[multiple changes]
[gcc.git] / gcc / ada / exp_ch4.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Atag; use Exp_Atag;
34 with Exp_Ch2; use Exp_Ch2;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch6; use Exp_Ch6;
37 with Exp_Ch7; use Exp_Ch7;
38 with Exp_Ch9; use Exp_Ch9;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Fixd; use Exp_Fixd;
41 with Exp_Intr; use Exp_Intr;
42 with Exp_Pakd; use Exp_Pakd;
43 with Exp_Tss; use Exp_Tss;
44 with Exp_Util; use Exp_Util;
45 with Exp_VFpt; use Exp_VFpt;
46 with Freeze; use Freeze;
47 with Inline; use Inline;
48 with Lib; use Lib;
49 with Namet; use Namet;
50 with Nlists; use Nlists;
51 with Nmake; use Nmake;
52 with Opt; use Opt;
53 with Par_SCO; use Par_SCO;
54 with Restrict; use Restrict;
55 with Rident; use Rident;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Cat; use Sem_Cat;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Eval; use Sem_Eval;
64 with Sem_Res; use Sem_Res;
65 with Sem_Type; use Sem_Type;
66 with Sem_Util; use Sem_Util;
67 with Sem_Warn; use Sem_Warn;
68 with Sinfo; use Sinfo;
69 with Snames; use Snames;
70 with Stand; use Stand;
71 with SCIL_LL; use SCIL_LL;
72 with Targparm; use Targparm;
73 with Tbuild; use Tbuild;
74 with Ttypes; use Ttypes;
75 with Uintp; use Uintp;
76 with Urealp; use Urealp;
77 with Validsw; use Validsw;
78
79 package body Exp_Ch4 is
80
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
84
85 procedure Binary_Op_Validity_Checks (N : Node_Id);
86 pragma Inline (Binary_Op_Validity_Checks);
87 -- Performs validity checks for a binary operator
88
89 procedure Build_Boolean_Array_Proc_Call
90 (N : Node_Id;
91 Op1 : Node_Id;
92 Op2 : Node_Id);
93 -- If a boolean array assignment can be done in place, build call to
94 -- corresponding library procedure.
95
96 function Current_Anonymous_Master return Entity_Id;
97 -- Return the entity of the heterogeneous finalization master belonging to
98 -- the current unit (either function, package or procedure). This master
99 -- services all anonymous access-to-controlled types. If the current unit
100 -- does not have such master, create one.
101
102 procedure Displace_Allocator_Pointer (N : Node_Id);
103 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
104 -- Expand_Allocator_Expression. Allocating class-wide interface objects
105 -- this routine displaces the pointer to the allocated object to reference
106 -- the component referencing the corresponding secondary dispatch table.
107
108 procedure Expand_Allocator_Expression (N : Node_Id);
109 -- Subsidiary to Expand_N_Allocator, for the case when the expression
110 -- is a qualified expression or an aggregate.
111
112 procedure Expand_Array_Comparison (N : Node_Id);
113 -- This routine handles expansion of the comparison operators (N_Op_Lt,
114 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
115 -- code for these operators is similar, differing only in the details of
116 -- the actual comparison call that is made. Special processing (call a
117 -- run-time routine)
118
119 function Expand_Array_Equality
120 (Nod : Node_Id;
121 Lhs : Node_Id;
122 Rhs : Node_Id;
123 Bodies : List_Id;
124 Typ : Entity_Id) return Node_Id;
125 -- Expand an array equality into a call to a function implementing this
126 -- equality, and a call to it. Loc is the location for the generated nodes.
127 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
128 -- on which to attach bodies of local functions that are created in the
129 -- process. It is the responsibility of the caller to insert those bodies
130 -- at the right place. Nod provides the Sloc value for the generated code.
131 -- Normally the types used for the generated equality routine are taken
132 -- from Lhs and Rhs. However, in some situations of generated code, the
133 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
134 -- the type to be used for the formal parameters.
135
136 procedure Expand_Boolean_Operator (N : Node_Id);
137 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
138 -- case of array type arguments.
139
140 procedure Expand_Short_Circuit_Operator (N : Node_Id);
141 -- Common expansion processing for short-circuit boolean operators
142
143 function Expand_Composite_Equality
144 (Nod : Node_Id;
145 Typ : Entity_Id;
146 Lhs : Node_Id;
147 Rhs : Node_Id;
148 Bodies : List_Id) return Node_Id;
149 -- Local recursive function used to expand equality for nested composite
150 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
151 -- to attach bodies of local functions that are created in the process.
152 -- This is the responsibility of the caller to insert those bodies at the
153 -- right place. Nod provides the Sloc value for generated code. Lhs and Rhs
154 -- are the left and right sides for the comparison, and Typ is the type of
155 -- the arrays to compare.
156
157 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
158 -- Routine to expand concatenation of a sequence of two or more operands
159 -- (in the list Operands) and replace node Cnode with the result of the
160 -- concatenation. The operands can be of any appropriate type, and can
161 -- include both arrays and singleton elements.
162
163 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
164 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
165 -- fixed. We do not have such a type at runtime, so the purpose of this
166 -- routine is to find the real type by looking up the tree. We also
167 -- determine if the operation must be rounded.
168
169 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
170 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
171 -- discriminants if it has a constrained nominal type, unless the object
172 -- is a component of an enclosing Unchecked_Union object that is subject
173 -- to a per-object constraint and the enclosing object lacks inferable
174 -- discriminants.
175 --
176 -- An expression of an Unchecked_Union type has inferable discriminants
177 -- if it is either a name of an object with inferable discriminants or a
178 -- qualified expression whose subtype mark denotes a constrained subtype.
179
180 procedure Insert_Dereference_Action (N : Node_Id);
181 -- N is an expression whose type is an access. When the type of the
182 -- associated storage pool is derived from Checked_Pool, generate a
183 -- call to the 'Dereference' primitive operation.
184
185 function Make_Array_Comparison_Op
186 (Typ : Entity_Id;
187 Nod : Node_Id) return Node_Id;
188 -- Comparisons between arrays are expanded in line. This function produces
189 -- the body of the implementation of (a > b), where a and b are one-
190 -- dimensional arrays of some discrete type. The original node is then
191 -- expanded into the appropriate call to this function. Nod provides the
192 -- Sloc value for the generated code.
193
194 function Make_Boolean_Array_Op
195 (Typ : Entity_Id;
196 N : Node_Id) return Node_Id;
197 -- Boolean operations on boolean arrays are expanded in line. This function
198 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
199 -- b). It is used only the normal case and not the packed case. The type
200 -- involved, Typ, is the Boolean array type, and the logical operations in
201 -- the body are simple boolean operations. Note that Typ is always a
202 -- constrained type (the caller has ensured this by using
203 -- Convert_To_Actual_Subtype if necessary).
204
205 procedure Optimize_Length_Comparison (N : Node_Id);
206 -- Given an expression, if it is of the form X'Length op N (or the other
207 -- way round), where N is known at compile time to be 0 or 1, and X is a
208 -- simple entity, and op is a comparison operator, optimizes it into a
209 -- comparison of First and Last.
210
211 procedure Rewrite_Comparison (N : Node_Id);
212 -- If N is the node for a comparison whose outcome can be determined at
213 -- compile time, then the node N can be rewritten with True or False. If
214 -- the outcome cannot be determined at compile time, the call has no
215 -- effect. If N is a type conversion, then this processing is applied to
216 -- its expression. If N is neither comparison nor a type conversion, the
217 -- call has no effect.
218
219 procedure Tagged_Membership
220 (N : Node_Id;
221 SCIL_Node : out Node_Id;
222 Result : out Node_Id);
223 -- Construct the expression corresponding to the tagged membership test.
224 -- Deals with a second operand being (or not) a class-wide type.
225
226 function Safe_In_Place_Array_Op
227 (Lhs : Node_Id;
228 Op1 : Node_Id;
229 Op2 : Node_Id) return Boolean;
230 -- In the context of an assignment, where the right-hand side is a boolean
231 -- operation on arrays, check whether operation can be performed in place.
232
233 procedure Unary_Op_Validity_Checks (N : Node_Id);
234 pragma Inline (Unary_Op_Validity_Checks);
235 -- Performs validity checks for a unary operator
236
237 -------------------------------
238 -- Binary_Op_Validity_Checks --
239 -------------------------------
240
241 procedure Binary_Op_Validity_Checks (N : Node_Id) is
242 begin
243 if Validity_Checks_On and Validity_Check_Operands then
244 Ensure_Valid (Left_Opnd (N));
245 Ensure_Valid (Right_Opnd (N));
246 end if;
247 end Binary_Op_Validity_Checks;
248
249 ------------------------------------
250 -- Build_Boolean_Array_Proc_Call --
251 ------------------------------------
252
253 procedure Build_Boolean_Array_Proc_Call
254 (N : Node_Id;
255 Op1 : Node_Id;
256 Op2 : Node_Id)
257 is
258 Loc : constant Source_Ptr := Sloc (N);
259 Kind : constant Node_Kind := Nkind (Expression (N));
260 Target : constant Node_Id :=
261 Make_Attribute_Reference (Loc,
262 Prefix => Name (N),
263 Attribute_Name => Name_Address);
264
265 Arg1 : Node_Id := Op1;
266 Arg2 : Node_Id := Op2;
267 Call_Node : Node_Id;
268 Proc_Name : Entity_Id;
269
270 begin
271 if Kind = N_Op_Not then
272 if Nkind (Op1) in N_Binary_Op then
273
274 -- Use negated version of the binary operators
275
276 if Nkind (Op1) = N_Op_And then
277 Proc_Name := RTE (RE_Vector_Nand);
278
279 elsif Nkind (Op1) = N_Op_Or then
280 Proc_Name := RTE (RE_Vector_Nor);
281
282 else pragma Assert (Nkind (Op1) = N_Op_Xor);
283 Proc_Name := RTE (RE_Vector_Xor);
284 end if;
285
286 Call_Node :=
287 Make_Procedure_Call_Statement (Loc,
288 Name => New_Occurrence_Of (Proc_Name, Loc),
289
290 Parameter_Associations => New_List (
291 Target,
292 Make_Attribute_Reference (Loc,
293 Prefix => Left_Opnd (Op1),
294 Attribute_Name => Name_Address),
295
296 Make_Attribute_Reference (Loc,
297 Prefix => Right_Opnd (Op1),
298 Attribute_Name => Name_Address),
299
300 Make_Attribute_Reference (Loc,
301 Prefix => Left_Opnd (Op1),
302 Attribute_Name => Name_Length)));
303
304 else
305 Proc_Name := RTE (RE_Vector_Not);
306
307 Call_Node :=
308 Make_Procedure_Call_Statement (Loc,
309 Name => New_Occurrence_Of (Proc_Name, Loc),
310 Parameter_Associations => New_List (
311 Target,
312
313 Make_Attribute_Reference (Loc,
314 Prefix => Op1,
315 Attribute_Name => Name_Address),
316
317 Make_Attribute_Reference (Loc,
318 Prefix => Op1,
319 Attribute_Name => Name_Length)));
320 end if;
321
322 else
323 -- We use the following equivalences:
324
325 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
326 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
327 -- (not X) xor (not Y) = X xor Y
328 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
329
330 if Nkind (Op1) = N_Op_Not then
331 Arg1 := Right_Opnd (Op1);
332 Arg2 := Right_Opnd (Op2);
333 if Kind = N_Op_And then
334 Proc_Name := RTE (RE_Vector_Nor);
335 elsif Kind = N_Op_Or then
336 Proc_Name := RTE (RE_Vector_Nand);
337 else
338 Proc_Name := RTE (RE_Vector_Xor);
339 end if;
340
341 else
342 if Kind = N_Op_And then
343 Proc_Name := RTE (RE_Vector_And);
344 elsif Kind = N_Op_Or then
345 Proc_Name := RTE (RE_Vector_Or);
346 elsif Nkind (Op2) = N_Op_Not then
347 Proc_Name := RTE (RE_Vector_Nxor);
348 Arg2 := Right_Opnd (Op2);
349 else
350 Proc_Name := RTE (RE_Vector_Xor);
351 end if;
352 end if;
353
354 Call_Node :=
355 Make_Procedure_Call_Statement (Loc,
356 Name => New_Occurrence_Of (Proc_Name, Loc),
357 Parameter_Associations => New_List (
358 Target,
359 Make_Attribute_Reference (Loc,
360 Prefix => Arg1,
361 Attribute_Name => Name_Address),
362 Make_Attribute_Reference (Loc,
363 Prefix => Arg2,
364 Attribute_Name => Name_Address),
365 Make_Attribute_Reference (Loc,
366 Prefix => Arg1,
367 Attribute_Name => Name_Length)));
368 end if;
369
370 Rewrite (N, Call_Node);
371 Analyze (N);
372
373 exception
374 when RE_Not_Available =>
375 return;
376 end Build_Boolean_Array_Proc_Call;
377
378 ------------------------------
379 -- Current_Anonymous_Master --
380 ------------------------------
381
382 function Current_Anonymous_Master return Entity_Id is
383 Decls : List_Id;
384 Loc : Source_Ptr;
385 Subp_Body : Node_Id;
386 Unit_Decl : Node_Id;
387 Unit_Id : Entity_Id;
388
389 begin
390 Unit_Id := Cunit_Entity (Current_Sem_Unit);
391
392 -- Find the entity of the current unit
393
394 if Ekind (Unit_Id) = E_Subprogram_Body then
395
396 -- When processing subprogram bodies, the proper scope is always that
397 -- of the spec.
398
399 Subp_Body := Unit_Id;
400 while Present (Subp_Body)
401 and then Nkind (Subp_Body) /= N_Subprogram_Body
402 loop
403 Subp_Body := Parent (Subp_Body);
404 end loop;
405
406 Unit_Id := Corresponding_Spec (Subp_Body);
407 end if;
408
409 Loc := Sloc (Unit_Id);
410 Unit_Decl := Unit (Cunit (Current_Sem_Unit));
411
412 -- Find the declarations list of the current unit
413
414 if Nkind (Unit_Decl) = N_Package_Declaration then
415 Unit_Decl := Specification (Unit_Decl);
416 Decls := Visible_Declarations (Unit_Decl);
417
418 if No (Decls) then
419 Decls := New_List (Make_Null_Statement (Loc));
420 Set_Visible_Declarations (Unit_Decl, Decls);
421
422 elsif Is_Empty_List (Decls) then
423 Append_To (Decls, Make_Null_Statement (Loc));
424 end if;
425
426 else
427 Decls := Declarations (Unit_Decl);
428
429 if No (Decls) then
430 Decls := New_List (Make_Null_Statement (Loc));
431 Set_Declarations (Unit_Decl, Decls);
432
433 elsif Is_Empty_List (Decls) then
434 Append_To (Decls, Make_Null_Statement (Loc));
435 end if;
436 end if;
437
438 -- The current unit has an existing anonymous master, traverse its
439 -- declarations and locate the entity.
440
441 if Has_Anonymous_Master (Unit_Id) then
442 declare
443 Decl : Node_Id;
444 Fin_Mas_Id : Entity_Id;
445
446 begin
447 Decl := First (Decls);
448 while Present (Decl) loop
449
450 -- Look for the first variable in the declarations whole type
451 -- is Finalization_Master.
452
453 if Nkind (Decl) = N_Object_Declaration then
454 Fin_Mas_Id := Defining_Identifier (Decl);
455
456 if Ekind (Fin_Mas_Id) = E_Variable
457 and then Etype (Fin_Mas_Id) = RTE (RE_Finalization_Master)
458 then
459 return Fin_Mas_Id;
460 end if;
461 end if;
462
463 Next (Decl);
464 end loop;
465
466 -- The master was not found even though the unit was labeled as
467 -- having one.
468
469 raise Program_Error;
470 end;
471
472 -- Create a new anonymous master
473
474 else
475 declare
476 First_Decl : constant Node_Id := First (Decls);
477 Action : Node_Id;
478 Fin_Mas_Id : Entity_Id;
479
480 begin
481 -- Since the master and its associated initialization is inserted
482 -- at top level, use the scope of the unit when analyzing.
483
484 Push_Scope (Unit_Id);
485
486 -- Create the finalization master
487
488 Fin_Mas_Id :=
489 Make_Defining_Identifier (Loc,
490 Chars => New_External_Name (Chars (Unit_Id), "AM"));
491
492 -- Generate:
493 -- <Fin_Mas_Id> : Finalization_Master;
494
495 Action :=
496 Make_Object_Declaration (Loc,
497 Defining_Identifier => Fin_Mas_Id,
498 Object_Definition =>
499 New_Reference_To (RTE (RE_Finalization_Master), Loc));
500
501 Insert_Before_And_Analyze (First_Decl, Action);
502
503 -- Mark the unit to prevent the generation of multiple masters
504
505 Set_Has_Anonymous_Master (Unit_Id);
506
507 -- Do not set the base pool and mode of operation on .NET/JVM
508 -- since those targets do not support pools and all VM masters
509 -- are heterogeneous by default.
510
511 if VM_Target = No_VM then
512
513 -- Generate:
514 -- Set_Base_Pool
515 -- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
516
517 Action :=
518 Make_Procedure_Call_Statement (Loc,
519 Name =>
520 New_Reference_To (RTE (RE_Set_Base_Pool), Loc),
521
522 Parameter_Associations => New_List (
523 New_Reference_To (Fin_Mas_Id, Loc),
524 Make_Attribute_Reference (Loc,
525 Prefix =>
526 New_Reference_To (RTE (RE_Global_Pool_Object), Loc),
527 Attribute_Name => Name_Unrestricted_Access)));
528
529 Insert_Before_And_Analyze (First_Decl, Action);
530
531 -- Generate:
532 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
533
534 Action :=
535 Make_Procedure_Call_Statement (Loc,
536 Name =>
537 New_Reference_To (RTE (RE_Set_Is_Heterogeneous), Loc),
538 Parameter_Associations => New_List (
539 New_Reference_To (Fin_Mas_Id, Loc)));
540
541 Insert_Before_And_Analyze (First_Decl, Action);
542 end if;
543
544 -- Restore the original state of the scope stack
545
546 Pop_Scope;
547
548 return Fin_Mas_Id;
549 end;
550 end if;
551 end Current_Anonymous_Master;
552
553 --------------------------------
554 -- Displace_Allocator_Pointer --
555 --------------------------------
556
557 procedure Displace_Allocator_Pointer (N : Node_Id) is
558 Loc : constant Source_Ptr := Sloc (N);
559 Orig_Node : constant Node_Id := Original_Node (N);
560 Dtyp : Entity_Id;
561 Etyp : Entity_Id;
562 PtrT : Entity_Id;
563
564 begin
565 -- Do nothing in case of VM targets: the virtual machine will handle
566 -- interfaces directly.
567
568 if not Tagged_Type_Expansion then
569 return;
570 end if;
571
572 pragma Assert (Nkind (N) = N_Identifier
573 and then Nkind (Orig_Node) = N_Allocator);
574
575 PtrT := Etype (Orig_Node);
576 Dtyp := Available_View (Designated_Type (PtrT));
577 Etyp := Etype (Expression (Orig_Node));
578
579 if Is_Class_Wide_Type (Dtyp)
580 and then Is_Interface (Dtyp)
581 then
582 -- If the type of the allocator expression is not an interface type
583 -- we can generate code to reference the record component containing
584 -- the pointer to the secondary dispatch table.
585
586 if not Is_Interface (Etyp) then
587 declare
588 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
589
590 begin
591 -- 1) Get access to the allocated object
592
593 Rewrite (N,
594 Make_Explicit_Dereference (Loc,
595 Relocate_Node (N)));
596 Set_Etype (N, Etyp);
597 Set_Analyzed (N);
598
599 -- 2) Add the conversion to displace the pointer to reference
600 -- the secondary dispatch table.
601
602 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
603 Analyze_And_Resolve (N, Dtyp);
604
605 -- 3) The 'access to the secondary dispatch table will be used
606 -- as the value returned by the allocator.
607
608 Rewrite (N,
609 Make_Attribute_Reference (Loc,
610 Prefix => Relocate_Node (N),
611 Attribute_Name => Name_Access));
612 Set_Etype (N, Saved_Typ);
613 Set_Analyzed (N);
614 end;
615
616 -- If the type of the allocator expression is an interface type we
617 -- generate a run-time call to displace "this" to reference the
618 -- component containing the pointer to the secondary dispatch table
619 -- or else raise Constraint_Error if the actual object does not
620 -- implement the target interface. This case corresponds with the
621 -- following example:
622
623 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
624 -- begin
625 -- return new Iface_2'Class'(Obj);
626 -- end Op;
627
628 else
629 Rewrite (N,
630 Unchecked_Convert_To (PtrT,
631 Make_Function_Call (Loc,
632 Name => New_Reference_To (RTE (RE_Displace), Loc),
633 Parameter_Associations => New_List (
634 Unchecked_Convert_To (RTE (RE_Address),
635 Relocate_Node (N)),
636
637 New_Occurrence_Of
638 (Elists.Node
639 (First_Elmt
640 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
641 Loc)))));
642 Analyze_And_Resolve (N, PtrT);
643 end if;
644 end if;
645 end Displace_Allocator_Pointer;
646
647 ---------------------------------
648 -- Expand_Allocator_Expression --
649 ---------------------------------
650
651 procedure Expand_Allocator_Expression (N : Node_Id) is
652 Loc : constant Source_Ptr := Sloc (N);
653 Exp : constant Node_Id := Expression (Expression (N));
654 PtrT : constant Entity_Id := Etype (N);
655 DesigT : constant Entity_Id := Designated_Type (PtrT);
656
657 procedure Apply_Accessibility_Check
658 (Ref : Node_Id;
659 Built_In_Place : Boolean := False);
660 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
661 -- type, generate an accessibility check to verify that the level of the
662 -- type of the created object is not deeper than the level of the access
663 -- type. If the type of the qualified expression is class- wide, then
664 -- always generate the check (except in the case where it is known to be
665 -- unnecessary, see comment below). Otherwise, only generate the check
666 -- if the level of the qualified expression type is statically deeper
667 -- than the access type.
668 --
669 -- Although the static accessibility will generally have been performed
670 -- as a legality check, it won't have been done in cases where the
671 -- allocator appears in generic body, so a run-time check is needed in
672 -- general. One special case is when the access type is declared in the
673 -- same scope as the class-wide allocator, in which case the check can
674 -- never fail, so it need not be generated.
675 --
676 -- As an open issue, there seem to be cases where the static level
677 -- associated with the class-wide object's underlying type is not
678 -- sufficient to perform the proper accessibility check, such as for
679 -- allocators in nested subprograms or accept statements initialized by
680 -- class-wide formals when the actual originates outside at a deeper
681 -- static level. The nested subprogram case might require passing
682 -- accessibility levels along with class-wide parameters, and the task
683 -- case seems to be an actual gap in the language rules that needs to
684 -- be fixed by the ARG. ???
685
686 -------------------------------
687 -- Apply_Accessibility_Check --
688 -------------------------------
689
690 procedure Apply_Accessibility_Check
691 (Ref : Node_Id;
692 Built_In_Place : Boolean := False)
693 is
694 New_Node : Node_Id;
695
696 begin
697 if Ada_Version >= Ada_2005
698 and then Is_Class_Wide_Type (DesigT)
699 and then not Scope_Suppress (Accessibility_Check)
700 and then
701 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
702 or else
703 (Is_Class_Wide_Type (Etype (Exp))
704 and then Scope (PtrT) /= Current_Scope))
705 then
706 -- If the allocator was built in place Ref is already a reference
707 -- to the access object initialized to the result of the allocator
708 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). Otherwise
709 -- it is the entity associated with the object containing the
710 -- address of the allocated object.
711
712 if Built_In_Place then
713 New_Node := New_Copy (Ref);
714 else
715 New_Node := New_Reference_To (Ref, Loc);
716 end if;
717
718 New_Node :=
719 Make_Attribute_Reference (Loc,
720 Prefix => New_Node,
721 Attribute_Name => Name_Tag);
722
723 if Tagged_Type_Expansion then
724 New_Node := Build_Get_Access_Level (Loc, New_Node);
725
726 elsif VM_Target /= No_VM then
727 New_Node :=
728 Make_Function_Call (Loc,
729 Name => New_Reference_To (RTE (RE_Get_Access_Level), Loc),
730 Parameter_Associations => New_List (New_Node));
731
732 -- Cannot generate the runtime check
733
734 else
735 return;
736 end if;
737
738 Insert_Action (N,
739 Make_Raise_Program_Error (Loc,
740 Condition =>
741 Make_Op_Gt (Loc,
742 Left_Opnd => New_Node,
743 Right_Opnd =>
744 Make_Integer_Literal (Loc, Type_Access_Level (PtrT))),
745 Reason => PE_Accessibility_Check_Failed));
746 end if;
747 end Apply_Accessibility_Check;
748
749 -- Local variables
750
751 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
752 Indic : constant Node_Id := Subtype_Mark (Expression (N));
753 T : constant Entity_Id := Entity (Indic);
754 Node : Node_Id;
755 Tag_Assign : Node_Id;
756 Temp : Entity_Id;
757 Temp_Decl : Node_Id;
758
759 TagT : Entity_Id := Empty;
760 -- Type used as source for tag assignment
761
762 TagR : Node_Id := Empty;
763 -- Target reference for tag assignment
764
765 -- Start of processing for Expand_Allocator_Expression
766
767 begin
768 -- In the case of an Ada2012 allocator whose initial value comes from a
769 -- function call, pass "the accessibility level determined by the point
770 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
771 -- Expand_Call but it couldn't be done there (because the Etype of the
772 -- allocator wasn't set then) so we generate the parameter here. See
773 -- the Boolean variable Defer in (a block within) Expand_Call.
774
775 if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
776 declare
777 Subp : Entity_Id;
778
779 begin
780 if Nkind (Name (Exp)) = N_Explicit_Dereference then
781 Subp := Designated_Type (Etype (Prefix (Name (Exp))));
782 else
783 Subp := Entity (Name (Exp));
784 end if;
785
786 Subp := Ultimate_Alias (Subp);
787
788 if Present (Extra_Accessibility_Of_Result (Subp)) then
789 Add_Extra_Actual_To_Call
790 (Subprogram_Call => Exp,
791 Extra_Formal => Extra_Accessibility_Of_Result (Subp),
792 Extra_Actual => Dynamic_Accessibility_Level (PtrT));
793 end if;
794 end;
795 end if;
796
797 -- Would be nice to comment the branches of this very long if ???
798
799 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
800 if Is_CPP_Constructor_Call (Exp) then
801
802 -- Generate:
803 -- Pnnn : constant ptr_T := new (T);
804 -- Init (Pnnn.all,...);
805
806 -- Allocate the object without an expression
807
808 Node := Relocate_Node (N);
809 Set_Expression (Node, New_Reference_To (Etype (Exp), Loc));
810
811 -- Avoid its expansion to avoid generating a call to the default
812 -- C++ constructor.
813
814 Set_Analyzed (Node);
815
816 Temp := Make_Temporary (Loc, 'P', N);
817
818 Temp_Decl :=
819 Make_Object_Declaration (Loc,
820 Defining_Identifier => Temp,
821 Constant_Present => True,
822 Object_Definition => New_Reference_To (PtrT, Loc),
823 Expression => Node);
824 Insert_Action (N, Temp_Decl);
825
826 Apply_Accessibility_Check (Temp);
827
828 -- Locate the enclosing list and insert the C++ constructor call
829
830 declare
831 P : Node_Id;
832
833 begin
834 P := Parent (Node);
835 while not Is_List_Member (P) loop
836 P := Parent (P);
837 end loop;
838
839 Insert_List_After_And_Analyze (P,
840 Build_Initialization_Call (Loc,
841 Id_Ref =>
842 Make_Explicit_Dereference (Loc,
843 Prefix => New_Reference_To (Temp, Loc)),
844 Typ => Etype (Exp),
845 Constructor_Ref => Exp));
846 end;
847
848 Rewrite (N, New_Reference_To (Temp, Loc));
849 Analyze_And_Resolve (N, PtrT);
850 return;
851 end if;
852
853 -- Ada 2005 (AI-318-02): If the initialization expression is a call
854 -- to a build-in-place function, then access to the allocated object
855 -- must be passed to the function. Currently we limit such functions
856 -- to those with constrained limited result subtypes, but eventually
857 -- we plan to expand the allowed forms of functions that are treated
858 -- as build-in-place.
859
860 if Ada_Version >= Ada_2005
861 and then Is_Build_In_Place_Function_Call (Exp)
862 then
863 Make_Build_In_Place_Call_In_Allocator (N, Exp);
864 Apply_Accessibility_Check (N, Built_In_Place => True);
865 return;
866 end if;
867
868 -- Actions inserted before:
869 -- Temp : constant ptr_T := new T'(Expression);
870 -- Temp._tag = T'tag; -- when not class-wide
871 -- [Deep_]Adjust (Temp.all);
872
873 -- We analyze by hand the new internal allocator to avoid any
874 -- recursion and inappropriate call to Initialize
875
876 -- We don't want to remove side effects when the expression must be
877 -- built in place. In the case of a build-in-place function call,
878 -- that could lead to a duplication of the call, which was already
879 -- substituted for the allocator.
880
881 if not Aggr_In_Place then
882 Remove_Side_Effects (Exp);
883 end if;
884
885 Temp := Make_Temporary (Loc, 'P', N);
886
887 -- For a class wide allocation generate the following code:
888
889 -- type Equiv_Record is record ... end record;
890 -- implicit subtype CW is <Class_Wide_Subytpe>;
891 -- temp : PtrT := new CW'(CW!(expr));
892
893 if Is_Class_Wide_Type (T) then
894 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
895
896 -- Ada 2005 (AI-251): If the expression is a class-wide interface
897 -- object we generate code to move up "this" to reference the
898 -- base of the object before allocating the new object.
899
900 -- Note that Exp'Address is recursively expanded into a call
901 -- to Base_Address (Exp.Tag)
902
903 if Is_Class_Wide_Type (Etype (Exp))
904 and then Is_Interface (Etype (Exp))
905 and then Tagged_Type_Expansion
906 then
907 Set_Expression
908 (Expression (N),
909 Unchecked_Convert_To (Entity (Indic),
910 Make_Explicit_Dereference (Loc,
911 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
912 Make_Attribute_Reference (Loc,
913 Prefix => Exp,
914 Attribute_Name => Name_Address)))));
915 else
916 Set_Expression
917 (Expression (N),
918 Unchecked_Convert_To (Entity (Indic), Exp));
919 end if;
920
921 Analyze_And_Resolve (Expression (N), Entity (Indic));
922 end if;
923
924 -- Processing for allocators returning non-interface types
925
926 if not Is_Interface (Directly_Designated_Type (PtrT)) then
927 if Aggr_In_Place then
928 Temp_Decl :=
929 Make_Object_Declaration (Loc,
930 Defining_Identifier => Temp,
931 Object_Definition => New_Reference_To (PtrT, Loc),
932 Expression =>
933 Make_Allocator (Loc,
934 Expression =>
935 New_Reference_To (Etype (Exp), Loc)));
936
937 -- Copy the Comes_From_Source flag for the allocator we just
938 -- built, since logically this allocator is a replacement of
939 -- the original allocator node. This is for proper handling of
940 -- restriction No_Implicit_Heap_Allocations.
941
942 Set_Comes_From_Source
943 (Expression (Temp_Decl), Comes_From_Source (N));
944
945 Set_No_Initialization (Expression (Temp_Decl));
946 Insert_Action (N, Temp_Decl);
947
948 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
949 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
950
951 -- Attach the object to the associated finalization master.
952 -- This is done manually on .NET/JVM since those compilers do
953 -- no support pools and can't benefit from internally generated
954 -- Allocate / Deallocate procedures.
955
956 if VM_Target /= No_VM
957 and then Is_Controlled (DesigT)
958 and then Present (Finalization_Master (PtrT))
959 then
960 Insert_Action (N,
961 Make_Attach_Call (
962 Obj_Ref =>
963 New_Reference_To (Temp, Loc),
964 Ptr_Typ => PtrT));
965 end if;
966
967 else
968 Node := Relocate_Node (N);
969 Set_Analyzed (Node);
970
971 Temp_Decl :=
972 Make_Object_Declaration (Loc,
973 Defining_Identifier => Temp,
974 Constant_Present => True,
975 Object_Definition => New_Reference_To (PtrT, Loc),
976 Expression => Node);
977
978 Insert_Action (N, Temp_Decl);
979 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
980
981 -- Attach the object to the associated finalization master.
982 -- This is done manually on .NET/JVM since those compilers do
983 -- no support pools and can't benefit from internally generated
984 -- Allocate / Deallocate procedures.
985
986 if VM_Target /= No_VM
987 and then Is_Controlled (DesigT)
988 and then Present (Finalization_Master (PtrT))
989 then
990 Insert_Action (N,
991 Make_Attach_Call (
992 Obj_Ref =>
993 New_Reference_To (Temp, Loc),
994 Ptr_Typ => PtrT));
995 end if;
996 end if;
997
998 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
999 -- interface type. In this case we use the type of the qualified
1000 -- expression to allocate the object.
1001
1002 else
1003 declare
1004 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
1005 New_Decl : Node_Id;
1006
1007 begin
1008 New_Decl :=
1009 Make_Full_Type_Declaration (Loc,
1010 Defining_Identifier => Def_Id,
1011 Type_Definition =>
1012 Make_Access_To_Object_Definition (Loc,
1013 All_Present => True,
1014 Null_Exclusion_Present => False,
1015 Constant_Present => False,
1016 Subtype_Indication =>
1017 New_Reference_To (Etype (Exp), Loc)));
1018
1019 Insert_Action (N, New_Decl);
1020
1021 -- Inherit the allocation-related attributes from the original
1022 -- access type.
1023
1024 Set_Finalization_Master (Def_Id, Finalization_Master (PtrT));
1025
1026 Set_Associated_Storage_Pool (Def_Id,
1027 Associated_Storage_Pool (PtrT));
1028
1029 -- Declare the object using the previous type declaration
1030
1031 if Aggr_In_Place then
1032 Temp_Decl :=
1033 Make_Object_Declaration (Loc,
1034 Defining_Identifier => Temp,
1035 Object_Definition => New_Reference_To (Def_Id, Loc),
1036 Expression =>
1037 Make_Allocator (Loc,
1038 New_Reference_To (Etype (Exp), Loc)));
1039
1040 -- Copy the Comes_From_Source flag for the allocator we just
1041 -- built, since logically this allocator is a replacement of
1042 -- the original allocator node. This is for proper handling
1043 -- of restriction No_Implicit_Heap_Allocations.
1044
1045 Set_Comes_From_Source
1046 (Expression (Temp_Decl), Comes_From_Source (N));
1047
1048 Set_No_Initialization (Expression (Temp_Decl));
1049 Insert_Action (N, Temp_Decl);
1050
1051 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1052 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1053
1054 else
1055 Node := Relocate_Node (N);
1056 Set_Analyzed (Node);
1057
1058 Temp_Decl :=
1059 Make_Object_Declaration (Loc,
1060 Defining_Identifier => Temp,
1061 Constant_Present => True,
1062 Object_Definition => New_Reference_To (Def_Id, Loc),
1063 Expression => Node);
1064
1065 Insert_Action (N, Temp_Decl);
1066 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1067 end if;
1068
1069 -- Generate an additional object containing the address of the
1070 -- returned object. The type of this second object declaration
1071 -- is the correct type required for the common processing that
1072 -- is still performed by this subprogram. The displacement of
1073 -- this pointer to reference the component associated with the
1074 -- interface type will be done at the end of common processing.
1075
1076 New_Decl :=
1077 Make_Object_Declaration (Loc,
1078 Defining_Identifier => Make_Temporary (Loc, 'P'),
1079 Object_Definition => New_Reference_To (PtrT, Loc),
1080 Expression =>
1081 Unchecked_Convert_To (PtrT,
1082 New_Reference_To (Temp, Loc)));
1083
1084 Insert_Action (N, New_Decl);
1085
1086 Temp_Decl := New_Decl;
1087 Temp := Defining_Identifier (New_Decl);
1088 end;
1089 end if;
1090
1091 Apply_Accessibility_Check (Temp);
1092
1093 -- Generate the tag assignment
1094
1095 -- Suppress the tag assignment when VM_Target because VM tags are
1096 -- represented implicitly in objects.
1097
1098 if not Tagged_Type_Expansion then
1099 null;
1100
1101 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1102 -- interface objects because in this case the tag does not change.
1103
1104 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
1105 pragma Assert (Is_Class_Wide_Type
1106 (Directly_Designated_Type (Etype (N))));
1107 null;
1108
1109 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
1110 TagT := T;
1111 TagR := New_Reference_To (Temp, Loc);
1112
1113 elsif Is_Private_Type (T)
1114 and then Is_Tagged_Type (Underlying_Type (T))
1115 then
1116 TagT := Underlying_Type (T);
1117 TagR :=
1118 Unchecked_Convert_To (Underlying_Type (T),
1119 Make_Explicit_Dereference (Loc,
1120 Prefix => New_Reference_To (Temp, Loc)));
1121 end if;
1122
1123 if Present (TagT) then
1124 declare
1125 Full_T : constant Entity_Id := Underlying_Type (TagT);
1126 begin
1127 Tag_Assign :=
1128 Make_Assignment_Statement (Loc,
1129 Name =>
1130 Make_Selected_Component (Loc,
1131 Prefix => TagR,
1132 Selector_Name =>
1133 New_Reference_To (First_Tag_Component (Full_T), Loc)),
1134 Expression =>
1135 Unchecked_Convert_To (RTE (RE_Tag),
1136 New_Reference_To
1137 (Elists.Node
1138 (First_Elmt (Access_Disp_Table (Full_T))), Loc)));
1139 end;
1140
1141 -- The previous assignment has to be done in any case
1142
1143 Set_Assignment_OK (Name (Tag_Assign));
1144 Insert_Action (N, Tag_Assign);
1145 end if;
1146
1147 if Needs_Finalization (DesigT)
1148 and then Needs_Finalization (T)
1149 then
1150 -- Generate an Adjust call if the object will be moved. In Ada
1151 -- 2005, the object may be inherently limited, in which case
1152 -- there is no Adjust procedure, and the object is built in
1153 -- place. In Ada 95, the object can be limited but not
1154 -- inherently limited if this allocator came from a return
1155 -- statement (we're allocating the result on the secondary
1156 -- stack). In that case, the object will be moved, so we _do_
1157 -- want to Adjust.
1158
1159 if not Aggr_In_Place
1160 and then not Is_Immutably_Limited_Type (T)
1161 then
1162 Insert_Action (N,
1163 Make_Adjust_Call (
1164 Obj_Ref =>
1165
1166 -- An unchecked conversion is needed in the classwide
1167 -- case because the designated type can be an ancestor
1168 -- of the subtype mark of the allocator.
1169
1170 Unchecked_Convert_To (T,
1171 Make_Explicit_Dereference (Loc,
1172 Prefix => New_Reference_To (Temp, Loc))),
1173 Typ => T));
1174 end if;
1175
1176 -- Generate:
1177 -- Set_Finalize_Address (<PtrT>FM, <T>FD'Unrestricted_Access);
1178
1179 -- Do not generate this call in the following cases:
1180
1181 -- * .NET/JVM - these targets do not support address arithmetic
1182 -- and unchecked conversion, key elements of Finalize_Address.
1183
1184 -- * Alfa mode - the call is useless and results in unwanted
1185 -- expansion.
1186
1187 -- * CodePeer mode - TSS primitive Finalize_Address is not
1188 -- created in this mode.
1189
1190 if VM_Target = No_VM
1191 and then not Alfa_Mode
1192 and then not CodePeer_Mode
1193 and then Present (Finalization_Master (PtrT))
1194 and then Present (Temp_Decl)
1195 and then Nkind (Expression (Temp_Decl)) = N_Allocator
1196 then
1197 Insert_Action (N,
1198 Make_Set_Finalize_Address_Call
1199 (Loc => Loc,
1200 Typ => T,
1201 Ptr_Typ => PtrT));
1202 end if;
1203 end if;
1204
1205 Rewrite (N, New_Reference_To (Temp, Loc));
1206 Analyze_And_Resolve (N, PtrT);
1207
1208 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1209 -- component containing the secondary dispatch table of the interface
1210 -- type.
1211
1212 if Is_Interface (Directly_Designated_Type (PtrT)) then
1213 Displace_Allocator_Pointer (N);
1214 end if;
1215
1216 elsif Aggr_In_Place then
1217 Temp := Make_Temporary (Loc, 'P', N);
1218 Temp_Decl :=
1219 Make_Object_Declaration (Loc,
1220 Defining_Identifier => Temp,
1221 Object_Definition => New_Reference_To (PtrT, Loc),
1222 Expression =>
1223 Make_Allocator (Loc,
1224 Expression => New_Reference_To (Etype (Exp), Loc)));
1225
1226 -- Copy the Comes_From_Source flag for the allocator we just built,
1227 -- since logically this allocator is a replacement of the original
1228 -- allocator node. This is for proper handling of restriction
1229 -- No_Implicit_Heap_Allocations.
1230
1231 Set_Comes_From_Source
1232 (Expression (Temp_Decl), Comes_From_Source (N));
1233
1234 Set_No_Initialization (Expression (Temp_Decl));
1235 Insert_Action (N, Temp_Decl);
1236
1237 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1238 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1239
1240 -- Attach the object to the associated finalization master. Thisis
1241 -- done manually on .NET/JVM since those compilers do no support
1242 -- pools and cannot benefit from internally generated Allocate and
1243 -- Deallocate procedures.
1244
1245 if VM_Target /= No_VM
1246 and then Is_Controlled (DesigT)
1247 and then Present (Finalization_Master (PtrT))
1248 then
1249 Insert_Action (N,
1250 Make_Attach_Call
1251 (Obj_Ref => New_Reference_To (Temp, Loc),
1252 Ptr_Typ => PtrT));
1253 end if;
1254
1255 Rewrite (N, New_Reference_To (Temp, Loc));
1256 Analyze_And_Resolve (N, PtrT);
1257
1258 elsif Is_Access_Type (T)
1259 and then Can_Never_Be_Null (T)
1260 then
1261 Install_Null_Excluding_Check (Exp);
1262
1263 elsif Is_Access_Type (DesigT)
1264 and then Nkind (Exp) = N_Allocator
1265 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1266 then
1267 -- Apply constraint to designated subtype indication
1268
1269 Apply_Constraint_Check (Expression (Exp),
1270 Designated_Type (DesigT),
1271 No_Sliding => True);
1272
1273 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1274
1275 -- Propagate constraint_error to enclosing allocator
1276
1277 Rewrite (Exp, New_Copy (Expression (Exp)));
1278 end if;
1279
1280 else
1281 Build_Allocate_Deallocate_Proc (N, True);
1282
1283 -- If we have:
1284 -- type A is access T1;
1285 -- X : A := new T2'(...);
1286 -- T1 and T2 can be different subtypes, and we might need to check
1287 -- both constraints. First check against the type of the qualified
1288 -- expression.
1289
1290 Apply_Constraint_Check (Exp, T, No_Sliding => True);
1291
1292 if Do_Range_Check (Exp) then
1293 Set_Do_Range_Check (Exp, False);
1294 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1295 end if;
1296
1297 -- A check is also needed in cases where the designated subtype is
1298 -- constrained and differs from the subtype given in the qualified
1299 -- expression. Note that the check on the qualified expression does
1300 -- not allow sliding, but this check does (a relaxation from Ada 83).
1301
1302 if Is_Constrained (DesigT)
1303 and then not Subtypes_Statically_Match (T, DesigT)
1304 then
1305 Apply_Constraint_Check
1306 (Exp, DesigT, No_Sliding => False);
1307
1308 if Do_Range_Check (Exp) then
1309 Set_Do_Range_Check (Exp, False);
1310 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1311 end if;
1312 end if;
1313
1314 -- For an access to unconstrained packed array, GIGI needs to see an
1315 -- expression with a constrained subtype in order to compute the
1316 -- proper size for the allocator.
1317
1318 if Is_Array_Type (T)
1319 and then not Is_Constrained (T)
1320 and then Is_Packed (T)
1321 then
1322 declare
1323 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
1324 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1325 begin
1326 Insert_Action (Exp,
1327 Make_Subtype_Declaration (Loc,
1328 Defining_Identifier => ConstrT,
1329 Subtype_Indication =>
1330 Make_Subtype_From_Expr (Internal_Exp, T)));
1331 Freeze_Itype (ConstrT, Exp);
1332 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1333 end;
1334 end if;
1335
1336 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1337 -- to a build-in-place function, then access to the allocated object
1338 -- must be passed to the function. Currently we limit such functions
1339 -- to those with constrained limited result subtypes, but eventually
1340 -- we plan to expand the allowed forms of functions that are treated
1341 -- as build-in-place.
1342
1343 if Ada_Version >= Ada_2005
1344 and then Is_Build_In_Place_Function_Call (Exp)
1345 then
1346 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1347 end if;
1348 end if;
1349
1350 exception
1351 when RE_Not_Available =>
1352 return;
1353 end Expand_Allocator_Expression;
1354
1355 -----------------------------
1356 -- Expand_Array_Comparison --
1357 -----------------------------
1358
1359 -- Expansion is only required in the case of array types. For the unpacked
1360 -- case, an appropriate runtime routine is called. For packed cases, and
1361 -- also in some other cases where a runtime routine cannot be called, the
1362 -- form of the expansion is:
1363
1364 -- [body for greater_nn; boolean_expression]
1365
1366 -- The body is built by Make_Array_Comparison_Op, and the form of the
1367 -- Boolean expression depends on the operator involved.
1368
1369 procedure Expand_Array_Comparison (N : Node_Id) is
1370 Loc : constant Source_Ptr := Sloc (N);
1371 Op1 : Node_Id := Left_Opnd (N);
1372 Op2 : Node_Id := Right_Opnd (N);
1373 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
1374 Ctyp : constant Entity_Id := Component_Type (Typ1);
1375
1376 Expr : Node_Id;
1377 Func_Body : Node_Id;
1378 Func_Name : Entity_Id;
1379
1380 Comp : RE_Id;
1381
1382 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1383 -- True for byte addressable target
1384
1385 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
1386 -- Returns True if the length of the given operand is known to be less
1387 -- than 4. Returns False if this length is known to be four or greater
1388 -- or is not known at compile time.
1389
1390 ------------------------
1391 -- Length_Less_Than_4 --
1392 ------------------------
1393
1394 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1395 Otyp : constant Entity_Id := Etype (Opnd);
1396
1397 begin
1398 if Ekind (Otyp) = E_String_Literal_Subtype then
1399 return String_Literal_Length (Otyp) < 4;
1400
1401 else
1402 declare
1403 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1404 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1405 Hi : constant Node_Id := Type_High_Bound (Ityp);
1406 Lov : Uint;
1407 Hiv : Uint;
1408
1409 begin
1410 if Compile_Time_Known_Value (Lo) then
1411 Lov := Expr_Value (Lo);
1412 else
1413 return False;
1414 end if;
1415
1416 if Compile_Time_Known_Value (Hi) then
1417 Hiv := Expr_Value (Hi);
1418 else
1419 return False;
1420 end if;
1421
1422 return Hiv < Lov + 3;
1423 end;
1424 end if;
1425 end Length_Less_Than_4;
1426
1427 -- Start of processing for Expand_Array_Comparison
1428
1429 begin
1430 -- Deal first with unpacked case, where we can call a runtime routine
1431 -- except that we avoid this for targets for which are not addressable
1432 -- by bytes, and for the JVM/CIL, since they do not support direct
1433 -- addressing of array components.
1434
1435 if not Is_Bit_Packed_Array (Typ1)
1436 and then Byte_Addressable
1437 and then VM_Target = No_VM
1438 then
1439 -- The call we generate is:
1440
1441 -- Compare_Array_xn[_Unaligned]
1442 -- (left'address, right'address, left'length, right'length) <op> 0
1443
1444 -- x = U for unsigned, S for signed
1445 -- n = 8,16,32,64 for component size
1446 -- Add _Unaligned if length < 4 and component size is 8.
1447 -- <op> is the standard comparison operator
1448
1449 if Component_Size (Typ1) = 8 then
1450 if Length_Less_Than_4 (Op1)
1451 or else
1452 Length_Less_Than_4 (Op2)
1453 then
1454 if Is_Unsigned_Type (Ctyp) then
1455 Comp := RE_Compare_Array_U8_Unaligned;
1456 else
1457 Comp := RE_Compare_Array_S8_Unaligned;
1458 end if;
1459
1460 else
1461 if Is_Unsigned_Type (Ctyp) then
1462 Comp := RE_Compare_Array_U8;
1463 else
1464 Comp := RE_Compare_Array_S8;
1465 end if;
1466 end if;
1467
1468 elsif Component_Size (Typ1) = 16 then
1469 if Is_Unsigned_Type (Ctyp) then
1470 Comp := RE_Compare_Array_U16;
1471 else
1472 Comp := RE_Compare_Array_S16;
1473 end if;
1474
1475 elsif Component_Size (Typ1) = 32 then
1476 if Is_Unsigned_Type (Ctyp) then
1477 Comp := RE_Compare_Array_U32;
1478 else
1479 Comp := RE_Compare_Array_S32;
1480 end if;
1481
1482 else pragma Assert (Component_Size (Typ1) = 64);
1483 if Is_Unsigned_Type (Ctyp) then
1484 Comp := RE_Compare_Array_U64;
1485 else
1486 Comp := RE_Compare_Array_S64;
1487 end if;
1488 end if;
1489
1490 Remove_Side_Effects (Op1, Name_Req => True);
1491 Remove_Side_Effects (Op2, Name_Req => True);
1492
1493 Rewrite (Op1,
1494 Make_Function_Call (Sloc (Op1),
1495 Name => New_Occurrence_Of (RTE (Comp), Loc),
1496
1497 Parameter_Associations => New_List (
1498 Make_Attribute_Reference (Loc,
1499 Prefix => Relocate_Node (Op1),
1500 Attribute_Name => Name_Address),
1501
1502 Make_Attribute_Reference (Loc,
1503 Prefix => Relocate_Node (Op2),
1504 Attribute_Name => Name_Address),
1505
1506 Make_Attribute_Reference (Loc,
1507 Prefix => Relocate_Node (Op1),
1508 Attribute_Name => Name_Length),
1509
1510 Make_Attribute_Reference (Loc,
1511 Prefix => Relocate_Node (Op2),
1512 Attribute_Name => Name_Length))));
1513
1514 Rewrite (Op2,
1515 Make_Integer_Literal (Sloc (Op2),
1516 Intval => Uint_0));
1517
1518 Analyze_And_Resolve (Op1, Standard_Integer);
1519 Analyze_And_Resolve (Op2, Standard_Integer);
1520 return;
1521 end if;
1522
1523 -- Cases where we cannot make runtime call
1524
1525 -- For (a <= b) we convert to not (a > b)
1526
1527 if Chars (N) = Name_Op_Le then
1528 Rewrite (N,
1529 Make_Op_Not (Loc,
1530 Right_Opnd =>
1531 Make_Op_Gt (Loc,
1532 Left_Opnd => Op1,
1533 Right_Opnd => Op2)));
1534 Analyze_And_Resolve (N, Standard_Boolean);
1535 return;
1536
1537 -- For < the Boolean expression is
1538 -- greater__nn (op2, op1)
1539
1540 elsif Chars (N) = Name_Op_Lt then
1541 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1542
1543 -- Switch operands
1544
1545 Op1 := Right_Opnd (N);
1546 Op2 := Left_Opnd (N);
1547
1548 -- For (a >= b) we convert to not (a < b)
1549
1550 elsif Chars (N) = Name_Op_Ge then
1551 Rewrite (N,
1552 Make_Op_Not (Loc,
1553 Right_Opnd =>
1554 Make_Op_Lt (Loc,
1555 Left_Opnd => Op1,
1556 Right_Opnd => Op2)));
1557 Analyze_And_Resolve (N, Standard_Boolean);
1558 return;
1559
1560 -- For > the Boolean expression is
1561 -- greater__nn (op1, op2)
1562
1563 else
1564 pragma Assert (Chars (N) = Name_Op_Gt);
1565 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1566 end if;
1567
1568 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1569 Expr :=
1570 Make_Function_Call (Loc,
1571 Name => New_Reference_To (Func_Name, Loc),
1572 Parameter_Associations => New_List (Op1, Op2));
1573
1574 Insert_Action (N, Func_Body);
1575 Rewrite (N, Expr);
1576 Analyze_And_Resolve (N, Standard_Boolean);
1577
1578 exception
1579 when RE_Not_Available =>
1580 return;
1581 end Expand_Array_Comparison;
1582
1583 ---------------------------
1584 -- Expand_Array_Equality --
1585 ---------------------------
1586
1587 -- Expand an equality function for multi-dimensional arrays. Here is an
1588 -- example of such a function for Nb_Dimension = 2
1589
1590 -- function Enn (A : atyp; B : btyp) return boolean is
1591 -- begin
1592 -- if (A'length (1) = 0 or else A'length (2) = 0)
1593 -- and then
1594 -- (B'length (1) = 0 or else B'length (2) = 0)
1595 -- then
1596 -- return True; -- RM 4.5.2(22)
1597 -- end if;
1598
1599 -- if A'length (1) /= B'length (1)
1600 -- or else
1601 -- A'length (2) /= B'length (2)
1602 -- then
1603 -- return False; -- RM 4.5.2(23)
1604 -- end if;
1605
1606 -- declare
1607 -- A1 : Index_T1 := A'first (1);
1608 -- B1 : Index_T1 := B'first (1);
1609 -- begin
1610 -- loop
1611 -- declare
1612 -- A2 : Index_T2 := A'first (2);
1613 -- B2 : Index_T2 := B'first (2);
1614 -- begin
1615 -- loop
1616 -- if A (A1, A2) /= B (B1, B2) then
1617 -- return False;
1618 -- end if;
1619
1620 -- exit when A2 = A'last (2);
1621 -- A2 := Index_T2'succ (A2);
1622 -- B2 := Index_T2'succ (B2);
1623 -- end loop;
1624 -- end;
1625
1626 -- exit when A1 = A'last (1);
1627 -- A1 := Index_T1'succ (A1);
1628 -- B1 := Index_T1'succ (B1);
1629 -- end loop;
1630 -- end;
1631
1632 -- return true;
1633 -- end Enn;
1634
1635 -- Note on the formal types used (atyp and btyp). If either of the arrays
1636 -- is of a private type, we use the underlying type, and do an unchecked
1637 -- conversion of the actual. If either of the arrays has a bound depending
1638 -- on a discriminant, then we use the base type since otherwise we have an
1639 -- escaped discriminant in the function.
1640
1641 -- If both arrays are constrained and have the same bounds, we can generate
1642 -- a loop with an explicit iteration scheme using a 'Range attribute over
1643 -- the first array.
1644
1645 function Expand_Array_Equality
1646 (Nod : Node_Id;
1647 Lhs : Node_Id;
1648 Rhs : Node_Id;
1649 Bodies : List_Id;
1650 Typ : Entity_Id) return Node_Id
1651 is
1652 Loc : constant Source_Ptr := Sloc (Nod);
1653 Decls : constant List_Id := New_List;
1654 Index_List1 : constant List_Id := New_List;
1655 Index_List2 : constant List_Id := New_List;
1656
1657 Actuals : List_Id;
1658 Formals : List_Id;
1659 Func_Name : Entity_Id;
1660 Func_Body : Node_Id;
1661
1662 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1663 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1664
1665 Ltyp : Entity_Id;
1666 Rtyp : Entity_Id;
1667 -- The parameter types to be used for the formals
1668
1669 function Arr_Attr
1670 (Arr : Entity_Id;
1671 Nam : Name_Id;
1672 Num : Int) return Node_Id;
1673 -- This builds the attribute reference Arr'Nam (Expr)
1674
1675 function Component_Equality (Typ : Entity_Id) return Node_Id;
1676 -- Create one statement to compare corresponding components, designated
1677 -- by a full set of indexes.
1678
1679 function Get_Arg_Type (N : Node_Id) return Entity_Id;
1680 -- Given one of the arguments, computes the appropriate type to be used
1681 -- for that argument in the corresponding function formal
1682
1683 function Handle_One_Dimension
1684 (N : Int;
1685 Index : Node_Id) return Node_Id;
1686 -- This procedure returns the following code
1687 --
1688 -- declare
1689 -- Bn : Index_T := B'First (N);
1690 -- begin
1691 -- loop
1692 -- xxx
1693 -- exit when An = A'Last (N);
1694 -- An := Index_T'Succ (An)
1695 -- Bn := Index_T'Succ (Bn)
1696 -- end loop;
1697 -- end;
1698 --
1699 -- If both indexes are constrained and identical, the procedure
1700 -- returns a simpler loop:
1701 --
1702 -- for An in A'Range (N) loop
1703 -- xxx
1704 -- end loop
1705 --
1706 -- N is the dimension for which we are generating a loop. Index is the
1707 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1708 -- xxx statement is either the loop or declare for the next dimension
1709 -- or if this is the last dimension the comparison of corresponding
1710 -- components of the arrays.
1711 --
1712 -- The actual way the code works is to return the comparison of
1713 -- corresponding components for the N+1 call. That's neater!
1714
1715 function Test_Empty_Arrays return Node_Id;
1716 -- This function constructs the test for both arrays being empty
1717 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1718 -- and then
1719 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1720
1721 function Test_Lengths_Correspond return Node_Id;
1722 -- This function constructs the test for arrays having different lengths
1723 -- in at least one index position, in which case the resulting code is:
1724
1725 -- A'length (1) /= B'length (1)
1726 -- or else
1727 -- A'length (2) /= B'length (2)
1728 -- or else
1729 -- ...
1730
1731 --------------
1732 -- Arr_Attr --
1733 --------------
1734
1735 function Arr_Attr
1736 (Arr : Entity_Id;
1737 Nam : Name_Id;
1738 Num : Int) return Node_Id
1739 is
1740 begin
1741 return
1742 Make_Attribute_Reference (Loc,
1743 Attribute_Name => Nam,
1744 Prefix => New_Reference_To (Arr, Loc),
1745 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
1746 end Arr_Attr;
1747
1748 ------------------------
1749 -- Component_Equality --
1750 ------------------------
1751
1752 function Component_Equality (Typ : Entity_Id) return Node_Id is
1753 Test : Node_Id;
1754 L, R : Node_Id;
1755
1756 begin
1757 -- if a(i1...) /= b(j1...) then return false; end if;
1758
1759 L :=
1760 Make_Indexed_Component (Loc,
1761 Prefix => Make_Identifier (Loc, Chars (A)),
1762 Expressions => Index_List1);
1763
1764 R :=
1765 Make_Indexed_Component (Loc,
1766 Prefix => Make_Identifier (Loc, Chars (B)),
1767 Expressions => Index_List2);
1768
1769 Test := Expand_Composite_Equality
1770 (Nod, Component_Type (Typ), L, R, Decls);
1771
1772 -- If some (sub)component is an unchecked_union, the whole operation
1773 -- will raise program error.
1774
1775 if Nkind (Test) = N_Raise_Program_Error then
1776
1777 -- This node is going to be inserted at a location where a
1778 -- statement is expected: clear its Etype so analysis will set
1779 -- it to the expected Standard_Void_Type.
1780
1781 Set_Etype (Test, Empty);
1782 return Test;
1783
1784 else
1785 return
1786 Make_Implicit_If_Statement (Nod,
1787 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
1788 Then_Statements => New_List (
1789 Make_Simple_Return_Statement (Loc,
1790 Expression => New_Occurrence_Of (Standard_False, Loc))));
1791 end if;
1792 end Component_Equality;
1793
1794 ------------------
1795 -- Get_Arg_Type --
1796 ------------------
1797
1798 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1799 T : Entity_Id;
1800 X : Node_Id;
1801
1802 begin
1803 T := Etype (N);
1804
1805 if No (T) then
1806 return Typ;
1807
1808 else
1809 T := Underlying_Type (T);
1810
1811 X := First_Index (T);
1812 while Present (X) loop
1813 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1814 or else
1815 Denotes_Discriminant (Type_High_Bound (Etype (X)))
1816 then
1817 T := Base_Type (T);
1818 exit;
1819 end if;
1820
1821 Next_Index (X);
1822 end loop;
1823
1824 return T;
1825 end if;
1826 end Get_Arg_Type;
1827
1828 --------------------------
1829 -- Handle_One_Dimension --
1830 ---------------------------
1831
1832 function Handle_One_Dimension
1833 (N : Int;
1834 Index : Node_Id) return Node_Id
1835 is
1836 Need_Separate_Indexes : constant Boolean :=
1837 Ltyp /= Rtyp
1838 or else not Is_Constrained (Ltyp);
1839 -- If the index types are identical, and we are working with
1840 -- constrained types, then we can use the same index for both
1841 -- of the arrays.
1842
1843 An : constant Entity_Id := Make_Temporary (Loc, 'A');
1844
1845 Bn : Entity_Id;
1846 Index_T : Entity_Id;
1847 Stm_List : List_Id;
1848 Loop_Stm : Node_Id;
1849
1850 begin
1851 if N > Number_Dimensions (Ltyp) then
1852 return Component_Equality (Ltyp);
1853 end if;
1854
1855 -- Case where we generate a loop
1856
1857 Index_T := Base_Type (Etype (Index));
1858
1859 if Need_Separate_Indexes then
1860 Bn := Make_Temporary (Loc, 'B');
1861 else
1862 Bn := An;
1863 end if;
1864
1865 Append (New_Reference_To (An, Loc), Index_List1);
1866 Append (New_Reference_To (Bn, Loc), Index_List2);
1867
1868 Stm_List := New_List (
1869 Handle_One_Dimension (N + 1, Next_Index (Index)));
1870
1871 if Need_Separate_Indexes then
1872
1873 -- Generate guard for loop, followed by increments of indexes
1874
1875 Append_To (Stm_List,
1876 Make_Exit_Statement (Loc,
1877 Condition =>
1878 Make_Op_Eq (Loc,
1879 Left_Opnd => New_Reference_To (An, Loc),
1880 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1881
1882 Append_To (Stm_List,
1883 Make_Assignment_Statement (Loc,
1884 Name => New_Reference_To (An, Loc),
1885 Expression =>
1886 Make_Attribute_Reference (Loc,
1887 Prefix => New_Reference_To (Index_T, Loc),
1888 Attribute_Name => Name_Succ,
1889 Expressions => New_List (New_Reference_To (An, Loc)))));
1890
1891 Append_To (Stm_List,
1892 Make_Assignment_Statement (Loc,
1893 Name => New_Reference_To (Bn, Loc),
1894 Expression =>
1895 Make_Attribute_Reference (Loc,
1896 Prefix => New_Reference_To (Index_T, Loc),
1897 Attribute_Name => Name_Succ,
1898 Expressions => New_List (New_Reference_To (Bn, Loc)))));
1899 end if;
1900
1901 -- If separate indexes, we need a declare block for An and Bn, and a
1902 -- loop without an iteration scheme.
1903
1904 if Need_Separate_Indexes then
1905 Loop_Stm :=
1906 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
1907
1908 return
1909 Make_Block_Statement (Loc,
1910 Declarations => New_List (
1911 Make_Object_Declaration (Loc,
1912 Defining_Identifier => An,
1913 Object_Definition => New_Reference_To (Index_T, Loc),
1914 Expression => Arr_Attr (A, Name_First, N)),
1915
1916 Make_Object_Declaration (Loc,
1917 Defining_Identifier => Bn,
1918 Object_Definition => New_Reference_To (Index_T, Loc),
1919 Expression => Arr_Attr (B, Name_First, N))),
1920
1921 Handled_Statement_Sequence =>
1922 Make_Handled_Sequence_Of_Statements (Loc,
1923 Statements => New_List (Loop_Stm)));
1924
1925 -- If no separate indexes, return loop statement with explicit
1926 -- iteration scheme on its own
1927
1928 else
1929 Loop_Stm :=
1930 Make_Implicit_Loop_Statement (Nod,
1931 Statements => Stm_List,
1932 Iteration_Scheme =>
1933 Make_Iteration_Scheme (Loc,
1934 Loop_Parameter_Specification =>
1935 Make_Loop_Parameter_Specification (Loc,
1936 Defining_Identifier => An,
1937 Discrete_Subtype_Definition =>
1938 Arr_Attr (A, Name_Range, N))));
1939 return Loop_Stm;
1940 end if;
1941 end Handle_One_Dimension;
1942
1943 -----------------------
1944 -- Test_Empty_Arrays --
1945 -----------------------
1946
1947 function Test_Empty_Arrays return Node_Id is
1948 Alist : Node_Id;
1949 Blist : Node_Id;
1950
1951 Atest : Node_Id;
1952 Btest : Node_Id;
1953
1954 begin
1955 Alist := Empty;
1956 Blist := Empty;
1957 for J in 1 .. Number_Dimensions (Ltyp) loop
1958 Atest :=
1959 Make_Op_Eq (Loc,
1960 Left_Opnd => Arr_Attr (A, Name_Length, J),
1961 Right_Opnd => Make_Integer_Literal (Loc, 0));
1962
1963 Btest :=
1964 Make_Op_Eq (Loc,
1965 Left_Opnd => Arr_Attr (B, Name_Length, J),
1966 Right_Opnd => Make_Integer_Literal (Loc, 0));
1967
1968 if No (Alist) then
1969 Alist := Atest;
1970 Blist := Btest;
1971
1972 else
1973 Alist :=
1974 Make_Or_Else (Loc,
1975 Left_Opnd => Relocate_Node (Alist),
1976 Right_Opnd => Atest);
1977
1978 Blist :=
1979 Make_Or_Else (Loc,
1980 Left_Opnd => Relocate_Node (Blist),
1981 Right_Opnd => Btest);
1982 end if;
1983 end loop;
1984
1985 return
1986 Make_And_Then (Loc,
1987 Left_Opnd => Alist,
1988 Right_Opnd => Blist);
1989 end Test_Empty_Arrays;
1990
1991 -----------------------------
1992 -- Test_Lengths_Correspond --
1993 -----------------------------
1994
1995 function Test_Lengths_Correspond return Node_Id is
1996 Result : Node_Id;
1997 Rtest : Node_Id;
1998
1999 begin
2000 Result := Empty;
2001 for J in 1 .. Number_Dimensions (Ltyp) loop
2002 Rtest :=
2003 Make_Op_Ne (Loc,
2004 Left_Opnd => Arr_Attr (A, Name_Length, J),
2005 Right_Opnd => Arr_Attr (B, Name_Length, J));
2006
2007 if No (Result) then
2008 Result := Rtest;
2009 else
2010 Result :=
2011 Make_Or_Else (Loc,
2012 Left_Opnd => Relocate_Node (Result),
2013 Right_Opnd => Rtest);
2014 end if;
2015 end loop;
2016
2017 return Result;
2018 end Test_Lengths_Correspond;
2019
2020 -- Start of processing for Expand_Array_Equality
2021
2022 begin
2023 Ltyp := Get_Arg_Type (Lhs);
2024 Rtyp := Get_Arg_Type (Rhs);
2025
2026 -- For now, if the argument types are not the same, go to the base type,
2027 -- since the code assumes that the formals have the same type. This is
2028 -- fixable in future ???
2029
2030 if Ltyp /= Rtyp then
2031 Ltyp := Base_Type (Ltyp);
2032 Rtyp := Base_Type (Rtyp);
2033 pragma Assert (Ltyp = Rtyp);
2034 end if;
2035
2036 -- Build list of formals for function
2037
2038 Formals := New_List (
2039 Make_Parameter_Specification (Loc,
2040 Defining_Identifier => A,
2041 Parameter_Type => New_Reference_To (Ltyp, Loc)),
2042
2043 Make_Parameter_Specification (Loc,
2044 Defining_Identifier => B,
2045 Parameter_Type => New_Reference_To (Rtyp, Loc)));
2046
2047 Func_Name := Make_Temporary (Loc, 'E');
2048
2049 -- Build statement sequence for function
2050
2051 Func_Body :=
2052 Make_Subprogram_Body (Loc,
2053 Specification =>
2054 Make_Function_Specification (Loc,
2055 Defining_Unit_Name => Func_Name,
2056 Parameter_Specifications => Formals,
2057 Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
2058
2059 Declarations => Decls,
2060
2061 Handled_Statement_Sequence =>
2062 Make_Handled_Sequence_Of_Statements (Loc,
2063 Statements => New_List (
2064
2065 Make_Implicit_If_Statement (Nod,
2066 Condition => Test_Empty_Arrays,
2067 Then_Statements => New_List (
2068 Make_Simple_Return_Statement (Loc,
2069 Expression =>
2070 New_Occurrence_Of (Standard_True, Loc)))),
2071
2072 Make_Implicit_If_Statement (Nod,
2073 Condition => Test_Lengths_Correspond,
2074 Then_Statements => New_List (
2075 Make_Simple_Return_Statement (Loc,
2076 Expression =>
2077 New_Occurrence_Of (Standard_False, Loc)))),
2078
2079 Handle_One_Dimension (1, First_Index (Ltyp)),
2080
2081 Make_Simple_Return_Statement (Loc,
2082 Expression => New_Occurrence_Of (Standard_True, Loc)))));
2083
2084 Set_Has_Completion (Func_Name, True);
2085 Set_Is_Inlined (Func_Name);
2086
2087 -- If the array type is distinct from the type of the arguments, it
2088 -- is the full view of a private type. Apply an unchecked conversion
2089 -- to insure that analysis of the call succeeds.
2090
2091 declare
2092 L, R : Node_Id;
2093
2094 begin
2095 L := Lhs;
2096 R := Rhs;
2097
2098 if No (Etype (Lhs))
2099 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
2100 then
2101 L := OK_Convert_To (Ltyp, Lhs);
2102 end if;
2103
2104 if No (Etype (Rhs))
2105 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
2106 then
2107 R := OK_Convert_To (Rtyp, Rhs);
2108 end if;
2109
2110 Actuals := New_List (L, R);
2111 end;
2112
2113 Append_To (Bodies, Func_Body);
2114
2115 return
2116 Make_Function_Call (Loc,
2117 Name => New_Reference_To (Func_Name, Loc),
2118 Parameter_Associations => Actuals);
2119 end Expand_Array_Equality;
2120
2121 -----------------------------
2122 -- Expand_Boolean_Operator --
2123 -----------------------------
2124
2125 -- Note that we first get the actual subtypes of the operands, since we
2126 -- always want to deal with types that have bounds.
2127
2128 procedure Expand_Boolean_Operator (N : Node_Id) is
2129 Typ : constant Entity_Id := Etype (N);
2130
2131 begin
2132 -- Special case of bit packed array where both operands are known to be
2133 -- properly aligned. In this case we use an efficient run time routine
2134 -- to carry out the operation (see System.Bit_Ops).
2135
2136 if Is_Bit_Packed_Array (Typ)
2137 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
2138 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
2139 then
2140 Expand_Packed_Boolean_Operator (N);
2141 return;
2142 end if;
2143
2144 -- For the normal non-packed case, the general expansion is to build
2145 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2146 -- and then inserting it into the tree. The original operator node is
2147 -- then rewritten as a call to this function. We also use this in the
2148 -- packed case if either operand is a possibly unaligned object.
2149
2150 declare
2151 Loc : constant Source_Ptr := Sloc (N);
2152 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2153 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
2154 Func_Body : Node_Id;
2155 Func_Name : Entity_Id;
2156
2157 begin
2158 Convert_To_Actual_Subtype (L);
2159 Convert_To_Actual_Subtype (R);
2160 Ensure_Defined (Etype (L), N);
2161 Ensure_Defined (Etype (R), N);
2162 Apply_Length_Check (R, Etype (L));
2163
2164 if Nkind (N) = N_Op_Xor then
2165 Silly_Boolean_Array_Xor_Test (N, Etype (L));
2166 end if;
2167
2168 if Nkind (Parent (N)) = N_Assignment_Statement
2169 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
2170 then
2171 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
2172
2173 elsif Nkind (Parent (N)) = N_Op_Not
2174 and then Nkind (N) = N_Op_And
2175 and then
2176 Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
2177 then
2178 return;
2179 else
2180
2181 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
2182 Func_Name := Defining_Unit_Name (Specification (Func_Body));
2183 Insert_Action (N, Func_Body);
2184
2185 -- Now rewrite the expression with a call
2186
2187 Rewrite (N,
2188 Make_Function_Call (Loc,
2189 Name => New_Reference_To (Func_Name, Loc),
2190 Parameter_Associations =>
2191 New_List (
2192 L,
2193 Make_Type_Conversion
2194 (Loc, New_Reference_To (Etype (L), Loc), R))));
2195
2196 Analyze_And_Resolve (N, Typ);
2197 end if;
2198 end;
2199 end Expand_Boolean_Operator;
2200
2201 -------------------------------
2202 -- Expand_Composite_Equality --
2203 -------------------------------
2204
2205 -- This function is only called for comparing internal fields of composite
2206 -- types when these fields are themselves composites. This is a special
2207 -- case because it is not possible to respect normal Ada visibility rules.
2208
2209 function Expand_Composite_Equality
2210 (Nod : Node_Id;
2211 Typ : Entity_Id;
2212 Lhs : Node_Id;
2213 Rhs : Node_Id;
2214 Bodies : List_Id) return Node_Id
2215 is
2216 Loc : constant Source_Ptr := Sloc (Nod);
2217 Full_Type : Entity_Id;
2218 Prim : Elmt_Id;
2219 Eq_Op : Entity_Id;
2220
2221 function Find_Primitive_Eq return Node_Id;
2222 -- AI05-0123: Locate primitive equality for type if it exists, and
2223 -- build the corresponding call. If operation is abstract, replace
2224 -- call with an explicit raise. Return Empty if there is no primitive.
2225
2226 -----------------------
2227 -- Find_Primitive_Eq --
2228 -----------------------
2229
2230 function Find_Primitive_Eq return Node_Id is
2231 Prim_E : Elmt_Id;
2232 Prim : Node_Id;
2233
2234 begin
2235 Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
2236 while Present (Prim_E) loop
2237 Prim := Node (Prim_E);
2238
2239 -- Locate primitive equality with the right signature
2240
2241 if Chars (Prim) = Name_Op_Eq
2242 and then Etype (First_Formal (Prim)) =
2243 Etype (Next_Formal (First_Formal (Prim)))
2244 and then Etype (Prim) = Standard_Boolean
2245 then
2246 if Is_Abstract_Subprogram (Prim) then
2247 return
2248 Make_Raise_Program_Error (Loc,
2249 Reason => PE_Explicit_Raise);
2250
2251 else
2252 return
2253 Make_Function_Call (Loc,
2254 Name => New_Reference_To (Prim, Loc),
2255 Parameter_Associations => New_List (Lhs, Rhs));
2256 end if;
2257 end if;
2258
2259 Next_Elmt (Prim_E);
2260 end loop;
2261
2262 -- If not found, predefined operation will be used
2263
2264 return Empty;
2265 end Find_Primitive_Eq;
2266
2267 -- Start of processing for Expand_Composite_Equality
2268
2269 begin
2270 if Is_Private_Type (Typ) then
2271 Full_Type := Underlying_Type (Typ);
2272 else
2273 Full_Type := Typ;
2274 end if;
2275
2276 -- Defense against malformed private types with no completion the error
2277 -- will be diagnosed later by check_completion
2278
2279 if No (Full_Type) then
2280 return New_Reference_To (Standard_False, Loc);
2281 end if;
2282
2283 Full_Type := Base_Type (Full_Type);
2284
2285 if Is_Array_Type (Full_Type) then
2286
2287 -- If the operand is an elementary type other than a floating-point
2288 -- type, then we can simply use the built-in block bitwise equality,
2289 -- since the predefined equality operators always apply and bitwise
2290 -- equality is fine for all these cases.
2291
2292 if Is_Elementary_Type (Component_Type (Full_Type))
2293 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
2294 then
2295 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2296
2297 -- For composite component types, and floating-point types, use the
2298 -- expansion. This deals with tagged component types (where we use
2299 -- the applicable equality routine) and floating-point, (where we
2300 -- need to worry about negative zeroes), and also the case of any
2301 -- composite type recursively containing such fields.
2302
2303 else
2304 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
2305 end if;
2306
2307 elsif Is_Tagged_Type (Full_Type) then
2308
2309 -- Call the primitive operation "=" of this type
2310
2311 if Is_Class_Wide_Type (Full_Type) then
2312 Full_Type := Root_Type (Full_Type);
2313 end if;
2314
2315 -- If this is derived from an untagged private type completed with a
2316 -- tagged type, it does not have a full view, so we use the primitive
2317 -- operations of the private type. This check should no longer be
2318 -- necessary when these types receive their full views ???
2319
2320 if Is_Private_Type (Typ)
2321 and then not Is_Tagged_Type (Typ)
2322 and then not Is_Controlled (Typ)
2323 and then Is_Derived_Type (Typ)
2324 and then No (Full_View (Typ))
2325 then
2326 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
2327 else
2328 Prim := First_Elmt (Primitive_Operations (Full_Type));
2329 end if;
2330
2331 loop
2332 Eq_Op := Node (Prim);
2333 exit when Chars (Eq_Op) = Name_Op_Eq
2334 and then Etype (First_Formal (Eq_Op)) =
2335 Etype (Next_Formal (First_Formal (Eq_Op)))
2336 and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
2337 Next_Elmt (Prim);
2338 pragma Assert (Present (Prim));
2339 end loop;
2340
2341 Eq_Op := Node (Prim);
2342
2343 return
2344 Make_Function_Call (Loc,
2345 Name => New_Reference_To (Eq_Op, Loc),
2346 Parameter_Associations =>
2347 New_List
2348 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2349 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2350
2351 elsif Is_Record_Type (Full_Type) then
2352 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
2353
2354 if Present (Eq_Op) then
2355 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2356
2357 -- Inherited equality from parent type. Convert the actuals to
2358 -- match signature of operation.
2359
2360 declare
2361 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
2362
2363 begin
2364 return
2365 Make_Function_Call (Loc,
2366 Name => New_Reference_To (Eq_Op, Loc),
2367 Parameter_Associations => New_List (
2368 OK_Convert_To (T, Lhs),
2369 OK_Convert_To (T, Rhs)));
2370 end;
2371
2372 else
2373 -- Comparison between Unchecked_Union components
2374
2375 if Is_Unchecked_Union (Full_Type) then
2376 declare
2377 Lhs_Type : Node_Id := Full_Type;
2378 Rhs_Type : Node_Id := Full_Type;
2379 Lhs_Discr_Val : Node_Id;
2380 Rhs_Discr_Val : Node_Id;
2381
2382 begin
2383 -- Lhs subtype
2384
2385 if Nkind (Lhs) = N_Selected_Component then
2386 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2387 end if;
2388
2389 -- Rhs subtype
2390
2391 if Nkind (Rhs) = N_Selected_Component then
2392 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2393 end if;
2394
2395 -- Lhs of the composite equality
2396
2397 if Is_Constrained (Lhs_Type) then
2398
2399 -- Since the enclosing record type can never be an
2400 -- Unchecked_Union (this code is executed for records
2401 -- that do not have variants), we may reference its
2402 -- discriminant(s).
2403
2404 if Nkind (Lhs) = N_Selected_Component
2405 and then Has_Per_Object_Constraint (
2406 Entity (Selector_Name (Lhs)))
2407 then
2408 Lhs_Discr_Val :=
2409 Make_Selected_Component (Loc,
2410 Prefix => Prefix (Lhs),
2411 Selector_Name =>
2412 New_Copy
2413 (Get_Discriminant_Value
2414 (First_Discriminant (Lhs_Type),
2415 Lhs_Type,
2416 Stored_Constraint (Lhs_Type))));
2417
2418 else
2419 Lhs_Discr_Val :=
2420 New_Copy
2421 (Get_Discriminant_Value
2422 (First_Discriminant (Lhs_Type),
2423 Lhs_Type,
2424 Stored_Constraint (Lhs_Type)));
2425
2426 end if;
2427 else
2428 -- It is not possible to infer the discriminant since
2429 -- the subtype is not constrained.
2430
2431 return
2432 Make_Raise_Program_Error (Loc,
2433 Reason => PE_Unchecked_Union_Restriction);
2434 end if;
2435
2436 -- Rhs of the composite equality
2437
2438 if Is_Constrained (Rhs_Type) then
2439 if Nkind (Rhs) = N_Selected_Component
2440 and then Has_Per_Object_Constraint
2441 (Entity (Selector_Name (Rhs)))
2442 then
2443 Rhs_Discr_Val :=
2444 Make_Selected_Component (Loc,
2445 Prefix => Prefix (Rhs),
2446 Selector_Name =>
2447 New_Copy
2448 (Get_Discriminant_Value
2449 (First_Discriminant (Rhs_Type),
2450 Rhs_Type,
2451 Stored_Constraint (Rhs_Type))));
2452
2453 else
2454 Rhs_Discr_Val :=
2455 New_Copy
2456 (Get_Discriminant_Value
2457 (First_Discriminant (Rhs_Type),
2458 Rhs_Type,
2459 Stored_Constraint (Rhs_Type)));
2460
2461 end if;
2462 else
2463 return
2464 Make_Raise_Program_Error (Loc,
2465 Reason => PE_Unchecked_Union_Restriction);
2466 end if;
2467
2468 -- Call the TSS equality function with the inferred
2469 -- discriminant values.
2470
2471 return
2472 Make_Function_Call (Loc,
2473 Name => New_Reference_To (Eq_Op, Loc),
2474 Parameter_Associations => New_List (
2475 Lhs,
2476 Rhs,
2477 Lhs_Discr_Val,
2478 Rhs_Discr_Val));
2479 end;
2480
2481 else
2482 return
2483 Make_Function_Call (Loc,
2484 Name => New_Reference_To (Eq_Op, Loc),
2485 Parameter_Associations => New_List (Lhs, Rhs));
2486 end if;
2487 end if;
2488
2489 elsif Ada_Version >= Ada_2012 then
2490
2491 -- if no TSS has been created for the type, check whether there is
2492 -- a primitive equality declared for it.
2493
2494 declare
2495 Ada_2012_Op : constant Node_Id := Find_Primitive_Eq;
2496
2497 begin
2498 if Present (Ada_2012_Op) then
2499 return Ada_2012_Op;
2500 else
2501
2502 -- Use predefined equality if no user-defined primitive exists
2503
2504 return Make_Op_Eq (Loc, Lhs, Rhs);
2505 end if;
2506 end;
2507
2508 else
2509 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2510 end if;
2511
2512 else
2513 -- If not array or record type, it is predefined equality.
2514
2515 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2516 end if;
2517 end Expand_Composite_Equality;
2518
2519 ------------------------
2520 -- Expand_Concatenate --
2521 ------------------------
2522
2523 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2524 Loc : constant Source_Ptr := Sloc (Cnode);
2525
2526 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2527 -- Result type of concatenation
2528
2529 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2530 -- Component type. Elements of this component type can appear as one
2531 -- of the operands of concatenation as well as arrays.
2532
2533 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2534 -- Index subtype
2535
2536 Ityp : constant Entity_Id := Base_Type (Istyp);
2537 -- Index type. This is the base type of the index subtype, and is used
2538 -- for all computed bounds (which may be out of range of Istyp in the
2539 -- case of null ranges).
2540
2541 Artyp : Entity_Id;
2542 -- This is the type we use to do arithmetic to compute the bounds and
2543 -- lengths of operands. The choice of this type is a little subtle and
2544 -- is discussed in a separate section at the start of the body code.
2545
2546 Concatenation_Error : exception;
2547 -- Raised if concatenation is sure to raise a CE
2548
2549 Result_May_Be_Null : Boolean := True;
2550 -- Reset to False if at least one operand is encountered which is known
2551 -- at compile time to be non-null. Used for handling the special case
2552 -- of setting the high bound to the last operand high bound for a null
2553 -- result, thus ensuring a proper high bound in the super-flat case.
2554
2555 N : constant Nat := List_Length (Opnds);
2556 -- Number of concatenation operands including possibly null operands
2557
2558 NN : Nat := 0;
2559 -- Number of operands excluding any known to be null, except that the
2560 -- last operand is always retained, in case it provides the bounds for
2561 -- a null result.
2562
2563 Opnd : Node_Id;
2564 -- Current operand being processed in the loop through operands. After
2565 -- this loop is complete, always contains the last operand (which is not
2566 -- the same as Operands (NN), since null operands are skipped).
2567
2568 -- Arrays describing the operands, only the first NN entries of each
2569 -- array are set (NN < N when we exclude known null operands).
2570
2571 Is_Fixed_Length : array (1 .. N) of Boolean;
2572 -- True if length of corresponding operand known at compile time
2573
2574 Operands : array (1 .. N) of Node_Id;
2575 -- Set to the corresponding entry in the Opnds list (but note that null
2576 -- operands are excluded, so not all entries in the list are stored).
2577
2578 Fixed_Length : array (1 .. N) of Uint;
2579 -- Set to length of operand. Entries in this array are set only if the
2580 -- corresponding entry in Is_Fixed_Length is True.
2581
2582 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2583 -- Set to lower bound of operand. Either an integer literal in the case
2584 -- where the bound is known at compile time, else actual lower bound.
2585 -- The operand low bound is of type Ityp.
2586
2587 Var_Length : array (1 .. N) of Entity_Id;
2588 -- Set to an entity of type Natural that contains the length of an
2589 -- operand whose length is not known at compile time. Entries in this
2590 -- array are set only if the corresponding entry in Is_Fixed_Length
2591 -- is False. The entity is of type Artyp.
2592
2593 Aggr_Length : array (0 .. N) of Node_Id;
2594 -- The J'th entry in an expression node that represents the total length
2595 -- of operands 1 through J. It is either an integer literal node, or a
2596 -- reference to a constant entity with the right value, so it is fine
2597 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
2598 -- entry always is set to zero. The length is of type Artyp.
2599
2600 Low_Bound : Node_Id;
2601 -- A tree node representing the low bound of the result (of type Ityp).
2602 -- This is either an integer literal node, or an identifier reference to
2603 -- a constant entity initialized to the appropriate value.
2604
2605 Last_Opnd_High_Bound : Node_Id;
2606 -- A tree node representing the high bound of the last operand. This
2607 -- need only be set if the result could be null. It is used for the
2608 -- special case of setting the right high bound for a null result.
2609 -- This is of type Ityp.
2610
2611 High_Bound : Node_Id;
2612 -- A tree node representing the high bound of the result (of type Ityp)
2613
2614 Result : Node_Id;
2615 -- Result of the concatenation (of type Ityp)
2616
2617 Actions : constant List_Id := New_List;
2618 -- Collect actions to be inserted if Save_Space is False
2619
2620 Save_Space : Boolean;
2621 pragma Warnings (Off, Save_Space);
2622 -- Set to True if we are saving generated code space by calling routines
2623 -- in packages System.Concat_n.
2624
2625 Known_Non_Null_Operand_Seen : Boolean;
2626 -- Set True during generation of the assignments of operands into
2627 -- result once an operand known to be non-null has been seen.
2628
2629 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2630 -- This function makes an N_Integer_Literal node that is returned in
2631 -- analyzed form with the type set to Artyp. Importantly this literal
2632 -- is not flagged as static, so that if we do computations with it that
2633 -- result in statically detected out of range conditions, we will not
2634 -- generate error messages but instead warning messages.
2635
2636 function To_Artyp (X : Node_Id) return Node_Id;
2637 -- Given a node of type Ityp, returns the corresponding value of type
2638 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2639 -- For enum types, the Pos of the value is returned.
2640
2641 function To_Ityp (X : Node_Id) return Node_Id;
2642 -- The inverse function (uses Val in the case of enumeration types)
2643
2644 ------------------------
2645 -- Make_Artyp_Literal --
2646 ------------------------
2647
2648 function Make_Artyp_Literal (Val : Nat) return Node_Id is
2649 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
2650 begin
2651 Set_Etype (Result, Artyp);
2652 Set_Analyzed (Result, True);
2653 Set_Is_Static_Expression (Result, False);
2654 return Result;
2655 end Make_Artyp_Literal;
2656
2657 --------------
2658 -- To_Artyp --
2659 --------------
2660
2661 function To_Artyp (X : Node_Id) return Node_Id is
2662 begin
2663 if Ityp = Base_Type (Artyp) then
2664 return X;
2665
2666 elsif Is_Enumeration_Type (Ityp) then
2667 return
2668 Make_Attribute_Reference (Loc,
2669 Prefix => New_Occurrence_Of (Ityp, Loc),
2670 Attribute_Name => Name_Pos,
2671 Expressions => New_List (X));
2672
2673 else
2674 return Convert_To (Artyp, X);
2675 end if;
2676 end To_Artyp;
2677
2678 -------------
2679 -- To_Ityp --
2680 -------------
2681
2682 function To_Ityp (X : Node_Id) return Node_Id is
2683 begin
2684 if Is_Enumeration_Type (Ityp) then
2685 return
2686 Make_Attribute_Reference (Loc,
2687 Prefix => New_Occurrence_Of (Ityp, Loc),
2688 Attribute_Name => Name_Val,
2689 Expressions => New_List (X));
2690
2691 -- Case where we will do a type conversion
2692
2693 else
2694 if Ityp = Base_Type (Artyp) then
2695 return X;
2696 else
2697 return Convert_To (Ityp, X);
2698 end if;
2699 end if;
2700 end To_Ityp;
2701
2702 -- Local Declarations
2703
2704 Opnd_Typ : Entity_Id;
2705 Ent : Entity_Id;
2706 Len : Uint;
2707 J : Nat;
2708 Clen : Node_Id;
2709 Set : Boolean;
2710
2711 -- Start of processing for Expand_Concatenate
2712
2713 begin
2714 -- Choose an appropriate computational type
2715
2716 -- We will be doing calculations of lengths and bounds in this routine
2717 -- and computing one from the other in some cases, e.g. getting the high
2718 -- bound by adding the length-1 to the low bound.
2719
2720 -- We can't just use the index type, or even its base type for this
2721 -- purpose for two reasons. First it might be an enumeration type which
2722 -- is not suitable for computations of any kind, and second it may
2723 -- simply not have enough range. For example if the index type is
2724 -- -128..+127 then lengths can be up to 256, which is out of range of
2725 -- the type.
2726
2727 -- For enumeration types, we can simply use Standard_Integer, this is
2728 -- sufficient since the actual number of enumeration literals cannot
2729 -- possibly exceed the range of integer (remember we will be doing the
2730 -- arithmetic with POS values, not representation values).
2731
2732 if Is_Enumeration_Type (Ityp) then
2733 Artyp := Standard_Integer;
2734
2735 -- If index type is Positive, we use the standard unsigned type, to give
2736 -- more room on the top of the range, obviating the need for an overflow
2737 -- check when creating the upper bound. This is needed to avoid junk
2738 -- overflow checks in the common case of String types.
2739
2740 -- ??? Disabled for now
2741
2742 -- elsif Istyp = Standard_Positive then
2743 -- Artyp := Standard_Unsigned;
2744
2745 -- For modular types, we use a 32-bit modular type for types whose size
2746 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
2747 -- identity type, and for larger unsigned types we use 64-bits.
2748
2749 elsif Is_Modular_Integer_Type (Ityp) then
2750 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
2751 Artyp := Standard_Unsigned;
2752 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
2753 Artyp := Ityp;
2754 else
2755 Artyp := RTE (RE_Long_Long_Unsigned);
2756 end if;
2757
2758 -- Similar treatment for signed types
2759
2760 else
2761 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
2762 Artyp := Standard_Integer;
2763 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
2764 Artyp := Ityp;
2765 else
2766 Artyp := Standard_Long_Long_Integer;
2767 end if;
2768 end if;
2769
2770 -- Supply dummy entry at start of length array
2771
2772 Aggr_Length (0) := Make_Artyp_Literal (0);
2773
2774 -- Go through operands setting up the above arrays
2775
2776 J := 1;
2777 while J <= N loop
2778 Opnd := Remove_Head (Opnds);
2779 Opnd_Typ := Etype (Opnd);
2780
2781 -- The parent got messed up when we put the operands in a list,
2782 -- so now put back the proper parent for the saved operand, that
2783 -- is to say the concatenation node, to make sure that each operand
2784 -- is seen as a subexpression, e.g. if actions must be inserted.
2785
2786 Set_Parent (Opnd, Cnode);
2787
2788 -- Set will be True when we have setup one entry in the array
2789
2790 Set := False;
2791
2792 -- Singleton element (or character literal) case
2793
2794 if Base_Type (Opnd_Typ) = Ctyp then
2795 NN := NN + 1;
2796 Operands (NN) := Opnd;
2797 Is_Fixed_Length (NN) := True;
2798 Fixed_Length (NN) := Uint_1;
2799 Result_May_Be_Null := False;
2800
2801 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
2802 -- since we know that the result cannot be null).
2803
2804 Opnd_Low_Bound (NN) :=
2805 Make_Attribute_Reference (Loc,
2806 Prefix => New_Reference_To (Istyp, Loc),
2807 Attribute_Name => Name_First);
2808
2809 Set := True;
2810
2811 -- String literal case (can only occur for strings of course)
2812
2813 elsif Nkind (Opnd) = N_String_Literal then
2814 Len := String_Literal_Length (Opnd_Typ);
2815
2816 if Len /= 0 then
2817 Result_May_Be_Null := False;
2818 end if;
2819
2820 -- Capture last operand high bound if result could be null
2821
2822 if J = N and then Result_May_Be_Null then
2823 Last_Opnd_High_Bound :=
2824 Make_Op_Add (Loc,
2825 Left_Opnd =>
2826 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
2827 Right_Opnd => Make_Integer_Literal (Loc, 1));
2828 end if;
2829
2830 -- Skip null string literal
2831
2832 if J < N and then Len = 0 then
2833 goto Continue;
2834 end if;
2835
2836 NN := NN + 1;
2837 Operands (NN) := Opnd;
2838 Is_Fixed_Length (NN) := True;
2839
2840 -- Set length and bounds
2841
2842 Fixed_Length (NN) := Len;
2843
2844 Opnd_Low_Bound (NN) :=
2845 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
2846
2847 Set := True;
2848
2849 -- All other cases
2850
2851 else
2852 -- Check constrained case with known bounds
2853
2854 if Is_Constrained (Opnd_Typ) then
2855 declare
2856 Index : constant Node_Id := First_Index (Opnd_Typ);
2857 Indx_Typ : constant Entity_Id := Etype (Index);
2858 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
2859 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
2860
2861 begin
2862 -- Fixed length constrained array type with known at compile
2863 -- time bounds is last case of fixed length operand.
2864
2865 if Compile_Time_Known_Value (Lo)
2866 and then
2867 Compile_Time_Known_Value (Hi)
2868 then
2869 declare
2870 Loval : constant Uint := Expr_Value (Lo);
2871 Hival : constant Uint := Expr_Value (Hi);
2872 Len : constant Uint :=
2873 UI_Max (Hival - Loval + 1, Uint_0);
2874
2875 begin
2876 if Len > 0 then
2877 Result_May_Be_Null := False;
2878 end if;
2879
2880 -- Capture last operand bound if result could be null
2881
2882 if J = N and then Result_May_Be_Null then
2883 Last_Opnd_High_Bound :=
2884 Convert_To (Ityp,
2885 Make_Integer_Literal (Loc, Expr_Value (Hi)));
2886 end if;
2887
2888 -- Exclude null length case unless last operand
2889
2890 if J < N and then Len = 0 then
2891 goto Continue;
2892 end if;
2893
2894 NN := NN + 1;
2895 Operands (NN) := Opnd;
2896 Is_Fixed_Length (NN) := True;
2897 Fixed_Length (NN) := Len;
2898
2899 Opnd_Low_Bound (NN) :=
2900 To_Ityp
2901 (Make_Integer_Literal (Loc, Expr_Value (Lo)));
2902 Set := True;
2903 end;
2904 end if;
2905 end;
2906 end if;
2907
2908 -- All cases where the length is not known at compile time, or the
2909 -- special case of an operand which is known to be null but has a
2910 -- lower bound other than 1 or is other than a string type.
2911
2912 if not Set then
2913 NN := NN + 1;
2914
2915 -- Capture operand bounds
2916
2917 Opnd_Low_Bound (NN) :=
2918 Make_Attribute_Reference (Loc,
2919 Prefix =>
2920 Duplicate_Subexpr (Opnd, Name_Req => True),
2921 Attribute_Name => Name_First);
2922
2923 if J = N and Result_May_Be_Null then
2924 Last_Opnd_High_Bound :=
2925 Convert_To (Ityp,
2926 Make_Attribute_Reference (Loc,
2927 Prefix =>
2928 Duplicate_Subexpr (Opnd, Name_Req => True),
2929 Attribute_Name => Name_Last));
2930 end if;
2931
2932 -- Capture length of operand in entity
2933
2934 Operands (NN) := Opnd;
2935 Is_Fixed_Length (NN) := False;
2936
2937 Var_Length (NN) := Make_Temporary (Loc, 'L');
2938
2939 Append_To (Actions,
2940 Make_Object_Declaration (Loc,
2941 Defining_Identifier => Var_Length (NN),
2942 Constant_Present => True,
2943 Object_Definition => New_Occurrence_Of (Artyp, Loc),
2944 Expression =>
2945 Make_Attribute_Reference (Loc,
2946 Prefix =>
2947 Duplicate_Subexpr (Opnd, Name_Req => True),
2948 Attribute_Name => Name_Length)));
2949 end if;
2950 end if;
2951
2952 -- Set next entry in aggregate length array
2953
2954 -- For first entry, make either integer literal for fixed length
2955 -- or a reference to the saved length for variable length.
2956
2957 if NN = 1 then
2958 if Is_Fixed_Length (1) then
2959 Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
2960 else
2961 Aggr_Length (1) := New_Reference_To (Var_Length (1), Loc);
2962 end if;
2963
2964 -- If entry is fixed length and only fixed lengths so far, make
2965 -- appropriate new integer literal adding new length.
2966
2967 elsif Is_Fixed_Length (NN)
2968 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
2969 then
2970 Aggr_Length (NN) :=
2971 Make_Integer_Literal (Loc,
2972 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
2973
2974 -- All other cases, construct an addition node for the length and
2975 -- create an entity initialized to this length.
2976
2977 else
2978 Ent := Make_Temporary (Loc, 'L');
2979
2980 if Is_Fixed_Length (NN) then
2981 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
2982 else
2983 Clen := New_Reference_To (Var_Length (NN), Loc);
2984 end if;
2985
2986 Append_To (Actions,
2987 Make_Object_Declaration (Loc,
2988 Defining_Identifier => Ent,
2989 Constant_Present => True,
2990 Object_Definition => New_Occurrence_Of (Artyp, Loc),
2991 Expression =>
2992 Make_Op_Add (Loc,
2993 Left_Opnd => New_Copy (Aggr_Length (NN - 1)),
2994 Right_Opnd => Clen)));
2995
2996 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
2997 end if;
2998
2999 <<Continue>>
3000 J := J + 1;
3001 end loop;
3002
3003 -- If we have only skipped null operands, return the last operand
3004
3005 if NN = 0 then
3006 Result := Opnd;
3007 goto Done;
3008 end if;
3009
3010 -- If we have only one non-null operand, return it and we are done.
3011 -- There is one case in which this cannot be done, and that is when
3012 -- the sole operand is of the element type, in which case it must be
3013 -- converted to an array, and the easiest way of doing that is to go
3014 -- through the normal general circuit.
3015
3016 if NN = 1
3017 and then Base_Type (Etype (Operands (1))) /= Ctyp
3018 then
3019 Result := Operands (1);
3020 goto Done;
3021 end if;
3022
3023 -- Cases where we have a real concatenation
3024
3025 -- Next step is to find the low bound for the result array that we
3026 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3027
3028 -- If the ultimate ancestor of the index subtype is a constrained array
3029 -- definition, then the lower bound is that of the index subtype as
3030 -- specified by (RM 4.5.3(6)).
3031
3032 -- The right test here is to go to the root type, and then the ultimate
3033 -- ancestor is the first subtype of this root type.
3034
3035 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
3036 Low_Bound :=
3037 Make_Attribute_Reference (Loc,
3038 Prefix =>
3039 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
3040 Attribute_Name => Name_First);
3041
3042 -- If the first operand in the list has known length we know that
3043 -- the lower bound of the result is the lower bound of this operand.
3044
3045 elsif Is_Fixed_Length (1) then
3046 Low_Bound := Opnd_Low_Bound (1);
3047
3048 -- OK, we don't know the lower bound, we have to build a horrible
3049 -- expression actions node of the form
3050
3051 -- if Cond1'Length /= 0 then
3052 -- Opnd1 low bound
3053 -- else
3054 -- if Opnd2'Length /= 0 then
3055 -- Opnd2 low bound
3056 -- else
3057 -- ...
3058
3059 -- The nesting ends either when we hit an operand whose length is known
3060 -- at compile time, or on reaching the last operand, whose low bound we
3061 -- take unconditionally whether or not it is null. It's easiest to do
3062 -- this with a recursive procedure:
3063
3064 else
3065 declare
3066 function Get_Known_Bound (J : Nat) return Node_Id;
3067 -- Returns the lower bound determined by operands J .. NN
3068
3069 ---------------------
3070 -- Get_Known_Bound --
3071 ---------------------
3072
3073 function Get_Known_Bound (J : Nat) return Node_Id is
3074 begin
3075 if Is_Fixed_Length (J) or else J = NN then
3076 return New_Copy (Opnd_Low_Bound (J));
3077
3078 else
3079 return
3080 Make_Conditional_Expression (Loc,
3081 Expressions => New_List (
3082
3083 Make_Op_Ne (Loc,
3084 Left_Opnd => New_Reference_To (Var_Length (J), Loc),
3085 Right_Opnd => Make_Integer_Literal (Loc, 0)),
3086
3087 New_Copy (Opnd_Low_Bound (J)),
3088 Get_Known_Bound (J + 1)));
3089 end if;
3090 end Get_Known_Bound;
3091
3092 begin
3093 Ent := Make_Temporary (Loc, 'L');
3094
3095 Append_To (Actions,
3096 Make_Object_Declaration (Loc,
3097 Defining_Identifier => Ent,
3098 Constant_Present => True,
3099 Object_Definition => New_Occurrence_Of (Ityp, Loc),
3100 Expression => Get_Known_Bound (1)));
3101
3102 Low_Bound := New_Reference_To (Ent, Loc);
3103 end;
3104 end if;
3105
3106 -- Now we can safely compute the upper bound, normally
3107 -- Low_Bound + Length - 1.
3108
3109 High_Bound :=
3110 To_Ityp (
3111 Make_Op_Add (Loc,
3112 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
3113 Right_Opnd =>
3114 Make_Op_Subtract (Loc,
3115 Left_Opnd => New_Copy (Aggr_Length (NN)),
3116 Right_Opnd => Make_Artyp_Literal (1))));
3117
3118 -- Note that calculation of the high bound may cause overflow in some
3119 -- very weird cases, so in the general case we need an overflow check on
3120 -- the high bound. We can avoid this for the common case of string types
3121 -- and other types whose index is Positive, since we chose a wider range
3122 -- for the arithmetic type.
3123
3124 if Istyp /= Standard_Positive then
3125 Activate_Overflow_Check (High_Bound);
3126 end if;
3127
3128 -- Handle the exceptional case where the result is null, in which case
3129 -- case the bounds come from the last operand (so that we get the proper
3130 -- bounds if the last operand is super-flat).
3131
3132 if Result_May_Be_Null then
3133 High_Bound :=
3134 Make_Conditional_Expression (Loc,
3135 Expressions => New_List (
3136 Make_Op_Eq (Loc,
3137 Left_Opnd => New_Copy (Aggr_Length (NN)),
3138 Right_Opnd => Make_Artyp_Literal (0)),
3139 Last_Opnd_High_Bound,
3140 High_Bound));
3141 end if;
3142
3143 -- Here is where we insert the saved up actions
3144
3145 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
3146
3147 -- Now we construct an array object with appropriate bounds. We mark
3148 -- the target as internal to prevent useless initialization when
3149 -- Initialize_Scalars is enabled. Also since this is the actual result
3150 -- entity, we make sure we have debug information for the result.
3151
3152 Ent := Make_Temporary (Loc, 'S');
3153 Set_Is_Internal (Ent);
3154 Set_Needs_Debug_Info (Ent);
3155
3156 -- If the bound is statically known to be out of range, we do not want
3157 -- to abort, we want a warning and a runtime constraint error. Note that
3158 -- we have arranged that the result will not be treated as a static
3159 -- constant, so we won't get an illegality during this insertion.
3160
3161 Insert_Action (Cnode,
3162 Make_Object_Declaration (Loc,
3163 Defining_Identifier => Ent,
3164 Object_Definition =>
3165 Make_Subtype_Indication (Loc,
3166 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
3167 Constraint =>
3168 Make_Index_Or_Discriminant_Constraint (Loc,
3169 Constraints => New_List (
3170 Make_Range (Loc,
3171 Low_Bound => Low_Bound,
3172 High_Bound => High_Bound))))),
3173 Suppress => All_Checks);
3174
3175 -- If the result of the concatenation appears as the initializing
3176 -- expression of an object declaration, we can just rename the
3177 -- result, rather than copying it.
3178
3179 Set_OK_To_Rename (Ent);
3180
3181 -- Catch the static out of range case now
3182
3183 if Raises_Constraint_Error (High_Bound) then
3184 raise Concatenation_Error;
3185 end if;
3186
3187 -- Now we will generate the assignments to do the actual concatenation
3188
3189 -- There is one case in which we will not do this, namely when all the
3190 -- following conditions are met:
3191
3192 -- The result type is Standard.String
3193
3194 -- There are nine or fewer retained (non-null) operands
3195
3196 -- The optimization level is -O0
3197
3198 -- The corresponding System.Concat_n.Str_Concat_n routine is
3199 -- available in the run time.
3200
3201 -- The debug flag gnatd.c is not set
3202
3203 -- If all these conditions are met then we generate a call to the
3204 -- relevant concatenation routine. The purpose of this is to avoid
3205 -- undesirable code bloat at -O0.
3206
3207 if Atyp = Standard_String
3208 and then NN in 2 .. 9
3209 and then (Opt.Optimization_Level = 0 or else Debug_Flag_Dot_CC)
3210 and then not Debug_Flag_Dot_C
3211 then
3212 declare
3213 RR : constant array (Nat range 2 .. 9) of RE_Id :=
3214 (RE_Str_Concat_2,
3215 RE_Str_Concat_3,
3216 RE_Str_Concat_4,
3217 RE_Str_Concat_5,
3218 RE_Str_Concat_6,
3219 RE_Str_Concat_7,
3220 RE_Str_Concat_8,
3221 RE_Str_Concat_9);
3222
3223 begin
3224 if RTE_Available (RR (NN)) then
3225 declare
3226 Opnds : constant List_Id :=
3227 New_List (New_Occurrence_Of (Ent, Loc));
3228
3229 begin
3230 for J in 1 .. NN loop
3231 if Is_List_Member (Operands (J)) then
3232 Remove (Operands (J));
3233 end if;
3234
3235 if Base_Type (Etype (Operands (J))) = Ctyp then
3236 Append_To (Opnds,
3237 Make_Aggregate (Loc,
3238 Component_Associations => New_List (
3239 Make_Component_Association (Loc,
3240 Choices => New_List (
3241 Make_Integer_Literal (Loc, 1)),
3242 Expression => Operands (J)))));
3243
3244 else
3245 Append_To (Opnds, Operands (J));
3246 end if;
3247 end loop;
3248
3249 Insert_Action (Cnode,
3250 Make_Procedure_Call_Statement (Loc,
3251 Name => New_Reference_To (RTE (RR (NN)), Loc),
3252 Parameter_Associations => Opnds));
3253
3254 Result := New_Reference_To (Ent, Loc);
3255 goto Done;
3256 end;
3257 end if;
3258 end;
3259 end if;
3260
3261 -- Not special case so generate the assignments
3262
3263 Known_Non_Null_Operand_Seen := False;
3264
3265 for J in 1 .. NN loop
3266 declare
3267 Lo : constant Node_Id :=
3268 Make_Op_Add (Loc,
3269 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
3270 Right_Opnd => Aggr_Length (J - 1));
3271
3272 Hi : constant Node_Id :=
3273 Make_Op_Add (Loc,
3274 Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
3275 Right_Opnd =>
3276 Make_Op_Subtract (Loc,
3277 Left_Opnd => Aggr_Length (J),
3278 Right_Opnd => Make_Artyp_Literal (1)));
3279
3280 begin
3281 -- Singleton case, simple assignment
3282
3283 if Base_Type (Etype (Operands (J))) = Ctyp then
3284 Known_Non_Null_Operand_Seen := True;
3285 Insert_Action (Cnode,
3286 Make_Assignment_Statement (Loc,
3287 Name =>
3288 Make_Indexed_Component (Loc,
3289 Prefix => New_Occurrence_Of (Ent, Loc),
3290 Expressions => New_List (To_Ityp (Lo))),
3291 Expression => Operands (J)),
3292 Suppress => All_Checks);
3293
3294 -- Array case, slice assignment, skipped when argument is fixed
3295 -- length and known to be null.
3296
3297 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
3298 declare
3299 Assign : Node_Id :=
3300 Make_Assignment_Statement (Loc,
3301 Name =>
3302 Make_Slice (Loc,
3303 Prefix =>
3304 New_Occurrence_Of (Ent, Loc),
3305 Discrete_Range =>
3306 Make_Range (Loc,
3307 Low_Bound => To_Ityp (Lo),
3308 High_Bound => To_Ityp (Hi))),
3309 Expression => Operands (J));
3310 begin
3311 if Is_Fixed_Length (J) then
3312 Known_Non_Null_Operand_Seen := True;
3313
3314 elsif not Known_Non_Null_Operand_Seen then
3315
3316 -- Here if operand length is not statically known and no
3317 -- operand known to be non-null has been processed yet.
3318 -- If operand length is 0, we do not need to perform the
3319 -- assignment, and we must avoid the evaluation of the
3320 -- high bound of the slice, since it may underflow if the
3321 -- low bound is Ityp'First.
3322
3323 Assign :=
3324 Make_Implicit_If_Statement (Cnode,
3325 Condition =>
3326 Make_Op_Ne (Loc,
3327 Left_Opnd =>
3328 New_Occurrence_Of (Var_Length (J), Loc),
3329 Right_Opnd => Make_Integer_Literal (Loc, 0)),
3330 Then_Statements => New_List (Assign));
3331 end if;
3332
3333 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3334 end;
3335 end if;
3336 end;
3337 end loop;
3338
3339 -- Finally we build the result, which is a reference to the array object
3340
3341 Result := New_Reference_To (Ent, Loc);
3342
3343 <<Done>>
3344 Rewrite (Cnode, Result);
3345 Analyze_And_Resolve (Cnode, Atyp);
3346
3347 exception
3348 when Concatenation_Error =>
3349
3350 -- Kill warning generated for the declaration of the static out of
3351 -- range high bound, and instead generate a Constraint_Error with
3352 -- an appropriate specific message.
3353
3354 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3355 Apply_Compile_Time_Constraint_Error
3356 (N => Cnode,
3357 Msg => "concatenation result upper bound out of range?",
3358 Reason => CE_Range_Check_Failed);
3359 -- Set_Etype (Cnode, Atyp);
3360 end Expand_Concatenate;
3361
3362 ------------------------
3363 -- Expand_N_Allocator --
3364 ------------------------
3365
3366 procedure Expand_N_Allocator (N : Node_Id) is
3367 PtrT : constant Entity_Id := Etype (N);
3368 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
3369 Etyp : constant Entity_Id := Etype (Expression (N));
3370 Loc : constant Source_Ptr := Sloc (N);
3371 Desig : Entity_Id;
3372 Nod : Node_Id;
3373 Pool : Entity_Id;
3374 Temp : Entity_Id;
3375
3376 procedure Rewrite_Coextension (N : Node_Id);
3377 -- Static coextensions have the same lifetime as the entity they
3378 -- constrain. Such occurrences can be rewritten as aliased objects
3379 -- and their unrestricted access used instead of the coextension.
3380
3381 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
3382 -- Given a constrained array type E, returns a node representing the
3383 -- code to compute the size in storage elements for the given type.
3384 -- This is done without using the attribute (which malfunctions for
3385 -- large sizes ???)
3386
3387 -------------------------
3388 -- Rewrite_Coextension --
3389 -------------------------
3390
3391 procedure Rewrite_Coextension (N : Node_Id) is
3392 Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
3393 Temp_Decl : Node_Id;
3394 Insert_Nod : Node_Id;
3395
3396 begin
3397 -- Generate:
3398 -- Cnn : aliased Etyp;
3399
3400 Temp_Decl :=
3401 Make_Object_Declaration (Loc,
3402 Defining_Identifier => Temp_Id,
3403 Aliased_Present => True,
3404 Object_Definition => New_Occurrence_Of (Etyp, Loc));
3405
3406 if Nkind (Expression (N)) = N_Qualified_Expression then
3407 Set_Expression (Temp_Decl, Expression (Expression (N)));
3408 end if;
3409
3410 -- Find the proper insertion node for the declaration
3411
3412 Insert_Nod := Parent (N);
3413 while Present (Insert_Nod) loop
3414 exit when
3415 Nkind (Insert_Nod) in N_Statement_Other_Than_Procedure_Call
3416 or else Nkind (Insert_Nod) = N_Procedure_Call_Statement
3417 or else Nkind (Insert_Nod) in N_Declaration;
3418
3419 Insert_Nod := Parent (Insert_Nod);
3420 end loop;
3421
3422 Insert_Before (Insert_Nod, Temp_Decl);
3423 Analyze (Temp_Decl);
3424
3425 Rewrite (N,
3426 Make_Attribute_Reference (Loc,
3427 Prefix => New_Occurrence_Of (Temp_Id, Loc),
3428 Attribute_Name => Name_Unrestricted_Access));
3429
3430 Analyze_And_Resolve (N, PtrT);
3431 end Rewrite_Coextension;
3432
3433 ------------------------------
3434 -- Size_In_Storage_Elements --
3435 ------------------------------
3436
3437 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
3438 begin
3439 -- Logically this just returns E'Max_Size_In_Storage_Elements.
3440 -- However, the reason for the existence of this function is
3441 -- to construct a test for sizes too large, which means near the
3442 -- 32-bit limit on a 32-bit machine, and precisely the trouble
3443 -- is that we get overflows when sizes are greater than 2**31.
3444
3445 -- So what we end up doing for array types is to use the expression:
3446
3447 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
3448
3449 -- which avoids this problem. All this is a bit bogus, but it does
3450 -- mean we catch common cases of trying to allocate arrays that
3451 -- are too large, and which in the absence of a check results in
3452 -- undetected chaos ???
3453
3454 declare
3455 Len : Node_Id;
3456 Res : Node_Id;
3457
3458 begin
3459 for J in 1 .. Number_Dimensions (E) loop
3460 Len :=
3461 Make_Attribute_Reference (Loc,
3462 Prefix => New_Occurrence_Of (E, Loc),
3463 Attribute_Name => Name_Length,
3464 Expressions => New_List (Make_Integer_Literal (Loc, J)));
3465
3466 if J = 1 then
3467 Res := Len;
3468
3469 else
3470 Res :=
3471 Make_Op_Multiply (Loc,
3472 Left_Opnd => Res,
3473 Right_Opnd => Len);
3474 end if;
3475 end loop;
3476
3477 return
3478 Make_Op_Multiply (Loc,
3479 Left_Opnd => Len,
3480 Right_Opnd =>
3481 Make_Attribute_Reference (Loc,
3482 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
3483 Attribute_Name => Name_Max_Size_In_Storage_Elements));
3484 end;
3485 end Size_In_Storage_Elements;
3486
3487 -- Start of processing for Expand_N_Allocator
3488
3489 begin
3490 -- RM E.2.3(22). We enforce that the expected type of an allocator
3491 -- shall not be a remote access-to-class-wide-limited-private type
3492
3493 -- Why is this being done at expansion time, seems clearly wrong ???
3494
3495 Validate_Remote_Access_To_Class_Wide_Type (N);
3496
3497 -- Processing for anonymous access-to-controlled types. These access
3498 -- types receive a special finalization master which appears in the
3499 -- declarations of the enclosing semantic unit. This expansion is done
3500 -- now to ensure that any additional types generated by this routine
3501 -- or Expand_Allocator_Expression inherit the proper type attributes.
3502
3503 if Ekind (PtrT) = E_Anonymous_Access_Type
3504 and then Needs_Finalization (Dtyp)
3505 then
3506 -- Anonymous access-to-controlled types allocate on the global pool.
3507 -- Do not set this attribute on .NET/JVM since those targets do not
3508 -- support pools.
3509
3510 if No (Associated_Storage_Pool (PtrT))
3511 and then VM_Target = No_VM
3512 then
3513 Set_Associated_Storage_Pool
3514 (PtrT, Get_Global_Pool_For_Access_Type (PtrT));
3515 end if;
3516
3517 -- The finalization master must be inserted and analyzed as part of
3518 -- the current semantic unit. This form of expansion is not carried
3519 -- out in Alfa mode because it is useless.
3520
3521 if No (Finalization_Master (PtrT))
3522 and then not Alfa_Mode
3523 then
3524 Set_Finalization_Master (PtrT, Current_Anonymous_Master);
3525 end if;
3526 end if;
3527
3528 -- Set the storage pool and find the appropriate version of Allocate to
3529 -- call.
3530
3531 Pool := Associated_Storage_Pool (Root_Type (PtrT));
3532 Set_Storage_Pool (N, Pool);
3533
3534 if Present (Pool) then
3535 if Is_RTE (Pool, RE_SS_Pool) then
3536 if VM_Target = No_VM then
3537 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
3538 end if;
3539
3540 elsif Is_Class_Wide_Type (Etype (Pool)) then
3541 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
3542
3543 else
3544 Set_Procedure_To_Call (N,
3545 Find_Prim_Op (Etype (Pool), Name_Allocate));
3546 end if;
3547 end if;
3548
3549 -- Under certain circumstances we can replace an allocator by an access
3550 -- to statically allocated storage. The conditions, as noted in AARM
3551 -- 3.10 (10c) are as follows:
3552
3553 -- Size and initial value is known at compile time
3554 -- Access type is access-to-constant
3555
3556 -- The allocator is not part of a constraint on a record component,
3557 -- because in that case the inserted actions are delayed until the
3558 -- record declaration is fully analyzed, which is too late for the
3559 -- analysis of the rewritten allocator.
3560
3561 if Is_Access_Constant (PtrT)
3562 and then Nkind (Expression (N)) = N_Qualified_Expression
3563 and then Compile_Time_Known_Value (Expression (Expression (N)))
3564 and then Size_Known_At_Compile_Time
3565 (Etype (Expression (Expression (N))))
3566 and then not Is_Record_Type (Current_Scope)
3567 then
3568 -- Here we can do the optimization. For the allocator
3569
3570 -- new x'(y)
3571
3572 -- We insert an object declaration
3573
3574 -- Tnn : aliased x := y;
3575
3576 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
3577 -- marked as requiring static allocation.
3578
3579 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
3580 Desig := Subtype_Mark (Expression (N));
3581
3582 -- If context is constrained, use constrained subtype directly,
3583 -- so that the constant is not labelled as having a nominally
3584 -- unconstrained subtype.
3585
3586 if Entity (Desig) = Base_Type (Dtyp) then
3587 Desig := New_Occurrence_Of (Dtyp, Loc);
3588 end if;
3589
3590 Insert_Action (N,
3591 Make_Object_Declaration (Loc,
3592 Defining_Identifier => Temp,
3593 Aliased_Present => True,
3594 Constant_Present => Is_Access_Constant (PtrT),
3595 Object_Definition => Desig,
3596 Expression => Expression (Expression (N))));
3597
3598 Rewrite (N,
3599 Make_Attribute_Reference (Loc,
3600 Prefix => New_Occurrence_Of (Temp, Loc),
3601 Attribute_Name => Name_Unrestricted_Access));
3602
3603 Analyze_And_Resolve (N, PtrT);
3604
3605 -- We set the variable as statically allocated, since we don't want
3606 -- it going on the stack of the current procedure!
3607
3608 Set_Is_Statically_Allocated (Temp);
3609 return;
3610 end if;
3611
3612 -- Same if the allocator is an access discriminant for a local object:
3613 -- instead of an allocator we create a local value and constrain the
3614 -- enclosing object with the corresponding access attribute.
3615
3616 if Is_Static_Coextension (N) then
3617 Rewrite_Coextension (N);
3618 return;
3619 end if;
3620
3621 -- Check for size too large, we do this because the back end misses
3622 -- proper checks here and can generate rubbish allocation calls when
3623 -- we are near the limit. We only do this for the 32-bit address case
3624 -- since that is from a practical point of view where we see a problem.
3625
3626 if System_Address_Size = 32
3627 and then not Storage_Checks_Suppressed (PtrT)
3628 and then not Storage_Checks_Suppressed (Dtyp)
3629 and then not Storage_Checks_Suppressed (Etyp)
3630 then
3631 -- The check we want to generate should look like
3632
3633 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
3634 -- raise Storage_Error;
3635 -- end if;
3636
3637 -- where 3.5 gigabytes is a constant large enough to accommodate any
3638 -- reasonable request for. But we can't do it this way because at
3639 -- least at the moment we don't compute this attribute right, and
3640 -- can silently give wrong results when the result gets large. Since
3641 -- this is all about large results, that's bad, so instead we only
3642 -- apply the check for constrained arrays, and manually compute the
3643 -- value of the attribute ???
3644
3645 if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
3646 Insert_Action (N,
3647 Make_Raise_Storage_Error (Loc,
3648 Condition =>
3649 Make_Op_Gt (Loc,
3650 Left_Opnd => Size_In_Storage_Elements (Etyp),
3651 Right_Opnd =>
3652 Make_Integer_Literal (Loc, Uint_7 * (Uint_2 ** 29))),
3653 Reason => SE_Object_Too_Large));
3654 end if;
3655 end if;
3656
3657 -- Handle case of qualified expression (other than optimization above)
3658 -- First apply constraint checks, because the bounds or discriminants
3659 -- in the aggregate might not match the subtype mark in the allocator.
3660
3661 if Nkind (Expression (N)) = N_Qualified_Expression then
3662 Apply_Constraint_Check
3663 (Expression (Expression (N)), Etype (Expression (N)));
3664
3665 Expand_Allocator_Expression (N);
3666 return;
3667 end if;
3668
3669 -- If the allocator is for a type which requires initialization, and
3670 -- there is no initial value (i.e. operand is a subtype indication
3671 -- rather than a qualified expression), then we must generate a call to
3672 -- the initialization routine using an expressions action node:
3673
3674 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
3675
3676 -- Here ptr_T is the pointer type for the allocator, and T is the
3677 -- subtype of the allocator. A special case arises if the designated
3678 -- type of the access type is a task or contains tasks. In this case
3679 -- the call to Init (Temp.all ...) is replaced by code that ensures
3680 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
3681 -- for details). In addition, if the type T is a task T, then the
3682 -- first argument to Init must be converted to the task record type.
3683
3684 declare
3685 T : constant Entity_Id := Entity (Expression (N));
3686 Args : List_Id;
3687 Decls : List_Id;
3688 Decl : Node_Id;
3689 Discr : Elmt_Id;
3690 Init : Entity_Id;
3691 Init_Arg1 : Node_Id;
3692 Temp_Decl : Node_Id;
3693 Temp_Type : Entity_Id;
3694
3695 begin
3696 if No_Initialization (N) then
3697
3698 -- Even though this might be a simple allocation, create a custom
3699 -- Allocate if the context requires it. Since .NET/JVM compilers
3700 -- do not support pools, this step is skipped.
3701
3702 if VM_Target = No_VM
3703 and then Present (Finalization_Master (PtrT))
3704 then
3705 Build_Allocate_Deallocate_Proc
3706 (N => N,
3707 Is_Allocate => True);
3708 end if;
3709
3710 -- Case of no initialization procedure present
3711
3712 elsif not Has_Non_Null_Base_Init_Proc (T) then
3713
3714 -- Case of simple initialization required
3715
3716 if Needs_Simple_Initialization (T) then
3717 Check_Restriction (No_Default_Initialization, N);
3718 Rewrite (Expression (N),
3719 Make_Qualified_Expression (Loc,
3720 Subtype_Mark => New_Occurrence_Of (T, Loc),
3721 Expression => Get_Simple_Init_Val (T, N)));
3722
3723 Analyze_And_Resolve (Expression (Expression (N)), T);
3724 Analyze_And_Resolve (Expression (N), T);
3725 Set_Paren_Count (Expression (Expression (N)), 1);
3726 Expand_N_Allocator (N);
3727
3728 -- No initialization required
3729
3730 else
3731 null;
3732 end if;
3733
3734 -- Case of initialization procedure present, must be called
3735
3736 else
3737 Check_Restriction (No_Default_Initialization, N);
3738
3739 if not Restriction_Active (No_Default_Initialization) then
3740 Init := Base_Init_Proc (T);
3741 Nod := N;
3742 Temp := Make_Temporary (Loc, 'P');
3743
3744 -- Construct argument list for the initialization routine call
3745
3746 Init_Arg1 :=
3747 Make_Explicit_Dereference (Loc,
3748 Prefix =>
3749 New_Reference_To (Temp, Loc));
3750
3751 Set_Assignment_OK (Init_Arg1);
3752 Temp_Type := PtrT;
3753
3754 -- The initialization procedure expects a specific type. if the
3755 -- context is access to class wide, indicate that the object
3756 -- being allocated has the right specific type.
3757
3758 if Is_Class_Wide_Type (Dtyp) then
3759 Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
3760 end if;
3761
3762 -- If designated type is a concurrent type or if it is private
3763 -- type whose definition is a concurrent type, the first
3764 -- argument in the Init routine has to be unchecked conversion
3765 -- to the corresponding record type. If the designated type is
3766 -- a derived type, also convert the argument to its root type.
3767
3768 if Is_Concurrent_Type (T) then
3769 Init_Arg1 :=
3770 Unchecked_Convert_To (
3771 Corresponding_Record_Type (T), Init_Arg1);
3772
3773 elsif Is_Private_Type (T)
3774 and then Present (Full_View (T))
3775 and then Is_Concurrent_Type (Full_View (T))
3776 then
3777 Init_Arg1 :=
3778 Unchecked_Convert_To
3779 (Corresponding_Record_Type (Full_View (T)), Init_Arg1);
3780
3781 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
3782 declare
3783 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
3784
3785 begin
3786 Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
3787 Set_Etype (Init_Arg1, Ftyp);
3788 end;
3789 end if;
3790
3791 Args := New_List (Init_Arg1);
3792
3793 -- For the task case, pass the Master_Id of the access type as
3794 -- the value of the _Master parameter, and _Chain as the value
3795 -- of the _Chain parameter (_Chain will be defined as part of
3796 -- the generated code for the allocator).
3797
3798 -- In Ada 2005, the context may be a function that returns an
3799 -- anonymous access type. In that case the Master_Id has been
3800 -- created when expanding the function declaration.
3801
3802 if Has_Task (T) then
3803 if No (Master_Id (Base_Type (PtrT))) then
3804
3805 -- The designated type was an incomplete type, and the
3806 -- access type did not get expanded. Salvage it now.
3807
3808 if not Restriction_Active (No_Task_Hierarchy) then
3809 pragma Assert (Present (Parent (Base_Type (PtrT))));
3810 Expand_N_Full_Type_Declaration
3811 (Parent (Base_Type (PtrT)));
3812 end if;
3813 end if;
3814
3815 -- If the context of the allocator is a declaration or an
3816 -- assignment, we can generate a meaningful image for it,
3817 -- even though subsequent assignments might remove the
3818 -- connection between task and entity. We build this image
3819 -- when the left-hand side is a simple variable, a simple
3820 -- indexed assignment or a simple selected component.
3821
3822 if Nkind (Parent (N)) = N_Assignment_Statement then
3823 declare
3824 Nam : constant Node_Id := Name (Parent (N));
3825
3826 begin
3827 if Is_Entity_Name (Nam) then
3828 Decls :=
3829 Build_Task_Image_Decls
3830 (Loc,
3831 New_Occurrence_Of
3832 (Entity (Nam), Sloc (Nam)), T);
3833
3834 elsif Nkind_In (Nam, N_Indexed_Component,
3835 N_Selected_Component)
3836 and then Is_Entity_Name (Prefix (Nam))
3837 then
3838 Decls :=
3839 Build_Task_Image_Decls
3840 (Loc, Nam, Etype (Prefix (Nam)));
3841 else
3842 Decls := Build_Task_Image_Decls (Loc, T, T);
3843 end if;
3844 end;
3845
3846 elsif Nkind (Parent (N)) = N_Object_Declaration then
3847 Decls :=
3848 Build_Task_Image_Decls
3849 (Loc, Defining_Identifier (Parent (N)), T);
3850
3851 else
3852 Decls := Build_Task_Image_Decls (Loc, T, T);
3853 end if;
3854
3855 if Restriction_Active (No_Task_Hierarchy) then
3856 Append_To (Args,
3857 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
3858 else
3859 Append_To (Args,
3860 New_Reference_To
3861 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
3862 end if;
3863
3864 Append_To (Args, Make_Identifier (Loc, Name_uChain));
3865
3866 Decl := Last (Decls);
3867 Append_To (Args,
3868 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
3869
3870 -- Has_Task is false, Decls not used
3871
3872 else
3873 Decls := No_List;
3874 end if;
3875
3876 -- Add discriminants if discriminated type
3877
3878 declare
3879 Dis : Boolean := False;
3880 Typ : Entity_Id;
3881
3882 begin
3883 if Has_Discriminants (T) then
3884 Dis := True;
3885 Typ := T;
3886
3887 elsif Is_Private_Type (T)
3888 and then Present (Full_View (T))
3889 and then Has_Discriminants (Full_View (T))
3890 then
3891 Dis := True;
3892 Typ := Full_View (T);
3893 end if;
3894
3895 if Dis then
3896
3897 -- If the allocated object will be constrained by the
3898 -- default values for discriminants, then build a subtype
3899 -- with those defaults, and change the allocated subtype
3900 -- to that. Note that this happens in fewer cases in Ada
3901 -- 2005 (AI-363).
3902
3903 if not Is_Constrained (Typ)
3904 and then Present (Discriminant_Default_Value
3905 (First_Discriminant (Typ)))
3906 and then (Ada_Version < Ada_2005
3907 or else
3908 not Has_Constrained_Partial_View (Typ))
3909 then
3910 Typ := Build_Default_Subtype (Typ, N);
3911 Set_Expression (N, New_Reference_To (Typ, Loc));
3912 end if;
3913
3914 Discr := First_Elmt (Discriminant_Constraint (Typ));
3915 while Present (Discr) loop
3916 Nod := Node (Discr);
3917 Append (New_Copy_Tree (Node (Discr)), Args);
3918
3919 -- AI-416: when the discriminant constraint is an
3920 -- anonymous access type make sure an accessibility
3921 -- check is inserted if necessary (3.10.2(22.q/2))
3922
3923 if Ada_Version >= Ada_2005
3924 and then
3925 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
3926 then
3927 Apply_Accessibility_Check
3928 (Nod, Typ, Insert_Node => Nod);
3929 end if;
3930
3931 Next_Elmt (Discr);
3932 end loop;
3933 end if;
3934 end;
3935
3936 -- We set the allocator as analyzed so that when we analyze the
3937 -- expression actions node, we do not get an unwanted recursive
3938 -- expansion of the allocator expression.
3939
3940 Set_Analyzed (N, True);
3941 Nod := Relocate_Node (N);
3942
3943 -- Here is the transformation:
3944 -- input: new Ctrl_Typ
3945 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
3946 -- Ctrl_TypIP (Temp.all, ...);
3947 -- [Deep_]Initialize (Temp.all);
3948
3949 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
3950 -- is the subtype of the allocator.
3951
3952 Temp_Decl :=
3953 Make_Object_Declaration (Loc,
3954 Defining_Identifier => Temp,
3955 Constant_Present => True,
3956 Object_Definition => New_Reference_To (Temp_Type, Loc),
3957 Expression => Nod);
3958
3959 Set_Assignment_OK (Temp_Decl);
3960 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
3961
3962 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
3963
3964 -- If the designated type is a task type or contains tasks,
3965 -- create block to activate created tasks, and insert
3966 -- declaration for Task_Image variable ahead of call.
3967
3968 if Has_Task (T) then
3969 declare
3970 L : constant List_Id := New_List;
3971 Blk : Node_Id;
3972 begin
3973 Build_Task_Allocate_Block (L, Nod, Args);
3974 Blk := Last (L);
3975 Insert_List_Before (First (Declarations (Blk)), Decls);
3976 Insert_Actions (N, L);
3977 end;
3978
3979 else
3980 Insert_Action (N,
3981 Make_Procedure_Call_Statement (Loc,
3982 Name => New_Reference_To (Init, Loc),
3983 Parameter_Associations => Args));
3984 end if;
3985
3986 if Needs_Finalization (T) then
3987
3988 -- Generate:
3989 -- [Deep_]Initialize (Init_Arg1);
3990
3991 Insert_Action (N,
3992 Make_Init_Call
3993 (Obj_Ref => New_Copy_Tree (Init_Arg1),
3994 Typ => T));
3995
3996 if Present (Finalization_Master (PtrT)) then
3997
3998 -- Special processing for .NET/JVM, the allocated object
3999 -- is attached to the finalization master. Generate:
4000
4001 -- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
4002
4003 -- Types derived from [Limited_]Controlled are the only
4004 -- ones considered since they have fields Prev and Next.
4005
4006 if VM_Target /= No_VM then
4007 if Is_Controlled (T) then
4008 Insert_Action (N,
4009 Make_Attach_Call
4010 (Obj_Ref => New_Copy_Tree (Init_Arg1),
4011 Ptr_Typ => PtrT));
4012 end if;
4013
4014 -- Default case, generate:
4015
4016 -- Set_Finalize_Address
4017 -- (<PtrT>FM, <T>FD'Unrestricted_Access);
4018
4019 -- Do not generate this call in the following cases:
4020 --
4021 -- * Alfa mode - the call is useless and results in
4022 -- unwanted expansion.
4023 --
4024 -- * CodePeer mode - TSS primitive Finalize_Address is
4025 -- not created in this mode.
4026
4027 elsif not Alfa_Mode
4028 and then not CodePeer_Mode
4029 then
4030 Insert_Action (N,
4031 Make_Set_Finalize_Address_Call
4032 (Loc => Loc,
4033 Typ => T,
4034 Ptr_Typ => PtrT));
4035 end if;
4036 end if;
4037 end if;
4038
4039 Rewrite (N, New_Reference_To (Temp, Loc));
4040 Analyze_And_Resolve (N, PtrT);
4041 end if;
4042 end if;
4043 end;
4044
4045 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4046 -- object that has been rewritten as a reference, we displace "this"
4047 -- to reference properly its secondary dispatch table.
4048
4049 if Nkind (N) = N_Identifier
4050 and then Is_Interface (Dtyp)
4051 then
4052 Displace_Allocator_Pointer (N);
4053 end if;
4054
4055 exception
4056 when RE_Not_Available =>
4057 return;
4058 end Expand_N_Allocator;
4059
4060 -----------------------
4061 -- Expand_N_And_Then --
4062 -----------------------
4063
4064 procedure Expand_N_And_Then (N : Node_Id)
4065 renames Expand_Short_Circuit_Operator;
4066
4067 ------------------------------
4068 -- Expand_N_Case_Expression --
4069 ------------------------------
4070
4071 procedure Expand_N_Case_Expression (N : Node_Id) is
4072 Loc : constant Source_Ptr := Sloc (N);
4073 Typ : constant Entity_Id := Etype (N);
4074 Cstmt : Node_Id;
4075 Tnn : Entity_Id;
4076 Pnn : Entity_Id;
4077 Actions : List_Id;
4078 Ttyp : Entity_Id;
4079 Alt : Node_Id;
4080 Fexp : Node_Id;
4081
4082 begin
4083 -- We expand
4084
4085 -- case X is when A => AX, when B => BX ...
4086
4087 -- to
4088
4089 -- do
4090 -- Tnn : typ;
4091 -- case X is
4092 -- when A =>
4093 -- Tnn := AX;
4094 -- when B =>
4095 -- Tnn := BX;
4096 -- ...
4097 -- end case;
4098 -- in Tnn end;
4099
4100 -- However, this expansion is wrong for limited types, and also
4101 -- wrong for unconstrained types (since the bounds may not be the
4102 -- same in all branches). Furthermore it involves an extra copy
4103 -- for large objects. So we take care of this by using the following
4104 -- modified expansion for non-scalar types:
4105
4106 -- do
4107 -- type Pnn is access all typ;
4108 -- Tnn : Pnn;
4109 -- case X is
4110 -- when A =>
4111 -- T := AX'Unrestricted_Access;
4112 -- when B =>
4113 -- T := BX'Unrestricted_Access;
4114 -- ...
4115 -- end case;
4116 -- in Tnn.all end;
4117
4118 Cstmt :=
4119 Make_Case_Statement (Loc,
4120 Expression => Expression (N),
4121 Alternatives => New_List);
4122
4123 Actions := New_List;
4124
4125 -- Scalar case
4126
4127 if Is_Scalar_Type (Typ) then
4128 Ttyp := Typ;
4129
4130 else
4131 Pnn := Make_Temporary (Loc, 'P');
4132 Append_To (Actions,
4133 Make_Full_Type_Declaration (Loc,
4134 Defining_Identifier => Pnn,
4135 Type_Definition =>
4136 Make_Access_To_Object_Definition (Loc,
4137 All_Present => True,
4138 Subtype_Indication =>
4139 New_Reference_To (Typ, Loc))));
4140 Ttyp := Pnn;
4141 end if;
4142
4143 Tnn := Make_Temporary (Loc, 'T');
4144 Append_To (Actions,
4145 Make_Object_Declaration (Loc,
4146 Defining_Identifier => Tnn,
4147 Object_Definition => New_Occurrence_Of (Ttyp, Loc)));
4148
4149 -- Now process the alternatives
4150
4151 Alt := First (Alternatives (N));
4152 while Present (Alt) loop
4153 declare
4154 Aexp : Node_Id := Expression (Alt);
4155 Aloc : constant Source_Ptr := Sloc (Aexp);
4156 Stats : List_Id;
4157
4158 begin
4159 -- As described above, take Unrestricted_Access for case of non-
4160 -- scalar types, to avoid big copies, and special cases.
4161
4162 if not Is_Scalar_Type (Typ) then
4163 Aexp :=
4164 Make_Attribute_Reference (Aloc,
4165 Prefix => Relocate_Node (Aexp),
4166 Attribute_Name => Name_Unrestricted_Access);
4167 end if;
4168
4169 Stats := New_List (
4170 Make_Assignment_Statement (Aloc,
4171 Name => New_Occurrence_Of (Tnn, Loc),
4172 Expression => Aexp));
4173
4174 -- Propagate declarations inserted in the node by Insert_Actions
4175 -- (for example, temporaries generated to remove side effects).
4176 -- These actions must remain attached to the alternative, given
4177 -- that they are generated by the corresponding expression.
4178
4179 if Present (Sinfo.Actions (Alt)) then
4180 Prepend_List (Sinfo.Actions (Alt), Stats);
4181 end if;
4182
4183 Append_To
4184 (Alternatives (Cstmt),
4185 Make_Case_Statement_Alternative (Sloc (Alt),
4186 Discrete_Choices => Discrete_Choices (Alt),
4187 Statements => Stats));
4188 end;
4189
4190 Next (Alt);
4191 end loop;
4192
4193 Append_To (Actions, Cstmt);
4194
4195 -- Construct and return final expression with actions
4196
4197 if Is_Scalar_Type (Typ) then
4198 Fexp := New_Occurrence_Of (Tnn, Loc);
4199 else
4200 Fexp :=
4201 Make_Explicit_Dereference (Loc,
4202 Prefix => New_Occurrence_Of (Tnn, Loc));
4203 end if;
4204
4205 Rewrite (N,
4206 Make_Expression_With_Actions (Loc,
4207 Expression => Fexp,
4208 Actions => Actions));
4209
4210 Analyze_And_Resolve (N, Typ);
4211 end Expand_N_Case_Expression;
4212
4213 -------------------------------------
4214 -- Expand_N_Conditional_Expression --
4215 -------------------------------------
4216
4217 -- Deal with limited types and expression actions
4218
4219 procedure Expand_N_Conditional_Expression (N : Node_Id) is
4220 Loc : constant Source_Ptr := Sloc (N);
4221 Cond : constant Node_Id := First (Expressions (N));
4222 Thenx : constant Node_Id := Next (Cond);
4223 Elsex : constant Node_Id := Next (Thenx);
4224 Typ : constant Entity_Id := Etype (N);
4225
4226 Cnn : Entity_Id;
4227 Decl : Node_Id;
4228 New_If : Node_Id;
4229 New_N : Node_Id;
4230 P_Decl : Node_Id;
4231 Expr : Node_Id;
4232 Actions : List_Id;
4233
4234 begin
4235 -- Fold at compile time if condition known. We have already folded
4236 -- static conditional expressions, but it is possible to fold any
4237 -- case in which the condition is known at compile time, even though
4238 -- the result is non-static.
4239
4240 -- Note that we don't do the fold of such cases in Sem_Elab because
4241 -- it can cause infinite loops with the expander adding a conditional
4242 -- expression, and Sem_Elab circuitry removing it repeatedly.
4243
4244 if Compile_Time_Known_Value (Cond) then
4245 if Is_True (Expr_Value (Cond)) then
4246 Expr := Thenx;
4247 Actions := Then_Actions (N);
4248 else
4249 Expr := Elsex;
4250 Actions := Else_Actions (N);
4251 end if;
4252
4253 Remove (Expr);
4254
4255 if Present (Actions) then
4256
4257 -- If we are not allowed to use Expression_With_Actions, just skip
4258 -- the optimization, it is not critical for correctness.
4259
4260 if not Use_Expression_With_Actions then
4261 goto Skip_Optimization;
4262 end if;
4263
4264 Rewrite (N,
4265 Make_Expression_With_Actions (Loc,
4266 Expression => Relocate_Node (Expr),
4267 Actions => Actions));
4268 Analyze_And_Resolve (N, Typ);
4269
4270 else
4271 Rewrite (N, Relocate_Node (Expr));
4272 end if;
4273
4274 -- Note that the result is never static (legitimate cases of static
4275 -- conditional expressions were folded in Sem_Eval).
4276
4277 Set_Is_Static_Expression (N, False);
4278 return;
4279 end if;
4280
4281 <<Skip_Optimization>>
4282
4283 -- If the type is limited or unconstrained, we expand as follows to
4284 -- avoid any possibility of improper copies.
4285
4286 -- Note: it may be possible to avoid this special processing if the
4287 -- back end uses its own mechanisms for handling by-reference types ???
4288
4289 -- type Ptr is access all Typ;
4290 -- Cnn : Ptr;
4291 -- if cond then
4292 -- <<then actions>>
4293 -- Cnn := then-expr'Unrestricted_Access;
4294 -- else
4295 -- <<else actions>>
4296 -- Cnn := else-expr'Unrestricted_Access;
4297 -- end if;
4298
4299 -- and replace the conditional expression by a reference to Cnn.all.
4300
4301 -- This special case can be skipped if the back end handles limited
4302 -- types properly and ensures that no incorrect copies are made.
4303
4304 if Is_By_Reference_Type (Typ)
4305 and then not Back_End_Handles_Limited_Types
4306 then
4307 Cnn := Make_Temporary (Loc, 'C', N);
4308
4309 P_Decl :=
4310 Make_Full_Type_Declaration (Loc,
4311 Defining_Identifier =>
4312 Make_Temporary (Loc, 'A'),
4313 Type_Definition =>
4314 Make_Access_To_Object_Definition (Loc,
4315 All_Present => True,
4316 Subtype_Indication => New_Reference_To (Typ, Loc)));
4317
4318 Insert_Action (N, P_Decl);
4319
4320 Decl :=
4321 Make_Object_Declaration (Loc,
4322 Defining_Identifier => Cnn,
4323 Object_Definition =>
4324 New_Occurrence_Of (Defining_Identifier (P_Decl), Loc));
4325
4326 New_If :=
4327 Make_Implicit_If_Statement (N,
4328 Condition => Relocate_Node (Cond),
4329
4330 Then_Statements => New_List (
4331 Make_Assignment_Statement (Sloc (Thenx),
4332 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
4333 Expression =>
4334 Make_Attribute_Reference (Loc,
4335 Attribute_Name => Name_Unrestricted_Access,
4336 Prefix => Relocate_Node (Thenx)))),
4337
4338 Else_Statements => New_List (
4339 Make_Assignment_Statement (Sloc (Elsex),
4340 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
4341 Expression =>
4342 Make_Attribute_Reference (Loc,
4343 Attribute_Name => Name_Unrestricted_Access,
4344 Prefix => Relocate_Node (Elsex)))));
4345
4346 New_N :=
4347 Make_Explicit_Dereference (Loc,
4348 Prefix => New_Occurrence_Of (Cnn, Loc));
4349
4350 -- For other types, we only need to expand if there are other actions
4351 -- associated with either branch.
4352
4353 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
4354
4355 -- We have two approaches to handling this. If we are allowed to use
4356 -- N_Expression_With_Actions, then we can just wrap the actions into
4357 -- the appropriate expression.
4358
4359 if Use_Expression_With_Actions then
4360 if Present (Then_Actions (N)) then
4361 Rewrite (Thenx,
4362 Make_Expression_With_Actions (Sloc (Thenx),
4363 Actions => Then_Actions (N),
4364 Expression => Relocate_Node (Thenx)));
4365 Set_Then_Actions (N, No_List);
4366 Analyze_And_Resolve (Thenx, Typ);
4367 end if;
4368
4369 if Present (Else_Actions (N)) then
4370 Rewrite (Elsex,
4371 Make_Expression_With_Actions (Sloc (Elsex),
4372 Actions => Else_Actions (N),
4373 Expression => Relocate_Node (Elsex)));
4374 Set_Else_Actions (N, No_List);
4375 Analyze_And_Resolve (Elsex, Typ);
4376 end if;
4377
4378 return;
4379
4380 -- if we can't use N_Expression_With_Actions nodes, then we insert
4381 -- the following sequence of actions (using Insert_Actions):
4382
4383 -- Cnn : typ;
4384 -- if cond then
4385 -- <<then actions>>
4386 -- Cnn := then-expr;
4387 -- else
4388 -- <<else actions>>
4389 -- Cnn := else-expr
4390 -- end if;
4391
4392 -- and replace the conditional expression by a reference to Cnn
4393
4394 else
4395 Cnn := Make_Temporary (Loc, 'C', N);
4396
4397 Decl :=
4398 Make_Object_Declaration (Loc,
4399 Defining_Identifier => Cnn,
4400 Object_Definition => New_Occurrence_Of (Typ, Loc));
4401
4402 New_If :=
4403 Make_Implicit_If_Statement (N,
4404 Condition => Relocate_Node (Cond),
4405
4406 Then_Statements => New_List (
4407 Make_Assignment_Statement (Sloc (Thenx),
4408 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
4409 Expression => Relocate_Node (Thenx))),
4410
4411 Else_Statements => New_List (
4412 Make_Assignment_Statement (Sloc (Elsex),
4413 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
4414 Expression => Relocate_Node (Elsex))));
4415
4416 Set_Assignment_OK (Name (First (Then_Statements (New_If))));
4417 Set_Assignment_OK (Name (First (Else_Statements (New_If))));
4418
4419 New_N := New_Occurrence_Of (Cnn, Loc);
4420 end if;
4421
4422 -- If no actions then no expansion needed, gigi will handle it using
4423 -- the same approach as a C conditional expression.
4424
4425 else
4426 return;
4427 end if;
4428
4429 -- Fall through here for either the limited expansion, or the case of
4430 -- inserting actions for non-limited types. In both these cases, we must
4431 -- move the SLOC of the parent If statement to the newly created one and
4432 -- change it to the SLOC of the expression which, after expansion, will
4433 -- correspond to what is being evaluated.
4434
4435 if Present (Parent (N))
4436 and then Nkind (Parent (N)) = N_If_Statement
4437 then
4438 Set_Sloc (New_If, Sloc (Parent (N)));
4439 Set_Sloc (Parent (N), Loc);
4440 end if;
4441
4442 -- Make sure Then_Actions and Else_Actions are appropriately moved
4443 -- to the new if statement.
4444
4445 if Present (Then_Actions (N)) then
4446 Insert_List_Before
4447 (First (Then_Statements (New_If)), Then_Actions (N));
4448 end if;
4449
4450 if Present (Else_Actions (N)) then
4451 Insert_List_Before
4452 (First (Else_Statements (New_If)), Else_Actions (N));
4453 end if;
4454
4455 Insert_Action (N, Decl);
4456 Insert_Action (N, New_If);
4457 Rewrite (N, New_N);
4458 Analyze_And_Resolve (N, Typ);
4459 end Expand_N_Conditional_Expression;
4460
4461 -----------------------------------
4462 -- Expand_N_Explicit_Dereference --
4463 -----------------------------------
4464
4465 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
4466 begin
4467 -- Insert explicit dereference call for the checked storage pool case
4468
4469 Insert_Dereference_Action (Prefix (N));
4470 end Expand_N_Explicit_Dereference;
4471
4472 --------------------------------------
4473 -- Expand_N_Expression_With_Actions --
4474 --------------------------------------
4475
4476 procedure Expand_N_Expression_With_Actions (N : Node_Id) is
4477
4478 procedure Process_Transient_Object (Decl : Node_Id);
4479 -- Given the declaration of a controlled transient declared inside the
4480 -- Actions list of an Expression_With_Actions, generate all necessary
4481 -- types and hooks in order to properly finalize the transient. This
4482 -- mechanism works in conjunction with Build_Finalizer.
4483
4484 ------------------------------
4485 -- Process_Transient_Object --
4486 ------------------------------
4487
4488 procedure Process_Transient_Object (Decl : Node_Id) is
4489
4490 function Find_Insertion_Node return Node_Id;
4491 -- Complex conditions in if statements may be converted into nested
4492 -- EWAs. In this case, any generated code must be inserted before the
4493 -- if statement to ensure proper visibility of the hook objects. This
4494 -- routine returns the top most short circuit operator or the parent
4495 -- of the EWA if no nesting was detected.
4496
4497 -------------------------
4498 -- Find_Insertion_Node --
4499 -------------------------
4500
4501 function Find_Insertion_Node return Node_Id is
4502 Par : Node_Id;
4503
4504 begin
4505 -- Climb up the branches of a complex condition
4506
4507 Par := N;
4508 while Nkind_In (Parent (Par), N_And_Then, N_Op_Not, N_Or_Else) loop
4509 Par := Parent (Par);
4510 end loop;
4511
4512 return Par;
4513 end Find_Insertion_Node;
4514
4515 -- Local variables
4516
4517 Ins_Node : constant Node_Id := Find_Insertion_Node;
4518 Loc : constant Source_Ptr := Sloc (Decl);
4519 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
4520 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
4521 Desig_Typ : Entity_Id;
4522 Expr : Node_Id;
4523 Ptr_Decl : Node_Id;
4524 Ptr_Id : Entity_Id;
4525 Temp_Decl : Node_Id;
4526 Temp_Id : Node_Id;
4527
4528 -- Start of processing for Process_Transient_Object
4529
4530 begin
4531 -- Step 1: Create the access type which provides a reference to the
4532 -- transient object.
4533
4534 if Is_Access_Type (Obj_Typ) then
4535 Desig_Typ := Directly_Designated_Type (Obj_Typ);
4536 else
4537 Desig_Typ := Obj_Typ;
4538 end if;
4539
4540 -- Generate:
4541 -- Ann : access [all] <Desig_Typ>;
4542
4543 Ptr_Id := Make_Temporary (Loc, 'A');
4544
4545 Ptr_Decl :=
4546 Make_Full_Type_Declaration (Loc,
4547 Defining_Identifier => Ptr_Id,
4548 Type_Definition =>
4549 Make_Access_To_Object_Definition (Loc,
4550 All_Present =>
4551 Ekind (Obj_Typ) = E_General_Access_Type,
4552 Subtype_Indication => New_Reference_To (Desig_Typ, Loc)));
4553
4554 Insert_Action (Ins_Node, Ptr_Decl);
4555 Analyze (Ptr_Decl);
4556
4557 -- Step 2: Create a temporary which acts as a hook to the transient
4558 -- object. Generate:
4559
4560 -- Temp : Ptr_Id := null;
4561
4562 Temp_Id := Make_Temporary (Loc, 'T');
4563
4564 Temp_Decl :=
4565 Make_Object_Declaration (Loc,
4566 Defining_Identifier => Temp_Id,
4567 Object_Definition => New_Reference_To (Ptr_Id, Loc));
4568
4569 Insert_Action (Ins_Node, Temp_Decl);
4570 Analyze (Temp_Decl);
4571
4572 -- Mark this temporary as created for the purposes of exporting the
4573 -- transient declaration out of the Actions list. This signals the
4574 -- machinery in Build_Finalizer to recognize this special case.
4575
4576 Set_Return_Flag_Or_Transient_Decl (Temp_Id, Decl);
4577
4578 -- Step 3: Hook the transient object to the temporary
4579
4580 if Is_Access_Type (Obj_Typ) then
4581 Expr := Convert_To (Ptr_Id, New_Reference_To (Obj_Id, Loc));
4582 else
4583 Expr :=
4584 Make_Attribute_Reference (Loc,
4585 Prefix => New_Reference_To (Obj_Id, Loc),
4586 Attribute_Name => Name_Unrestricted_Access);
4587 end if;
4588
4589 -- Generate:
4590 -- Temp := Ptr_Id (Obj_Id);
4591 -- <or>
4592 -- Temp := Obj_Id'Unrestricted_Access;
4593
4594 Insert_After_And_Analyze (Decl,
4595 Make_Assignment_Statement (Loc,
4596 Name => New_Reference_To (Temp_Id, Loc),
4597 Expression => Expr));
4598 end Process_Transient_Object;
4599
4600 -- Local variables
4601
4602 Decl : Node_Id;
4603
4604 -- Start of processing for Expand_N_Expression_With_Actions
4605
4606 begin
4607 Decl := First (Actions (N));
4608 while Present (Decl) loop
4609 if Nkind (Decl) = N_Object_Declaration
4610 and then Is_Finalizable_Transient (Decl, N)
4611 then
4612 Process_Transient_Object (Decl);
4613 end if;
4614
4615 Next (Decl);
4616 end loop;
4617 end Expand_N_Expression_With_Actions;
4618
4619 -----------------
4620 -- Expand_N_In --
4621 -----------------
4622
4623 procedure Expand_N_In (N : Node_Id) is
4624 Loc : constant Source_Ptr := Sloc (N);
4625 Restyp : constant Entity_Id := Etype (N);
4626 Lop : constant Node_Id := Left_Opnd (N);
4627 Rop : constant Node_Id := Right_Opnd (N);
4628 Static : constant Boolean := Is_OK_Static_Expression (N);
4629
4630 Ltyp : Entity_Id;
4631 Rtyp : Entity_Id;
4632
4633 procedure Substitute_Valid_Check;
4634 -- Replaces node N by Lop'Valid. This is done when we have an explicit
4635 -- test for the left operand being in range of its subtype.
4636
4637 ----------------------------
4638 -- Substitute_Valid_Check --
4639 ----------------------------
4640
4641 procedure Substitute_Valid_Check is
4642 begin
4643 Rewrite (N,
4644 Make_Attribute_Reference (Loc,
4645 Prefix => Relocate_Node (Lop),
4646 Attribute_Name => Name_Valid));
4647
4648 Analyze_And_Resolve (N, Restyp);
4649
4650 Error_Msg_N ("?explicit membership test may be optimized away", N);
4651 Error_Msg_N -- CODEFIX
4652 ("\?use ''Valid attribute instead", N);
4653 return;
4654 end Substitute_Valid_Check;
4655
4656 -- Start of processing for Expand_N_In
4657
4658 begin
4659 -- If set membership case, expand with separate procedure
4660
4661 if Present (Alternatives (N)) then
4662 Expand_Set_Membership (N);
4663 return;
4664 end if;
4665
4666 -- Not set membership, proceed with expansion
4667
4668 Ltyp := Etype (Left_Opnd (N));
4669 Rtyp := Etype (Right_Opnd (N));
4670
4671 -- Check case of explicit test for an expression in range of its
4672 -- subtype. This is suspicious usage and we replace it with a 'Valid
4673 -- test and give a warning. For floating point types however, this is a
4674 -- standard way to check for finite numbers, and using 'Valid would
4675 -- typically be a pessimization. Also skip this test for predicated
4676 -- types, since it is perfectly reasonable to check if a value meets
4677 -- its predicate.
4678
4679 if Is_Scalar_Type (Ltyp)
4680 and then not Is_Floating_Point_Type (Ltyp)
4681 and then Nkind (Rop) in N_Has_Entity
4682 and then Ltyp = Entity (Rop)
4683 and then Comes_From_Source (N)
4684 and then VM_Target = No_VM
4685 and then not (Is_Discrete_Type (Ltyp)
4686 and then Present (Predicate_Function (Ltyp)))
4687 then
4688 Substitute_Valid_Check;
4689 return;
4690 end if;
4691
4692 -- Do validity check on operands
4693
4694 if Validity_Checks_On and Validity_Check_Operands then
4695 Ensure_Valid (Left_Opnd (N));
4696 Validity_Check_Range (Right_Opnd (N));
4697 end if;
4698
4699 -- Case of explicit range
4700
4701 if Nkind (Rop) = N_Range then
4702 declare
4703 Lo : constant Node_Id := Low_Bound (Rop);
4704 Hi : constant Node_Id := High_Bound (Rop);
4705
4706 Lo_Orig : constant Node_Id := Original_Node (Lo);
4707 Hi_Orig : constant Node_Id := Original_Node (Hi);
4708
4709 Lcheck : Compare_Result;
4710 Ucheck : Compare_Result;
4711
4712 Warn1 : constant Boolean :=
4713 Constant_Condition_Warnings
4714 and then Comes_From_Source (N)
4715 and then not In_Instance;
4716 -- This must be true for any of the optimization warnings, we
4717 -- clearly want to give them only for source with the flag on. We
4718 -- also skip these warnings in an instance since it may be the
4719 -- case that different instantiations have different ranges.
4720
4721 Warn2 : constant Boolean :=
4722 Warn1
4723 and then Nkind (Original_Node (Rop)) = N_Range
4724 and then Is_Integer_Type (Etype (Lo));
4725 -- For the case where only one bound warning is elided, we also
4726 -- insist on an explicit range and an integer type. The reason is
4727 -- that the use of enumeration ranges including an end point is
4728 -- common, as is the use of a subtype name, one of whose bounds is
4729 -- the same as the type of the expression.
4730
4731 begin
4732 -- If test is explicit x'First .. x'Last, replace by valid check
4733
4734 -- Could use some individual comments for this complex test ???
4735
4736 if Is_Scalar_Type (Ltyp)
4737 and then Nkind (Lo_Orig) = N_Attribute_Reference
4738 and then Attribute_Name (Lo_Orig) = Name_First
4739 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
4740 and then Entity (Prefix (Lo_Orig)) = Ltyp
4741 and then Nkind (Hi_Orig) = N_Attribute_Reference
4742 and then Attribute_Name (Hi_Orig) = Name_Last
4743 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
4744 and then Entity (Prefix (Hi_Orig)) = Ltyp
4745 and then Comes_From_Source (N)
4746 and then VM_Target = No_VM
4747 then
4748 Substitute_Valid_Check;
4749 goto Leave;
4750 end if;
4751
4752 -- If bounds of type are known at compile time, and the end points
4753 -- are known at compile time and identical, this is another case
4754 -- for substituting a valid test. We only do this for discrete
4755 -- types, since it won't arise in practice for float types.
4756
4757 if Comes_From_Source (N)
4758 and then Is_Discrete_Type (Ltyp)
4759 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
4760 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
4761 and then Compile_Time_Known_Value (Lo)
4762 and then Compile_Time_Known_Value (Hi)
4763 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
4764 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
4765
4766 -- Kill warnings in instances, since they may be cases where we
4767 -- have a test in the generic that makes sense with some types
4768 -- and not with other types.
4769
4770 and then not In_Instance
4771 then
4772 Substitute_Valid_Check;
4773 goto Leave;
4774 end if;
4775
4776 -- If we have an explicit range, do a bit of optimization based on
4777 -- range analysis (we may be able to kill one or both checks).
4778
4779 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
4780 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
4781
4782 -- If either check is known to fail, replace result by False since
4783 -- the other check does not matter. Preserve the static flag for
4784 -- legality checks, because we are constant-folding beyond RM 4.9.
4785
4786 if Lcheck = LT or else Ucheck = GT then
4787 if Warn1 then
4788 Error_Msg_N ("?range test optimized away", N);
4789 Error_Msg_N ("\?value is known to be out of range", N);
4790 end if;
4791
4792 Rewrite (N, New_Reference_To (Standard_False, Loc));
4793 Analyze_And_Resolve (N, Restyp);
4794 Set_Is_Static_Expression (N, Static);
4795 goto Leave;
4796
4797 -- If both checks are known to succeed, replace result by True,
4798 -- since we know we are in range.
4799
4800 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
4801 if Warn1 then
4802 Error_Msg_N ("?range test optimized away", N);
4803 Error_Msg_N ("\?value is known to be in range", N);
4804 end if;
4805
4806 Rewrite (N, New_Reference_To (Standard_True, Loc));
4807 Analyze_And_Resolve (N, Restyp);
4808 Set_Is_Static_Expression (N, Static);
4809 goto Leave;
4810
4811 -- If lower bound check succeeds and upper bound check is not
4812 -- known to succeed or fail, then replace the range check with
4813 -- a comparison against the upper bound.
4814
4815 elsif Lcheck in Compare_GE then
4816 if Warn2 and then not In_Instance then
4817 Error_Msg_N ("?lower bound test optimized away", Lo);
4818 Error_Msg_N ("\?value is known to be in range", Lo);
4819 end if;
4820
4821 Rewrite (N,
4822 Make_Op_Le (Loc,
4823 Left_Opnd => Lop,
4824 Right_Opnd => High_Bound (Rop)));
4825 Analyze_And_Resolve (N, Restyp);
4826 goto Leave;
4827
4828 -- If upper bound check succeeds and lower bound check is not
4829 -- known to succeed or fail, then replace the range check with
4830 -- a comparison against the lower bound.
4831
4832 elsif Ucheck in Compare_LE then
4833 if Warn2 and then not In_Instance then
4834 Error_Msg_N ("?upper bound test optimized away", Hi);
4835 Error_Msg_N ("\?value is known to be in range", Hi);
4836 end if;
4837
4838 Rewrite (N,
4839 Make_Op_Ge (Loc,
4840 Left_Opnd => Lop,
4841 Right_Opnd => Low_Bound (Rop)));
4842 Analyze_And_Resolve (N, Restyp);
4843 goto Leave;
4844 end if;
4845
4846 -- We couldn't optimize away the range check, but there is one
4847 -- more issue. If we are checking constant conditionals, then we
4848 -- see if we can determine the outcome assuming everything is
4849 -- valid, and if so give an appropriate warning.
4850
4851 if Warn1 and then not Assume_No_Invalid_Values then
4852 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
4853 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
4854
4855 -- Result is out of range for valid value
4856
4857 if Lcheck = LT or else Ucheck = GT then
4858 Error_Msg_N
4859 ("?value can only be in range if it is invalid", N);
4860
4861 -- Result is in range for valid value
4862
4863 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
4864 Error_Msg_N
4865 ("?value can only be out of range if it is invalid", N);
4866
4867 -- Lower bound check succeeds if value is valid
4868
4869 elsif Warn2 and then Lcheck in Compare_GE then
4870 Error_Msg_N
4871 ("?lower bound check only fails if it is invalid", Lo);
4872
4873 -- Upper bound check succeeds if value is valid
4874
4875 elsif Warn2 and then Ucheck in Compare_LE then
4876 Error_Msg_N
4877 ("?upper bound check only fails for invalid values", Hi);
4878 end if;
4879 end if;
4880 end;
4881
4882 -- For all other cases of an explicit range, nothing to be done
4883
4884 goto Leave;
4885
4886 -- Here right operand is a subtype mark
4887
4888 else
4889 declare
4890 Typ : Entity_Id := Etype (Rop);
4891 Is_Acc : constant Boolean := Is_Access_Type (Typ);
4892 Cond : Node_Id := Empty;
4893 New_N : Node_Id;
4894 Obj : Node_Id := Lop;
4895 SCIL_Node : Node_Id;
4896
4897 begin
4898 Remove_Side_Effects (Obj);
4899
4900 -- For tagged type, do tagged membership operation
4901
4902 if Is_Tagged_Type (Typ) then
4903
4904 -- No expansion will be performed when VM_Target, as the VM
4905 -- back-ends will handle the membership tests directly (tags
4906 -- are not explicitly represented in Java objects, so the
4907 -- normal tagged membership expansion is not what we want).
4908
4909 if Tagged_Type_Expansion then
4910 Tagged_Membership (N, SCIL_Node, New_N);
4911 Rewrite (N, New_N);
4912 Analyze_And_Resolve (N, Restyp);
4913
4914 -- Update decoration of relocated node referenced by the
4915 -- SCIL node.
4916
4917 if Generate_SCIL and then Present (SCIL_Node) then
4918 Set_SCIL_Node (N, SCIL_Node);
4919 end if;
4920 end if;
4921
4922 goto Leave;
4923
4924 -- If type is scalar type, rewrite as x in t'First .. t'Last.
4925 -- This reason we do this is that the bounds may have the wrong
4926 -- type if they come from the original type definition. Also this
4927 -- way we get all the processing above for an explicit range.
4928
4929 -- Don't do this for predicated types, since in this case we
4930 -- want to check the predicate!
4931
4932 elsif Is_Scalar_Type (Typ) then
4933 if No (Predicate_Function (Typ)) then
4934 Rewrite (Rop,
4935 Make_Range (Loc,
4936 Low_Bound =>
4937 Make_Attribute_Reference (Loc,
4938 Attribute_Name => Name_First,
4939 Prefix => New_Reference_To (Typ, Loc)),
4940
4941 High_Bound =>
4942 Make_Attribute_Reference (Loc,
4943 Attribute_Name => Name_Last,
4944 Prefix => New_Reference_To (Typ, Loc))));
4945 Analyze_And_Resolve (N, Restyp);
4946 end if;
4947
4948 goto Leave;
4949
4950 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
4951 -- a membership test if the subtype mark denotes a constrained
4952 -- Unchecked_Union subtype and the expression lacks inferable
4953 -- discriminants.
4954
4955 elsif Is_Unchecked_Union (Base_Type (Typ))
4956 and then Is_Constrained (Typ)
4957 and then not Has_Inferable_Discriminants (Lop)
4958 then
4959 Insert_Action (N,
4960 Make_Raise_Program_Error (Loc,
4961 Reason => PE_Unchecked_Union_Restriction));
4962
4963 -- Prevent Gigi from generating incorrect code by rewriting the
4964 -- test as False.
4965
4966 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4967 goto Leave;
4968 end if;
4969
4970 -- Here we have a non-scalar type
4971
4972 if Is_Acc then
4973 Typ := Designated_Type (Typ);
4974 end if;
4975
4976 if not Is_Constrained (Typ) then
4977 Rewrite (N, New_Reference_To (Standard_True, Loc));
4978 Analyze_And_Resolve (N, Restyp);
4979
4980 -- For the constrained array case, we have to check the subscripts
4981 -- for an exact match if the lengths are non-zero (the lengths
4982 -- must match in any case).
4983
4984 elsif Is_Array_Type (Typ) then
4985 Check_Subscripts : declare
4986 function Build_Attribute_Reference
4987 (E : Node_Id;
4988 Nam : Name_Id;
4989 Dim : Nat) return Node_Id;
4990 -- Build attribute reference E'Nam (Dim)
4991
4992 -------------------------------
4993 -- Build_Attribute_Reference --
4994 -------------------------------
4995
4996 function Build_Attribute_Reference
4997 (E : Node_Id;
4998 Nam : Name_Id;
4999 Dim : Nat) return Node_Id
5000 is
5001 begin
5002 return
5003 Make_Attribute_Reference (Loc,
5004 Prefix => E,
5005 Attribute_Name => Nam,
5006 Expressions => New_List (
5007 Make_Integer_Literal (Loc, Dim)));
5008 end Build_Attribute_Reference;
5009
5010 -- Start of processing for Check_Subscripts
5011
5012 begin
5013 for J in 1 .. Number_Dimensions (Typ) loop
5014 Evolve_And_Then (Cond,
5015 Make_Op_Eq (Loc,
5016 Left_Opnd =>
5017 Build_Attribute_Reference
5018 (Duplicate_Subexpr_No_Checks (Obj),
5019 Name_First, J),
5020 Right_Opnd =>
5021 Build_Attribute_Reference
5022 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
5023
5024 Evolve_And_Then (Cond,
5025 Make_Op_Eq (Loc,
5026 Left_Opnd =>
5027 Build_Attribute_Reference
5028 (Duplicate_Subexpr_No_Checks (Obj),
5029 Name_Last, J),
5030 Right_Opnd =>
5031 Build_Attribute_Reference
5032 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
5033 end loop;
5034
5035 if Is_Acc then
5036 Cond :=
5037 Make_Or_Else (Loc,
5038 Left_Opnd =>
5039 Make_Op_Eq (Loc,
5040 Left_Opnd => Obj,
5041 Right_Opnd => Make_Null (Loc)),
5042 Right_Opnd => Cond);
5043 end if;
5044
5045 Rewrite (N, Cond);
5046 Analyze_And_Resolve (N, Restyp);
5047 end Check_Subscripts;
5048
5049 -- These are the cases where constraint checks may be required,
5050 -- e.g. records with possible discriminants
5051
5052 else
5053 -- Expand the test into a series of discriminant comparisons.
5054 -- The expression that is built is the negation of the one that
5055 -- is used for checking discriminant constraints.
5056
5057 Obj := Relocate_Node (Left_Opnd (N));
5058
5059 if Has_Discriminants (Typ) then
5060 Cond := Make_Op_Not (Loc,
5061 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
5062
5063 if Is_Acc then
5064 Cond := Make_Or_Else (Loc,
5065 Left_Opnd =>
5066 Make_Op_Eq (Loc,
5067 Left_Opnd => Obj,
5068 Right_Opnd => Make_Null (Loc)),
5069 Right_Opnd => Cond);
5070 end if;
5071
5072 else
5073 Cond := New_Occurrence_Of (Standard_True, Loc);
5074 end if;
5075
5076 Rewrite (N, Cond);
5077 Analyze_And_Resolve (N, Restyp);
5078 end if;
5079
5080 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
5081 -- expression of an anonymous access type. This can involve an
5082 -- accessibility test and a tagged type membership test in the
5083 -- case of tagged designated types.
5084
5085 if Ada_Version >= Ada_2012
5086 and then Is_Acc
5087 and then Ekind (Ltyp) = E_Anonymous_Access_Type
5088 then
5089 declare
5090 Expr_Entity : Entity_Id := Empty;
5091 New_N : Node_Id;
5092 Param_Level : Node_Id;
5093 Type_Level : Node_Id;
5094
5095 begin
5096 if Is_Entity_Name (Lop) then
5097 Expr_Entity := Param_Entity (Lop);
5098
5099 if not Present (Expr_Entity) then
5100 Expr_Entity := Entity (Lop);
5101 end if;
5102 end if;
5103
5104 -- If a conversion of the anonymous access value to the
5105 -- tested type would be illegal, then the result is False.
5106
5107 if not Valid_Conversion
5108 (Lop, Rtyp, Lop, Report_Errs => False)
5109 then
5110 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
5111 Analyze_And_Resolve (N, Restyp);
5112
5113 -- Apply an accessibility check if the access object has an
5114 -- associated access level and when the level of the type is
5115 -- less deep than the level of the access parameter. This
5116 -- only occur for access parameters and stand-alone objects
5117 -- of an anonymous access type.
5118
5119 else
5120 if Present (Expr_Entity)
5121 and then
5122 Present
5123 (Effective_Extra_Accessibility (Expr_Entity))
5124 and then UI_Gt (Object_Access_Level (Lop),
5125 Type_Access_Level (Rtyp))
5126 then
5127 Param_Level :=
5128 New_Occurrence_Of
5129 (Effective_Extra_Accessibility (Expr_Entity), Loc);
5130
5131 Type_Level :=
5132 Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
5133
5134 -- Return True only if the accessibility level of the
5135 -- expression entity is not deeper than the level of
5136 -- the tested access type.
5137
5138 Rewrite (N,
5139 Make_And_Then (Loc,
5140 Left_Opnd => Relocate_Node (N),
5141 Right_Opnd => Make_Op_Le (Loc,
5142 Left_Opnd => Param_Level,
5143 Right_Opnd => Type_Level)));
5144
5145 Analyze_And_Resolve (N);
5146 end if;
5147
5148 -- If the designated type is tagged, do tagged membership
5149 -- operation.
5150
5151 -- *** NOTE: we have to check not null before doing the
5152 -- tagged membership test (but maybe that can be done
5153 -- inside Tagged_Membership?).
5154
5155 if Is_Tagged_Type (Typ) then
5156 Rewrite (N,
5157 Make_And_Then (Loc,
5158 Left_Opnd => Relocate_Node (N),
5159 Right_Opnd =>
5160 Make_Op_Ne (Loc,
5161 Left_Opnd => Obj,
5162 Right_Opnd => Make_Null (Loc))));
5163
5164 -- No expansion will be performed when VM_Target, as
5165 -- the VM back-ends will handle the membership tests
5166 -- directly (tags are not explicitly represented in
5167 -- Java objects, so the normal tagged membership
5168 -- expansion is not what we want).
5169
5170 if Tagged_Type_Expansion then
5171
5172 -- Note that we have to pass Original_Node, because
5173 -- the membership test might already have been
5174 -- rewritten by earlier parts of membership test.
5175
5176 Tagged_Membership
5177 (Original_Node (N), SCIL_Node, New_N);
5178
5179 -- Update decoration of relocated node referenced
5180 -- by the SCIL node.
5181
5182 if Generate_SCIL and then Present (SCIL_Node) then
5183 Set_SCIL_Node (New_N, SCIL_Node);
5184 end if;
5185
5186 Rewrite (N,
5187 Make_And_Then (Loc,
5188 Left_Opnd => Relocate_Node (N),
5189 Right_Opnd => New_N));
5190
5191 Analyze_And_Resolve (N, Restyp);
5192 end if;
5193 end if;
5194 end if;
5195 end;
5196 end if;
5197 end;
5198 end if;
5199
5200 -- At this point, we have done the processing required for the basic
5201 -- membership test, but not yet dealt with the predicate.
5202
5203 <<Leave>>
5204
5205 -- If a predicate is present, then we do the predicate test, but we
5206 -- most certainly want to omit this if we are within the predicate
5207 -- function itself, since otherwise we have an infinite recursion!
5208
5209 declare
5210 PFunc : constant Entity_Id := Predicate_Function (Rtyp);
5211
5212 begin
5213 if Present (PFunc)
5214 and then Current_Scope /= PFunc
5215 then
5216 Rewrite (N,
5217 Make_And_Then (Loc,
5218 Left_Opnd => Relocate_Node (N),
5219 Right_Opnd => Make_Predicate_Call (Rtyp, Lop)));
5220
5221 -- Analyze new expression, mark left operand as analyzed to
5222 -- avoid infinite recursion adding predicate calls.
5223
5224 Set_Analyzed (Left_Opnd (N));
5225 Analyze_And_Resolve (N, Standard_Boolean);
5226
5227 -- All done, skip attempt at compile time determination of result
5228
5229 return;
5230 end if;
5231 end;
5232 end Expand_N_In;
5233
5234 --------------------------------
5235 -- Expand_N_Indexed_Component --
5236 --------------------------------
5237
5238 procedure Expand_N_Indexed_Component (N : Node_Id) is
5239 Loc : constant Source_Ptr := Sloc (N);
5240 Typ : constant Entity_Id := Etype (N);
5241 P : constant Node_Id := Prefix (N);
5242 T : constant Entity_Id := Etype (P);
5243
5244 begin
5245 -- A special optimization, if we have an indexed component that is
5246 -- selecting from a slice, then we can eliminate the slice, since, for
5247 -- example, x (i .. j)(k) is identical to x(k). The only difference is
5248 -- the range check required by the slice. The range check for the slice
5249 -- itself has already been generated. The range check for the
5250 -- subscripting operation is ensured by converting the subject to
5251 -- the subtype of the slice.
5252
5253 -- This optimization not only generates better code, avoiding slice
5254 -- messing especially in the packed case, but more importantly bypasses
5255 -- some problems in handling this peculiar case, for example, the issue
5256 -- of dealing specially with object renamings.
5257
5258 if Nkind (P) = N_Slice then
5259 Rewrite (N,
5260 Make_Indexed_Component (Loc,
5261 Prefix => Prefix (P),
5262 Expressions => New_List (
5263 Convert_To
5264 (Etype (First_Index (Etype (P))),
5265 First (Expressions (N))))));
5266 Analyze_And_Resolve (N, Typ);
5267 return;
5268 end if;
5269
5270 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
5271 -- function, then additional actuals must be passed.
5272
5273 if Ada_Version >= Ada_2005
5274 and then Is_Build_In_Place_Function_Call (P)
5275 then
5276 Make_Build_In_Place_Call_In_Anonymous_Context (P);
5277 end if;
5278
5279 -- If the prefix is an access type, then we unconditionally rewrite if
5280 -- as an explicit dereference. This simplifies processing for several
5281 -- cases, including packed array cases and certain cases in which checks
5282 -- must be generated. We used to try to do this only when it was
5283 -- necessary, but it cleans up the code to do it all the time.
5284
5285 if Is_Access_Type (T) then
5286 Insert_Explicit_Dereference (P);
5287 Analyze_And_Resolve (P, Designated_Type (T));
5288 end if;
5289
5290 -- Generate index and validity checks
5291
5292 Generate_Index_Checks (N);
5293
5294 if Validity_Checks_On and then Validity_Check_Subscripts then
5295 Apply_Subscript_Validity_Checks (N);
5296 end if;
5297
5298 -- All done for the non-packed case
5299
5300 if not Is_Packed (Etype (Prefix (N))) then
5301 return;
5302 end if;
5303
5304 -- For packed arrays that are not bit-packed (i.e. the case of an array
5305 -- with one or more index types with a non-contiguous enumeration type),
5306 -- we can always use the normal packed element get circuit.
5307
5308 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
5309 Expand_Packed_Element_Reference (N);
5310 return;
5311 end if;
5312
5313 -- For a reference to a component of a bit packed array, we have to
5314 -- convert it to a reference to the corresponding Packed_Array_Type.
5315 -- We only want to do this for simple references, and not for:
5316
5317 -- Left side of assignment, or prefix of left side of assignment, or
5318 -- prefix of the prefix, to handle packed arrays of packed arrays,
5319 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
5320
5321 -- Renaming objects in renaming associations
5322 -- This case is handled when a use of the renamed variable occurs
5323
5324 -- Actual parameters for a procedure call
5325 -- This case is handled in Exp_Ch6.Expand_Actuals
5326
5327 -- The second expression in a 'Read attribute reference
5328
5329 -- The prefix of an address or bit or size attribute reference
5330
5331 -- The following circuit detects these exceptions
5332
5333 declare
5334 Child : Node_Id := N;
5335 Parnt : Node_Id := Parent (N);
5336
5337 begin
5338 loop
5339 if Nkind (Parnt) = N_Unchecked_Expression then
5340 null;
5341
5342 elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
5343 N_Procedure_Call_Statement)
5344 or else (Nkind (Parnt) = N_Parameter_Association
5345 and then
5346 Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
5347 then
5348 return;
5349
5350 elsif Nkind (Parnt) = N_Attribute_Reference
5351 and then (Attribute_Name (Parnt) = Name_Address
5352 or else
5353 Attribute_Name (Parnt) = Name_Bit
5354 or else
5355 Attribute_Name (Parnt) = Name_Size)
5356 and then Prefix (Parnt) = Child
5357 then
5358 return;
5359
5360 elsif Nkind (Parnt) = N_Assignment_Statement
5361 and then Name (Parnt) = Child
5362 then
5363 return;
5364
5365 -- If the expression is an index of an indexed component, it must
5366 -- be expanded regardless of context.
5367
5368 elsif Nkind (Parnt) = N_Indexed_Component
5369 and then Child /= Prefix (Parnt)
5370 then
5371 Expand_Packed_Element_Reference (N);
5372 return;
5373
5374 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
5375 and then Name (Parent (Parnt)) = Parnt
5376 then
5377 return;
5378
5379 elsif Nkind (Parnt) = N_Attribute_Reference
5380 and then Attribute_Name (Parnt) = Name_Read
5381 and then Next (First (Expressions (Parnt))) = Child
5382 then
5383 return;
5384
5385 elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
5386 and then Prefix (Parnt) = Child
5387 then
5388 null;
5389
5390 else
5391 Expand_Packed_Element_Reference (N);
5392 return;
5393 end if;
5394
5395 -- Keep looking up tree for unchecked expression, or if we are the
5396 -- prefix of a possible assignment left side.
5397
5398 Child := Parnt;
5399 Parnt := Parent (Child);
5400 end loop;
5401 end;
5402 end Expand_N_Indexed_Component;
5403
5404 ---------------------
5405 -- Expand_N_Not_In --
5406 ---------------------
5407
5408 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
5409 -- can be done. This avoids needing to duplicate this expansion code.
5410
5411 procedure Expand_N_Not_In (N : Node_Id) is
5412 Loc : constant Source_Ptr := Sloc (N);
5413 Typ : constant Entity_Id := Etype (N);
5414 Cfs : constant Boolean := Comes_From_Source (N);
5415
5416 begin
5417 Rewrite (N,
5418 Make_Op_Not (Loc,
5419 Right_Opnd =>
5420 Make_In (Loc,
5421 Left_Opnd => Left_Opnd (N),
5422 Right_Opnd => Right_Opnd (N))));
5423
5424 -- If this is a set membership, preserve list of alternatives
5425
5426 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
5427
5428 -- We want this to appear as coming from source if original does (see
5429 -- transformations in Expand_N_In).
5430
5431 Set_Comes_From_Source (N, Cfs);
5432 Set_Comes_From_Source (Right_Opnd (N), Cfs);
5433
5434 -- Now analyze transformed node
5435
5436 Analyze_And_Resolve (N, Typ);
5437 end Expand_N_Not_In;
5438
5439 -------------------
5440 -- Expand_N_Null --
5441 -------------------
5442
5443 -- The only replacement required is for the case of a null of a type that
5444 -- is an access to protected subprogram, or a subtype thereof. We represent
5445 -- such access values as a record, and so we must replace the occurrence of
5446 -- null by the equivalent record (with a null address and a null pointer in
5447 -- it), so that the backend creates the proper value.
5448
5449 procedure Expand_N_Null (N : Node_Id) is
5450 Loc : constant Source_Ptr := Sloc (N);
5451 Typ : constant Entity_Id := Base_Type (Etype (N));
5452 Agg : Node_Id;
5453
5454 begin
5455 if Is_Access_Protected_Subprogram_Type (Typ) then
5456 Agg :=
5457 Make_Aggregate (Loc,
5458 Expressions => New_List (
5459 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
5460 Make_Null (Loc)));
5461
5462 Rewrite (N, Agg);
5463 Analyze_And_Resolve (N, Equivalent_Type (Typ));
5464
5465 -- For subsequent semantic analysis, the node must retain its type.
5466 -- Gigi in any case replaces this type by the corresponding record
5467 -- type before processing the node.
5468
5469 Set_Etype (N, Typ);
5470 end if;
5471
5472 exception
5473 when RE_Not_Available =>
5474 return;
5475 end Expand_N_Null;
5476
5477 ---------------------
5478 -- Expand_N_Op_Abs --
5479 ---------------------
5480
5481 procedure Expand_N_Op_Abs (N : Node_Id) is
5482 Loc : constant Source_Ptr := Sloc (N);
5483 Expr : constant Node_Id := Right_Opnd (N);
5484
5485 begin
5486 Unary_Op_Validity_Checks (N);
5487
5488 -- Deal with software overflow checking
5489
5490 if not Backend_Overflow_Checks_On_Target
5491 and then Is_Signed_Integer_Type (Etype (N))
5492 and then Do_Overflow_Check (N)
5493 then
5494 -- The only case to worry about is when the argument is equal to the
5495 -- largest negative number, so what we do is to insert the check:
5496
5497 -- [constraint_error when Expr = typ'Base'First]
5498
5499 -- with the usual Duplicate_Subexpr use coding for expr
5500
5501 Insert_Action (N,
5502 Make_Raise_Constraint_Error (Loc,
5503 Condition =>
5504 Make_Op_Eq (Loc,
5505 Left_Opnd => Duplicate_Subexpr (Expr),
5506 Right_Opnd =>
5507 Make_Attribute_Reference (Loc,
5508 Prefix =>
5509 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
5510 Attribute_Name => Name_First)),
5511 Reason => CE_Overflow_Check_Failed));
5512 end if;
5513
5514 -- Vax floating-point types case
5515
5516 if Vax_Float (Etype (N)) then
5517 Expand_Vax_Arith (N);
5518 end if;
5519 end Expand_N_Op_Abs;
5520
5521 ---------------------
5522 -- Expand_N_Op_Add --
5523 ---------------------
5524
5525 procedure Expand_N_Op_Add (N : Node_Id) is
5526 Typ : constant Entity_Id := Etype (N);
5527
5528 begin
5529 Binary_Op_Validity_Checks (N);
5530
5531 -- N + 0 = 0 + N = N for integer types
5532
5533 if Is_Integer_Type (Typ) then
5534 if Compile_Time_Known_Value (Right_Opnd (N))
5535 and then Expr_Value (Right_Opnd (N)) = Uint_0
5536 then
5537 Rewrite (N, Left_Opnd (N));
5538 return;
5539
5540 elsif Compile_Time_Known_Value (Left_Opnd (N))
5541 and then Expr_Value (Left_Opnd (N)) = Uint_0
5542 then
5543 Rewrite (N, Right_Opnd (N));
5544 return;
5545 end if;
5546 end if;
5547
5548 -- Arithmetic overflow checks for signed integer/fixed point types
5549
5550 if Is_Signed_Integer_Type (Typ)
5551 or else Is_Fixed_Point_Type (Typ)
5552 then
5553 Apply_Arithmetic_Overflow_Check (N);
5554 return;
5555
5556 -- Vax floating-point types case
5557
5558 elsif Vax_Float (Typ) then
5559 Expand_Vax_Arith (N);
5560 end if;
5561 end Expand_N_Op_Add;
5562
5563 ---------------------
5564 -- Expand_N_Op_And --
5565 ---------------------
5566
5567 procedure Expand_N_Op_And (N : Node_Id) is
5568 Typ : constant Entity_Id := Etype (N);
5569
5570 begin
5571 Binary_Op_Validity_Checks (N);
5572
5573 if Is_Array_Type (Etype (N)) then
5574 Expand_Boolean_Operator (N);
5575
5576 elsif Is_Boolean_Type (Etype (N)) then
5577
5578 -- Replace AND by AND THEN if Short_Circuit_And_Or active and the
5579 -- type is standard Boolean (do not mess with AND that uses a non-
5580 -- standard Boolean type, because something strange is going on).
5581
5582 if Short_Circuit_And_Or and then Typ = Standard_Boolean then
5583 Rewrite (N,
5584 Make_And_Then (Sloc (N),
5585 Left_Opnd => Relocate_Node (Left_Opnd (N)),
5586 Right_Opnd => Relocate_Node (Right_Opnd (N))));
5587 Analyze_And_Resolve (N, Typ);
5588
5589 -- Otherwise, adjust conditions
5590
5591 else
5592 Adjust_Condition (Left_Opnd (N));
5593 Adjust_Condition (Right_Opnd (N));
5594 Set_Etype (N, Standard_Boolean);
5595 Adjust_Result_Type (N, Typ);
5596 end if;
5597
5598 elsif Is_Intrinsic_Subprogram (Entity (N)) then
5599 Expand_Intrinsic_Call (N, Entity (N));
5600
5601 end if;
5602 end Expand_N_Op_And;
5603
5604 ------------------------
5605 -- Expand_N_Op_Concat --
5606 ------------------------
5607
5608 procedure Expand_N_Op_Concat (N : Node_Id) is
5609 Opnds : List_Id;
5610 -- List of operands to be concatenated
5611
5612 Cnode : Node_Id;
5613 -- Node which is to be replaced by the result of concatenating the nodes
5614 -- in the list Opnds.
5615
5616 begin
5617 -- Ensure validity of both operands
5618
5619 Binary_Op_Validity_Checks (N);
5620
5621 -- If we are the left operand of a concatenation higher up the tree,
5622 -- then do nothing for now, since we want to deal with a series of
5623 -- concatenations as a unit.
5624
5625 if Nkind (Parent (N)) = N_Op_Concat
5626 and then N = Left_Opnd (Parent (N))
5627 then
5628 return;
5629 end if;
5630
5631 -- We get here with a concatenation whose left operand may be a
5632 -- concatenation itself with a consistent type. We need to process
5633 -- these concatenation operands from left to right, which means
5634 -- from the deepest node in the tree to the highest node.
5635
5636 Cnode := N;
5637 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
5638 Cnode := Left_Opnd (Cnode);
5639 end loop;
5640
5641 -- Now Cnode is the deepest concatenation, and its parents are the
5642 -- concatenation nodes above, so now we process bottom up, doing the
5643 -- operations. We gather a string that is as long as possible up to five
5644 -- operands.
5645
5646 -- The outer loop runs more than once if more than one concatenation
5647 -- type is involved.
5648
5649 Outer : loop
5650 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
5651 Set_Parent (Opnds, N);
5652
5653 -- The inner loop gathers concatenation operands
5654
5655 Inner : while Cnode /= N
5656 and then Base_Type (Etype (Cnode)) =
5657 Base_Type (Etype (Parent (Cnode)))
5658 loop
5659 Cnode := Parent (Cnode);
5660 Append (Right_Opnd (Cnode), Opnds);
5661 end loop Inner;
5662
5663 Expand_Concatenate (Cnode, Opnds);
5664
5665 exit Outer when Cnode = N;
5666 Cnode := Parent (Cnode);
5667 end loop Outer;
5668 end Expand_N_Op_Concat;
5669
5670 ------------------------
5671 -- Expand_N_Op_Divide --
5672 ------------------------
5673
5674 procedure Expand_N_Op_Divide (N : Node_Id) is
5675 Loc : constant Source_Ptr := Sloc (N);
5676 Lopnd : constant Node_Id := Left_Opnd (N);
5677 Ropnd : constant Node_Id := Right_Opnd (N);
5678 Ltyp : constant Entity_Id := Etype (Lopnd);
5679 Rtyp : constant Entity_Id := Etype (Ropnd);
5680 Typ : Entity_Id := Etype (N);
5681 Rknow : constant Boolean := Is_Integer_Type (Typ)
5682 and then
5683 Compile_Time_Known_Value (Ropnd);
5684 Rval : Uint;
5685
5686 begin
5687 Binary_Op_Validity_Checks (N);
5688
5689 if Rknow then
5690 Rval := Expr_Value (Ropnd);
5691 end if;
5692
5693 -- N / 1 = N for integer types
5694
5695 if Rknow and then Rval = Uint_1 then
5696 Rewrite (N, Lopnd);
5697 return;
5698 end if;
5699
5700 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
5701 -- Is_Power_Of_2_For_Shift is set means that we know that our left
5702 -- operand is an unsigned integer, as required for this to work.
5703
5704 if Nkind (Ropnd) = N_Op_Expon
5705 and then Is_Power_Of_2_For_Shift (Ropnd)
5706
5707 -- We cannot do this transformation in configurable run time mode if we
5708 -- have 64-bit integers and long shifts are not available.
5709
5710 and then
5711 (Esize (Ltyp) <= 32
5712 or else Support_Long_Shifts_On_Target)
5713 then
5714 Rewrite (N,
5715 Make_Op_Shift_Right (Loc,
5716 Left_Opnd => Lopnd,
5717 Right_Opnd =>
5718 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
5719 Analyze_And_Resolve (N, Typ);
5720 return;
5721 end if;
5722
5723 -- Do required fixup of universal fixed operation
5724
5725 if Typ = Universal_Fixed then
5726 Fixup_Universal_Fixed_Operation (N);
5727 Typ := Etype (N);
5728 end if;
5729
5730 -- Divisions with fixed-point results
5731
5732 if Is_Fixed_Point_Type (Typ) then
5733
5734 -- No special processing if Treat_Fixed_As_Integer is set, since
5735 -- from a semantic point of view such operations are simply integer
5736 -- operations and will be treated that way.
5737
5738 if not Treat_Fixed_As_Integer (N) then
5739 if Is_Integer_Type (Rtyp) then
5740 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
5741 else
5742 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
5743 end if;
5744 end if;
5745
5746 -- Other cases of division of fixed-point operands. Again we exclude the
5747 -- case where Treat_Fixed_As_Integer is set.
5748
5749 elsif (Is_Fixed_Point_Type (Ltyp) or else
5750 Is_Fixed_Point_Type (Rtyp))
5751 and then not Treat_Fixed_As_Integer (N)
5752 then
5753 if Is_Integer_Type (Typ) then
5754 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
5755 else
5756 pragma Assert (Is_Floating_Point_Type (Typ));
5757 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
5758 end if;
5759
5760 -- Mixed-mode operations can appear in a non-static universal context,
5761 -- in which case the integer argument must be converted explicitly.
5762
5763 elsif Typ = Universal_Real
5764 and then Is_Integer_Type (Rtyp)
5765 then
5766 Rewrite (Ropnd,
5767 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
5768
5769 Analyze_And_Resolve (Ropnd, Universal_Real);
5770
5771 elsif Typ = Universal_Real
5772 and then Is_Integer_Type (Ltyp)
5773 then
5774 Rewrite (Lopnd,
5775 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
5776
5777 Analyze_And_Resolve (Lopnd, Universal_Real);
5778
5779 -- Non-fixed point cases, do integer zero divide and overflow checks
5780
5781 elsif Is_Integer_Type (Typ) then
5782 Apply_Divide_Check (N);
5783
5784 -- Deal with Vax_Float
5785
5786 elsif Vax_Float (Typ) then
5787 Expand_Vax_Arith (N);
5788 return;
5789 end if;
5790 end Expand_N_Op_Divide;
5791
5792 --------------------
5793 -- Expand_N_Op_Eq --
5794 --------------------
5795
5796 procedure Expand_N_Op_Eq (N : Node_Id) is
5797 Loc : constant Source_Ptr := Sloc (N);
5798 Typ : constant Entity_Id := Etype (N);
5799 Lhs : constant Node_Id := Left_Opnd (N);
5800 Rhs : constant Node_Id := Right_Opnd (N);
5801 Bodies : constant List_Id := New_List;
5802 A_Typ : constant Entity_Id := Etype (Lhs);
5803
5804 Typl : Entity_Id := A_Typ;
5805 Op_Name : Entity_Id;
5806 Prim : Elmt_Id;
5807
5808 procedure Build_Equality_Call (Eq : Entity_Id);
5809 -- If a constructed equality exists for the type or for its parent,
5810 -- build and analyze call, adding conversions if the operation is
5811 -- inherited.
5812
5813 function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
5814 -- Determines whether a type has a subcomponent of an unconstrained
5815 -- Unchecked_Union subtype. Typ is a record type.
5816
5817 -------------------------
5818 -- Build_Equality_Call --
5819 -------------------------
5820
5821 procedure Build_Equality_Call (Eq : Entity_Id) is
5822 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
5823 L_Exp : Node_Id := Relocate_Node (Lhs);
5824 R_Exp : Node_Id := Relocate_Node (Rhs);
5825
5826 begin
5827 if Base_Type (Op_Type) /= Base_Type (A_Typ)
5828 and then not Is_Class_Wide_Type (A_Typ)
5829 then
5830 L_Exp := OK_Convert_To (Op_Type, L_Exp);
5831 R_Exp := OK_Convert_To (Op_Type, R_Exp);
5832 end if;
5833
5834 -- If we have an Unchecked_Union, we need to add the inferred
5835 -- discriminant values as actuals in the function call. At this
5836 -- point, the expansion has determined that both operands have
5837 -- inferable discriminants.
5838
5839 if Is_Unchecked_Union (Op_Type) then
5840 declare
5841 Lhs_Type : constant Node_Id := Etype (L_Exp);
5842 Rhs_Type : constant Node_Id := Etype (R_Exp);
5843 Lhs_Discr_Val : Node_Id;
5844 Rhs_Discr_Val : Node_Id;
5845
5846 begin
5847 -- Per-object constrained selected components require special
5848 -- attention. If the enclosing scope of the component is an
5849 -- Unchecked_Union, we cannot reference its discriminants
5850 -- directly. This is why we use the two extra parameters of
5851 -- the equality function of the enclosing Unchecked_Union.
5852
5853 -- type UU_Type (Discr : Integer := 0) is
5854 -- . . .
5855 -- end record;
5856 -- pragma Unchecked_Union (UU_Type);
5857
5858 -- 1. Unchecked_Union enclosing record:
5859
5860 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
5861 -- . . .
5862 -- Comp : UU_Type (Discr);
5863 -- . . .
5864 -- end Enclosing_UU_Type;
5865 -- pragma Unchecked_Union (Enclosing_UU_Type);
5866
5867 -- Obj1 : Enclosing_UU_Type;
5868 -- Obj2 : Enclosing_UU_Type (1);
5869
5870 -- [. . .] Obj1 = Obj2 [. . .]
5871
5872 -- Generated code:
5873
5874 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
5875
5876 -- A and B are the formal parameters of the equality function
5877 -- of Enclosing_UU_Type. The function always has two extra
5878 -- formals to capture the inferred discriminant values.
5879
5880 -- 2. Non-Unchecked_Union enclosing record:
5881
5882 -- type
5883 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
5884 -- is record
5885 -- . . .
5886 -- Comp : UU_Type (Discr);
5887 -- . . .
5888 -- end Enclosing_Non_UU_Type;
5889
5890 -- Obj1 : Enclosing_Non_UU_Type;
5891 -- Obj2 : Enclosing_Non_UU_Type (1);
5892
5893 -- ... Obj1 = Obj2 ...
5894
5895 -- Generated code:
5896
5897 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
5898 -- obj1.discr, obj2.discr)) then
5899
5900 -- In this case we can directly reference the discriminants of
5901 -- the enclosing record.
5902
5903 -- Lhs of equality
5904
5905 if Nkind (Lhs) = N_Selected_Component
5906 and then Has_Per_Object_Constraint
5907 (Entity (Selector_Name (Lhs)))
5908 then
5909 -- Enclosing record is an Unchecked_Union, use formal A
5910
5911 if Is_Unchecked_Union
5912 (Scope (Entity (Selector_Name (Lhs))))
5913 then
5914 Lhs_Discr_Val := Make_Identifier (Loc, Name_A);
5915
5916 -- Enclosing record is of a non-Unchecked_Union type, it is
5917 -- possible to reference the discriminant.
5918
5919 else
5920 Lhs_Discr_Val :=
5921 Make_Selected_Component (Loc,
5922 Prefix => Prefix (Lhs),
5923 Selector_Name =>
5924 New_Copy
5925 (Get_Discriminant_Value
5926 (First_Discriminant (Lhs_Type),
5927 Lhs_Type,
5928 Stored_Constraint (Lhs_Type))));
5929 end if;
5930
5931 -- Comment needed here ???
5932
5933 else
5934 -- Infer the discriminant value
5935
5936 Lhs_Discr_Val :=
5937 New_Copy
5938 (Get_Discriminant_Value
5939 (First_Discriminant (Lhs_Type),
5940 Lhs_Type,
5941 Stored_Constraint (Lhs_Type)));
5942 end if;
5943
5944 -- Rhs of equality
5945
5946 if Nkind (Rhs) = N_Selected_Component
5947 and then Has_Per_Object_Constraint
5948 (Entity (Selector_Name (Rhs)))
5949 then
5950 if Is_Unchecked_Union
5951 (Scope (Entity (Selector_Name (Rhs))))
5952 then
5953 Rhs_Discr_Val := Make_Identifier (Loc, Name_B);
5954
5955 else
5956 Rhs_Discr_Val :=
5957 Make_Selected_Component (Loc,
5958 Prefix => Prefix (Rhs),
5959 Selector_Name =>
5960 New_Copy (Get_Discriminant_Value (
5961 First_Discriminant (Rhs_Type),
5962 Rhs_Type,
5963 Stored_Constraint (Rhs_Type))));
5964
5965 end if;
5966 else
5967 Rhs_Discr_Val :=
5968 New_Copy (Get_Discriminant_Value (
5969 First_Discriminant (Rhs_Type),
5970 Rhs_Type,
5971 Stored_Constraint (Rhs_Type)));
5972
5973 end if;
5974
5975 Rewrite (N,
5976 Make_Function_Call (Loc,
5977 Name => New_Reference_To (Eq, Loc),
5978 Parameter_Associations => New_List (
5979 L_Exp,
5980 R_Exp,
5981 Lhs_Discr_Val,
5982 Rhs_Discr_Val)));
5983 end;
5984
5985 -- Normal case, not an unchecked union
5986
5987 else
5988 Rewrite (N,
5989 Make_Function_Call (Loc,
5990 Name => New_Reference_To (Eq, Loc),
5991 Parameter_Associations => New_List (L_Exp, R_Exp)));
5992 end if;
5993
5994 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
5995 end Build_Equality_Call;
5996
5997 ------------------------------------
5998 -- Has_Unconstrained_UU_Component --
5999 ------------------------------------
6000
6001 function Has_Unconstrained_UU_Component
6002 (Typ : Node_Id) return Boolean
6003 is
6004 Tdef : constant Node_Id :=
6005 Type_Definition (Declaration_Node (Base_Type (Typ)));
6006 Clist : Node_Id;
6007 Vpart : Node_Id;
6008
6009 function Component_Is_Unconstrained_UU
6010 (Comp : Node_Id) return Boolean;
6011 -- Determines whether the subtype of the component is an
6012 -- unconstrained Unchecked_Union.
6013
6014 function Variant_Is_Unconstrained_UU
6015 (Variant : Node_Id) return Boolean;
6016 -- Determines whether a component of the variant has an unconstrained
6017 -- Unchecked_Union subtype.
6018
6019 -----------------------------------
6020 -- Component_Is_Unconstrained_UU --
6021 -----------------------------------
6022
6023 function Component_Is_Unconstrained_UU
6024 (Comp : Node_Id) return Boolean
6025 is
6026 begin
6027 if Nkind (Comp) /= N_Component_Declaration then
6028 return False;
6029 end if;
6030
6031 declare
6032 Sindic : constant Node_Id :=
6033 Subtype_Indication (Component_Definition (Comp));
6034
6035 begin
6036 -- Unconstrained nominal type. In the case of a constraint
6037 -- present, the node kind would have been N_Subtype_Indication.
6038
6039 if Nkind (Sindic) = N_Identifier then
6040 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
6041 end if;
6042
6043 return False;
6044 end;
6045 end Component_Is_Unconstrained_UU;
6046
6047 ---------------------------------
6048 -- Variant_Is_Unconstrained_UU --
6049 ---------------------------------
6050
6051 function Variant_Is_Unconstrained_UU
6052 (Variant : Node_Id) return Boolean
6053 is
6054 Clist : constant Node_Id := Component_List (Variant);
6055
6056 begin
6057 if Is_Empty_List (Component_Items (Clist)) then
6058 return False;
6059 end if;
6060
6061 -- We only need to test one component
6062
6063 declare
6064 Comp : Node_Id := First (Component_Items (Clist));
6065
6066 begin
6067 while Present (Comp) loop
6068 if Component_Is_Unconstrained_UU (Comp) then
6069 return True;
6070 end if;
6071
6072 Next (Comp);
6073 end loop;
6074 end;
6075
6076 -- None of the components withing the variant were of
6077 -- unconstrained Unchecked_Union type.
6078
6079 return False;
6080 end Variant_Is_Unconstrained_UU;
6081
6082 -- Start of processing for Has_Unconstrained_UU_Component
6083
6084 begin
6085 if Null_Present (Tdef) then
6086 return False;
6087 end if;
6088
6089 Clist := Component_List (Tdef);
6090 Vpart := Variant_Part (Clist);
6091
6092 -- Inspect available components
6093
6094 if Present (Component_Items (Clist)) then
6095 declare
6096 Comp : Node_Id := First (Component_Items (Clist));
6097
6098 begin
6099 while Present (Comp) loop
6100
6101 -- One component is sufficient
6102
6103 if Component_Is_Unconstrained_UU (Comp) then
6104 return True;
6105 end if;
6106
6107 Next (Comp);
6108 end loop;
6109 end;
6110 end if;
6111
6112 -- Inspect available components withing variants
6113
6114 if Present (Vpart) then
6115 declare
6116 Variant : Node_Id := First (Variants (Vpart));
6117
6118 begin
6119 while Present (Variant) loop
6120
6121 -- One component within a variant is sufficient
6122
6123 if Variant_Is_Unconstrained_UU (Variant) then
6124 return True;
6125 end if;
6126
6127 Next (Variant);
6128 end loop;
6129 end;
6130 end if;
6131
6132 -- Neither the available components, nor the components inside the
6133 -- variant parts were of an unconstrained Unchecked_Union subtype.
6134
6135 return False;
6136 end Has_Unconstrained_UU_Component;
6137
6138 -- Start of processing for Expand_N_Op_Eq
6139
6140 begin
6141 Binary_Op_Validity_Checks (N);
6142
6143 if Ekind (Typl) = E_Private_Type then
6144 Typl := Underlying_Type (Typl);
6145 elsif Ekind (Typl) = E_Private_Subtype then
6146 Typl := Underlying_Type (Base_Type (Typl));
6147 else
6148 null;
6149 end if;
6150
6151 -- It may happen in error situations that the underlying type is not
6152 -- set. The error will be detected later, here we just defend the
6153 -- expander code.
6154
6155 if No (Typl) then
6156 return;
6157 end if;
6158
6159 Typl := Base_Type (Typl);
6160
6161 -- Boolean types (requiring handling of non-standard case)
6162
6163 if Is_Boolean_Type (Typl) then
6164 Adjust_Condition (Left_Opnd (N));
6165 Adjust_Condition (Right_Opnd (N));
6166 Set_Etype (N, Standard_Boolean);
6167 Adjust_Result_Type (N, Typ);
6168
6169 -- Array types
6170
6171 elsif Is_Array_Type (Typl) then
6172
6173 -- If we are doing full validity checking, and it is possible for the
6174 -- array elements to be invalid then expand out array comparisons to
6175 -- make sure that we check the array elements.
6176
6177 if Validity_Check_Operands
6178 and then not Is_Known_Valid (Component_Type (Typl))
6179 then
6180 declare
6181 Save_Force_Validity_Checks : constant Boolean :=
6182 Force_Validity_Checks;
6183 begin
6184 Force_Validity_Checks := True;
6185 Rewrite (N,
6186 Expand_Array_Equality
6187 (N,
6188 Relocate_Node (Lhs),
6189 Relocate_Node (Rhs),
6190 Bodies,
6191 Typl));
6192 Insert_Actions (N, Bodies);
6193 Analyze_And_Resolve (N, Standard_Boolean);
6194 Force_Validity_Checks := Save_Force_Validity_Checks;
6195 end;
6196
6197 -- Packed case where both operands are known aligned
6198
6199 elsif Is_Bit_Packed_Array (Typl)
6200 and then not Is_Possibly_Unaligned_Object (Lhs)
6201 and then not Is_Possibly_Unaligned_Object (Rhs)
6202 then
6203 Expand_Packed_Eq (N);
6204
6205 -- Where the component type is elementary we can use a block bit
6206 -- comparison (if supported on the target) exception in the case
6207 -- of floating-point (negative zero issues require element by
6208 -- element comparison), and atomic types (where we must be sure
6209 -- to load elements independently) and possibly unaligned arrays.
6210
6211 elsif Is_Elementary_Type (Component_Type (Typl))
6212 and then not Is_Floating_Point_Type (Component_Type (Typl))
6213 and then not Is_Atomic (Component_Type (Typl))
6214 and then not Is_Possibly_Unaligned_Object (Lhs)
6215 and then not Is_Possibly_Unaligned_Object (Rhs)
6216 and then Support_Composite_Compare_On_Target
6217 then
6218 null;
6219
6220 -- For composite and floating-point cases, expand equality loop to
6221 -- make sure of using proper comparisons for tagged types, and
6222 -- correctly handling the floating-point case.
6223
6224 else
6225 Rewrite (N,
6226 Expand_Array_Equality
6227 (N,
6228 Relocate_Node (Lhs),
6229 Relocate_Node (Rhs),
6230 Bodies,
6231 Typl));
6232 Insert_Actions (N, Bodies, Suppress => All_Checks);
6233 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6234 end if;
6235
6236 -- Record Types
6237
6238 elsif Is_Record_Type (Typl) then
6239
6240 -- For tagged types, use the primitive "="
6241
6242 if Is_Tagged_Type (Typl) then
6243
6244 -- No need to do anything else compiling under restriction
6245 -- No_Dispatching_Calls. During the semantic analysis we
6246 -- already notified such violation.
6247
6248 if Restriction_Active (No_Dispatching_Calls) then
6249 return;
6250 end if;
6251
6252 -- If this is derived from an untagged private type completed with
6253 -- a tagged type, it does not have a full view, so we use the
6254 -- primitive operations of the private type. This check should no
6255 -- longer be necessary when these types get their full views???
6256
6257 if Is_Private_Type (A_Typ)
6258 and then not Is_Tagged_Type (A_Typ)
6259 and then Is_Derived_Type (A_Typ)
6260 and then No (Full_View (A_Typ))
6261 then
6262 -- Search for equality operation, checking that the operands
6263 -- have the same type. Note that we must find a matching entry,
6264 -- or something is very wrong!
6265
6266 Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
6267
6268 while Present (Prim) loop
6269 exit when Chars (Node (Prim)) = Name_Op_Eq
6270 and then Etype (First_Formal (Node (Prim))) =
6271 Etype (Next_Formal (First_Formal (Node (Prim))))
6272 and then
6273 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
6274
6275 Next_Elmt (Prim);
6276 end loop;
6277
6278 pragma Assert (Present (Prim));
6279 Op_Name := Node (Prim);
6280
6281 -- Find the type's predefined equality or an overriding
6282 -- user- defined equality. The reason for not simply calling
6283 -- Find_Prim_Op here is that there may be a user-defined
6284 -- overloaded equality op that precedes the equality that we want,
6285 -- so we have to explicitly search (e.g., there could be an
6286 -- equality with two different parameter types).
6287
6288 else
6289 if Is_Class_Wide_Type (Typl) then
6290 Typl := Root_Type (Typl);
6291 end if;
6292
6293 Prim := First_Elmt (Primitive_Operations (Typl));
6294 while Present (Prim) loop
6295 exit when Chars (Node (Prim)) = Name_Op_Eq
6296 and then Etype (First_Formal (Node (Prim))) =
6297 Etype (Next_Formal (First_Formal (Node (Prim))))
6298 and then
6299 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
6300
6301 Next_Elmt (Prim);
6302 end loop;
6303
6304 pragma Assert (Present (Prim));
6305 Op_Name := Node (Prim);
6306 end if;
6307
6308 Build_Equality_Call (Op_Name);
6309
6310 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
6311 -- predefined equality operator for a type which has a subcomponent
6312 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
6313
6314 elsif Has_Unconstrained_UU_Component (Typl) then
6315 Insert_Action (N,
6316 Make_Raise_Program_Error (Loc,
6317 Reason => PE_Unchecked_Union_Restriction));
6318
6319 -- Prevent Gigi from generating incorrect code by rewriting the
6320 -- equality as a standard False.
6321
6322 Rewrite (N,
6323 New_Occurrence_Of (Standard_False, Loc));
6324
6325 elsif Is_Unchecked_Union (Typl) then
6326
6327 -- If we can infer the discriminants of the operands, we make a
6328 -- call to the TSS equality function.
6329
6330 if Has_Inferable_Discriminants (Lhs)
6331 and then
6332 Has_Inferable_Discriminants (Rhs)
6333 then
6334 Build_Equality_Call
6335 (TSS (Root_Type (Typl), TSS_Composite_Equality));
6336
6337 else
6338 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
6339 -- the predefined equality operator for an Unchecked_Union type
6340 -- if either of the operands lack inferable discriminants.
6341
6342 Insert_Action (N,
6343 Make_Raise_Program_Error (Loc,
6344 Reason => PE_Unchecked_Union_Restriction));
6345
6346 -- Prevent Gigi from generating incorrect code by rewriting
6347 -- the equality as a standard False.
6348
6349 Rewrite (N,
6350 New_Occurrence_Of (Standard_False, Loc));
6351
6352 end if;
6353
6354 -- If a type support function is present (for complex cases), use it
6355
6356 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
6357 Build_Equality_Call
6358 (TSS (Root_Type (Typl), TSS_Composite_Equality));
6359
6360 -- Otherwise expand the component by component equality. Note that
6361 -- we never use block-bit comparisons for records, because of the
6362 -- problems with gaps. The backend will often be able to recombine
6363 -- the separate comparisons that we generate here.
6364
6365 else
6366 Remove_Side_Effects (Lhs);
6367 Remove_Side_Effects (Rhs);
6368 Rewrite (N,
6369 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
6370
6371 Insert_Actions (N, Bodies, Suppress => All_Checks);
6372 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6373 end if;
6374 end if;
6375
6376 -- Test if result is known at compile time
6377
6378 Rewrite_Comparison (N);
6379
6380 -- If we still have comparison for Vax_Float, process it
6381
6382 if Vax_Float (Typl) and then Nkind (N) in N_Op_Compare then
6383 Expand_Vax_Comparison (N);
6384 return;
6385 end if;
6386
6387 Optimize_Length_Comparison (N);
6388 end Expand_N_Op_Eq;
6389
6390 -----------------------
6391 -- Expand_N_Op_Expon --
6392 -----------------------
6393
6394 procedure Expand_N_Op_Expon (N : Node_Id) is
6395 Loc : constant Source_Ptr := Sloc (N);
6396 Typ : constant Entity_Id := Etype (N);
6397 Rtyp : constant Entity_Id := Root_Type (Typ);
6398 Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
6399 Bastyp : constant Node_Id := Etype (Base);
6400 Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
6401 Exptyp : constant Entity_Id := Etype (Exp);
6402 Ovflo : constant Boolean := Do_Overflow_Check (N);
6403 Expv : Uint;
6404 Xnode : Node_Id;
6405 Temp : Node_Id;
6406 Rent : RE_Id;
6407 Ent : Entity_Id;
6408 Etyp : Entity_Id;
6409
6410 begin
6411 Binary_Op_Validity_Checks (N);
6412
6413 -- CodePeer and GNATprove want to see the unexpanded N_Op_Expon node
6414
6415 if CodePeer_Mode or Alfa_Mode then
6416 return;
6417 end if;
6418
6419 -- If either operand is of a private type, then we have the use of an
6420 -- intrinsic operator, and we get rid of the privateness, by using root
6421 -- types of underlying types for the actual operation. Otherwise the
6422 -- private types will cause trouble if we expand multiplications or
6423 -- shifts etc. We also do this transformation if the result type is
6424 -- different from the base type.
6425
6426 if Is_Private_Type (Etype (Base))
6427 or else Is_Private_Type (Typ)
6428 or else Is_Private_Type (Exptyp)
6429 or else Rtyp /= Root_Type (Bastyp)
6430 then
6431 declare
6432 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
6433 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
6434
6435 begin
6436 Rewrite (N,
6437 Unchecked_Convert_To (Typ,
6438 Make_Op_Expon (Loc,
6439 Left_Opnd => Unchecked_Convert_To (Bt, Base),
6440 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
6441 Analyze_And_Resolve (N, Typ);
6442 return;
6443 end;
6444 end if;
6445
6446 -- Test for case of known right argument
6447
6448 if Compile_Time_Known_Value (Exp) then
6449 Expv := Expr_Value (Exp);
6450
6451 -- We only fold small non-negative exponents. You might think we
6452 -- could fold small negative exponents for the real case, but we
6453 -- can't because we are required to raise Constraint_Error for
6454 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
6455 -- See ACVC test C4A012B.
6456
6457 if Expv >= 0 and then Expv <= 4 then
6458
6459 -- X ** 0 = 1 (or 1.0)
6460
6461 if Expv = 0 then
6462
6463 -- Call Remove_Side_Effects to ensure that any side effects
6464 -- in the ignored left operand (in particular function calls
6465 -- to user defined functions) are properly executed.
6466
6467 Remove_Side_Effects (Base);
6468
6469 if Ekind (Typ) in Integer_Kind then
6470 Xnode := Make_Integer_Literal (Loc, Intval => 1);
6471 else
6472 Xnode := Make_Real_Literal (Loc, Ureal_1);
6473 end if;
6474
6475 -- X ** 1 = X
6476
6477 elsif Expv = 1 then
6478 Xnode := Base;
6479
6480 -- X ** 2 = X * X
6481
6482 elsif Expv = 2 then
6483 Xnode :=
6484 Make_Op_Multiply (Loc,
6485 Left_Opnd => Duplicate_Subexpr (Base),
6486 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
6487
6488 -- X ** 3 = X * X * X
6489
6490 elsif Expv = 3 then
6491 Xnode :=
6492 Make_Op_Multiply (Loc,
6493 Left_Opnd =>
6494 Make_Op_Multiply (Loc,
6495 Left_Opnd => Duplicate_Subexpr (Base),
6496 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
6497 Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
6498
6499 -- X ** 4 ->
6500 -- En : constant base'type := base * base;
6501 -- ...
6502 -- En * En
6503
6504 else -- Expv = 4
6505 Temp := Make_Temporary (Loc, 'E', Base);
6506
6507 Insert_Actions (N, New_List (
6508 Make_Object_Declaration (Loc,
6509 Defining_Identifier => Temp,
6510 Constant_Present => True,
6511 Object_Definition => New_Reference_To (Typ, Loc),
6512 Expression =>
6513 Make_Op_Multiply (Loc,
6514 Left_Opnd => Duplicate_Subexpr (Base),
6515 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)))));
6516
6517 Xnode :=
6518 Make_Op_Multiply (Loc,
6519 Left_Opnd => New_Reference_To (Temp, Loc),
6520 Right_Opnd => New_Reference_To (Temp, Loc));
6521 end if;
6522
6523 Rewrite (N, Xnode);
6524 Analyze_And_Resolve (N, Typ);
6525 return;
6526 end if;
6527 end if;
6528
6529 -- Case of (2 ** expression) appearing as an argument of an integer
6530 -- multiplication, or as the right argument of a division of a non-
6531 -- negative integer. In such cases we leave the node untouched, setting
6532 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
6533 -- of the higher level node converts it into a shift.
6534
6535 -- Another case is 2 ** N in any other context. We simply convert
6536 -- this to 1 * 2 ** N, and then the above transformation applies.
6537
6538 -- Note: this transformation is not applicable for a modular type with
6539 -- a non-binary modulus in the multiplication case, since we get a wrong
6540 -- result if the shift causes an overflow before the modular reduction.
6541
6542 if Nkind (Base) = N_Integer_Literal
6543 and then Intval (Base) = 2
6544 and then Is_Integer_Type (Root_Type (Exptyp))
6545 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
6546 and then Is_Unsigned_Type (Exptyp)
6547 and then not Ovflo
6548 then
6549 -- First the multiply and divide cases
6550
6551 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
6552 declare
6553 P : constant Node_Id := Parent (N);
6554 L : constant Node_Id := Left_Opnd (P);
6555 R : constant Node_Id := Right_Opnd (P);
6556
6557 begin
6558 if (Nkind (P) = N_Op_Multiply
6559 and then not Non_Binary_Modulus (Typ)
6560 and then
6561 ((Is_Integer_Type (Etype (L)) and then R = N)
6562 or else
6563 (Is_Integer_Type (Etype (R)) and then L = N))
6564 and then not Do_Overflow_Check (P))
6565 or else
6566 (Nkind (P) = N_Op_Divide
6567 and then Is_Integer_Type (Etype (L))
6568 and then Is_Unsigned_Type (Etype (L))
6569 and then R = N
6570 and then not Do_Overflow_Check (P))
6571 then
6572 Set_Is_Power_Of_2_For_Shift (N);
6573 return;
6574 end if;
6575 end;
6576
6577 -- Now the other cases
6578
6579 elsif not Non_Binary_Modulus (Typ) then
6580 Rewrite (N,
6581 Make_Op_Multiply (Loc,
6582 Left_Opnd => Make_Integer_Literal (Loc, 1),
6583 Right_Opnd => Relocate_Node (N)));
6584 Analyze_And_Resolve (N, Typ);
6585 return;
6586 end if;
6587 end if;
6588
6589 -- Fall through if exponentiation must be done using a runtime routine
6590
6591 -- First deal with modular case
6592
6593 if Is_Modular_Integer_Type (Rtyp) then
6594
6595 -- Non-binary case, we call the special exponentiation routine for
6596 -- the non-binary case, converting the argument to Long_Long_Integer
6597 -- and passing the modulus value. Then the result is converted back
6598 -- to the base type.
6599
6600 if Non_Binary_Modulus (Rtyp) then
6601 Rewrite (N,
6602 Convert_To (Typ,
6603 Make_Function_Call (Loc,
6604 Name => New_Reference_To (RTE (RE_Exp_Modular), Loc),
6605 Parameter_Associations => New_List (
6606 Convert_To (Standard_Integer, Base),
6607 Make_Integer_Literal (Loc, Modulus (Rtyp)),
6608 Exp))));
6609
6610 -- Binary case, in this case, we call one of two routines, either the
6611 -- unsigned integer case, or the unsigned long long integer case,
6612 -- with a final "and" operation to do the required mod.
6613
6614 else
6615 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
6616 Ent := RTE (RE_Exp_Unsigned);
6617 else
6618 Ent := RTE (RE_Exp_Long_Long_Unsigned);
6619 end if;
6620
6621 Rewrite (N,
6622 Convert_To (Typ,
6623 Make_Op_And (Loc,
6624 Left_Opnd =>
6625 Make_Function_Call (Loc,
6626 Name => New_Reference_To (Ent, Loc),
6627 Parameter_Associations => New_List (
6628 Convert_To (Etype (First_Formal (Ent)), Base),
6629 Exp)),
6630 Right_Opnd =>
6631 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
6632
6633 end if;
6634
6635 -- Common exit point for modular type case
6636
6637 Analyze_And_Resolve (N, Typ);
6638 return;
6639
6640 -- Signed integer cases, done using either Integer or Long_Long_Integer.
6641 -- It is not worth having routines for Short_[Short_]Integer, since for
6642 -- most machines it would not help, and it would generate more code that
6643 -- might need certification when a certified run time is required.
6644
6645 -- In the integer cases, we have two routines, one for when overflow
6646 -- checks are required, and one when they are not required, since there
6647 -- is a real gain in omitting checks on many machines.
6648
6649 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
6650 or else (Rtyp = Base_Type (Standard_Long_Integer)
6651 and then
6652 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
6653 or else (Rtyp = Universal_Integer)
6654 then
6655 Etyp := Standard_Long_Long_Integer;
6656
6657 if Ovflo then
6658 Rent := RE_Exp_Long_Long_Integer;
6659 else
6660 Rent := RE_Exn_Long_Long_Integer;
6661 end if;
6662
6663 elsif Is_Signed_Integer_Type (Rtyp) then
6664 Etyp := Standard_Integer;
6665
6666 if Ovflo then
6667 Rent := RE_Exp_Integer;
6668 else
6669 Rent := RE_Exn_Integer;
6670 end if;
6671
6672 -- Floating-point cases, always done using Long_Long_Float. We do not
6673 -- need separate routines for the overflow case here, since in the case
6674 -- of floating-point, we generate infinities anyway as a rule (either
6675 -- that or we automatically trap overflow), and if there is an infinity
6676 -- generated and a range check is required, the check will fail anyway.
6677
6678 else
6679 pragma Assert (Is_Floating_Point_Type (Rtyp));
6680 Etyp := Standard_Long_Long_Float;
6681 Rent := RE_Exn_Long_Long_Float;
6682 end if;
6683
6684 -- Common processing for integer cases and floating-point cases.
6685 -- If we are in the right type, we can call runtime routine directly
6686
6687 if Typ = Etyp
6688 and then Rtyp /= Universal_Integer
6689 and then Rtyp /= Universal_Real
6690 then
6691 Rewrite (N,
6692 Make_Function_Call (Loc,
6693 Name => New_Reference_To (RTE (Rent), Loc),
6694 Parameter_Associations => New_List (Base, Exp)));
6695
6696 -- Otherwise we have to introduce conversions (conversions are also
6697 -- required in the universal cases, since the runtime routine is
6698 -- typed using one of the standard types).
6699
6700 else
6701 Rewrite (N,
6702 Convert_To (Typ,
6703 Make_Function_Call (Loc,
6704 Name => New_Reference_To (RTE (Rent), Loc),
6705 Parameter_Associations => New_List (
6706 Convert_To (Etyp, Base),
6707 Exp))));
6708 end if;
6709
6710 Analyze_And_Resolve (N, Typ);
6711 return;
6712
6713 exception
6714 when RE_Not_Available =>
6715 return;
6716 end Expand_N_Op_Expon;
6717
6718 --------------------
6719 -- Expand_N_Op_Ge --
6720 --------------------
6721
6722 procedure Expand_N_Op_Ge (N : Node_Id) is
6723 Typ : constant Entity_Id := Etype (N);
6724 Op1 : constant Node_Id := Left_Opnd (N);
6725 Op2 : constant Node_Id := Right_Opnd (N);
6726 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6727
6728 begin
6729 Binary_Op_Validity_Checks (N);
6730
6731 if Is_Array_Type (Typ1) then
6732 Expand_Array_Comparison (N);
6733 return;
6734 end if;
6735
6736 if Is_Boolean_Type (Typ1) then
6737 Adjust_Condition (Op1);
6738 Adjust_Condition (Op2);
6739 Set_Etype (N, Standard_Boolean);
6740 Adjust_Result_Type (N, Typ);
6741 end if;
6742
6743 Rewrite_Comparison (N);
6744
6745 -- If we still have comparison, and Vax_Float type, process it
6746
6747 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6748 Expand_Vax_Comparison (N);
6749 return;
6750 end if;
6751
6752 Optimize_Length_Comparison (N);
6753 end Expand_N_Op_Ge;
6754
6755 --------------------
6756 -- Expand_N_Op_Gt --
6757 --------------------
6758
6759 procedure Expand_N_Op_Gt (N : Node_Id) is
6760 Typ : constant Entity_Id := Etype (N);
6761 Op1 : constant Node_Id := Left_Opnd (N);
6762 Op2 : constant Node_Id := Right_Opnd (N);
6763 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6764
6765 begin
6766 Binary_Op_Validity_Checks (N);
6767
6768 if Is_Array_Type (Typ1) then
6769 Expand_Array_Comparison (N);
6770 return;
6771 end if;
6772
6773 if Is_Boolean_Type (Typ1) then
6774 Adjust_Condition (Op1);
6775 Adjust_Condition (Op2);
6776 Set_Etype (N, Standard_Boolean);
6777 Adjust_Result_Type (N, Typ);
6778 end if;
6779
6780 Rewrite_Comparison (N);
6781
6782 -- If we still have comparison, and Vax_Float type, process it
6783
6784 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6785 Expand_Vax_Comparison (N);
6786 return;
6787 end if;
6788
6789 Optimize_Length_Comparison (N);
6790 end Expand_N_Op_Gt;
6791
6792 --------------------
6793 -- Expand_N_Op_Le --
6794 --------------------
6795
6796 procedure Expand_N_Op_Le (N : Node_Id) is
6797 Typ : constant Entity_Id := Etype (N);
6798 Op1 : constant Node_Id := Left_Opnd (N);
6799 Op2 : constant Node_Id := Right_Opnd (N);
6800 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6801
6802 begin
6803 Binary_Op_Validity_Checks (N);
6804
6805 if Is_Array_Type (Typ1) then
6806 Expand_Array_Comparison (N);
6807 return;
6808 end if;
6809
6810 if Is_Boolean_Type (Typ1) then
6811 Adjust_Condition (Op1);
6812 Adjust_Condition (Op2);
6813 Set_Etype (N, Standard_Boolean);
6814 Adjust_Result_Type (N, Typ);
6815 end if;
6816
6817 Rewrite_Comparison (N);
6818
6819 -- If we still have comparison, and Vax_Float type, process it
6820
6821 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6822 Expand_Vax_Comparison (N);
6823 return;
6824 end if;
6825
6826 Optimize_Length_Comparison (N);
6827 end Expand_N_Op_Le;
6828
6829 --------------------
6830 -- Expand_N_Op_Lt --
6831 --------------------
6832
6833 procedure Expand_N_Op_Lt (N : Node_Id) is
6834 Typ : constant Entity_Id := Etype (N);
6835 Op1 : constant Node_Id := Left_Opnd (N);
6836 Op2 : constant Node_Id := Right_Opnd (N);
6837 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
6838
6839 begin
6840 Binary_Op_Validity_Checks (N);
6841
6842 if Is_Array_Type (Typ1) then
6843 Expand_Array_Comparison (N);
6844 return;
6845 end if;
6846
6847 if Is_Boolean_Type (Typ1) then
6848 Adjust_Condition (Op1);
6849 Adjust_Condition (Op2);
6850 Set_Etype (N, Standard_Boolean);
6851 Adjust_Result_Type (N, Typ);
6852 end if;
6853
6854 Rewrite_Comparison (N);
6855
6856 -- If we still have comparison, and Vax_Float type, process it
6857
6858 if Vax_Float (Typ1) and then Nkind (N) in N_Op_Compare then
6859 Expand_Vax_Comparison (N);
6860 return;
6861 end if;
6862
6863 Optimize_Length_Comparison (N);
6864 end Expand_N_Op_Lt;
6865
6866 -----------------------
6867 -- Expand_N_Op_Minus --
6868 -----------------------
6869
6870 procedure Expand_N_Op_Minus (N : Node_Id) is
6871 Loc : constant Source_Ptr := Sloc (N);
6872 Typ : constant Entity_Id := Etype (N);
6873
6874 begin
6875 Unary_Op_Validity_Checks (N);
6876
6877 if not Backend_Overflow_Checks_On_Target
6878 and then Is_Signed_Integer_Type (Etype (N))
6879 and then Do_Overflow_Check (N)
6880 then
6881 -- Software overflow checking expands -expr into (0 - expr)
6882
6883 Rewrite (N,
6884 Make_Op_Subtract (Loc,
6885 Left_Opnd => Make_Integer_Literal (Loc, 0),
6886 Right_Opnd => Right_Opnd (N)));
6887
6888 Analyze_And_Resolve (N, Typ);
6889
6890 -- Vax floating-point types case
6891
6892 elsif Vax_Float (Etype (N)) then
6893 Expand_Vax_Arith (N);
6894 end if;
6895 end Expand_N_Op_Minus;
6896
6897 ---------------------
6898 -- Expand_N_Op_Mod --
6899 ---------------------
6900
6901 procedure Expand_N_Op_Mod (N : Node_Id) is
6902 Loc : constant Source_Ptr := Sloc (N);
6903 Typ : constant Entity_Id := Etype (N);
6904 Left : constant Node_Id := Left_Opnd (N);
6905 Right : constant Node_Id := Right_Opnd (N);
6906 DOC : constant Boolean := Do_Overflow_Check (N);
6907 DDC : constant Boolean := Do_Division_Check (N);
6908
6909 LLB : Uint;
6910 Llo : Uint;
6911 Lhi : Uint;
6912 LOK : Boolean;
6913 Rlo : Uint;
6914 Rhi : Uint;
6915 ROK : Boolean;
6916
6917 pragma Warnings (Off, Lhi);
6918
6919 begin
6920 Binary_Op_Validity_Checks (N);
6921
6922 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
6923 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
6924
6925 -- Convert mod to rem if operands are known non-negative. We do this
6926 -- since it is quite likely that this will improve the quality of code,
6927 -- (the operation now corresponds to the hardware remainder), and it
6928 -- does not seem likely that it could be harmful.
6929
6930 if LOK and then Llo >= 0
6931 and then
6932 ROK and then Rlo >= 0
6933 then
6934 Rewrite (N,
6935 Make_Op_Rem (Sloc (N),
6936 Left_Opnd => Left_Opnd (N),
6937 Right_Opnd => Right_Opnd (N)));
6938
6939 -- Instead of reanalyzing the node we do the analysis manually. This
6940 -- avoids anomalies when the replacement is done in an instance and
6941 -- is epsilon more efficient.
6942
6943 Set_Entity (N, Standard_Entity (S_Op_Rem));
6944 Set_Etype (N, Typ);
6945 Set_Do_Overflow_Check (N, DOC);
6946 Set_Do_Division_Check (N, DDC);
6947 Expand_N_Op_Rem (N);
6948 Set_Analyzed (N);
6949
6950 -- Otherwise, normal mod processing
6951
6952 else
6953 if Is_Integer_Type (Etype (N)) then
6954 Apply_Divide_Check (N);
6955 end if;
6956
6957 -- Apply optimization x mod 1 = 0. We don't really need that with
6958 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
6959 -- certainly harmless.
6960
6961 if Is_Integer_Type (Etype (N))
6962 and then Compile_Time_Known_Value (Right)
6963 and then Expr_Value (Right) = Uint_1
6964 then
6965 -- Call Remove_Side_Effects to ensure that any side effects in
6966 -- the ignored left operand (in particular function calls to
6967 -- user defined functions) are properly executed.
6968
6969 Remove_Side_Effects (Left);
6970
6971 Rewrite (N, Make_Integer_Literal (Loc, 0));
6972 Analyze_And_Resolve (N, Typ);
6973 return;
6974 end if;
6975
6976 -- Deal with annoying case of largest negative number remainder
6977 -- minus one. Gigi does not handle this case correctly, because
6978 -- it generates a divide instruction which may trap in this case.
6979
6980 -- In fact the check is quite easy, if the right operand is -1, then
6981 -- the mod value is always 0, and we can just ignore the left operand
6982 -- completely in this case.
6983
6984 -- The operand type may be private (e.g. in the expansion of an
6985 -- intrinsic operation) so we must use the underlying type to get the
6986 -- bounds, and convert the literals explicitly.
6987
6988 LLB :=
6989 Expr_Value
6990 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
6991
6992 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
6993 and then
6994 ((not LOK) or else (Llo = LLB))
6995 then
6996 Rewrite (N,
6997 Make_Conditional_Expression (Loc,
6998 Expressions => New_List (
6999 Make_Op_Eq (Loc,
7000 Left_Opnd => Duplicate_Subexpr (Right),
7001 Right_Opnd =>
7002 Unchecked_Convert_To (Typ,
7003 Make_Integer_Literal (Loc, -1))),
7004 Unchecked_Convert_To (Typ,
7005 Make_Integer_Literal (Loc, Uint_0)),
7006 Relocate_Node (N))));
7007
7008 Set_Analyzed (Next (Next (First (Expressions (N)))));
7009 Analyze_And_Resolve (N, Typ);
7010 end if;
7011 end if;
7012 end Expand_N_Op_Mod;
7013
7014 --------------------------
7015 -- Expand_N_Op_Multiply --
7016 --------------------------
7017
7018 procedure Expand_N_Op_Multiply (N : Node_Id) is
7019 Loc : constant Source_Ptr := Sloc (N);
7020 Lop : constant Node_Id := Left_Opnd (N);
7021 Rop : constant Node_Id := Right_Opnd (N);
7022
7023 Lp2 : constant Boolean :=
7024 Nkind (Lop) = N_Op_Expon
7025 and then Is_Power_Of_2_For_Shift (Lop);
7026
7027 Rp2 : constant Boolean :=
7028 Nkind (Rop) = N_Op_Expon
7029 and then Is_Power_Of_2_For_Shift (Rop);
7030
7031 Ltyp : constant Entity_Id := Etype (Lop);
7032 Rtyp : constant Entity_Id := Etype (Rop);
7033 Typ : Entity_Id := Etype (N);
7034
7035 begin
7036 Binary_Op_Validity_Checks (N);
7037
7038 -- Special optimizations for integer types
7039
7040 if Is_Integer_Type (Typ) then
7041
7042 -- N * 0 = 0 for integer types
7043
7044 if Compile_Time_Known_Value (Rop)
7045 and then Expr_Value (Rop) = Uint_0
7046 then
7047 -- Call Remove_Side_Effects to ensure that any side effects in
7048 -- the ignored left operand (in particular function calls to
7049 -- user defined functions) are properly executed.
7050
7051 Remove_Side_Effects (Lop);
7052
7053 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
7054 Analyze_And_Resolve (N, Typ);
7055 return;
7056 end if;
7057
7058 -- Similar handling for 0 * N = 0
7059
7060 if Compile_Time_Known_Value (Lop)
7061 and then Expr_Value (Lop) = Uint_0
7062 then
7063 Remove_Side_Effects (Rop);
7064 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
7065 Analyze_And_Resolve (N, Typ);
7066 return;
7067 end if;
7068
7069 -- N * 1 = 1 * N = N for integer types
7070
7071 -- This optimisation is not done if we are going to
7072 -- rewrite the product 1 * 2 ** N to a shift.
7073
7074 if Compile_Time_Known_Value (Rop)
7075 and then Expr_Value (Rop) = Uint_1
7076 and then not Lp2
7077 then
7078 Rewrite (N, Lop);
7079 return;
7080
7081 elsif Compile_Time_Known_Value (Lop)
7082 and then Expr_Value (Lop) = Uint_1
7083 and then not Rp2
7084 then
7085 Rewrite (N, Rop);
7086 return;
7087 end if;
7088 end if;
7089
7090 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
7091 -- Is_Power_Of_2_For_Shift is set means that we know that our left
7092 -- operand is an integer, as required for this to work.
7093
7094 if Rp2 then
7095 if Lp2 then
7096
7097 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
7098
7099 Rewrite (N,
7100 Make_Op_Expon (Loc,
7101 Left_Opnd => Make_Integer_Literal (Loc, 2),
7102 Right_Opnd =>
7103 Make_Op_Add (Loc,
7104 Left_Opnd => Right_Opnd (Lop),
7105 Right_Opnd => Right_Opnd (Rop))));
7106 Analyze_And_Resolve (N, Typ);
7107 return;
7108
7109 else
7110 Rewrite (N,
7111 Make_Op_Shift_Left (Loc,
7112 Left_Opnd => Lop,
7113 Right_Opnd =>
7114 Convert_To (Standard_Natural, Right_Opnd (Rop))));
7115 Analyze_And_Resolve (N, Typ);
7116 return;
7117 end if;
7118
7119 -- Same processing for the operands the other way round
7120
7121 elsif Lp2 then
7122 Rewrite (N,
7123 Make_Op_Shift_Left (Loc,
7124 Left_Opnd => Rop,
7125 Right_Opnd =>
7126 Convert_To (Standard_Natural, Right_Opnd (Lop))));
7127 Analyze_And_Resolve (N, Typ);
7128 return;
7129 end if;
7130
7131 -- Do required fixup of universal fixed operation
7132
7133 if Typ = Universal_Fixed then
7134 Fixup_Universal_Fixed_Operation (N);
7135 Typ := Etype (N);
7136 end if;
7137
7138 -- Multiplications with fixed-point results
7139
7140 if Is_Fixed_Point_Type (Typ) then
7141
7142 -- No special processing if Treat_Fixed_As_Integer is set, since from
7143 -- a semantic point of view such operations are simply integer
7144 -- operations and will be treated that way.
7145
7146 if not Treat_Fixed_As_Integer (N) then
7147
7148 -- Case of fixed * integer => fixed
7149
7150 if Is_Integer_Type (Rtyp) then
7151 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
7152
7153 -- Case of integer * fixed => fixed
7154
7155 elsif Is_Integer_Type (Ltyp) then
7156 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
7157
7158 -- Case of fixed * fixed => fixed
7159
7160 else
7161 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
7162 end if;
7163 end if;
7164
7165 -- Other cases of multiplication of fixed-point operands. Again we
7166 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
7167
7168 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
7169 and then not Treat_Fixed_As_Integer (N)
7170 then
7171 if Is_Integer_Type (Typ) then
7172 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
7173 else
7174 pragma Assert (Is_Floating_Point_Type (Typ));
7175 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
7176 end if;
7177
7178 -- Mixed-mode operations can appear in a non-static universal context,
7179 -- in which case the integer argument must be converted explicitly.
7180
7181 elsif Typ = Universal_Real
7182 and then Is_Integer_Type (Rtyp)
7183 then
7184 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
7185
7186 Analyze_And_Resolve (Rop, Universal_Real);
7187
7188 elsif Typ = Universal_Real
7189 and then Is_Integer_Type (Ltyp)
7190 then
7191 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
7192
7193 Analyze_And_Resolve (Lop, Universal_Real);
7194
7195 -- Non-fixed point cases, check software overflow checking required
7196
7197 elsif Is_Signed_Integer_Type (Etype (N)) then
7198 Apply_Arithmetic_Overflow_Check (N);
7199
7200 -- Deal with VAX float case
7201
7202 elsif Vax_Float (Typ) then
7203 Expand_Vax_Arith (N);
7204 return;
7205 end if;
7206 end Expand_N_Op_Multiply;
7207
7208 --------------------
7209 -- Expand_N_Op_Ne --
7210 --------------------
7211
7212 procedure Expand_N_Op_Ne (N : Node_Id) is
7213 Typ : constant Entity_Id := Etype (Left_Opnd (N));
7214
7215 begin
7216 -- Case of elementary type with standard operator
7217
7218 if Is_Elementary_Type (Typ)
7219 and then Sloc (Entity (N)) = Standard_Location
7220 then
7221 Binary_Op_Validity_Checks (N);
7222
7223 -- Boolean types (requiring handling of non-standard case)
7224
7225 if Is_Boolean_Type (Typ) then
7226 Adjust_Condition (Left_Opnd (N));
7227 Adjust_Condition (Right_Opnd (N));
7228 Set_Etype (N, Standard_Boolean);
7229 Adjust_Result_Type (N, Typ);
7230 end if;
7231
7232 Rewrite_Comparison (N);
7233
7234 -- If we still have comparison for Vax_Float, process it
7235
7236 if Vax_Float (Typ) and then Nkind (N) in N_Op_Compare then
7237 Expand_Vax_Comparison (N);
7238 return;
7239 end if;
7240
7241 -- For all cases other than elementary types, we rewrite node as the
7242 -- negation of an equality operation, and reanalyze. The equality to be
7243 -- used is defined in the same scope and has the same signature. This
7244 -- signature must be set explicitly since in an instance it may not have
7245 -- the same visibility as in the generic unit. This avoids duplicating
7246 -- or factoring the complex code for record/array equality tests etc.
7247
7248 else
7249 declare
7250 Loc : constant Source_Ptr := Sloc (N);
7251 Neg : Node_Id;
7252 Ne : constant Entity_Id := Entity (N);
7253
7254 begin
7255 Binary_Op_Validity_Checks (N);
7256
7257 Neg :=
7258 Make_Op_Not (Loc,
7259 Right_Opnd =>
7260 Make_Op_Eq (Loc,
7261 Left_Opnd => Left_Opnd (N),
7262 Right_Opnd => Right_Opnd (N)));
7263 Set_Paren_Count (Right_Opnd (Neg), 1);
7264
7265 if Scope (Ne) /= Standard_Standard then
7266 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
7267 end if;
7268
7269 -- For navigation purposes, we want to treat the inequality as an
7270 -- implicit reference to the corresponding equality. Preserve the
7271 -- Comes_From_ source flag to generate proper Xref entries.
7272
7273 Preserve_Comes_From_Source (Neg, N);
7274 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
7275 Rewrite (N, Neg);
7276 Analyze_And_Resolve (N, Standard_Boolean);
7277 end;
7278 end if;
7279
7280 Optimize_Length_Comparison (N);
7281 end Expand_N_Op_Ne;
7282
7283 ---------------------
7284 -- Expand_N_Op_Not --
7285 ---------------------
7286
7287 -- If the argument is other than a Boolean array type, there is no special
7288 -- expansion required, except for VMS operations on signed integers.
7289
7290 -- For the packed case, we call the special routine in Exp_Pakd, except
7291 -- that if the component size is greater than one, we use the standard
7292 -- routine generating a gruesome loop (it is so peculiar to have packed
7293 -- arrays with non-standard Boolean representations anyway, so it does not
7294 -- matter that we do not handle this case efficiently).
7295
7296 -- For the unpacked case (and for the special packed case where we have non
7297 -- standard Booleans, as discussed above), we generate and insert into the
7298 -- tree the following function definition:
7299
7300 -- function Nnnn (A : arr) is
7301 -- B : arr;
7302 -- begin
7303 -- for J in a'range loop
7304 -- B (J) := not A (J);
7305 -- end loop;
7306 -- return B;
7307 -- end Nnnn;
7308
7309 -- Here arr is the actual subtype of the parameter (and hence always
7310 -- constrained). Then we replace the not with a call to this function.
7311
7312 procedure Expand_N_Op_Not (N : Node_Id) is
7313 Loc : constant Source_Ptr := Sloc (N);
7314 Typ : constant Entity_Id := Etype (N);
7315 Opnd : Node_Id;
7316 Arr : Entity_Id;
7317 A : Entity_Id;
7318 B : Entity_Id;
7319 J : Entity_Id;
7320 A_J : Node_Id;
7321 B_J : Node_Id;
7322
7323 Func_Name : Entity_Id;
7324 Loop_Statement : Node_Id;
7325
7326 begin
7327 Unary_Op_Validity_Checks (N);
7328
7329 -- For boolean operand, deal with non-standard booleans
7330
7331 if Is_Boolean_Type (Typ) then
7332 Adjust_Condition (Right_Opnd (N));
7333 Set_Etype (N, Standard_Boolean);
7334 Adjust_Result_Type (N, Typ);
7335 return;
7336 end if;
7337
7338 -- For the VMS "not" on signed integer types, use conversion to and from
7339 -- a predefined modular type.
7340
7341 if Is_VMS_Operator (Entity (N)) then
7342 declare
7343 Rtyp : Entity_Id;
7344 Utyp : Entity_Id;
7345
7346 begin
7347 -- If this is a derived type, retrieve original VMS type so that
7348 -- the proper sized type is used for intermediate values.
7349
7350 if Is_Derived_Type (Typ) then
7351 Rtyp := First_Subtype (Etype (Typ));
7352 else
7353 Rtyp := Typ;
7354 end if;
7355
7356 -- The proper unsigned type must have a size compatible with the
7357 -- operand, to prevent misalignment.
7358
7359 if RM_Size (Rtyp) <= 8 then
7360 Utyp := RTE (RE_Unsigned_8);
7361
7362 elsif RM_Size (Rtyp) <= 16 then
7363 Utyp := RTE (RE_Unsigned_16);
7364
7365 elsif RM_Size (Rtyp) = RM_Size (Standard_Unsigned) then
7366 Utyp := RTE (RE_Unsigned_32);
7367
7368 else
7369 Utyp := RTE (RE_Long_Long_Unsigned);
7370 end if;
7371
7372 Rewrite (N,
7373 Unchecked_Convert_To (Typ,
7374 Make_Op_Not (Loc,
7375 Unchecked_Convert_To (Utyp, Right_Opnd (N)))));
7376 Analyze_And_Resolve (N, Typ);
7377 return;
7378 end;
7379 end if;
7380
7381 -- Only array types need any other processing
7382
7383 if not Is_Array_Type (Typ) then
7384 return;
7385 end if;
7386
7387 -- Case of array operand. If bit packed with a component size of 1,
7388 -- handle it in Exp_Pakd if the operand is known to be aligned.
7389
7390 if Is_Bit_Packed_Array (Typ)
7391 and then Component_Size (Typ) = 1
7392 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
7393 then
7394 Expand_Packed_Not (N);
7395 return;
7396 end if;
7397
7398 -- Case of array operand which is not bit-packed. If the context is
7399 -- a safe assignment, call in-place operation, If context is a larger
7400 -- boolean expression in the context of a safe assignment, expansion is
7401 -- done by enclosing operation.
7402
7403 Opnd := Relocate_Node (Right_Opnd (N));
7404 Convert_To_Actual_Subtype (Opnd);
7405 Arr := Etype (Opnd);
7406 Ensure_Defined (Arr, N);
7407 Silly_Boolean_Array_Not_Test (N, Arr);
7408
7409 if Nkind (Parent (N)) = N_Assignment_Statement then
7410 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
7411 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
7412 return;
7413
7414 -- Special case the negation of a binary operation
7415
7416 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
7417 and then Safe_In_Place_Array_Op
7418 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
7419 then
7420 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
7421 return;
7422 end if;
7423
7424 elsif Nkind (Parent (N)) in N_Binary_Op
7425 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
7426 then
7427 declare
7428 Op1 : constant Node_Id := Left_Opnd (Parent (N));
7429 Op2 : constant Node_Id := Right_Opnd (Parent (N));
7430 Lhs : constant Node_Id := Name (Parent (Parent (N)));
7431
7432 begin
7433 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
7434
7435 -- (not A) op (not B) can be reduced to a single call
7436
7437 if N = Op1 and then Nkind (Op2) = N_Op_Not then
7438 return;
7439
7440 elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
7441 return;
7442
7443 -- A xor (not B) can also be special-cased
7444
7445 elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
7446 return;
7447 end if;
7448 end if;
7449 end;
7450 end if;
7451
7452 A := Make_Defining_Identifier (Loc, Name_uA);
7453 B := Make_Defining_Identifier (Loc, Name_uB);
7454 J := Make_Defining_Identifier (Loc, Name_uJ);
7455
7456 A_J :=
7457 Make_Indexed_Component (Loc,
7458 Prefix => New_Reference_To (A, Loc),
7459 Expressions => New_List (New_Reference_To (J, Loc)));
7460
7461 B_J :=
7462 Make_Indexed_Component (Loc,
7463 Prefix => New_Reference_To (B, Loc),
7464 Expressions => New_List (New_Reference_To (J, Loc)));
7465
7466 Loop_Statement :=
7467 Make_Implicit_Loop_Statement (N,
7468 Identifier => Empty,
7469
7470 Iteration_Scheme =>
7471 Make_Iteration_Scheme (Loc,
7472 Loop_Parameter_Specification =>
7473 Make_Loop_Parameter_Specification (Loc,
7474 Defining_Identifier => J,
7475 Discrete_Subtype_Definition =>
7476 Make_Attribute_Reference (Loc,
7477 Prefix => Make_Identifier (Loc, Chars (A)),
7478 Attribute_Name => Name_Range))),
7479
7480 Statements => New_List (
7481 Make_Assignment_Statement (Loc,
7482 Name => B_J,
7483 Expression => Make_Op_Not (Loc, A_J))));
7484
7485 Func_Name := Make_Temporary (Loc, 'N');
7486 Set_Is_Inlined (Func_Name);
7487
7488 Insert_Action (N,
7489 Make_Subprogram_Body (Loc,
7490 Specification =>
7491 Make_Function_Specification (Loc,
7492 Defining_Unit_Name => Func_Name,
7493 Parameter_Specifications => New_List (
7494 Make_Parameter_Specification (Loc,
7495 Defining_Identifier => A,
7496 Parameter_Type => New_Reference_To (Typ, Loc))),
7497 Result_Definition => New_Reference_To (Typ, Loc)),
7498
7499 Declarations => New_List (
7500 Make_Object_Declaration (Loc,
7501 Defining_Identifier => B,
7502 Object_Definition => New_Reference_To (Arr, Loc))),
7503
7504 Handled_Statement_Sequence =>
7505 Make_Handled_Sequence_Of_Statements (Loc,
7506 Statements => New_List (
7507 Loop_Statement,
7508 Make_Simple_Return_Statement (Loc,
7509 Expression => Make_Identifier (Loc, Chars (B)))))));
7510
7511 Rewrite (N,
7512 Make_Function_Call (Loc,
7513 Name => New_Reference_To (Func_Name, Loc),
7514 Parameter_Associations => New_List (Opnd)));
7515
7516 Analyze_And_Resolve (N, Typ);
7517 end Expand_N_Op_Not;
7518
7519 --------------------
7520 -- Expand_N_Op_Or --
7521 --------------------
7522
7523 procedure Expand_N_Op_Or (N : Node_Id) is
7524 Typ : constant Entity_Id := Etype (N);
7525
7526 begin
7527 Binary_Op_Validity_Checks (N);
7528
7529 if Is_Array_Type (Etype (N)) then
7530 Expand_Boolean_Operator (N);
7531
7532 elsif Is_Boolean_Type (Etype (N)) then
7533
7534 -- Replace OR by OR ELSE if Short_Circuit_And_Or active and the type
7535 -- is standard Boolean (do not mess with AND that uses a non-standard
7536 -- Boolean type, because something strange is going on).
7537
7538 if Short_Circuit_And_Or and then Typ = Standard_Boolean then
7539 Rewrite (N,
7540 Make_Or_Else (Sloc (N),
7541 Left_Opnd => Relocate_Node (Left_Opnd (N)),
7542 Right_Opnd => Relocate_Node (Right_Opnd (N))));
7543 Analyze_And_Resolve (N, Typ);
7544
7545 -- Otherwise, adjust conditions
7546
7547 else
7548 Adjust_Condition (Left_Opnd (N));
7549 Adjust_Condition (Right_Opnd (N));
7550 Set_Etype (N, Standard_Boolean);
7551 Adjust_Result_Type (N, Typ);
7552 end if;
7553
7554 elsif Is_Intrinsic_Subprogram (Entity (N)) then
7555 Expand_Intrinsic_Call (N, Entity (N));
7556
7557 end if;
7558 end Expand_N_Op_Or;
7559
7560 ----------------------
7561 -- Expand_N_Op_Plus --
7562 ----------------------
7563
7564 procedure Expand_N_Op_Plus (N : Node_Id) is
7565 begin
7566 Unary_Op_Validity_Checks (N);
7567 end Expand_N_Op_Plus;
7568
7569 ---------------------
7570 -- Expand_N_Op_Rem --
7571 ---------------------
7572
7573 procedure Expand_N_Op_Rem (N : Node_Id) is
7574 Loc : constant Source_Ptr := Sloc (N);
7575 Typ : constant Entity_Id := Etype (N);
7576
7577 Left : constant Node_Id := Left_Opnd (N);
7578 Right : constant Node_Id := Right_Opnd (N);
7579
7580 Lo : Uint;
7581 Hi : Uint;
7582 OK : Boolean;
7583
7584 Lneg : Boolean;
7585 Rneg : Boolean;
7586 -- Set if corresponding operand can be negative
7587
7588 pragma Unreferenced (Hi);
7589
7590 begin
7591 Binary_Op_Validity_Checks (N);
7592
7593 if Is_Integer_Type (Etype (N)) then
7594 Apply_Divide_Check (N);
7595 end if;
7596
7597 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
7598 -- but it is useful with other back ends (e.g. AAMP), and is certainly
7599 -- harmless.
7600
7601 if Is_Integer_Type (Etype (N))
7602 and then Compile_Time_Known_Value (Right)
7603 and then Expr_Value (Right) = Uint_1
7604 then
7605 -- Call Remove_Side_Effects to ensure that any side effects in the
7606 -- ignored left operand (in particular function calls to user defined
7607 -- functions) are properly executed.
7608
7609 Remove_Side_Effects (Left);
7610
7611 Rewrite (N, Make_Integer_Literal (Loc, 0));
7612 Analyze_And_Resolve (N, Typ);
7613 return;
7614 end if;
7615
7616 -- Deal with annoying case of largest negative number remainder minus
7617 -- one. Gigi does not handle this case correctly, because it generates
7618 -- a divide instruction which may trap in this case.
7619
7620 -- In fact the check is quite easy, if the right operand is -1, then
7621 -- the remainder is always 0, and we can just ignore the left operand
7622 -- completely in this case.
7623
7624 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
7625 Lneg := (not OK) or else Lo < 0;
7626
7627 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
7628 Rneg := (not OK) or else Lo < 0;
7629
7630 -- We won't mess with trying to find out if the left operand can really
7631 -- be the largest negative number (that's a pain in the case of private
7632 -- types and this is really marginal). We will just assume that we need
7633 -- the test if the left operand can be negative at all.
7634
7635 if Lneg and Rneg then
7636 Rewrite (N,
7637 Make_Conditional_Expression (Loc,
7638 Expressions => New_List (
7639 Make_Op_Eq (Loc,
7640 Left_Opnd => Duplicate_Subexpr (Right),
7641 Right_Opnd =>
7642 Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
7643
7644 Unchecked_Convert_To (Typ,
7645 Make_Integer_Literal (Loc, Uint_0)),
7646
7647 Relocate_Node (N))));
7648
7649 Set_Analyzed (Next (Next (First (Expressions (N)))));
7650 Analyze_And_Resolve (N, Typ);
7651 end if;
7652 end Expand_N_Op_Rem;
7653
7654 -----------------------------
7655 -- Expand_N_Op_Rotate_Left --
7656 -----------------------------
7657
7658 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
7659 begin
7660 Binary_Op_Validity_Checks (N);
7661 end Expand_N_Op_Rotate_Left;
7662
7663 ------------------------------
7664 -- Expand_N_Op_Rotate_Right --
7665 ------------------------------
7666
7667 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
7668 begin
7669 Binary_Op_Validity_Checks (N);
7670 end Expand_N_Op_Rotate_Right;
7671
7672 ----------------------------
7673 -- Expand_N_Op_Shift_Left --
7674 ----------------------------
7675
7676 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
7677 begin
7678 Binary_Op_Validity_Checks (N);
7679 end Expand_N_Op_Shift_Left;
7680
7681 -----------------------------
7682 -- Expand_N_Op_Shift_Right --
7683 -----------------------------
7684
7685 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
7686 begin
7687 Binary_Op_Validity_Checks (N);
7688 end Expand_N_Op_Shift_Right;
7689
7690 ----------------------------------------
7691 -- Expand_N_Op_Shift_Right_Arithmetic --
7692 ----------------------------------------
7693
7694 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
7695 begin
7696 Binary_Op_Validity_Checks (N);
7697 end Expand_N_Op_Shift_Right_Arithmetic;
7698
7699 --------------------------
7700 -- Expand_N_Op_Subtract --
7701 --------------------------
7702
7703 procedure Expand_N_Op_Subtract (N : Node_Id) is
7704 Typ : constant Entity_Id := Etype (N);
7705
7706 begin
7707 Binary_Op_Validity_Checks (N);
7708
7709 -- N - 0 = N for integer types
7710
7711 if Is_Integer_Type (Typ)
7712 and then Compile_Time_Known_Value (Right_Opnd (N))
7713 and then Expr_Value (Right_Opnd (N)) = 0
7714 then
7715 Rewrite (N, Left_Opnd (N));
7716 return;
7717 end if;
7718
7719 -- Arithmetic overflow checks for signed integer/fixed point types
7720
7721 if Is_Signed_Integer_Type (Typ)
7722 or else
7723 Is_Fixed_Point_Type (Typ)
7724 then
7725 Apply_Arithmetic_Overflow_Check (N);
7726
7727 -- VAX floating-point types case
7728
7729 elsif Vax_Float (Typ) then
7730 Expand_Vax_Arith (N);
7731 end if;
7732 end Expand_N_Op_Subtract;
7733
7734 ---------------------
7735 -- Expand_N_Op_Xor --
7736 ---------------------
7737
7738 procedure Expand_N_Op_Xor (N : Node_Id) is
7739 Typ : constant Entity_Id := Etype (N);
7740
7741 begin
7742 Binary_Op_Validity_Checks (N);
7743
7744 if Is_Array_Type (Etype (N)) then
7745 Expand_Boolean_Operator (N);
7746
7747 elsif Is_Boolean_Type (Etype (N)) then
7748 Adjust_Condition (Left_Opnd (N));
7749 Adjust_Condition (Right_Opnd (N));
7750 Set_Etype (N, Standard_Boolean);
7751 Adjust_Result_Type (N, Typ);
7752
7753 elsif Is_Intrinsic_Subprogram (Entity (N)) then
7754 Expand_Intrinsic_Call (N, Entity (N));
7755
7756 end if;
7757 end Expand_N_Op_Xor;
7758
7759 ----------------------
7760 -- Expand_N_Or_Else --
7761 ----------------------
7762
7763 procedure Expand_N_Or_Else (N : Node_Id)
7764 renames Expand_Short_Circuit_Operator;
7765
7766 -----------------------------------
7767 -- Expand_N_Qualified_Expression --
7768 -----------------------------------
7769
7770 procedure Expand_N_Qualified_Expression (N : Node_Id) is
7771 Operand : constant Node_Id := Expression (N);
7772 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
7773
7774 begin
7775 -- Do validity check if validity checking operands
7776
7777 if Validity_Checks_On
7778 and then Validity_Check_Operands
7779 then
7780 Ensure_Valid (Operand);
7781 end if;
7782
7783 -- Apply possible constraint check
7784
7785 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
7786
7787 if Do_Range_Check (Operand) then
7788 Set_Do_Range_Check (Operand, False);
7789 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
7790 end if;
7791 end Expand_N_Qualified_Expression;
7792
7793 ------------------------------------
7794 -- Expand_N_Quantified_Expression --
7795 ------------------------------------
7796
7797 -- We expand:
7798
7799 -- for all X in range => Cond
7800
7801 -- into:
7802
7803 -- T := True;
7804 -- for X in range loop
7805 -- if not Cond then
7806 -- T := False;
7807 -- exit;
7808 -- end if;
7809 -- end loop;
7810
7811 -- Conversely, an existentially quantified expression:
7812
7813 -- for some X in range => Cond
7814
7815 -- becomes:
7816
7817 -- T := False;
7818 -- for X in range loop
7819 -- if Cond then
7820 -- T := True;
7821 -- exit;
7822 -- end if;
7823 -- end loop;
7824
7825 -- In both cases, the iteration may be over a container in which case it is
7826 -- given by an iterator specification, not a loop parameter specification.
7827
7828 procedure Expand_N_Quantified_Expression (N : Node_Id) is
7829 Loc : constant Source_Ptr := Sloc (N);
7830 Is_Universal : constant Boolean := All_Present (N);
7831 Actions : constant List_Id := New_List;
7832 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7833 Cond : Node_Id;
7834 Decl : Node_Id;
7835 I_Scheme : Node_Id;
7836 Test : Node_Id;
7837
7838 begin
7839 Decl :=
7840 Make_Object_Declaration (Loc,
7841 Defining_Identifier => Tnn,
7842 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
7843 Expression =>
7844 New_Occurrence_Of (Boolean_Literals (Is_Universal), Loc));
7845 Append_To (Actions, Decl);
7846
7847 Cond := Relocate_Node (Condition (N));
7848
7849 -- Reset flag analyzed in the condition to force its analysis. Required
7850 -- since the previous analysis was done with expansion disabled (see
7851 -- Resolve_Quantified_Expression) and hence checks were not inserted
7852 -- and record comparisons have not been expanded.
7853
7854 Reset_Analyzed_Flags (Cond);
7855
7856 if Is_Universal then
7857 Cond := Make_Op_Not (Loc, Cond);
7858 end if;
7859
7860 Test :=
7861 Make_Implicit_If_Statement (N,
7862 Condition => Cond,
7863 Then_Statements => New_List (
7864 Make_Assignment_Statement (Loc,
7865 Name => New_Occurrence_Of (Tnn, Loc),
7866 Expression =>
7867 New_Occurrence_Of (Boolean_Literals (not Is_Universal), Loc)),
7868 Make_Exit_Statement (Loc)));
7869
7870 if Present (Loop_Parameter_Specification (N)) then
7871 I_Scheme :=
7872 Make_Iteration_Scheme (Loc,
7873 Loop_Parameter_Specification =>
7874 Loop_Parameter_Specification (N));
7875 else
7876 I_Scheme :=
7877 Make_Iteration_Scheme (Loc,
7878 Iterator_Specification => Iterator_Specification (N));
7879 end if;
7880
7881 Append_To (Actions,
7882 Make_Loop_Statement (Loc,
7883 Iteration_Scheme => I_Scheme,
7884 Statements => New_List (Test),
7885 End_Label => Empty));
7886
7887 Rewrite (N,
7888 Make_Expression_With_Actions (Loc,
7889 Expression => New_Occurrence_Of (Tnn, Loc),
7890 Actions => Actions));
7891
7892 Analyze_And_Resolve (N, Standard_Boolean);
7893 end Expand_N_Quantified_Expression;
7894
7895 ---------------------------------
7896 -- Expand_N_Selected_Component --
7897 ---------------------------------
7898
7899 -- If the selector is a discriminant of a concurrent object, rewrite the
7900 -- prefix to denote the corresponding record type.
7901
7902 procedure Expand_N_Selected_Component (N : Node_Id) is
7903 Loc : constant Source_Ptr := Sloc (N);
7904 Par : constant Node_Id := Parent (N);
7905 P : constant Node_Id := Prefix (N);
7906 Ptyp : Entity_Id := Underlying_Type (Etype (P));
7907 Disc : Entity_Id;
7908 New_N : Node_Id;
7909 Dcon : Elmt_Id;
7910 Dval : Node_Id;
7911
7912 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
7913 -- Gigi needs a temporary for prefixes that depend on a discriminant,
7914 -- unless the context of an assignment can provide size information.
7915 -- Don't we have a general routine that does this???
7916
7917 function Is_Subtype_Declaration return Boolean;
7918 -- The replacement of a discriminant reference by its value is required
7919 -- if this is part of the initialization of an temporary generated by a
7920 -- change of representation. This shows up as the construction of a
7921 -- discriminant constraint for a subtype declared at the same point as
7922 -- the entity in the prefix of the selected component. We recognize this
7923 -- case when the context of the reference is:
7924 -- subtype ST is T(Obj.D);
7925 -- where the entity for Obj comes from source, and ST has the same sloc.
7926
7927 -----------------------
7928 -- In_Left_Hand_Side --
7929 -----------------------
7930
7931 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
7932 begin
7933 return (Nkind (Parent (Comp)) = N_Assignment_Statement
7934 and then Comp = Name (Parent (Comp)))
7935 or else (Present (Parent (Comp))
7936 and then Nkind (Parent (Comp)) in N_Subexpr
7937 and then In_Left_Hand_Side (Parent (Comp)));
7938 end In_Left_Hand_Side;
7939
7940 -----------------------------
7941 -- Is_Subtype_Declaration --
7942 -----------------------------
7943
7944 function Is_Subtype_Declaration return Boolean is
7945 Par : constant Node_Id := Parent (N);
7946 begin
7947 return
7948 Nkind (Par) = N_Index_Or_Discriminant_Constraint
7949 and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
7950 and then Comes_From_Source (Entity (Prefix (N)))
7951 and then Sloc (Par) = Sloc (Entity (Prefix (N)));
7952 end Is_Subtype_Declaration;
7953
7954 -- Start of processing for Expand_N_Selected_Component
7955
7956 begin
7957 -- Insert explicit dereference if required
7958
7959 if Is_Access_Type (Ptyp) then
7960
7961 -- First set prefix type to proper access type, in case it currently
7962 -- has a private (non-access) view of this type.
7963
7964 Set_Etype (P, Ptyp);
7965
7966 Insert_Explicit_Dereference (P);
7967 Analyze_And_Resolve (P, Designated_Type (Ptyp));
7968
7969 if Ekind (Etype (P)) = E_Private_Subtype
7970 and then Is_For_Access_Subtype (Etype (P))
7971 then
7972 Set_Etype (P, Base_Type (Etype (P)));
7973 end if;
7974
7975 Ptyp := Etype (P);
7976 end if;
7977
7978 -- Deal with discriminant check required
7979
7980 if Do_Discriminant_Check (N) then
7981
7982 -- Present the discriminant checking function to the backend, so that
7983 -- it can inline the call to the function.
7984
7985 Add_Inlined_Body
7986 (Discriminant_Checking_Func
7987 (Original_Record_Component (Entity (Selector_Name (N)))));
7988
7989 -- Now reset the flag and generate the call
7990
7991 Set_Do_Discriminant_Check (N, False);
7992 Generate_Discriminant_Check (N);
7993 end if;
7994
7995 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
7996 -- function, then additional actuals must be passed.
7997
7998 if Ada_Version >= Ada_2005
7999 and then Is_Build_In_Place_Function_Call (P)
8000 then
8001 Make_Build_In_Place_Call_In_Anonymous_Context (P);
8002 end if;
8003
8004 -- Gigi cannot handle unchecked conversions that are the prefix of a
8005 -- selected component with discriminants. This must be checked during
8006 -- expansion, because during analysis the type of the selector is not
8007 -- known at the point the prefix is analyzed. If the conversion is the
8008 -- target of an assignment, then we cannot force the evaluation.
8009
8010 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
8011 and then Has_Discriminants (Etype (N))
8012 and then not In_Left_Hand_Side (N)
8013 then
8014 Force_Evaluation (Prefix (N));
8015 end if;
8016
8017 -- Remaining processing applies only if selector is a discriminant
8018
8019 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
8020
8021 -- If the selector is a discriminant of a constrained record type,
8022 -- we may be able to rewrite the expression with the actual value
8023 -- of the discriminant, a useful optimization in some cases.
8024
8025 if Is_Record_Type (Ptyp)
8026 and then Has_Discriminants (Ptyp)
8027 and then Is_Constrained (Ptyp)
8028 then
8029 -- Do this optimization for discrete types only, and not for
8030 -- access types (access discriminants get us into trouble!)
8031
8032 if not Is_Discrete_Type (Etype (N)) then
8033 null;
8034
8035 -- Don't do this on the left hand of an assignment statement.
8036 -- Normally one would think that references like this would not
8037 -- occur, but they do in generated code, and mean that we really
8038 -- do want to assign the discriminant!
8039
8040 elsif Nkind (Par) = N_Assignment_Statement
8041 and then Name (Par) = N
8042 then
8043 null;
8044
8045 -- Don't do this optimization for the prefix of an attribute or
8046 -- the name of an object renaming declaration since these are
8047 -- contexts where we do not want the value anyway.
8048
8049 elsif (Nkind (Par) = N_Attribute_Reference
8050 and then Prefix (Par) = N)
8051 or else Is_Renamed_Object (N)
8052 then
8053 null;
8054
8055 -- Don't do this optimization if we are within the code for a
8056 -- discriminant check, since the whole point of such a check may
8057 -- be to verify the condition on which the code below depends!
8058
8059 elsif Is_In_Discriminant_Check (N) then
8060 null;
8061
8062 -- Green light to see if we can do the optimization. There is
8063 -- still one condition that inhibits the optimization below but
8064 -- now is the time to check the particular discriminant.
8065
8066 else
8067 -- Loop through discriminants to find the matching discriminant
8068 -- constraint to see if we can copy it.
8069
8070 Disc := First_Discriminant (Ptyp);
8071 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
8072 Discr_Loop : while Present (Dcon) loop
8073 Dval := Node (Dcon);
8074
8075 -- Check if this is the matching discriminant and if the
8076 -- discriminant value is simple enough to make sense to
8077 -- copy. We don't want to copy complex expressions, and
8078 -- indeed to do so can cause trouble (before we put in
8079 -- this guard, a discriminant expression containing an
8080 -- AND THEN was copied, causing problems for coverage
8081 -- analysis tools).
8082
8083 -- However, if the reference is part of the initialization
8084 -- code generated for an object declaration, we must use
8085 -- the discriminant value from the subtype constraint,
8086 -- because the selected component may be a reference to the
8087 -- object being initialized, whose discriminant is not yet
8088 -- set. This only happens in complex cases involving changes
8089 -- or representation.
8090
8091 if Disc = Entity (Selector_Name (N))
8092 and then (Is_Entity_Name (Dval)
8093 or else Compile_Time_Known_Value (Dval)
8094 or else Is_Subtype_Declaration)
8095 then
8096 -- Here we have the matching discriminant. Check for
8097 -- the case of a discriminant of a component that is
8098 -- constrained by an outer discriminant, which cannot
8099 -- be optimized away.
8100
8101 if Denotes_Discriminant
8102 (Dval, Check_Concurrent => True)
8103 then
8104 exit Discr_Loop;
8105
8106 elsif Nkind (Original_Node (Dval)) = N_Selected_Component
8107 and then
8108 Denotes_Discriminant
8109 (Selector_Name (Original_Node (Dval)), True)
8110 then
8111 exit Discr_Loop;
8112
8113 -- Do not retrieve value if constraint is not static. It
8114 -- is generally not useful, and the constraint may be a
8115 -- rewritten outer discriminant in which case it is in
8116 -- fact incorrect.
8117
8118 elsif Is_Entity_Name (Dval)
8119 and then Nkind (Parent (Entity (Dval))) =
8120 N_Object_Declaration
8121 and then Present (Expression (Parent (Entity (Dval))))
8122 and then
8123 not Is_Static_Expression
8124 (Expression (Parent (Entity (Dval))))
8125 then
8126 exit Discr_Loop;
8127
8128 -- In the context of a case statement, the expression may
8129 -- have the base type of the discriminant, and we need to
8130 -- preserve the constraint to avoid spurious errors on
8131 -- missing cases.
8132
8133 elsif Nkind (Parent (N)) = N_Case_Statement
8134 and then Etype (Dval) /= Etype (Disc)
8135 then
8136 Rewrite (N,
8137 Make_Qualified_Expression (Loc,
8138 Subtype_Mark =>
8139 New_Occurrence_Of (Etype (Disc), Loc),
8140 Expression =>
8141 New_Copy_Tree (Dval)));
8142 Analyze_And_Resolve (N, Etype (Disc));
8143
8144 -- In case that comes out as a static expression,
8145 -- reset it (a selected component is never static).
8146
8147 Set_Is_Static_Expression (N, False);
8148 return;
8149
8150 -- Otherwise we can just copy the constraint, but the
8151 -- result is certainly not static! In some cases the
8152 -- discriminant constraint has been analyzed in the
8153 -- context of the original subtype indication, but for
8154 -- itypes the constraint might not have been analyzed
8155 -- yet, and this must be done now.
8156
8157 else
8158 Rewrite (N, New_Copy_Tree (Dval));
8159 Analyze_And_Resolve (N);
8160 Set_Is_Static_Expression (N, False);
8161 return;
8162 end if;
8163 end if;
8164
8165 Next_Elmt (Dcon);
8166 Next_Discriminant (Disc);
8167 end loop Discr_Loop;
8168
8169 -- Note: the above loop should always find a matching
8170 -- discriminant, but if it does not, we just missed an
8171 -- optimization due to some glitch (perhaps a previous
8172 -- error), so ignore.
8173
8174 end if;
8175 end if;
8176
8177 -- The only remaining processing is in the case of a discriminant of
8178 -- a concurrent object, where we rewrite the prefix to denote the
8179 -- corresponding record type. If the type is derived and has renamed
8180 -- discriminants, use corresponding discriminant, which is the one
8181 -- that appears in the corresponding record.
8182
8183 if not Is_Concurrent_Type (Ptyp) then
8184 return;
8185 end if;
8186
8187 Disc := Entity (Selector_Name (N));
8188
8189 if Is_Derived_Type (Ptyp)
8190 and then Present (Corresponding_Discriminant (Disc))
8191 then
8192 Disc := Corresponding_Discriminant (Disc);
8193 end if;
8194
8195 New_N :=
8196 Make_Selected_Component (Loc,
8197 Prefix =>
8198 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
8199 New_Copy_Tree (P)),
8200 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
8201
8202 Rewrite (N, New_N);
8203 Analyze (N);
8204 end if;
8205 end Expand_N_Selected_Component;
8206
8207 --------------------
8208 -- Expand_N_Slice --
8209 --------------------
8210
8211 procedure Expand_N_Slice (N : Node_Id) is
8212 Loc : constant Source_Ptr := Sloc (N);
8213 Typ : constant Entity_Id := Etype (N);
8214 Pfx : constant Node_Id := Prefix (N);
8215 Ptp : Entity_Id := Etype (Pfx);
8216
8217 function Is_Procedure_Actual (N : Node_Id) return Boolean;
8218 -- Check whether the argument is an actual for a procedure call, in
8219 -- which case the expansion of a bit-packed slice is deferred until the
8220 -- call itself is expanded. The reason this is required is that we might
8221 -- have an IN OUT or OUT parameter, and the copy out is essential, and
8222 -- that copy out would be missed if we created a temporary here in
8223 -- Expand_N_Slice. Note that we don't bother to test specifically for an
8224 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
8225 -- is harmless to defer expansion in the IN case, since the call
8226 -- processing will still generate the appropriate copy in operation,
8227 -- which will take care of the slice.
8228
8229 procedure Make_Temporary_For_Slice;
8230 -- Create a named variable for the value of the slice, in cases where
8231 -- the back-end cannot handle it properly, e.g. when packed types or
8232 -- unaligned slices are involved.
8233
8234 -------------------------
8235 -- Is_Procedure_Actual --
8236 -------------------------
8237
8238 function Is_Procedure_Actual (N : Node_Id) return Boolean is
8239 Par : Node_Id := Parent (N);
8240
8241 begin
8242 loop
8243 -- If our parent is a procedure call we can return
8244
8245 if Nkind (Par) = N_Procedure_Call_Statement then
8246 return True;
8247
8248 -- If our parent is a type conversion, keep climbing the tree,
8249 -- since a type conversion can be a procedure actual. Also keep
8250 -- climbing if parameter association or a qualified expression,
8251 -- since these are additional cases that do can appear on
8252 -- procedure actuals.
8253
8254 elsif Nkind_In (Par, N_Type_Conversion,
8255 N_Parameter_Association,
8256 N_Qualified_Expression)
8257 then
8258 Par := Parent (Par);
8259
8260 -- Any other case is not what we are looking for
8261
8262 else
8263 return False;
8264 end if;
8265 end loop;
8266 end Is_Procedure_Actual;
8267
8268 ------------------------------
8269 -- Make_Temporary_For_Slice --
8270 ------------------------------
8271
8272 procedure Make_Temporary_For_Slice is
8273 Decl : Node_Id;
8274 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
8275
8276 begin
8277 Decl :=
8278 Make_Object_Declaration (Loc,
8279 Defining_Identifier => Ent,
8280 Object_Definition => New_Occurrence_Of (Typ, Loc));
8281
8282 Set_No_Initialization (Decl);
8283
8284 Insert_Actions (N, New_List (
8285 Decl,
8286 Make_Assignment_Statement (Loc,
8287 Name => New_Occurrence_Of (Ent, Loc),
8288 Expression => Relocate_Node (N))));
8289
8290 Rewrite (N, New_Occurrence_Of (Ent, Loc));
8291 Analyze_And_Resolve (N, Typ);
8292 end Make_Temporary_For_Slice;
8293
8294 -- Start of processing for Expand_N_Slice
8295
8296 begin
8297 -- Special handling for access types
8298
8299 if Is_Access_Type (Ptp) then
8300
8301 Ptp := Designated_Type (Ptp);
8302
8303 Rewrite (Pfx,
8304 Make_Explicit_Dereference (Sloc (N),
8305 Prefix => Relocate_Node (Pfx)));
8306
8307 Analyze_And_Resolve (Pfx, Ptp);
8308 end if;
8309
8310 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
8311 -- function, then additional actuals must be passed.
8312
8313 if Ada_Version >= Ada_2005
8314 and then Is_Build_In_Place_Function_Call (Pfx)
8315 then
8316 Make_Build_In_Place_Call_In_Anonymous_Context (Pfx);
8317 end if;
8318
8319 -- The remaining case to be handled is packed slices. We can leave
8320 -- packed slices as they are in the following situations:
8321
8322 -- 1. Right or left side of an assignment (we can handle this
8323 -- situation correctly in the assignment statement expansion).
8324
8325 -- 2. Prefix of indexed component (the slide is optimized away in this
8326 -- case, see the start of Expand_N_Slice.)
8327
8328 -- 3. Object renaming declaration, since we want the name of the
8329 -- slice, not the value.
8330
8331 -- 4. Argument to procedure call, since copy-in/copy-out handling may
8332 -- be required, and this is handled in the expansion of call
8333 -- itself.
8334
8335 -- 5. Prefix of an address attribute (this is an error which is caught
8336 -- elsewhere, and the expansion would interfere with generating the
8337 -- error message).
8338
8339 if not Is_Packed (Typ) then
8340
8341 -- Apply transformation for actuals of a function call, where
8342 -- Expand_Actuals is not used.
8343
8344 if Nkind (Parent (N)) = N_Function_Call
8345 and then Is_Possibly_Unaligned_Slice (N)
8346 then
8347 Make_Temporary_For_Slice;
8348 end if;
8349
8350 elsif Nkind (Parent (N)) = N_Assignment_Statement
8351 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
8352 and then Parent (N) = Name (Parent (Parent (N))))
8353 then
8354 return;
8355
8356 elsif Nkind (Parent (N)) = N_Indexed_Component
8357 or else Is_Renamed_Object (N)
8358 or else Is_Procedure_Actual (N)
8359 then
8360 return;
8361
8362 elsif Nkind (Parent (N)) = N_Attribute_Reference
8363 and then Attribute_Name (Parent (N)) = Name_Address
8364 then
8365 return;
8366
8367 else
8368 Make_Temporary_For_Slice;
8369 end if;
8370 end Expand_N_Slice;
8371
8372 ------------------------------
8373 -- Expand_N_Type_Conversion --
8374 ------------------------------
8375
8376 procedure Expand_N_Type_Conversion (N : Node_Id) is
8377 Loc : constant Source_Ptr := Sloc (N);
8378 Operand : constant Node_Id := Expression (N);
8379 Target_Type : constant Entity_Id := Etype (N);
8380 Operand_Type : Entity_Id := Etype (Operand);
8381
8382 procedure Handle_Changed_Representation;
8383 -- This is called in the case of record and array type conversions to
8384 -- see if there is a change of representation to be handled. Change of
8385 -- representation is actually handled at the assignment statement level,
8386 -- and what this procedure does is rewrite node N conversion as an
8387 -- assignment to temporary. If there is no change of representation,
8388 -- then the conversion node is unchanged.
8389
8390 procedure Raise_Accessibility_Error;
8391 -- Called when we know that an accessibility check will fail. Rewrites
8392 -- node N to an appropriate raise statement and outputs warning msgs.
8393 -- The Etype of the raise node is set to Target_Type.
8394
8395 procedure Real_Range_Check;
8396 -- Handles generation of range check for real target value
8397
8398 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
8399 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
8400 -- evaluates to True.
8401
8402 -----------------------------------
8403 -- Handle_Changed_Representation --
8404 -----------------------------------
8405
8406 procedure Handle_Changed_Representation is
8407 Temp : Entity_Id;
8408 Decl : Node_Id;
8409 Odef : Node_Id;
8410 Disc : Node_Id;
8411 N_Ix : Node_Id;
8412 Cons : List_Id;
8413
8414 begin
8415 -- Nothing else to do if no change of representation
8416
8417 if Same_Representation (Operand_Type, Target_Type) then
8418 return;
8419
8420 -- The real change of representation work is done by the assignment
8421 -- statement processing. So if this type conversion is appearing as
8422 -- the expression of an assignment statement, nothing needs to be
8423 -- done to the conversion.
8424
8425 elsif Nkind (Parent (N)) = N_Assignment_Statement then
8426 return;
8427
8428 -- Otherwise we need to generate a temporary variable, and do the
8429 -- change of representation assignment into that temporary variable.
8430 -- The conversion is then replaced by a reference to this variable.
8431
8432 else
8433 Cons := No_List;
8434
8435 -- If type is unconstrained we have to add a constraint, copied
8436 -- from the actual value of the left hand side.
8437
8438 if not Is_Constrained (Target_Type) then
8439 if Has_Discriminants (Operand_Type) then
8440 Disc := First_Discriminant (Operand_Type);
8441
8442 if Disc /= First_Stored_Discriminant (Operand_Type) then
8443 Disc := First_Stored_Discriminant (Operand_Type);
8444 end if;
8445
8446 Cons := New_List;
8447 while Present (Disc) loop
8448 Append_To (Cons,
8449 Make_Selected_Component (Loc,
8450 Prefix =>
8451 Duplicate_Subexpr_Move_Checks (Operand),
8452 Selector_Name =>
8453 Make_Identifier (Loc, Chars (Disc))));
8454 Next_Discriminant (Disc);
8455 end loop;
8456
8457 elsif Is_Array_Type (Operand_Type) then
8458 N_Ix := First_Index (Target_Type);
8459 Cons := New_List;
8460
8461 for J in 1 .. Number_Dimensions (Operand_Type) loop
8462
8463 -- We convert the bounds explicitly. We use an unchecked
8464 -- conversion because bounds checks are done elsewhere.
8465
8466 Append_To (Cons,
8467 Make_Range (Loc,
8468 Low_Bound =>
8469 Unchecked_Convert_To (Etype (N_Ix),
8470 Make_Attribute_Reference (Loc,
8471 Prefix =>
8472 Duplicate_Subexpr_No_Checks
8473 (Operand, Name_Req => True),
8474 Attribute_Name => Name_First,
8475 Expressions => New_List (
8476 Make_Integer_Literal (Loc, J)))),
8477
8478 High_Bound =>
8479 Unchecked_Convert_To (Etype (N_Ix),
8480 Make_Attribute_Reference (Loc,
8481 Prefix =>
8482 Duplicate_Subexpr_No_Checks
8483 (Operand, Name_Req => True),
8484 Attribute_Name => Name_Last,
8485 Expressions => New_List (
8486 Make_Integer_Literal (Loc, J))))));
8487
8488 Next_Index (N_Ix);
8489 end loop;
8490 end if;
8491 end if;
8492
8493 Odef := New_Occurrence_Of (Target_Type, Loc);
8494
8495 if Present (Cons) then
8496 Odef :=
8497 Make_Subtype_Indication (Loc,
8498 Subtype_Mark => Odef,
8499 Constraint =>
8500 Make_Index_Or_Discriminant_Constraint (Loc,
8501 Constraints => Cons));
8502 end if;
8503
8504 Temp := Make_Temporary (Loc, 'C');
8505 Decl :=
8506 Make_Object_Declaration (Loc,
8507 Defining_Identifier => Temp,
8508 Object_Definition => Odef);
8509
8510 Set_No_Initialization (Decl, True);
8511
8512 -- Insert required actions. It is essential to suppress checks
8513 -- since we have suppressed default initialization, which means
8514 -- that the variable we create may have no discriminants.
8515
8516 Insert_Actions (N,
8517 New_List (
8518 Decl,
8519 Make_Assignment_Statement (Loc,
8520 Name => New_Occurrence_Of (Temp, Loc),
8521 Expression => Relocate_Node (N))),
8522 Suppress => All_Checks);
8523
8524 Rewrite (N, New_Occurrence_Of (Temp, Loc));
8525 return;
8526 end if;
8527 end Handle_Changed_Representation;
8528
8529 -------------------------------
8530 -- Raise_Accessibility_Error --
8531 -------------------------------
8532
8533 procedure Raise_Accessibility_Error is
8534 begin
8535 Rewrite (N,
8536 Make_Raise_Program_Error (Sloc (N),
8537 Reason => PE_Accessibility_Check_Failed));
8538 Set_Etype (N, Target_Type);
8539
8540 Error_Msg_N ("?accessibility check failure", N);
8541 Error_Msg_NE
8542 ("\?& will be raised at run time", N, Standard_Program_Error);
8543 end Raise_Accessibility_Error;
8544
8545 ----------------------
8546 -- Real_Range_Check --
8547 ----------------------
8548
8549 -- Case of conversions to floating-point or fixed-point. If range checks
8550 -- are enabled and the target type has a range constraint, we convert:
8551
8552 -- typ (x)
8553
8554 -- to
8555
8556 -- Tnn : typ'Base := typ'Base (x);
8557 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
8558 -- Tnn
8559
8560 -- This is necessary when there is a conversion of integer to float or
8561 -- to fixed-point to ensure that the correct checks are made. It is not
8562 -- necessary for float to float where it is enough to simply set the
8563 -- Do_Range_Check flag.
8564
8565 procedure Real_Range_Check is
8566 Btyp : constant Entity_Id := Base_Type (Target_Type);
8567 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
8568 Hi : constant Node_Id := Type_High_Bound (Target_Type);
8569 Xtyp : constant Entity_Id := Etype (Operand);
8570 Conv : Node_Id;
8571 Tnn : Entity_Id;
8572
8573 begin
8574 -- Nothing to do if conversion was rewritten
8575
8576 if Nkind (N) /= N_Type_Conversion then
8577 return;
8578 end if;
8579
8580 -- Nothing to do if range checks suppressed, or target has the same
8581 -- range as the base type (or is the base type).
8582
8583 if Range_Checks_Suppressed (Target_Type)
8584 or else (Lo = Type_Low_Bound (Btyp)
8585 and then
8586 Hi = Type_High_Bound (Btyp))
8587 then
8588 return;
8589 end if;
8590
8591 -- Nothing to do if expression is an entity on which checks have been
8592 -- suppressed.
8593
8594 if Is_Entity_Name (Operand)
8595 and then Range_Checks_Suppressed (Entity (Operand))
8596 then
8597 return;
8598 end if;
8599
8600 -- Nothing to do if bounds are all static and we can tell that the
8601 -- expression is within the bounds of the target. Note that if the
8602 -- operand is of an unconstrained floating-point type, then we do
8603 -- not trust it to be in range (might be infinite)
8604
8605 declare
8606 S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
8607 S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
8608
8609 begin
8610 if (not Is_Floating_Point_Type (Xtyp)
8611 or else Is_Constrained (Xtyp))
8612 and then Compile_Time_Known_Value (S_Lo)
8613 and then Compile_Time_Known_Value (S_Hi)
8614 and then Compile_Time_Known_Value (Hi)
8615 and then Compile_Time_Known_Value (Lo)
8616 then
8617 declare
8618 D_Lov : constant Ureal := Expr_Value_R (Lo);
8619 D_Hiv : constant Ureal := Expr_Value_R (Hi);
8620 S_Lov : Ureal;
8621 S_Hiv : Ureal;
8622
8623 begin
8624 if Is_Real_Type (Xtyp) then
8625 S_Lov := Expr_Value_R (S_Lo);
8626 S_Hiv := Expr_Value_R (S_Hi);
8627 else
8628 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
8629 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
8630 end if;
8631
8632 if D_Hiv > D_Lov
8633 and then S_Lov >= D_Lov
8634 and then S_Hiv <= D_Hiv
8635 then
8636 Set_Do_Range_Check (Operand, False);
8637 return;
8638 end if;
8639 end;
8640 end if;
8641 end;
8642
8643 -- For float to float conversions, we are done
8644
8645 if Is_Floating_Point_Type (Xtyp)
8646 and then
8647 Is_Floating_Point_Type (Btyp)
8648 then
8649 return;
8650 end if;
8651
8652 -- Otherwise rewrite the conversion as described above
8653
8654 Conv := Relocate_Node (N);
8655 Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
8656 Set_Etype (Conv, Btyp);
8657
8658 -- Enable overflow except for case of integer to float conversions,
8659 -- where it is never required, since we can never have overflow in
8660 -- this case.
8661
8662 if not Is_Integer_Type (Etype (Operand)) then
8663 Enable_Overflow_Check (Conv);
8664 end if;
8665
8666 Tnn := Make_Temporary (Loc, 'T', Conv);
8667
8668 Insert_Actions (N, New_List (
8669 Make_Object_Declaration (Loc,
8670 Defining_Identifier => Tnn,
8671 Object_Definition => New_Occurrence_Of (Btyp, Loc),
8672 Constant_Present => True,
8673 Expression => Conv),
8674
8675 Make_Raise_Constraint_Error (Loc,
8676 Condition =>
8677 Make_Or_Else (Loc,
8678 Left_Opnd =>
8679 Make_Op_Lt (Loc,
8680 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8681 Right_Opnd =>
8682 Make_Attribute_Reference (Loc,
8683 Attribute_Name => Name_First,
8684 Prefix =>
8685 New_Occurrence_Of (Target_Type, Loc))),
8686
8687 Right_Opnd =>
8688 Make_Op_Gt (Loc,
8689 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8690 Right_Opnd =>
8691 Make_Attribute_Reference (Loc,
8692 Attribute_Name => Name_Last,
8693 Prefix =>
8694 New_Occurrence_Of (Target_Type, Loc)))),
8695 Reason => CE_Range_Check_Failed)));
8696
8697 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
8698 Analyze_And_Resolve (N, Btyp);
8699 end Real_Range_Check;
8700
8701 -----------------------------
8702 -- Has_Extra_Accessibility --
8703 -----------------------------
8704
8705 -- Returns true for a formal of an anonymous access type or for
8706 -- an Ada 2012-style stand-alone object of an anonymous access type.
8707
8708 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
8709 begin
8710 if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
8711 return Present (Effective_Extra_Accessibility (Id));
8712 else
8713 return False;
8714 end if;
8715 end Has_Extra_Accessibility;
8716
8717 -- Start of processing for Expand_N_Type_Conversion
8718
8719 begin
8720 -- Nothing at all to do if conversion is to the identical type so remove
8721 -- the conversion completely, it is useless, except that it may carry
8722 -- an Assignment_OK attribute, which must be propagated to the operand.
8723
8724 if Operand_Type = Target_Type then
8725 if Assignment_OK (N) then
8726 Set_Assignment_OK (Operand);
8727 end if;
8728
8729 Rewrite (N, Relocate_Node (Operand));
8730 goto Done;
8731 end if;
8732
8733 -- Nothing to do if this is the second argument of read. This is a
8734 -- "backwards" conversion that will be handled by the specialized code
8735 -- in attribute processing.
8736
8737 if Nkind (Parent (N)) = N_Attribute_Reference
8738 and then Attribute_Name (Parent (N)) = Name_Read
8739 and then Next (First (Expressions (Parent (N)))) = N
8740 then
8741 goto Done;
8742 end if;
8743
8744 -- Check for case of converting to a type that has an invariant
8745 -- associated with it. This required an invariant check. We convert
8746
8747 -- typ (expr)
8748
8749 -- into
8750
8751 -- do invariant_check (typ (expr)) in typ (expr);
8752
8753 -- using Duplicate_Subexpr to avoid multiple side effects
8754
8755 -- Note: the Comes_From_Source check, and then the resetting of this
8756 -- flag prevents what would otherwise be an infinite recursion.
8757
8758 if Has_Invariants (Target_Type)
8759 and then Present (Invariant_Procedure (Target_Type))
8760 and then Comes_From_Source (N)
8761 then
8762 Set_Comes_From_Source (N, False);
8763 Rewrite (N,
8764 Make_Expression_With_Actions (Loc,
8765 Actions => New_List (
8766 Make_Invariant_Call (Duplicate_Subexpr (N))),
8767 Expression => Duplicate_Subexpr_No_Checks (N)));
8768 Analyze_And_Resolve (N, Target_Type);
8769 goto Done;
8770 end if;
8771
8772 -- Here if we may need to expand conversion
8773
8774 -- If the operand of the type conversion is an arithmetic operation on
8775 -- signed integers, and the based type of the signed integer type in
8776 -- question is smaller than Standard.Integer, we promote both of the
8777 -- operands to type Integer.
8778
8779 -- For example, if we have
8780
8781 -- target-type (opnd1 + opnd2)
8782
8783 -- and opnd1 and opnd2 are of type short integer, then we rewrite
8784 -- this as:
8785
8786 -- target-type (integer(opnd1) + integer(opnd2))
8787
8788 -- We do this because we are always allowed to compute in a larger type
8789 -- if we do the right thing with the result, and in this case we are
8790 -- going to do a conversion which will do an appropriate check to make
8791 -- sure that things are in range of the target type in any case. This
8792 -- avoids some unnecessary intermediate overflows.
8793
8794 -- We might consider a similar transformation in the case where the
8795 -- target is a real type or a 64-bit integer type, and the operand
8796 -- is an arithmetic operation using a 32-bit integer type. However,
8797 -- we do not bother with this case, because it could cause significant
8798 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
8799 -- much cheaper, but we don't want different behavior on 32-bit and
8800 -- 64-bit machines. Note that the exclusion of the 64-bit case also
8801 -- handles the configurable run-time cases where 64-bit arithmetic
8802 -- may simply be unavailable.
8803
8804 -- Note: this circuit is partially redundant with respect to the circuit
8805 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
8806 -- the processing here. Also we still need the Checks circuit, since we
8807 -- have to be sure not to generate junk overflow checks in the first
8808 -- place, since it would be trick to remove them here!
8809
8810 if Integer_Promotion_Possible (N) then
8811
8812 -- All conditions met, go ahead with transformation
8813
8814 declare
8815 Opnd : Node_Id;
8816 L, R : Node_Id;
8817
8818 begin
8819 R :=
8820 Make_Type_Conversion (Loc,
8821 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
8822 Expression => Relocate_Node (Right_Opnd (Operand)));
8823
8824 Opnd := New_Op_Node (Nkind (Operand), Loc);
8825 Set_Right_Opnd (Opnd, R);
8826
8827 if Nkind (Operand) in N_Binary_Op then
8828 L :=
8829 Make_Type_Conversion (Loc,
8830 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
8831 Expression => Relocate_Node (Left_Opnd (Operand)));
8832
8833 Set_Left_Opnd (Opnd, L);
8834 end if;
8835
8836 Rewrite (N,
8837 Make_Type_Conversion (Loc,
8838 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
8839 Expression => Opnd));
8840
8841 Analyze_And_Resolve (N, Target_Type);
8842 goto Done;
8843 end;
8844 end if;
8845
8846 -- Do validity check if validity checking operands
8847
8848 if Validity_Checks_On
8849 and then Validity_Check_Operands
8850 then
8851 Ensure_Valid (Operand);
8852 end if;
8853
8854 -- Special case of converting from non-standard boolean type
8855
8856 if Is_Boolean_Type (Operand_Type)
8857 and then (Nonzero_Is_True (Operand_Type))
8858 then
8859 Adjust_Condition (Operand);
8860 Set_Etype (Operand, Standard_Boolean);
8861 Operand_Type := Standard_Boolean;
8862 end if;
8863
8864 -- Case of converting to an access type
8865
8866 if Is_Access_Type (Target_Type) then
8867
8868 -- Apply an accessibility check when the conversion operand is an
8869 -- access parameter (or a renaming thereof), unless conversion was
8870 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
8871 -- Note that other checks may still need to be applied below (such
8872 -- as tagged type checks).
8873
8874 if Is_Entity_Name (Operand)
8875 and then Has_Extra_Accessibility (Entity (Operand))
8876 and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
8877 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
8878 or else Attribute_Name (Original_Node (N)) = Name_Access)
8879 then
8880 Apply_Accessibility_Check
8881 (Operand, Target_Type, Insert_Node => Operand);
8882
8883 -- If the level of the operand type is statically deeper than the
8884 -- level of the target type, then force Program_Error. Note that this
8885 -- can only occur for cases where the attribute is within the body of
8886 -- an instantiation (otherwise the conversion will already have been
8887 -- rejected as illegal). Note: warnings are issued by the analyzer
8888 -- for the instance cases.
8889
8890 elsif In_Instance_Body
8891 and then Type_Access_Level (Operand_Type) >
8892 Type_Access_Level (Target_Type)
8893 then
8894 Raise_Accessibility_Error;
8895
8896 -- When the operand is a selected access discriminant the check needs
8897 -- to be made against the level of the object denoted by the prefix
8898 -- of the selected name. Force Program_Error for this case as well
8899 -- (this accessibility violation can only happen if within the body
8900 -- of an instantiation).
8901
8902 elsif In_Instance_Body
8903 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
8904 and then Nkind (Operand) = N_Selected_Component
8905 and then Object_Access_Level (Operand) >
8906 Type_Access_Level (Target_Type)
8907 then
8908 Raise_Accessibility_Error;
8909 goto Done;
8910 end if;
8911 end if;
8912
8913 -- Case of conversions of tagged types and access to tagged types
8914
8915 -- When needed, that is to say when the expression is class-wide, Add
8916 -- runtime a tag check for (strict) downward conversion by using the
8917 -- membership test, generating:
8918
8919 -- [constraint_error when Operand not in Target_Type'Class]
8920
8921 -- or in the access type case
8922
8923 -- [constraint_error
8924 -- when Operand /= null
8925 -- and then Operand.all not in
8926 -- Designated_Type (Target_Type)'Class]
8927
8928 if (Is_Access_Type (Target_Type)
8929 and then Is_Tagged_Type (Designated_Type (Target_Type)))
8930 or else Is_Tagged_Type (Target_Type)
8931 then
8932 -- Do not do any expansion in the access type case if the parent is a
8933 -- renaming, since this is an error situation which will be caught by
8934 -- Sem_Ch8, and the expansion can interfere with this error check.
8935
8936 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
8937 goto Done;
8938 end if;
8939
8940 -- Otherwise, proceed with processing tagged conversion
8941
8942 Tagged_Conversion : declare
8943 Actual_Op_Typ : Entity_Id;
8944 Actual_Targ_Typ : Entity_Id;
8945 Make_Conversion : Boolean := False;
8946 Root_Op_Typ : Entity_Id;
8947
8948 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
8949 -- Create a membership check to test whether Operand is a member
8950 -- of Targ_Typ. If the original Target_Type is an access, include
8951 -- a test for null value. The check is inserted at N.
8952
8953 --------------------
8954 -- Make_Tag_Check --
8955 --------------------
8956
8957 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
8958 Cond : Node_Id;
8959
8960 begin
8961 -- Generate:
8962 -- [Constraint_Error
8963 -- when Operand /= null
8964 -- and then Operand.all not in Targ_Typ]
8965
8966 if Is_Access_Type (Target_Type) then
8967 Cond :=
8968 Make_And_Then (Loc,
8969 Left_Opnd =>
8970 Make_Op_Ne (Loc,
8971 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
8972 Right_Opnd => Make_Null (Loc)),
8973
8974 Right_Opnd =>
8975 Make_Not_In (Loc,
8976 Left_Opnd =>
8977 Make_Explicit_Dereference (Loc,
8978 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
8979 Right_Opnd => New_Reference_To (Targ_Typ, Loc)));
8980
8981 -- Generate:
8982 -- [Constraint_Error when Operand not in Targ_Typ]
8983
8984 else
8985 Cond :=
8986 Make_Not_In (Loc,
8987 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
8988 Right_Opnd => New_Reference_To (Targ_Typ, Loc));
8989 end if;
8990
8991 Insert_Action (N,
8992 Make_Raise_Constraint_Error (Loc,
8993 Condition => Cond,
8994 Reason => CE_Tag_Check_Failed));
8995 end Make_Tag_Check;
8996
8997 -- Start of processing for Tagged_Conversion
8998
8999 begin
9000 -- Handle entities from the limited view
9001
9002 if Is_Access_Type (Operand_Type) then
9003 Actual_Op_Typ :=
9004 Available_View (Designated_Type (Operand_Type));
9005 else
9006 Actual_Op_Typ := Operand_Type;
9007 end if;
9008
9009 if Is_Access_Type (Target_Type) then
9010 Actual_Targ_Typ :=
9011 Available_View (Designated_Type (Target_Type));
9012 else
9013 Actual_Targ_Typ := Target_Type;
9014 end if;
9015
9016 Root_Op_Typ := Root_Type (Actual_Op_Typ);
9017
9018 -- Ada 2005 (AI-251): Handle interface type conversion
9019
9020 if Is_Interface (Actual_Op_Typ) then
9021 Expand_Interface_Conversion (N, Is_Static => False);
9022 goto Done;
9023 end if;
9024
9025 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
9026
9027 -- Create a runtime tag check for a downward class-wide type
9028 -- conversion.
9029
9030 if Is_Class_Wide_Type (Actual_Op_Typ)
9031 and then Actual_Op_Typ /= Actual_Targ_Typ
9032 and then Root_Op_Typ /= Actual_Targ_Typ
9033 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
9034 Use_Full_View => True)
9035 then
9036 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
9037 Make_Conversion := True;
9038 end if;
9039
9040 -- AI05-0073: If the result subtype of the function is defined
9041 -- by an access_definition designating a specific tagged type
9042 -- T, a check is made that the result value is null or the tag
9043 -- of the object designated by the result value identifies T.
9044 -- Constraint_Error is raised if this check fails.
9045
9046 if Nkind (Parent (N)) = Sinfo.N_Return_Statement then
9047 declare
9048 Func : Entity_Id;
9049 Func_Typ : Entity_Id;
9050
9051 begin
9052 -- Climb scope stack looking for the enclosing function
9053
9054 Func := Current_Scope;
9055 while Present (Func)
9056 and then Ekind (Func) /= E_Function
9057 loop
9058 Func := Scope (Func);
9059 end loop;
9060
9061 -- The function's return subtype must be defined using
9062 -- an access definition.
9063
9064 if Nkind (Result_Definition (Parent (Func))) =
9065 N_Access_Definition
9066 then
9067 Func_Typ := Directly_Designated_Type (Etype (Func));
9068
9069 -- The return subtype denotes a specific tagged type,
9070 -- in other words, a non class-wide type.
9071
9072 if Is_Tagged_Type (Func_Typ)
9073 and then not Is_Class_Wide_Type (Func_Typ)
9074 then
9075 Make_Tag_Check (Actual_Targ_Typ);
9076 Make_Conversion := True;
9077 end if;
9078 end if;
9079 end;
9080 end if;
9081
9082 -- We have generated a tag check for either a class-wide type
9083 -- conversion or for AI05-0073.
9084
9085 if Make_Conversion then
9086 declare
9087 Conv : Node_Id;
9088 begin
9089 Conv :=
9090 Make_Unchecked_Type_Conversion (Loc,
9091 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
9092 Expression => Relocate_Node (Expression (N)));
9093 Rewrite (N, Conv);
9094 Analyze_And_Resolve (N, Target_Type);
9095 end;
9096 end if;
9097 end if;
9098 end Tagged_Conversion;
9099
9100 -- Case of other access type conversions
9101
9102 elsif Is_Access_Type (Target_Type) then
9103 Apply_Constraint_Check (Operand, Target_Type);
9104
9105 -- Case of conversions from a fixed-point type
9106
9107 -- These conversions require special expansion and processing, found in
9108 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
9109 -- since from a semantic point of view, these are simple integer
9110 -- conversions, which do not need further processing.
9111
9112 elsif Is_Fixed_Point_Type (Operand_Type)
9113 and then not Conversion_OK (N)
9114 then
9115 -- We should never see universal fixed at this case, since the
9116 -- expansion of the constituent divide or multiply should have
9117 -- eliminated the explicit mention of universal fixed.
9118
9119 pragma Assert (Operand_Type /= Universal_Fixed);
9120
9121 -- Check for special case of the conversion to universal real that
9122 -- occurs as a result of the use of a round attribute. In this case,
9123 -- the real type for the conversion is taken from the target type of
9124 -- the Round attribute and the result must be marked as rounded.
9125
9126 if Target_Type = Universal_Real
9127 and then Nkind (Parent (N)) = N_Attribute_Reference
9128 and then Attribute_Name (Parent (N)) = Name_Round
9129 then
9130 Set_Rounded_Result (N);
9131 Set_Etype (N, Etype (Parent (N)));
9132 end if;
9133
9134 -- Otherwise do correct fixed-conversion, but skip these if the
9135 -- Conversion_OK flag is set, because from a semantic point of view
9136 -- these are simple integer conversions needing no further processing
9137 -- (the backend will simply treat them as integers).
9138
9139 if not Conversion_OK (N) then
9140 if Is_Fixed_Point_Type (Etype (N)) then
9141 Expand_Convert_Fixed_To_Fixed (N);
9142 Real_Range_Check;
9143
9144 elsif Is_Integer_Type (Etype (N)) then
9145 Expand_Convert_Fixed_To_Integer (N);
9146
9147 else
9148 pragma Assert (Is_Floating_Point_Type (Etype (N)));
9149 Expand_Convert_Fixed_To_Float (N);
9150 Real_Range_Check;
9151 end if;
9152 end if;
9153
9154 -- Case of conversions to a fixed-point type
9155
9156 -- These conversions require special expansion and processing, found in
9157 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
9158 -- since from a semantic point of view, these are simple integer
9159 -- conversions, which do not need further processing.
9160
9161 elsif Is_Fixed_Point_Type (Target_Type)
9162 and then not Conversion_OK (N)
9163 then
9164 if Is_Integer_Type (Operand_Type) then
9165 Expand_Convert_Integer_To_Fixed (N);
9166 Real_Range_Check;
9167 else
9168 pragma Assert (Is_Floating_Point_Type (Operand_Type));
9169 Expand_Convert_Float_To_Fixed (N);
9170 Real_Range_Check;
9171 end if;
9172
9173 -- Case of float-to-integer conversions
9174
9175 -- We also handle float-to-fixed conversions with Conversion_OK set
9176 -- since semantically the fixed-point target is treated as though it
9177 -- were an integer in such cases.
9178
9179 elsif Is_Floating_Point_Type (Operand_Type)
9180 and then
9181 (Is_Integer_Type (Target_Type)
9182 or else
9183 (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
9184 then
9185 -- One more check here, gcc is still not able to do conversions of
9186 -- this type with proper overflow checking, and so gigi is doing an
9187 -- approximation of what is required by doing floating-point compares
9188 -- with the end-point. But that can lose precision in some cases, and
9189 -- give a wrong result. Converting the operand to Universal_Real is
9190 -- helpful, but still does not catch all cases with 64-bit integers
9191 -- on targets with only 64-bit floats.
9192
9193 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
9194 -- Can this code be removed ???
9195
9196 if Do_Range_Check (Operand) then
9197 Rewrite (Operand,
9198 Make_Type_Conversion (Loc,
9199 Subtype_Mark =>
9200 New_Occurrence_Of (Universal_Real, Loc),
9201 Expression =>
9202 Relocate_Node (Operand)));
9203
9204 Set_Etype (Operand, Universal_Real);
9205 Enable_Range_Check (Operand);
9206 Set_Do_Range_Check (Expression (Operand), False);
9207 end if;
9208
9209 -- Case of array conversions
9210
9211 -- Expansion of array conversions, add required length/range checks but
9212 -- only do this if there is no change of representation. For handling of
9213 -- this case, see Handle_Changed_Representation.
9214
9215 elsif Is_Array_Type (Target_Type) then
9216 if Is_Constrained (Target_Type) then
9217 Apply_Length_Check (Operand, Target_Type);
9218 else
9219 Apply_Range_Check (Operand, Target_Type);
9220 end if;
9221
9222 Handle_Changed_Representation;
9223
9224 -- Case of conversions of discriminated types
9225
9226 -- Add required discriminant checks if target is constrained. Again this
9227 -- change is skipped if we have a change of representation.
9228
9229 elsif Has_Discriminants (Target_Type)
9230 and then Is_Constrained (Target_Type)
9231 then
9232 Apply_Discriminant_Check (Operand, Target_Type);
9233 Handle_Changed_Representation;
9234
9235 -- Case of all other record conversions. The only processing required
9236 -- is to check for a change of representation requiring the special
9237 -- assignment processing.
9238
9239 elsif Is_Record_Type (Target_Type) then
9240
9241 -- Ada 2005 (AI-216): Program_Error is raised when converting from
9242 -- a derived Unchecked_Union type to an unconstrained type that is
9243 -- not Unchecked_Union if the operand lacks inferable discriminants.
9244
9245 if Is_Derived_Type (Operand_Type)
9246 and then Is_Unchecked_Union (Base_Type (Operand_Type))
9247 and then not Is_Constrained (Target_Type)
9248 and then not Is_Unchecked_Union (Base_Type (Target_Type))
9249 and then not Has_Inferable_Discriminants (Operand)
9250 then
9251 -- To prevent Gigi from generating illegal code, we generate a
9252 -- Program_Error node, but we give it the target type of the
9253 -- conversion.
9254
9255 declare
9256 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
9257 Reason => PE_Unchecked_Union_Restriction);
9258
9259 begin
9260 Set_Etype (PE, Target_Type);
9261 Rewrite (N, PE);
9262
9263 end;
9264 else
9265 Handle_Changed_Representation;
9266 end if;
9267
9268 -- Case of conversions of enumeration types
9269
9270 elsif Is_Enumeration_Type (Target_Type) then
9271
9272 -- Special processing is required if there is a change of
9273 -- representation (from enumeration representation clauses).
9274
9275 if not Same_Representation (Target_Type, Operand_Type) then
9276
9277 -- Convert: x(y) to x'val (ytyp'val (y))
9278
9279 Rewrite (N,
9280 Make_Attribute_Reference (Loc,
9281 Prefix => New_Occurrence_Of (Target_Type, Loc),
9282 Attribute_Name => Name_Val,
9283 Expressions => New_List (
9284 Make_Attribute_Reference (Loc,
9285 Prefix => New_Occurrence_Of (Operand_Type, Loc),
9286 Attribute_Name => Name_Pos,
9287 Expressions => New_List (Operand)))));
9288
9289 Analyze_And_Resolve (N, Target_Type);
9290 end if;
9291
9292 -- Case of conversions to floating-point
9293
9294 elsif Is_Floating_Point_Type (Target_Type) then
9295 Real_Range_Check;
9296 end if;
9297
9298 -- At this stage, either the conversion node has been transformed into
9299 -- some other equivalent expression, or left as a conversion that can be
9300 -- handled by Gigi, in the following cases:
9301
9302 -- Conversions with no change of representation or type
9303
9304 -- Numeric conversions involving integer, floating- and fixed-point
9305 -- values. Fixed-point values are allowed only if Conversion_OK is
9306 -- set, i.e. if the fixed-point values are to be treated as integers.
9307
9308 -- No other conversions should be passed to Gigi
9309
9310 -- Check: are these rules stated in sinfo??? if so, why restate here???
9311
9312 -- The only remaining step is to generate a range check if we still have
9313 -- a type conversion at this stage and Do_Range_Check is set. For now we
9314 -- do this only for conversions of discrete types.
9315
9316 if Nkind (N) = N_Type_Conversion
9317 and then Is_Discrete_Type (Etype (N))
9318 then
9319 declare
9320 Expr : constant Node_Id := Expression (N);
9321 Ftyp : Entity_Id;
9322 Ityp : Entity_Id;
9323
9324 begin
9325 if Do_Range_Check (Expr)
9326 and then Is_Discrete_Type (Etype (Expr))
9327 then
9328 Set_Do_Range_Check (Expr, False);
9329
9330 -- Before we do a range check, we have to deal with treating a
9331 -- fixed-point operand as an integer. The way we do this is
9332 -- simply to do an unchecked conversion to an appropriate
9333 -- integer type large enough to hold the result.
9334
9335 -- This code is not active yet, because we are only dealing
9336 -- with discrete types so far ???
9337
9338 if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
9339 and then Treat_Fixed_As_Integer (Expr)
9340 then
9341 Ftyp := Base_Type (Etype (Expr));
9342
9343 if Esize (Ftyp) >= Esize (Standard_Integer) then
9344 Ityp := Standard_Long_Long_Integer;
9345 else
9346 Ityp := Standard_Integer;
9347 end if;
9348
9349 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
9350 end if;
9351
9352 -- Reset overflow flag, since the range check will include
9353 -- dealing with possible overflow, and generate the check. If
9354 -- Address is either a source type or target type, suppress
9355 -- range check to avoid typing anomalies when it is a visible
9356 -- integer type.
9357
9358 Set_Do_Overflow_Check (N, False);
9359 if not Is_Descendent_Of_Address (Etype (Expr))
9360 and then not Is_Descendent_Of_Address (Target_Type)
9361 then
9362 Generate_Range_Check
9363 (Expr, Target_Type, CE_Range_Check_Failed);
9364 end if;
9365 end if;
9366 end;
9367 end if;
9368
9369 -- Final step, if the result is a type conversion involving Vax_Float
9370 -- types, then it is subject for further special processing.
9371
9372 if Nkind (N) = N_Type_Conversion
9373 and then (Vax_Float (Operand_Type) or else Vax_Float (Target_Type))
9374 then
9375 Expand_Vax_Conversion (N);
9376 goto Done;
9377 end if;
9378
9379 -- Here at end of processing
9380
9381 <<Done>>
9382 -- Apply predicate check if required. Note that we can't just call
9383 -- Apply_Predicate_Check here, because the type looks right after
9384 -- the conversion and it would omit the check. The Comes_From_Source
9385 -- guard is necessary to prevent infinite recursions when we generate
9386 -- internal conversions for the purpose of checking predicates.
9387
9388 if Present (Predicate_Function (Target_Type))
9389 and then Target_Type /= Operand_Type
9390 and then Comes_From_Source (N)
9391 then
9392 declare
9393 New_Expr : constant Node_Id := Duplicate_Subexpr (N);
9394
9395 begin
9396 -- Avoid infinite recursion on the subsequent expansion of
9397 -- of the copy of the original type conversion.
9398
9399 Set_Comes_From_Source (New_Expr, False);
9400 Insert_Action (N, Make_Predicate_Check (Target_Type, New_Expr));
9401 end;
9402 end if;
9403 end Expand_N_Type_Conversion;
9404
9405 -----------------------------------
9406 -- Expand_N_Unchecked_Expression --
9407 -----------------------------------
9408
9409 -- Remove the unchecked expression node from the tree. Its job was simply
9410 -- to make sure that its constituent expression was handled with checks
9411 -- off, and now that that is done, we can remove it from the tree, and
9412 -- indeed must, since Gigi does not expect to see these nodes.
9413
9414 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
9415 Exp : constant Node_Id := Expression (N);
9416 begin
9417 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
9418 Rewrite (N, Exp);
9419 end Expand_N_Unchecked_Expression;
9420
9421 ----------------------------------------
9422 -- Expand_N_Unchecked_Type_Conversion --
9423 ----------------------------------------
9424
9425 -- If this cannot be handled by Gigi and we haven't already made a
9426 -- temporary for it, do it now.
9427
9428 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
9429 Target_Type : constant Entity_Id := Etype (N);
9430 Operand : constant Node_Id := Expression (N);
9431 Operand_Type : constant Entity_Id := Etype (Operand);
9432
9433 begin
9434 -- Nothing at all to do if conversion is to the identical type so remove
9435 -- the conversion completely, it is useless, except that it may carry
9436 -- an Assignment_OK indication which must be propagated to the operand.
9437
9438 if Operand_Type = Target_Type then
9439
9440 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
9441
9442 if Assignment_OK (N) then
9443 Set_Assignment_OK (Operand);
9444 end if;
9445
9446 Rewrite (N, Relocate_Node (Operand));
9447 return;
9448 end if;
9449
9450 -- If we have a conversion of a compile time known value to a target
9451 -- type and the value is in range of the target type, then we can simply
9452 -- replace the construct by an integer literal of the correct type. We
9453 -- only apply this to integer types being converted. Possibly it may
9454 -- apply in other cases, but it is too much trouble to worry about.
9455
9456 -- Note that we do not do this transformation if the Kill_Range_Check
9457 -- flag is set, since then the value may be outside the expected range.
9458 -- This happens in the Normalize_Scalars case.
9459
9460 -- We also skip this if either the target or operand type is biased
9461 -- because in this case, the unchecked conversion is supposed to
9462 -- preserve the bit pattern, not the integer value.
9463
9464 if Is_Integer_Type (Target_Type)
9465 and then not Has_Biased_Representation (Target_Type)
9466 and then Is_Integer_Type (Operand_Type)
9467 and then not Has_Biased_Representation (Operand_Type)
9468 and then Compile_Time_Known_Value (Operand)
9469 and then not Kill_Range_Check (N)
9470 then
9471 declare
9472 Val : constant Uint := Expr_Value (Operand);
9473
9474 begin
9475 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
9476 and then
9477 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
9478 and then
9479 Val >= Expr_Value (Type_Low_Bound (Target_Type))
9480 and then
9481 Val <= Expr_Value (Type_High_Bound (Target_Type))
9482 then
9483 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
9484
9485 -- If Address is the target type, just set the type to avoid a
9486 -- spurious type error on the literal when Address is a visible
9487 -- integer type.
9488
9489 if Is_Descendent_Of_Address (Target_Type) then
9490 Set_Etype (N, Target_Type);
9491 else
9492 Analyze_And_Resolve (N, Target_Type);
9493 end if;
9494
9495 return;
9496 end if;
9497 end;
9498 end if;
9499
9500 -- Nothing to do if conversion is safe
9501
9502 if Safe_Unchecked_Type_Conversion (N) then
9503 return;
9504 end if;
9505
9506 -- Otherwise force evaluation unless Assignment_OK flag is set (this
9507 -- flag indicates ??? -- more comments needed here)
9508
9509 if Assignment_OK (N) then
9510 null;
9511 else
9512 Force_Evaluation (N);
9513 end if;
9514 end Expand_N_Unchecked_Type_Conversion;
9515
9516 ----------------------------
9517 -- Expand_Record_Equality --
9518 ----------------------------
9519
9520 -- For non-variant records, Equality is expanded when needed into:
9521
9522 -- and then Lhs.Discr1 = Rhs.Discr1
9523 -- and then ...
9524 -- and then Lhs.Discrn = Rhs.Discrn
9525 -- and then Lhs.Cmp1 = Rhs.Cmp1
9526 -- and then ...
9527 -- and then Lhs.Cmpn = Rhs.Cmpn
9528
9529 -- The expression is folded by the back-end for adjacent fields. This
9530 -- function is called for tagged record in only one occasion: for imple-
9531 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
9532 -- otherwise the primitive "=" is used directly.
9533
9534 function Expand_Record_Equality
9535 (Nod : Node_Id;
9536 Typ : Entity_Id;
9537 Lhs : Node_Id;
9538 Rhs : Node_Id;
9539 Bodies : List_Id) return Node_Id
9540 is
9541 Loc : constant Source_Ptr := Sloc (Nod);
9542
9543 Result : Node_Id;
9544 C : Entity_Id;
9545
9546 First_Time : Boolean := True;
9547
9548 function Suitable_Element (C : Entity_Id) return Entity_Id;
9549 -- Return the first field to compare beginning with C, skipping the
9550 -- inherited components.
9551
9552 ----------------------
9553 -- Suitable_Element --
9554 ----------------------
9555
9556 function Suitable_Element (C : Entity_Id) return Entity_Id is
9557 begin
9558 if No (C) then
9559 return Empty;
9560
9561 elsif Ekind (C) /= E_Discriminant
9562 and then Ekind (C) /= E_Component
9563 then
9564 return Suitable_Element (Next_Entity (C));
9565
9566 elsif Is_Tagged_Type (Typ)
9567 and then C /= Original_Record_Component (C)
9568 then
9569 return Suitable_Element (Next_Entity (C));
9570
9571 elsif Chars (C) = Name_uTag then
9572 return Suitable_Element (Next_Entity (C));
9573
9574 -- The .NET/JVM version of type Root_Controlled contains two fields
9575 -- which should not be considered part of the object. To achieve
9576 -- proper equiality between two controlled objects on .NET/JVM, skip
9577 -- field _parent whenever it is of type Root_Controlled.
9578
9579 elsif Chars (C) = Name_uParent
9580 and then VM_Target /= No_VM
9581 and then Etype (C) = RTE (RE_Root_Controlled)
9582 then
9583 return Suitable_Element (Next_Entity (C));
9584
9585 elsif Is_Interface (Etype (C)) then
9586 return Suitable_Element (Next_Entity (C));
9587
9588 else
9589 return C;
9590 end if;
9591 end Suitable_Element;
9592
9593 -- Start of processing for Expand_Record_Equality
9594
9595 begin
9596 -- Generates the following code: (assuming that Typ has one Discr and
9597 -- component C2 is also a record)
9598
9599 -- True
9600 -- and then Lhs.Discr1 = Rhs.Discr1
9601 -- and then Lhs.C1 = Rhs.C1
9602 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
9603 -- and then ...
9604 -- and then Lhs.Cmpn = Rhs.Cmpn
9605
9606 Result := New_Reference_To (Standard_True, Loc);
9607 C := Suitable_Element (First_Entity (Typ));
9608 while Present (C) loop
9609 declare
9610 New_Lhs : Node_Id;
9611 New_Rhs : Node_Id;
9612 Check : Node_Id;
9613
9614 begin
9615 if First_Time then
9616 First_Time := False;
9617 New_Lhs := Lhs;
9618 New_Rhs := Rhs;
9619 else
9620 New_Lhs := New_Copy_Tree (Lhs);
9621 New_Rhs := New_Copy_Tree (Rhs);
9622 end if;
9623
9624 Check :=
9625 Expand_Composite_Equality (Nod, Etype (C),
9626 Lhs =>
9627 Make_Selected_Component (Loc,
9628 Prefix => New_Lhs,
9629 Selector_Name => New_Reference_To (C, Loc)),
9630 Rhs =>
9631 Make_Selected_Component (Loc,
9632 Prefix => New_Rhs,
9633 Selector_Name => New_Reference_To (C, Loc)),
9634 Bodies => Bodies);
9635
9636 -- If some (sub)component is an unchecked_union, the whole
9637 -- operation will raise program error.
9638
9639 if Nkind (Check) = N_Raise_Program_Error then
9640 Result := Check;
9641 Set_Etype (Result, Standard_Boolean);
9642 exit;
9643 else
9644 Result :=
9645 Make_And_Then (Loc,
9646 Left_Opnd => Result,
9647 Right_Opnd => Check);
9648 end if;
9649 end;
9650
9651 C := Suitable_Element (Next_Entity (C));
9652 end loop;
9653
9654 return Result;
9655 end Expand_Record_Equality;
9656
9657 ---------------------------
9658 -- Expand_Set_Membership --
9659 ---------------------------
9660
9661 procedure Expand_Set_Membership (N : Node_Id) is
9662 Lop : constant Node_Id := Left_Opnd (N);
9663 Alt : Node_Id;
9664 Res : Node_Id;
9665
9666 function Make_Cond (Alt : Node_Id) return Node_Id;
9667 -- If the alternative is a subtype mark, create a simple membership
9668 -- test. Otherwise create an equality test for it.
9669
9670 ---------------
9671 -- Make_Cond --
9672 ---------------
9673
9674 function Make_Cond (Alt : Node_Id) return Node_Id is
9675 Cond : Node_Id;
9676 L : constant Node_Id := New_Copy (Lop);
9677 R : constant Node_Id := Relocate_Node (Alt);
9678
9679 begin
9680 if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
9681 or else Nkind (Alt) = N_Range
9682 then
9683 Cond :=
9684 Make_In (Sloc (Alt),
9685 Left_Opnd => L,
9686 Right_Opnd => R);
9687 else
9688 Cond :=
9689 Make_Op_Eq (Sloc (Alt),
9690 Left_Opnd => L,
9691 Right_Opnd => R);
9692 end if;
9693
9694 return Cond;
9695 end Make_Cond;
9696
9697 -- Start of processing for Expand_Set_Membership
9698
9699 begin
9700 Remove_Side_Effects (Lop);
9701
9702 Alt := Last (Alternatives (N));
9703 Res := Make_Cond (Alt);
9704
9705 Prev (Alt);
9706 while Present (Alt) loop
9707 Res :=
9708 Make_Or_Else (Sloc (Alt),
9709 Left_Opnd => Make_Cond (Alt),
9710 Right_Opnd => Res);
9711 Prev (Alt);
9712 end loop;
9713
9714 Rewrite (N, Res);
9715 Analyze_And_Resolve (N, Standard_Boolean);
9716 end Expand_Set_Membership;
9717
9718 -----------------------------------
9719 -- Expand_Short_Circuit_Operator --
9720 -----------------------------------
9721
9722 -- Deal with special expansion if actions are present for the right operand
9723 -- and deal with optimizing case of arguments being True or False. We also
9724 -- deal with the special case of non-standard boolean values.
9725
9726 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
9727 Loc : constant Source_Ptr := Sloc (N);
9728 Typ : constant Entity_Id := Etype (N);
9729 Left : constant Node_Id := Left_Opnd (N);
9730 Right : constant Node_Id := Right_Opnd (N);
9731 LocR : constant Source_Ptr := Sloc (Right);
9732 Actlist : List_Id;
9733
9734 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
9735 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
9736 -- If Left = Shortcut_Value then Right need not be evaluated
9737
9738 function Make_Test_Expr (Opnd : Node_Id) return Node_Id;
9739 -- For Opnd a boolean expression, return a Boolean expression equivalent
9740 -- to Opnd /= Shortcut_Value.
9741
9742 --------------------
9743 -- Make_Test_Expr --
9744 --------------------
9745
9746 function Make_Test_Expr (Opnd : Node_Id) return Node_Id is
9747 begin
9748 if Shortcut_Value then
9749 return Make_Op_Not (Sloc (Opnd), Opnd);
9750 else
9751 return Opnd;
9752 end if;
9753 end Make_Test_Expr;
9754
9755 Op_Var : Entity_Id;
9756 -- Entity for a temporary variable holding the value of the operator,
9757 -- used for expansion in the case where actions are present.
9758
9759 -- Start of processing for Expand_Short_Circuit_Operator
9760
9761 begin
9762 -- Deal with non-standard booleans
9763
9764 if Is_Boolean_Type (Typ) then
9765 Adjust_Condition (Left);
9766 Adjust_Condition (Right);
9767 Set_Etype (N, Standard_Boolean);
9768 end if;
9769
9770 -- Check for cases where left argument is known to be True or False
9771
9772 if Compile_Time_Known_Value (Left) then
9773
9774 -- Mark SCO for left condition as compile time known
9775
9776 if Generate_SCO and then Comes_From_Source (Left) then
9777 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
9778 end if;
9779
9780 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
9781 -- Any actions associated with Right will be executed unconditionally
9782 -- and can thus be inserted into the tree unconditionally.
9783
9784 if Expr_Value_E (Left) /= Shortcut_Ent then
9785 if Present (Actions (N)) then
9786 Insert_Actions (N, Actions (N));
9787 end if;
9788
9789 Rewrite (N, Right);
9790
9791 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
9792 -- In this case we can forget the actions associated with Right,
9793 -- since they will never be executed.
9794
9795 else
9796 Kill_Dead_Code (Right);
9797 Kill_Dead_Code (Actions (N));
9798 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
9799 end if;
9800
9801 Adjust_Result_Type (N, Typ);
9802 return;
9803 end if;
9804
9805 -- If Actions are present for the right operand, we have to do some
9806 -- special processing. We can't just let these actions filter back into
9807 -- code preceding the short circuit (which is what would have happened
9808 -- if we had not trapped them in the short-circuit form), since they
9809 -- must only be executed if the right operand of the short circuit is
9810 -- executed and not otherwise.
9811
9812 -- the temporary variable C.
9813
9814 if Present (Actions (N)) then
9815 Actlist := Actions (N);
9816
9817 -- The old approach is to expand:
9818
9819 -- left AND THEN right
9820
9821 -- into
9822
9823 -- C : Boolean := False;
9824 -- IF left THEN
9825 -- Actions;
9826 -- IF right THEN
9827 -- C := True;
9828 -- END IF;
9829 -- END IF;
9830
9831 -- and finally rewrite the operator into a reference to C. Similarly
9832 -- for left OR ELSE right, with negated values. Note that this
9833 -- rewrite causes some difficulties for coverage analysis because
9834 -- of the introduction of the new variable C, which obscures the
9835 -- structure of the test.
9836
9837 -- We use this "old approach" if use of N_Expression_With_Actions
9838 -- is False (see description in Opt of when this is or is not set).
9839
9840 if not Use_Expression_With_Actions then
9841 Op_Var := Make_Temporary (Loc, 'C', Related_Node => N);
9842
9843 Insert_Action (N,
9844 Make_Object_Declaration (Loc,
9845 Defining_Identifier =>
9846 Op_Var,
9847 Object_Definition =>
9848 New_Occurrence_Of (Standard_Boolean, Loc),
9849 Expression =>
9850 New_Occurrence_Of (Shortcut_Ent, Loc)));
9851
9852 Append_To (Actlist,
9853 Make_Implicit_If_Statement (Right,
9854 Condition => Make_Test_Expr (Right),
9855 Then_Statements => New_List (
9856 Make_Assignment_Statement (LocR,
9857 Name => New_Occurrence_Of (Op_Var, LocR),
9858 Expression =>
9859 New_Occurrence_Of
9860 (Boolean_Literals (not Shortcut_Value), LocR)))));
9861
9862 Insert_Action (N,
9863 Make_Implicit_If_Statement (Left,
9864 Condition => Make_Test_Expr (Left),
9865 Then_Statements => Actlist));
9866
9867 Rewrite (N, New_Occurrence_Of (Op_Var, Loc));
9868 Analyze_And_Resolve (N, Standard_Boolean);
9869
9870 -- The new approach, activated for now by the use of debug flag
9871 -- -gnatd.X is to use the new Expression_With_Actions node for the
9872 -- right operand of the short-circuit form. This should solve the
9873 -- traceability problems for coverage analysis.
9874
9875 else
9876 Rewrite (Right,
9877 Make_Expression_With_Actions (LocR,
9878 Expression => Relocate_Node (Right),
9879 Actions => Actlist));
9880 Set_Actions (N, No_List);
9881 Analyze_And_Resolve (Right, Standard_Boolean);
9882 end if;
9883
9884 Adjust_Result_Type (N, Typ);
9885 return;
9886 end if;
9887
9888 -- No actions present, check for cases of right argument True/False
9889
9890 if Compile_Time_Known_Value (Right) then
9891
9892 -- Mark SCO for left condition as compile time known
9893
9894 if Generate_SCO and then Comes_From_Source (Right) then
9895 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
9896 end if;
9897
9898 -- Change (Left and then True), (Left or else False) to Left.
9899 -- Note that we know there are no actions associated with the right
9900 -- operand, since we just checked for this case above.
9901
9902 if Expr_Value_E (Right) /= Shortcut_Ent then
9903 Rewrite (N, Left);
9904
9905 -- Change (Left and then False), (Left or else True) to Right,
9906 -- making sure to preserve any side effects associated with the Left
9907 -- operand.
9908
9909 else
9910 Remove_Side_Effects (Left);
9911 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
9912 end if;
9913 end if;
9914
9915 Adjust_Result_Type (N, Typ);
9916 end Expand_Short_Circuit_Operator;
9917
9918 -------------------------------------
9919 -- Fixup_Universal_Fixed_Operation --
9920 -------------------------------------
9921
9922 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
9923 Conv : constant Node_Id := Parent (N);
9924
9925 begin
9926 -- We must have a type conversion immediately above us
9927
9928 pragma Assert (Nkind (Conv) = N_Type_Conversion);
9929
9930 -- Normally the type conversion gives our target type. The exception
9931 -- occurs in the case of the Round attribute, where the conversion
9932 -- will be to universal real, and our real type comes from the Round
9933 -- attribute (as well as an indication that we must round the result)
9934
9935 if Nkind (Parent (Conv)) = N_Attribute_Reference
9936 and then Attribute_Name (Parent (Conv)) = Name_Round
9937 then
9938 Set_Etype (N, Etype (Parent (Conv)));
9939 Set_Rounded_Result (N);
9940
9941 -- Normal case where type comes from conversion above us
9942
9943 else
9944 Set_Etype (N, Etype (Conv));
9945 end if;
9946 end Fixup_Universal_Fixed_Operation;
9947
9948 ---------------------------------
9949 -- Has_Inferable_Discriminants --
9950 ---------------------------------
9951
9952 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
9953
9954 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
9955 -- Determines whether the left-most prefix of a selected component is a
9956 -- formal parameter in a subprogram. Assumes N is a selected component.
9957
9958 --------------------------------
9959 -- Prefix_Is_Formal_Parameter --
9960 --------------------------------
9961
9962 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
9963 Sel_Comp : Node_Id := N;
9964
9965 begin
9966 -- Move to the left-most prefix by climbing up the tree
9967
9968 while Present (Parent (Sel_Comp))
9969 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
9970 loop
9971 Sel_Comp := Parent (Sel_Comp);
9972 end loop;
9973
9974 return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
9975 end Prefix_Is_Formal_Parameter;
9976
9977 -- Start of processing for Has_Inferable_Discriminants
9978
9979 begin
9980 -- For identifiers and indexed components, it is sufficient to have a
9981 -- constrained Unchecked_Union nominal subtype.
9982
9983 if Nkind_In (N, N_Identifier, N_Indexed_Component) then
9984 return Is_Unchecked_Union (Base_Type (Etype (N)))
9985 and then
9986 Is_Constrained (Etype (N));
9987
9988 -- For selected components, the subtype of the selector must be a
9989 -- constrained Unchecked_Union. If the component is subject to a
9990 -- per-object constraint, then the enclosing object must have inferable
9991 -- discriminants.
9992
9993 elsif Nkind (N) = N_Selected_Component then
9994 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
9995
9996 -- A small hack. If we have a per-object constrained selected
9997 -- component of a formal parameter, return True since we do not
9998 -- know the actual parameter association yet.
9999
10000 if Prefix_Is_Formal_Parameter (N) then
10001 return True;
10002 end if;
10003
10004 -- Otherwise, check the enclosing object and the selector
10005
10006 return Has_Inferable_Discriminants (Prefix (N))
10007 and then
10008 Has_Inferable_Discriminants (Selector_Name (N));
10009 end if;
10010
10011 -- The call to Has_Inferable_Discriminants will determine whether
10012 -- the selector has a constrained Unchecked_Union nominal type.
10013
10014 return Has_Inferable_Discriminants (Selector_Name (N));
10015
10016 -- A qualified expression has inferable discriminants if its subtype
10017 -- mark is a constrained Unchecked_Union subtype.
10018
10019 elsif Nkind (N) = N_Qualified_Expression then
10020 return Is_Unchecked_Union (Subtype_Mark (N))
10021 and then
10022 Is_Constrained (Subtype_Mark (N));
10023
10024 end if;
10025
10026 return False;
10027 end Has_Inferable_Discriminants;
10028
10029 -------------------------------
10030 -- Insert_Dereference_Action --
10031 -------------------------------
10032
10033 procedure Insert_Dereference_Action (N : Node_Id) is
10034 Loc : constant Source_Ptr := Sloc (N);
10035 Typ : constant Entity_Id := Etype (N);
10036 Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
10037 Pnod : constant Node_Id := Parent (N);
10038
10039 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
10040 -- Return true if type of P is derived from Checked_Pool;
10041
10042 -----------------------------
10043 -- Is_Checked_Storage_Pool --
10044 -----------------------------
10045
10046 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
10047 T : Entity_Id;
10048
10049 begin
10050 if No (P) then
10051 return False;
10052 end if;
10053
10054 T := Etype (P);
10055 while T /= Etype (T) loop
10056 if Is_RTE (T, RE_Checked_Pool) then
10057 return True;
10058 else
10059 T := Etype (T);
10060 end if;
10061 end loop;
10062
10063 return False;
10064 end Is_Checked_Storage_Pool;
10065
10066 -- Start of processing for Insert_Dereference_Action
10067
10068 begin
10069 pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
10070
10071 if not (Is_Checked_Storage_Pool (Pool)
10072 and then Comes_From_Source (Original_Node (Pnod)))
10073 then
10074 return;
10075 end if;
10076
10077 Insert_Action (N,
10078 Make_Procedure_Call_Statement (Loc,
10079 Name => New_Reference_To (
10080 Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
10081
10082 Parameter_Associations => New_List (
10083
10084 -- Pool
10085
10086 New_Reference_To (Pool, Loc),
10087
10088 -- Storage_Address. We use the attribute Pool_Address, which uses
10089 -- the pointer itself to find the address of the object, and which
10090 -- handles unconstrained arrays properly by computing the address
10091 -- of the template. i.e. the correct address of the corresponding
10092 -- allocation.
10093
10094 Make_Attribute_Reference (Loc,
10095 Prefix => Duplicate_Subexpr_Move_Checks (N),
10096 Attribute_Name => Name_Pool_Address),
10097
10098 -- Size_In_Storage_Elements
10099
10100 Make_Op_Divide (Loc,
10101 Left_Opnd =>
10102 Make_Attribute_Reference (Loc,
10103 Prefix =>
10104 Make_Explicit_Dereference (Loc,
10105 Duplicate_Subexpr_Move_Checks (N)),
10106 Attribute_Name => Name_Size),
10107 Right_Opnd =>
10108 Make_Integer_Literal (Loc, System_Storage_Unit)),
10109
10110 -- Alignment
10111
10112 Make_Attribute_Reference (Loc,
10113 Prefix =>
10114 Make_Explicit_Dereference (Loc,
10115 Duplicate_Subexpr_Move_Checks (N)),
10116 Attribute_Name => Name_Alignment))));
10117
10118 exception
10119 when RE_Not_Available =>
10120 return;
10121 end Insert_Dereference_Action;
10122
10123 --------------------------------
10124 -- Integer_Promotion_Possible --
10125 --------------------------------
10126
10127 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
10128 Operand : constant Node_Id := Expression (N);
10129 Operand_Type : constant Entity_Id := Etype (Operand);
10130 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
10131
10132 begin
10133 pragma Assert (Nkind (N) = N_Type_Conversion);
10134
10135 return
10136
10137 -- We only do the transformation for source constructs. We assume
10138 -- that the expander knows what it is doing when it generates code.
10139
10140 Comes_From_Source (N)
10141
10142 -- If the operand type is Short_Integer or Short_Short_Integer,
10143 -- then we will promote to Integer, which is available on all
10144 -- targets, and is sufficient to ensure no intermediate overflow.
10145 -- Furthermore it is likely to be as efficient or more efficient
10146 -- than using the smaller type for the computation so we do this
10147 -- unconditionally.
10148
10149 and then
10150 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
10151 or else
10152 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
10153
10154 -- Test for interesting operation, which includes addition,
10155 -- division, exponentiation, multiplication, subtraction, absolute
10156 -- value and unary negation. Unary "+" is omitted since it is a
10157 -- no-op and thus can't overflow.
10158
10159 and then Nkind_In (Operand, N_Op_Abs,
10160 N_Op_Add,
10161 N_Op_Divide,
10162 N_Op_Expon,
10163 N_Op_Minus,
10164 N_Op_Multiply,
10165 N_Op_Subtract);
10166 end Integer_Promotion_Possible;
10167
10168 ------------------------------
10169 -- Make_Array_Comparison_Op --
10170 ------------------------------
10171
10172 -- This is a hand-coded expansion of the following generic function:
10173
10174 -- generic
10175 -- type elem is (<>);
10176 -- type index is (<>);
10177 -- type a is array (index range <>) of elem;
10178
10179 -- function Gnnn (X : a; Y: a) return boolean is
10180 -- J : index := Y'first;
10181
10182 -- begin
10183 -- if X'length = 0 then
10184 -- return false;
10185
10186 -- elsif Y'length = 0 then
10187 -- return true;
10188
10189 -- else
10190 -- for I in X'range loop
10191 -- if X (I) = Y (J) then
10192 -- if J = Y'last then
10193 -- exit;
10194 -- else
10195 -- J := index'succ (J);
10196 -- end if;
10197
10198 -- else
10199 -- return X (I) > Y (J);
10200 -- end if;
10201 -- end loop;
10202
10203 -- return X'length > Y'length;
10204 -- end if;
10205 -- end Gnnn;
10206
10207 -- Note that since we are essentially doing this expansion by hand, we
10208 -- do not need to generate an actual or formal generic part, just the
10209 -- instantiated function itself.
10210
10211 function Make_Array_Comparison_Op
10212 (Typ : Entity_Id;
10213 Nod : Node_Id) return Node_Id
10214 is
10215 Loc : constant Source_Ptr := Sloc (Nod);
10216
10217 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
10218 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
10219 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
10220 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
10221
10222 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
10223
10224 Loop_Statement : Node_Id;
10225 Loop_Body : Node_Id;
10226 If_Stat : Node_Id;
10227 Inner_If : Node_Id;
10228 Final_Expr : Node_Id;
10229 Func_Body : Node_Id;
10230 Func_Name : Entity_Id;
10231 Formals : List_Id;
10232 Length1 : Node_Id;
10233 Length2 : Node_Id;
10234
10235 begin
10236 -- if J = Y'last then
10237 -- exit;
10238 -- else
10239 -- J := index'succ (J);
10240 -- end if;
10241
10242 Inner_If :=
10243 Make_Implicit_If_Statement (Nod,
10244 Condition =>
10245 Make_Op_Eq (Loc,
10246 Left_Opnd => New_Reference_To (J, Loc),
10247 Right_Opnd =>
10248 Make_Attribute_Reference (Loc,
10249 Prefix => New_Reference_To (Y, Loc),
10250 Attribute_Name => Name_Last)),
10251
10252 Then_Statements => New_List (
10253 Make_Exit_Statement (Loc)),
10254
10255 Else_Statements =>
10256 New_List (
10257 Make_Assignment_Statement (Loc,
10258 Name => New_Reference_To (J, Loc),
10259 Expression =>
10260 Make_Attribute_Reference (Loc,
10261 Prefix => New_Reference_To (Index, Loc),
10262 Attribute_Name => Name_Succ,
10263 Expressions => New_List (New_Reference_To (J, Loc))))));
10264
10265 -- if X (I) = Y (J) then
10266 -- if ... end if;
10267 -- else
10268 -- return X (I) > Y (J);
10269 -- end if;
10270
10271 Loop_Body :=
10272 Make_Implicit_If_Statement (Nod,
10273 Condition =>
10274 Make_Op_Eq (Loc,
10275 Left_Opnd =>
10276 Make_Indexed_Component (Loc,
10277 Prefix => New_Reference_To (X, Loc),
10278 Expressions => New_List (New_Reference_To (I, Loc))),
10279
10280 Right_Opnd =>
10281 Make_Indexed_Component (Loc,
10282 Prefix => New_Reference_To (Y, Loc),
10283 Expressions => New_List (New_Reference_To (J, Loc)))),
10284
10285 Then_Statements => New_List (Inner_If),
10286
10287 Else_Statements => New_List (
10288 Make_Simple_Return_Statement (Loc,
10289 Expression =>
10290 Make_Op_Gt (Loc,
10291 Left_Opnd =>
10292 Make_Indexed_Component (Loc,
10293 Prefix => New_Reference_To (X, Loc),
10294 Expressions => New_List (New_Reference_To (I, Loc))),
10295
10296 Right_Opnd =>
10297 Make_Indexed_Component (Loc,
10298 Prefix => New_Reference_To (Y, Loc),
10299 Expressions => New_List (
10300 New_Reference_To (J, Loc)))))));
10301
10302 -- for I in X'range loop
10303 -- if ... end if;
10304 -- end loop;
10305
10306 Loop_Statement :=
10307 Make_Implicit_Loop_Statement (Nod,
10308 Identifier => Empty,
10309
10310 Iteration_Scheme =>
10311 Make_Iteration_Scheme (Loc,
10312 Loop_Parameter_Specification =>
10313 Make_Loop_Parameter_Specification (Loc,
10314 Defining_Identifier => I,
10315 Discrete_Subtype_Definition =>
10316 Make_Attribute_Reference (Loc,
10317 Prefix => New_Reference_To (X, Loc),
10318 Attribute_Name => Name_Range))),
10319
10320 Statements => New_List (Loop_Body));
10321
10322 -- if X'length = 0 then
10323 -- return false;
10324 -- elsif Y'length = 0 then
10325 -- return true;
10326 -- else
10327 -- for ... loop ... end loop;
10328 -- return X'length > Y'length;
10329 -- end if;
10330
10331 Length1 :=
10332 Make_Attribute_Reference (Loc,
10333 Prefix => New_Reference_To (X, Loc),
10334 Attribute_Name => Name_Length);
10335
10336 Length2 :=
10337 Make_Attribute_Reference (Loc,
10338 Prefix => New_Reference_To (Y, Loc),
10339 Attribute_Name => Name_Length);
10340
10341 Final_Expr :=
10342 Make_Op_Gt (Loc,
10343 Left_Opnd => Length1,
10344 Right_Opnd => Length2);
10345
10346 If_Stat :=
10347 Make_Implicit_If_Statement (Nod,
10348 Condition =>
10349 Make_Op_Eq (Loc,
10350 Left_Opnd =>
10351 Make_Attribute_Reference (Loc,
10352 Prefix => New_Reference_To (X, Loc),
10353 Attribute_Name => Name_Length),
10354 Right_Opnd =>
10355 Make_Integer_Literal (Loc, 0)),
10356
10357 Then_Statements =>
10358 New_List (
10359 Make_Simple_Return_Statement (Loc,
10360 Expression => New_Reference_To (Standard_False, Loc))),
10361
10362 Elsif_Parts => New_List (
10363 Make_Elsif_Part (Loc,
10364 Condition =>
10365 Make_Op_Eq (Loc,
10366 Left_Opnd =>
10367 Make_Attribute_Reference (Loc,
10368 Prefix => New_Reference_To (Y, Loc),
10369 Attribute_Name => Name_Length),
10370 Right_Opnd =>
10371 Make_Integer_Literal (Loc, 0)),
10372
10373 Then_Statements =>
10374 New_List (
10375 Make_Simple_Return_Statement (Loc,
10376 Expression => New_Reference_To (Standard_True, Loc))))),
10377
10378 Else_Statements => New_List (
10379 Loop_Statement,
10380 Make_Simple_Return_Statement (Loc,
10381 Expression => Final_Expr)));
10382
10383 -- (X : a; Y: a)
10384
10385 Formals := New_List (
10386 Make_Parameter_Specification (Loc,
10387 Defining_Identifier => X,
10388 Parameter_Type => New_Reference_To (Typ, Loc)),
10389
10390 Make_Parameter_Specification (Loc,
10391 Defining_Identifier => Y,
10392 Parameter_Type => New_Reference_To (Typ, Loc)));
10393
10394 -- function Gnnn (...) return boolean is
10395 -- J : index := Y'first;
10396 -- begin
10397 -- if ... end if;
10398 -- end Gnnn;
10399
10400 Func_Name := Make_Temporary (Loc, 'G');
10401
10402 Func_Body :=
10403 Make_Subprogram_Body (Loc,
10404 Specification =>
10405 Make_Function_Specification (Loc,
10406 Defining_Unit_Name => Func_Name,
10407 Parameter_Specifications => Formals,
10408 Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
10409
10410 Declarations => New_List (
10411 Make_Object_Declaration (Loc,
10412 Defining_Identifier => J,
10413 Object_Definition => New_Reference_To (Index, Loc),
10414 Expression =>
10415 Make_Attribute_Reference (Loc,
10416 Prefix => New_Reference_To (Y, Loc),
10417 Attribute_Name => Name_First))),
10418
10419 Handled_Statement_Sequence =>
10420 Make_Handled_Sequence_Of_Statements (Loc,
10421 Statements => New_List (If_Stat)));
10422
10423 return Func_Body;
10424 end Make_Array_Comparison_Op;
10425
10426 ---------------------------
10427 -- Make_Boolean_Array_Op --
10428 ---------------------------
10429
10430 -- For logical operations on boolean arrays, expand in line the following,
10431 -- replacing 'and' with 'or' or 'xor' where needed:
10432
10433 -- function Annn (A : typ; B: typ) return typ is
10434 -- C : typ;
10435 -- begin
10436 -- for J in A'range loop
10437 -- C (J) := A (J) op B (J);
10438 -- end loop;
10439 -- return C;
10440 -- end Annn;
10441
10442 -- Here typ is the boolean array type
10443
10444 function Make_Boolean_Array_Op
10445 (Typ : Entity_Id;
10446 N : Node_Id) return Node_Id
10447 is
10448 Loc : constant Source_Ptr := Sloc (N);
10449
10450 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
10451 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
10452 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
10453 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
10454
10455 A_J : Node_Id;
10456 B_J : Node_Id;
10457 C_J : Node_Id;
10458 Op : Node_Id;
10459
10460 Formals : List_Id;
10461 Func_Name : Entity_Id;
10462 Func_Body : Node_Id;
10463 Loop_Statement : Node_Id;
10464
10465 begin
10466 A_J :=
10467 Make_Indexed_Component (Loc,
10468 Prefix => New_Reference_To (A, Loc),
10469 Expressions => New_List (New_Reference_To (J, Loc)));
10470
10471 B_J :=
10472 Make_Indexed_Component (Loc,
10473 Prefix => New_Reference_To (B, Loc),
10474 Expressions => New_List (New_Reference_To (J, Loc)));
10475
10476 C_J :=
10477 Make_Indexed_Component (Loc,
10478 Prefix => New_Reference_To (C, Loc),
10479 Expressions => New_List (New_Reference_To (J, Loc)));
10480
10481 if Nkind (N) = N_Op_And then
10482 Op :=
10483 Make_Op_And (Loc,
10484 Left_Opnd => A_J,
10485 Right_Opnd => B_J);
10486
10487 elsif Nkind (N) = N_Op_Or then
10488 Op :=
10489 Make_Op_Or (Loc,
10490 Left_Opnd => A_J,
10491 Right_Opnd => B_J);
10492
10493 else
10494 Op :=
10495 Make_Op_Xor (Loc,
10496 Left_Opnd => A_J,
10497 Right_Opnd => B_J);
10498 end if;
10499
10500 Loop_Statement :=
10501 Make_Implicit_Loop_Statement (N,
10502 Identifier => Empty,
10503
10504 Iteration_Scheme =>
10505 Make_Iteration_Scheme (Loc,
10506 Loop_Parameter_Specification =>
10507 Make_Loop_Parameter_Specification (Loc,
10508 Defining_Identifier => J,
10509 Discrete_Subtype_Definition =>
10510 Make_Attribute_Reference (Loc,
10511 Prefix => New_Reference_To (A, Loc),
10512 Attribute_Name => Name_Range))),
10513
10514 Statements => New_List (
10515 Make_Assignment_Statement (Loc,
10516 Name => C_J,
10517 Expression => Op)));
10518
10519 Formals := New_List (
10520 Make_Parameter_Specification (Loc,
10521 Defining_Identifier => A,
10522 Parameter_Type => New_Reference_To (Typ, Loc)),
10523
10524 Make_Parameter_Specification (Loc,
10525 Defining_Identifier => B,
10526 Parameter_Type => New_Reference_To (Typ, Loc)));
10527
10528 Func_Name := Make_Temporary (Loc, 'A');
10529 Set_Is_Inlined (Func_Name);
10530
10531 Func_Body :=
10532 Make_Subprogram_Body (Loc,
10533 Specification =>
10534 Make_Function_Specification (Loc,
10535 Defining_Unit_Name => Func_Name,
10536 Parameter_Specifications => Formals,
10537 Result_Definition => New_Reference_To (Typ, Loc)),
10538
10539 Declarations => New_List (
10540 Make_Object_Declaration (Loc,
10541 Defining_Identifier => C,
10542 Object_Definition => New_Reference_To (Typ, Loc))),
10543
10544 Handled_Statement_Sequence =>
10545 Make_Handled_Sequence_Of_Statements (Loc,
10546 Statements => New_List (
10547 Loop_Statement,
10548 Make_Simple_Return_Statement (Loc,
10549 Expression => New_Reference_To (C, Loc)))));
10550
10551 return Func_Body;
10552 end Make_Boolean_Array_Op;
10553
10554 --------------------------------
10555 -- Optimize_Length_Comparison --
10556 --------------------------------
10557
10558 procedure Optimize_Length_Comparison (N : Node_Id) is
10559 Loc : constant Source_Ptr := Sloc (N);
10560 Typ : constant Entity_Id := Etype (N);
10561 Result : Node_Id;
10562
10563 Left : Node_Id;
10564 Right : Node_Id;
10565 -- First and Last attribute reference nodes, which end up as left and
10566 -- right operands of the optimized result.
10567
10568 Is_Zero : Boolean;
10569 -- True for comparison operand of zero
10570
10571 Comp : Node_Id;
10572 -- Comparison operand, set only if Is_Zero is false
10573
10574 Ent : Entity_Id;
10575 -- Entity whose length is being compared
10576
10577 Index : Node_Id;
10578 -- Integer_Literal node for length attribute expression, or Empty
10579 -- if there is no such expression present.
10580
10581 Ityp : Entity_Id;
10582 -- Type of array index to which 'Length is applied
10583
10584 Op : Node_Kind := Nkind (N);
10585 -- Kind of comparison operator, gets flipped if operands backwards
10586
10587 function Is_Optimizable (N : Node_Id) return Boolean;
10588 -- Tests N to see if it is an optimizable comparison value (defined as
10589 -- constant zero or one, or something else where the value is known to
10590 -- be positive and in the range of 32-bits, and where the corresponding
10591 -- Length value is also known to be 32-bits. If result is true, sets
10592 -- Is_Zero, Ityp, and Comp accordingly.
10593
10594 function Is_Entity_Length (N : Node_Id) return Boolean;
10595 -- Tests if N is a length attribute applied to a simple entity. If so,
10596 -- returns True, and sets Ent to the entity, and Index to the integer
10597 -- literal provided as an attribute expression, or to Empty if none.
10598 -- Also returns True if the expression is a generated type conversion
10599 -- whose expression is of the desired form. This latter case arises
10600 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
10601 -- to check for being in range, which is not needed in this context.
10602 -- Returns False if neither condition holds.
10603
10604 function Prepare_64 (N : Node_Id) return Node_Id;
10605 -- Given a discrete expression, returns a Long_Long_Integer typed
10606 -- expression representing the underlying value of the expression.
10607 -- This is done with an unchecked conversion to the result type. We
10608 -- use unchecked conversion to handle the enumeration type case.
10609
10610 ----------------------
10611 -- Is_Entity_Length --
10612 ----------------------
10613
10614 function Is_Entity_Length (N : Node_Id) return Boolean is
10615 begin
10616 if Nkind (N) = N_Attribute_Reference
10617 and then Attribute_Name (N) = Name_Length
10618 and then Is_Entity_Name (Prefix (N))
10619 then
10620 Ent := Entity (Prefix (N));
10621
10622 if Present (Expressions (N)) then
10623 Index := First (Expressions (N));
10624 else
10625 Index := Empty;
10626 end if;
10627
10628 return True;
10629
10630 elsif Nkind (N) = N_Type_Conversion
10631 and then not Comes_From_Source (N)
10632 then
10633 return Is_Entity_Length (Expression (N));
10634
10635 else
10636 return False;
10637 end if;
10638 end Is_Entity_Length;
10639
10640 --------------------
10641 -- Is_Optimizable --
10642 --------------------
10643
10644 function Is_Optimizable (N : Node_Id) return Boolean is
10645 Val : Uint;
10646 OK : Boolean;
10647 Lo : Uint;
10648 Hi : Uint;
10649 Indx : Node_Id;
10650
10651 begin
10652 if Compile_Time_Known_Value (N) then
10653 Val := Expr_Value (N);
10654
10655 if Val = Uint_0 then
10656 Is_Zero := True;
10657 Comp := Empty;
10658 return True;
10659
10660 elsif Val = Uint_1 then
10661 Is_Zero := False;
10662 Comp := Empty;
10663 return True;
10664 end if;
10665 end if;
10666
10667 -- Here we have to make sure of being within 32-bits
10668
10669 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
10670
10671 if not OK
10672 or else Lo < Uint_1
10673 or else Hi > UI_From_Int (Int'Last)
10674 then
10675 return False;
10676 end if;
10677
10678 -- Comparison value was within range, so now we must check the index
10679 -- value to make sure it is also within 32-bits.
10680
10681 Indx := First_Index (Etype (Ent));
10682
10683 if Present (Index) then
10684 for J in 2 .. UI_To_Int (Intval (Index)) loop
10685 Next_Index (Indx);
10686 end loop;
10687 end if;
10688
10689 Ityp := Etype (Indx);
10690
10691 if Esize (Ityp) > 32 then
10692 return False;
10693 end if;
10694
10695 Is_Zero := False;
10696 Comp := N;
10697 return True;
10698 end Is_Optimizable;
10699
10700 ----------------
10701 -- Prepare_64 --
10702 ----------------
10703
10704 function Prepare_64 (N : Node_Id) return Node_Id is
10705 begin
10706 return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
10707 end Prepare_64;
10708
10709 -- Start of processing for Optimize_Length_Comparison
10710
10711 begin
10712 -- Nothing to do if not a comparison
10713
10714 if Op not in N_Op_Compare then
10715 return;
10716 end if;
10717
10718 -- Nothing to do if special -gnatd.P debug flag set
10719
10720 if Debug_Flag_Dot_PP then
10721 return;
10722 end if;
10723
10724 -- Ent'Length op 0/1
10725
10726 if Is_Entity_Length (Left_Opnd (N))
10727 and then Is_Optimizable (Right_Opnd (N))
10728 then
10729 null;
10730
10731 -- 0/1 op Ent'Length
10732
10733 elsif Is_Entity_Length (Right_Opnd (N))
10734 and then Is_Optimizable (Left_Opnd (N))
10735 then
10736 -- Flip comparison to opposite sense
10737
10738 case Op is
10739 when N_Op_Lt => Op := N_Op_Gt;
10740 when N_Op_Le => Op := N_Op_Ge;
10741 when N_Op_Gt => Op := N_Op_Lt;
10742 when N_Op_Ge => Op := N_Op_Le;
10743 when others => null;
10744 end case;
10745
10746 -- Else optimization not possible
10747
10748 else
10749 return;
10750 end if;
10751
10752 -- Fall through if we will do the optimization
10753
10754 -- Cases to handle:
10755
10756 -- X'Length = 0 => X'First > X'Last
10757 -- X'Length = 1 => X'First = X'Last
10758 -- X'Length = n => X'First + (n - 1) = X'Last
10759
10760 -- X'Length /= 0 => X'First <= X'Last
10761 -- X'Length /= 1 => X'First /= X'Last
10762 -- X'Length /= n => X'First + (n - 1) /= X'Last
10763
10764 -- X'Length >= 0 => always true, warn
10765 -- X'Length >= 1 => X'First <= X'Last
10766 -- X'Length >= n => X'First + (n - 1) <= X'Last
10767
10768 -- X'Length > 0 => X'First <= X'Last
10769 -- X'Length > 1 => X'First < X'Last
10770 -- X'Length > n => X'First + (n - 1) < X'Last
10771
10772 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
10773 -- X'Length <= 1 => X'First >= X'Last
10774 -- X'Length <= n => X'First + (n - 1) >= X'Last
10775
10776 -- X'Length < 0 => always false (warn)
10777 -- X'Length < 1 => X'First > X'Last
10778 -- X'Length < n => X'First + (n - 1) > X'Last
10779
10780 -- Note: for the cases of n (not constant 0,1), we require that the
10781 -- corresponding index type be integer or shorter (i.e. not 64-bit),
10782 -- and the same for the comparison value. Then we do the comparison
10783 -- using 64-bit arithmetic (actually long long integer), so that we
10784 -- cannot have overflow intefering with the result.
10785
10786 -- First deal with warning cases
10787
10788 if Is_Zero then
10789 case Op is
10790
10791 -- X'Length >= 0
10792
10793 when N_Op_Ge =>
10794 Rewrite (N,
10795 Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
10796 Analyze_And_Resolve (N, Typ);
10797 Warn_On_Known_Condition (N);
10798 return;
10799
10800 -- X'Length < 0
10801
10802 when N_Op_Lt =>
10803 Rewrite (N,
10804 Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
10805 Analyze_And_Resolve (N, Typ);
10806 Warn_On_Known_Condition (N);
10807 return;
10808
10809 when N_Op_Le =>
10810 if Constant_Condition_Warnings
10811 and then Comes_From_Source (Original_Node (N))
10812 then
10813 Error_Msg_N ("could replace by ""'=""?", N);
10814 end if;
10815
10816 Op := N_Op_Eq;
10817
10818 when others =>
10819 null;
10820 end case;
10821 end if;
10822
10823 -- Build the First reference we will use
10824
10825 Left :=
10826 Make_Attribute_Reference (Loc,
10827 Prefix => New_Occurrence_Of (Ent, Loc),
10828 Attribute_Name => Name_First);
10829
10830 if Present (Index) then
10831 Set_Expressions (Left, New_List (New_Copy (Index)));
10832 end if;
10833
10834 -- If general value case, then do the addition of (n - 1), and
10835 -- also add the needed conversions to type Long_Long_Integer.
10836
10837 if Present (Comp) then
10838 Left :=
10839 Make_Op_Add (Loc,
10840 Left_Opnd => Prepare_64 (Left),
10841 Right_Opnd =>
10842 Make_Op_Subtract (Loc,
10843 Left_Opnd => Prepare_64 (Comp),
10844 Right_Opnd => Make_Integer_Literal (Loc, 1)));
10845 end if;
10846
10847 -- Build the Last reference we will use
10848
10849 Right :=
10850 Make_Attribute_Reference (Loc,
10851 Prefix => New_Occurrence_Of (Ent, Loc),
10852 Attribute_Name => Name_Last);
10853
10854 if Present (Index) then
10855 Set_Expressions (Right, New_List (New_Copy (Index)));
10856 end if;
10857
10858 -- If general operand, convert Last reference to Long_Long_Integer
10859
10860 if Present (Comp) then
10861 Right := Prepare_64 (Right);
10862 end if;
10863
10864 -- Check for cases to optimize
10865
10866 -- X'Length = 0 => X'First > X'Last
10867 -- X'Length < 1 => X'First > X'Last
10868 -- X'Length < n => X'First + (n - 1) > X'Last
10869
10870 if (Is_Zero and then Op = N_Op_Eq)
10871 or else (not Is_Zero and then Op = N_Op_Lt)
10872 then
10873 Result :=
10874 Make_Op_Gt (Loc,
10875 Left_Opnd => Left,
10876 Right_Opnd => Right);
10877
10878 -- X'Length = 1 => X'First = X'Last
10879 -- X'Length = n => X'First + (n - 1) = X'Last
10880
10881 elsif not Is_Zero and then Op = N_Op_Eq then
10882 Result :=
10883 Make_Op_Eq (Loc,
10884 Left_Opnd => Left,
10885 Right_Opnd => Right);
10886
10887 -- X'Length /= 0 => X'First <= X'Last
10888 -- X'Length > 0 => X'First <= X'Last
10889
10890 elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
10891 Result :=
10892 Make_Op_Le (Loc,
10893 Left_Opnd => Left,
10894 Right_Opnd => Right);
10895
10896 -- X'Length /= 1 => X'First /= X'Last
10897 -- X'Length /= n => X'First + (n - 1) /= X'Last
10898
10899 elsif not Is_Zero and then Op = N_Op_Ne then
10900 Result :=
10901 Make_Op_Ne (Loc,
10902 Left_Opnd => Left,
10903 Right_Opnd => Right);
10904
10905 -- X'Length >= 1 => X'First <= X'Last
10906 -- X'Length >= n => X'First + (n - 1) <= X'Last
10907
10908 elsif not Is_Zero and then Op = N_Op_Ge then
10909 Result :=
10910 Make_Op_Le (Loc,
10911 Left_Opnd => Left,
10912 Right_Opnd => Right);
10913
10914 -- X'Length > 1 => X'First < X'Last
10915 -- X'Length > n => X'First + (n = 1) < X'Last
10916
10917 elsif not Is_Zero and then Op = N_Op_Gt then
10918 Result :=
10919 Make_Op_Lt (Loc,
10920 Left_Opnd => Left,
10921 Right_Opnd => Right);
10922
10923 -- X'Length <= 1 => X'First >= X'Last
10924 -- X'Length <= n => X'First + (n - 1) >= X'Last
10925
10926 elsif not Is_Zero and then Op = N_Op_Le then
10927 Result :=
10928 Make_Op_Ge (Loc,
10929 Left_Opnd => Left,
10930 Right_Opnd => Right);
10931
10932 -- Should not happen at this stage
10933
10934 else
10935 raise Program_Error;
10936 end if;
10937
10938 -- Rewrite and finish up
10939
10940 Rewrite (N, Result);
10941 Analyze_And_Resolve (N, Typ);
10942 return;
10943 end Optimize_Length_Comparison;
10944
10945 ------------------------
10946 -- Rewrite_Comparison --
10947 ------------------------
10948
10949 procedure Rewrite_Comparison (N : Node_Id) is
10950 Warning_Generated : Boolean := False;
10951 -- Set to True if first pass with Assume_Valid generates a warning in
10952 -- which case we skip the second pass to avoid warning overloaded.
10953
10954 Result : Node_Id;
10955 -- Set to Standard_True or Standard_False
10956
10957 begin
10958 if Nkind (N) = N_Type_Conversion then
10959 Rewrite_Comparison (Expression (N));
10960 return;
10961
10962 elsif Nkind (N) not in N_Op_Compare then
10963 return;
10964 end if;
10965
10966 -- Now start looking at the comparison in detail. We potentially go
10967 -- through this loop twice. The first time, Assume_Valid is set False
10968 -- in the call to Compile_Time_Compare. If this call results in a
10969 -- clear result of always True or Always False, that's decisive and
10970 -- we are done. Otherwise we repeat the processing with Assume_Valid
10971 -- set to True to generate additional warnings. We can skip that step
10972 -- if Constant_Condition_Warnings is False.
10973
10974 for AV in False .. True loop
10975 declare
10976 Typ : constant Entity_Id := Etype (N);
10977 Op1 : constant Node_Id := Left_Opnd (N);
10978 Op2 : constant Node_Id := Right_Opnd (N);
10979
10980 Res : constant Compare_Result :=
10981 Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
10982 -- Res indicates if compare outcome can be compile time determined
10983
10984 True_Result : Boolean;
10985 False_Result : Boolean;
10986
10987 begin
10988 case N_Op_Compare (Nkind (N)) is
10989 when N_Op_Eq =>
10990 True_Result := Res = EQ;
10991 False_Result := Res = LT or else Res = GT or else Res = NE;
10992
10993 when N_Op_Ge =>
10994 True_Result := Res in Compare_GE;
10995 False_Result := Res = LT;
10996
10997 if Res = LE
10998 and then Constant_Condition_Warnings
10999 and then Comes_From_Source (Original_Node (N))
11000 and then Nkind (Original_Node (N)) = N_Op_Ge
11001 and then not In_Instance
11002 and then Is_Integer_Type (Etype (Left_Opnd (N)))
11003 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
11004 then
11005 Error_Msg_N
11006 ("can never be greater than, could replace by ""'=""?", N);
11007 Warning_Generated := True;
11008 end if;
11009
11010 when N_Op_Gt =>
11011 True_Result := Res = GT;
11012 False_Result := Res in Compare_LE;
11013
11014 when N_Op_Lt =>
11015 True_Result := Res = LT;
11016 False_Result := Res in Compare_GE;
11017
11018 when N_Op_Le =>
11019 True_Result := Res in Compare_LE;
11020 False_Result := Res = GT;
11021
11022 if Res = GE
11023 and then Constant_Condition_Warnings
11024 and then Comes_From_Source (Original_Node (N))
11025 and then Nkind (Original_Node (N)) = N_Op_Le
11026 and then not In_Instance
11027 and then Is_Integer_Type (Etype (Left_Opnd (N)))
11028 and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
11029 then
11030 Error_Msg_N
11031 ("can never be less than, could replace by ""'=""?", N);
11032 Warning_Generated := True;
11033 end if;
11034
11035 when N_Op_Ne =>
11036 True_Result := Res = NE or else Res = GT or else Res = LT;
11037 False_Result := Res = EQ;
11038 end case;
11039
11040 -- If this is the first iteration, then we actually convert the
11041 -- comparison into True or False, if the result is certain.
11042
11043 if AV = False then
11044 if True_Result or False_Result then
11045 if True_Result then
11046 Result := Standard_True;
11047 else
11048 Result := Standard_False;
11049 end if;
11050
11051 Rewrite (N,
11052 Convert_To (Typ,
11053 New_Occurrence_Of (Result, Sloc (N))));
11054 Analyze_And_Resolve (N, Typ);
11055 Warn_On_Known_Condition (N);
11056 return;
11057 end if;
11058
11059 -- If this is the second iteration (AV = True), and the original
11060 -- node comes from source and we are not in an instance, then give
11061 -- a warning if we know result would be True or False. Note: we
11062 -- know Constant_Condition_Warnings is set if we get here.
11063
11064 elsif Comes_From_Source (Original_Node (N))
11065 and then not In_Instance
11066 then
11067 if True_Result then
11068 Error_Msg_N
11069 ("condition can only be False if invalid values present?",
11070 N);
11071 elsif False_Result then
11072 Error_Msg_N
11073 ("condition can only be True if invalid values present?",
11074 N);
11075 end if;
11076 end if;
11077 end;
11078
11079 -- Skip second iteration if not warning on constant conditions or
11080 -- if the first iteration already generated a warning of some kind or
11081 -- if we are in any case assuming all values are valid (so that the
11082 -- first iteration took care of the valid case).
11083
11084 exit when not Constant_Condition_Warnings;
11085 exit when Warning_Generated;
11086 exit when Assume_No_Invalid_Values;
11087 end loop;
11088 end Rewrite_Comparison;
11089
11090 ----------------------------
11091 -- Safe_In_Place_Array_Op --
11092 ----------------------------
11093
11094 function Safe_In_Place_Array_Op
11095 (Lhs : Node_Id;
11096 Op1 : Node_Id;
11097 Op2 : Node_Id) return Boolean
11098 is
11099 Target : Entity_Id;
11100
11101 function Is_Safe_Operand (Op : Node_Id) return Boolean;
11102 -- Operand is safe if it cannot overlap part of the target of the
11103 -- operation. If the operand and the target are identical, the operand
11104 -- is safe. The operand can be empty in the case of negation.
11105
11106 function Is_Unaliased (N : Node_Id) return Boolean;
11107 -- Check that N is a stand-alone entity
11108
11109 ------------------
11110 -- Is_Unaliased --
11111 ------------------
11112
11113 function Is_Unaliased (N : Node_Id) return Boolean is
11114 begin
11115 return
11116 Is_Entity_Name (N)
11117 and then No (Address_Clause (Entity (N)))
11118 and then No (Renamed_Object (Entity (N)));
11119 end Is_Unaliased;
11120
11121 ---------------------
11122 -- Is_Safe_Operand --
11123 ---------------------
11124
11125 function Is_Safe_Operand (Op : Node_Id) return Boolean is
11126 begin
11127 if No (Op) then
11128 return True;
11129
11130 elsif Is_Entity_Name (Op) then
11131 return Is_Unaliased (Op);
11132
11133 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
11134 return Is_Unaliased (Prefix (Op));
11135
11136 elsif Nkind (Op) = N_Slice then
11137 return
11138 Is_Unaliased (Prefix (Op))
11139 and then Entity (Prefix (Op)) /= Target;
11140
11141 elsif Nkind (Op) = N_Op_Not then
11142 return Is_Safe_Operand (Right_Opnd (Op));
11143
11144 else
11145 return False;
11146 end if;
11147 end Is_Safe_Operand;
11148
11149 -- Start of processing for Is_Safe_In_Place_Array_Op
11150
11151 begin
11152 -- Skip this processing if the component size is different from system
11153 -- storage unit (since at least for NOT this would cause problems).
11154
11155 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
11156 return False;
11157
11158 -- Cannot do in place stuff on VM_Target since cannot pass addresses
11159
11160 elsif VM_Target /= No_VM then
11161 return False;
11162
11163 -- Cannot do in place stuff if non-standard Boolean representation
11164
11165 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
11166 return False;
11167
11168 elsif not Is_Unaliased (Lhs) then
11169 return False;
11170
11171 else
11172 Target := Entity (Lhs);
11173 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
11174 end if;
11175 end Safe_In_Place_Array_Op;
11176
11177 -----------------------
11178 -- Tagged_Membership --
11179 -----------------------
11180
11181 -- There are two different cases to consider depending on whether the right
11182 -- operand is a class-wide type or not. If not we just compare the actual
11183 -- tag of the left expr to the target type tag:
11184 --
11185 -- Left_Expr.Tag = Right_Type'Tag;
11186 --
11187 -- If it is a class-wide type we use the RT function CW_Membership which is
11188 -- usually implemented by looking in the ancestor tables contained in the
11189 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
11190
11191 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
11192 -- function IW_Membership which is usually implemented by looking in the
11193 -- table of abstract interface types plus the ancestor table contained in
11194 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
11195
11196 procedure Tagged_Membership
11197 (N : Node_Id;
11198 SCIL_Node : out Node_Id;
11199 Result : out Node_Id)
11200 is
11201 Left : constant Node_Id := Left_Opnd (N);
11202 Right : constant Node_Id := Right_Opnd (N);
11203 Loc : constant Source_Ptr := Sloc (N);
11204
11205 Full_R_Typ : Entity_Id;
11206 Left_Type : Entity_Id;
11207 New_Node : Node_Id;
11208 Right_Type : Entity_Id;
11209 Obj_Tag : Node_Id;
11210
11211 begin
11212 SCIL_Node := Empty;
11213
11214 -- Handle entities from the limited view
11215
11216 Left_Type := Available_View (Etype (Left));
11217 Right_Type := Available_View (Etype (Right));
11218
11219 -- In the case where the type is an access type, the test is applied
11220 -- using the designated types (needed in Ada 2012 for implicit anonymous
11221 -- access conversions, for AI05-0149).
11222
11223 if Is_Access_Type (Right_Type) then
11224 Left_Type := Designated_Type (Left_Type);
11225 Right_Type := Designated_Type (Right_Type);
11226 end if;
11227
11228 if Is_Class_Wide_Type (Left_Type) then
11229 Left_Type := Root_Type (Left_Type);
11230 end if;
11231
11232 if Is_Class_Wide_Type (Right_Type) then
11233 Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
11234 else
11235 Full_R_Typ := Underlying_Type (Right_Type);
11236 end if;
11237
11238 Obj_Tag :=
11239 Make_Selected_Component (Loc,
11240 Prefix => Relocate_Node (Left),
11241 Selector_Name =>
11242 New_Reference_To (First_Tag_Component (Left_Type), Loc));
11243
11244 if Is_Class_Wide_Type (Right_Type) then
11245
11246 -- No need to issue a run-time check if we statically know that the
11247 -- result of this membership test is always true. For example,
11248 -- considering the following declarations:
11249
11250 -- type Iface is interface;
11251 -- type T is tagged null record;
11252 -- type DT is new T and Iface with null record;
11253
11254 -- Obj1 : T;
11255 -- Obj2 : DT;
11256
11257 -- These membership tests are always true:
11258
11259 -- Obj1 in T'Class
11260 -- Obj2 in T'Class;
11261 -- Obj2 in Iface'Class;
11262
11263 -- We do not need to handle cases where the membership is illegal.
11264 -- For example:
11265
11266 -- Obj1 in DT'Class; -- Compile time error
11267 -- Obj1 in Iface'Class; -- Compile time error
11268
11269 if not Is_Class_Wide_Type (Left_Type)
11270 and then (Is_Ancestor (Etype (Right_Type), Left_Type,
11271 Use_Full_View => True)
11272 or else (Is_Interface (Etype (Right_Type))
11273 and then Interface_Present_In_Ancestor
11274 (Typ => Left_Type,
11275 Iface => Etype (Right_Type))))
11276 then
11277 Result := New_Reference_To (Standard_True, Loc);
11278 return;
11279 end if;
11280
11281 -- Ada 2005 (AI-251): Class-wide applied to interfaces
11282
11283 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
11284
11285 -- Support to: "Iface_CW_Typ in Typ'Class"
11286
11287 or else Is_Interface (Left_Type)
11288 then
11289 -- Issue error if IW_Membership operation not available in a
11290 -- configurable run time setting.
11291
11292 if not RTE_Available (RE_IW_Membership) then
11293 Error_Msg_CRT
11294 ("dynamic membership test on interface types", N);
11295 Result := Empty;
11296 return;
11297 end if;
11298
11299 Result :=
11300 Make_Function_Call (Loc,
11301 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
11302 Parameter_Associations => New_List (
11303 Make_Attribute_Reference (Loc,
11304 Prefix => Obj_Tag,
11305 Attribute_Name => Name_Address),
11306 New_Reference_To (
11307 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
11308 Loc)));
11309
11310 -- Ada 95: Normal case
11311
11312 else
11313 Build_CW_Membership (Loc,
11314 Obj_Tag_Node => Obj_Tag,
11315 Typ_Tag_Node =>
11316 New_Reference_To (
11317 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
11318 Related_Nod => N,
11319 New_Node => New_Node);
11320
11321 -- Generate the SCIL node for this class-wide membership test.
11322 -- Done here because the previous call to Build_CW_Membership
11323 -- relocates Obj_Tag.
11324
11325 if Generate_SCIL then
11326 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
11327 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
11328 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
11329 end if;
11330
11331 Result := New_Node;
11332 end if;
11333
11334 -- Right_Type is not a class-wide type
11335
11336 else
11337 -- No need to check the tag of the object if Right_Typ is abstract
11338
11339 if Is_Abstract_Type (Right_Type) then
11340 Result := New_Reference_To (Standard_False, Loc);
11341
11342 else
11343 Result :=
11344 Make_Op_Eq (Loc,
11345 Left_Opnd => Obj_Tag,
11346 Right_Opnd =>
11347 New_Reference_To
11348 (Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
11349 end if;
11350 end if;
11351 end Tagged_Membership;
11352
11353 ------------------------------
11354 -- Unary_Op_Validity_Checks --
11355 ------------------------------
11356
11357 procedure Unary_Op_Validity_Checks (N : Node_Id) is
11358 begin
11359 if Validity_Checks_On and Validity_Check_Operands then
11360 Ensure_Valid (Right_Opnd (N));
11361 end if;
11362 end Unary_Op_Validity_Checks;
11363
11364 end Exp_Ch4;