6eb4243bcd3cd58672c2a7d50c840b94e8b83906
[gcc.git] / gcc / ada / exp_util.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Casing; use Casing;
29 with Checks; use Checks;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Exp_Aggr; use Exp_Aggr;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Inline; use Inline;
38 with Itypes; use Itypes;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Res; use Sem_Res;
50 with Sem_Type; use Sem_Type;
51 with Sem_Util; use Sem_Util;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Stringt; use Stringt;
55 with Targparm; use Targparm;
56 with Tbuild; use Tbuild;
57 with Ttypes; use Ttypes;
58 with Urealp; use Urealp;
59 with Validsw; use Validsw;
60
61 package body Exp_Util is
62
63 -----------------------
64 -- Local Subprograms --
65 -----------------------
66
67 function Build_Task_Array_Image
68 (Loc : Source_Ptr;
69 Id_Ref : Node_Id;
70 A_Type : Entity_Id;
71 Dyn : Boolean := False) return Node_Id;
72 -- Build function to generate the image string for a task that is an array
73 -- component, concatenating the images of each index. To avoid storage
74 -- leaks, the string is built with successive slice assignments. The flag
75 -- Dyn indicates whether this is called for the initialization procedure of
76 -- an array of tasks, or for the name of a dynamically created task that is
77 -- assigned to an indexed component.
78
79 function Build_Task_Image_Function
80 (Loc : Source_Ptr;
81 Decls : List_Id;
82 Stats : List_Id;
83 Res : Entity_Id) return Node_Id;
84 -- Common processing for Task_Array_Image and Task_Record_Image. Build
85 -- function body that computes image.
86
87 procedure Build_Task_Image_Prefix
88 (Loc : Source_Ptr;
89 Len : out Entity_Id;
90 Res : out Entity_Id;
91 Pos : out Entity_Id;
92 Prefix : Entity_Id;
93 Sum : Node_Id;
94 Decls : List_Id;
95 Stats : List_Id);
96 -- Common processing for Task_Array_Image and Task_Record_Image. Create
97 -- local variables and assign prefix of name to result string.
98
99 function Build_Task_Record_Image
100 (Loc : Source_Ptr;
101 Id_Ref : Node_Id;
102 Dyn : Boolean := False) return Node_Id;
103 -- Build function to generate the image string for a task that is a record
104 -- component. Concatenate name of variable with that of selector. The flag
105 -- Dyn indicates whether this is called for the initialization procedure of
106 -- record with task components, or for a dynamically created task that is
107 -- assigned to a selected component.
108
109 procedure Evaluate_Slice_Bounds (Slice : Node_Id);
110 -- Force evaluation of bounds of a slice, which may be given by a range
111 -- or by a subtype indication with or without a constraint.
112
113 function Make_CW_Equivalent_Type
114 (T : Entity_Id;
115 E : Node_Id) return Entity_Id;
116 -- T is a class-wide type entity, E is the initial expression node that
117 -- constrains T in case such as: " X: T := E" or "new T'(E)". This function
118 -- returns the entity of the Equivalent type and inserts on the fly the
119 -- necessary declaration such as:
120 --
121 -- type anon is record
122 -- _parent : Root_Type (T); constrained with E discriminants (if any)
123 -- Extension : String (1 .. expr to match size of E);
124 -- end record;
125 --
126 -- This record is compatible with any object of the class of T thanks to
127 -- the first field and has the same size as E thanks to the second.
128
129 function Make_Literal_Range
130 (Loc : Source_Ptr;
131 Literal_Typ : Entity_Id) return Node_Id;
132 -- Produce a Range node whose bounds are:
133 -- Low_Bound (Literal_Type) ..
134 -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
135 -- this is used for expanding declarations like X : String := "sdfgdfg";
136 --
137 -- If the index type of the target array is not integer, we generate:
138 -- Low_Bound (Literal_Type) ..
139 -- Literal_Type'Val
140 -- (Literal_Type'Pos (Low_Bound (Literal_Type))
141 -- + (Length (Literal_Typ) -1))
142
143 function Make_Non_Empty_Check
144 (Loc : Source_Ptr;
145 N : Node_Id) return Node_Id;
146 -- Produce a boolean expression checking that the unidimensional array
147 -- node N is not empty.
148
149 function New_Class_Wide_Subtype
150 (CW_Typ : Entity_Id;
151 N : Node_Id) return Entity_Id;
152 -- Create an implicit subtype of CW_Typ attached to node N
153
154 function Requires_Cleanup_Actions
155 (L : List_Id;
156 Lib_Level : Boolean;
157 Nested_Constructs : Boolean) return Boolean;
158 -- Given a list L, determine whether it contains one of the following:
159 --
160 -- 1) controlled objects
161 -- 2) library-level tagged types
162 --
163 -- Lib_Level is True when the list comes from a construct at the library
164 -- level, and False otherwise. Nested_Constructs is True when any nested
165 -- packages declared in L must be processed, and False otherwise.
166
167 -------------------------------------
168 -- Activate_Atomic_Synchronization --
169 -------------------------------------
170
171 procedure Activate_Atomic_Synchronization (N : Node_Id) is
172 Msg_Node : Node_Id;
173
174 begin
175 case Nkind (Parent (N)) is
176
177 -- Check for cases of appearing in the prefix of a construct where
178 -- we don't need atomic synchronization for this kind of usage.
179
180 when
181 -- Nothing to do if we are the prefix of an attribute, since we
182 -- do not want an atomic sync operation for things like 'Size.
183
184 N_Attribute_Reference |
185
186 -- The N_Reference node is like an attribute
187
188 N_Reference |
189
190 -- Nothing to do for a reference to a component (or components)
191 -- of a composite object. Only reads and updates of the object
192 -- as a whole require atomic synchronization (RM C.6 (15)).
193
194 N_Indexed_Component |
195 N_Selected_Component |
196 N_Slice =>
197
198 -- For all the above cases, nothing to do if we are the prefix
199
200 if Prefix (Parent (N)) = N then
201 return;
202 end if;
203
204 when others => null;
205 end case;
206
207 -- Go ahead and set the flag
208
209 Set_Atomic_Sync_Required (N);
210
211 -- Generate info message if requested
212
213 if Warn_On_Atomic_Synchronization then
214 case Nkind (N) is
215 when N_Identifier =>
216 Msg_Node := N;
217
218 when N_Selected_Component | N_Expanded_Name =>
219 Msg_Node := Selector_Name (N);
220
221 when N_Explicit_Dereference | N_Indexed_Component =>
222 Msg_Node := Empty;
223
224 when others =>
225 pragma Assert (False);
226 return;
227 end case;
228
229 if Present (Msg_Node) then
230 Error_Msg_N
231 ("info: atomic synchronization set for &?N?", Msg_Node);
232 else
233 Error_Msg_N
234 ("info: atomic synchronization set?N?", N);
235 end if;
236 end if;
237 end Activate_Atomic_Synchronization;
238
239 ----------------------
240 -- Adjust_Condition --
241 ----------------------
242
243 procedure Adjust_Condition (N : Node_Id) is
244 begin
245 if No (N) then
246 return;
247 end if;
248
249 declare
250 Loc : constant Source_Ptr := Sloc (N);
251 T : constant Entity_Id := Etype (N);
252 Ti : Entity_Id;
253
254 begin
255 -- Defend against a call where the argument has no type, or has a
256 -- type that is not Boolean. This can occur because of prior errors.
257
258 if No (T) or else not Is_Boolean_Type (T) then
259 return;
260 end if;
261
262 -- Apply validity checking if needed
263
264 if Validity_Checks_On and Validity_Check_Tests then
265 Ensure_Valid (N);
266 end if;
267
268 -- Immediate return if standard boolean, the most common case,
269 -- where nothing needs to be done.
270
271 if Base_Type (T) = Standard_Boolean then
272 return;
273 end if;
274
275 -- Case of zero/non-zero semantics or non-standard enumeration
276 -- representation. In each case, we rewrite the node as:
277
278 -- ityp!(N) /= False'Enum_Rep
279
280 -- where ityp is an integer type with large enough size to hold any
281 -- value of type T.
282
283 if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
284 if Esize (T) <= Esize (Standard_Integer) then
285 Ti := Standard_Integer;
286 else
287 Ti := Standard_Long_Long_Integer;
288 end if;
289
290 Rewrite (N,
291 Make_Op_Ne (Loc,
292 Left_Opnd => Unchecked_Convert_To (Ti, N),
293 Right_Opnd =>
294 Make_Attribute_Reference (Loc,
295 Attribute_Name => Name_Enum_Rep,
296 Prefix =>
297 New_Occurrence_Of (First_Literal (T), Loc))));
298 Analyze_And_Resolve (N, Standard_Boolean);
299
300 else
301 Rewrite (N, Convert_To (Standard_Boolean, N));
302 Analyze_And_Resolve (N, Standard_Boolean);
303 end if;
304 end;
305 end Adjust_Condition;
306
307 ------------------------
308 -- Adjust_Result_Type --
309 ------------------------
310
311 procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
312 begin
313 -- Ignore call if current type is not Standard.Boolean
314
315 if Etype (N) /= Standard_Boolean then
316 return;
317 end if;
318
319 -- If result is already of correct type, nothing to do. Note that
320 -- this will get the most common case where everything has a type
321 -- of Standard.Boolean.
322
323 if Base_Type (T) = Standard_Boolean then
324 return;
325
326 else
327 declare
328 KP : constant Node_Kind := Nkind (Parent (N));
329
330 begin
331 -- If result is to be used as a Condition in the syntax, no need
332 -- to convert it back, since if it was changed to Standard.Boolean
333 -- using Adjust_Condition, that is just fine for this usage.
334
335 if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
336 return;
337
338 -- If result is an operand of another logical operation, no need
339 -- to reset its type, since Standard.Boolean is just fine, and
340 -- such operations always do Adjust_Condition on their operands.
341
342 elsif KP in N_Op_Boolean
343 or else KP in N_Short_Circuit
344 or else KP = N_Op_Not
345 then
346 return;
347
348 -- Otherwise we perform a conversion from the current type, which
349 -- must be Standard.Boolean, to the desired type.
350
351 else
352 Set_Analyzed (N);
353 Rewrite (N, Convert_To (T, N));
354 Analyze_And_Resolve (N, T);
355 end if;
356 end;
357 end if;
358 end Adjust_Result_Type;
359
360 --------------------------
361 -- Append_Freeze_Action --
362 --------------------------
363
364 procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
365 Fnode : Node_Id;
366
367 begin
368 Ensure_Freeze_Node (T);
369 Fnode := Freeze_Node (T);
370
371 if No (Actions (Fnode)) then
372 Set_Actions (Fnode, New_List (N));
373 else
374 Append (N, Actions (Fnode));
375 end if;
376
377 end Append_Freeze_Action;
378
379 ---------------------------
380 -- Append_Freeze_Actions --
381 ---------------------------
382
383 procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
384 Fnode : Node_Id;
385
386 begin
387 if No (L) then
388 return;
389 end if;
390
391 Ensure_Freeze_Node (T);
392 Fnode := Freeze_Node (T);
393
394 if No (Actions (Fnode)) then
395 Set_Actions (Fnode, L);
396 else
397 Append_List (L, Actions (Fnode));
398 end if;
399 end Append_Freeze_Actions;
400
401 ------------------------------------
402 -- Build_Allocate_Deallocate_Proc --
403 ------------------------------------
404
405 procedure Build_Allocate_Deallocate_Proc
406 (N : Node_Id;
407 Is_Allocate : Boolean)
408 is
409 Desig_Typ : Entity_Id;
410 Expr : Node_Id;
411 Pool_Id : Entity_Id;
412 Proc_To_Call : Node_Id := Empty;
413 Ptr_Typ : Entity_Id;
414
415 function Find_Finalize_Address (Typ : Entity_Id) return Entity_Id;
416 -- Locate TSS primitive Finalize_Address in type Typ
417
418 function Find_Object (E : Node_Id) return Node_Id;
419 -- Given an arbitrary expression of an allocator, try to find an object
420 -- reference in it, otherwise return the original expression.
421
422 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean;
423 -- Determine whether subprogram Subp denotes a custom allocate or
424 -- deallocate.
425
426 ---------------------------
427 -- Find_Finalize_Address --
428 ---------------------------
429
430 function Find_Finalize_Address (Typ : Entity_Id) return Entity_Id is
431 Utyp : Entity_Id := Typ;
432
433 begin
434 -- Handle protected class-wide or task class-wide types
435
436 if Is_Class_Wide_Type (Utyp) then
437 if Is_Concurrent_Type (Root_Type (Utyp)) then
438 Utyp := Root_Type (Utyp);
439
440 elsif Is_Private_Type (Root_Type (Utyp))
441 and then Present (Full_View (Root_Type (Utyp)))
442 and then Is_Concurrent_Type (Full_View (Root_Type (Utyp)))
443 then
444 Utyp := Full_View (Root_Type (Utyp));
445 end if;
446 end if;
447
448 -- Handle private types
449
450 if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then
451 Utyp := Full_View (Utyp);
452 end if;
453
454 -- Handle protected and task types
455
456 if Is_Concurrent_Type (Utyp)
457 and then Present (Corresponding_Record_Type (Utyp))
458 then
459 Utyp := Corresponding_Record_Type (Utyp);
460 end if;
461
462 Utyp := Underlying_Type (Base_Type (Utyp));
463
464 -- Deal with non-tagged derivation of private views. If the parent is
465 -- now known to be protected, the finalization routine is the one
466 -- defined on the corresponding record of the ancestor (corresponding
467 -- records do not automatically inherit operations, but maybe they
468 -- should???)
469
470 if Is_Untagged_Derivation (Typ) then
471 if Is_Protected_Type (Typ) then
472 Utyp := Corresponding_Record_Type (Root_Type (Base_Type (Typ)));
473 else
474 Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
475
476 if Is_Protected_Type (Utyp) then
477 Utyp := Corresponding_Record_Type (Utyp);
478 end if;
479 end if;
480 end if;
481
482 -- If the underlying_type is a subtype, we are dealing with the
483 -- completion of a private type. We need to access the base type and
484 -- generate a conversion to it.
485
486 if Utyp /= Base_Type (Utyp) then
487 pragma Assert (Is_Private_Type (Typ));
488
489 Utyp := Base_Type (Utyp);
490 end if;
491
492 -- When dealing with an internally built full view for a type with
493 -- unknown discriminants, use the original record type.
494
495 if Is_Underlying_Record_View (Utyp) then
496 Utyp := Etype (Utyp);
497 end if;
498
499 return TSS (Utyp, TSS_Finalize_Address);
500 end Find_Finalize_Address;
501
502 -----------------
503 -- Find_Object --
504 -----------------
505
506 function Find_Object (E : Node_Id) return Node_Id is
507 Expr : Node_Id;
508
509 begin
510 pragma Assert (Is_Allocate);
511
512 Expr := E;
513 loop
514 if Nkind (Expr) = N_Explicit_Dereference then
515 Expr := Prefix (Expr);
516
517 elsif Nkind (Expr) = N_Qualified_Expression then
518 Expr := Expression (Expr);
519
520 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
521
522 -- When interface class-wide types are involved in allocation,
523 -- the expander introduces several levels of address arithmetic
524 -- to perform dispatch table displacement. In this scenario the
525 -- object appears as:
526
527 -- Tag_Ptr (Base_Address (<object>'Address))
528
529 -- Detect this case and utilize the whole expression as the
530 -- "object" since it now points to the proper dispatch table.
531
532 if Is_RTE (Etype (Expr), RE_Tag_Ptr) then
533 exit;
534
535 -- Continue to strip the object
536
537 else
538 Expr := Expression (Expr);
539 end if;
540
541 else
542 exit;
543 end if;
544 end loop;
545
546 return Expr;
547 end Find_Object;
548
549 ---------------------------------
550 -- Is_Allocate_Deallocate_Proc --
551 ---------------------------------
552
553 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is
554 begin
555 -- Look for a subprogram body with only one statement which is a
556 -- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
557
558 if Ekind (Subp) = E_Procedure
559 and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body
560 then
561 declare
562 HSS : constant Node_Id :=
563 Handled_Statement_Sequence (Parent (Parent (Subp)));
564 Proc : Entity_Id;
565
566 begin
567 if Present (Statements (HSS))
568 and then Nkind (First (Statements (HSS))) =
569 N_Procedure_Call_Statement
570 then
571 Proc := Entity (Name (First (Statements (HSS))));
572
573 return
574 Is_RTE (Proc, RE_Allocate_Any_Controlled)
575 or else Is_RTE (Proc, RE_Deallocate_Any_Controlled);
576 end if;
577 end;
578 end if;
579
580 return False;
581 end Is_Allocate_Deallocate_Proc;
582
583 -- Start of processing for Build_Allocate_Deallocate_Proc
584
585 begin
586 -- Obtain the attributes of the allocation / deallocation
587
588 if Nkind (N) = N_Free_Statement then
589 Expr := Expression (N);
590 Ptr_Typ := Base_Type (Etype (Expr));
591 Proc_To_Call := Procedure_To_Call (N);
592
593 else
594 if Nkind (N) = N_Object_Declaration then
595 Expr := Expression (N);
596 else
597 Expr := N;
598 end if;
599
600 -- In certain cases an allocator with a qualified expression may
601 -- be relocated and used as the initialization expression of a
602 -- temporary:
603
604 -- before:
605 -- Obj : Ptr_Typ := new Desig_Typ'(...);
606
607 -- after:
608 -- Tmp : Ptr_Typ := new Desig_Typ'(...);
609 -- Obj : Ptr_Typ := Tmp;
610
611 -- Since the allocator is always marked as analyzed to avoid infinite
612 -- expansion, it will never be processed by this routine given that
613 -- the designated type needs finalization actions. Detect this case
614 -- and complete the expansion of the allocator.
615
616 if Nkind (Expr) = N_Identifier
617 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
618 and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator
619 then
620 Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True);
621 return;
622 end if;
623
624 -- The allocator may have been rewritten into something else in which
625 -- case the expansion performed by this routine does not apply.
626
627 if Nkind (Expr) /= N_Allocator then
628 return;
629 end if;
630
631 Ptr_Typ := Base_Type (Etype (Expr));
632 Proc_To_Call := Procedure_To_Call (Expr);
633 end if;
634
635 Pool_Id := Associated_Storage_Pool (Ptr_Typ);
636 Desig_Typ := Available_View (Designated_Type (Ptr_Typ));
637
638 -- Handle concurrent types
639
640 if Is_Concurrent_Type (Desig_Typ)
641 and then Present (Corresponding_Record_Type (Desig_Typ))
642 then
643 Desig_Typ := Corresponding_Record_Type (Desig_Typ);
644 end if;
645
646 -- Do not process allocations / deallocations without a pool
647
648 if No (Pool_Id) then
649 return;
650
651 -- Do not process allocations on / deallocations from the secondary
652 -- stack.
653
654 elsif Is_RTE (Pool_Id, RE_SS_Pool) then
655 return;
656
657 -- Do not replicate the machinery if the allocator / free has already
658 -- been expanded and has a custom Allocate / Deallocate.
659
660 elsif Present (Proc_To_Call)
661 and then Is_Allocate_Deallocate_Proc (Proc_To_Call)
662 then
663 return;
664 end if;
665
666 if Needs_Finalization (Desig_Typ) then
667
668 -- Certain run-time configurations and targets do not provide support
669 -- for controlled types.
670
671 if Restriction_Active (No_Finalization) then
672 return;
673
674 -- Do nothing if the access type may never allocate / deallocate
675 -- objects.
676
677 elsif No_Pool_Assigned (Ptr_Typ) then
678 return;
679
680 -- Access-to-controlled types are not supported on .NET/JVM since
681 -- these targets cannot support pools and address arithmetic.
682
683 elsif VM_Target /= No_VM then
684 return;
685 end if;
686
687 -- The allocation / deallocation of a controlled object must be
688 -- chained on / detached from a finalization master.
689
690 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
691
692 -- The only other kind of allocation / deallocation supported by this
693 -- routine is on / from a subpool.
694
695 elsif Nkind (Expr) = N_Allocator
696 and then No (Subpool_Handle_Name (Expr))
697 then
698 return;
699 end if;
700
701 declare
702 Loc : constant Source_Ptr := Sloc (N);
703 Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
704 Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L');
705 Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P');
706 Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
707
708 Actuals : List_Id;
709 Fin_Addr_Id : Entity_Id;
710 Fin_Mas_Act : Node_Id;
711 Fin_Mas_Id : Entity_Id;
712 Proc_To_Call : Entity_Id;
713 Subpool : Node_Id := Empty;
714
715 begin
716 -- Step 1: Construct all the actuals for the call to library routine
717 -- Allocate_Any_Controlled / Deallocate_Any_Controlled.
718
719 -- a) Storage pool
720
721 Actuals := New_List (New_Occurrence_Of (Pool_Id, Loc));
722
723 if Is_Allocate then
724
725 -- b) Subpool
726
727 if Nkind (Expr) = N_Allocator then
728 Subpool := Subpool_Handle_Name (Expr);
729 end if;
730
731 -- If a subpool is present it can be an arbitrary name, so make
732 -- the actual by copying the tree.
733
734 if Present (Subpool) then
735 Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc));
736 else
737 Append_To (Actuals, Make_Null (Loc));
738 end if;
739
740 -- c) Finalization master
741
742 if Needs_Finalization (Desig_Typ) then
743 Fin_Mas_Id := Finalization_Master (Ptr_Typ);
744 Fin_Mas_Act := New_Occurrence_Of (Fin_Mas_Id, Loc);
745
746 -- Handle the case where the master is actually a pointer to a
747 -- master. This case arises in build-in-place functions.
748
749 if Is_Access_Type (Etype (Fin_Mas_Id)) then
750 Append_To (Actuals, Fin_Mas_Act);
751 else
752 Append_To (Actuals,
753 Make_Attribute_Reference (Loc,
754 Prefix => Fin_Mas_Act,
755 Attribute_Name => Name_Unrestricted_Access));
756 end if;
757 else
758 Append_To (Actuals, Make_Null (Loc));
759 end if;
760
761 -- d) Finalize_Address
762
763 -- Primitive Finalize_Address is never generated in CodePeer mode
764 -- since it contains an Unchecked_Conversion.
765
766 if Needs_Finalization (Desig_Typ) and then not CodePeer_Mode then
767 Fin_Addr_Id := Find_Finalize_Address (Desig_Typ);
768 pragma Assert (Present (Fin_Addr_Id));
769
770 Append_To (Actuals,
771 Make_Attribute_Reference (Loc,
772 Prefix => New_Occurrence_Of (Fin_Addr_Id, Loc),
773 Attribute_Name => Name_Unrestricted_Access));
774 else
775 Append_To (Actuals, Make_Null (Loc));
776 end if;
777 end if;
778
779 -- e) Address
780 -- f) Storage_Size
781 -- g) Alignment
782
783 Append_To (Actuals, New_Occurrence_Of (Addr_Id, Loc));
784 Append_To (Actuals, New_Occurrence_Of (Size_Id, Loc));
785
786 if Is_Allocate or else not Is_Class_Wide_Type (Desig_Typ) then
787 Append_To (Actuals, New_Occurrence_Of (Alig_Id, Loc));
788
789 -- For deallocation of class wide types we obtain the value of
790 -- alignment from the Type Specific Record of the deallocated object.
791 -- This is needed because the frontend expansion of class-wide types
792 -- into equivalent types confuses the backend.
793
794 else
795 -- Generate:
796 -- Obj.all'Alignment
797
798 -- ... because 'Alignment applied to class-wide types is expanded
799 -- into the code that reads the value of alignment from the TSD
800 -- (see Expand_N_Attribute_Reference)
801
802 Append_To (Actuals,
803 Unchecked_Convert_To (RTE (RE_Storage_Offset),
804 Make_Attribute_Reference (Loc,
805 Prefix =>
806 Make_Explicit_Dereference (Loc, Relocate_Node (Expr)),
807 Attribute_Name => Name_Alignment)));
808 end if;
809
810 -- h) Is_Controlled
811
812 if Needs_Finalization (Desig_Typ) then
813 declare
814 Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F');
815 Flag_Expr : Node_Id;
816 Param : Node_Id;
817 Temp : Node_Id;
818
819 begin
820 if Is_Allocate then
821 Temp := Find_Object (Expression (Expr));
822 else
823 Temp := Expr;
824 end if;
825
826 -- Processing for allocations where the expression is a subtype
827 -- indication.
828
829 if Is_Allocate
830 and then Is_Entity_Name (Temp)
831 and then Is_Type (Entity (Temp))
832 then
833 Flag_Expr :=
834 New_Occurrence_Of
835 (Boolean_Literals
836 (Needs_Finalization (Entity (Temp))), Loc);
837
838 -- The allocation / deallocation of a class-wide object relies
839 -- on a runtime check to determine whether the object is truly
840 -- controlled or not. Depending on this check, the finalization
841 -- machinery will request or reclaim extra storage reserved for
842 -- a list header.
843
844 elsif Is_Class_Wide_Type (Desig_Typ) then
845
846 -- Detect a special case where interface class-wide types
847 -- are involved as the object appears as:
848
849 -- Tag_Ptr (Base_Address (<object>'Address))
850
851 -- The expression already yields the proper tag, generate:
852
853 -- Temp.all
854
855 if Is_RTE (Etype (Temp), RE_Tag_Ptr) then
856 Param :=
857 Make_Explicit_Dereference (Loc,
858 Prefix => Relocate_Node (Temp));
859
860 -- In the default case, obtain the tag of the object about
861 -- to be allocated / deallocated. Generate:
862
863 -- Temp'Tag
864
865 else
866 Param :=
867 Make_Attribute_Reference (Loc,
868 Prefix => Relocate_Node (Temp),
869 Attribute_Name => Name_Tag);
870 end if;
871
872 -- Generate:
873 -- Needs_Finalization (<Param>)
874
875 Flag_Expr :=
876 Make_Function_Call (Loc,
877 Name =>
878 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
879 Parameter_Associations => New_List (Param));
880
881 -- Processing for generic actuals
882
883 elsif Is_Generic_Actual_Type (Desig_Typ) then
884 Flag_Expr :=
885 New_Occurrence_Of (Boolean_Literals
886 (Needs_Finalization (Base_Type (Desig_Typ))), Loc);
887
888 -- The object does not require any specialized checks, it is
889 -- known to be controlled.
890
891 else
892 Flag_Expr := New_Occurrence_Of (Standard_True, Loc);
893 end if;
894
895 -- Create the temporary which represents the finalization state
896 -- of the expression. Generate:
897 --
898 -- F : constant Boolean := <Flag_Expr>;
899
900 Insert_Action (N,
901 Make_Object_Declaration (Loc,
902 Defining_Identifier => Flag_Id,
903 Constant_Present => True,
904 Object_Definition =>
905 New_Occurrence_Of (Standard_Boolean, Loc),
906 Expression => Flag_Expr));
907
908 Append_To (Actuals, New_Occurrence_Of (Flag_Id, Loc));
909 end;
910
911 -- The object is not controlled
912
913 else
914 Append_To (Actuals, New_Occurrence_Of (Standard_False, Loc));
915 end if;
916
917 -- i) On_Subpool
918
919 if Is_Allocate then
920 Append_To (Actuals,
921 New_Occurrence_Of (Boolean_Literals (Present (Subpool)), Loc));
922 end if;
923
924 -- Step 2: Build a wrapper Allocate / Deallocate which internally
925 -- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
926
927 -- Select the proper routine to call
928
929 if Is_Allocate then
930 Proc_To_Call := RTE (RE_Allocate_Any_Controlled);
931 else
932 Proc_To_Call := RTE (RE_Deallocate_Any_Controlled);
933 end if;
934
935 -- Create a custom Allocate / Deallocate routine which has identical
936 -- profile to that of System.Storage_Pools.
937
938 Insert_Action (N,
939 Make_Subprogram_Body (Loc,
940 Specification =>
941
942 -- procedure Pnn
943
944 Make_Procedure_Specification (Loc,
945 Defining_Unit_Name => Proc_Id,
946 Parameter_Specifications => New_List (
947
948 -- P : Root_Storage_Pool
949
950 Make_Parameter_Specification (Loc,
951 Defining_Identifier => Make_Temporary (Loc, 'P'),
952 Parameter_Type =>
953 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc)),
954
955 -- A : [out] Address
956
957 Make_Parameter_Specification (Loc,
958 Defining_Identifier => Addr_Id,
959 Out_Present => Is_Allocate,
960 Parameter_Type =>
961 New_Occurrence_Of (RTE (RE_Address), Loc)),
962
963 -- S : Storage_Count
964
965 Make_Parameter_Specification (Loc,
966 Defining_Identifier => Size_Id,
967 Parameter_Type =>
968 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)),
969
970 -- L : Storage_Count
971
972 Make_Parameter_Specification (Loc,
973 Defining_Identifier => Alig_Id,
974 Parameter_Type =>
975 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)))),
976
977 Declarations => No_List,
978
979 Handled_Statement_Sequence =>
980 Make_Handled_Sequence_Of_Statements (Loc,
981 Statements => New_List (
982 Make_Procedure_Call_Statement (Loc,
983 Name => New_Occurrence_Of (Proc_To_Call, Loc),
984 Parameter_Associations => Actuals)))));
985
986 -- The newly generated Allocate / Deallocate becomes the default
987 -- procedure to call when the back end processes the allocation /
988 -- deallocation.
989
990 if Is_Allocate then
991 Set_Procedure_To_Call (Expr, Proc_Id);
992 else
993 Set_Procedure_To_Call (N, Proc_Id);
994 end if;
995 end;
996 end Build_Allocate_Deallocate_Proc;
997
998 ------------------------
999 -- Build_Runtime_Call --
1000 ------------------------
1001
1002 function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
1003 begin
1004 -- If entity is not available, we can skip making the call (this avoids
1005 -- junk duplicated error messages in a number of cases).
1006
1007 if not RTE_Available (RE) then
1008 return Make_Null_Statement (Loc);
1009 else
1010 return
1011 Make_Procedure_Call_Statement (Loc,
1012 Name => New_Occurrence_Of (RTE (RE), Loc));
1013 end if;
1014 end Build_Runtime_Call;
1015
1016 ----------------------------
1017 -- Build_Task_Array_Image --
1018 ----------------------------
1019
1020 -- This function generates the body for a function that constructs the
1021 -- image string for a task that is an array component. The function is
1022 -- local to the init proc for the array type, and is called for each one
1023 -- of the components. The constructed image has the form of an indexed
1024 -- component, whose prefix is the outer variable of the array type.
1025 -- The n-dimensional array type has known indexes Index, Index2...
1026
1027 -- Id_Ref is an indexed component form created by the enclosing init proc.
1028 -- Its successive indexes are Val1, Val2, ... which are the loop variables
1029 -- in the loops that call the individual task init proc on each component.
1030
1031 -- The generated function has the following structure:
1032
1033 -- function F return String is
1034 -- Pref : string renames Task_Name;
1035 -- T1 : String := Index1'Image (Val1);
1036 -- ...
1037 -- Tn : String := indexn'image (Valn);
1038 -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
1039 -- -- Len includes commas and the end parentheses.
1040 -- Res : String (1..Len);
1041 -- Pos : Integer := Pref'Length;
1042 --
1043 -- begin
1044 -- Res (1 .. Pos) := Pref;
1045 -- Pos := Pos + 1;
1046 -- Res (Pos) := '(';
1047 -- Pos := Pos + 1;
1048 -- Res (Pos .. Pos + T1'Length - 1) := T1;
1049 -- Pos := Pos + T1'Length;
1050 -- Res (Pos) := '.';
1051 -- Pos := Pos + 1;
1052 -- ...
1053 -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
1054 -- Res (Len) := ')';
1055 --
1056 -- return Res;
1057 -- end F;
1058 --
1059 -- Needless to say, multidimensional arrays of tasks are rare enough that
1060 -- the bulkiness of this code is not really a concern.
1061
1062 function Build_Task_Array_Image
1063 (Loc : Source_Ptr;
1064 Id_Ref : Node_Id;
1065 A_Type : Entity_Id;
1066 Dyn : Boolean := False) return Node_Id
1067 is
1068 Dims : constant Nat := Number_Dimensions (A_Type);
1069 -- Number of dimensions for array of tasks
1070
1071 Temps : array (1 .. Dims) of Entity_Id;
1072 -- Array of temporaries to hold string for each index
1073
1074 Indx : Node_Id;
1075 -- Index expression
1076
1077 Len : Entity_Id;
1078 -- Total length of generated name
1079
1080 Pos : Entity_Id;
1081 -- Running index for substring assignments
1082
1083 Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
1084 -- Name of enclosing variable, prefix of resulting name
1085
1086 Res : Entity_Id;
1087 -- String to hold result
1088
1089 Val : Node_Id;
1090 -- Value of successive indexes
1091
1092 Sum : Node_Id;
1093 -- Expression to compute total size of string
1094
1095 T : Entity_Id;
1096 -- Entity for name at one index position
1097
1098 Decls : constant List_Id := New_List;
1099 Stats : constant List_Id := New_List;
1100
1101 begin
1102 -- For a dynamic task, the name comes from the target variable. For a
1103 -- static one it is a formal of the enclosing init proc.
1104
1105 if Dyn then
1106 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
1107 Append_To (Decls,
1108 Make_Object_Declaration (Loc,
1109 Defining_Identifier => Pref,
1110 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1111 Expression =>
1112 Make_String_Literal (Loc,
1113 Strval => String_From_Name_Buffer)));
1114
1115 else
1116 Append_To (Decls,
1117 Make_Object_Renaming_Declaration (Loc,
1118 Defining_Identifier => Pref,
1119 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1120 Name => Make_Identifier (Loc, Name_uTask_Name)));
1121 end if;
1122
1123 Indx := First_Index (A_Type);
1124 Val := First (Expressions (Id_Ref));
1125
1126 for J in 1 .. Dims loop
1127 T := Make_Temporary (Loc, 'T');
1128 Temps (J) := T;
1129
1130 Append_To (Decls,
1131 Make_Object_Declaration (Loc,
1132 Defining_Identifier => T,
1133 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1134 Expression =>
1135 Make_Attribute_Reference (Loc,
1136 Attribute_Name => Name_Image,
1137 Prefix => New_Occurrence_Of (Etype (Indx), Loc),
1138 Expressions => New_List (New_Copy_Tree (Val)))));
1139
1140 Next_Index (Indx);
1141 Next (Val);
1142 end loop;
1143
1144 Sum := Make_Integer_Literal (Loc, Dims + 1);
1145
1146 Sum :=
1147 Make_Op_Add (Loc,
1148 Left_Opnd => Sum,
1149 Right_Opnd =>
1150 Make_Attribute_Reference (Loc,
1151 Attribute_Name => Name_Length,
1152 Prefix => New_Occurrence_Of (Pref, Loc),
1153 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1154
1155 for J in 1 .. Dims loop
1156 Sum :=
1157 Make_Op_Add (Loc,
1158 Left_Opnd => Sum,
1159 Right_Opnd =>
1160 Make_Attribute_Reference (Loc,
1161 Attribute_Name => Name_Length,
1162 Prefix =>
1163 New_Occurrence_Of (Temps (J), Loc),
1164 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1165 end loop;
1166
1167 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
1168
1169 Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
1170
1171 Append_To (Stats,
1172 Make_Assignment_Statement (Loc,
1173 Name =>
1174 Make_Indexed_Component (Loc,
1175 Prefix => New_Occurrence_Of (Res, Loc),
1176 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1177 Expression =>
1178 Make_Character_Literal (Loc,
1179 Chars => Name_Find,
1180 Char_Literal_Value => UI_From_Int (Character'Pos ('(')))));
1181
1182 Append_To (Stats,
1183 Make_Assignment_Statement (Loc,
1184 Name => New_Occurrence_Of (Pos, Loc),
1185 Expression =>
1186 Make_Op_Add (Loc,
1187 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1188 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1189
1190 for J in 1 .. Dims loop
1191
1192 Append_To (Stats,
1193 Make_Assignment_Statement (Loc,
1194 Name =>
1195 Make_Slice (Loc,
1196 Prefix => New_Occurrence_Of (Res, Loc),
1197 Discrete_Range =>
1198 Make_Range (Loc,
1199 Low_Bound => New_Occurrence_Of (Pos, Loc),
1200 High_Bound =>
1201 Make_Op_Subtract (Loc,
1202 Left_Opnd =>
1203 Make_Op_Add (Loc,
1204 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1205 Right_Opnd =>
1206 Make_Attribute_Reference (Loc,
1207 Attribute_Name => Name_Length,
1208 Prefix =>
1209 New_Occurrence_Of (Temps (J), Loc),
1210 Expressions =>
1211 New_List (Make_Integer_Literal (Loc, 1)))),
1212 Right_Opnd => Make_Integer_Literal (Loc, 1)))),
1213
1214 Expression => New_Occurrence_Of (Temps (J), Loc)));
1215
1216 if J < Dims then
1217 Append_To (Stats,
1218 Make_Assignment_Statement (Loc,
1219 Name => New_Occurrence_Of (Pos, Loc),
1220 Expression =>
1221 Make_Op_Add (Loc,
1222 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1223 Right_Opnd =>
1224 Make_Attribute_Reference (Loc,
1225 Attribute_Name => Name_Length,
1226 Prefix => New_Occurrence_Of (Temps (J), Loc),
1227 Expressions =>
1228 New_List (Make_Integer_Literal (Loc, 1))))));
1229
1230 Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
1231
1232 Append_To (Stats,
1233 Make_Assignment_Statement (Loc,
1234 Name => Make_Indexed_Component (Loc,
1235 Prefix => New_Occurrence_Of (Res, Loc),
1236 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1237 Expression =>
1238 Make_Character_Literal (Loc,
1239 Chars => Name_Find,
1240 Char_Literal_Value => UI_From_Int (Character'Pos (',')))));
1241
1242 Append_To (Stats,
1243 Make_Assignment_Statement (Loc,
1244 Name => New_Occurrence_Of (Pos, Loc),
1245 Expression =>
1246 Make_Op_Add (Loc,
1247 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1248 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1249 end if;
1250 end loop;
1251
1252 Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
1253
1254 Append_To (Stats,
1255 Make_Assignment_Statement (Loc,
1256 Name =>
1257 Make_Indexed_Component (Loc,
1258 Prefix => New_Occurrence_Of (Res, Loc),
1259 Expressions => New_List (New_Occurrence_Of (Len, Loc))),
1260 Expression =>
1261 Make_Character_Literal (Loc,
1262 Chars => Name_Find,
1263 Char_Literal_Value => UI_From_Int (Character'Pos (')')))));
1264 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
1265 end Build_Task_Array_Image;
1266
1267 ----------------------------
1268 -- Build_Task_Image_Decls --
1269 ----------------------------
1270
1271 function Build_Task_Image_Decls
1272 (Loc : Source_Ptr;
1273 Id_Ref : Node_Id;
1274 A_Type : Entity_Id;
1275 In_Init_Proc : Boolean := False) return List_Id
1276 is
1277 Decls : constant List_Id := New_List;
1278 T_Id : Entity_Id := Empty;
1279 Decl : Node_Id;
1280 Expr : Node_Id := Empty;
1281 Fun : Node_Id := Empty;
1282 Is_Dyn : constant Boolean :=
1283 Nkind (Parent (Id_Ref)) = N_Assignment_Statement
1284 and then
1285 Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
1286
1287 begin
1288 -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
1289 -- generate a dummy declaration only.
1290
1291 if Restriction_Active (No_Implicit_Heap_Allocations)
1292 or else Global_Discard_Names
1293 then
1294 T_Id := Make_Temporary (Loc, 'J');
1295 Name_Len := 0;
1296
1297 return
1298 New_List (
1299 Make_Object_Declaration (Loc,
1300 Defining_Identifier => T_Id,
1301 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1302 Expression =>
1303 Make_String_Literal (Loc,
1304 Strval => String_From_Name_Buffer)));
1305
1306 else
1307 if Nkind (Id_Ref) = N_Identifier
1308 or else Nkind (Id_Ref) = N_Defining_Identifier
1309 then
1310 -- For a simple variable, the image of the task is built from
1311 -- the name of the variable. To avoid possible conflict with the
1312 -- anonymous type created for a single protected object, add a
1313 -- numeric suffix.
1314
1315 T_Id :=
1316 Make_Defining_Identifier (Loc,
1317 New_External_Name (Chars (Id_Ref), 'T', 1));
1318
1319 Get_Name_String (Chars (Id_Ref));
1320
1321 Expr :=
1322 Make_String_Literal (Loc,
1323 Strval => String_From_Name_Buffer);
1324
1325 elsif Nkind (Id_Ref) = N_Selected_Component then
1326 T_Id :=
1327 Make_Defining_Identifier (Loc,
1328 New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
1329 Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
1330
1331 elsif Nkind (Id_Ref) = N_Indexed_Component then
1332 T_Id :=
1333 Make_Defining_Identifier (Loc,
1334 New_External_Name (Chars (A_Type), 'N'));
1335
1336 Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
1337 end if;
1338 end if;
1339
1340 if Present (Fun) then
1341 Append (Fun, Decls);
1342 Expr := Make_Function_Call (Loc,
1343 Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
1344
1345 if not In_Init_Proc and then VM_Target = No_VM then
1346 Set_Uses_Sec_Stack (Defining_Entity (Fun));
1347 end if;
1348 end if;
1349
1350 Decl := Make_Object_Declaration (Loc,
1351 Defining_Identifier => T_Id,
1352 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1353 Constant_Present => True,
1354 Expression => Expr);
1355
1356 Append (Decl, Decls);
1357 return Decls;
1358 end Build_Task_Image_Decls;
1359
1360 -------------------------------
1361 -- Build_Task_Image_Function --
1362 -------------------------------
1363
1364 function Build_Task_Image_Function
1365 (Loc : Source_Ptr;
1366 Decls : List_Id;
1367 Stats : List_Id;
1368 Res : Entity_Id) return Node_Id
1369 is
1370 Spec : Node_Id;
1371
1372 begin
1373 Append_To (Stats,
1374 Make_Simple_Return_Statement (Loc,
1375 Expression => New_Occurrence_Of (Res, Loc)));
1376
1377 Spec := Make_Function_Specification (Loc,
1378 Defining_Unit_Name => Make_Temporary (Loc, 'F'),
1379 Result_Definition => New_Occurrence_Of (Standard_String, Loc));
1380
1381 -- Calls to 'Image use the secondary stack, which must be cleaned up
1382 -- after the task name is built.
1383
1384 return Make_Subprogram_Body (Loc,
1385 Specification => Spec,
1386 Declarations => Decls,
1387 Handled_Statement_Sequence =>
1388 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
1389 end Build_Task_Image_Function;
1390
1391 -----------------------------
1392 -- Build_Task_Image_Prefix --
1393 -----------------------------
1394
1395 procedure Build_Task_Image_Prefix
1396 (Loc : Source_Ptr;
1397 Len : out Entity_Id;
1398 Res : out Entity_Id;
1399 Pos : out Entity_Id;
1400 Prefix : Entity_Id;
1401 Sum : Node_Id;
1402 Decls : List_Id;
1403 Stats : List_Id)
1404 is
1405 begin
1406 Len := Make_Temporary (Loc, 'L', Sum);
1407
1408 Append_To (Decls,
1409 Make_Object_Declaration (Loc,
1410 Defining_Identifier => Len,
1411 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
1412 Expression => Sum));
1413
1414 Res := Make_Temporary (Loc, 'R');
1415
1416 Append_To (Decls,
1417 Make_Object_Declaration (Loc,
1418 Defining_Identifier => Res,
1419 Object_Definition =>
1420 Make_Subtype_Indication (Loc,
1421 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1422 Constraint =>
1423 Make_Index_Or_Discriminant_Constraint (Loc,
1424 Constraints =>
1425 New_List (
1426 Make_Range (Loc,
1427 Low_Bound => Make_Integer_Literal (Loc, 1),
1428 High_Bound => New_Occurrence_Of (Len, Loc)))))));
1429
1430 -- Indicate that the result is an internal temporary, so it does not
1431 -- receive a bogus initialization when declaration is expanded. This
1432 -- is both efficient, and prevents anomalies in the handling of
1433 -- dynamic objects on the secondary stack.
1434
1435 Set_Is_Internal (Res);
1436 Pos := Make_Temporary (Loc, 'P');
1437
1438 Append_To (Decls,
1439 Make_Object_Declaration (Loc,
1440 Defining_Identifier => Pos,
1441 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
1442
1443 -- Pos := Prefix'Length;
1444
1445 Append_To (Stats,
1446 Make_Assignment_Statement (Loc,
1447 Name => New_Occurrence_Of (Pos, Loc),
1448 Expression =>
1449 Make_Attribute_Reference (Loc,
1450 Attribute_Name => Name_Length,
1451 Prefix => New_Occurrence_Of (Prefix, Loc),
1452 Expressions => New_List (Make_Integer_Literal (Loc, 1)))));
1453
1454 -- Res (1 .. Pos) := Prefix;
1455
1456 Append_To (Stats,
1457 Make_Assignment_Statement (Loc,
1458 Name =>
1459 Make_Slice (Loc,
1460 Prefix => New_Occurrence_Of (Res, Loc),
1461 Discrete_Range =>
1462 Make_Range (Loc,
1463 Low_Bound => Make_Integer_Literal (Loc, 1),
1464 High_Bound => New_Occurrence_Of (Pos, Loc))),
1465
1466 Expression => New_Occurrence_Of (Prefix, Loc)));
1467
1468 Append_To (Stats,
1469 Make_Assignment_Statement (Loc,
1470 Name => New_Occurrence_Of (Pos, Loc),
1471 Expression =>
1472 Make_Op_Add (Loc,
1473 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1474 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1475 end Build_Task_Image_Prefix;
1476
1477 -----------------------------
1478 -- Build_Task_Record_Image --
1479 -----------------------------
1480
1481 function Build_Task_Record_Image
1482 (Loc : Source_Ptr;
1483 Id_Ref : Node_Id;
1484 Dyn : Boolean := False) return Node_Id
1485 is
1486 Len : Entity_Id;
1487 -- Total length of generated name
1488
1489 Pos : Entity_Id;
1490 -- Index into result
1491
1492 Res : Entity_Id;
1493 -- String to hold result
1494
1495 Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
1496 -- Name of enclosing variable, prefix of resulting name
1497
1498 Sum : Node_Id;
1499 -- Expression to compute total size of string
1500
1501 Sel : Entity_Id;
1502 -- Entity for selector name
1503
1504 Decls : constant List_Id := New_List;
1505 Stats : constant List_Id := New_List;
1506
1507 begin
1508 -- For a dynamic task, the name comes from the target variable. For a
1509 -- static one it is a formal of the enclosing init proc.
1510
1511 if Dyn then
1512 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
1513 Append_To (Decls,
1514 Make_Object_Declaration (Loc,
1515 Defining_Identifier => Pref,
1516 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1517 Expression =>
1518 Make_String_Literal (Loc,
1519 Strval => String_From_Name_Buffer)));
1520
1521 else
1522 Append_To (Decls,
1523 Make_Object_Renaming_Declaration (Loc,
1524 Defining_Identifier => Pref,
1525 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1526 Name => Make_Identifier (Loc, Name_uTask_Name)));
1527 end if;
1528
1529 Sel := Make_Temporary (Loc, 'S');
1530
1531 Get_Name_String (Chars (Selector_Name (Id_Ref)));
1532
1533 Append_To (Decls,
1534 Make_Object_Declaration (Loc,
1535 Defining_Identifier => Sel,
1536 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1537 Expression =>
1538 Make_String_Literal (Loc,
1539 Strval => String_From_Name_Buffer)));
1540
1541 Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
1542
1543 Sum :=
1544 Make_Op_Add (Loc,
1545 Left_Opnd => Sum,
1546 Right_Opnd =>
1547 Make_Attribute_Reference (Loc,
1548 Attribute_Name => Name_Length,
1549 Prefix =>
1550 New_Occurrence_Of (Pref, Loc),
1551 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1552
1553 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
1554
1555 Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
1556
1557 -- Res (Pos) := '.';
1558
1559 Append_To (Stats,
1560 Make_Assignment_Statement (Loc,
1561 Name => Make_Indexed_Component (Loc,
1562 Prefix => New_Occurrence_Of (Res, Loc),
1563 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1564 Expression =>
1565 Make_Character_Literal (Loc,
1566 Chars => Name_Find,
1567 Char_Literal_Value =>
1568 UI_From_Int (Character'Pos ('.')))));
1569
1570 Append_To (Stats,
1571 Make_Assignment_Statement (Loc,
1572 Name => New_Occurrence_Of (Pos, Loc),
1573 Expression =>
1574 Make_Op_Add (Loc,
1575 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1576 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1577
1578 -- Res (Pos .. Len) := Selector;
1579
1580 Append_To (Stats,
1581 Make_Assignment_Statement (Loc,
1582 Name => Make_Slice (Loc,
1583 Prefix => New_Occurrence_Of (Res, Loc),
1584 Discrete_Range =>
1585 Make_Range (Loc,
1586 Low_Bound => New_Occurrence_Of (Pos, Loc),
1587 High_Bound => New_Occurrence_Of (Len, Loc))),
1588 Expression => New_Occurrence_Of (Sel, Loc)));
1589
1590 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
1591 end Build_Task_Record_Image;
1592
1593 ----------------------------------
1594 -- Component_May_Be_Bit_Aligned --
1595 ----------------------------------
1596
1597 function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
1598 UT : Entity_Id;
1599
1600 begin
1601 -- If no component clause, then everything is fine, since the back end
1602 -- never bit-misaligns by default, even if there is a pragma Packed for
1603 -- the record.
1604
1605 if No (Comp) or else No (Component_Clause (Comp)) then
1606 return False;
1607 end if;
1608
1609 UT := Underlying_Type (Etype (Comp));
1610
1611 -- It is only array and record types that cause trouble
1612
1613 if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then
1614 return False;
1615
1616 -- If we know that we have a small (64 bits or less) record or small
1617 -- bit-packed array, then everything is fine, since the back end can
1618 -- handle these cases correctly.
1619
1620 elsif Esize (Comp) <= 64
1621 and then (Is_Record_Type (UT) or else Is_Bit_Packed_Array (UT))
1622 then
1623 return False;
1624
1625 -- Otherwise if the component is not byte aligned, we know we have the
1626 -- nasty unaligned case.
1627
1628 elsif Normalized_First_Bit (Comp) /= Uint_0
1629 or else Esize (Comp) mod System_Storage_Unit /= Uint_0
1630 then
1631 return True;
1632
1633 -- If we are large and byte aligned, then OK at this level
1634
1635 else
1636 return False;
1637 end if;
1638 end Component_May_Be_Bit_Aligned;
1639
1640 -----------------------------------
1641 -- Corresponding_Runtime_Package --
1642 -----------------------------------
1643
1644 function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
1645 Pkg_Id : RTU_Id := RTU_Null;
1646
1647 begin
1648 pragma Assert (Is_Concurrent_Type (Typ));
1649
1650 if Ekind (Typ) in Protected_Kind then
1651 if Has_Entries (Typ)
1652
1653 -- A protected type without entries that covers an interface and
1654 -- overrides the abstract routines with protected procedures is
1655 -- considered equivalent to a protected type with entries in the
1656 -- context of dispatching select statements. It is sufficient to
1657 -- check for the presence of an interface list in the declaration
1658 -- node to recognize this case.
1659
1660 or else Present (Interface_List (Parent (Typ)))
1661
1662 -- Protected types with interrupt handlers (when not using a
1663 -- restricted profile) are also considered equivalent to
1664 -- protected types with entries. The types which are used
1665 -- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection)
1666 -- are derived from Protection_Entries.
1667
1668 or else (Has_Attach_Handler (Typ) and then not Restricted_Profile)
1669 or else Has_Interrupt_Handler (Typ)
1670 then
1671 if Abort_Allowed
1672 or else Restriction_Active (No_Entry_Queue) = False
1673 or else Restriction_Active (No_Select_Statements) = False
1674 or else Number_Entries (Typ) > 1
1675 or else (Has_Attach_Handler (Typ)
1676 and then not Restricted_Profile)
1677 then
1678 Pkg_Id := System_Tasking_Protected_Objects_Entries;
1679 else
1680 Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
1681 end if;
1682
1683 else
1684 Pkg_Id := System_Tasking_Protected_Objects;
1685 end if;
1686 end if;
1687
1688 return Pkg_Id;
1689 end Corresponding_Runtime_Package;
1690
1691 -------------------------------
1692 -- Convert_To_Actual_Subtype --
1693 -------------------------------
1694
1695 procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
1696 Act_ST : Entity_Id;
1697
1698 begin
1699 Act_ST := Get_Actual_Subtype (Exp);
1700
1701 if Act_ST = Etype (Exp) then
1702 return;
1703 else
1704 Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp)));
1705 Analyze_And_Resolve (Exp, Act_ST);
1706 end if;
1707 end Convert_To_Actual_Subtype;
1708
1709 -----------------------------------
1710 -- Current_Sem_Unit_Declarations --
1711 -----------------------------------
1712
1713 function Current_Sem_Unit_Declarations return List_Id is
1714 U : Node_Id := Unit (Cunit (Current_Sem_Unit));
1715 Decls : List_Id;
1716
1717 begin
1718 -- If the current unit is a package body, locate the visible
1719 -- declarations of the package spec.
1720
1721 if Nkind (U) = N_Package_Body then
1722 U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
1723 end if;
1724
1725 if Nkind (U) = N_Package_Declaration then
1726 U := Specification (U);
1727 Decls := Visible_Declarations (U);
1728
1729 if No (Decls) then
1730 Decls := New_List;
1731 Set_Visible_Declarations (U, Decls);
1732 end if;
1733
1734 else
1735 Decls := Declarations (U);
1736
1737 if No (Decls) then
1738 Decls := New_List;
1739 Set_Declarations (U, Decls);
1740 end if;
1741 end if;
1742
1743 return Decls;
1744 end Current_Sem_Unit_Declarations;
1745
1746 -----------------------
1747 -- Duplicate_Subexpr --
1748 -----------------------
1749
1750 function Duplicate_Subexpr
1751 (Exp : Node_Id;
1752 Name_Req : Boolean := False) return Node_Id
1753 is
1754 begin
1755 Remove_Side_Effects (Exp, Name_Req);
1756 return New_Copy_Tree (Exp);
1757 end Duplicate_Subexpr;
1758
1759 ---------------------------------
1760 -- Duplicate_Subexpr_No_Checks --
1761 ---------------------------------
1762
1763 function Duplicate_Subexpr_No_Checks
1764 (Exp : Node_Id;
1765 Name_Req : Boolean := False) return Node_Id
1766 is
1767 New_Exp : Node_Id;
1768 begin
1769 Remove_Side_Effects (Exp, Name_Req);
1770 New_Exp := New_Copy_Tree (Exp);
1771 Remove_Checks (New_Exp);
1772 return New_Exp;
1773 end Duplicate_Subexpr_No_Checks;
1774
1775 -----------------------------------
1776 -- Duplicate_Subexpr_Move_Checks --
1777 -----------------------------------
1778
1779 function Duplicate_Subexpr_Move_Checks
1780 (Exp : Node_Id;
1781 Name_Req : Boolean := False) return Node_Id
1782 is
1783 New_Exp : Node_Id;
1784 begin
1785 Remove_Side_Effects (Exp, Name_Req);
1786 New_Exp := New_Copy_Tree (Exp);
1787 Remove_Checks (Exp);
1788 return New_Exp;
1789 end Duplicate_Subexpr_Move_Checks;
1790
1791 --------------------
1792 -- Ensure_Defined --
1793 --------------------
1794
1795 procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
1796 IR : Node_Id;
1797
1798 begin
1799 -- An itype reference must only be created if this is a local itype, so
1800 -- that gigi can elaborate it on the proper objstack.
1801
1802 if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then
1803 IR := Make_Itype_Reference (Sloc (N));
1804 Set_Itype (IR, Typ);
1805 Insert_Action (N, IR);
1806 end if;
1807 end Ensure_Defined;
1808
1809 --------------------
1810 -- Entry_Names_OK --
1811 --------------------
1812
1813 function Entry_Names_OK return Boolean is
1814 begin
1815 return
1816 not Restricted_Profile
1817 and then not Global_Discard_Names
1818 and then not Restriction_Active (No_Implicit_Heap_Allocations)
1819 and then not Restriction_Active (No_Local_Allocators);
1820 end Entry_Names_OK;
1821
1822 -------------------
1823 -- Evaluate_Name --
1824 -------------------
1825
1826 procedure Evaluate_Name (Nam : Node_Id) is
1827 K : constant Node_Kind := Nkind (Nam);
1828
1829 begin
1830 -- For an explicit dereference, we simply force the evaluation of the
1831 -- name expression. The dereference provides a value that is the address
1832 -- for the renamed object, and it is precisely this value that we want
1833 -- to preserve.
1834
1835 if K = N_Explicit_Dereference then
1836 Force_Evaluation (Prefix (Nam));
1837
1838 -- For a selected component, we simply evaluate the prefix
1839
1840 elsif K = N_Selected_Component then
1841 Evaluate_Name (Prefix (Nam));
1842
1843 -- For an indexed component, or an attribute reference, we evaluate the
1844 -- prefix, which is itself a name, recursively, and then force the
1845 -- evaluation of all the subscripts (or attribute expressions).
1846
1847 elsif Nkind_In (K, N_Indexed_Component, N_Attribute_Reference) then
1848 Evaluate_Name (Prefix (Nam));
1849
1850 declare
1851 E : Node_Id;
1852
1853 begin
1854 E := First (Expressions (Nam));
1855 while Present (E) loop
1856 Force_Evaluation (E);
1857
1858 if Original_Node (E) /= E then
1859 Set_Do_Range_Check (E, Do_Range_Check (Original_Node (E)));
1860 end if;
1861
1862 Next (E);
1863 end loop;
1864 end;
1865
1866 -- For a slice, we evaluate the prefix, as for the indexed component
1867 -- case and then, if there is a range present, either directly or as the
1868 -- constraint of a discrete subtype indication, we evaluate the two
1869 -- bounds of this range.
1870
1871 elsif K = N_Slice then
1872 Evaluate_Name (Prefix (Nam));
1873 Evaluate_Slice_Bounds (Nam);
1874
1875 -- For a type conversion, the expression of the conversion must be the
1876 -- name of an object, and we simply need to evaluate this name.
1877
1878 elsif K = N_Type_Conversion then
1879 Evaluate_Name (Expression (Nam));
1880
1881 -- For a function call, we evaluate the call
1882
1883 elsif K = N_Function_Call then
1884 Force_Evaluation (Nam);
1885
1886 -- The remaining cases are direct name, operator symbol and character
1887 -- literal. In all these cases, we do nothing, since we want to
1888 -- reevaluate each time the renamed object is used.
1889
1890 else
1891 return;
1892 end if;
1893 end Evaluate_Name;
1894
1895 ---------------------------
1896 -- Evaluate_Slice_Bounds --
1897 ---------------------------
1898
1899 procedure Evaluate_Slice_Bounds (Slice : Node_Id) is
1900 DR : constant Node_Id := Discrete_Range (Slice);
1901 Constr : Node_Id;
1902 Rexpr : Node_Id;
1903
1904 begin
1905 if Nkind (DR) = N_Range then
1906 Force_Evaluation (Low_Bound (DR));
1907 Force_Evaluation (High_Bound (DR));
1908
1909 elsif Nkind (DR) = N_Subtype_Indication then
1910 Constr := Constraint (DR);
1911
1912 if Nkind (Constr) = N_Range_Constraint then
1913 Rexpr := Range_Expression (Constr);
1914
1915 Force_Evaluation (Low_Bound (Rexpr));
1916 Force_Evaluation (High_Bound (Rexpr));
1917 end if;
1918 end if;
1919 end Evaluate_Slice_Bounds;
1920
1921 ---------------------
1922 -- Evolve_And_Then --
1923 ---------------------
1924
1925 procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
1926 begin
1927 if No (Cond) then
1928 Cond := Cond1;
1929 else
1930 Cond :=
1931 Make_And_Then (Sloc (Cond1),
1932 Left_Opnd => Cond,
1933 Right_Opnd => Cond1);
1934 end if;
1935 end Evolve_And_Then;
1936
1937 --------------------
1938 -- Evolve_Or_Else --
1939 --------------------
1940
1941 procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
1942 begin
1943 if No (Cond) then
1944 Cond := Cond1;
1945 else
1946 Cond :=
1947 Make_Or_Else (Sloc (Cond1),
1948 Left_Opnd => Cond,
1949 Right_Opnd => Cond1);
1950 end if;
1951 end Evolve_Or_Else;
1952
1953 -----------------------------------------
1954 -- Expand_Static_Predicates_In_Choices --
1955 -----------------------------------------
1956
1957 procedure Expand_Static_Predicates_In_Choices (N : Node_Id) is
1958 pragma Assert (Nkind_In (N, N_Case_Statement_Alternative, N_Variant));
1959
1960 Choices : constant List_Id := Discrete_Choices (N);
1961
1962 Choice : Node_Id;
1963 Next_C : Node_Id;
1964 P : Node_Id;
1965 C : Node_Id;
1966
1967 begin
1968 Choice := First (Choices);
1969 while Present (Choice) loop
1970 Next_C := Next (Choice);
1971
1972 -- Check for name of subtype with static predicate
1973
1974 if Is_Entity_Name (Choice)
1975 and then Is_Type (Entity (Choice))
1976 and then Has_Predicates (Entity (Choice))
1977 then
1978 -- Loop through entries in predicate list, converting to choices
1979 -- and inserting in the list before the current choice. Note that
1980 -- if the list is empty, corresponding to a False predicate, then
1981 -- no choices are inserted.
1982
1983 P := First (Static_Predicate (Entity (Choice)));
1984 while Present (P) loop
1985
1986 -- If low bound and high bounds are equal, copy simple choice
1987
1988 if Expr_Value (Low_Bound (P)) = Expr_Value (High_Bound (P)) then
1989 C := New_Copy (Low_Bound (P));
1990
1991 -- Otherwise copy a range
1992
1993 else
1994 C := New_Copy (P);
1995 end if;
1996
1997 -- Change Sloc to referencing choice (rather than the Sloc of
1998 -- the predicate declaration element itself).
1999
2000 Set_Sloc (C, Sloc (Choice));
2001 Insert_Before (Choice, C);
2002 Next (P);
2003 end loop;
2004
2005 -- Delete the predicated entry
2006
2007 Remove (Choice);
2008 end if;
2009
2010 -- Move to next choice to check
2011
2012 Choice := Next_C;
2013 end loop;
2014 end Expand_Static_Predicates_In_Choices;
2015
2016 ------------------------------
2017 -- Expand_Subtype_From_Expr --
2018 ------------------------------
2019
2020 -- This function is applicable for both static and dynamic allocation of
2021 -- objects which are constrained by an initial expression. Basically it
2022 -- transforms an unconstrained subtype indication into a constrained one.
2023
2024 -- The expression may also be transformed in certain cases in order to
2025 -- avoid multiple evaluation. In the static allocation case, the general
2026 -- scheme is:
2027
2028 -- Val : T := Expr;
2029
2030 -- is transformed into
2031
2032 -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
2033 --
2034 -- Here are the main cases :
2035 --
2036 -- <if Expr is a Slice>
2037 -- Val : T ([Index_Subtype (Expr)]) := Expr;
2038 --
2039 -- <elsif Expr is a String Literal>
2040 -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
2041 --
2042 -- <elsif Expr is Constrained>
2043 -- subtype T is Type_Of_Expr
2044 -- Val : T := Expr;
2045 --
2046 -- <elsif Expr is an entity_name>
2047 -- Val : T (constraints taken from Expr) := Expr;
2048 --
2049 -- <else>
2050 -- type Axxx is access all T;
2051 -- Rval : Axxx := Expr'ref;
2052 -- Val : T (constraints taken from Rval) := Rval.all;
2053
2054 -- ??? note: when the Expression is allocated in the secondary stack
2055 -- we could use it directly instead of copying it by declaring
2056 -- Val : T (...) renames Rval.all
2057
2058 procedure Expand_Subtype_From_Expr
2059 (N : Node_Id;
2060 Unc_Type : Entity_Id;
2061 Subtype_Indic : Node_Id;
2062 Exp : Node_Id)
2063 is
2064 Loc : constant Source_Ptr := Sloc (N);
2065 Exp_Typ : constant Entity_Id := Etype (Exp);
2066 T : Entity_Id;
2067
2068 begin
2069 -- In general we cannot build the subtype if expansion is disabled,
2070 -- because internal entities may not have been defined. However, to
2071 -- avoid some cascaded errors, we try to continue when the expression is
2072 -- an array (or string), because it is safe to compute the bounds. It is
2073 -- in fact required to do so even in a generic context, because there
2074 -- may be constants that depend on the bounds of a string literal, both
2075 -- standard string types and more generally arrays of characters.
2076
2077 -- In GNATprove mode, these extra subtypes are not needed
2078
2079 if GNATprove_Mode then
2080 return;
2081 end if;
2082
2083 if not Expander_Active
2084 and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp)))
2085 then
2086 return;
2087 end if;
2088
2089 if Nkind (Exp) = N_Slice then
2090 declare
2091 Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
2092
2093 begin
2094 Rewrite (Subtype_Indic,
2095 Make_Subtype_Indication (Loc,
2096 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
2097 Constraint =>
2098 Make_Index_Or_Discriminant_Constraint (Loc,
2099 Constraints => New_List
2100 (New_Occurrence_Of (Slice_Type, Loc)))));
2101
2102 -- This subtype indication may be used later for constraint checks
2103 -- we better make sure that if a variable was used as a bound of
2104 -- of the original slice, its value is frozen.
2105
2106 Evaluate_Slice_Bounds (Exp);
2107 end;
2108
2109 elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
2110 Rewrite (Subtype_Indic,
2111 Make_Subtype_Indication (Loc,
2112 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
2113 Constraint =>
2114 Make_Index_Or_Discriminant_Constraint (Loc,
2115 Constraints => New_List (
2116 Make_Literal_Range (Loc,
2117 Literal_Typ => Exp_Typ)))));
2118
2119 -- If the type of the expression is an internally generated type it
2120 -- may not be necessary to create a new subtype. However there are two
2121 -- exceptions: references to the current instances, and aliased array
2122 -- object declarations for which the backend needs to create a template.
2123
2124 elsif Is_Constrained (Exp_Typ)
2125 and then not Is_Class_Wide_Type (Unc_Type)
2126 and then
2127 (Nkind (N) /= N_Object_Declaration
2128 or else not Is_Entity_Name (Expression (N))
2129 or else not Comes_From_Source (Entity (Expression (N)))
2130 or else not Is_Array_Type (Exp_Typ)
2131 or else not Aliased_Present (N))
2132 then
2133 if Is_Itype (Exp_Typ) then
2134
2135 -- Within an initialization procedure, a selected component
2136 -- denotes a component of the enclosing record, and it appears as
2137 -- an actual in a call to its own initialization procedure. If
2138 -- this component depends on the outer discriminant, we must
2139 -- generate the proper actual subtype for it.
2140
2141 if Nkind (Exp) = N_Selected_Component
2142 and then Within_Init_Proc
2143 then
2144 declare
2145 Decl : constant Node_Id :=
2146 Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
2147 begin
2148 if Present (Decl) then
2149 Insert_Action (N, Decl);
2150 T := Defining_Identifier (Decl);
2151 else
2152 T := Exp_Typ;
2153 end if;
2154 end;
2155
2156 -- No need to generate a new subtype
2157
2158 else
2159 T := Exp_Typ;
2160 end if;
2161
2162 else
2163 T := Make_Temporary (Loc, 'T');
2164
2165 Insert_Action (N,
2166 Make_Subtype_Declaration (Loc,
2167 Defining_Identifier => T,
2168 Subtype_Indication => New_Occurrence_Of (Exp_Typ, Loc)));
2169
2170 -- This type is marked as an itype even though it has an explicit
2171 -- declaration since otherwise Is_Generic_Actual_Type can get
2172 -- set, resulting in the generation of spurious errors. (See
2173 -- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
2174
2175 Set_Is_Itype (T);
2176 Set_Associated_Node_For_Itype (T, Exp);
2177 end if;
2178
2179 Rewrite (Subtype_Indic, New_Occurrence_Of (T, Loc));
2180
2181 -- Nothing needs to be done for private types with unknown discriminants
2182 -- if the underlying type is not an unconstrained composite type or it
2183 -- is an unchecked union.
2184
2185 elsif Is_Private_Type (Unc_Type)
2186 and then Has_Unknown_Discriminants (Unc_Type)
2187 and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
2188 or else Is_Constrained (Underlying_Type (Unc_Type))
2189 or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
2190 then
2191 null;
2192
2193 -- Case of derived type with unknown discriminants where the parent type
2194 -- also has unknown discriminants.
2195
2196 elsif Is_Record_Type (Unc_Type)
2197 and then not Is_Class_Wide_Type (Unc_Type)
2198 and then Has_Unknown_Discriminants (Unc_Type)
2199 and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
2200 then
2201 -- Nothing to be done if no underlying record view available
2202
2203 if No (Underlying_Record_View (Unc_Type)) then
2204 null;
2205
2206 -- Otherwise use the Underlying_Record_View to create the proper
2207 -- constrained subtype for an object of a derived type with unknown
2208 -- discriminants.
2209
2210 else
2211 Remove_Side_Effects (Exp);
2212 Rewrite (Subtype_Indic,
2213 Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
2214 end if;
2215
2216 -- Renamings of class-wide interface types require no equivalent
2217 -- constrained type declarations because we only need to reference
2218 -- the tag component associated with the interface. The same is
2219 -- presumably true for class-wide types in general, so this test
2220 -- is broadened to include all class-wide renamings, which also
2221 -- avoids cases of unbounded recursion in Remove_Side_Effects.
2222 -- (Is this really correct, or are there some cases of class-wide
2223 -- renamings that require action in this procedure???)
2224
2225 elsif Present (N)
2226 and then Nkind (N) = N_Object_Renaming_Declaration
2227 and then Is_Class_Wide_Type (Unc_Type)
2228 then
2229 null;
2230
2231 -- In Ada 95 nothing to be done if the type of the expression is limited
2232 -- because in this case the expression cannot be copied, and its use can
2233 -- only be by reference.
2234
2235 -- In Ada 2005 the context can be an object declaration whose expression
2236 -- is a function that returns in place. If the nominal subtype has
2237 -- unknown discriminants, the call still provides constraints on the
2238 -- object, and we have to create an actual subtype from it.
2239
2240 -- If the type is class-wide, the expression is dynamically tagged and
2241 -- we do not create an actual subtype either. Ditto for an interface.
2242 -- For now this applies only if the type is immutably limited, and the
2243 -- function being called is build-in-place. This will have to be revised
2244 -- when build-in-place functions are generalized to other types.
2245
2246 elsif Is_Limited_View (Exp_Typ)
2247 and then
2248 (Is_Class_Wide_Type (Exp_Typ)
2249 or else Is_Interface (Exp_Typ)
2250 or else not Has_Unknown_Discriminants (Exp_Typ)
2251 or else not Is_Composite_Type (Unc_Type))
2252 then
2253 null;
2254
2255 -- For limited objects initialized with build in place function calls,
2256 -- nothing to be done; otherwise we prematurely introduce an N_Reference
2257 -- node in the expression initializing the object, which breaks the
2258 -- circuitry that detects and adds the additional arguments to the
2259 -- called function.
2260
2261 elsif Is_Build_In_Place_Function_Call (Exp) then
2262 null;
2263
2264 else
2265 Remove_Side_Effects (Exp);
2266 Rewrite (Subtype_Indic,
2267 Make_Subtype_From_Expr (Exp, Unc_Type));
2268 end if;
2269 end Expand_Subtype_From_Expr;
2270
2271 ------------------------
2272 -- Find_Interface_ADT --
2273 ------------------------
2274
2275 function Find_Interface_ADT
2276 (T : Entity_Id;
2277 Iface : Entity_Id) return Elmt_Id
2278 is
2279 ADT : Elmt_Id;
2280 Typ : Entity_Id := T;
2281
2282 begin
2283 pragma Assert (Is_Interface (Iface));
2284
2285 -- Handle private types
2286
2287 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
2288 Typ := Full_View (Typ);
2289 end if;
2290
2291 -- Handle access types
2292
2293 if Is_Access_Type (Typ) then
2294 Typ := Designated_Type (Typ);
2295 end if;
2296
2297 -- Handle task and protected types implementing interfaces
2298
2299 if Is_Concurrent_Type (Typ) then
2300 Typ := Corresponding_Record_Type (Typ);
2301 end if;
2302
2303 pragma Assert
2304 (not Is_Class_Wide_Type (Typ)
2305 and then Ekind (Typ) /= E_Incomplete_Type);
2306
2307 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
2308 return First_Elmt (Access_Disp_Table (Typ));
2309
2310 else
2311 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
2312 while Present (ADT)
2313 and then Present (Related_Type (Node (ADT)))
2314 and then Related_Type (Node (ADT)) /= Iface
2315 and then not Is_Ancestor (Iface, Related_Type (Node (ADT)),
2316 Use_Full_View => True)
2317 loop
2318 Next_Elmt (ADT);
2319 end loop;
2320
2321 pragma Assert (Present (Related_Type (Node (ADT))));
2322 return ADT;
2323 end if;
2324 end Find_Interface_ADT;
2325
2326 ------------------------
2327 -- Find_Interface_Tag --
2328 ------------------------
2329
2330 function Find_Interface_Tag
2331 (T : Entity_Id;
2332 Iface : Entity_Id) return Entity_Id
2333 is
2334 AI_Tag : Entity_Id;
2335 Found : Boolean := False;
2336 Typ : Entity_Id := T;
2337
2338 procedure Find_Tag (Typ : Entity_Id);
2339 -- Internal subprogram used to recursively climb to the ancestors
2340
2341 --------------
2342 -- Find_Tag --
2343 --------------
2344
2345 procedure Find_Tag (Typ : Entity_Id) is
2346 AI_Elmt : Elmt_Id;
2347 AI : Node_Id;
2348
2349 begin
2350 -- This routine does not handle the case in which the interface is an
2351 -- ancestor of Typ. That case is handled by the enclosing subprogram.
2352
2353 pragma Assert (Typ /= Iface);
2354
2355 -- Climb to the root type handling private types
2356
2357 if Present (Full_View (Etype (Typ))) then
2358 if Full_View (Etype (Typ)) /= Typ then
2359 Find_Tag (Full_View (Etype (Typ)));
2360 end if;
2361
2362 elsif Etype (Typ) /= Typ then
2363 Find_Tag (Etype (Typ));
2364 end if;
2365
2366 -- Traverse the list of interfaces implemented by the type
2367
2368 if not Found
2369 and then Present (Interfaces (Typ))
2370 and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
2371 then
2372 -- Skip the tag associated with the primary table
2373
2374 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
2375 AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
2376 pragma Assert (Present (AI_Tag));
2377
2378 AI_Elmt := First_Elmt (Interfaces (Typ));
2379 while Present (AI_Elmt) loop
2380 AI := Node (AI_Elmt);
2381
2382 if AI = Iface
2383 or else Is_Ancestor (Iface, AI, Use_Full_View => True)
2384 then
2385 Found := True;
2386 return;
2387 end if;
2388
2389 AI_Tag := Next_Tag_Component (AI_Tag);
2390 Next_Elmt (AI_Elmt);
2391 end loop;
2392 end if;
2393 end Find_Tag;
2394
2395 -- Start of processing for Find_Interface_Tag
2396
2397 begin
2398 pragma Assert (Is_Interface (Iface));
2399
2400 -- Handle access types
2401
2402 if Is_Access_Type (Typ) then
2403 Typ := Designated_Type (Typ);
2404 end if;
2405
2406 -- Handle class-wide types
2407
2408 if Is_Class_Wide_Type (Typ) then
2409 Typ := Root_Type (Typ);
2410 end if;
2411
2412 -- Handle private types
2413
2414 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
2415 Typ := Full_View (Typ);
2416 end if;
2417
2418 -- Handle entities from the limited view
2419
2420 if Ekind (Typ) = E_Incomplete_Type then
2421 pragma Assert (Present (Non_Limited_View (Typ)));
2422 Typ := Non_Limited_View (Typ);
2423 end if;
2424
2425 -- Handle task and protected types implementing interfaces
2426
2427 if Is_Concurrent_Type (Typ) then
2428 Typ := Corresponding_Record_Type (Typ);
2429 end if;
2430
2431 -- If the interface is an ancestor of the type, then it shared the
2432 -- primary dispatch table.
2433
2434 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
2435 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
2436 return First_Tag_Component (Typ);
2437
2438 -- Otherwise we need to search for its associated tag component
2439
2440 else
2441 Find_Tag (Typ);
2442 pragma Assert (Found);
2443 return AI_Tag;
2444 end if;
2445 end Find_Interface_Tag;
2446
2447 ------------------
2448 -- Find_Prim_Op --
2449 ------------------
2450
2451 function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
2452 Prim : Elmt_Id;
2453 Typ : Entity_Id := T;
2454 Op : Entity_Id;
2455
2456 begin
2457 if Is_Class_Wide_Type (Typ) then
2458 Typ := Root_Type (Typ);
2459 end if;
2460
2461 Typ := Underlying_Type (Typ);
2462
2463 -- Loop through primitive operations
2464
2465 Prim := First_Elmt (Primitive_Operations (Typ));
2466 while Present (Prim) loop
2467 Op := Node (Prim);
2468
2469 -- We can retrieve primitive operations by name if it is an internal
2470 -- name. For equality we must check that both of its operands have
2471 -- the same type, to avoid confusion with user-defined equalities
2472 -- than may have a non-symmetric signature.
2473
2474 exit when Chars (Op) = Name
2475 and then
2476 (Name /= Name_Op_Eq
2477 or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op)));
2478
2479 Next_Elmt (Prim);
2480
2481 -- Raise Program_Error if no primitive found
2482
2483 if No (Prim) then
2484 raise Program_Error;
2485 end if;
2486 end loop;
2487
2488 return Node (Prim);
2489 end Find_Prim_Op;
2490
2491 ------------------
2492 -- Find_Prim_Op --
2493 ------------------
2494
2495 function Find_Prim_Op
2496 (T : Entity_Id;
2497 Name : TSS_Name_Type) return Entity_Id
2498 is
2499 Inher_Op : Entity_Id := Empty;
2500 Own_Op : Entity_Id := Empty;
2501 Prim_Elmt : Elmt_Id;
2502 Prim_Id : Entity_Id;
2503 Typ : Entity_Id := T;
2504
2505 begin
2506 if Is_Class_Wide_Type (Typ) then
2507 Typ := Root_Type (Typ);
2508 end if;
2509
2510 Typ := Underlying_Type (Typ);
2511
2512 -- This search is based on the assertion that the dispatching version
2513 -- of the TSS routine always precedes the real primitive.
2514
2515 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
2516 while Present (Prim_Elmt) loop
2517 Prim_Id := Node (Prim_Elmt);
2518
2519 if Is_TSS (Prim_Id, Name) then
2520 if Present (Alias (Prim_Id)) then
2521 Inher_Op := Prim_Id;
2522 else
2523 Own_Op := Prim_Id;
2524 end if;
2525 end if;
2526
2527 Next_Elmt (Prim_Elmt);
2528 end loop;
2529
2530 if Present (Own_Op) then
2531 return Own_Op;
2532 elsif Present (Inher_Op) then
2533 return Inher_Op;
2534 else
2535 raise Program_Error;
2536 end if;
2537 end Find_Prim_Op;
2538
2539 ----------------------------
2540 -- Find_Protection_Object --
2541 ----------------------------
2542
2543 function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
2544 S : Entity_Id;
2545
2546 begin
2547 S := Scop;
2548 while Present (S) loop
2549 if Ekind_In (S, E_Entry, E_Entry_Family, E_Function, E_Procedure)
2550 and then Present (Protection_Object (S))
2551 then
2552 return Protection_Object (S);
2553 end if;
2554
2555 S := Scope (S);
2556 end loop;
2557
2558 -- If we do not find a Protection object in the scope chain, then
2559 -- something has gone wrong, most likely the object was never created.
2560
2561 raise Program_Error;
2562 end Find_Protection_Object;
2563
2564 --------------------------
2565 -- Find_Protection_Type --
2566 --------------------------
2567
2568 function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is
2569 Comp : Entity_Id;
2570 Typ : Entity_Id := Conc_Typ;
2571
2572 begin
2573 if Is_Concurrent_Type (Typ) then
2574 Typ := Corresponding_Record_Type (Typ);
2575 end if;
2576
2577 -- Since restriction violations are not considered serious errors, the
2578 -- expander remains active, but may leave the corresponding record type
2579 -- malformed. In such cases, component _object is not available so do
2580 -- not look for it.
2581
2582 if not Analyzed (Typ) then
2583 return Empty;
2584 end if;
2585
2586 Comp := First_Component (Typ);
2587 while Present (Comp) loop
2588 if Chars (Comp) = Name_uObject then
2589 return Base_Type (Etype (Comp));
2590 end if;
2591
2592 Next_Component (Comp);
2593 end loop;
2594
2595 -- The corresponding record of a protected type should always have an
2596 -- _object field.
2597
2598 raise Program_Error;
2599 end Find_Protection_Type;
2600
2601 -----------------------
2602 -- Find_Hook_Context --
2603 -----------------------
2604
2605 function Find_Hook_Context (N : Node_Id) return Node_Id is
2606 Par : Node_Id;
2607 Top : Node_Id;
2608
2609 Wrapped_Node : Node_Id;
2610 -- Note: if we are in a transient scope, we want to reuse it as
2611 -- the context for actions insertion, if possible. But if N is itself
2612 -- part of the stored actions for the current transient scope,
2613 -- then we need to insert at the appropriate (inner) location in
2614 -- the not as an action on Node_To_Be_Wrapped.
2615
2616 In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N);
2617
2618 begin
2619 -- When the node is inside a case/if expression, the lifetime of any
2620 -- temporary controlled object is extended. Find a suitable insertion
2621 -- node by locating the topmost case or if expressions.
2622
2623 if In_Cond_Expr then
2624 Par := N;
2625 Top := N;
2626 while Present (Par) loop
2627 if Nkind_In (Original_Node (Par), N_Case_Expression,
2628 N_If_Expression)
2629 then
2630 Top := Par;
2631
2632 -- Prevent the search from going too far
2633
2634 elsif Is_Body_Or_Package_Declaration (Par) then
2635 exit;
2636 end if;
2637
2638 Par := Parent (Par);
2639 end loop;
2640
2641 -- The topmost case or if expression is now recovered, but it may
2642 -- still not be the correct place to add generated code. Climb to
2643 -- find a parent that is part of a declarative or statement list,
2644 -- and is not a list of actuals in a call.
2645
2646 Par := Top;
2647 while Present (Par) loop
2648 if Is_List_Member (Par)
2649 and then not Nkind_In (Par, N_Component_Association,
2650 N_Discriminant_Association,
2651 N_Parameter_Association,
2652 N_Pragma_Argument_Association)
2653 and then not Nkind_In
2654 (Parent (Par), N_Function_Call,
2655 N_Procedure_Call_Statement,
2656 N_Entry_Call_Statement)
2657
2658 then
2659 return Par;
2660
2661 -- Prevent the search from going too far
2662
2663 elsif Is_Body_Or_Package_Declaration (Par) then
2664 exit;
2665 end if;
2666
2667 Par := Parent (Par);
2668 end loop;
2669
2670 return Par;
2671
2672 else
2673 Par := N;
2674 while Present (Par) loop
2675
2676 -- Keep climbing past various operators
2677
2678 if Nkind (Parent (Par)) in N_Op
2679 or else Nkind_In (Parent (Par), N_And_Then, N_Or_Else)
2680 then
2681 Par := Parent (Par);
2682 else
2683 exit;
2684 end if;
2685 end loop;
2686
2687 Top := Par;
2688
2689 -- The node may be located in a pragma in which case return the
2690 -- pragma itself:
2691
2692 -- pragma Precondition (... and then Ctrl_Func_Call ...);
2693
2694 -- Similar case occurs when the node is related to an object
2695 -- declaration or assignment:
2696
2697 -- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
2698
2699 -- Another case to consider is when the node is part of a return
2700 -- statement:
2701
2702 -- return ... and then Ctrl_Func_Call ...;
2703
2704 -- Another case is when the node acts as a formal in a procedure
2705 -- call statement:
2706
2707 -- Proc (... and then Ctrl_Func_Call ...);
2708
2709 if Scope_Is_Transient then
2710 Wrapped_Node := Node_To_Be_Wrapped;
2711 else
2712 Wrapped_Node := Empty;
2713 end if;
2714
2715 while Present (Par) loop
2716 if Par = Wrapped_Node
2717 or else Nkind_In (Par, N_Assignment_Statement,
2718 N_Object_Declaration,
2719 N_Pragma,
2720 N_Procedure_Call_Statement,
2721 N_Simple_Return_Statement)
2722 then
2723 return Par;
2724
2725 -- Prevent the search from going too far
2726
2727 elsif Is_Body_Or_Package_Declaration (Par) then
2728 exit;
2729 end if;
2730
2731 Par := Parent (Par);
2732 end loop;
2733
2734 -- Return the topmost short circuit operator
2735
2736 return Top;
2737 end if;
2738 end Find_Hook_Context;
2739
2740 ----------------------
2741 -- Force_Evaluation --
2742 ----------------------
2743
2744 procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
2745 begin
2746 Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
2747 end Force_Evaluation;
2748
2749 ---------------------------------
2750 -- Fully_Qualified_Name_String --
2751 ---------------------------------
2752
2753 function Fully_Qualified_Name_String
2754 (E : Entity_Id;
2755 Append_NUL : Boolean := True) return String_Id
2756 is
2757 procedure Internal_Full_Qualified_Name (E : Entity_Id);
2758 -- Compute recursively the qualified name without NUL at the end, adding
2759 -- it to the currently started string being generated
2760
2761 ----------------------------------
2762 -- Internal_Full_Qualified_Name --
2763 ----------------------------------
2764
2765 procedure Internal_Full_Qualified_Name (E : Entity_Id) is
2766 Ent : Entity_Id;
2767
2768 begin
2769 -- Deal properly with child units
2770
2771 if Nkind (E) = N_Defining_Program_Unit_Name then
2772 Ent := Defining_Identifier (E);
2773 else
2774 Ent := E;
2775 end if;
2776
2777 -- Compute qualification recursively (only "Standard" has no scope)
2778
2779 if Present (Scope (Scope (Ent))) then
2780 Internal_Full_Qualified_Name (Scope (Ent));
2781 Store_String_Char (Get_Char_Code ('.'));
2782 end if;
2783
2784 -- Every entity should have a name except some expanded blocks
2785 -- don't bother about those.
2786
2787 if Chars (Ent) = No_Name then
2788 return;
2789 end if;
2790
2791 -- Generates the entity name in upper case
2792
2793 Get_Decoded_Name_String (Chars (Ent));
2794 Set_All_Upper_Case;
2795 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2796 return;
2797 end Internal_Full_Qualified_Name;
2798
2799 -- Start of processing for Full_Qualified_Name
2800
2801 begin
2802 Start_String;
2803 Internal_Full_Qualified_Name (E);
2804
2805 if Append_NUL then
2806 Store_String_Char (Get_Char_Code (ASCII.NUL));
2807 end if;
2808
2809 return End_String;
2810 end Fully_Qualified_Name_String;
2811
2812 ------------------------
2813 -- Generate_Poll_Call --
2814 ------------------------
2815
2816 procedure Generate_Poll_Call (N : Node_Id) is
2817 begin
2818 -- No poll call if polling not active
2819
2820 if not Polling_Required then
2821 return;
2822
2823 -- Otherwise generate require poll call
2824
2825 else
2826 Insert_Before_And_Analyze (N,
2827 Make_Procedure_Call_Statement (Sloc (N),
2828 Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
2829 end if;
2830 end Generate_Poll_Call;
2831
2832 ---------------------------------
2833 -- Get_Current_Value_Condition --
2834 ---------------------------------
2835
2836 -- Note: the implementation of this procedure is very closely tied to the
2837 -- implementation of Set_Current_Value_Condition. In the Get procedure, we
2838 -- interpret Current_Value fields set by the Set procedure, so the two
2839 -- procedures need to be closely coordinated.
2840
2841 procedure Get_Current_Value_Condition
2842 (Var : Node_Id;
2843 Op : out Node_Kind;
2844 Val : out Node_Id)
2845 is
2846 Loc : constant Source_Ptr := Sloc (Var);
2847 Ent : constant Entity_Id := Entity (Var);
2848
2849 procedure Process_Current_Value_Condition
2850 (N : Node_Id;
2851 S : Boolean);
2852 -- N is an expression which holds either True (S = True) or False (S =
2853 -- False) in the condition. This procedure digs out the expression and
2854 -- if it refers to Ent, sets Op and Val appropriately.
2855
2856 -------------------------------------
2857 -- Process_Current_Value_Condition --
2858 -------------------------------------
2859
2860 procedure Process_Current_Value_Condition
2861 (N : Node_Id;
2862 S : Boolean)
2863 is
2864 Cond : Node_Id;
2865 Prev_Cond : Node_Id;
2866 Sens : Boolean;
2867
2868 begin
2869 Cond := N;
2870 Sens := S;
2871
2872 loop
2873 Prev_Cond := Cond;
2874
2875 -- Deal with NOT operators, inverting sense
2876
2877 while Nkind (Cond) = N_Op_Not loop
2878 Cond := Right_Opnd (Cond);
2879 Sens := not Sens;
2880 end loop;
2881
2882 -- Deal with conversions, qualifications, and expressions with
2883 -- actions.
2884
2885 while Nkind_In (Cond,
2886 N_Type_Conversion,
2887 N_Qualified_Expression,
2888 N_Expression_With_Actions)
2889 loop
2890 Cond := Expression (Cond);
2891 end loop;
2892
2893 exit when Cond = Prev_Cond;
2894 end loop;
2895
2896 -- Deal with AND THEN and AND cases
2897
2898 if Nkind_In (Cond, N_And_Then, N_Op_And) then
2899
2900 -- Don't ever try to invert a condition that is of the form of an
2901 -- AND or AND THEN (since we are not doing sufficiently general
2902 -- processing to allow this).
2903
2904 if Sens = False then
2905 Op := N_Empty;
2906 Val := Empty;
2907 return;
2908 end if;
2909
2910 -- Recursively process AND and AND THEN branches
2911
2912 Process_Current_Value_Condition (Left_Opnd (Cond), True);
2913
2914 if Op /= N_Empty then
2915 return;
2916 end if;
2917
2918 Process_Current_Value_Condition (Right_Opnd (Cond), True);
2919 return;
2920
2921 -- Case of relational operator
2922
2923 elsif Nkind (Cond) in N_Op_Compare then
2924 Op := Nkind (Cond);
2925
2926 -- Invert sense of test if inverted test
2927
2928 if Sens = False then
2929 case Op is
2930 when N_Op_Eq => Op := N_Op_Ne;
2931 when N_Op_Ne => Op := N_Op_Eq;
2932 when N_Op_Lt => Op := N_Op_Ge;
2933 when N_Op_Gt => Op := N_Op_Le;
2934 when N_Op_Le => Op := N_Op_Gt;
2935 when N_Op_Ge => Op := N_Op_Lt;
2936 when others => raise Program_Error;
2937 end case;
2938 end if;
2939
2940 -- Case of entity op value
2941
2942 if Is_Entity_Name (Left_Opnd (Cond))
2943 and then Ent = Entity (Left_Opnd (Cond))
2944 and then Compile_Time_Known_Value (Right_Opnd (Cond))
2945 then
2946 Val := Right_Opnd (Cond);
2947
2948 -- Case of value op entity
2949
2950 elsif Is_Entity_Name (Right_Opnd (Cond))
2951 and then Ent = Entity (Right_Opnd (Cond))
2952 and then Compile_Time_Known_Value (Left_Opnd (Cond))
2953 then
2954 Val := Left_Opnd (Cond);
2955
2956 -- We are effectively swapping operands
2957
2958 case Op is
2959 when N_Op_Eq => null;
2960 when N_Op_Ne => null;
2961 when N_Op_Lt => Op := N_Op_Gt;
2962 when N_Op_Gt => Op := N_Op_Lt;
2963 when N_Op_Le => Op := N_Op_Ge;
2964 when N_Op_Ge => Op := N_Op_Le;
2965 when others => raise Program_Error;
2966 end case;
2967
2968 else
2969 Op := N_Empty;
2970 end if;
2971
2972 return;
2973
2974 elsif Nkind_In (Cond,
2975 N_Type_Conversion,
2976 N_Qualified_Expression,
2977 N_Expression_With_Actions)
2978 then
2979 Cond := Expression (Cond);
2980
2981 -- Case of Boolean variable reference, return as though the
2982 -- reference had said var = True.
2983
2984 else
2985 if Is_Entity_Name (Cond) and then Ent = Entity (Cond) then
2986 Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
2987
2988 if Sens = False then
2989 Op := N_Op_Ne;
2990 else
2991 Op := N_Op_Eq;
2992 end if;
2993 end if;
2994 end if;
2995 end Process_Current_Value_Condition;
2996
2997 -- Start of processing for Get_Current_Value_Condition
2998
2999 begin
3000 Op := N_Empty;
3001 Val := Empty;
3002
3003 -- Immediate return, nothing doing, if this is not an object
3004
3005 if Ekind (Ent) not in Object_Kind then
3006 return;
3007 end if;
3008
3009 -- Otherwise examine current value
3010
3011 declare
3012 CV : constant Node_Id := Current_Value (Ent);
3013 Sens : Boolean;
3014 Stm : Node_Id;
3015
3016 begin
3017 -- If statement. Condition is known true in THEN section, known False
3018 -- in any ELSIF or ELSE part, and unknown outside the IF statement.
3019
3020 if Nkind (CV) = N_If_Statement then
3021
3022 -- Before start of IF statement
3023
3024 if Loc < Sloc (CV) then
3025 return;
3026
3027 -- After end of IF statement
3028
3029 elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
3030 return;
3031 end if;
3032
3033 -- At this stage we know that we are within the IF statement, but
3034 -- unfortunately, the tree does not record the SLOC of the ELSE so
3035 -- we cannot use a simple SLOC comparison to distinguish between
3036 -- the then/else statements, so we have to climb the tree.
3037
3038 declare
3039 N : Node_Id;
3040
3041 begin
3042 N := Parent (Var);
3043 while Parent (N) /= CV loop
3044 N := Parent (N);
3045
3046 -- If we fall off the top of the tree, then that's odd, but
3047 -- perhaps it could occur in some error situation, and the
3048 -- safest response is simply to assume that the outcome of
3049 -- the condition is unknown. No point in bombing during an
3050 -- attempt to optimize things.
3051
3052 if No (N) then
3053 return;
3054 end if;
3055 end loop;
3056
3057 -- Now we have N pointing to a node whose parent is the IF
3058 -- statement in question, so now we can tell if we are within
3059 -- the THEN statements.
3060
3061 if Is_List_Member (N)
3062 and then List_Containing (N) = Then_Statements (CV)
3063 then
3064 Sens := True;
3065
3066 -- If the variable reference does not come from source, we
3067 -- cannot reliably tell whether it appears in the else part.
3068 -- In particular, if it appears in generated code for a node
3069 -- that requires finalization, it may be attached to a list
3070 -- that has not been yet inserted into the code. For now,
3071 -- treat it as unknown.
3072
3073 elsif not Comes_From_Source (N) then
3074 return;
3075
3076 -- Otherwise we must be in ELSIF or ELSE part
3077
3078 else
3079 Sens := False;
3080 end if;
3081 end;
3082
3083 -- ELSIF part. Condition is known true within the referenced
3084 -- ELSIF, known False in any subsequent ELSIF or ELSE part,
3085 -- and unknown before the ELSE part or after the IF statement.
3086
3087 elsif Nkind (CV) = N_Elsif_Part then
3088
3089 -- if the Elsif_Part had condition_actions, the elsif has been
3090 -- rewritten as a nested if, and the original elsif_part is
3091 -- detached from the tree, so there is no way to obtain useful
3092 -- information on the current value of the variable.
3093 -- Can this be improved ???
3094
3095 if No (Parent (CV)) then
3096 return;
3097 end if;
3098
3099 Stm := Parent (CV);
3100
3101 -- Before start of ELSIF part
3102
3103 if Loc < Sloc (CV) then
3104 return;
3105
3106 -- After end of IF statement
3107
3108 elsif Loc >= Sloc (Stm) +
3109 Text_Ptr (UI_To_Int (End_Span (Stm)))
3110 then
3111 return;
3112 end if;
3113
3114 -- Again we lack the SLOC of the ELSE, so we need to climb the
3115 -- tree to see if we are within the ELSIF part in question.
3116
3117 declare
3118 N : Node_Id;
3119
3120 begin
3121 N := Parent (Var);
3122 while Parent (N) /= Stm loop
3123 N := Parent (N);
3124
3125 -- If we fall off the top of the tree, then that's odd, but
3126 -- perhaps it could occur in some error situation, and the
3127 -- safest response is simply to assume that the outcome of
3128 -- the condition is unknown. No point in bombing during an
3129 -- attempt to optimize things.
3130
3131 if No (N) then
3132 return;
3133 end if;
3134 end loop;
3135
3136 -- Now we have N pointing to a node whose parent is the IF
3137 -- statement in question, so see if is the ELSIF part we want.
3138 -- the THEN statements.
3139
3140 if N = CV then
3141 Sens := True;
3142
3143 -- Otherwise we must be in subsequent ELSIF or ELSE part
3144
3145 else
3146 Sens := False;
3147 end if;
3148 end;
3149
3150 -- Iteration scheme of while loop. The condition is known to be
3151 -- true within the body of the loop.
3152
3153 elsif Nkind (CV) = N_Iteration_Scheme then
3154 declare
3155 Loop_Stmt : constant Node_Id := Parent (CV);
3156
3157 begin
3158 -- Before start of body of loop
3159
3160 if Loc < Sloc (Loop_Stmt) then
3161 return;
3162
3163 -- After end of LOOP statement
3164
3165 elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
3166 return;
3167
3168 -- We are within the body of the loop
3169
3170 else
3171 Sens := True;
3172 end if;
3173 end;
3174
3175 -- All other cases of Current_Value settings
3176
3177 else
3178 return;
3179 end if;
3180
3181 -- If we fall through here, then we have a reportable condition, Sens
3182 -- is True if the condition is true and False if it needs inverting.
3183
3184 Process_Current_Value_Condition (Condition (CV), Sens);
3185 end;
3186 end Get_Current_Value_Condition;
3187
3188 ---------------------
3189 -- Get_Stream_Size --
3190 ---------------------
3191
3192 function Get_Stream_Size (E : Entity_Id) return Uint is
3193 begin
3194 -- If we have a Stream_Size clause for this type use it
3195
3196 if Has_Stream_Size_Clause (E) then
3197 return Static_Integer (Expression (Stream_Size_Clause (E)));
3198
3199 -- Otherwise the Stream_Size if the size of the type
3200
3201 else
3202 return Esize (E);
3203 end if;
3204 end Get_Stream_Size;
3205
3206 ---------------------------
3207 -- Has_Access_Constraint --
3208 ---------------------------
3209
3210 function Has_Access_Constraint (E : Entity_Id) return Boolean is
3211 Disc : Entity_Id;
3212 T : constant Entity_Id := Etype (E);
3213
3214 begin
3215 if Has_Per_Object_Constraint (E) and then Has_Discriminants (T) then
3216 Disc := First_Discriminant (T);
3217 while Present (Disc) loop
3218 if Is_Access_Type (Etype (Disc)) then
3219 return True;
3220 end if;
3221
3222 Next_Discriminant (Disc);
3223 end loop;
3224
3225 return False;
3226 else
3227 return False;
3228 end if;
3229 end Has_Access_Constraint;
3230
3231 ----------------------------------
3232 -- Has_Following_Address_Clause --
3233 ----------------------------------
3234
3235 -- Should this function check the private part in a package ???
3236
3237 function Has_Following_Address_Clause (D : Node_Id) return Boolean is
3238 Id : constant Entity_Id := Defining_Identifier (D);
3239 Decl : Node_Id;
3240
3241 begin
3242 Decl := Next (D);
3243 while Present (Decl) loop
3244 if Nkind (Decl) = N_At_Clause
3245 and then Chars (Identifier (Decl)) = Chars (Id)
3246 then
3247 return True;
3248
3249 elsif Nkind (Decl) = N_Attribute_Definition_Clause
3250 and then Chars (Decl) = Name_Address
3251 and then Chars (Name (Decl)) = Chars (Id)
3252 then
3253 return True;
3254 end if;
3255
3256 Next (Decl);
3257 end loop;
3258
3259 return False;
3260 end Has_Following_Address_Clause;
3261
3262 --------------------
3263 -- Homonym_Number --
3264 --------------------
3265
3266 function Homonym_Number (Subp : Entity_Id) return Nat is
3267 Count : Nat;
3268 Hom : Entity_Id;
3269
3270 begin
3271 Count := 1;
3272 Hom := Homonym (Subp);
3273 while Present (Hom) loop
3274 if Scope (Hom) = Scope (Subp) then
3275 Count := Count + 1;
3276 end if;
3277
3278 Hom := Homonym (Hom);
3279 end loop;
3280
3281 return Count;
3282 end Homonym_Number;
3283
3284 -----------------------------------
3285 -- In_Library_Level_Package_Body --
3286 -----------------------------------
3287
3288 function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is
3289 begin
3290 -- First determine whether the entity appears at the library level, then
3291 -- look at the containing unit.
3292
3293 if Is_Library_Level_Entity (Id) then
3294 declare
3295 Container : constant Node_Id := Cunit (Get_Source_Unit (Id));
3296
3297 begin
3298 return Nkind (Unit (Container)) = N_Package_Body;
3299 end;
3300 end if;
3301
3302 return False;
3303 end In_Library_Level_Package_Body;
3304
3305 ------------------------------
3306 -- In_Unconditional_Context --
3307 ------------------------------
3308
3309 function In_Unconditional_Context (Node : Node_Id) return Boolean is
3310 P : Node_Id;
3311
3312 begin
3313 P := Node;
3314 while Present (P) loop
3315 case Nkind (P) is
3316 when N_Subprogram_Body =>
3317 return True;
3318
3319 when N_If_Statement =>
3320 return False;
3321
3322 when N_Loop_Statement =>
3323 return False;
3324
3325 when N_Case_Statement =>
3326 return False;
3327
3328 when others =>
3329 P := Parent (P);
3330 end case;
3331 end loop;
3332
3333 return False;
3334 end In_Unconditional_Context;
3335
3336 -------------------
3337 -- Insert_Action --
3338 -------------------
3339
3340 procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
3341 begin
3342 if Present (Ins_Action) then
3343 Insert_Actions (Assoc_Node, New_List (Ins_Action));
3344 end if;
3345 end Insert_Action;
3346
3347 -- Version with check(s) suppressed
3348
3349 procedure Insert_Action
3350 (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
3351 is
3352 begin
3353 Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
3354 end Insert_Action;
3355
3356 -------------------------
3357 -- Insert_Action_After --
3358 -------------------------
3359
3360 procedure Insert_Action_After
3361 (Assoc_Node : Node_Id;
3362 Ins_Action : Node_Id)
3363 is
3364 begin
3365 Insert_Actions_After (Assoc_Node, New_List (Ins_Action));
3366 end Insert_Action_After;
3367
3368 --------------------
3369 -- Insert_Actions --
3370 --------------------
3371
3372 procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
3373 N : Node_Id;
3374 P : Node_Id;
3375
3376 Wrapped_Node : Node_Id := Empty;
3377
3378 begin
3379 if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
3380 return;
3381 end if;
3382
3383 -- Ignore insert of actions from inside default expression (or other
3384 -- similar "spec expression") in the special spec-expression analyze
3385 -- mode. Any insertions at this point have no relevance, since we are
3386 -- only doing the analyze to freeze the types of any static expressions.
3387 -- See section "Handling of Default Expressions" in the spec of package
3388 -- Sem for further details.
3389
3390 if In_Spec_Expression then
3391 return;
3392 end if;
3393
3394 -- If the action derives from stuff inside a record, then the actions
3395 -- are attached to the current scope, to be inserted and analyzed on
3396 -- exit from the scope. The reason for this is that we may also be
3397 -- generating freeze actions at the same time, and they must eventually
3398 -- be elaborated in the correct order.
3399
3400 if Is_Record_Type (Current_Scope)
3401 and then not Is_Frozen (Current_Scope)
3402 then
3403 if No (Scope_Stack.Table
3404 (Scope_Stack.Last).Pending_Freeze_Actions)
3405 then
3406 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
3407 Ins_Actions;
3408 else
3409 Append_List
3410 (Ins_Actions,
3411 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
3412 end if;
3413
3414 return;
3415 end if;
3416
3417 -- We now intend to climb up the tree to find the right point to
3418 -- insert the actions. We start at Assoc_Node, unless this node is a
3419 -- subexpression in which case we start with its parent. We do this for
3420 -- two reasons. First it speeds things up. Second, if Assoc_Node is
3421 -- itself one of the special nodes like N_And_Then, then we assume that
3422 -- an initial request to insert actions for such a node does not expect
3423 -- the actions to get deposited in the node for later handling when the
3424 -- node is expanded, since clearly the node is being dealt with by the
3425 -- caller. Note that in the subexpression case, N is always the child we
3426 -- came from.
3427
3428 -- N_Raise_xxx_Error is an annoying special case, it is a statement if
3429 -- it has type Standard_Void_Type, and a subexpression otherwise.
3430 -- otherwise. Procedure calls, and similarly procedure attribute
3431 -- references, are also statements.
3432
3433 if Nkind (Assoc_Node) in N_Subexpr
3434 and then (Nkind (Assoc_Node) not in N_Raise_xxx_Error
3435 or else Etype (Assoc_Node) /= Standard_Void_Type)
3436 and then Nkind (Assoc_Node) /= N_Procedure_Call_Statement
3437 and then (Nkind (Assoc_Node) /= N_Attribute_Reference
3438 or else
3439 not Is_Procedure_Attribute_Name
3440 (Attribute_Name (Assoc_Node)))
3441 then
3442 N := Assoc_Node;
3443 P := Parent (Assoc_Node);
3444
3445 -- Non-subexpression case. Note that N is initially Empty in this case
3446 -- (N is only guaranteed Non-Empty in the subexpr case).
3447
3448 else
3449 N := Empty;
3450 P := Assoc_Node;
3451 end if;
3452
3453 -- Capture root of the transient scope
3454
3455 if Scope_Is_Transient then
3456 Wrapped_Node := Node_To_Be_Wrapped;
3457 end if;
3458
3459 loop
3460 pragma Assert (Present (P));
3461
3462 -- Make sure that inserted actions stay in the transient scope
3463
3464 if Present (Wrapped_Node) and then N = Wrapped_Node then
3465 Store_Before_Actions_In_Scope (Ins_Actions);
3466 return;
3467 end if;
3468
3469 case Nkind (P) is
3470
3471 -- Case of right operand of AND THEN or OR ELSE. Put the actions
3472 -- in the Actions field of the right operand. They will be moved
3473 -- out further when the AND THEN or OR ELSE operator is expanded.
3474 -- Nothing special needs to be done for the left operand since
3475 -- in that case the actions are executed unconditionally.
3476
3477 when N_Short_Circuit =>
3478 if N = Right_Opnd (P) then
3479
3480 -- We are now going to either append the actions to the
3481 -- actions field of the short-circuit operation. We will
3482 -- also analyze the actions now.
3483
3484 -- This analysis is really too early, the proper thing would
3485 -- be to just park them there now, and only analyze them if
3486 -- we find we really need them, and to it at the proper
3487 -- final insertion point. However attempting to this proved
3488 -- tricky, so for now we just kill current values before and
3489 -- after the analyze call to make sure we avoid peculiar
3490 -- optimizations from this out of order insertion.
3491
3492 Kill_Current_Values;
3493
3494 -- If P has already been expanded, we can't park new actions
3495 -- on it, so we need to expand them immediately, introducing
3496 -- an Expression_With_Actions. N can't be an expression
3497 -- with actions, or else then the actions would have been
3498 -- inserted at an inner level.
3499
3500 if Analyzed (P) then
3501 pragma Assert (Nkind (N) /= N_Expression_With_Actions);
3502 Rewrite (N,
3503 Make_Expression_With_Actions (Sloc (N),
3504 Actions => Ins_Actions,
3505 Expression => Relocate_Node (N)));
3506 Analyze_And_Resolve (N);
3507
3508 elsif Present (Actions (P)) then
3509 Insert_List_After_And_Analyze
3510 (Last (Actions (P)), Ins_Actions);
3511 else
3512 Set_Actions (P, Ins_Actions);
3513 Analyze_List (Actions (P));
3514 end if;
3515
3516 Kill_Current_Values;
3517
3518 return;
3519 end if;
3520
3521 -- Then or Else dependent expression of an if expression. Add
3522 -- actions to Then_Actions or Else_Actions field as appropriate.
3523 -- The actions will be moved further out when the if is expanded.
3524
3525 when N_If_Expression =>
3526 declare
3527 ThenX : constant Node_Id := Next (First (Expressions (P)));
3528 ElseX : constant Node_Id := Next (ThenX);
3529
3530 begin
3531 -- If the enclosing expression is already analyzed, as
3532 -- is the case for nested elaboration checks, insert the
3533 -- conditional further out.
3534
3535 if Analyzed (P) then
3536 null;
3537
3538 -- Actions belong to the then expression, temporarily place
3539 -- them as Then_Actions of the if expression. They will be
3540 -- moved to the proper place later when the if expression
3541 -- is expanded.
3542
3543 elsif N = ThenX then
3544 if Present (Then_Actions (P)) then
3545 Insert_List_After_And_Analyze
3546 (Last (Then_Actions (P)), Ins_Actions);
3547 else
3548 Set_Then_Actions (P, Ins_Actions);
3549 Analyze_List (Then_Actions (P));
3550 end if;
3551
3552 return;
3553
3554 -- Actions belong to the else expression, temporarily place
3555 -- them as Else_Actions of the if expression. They will be
3556 -- moved to the proper place later when the if expression
3557 -- is expanded.
3558
3559 elsif N = ElseX then
3560 if Present (Else_Actions (P)) then
3561 Insert_List_After_And_Analyze
3562 (Last (Else_Actions (P)), Ins_Actions);
3563 else
3564 Set_Else_Actions (P, Ins_Actions);
3565 Analyze_List (Else_Actions (P));
3566 end if;
3567
3568 return;
3569
3570 -- Actions belong to the condition. In this case they are
3571 -- unconditionally executed, and so we can continue the
3572 -- search for the proper insert point.
3573
3574 else
3575 null;
3576 end if;
3577 end;
3578
3579 -- Alternative of case expression, we place the action in the
3580 -- Actions field of the case expression alternative, this will
3581 -- be handled when the case expression is expanded.
3582
3583 when N_Case_Expression_Alternative =>
3584 if Present (Actions (P)) then
3585 Insert_List_After_And_Analyze
3586 (Last (Actions (P)), Ins_Actions);
3587 else
3588 Set_Actions (P, Ins_Actions);
3589 Analyze_List (Actions (P));
3590 end if;
3591
3592 return;
3593
3594 -- Case of appearing within an Expressions_With_Actions node. When
3595 -- the new actions come from the expression of the expression with
3596 -- actions, they must be added to the existing actions. The other
3597 -- alternative is when the new actions are related to one of the
3598 -- existing actions of the expression with actions, and should
3599 -- never reach here: if actions are inserted on a statement
3600 -- within the Actions of an expression with actions, or on some
3601 -- sub-expression of such a statement, then the outermost proper
3602 -- insertion point is right before the statement, and we should
3603 -- never climb up as far as the N_Expression_With_Actions itself.
3604
3605 when N_Expression_With_Actions =>
3606 if N = Expression (P) then
3607 if Is_Empty_List (Actions (P)) then
3608 Append_List_To (Actions (P), Ins_Actions);
3609 Analyze_List (Actions (P));
3610 else
3611 Insert_List_After_And_Analyze
3612 (Last (Actions (P)), Ins_Actions);
3613 end if;
3614
3615 return;
3616
3617 else
3618 raise Program_Error;
3619 end if;
3620
3621 -- Case of appearing in the condition of a while expression or
3622 -- elsif. We insert the actions into the Condition_Actions field.
3623 -- They will be moved further out when the while loop or elsif
3624 -- is analyzed.
3625
3626 when N_Iteration_Scheme |
3627 N_Elsif_Part
3628 =>
3629 if N = Condition (P) then
3630 if Present (Condition_Actions (P)) then
3631 Insert_List_After_And_Analyze
3632 (Last (Condition_Actions (P)), Ins_Actions);
3633 else
3634 Set_Condition_Actions (P, Ins_Actions);
3635
3636 -- Set the parent of the insert actions explicitly. This
3637 -- is not a syntactic field, but we need the parent field
3638 -- set, in particular so that freeze can understand that
3639 -- it is dealing with condition actions, and properly
3640 -- insert the freezing actions.
3641
3642 Set_Parent (Ins_Actions, P);
3643 Analyze_List (Condition_Actions (P));
3644 end if;
3645
3646 return;
3647 end if;
3648
3649 -- Statements, declarations, pragmas, representation clauses
3650
3651 when
3652 -- Statements
3653
3654 N_Procedure_Call_Statement |
3655 N_Statement_Other_Than_Procedure_Call |
3656
3657 -- Pragmas
3658
3659 N_Pragma |
3660
3661 -- Representation_Clause
3662
3663 N_At_Clause |
3664 N_Attribute_Definition_Clause |
3665 N_Enumeration_Representation_Clause |
3666 N_Record_Representation_Clause |
3667
3668 -- Declarations
3669
3670 N_Abstract_Subprogram_Declaration |
3671 N_Entry_Body |
3672 N_Exception_Declaration |
3673 N_Exception_Renaming_Declaration |
3674 N_Expression_Function |
3675 N_Formal_Abstract_Subprogram_Declaration |
3676 N_Formal_Concrete_Subprogram_Declaration |
3677 N_Formal_Object_Declaration |
3678 N_Formal_Type_Declaration |
3679 N_Full_Type_Declaration |
3680 N_Function_Instantiation |
3681 N_Generic_Function_Renaming_Declaration |
3682 N_Generic_Package_Declaration |
3683 N_Generic_Package_Renaming_Declaration |
3684 N_Generic_Procedure_Renaming_Declaration |
3685 N_Generic_Subprogram_Declaration |
3686 N_Implicit_Label_Declaration |
3687 N_Incomplete_Type_Declaration |
3688 N_Number_Declaration |
3689 N_Object_Declaration |
3690 N_Object_Renaming_Declaration |
3691 N_Package_Body |
3692 N_Package_Body_Stub |
3693 N_Package_Declaration |
3694 N_Package_Instantiation |
3695 N_Package_Renaming_Declaration |
3696 N_Private_Extension_Declaration |
3697 N_Private_Type_Declaration |
3698 N_Procedure_Instantiation |
3699 N_Protected_Body |
3700 N_Protected_Body_Stub |
3701 N_Protected_Type_Declaration |
3702 N_Single_Task_Declaration |
3703 N_Subprogram_Body |
3704 N_Subprogram_Body_Stub |
3705 N_Subprogram_Declaration |
3706 N_Subprogram_Renaming_Declaration |
3707 N_Subtype_Declaration |
3708 N_Task_Body |
3709 N_Task_Body_Stub |
3710 N_Task_Type_Declaration |
3711
3712 -- Use clauses can appear in lists of declarations
3713
3714 N_Use_Package_Clause |
3715 N_Use_Type_Clause |
3716
3717 -- Freeze entity behaves like a declaration or statement
3718
3719 N_Freeze_Entity |
3720 N_Freeze_Generic_Entity
3721 =>
3722 -- Do not insert here if the item is not a list member (this
3723 -- happens for example with a triggering statement, and the
3724 -- proper approach is to insert before the entire select).
3725
3726 if not Is_List_Member (P) then
3727 null;
3728
3729 -- Do not insert if parent of P is an N_Component_Association
3730 -- node (i.e. we are in the context of an N_Aggregate or
3731 -- N_Extension_Aggregate node. In this case we want to insert
3732 -- before the entire aggregate.
3733
3734 elsif Nkind (Parent (P)) = N_Component_Association then
3735 null;
3736
3737 -- Do not insert if the parent of P is either an N_Variant node
3738 -- or an N_Record_Definition node, meaning in either case that
3739 -- P is a member of a component list, and that therefore the
3740 -- actions should be inserted outside the complete record
3741 -- declaration.
3742
3743 elsif Nkind_In (Parent (P), N_Variant, N_Record_Definition) then
3744 null;
3745
3746 -- Do not insert freeze nodes within the loop generated for
3747 -- an aggregate, because they may be elaborated too late for
3748 -- subsequent use in the back end: within a package spec the
3749 -- loop is part of the elaboration procedure and is only
3750 -- elaborated during the second pass.
3751
3752 -- If the loop comes from source, or the entity is local to the
3753 -- loop itself it must remain within.
3754
3755 elsif Nkind (Parent (P)) = N_Loop_Statement
3756 and then not Comes_From_Source (Parent (P))
3757 and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
3758 and then
3759 Scope (Entity (First (Ins_Actions))) /= Current_Scope
3760 then
3761 null;
3762
3763 -- Otherwise we can go ahead and do the insertion
3764
3765 elsif P = Wrapped_Node then
3766 Store_Before_Actions_In_Scope (Ins_Actions);
3767 return;
3768
3769 else
3770 Insert_List_Before_And_Analyze (P, Ins_Actions);
3771 return;
3772 end if;
3773
3774 -- A special case, N_Raise_xxx_Error can act either as a statement
3775 -- or a subexpression. We tell the difference by looking at the
3776 -- Etype. It is set to Standard_Void_Type in the statement case.
3777
3778 when
3779 N_Raise_xxx_Error =>
3780 if Etype (P) = Standard_Void_Type then
3781 if P = Wrapped_Node then
3782 Store_Before_Actions_In_Scope (Ins_Actions);
3783 else
3784 Insert_List_Before_And_Analyze (P, Ins_Actions);
3785 end if;
3786
3787 return;
3788
3789 -- In the subexpression case, keep climbing
3790
3791 else
3792 null;
3793 end if;
3794
3795 -- If a component association appears within a loop created for
3796 -- an array aggregate, attach the actions to the association so
3797 -- they can be subsequently inserted within the loop. For other
3798 -- component associations insert outside of the aggregate. For
3799 -- an association that will generate a loop, its Loop_Actions
3800 -- attribute is already initialized (see exp_aggr.adb).
3801
3802 -- The list of loop_actions can in turn generate additional ones,
3803 -- that are inserted before the associated node. If the associated
3804 -- node is outside the aggregate, the new actions are collected
3805 -- at the end of the loop actions, to respect the order in which
3806 -- they are to be elaborated.
3807
3808 when
3809 N_Component_Association =>
3810 if Nkind (Parent (P)) = N_Aggregate
3811 and then Present (Loop_Actions (P))
3812 then
3813 if Is_Empty_List (Loop_Actions (P)) then
3814 Set_Loop_Actions (P, Ins_Actions);
3815 Analyze_List (Ins_Actions);
3816
3817 else
3818 declare
3819 Decl : Node_Id;
3820
3821 begin
3822 -- Check whether these actions were generated by a
3823 -- declaration that is part of the loop_ actions
3824 -- for the component_association.
3825
3826 Decl := Assoc_Node;
3827 while Present (Decl) loop
3828 exit when Parent (Decl) = P
3829 and then Is_List_Member (Decl)
3830 and then
3831 List_Containing (Decl) = Loop_Actions (P);
3832 Decl := Parent (Decl);
3833 end loop;
3834
3835 if Present (Decl) then
3836 Insert_List_Before_And_Analyze
3837 (Decl, Ins_Actions);
3838 else
3839 Insert_List_After_And_Analyze
3840 (Last (Loop_Actions (P)), Ins_Actions);
3841 end if;
3842 end;
3843 end if;
3844
3845 return;
3846
3847 else
3848 null;
3849 end if;
3850
3851 -- Another special case, an attribute denoting a procedure call
3852
3853 when
3854 N_Attribute_Reference =>
3855 if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
3856 if P = Wrapped_Node then
3857 Store_Before_Actions_In_Scope (Ins_Actions);
3858 else
3859 Insert_List_Before_And_Analyze (P, Ins_Actions);
3860 end if;
3861
3862 return;
3863
3864 -- In the subexpression case, keep climbing
3865
3866 else
3867 null;
3868 end if;
3869
3870 -- A contract node should not belong to the tree
3871
3872 when N_Contract =>
3873 raise Program_Error;
3874
3875 -- For all other node types, keep climbing tree
3876
3877 when
3878 N_Abortable_Part |
3879 N_Accept_Alternative |
3880 N_Access_Definition |
3881 N_Access_Function_Definition |
3882 N_Access_Procedure_Definition |
3883 N_Access_To_Object_Definition |
3884 N_Aggregate |
3885 N_Allocator |
3886 N_Aspect_Specification |
3887 N_Case_Expression |
3888 N_Case_Statement_Alternative |
3889 N_Character_Literal |
3890 N_Compilation_Unit |
3891 N_Compilation_Unit_Aux |
3892 N_Component_Clause |
3893 N_Component_Declaration |
3894 N_Component_Definition |
3895 N_Component_List |
3896 N_Constrained_Array_Definition |
3897 N_Decimal_Fixed_Point_Definition |
3898 N_Defining_Character_Literal |
3899 N_Defining_Identifier |
3900 N_Defining_Operator_Symbol |
3901 N_Defining_Program_Unit_Name |
3902 N_Delay_Alternative |
3903 N_Delta_Constraint |
3904 N_Derived_Type_Definition |
3905 N_Designator |
3906 N_Digits_Constraint |
3907 N_Discriminant_Association |
3908 N_Discriminant_Specification |
3909 N_Empty |
3910 N_Entry_Body_Formal_Part |
3911 N_Entry_Call_Alternative |
3912 N_Entry_Declaration |
3913 N_Entry_Index_Specification |
3914 N_Enumeration_Type_Definition |
3915 N_Error |
3916 N_Exception_Handler |
3917 N_Expanded_Name |
3918 N_Explicit_Dereference |
3919 N_Extension_Aggregate |
3920 N_Floating_Point_Definition |
3921 N_Formal_Decimal_Fixed_Point_Definition |
3922 N_Formal_Derived_Type_Definition |
3923 N_Formal_Discrete_Type_Definition |
3924 N_Formal_Floating_Point_Definition |
3925 N_Formal_Modular_Type_Definition |
3926 N_Formal_Ordinary_Fixed_Point_Definition |
3927 N_Formal_Package_Declaration |
3928 N_Formal_Private_Type_Definition |
3929 N_Formal_Incomplete_Type_Definition |
3930 N_Formal_Signed_Integer_Type_Definition |
3931 N_Function_Call |
3932 N_Function_Specification |
3933 N_Generic_Association |
3934 N_Handled_Sequence_Of_Statements |
3935 N_Identifier |
3936 N_In |
3937 N_Index_Or_Discriminant_Constraint |
3938 N_Indexed_Component |
3939 N_Integer_Literal |
3940 N_Iterator_Specification |
3941 N_Itype_Reference |
3942 N_Label |
3943 N_Loop_Parameter_Specification |
3944 N_Mod_Clause |
3945 N_Modular_Type_Definition |
3946 N_Not_In |
3947 N_Null |
3948 N_Op_Abs |
3949 N_Op_Add |
3950 N_Op_And |
3951 N_Op_Concat |
3952 N_Op_Divide |
3953 N_Op_Eq |
3954 N_Op_Expon |
3955 N_Op_Ge |
3956 N_Op_Gt |
3957 N_Op_Le |
3958 N_Op_Lt |
3959 N_Op_Minus |
3960 N_Op_Mod |
3961 N_Op_Multiply |
3962 N_Op_Ne |
3963 N_Op_Not |
3964 N_Op_Or |
3965 N_Op_Plus |
3966 N_Op_Rem |
3967 N_Op_Rotate_Left |
3968 N_Op_Rotate_Right |
3969 N_Op_Shift_Left |
3970 N_Op_Shift_Right |
3971 N_Op_Shift_Right_Arithmetic |
3972 N_Op_Subtract |
3973 N_Op_Xor |
3974 N_Operator_Symbol |
3975 N_Ordinary_Fixed_Point_Definition |
3976 N_Others_Choice |
3977 N_Package_Specification |
3978 N_Parameter_Association |
3979 N_Parameter_Specification |
3980 N_Pop_Constraint_Error_Label |
3981 N_Pop_Program_Error_Label |
3982 N_Pop_Storage_Error_Label |
3983 N_Pragma_Argument_Association |
3984 N_Procedure_Specification |
3985 N_Protected_Definition |
3986 N_Push_Constraint_Error_Label |
3987 N_Push_Program_Error_Label |
3988 N_Push_Storage_Error_Label |
3989 N_Qualified_Expression |
3990 N_Quantified_Expression |
3991 N_Raise_Expression |
3992 N_Range |
3993 N_Range_Constraint |
3994 N_Real_Literal |
3995 N_Real_Range_Specification |
3996 N_Record_Definition |
3997 N_Reference |
3998 N_SCIL_Dispatch_Table_Tag_Init |
3999 N_SCIL_Dispatching_Call |
4000 N_SCIL_Membership_Test |
4001 N_Selected_Component |
4002 N_Signed_Integer_Type_Definition |
4003 N_Single_Protected_Declaration |
4004 N_Slice |
4005 N_String_Literal |
4006 N_Subtype_Indication |
4007 N_Subunit |
4008 N_Task_Definition |
4009 N_Terminate_Alternative |
4010 N_Triggering_Alternative |
4011 N_Type_Conversion |
4012 N_Unchecked_Expression |
4013 N_Unchecked_Type_Conversion |
4014 N_Unconstrained_Array_Definition |
4015 N_Unused_At_End |
4016 N_Unused_At_Start |
4017 N_Variant |
4018 N_Variant_Part |
4019 N_Validate_Unchecked_Conversion |
4020 N_With_Clause
4021 =>
4022 null;
4023
4024 end case;
4025
4026 -- If we fall through above tests, keep climbing tree
4027
4028 N := P;
4029
4030 if Nkind (Parent (N)) = N_Subunit then
4031
4032 -- This is the proper body corresponding to a stub. Insertion must
4033 -- be done at the point of the stub, which is in the declarative
4034 -- part of the parent unit.
4035
4036 P := Corresponding_Stub (Parent (N));
4037
4038 else
4039 P := Parent (N);
4040 end if;
4041 end loop;
4042 end Insert_Actions;
4043
4044 -- Version with check(s) suppressed
4045
4046 procedure Insert_Actions
4047 (Assoc_Node : Node_Id;
4048 Ins_Actions : List_Id;
4049 Suppress : Check_Id)
4050 is
4051 begin
4052 if Suppress = All_Checks then
4053 declare
4054 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
4055 begin
4056 Scope_Suppress.Suppress := (others => True);
4057 Insert_Actions (Assoc_Node, Ins_Actions);
4058 Scope_Suppress.Suppress := Sva;
4059 end;
4060
4061 else
4062 declare
4063 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
4064 begin
4065 Scope_Suppress.Suppress (Suppress) := True;
4066 Insert_Actions (Assoc_Node, Ins_Actions);
4067 Scope_Suppress.Suppress (Suppress) := Svg;
4068 end;
4069 end if;
4070 end Insert_Actions;
4071
4072 --------------------------
4073 -- Insert_Actions_After --
4074 --------------------------
4075
4076 procedure Insert_Actions_After
4077 (Assoc_Node : Node_Id;
4078 Ins_Actions : List_Id)
4079 is
4080 begin
4081 if Scope_Is_Transient and then Assoc_Node = Node_To_Be_Wrapped then
4082 Store_After_Actions_In_Scope (Ins_Actions);
4083 else
4084 Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
4085 end if;
4086 end Insert_Actions_After;
4087
4088 ------------------------
4089 -- Insert_Declaration --
4090 ------------------------
4091
4092 procedure Insert_Declaration (N : Node_Id; Decl : Node_Id) is
4093 P : Node_Id;
4094
4095 begin
4096 pragma Assert (Nkind (N) in N_Subexpr);
4097
4098 -- Climb until we find a procedure or a package
4099
4100 P := N;
4101 loop
4102 pragma Assert (Present (Parent (P)));
4103 P := Parent (P);
4104
4105 if Is_List_Member (P) then
4106 exit when Nkind_In (Parent (P), N_Package_Specification,
4107 N_Subprogram_Body);
4108
4109 -- Special handling for handled sequence of statements, we must
4110 -- insert in the statements not the exception handlers!
4111
4112 if Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements then
4113 P := First (Statements (Parent (P)));
4114 exit;
4115 end if;
4116 end if;
4117 end loop;
4118
4119 -- Now do the insertion
4120
4121 Insert_Before (P, Decl);
4122 Analyze (Decl);
4123 end Insert_Declaration;
4124
4125 ---------------------------------
4126 -- Insert_Library_Level_Action --
4127 ---------------------------------
4128
4129 procedure Insert_Library_Level_Action (N : Node_Id) is
4130 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
4131
4132 begin
4133 Push_Scope (Cunit_Entity (Main_Unit));
4134 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
4135
4136 if No (Actions (Aux)) then
4137 Set_Actions (Aux, New_List (N));
4138 else
4139 Append (N, Actions (Aux));
4140 end if;
4141
4142 Analyze (N);
4143 Pop_Scope;
4144 end Insert_Library_Level_Action;
4145
4146 ----------------------------------
4147 -- Insert_Library_Level_Actions --
4148 ----------------------------------
4149
4150 procedure Insert_Library_Level_Actions (L : List_Id) is
4151 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
4152
4153 begin
4154 if Is_Non_Empty_List (L) then
4155 Push_Scope (Cunit_Entity (Main_Unit));
4156 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
4157
4158 if No (Actions (Aux)) then
4159 Set_Actions (Aux, L);
4160 Analyze_List (L);
4161 else
4162 Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
4163 end if;
4164
4165 Pop_Scope;
4166 end if;
4167 end Insert_Library_Level_Actions;
4168
4169 ----------------------
4170 -- Inside_Init_Proc --
4171 ----------------------
4172
4173 function Inside_Init_Proc return Boolean is
4174 S : Entity_Id;
4175
4176 begin
4177 S := Current_Scope;
4178 while Present (S) and then S /= Standard_Standard loop
4179 if Is_Init_Proc (S) then
4180 return True;
4181 else
4182 S := Scope (S);
4183 end if;
4184 end loop;
4185
4186 return False;
4187 end Inside_Init_Proc;
4188
4189 ----------------------------
4190 -- Is_All_Null_Statements --
4191 ----------------------------
4192
4193 function Is_All_Null_Statements (L : List_Id) return Boolean is
4194 Stm : Node_Id;
4195
4196 begin
4197 Stm := First (L);
4198 while Present (Stm) loop
4199 if Nkind (Stm) /= N_Null_Statement then
4200 return False;
4201 end if;
4202
4203 Next (Stm);
4204 end loop;
4205
4206 return True;
4207 end Is_All_Null_Statements;
4208
4209 --------------------------------------------------
4210 -- Is_Displacement_Of_Object_Or_Function_Result --
4211 --------------------------------------------------
4212
4213 function Is_Displacement_Of_Object_Or_Function_Result
4214 (Obj_Id : Entity_Id) return Boolean
4215 is
4216 function Is_Controlled_Function_Call (N : Node_Id) return Boolean;
4217 -- Determine if particular node denotes a controlled function call. The
4218 -- call may have been heavily expanded.
4219
4220 function Is_Displace_Call (N : Node_Id) return Boolean;
4221 -- Determine whether a particular node is a call to Ada.Tags.Displace.
4222 -- The call might be nested within other actions such as conversions.
4223
4224 function Is_Source_Object (N : Node_Id) return Boolean;
4225 -- Determine whether a particular node denotes a source object
4226
4227 ---------------------------------
4228 -- Is_Controlled_Function_Call --
4229 ---------------------------------
4230
4231 function Is_Controlled_Function_Call (N : Node_Id) return Boolean is
4232 Expr : Node_Id := Original_Node (N);
4233
4234 begin
4235 if Nkind (Expr) = N_Function_Call then
4236 Expr := Name (Expr);
4237
4238 -- When a function call appears in Object.Operation format, the
4239 -- original representation has two possible forms depending on the
4240 -- availability of actual parameters:
4241 --
4242 -- Obj.Func_Call -- N_Selected_Component
4243 -- Obj.Func_Call (Param) -- N_Indexed_Component
4244
4245 else
4246 if Nkind (Expr) = N_Indexed_Component then
4247 Expr := Prefix (Expr);
4248 end if;
4249
4250 if Nkind (Expr) = N_Selected_Component then
4251 Expr := Selector_Name (Expr);
4252 end if;
4253 end if;
4254
4255 return
4256 Nkind_In (Expr, N_Expanded_Name, N_Identifier)
4257 and then Ekind (Entity (Expr)) = E_Function
4258 and then Needs_Finalization (Etype (Entity (Expr)));
4259 end Is_Controlled_Function_Call;
4260
4261 ----------------------
4262 -- Is_Displace_Call --
4263 ----------------------
4264
4265 function Is_Displace_Call (N : Node_Id) return Boolean is
4266 Call : Node_Id := N;
4267
4268 begin
4269 -- Strip various actions which may precede a call to Displace
4270
4271 loop
4272 if Nkind (Call) = N_Explicit_Dereference then
4273 Call := Prefix (Call);
4274
4275 elsif Nkind_In (Call, N_Type_Conversion,
4276 N_Unchecked_Type_Conversion)
4277 then
4278 Call := Expression (Call);
4279
4280 else
4281 exit;
4282 end if;
4283 end loop;
4284
4285 return
4286 Present (Call)
4287 and then Nkind (Call) = N_Function_Call
4288 and then Is_RTE (Entity (Name (Call)), RE_Displace);
4289 end Is_Displace_Call;
4290
4291 ----------------------
4292 -- Is_Source_Object --
4293 ----------------------
4294
4295 function Is_Source_Object (N : Node_Id) return Boolean is
4296 begin
4297 return
4298 Present (N)
4299 and then Nkind (N) in N_Has_Entity
4300 and then Is_Object (Entity (N))
4301 and then Comes_From_Source (N);
4302 end Is_Source_Object;
4303
4304 -- Local variables
4305
4306 Decl : constant Node_Id := Parent (Obj_Id);
4307 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
4308 Orig_Decl : constant Node_Id := Original_Node (Decl);
4309
4310 -- Start of processing for Is_Displacement_Of_Object_Or_Function_Result
4311
4312 begin
4313 -- Case 1:
4314
4315 -- Obj : CW_Type := Function_Call (...);
4316
4317 -- rewritten into:
4318
4319 -- Tmp : ... := Function_Call (...)'reference;
4320 -- Obj : CW_Type renames (... Ada.Tags.Displace (Tmp));
4321
4322 -- where the return type of the function and the class-wide type require
4323 -- dispatch table pointer displacement.
4324
4325 -- Case 2:
4326
4327 -- Obj : CW_Type := Src_Obj;
4328
4329 -- rewritten into:
4330
4331 -- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
4332
4333 -- where the type of the source object and the class-wide type require
4334 -- dispatch table pointer displacement.
4335
4336 return
4337 Nkind (Decl) = N_Object_Renaming_Declaration
4338 and then Nkind (Orig_Decl) = N_Object_Declaration
4339 and then Comes_From_Source (Orig_Decl)
4340 and then Is_Class_Wide_Type (Obj_Typ)
4341 and then Is_Displace_Call (Renamed_Object (Obj_Id))
4342 and then
4343 (Is_Controlled_Function_Call (Expression (Orig_Decl))
4344 or else Is_Source_Object (Expression (Orig_Decl)));
4345 end Is_Displacement_Of_Object_Or_Function_Result;
4346
4347 ------------------------------
4348 -- Is_Finalizable_Transient --
4349 ------------------------------
4350
4351 function Is_Finalizable_Transient
4352 (Decl : Node_Id;
4353 Rel_Node : Node_Id) return Boolean
4354 is
4355 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
4356 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
4357 Desig : Entity_Id := Obj_Typ;
4358
4359 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean;
4360 -- Determine whether transient object Trans_Id is initialized either
4361 -- by a function call which returns an access type or simply renames
4362 -- another pointer.
4363
4364 function Initialized_By_Aliased_BIP_Func_Call
4365 (Trans_Id : Entity_Id) return Boolean;
4366 -- Determine whether transient object Trans_Id is initialized by a
4367 -- build-in-place function call where the BIPalloc parameter is of
4368 -- value 1 and BIPaccess is not null. This case creates an aliasing
4369 -- between the returned value and the value denoted by BIPaccess.
4370
4371 function Is_Aliased
4372 (Trans_Id : Entity_Id;
4373 First_Stmt : Node_Id) return Boolean;
4374 -- Determine whether transient object Trans_Id has been renamed or
4375 -- aliased through 'reference in the statement list starting from
4376 -- First_Stmt.
4377
4378 function Is_Allocated (Trans_Id : Entity_Id) return Boolean;
4379 -- Determine whether transient object Trans_Id is allocated on the heap
4380
4381 function Is_Iterated_Container
4382 (Trans_Id : Entity_Id;
4383 First_Stmt : Node_Id) return Boolean;
4384 -- Determine whether transient object Trans_Id denotes a container which
4385 -- is in the process of being iterated in the statement list starting
4386 -- from First_Stmt.
4387
4388 ---------------------------
4389 -- Initialized_By_Access --
4390 ---------------------------
4391
4392 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is
4393 Expr : constant Node_Id := Expression (Parent (Trans_Id));
4394
4395 begin
4396 return
4397 Present (Expr)
4398 and then Nkind (Expr) /= N_Reference
4399 and then Is_Access_Type (Etype (Expr));
4400 end Initialized_By_Access;
4401
4402 ------------------------------------------
4403 -- Initialized_By_Aliased_BIP_Func_Call --
4404 ------------------------------------------
4405
4406 function Initialized_By_Aliased_BIP_Func_Call
4407 (Trans_Id : Entity_Id) return Boolean
4408 is
4409 Call : Node_Id := Expression (Parent (Trans_Id));
4410
4411 begin
4412 -- Build-in-place calls usually appear in 'reference format
4413
4414 if Nkind (Call) = N_Reference then
4415 Call := Prefix (Call);
4416 end if;
4417
4418 if Is_Build_In_Place_Function_Call (Call) then
4419 declare
4420 Access_Nam : Name_Id := No_Name;
4421 Access_OK : Boolean := False;
4422 Actual : Node_Id;
4423 Alloc_Nam : Name_Id := No_Name;
4424 Alloc_OK : Boolean := False;
4425 Formal : Node_Id;
4426 Func_Id : Entity_Id;
4427 Param : Node_Id;
4428
4429 begin
4430 -- Examine all parameter associations of the function call
4431
4432 Param := First (Parameter_Associations (Call));
4433 while Present (Param) loop
4434 if Nkind (Param) = N_Parameter_Association
4435 and then Nkind (Selector_Name (Param)) = N_Identifier
4436 then
4437 Actual := Explicit_Actual_Parameter (Param);
4438 Formal := Selector_Name (Param);
4439
4440 -- Construct the names of formals BIPaccess and BIPalloc
4441 -- using the function name retrieved from an arbitrary
4442 -- formal.
4443
4444 if Access_Nam = No_Name
4445 and then Alloc_Nam = No_Name
4446 and then Present (Entity (Formal))
4447 then
4448 Func_Id := Scope (Entity (Formal));
4449
4450 Access_Nam :=
4451 New_External_Name (Chars (Func_Id),
4452 BIP_Formal_Suffix (BIP_Object_Access));
4453
4454 Alloc_Nam :=
4455 New_External_Name (Chars (Func_Id),
4456 BIP_Formal_Suffix (BIP_Alloc_Form));
4457 end if;
4458
4459 -- A match for BIPaccess => Temp has been found
4460
4461 if Chars (Formal) = Access_Nam
4462 and then Nkind (Actual) /= N_Null
4463 then
4464 Access_OK := True;
4465 end if;
4466
4467 -- A match for BIPalloc => 1 has been found
4468
4469 if Chars (Formal) = Alloc_Nam
4470 and then Nkind (Actual) = N_Integer_Literal
4471 and then Intval (Actual) = Uint_1
4472 then
4473 Alloc_OK := True;
4474 end if;
4475 end if;
4476
4477 Next (Param);
4478 end loop;
4479
4480 return Access_OK and Alloc_OK;
4481 end;
4482 end if;
4483
4484 return False;
4485 end Initialized_By_Aliased_BIP_Func_Call;
4486
4487 ----------------
4488 -- Is_Aliased --
4489 ----------------
4490
4491 function Is_Aliased
4492 (Trans_Id : Entity_Id;
4493 First_Stmt : Node_Id) return Boolean
4494 is
4495 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id;
4496 -- Given an object renaming declaration, retrieve the entity of the
4497 -- renamed name. Return Empty if the renamed name is anything other
4498 -- than a variable or a constant.
4499
4500 -------------------------
4501 -- Find_Renamed_Object --
4502 -------------------------
4503
4504 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id is
4505 Ren_Obj : Node_Id := Empty;
4506
4507 function Find_Object (N : Node_Id) return Traverse_Result;
4508 -- Try to detect an object which is either a constant or a
4509 -- variable.
4510
4511 -----------------
4512 -- Find_Object --
4513 -----------------
4514
4515 function Find_Object (N : Node_Id) return Traverse_Result is
4516 begin
4517 -- Stop the search once a constant or a variable has been
4518 -- detected.
4519
4520 if Nkind (N) = N_Identifier
4521 and then Present (Entity (N))
4522 and then Ekind_In (Entity (N), E_Constant, E_Variable)
4523 then
4524 Ren_Obj := Entity (N);
4525 return Abandon;
4526 end if;
4527
4528 return OK;
4529 end Find_Object;
4530
4531 procedure Search is new Traverse_Proc (Find_Object);
4532
4533 -- Local variables
4534
4535 Typ : constant Entity_Id := Etype (Defining_Identifier (Ren_Decl));
4536
4537 -- Start of processing for Find_Renamed_Object
4538
4539 begin
4540 -- Actions related to dispatching calls may appear as renamings of
4541 -- tags. Do not process this type of renaming because it does not
4542 -- use the actual value of the object.
4543
4544 if not Is_RTE (Typ, RE_Tag_Ptr) then
4545 Search (Name (Ren_Decl));
4546 end if;
4547
4548 return Ren_Obj;
4549 end Find_Renamed_Object;
4550
4551 -- Local variables
4552
4553 Expr : Node_Id;
4554 Ren_Obj : Entity_Id;
4555 Stmt : Node_Id;
4556
4557 -- Start of processing for Is_Aliased
4558
4559 begin
4560 -- Aliasing in expression with actions does not matter because the
4561 -- scope of the transient object is always limited by the scope of
4562 -- the EWA. Such objects are always hooked and always finalized at
4563 -- the end of the EWA's scope.
4564
4565 if Nkind (Rel_Node) = N_Expression_With_Actions then
4566 return False;
4567 end if;
4568
4569 Stmt := First_Stmt;
4570 while Present (Stmt) loop
4571 if Nkind (Stmt) = N_Object_Declaration then
4572 Expr := Expression (Stmt);
4573
4574 if Present (Expr)
4575 and then Nkind (Expr) = N_Reference
4576 and then Nkind (Prefix (Expr)) = N_Identifier
4577 and then Entity (Prefix (Expr)) = Trans_Id
4578 then
4579 return True;
4580 end if;
4581
4582 elsif Nkind (Stmt) = N_Object_Renaming_Declaration then
4583 Ren_Obj := Find_Renamed_Object (Stmt);
4584
4585 if Present (Ren_Obj) and then Ren_Obj = Trans_Id then
4586 return True;
4587 end if;
4588 end if;
4589
4590 Next (Stmt);
4591 end loop;
4592
4593 return False;
4594 end Is_Aliased;
4595
4596 ------------------
4597 -- Is_Allocated --
4598 ------------------
4599
4600 function Is_Allocated (Trans_Id : Entity_Id) return Boolean is
4601 Expr : constant Node_Id := Expression (Parent (Trans_Id));
4602 begin
4603 return
4604 Is_Access_Type (Etype (Trans_Id))
4605 and then Present (Expr)
4606 and then Nkind (Expr) = N_Allocator;
4607 end Is_Allocated;
4608
4609 ---------------------------
4610 -- Is_Iterated_Container --
4611 ---------------------------
4612
4613 function Is_Iterated_Container
4614 (Trans_Id : Entity_Id;
4615 First_Stmt : Node_Id) return Boolean
4616 is
4617 Aspect : Node_Id;
4618 Call : Node_Id;
4619 Iter : Entity_Id;
4620 Param : Node_Id;
4621 Stmt : Node_Id;
4622 Typ : Entity_Id;
4623
4624 begin
4625 -- It is not possible to iterate over containers in non-Ada 2012 code
4626
4627 if Ada_Version < Ada_2012 then
4628 return False;
4629 end if;
4630
4631 Typ := Etype (Trans_Id);
4632
4633 -- Handle access type created for secondary stack use
4634
4635 if Is_Access_Type (Typ) then
4636 Typ := Designated_Type (Typ);
4637 end if;
4638
4639 -- Look for aspect Default_Iterator. It may be part of a type
4640 -- declaration for a container, or inherited from a base type
4641 -- or parent type.
4642
4643 Aspect := Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator);
4644
4645 if Present (Aspect) then
4646 Iter := Entity (Aspect);
4647
4648 -- Examine the statements following the container object and
4649 -- look for a call to the default iterate routine where the
4650 -- first parameter is the transient. Such a call appears as:
4651
4652 -- It : Access_To_CW_Iterator :=
4653 -- Iterate (Tran_Id.all, ...)'reference;
4654
4655 Stmt := First_Stmt;
4656 while Present (Stmt) loop
4657
4658 -- Detect an object declaration which is initialized by a
4659 -- secondary stack function call.
4660
4661 if Nkind (Stmt) = N_Object_Declaration
4662 and then Present (Expression (Stmt))
4663 and then Nkind (Expression (Stmt)) = N_Reference
4664 and then Nkind (Prefix (Expression (Stmt))) =
4665 N_Function_Call
4666 then
4667 Call := Prefix (Expression (Stmt));
4668
4669 -- The call must invoke the default iterate routine of
4670 -- the container and the transient object must appear as
4671 -- the first actual parameter. Skip any calls whose names
4672 -- are not entities.
4673
4674 if Is_Entity_Name (Name (Call))
4675 and then Entity (Name (Call)) = Iter
4676 and then Present (Parameter_Associations (Call))
4677 then
4678 Param := First (Parameter_Associations (Call));
4679
4680 if Nkind (Param) = N_Explicit_Dereference
4681 and then Entity (Prefix (Param)) = Trans_Id
4682 then
4683 return True;
4684 end if;
4685 end if;
4686 end if;
4687
4688 Next (Stmt);
4689 end loop;
4690 end if;
4691
4692 return False;
4693 end Is_Iterated_Container;
4694
4695 -- Start of processing for Is_Finalizable_Transient
4696
4697 begin
4698 -- Handle access types
4699
4700 if Is_Access_Type (Desig) then
4701 Desig := Available_View (Designated_Type (Desig));
4702 end if;
4703
4704 return
4705 Ekind_In (Obj_Id, E_Constant, E_Variable)
4706 and then Needs_Finalization (Desig)
4707 and then Requires_Transient_Scope (Desig)
4708 and then Nkind (Rel_Node) /= N_Simple_Return_Statement
4709
4710 -- Do not consider renamed or 'reference-d transient objects because
4711 -- the act of renaming extends the object's lifetime.
4712
4713 and then not Is_Aliased (Obj_Id, Decl)
4714
4715 -- Do not consider transient objects allocated on the heap since
4716 -- they are attached to a finalization master.
4717
4718 and then not Is_Allocated (Obj_Id)
4719
4720 -- If the transient object is a pointer, check that it is not
4721 -- initialized by a function which returns a pointer or acts as a
4722 -- renaming of another pointer.
4723
4724 and then
4725 (not Is_Access_Type (Obj_Typ)
4726 or else not Initialized_By_Access (Obj_Id))
4727
4728 -- Do not consider transient objects which act as indirect aliases
4729 -- of build-in-place function results.
4730
4731 and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id)
4732
4733 -- Do not consider conversions of tags to class-wide types
4734
4735 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
4736
4737 -- Do not consider containers in the context of iterator loops. Such
4738 -- transient objects must exist for as long as the loop is around,
4739 -- otherwise any operation carried out by the iterator will fail.
4740
4741 and then not Is_Iterated_Container (Obj_Id, Decl);
4742 end Is_Finalizable_Transient;
4743
4744 ---------------------------------
4745 -- Is_Fully_Repped_Tagged_Type --
4746 ---------------------------------
4747
4748 function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
4749 U : constant Entity_Id := Underlying_Type (T);
4750 Comp : Entity_Id;
4751
4752 begin
4753 if No (U) or else not Is_Tagged_Type (U) then
4754 return False;
4755 elsif Has_Discriminants (U) then
4756 return False;
4757 elsif not Has_Specified_Layout (U) then
4758 return False;
4759 end if;
4760
4761 -- Here we have a tagged type, see if it has any unlayed out fields
4762 -- other than a possible tag and parent fields. If so, we return False.
4763
4764 Comp := First_Component (U);
4765 while Present (Comp) loop
4766 if not Is_Tag (Comp)
4767 and then Chars (Comp) /= Name_uParent
4768 and then No (Component_Clause (Comp))
4769 then
4770 return False;
4771 else
4772 Next_Component (Comp);
4773 end if;
4774 end loop;
4775
4776 -- All components are layed out
4777
4778 return True;
4779 end Is_Fully_Repped_Tagged_Type;
4780
4781 ----------------------------------
4782 -- Is_Library_Level_Tagged_Type --
4783 ----------------------------------
4784
4785 function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
4786 begin
4787 return Is_Tagged_Type (Typ) and then Is_Library_Level_Entity (Typ);
4788 end Is_Library_Level_Tagged_Type;
4789
4790 --------------------------
4791 -- Is_Non_BIP_Func_Call --
4792 --------------------------
4793
4794 function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is
4795 begin
4796 -- The expected call is of the format
4797 --
4798 -- Func_Call'reference
4799
4800 return
4801 Nkind (Expr) = N_Reference
4802 and then Nkind (Prefix (Expr)) = N_Function_Call
4803 and then not Is_Build_In_Place_Function_Call (Prefix (Expr));
4804 end Is_Non_BIP_Func_Call;
4805
4806 ----------------------------------
4807 -- Is_Possibly_Unaligned_Object --
4808 ----------------------------------
4809
4810 function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
4811 T : constant Entity_Id := Etype (N);
4812
4813 begin
4814 -- If renamed object, apply test to underlying object
4815
4816 if Is_Entity_Name (N)
4817 and then Is_Object (Entity (N))
4818 and then Present (Renamed_Object (Entity (N)))
4819 then
4820 return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
4821 end if;
4822
4823 -- Tagged and controlled types and aliased types are always aligned, as
4824 -- are concurrent types.
4825
4826 if Is_Aliased (T)
4827 or else Has_Controlled_Component (T)
4828 or else Is_Concurrent_Type (T)
4829 or else Is_Tagged_Type (T)
4830 or else Is_Controlled (T)
4831 then
4832 return False;
4833 end if;
4834
4835 -- If this is an element of a packed array, may be unaligned
4836
4837 if Is_Ref_To_Bit_Packed_Array (N) then
4838 return True;
4839 end if;
4840
4841 -- Case of indexed component reference: test whether prefix is unaligned
4842
4843 if Nkind (N) = N_Indexed_Component then
4844 return Is_Possibly_Unaligned_Object (Prefix (N));
4845
4846 -- Case of selected component reference
4847
4848 elsif Nkind (N) = N_Selected_Component then
4849 declare
4850 P : constant Node_Id := Prefix (N);
4851 C : constant Entity_Id := Entity (Selector_Name (N));
4852 M : Nat;
4853 S : Nat;
4854
4855 begin
4856 -- If component reference is for an array with non-static bounds,
4857 -- then it is always aligned: we can only process unaligned arrays
4858 -- with static bounds (more precisely compile time known bounds).
4859
4860 if Is_Array_Type (T)
4861 and then not Compile_Time_Known_Bounds (T)
4862 then
4863 return False;
4864 end if;
4865
4866 -- If component is aliased, it is definitely properly aligned
4867
4868 if Is_Aliased (C) then
4869 return False;
4870 end if;
4871
4872 -- If component is for a type implemented as a scalar, and the
4873 -- record is packed, and the component is other than the first
4874 -- component of the record, then the component may be unaligned.
4875
4876 if Is_Packed (Etype (P))
4877 and then Represented_As_Scalar (Etype (C))
4878 and then First_Entity (Scope (C)) /= C
4879 then
4880 return True;
4881 end if;
4882
4883 -- Compute maximum possible alignment for T
4884
4885 -- If alignment is known, then that settles things
4886
4887 if Known_Alignment (T) then
4888 M := UI_To_Int (Alignment (T));
4889
4890 -- If alignment is not known, tentatively set max alignment
4891
4892 else
4893 M := Ttypes.Maximum_Alignment;
4894
4895 -- We can reduce this if the Esize is known since the default
4896 -- alignment will never be more than the smallest power of 2
4897 -- that does not exceed this Esize value.
4898
4899 if Known_Esize (T) then
4900 S := UI_To_Int (Esize (T));
4901
4902 while (M / 2) >= S loop
4903 M := M / 2;
4904 end loop;
4905 end if;
4906 end if;
4907
4908 -- The following code is historical, it used to be present but it
4909 -- is too cautious, because the front-end does not know the proper
4910 -- default alignments for the target. Also, if the alignment is
4911 -- not known, the front end can't know in any case. If a copy is
4912 -- needed, the back-end will take care of it. This whole section
4913 -- including this comment can be removed later ???
4914
4915 -- If the component reference is for a record that has a specified
4916 -- alignment, and we either know it is too small, or cannot tell,
4917 -- then the component may be unaligned.
4918
4919 -- What is the following commented out code ???
4920
4921 -- if Known_Alignment (Etype (P))
4922 -- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
4923 -- and then M > Alignment (Etype (P))
4924 -- then
4925 -- return True;
4926 -- end if;
4927
4928 -- Case of component clause present which may specify an
4929 -- unaligned position.
4930
4931 if Present (Component_Clause (C)) then
4932
4933 -- Otherwise we can do a test to make sure that the actual
4934 -- start position in the record, and the length, are both
4935 -- consistent with the required alignment. If not, we know
4936 -- that we are unaligned.
4937
4938 declare
4939 Align_In_Bits : constant Nat := M * System_Storage_Unit;
4940 begin
4941 if Component_Bit_Offset (C) mod Align_In_Bits /= 0
4942 or else Esize (C) mod Align_In_Bits /= 0
4943 then
4944 return True;
4945 end if;
4946 end;
4947 end if;
4948
4949 -- Otherwise, for a component reference, test prefix
4950
4951 return Is_Possibly_Unaligned_Object (P);
4952 end;
4953
4954 -- If not a component reference, must be aligned
4955
4956 else
4957 return False;
4958 end if;
4959 end Is_Possibly_Unaligned_Object;
4960
4961 ---------------------------------
4962 -- Is_Possibly_Unaligned_Slice --
4963 ---------------------------------
4964
4965 function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
4966 begin
4967 -- Go to renamed object
4968
4969 if Is_Entity_Name (N)
4970 and then Is_Object (Entity (N))
4971 and then Present (Renamed_Object (Entity (N)))
4972 then
4973 return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
4974 end if;
4975
4976 -- The reference must be a slice
4977
4978 if Nkind (N) /= N_Slice then
4979 return False;
4980 end if;
4981
4982 -- Always assume the worst for a nested record component with a
4983 -- component clause, which gigi/gcc does not appear to handle well.
4984 -- It is not clear why this special test is needed at all ???
4985
4986 if Nkind (Prefix (N)) = N_Selected_Component
4987 and then Nkind (Prefix (Prefix (N))) = N_Selected_Component
4988 and then
4989 Present (Component_Clause (Entity (Selector_Name (Prefix (N)))))
4990 then
4991 return True;
4992 end if;
4993
4994 -- We only need to worry if the target has strict alignment
4995
4996 if not Target_Strict_Alignment then
4997 return False;
4998 end if;
4999
5000 -- If it is a slice, then look at the array type being sliced
5001
5002 declare
5003 Sarr : constant Node_Id := Prefix (N);
5004 -- Prefix of the slice, i.e. the array being sliced
5005
5006 Styp : constant Entity_Id := Etype (Prefix (N));
5007 -- Type of the array being sliced
5008
5009 Pref : Node_Id;
5010 Ptyp : Entity_Id;
5011
5012 begin
5013 -- The problems arise if the array object that is being sliced
5014 -- is a component of a record or array, and we cannot guarantee
5015 -- the alignment of the array within its containing object.
5016
5017 -- To investigate this, we look at successive prefixes to see
5018 -- if we have a worrisome indexed or selected component.
5019
5020 Pref := Sarr;
5021 loop
5022 -- Case of array is part of an indexed component reference
5023
5024 if Nkind (Pref) = N_Indexed_Component then
5025 Ptyp := Etype (Prefix (Pref));
5026
5027 -- The only problematic case is when the array is packed, in
5028 -- which case we really know nothing about the alignment of
5029 -- individual components.
5030
5031 if Is_Bit_Packed_Array (Ptyp) then
5032 return True;
5033 end if;
5034
5035 -- Case of array is part of a selected component reference
5036
5037 elsif Nkind (Pref) = N_Selected_Component then
5038 Ptyp := Etype (Prefix (Pref));
5039
5040 -- We are definitely in trouble if the record in question
5041 -- has an alignment, and either we know this alignment is
5042 -- inconsistent with the alignment of the slice, or we don't
5043 -- know what the alignment of the slice should be.
5044
5045 if Known_Alignment (Ptyp)
5046 and then (Unknown_Alignment (Styp)
5047 or else Alignment (Styp) > Alignment (Ptyp))
5048 then
5049 return True;
5050 end if;
5051
5052 -- We are in potential trouble if the record type is packed.
5053 -- We could special case when we know that the array is the
5054 -- first component, but that's not such a simple case ???
5055
5056 if Is_Packed (Ptyp) then
5057 return True;
5058 end if;
5059
5060 -- We are in trouble if there is a component clause, and
5061 -- either we do not know the alignment of the slice, or
5062 -- the alignment of the slice is inconsistent with the
5063 -- bit position specified by the component clause.
5064
5065 declare
5066 Field : constant Entity_Id := Entity (Selector_Name (Pref));
5067 begin
5068 if Present (Component_Clause (Field))
5069 and then
5070 (Unknown_Alignment (Styp)
5071 or else
5072 (Component_Bit_Offset (Field) mod
5073 (System_Storage_Unit * Alignment (Styp))) /= 0)
5074 then
5075 return True;
5076 end if;
5077 end;
5078
5079 -- For cases other than selected or indexed components we know we
5080 -- are OK, since no issues arise over alignment.
5081
5082 else
5083 return False;
5084 end if;
5085
5086 -- We processed an indexed component or selected component
5087 -- reference that looked safe, so keep checking prefixes.
5088
5089 Pref := Prefix (Pref);
5090 end loop;
5091 end;
5092 end Is_Possibly_Unaligned_Slice;
5093
5094 -------------------------------
5095 -- Is_Related_To_Func_Return --
5096 -------------------------------
5097
5098 function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is
5099 Expr : constant Node_Id := Related_Expression (Id);
5100 begin
5101 return
5102 Present (Expr)
5103 and then Nkind (Expr) = N_Explicit_Dereference
5104 and then Nkind (Parent (Expr)) = N_Simple_Return_Statement;
5105 end Is_Related_To_Func_Return;
5106
5107 --------------------------------
5108 -- Is_Ref_To_Bit_Packed_Array --
5109 --------------------------------
5110
5111 function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
5112 Result : Boolean;
5113 Expr : Node_Id;
5114
5115 begin
5116 if Is_Entity_Name (N)
5117 and then Is_Object (Entity (N))
5118 and then Present (Renamed_Object (Entity (N)))
5119 then
5120 return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
5121 end if;
5122
5123 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5124 if Is_Bit_Packed_Array (Etype (Prefix (N))) then
5125 Result := True;
5126 else
5127 Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
5128 end if;
5129
5130 if Result and then Nkind (N) = N_Indexed_Component then
5131 Expr := First (Expressions (N));
5132 while Present (Expr) loop
5133 Force_Evaluation (Expr);
5134 Next (Expr);
5135 end loop;
5136 end if;
5137
5138 return Result;
5139
5140 else
5141 return False;
5142 end if;
5143 end Is_Ref_To_Bit_Packed_Array;
5144
5145 --------------------------------
5146 -- Is_Ref_To_Bit_Packed_Slice --
5147 --------------------------------
5148
5149 function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
5150 begin
5151 if Nkind (N) = N_Type_Conversion then
5152 return Is_Ref_To_Bit_Packed_Slice (Expression (N));
5153
5154 elsif Is_Entity_Name (N)
5155 and then Is_Object (Entity (N))
5156 and then Present (Renamed_Object (Entity (N)))
5157 then
5158 return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
5159
5160 elsif Nkind (N) = N_Slice
5161 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
5162 then
5163 return True;
5164
5165 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5166 return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
5167
5168 else
5169 return False;
5170 end if;
5171 end Is_Ref_To_Bit_Packed_Slice;
5172
5173 -----------------------
5174 -- Is_Renamed_Object --
5175 -----------------------
5176
5177 function Is_Renamed_Object (N : Node_Id) return Boolean is
5178 Pnod : constant Node_Id := Parent (N);
5179 Kind : constant Node_Kind := Nkind (Pnod);
5180 begin
5181 if Kind = N_Object_Renaming_Declaration then
5182 return True;
5183 elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then
5184 return Is_Renamed_Object (Pnod);
5185 else
5186 return False;
5187 end if;
5188 end Is_Renamed_Object;
5189
5190 --------------------------------------
5191 -- Is_Secondary_Stack_BIP_Func_Call --
5192 --------------------------------------
5193
5194 function Is_Secondary_Stack_BIP_Func_Call (Expr : Node_Id) return Boolean is
5195 Call : Node_Id := Expr;
5196
5197 begin
5198 -- Build-in-place calls usually appear in 'reference format. Note that
5199 -- the accessibility check machinery may add an extra 'reference due to
5200 -- side effect removal.
5201
5202 while Nkind (Call) = N_Reference loop
5203 Call := Prefix (Call);
5204 end loop;
5205
5206 if Nkind_In (Call, N_Qualified_Expression,
5207 N_Unchecked_Type_Conversion)
5208 then
5209 Call := Expression (Call);
5210 end if;
5211
5212 if Is_Build_In_Place_Function_Call (Call) then
5213 declare
5214 Access_Nam : Name_Id := No_Name;
5215 Actual : Node_Id;
5216 Param : Node_Id;
5217 Formal : Node_Id;
5218
5219 begin
5220 -- Examine all parameter associations of the function call
5221
5222 Param := First (Parameter_Associations (Call));
5223 while Present (Param) loop
5224 if Nkind (Param) = N_Parameter_Association
5225 and then Nkind (Selector_Name (Param)) = N_Identifier
5226 then
5227 Formal := Selector_Name (Param);
5228 Actual := Explicit_Actual_Parameter (Param);
5229
5230 -- Construct the name of formal BIPalloc. It is much easier
5231 -- to extract the name of the function using an arbitrary
5232 -- formal's scope rather than the Name field of Call.
5233
5234 if Access_Nam = No_Name
5235 and then Present (Entity (Formal))
5236 then
5237 Access_Nam :=
5238 New_External_Name
5239 (Chars (Scope (Entity (Formal))),
5240 BIP_Formal_Suffix (BIP_Alloc_Form));
5241 end if;
5242
5243 -- A match for BIPalloc => 2 has been found
5244
5245 if Chars (Formal) = Access_Nam
5246 and then Nkind (Actual) = N_Integer_Literal
5247 and then Intval (Actual) = Uint_2
5248 then
5249 return True;
5250 end if;
5251 end if;
5252
5253 Next (Param);
5254 end loop;
5255 end;
5256 end if;
5257
5258 return False;
5259 end Is_Secondary_Stack_BIP_Func_Call;
5260
5261 -------------------------------------
5262 -- Is_Tag_To_Class_Wide_Conversion --
5263 -------------------------------------
5264
5265 function Is_Tag_To_Class_Wide_Conversion
5266 (Obj_Id : Entity_Id) return Boolean
5267 is
5268 Expr : constant Node_Id := Expression (Parent (Obj_Id));
5269
5270 begin
5271 return
5272 Is_Class_Wide_Type (Etype (Obj_Id))
5273 and then Present (Expr)
5274 and then Nkind (Expr) = N_Unchecked_Type_Conversion
5275 and then Etype (Expression (Expr)) = RTE (RE_Tag);
5276 end Is_Tag_To_Class_Wide_Conversion;
5277
5278 ----------------------------
5279 -- Is_Untagged_Derivation --
5280 ----------------------------
5281
5282 function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
5283 begin
5284 return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
5285 or else
5286 (Is_Private_Type (T) and then Present (Full_View (T))
5287 and then not Is_Tagged_Type (Full_View (T))
5288 and then Is_Derived_Type (Full_View (T))
5289 and then Etype (Full_View (T)) /= T);
5290 end Is_Untagged_Derivation;
5291
5292 ---------------------------
5293 -- Is_Volatile_Reference --
5294 ---------------------------
5295
5296 function Is_Volatile_Reference (N : Node_Id) return Boolean is
5297 begin
5298 if Nkind (N) in N_Has_Etype
5299 and then Present (Etype (N))
5300 and then Treat_As_Volatile (Etype (N))
5301 then
5302 return True;
5303
5304 elsif Is_Entity_Name (N) then
5305 return Treat_As_Volatile (Entity (N));
5306
5307 elsif Nkind (N) = N_Slice then
5308 return Is_Volatile_Reference (Prefix (N));
5309
5310 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5311 if (Is_Entity_Name (Prefix (N))
5312 and then Has_Volatile_Components (Entity (Prefix (N))))
5313 or else (Present (Etype (Prefix (N)))
5314 and then Has_Volatile_Components (Etype (Prefix (N))))
5315 then
5316 return True;
5317 else
5318 return Is_Volatile_Reference (Prefix (N));
5319 end if;
5320
5321 else
5322 return False;
5323 end if;
5324 end Is_Volatile_Reference;
5325
5326 --------------------------
5327 -- Is_VM_By_Copy_Actual --
5328 --------------------------
5329
5330 function Is_VM_By_Copy_Actual (N : Node_Id) return Boolean is
5331 begin
5332 return VM_Target /= No_VM
5333 and then (Nkind (N) = N_Slice
5334 or else
5335 (Nkind (N) = N_Identifier
5336 and then Present (Renamed_Object (Entity (N)))
5337 and then Nkind (Renamed_Object (Entity (N))) =
5338 N_Slice));
5339 end Is_VM_By_Copy_Actual;
5340
5341 --------------------
5342 -- Kill_Dead_Code --
5343 --------------------
5344
5345 procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
5346 W : Boolean := Warn;
5347 -- Set False if warnings suppressed
5348
5349 begin
5350 if Present (N) then
5351 Remove_Warning_Messages (N);
5352
5353 -- Generate warning if appropriate
5354
5355 if W then
5356
5357 -- We suppress the warning if this code is under control of an
5358 -- if statement, whose condition is a simple identifier, and
5359 -- either we are in an instance, or warnings off is set for this
5360 -- identifier. The reason for killing it in the instance case is
5361 -- that it is common and reasonable for code to be deleted in
5362 -- instances for various reasons.
5363
5364 if Nkind (Parent (N)) = N_If_Statement then
5365 declare
5366 C : constant Node_Id := Condition (Parent (N));
5367 begin
5368 if Nkind (C) = N_Identifier
5369 and then
5370 (In_Instance
5371 or else (Present (Entity (C))
5372 and then Has_Warnings_Off (Entity (C))))
5373 then
5374 W := False;
5375 end if;
5376 end;
5377 end if;
5378
5379 -- Generate warning if not suppressed
5380
5381 if W then
5382 Error_Msg_F
5383 ("?t?this code can never be executed and has been deleted!",
5384 N);
5385 end if;
5386 end if;
5387
5388 -- Recurse into block statements and bodies to process declarations
5389 -- and statements.
5390
5391 if Nkind (N) = N_Block_Statement
5392 or else Nkind (N) = N_Subprogram_Body
5393 or else Nkind (N) = N_Package_Body
5394 then
5395 Kill_Dead_Code (Declarations (N), False);
5396 Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
5397
5398 if Nkind (N) = N_Subprogram_Body then
5399 Set_Is_Eliminated (Defining_Entity (N));
5400 end if;
5401
5402 elsif Nkind (N) = N_Package_Declaration then
5403 Kill_Dead_Code (Visible_Declarations (Specification (N)));
5404 Kill_Dead_Code (Private_Declarations (Specification (N)));
5405
5406 -- ??? After this point, Delete_Tree has been called on all
5407 -- declarations in Specification (N), so references to entities
5408 -- therein look suspicious.
5409
5410 declare
5411 E : Entity_Id := First_Entity (Defining_Entity (N));
5412 begin
5413 while Present (E) loop
5414 if Ekind (E) = E_Operator then
5415 Set_Is_Eliminated (E);
5416 end if;
5417
5418 Next_Entity (E);
5419 end loop;
5420 end;
5421
5422 -- Recurse into composite statement to kill individual statements in
5423 -- particular instantiations.
5424
5425 elsif Nkind (N) = N_If_Statement then
5426 Kill_Dead_Code (Then_Statements (N));
5427 Kill_Dead_Code (Elsif_Parts (N));
5428 Kill_Dead_Code (Else_Statements (N));
5429
5430 elsif Nkind (N) = N_Loop_Statement then
5431 Kill_Dead_Code (Statements (N));
5432
5433 elsif Nkind (N) = N_Case_Statement then
5434 declare
5435 Alt : Node_Id;
5436 begin
5437 Alt := First (Alternatives (N));
5438 while Present (Alt) loop
5439 Kill_Dead_Code (Statements (Alt));
5440 Next (Alt);
5441 end loop;
5442 end;
5443
5444 elsif Nkind (N) = N_Case_Statement_Alternative then
5445 Kill_Dead_Code (Statements (N));
5446
5447 -- Deal with dead instances caused by deleting instantiations
5448
5449 elsif Nkind (N) in N_Generic_Instantiation then
5450 Remove_Dead_Instance (N);
5451 end if;
5452 end if;
5453 end Kill_Dead_Code;
5454
5455 -- Case where argument is a list of nodes to be killed
5456
5457 procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
5458 N : Node_Id;
5459 W : Boolean;
5460 begin
5461 W := Warn;
5462 if Is_Non_Empty_List (L) then
5463 N := First (L);
5464 while Present (N) loop
5465 Kill_Dead_Code (N, W);
5466 W := False;
5467 Next (N);
5468 end loop;
5469 end if;
5470 end Kill_Dead_Code;
5471
5472 ------------------------
5473 -- Known_Non_Negative --
5474 ------------------------
5475
5476 function Known_Non_Negative (Opnd : Node_Id) return Boolean is
5477 begin
5478 if Is_OK_Static_Expression (Opnd) and then Expr_Value (Opnd) >= 0 then
5479 return True;
5480
5481 else
5482 declare
5483 Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
5484 begin
5485 return
5486 Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
5487 end;
5488 end if;
5489 end Known_Non_Negative;
5490
5491 --------------------
5492 -- Known_Non_Null --
5493 --------------------
5494
5495 function Known_Non_Null (N : Node_Id) return Boolean is
5496 begin
5497 -- Checks for case where N is an entity reference
5498
5499 if Is_Entity_Name (N) and then Present (Entity (N)) then
5500 declare
5501 E : constant Entity_Id := Entity (N);
5502 Op : Node_Kind;
5503 Val : Node_Id;
5504
5505 begin
5506 -- First check if we are in decisive conditional
5507
5508 Get_Current_Value_Condition (N, Op, Val);
5509
5510 if Known_Null (Val) then
5511 if Op = N_Op_Eq then
5512 return False;
5513 elsif Op = N_Op_Ne then
5514 return True;
5515 end if;
5516 end if;
5517
5518 -- If OK to do replacement, test Is_Known_Non_Null flag
5519
5520 if OK_To_Do_Constant_Replacement (E) then
5521 return Is_Known_Non_Null (E);
5522
5523 -- Otherwise if not safe to do replacement, then say so
5524
5525 else
5526 return False;
5527 end if;
5528 end;
5529
5530 -- True if access attribute
5531
5532 elsif Nkind (N) = N_Attribute_Reference
5533 and then Nam_In (Attribute_Name (N), Name_Access,
5534 Name_Unchecked_Access,
5535 Name_Unrestricted_Access)
5536 then
5537 return True;
5538
5539 -- True if allocator
5540
5541 elsif Nkind (N) = N_Allocator then
5542 return True;
5543
5544 -- For a conversion, true if expression is known non-null
5545
5546 elsif Nkind (N) = N_Type_Conversion then
5547 return Known_Non_Null (Expression (N));
5548
5549 -- Above are all cases where the value could be determined to be
5550 -- non-null. In all other cases, we don't know, so return False.
5551
5552 else
5553 return False;
5554 end if;
5555 end Known_Non_Null;
5556
5557 ----------------
5558 -- Known_Null --
5559 ----------------
5560
5561 function Known_Null (N : Node_Id) return Boolean is
5562 begin
5563 -- Checks for case where N is an entity reference
5564
5565 if Is_Entity_Name (N) and then Present (Entity (N)) then
5566 declare
5567 E : constant Entity_Id := Entity (N);
5568 Op : Node_Kind;
5569 Val : Node_Id;
5570
5571 begin
5572 -- Constant null value is for sure null
5573
5574 if Ekind (E) = E_Constant
5575 and then Known_Null (Constant_Value (E))
5576 then
5577 return True;
5578 end if;
5579
5580 -- First check if we are in decisive conditional
5581
5582 Get_Current_Value_Condition (N, Op, Val);
5583
5584 if Known_Null (Val) then
5585 if Op = N_Op_Eq then
5586 return True;
5587 elsif Op = N_Op_Ne then
5588 return False;
5589 end if;
5590 end if;
5591
5592 -- If OK to do replacement, test Is_Known_Null flag
5593
5594 if OK_To_Do_Constant_Replacement (E) then
5595 return Is_Known_Null (E);
5596
5597 -- Otherwise if not safe to do replacement, then say so
5598
5599 else
5600 return False;
5601 end if;
5602 end;
5603
5604 -- True if explicit reference to null
5605
5606 elsif Nkind (N) = N_Null then
5607 return True;
5608
5609 -- For a conversion, true if expression is known null
5610
5611 elsif Nkind (N) = N_Type_Conversion then
5612 return Known_Null (Expression (N));
5613
5614 -- Above are all cases where the value could be determined to be null.
5615 -- In all other cases, we don't know, so return False.
5616
5617 else
5618 return False;
5619 end if;
5620 end Known_Null;
5621
5622 -----------------------------
5623 -- Make_CW_Equivalent_Type --
5624 -----------------------------
5625
5626 -- Create a record type used as an equivalent of any member of the class
5627 -- which takes its size from exp.
5628
5629 -- Generate the following code:
5630
5631 -- type Equiv_T is record
5632 -- _parent : T (List of discriminant constraints taken from Exp);
5633 -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
5634 -- end Equiv_T;
5635 --
5636 -- ??? Note that this type does not guarantee same alignment as all
5637 -- derived types
5638
5639 function Make_CW_Equivalent_Type
5640 (T : Entity_Id;
5641 E : Node_Id) return Entity_Id
5642 is
5643 Loc : constant Source_Ptr := Sloc (E);
5644 Root_Typ : constant Entity_Id := Root_Type (T);
5645 List_Def : constant List_Id := Empty_List;
5646 Comp_List : constant List_Id := New_List;
5647 Equiv_Type : Entity_Id;
5648 Range_Type : Entity_Id;
5649 Str_Type : Entity_Id;
5650 Constr_Root : Entity_Id;
5651 Sizexpr : Node_Id;
5652
5653 begin
5654 -- If the root type is already constrained, there are no discriminants
5655 -- in the expression.
5656
5657 if not Has_Discriminants (Root_Typ)
5658 or else Is_Constrained (Root_Typ)
5659 then
5660 Constr_Root := Root_Typ;
5661 else
5662 Constr_Root := Make_Temporary (Loc, 'R');
5663
5664 -- subtype cstr__n is T (List of discr constraints taken from Exp)
5665
5666 Append_To (List_Def,
5667 Make_Subtype_Declaration (Loc,
5668 Defining_Identifier => Constr_Root,
5669 Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ)));
5670 end if;
5671
5672 -- Generate the range subtype declaration
5673
5674 Range_Type := Make_Temporary (Loc, 'G');
5675
5676 if not Is_Interface (Root_Typ) then
5677
5678 -- subtype rg__xx is
5679 -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
5680
5681 Sizexpr :=
5682 Make_Op_Subtract (Loc,
5683 Left_Opnd =>
5684 Make_Attribute_Reference (Loc,
5685 Prefix =>
5686 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
5687 Attribute_Name => Name_Size),
5688 Right_Opnd =>
5689 Make_Attribute_Reference (Loc,
5690 Prefix => New_Occurrence_Of (Constr_Root, Loc),
5691 Attribute_Name => Name_Object_Size));
5692 else
5693 -- subtype rg__xx is
5694 -- Storage_Offset range 1 .. Expr'size / Storage_Unit
5695
5696 Sizexpr :=
5697 Make_Attribute_Reference (Loc,
5698 Prefix =>
5699 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
5700 Attribute_Name => Name_Size);
5701 end if;
5702
5703 Set_Paren_Count (Sizexpr, 1);
5704
5705 Append_To (List_Def,
5706 Make_Subtype_Declaration (Loc,
5707 Defining_Identifier => Range_Type,
5708 Subtype_Indication =>
5709 Make_Subtype_Indication (Loc,
5710 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Offset), Loc),
5711 Constraint => Make_Range_Constraint (Loc,
5712 Range_Expression =>
5713 Make_Range (Loc,
5714 Low_Bound => Make_Integer_Literal (Loc, 1),
5715 High_Bound =>
5716 Make_Op_Divide (Loc,
5717 Left_Opnd => Sizexpr,
5718 Right_Opnd => Make_Integer_Literal (Loc,
5719 Intval => System_Storage_Unit)))))));
5720
5721 -- subtype str__nn is Storage_Array (rg__x);
5722
5723 Str_Type := Make_Temporary (Loc, 'S');
5724 Append_To (List_Def,
5725 Make_Subtype_Declaration (Loc,
5726 Defining_Identifier => Str_Type,
5727 Subtype_Indication =>
5728 Make_Subtype_Indication (Loc,
5729 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Array), Loc),
5730 Constraint =>
5731 Make_Index_Or_Discriminant_Constraint (Loc,
5732 Constraints =>
5733 New_List (New_Occurrence_Of (Range_Type, Loc))))));
5734
5735 -- type Equiv_T is record
5736 -- [ _parent : Tnn; ]
5737 -- E : Str_Type;
5738 -- end Equiv_T;
5739
5740 Equiv_Type := Make_Temporary (Loc, 'T');
5741 Set_Ekind (Equiv_Type, E_Record_Type);
5742 Set_Parent_Subtype (Equiv_Type, Constr_Root);
5743
5744 -- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
5745 -- treatment for this type. In particular, even though _parent's type
5746 -- is a controlled type or contains controlled components, we do not
5747 -- want to set Has_Controlled_Component on it to avoid making it gain
5748 -- an unwanted _controller component.
5749
5750 Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
5751
5752 if not Is_Interface (Root_Typ) then
5753 Append_To (Comp_List,
5754 Make_Component_Declaration (Loc,
5755 Defining_Identifier =>
5756 Make_Defining_Identifier (Loc, Name_uParent),
5757 Component_Definition =>
5758 Make_Component_Definition (Loc,
5759 Aliased_Present => False,
5760 Subtype_Indication => New_Occurrence_Of (Constr_Root, Loc))));
5761 end if;
5762
5763 Append_To (Comp_List,
5764 Make_Component_Declaration (Loc,
5765 Defining_Identifier => Make_Temporary (Loc, 'C'),
5766 Component_Definition =>
5767 Make_Component_Definition (Loc,
5768 Aliased_Present => False,
5769 Subtype_Indication => New_Occurrence_Of (Str_Type, Loc))));
5770
5771 Append_To (List_Def,
5772 Make_Full_Type_Declaration (Loc,
5773 Defining_Identifier => Equiv_Type,
5774 Type_Definition =>
5775 Make_Record_Definition (Loc,
5776 Component_List =>
5777 Make_Component_List (Loc,
5778 Component_Items => Comp_List,
5779 Variant_Part => Empty))));
5780
5781 -- Suppress all checks during the analysis of the expanded code to avoid
5782 -- the generation of spurious warnings under ZFP run-time.
5783
5784 Insert_Actions (E, List_Def, Suppress => All_Checks);
5785 return Equiv_Type;
5786 end Make_CW_Equivalent_Type;
5787
5788 -------------------------
5789 -- Make_Invariant_Call --
5790 -------------------------
5791
5792 function Make_Invariant_Call (Expr : Node_Id) return Node_Id is
5793 Loc : constant Source_Ptr := Sloc (Expr);
5794 Typ : Entity_Id;
5795
5796 begin
5797 Typ := Etype (Expr);
5798
5799 -- Subtypes may be subject to invariants coming from their respective
5800 -- base types. The subtype may be fully or partially private.
5801
5802 if Ekind_In (Typ, E_Array_Subtype,
5803 E_Private_Subtype,
5804 E_Record_Subtype,
5805 E_Record_Subtype_With_Private)
5806 then
5807 Typ := Base_Type (Typ);
5808 end if;
5809
5810 pragma Assert
5811 (Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)));
5812
5813 return
5814 Make_Procedure_Call_Statement (Loc,
5815 Name =>
5816 New_Occurrence_Of (Invariant_Procedure (Typ), Loc),
5817 Parameter_Associations => New_List (Relocate_Node (Expr)));
5818 end Make_Invariant_Call;
5819
5820 ------------------------
5821 -- Make_Literal_Range --
5822 ------------------------
5823
5824 function Make_Literal_Range
5825 (Loc : Source_Ptr;
5826 Literal_Typ : Entity_Id) return Node_Id
5827 is
5828 Lo : constant Node_Id :=
5829 New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
5830 Index : constant Entity_Id := Etype (Lo);
5831
5832 Hi : Node_Id;
5833 Length_Expr : constant Node_Id :=
5834 Make_Op_Subtract (Loc,
5835 Left_Opnd =>
5836 Make_Integer_Literal (Loc,
5837 Intval => String_Literal_Length (Literal_Typ)),
5838 Right_Opnd =>
5839 Make_Integer_Literal (Loc, 1));
5840
5841 begin
5842 Set_Analyzed (Lo, False);
5843
5844 if Is_Integer_Type (Index) then
5845 Hi :=
5846 Make_Op_Add (Loc,
5847 Left_Opnd => New_Copy_Tree (Lo),
5848 Right_Opnd => Length_Expr);
5849 else
5850 Hi :=
5851 Make_Attribute_Reference (Loc,
5852 Attribute_Name => Name_Val,
5853 Prefix => New_Occurrence_Of (Index, Loc),
5854 Expressions => New_List (
5855 Make_Op_Add (Loc,
5856 Left_Opnd =>
5857 Make_Attribute_Reference (Loc,
5858 Attribute_Name => Name_Pos,
5859 Prefix => New_Occurrence_Of (Index, Loc),
5860 Expressions => New_List (New_Copy_Tree (Lo))),
5861 Right_Opnd => Length_Expr)));
5862 end if;
5863
5864 return
5865 Make_Range (Loc,
5866 Low_Bound => Lo,
5867 High_Bound => Hi);
5868 end Make_Literal_Range;
5869
5870 --------------------------
5871 -- Make_Non_Empty_Check --
5872 --------------------------
5873
5874 function Make_Non_Empty_Check
5875 (Loc : Source_Ptr;
5876 N : Node_Id) return Node_Id
5877 is
5878 begin
5879 return
5880 Make_Op_Ne (Loc,
5881 Left_Opnd =>
5882 Make_Attribute_Reference (Loc,
5883 Attribute_Name => Name_Length,
5884 Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
5885 Right_Opnd =>
5886 Make_Integer_Literal (Loc, 0));
5887 end Make_Non_Empty_Check;
5888
5889 -------------------------
5890 -- Make_Predicate_Call --
5891 -------------------------
5892
5893 function Make_Predicate_Call
5894 (Typ : Entity_Id;
5895 Expr : Node_Id;
5896 Mem : Boolean := False) return Node_Id
5897 is
5898 Loc : constant Source_Ptr := Sloc (Expr);
5899
5900 begin
5901 pragma Assert (Present (Predicate_Function (Typ)));
5902
5903 -- Call special membership version if requested and available
5904
5905 if Mem then
5906 declare
5907 PFM : constant Entity_Id := Predicate_Function_M (Typ);
5908 begin
5909 if Present (PFM) then
5910 return
5911 Make_Function_Call (Loc,
5912 Name => New_Occurrence_Of (PFM, Loc),
5913 Parameter_Associations => New_List (Relocate_Node (Expr)));
5914 end if;
5915 end;
5916 end if;
5917
5918 -- Case of calling normal predicate function
5919
5920 return
5921 Make_Function_Call (Loc,
5922 Name =>
5923 New_Occurrence_Of (Predicate_Function (Typ), Loc),
5924 Parameter_Associations => New_List (Relocate_Node (Expr)));
5925 end Make_Predicate_Call;
5926
5927 --------------------------
5928 -- Make_Predicate_Check --
5929 --------------------------
5930
5931 function Make_Predicate_Check
5932 (Typ : Entity_Id;
5933 Expr : Node_Id) return Node_Id
5934 is
5935 Loc : constant Source_Ptr := Sloc (Expr);
5936 Nam : Name_Id;
5937
5938 begin
5939 -- If predicate checks are suppressed, then return a null statement.
5940 -- For this call, we check only the scope setting. If the caller wants
5941 -- to check a specific entity's setting, they must do it manually.
5942
5943 if Predicate_Checks_Suppressed (Empty) then
5944 return Make_Null_Statement (Loc);
5945 end if;
5946
5947 -- Do not generate a check within an internal subprogram (stream
5948 -- functions and the like, including including predicate functions).
5949
5950 if Within_Internal_Subprogram then
5951 return Make_Null_Statement (Loc);
5952 end if;
5953
5954 -- Compute proper name to use, we need to get this right so that the
5955 -- right set of check policies apply to the Check pragma we are making.
5956
5957 if Has_Dynamic_Predicate_Aspect (Typ) then
5958 Nam := Name_Dynamic_Predicate;
5959 elsif Has_Static_Predicate_Aspect (Typ) then
5960 Nam := Name_Static_Predicate;
5961 else
5962 Nam := Name_Predicate;
5963 end if;
5964
5965 return
5966 Make_Pragma (Loc,
5967 Pragma_Identifier => Make_Identifier (Loc, Name_Check),
5968 Pragma_Argument_Associations => New_List (
5969 Make_Pragma_Argument_Association (Loc,
5970 Expression => Make_Identifier (Loc, Nam)),
5971 Make_Pragma_Argument_Association (Loc,
5972 Expression => Make_Predicate_Call (Typ, Expr))));
5973 end Make_Predicate_Check;
5974
5975 ----------------------------
5976 -- Make_Subtype_From_Expr --
5977 ----------------------------
5978
5979 -- 1. If Expr is an unconstrained array expression, creates
5980 -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
5981
5982 -- 2. If Expr is a unconstrained discriminated type expression, creates
5983 -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
5984
5985 -- 3. If Expr is class-wide, creates an implicit class wide subtype
5986
5987 function Make_Subtype_From_Expr
5988 (E : Node_Id;
5989 Unc_Typ : Entity_Id) return Node_Id
5990 is
5991 Loc : constant Source_Ptr := Sloc (E);
5992 List_Constr : constant List_Id := New_List;
5993 D : Entity_Id;
5994
5995 Full_Subtyp : Entity_Id;
5996 Priv_Subtyp : Entity_Id;
5997 Utyp : Entity_Id;
5998 Full_Exp : Node_Id;
5999
6000 begin
6001 if Is_Private_Type (Unc_Typ)
6002 and then Has_Unknown_Discriminants (Unc_Typ)
6003 then
6004 -- Prepare the subtype completion, Go to base type to
6005 -- find underlying type, because the type may be a generic
6006 -- actual or an explicit subtype.
6007
6008 Utyp := Underlying_Type (Base_Type (Unc_Typ));
6009 Full_Subtyp := Make_Temporary (Loc, 'C');
6010 Full_Exp :=
6011 Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E));
6012 Set_Parent (Full_Exp, Parent (E));
6013
6014 Priv_Subtyp := Make_Temporary (Loc, 'P');
6015
6016 Insert_Action (E,
6017 Make_Subtype_Declaration (Loc,
6018 Defining_Identifier => Full_Subtyp,
6019 Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
6020
6021 -- Define the dummy private subtype
6022
6023 Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
6024 Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
6025 Set_Scope (Priv_Subtyp, Full_Subtyp);
6026 Set_Is_Constrained (Priv_Subtyp);
6027 Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
6028 Set_Is_Itype (Priv_Subtyp);
6029 Set_Associated_Node_For_Itype (Priv_Subtyp, E);
6030
6031 if Is_Tagged_Type (Priv_Subtyp) then
6032 Set_Class_Wide_Type
6033 (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
6034 Set_Direct_Primitive_Operations (Priv_Subtyp,
6035 Direct_Primitive_Operations (Unc_Typ));
6036 end if;
6037
6038 Set_Full_View (Priv_Subtyp, Full_Subtyp);
6039
6040 return New_Occurrence_Of (Priv_Subtyp, Loc);
6041
6042 elsif Is_Array_Type (Unc_Typ) then
6043 for J in 1 .. Number_Dimensions (Unc_Typ) loop
6044 Append_To (List_Constr,
6045 Make_Range (Loc,
6046 Low_Bound =>
6047 Make_Attribute_Reference (Loc,
6048 Prefix => Duplicate_Subexpr_No_Checks (E),
6049 Attribute_Name => Name_First,
6050 Expressions => New_List (
6051 Make_Integer_Literal (Loc, J))),
6052
6053 High_Bound =>
6054 Make_Attribute_Reference (Loc,
6055 Prefix => Duplicate_Subexpr_No_Checks (E),
6056 Attribute_Name => Name_Last,
6057 Expressions => New_List (
6058 Make_Integer_Literal (Loc, J)))));
6059 end loop;
6060
6061 elsif Is_Class_Wide_Type (Unc_Typ) then
6062 declare
6063 CW_Subtype : Entity_Id;
6064 EQ_Typ : Entity_Id := Empty;
6065
6066 begin
6067 -- A class-wide equivalent type is not needed when VM_Target
6068 -- because the VM back-ends handle the class-wide object
6069 -- initialization itself (and doesn't need or want the
6070 -- additional intermediate type to handle the assignment).
6071
6072 if Expander_Active and then Tagged_Type_Expansion then
6073
6074 -- If this is the class_wide type of a completion that is a
6075 -- record subtype, set the type of the class_wide type to be
6076 -- the full base type, for use in the expanded code for the
6077 -- equivalent type. Should this be done earlier when the
6078 -- completion is analyzed ???
6079
6080 if Is_Private_Type (Etype (Unc_Typ))
6081 and then
6082 Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype
6083 then
6084 Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ))));
6085 end if;
6086
6087 EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
6088 end if;
6089
6090 CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
6091 Set_Equivalent_Type (CW_Subtype, EQ_Typ);
6092 Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
6093
6094 return New_Occurrence_Of (CW_Subtype, Loc);
6095 end;
6096
6097 -- Indefinite record type with discriminants
6098
6099 else
6100 D := First_Discriminant (Unc_Typ);
6101 while Present (D) loop
6102 Append_To (List_Constr,
6103 Make_Selected_Component (Loc,
6104 Prefix => Duplicate_Subexpr_No_Checks (E),
6105 Selector_Name => New_Occurrence_Of (D, Loc)));
6106
6107 Next_Discriminant (D);
6108 end loop;
6109 end if;
6110
6111 return
6112 Make_Subtype_Indication (Loc,
6113 Subtype_Mark => New_Occurrence_Of (Unc_Typ, Loc),
6114 Constraint =>
6115 Make_Index_Or_Discriminant_Constraint (Loc,
6116 Constraints => List_Constr));
6117 end Make_Subtype_From_Expr;
6118
6119 ----------------------------
6120 -- Matching_Standard_Type --
6121 ----------------------------
6122
6123 function Matching_Standard_Type (Typ : Entity_Id) return Entity_Id is
6124 pragma Assert (Is_Scalar_Type (Typ));
6125 Siz : constant Uint := Esize (Typ);
6126
6127 begin
6128 -- Floating-point cases
6129
6130 if Is_Floating_Point_Type (Typ) then
6131 if Siz <= Esize (Standard_Short_Float) then
6132 return Standard_Short_Float;
6133 elsif Siz <= Esize (Standard_Float) then
6134 return Standard_Float;
6135 elsif Siz <= Esize (Standard_Long_Float) then
6136 return Standard_Long_Float;
6137 elsif Siz <= Esize (Standard_Long_Long_Float) then
6138 return Standard_Long_Long_Float;
6139 else
6140 raise Program_Error;
6141 end if;
6142
6143 -- Integer cases (includes fixed-point types)
6144
6145 -- Unsigned integer cases (includes normal enumeration types)
6146
6147 elsif Is_Unsigned_Type (Typ) then
6148 if Siz <= Esize (Standard_Short_Short_Unsigned) then
6149 return Standard_Short_Short_Unsigned;
6150 elsif Siz <= Esize (Standard_Short_Unsigned) then
6151 return Standard_Short_Unsigned;
6152 elsif Siz <= Esize (Standard_Unsigned) then
6153 return Standard_Unsigned;
6154 elsif Siz <= Esize (Standard_Long_Unsigned) then
6155 return Standard_Long_Unsigned;
6156 elsif Siz <= Esize (Standard_Long_Long_Unsigned) then
6157 return Standard_Long_Long_Unsigned;
6158 else
6159 raise Program_Error;
6160 end if;
6161
6162 -- Signed integer cases
6163
6164 else
6165 if Siz <= Esize (Standard_Short_Short_Integer) then
6166 return Standard_Short_Short_Integer;
6167 elsif Siz <= Esize (Standard_Short_Integer) then
6168 return Standard_Short_Integer;
6169 elsif Siz <= Esize (Standard_Integer) then
6170 return Standard_Integer;
6171 elsif Siz <= Esize (Standard_Long_Integer) then
6172 return Standard_Long_Integer;
6173 elsif Siz <= Esize (Standard_Long_Long_Integer) then
6174 return Standard_Long_Long_Integer;
6175 else
6176 raise Program_Error;
6177 end if;
6178 end if;
6179 end Matching_Standard_Type;
6180
6181 -----------------------------
6182 -- May_Generate_Large_Temp --
6183 -----------------------------
6184
6185 -- At the current time, the only types that we return False for (i.e. where
6186 -- we decide we know they cannot generate large temps) are ones where we
6187 -- know the size is 256 bits or less at compile time, and we are still not
6188 -- doing a thorough job on arrays and records ???
6189
6190 function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
6191 begin
6192 if not Size_Known_At_Compile_Time (Typ) then
6193 return False;
6194
6195 elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
6196 return False;
6197
6198 elsif Is_Array_Type (Typ) and then Present (Packed_Array_Type (Typ)) then
6199 return May_Generate_Large_Temp (Packed_Array_Type (Typ));
6200
6201 -- We could do more here to find other small types ???
6202
6203 else
6204 return True;
6205 end if;
6206 end May_Generate_Large_Temp;
6207
6208 ------------------------
6209 -- Needs_Finalization --
6210 ------------------------
6211
6212 function Needs_Finalization (T : Entity_Id) return Boolean is
6213 function Has_Some_Controlled_Component (Rec : Entity_Id) return Boolean;
6214 -- If type is not frozen yet, check explicitly among its components,
6215 -- because the Has_Controlled_Component flag is not necessarily set.
6216
6217 -----------------------------------
6218 -- Has_Some_Controlled_Component --
6219 -----------------------------------
6220
6221 function Has_Some_Controlled_Component
6222 (Rec : Entity_Id) return Boolean
6223 is
6224 Comp : Entity_Id;
6225
6226 begin
6227 if Has_Controlled_Component (Rec) then
6228 return True;
6229
6230 elsif not Is_Frozen (Rec) then
6231 if Is_Record_Type (Rec) then
6232 Comp := First_Entity (Rec);
6233
6234 while Present (Comp) loop
6235 if not Is_Type (Comp)
6236 and then Needs_Finalization (Etype (Comp))
6237 then
6238 return True;
6239 end if;
6240
6241 Next_Entity (Comp);
6242 end loop;
6243
6244 return False;
6245
6246 elsif Is_Array_Type (Rec) then
6247 return Needs_Finalization (Component_Type (Rec));
6248
6249 else
6250 return Has_Controlled_Component (Rec);
6251 end if;
6252 else
6253 return False;
6254 end if;
6255 end Has_Some_Controlled_Component;
6256
6257 -- Start of processing for Needs_Finalization
6258
6259 begin
6260 -- Certain run-time configurations and targets do not provide support
6261 -- for controlled types.
6262
6263 if Restriction_Active (No_Finalization) then
6264 return False;
6265
6266 -- C, C++, CIL and Java types are not considered controlled. It is
6267 -- assumed that the non-Ada side will handle their clean up.
6268
6269 elsif Convention (T) = Convention_C
6270 or else Convention (T) = Convention_CIL
6271 or else Convention (T) = Convention_CPP
6272 or else Convention (T) = Convention_Java
6273 then
6274 return False;
6275
6276 else
6277 -- Class-wide types are treated as controlled because derivations
6278 -- from the root type can introduce controlled components.
6279
6280 return
6281 Is_Class_Wide_Type (T)
6282 or else Is_Controlled (T)
6283 or else Has_Controlled_Component (T)
6284 or else Has_Some_Controlled_Component (T)
6285 or else
6286 (Is_Concurrent_Type (T)
6287 and then Present (Corresponding_Record_Type (T))
6288 and then Needs_Finalization (Corresponding_Record_Type (T)));
6289 end if;
6290 end Needs_Finalization;
6291
6292 ----------------------------
6293 -- Needs_Constant_Address --
6294 ----------------------------
6295
6296 function Needs_Constant_Address
6297 (Decl : Node_Id;
6298 Typ : Entity_Id) return Boolean
6299 is
6300 begin
6301
6302 -- If we have no initialization of any kind, then we don't need to place
6303 -- any restrictions on the address clause, because the object will be
6304 -- elaborated after the address clause is evaluated. This happens if the
6305 -- declaration has no initial expression, or the type has no implicit
6306 -- initialization, or the object is imported.
6307
6308 -- The same holds for all initialized scalar types and all access types.
6309 -- Packed bit arrays of size up to 64 are represented using a modular
6310 -- type with an initialization (to zero) and can be processed like other
6311 -- initialized scalar types.
6312
6313 -- If the type is controlled, code to attach the object to a
6314 -- finalization chain is generated at the point of declaration, and
6315 -- therefore the elaboration of the object cannot be delayed: the
6316 -- address expression must be a constant.
6317
6318 if No (Expression (Decl))
6319 and then not Needs_Finalization (Typ)
6320 and then
6321 (not Has_Non_Null_Base_Init_Proc (Typ)
6322 or else Is_Imported (Defining_Identifier (Decl)))
6323 then
6324 return False;
6325
6326 elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ))
6327 or else Is_Access_Type (Typ)
6328 or else
6329 (Is_Bit_Packed_Array (Typ)
6330 and then Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
6331 then
6332 return False;
6333
6334 else
6335
6336 -- Otherwise, we require the address clause to be constant because
6337 -- the call to the initialization procedure (or the attach code) has
6338 -- to happen at the point of the declaration.
6339
6340 -- Actually the IP call has been moved to the freeze actions anyway,
6341 -- so maybe we can relax this restriction???
6342
6343 return True;
6344 end if;
6345 end Needs_Constant_Address;
6346
6347 ----------------------------
6348 -- New_Class_Wide_Subtype --
6349 ----------------------------
6350
6351 function New_Class_Wide_Subtype
6352 (CW_Typ : Entity_Id;
6353 N : Node_Id) return Entity_Id
6354 is
6355 Res : constant Entity_Id := Create_Itype (E_Void, N);
6356 Res_Name : constant Name_Id := Chars (Res);
6357 Res_Scope : constant Entity_Id := Scope (Res);
6358
6359 begin
6360 Copy_Node (CW_Typ, Res);
6361 Set_Comes_From_Source (Res, False);
6362 Set_Sloc (Res, Sloc (N));
6363 Set_Is_Itype (Res);
6364 Set_Associated_Node_For_Itype (Res, N);
6365 Set_Is_Public (Res, False); -- By default, may be changed below.
6366 Set_Public_Status (Res);
6367 Set_Chars (Res, Res_Name);
6368 Set_Scope (Res, Res_Scope);
6369 Set_Ekind (Res, E_Class_Wide_Subtype);
6370 Set_Next_Entity (Res, Empty);
6371 Set_Etype (Res, Base_Type (CW_Typ));
6372 Set_Is_Frozen (Res, False);
6373 Set_Freeze_Node (Res, Empty);
6374 return (Res);
6375 end New_Class_Wide_Subtype;
6376
6377 --------------------------------
6378 -- Non_Limited_Designated_Type --
6379 ---------------------------------
6380
6381 function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
6382 Desig : constant Entity_Id := Designated_Type (T);
6383 begin
6384 if Ekind (Desig) = E_Incomplete_Type
6385 and then Present (Non_Limited_View (Desig))
6386 then
6387 return Non_Limited_View (Desig);
6388 else
6389 return Desig;
6390 end if;
6391 end Non_Limited_Designated_Type;
6392
6393 -----------------------------------
6394 -- OK_To_Do_Constant_Replacement --
6395 -----------------------------------
6396
6397 function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
6398 ES : constant Entity_Id := Scope (E);
6399 CS : Entity_Id;
6400
6401 begin
6402 -- Do not replace statically allocated objects, because they may be
6403 -- modified outside the current scope.
6404
6405 if Is_Statically_Allocated (E) then
6406 return False;
6407
6408 -- Do not replace aliased or volatile objects, since we don't know what
6409 -- else might change the value.
6410
6411 elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
6412 return False;
6413
6414 -- Debug flag -gnatdM disconnects this optimization
6415
6416 elsif Debug_Flag_MM then
6417 return False;
6418
6419 -- Otherwise check scopes
6420
6421 else
6422 CS := Current_Scope;
6423
6424 loop
6425 -- If we are in right scope, replacement is safe
6426
6427 if CS = ES then
6428 return True;
6429
6430 -- Packages do not affect the determination of safety
6431
6432 elsif Ekind (CS) = E_Package then
6433 exit when CS = Standard_Standard;
6434 CS := Scope (CS);
6435
6436 -- Blocks do not affect the determination of safety
6437
6438 elsif Ekind (CS) = E_Block then
6439 CS := Scope (CS);
6440
6441 -- Loops do not affect the determination of safety. Note that we
6442 -- kill all current values on entry to a loop, so we are just
6443 -- talking about processing within a loop here.
6444
6445 elsif Ekind (CS) = E_Loop then
6446 CS := Scope (CS);
6447
6448 -- Otherwise, the reference is dubious, and we cannot be sure that
6449 -- it is safe to do the replacement.
6450
6451 else
6452 exit;
6453 end if;
6454 end loop;
6455
6456 return False;
6457 end if;
6458 end OK_To_Do_Constant_Replacement;
6459
6460 ------------------------------------
6461 -- Possible_Bit_Aligned_Component --
6462 ------------------------------------
6463
6464 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
6465 begin
6466 case Nkind (N) is
6467
6468 -- Case of indexed component
6469
6470 when N_Indexed_Component =>
6471 declare
6472 P : constant Node_Id := Prefix (N);
6473 Ptyp : constant Entity_Id := Etype (P);
6474
6475 begin
6476 -- If we know the component size and it is less than 64, then
6477 -- we are definitely OK. The back end always does assignment of
6478 -- misaligned small objects correctly.
6479
6480 if Known_Static_Component_Size (Ptyp)
6481 and then Component_Size (Ptyp) <= 64
6482 then
6483 return False;
6484
6485 -- Otherwise, we need to test the prefix, to see if we are
6486 -- indexing from a possibly unaligned component.
6487
6488 else
6489 return Possible_Bit_Aligned_Component (P);
6490 end if;
6491 end;
6492
6493 -- Case of selected component
6494
6495 when N_Selected_Component =>
6496 declare
6497 P : constant Node_Id := Prefix (N);
6498 Comp : constant Entity_Id := Entity (Selector_Name (N));
6499
6500 begin
6501 -- If there is no component clause, then we are in the clear
6502 -- since the back end will never misalign a large component
6503 -- unless it is forced to do so. In the clear means we need
6504 -- only the recursive test on the prefix.
6505
6506 if Component_May_Be_Bit_Aligned (Comp) then
6507 return True;
6508 else
6509 return Possible_Bit_Aligned_Component (P);
6510 end if;
6511 end;
6512
6513 -- For a slice, test the prefix, if that is possibly misaligned,
6514 -- then for sure the slice is.
6515
6516 when N_Slice =>
6517 return Possible_Bit_Aligned_Component (Prefix (N));
6518
6519 -- For an unchecked conversion, check whether the expression may
6520 -- be bit-aligned.
6521
6522 when N_Unchecked_Type_Conversion =>
6523 return Possible_Bit_Aligned_Component (Expression (N));
6524
6525 -- If we have none of the above, it means that we have fallen off the
6526 -- top testing prefixes recursively, and we now have a stand alone
6527 -- object, where we don't have a problem.
6528
6529 when others =>
6530 return False;
6531
6532 end case;
6533 end Possible_Bit_Aligned_Component;
6534
6535 -----------------------------------------------
6536 -- Process_Statements_For_Controlled_Objects --
6537 -----------------------------------------------
6538
6539 procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is
6540 Loc : constant Source_Ptr := Sloc (N);
6541
6542 function Are_Wrapped (L : List_Id) return Boolean;
6543 -- Determine whether list L contains only one statement which is a block
6544
6545 function Wrap_Statements_In_Block
6546 (L : List_Id;
6547 Scop : Entity_Id := Current_Scope) return Node_Id;
6548 -- Given a list of statements L, wrap it in a block statement and return
6549 -- the generated node. Scop is either the current scope or the scope of
6550 -- the context (if applicable).
6551
6552 -----------------
6553 -- Are_Wrapped --
6554 -----------------
6555
6556 function Are_Wrapped (L : List_Id) return Boolean is
6557 Stmt : constant Node_Id := First (L);
6558 begin
6559 return
6560 Present (Stmt)
6561 and then No (Next (Stmt))
6562 and then Nkind (Stmt) = N_Block_Statement;
6563 end Are_Wrapped;
6564
6565 ------------------------------
6566 -- Wrap_Statements_In_Block --
6567 ------------------------------
6568
6569 function Wrap_Statements_In_Block
6570 (L : List_Id;
6571 Scop : Entity_Id := Current_Scope) return Node_Id
6572 is
6573 Block_Id : Entity_Id;
6574 Block_Nod : Node_Id;
6575 Iter_Loop : Entity_Id;
6576
6577 begin
6578 Block_Nod :=
6579 Make_Block_Statement (Loc,
6580 Declarations => No_List,
6581 Handled_Statement_Sequence =>
6582 Make_Handled_Sequence_Of_Statements (Loc,
6583 Statements => L));
6584
6585 -- Create a label for the block in case the block needs to manage the
6586 -- secondary stack. A label allows for flag Uses_Sec_Stack to be set.
6587
6588 Add_Block_Identifier (Block_Nod, Block_Id);
6589
6590 -- When wrapping the statements of an iterator loop, check whether
6591 -- the loop requires secondary stack management and if so, propagate
6592 -- the flag to the block. This way the secondary stack is marked and
6593 -- released at each iteration of the loop.
6594
6595 Iter_Loop := Find_Enclosing_Iterator_Loop (Scop);
6596
6597 if Present (Iter_Loop) and then Uses_Sec_Stack (Iter_Loop) then
6598 Set_Uses_Sec_Stack (Block_Id);
6599 end if;
6600
6601 return Block_Nod;
6602 end Wrap_Statements_In_Block;
6603
6604 -- Local variables
6605
6606 Block : Node_Id;
6607
6608 -- Start of processing for Process_Statements_For_Controlled_Objects
6609
6610 begin
6611 -- Whenever a non-handled statement list is wrapped in a block, the
6612 -- block must be explicitly analyzed to redecorate all entities in the
6613 -- list and ensure that a finalizer is properly built.
6614
6615 case Nkind (N) is
6616 when N_Elsif_Part |
6617 N_If_Statement |
6618 N_Conditional_Entry_Call |
6619 N_Selective_Accept =>
6620
6621 -- Check the "then statements" for elsif parts and if statements
6622
6623 if Nkind_In (N, N_Elsif_Part, N_If_Statement)
6624 and then not Is_Empty_List (Then_Statements (N))
6625 and then not Are_Wrapped (Then_Statements (N))
6626 and then Requires_Cleanup_Actions
6627 (Then_Statements (N), False, False)
6628 then
6629 Block := Wrap_Statements_In_Block (Then_Statements (N));
6630 Set_Then_Statements (N, New_List (Block));
6631
6632 Analyze (Block);
6633 end if;
6634
6635 -- Check the "else statements" for conditional entry calls, if
6636 -- statements and selective accepts.
6637
6638 if Nkind_In (N, N_Conditional_Entry_Call,
6639 N_If_Statement,
6640 N_Selective_Accept)
6641 and then not Is_Empty_List (Else_Statements (N))
6642 and then not Are_Wrapped (Else_Statements (N))
6643 and then Requires_Cleanup_Actions
6644 (Else_Statements (N), False, False)
6645 then
6646 Block := Wrap_Statements_In_Block (Else_Statements (N));
6647 Set_Else_Statements (N, New_List (Block));
6648
6649 Analyze (Block);
6650 end if;
6651
6652 when N_Abortable_Part |
6653 N_Accept_Alternative |
6654 N_Case_Statement_Alternative |
6655 N_Delay_Alternative |
6656 N_Entry_Call_Alternative |
6657 N_Exception_Handler |
6658 N_Loop_Statement |
6659 N_Triggering_Alternative =>
6660
6661 if not Is_Empty_List (Statements (N))
6662 and then not Are_Wrapped (Statements (N))
6663 and then Requires_Cleanup_Actions (Statements (N), False, False)
6664 then
6665 if Nkind (N) = N_Loop_Statement
6666 and then Present (Identifier (N))
6667 then
6668 Block :=
6669 Wrap_Statements_In_Block
6670 (L => Statements (N),
6671 Scop => Entity (Identifier (N)));
6672 else
6673 Block := Wrap_Statements_In_Block (Statements (N));
6674 end if;
6675
6676 Set_Statements (N, New_List (Block));
6677 Analyze (Block);
6678 end if;
6679
6680 when others =>
6681 null;
6682 end case;
6683 end Process_Statements_For_Controlled_Objects;
6684
6685 ------------------
6686 -- Power_Of_Two --
6687 ------------------
6688
6689 function Power_Of_Two (N : Node_Id) return Nat is
6690 Typ : constant Entity_Id := Etype (N);
6691 pragma Assert (Is_Integer_Type (Typ));
6692 Siz : constant Nat := UI_To_Int (Esize (Typ));
6693 Val : Uint;
6694
6695 begin
6696 if not Compile_Time_Known_Value (N) then
6697 return 0;
6698
6699 else
6700 Val := Expr_Value (N);
6701 for J in 1 .. Siz - 1 loop
6702 if Val = Uint_2 ** J then
6703 return J;
6704 end if;
6705 end loop;
6706
6707 return 0;
6708 end if;
6709 end Power_Of_Two;
6710
6711 ----------------------
6712 -- Remove_Init_Call --
6713 ----------------------
6714
6715 function Remove_Init_Call
6716 (Var : Entity_Id;
6717 Rep_Clause : Node_Id) return Node_Id
6718 is
6719 Par : constant Node_Id := Parent (Var);
6720 Typ : constant Entity_Id := Etype (Var);
6721
6722 Init_Proc : Entity_Id;
6723 -- Initialization procedure for Typ
6724
6725 function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
6726 -- Look for init call for Var starting at From and scanning the
6727 -- enclosing list until Rep_Clause or the end of the list is reached.
6728
6729 ----------------------------
6730 -- Find_Init_Call_In_List --
6731 ----------------------------
6732
6733 function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
6734 Init_Call : Node_Id;
6735
6736 begin
6737 Init_Call := From;
6738 while Present (Init_Call) and then Init_Call /= Rep_Clause loop
6739 if Nkind (Init_Call) = N_Procedure_Call_Statement
6740 and then Is_Entity_Name (Name (Init_Call))
6741 and then Entity (Name (Init_Call)) = Init_Proc
6742 then
6743 return Init_Call;
6744 end if;
6745
6746 Next (Init_Call);
6747 end loop;
6748
6749 return Empty;
6750 end Find_Init_Call_In_List;
6751
6752 Init_Call : Node_Id;
6753
6754 -- Start of processing for Find_Init_Call
6755
6756 begin
6757 if Present (Initialization_Statements (Var)) then
6758 Init_Call := Initialization_Statements (Var);
6759 Set_Initialization_Statements (Var, Empty);
6760
6761 elsif not Has_Non_Null_Base_Init_Proc (Typ) then
6762
6763 -- No init proc for the type, so obviously no call to be found
6764
6765 return Empty;
6766
6767 else
6768 -- We might be able to handle other cases below by just properly
6769 -- setting Initialization_Statements at the point where the init proc
6770 -- call is generated???
6771
6772 Init_Proc := Base_Init_Proc (Typ);
6773
6774 -- First scan the list containing the declaration of Var
6775
6776 Init_Call := Find_Init_Call_In_List (From => Next (Par));
6777
6778 -- If not found, also look on Var's freeze actions list, if any,
6779 -- since the init call may have been moved there (case of an address
6780 -- clause applying to Var).
6781
6782 if No (Init_Call) and then Present (Freeze_Node (Var)) then
6783 Init_Call :=
6784 Find_Init_Call_In_List (First (Actions (Freeze_Node (Var))));
6785 end if;
6786
6787 -- If the initialization call has actuals that use the secondary
6788 -- stack, the call may have been wrapped into a temporary block, in
6789 -- which case the block itself has to be removed.
6790
6791 if No (Init_Call) and then Nkind (Next (Par)) = N_Block_Statement then
6792 declare
6793 Blk : constant Node_Id := Next (Par);
6794 begin
6795 if Present
6796 (Find_Init_Call_In_List
6797 (First (Statements (Handled_Statement_Sequence (Blk)))))
6798 then
6799 Init_Call := Blk;
6800 end if;
6801 end;
6802 end if;
6803 end if;
6804
6805 if Present (Init_Call) then
6806 Remove (Init_Call);
6807 end if;
6808 return Init_Call;
6809 end Remove_Init_Call;
6810
6811 -------------------------
6812 -- Remove_Side_Effects --
6813 -------------------------
6814
6815 procedure Remove_Side_Effects
6816 (Exp : Node_Id;
6817 Name_Req : Boolean := False;
6818 Variable_Ref : Boolean := False)
6819 is
6820 Loc : constant Source_Ptr := Sloc (Exp);
6821 Exp_Type : constant Entity_Id := Etype (Exp);
6822 Svg_Suppress : constant Suppress_Record := Scope_Suppress;
6823 Def_Id : Entity_Id;
6824 E : Node_Id;
6825 New_Exp : Node_Id;
6826 Ptr_Typ_Decl : Node_Id;
6827 Ref_Type : Entity_Id;
6828 Res : Node_Id;
6829
6830 begin
6831 -- Handle cases in which there is nothing to do. In GNATprove mode,
6832 -- removal of side effects is useful for the light expansion of
6833 -- renamings. This removal should only occur when not inside a
6834 -- generic and not doing a pre-analysis.
6835
6836 if not Expander_Active
6837 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
6838 then
6839 return;
6840 end if;
6841
6842 -- Cannot generate temporaries if the invocation to remove side effects
6843 -- was issued too early and the type of the expression is not resolved
6844 -- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
6845 -- Remove_Side_Effects).
6846
6847 if No (Exp_Type)
6848 or else Ekind (Exp_Type) = E_Access_Attribute_Type
6849 then
6850 return;
6851
6852 -- No action needed for side-effect free expressions
6853
6854 elsif Side_Effect_Free (Exp, Name_Req, Variable_Ref) then
6855 return;
6856 end if;
6857
6858 -- The remaining procesaing is done with all checks suppressed
6859
6860 -- Note: from now on, don't use return statements, instead do a goto
6861 -- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
6862
6863 Scope_Suppress.Suppress := (others => True);
6864
6865 -- If it is a scalar type and we need to capture the value, just make
6866 -- a copy. Likewise for a function call, an attribute reference, a
6867 -- conditional expression, an allocator, or an operator. And if we have
6868 -- a volatile reference and Name_Req is not set (see comments for
6869 -- Side_Effect_Free).
6870
6871 if Is_Elementary_Type (Exp_Type)
6872
6873 -- Note: this test is rather mysterious??? Why can't we just test ONLY
6874 -- Is_Elementary_Type and be done with it. If we try that approach, we
6875 -- get some failures (infinite recursions) from the Duplicate_Subexpr
6876 -- call at the end of Checks.Apply_Predicate_Check. To be
6877 -- investigated ???
6878
6879 and then (Variable_Ref
6880 or else Nkind_In (Exp, N_Attribute_Reference,
6881 N_Allocator,
6882 N_Case_Expression,
6883 N_If_Expression,
6884 N_Function_Call)
6885 or else Nkind (Exp) in N_Op
6886 or else (not Name_Req
6887 and then Is_Volatile_Reference (Exp)))
6888 then
6889 Def_Id := Make_Temporary (Loc, 'R', Exp);
6890 Set_Etype (Def_Id, Exp_Type);
6891 Res := New_Occurrence_Of (Def_Id, Loc);
6892
6893 -- If the expression is a packed reference, it must be reanalyzed and
6894 -- expanded, depending on context. This is the case for actuals where
6895 -- a constraint check may capture the actual before expansion of the
6896 -- call is complete.
6897
6898 if Nkind (Exp) = N_Indexed_Component
6899 and then Is_Packed (Etype (Prefix (Exp)))
6900 then
6901 Set_Analyzed (Exp, False);
6902 Set_Analyzed (Prefix (Exp), False);
6903 end if;
6904
6905 E :=
6906 Make_Object_Declaration (Loc,
6907 Defining_Identifier => Def_Id,
6908 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
6909 Constant_Present => True,
6910 Expression => Relocate_Node (Exp));
6911
6912 Set_Assignment_OK (E);
6913 Insert_Action (Exp, E);
6914
6915 -- If the expression has the form v.all then we can just capture the
6916 -- pointer, and then do an explicit dereference on the result.
6917
6918 elsif Nkind (Exp) = N_Explicit_Dereference then
6919 Def_Id := Make_Temporary (Loc, 'R', Exp);
6920 Res :=
6921 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Def_Id, Loc));
6922
6923 Insert_Action (Exp,
6924 Make_Object_Declaration (Loc,
6925 Defining_Identifier => Def_Id,
6926 Object_Definition =>
6927 New_Occurrence_Of (Etype (Prefix (Exp)), Loc),
6928 Constant_Present => True,
6929 Expression => Relocate_Node (Prefix (Exp))));
6930
6931 -- Similar processing for an unchecked conversion of an expression of
6932 -- the form v.all, where we want the same kind of treatment.
6933
6934 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
6935 and then Nkind (Expression (Exp)) = N_Explicit_Dereference
6936 then
6937 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
6938 goto Leave;
6939
6940 -- If this is a type conversion, leave the type conversion and remove
6941 -- the side effects in the expression. This is important in several
6942 -- circumstances: for change of representations, and also when this is a
6943 -- view conversion to a smaller object, where gigi can end up creating
6944 -- its own temporary of the wrong size.
6945
6946 elsif Nkind (Exp) = N_Type_Conversion then
6947 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
6948 goto Leave;
6949
6950 -- If this is an unchecked conversion that Gigi can't handle, make
6951 -- a copy or a use a renaming to capture the value.
6952
6953 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
6954 and then not Safe_Unchecked_Type_Conversion (Exp)
6955 then
6956 if CW_Or_Has_Controlled_Part (Exp_Type) then
6957
6958 -- Use a renaming to capture the expression, rather than create
6959 -- a controlled temporary.
6960
6961 Def_Id := Make_Temporary (Loc, 'R', Exp);
6962 Res := New_Occurrence_Of (Def_Id, Loc);
6963
6964 Insert_Action (Exp,
6965 Make_Object_Renaming_Declaration (Loc,
6966 Defining_Identifier => Def_Id,
6967 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
6968 Name => Relocate_Node (Exp)));
6969
6970 else
6971 Def_Id := Make_Temporary (Loc, 'R', Exp);
6972 Set_Etype (Def_Id, Exp_Type);
6973 Res := New_Occurrence_Of (Def_Id, Loc);
6974
6975 E :=
6976 Make_Object_Declaration (Loc,
6977 Defining_Identifier => Def_Id,
6978 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
6979 Constant_Present => not Is_Variable (Exp),
6980 Expression => Relocate_Node (Exp));
6981
6982 Set_Assignment_OK (E);
6983 Insert_Action (Exp, E);
6984 end if;
6985
6986 -- For expressions that denote objects, we can use a renaming scheme.
6987 -- This is needed for correctness in the case of a volatile object of
6988 -- a non-volatile type because the Make_Reference call of the "default"
6989 -- approach would generate an illegal access value (an access value
6990 -- cannot designate such an object - see Analyze_Reference). We skip
6991 -- using this scheme if we have an object of a volatile type and we do
6992 -- not have Name_Req set true (see comments for Side_Effect_Free).
6993
6994 -- In Ada 2012 a qualified expression is an object, but for purposes of
6995 -- removing side effects it still need to be transformed into a separate
6996 -- declaration, particularly if the expression is an aggregate.
6997
6998 elsif Is_Object_Reference (Exp)
6999 and then Nkind (Exp) /= N_Function_Call
7000 and then Nkind (Exp) /= N_Qualified_Expression
7001 and then (Name_Req or else not Treat_As_Volatile (Exp_Type))
7002 then
7003 Def_Id := Make_Temporary (Loc, 'R', Exp);
7004
7005 if Nkind (Exp) = N_Selected_Component
7006 and then Nkind (Prefix (Exp)) = N_Function_Call
7007 and then Is_Array_Type (Exp_Type)
7008 then
7009 -- Avoid generating a variable-sized temporary, by generating
7010 -- the renaming declaration just for the function call. The
7011 -- transformation could be refined to apply only when the array
7012 -- component is constrained by a discriminant???
7013
7014 Res :=
7015 Make_Selected_Component (Loc,
7016 Prefix => New_Occurrence_Of (Def_Id, Loc),
7017 Selector_Name => Selector_Name (Exp));
7018
7019 Insert_Action (Exp,
7020 Make_Object_Renaming_Declaration (Loc,
7021 Defining_Identifier => Def_Id,
7022 Subtype_Mark =>
7023 New_Occurrence_Of (Base_Type (Etype (Prefix (Exp))), Loc),
7024 Name => Relocate_Node (Prefix (Exp))));
7025
7026 else
7027 Res := New_Occurrence_Of (Def_Id, Loc);
7028
7029 Insert_Action (Exp,
7030 Make_Object_Renaming_Declaration (Loc,
7031 Defining_Identifier => Def_Id,
7032 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
7033 Name => Relocate_Node (Exp)));
7034 end if;
7035
7036 -- If this is a packed reference, or a selected component with
7037 -- a non-standard representation, a reference to the temporary
7038 -- will be replaced by a copy of the original expression (see
7039 -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
7040 -- elaborated by gigi, and is of course not to be replaced in-line
7041 -- by the expression it renames, which would defeat the purpose of
7042 -- removing the side-effect.
7043
7044 if Nkind_In (Exp, N_Selected_Component, N_Indexed_Component)
7045 and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
7046 then
7047 null;
7048 else
7049 Set_Is_Renaming_Of_Object (Def_Id, False);
7050 end if;
7051
7052 -- Otherwise we generate a reference to the value
7053
7054 else
7055 -- An expression which is in SPARK mode is considered side effect
7056 -- free if the resulting value is captured by a variable or a
7057 -- constant.
7058
7059 if GNATprove_Mode
7060 and then Nkind (Parent (Exp)) = N_Object_Declaration
7061 then
7062 goto Leave;
7063 end if;
7064
7065 -- Special processing for function calls that return a limited type.
7066 -- We need to build a declaration that will enable build-in-place
7067 -- expansion of the call. This is not done if the context is already
7068 -- an object declaration, to prevent infinite recursion.
7069
7070 -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
7071 -- to accommodate functions returning limited objects by reference.
7072
7073 if Ada_Version >= Ada_2005
7074 and then Nkind (Exp) = N_Function_Call
7075 and then Is_Limited_View (Etype (Exp))
7076 and then Nkind (Parent (Exp)) /= N_Object_Declaration
7077 then
7078 declare
7079 Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
7080 Decl : Node_Id;
7081
7082 begin
7083 Decl :=
7084 Make_Object_Declaration (Loc,
7085 Defining_Identifier => Obj,
7086 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
7087 Expression => Relocate_Node (Exp));
7088
7089 Insert_Action (Exp, Decl);
7090 Set_Etype (Obj, Exp_Type);
7091 Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
7092 goto Leave;
7093 end;
7094 end if;
7095
7096 Def_Id := Make_Temporary (Loc, 'R', Exp);
7097
7098 -- The regular expansion of functions with side effects involves the
7099 -- generation of an access type to capture the return value found on
7100 -- the secondary stack. Since SPARK (and why) cannot process access
7101 -- types, use a different approach which ignores the secondary stack
7102 -- and "copies" the returned object.
7103
7104 if GNATprove_Mode then
7105 Res := New_Occurrence_Of (Def_Id, Loc);
7106 Ref_Type := Exp_Type;
7107
7108 -- Regular expansion utilizing an access type and 'reference
7109
7110 else
7111 Res :=
7112 Make_Explicit_Dereference (Loc,
7113 Prefix => New_Occurrence_Of (Def_Id, Loc));
7114
7115 -- Generate:
7116 -- type Ann is access all <Exp_Type>;
7117
7118 Ref_Type := Make_Temporary (Loc, 'A');
7119
7120 Ptr_Typ_Decl :=
7121 Make_Full_Type_Declaration (Loc,
7122 Defining_Identifier => Ref_Type,
7123 Type_Definition =>
7124 Make_Access_To_Object_Definition (Loc,
7125 All_Present => True,
7126 Subtype_Indication =>
7127 New_Occurrence_Of (Exp_Type, Loc)));
7128
7129 Insert_Action (Exp, Ptr_Typ_Decl);
7130 end if;
7131
7132 E := Exp;
7133 if Nkind (E) = N_Explicit_Dereference then
7134 New_Exp := Relocate_Node (Prefix (E));
7135
7136 else
7137 E := Relocate_Node (E);
7138
7139 -- Do not generate a 'reference in SPARK mode since the access
7140 -- type is not created in the first place.
7141
7142 if GNATprove_Mode then
7143 New_Exp := E;
7144
7145 -- Otherwise generate reference, marking the value as non-null
7146 -- since we know it cannot be null and we don't want a check.
7147
7148 else
7149 New_Exp := Make_Reference (Loc, E);
7150 Set_Is_Known_Non_Null (Def_Id);
7151 end if;
7152 end if;
7153
7154 if Is_Delayed_Aggregate (E) then
7155
7156 -- The expansion of nested aggregates is delayed until the
7157 -- enclosing aggregate is expanded. As aggregates are often
7158 -- qualified, the predicate applies to qualified expressions as
7159 -- well, indicating that the enclosing aggregate has not been
7160 -- expanded yet. At this point the aggregate is part of a
7161 -- stand-alone declaration, and must be fully expanded.
7162
7163 if Nkind (E) = N_Qualified_Expression then
7164 Set_Expansion_Delayed (Expression (E), False);
7165 Set_Analyzed (Expression (E), False);
7166 else
7167 Set_Expansion_Delayed (E, False);
7168 end if;
7169
7170 Set_Analyzed (E, False);
7171 end if;
7172
7173 Insert_Action (Exp,
7174 Make_Object_Declaration (Loc,
7175 Defining_Identifier => Def_Id,
7176 Object_Definition => New_Occurrence_Of (Ref_Type, Loc),
7177 Constant_Present => True,
7178 Expression => New_Exp));
7179 end if;
7180
7181 -- Preserve the Assignment_OK flag in all copies, since at least one
7182 -- copy may be used in a context where this flag must be set (otherwise
7183 -- why would the flag be set in the first place).
7184
7185 Set_Assignment_OK (Res, Assignment_OK (Exp));
7186
7187 -- Finally rewrite the original expression and we are done
7188
7189 Rewrite (Exp, Res);
7190 Analyze_And_Resolve (Exp, Exp_Type);
7191
7192 <<Leave>>
7193 Scope_Suppress := Svg_Suppress;
7194 end Remove_Side_Effects;
7195
7196 ---------------------------
7197 -- Represented_As_Scalar --
7198 ---------------------------
7199
7200 function Represented_As_Scalar (T : Entity_Id) return Boolean is
7201 UT : constant Entity_Id := Underlying_Type (T);
7202 begin
7203 return Is_Scalar_Type (UT)
7204 or else (Is_Bit_Packed_Array (UT)
7205 and then Is_Scalar_Type (Packed_Array_Type (UT)));
7206 end Represented_As_Scalar;
7207
7208 ------------------------------
7209 -- Requires_Cleanup_Actions --
7210 ------------------------------
7211
7212 function Requires_Cleanup_Actions
7213 (N : Node_Id;
7214 Lib_Level : Boolean) return Boolean
7215 is
7216 At_Lib_Level : constant Boolean :=
7217 Lib_Level
7218 and then Nkind_In (N, N_Package_Body,
7219 N_Package_Specification);
7220 -- N is at the library level if the top-most context is a package and
7221 -- the path taken to reach N does not inlcude non-package constructs.
7222
7223 begin
7224 case Nkind (N) is
7225 when N_Accept_Statement |
7226 N_Block_Statement |
7227 N_Entry_Body |
7228 N_Package_Body |
7229 N_Protected_Body |
7230 N_Subprogram_Body |
7231 N_Task_Body =>
7232 return
7233 Requires_Cleanup_Actions (Declarations (N), At_Lib_Level, True)
7234 or else
7235 (Present (Handled_Statement_Sequence (N))
7236 and then
7237 Requires_Cleanup_Actions
7238 (Statements (Handled_Statement_Sequence (N)),
7239 At_Lib_Level, True));
7240
7241 when N_Package_Specification =>
7242 return
7243 Requires_Cleanup_Actions
7244 (Visible_Declarations (N), At_Lib_Level, True)
7245 or else
7246 Requires_Cleanup_Actions
7247 (Private_Declarations (N), At_Lib_Level, True);
7248
7249 when others =>
7250 return False;
7251 end case;
7252 end Requires_Cleanup_Actions;
7253
7254 ------------------------------
7255 -- Requires_Cleanup_Actions --
7256 ------------------------------
7257
7258 function Requires_Cleanup_Actions
7259 (L : List_Id;
7260 Lib_Level : Boolean;
7261 Nested_Constructs : Boolean) return Boolean
7262 is
7263 Decl : Node_Id;
7264 Expr : Node_Id;
7265 Obj_Id : Entity_Id;
7266 Obj_Typ : Entity_Id;
7267 Pack_Id : Entity_Id;
7268 Typ : Entity_Id;
7269
7270 begin
7271 if No (L)
7272 or else Is_Empty_List (L)
7273 then
7274 return False;
7275 end if;
7276
7277 Decl := First (L);
7278 while Present (Decl) loop
7279
7280 -- Library-level tagged types
7281
7282 if Nkind (Decl) = N_Full_Type_Declaration then
7283 Typ := Defining_Identifier (Decl);
7284
7285 if Is_Tagged_Type (Typ)
7286 and then Is_Library_Level_Entity (Typ)
7287 and then Convention (Typ) = Convention_Ada
7288 and then Present (Access_Disp_Table (Typ))
7289 and then RTE_Available (RE_Unregister_Tag)
7290 and then not No_Run_Time_Mode
7291 and then not Is_Abstract_Type (Typ)
7292 then
7293 return True;
7294 end if;
7295
7296 -- Regular object declarations
7297
7298 elsif Nkind (Decl) = N_Object_Declaration then
7299 Obj_Id := Defining_Identifier (Decl);
7300 Obj_Typ := Base_Type (Etype (Obj_Id));
7301 Expr := Expression (Decl);
7302
7303 -- Bypass any form of processing for objects which have their
7304 -- finalization disabled. This applies only to objects at the
7305 -- library level.
7306
7307 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
7308 null;
7309
7310 -- Transient variables are treated separately in order to minimize
7311 -- the size of the generated code. See Exp_Ch7.Process_Transient_
7312 -- Objects.
7313
7314 elsif Is_Processed_Transient (Obj_Id) then
7315 null;
7316
7317 -- The object is of the form:
7318 -- Obj : Typ [:= Expr];
7319 --
7320 -- Do not process the incomplete view of a deferred constant. Do
7321 -- not consider tag-to-class-wide conversions.
7322
7323 elsif not Is_Imported (Obj_Id)
7324 and then Needs_Finalization (Obj_Typ)
7325 and then not (Ekind (Obj_Id) = E_Constant
7326 and then not Has_Completion (Obj_Id))
7327 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
7328 then
7329 return True;
7330
7331 -- The object is of the form:
7332 -- Obj : Access_Typ := Non_BIP_Function_Call'reference;
7333 --
7334 -- Obj : Access_Typ :=
7335 -- BIP_Function_Call (BIPalloc => 2, ...)'reference;
7336
7337 elsif Is_Access_Type (Obj_Typ)
7338 and then Needs_Finalization
7339 (Available_View (Designated_Type (Obj_Typ)))
7340 and then Present (Expr)
7341 and then
7342 (Is_Secondary_Stack_BIP_Func_Call (Expr)
7343 or else
7344 (Is_Non_BIP_Func_Call (Expr)
7345 and then not Is_Related_To_Func_Return (Obj_Id)))
7346 then
7347 return True;
7348
7349 -- Processing for "hook" objects generated for controlled
7350 -- transients declared inside an Expression_With_Actions.
7351
7352 elsif Is_Access_Type (Obj_Typ)
7353 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
7354 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
7355 N_Object_Declaration
7356 and then Is_Finalizable_Transient
7357 (Status_Flag_Or_Transient_Decl (Obj_Id), Decl)
7358 then
7359 return True;
7360
7361 -- Processing for intermediate results of if expressions where
7362 -- one of the alternatives uses a controlled function call.
7363
7364 elsif Is_Access_Type (Obj_Typ)
7365 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
7366 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
7367 N_Defining_Identifier
7368 and then Present (Expr)
7369 and then Nkind (Expr) = N_Null
7370 then
7371 return True;
7372
7373 -- Simple protected objects which use type System.Tasking.
7374 -- Protected_Objects.Protection to manage their locks should be
7375 -- treated as controlled since they require manual cleanup.
7376
7377 elsif Ekind (Obj_Id) = E_Variable
7378 and then
7379 (Is_Simple_Protected_Type (Obj_Typ)
7380 or else Has_Simple_Protected_Object (Obj_Typ))
7381 then
7382 return True;
7383 end if;
7384
7385 -- Specific cases of object renamings
7386
7387 elsif Nkind (Decl) = N_Object_Renaming_Declaration then
7388 Obj_Id := Defining_Identifier (Decl);
7389 Obj_Typ := Base_Type (Etype (Obj_Id));
7390
7391 -- Bypass any form of processing for objects which have their
7392 -- finalization disabled. This applies only to objects at the
7393 -- library level.
7394
7395 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
7396 null;
7397
7398 -- Return object of a build-in-place function. This case is
7399 -- recognized and marked by the expansion of an extended return
7400 -- statement (see Expand_N_Extended_Return_Statement).
7401
7402 elsif Needs_Finalization (Obj_Typ)
7403 and then Is_Return_Object (Obj_Id)
7404 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
7405 then
7406 return True;
7407
7408 -- Detect a case where a source object has been initialized by
7409 -- a controlled function call or another object which was later
7410 -- rewritten as a class-wide conversion of Ada.Tags.Displace.
7411
7412 -- Obj1 : CW_Type := Src_Obj;
7413 -- Obj2 : CW_Type := Function_Call (...);
7414
7415 -- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
7416 -- Tmp : ... := Function_Call (...)'reference;
7417 -- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp));
7418
7419 elsif Is_Displacement_Of_Object_Or_Function_Result (Obj_Id) then
7420 return True;
7421 end if;
7422
7423 -- Inspect the freeze node of an access-to-controlled type and look
7424 -- for a delayed finalization master. This case arises when the
7425 -- freeze actions are inserted at a later time than the expansion of
7426 -- the context. Since Build_Finalizer is never called on a single
7427 -- construct twice, the master will be ultimately left out and never
7428 -- finalized. This is also needed for freeze actions of designated
7429 -- types themselves, since in some cases the finalization master is
7430 -- associated with a designated type's freeze node rather than that
7431 -- of the access type (see handling for freeze actions in
7432 -- Build_Finalization_Master).
7433
7434 elsif Nkind (Decl) = N_Freeze_Entity
7435 and then Present (Actions (Decl))
7436 then
7437 Typ := Entity (Decl);
7438
7439 if ((Is_Access_Type (Typ)
7440 and then not Is_Access_Subprogram_Type (Typ)
7441 and then Needs_Finalization
7442 (Available_View (Designated_Type (Typ))))
7443 or else
7444 (Is_Type (Typ)
7445 and then Needs_Finalization (Typ)))
7446 and then Requires_Cleanup_Actions
7447 (Actions (Decl), Lib_Level, Nested_Constructs)
7448 then
7449 return True;
7450 end if;
7451
7452 -- Nested package declarations
7453
7454 elsif Nested_Constructs
7455 and then Nkind (Decl) = N_Package_Declaration
7456 then
7457 Pack_Id := Defining_Unit_Name (Specification (Decl));
7458
7459 if Nkind (Pack_Id) = N_Defining_Program_Unit_Name then
7460 Pack_Id := Defining_Identifier (Pack_Id);
7461 end if;
7462
7463 if Ekind (Pack_Id) /= E_Generic_Package
7464 and then
7465 Requires_Cleanup_Actions (Specification (Decl), Lib_Level)
7466 then
7467 return True;
7468 end if;
7469
7470 -- Nested package bodies
7471
7472 elsif Nested_Constructs and then Nkind (Decl) = N_Package_Body then
7473 Pack_Id := Corresponding_Spec (Decl);
7474
7475 if Ekind (Pack_Id) /= E_Generic_Package
7476 and then Requires_Cleanup_Actions (Decl, Lib_Level)
7477 then
7478 return True;
7479 end if;
7480 end if;
7481
7482 Next (Decl);
7483 end loop;
7484
7485 return False;
7486 end Requires_Cleanup_Actions;
7487
7488 ------------------------------------
7489 -- Safe_Unchecked_Type_Conversion --
7490 ------------------------------------
7491
7492 -- Note: this function knows quite a bit about the exact requirements of
7493 -- Gigi with respect to unchecked type conversions, and its code must be
7494 -- coordinated with any changes in Gigi in this area.
7495
7496 -- The above requirements should be documented in Sinfo ???
7497
7498 function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
7499 Otyp : Entity_Id;
7500 Ityp : Entity_Id;
7501 Oalign : Uint;
7502 Ialign : Uint;
7503 Pexp : constant Node_Id := Parent (Exp);
7504
7505 begin
7506 -- If the expression is the RHS of an assignment or object declaration
7507 -- we are always OK because there will always be a target.
7508
7509 -- Object renaming declarations, (generated for view conversions of
7510 -- actuals in inlined calls), like object declarations, provide an
7511 -- explicit type, and are safe as well.
7512
7513 if (Nkind (Pexp) = N_Assignment_Statement
7514 and then Expression (Pexp) = Exp)
7515 or else Nkind_In (Pexp, N_Object_Declaration,
7516 N_Object_Renaming_Declaration)
7517 then
7518 return True;
7519
7520 -- If the expression is the prefix of an N_Selected_Component we should
7521 -- also be OK because GCC knows to look inside the conversion except if
7522 -- the type is discriminated. We assume that we are OK anyway if the
7523 -- type is not set yet or if it is controlled since we can't afford to
7524 -- introduce a temporary in this case.
7525
7526 elsif Nkind (Pexp) = N_Selected_Component
7527 and then Prefix (Pexp) = Exp
7528 then
7529 if No (Etype (Pexp)) then
7530 return True;
7531 else
7532 return
7533 not Has_Discriminants (Etype (Pexp))
7534 or else Is_Constrained (Etype (Pexp));
7535 end if;
7536 end if;
7537
7538 -- Set the output type, this comes from Etype if it is set, otherwise we
7539 -- take it from the subtype mark, which we assume was already fully
7540 -- analyzed.
7541
7542 if Present (Etype (Exp)) then
7543 Otyp := Etype (Exp);
7544 else
7545 Otyp := Entity (Subtype_Mark (Exp));
7546 end if;
7547
7548 -- The input type always comes from the expression, and we assume
7549 -- this is indeed always analyzed, so we can simply get the Etype.
7550
7551 Ityp := Etype (Expression (Exp));
7552
7553 -- Initialize alignments to unknown so far
7554
7555 Oalign := No_Uint;
7556 Ialign := No_Uint;
7557
7558 -- Replace a concurrent type by its corresponding record type and each
7559 -- type by its underlying type and do the tests on those. The original
7560 -- type may be a private type whose completion is a concurrent type, so
7561 -- find the underlying type first.
7562
7563 if Present (Underlying_Type (Otyp)) then
7564 Otyp := Underlying_Type (Otyp);
7565 end if;
7566
7567 if Present (Underlying_Type (Ityp)) then
7568 Ityp := Underlying_Type (Ityp);
7569 end if;
7570
7571 if Is_Concurrent_Type (Otyp) then
7572 Otyp := Corresponding_Record_Type (Otyp);
7573 end if;
7574
7575 if Is_Concurrent_Type (Ityp) then
7576 Ityp := Corresponding_Record_Type (Ityp);
7577 end if;
7578
7579 -- If the base types are the same, we know there is no problem since
7580 -- this conversion will be a noop.
7581
7582 if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
7583 return True;
7584
7585 -- Same if this is an upwards conversion of an untagged type, and there
7586 -- are no constraints involved (could be more general???)
7587
7588 elsif Etype (Ityp) = Otyp
7589 and then not Is_Tagged_Type (Ityp)
7590 and then not Has_Discriminants (Ityp)
7591 and then No (First_Rep_Item (Base_Type (Ityp)))
7592 then
7593 return True;
7594
7595 -- If the expression has an access type (object or subprogram) we assume
7596 -- that the conversion is safe, because the size of the target is safe,
7597 -- even if it is a record (which might be treated as having unknown size
7598 -- at this point).
7599
7600 elsif Is_Access_Type (Ityp) then
7601 return True;
7602
7603 -- If the size of output type is known at compile time, there is never
7604 -- a problem. Note that unconstrained records are considered to be of
7605 -- known size, but we can't consider them that way here, because we are
7606 -- talking about the actual size of the object.
7607
7608 -- We also make sure that in addition to the size being known, we do not
7609 -- have a case which might generate an embarrassingly large temp in
7610 -- stack checking mode.
7611
7612 elsif Size_Known_At_Compile_Time (Otyp)
7613 and then
7614 (not Stack_Checking_Enabled
7615 or else not May_Generate_Large_Temp (Otyp))
7616 and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
7617 then
7618 return True;
7619
7620 -- If either type is tagged, then we know the alignment is OK so
7621 -- Gigi will be able to use pointer punning.
7622
7623 elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
7624 return True;
7625
7626 -- If either type is a limited record type, we cannot do a copy, so say
7627 -- safe since there's nothing else we can do.
7628
7629 elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
7630 return True;
7631
7632 -- Conversions to and from packed array types are always ignored and
7633 -- hence are safe.
7634
7635 elsif Is_Packed_Array_Type (Otyp)
7636 or else Is_Packed_Array_Type (Ityp)
7637 then
7638 return True;
7639 end if;
7640
7641 -- The only other cases known to be safe is if the input type's
7642 -- alignment is known to be at least the maximum alignment for the
7643 -- target or if both alignments are known and the output type's
7644 -- alignment is no stricter than the input's. We can use the component
7645 -- type alignement for an array if a type is an unpacked array type.
7646
7647 if Present (Alignment_Clause (Otyp)) then
7648 Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
7649
7650 elsif Is_Array_Type (Otyp)
7651 and then Present (Alignment_Clause (Component_Type (Otyp)))
7652 then
7653 Oalign := Expr_Value (Expression (Alignment_Clause
7654 (Component_Type (Otyp))));
7655 end if;
7656
7657 if Present (Alignment_Clause (Ityp)) then
7658 Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
7659
7660 elsif Is_Array_Type (Ityp)
7661 and then Present (Alignment_Clause (Component_Type (Ityp)))
7662 then
7663 Ialign := Expr_Value (Expression (Alignment_Clause
7664 (Component_Type (Ityp))));
7665 end if;
7666
7667 if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
7668 return True;
7669
7670 elsif Ialign /= No_Uint and then Oalign /= No_Uint
7671 and then Ialign <= Oalign
7672 then
7673 return True;
7674
7675 -- Otherwise, Gigi cannot handle this and we must make a temporary
7676
7677 else
7678 return False;
7679 end if;
7680 end Safe_Unchecked_Type_Conversion;
7681
7682 ---------------------------------
7683 -- Set_Current_Value_Condition --
7684 ---------------------------------
7685
7686 -- Note: the implementation of this procedure is very closely tied to the
7687 -- implementation of Get_Current_Value_Condition. Here we set required
7688 -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
7689 -- them, so they must have a consistent view.
7690
7691 procedure Set_Current_Value_Condition (Cnode : Node_Id) is
7692
7693 procedure Set_Entity_Current_Value (N : Node_Id);
7694 -- If N is an entity reference, where the entity is of an appropriate
7695 -- kind, then set the current value of this entity to Cnode, unless
7696 -- there is already a definite value set there.
7697
7698 procedure Set_Expression_Current_Value (N : Node_Id);
7699 -- If N is of an appropriate form, sets an appropriate entry in current
7700 -- value fields of relevant entities. Multiple entities can be affected
7701 -- in the case of an AND or AND THEN.
7702
7703 ------------------------------
7704 -- Set_Entity_Current_Value --
7705 ------------------------------
7706
7707 procedure Set_Entity_Current_Value (N : Node_Id) is
7708 begin
7709 if Is_Entity_Name (N) then
7710 declare
7711 Ent : constant Entity_Id := Entity (N);
7712
7713 begin
7714 -- Don't capture if not safe to do so
7715
7716 if not Safe_To_Capture_Value (N, Ent, Cond => True) then
7717 return;
7718 end if;
7719
7720 -- Here we have a case where the Current_Value field may need
7721 -- to be set. We set it if it is not already set to a compile
7722 -- time expression value.
7723
7724 -- Note that this represents a decision that one condition
7725 -- blots out another previous one. That's certainly right if
7726 -- they occur at the same level. If the second one is nested,
7727 -- then the decision is neither right nor wrong (it would be
7728 -- equally OK to leave the outer one in place, or take the new
7729 -- inner one. Really we should record both, but our data
7730 -- structures are not that elaborate.
7731
7732 if Nkind (Current_Value (Ent)) not in N_Subexpr then
7733 Set_Current_Value (Ent, Cnode);
7734 end if;
7735 end;
7736 end if;
7737 end Set_Entity_Current_Value;
7738
7739 ----------------------------------
7740 -- Set_Expression_Current_Value --
7741 ----------------------------------
7742
7743 procedure Set_Expression_Current_Value (N : Node_Id) is
7744 Cond : Node_Id;
7745
7746 begin
7747 Cond := N;
7748
7749 -- Loop to deal with (ignore for now) any NOT operators present. The
7750 -- presence of NOT operators will be handled properly when we call
7751 -- Get_Current_Value_Condition.
7752
7753 while Nkind (Cond) = N_Op_Not loop
7754 Cond := Right_Opnd (Cond);
7755 end loop;
7756
7757 -- For an AND or AND THEN, recursively process operands
7758
7759 if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
7760 Set_Expression_Current_Value (Left_Opnd (Cond));
7761 Set_Expression_Current_Value (Right_Opnd (Cond));
7762 return;
7763 end if;
7764
7765 -- Check possible relational operator
7766
7767 if Nkind (Cond) in N_Op_Compare then
7768 if Compile_Time_Known_Value (Right_Opnd (Cond)) then
7769 Set_Entity_Current_Value (Left_Opnd (Cond));
7770 elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
7771 Set_Entity_Current_Value (Right_Opnd (Cond));
7772 end if;
7773
7774 elsif Nkind_In (Cond,
7775 N_Type_Conversion,
7776 N_Qualified_Expression,
7777 N_Expression_With_Actions)
7778 then
7779 Set_Expression_Current_Value (Expression (Cond));
7780
7781 -- Check possible boolean variable reference
7782
7783 else
7784 Set_Entity_Current_Value (Cond);
7785 end if;
7786 end Set_Expression_Current_Value;
7787
7788 -- Start of processing for Set_Current_Value_Condition
7789
7790 begin
7791 Set_Expression_Current_Value (Condition (Cnode));
7792 end Set_Current_Value_Condition;
7793
7794 --------------------------
7795 -- Set_Elaboration_Flag --
7796 --------------------------
7797
7798 procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
7799 Loc : constant Source_Ptr := Sloc (N);
7800 Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
7801 Asn : Node_Id;
7802
7803 begin
7804 if Present (Ent) then
7805
7806 -- Nothing to do if at the compilation unit level, because in this
7807 -- case the flag is set by the binder generated elaboration routine.
7808
7809 if Nkind (Parent (N)) = N_Compilation_Unit then
7810 null;
7811
7812 -- Here we do need to generate an assignment statement
7813
7814 else
7815 Check_Restriction (No_Elaboration_Code, N);
7816 Asn :=
7817 Make_Assignment_Statement (Loc,
7818 Name => New_Occurrence_Of (Ent, Loc),
7819 Expression => Make_Integer_Literal (Loc, Uint_1));
7820
7821 if Nkind (Parent (N)) = N_Subunit then
7822 Insert_After (Corresponding_Stub (Parent (N)), Asn);
7823 else
7824 Insert_After (N, Asn);
7825 end if;
7826
7827 Analyze (Asn);
7828
7829 -- Kill current value indication. This is necessary because the
7830 -- tests of this flag are inserted out of sequence and must not
7831 -- pick up bogus indications of the wrong constant value.
7832
7833 Set_Current_Value (Ent, Empty);
7834 end if;
7835 end if;
7836 end Set_Elaboration_Flag;
7837
7838 ----------------------------
7839 -- Set_Renamed_Subprogram --
7840 ----------------------------
7841
7842 procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
7843 begin
7844 -- If input node is an identifier, we can just reset it
7845
7846 if Nkind (N) = N_Identifier then
7847 Set_Chars (N, Chars (E));
7848 Set_Entity (N, E);
7849
7850 -- Otherwise we have to do a rewrite, preserving Comes_From_Source
7851
7852 else
7853 declare
7854 CS : constant Boolean := Comes_From_Source (N);
7855 begin
7856 Rewrite (N, Make_Identifier (Sloc (N), Chars (E)));
7857 Set_Entity (N, E);
7858 Set_Comes_From_Source (N, CS);
7859 Set_Analyzed (N, True);
7860 end;
7861 end if;
7862 end Set_Renamed_Subprogram;
7863
7864 ----------------------
7865 -- Side_Effect_Free --
7866 ----------------------
7867
7868 function Side_Effect_Free
7869 (N : Node_Id;
7870 Name_Req : Boolean := False;
7871 Variable_Ref : Boolean := False) return Boolean
7872 is
7873 Typ : constant Entity_Id := Etype (N);
7874 -- Result type of the expression
7875
7876 function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
7877 -- The argument N is a construct where the Prefix is dereferenced if it
7878 -- is an access type and the result is a variable. The call returns True
7879 -- if the construct is side effect free (not considering side effects in
7880 -- other than the prefix which are to be tested by the caller).
7881
7882 function Within_In_Parameter (N : Node_Id) return Boolean;
7883 -- Determines if N is a subcomponent of a composite in-parameter. If so,
7884 -- N is not side-effect free when the actual is global and modifiable
7885 -- indirectly from within a subprogram, because it may be passed by
7886 -- reference. The front-end must be conservative here and assume that
7887 -- this may happen with any array or record type. On the other hand, we
7888 -- cannot create temporaries for all expressions for which this
7889 -- condition is true, for various reasons that might require clearing up
7890 -- ??? For example, discriminant references that appear out of place, or
7891 -- spurious type errors with class-wide expressions. As a result, we
7892 -- limit the transformation to loop bounds, which is so far the only
7893 -- case that requires it.
7894
7895 -----------------------------
7896 -- Safe_Prefixed_Reference --
7897 -----------------------------
7898
7899 function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
7900 begin
7901 -- If prefix is not side effect free, definitely not safe
7902
7903 if not Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref) then
7904 return False;
7905
7906 -- If the prefix is of an access type that is not access-to-constant,
7907 -- then this construct is a variable reference, which means it is to
7908 -- be considered to have side effects if Variable_Ref is set True.
7909
7910 elsif Is_Access_Type (Etype (Prefix (N)))
7911 and then not Is_Access_Constant (Etype (Prefix (N)))
7912 and then Variable_Ref
7913 then
7914 -- Exception is a prefix that is the result of a previous removal
7915 -- of side-effects.
7916
7917 return Is_Entity_Name (Prefix (N))
7918 and then not Comes_From_Source (Prefix (N))
7919 and then Ekind (Entity (Prefix (N))) = E_Constant
7920 and then Is_Internal_Name (Chars (Entity (Prefix (N))));
7921
7922 -- If the prefix is an explicit dereference then this construct is a
7923 -- variable reference, which means it is to be considered to have
7924 -- side effects if Variable_Ref is True.
7925
7926 -- We do NOT exclude dereferences of access-to-constant types because
7927 -- we handle them as constant view of variables.
7928
7929 elsif Nkind (Prefix (N)) = N_Explicit_Dereference
7930 and then Variable_Ref
7931 then
7932 return False;
7933
7934 -- Note: The following test is the simplest way of solving a complex
7935 -- problem uncovered by the following test (Side effect on loop bound
7936 -- that is a subcomponent of a global variable:
7937
7938 -- with Text_Io; use Text_Io;
7939 -- procedure Tloop is
7940 -- type X is
7941 -- record
7942 -- V : Natural := 4;
7943 -- S : String (1..5) := (others => 'a');
7944 -- end record;
7945 -- X1 : X;
7946
7947 -- procedure Modi;
7948
7949 -- generic
7950 -- with procedure Action;
7951 -- procedure Loop_G (Arg : X; Msg : String)
7952
7953 -- procedure Loop_G (Arg : X; Msg : String) is
7954 -- begin
7955 -- Put_Line ("begin loop_g " & Msg & " will loop till: "
7956 -- & Natural'Image (Arg.V));
7957 -- for Index in 1 .. Arg.V loop
7958 -- Text_Io.Put_Line
7959 -- (Natural'Image (Index) & " " & Arg.S (Index));
7960 -- if Index > 2 then
7961 -- Modi;
7962 -- end if;
7963 -- end loop;
7964 -- Put_Line ("end loop_g " & Msg);
7965 -- end;
7966
7967 -- procedure Loop1 is new Loop_G (Modi);
7968 -- procedure Modi is
7969 -- begin
7970 -- X1.V := 1;
7971 -- Loop1 (X1, "from modi");
7972 -- end;
7973 --
7974 -- begin
7975 -- Loop1 (X1, "initial");
7976 -- end;
7977
7978 -- The output of the above program should be:
7979
7980 -- begin loop_g initial will loop till: 4
7981 -- 1 a
7982 -- 2 a
7983 -- 3 a
7984 -- begin loop_g from modi will loop till: 1
7985 -- 1 a
7986 -- end loop_g from modi
7987 -- 4 a
7988 -- begin loop_g from modi will loop till: 1
7989 -- 1 a
7990 -- end loop_g from modi
7991 -- end loop_g initial
7992
7993 -- If a loop bound is a subcomponent of a global variable, a
7994 -- modification of that variable within the loop may incorrectly
7995 -- affect the execution of the loop.
7996
7997 elsif Nkind (Parent (Parent (N))) = N_Loop_Parameter_Specification
7998 and then Within_In_Parameter (Prefix (N))
7999 and then Variable_Ref
8000 then
8001 return False;
8002
8003 -- All other cases are side effect free
8004
8005 else
8006 return True;
8007 end if;
8008 end Safe_Prefixed_Reference;
8009
8010 -------------------------
8011 -- Within_In_Parameter --
8012 -------------------------
8013
8014 function Within_In_Parameter (N : Node_Id) return Boolean is
8015 begin
8016 if not Comes_From_Source (N) then
8017 return False;
8018
8019 elsif Is_Entity_Name (N) then
8020 return Ekind (Entity (N)) = E_In_Parameter;
8021
8022 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
8023 return Within_In_Parameter (Prefix (N));
8024
8025 else
8026 return False;
8027 end if;
8028 end Within_In_Parameter;
8029
8030 -- Start of processing for Side_Effect_Free
8031
8032 begin
8033 -- Note on checks that could raise Constraint_Error. Strictly, if we
8034 -- take advantage of 11.6, these checks do not count as side effects.
8035 -- However, we would prefer to consider that they are side effects,
8036 -- since the backend CSE does not work very well on expressions which
8037 -- can raise Constraint_Error. On the other hand if we don't consider
8038 -- them to be side effect free, then we get some awkward expansions
8039 -- in -gnato mode, resulting in code insertions at a point where we
8040 -- do not have a clear model for performing the insertions.
8041
8042 -- Special handling for entity names
8043
8044 if Is_Entity_Name (N) then
8045
8046 -- Variables are considered to be a side effect if Variable_Ref
8047 -- is set or if we have a volatile reference and Name_Req is off.
8048 -- If Name_Req is True then we can't help returning a name which
8049 -- effectively allows multiple references in any case.
8050
8051 if Is_Variable (N, Use_Original_Node => False) then
8052 return not Variable_Ref
8053 and then (not Is_Volatile_Reference (N) or else Name_Req);
8054
8055 -- Any other entity (e.g. a subtype name) is definitely side
8056 -- effect free.
8057
8058 else
8059 return True;
8060 end if;
8061
8062 -- A value known at compile time is always side effect free
8063
8064 elsif Compile_Time_Known_Value (N) then
8065 return True;
8066
8067 -- A variable renaming is not side-effect free, because the renaming
8068 -- will function like a macro in the front-end in some cases, and an
8069 -- assignment can modify the component designated by N, so we need to
8070 -- create a temporary for it.
8071
8072 -- The guard testing for Entity being present is needed at least in
8073 -- the case of rewritten predicate expressions, and may well also be
8074 -- appropriate elsewhere. Obviously we can't go testing the entity
8075 -- field if it does not exist, so it's reasonable to say that this is
8076 -- not the renaming case if it does not exist.
8077
8078 elsif Is_Entity_Name (Original_Node (N))
8079 and then Present (Entity (Original_Node (N)))
8080 and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
8081 and then Ekind (Entity (Original_Node (N))) /= E_Constant
8082 then
8083 declare
8084 RO : constant Node_Id :=
8085 Renamed_Object (Entity (Original_Node (N)));
8086
8087 begin
8088 -- If the renamed object is an indexed component, or an
8089 -- explicit dereference, then the designated object could
8090 -- be modified by an assignment.
8091
8092 if Nkind_In (RO, N_Indexed_Component,
8093 N_Explicit_Dereference)
8094 then
8095 return False;
8096
8097 -- A selected component must have a safe prefix
8098
8099 elsif Nkind (RO) = N_Selected_Component then
8100 return Safe_Prefixed_Reference (RO);
8101
8102 -- In all other cases, designated object cannot be changed so
8103 -- we are side effect free.
8104
8105 else
8106 return True;
8107 end if;
8108 end;
8109
8110 -- Remove_Side_Effects generates an object renaming declaration to
8111 -- capture the expression of a class-wide expression. In VM targets
8112 -- the frontend performs no expansion for dispatching calls to
8113 -- class- wide types since they are handled by the VM. Hence, we must
8114 -- locate here if this node corresponds to a previous invocation of
8115 -- Remove_Side_Effects to avoid a never ending loop in the frontend.
8116
8117 elsif VM_Target /= No_VM
8118 and then not Comes_From_Source (N)
8119 and then Nkind (Parent (N)) = N_Object_Renaming_Declaration
8120 and then Is_Class_Wide_Type (Typ)
8121 then
8122 return True;
8123 end if;
8124
8125 -- For other than entity names and compile time known values,
8126 -- check the node kind for special processing.
8127
8128 case Nkind (N) is
8129
8130 -- An attribute reference is side effect free if its expressions
8131 -- are side effect free and its prefix is side effect free or
8132 -- is an entity reference.
8133
8134 -- Is this right? what about x'first where x is a variable???
8135
8136 when N_Attribute_Reference =>
8137 return Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
8138 and then Attribute_Name (N) /= Name_Input
8139 and then (Is_Entity_Name (Prefix (N))
8140 or else Side_Effect_Free
8141 (Prefix (N), Name_Req, Variable_Ref));
8142
8143 -- A binary operator is side effect free if and both operands are
8144 -- side effect free. For this purpose binary operators include
8145 -- membership tests and short circuit forms.
8146
8147 when N_Binary_Op | N_Membership_Test | N_Short_Circuit =>
8148 return Side_Effect_Free (Left_Opnd (N), Name_Req, Variable_Ref)
8149 and then
8150 Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
8151
8152 -- An explicit dereference is side effect free only if it is
8153 -- a side effect free prefixed reference.
8154
8155 when N_Explicit_Dereference =>
8156 return Safe_Prefixed_Reference (N);
8157
8158 -- An expression with action is side effect free if its expression
8159 -- is side effect free and it has no actions.
8160
8161 when N_Expression_With_Actions =>
8162 return Is_Empty_List (Actions (N))
8163 and then
8164 Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8165
8166 -- A call to _rep_to_pos is side effect free, since we generate
8167 -- this pure function call ourselves. Moreover it is critically
8168 -- important to make this exception, since otherwise we can have
8169 -- discriminants in array components which don't look side effect
8170 -- free in the case of an array whose index type is an enumeration
8171 -- type with an enumeration rep clause.
8172
8173 -- All other function calls are not side effect free
8174
8175 when N_Function_Call =>
8176 return Nkind (Name (N)) = N_Identifier
8177 and then Is_TSS (Name (N), TSS_Rep_To_Pos)
8178 and then
8179 Side_Effect_Free
8180 (First (Parameter_Associations (N)), Name_Req, Variable_Ref);
8181
8182 -- An IF expression is side effect free if it's of a scalar type, and
8183 -- all its components are all side effect free (conditions and then
8184 -- actions and else actions). We restrict to scalar types, since it
8185 -- is annoying to deal with things like (if A then B else C)'First
8186 -- where the type involved is a string type.
8187
8188 when N_If_Expression =>
8189 return Is_Scalar_Type (Typ)
8190 and then
8191 Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref);
8192
8193 -- An indexed component is side effect free if it is a side
8194 -- effect free prefixed reference and all the indexing
8195 -- expressions are side effect free.
8196
8197 when N_Indexed_Component =>
8198 return Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
8199 and then Safe_Prefixed_Reference (N);
8200
8201 -- A type qualification is side effect free if the expression
8202 -- is side effect free.
8203
8204 when N_Qualified_Expression =>
8205 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8206
8207 -- A selected component is side effect free only if it is a side
8208 -- effect free prefixed reference. If it designates a component
8209 -- with a rep. clause it must be treated has having a potential
8210 -- side effect, because it may be modified through a renaming, and
8211 -- a subsequent use of the renaming as a macro will yield the
8212 -- wrong value. This complex interaction between renaming and
8213 -- removing side effects is a reminder that the latter has become
8214 -- a headache to maintain, and that it should be removed in favor
8215 -- of the gcc mechanism to capture values ???
8216
8217 when N_Selected_Component =>
8218 if Nkind (Parent (N)) = N_Explicit_Dereference
8219 and then Has_Non_Standard_Rep (Designated_Type (Typ))
8220 then
8221 return False;
8222 else
8223 return Safe_Prefixed_Reference (N);
8224 end if;
8225
8226 -- A range is side effect free if the bounds are side effect free
8227
8228 when N_Range =>
8229 return Side_Effect_Free (Low_Bound (N), Name_Req, Variable_Ref)
8230 and then
8231 Side_Effect_Free (High_Bound (N), Name_Req, Variable_Ref);
8232
8233 -- A slice is side effect free if it is a side effect free
8234 -- prefixed reference and the bounds are side effect free.
8235
8236 when N_Slice =>
8237 return Side_Effect_Free
8238 (Discrete_Range (N), Name_Req, Variable_Ref)
8239 and then Safe_Prefixed_Reference (N);
8240
8241 -- A type conversion is side effect free if the expression to be
8242 -- converted is side effect free.
8243
8244 when N_Type_Conversion =>
8245 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8246
8247 -- A unary operator is side effect free if the operand
8248 -- is side effect free.
8249
8250 when N_Unary_Op =>
8251 return Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
8252
8253 -- An unchecked type conversion is side effect free only if it
8254 -- is safe and its argument is side effect free.
8255
8256 when N_Unchecked_Type_Conversion =>
8257 return Safe_Unchecked_Type_Conversion (N)
8258 and then
8259 Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8260
8261 -- An unchecked expression is side effect free if its expression
8262 -- is side effect free.
8263
8264 when N_Unchecked_Expression =>
8265 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8266
8267 -- A literal is side effect free
8268
8269 when N_Character_Literal |
8270 N_Integer_Literal |
8271 N_Real_Literal |
8272 N_String_Literal =>
8273 return True;
8274
8275 -- We consider that anything else has side effects. This is a bit
8276 -- crude, but we are pretty close for most common cases, and we
8277 -- are certainly correct (i.e. we never return True when the
8278 -- answer should be False).
8279
8280 when others =>
8281 return False;
8282 end case;
8283 end Side_Effect_Free;
8284
8285 -- A list is side effect free if all elements of the list are side
8286 -- effect free.
8287
8288 function Side_Effect_Free
8289 (L : List_Id;
8290 Name_Req : Boolean := False;
8291 Variable_Ref : Boolean := False) return Boolean
8292 is
8293 N : Node_Id;
8294
8295 begin
8296 if L = No_List or else L = Error_List then
8297 return True;
8298
8299 else
8300 N := First (L);
8301 while Present (N) loop
8302 if not Side_Effect_Free (N, Name_Req, Variable_Ref) then
8303 return False;
8304 else
8305 Next (N);
8306 end if;
8307 end loop;
8308
8309 return True;
8310 end if;
8311 end Side_Effect_Free;
8312
8313 ----------------------------------
8314 -- Silly_Boolean_Array_Not_Test --
8315 ----------------------------------
8316
8317 -- This procedure implements an odd and silly test. We explicitly check
8318 -- for the case where the 'First of the component type is equal to the
8319 -- 'Last of this component type, and if this is the case, we make sure
8320 -- that constraint error is raised. The reason is that the NOT is bound
8321 -- to cause CE in this case, and we will not otherwise catch it.
8322
8323 -- No such check is required for AND and OR, since for both these cases
8324 -- False op False = False, and True op True = True. For the XOR case,
8325 -- see Silly_Boolean_Array_Xor_Test.
8326
8327 -- Believe it or not, this was reported as a bug. Note that nearly always,
8328 -- the test will evaluate statically to False, so the code will be
8329 -- statically removed, and no extra overhead caused.
8330
8331 procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
8332 Loc : constant Source_Ptr := Sloc (N);
8333 CT : constant Entity_Id := Component_Type (T);
8334
8335 begin
8336 -- The check we install is
8337
8338 -- constraint_error when
8339 -- component_type'first = component_type'last
8340 -- and then array_type'Length /= 0)
8341
8342 -- We need the last guard because we don't want to raise CE for empty
8343 -- arrays since no out of range values result. (Empty arrays with a
8344 -- component type of True .. True -- very useful -- even the ACATS
8345 -- does not test that marginal case).
8346
8347 Insert_Action (N,
8348 Make_Raise_Constraint_Error (Loc,
8349 Condition =>
8350 Make_And_Then (Loc,
8351 Left_Opnd =>
8352 Make_Op_Eq (Loc,
8353 Left_Opnd =>
8354 Make_Attribute_Reference (Loc,
8355 Prefix => New_Occurrence_Of (CT, Loc),
8356 Attribute_Name => Name_First),
8357
8358 Right_Opnd =>
8359 Make_Attribute_Reference (Loc,
8360 Prefix => New_Occurrence_Of (CT, Loc),
8361 Attribute_Name => Name_Last)),
8362
8363 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
8364 Reason => CE_Range_Check_Failed));
8365 end Silly_Boolean_Array_Not_Test;
8366
8367 ----------------------------------
8368 -- Silly_Boolean_Array_Xor_Test --
8369 ----------------------------------
8370
8371 -- This procedure implements an odd and silly test. We explicitly check
8372 -- for the XOR case where the component type is True .. True, since this
8373 -- will raise constraint error. A special check is required since CE
8374 -- will not be generated otherwise (cf Expand_Packed_Not).
8375
8376 -- No such check is required for AND and OR, since for both these cases
8377 -- False op False = False, and True op True = True, and no check is
8378 -- required for the case of False .. False, since False xor False = False.
8379 -- See also Silly_Boolean_Array_Not_Test
8380
8381 procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
8382 Loc : constant Source_Ptr := Sloc (N);
8383 CT : constant Entity_Id := Component_Type (T);
8384
8385 begin
8386 -- The check we install is
8387
8388 -- constraint_error when
8389 -- Boolean (component_type'First)
8390 -- and then Boolean (component_type'Last)
8391 -- and then array_type'Length /= 0)
8392
8393 -- We need the last guard because we don't want to raise CE for empty
8394 -- arrays since no out of range values result (Empty arrays with a
8395 -- component type of True .. True -- very useful -- even the ACATS
8396 -- does not test that marginal case).
8397
8398 Insert_Action (N,
8399 Make_Raise_Constraint_Error (Loc,
8400 Condition =>
8401 Make_And_Then (Loc,
8402 Left_Opnd =>
8403 Make_And_Then (Loc,
8404 Left_Opnd =>
8405 Convert_To (Standard_Boolean,
8406 Make_Attribute_Reference (Loc,
8407 Prefix => New_Occurrence_Of (CT, Loc),
8408 Attribute_Name => Name_First)),
8409
8410 Right_Opnd =>
8411 Convert_To (Standard_Boolean,
8412 Make_Attribute_Reference (Loc,
8413 Prefix => New_Occurrence_Of (CT, Loc),
8414 Attribute_Name => Name_Last))),
8415
8416 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
8417 Reason => CE_Range_Check_Failed));
8418 end Silly_Boolean_Array_Xor_Test;
8419
8420 --------------------------
8421 -- Target_Has_Fixed_Ops --
8422 --------------------------
8423
8424 Integer_Sized_Small : Ureal;
8425 -- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
8426 -- called (we don't want to compute it more than once).
8427
8428 Long_Integer_Sized_Small : Ureal;
8429 -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
8430 -- is called (we don't want to compute it more than once)
8431
8432 First_Time_For_THFO : Boolean := True;
8433 -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
8434
8435 function Target_Has_Fixed_Ops
8436 (Left_Typ : Entity_Id;
8437 Right_Typ : Entity_Id;
8438 Result_Typ : Entity_Id) return Boolean
8439 is
8440 function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
8441 -- Return True if the given type is a fixed-point type with a small
8442 -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
8443 -- an absolute value less than 1.0. This is currently limited to
8444 -- fixed-point types that map to Integer or Long_Integer.
8445
8446 ------------------------
8447 -- Is_Fractional_Type --
8448 ------------------------
8449
8450 function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
8451 begin
8452 if Esize (Typ) = Standard_Integer_Size then
8453 return Small_Value (Typ) = Integer_Sized_Small;
8454
8455 elsif Esize (Typ) = Standard_Long_Integer_Size then
8456 return Small_Value (Typ) = Long_Integer_Sized_Small;
8457
8458 else
8459 return False;
8460 end if;
8461 end Is_Fractional_Type;
8462
8463 -- Start of processing for Target_Has_Fixed_Ops
8464
8465 begin
8466 -- Return False if Fractional_Fixed_Ops_On_Target is false
8467
8468 if not Fractional_Fixed_Ops_On_Target then
8469 return False;
8470 end if;
8471
8472 -- Here the target has Fractional_Fixed_Ops, if first time, compute
8473 -- standard constants used by Is_Fractional_Type.
8474
8475 if First_Time_For_THFO then
8476 First_Time_For_THFO := False;
8477
8478 Integer_Sized_Small :=
8479 UR_From_Components
8480 (Num => Uint_1,
8481 Den => UI_From_Int (Standard_Integer_Size - 1),
8482 Rbase => 2);
8483
8484 Long_Integer_Sized_Small :=
8485 UR_From_Components
8486 (Num => Uint_1,
8487 Den => UI_From_Int (Standard_Long_Integer_Size - 1),
8488 Rbase => 2);
8489 end if;
8490
8491 -- Return True if target supports fixed-by-fixed multiply/divide for
8492 -- fractional fixed-point types (see Is_Fractional_Type) and the operand
8493 -- and result types are equivalent fractional types.
8494
8495 return Is_Fractional_Type (Base_Type (Left_Typ))
8496 and then Is_Fractional_Type (Base_Type (Right_Typ))
8497 and then Is_Fractional_Type (Base_Type (Result_Typ))
8498 and then Esize (Left_Typ) = Esize (Right_Typ)
8499 and then Esize (Left_Typ) = Esize (Result_Typ);
8500 end Target_Has_Fixed_Ops;
8501
8502 ------------------------------------------
8503 -- Type_May_Have_Bit_Aligned_Components --
8504 ------------------------------------------
8505
8506 function Type_May_Have_Bit_Aligned_Components
8507 (Typ : Entity_Id) return Boolean
8508 is
8509 begin
8510 -- Array type, check component type
8511
8512 if Is_Array_Type (Typ) then
8513 return
8514 Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
8515
8516 -- Record type, check components
8517
8518 elsif Is_Record_Type (Typ) then
8519 declare
8520 E : Entity_Id;
8521
8522 begin
8523 E := First_Component_Or_Discriminant (Typ);
8524 while Present (E) loop
8525 if Component_May_Be_Bit_Aligned (E)
8526 or else Type_May_Have_Bit_Aligned_Components (Etype (E))
8527 then
8528 return True;
8529 end if;
8530
8531 Next_Component_Or_Discriminant (E);
8532 end loop;
8533
8534 return False;
8535 end;
8536
8537 -- Type other than array or record is always OK
8538
8539 else
8540 return False;
8541 end if;
8542 end Type_May_Have_Bit_Aligned_Components;
8543
8544 ----------------------------------
8545 -- Within_Case_Or_If_Expression --
8546 ----------------------------------
8547
8548 function Within_Case_Or_If_Expression (N : Node_Id) return Boolean is
8549 Par : Node_Id;
8550
8551 begin
8552 -- Locate an enclosing case or if expression. Note that these constructs
8553 -- can be expanded into Expression_With_Actions, hence the test of the
8554 -- original node.
8555
8556 Par := Parent (N);
8557 while Present (Par) loop
8558 if Nkind_In (Original_Node (Par), N_Case_Expression,
8559 N_If_Expression)
8560 then
8561 return True;
8562
8563 -- Prevent the search from going too far
8564
8565 elsif Is_Body_Or_Package_Declaration (Par) then
8566 return False;
8567 end if;
8568
8569 Par := Parent (Par);
8570 end loop;
8571
8572 return False;
8573 end Within_Case_Or_If_Expression;
8574
8575 --------------------------------
8576 -- Within_Internal_Subprogram --
8577 --------------------------------
8578
8579 function Within_Internal_Subprogram return Boolean is
8580 S : Entity_Id;
8581
8582 begin
8583 S := Current_Scope;
8584 while Present (S) and then not Is_Subprogram (S) loop
8585 S := Scope (S);
8586 end loop;
8587
8588 return Present (S)
8589 and then Get_TSS_Name (S) /= TSS_Null
8590 and then not Is_Predicate_Function (S);
8591 end Within_Internal_Subprogram;
8592
8593 ----------------------------
8594 -- Wrap_Cleanup_Procedure --
8595 ----------------------------
8596
8597 procedure Wrap_Cleanup_Procedure (N : Node_Id) is
8598 Loc : constant Source_Ptr := Sloc (N);
8599 Stseq : constant Node_Id := Handled_Statement_Sequence (N);
8600 Stmts : constant List_Id := Statements (Stseq);
8601
8602 begin
8603 if Abort_Allowed then
8604 Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
8605 Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
8606 end if;
8607 end Wrap_Cleanup_Procedure;
8608
8609 end Exp_Util;