_Fixed_Point_Type (Typ)
5112 then
5113 Apply_Arithmetic_Overflow_Check (N);
5114 return;
5115
5116 -- Vax floating-point types case
5117
5118 elsif Vax_Float (Typ) then
5119 Expand_Vax_Arith (N);
5120 end if;
5121 end Expand_N_Op_Add;
5122
5123 ---------------------
5124 -- Expand_N_Op_And --
5125 ---------------------
5126
5127 procedure Expand_N_Op_And (N : Node_Id) is
5128 Typ : constant Entity_Id := Etype (N);
5129
5130 begin
5131 Binary_Op_Validity_Checks (N);
5132
5133 if Is_Array_Type (Etype (N)) then
5134 Expand_Boolean_Operator (N);
5135
5136 elsif Is_Boolean_Type (Etype (N)) then
5137
5138 -- Replace AND by AND THEN if Short_Circuit_And_Or active and the
5139 -- type is standard Boolean (do not mess with AND that uses a non-
5140 -- standard Boolean type, because something strange is going on).
5141
5142 if Short_Circuit_And_Or and then Typ = Standard_Boolean then
5143 Rewrite (N,
5144 Make_And_Then (Sloc (N),
5145 Left_Opnd => Relocate_Node (Left_Opnd (N)),
5146 Right_Opnd => Relocate_Node (Right_Opnd (N))));
5147 Analyze_And_Resolve (N, Typ);
5148
5149 -- Otherwise, adjust conditions
5150
5151 else
5152 Adjust_Condition (Left_Opnd (N));
5153 Adjust_Condition (Right_Opnd (N));
5154 Set_Etype (N, Standard_Boolean);
5155 Adjust_Result_Type (N, Typ);
5156 end if;
5157 end if;
5158 end Expand_N_Op_And;
5159
5160 ------------------------
5161 -- Expand_N_Op_Concat --
5162 ------------------------
5163
5164 procedure Expand_N_Op_Concat (N : Node_Id) is
5165 Opnds : List_Id;
5166 -- List of operands to be concatenated
5167
5168 Cnode : Node_Id;
5169 -- Node which is to be replaced by the result of concatenating the nodes
5170 -- in the list Opnds.
5171
5172 begin
5173 -- Ensure validity of both operands
5174
5175 Binary_Op_Validity_Checks (N);
5176
5177 -- If we are the left operand of a concatenation higher up the tree,
5178 -- then do nothing for now, since we want to deal with a series of
5179 -- concatenations as a unit.
5180
5181 if Nkind (Parent (N)) = N_Op_Concat
5182 and then N = Left_Opnd (Parent (N))
5183 then
5184 return;
5185 end if;
5186
5187 -- We get here with a concatenation whose left operand may be a
5188 -- concatenation itself with a consistent type. We need to process
5189 -- these concatenation operands from left to right, which means
5190 -- from the deepest node in the tree to the highest node.
5191
5192 Cnode := N;
5193 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
5194 Cnode := Left_Opnd (Cnode);
5195 end loop;
5196
5197 -- Now Cnode is the deepest concatenation, and its parents are the
5198 -- concatenation nodes above, so now we process bottom up, doing the
5199 -- operations. We gather a string that is as long as possible up to five
5200 -- operands.
5201
5202 -- The outer loop runs more than once if more than one concatenation
5203 -- type is involved.
5204
5205 Outer : loop
5206 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
5207 Set_Parent (Opnds, N);
5208
5209 -- The inner loop gathers concatenation operands
5210
5211 Inner : while Cnode /= N
5212 and then Base_Type (Etype (Cnode)) =
5213 Base_Type (Etype (Parent (Cnode)))
5214 loop
5215 Cnode := Parent (Cnode);
5216 Append (Right_Opnd (Cnode), Opnds);
5217 end loop Inner;
5218
5219 Expand_Concatenate (Cnode, Opnds);
5220
5221 exit Outer when Cnode = N;
5222 Cnode := Parent (Cnode);
5223 end loop Outer;
5224 end Expand_N_Op_Concat;
5225
5226 ------------------------
5227 -- Expand_N_Op_Divide --
5228 ------------------------
5229
5230 procedure Expand_N_Op_Divide (N : Node_Id) is
5231 Loc : constant Source_Ptr := Sloc (N);
5232 Lopnd : constant Node_Id := Left_Opnd (N);
5233 Ropnd : constant Node_Id := Right_Opnd (N);
5234 Ltyp : constant Entity_Id := Etype (Lopnd);
5235 Rtyp : constant Entity_Id := Etype (Ropnd);
5236 Typ : Entity_Id := Etype (N);
5237 Rknow : constant Boolean := Is_Integer_Type (Typ)
5238 and then
5239 Compile_Time_Known_Value (Ropnd);
5240 Rval : Uint;
5241
5242 begin
5243 Binary_Op_Validity_Checks (N);
5244
5245 if Rknow then
5246 Rval := Expr_Value (Ropnd);
5247 end if;
5248
5249 -- N / 1 = N for integer types
5250
5251 if Rknow and then Rval = Uint_1 then
5252 Rewrite (N, Lopnd);
5253 return;
5254 end if;
5255
5256 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
5257 -- Is_Power_Of_2_For_Shift is set means that we know that our left
5258 -- operand is an unsigned integer, as required for this to work.
5259
5260 if Nkind (Ropnd) = N_Op_Expon
5261 and then Is_Power_Of_2_For_Shift (Ropnd)
5262
5263 -- We cannot do this transformation in configurable run time mode if we
5264 -- have 64-bit integers and long shifts are not available.
5265
5266 and then
5267 (Esize (Ltyp) <= 32
5268 or else Support_Long_Shifts_On_Target)
5269 then
5270 Rewrite (N,
5271 Make_Op_Shift_Right (Loc,
5272 Left_Opnd => Lopnd,
5273 Right_Opnd =>
5274 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
5275 Analyze_And_Resolve (N, Typ);
5276 return;
5277 end if;
5278
5279 -- Do required fixup of universal fixed operation
5280
5281 if Typ = Universal_Fixed then
5282 Fixup_Universal_Fixed_Operation (N);
5283 Typ := Etype (N);
5284 end if;
5285
5286 -- Divisions with fixed-point results
5287
5288 if Is_Fixed_Point_Type (Typ) then
5289
5290 -- No special processing if Treat_Fixed_As_Integer is set, since
5291 -- from a semantic point of view such operations are simply integer
5292 -- operations and will be treated that way.
5293
5294 if not Treat_Fixed_As_Integer (N) then
5295 if Is_Integer_Type (Rtyp) then
5296 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
5297 else
5298 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
5299 end if;
5300 end if;
5301
5302 -- Other cases of division of fixed-point operands. Again we exclude the
5303 -- case where Treat_Fixed_As_Integer is set.
5304
5305 elsif (Is_Fixed_Point_Type (Ltyp) or else
5306 Is_Fixed_Point_Type (Rtyp))
5307 and then not Treat_Fixed_As_Integer (N)
5308 then
5309 if Is_Integer_Type (Typ) then
5310 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
5311 else
5312 pragma Assert (Is_Floating_Point_Type (Typ));
5313 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
5314 end if;
5315
5316 -- Mixed-mode operations can appear in a non-static universal context,
5317 -- in which case the integer argument must be converted explicitly.
5318
5319 elsif Typ = Universal_Real
5320 and then Is_Integer_Type (Rtyp)
5321 then
5322 Rewrite (Ropnd,
5323 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
5324
5325 Analyze_And_Resolve (Ropnd, Universal_Real);
5326
5327 elsif Typ = Universal_Real
5328 and then Is_Integer_Type (Ltyp)
5329 then
5330 Rewrite (Lopnd,
5331 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
5332
5333 Analyze_And_Resolve (Lopnd, Universal_Real);
5334
5335 -- Non-fixed point cases, do integer zero divide and overflow checks
5336
5337 elsif Is_Integer_Type (Typ) then
5338 Apply_Divide_Check (N);
5339
5340 -- Check for 64-bit division available, or long shifts if the divisor
5341 -- is a small power of 2 (since such divides will be converted into
5342 -- long shifts).
5343
5344 if Esize (Ltyp) > 32
5345 and then not Support_64_Bit_Divides_On_Target
5346 and then
5347 (not Rknow
5348 or else not Support_Long_Shifts_On_Target
5349 or else (Rval /= Uint_2 and then
5350 Rval /= Uint_4 and then
5351 Rval /= Uint_8 and then
5352 Rval /= Uint_16 and then
5353 Rval /= Uint_32 and then
5354 Rval /= Uint_64))
5355 then
5356 Error_Msg_CRT ("64-bit division", N);
5357 end if;
5358
5359 -- Deal with Vax_Float
5360
5361 elsif Vax_Float (Typ) then
5362 Expand_Vax_Arith (N);
5363 return;
5364 end if;
5365 end Expand_N_Op_Divide;
5366
5367 --------------------
5368 -- Expand_N_Op_Eq --
5369 --------------------
5370
5371 procedure Expand_N_Op_Eq (N : Node_Id) is
5372 Loc : constant Source_Ptr := Sloc (N);
5373 Typ : constant Entity_Id := Etype (N);
5374 Lhs : constant Node_Id := Left_Opnd (N);
5375 Rhs : constant Node_Id := Right_Opnd (N);
5376 Bodies : constant List_Id := New_List;
5377 A_Typ : constant Entity_Id := Etype (Lhs);
5378
5379 Typl : Entity_Id := A_Typ;
5380 Op_Name : Entity_Id;
5381 Prim : Elmt_Id;
5382
5383 procedure Build_Equality_Call (Eq : Entity_Id);
5384 -- If a constructed equality exists for the type or for its parent,
5385 -- build and analyze call, adding conversions if the operation is
5386 -- inherited.
5387
5388 function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
5389 -- Determines whether a type has a subcomponent of an unconstrained
5390 -- Unchecked_Union subtype. Typ is a record type.
5391
5392 -------------------------
5393 -- Build_Equality_Call --
5394 -------------------------
5395
5396 procedure Build_Equality_Call (Eq : Entity_Id) is
5397 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
5398 L_Exp : Node_Id := Relocate_Node (Lhs);
5399 R_Exp : Node_Id := Relocate_Node (Rhs);
5400
5401 begin
5402 if Base_Type (Op_Type) /= Base_Type (A_Typ)
5403 and then not Is_Class_Wide_Type (A_Typ)
5404 then
5405 L_Exp := OK_Convert_To (Op_Type, L_Exp);
5406 R_Exp := OK_Convert_To (Op_Type, R_Exp);
5407 end if;
5408
5409 -- If we have an Unchecked_Union, we need to add the inferred
5410 -- discriminant values as actuals in the function call. At this
5411 -- point, the expansion has determined that both operands have
5412 -- inferable discriminants.
5413
5414 if Is_Unchecked_Union (Op_Type) then
5415 declare
5416 Lhs_Type : constant Node_Id := Etype (L_Exp);
5417 Rhs_Type : constant Node_Id := Etype (R_Exp);
5418 Lhs_Discr_Val : Node_Id;
5419 Rhs_Discr_Val : Node_Id;
5420
5421 begin
5422 -- Per-object constrained selected components require special
5423 -- attention. If the enclosing scope of the component is an
5424 -- Unchecked_Union, we cannot reference its discriminants
5425 -- directly. This is why we use the two extra parameters of
5426 -- the equality function of the enclosing Unchecked_Union.
5427
5428 -- type UU_Type (Discr : Integer := 0) is
5429 -- . . .
5430 -- end record;
5431 -- pragma Unchecked_Union (UU_Type);
5432
5433 -- 1. Unchecked_Union enclosing record:
5434
5435 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
5436 -- . . .
5437 -- Comp : UU_Type (Discr);
5438 -- . . .
5439 -- end Enclosing_UU_Type;
5440 -- pragma Unchecked_Union (Enclosing_UU_Type);
5441
5442 -- Obj1 : Enclosing_UU_Type;
5443 -- Obj2 : Enclosing_UU_Type (1);
5444
5445 -- [. . .] Obj1 = Obj2 [. . .]
5446
5447 -- Generated code:
5448
5449 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
5450
5451 -- A and B are the formal parameters of the equality function
5452 -- of Enclosing_UU_Type. The function always has two extra
5453 -- formals to capture the inferred discriminant values.
5454
5455 -- 2. Non-Unchecked_Union enclosing record:
5456
5457 -- type
5458 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
5459 -- is record
5460 -- . . .
5461 -- Comp : UU_Type (Discr);
5462 -- . . .
5463 -- end Enclosing_Non_UU_Type;
5464
5465 -- Obj1 : Enclosing_Non_UU_Type;
5466 -- Obj2 : Enclosing_Non_UU_Type (1);
5467
5468 -- ... Obj1 = Obj2 ...
5469
5470 -- Generated code:
5471
5472 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
5473 -- obj1.discr, obj2.discr)) then
5474
5475 -- In this case we can directly reference the discriminants of
5476 -- the enclosing record.
5477
5478 -- Lhs of equality
5479
5480 if Nkind (Lhs) = N_Selected_Component
5481 and then Has_Per_Object_Constraint
5482 (Entity (Selector_Name (Lhs)))
5483 then
5484 -- Enclosing record is an Unchecked_Union, use formal A
5485
5486 if Is_Unchecked_Union (Scope
5487 (Entity (Selector_Name (Lhs))))
5488 then
5489 Lhs_Discr_Val :=
5490 Make_Identifier (Loc,
5491 Chars => Name_A);
5492
5493 -- Enclosing record is of a non-Unchecked_Union type, it is
5494 -- possible to reference the discriminant.
5495
5496 else
5497 Lhs_Discr_Val :=
5498 Make_Selected_Component (Loc,
5499 Prefix => Prefix (Lhs),
5500 Selector_Name =>
5501 New_Copy
5502 (Get_Discriminant_Value
5503 (First_Discriminant (Lhs_Type),
5504 Lhs_Type,
5505 Stored_Constraint (Lhs_Type))));
5506 end if;
5507
5508 -- Comment needed here ???
5509
5510 else
5511 -- Infer the discriminant value
5512
5513 Lhs_Discr_Val :=
5514 New_Copy
5515 (Get_Discriminant_Value
5516 (First_Discriminant (Lhs_Type),
5517 Lhs_Type,
5518 Stored_Constraint (Lhs_Type)));
5519 end if;
5520
5521 -- Rhs of equality
5522
5523 if Nkind (Rhs) = N_Selected_Component
5524 and then Has_Per_Object_Constraint
5525 (Entity (Selector_Name (Rhs)))
5526 then
5527 if Is_Unchecked_Union
5528 (Scope (Entity (Selector_Name (Rhs))))
5529 then
5530 Rhs_Discr_Val :=
5531 Make_Identifier (Loc,
5532 Chars => Name_B);
5533
5534 else
5535 Rhs_Discr_Val :=
5536 Make_Selected_Component (Loc,
5537 Prefix => Prefix (Rhs),
5538 Selector_Name =>
5539 New_Copy (Get_Discriminant_Value (
5540 First_Discriminant (Rhs_Type),
5541 Rhs_Type,
5542 Stored_Constraint (Rhs_Type))));
5543
5544 end if;
5545 else
5546 Rhs_Discr_Val :=
5547 New_Copy (Get_Discriminant_Value (
5548 First_Discriminant (Rhs_Type),
5549 Rhs_Type,
5550 Stored_Constraint (Rhs_Type)));
5551
5552 end if;
5553
5554 Rewrite (N,
5555 Make_Function_Call (Loc,
5556 Name => New_Reference_To (Eq, Loc),
5557 Parameter_Associations => New_List (
5558 L_Exp,
5559 R_Exp,
5560 Lhs_Discr_Val,
5561 Rhs_Discr_Val)));
5562 end;
5563
5564 -- Normal case, not an unchecked union
5565
5566 else
5567 Rewrite (N,
5568 Make_Function_Call (Loc,
5569 Name => New_Reference_To (Eq, Loc),
5570 Parameter_Associations => New_List (L_Exp, R_Exp)));
5571 end if;
5572
5573 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
5574 end Build_Equality_Call;
5575
5576 ------------------------------------
5577 -- Has_Unconstrained_UU_Component --
5578 ------------------------------------
5579
5580 function Has_Unconstrained_UU_Component
5581 (Typ : Node_Id) return Boolean
5582 is
5583 Tdef : constant Node_Id :=
5584 Type_Definition (Declaration_Node (Base_Type (Typ)));
5585 Clist : Node_Id;
5586 Vpart : Node_Id;
5587
5588 function Component_Is_Unconstrained_UU
5589 (Comp : Node_Id) return Boolean;
5590 -- Determines whether the subtype of the component is an
5591 -- unconstrained Unchecked_Union.
5592
5593 function Variant_Is_Unconstrained_UU
5594 (Variant : Node_Id) return Boolean;
5595 -- Determines whether a component of the variant has an unconstrained
5596 -- Unchecked_Union subtype.
5597
5598 -----------------------------------
5599 -- Component_Is_Unconstrained_UU --
5600 -----------------------------------
5601
5602 function Component_Is_Unconstrained_UU
5603 (Comp : Node_Id) return Boolean
5604 is
5605 begin
5606 if Nkind (Comp) /= N_Component_Declaration then
5607 return False;
5608 end if;
5609
5610 declare
5611 Sindic : constant Node_Id :=
5612 Subtype_Indication (Component_Definition (Comp));
5613
5614 begin
5615 -- Unconstrained nominal type. In the case of a constraint
5616 -- present, the node kind would have been N_Subtype_Indication.
5617
5618 if Nkind (Sindic) = N_Identifier then
5619 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
5620 end if;
5621
5622 return False;
5623 end;
5624 end Component_Is_Unconstrained_UU;
5625
5626 ---------------------------------
5627 -- Variant_Is_Unconstrained_UU --
5628 ---------------------------------
5629
5630 function Variant_Is_Unconstrained_UU
5631 (Variant : Node_Id) return Boolean
5632 is
5633 Clist : constant Node_Id := Component_List (Variant);
5634
5635 begin
5636 if Is_Empty_List (Component_Items (Clist)) then
5637 return False;
5638 end if;
5639
5640 -- We only need to test one component
5641
5642 declare
5643 Comp : Node_Id := First (Component_Items (Clist));
5644
5645 begin
5646 while Present (Comp) loop
5647 if Component_Is_Unconstrained_UU (Comp) then
5648 return True;
5649 end if;
5650
5651 Next (Comp);
5652 end loop;
5653 end;
5654
5655 -- None of the components withing the variant were of
5656 -- unconstrained Unchecked_Union type.
5657
5658 return False;
5659 end Variant_Is_Unconstrained_UU;
5660
5661 -- Start of processing for Has_Unconstrained_UU_Component
5662
5663 begin
5664 if Null_Present (Tdef) then
5665 return False;
5666 end if;
5667
5668 Clist := Component_List (Tdef);
5669 Vpart := Variant_Part (Clist);
5670
5671 -- Inspect available components
5672
5673 if Present (Component_Items (Clist)) then
5674 declare
5675 Comp : Node_Id := First (Component_Items (Clist));
5676
5677 begin
5678 while Present (Comp) loop
5679
5680 -- One component is sufficient
5681
5682 if Component_Is_Unconstrained_UU (Comp) then
5683 return True;
5684 end if;
5685
5686 Next (Comp);
5687 end loop;
5688 end;
5689 end if;
5690
5691 -- Inspect available components withing variants
5692
5693 if Present (Vpart) then
5694 declare
5695 Variant : Node_Id := First (Variants (Vpart));
5696
5697 begin
5698 while Present (Variant) loop
5699
5700 -- One component within a variant is sufficient
5701
5702 if Variant_Is_Unconstrained_UU (Variant) then
5703 return True;
5704 end if;
5705
5706 Next (Variant);
5707 end loop;
5708 end;
5709 end if;
5710
5711 -- Neither the available components, nor the components inside the
5712 -- variant parts were of an unconstrained Unchecked_Union subtype.
5713
5714 return False;
5715 end Has_Unconstrained_UU_Component;
5716
5717 -- Start of processing for Expand_N_Op_Eq
5718
5719 begin
5720 Binary_Op_Validity_Checks (N);
5721
5722 if Ekind (Typl) = E_Private_Type then
5723 Typl := Underlying_Type (Typl);
5724 elsif Ekind (Typl) = E_Private_Subtype then
5725 Typl := Underlying_Type (Base_Type (Typl));
5726 else
5727 null;
5728 end if;
5729
5730 -- It may happen in error situations that the underlying type is not
5731 -- set. The error will be detected later, here we just defend the
5732 -- expander code.
5733
5734 if No (Typl) then
5735 return;
5736 end if;
5737
5738 Typl := Base_Type (Typl);
5739
5740 -- Boolean types (requiring handling of non-standard case)
5741
5742 if Is_Boolean_Type (Typl) then
5743 Adjust_Condition (Left_Opnd (N));
5744 Adjust_Condition (Right_Opnd (N));
5745 Set_Etype (N, Standard_Boolean);
5746 Adjust_Result_Type (N, Typ);
5747
5748 -- Array types
5749
5750 elsif Is_Array_Type (Typl) then
5751
5752 -- If we are doing full validity checking, and it is possible for the
5753 -- array elements to be invalid then expand out array comparisons to
5754 -- make sure that we check the array elements.
5755
5756 if Validity_Check_Operands
5757 and then not Is_Known_Valid (Component_Type (Typl))
5758 then
5759 declare
5760 Save_Force_Validity_Checks : constant Boolean :=
5761 Force_Validity_Checks;
5762 begin
5763 Force_Validity_Checks := True;
5764 Rewrite (N,
5765 Expand_Array_Equality
5766 (N,
5767 Relocate_Node (Lhs),
5768 Relocate_Node (Rhs),
5769 Bodies,
5770 Typl));
5771 Insert_Actions (N, Bodies);
5772 Analyze_And_Resolve (N, Standard_Boolean);
5773 Force_Validity_Checks := Save_Force_Validity_Checks;
5774 end;
5775
5776 -- Packed case where both operands are known aligned
5777
5778 elsif Is_Bit_Packed_Array (Typl)
5779 and then not Is_Possibly_Unaligned_Object (Lhs)
5780 and then not Is_Possibly_Unaligned_Object (Rhs)
5781 then
5782 Expand_Packed_Eq (N);
5783
5784 -- Where the component type is elementary we can use a block bit
5785 -- comparison (if supported on the target) exception in the case
5786 -- of floating-point (negative zero issues require element by
5787 -- element comparison), and atomic types (where we must be sure
5788 -- to load elements independently) and possibly unaligned arrays.
5789
5790 elsif Is_Elementary_Type (Component_Type (Typl))
5791 and then not Is_Floating_Point_Type (Component_Type (Typl))
5792 and then not Is_Atomic (Component_Type (Typl))
5793 and then not Is_Possibly_Unaligned_Object (Lhs)
5794 and then not Is_Possibly_Unaligned_Object (Rhs)
5795 and then Support_Composite_Compare_On_Target
5796 then
5797 null;
5798
5799 -- For composite and floating-point cases, expand equality loop to
5800 -- make sure of using proper comparisons for tagged types, and
5801 -- correctly handling the floating-point case.
5802
5803 else
5804 Rewrite (N,
5805 Expand_Array_Equality
5806 (N,
5807 Relocate_Node (Lhs),
5808 Relocate_Node (Rhs),
5809 Bodies,
5810 Typl));
5811 Insert_Actions (N, Bodies, Suppress => All_Checks);
5812 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
5813 end if;
5814
5815 -- Record Types
5816
5817 elsif Is_Record_Type (Typl) then
5818
5819 -- For tagged types, use the primitive "="
5820
5821 if Is_Tagged_Type (Typl) then
5822
5823 -- No need to do anything else compiling under restriction
5824 -- No_Dispatching_Calls. During the semantic analysis we
5825 -- already notified such violation.
5826
5827 if Restriction_Active (No_Dispatching_Calls) then
5828 return;
5829 end if;
5830
5831 -- If this is derived from an untagged private type completed with
5832 -- a tagged type, it does not have a full view, so we use the
5833 -- primitive operations of the private type. This check should no
5834 -- longer be necessary when these types get their full views???
5835
5836 if Is_Private_Type (A_Typ)
5837 and then not Is_Tagged_Type (A_Typ)
5838 and then Is_Derived_Type (A_Typ)
5839 and then No (Full_View (A_Typ))
5840 then
5841 -- Search for equality operation, checking that the operands
5842 -- have the same type. Note that we must find a matching entry,
5843 -- or something is very wrong!
5844
5845 Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
5846
5847 while Present (Prim) loop
5848 exit when Chars (Node (Prim)) = Name_Op_Eq
5849 and then Etype (First_Formal (Node (Prim))) =
5850 Etype (Next_Formal (First_Formal (Node (Prim))))
5851 and then
5852 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
5853
5854 Next_Elmt (Prim);
5855 end loop;
5856
5857 pragma Assert (Present (Prim));
5858 Op_Name := Node (Prim);
5859
5860 -- Find the type's predefined equality or an overriding
5861 -- user- defined equality. The reason for not simply calling
5862 -- Find_Prim_Op here is that there may be a user-defined
5863 -- overloaded equality op that precedes the equality that we want,
5864 -- so we have to explicitly search (e.g., there could be an
5865 -- equality with two different parameter types).
5866
5867 else
5868 if Is_Class_Wide_Type (Typl) then
5869 Typl := Root_Type (Typl);
5870 end if;
5871
5872 Prim := First_Elmt (Primitive_Operations (Typl));
5873 while Present (Prim) loop
5874 exit when Chars (Node (Prim)) = Name_Op_Eq
5875 and then Etype (First_Formal (Node (Prim))) =
5876 Etype (Next_Formal (First_Formal (Node (Prim))))
5877 and then
5878 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
5879
5880 Next_Elmt (Prim);
5881 end loop;
5882
5883 pragma Assert (Present (Prim));
5884 Op_Name := Node (Prim);
5885 end if;
5886
5887 Build_Equality_Call (Op_Name);
5888
5889 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
5890 -- predefined equality operator for a type which has a subcomponent
5891 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
5892
5893 elsif Has_Unconstrained_UU_Component (Typl) then
5894 Insert_Action (N,
5895 Make_Raise_Program_Error (Loc,
5896 Reason => PE_Unchecked_Union_Restriction));
5897
5898 -- Prevent Gigi from generating incorrect code by rewriting the
5899 -- equality as a standard False.
5900
5901 Rewrite (N,
5902 New_Occurrence_Of (Standard_False, Loc));
5903
5904 elsif Is_Unchecked_Union (Typl) then
5905
5906 -- If we can infer the discriminants of the operands, we make a
5907 -- call to the TSS equality function.
5908
5909 if Has_Inferable_Discriminants (Lhs)
5910 and then
5911 Has_Inferable_Discriminants (Rhs)
5912 then
5913 Build_Equality_Call
5914 (TSS (Root_Type (Typl), TSS_Composite_Equality));
5915
5916 else
5917 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
5918 -- the predefined equality operator for an Unchecked_Union type
5919 -- if either of the operands lack inferable discriminants.
5920
5921 Insert_Action (N,
5922 Make_Raise_Program_Error (Loc,
5923 Reason => PE_Unchecked_Union_Restriction));
5924
5925 -- Prevent Gigi from generating incorrect code by rewriting
5926 -- the equality as a standard False.
5927
5928 Rewrite (N,
5929 New_Occurrence_Of (Standard_False, Loc));
5930
5931 end if;
5932
5933 -- If a type support function is present (for complex cases), use it
5934
5935 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
5936 Build_Equality_Call
5937 (TSS (Root_Type (Typl), TSS_Composite_Equality));
5938
5939 -- Otherwise expand the component by component equality. Note that
5940 -- we never use block-bit comparisons for records, because of the
5941 -- problems with gaps. The backend will often be able to recombine
5942 -- the separate comparisons that we generate here.
5943
5944 else
5945 Remove_Side_Effects (Lhs);
5946 Remove_Side_Effects (Rhs);
5947 Rewrite (N,
5948 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
5949
5950 Insert_Actions (N, Bodies, Suppress => All_Checks);
5951 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
5952 end if;
5953 end if;
5954
5955 -- Test if result is known at compile time
5956
5957 Rewrite_Comparison (N);
5958
5959 -- If we still have comparison for Vax_Float, process it
5960
5961 if Vax_Float (Typl) and then Nkind (N) in N_Op_Compare then
5962 Expand_Vax_Comparison (N);
5963 return;
5964 end if;
5965 end Expand_N_Op_Eq;
5966
5967 -----------------------
5968 -- Expand_N_Op_Expon --
5969 -----------------------
5970
5971 procedure Expand_N_Op_Expon (N : Node_Id) is
5972 Loc : constant Source_Ptr := Sloc (N);
5973 Typ : constant Entity_Id := Etype (N);
5974 Rtyp : constant Entity_Id := Root_Type (Typ);
5975 Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
5976 Bastyp : constant Node_Id := Etype (Base);
5977 Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
5978 Exptyp : constant Entity_Id := Etype (Exp);
5979 Ovflo : constant Boolean := Do_Overflow_Check (N);
5980 Expv : Uint;
5981 Xnode : Node_Id;
5982 Temp : Node_Id;
5983 Rent : RE_Id;
5984 Ent : Entity_Id;
5985 Etyp : Entity_Id;
5986
5987 begin
5988 Binary_Op_Validity_Checks (N);
5989
5990 -- If either operand is of a private type, then we have the use of an
5991 -- intrinsic operator, and we get rid of the privateness, by using root
5992 -- types of underlying types for the actual operation. Otherwise the
5993 -- private types will cause trouble if we expand multiplications or
5994 -- shifts etc. We also do this transformation if the result type is
5995 -- different from the base type.
5996
5997 if Is_Private_Type (Etype (Base))
5998 or else
5999 Is_Private_Type (Typ)
6000 or else
6001 Is_Private_Type (Exptyp)
6002 or else
6003 Rtyp /= Root_Type (Bastyp)
6004 then
6005 declare
6006 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
6007 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
6008
6009 begin
6010 Rewrite (N,
6011 Unchecked_Convert_To (Typ,
6012 Make_Op_Expon (Loc,
6013 Left_Opnd => Unchecked_Convert_To (Bt, Base),
6014 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
6015 Analyze_And_Resolve (N, Typ);
6016 return;
6017 end;
6018 end if;
6019
6020 -- Test for case of known right argument
6021
6022 if Compile_Time_Known_Value (Exp) then
6023 Expv := Expr_Value (Exp);
6024
6025 -- We only fold small non-negative exponents. You might think we
6026 -- could fold small negative exponents for the real case, but we
6027 -- can't because we are required to raise Constraint_Error for
6028 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
6029 -- See ACVC test C4A012B.
6030
6031 if Expv >= 0 and then Expv <= 4 then
6032
6033 -- X ** 0 = 1 (or 1.0)
6034
6035 if Expv = 0 then
6036
6037 -- Call Remove_Side_Effects to ensure that any side effects
6038 -- in the ignored left operand (in particular function calls
6039 -- to user defined functions) are properly executed.
6040
6041 Remove_Side_Effects (Base);
6042
6043 if Ekind (Typ) in Integer_Kind then
6044 Xnode := Make_Integer_Literal (Loc, Intval => 1);
6045 else
6046 Xnode := Make_Real_Literal (Loc, Ureal_1);
6047 end if;
6048
6049 -- X ** 1 = X
6050
6051 elsif Expv = 1 then
6052 Xnode := Base;
6053
6054 -- X ** 2 = X * X
6055
6056 elsif Expv = 2 then
6057 Xnode :=
6058 Make_Op_Multiply (Loc,
6059 Left_Opnd => Duplicate_Subexpr (Base),
6060 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
6061
6062 -- X ** 3 = X * X * X
6063
6064 elsif Expv = 3 then
6065 Xnode :=
6066 Make_Op_Multiply (Loc,
6067 Left_Opnd =>
6068 Make_Op_Multiply (Loc,
6069 Left_Opnd => Duplicate_Subexpr (Base),
6070 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
6071 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
6072
6073 -- X ** 4 ->
6074 -- En : constant base'type := base * base;
6075 -- ...
6076 -- En * En
6077
6078 else -- Expv = 4
6079 Temp := Make_Temporary (Loc, 'E', Base);
6080
6081 Insert_Actions (N, New_List (
6082 Make_Object_Declaration (Loc,
6083 Defining_Identifier => Temp,
6084 Constant_Present => True,
6085 Object_Definition => New_Reference_To (Typ, Loc),
6086 Expression =>
6087 Make_Op_Multiply (Loc,
6088 Left_Opnd => Duplicate_Subexpr (Base),
6089 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)))));
6090
6091 Xnode :=
6092 Make_Op_Multiply (Loc,
6093 Left_Opnd => New_Reference_To (Temp, Loc),
6094 Right_Opnd => New_Reference_To (Temp, Loc));
6095 end if;
6096
6097 Rewrite (N, Xnode);
6098 Analyze_And_Resolve (N, Typ);
6099 return;
6100 end if;
6101 end if;
6102
6103 -- Case of (2 ** expression) appearing as an argument of an integer
6104 -- multiplication, or as the right argument of a division of a non-
6105 -- negative integer. In such cases we leave the node untouched, setting
6106 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
6107 -- of the higher level node converts it into a shift.
6108
6109 -- Another case is 2 ** N in any other context. We simply convert
6110 -- this to 1 * 2 ** N, and then the above transformation applies.
6111
6112 -- Note: this transformation is not applicable for a modular type with
6113 -- a non-binary modulus in the multiplication case, since we get a wrong
6114 -- result if the shift causes an overflow before the modular reduction.
6115
6116 if Nkind (Base) = N_Integer_Literal
6117 and then Intval (Base) = 2
6118 and then Is_Integer_Type (Root_Type (Exptyp))
6119 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
6120 and then Is_Unsigned_Type (Exptyp)
6121 and then not Ovflo
6122 then
6123 -- First the multiply and divide cases
6124
6125 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
6126 declare
6127 P : constant Node_Id := Parent (N);
6128 L : constant Node_Id := Left_Opnd (P);
6129 R : constant Node_Id := Right_Opnd (P);
6130
6131 begin
6132 if (Nkind (P) = N_Op_Multiply
6133 and then not Non_Binary_Modulus (Typ)
6134 and then
6135 ((Is_Integer_Type (Etype (L)) and then R = N)
6136 or else
6137 (Is_Integer_Type (Etype (R)) and then L = N))
6138 and then not Do_Overflow_Check (P))
6139 or else
6140 (Nkind (P) = N_Op_Divide
6141 and then Is_Integer_Type (Etype (L))
6142 and then Is_Unsigned_Type (Etype (L))
6143 and then R = N
6144 and then not Do_Overflow_Check (P))
6145 then
6146 Set_Is_Power_Of_2_For_Shift (N);
6147 return;
6148 end if;
6149 end;
6150
6151 -- Now the other cases
6152
6153 elsif not Non_Binary_Modulus (Typ) then
6154 Rewrite (N,
6155 Make_Op_Multiply (Loc,
6156 Left_Opnd => Make_Integer_Literal (Loc, 1),
6157 Right_Opnd => Relocate_Node (N)));
6158 Analyze_And_Resolve (N, Typ);
6159 return;
6160 end if;
6161 end if;
6162
6163 -- Fall through if exponentiation must be done using a runtime routine
6164
6165 -- First deal with modular case
6166
6167 if Is_Modular_Integer_Type (Rtyp) then
6168
6169 -- Non-binary case, we call the special exponentiation routine for
6170 -- the non-binary case, converting the argument to Long_Long_Integer
6171 -- and passing the modulus value. Then the result is converted back
6172 -- to the base type.
6173
6174 if Non_Binary_Modulus (Rtyp) then
6175 Rewrite (N,
6176 Convert_To (Typ,
6177 Make_Function_Call (Loc,
6178 Name => New_Reference_To (RTE (RE_Exp_Modular), Loc),
6179 Parameter_Associations => New_List (
6180 Convert_To (Standard_Integer, Base),
6181 Make_Integer_Literal (Loc, Modulus (Rtyp)),
6182 Exp))));
6183
6184 -- Binary case, in this case, we call one of two routines, either the
6185 -- unsigned integer case, or the unsigned long long integer case,
6186 -- with a final "and" operation to do the required mod.
6187
6188 else
6189 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
6190 Ent := RTE (RE_Exp_Unsigned);
6191 else
6192 Ent := RTE (RE_Exp_Long_Long_Unsigned);
6193 end if;
6194
6195 Rewrite (N,
6196 Convert_To (Typ,
6197 Make_Op_And (Loc,
6198 Left_Opnd =>
6199 Make_Function_Call (Loc,
6200 Name => New_Reference_To (Ent, Loc),
6201 Parameter_Associations => New_List (
6202 Convert_To (Etype (First_Formal (Ent)), Base),
6203 Exp)),
6204 Right_Opnd =>
6205 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
6206
6207 end if;
6208
6209 -- Common exit point for modular type case
6210
6211 Analyze_And_Resolve (N, Typ);
6212 return;
6213
6214 -- Signed integer cases, done using either Integer or Long_Long_Integer.
6215 -- It is not worth having routines for Short_[Short_]Integer, since for
6216 -- most machines it would not help, and it would generate more code that
6217 -- might need certification when a certified run time is required.
6218
6219 -- In the integer cases, we have two routines, one for when overflow
6220 -- checks are required, and one when they are not required, since there
6221 -- is a real gain in omitting checks on many machines.
6222
6223 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
6224 or else (Rtyp = Base_Type (Standard_Long_Integer)
6225 and then
6226 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
6227 or else (Rtyp = Universal_Integer)
6228 then
6229 Etyp := Standard_Long_Long_Integer;
6230
6231 if Ovflo then
6232 Rent := RE_Exp_Long_Long_Integer;
6233 else
6234 Rent := RE_Exn_Long_Long_Integer;
6235 end if;
6236
6237 elsif Is_Signed_Integer_Type (Rtyp) then
6238 Etyp := Standard_Integer;
6239
6240 if Ovflo then
6241 Rent := RE_Exp_Integer;
6242 else
6243 Rent := RE_Exn_Integer;
6244 end if;
6245
6246 -- Floating-point cases, always done using Long_Long_Float. We do not
6247 -- need separate routines for the overflow case here, since in the case
6248 -- of floating-point, we generate infinities anyway as a rule (either
6249 -- that or we automatically trap overflow), and if there is an infinity
6250 -- generated and a range check is required, the check will fail anyway.
6251
6252 else
6253 pragma Assert (Is_Floating_Point_Type (Rtyp));
6254 Etyp := Standard_Long_Long_Float;
6255 Rent := RE_Exn_Long_Long_Float;
6256 end if;
6257
6258 -- Common processing for integer cases and floating-point cases.
6259 -- If we are in the right type, we can call runtime routine directly
6260
6261 if Typ = Etyp
6262 and then Rtyp /= Universal_Integer
6263 and then Rtyp /= Universal_Real
6264 then
6265 Rewrite (N,
6266 Make_Function_Call (Loc,
6267 Name => New_Reference_To (RTE (Rent), Loc),
6268 Parameter_Associations => New_List (Base, Exp)));
6269
6270 -- Otherwise we have to introduce conversions (conversions are also
6271 -- required in the universal cases, since the runtime routine is
6272 -- typed using one of the standard types).
6273
6274 else
6275 Rewrite (N,
6276 Convert_To (Typ,
6277 Make_Function_Call (Loc,
6278 Name => New_Reference_To (RTE (Rent), Loc),
6279 Parameter_Associations => New_List (
6280 Convert_To (Etyp, Base),
6281 Exp))));
6282 end if;
6283
6284 Analyze_And_Resolve (N, Typ);
6285 return;
6286
6287 exception
6288 when RE_Not_Available =>
6289 return;
6290 end Expand_N_Op_Expon;
6291
6292 --------------------
6293 -- Expand_N_Op_Ge --
6294 --------------------
6295
6296 procedure Expand_N_Op_Ge (N : Node_Id) is
6297 Typ : constant Entity_Id := Etype (N);
6298 Op1 : constant Node_Id := Left_Opnd (N);
6299 Op2 : constant Node_Id := Right_Opnd (N);
6300 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6301
6302 begin
6303 Binary_Op_Validity_Checks (N);
6304
6305 if Is_Array_Type (Typ1) then
6306 Expand_Array_Comparison (N);
6307 return;
6308 end if;
6309
6310 if Is_Boolean_Type (Typ1) then
6311 Adjust_Condition (Op1);
6312 Adjust_Condition (Op2);
6313 Set_Etype (N, Standard_Boolean);
6314 Adjust_Result_Type (N, Typ);
6315 end if;
6316
6317 Rewrite_Comparison (N);
6318
6319 -- If we still have comparison, and Vax_Float type, process it
6320
6321 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6322 Expand_Vax_Comparison (N);
6323 return;
6324 end if;
6325 end Expand_N_Op_Ge;
6326
6327 --------------------
6328 -- Expand_N_Op_Gt --
6329 --------------------
6330
6331 procedure Expand_N_Op_Gt (N : Node_Id) is
6332 Typ : constant Entity_Id := Etype (N);
6333 Op1 : constant Node_Id := Left_Opnd (N);
6334 Op2 : constant Node_Id := Right_Opnd (N);
6335 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6336
6337 begin
6338 Binary_Op_Validity_Checks (N);
6339
6340 if Is_Array_Type (Typ1) then
6341 Expand_Array_Comparison (N);
6342 return;
6343 end if;
6344
6345 if Is_Boolean_Type (Typ1) then
6346 Adjust_Condition (Op1);
6347 Adjust_Condition (Op2);
6348 Set_Etype (N, Standard_Boolean);
6349 Adjust_Result_Type (N, Typ);
6350 end if;
6351
6352 Rewrite_Comparison (N);
6353
6354 -- If we still have comparison, and Vax_Float type, process it
6355
6356 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6357 Expand_Vax_Comparison (N);
6358 return;
6359 end if;
6360 end Expand_N_Op_Gt;
6361
6362 --------------------
6363 -- Expand_N_Op_Le --
6364 --------------------
6365
6366 procedure Expand_N_Op_Le (N : Node_Id) is
6367 Typ : constant Entity_Id := Etype (N);
6368 Op1 : constant Node_Id := Left_Opnd (N);
6369 Op2 : constant Node_Id := Right_Opnd (N);
6370 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6371
6372 begin
6373 Binary_Op_Validity_Checks (N);
6374
6375 if Is_Array_Type (Typ1) then
6376 Expand_Array_Comparison (N);
6377 return;
6378 end if;
6379
6380 if Is_Boolean_Type (Typ1) then
6381 Adjust_Condition (Op1);
6382 Adjust_Condition (Op2);
6383 Set_Etype (N, Standard_Boolean);
6384 Adjust_Result_Type (N, Typ);
6385 end if;
6386
6387 Rewrite_Comparison (N);
6388
6389 -- If we still have comparison, and Vax_Float type, process it
6390
6391 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6392 Expand_Vax_Comparison (N);
6393 return;
6394 end if;
6395 end Expand_N_Op_Le;
6396
6397 --------------------
6398 -- Expand_N_Op_Lt --
6399 --------------------
6400
6401 procedure Expand_N_Op_Lt (N : Node_Id) is
6402 Typ : constant Entity_Id := Etype (N);
6403 Op1 : constant Node_Id := Left_Opnd (N);
6404 Op2 : constant Node_Id := Right_Opnd (N);
6405 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6406
6407 begin
6408 Binary_Op_Validity_Checks (N);
6409
6410 if Is_Array_Type (Typ1) then
6411 Expand_Array_Comparison (N);
6412 return;
6413 end if;
6414
6415 if Is_Boolean_Type (Typ1) then
6416 Adjust_Condition (Op1);
6417 Adjust_Condition (Op2);
6418 Set_Etype (N, Standard_Boolean);
6419 Adjust_Result_Type (N, Typ);
6420 end if;
6421
6422 Rewrite_Comparison (N);
6423
6424 -- If we still have comparison, and Vax_Float type, process it
6425
6426 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6427 Expand_Vax_Comparison (N);
6428 return;
6429 end if;
6430 end Expand_N_Op_Lt;
6431
6432 -----------------------
6433 -- Expand_N_Op_Minus --
6434 -----------------------
6435
6436 procedure Expand_N_Op_Minus (N : Node_Id) is
6437 Loc : constant Source_Ptr := Sloc (N);
6438 Typ : constant Entity_Id := Etype (N);
6439
6440 begin
6441 Unary_Op_Validity_Checks (N);
6442
6443 if not Backend_Overflow_Checks_On_Target
6444 and then Is_Signed_Integer_Type (Etype (N))
6445 and then Do_Overflow_Check (N)
6446 then
6447 -- Software overflow checking expands -expr into (0 - expr)
6448
6449 Rewrite (N,
6450 Make_Op_Subtract (Loc,
6451 Left_Opnd => Make_Integer_Literal (Loc, 0),
6452 Right_Opnd => Right_Opnd (N)));
6453
6454 Analyze_And_Resolve (N, Typ);
6455
6456 -- Vax floating-point types case
6457
6458 elsif Vax_Float (Etype (N)) then
6459 Expand_Vax_Arith (N);
6460 end if;
6461 end Expand_N_Op_Minus;
6462
6463 ---------------------
6464 -- Expand_N_Op_Mod --
6465 ---------------------
6466
6467 procedure Expand_N_Op_Mod (N : Node_Id) is
6468 Loc : constant Source_Ptr := Sloc (N);
6469 Typ : constant Entity_Id := Etype (N);
6470 Left : constant Node_Id := Left_Opnd (N);
6471 Right : constant Node_Id := Right_Opnd (N);
6472 DOC : constant Boolean := Do_Overflow_Check (N);
6473 DDC : constant Boolean := Do_Division_Check (N);
6474
6475 LLB : Uint;
6476 Llo : Uint;
6477 Lhi : Uint;
6478 LOK : Boolean;
6479 Rlo : Uint;
6480 Rhi : Uint;
6481 ROK : Boolean;
6482
6483 pragma Warnings (Off, Lhi);
6484
6485 begin
6486 Binary_Op_Validity_Checks (N);
6487
6488 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
6489 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
6490
6491 -- Convert mod to rem if operands are known non-negative. We do this
6492 -- since it is quite likely that this will improve the quality of code,
6493 -- (the operation now corresponds to the hardware remainder), and it
6494 -- does not seem likely that it could be harmful.
6495
6496 if LOK and then Llo >= 0
6497 and then
6498 ROK and then Rlo >= 0
6499 then
6500 Rewrite (N,
6501 Make_Op_Rem (Sloc (N),
6502 Left_Opnd => Left_Opnd (N),
6503 Right_Opnd => Right_Opnd (N)));
6504
6505 -- Instead of reanalyzing the node we do the analysis manually. This
6506 -- avoids anomalies when the replacement is done in an instance and
6507 -- is epsilon more efficient.
6508
6509 Set_Entity (N, Standard_Entity (S_Op_Rem));
6510 Set_Etype (N, Typ);
6511 Set_Do_Overflow_Check (N, DOC);
6512 Set_Do_Division_Check (N, DDC);
6513 Expand_N_Op_Rem (N);
6514 Set_Analyzed (N);
6515
6516 -- Otherwise, normal mod processing
6517
6518 else
6519 if Is_Integer_Type (Etype (N)) then
6520 Apply_Divide_Check (N);
6521 end if;
6522
6523 -- Apply optimization x mod 1 = 0. We don't really need that with
6524 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
6525 -- certainly harmless.
6526
6527 if Is_Integer_Type (Etype (N))
6528 and then Compile_Time_Known_Value (Right)
6529 and then Expr_Value (Right) = Uint_1
6530 then
6531 -- Call Remove_Side_Effects to ensure that any side effects in
6532 -- the ignored left operand (in particular function calls to
6533 -- user defined functions) are properly executed.
6534
6535 Remove_Side_Effects (Left);
6536
6537 Rewrite (N, Make_Integer_Literal (Loc, 0));
6538 Analyze_And_Resolve (N, Typ);
6539 return;
6540 end if;
6541
6542 -- Deal with annoying case of largest negative number remainder
6543 -- minus one. Gigi does not handle this case correctly, because
6544 -- it generates a divide instruction which may trap in this case.
6545
6546 -- In fact the check is quite easy, if the right operand is -1, then
6547 -- the mod value is always 0, and we can just ignore the left operand
6548 -- completely in this case.
6549
6550 -- The operand type may be private (e.g. in the expansion of an
6551 -- intrinsic operation) so we must use the underlying type to get the
6552 -- bounds, and convert the literals explicitly.
6553
6554 LLB :=
6555 Expr_Value
6556 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
6557
6558 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
6559 and then
6560 ((not LOK) or else (Llo = LLB))
6561 then
6562 Rewrite (N,
6563 Make_Conditional_Expression (Loc,
6564 Expressions => New_List (
6565 Make_Op_Eq (Loc,
6566 Left_Opnd => Duplicate_Subexpr (Right),
6567 Right_Opnd =>
6568 Unchecked_Convert_To (Typ,
6569 Make_Integer_Literal (Loc, -1))),
6570 Unchecked_Convert_To (Typ,
6571 Make_Integer_Literal (Loc, Uint_0)),
6572 Relocate_Node (N))));
6573
6574 Set_Analyzed (Next (Next (First (Expressions (N)))));
6575 Analyze_And_Resolve (N, Typ);
6576 end if;
6577 end if;
6578 end Expand_N_Op_Mod;
6579
6580 --------------------------
6581 -- Expand_N_Op_Multiply --
6582 --------------------------
6583
6584 procedure Expand_N_Op_Multiply (N : Node_Id) is
6585 Loc : constant Source_Ptr := Sloc (N);
6586 Lop : constant Node_Id := Left_Opnd (N);
6587 Rop : constant Node_Id := Right_Opnd (N);
6588
6589 Lp2 : constant Boolean :=
6590 Nkind (Lop) = N_Op_Expon
6591 and then Is_Power_Of_2_For_Shift (Lop);
6592
6593 Rp2 : constant Boolean :=
6594 Nkind (Rop) = N_Op_Expon
6595 and then Is_Power_Of_2_For_Shift (Rop);
6596
6597 Ltyp : constant Entity_Id := Etype (Lop);
6598 Rtyp : constant Entity_Id := Etype (Rop);
6599 Typ : Entity_Id := Etype (N);
6600
6601 begin
6602 Binary_Op_Validity_Checks (N);
6603
6604 -- Special optimizations for integer types
6605
6606 if Is_Integer_Type (Typ) then
6607
6608 -- N * 0 = 0 for integer types
6609
6610 if Compile_Time_Known_Value (Rop)
6611 and then Expr_Value (Rop) = Uint_0
6612 then
6613 -- Call Remove_Side_Effects to ensure that any side effects in
6614 -- the ignored left operand (in particular function calls to
6615 -- user defined functions) are properly executed.
6616
6617 Remove_Side_Effects (Lop);
6618
6619 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
6620 Analyze_And_Resolve (N, Typ);
6621 return;
6622 end if;
6623
6624 -- Similar handling for 0 * N = 0
6625
6626 if Compile_Time_Known_Value (Lop)
6627 and then Expr_Value (Lop) = Uint_0
6628 then
6629 Remove_Side_Effects (Rop);
6630 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
6631 Analyze_And_Resolve (N, Typ);
6632 return;
6633 end if;
6634
6635 -- N * 1 = 1 * N = N for integer types
6636
6637 -- This optimisation is not done if we are going to
6638 -- rewrite the product 1 * 2 ** N to a shift.
6639
6640 if Compile_Time_Known_Value (Rop)
6641 and then Expr_Value (Rop) = Uint_1
6642 and then not Lp2
6643 then
6644 Rewrite (N, Lop);
6645 return;
6646
6647 elsif Compile_Time_Known_Value (Lop)
6648 and then Expr_Value (Lop) = Uint_1
6649 and then not Rp2
6650 then
6651 Rewrite (N, Rop);
6652 return;
6653 end if;
6654 end if;
6655
6656 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
6657 -- Is_Power_Of_2_For_Shift is set means that we know that our left
6658 -- operand is an integer, as required for this to work.
6659
6660 if Rp2 then
6661 if Lp2 then
6662
6663 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
6664
6665 Rewrite (N,
6666 Make_Op_Expon (Loc,
6667 Left_Opnd => Make_Integer_Literal (Loc, 2),
6668 Right_Opnd =>
6669 Make_Op_Add (Loc,
6670 Left_Opnd => Right_Opnd (Lop),
6671 Right_Opnd => Right_Opnd (Rop))));
6672 Analyze_And_Resolve (N, Typ);
6673 return;
6674
6675 else
6676 Rewrite (N,
6677 Make_Op_Shift_Left (Loc,
6678 Left_Opnd => Lop,
6679 Right_Opnd =>
6680 Convert_To (Standard_Natural, Right_Opnd (Rop))));
6681 Analyze_And_Resolve (N, Typ);
6682 return;
6683 end if;
6684
6685 -- Same processing for the operands the other way round
6686
6687 elsif Lp2 then
6688 Rewrite (N,
6689 Make_Op_Shift_Left (Loc,
6690 Left_Opnd => Rop,
6691 Right_Opnd =>
6692 Convert_To (Standard_Natural, Right_Opnd (Lop))));
6693 Analyze_And_Resolve (N, Typ);
6694 return;
6695 end if;
6696
6697 -- Do required fixup of universal fixed operation
6698
6699 if Typ = Universal_Fixed then
6700 Fixup_Universal_Fixed_Operation (N);
6701 Typ := Etype (N);
6702 end if;
6703
6704 -- Multiplications with fixed-point results
6705
6706 if Is_Fixed_Point_Type (Typ) then
6707
6708 -- No special processing if Treat_Fixed_As_Integer is set, since from
6709 -- a semantic point of view such operations are simply integer
6710 -- operations and will be treated that way.
6711
6712 if not Treat_Fixed_As_Integer (N) then
6713
6714 -- Case of fixed * integer => fixed
6715
6716 if Is_Integer_Type (Rtyp) then
6717 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
6718
6719 -- Case of integer * fixed => fixed
6720
6721 elsif Is_Integer_Type (Ltyp) then
6722 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
6723
6724 -- Case of fixed * fixed => fixed
6725
6726 else
6727 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
6728 end if;
6729 end if;
6730
6731 -- Other cases of multiplication of fixed-point operands. Again we
6732 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
6733
6734 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
6735 and then not Treat_Fixed_As_Integer (N)
6736 then
6737 if Is_Integer_Type (Typ) then
6738 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
6739 else
6740 pragma Assert (Is_Floating_Point_Type (Typ));
6741 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
6742 end if;
6743
6744 -- Mixed-mode operations can appear in a non-static universal context,
6745 -- in which case the integer argument must be converted explicitly.
6746
6747 elsif Typ = Universal_Real
6748 and then Is_Integer_Type (Rtyp)
6749 then
6750 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
6751
6752 Analyze_And_Resolve (Rop, Universal_Real);
6753
6754 elsif Typ = Universal_Real
6755 and then Is_Integer_Type (Ltyp)
6756 then
6757 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
6758
6759 Analyze_And_Resolve (Lop, Universal_Real);
6760
6761 -- Non-fixed point cases, check software overflow checking required
6762
6763 elsif Is_Signed_Integer_Type (Etype (N)) then
6764 Apply_Arithmetic_Overflow_Check (N);
6765
6766 -- Deal with VAX float case
6767
6768 elsif Vax_Float (Typ) then
6769 Expand_Vax_Arith (N);
6770 return;
6771 end if;
6772 end Expand_N_Op_Multiply;
6773
6774 --------------------
6775 -- Expand_N_Op_Ne --
6776 --------------------
6777
6778 procedure Expand_N_Op_Ne (N : Node_Id) is
6779 Typ : constant Entity_Id := Etype (Left_Opnd (N));
6780
6781 begin
6782 -- Case of elementary type with standard operator
6783
6784 if Is_Elementary_Type (Typ)
6785 and then Sloc (Entity (N)) = Standard_Location
6786 then
6787 Binary_Op_Validity_Checks (N);
6788
6789 -- Boolean types (requiring handling of non-standard case)
6790
6791 if Is_Boolean_Type (Typ) then
6792 Adjust_Condition (Left_Opnd (N));
6793 Adjust_Condition (Right_Opnd (N));
6794 Set_Etype (N, Standard_Boolean);
6795 Adjust_Result_Type (N, Typ);
6796 end if;
6797
6798 Rewrite_Comparison (N);
6799
6800 -- If we still have comparison for Vax_Float, process it
6801
6802 if Vax_Float (Typ) and then Nkind (N) in N_Op_Compare then
6803 Expand_Vax_Comparison (N);
6804 return;
6805 end if;
6806
6807 -- For all cases other than elementary types, we rewrite node as the
6808 -- negation of an equality operation, and reanalyze. The equality to be
6809 -- used is defined in the same scope and has the same signature. This
6810 -- signature must be set explicitly since in an instance it may not have
6811 -- the same visibility as in the generic unit. This avoids duplicating
6812 -- or factoring the complex code for record/array equality tests etc.
6813
6814 else
6815 declare
6816 Loc : constant Source_Ptr := Sloc (N);
6817 Neg : Node_Id;
6818 Ne : constant Entity_Id := Entity (N);
6819
6820 begin
6821 Binary_Op_Validity_Checks (N);
6822
6823 Neg :=
6824 Make_Op_Not (Loc,
6825 Right_Opnd =>
6826 Make_Op_Eq (Loc,
6827 Left_Opnd => Left_Opnd (N),
6828 Right_Opnd => Right_Opnd (N)));
6829 Set_Paren_Count (Right_Opnd (Neg), 1);
6830
6831 if Scope (Ne) /= Standard_Standard then
6832 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
6833 end if;
6834
6835 -- For navigation purposes, the inequality is treated as an
6836 -- implicit reference to the corresponding equality. Preserve the
6837 -- Comes_From_ source flag so that the proper Xref entry is
6838 -- generated.
6839
6840 Preserve_Comes_From_Source (Neg, N);
6841 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
6842 Rewrite (N, Neg);
6843 Analyze_And_Resolve (N, Standard_Boolean);
6844 end;
6845 end if;
6846 end Expand_N_Op_Ne;
6847
6848 ---------------------
6849 -- Expand_N_Op_Not --
6850 ---------------------
6851
6852 -- If the argument is other than a Boolean array type, there is no special
6853 -- expansion required, except for VMS operations on signed integers.
6854
6855 -- For the packed case, we call the special routine in Exp_Pakd, except
6856 -- that if the component size is greater than one, we use the standard
6857 -- routine generating a gruesome loop (it is so peculiar to have packed
6858 -- arrays with non-standard Boolean representations anyway, so it does not
6859 -- matter that we do not handle this case efficiently).
6860
6861 -- For the unpacked case (and for the special packed case where we have non
6862 -- standard Booleans, as discussed above), we generate and insert into the
6863 -- tree the following function definition:
6864
6865 -- function Nnnn (A : arr) is
6866 -- B : arr;
6867 -- begin
6868 -- for J in a'range loop
6869 -- B (J) := not A (J);
6870 -- end loop;
6871 -- return B;
6872 -- end Nnnn;
6873
6874 -- Here arr is the actual subtype of the parameter (and hence always
6875 -- constrained). Then we replace the not with a call to this function.
6876
6877 procedure Expand_N_Op_Not (N : Node_Id) is
6878 Loc : constant Source_Ptr := Sloc (N);
6879 Typ : constant Entity_Id := Etype (N);
6880 Opnd : Node_Id;
6881 Arr : Entity_Id;
6882 A : Entity_Id;
6883 B : Entity_Id;
6884 J : Entity_Id;
6885 A_J : Node_Id;
6886 B_J : Node_Id;
6887
6888 Func_Name : Entity_Id;
6889 Loop_Statement : Node_Id;
6890
6891 begin
6892 Unary_Op_Validity_Checks (N);
6893
6894 -- For boolean operand, deal with non-standard booleans
6895
6896 if Is_Boolean_Type (Typ) then
6897 Adjust_Condition (Right_Opnd (N));
6898 Set_Etype (N, Standard_Boolean);
6899 Adjust_Result_Type (N, Typ);
6900 return;
6901 end if;
6902
6903 -- For the VMS "not" on signed integer types, use conversion to and
6904 -- from a predefined modular type.
6905
6906 if Is_VMS_Operator (Entity (N)) then
6907 declare
6908 Rtyp : Entity_Id;
6909 Utyp : Entity_Id;
6910
6911 begin
6912 -- If this is a derived type, retrieve original VMS type so that
6913 -- the proper sized type is used for intermediate values.
6914
6915 if Is_Derived_Type (Typ) then
6916 Rtyp := First_Subtype (Etype (Typ));
6917 else
6918 Rtyp := Typ;
6919 end if;
6920
6921 -- The proper unsigned type must have a size compatible with
6922 -- the operand, to prevent misalignment..
6923
6924 if RM_Size (Rtyp) <= 8 then
6925 Utyp := RTE (RE_Unsigned_8);
6926
6927 elsif RM_Size (Rtyp) <= 16 then
6928 Utyp := RTE (RE_Unsigned_16);
6929
6930 elsif RM_Size (Rtyp) = RM_Size (Standard_Unsigned) then
6931 Utyp := Typ;
6932
6933 else
6934 Utyp := RTE (RE_Long_Long_Unsigned);
6935 end if;
6936
6937 Rewrite (N,
6938 Unchecked_Convert_To (Typ,
6939 Make_Op_Not (Loc,
6940 Unchecked_Convert_To (Utyp, Right_Opnd (N)))));
6941 Analyze_And_Resolve (N, Typ);
6942 return;
6943 end;
6944 end if;
6945
6946 -- Only array types need any other processing
6947
6948 if not Is_Array_Type (Typ) then
6949 return;
6950 end if;
6951
6952 -- Case of array operand. If bit packed with a component size of 1,
6953 -- handle it in Exp_Pakd if the operand is known to be aligned.
6954
6955 if Is_Bit_Packed_Array (Typ)
6956 and then Component_Size (Typ) = 1
6957 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
6958 then
6959 Expand_Packed_Not (N);
6960 return;
6961 end if;
6962
6963 -- Case of array operand which is not bit-packed. If the context is
6964 -- a safe assignment, call in-place operation, If context is a larger
6965 -- boolean expression in the context of a safe assignment, expansion is
6966 -- done by enclosing operation.
6967
6968 Opnd := Relocate_Node (Right_Opnd (N));
6969 Convert_To_Actual_Subtype (Opnd);
6970 Arr := Etype (Opnd);
6971 Ensure_Defined (Arr, N);
6972 Silly_Boolean_Array_Not_Test (N, Arr);
6973
6974 if Nkind (Parent (N)) = N_Assignment_Statement then
6975 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
6976 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
6977 return;
6978
6979 -- Special case the negation of a binary operation
6980
6981 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
6982 and then Safe_In_Place_Array_Op
6983 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
6984 then
6985 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
6986 return;
6987 end if;
6988
6989 elsif Nkind (Parent (N)) in N_Binary_Op
6990 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
6991 then
6992 declare
6993 Op1 : constant Node_Id := Left_Opnd (Parent (N));
6994 Op2 : constant Node_Id := Right_Opnd (Parent (N));
6995 Lhs : constant Node_Id := Name (Parent (Parent (N)));
6996
6997 begin
6998 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
6999 if N = Op1
7000 and then Nkind (Op2) = N_Op_Not
7001 then
7002 -- (not A) op (not B) can be reduced to a single call
7003
7004 return;
7005
7006 elsif N = Op2
7007 and then Nkind (Parent (N)) = N_Op_Xor
7008 then
7009 -- A xor (not B) can also be special-cased
7010
7011 return;
7012 end if;
7013 end if;
7014 end;
7015 end if;
7016
7017 A := Make_Defining_Identifier (Loc, Name_uA);
7018 B := Make_Defining_Identifier (Loc, Name_uB);
7019 J := Make_Defining_Identifier (Loc, Name_uJ);
7020
7021 A_J :=
7022 Make_Indexed_Component (Loc,
7023 Prefix => New_Reference_To (A, Loc),
7024 Expressions => New_List (New_Reference_To (J, Loc)));
7025
7026 B_J :=
7027 Make_Indexed_Component (Loc,
7028 Prefix => New_Reference_To (B, Loc),
7029 Expressions => New_List (New_Reference_To (J, Loc)));
7030
7031 Loop_Statement :=
7032 Make_Implicit_Loop_Statement (N,
7033 Identifier => Empty,
7034
7035 Iteration_Scheme =>
7036 Make_Iteration_Scheme (Loc,
7037 Loop_Parameter_Specification =>
7038 Make_Loop_Parameter_Specification (Loc,
7039 Defining_Identifier => J,
7040 Discrete_Subtype_Definition =>
7041 Make_Attribute_Reference (Loc,
7042 Prefix => Make_Identifier (Loc, Chars (A)),
7043 Attribute_Name => Name_Range))),
7044
7045 Statements => New_List (
7046 Make_Assignment_Statement (Loc,
7047 Name => B_J,
7048 Expression => Make_Op_Not (Loc, A_J))));
7049
7050 Func_Name := Make_Temporary (Loc, 'N');
7051 Set_Is_Inlined (Func_Name);
7052
7053 Insert_Action (N,
7054 Make_Subprogram_Body (Loc,
7055 Specification =>
7056 Make_Function_Specification (Loc,
7057 Defining_Unit_Name => Func_Name,
7058 Parameter_Specifications => New_List (
7059 Make_Parameter_Specification (Loc,
7060 Defining_Identifier => A,
7061 Parameter_Type => New_Reference_To (Typ, Loc))),
7062 Result_Definition => New_Reference_To (Typ, Loc)),
7063
7064 Declarations => New_List (
7065 Make_Object_Declaration (Loc,
7066 Defining_Identifier => B,
7067 Object_Definition => New_Reference_To (Arr, Loc))),
7068
7069 Handled_Statement_Sequence =>
7070 Make_Handled_Sequence_Of_Statements (Loc,
7071 Statements => New_List (
7072 Loop_Statement,
7073 Make_Simple_Return_Statement (Loc,
7074 Expression =>
7075 Make_Identifier (Loc, Chars (B)))))));
7076
7077 Rewrite (N,
7078 Make_Function_Call (Loc,
7079 Name => New_Reference_To (Func_Name, Loc),
7080 Parameter_Associations => New_List (Opnd)));
7081
7082 Analyze_And_Resolve (N, Typ);
7083 end Expand_N_Op_Not;
7084
7085 --------------------
7086 -- Expand_N_Op_Or --
7087 --------------------
7088
7089 procedure Expand_N_Op_Or (N : Node_Id) is
7090 Typ : constant Entity_Id := Etype (N);
7091
7092 begin
7093 Binary_Op_Validity_Checks (N);
7094
7095 if Is_Array_Type (Etype (N)) then
7096 Expand_Boolean_Operator (N);
7097
7098 elsif Is_Boolean_Type (Etype (N)) then
7099
7100 -- Replace OR by OR ELSE if Short_Circuit_And_Or active and the
7101 -- type is standard Boolean (do not mess with AND that uses a non-
7102 -- standard Boolean type, because something strange is going on).
7103
7104 if Short_Circuit_And_Or and then Typ = Standard_Boolean then
7105 Rewrite (N,
7106 Make_Or_Else (Sloc (N),
7107 Left_Opnd => Relocate_Node (Left_Opnd (N)),
7108 Right_Opnd => Relocate_Node (Right_Opnd (N))));
7109 Analyze_And_Resolve (N, Typ);
7110
7111 -- Otherwise, adjust conditions
7112
7113 else
7114 Adjust_Condition (Left_Opnd (N));
7115 Adjust_Condition (Right_Opnd (N));
7116 Set_Etype (N, Standard_Boolean);
7117 Adjust_Result_Type (N, Typ);
7118 end if;
7119 end if;
7120 end Expand_N_Op_Or;
7121
7122 ----------------------
7123 -- Expand_N_Op_Plus --
7124 ----------------------
7125
7126 procedure Expand_N_Op_Plus (N : Node_Id) is
7127 begin
7128 Unary_Op_Validity_Checks (N);
7129 end Expand_N_Op_Plus;
7130
7131 ---------------------
7132 -- Expand_N_Op_Rem --
7133 ---------------------
7134
7135 procedure Expand_N_Op_Rem (N : Node_Id) is
7136 Loc : constant Source_Ptr := Sloc (N);
7137 Typ : constant Entity_Id := Etype (N);
7138
7139 Left : constant Node_Id := Left_Opnd (N);
7140 Right : constant Node_Id := Right_Opnd (N);
7141
7142 Lo : Uint;
7143 Hi : Uint;
7144 OK : Boolean;
7145
7146 Lneg : Boolean;
7147 Rneg : Boolean;
7148 -- Set if corresponding operand can be negative
7149
7150 pragma Unreferenced (Hi);
7151
7152 begin
7153 Binary_Op_Validity_Checks (N);
7154
7155 if Is_Integer_Type (Etype (N)) then
7156 Apply_Divide_Check (N);
7157 end if;
7158
7159 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
7160 -- but it is useful with other back ends (e.g. AAMP), and is certainly
7161 -- harmless.
7162
7163 if Is_Integer_Type (Etype (N))
7164 and then Compile_Time_Known_Value (Right)
7165 and then Expr_Value (Right) = Uint_1
7166 then
7167 -- Call Remove_Side_Effects to ensure that any side effects in the
7168 -- ignored left operand (in particular function calls to user defined
7169 -- functions) are properly executed.
7170
7171 Remove_Side_Effects (Left);
7172
7173 Rewrite (N, Make_Integer_Literal (Loc, 0));
7174 Analyze_And_Resolve (N, Typ);
7175 return;
7176 end if;
7177
7178 -- Deal with annoying case of largest negative number remainder minus
7179 -- one. Gigi does not handle this case correctly, because it generates
7180 -- a divide instruction which may trap in this case.
7181
7182 -- In fact the check is quite easy, if the right operand is -1, then
7183 -- the remainder is always 0, and we can just ignore the left operand
7184 -- completely in this case.
7185
7186 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
7187 Lneg := (not OK) or else Lo < 0;
7188
7189 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
7190 Rneg := (not OK) or else Lo < 0;
7191
7192 -- We won't mess with trying to find out if the left operand can really
7193 -- be the largest negative number (that's a pain in the case of private
7194 -- types and this is really marginal). We will just assume that we need
7195 -- the test if the left operand can be negative at all.
7196
7197 if Lneg and Rneg then
7198 Rewrite (N,
7199 Make_Conditional_Expression (Loc,
7200 Expressions => New_List (
7201 Make_Op_Eq (Loc,
7202 Left_Opnd => Duplicate_Subexpr (Right),
7203 Right_Opnd =>
7204 Unchecked_Convert_To (Typ,
7205 Make_Integer_Literal (Loc, -1))),
7206
7207 Unchecked_Convert_To (Typ,
7208 Make_Integer_Literal (Loc, Uint_0)),
7209
7210 Relocate_Node (N))));
7211
7212 Set_Analyzed (Next (Next (First (Expressions (N)))));
7213 Analyze_And_Resolve (N, Typ);
7214 end if;
7215 end Expand_N_Op_Rem;
7216
7217 -----------------------------
7218 -- Expand_N_Op_Rotate_Left --
7219 -----------------------------
7220
7221 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
7222 begin
7223 Binary_Op_Validity_Checks (N);
7224 end Expand_N_Op_Rotate_Left;
7225
7226 ------------------------------
7227 -- Expand_N_Op_Rotate_Right --
7228 ------------------------------
7229
7230 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
7231 begin
7232 Binary_Op_Validity_Checks (N);
7233 end Expand_N_Op_Rotate_Right;
7234
7235 ----------------------------
7236 -- Expand_N_Op_Shift_Left --
7237 ----------------------------
7238
7239 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
7240 begin
7241 Binary_Op_Validity_Checks (N);
7242 end Expand_N_Op_Shift_Left;
7243
7244 -----------------------------
7245 -- Expand_N_Op_Shift_Right --
7246 -----------------------------
7247
7248 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
7249 begin
7250 Binary_Op_Validity_Checks (N);
7251 end Expand_N_Op_Shift_Right;
7252
7253 ----------------------------------------
7254 -- Expand_N_Op_Shift_Right_Arithmetic --
7255 ----------------------------------------
7256
7257 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
7258 begin
7259 Binary_Op_Validity_Checks (N);
7260 end Expand_N_Op_Shift_Right_Arithmetic;
7261
7262 --------------------------
7263 -- Expand_N_Op_Subtract --
7264 --------------------------
7265
7266 procedure Expand_N_Op_Subtract (N : Node_Id) is
7267 Typ : constant Entity_Id := Etype (N);
7268
7269 begin
7270 Binary_Op_Validity_Checks (N);
7271
7272 -- N - 0 = N for integer types
7273
7274 if Is_Integer_Type (Typ)
7275 and then Compile_Time_Known_Value (Right_Opnd (N))
7276 and then Expr_Value (Right_Opnd (N)) = 0
7277 then
7278 Rewrite (N, Left_Opnd (N));
7279 return;
7280 end if;
7281
7282 -- Arithmetic overflow checks for signed integer/fixed point types
7283
7284 if Is_Signed_Integer_Type (Typ)
7285 or else Is_Fixed_Point_Type (Typ)
7286 then
7287 Apply_Arithmetic_Overflow_Check (N);
7288
7289 -- Vax floating-point types case
7290
7291 elsif Vax_Float (Typ) then
7292 Expand_Vax_Arith (N);
7293 end if;
7294 end Expand_N_Op_Subtract;
7295
7296 ---------------------
7297 -- Expand_N_Op_Xor --
7298 ---------------------
7299
7300 procedure Expand_N_Op_Xor (N : Node_Id) is
7301 Typ : constant Entity_Id := Etype (N);
7302
7303 begin
7304 Binary_Op_Validity_Checks (N);
7305
7306 if Is_Array_Type (Etype (N)) then
7307 Expand_Boolean_Operator (N);
7308
7309 elsif Is_Boolean_Type (Etype (N)) then
7310 Adjust_Condition (Left_Opnd (N));
7311 Adjust_Condition (Right_Opnd (N));
7312 Set_Etype (N, Standard_Boolean);
7313 Adjust_Result_Type (N, Typ);
7314 end if;
7315 end Expand_N_Op_Xor;
7316
7317 ----------------------
7318 -- Expand_N_Or_Else --
7319 ----------------------
7320
7321 procedure Expand_N_Or_Else (N : Node_Id)
7322 renames Expand_Short_Circuit_Operator;
7323
7324 -----------------------------------
7325 -- Expand_N_Qualified_Expression --
7326 -----------------------------------
7327
7328 procedure Expand_N_Qualified_Expression (N : Node_Id) is
7329 Operand : constant Node_Id := Expression (N);
7330 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
7331
7332 begin
7333 -- Do validity check if validity checking operands
7334
7335 if Validity_Checks_On
7336 and then Validity_Check_Operands
7337 then
7338 Ensure_Valid (Operand);
7339 end if;
7340
7341 -- Apply possible constraint check
7342
7343 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
7344
7345 if Do_Range_Check (Operand) then
7346 Set_Do_Range_Check (Operand, False);
7347 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
7348 end if;
7349 end Expand_N_Qualified_Expression;
7350
7351 ---------------------------------
7352 -- Expand_N_Selected_Component --
7353 ---------------------------------
7354
7355 -- If the selector is a discriminant of a concurrent object, rewrite the
7356 -- prefix to denote the corresponding record type.
7357
7358 procedure Expand_N_Selected_Component (N : Node_Id) is
7359 Loc : constant Source_Ptr := Sloc (N);
7360 Par : constant Node_Id := Parent (N);
7361 P : constant Node_Id := Prefix (N);
7362 Ptyp : Entity_Id := Underlying_Type (Etype (P));
7363 Disc : Entity_Id;
7364 New_N : Node_Id;
7365 Dcon : Elmt_Id;
7366
7367 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
7368 -- Gigi needs a temporary for prefixes that depend on a discriminant,
7369 -- unless the context of an assignment can provide size information.
7370 -- Don't we have a general routine that does this???
7371
7372 -----------------------
7373 -- In_Left_Hand_Side --
7374 -----------------------
7375
7376 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
7377 begin
7378 return (Nkind (Parent (Comp)) = N_Assignment_Statement
7379 and then Comp = Name (Parent (Comp)))
7380 or else (Present (Parent (Comp))
7381 and then Nkind (Parent (Comp)) in N_Subexpr
7382 and then In_Left_Hand_Side (Parent (Comp)));
7383 end In_Left_Hand_Side;
7384
7385 -- Start of processing for Expand_N_Selected_Component
7386
7387 begin
7388 -- Insert explicit dereference if required
7389
7390 if Is_Access_Type (Ptyp) then
7391 Insert_Explicit_Dereference (P);
7392 Analyze_And_Resolve (P, Designated_Type (Ptyp));
7393
7394 if Ekind (Etype (P)) = E_Private_Subtype
7395 and then Is_For_Access_Subtype (Etype (P))
7396 then
7397 Set_Etype (P, Base_Type (Etype (P)));
7398 end if;
7399
7400 Ptyp := Etype (P);
7401 end if;
7402
7403 -- Deal with discriminant check required
7404
7405 if Do_Discriminant_Check (N) then
7406
7407 -- Present the discriminant checking function to the backend, so that
7408 -- it can inline the call to the function.
7409
7410 Add_Inlined_Body
7411 (Discriminant_Checking_Func
7412 (Original_Record_Component (Entity (Selector_Name (N)))));
7413
7414 -- Now reset the flag and generate the call
7415
7416 Set_Do_Discriminant_Check (N, False);
7417 Generate_Discriminant_Check (N);
7418 end if;
7419
7420 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
7421 -- function, then additional actuals must be passed.
7422
7423 if Ada_Version >= Ada_05
7424 and then Is_Build_In_Place_Function_Call (P)
7425 then
7426 Make_Build_In_Place_Call_In_Anonymous_Context (P);
7427 end if;
7428
7429 -- Gigi cannot handle unchecked conversions that are the prefix of a
7430 -- selected component with discriminants. This must be checked during
7431 -- expansion, because during analysis the type of the selector is not
7432 -- known at the point the prefix is analyzed. If the conversion is the
7433 -- target of an assignment, then we cannot force the evaluation.
7434
7435 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
7436 and then Has_Discriminants (Etype (N))
7437 and then not In_Left_Hand_Side (N)
7438 then
7439 Force_Evaluation (Prefix (N));
7440 end if;
7441
7442 -- Remaining processing applies only if selector is a discriminant
7443
7444 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
7445
7446 -- If the selector is a discriminant of a constrained record type,
7447 -- we may be able to rewrite the expression with the actual value
7448 -- of the discriminant, a useful optimization in some cases.
7449
7450 if Is_Record_Type (Ptyp)
7451 and then Has_Discriminants (Ptyp)
7452 and then Is_Constrained (Ptyp)
7453 then
7454 -- Do this optimization for discrete types only, and not for
7455 -- access types (access discriminants get us into trouble!)
7456
7457 if not Is_Discrete_Type (Etype (N)) then
7458 null;
7459
7460 -- Don't do this on the left hand of an assignment statement.
7461 -- Normally one would think that references like this would
7462 -- not occur, but they do in generated code, and mean that
7463 -- we really do want to assign the discriminant!
7464
7465 elsif Nkind (Par) = N_Assignment_Statement
7466 and then Name (Par) = N
7467 then
7468 null;
7469
7470 -- Don't do this optimization for the prefix of an attribute or
7471 -- the operand of an object renaming declaration since these are
7472 -- contexts where we do not want the value anyway.
7473
7474 elsif (Nkind (Par) = N_Attribute_Reference
7475 and then Prefix (Par) = N)
7476 or else Is_Renamed_Object (N)
7477 then
7478 null;
7479
7480 -- Don't do this optimization if we are within the code for a
7481 -- discriminant check, since the whole point of such a check may
7482 -- be to verify the condition on which the code below depends!
7483
7484 elsif Is_In_Discriminant_Check (N) then
7485 null;
7486
7487 -- Green light to see if we can do the optimization. There is
7488 -- still one condition that inhibits the optimization below but
7489 -- now is the time to check the particular discriminant.
7490
7491 else
7492 -- Loop through discriminants to find the matching discriminant
7493 -- constraint to see if we can copy it.
7494
7495 Disc := First_Discriminant (Ptyp);
7496 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
7497 Discr_Loop : while Present (Dcon) loop
7498
7499 -- Check if this is the matching discriminant
7500
7501 if Disc = Entity (Selector_Name (N)) then
7502
7503 -- Here we have the matching discriminant. Check for
7504 -- the case of a discriminant of a component that is
7505 -- constrained by an outer discriminant, which cannot
7506 -- be optimized away.
7507
7508 if
7509 Denotes_Discriminant
7510 (Node (Dcon), Check_Concurrent => True)
7511 then
7512 exit Discr_Loop;
7513
7514 -- In the context of a case statement, the expression may
7515 -- have the base type of the discriminant, and we need to
7516 -- preserve the constraint to avoid spurious errors on
7517 -- missing cases.
7518
7519 elsif Nkind (Parent (N)) = N_Case_Statement
7520 and then Etype (Node (Dcon)) /= Etype (Disc)
7521 then
7522 Rewrite (N,
7523 Make_Qualified_Expression (Loc,
7524 Subtype_Mark =>
7525 New_Occurrence_Of (Etype (Disc), Loc),
7526 Expression =>
7527 New_Copy_Tree (Node (Dcon))));
7528 Analyze_And_Resolve (N, Etype (Disc));
7529
7530 -- In case that comes out as a static expression,
7531 -- reset it (a selected component is never static).
7532
7533 Set_Is_Static_Expression (N, False);
7534 return;
7535
7536 -- Otherwise we can just copy the constraint, but the
7537 -- result is certainly not static! In some cases the
7538 -- discriminant constraint has been analyzed in the
7539 -- context of the original subtype indication, but for
7540 -- itypes the constraint might not have been analyzed
7541 -- yet, and this must be done now.
7542
7543 else
7544 Rewrite (N, New_Copy_Tree (Node (Dcon)));
7545 Analyze_And_Resolve (N);
7546 Set_Is_Static_Expression (N, False);
7547 return;
7548 end if;
7549 end if;
7550
7551 Next_Elmt (Dcon);
7552 Next_Discriminant (Disc);
7553 end loop Discr_Loop;
7554
7555 -- Note: the above loop should always find a matching
7556 -- discriminant, but if it does not, we just missed an
7557 -- optimization due to some glitch (perhaps a previous error),
7558 -- so ignore.
7559
7560 end if;
7561 end if;
7562
7563 -- The only remaining processing is in the case of a discriminant of
7564 -- a concurrent object, where we rewrite the prefix to denote the
7565 -- corresponding record type. If the type is derived and has renamed
7566 -- discriminants, use corresponding discriminant, which is the one
7567 -- that appears in the corresponding record.
7568
7569 if not Is_Concurrent_Type (Ptyp) then
7570 return;
7571 end if;
7572
7573 Disc := Entity (Selector_Name (N));
7574
7575 if Is_Derived_Type (Ptyp)
7576 and then Present (Corresponding_Discriminant (Disc))
7577 then
7578 Disc := Corresponding_Discriminant (Disc);
7579 end if;
7580
7581 New_N :=
7582 Make_Selected_Component (Loc,
7583 Prefix =>
7584 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
7585 New_Copy_Tree (P)),
7586 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
7587
7588 Rewrite (N, New_N);
7589 Analyze (N);
7590 end if;
7591 end Expand_N_Selected_Component;
7592
7593 --------------------
7594 -- Expand_N_Slice --
7595 --------------------
7596
7597 procedure Expand_N_Slice (N : Node_Id) is
7598 Loc : constant Source_Ptr := Sloc (N);
7599 Typ : constant Entity_Id := Etype (N);
7600 Pfx : constant Node_Id := Prefix (N);
7601 Ptp : Entity_Id := Etype (Pfx);
7602
7603 function Is_Procedure_Actual (N : Node_Id) return Boolean;
7604 -- Check whether the argument is an actual for a procedure call, in
7605 -- which case the expansion of a bit-packed slice is deferred until the
7606 -- call itself is expanded. The reason this is required is that we might
7607 -- have an IN OUT or OUT parameter, and the copy out is essential, and
7608 -- that copy out would be missed if we created a temporary here in
7609 -- Expand_N_Slice. Note that we don't bother to test specifically for an
7610 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
7611 -- is harmless to defer expansion in the IN case, since the call
7612 -- processing will still generate the appropriate copy in operation,
7613 -- which will take care of the slice.
7614
7615 procedure Make_Temporary_For_Slice;
7616 -- Create a named variable for the value of the slice, in cases where
7617 -- the back-end cannot handle it properly, e.g. when packed types or
7618 -- unaligned slices are involved.
7619
7620 -------------------------
7621 -- Is_Procedure_Actual --
7622 -------------------------
7623
7624 function Is_Procedure_Actual (N : Node_Id) return Boolean is
7625 Par : Node_Id := Parent (N);
7626
7627 begin
7628 loop
7629 -- If our parent is a procedure call we can return
7630
7631 if Nkind (Par) = N_Procedure_Call_Statement then
7632 return True;
7633
7634 -- If our parent is a type conversion, keep climbing the tree,
7635 -- since a type conversion can be a procedure actual. Also keep
7636 -- climbing if parameter association or a qualified expression,
7637 -- since these are additional cases that do can appear on
7638 -- procedure actuals.
7639
7640 elsif Nkind_In (Par, N_Type_Conversion,
7641 N_Parameter_Association,
7642 N_Qualified_Expression)
7643 then
7644 Par := Parent (Par);
7645
7646 -- Any other case is not what we are looking for
7647
7648 else
7649 return False;
7650 end if;
7651 end loop;
7652 end Is_Procedure_Actual;
7653
7654 ------------------------------
7655 -- Make_Temporary_For_Slice --
7656 ------------------------------
7657
7658 procedure Make_Temporary_For_Slice is
7659 Decl : Node_Id;
7660 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7661 begin
7662 Decl :=
7663 Make_Object_Declaration (Loc,
7664 Defining_Identifier => Ent,
7665 Object_Definition => New_Occurrence_Of (Typ, Loc));
7666
7667 Set_No_Initialization (Decl);
7668
7669 Insert_Actions (N, New_List (
7670 Decl,
7671 Make_Assignment_Statement (Loc,
7672 Name => New_Occurrence_Of (Ent, Loc),
7673 Expression => Relocate_Node (N))));
7674
7675 Rewrite (N, New_Occurrence_Of (Ent, Loc));
7676 Analyze_And_Resolve (N, Typ);
7677 end Make_Temporary_For_Slice;
7678
7679 -- Start of processing for Expand_N_Slice
7680
7681 begin
7682 -- Special handling for access types
7683
7684 if Is_Access_Type (Ptp) then
7685
7686 Ptp := Designated_Type (Ptp);
7687
7688 Rewrite (Pfx,
7689 Make_Explicit_Dereference (Sloc (N),
7690 Prefix => Relocate_Node (Pfx)));
7691
7692 Analyze_And_Resolve (Pfx, Ptp);
7693 end if;
7694
7695 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
7696 -- function, then additional actuals must be passed.
7697
7698 if Ada_Version >= Ada_05
7699 and then Is_Build_In_Place_Function_Call (Pfx)
7700 then
7701 Make_Build_In_Place_Call_In_Anonymous_Context (Pfx);
7702 end if;
7703
7704 -- The remaining case to be handled is packed slices. We can leave
7705 -- packed slices as they are in the following situations:
7706
7707 -- 1. Right or left side of an assignment (we can handle this
7708 -- situation correctly in the assignment statement expansion).
7709
7710 -- 2. Prefix of indexed component (the slide is optimized away in this
7711 -- case, see the start of Expand_N_Slice.)
7712
7713 -- 3. Object renaming declaration, since we want the name of the
7714 -- slice, not the value.
7715
7716 -- 4. Argument to procedure call, since copy-in/copy-out handling may
7717 -- be required, and this is handled in the expansion of call
7718 -- itself.
7719
7720 -- 5. Prefix of an address attribute (this is an error which is caught
7721 -- elsewhere, and the expansion would interfere with generating the
7722 -- error message).
7723
7724 if not Is_Packed (Typ) then
7725
7726 -- Apply transformation for actuals of a function call, where
7727 -- Expand_Actuals is not used.
7728
7729 if Nkind (Parent (N)) = N_Function_Call
7730 and then Is_Possibly_Unaligned_Slice (N)
7731 then
7732 Make_Temporary_For_Slice;
7733 end if;
7734
7735 elsif Nkind (Parent (N)) = N_Assignment_Statement
7736 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
7737 and then Parent (N) = Name (Parent (Parent (N))))
7738 then
7739 return;
7740
7741 elsif Nkind (Parent (N)) = N_Indexed_Component
7742 or else Is_Renamed_Object (N)
7743 or else Is_Procedure_Actual (N)
7744 then
7745 return;
7746
7747 elsif Nkind (Parent (N)) = N_Attribute_Reference
7748 and then Attribute_Name (Parent (N)) = Name_Address
7749 then
7750 return;
7751
7752 else
7753 Make_Temporary_For_Slice;
7754 end if;
7755 end Expand_N_Slice;
7756
7757 ------------------------------
7758 -- Expand_N_Type_Conversion --
7759 ------------------------------
7760
7761 procedure Expand_N_Type_Conversion (N : Node_Id) is
7762 Loc : constant Source_Ptr := Sloc (N);
7763 Operand : constant Node_Id := Expression (N);
7764 Target_Type : constant Entity_Id := Etype (N);
7765 Operand_Type : Entity_Id := Etype (Operand);
7766
7767 procedure Handle_Changed_Representation;
7768 -- This is called in the case of record and array type conversions to
7769 -- see if there is a change of representation to be handled. Change of
7770 -- representation is actually handled at the assignment statement level,
7771 -- and what this procedure does is rewrite node N conversion as an
7772 -- assignment to temporary. If there is no change of representation,
7773 -- then the conversion node is unchanged.
7774
7775 procedure Raise_Accessibility_Error;
7776 -- Called when we know that an accessibility check will fail. Rewrites
7777 -- node N to an appropriate raise statement and outputs warning msgs.
7778 -- The Etype of the raise node is set to Target_Type.
7779
7780 procedure Real_Range_Check;
7781 -- Handles generation of range check for real target value
7782
7783 -----------------------------------
7784 -- Handle_Changed_Representation --
7785 -----------------------------------
7786
7787 procedure Handle_Changed_Representation is
7788 Temp : Entity_Id;
7789 Decl : Node_Id;
7790 Odef : Node_Id;
7791 Disc : Node_Id;
7792 N_Ix : Node_Id;
7793 Cons : List_Id;
7794
7795 begin
7796
7797 -- Nothing else to do if no change of representation
7798
7799 if Same_Representation (Operand_Type, Target_Type) then
7800 return;
7801
7802 -- The real change of representation work is done by the assignment
7803 -- statement processing. So if this type conversion is appearing as
7804 -- the expression of an assignment statement, nothing needs to be
7805 -- done to the conversion.
7806
7807 elsif Nkind (Parent (N)) = N_Assignment_Statement then
7808 return;
7809
7810 -- Otherwise we need to generate a temporary variable, and do the
7811 -- change of representation assignment into that temporary variable.
7812 -- The conversion is then replaced by a reference to this variable.
7813
7814 else
7815 Cons := No_List;
7816
7817 -- If type is unconstrained we have to add a constraint, copied
7818 -- from the actual value of the left hand side.
7819
7820 if not Is_Constrained (Target_Type) then
7821 if Has_Discriminants (Operand_Type) then
7822 Disc := First_Discriminant (Operand_Type);
7823
7824 if Disc /= First_Stored_Discriminant (Operand_Type) then
7825 Disc := First_Stored_Discriminant (Operand_Type);
7826 end if;
7827
7828 Cons := New_List;
7829 while Present (Disc) loop
7830 Append_To (Cons,
7831 Make_Selected_Component (Loc,
7832 Prefix => Duplicate_Subexpr_Move_Checks (Operand),
7833 Selector_Name =>
7834 Make_Identifier (Loc, Chars (Disc))));
7835 Next_Discriminant (Disc);
7836 end loop;
7837
7838 elsif Is_Array_Type (Operand_Type) then
7839 N_Ix := First_Index (Target_Type);
7840 Cons := New_List;
7841
7842 for J in 1 .. Number_Dimensions (Operand_Type) loop
7843
7844 -- We convert the bounds explicitly. We use an unchecked
7845 -- conversion because bounds checks are done elsewhere.
7846
7847 Append_To (Cons,
7848 Make_Range (Loc,
7849 Low_Bound =>
7850 Unchecked_Convert_To (Etype (N_Ix),
7851 Make_Attribute_Reference (Loc,
7852 Prefix =>
7853 Duplicate_Subexpr_No_Checks
7854 (Operand, Name_Req => True),
7855 Attribute_Name => Name_First,
7856 Expressions => New_List (
7857 Make_Integer_Literal (Loc, J)))),
7858
7859 High_Bound =>
7860 Unchecked_Convert_To (Etype (N_Ix),
7861 Make_Attribute_Reference (Loc,
7862 Prefix =>
7863 Duplicate_Subexpr_No_Checks
7864 (Operand, Name_Req => True),
7865 Attribute_Name => Name_Last,
7866 Expressions => New_List (
7867 Make_Integer_Literal (Loc, J))))));
7868
7869 Next_Index (N_Ix);
7870 end loop;
7871 end if;
7872 end if;
7873
7874 Odef := New_Occurrence_Of (Target_Type, Loc);
7875
7876 if Present (Cons) then
7877 Odef :=
7878 Make_Subtype_Indication (Loc,
7879 Subtype_Mark => Odef,
7880 Constraint =>
7881 Make_Index_Or_Discriminant_Constraint (Loc,
7882 Constraints => Cons));
7883 end if;
7884
7885 Temp := Make_Temporary (Loc, 'C');
7886 Decl :=
7887 Make_Object_Declaration (Loc,
7888 Defining_Identifier => Temp,
7889 Object_Definition => Odef);
7890
7891 Set_No_Initialization (Decl, True);
7892
7893 -- Insert required actions. It is essential to suppress checks
7894 -- since we have suppressed default initialization, which means
7895 -- that the variable we create may have no discriminants.
7896
7897 Insert_Actions (N,
7898 New_List (
7899 Decl,
7900 Make_Assignment_Statement (Loc,
7901 Name => New_Occurrence_Of (Temp, Loc),
7902 Expression => Relocate_Node (N))),
7903 Suppress => All_Checks);
7904
7905 Rewrite (N, New_Occurrence_Of (Temp, Loc));
7906 return;
7907 end if;
7908 end Handle_Changed_Representation;
7909
7910 -------------------------------
7911 -- Raise_Accessibility_Error --
7912 -------------------------------
7913
7914 procedure Raise_Accessibility_Error is
7915 begin
7916 Rewrite (N,
7917 Make_Raise_Program_Error (Sloc (N),
7918 Reason => PE_Accessibility_Check_Failed));
7919 Set_Etype (N, Target_Type);
7920
7921 Error_Msg_N ("?accessibility check failure", N);
7922 Error_Msg_NE
7923 ("\?& will be raised at run time", N, Standard_Program_Error);
7924 end Raise_Accessibility_Error;
7925
7926 ----------------------
7927 -- Real_Range_Check --
7928 ----------------------
7929
7930 -- Case of conversions to floating-point or fixed-point. If range checks
7931 -- are enabled and the target type has a range constraint, we convert:
7932
7933 -- typ (x)
7934
7935 -- to
7936
7937 -- Tnn : typ'Base := typ'Base (x);
7938 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
7939 -- Tnn
7940
7941 -- This is necessary when there is a conversion of integer to float or
7942 -- to fixed-point to ensure that the correct checks are made. It is not
7943 -- necessary for float to float where it is enough to simply set the
7944 -- Do_Range_Check flag.
7945
7946 procedure Real_Range_Check is
7947 Btyp : constant Entity_Id := Base_Type (Target_Type);
7948 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
7949 Hi : constant Node_Id := Type_High_Bound (Target_Type);
7950 Xtyp : constant Entity_Id := Etype (Operand);
7951 Conv : Node_Id;
7952 Tnn : Entity_Id;
7953
7954 begin
7955 -- Nothing to do if conversion was rewritten
7956
7957 if Nkind (N) /= N_Type_Conversion then
7958 return;
7959 end if;
7960
7961 -- Nothing to do if range checks suppressed, or target has the same
7962 -- range as the base type (or is the base type).
7963
7964 if Range_Checks_Suppressed (Target_Type)
7965 or else (Lo = Type_Low_Bound (Btyp)
7966 and then
7967 Hi = Type_High_Bound (Btyp))
7968 then
7969 return;
7970 end if;
7971
7972 -- Nothing to do if expression is an entity on which checks have been
7973 -- suppressed.
7974
7975 if Is_Entity_Name (Operand)
7976 and then Range_Checks_Suppressed (Entity (Operand))
7977 then
7978 return;
7979 end if;
7980
7981 -- Nothing to do if bounds are all static and we can tell that the
7982 -- expression is within the bounds of the target. Note that if the
7983 -- operand is of an unconstrained floating-point type, then we do
7984 -- not trust it to be in range (might be infinite)
7985
7986 declare
7987 S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
7988 S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
7989
7990 begin
7991 if (not Is_Floating_Point_Type (Xtyp)
7992 or else Is_Constrained (Xtyp))
7993 and then Compile_Time_Known_Value (S_Lo)
7994 and then Compile_Time_Known_Value (S_Hi)
7995 and then Compile_Time_Known_Value (Hi)
7996 and then Compile_Time_Known_Value (Lo)
7997 then
7998 declare
7999 D_Lov : constant Ureal := Expr_Value_R (Lo);
8000 D_Hiv : constant Ureal := Expr_Value_R (Hi);
8001 S_Lov : Ureal;
8002 S_Hiv : Ureal;
8003
8004 begin
8005 if Is_Real_Type (Xtyp) then
8006 S_Lov := Expr_Value_R (S_Lo);
8007 S_Hiv := Expr_Value_R (S_Hi);
8008 else
8009 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
8010 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
8011 end if;
8012
8013 if D_Hiv > D_Lov
8014 and then S_Lov >= D_Lov
8015 and then S_Hiv <= D_Hiv
8016 then
8017 Set_Do_Range_Check (Operand, False);
8018 return;
8019 end if;
8020 end;
8021 end if;
8022 end;
8023
8024 -- For float to float conversions, we are done
8025
8026 if Is_Floating_Point_Type (Xtyp)
8027 and then
8028 Is_Floating_Point_Type (Btyp)
8029 then
8030 return;
8031 end if;
8032
8033 -- Otherwise rewrite the conversion as described above
8034
8035 Conv := Relocate_Node (N);
8036 Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
8037 Set_Etype (Conv, Btyp);
8038
8039 -- Enable overflow except for case of integer to float conversions,
8040 -- where it is never required, since we can never have overflow in
8041 -- this case.
8042
8043 if not Is_Integer_Type (Etype (Operand)) then
8044 Enable_Overflow_Check (Conv);
8045 end if;
8046
8047 Tnn := Make_Temporary (Loc, 'T', Conv);
8048
8049 Insert_Actions (N, New_List (
8050 Make_Object_Declaration (Loc,
8051 Defining_Identifier => Tnn,
8052 Object_Definition => New_Occurrence_Of (Btyp, Loc),
8053 Expression => Conv),
8054
8055 Make_Raise_Constraint_Error (Loc,
8056 Condition =>
8057 Make_Or_Else (Loc,
8058 Left_Opnd =>
8059 Make_Op_Lt (Loc,
8060 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8061 Right_Opnd =>
8062 Make_Attribute_Reference (Loc,
8063 Attribute_Name => Name_First,
8064 Prefix =>
8065 New_Occurrence_Of (Target_Type, Loc))),
8066
8067 Right_Opnd =>
8068 Make_Op_Gt (Loc,
8069 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8070 Right_Opnd =>
8071 Make_Attribute_Reference (Loc,
8072 Attribute_Name => Name_Last,
8073 Prefix =>
8074 New_Occurrence_Of (Target_Type, Loc)))),
8075 Reason => CE_Range_Check_Failed)));
8076
8077 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
8078 Analyze_And_Resolve (N, Btyp);
8079 end Real_Range_Check;
8080
8081 -- Start of processing for Expand_N_Type_Conversion
8082
8083 begin
8084 -- Nothing at all to do if conversion is to the identical type so remove
8085 -- the conversion completely, it is useless, except that it may carry
8086 -- an Assignment_OK attribute, which must be propagated to the operand.
8087
8088 if Operand_Type = Target_Type then
8089 if Assignment_OK (N) then
8090 Set_Assignment_OK (Operand);
8091 end if;
8092
8093 Rewrite (N, Relocate_Node (Operand));
8094 return;
8095 end if;
8096
8097 -- Nothing to do if this is the second argument of read. This is a
8098 -- "backwards" conversion that will be handled by the specialized code
8099 -- in attribute processing.
8100
8101 if Nkind (Parent (N)) = N_Attribute_Reference
8102 and then Attribute_Name (Parent (N)) = Name_Read
8103 and then Next (First (Expressions (Parent (N)))) = N
8104 then
8105 return;
8106 end if;
8107
8108 -- Here if we may need to expand conversion
8109
8110 -- If the operand of the type conversion is an arithmetic operation on
8111 -- signed integers, and the based type of the signed integer type in
8112 -- question is smaller than Standard.Integer, we promote both of the
8113 -- operands to type Integer.
8114
8115 -- For example, if we have
8116
8117 -- target-type (opnd1 + opnd2)
8118
8119 -- and opnd1 and opnd2 are of type short integer, then we rewrite
8120 -- this as:
8121
8122 -- target-type (integer(opnd1) + integer(opnd2))
8123
8124 -- We do this because we are always allowed to compute in a larger type
8125 -- if we do the right thing with the result, and in this case we are
8126 -- going to do a conversion which will do an appropriate check to make
8127 -- sure that things are in range of the target type in any case. This
8128 -- avoids some unnecessary intermediate overflows.
8129
8130 -- We might consider a similar transformation in the case where the
8131 -- target is a real type or a 64-bit integer type, and the operand
8132 -- is an arithmetic operation using a 32-bit integer type. However,
8133 -- we do not bother with this case, because it could cause significant
8134 -- ineffiencies on 32-bit machines. On a 64-bit machine it would be
8135 -- much cheaper, but we don't want different behavior on 32-bit and
8136 -- 64-bit machines. Note that the exclusion of the 64-bit case also
8137 -- handles the configurable run-time cases where 64-bit arithmetic
8138 -- may simply be unavailable.
8139
8140 -- Note: this circuit is partially redundant with respect to the circuit
8141 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
8142 -- the processing here. Also we still need the Checks circuit, since we
8143 -- have to be sure not to generate junk overflow checks in the first
8144 -- place, since it would be trick to remove them here!
8145
8146 if Integer_Promotion_Possible (N) then
8147
8148 -- All conditions met, go ahead with transformation
8149
8150 declare
8151 Opnd : Node_Id;
8152 L, R : Node_Id;
8153
8154 begin
8155 R :=
8156 Make_Type_Conversion (Loc,
8157 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
8158 Expression => Relocate_Node (Right_Opnd (Operand)));
8159
8160 Opnd := New_Op_Node (Nkind (Operand), Loc);
8161 Set_Right_Opnd (Opnd, R);
8162
8163 if Nkind (Operand) in N_Binary_Op then
8164 L :=
8165 Make_Type_Conversion (Loc,
8166 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
8167 Expression => Relocate_Node (Left_Opnd (Operand)));
8168
8169 Set_Left_Opnd (Opnd, L);
8170 end if;
8171
8172 Rewrite (N,
8173 Make_Type_Conversion (Loc,
8174 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
8175 Expression => Opnd));
8176
8177 Analyze_And_Resolve (N, Target_Type);
8178 return;
8179 end;
8180 end if;
8181
8182 -- Do validity check if validity checking operands
8183
8184 if Validity_Checks_On
8185 and then Validity_Check_Operands
8186 then
8187 Ensure_Valid (Operand);
8188 end if;
8189
8190 -- Special case of converting from non-standard boolean type
8191
8192 if Is_Boolean_Type (Operand_Type)
8193 and then (Nonzero_Is_True (Operand_Type))
8194 then
8195 Adjust_Condition (Operand);
8196 Set_Etype (Operand, Standard_Boolean);
8197 Operand_Type := Standard_Boolean;
8198 end if;
8199
8200 -- Case of converting to an access type
8201
8202 if Is_Access_Type (Target_Type) then
8203
8204 -- Apply an accessibility check when the conversion operand is an
8205 -- access parameter (or a renaming thereof), unless conversion was
8206 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
8207 -- Note that other checks may still need to be applied below (such
8208 -- as tagged type checks).
8209
8210 if Is_Entity_Name (Operand)
8211 and then
8212 (Is_Formal (Entity (Operand))
8213 or else
8214 (Present (Renamed_Object (Entity (Operand)))
8215 and then Is_Entity_Name (Renamed_Object (Entity (Operand)))
8216 and then Is_Formal
8217 (Entity (Renamed_Object (Entity (Operand))))))
8218 and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
8219 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
8220 or else Attribute_Name (Original_Node (N)) = Name_Access)
8221 then
8222 Apply_Accessibility_Check
8223 (Operand, Target_Type, Insert_Node => Operand);
8224
8225 -- If the level of the operand type is statically deeper than the
8226 -- level of the target type, then force Program_Error. Note that this
8227 -- can only occur for cases where the attribute is within the body of
8228 -- an instantiation (otherwise the conversion will already have been
8229 -- rejected as illegal). Note: warnings are issued by the analyzer
8230 -- for the instance cases.
8231
8232 elsif In_Instance_Body
8233 and then Type_Access_Level (Operand_Type) >
8234 Type_Access_Level (Target_Type)
8235 then
8236 Raise_Accessibility_Error;
8237
8238 -- When the operand is a selected access discriminant the check needs
8239 -- to be made against the level of the object denoted by the prefix
8240 -- of the selected name. Force Program_Error for this case as well
8241 -- (this accessibility violation can only happen if within the body
8242 -- of an instantiation).
8243
8244 elsif In_Instance_Body
8245 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
8246 and then Nkind (Operand) = N_Selected_Component
8247 and then Object_Access_Level (Operand) >
8248 Type_Access_Level (Target_Type)
8249 then
8250 Raise_Accessibility_Error;
8251 return;
8252 end if;
8253 end if;
8254
8255 -- Case of conversions of tagged types and access to tagged types
8256
8257 -- When needed, that is to say when the expression is class-wide, Add
8258 -- runtime a tag check for (strict) downward conversion by using the
8259 -- membership test, generating:
8260
8261 -- [constraint_error when Operand not in Target_Type'Class]
8262
8263 -- or in the access type case
8264
8265 -- [constraint_error
8266 -- when Operand /= null
8267 -- and then Operand.all not in
8268 -- Designated_Type (Target_Type)'Class]
8269
8270 if (Is_Access_Type (Target_Type)
8271 and then Is_Tagged_Type (Designated_Type (Target_Type)))
8272 or else Is_Tagged_Type (Target_Type)
8273 then
8274 -- Do not do any expansion in the access type case if the parent is a
8275 -- renaming, since this is an error situation which will be caught by
8276 -- Sem_Ch8, and the expansion can interfere with this error check.
8277
8278 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
8279 return;
8280 end if;
8281
8282 -- Otherwise, proceed with processing tagged conversion
8283
8284 Tagged_Conversion : declare
8285 Actual_Op_Typ : Entity_Id;
8286 Actual_Targ_Typ : Entity_Id;
8287 Make_Conversion : Boolean := False;
8288 Root_Op_Typ : Entity_Id;
8289
8290 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
8291 -- Create a membership check to test whether Operand is a member
8292 -- of Targ_Typ. If the original Target_Type is an access, include
8293 -- a test for null value. The check is inserted at N.
8294
8295 --------------------
8296 -- Make_Tag_Check --
8297 --------------------
8298
8299 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
8300 Cond : Node_Id;
8301
8302 begin
8303 -- Generate:
8304 -- [Constraint_Error
8305 -- when Operand /= null
8306 -- and then Operand.all not in Targ_Typ]
8307
8308 if Is_Access_Type (Target_Type) then
8309 Cond :=
8310 Make_And_Then (Loc,
8311 Left_Opnd =>
8312 Make_Op_Ne (Loc,
8313 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
8314 Right_Opnd => Make_Null (Loc)),
8315
8316 Right_Opnd =>
8317 Make_Not_In (Loc,
8318 Left_Opnd =>
8319 Make_Explicit_Dereference (Loc,
8320 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
8321 Right_Opnd => New_Reference_To (Targ_Typ, Loc)));
8322
8323 -- Generate:
8324 -- [Constraint_Error when Operand not in Targ_Typ]
8325
8326 else
8327 Cond :=
8328 Make_Not_In (Loc,
8329 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
8330 Right_Opnd => New_Reference_To (Targ_Typ, Loc));
8331 end if;
8332
8333 Insert_Action (N,
8334 Make_Raise_Constraint_Error (Loc,
8335 Condition => Cond,
8336 Reason => CE_Tag_Check_Failed));
8337 end Make_Tag_Check;
8338
8339 -- Start of processing for Tagged_Conversion
8340
8341 begin
8342 if Is_Access_Type (Target_Type) then
8343
8344 -- Handle entities from the limited view
8345
8346 Actual_Op_Typ :=
8347 Available_View (Designated_Type (Operand_Type));
8348 Actual_Targ_Typ :=
8349 Available_View (Designated_Type (Target_Type));
8350 else
8351 Actual_Op_Typ := Operand_Type;
8352 Actual_Targ_Typ := Target_Type;
8353 end if;
8354
8355 Root_Op_Typ := Root_Type (Actual_Op_Typ);
8356
8357 -- Ada 2005 (AI-251): Handle interface type conversion
8358
8359 if Is_Interface (Actual_Op_Typ) then
8360 Expand_Interface_Conversion (N, Is_Static => False);
8361 return;
8362 end if;
8363
8364 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
8365
8366 -- Create a runtime tag check for a downward class-wide type
8367 -- conversion.
8368
8369 if Is_Class_Wide_Type (Actual_Op_Typ)
8370 and then Actual_Op_Typ /= Actual_Targ_Typ
8371 and then Root_Op_Typ /= Actual_Targ_Typ
8372 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ)
8373 then
8374 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
8375 Make_Conversion := True;
8376 end if;
8377
8378 -- AI05-0073: If the result subtype of the function is defined
8379 -- by an access_definition designating a specific tagged type
8380 -- T, a check is made that the result value is null or the tag
8381 -- of the object designated by the result value identifies T.
8382 -- Constraint_Error is raised if this check fails.
8383
8384 if Nkind (Parent (N)) = Sinfo.N_Return_Statement then
8385 declare
8386 Func : Entity_Id;
8387 Func_Typ : Entity_Id;
8388
8389 begin
8390 -- Climb scope stack looking for the enclosing function
8391
8392 Func := Current_Scope;
8393 while Present (Func)
8394 and then Ekind (Func) /= E_Function
8395 loop
8396 Func := Scope (Func);
8397 end loop;
8398
8399 -- The function's return subtype must be defined using
8400 -- an access definition.
8401
8402 if Nkind (Result_Definition (Parent (Func))) =
8403 N_Access_Definition
8404 then
8405 Func_Typ := Directly_Designated_Type (Etype (Func));
8406
8407 -- The return subtype denotes a specific tagged type,
8408 -- in other words, a non class-wide type.
8409
8410 if Is_Tagged_Type (Func_Typ)
8411 and then not Is_Class_Wide_Type (Func_Typ)
8412 then
8413 Make_Tag_Check (Actual_Targ_Typ);
8414 Make_Conversion := True;
8415 end if;
8416 end if;
8417 end;
8418 end if;
8419
8420 -- We have generated a tag check for either a class-wide type
8421 -- conversion or for AI05-0073.
8422
8423 if Make_Conversion then
8424 declare
8425 Conv : Node_Id;
8426 begin
8427 Conv :=
8428 Make_Unchecked_Type_Conversion (Loc,
8429 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
8430 Expression => Relocate_Node (Expression (N)));
8431 Rewrite (N, Conv);
8432 Analyze_And_Resolve (N, Target_Type);
8433 end;
8434 end if;
8435 end if;
8436 end Tagged_Conversion;
8437
8438 -- Case of other access type conversions
8439
8440 elsif Is_Access_Type (Target_Type) then
8441 Apply_Constraint_Check (Operand, Target_Type);
8442
8443 -- Case of conversions from a fixed-point type
8444
8445 -- These conversions require special expansion and processing, found in
8446 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
8447 -- since from a semantic point of view, these are simple integer
8448 -- conversions, which do not need further processing.
8449
8450 elsif Is_Fixed_Point_Type (Operand_Type)
8451 and then not Conversion_OK (N)
8452 then
8453 -- We should never see universal fixed at this case, since the
8454 -- expansion of the constituent divide or multiply should have
8455 -- eliminated the explicit mention of universal fixed.
8456
8457 pragma Assert (Operand_Type /= Universal_Fixed);
8458
8459 -- Check for special case of the conversion to universal real that
8460 -- occurs as a result of the use of a round attribute. In this case,
8461 -- the real type for the conversion is taken from the target type of
8462 -- the Round attribute and the result must be marked as rounded.
8463
8464 if Target_Type = Universal_Real
8465 and then Nkind (Parent (N)) = N_Attribute_Reference
8466 and then Attribute_Name (Parent (N)) = Name_Round
8467 then
8468 Set_Rounded_Result (N);
8469 Set_Etype (N, Etype (Parent (N)));
8470 end if;
8471
8472 -- Otherwise do correct fixed-conversion, but skip these if the
8473 -- Conversion_OK flag is set, because from a semantic point of view
8474 -- these are simple integer conversions needing no further processing
8475 -- (the backend will simply treat them as integers).
8476
8477 if not Conversion_OK (N) then
8478 if Is_Fixed_Point_Type (Etype (N)) then
8479 Expand_Convert_Fixed_To_Fixed (N);
8480 Real_Range_Check;
8481
8482 elsif Is_Integer_Type (Etype (N)) then
8483 Expand_Convert_Fixed_To_Integer (N);
8484
8485 else
8486 pragma Assert (Is_Floating_Point_Type (Etype (N)));
8487 Expand_Convert_Fixed_To_Float (N);
8488 Real_Range_Check;
8489 end if;
8490 end if;
8491
8492 -- Case of conversions to a fixed-point type
8493
8494 -- These conversions require special expansion and processing, found in
8495 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
8496 -- since from a semantic point of view, these are simple integer
8497 -- conversions, which do not need further processing.
8498
8499 elsif Is_Fixed_Point_Type (Target_Type)
8500 and then not Conversion_OK (N)
8501 then
8502 if Is_Integer_Type (Operand_Type) then
8503 Expand_Convert_Integer_To_Fixed (N);
8504 Real_Range_Check;
8505 else
8506 pragma Assert (Is_Floating_Point_Type (Operand_Type));
8507 Expand_Convert_Float_To_Fixed (N);
8508 Real_Range_Check;
8509 end if;
8510
8511 -- Case of float-to-integer conversions
8512
8513 -- We also handle float-to-fixed conversions with Conversion_OK set
8514 -- since semantically the fixed-point target is treated as though it
8515 -- were an integer in such cases.
8516
8517 elsif Is_Floating_Point_Type (Operand_Type)
8518 and then
8519 (Is_Integer_Type (Target_Type)
8520 or else
8521 (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
8522 then
8523 -- One more check here, gcc is still not able to do conversions of
8524 -- this type with proper overflow checking, and so gigi is doing an
8525 -- approximation of what is required by doing floating-point compares
8526 -- with the end-point. But that can lose precision in some cases, and
8527 -- give a wrong result. Converting the operand to Universal_Real is
8528 -- helpful, but still does not catch all cases with 64-bit integers
8529 -- on targets with only 64-bit floats.
8530
8531 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
8532 -- Can this code be removed ???
8533
8534 if Do_Range_Check (Operand) then
8535 Rewrite (Operand,
8536 Make_Type_Conversion (Loc,
8537 Subtype_Mark =>
8538 New_Occurrence_Of (Universal_Real, Loc),
8539 Expression =>
8540 Relocate_Node (Operand)));
8541
8542 Set_Etype (Operand, Universal_Real);
8543 Enable_Range_Check (Operand);
8544 Set_Do_Range_Check (Expression (Operand), False);
8545 end if;
8546
8547 -- Case of array conversions
8548
8549 -- Expansion of array conversions, add required length/range checks but
8550 -- only do this if there is no change of representation. For handling of
8551 -- this case, see Handle_Changed_Representation.
8552
8553 elsif Is_Array_Type (Target_Type) then
8554
8555 if Is_Constrained (Target_Type) then
8556 Apply_Length_Check (Operand, Target_Type);
8557 else
8558 Apply_Range_Check (Operand, Target_Type);
8559 end if;
8560
8561 Handle_Changed_Representation;
8562
8563 -- Case of conversions of discriminated types
8564
8565 -- Add required discriminant checks if target is constrained. Again this
8566 -- change is skipped if we have a change of representation.
8567
8568 elsif Has_Discriminants (Target_Type)
8569 and then Is_Constrained (Target_Type)
8570 then
8571 Apply_Discriminant_Check (Operand, Target_Type);
8572 Handle_Changed_Representation;
8573
8574 -- Case of all other record conversions. The only processing required
8575 -- is to check for a change of representation requiring the special
8576 -- assignment processing.
8577
8578 elsif Is_Record_Type (Target_Type) then
8579
8580 -- Ada 2005 (AI-216): Program_Error is raised when converting from
8581 -- a derived Unchecked_Union type to an unconstrained type that is
8582 -- not Unchecked_Union if the operand lacks inferable discriminants.
8583
8584 if Is_Derived_Type (Operand_Type)
8585 and then Is_Unchecked_Union (Base_Type (Operand_Type))
8586 and then not Is_Constrained (Target_Type)
8587 and then not Is_Unchecked_Union (Base_Type (Target_Type))
8588 and then not Has_Inferable_Discriminants (Operand)
8589 then
8590 -- To prevent Gigi from generating illegal code, we generate a
8591 -- Program_Error node, but we give it the target type of the
8592 -- conversion.
8593
8594 declare
8595 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
8596 Reason => PE_Unchecked_Union_Restriction);
8597
8598 begin
8599 Set_Etype (PE, Target_Type);
8600 Rewrite (N, PE);
8601
8602 end;
8603 else
8604 Handle_Changed_Representation;
8605 end if;
8606
8607 -- Case of conversions of enumeration types
8608
8609 elsif Is_Enumeration_Type (Target_Type) then
8610
8611 -- Special processing is required if there is a change of
8612 -- representation (from enumeration representation clauses).
8613
8614 if not Same_Representation (Target_Type, Operand_Type) then
8615
8616 -- Convert: x(y) to x'val (ytyp'val (y))
8617
8618 Rewrite (N,
8619 Make_Attribute_Reference (Loc,
8620 Prefix => New_Occurrence_Of (Target_Type, Loc),
8621 Attribute_Name => Name_Val,
8622 Expressions => New_List (
8623 Make_Attribute_Reference (Loc,
8624 Prefix => New_Occurrence_Of (Operand_Type, Loc),
8625 Attribute_Name => Name_Pos,
8626 Expressions => New_List (Operand)))));
8627
8628 Analyze_And_Resolve (N, Target_Type);
8629 end if;
8630
8631 -- Case of conversions to floating-point
8632
8633 elsif Is_Floating_Point_Type (Target_Type) then
8634 Real_Range_Check;
8635 end if;
8636
8637 -- At this stage, either the conversion node has been transformed into
8638 -- some other equivalent expression, or left as a conversion that can be
8639 -- handled by Gigi, in the following cases:
8640
8641 -- Conversions with no change of representation or type
8642
8643 -- Numeric conversions involving integer, floating- and fixed-point
8644 -- values. Fixed-point values are allowed only if Conversion_OK is
8645 -- set, i.e. if the fixed-point values are to be treated as integers.
8646
8647 -- No other conversions should be passed to Gigi
8648
8649 -- Check: are these rules stated in sinfo??? if so, why restate here???
8650
8651 -- The only remaining step is to generate a range check if we still have
8652 -- a type conversion at this stage and Do_Range_Check is set. For now we
8653 -- do this only for conversions of discrete types.
8654
8655 if Nkind (N) = N_Type_Conversion
8656 and then Is_Discrete_Type (Etype (N))
8657 then
8658 declare
8659 Expr : constant Node_Id := Expression (N);
8660 Ftyp : Entity_Id;
8661 Ityp : Entity_Id;
8662
8663 begin
8664 if Do_Range_Check (Expr)
8665 and then Is_Discrete_Type (Etype (Expr))
8666 then
8667 Set_Do_Range_Check (Expr, False);
8668
8669 -- Before we do a range check, we have to deal with treating a
8670 -- fixed-point operand as an integer. The way we do this is
8671 -- simply to do an unchecked conversion to an appropriate
8672 -- integer type large enough to hold the result.
8673
8674 -- This code is not active yet, because we are only dealing
8675 -- with discrete types so far ???
8676
8677 if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
8678 and then Treat_Fixed_As_Integer (Expr)
8679 then
8680 Ftyp := Base_Type (Etype (Expr));
8681
8682 if Esize (Ftyp) >= Esize (Standard_Integer) then
8683 Ityp := Standard_Long_Long_Integer;
8684 else
8685 Ityp := Standard_Integer;
8686 end if;
8687
8688 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
8689 end if;
8690
8691 -- Reset overflow flag, since the range check will include
8692 -- dealing with possible overflow, and generate the check. If
8693 -- Address is either a source type or target type, suppress
8694 -- range check to avoid typing anomalies when it is a visible
8695 -- integer type.
8696
8697 Set_Do_Overflow_Check (N, False);
8698 if not Is_Descendent_Of_Address (Etype (Expr))
8699 and then not Is_Descendent_Of_Address (Target_Type)
8700 then
8701 Generate_Range_Check
8702 (Expr, Target_Type, CE_Range_Check_Failed);
8703 end if;
8704 end if;
8705 end;
8706 end if;
8707
8708 -- Final step, if the result is a type conversion involving Vax_Float
8709 -- types, then it is subject for further special processing.
8710
8711 if Nkind (N) = N_Type_Conversion
8712 and then (Vax_Float (Operand_Type) or else Vax_Float (Target_Type))
8713 then
8714 Expand_Vax_Conversion (N);
8715 return;
8716 end if;
8717 end Expand_N_Type_Conversion;
8718
8719 -----------------------------------
8720 -- Expand_N_Unchecked_Expression --
8721 -----------------------------------
8722
8723 -- Remove the unchecked expression node from the tree. Its job was simply
8724 -- to make sure that its constituent expression was handled with checks
8725 -- off, and now that that is done, we can remove it from the tree, and
8726 -- indeed must, since Gigi does not expect to see these nodes.
8727
8728 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
8729 Exp : constant Node_Id := Expression (N);
8730
8731 begin
8732 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
8733 Rewrite (N, Exp);
8734 end Expand_N_Unchecked_Expression;
8735
8736 ----------------------------------------
8737 -- Expand_N_Unchecked_Type_Conversion --
8738 ----------------------------------------
8739
8740 -- If this cannot be handled by Gigi and we haven't already made a
8741 -- temporary for it, do it now.
8742
8743 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
8744 Target_Type : constant Entity_Id := Etype (N);
8745 Operand : constant Node_Id := Expression (N);
8746 Operand_Type : constant Entity_Id := Etype (Operand);
8747
8748 begin
8749 -- Nothing at all to do if conversion is to the identical type so remove
8750 -- the conversion completely, it is useless, except that it may carry
8751 -- an Assignment_OK indication which must be propagated to the operand.
8752
8753 if Operand_Type = Target_Type then
8754 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
8755
8756 if Assignment_OK (N) then
8757 Set_Assignment_OK (Operand);
8758 end if;
8759
8760 Rewrite (N, Relocate_Node (Operand));
8761 return;
8762 end if;
8763
8764 -- If we have a conversion of a compile time known value to a target
8765 -- type and the value is in range of the target type, then we can simply
8766 -- replace the construct by an integer literal of the correct type. We
8767 -- only apply this to integer types being converted. Possibly it may
8768 -- apply in other cases, but it is too much trouble to worry about.
8769
8770 -- Note that we do not do this transformation if the Kill_Range_Check
8771 -- flag is set, since then the value may be outside the expected range.
8772 -- This happens in the Normalize_Scalars case.
8773
8774 -- We also skip this if either the target or operand type is biased
8775 -- because in this case, the unchecked conversion is supposed to
8776 -- preserve the bit pattern, not the integer value.
8777
8778 if Is_Integer_Type (Target_Type)
8779 and then not Has_Biased_Representation (Target_Type)
8780 and then Is_Integer_Type (Operand_Type)
8781 and then not Has_Biased_Representation (Operand_Type)
8782 and then Compile_Time_Known_Value (Operand)
8783 and then not Kill_Range_Check (N)
8784 then
8785 declare
8786 Val : constant Uint := Expr_Value (Operand);
8787
8788 begin
8789 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
8790 and then
8791 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
8792 and then
8793 Val >= Expr_Value (Type_Low_Bound (Target_Type))
8794 and then
8795 Val <= Expr_Value (Type_High_Bound (Target_Type))
8796 then
8797 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
8798
8799 -- If Address is the target type, just set the type to avoid a
8800 -- spurious type error on the literal when Address is a visible
8801 -- integer type.
8802
8803 if Is_Descendent_Of_Address (Target_Type) then
8804 Set_Etype (N, Target_Type);
8805 else
8806 Analyze_And_Resolve (N, Target_Type);
8807 end if;
8808
8809 return;
8810 end if;
8811 end;
8812 end if;
8813
8814 -- Nothing to do if conversion is safe
8815
8816 if Safe_Unchecked_Type_Conversion (N) then
8817 return;
8818 end if;
8819
8820 -- Otherwise force evaluation unless Assignment_OK flag is set (this
8821 -- flag indicates ??? -- more comments needed here)
8822
8823 if Assignment_OK (N) then
8824 null;
8825 else
8826 Force_Evaluation (N);
8827 end if;
8828 end Expand_N_Unchecked_Type_Conversion;
8829
8830 ----------------------------
8831 -- Expand_Record_Equality --
8832 ----------------------------
8833
8834 -- For non-variant records, Equality is expanded when needed into:
8835
8836 -- and then Lhs.Discr1 = Rhs.Discr1
8837 -- and then ...
8838 -- and then Lhs.Discrn = Rhs.Discrn
8839 -- and then Lhs.Cmp1 = Rhs.Cmp1
8840 -- and then ...
8841 -- and then Lhs.Cmpn = Rhs.Cmpn
8842
8843 -- The expression is folded by the back-end for adjacent fields. This
8844 -- function is called for tagged record in only one occasion: for imple-
8845 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
8846 -- otherwise the primitive "=" is used directly.
8847
8848 function Expand_Record_Equality
8849 (Nod : Node_Id;
8850 Typ : Entity_Id;
8851 Lhs : Node_Id;
8852 Rhs : Node_Id;
8853 Bodies : List_Id) return Node_Id
8854 is
8855 Loc : constant Source_Ptr := Sloc (Nod);
8856
8857 Result : Node_Id;
8858 C : Entity_Id;
8859
8860 First_Time : Boolean := True;
8861
8862 function Suitable_Element (C : Entity_Id) return Entity_Id;
8863 -- Return the first field to compare beginning with C, skipping the
8864 -- inherited components.
8865
8866 ----------------------
8867 -- Suitable_Element --
8868 ----------------------
8869
8870 function Suitable_Element (C : Entity_Id) return Entity_Id is
8871 begin
8872 if No (C) then
8873 return Empty;
8874
8875 elsif Ekind (C) /= E_Discriminant
8876 and then Ekind (C) /= E_Component
8877 then
8878 return Suitable_Element (Next_Entity (C));
8879
8880 elsif Is_Tagged_Type (Typ)
8881 and then C /= Original_Record_Component (C)
8882 then
8883 return Suitable_Element (Next_Entity (C));
8884
8885 elsif Chars (C) = Name_uController
8886 or else Chars (C) = Name_uTag
8887 then
8888 return Suitable_Element (Next_Entity (C));
8889
8890 elsif Is_Interface (Etype (C)) then
8891 return Suitable_Element (Next_Entity (C));
8892
8893 else
8894 return C;
8895 end if;
8896 end Suitable_Element;
8897
8898 -- Start of processing for Expand_Record_Equality
8899
8900 begin
8901 -- Generates the following code: (assuming that Typ has one Discr and
8902 -- component C2 is also a record)
8903
8904 -- True
8905 -- and then Lhs.Discr1 = Rhs.Discr1
8906 -- and then Lhs.C1 = Rhs.C1
8907 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
8908 -- and then ...
8909 -- and then Lhs.Cmpn = Rhs.Cmpn
8910
8911 Result := New_Reference_To (Standard_True, Loc);
8912 C := Suitable_Element (First_Entity (Typ));
8913 while Present (C) loop
8914 declare
8915 New_Lhs : Node_Id;
8916 New_Rhs : Node_Id;
8917 Check : Node_Id;
8918
8919 begin
8920 if First_Time then
8921 First_Time := False;
8922 New_Lhs := Lhs;
8923 New_Rhs := Rhs;
8924 else
8925 New_Lhs := New_Copy_Tree (Lhs);
8926 New_Rhs := New_Copy_Tree (Rhs);
8927 end if;
8928
8929 Check :=
8930 Expand_Composite_Equality (Nod, Etype (C),
8931 Lhs =>
8932 Make_Selected_Component (Loc,
8933 Prefix => New_Lhs,
8934 Selector_Name => New_Reference_To (C, Loc)),
8935 Rhs =>
8936 Make_Selected_Component (Loc,
8937 Prefix => New_Rhs,
8938 Selector_Name => New_Reference_To (C, Loc)),
8939 Bodies => Bodies);
8940
8941 -- If some (sub)component is an unchecked_union, the whole
8942 -- operation will raise program error.
8943
8944 if Nkind (Check) = N_Raise_Program_Error then
8945 Result := Check;
8946 Set_Etype (Result, Standard_Boolean);
8947 exit;
8948 else
8949 Result :=
8950 Make_And_Then (Loc,
8951 Left_Opnd => Result,
8952 Right_Opnd => Check);
8953 end if;
8954 end;
8955
8956 C := Suitable_Element (Next_Entity (C));
8957 end loop;
8958
8959 return Result;
8960 end Expand_Record_Equality;
8961
8962 -----------------------------------
8963 -- Expand_Short_Circuit_Operator --
8964 -----------------------------------
8965
8966 -- Deal with special expansion if actions are present for the right operand
8967 -- and deal with optimizing case of arguments being True or False. We also
8968 -- deal with the special case of non-standard boolean values.
8969
8970 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
8971 Loc : constant Source_Ptr := Sloc (N);
8972 Typ : constant Entity_Id := Etype (N);
8973 Kind : constant Node_Kind := Nkind (N);
8974 Left : constant Node_Id := Left_Opnd (N);
8975 Right : constant Node_Id := Right_Opnd (N);
8976 LocR : constant Source_Ptr := Sloc (Right);
8977 Actlist : List_Id;
8978
8979 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
8980 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
8981 -- If Left = Shortcut_Value then Right need not be evaluated
8982
8983 function Make_Test_Expr (Opnd : Node_Id) return Node_Id;
8984 -- For Opnd a boolean expression, return a Boolean expression equivalent
8985 -- to Opnd /= Shortcut_Value.
8986
8987 --------------------
8988 -- Make_Test_Expr --
8989 --------------------
8990
8991 function Make_Test_Expr (Opnd : Node_Id) return Node_Id is
8992 begin
8993 if Shortcut_Value then
8994 return Make_Op_Not (Sloc (Opnd), Opnd);
8995 else
8996 return Opnd;
8997 end if;
8998 end Make_Test_Expr;
8999
9000 Op_Var : Entity_Id;
9001 -- Entity for a temporary variable holding the value of the operator,
9002 -- used for expansion in the case where actions are present.
9003
9004 -- Start of processing for Expand_Short_Circuit_Operator
9005
9006 begin
9007 -- Deal with non-standard booleans
9008
9009 if Is_Boolean_Type (Typ) then
9010 Adjust_Condition (Left);
9011 Adjust_Condition (Right);
9012 Set_Etype (N, Standard_Boolean);
9013 end if;
9014
9015 -- Check for cases where left argument is known to be True or False
9016
9017 if Compile_Time_Known_Value (Left) then
9018
9019 -- Mark SCO for left condition as compile time known
9020
9021 if Generate_SCO and then Comes_From_Source (Left) then
9022 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
9023 end if;
9024
9025 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
9026 -- Any actions associated with Right will be executed unconditionally
9027 -- and can thus be inserted into the tree unconditionally.
9028
9029 if Expr_Value_E (Left) /= Shortcut_Ent then
9030 if Present (Actions (N)) then
9031 Insert_Actions (N, Actions (N));
9032 end if;
9033
9034 Rewrite (N, Right);
9035
9036 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
9037 -- In this case we can forget the actions associated with Right,
9038 -- since they will never be executed.
9039
9040 else
9041 Kill_Dead_Code (Right);
9042 Kill_Dead_Code (Actions (N));
9043 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
9044 end if;
9045
9046 Adjust_Result_Type (N, Typ);
9047 return;
9048 end if;
9049
9050 -- If Actions are present for the right operand, we have to do some
9051 -- special processing. We can't just let these actions filter back into
9052 -- code preceding the short circuit (which is what would have happened
9053 -- if we had not trapped them in the short-circuit form), since they
9054 -- must only be executed if the right operand of the short circuit is
9055 -- executed and not otherwise.
9056
9057 -- the temporary variable C.
9058
9059 if Present (Actions (N)) then
9060 Actlist := Actions (N);
9061
9062 -- The old approach is to expand:
9063
9064 -- left AND THEN right
9065
9066 -- into
9067
9068 -- C : Boolean := False;
9069 -- IF left THEN
9070 -- Actions;
9071 -- IF right THEN
9072 -- C := True;
9073 -- END IF;
9074 -- END IF;
9075
9076 -- and finally rewrite the operator into a reference to C. Similarly
9077 -- for left OR ELSE right, with negated values. Note that this
9078 -- rewrite causes some difficulties for coverage analysis because
9079 -- of the introduction of the new variable C, which obscures the
9080 -- structure of the test.
9081
9082 -- We use this "old approach" if use of N_Expression_With_Actions
9083 -- is False (see description in Opt of when this is or is not set).
9084
9085 if not Use_Expression_With_Actions then
9086 Op_Var := Make_Temporary (Loc, 'C', Related_Node => N);
9087
9088 Insert_Action (N,
9089 Make_Object_Declaration (Loc,
9090 Defining_Identifier =>
9091 Op_Var,
9092 Object_Definition =>
9093 New_Occurrence_Of (Standard_Boolean, Loc),
9094 Expression =>
9095 New_Occurrence_Of (Shortcut_Ent, Loc)));
9096
9097 Append_To (Actlist,
9098 Make_Implicit_If_Statement (Right,
9099 Condition => Make_Test_Expr (Right),
9100 Then_Statements => New_List (
9101 Make_Assignment_Statement (LocR,
9102 Name => New_Occurrence_Of (Op_Var, LocR),
9103 Expression =>
9104 New_Occurrence_Of
9105 (Boolean_Literals (not Shortcut_Value), LocR)))));
9106
9107 Insert_Action (N,
9108 Make_Implicit_If_Statement (Left,
9109 Condition => Make_Test_Expr (Left),
9110 Then_Statements => Actlist));
9111
9112 Rewrite (N, New_Occurrence_Of (Op_Var, Loc));
9113 Analyze_And_Resolve (N, Standard_Boolean);
9114
9115 -- The new approach, activated for now by the use of debug flag
9116 -- -gnatd.X is to use the new Expression_With_Actions node for the
9117 -- right operand of the short-circuit form. This should solve the
9118 -- traceability problems for coverage analysis.
9119
9120 else
9121 Rewrite (Right,
9122 Make_Expression_With_Actions (LocR,
9123 Expression => Relocate_Node (Right),
9124 Actions => Actlist));
9125 Set_Actions (N, No_List);
9126 Analyze_And_Resolve (Right, Standard_Boolean);
9127 end if;
9128
9129 -- Special processing necessary for SCIL generation for AND THEN
9130 -- with a function call as the right operand.
9131
9132 -- What is this about, and is it needed for both cases above???
9133
9134 if Generate_SCIL
9135 and then Kind = N_And_Then
9136 and then Nkind (Right) = N_Function_Call
9137 then
9138 Adjust_SCIL_Node (N, Right);
9139 end if;
9140
9141 Adjust_Result_Type (N, Typ);
9142 return;
9143 end if;
9144
9145 -- No actions present, check for cases of right argument True/False
9146
9147 if Compile_Time_Known_Value (Right) then
9148
9149 -- Mark SCO for left condition as compile time known
9150
9151 if Generate_SCO and then Comes_From_Source (Right) then
9152 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
9153 end if;
9154
9155 -- Change (Left and then True), (Left or else False) to Left.
9156 -- Note that we know there are no actions associated with the right
9157 -- operand, since we just checked for this case above.
9158
9159 if Expr_Value_E (Right) /= Shortcut_Ent then
9160 Rewrite (N, Left);
9161
9162 -- Change (Left and then False), (Left or else True) to Right,
9163 -- making sure to preserve any side effects associated with the Left
9164 -- operand.
9165
9166 else
9167 Remove_Side_Effects (Left);
9168 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
9169 end if;
9170 end if;
9171
9172 Adjust_Result_Type (N, Typ);
9173 end Expand_Short_Circuit_Operator;
9174
9175 -------------------------------------
9176 -- Fixup_Universal_Fixed_Operation --
9177 -------------------------------------
9178
9179 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
9180 Conv : constant Node_Id := Parent (N);
9181
9182 begin
9183 -- We must have a type conversion immediately above us
9184
9185 pragma Assert (Nkind (Conv) = N_Type_Conversion);
9186
9187 -- Normally the type conversion gives our target type. The exception
9188 -- occurs in the case of the Round attribute, where the conversion
9189 -- will be to universal real, and our real type comes from the Round
9190 -- attribute (as well as an indication that we must round the result)
9191
9192 if Nkind (Parent (Conv)) = N_Attribute_Reference
9193 and then Attribute_Name (Parent (Conv)) = Name_Round
9194 then
9195 Set_Etype (N, Etype (Parent (Conv)));
9196 Set_Rounded_Result (N);
9197
9198 -- Normal case where type comes from conversion above us
9199
9200 else
9201 Set_Etype (N, Etype (Conv));
9202 end if;
9203 end Fixup_Universal_Fixed_Operation;
9204
9205 ------------------------------
9206 -- Get_Allocator_Final_List --
9207 ------------------------------
9208
9209 function Get_Allocator_Final_List
9210 (N : Node_Id;
9211 T : Entity_Id;
9212 PtrT : Entity_Id) return Entity_Id
9213 is
9214 Loc : constant Source_Ptr := Sloc (N);
9215
9216 Owner : Entity_Id := PtrT;
9217 -- The entity whose finalization list must be used to attach the
9218 -- allocated object.
9219
9220 begin
9221 if Ekind (PtrT) = E_Anonymous_Access_Type then
9222
9223 -- If the context is an access parameter, we need to create a
9224 -- non-anonymous access type in order to have a usable final list,
9225 -- because there is otherwise no pool to which the allocated object
9226 -- can belong. We create both the type and the finalization chain
9227 -- here, because freezing an internal type does not create such a
9228 -- chain. The Final_Chain that is thus created is shared by the
9229 -- access parameter. The access type is tested against the result
9230 -- type of the function to exclude allocators whose type is an
9231 -- anonymous access result type. We freeze the type at once to
9232 -- ensure that it is properly decorated for the back-end, even
9233 -- if the context and current scope is a loop.
9234
9235 if Nkind (Associated_Node_For_Itype (PtrT))
9236 in N_Subprogram_Specification
9237 and then
9238 PtrT /=
9239 Etype (Defining_Unit_Name (Associated_Node_For_Itype (PtrT)))
9240 then
9241 Owner := Make_Temporary (Loc, 'J');
9242 Insert_Action (N,
9243 Make_Full_Type_Declaration (Loc,
9244 Defining_Identifier => Owner,
9245 Type_Definition =>
9246 Make_Access_To_Object_Definition (Loc,
9247 Subtype_Indication =>
9248 New_Occurrence_Of (T, Loc))));
9249
9250 Freeze_Before (N, Owner);
9251 Build_Final_List (N, Owner);
9252 Set_Associated_Final_Chain (PtrT, Associated_Final_Chain (Owner));
9253
9254 -- Ada 2005 (AI-318-02): If the context is a return object
9255 -- declaration, then the anonymous return subtype is defined to have
9256 -- the same accessibility level as that of the function's result
9257 -- subtype, which means that we want the scope where the function is
9258 -- declared.
9259
9260 elsif Nkind (Associated_Node_For_Itype (PtrT)) = N_Object_Declaration
9261 and then Ekind (Scope (PtrT)) = E_Return_Statement
9262 then
9263 Owner := Scope (Return_Applies_To (Scope (PtrT)));
9264
9265 -- Case of an access discriminant, or (Ada 2005) of an anonymous
9266 -- access component or anonymous access function result: find the
9267 -- final list associated with the scope of the type. (In the
9268 -- anonymous access component kind, a list controller will have
9269 -- been allocated when freezing the record type, and PtrT has an
9270 -- Associated_Final_Chain attribute designating it.)
9271
9272 elsif No (Associated_Final_Chain (PtrT)) then
9273 Owner := Scope (PtrT);
9274 end if;
9275 end if;
9276
9277 return Find_Final_List (Owner);
9278 end Get_Allocator_Final_List;
9279
9280 ---------------------------------
9281 -- Has_Inferable_Discriminants --
9282 ---------------------------------
9283
9284 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
9285
9286 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
9287 -- Determines whether the left-most prefix of a selected component is a
9288 -- formal parameter in a subprogram. Assumes N is a selected component.
9289
9290 --------------------------------
9291 -- Prefix_Is_Formal_Parameter --
9292 --------------------------------
9293
9294 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
9295 Sel_Comp : Node_Id := N;
9296
9297 begin
9298 -- Move to the left-most prefix by climbing up the tree
9299
9300 while Present (Parent (Sel_Comp))
9301 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
9302 loop
9303 Sel_Comp := Parent (Sel_Comp);
9304 end loop;
9305
9306 return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
9307 end Prefix_Is_Formal_Parameter;
9308
9309 -- Start of processing for Has_Inferable_Discriminants
9310
9311 begin
9312 -- For identifiers and indexed components, it is sufficient to have a
9313 -- constrained Unchecked_Union nominal subtype.
9314
9315 if Nkind_In (N, N_Identifier, N_Indexed_Component) then
9316 return Is_Unchecked_Union (Base_Type (Etype (N)))
9317 and then
9318 Is_Constrained (Etype (N));
9319
9320 -- For selected components, the subtype of the selector must be a
9321 -- constrained Unchecked_Union. If the component is subject to a
9322 -- per-object constraint, then the enclosing object must have inferable
9323 -- discriminants.
9324
9325 elsif Nkind (N) = N_Selected_Component then
9326 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
9327
9328 -- A small hack. If we have a per-object constrained selected
9329 -- component of a formal parameter, return True since we do not
9330 -- know the actual parameter association yet.
9331
9332 if Prefix_Is_Formal_Parameter (N) then
9333 return True;
9334 end if;
9335
9336 -- Otherwise, check the enclosing object and the selector
9337
9338 return Has_Inferable_Discriminants (Prefix (N))
9339 and then
9340 Has_Inferable_Discriminants (Selector_Name (N));
9341 end if;
9342
9343 -- The call to Has_Inferable_Discriminants will determine whether
9344 -- the selector has a constrained Unchecked_Union nominal type.
9345
9346 return Has_Inferable_Discriminants (Selector_Name (N));
9347
9348 -- A qualified expression has inferable discriminants if its subtype
9349 -- mark is a constrained Unchecked_Union subtype.
9350
9351 elsif Nkind (N) = N_Qualified_Expression then
9352 return Is_Unchecked_Union (Subtype_Mark (N))
9353 and then
9354 Is_Constrained (Subtype_Mark (N));
9355
9356 end if;
9357
9358 return False;
9359 end Has_Inferable_Discriminants;
9360
9361 -------------------------------
9362 -- Insert_Dereference_Action --
9363 -------------------------------
9364
9365 procedure Insert_Dereference_Action (N : Node_Id) is
9366 Loc : constant Source_Ptr := Sloc (N);
9367 Typ : constant Entity_Id := Etype (N);
9368 Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
9369 Pnod : constant Node_Id := Parent (N);
9370
9371 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
9372 -- Return true if type of P is derived from Checked_Pool;
9373
9374 -----------------------------
9375 -- Is_Checked_Storage_Pool --
9376 -----------------------------
9377
9378 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
9379 T : Entity_Id;
9380
9381 begin
9382 if No (P) then
9383 return False;
9384 end if;
9385
9386 T := Etype (P);
9387 while T /= Etype (T) loop
9388 if Is_RTE (T, RE_Checked_Pool) then
9389 return True;
9390 else
9391 T := Etype (T);
9392 end if;
9393 end loop;
9394
9395 return False;
9396 end Is_Checked_Storage_Pool;
9397
9398 -- Start of processing for Insert_Dereference_Action
9399
9400 begin
9401 pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
9402
9403 if not (Is_Checked_Storage_Pool (Pool)
9404 and then Comes_From_Source (Original_Node (Pnod)))
9405 then
9406 return;
9407 end if;
9408
9409 Insert_Action (N,
9410 Make_Procedure_Call_Statement (Loc,
9411 Name => New_Reference_To (
9412 Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
9413
9414 Parameter_Associations => New_List (
9415
9416 -- Pool
9417
9418 New_Reference_To (Pool, Loc),
9419
9420 -- Storage_Address. We use the attribute Pool_Address, which uses
9421 -- the pointer itself to find the address of the object, and which
9422 -- handles unconstrained arrays properly by computing the address
9423 -- of the template. i.e. the correct address of the corresponding
9424 -- allocation.
9425
9426 Make_Attribute_Reference (Loc,
9427 Prefix => Duplicate_Subexpr_Move_Checks (N),
9428 Attribute_Name => Name_Pool_Address),
9429
9430 -- Size_In_Storage_Elements
9431
9432 Make_Op_Divide (Loc,
9433 Left_Opnd =>
9434 Make_Attribute_Reference (Loc,
9435 Prefix =>
9436 Make_Explicit_Dereference (Loc,
9437 Duplicate_Subexpr_Move_Checks (N)),
9438 Attribute_Name => Name_Size),
9439 Right_Opnd =>
9440 Make_Integer_Literal (Loc, System_Storage_Unit)),
9441
9442 -- Alignment
9443
9444 Make_Attribute_Reference (Loc,
9445 Prefix =>
9446 Make_Explicit_Dereference (Loc,
9447 Duplicate_Subexpr_Move_Checks (N)),
9448 Attribute_Name => Name_Alignment))));
9449
9450 exception
9451 when RE_Not_Available =>
9452 return;
9453 end Insert_Dereference_Action;
9454
9455 --------------------------------
9456 -- Integer_Promotion_Possible --
9457 --------------------------------
9458
9459 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
9460 Operand : constant Node_Id := Expression (N);
9461 Operand_Type : constant Entity_Id := Etype (Operand);
9462 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
9463
9464 begin
9465 pragma Assert (Nkind (N) = N_Type_Conversion);
9466
9467 return
9468
9469 -- We only do the transformation for source constructs. We assume
9470 -- that the expander knows what it is doing when it generates code.
9471
9472 Comes_From_Source (N)
9473
9474 -- If the operand type is Short_Integer or Short_Short_Integer,
9475 -- then we will promote to Integer, which is available on all
9476 -- targets, and is sufficient to ensure no intermediate overflow.
9477 -- Furthermore it is likely to be as efficient or more efficient
9478 -- than using the smaller type for the computation so we do this
9479 -- unconditionally.
9480
9481 and then
9482 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
9483 or else
9484 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
9485
9486 -- Test for interesting operation, which includes addition,
9487 -- division, exponentiation, multiplication, subtraction, absolute
9488 -- value and unary negation. Unary "+" is omitted since it is a
9489 -- no-op and thus can't overflow.
9490
9491 and then Nkind_In (Operand, N_Op_Abs,
9492 N_Op_Add,
9493 N_Op_Divide,
9494 N_Op_Expon,
9495 N_Op_Minus,
9496 N_Op_Multiply,
9497 N_Op_Subtract);
9498 end Integer_Promotion_Possible;
9499
9500 ------------------------------
9501 -- Make_Array_Comparison_Op --
9502 ------------------------------
9503
9504 -- This is a hand-coded expansion of the following generic function:
9505
9506 -- generic
9507 -- type elem is (<>);
9508 -- type index is (<>);
9509 -- type a is array (index range <>) of elem;
9510
9511 -- function Gnnn (X : a; Y: a) return boolean is
9512 -- J : index := Y'first;
9513
9514 -- begin
9515 -- if X'length = 0 then
9516 -- return false;
9517
9518 -- elsif Y'length = 0 then
9519 -- return true;
9520
9521 -- else
9522 -- for I in X'range loop
9523 -- if X (I) = Y (J) then
9524 -- if J = Y'last then
9525 -- exit;
9526 -- else
9527 -- J := index'succ (J);
9528 -- end if;
9529
9530 -- else
9531 -- return X (I) > Y (J);
9532 -- end if;
9533 -- end loop;
9534
9535 -- return X'length > Y'length;
9536 -- end if;
9537 -- end Gnnn;
9538
9539 -- Note that since we are essentially doing this expansion by hand, we
9540 -- do not need to generate an actual or formal generic part, just the
9541 -- instantiated function itself.
9542
9543 function Make_Array_Comparison_Op
9544 (Typ : Entity_Id;
9545 Nod : Node_Id) return Node_Id
9546 is
9547 Loc : constant Source_Ptr := Sloc (Nod);
9548
9549 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
9550 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
9551 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
9552 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
9553
9554 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
9555
9556 Loop_Statement : Node_Id;
9557 Loop_Body : Node_Id;
9558 If_Stat : Node_Id;
9559 Inner_If : Node_Id;
9560 Final_Expr : Node_Id;
9561 Func_Body : Node_Id;
9562 Func_Name : Entity_Id;
9563 Formals : List_Id;
9564 Length1 : Node_Id;
9565 Length2 : Node_Id;
9566
9567 begin
9568 -- if J = Y'last then
9569 -- exit;
9570 -- else
9571 -- J := index'succ (J);
9572 -- end if;
9573
9574 Inner_If :=
9575 Make_Implicit_If_Statement (Nod,
9576 Condition =>
9577 Make_Op_Eq (Loc,
9578 Left_Opnd => New_Reference_To (J, Loc),
9579 Right_Opnd =>
9580 Make_Attribute_Reference (Loc,
9581 Prefix => New_Reference_To (Y, Loc),
9582 Attribute_Name => Name_Last)),
9583
9584 Then_Statements => New_List (
9585 Make_Exit_Statement (Loc)),
9586
9587 Else_Statements =>
9588 New_List (
9589 Make_Assignment_Statement (Loc,
9590 Name => New_Reference_To (J, Loc),
9591 Expression =>
9592 Make_Attribute_Reference (Loc,
9593 Prefix => New_Reference_To (Index, Loc),
9594 Attribute_Name => Name_Succ,
9595 Expressions => New_List (New_Reference_To (J, Loc))))));
9596
9597 -- if X (I) = Y (J) then
9598 -- if ... end if;
9599 -- else
9600 -- return X (I) > Y (J);
9601 -- end if;
9602
9603 Loop_Body :=
9604 Make_Implicit_If_Statement (Nod,
9605 Condition =>
9606 Make_Op_Eq (Loc,
9607 Left_Opnd =>
9608 Make_Indexed_Component (Loc,
9609 Prefix => New_Reference_To (X, Loc),
9610 Expressions => New_List (New_Reference_To (I, Loc))),
9611
9612 Right_Opnd =>
9613 Make_Indexed_Component (Loc,
9614 Prefix => New_Reference_To (Y, Loc),
9615 Expressions => New_List (New_Reference_To (J, Loc)))),
9616
9617 Then_Statements => New_List (Inner_If),
9618
9619 Else_Statements => New_List (
9620 Make_Simple_Return_Statement (Loc,
9621 Expression =>
9622 Make_Op_Gt (Loc,
9623 Left_Opnd =>
9624 Make_Indexed_Component (Loc,
9625 Prefix => New_Reference_To (X, Loc),
9626 Expressions => New_List (New_Reference_To (I, Loc))),
9627
9628 Right_Opnd =>
9629 Make_Indexed_Component (Loc,
9630 Prefix => New_Reference_To (Y, Loc),
9631 Expressions => New_List (
9632 New_Reference_To (J, Loc)))))));
9633
9634 -- for I in X'range loop
9635 -- if ... end if;
9636 -- end loop;
9637
9638 Loop_Statement :=
9639 Make_Implicit_Loop_Statement (Nod,
9640 Identifier => Empty,
9641
9642 Iteration_Scheme =>
9643 Make_Iteration_Scheme (Loc,
9644 Loop_Parameter_Specification =>
9645 Make_Loop_Parameter_Specification (Loc,
9646 Defining_Identifier => I,
9647 Discrete_Subtype_Definition =>
9648 Make_Attribute_Reference (Loc,
9649 Prefix => New_Reference_To (X, Loc),
9650 Attribute_Name => Name_Range))),
9651
9652 Statements => New_List (Loop_Body));
9653
9654 -- if X'length = 0 then
9655 -- return false;
9656 -- elsif Y'length = 0 then
9657 -- return true;
9658 -- else
9659 -- for ... loop ... end loop;
9660 -- return X'length > Y'length;
9661 -- end if;
9662
9663 Length1 :=
9664 Make_Attribute_Reference (Loc,
9665 Prefix => New_Reference_To (X, Loc),
9666 Attribute_Name => Name_Length);
9667
9668 Length2 :=
9669 Make_Attribute_Reference (Loc,
9670 Prefix => New_Reference_To (Y, Loc),
9671 Attribute_Name => Name_Length);
9672
9673 Final_Expr :=
9674 Make_Op_Gt (Loc,
9675 Left_Opnd => Length1,
9676 Right_Opnd => Length2);
9677
9678 If_Stat :=
9679 Make_Implicit_If_Statement (Nod,
9680 Condition =>
9681 Make_Op_Eq (Loc,
9682 Left_Opnd =>
9683 Make_Attribute_Reference (Loc,
9684 Prefix => New_Reference_To (X, Loc),
9685 Attribute_Name => Name_Length),
9686 Right_Opnd =>
9687 Make_Integer_Literal (Loc, 0)),
9688
9689 Then_Statements =>
9690 New_List (
9691 Make_Simple_Return_Statement (Loc,
9692 Expression => New_Reference_To (Standard_False, Loc))),
9693
9694 Elsif_Parts => New_List (
9695 Make_Elsif_Part (Loc,
9696 Condition =>
9697 Make_Op_Eq (Loc,
9698 Left_Opnd =>
9699 Make_Attribute_Reference (Loc,
9700 Prefix => New_Reference_To (Y, Loc),
9701 Attribute_Name => Name_Length),
9702 Right_Opnd =>
9703 Make_Integer_Literal (Loc, 0)),
9704
9705 Then_Statements =>
9706 New_List (
9707 Make_Simple_Return_Statement (Loc,
9708 Expression => New_Reference_To (Standard_True, Loc))))),
9709
9710 Else_Statements => New_List (
9711 Loop_Statement,
9712 Make_Simple_Return_Statement (Loc,
9713 Expression => Final_Expr)));
9714
9715 -- (X : a; Y: a)
9716
9717 Formals := New_List (
9718 Make_Parameter_Specification (Loc,
9719 Defining_Identifier => X,
9720 Parameter_Type => New_Reference_To (Typ, Loc)),
9721
9722 Make_Parameter_Specification (Loc,
9723 Defining_Identifier => Y,
9724 Parameter_Type => New_Reference_To (Typ, Loc)));
9725
9726 -- function Gnnn (...) return boolean is
9727 -- J : index := Y'first;
9728 -- begin
9729 -- if ... end if;
9730 -- end Gnnn;
9731
9732 Func_Name := Make_Temporary (Loc, 'G');
9733
9734 Func_Body :=
9735 Make_Subprogram_Body (Loc,
9736 Specification =>
9737 Make_Function_Specification (Loc,
9738 Defining_Unit_Name => Func_Name,
9739 Parameter_Specifications => Formals,
9740 Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
9741
9742 Declarations => New_List (
9743 Make_Object_Declaration (Loc,
9744 Defining_Identifier => J,
9745 Object_Definition => New_Reference_To (Index, Loc),
9746 Expression =>
9747 Make_Attribute_Reference (Loc,
9748 Prefix => New_Reference_To (Y, Loc),
9749 Attribute_Name => Name_First))),
9750
9751 Handled_Statement_Sequence =>
9752 Make_Handled_Sequence_Of_Statements (Loc,
9753 Statements => New_List (If_Stat)));
9754
9755 return Func_Body;
9756 end Make_Array_Comparison_Op;
9757
9758 ---------------------------
9759 -- Make_Boolean_Array_Op --
9760 ---------------------------
9761
9762 -- For logical operations on boolean arrays, expand in line the following,
9763 -- replacing 'and' with 'or' or 'xor' where needed:
9764
9765 -- function Annn (A : typ; B: typ) return typ is
9766 -- C : typ;
9767 -- begin
9768 -- for J in A'range loop
9769 -- C (J) := A (J) op B (J);
9770 -- end loop;
9771 -- return C;
9772 -- end Annn;
9773
9774 -- Here typ is the boolean array type
9775
9776 function Make_Boolean_Array_Op
9777 (Typ : Entity_Id;
9778 N : Node_Id) return Node_Id
9779 is
9780 Loc : constant Source_Ptr := Sloc (N);
9781
9782 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
9783 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
9784 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
9785 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
9786
9787 A_J : Node_Id;
9788 B_J : Node_Id;
9789 C_J : Node_Id;
9790 Op : Node_Id;
9791
9792 Formals : List_Id;
9793 Func_Name : Entity_Id;
9794 Func_Body : Node_Id;
9795 Loop_Statement : Node_Id;
9796
9797 begin
9798 A_J :=
9799 Make_Indexed_Component (Loc,
9800 Prefix => New_Reference_To (A, Loc),
9801 Expressions => New_List (New_Reference_To (J, Loc)));
9802
9803 B_J :=
9804 Make_Indexed_Component (Loc,
9805 Prefix => New_Reference_To (B, Loc),
9806 Expressions => New_List (New_Reference_To (J, Loc)));
9807
9808 C_J :=
9809 Make_Indexed_Component (Loc,
9810 Prefix => New_Reference_To (C, Loc),
9811 Expressions => New_List (New_Reference_To (J, Loc)));
9812
9813 if Nkind (N) = N_Op_And then
9814 Op :=
9815 Make_Op_And (Loc,
9816 Left_Opnd => A_J,
9817 Right_Opnd => B_J);
9818
9819 elsif Nkind (N) = N_Op_Or then
9820 Op :=
9821 Make_Op_Or (Loc,
9822 Left_Opnd => A_J,
9823 Right_Opnd => B_J);
9824
9825 else
9826 Op :=
9827 Make_Op_Xor (Loc,
9828 Left_Opnd => A_J,
9829 Right_Opnd => B_J);
9830 end if;
9831
9832 Loop_Statement :=
9833 Make_Implicit_Loop_Statement (N,
9834 Identifier => Empty,
9835
9836 Iteration_Scheme =>
9837 Make_Iteration_Scheme (Loc,
9838 Loop_Parameter_Specification =>
9839 Make_Loop_Parameter_Specification (Loc,
9840 Defining_Identifier => J,
9841 Discrete_Subtype_Definition =>
9842 Make_Attribute_Reference (Loc,
9843 Prefix => New_Reference_To (A, Loc),
9844 Attribute_Name => Name_Range))),
9845
9846 Statements => New_List (
9847 Make_Assignment_Statement (Loc,
9848 Name => C_J,
9849 Expression => Op)));
9850
9851 Formals := New_List (
9852 Make_Parameter_Specification (Loc,
9853 Defining_Identifier => A,
9854 Parameter_Type => New_Reference_To (Typ, Loc)),
9855
9856 Make_Parameter_Specification (Loc,
9857 Defining_Identifier => B,
9858 Parameter_Type => New_Reference_To (Typ, Loc)));
9859
9860 Func_Name := Make_Temporary (Loc, 'A');
9861 Set_Is_Inlined (Func_Name);
9862
9863 Func_Body :=
9864 Make_Subprogram_Body (Loc,
9865 Specification =>
9866 Make_Function_Specification (Loc,
9867 Defining_Unit_Name => Func_Name,
9868 Parameter_Specifications => Formals,
9869 Result_Definition => New_Reference_To (Typ, Loc)),
9870
9871 Declarations => New_List (
9872 Make_Object_Declaration (Loc,
9873 Defining_Identifier => C,
9874 Object_Definition => New_Reference_To (Typ, Loc))),
9875
9876 Handled_Statement_Sequence =>
9877 Make_Handled_Sequence_Of_Statements (Loc,
9878 Statements => New_List (
9879 Loop_Statement,
9880 Make_Simple_Return_Statement (Loc,
9881 Expression => New_Reference_To (C, Loc)))));
9882
9883 return Func_Body;
9884 end Make_Boolean_Array_Op;
9885
9886 ------------------------
9887 -- Rewrite_Comparison --
9888 ------------------------
9889
9890 procedure Rewrite_Comparison (N : Node_Id) is
9891 Warning_Generated : Boolean := False;
9892 -- Set to True if first pass with Assume_Valid generates a warning in
9893 -- which case we skip the second pass to avoid warning overloaded.
9894
9895 Result : Node_Id;
9896 -- Set to Standard_True or Standard_False
9897
9898 begin
9899 if Nkind (N) = N_Type_Conversion then
9900 Rewrite_Comparison (Expression (N));
9901 return;
9902
9903 elsif Nkind (N) not in N_Op_Compare then
9904 return;
9905 end if;
9906
9907 -- Now start looking at the comparison in detail. We potentially go
9908 -- through this loop twice. The first time, Assume_Valid is set False
9909 -- in the call to Compile_Time_Compare. If this call results in a
9910 -- clear result of always True or Always False, that's decisive and
9911 -- we are done. Otherwise we repeat the processing with Assume_Valid
9912 -- set to True to generate additional warnings. We can skip that step
9913 -- if Constant_Condition_Warnings is False.
9914
9915 for AV in False .. True loop
9916 declare
9917 Typ : constant Entity_Id := Etype (N);
9918 Op1 : constant Node_Id := Left_Opnd (N);
9919 Op2 : constant Node_Id := Right_Opnd (N);
9920
9921 Res : constant Compare_Result :=
9922 Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
9923 -- Res indicates if compare outcome can be compile time determined
9924
9925 True_Result : Boolean;
9926 False_Result : Boolean;
9927
9928 begin
9929 case N_Op_Compare (Nkind (N)) is
9930 when N_Op_Eq =>
9931 True_Result := Res = EQ;
9932 False_Result := Res = LT or else Res = GT or else Res = NE;
9933
9934 when N_Op_Ge =>
9935 True_Result := Res in Compare_GE;
9936 False_Result := Res = LT;
9937
9938 if Res = LE
9939 and then Constant_Condition_Warnings
9940 and then Comes_From_Source (Original_Node (N))
9941 and then Nkind (Original_Node (N)) = N_Op_Ge
9942 and then not In_Instance
9943 and then Is_Integer_Type (Etype (Left_Opnd (N)))
9944 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
9945 then
9946 Error_Msg_N
9947 ("can never be greater than, could replace by ""'=""?", N);
9948 Warning_Generated := True;
9949 end if;
9950
9951 when N_Op_Gt =>
9952 True_Result := Res = GT;
9953 False_Result := Res in Compare_LE;
9954
9955 when N_Op_Lt =>
9956 True_Result := Res = LT;
9957 False_Result := Res in Compare_GE;
9958
9959 when N_Op_Le =>
9960 True_Result := Res in Compare_LE;
9961 False_Result := Res = GT;
9962
9963 if Res = GE
9964 and then Constant_Condition_Warnings
9965 and then Comes_From_Source (Original_Node (N))
9966 and then Nkind (Original_Node (N)) = N_Op_Le
9967 and then not In_Instance
9968 and then Is_Integer_Type (Etype (Left_Opnd (N)))
9969 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
9970 then
9971 Error_Msg_N
9972 ("can never be less than, could replace by ""'=""?", N);
9973 Warning_Generated := True;
9974 end if;
9975
9976 when N_Op_Ne =>
9977 True_Result := Res = NE or else Res = GT or else Res = LT;
9978 False_Result := Res = EQ;
9979 end case;
9980
9981 -- If this is the first iteration, then we actually convert the
9982 -- comparison into True or False, if the result is certain.
9983
9984 if AV = False then
9985 if True_Result or False_Result then
9986 if True_Result then
9987 Result := Standard_True;
9988 else
9989 Result := Standard_False;
9990 end if;
9991
9992 Rewrite (N,
9993 Convert_To (Typ,
9994 New_Occurrence_Of (Result, Sloc (N))));
9995 Analyze_And_Resolve (N, Typ);
9996 Warn_On_Known_Condition (N);
9997 return;
9998 end if;
9999
10000 -- If this is the second iteration (AV = True), and the original
10001 -- node comes from source and we are not in an instance, then give
10002 -- a warning if we know result would be True or False. Note: we
10003 -- know Constant_Condition_Warnings is set if we get here.
10004
10005 elsif Comes_From_Source (Original_Node (N))
10006 and then not In_Instance
10007 then
10008 if True_Result then
10009 Error_Msg_N
10010 ("condition can only be False if invalid values present?",
10011 N);
10012 elsif False_Result then
10013 Error_Msg_N
10014 ("condition can only be True if invalid values present?",
10015 N);
10016 end if;
10017 end if;
10018 end;
10019
10020 -- Skip second iteration if not warning on constant conditions or
10021 -- if the first iteration already generated a warning of some kind or
10022 -- if we are in any case assuming all values are valid (so that the
10023 -- first iteration took care of the valid case).
10024
10025 exit when not Constant_Condition_Warnings;
10026 exit when Warning_Generated;
10027 exit when Assume_No_Invalid_Values;
10028 end loop;
10029 end Rewrite_Comparison;
10030
10031 ----------------------------
10032 -- Safe_In_Place_Array_Op --
10033 ----------------------------
10034
10035 function Safe_In_Place_Array_Op
10036 (Lhs : Node_Id;
10037 Op1 : Node_Id;
10038 Op2 : Node_Id) return Boolean
10039 is
10040 Target : Entity_Id;
10041
10042 function Is_Safe_Operand (Op : Node_Id) return Boolean;
10043 -- Operand is safe if it cannot overlap part of the target of the
10044 -- operation. If the operand and the target are identical, the operand
10045 -- is safe. The operand can be empty in the case of negation.
10046
10047 function Is_Unaliased (N : Node_Id) return Boolean;
10048 -- Check that N is a stand-alone entity
10049
10050 ------------------
10051 -- Is_Unaliased --
10052 ------------------
10053
10054 function Is_Unaliased (N : Node_Id) return Boolean is
10055 begin
10056 return
10057 Is_Entity_Name (N)
10058 and then No (Address_Clause (Entity (N)))
10059 and then No (Renamed_Object (Entity (N)));
10060 end Is_Unaliased;
10061
10062 ---------------------
10063 -- Is_Safe_Operand --
10064 ---------------------
10065
10066 function Is_Safe_Operand (Op : Node_Id) return Boolean is
10067 begin
10068 if No (Op) then
10069 return True;
10070
10071 elsif Is_Entity_Name (Op) then
10072 return Is_Unaliased (Op);
10073
10074 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
10075 return Is_Unaliased (Prefix (Op));
10076
10077 elsif Nkind (Op) = N_Slice then
10078 return
10079 Is_Unaliased (Prefix (Op))
10080 and then Entity (Prefix (Op)) /= Target;
10081
10082 elsif Nkind (Op) = N_Op_Not then
10083 return Is_Safe_Operand (Right_Opnd (Op));
10084
10085 else
10086 return False;
10087 end if;
10088 end Is_Safe_Operand;
10089
10090 -- Start of processing for Is_Safe_In_Place_Array_Op
10091
10092 begin
10093 -- Skip this processing if the component size is different from system
10094 -- storage unit (since at least for NOT this would cause problems).
10095
10096 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
10097 return False;
10098
10099 -- Cannot do in place stuff on VM_Target since cannot pass addresses
10100
10101 elsif VM_Target /= No_VM then
10102 return False;
10103
10104 -- Cannot do in place stuff if non-standard Boolean representation
10105
10106 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
10107 return False;
10108
10109 elsif not Is_Unaliased (Lhs) then
10110 return False;
10111
10112 else
10113 Target := Entity (Lhs);
10114 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
10115 end if;
10116 end Safe_In_Place_Array_Op;
10117
10118 -----------------------
10119 -- Tagged_Membership --
10120 -----------------------
10121
10122 -- There are two different cases to consider depending on whether the right
10123 -- operand is a class-wide type or not. If not we just compare the actual
10124 -- tag of the left expr to the target type tag:
10125 --
10126 -- Left_Expr.Tag = Right_Type'Tag;
10127 --
10128 -- If it is a class-wide type we use the RT function CW_Membership which is
10129 -- usually implemented by looking in the ancestor tables contained in the
10130 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
10131
10132 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
10133 -- function IW_Membership which is usually implemented by looking in the
10134 -- table of abstract interface types plus the ancestor table contained in
10135 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
10136
10137 procedure Tagged_Membership
10138 (N : Node_Id;
10139 SCIL_Node : out Node_Id;
10140 Result : out Node_Id)
10141 is
10142 Left : constant Node_Id := Left_Opnd (N);
10143 Right : constant Node_Id := Right_Opnd (N);
10144 Loc : constant Source_Ptr := Sloc (N);
10145
10146 Left_Type : Entity_Id;
10147 New_Node : Node_Id;
10148 Right_Type : Entity_Id;
10149 Obj_Tag : Node_Id;
10150
10151 begin
10152 SCIL_Node := Empty;
10153
10154 -- Handle entities from the limited view
10155
10156 Left_Type := Available_View (Etype (Left));
10157 Right_Type := Available_View (Etype (Right));
10158
10159 if Is_Class_Wide_Type (Left_Type) then
10160 Left_Type := Root_Type (Left_Type);
10161 end if;
10162
10163 Obj_Tag :=
10164 Make_Selected_Component (Loc,
10165 Prefix => Relocate_Node (Left),
10166 Selector_Name =>
10167 New_Reference_To (First_Tag_Component (Left_Type), Loc));
10168
10169 if Is_Class_Wide_Type (Right_Type) then
10170
10171 -- No need to issue a run-time check if we statically know that the
10172 -- result of this membership test is always true. For example,
10173 -- considering the following declarations:
10174
10175 -- type Iface is interface;
10176 -- type T is tagged null record;
10177 -- type DT is new T and Iface with null record;
10178
10179 -- Obj1 : T;
10180 -- Obj2 : DT;
10181
10182 -- These membership tests are always true:
10183
10184 -- Obj1 in T'Class
10185 -- Obj2 in T'Class;
10186 -- Obj2 in Iface'Class;
10187
10188 -- We do not need to handle cases where the membership is illegal.
10189 -- For example:
10190
10191 -- Obj1 in DT'Class; -- Compile time error
10192 -- Obj1 in Iface'Class; -- Compile time error
10193
10194 if not Is_Class_Wide_Type (Left_Type)
10195 and then (Is_Ancestor (Etype (Right_Type), Left_Type)
10196 or else (Is_Interface (Etype (Right_Type))
10197 and then Interface_Present_In_Ancestor
10198 (Typ => Left_Type,
10199 Iface => Etype (Right_Type))))
10200 then
10201 Result := New_Reference_To (Standard_True, Loc);
10202 return;
10203 end if;
10204
10205 -- Ada 2005 (AI-251): Class-wide applied to interfaces
10206
10207 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
10208
10209 -- Support to: "Iface_CW_Typ in Typ'Class"
10210
10211 or else Is_Interface (Left_Type)
10212 then
10213 -- Issue error if IW_Membership operation not available in a
10214 -- configurable run time setting.
10215
10216 if not RTE_Available (RE_IW_Membership) then
10217 Error_Msg_CRT
10218 ("dynamic membership test on interface types", N);
10219 Result := Empty;
10220 return;
10221 end if;
10222
10223 Result :=
10224 Make_Function_Call (Loc,
10225 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
10226 Parameter_Associations => New_List (
10227 Make_Attribute_Reference (Loc,
10228 Prefix => Obj_Tag,
10229 Attribute_Name => Name_Address),
10230 New_Reference_To (
10231 Node (First_Elmt
10232 (Access_Disp_Table (Root_Type (Right_Type)))),
10233 Loc)));
10234
10235 -- Ada 95: Normal case
10236
10237 else
10238 Build_CW_Membership (Loc,
10239 Obj_Tag_Node => Obj_Tag,
10240 Typ_Tag_Node =>
10241 New_Reference_To (
10242 Node (First_Elmt
10243 (Access_Disp_Table (Root_Type (Right_Type)))),
10244 Loc),
10245 Related_Nod => N,
10246 New_Node => New_Node);
10247
10248 -- Generate the SCIL node for this class-wide membership test.
10249 -- Done here because the previous call to Build_CW_Membership
10250 -- relocates Obj_Tag.
10251
10252 if Generate_SCIL then
10253 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
10254 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
10255 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
10256 end if;
10257
10258 Result := New_Node;
10259 end if;
10260
10261 -- Right_Type is not a class-wide type
10262
10263 else
10264 -- No need to check the tag of the object if Right_Typ is abstract
10265
10266 if Is_Abstract_Type (Right_Type) then
10267 Result := New_Reference_To (Standard_False, Loc);
10268
10269 else
10270 Result :=
10271 Make_Op_Eq (Loc,
10272 Left_Opnd => Obj_Tag,
10273 Right_Opnd =>
10274 New_Reference_To
10275 (Node (First_Elmt (Access_Disp_Table (Right_Type))), Loc));
10276 end if;
10277 end if;
10278 end Tagged_Membership;
10279
10280 ------------------------------
10281 -- Unary_Op_Validity_Checks --
10282 ------------------------------
10283
10284 procedure Unary_Op_Validity_Checks (N : Node_Id) is
10285 begin
10286 if Validity_Checks_On and Validity_Check_Operands then
10287 Ensure_Valid (Right_Opnd (N));
10288 end if;
10289 end Unary_Op_Validity_Checks;
10290
10291 end Exp_Ch4;