15d1cdd1e82c76bf4fb3206b3125e379e9c45854
[gcc.git] / gcc / ada / gcc-interface / ada-tree.h
1 /****************************************************************************
2 * *
3 * GNAT COMPILER COMPONENTS *
4 * *
5 * A D A - T R E E *
6 * *
7 * C Header File *
8 * *
9 * Copyright (C) 1992-2013, Free Software Foundation, Inc. *
10 * *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
20 * *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
23 * *
24 ****************************************************************************/
25
26 /* The resulting tree type. */
27 union GTY((desc ("0"),
28 chain_next ("CODE_CONTAINS_STRUCT (TREE_CODE (&%h.generic), TS_COMMON) ? ((union lang_tree_node *) TREE_CHAIN (&%h.generic)) : NULL")))
29 lang_tree_node
30 {
31 union tree_node GTY((tag ("0"),
32 desc ("tree_node_structure (&%h)"))) generic;
33 };
34
35 /* Ada uses the lang_decl and lang_type fields to hold a tree.
36
37 FIXME: the variable_size annotation here is needed because these types are
38 variable-sized in some other front-ends. Due to gengtype deficiency, the
39 GTY options of such types have to agree across all front-ends. */
40 struct GTY((variable_size)) lang_type { tree t; };
41 struct GTY((variable_size)) lang_decl { tree t; };
42
43 /* Macros to get and set the tree in TYPE_LANG_SPECIFIC. */
44 #define GET_TYPE_LANG_SPECIFIC(NODE) \
45 (TYPE_LANG_SPECIFIC (NODE) ? TYPE_LANG_SPECIFIC (NODE)->t : NULL_TREE)
46
47 #define SET_TYPE_LANG_SPECIFIC(NODE, X) \
48 do { \
49 tree tmp = (X); \
50 if (!TYPE_LANG_SPECIFIC (NODE)) \
51 TYPE_LANG_SPECIFIC (NODE) \
52 = ggc_alloc_lang_type (sizeof (struct lang_type)); \
53 TYPE_LANG_SPECIFIC (NODE)->t = tmp; \
54 } while (0)
55
56 /* Macros to get and set the tree in DECL_LANG_SPECIFIC. */
57 #define GET_DECL_LANG_SPECIFIC(NODE) \
58 (DECL_LANG_SPECIFIC (NODE) ? DECL_LANG_SPECIFIC (NODE)->t : NULL_TREE)
59
60 #define SET_DECL_LANG_SPECIFIC(NODE, X) \
61 do { \
62 tree tmp = (X); \
63 if (!DECL_LANG_SPECIFIC (NODE)) \
64 DECL_LANG_SPECIFIC (NODE) \
65 = ggc_alloc_lang_decl (sizeof (struct lang_decl)); \
66 DECL_LANG_SPECIFIC (NODE)->t = tmp; \
67 } while (0)
68
69
70 /* Flags added to type nodes. */
71
72 /* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this is a
73 record being used as a fat pointer (only true for RECORD_TYPE). */
74 #define TYPE_FAT_POINTER_P(NODE) \
75 TYPE_LANG_FLAG_0 (RECORD_OR_UNION_CHECK (NODE))
76
77 #define TYPE_IS_FAT_POINTER_P(NODE) \
78 (TREE_CODE (NODE) == RECORD_TYPE && TYPE_FAT_POINTER_P (NODE))
79
80 /* For integral types and array types, nonzero if this is a packed array type
81 used for bit-packed types. Such types should not be extended to a larger
82 size or validated against a specified size. */
83 #define TYPE_PACKED_ARRAY_TYPE_P(NODE) \
84 TYPE_LANG_FLAG_0 (TREE_CHECK2 (NODE, INTEGER_TYPE, ARRAY_TYPE))
85
86 #define TYPE_IS_PACKED_ARRAY_TYPE_P(NODE) \
87 ((TREE_CODE (NODE) == INTEGER_TYPE || TREE_CODE (NODE) == ARRAY_TYPE) \
88 && TYPE_PACKED_ARRAY_TYPE_P (NODE))
89
90 /* For INTEGER_TYPE, nonzero if this is a modular type with a modulus that
91 is not equal to two to the power of its mode's size. */
92 #define TYPE_MODULAR_P(NODE) TYPE_LANG_FLAG_1 (INTEGER_TYPE_CHECK (NODE))
93
94 /* For ARRAY_TYPE, nonzero if this type corresponds to a dimension of
95 an Ada array other than the first. */
96 #define TYPE_MULTI_ARRAY_P(NODE) TYPE_LANG_FLAG_1 (ARRAY_TYPE_CHECK (NODE))
97
98 /* For FUNCTION_TYPE, nonzero if this denotes a function returning an
99 unconstrained array or record. */
100 #define TYPE_RETURN_UNCONSTRAINED_P(NODE) \
101 TYPE_LANG_FLAG_1 (FUNCTION_TYPE_CHECK (NODE))
102
103 /* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this denotes
104 a justified modular type (will only be true for RECORD_TYPE). */
105 #define TYPE_JUSTIFIED_MODULAR_P(NODE) \
106 TYPE_LANG_FLAG_1 (RECORD_OR_UNION_CHECK (NODE))
107
108 /* Nonzero in an arithmetic subtype if this is a subtype not known to the
109 front-end. */
110 #define TYPE_EXTRA_SUBTYPE_P(NODE) TYPE_LANG_FLAG_2 (INTEGER_TYPE_CHECK (NODE))
111
112 /* Nonzero for an aggregate type if this is a by-reference type. We also
113 set this on an ENUMERAL_TYPE that is dummy. */
114 #define TYPE_BY_REFERENCE_P(NODE) \
115 TYPE_LANG_FLAG_2 (TREE_CHECK5 (NODE, RECORD_TYPE, UNION_TYPE, \
116 ARRAY_TYPE, UNCONSTRAINED_ARRAY_TYPE, \
117 ENUMERAL_TYPE))
118
119 #define TYPE_IS_BY_REFERENCE_P(NODE) \
120 ((TREE_CODE (NODE) == RECORD_TYPE \
121 || TREE_CODE (NODE) == UNION_TYPE \
122 || TREE_CODE (NODE) == ARRAY_TYPE \
123 || TREE_CODE (NODE) == UNCONSTRAINED_ARRAY_TYPE \
124 || TREE_CODE (NODE) == ENUMERAL_TYPE) \
125 && TYPE_BY_REFERENCE_P (NODE))
126
127 /* For INTEGER_TYPE, nonzero if this really represents a VAX
128 floating-point type. */
129 #define TYPE_VAX_FLOATING_POINT_P(NODE) \
130 TYPE_LANG_FLAG_3 (INTEGER_TYPE_CHECK (NODE))
131
132 /* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this is the
133 type for an object whose type includes its template in addition to
134 its value (only true for RECORD_TYPE). */
135 #define TYPE_CONTAINS_TEMPLATE_P(NODE) \
136 TYPE_LANG_FLAG_3 (RECORD_OR_UNION_CHECK (NODE))
137
138 /* True if NODE is a thin pointer. */
139 #define TYPE_IS_THIN_POINTER_P(NODE) \
140 (POINTER_TYPE_P (NODE) \
141 && TREE_CODE (TREE_TYPE (NODE)) == RECORD_TYPE \
142 && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (NODE)))
143
144 /* True if TYPE is either a fat or thin pointer to an unconstrained
145 array. */
146 #define TYPE_IS_FAT_OR_THIN_POINTER_P(NODE) \
147 (TYPE_IS_FAT_POINTER_P (NODE) || TYPE_IS_THIN_POINTER_P (NODE))
148
149 /* For INTEGER_TYPEs, nonzero if the type has a biased representation. */
150 #define TYPE_BIASED_REPRESENTATION_P(NODE) \
151 TYPE_LANG_FLAG_4 (INTEGER_TYPE_CHECK (NODE))
152
153 /* For ARRAY_TYPEs, nonzero if the array type has Convention_Fortran. */
154 #define TYPE_CONVENTION_FORTRAN_P(NODE) \
155 TYPE_LANG_FLAG_4 (ARRAY_TYPE_CHECK (NODE))
156
157 /* For FUNCTION_TYPEs, nonzero if the function returns by direct reference,
158 i.e. the callee returns a pointer to a memory location it has allocated
159 and the caller only needs to dereference the pointer. */
160 #define TYPE_RETURN_BY_DIRECT_REF_P(NODE) \
161 TYPE_LANG_FLAG_4 (FUNCTION_TYPE_CHECK (NODE))
162
163 /* For RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE, nonzero if this is a dummy
164 type, made to correspond to a private or incomplete type. */
165 #define TYPE_DUMMY_P(NODE) \
166 TYPE_LANG_FLAG_4 (TREE_CHECK3 (NODE, RECORD_TYPE, UNION_TYPE, ENUMERAL_TYPE))
167
168 #define TYPE_IS_DUMMY_P(NODE) \
169 ((TREE_CODE (NODE) == RECORD_TYPE \
170 || TREE_CODE (NODE) == UNION_TYPE \
171 || TREE_CODE (NODE) == ENUMERAL_TYPE) \
172 && TYPE_DUMMY_P (NODE))
173
174 /* For an INTEGER_TYPE, nonzero if TYPE_ACTUAL_BOUNDS is present. */
175 #define TYPE_HAS_ACTUAL_BOUNDS_P(NODE) \
176 TYPE_LANG_FLAG_5 (INTEGER_TYPE_CHECK (NODE))
177
178 /* For a RECORD_TYPE, nonzero if this was made just to supply needed
179 padding or alignment. */
180 #define TYPE_PADDING_P(NODE) TYPE_LANG_FLAG_5 (RECORD_TYPE_CHECK (NODE))
181
182 #define TYPE_IS_PADDING_P(NODE) \
183 (TREE_CODE (NODE) == RECORD_TYPE && TYPE_PADDING_P (NODE))
184
185 /* True if TYPE can alias any other types. */
186 #define TYPE_UNIVERSAL_ALIASING_P(NODE) TYPE_LANG_FLAG_6 (NODE)
187
188 /* For an UNCONSTRAINED_ARRAY_TYPE, this is the record containing both the
189 template and the object.
190
191 ??? We also put this on an ENUMERAL_TYPE that is dummy. Technically,
192 this is a conflict on the minval field, but there doesn't seem to be
193 simple fix, so we'll live with this kludge for now. */
194 #define TYPE_OBJECT_RECORD_TYPE(NODE) \
195 (TYPE_MINVAL (TREE_CHECK2 ((NODE), UNCONSTRAINED_ARRAY_TYPE, ENUMERAL_TYPE)))
196
197 /* For numerical types, this is the GCC lower bound of the type. The GCC
198 type system is based on the invariant that an object X of a given type
199 cannot hold at run time a value smaller than its lower bound; otherwise
200 the behavior is undefined. The optimizer takes advantage of this and
201 considers that the assertion X >= LB is always true. */
202 #define TYPE_GCC_MIN_VALUE(NODE) (TYPE_MINVAL (NUMERICAL_TYPE_CHECK (NODE)))
203
204 /* For numerical types, this is the GCC upper bound of the type. The GCC
205 type system is based on the invariant that an object X of a given type
206 cannot hold at run time a value larger than its upper bound; otherwise
207 the behavior is undefined. The optimizer takes advantage of this and
208 considers that the assertion X <= UB is always true. */
209 #define TYPE_GCC_MAX_VALUE(NODE) (TYPE_MAXVAL (NUMERICAL_TYPE_CHECK (NODE)))
210
211 /* For a FUNCTION_TYPE, if the subprogram has parameters passed by copy in/
212 copy out, this is the list of nodes used to specify the return values of
213 the out (or in out) parameters that are passed by copy in/copy out. For
214 a full description of the copy in/copy out parameter passing mechanism
215 refer to the routine gnat_to_gnu_entity. */
216 #define TYPE_CI_CO_LIST(NODE) TYPE_LANG_SLOT_1 (FUNCTION_TYPE_CHECK (NODE))
217
218 /* For a VECTOR_TYPE, this is the representative array type. */
219 #define TYPE_REPRESENTATIVE_ARRAY(NODE) \
220 TYPE_LANG_SLOT_1 (VECTOR_TYPE_CHECK (NODE))
221
222 /* For numerical types, this holds various RM-defined values. */
223 #define TYPE_RM_VALUES(NODE) TYPE_LANG_SLOT_1 (NUMERICAL_TYPE_CHECK (NODE))
224
225 /* Macros to get and set the individual values in TYPE_RM_VALUES. */
226 #define TYPE_RM_VALUE(NODE, N) \
227 (TYPE_RM_VALUES (NODE) \
228 ? TREE_VEC_ELT (TYPE_RM_VALUES (NODE), (N)) : NULL_TREE)
229
230 #define SET_TYPE_RM_VALUE(NODE, N, X) \
231 do { \
232 tree tmp = (X); \
233 if (!TYPE_RM_VALUES (NODE)) \
234 TYPE_RM_VALUES (NODE) = make_tree_vec (3); \
235 /* ??? The field is not visited by the generic \
236 code so we need to mark it manually. */ \
237 MARK_VISITED (tmp); \
238 TREE_VEC_ELT (TYPE_RM_VALUES (NODE), (N)) = tmp; \
239 } while (0)
240
241 /* For numerical types, this is the RM size of the type, aka its precision.
242 There is a discrepancy between what is called precision here (and more
243 generally throughout gigi) and what is called precision in the GCC type
244 system: in the former case it's TYPE_RM_SIZE whereas it's TYPE_PRECISION
245 in the latter case. They are not identical because of the need to support
246 invalid values.
247
248 These values can be outside the range of values allowed by the RM size
249 but they must nevertheless be valid in the GCC type system, otherwise
250 the optimizer can pretend that they simply don't exist. Therefore they
251 must be within the range of values allowed by the precision in the GCC
252 sense, hence TYPE_PRECISION be set to the Esize, not the RM size. */
253 #define TYPE_RM_SIZE(NODE) TYPE_RM_VALUE ((NODE), 0)
254 #define SET_TYPE_RM_SIZE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 0, (X))
255
256 /* For numerical types, this is the RM lower bound of the type. There is
257 again a discrepancy between this lower bound and the GCC lower bound,
258 again because of the need to support invalid values.
259
260 These values can be outside the range of values allowed by the RM lower
261 bound but they must nevertheless be valid in the GCC type system, otherwise
262 the optimizer can pretend that they simply don't exist. Therefore they
263 must be within the range of values allowed by the lower bound in the GCC
264 sense, hence the GCC lower bound be set to that of the base type. */
265 #define TYPE_RM_MIN_VALUE(NODE) TYPE_RM_VALUE ((NODE), 1)
266 #define SET_TYPE_RM_MIN_VALUE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 1, (X))
267
268 /* For numerical types, this is the RM upper bound of the type. There is
269 again a discrepancy between this upper bound and the GCC upper bound,
270 again because of the need to support invalid values.
271
272 These values can be outside the range of values allowed by the RM upper
273 bound but they must nevertheless be valid in the GCC type system, otherwise
274 the optimizer can pretend that they simply don't exist. Therefore they
275 must be within the range of values allowed by the upper bound in the GCC
276 sense, hence the GCC upper bound be set to that of the base type. */
277 #define TYPE_RM_MAX_VALUE(NODE) TYPE_RM_VALUE ((NODE), 2)
278 #define SET_TYPE_RM_MAX_VALUE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 2, (X))
279
280 /* For numerical types, this is the lower bound of the type, i.e. the RM lower
281 bound for language-defined types and the GCC lower bound for others. */
282 #undef TYPE_MIN_VALUE
283 #define TYPE_MIN_VALUE(NODE) \
284 (TYPE_RM_MIN_VALUE (NODE) \
285 ? TYPE_RM_MIN_VALUE (NODE) : TYPE_GCC_MIN_VALUE (NODE))
286
287 /* For numerical types, this is the upper bound of the type, i.e. the RM upper
288 bound for language-defined types and the GCC upper bound for others. */
289 #undef TYPE_MAX_VALUE
290 #define TYPE_MAX_VALUE(NODE) \
291 (TYPE_RM_MAX_VALUE (NODE) \
292 ? TYPE_RM_MAX_VALUE (NODE) : TYPE_GCC_MAX_VALUE (NODE))
293
294 /* For an INTEGER_TYPE with TYPE_MODULAR_P, this is the value of the
295 modulus. */
296 #define TYPE_MODULUS(NODE) \
297 GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
298 #define SET_TYPE_MODULUS(NODE, X) \
299 SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
300
301 /* For an INTEGER_TYPE with TYPE_VAX_FLOATING_POINT_P, this is the
302 Digits_Value. */
303 #define TYPE_DIGITS_VALUE(NODE) \
304 GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
305 #define SET_TYPE_DIGITS_VALUE(NODE, X) \
306 SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
307
308 /* For an INTEGER_TYPE that is the TYPE_DOMAIN of some ARRAY_TYPE, this is
309 the type corresponding to the Ada index type. */
310 #define TYPE_INDEX_TYPE(NODE) \
311 GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
312 #define SET_TYPE_INDEX_TYPE(NODE, X) \
313 SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
314
315 /* For an INTEGER_TYPE with TYPE_HAS_ACTUAL_BOUNDS_P or an ARRAY_TYPE, this is
316 the index type that should be used when the actual bounds are required for
317 a template. This is used in the case of packed arrays. */
318 #define TYPE_ACTUAL_BOUNDS(NODE) \
319 GET_TYPE_LANG_SPECIFIC (TREE_CHECK2 (NODE, INTEGER_TYPE, ARRAY_TYPE))
320 #define SET_TYPE_ACTUAL_BOUNDS(NODE, X) \
321 SET_TYPE_LANG_SPECIFIC (TREE_CHECK2 (NODE, INTEGER_TYPE, ARRAY_TYPE), X)
322
323 /* For a POINTER_TYPE that points to the template type of an unconstrained
324 array type, this is the address to be used in a null fat pointer. */
325 #define TYPE_NULL_BOUNDS(NODE) \
326 GET_TYPE_LANG_SPECIFIC (POINTER_TYPE_CHECK (NODE))
327 #define SET_TYPE_NULL_BOUNDS(NODE, X) \
328 SET_TYPE_LANG_SPECIFIC (POINTER_TYPE_CHECK (NODE), X)
329
330 /* For a RECORD_TYPE that is a fat pointer, this is the type for the
331 unconstrained array. Likewise for a RECORD_TYPE that is pointed
332 to by a thin pointer, if it is made for the unconstrained array
333 type itself; the field is NULL_TREE if the RECORD_TYPE is made
334 for a constrained subtype of the array type. */
335 #define TYPE_UNCONSTRAINED_ARRAY(NODE) \
336 GET_TYPE_LANG_SPECIFIC (RECORD_TYPE_CHECK (NODE))
337 #define SET_TYPE_UNCONSTRAINED_ARRAY(NODE, X) \
338 SET_TYPE_LANG_SPECIFIC (RECORD_TYPE_CHECK (NODE), X)
339
340 /* For other RECORD_TYPEs and all UNION_TYPEs and QUAL_UNION_TYPEs, this is
341 the Ada size of the object. This differs from the GCC size in that it
342 does not include any rounding up to the alignment of the type. */
343 #define TYPE_ADA_SIZE(NODE) \
344 GET_TYPE_LANG_SPECIFIC (RECORD_OR_UNION_CHECK (NODE))
345 #define SET_TYPE_ADA_SIZE(NODE, X) \
346 SET_TYPE_LANG_SPECIFIC (RECORD_OR_UNION_CHECK (NODE), X)
347
348
349 /* Flags added to decl nodes. */
350
351 /* Nonzero in a FUNCTION_DECL that represents a stubbed function
352 discriminant. */
353 #define DECL_STUBBED_P(NODE) DECL_LANG_FLAG_0 (FUNCTION_DECL_CHECK (NODE))
354
355 /* Nonzero in a VAR_DECL if it is guaranteed to be constant after having
356 been elaborated and TREE_READONLY is not set on it. */
357 #define DECL_READONLY_ONCE_ELAB(NODE) DECL_LANG_FLAG_0 (VAR_DECL_CHECK (NODE))
358
359 /* Nonzero in a CONST_DECL if its value is (essentially) the address of a
360 constant CONSTRUCTOR. */
361 #define DECL_CONST_ADDRESS_P(NODE) DECL_LANG_FLAG_0 (CONST_DECL_CHECK (NODE))
362
363 /* Nonzero in a PARM_DECL if it is always used by double reference, i.e. a
364 pair of INDIRECT_REFs is needed to access the object. */
365 #define DECL_BY_DOUBLE_REF_P(NODE) DECL_LANG_FLAG_0 (PARM_DECL_CHECK (NODE))
366
367 /* Nonzero in a FIELD_DECL if it is declared as aliased. */
368 #define DECL_ALIASED_P(NODE) DECL_LANG_FLAG_0 (FIELD_DECL_CHECK (NODE))
369
370 /* Nonzero in a TYPE_DECL if this is the declaration of a Taft amendment type
371 in the main unit, i.e. the full declaration is available. */
372 #define DECL_TAFT_TYPE_P(NODE) DECL_LANG_FLAG_0 (TYPE_DECL_CHECK (NODE))
373
374 /* Nonzero in a DECL if it is always used by reference, i.e. an INDIRECT_REF
375 is needed to access the object. */
376 #define DECL_BY_REF_P(NODE) DECL_LANG_FLAG_1 (NODE)
377
378 /* Nonzero in a DECL if it is made for a pointer that can never be null. */
379 #define DECL_CAN_NEVER_BE_NULL_P(NODE) DECL_LANG_FLAG_2 (NODE)
380
381 /* Nonzero in a VAR_DECL if it is made for a loop parameter. */
382 #define DECL_LOOP_PARM_P(NODE) DECL_LANG_FLAG_3 (VAR_DECL_CHECK (NODE))
383
384 /* Nonzero in a FIELD_DECL that is a dummy built for some internal reason. */
385 #define DECL_INTERNAL_P(NODE) DECL_LANG_FLAG_3 (FIELD_DECL_CHECK (NODE))
386
387 /* Nonzero in a PARM_DECL if it is made for an Ada array being passed to a
388 foreign convention subprogram. */
389 #define DECL_BY_COMPONENT_PTR_P(NODE) DECL_LANG_FLAG_3 (PARM_DECL_CHECK (NODE))
390
391 /* Nonzero in a FUNCTION_DECL that corresponds to an elaboration procedure. */
392 #define DECL_ELABORATION_PROC_P(NODE) \
393 DECL_LANG_FLAG_3 (FUNCTION_DECL_CHECK (NODE))
394
395 /* Nonzero in a DECL if it is made for a pointer that points to something which
396 is readonly. */
397 #define DECL_POINTS_TO_READONLY_P(NODE) DECL_LANG_FLAG_4 (NODE)
398
399 /* Nonzero in a PARM_DECL if we are to pass by descriptor. */
400 #define DECL_BY_DESCRIPTOR_P(NODE) DECL_LANG_FLAG_5 (PARM_DECL_CHECK (NODE))
401
402 /* Nonzero in a VAR_DECL if it is a pointer renaming a global object. */
403 #define DECL_RENAMING_GLOBAL_P(NODE) DECL_LANG_FLAG_5 (VAR_DECL_CHECK (NODE))
404
405 /* In a FIELD_DECL corresponding to a discriminant, contains the
406 discriminant number. */
407 #define DECL_DISCRIMINANT_NUMBER(NODE) DECL_INITIAL (FIELD_DECL_CHECK (NODE))
408
409 /* In a CONST_DECL, points to a VAR_DECL that is allocatable to
410 memory. Used when a scalar constant is aliased or has its
411 address taken. */
412 #define DECL_CONST_CORRESPONDING_VAR(NODE) \
413 GET_DECL_LANG_SPECIFIC (CONST_DECL_CHECK (NODE))
414 #define SET_DECL_CONST_CORRESPONDING_VAR(NODE, X) \
415 SET_DECL_LANG_SPECIFIC (CONST_DECL_CHECK (NODE), X)
416
417 /* In a FIELD_DECL, points to the FIELD_DECL that was the ultimate
418 source of the decl. */
419 #define DECL_ORIGINAL_FIELD(NODE) \
420 GET_DECL_LANG_SPECIFIC (FIELD_DECL_CHECK (NODE))
421 #define SET_DECL_ORIGINAL_FIELD(NODE, X) \
422 SET_DECL_LANG_SPECIFIC (FIELD_DECL_CHECK (NODE), X)
423
424 /* Set DECL_ORIGINAL_FIELD of FIELD1 to (that of) FIELD2. */
425 #define SET_DECL_ORIGINAL_FIELD_TO_FIELD(FIELD1, FIELD2) \
426 SET_DECL_ORIGINAL_FIELD ((FIELD1), \
427 DECL_ORIGINAL_FIELD (FIELD2) \
428 ? DECL_ORIGINAL_FIELD (FIELD2) : (FIELD2))
429
430 /* Return true if FIELD1 and FIELD2 represent the same field. */
431 #define SAME_FIELD_P(FIELD1, FIELD2) \
432 ((FIELD1) == (FIELD2) \
433 || DECL_ORIGINAL_FIELD (FIELD1) == (FIELD2) \
434 || (FIELD1) == DECL_ORIGINAL_FIELD (FIELD2) \
435 || (DECL_ORIGINAL_FIELD (FIELD1) \
436 && (DECL_ORIGINAL_FIELD (FIELD1) == DECL_ORIGINAL_FIELD (FIELD2))))
437
438 /* In a VAR_DECL with the DECL_LOOP_PARM_P flag set, points to the special
439 induction variable that is built under certain circumstances, if any. */
440 #define DECL_INDUCTION_VAR(NODE) \
441 GET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE))
442 #define SET_DECL_INDUCTION_VAR(NODE, X) \
443 SET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE), X)
444
445 /* In a VAR_DECL without the DECL_LOOP_PARM_P flag set and that is a renaming
446 pointer, points to the object being renamed, if any. Note that this object
447 is guaranteed to be protected against multiple evaluations. */
448 #define DECL_RENAMED_OBJECT(NODE) \
449 GET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE))
450 #define SET_DECL_RENAMED_OBJECT(NODE, X) \
451 SET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE), X)
452
453 /* In a TYPE_DECL, points to the parallel type if any, otherwise 0. */
454 #define DECL_PARALLEL_TYPE(NODE) \
455 GET_DECL_LANG_SPECIFIC (TYPE_DECL_CHECK (NODE))
456 #define SET_DECL_PARALLEL_TYPE(NODE, X) \
457 SET_DECL_LANG_SPECIFIC (TYPE_DECL_CHECK (NODE), X)
458
459 /* In a FUNCTION_DECL, points to the stub associated with the function
460 if any, otherwise 0. */
461 #define DECL_FUNCTION_STUB(NODE) \
462 GET_DECL_LANG_SPECIFIC (FUNCTION_DECL_CHECK (NODE))
463 #define SET_DECL_FUNCTION_STUB(NODE, X) \
464 SET_DECL_LANG_SPECIFIC (FUNCTION_DECL_CHECK (NODE), X)
465
466 /* In a PARM_DECL, points to the alternate TREE_TYPE. */
467 #define DECL_PARM_ALT_TYPE(NODE) \
468 GET_DECL_LANG_SPECIFIC (PARM_DECL_CHECK (NODE))
469 #define SET_DECL_PARM_ALT_TYPE(NODE, X) \
470 SET_DECL_LANG_SPECIFIC (PARM_DECL_CHECK (NODE), X)
471
472
473 /* Flags added to ref nodes. */
474
475 /* Nonzero means this node will not trap. */
476 #undef TREE_THIS_NOTRAP
477 #define TREE_THIS_NOTRAP(NODE) \
478 (TREE_CHECK4 (NODE, INDIRECT_REF, ARRAY_REF, UNCONSTRAINED_ARRAY_REF, \
479 ARRAY_RANGE_REF)->base.nothrow_flag)
480
481
482 /* Fields and macros for statements. */
483 #define IS_ADA_STMT(NODE) \
484 (STATEMENT_CLASS_P (NODE) && TREE_CODE (NODE) >= STMT_STMT)
485
486 #define STMT_STMT_STMT(NODE) TREE_OPERAND_CHECK_CODE (NODE, STMT_STMT, 0)
487
488 #define LOOP_STMT_COND(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 0)
489 #define LOOP_STMT_UPDATE(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 1)
490 #define LOOP_STMT_BODY(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 2)
491 #define LOOP_STMT_LABEL(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 3)
492
493 /* A loop statement is conceptually made up of 6 sub-statements:
494
495 loop:
496 TOP_CONDITION
497 TOP_UPDATE
498 BODY
499 BOTTOM_CONDITION
500 BOTTOM_UPDATE
501 GOTO loop
502
503 However, only 4 of them can exist for a given loop, the pair of conditions
504 and the pair of updates being mutually exclusive. The default setting is
505 TOP_CONDITION and BOTTOM_UPDATE and the following couple of flags are used
506 to toggle the individual settings. */
507 #define LOOP_STMT_BOTTOM_COND_P(NODE) TREE_LANG_FLAG_0 (LOOP_STMT_CHECK (NODE))
508 #define LOOP_STMT_TOP_UPDATE_P(NODE) TREE_LANG_FLAG_1 (LOOP_STMT_CHECK (NODE))
509
510 /* Optimization hints on loops. */
511 #define LOOP_STMT_NO_UNROLL(NODE) TREE_LANG_FLAG_2 (LOOP_STMT_CHECK (NODE))
512 #define LOOP_STMT_UNROLL(NODE) TREE_LANG_FLAG_3 (LOOP_STMT_CHECK (NODE))
513 #define LOOP_STMT_NO_VECTOR(NODE) TREE_LANG_FLAG_4 (LOOP_STMT_CHECK (NODE))
514 #define LOOP_STMT_VECTOR(NODE) TREE_LANG_FLAG_5 (LOOP_STMT_CHECK (NODE))
515
516 #define EXIT_STMT_COND(NODE) TREE_OPERAND_CHECK_CODE (NODE, EXIT_STMT, 0)
517 #define EXIT_STMT_LABEL(NODE) TREE_OPERAND_CHECK_CODE (NODE, EXIT_STMT, 1)