6c90bd39537a09bdc706d2c2b4ff26823b74c957
[gcc.git] / gcc / ada / freeze.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Pakd; use Exp_Pakd;
38 with Exp_Util; use Exp_Util;
39 with Exp_Tss; use Exp_Tss;
40 with Fname; use Fname;
41 with Ghost; use Ghost;
42 with Layout; use Layout;
43 with Lib; use Lib;
44 with Namet; use Namet;
45 with Nlists; use Nlists;
46 with Nmake; use Nmake;
47 with Opt; use Opt;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Cat; use Sem_Cat;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch7; use Sem_Ch7;
56 with Sem_Ch8; use Sem_Ch8;
57 with Sem_Ch13; use Sem_Ch13;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Mech; use Sem_Mech;
60 with Sem_Prag; use Sem_Prag;
61 with Sem_Res; use Sem_Res;
62 with Sem_Util; use Sem_Util;
63 with Sinfo; use Sinfo;
64 with Snames; use Snames;
65 with Stand; use Stand;
66 with Targparm; use Targparm;
67 with Tbuild; use Tbuild;
68 with Ttypes; use Ttypes;
69 with Uintp; use Uintp;
70 with Urealp; use Urealp;
71 with Warnsw; use Warnsw;
72
73 package body Freeze is
74
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
78
79 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
80 -- Typ is a type that is being frozen. If no size clause is given,
81 -- but a default Esize has been computed, then this default Esize is
82 -- adjusted up if necessary to be consistent with a given alignment,
83 -- but never to a value greater than Long_Long_Integer'Size. This
84 -- is used for all discrete types and for fixed-point types.
85
86 procedure Build_And_Analyze_Renamed_Body
87 (Decl : Node_Id;
88 New_S : Entity_Id;
89 After : in out Node_Id);
90 -- Build body for a renaming declaration, insert in tree and analyze
91
92 procedure Check_Address_Clause (E : Entity_Id);
93 -- Apply legality checks to address clauses for object declarations,
94 -- at the point the object is frozen. Also ensure any initialization is
95 -- performed only after the object has been frozen.
96
97 procedure Check_Component_Storage_Order
98 (Encl_Type : Entity_Id;
99 Comp : Entity_Id;
100 ADC : Node_Id;
101 Comp_ADC_Present : out Boolean);
102 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
103 -- clause, verify that the component type has an explicit and compatible
104 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
105 -- entity of the component under consideration. For an Encl_Type that
106 -- does not have a Scalar_Storage_Order attribute definition clause,
107 -- verify that the component also does not have such a clause.
108 -- ADC is the attribute definition clause if present (or Empty). On return,
109 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
110 -- attribute definition clause.
111
112 procedure Check_Debug_Info_Needed (T : Entity_Id);
113 -- As each entity is frozen, this routine is called to deal with the
114 -- setting of Debug_Info_Needed for the entity. This flag is set if
115 -- the entity comes from source, or if we are in Debug_Generated_Code
116 -- mode or if the -gnatdV debug flag is set. However, it never sets
117 -- the flag if Debug_Info_Off is set. This procedure also ensures that
118 -- subsidiary entities have the flag set as required.
119
120 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
121 -- When an expression function is frozen by a use of it, the expression
122 -- itself is frozen. Check that the expression does not include references
123 -- to deferred constants without completion. We report this at the freeze
124 -- point of the function, to provide a better error message.
125 --
126 -- In most cases the expression itself is frozen by the time the function
127 -- itself is frozen, because the formals will be frozen by then. However,
128 -- Attribute references to outer types are freeze points for those types;
129 -- this routine generates the required freeze nodes for them.
130
131 procedure Check_Inherited_Conditions (R : Entity_Id);
132 -- For a tagged derived type, create wrappers for inherited operations
133 -- that have a class-wide condition, so it can be properly rewritten if
134 -- it involves calls to other overriding primitives.
135
136 procedure Check_Strict_Alignment (E : Entity_Id);
137 -- E is a base type. If E is tagged or has a component that is aliased
138 -- or tagged or contains something this is aliased or tagged, set
139 -- Strict_Alignment.
140
141 procedure Check_Unsigned_Type (E : Entity_Id);
142 pragma Inline (Check_Unsigned_Type);
143 -- If E is a fixed-point or discrete type, then all the necessary work
144 -- to freeze it is completed except for possible setting of the flag
145 -- Is_Unsigned_Type, which is done by this procedure. The call has no
146 -- effect if the entity E is not a discrete or fixed-point type.
147
148 procedure Freeze_And_Append
149 (Ent : Entity_Id;
150 N : Node_Id;
151 Result : in out List_Id);
152 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
153 -- nodes to Result, modifying Result from No_List if necessary. N has
154 -- the same usage as in Freeze_Entity.
155
156 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
157 -- Freeze enumeration type. The Esize field is set as processing
158 -- proceeds (i.e. set by default when the type is declared and then
159 -- adjusted by rep clauses. What this procedure does is to make sure
160 -- that if a foreign convention is specified, and no specific size
161 -- is given, then the size must be at least Integer'Size.
162
163 procedure Freeze_Static_Object (E : Entity_Id);
164 -- If an object is frozen which has Is_Statically_Allocated set, then
165 -- all referenced types must also be marked with this flag. This routine
166 -- is in charge of meeting this requirement for the object entity E.
167
168 procedure Freeze_Subprogram (E : Entity_Id);
169 -- Perform freezing actions for a subprogram (create extra formals,
170 -- and set proper default mechanism values). Note that this routine
171 -- is not called for internal subprograms, for which neither of these
172 -- actions is needed (or desirable, we do not want for example to have
173 -- these extra formals present in initialization procedures, where they
174 -- would serve no purpose). In this call E is either a subprogram or
175 -- a subprogram type (i.e. an access to a subprogram).
176
177 function Is_Fully_Defined (T : Entity_Id) return Boolean;
178 -- True if T is not private and has no private components, or has a full
179 -- view. Used to determine whether the designated type of an access type
180 -- should be frozen when the access type is frozen. This is done when an
181 -- allocator is frozen, or an expression that may involve attributes of
182 -- the designated type. Otherwise freezing the access type does not freeze
183 -- the designated type.
184
185 procedure Process_Default_Expressions
186 (E : Entity_Id;
187 After : in out Node_Id);
188 -- This procedure is called for each subprogram to complete processing of
189 -- default expressions at the point where all types are known to be frozen.
190 -- The expressions must be analyzed in full, to make sure that all error
191 -- processing is done (they have only been pre-analyzed). If the expression
192 -- is not an entity or literal, its analysis may generate code which must
193 -- not be executed. In that case we build a function body to hold that
194 -- code. This wrapper function serves no other purpose (it used to be
195 -- called to evaluate the default, but now the default is inlined at each
196 -- point of call).
197
198 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
199 -- Typ is a record or array type that is being frozen. This routine sets
200 -- the default component alignment from the scope stack values if the
201 -- alignment is otherwise not specified.
202
203 procedure Set_SSO_From_Default (T : Entity_Id);
204 -- T is a record or array type that is being frozen. If it is a base type,
205 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
206 -- will be set appropriately. Note that an explicit occurrence of aspect
207 -- Scalar_Storage_Order or an explicit setting of this aspect with an
208 -- attribute definition clause occurs, then these two flags are reset in
209 -- any case, so call will have no effect.
210
211 procedure Undelay_Type (T : Entity_Id);
212 -- T is a type of a component that we know to be an Itype. We don't want
213 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
214 -- Full_View or Corresponding_Record_Type.
215
216 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id);
217 -- Expr is the expression for an address clause for entity Nam whose type
218 -- is Typ. If Typ has a default initialization, and there is no explicit
219 -- initialization in the source declaration, check whether the address
220 -- clause might cause overlaying of an entity, and emit a warning on the
221 -- side effect that the initialization will cause.
222
223 -------------------------------
224 -- Adjust_Esize_For_Alignment --
225 -------------------------------
226
227 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
228 Align : Uint;
229
230 begin
231 if Known_Esize (Typ) and then Known_Alignment (Typ) then
232 Align := Alignment_In_Bits (Typ);
233
234 if Align > Esize (Typ)
235 and then Align <= Standard_Long_Long_Integer_Size
236 then
237 Set_Esize (Typ, Align);
238 end if;
239 end if;
240 end Adjust_Esize_For_Alignment;
241
242 ------------------------------------
243 -- Build_And_Analyze_Renamed_Body --
244 ------------------------------------
245
246 procedure Build_And_Analyze_Renamed_Body
247 (Decl : Node_Id;
248 New_S : Entity_Id;
249 After : in out Node_Id)
250 is
251 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
252 Ent : constant Entity_Id := Defining_Entity (Decl);
253 Body_Node : Node_Id;
254 Renamed_Subp : Entity_Id;
255
256 begin
257 -- If the renamed subprogram is intrinsic, there is no need for a
258 -- wrapper body: we set the alias that will be called and expanded which
259 -- completes the declaration. This transformation is only legal if the
260 -- renamed entity has already been elaborated.
261
262 -- Note that it is legal for a renaming_as_body to rename an intrinsic
263 -- subprogram, as long as the renaming occurs before the new entity
264 -- is frozen (RM 8.5.4 (5)).
265
266 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
267 and then Is_Entity_Name (Name (Body_Decl))
268 then
269 Renamed_Subp := Entity (Name (Body_Decl));
270 else
271 Renamed_Subp := Empty;
272 end if;
273
274 if Present (Renamed_Subp)
275 and then Is_Intrinsic_Subprogram (Renamed_Subp)
276 and then
277 (not In_Same_Source_Unit (Renamed_Subp, Ent)
278 or else Sloc (Renamed_Subp) < Sloc (Ent))
279
280 -- We can make the renaming entity intrinsic if the renamed function
281 -- has an interface name, or if it is one of the shift/rotate
282 -- operations known to the compiler.
283
284 and then
285 (Present (Interface_Name (Renamed_Subp))
286 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
287 Name_Rotate_Right,
288 Name_Shift_Left,
289 Name_Shift_Right,
290 Name_Shift_Right_Arithmetic))
291 then
292 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
293
294 if Present (Alias (Renamed_Subp)) then
295 Set_Alias (Ent, Alias (Renamed_Subp));
296 else
297 Set_Alias (Ent, Renamed_Subp);
298 end if;
299
300 Set_Is_Intrinsic_Subprogram (Ent);
301 Set_Has_Completion (Ent);
302
303 else
304 Body_Node := Build_Renamed_Body (Decl, New_S);
305 Insert_After (After, Body_Node);
306 Mark_Rewrite_Insertion (Body_Node);
307 Analyze (Body_Node);
308 After := Body_Node;
309 end if;
310 end Build_And_Analyze_Renamed_Body;
311
312 ------------------------
313 -- Build_Renamed_Body --
314 ------------------------
315
316 function Build_Renamed_Body
317 (Decl : Node_Id;
318 New_S : Entity_Id) return Node_Id
319 is
320 Loc : constant Source_Ptr := Sloc (New_S);
321 -- We use for the source location of the renamed body, the location of
322 -- the spec entity. It might seem more natural to use the location of
323 -- the renaming declaration itself, but that would be wrong, since then
324 -- the body we create would look as though it was created far too late,
325 -- and this could cause problems with elaboration order analysis,
326 -- particularly in connection with instantiations.
327
328 N : constant Node_Id := Unit_Declaration_Node (New_S);
329 Nam : constant Node_Id := Name (N);
330 Old_S : Entity_Id;
331 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
332 Actuals : List_Id := No_List;
333 Call_Node : Node_Id;
334 Call_Name : Node_Id;
335 Body_Node : Node_Id;
336 Formal : Entity_Id;
337 O_Formal : Entity_Id;
338 Param_Spec : Node_Id;
339
340 Pref : Node_Id := Empty;
341 -- If the renamed entity is a primitive operation given in prefix form,
342 -- the prefix is the target object and it has to be added as the first
343 -- actual in the generated call.
344
345 begin
346 -- Determine the entity being renamed, which is the target of the call
347 -- statement. If the name is an explicit dereference, this is a renaming
348 -- of a subprogram type rather than a subprogram. The name itself is
349 -- fully analyzed.
350
351 if Nkind (Nam) = N_Selected_Component then
352 Old_S := Entity (Selector_Name (Nam));
353
354 elsif Nkind (Nam) = N_Explicit_Dereference then
355 Old_S := Etype (Nam);
356
357 elsif Nkind (Nam) = N_Indexed_Component then
358 if Is_Entity_Name (Prefix (Nam)) then
359 Old_S := Entity (Prefix (Nam));
360 else
361 Old_S := Entity (Selector_Name (Prefix (Nam)));
362 end if;
363
364 elsif Nkind (Nam) = N_Character_Literal then
365 Old_S := Etype (New_S);
366
367 else
368 Old_S := Entity (Nam);
369 end if;
370
371 if Is_Entity_Name (Nam) then
372
373 -- If the renamed entity is a predefined operator, retain full name
374 -- to ensure its visibility.
375
376 if Ekind (Old_S) = E_Operator
377 and then Nkind (Nam) = N_Expanded_Name
378 then
379 Call_Name := New_Copy (Name (N));
380 else
381 Call_Name := New_Occurrence_Of (Old_S, Loc);
382 end if;
383
384 else
385 if Nkind (Nam) = N_Selected_Component
386 and then Present (First_Formal (Old_S))
387 and then
388 (Is_Controlling_Formal (First_Formal (Old_S))
389 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
390 then
391
392 -- Retrieve the target object, to be added as a first actual
393 -- in the call.
394
395 Call_Name := New_Occurrence_Of (Old_S, Loc);
396 Pref := Prefix (Nam);
397
398 else
399 Call_Name := New_Copy (Name (N));
400 end if;
401
402 -- Original name may have been overloaded, but is fully resolved now
403
404 Set_Is_Overloaded (Call_Name, False);
405 end if;
406
407 -- For simple renamings, subsequent calls can be expanded directly as
408 -- calls to the renamed entity. The body must be generated in any case
409 -- for calls that may appear elsewhere. This is not done in the case
410 -- where the subprogram is an instantiation because the actual proper
411 -- body has not been built yet.
412
413 if Ekind_In (Old_S, E_Function, E_Procedure)
414 and then Nkind (Decl) = N_Subprogram_Declaration
415 and then not Is_Generic_Instance (Old_S)
416 then
417 Set_Body_To_Inline (Decl, Old_S);
418 end if;
419
420 -- Check whether the return type is a limited view. If the subprogram
421 -- is already frozen the generated body may have a non-limited view
422 -- of the type, that must be used, because it is the one in the spec
423 -- of the renaming declaration.
424
425 if Ekind (Old_S) = E_Function
426 and then Is_Entity_Name (Result_Definition (Spec))
427 then
428 declare
429 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
430 begin
431 if Has_Non_Limited_View (Ret_Type) then
432 Set_Result_Definition
433 (Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
434 end if;
435 end;
436 end if;
437
438 -- The body generated for this renaming is an internal artifact, and
439 -- does not constitute a freeze point for the called entity.
440
441 Set_Must_Not_Freeze (Call_Name);
442
443 Formal := First_Formal (Defining_Entity (Decl));
444
445 if Present (Pref) then
446 declare
447 Pref_Type : constant Entity_Id := Etype (Pref);
448 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
449
450 begin
451 -- The controlling formal may be an access parameter, or the
452 -- actual may be an access value, so adjust accordingly.
453
454 if Is_Access_Type (Pref_Type)
455 and then not Is_Access_Type (Form_Type)
456 then
457 Actuals := New_List
458 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
459
460 elsif Is_Access_Type (Form_Type)
461 and then not Is_Access_Type (Pref)
462 then
463 Actuals :=
464 New_List (
465 Make_Attribute_Reference (Loc,
466 Attribute_Name => Name_Access,
467 Prefix => Relocate_Node (Pref)));
468 else
469 Actuals := New_List (Pref);
470 end if;
471 end;
472
473 elsif Present (Formal) then
474 Actuals := New_List;
475
476 else
477 Actuals := No_List;
478 end if;
479
480 if Present (Formal) then
481 while Present (Formal) loop
482 Append (New_Occurrence_Of (Formal, Loc), Actuals);
483 Next_Formal (Formal);
484 end loop;
485 end if;
486
487 -- If the renamed entity is an entry, inherit its profile. For other
488 -- renamings as bodies, both profiles must be subtype conformant, so it
489 -- is not necessary to replace the profile given in the declaration.
490 -- However, default values that are aggregates are rewritten when
491 -- partially analyzed, so we recover the original aggregate to insure
492 -- that subsequent conformity checking works. Similarly, if the default
493 -- expression was constant-folded, recover the original expression.
494
495 Formal := First_Formal (Defining_Entity (Decl));
496
497 if Present (Formal) then
498 O_Formal := First_Formal (Old_S);
499 Param_Spec := First (Parameter_Specifications (Spec));
500 while Present (Formal) loop
501 if Is_Entry (Old_S) then
502 if Nkind (Parameter_Type (Param_Spec)) /=
503 N_Access_Definition
504 then
505 Set_Etype (Formal, Etype (O_Formal));
506 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
507 end if;
508
509 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
510 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
511 Nkind (Default_Value (O_Formal))
512 then
513 Set_Expression (Param_Spec,
514 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
515 end if;
516
517 Next_Formal (Formal);
518 Next_Formal (O_Formal);
519 Next (Param_Spec);
520 end loop;
521 end if;
522
523 -- If the renamed entity is a function, the generated body contains a
524 -- return statement. Otherwise, build a procedure call. If the entity is
525 -- an entry, subsequent analysis of the call will transform it into the
526 -- proper entry or protected operation call. If the renamed entity is
527 -- a character literal, return it directly.
528
529 if Ekind (Old_S) = E_Function
530 or else Ekind (Old_S) = E_Operator
531 or else (Ekind (Old_S) = E_Subprogram_Type
532 and then Etype (Old_S) /= Standard_Void_Type)
533 then
534 Call_Node :=
535 Make_Simple_Return_Statement (Loc,
536 Expression =>
537 Make_Function_Call (Loc,
538 Name => Call_Name,
539 Parameter_Associations => Actuals));
540
541 elsif Ekind (Old_S) = E_Enumeration_Literal then
542 Call_Node :=
543 Make_Simple_Return_Statement (Loc,
544 Expression => New_Occurrence_Of (Old_S, Loc));
545
546 elsif Nkind (Nam) = N_Character_Literal then
547 Call_Node :=
548 Make_Simple_Return_Statement (Loc, Expression => Call_Name);
549
550 else
551 Call_Node :=
552 Make_Procedure_Call_Statement (Loc,
553 Name => Call_Name,
554 Parameter_Associations => Actuals);
555 end if;
556
557 -- Create entities for subprogram body and formals
558
559 Set_Defining_Unit_Name (Spec,
560 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
561
562 Param_Spec := First (Parameter_Specifications (Spec));
563 while Present (Param_Spec) loop
564 Set_Defining_Identifier (Param_Spec,
565 Make_Defining_Identifier (Loc,
566 Chars => Chars (Defining_Identifier (Param_Spec))));
567 Next (Param_Spec);
568 end loop;
569
570 Body_Node :=
571 Make_Subprogram_Body (Loc,
572 Specification => Spec,
573 Declarations => New_List,
574 Handled_Statement_Sequence =>
575 Make_Handled_Sequence_Of_Statements (Loc,
576 Statements => New_List (Call_Node)));
577
578 if Nkind (Decl) /= N_Subprogram_Declaration then
579 Rewrite (N,
580 Make_Subprogram_Declaration (Loc,
581 Specification => Specification (N)));
582 end if;
583
584 -- Link the body to the entity whose declaration it completes. If
585 -- the body is analyzed when the renamed entity is frozen, it may
586 -- be necessary to restore the proper scope (see package Exp_Ch13).
587
588 if Nkind (N) = N_Subprogram_Renaming_Declaration
589 and then Present (Corresponding_Spec (N))
590 then
591 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
592 else
593 Set_Corresponding_Spec (Body_Node, New_S);
594 end if;
595
596 return Body_Node;
597 end Build_Renamed_Body;
598
599 --------------------------
600 -- Check_Address_Clause --
601 --------------------------
602
603 procedure Check_Address_Clause (E : Entity_Id) is
604 Addr : constant Node_Id := Address_Clause (E);
605 Typ : constant Entity_Id := Etype (E);
606 Decl : Node_Id;
607 Expr : Node_Id;
608 Init : Node_Id;
609 Lhs : Node_Id;
610 Tag_Assign : Node_Id;
611
612 begin
613 if Present (Addr) then
614
615 -- For a deferred constant, the initialization value is on full view
616
617 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
618 Decl := Declaration_Node (Full_View (E));
619 else
620 Decl := Declaration_Node (E);
621 end if;
622
623 Expr := Expression (Addr);
624
625 if Needs_Constant_Address (Decl, Typ) then
626 Check_Constant_Address_Clause (Expr, E);
627
628 -- Has_Delayed_Freeze was set on E when the address clause was
629 -- analyzed, and must remain set because we want the address
630 -- clause to be elaborated only after any entity it references
631 -- has been elaborated.
632 end if;
633
634 -- If Rep_Clauses are to be ignored, remove address clause from
635 -- list attached to entity, because it may be illegal for gigi,
636 -- for example by breaking order of elaboration..
637
638 if Ignore_Rep_Clauses then
639 declare
640 Rep : Node_Id;
641
642 begin
643 Rep := First_Rep_Item (E);
644
645 if Rep = Addr then
646 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
647
648 else
649 while Present (Rep)
650 and then Next_Rep_Item (Rep) /= Addr
651 loop
652 Rep := Next_Rep_Item (Rep);
653 end loop;
654 end if;
655
656 if Present (Rep) then
657 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
658 end if;
659 end;
660
661 -- And now remove the address clause
662
663 Kill_Rep_Clause (Addr);
664
665 elsif not Error_Posted (Expr)
666 and then not Needs_Finalization (Typ)
667 then
668 Warn_Overlay (Expr, Typ, Name (Addr));
669 end if;
670
671 Init := Expression (Decl);
672
673 -- If a variable, or a non-imported constant, overlays a constant
674 -- object and has an initialization value, then the initialization
675 -- may end up writing into read-only memory. Detect the cases of
676 -- statically identical values and remove the initialization. In
677 -- the other cases, give a warning. We will give other warnings
678 -- later for the variable if it is assigned.
679
680 if (Ekind (E) = E_Variable
681 or else (Ekind (E) = E_Constant
682 and then not Is_Imported (E)))
683 and then Overlays_Constant (E)
684 and then Present (Init)
685 then
686 declare
687 O_Ent : Entity_Id;
688 Off : Boolean;
689
690 begin
691 Find_Overlaid_Entity (Addr, O_Ent, Off);
692
693 if Ekind (O_Ent) = E_Constant
694 and then Etype (O_Ent) = Typ
695 and then Present (Constant_Value (O_Ent))
696 and then Compile_Time_Compare
697 (Init,
698 Constant_Value (O_Ent),
699 Assume_Valid => True) = EQ
700 then
701 Set_No_Initialization (Decl);
702 return;
703
704 elsif Comes_From_Source (Init)
705 and then Address_Clause_Overlay_Warnings
706 then
707 Error_Msg_Sloc := Sloc (Addr);
708 Error_Msg_NE
709 ("??constant& may be modified via address clause#",
710 Decl, O_Ent);
711 end if;
712 end;
713 end if;
714
715 if Present (Init) then
716
717 -- Capture initialization value at point of declaration,
718 -- and make explicit assignment legal, because object may
719 -- be a constant.
720
721 Remove_Side_Effects (Init);
722 Lhs := New_Occurrence_Of (E, Sloc (Decl));
723 Set_Assignment_OK (Lhs);
724
725 -- Move initialization to freeze actions, once the object has
726 -- been frozen and the address clause alignment check has been
727 -- performed.
728
729 Append_Freeze_Action (E,
730 Make_Assignment_Statement (Sloc (Decl),
731 Name => Lhs,
732 Expression => Expression (Decl)));
733
734 Set_No_Initialization (Decl);
735
736 -- If the objet is tagged, check whether the tag must be
737 -- reassigned explicitly.
738
739 Tag_Assign := Make_Tag_Assignment (Decl);
740 if Present (Tag_Assign) then
741 Append_Freeze_Action (E, Tag_Assign);
742 end if;
743 end if;
744 end if;
745 end Check_Address_Clause;
746
747 -----------------------------
748 -- Check_Compile_Time_Size --
749 -----------------------------
750
751 procedure Check_Compile_Time_Size (T : Entity_Id) is
752
753 procedure Set_Small_Size (T : Entity_Id; S : Uint);
754 -- Sets the compile time known size (64 bits or less) in the RM_Size
755 -- field of T, checking for a size clause that was given which attempts
756 -- to give a smaller size.
757
758 function Size_Known (T : Entity_Id) return Boolean;
759 -- Recursive function that does all the work
760
761 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
762 -- If T is a constrained subtype, its size is not known if any of its
763 -- discriminant constraints is not static and it is not a null record.
764 -- The test is conservative and doesn't check that the components are
765 -- in fact constrained by non-static discriminant values. Could be made
766 -- more precise ???
767
768 --------------------
769 -- Set_Small_Size --
770 --------------------
771
772 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
773 begin
774 if S > 64 then
775 return;
776
777 -- Check for bad size clause given
778
779 elsif Has_Size_Clause (T) then
780 if RM_Size (T) < S then
781 Error_Msg_Uint_1 := S;
782 Error_Msg_NE
783 ("size for& too small, minimum allowed is ^",
784 Size_Clause (T), T);
785 end if;
786
787 -- Set size if not set already
788
789 elsif Unknown_RM_Size (T) then
790 Set_RM_Size (T, S);
791 end if;
792 end Set_Small_Size;
793
794 ----------------
795 -- Size_Known --
796 ----------------
797
798 function Size_Known (T : Entity_Id) return Boolean is
799 Index : Entity_Id;
800 Comp : Entity_Id;
801 Ctyp : Entity_Id;
802 Low : Node_Id;
803 High : Node_Id;
804
805 begin
806 if Size_Known_At_Compile_Time (T) then
807 return True;
808
809 -- Always True for elementary types, even generic formal elementary
810 -- types. We used to return False in the latter case, but the size
811 -- is known at compile time, even in the template, we just do not
812 -- know the exact size but that's not the point of this routine.
813
814 elsif Is_Elementary_Type (T) or else Is_Task_Type (T) then
815 return True;
816
817 -- Array types
818
819 elsif Is_Array_Type (T) then
820
821 -- String literals always have known size, and we can set it
822
823 if Ekind (T) = E_String_Literal_Subtype then
824 Set_Small_Size
825 (T, Component_Size (T) * String_Literal_Length (T));
826 return True;
827
828 -- Unconstrained types never have known at compile time size
829
830 elsif not Is_Constrained (T) then
831 return False;
832
833 -- Don't do any recursion on type with error posted, since we may
834 -- have a malformed type that leads us into a loop.
835
836 elsif Error_Posted (T) then
837 return False;
838
839 -- Otherwise if component size unknown, then array size unknown
840
841 elsif not Size_Known (Component_Type (T)) then
842 return False;
843 end if;
844
845 -- Check for all indexes static, and also compute possible size
846 -- (in case it is not greater than 64 and may be packable).
847
848 declare
849 Size : Uint := Component_Size (T);
850 Dim : Uint;
851
852 begin
853 Index := First_Index (T);
854 while Present (Index) loop
855 if Nkind (Index) = N_Range then
856 Get_Index_Bounds (Index, Low, High);
857
858 elsif Error_Posted (Scalar_Range (Etype (Index))) then
859 return False;
860
861 else
862 Low := Type_Low_Bound (Etype (Index));
863 High := Type_High_Bound (Etype (Index));
864 end if;
865
866 if not Compile_Time_Known_Value (Low)
867 or else not Compile_Time_Known_Value (High)
868 or else Etype (Index) = Any_Type
869 then
870 return False;
871
872 else
873 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
874
875 if Dim >= 0 then
876 Size := Size * Dim;
877 else
878 Size := Uint_0;
879 end if;
880 end if;
881
882 Next_Index (Index);
883 end loop;
884
885 Set_Small_Size (T, Size);
886 return True;
887 end;
888
889 -- For non-generic private types, go to underlying type if present
890
891 elsif Is_Private_Type (T)
892 and then not Is_Generic_Type (T)
893 and then Present (Underlying_Type (T))
894 then
895 -- Don't do any recursion on type with error posted, since we may
896 -- have a malformed type that leads us into a loop.
897
898 if Error_Posted (T) then
899 return False;
900 else
901 return Size_Known (Underlying_Type (T));
902 end if;
903
904 -- Record types
905
906 elsif Is_Record_Type (T) then
907
908 -- A class-wide type is never considered to have a known size
909
910 if Is_Class_Wide_Type (T) then
911 return False;
912
913 -- A subtype of a variant record must not have non-static
914 -- discriminated components.
915
916 elsif T /= Base_Type (T)
917 and then not Static_Discriminated_Components (T)
918 then
919 return False;
920
921 -- Don't do any recursion on type with error posted, since we may
922 -- have a malformed type that leads us into a loop.
923
924 elsif Error_Posted (T) then
925 return False;
926 end if;
927
928 -- Now look at the components of the record
929
930 declare
931 -- The following two variables are used to keep track of the
932 -- size of packed records if we can tell the size of the packed
933 -- record in the front end. Packed_Size_Known is True if so far
934 -- we can figure out the size. It is initialized to True for a
935 -- packed record, unless the record has discriminants or atomic
936 -- components or independent components.
937
938 -- The reason we eliminate the discriminated case is that
939 -- we don't know the way the back end lays out discriminated
940 -- packed records. If Packed_Size_Known is True, then
941 -- Packed_Size is the size in bits so far.
942
943 Packed_Size_Known : Boolean :=
944 Is_Packed (T)
945 and then not Has_Discriminants (T)
946 and then not Has_Atomic_Components (T)
947 and then not Has_Independent_Components (T);
948
949 Packed_Size : Uint := Uint_0;
950 -- Size in bits so far
951
952 begin
953 -- Test for variant part present
954
955 if Has_Discriminants (T)
956 and then Present (Parent (T))
957 and then Nkind (Parent (T)) = N_Full_Type_Declaration
958 and then Nkind (Type_Definition (Parent (T))) =
959 N_Record_Definition
960 and then not Null_Present (Type_Definition (Parent (T)))
961 and then
962 Present (Variant_Part
963 (Component_List (Type_Definition (Parent (T)))))
964 then
965 -- If variant part is present, and type is unconstrained,
966 -- then we must have defaulted discriminants, or a size
967 -- clause must be present for the type, or else the size
968 -- is definitely not known at compile time.
969
970 if not Is_Constrained (T)
971 and then
972 No (Discriminant_Default_Value (First_Discriminant (T)))
973 and then Unknown_RM_Size (T)
974 then
975 return False;
976 end if;
977 end if;
978
979 -- Loop through components
980
981 Comp := First_Component_Or_Discriminant (T);
982 while Present (Comp) loop
983 Ctyp := Etype (Comp);
984
985 -- We do not know the packed size if there is a component
986 -- clause present (we possibly could, but this would only
987 -- help in the case of a record with partial rep clauses.
988 -- That's because in the case of full rep clauses, the
989 -- size gets figured out anyway by a different circuit).
990
991 if Present (Component_Clause (Comp)) then
992 Packed_Size_Known := False;
993 end if;
994
995 -- We do not know the packed size for an atomic/VFA type
996 -- or component, or an independent type or component, or a
997 -- by-reference type or aliased component (because packing
998 -- does not touch these).
999
1000 if Is_Atomic_Or_VFA (Ctyp)
1001 or else Is_Atomic_Or_VFA (Comp)
1002 or else Is_Independent (Ctyp)
1003 or else Is_Independent (Comp)
1004 or else Is_By_Reference_Type (Ctyp)
1005 or else Is_Aliased (Comp)
1006 then
1007 Packed_Size_Known := False;
1008 end if;
1009
1010 -- We need to identify a component that is an array where
1011 -- the index type is an enumeration type with non-standard
1012 -- representation, and some bound of the type depends on a
1013 -- discriminant.
1014
1015 -- This is because gigi computes the size by doing a
1016 -- substitution of the appropriate discriminant value in
1017 -- the size expression for the base type, and gigi is not
1018 -- clever enough to evaluate the resulting expression (which
1019 -- involves a call to rep_to_pos) at compile time.
1020
1021 -- It would be nice if gigi would either recognize that
1022 -- this expression can be computed at compile time, or
1023 -- alternatively figured out the size from the subtype
1024 -- directly, where all the information is at hand ???
1025
1026 if Is_Array_Type (Etype (Comp))
1027 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
1028 then
1029 declare
1030 Ocomp : constant Entity_Id :=
1031 Original_Record_Component (Comp);
1032 OCtyp : constant Entity_Id := Etype (Ocomp);
1033 Ind : Node_Id;
1034 Indtyp : Entity_Id;
1035 Lo, Hi : Node_Id;
1036
1037 begin
1038 Ind := First_Index (OCtyp);
1039 while Present (Ind) loop
1040 Indtyp := Etype (Ind);
1041
1042 if Is_Enumeration_Type (Indtyp)
1043 and then Has_Non_Standard_Rep (Indtyp)
1044 then
1045 Lo := Type_Low_Bound (Indtyp);
1046 Hi := Type_High_Bound (Indtyp);
1047
1048 if Is_Entity_Name (Lo)
1049 and then Ekind (Entity (Lo)) = E_Discriminant
1050 then
1051 return False;
1052
1053 elsif Is_Entity_Name (Hi)
1054 and then Ekind (Entity (Hi)) = E_Discriminant
1055 then
1056 return False;
1057 end if;
1058 end if;
1059
1060 Next_Index (Ind);
1061 end loop;
1062 end;
1063 end if;
1064
1065 -- Clearly size of record is not known if the size of one of
1066 -- the components is not known.
1067
1068 if not Size_Known (Ctyp) then
1069 return False;
1070 end if;
1071
1072 -- Accumulate packed size if possible
1073
1074 if Packed_Size_Known then
1075
1076 -- We can deal with elementary types, small packed arrays
1077 -- if the representation is a modular type and also small
1078 -- record types (if the size is not greater than 64, but
1079 -- the condition is checked by Set_Small_Size).
1080
1081 if Is_Elementary_Type (Ctyp)
1082 or else (Is_Array_Type (Ctyp)
1083 and then Present
1084 (Packed_Array_Impl_Type (Ctyp))
1085 and then Is_Modular_Integer_Type
1086 (Packed_Array_Impl_Type (Ctyp)))
1087 or else Is_Record_Type (Ctyp)
1088 then
1089 -- If RM_Size is known and static, then we can keep
1090 -- accumulating the packed size.
1091
1092 if Known_Static_RM_Size (Ctyp) then
1093
1094 Packed_Size := Packed_Size + RM_Size (Ctyp);
1095
1096 -- If we have a field whose RM_Size is not known then
1097 -- we can't figure out the packed size here.
1098
1099 else
1100 Packed_Size_Known := False;
1101 end if;
1102
1103 -- For other types we can't figure out the packed size
1104
1105 else
1106 Packed_Size_Known := False;
1107 end if;
1108 end if;
1109
1110 Next_Component_Or_Discriminant (Comp);
1111 end loop;
1112
1113 if Packed_Size_Known then
1114 Set_Small_Size (T, Packed_Size);
1115 end if;
1116
1117 return True;
1118 end;
1119
1120 -- All other cases, size not known at compile time
1121
1122 else
1123 return False;
1124 end if;
1125 end Size_Known;
1126
1127 -------------------------------------
1128 -- Static_Discriminated_Components --
1129 -------------------------------------
1130
1131 function Static_Discriminated_Components
1132 (T : Entity_Id) return Boolean
1133 is
1134 Constraint : Elmt_Id;
1135
1136 begin
1137 if Has_Discriminants (T)
1138 and then Present (Discriminant_Constraint (T))
1139 and then Present (First_Component (T))
1140 then
1141 Constraint := First_Elmt (Discriminant_Constraint (T));
1142 while Present (Constraint) loop
1143 if not Compile_Time_Known_Value (Node (Constraint)) then
1144 return False;
1145 end if;
1146
1147 Next_Elmt (Constraint);
1148 end loop;
1149 end if;
1150
1151 return True;
1152 end Static_Discriminated_Components;
1153
1154 -- Start of processing for Check_Compile_Time_Size
1155
1156 begin
1157 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1158 end Check_Compile_Time_Size;
1159
1160 -----------------------------------
1161 -- Check_Component_Storage_Order --
1162 -----------------------------------
1163
1164 procedure Check_Component_Storage_Order
1165 (Encl_Type : Entity_Id;
1166 Comp : Entity_Id;
1167 ADC : Node_Id;
1168 Comp_ADC_Present : out Boolean)
1169 is
1170 Comp_Base : Entity_Id;
1171 Comp_ADC : Node_Id;
1172 Encl_Base : Entity_Id;
1173 Err_Node : Node_Id;
1174
1175 Component_Aliased : Boolean;
1176
1177 Comp_Byte_Aligned : Boolean;
1178 -- Set for the record case, True if Comp starts on a byte boundary
1179 -- (in which case it is allowed to have different storage order).
1180
1181 Comp_SSO_Differs : Boolean;
1182 -- Set True when the component is a nested composite, and it does not
1183 -- have the same scalar storage order as Encl_Type.
1184
1185 begin
1186 -- Record case
1187
1188 if Present (Comp) then
1189 Err_Node := Comp;
1190 Comp_Base := Etype (Comp);
1191
1192 if Is_Tag (Comp) then
1193 Comp_Byte_Aligned := True;
1194 Component_Aliased := False;
1195
1196 else
1197 -- If a component clause is present, check if the component starts
1198 -- on a storage element boundary. Otherwise conservatively assume
1199 -- it does so only in the case where the record is not packed.
1200
1201 if Present (Component_Clause (Comp)) then
1202 Comp_Byte_Aligned :=
1203 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1204 else
1205 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1206 end if;
1207
1208 Component_Aliased := Is_Aliased (Comp);
1209 end if;
1210
1211 -- Array case
1212
1213 else
1214 Err_Node := Encl_Type;
1215 Comp_Base := Component_Type (Encl_Type);
1216
1217 Component_Aliased := Has_Aliased_Components (Encl_Type);
1218 end if;
1219
1220 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1221 -- the attribute definition clause is attached to the first subtype.
1222 -- Also, if the base type is incomplete or private, go to full view
1223 -- if known
1224
1225 Encl_Base := Base_Type (Encl_Type);
1226 if Present (Underlying_Type (Encl_Base)) then
1227 Encl_Base := Underlying_Type (Encl_Base);
1228 end if;
1229
1230 Comp_Base := Base_Type (Comp_Base);
1231 if Present (Underlying_Type (Comp_Base)) then
1232 Comp_Base := Underlying_Type (Comp_Base);
1233 end if;
1234
1235 Comp_ADC :=
1236 Get_Attribute_Definition_Clause
1237 (First_Subtype (Comp_Base), Attribute_Scalar_Storage_Order);
1238 Comp_ADC_Present := Present (Comp_ADC);
1239
1240 -- Case of record or array component: check storage order compatibility.
1241 -- But, if the record has Complex_Representation, then it is treated as
1242 -- a scalar in the back end so the storage order is irrelevant.
1243
1244 if (Is_Record_Type (Comp_Base)
1245 and then not Has_Complex_Representation (Comp_Base))
1246 or else Is_Array_Type (Comp_Base)
1247 then
1248 Comp_SSO_Differs :=
1249 Reverse_Storage_Order (Encl_Base) /=
1250 Reverse_Storage_Order (Comp_Base);
1251
1252 -- Parent and extension must have same storage order
1253
1254 if Present (Comp) and then Chars (Comp) = Name_uParent then
1255 if Comp_SSO_Differs then
1256 Error_Msg_N
1257 ("record extension must have same scalar storage order as "
1258 & "parent", Err_Node);
1259 end if;
1260
1261 -- If component and composite SSO differs, check that component
1262 -- falls on byte boundaries and isn't bit packed.
1263
1264 elsif Comp_SSO_Differs then
1265
1266 -- Component SSO differs from enclosing composite:
1267
1268 -- Reject if component is a bit-packed array, as it is represented
1269 -- as a scalar internally.
1270
1271 if Is_Bit_Packed_Array (Comp_Base) then
1272 Error_Msg_N
1273 ("type of packed component must have same scalar storage "
1274 & "order as enclosing composite", Err_Node);
1275
1276 -- Reject if composite is a bit-packed array, as it is rewritten
1277 -- into an array of scalars.
1278
1279 elsif Is_Bit_Packed_Array (Encl_Base) then
1280 Error_Msg_N
1281 ("type of packed array must have same scalar storage order "
1282 & "as component", Err_Node);
1283
1284 -- Reject if not byte aligned
1285
1286 elsif Is_Record_Type (Encl_Base)
1287 and then not Comp_Byte_Aligned
1288 then
1289 Error_Msg_N
1290 ("type of non-byte-aligned component must have same scalar "
1291 & "storage order as enclosing composite", Err_Node);
1292
1293 -- Warn if specified only for the outer composite
1294
1295 elsif Present (ADC) and then No (Comp_ADC) then
1296 Error_Msg_NE
1297 ("scalar storage order specified for & does not apply to "
1298 & "component?", Err_Node, Encl_Base);
1299 end if;
1300 end if;
1301
1302 -- Enclosing type has explicit SSO: non-composite component must not
1303 -- be aliased.
1304
1305 elsif Present (ADC) and then Component_Aliased then
1306 Error_Msg_N
1307 ("aliased component not permitted for type with explicit "
1308 & "Scalar_Storage_Order", Err_Node);
1309 end if;
1310 end Check_Component_Storage_Order;
1311
1312 -----------------------------
1313 -- Check_Debug_Info_Needed --
1314 -----------------------------
1315
1316 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1317 begin
1318 if Debug_Info_Off (T) then
1319 return;
1320
1321 elsif Comes_From_Source (T)
1322 or else Debug_Generated_Code
1323 or else Debug_Flag_VV
1324 or else Needs_Debug_Info (T)
1325 then
1326 Set_Debug_Info_Needed (T);
1327 end if;
1328 end Check_Debug_Info_Needed;
1329
1330 -------------------------------
1331 -- Check_Expression_Function --
1332 -------------------------------
1333
1334 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1335 Decl : Node_Id;
1336
1337 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1338 -- Function to search for deferred constant
1339
1340 -------------------
1341 -- Find_Constant --
1342 -------------------
1343
1344 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1345 begin
1346 -- When a constant is initialized with the result of a dispatching
1347 -- call, the constant declaration is rewritten as a renaming of the
1348 -- displaced function result. This scenario is not a premature use of
1349 -- a constant even though the Has_Completion flag is not set.
1350
1351 if Is_Entity_Name (Nod)
1352 and then Present (Entity (Nod))
1353 and then Ekind (Entity (Nod)) = E_Constant
1354 and then Scope (Entity (Nod)) = Current_Scope
1355 and then Nkind (Declaration_Node (Entity (Nod))) =
1356 N_Object_Declaration
1357 and then not Is_Imported (Entity (Nod))
1358 and then not Has_Completion (Entity (Nod))
1359 then
1360 Error_Msg_NE
1361 ("premature use of& in call or instance", N, Entity (Nod));
1362
1363 elsif Nkind (Nod) = N_Attribute_Reference then
1364 Analyze (Prefix (Nod));
1365
1366 if Is_Entity_Name (Prefix (Nod))
1367 and then Is_Type (Entity (Prefix (Nod)))
1368 then
1369 Freeze_Before (N, Entity (Prefix (Nod)));
1370 end if;
1371 end if;
1372
1373 return OK;
1374 end Find_Constant;
1375
1376 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1377
1378 -- Start of processing for Check_Expression_Function
1379
1380 begin
1381 Decl := Original_Node (Unit_Declaration_Node (Nam));
1382
1383 if Scope (Nam) = Current_Scope
1384 and then Nkind (Decl) = N_Expression_Function
1385 then
1386 Check_Deferred (Expression (Decl));
1387 end if;
1388 end Check_Expression_Function;
1389
1390 --------------------------------
1391 -- Check_Inherited_Conditions --
1392 --------------------------------
1393
1394 procedure Check_Inherited_Conditions (R : Entity_Id) is
1395 Prim_Ops : constant Elist_Id := Primitive_Operations (R);
1396 A_Post : Node_Id;
1397 A_Pre : Node_Id;
1398 Op_Node : Elmt_Id;
1399 Par_Prim : Entity_Id;
1400 Prim : Entity_Id;
1401
1402 begin
1403 Op_Node := First_Elmt (Prim_Ops);
1404 while Present (Op_Node) loop
1405 Prim := Node (Op_Node);
1406
1407 -- Map the overridden primitive to the overriding one. This takes
1408 -- care of all overridings and is done only once.
1409
1410 if Present (Overridden_Operation (Prim))
1411 and then Comes_From_Source (Prim)
1412 then
1413 Update_Primitives_Mapping (Overridden_Operation (Prim), Prim);
1414
1415 -- In SPARK mode this is where we can collect the inherited
1416 -- conditions, because we do not create the Check pragmas that
1417 -- normally convey the the modified class-wide conditions on
1418 -- overriding operations.
1419
1420 if SPARK_Mode = On then
1421
1422 -- Analyze the contract items of the parent operation, before
1423 -- they are rewritten when inherited.
1424
1425 Analyze_Entry_Or_Subprogram_Contract
1426 (Overridden_Operation (Prim));
1427
1428 -- Now verify the legality of inherited contracts for LSP
1429 -- conformance.
1430
1431 Collect_Inherited_Class_Wide_Conditions (Prim);
1432 end if;
1433 end if;
1434
1435 Next_Elmt (Op_Node);
1436 end loop;
1437
1438 -- In all cases, we examine inherited operations to check whether they
1439 -- require a wrapper to handle inherited conditions that call other
1440 -- primitives, so that LSP can be verified/enforced.
1441
1442 -- Wrapper construction TBD.
1443
1444 Op_Node := First_Elmt (Prim_Ops);
1445 while Present (Op_Node) loop
1446 Prim := Node (Op_Node);
1447 if not Comes_From_Source (Prim) and then Present (Alias (Prim)) then
1448 Par_Prim := Alias (Prim);
1449 A_Pre := Find_Aspect (Par_Prim, Aspect_Pre);
1450
1451 if Present (A_Pre) and then Class_Present (A_Pre) then
1452 Build_Class_Wide_Expression
1453 (Expression (A_Pre), Prim, Par_Prim, Adjust_Sloc => False);
1454 end if;
1455
1456 A_Post := Find_Aspect (Par_Prim, Aspect_Post);
1457
1458 if Present (A_Post) and then Class_Present (A_Post) then
1459 Build_Class_Wide_Expression
1460 (Expression (A_Post), Prim, Par_Prim, Adjust_Sloc => False);
1461 end if;
1462 end if;
1463
1464 Next_Elmt (Op_Node);
1465 end loop;
1466 end Check_Inherited_Conditions;
1467
1468 ----------------------------
1469 -- Check_Strict_Alignment --
1470 ----------------------------
1471
1472 procedure Check_Strict_Alignment (E : Entity_Id) is
1473 Comp : Entity_Id;
1474
1475 begin
1476 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1477 Set_Strict_Alignment (E);
1478
1479 elsif Is_Array_Type (E) then
1480 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1481
1482 elsif Is_Record_Type (E) then
1483 if Is_Limited_Record (E) then
1484 Set_Strict_Alignment (E);
1485 return;
1486 end if;
1487
1488 Comp := First_Component (E);
1489 while Present (Comp) loop
1490 if not Is_Type (Comp)
1491 and then (Strict_Alignment (Etype (Comp))
1492 or else Is_Aliased (Comp))
1493 then
1494 Set_Strict_Alignment (E);
1495 return;
1496 end if;
1497
1498 Next_Component (Comp);
1499 end loop;
1500 end if;
1501 end Check_Strict_Alignment;
1502
1503 -------------------------
1504 -- Check_Unsigned_Type --
1505 -------------------------
1506
1507 procedure Check_Unsigned_Type (E : Entity_Id) is
1508 Ancestor : Entity_Id;
1509 Lo_Bound : Node_Id;
1510 Btyp : Entity_Id;
1511
1512 begin
1513 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1514 return;
1515 end if;
1516
1517 -- Do not attempt to analyze case where range was in error
1518
1519 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1520 return;
1521 end if;
1522
1523 -- The situation that is nontrivial is something like:
1524
1525 -- subtype x1 is integer range -10 .. +10;
1526 -- subtype x2 is x1 range 0 .. V1;
1527 -- subtype x3 is x2 range V2 .. V3;
1528 -- subtype x4 is x3 range V4 .. V5;
1529
1530 -- where Vn are variables. Here the base type is signed, but we still
1531 -- know that x4 is unsigned because of the lower bound of x2.
1532
1533 -- The only way to deal with this is to look up the ancestor chain
1534
1535 Ancestor := E;
1536 loop
1537 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1538 return;
1539 end if;
1540
1541 Lo_Bound := Type_Low_Bound (Ancestor);
1542
1543 if Compile_Time_Known_Value (Lo_Bound) then
1544 if Expr_Rep_Value (Lo_Bound) >= 0 then
1545 Set_Is_Unsigned_Type (E, True);
1546 end if;
1547
1548 return;
1549
1550 else
1551 Ancestor := Ancestor_Subtype (Ancestor);
1552
1553 -- If no ancestor had a static lower bound, go to base type
1554
1555 if No (Ancestor) then
1556
1557 -- Note: the reason we still check for a compile time known
1558 -- value for the base type is that at least in the case of
1559 -- generic formals, we can have bounds that fail this test,
1560 -- and there may be other cases in error situations.
1561
1562 Btyp := Base_Type (E);
1563
1564 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1565 return;
1566 end if;
1567
1568 Lo_Bound := Type_Low_Bound (Base_Type (E));
1569
1570 if Compile_Time_Known_Value (Lo_Bound)
1571 and then Expr_Rep_Value (Lo_Bound) >= 0
1572 then
1573 Set_Is_Unsigned_Type (E, True);
1574 end if;
1575
1576 return;
1577 end if;
1578 end if;
1579 end loop;
1580 end Check_Unsigned_Type;
1581
1582 -----------------------------
1583 -- Is_Atomic_VFA_Aggregate --
1584 -----------------------------
1585
1586 function Is_Atomic_VFA_Aggregate (N : Node_Id) return Boolean is
1587 Loc : constant Source_Ptr := Sloc (N);
1588 New_N : Node_Id;
1589 Par : Node_Id;
1590 Temp : Entity_Id;
1591 Typ : Entity_Id;
1592
1593 begin
1594 Par := Parent (N);
1595
1596 -- Array may be qualified, so find outer context
1597
1598 if Nkind (Par) = N_Qualified_Expression then
1599 Par := Parent (Par);
1600 end if;
1601
1602 if not Comes_From_Source (Par) then
1603 return False;
1604 end if;
1605
1606 case Nkind (Par) is
1607 when N_Assignment_Statement =>
1608 Typ := Etype (Name (Par));
1609
1610 if not Is_Atomic_Or_VFA (Typ)
1611 and then not (Is_Entity_Name (Name (Par))
1612 and then Is_Atomic_Or_VFA (Entity (Name (Par))))
1613 then
1614 return False;
1615 end if;
1616
1617 when N_Object_Declaration =>
1618 Typ := Etype (Defining_Identifier (Par));
1619
1620 if not Is_Atomic_Or_VFA (Typ)
1621 and then not Is_Atomic_Or_VFA (Defining_Identifier (Par))
1622 then
1623 return False;
1624 end if;
1625
1626 when others =>
1627 return False;
1628 end case;
1629
1630 Temp := Make_Temporary (Loc, 'T', N);
1631 New_N :=
1632 Make_Object_Declaration (Loc,
1633 Defining_Identifier => Temp,
1634 Object_Definition => New_Occurrence_Of (Typ, Loc),
1635 Expression => Relocate_Node (N));
1636 Insert_Before (Par, New_N);
1637 Analyze (New_N);
1638
1639 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1640 return True;
1641 end Is_Atomic_VFA_Aggregate;
1642
1643 -----------------------------------------------
1644 -- Explode_Initialization_Compound_Statement --
1645 -----------------------------------------------
1646
1647 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1648 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1649
1650 begin
1651 if Present (Init_Stmts)
1652 and then Nkind (Init_Stmts) = N_Compound_Statement
1653 then
1654 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1655
1656 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1657 -- just removing it, because Freeze_All may rely on this particular
1658 -- Node_Id still being present in the enclosing list to know where to
1659 -- stop freezing.
1660
1661 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1662
1663 Set_Initialization_Statements (E, Empty);
1664 end if;
1665 end Explode_Initialization_Compound_Statement;
1666
1667 ----------------
1668 -- Freeze_All --
1669 ----------------
1670
1671 -- Note: the easy coding for this procedure would be to just build a
1672 -- single list of freeze nodes and then insert them and analyze them
1673 -- all at once. This won't work, because the analysis of earlier freeze
1674 -- nodes may recursively freeze types which would otherwise appear later
1675 -- on in the freeze list. So we must analyze and expand the freeze nodes
1676 -- as they are generated.
1677
1678 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1679 E : Entity_Id;
1680 Decl : Node_Id;
1681
1682 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1683 -- This is the internal recursive routine that does freezing of entities
1684 -- (but NOT the analysis of default expressions, which should not be
1685 -- recursive, we don't want to analyze those till we are sure that ALL
1686 -- the types are frozen).
1687
1688 --------------------
1689 -- Freeze_All_Ent --
1690 --------------------
1691
1692 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1693 E : Entity_Id;
1694 Flist : List_Id;
1695 Lastn : Node_Id;
1696
1697 procedure Process_Flist;
1698 -- If freeze nodes are present, insert and analyze, and reset cursor
1699 -- for next insertion.
1700
1701 -------------------
1702 -- Process_Flist --
1703 -------------------
1704
1705 procedure Process_Flist is
1706 begin
1707 if Is_Non_Empty_List (Flist) then
1708 Lastn := Next (After);
1709 Insert_List_After_And_Analyze (After, Flist);
1710
1711 if Present (Lastn) then
1712 After := Prev (Lastn);
1713 else
1714 After := Last (List_Containing (After));
1715 end if;
1716 end if;
1717 end Process_Flist;
1718
1719 -- Start of processing for Freeze_All_Ent
1720
1721 begin
1722 E := From;
1723 while Present (E) loop
1724
1725 -- If the entity is an inner package which is not a package
1726 -- renaming, then its entities must be frozen at this point. Note
1727 -- that such entities do NOT get frozen at the end of the nested
1728 -- package itself (only library packages freeze).
1729
1730 -- Same is true for task declarations, where anonymous records
1731 -- created for entry parameters must be frozen.
1732
1733 if Ekind (E) = E_Package
1734 and then No (Renamed_Object (E))
1735 and then not Is_Child_Unit (E)
1736 and then not Is_Frozen (E)
1737 then
1738 Push_Scope (E);
1739
1740 Install_Visible_Declarations (E);
1741 Install_Private_Declarations (E);
1742 Freeze_All (First_Entity (E), After);
1743
1744 End_Package_Scope (E);
1745
1746 if Is_Generic_Instance (E)
1747 and then Has_Delayed_Freeze (E)
1748 then
1749 Set_Has_Delayed_Freeze (E, False);
1750 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1751 end if;
1752
1753 elsif Ekind (E) in Task_Kind
1754 and then Nkind_In (Parent (E), N_Single_Task_Declaration,
1755 N_Task_Type_Declaration)
1756 then
1757 Push_Scope (E);
1758 Freeze_All (First_Entity (E), After);
1759 End_Scope;
1760
1761 -- For a derived tagged type, we must ensure that all the
1762 -- primitive operations of the parent have been frozen, so that
1763 -- their addresses will be in the parent's dispatch table at the
1764 -- point it is inherited.
1765
1766 elsif Ekind (E) = E_Record_Type
1767 and then Is_Tagged_Type (E)
1768 and then Is_Tagged_Type (Etype (E))
1769 and then Is_Derived_Type (E)
1770 then
1771 declare
1772 Prim_List : constant Elist_Id :=
1773 Primitive_Operations (Etype (E));
1774
1775 Prim : Elmt_Id;
1776 Subp : Entity_Id;
1777
1778 begin
1779 Prim := First_Elmt (Prim_List);
1780 while Present (Prim) loop
1781 Subp := Node (Prim);
1782
1783 if Comes_From_Source (Subp)
1784 and then not Is_Frozen (Subp)
1785 then
1786 Flist := Freeze_Entity (Subp, After);
1787 Process_Flist;
1788 end if;
1789
1790 Next_Elmt (Prim);
1791 end loop;
1792 end;
1793 end if;
1794
1795 if not Is_Frozen (E) then
1796 Flist := Freeze_Entity (E, After);
1797 Process_Flist;
1798
1799 -- If already frozen, and there are delayed aspects, this is where
1800 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1801 -- for a description of how we handle aspect visibility).
1802
1803 elsif Has_Delayed_Aspects (E) then
1804
1805 -- Retrieve the visibility to the discriminants in order to
1806 -- analyze properly the aspects.
1807
1808 Push_Scope_And_Install_Discriminants (E);
1809
1810 declare
1811 Ritem : Node_Id;
1812
1813 begin
1814 Ritem := First_Rep_Item (E);
1815 while Present (Ritem) loop
1816 if Nkind (Ritem) = N_Aspect_Specification
1817 and then Entity (Ritem) = E
1818 and then Is_Delayed_Aspect (Ritem)
1819 then
1820 Check_Aspect_At_End_Of_Declarations (Ritem);
1821 end if;
1822
1823 Ritem := Next_Rep_Item (Ritem);
1824 end loop;
1825 end;
1826
1827 Uninstall_Discriminants_And_Pop_Scope (E);
1828 end if;
1829
1830 -- If an incomplete type is still not frozen, this may be a
1831 -- premature freezing because of a body declaration that follows.
1832 -- Indicate where the freezing took place. Freezing will happen
1833 -- if the body comes from source, but not if it is internally
1834 -- generated, for example as the body of a type invariant.
1835
1836 -- If the freezing is caused by the end of the current declarative
1837 -- part, it is a Taft Amendment type, and there is no error.
1838
1839 if not Is_Frozen (E)
1840 and then Ekind (E) = E_Incomplete_Type
1841 then
1842 declare
1843 Bod : constant Node_Id := Next (After);
1844
1845 begin
1846 -- The presence of a body freezes all entities previously
1847 -- declared in the current list of declarations, but this
1848 -- does not apply if the body does not come from source.
1849 -- A type invariant is transformed into a subprogram body
1850 -- which is placed at the end of the private part of the
1851 -- current package, but this body does not freeze incomplete
1852 -- types that may be declared in this private part.
1853
1854 if (Nkind_In (Bod, N_Subprogram_Body,
1855 N_Entry_Body,
1856 N_Package_Body,
1857 N_Protected_Body,
1858 N_Task_Body)
1859 or else Nkind (Bod) in N_Body_Stub)
1860 and then
1861 List_Containing (After) = List_Containing (Parent (E))
1862 and then Comes_From_Source (Bod)
1863 then
1864 Error_Msg_Sloc := Sloc (Next (After));
1865 Error_Msg_NE
1866 ("type& is frozen# before its full declaration",
1867 Parent (E), E);
1868 end if;
1869 end;
1870 end if;
1871
1872 Next_Entity (E);
1873 end loop;
1874 end Freeze_All_Ent;
1875
1876 -- Start of processing for Freeze_All
1877
1878 begin
1879 Freeze_All_Ent (From, After);
1880
1881 -- Now that all types are frozen, we can deal with default expressions
1882 -- that require us to build a default expression functions. This is the
1883 -- point at which such functions are constructed (after all types that
1884 -- might be used in such expressions have been frozen).
1885
1886 -- For subprograms that are renaming_as_body, we create the wrapper
1887 -- bodies as needed.
1888
1889 -- We also add finalization chains to access types whose designated
1890 -- types are controlled. This is normally done when freezing the type,
1891 -- but this misses recursive type definitions where the later members
1892 -- of the recursion introduce controlled components.
1893
1894 -- Loop through entities
1895
1896 E := From;
1897 while Present (E) loop
1898 if Is_Subprogram (E) then
1899 if not Default_Expressions_Processed (E) then
1900 Process_Default_Expressions (E, After);
1901 end if;
1902
1903 if not Has_Completion (E) then
1904 Decl := Unit_Declaration_Node (E);
1905
1906 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1907 if Error_Posted (Decl) then
1908 Set_Has_Completion (E);
1909 else
1910 Build_And_Analyze_Renamed_Body (Decl, E, After);
1911 end if;
1912
1913 elsif Nkind (Decl) = N_Subprogram_Declaration
1914 and then Present (Corresponding_Body (Decl))
1915 and then
1916 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1917 = N_Subprogram_Renaming_Declaration
1918 then
1919 Build_And_Analyze_Renamed_Body
1920 (Decl, Corresponding_Body (Decl), After);
1921 end if;
1922 end if;
1923
1924 elsif Ekind (E) in Task_Kind
1925 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1926 N_Single_Task_Declaration)
1927 then
1928 declare
1929 Ent : Entity_Id;
1930
1931 begin
1932 Ent := First_Entity (E);
1933 while Present (Ent) loop
1934 if Is_Entry (Ent)
1935 and then not Default_Expressions_Processed (Ent)
1936 then
1937 Process_Default_Expressions (Ent, After);
1938 end if;
1939
1940 Next_Entity (Ent);
1941 end loop;
1942 end;
1943 end if;
1944
1945 -- Historical note: We used to create a finalization master for an
1946 -- access type whose designated type is not controlled, but contains
1947 -- private controlled compoments. This form of postprocessing is no
1948 -- longer needed because the finalization master is now created when
1949 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
1950
1951 Next_Entity (E);
1952 end loop;
1953 end Freeze_All;
1954
1955 -----------------------
1956 -- Freeze_And_Append --
1957 -----------------------
1958
1959 procedure Freeze_And_Append
1960 (Ent : Entity_Id;
1961 N : Node_Id;
1962 Result : in out List_Id)
1963 is
1964 L : constant List_Id := Freeze_Entity (Ent, N);
1965 begin
1966 if Is_Non_Empty_List (L) then
1967 if Result = No_List then
1968 Result := L;
1969 else
1970 Append_List (L, Result);
1971 end if;
1972 end if;
1973 end Freeze_And_Append;
1974
1975 -------------------
1976 -- Freeze_Before --
1977 -------------------
1978
1979 procedure Freeze_Before
1980 (N : Node_Id;
1981 T : Entity_Id;
1982 Do_Freeze_Profile : Boolean := True)
1983 is
1984 -- Freeze T, then insert the generated Freeze nodes before the node N.
1985 -- Flag Freeze_Profile is used when T is an overloadable entity, and
1986 -- indicates whether its profile should be frozen at the same time.
1987
1988 Freeze_Nodes : constant List_Id :=
1989 Freeze_Entity (T, N, Do_Freeze_Profile);
1990
1991 begin
1992 if Ekind (T) = E_Function then
1993 Check_Expression_Function (N, T);
1994 end if;
1995
1996 if Is_Non_Empty_List (Freeze_Nodes) then
1997 Insert_Actions (N, Freeze_Nodes);
1998 end if;
1999 end Freeze_Before;
2000
2001 -------------------
2002 -- Freeze_Entity --
2003 -------------------
2004
2005 function Freeze_Entity
2006 (E : Entity_Id;
2007 N : Node_Id;
2008 Do_Freeze_Profile : Boolean := True) return List_Id
2009 is
2010 Loc : constant Source_Ptr := Sloc (N);
2011 Atype : Entity_Id;
2012 Comp : Entity_Id;
2013 F_Node : Node_Id;
2014 Formal : Entity_Id;
2015 Indx : Node_Id;
2016
2017 Has_Default_Initialization : Boolean := False;
2018 -- This flag gets set to true for a variable with default initialization
2019
2020 Result : List_Id := No_List;
2021 -- List of freezing actions, left at No_List if none
2022
2023 Test_E : Entity_Id := E;
2024 -- This could use a comment ???
2025
2026 procedure Add_To_Result (N : Node_Id);
2027 -- N is a freezing action to be appended to the Result
2028
2029 function After_Last_Declaration return Boolean;
2030 -- If Loc is a freeze_entity that appears after the last declaration
2031 -- in the scope, inhibit error messages on late completion.
2032
2033 procedure Check_Current_Instance (Comp_Decl : Node_Id);
2034 -- Check that an Access or Unchecked_Access attribute with a prefix
2035 -- which is the current instance type can only be applied when the type
2036 -- is limited.
2037
2038 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
2039 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
2040 -- integer literal without an explicit corresponding size clause. The
2041 -- caller has checked that Utype is a modular integer type.
2042
2043 procedure Freeze_Array_Type (Arr : Entity_Id);
2044 -- Freeze array type, including freezing index and component types
2045
2046 procedure Freeze_Object_Declaration (E : Entity_Id);
2047 -- Perform checks and generate freeze node if needed for a constant or
2048 -- variable declared by an object declaration.
2049
2050 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
2051 -- Create Freeze_Generic_Entity nodes for types declared in a generic
2052 -- package. Recurse on inner generic packages.
2053
2054 function Freeze_Profile (E : Entity_Id) return Boolean;
2055 -- Freeze formals and return type of subprogram. If some type in the
2056 -- profile is incomplete and we are in an instance, freezing of the
2057 -- entity will take place elsewhere, and the function returns False.
2058
2059 procedure Freeze_Record_Type (Rec : Entity_Id);
2060 -- Freeze record type, including freezing component types, and freezing
2061 -- primitive operations if this is a tagged type.
2062
2063 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
2064 -- Determine whether an arbitrary entity is subject to Boolean aspect
2065 -- Import and its value is specified as True.
2066
2067 function New_Freeze_Node return Node_Id;
2068 -- Create a new freeze node for entity E
2069
2070 procedure Wrap_Imported_Subprogram (E : Entity_Id);
2071 -- If E is an entity for an imported subprogram with pre/post-conditions
2072 -- then this procedure will create a wrapper to ensure that proper run-
2073 -- time checking of the pre/postconditions. See body for details.
2074
2075 -------------------
2076 -- Add_To_Result --
2077 -------------------
2078
2079 procedure Add_To_Result (N : Node_Id) is
2080 begin
2081 if No (Result) then
2082 Result := New_List (N);
2083 else
2084 Append (N, Result);
2085 end if;
2086 end Add_To_Result;
2087
2088 ----------------------------
2089 -- After_Last_Declaration --
2090 ----------------------------
2091
2092 function After_Last_Declaration return Boolean is
2093 Spec : constant Node_Id := Parent (Current_Scope);
2094
2095 begin
2096 if Nkind (Spec) = N_Package_Specification then
2097 if Present (Private_Declarations (Spec)) then
2098 return Loc >= Sloc (Last (Private_Declarations (Spec)));
2099 elsif Present (Visible_Declarations (Spec)) then
2100 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
2101 else
2102 return False;
2103 end if;
2104
2105 else
2106 return False;
2107 end if;
2108 end After_Last_Declaration;
2109
2110 ----------------------------
2111 -- Check_Current_Instance --
2112 ----------------------------
2113
2114 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
2115
2116 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
2117 -- Determine whether Typ is compatible with the rules for aliased
2118 -- views of types as defined in RM 3.10 in the various dialects.
2119
2120 function Process (N : Node_Id) return Traverse_Result;
2121 -- Process routine to apply check to given node
2122
2123 -----------------------------
2124 -- Is_Aliased_View_Of_Type --
2125 -----------------------------
2126
2127 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
2128 Typ_Decl : constant Node_Id := Parent (Typ);
2129
2130 begin
2131 -- Common case
2132
2133 if Nkind (Typ_Decl) = N_Full_Type_Declaration
2134 and then Limited_Present (Type_Definition (Typ_Decl))
2135 then
2136 return True;
2137
2138 -- The following paragraphs describe what a legal aliased view of
2139 -- a type is in the various dialects of Ada.
2140
2141 -- Ada 95
2142
2143 -- The current instance of a limited type, and a formal parameter
2144 -- or generic formal object of a tagged type.
2145
2146 -- Ada 95 limited type
2147 -- * Type with reserved word "limited"
2148 -- * A protected or task type
2149 -- * A composite type with limited component
2150
2151 elsif Ada_Version <= Ada_95 then
2152 return Is_Limited_Type (Typ);
2153
2154 -- Ada 2005
2155
2156 -- The current instance of a limited tagged type, a protected
2157 -- type, a task type, or a type that has the reserved word
2158 -- "limited" in its full definition ... a formal parameter or
2159 -- generic formal object of a tagged type.
2160
2161 -- Ada 2005 limited type
2162 -- * Type with reserved word "limited", "synchronized", "task"
2163 -- or "protected"
2164 -- * A composite type with limited component
2165 -- * A derived type whose parent is a non-interface limited type
2166
2167 elsif Ada_Version = Ada_2005 then
2168 return
2169 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2170 or else
2171 (Is_Derived_Type (Typ)
2172 and then not Is_Interface (Etype (Typ))
2173 and then Is_Limited_Type (Etype (Typ)));
2174
2175 -- Ada 2012 and beyond
2176
2177 -- The current instance of an immutably limited type ... a formal
2178 -- parameter or generic formal object of a tagged type.
2179
2180 -- Ada 2012 limited type
2181 -- * Type with reserved word "limited", "synchronized", "task"
2182 -- or "protected"
2183 -- * A composite type with limited component
2184 -- * A derived type whose parent is a non-interface limited type
2185 -- * An incomplete view
2186
2187 -- Ada 2012 immutably limited type
2188 -- * Explicitly limited record type
2189 -- * Record extension with "limited" present
2190 -- * Non-formal limited private type that is either tagged
2191 -- or has at least one access discriminant with a default
2192 -- expression
2193 -- * Task type, protected type or synchronized interface
2194 -- * Type derived from immutably limited type
2195
2196 else
2197 return
2198 Is_Immutably_Limited_Type (Typ)
2199 or else Is_Incomplete_Type (Typ);
2200 end if;
2201 end Is_Aliased_View_Of_Type;
2202
2203 -------------
2204 -- Process --
2205 -------------
2206
2207 function Process (N : Node_Id) return Traverse_Result is
2208 begin
2209 case Nkind (N) is
2210 when N_Attribute_Reference =>
2211 if Nam_In (Attribute_Name (N), Name_Access,
2212 Name_Unchecked_Access)
2213 and then Is_Entity_Name (Prefix (N))
2214 and then Is_Type (Entity (Prefix (N)))
2215 and then Entity (Prefix (N)) = E
2216 then
2217 if Ada_Version < Ada_2012 then
2218 Error_Msg_N
2219 ("current instance must be a limited type",
2220 Prefix (N));
2221 else
2222 Error_Msg_N
2223 ("current instance must be an immutably limited "
2224 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
2225 end if;
2226
2227 return Abandon;
2228
2229 else
2230 return OK;
2231 end if;
2232
2233 when others => return OK;
2234 end case;
2235 end Process;
2236
2237 procedure Traverse is new Traverse_Proc (Process);
2238
2239 -- Local variables
2240
2241 Rec_Type : constant Entity_Id :=
2242 Scope (Defining_Identifier (Comp_Decl));
2243
2244 -- Start of processing for Check_Current_Instance
2245
2246 begin
2247 if not Is_Aliased_View_Of_Type (Rec_Type) then
2248 Traverse (Comp_Decl);
2249 end if;
2250 end Check_Current_Instance;
2251
2252 ------------------------------
2253 -- Check_Suspicious_Modulus --
2254 ------------------------------
2255
2256 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2257 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2258
2259 begin
2260 if not Warn_On_Suspicious_Modulus_Value then
2261 return;
2262 end if;
2263
2264 if Nkind (Decl) = N_Full_Type_Declaration then
2265 declare
2266 Tdef : constant Node_Id := Type_Definition (Decl);
2267
2268 begin
2269 if Nkind (Tdef) = N_Modular_Type_Definition then
2270 declare
2271 Modulus : constant Node_Id :=
2272 Original_Node (Expression (Tdef));
2273
2274 begin
2275 if Nkind (Modulus) = N_Integer_Literal then
2276 declare
2277 Modv : constant Uint := Intval (Modulus);
2278 Sizv : constant Uint := RM_Size (Utype);
2279
2280 begin
2281 -- First case, modulus and size are the same. This
2282 -- happens if you have something like mod 32, with
2283 -- an explicit size of 32, this is for sure a case
2284 -- where the warning is given, since it is seems
2285 -- very unlikely that someone would want e.g. a
2286 -- five bit type stored in 32 bits. It is much
2287 -- more likely they wanted a 32-bit type.
2288
2289 if Modv = Sizv then
2290 null;
2291
2292 -- Second case, the modulus is 32 or 64 and no
2293 -- size clause is present. This is a less clear
2294 -- case for giving the warning, but in the case
2295 -- of 32/64 (5-bit or 6-bit types) these seem rare
2296 -- enough that it is a likely error (and in any
2297 -- case using 2**5 or 2**6 in these cases seems
2298 -- clearer. We don't include 8 or 16 here, simply
2299 -- because in practice 3-bit and 4-bit types are
2300 -- more common and too many false positives if
2301 -- we warn in these cases.
2302
2303 elsif not Has_Size_Clause (Utype)
2304 and then (Modv = Uint_32 or else Modv = Uint_64)
2305 then
2306 null;
2307
2308 -- No warning needed
2309
2310 else
2311 return;
2312 end if;
2313
2314 -- If we fall through, give warning
2315
2316 Error_Msg_Uint_1 := Modv;
2317 Error_Msg_N
2318 ("?M?2 '*'*^' may have been intended here",
2319 Modulus);
2320 end;
2321 end if;
2322 end;
2323 end if;
2324 end;
2325 end if;
2326 end Check_Suspicious_Modulus;
2327
2328 -----------------------
2329 -- Freeze_Array_Type --
2330 -----------------------
2331
2332 procedure Freeze_Array_Type (Arr : Entity_Id) is
2333 FS : constant Entity_Id := First_Subtype (Arr);
2334 Ctyp : constant Entity_Id := Component_Type (Arr);
2335 Clause : Entity_Id;
2336
2337 Non_Standard_Enum : Boolean := False;
2338 -- Set true if any of the index types is an enumeration type with a
2339 -- non-standard representation.
2340
2341 begin
2342 Freeze_And_Append (Ctyp, N, Result);
2343
2344 Indx := First_Index (Arr);
2345 while Present (Indx) loop
2346 Freeze_And_Append (Etype (Indx), N, Result);
2347
2348 if Is_Enumeration_Type (Etype (Indx))
2349 and then Has_Non_Standard_Rep (Etype (Indx))
2350 then
2351 Non_Standard_Enum := True;
2352 end if;
2353
2354 Next_Index (Indx);
2355 end loop;
2356
2357 -- Processing that is done only for base types
2358
2359 if Ekind (Arr) = E_Array_Type then
2360
2361 -- Deal with default setting of reverse storage order
2362
2363 Set_SSO_From_Default (Arr);
2364
2365 -- Propagate flags for component type
2366
2367 if Is_Controlled_Active (Component_Type (Arr))
2368 or else Has_Controlled_Component (Ctyp)
2369 then
2370 Set_Has_Controlled_Component (Arr);
2371 end if;
2372
2373 if Has_Unchecked_Union (Component_Type (Arr)) then
2374 Set_Has_Unchecked_Union (Arr);
2375 end if;
2376
2377 -- The array type requires its own invariant procedure in order to
2378 -- verify the component invariant over all elements.
2379
2380 if Has_Invariants (Component_Type (Arr)) then
2381 Set_Has_Own_Invariants (Arr);
2382
2383 -- The array type is an implementation base type. Propagate the
2384 -- same property to the first subtype.
2385
2386 if Is_Itype (Arr) then
2387 Set_Has_Own_Invariants (First_Subtype (Arr));
2388 end if;
2389 end if;
2390
2391 -- Warn for pragma Pack overriding foreign convention
2392
2393 if Has_Foreign_Convention (Ctyp)
2394 and then Has_Pragma_Pack (Arr)
2395 then
2396 declare
2397 CN : constant Name_Id :=
2398 Get_Convention_Name (Convention (Ctyp));
2399 PP : constant Node_Id :=
2400 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2401 begin
2402 if Present (PP) then
2403 Error_Msg_Name_1 := CN;
2404 Error_Msg_Sloc := Sloc (Arr);
2405 Error_Msg_N
2406 ("pragma Pack affects convention % components #??", PP);
2407 Error_Msg_Name_1 := CN;
2408 Error_Msg_N
2409 ("\array components may not have % compatible "
2410 & "representation??", PP);
2411 end if;
2412 end;
2413 end if;
2414
2415 -- If packing was requested or if the component size was
2416 -- set explicitly, then see if bit packing is required. This
2417 -- processing is only done for base types, since all of the
2418 -- representation aspects involved are type-related.
2419
2420 -- This is not just an optimization, if we start processing the
2421 -- subtypes, they interfere with the settings on the base type
2422 -- (this is because Is_Packed has a slightly different meaning
2423 -- before and after freezing).
2424
2425 declare
2426 Csiz : Uint;
2427 Esiz : Uint;
2428
2429 begin
2430 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2431 and then Known_Static_RM_Size (Ctyp)
2432 and then not Has_Component_Size_Clause (Arr)
2433 then
2434 Csiz := UI_Max (RM_Size (Ctyp), 1);
2435
2436 elsif Known_Component_Size (Arr) then
2437 Csiz := Component_Size (Arr);
2438
2439 elsif not Known_Static_Esize (Ctyp) then
2440 Csiz := Uint_0;
2441
2442 else
2443 Esiz := Esize (Ctyp);
2444
2445 -- We can set the component size if it is less than 16,
2446 -- rounding it up to the next storage unit size.
2447
2448 if Esiz <= 8 then
2449 Csiz := Uint_8;
2450 elsif Esiz <= 16 then
2451 Csiz := Uint_16;
2452 else
2453 Csiz := Uint_0;
2454 end if;
2455
2456 -- Set component size up to match alignment if it would
2457 -- otherwise be less than the alignment. This deals with
2458 -- cases of types whose alignment exceeds their size (the
2459 -- padded type cases).
2460
2461 if Csiz /= 0 then
2462 declare
2463 A : constant Uint := Alignment_In_Bits (Ctyp);
2464 begin
2465 if Csiz < A then
2466 Csiz := A;
2467 end if;
2468 end;
2469 end if;
2470 end if;
2471
2472 -- Case of component size that may result in bit packing
2473
2474 if 1 <= Csiz and then Csiz <= 64 then
2475 declare
2476 Ent : constant Entity_Id :=
2477 First_Subtype (Arr);
2478 Pack_Pragma : constant Node_Id :=
2479 Get_Rep_Pragma (Ent, Name_Pack);
2480 Comp_Size_C : constant Node_Id :=
2481 Get_Attribute_Definition_Clause
2482 (Ent, Attribute_Component_Size);
2483
2484 begin
2485 -- Warn if we have pack and component size so that the
2486 -- pack is ignored.
2487
2488 -- Note: here we must check for the presence of a
2489 -- component size before checking for a Pack pragma to
2490 -- deal with the case where the array type is a derived
2491 -- type whose parent is currently private.
2492
2493 if Present (Comp_Size_C)
2494 and then Has_Pragma_Pack (Ent)
2495 and then Warn_On_Redundant_Constructs
2496 then
2497 Error_Msg_Sloc := Sloc (Comp_Size_C);
2498 Error_Msg_NE
2499 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2500 Error_Msg_N
2501 ("\?r?explicit component size given#!", Pack_Pragma);
2502 Set_Is_Packed (Base_Type (Ent), False);
2503 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2504 end if;
2505
2506 -- Set component size if not already set by a component
2507 -- size clause.
2508
2509 if not Present (Comp_Size_C) then
2510 Set_Component_Size (Arr, Csiz);
2511 end if;
2512
2513 -- Check for base type of 8, 16, 32 bits, where an
2514 -- unsigned subtype has a length one less than the
2515 -- base type (e.g. Natural subtype of Integer).
2516
2517 -- In such cases, if a component size was not set
2518 -- explicitly, then generate a warning.
2519
2520 if Has_Pragma_Pack (Arr)
2521 and then not Present (Comp_Size_C)
2522 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2523 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2524 then
2525 Error_Msg_Uint_1 := Csiz;
2526
2527 if Present (Pack_Pragma) then
2528 Error_Msg_N
2529 ("??pragma Pack causes component size to be ^!",
2530 Pack_Pragma);
2531 Error_Msg_N
2532 ("\??use Component_Size to set desired value!",
2533 Pack_Pragma);
2534 end if;
2535 end if;
2536
2537 -- Bit packing is never needed for 8, 16, 32, 64
2538
2539 if Addressable (Csiz) then
2540
2541 -- If the Esize of the component is known and equal to
2542 -- the component size then even packing is not needed.
2543
2544 if Known_Static_Esize (Component_Type (Arr))
2545 and then Esize (Component_Type (Arr)) = Csiz
2546 then
2547 -- Here the array was requested to be packed, but
2548 -- the packing request had no effect whatsoever,
2549 -- so flag Is_Packed is reset.
2550
2551 -- Note: semantically this means that we lose track
2552 -- of the fact that a derived type inherited pragma
2553 -- Pack that was non-effective, but that is fine.
2554
2555 -- We regard a Pack pragma as a request to set a
2556 -- representation characteristic, and this request
2557 -- may be ignored.
2558
2559 Set_Is_Packed (Base_Type (Arr), False);
2560 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2561 else
2562 Set_Is_Packed (Base_Type (Arr), True);
2563 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2564 end if;
2565
2566 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2567
2568 -- Bit packing is not needed for multiples of the storage
2569 -- unit if the type is composite because the back end can
2570 -- byte pack composite types.
2571
2572 elsif Csiz mod System_Storage_Unit = 0
2573 and then Is_Composite_Type (Ctyp)
2574 then
2575
2576 Set_Is_Packed (Base_Type (Arr), True);
2577 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2578 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2579
2580 -- In all other cases, bit packing is needed
2581
2582 else
2583 Set_Is_Packed (Base_Type (Arr), True);
2584 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2585 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2586 end if;
2587 end;
2588 end if;
2589 end;
2590
2591 -- Check for Aliased or Atomic_Components/Atomic/VFA with
2592 -- unsuitable packing or explicit component size clause given.
2593
2594 if (Has_Aliased_Components (Arr)
2595 or else Has_Atomic_Components (Arr)
2596 or else Is_Atomic_Or_VFA (Ctyp))
2597 and then
2598 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2599 then
2600 Alias_Atomic_Check : declare
2601
2602 procedure Complain_CS (T : String);
2603 -- Outputs error messages for incorrect CS clause or pragma
2604 -- Pack for aliased or atomic/VFA components (T is "aliased"
2605 -- or "atomic/vfa");
2606
2607 -----------------
2608 -- Complain_CS --
2609 -----------------
2610
2611 procedure Complain_CS (T : String) is
2612 begin
2613 if Has_Component_Size_Clause (Arr) then
2614 Clause :=
2615 Get_Attribute_Definition_Clause
2616 (FS, Attribute_Component_Size);
2617
2618 Error_Msg_N
2619 ("incorrect component size for "
2620 & T & " components", Clause);
2621 Error_Msg_Uint_1 := Esize (Ctyp);
2622 Error_Msg_N
2623 ("\only allowed value is^", Clause);
2624
2625 else
2626 Error_Msg_N
2627 ("cannot pack " & T & " components",
2628 Get_Rep_Pragma (FS, Name_Pack));
2629 end if;
2630 end Complain_CS;
2631
2632 -- Start of processing for Alias_Atomic_Check
2633
2634 begin
2635 -- If object size of component type isn't known, we cannot
2636 -- be sure so we defer to the back end.
2637
2638 if not Known_Static_Esize (Ctyp) then
2639 null;
2640
2641 -- Case where component size has no effect. First check for
2642 -- object size of component type multiple of the storage
2643 -- unit size.
2644
2645 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2646
2647 -- OK in both packing case and component size case if RM
2648 -- size is known and static and same as the object size.
2649
2650 and then
2651 ((Known_Static_RM_Size (Ctyp)
2652 and then Esize (Ctyp) = RM_Size (Ctyp))
2653
2654 -- Or if we have an explicit component size clause and
2655 -- the component size and object size are equal.
2656
2657 or else
2658 (Has_Component_Size_Clause (Arr)
2659 and then Component_Size (Arr) = Esize (Ctyp)))
2660 then
2661 null;
2662
2663 elsif Has_Aliased_Components (Arr) then
2664 Complain_CS ("aliased");
2665
2666 elsif Has_Atomic_Components (Arr)
2667 or else Is_Atomic (Ctyp)
2668 then
2669 Complain_CS ("atomic");
2670
2671 elsif Is_Volatile_Full_Access (Ctyp) then
2672 Complain_CS ("volatile full access");
2673 end if;
2674 end Alias_Atomic_Check;
2675 end if;
2676
2677 -- Check for Independent_Components/Independent with unsuitable
2678 -- packing or explicit component size clause given.
2679
2680 if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
2681 and then
2682 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2683 then
2684 begin
2685 -- If object size of component type isn't known, we cannot
2686 -- be sure so we defer to the back end.
2687
2688 if not Known_Static_Esize (Ctyp) then
2689 null;
2690
2691 -- Case where component size has no effect. First check for
2692 -- object size of component type multiple of the storage
2693 -- unit size.
2694
2695 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2696
2697 -- OK in both packing case and component size case if RM
2698 -- size is known and multiple of the storage unit size.
2699
2700 and then
2701 ((Known_Static_RM_Size (Ctyp)
2702 and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
2703
2704 -- Or if we have an explicit component size clause and
2705 -- the component size is larger than the object size.
2706
2707 or else
2708 (Has_Component_Size_Clause (Arr)
2709 and then Component_Size (Arr) >= Esize (Ctyp)))
2710 then
2711 null;
2712
2713 else
2714 if Has_Component_Size_Clause (Arr) then
2715 Clause :=
2716 Get_Attribute_Definition_Clause
2717 (FS, Attribute_Component_Size);
2718
2719 Error_Msg_N
2720 ("incorrect component size for "
2721 & "independent components", Clause);
2722 Error_Msg_Uint_1 := Esize (Ctyp);
2723 Error_Msg_N
2724 ("\minimum allowed is^", Clause);
2725
2726 else
2727 Error_Msg_N
2728 ("cannot pack independent components",
2729 Get_Rep_Pragma (FS, Name_Pack));
2730 end if;
2731 end if;
2732 end;
2733 end if;
2734
2735 -- Warn for case of atomic type
2736
2737 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2738
2739 if Present (Clause)
2740 and then not Addressable (Component_Size (FS))
2741 then
2742 Error_Msg_NE
2743 ("non-atomic components of type& may not be "
2744 & "accessible by separate tasks??", Clause, Arr);
2745
2746 if Has_Component_Size_Clause (Arr) then
2747 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2748 (FS, Attribute_Component_Size));
2749 Error_Msg_N ("\because of component size clause#??", Clause);
2750
2751 elsif Has_Pragma_Pack (Arr) then
2752 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2753 Error_Msg_N ("\because of pragma Pack#??", Clause);
2754 end if;
2755 end if;
2756
2757 -- Check for scalar storage order
2758
2759 declare
2760 Dummy : Boolean;
2761 begin
2762 Check_Component_Storage_Order
2763 (Encl_Type => Arr,
2764 Comp => Empty,
2765 ADC => Get_Attribute_Definition_Clause
2766 (First_Subtype (Arr),
2767 Attribute_Scalar_Storage_Order),
2768 Comp_ADC_Present => Dummy);
2769 end;
2770
2771 -- Processing that is done only for subtypes
2772
2773 else
2774 -- Acquire alignment from base type
2775
2776 if Unknown_Alignment (Arr) then
2777 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2778 Adjust_Esize_Alignment (Arr);
2779 end if;
2780 end if;
2781
2782 -- Specific checks for bit-packed arrays
2783
2784 if Is_Bit_Packed_Array (Arr) then
2785
2786 -- Check number of elements for bit-packed arrays that come from
2787 -- source and have compile time known ranges. The bit-packed
2788 -- arrays circuitry does not support arrays with more than
2789 -- Integer'Last + 1 elements, and when this restriction is
2790 -- violated, causes incorrect data access.
2791
2792 -- For the case where this is not compile time known, a run-time
2793 -- check should be generated???
2794
2795 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2796 declare
2797 Elmts : Uint;
2798 Index : Node_Id;
2799 Ilen : Node_Id;
2800 Ityp : Entity_Id;
2801
2802 begin
2803 Elmts := Uint_1;
2804 Index := First_Index (Arr);
2805 while Present (Index) loop
2806 Ityp := Etype (Index);
2807
2808 -- Never generate an error if any index is of a generic
2809 -- type. We will check this in instances.
2810
2811 if Is_Generic_Type (Ityp) then
2812 Elmts := Uint_0;
2813 exit;
2814 end if;
2815
2816 Ilen :=
2817 Make_Attribute_Reference (Loc,
2818 Prefix => New_Occurrence_Of (Ityp, Loc),
2819 Attribute_Name => Name_Range_Length);
2820 Analyze_And_Resolve (Ilen);
2821
2822 -- No attempt is made to check number of elements if not
2823 -- compile time known.
2824
2825 if Nkind (Ilen) /= N_Integer_Literal then
2826 Elmts := Uint_0;
2827 exit;
2828 end if;
2829
2830 Elmts := Elmts * Intval (Ilen);
2831 Next_Index (Index);
2832 end loop;
2833
2834 if Elmts > Intval (High_Bound
2835 (Scalar_Range (Standard_Integer))) + 1
2836 then
2837 Error_Msg_N
2838 ("bit packed array type may not have "
2839 & "more than Integer''Last+1 elements", Arr);
2840 end if;
2841 end;
2842 end if;
2843
2844 -- Check size
2845
2846 if Known_RM_Size (Arr) then
2847 declare
2848 SizC : constant Node_Id := Size_Clause (Arr);
2849 Discard : Boolean;
2850
2851 begin
2852 -- It is not clear if it is possible to have no size clause
2853 -- at this stage, but it is not worth worrying about. Post
2854 -- error on the entity name in the size clause if present,
2855 -- else on the type entity itself.
2856
2857 if Present (SizC) then
2858 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2859 else
2860 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2861 end if;
2862 end;
2863 end if;
2864 end if;
2865
2866 -- If any of the index types was an enumeration type with a non-
2867 -- standard rep clause, then we indicate that the array type is
2868 -- always packed (even if it is not bit-packed).
2869
2870 if Non_Standard_Enum then
2871 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2872 Set_Is_Packed (Base_Type (Arr));
2873 end if;
2874
2875 Set_Component_Alignment_If_Not_Set (Arr);
2876
2877 -- If the array is packed and bit-packed or packed to eliminate holes
2878 -- in the non-contiguous enumeration index types, we must create the
2879 -- packed array type to be used to actually implement the type. This
2880 -- is only needed for real array types (not for string literal types,
2881 -- since they are present only for the front end).
2882
2883 if Is_Packed (Arr)
2884 and then (Is_Bit_Packed_Array (Arr) or else Non_Standard_Enum)
2885 and then Ekind (Arr) /= E_String_Literal_Subtype
2886 then
2887 Create_Packed_Array_Impl_Type (Arr);
2888 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
2889
2890 -- Make sure that we have the necessary routines to implement the
2891 -- packing, and complain now if not. Note that we only test this
2892 -- for constrained array types.
2893
2894 if Is_Constrained (Arr)
2895 and then Is_Bit_Packed_Array (Arr)
2896 and then Present (Packed_Array_Impl_Type (Arr))
2897 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
2898 then
2899 declare
2900 CS : constant Uint := Component_Size (Arr);
2901 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
2902
2903 begin
2904 if RE /= RE_Null
2905 and then not RTE_Available (RE)
2906 then
2907 Error_Msg_CRT
2908 ("packing of " & UI_Image (CS) & "-bit components",
2909 First_Subtype (Etype (Arr)));
2910
2911 -- Cancel the packing
2912
2913 Set_Is_Packed (Base_Type (Arr), False);
2914 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2915 Set_Packed_Array_Impl_Type (Arr, Empty);
2916 goto Skip_Packed;
2917 end if;
2918 end;
2919 end if;
2920
2921 -- Size information of packed array type is copied to the array
2922 -- type, since this is really the representation. But do not
2923 -- override explicit existing size values. If the ancestor subtype
2924 -- is constrained the Packed_Array_Impl_Type will be inherited
2925 -- from it, but the size may have been provided already, and
2926 -- must not be overridden either.
2927
2928 if not Has_Size_Clause (Arr)
2929 and then
2930 (No (Ancestor_Subtype (Arr))
2931 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
2932 then
2933 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
2934 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
2935 end if;
2936
2937 if not Has_Alignment_Clause (Arr) then
2938 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
2939 end if;
2940 end if;
2941
2942 <<Skip_Packed>>
2943
2944 -- For non-packed arrays set the alignment of the array to the
2945 -- alignment of the component type if it is unknown. Skip this
2946 -- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
2947
2948 if not Is_Packed (Arr)
2949 and then Unknown_Alignment (Arr)
2950 and then Known_Alignment (Ctyp)
2951 and then Known_Static_Component_Size (Arr)
2952 and then Known_Static_Esize (Ctyp)
2953 and then Esize (Ctyp) = Component_Size (Arr)
2954 and then not Is_Atomic_Or_VFA (Arr)
2955 then
2956 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
2957 end if;
2958
2959 -- A Ghost type cannot have a component of protected or task type
2960 -- (SPARK RM 6.9(19)).
2961
2962 if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then
2963 Error_Msg_N
2964 ("ghost array type & cannot have concurrent component type",
2965 Arr);
2966 end if;
2967 end Freeze_Array_Type;
2968
2969 -------------------------------
2970 -- Freeze_Object_Declaration --
2971 -------------------------------
2972
2973 procedure Freeze_Object_Declaration (E : Entity_Id) is
2974 begin
2975 -- Abstract type allowed only for C++ imported variables or constants
2976
2977 -- Note: we inhibit this check for objects that do not come from
2978 -- source because there is at least one case (the expansion of
2979 -- x'Class'Input where x is abstract) where we legitimately
2980 -- generate an abstract object.
2981
2982 if Is_Abstract_Type (Etype (E))
2983 and then Comes_From_Source (Parent (E))
2984 and then not (Is_Imported (E) and then Is_CPP_Class (Etype (E)))
2985 then
2986 Error_Msg_N ("type of object cannot be abstract",
2987 Object_Definition (Parent (E)));
2988
2989 if Is_CPP_Class (Etype (E)) then
2990 Error_Msg_NE
2991 ("\} may need a cpp_constructor",
2992 Object_Definition (Parent (E)), Etype (E));
2993
2994 elsif Present (Expression (Parent (E))) then
2995 Error_Msg_N -- CODEFIX
2996 ("\maybe a class-wide type was meant",
2997 Object_Definition (Parent (E)));
2998 end if;
2999 end if;
3000
3001 -- For object created by object declaration, perform required
3002 -- categorization (preelaborate and pure) checks. Defer these
3003 -- checks to freeze time since pragma Import inhibits default
3004 -- initialization and thus pragma Import affects these checks.
3005
3006 Validate_Object_Declaration (Declaration_Node (E));
3007
3008 -- If there is an address clause, check that it is valid
3009 -- and if need be move initialization to the freeze node.
3010
3011 Check_Address_Clause (E);
3012
3013 -- Similar processing is needed for aspects that may affect
3014 -- object layout, like Alignment, if there is an initialization
3015 -- expression.
3016
3017 if Has_Delayed_Aspects (E)
3018 and then Expander_Active
3019 and then Is_Array_Type (Etype (E))
3020 and then Present (Expression (Parent (E)))
3021 then
3022 declare
3023 Decl : constant Node_Id := Parent (E);
3024 Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
3025
3026 begin
3027
3028 -- Capture initialization value at point of declaration, and
3029 -- make explicit assignment legal, because object may be a
3030 -- constant.
3031
3032 Remove_Side_Effects (Expression (Decl));
3033 Set_Assignment_OK (Lhs);
3034
3035 -- Move initialization to freeze actions.
3036
3037 Append_Freeze_Action (E,
3038 Make_Assignment_Statement (Loc,
3039 Name => Lhs,
3040 Expression => Expression (Decl)));
3041
3042 Set_No_Initialization (Decl);
3043 -- Set_Is_Frozen (E, False);
3044 end;
3045 end if;
3046
3047 -- Reset Is_True_Constant for non-constant aliased object. We
3048 -- consider that the fact that a non-constant object is aliased may
3049 -- indicate that some funny business is going on, e.g. an aliased
3050 -- object is passed by reference to a procedure which captures the
3051 -- address of the object, which is later used to assign a new value,
3052 -- even though the compiler thinks that it is not modified. Such
3053 -- code is highly dubious, but we choose to make it "work" for
3054 -- non-constant aliased objects.
3055
3056 -- Note that we used to do this for all aliased objects, whether or
3057 -- not constant, but this caused anomalies down the line because we
3058 -- ended up with static objects that were not Is_True_Constant. Not
3059 -- resetting Is_True_Constant for (aliased) constant objects ensures
3060 -- that this anomaly never occurs.
3061
3062 -- However, we don't do that for internal entities. We figure that if
3063 -- we deliberately set Is_True_Constant for an internal entity, e.g.
3064 -- a dispatch table entry, then we mean it.
3065
3066 if Ekind (E) /= E_Constant
3067 and then (Is_Aliased (E) or else Is_Aliased (Etype (E)))
3068 and then not Is_Internal_Name (Chars (E))
3069 then
3070 Set_Is_True_Constant (E, False);
3071 end if;
3072
3073 -- If the object needs any kind of default initialization, an error
3074 -- must be issued if No_Default_Initialization applies. The check
3075 -- doesn't apply to imported objects, which are not ever default
3076 -- initialized, and is why the check is deferred until freezing, at
3077 -- which point we know if Import applies. Deferred constants are also
3078 -- exempted from this test because their completion is explicit, or
3079 -- through an import pragma.
3080
3081 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
3082 null;
3083
3084 elsif Comes_From_Source (E)
3085 and then not Is_Imported (E)
3086 and then not Has_Init_Expression (Declaration_Node (E))
3087 and then
3088 ((Has_Non_Null_Base_Init_Proc (Etype (E))
3089 and then not No_Initialization (Declaration_Node (E))
3090 and then not Initialization_Suppressed (Etype (E)))
3091 or else
3092 (Needs_Simple_Initialization (Etype (E))
3093 and then not Is_Internal (E)))
3094 then
3095 Has_Default_Initialization := True;
3096 Check_Restriction
3097 (No_Default_Initialization, Declaration_Node (E));
3098 end if;
3099
3100 -- Check that a Thread_Local_Storage variable does not have
3101 -- default initialization, and any explicit initialization must
3102 -- either be the null constant or a static constant.
3103
3104 if Has_Pragma_Thread_Local_Storage (E) then
3105 declare
3106 Decl : constant Node_Id := Declaration_Node (E);
3107 begin
3108 if Has_Default_Initialization
3109 or else
3110 (Has_Init_Expression (Decl)
3111 and then
3112 (No (Expression (Decl))
3113 or else not
3114 (Is_OK_Static_Expression (Expression (Decl))
3115 or else Nkind (Expression (Decl)) = N_Null)))
3116 then
3117 Error_Msg_NE
3118 ("Thread_Local_Storage variable& is "
3119 & "improperly initialized", Decl, E);
3120 Error_Msg_NE
3121 ("\only allowed initialization is explicit "
3122 & "NULL or static expression", Decl, E);
3123 end if;
3124 end;
3125 end if;
3126
3127 -- For imported objects, set Is_Public unless there is also an
3128 -- address clause, which means that there is no external symbol
3129 -- needed for the Import (Is_Public may still be set for other
3130 -- unrelated reasons). Note that we delayed this processing
3131 -- till freeze time so that we can be sure not to set the flag
3132 -- if there is an address clause. If there is such a clause,
3133 -- then the only purpose of the Import pragma is to suppress
3134 -- implicit initialization.
3135
3136 if Is_Imported (E) and then No (Address_Clause (E)) then
3137 Set_Is_Public (E);
3138 end if;
3139
3140 -- For source objects that are not Imported and are library
3141 -- level, if no linker section pragma was given inherit the
3142 -- appropriate linker section from the corresponding type.
3143
3144 if Comes_From_Source (E)
3145 and then not Is_Imported (E)
3146 and then Is_Library_Level_Entity (E)
3147 and then No (Linker_Section_Pragma (E))
3148 then
3149 Set_Linker_Section_Pragma
3150 (E, Linker_Section_Pragma (Etype (E)));
3151 end if;
3152
3153 -- For convention C objects of an enumeration type, warn if the
3154 -- size is not integer size and no explicit size given. Skip
3155 -- warning for Boolean, and Character, assume programmer expects
3156 -- 8-bit sizes for these cases.
3157
3158 if (Convention (E) = Convention_C
3159 or else
3160 Convention (E) = Convention_CPP)
3161 and then Is_Enumeration_Type (Etype (E))
3162 and then not Is_Character_Type (Etype (E))
3163 and then not Is_Boolean_Type (Etype (E))
3164 and then Esize (Etype (E)) < Standard_Integer_Size
3165 and then not Has_Size_Clause (E)
3166 then
3167 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
3168 Error_Msg_N
3169 ("??convention C enumeration object has size less than ^", E);
3170 Error_Msg_N ("\??use explicit size clause to set size", E);
3171 end if;
3172 end Freeze_Object_Declaration;
3173
3174 -----------------------------
3175 -- Freeze_Generic_Entities --
3176 -----------------------------
3177
3178 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
3179 E : Entity_Id;
3180 F : Node_Id;
3181 Flist : List_Id;
3182
3183 begin
3184 Flist := New_List;
3185 E := First_Entity (Pack);
3186 while Present (E) loop
3187 if Is_Type (E) and then not Is_Generic_Type (E) then
3188 F := Make_Freeze_Generic_Entity (Sloc (Pack));
3189 Set_Entity (F, E);
3190 Append_To (Flist, F);
3191
3192 elsif Ekind (E) = E_Generic_Package then
3193 Append_List_To (Flist, Freeze_Generic_Entities (E));
3194 end if;
3195
3196 Next_Entity (E);
3197 end loop;
3198
3199 return Flist;
3200 end Freeze_Generic_Entities;
3201
3202 --------------------
3203 -- Freeze_Profile --
3204 --------------------
3205
3206 function Freeze_Profile (E : Entity_Id) return Boolean is
3207 F_Type : Entity_Id;
3208 R_Type : Entity_Id;
3209 Warn_Node : Node_Id;
3210
3211 begin
3212 -- Loop through formals
3213
3214 Formal := First_Formal (E);
3215 while Present (Formal) loop
3216 F_Type := Etype (Formal);
3217
3218 -- AI05-0151: incomplete types can appear in a profile. By the
3219 -- time the entity is frozen, the full view must be available,
3220 -- unless it is a limited view.
3221
3222 if Is_Incomplete_Type (F_Type)
3223 and then Present (Full_View (F_Type))
3224 and then not From_Limited_With (F_Type)
3225 then
3226 F_Type := Full_View (F_Type);
3227 Set_Etype (Formal, F_Type);
3228 end if;
3229
3230 if not From_Limited_With (F_Type) then
3231 Freeze_And_Append (F_Type, N, Result);
3232 end if;
3233
3234 if Is_Private_Type (F_Type)
3235 and then Is_Private_Type (Base_Type (F_Type))
3236 and then No (Full_View (Base_Type (F_Type)))
3237 and then not Is_Generic_Type (F_Type)
3238 and then not Is_Derived_Type (F_Type)
3239 then
3240 -- If the type of a formal is incomplete, subprogram is being
3241 -- frozen prematurely. Within an instance (but not within a
3242 -- wrapper package) this is an artifact of our need to regard
3243 -- the end of an instantiation as a freeze point. Otherwise it
3244 -- is a definite error.
3245
3246 if In_Instance then
3247 Set_Is_Frozen (E, False);
3248 Result := No_List;
3249 return False;
3250
3251 elsif not After_Last_Declaration
3252 and then not Freezing_Library_Level_Tagged_Type
3253 then
3254 Error_Msg_Node_1 := F_Type;
3255 Error_Msg
3256 ("type & must be fully defined before this point", Loc);
3257 end if;
3258 end if;
3259
3260 -- Check suspicious parameter for C function. These tests apply
3261 -- only to exported/imported subprograms.
3262
3263 if Warn_On_Export_Import
3264 and then Comes_From_Source (E)
3265 and then (Convention (E) = Convention_C
3266 or else
3267 Convention (E) = Convention_CPP)
3268 and then (Is_Imported (E) or else Is_Exported (E))
3269 and then Convention (E) /= Convention (Formal)
3270 and then not Has_Warnings_Off (E)
3271 and then not Has_Warnings_Off (F_Type)
3272 and then not Has_Warnings_Off (Formal)
3273 then
3274 -- Qualify mention of formals with subprogram name
3275
3276 Error_Msg_Qual_Level := 1;
3277
3278 -- Check suspicious use of fat C pointer
3279
3280 if Is_Access_Type (F_Type)
3281 and then Esize (F_Type) > Ttypes.System_Address_Size
3282 then
3283 Error_Msg_N
3284 ("?x?type of & does not correspond to C pointer!", Formal);
3285
3286 -- Check suspicious return of boolean
3287
3288 elsif Root_Type (F_Type) = Standard_Boolean
3289 and then Convention (F_Type) = Convention_Ada
3290 and then not Has_Warnings_Off (F_Type)
3291 and then not Has_Size_Clause (F_Type)
3292 then
3293 Error_Msg_N
3294 ("& is an 8-bit Ada Boolean?x?", Formal);
3295 Error_Msg_N
3296 ("\use appropriate corresponding type in C "
3297 & "(e.g. char)?x?", Formal);
3298
3299 -- Check suspicious tagged type
3300
3301 elsif (Is_Tagged_Type (F_Type)
3302 or else
3303 (Is_Access_Type (F_Type)
3304 and then Is_Tagged_Type (Designated_Type (F_Type))))
3305 and then Convention (E) = Convention_C
3306 then
3307 Error_Msg_N
3308 ("?x?& involves a tagged type which does not "
3309 & "correspond to any C type!", Formal);
3310
3311 -- Check wrong convention subprogram pointer
3312
3313 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3314 and then not Has_Foreign_Convention (F_Type)
3315 then
3316 Error_Msg_N
3317 ("?x?subprogram pointer & should "
3318 & "have foreign convention!", Formal);
3319 Error_Msg_Sloc := Sloc (F_Type);
3320 Error_Msg_NE
3321 ("\?x?add Convention pragma to declaration of &#",
3322 Formal, F_Type);
3323 end if;
3324
3325 -- Turn off name qualification after message output
3326
3327 Error_Msg_Qual_Level := 0;
3328 end if;
3329
3330 -- Check for unconstrained array in exported foreign convention
3331 -- case.
3332
3333 if Has_Foreign_Convention (E)
3334 and then not Is_Imported (E)
3335 and then Is_Array_Type (F_Type)
3336 and then not Is_Constrained (F_Type)
3337 and then Warn_On_Export_Import
3338 then
3339 Error_Msg_Qual_Level := 1;
3340
3341 -- If this is an inherited operation, place the warning on
3342 -- the derived type declaration, rather than on the original
3343 -- subprogram.
3344
3345 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
3346 then
3347 Warn_Node := Parent (E);
3348
3349 if Formal = First_Formal (E) then
3350 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
3351 end if;
3352 else
3353 Warn_Node := Formal;
3354 end if;
3355
3356 Error_Msg_NE ("?x?type of argument& is unconstrained array",
3357 Warn_Node, Formal);
3358 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
3359 Warn_Node, Formal);
3360 Error_Msg_Qual_Level := 0;
3361 end if;
3362
3363 if not From_Limited_With (F_Type) then
3364 if Is_Access_Type (F_Type) then
3365 F_Type := Designated_Type (F_Type);
3366 end if;
3367
3368 -- If the formal is an anonymous_access_to_subprogram
3369 -- freeze the subprogram type as well, to prevent
3370 -- scope anomalies in gigi, because there is no other
3371 -- clear point at which it could be frozen.
3372
3373 if Is_Itype (Etype (Formal))
3374 and then Ekind (F_Type) = E_Subprogram_Type
3375 then
3376 Freeze_And_Append (F_Type, N, Result);
3377 end if;
3378 end if;
3379
3380 Next_Formal (Formal);
3381 end loop;
3382
3383 -- Case of function: similar checks on return type
3384
3385 if Ekind (E) = E_Function then
3386
3387 -- Freeze return type
3388
3389 R_Type := Etype (E);
3390
3391 -- AI05-0151: the return type may have been incomplete
3392 -- at the point of declaration. Replace it with the full
3393 -- view, unless the current type is a limited view. In
3394 -- that case the full view is in a different unit, and
3395 -- gigi finds the non-limited view after the other unit
3396 -- is elaborated.
3397
3398 if Ekind (R_Type) = E_Incomplete_Type
3399 and then Present (Full_View (R_Type))
3400 and then not From_Limited_With (R_Type)
3401 then
3402 R_Type := Full_View (R_Type);
3403 Set_Etype (E, R_Type);
3404 end if;
3405
3406 Freeze_And_Append (R_Type, N, Result);
3407
3408 -- Check suspicious return type for C function
3409
3410 if Warn_On_Export_Import
3411 and then (Convention (E) = Convention_C
3412 or else
3413 Convention (E) = Convention_CPP)
3414 and then (Is_Imported (E) or else Is_Exported (E))
3415 then
3416 -- Check suspicious return of fat C pointer
3417
3418 if Is_Access_Type (R_Type)
3419 and then Esize (R_Type) > Ttypes.System_Address_Size
3420 and then not Has_Warnings_Off (E)
3421 and then not Has_Warnings_Off (R_Type)
3422 then
3423 Error_Msg_N ("?x?return type of& does not "
3424 & "correspond to C pointer!", E);
3425
3426 -- Check suspicious return of boolean
3427
3428 elsif Root_Type (R_Type) = Standard_Boolean
3429 and then Convention (R_Type) = Convention_Ada
3430 and then not Has_Warnings_Off (E)
3431 and then not Has_Warnings_Off (R_Type)
3432 and then not Has_Size_Clause (R_Type)
3433 then
3434 declare
3435 N : constant Node_Id :=
3436 Result_Definition (Declaration_Node (E));
3437 begin
3438 Error_Msg_NE
3439 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3440 Error_Msg_NE
3441 ("\use appropriate corresponding type in C "
3442 & "(e.g. char)?x?", N, E);
3443 end;
3444
3445 -- Check suspicious return tagged type
3446
3447 elsif (Is_Tagged_Type (R_Type)
3448 or else (Is_Access_Type (R_Type)
3449 and then
3450 Is_Tagged_Type
3451 (Designated_Type (R_Type))))
3452 and then Convention (E) = Convention_C
3453 and then not Has_Warnings_Off (E)
3454 and then not Has_Warnings_Off (R_Type)
3455 then
3456 Error_Msg_N ("?x?return type of & does not "
3457 & "correspond to C type!", E);
3458
3459 -- Check return of wrong convention subprogram pointer
3460
3461 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3462 and then not Has_Foreign_Convention (R_Type)
3463 and then not Has_Warnings_Off (E)
3464 and then not Has_Warnings_Off (R_Type)
3465 then
3466 Error_Msg_N ("?x?& should return a foreign "
3467 & "convention subprogram pointer", E);
3468 Error_Msg_Sloc := Sloc (R_Type);
3469 Error_Msg_NE
3470 ("\?x?add Convention pragma to declaration of& #",
3471 E, R_Type);
3472 end if;
3473 end if;
3474
3475 -- Give warning for suspicious return of a result of an
3476 -- unconstrained array type in a foreign convention function.
3477
3478 if Has_Foreign_Convention (E)
3479
3480 -- We are looking for a return of unconstrained array
3481
3482 and then Is_Array_Type (R_Type)
3483 and then not Is_Constrained (R_Type)
3484
3485 -- Exclude imported routines, the warning does not belong on
3486 -- the import, but rather on the routine definition.
3487
3488 and then not Is_Imported (E)
3489
3490 -- Check that general warning is enabled, and that it is not
3491 -- suppressed for this particular case.
3492
3493 and then Warn_On_Export_Import
3494 and then not Has_Warnings_Off (E)
3495 and then not Has_Warnings_Off (R_Type)
3496 then
3497 Error_Msg_N
3498 ("?x?foreign convention function& should not return "
3499 & "unconstrained array!", E);
3500 end if;
3501 end if;
3502
3503 -- Check suspicious use of Import in pure unit (cases where the RM
3504 -- allows calls to be omitted).
3505
3506 if Is_Imported (E)
3507
3508 -- It might be suspicious if the compilation unit has the Pure
3509 -- aspect/pragma.
3510
3511 and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit))
3512
3513 -- The RM allows omission of calls only in the case of
3514 -- library-level subprograms (see RM-10.2.1(18)).
3515
3516 and then Is_Library_Level_Entity (E)
3517
3518 -- Ignore internally generated entity. This happens in some cases
3519 -- of subprograms in specs, where we generate an implied body.
3520
3521 and then Comes_From_Source (Import_Pragma (E))
3522
3523 -- Assume run-time knows what it is doing
3524
3525 and then not GNAT_Mode
3526
3527 -- Assume explicit Pure_Function means import is pure
3528
3529 and then not Has_Pragma_Pure_Function (E)
3530
3531 -- Don't need warning in relaxed semantics mode
3532
3533 and then not Relaxed_RM_Semantics
3534
3535 -- Assume convention Intrinsic is OK, since this is specialized.
3536 -- This deals with the DEC unit current_exception.ads
3537
3538 and then Convention (E) /= Convention_Intrinsic
3539
3540 -- Assume that ASM interface knows what it is doing. This deals
3541 -- with e.g. unsigned.ads in the AAMP back end.
3542
3543 and then Convention (E) /= Convention_Assembler
3544 then
3545 Error_Msg_N
3546 ("pragma Import in Pure unit??", Import_Pragma (E));
3547 Error_Msg_NE
3548 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3549 Import_Pragma (E), E);
3550 end if;
3551
3552 return True;
3553 end Freeze_Profile;
3554
3555 ------------------------
3556 -- Freeze_Record_Type --
3557 ------------------------
3558
3559 procedure Freeze_Record_Type (Rec : Entity_Id) is
3560 ADC : Node_Id;
3561 Comp : Entity_Id;
3562 IR : Node_Id;
3563 Prev : Entity_Id;
3564
3565 Junk : Boolean;
3566 pragma Warnings (Off, Junk);
3567
3568 Aliased_Component : Boolean := False;
3569 -- Set True if we find at least one component which is aliased. This
3570 -- is used to prevent Implicit_Packing of the record, since packing
3571 -- cannot modify the size of alignment of an aliased component.
3572
3573 All_Elem_Components : Boolean := True;
3574 -- Set False if we encounter a component of a composite type
3575
3576 All_Sized_Components : Boolean := True;
3577 -- Set False if we encounter a component with unknown RM_Size
3578
3579 All_Storage_Unit_Components : Boolean := True;
3580 -- Set False if we encounter a component of a composite type whose
3581 -- RM_Size is not a multiple of the storage unit.
3582
3583 Elem_Component_Total_Esize : Uint := Uint_0;
3584 -- Accumulates total Esize values of all elementary components. Used
3585 -- for processing of Implicit_Packing.
3586
3587 Placed_Component : Boolean := False;
3588 -- Set True if we find at least one component with a component
3589 -- clause (used to warn about useless Bit_Order pragmas, and also
3590 -- to detect cases where Implicit_Packing may have an effect).
3591
3592 Rec_Pushed : Boolean := False;
3593 -- Set True if the record type scope Rec has been pushed on the scope
3594 -- stack. Needed for the analysis of delayed aspects specified to the
3595 -- components of Rec.
3596
3597 Sized_Component_Total_RM_Size : Uint := Uint_0;
3598 -- Accumulates total RM_Size values of all sized components. Used
3599 -- for processing of Implicit_Packing.
3600
3601 SSO_ADC : Node_Id;
3602 -- Scalar_Storage_Order attribute definition clause for the record
3603
3604 SSO_ADC_Component : Boolean := False;
3605 -- Set True if we find at least one component whose type has a
3606 -- Scalar_Storage_Order attribute definition clause.
3607
3608 Unplaced_Component : Boolean := False;
3609 -- Set True if we find at least one component with no component
3610 -- clause (used to warn about useless Pack pragmas).
3611
3612 function Check_Allocator (N : Node_Id) return Node_Id;
3613 -- If N is an allocator, possibly wrapped in one or more level of
3614 -- qualified expression(s), return the inner allocator node, else
3615 -- return Empty.
3616
3617 procedure Check_Itype (Typ : Entity_Id);
3618 -- If the component subtype is an access to a constrained subtype of
3619 -- an already frozen type, make the subtype frozen as well. It might
3620 -- otherwise be frozen in the wrong scope, and a freeze node on
3621 -- subtype has no effect. Similarly, if the component subtype is a
3622 -- regular (not protected) access to subprogram, set the anonymous
3623 -- subprogram type to frozen as well, to prevent an out-of-scope
3624 -- freeze node at some eventual point of call. Protected operations
3625 -- are handled elsewhere.
3626
3627 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
3628 -- Make sure that all types mentioned in Discrete_Choices of the
3629 -- variants referenceed by the Variant_Part VP are frozen. This is
3630 -- a recursive routine to deal with nested variants.
3631
3632 ---------------------
3633 -- Check_Allocator --
3634 ---------------------
3635
3636 function Check_Allocator (N : Node_Id) return Node_Id is
3637 Inner : Node_Id;
3638 begin
3639 Inner := N;
3640 loop
3641 if Nkind (Inner) = N_Allocator then
3642 return Inner;
3643 elsif Nkind (Inner) = N_Qualified_Expression then
3644 Inner := Expression (Inner);
3645 else
3646 return Empty;
3647 end if;
3648 end loop;
3649 end Check_Allocator;
3650
3651 -----------------
3652 -- Check_Itype --
3653 -----------------
3654
3655 procedure Check_Itype (Typ : Entity_Id) is
3656 Desig : constant Entity_Id := Designated_Type (Typ);
3657
3658 begin
3659 if not Is_Frozen (Desig)
3660 and then Is_Frozen (Base_Type (Desig))
3661 then
3662 Set_Is_Frozen (Desig);
3663
3664 -- In addition, add an Itype_Reference to ensure that the
3665 -- access subtype is elaborated early enough. This cannot be
3666 -- done if the subtype may depend on discriminants.
3667
3668 if Ekind (Comp) = E_Component
3669 and then Is_Itype (Etype (Comp))
3670 and then not Has_Discriminants (Rec)
3671 then
3672 IR := Make_Itype_Reference (Sloc (Comp));
3673 Set_Itype (IR, Desig);
3674 Add_To_Result (IR);
3675 end if;
3676
3677 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
3678 and then Convention (Desig) /= Convention_Protected
3679 then
3680 Set_Is_Frozen (Desig);
3681 end if;
3682 end Check_Itype;
3683
3684 ------------------------------------
3685 -- Freeze_Choices_In_Variant_Part --
3686 ------------------------------------
3687
3688 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
3689 pragma Assert (Nkind (VP) = N_Variant_Part);
3690
3691 Variant : Node_Id;
3692 Choice : Node_Id;
3693 CL : Node_Id;
3694
3695 begin
3696 -- Loop through variants
3697
3698 Variant := First_Non_Pragma (Variants (VP));
3699 while Present (Variant) loop
3700
3701 -- Loop through choices, checking that all types are frozen
3702
3703 Choice := First_Non_Pragma (Discrete_Choices (Variant));
3704 while Present (Choice) loop
3705 if Nkind (Choice) in N_Has_Etype
3706 and then Present (Etype (Choice))
3707 then
3708 Freeze_And_Append (Etype (Choice), N, Result);
3709 end if;
3710
3711 Next_Non_Pragma (Choice);
3712 end loop;
3713
3714 -- Check for nested variant part to process
3715
3716 CL := Component_List (Variant);
3717
3718 if not Null_Present (CL) then
3719 if Present (Variant_Part (CL)) then
3720 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
3721 end if;
3722 end if;
3723
3724 Next_Non_Pragma (Variant);
3725 end loop;
3726 end Freeze_Choices_In_Variant_Part;
3727
3728 -- Start of processing for Freeze_Record_Type
3729
3730 begin
3731 -- Deal with delayed aspect specifications for components. The
3732 -- analysis of the aspect is required to be delayed to the freeze
3733 -- point, thus we analyze the pragma or attribute definition
3734 -- clause in the tree at this point. We also analyze the aspect
3735 -- specification node at the freeze point when the aspect doesn't
3736 -- correspond to pragma/attribute definition clause.
3737
3738 Comp := First_Entity (Rec);
3739 while Present (Comp) loop
3740 if Ekind (Comp) = E_Component
3741 and then Has_Delayed_Aspects (Comp)
3742 then
3743 if not Rec_Pushed then
3744 Push_Scope (Rec);
3745 Rec_Pushed := True;
3746
3747 -- The visibility to the discriminants must be restored in
3748 -- order to properly analyze the aspects.
3749
3750 if Has_Discriminants (Rec) then
3751 Install_Discriminants (Rec);
3752 end if;
3753 end if;
3754
3755 Analyze_Aspects_At_Freeze_Point (Comp);
3756 end if;
3757
3758 Next_Entity (Comp);
3759 end loop;
3760
3761 -- Pop the scope if Rec scope has been pushed on the scope stack
3762 -- during the delayed aspect analysis process.
3763
3764 if Rec_Pushed then
3765 if Has_Discriminants (Rec) then
3766 Uninstall_Discriminants (Rec);
3767 end if;
3768
3769 Pop_Scope;
3770 end if;
3771
3772 -- Freeze components and embedded subtypes
3773
3774 Comp := First_Entity (Rec);
3775 Prev := Empty;
3776 while Present (Comp) loop
3777 if Is_Aliased (Comp) then
3778 Aliased_Component := True;
3779 end if;
3780
3781 -- Handle the component and discriminant case
3782
3783 if Ekind_In (Comp, E_Component, E_Discriminant) then
3784 declare
3785 CC : constant Node_Id := Component_Clause (Comp);
3786
3787 begin
3788 -- Freezing a record type freezes the type of each of its
3789 -- components. However, if the type of the component is
3790 -- part of this record, we do not want or need a separate
3791 -- Freeze_Node. Note that Is_Itype is wrong because that's
3792 -- also set in private type cases. We also can't check for
3793 -- the Scope being exactly Rec because of private types and
3794 -- record extensions.
3795
3796 if Is_Itype (Etype (Comp))
3797 and then Is_Record_Type (Underlying_Type
3798 (Scope (Etype (Comp))))
3799 then
3800 Undelay_Type (Etype (Comp));
3801 end if;
3802
3803 Freeze_And_Append (Etype (Comp), N, Result);
3804
3805 -- Warn for pragma Pack overriding foreign convention
3806
3807 if Has_Foreign_Convention (Etype (Comp))
3808 and then Has_Pragma_Pack (Rec)
3809
3810 -- Don't warn for aliased components, since override
3811 -- cannot happen in that case.
3812
3813 and then not Is_Aliased (Comp)
3814 then
3815 declare
3816 CN : constant Name_Id :=
3817 Get_Convention_Name (Convention (Etype (Comp)));
3818 PP : constant Node_Id :=
3819 Get_Pragma (Rec, Pragma_Pack);
3820 begin
3821 if Present (PP) then
3822 Error_Msg_Name_1 := CN;
3823 Error_Msg_Sloc := Sloc (Comp);
3824 Error_Msg_N
3825 ("pragma Pack affects convention % component#??",
3826 PP);
3827 Error_Msg_Name_1 := CN;
3828 Error_Msg_NE
3829 ("\component & may not have % compatible "
3830 & "representation??", PP, Comp);
3831 end if;
3832 end;
3833 end if;
3834
3835 -- Check for error of component clause given for variable
3836 -- sized type. We have to delay this test till this point,
3837 -- since the component type has to be frozen for us to know
3838 -- if it is variable length.
3839
3840 if Present (CC) then
3841 Placed_Component := True;
3842
3843 -- We omit this test in a generic context, it will be
3844 -- applied at instantiation time.
3845
3846 if Inside_A_Generic then
3847 null;
3848
3849 -- Also omit this test in CodePeer mode, since we do not
3850 -- have sufficient info on size and rep clauses.
3851
3852 elsif CodePeer_Mode then
3853 null;
3854
3855 -- Omit check if component has a generic type. This can
3856 -- happen in an instantiation within a generic in ASIS
3857 -- mode, where we force freeze actions without full
3858 -- expansion.
3859
3860 elsif Is_Generic_Type (Etype (Comp)) then
3861 null;
3862
3863 -- Do the check
3864
3865 elsif not
3866 Size_Known_At_Compile_Time
3867 (Underlying_Type (Etype (Comp)))
3868 then
3869 Error_Msg_N
3870 ("component clause not allowed for variable " &
3871 "length component", CC);
3872 end if;
3873
3874 else
3875 Unplaced_Component := True;
3876 end if;
3877
3878 -- Case of component requires byte alignment
3879
3880 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
3881
3882 -- Set the enclosing record to also require byte align
3883
3884 Set_Must_Be_On_Byte_Boundary (Rec);
3885
3886 -- Check for component clause that is inconsistent with
3887 -- the required byte boundary alignment.
3888
3889 if Present (CC)
3890 and then Normalized_First_Bit (Comp) mod
3891 System_Storage_Unit /= 0
3892 then
3893 Error_Msg_N
3894 ("component & must be byte aligned",
3895 Component_Name (Component_Clause (Comp)));
3896 end if;
3897 end if;
3898 end;
3899 end if;
3900
3901 -- Gather data for possible Implicit_Packing later. Note that at
3902 -- this stage we might be dealing with a real component, or with
3903 -- an implicit subtype declaration.
3904
3905 if Known_Static_RM_Size (Etype (Comp)) then
3906 Sized_Component_Total_RM_Size :=
3907 Sized_Component_Total_RM_Size + RM_Size (Etype (Comp));
3908
3909 if Is_Elementary_Type (Etype (Comp)) then
3910 Elem_Component_Total_Esize :=
3911 Elem_Component_Total_Esize + Esize (Etype (Comp));
3912 else
3913 All_Elem_Components := False;
3914
3915 if RM_Size (Etype (Comp)) mod System_Storage_Unit /= 0 then
3916 All_Storage_Unit_Components := False;
3917 end if;
3918 end if;
3919 else
3920 All_Sized_Components := False;
3921 end if;
3922
3923 -- If the component is an Itype with Delayed_Freeze and is either
3924 -- a record or array subtype and its base type has not yet been
3925 -- frozen, we must remove this from the entity list of this record
3926 -- and put it on the entity list of the scope of its base type.
3927 -- Note that we know that this is not the type of a component
3928 -- since we cleared Has_Delayed_Freeze for it in the previous
3929 -- loop. Thus this must be the Designated_Type of an access type,
3930 -- which is the type of a component.
3931
3932 if Is_Itype (Comp)
3933 and then Is_Type (Scope (Comp))
3934 and then Is_Composite_Type (Comp)
3935 and then Base_Type (Comp) /= Comp
3936 and then Has_Delayed_Freeze (Comp)
3937 and then not Is_Frozen (Base_Type (Comp))
3938 then
3939 declare
3940 Will_Be_Frozen : Boolean := False;
3941 S : Entity_Id;
3942
3943 begin
3944 -- We have a difficult case to handle here. Suppose Rec is
3945 -- subtype being defined in a subprogram that's created as
3946 -- part of the freezing of Rec'Base. In that case, we know
3947 -- that Comp'Base must have already been frozen by the time
3948 -- we get to elaborate this because Gigi doesn't elaborate
3949 -- any bodies until it has elaborated all of the declarative
3950 -- part. But Is_Frozen will not be set at this point because
3951 -- we are processing code in lexical order.
3952
3953 -- We detect this case by going up the Scope chain of Rec
3954 -- and seeing if we have a subprogram scope before reaching
3955 -- the top of the scope chain or that of Comp'Base. If we
3956 -- do, then mark that Comp'Base will actually be frozen. If
3957 -- so, we merely undelay it.
3958
3959 S := Scope (Rec);
3960 while Present (S) loop
3961 if Is_Subprogram (S) then
3962 Will_Be_Frozen := True;
3963 exit;
3964 elsif S = Scope (Base_Type (Comp)) then
3965 exit;
3966 end if;
3967
3968 S := Scope (S);
3969 end loop;
3970
3971 if Will_Be_Frozen then
3972 Undelay_Type (Comp);
3973
3974 else
3975 if Present (Prev) then
3976 Set_Next_Entity (Prev, Next_Entity (Comp));
3977 else
3978 Set_First_Entity (Rec, Next_Entity (Comp));
3979 end if;
3980
3981 -- Insert in entity list of scope of base type (which
3982 -- must be an enclosing scope, because still unfrozen).
3983
3984 Append_Entity (Comp, Scope (Base_Type (Comp)));
3985 end if;
3986 end;
3987
3988 -- If the component is an access type with an allocator as default
3989 -- value, the designated type will be frozen by the corresponding
3990 -- expression in init_proc. In order to place the freeze node for
3991 -- the designated type before that for the current record type,
3992 -- freeze it now.
3993
3994 -- Same process if the component is an array of access types,
3995 -- initialized with an aggregate. If the designated type is
3996 -- private, it cannot contain allocators, and it is premature
3997 -- to freeze the type, so we check for this as well.
3998
3999 elsif Is_Access_Type (Etype (Comp))
4000 and then Present (Parent (Comp))
4001 and then Present (Expression (Parent (Comp)))
4002 then
4003 declare
4004 Alloc : constant Node_Id :=
4005 Check_Allocator (Expression (Parent (Comp)));
4006
4007 begin
4008 if Present (Alloc) then
4009
4010 -- If component is pointer to a class-wide type, freeze
4011 -- the specific type in the expression being allocated.
4012 -- The expression may be a subtype indication, in which
4013 -- case freeze the subtype mark.
4014
4015 if Is_Class_Wide_Type
4016 (Designated_Type (Etype (Comp)))
4017 then
4018 if Is_Entity_Name (Expression (Alloc)) then
4019 Freeze_And_Append
4020 (Entity (Expression (Alloc)), N, Result);
4021
4022 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
4023 then
4024 Freeze_And_Append
4025 (Entity (Subtype_Mark (Expression (Alloc))),
4026 N, Result);
4027 end if;
4028
4029 elsif Is_Itype (Designated_Type (Etype (Comp))) then
4030 Check_Itype (Etype (Comp));
4031
4032 else
4033 Freeze_And_Append
4034 (Designated_Type (Etype (Comp)), N, Result);
4035 end if;
4036 end if;
4037 end;
4038
4039 elsif Is_Access_Type (Etype (Comp))
4040 and then Is_Itype (Designated_Type (Etype (Comp)))
4041 then
4042 Check_Itype (Etype (Comp));
4043
4044 -- Freeze the designated type when initializing a component with
4045 -- an aggregate in case the aggregate contains allocators.
4046
4047 -- type T is ...;
4048 -- type T_Ptr is access all T;
4049 -- type T_Array is array ... of T_Ptr;
4050
4051 -- type Rec is record
4052 -- Comp : T_Array := (others => ...);
4053 -- end record;
4054
4055 elsif Is_Array_Type (Etype (Comp))
4056 and then Is_Access_Type (Component_Type (Etype (Comp)))
4057 then
4058 declare
4059 Comp_Par : constant Node_Id := Parent (Comp);
4060 Desig_Typ : constant Entity_Id :=
4061 Designated_Type
4062 (Component_Type (Etype (Comp)));
4063
4064 begin
4065 -- The only case when this sort of freezing is not done is
4066 -- when the designated type is class-wide and the root type
4067 -- is the record owning the component. This scenario results
4068 -- in a circularity because the class-wide type requires
4069 -- primitives that have not been created yet as the root
4070 -- type is in the process of being frozen.
4071
4072 -- type Rec is tagged;
4073 -- type Rec_Ptr is access all Rec'Class;
4074 -- type Rec_Array is array ... of Rec_Ptr;
4075
4076 -- type Rec is record
4077 -- Comp : Rec_Array := (others => ...);
4078 -- end record;
4079
4080 if Is_Class_Wide_Type (Desig_Typ)
4081 and then Root_Type (Desig_Typ) = Rec
4082 then
4083 null;
4084
4085 elsif Is_Fully_Defined (Desig_Typ)
4086 and then Present (Comp_Par)
4087 and then Nkind (Comp_Par) = N_Component_Declaration
4088 and then Present (Expression (Comp_Par))
4089 and then Nkind (Expression (Comp_Par)) = N_Aggregate
4090 then
4091 Freeze_And_Append (Desig_Typ, N, Result);
4092 end if;
4093 end;
4094 end if;
4095
4096 Prev := Comp;
4097 Next_Entity (Comp);
4098 end loop;
4099
4100 SSO_ADC :=
4101 Get_Attribute_Definition_Clause
4102 (Rec, Attribute_Scalar_Storage_Order);
4103
4104 -- If the record type has Complex_Representation, then it is treated
4105 -- as a scalar in the back end so the storage order is irrelevant.
4106
4107 if Has_Complex_Representation (Rec) then
4108 if Present (SSO_ADC) then
4109 Error_Msg_N
4110 ("??storage order has no effect with Complex_Representation",
4111 SSO_ADC);
4112 end if;
4113
4114 else
4115 -- Deal with default setting of reverse storage order
4116
4117 Set_SSO_From_Default (Rec);
4118
4119 -- Check consistent attribute setting on component types
4120
4121 declare
4122 Comp_ADC_Present : Boolean;
4123 begin
4124 Comp := First_Component (Rec);
4125 while Present (Comp) loop
4126 Check_Component_Storage_Order
4127 (Encl_Type => Rec,
4128 Comp => Comp,
4129 ADC => SSO_ADC,
4130 Comp_ADC_Present => Comp_ADC_Present);
4131 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
4132 Next_Component (Comp);
4133 end loop;
4134 end;
4135
4136 -- Now deal with reverse storage order/bit order issues
4137
4138 if Present (SSO_ADC) then
4139
4140 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
4141 -- if the former is specified.
4142
4143 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
4144
4145 -- Note: report error on Rec, not on SSO_ADC, as ADC may
4146 -- apply to some ancestor type.
4147
4148 Error_Msg_Sloc := Sloc (SSO_ADC);
4149 Error_Msg_N
4150 ("scalar storage order for& specified# inconsistent with "
4151 & "bit order", Rec);
4152 end if;
4153
4154 -- Warn if there is a Scalar_Storage_Order attribute definition
4155 -- clause but no component clause, no component that itself has
4156 -- such an attribute definition, and no pragma Pack.
4157
4158 if not (Placed_Component
4159 or else
4160 SSO_ADC_Component
4161 or else
4162 Is_Packed (Rec))
4163 then
4164 Error_Msg_N
4165 ("??scalar storage order specified but no component "
4166 & "clause", SSO_ADC);
4167 end if;
4168 end if;
4169 end if;
4170
4171 -- Deal with Bit_Order aspect
4172
4173 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
4174
4175 if Present (ADC) and then Base_Type (Rec) = Rec then
4176 if not (Placed_Component
4177 or else Present (SSO_ADC)
4178 or else Is_Packed (Rec))
4179 then
4180 -- Warn if clause has no effect when no component clause is
4181 -- present, but suppress warning if the Bit_Order is required
4182 -- due to the presence of a Scalar_Storage_Order attribute.
4183
4184 Error_Msg_N
4185 ("??bit order specification has no effect", ADC);
4186 Error_Msg_N
4187 ("\??since no component clauses were specified", ADC);
4188
4189 -- Here is where we do the processing to adjust component clauses
4190 -- for reversed bit order, when not using reverse SSO.
4191
4192 elsif Reverse_Bit_Order (Rec)
4193 and then not Reverse_Storage_Order (Rec)
4194 then
4195 Adjust_Record_For_Reverse_Bit_Order (Rec);
4196
4197 -- Case where we have both an explicit Bit_Order and the same
4198 -- Scalar_Storage_Order: leave record untouched, the back-end
4199 -- will take care of required layout conversions.
4200
4201 else
4202 null;
4203
4204 end if;
4205 end if;
4206
4207 -- Complete error checking on record representation clause (e.g.
4208 -- overlap of components). This is called after adjusting the
4209 -- record for reverse bit order.
4210
4211 declare
4212 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
4213 begin
4214 if Present (RRC) then
4215 Check_Record_Representation_Clause (RRC);
4216 end if;
4217 end;
4218
4219 -- Set OK_To_Reorder_Components depending on debug flags
4220
4221 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
4222 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
4223 or else
4224 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
4225 then
4226 Set_OK_To_Reorder_Components (Rec);
4227 end if;
4228 end if;
4229
4230 -- Check for useless pragma Pack when all components placed. We only
4231 -- do this check for record types, not subtypes, since a subtype may
4232 -- have all its components placed, and it still makes perfectly good
4233 -- sense to pack other subtypes or the parent type. We do not give
4234 -- this warning if Optimize_Alignment is set to Space, since the
4235 -- pragma Pack does have an effect in this case (it always resets
4236 -- the alignment to one).
4237
4238 if Ekind (Rec) = E_Record_Type
4239 and then Is_Packed (Rec)
4240 and then not Unplaced_Component
4241 and then Optimize_Alignment /= 'S'
4242 then
4243 -- Reset packed status. Probably not necessary, but we do it so
4244 -- that there is no chance of the back end doing something strange
4245 -- with this redundant indication of packing.
4246
4247 Set_Is_Packed (Rec, False);
4248
4249 -- Give warning if redundant constructs warnings on
4250
4251 if Warn_On_Redundant_Constructs then
4252 Error_Msg_N -- CODEFIX
4253 ("??pragma Pack has no effect, no unplaced components",
4254 Get_Rep_Pragma (Rec, Name_Pack));
4255 end if;
4256 end if;
4257
4258 -- If this is the record corresponding to a remote type, freeze the
4259 -- remote type here since that is what we are semantically freezing.
4260 -- This prevents the freeze node for that type in an inner scope.
4261
4262 if Ekind (Rec) = E_Record_Type then
4263 if Present (Corresponding_Remote_Type (Rec)) then
4264 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
4265 end if;
4266
4267 -- Check for controlled components, unchecked unions, and type
4268 -- invariants.
4269
4270 Comp := First_Component (Rec);
4271 while Present (Comp) loop
4272
4273 -- Do not set Has_Controlled_Component on a class-wide
4274 -- equivalent type. See Make_CW_Equivalent_Type.
4275
4276 if not Is_Class_Wide_Equivalent_Type (Rec)
4277 and then
4278 (Has_Controlled_Component (Etype (Comp))
4279 or else
4280 (Chars (Comp) /= Name_uParent
4281 and then Is_Controlled_Active (Etype (Comp)))
4282 or else
4283 (Is_Protected_Type (Etype (Comp))
4284 and then
4285 Present (Corresponding_Record_Type (Etype (Comp)))
4286 and then
4287 Has_Controlled_Component
4288 (Corresponding_Record_Type (Etype (Comp)))))
4289 then
4290 Set_Has_Controlled_Component (Rec);
4291 end if;
4292
4293 if Has_Unchecked_Union (Etype (Comp)) then
4294 Set_Has_Unchecked_Union (Rec);
4295 end if;
4296
4297 -- The record type requires its own invariant procedure in
4298 -- order to verify the invariant of each individual component.
4299 -- Do not consider internal components such as _parent because
4300 -- parent class-wide invariants are always inherited.
4301
4302 if Comes_From_Source (Comp)
4303 and then Has_Invariants (Etype (Comp))
4304 then
4305 Set_Has_Own_Invariants (Rec);
4306 end if;
4307
4308 -- Scan component declaration for likely misuses of current
4309 -- instance, either in a constraint or a default expression.
4310
4311 if Has_Per_Object_Constraint (Comp) then
4312 Check_Current_Instance (Parent (Comp));
4313 end if;
4314
4315 Next_Component (Comp);
4316 end loop;
4317 end if;
4318
4319 -- Enforce the restriction that access attributes with a current
4320 -- instance prefix can only apply to limited types. This comment
4321 -- is floating here, but does not seem to belong here???
4322
4323 -- Set component alignment if not otherwise already set
4324
4325 Set_Component_Alignment_If_Not_Set (Rec);
4326
4327 -- For first subtypes, check if there are any fixed-point fields with
4328 -- component clauses, where we must check the size. This is not done
4329 -- till the freeze point since for fixed-point types, we do not know
4330 -- the size until the type is frozen. Similar processing applies to
4331 -- bit-packed arrays.
4332
4333 if Is_First_Subtype (Rec) then
4334 Comp := First_Component (Rec);
4335 while Present (Comp) loop
4336 if Present (Component_Clause (Comp))
4337 and then (Is_Fixed_Point_Type (Etype (Comp))
4338 or else Is_Bit_Packed_Array (Etype (Comp)))
4339 then
4340 Check_Size
4341 (Component_Name (Component_Clause (Comp)),
4342 Etype (Comp),
4343 Esize (Comp),
4344 Junk);
4345 end if;
4346
4347 Next_Component (Comp);
4348 end loop;
4349 end if;
4350
4351 -- Generate warning for applying C or C++ convention to a record
4352 -- with discriminants. This is suppressed for the unchecked union
4353 -- case, since the whole point in this case is interface C. We also
4354 -- do not generate this within instantiations, since we will have
4355 -- generated a message on the template.
4356
4357 if Has_Discriminants (E)
4358 and then not Is_Unchecked_Union (E)
4359 and then (Convention (E) = Convention_C
4360 or else
4361 Convention (E) = Convention_CPP)
4362 and then Comes_From_Source (E)
4363 and then not In_Instance
4364 and then not Has_Warnings_Off (E)
4365 and then not Has_Warnings_Off (Base_Type (E))
4366 then
4367 declare
4368 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
4369 A2 : Node_Id;
4370
4371 begin
4372 if Present (Cprag) then
4373 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
4374
4375 if Convention (E) = Convention_C then
4376 Error_Msg_N
4377 ("?x?variant record has no direct equivalent in C",
4378 A2);
4379 else
4380 Error_Msg_N
4381 ("?x?variant record has no direct equivalent in C++",
4382 A2);
4383 end if;
4384
4385 Error_Msg_NE
4386 ("\?x?use of convention for type& is dubious", A2, E);
4387 end if;
4388 end;
4389 end if;
4390
4391 -- See if Size is too small as is (and implicit packing might help)
4392
4393 if not Is_Packed (Rec)
4394
4395 -- No implicit packing if even one component is explicitly placed
4396
4397 and then not Placed_Component
4398
4399 -- Or even one component is aliased
4400
4401 and then not Aliased_Component
4402
4403 -- Must have size clause and all sized components
4404
4405 and then Has_Size_Clause (Rec)
4406 and then All_Sized_Components
4407
4408 -- Do not try implicit packing on records with discriminants, too
4409 -- complicated, especially in the variant record case.
4410
4411 and then not Has_Discriminants (Rec)
4412
4413 -- We want to implicitly pack if the specified size of the record
4414 -- is less than the sum of the object sizes (no point in packing
4415 -- if this is not the case), if we can compute it, i.e. if we have
4416 -- only elementary components. Otherwise, we have at least one
4417 -- composite component and we want to implicitly pack only if bit
4418 -- packing is required for it, as we are sure in this case that
4419 -- the back end cannot do the expected layout without packing.
4420
4421 and then
4422 ((All_Elem_Components
4423 and then RM_Size (Rec) < Elem_Component_Total_Esize)
4424 or else
4425 (not All_Elem_Components
4426 and then not All_Storage_Unit_Components))
4427
4428 -- And the total RM size cannot be greater than the specified size
4429 -- since otherwise packing will not get us where we have to be.
4430
4431 and then RM_Size (Rec) >= Sized_Component_Total_RM_Size
4432
4433 -- Never do implicit packing in CodePeer or SPARK modes since
4434 -- we don't do any packing in these modes, since this generates
4435 -- over-complex code that confuses static analysis, and in
4436 -- general, neither CodePeer not GNATprove care about the
4437 -- internal representation of objects.
4438
4439 and then not (CodePeer_Mode or GNATprove_Mode)
4440 then
4441 -- If implicit packing enabled, do it
4442
4443 if Implicit_Packing then
4444 Set_Is_Packed (Rec);
4445
4446 -- Otherwise flag the size clause
4447
4448 else
4449 declare
4450 Sz : constant Node_Id := Size_Clause (Rec);
4451 begin
4452 Error_Msg_NE -- CODEFIX
4453 ("size given for& too small", Sz, Rec);
4454 Error_Msg_N -- CODEFIX
4455 ("\use explicit pragma Pack "
4456 & "or use pragma Implicit_Packing", Sz);
4457 end;
4458 end if;
4459 end if;
4460
4461 -- The following checks are relevant only when SPARK_Mode is on as
4462 -- they are not standard Ada legality rules.
4463
4464 if SPARK_Mode = On then
4465 if Is_Effectively_Volatile (Rec) then
4466
4467 -- A discriminated type cannot be effectively volatile
4468 -- (SPARK RM C.6(4)).
4469
4470 if Has_Discriminants (Rec) then
4471 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
4472
4473 -- A tagged type cannot be effectively volatile
4474 -- (SPARK RM C.6(5)).
4475
4476 elsif Is_Tagged_Type (Rec) then
4477 Error_Msg_N ("tagged type & cannot be volatile", Rec);
4478 end if;
4479
4480 -- A non-effectively volatile record type cannot contain
4481 -- effectively volatile components (SPARK RM C.6(2)).
4482
4483 else
4484 Comp := First_Component (Rec);
4485 while Present (Comp) loop
4486 if Comes_From_Source (Comp)
4487 and then Is_Effectively_Volatile (Etype (Comp))
4488 then
4489 Error_Msg_Name_1 := Chars (Rec);
4490 Error_Msg_N
4491 ("component & of non-volatile type % cannot be "
4492 & "volatile", Comp);
4493 end if;
4494
4495 Next_Component (Comp);
4496 end loop;
4497 end if;
4498
4499 -- A type which does not yield a synchronized object cannot have
4500 -- a component that yields a synchronized object (SPARK RM 9.5).
4501
4502 if not Yields_Synchronized_Object (Rec) then
4503 Comp := First_Component (Rec);
4504 while Present (Comp) loop
4505 if Comes_From_Source (Comp)
4506 and then Yields_Synchronized_Object (Etype (Comp))
4507 then
4508 Error_Msg_Name_1 := Chars (Rec);
4509 Error_Msg_N
4510 ("component & of non-synchronized type % cannot be "
4511 & "synchronized", Comp);
4512 end if;
4513
4514 Next_Component (Comp);
4515 end loop;
4516 end if;
4517
4518 -- A Ghost type cannot have a component of protected or task type
4519 -- (SPARK RM 6.9(19)).
4520
4521 if Is_Ghost_Entity (Rec) then
4522 Comp := First_Component (Rec);
4523 while Present (Comp) loop
4524 if Comes_From_Source (Comp)
4525 and then Is_Concurrent_Type (Etype (Comp))
4526 then
4527 Error_Msg_Name_1 := Chars (Rec);
4528 Error_Msg_N
4529 ("component & of ghost type % cannot be concurrent",
4530 Comp);
4531 end if;
4532
4533 Next_Component (Comp);
4534 end loop;
4535 end if;
4536 end if;
4537
4538 -- Make sure that if we have an iterator aspect, then we have
4539 -- either Constant_Indexing or Variable_Indexing.
4540
4541 declare
4542 Iterator_Aspect : Node_Id;
4543
4544 begin
4545 Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element);
4546
4547 if No (Iterator_Aspect) then
4548 Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator);
4549 end if;
4550
4551 if Present (Iterator_Aspect) then
4552 if Has_Aspect (Rec, Aspect_Constant_Indexing)
4553 or else
4554 Has_Aspect (Rec, Aspect_Variable_Indexing)
4555 then
4556 null;
4557 else
4558 Error_Msg_N
4559 ("Iterator_Element requires indexing aspect",
4560 Iterator_Aspect);
4561 end if;
4562 end if;
4563 end;
4564
4565 -- All done if not a full record definition
4566
4567 if Ekind (Rec) /= E_Record_Type then
4568 return;
4569 end if;
4570
4571 -- Finally we need to check the variant part to make sure that
4572 -- all types within choices are properly frozen as part of the
4573 -- freezing of the record type.
4574
4575 Check_Variant_Part : declare
4576 D : constant Node_Id := Declaration_Node (Rec);
4577 T : Node_Id;
4578 C : Node_Id;
4579
4580 begin
4581 -- Find component list
4582
4583 C := Empty;
4584
4585 if Nkind (D) = N_Full_Type_Declaration then
4586 T := Type_Definition (D);
4587
4588 if Nkind (T) = N_Record_Definition then
4589 C := Component_List (T);
4590
4591 elsif Nkind (T) = N_Derived_Type_Definition
4592 and then Present (Record_Extension_Part (T))
4593 then
4594 C := Component_List (Record_Extension_Part (T));
4595 end if;
4596 end if;
4597
4598 -- Case of variant part present
4599
4600 if Present (C) and then Present (Variant_Part (C)) then
4601 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4602 end if;
4603
4604 -- Note: we used to call Check_Choices here, but it is too early,
4605 -- since predicated subtypes are frozen here, but their freezing
4606 -- actions are in Analyze_Freeze_Entity, which has not been called
4607 -- yet for entities frozen within this procedure, so we moved that
4608 -- call to the Analyze_Freeze_Entity for the record type.
4609
4610 end Check_Variant_Part;
4611
4612 -- Check that all the primitives of an interface type are abstract
4613 -- or null procedures.
4614
4615 if Is_Interface (Rec)
4616 and then not Error_Posted (Parent (Rec))
4617 then
4618 declare
4619 Elmt : Elmt_Id;
4620 Subp : Entity_Id;
4621
4622 begin
4623 Elmt := First_Elmt (Primitive_Operations (Rec));
4624 while Present (Elmt) loop
4625 Subp := Node (Elmt);
4626
4627 if not Is_Abstract_Subprogram (Subp)
4628
4629 -- Avoid reporting the error on inherited primitives
4630
4631 and then Comes_From_Source (Subp)
4632 then
4633 Error_Msg_Name_1 := Chars (Subp);
4634
4635 if Ekind (Subp) = E_Procedure then
4636 if not Null_Present (Parent (Subp)) then
4637 Error_Msg_N
4638 ("interface procedure % must be abstract or null",
4639 Parent (Subp));
4640 end if;
4641 else
4642 Error_Msg_N
4643 ("interface function % must be abstract",
4644 Parent (Subp));
4645 end if;
4646 end if;
4647
4648 Next_Elmt (Elmt);
4649 end loop;
4650 end;
4651 end if;
4652
4653 -- For a derived tagged type, check whether inherited primitives
4654 -- might require a wrapper to handle class-wide conditions.
4655
4656 if Is_Tagged_Type (Rec) and then Is_Derived_Type (Rec) then
4657 Check_Inherited_Conditions (Rec);
4658 end if;
4659 end Freeze_Record_Type;
4660
4661 -------------------------------
4662 -- Has_Boolean_Aspect_Import --
4663 -------------------------------
4664
4665 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
4666 Decl : constant Node_Id := Declaration_Node (E);
4667 Asp : Node_Id;
4668 Expr : Node_Id;
4669
4670 begin
4671 if Has_Aspects (Decl) then
4672 Asp := First (Aspect_Specifications (Decl));
4673 while Present (Asp) loop
4674 Expr := Expression (Asp);
4675
4676 -- The value of aspect Import is True when the expression is
4677 -- either missing or it is explicitly set to True.
4678
4679 if Get_Aspect_Id (Asp) = Aspect_Import
4680 and then (No (Expr)
4681 or else (Compile_Time_Known_Value (Expr)
4682 and then Is_True (Expr_Value (Expr))))
4683 then
4684 return True;
4685 end if;
4686
4687 Next (Asp);
4688 end loop;
4689 end if;
4690
4691 return False;
4692 end Has_Boolean_Aspect_Import;
4693
4694 ---------------------
4695 -- New_Freeze_Node --
4696 ---------------------
4697
4698 function New_Freeze_Node return Node_Id is
4699 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
4700 Result : Node_Id;
4701
4702 begin
4703 -- Handle the case where an ignored Ghost subprogram freezes the type
4704 -- of one of its formals. The type can either be non-Ghost or checked
4705 -- Ghost. Since the freeze node for the type is generated in the
4706 -- context of the subprogram, the node will be incorrectly flagged as
4707 -- ignored Ghost and erroneously removed from the tree.
4708
4709 -- type Typ is ...;
4710 -- procedure Ignored_Ghost_Proc (Formal : Typ) with Ghost;
4711
4712 -- Reset the Ghost mode to "none". This preserves the freeze node.
4713
4714 if Ghost_Mode = Ignore
4715 and then not Is_Ignored_Ghost_Entity (E)
4716 and then not Is_Ignored_Ghost_Node (E)
4717 then
4718 Ghost_Mode := None;
4719 end if;
4720
4721 Result := New_Node (N_Freeze_Entity, Loc);
4722
4723 Ghost_Mode := Save_Ghost_Mode;
4724 return Result;
4725 end New_Freeze_Node;
4726
4727 ------------------------------
4728 -- Wrap_Imported_Subprogram --
4729 ------------------------------
4730
4731 -- The issue here is that our normal approach of checking preconditions
4732 -- and postconditions does not work for imported procedures, since we
4733 -- are not generating code for the body. To get around this we create
4734 -- a wrapper, as shown by the following example:
4735
4736 -- procedure K (A : Integer);
4737 -- pragma Import (C, K);
4738
4739 -- The spec is rewritten by removing the effects of pragma Import, but
4740 -- leaving the convention unchanged, as though the source had said:
4741
4742 -- procedure K (A : Integer);
4743 -- pragma Convention (C, K);
4744
4745 -- and we create a body, added to the entity K freeze actions, which
4746 -- looks like:
4747
4748 -- procedure K (A : Integer) is
4749 -- procedure K (A : Integer);
4750 -- pragma Import (C, K);
4751 -- begin
4752 -- K (A);
4753 -- end K;
4754
4755 -- Now the contract applies in the normal way to the outer procedure,
4756 -- and the inner procedure has no contracts, so there is no problem
4757 -- in just calling it to get the original effect.
4758
4759 -- In the case of a function, we create an appropriate return statement
4760 -- for the subprogram body that calls the inner procedure.
4761
4762 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
4763 function Copy_Import_Pragma return Node_Id;
4764 -- Obtain a copy of the Import_Pragma which belongs to subprogram E
4765
4766 ------------------------
4767 -- Copy_Import_Pragma --
4768 ------------------------
4769
4770 function Copy_Import_Pragma return Node_Id is
4771
4772 -- The subprogram should have an import pragma, otherwise it does
4773 -- need a wrapper.
4774
4775 Prag : constant Node_Id := Import_Pragma (E);
4776 pragma Assert (Present (Prag));
4777
4778 -- Save all semantic fields of the pragma
4779
4780 Save_Asp : constant Node_Id := Corresponding_Aspect (Prag);
4781 Save_From : constant Boolean := From_Aspect_Specification (Prag);
4782 Save_Prag : constant Node_Id := Next_Pragma (Prag);
4783 Save_Rep : constant Node_Id := Next_Rep_Item (Prag);
4784
4785 Result : Node_Id;
4786
4787 begin
4788 -- Reset all semantic fields. This avoids a potential infinite
4789 -- loop when the pragma comes from an aspect as the duplication
4790 -- will copy the aspect, then copy the corresponding pragma and
4791 -- so on.
4792
4793 Set_Corresponding_Aspect (Prag, Empty);
4794 Set_From_Aspect_Specification (Prag, False);
4795 Set_Next_Pragma (Prag, Empty);
4796 Set_Next_Rep_Item (Prag, Empty);
4797
4798 Result := Copy_Separate_Tree (Prag);
4799
4800 -- Restore the original semantic fields
4801
4802 Set_Corresponding_Aspect (Prag, Save_Asp);
4803 Set_From_Aspect_Specification (Prag, Save_From);
4804 Set_Next_Pragma (Prag, Save_Prag);
4805 Set_Next_Rep_Item (Prag, Save_Rep);
4806
4807 return Result;
4808 end Copy_Import_Pragma;
4809
4810 -- Local variables
4811
4812 Loc : constant Source_Ptr := Sloc (E);
4813 CE : constant Name_Id := Chars (E);
4814 Bod : Node_Id;
4815 Forml : Entity_Id;
4816 Parms : List_Id;
4817 Prag : Node_Id;
4818 Spec : Node_Id;
4819 Stmt : Node_Id;
4820
4821 -- Start of processing for Wrap_Imported_Subprogram
4822
4823 begin
4824 -- Nothing to do if not imported
4825
4826 if not Is_Imported (E) then
4827 return;
4828
4829 -- Test enabling conditions for wrapping
4830
4831 elsif Is_Subprogram (E)
4832 and then Present (Contract (E))
4833 and then Present (Pre_Post_Conditions (Contract (E)))
4834 and then not GNATprove_Mode
4835 then
4836 -- Here we do the wrap
4837
4838 -- Note on calls to Copy_Separate_Tree. The trees we are copying
4839 -- here are fully analyzed, but we definitely want fully syntactic
4840 -- unanalyzed trees in the body we construct, so that the analysis
4841 -- generates the right visibility, and that is exactly what the
4842 -- calls to Copy_Separate_Tree give us.
4843
4844 Prag := Copy_Import_Pragma;
4845
4846 -- Fix up spec to be not imported any more
4847
4848 Set_Has_Completion (E, False);
4849 Set_Import_Pragma (E, Empty);
4850 Set_Interface_Name (E, Empty);
4851 Set_Is_Imported (E, False);
4852
4853 -- Grab the subprogram declaration and specification
4854
4855 Spec := Declaration_Node (E);
4856
4857 -- Build parameter list that we need
4858
4859 Parms := New_List;
4860 Forml := First_Formal (E);
4861 while Present (Forml) loop
4862 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
4863 Next_Formal (Forml);
4864 end loop;
4865
4866 -- Build the call
4867
4868 if Ekind_In (E, E_Function, E_Generic_Function) then
4869 Stmt :=
4870 Make_Simple_Return_Statement (Loc,
4871 Expression =>
4872 Make_Function_Call (Loc,
4873 Name => Make_Identifier (Loc, CE),
4874 Parameter_Associations => Parms));
4875
4876 else
4877 Stmt :=
4878 Make_Procedure_Call_Statement (Loc,
4879 Name => Make_Identifier (Loc, CE),
4880 Parameter_Associations => Parms);
4881 end if;
4882
4883 -- Now build the body
4884
4885 Bod :=
4886 Make_Subprogram_Body (Loc,
4887 Specification =>
4888 Copy_Separate_Tree (Spec),
4889 Declarations => New_List (
4890 Make_Subprogram_Declaration (Loc,
4891 Specification => Copy_Separate_Tree (Spec)),
4892 Prag),
4893 Handled_Statement_Sequence =>
4894 Make_Handled_Sequence_Of_Statements (Loc,
4895 Statements => New_List (Stmt),
4896 End_Label => Make_Identifier (Loc, CE)));
4897
4898 -- Append the body to freeze result
4899
4900 Add_To_Result (Bod);
4901 return;
4902
4903 -- Case of imported subprogram that does not get wrapped
4904
4905 else
4906 -- Set Is_Public. All imported entities need an external symbol
4907 -- created for them since they are always referenced from another
4908 -- object file. Note this used to be set when we set Is_Imported
4909 -- back in Sem_Prag, but now we delay it to this point, since we
4910 -- don't want to set this flag if we wrap an imported subprogram.
4911
4912 Set_Is_Public (E);
4913 end if;
4914 end Wrap_Imported_Subprogram;
4915
4916 -- Local variables
4917
4918 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
4919
4920 -- Start of processing for Freeze_Entity
4921
4922 begin
4923 -- The entity being frozen may be subject to pragma Ghost. Set the mode
4924 -- now to ensure that any nodes generated during freezing are properly
4925 -- flagged as Ghost.
4926
4927 Set_Ghost_Mode_From_Entity (E);
4928
4929 -- We are going to test for various reasons why this entity need not be
4930 -- frozen here, but in the case of an Itype that's defined within a
4931 -- record, that test actually applies to the record.
4932
4933 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
4934 Test_E := Scope (E);
4935 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
4936 and then Is_Record_Type (Underlying_Type (Scope (E)))
4937 then
4938 Test_E := Underlying_Type (Scope (E));
4939 end if;
4940
4941 -- Do not freeze if already frozen since we only need one freeze node
4942
4943 if Is_Frozen (E) then
4944 Ghost_Mode := Save_Ghost_Mode;
4945 return No_List;
4946
4947 elsif Ekind (E) = E_Generic_Package then
4948 Result := Freeze_Generic_Entities (E);
4949
4950 Ghost_Mode := Save_Ghost_Mode;
4951 return Result;
4952
4953 -- It is improper to freeze an external entity within a generic because
4954 -- its freeze node will appear in a non-valid context. The entity will
4955 -- be frozen in the proper scope after the current generic is analyzed.
4956 -- However, aspects must be analyzed because they may be queried later
4957 -- within the generic itself, and the corresponding pragma or attribute
4958 -- definition has not been analyzed yet.
4959
4960 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
4961 if Has_Delayed_Aspects (E) then
4962 Analyze_Aspects_At_Freeze_Point (E);
4963 end if;
4964
4965 Ghost_Mode := Save_Ghost_Mode;
4966 return No_List;
4967
4968 -- AI05-0213: A formal incomplete type does not freeze the actual. In
4969 -- the instance, the same applies to the subtype renaming the actual.
4970
4971 elsif Is_Private_Type (E)
4972 and then Is_Generic_Actual_Type (E)
4973 and then No (Full_View (Base_Type (E)))
4974 and then Ada_Version >= Ada_2012
4975 then
4976 Ghost_Mode := Save_Ghost_Mode;
4977 return No_List;
4978
4979 -- Formal subprograms are never frozen
4980
4981 elsif Is_Formal_Subprogram (E) then
4982 Ghost_Mode := Save_Ghost_Mode;
4983 return No_List;
4984
4985 -- Generic types are never frozen as they lack delayed semantic checks
4986
4987 elsif Is_Generic_Type (E) then
4988 Ghost_Mode := Save_Ghost_Mode;
4989 return No_List;
4990
4991 -- Do not freeze a global entity within an inner scope created during
4992 -- expansion. A call to subprogram E within some internal procedure
4993 -- (a stream attribute for example) might require freezing E, but the
4994 -- freeze node must appear in the same declarative part as E itself.
4995 -- The two-pass elaboration mechanism in gigi guarantees that E will
4996 -- be frozen before the inner call is elaborated. We exclude constants
4997 -- from this test, because deferred constants may be frozen early, and
4998 -- must be diagnosed (e.g. in the case of a deferred constant being used
4999 -- in a default expression). If the enclosing subprogram comes from
5000 -- source, or is a generic instance, then the freeze point is the one
5001 -- mandated by the language, and we freeze the entity. A subprogram that
5002 -- is a child unit body that acts as a spec does not have a spec that
5003 -- comes from source, but can only come from source.
5004
5005 elsif In_Open_Scopes (Scope (Test_E))
5006 and then Scope (Test_E) /= Current_Scope
5007 and then Ekind (Test_E) /= E_Constant
5008 then
5009 declare
5010 S : Entity_Id;
5011
5012 begin
5013 S := Current_Scope;
5014 while Present (S) loop
5015 if Is_Overloadable (S) then
5016 if Comes_From_Source (S)
5017 or else Is_Generic_Instance (S)
5018 or else Is_Child_Unit (S)
5019 then
5020 exit;
5021 else
5022 Ghost_Mode := Save_Ghost_Mode;
5023 return No_List;
5024 end if;
5025 end if;
5026
5027 S := Scope (S);
5028 end loop;
5029 end;
5030
5031 -- Similarly, an inlined instance body may make reference to global
5032 -- entities, but these references cannot be the proper freezing point
5033 -- for them, and in the absence of inlining freezing will take place in
5034 -- their own scope. Normally instance bodies are analyzed after the
5035 -- enclosing compilation, and everything has been frozen at the proper
5036 -- place, but with front-end inlining an instance body is compiled
5037 -- before the end of the enclosing scope, and as a result out-of-order
5038 -- freezing must be prevented.
5039
5040 elsif Front_End_Inlining
5041 and then In_Instance_Body
5042 and then Present (Scope (Test_E))
5043 then
5044 declare
5045 S : Entity_Id;
5046
5047 begin
5048 S := Scope (Test_E);
5049 while Present (S) loop
5050 if Is_Generic_Instance (S) then
5051 exit;
5052 else
5053 S := Scope (S);
5054 end if;
5055 end loop;
5056
5057 if No (S) then
5058 Ghost_Mode := Save_Ghost_Mode;
5059 return No_List;
5060 end if;
5061 end;
5062 end if;
5063
5064 -- Add checks to detect proper initialization of scalars that may appear
5065 -- as subprogram parameters.
5066
5067 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
5068 Apply_Parameter_Validity_Checks (E);
5069 end if;
5070
5071 -- Deal with delayed aspect specifications. The analysis of the aspect
5072 -- is required to be delayed to the freeze point, thus we analyze the
5073 -- pragma or attribute definition clause in the tree at this point. We
5074 -- also analyze the aspect specification node at the freeze point when
5075 -- the aspect doesn't correspond to pragma/attribute definition clause.
5076
5077 if Has_Delayed_Aspects (E) then
5078 Analyze_Aspects_At_Freeze_Point (E);
5079 end if;
5080
5081 -- Here to freeze the entity
5082
5083 Set_Is_Frozen (E);
5084
5085 -- Case of entity being frozen is other than a type
5086
5087 if not Is_Type (E) then
5088
5089 -- If entity is exported or imported and does not have an external
5090 -- name, now is the time to provide the appropriate default name.
5091 -- Skip this if the entity is stubbed, since we don't need a name
5092 -- for any stubbed routine. For the case on intrinsics, if no
5093 -- external name is specified, then calls will be handled in
5094 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
5095 -- external name is provided, then Expand_Intrinsic_Call leaves
5096 -- calls in place for expansion by GIGI.
5097
5098 if (Is_Imported (E) or else Is_Exported (E))
5099 and then No (Interface_Name (E))
5100 and then Convention (E) /= Convention_Stubbed
5101 and then Convention (E) /= Convention_Intrinsic
5102 then
5103 Set_Encoded_Interface_Name
5104 (E, Get_Default_External_Name (E));
5105
5106 -- If entity is an atomic object appearing in a declaration and
5107 -- the expression is an aggregate, assign it to a temporary to
5108 -- ensure that the actual assignment is done atomically rather
5109 -- than component-wise (the assignment to the temp may be done
5110 -- component-wise, but that is harmless).
5111
5112 elsif Is_Atomic_Or_VFA (E)
5113 and then Nkind (Parent (E)) = N_Object_Declaration
5114 and then Present (Expression (Parent (E)))
5115 and then Nkind (Expression (Parent (E))) = N_Aggregate
5116 and then Is_Atomic_VFA_Aggregate (Expression (Parent (E)))
5117 then
5118 null;
5119 end if;
5120
5121 -- Subprogram case
5122
5123 if Is_Subprogram (E) then
5124
5125 -- Check for needing to wrap imported subprogram
5126
5127 Wrap_Imported_Subprogram (E);
5128
5129 -- Freeze all parameter types and the return type (RM 13.14(14)).
5130 -- However skip this for internal subprograms. This is also where
5131 -- any extra formal parameters are created since we now know
5132 -- whether the subprogram will use a foreign convention.
5133
5134 -- In Ada 2012, freezing a subprogram does not always freeze the
5135 -- corresponding profile (see AI05-019). An attribute reference
5136 -- is not a freezing point of the profile. Flag Do_Freeze_Profile
5137 -- indicates whether the profile should be frozen now.
5138 -- Other constructs that should not freeze ???
5139
5140 -- This processing doesn't apply to internal entities (see below)
5141
5142 if not Is_Internal (E) and then Do_Freeze_Profile then
5143 if not Freeze_Profile (E) then
5144 Ghost_Mode := Save_Ghost_Mode;
5145 return Result;
5146 end if;
5147 end if;
5148
5149 -- Must freeze its parent first if it is a derived subprogram
5150
5151 if Present (Alias (E)) then
5152 Freeze_And_Append (Alias (E), N, Result);
5153 end if;
5154
5155 -- We don't freeze internal subprograms, because we don't normally
5156 -- want addition of extra formals or mechanism setting to happen
5157 -- for those. However we do pass through predefined dispatching
5158 -- cases, since extra formals may be needed in some cases, such as
5159 -- for the stream 'Input function (build-in-place formals).
5160
5161 if not Is_Internal (E)
5162 or else Is_Predefined_Dispatching_Operation (E)
5163 then
5164 Freeze_Subprogram (E);
5165 end if;
5166
5167 -- If warning on suspicious contracts then check for the case of
5168 -- a postcondition other than False for a No_Return subprogram.
5169
5170 if No_Return (E)
5171 and then Warn_On_Suspicious_Contract
5172 and then Present (Contract (E))
5173 then
5174 declare
5175 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
5176 Exp : Node_Id;
5177
5178 begin
5179 while Present (Prag) loop
5180 if Nam_In (Pragma_Name_Unmapped (Prag),
5181 Name_Post,
5182 Name_Postcondition,
5183 Name_Refined_Post)
5184 then
5185 Exp :=
5186 Expression
5187 (First (Pragma_Argument_Associations (Prag)));
5188
5189 if Nkind (Exp) /= N_Identifier
5190 or else Chars (Exp) /= Name_False
5191 then
5192 Error_Msg_NE
5193 ("useless postcondition, & is marked "
5194 & "No_Return?T?", Exp, E);
5195 end if;
5196 end if;
5197
5198 Prag := Next_Pragma (Prag);
5199 end loop;
5200 end;
5201 end if;
5202
5203 -- Here for other than a subprogram or type
5204
5205 else
5206 -- If entity has a type, and it is not a generic unit, then
5207 -- freeze it first (RM 13.14(10)).
5208
5209 if Present (Etype (E))
5210 and then Ekind (E) /= E_Generic_Function
5211 then
5212 Freeze_And_Append (Etype (E), N, Result);
5213
5214 -- For an object of an anonymous array type, aspects on the
5215 -- object declaration apply to the type itself. This is the
5216 -- case for Atomic_Components, Volatile_Components, and
5217 -- Independent_Components. In these cases analysis of the
5218 -- generated pragma will mark the anonymous types accordingly,
5219 -- and the object itself does not require a freeze node.
5220
5221 if Ekind (E) = E_Variable
5222 and then Is_Itype (Etype (E))
5223 and then Is_Array_Type (Etype (E))
5224 and then Has_Delayed_Aspects (E)
5225 then
5226 Set_Has_Delayed_Aspects (E, False);
5227 Set_Has_Delayed_Freeze (E, False);
5228 Set_Freeze_Node (E, Empty);
5229 end if;
5230 end if;
5231
5232 -- Special processing for objects created by object declaration
5233
5234 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
5235 Freeze_Object_Declaration (E);
5236 end if;
5237
5238 -- Check that a constant which has a pragma Volatile[_Components]
5239 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
5240
5241 -- Note: Atomic[_Components] also sets Volatile[_Components]
5242
5243 if Ekind (E) = E_Constant
5244 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
5245 and then not Is_Imported (E)
5246 and then not Has_Boolean_Aspect_Import (E)
5247 then
5248 -- Make sure we actually have a pragma, and have not merely
5249 -- inherited the indication from elsewhere (e.g. an address
5250 -- clause, which is not good enough in RM terms).
5251
5252 if Has_Rep_Pragma (E, Name_Atomic)
5253 or else
5254 Has_Rep_Pragma (E, Name_Atomic_Components)
5255 then
5256 Error_Msg_N
5257 ("stand alone atomic constant must be " &
5258 "imported (RM C.6(13))", E);
5259
5260 elsif Has_Rep_Pragma (E, Name_Volatile)
5261 or else
5262 Has_Rep_Pragma (E, Name_Volatile_Components)
5263 then
5264 Error_Msg_N
5265 ("stand alone volatile constant must be " &
5266 "imported (RM C.6(13))", E);
5267 end if;
5268 end if;
5269
5270 -- Static objects require special handling
5271
5272 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
5273 and then Is_Statically_Allocated (E)
5274 then
5275 Freeze_Static_Object (E);
5276 end if;
5277
5278 -- Remaining step is to layout objects
5279
5280 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
5281 or else Is_Formal (E)
5282 then
5283 Layout_Object (E);
5284 end if;
5285
5286 -- For an object that does not have delayed freezing, and whose
5287 -- initialization actions have been captured in a compound
5288 -- statement, move them back now directly within the enclosing
5289 -- statement sequence.
5290
5291 if Ekind_In (E, E_Constant, E_Variable)
5292 and then not Has_Delayed_Freeze (E)
5293 then
5294 Explode_Initialization_Compound_Statement (E);
5295 end if;
5296 end if;
5297
5298 -- Case of a type or subtype being frozen
5299
5300 else
5301 -- We used to check here that a full type must have preelaborable
5302 -- initialization if it completes a private type specified with
5303 -- pragma Preelaborable_Initialization, but that missed cases where
5304 -- the types occur within a generic package, since the freezing
5305 -- that occurs within a containing scope generally skips traversal
5306 -- of a generic unit's declarations (those will be frozen within
5307 -- instances). This check was moved to Analyze_Package_Specification.
5308
5309 -- The type may be defined in a generic unit. This can occur when
5310 -- freezing a generic function that returns the type (which is
5311 -- defined in a parent unit). It is clearly meaningless to freeze
5312 -- this type. However, if it is a subtype, its size may be determi-
5313 -- nable and used in subsequent checks, so might as well try to
5314 -- compute it.
5315
5316 -- In Ada 2012, Freeze_Entities is also used in the front end to
5317 -- trigger the analysis of aspect expressions, so in this case we
5318 -- want to continue the freezing process.
5319
5320 if Present (Scope (E))
5321 and then Is_Generic_Unit (Scope (E))
5322 and then
5323 (not Has_Predicates (E)
5324 and then not Has_Delayed_Freeze (E))
5325 then
5326 Check_Compile_Time_Size (E);
5327 Ghost_Mode := Save_Ghost_Mode;
5328 return No_List;
5329 end if;
5330
5331 -- Check for error of Type_Invariant'Class applied to an untagged
5332 -- type (check delayed to freeze time when full type is available).
5333
5334 declare
5335 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
5336 begin
5337 if Present (Prag)
5338 and then Class_Present (Prag)
5339 and then not Is_Tagged_Type (E)
5340 then
5341 Error_Msg_NE
5342 ("Type_Invariant''Class cannot be specified for &", Prag, E);
5343 Error_Msg_N
5344 ("\can only be specified for a tagged type", Prag);
5345 end if;
5346 end;
5347
5348 if Is_Ghost_Entity (E) then
5349
5350 -- A Ghost type cannot be concurrent (SPARK RM 6.9(19)). Verify
5351 -- this legality rule first to five a finer-grained diagnostic.
5352
5353 if Is_Concurrent_Type (E) then
5354 Error_Msg_N ("ghost type & cannot be concurrent", E);
5355
5356 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(7))
5357
5358 elsif Is_Effectively_Volatile (E) then
5359 Error_Msg_N ("ghost type & cannot be volatile", E);
5360 end if;
5361 end if;
5362
5363 -- Deal with special cases of freezing for subtype
5364
5365 if E /= Base_Type (E) then
5366
5367 -- Before we do anything else, a specific test for the case of a
5368 -- size given for an array where the array would need to be packed
5369 -- in order for the size to be honored, but is not. This is the
5370 -- case where implicit packing may apply. The reason we do this so
5371 -- early is that, if we have implicit packing, the layout of the
5372 -- base type is affected, so we must do this before we freeze the
5373 -- base type.
5374
5375 -- We could do this processing only if implicit packing is enabled
5376 -- since in all other cases, the error would be caught by the back
5377 -- end. However, we choose to do the check even if we do not have
5378 -- implicit packing enabled, since this allows us to give a more
5379 -- useful error message (advising use of pragma Implicit_Packing
5380 -- or pragma Pack).
5381
5382 if Is_Array_Type (E) then
5383 declare
5384 Ctyp : constant Entity_Id := Component_Type (E);
5385 Rsiz : constant Uint := RM_Size (Ctyp);
5386 SZ : constant Node_Id := Size_Clause (E);
5387 Btyp : constant Entity_Id := Base_Type (E);
5388
5389 Lo : Node_Id;
5390 Hi : Node_Id;
5391 Indx : Node_Id;
5392
5393 Dim : Uint;
5394 Num_Elmts : Uint := Uint_1;
5395 -- Number of elements in array
5396
5397 begin
5398 -- Check enabling conditions. These are straightforward
5399 -- except for the test for a limited composite type. This
5400 -- eliminates the rare case of a array of limited components
5401 -- where there are issues of whether or not we can go ahead
5402 -- and pack the array (since we can't freely pack and unpack
5403 -- arrays if they are limited).
5404
5405 -- Note that we check the root type explicitly because the
5406 -- whole point is we are doing this test before we have had
5407 -- a chance to freeze the base type (and it is that freeze
5408 -- action that causes stuff to be inherited).
5409
5410 -- The conditions on the size are identical to those used in
5411 -- Freeze_Array_Type to set the Is_Packed flag.
5412
5413 if Has_Size_Clause (E)
5414 and then Known_Static_RM_Size (E)
5415 and then not Is_Packed (E)
5416 and then not Has_Pragma_Pack (E)
5417 and then not Has_Component_Size_Clause (E)
5418 and then Known_Static_RM_Size (Ctyp)
5419 and then Rsiz <= 64
5420 and then not (Addressable (Rsiz)
5421 and then Known_Static_Esize (Ctyp)
5422 and then Esize (Ctyp) = Rsiz)
5423 and then not (Rsiz mod System_Storage_Unit = 0
5424 and then Is_Composite_Type (Ctyp))
5425 and then not Is_Limited_Composite (E)
5426 and then not Is_Packed (Root_Type (E))
5427 and then not Has_Component_Size_Clause (Root_Type (E))
5428 and then not (CodePeer_Mode or GNATprove_Mode)
5429 then
5430 -- Compute number of elements in array
5431
5432 Indx := First_Index (E);
5433 while Present (Indx) loop
5434 Get_Index_Bounds (Indx, Lo, Hi);
5435
5436 if not (Compile_Time_Known_Value (Lo)
5437 and then
5438 Compile_Time_Known_Value (Hi))
5439 then
5440 goto No_Implicit_Packing;
5441 end if;
5442
5443 Dim := Expr_Value (Hi) - Expr_Value (Lo) + 1;
5444
5445 if Dim >= 0 then
5446 Num_Elmts := Num_Elmts * Dim;
5447 else
5448 Num_Elmts := Uint_0;
5449 end if;
5450
5451 Next_Index (Indx);
5452 end loop;
5453
5454 -- What we are looking for here is the situation where
5455 -- the RM_Size given would be exactly right if there was
5456 -- a pragma Pack, resulting in the component size being
5457 -- the RM_Size of the component type.
5458
5459 if RM_Size (E) = Num_Elmts * Rsiz then
5460
5461 -- For implicit packing mode, just set the component
5462 -- size and Freeze_Array_Type will do the rest.
5463
5464 if Implicit_Packing then
5465 Set_Component_Size (Btyp, Rsiz);
5466
5467 -- Otherwise give an error message
5468
5469 else
5470 Error_Msg_NE
5471 ("size given for& too small", SZ, E);
5472 Error_Msg_N -- CODEFIX
5473 ("\use explicit pragma Pack or use pragma "
5474 & "Implicit_Packing", SZ);
5475 end if;
5476 end if;
5477 end if;
5478 end;
5479 end if;
5480
5481 <<No_Implicit_Packing>>
5482
5483 -- If ancestor subtype present, freeze that first. Note that this
5484 -- will also get the base type frozen. Need RM reference ???
5485
5486 Atype := Ancestor_Subtype (E);
5487
5488 if Present (Atype) then
5489 Freeze_And_Append (Atype, N, Result);
5490
5491 -- No ancestor subtype present
5492
5493 else
5494 -- See if we have a nearest ancestor that has a predicate.
5495 -- That catches the case of derived type with a predicate.
5496 -- Need RM reference here ???
5497
5498 Atype := Nearest_Ancestor (E);
5499
5500 if Present (Atype) and then Has_Predicates (Atype) then
5501 Freeze_And_Append (Atype, N, Result);
5502 end if;
5503
5504 -- Freeze base type before freezing the entity (RM 13.14(15))
5505
5506 if E /= Base_Type (E) then
5507 Freeze_And_Append (Base_Type (E), N, Result);
5508 end if;
5509 end if;
5510
5511 -- A subtype inherits all the type-related representation aspects
5512 -- from its parents (RM 13.1(8)).
5513
5514 Inherit_Aspects_At_Freeze_Point (E);
5515
5516 -- For a derived type, freeze its parent type first (RM 13.14(15))
5517
5518 elsif Is_Derived_Type (E) then
5519 Freeze_And_Append (Etype (E), N, Result);
5520 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
5521
5522 -- A derived type inherits each type-related representation aspect
5523 -- of its parent type that was directly specified before the
5524 -- declaration of the derived type (RM 13.1(15)).
5525
5526 Inherit_Aspects_At_Freeze_Point (E);
5527 end if;
5528
5529 -- Check for incompatible size and alignment for record type
5530
5531 if Warn_On_Size_Alignment
5532 and then Is_Record_Type (E)
5533 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
5534
5535 -- If explicit Object_Size clause given assume that the programmer
5536 -- knows what he is doing, and expects the compiler behavior.
5537
5538 and then not Has_Object_Size_Clause (E)
5539
5540 -- Check for size not a multiple of alignment
5541
5542 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5543 then
5544 declare
5545 SC : constant Node_Id := Size_Clause (E);
5546 AC : constant Node_Id := Alignment_Clause (E);
5547 Loc : Node_Id;
5548 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5549
5550 begin
5551 if Present (SC) and then Present (AC) then
5552
5553 -- Give a warning
5554
5555 if Sloc (SC) > Sloc (AC) then
5556 Loc := SC;
5557 Error_Msg_NE
5558 ("?Z?size is not a multiple of alignment for &",
5559 Loc, E);
5560 Error_Msg_Sloc := Sloc (AC);
5561 Error_Msg_Uint_1 := Alignment (E);
5562 Error_Msg_N ("\?Z?alignment of ^ specified #", Loc);
5563
5564 else
5565 Loc := AC;
5566 Error_Msg_NE
5567 ("?Z?size is not a multiple of alignment for &",
5568 Loc, E);
5569 Error_Msg_Sloc := Sloc (SC);
5570 Error_Msg_Uint_1 := RM_Size (E);
5571 Error_Msg_N ("\?Z?size of ^ specified #", Loc);
5572 end if;
5573
5574 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
5575 Error_Msg_N ("\?Z?Object_Size will be increased to ^", Loc);
5576 end if;
5577 end;
5578 end if;
5579
5580 -- Array type
5581
5582 if Is_Array_Type (E) then
5583 Freeze_Array_Type (E);
5584
5585 -- For a class-wide type, the corresponding specific type is
5586 -- frozen as well (RM 13.14(15))
5587
5588 elsif Is_Class_Wide_Type (E) then
5589 Freeze_And_Append (Root_Type (E), N, Result);
5590
5591 -- If the base type of the class-wide type is still incomplete,
5592 -- the class-wide remains unfrozen as well. This is legal when
5593 -- E is the formal of a primitive operation of some other type
5594 -- which is being frozen.
5595
5596 if not Is_Frozen (Root_Type (E)) then
5597 Set_Is_Frozen (E, False);
5598 Ghost_Mode := Save_Ghost_Mode;
5599 return Result;
5600 end if;
5601
5602 -- The equivalent type associated with a class-wide subtype needs
5603 -- to be frozen to ensure that its layout is done.
5604
5605 if Ekind (E) = E_Class_Wide_Subtype
5606 and then Present (Equivalent_Type (E))
5607 then
5608 Freeze_And_Append (Equivalent_Type (E), N, Result);
5609 end if;
5610
5611 -- Generate an itype reference for a library-level class-wide type
5612 -- at the freeze point. Otherwise the first explicit reference to
5613 -- the type may appear in an inner scope which will be rejected by
5614 -- the back-end.
5615
5616 if Is_Itype (E)
5617 and then Is_Compilation_Unit (Scope (E))
5618 then
5619 declare
5620 Ref : constant Node_Id := Make_Itype_Reference (Loc);
5621
5622 begin
5623 Set_Itype (Ref, E);
5624
5625 -- From a gigi point of view, a class-wide subtype derives
5626 -- from its record equivalent type. As a result, the itype
5627 -- reference must appear after the freeze node of the
5628 -- equivalent type or gigi will reject the reference.
5629
5630 if Ekind (E) = E_Class_Wide_Subtype
5631 and then Present (Equivalent_Type (E))
5632 then
5633 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
5634 else
5635 Add_To_Result (Ref);
5636 end if;
5637 end;
5638 end if;
5639
5640 -- For a record type or record subtype, freeze all component types
5641 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5642 -- using Is_Record_Type, because we don't want to attempt the freeze
5643 -- for the case of a private type with record extension (we will do
5644 -- that later when the full type is frozen).
5645
5646 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
5647 and then not (Present (Scope (E))
5648 and then Is_Generic_Unit (Scope (E)))
5649 then
5650 Freeze_Record_Type (E);
5651
5652 -- For a concurrent type, freeze corresponding record type. This does
5653 -- not correspond to any specific rule in the RM, but the record type
5654 -- is essentially part of the concurrent type. Also freeze all local
5655 -- entities. This includes record types created for entry parameter
5656 -- blocks and whatever local entities may appear in the private part.
5657
5658 elsif Is_Concurrent_Type (E) then
5659 if Present (Corresponding_Record_Type (E)) then
5660 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
5661 end if;
5662
5663 Comp := First_Entity (E);
5664 while Present (Comp) loop
5665 if Is_Type (Comp) then
5666 Freeze_And_Append (Comp, N, Result);
5667
5668 elsif (Ekind (Comp)) /= E_Function then
5669
5670 -- The guard on the presence of the Etype seems to be needed
5671 -- for some CodePeer (-gnatcC) cases, but not clear why???
5672
5673 if Present (Etype (Comp)) then
5674 if Is_Itype (Etype (Comp))
5675 and then Underlying_Type (Scope (Etype (Comp))) = E
5676 then
5677 Undelay_Type (Etype (Comp));
5678 end if;
5679
5680 Freeze_And_Append (Etype (Comp), N, Result);
5681 end if;
5682 end if;
5683
5684 Next_Entity (Comp);
5685 end loop;
5686
5687 -- Private types are required to point to the same freeze node as
5688 -- their corresponding full views. The freeze node itself has to
5689 -- point to the partial view of the entity (because from the partial
5690 -- view, we can retrieve the full view, but not the reverse).
5691 -- However, in order to freeze correctly, we need to freeze the full
5692 -- view. If we are freezing at the end of a scope (or within the
5693 -- scope) of the private type, the partial and full views will have
5694 -- been swapped, the full view appears first in the entity chain and
5695 -- the swapping mechanism ensures that the pointers are properly set
5696 -- (on scope exit).
5697
5698 -- If we encounter the partial view before the full view (e.g. when
5699 -- freezing from another scope), we freeze the full view, and then
5700 -- set the pointers appropriately since we cannot rely on swapping to
5701 -- fix things up (subtypes in an outer scope might not get swapped).
5702
5703 -- If the full view is itself private, the above requirements apply
5704 -- to the underlying full view instead of the full view. But there is
5705 -- no swapping mechanism for the underlying full view so we need to
5706 -- set the pointers appropriately in both cases.
5707
5708 elsif Is_Incomplete_Or_Private_Type (E)
5709 and then not Is_Generic_Type (E)
5710 then
5711 -- The construction of the dispatch table associated with library
5712 -- level tagged types forces freezing of all the primitives of the
5713 -- type, which may cause premature freezing of the partial view.
5714 -- For example:
5715
5716 -- package Pkg is
5717 -- type T is tagged private;
5718 -- type DT is new T with private;
5719 -- procedure Prim (X : in out T; Y : in out DT'Class);
5720 -- private
5721 -- type T is tagged null record;
5722 -- Obj : T;
5723 -- type DT is new T with null record;
5724 -- end;
5725
5726 -- In this case the type will be frozen later by the usual
5727 -- mechanism: an object declaration, an instantiation, or the
5728 -- end of a declarative part.
5729
5730 if Is_Library_Level_Tagged_Type (E)
5731 and then not Present (Full_View (E))
5732 then
5733 Set_Is_Frozen (E, False);
5734 Ghost_Mode := Save_Ghost_Mode;
5735 return Result;
5736
5737 -- Case of full view present
5738
5739 elsif Present (Full_View (E)) then
5740
5741 -- If full view has already been frozen, then no further
5742 -- processing is required
5743
5744 if Is_Frozen (Full_View (E)) then
5745 Set_Has_Delayed_Freeze (E, False);
5746 Set_Freeze_Node (E, Empty);
5747
5748 -- Otherwise freeze full view and patch the pointers so that
5749 -- the freeze node will elaborate both views in the back end.
5750 -- However, if full view is itself private, freeze underlying
5751 -- full view instead and patch the pointers so that the freeze
5752 -- node will elaborate the three views in the back end.
5753
5754 else
5755 declare
5756 Full : Entity_Id := Full_View (E);
5757
5758 begin
5759 if Is_Private_Type (Full)
5760 and then Present (Underlying_Full_View (Full))
5761 then
5762 Full := Underlying_Full_View (Full);
5763 end if;
5764
5765 Freeze_And_Append (Full, N, Result);
5766
5767 if Full /= Full_View (E)
5768 and then Has_Delayed_Freeze (Full_View (E))
5769 then
5770 F_Node := Freeze_Node (Full);
5771
5772 if Present (F_Node) then
5773 Set_Freeze_Node (Full_View (E), F_Node);
5774 Set_Entity (F_Node, Full_View (E));
5775
5776 else
5777 Set_Has_Delayed_Freeze (Full_View (E), False);
5778 Set_Freeze_Node (Full_View (E), Empty);
5779 end if;
5780 end if;
5781
5782 if Has_Delayed_Freeze (E) then
5783 F_Node := Freeze_Node (Full_View (E));
5784
5785 if Present (F_Node) then
5786 Set_Freeze_Node (E, F_Node);
5787 Set_Entity (F_Node, E);
5788
5789 else
5790 -- {Incomplete,Private}_Subtypes with Full_Views
5791 -- constrained by discriminants.
5792
5793 Set_Has_Delayed_Freeze (E, False);
5794 Set_Freeze_Node (E, Empty);
5795 end if;
5796 end if;
5797 end;
5798 end if;
5799
5800 Check_Debug_Info_Needed (E);
5801
5802 -- AI-117 requires that the convention of a partial view be the
5803 -- same as the convention of the full view. Note that this is a
5804 -- recognized breach of privacy, but it's essential for logical
5805 -- consistency of representation, and the lack of a rule in
5806 -- RM95 was an oversight.
5807
5808 Set_Convention (E, Convention (Full_View (E)));
5809
5810 Set_Size_Known_At_Compile_Time (E,
5811 Size_Known_At_Compile_Time (Full_View (E)));
5812
5813 -- Size information is copied from the full view to the
5814 -- incomplete or private view for consistency.
5815
5816 -- We skip this is the full view is not a type. This is very
5817 -- strange of course, and can only happen as a result of
5818 -- certain illegalities, such as a premature attempt to derive
5819 -- from an incomplete type.
5820
5821 if Is_Type (Full_View (E)) then
5822 Set_Size_Info (E, Full_View (E));
5823 Set_RM_Size (E, RM_Size (Full_View (E)));
5824 end if;
5825
5826 Ghost_Mode := Save_Ghost_Mode;
5827 return Result;
5828
5829 -- Case of underlying full view present
5830
5831 elsif Is_Private_Type (E)
5832 and then Present (Underlying_Full_View (E))
5833 then
5834 if not Is_Frozen (Underlying_Full_View (E)) then
5835 Freeze_And_Append (Underlying_Full_View (E), N, Result);
5836 end if;
5837
5838 -- Patch the pointers so that the freeze node will elaborate
5839 -- both views in the back end.
5840
5841 if Has_Delayed_Freeze (E) then
5842 F_Node := Freeze_Node (Underlying_Full_View (E));
5843
5844 if Present (F_Node) then
5845 Set_Freeze_Node (E, F_Node);
5846 Set_Entity (F_Node, E);
5847
5848 else
5849 Set_Has_Delayed_Freeze (E, False);
5850 Set_Freeze_Node (E, Empty);
5851 end if;
5852 end if;
5853
5854 Check_Debug_Info_Needed (E);
5855
5856 Ghost_Mode := Save_Ghost_Mode;
5857 return Result;
5858
5859 -- Case of no full view present. If entity is derived or subtype,
5860 -- it is safe to freeze, correctness depends on the frozen status
5861 -- of parent. Otherwise it is either premature usage, or a Taft
5862 -- amendment type, so diagnosis is at the point of use and the
5863 -- type might be frozen later.
5864
5865 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
5866 null;
5867
5868 else
5869 Set_Is_Frozen (E, False);
5870 Ghost_Mode := Save_Ghost_Mode;
5871 return No_List;
5872 end if;
5873
5874 -- For access subprogram, freeze types of all formals, the return
5875 -- type was already frozen, since it is the Etype of the function.
5876 -- Formal types can be tagged Taft amendment types, but otherwise
5877 -- they cannot be incomplete.
5878
5879 elsif Ekind (E) = E_Subprogram_Type then
5880 Formal := First_Formal (E);
5881 while Present (Formal) loop
5882 if Ekind (Etype (Formal)) = E_Incomplete_Type
5883 and then No (Full_View (Etype (Formal)))
5884 then
5885 if Is_Tagged_Type (Etype (Formal)) then
5886 null;
5887
5888 -- AI05-151: Incomplete types are allowed in access to
5889 -- subprogram specifications.
5890
5891 elsif Ada_Version < Ada_2012 then
5892 Error_Msg_NE
5893 ("invalid use of incomplete type&", E, Etype (Formal));
5894 end if;
5895 end if;
5896
5897 Freeze_And_Append (Etype (Formal), N, Result);
5898 Next_Formal (Formal);
5899 end loop;
5900
5901 Freeze_Subprogram (E);
5902
5903 -- For access to a protected subprogram, freeze the equivalent type
5904 -- (however this is not set if we are not generating code or if this
5905 -- is an anonymous type used just for resolution).
5906
5907 elsif Is_Access_Protected_Subprogram_Type (E) then
5908 if Present (Equivalent_Type (E)) then
5909 Freeze_And_Append (Equivalent_Type (E), N, Result);
5910 end if;
5911 end if;
5912
5913 -- Generic types are never seen by the back-end, and are also not
5914 -- processed by the expander (since the expander is turned off for
5915 -- generic processing), so we never need freeze nodes for them.
5916
5917 if Is_Generic_Type (E) then
5918 Ghost_Mode := Save_Ghost_Mode;
5919 return Result;
5920 end if;
5921
5922 -- Some special processing for non-generic types to complete
5923 -- representation details not known till the freeze point.
5924
5925 if Is_Fixed_Point_Type (E) then
5926 Freeze_Fixed_Point_Type (E);
5927
5928 -- Some error checks required for ordinary fixed-point type. Defer
5929 -- these till the freeze-point since we need the small and range
5930 -- values. We only do these checks for base types
5931
5932 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
5933 if Small_Value (E) < Ureal_2_M_80 then
5934 Error_Msg_Name_1 := Name_Small;
5935 Error_Msg_N
5936 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
5937
5938 elsif Small_Value (E) > Ureal_2_80 then
5939 Error_Msg_Name_1 := Name_Small;
5940 Error_Msg_N
5941 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
5942 end if;
5943
5944 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
5945 Error_Msg_Name_1 := Name_First;
5946 Error_Msg_N
5947 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
5948 end if;
5949
5950 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
5951 Error_Msg_Name_1 := Name_Last;
5952 Error_Msg_N
5953 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
5954 end if;
5955 end if;
5956
5957 elsif Is_Enumeration_Type (E) then
5958 Freeze_Enumeration_Type (E);
5959
5960 elsif Is_Integer_Type (E) then
5961 Adjust_Esize_For_Alignment (E);
5962
5963 if Is_Modular_Integer_Type (E)
5964 and then Warn_On_Suspicious_Modulus_Value
5965 then
5966 Check_Suspicious_Modulus (E);
5967 end if;
5968
5969 -- The pool applies to named and anonymous access types, but not
5970 -- to subprogram and to internal types generated for 'Access
5971 -- references.
5972
5973 elsif Is_Access_Type (E)
5974 and then not Is_Access_Subprogram_Type (E)
5975 and then Ekind (E) /= E_Access_Attribute_Type
5976 then
5977 -- If a pragma Default_Storage_Pool applies, and this type has no
5978 -- Storage_Pool or Storage_Size clause (which must have occurred
5979 -- before the freezing point), then use the default. This applies
5980 -- only to base types.
5981
5982 -- None of this applies to access to subprograms, for which there
5983 -- are clearly no pools.
5984
5985 if Present (Default_Pool)
5986 and then Is_Base_Type (E)
5987 and then not Has_Storage_Size_Clause (E)
5988 and then No (Associated_Storage_Pool (E))
5989 then
5990 -- Case of pragma Default_Storage_Pool (null)
5991
5992 if Nkind (Default_Pool) = N_Null then
5993 Set_No_Pool_Assigned (E);
5994
5995 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
5996
5997 else
5998 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
5999 end if;
6000 end if;
6001
6002 -- Check restriction for standard storage pool
6003
6004 if No (Associated_Storage_Pool (E)) then
6005 Check_Restriction (No_Standard_Storage_Pools, E);
6006 end if;
6007
6008 -- Deal with error message for pure access type. This is not an
6009 -- error in Ada 2005 if there is no pool (see AI-366).
6010
6011 if Is_Pure_Unit_Access_Type (E)
6012 and then (Ada_Version < Ada_2005
6013 or else not No_Pool_Assigned (E))
6014 and then not Is_Generic_Unit (Scope (E))
6015 then
6016 Error_Msg_N ("named access type not allowed in pure unit", E);
6017
6018 if Ada_Version >= Ada_2005 then
6019 Error_Msg_N
6020 ("\would be legal if Storage_Size of 0 given??", E);
6021
6022 elsif No_Pool_Assigned (E) then
6023 Error_Msg_N
6024 ("\would be legal in Ada 2005??", E);
6025
6026 else
6027 Error_Msg_N
6028 ("\would be legal in Ada 2005 if "
6029 & "Storage_Size of 0 given??", E);
6030 end if;
6031 end if;
6032 end if;
6033
6034 -- Case of composite types
6035
6036 if Is_Composite_Type (E) then
6037
6038 -- AI-117 requires that all new primitives of a tagged type must
6039 -- inherit the convention of the full view of the type. Inherited
6040 -- and overriding operations are defined to inherit the convention
6041 -- of their parent or overridden subprogram (also specified in
6042 -- AI-117), which will have occurred earlier (in Derive_Subprogram
6043 -- and New_Overloaded_Entity). Here we set the convention of
6044 -- primitives that are still convention Ada, which will ensure
6045 -- that any new primitives inherit the type's convention. Class-
6046 -- wide types can have a foreign convention inherited from their
6047 -- specific type, but are excluded from this since they don't have
6048 -- any associated primitives.
6049
6050 if Is_Tagged_Type (E)
6051 and then not Is_Class_Wide_Type (E)
6052 and then Convention (E) /= Convention_Ada
6053 then
6054 declare
6055 Prim_List : constant Elist_Id := Primitive_Operations (E);
6056 Prim : Elmt_Id;
6057
6058 begin
6059 Prim := First_Elmt (Prim_List);
6060 while Present (Prim) loop
6061 if Convention (Node (Prim)) = Convention_Ada then
6062 Set_Convention (Node (Prim), Convention (E));
6063 end if;
6064
6065 Next_Elmt (Prim);
6066 end loop;
6067 end;
6068 end if;
6069
6070 -- If the type is a simple storage pool type, then this is where
6071 -- we attempt to locate and validate its Allocate, Deallocate, and
6072 -- Storage_Size operations (the first is required, and the latter
6073 -- two are optional). We also verify that the full type for a
6074 -- private type is allowed to be a simple storage pool type.
6075
6076 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
6077 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
6078 then
6079 -- If the type is marked Has_Private_Declaration, then this is
6080 -- a full type for a private type that was specified with the
6081 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
6082 -- pragma is allowed for the full type (for example, it can't
6083 -- be an array type, or a nonlimited record type).
6084
6085 if Has_Private_Declaration (E) then
6086 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
6087 and then not Is_Private_Type (E)
6088 then
6089 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
6090 Error_Msg_N
6091 ("pragma% can only apply to full type that is an " &
6092 "explicitly limited type", E);
6093 end if;
6094 end if;
6095
6096 Validate_Simple_Pool_Ops : declare
6097 Pool_Type : Entity_Id renames E;
6098 Address_Type : constant Entity_Id := RTE (RE_Address);
6099 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
6100
6101 procedure Validate_Simple_Pool_Op_Formal
6102 (Pool_Op : Entity_Id;
6103 Pool_Op_Formal : in out Entity_Id;
6104 Expected_Mode : Formal_Kind;
6105 Expected_Type : Entity_Id;
6106 Formal_Name : String;
6107 OK_Formal : in out Boolean);
6108 -- Validate one formal Pool_Op_Formal of the candidate pool
6109 -- operation Pool_Op. The formal must be of Expected_Type
6110 -- and have mode Expected_Mode. OK_Formal will be set to
6111 -- False if the formal doesn't match. If OK_Formal is False
6112 -- on entry, then the formal will effectively be ignored
6113 -- (because validation of the pool op has already failed).
6114 -- Upon return, Pool_Op_Formal will be updated to the next
6115 -- formal, if any.
6116
6117 procedure Validate_Simple_Pool_Operation
6118 (Op_Name : Name_Id);
6119 -- Search for and validate a simple pool operation with the
6120 -- name Op_Name. If the name is Allocate, then there must be
6121 -- exactly one such primitive operation for the simple pool
6122 -- type. If the name is Deallocate or Storage_Size, then
6123 -- there can be at most one such primitive operation. The
6124 -- profile of the located primitive must conform to what
6125 -- is expected for each operation.
6126
6127 ------------------------------------
6128 -- Validate_Simple_Pool_Op_Formal --
6129 ------------------------------------
6130
6131 procedure Validate_Simple_Pool_Op_Formal
6132 (Pool_Op : Entity_Id;
6133 Pool_Op_Formal : in out Entity_Id;
6134 Expected_Mode : Formal_Kind;
6135 Expected_Type : Entity_Id;
6136 Formal_Name : String;
6137 OK_Formal : in out Boolean)
6138 is
6139 begin
6140 -- If OK_Formal is False on entry, then simply ignore
6141 -- the formal, because an earlier formal has already
6142 -- been flagged.
6143
6144 if not OK_Formal then
6145 return;
6146
6147 -- If no formal is passed in, then issue an error for a
6148 -- missing formal.
6149
6150 elsif not Present (Pool_Op_Formal) then
6151 Error_Msg_NE
6152 ("simple storage pool op missing formal " &
6153 Formal_Name & " of type&", Pool_Op, Expected_Type);
6154 OK_Formal := False;
6155
6156 return;
6157 end if;
6158
6159 if Etype (Pool_Op_Formal) /= Expected_Type then
6160
6161 -- If the pool type was expected for this formal, then
6162 -- this will not be considered a candidate operation
6163 -- for the simple pool, so we unset OK_Formal so that
6164 -- the op and any later formals will be ignored.
6165
6166 if Expected_Type = Pool_Type then
6167 OK_Formal := False;
6168
6169 return;
6170
6171 else
6172 Error_Msg_NE
6173 ("wrong type for formal " & Formal_Name &
6174 " of simple storage pool op; expected type&",
6175 Pool_Op_Formal, Expected_Type);
6176 end if;
6177 end if;
6178
6179 -- Issue error if formal's mode is not the expected one
6180
6181 if Ekind (Pool_Op_Formal) /= Expected_Mode then
6182 Error_Msg_N
6183 ("wrong mode for formal of simple storage pool op",
6184 Pool_Op_Formal);
6185 end if;
6186
6187 -- Advance to the next formal
6188
6189 Next_Formal (Pool_Op_Formal);
6190 end Validate_Simple_Pool_Op_Formal;
6191
6192 ------------------------------------
6193 -- Validate_Simple_Pool_Operation --
6194 ------------------------------------
6195
6196 procedure Validate_Simple_Pool_Operation
6197 (Op_Name : Name_Id)
6198 is
6199 Op : Entity_Id;
6200 Found_Op : Entity_Id := Empty;
6201 Formal : Entity_Id;
6202 Is_OK : Boolean;
6203
6204 begin
6205 pragma Assert
6206 (Nam_In (Op_Name, Name_Allocate,
6207 Name_Deallocate,
6208 Name_Storage_Size));
6209
6210 Error_Msg_Name_1 := Op_Name;
6211
6212 -- For each homonym declared immediately in the scope
6213 -- of the simple storage pool type, determine whether
6214 -- the homonym is an operation of the pool type, and,
6215 -- if so, check that its profile is as expected for
6216 -- a simple pool operation of that name.
6217
6218 Op := Get_Name_Entity_Id (Op_Name);
6219 while Present (Op) loop
6220 if Ekind_In (Op, E_Function, E_Procedure)
6221 and then Scope (Op) = Current_Scope
6222 then
6223 Formal := First_Entity (Op);
6224
6225 Is_OK := True;
6226
6227 -- The first parameter must be of the pool type
6228 -- in order for the operation to qualify.
6229
6230 if Op_Name = Name_Storage_Size then
6231 Validate_Simple_Pool_Op_Formal
6232 (Op, Formal, E_In_Parameter, Pool_Type,
6233 "Pool", Is_OK);
6234 else
6235 Validate_Simple_Pool_Op_Formal
6236 (Op, Formal, E_In_Out_Parameter, Pool_Type,
6237 "Pool", Is_OK);
6238 end if;
6239
6240 -- If another operation with this name has already
6241 -- been located for the type, then flag an error,
6242 -- since we only allow the type to have a single
6243 -- such primitive.
6244
6245 if Present (Found_Op) and then Is_OK then
6246 Error_Msg_NE
6247 ("only one % operation allowed for " &
6248 "simple storage pool type&", Op, Pool_Type);
6249 end if;
6250
6251 -- In the case of Allocate and Deallocate, a formal
6252 -- of type System.Address is required.
6253
6254 if Op_Name = Name_Allocate then
6255 Validate_Simple_Pool_Op_Formal
6256 (Op, Formal, E_Out_Parameter,
6257 Address_Type, "Storage_Address", Is_OK);
6258
6259 elsif Op_Name = Name_Deallocate then
6260 Validate_Simple_Pool_Op_Formal
6261 (Op, Formal, E_In_Parameter,
6262 Address_Type, "Storage_Address", Is_OK);
6263 end if;
6264
6265 -- In the case of Allocate and Deallocate, formals
6266 -- of type Storage_Count are required as the third
6267 -- and fourth parameters.
6268
6269 if Op_Name /= Name_Storage_Size then
6270 Validate_Simple_Pool_Op_Formal
6271 (Op, Formal, E_In_Parameter,
6272 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
6273 Validate_Simple_Pool_Op_Formal
6274 (Op, Formal, E_In_Parameter,
6275 Stg_Cnt_Type, "Alignment", Is_OK);
6276 end if;
6277
6278 -- If no mismatched formals have been found (Is_OK)
6279 -- and no excess formals are present, then this
6280 -- operation has been validated, so record it.
6281
6282 if not Present (Formal) and then Is_OK then
6283 Found_Op := Op;
6284 end if;
6285 end if;
6286
6287 Op := Homonym (Op);
6288 end loop;
6289
6290 -- There must be a valid Allocate operation for the type,
6291 -- so issue an error if none was found.
6292
6293 if Op_Name = Name_Allocate
6294 and then not Present (Found_Op)
6295 then
6296 Error_Msg_N ("missing % operation for simple " &
6297 "storage pool type", Pool_Type);
6298
6299 elsif Present (Found_Op) then
6300
6301 -- Simple pool operations can't be abstract
6302
6303 if Is_Abstract_Subprogram (Found_Op) then
6304 Error_Msg_N
6305 ("simple storage pool operation must not be " &
6306 "abstract", Found_Op);
6307 end if;
6308
6309 -- The Storage_Size operation must be a function with
6310 -- Storage_Count as its result type.
6311
6312 if Op_Name = Name_Storage_Size then
6313 if Ekind (Found_Op) = E_Procedure then
6314 Error_Msg_N
6315 ("% operation must be a function", Found_Op);
6316
6317 elsif Etype (Found_Op) /= Stg_Cnt_Type then
6318 Error_Msg_NE
6319 ("wrong result type for%, expected type&",
6320 Found_Op, Stg_Cnt_Type);
6321 end if;
6322
6323 -- Allocate and Deallocate must be procedures
6324
6325 elsif Ekind (Found_Op) = E_Function then
6326 Error_Msg_N
6327 ("% operation must be a procedure", Found_Op);
6328 end if;
6329 end if;
6330 end Validate_Simple_Pool_Operation;
6331
6332 -- Start of processing for Validate_Simple_Pool_Ops
6333
6334 begin
6335 Validate_Simple_Pool_Operation (Name_Allocate);
6336 Validate_Simple_Pool_Operation (Name_Deallocate);
6337 Validate_Simple_Pool_Operation (Name_Storage_Size);
6338 end Validate_Simple_Pool_Ops;
6339 end if;
6340 end if;
6341
6342 -- Now that all types from which E may depend are frozen, see if the
6343 -- size is known at compile time, if it must be unsigned, or if
6344 -- strict alignment is required
6345
6346 Check_Compile_Time_Size (E);
6347 Check_Unsigned_Type (E);
6348
6349 if Base_Type (E) = E then
6350 Check_Strict_Alignment (E);
6351 end if;
6352
6353 -- Do not allow a size clause for a type which does not have a size
6354 -- that is known at compile time
6355
6356 if Has_Size_Clause (E)
6357 and then not Size_Known_At_Compile_Time (E)
6358 then
6359 -- Suppress this message if errors posted on E, even if we are
6360 -- in all errors mode, since this is often a junk message
6361
6362 if not Error_Posted (E) then
6363 Error_Msg_N
6364 ("size clause not allowed for variable length type",
6365 Size_Clause (E));
6366 end if;
6367 end if;
6368
6369 -- Now we set/verify the representation information, in particular
6370 -- the size and alignment values. This processing is not required for
6371 -- generic types, since generic types do not play any part in code
6372 -- generation, and so the size and alignment values for such types
6373 -- are irrelevant. Ditto for types declared within a generic unit,
6374 -- which may have components that depend on generic parameters, and
6375 -- that will be recreated in an instance.
6376
6377 if Inside_A_Generic then
6378 null;
6379
6380 -- Otherwise we call the layout procedure
6381
6382 else
6383 Layout_Type (E);
6384 end if;
6385
6386 -- If this is an access to subprogram whose designated type is itself
6387 -- a subprogram type, the return type of this anonymous subprogram
6388 -- type must be decorated as well.
6389
6390 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
6391 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
6392 then
6393 Layout_Type (Etype (Designated_Type (E)));
6394 end if;
6395
6396 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6397 -- this is where we analye the expression (after the type is frozen,
6398 -- since in the case of Default_Value, we are analyzing with the
6399 -- type itself, and we treat Default_Component_Value similarly for
6400 -- the sake of uniformity).
6401
6402 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
6403 declare
6404 Nam : Name_Id;
6405 Exp : Node_Id;
6406 Typ : Entity_Id;
6407
6408 begin
6409 if Is_Scalar_Type (E) then
6410 Nam := Name_Default_Value;
6411 Typ := E;
6412 Exp := Default_Aspect_Value (Typ);
6413 else
6414 Nam := Name_Default_Component_Value;
6415 Typ := Component_Type (E);
6416 Exp := Default_Aspect_Component_Value (E);
6417 end if;
6418
6419 Analyze_And_Resolve (Exp, Typ);
6420
6421 if Etype (Exp) /= Any_Type then
6422 if not Is_OK_Static_Expression (Exp) then
6423 Error_Msg_Name_1 := Nam;
6424 Flag_Non_Static_Expr
6425 ("aspect% requires static expression", Exp);
6426 end if;
6427 end if;
6428 end;
6429 end if;
6430
6431 -- End of freeze processing for type entities
6432 end if;
6433
6434 -- Here is where we logically freeze the current entity. If it has a
6435 -- freeze node, then this is the point at which the freeze node is
6436 -- linked into the result list.
6437
6438 if Has_Delayed_Freeze (E) then
6439
6440 -- If a freeze node is already allocated, use it, otherwise allocate
6441 -- a new one. The preallocation happens in the case of anonymous base
6442 -- types, where we preallocate so that we can set First_Subtype_Link.
6443 -- Note that we reset the Sloc to the current freeze location.
6444
6445 if Present (Freeze_Node (E)) then
6446 F_Node := Freeze_Node (E);
6447 Set_Sloc (F_Node, Loc);
6448
6449 else
6450 F_Node := New_Freeze_Node;
6451 Set_Freeze_Node (E, F_Node);
6452 Set_Access_Types_To_Process (F_Node, No_Elist);
6453 Set_TSS_Elist (F_Node, No_Elist);
6454 Set_Actions (F_Node, No_List);
6455 end if;
6456
6457 Set_Entity (F_Node, E);
6458 Add_To_Result (F_Node);
6459
6460 -- A final pass over record types with discriminants. If the type
6461 -- has an incomplete declaration, there may be constrained access
6462 -- subtypes declared elsewhere, which do not depend on the discrimi-
6463 -- nants of the type, and which are used as component types (i.e.
6464 -- the full view is a recursive type). The designated types of these
6465 -- subtypes can only be elaborated after the type itself, and they
6466 -- need an itype reference.
6467
6468 if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
6469 declare
6470 Comp : Entity_Id;
6471 IR : Node_Id;
6472 Typ : Entity_Id;
6473
6474 begin
6475 Comp := First_Component (E);
6476 while Present (Comp) loop
6477 Typ := Etype (Comp);
6478
6479 if Ekind (Comp) = E_Component
6480 and then Is_Access_Type (Typ)
6481 and then Scope (Typ) /= E
6482 and then Base_Type (Designated_Type (Typ)) = E
6483 and then Is_Itype (Designated_Type (Typ))
6484 then
6485 IR := Make_Itype_Reference (Sloc (Comp));
6486 Set_Itype (IR, Designated_Type (Typ));
6487 Append (IR, Result);
6488 end if;
6489
6490 Next_Component (Comp);
6491 end loop;
6492 end;
6493 end if;
6494 end if;
6495
6496 -- When a type is frozen, the first subtype of the type is frozen as
6497 -- well (RM 13.14(15)). This has to be done after freezing the type,
6498 -- since obviously the first subtype depends on its own base type.
6499
6500 if Is_Type (E) then
6501 Freeze_And_Append (First_Subtype (E), N, Result);
6502
6503 -- If we just froze a tagged non-class wide record, then freeze the
6504 -- corresponding class-wide type. This must be done after the tagged
6505 -- type itself is frozen, because the class-wide type refers to the
6506 -- tagged type which generates the class.
6507
6508 if Is_Tagged_Type (E)
6509 and then not Is_Class_Wide_Type (E)
6510 and then Present (Class_Wide_Type (E))
6511 then
6512 Freeze_And_Append (Class_Wide_Type (E), N, Result);
6513 end if;
6514 end if;
6515
6516 Check_Debug_Info_Needed (E);
6517
6518 -- Special handling for subprograms
6519
6520 if Is_Subprogram (E) then
6521
6522 -- If subprogram has address clause then reset Is_Public flag, since
6523 -- we do not want the backend to generate external references.
6524
6525 if Present (Address_Clause (E))
6526 and then not Is_Library_Level_Entity (E)
6527 then
6528 Set_Is_Public (E, False);
6529 end if;
6530 end if;
6531
6532 Ghost_Mode := Save_Ghost_Mode;
6533 return Result;
6534 end Freeze_Entity;
6535
6536 -----------------------------
6537 -- Freeze_Enumeration_Type --
6538 -----------------------------
6539
6540 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6541 begin
6542 -- By default, if no size clause is present, an enumeration type with
6543 -- Convention C is assumed to interface to a C enum, and has integer
6544 -- size. This applies to types. For subtypes, verify that its base
6545 -- type has no size clause either. Treat other foreign conventions
6546 -- in the same way, and also make sure alignment is set right.
6547
6548 if Has_Foreign_Convention (Typ)
6549 and then not Has_Size_Clause (Typ)
6550 and then not Has_Size_Clause (Base_Type (Typ))
6551 and then Esize (Typ) < Standard_Integer_Size
6552
6553 -- Don't do this if Short_Enums on target
6554
6555 and then not Target_Short_Enums
6556 then
6557 Init_Esize (Typ, Standard_Integer_Size);
6558 Set_Alignment (Typ, Alignment (Standard_Integer));
6559
6560 -- Normal Ada case or size clause present or not Long_C_Enums on target
6561
6562 else
6563 -- If the enumeration type interfaces to C, and it has a size clause
6564 -- that specifies less than int size, it warrants a warning. The
6565 -- user may intend the C type to be an enum or a char, so this is
6566 -- not by itself an error that the Ada compiler can detect, but it
6567 -- it is a worth a heads-up. For Boolean and Character types we
6568 -- assume that the programmer has the proper C type in mind.
6569
6570 if Convention (Typ) = Convention_C
6571 and then Has_Size_Clause (Typ)
6572 and then Esize (Typ) /= Esize (Standard_Integer)
6573 and then not Is_Boolean_Type (Typ)
6574 and then not Is_Character_Type (Typ)
6575
6576 -- Don't do this if Short_Enums on target
6577
6578 and then not Target_Short_Enums
6579 then
6580 Error_Msg_N
6581 ("C enum types have the size of a C int??", Size_Clause (Typ));
6582 end if;
6583
6584 Adjust_Esize_For_Alignment (Typ);
6585 end if;
6586 end Freeze_Enumeration_Type;
6587
6588 -----------------------
6589 -- Freeze_Expression --
6590 -----------------------
6591
6592 procedure Freeze_Expression (N : Node_Id) is
6593 In_Spec_Exp : constant Boolean := In_Spec_Expression;
6594 Typ : Entity_Id;
6595 Nam : Entity_Id;
6596 Desig_Typ : Entity_Id;
6597 P : Node_Id;
6598 Parent_P : Node_Id;
6599
6600 Freeze_Outside : Boolean := False;
6601 -- This flag is set true if the entity must be frozen outside the
6602 -- current subprogram. This happens in the case of expander generated
6603 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6604 -- not freeze all entities like other bodies, but which nevertheless
6605 -- may reference entities that have to be frozen before the body and
6606 -- obviously cannot be frozen inside the body.
6607
6608 function Find_Aggregate_Component_Desig_Type return Entity_Id;
6609 -- If the expression is an array aggregate, the type of the component
6610 -- expressions is also frozen. If the component type is an access type
6611 -- and the expressions include allocators, the designed type is frozen
6612 -- as well.
6613
6614 function In_Expanded_Body (N : Node_Id) return Boolean;
6615 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6616 -- it is the handled statement sequence of an expander-generated
6617 -- subprogram (init proc, stream subprogram, or renaming as body).
6618 -- If so, this is not a freezing context.
6619
6620 -----------------------------------------
6621 -- Find_Aggregate_Component_Desig_Type --
6622 -----------------------------------------
6623
6624 function Find_Aggregate_Component_Desig_Type return Entity_Id is
6625 Assoc : Node_Id;
6626 Exp : Node_Id;
6627
6628 begin
6629 if Present (Expressions (N)) then
6630 Exp := First (Expressions (N));
6631 while Present (Exp) loop
6632 if Nkind (Exp) = N_Allocator then
6633 return Designated_Type (Component_Type (Etype (N)));
6634 end if;
6635
6636 Next (Exp);
6637 end loop;
6638 end if;
6639
6640 if Present (Component_Associations (N)) then
6641 Assoc := First (Component_Associations (N));
6642 while Present (Assoc) loop
6643 if Nkind (Expression (Assoc)) = N_Allocator then
6644 return Designated_Type (Component_Type (Etype (N)));
6645 end if;
6646
6647 Next (Assoc);
6648 end loop;
6649 end if;
6650
6651 return Empty;
6652 end Find_Aggregate_Component_Desig_Type;
6653
6654 ----------------------
6655 -- In_Expanded_Body --
6656 ----------------------
6657
6658 function In_Expanded_Body (N : Node_Id) return Boolean is
6659 P : Node_Id;
6660 Id : Entity_Id;
6661
6662 begin
6663 if Nkind (N) = N_Subprogram_Body then
6664 P := N;
6665 else
6666 P := Parent (N);
6667 end if;
6668
6669 if Nkind (P) /= N_Subprogram_Body then
6670 return False;
6671
6672 else
6673 Id := Defining_Unit_Name (Specification (P));
6674
6675 -- The following are expander-created bodies, or bodies that
6676 -- are not freeze points.
6677
6678 if Nkind (Id) = N_Defining_Identifier
6679 and then (Is_Init_Proc (Id)
6680 or else Is_TSS (Id, TSS_Stream_Input)
6681 or else Is_TSS (Id, TSS_Stream_Output)
6682 or else Is_TSS (Id, TSS_Stream_Read)
6683 or else Is_TSS (Id, TSS_Stream_Write)
6684 or else Nkind_In (Original_Node (P),
6685 N_Subprogram_Renaming_Declaration,
6686 N_Expression_Function))
6687 then
6688 return True;
6689 else
6690 return False;
6691 end if;
6692 end if;
6693 end In_Expanded_Body;
6694
6695 -- Start of processing for Freeze_Expression
6696
6697 begin
6698 -- Immediate return if freezing is inhibited. This flag is set by the
6699 -- analyzer to stop freezing on generated expressions that would cause
6700 -- freezing if they were in the source program, but which are not
6701 -- supposed to freeze, since they are created.
6702
6703 if Must_Not_Freeze (N) then
6704 return;
6705 end if;
6706
6707 -- If expression is non-static, then it does not freeze in a default
6708 -- expression, see section "Handling of Default Expressions" in the
6709 -- spec of package Sem for further details. Note that we have to make
6710 -- sure that we actually have a real expression (if we have a subtype
6711 -- indication, we can't test Is_OK_Static_Expression). However, we
6712 -- exclude the case of the prefix of an attribute of a static scalar
6713 -- subtype from this early return, because static subtype attributes
6714 -- should always cause freezing, even in default expressions, but
6715 -- the attribute may not have been marked as static yet (because in
6716 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6717 -- Freeze_Expression on the prefix).
6718
6719 if In_Spec_Exp
6720 and then Nkind (N) in N_Subexpr
6721 and then not Is_OK_Static_Expression (N)
6722 and then (Nkind (Parent (N)) /= N_Attribute_Reference
6723 or else not (Is_Entity_Name (N)
6724 and then Is_Type (Entity (N))
6725 and then Is_OK_Static_Subtype (Entity (N))))
6726 then
6727 return;
6728 end if;
6729
6730 -- Freeze type of expression if not frozen already
6731
6732 Typ := Empty;
6733
6734 if Nkind (N) in N_Has_Etype then
6735 if not Is_Frozen (Etype (N)) then
6736 Typ := Etype (N);
6737
6738 -- Base type may be an derived numeric type that is frozen at
6739 -- the point of declaration, but first_subtype is still unfrozen.
6740
6741 elsif not Is_Frozen (First_Subtype (Etype (N))) then
6742 Typ := First_Subtype (Etype (N));
6743 end if;
6744 end if;
6745
6746 -- For entity name, freeze entity if not frozen already. A special
6747 -- exception occurs for an identifier that did not come from source.
6748 -- We don't let such identifiers freeze a non-internal entity, i.e.
6749 -- an entity that did come from source, since such an identifier was
6750 -- generated by the expander, and cannot have any semantic effect on
6751 -- the freezing semantics. For example, this stops the parameter of
6752 -- an initialization procedure from freezing the variable.
6753
6754 if Is_Entity_Name (N)
6755 and then not Is_Frozen (Entity (N))
6756 and then (Nkind (N) /= N_Identifier
6757 or else Comes_From_Source (N)
6758 or else not Comes_From_Source (Entity (N)))
6759 then
6760 Nam := Entity (N);
6761
6762 if Present (Nam) and then Ekind (Nam) = E_Function then
6763 Check_Expression_Function (N, Nam);
6764 end if;
6765
6766 else
6767 Nam := Empty;
6768 end if;
6769
6770 -- For an allocator freeze designated type if not frozen already
6771
6772 -- For an aggregate whose component type is an access type, freeze the
6773 -- designated type now, so that its freeze does not appear within the
6774 -- loop that might be created in the expansion of the aggregate. If the
6775 -- designated type is a private type without full view, the expression
6776 -- cannot contain an allocator, so the type is not frozen.
6777
6778 -- For a function, we freeze the entity when the subprogram declaration
6779 -- is frozen, but a function call may appear in an initialization proc.
6780 -- before the declaration is frozen. We need to generate the extra
6781 -- formals, if any, to ensure that the expansion of the call includes
6782 -- the proper actuals. This only applies to Ada subprograms, not to
6783 -- imported ones.
6784
6785 Desig_Typ := Empty;
6786
6787 case Nkind (N) is
6788 when N_Allocator =>
6789 Desig_Typ := Designated_Type (Etype (N));
6790
6791 when N_Aggregate =>
6792 if Is_Array_Type (Etype (N))
6793 and then Is_Access_Type (Component_Type (Etype (N)))
6794 then
6795
6796 -- Check whether aggregate includes allocators.
6797
6798 Desig_Typ := Find_Aggregate_Component_Desig_Type;
6799 end if;
6800
6801 when N_Selected_Component |
6802 N_Indexed_Component |
6803 N_Slice =>
6804
6805 if Is_Access_Type (Etype (Prefix (N))) then
6806 Desig_Typ := Designated_Type (Etype (Prefix (N)));
6807 end if;
6808
6809 when N_Identifier =>
6810 if Present (Nam)
6811 and then Ekind (Nam) = E_Function
6812 and then Nkind (Parent (N)) = N_Function_Call
6813 and then Convention (Nam) = Convention_Ada
6814 then
6815 Create_Extra_Formals (Nam);
6816 end if;
6817
6818 when others =>
6819 null;
6820 end case;
6821
6822 if Desig_Typ /= Empty
6823 and then (Is_Frozen (Desig_Typ)
6824 or else (not Is_Fully_Defined (Desig_Typ)))
6825 then
6826 Desig_Typ := Empty;
6827 end if;
6828
6829 -- All done if nothing needs freezing
6830
6831 if No (Typ)
6832 and then No (Nam)
6833 and then No (Desig_Typ)
6834 then
6835 return;
6836 end if;
6837
6838 -- Examine the enclosing context by climbing the parent chain. The
6839 -- traversal serves two purposes - to detect scenarios where freezeing
6840 -- is not needed and to find the proper insertion point for the freeze
6841 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6842 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6843 -- the tree may result in types being frozen too early.
6844
6845 P := N;
6846 loop
6847 Parent_P := Parent (P);
6848
6849 -- If we don't have a parent, then we are not in a well-formed tree.
6850 -- This is an unusual case, but there are some legitimate situations
6851 -- in which this occurs, notably when the expressions in the range of
6852 -- a type declaration are resolved. We simply ignore the freeze
6853 -- request in this case. Is this right ???
6854
6855 if No (Parent_P) then
6856 return;
6857 end if;
6858
6859 -- See if we have got to an appropriate point in the tree
6860
6861 case Nkind (Parent_P) is
6862
6863 -- A special test for the exception of (RM 13.14(8)) for the case
6864 -- of per-object expressions (RM 3.8(18)) occurring in component
6865 -- definition or a discrete subtype definition. Note that we test
6866 -- for a component declaration which includes both cases we are
6867 -- interested in, and furthermore the tree does not have explicit
6868 -- nodes for either of these two constructs.
6869
6870 when N_Component_Declaration =>
6871
6872 -- The case we want to test for here is an identifier that is
6873 -- a per-object expression, this is either a discriminant that
6874 -- appears in a context other than the component declaration
6875 -- or it is a reference to the type of the enclosing construct.
6876
6877 -- For either of these cases, we skip the freezing
6878
6879 if not In_Spec_Expression
6880 and then Nkind (N) = N_Identifier
6881 and then (Present (Entity (N)))
6882 then
6883 -- We recognize the discriminant case by just looking for
6884 -- a reference to a discriminant. It can only be one for
6885 -- the enclosing construct. Skip freezing in this case.
6886
6887 if Ekind (Entity (N)) = E_Discriminant then
6888 return;
6889
6890 -- For the case of a reference to the enclosing record,
6891 -- (or task or protected type), we look for a type that
6892 -- matches the current scope.
6893
6894 elsif Entity (N) = Current_Scope then
6895 return;
6896 end if;
6897 end if;
6898
6899 -- If we have an enumeration literal that appears as the choice in
6900 -- the aggregate of an enumeration representation clause, then
6901 -- freezing does not occur (RM 13.14(10)).
6902
6903 when N_Enumeration_Representation_Clause =>
6904
6905 -- The case we are looking for is an enumeration literal
6906
6907 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
6908 and then Is_Enumeration_Type (Etype (N))
6909 then
6910 -- If enumeration literal appears directly as the choice,
6911 -- do not freeze (this is the normal non-overloaded case)
6912
6913 if Nkind (Parent (N)) = N_Component_Association
6914 and then First (Choices (Parent (N))) = N
6915 then
6916 return;
6917
6918 -- If enumeration literal appears as the name of function
6919 -- which is the choice, then also do not freeze. This
6920 -- happens in the overloaded literal case, where the
6921 -- enumeration literal is temporarily changed to a function
6922 -- call for overloading analysis purposes.
6923
6924 elsif Nkind (Parent (N)) = N_Function_Call
6925 and then
6926 Nkind (Parent (Parent (N))) = N_Component_Association
6927 and then
6928 First (Choices (Parent (Parent (N)))) = Parent (N)
6929 then
6930 return;
6931 end if;
6932 end if;
6933
6934 -- Normally if the parent is a handled sequence of statements,
6935 -- then the current node must be a statement, and that is an
6936 -- appropriate place to insert a freeze node.
6937
6938 when N_Handled_Sequence_Of_Statements =>
6939
6940 -- An exception occurs when the sequence of statements is for
6941 -- an expander generated body that did not do the usual freeze
6942 -- all operation. In this case we usually want to freeze
6943 -- outside this body, not inside it, and we skip past the
6944 -- subprogram body that we are inside.
6945
6946 if In_Expanded_Body (Parent_P) then
6947 declare
6948 Subp : constant Node_Id := Parent (Parent_P);
6949 Spec : Entity_Id;
6950
6951 begin
6952 -- Freeze the entity only when it is declared inside the
6953 -- body of the expander generated procedure. This case
6954 -- is recognized by the scope of the entity or its type,
6955 -- which is either the spec for some enclosing body, or
6956 -- (in the case of init_procs, for which there are no
6957 -- separate specs) the current scope.
6958
6959 if Nkind (Subp) = N_Subprogram_Body then
6960 Spec := Corresponding_Spec (Subp);
6961
6962 if (Present (Typ) and then Scope (Typ) = Spec)
6963 or else
6964 (Present (Nam) and then Scope (Nam) = Spec)
6965 then
6966 exit;
6967
6968 elsif Present (Typ)
6969 and then Scope (Typ) = Current_Scope
6970 and then Defining_Entity (Subp) = Current_Scope
6971 then
6972 exit;
6973 end if;
6974 end if;
6975
6976 -- An expression function may act as a completion of
6977 -- a function declaration. As such, it can reference
6978 -- entities declared between the two views:
6979
6980 -- Hidden []; -- 1
6981 -- function F return ...;
6982 -- private
6983 -- function Hidden return ...;
6984 -- function F return ... is (Hidden); -- 2
6985
6986 -- Refering to the example above, freezing the expression
6987 -- of F (2) would place Hidden's freeze node (1) in the
6988 -- wrong place. Avoid explicit freezing and let the usual
6989 -- scenarios do the job - for example, reaching the end
6990 -- of the private declarations, or a call to F.
6991
6992 if Nkind (Original_Node (Subp)) =
6993 N_Expression_Function
6994 then
6995 null;
6996
6997 -- Freeze outside the body
6998
6999 else
7000 Parent_P := Parent (Parent_P);
7001 Freeze_Outside := True;
7002 end if;
7003 end;
7004
7005 -- Here if normal case where we are in handled statement
7006 -- sequence and want to do the insertion right there.
7007
7008 else
7009 exit;
7010 end if;
7011
7012 -- If parent is a body or a spec or a block, then the current node
7013 -- is a statement or declaration and we can insert the freeze node
7014 -- before it.
7015
7016 when N_Block_Statement |
7017 N_Entry_Body |
7018 N_Package_Body |
7019 N_Package_Specification |
7020 N_Protected_Body |
7021 N_Subprogram_Body |
7022 N_Task_Body => exit;
7023
7024 -- The expander is allowed to define types in any statements list,
7025 -- so any of the following parent nodes also mark a freezing point
7026 -- if the actual node is in a list of statements or declarations.
7027
7028 when N_Abortable_Part |
7029 N_Accept_Alternative |
7030 N_And_Then |
7031 N_Case_Statement_Alternative |
7032 N_Compilation_Unit_Aux |
7033 N_Conditional_Entry_Call |
7034 N_Delay_Alternative |
7035 N_Elsif_Part |
7036 N_Entry_Call_Alternative |
7037 N_Exception_Handler |
7038 N_Extended_Return_Statement |
7039 N_Freeze_Entity |
7040 N_If_Statement |
7041 N_Or_Else |
7042 N_Selective_Accept |
7043 N_Triggering_Alternative =>
7044
7045 exit when Is_List_Member (P);
7046
7047 -- Freeze nodes produced by an expression coming from the Actions
7048 -- list of a N_Expression_With_Actions node must remain within the
7049 -- Actions list. Inserting the freeze nodes further up the tree
7050 -- may lead to use before declaration issues in the case of array
7051 -- types.
7052
7053 when N_Expression_With_Actions =>
7054 if Is_List_Member (P)
7055 and then List_Containing (P) = Actions (Parent_P)
7056 then
7057 exit;
7058 end if;
7059
7060 -- Note: N_Loop_Statement is a special case. A type that appears
7061 -- in the source can never be frozen in a loop (this occurs only
7062 -- because of a loop expanded by the expander), so we keep on
7063 -- going. Otherwise we terminate the search. Same is true of any
7064 -- entity which comes from source. (if they have predefined type,
7065 -- that type does not appear to come from source, but the entity
7066 -- should not be frozen here).
7067
7068 when N_Loop_Statement =>
7069 exit when not Comes_From_Source (Etype (N))
7070 and then (No (Nam) or else not Comes_From_Source (Nam));
7071
7072 -- For all other cases, keep looking at parents
7073
7074 when others =>
7075 null;
7076 end case;
7077
7078 -- We fall through the case if we did not yet find the proper
7079 -- place in the free for inserting the freeze node, so climb.
7080
7081 P := Parent_P;
7082 end loop;
7083
7084 -- If the expression appears in a record or an initialization procedure,
7085 -- the freeze nodes are collected and attached to the current scope, to
7086 -- be inserted and analyzed on exit from the scope, to insure that
7087 -- generated entities appear in the correct scope. If the expression is
7088 -- a default for a discriminant specification, the scope is still void.
7089 -- The expression can also appear in the discriminant part of a private
7090 -- or concurrent type.
7091
7092 -- If the expression appears in a constrained subcomponent of an
7093 -- enclosing record declaration, the freeze nodes must be attached to
7094 -- the outer record type so they can eventually be placed in the
7095 -- enclosing declaration list.
7096
7097 -- The other case requiring this special handling is if we are in a
7098 -- default expression, since in that case we are about to freeze a
7099 -- static type, and the freeze scope needs to be the outer scope, not
7100 -- the scope of the subprogram with the default parameter.
7101
7102 -- For default expressions and other spec expressions in generic units,
7103 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
7104 -- placing them at the proper place, after the generic unit.
7105
7106 if (In_Spec_Exp and not Inside_A_Generic)
7107 or else Freeze_Outside
7108 or else (Is_Type (Current_Scope)
7109 and then (not Is_Concurrent_Type (Current_Scope)
7110 or else not Has_Completion (Current_Scope)))
7111 or else Ekind (Current_Scope) = E_Void
7112 then
7113 declare
7114 N : constant Node_Id := Current_Scope;
7115 Freeze_Nodes : List_Id := No_List;
7116 Pos : Int := Scope_Stack.Last;
7117
7118 begin
7119 if Present (Desig_Typ) then
7120 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
7121 end if;
7122
7123 if Present (Typ) then
7124 Freeze_And_Append (Typ, N, Freeze_Nodes);
7125 end if;
7126
7127 if Present (Nam) then
7128 Freeze_And_Append (Nam, N, Freeze_Nodes);
7129 end if;
7130
7131 -- The current scope may be that of a constrained component of
7132 -- an enclosing record declaration, or of a loop of an enclosing
7133 -- quantified expression, which is above the current scope in the
7134 -- scope stack. Indeed in the context of a quantified expression,
7135 -- a scope is created and pushed above the current scope in order
7136 -- to emulate the loop-like behavior of the quantified expression.
7137 -- If the expression is within a top-level pragma, as for a pre-
7138 -- condition on a library-level subprogram, nothing to do.
7139
7140 if not Is_Compilation_Unit (Current_Scope)
7141 and then (Is_Record_Type (Scope (Current_Scope))
7142 or else Nkind (Parent (Current_Scope)) =
7143 N_Quantified_Expression)
7144 then
7145 Pos := Pos - 1;
7146 end if;
7147
7148 if Is_Non_Empty_List (Freeze_Nodes) then
7149 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
7150 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
7151 Freeze_Nodes;
7152 else
7153 Append_List (Freeze_Nodes,
7154 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
7155 end if;
7156 end if;
7157 end;
7158
7159 return;
7160 end if;
7161
7162 -- Now we have the right place to do the freezing. First, a special
7163 -- adjustment, if we are in spec-expression analysis mode, these freeze
7164 -- actions must not be thrown away (normally all inserted actions are
7165 -- thrown away in this mode. However, the freeze actions are from static
7166 -- expressions and one of the important reasons we are doing this
7167 -- special analysis is to get these freeze actions. Therefore we turn
7168 -- off the In_Spec_Expression mode to propagate these freeze actions.
7169 -- This also means they get properly analyzed and expanded.
7170
7171 In_Spec_Expression := False;
7172
7173 -- Freeze the designated type of an allocator (RM 13.14(13))
7174
7175 if Present (Desig_Typ) then
7176 Freeze_Before (P, Desig_Typ);
7177 end if;
7178
7179 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
7180 -- the enumeration representation clause exception in the loop above.
7181
7182 if Present (Typ) then
7183 Freeze_Before (P, Typ);
7184 end if;
7185
7186 -- Freeze name if one is present (RM 13.14(11))
7187
7188 if Present (Nam) then
7189 Freeze_Before (P, Nam);
7190 end if;
7191
7192 -- Restore In_Spec_Expression flag
7193
7194 In_Spec_Expression := In_Spec_Exp;
7195 end Freeze_Expression;
7196
7197 -----------------------------
7198 -- Freeze_Fixed_Point_Type --
7199 -----------------------------
7200
7201 -- Certain fixed-point types and subtypes, including implicit base types
7202 -- and declared first subtypes, have not yet set up a range. This is
7203 -- because the range cannot be set until the Small and Size values are
7204 -- known, and these are not known till the type is frozen.
7205
7206 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
7207 -- whose bounds are unanalyzed real literals. This routine will recognize
7208 -- this case, and transform this range node into a properly typed range
7209 -- with properly analyzed and resolved values.
7210
7211 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
7212 Rng : constant Node_Id := Scalar_Range (Typ);
7213 Lo : constant Node_Id := Low_Bound (Rng);
7214 Hi : constant Node_Id := High_Bound (Rng);
7215 Btyp : constant Entity_Id := Base_Type (Typ);
7216 Brng : constant Node_Id := Scalar_Range (Btyp);
7217 BLo : constant Node_Id := Low_Bound (Brng);
7218 BHi : constant Node_Id := High_Bound (Brng);
7219 Small : constant Ureal := Small_Value (Typ);
7220 Loval : Ureal;
7221 Hival : Ureal;
7222 Atype : Entity_Id;
7223
7224 Orig_Lo : Ureal;
7225 Orig_Hi : Ureal;
7226 -- Save original bounds (for shaving tests)
7227
7228 Actual_Size : Nat;
7229 -- Actual size chosen
7230
7231 function Fsize (Lov, Hiv : Ureal) return Nat;
7232 -- Returns size of type with given bounds. Also leaves these
7233 -- bounds set as the current bounds of the Typ.
7234
7235 -----------
7236 -- Fsize --
7237 -----------
7238
7239 function Fsize (Lov, Hiv : Ureal) return Nat is
7240 begin
7241 Set_Realval (Lo, Lov);
7242 Set_Realval (Hi, Hiv);
7243 return Minimum_Size (Typ);
7244 end Fsize;
7245
7246 -- Start of processing for Freeze_Fixed_Point_Type
7247
7248 begin
7249 -- If Esize of a subtype has not previously been set, set it now
7250
7251 if Unknown_Esize (Typ) then
7252 Atype := Ancestor_Subtype (Typ);
7253
7254 if Present (Atype) then
7255 Set_Esize (Typ, Esize (Atype));
7256 else
7257 Set_Esize (Typ, Esize (Base_Type (Typ)));
7258 end if;
7259 end if;
7260
7261 -- Immediate return if the range is already analyzed. This means that
7262 -- the range is already set, and does not need to be computed by this
7263 -- routine.
7264
7265 if Analyzed (Rng) then
7266 return;
7267 end if;
7268
7269 -- Immediate return if either of the bounds raises Constraint_Error
7270
7271 if Raises_Constraint_Error (Lo)
7272 or else Raises_Constraint_Error (Hi)
7273 then
7274 return;
7275 end if;
7276
7277 Loval := Realval (Lo);
7278 Hival := Realval (Hi);
7279
7280 Orig_Lo := Loval;
7281 Orig_Hi := Hival;
7282
7283 -- Ordinary fixed-point case
7284
7285 if Is_Ordinary_Fixed_Point_Type (Typ) then
7286
7287 -- For the ordinary fixed-point case, we are allowed to fudge the
7288 -- end-points up or down by small. Generally we prefer to fudge up,
7289 -- i.e. widen the bounds for non-model numbers so that the end points
7290 -- are included. However there are cases in which this cannot be
7291 -- done, and indeed cases in which we may need to narrow the bounds.
7292 -- The following circuit makes the decision.
7293
7294 -- Note: our terminology here is that Incl_EP means that the bounds
7295 -- are widened by Small if necessary to include the end points, and
7296 -- Excl_EP means that the bounds are narrowed by Small to exclude the
7297 -- end-points if this reduces the size.
7298
7299 -- Note that in the Incl case, all we care about is including the
7300 -- end-points. In the Excl case, we want to narrow the bounds as
7301 -- much as permitted by the RM, to give the smallest possible size.
7302
7303 Fudge : declare
7304 Loval_Incl_EP : Ureal;
7305 Hival_Incl_EP : Ureal;
7306
7307 Loval_Excl_EP : Ureal;
7308 Hival_Excl_EP : Ureal;
7309
7310 Size_Incl_EP : Nat;
7311 Size_Excl_EP : Nat;
7312
7313 Model_Num : Ureal;
7314 First_Subt : Entity_Id;
7315 Actual_Lo : Ureal;
7316 Actual_Hi : Ureal;
7317
7318 begin
7319 -- First step. Base types are required to be symmetrical. Right
7320 -- now, the base type range is a copy of the first subtype range.
7321 -- This will be corrected before we are done, but right away we
7322 -- need to deal with the case where both bounds are non-negative.
7323 -- In this case, we set the low bound to the negative of the high
7324 -- bound, to make sure that the size is computed to include the
7325 -- required sign. Note that we do not need to worry about the
7326 -- case of both bounds negative, because the sign will be dealt
7327 -- with anyway. Furthermore we can't just go making such a bound
7328 -- symmetrical, since in a twos-complement system, there is an
7329 -- extra negative value which could not be accommodated on the
7330 -- positive side.
7331
7332 if Typ = Btyp
7333 and then not UR_Is_Negative (Loval)
7334 and then Hival > Loval
7335 then
7336 Loval := -Hival;
7337 Set_Realval (Lo, Loval);
7338 end if;
7339
7340 -- Compute the fudged bounds. If the number is a model number,
7341 -- then we do nothing to include it, but we are allowed to backoff
7342 -- to the next adjacent model number when we exclude it. If it is
7343 -- not a model number then we straddle the two values with the
7344 -- model numbers on either side.
7345
7346 Model_Num := UR_Trunc (Loval / Small) * Small;
7347
7348 if Loval = Model_Num then
7349 Loval_Incl_EP := Model_Num;
7350 else
7351 Loval_Incl_EP := Model_Num - Small;
7352 end if;
7353
7354 -- The low value excluding the end point is Small greater, but
7355 -- we do not do this exclusion if the low value is positive,
7356 -- since it can't help the size and could actually hurt by
7357 -- crossing the high bound.
7358
7359 if UR_Is_Negative (Loval_Incl_EP) then
7360 Loval_Excl_EP := Loval_Incl_EP + Small;
7361
7362 -- If the value went from negative to zero, then we have the
7363 -- case where Loval_Incl_EP is the model number just below
7364 -- zero, so we want to stick to the negative value for the
7365 -- base type to maintain the condition that the size will
7366 -- include signed values.
7367
7368 if Typ = Btyp
7369 and then UR_Is_Zero (Loval_Excl_EP)
7370 then
7371 Loval_Excl_EP := Loval_Incl_EP;
7372 end if;
7373
7374 else
7375 Loval_Excl_EP := Loval_Incl_EP;
7376 end if;
7377
7378 -- Similar processing for upper bound and high value
7379
7380 Model_Num := UR_Trunc (Hival / Small) * Small;
7381
7382 if Hival = Model_Num then
7383 Hival_Incl_EP := Model_Num;
7384 else
7385 Hival_Incl_EP := Model_Num + Small;
7386 end if;
7387
7388 if UR_Is_Positive (Hival_Incl_EP) then
7389 Hival_Excl_EP := Hival_Incl_EP - Small;
7390 else
7391 Hival_Excl_EP := Hival_Incl_EP;
7392 end if;
7393
7394 -- One further adjustment is needed. In the case of subtypes, we
7395 -- cannot go outside the range of the base type, or we get
7396 -- peculiarities, and the base type range is already set. This
7397 -- only applies to the Incl values, since clearly the Excl values
7398 -- are already as restricted as they are allowed to be.
7399
7400 if Typ /= Btyp then
7401 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
7402 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
7403 end if;
7404
7405 -- Get size including and excluding end points
7406
7407 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
7408 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
7409
7410 -- No need to exclude end-points if it does not reduce size
7411
7412 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
7413 Loval_Excl_EP := Loval_Incl_EP;
7414 end if;
7415
7416 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
7417 Hival_Excl_EP := Hival_Incl_EP;
7418 end if;
7419
7420 -- Now we set the actual size to be used. We want to use the
7421 -- bounds fudged up to include the end-points but only if this
7422 -- can be done without violating a specifically given size
7423 -- size clause or causing an unacceptable increase in size.
7424
7425 -- Case of size clause given
7426
7427 if Has_Size_Clause (Typ) then
7428
7429 -- Use the inclusive size only if it is consistent with
7430 -- the explicitly specified size.
7431
7432 if Size_Incl_EP <= RM_Size (Typ) then
7433 Actual_Lo := Loval_Incl_EP;
7434 Actual_Hi := Hival_Incl_EP;
7435 Actual_Size := Size_Incl_EP;
7436
7437 -- If the inclusive size is too large, we try excluding
7438 -- the end-points (will be caught later if does not work).
7439
7440 else
7441 Actual_Lo := Loval_Excl_EP;
7442 Actual_Hi := Hival_Excl_EP;
7443 Actual_Size := Size_Excl_EP;
7444 end if;
7445
7446 -- Case of size clause not given
7447
7448 else
7449 -- If we have a base type whose corresponding first subtype
7450 -- has an explicit size that is large enough to include our
7451 -- end-points, then do so. There is no point in working hard
7452 -- to get a base type whose size is smaller than the specified
7453 -- size of the first subtype.
7454
7455 First_Subt := First_Subtype (Typ);
7456
7457 if Has_Size_Clause (First_Subt)
7458 and then Size_Incl_EP <= Esize (First_Subt)
7459 then
7460 Actual_Size := Size_Incl_EP;
7461 Actual_Lo := Loval_Incl_EP;
7462 Actual_Hi := Hival_Incl_EP;
7463
7464 -- If excluding the end-points makes the size smaller and
7465 -- results in a size of 8,16,32,64, then we take the smaller
7466 -- size. For the 64 case, this is compulsory. For the other
7467 -- cases, it seems reasonable. We like to include end points
7468 -- if we can, but not at the expense of moving to the next
7469 -- natural boundary of size.
7470
7471 elsif Size_Incl_EP /= Size_Excl_EP
7472 and then Addressable (Size_Excl_EP)
7473 then
7474 Actual_Size := Size_Excl_EP;
7475 Actual_Lo := Loval_Excl_EP;
7476 Actual_Hi := Hival_Excl_EP;
7477
7478 -- Otherwise we can definitely include the end points
7479
7480 else
7481 Actual_Size := Size_Incl_EP;
7482 Actual_Lo := Loval_Incl_EP;
7483 Actual_Hi := Hival_Incl_EP;
7484 end if;
7485
7486 -- One pathological case: normally we never fudge a low bound
7487 -- down, since it would seem to increase the size (if it has
7488 -- any effect), but for ranges containing single value, or no
7489 -- values, the high bound can be small too large. Consider:
7490
7491 -- type t is delta 2.0**(-14)
7492 -- range 131072.0 .. 0;
7493
7494 -- That lower bound is *just* outside the range of 32 bits, and
7495 -- does need fudging down in this case. Note that the bounds
7496 -- will always have crossed here, since the high bound will be
7497 -- fudged down if necessary, as in the case of:
7498
7499 -- type t is delta 2.0**(-14)
7500 -- range 131072.0 .. 131072.0;
7501
7502 -- So we detect the situation by looking for crossed bounds,
7503 -- and if the bounds are crossed, and the low bound is greater
7504 -- than zero, we will always back it off by small, since this
7505 -- is completely harmless.
7506
7507 if Actual_Lo > Actual_Hi then
7508 if UR_Is_Positive (Actual_Lo) then
7509 Actual_Lo := Loval_Incl_EP - Small;
7510 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7511
7512 -- And of course, we need to do exactly the same parallel
7513 -- fudge for flat ranges in the negative region.
7514
7515 elsif UR_Is_Negative (Actual_Hi) then
7516 Actual_Hi := Hival_Incl_EP + Small;
7517 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7518 end if;
7519 end if;
7520 end if;
7521
7522 Set_Realval (Lo, Actual_Lo);
7523 Set_Realval (Hi, Actual_Hi);
7524 end Fudge;
7525
7526 -- For the decimal case, none of this fudging is required, since there
7527 -- are no end-point problems in the decimal case (the end-points are
7528 -- always included).
7529
7530 else
7531 Actual_Size := Fsize (Loval, Hival);
7532 end if;
7533
7534 -- At this stage, the actual size has been calculated and the proper
7535 -- required bounds are stored in the low and high bounds.
7536
7537 if Actual_Size > 64 then
7538 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
7539 Error_Msg_N
7540 ("size required (^) for type& too large, maximum allowed is 64",
7541 Typ);
7542 Actual_Size := 64;
7543 end if;
7544
7545 -- Check size against explicit given size
7546
7547 if Has_Size_Clause (Typ) then
7548 if Actual_Size > RM_Size (Typ) then
7549 Error_Msg_Uint_1 := RM_Size (Typ);
7550 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
7551 Error_Msg_NE
7552 ("size given (^) for type& too small, minimum allowed is ^",
7553 Size_Clause (Typ), Typ);
7554
7555 else
7556 Actual_Size := UI_To_Int (Esize (Typ));
7557 end if;
7558
7559 -- Increase size to next natural boundary if no size clause given
7560
7561 else
7562 if Actual_Size <= 8 then
7563 Actual_Size := 8;
7564 elsif Actual_Size <= 16 then
7565 Actual_Size := 16;
7566 elsif Actual_Size <= 32 then
7567 Actual_Size := 32;
7568 else
7569 Actual_Size := 64;
7570 end if;
7571
7572 Init_Esize (Typ, Actual_Size);
7573 Adjust_Esize_For_Alignment (Typ);
7574 end if;
7575
7576 -- If we have a base type, then expand the bounds so that they extend to
7577 -- the full width of the allocated size in bits, to avoid junk range
7578 -- checks on intermediate computations.
7579
7580 if Base_Type (Typ) = Typ then
7581 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
7582 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
7583 end if;
7584
7585 -- Final step is to reanalyze the bounds using the proper type
7586 -- and set the Corresponding_Integer_Value fields of the literals.
7587
7588 Set_Etype (Lo, Empty);
7589 Set_Analyzed (Lo, False);
7590 Analyze (Lo);
7591
7592 -- Resolve with universal fixed if the base type, and the base type if
7593 -- it is a subtype. Note we can't resolve the base type with itself,
7594 -- that would be a reference before definition.
7595
7596 if Typ = Btyp then
7597 Resolve (Lo, Universal_Fixed);
7598 else
7599 Resolve (Lo, Btyp);
7600 end if;
7601
7602 -- Set corresponding integer value for bound
7603
7604 Set_Corresponding_Integer_Value
7605 (Lo, UR_To_Uint (Realval (Lo) / Small));
7606
7607 -- Similar processing for high bound
7608
7609 Set_Etype (Hi, Empty);
7610 Set_Analyzed (Hi, False);
7611 Analyze (Hi);
7612
7613 if Typ = Btyp then
7614 Resolve (Hi, Universal_Fixed);
7615 else
7616 Resolve (Hi, Btyp);
7617 end if;
7618
7619 Set_Corresponding_Integer_Value
7620 (Hi, UR_To_Uint (Realval (Hi) / Small));
7621
7622 -- Set type of range to correspond to bounds
7623
7624 Set_Etype (Rng, Etype (Lo));
7625
7626 -- Set Esize to calculated size if not set already
7627
7628 if Unknown_Esize (Typ) then
7629 Init_Esize (Typ, Actual_Size);
7630 end if;
7631
7632 -- Set RM_Size if not already set. If already set, check value
7633
7634 declare
7635 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
7636
7637 begin
7638 if RM_Size (Typ) /= Uint_0 then
7639 if RM_Size (Typ) < Minsiz then
7640 Error_Msg_Uint_1 := RM_Size (Typ);
7641 Error_Msg_Uint_2 := Minsiz;
7642 Error_Msg_NE
7643 ("size given (^) for type& too small, minimum allowed is ^",
7644 Size_Clause (Typ), Typ);
7645 end if;
7646
7647 else
7648 Set_RM_Size (Typ, Minsiz);
7649 end if;
7650 end;
7651
7652 -- Check for shaving
7653
7654 if Comes_From_Source (Typ) then
7655
7656 -- In SPARK mode the given bounds must be strictly representable
7657
7658 if SPARK_Mode = On then
7659 if Orig_Lo < Expr_Value_R (Lo) then
7660 Error_Msg_NE
7661 ("declared low bound of type & is outside type range",
7662 Lo, Typ);
7663 end if;
7664
7665 if Orig_Hi > Expr_Value_R (Hi) then
7666 Error_Msg_NE
7667 ("declared high bound of type & is outside type range",
7668 Hi, Typ);
7669 end if;
7670
7671 else
7672 if Orig_Lo < Expr_Value_R (Lo) then
7673 Error_Msg_N
7674 ("declared low bound of type & is outside type range??", Typ);
7675 Error_Msg_N
7676 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
7677 end if;
7678
7679 if Orig_Hi > Expr_Value_R (Hi) then
7680 Error_Msg_N
7681 ("declared high bound of type & is outside type range??",
7682 Typ);
7683 Error_Msg_N
7684 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
7685 end if;
7686 end if;
7687 end if;
7688 end Freeze_Fixed_Point_Type;
7689
7690 ------------------
7691 -- Freeze_Itype --
7692 ------------------
7693
7694 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
7695 L : List_Id;
7696
7697 begin
7698 Set_Has_Delayed_Freeze (T);
7699 L := Freeze_Entity (T, N);
7700
7701 if Is_Non_Empty_List (L) then
7702 Insert_Actions (N, L);
7703 end if;
7704 end Freeze_Itype;
7705
7706 --------------------------
7707 -- Freeze_Static_Object --
7708 --------------------------
7709
7710 procedure Freeze_Static_Object (E : Entity_Id) is
7711
7712 Cannot_Be_Static : exception;
7713 -- Exception raised if the type of a static object cannot be made
7714 -- static. This happens if the type depends on non-global objects.
7715
7716 procedure Ensure_Expression_Is_SA (N : Node_Id);
7717 -- Called to ensure that an expression used as part of a type definition
7718 -- is statically allocatable, which means that the expression type is
7719 -- statically allocatable, and the expression is either static, or a
7720 -- reference to a library level constant.
7721
7722 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
7723 -- Called to mark a type as static, checking that it is possible
7724 -- to set the type as static. If it is not possible, then the
7725 -- exception Cannot_Be_Static is raised.
7726
7727 -----------------------------
7728 -- Ensure_Expression_Is_SA --
7729 -----------------------------
7730
7731 procedure Ensure_Expression_Is_SA (N : Node_Id) is
7732 Ent : Entity_Id;
7733
7734 begin
7735 Ensure_Type_Is_SA (Etype (N));
7736
7737 if Is_OK_Static_Expression (N) then
7738 return;
7739
7740 elsif Nkind (N) = N_Identifier then
7741 Ent := Entity (N);
7742
7743 if Present (Ent)
7744 and then Ekind (Ent) = E_Constant
7745 and then Is_Library_Level_Entity (Ent)
7746 then
7747 return;
7748 end if;
7749 end if;
7750
7751 raise Cannot_Be_Static;
7752 end Ensure_Expression_Is_SA;
7753
7754 -----------------------
7755 -- Ensure_Type_Is_SA --
7756 -----------------------
7757
7758 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
7759 N : Node_Id;
7760 C : Entity_Id;
7761
7762 begin
7763 -- If type is library level, we are all set
7764
7765 if Is_Library_Level_Entity (Typ) then
7766 return;
7767 end if;
7768
7769 -- We are also OK if the type already marked as statically allocated,
7770 -- which means we processed it before.
7771
7772 if Is_Statically_Allocated (Typ) then
7773 return;
7774 end if;
7775
7776 -- Mark type as statically allocated
7777
7778 Set_Is_Statically_Allocated (Typ);
7779
7780 -- Check that it is safe to statically allocate this type
7781
7782 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
7783 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
7784 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
7785
7786 elsif Is_Array_Type (Typ) then
7787 N := First_Index (Typ);
7788 while Present (N) loop
7789 Ensure_Type_Is_SA (Etype (N));
7790 Next_Index (N);
7791 end loop;
7792
7793 Ensure_Type_Is_SA (Component_Type (Typ));
7794
7795 elsif Is_Access_Type (Typ) then
7796 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
7797
7798 declare
7799 F : Entity_Id;
7800 T : constant Entity_Id := Etype (Designated_Type (Typ));
7801
7802 begin
7803 if T /= Standard_Void_Type then
7804 Ensure_Type_Is_SA (T);
7805 end if;
7806
7807 F := First_Formal (Designated_Type (Typ));
7808 while Present (F) loop
7809 Ensure_Type_Is_SA (Etype (F));
7810 Next_Formal (F);
7811 end loop;
7812 end;
7813
7814 else
7815 Ensure_Type_Is_SA (Designated_Type (Typ));
7816 end if;
7817
7818 elsif Is_Record_Type (Typ) then
7819 C := First_Entity (Typ);
7820 while Present (C) loop
7821 if Ekind (C) = E_Discriminant
7822 or else Ekind (C) = E_Component
7823 then
7824 Ensure_Type_Is_SA (Etype (C));
7825
7826 elsif Is_Type (C) then
7827 Ensure_Type_Is_SA (C);
7828 end if;
7829
7830 Next_Entity (C);
7831 end loop;
7832
7833 elsif Ekind (Typ) = E_Subprogram_Type then
7834 Ensure_Type_Is_SA (Etype (Typ));
7835
7836 C := First_Formal (Typ);
7837 while Present (C) loop
7838 Ensure_Type_Is_SA (Etype (C));
7839 Next_Formal (C);
7840 end loop;
7841
7842 else
7843 raise Cannot_Be_Static;
7844 end if;
7845 end Ensure_Type_Is_SA;
7846
7847 -- Start of processing for Freeze_Static_Object
7848
7849 begin
7850 Ensure_Type_Is_SA (Etype (E));
7851
7852 exception
7853 when Cannot_Be_Static =>
7854
7855 -- If the object that cannot be static is imported or exported, then
7856 -- issue an error message saying that this object cannot be imported
7857 -- or exported. If it has an address clause it is an overlay in the
7858 -- current partition and the static requirement is not relevant.
7859 -- Do not issue any error message when ignoring rep clauses.
7860
7861 if Ignore_Rep_Clauses then
7862 null;
7863
7864 elsif Is_Imported (E) then
7865 if No (Address_Clause (E)) then
7866 Error_Msg_N
7867 ("& cannot be imported (local type is not constant)", E);
7868 end if;
7869
7870 -- Otherwise must be exported, something is wrong if compiler
7871 -- is marking something as statically allocated which cannot be).
7872
7873 else pragma Assert (Is_Exported (E));
7874 Error_Msg_N
7875 ("& cannot be exported (local type is not constant)", E);
7876 end if;
7877 end Freeze_Static_Object;
7878
7879 -----------------------
7880 -- Freeze_Subprogram --
7881 -----------------------
7882
7883 procedure Freeze_Subprogram (E : Entity_Id) is
7884 Retype : Entity_Id;
7885 F : Entity_Id;
7886
7887 begin
7888 -- Subprogram may not have an address clause unless it is imported
7889
7890 if Present (Address_Clause (E)) then
7891 if not Is_Imported (E) then
7892 Error_Msg_N
7893 ("address clause can only be given " &
7894 "for imported subprogram",
7895 Name (Address_Clause (E)));
7896 end if;
7897 end if;
7898
7899 -- Reset the Pure indication on an imported subprogram unless an
7900 -- explicit Pure_Function pragma was present or the subprogram is an
7901 -- intrinsic. We do this because otherwise it is an insidious error
7902 -- to call a non-pure function from pure unit and have calls
7903 -- mysteriously optimized away. What happens here is that the Import
7904 -- can bypass the normal check to ensure that pure units call only pure
7905 -- subprograms.
7906
7907 -- The reason for the intrinsic exception is that in general, intrinsic
7908 -- functions (such as shifts) are pure anyway. The only exceptions are
7909 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
7910 -- in any case, so no problem arises.
7911
7912 if Is_Imported (E)
7913 and then Is_Pure (E)
7914 and then not Has_Pragma_Pure_Function (E)
7915 and then not Is_Intrinsic_Subprogram (E)
7916 then
7917 Set_Is_Pure (E, False);
7918 end if;
7919
7920 -- We also reset the Pure indication on a subprogram with an Address
7921 -- parameter, because the parameter may be used as a pointer and the
7922 -- referenced data may change even if the address value does not.
7923
7924 -- Note that if the programmer gave an explicit Pure_Function pragma,
7925 -- then we believe the programmer, and leave the subprogram Pure.
7926 -- We also suppress this check on run-time files.
7927
7928 if Is_Pure (E)
7929 and then Is_Subprogram (E)
7930 and then not Has_Pragma_Pure_Function (E)
7931 and then not Is_Internal_File_Name (Unit_File_Name (Current_Sem_Unit))
7932 then
7933 Check_Function_With_Address_Parameter (E);
7934 end if;
7935
7936 -- For non-foreign convention subprograms, this is where we create
7937 -- the extra formals (for accessibility level and constrained bit
7938 -- information). We delay this till the freeze point precisely so
7939 -- that we know the convention.
7940
7941 if not Has_Foreign_Convention (E) then
7942 Create_Extra_Formals (E);
7943 Set_Mechanisms (E);
7944
7945 -- If this is convention Ada and a Valued_Procedure, that's odd
7946
7947 if Ekind (E) = E_Procedure
7948 and then Is_Valued_Procedure (E)
7949 and then Convention (E) = Convention_Ada
7950 and then Warn_On_Export_Import
7951 then
7952 Error_Msg_N
7953 ("??Valued_Procedure has no effect for convention Ada", E);
7954 Set_Is_Valued_Procedure (E, False);
7955 end if;
7956
7957 -- Case of foreign convention
7958
7959 else
7960 Set_Mechanisms (E);
7961
7962 -- For foreign conventions, warn about return of unconstrained array
7963
7964 if Ekind (E) = E_Function then
7965 Retype := Underlying_Type (Etype (E));
7966
7967 -- If no return type, probably some other error, e.g. a
7968 -- missing full declaration, so ignore.
7969
7970 if No (Retype) then
7971 null;
7972
7973 -- If the return type is generic, we have emitted a warning
7974 -- earlier on, and there is nothing else to check here. Specific
7975 -- instantiations may lead to erroneous behavior.
7976
7977 elsif Is_Generic_Type (Etype (E)) then
7978 null;
7979
7980 -- Display warning if returning unconstrained array
7981
7982 elsif Is_Array_Type (Retype)
7983 and then not Is_Constrained (Retype)
7984
7985 -- Check appropriate warning is enabled (should we check for
7986 -- Warnings (Off) on specific entities here, probably so???)
7987
7988 and then Warn_On_Export_Import
7989 then
7990 Error_Msg_N
7991 ("?x?foreign convention function& should not return " &
7992 "unconstrained array", E);
7993 return;
7994 end if;
7995 end if;
7996
7997 -- If any of the formals for an exported foreign convention
7998 -- subprogram have defaults, then emit an appropriate warning since
7999 -- this is odd (default cannot be used from non-Ada code)
8000
8001 if Is_Exported (E) then
8002 F := First_Formal (E);
8003 while Present (F) loop
8004 if Warn_On_Export_Import
8005 and then Present (Default_Value (F))
8006 then
8007 Error_Msg_N
8008 ("?x?parameter cannot be defaulted in non-Ada call",
8009 Default_Value (F));
8010 end if;
8011
8012 Next_Formal (F);
8013 end loop;
8014 end if;
8015 end if;
8016
8017 -- Pragma Inline_Always is disallowed for dispatching subprograms
8018 -- because the address of such subprograms is saved in the dispatch
8019 -- table to support dispatching calls, and dispatching calls cannot
8020 -- be inlined. This is consistent with the restriction against using
8021 -- 'Access or 'Address on an Inline_Always subprogram.
8022
8023 if Is_Dispatching_Operation (E)
8024 and then Has_Pragma_Inline_Always (E)
8025 then
8026 Error_Msg_N
8027 ("pragma Inline_Always not allowed for dispatching subprograms", E);
8028 end if;
8029
8030 -- Because of the implicit representation of inherited predefined
8031 -- operators in the front-end, the overriding status of the operation
8032 -- may be affected when a full view of a type is analyzed, and this is
8033 -- not captured by the analysis of the corresponding type declaration.
8034 -- Therefore the correctness of a not-overriding indicator must be
8035 -- rechecked when the subprogram is frozen.
8036
8037 if Nkind (E) = N_Defining_Operator_Symbol
8038 and then not Error_Posted (Parent (E))
8039 then
8040 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
8041 end if;
8042
8043 if Modify_Tree_For_C
8044 and then Nkind (Parent (E)) = N_Function_Specification
8045 and then Is_Array_Type (Etype (E))
8046 and then Is_Constrained (Etype (E))
8047 and then not Is_Unchecked_Conversion_Instance (E)
8048 and then not Rewritten_For_C (E)
8049 then
8050 Build_Procedure_Form (Unit_Declaration_Node (E));
8051 end if;
8052 end Freeze_Subprogram;
8053
8054 ----------------------
8055 -- Is_Fully_Defined --
8056 ----------------------
8057
8058 function Is_Fully_Defined (T : Entity_Id) return Boolean is
8059 begin
8060 if Ekind (T) = E_Class_Wide_Type then
8061 return Is_Fully_Defined (Etype (T));
8062
8063 elsif Is_Array_Type (T) then
8064 return Is_Fully_Defined (Component_Type (T));
8065
8066 elsif Is_Record_Type (T)
8067 and not Is_Private_Type (T)
8068 then
8069 -- Verify that the record type has no components with private types
8070 -- without completion.
8071
8072 declare
8073 Comp : Entity_Id;
8074
8075 begin
8076 Comp := First_Component (T);
8077 while Present (Comp) loop
8078 if not Is_Fully_Defined (Etype (Comp)) then
8079 return False;
8080 end if;
8081
8082 Next_Component (Comp);
8083 end loop;
8084 return True;
8085 end;
8086
8087 -- For the designated type of an access to subprogram, all types in
8088 -- the profile must be fully defined.
8089
8090 elsif Ekind (T) = E_Subprogram_Type then
8091 declare
8092 F : Entity_Id;
8093
8094 begin
8095 F := First_Formal (T);
8096 while Present (F) loop
8097 if not Is_Fully_Defined (Etype (F)) then
8098 return False;
8099 end if;
8100
8101 Next_Formal (F);
8102 end loop;
8103
8104 return Is_Fully_Defined (Etype (T));
8105 end;
8106
8107 else
8108 return not Is_Private_Type (T)
8109 or else Present (Full_View (Base_Type (T)));
8110 end if;
8111 end Is_Fully_Defined;
8112
8113 ---------------------------------
8114 -- Process_Default_Expressions --
8115 ---------------------------------
8116
8117 procedure Process_Default_Expressions
8118 (E : Entity_Id;
8119 After : in out Node_Id)
8120 is
8121 Loc : constant Source_Ptr := Sloc (E);
8122 Dbody : Node_Id;
8123 Formal : Node_Id;
8124 Dcopy : Node_Id;
8125 Dnam : Entity_Id;
8126
8127 begin
8128 Set_Default_Expressions_Processed (E);
8129
8130 -- A subprogram instance and its associated anonymous subprogram share
8131 -- their signature. The default expression functions are defined in the
8132 -- wrapper packages for the anonymous subprogram, and should not be
8133 -- generated again for the instance.
8134
8135 if Is_Generic_Instance (E)
8136 and then Present (Alias (E))
8137 and then Default_Expressions_Processed (Alias (E))
8138 then
8139 return;
8140 end if;
8141
8142 Formal := First_Formal (E);
8143 while Present (Formal) loop
8144 if Present (Default_Value (Formal)) then
8145
8146 -- We work with a copy of the default expression because we
8147 -- do not want to disturb the original, since this would mess
8148 -- up the conformance checking.
8149
8150 Dcopy := New_Copy_Tree (Default_Value (Formal));
8151
8152 -- The analysis of the expression may generate insert actions,
8153 -- which of course must not be executed. We wrap those actions
8154 -- in a procedure that is not called, and later on eliminated.
8155 -- The following cases have no side-effects, and are analyzed
8156 -- directly.
8157
8158 if Nkind (Dcopy) = N_Identifier
8159 or else Nkind_In (Dcopy, N_Expanded_Name,
8160 N_Integer_Literal,
8161 N_Character_Literal,
8162 N_String_Literal,
8163 N_Real_Literal)
8164 or else (Nkind (Dcopy) = N_Attribute_Reference
8165 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
8166 or else Known_Null (Dcopy)
8167 then
8168 -- If there is no default function, we must still do a full
8169 -- analyze call on the default value, to ensure that all error
8170 -- checks are performed, e.g. those associated with static
8171 -- evaluation. Note: this branch will always be taken if the
8172 -- analyzer is turned off (but we still need the error checks).
8173
8174 -- Note: the setting of parent here is to meet the requirement
8175 -- that we can only analyze the expression while attached to
8176 -- the tree. Really the requirement is that the parent chain
8177 -- be set, we don't actually need to be in the tree.
8178
8179 Set_Parent (Dcopy, Declaration_Node (Formal));
8180 Analyze (Dcopy);
8181
8182 -- Default expressions are resolved with their own type if the
8183 -- context is generic, to avoid anomalies with private types.
8184
8185 if Ekind (Scope (E)) = E_Generic_Package then
8186 Resolve (Dcopy);
8187 else
8188 Resolve (Dcopy, Etype (Formal));
8189 end if;
8190
8191 -- If that resolved expression will raise constraint error,
8192 -- then flag the default value as raising constraint error.
8193 -- This allows a proper error message on the calls.
8194
8195 if Raises_Constraint_Error (Dcopy) then
8196 Set_Raises_Constraint_Error (Default_Value (Formal));
8197 end if;
8198
8199 -- If the default is a parameterless call, we use the name of
8200 -- the called function directly, and there is no body to build.
8201
8202 elsif Nkind (Dcopy) = N_Function_Call
8203 and then No (Parameter_Associations (Dcopy))
8204 then
8205 null;
8206
8207 -- Else construct and analyze the body of a wrapper procedure
8208 -- that contains an object declaration to hold the expression.
8209 -- Given that this is done only to complete the analysis, it is
8210 -- simpler to build a procedure than a function which might
8211 -- involve secondary stack expansion.
8212
8213 else
8214 Dnam := Make_Temporary (Loc, 'D');
8215
8216 Dbody :=
8217 Make_Subprogram_Body (Loc,
8218 Specification =>
8219 Make_Procedure_Specification (Loc,
8220 Defining_Unit_Name => Dnam),
8221
8222 Declarations => New_List (
8223 Make_Object_Declaration (Loc,
8224 Defining_Identifier => Make_Temporary (Loc, 'T'),
8225 Object_Definition =>
8226 New_Occurrence_Of (Etype (Formal), Loc),
8227 Expression => New_Copy_Tree (Dcopy))),
8228
8229 Handled_Statement_Sequence =>
8230 Make_Handled_Sequence_Of_Statements (Loc,
8231 Statements => Empty_List));
8232
8233 Set_Scope (Dnam, Scope (E));
8234 Set_Assignment_OK (First (Declarations (Dbody)));
8235 Set_Is_Eliminated (Dnam);
8236 Insert_After (After, Dbody);
8237 Analyze (Dbody);
8238 After := Dbody;
8239 end if;
8240 end if;
8241
8242 Next_Formal (Formal);
8243 end loop;
8244 end Process_Default_Expressions;
8245
8246 ----------------------------------------
8247 -- Set_Component_Alignment_If_Not_Set --
8248 ----------------------------------------
8249
8250 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
8251 begin
8252 -- Ignore if not base type, subtypes don't need anything
8253
8254 if Typ /= Base_Type (Typ) then
8255 return;
8256 end if;
8257
8258 -- Do not override existing representation
8259
8260 if Is_Packed (Typ) then
8261 return;
8262
8263 elsif Has_Specified_Layout (Typ) then
8264 return;
8265
8266 elsif Component_Alignment (Typ) /= Calign_Default then
8267 return;
8268
8269 else
8270 Set_Component_Alignment
8271 (Typ, Scope_Stack.Table
8272 (Scope_Stack.Last).Component_Alignment_Default);
8273 end if;
8274 end Set_Component_Alignment_If_Not_Set;
8275
8276 --------------------------
8277 -- Set_SSO_From_Default --
8278 --------------------------
8279
8280 procedure Set_SSO_From_Default (T : Entity_Id) is
8281 Reversed : Boolean;
8282
8283 begin
8284 -- Set default SSO for an array or record base type, except in case of
8285 -- a type extension (which always inherits the SSO of its parent type).
8286
8287 if Is_Base_Type (T)
8288 and then (Is_Array_Type (T)
8289 or else (Is_Record_Type (T)
8290 and then not (Is_Tagged_Type (T)
8291 and then Is_Derived_Type (T))))
8292 then
8293 Reversed :=
8294 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
8295 or else
8296 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
8297
8298 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
8299
8300 -- For a record type, if bit order is specified explicitly,
8301 -- then do not set SSO from default if not consistent. Note that
8302 -- we do not want to look at a Bit_Order attribute definition
8303 -- for a parent: if we were to inherit Bit_Order, then both
8304 -- SSO_Set_*_By_Default flags would have been cleared already
8305 -- (by Inherit_Aspects_At_Freeze_Point).
8306
8307 and then not
8308 (Is_Record_Type (T)
8309 and then
8310 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
8311 and then Reverse_Bit_Order (T) /= Reversed)
8312 then
8313 -- If flags cause reverse storage order, then set the result. Note
8314 -- that we would have ignored the pragma setting the non default
8315 -- storage order in any case, hence the assertion at this point.
8316
8317 pragma Assert
8318 (not Reversed or else Support_Nondefault_SSO_On_Target);
8319
8320 Set_Reverse_Storage_Order (T, Reversed);
8321
8322 -- For a record type, also set reversed bit order. Note: if a bit
8323 -- order has been specified explicitly, then this is a no-op.
8324
8325 if Is_Record_Type (T) then
8326 Set_Reverse_Bit_Order (T, Reversed);
8327 end if;
8328 end if;
8329 end if;
8330 end Set_SSO_From_Default;
8331
8332 ------------------
8333 -- Undelay_Type --
8334 ------------------
8335
8336 procedure Undelay_Type (T : Entity_Id) is
8337 begin
8338 Set_Has_Delayed_Freeze (T, False);
8339 Set_Freeze_Node (T, Empty);
8340
8341 -- Since we don't want T to have a Freeze_Node, we don't want its
8342 -- Full_View or Corresponding_Record_Type to have one either.
8343
8344 -- ??? Fundamentally, this whole handling is unpleasant. What we really
8345 -- want is to be sure that for an Itype that's part of record R and is a
8346 -- subtype of type T, that it's frozen after the later of the freeze
8347 -- points of R and T. We have no way of doing that directly, so what we
8348 -- do is force most such Itypes to be frozen as part of freezing R via
8349 -- this procedure and only delay the ones that need to be delayed
8350 -- (mostly the designated types of access types that are defined as part
8351 -- of the record).
8352
8353 if Is_Private_Type (T)
8354 and then Present (Full_View (T))
8355 and then Is_Itype (Full_View (T))
8356 and then Is_Record_Type (Scope (Full_View (T)))
8357 then
8358 Undelay_Type (Full_View (T));
8359 end if;
8360
8361 if Is_Concurrent_Type (T)
8362 and then Present (Corresponding_Record_Type (T))
8363 and then Is_Itype (Corresponding_Record_Type (T))
8364 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
8365 then
8366 Undelay_Type (Corresponding_Record_Type (T));
8367 end if;
8368 end Undelay_Type;
8369
8370 ------------------
8371 -- Warn_Overlay --
8372 ------------------
8373
8374 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Entity_Id) is
8375 Ent : constant Entity_Id := Entity (Nam);
8376 -- The object to which the address clause applies
8377
8378 Init : Node_Id;
8379 Old : Entity_Id := Empty;
8380 Decl : Node_Id;
8381
8382 begin
8383 -- No warning if address clause overlay warnings are off
8384
8385 if not Address_Clause_Overlay_Warnings then
8386 return;
8387 end if;
8388
8389 -- No warning if there is an explicit initialization
8390
8391 Init := Original_Node (Expression (Declaration_Node (Ent)));
8392
8393 if Present (Init) and then Comes_From_Source (Init) then
8394 return;
8395 end if;
8396
8397 -- We only give the warning for non-imported entities of a type for
8398 -- which a non-null base init proc is defined, or for objects of access
8399 -- types with implicit null initialization, or when Normalize_Scalars
8400 -- applies and the type is scalar or a string type (the latter being
8401 -- tested for because predefined String types are initialized by inline
8402 -- code rather than by an init_proc). Note that we do not give the
8403 -- warning for Initialize_Scalars, since we suppressed initialization
8404 -- in this case. Also, do not warn if Suppress_Initialization is set.
8405
8406 if Present (Expr)
8407 and then not Is_Imported (Ent)
8408 and then not Initialization_Suppressed (Typ)
8409 and then (Has_Non_Null_Base_Init_Proc (Typ)
8410 or else Is_Access_Type (Typ)
8411 or else (Normalize_Scalars
8412 and then (Is_Scalar_Type (Typ)
8413 or else Is_String_Type (Typ))))
8414 then
8415 if Nkind (Expr) = N_Attribute_Reference
8416 and then Is_Entity_Name (Prefix (Expr))
8417 then
8418 Old := Entity (Prefix (Expr));
8419
8420 elsif Is_Entity_Name (Expr)
8421 and then Ekind (Entity (Expr)) = E_Constant
8422 then
8423 Decl := Declaration_Node (Entity (Expr));
8424
8425 if Nkind (Decl) = N_Object_Declaration
8426 and then Present (Expression (Decl))
8427 and then Nkind (Expression (Decl)) = N_Attribute_Reference
8428 and then Is_Entity_Name (Prefix (Expression (Decl)))
8429 then
8430 Old := Entity (Prefix (Expression (Decl)));
8431
8432 elsif Nkind (Expr) = N_Function_Call then
8433 return;
8434 end if;
8435
8436 -- A function call (most likely to To_Address) is probably not an
8437 -- overlay, so skip warning. Ditto if the function call was inlined
8438 -- and transformed into an entity.
8439
8440 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
8441 return;
8442 end if;
8443
8444 -- If a pragma Import follows, we assume that it is for the current
8445 -- target of the address clause, and skip the warning. There may be
8446 -- a source pragma or an aspect that specifies import and generates
8447 -- the corresponding pragma. These will indicate that the entity is
8448 -- imported and that is checked above so that the spurious warning
8449 -- (generated when the entity is frozen) will be suppressed. The
8450 -- pragma may be attached to the aspect, so it is not yet a list
8451 -- member.
8452
8453 if Is_List_Member (Parent (Expr)) then
8454 Decl := Next (Parent (Expr));
8455
8456 if Present (Decl)
8457 and then Nkind (Decl) = N_Pragma
8458 and then Pragma_Name (Decl) = Name_Import
8459 then
8460 return;
8461 end if;
8462 end if;
8463
8464 -- Otherwise give warning message
8465
8466 if Present (Old) then
8467 Error_Msg_Node_2 := Old;
8468 Error_Msg_N
8469 ("default initialization of & may modify &??",
8470 Nam);
8471 else
8472 Error_Msg_N
8473 ("default initialization of & may modify overlaid storage??",
8474 Nam);
8475 end if;
8476
8477 -- Add friendly warning if initialization comes from a packed array
8478 -- component.
8479
8480 if Is_Record_Type (Typ) then
8481 declare
8482 Comp : Entity_Id;
8483
8484 begin
8485 Comp := First_Component (Typ);
8486 while Present (Comp) loop
8487 if Nkind (Parent (Comp)) = N_Component_Declaration
8488 and then Present (Expression (Parent (Comp)))
8489 then
8490 exit;
8491 elsif Is_Array_Type (Etype (Comp))
8492 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
8493 then
8494 Error_Msg_NE
8495 ("\packed array component& " &
8496 "will be initialized to zero??",
8497 Nam, Comp);
8498 exit;
8499 else
8500 Next_Component (Comp);
8501 end if;
8502 end loop;
8503 end;
8504 end if;
8505
8506 Error_Msg_N
8507 ("\use pragma Import for & to " &
8508 "suppress initialization (RM B.1(24))??",
8509 Nam);
8510 end if;
8511 end Warn_Overlay;
8512
8513 end Freeze;