[multiple changes]
[gcc.git] / gcc / ada / gnat_ugn.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3
4 @c oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
5 @c o
6 @c GNAT DOCUMENTATION o
7 @c o
8 @c G N A T _ U G N o
9 @c o
10 @c Copyright (C) 1992-2004 Ada Core Technologies, Inc. o
11 @c o
12 @c GNAT is free software; you can redistribute it and/or modify it under o
13 @c terms of the GNU General Public License as published by the Free Soft- o
14 @c ware Foundation; either version 2, or (at your option) any later ver- o
15 @c sion. GNAT is distributed in the hope that it will be useful, but WITH- o
16 @c OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY o
17 @c or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License o
18 @c for more details. You should have received a copy of the GNU General o
19 @c Public License distributed with GNAT; see file COPYING. If not, write o
20 @c to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, o
21 @c MA 02111-1307, USA. o
22 @c o
23 @c oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
24
25 @c oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
26 @c
27 @c GNAT_UGN Style Guide
28 @c
29 @c 1. Always put a @noindent on the line before the first paragraph
30 @c after any of these commands:
31 @c
32 @c @chapter
33 @c @section
34 @c @subsection
35 @c @subsubsection
36 @c @subsubsubsection
37 @c
38 @c @end smallexample
39 @c @end itemize
40 @c @end enumerate
41 @c
42 @c 2. DO NOT use @example. Use @smallexample instead.
43 @c a) DO NOT use highlighting commands (@b{}, @i{}) inside an @smallexample
44 @c context. These can interfere with the readability of the texi
45 @c source file. Instead, use one of the following annotated
46 @c @smallexample commands, and preprocess the texi file with the
47 @c ada2texi tool (which generates appropriate highlighting):
48 @c @smallexample @c ada
49 @c @smallexample @c adanocomment
50 @c @smallexample @c projectfile
51 @c b) The "@c ada" markup will result in boldface for reserved words
52 @c and italics for comments
53 @c c) The "@c adanocomment" markup will result only in boldface for
54 @c reserved words (comments are left alone)
55 @c d) The "@c projectfile" markup is like "@c ada" except that the set
56 @c of reserved words include the new reserved words for project files
57 @c
58 @c 3. Each @chapter, @section, @subsection, @subsubsection, etc.
59 @c command must be preceded by two empty lines
60 @c
61 @c 4. The @item command should be on a line of its own if it is in an
62 @c @itemize or @enumerate command.
63 @c
64 @c 5. When talking about ALI files use "ALI" (all uppercase), not "Ali"
65 @c or "ali".
66 @c
67 @c 6. DO NOT put trailing spaces at the end of a line. Such spaces will
68 @c cause the document build to fail.
69 @c
70 @c 7. DO NOT use @cartouche for examples that are longer than around 10 lines.
71 @c This command inhibits page breaks, so long examples in a @cartouche can
72 @c lead to large, ugly patches of empty space on a page.
73 @c
74 @c NOTE: This file should be submitted to xgnatugn with either the vms flag
75 @c or the unw flag set. The unw flag covers topics for both Unix and
76 @c Windows.
77 @c
78 @c oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
79
80 @ifset vms
81 @setfilename gnat_ugn_vms.info
82 @end ifset
83
84 @ifset unw
85 @setfilename gnat_ugn_unw.info
86 @end ifset
87
88 @ifset vms
89 @settitle GNAT User's Guide for Native Platforms / OpenVMS Alpha
90 @dircategory GNU Ada tools
91 @direntry
92 * GNAT User's Guide (gnat_ugn_vms) for Native Platforms / OpenVMS Alpha
93 @end direntry
94 @end ifset
95
96 @ifset unw
97 @settitle GNAT User's Guide for Native Platforms / Unix and Windows
98 @direntry
99 * GNAT User's Guide (gnat_ugn_unw) for Native Platforms / Unix and Windows
100 @end direntry
101 @end ifset
102
103 @include gcc-common.texi
104
105 @setchapternewpage odd
106 @syncodeindex fn cp
107 @c %**end of header
108
109 @copying
110 Copyright @copyright{} 1995-2004, Free Software Foundation
111
112 Permission is granted to copy, distribute and/or modify this document
113 under the terms of the GNU Free Documentation License, Version 1.2
114 or any later version published by the Free Software Foundation;
115 with the Invariant Sections being ``GNU Free Documentation License'', with the
116 Front-Cover Texts being
117 @ifset vms
118 ``GNAT User's Guide for Native Platforms / OpenVMS Alpha'',
119 @end ifset
120 @ifset unw
121 ``GNAT User's Guide for Native Platforms / Unix and Windows'',
122 @end ifset
123 and with no Back-Cover Texts.
124 A copy of the license is included in the section entitled
125 ``GNU Free Documentation License''.
126 @end copying
127
128 @titlepage
129
130 @title GNAT User's Guide
131 @center @titlefont{for Native Platforms}
132 @sp 1
133
134 @flushright
135 @ifset unw
136 @titlefont{@i{Unix and Windows}}
137 @end ifset
138 @ifset vms
139 @titlefont{@i{OpenVMS Alpha}}
140 @end ifset
141 @end flushright
142 @sp 2
143
144 @subtitle GNAT, The GNU Ada 95 Compiler
145 @subtitle GCC version @value{version-GCC}
146
147 @author Ada Core Technologies, Inc.
148
149 @page
150 @vskip 0pt plus 1filll
151
152 @insertcopying
153
154 @end titlepage
155
156
157 @ifnottex
158 @node Top, About This Guide, (dir), (dir)
159 @top GNAT User's Guide
160
161 @ifset vms
162 @noindent
163 GNAT User's Guide for Native Platforms / OpenVMS Alpha
164 @end ifset
165
166 @ifset unw
167 @noindent
168 GNAT User's Guide for Native Platforms / Unix and Windows
169 @end ifset
170
171 @noindent
172 GNAT, The GNU Ada 95 Compiler@*
173 GCC version @value{version-GCC}@*
174
175 @noindent
176 Ada Core Technologies, Inc.@*
177
178 @menu
179 * About This Guide::
180 * Getting Started with GNAT::
181 * The GNAT Compilation Model::
182 * Compiling Using gcc::
183 * Binding Using gnatbind::
184 * Linking Using gnatlink::
185 * The GNAT Make Program gnatmake::
186 * Improving Performance::
187 * Renaming Files Using gnatchop::
188 * Configuration Pragmas::
189 * Handling Arbitrary File Naming Conventions Using gnatname::
190 * GNAT Project Manager::
191 * The Cross-Referencing Tools gnatxref and gnatfind::
192 * The GNAT Pretty-Printer gnatpp::
193 * File Name Krunching Using gnatkr::
194 * Preprocessing Using gnatprep::
195 @ifset vms
196 * The GNAT Run-Time Library Builder gnatlbr::
197 @end ifset
198 * The GNAT Library Browser gnatls::
199 * Cleaning Up Using gnatclean::
200 @ifclear vms
201 * GNAT and Libraries::
202 * Using the GNU make Utility::
203 @end ifclear
204 * Finding Memory Problems::
205 * Creating Sample Bodies Using gnatstub::
206 * Other Utility Programs::
207 * Running and Debugging Ada Programs::
208 @ifset vms
209 * Compatibility with DEC Ada::
210 @end ifset
211 * Platform-Specific Information for the Run-Time Libraries::
212 * Example of Binder Output File::
213 * Elaboration Order Handling in GNAT::
214 * Inline Assembler::
215 * Compatibility and Porting Guide::
216 @ifset unw
217 * Microsoft Windows Topics::
218 @end ifset
219 * GNU Free Documentation License::
220 * Index::
221
222 --- The Detailed Node Listing ---
223
224 About This Guide
225
226 * What This Guide Contains::
227 * What You Should Know before Reading This Guide::
228 * Related Information::
229 * Conventions::
230
231 Getting Started with GNAT
232
233 * Running GNAT::
234 * Running a Simple Ada Program::
235 * Running a Program with Multiple Units::
236 * Using the gnatmake Utility::
237 @ifset vms
238 * Editing with Emacs::
239 @end ifset
240 @ifclear vms
241 * Introduction to GPS::
242 * Introduction to Glide and GVD::
243 @end ifclear
244
245 The GNAT Compilation Model
246
247 * Source Representation::
248 * Foreign Language Representation::
249 * File Naming Rules::
250 * Using Other File Names::
251 * Alternative File Naming Schemes::
252 * Generating Object Files::
253 * Source Dependencies::
254 * The Ada Library Information Files::
255 * Binding an Ada Program::
256 * Mixed Language Programming::
257 * Building Mixed Ada & C++ Programs::
258 * Comparison between GNAT and C/C++ Compilation Models::
259 * Comparison between GNAT and Conventional Ada Library Models::
260 @ifset vms
261 * Placement of temporary files::
262 @end ifset
263
264 Foreign Language Representation
265
266 * Latin-1::
267 * Other 8-Bit Codes::
268 * Wide Character Encodings::
269
270 Compiling Ada Programs With gcc
271
272 * Compiling Programs::
273 * Switches for gcc::
274 * Search Paths and the Run-Time Library (RTL)::
275 * Order of Compilation Issues::
276 * Examples::
277
278 Switches for gcc
279
280 * Output and Error Message Control::
281 * Warning Message Control::
282 * Debugging and Assertion Control::
283 * Run-Time Checks::
284 * Stack Overflow Checking::
285 * Validity Checking::
286 * Style Checking::
287 * Using gcc for Syntax Checking::
288 * Using gcc for Semantic Checking::
289 * Compiling Ada 83 Programs::
290 * Character Set Control::
291 * File Naming Control::
292 * Subprogram Inlining Control::
293 * Auxiliary Output Control::
294 * Debugging Control::
295 * Exception Handling Control::
296 * Units to Sources Mapping Files::
297 * Integrated Preprocessing::
298 @ifset vms
299 * Return Codes::
300 @end ifset
301
302 Binding Ada Programs With gnatbind
303
304 * Running gnatbind::
305 * Switches for gnatbind::
306 * Command-Line Access::
307 * Search Paths for gnatbind::
308 * Examples of gnatbind Usage::
309
310 Switches for gnatbind
311
312 * Consistency-Checking Modes::
313 * Binder Error Message Control::
314 * Elaboration Control::
315 * Output Control::
316 * Binding with Non-Ada Main Programs::
317 * Binding Programs with No Main Subprogram::
318
319 Linking Using gnatlink
320
321 * Running gnatlink::
322 * Switches for gnatlink::
323 * Setting Stack Size from gnatlink::
324 * Setting Heap Size from gnatlink::
325
326 The GNAT Make Program gnatmake
327
328 * Running gnatmake::
329 * Switches for gnatmake::
330 * Mode Switches for gnatmake::
331 * Notes on the Command Line::
332 * How gnatmake Works::
333 * Examples of gnatmake Usage::
334
335
336 Improving Performance
337 * Performance Considerations::
338 * Reducing the Size of Ada Executables with gnatelim::
339
340 Performance Considerations
341 * Controlling Run-Time Checks::
342 * Use of Restrictions::
343 * Optimization Levels::
344 * Debugging Optimized Code::
345 * Inlining of Subprograms::
346 * Optimization and Strict Aliasing::
347 @ifset vms
348 * Coverage Analysis::
349 @end ifset
350
351 Reducing the Size of Ada Executables with gnatelim
352 * About gnatelim::
353 * Running gnatelim::
354 * Correcting the List of Eliminate Pragmas::
355 * Making Your Executables Smaller::
356 * Summary of the gnatelim Usage Cycle::
357
358 Renaming Files Using gnatchop
359
360 * Handling Files with Multiple Units::
361 * Operating gnatchop in Compilation Mode::
362 * Command Line for gnatchop::
363 * Switches for gnatchop::
364 * Examples of gnatchop Usage::
365
366 Configuration Pragmas
367
368 * Handling of Configuration Pragmas::
369 * The Configuration Pragmas Files::
370
371 Handling Arbitrary File Naming Conventions Using gnatname
372
373 * Arbitrary File Naming Conventions::
374 * Running gnatname::
375 * Switches for gnatname::
376 * Examples of gnatname Usage::
377
378 GNAT Project Manager
379
380 * Introduction::
381 * Examples of Project Files::
382 * Project File Syntax::
383 * Objects and Sources in Project Files::
384 * Importing Projects::
385 * Project Extension::
386 * External References in Project Files::
387 * Packages in Project Files::
388 * Variables from Imported Projects::
389 * Naming Schemes::
390 * Library Projects::
391 * Using Third-Party Libraries through Projects::
392 * Stand-alone Library Projects::
393 * Switches Related to Project Files::
394 * Tools Supporting Project Files::
395 * An Extended Example::
396 * Project File Complete Syntax::
397
398
399 The Cross-Referencing Tools gnatxref and gnatfind
400
401 * gnatxref Switches::
402 * gnatfind Switches::
403 * Project Files for gnatxref and gnatfind::
404 * Regular Expressions in gnatfind and gnatxref::
405 * Examples of gnatxref Usage::
406 * Examples of gnatfind Usage::
407
408
409 The GNAT Pretty-Printer gnatpp
410
411 * Switches for gnatpp::
412 * Formatting Rules::
413
414
415 File Name Krunching Using gnatkr
416
417 * About gnatkr::
418 * Using gnatkr::
419 * Krunching Method::
420 * Examples of gnatkr Usage::
421
422 Preprocessing Using gnatprep
423
424 * Using gnatprep::
425 * Switches for gnatprep::
426 * Form of Definitions File::
427 * Form of Input Text for gnatprep::
428
429 @ifset vms
430 The GNAT Run-Time Library Builder gnatlbr
431
432 * Running gnatlbr::
433 * Switches for gnatlbr::
434 * Examples of gnatlbr Usage::
435 @end ifset
436
437 The GNAT Library Browser gnatls
438
439 * Running gnatls::
440 * Switches for gnatls::
441 * Examples of gnatls Usage::
442
443 Cleaning Up Using gnatclean
444
445 * Running gnatclean::
446 * Switches for gnatclean::
447 * Examples of gnatclean Usage::
448
449 @ifclear vms
450
451 GNAT and Libraries
452
453 * Introduction to Libraries in GNAT::
454 * General Ada Libraries::
455 * Stand-alone Ada Libraries::
456 * Rebuilding the GNAT Run-Time Library::
457
458 Using the GNU make Utility
459
460 * Using gnatmake in a Makefile::
461 * Automatically Creating a List of Directories::
462 * Generating the Command Line Switches::
463 * Overcoming Command Line Length Limits::
464 @end ifclear
465
466 Finding Memory Problems
467
468 @ifclear vms
469 * The gnatmem Tool::
470 @end ifclear
471 * The GNAT Debug Pool Facility::
472
473 @ifclear vms
474 The gnatmem Tool
475
476 * Running gnatmem::
477 * Switches for gnatmem::
478 * Example of gnatmem Usage::
479 @end ifclear
480
481 The GNAT Debug Pool Facility
482
483 Creating Sample Bodies Using gnatstub
484
485 * Running gnatstub::
486 * Switches for gnatstub::
487
488 Other Utility Programs
489
490 * Using Other Utility Programs with GNAT::
491 * The External Symbol Naming Scheme of GNAT::
492 @ifclear vms
493 * Ada Mode for Glide::
494 @end ifclear
495 * Converting Ada Files to html with gnathtml::
496
497 Running and Debugging Ada Programs
498
499 * The GNAT Debugger GDB::
500 * Running GDB::
501 * Introduction to GDB Commands::
502 * Using Ada Expressions::
503 * Calling User-Defined Subprograms::
504 * Using the Next Command in a Function::
505 * Ada Exceptions::
506 * Ada Tasks::
507 * Debugging Generic Units::
508 * GNAT Abnormal Termination or Failure to Terminate::
509 * Naming Conventions for GNAT Source Files::
510 * Getting Internal Debugging Information::
511 * Stack Traceback::
512
513 @ifset vms
514 * LSE::
515 @end ifset
516
517 @ifset vms
518 Compatibility with DEC Ada
519
520 * Ada 95 Compatibility::
521 * Differences in the Definition of Package System::
522 * Language-Related Features::
523 * The Package STANDARD::
524 * The Package SYSTEM::
525 * Tasking and Task-Related Features::
526 * Implementation of Tasks in DEC Ada for OpenVMS Alpha Systems::
527 * Pragmas and Pragma-Related Features::
528 * Library of Predefined Units::
529 * Bindings::
530 * Main Program Definition::
531 * Implementation-Defined Attributes::
532 * Compiler and Run-Time Interfacing::
533 * Program Compilation and Library Management::
534 * Input-Output::
535 * Implementation Limits::
536 * Tools::
537
538 Language-Related Features
539
540 * Integer Types and Representations::
541 * Floating-Point Types and Representations::
542 * Pragmas Float_Representation and Long_Float::
543 * Fixed-Point Types and Representations::
544 * Record and Array Component Alignment::
545 * Address Clauses::
546 * Other Representation Clauses::
547
548 Implementation of Tasks in DEC Ada for OpenVMS Alpha Systems
549
550 * Assigning Task IDs::
551 * Task IDs and Delays::
552 * Task-Related Pragmas::
553 * Scheduling and Task Priority::
554 * The Task Stack::
555 * External Interrupts::
556
557 Pragmas and Pragma-Related Features
558
559 * Restrictions on the Pragma INLINE::
560 * Restrictions on the Pragma INTERFACE::
561 * Restrictions on the Pragma SYSTEM_NAME::
562
563 Library of Predefined Units
564
565 * Changes to DECLIB::
566
567 Bindings
568
569 * Shared Libraries and Options Files::
570 * Interfaces to C::
571 @end ifset
572
573 Platform-Specific Information for the Run-Time Libraries
574
575 * Summary of Run-Time Configurations::
576 * Specifying a Run-Time Library::
577 * Choosing between Native and FSU Threads Libraries::
578 * Choosing the Scheduling Policy::
579 * Solaris-Specific Considerations::
580 * IRIX-Specific Considerations::
581 * Linux-Specific Considerations::
582 * AIX-Specific Considerations::
583
584 Example of Binder Output File
585
586 Elaboration Order Handling in GNAT
587
588 * Elaboration Code in Ada 95::
589 * Checking the Elaboration Order in Ada 95::
590 * Controlling the Elaboration Order in Ada 95::
591 * Controlling Elaboration in GNAT - Internal Calls::
592 * Controlling Elaboration in GNAT - External Calls::
593 * Default Behavior in GNAT - Ensuring Safety::
594 * Treatment of Pragma Elaborate::
595 * Elaboration Issues for Library Tasks::
596 * Mixing Elaboration Models::
597 * What to Do If the Default Elaboration Behavior Fails::
598 * Elaboration for Access-to-Subprogram Values::
599 * Summary of Procedures for Elaboration Control::
600 * Other Elaboration Order Considerations::
601
602 Inline Assembler
603
604 * Basic Assembler Syntax::
605 * A Simple Example of Inline Assembler::
606 * Output Variables in Inline Assembler::
607 * Input Variables in Inline Assembler::
608 * Inlining Inline Assembler Code::
609 * Other Asm Functionality::
610 * A Complete Example::
611
612 Compatibility and Porting Guide
613
614 * Compatibility with Ada 83::
615 * Implementation-dependent characteristics::
616 * Compatibility with DEC Ada 83::
617 * Compatibility with Other Ada 95 Systems::
618 * Representation Clauses::
619
620 @ifset unw
621 Microsoft Windows Topics
622
623 * Using GNAT on Windows::
624 * CONSOLE and WINDOWS subsystems::
625 * Temporary Files::
626 * Mixed-Language Programming on Windows::
627 * Windows Calling Conventions::
628 * Introduction to Dynamic Link Libraries (DLLs)::
629 * Using DLLs with GNAT::
630 * Building DLLs with GNAT::
631 * GNAT and Windows Resources::
632 * Debugging a DLL::
633 * GNAT and COM/DCOM Objects::
634 @end ifset
635
636
637 * Index::
638 @end menu
639 @end ifnottex
640
641 @node About This Guide
642 @unnumbered About This Guide
643
644 @noindent
645 @ifset vms
646 This guide describes the use of of GNAT, a full language compiler for the Ada
647 95 programming language, implemented on HP OpenVMS Alpha platforms.
648 @end ifset
649 @ifclear vms
650 This guide describes the use of GNAT, a compiler and software development
651 toolset for the full Ada 95 programming language.
652 @end ifclear
653 It describes the features of the compiler and tools, and details
654 how to use them to build Ada 95 applications.
655
656 @menu
657 * What This Guide Contains::
658 * What You Should Know before Reading This Guide::
659 * Related Information::
660 * Conventions::
661 @end menu
662
663 @node What This Guide Contains
664 @unnumberedsec What This Guide Contains
665
666 @noindent
667 This guide contains the following chapters:
668 @itemize @bullet
669
670 @item
671 @ref{Getting Started with GNAT}, describes how to get started compiling
672 and running Ada programs with the GNAT Ada programming environment.
673 @item
674 @ref{The GNAT Compilation Model}, describes the compilation model used
675 by GNAT.
676
677 @item
678 @ref{Compiling Using gcc}, describes how to compile
679 Ada programs with @code{gcc}, the Ada compiler.
680
681 @item
682 @ref{Binding Using gnatbind}, describes how to
683 perform binding of Ada programs with @code{gnatbind}, the GNAT binding
684 utility.
685
686 @item
687 @ref{Linking Using gnatlink},
688 describes @code{gnatlink}, a
689 program that provides for linking using the GNAT run-time library to
690 construct a program. @code{gnatlink} can also incorporate foreign language
691 object units into the executable.
692
693 @item
694 @ref{The GNAT Make Program gnatmake}, describes @code{gnatmake}, a
695 utility that automatically determines the set of sources
696 needed by an Ada compilation unit, and executes the necessary compilations
697 binding and link.
698
699 @item
700 @ref{Improving Performance}, shows various techniques for making your
701 Ada program run faster or take less space.
702 It discusses the effect of the compiler's optimization switch and
703 also describes the @command{gnatelim} tool.
704
705 @item
706 @ref{Renaming Files Using gnatchop}, describes
707 @code{gnatchop}, a utility that allows you to preprocess a file that
708 contains Ada source code, and split it into one or more new files, one
709 for each compilation unit.
710
711 @item
712 @ref{Configuration Pragmas}, describes the configuration pragmas
713 handled by GNAT.
714
715 @item
716 @ref{Handling Arbitrary File Naming Conventions Using gnatname},
717 shows how to override the default GNAT file naming conventions,
718 either for an individual unit or globally.
719
720 @item
721 @ref{GNAT Project Manager}, describes how to use project files
722 to organize large projects.
723
724 @item
725 @ref{The Cross-Referencing Tools gnatxref and gnatfind}, discusses
726 @code{gnatxref} and @code{gnatfind}, two tools that provide an easy
727 way to navigate through sources.
728
729 @item
730 @ref{The GNAT Pretty-Printer gnatpp}, shows how to produce a reformatted
731 version of an Ada source file with control over casing, indentation,
732 comment placement, and other elements of program presentation style.
733
734
735 @item
736 @ref{File Name Krunching Using gnatkr}, describes the @code{gnatkr}
737 file name krunching utility, used to handle shortened
738 file names on operating systems with a limit on the length of names.
739
740 @item
741 @ref{Preprocessing Using gnatprep}, describes @code{gnatprep}, a
742 preprocessor utility that allows a single source file to be used to
743 generate multiple or parameterized source files, by means of macro
744 substitution.
745
746 @ifset vms
747 @item
748 @ref{The GNAT Run-Time Library Builder gnatlbr}, describes @command{gnatlbr},
749 a tool for rebuilding the GNAT run time with user-supplied
750 configuration pragmas.
751 @end ifset
752
753 @item
754 @ref{The GNAT Library Browser gnatls}, describes @code{gnatls}, a
755 utility that displays information about compiled units, including dependences
756 on the corresponding sources files, and consistency of compilations.
757
758 @item
759 @ref{Cleaning Up Using gnatclean}, describes @code{gnatclean}, a utility
760 to delete files that are produced by the compiler, binder and linker.
761
762 @ifclear vms
763 @item
764 @ref{GNAT and Libraries}, describes the process of creating and using
765 Libraries with GNAT. It also describes how to recompile the GNAT run-time
766 library.
767
768 @item
769 @ref{Using the GNU make Utility}, describes some techniques for using
770 the GNAT toolset in Makefiles.
771 @end ifclear
772
773 @item
774 @ref{Finding Memory Problems}, describes
775 @ifclear vms
776 @command{gnatmem}, a utility that monitors dynamic allocation and deallocation
777 and helps detect ``memory leaks'', and
778 @end ifclear
779 the GNAT Debug Pool facility, which helps detect incorrect memory references.
780
781 @item
782 @ref{Creating Sample Bodies Using gnatstub}, discusses @code{gnatstub},
783 a utility that generates empty but compilable bodies for library units.
784
785 @item
786 @ref{Other Utility Programs}, discusses several other GNAT utilities,
787 including @code{gnathtml}.
788
789 @item
790 @ref{Running and Debugging Ada Programs}, describes how to run and debug
791 Ada programs.
792
793 @ifset vms
794 @item
795 @ref{Compatibility with DEC Ada}, details the compatibility of GNAT with
796 DEC Ada 83 @footnote{``DEC Ada'' refers to the legacy product originally
797 developed by Digital Equipment Corporation and currently supported by HP.}
798 for OpenVMS Alpha.
799 @end ifset
800
801 @item
802 @ref{Platform-Specific Information for the Run-Time Libraries},
803 describes the various run-time
804 libraries supported by GNAT on various platforms and explains how to
805 choose a particular library.
806
807 @item
808 @ref{Example of Binder Output File}, shows the source code for the binder
809 output file for a sample program.
810
811 @item
812 @ref{Elaboration Order Handling in GNAT}, describes how GNAT helps
813 you deal with elaboration order issues.
814
815 @item
816 @ref{Inline Assembler}, shows how to use the inline assembly facility
817 in an Ada program.
818
819 @item
820 @ref{Compatibility and Porting Guide}, includes sections on compatibility
821 of GNAT with other Ada 83 and Ada 95 compilation systems, to assist
822 in porting code from other environments.
823
824 @ifset unw
825 @item
826 @ref{Microsoft Windows Topics}, presents information relevant to the
827 Microsoft Windows platform.
828 @end ifset
829 @end itemize
830
831
832 @c *************************************************
833 @node What You Should Know before Reading This Guide
834 @c *************************************************
835 @unnumberedsec What You Should Know before Reading This Guide
836
837 @cindex Ada 95 Language Reference Manual
838 @noindent
839 This user's guide assumes that you are familiar with Ada 95 language, as
840 described in the International Standard ANSI/ISO/IEC-8652:1995, January
841 1995.
842
843 @node Related Information
844 @unnumberedsec Related Information
845
846 @noindent
847 For further information about related tools, refer to the following
848 documents:
849
850 @itemize @bullet
851 @item
852 @cite{GNAT Reference Manual}, which contains all reference
853 material for the GNAT implementation of Ada 95.
854
855 @ifset unw
856 @item
857 @cite{Using the GNAT Programming System}, which describes the GPS
858 integrated development environment.
859
860 @item
861 @cite{GNAT Programming System Tutorial}, which introduces the
862 main GPS features through examples.
863 @end ifset
864
865 @item
866 @cite{Ada 95 Language Reference Manual}, which contains all reference
867 material for the Ada 95 programming language.
868
869 @item
870 @cite{Debugging with GDB}
871 @ifset vms
872 , located in the GNU:[DOCS] directory,
873 @end ifset
874 contains all details on the use of the GNU source-level debugger.
875
876 @item
877 @cite{GNU Emacs Manual}
878 @ifset vms
879 , located in the GNU:[DOCS] directory if the EMACS kit is installed,
880 @end ifset
881 contains full information on the extensible editor and programming
882 environment Emacs.
883
884 @end itemize
885
886 @c **************
887 @node Conventions
888 @unnumberedsec Conventions
889 @cindex Conventions
890 @cindex Typographical conventions
891
892 @noindent
893 Following are examples of the typographical and graphic conventions used
894 in this guide:
895
896 @itemize @bullet
897 @item
898 @code{Functions}, @code{utility program names}, @code{standard names},
899 and @code{classes}.
900
901 @item
902 @samp{Option flags}
903
904 @item
905 @file{File Names}, @file{button names}, and @file{field names}.
906
907 @item
908 @var{Variables}.
909
910 @item
911 @emph{Emphasis}.
912
913 @item
914 [optional information or parameters]
915
916 @item
917 Examples are described by text
918 @smallexample
919 and then shown this way.
920 @end smallexample
921 @end itemize
922
923 @noindent
924 Commands that are entered by the user are preceded in this manual by the
925 characters @w{``@code{$ }''} (dollar sign followed by space). If your system
926 uses this sequence as a prompt, then the commands will appear exactly as
927 you see them in the manual. If your system uses some other prompt, then
928 the command will appear with the @code{$} replaced by whatever prompt
929 character you are using.
930
931 @ifset unw
932 Full file names are shown with the ``@code{/}'' character
933 as the directory separator; e.g., @file{parent-dir/subdir/myfile.adb}.
934 If you are using GNAT on a Windows platform, please note that
935 the ``@code{\}'' character should be used instead.
936 @end ifset
937
938
939
940 @c ****************************
941 @node Getting Started with GNAT
942 @chapter Getting Started with GNAT
943
944 @noindent
945 This chapter describes some simple ways of using GNAT to build
946 executable Ada programs.
947 @ifset unw
948 @ref{Running GNAT}, through @ref{Using the gnatmake Utility},
949 show how to use the command line environment.
950 @ref{Introduction to Glide and GVD}, provides a brief
951 introduction to the visually-oriented IDE for GNAT.
952 Supplementing Glide on some platforms is GPS, the
953 GNAT Programming System, which offers a richer graphical
954 ``look and feel'', enhanced configurability, support for
955 development in other programming language, comprehensive
956 browsing features, and many other capabilities.
957 For information on GPS please refer to
958 @cite{Using the GNAT Programming System}.
959 @end ifset
960
961 @menu
962 * Running GNAT::
963 * Running a Simple Ada Program::
964 * Running a Program with Multiple Units::
965 * Using the gnatmake Utility::
966 @ifset vms
967 * Editing with Emacs::
968 @end ifset
969 @ifclear vms
970 * Introduction to GPS::
971 * Introduction to Glide and GVD::
972 @end ifclear
973 @end menu
974
975 @node Running GNAT
976 @section Running GNAT
977
978 @noindent
979 Three steps are needed to create an executable file from an Ada source
980 file:
981
982 @enumerate
983 @item
984 The source file(s) must be compiled.
985 @item
986 The file(s) must be bound using the GNAT binder.
987 @item
988 All appropriate object files must be linked to produce an executable.
989 @end enumerate
990
991 @noindent
992 All three steps are most commonly handled by using the @code{gnatmake}
993 utility program that, given the name of the main program, automatically
994 performs the necessary compilation, binding and linking steps.
995
996
997 @node Running a Simple Ada Program
998 @section Running a Simple Ada Program
999
1000 @noindent
1001 Any text editor may be used to prepare an Ada program.
1002 @ifclear vms
1003 If @code{Glide} is
1004 used, the optional Ada mode may be helpful in laying out the program.
1005 @end ifclear
1006 The
1007 program text is a normal text file. We will suppose in our initial
1008 example that you have used your editor to prepare the following
1009 standard format text file:
1010
1011 @smallexample @c ada
1012 @cartouche
1013 with Ada.Text_IO; use Ada.Text_IO;
1014 procedure Hello is
1015 begin
1016 Put_Line ("Hello WORLD!");
1017 end Hello;
1018 @end cartouche
1019 @end smallexample
1020
1021 @noindent
1022 This file should be named @file{hello.adb}.
1023 With the normal default file naming conventions, GNAT requires
1024 that each file
1025 contain a single compilation unit whose file name is the
1026 unit name,
1027 with periods replaced by hyphens; the
1028 extension is @file{ads} for a
1029 spec and @file{adb} for a body.
1030 You can override this default file naming convention by use of the
1031 special pragma @code{Source_File_Name} (@pxref{Using Other File Names}).
1032 Alternatively, if you want to rename your files according to this default
1033 convention, which is probably more convenient if you will be using GNAT
1034 for all your compilations, then the @code{gnatchop} utility
1035 can be used to generate correctly-named source files
1036 (@pxref{Renaming Files Using gnatchop}).
1037
1038 You can compile the program using the following command (@code{$} is used
1039 as the command prompt in the examples in this document):
1040
1041 @smallexample
1042 $ gcc -c hello.adb
1043 @end smallexample
1044
1045 @noindent
1046 @code{gcc} is the command used to run the compiler. This compiler is
1047 capable of compiling programs in several languages, including Ada 95 and
1048 C. It assumes that you have given it an Ada program if the file extension is
1049 either @file{.ads} or @file{.adb}, and it will then call
1050 the GNAT compiler to compile the specified file.
1051
1052 @ifclear vms
1053 The @option{-c} switch is required. It tells @command{gcc} to only do a
1054 compilation. (For C programs, @command{gcc} can also do linking, but this
1055 capability is not used directly for Ada programs, so the @option{-c}
1056 switch must always be present.)
1057 @end ifclear
1058
1059 This compile command generates a file
1060 @file{hello.o}, which is the object
1061 file corresponding to your Ada program. It also generates
1062 an ``Ada Library Information'' file @file{hello.ali},
1063 which contains additional information used to check
1064 that an Ada program is consistent.
1065 To build an executable file,
1066 use @code{gnatbind} to bind the program
1067 and @code{gnatlink} to link it. The
1068 argument to both @code{gnatbind} and @code{gnatlink} is the name of the
1069 @file{ALI} file, but the default extension of @file{.ali} can
1070 be omitted. This means that in the most common case, the argument
1071 is simply the name of the main program:
1072
1073 @smallexample
1074 $ gnatbind hello
1075 $ gnatlink hello
1076 @end smallexample
1077
1078 @noindent
1079 A simpler method of carrying out these steps is to use
1080 @command{gnatmake},
1081 a master program that invokes all the required
1082 compilation, binding and linking tools in the correct order. In particular,
1083 @command{gnatmake} automatically recompiles any sources that have been
1084 modified since they were last compiled, or sources that depend
1085 on such modified sources, so that ``version skew'' is avoided.
1086 @cindex Version skew (avoided by @command{gnatmake})
1087
1088 @smallexample
1089 $ gnatmake hello.adb
1090 @end smallexample
1091
1092 @noindent
1093 The result is an executable program called @file{hello}, which can be
1094 run by entering:
1095
1096 @c The following should be removed (BMB 2001-01-23)
1097 @c @smallexample
1098 @c $ ^./hello^$ RUN HELLO^
1099 @c @end smallexample
1100
1101 @smallexample
1102 $ hello
1103 @end smallexample
1104
1105 @noindent
1106 assuming that the current directory is on the search path
1107 for executable programs.
1108
1109 @noindent
1110 and, if all has gone well, you will see
1111
1112 @smallexample
1113 Hello WORLD!
1114 @end smallexample
1115
1116 @noindent
1117 appear in response to this command.
1118
1119
1120 @c ****************************************
1121 @node Running a Program with Multiple Units
1122 @section Running a Program with Multiple Units
1123
1124 @noindent
1125 Consider a slightly more complicated example that has three files: a
1126 main program, and the spec and body of a package:
1127
1128 @smallexample @c ada
1129 @cartouche
1130 @group
1131 package Greetings is
1132 procedure Hello;
1133 procedure Goodbye;
1134 end Greetings;
1135
1136 with Ada.Text_IO; use Ada.Text_IO;
1137 package body Greetings is
1138 procedure Hello is
1139 begin
1140 Put_Line ("Hello WORLD!");
1141 end Hello;
1142
1143 procedure Goodbye is
1144 begin
1145 Put_Line ("Goodbye WORLD!");
1146 end Goodbye;
1147 end Greetings;
1148 @end group
1149
1150 @group
1151 with Greetings;
1152 procedure Gmain is
1153 begin
1154 Greetings.Hello;
1155 Greetings.Goodbye;
1156 end Gmain;
1157 @end group
1158 @end cartouche
1159 @end smallexample
1160
1161 @noindent
1162 Following the one-unit-per-file rule, place this program in the
1163 following three separate files:
1164
1165 @table @file
1166 @item greetings.ads
1167 spec of package @code{Greetings}
1168
1169 @item greetings.adb
1170 body of package @code{Greetings}
1171
1172 @item gmain.adb
1173 body of main program
1174 @end table
1175
1176 @noindent
1177 To build an executable version of
1178 this program, we could use four separate steps to compile, bind, and link
1179 the program, as follows:
1180
1181 @smallexample
1182 $ gcc -c gmain.adb
1183 $ gcc -c greetings.adb
1184 $ gnatbind gmain
1185 $ gnatlink gmain
1186 @end smallexample
1187
1188 @noindent
1189 Note that there is no required order of compilation when using GNAT.
1190 In particular it is perfectly fine to compile the main program first.
1191 Also, it is not necessary to compile package specs in the case where
1192 there is an accompanying body; you only need to compile the body. If you want
1193 to submit these files to the compiler for semantic checking and not code
1194 generation, then use the
1195 @option{-gnatc} switch:
1196
1197 @smallexample
1198 $ gcc -c greetings.ads -gnatc
1199 @end smallexample
1200
1201 @noindent
1202 Although the compilation can be done in separate steps as in the
1203 above example, in practice it is almost always more convenient
1204 to use the @code{gnatmake} tool. All you need to know in this case
1205 is the name of the main program's source file. The effect of the above four
1206 commands can be achieved with a single one:
1207
1208 @smallexample
1209 $ gnatmake gmain.adb
1210 @end smallexample
1211
1212 @noindent
1213 In the next section we discuss the advantages of using @code{gnatmake} in
1214 more detail.
1215
1216 @c *****************************
1217 @node Using the gnatmake Utility
1218 @section Using the @command{gnatmake} Utility
1219
1220 @noindent
1221 If you work on a program by compiling single components at a time using
1222 @code{gcc}, you typically keep track of the units you modify. In order to
1223 build a consistent system, you compile not only these units, but also any
1224 units that depend on the units you have modified.
1225 For example, in the preceding case,
1226 if you edit @file{gmain.adb}, you only need to recompile that file. But if
1227 you edit @file{greetings.ads}, you must recompile both
1228 @file{greetings.adb} and @file{gmain.adb}, because both files contain
1229 units that depend on @file{greetings.ads}.
1230
1231 @code{gnatbind} will warn you if you forget one of these compilation
1232 steps, so that it is impossible to generate an inconsistent program as a
1233 result of forgetting to do a compilation. Nevertheless it is tedious and
1234 error-prone to keep track of dependencies among units.
1235 One approach to handle the dependency-bookkeeping is to use a
1236 makefile. However, makefiles present maintenance problems of their own:
1237 if the dependencies change as you change the program, you must make
1238 sure that the makefile is kept up-to-date manually, which is also an
1239 error-prone process.
1240
1241 The @code{gnatmake} utility takes care of these details automatically.
1242 Invoke it using either one of the following forms:
1243
1244 @smallexample
1245 $ gnatmake gmain.adb
1246 $ gnatmake ^gmain^GMAIN^
1247 @end smallexample
1248
1249 @noindent
1250 The argument is the name of the file containing the main program;
1251 you may omit the extension. @code{gnatmake}
1252 examines the environment, automatically recompiles any files that need
1253 recompiling, and binds and links the resulting set of object files,
1254 generating the executable file, @file{^gmain^GMAIN.EXE^}.
1255 In a large program, it
1256 can be extremely helpful to use @code{gnatmake}, because working out by hand
1257 what needs to be recompiled can be difficult.
1258
1259 Note that @code{gnatmake}
1260 takes into account all the Ada 95 rules that
1261 establish dependencies among units. These include dependencies that result
1262 from inlining subprogram bodies, and from
1263 generic instantiation. Unlike some other
1264 Ada make tools, @code{gnatmake} does not rely on the dependencies that were
1265 found by the compiler on a previous compilation, which may possibly
1266 be wrong when sources change. @code{gnatmake} determines the exact set of
1267 dependencies from scratch each time it is run.
1268
1269 @ifset vms
1270 @node Editing with Emacs
1271 @section Editing with Emacs
1272 @cindex Emacs
1273
1274 @noindent
1275 Emacs is an extensible self-documenting text editor that is available in a
1276 separate VMSINSTAL kit.
1277
1278 Invoke Emacs by typing @kbd{Emacs} at the command prompt. To get started,
1279 click on the Emacs Help menu and run the Emacs Tutorial.
1280 In a character cell terminal, Emacs help is invoked with @kbd{Ctrl-h} (also
1281 written as @kbd{C-h}), and the tutorial by @kbd{C-h t}.
1282
1283 Documentation on Emacs and other tools is available in Emacs under the
1284 pull-down menu button: @code{Help - Info}. After selecting @code{Info},
1285 use the middle mouse button to select a topic (e.g. Emacs).
1286
1287 In a character cell terminal, do @kbd{C-h i} to invoke info, and then @kbd{m}
1288 (stands for menu) followed by the menu item desired, as in @kbd{m Emacs}, to
1289 get to the Emacs manual.
1290 Help on Emacs is also available by typing @kbd{HELP EMACS} at the DCL command
1291 prompt.
1292
1293 The tutorial is highly recommended in order to learn the intricacies of Emacs,
1294 which is sufficiently extensible to provide for a complete programming
1295 environment and shell for the sophisticated user.
1296 @end ifset
1297
1298 @ifclear vms
1299 @node Introduction to GPS
1300 @section Introduction to GPS
1301 @cindex GPS (GNAT Programming System)
1302 @cindex GNAT Programming System (GPS)
1303 @noindent
1304 Although the command line interface (@command{gnatmake}, etc.) alone
1305 is sufficient, a graphical Interactive Development
1306 Environment can make it easier for you to compose, navigate, and debug
1307 programs. This section describes the main features of GPS
1308 (``GNAT Programming System''), the GNAT graphical IDE.
1309 You will see how to use GPS to build and debug an executable, and
1310 you will also learn some of the basics of the GNAT ``project'' facility.
1311
1312 GPS enables you to do much more than is presented here;
1313 e.g., you can produce a call graph, interface to a third-party
1314 Version Control System, and inspect the generated assembly language
1315 for a program.
1316 Indeed, GPS also supports languages other than Ada.
1317 Such additional information, and an explanation of all of the GPS menu
1318 items. may be found in the on-line help, which includes
1319 a user's guide and a tutorial (these are also accessible from the GNAT
1320 startup menu).
1321
1322 @menu
1323 * Building a New Program with GPS::
1324 * Simple Debugging with GPS::
1325 @end menu
1326
1327
1328 @node Building a New Program with GPS
1329 @subsection Building a New Program with GPS
1330 @noindent
1331 GPS invokes the GNAT compilation tools using information
1332 contained in a @emph{project} (also known as a @emph{project file}):
1333 a collection of properties such
1334 as source directories, identities of main subprograms, tool switches, etc.,
1335 and their associated values.
1336 (See @ref{GNAT Project Manager}, for details.)
1337 In order to run GPS, you will need to either create a new project
1338 or else open an existing one.
1339
1340 This section will explain how you can use GPS to create a project,
1341 to associate Ada source files with a project, and to build and run
1342 programs.
1343
1344 @enumerate
1345 @item @emph{Creating a project}
1346
1347 Invoke GPS, either from the command line or the platform's IDE.
1348 After it starts, GPS will display a ``Welcome'' screen with three
1349 radio buttons:
1350
1351 @itemize @bullet
1352 @item
1353 @code{Start with default project in directory}
1354
1355 @item
1356 @code{Create new project with wizard}
1357
1358 @item
1359 @code{Open existing project}
1360 @end itemize
1361
1362 @noindent
1363 Select @code{Create new project with wizard} and press @code{OK}.
1364 A new window will appear. In the text box labeled with
1365 @code{Enter the name of the project to create}, type @file{sample}
1366 as the project name.
1367 In the next box, browse to choose the directory in which you
1368 would like to create the project file.
1369 After selecting an appropriate directory, press @code{Forward}.
1370
1371 A window will appear with the title
1372 @code{Version Control System Configuration}.
1373 Simply press @code{Forward}.
1374
1375 A window will appear with the title
1376 @code{Please select the source directories for this project}.
1377 The directory that you specified for the project file will be selected
1378 by default as the one to use for sources; simply press @code{Forward}.
1379
1380 A window will appear with the title
1381 @code{Please select the build directory for this project}.
1382 The directory that you specified for the project file will be selected
1383 by default for object files and executables;
1384 simply press @code{Forward}.
1385
1386 A window will appear with the title
1387 @code{Please select the main units for this project}.
1388 You will supply this information later, after creating the source file.
1389 Simply press @code{Forward} for now.
1390
1391 A window will appear with the title
1392 @code{Please select the switches to build the project}.
1393 Press @code{Apply}. This will create a project file named
1394 @file{sample.prj} in the directory that you had specified.
1395
1396 @item @emph{Creating and saving the source file}
1397
1398 After you create the new project, a GPS window will appear, which is
1399 partitioned into two main sections:
1400
1401 @itemize @bullet
1402 @item
1403 A @emph{Workspace area}, initially greyed out, which you will use for
1404 creating and editing source files
1405
1406 @item
1407 Directly below, a @emph{Messages area}, which initially displays a
1408 ``Welcome'' message.
1409 (If the Messages area is not visible, drag its border upward to expand it.)
1410 @end itemize
1411
1412 @noindent
1413 Select @code{File} on the menu bar, and then the @code{New} command.
1414 The Workspace area will become white, and you can now
1415 enter the source program explicitly.
1416 Type the following text
1417
1418 @smallexample @c ada
1419 @group
1420 with Ada.Text_IO; use Ada.Text_IO;
1421 procedure Hello is
1422 begin
1423 Put_Line("Hello from GPS!");
1424 end Hello;
1425 @end group
1426 @end smallexample
1427
1428 @noindent
1429 Select @code{File}, then @code{Save As}, and enter the source file name
1430 @file{hello.adb}.
1431 The file will be saved in the same directory you specified as the
1432 location of the default project file.
1433
1434
1435 @item @emph{Updating the project file}
1436
1437 You need to add the new source file to the project.
1438 To do this, select
1439 the @code{Project} menu and then @code{Edit project properties}.
1440 Click the @code{Main files} tab on the left, and then the
1441 @code{Add} button.
1442 Choose @file{hello.adb} from the list, and press @code{Open}.
1443 The project settings window will reflect this action.
1444 Click @code{OK}.
1445
1446 @item @emph{Building and running the program}
1447
1448 In the main GPS window, now choose the @code{Build} menu, then @code{Make},
1449 and select @file{hello.adb}.
1450 The Messages window will display the resulting invocations of @command{gcc},
1451 @command{gnatbind}, and @command{gnatlink}
1452 (reflecting the default switch settings from the
1453 project file that you created) and then a ``successful compilation/build''
1454 message.
1455
1456 To run the program, choose the @code{Build} menu, then @code{Run}, and
1457 select @command{hello}.
1458 An @emph{Arguments Selection} window will appear.
1459 There are no command line arguments, so just click @code{OK}.
1460
1461 The Messages window will now display the program's output (the string
1462 @code{Hello from GPS}), and at the bottom of the GPS window a status
1463 update is displayed (@code{Run: hello}).
1464 Close the GPS window (or select @code{File}, then @code{Exit}) to
1465 terminate this GPS session.
1466 @end enumerate
1467
1468
1469
1470 @node Simple Debugging with GPS
1471 @subsection Simple Debugging with GPS
1472 @noindent
1473 This section illustrates basic debugging techniques (setting breakpoints,
1474 examining/modifying variables, single stepping).
1475
1476 @enumerate
1477 @item @emph{Opening a project}
1478
1479 Start GPS and select @code{Open existing project}; browse to
1480 specify the project file @file{sample.prj} that you had created in the
1481 earlier example.
1482
1483 @item @emph{Creating a source file}
1484
1485 Select @code{File}, then @code{New}, and type in the following program:
1486
1487 @smallexample @c ada
1488 @group
1489 with Ada.Text_IO; use Ada.Text_IO;
1490 procedure Example is
1491 Line : String (1..80);
1492 N : Natural;
1493 begin
1494 Put_Line("Type a line of text at each prompt; an empty line to exit");
1495 loop
1496 Put(": ");
1497 Get_Line (Line, N);
1498 Put_Line (Line (1..N) );
1499 exit when N=0;
1500 end loop;
1501 end Example;
1502 @end group
1503 @end smallexample
1504
1505 @noindent
1506 Select @code{File}, then @code{Save as}, and enter the file name
1507 @file{example.adb}.
1508
1509 @item @emph{Updating the project file}
1510
1511 Add @code{Example} as a new main unit for the project:
1512 @enumerate a
1513 @item
1514 Select @code{Project}, then @code{Edit Project Properties}.
1515
1516 @item
1517 Select the @code{Main files} tab, click @code{Add}, then
1518 select the file @file{example.adb} from the list, and
1519 click @code{Open}.
1520 You will see the file name appear in the list of main units
1521
1522 @item
1523 Click @code{OK}
1524 @end enumerate
1525
1526 @item @emph{Building/running the executable}
1527
1528 To build the executable
1529 select @code{Build}, then @code{Make}, and then choose @file{example.adb}.
1530
1531 Run the program to see its effect (in the Messages area).
1532 Each line that you enter is displayed; an empty line will
1533 cause the loop to exit and the program to terminate.
1534
1535 @item @emph{Debugging the program}
1536
1537 Note that the @option{-g} switches to @command{gcc} and @command{gnatlink},
1538 which are required for debugging, are on by default when you create
1539 a new project.
1540 Thus unless you intentionally remove these settings, you will be able
1541 to debug any program that you develop using GPS.
1542
1543 @enumerate a
1544 @item @emph{Initializing}
1545
1546 Select @code{Debug}, then @code{Initialize}, then @file{example}
1547
1548 @item @emph{Setting a breakpoint}
1549
1550 After performing the initialization step, you will observe a small
1551 icon to the right of each line number.
1552 This serves as a toggle for breakpoints; clicking the icon will
1553 set a breakpoint at the corresponding line (the icon will change to
1554 a red circle with an ``x''), and clicking it again
1555 will remove the breakpoint / reset the icon.
1556
1557 For purposes of this example, set a breakpoint at line 10 (the
1558 statement @code{Put_Line@ (Line@ (1..N));}
1559
1560 @item @emph{Starting program execution}
1561
1562 Select @code{Debug}, then @code{Run}. When the
1563 @code{Program Arguments} window appears, click @code{OK}.
1564 A console window will appear; enter some line of text,
1565 e.g. @code{abcde}, at the prompt.
1566 The program will pause execution when it gets to the
1567 breakpoint, and the corresponding line is highlighted.
1568
1569 @item @emph{Examining a variable}
1570
1571 Move the mouse over one of the occurrences of the variable @code{N}.
1572 You will see the value (5) displayed, in ``tool tip'' fashion.
1573 Right click on @code{N}, select @code{Debug}, then select @code{Display N}.
1574 You will see information about @code{N} appear in the @code{Debugger Data}
1575 pane, showing the value as 5.
1576
1577
1578 @item @emph{Assigning a new value to a variable}
1579
1580 Right click on the @code{N} in the @code{Debugger Data} pane, and
1581 select @code{Set value of N}.
1582 When the input window appears, enter the value @code{4} and click
1583 @code{OK}.
1584 This value does not automatically appear in the @code{Debugger Data}
1585 pane; to see it, right click again on the @code{N} in the
1586 @code{Debugger Data} pane and select @code{Update value}.
1587 The new value, 4, will appear in red.
1588
1589 @item @emph{Single stepping}
1590
1591 Select @code{Debug}, then @code{Next}.
1592 This will cause the next statement to be executed, in this case the
1593 call of @code{Put_Line} with the string slice.
1594 Notice in the console window that the displayed string is simply
1595 @code{abcd} and not @code{abcde} which you had entered.
1596 This is because the upper bound of the slice is now 4 rather than 5.
1597
1598 @item @emph{Removing a breakpoint}
1599
1600 Toggle the breakpoint icon at line 10.
1601
1602 @item @emph{Resuming execution from a breakpoint}
1603
1604 Select @code{Debug}, then @code{Continue}.
1605 The program will reach the next iteration of the loop, and
1606 wait for input after displaying the prompt.
1607 This time, just hit the @kbd{Enter} key.
1608 The value of @code{N} will be 0, and the program will terminate.
1609 The console window will disappear.
1610 @end enumerate
1611 @end enumerate
1612
1613
1614 @node Introduction to Glide and GVD
1615 @section Introduction to Glide and GVD
1616 @cindex Glide
1617 @cindex GVD
1618 @noindent
1619 This section describes the main features of Glide,
1620 a GNAT graphical IDE, and also shows how to use the basic commands in GVD,
1621 the GNU Visual Debugger.
1622 These tools may be present in addition to, or in place of, GPS on some
1623 platforms.
1624 Additional information on Glide and GVD may be found
1625 in the on-line help for these tools.
1626
1627 @menu
1628 * Building a New Program with Glide::
1629 * Simple Debugging with GVD::
1630 * Other Glide Features::
1631 @end menu
1632
1633 @node Building a New Program with Glide
1634 @subsection Building a New Program with Glide
1635 @noindent
1636 The simplest way to invoke Glide is to enter @command{glide}
1637 at the command prompt. It will generally be useful to issue this
1638 as a background command, thus allowing you to continue using
1639 your command window for other purposes while Glide is running:
1640
1641 @smallexample
1642 $ glide&
1643 @end smallexample
1644
1645 @noindent
1646 Glide will start up with an initial screen displaying the top-level menu items
1647 as well as some other information. The menu selections are as follows
1648 @itemize @bullet
1649 @item @code{Buffers}
1650 @item @code{Files}
1651 @item @code{Tools}
1652 @item @code{Edit}
1653 @item @code{Search}
1654 @item @code{Mule}
1655 @item @code{Glide}
1656 @item @code{Help}
1657 @end itemize
1658
1659 @noindent
1660 For this introductory example, you will need to create a new Ada source file.
1661 First, select the @code{Files} menu. This will pop open a menu with around
1662 a dozen or so items. To create a file, select the @code{Open file...} choice.
1663 Depending on the platform, you may see a pop-up window where you can browse
1664 to an appropriate directory and then enter the file name, or else simply
1665 see a line at the bottom of the Glide window where you can likewise enter
1666 the file name. Note that in Glide, when you attempt to open a non-existent
1667 file, the effect is to create a file with that name. For this example enter
1668 @file{hello.adb} as the name of the file.
1669
1670 A new buffer will now appear, occupying the entire Glide window,
1671 with the file name at the top. The menu selections are slightly different
1672 from the ones you saw on the opening screen; there is an @code{Entities} item,
1673 and in place of @code{Glide} there is now an @code{Ada} item. Glide uses
1674 the file extension to identify the source language, so @file{adb} indicates
1675 an Ada source file.
1676
1677 You will enter some of the source program lines explicitly,
1678 and use the syntax-oriented template mechanism to enter other lines.
1679 First, type the following text:
1680 @smallexample
1681 with Ada.Text_IO; use Ada.Text_IO;
1682 procedure Hello is
1683 begin
1684 @end smallexample
1685
1686 @noindent
1687 Observe that Glide uses different colors to distinguish reserved words from
1688 identifiers. Also, after the @code{procedure Hello is} line, the cursor is
1689 automatically indented in anticipation of declarations. When you enter
1690 @code{begin}, Glide recognizes that there are no declarations and thus places
1691 @code{begin} flush left. But after the @code{begin} line the cursor is again
1692 indented, where the statement(s) will be placed.
1693
1694 The main part of the program will be a @code{for} loop. Instead of entering
1695 the text explicitly, however, use a statement template. Select the @code{Ada}
1696 item on the top menu bar, move the mouse to the @code{Statements} item,
1697 and you will see a large selection of alternatives. Choose @code{for loop}.
1698 You will be prompted (at the bottom of the buffer) for a loop name;
1699 simply press the @key{Enter} key since a loop name is not needed.
1700 You should see the beginning of a @code{for} loop appear in the source
1701 program window. You will now be prompted for the name of the loop variable;
1702 enter a line with the identifier @code{ind} (lower case). Note that,
1703 by default, Glide capitalizes the name (you can override such behavior
1704 if you wish, although this is outside the scope of this introduction).
1705 Next, Glide prompts you for the loop range; enter a line containing
1706 @code{1..5} and you will see this also appear in the source program,
1707 together with the remaining elements of the @code{for} loop syntax.
1708
1709 Next enter the statement (with an intentional error, a missing semicolon)
1710 that will form the body of the loop:
1711 @smallexample
1712 Put_Line("Hello, World" & Integer'Image(I))
1713 @end smallexample
1714
1715 @noindent
1716 Finally, type @code{end Hello;} as the last line in the program.
1717 Now save the file: choose the @code{File} menu item, and then the
1718 @code{Save buffer} selection. You will see a message at the bottom
1719 of the buffer confirming that the file has been saved.
1720
1721 You are now ready to attempt to build the program. Select the @code{Ada}
1722 item from the top menu bar. Although we could choose simply to compile
1723 the file, we will instead attempt to do a build (which invokes
1724 @command{gnatmake}) since, if the compile is successful, we want to build
1725 an executable. Thus select @code{Ada build}. This will fail because of the
1726 compilation error, and you will notice that the Glide window has been split:
1727 the top window contains the source file, and the bottom window contains the
1728 output from the GNAT tools. Glide allows you to navigate from a compilation
1729 error to the source file position corresponding to the error: click the
1730 middle mouse button (or simultaneously press the left and right buttons,
1731 on a two-button mouse) on the diagnostic line in the tool window. The
1732 focus will shift to the source window, and the cursor will be positioned
1733 on the character at which the error was detected.
1734
1735 Correct the error: type in a semicolon to terminate the statement.
1736 Although you can again save the file explicitly, you can also simply invoke
1737 @code{Ada} @result{} @code{Build} and you will be prompted to save the file.
1738 This time the build will succeed; the tool output window shows you the
1739 options that are supplied by default. The GNAT tools' output (e.g.
1740 object and ALI files, executable) will go in the directory from which
1741 Glide was launched.
1742
1743 To execute the program, choose @code{Ada} and then @code{Run}.
1744 You should see the program's output displayed in the bottom window:
1745
1746 @smallexample
1747 Hello, world 1
1748 Hello, world 2
1749 Hello, world 3
1750 Hello, world 4
1751 Hello, world 5
1752 @end smallexample
1753
1754 @node Simple Debugging with GVD
1755 @subsection Simple Debugging with GVD
1756
1757 @noindent
1758 This section describes how to set breakpoints, examine/modify variables,
1759 and step through execution.
1760
1761 In order to enable debugging, you need to pass the @option{-g} switch
1762 to both the compiler and to @command{gnatlink}. If you are using
1763 the command line, passing @option{-g} to @command{gnatmake} will have
1764 this effect. You can then launch GVD, e.g. on the @code{hello} program,
1765 by issuing the command:
1766
1767 @smallexample
1768 $ gvd hello
1769 @end smallexample
1770
1771 @noindent
1772 If you are using Glide, then @option{-g} is passed to the relevant tools
1773 by default when you do a build. Start the debugger by selecting the
1774 @code{Ada} menu item, and then @code{Debug}.
1775
1776 GVD comes up in a multi-part window. One pane shows the names of files
1777 comprising your executable; another pane shows the source code of the current
1778 unit (initially your main subprogram), another pane shows the debugger output
1779 and user interactions, and the fourth pane (the data canvas at the top
1780 of the window) displays data objects that you have selected.
1781
1782 To the left of the source file pane, you will notice green dots adjacent
1783 to some lines. These are lines for which object code exists and where
1784 breakpoints can thus be set. You set/reset a breakpoint by clicking
1785 the green dot. When a breakpoint is set, the dot is replaced by an @code{X}
1786 in a red circle. Clicking the circle toggles the breakpoint off,
1787 and the red circle is replaced by the green dot.
1788
1789 For this example, set a breakpoint at the statement where @code{Put_Line}
1790 is invoked.
1791
1792 Start program execution by selecting the @code{Run} button on the top menu bar.
1793 (The @code{Start} button will also start your program, but it will
1794 cause program execution to break at the entry to your main subprogram.)
1795 Evidence of reaching the breakpoint will appear: the source file line will be
1796 highlighted, and the debugger interactions pane will display
1797 a relevant message.
1798
1799 You can examine the values of variables in several ways. Move the mouse
1800 over an occurrence of @code{Ind} in the @code{for} loop, and you will see
1801 the value (now @code{1}) displayed. Alternatively, right-click on @code{Ind}
1802 and select @code{Display Ind}; a box showing the variable's name and value
1803 will appear in the data canvas.
1804
1805 Although a loop index is a constant with respect to Ada semantics,
1806 you can change its value in the debugger. Right-click in the box
1807 for @code{Ind}, and select the @code{Set Value of Ind} item.
1808 Enter @code{2} as the new value, and press @command{OK}.
1809 The box for @code{Ind} shows the update.
1810
1811 Press the @code{Step} button on the top menu bar; this will step through
1812 one line of program text (the invocation of @code{Put_Line}), and you can
1813 observe the effect of having modified @code{Ind} since the value displayed
1814 is @code{2}.
1815
1816 Remove the breakpoint, and resume execution by selecting the @code{Cont}
1817 button. You will see the remaining output lines displayed in the debugger
1818 interaction window, along with a message confirming normal program
1819 termination.
1820
1821 @node Other Glide Features
1822 @subsection Other Glide Features
1823
1824 @noindent
1825 You may have observed that some of the menu selections contain abbreviations;
1826 e.g., @code{(C-x C-f)} for @code{Open file...} in the @code{Files} menu.
1827 These are @emph{shortcut keys} that you can use instead of selecting
1828 menu items. The @key{C} stands for @key{Ctrl}; thus @code{(C-x C-f)} means
1829 @key{Ctrl-x} followed by @key{Ctrl-f}, and this sequence can be used instead
1830 of selecting @code{Files} and then @code{Open file...}.
1831
1832 To abort a Glide command, type @key{Ctrl-g}.
1833
1834 If you want Glide to start with an existing source file, you can either
1835 launch Glide as above and then open the file via @code{Files} @result{}
1836 @code{Open file...}, or else simply pass the name of the source file
1837 on the command line:
1838
1839 @smallexample
1840 $ glide hello.adb&
1841 @end smallexample
1842
1843 @noindent
1844 While you are using Glide, a number of @emph{buffers} exist.
1845 You create some explicitly; e.g., when you open/create a file.
1846 Others arise as an effect of the commands that you issue; e.g., the buffer
1847 containing the output of the tools invoked during a build. If a buffer
1848 is hidden, you can bring it into a visible window by first opening
1849 the @code{Buffers} menu and then selecting the desired entry.
1850
1851 If a buffer occupies only part of the Glide screen and you want to expand it
1852 to fill the entire screen, then click in the buffer and then select
1853 @code{Files} @result{} @code{One Window}.
1854
1855 If a window is occupied by one buffer and you want to split the window
1856 to bring up a second buffer, perform the following steps:
1857 @itemize @bullet
1858 @item Select @code{Files} @result{} @code{Split Window};
1859 this will produce two windows each of which holds the original buffer
1860 (these are not copies, but rather different views of the same buffer contents)
1861
1862 @item With the focus in one of the windows,
1863 select the desired buffer from the @code{Buffers} menu
1864 @end itemize
1865
1866 @noindent
1867 To exit from Glide, choose @code{Files} @result{} @code{Exit}.
1868 @end ifclear
1869
1870 @node The GNAT Compilation Model
1871 @chapter The GNAT Compilation Model
1872 @cindex GNAT compilation model
1873 @cindex Compilation model
1874
1875 @menu
1876 * Source Representation::
1877 * Foreign Language Representation::
1878 * File Naming Rules::
1879 * Using Other File Names::
1880 * Alternative File Naming Schemes::
1881 * Generating Object Files::
1882 * Source Dependencies::
1883 * The Ada Library Information Files::
1884 * Binding an Ada Program::
1885 * Mixed Language Programming::
1886 * Building Mixed Ada & C++ Programs::
1887 * Comparison between GNAT and C/C++ Compilation Models::
1888 * Comparison between GNAT and Conventional Ada Library Models::
1889 @ifset vms
1890 * Placement of temporary files::
1891 @end ifset
1892 @end menu
1893
1894 @noindent
1895 This chapter describes the compilation model used by GNAT. Although
1896 similar to that used by other languages, such as C and C++, this model
1897 is substantially different from the traditional Ada compilation models,
1898 which are based on a library. The model is initially described without
1899 reference to the library-based model. If you have not previously used an
1900 Ada compiler, you need only read the first part of this chapter. The
1901 last section describes and discusses the differences between the GNAT
1902 model and the traditional Ada compiler models. If you have used other
1903 Ada compilers, this section will help you to understand those
1904 differences, and the advantages of the GNAT model.
1905
1906 @node Source Representation
1907 @section Source Representation
1908 @cindex Latin-1
1909
1910 @noindent
1911 Ada source programs are represented in standard text files, using
1912 Latin-1 coding. Latin-1 is an 8-bit code that includes the familiar
1913 7-bit ASCII set, plus additional characters used for
1914 representing foreign languages (@pxref{Foreign Language Representation}
1915 for support of non-USA character sets). The format effector characters
1916 are represented using their standard ASCII encodings, as follows:
1917
1918 @table @code
1919 @item VT
1920 @findex VT
1921 Vertical tab, @code{16#0B#}
1922
1923 @item HT
1924 @findex HT
1925 Horizontal tab, @code{16#09#}
1926
1927 @item CR
1928 @findex CR
1929 Carriage return, @code{16#0D#}
1930
1931 @item LF
1932 @findex LF
1933 Line feed, @code{16#0A#}
1934
1935 @item FF
1936 @findex FF
1937 Form feed, @code{16#0C#}
1938 @end table
1939
1940 @noindent
1941 Source files are in standard text file format. In addition, GNAT will
1942 recognize a wide variety of stream formats, in which the end of physical
1943 physical lines is marked by any of the following sequences:
1944 @code{LF}, @code{CR}, @code{CR-LF}, or @code{LF-CR}. This is useful
1945 in accommodating files that are imported from other operating systems.
1946
1947 @cindex End of source file
1948 @cindex Source file, end
1949 @findex SUB
1950 The end of a source file is normally represented by the physical end of
1951 file. However, the control character @code{16#1A#} (@code{SUB}) is also
1952 recognized as signalling the end of the source file. Again, this is
1953 provided for compatibility with other operating systems where this
1954 code is used to represent the end of file.
1955
1956 Each file contains a single Ada compilation unit, including any pragmas
1957 associated with the unit. For example, this means you must place a
1958 package declaration (a package @dfn{spec}) and the corresponding body in
1959 separate files. An Ada @dfn{compilation} (which is a sequence of
1960 compilation units) is represented using a sequence of files. Similarly,
1961 you will place each subunit or child unit in a separate file.
1962
1963 @node Foreign Language Representation
1964 @section Foreign Language Representation
1965
1966 @noindent
1967 GNAT supports the standard character sets defined in Ada 95 as well as
1968 several other non-standard character sets for use in localized versions
1969 of the compiler (@pxref{Character Set Control}).
1970 @menu
1971 * Latin-1::
1972 * Other 8-Bit Codes::
1973 * Wide Character Encodings::
1974 @end menu
1975
1976 @node Latin-1
1977 @subsection Latin-1
1978 @cindex Latin-1
1979
1980 @noindent
1981 The basic character set is Latin-1. This character set is defined by ISO
1982 standard 8859, part 1. The lower half (character codes @code{16#00#}
1983 ... @code{16#7F#)} is identical to standard ASCII coding, but the upper half
1984 is used to represent additional characters. These include extended letters
1985 used by European languages, such as French accents, the vowels with umlauts
1986 used in German, and the extra letter A-ring used in Swedish.
1987
1988 @findex Ada.Characters.Latin_1
1989 For a complete list of Latin-1 codes and their encodings, see the source
1990 file of library unit @code{Ada.Characters.Latin_1} in file
1991 @file{a-chlat1.ads}.
1992 You may use any of these extended characters freely in character or
1993 string literals. In addition, the extended characters that represent
1994 letters can be used in identifiers.
1995
1996 @node Other 8-Bit Codes
1997 @subsection Other 8-Bit Codes
1998
1999 @noindent
2000 GNAT also supports several other 8-bit coding schemes:
2001
2002 @table @asis
2003 @item ISO 8859-2 (Latin-2)
2004 @cindex Latin-2
2005 @cindex ISO 8859-2
2006 Latin-2 letters allowed in identifiers, with uppercase and lowercase
2007 equivalence.
2008
2009 @item ISO 8859-3 (Latin-3)
2010 @cindex Latin-3
2011 @cindex ISO 8859-3
2012 Latin-3 letters allowed in identifiers, with uppercase and lowercase
2013 equivalence.
2014
2015 @item ISO 8859-4 (Latin-4)
2016 @cindex Latin-4
2017 @cindex ISO 8859-4
2018 Latin-4 letters allowed in identifiers, with uppercase and lowercase
2019 equivalence.
2020
2021 @item ISO 8859-5 (Cyrillic)
2022 @cindex ISO 8859-5
2023 @cindex Cyrillic
2024 ISO 8859-5 letters (Cyrillic) allowed in identifiers, with uppercase and
2025 lowercase equivalence.
2026
2027 @item ISO 8859-15 (Latin-9)
2028 @cindex ISO 8859-15
2029 @cindex Latin-9
2030 ISO 8859-15 (Latin-9) letters allowed in identifiers, with uppercase and
2031 lowercase equivalence
2032
2033 @item IBM PC (code page 437)
2034 @cindex code page 437
2035 This code page is the normal default for PCs in the U.S. It corresponds
2036 to the original IBM PC character set. This set has some, but not all, of
2037 the extended Latin-1 letters, but these letters do not have the same
2038 encoding as Latin-1. In this mode, these letters are allowed in
2039 identifiers with uppercase and lowercase equivalence.
2040
2041 @item IBM PC (code page 850)
2042 @cindex code page 850
2043 This code page is a modification of 437 extended to include all the
2044 Latin-1 letters, but still not with the usual Latin-1 encoding. In this
2045 mode, all these letters are allowed in identifiers with uppercase and
2046 lowercase equivalence.
2047
2048 @item Full Upper 8-bit
2049 Any character in the range 80-FF allowed in identifiers, and all are
2050 considered distinct. In other words, there are no uppercase and lowercase
2051 equivalences in this range. This is useful in conjunction with
2052 certain encoding schemes used for some foreign character sets (e.g.
2053 the typical method of representing Chinese characters on the PC).
2054
2055 @item No Upper-Half
2056 No upper-half characters in the range 80-FF are allowed in identifiers.
2057 This gives Ada 83 compatibility for identifier names.
2058 @end table
2059
2060 @noindent
2061 For precise data on the encodings permitted, and the uppercase and lowercase
2062 equivalences that are recognized, see the file @file{csets.adb} in
2063 the GNAT compiler sources. You will need to obtain a full source release
2064 of GNAT to obtain this file.
2065
2066 @node Wide Character Encodings
2067 @subsection Wide Character Encodings
2068
2069 @noindent
2070 GNAT allows wide character codes to appear in character and string
2071 literals, and also optionally in identifiers, by means of the following
2072 possible encoding schemes:
2073
2074 @table @asis
2075
2076 @item Hex Coding
2077 In this encoding, a wide character is represented by the following five
2078 character sequence:
2079
2080 @smallexample
2081 ESC a b c d
2082 @end smallexample
2083
2084 @noindent
2085 Where @code{a}, @code{b}, @code{c}, @code{d} are the four hexadecimal
2086 characters (using uppercase letters) of the wide character code. For
2087 example, ESC A345 is used to represent the wide character with code
2088 @code{16#A345#}.
2089 This scheme is compatible with use of the full Wide_Character set.
2090
2091 @item Upper-Half Coding
2092 @cindex Upper-Half Coding
2093 The wide character with encoding @code{16#abcd#} where the upper bit is on
2094 (in other words, ``a'' is in the range 8-F) is represented as two bytes,
2095 @code{16#ab#} and @code{16#cd#}. The second byte cannot be a format control
2096 character, but is not required to be in the upper half. This method can
2097 be also used for shift-JIS or EUC, where the internal coding matches the
2098 external coding.
2099
2100 @item Shift JIS Coding
2101 @cindex Shift JIS Coding
2102 A wide character is represented by a two-character sequence,
2103 @code{16#ab#} and
2104 @code{16#cd#}, with the restrictions described for upper-half encoding as
2105 described above. The internal character code is the corresponding JIS
2106 character according to the standard algorithm for Shift-JIS
2107 conversion. Only characters defined in the JIS code set table can be
2108 used with this encoding method.
2109
2110 @item EUC Coding
2111 @cindex EUC Coding
2112 A wide character is represented by a two-character sequence
2113 @code{16#ab#} and
2114 @code{16#cd#}, with both characters being in the upper half. The internal
2115 character code is the corresponding JIS character according to the EUC
2116 encoding algorithm. Only characters defined in the JIS code set table
2117 can be used with this encoding method.
2118
2119 @item UTF-8 Coding
2120 A wide character is represented using
2121 UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO
2122 10646-1/Am.2. Depending on the character value, the representation
2123 is a one, two, or three byte sequence:
2124 @smallexample
2125 @iftex
2126 @leftskip=.7cm
2127 @end iftex
2128 16#0000#-16#007f#: 2#0xxxxxxx#
2129 16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#
2130 16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#
2131
2132 @end smallexample
2133
2134 @noindent
2135 where the xxx bits correspond to the left-padded bits of the
2136 16-bit character value. Note that all lower half ASCII characters
2137 are represented as ASCII bytes and all upper half characters and
2138 other wide characters are represented as sequences of upper-half
2139 (The full UTF-8 scheme allows for encoding 31-bit characters as
2140 6-byte sequences, but in this implementation, all UTF-8 sequences
2141 of four or more bytes length will be treated as illegal).
2142 @item Brackets Coding
2143 In this encoding, a wide character is represented by the following eight
2144 character sequence:
2145
2146 @smallexample
2147 [ " a b c d " ]
2148 @end smallexample
2149
2150 @noindent
2151 Where @code{a}, @code{b}, @code{c}, @code{d} are the four hexadecimal
2152 characters (using uppercase letters) of the wide character code. For
2153 example, [``A345''] is used to represent the wide character with code
2154 @code{16#A345#}. It is also possible (though not required) to use the
2155 Brackets coding for upper half characters. For example, the code
2156 @code{16#A3#} can be represented as @code{[``A3'']}.
2157
2158 This scheme is compatible with use of the full Wide_Character set,
2159 and is also the method used for wide character encoding in the standard
2160 ACVC (Ada Compiler Validation Capability) test suite distributions.
2161
2162 @end table
2163
2164 @noindent
2165 Note: Some of these coding schemes do not permit the full use of the
2166 Ada 95 character set. For example, neither Shift JIS, nor EUC allow the
2167 use of the upper half of the Latin-1 set.
2168
2169 @node File Naming Rules
2170 @section File Naming Rules
2171
2172 @noindent
2173 The default file name is determined by the name of the unit that the
2174 file contains. The name is formed by taking the full expanded name of
2175 the unit and replacing the separating dots with hyphens and using
2176 ^lowercase^uppercase^ for all letters.
2177
2178 An exception arises if the file name generated by the above rules starts
2179 with one of the characters
2180 @ifset vms
2181 A,G,I, or S,
2182 @end ifset
2183 @ifclear vms
2184 a,g,i, or s,
2185 @end ifclear
2186 and the second character is a
2187 minus. In this case, the character ^tilde^dollar sign^ is used in place
2188 of the minus. The reason for this special rule is to avoid clashes with
2189 the standard names for child units of the packages System, Ada,
2190 Interfaces, and GNAT, which use the prefixes
2191 @ifset vms
2192 S- A- I- and G-
2193 @end ifset
2194 @ifclear vms
2195 s- a- i- and g-
2196 @end ifclear
2197 respectively.
2198
2199 The file extension is @file{.ads} for a spec and
2200 @file{.adb} for a body. The following list shows some
2201 examples of these rules.
2202
2203 @table @file
2204 @item main.ads
2205 Main (spec)
2206 @item main.adb
2207 Main (body)
2208 @item arith_functions.ads
2209 Arith_Functions (package spec)
2210 @item arith_functions.adb
2211 Arith_Functions (package body)
2212 @item func-spec.ads
2213 Func.Spec (child package spec)
2214 @item func-spec.adb
2215 Func.Spec (child package body)
2216 @item main-sub.adb
2217 Sub (subunit of Main)
2218 @item ^a~bad.adb^A$BAD.ADB^
2219 A.Bad (child package body)
2220 @end table
2221
2222 @noindent
2223 Following these rules can result in excessively long
2224 file names if corresponding
2225 unit names are long (for example, if child units or subunits are
2226 heavily nested). An option is available to shorten such long file names
2227 (called file name ``krunching''). This may be particularly useful when
2228 programs being developed with GNAT are to be used on operating systems
2229 with limited file name lengths. @xref{Using gnatkr}.
2230
2231 Of course, no file shortening algorithm can guarantee uniqueness over
2232 all possible unit names; if file name krunching is used, it is your
2233 responsibility to ensure no name clashes occur. Alternatively you
2234 can specify the exact file names that you want used, as described
2235 in the next section. Finally, if your Ada programs are migrating from a
2236 compiler with a different naming convention, you can use the gnatchop
2237 utility to produce source files that follow the GNAT naming conventions.
2238 (For details @pxref{Renaming Files Using gnatchop}.)
2239
2240 Note: in the case of @code{Windows NT/XP} or @code{OpenVMS} operating
2241 systems, case is not significant. So for example on @code{Windows XP}
2242 if the canonical name is @code{main-sub.adb}, you can use the file name
2243 @code{Main-Sub.adb} instead. However, case is significant for other
2244 operating systems, so for example, if you want to use other than
2245 canonically cased file names on a Unix system, you need to follow
2246 the procedures described in the next section.
2247
2248 @node Using Other File Names
2249 @section Using Other File Names
2250 @cindex File names
2251
2252 @noindent
2253 In the previous section, we have described the default rules used by
2254 GNAT to determine the file name in which a given unit resides. It is
2255 often convenient to follow these default rules, and if you follow them,
2256 the compiler knows without being explicitly told where to find all
2257 the files it needs.
2258
2259 However, in some cases, particularly when a program is imported from
2260 another Ada compiler environment, it may be more convenient for the
2261 programmer to specify which file names contain which units. GNAT allows
2262 arbitrary file names to be used by means of the Source_File_Name pragma.
2263 The form of this pragma is as shown in the following examples:
2264 @cindex Source_File_Name pragma
2265
2266 @smallexample @c ada
2267 @cartouche
2268 pragma Source_File_Name (My_Utilities.Stacks,
2269 Spec_File_Name => "myutilst_a.ada");
2270 pragma Source_File_name (My_Utilities.Stacks,
2271 Body_File_Name => "myutilst.ada");
2272 @end cartouche
2273 @end smallexample
2274
2275 @noindent
2276 As shown in this example, the first argument for the pragma is the unit
2277 name (in this example a child unit). The second argument has the form
2278 of a named association. The identifier
2279 indicates whether the file name is for a spec or a body;
2280 the file name itself is given by a string literal.
2281
2282 The source file name pragma is a configuration pragma, which means that
2283 normally it will be placed in the @file{gnat.adc}
2284 file used to hold configuration
2285 pragmas that apply to a complete compilation environment.
2286 For more details on how the @file{gnat.adc} file is created and used
2287 @pxref{Handling of Configuration Pragmas}
2288 @cindex @file{gnat.adc}
2289
2290 @ifclear vms
2291 GNAT allows completely arbitrary file names to be specified using the
2292 source file name pragma. However, if the file name specified has an
2293 extension other than @file{.ads} or @file{.adb} it is necessary to use
2294 a special syntax when compiling the file. The name in this case must be
2295 preceded by the special sequence @code{-x} followed by a space and the name
2296 of the language, here @code{ada}, as in:
2297
2298 @smallexample
2299 $ gcc -c -x ada peculiar_file_name.sim
2300 @end smallexample
2301 @end ifclear
2302
2303 @noindent
2304 @code{gnatmake} handles non-standard file names in the usual manner (the
2305 non-standard file name for the main program is simply used as the
2306 argument to gnatmake). Note that if the extension is also non-standard,
2307 then it must be included in the gnatmake command, it may not be omitted.
2308
2309 @node Alternative File Naming Schemes
2310 @section Alternative File Naming Schemes
2311 @cindex File naming schemes, alternative
2312 @cindex File names
2313
2314 In the previous section, we described the use of the @code{Source_File_Name}
2315 pragma to allow arbitrary names to be assigned to individual source files.
2316 However, this approach requires one pragma for each file, and especially in
2317 large systems can result in very long @file{gnat.adc} files, and also create
2318 a maintenance problem.
2319
2320 GNAT also provides a facility for specifying systematic file naming schemes
2321 other than the standard default naming scheme previously described. An
2322 alternative scheme for naming is specified by the use of
2323 @code{Source_File_Name} pragmas having the following format:
2324 @cindex Source_File_Name pragma
2325
2326 @smallexample @c ada
2327 pragma Source_File_Name (
2328 Spec_File_Name => FILE_NAME_PATTERN
2329 [,Casing => CASING_SPEC]
2330 [,Dot_Replacement => STRING_LITERAL]);
2331
2332 pragma Source_File_Name (
2333 Body_File_Name => FILE_NAME_PATTERN
2334 [,Casing => CASING_SPEC]
2335 [,Dot_Replacement => STRING_LITERAL]);
2336
2337 pragma Source_File_Name (
2338 Subunit_File_Name => FILE_NAME_PATTERN
2339 [,Casing => CASING_SPEC]
2340 [,Dot_Replacement => STRING_LITERAL]);
2341
2342 FILE_NAME_PATTERN ::= STRING_LITERAL
2343 CASING_SPEC ::= Lowercase | Uppercase | Mixedcase
2344 @end smallexample
2345
2346 @noindent
2347 The @code{FILE_NAME_PATTERN} string shows how the file name is constructed.
2348 It contains a single asterisk character, and the unit name is substituted
2349 systematically for this asterisk. The optional parameter
2350 @code{Casing} indicates
2351 whether the unit name is to be all upper-case letters, all lower-case letters,
2352 or mixed-case. If no
2353 @code{Casing} parameter is used, then the default is all
2354 ^lower-case^upper-case^.
2355
2356 The optional @code{Dot_Replacement} string is used to replace any periods
2357 that occur in subunit or child unit names. If no @code{Dot_Replacement}
2358 argument is used then separating dots appear unchanged in the resulting
2359 file name.
2360 Although the above syntax indicates that the
2361 @code{Casing} argument must appear
2362 before the @code{Dot_Replacement} argument, but it
2363 is also permissible to write these arguments in the opposite order.
2364
2365 As indicated, it is possible to specify different naming schemes for
2366 bodies, specs, and subunits. Quite often the rule for subunits is the
2367 same as the rule for bodies, in which case, there is no need to give
2368 a separate @code{Subunit_File_Name} rule, and in this case the
2369 @code{Body_File_name} rule is used for subunits as well.
2370
2371 The separate rule for subunits can also be used to implement the rather
2372 unusual case of a compilation environment (e.g. a single directory) which
2373 contains a subunit and a child unit with the same unit name. Although
2374 both units cannot appear in the same partition, the Ada Reference Manual
2375 allows (but does not require) the possibility of the two units coexisting
2376 in the same environment.
2377
2378 The file name translation works in the following steps:
2379
2380 @itemize @bullet
2381
2382 @item
2383 If there is a specific @code{Source_File_Name} pragma for the given unit,
2384 then this is always used, and any general pattern rules are ignored.
2385
2386 @item
2387 If there is a pattern type @code{Source_File_Name} pragma that applies to
2388 the unit, then the resulting file name will be used if the file exists. If
2389 more than one pattern matches, the latest one will be tried first, and the
2390 first attempt resulting in a reference to a file that exists will be used.
2391
2392 @item
2393 If no pattern type @code{Source_File_Name} pragma that applies to the unit
2394 for which the corresponding file exists, then the standard GNAT default
2395 naming rules are used.
2396
2397 @end itemize
2398
2399 @noindent
2400 As an example of the use of this mechanism, consider a commonly used scheme
2401 in which file names are all lower case, with separating periods copied
2402 unchanged to the resulting file name, and specs end with @file{.1.ada}, and
2403 bodies end with @file{.2.ada}. GNAT will follow this scheme if the following
2404 two pragmas appear:
2405
2406 @smallexample @c ada
2407 pragma Source_File_Name
2408 (Spec_File_Name => "*.1.ada");
2409 pragma Source_File_Name
2410 (Body_File_Name => "*.2.ada");
2411 @end smallexample
2412
2413 @noindent
2414 The default GNAT scheme is actually implemented by providing the following
2415 default pragmas internally:
2416
2417 @smallexample @c ada
2418 pragma Source_File_Name
2419 (Spec_File_Name => "*.ads", Dot_Replacement => "-");
2420 pragma Source_File_Name
2421 (Body_File_Name => "*.adb", Dot_Replacement => "-");
2422 @end smallexample
2423
2424 @noindent
2425 Our final example implements a scheme typically used with one of the
2426 Ada 83 compilers, where the separator character for subunits was ``__''
2427 (two underscores), specs were identified by adding @file{_.ADA}, bodies
2428 by adding @file{.ADA}, and subunits by
2429 adding @file{.SEP}. All file names were
2430 upper case. Child units were not present of course since this was an
2431 Ada 83 compiler, but it seems reasonable to extend this scheme to use
2432 the same double underscore separator for child units.
2433
2434 @smallexample @c ada
2435 pragma Source_File_Name
2436 (Spec_File_Name => "*_.ADA",
2437 Dot_Replacement => "__",
2438 Casing = Uppercase);
2439 pragma Source_File_Name
2440 (Body_File_Name => "*.ADA",
2441 Dot_Replacement => "__",
2442 Casing = Uppercase);
2443 pragma Source_File_Name
2444 (Subunit_File_Name => "*.SEP",
2445 Dot_Replacement => "__",
2446 Casing = Uppercase);
2447 @end smallexample
2448
2449 @node Generating Object Files
2450 @section Generating Object Files
2451
2452 @noindent
2453 An Ada program consists of a set of source files, and the first step in
2454 compiling the program is to generate the corresponding object files.
2455 These are generated by compiling a subset of these source files.
2456 The files you need to compile are the following:
2457
2458 @itemize @bullet
2459 @item
2460 If a package spec has no body, compile the package spec to produce the
2461 object file for the package.
2462
2463 @item
2464 If a package has both a spec and a body, compile the body to produce the
2465 object file for the package. The source file for the package spec need
2466 not be compiled in this case because there is only one object file, which
2467 contains the code for both the spec and body of the package.
2468
2469 @item
2470 For a subprogram, compile the subprogram body to produce the object file
2471 for the subprogram. The spec, if one is present, is as usual in a
2472 separate file, and need not be compiled.
2473
2474 @item
2475 @cindex Subunits
2476 In the case of subunits, only compile the parent unit. A single object
2477 file is generated for the entire subunit tree, which includes all the
2478 subunits.
2479
2480 @item
2481 Compile child units independently of their parent units
2482 (though, of course, the spec of all the ancestor unit must be present in order
2483 to compile a child unit).
2484
2485 @item
2486 @cindex Generics
2487 Compile generic units in the same manner as any other units. The object
2488 files in this case are small dummy files that contain at most the
2489 flag used for elaboration checking. This is because GNAT always handles generic
2490 instantiation by means of macro expansion. However, it is still necessary to
2491 compile generic units, for dependency checking and elaboration purposes.
2492 @end itemize
2493
2494 @noindent
2495 The preceding rules describe the set of files that must be compiled to
2496 generate the object files for a program. Each object file has the same
2497 name as the corresponding source file, except that the extension is
2498 @file{.o} as usual.
2499
2500 You may wish to compile other files for the purpose of checking their
2501 syntactic and semantic correctness. For example, in the case where a
2502 package has a separate spec and body, you would not normally compile the
2503 spec. However, it is convenient in practice to compile the spec to make
2504 sure it is error-free before compiling clients of this spec, because such
2505 compilations will fail if there is an error in the spec.
2506
2507 GNAT provides an option for compiling such files purely for the
2508 purposes of checking correctness; such compilations are not required as
2509 part of the process of building a program. To compile a file in this
2510 checking mode, use the @option{-gnatc} switch.
2511
2512 @node Source Dependencies
2513 @section Source Dependencies
2514
2515 @noindent
2516 A given object file clearly depends on the source file which is compiled
2517 to produce it. Here we are using @dfn{depends} in the sense of a typical
2518 @code{make} utility; in other words, an object file depends on a source
2519 file if changes to the source file require the object file to be
2520 recompiled.
2521 In addition to this basic dependency, a given object may depend on
2522 additional source files as follows:
2523
2524 @itemize @bullet
2525 @item
2526 If a file being compiled @code{with}'s a unit @var{X}, the object file
2527 depends on the file containing the spec of unit @var{X}. This includes
2528 files that are @code{with}'ed implicitly either because they are parents
2529 of @code{with}'ed child units or they are run-time units required by the
2530 language constructs used in a particular unit.
2531
2532 @item
2533 If a file being compiled instantiates a library level generic unit, the
2534 object file depends on both the spec and body files for this generic
2535 unit.
2536
2537 @item
2538 If a file being compiled instantiates a generic unit defined within a
2539 package, the object file depends on the body file for the package as
2540 well as the spec file.
2541
2542 @item
2543 @findex Inline
2544 @cindex @option{-gnatn} switch
2545 If a file being compiled contains a call to a subprogram for which
2546 pragma @code{Inline} applies and inlining is activated with the
2547 @option{-gnatn} switch, the object file depends on the file containing the
2548 body of this subprogram as well as on the file containing the spec. Note
2549 that for inlining to actually occur as a result of the use of this switch,
2550 it is necessary to compile in optimizing mode.
2551
2552 @cindex @option{-gnatN} switch
2553 The use of @option{-gnatN} activates a more extensive inlining optimization
2554 that is performed by the front end of the compiler. This inlining does
2555 not require that the code generation be optimized. Like @option{-gnatn},
2556 the use of this switch generates additional dependencies.
2557 Note that
2558 @option{-gnatN} automatically implies @option{-gnatn} so it is not necessary
2559 to specify both options.
2560
2561 @item
2562 If an object file O depends on the proper body of a subunit through inlining
2563 or instantiation, it depends on the parent unit of the subunit. This means that
2564 any modification of the parent unit or one of its subunits affects the
2565 compilation of O.
2566
2567 @item
2568 The object file for a parent unit depends on all its subunit body files.
2569
2570 @item
2571 The previous two rules meant that for purposes of computing dependencies and
2572 recompilation, a body and all its subunits are treated as an indivisible whole.
2573
2574 @noindent
2575 These rules are applied transitively: if unit @code{A} @code{with}'s
2576 unit @code{B}, whose elaboration calls an inlined procedure in package
2577 @code{C}, the object file for unit @code{A} will depend on the body of
2578 @code{C}, in file @file{c.adb}.
2579
2580 The set of dependent files described by these rules includes all the
2581 files on which the unit is semantically dependent, as described in the
2582 Ada 95 Language Reference Manual. However, it is a superset of what the
2583 ARM describes, because it includes generic, inline, and subunit dependencies.
2584
2585 An object file must be recreated by recompiling the corresponding source
2586 file if any of the source files on which it depends are modified. For
2587 example, if the @code{make} utility is used to control compilation,
2588 the rule for an Ada object file must mention all the source files on
2589 which the object file depends, according to the above definition.
2590 The determination of the necessary
2591 recompilations is done automatically when one uses @code{gnatmake}.
2592 @end itemize
2593
2594 @node The Ada Library Information Files
2595 @section The Ada Library Information Files
2596 @cindex Ada Library Information files
2597 @cindex @file{ALI} files
2598
2599 @noindent
2600 Each compilation actually generates two output files. The first of these
2601 is the normal object file that has a @file{.o} extension. The second is a
2602 text file containing full dependency information. It has the same
2603 name as the source file, but an @file{.ali} extension.
2604 This file is known as the Ada Library Information (@file{ALI}) file.
2605 The following information is contained in the @file{ALI} file.
2606
2607 @itemize @bullet
2608 @item
2609 Version information (indicates which version of GNAT was used to compile
2610 the unit(s) in question)
2611
2612 @item
2613 Main program information (including priority and time slice settings,
2614 as well as the wide character encoding used during compilation).
2615
2616 @item
2617 List of arguments used in the @code{gcc} command for the compilation
2618
2619 @item
2620 Attributes of the unit, including configuration pragmas used, an indication
2621 of whether the compilation was successful, exception model used etc.
2622
2623 @item
2624 A list of relevant restrictions applying to the unit (used for consistency)
2625 checking.
2626
2627 @item
2628 Categorization information (e.g. use of pragma @code{Pure}).
2629
2630 @item
2631 Information on all @code{with}'ed units, including presence of
2632 @code{Elaborate} or @code{Elaborate_All} pragmas.
2633
2634 @item
2635 Information from any @code{Linker_Options} pragmas used in the unit
2636
2637 @item
2638 Information on the use of @code{Body_Version} or @code{Version}
2639 attributes in the unit.
2640
2641 @item
2642 Dependency information. This is a list of files, together with
2643 time stamp and checksum information. These are files on which
2644 the unit depends in the sense that recompilation is required
2645 if any of these units are modified.
2646
2647 @item
2648 Cross-reference data. Contains information on all entities referenced
2649 in the unit. Used by tools like @code{gnatxref} and @code{gnatfind} to
2650 provide cross-reference information.
2651
2652 @end itemize
2653
2654 @noindent
2655 For a full detailed description of the format of the @file{ALI} file,
2656 see the source of the body of unit @code{Lib.Writ}, contained in file
2657 @file{lib-writ.adb} in the GNAT compiler sources.
2658
2659 @node Binding an Ada Program
2660 @section Binding an Ada Program
2661
2662 @noindent
2663 When using languages such as C and C++, once the source files have been
2664 compiled the only remaining step in building an executable program
2665 is linking the object modules together. This means that it is possible to
2666 link an inconsistent version of a program, in which two units have
2667 included different versions of the same header.
2668
2669 The rules of Ada do not permit such an inconsistent program to be built.
2670 For example, if two clients have different versions of the same package,
2671 it is illegal to build a program containing these two clients.
2672 These rules are enforced by the GNAT binder, which also determines an
2673 elaboration order consistent with the Ada rules.
2674
2675 The GNAT binder is run after all the object files for a program have
2676 been created. It is given the name of the main program unit, and from
2677 this it determines the set of units required by the program, by reading the
2678 corresponding ALI files. It generates error messages if the program is
2679 inconsistent or if no valid order of elaboration exists.
2680
2681 If no errors are detected, the binder produces a main program, in Ada by
2682 default, that contains calls to the elaboration procedures of those
2683 compilation unit that require them, followed by
2684 a call to the main program. This Ada program is compiled to generate the
2685 object file for the main program. The name of
2686 the Ada file is @file{b~@var{xxx}.adb} (with the corresponding spec
2687 @file{b~@var{xxx}.ads}) where @var{xxx} is the name of the
2688 main program unit.
2689
2690 Finally, the linker is used to build the resulting executable program,
2691 using the object from the main program from the bind step as well as the
2692 object files for the Ada units of the program.
2693
2694 @node Mixed Language Programming
2695 @section Mixed Language Programming
2696 @cindex Mixed Language Programming
2697
2698 @noindent
2699 This section describes how to develop a mixed-language program,
2700 specifically one that comprises units in both Ada and C.
2701
2702 @menu
2703 * Interfacing to C::
2704 * Calling Conventions::
2705 @end menu
2706
2707 @node Interfacing to C
2708 @subsection Interfacing to C
2709 @noindent
2710 Interfacing Ada with a foreign language such as C involves using
2711 compiler directives to import and/or export entity definitions in each
2712 language---using @code{extern} statements in C, for instance, and the
2713 @code{Import}, @code{Export}, and @code{Convention} pragmas in Ada. For
2714 a full treatment of these topics, read Appendix B, section 1 of the Ada
2715 95 Language Reference Manual.
2716
2717 There are two ways to build a program using GNAT that contains some Ada
2718 sources and some foreign language sources, depending on whether or not
2719 the main subprogram is written in Ada. Here is a source example with
2720 the main subprogram in Ada:
2721
2722 @smallexample
2723 /* file1.c */
2724 #include <stdio.h>
2725
2726 void print_num (int num)
2727 @{
2728 printf ("num is %d.\n", num);
2729 return;
2730 @}
2731
2732 /* file2.c */
2733
2734 /* num_from_Ada is declared in my_main.adb */
2735 extern int num_from_Ada;
2736
2737 int get_num (void)
2738 @{
2739 return num_from_Ada;
2740 @}
2741 @end smallexample
2742
2743 @smallexample @c ada
2744 -- my_main.adb
2745 procedure My_Main is
2746
2747 -- Declare then export an Integer entity called num_from_Ada
2748 My_Num : Integer := 10;
2749 pragma Export (C, My_Num, "num_from_Ada");
2750
2751 -- Declare an Ada function spec for Get_Num, then use
2752 -- C function get_num for the implementation.
2753 function Get_Num return Integer;
2754 pragma Import (C, Get_Num, "get_num");
2755
2756 -- Declare an Ada procedure spec for Print_Num, then use
2757 -- C function print_num for the implementation.
2758 procedure Print_Num (Num : Integer);
2759 pragma Import (C, Print_Num, "print_num");
2760
2761 begin
2762 Print_Num (Get_Num);
2763 end My_Main;
2764 @end smallexample
2765
2766 @enumerate
2767 @item
2768 To build this example, first compile the foreign language files to
2769 generate object files:
2770 @smallexample
2771 gcc -c file1.c
2772 gcc -c file2.c
2773 @end smallexample
2774
2775 @item
2776 Then, compile the Ada units to produce a set of object files and ALI
2777 files:
2778 @smallexample
2779 gnatmake ^-c^/ACTIONS=COMPILE^ my_main.adb
2780 @end smallexample
2781
2782 @item
2783 Run the Ada binder on the Ada main program:
2784 @smallexample
2785 gnatbind my_main.ali
2786 @end smallexample
2787
2788 @item
2789 Link the Ada main program, the Ada objects and the other language
2790 objects:
2791 @smallexample
2792 gnatlink my_main.ali file1.o file2.o
2793 @end smallexample
2794 @end enumerate
2795
2796 The last three steps can be grouped in a single command:
2797 @smallexample
2798 gnatmake my_main.adb -largs file1.o file2.o
2799 @end smallexample
2800
2801 @cindex Binder output file
2802 @noindent
2803 If the main program is in a language other than Ada, then you may have
2804 more than one entry point into the Ada subsystem. You must use a special
2805 binder option to generate callable routines that initialize and
2806 finalize the Ada units (@pxref{Binding with Non-Ada Main Programs}).
2807 Calls to the initialization and finalization routines must be inserted
2808 in the main program, or some other appropriate point in the code. The
2809 call to initialize the Ada units must occur before the first Ada
2810 subprogram is called, and the call to finalize the Ada units must occur
2811 after the last Ada subprogram returns. The binder will place the
2812 initialization and finalization subprograms into the
2813 @file{b~@var{xxx}.adb} file where they can be accessed by your C
2814 sources. To illustrate, we have the following example:
2815
2816 @smallexample
2817 /* main.c */
2818 extern void adainit (void);
2819 extern void adafinal (void);
2820 extern int add (int, int);
2821 extern int sub (int, int);
2822
2823 int main (int argc, char *argv[])
2824 @{
2825 int a = 21, b = 7;
2826
2827 adainit();
2828
2829 /* Should print "21 + 7 = 28" */
2830 printf ("%d + %d = %d\n", a, b, add (a, b));
2831 /* Should print "21 - 7 = 14" */
2832 printf ("%d - %d = %d\n", a, b, sub (a, b));
2833
2834 adafinal();
2835 @}
2836 @end smallexample
2837
2838 @smallexample @c ada
2839 -- unit1.ads
2840 package Unit1 is
2841 function Add (A, B : Integer) return Integer;
2842 pragma Export (C, Add, "add");
2843 end Unit1;
2844
2845 -- unit1.adb
2846 package body Unit1 is
2847 function Add (A, B : Integer) return Integer is
2848 begin
2849 return A + B;
2850 end Add;
2851 end Unit1;
2852
2853 -- unit2.ads
2854 package Unit2 is
2855 function Sub (A, B : Integer) return Integer;
2856 pragma Export (C, Sub, "sub");
2857 end Unit2;
2858
2859 -- unit2.adb
2860 package body Unit2 is
2861 function Sub (A, B : Integer) return Integer is
2862 begin
2863 return A - B;
2864 end Sub;
2865 end Unit2;
2866 @end smallexample
2867
2868 @enumerate
2869 @item
2870 The build procedure for this application is similar to the last
2871 example's. First, compile the foreign language files to generate object
2872 files:
2873 @smallexample
2874 gcc -c main.c
2875 @end smallexample
2876
2877 @item
2878 Next, compile the Ada units to produce a set of object files and ALI
2879 files:
2880 @smallexample
2881 gnatmake ^-c^/ACTIONS=COMPILE^ unit1.adb
2882 gnatmake ^-c^/ACTIONS=COMPILE^ unit2.adb
2883 @end smallexample
2884
2885 @item
2886 Run the Ada binder on every generated ALI file. Make sure to use the
2887 @option{-n} option to specify a foreign main program:
2888 @smallexample
2889 gnatbind ^-n^/NOMAIN^ unit1.ali unit2.ali
2890 @end smallexample
2891
2892 @item
2893 Link the Ada main program, the Ada objects and the foreign language
2894 objects. You need only list the last ALI file here:
2895 @smallexample
2896 gnatlink unit2.ali main.o -o exec_file
2897 @end smallexample
2898
2899 This procedure yields a binary executable called @file{exec_file}.
2900 @end enumerate
2901
2902 @node Calling Conventions
2903 @subsection Calling Conventions
2904 @cindex Foreign Languages
2905 @cindex Calling Conventions
2906 GNAT follows standard calling sequence conventions and will thus interface
2907 to any other language that also follows these conventions. The following
2908 Convention identifiers are recognized by GNAT:
2909
2910 @table @code
2911 @cindex Interfacing to Ada
2912 @cindex Other Ada compilers
2913 @cindex Convention Ada
2914 @item Ada
2915 This indicates that the standard Ada calling sequence will be
2916 used and all Ada data items may be passed without any limitations in the
2917 case where GNAT is used to generate both the caller and callee. It is also
2918 possible to mix GNAT generated code and code generated by another Ada
2919 compiler. In this case, the data types should be restricted to simple
2920 cases, including primitive types. Whether complex data types can be passed
2921 depends on the situation. Probably it is safe to pass simple arrays, such
2922 as arrays of integers or floats. Records may or may not work, depending
2923 on whether both compilers lay them out identically. Complex structures
2924 involving variant records, access parameters, tasks, or protected types,
2925 are unlikely to be able to be passed.
2926
2927 Note that in the case of GNAT running
2928 on a platform that supports DEC Ada 83, a higher degree of compatibility
2929 can be guaranteed, and in particular records are layed out in an identical
2930 manner in the two compilers. Note also that if output from two different
2931 compilers is mixed, the program is responsible for dealing with elaboration
2932 issues. Probably the safest approach is to write the main program in the
2933 version of Ada other than GNAT, so that it takes care of its own elaboration
2934 requirements, and then call the GNAT-generated adainit procedure to ensure
2935 elaboration of the GNAT components. Consult the documentation of the other
2936 Ada compiler for further details on elaboration.
2937
2938 However, it is not possible to mix the tasking run time of GNAT and
2939 DEC Ada 83, All the tasking operations must either be entirely within
2940 GNAT compiled sections of the program, or entirely within DEC Ada 83
2941 compiled sections of the program.
2942
2943 @cindex Interfacing to Assembly
2944 @cindex Convention Assembler
2945 @item Assembler
2946 Specifies assembler as the convention. In practice this has the
2947 same effect as convention Ada (but is not equivalent in the sense of being
2948 considered the same convention).
2949
2950 @cindex Convention Asm
2951 @findex Asm
2952 @item Asm
2953 Equivalent to Assembler.
2954
2955 @cindex Interfacing to COBOL
2956 @cindex Convention COBOL
2957 @findex COBOL
2958 @item COBOL
2959 Data will be passed according to the conventions described
2960 in section B.4 of the Ada 95 Reference Manual.
2961
2962 @findex C
2963 @cindex Interfacing to C
2964 @cindex Convention C
2965 @item C
2966 Data will be passed according to the conventions described
2967 in section B.3 of the Ada 95 Reference Manual.
2968
2969 @findex C varargs function
2970 @cindex Intefacing to C varargs function
2971 @cindex varargs function intefacs
2972 @item C varargs function
2973 In C, @code{varargs} allows a function to take a variable number of
2974 arguments. There is no direct equivalent in this to Ada. One
2975 approach that can be used is to create a C wrapper for each
2976 different profile and then interface to this C wrapper. For
2977 example, to print an @code{int} value using @code{printf},
2978 create a C function @code{printfi} that takes two arguments, a
2979 pointer to a string and an int, and calls @code{printf}.
2980 Then in the Ada program, use pragma @code{Import} to
2981 interface to printfi.
2982
2983 It may work on some platforms to directly interface to
2984 a @code{varargs} function by providing a specific Ada profile
2985 for a a particular call. However, this does not work on
2986 all platforms, since there is no guarantee that the
2987 calling sequence for a two argument normal C function
2988 is the same as for calling a @code{varargs} C function with
2989 the same two arguments.
2990
2991 @cindex Convention Default
2992 @findex Default
2993 @item Default
2994 Equivalent to C.
2995
2996 @cindex Convention External
2997 @findex External
2998 @item External
2999 Equivalent to C.
3000
3001 @findex C++
3002 @cindex Interfacing to C++
3003 @cindex Convention C++
3004 @item CPP
3005 This stands for C++. For most purposes this is identical to C.
3006 See the separate description of the specialized GNAT pragmas relating to
3007 C++ interfacing for further details.
3008
3009 @findex Fortran
3010 @cindex Interfacing to Fortran
3011 @cindex Convention Fortran
3012 @item Fortran
3013 Data will be passed according to the conventions described
3014 in section B.5 of the Ada 95 Reference Manual.
3015
3016 @item Intrinsic
3017 This applies to an intrinsic operation, as defined in the Ada 95
3018 Reference Manual. If a a pragma Import (Intrinsic) applies to a subprogram,
3019 this means that the body of the subprogram is provided by the compiler itself,
3020 usually by means of an efficient code sequence, and that the user does not
3021 supply an explicit body for it. In an application program, the pragma can
3022 only be applied to the following two sets of names, which the GNAT compiler
3023 recognizes.
3024
3025 @itemize @bullet
3026 @item
3027 Rotate_Left, Rotate_Right, Shift_Left, Shift_Right, Shift_Right_-
3028 Arithmetic. The corresponding subprogram declaration must have
3029 two formal parameters. The
3030 first one must be a signed integer type or a modular type with a binary
3031 modulus, and the second parameter must be of type Natural.
3032 The return type must be the same as the type of the first argument. The size
3033 of this type can only be 8, 16, 32, or 64.
3034 @item binary arithmetic operators: ``+'', ``-'', ``*'', ``/''
3035 The corresponding operator declaration must have parameters and result type
3036 that have the same root numeric type (for example, all three are long_float
3037 types). This simplifies the definition of operations that use type checking
3038 to perform dimensional checks:
3039
3040 @smallexample @c ada
3041 type Distance is new Long_Float;
3042 type Time is new Long_Float;
3043 type Velocity is new Long_Float;
3044 function "/" (D : Distance; T : Time)
3045 return Velocity;
3046 pragma Import (Intrinsic, "/");
3047 @end smallexample
3048
3049 @noindent
3050 This common idiom is often programmed with a generic definition and an
3051 explicit body. The pragma makes it simpler to introduce such declarations.
3052 It incurs no overhead in compilation time or code size, because it is
3053 implemented as a single machine instruction.
3054 @end itemize
3055 @noindent
3056
3057 @ifset unw
3058 @findex Stdcall
3059 @cindex Convention Stdcall
3060 @item Stdcall
3061 This is relevant only to NT/Win95 implementations of GNAT,
3062 and specifies that the Stdcall calling sequence will be used, as defined
3063 by the NT API.
3064
3065 @findex DLL
3066 @cindex Convention DLL
3067 @item DLL
3068 This is equivalent to Stdcall.
3069
3070 @findex Win32
3071 @cindex Convention Win32
3072 @item Win32
3073 This is equivalent to Stdcall.
3074 @end ifset
3075
3076 @findex Stubbed
3077 @cindex Convention Stubbed
3078 @item Stubbed
3079 This is a special convention that indicates that the compiler
3080 should provide a stub body that raises @code{Program_Error}.
3081 @end table
3082
3083 @noindent
3084 GNAT additionally provides a useful pragma @code{Convention_Identifier}
3085 that can be used to parametrize conventions and allow additional synonyms
3086 to be specified. For example if you have legacy code in which the convention
3087 identifier Fortran77 was used for Fortran, you can use the configuration
3088 pragma:
3089
3090 @smallexample @c ada
3091 pragma Convention_Identifier (Fortran77, Fortran);
3092 @end smallexample
3093
3094 @noindent
3095 And from now on the identifier Fortran77 may be used as a convention
3096 identifier (for example in an @code{Import} pragma) with the same
3097 meaning as Fortran.
3098
3099 @node Building Mixed Ada & C++ Programs
3100 @section Building Mixed Ada & C++ Programs
3101
3102 @noindent
3103 A programmer inexperienced with mixed-language development may find that
3104 building an application containing both Ada and C++ code can be a
3105 challenge. As a matter of fact, interfacing with C++ has not been
3106 standardized in the Ada 95 Reference Manual due to the immaturity of --
3107 and lack of standards for -- C++ at the time. This section gives a few
3108 hints that should make this task easier. The first section addresses
3109 the differences regarding interfacing with C. The second section
3110 looks into the delicate problem of linking the complete application from
3111 its Ada and C++ parts. The last section gives some hints on how the GNAT
3112 run time can be adapted in order to allow inter-language dispatching
3113 with a new C++ compiler.
3114
3115 @menu
3116 * Interfacing to C++::
3117 * Linking a Mixed C++ & Ada Program::
3118 * A Simple Example::
3119 * Adapting the Run Time to a New C++ Compiler::
3120 @end menu
3121
3122 @node Interfacing to C++
3123 @subsection Interfacing to C++
3124
3125 @noindent
3126 GNAT supports interfacing with C++ compilers generating code that is
3127 compatible with the standard Application Binary Interface of the given
3128 platform.
3129
3130 @noindent
3131 Interfacing can be done at 3 levels: simple data, subprograms, and
3132 classes. In the first two cases, GNAT offers a specific @var{Convention
3133 CPP} that behaves exactly like @var{Convention C}. Usually, C++ mangles
3134 the names of subprograms, and currently, GNAT does not provide any help
3135 to solve the demangling problem. This problem can be addressed in two
3136 ways:
3137 @itemize @bullet
3138 @item
3139 by modifying the C++ code in order to force a C convention using
3140 the @code{extern "C"} syntax.
3141
3142 @item
3143 by figuring out the mangled name and use it as the Link_Name argument of
3144 the pragma import.
3145 @end itemize
3146
3147 @noindent
3148 Interfacing at the class level can be achieved by using the GNAT specific
3149 pragmas such as @code{CPP_Class} and @code{CPP_Virtual}. See the GNAT
3150 Reference Manual for additional information.
3151
3152 @node Linking a Mixed C++ & Ada Program
3153 @subsection Linking a Mixed C++ & Ada Program
3154
3155 @noindent
3156 Usually the linker of the C++ development system must be used to link
3157 mixed applications because most C++ systems will resolve elaboration
3158 issues (such as calling constructors on global class instances)
3159 transparently during the link phase. GNAT has been adapted to ease the
3160 use of a foreign linker for the last phase. Three cases can be
3161 considered:
3162 @enumerate
3163
3164 @item
3165 Using GNAT and G++ (GNU C++ compiler) from the same GCC installation:
3166 The C++ linker can simply be called by using the C++ specific driver
3167 called @code{c++}. Note that this setup is not very common because it
3168 may involve recompiling the whole GCC tree from sources, which makes it
3169 harder to upgrade the compilation system for one language without
3170 destabilizing the other.
3171
3172 @smallexample
3173 $ c++ -c file1.C
3174 $ c++ -c file2.C
3175 $ gnatmake ada_unit -largs file1.o file2.o --LINK=c++
3176 @end smallexample
3177
3178 @item
3179 Using GNAT and G++ from two different GCC installations: If both
3180 compilers are on the PATH, the previous method may be used. It is
3181 important to note that environment variables such as C_INCLUDE_PATH,
3182 GCC_EXEC_PREFIX, BINUTILS_ROOT, and GCC_ROOT will affect both compilers
3183 at the same time and may make one of the two compilers operate
3184 improperly if set during invocation of the wrong compiler. It is also
3185 very important that the linker uses the proper @file{libgcc.a} GCC
3186 library -- that is, the one from the C++ compiler installation. The
3187 implicit link command as suggested in the gnatmake command from the
3188 former example can be replaced by an explicit link command with the
3189 full-verbosity option in order to verify which library is used:
3190 @smallexample
3191 $ gnatbind ada_unit
3192 $ gnatlink -v -v ada_unit file1.o file2.o --LINK=c++
3193 @end smallexample
3194 If there is a problem due to interfering environment variables, it can
3195 be worked around by using an intermediate script. The following example
3196 shows the proper script to use when GNAT has not been installed at its
3197 default location and g++ has been installed at its default location:
3198
3199 @smallexample
3200 $ cat ./my_script
3201 #!/bin/sh
3202 unset BINUTILS_ROOT
3203 unset GCC_ROOT
3204 c++ $*
3205 $ gnatlink -v -v ada_unit file1.o file2.o --LINK=./my_script
3206 @end smallexample
3207
3208 @item
3209 Using a non-GNU C++ compiler: The commands previously described can be
3210 used to insure that the C++ linker is used. Nonetheless, you need to add
3211 the path to libgcc explicitly, since some libraries needed by GNAT are
3212 located in this directory:
3213
3214 @smallexample
3215 $ cat ./my_script
3216 #!/bin/sh
3217 CC $* `gcc -print-libgcc-file-name`
3218 $ gnatlink ada_unit file1.o file2.o --LINK=./my_script
3219 @end smallexample
3220
3221 Where CC is the name of the non-GNU C++ compiler.
3222
3223 @end enumerate
3224
3225 @node A Simple Example
3226 @subsection A Simple Example
3227 @noindent
3228 The following example, provided as part of the GNAT examples, shows how
3229 to achieve procedural interfacing between Ada and C++ in both
3230 directions. The C++ class A has two methods. The first method is exported
3231 to Ada by the means of an extern C wrapper function. The second method
3232 calls an Ada subprogram. On the Ada side, The C++ calls are modelled by
3233 a limited record with a layout comparable to the C++ class. The Ada
3234 subprogram, in turn, calls the C++ method. So, starting from the C++
3235 main program, the process passes back and forth between the two
3236 languages.
3237
3238 @noindent
3239 Here are the compilation commands:
3240 @smallexample
3241 $ gnatmake -c simple_cpp_interface
3242 $ c++ -c cpp_main.C
3243 $ c++ -c ex7.C
3244 $ gnatbind -n simple_cpp_interface
3245 $ gnatlink simple_cpp_interface -o cpp_main --LINK=$(CPLUSPLUS)
3246 -lstdc++ ex7.o cpp_main.o
3247 @end smallexample
3248
3249 @noindent
3250 Here are the corresponding sources:
3251 @smallexample
3252
3253 //cpp_main.C
3254
3255 #include "ex7.h"
3256
3257 extern "C" @{
3258 void adainit (void);
3259 void adafinal (void);
3260 void method1 (A *t);
3261 @}
3262
3263 void method1 (A *t)
3264 @{
3265 t->method1 ();
3266 @}
3267
3268 int main ()
3269 @{
3270 A obj;
3271 adainit ();
3272 obj.method2 (3030);
3273 adafinal ();
3274 @}
3275
3276 //ex7.h
3277
3278 class Origin @{
3279 public:
3280 int o_value;
3281 @};
3282 class A : public Origin @{
3283 public:
3284 void method1 (void);
3285 virtual void method2 (int v);
3286 A();
3287 int a_value;
3288 @};
3289
3290 //ex7.C
3291
3292 #include "ex7.h"
3293 #include <stdio.h>
3294
3295 extern "C" @{ void ada_method2 (A *t, int v);@}
3296
3297 void A::method1 (void)
3298 @{
3299 a_value = 2020;
3300 printf ("in A::method1, a_value = %d \n",a_value);
3301
3302 @}
3303
3304 void A::method2 (int v)
3305 @{
3306 ada_method2 (this, v);
3307 printf ("in A::method2, a_value = %d \n",a_value);
3308
3309 @}
3310
3311 A::A(void)
3312 @{
3313 a_value = 1010;
3314 printf ("in A::A, a_value = %d \n",a_value);
3315 @}
3316
3317 -- Ada sources
3318 @b{package} @b{body} Simple_Cpp_Interface @b{is}
3319
3320 @b{procedure} Ada_Method2 (This : @b{in} @b{out} A; V : Integer) @b{is}
3321 @b{begin}
3322 Method1 (This);
3323 This.A_Value := V;
3324 @b{end} Ada_Method2;
3325
3326 @b{end} Simple_Cpp_Interface;
3327
3328 @b{package} Simple_Cpp_Interface @b{is}
3329 @b{type} A @b{is} @b{limited}
3330 @b{record}
3331 O_Value : Integer;
3332 A_Value : Integer;
3333 @b{end} @b{record};
3334 @b{pragma} Convention (C, A);
3335
3336 @b{procedure} Method1 (This : @b{in} @b{out} A);
3337 @b{pragma} Import (C, Method1);
3338
3339 @b{procedure} Ada_Method2 (This : @b{in} @b{out} A; V : Integer);
3340 @b{pragma} Export (C, Ada_Method2);
3341
3342 @b{end} Simple_Cpp_Interface;
3343 @end smallexample
3344
3345 @node Adapting the Run Time to a New C++ Compiler
3346 @subsection Adapting the Run Time to a New C++ Compiler
3347 @noindent
3348 GNAT offers the capability to derive Ada 95 tagged types directly from
3349 preexisting C++ classes and . See ``Interfacing with C++'' in the
3350 @cite{GNAT Reference Manual}. The mechanism used by GNAT for achieving
3351 such a goal
3352 has been made user configurable through a GNAT library unit
3353 @code{Interfaces.CPP}. The default version of this file is adapted to
3354 the GNU C++ compiler. Internal knowledge of the virtual
3355 table layout used by the new C++ compiler is needed to configure
3356 properly this unit. The Interface of this unit is known by the compiler
3357 and cannot be changed except for the value of the constants defining the
3358 characteristics of the virtual table: CPP_DT_Prologue_Size, CPP_DT_Entry_Size,
3359 CPP_TSD_Prologue_Size, CPP_TSD_Entry_Size. Read comments in the source
3360 of this unit for more details.
3361
3362 @node Comparison between GNAT and C/C++ Compilation Models
3363 @section Comparison between GNAT and C/C++ Compilation Models
3364
3365 @noindent
3366 The GNAT model of compilation is close to the C and C++ models. You can
3367 think of Ada specs as corresponding to header files in C. As in C, you
3368 don't need to compile specs; they are compiled when they are used. The
3369 Ada @code{with} is similar in effect to the @code{#include} of a C
3370 header.
3371
3372 One notable difference is that, in Ada, you may compile specs separately
3373 to check them for semantic and syntactic accuracy. This is not always
3374 possible with C headers because they are fragments of programs that have
3375 less specific syntactic or semantic rules.
3376
3377 The other major difference is the requirement for running the binder,
3378 which performs two important functions. First, it checks for
3379 consistency. In C or C++, the only defense against assembling
3380 inconsistent programs lies outside the compiler, in a makefile, for
3381 example. The binder satisfies the Ada requirement that it be impossible
3382 to construct an inconsistent program when the compiler is used in normal
3383 mode.
3384
3385 @cindex Elaboration order control
3386 The other important function of the binder is to deal with elaboration
3387 issues. There are also elaboration issues in C++ that are handled
3388 automatically. This automatic handling has the advantage of being
3389 simpler to use, but the C++ programmer has no control over elaboration.
3390 Where @code{gnatbind} might complain there was no valid order of
3391 elaboration, a C++ compiler would simply construct a program that
3392 malfunctioned at run time.
3393
3394 @node Comparison between GNAT and Conventional Ada Library Models
3395 @section Comparison between GNAT and Conventional Ada Library Models
3396
3397 @noindent
3398 This section is intended to be useful to Ada programmers who have
3399 previously used an Ada compiler implementing the traditional Ada library
3400 model, as described in the Ada 95 Language Reference Manual. If you
3401 have not used such a system, please go on to the next section.
3402
3403 @cindex GNAT library
3404 In GNAT, there is no @dfn{library} in the normal sense. Instead, the set of
3405 source files themselves acts as the library. Compiling Ada programs does
3406 not generate any centralized information, but rather an object file and
3407 a ALI file, which are of interest only to the binder and linker.
3408 In a traditional system, the compiler reads information not only from
3409 the source file being compiled, but also from the centralized library.
3410 This means that the effect of a compilation depends on what has been
3411 previously compiled. In particular:
3412
3413 @itemize @bullet
3414 @item
3415 When a unit is @code{with}'ed, the unit seen by the compiler corresponds
3416 to the version of the unit most recently compiled into the library.
3417
3418 @item
3419 Inlining is effective only if the necessary body has already been
3420 compiled into the library.
3421
3422 @item
3423 Compiling a unit may obsolete other units in the library.
3424 @end itemize
3425
3426 @noindent
3427 In GNAT, compiling one unit never affects the compilation of any other
3428 units because the compiler reads only source files. Only changes to source
3429 files can affect the results of a compilation. In particular:
3430
3431 @itemize @bullet
3432 @item
3433 When a unit is @code{with}'ed, the unit seen by the compiler corresponds
3434 to the source version of the unit that is currently accessible to the
3435 compiler.
3436
3437 @item
3438 @cindex Inlining
3439 Inlining requires the appropriate source files for the package or
3440 subprogram bodies to be available to the compiler. Inlining is always
3441 effective, independent of the order in which units are complied.
3442
3443 @item
3444 Compiling a unit never affects any other compilations. The editing of
3445 sources may cause previous compilations to be out of date if they
3446 depended on the source file being modified.
3447 @end itemize
3448
3449 @noindent
3450 The most important result of these differences is that order of compilation
3451 is never significant in GNAT. There is no situation in which one is
3452 required to do one compilation before another. What shows up as order of
3453 compilation requirements in the traditional Ada library becomes, in
3454 GNAT, simple source dependencies; in other words, there is only a set
3455 of rules saying what source files must be present when a file is
3456 compiled.
3457
3458 @ifset vms
3459 @node Placement of temporary files
3460 @section Placement of temporary files
3461 @cindex Temporary files (user control over placement)
3462
3463 @noindent
3464 GNAT creates temporary files in the directory designated by the environment
3465 variable @env{TMPDIR}.
3466 (See the HP @emph{C RTL Reference Manual} on the function @code{getenv()}
3467 for detailed information on how environment variables are resolved.
3468 For most users the easiest way to make use of this feature is to simply
3469 define @env{TMPDIR} as a job level logical name).
3470 For example, if you wish to use a Ramdisk (assuming DECRAM is installed)
3471 for compiler temporary files, then you can include something like the
3472 following command in your @file{LOGIN.COM} file:
3473
3474 @smallexample
3475 $ define/job TMPDIR "/disk$scratchram/000000/temp/"
3476 @end smallexample
3477
3478 @noindent
3479 If @env{TMPDIR} is not defined, then GNAT uses the directory designated by
3480 @env{TMP}; if @env{TMP} is not defined, then GNAT uses the directory
3481 designated by @env{TEMP}.
3482 If none of these environment variables are defined then GNAT uses the
3483 directory designated by the logical name @code{SYS$SCRATCH:}
3484 (by default the user's home directory). If all else fails
3485 GNAT uses the current directory for temporary files.
3486 @end ifset
3487
3488
3489 @c *************************
3490 @node Compiling Using gcc
3491 @chapter Compiling Using @code{gcc}
3492
3493 @noindent
3494 This chapter discusses how to compile Ada programs using the @code{gcc}
3495 command. It also describes the set of switches
3496 that can be used to control the behavior of the compiler.
3497 @menu
3498 * Compiling Programs::
3499 * Switches for gcc::
3500 * Search Paths and the Run-Time Library (RTL)::
3501 * Order of Compilation Issues::
3502 * Examples::
3503 @end menu
3504
3505 @node Compiling Programs
3506 @section Compiling Programs
3507
3508 @noindent
3509 The first step in creating an executable program is to compile the units
3510 of the program using the @code{gcc} command. You must compile the
3511 following files:
3512
3513 @itemize @bullet
3514 @item
3515 the body file (@file{.adb}) for a library level subprogram or generic
3516 subprogram
3517
3518 @item
3519 the spec file (@file{.ads}) for a library level package or generic
3520 package that has no body
3521
3522 @item
3523 the body file (@file{.adb}) for a library level package
3524 or generic package that has a body
3525
3526 @end itemize
3527
3528 @noindent
3529 You need @emph{not} compile the following files
3530
3531 @itemize @bullet
3532
3533 @item
3534 the spec of a library unit which has a body
3535
3536 @item
3537 subunits
3538 @end itemize
3539
3540 @noindent
3541 because they are compiled as part of compiling related units. GNAT
3542 package specs
3543 when the corresponding body is compiled, and subunits when the parent is
3544 compiled.
3545
3546 @cindex cannot generate code
3547 If you attempt to compile any of these files, you will get one of the
3548 following error messages (where fff is the name of the file you compiled):
3549
3550 @smallexample
3551 cannot generate code for file @var{fff} (package spec)
3552 to check package spec, use -gnatc
3553
3554 cannot generate code for file @var{fff} (missing subunits)
3555 to check parent unit, use -gnatc
3556
3557 cannot generate code for file @var{fff} (subprogram spec)
3558 to check subprogram spec, use -gnatc
3559
3560 cannot generate code for file @var{fff} (subunit)
3561 to check subunit, use -gnatc
3562 @end smallexample
3563
3564 @noindent
3565 As indicated by the above error messages, if you want to submit
3566 one of these files to the compiler to check for correct semantics
3567 without generating code, then use the @option{-gnatc} switch.
3568
3569 The basic command for compiling a file containing an Ada unit is
3570
3571 @smallexample
3572 $ gcc -c [@var{switches}] @file{file name}
3573 @end smallexample
3574
3575 @noindent
3576 where @var{file name} is the name of the Ada file (usually
3577 having an extension
3578 @file{.ads} for a spec or @file{.adb} for a body).
3579 @ifclear vms
3580 You specify the
3581 @option{-c} switch to tell @code{gcc} to compile, but not link, the file.
3582 @end ifclear
3583 The result of a successful compilation is an object file, which has the
3584 same name as the source file but an extension of @file{.o} and an Ada
3585 Library Information (ALI) file, which also has the same name as the
3586 source file, but with @file{.ali} as the extension. GNAT creates these
3587 two output files in the current directory, but you may specify a source
3588 file in any directory using an absolute or relative path specification
3589 containing the directory information.
3590
3591 @findex gnat1
3592 @code{gcc} is actually a driver program that looks at the extensions of
3593 the file arguments and loads the appropriate compiler. For example, the
3594 GNU C compiler is @file{cc1}, and the Ada compiler is @file{gnat1}.
3595 These programs are in directories known to the driver program (in some
3596 configurations via environment variables you set), but need not be in
3597 your path. The @code{gcc} driver also calls the assembler and any other
3598 utilities needed to complete the generation of the required object
3599 files.
3600
3601 It is possible to supply several file names on the same @code{gcc}
3602 command. This causes @code{gcc} to call the appropriate compiler for
3603 each file. For example, the following command lists three separate
3604 files to be compiled:
3605
3606 @smallexample
3607 $ gcc -c x.adb y.adb z.c
3608 @end smallexample
3609
3610 @noindent
3611 calls @code{gnat1} (the Ada compiler) twice to compile @file{x.adb} and
3612 @file{y.adb}, and @code{cc1} (the C compiler) once to compile @file{z.c}.
3613 The compiler generates three object files @file{x.o}, @file{y.o} and
3614 @file{z.o} and the two ALI files @file{x.ali} and @file{y.ali} from the
3615 Ada compilations. Any switches apply to all the files ^listed,^listed.^
3616 @ifclear vms
3617 except for
3618 @option{-gnat@var{x}} switches, which apply only to Ada compilations.
3619 @end ifclear
3620
3621 @node Switches for gcc
3622 @section Switches for @code{gcc}
3623
3624 @noindent
3625 The @code{gcc} command accepts switches that control the
3626 compilation process. These switches are fully described in this section.
3627 First we briefly list all the switches, in alphabetical order, then we
3628 describe the switches in more detail in functionally grouped sections.
3629
3630 @menu
3631 * Output and Error Message Control::
3632 * Warning Message Control::
3633 * Debugging and Assertion Control::
3634 * Run-Time Checks::
3635 * Stack Overflow Checking::
3636 * Validity Checking::
3637 * Style Checking::
3638 * Using gcc for Syntax Checking::
3639 * Using gcc for Semantic Checking::
3640 * Compiling Ada 83 Programs::
3641 * Character Set Control::
3642 * File Naming Control::
3643 * Subprogram Inlining Control::
3644 * Auxiliary Output Control::
3645 * Debugging Control::
3646 * Exception Handling Control::
3647 * Units to Sources Mapping Files::
3648 * Integrated Preprocessing::
3649 * Code Generation Control::
3650 @ifset vms
3651 * Return Codes::
3652 @end ifset
3653 @end menu
3654
3655 @table @option
3656 @c !sort!
3657 @ifclear vms
3658 @cindex @option{-b} (@code{gcc})
3659 @item -b @var{target}
3660 Compile your program to run on @var{target}, which is the name of a
3661 system configuration. You must have a GNAT cross-compiler built if
3662 @var{target} is not the same as your host system.
3663
3664 @item -B@var{dir}
3665 @cindex @option{-B} (@code{gcc})
3666 Load compiler executables (for example, @code{gnat1}, the Ada compiler)
3667 from @var{dir} instead of the default location. Only use this switch
3668 when multiple versions of the GNAT compiler are available. See the
3669 @code{gcc} manual page for further details. You would normally use the
3670 @option{-b} or @option{-V} switch instead.
3671
3672 @item -c
3673 @cindex @option{-c} (@code{gcc})
3674 Compile. Always use this switch when compiling Ada programs.
3675
3676 Note: for some other languages when using @code{gcc}, notably in
3677 the case of C and C++, it is possible to use
3678 use @code{gcc} without a @option{-c} switch to
3679 compile and link in one step. In the case of GNAT, you
3680 cannot use this approach, because the binder must be run
3681 and @code{gcc} cannot be used to run the GNAT binder.
3682 @end ifclear
3683
3684 @item -fno-inline
3685 @cindex @option{-fno-inline} (@code{gcc})
3686 Suppresses all back-end inlining, even if other optimization or inlining
3687 switches are set.
3688 This includes suppression of inlining that results
3689 from the use of the pragma @code{Inline_Always}.
3690 See also @option{-gnatn} and @option{-gnatN}.
3691
3692 @item -fno-strict-aliasing
3693 @cindex @option{-fno-strict-aliasing} (@code{gcc})
3694 Causes the compiler to avoid assumptions regarding non-aliasing
3695 of objects of different types. See section
3696 @pxref{Optimization and Strict Aliasing} for details.
3697
3698 @item -fstack-check
3699 @cindex @option{-fstack-check} (@code{gcc})
3700 Activates stack checking.
3701 See @ref{Stack Overflow Checking} for details of the use of this option.
3702
3703 @item ^-g^/DEBUG^
3704 @cindex @option{^-g^/DEBUG^} (@code{gcc})
3705 Generate debugging information. This information is stored in the object
3706 file and copied from there to the final executable file by the linker,
3707 where it can be read by the debugger. You must use the
3708 @option{^-g^/DEBUG^} switch if you plan on using the debugger.
3709
3710 @item -gnat83
3711 @cindex @option{-gnat83} (@code{gcc})
3712 Enforce Ada 83 restrictions.
3713
3714 @item -gnata
3715 @cindex @option{-gnata} (@code{gcc})
3716 Assertions enabled. @code{Pragma Assert} and @code{pragma Debug} to be
3717 activated.
3718
3719 @item -gnatA
3720 @cindex @option{-gnatA} (@code{gcc})
3721 Avoid processing @file{gnat.adc}. If a gnat.adc file is present,
3722 it will be ignored.
3723
3724 @item -gnatb
3725 @cindex @option{-gnatb} (@code{gcc})
3726 Generate brief messages to @file{stderr} even if verbose mode set.
3727
3728 @item -gnatc
3729 @cindex @option{-gnatc} (@code{gcc})
3730 Check syntax and semantics only (no code generation attempted).
3731
3732 @item -gnatd
3733 @cindex @option{-gnatd} (@code{gcc})
3734 Specify debug options for the compiler. The string of characters after
3735 the @option{-gnatd} specify the specific debug options. The possible
3736 characters are 0-9, a-z, A-Z, optionally preceded by a dot. See
3737 compiler source file @file{debug.adb} for details of the implemented
3738 debug options. Certain debug options are relevant to applications
3739 programmers, and these are documented at appropriate points in this
3740 users guide.
3741
3742 @item -gnatD
3743 @cindex @option{-gnatD} (@code{gcc})
3744 Create expanded source files for source level debugging. This switch
3745 also suppress generation of cross-reference information
3746 (see @option{-gnatx}).
3747
3748 @item -gnatec=@var{path}
3749 @cindex @option{-gnatec} (@code{gcc})
3750 Specify a configuration pragma file
3751 @ifclear vms
3752 (the equal sign is optional)
3753 @end ifclear
3754 (see @ref{The Configuration Pragmas Files}).
3755
3756 @item ^-gnateD^/DATA_PREPROCESSING=^symbol[=value]
3757 @cindex @option{-gnateD} (@code{gcc})
3758 Defines a symbol, associated with value, for preprocessing.
3759 (see @ref{Integrated Preprocessing})
3760
3761 @item -gnatef
3762 @cindex @option{-gnatef} (@code{gcc})
3763 Display full source path name in brief error messages.
3764
3765 @item -gnatem=@var{path}
3766 @cindex @option{-gnatem} (@code{gcc})
3767 Specify a mapping file
3768 @ifclear vms
3769 (the equal sign is optional)
3770 @end ifclear
3771 (see @ref{Units to Sources Mapping Files}).
3772
3773 @item -gnatep=@var{file}
3774 @cindex @option{-gnatep} (@code{gcc})
3775 Specify a preprocessing data file
3776 @ifclear vms
3777 (the equal sign is optional)
3778 @end ifclear
3779 (see @ref{Integrated Preprocessing}).
3780
3781 @item -gnatE
3782 @cindex @option{-gnatE} (@code{gcc})
3783 Full dynamic elaboration checks.
3784
3785 @item -gnatf
3786 @cindex @option{-gnatf} (@code{gcc})
3787 Full errors. Multiple errors per line, all undefined references, do not
3788 attempt to suppress cascaded errors.
3789
3790 @item -gnatF
3791 @cindex @option{-gnatF} (@code{gcc})
3792 Externals names are folded to all uppercase.
3793
3794 @item -gnatg
3795 @cindex @option{-gnatg} (@code{gcc})
3796 Internal GNAT implementation mode. This should not be used for
3797 applications programs, it is intended only for use by the compiler
3798 and its run-time library. For documentation, see the GNAT sources.
3799 Note that @option{-gnatg} implies @option{-gnatwu} so that warnings
3800 are generated on unreferenced entities, and all warnings are treated
3801 as errors.
3802
3803 @item -gnatG
3804 @cindex @option{-gnatG} (@code{gcc})
3805 List generated expanded code in source form.
3806
3807 @item ^-gnath^/HELP^
3808 @cindex @option{^-gnath^/HELP^} (@code{gcc})
3809 Output usage information. The output is written to @file{stdout}.
3810
3811 @item ^-gnati^/IDENTIFIER_CHARACTER_SET=^@var{c}
3812 @cindex @option{^-gnati^/IDENTIFIER_CHARACTER_SET^} (@code{gcc})
3813 Identifier character set
3814 @ifclear vms
3815 (@var{c}=1/2/3/4/8/9/p/f/n/w).
3816 @end ifclear
3817 @ifset vms
3818 For details of the possible selections for @var{c},
3819 see @xref{Character Set Control}.
3820 @end ifset
3821
3822 @item -gnatk=@var{n}
3823 @cindex @option{-gnatk} (@code{gcc})
3824 Limit file names to @var{n} (1-999) characters ^(@code{k} = krunch)^^.
3825
3826 @item -gnatl
3827 @cindex @option{-gnatl} (@code{gcc})
3828 Output full source listing with embedded error messages.
3829
3830 @item -gnatL
3831 @cindex @option{-gnatL} (@code{gcc})
3832 Use the longjmp/setjmp method for exception handling
3833
3834 @item -gnatm=@var{n}
3835 @cindex @option{-gnatm} (@code{gcc})
3836 Limit number of detected error or warning messages to @var{n}
3837 where @var{n} is in the range 1..999_999. The default setting if
3838 no switch is given is 9999. Compilation is terminated if this
3839 limit is exceeded.
3840
3841 @item -gnatn
3842 @cindex @option{-gnatn} (@code{gcc})
3843 Activate inlining for subprograms for which
3844 pragma @code{inline} is specified. This inlining is performed
3845 by the GCC back-end.
3846
3847 @item -gnatN
3848 @cindex @option{-gnatN} (@code{gcc})
3849 Activate front end inlining for subprograms for which
3850 pragma @code{Inline} is specified. This inlining is performed
3851 by the front end and will be visible in the
3852 @option{-gnatG} output.
3853 In some cases, this has proved more effective than the back end
3854 inlining resulting from the use of
3855 @option{-gnatn}.
3856 Note that
3857 @option{-gnatN} automatically implies
3858 @option{-gnatn} so it is not necessary
3859 to specify both options. There are a few cases that the back-end inlining
3860 catches that cannot be dealt with in the front-end.
3861
3862 @item -gnato
3863 @cindex @option{-gnato} (@code{gcc})
3864 Enable numeric overflow checking (which is not normally enabled by
3865 default). Not that division by zero is a separate check that is not
3866 controlled by this switch (division by zero checking is on by default).
3867
3868 @item -gnatp
3869 @cindex @option{-gnatp} (@code{gcc})
3870 Suppress all checks.
3871
3872 @item -gnatP
3873 @cindex @option{-gnatP} (@code{gcc})
3874 Enable polling. This is required on some systems (notably Windows NT) to
3875 obtain asynchronous abort and asynchronous transfer of control capability.
3876 See the description of pragma Polling in the GNAT Reference Manual for
3877 full details.
3878
3879 @item -gnatq
3880 @cindex @option{-gnatq} (@code{gcc})
3881 Don't quit; try semantics, even if parse errors.
3882
3883 @item -gnatQ
3884 @cindex @option{-gnatQ} (@code{gcc})
3885 Don't quit; generate @file{ALI} and tree files even if illegalities.
3886
3887 @item ^-gnatR[0/1/2/3[s]]^/REPRESENTATION_INFO^
3888 @cindex @option{-gnatR} (@code{gcc})
3889 Output representation information for declared types and objects.
3890
3891 @item -gnats
3892 @cindex @option{-gnats} (@code{gcc})
3893 Syntax check only.
3894
3895 @item -gnatS
3896 @cindex @option{-gnatS} (@code{gcc})
3897 Print package Standard.
3898
3899 @item -gnatt
3900 @cindex @option{-gnatt} (@code{gcc})
3901 Generate tree output file.
3902
3903 @item ^-gnatT^/TABLE_MULTIPLIER=^@var{nnn}
3904 @cindex @option{^-gnatT^/TABLE_MULTIPLIER^} (@code{gcc})
3905 All compiler tables start at @var{nnn} times usual starting size.
3906
3907 @item -gnatu
3908 @cindex @option{-gnatu} (@code{gcc})
3909 List units for this compilation.
3910
3911 @item -gnatU
3912 @cindex @option{-gnatU} (@code{gcc})
3913 Tag all error messages with the unique string ``error:''
3914
3915 @item -gnatv
3916 @cindex @option{-gnatv} (@code{gcc})
3917 Verbose mode. Full error output with source lines to @file{stdout}.
3918
3919 @item -gnatV
3920 @cindex @option{-gnatV} (@code{gcc})
3921 Control level of validity checking. See separate section describing
3922 this feature.
3923
3924 @item ^-gnatw@var{xxx}^/WARNINGS=(@var{option}[,...])^
3925 @cindex @option{^-gnatw^/WARNINGS^} (@code{gcc})
3926 Warning mode where
3927 ^@var{xxx} is a string of option letters that^the list of options^ denotes
3928 the exact warnings that
3929 are enabled or disabled. (see @ref{Warning Message Control})
3930
3931 @item ^-gnatW^/WIDE_CHARACTER_ENCODING=^@var{e}
3932 @cindex @option{^-gnatW^/WIDE_CHARACTER_ENCODING^} (@code{gcc})
3933 Wide character encoding method
3934 @ifclear vms
3935 (@var{e}=n/h/u/s/e/8).
3936 @end ifclear
3937 @ifset vms
3938 (@var{e}=@code{BRACKETS, NONE, HEX, UPPER, SHIFT_JIS, EUC, UTF8})
3939 @end ifset
3940
3941 @item -gnatx
3942 @cindex @option{-gnatx} (@code{gcc})
3943 Suppress generation of cross-reference information.
3944
3945 @item ^-gnaty^/STYLE_CHECKS=(option,option..)^
3946 @cindex @option{^-gnaty^/STYLE_CHECKS^} (@code{gcc})
3947 Enable built-in style checks. (see @ref{Style Checking})
3948
3949 @item ^-gnatz^/DISTRIBUTION_STUBS=^@var{m}
3950 @cindex @option{^-gnatz^/DISTRIBUTION_STUBS^} (@code{gcc})
3951 Distribution stub generation and compilation
3952 @ifclear vms
3953 (@var{m}=r/c for receiver/caller stubs).
3954 @end ifclear
3955 @ifset vms
3956 (@var{m}=@code{RECEIVER} or @code{CALLER} to specify the type of stubs
3957 to be generated and compiled).
3958 @end ifset
3959
3960 @item -gnatZ
3961 Use the zero cost method for exception handling
3962
3963 @item ^-I^/SEARCH=^@var{dir}
3964 @cindex @option{^-I^/SEARCH^} (@code{gcc})
3965 @cindex RTL
3966 Direct GNAT to search the @var{dir} directory for source files needed by
3967 the current compilation
3968 (@pxref{Search Paths and the Run-Time Library (RTL)}).
3969
3970 @item ^-I-^/NOCURRENT_DIRECTORY^
3971 @cindex @option{^-I-^/NOCURRENT_DIRECTORY^} (@code{gcc})
3972 @cindex RTL
3973 Except for the source file named in the command line, do not look for source
3974 files in the directory containing the source file named in the command line
3975 (@pxref{Search Paths and the Run-Time Library (RTL)}).
3976
3977 @ifclear vms
3978 @item -mbig-switch
3979 @cindex @option{-mbig-switch} (@command{gcc})
3980 @cindex @code{case} statement (effect of @option{-mbig-switch} option)
3981 This standard gcc switch causes the compiler to use larger offsets in its
3982 jump table representation for @code{case} statements.
3983 This may result in less efficient code, but is sometimes necessary
3984 (for example on HP-UX targets)
3985 @cindex HP-UX and @option{-mbig-switch} option
3986 in order to compile large and/or nested @code{case} statements.
3987
3988 @item -o @var{file}
3989 @cindex @option{-o} (@code{gcc})
3990 This switch is used in @code{gcc} to redirect the generated object file
3991 and its associated ALI file. Beware of this switch with GNAT, because it may
3992 cause the object file and ALI file to have different names which in turn
3993 may confuse the binder and the linker.
3994 @end ifclear
3995
3996 @item -nostdinc
3997 @cindex @option{-nostdinc} (@command{gcc})
3998 Inhibit the search of the default location for the GNAT Run Time
3999 Library (RTL) source files.
4000
4001 @item -nostdlib
4002 @cindex @option{-nostdlib} (@command{gcc})
4003 Inhibit the search of the default location for the GNAT Run Time
4004 Library (RTL) ALI files.
4005
4006 @ifclear vms
4007 @item -O[@var{n}]
4008 @cindex @option{-O} (@code{gcc})
4009 @var{n} controls the optimization level.
4010
4011 @table @asis
4012 @item n = 0
4013 No optimization, the default setting if no @option{-O} appears
4014
4015 @item n = 1
4016 Normal optimization, the default if you specify @option{-O} without
4017 an operand.
4018
4019 @item n = 2
4020 Extensive optimization
4021
4022 @item n = 3
4023 Extensive optimization with automatic inlining of subprograms not
4024 specified by pragma @code{Inline}. This applies only to
4025 inlining within a unit. For details on control of inlining
4026 see @xref{Subprogram Inlining Control}.
4027 @end table
4028 @end ifclear
4029
4030 @ifset vms
4031 @item /NOOPTIMIZE
4032 @cindex @option{/NOOPTIMIZE} (@code{GNAT COMPILE})
4033 Equivalent to @option{/OPTIMIZE=NONE}.
4034 This is the default behavior in the absence of an @option{/OPTMIZE}
4035 qualifier.
4036
4037 @item /OPTIMIZE[=(keyword[,...])]
4038 @cindex @option{/OPTIMIZE} (@code{GNAT COMPILE})
4039 Selects the level of optimization for your program. The supported
4040 keywords are as follows:
4041 @table @code
4042 @item ALL
4043 Perform most optimizations, including those that
4044 are expensive.
4045 This is the default if the @option{/OPTMIZE} qualifier is supplied
4046 without keyword options.
4047
4048 @item NONE
4049 Do not do any optimizations. Same as @code{/NOOPTIMIZE}.
4050
4051 @item SOME
4052 Perform some optimizations, but omit ones that are costly.
4053
4054 @item DEVELOPMENT
4055 Same as @code{SOME}.
4056
4057 @item INLINING
4058 Full optimization, and also attempt automatic inlining of small
4059 subprograms within a unit even when pragma @code{Inline}
4060 is not specified (@pxref{Inlining of Subprograms}).
4061
4062 @item UNROLL_LOOPS
4063 Try to unroll loops. This keyword may be specified together with
4064 any keyword above other than @code{NONE}. Loop unrolling
4065 usually, but not always, improves the performance of programs.
4066 @end table
4067 @end ifset
4068
4069 @ifclear vms
4070 @item -pass-exit-codes
4071 @cindex @option{-pass-exit-codes} (@code{gcc})
4072 Catch exit codes from the compiler and use the most meaningful as
4073 exit status.
4074 @end ifclear
4075
4076 @item --RTS=@var{rts-path}
4077 @cindex @option{--RTS} (@code{gcc})
4078 Specifies the default location of the runtime library. Same meaning as the
4079 equivalent @code{gnatmake} flag (see @ref{Switches for gnatmake}).
4080
4081 @item ^-S^/ASM^
4082 @cindex @option{^-S^/ASM^} (@code{gcc})
4083 ^Used in place of @option{-c} to^Used to^
4084 cause the assembler source file to be
4085 generated, using @file{^.s^.S^} as the extension,
4086 instead of the object file.
4087 This may be useful if you need to examine the generated assembly code.
4088
4089 @item ^-v^/VERBOSE^
4090 @cindex @option{^-v^/VERBOSE^} (@code{gcc})
4091 Show commands generated by the @code{gcc} driver. Normally used only for
4092 debugging purposes or if you need to be sure what version of the
4093 compiler you are executing.
4094
4095 @ifclear vms
4096 @item -V @var{ver}
4097 @cindex @option{-V} (@code{gcc})
4098 Execute @var{ver} version of the compiler. This is the @code{gcc}
4099 version, not the GNAT version.
4100 @end ifclear
4101
4102 @end table
4103
4104 @ifclear vms
4105 You may combine a sequence of GNAT switches into a single switch. For
4106 example, the combined switch
4107
4108 @cindex Combining GNAT switches
4109 @smallexample
4110 -gnatofi3
4111 @end smallexample
4112
4113 @noindent
4114 is equivalent to specifying the following sequence of switches:
4115
4116 @smallexample
4117 -gnato -gnatf -gnati3
4118 @end smallexample
4119 @end ifclear
4120
4121
4122 @c NEED TO CHECK THIS FOR VMS
4123
4124 @noindent
4125 The following restrictions apply to the combination of switches
4126 in this manner:
4127
4128 @itemize @bullet
4129 @item
4130 The switch @option{-gnatc} if combined with other switches must come
4131 first in the string.
4132
4133 @item
4134 The switch @option{-gnats} if combined with other switches must come
4135 first in the string.
4136
4137 @item
4138 The switches
4139 @option{^-gnatz^/DISTRIBUTION_STUBS^}, @option{-gnatzc}, and @option{-gnatzr}
4140 may not be combined with any other switches.
4141
4142 @ifclear vms
4143 @item
4144 Once a ``y'' appears in the string (that is a use of the @option{-gnaty}
4145 switch), then all further characters in the switch are interpreted
4146 as style modifiers (see description of @option{-gnaty}).
4147
4148 @item
4149 Once a ``d'' appears in the string (that is a use of the @option{-gnatd}
4150 switch), then all further characters in the switch are interpreted
4151 as debug flags (see description of @option{-gnatd}).
4152
4153 @item
4154 Once a ``w'' appears in the string (that is a use of the @option{-gnatw}
4155 switch), then all further characters in the switch are interpreted
4156 as warning mode modifiers (see description of @option{-gnatw}).
4157
4158 @item
4159 Once a ``V'' appears in the string (that is a use of the @option{-gnatV}
4160 switch), then all further characters in the switch are interpreted
4161 as validity checking options (see description of @option{-gnatV}).
4162 @end ifclear
4163 @end itemize
4164
4165
4166 @node Output and Error Message Control
4167 @subsection Output and Error Message Control
4168 @findex stderr
4169
4170 @noindent
4171 The standard default format for error messages is called ``brief format''.
4172 Brief format messages are written to @file{stderr} (the standard error
4173 file) and have the following form:
4174
4175 @smallexample
4176 e.adb:3:04: Incorrect spelling of keyword "function"
4177 e.adb:4:20: ";" should be "is"
4178 @end smallexample
4179
4180 @noindent
4181 The first integer after the file name is the line number in the file,
4182 and the second integer is the column number within the line.
4183 @code{glide} can parse the error messages
4184 and point to the referenced character.
4185 The following switches provide control over the error message
4186 format:
4187
4188 @table @option
4189 @c !sort!
4190 @item -gnatv
4191 @cindex @option{-gnatv} (@code{gcc})
4192 @findex stdout
4193 @ifclear vms
4194 The v stands for verbose.
4195 @end ifclear
4196 The effect of this setting is to write long-format error
4197 messages to @file{stdout} (the standard output file.
4198 The same program compiled with the
4199 @option{-gnatv} switch would generate:
4200
4201 @smallexample
4202 @cartouche
4203 3. funcion X (Q : Integer)
4204 |
4205 >>> Incorrect spelling of keyword "function"
4206 4. return Integer;
4207 |
4208 >>> ";" should be "is"
4209 @end cartouche
4210 @end smallexample
4211
4212 @noindent
4213 The vertical bar indicates the location of the error, and the @samp{>>>}
4214 prefix can be used to search for error messages. When this switch is
4215 used the only source lines output are those with errors.
4216
4217 @item -gnatl
4218 @cindex @option{-gnatl} (@code{gcc})
4219 @ifclear vms
4220 The @code{l} stands for list.
4221 @end ifclear
4222 This switch causes a full listing of
4223 the file to be generated. The output might look as follows:
4224
4225 @smallexample
4226 @cartouche
4227 1. procedure E is
4228 2. V : Integer;
4229 3. funcion X (Q : Integer)
4230 |
4231 >>> Incorrect spelling of keyword "function"
4232 4. return Integer;
4233 |
4234 >>> ";" should be "is"
4235 5. begin
4236 6. return Q + Q;
4237 7. end;
4238 8. begin
4239 9. V := X + X;
4240 10.end E;
4241 @end cartouche
4242 @end smallexample
4243
4244 @noindent
4245 @findex stderr
4246 When you specify the @option{-gnatv} or @option{-gnatl} switches and
4247 standard output is redirected, a brief summary is written to
4248 @file{stderr} (standard error) giving the number of error messages and
4249 warning messages generated.
4250
4251 @item -gnatU
4252 @cindex @option{-gnatU} (@code{gcc})
4253 This switch forces all error messages to be preceded by the unique
4254 string ``error:''. This means that error messages take a few more
4255 characters in space, but allows easy searching for and identification
4256 of error messages.
4257
4258 @item -gnatb
4259 @cindex @option{-gnatb} (@code{gcc})
4260 @ifclear vms
4261 The @code{b} stands for brief.
4262 @end ifclear
4263 This switch causes GNAT to generate the
4264 brief format error messages to @file{stderr} (the standard error
4265 file) as well as the verbose
4266 format message or full listing (which as usual is written to
4267 @file{stdout} (the standard output file).
4268
4269 @item -gnatm^^=^@var{n}
4270 @cindex @option{-gnatm} (@code{gcc})
4271 @ifclear vms
4272 The @code{m} stands for maximum.
4273 @end ifclear
4274 @var{n} is a decimal integer in the
4275 range of 1 to 999 and limits the number of error messages to be
4276 generated. For example, using @option{-gnatm2} might yield
4277
4278 @smallexample
4279 e.adb:3:04: Incorrect spelling of keyword "function"
4280 e.adb:5:35: missing ".."
4281 fatal error: maximum errors reached
4282 compilation abandoned
4283 @end smallexample
4284
4285 @item -gnatf
4286 @cindex @option{-gnatf} (@code{gcc})
4287 @cindex Error messages, suppressing
4288 @ifclear vms
4289 The @code{f} stands for full.
4290 @end ifclear
4291 Normally, the compiler suppresses error messages that are likely to be
4292 redundant. This switch causes all error
4293 messages to be generated. In particular, in the case of
4294 references to undefined variables. If a given variable is referenced
4295 several times, the normal format of messages is
4296 @smallexample
4297 e.adb:7:07: "V" is undefined (more references follow)
4298 @end smallexample
4299
4300 @noindent
4301 where the parenthetical comment warns that there are additional
4302 references to the variable @code{V}. Compiling the same program with the
4303 @option{-gnatf} switch yields
4304
4305 @smallexample
4306 e.adb:7:07: "V" is undefined
4307 e.adb:8:07: "V" is undefined
4308 e.adb:8:12: "V" is undefined
4309 e.adb:8:16: "V" is undefined
4310 e.adb:9:07: "V" is undefined
4311 e.adb:9:12: "V" is undefined
4312 @end smallexample
4313
4314 @noindent
4315 The @option{-gnatf} switch also generates additional information for
4316 some error messages. Some examples are:
4317
4318 @itemize @bullet
4319 @item
4320 Full details on entities not available in high integrity mode
4321 @item
4322 Details on possibly non-portable unchecked conversion
4323 @item
4324 List possible interpretations for ambiguous calls
4325 @item
4326 Additional details on incorrect parameters
4327 @end itemize
4328
4329
4330 @item -gnatq
4331 @cindex @option{-gnatq} (@code{gcc})
4332 @ifclear vms
4333 The @code{q} stands for quit (really ``don't quit'').
4334 @end ifclear
4335 In normal operation mode, the compiler first parses the program and
4336 determines if there are any syntax errors. If there are, appropriate
4337 error messages are generated and compilation is immediately terminated.
4338 This switch tells
4339 GNAT to continue with semantic analysis even if syntax errors have been
4340 found. This may enable the detection of more errors in a single run. On
4341 the other hand, the semantic analyzer is more likely to encounter some
4342 internal fatal error when given a syntactically invalid tree.
4343
4344 @item -gnatQ
4345 @cindex @option{-gnatQ} (@code{gcc})
4346 In normal operation mode, the @file{ALI} file is not generated if any
4347 illegalities are detected in the program. The use of @option{-gnatQ} forces
4348 generation of the @file{ALI} file. This file is marked as being in
4349 error, so it cannot be used for binding purposes, but it does contain
4350 reasonably complete cross-reference information, and thus may be useful
4351 for use by tools (e.g. semantic browsing tools or integrated development
4352 environments) that are driven from the @file{ALI} file. This switch
4353 implies @option{-gnatq}, since the semantic phase must be run to get a
4354 meaningful ALI file.
4355
4356 In addition, if @option{-gnatt} is also specified, then the tree file is
4357 generated even if there are illegalities. It may be useful in this case
4358 to also specify @option{-gnatq} to ensure that full semantic processing
4359 occurs. The resulting tree file can be processed by ASIS, for the purpose
4360 of providing partial information about illegal units, but if the error
4361 causes the tree to be badly malformed, then ASIS may crash during the
4362 analysis.
4363
4364 When @option{-gnatQ} is used and the generated @file{ALI} file is marked as
4365 being in error, @code{gnatmake} will attempt to recompile the source when it
4366 finds such an @file{ALI} file, including with switch @option{-gnatc}.
4367
4368 Note that @option{-gnatQ} has no effect if @option{-gnats} is specified,
4369 since ALI files are never generated if @option{-gnats} is set.
4370
4371 @end table
4372
4373
4374 @node Warning Message Control
4375 @subsection Warning Message Control
4376 @cindex Warning messages
4377 @noindent
4378 In addition to error messages, which correspond to illegalities as defined
4379 in the Ada 95 Reference Manual, the compiler detects two kinds of warning
4380 situations.
4381
4382 First, the compiler considers some constructs suspicious and generates a
4383 warning message to alert you to a possible error. Second, if the
4384 compiler detects a situation that is sure to raise an exception at
4385 run time, it generates a warning message. The following shows an example
4386 of warning messages:
4387 @smallexample
4388 e.adb:4:24: warning: creation of object may raise Storage_Error
4389 e.adb:10:17: warning: static value out of range
4390 e.adb:10:17: warning: "Constraint_Error" will be raised at run time
4391 @end smallexample
4392
4393 @noindent
4394 GNAT considers a large number of situations as appropriate
4395 for the generation of warning messages. As always, warnings are not
4396 definite indications of errors. For example, if you do an out-of-range
4397 assignment with the deliberate intention of raising a
4398 @code{Constraint_Error} exception, then the warning that may be
4399 issued does not indicate an error. Some of the situations for which GNAT
4400 issues warnings (at least some of the time) are given in the following
4401 list. This list is not complete, and new warnings are often added to
4402 subsequent versions of GNAT. The list is intended to give a general idea
4403 of the kinds of warnings that are generated.
4404
4405 @itemize @bullet
4406 @item
4407 Possible infinitely recursive calls
4408
4409 @item
4410 Out-of-range values being assigned
4411
4412 @item
4413 Possible order of elaboration problems
4414
4415 @item
4416 Unreachable code
4417
4418 @item
4419 Fixed-point type declarations with a null range
4420
4421 @item
4422 Variables that are never assigned a value
4423
4424 @item
4425 Variables that are referenced before being initialized
4426
4427 @item
4428 Task entries with no corresponding @code{accept} statement
4429
4430 @item
4431 Duplicate accepts for the same task entry in a @code{select}
4432
4433 @item
4434 Objects that take too much storage
4435
4436 @item
4437 Unchecked conversion between types of differing sizes
4438
4439 @item
4440 Missing @code{return} statement along some execution path in a function
4441
4442 @item
4443 Incorrect (unrecognized) pragmas
4444
4445 @item
4446 Incorrect external names
4447
4448 @item
4449 Allocation from empty storage pool
4450
4451 @item
4452 Potentially blocking operation in protected type
4453
4454 @item
4455 Suspicious parenthesization of expressions
4456
4457 @item
4458 Mismatching bounds in an aggregate
4459
4460 @item
4461 Attempt to return local value by reference
4462
4463
4464 @item
4465 Premature instantiation of a generic body
4466
4467 @item
4468 Attempt to pack aliased components
4469
4470 @item
4471 Out of bounds array subscripts
4472
4473 @item
4474 Wrong length on string assignment
4475
4476 @item
4477 Violations of style rules if style checking is enabled
4478
4479 @item
4480 Unused @code{with} clauses
4481
4482 @item
4483 @code{Bit_Order} usage that does not have any effect
4484
4485 @item
4486 @code{Standard.Duration} used to resolve universal fixed expression
4487
4488 @item
4489 Dereference of possibly null value
4490
4491 @item
4492 Declaration that is likely to cause storage error
4493
4494 @item
4495 Internal GNAT unit @code{with}'ed by application unit
4496
4497 @item
4498 Values known to be out of range at compile time
4499
4500 @item
4501 Unreferenced labels and variables
4502
4503 @item
4504 Address overlays that could clobber memory
4505
4506 @item
4507 Unexpected initialization when address clause present
4508
4509 @item
4510 Bad alignment for address clause
4511
4512 @item
4513 Useless type conversions
4514
4515 @item
4516 Redundant assignment statements and other redundant constructs
4517
4518 @item
4519 Useless exception handlers
4520
4521 @item
4522 Accidental hiding of name by child unit
4523
4524
4525 @item
4526 Access before elaboration detected at compile time
4527
4528 @item
4529 A range in a @code{for} loop that is known to be null or might be null
4530
4531 @end itemize
4532
4533 @noindent
4534 The following switches are available to control the handling of
4535 warning messages:
4536
4537 @table @option
4538 @c !sort!
4539 @item -gnatwa
4540 @emph{Activate all optional errors.}
4541 @cindex @option{-gnatwa} (@code{gcc})
4542 This switch activates most optional warning messages, see remaining list
4543 in this section for details on optional warning messages that can be
4544 individually controlled. The warnings that are not turned on by this
4545 switch are
4546 @option{-gnatwd} (implicit dereferencing),
4547 @option{-gnatwh} (hiding),
4548 and @option{-gnatwl} (elaboration warnings).
4549 All other optional warnings are turned on.
4550
4551 @item -gnatwA
4552 @emph{Suppress all optional errors.}
4553 @cindex @option{-gnatwA} (@code{gcc})
4554 This switch suppresses all optional warning messages, see remaining list
4555 in this section for details on optional warning messages that can be
4556 individually controlled.
4557
4558 @item -gnatwc
4559 @emph{Activate warnings on conditionals.}
4560 @cindex @option{-gnatwc} (@code{gcc})
4561 @cindex Conditionals, constant
4562 This switch activates warnings for conditional expressions used in
4563 tests that are known to be True or False at compile time. The default
4564 is that such warnings are not generated.
4565 Note that this warning does
4566 not get issued for the use of boolean variables or constants whose
4567 values are known at compile time, since this is a standard technique
4568 for conditional compilation in Ada, and this would generate too many
4569 ``false positive'' warnings.
4570 This warning can also be turned on using @option{-gnatwa}.
4571
4572 @item -gnatwC
4573 @emph{Suppress warnings on conditionals.}
4574 @cindex @option{-gnatwC} (@code{gcc})
4575 This switch suppresses warnings for conditional expressions used in
4576 tests that are known to be True or False at compile time.
4577
4578 @item -gnatwd
4579 @emph{Activate warnings on implicit dereferencing.}
4580 @cindex @option{-gnatwd} (@code{gcc})
4581 If this switch is set, then the use of a prefix of an access type
4582 in an indexed component, slice, or selected component without an
4583 explicit @code{.all} will generate a warning. With this warning
4584 enabled, access checks occur only at points where an explicit
4585 @code{.all} appears in the source code (assuming no warnings are
4586 generated as a result of this switch). The default is that such
4587 warnings are not generated.
4588 Note that @option{-gnatwa} does not affect the setting of
4589 this warning option.
4590
4591 @item -gnatwD
4592 @emph{Suppress warnings on implicit dereferencing.}
4593 @cindex @option{-gnatwD} (@code{gcc})
4594 @cindex Implicit dereferencing
4595 @cindex Dereferencing, implicit
4596 This switch suppresses warnings for implicit dereferences in
4597 indexed components, slices, and selected components.
4598
4599 @item -gnatwe
4600 @emph{Treat warnings as errors.}
4601 @cindex @option{-gnatwe} (@code{gcc})
4602 @cindex Warnings, treat as error
4603 This switch causes warning messages to be treated as errors.
4604 The warning string still appears, but the warning messages are counted
4605 as errors, and prevent the generation of an object file.
4606
4607 @item -gnatwf
4608 @emph{Activate warnings on unreferenced formals.}
4609 @cindex @option{-gnatwf} (@code{gcc})
4610 @cindex Formals, unreferenced
4611 This switch causes a warning to be generated if a formal parameter
4612 is not referenced in the body of the subprogram. This warning can
4613 also be turned on using @option{-gnatwa} or @option{-gnatwu}.
4614
4615 @item -gnatwF
4616 @emph{Suppress warnings on unreferenced formals.}
4617 @cindex @option{-gnatwF} (@code{gcc})
4618 This switch suppresses warnings for unreferenced formal
4619 parameters. Note that the
4620 combination @option{-gnatwu} followed by @option{-gnatwF} has the
4621 effect of warning on unreferenced entities other than subprogram
4622 formals.
4623
4624 @item -gnatwg
4625 @emph{Activate warnings on unrecognized pragmas.}
4626 @cindex @option{-gnatwg} (@code{gcc})
4627 @cindex Pragmas, unrecognized
4628 This switch causes a warning to be generated if an unrecognized
4629 pragma is encountered. Apart from issuing this warning, the
4630 pragma is ignored and has no effect. This warning can
4631 also be turned on using @option{-gnatwa}. The default
4632 is that such warnings are issued (satisfying the Ada Reference
4633 Manual requirement that such warnings appear).
4634
4635 @item -gnatwG
4636 @emph{Suppress warnings on unrecognized pragmas.}
4637 @cindex @option{-gnatwG} (@code{gcc})
4638 This switch suppresses warnings for unrecognized pragmas.
4639
4640 @item -gnatwh
4641 @emph{Activate warnings on hiding.}
4642 @cindex @option{-gnatwh} (@code{gcc})
4643 @cindex Hiding of Declarations
4644 This switch activates warnings on hiding declarations.
4645 A declaration is considered hiding
4646 if it is for a non-overloadable entity, and it declares an entity with the
4647 same name as some other entity that is directly or use-visible. The default
4648 is that such warnings are not generated.
4649 Note that @option{-gnatwa} does not affect the setting of this warning option.
4650
4651 @item -gnatwH
4652 @emph{Suppress warnings on hiding.}
4653 @cindex @option{-gnatwH} (@code{gcc})
4654 This switch suppresses warnings on hiding declarations.
4655
4656 @item -gnatwi
4657 @emph{Activate warnings on implementation units.}
4658 @cindex @option{-gnatwi} (@code{gcc})
4659 This switch activates warnings for a @code{with} of an internal GNAT
4660 implementation unit, defined as any unit from the @code{Ada},
4661 @code{Interfaces}, @code{GNAT},
4662 ^^@code{DEC},^ or @code{System}
4663 hierarchies that is not
4664 documented in either the Ada Reference Manual or the GNAT
4665 Programmer's Reference Manual. Such units are intended only
4666 for internal implementation purposes and should not be @code{with}'ed
4667 by user programs. The default is that such warnings are generated
4668 This warning can also be turned on using @option{-gnatwa}.
4669
4670 @item -gnatwI
4671 @emph{Disable warnings on implementation units.}
4672 @cindex @option{-gnatwI} (@code{gcc})
4673 This switch disables warnings for a @code{with} of an internal GNAT
4674 implementation unit.
4675
4676 @item -gnatwj
4677 @emph{Activate warnings on obsolescent features (Annex J).}
4678 @cindex @option{-gnatwj} (@code{gcc})
4679 @cindex Features, obsolescent
4680 @cindex Obsolescent features
4681 If this warning option is activated, then warnings are generated for
4682 calls to subprograms marked with @code{pragma Obsolescent} and
4683 for use of features in Annex J of the Ada Reference Manual. In the
4684 case of Annex J, not all features are flagged. In particular use
4685 of the renamed packages (like @code{Text_IO}) and use of package
4686 @code{ASCII} are not flagged, since these are very common and
4687 would generate many annoying positive warnings. The default is that
4688 such warnings are not generated.
4689
4690 @item -gnatwJ
4691 @emph{Suppress warnings on obsolescent features (Annex J).}
4692 @cindex @option{-gnatwJ} (@code{gcc})
4693 This switch disables warnings on use of obsolescent features.
4694
4695 @item -gnatwk
4696 @emph{Activate warnings on variables that could be constants.}
4697 @cindex @option{-gnatwk} (@code{gcc})
4698 This switch activates warnings for variables that are initialized but
4699 never modified, and then could be declared constants.
4700
4701 @item -gnatwK
4702 @emph{Suppress warnings on variables that could be constants.}
4703 @cindex @option{-gnatwK} (@code{gcc})
4704 This switch disables warnings on variables that could be declared constants.
4705
4706 @item -gnatwl
4707 @emph{Activate warnings for missing elaboration pragmas.}
4708 @cindex @option{-gnatwl} (@code{gcc})
4709 @cindex Elaboration, warnings
4710 This switch activates warnings on missing
4711 @code{pragma Elaborate_All} statements.
4712 See the section in this guide on elaboration checking for details on
4713 when such pragma should be used. Warnings are also generated if you
4714 are using the static mode of elaboration, and a @code{pragma Elaborate}
4715 is encountered. The default is that such warnings
4716 are not generated.
4717 This warning is not automatically turned on by the use of @option{-gnatwa}.
4718
4719 @item -gnatwL
4720 @emph{Suppress warnings for missing elaboration pragmas.}
4721 @cindex @option{-gnatwL} (@code{gcc})
4722 This switch suppresses warnings on missing pragma Elaborate_All statements.
4723 See the section in this guide on elaboration checking for details on
4724 when such pragma should be used.
4725
4726 @item -gnatwm
4727 @emph{Activate warnings on modified but unreferenced variables.}
4728 @cindex @option{-gnatwm} (@code{gcc})
4729 This switch activates warnings for variables that are assigned (using
4730 an initialization value or with one or more assignment statements) but
4731 whose value is never read. The warning is suppressed for volatile
4732 variables and also for variables that are renamings of other variables
4733 or for which an address clause is given.
4734 This warning can also be turned on using @option{-gnatwa}.
4735
4736 @item -gnatwM
4737 @emph{Disable warnings on modified but unreferenced variables.}
4738 @cindex @option{-gnatwM} (@code{gcc})
4739 This switch disables warnings for variables that are assigned or
4740 initialized, but never read.
4741
4742 @item -gnatwn
4743 @emph{Set normal warnings mode.}
4744 @cindex @option{-gnatwn} (@code{gcc})
4745 This switch sets normal warning mode, in which enabled warnings are
4746 issued and treated as warnings rather than errors. This is the default
4747 mode. the switch @option{-gnatwn} can be used to cancel the effect of
4748 an explicit @option{-gnatws} or
4749 @option{-gnatwe}. It also cancels the effect of the
4750 implicit @option{-gnatwe} that is activated by the
4751 use of @option{-gnatg}.
4752
4753 @item -gnatwo
4754 @emph{Activate warnings on address clause overlays.}
4755 @cindex @option{-gnatwo} (@code{gcc})
4756 @cindex Address Clauses, warnings
4757 This switch activates warnings for possibly unintended initialization
4758 effects of defining address clauses that cause one variable to overlap
4759 another. The default is that such warnings are generated.
4760 This warning can also be turned on using @option{-gnatwa}.
4761
4762 @item -gnatwO
4763 @emph{Suppress warnings on address clause overlays.}
4764 @cindex @option{-gnatwO} (@code{gcc})
4765 This switch suppresses warnings on possibly unintended initialization
4766 effects of defining address clauses that cause one variable to overlap
4767 another.
4768
4769 @item -gnatwp
4770 @emph{Activate warnings on ineffective pragma Inlines.}
4771 @cindex @option{-gnatwp} (@code{gcc})
4772 @cindex Inlining, warnings
4773 This switch activates warnings for failure of front end inlining
4774 (activated by @option{-gnatN}) to inline a particular call. There are
4775 many reasons for not being able to inline a call, including most
4776 commonly that the call is too complex to inline.
4777 This warning can also be turned on using @option{-gnatwa}.
4778
4779 @item -gnatwP
4780 @emph{Suppress warnings on ineffective pragma Inlines.}
4781 @cindex @option{-gnatwP} (@code{gcc})
4782 This switch suppresses warnings on ineffective pragma Inlines. If the
4783 inlining mechanism cannot inline a call, it will simply ignore the
4784 request silently.
4785
4786 @item -gnatwr
4787 @emph{Activate warnings on redundant constructs.}
4788 @cindex @option{-gnatwr} (@code{gcc})
4789 This switch activates warnings for redundant constructs. The following
4790 is the current list of constructs regarded as redundant:
4791 This warning can also be turned on using @option{-gnatwa}.
4792
4793 @itemize @bullet
4794 @item
4795 Assignment of an item to itself.
4796 @item
4797 Type conversion that converts an expression to its own type.
4798 @item
4799 Use of the attribute @code{Base} where @code{typ'Base} is the same
4800 as @code{typ}.
4801 @item
4802 Use of pragma @code{Pack} when all components are placed by a record
4803 representation clause.
4804 @item
4805 Exception handler containing only a reraise statement (raise with no
4806 operand) which has no effect.
4807 @item
4808 Use of the operator abs on an operand that is known at compile time
4809 to be non-negative
4810 @item
4811 Use of an unnecessary extra level of parentheses (C-style) around conditions
4812 in @code{if} statements, @code{while} statements and @code{exit} statements.
4813 @item
4814 Comparison of boolean expressions to an explicit True value.
4815 @end itemize
4816
4817 @item -gnatwR
4818 @emph{Suppress warnings on redundant constructs.}
4819 @cindex @option{-gnatwR} (@code{gcc})
4820 This switch suppresses warnings for redundant constructs.
4821
4822 @item -gnatws
4823 @emph{Suppress all warnings.}
4824 @cindex @option{-gnatws} (@code{gcc})
4825 This switch completely suppresses the
4826 output of all warning messages from the GNAT front end.
4827 Note that it does not suppress warnings from the @code{gcc} back end.
4828 To suppress these back end warnings as well, use the switch @option{-w}
4829 in addition to @option{-gnatws}.
4830
4831 @item -gnatwu
4832 @emph{Activate warnings on unused entities.}
4833 @cindex @option{-gnatwu} (@code{gcc})
4834 This switch activates warnings to be generated for entities that
4835 are declared but not referenced, and for units that are @code{with}'ed
4836 and not
4837 referenced. In the case of packages, a warning is also generated if
4838 no entities in the package are referenced. This means that if the package
4839 is referenced but the only references are in @code{use}
4840 clauses or @code{renames}
4841 declarations, a warning is still generated. A warning is also generated
4842 for a generic package that is @code{with}'ed but never instantiated.
4843 In the case where a package or subprogram body is compiled, and there
4844 is a @code{with} on the corresponding spec
4845 that is only referenced in the body,
4846 a warning is also generated, noting that the
4847 @code{with} can be moved to the body. The default is that
4848 such warnings are not generated.
4849 This switch also activates warnings on unreferenced formals
4850 (it is includes the effect of @option{-gnatwf}).
4851 This warning can also be turned on using @option{-gnatwa}.
4852
4853 @item -gnatwU
4854 @emph{Suppress warnings on unused entities.}
4855 @cindex @option{-gnatwU} (@code{gcc})
4856 This switch suppresses warnings for unused entities and packages.
4857 It also turns off warnings on unreferenced formals (and thus includes
4858 the effect of @option{-gnatwF}).
4859
4860 @item -gnatwv
4861 @emph{Activate warnings on unassigned variables.}
4862 @cindex @option{-gnatwv} (@code{gcc})
4863 @cindex Unassigned variable warnings
4864 This switch activates warnings for access to variables which
4865 may not be properly initialized. The default is that
4866 such warnings are generated.
4867
4868 @item -gnatwV
4869 @emph{Suppress warnings on unassigned variables.}
4870 @cindex @option{-gnatwV} (@code{gcc})
4871 This switch suppresses warnings for access to variables which
4872 may not be properly initialized.
4873
4874 @item -gnatwx
4875 @emph{Activate warnings on Export/Import pragmas.}
4876 @cindex @option{-gnatwx} (@code{gcc})
4877 @cindex Export/Import pragma warnings
4878 This switch activates warnings on Export/Import pragmas when
4879 the compiler detects a possible conflict between the Ada and
4880 foreign language calling sequences. For example, the use of
4881 default parameters in a convention C procedure is dubious
4882 because the C compiler cannot supply the proper default, so
4883 a warning is issued. The default is that such warnings are
4884 generated.
4885
4886 @item -gnatwX
4887 @emph{Suppress warnings on Export/Import pragmas.}
4888 @cindex @option{-gnatwX} (@code{gcc})
4889 This switch suppresses warnings on Export/Import pragmas.
4890 The sense of this is that you are telling the compiler that
4891 you know what you are doing in writing the pragma, and it
4892 should not complain at you.
4893
4894 @item -gnatwz
4895 @emph{Activate warnings on unchecked conversions.}
4896 @cindex @option{-gnatwz} (@code{gcc})
4897 @cindex Unchecked_Conversion warnings
4898 This switch activates warnings for unchecked conversions
4899 where the types are known at compile time to have different
4900 sizes. The default
4901 is that such warnings are generated.
4902
4903 @item -gnatwZ
4904 @emph{Suppress warnings on unchecked conversions.}
4905 @cindex @option{-gnatwZ} (@code{gcc})
4906 This switch suppresses warnings for unchecked conversions
4907 where the types are known at compile time to have different
4908 sizes.
4909
4910 @item ^-Wuninitialized^WARNINGS=UNINITIALIZED^
4911 @cindex @option{-Wuninitialized}
4912 The warnings controlled by the @option{-gnatw} switch are generated by the
4913 front end of the compiler. In some cases, the @option{^gcc^GCC^} back end
4914 can provide additional warnings. One such useful warning is provided by
4915 @option{^-Wuninitialized^WARNINGS=UNINITIALIZED^}. This must be used in
4916 conjunction with tunrning on optimization mode. This causes the flow
4917 analysis circuits of the back end optimizer to output additional
4918 warnings about uninitialized variables.
4919
4920 @item ^-w^/NO_BACK_END_WARNINGS^
4921 @cindex @option{-w}
4922 This switch suppresses warnings from the @option{^gcc^GCC^} back end. It may
4923 be used in conjunction with @option{-gnatws} to ensure that all warnings
4924 are suppressed during the entire compilation process.
4925
4926 @end table
4927
4928 @noindent
4929 @ifclear vms
4930 A string of warning parameters can be used in the same parameter. For example:
4931
4932 @smallexample
4933 -gnatwaLe
4934 @end smallexample
4935
4936 @noindent
4937 will turn on all optional warnings except for elaboration pragma warnings,
4938 and also specify that warnings should be treated as errors.
4939 @end ifclear
4940 When no switch @option{^-gnatw^/WARNINGS^} is used, this is equivalent to:
4941
4942 @table @option
4943 @c !sort!
4944 @item -gnatwC
4945 @item -gnatwD
4946 @item -gnatwF
4947 @item -gnatwg
4948 @item -gnatwH
4949 @item -gnatwi
4950 @item -gnatwJ
4951 @item -gnatwK
4952 @item -gnatwL
4953 @item -gnatwM
4954 @item -gnatwn
4955 @item -gnatwo
4956 @item -gnatwP
4957 @item -gnatwR
4958 @item -gnatwU
4959 @item -gnatwv
4960 @item -gnatwz
4961 @item -gnatwx
4962
4963 @end table
4964
4965
4966 @node Debugging and Assertion Control
4967 @subsection Debugging and Assertion Control
4968
4969 @table @option
4970 @item -gnata
4971 @cindex @option{-gnata} (@code{gcc})
4972 @findex Assert
4973 @findex Debug
4974 @cindex Assertions
4975
4976 @noindent
4977 The pragmas @code{Assert} and @code{Debug} normally have no effect and
4978 are ignored. This switch, where @samp{a} stands for assert, causes
4979 @code{Assert} and @code{Debug} pragmas to be activated.
4980
4981 The pragmas have the form:
4982
4983 @smallexample
4984 @cartouche
4985 @b{pragma} Assert (@var{Boolean-expression} [,
4986 @var{static-string-expression}])
4987 @b{pragma} Debug (@var{procedure call})
4988 @end cartouche
4989 @end smallexample
4990
4991 @noindent
4992 The @code{Assert} pragma causes @var{Boolean-expression} to be tested.
4993 If the result is @code{True}, the pragma has no effect (other than
4994 possible side effects from evaluating the expression). If the result is
4995 @code{False}, the exception @code{Assert_Failure} declared in the package
4996 @code{System.Assertions} is
4997 raised (passing @var{static-string-expression}, if present, as the
4998 message associated with the exception). If no string expression is
4999 given the default is a string giving the file name and line number
5000 of the pragma.
5001
5002 The @code{Debug} pragma causes @var{procedure} to be called. Note that
5003 @code{pragma Debug} may appear within a declaration sequence, allowing
5004 debugging procedures to be called between declarations.
5005
5006 @ifset vms
5007 @item /DEBUG[=debug-level]
5008 @itemx /NODEBUG
5009 Specifies how much debugging information is to be included in
5010 the resulting object file where 'debug-level' is one of the following:
5011 @table @code
5012 @item TRACEBACK
5013 Include both debugger symbol records and traceback
5014 the object file.
5015 This is the default setting.
5016 @item ALL
5017 Include both debugger symbol records and traceback in
5018 object file.
5019 @item NONE
5020 Excludes both debugger symbol records and traceback
5021 the object file. Same as /NODEBUG.
5022 @item SYMBOLS
5023 Includes only debugger symbol records in the object
5024 file. Note that this doesn't include traceback information.
5025 @end table
5026 @end ifset
5027 @end table
5028
5029 @node Validity Checking
5030 @subsection Validity Checking
5031 @findex Validity Checking
5032
5033 @noindent
5034 The Ada 95 Reference Manual has specific requirements for checking
5035 for invalid values. In particular, RM 13.9.1 requires that the
5036 evaluation of invalid values (for example from unchecked conversions),
5037 not result in erroneous execution. In GNAT, the result of such an
5038 evaluation in normal default mode is to either use the value
5039 unmodified, or to raise Constraint_Error in those cases where use
5040 of the unmodified value would cause erroneous execution. The cases
5041 where unmodified values might lead to erroneous execution are case
5042 statements (where a wild jump might result from an invalid value),
5043 and subscripts on the left hand side (where memory corruption could
5044 occur as a result of an invalid value).
5045
5046 The @option{-gnatV^@var{x}^^} switch allows more control over the validity
5047 checking mode.
5048 @ifclear vms
5049 The @code{x} argument is a string of letters that
5050 indicate validity checks that are performed or not performed in addition
5051 to the default checks described above.
5052 @end ifclear
5053 @ifset vms
5054 The options allowed for this qualifier
5055 indicate validity checks that are performed or not performed in addition
5056 to the default checks described above.
5057 @end ifset
5058
5059
5060 @table @option
5061 @c !sort!
5062 @item -gnatVa
5063 @emph{All validity checks.}
5064 @cindex @option{-gnatVa} (@code{gcc})
5065 All validity checks are turned on.
5066 @ifclear vms
5067 That is, @option{-gnatVa} is
5068 equivalent to @option{gnatVcdfimorst}.
5069 @end ifclear
5070
5071 @item -gnatVc
5072 @emph{Validity checks for copies.}
5073 @cindex @option{-gnatVc} (@code{gcc})
5074 The right hand side of assignments, and the initializing values of
5075 object declarations are validity checked.
5076
5077 @item -gnatVd
5078 @emph{Default (RM) validity checks.}
5079 @cindex @option{-gnatVd} (@code{gcc})
5080 Some validity checks are done by default following normal Ada semantics
5081 (RM 13.9.1 (9-11)).
5082 A check is done in case statements that the expression is within the range
5083 of the subtype. If it is not, Constraint_Error is raised.
5084 For assignments to array components, a check is done that the expression used
5085 as index is within the range. If it is not, Constraint_Error is raised.
5086 Both these validity checks may be turned off using switch @option{-gnatVD}.
5087 They are turned on by default. If @option{-gnatVD} is specified, a subsequent
5088 switch @option{-gnatVd} will leave the checks turned on.
5089 Switch @option{-gnatVD} should be used only if you are sure that all such
5090 expressions have valid values. If you use this switch and invalid values
5091 are present, then the program is erroneous, and wild jumps or memory
5092 overwriting may occur.
5093
5094 @item -gnatVf
5095 @emph{Validity checks for floating-point values.}
5096 @cindex @option{-gnatVf} (@code{gcc})
5097 In the absence of this switch, validity checking occurs only for discrete
5098 values. If @option{-gnatVf} is specified, then validity checking also applies
5099 for floating-point values, and NaN's and infinities are considered invalid,
5100 as well as out of range values for constrained types. Note that this means
5101 that standard @code{IEEE} infinity mode is not allowed. The exact contexts
5102 in which floating-point values are checked depends on the setting of other
5103 options. For example,
5104 @option{^-gnatVif^VALIDITY_CHECKING=(IN_PARAMS,FLOATS)^} or
5105 @option{^-gnatVfi^VALIDITY_CHECKING=(FLOATS,IN_PARAMS)^}
5106 (the order does not matter) specifies that floating-point parameters of mode
5107 @code{in} should be validity checked.
5108
5109 @item -gnatVi
5110 @emph{Validity checks for @code{in} mode parameters}
5111 @cindex @option{-gnatVi} (@code{gcc})
5112 Arguments for parameters of mode @code{in} are validity checked in function
5113 and procedure calls at the point of call.
5114
5115 @item -gnatVm
5116 @emph{Validity checks for @code{in out} mode parameters.}
5117 @cindex @option{-gnatVm} (@code{gcc})
5118 Arguments for parameters of mode @code{in out} are validity checked in
5119 procedure calls at the point of call. The @code{'m'} here stands for
5120 modify, since this concerns parameters that can be modified by the call.
5121 Note that there is no specific option to test @code{out} parameters,
5122 but any reference within the subprogram will be tested in the usual
5123 manner, and if an invalid value is copied back, any reference to it
5124 will be subject to validity checking.
5125
5126 @item -gnatVn
5127 @emph{No validity checks.}
5128 @cindex @option{-gnatVn} (@code{gcc})
5129 This switch turns off all validity checking, including the default checking
5130 for case statements and left hand side subscripts. Note that the use of
5131 the switch @option{-gnatp} suppresses all run-time checks, including
5132 validity checks, and thus implies @option{-gnatVn}. When this switch
5133 is used, it cancels any other @option{-gnatV} previously issued.
5134
5135 @item -gnatVo
5136 @emph{Validity checks for operator and attribute operands.}
5137 @cindex @option{-gnatVo} (@code{gcc})
5138 Arguments for predefined operators and attributes are validity checked.
5139 This includes all operators in package @code{Standard},
5140 the shift operators defined as intrinsic in package @code{Interfaces}
5141 and operands for attributes such as @code{Pos}. Checks are also made
5142 on individual component values for composite comparisons.
5143
5144 @item -gnatVp
5145 @emph{Validity checks for parameters.}
5146 @cindex @option{-gnatVp} (@code{gcc})
5147 This controls the treatment of parameters within a subprogram (as opposed
5148 to @option{-gnatVi} and @option{-gnatVm} which control validity testing
5149 of parameters on a call. If either of these call options is used, then
5150 normally an assumption is made within a subprogram that the input arguments
5151 have been validity checking at the point of call, and do not need checking
5152 again within a subprogram). If @option{-gnatVp} is set, then this assumption
5153 is not made, and parameters are not assumed to be valid, so their validity
5154 will be checked (or rechecked) within the subprogram.
5155
5156 @item -gnatVr
5157 @emph{Validity checks for function returns.}
5158 @cindex @option{-gnatVr} (@code{gcc})
5159 The expression in @code{return} statements in functions is validity
5160 checked.
5161
5162 @item -gnatVs
5163 @emph{Validity checks for subscripts.}
5164 @cindex @option{-gnatVs} (@code{gcc})
5165 All subscripts expressions are checked for validity, whether they appear
5166 on the right side or left side (in default mode only left side subscripts
5167 are validity checked).
5168
5169 @item -gnatVt
5170 @emph{Validity checks for tests.}
5171 @cindex @option{-gnatVt} (@code{gcc})
5172 Expressions used as conditions in @code{if}, @code{while} or @code{exit}
5173 statements are checked, as well as guard expressions in entry calls.
5174
5175 @end table
5176
5177 @noindent
5178 The @option{-gnatV} switch may be followed by
5179 ^a string of letters^a list of options^
5180 to turn on a series of validity checking options.
5181 For example,
5182 @option{^-gnatVcr^/VALIDITY_CHECKING=(COPIES, RETURNS)^}
5183 specifies that in addition to the default validity checking, copies and
5184 function return expressions are to be validity checked.
5185 In order to make it easier
5186 to specify the desired combination of effects,
5187 @ifclear vms
5188 the upper case letters @code{CDFIMORST} may
5189 be used to turn off the corresponding lower case option.
5190 @end ifclear
5191 @ifset vms
5192 the prefix @code{NO} on an option turns off the corresponding validity
5193 checking:
5194 @itemize @bullet
5195 @item @code{NOCOPIES}
5196 @item @code{NODEFAULT}
5197 @item @code{NOFLOATS}
5198 @item @code{NOIN_PARAMS}
5199 @item @code{NOMOD_PARAMS}
5200 @item @code{NOOPERANDS}
5201 @item @code{NORETURNS}
5202 @item @code{NOSUBSCRIPTS}
5203 @item @code{NOTESTS}
5204 @end itemize
5205 @end ifset
5206 Thus
5207 @option{^-gnatVaM^/VALIDITY_CHECKING=(ALL, NOMOD_PARAMS)^}
5208 turns on all validity checking options except for
5209 checking of @code{@b{in out}} procedure arguments.
5210
5211 The specification of additional validity checking generates extra code (and
5212 in the case of @option{-gnatVa} the code expansion can be substantial.
5213 However, these additional checks can be very useful in detecting
5214 uninitialized variables, incorrect use of unchecked conversion, and other
5215 errors leading to invalid values. The use of pragma @code{Initialize_Scalars}
5216 is useful in conjunction with the extra validity checking, since this
5217 ensures that wherever possible uninitialized variables have invalid values.
5218
5219 See also the pragma @code{Validity_Checks} which allows modification of
5220 the validity checking mode at the program source level, and also allows for
5221 temporary disabling of validity checks.
5222
5223
5224 @node Style Checking
5225 @subsection Style Checking
5226 @findex Style checking
5227
5228 @noindent
5229 The @option{-gnaty^x^(option,option,...)^} switch
5230 @cindex @option{-gnaty} (@code{gcc})
5231 causes the compiler to
5232 enforce specified style rules. A limited set of style rules has been used
5233 in writing the GNAT sources themselves. This switch allows user programs
5234 to activate all or some of these checks. If the source program fails a
5235 specified style check, an appropriate warning message is given, preceded by
5236 the character sequence ``(style)''.
5237 @ifset vms
5238 @code{(option,option,...)} is a sequence of keywords
5239 @end ifset
5240 @ifclear vms
5241 The string @var{x} is a sequence of letters or digits
5242 @end ifclear
5243 indicating the particular style
5244 checks to be performed. The following checks are defined:
5245
5246 @table @option
5247 @c !sort!
5248 @item 1-9
5249 @emph{Specify indentation level.}
5250 If a digit from 1-9 appears
5251 ^in the string after @option{-gnaty}^as an option for /STYLE_CHECKS^
5252 then proper indentation is checked, with the digit indicating the
5253 indentation level required.
5254 The general style of required indentation is as specified by
5255 the examples in the Ada Reference Manual. Full line comments must be
5256 aligned with the @code{--} starting on a column that is a multiple of
5257 the alignment level.
5258
5259 @item ^a^ATTRIBUTE^
5260 @emph{Check attribute casing.}
5261 If the ^letter a^word ATTRIBUTE^ appears in the string after @option{-gnaty}
5262 then attribute names, including the case of keywords such as @code{digits}
5263 used as attributes names, must be written in mixed case, that is, the
5264 initial letter and any letter following an underscore must be uppercase.
5265 All other letters must be lowercase.
5266
5267 @item ^b^BLANKS^
5268 @emph{Blanks not allowed at statement end.}
5269 If the ^letter b^word BLANKS^ appears in the string after @option{-gnaty} then
5270 trailing blanks are not allowed at the end of statements. The purpose of this
5271 rule, together with h (no horizontal tabs), is to enforce a canonical format
5272 for the use of blanks to separate source tokens.
5273
5274 @item ^c^COMMENTS^
5275 @emph{Check comments.}
5276 If the ^letter c^word COMMENTS^ appears in the string after @option{-gnaty}
5277 then comments must meet the following set of rules:
5278
5279 @itemize @bullet
5280
5281 @item
5282 The ``@code{--}'' that starts the column must either start in column one,
5283 or else at least one blank must precede this sequence.
5284
5285 @item
5286 Comments that follow other tokens on a line must have at least one blank
5287 following the ``@code{--}'' at the start of the comment.
5288
5289 @item
5290 Full line comments must have two blanks following the ``@code{--}'' that
5291 starts the comment, with the following exceptions.
5292
5293 @item
5294 A line consisting only of the ``@code{--}'' characters, possibly preceded
5295 by blanks is permitted.
5296
5297 @item
5298 A comment starting with ``@code{--x}'' where @code{x} is a special character
5299 is permitted.
5300 This allows proper processing of the output generated by specialized tools
5301 including @command{gnatprep} (where ``@code{--!}'' is used) and the SPARK
5302 annotation
5303 language (where ``@code{--#}'' is used). For the purposes of this rule, a
5304 special character is defined as being in one of the ASCII ranges
5305 @code{16#21#..16#2F#} or @code{16#3A#..16#3F#}.
5306 Note that this usage is not permitted
5307 in GNAT implementation units (i.e. when @option{-gnatg} is used).
5308
5309 @item
5310 A line consisting entirely of minus signs, possibly preceded by blanks, is
5311 permitted. This allows the construction of box comments where lines of minus
5312 signs are used to form the top and bottom of the box.
5313
5314 @item
5315 If a comment starts and ends with ``@code{--}'' is permitted as long as at
5316 least one blank follows the initial ``@code{--}''. Together with the preceding
5317 rule, this allows the construction of box comments, as shown in the following
5318 example:
5319 @smallexample
5320 ---------------------------
5321 -- This is a box comment --
5322 -- with two text lines. --
5323 ---------------------------
5324 @end smallexample
5325 @end itemize
5326
5327 @item ^e^END^
5328 @emph{Check end/exit labels.}
5329 If the ^letter e^word END^ appears in the string after @option{-gnaty} then
5330 optional labels on @code{end} statements ending subprograms and on
5331 @code{exit} statements exiting named loops, are required to be present.
5332
5333 @item ^f^VTABS^
5334 @emph{No form feeds or vertical tabs.}
5335 If the ^letter f^word VTABS^ appears in the string after @option{-gnaty} then
5336 neither form feeds nor vertical tab characters are not permitted
5337 in the source text.
5338
5339 @item ^h^HTABS^
5340 @emph{No horizontal tabs.}
5341 If the ^letter h^word HTABS^ appears in the string after @option{-gnaty} then
5342 horizontal tab characters are not permitted in the source text.
5343 Together with the b (no blanks at end of line) check, this
5344 enforces a canonical form for the use of blanks to separate
5345 source tokens.
5346
5347 @item ^i^IF_THEN^
5348 @emph{Check if-then layout.}
5349 If the ^letter i^word IF_THEN^ appears in the string after @option{-gnaty},
5350 then the keyword @code{then} must appear either on the same
5351 line as corresponding @code{if}, or on a line on its own, lined
5352 up under the @code{if} with at least one non-blank line in between
5353 containing all or part of the condition to be tested.
5354
5355 @item ^k^KEYWORD^
5356 @emph{Check keyword casing.}
5357 If the ^letter k^word KEYWORD^ appears in the string after @option{-gnaty} then
5358 all keywords must be in lower case (with the exception of keywords
5359 such as @code{digits} used as attribute names to which this check
5360 does not apply).
5361
5362 @item ^l^LAYOUT^
5363 @emph{Check layout.}
5364 If the ^letter l^word LAYOUT^ appears in the string after @option{-gnaty} then
5365 layout of statement and declaration constructs must follow the
5366 recommendations in the Ada Reference Manual, as indicated by the
5367 form of the syntax rules. For example an @code{else} keyword must
5368 be lined up with the corresponding @code{if} keyword.
5369
5370 There are two respects in which the style rule enforced by this check
5371 option are more liberal than those in the Ada Reference Manual. First
5372 in the case of record declarations, it is permissible to put the
5373 @code{record} keyword on the same line as the @code{type} keyword, and
5374 then the @code{end} in @code{end record} must line up under @code{type}.
5375 For example, either of the following two layouts is acceptable:
5376
5377 @smallexample @c ada
5378 @cartouche
5379 type q is record
5380 a : integer;
5381 b : integer;
5382 end record;
5383
5384 type q is
5385 record
5386 a : integer;
5387 b : integer;
5388 end record;
5389 @end cartouche
5390 @end smallexample
5391
5392 @noindent
5393 Second, in the case of a block statement, a permitted alternative
5394 is to put the block label on the same line as the @code{declare} or
5395 @code{begin} keyword, and then line the @code{end} keyword up under
5396 the block label. For example both the following are permitted:
5397
5398 @smallexample @c ada
5399 @cartouche
5400 Block : declare
5401 A : Integer := 3;
5402 begin
5403 Proc (A, A);
5404 end Block;
5405
5406 Block :
5407 declare
5408 A : Integer := 3;
5409 begin
5410 Proc (A, A);
5411 end Block;
5412 @end cartouche
5413 @end smallexample
5414
5415 @noindent
5416 The same alternative format is allowed for loops. For example, both of
5417 the following are permitted:
5418
5419 @smallexample @c ada
5420 @cartouche
5421 Clear : while J < 10 loop
5422 A (J) := 0;
5423 end loop Clear;
5424
5425 Clear :
5426 while J < 10 loop
5427 A (J) := 0;
5428 end loop Clear;
5429 @end cartouche
5430 @end smallexample
5431
5432 @item ^m^LINE_LENGTH^
5433 @emph{Check maximum line length.}
5434 If the ^letter m^word LINE_LENGTH^ appears in the string after @option{-gnaty}
5435 then the length of source lines must not exceed 79 characters, including
5436 any trailing blanks. The value of 79 allows convenient display on an
5437 80 character wide device or window, allowing for possible special
5438 treatment of 80 character lines. Note that this count is of raw
5439 characters in the source text. This means that a tab character counts
5440 as one character in this count and a wide character sequence counts as
5441 several characters (however many are needed in the encoding).
5442
5443 @item ^Mnnn^MAX_LENGTH=nnn^
5444 @emph{Set maximum line length.}
5445 If the sequence ^M^MAX_LENGTH=^nnn, where nnn is a decimal number, appears in
5446 the string after @option{-gnaty} then the length of lines must not exceed the
5447 given value.
5448
5449 @item ^n^STANDARD_CASING^
5450 @emph{Check casing of entities in Standard.}
5451 If the ^letter n^word STANDARD_CASING^ appears in the string
5452 after @option{-gnaty} then any identifier from Standard must be cased
5453 to match the presentation in the Ada Reference Manual (for example,
5454 @code{Integer} and @code{ASCII.NUL}).
5455
5456 @item ^o^ORDERED_SUBPROGRAMS^
5457 @emph{Check order of subprogram bodies.}
5458 If the ^letter o^word ORDERED_SUBPROGRAMS^ appears in the string
5459 after @option{-gnaty} then all subprogram bodies in a given scope
5460 (e.g. a package body) must be in alphabetical order. The ordering
5461 rule uses normal Ada rules for comparing strings, ignoring casing
5462 of letters, except that if there is a trailing numeric suffix, then
5463 the value of this suffix is used in the ordering (e.g. Junk2 comes
5464 before Junk10).
5465
5466 @item ^p^PRAGMA^
5467 @emph{Check pragma casing.}
5468 If the ^letter p^word PRAGMA^ appears in the string after @option{-gnaty} then
5469 pragma names must be written in mixed case, that is, the
5470 initial letter and any letter following an underscore must be uppercase.
5471 All other letters must be lowercase.
5472
5473 @item ^r^REFERENCES^
5474 @emph{Check references.}
5475 If the ^letter r^word REFERENCES^ appears in the string after @option{-gnaty}
5476 then all identifier references must be cased in the same way as the
5477 corresponding declaration. No specific casing style is imposed on
5478 identifiers. The only requirement is for consistency of references
5479 with declarations.
5480
5481 @item ^s^SPECS^
5482 @emph{Check separate specs.}
5483 If the ^letter s^word SPECS^ appears in the string after @option{-gnaty} then
5484 separate declarations (``specs'') are required for subprograms (a
5485 body is not allowed to serve as its own declaration). The only
5486 exception is that parameterless library level procedures are
5487 not required to have a separate declaration. This exception covers
5488 the most frequent form of main program procedures.
5489
5490 @item ^t^TOKEN^
5491 @emph{Check token spacing.}
5492 If the ^letter t^word TOKEN^ appears in the string after @option{-gnaty} then
5493 the following token spacing rules are enforced:
5494
5495 @itemize @bullet
5496
5497 @item
5498 The keywords @code{@b{abs}} and @code{@b{not}} must be followed by a space.
5499
5500 @item
5501 The token @code{=>} must be surrounded by spaces.
5502
5503 @item
5504 The token @code{<>} must be preceded by a space or a left parenthesis.
5505
5506 @item
5507 Binary operators other than @code{**} must be surrounded by spaces.
5508 There is no restriction on the layout of the @code{**} binary operator.
5509
5510 @item
5511 Colon must be surrounded by spaces.
5512
5513 @item
5514 Colon-equal (assignment, initialization) must be surrounded by spaces.
5515
5516 @item
5517 Comma must be the first non-blank character on the line, or be
5518 immediately preceded by a non-blank character, and must be followed
5519 by a space.
5520
5521 @item
5522 If the token preceding a left parenthesis ends with a letter or digit, then
5523 a space must separate the two tokens.
5524
5525 @item
5526 A right parenthesis must either be the first non-blank character on
5527 a line, or it must be preceded by a non-blank character.
5528
5529 @item
5530 A semicolon must not be preceded by a space, and must not be followed by
5531 a non-blank character.
5532
5533 @item
5534 A unary plus or minus may not be followed by a space.
5535
5536 @item
5537 A vertical bar must be surrounded by spaces.
5538 @end itemize
5539
5540 @noindent
5541 In the above rules, appearing in column one is always permitted, that is,
5542 counts as meeting either a requirement for a required preceding space,
5543 or as meeting a requirement for no preceding space.
5544
5545 Appearing at the end of a line is also always permitted, that is, counts
5546 as meeting either a requirement for a following space, or as meeting
5547 a requirement for no following space.
5548
5549 @end table
5550
5551 @noindent
5552 If any of these style rules is violated, a message is generated giving
5553 details on the violation. The initial characters of such messages are
5554 always ``@code{(style)}''. Note that these messages are treated as warning
5555 messages, so they normally do not prevent the generation of an object
5556 file. The @option{-gnatwe} switch can be used to treat warning messages,
5557 including style messages, as fatal errors.
5558
5559 The switch
5560 @ifclear vms
5561 @option{-gnaty} on its own (that is not
5562 followed by any letters or digits),
5563 is equivalent to @code{gnaty3abcefhiklmprst}, that is all checking
5564 options enabled with the exception of -gnatyo,
5565 @end ifclear
5566 @ifset vms
5567 /STYLE_CHECKS=ALL_BUILTIN enables all checking options with
5568 the exception of ORDERED_SUBPROGRAMS,
5569 @end ifset
5570 with an indentation level of 3. This is the standard
5571 checking option that is used for the GNAT sources.
5572
5573 The switch
5574 @ifclear vms
5575 @option{-gnatyN}
5576 @end ifclear
5577 @ifset vms
5578 /STYLE_CHECKS=NONE
5579 @end ifset
5580 clears any previously set style checks.
5581
5582 @node Run-Time Checks
5583 @subsection Run-Time Checks
5584 @cindex Division by zero
5585 @cindex Access before elaboration
5586 @cindex Checks, division by zero
5587 @cindex Checks, access before elaboration
5588
5589 @noindent
5590 If you compile with the default options, GNAT will insert many run-time
5591 checks into the compiled code, including code that performs range
5592 checking against constraints, but not arithmetic overflow checking for
5593 integer operations (including division by zero) or checks for access
5594 before elaboration on subprogram calls. All other run-time checks, as
5595 required by the Ada 95 Reference Manual, are generated by default.
5596 The following @code{gcc} switches refine this default behavior:
5597
5598 @table @option
5599 @c !sort!
5600 @item -gnatp
5601 @cindex @option{-gnatp} (@code{gcc})
5602 @cindex Suppressing checks
5603 @cindex Checks, suppressing
5604 @findex Suppress
5605 Suppress all run-time checks as though @code{pragma Suppress (all_checks})
5606 had been present in the source. Validity checks are also suppressed (in
5607 other words @option{-gnatp} also implies @option{-gnatVn}.
5608 Use this switch to improve the performance
5609 of the code at the expense of safety in the presence of invalid data or
5610 program bugs.
5611
5612 @item -gnato
5613 @cindex @option{-gnato} (@code{gcc})
5614 @cindex Overflow checks
5615 @cindex Check, overflow
5616 Enables overflow checking for integer operations.
5617 This causes GNAT to generate slower and larger executable
5618 programs by adding code to check for overflow (resulting in raising
5619 @code{Constraint_Error} as required by standard Ada
5620 semantics). These overflow checks correspond to situations in which
5621 the true value of the result of an operation may be outside the base
5622 range of the result type. The following example shows the distinction:
5623
5624 @smallexample @c ada
5625 X1 : Integer := Integer'Last;
5626 X2 : Integer range 1 .. 5 := 5;
5627 X3 : Integer := Integer'Last;
5628 X4 : Integer range 1 .. 5 := 5;
5629 F : Float := 2.0E+20;
5630 ...
5631 X1 := X1 + 1;
5632 X2 := X2 + 1;
5633 X3 := Integer (F);
5634 X4 := Integer (F);
5635 @end smallexample
5636
5637 @noindent
5638 Here the first addition results in a value that is outside the base range
5639 of Integer, and hence requires an overflow check for detection of the
5640 constraint error. Thus the first assignment to @code{X1} raises a
5641 @code{Constraint_Error} exception only if @option{-gnato} is set.
5642
5643 The second increment operation results in a violation
5644 of the explicit range constraint, and such range checks are always
5645 performed (unless specifically suppressed with a pragma @code{suppress}
5646 or the use of @option{-gnatp}).
5647
5648 The two conversions of @code{F} both result in values that are outside
5649 the base range of type @code{Integer} and thus will raise
5650 @code{Constraint_Error} exceptions only if @option{-gnato} is used.
5651 The fact that the result of the second conversion is assigned to
5652 variable @code{X4} with a restricted range is irrelevant, since the problem
5653 is in the conversion, not the assignment.
5654
5655 Basically the rule is that in the default mode (@option{-gnato} not
5656 used), the generated code assures that all integer variables stay
5657 within their declared ranges, or within the base range if there is
5658 no declared range. This prevents any serious problems like indexes
5659 out of range for array operations.
5660
5661 What is not checked in default mode is an overflow that results in
5662 an in-range, but incorrect value. In the above example, the assignments
5663 to @code{X1}, @code{X2}, @code{X3} all give results that are within the
5664 range of the target variable, but the result is wrong in the sense that
5665 it is too large to be represented correctly. Typically the assignment
5666 to @code{X1} will result in wrap around to the largest negative number.
5667 The conversions of @code{F} will result in some @code{Integer} value
5668 and if that integer value is out of the @code{X4} range then the
5669 subsequent assignment would generate an exception.
5670
5671 @findex Machine_Overflows
5672 Note that the @option{-gnato} switch does not affect the code generated
5673 for any floating-point operations; it applies only to integer
5674 semantics).
5675 For floating-point, GNAT has the @code{Machine_Overflows}
5676 attribute set to @code{False} and the normal mode of operation is to
5677 generate IEEE NaN and infinite values on overflow or invalid operations
5678 (such as dividing 0.0 by 0.0).
5679
5680 The reason that we distinguish overflow checking from other kinds of
5681 range constraint checking is that a failure of an overflow check can
5682 generate an incorrect value, but cannot cause erroneous behavior. This
5683 is unlike the situation with a constraint check on an array subscript,
5684 where failure to perform the check can result in random memory description,
5685 or the range check on a case statement, where failure to perform the check
5686 can cause a wild jump.
5687
5688 Note again that @option{-gnato} is off by default, so overflow checking is
5689 not performed in default mode. This means that out of the box, with the
5690 default settings, GNAT does not do all the checks expected from the
5691 language description in the Ada Reference Manual. If you want all constraint
5692 checks to be performed, as described in this Manual, then you must
5693 explicitly use the -gnato switch either on the @code{gnatmake} or
5694 @code{gcc} command.
5695
5696 @item -gnatE
5697 @cindex @option{-gnatE} (@code{gcc})
5698 @cindex Elaboration checks
5699 @cindex Check, elaboration
5700 Enables dynamic checks for access-before-elaboration
5701 on subprogram calls and generic instantiations.
5702 For full details of the effect and use of this switch,
5703 @xref{Compiling Using gcc}.
5704 @end table
5705
5706 @findex Unsuppress
5707 @noindent
5708 The setting of these switches only controls the default setting of the
5709 checks. You may modify them using either @code{Suppress} (to remove
5710 checks) or @code{Unsuppress} (to add back suppressed checks) pragmas in
5711 the program source.
5712
5713 @node Stack Overflow Checking
5714 @subsection Stack Overflow Checking
5715 @cindex Stack Overflow Checking
5716 @cindex -fstack-check
5717
5718 @noindent
5719 For most operating systems, @code{gcc} does not perform stack overflow
5720 checking by default. This means that if the main environment task or
5721 some other task exceeds the available stack space, then unpredictable
5722 behavior will occur.
5723
5724 To activate stack checking, compile all units with the gcc option
5725 @option{-fstack-check}. For example:
5726
5727 @smallexample
5728 gcc -c -fstack-check package1.adb
5729 @end smallexample
5730
5731 @noindent
5732 Units compiled with this option will generate extra instructions to check
5733 that any use of the stack (for procedure calls or for declaring local
5734 variables in declare blocks) do not exceed the available stack space.
5735 If the space is exceeded, then a @code{Storage_Error} exception is raised.
5736
5737 For declared tasks, the stack size is always controlled by the size
5738 given in an applicable @code{Storage_Size} pragma (or is set to
5739 the default size if no pragma is used.
5740
5741 For the environment task, the stack size depends on
5742 system defaults and is unknown to the compiler. The stack
5743 may even dynamically grow on some systems, precluding the
5744 normal Ada semantics for stack overflow. In the worst case,
5745 unbounded stack usage, causes unbounded stack expansion
5746 resulting in the system running out of virtual memory.
5747
5748 The stack checking may still work correctly if a fixed
5749 size stack is allocated, but this cannot be guaranteed.
5750 To ensure that a clean exception is signalled for stack
5751 overflow, set the environment variable
5752 @code{GNAT_STACK_LIMIT} to indicate the maximum
5753 stack area that can be used, as in:
5754 @cindex GNAT_STACK_LIMIT
5755
5756 @smallexample
5757 SET GNAT_STACK_LIMIT 1600
5758 @end smallexample
5759
5760 @noindent
5761 The limit is given in kilobytes, so the above declaration would
5762 set the stack limit of the environment task to 1.6 megabytes.
5763 Note that the only purpose of this usage is to limit the amount
5764 of stack used by the environment task. If it is necessary to
5765 increase the amount of stack for the environment task, then this
5766 is an operating systems issue, and must be addressed with the
5767 appropriate operating systems commands.
5768
5769
5770 @node Using gcc for Syntax Checking
5771 @subsection Using @code{gcc} for Syntax Checking
5772 @table @option
5773 @item -gnats
5774 @cindex @option{-gnats} (@code{gcc})
5775 @ifclear vms
5776
5777 @noindent
5778 The @code{s} stands for ``syntax''.
5779 @end ifclear
5780
5781 Run GNAT in syntax checking only mode. For
5782 example, the command
5783
5784 @smallexample
5785 $ gcc -c -gnats x.adb
5786 @end smallexample
5787
5788 @noindent
5789 compiles file @file{x.adb} in syntax-check-only mode. You can check a
5790 series of files in a single command
5791 @ifclear vms
5792 , and can use wild cards to specify such a group of files.
5793 Note that you must specify the @option{-c} (compile
5794 only) flag in addition to the @option{-gnats} flag.
5795 @end ifclear
5796 .
5797 You may use other switches in conjunction with @option{-gnats}. In
5798 particular, @option{-gnatl} and @option{-gnatv} are useful to control the
5799 format of any generated error messages.
5800
5801 When the source file is empty or contains only empty lines and/or comments,
5802 the output is a warning:
5803
5804 @smallexample
5805 $ gcc -c -gnats -x ada toto.txt
5806 toto.txt:1:01: warning: empty file, contains no compilation units
5807 $
5808 @end smallexample
5809
5810 Otherwise, the output is simply the error messages, if any. No object file or
5811 ALI file is generated by a syntax-only compilation. Also, no units other
5812 than the one specified are accessed. For example, if a unit @code{X}
5813 @code{with}'s a unit @code{Y}, compiling unit @code{X} in syntax
5814 check only mode does not access the source file containing unit
5815 @code{Y}.
5816
5817 @cindex Multiple units, syntax checking
5818 Normally, GNAT allows only a single unit in a source file. However, this
5819 restriction does not apply in syntax-check-only mode, and it is possible
5820 to check a file containing multiple compilation units concatenated
5821 together. This is primarily used by the @code{gnatchop} utility
5822 (@pxref{Renaming Files Using gnatchop}).
5823 @end table
5824
5825
5826 @node Using gcc for Semantic Checking
5827 @subsection Using @code{gcc} for Semantic Checking
5828 @table @option
5829 @item -gnatc
5830 @cindex @option{-gnatc} (@code{gcc})
5831
5832 @ifclear vms
5833 @noindent
5834 The @code{c} stands for ``check''.
5835 @end ifclear
5836 Causes the compiler to operate in semantic check mode,
5837 with full checking for all illegalities specified in the
5838 Ada 95 Reference Manual, but without generation of any object code
5839 (no object file is generated).
5840
5841 Because dependent files must be accessed, you must follow the GNAT
5842 semantic restrictions on file structuring to operate in this mode:
5843
5844 @itemize @bullet
5845 @item
5846 The needed source files must be accessible
5847 (@pxref{Search Paths and the Run-Time Library (RTL)}).
5848
5849 @item
5850 Each file must contain only one compilation unit.
5851
5852 @item
5853 The file name and unit name must match (@pxref{File Naming Rules}).
5854 @end itemize
5855
5856 The output consists of error messages as appropriate. No object file is
5857 generated. An @file{ALI} file is generated for use in the context of
5858 cross-reference tools, but this file is marked as not being suitable
5859 for binding (since no object file is generated).
5860 The checking corresponds exactly to the notion of
5861 legality in the Ada 95 Reference Manual.
5862
5863 Any unit can be compiled in semantics-checking-only mode, including
5864 units that would not normally be compiled (subunits,
5865 and specifications where a separate body is present).
5866 @end table
5867
5868 @node Compiling Ada 83 Programs
5869 @subsection Compiling Ada 83 Programs
5870 @table @option
5871 @cindex Ada 83 compatibility
5872 @item -gnat83
5873 @cindex @option{-gnat83} (@code{gcc})
5874 @cindex ACVC, Ada 83 tests
5875
5876 @noindent
5877 Although GNAT is primarily an Ada 95 compiler, it accepts this switch to
5878 specify that an Ada 83 program is to be compiled in Ada 83 mode. If you specify
5879 this switch, GNAT rejects most Ada 95 extensions and applies Ada 83 semantics
5880 where this can be done easily.
5881 It is not possible to guarantee this switch does a perfect
5882 job; for example, some subtle tests, such as are
5883 found in earlier ACVC tests (and that have been removed from the ACATS suite
5884 for Ada 95), might not compile correctly.
5885 Nevertheless, this switch may be useful in some circumstances, for example
5886 where, due to contractual reasons, legacy code needs to be maintained
5887 using only Ada 83 features.
5888
5889 With few exceptions (most notably the need to use @code{<>} on
5890 @cindex Generic formal parameters
5891 unconstrained generic formal parameters, the use of the new Ada 95
5892 reserved words, and the use of packages
5893 with optional bodies), it is not necessary to use the
5894 @option{-gnat83} switch when compiling Ada 83 programs, because, with rare
5895 exceptions, Ada 95 is upwardly compatible with Ada 83. This
5896 means that a correct Ada 83 program is usually also a correct Ada 95
5897 program.
5898 For further information, please refer to @ref{Compatibility and Porting Guide}.
5899
5900 @end table
5901
5902 @node Character Set Control
5903 @subsection Character Set Control
5904 @table @option
5905 @item ^-gnati^/IDENTIFIER_CHARACTER_SET=^@var{c}
5906 @cindex @option{^-gnati^/IDENTIFIER_CHARACTER_SET^} (@code{gcc})
5907
5908 @noindent
5909 Normally GNAT recognizes the Latin-1 character set in source program
5910 identifiers, as described in the Ada 95 Reference Manual.
5911 This switch causes
5912 GNAT to recognize alternate character sets in identifiers. @var{c} is a
5913 single character ^^or word^ indicating the character set, as follows:
5914
5915 @table @code
5916 @item 1
5917 ISO 8859-1 (Latin-1) identifiers
5918
5919 @item 2
5920 ISO 8859-2 (Latin-2) letters allowed in identifiers
5921
5922 @item 3
5923 ISO 8859-3 (Latin-3) letters allowed in identifiers
5924
5925 @item 4
5926 ISO 8859-4 (Latin-4) letters allowed in identifiers
5927
5928 @item 5
5929 ISO 8859-5 (Cyrillic) letters allowed in identifiers
5930
5931 @item 9
5932 ISO 8859-15 (Latin-9) letters allowed in identifiers
5933
5934 @item ^p^PC^
5935 IBM PC letters (code page 437) allowed in identifiers
5936
5937 @item ^8^PC850^
5938 IBM PC letters (code page 850) allowed in identifiers
5939
5940 @item ^f^FULL_UPPER^
5941 Full upper-half codes allowed in identifiers
5942
5943 @item ^n^NO_UPPER^
5944 No upper-half codes allowed in identifiers
5945
5946 @item ^w^WIDE^
5947 Wide-character codes (that is, codes greater than 255)
5948 allowed in identifiers
5949 @end table
5950
5951 @xref{Foreign Language Representation}, for full details on the
5952 implementation of these character sets.
5953
5954 @item ^-gnatW^/WIDE_CHARACTER_ENCODING=^@var{e}
5955 @cindex @option{^-gnatW^/WIDE_CHARACTER_ENCODING^} (@code{gcc})
5956 Specify the method of encoding for wide characters.
5957 @var{e} is one of the following:
5958
5959 @table @code
5960
5961 @item ^h^HEX^
5962 Hex encoding (brackets coding also recognized)
5963
5964 @item ^u^UPPER^
5965 Upper half encoding (brackets encoding also recognized)
5966
5967 @item ^s^SHIFT_JIS^
5968 Shift/JIS encoding (brackets encoding also recognized)
5969
5970 @item ^e^EUC^
5971 EUC encoding (brackets encoding also recognized)
5972
5973 @item ^8^UTF8^
5974 UTF-8 encoding (brackets encoding also recognized)
5975
5976 @item ^b^BRACKETS^
5977 Brackets encoding only (default value)
5978 @end table
5979 For full details on the these encoding
5980 methods see @xref{Wide Character Encodings}.
5981 Note that brackets coding is always accepted, even if one of the other
5982 options is specified, so for example @option{-gnatW8} specifies that both
5983 brackets and @code{UTF-8} encodings will be recognized. The units that are
5984 with'ed directly or indirectly will be scanned using the specified
5985 representation scheme, and so if one of the non-brackets scheme is
5986 used, it must be used consistently throughout the program. However,
5987 since brackets encoding is always recognized, it may be conveniently
5988 used in standard libraries, allowing these libraries to be used with
5989 any of the available coding schemes.
5990 scheme. If no @option{-gnatW?} parameter is present, then the default
5991 representation is Brackets encoding only.
5992
5993 Note that the wide character representation that is specified (explicitly
5994 or by default) for the main program also acts as the default encoding used
5995 for Wide_Text_IO files if not specifically overridden by a WCEM form
5996 parameter.
5997
5998 @end table
5999 @node File Naming Control
6000 @subsection File Naming Control
6001
6002 @table @option
6003 @item ^-gnatk^/FILE_NAME_MAX_LENGTH=^@var{n}
6004 @cindex @option{-gnatk} (@code{gcc})
6005 Activates file name ``krunching''. @var{n}, a decimal integer in the range
6006 1-999, indicates the maximum allowable length of a file name (not
6007 including the @file{.ads} or @file{.adb} extension). The default is not
6008 to enable file name krunching.
6009
6010 For the source file naming rules, @xref{File Naming Rules}.
6011 @end table
6012
6013
6014 @node Subprogram Inlining Control
6015 @subsection Subprogram Inlining Control
6016
6017 @table @option
6018 @c !sort!
6019 @item -gnatn
6020 @cindex @option{-gnatn} (@code{gcc})
6021 @ifclear vms
6022 The @code{n} here is intended to suggest the first syllable of the
6023 word ``inline''.
6024 @end ifclear
6025 GNAT recognizes and processes @code{Inline} pragmas. However, for the
6026 inlining to actually occur, optimization must be enabled. To enable
6027 inlining of subprograms specified by pragma @code{Inline},
6028 you must also specify this switch.
6029 In the absence of this switch, GNAT does not attempt
6030 inlining and does not need to access the bodies of
6031 subprograms for which @code{pragma Inline} is specified if they are not
6032 in the current unit.
6033
6034 If you specify this switch the compiler will access these bodies,
6035 creating an extra source dependency for the resulting object file, and
6036 where possible, the call will be inlined.
6037 For further details on when inlining is possible
6038 see @xref{Inlining of Subprograms}.
6039
6040 @item -gnatN
6041 @cindex @option{-gnatN} (@code{gcc})
6042 The front end inlining activated by this switch is generally more extensive,
6043 and quite often more effective than the standard @option{-gnatn} inlining mode.
6044 It will also generate additional dependencies.
6045 Note that
6046 @option{-gnatN} automatically implies @option{-gnatn} so it is not necessary
6047 to specify both options.
6048 @end table
6049
6050 @node Auxiliary Output Control
6051 @subsection Auxiliary Output Control
6052
6053 @table @option
6054 @item -gnatt
6055 @cindex @option{-gnatt} (@code{gcc})
6056 @cindex Writing internal trees
6057 @cindex Internal trees, writing to file
6058 Causes GNAT to write the internal tree for a unit to a file (with the
6059 extension @file{.adt}.
6060 This not normally required, but is used by separate analysis tools.
6061 Typically
6062 these tools do the necessary compilations automatically, so you should
6063 not have to specify this switch in normal operation.
6064
6065 @item -gnatu
6066 @cindex @option{-gnatu} (@code{gcc})
6067 Print a list of units required by this compilation on @file{stdout}.
6068 The listing includes all units on which the unit being compiled depends
6069 either directly or indirectly.
6070
6071 @ifclear vms
6072 @item -pass-exit-codes
6073 @cindex @option{-pass-exit-codes} (@code{gcc})
6074 If this switch is not used, the exit code returned by @code{gcc} when
6075 compiling multiple files indicates whether all source files have
6076 been successfully used to generate object files or not.
6077
6078 When @option{-pass-exit-codes} is used, @code{gcc} exits with an extended
6079 exit status and allows an integrated development environment to better
6080 react to a compilation failure. Those exit status are:
6081
6082 @table @asis
6083 @item 5
6084 There was an error in at least one source file.
6085 @item 3
6086 At least one source file did not generate an object file.
6087 @item 2
6088 The compiler died unexpectedly (internal error for example).
6089 @item 0
6090 An object file has been generated for every source file.
6091 @end table
6092 @end ifclear
6093 @end table
6094
6095 @node Debugging Control
6096 @subsection Debugging Control
6097
6098 @table @option
6099 @c !sort!
6100 @cindex Debugging options
6101 @ifclear vms
6102 @item -gnatd@var{x}
6103 @cindex @option{-gnatd} (@code{gcc})
6104 Activate internal debugging switches. @var{x} is a letter or digit, or
6105 string of letters or digits, which specifies the type of debugging
6106 outputs desired. Normally these are used only for internal development
6107 or system debugging purposes. You can find full documentation for these
6108 switches in the body of the @code{Debug} unit in the compiler source
6109 file @file{debug.adb}.
6110 @end ifclear
6111
6112 @item -gnatG
6113 @cindex @option{-gnatG} (@code{gcc})
6114 This switch causes the compiler to generate auxiliary output containing
6115 a pseudo-source listing of the generated expanded code. Like most Ada
6116 compilers, GNAT works by first transforming the high level Ada code into
6117 lower level constructs. For example, tasking operations are transformed
6118 into calls to the tasking run-time routines. A unique capability of GNAT
6119 is to list this expanded code in a form very close to normal Ada source.
6120 This is very useful in understanding the implications of various Ada
6121 usage on the efficiency of the generated code. There are many cases in
6122 Ada (e.g. the use of controlled types), where simple Ada statements can
6123 generate a lot of run-time code. By using @option{-gnatG} you can identify
6124 these cases, and consider whether it may be desirable to modify the coding
6125 approach to improve efficiency.
6126
6127 The format of the output is very similar to standard Ada source, and is
6128 easily understood by an Ada programmer. The following special syntactic
6129 additions correspond to low level features used in the generated code that
6130 do not have any exact analogies in pure Ada source form. The following
6131 is a partial list of these special constructions. See the specification
6132 of package @code{Sprint} in file @file{sprint.ads} for a full list.
6133
6134 @table @code
6135 @item new @var{xxx} [storage_pool = @var{yyy}]
6136 Shows the storage pool being used for an allocator.
6137
6138 @item at end @var{procedure-name};
6139 Shows the finalization (cleanup) procedure for a scope.
6140
6141 @item (if @var{expr} then @var{expr} else @var{expr})
6142 Conditional expression equivalent to the @code{x?y:z} construction in C.
6143
6144 @item @var{target}^^^(@var{source})
6145 A conversion with floating-point truncation instead of rounding.
6146
6147 @item @var{target}?(@var{source})
6148 A conversion that bypasses normal Ada semantic checking. In particular
6149 enumeration types and fixed-point types are treated simply as integers.
6150
6151 @item @var{target}?^^^(@var{source})
6152 Combines the above two cases.
6153
6154 @item @var{x} #/ @var{y}
6155 @itemx @var{x} #mod @var{y}
6156 @itemx @var{x} #* @var{y}
6157 @itemx @var{x} #rem @var{y}
6158 A division or multiplication of fixed-point values which are treated as
6159 integers without any kind of scaling.
6160
6161 @item free @var{expr} [storage_pool = @var{xxx}]
6162 Shows the storage pool associated with a @code{free} statement.
6163
6164 @item freeze @var{typename} [@var{actions}]
6165 Shows the point at which @var{typename} is frozen, with possible
6166 associated actions to be performed at the freeze point.
6167
6168 @item reference @var{itype}
6169 Reference (and hence definition) to internal type @var{itype}.
6170
6171 @item @var{function-name}! (@var{arg}, @var{arg}, @var{arg})
6172 Intrinsic function call.
6173
6174 @item @var{labelname} : label
6175 Declaration of label @var{labelname}.
6176
6177 @item @var{expr} && @var{expr} && @var{expr} ... && @var{expr}
6178 A multiple concatenation (same effect as @var{expr} & @var{expr} &
6179 @var{expr}, but handled more efficiently).
6180
6181 @item [constraint_error]
6182 Raise the @code{Constraint_Error} exception.
6183
6184 @item @var{expression}'reference
6185 A pointer to the result of evaluating @var{expression}.
6186
6187 @item @var{target-type}!(@var{source-expression})
6188 An unchecked conversion of @var{source-expression} to @var{target-type}.
6189
6190 @item [@var{numerator}/@var{denominator}]
6191 Used to represent internal real literals (that) have no exact
6192 representation in base 2-16 (for example, the result of compile time
6193 evaluation of the expression 1.0/27.0).
6194 @end table
6195
6196 @item -gnatD
6197 @cindex @option{-gnatD} (@code{gcc})
6198 When used in conjunction with @option{-gnatG}, this switch causes
6199 the expanded source, as described above for
6200 @option{-gnatG} to be written to files with names
6201 @file{^xxx.dg^XXX_DG^}, where @file{xxx} is the normal file name,
6202 instead of to the standard ooutput file. For
6203 example, if the source file name is @file{hello.adb}, then a file
6204 @file{^hello.adb.dg^HELLO.ADB_DG^} will be written. The debugging
6205 information generated by the @code{gcc} @option{^-g^/DEBUG^} switch
6206 will refer to the generated @file{^xxx.dg^XXX_DG^} file. This allows
6207 you to do source level debugging using the generated code which is
6208 sometimes useful for complex code, for example to find out exactly
6209 which part of a complex construction raised an exception. This switch
6210 also suppress generation of cross-reference information (see
6211 @option{-gnatx}) since otherwise the cross-reference information
6212 would refer to the @file{^.dg^.DG^} file, which would cause
6213 confusion since this is not the original source file.
6214
6215 Note that @option{-gnatD} actually implies @option{-gnatG}
6216 automatically, so it is not necessary to give both options.
6217 In other words @option{-gnatD} is equivalent to @option{-gnatDG}).
6218
6219 @ifclear vms
6220 @item -gnatR[0|1|2|3[s]]
6221 @cindex @option{-gnatR} (@code{gcc})
6222 This switch controls output from the compiler of a listing showing
6223 representation information for declared types and objects. For
6224 @option{-gnatR0}, no information is output (equivalent to omitting
6225 the @option{-gnatR} switch). For @option{-gnatR1} (which is the default,
6226 so @option{-gnatR} with no parameter has the same effect), size and alignment
6227 information is listed for declared array and record types. For
6228 @option{-gnatR2}, size and alignment information is listed for all
6229 expression information for values that are computed at run time for
6230 variant records. These symbolic expressions have a mostly obvious
6231 format with #n being used to represent the value of the n'th
6232 discriminant. See source files @file{repinfo.ads/adb} in the
6233 @code{GNAT} sources for full details on the format of @option{-gnatR3}
6234 output. If the switch is followed by an s (e.g. @option{-gnatR2s}), then
6235 the output is to a file with the name @file{^file.rep^file_REP^} where
6236 file is the name of the corresponding source file.
6237 @end ifclear
6238 @ifset vms
6239 @item /REPRESENTATION_INFO
6240 @cindex @option{/REPRESENTATION_INFO} (@code{gcc})
6241 This qualifier controls output from the compiler of a listing showing
6242 representation information for declared types and objects. For
6243 @option{/REPRESENTATION_INFO=NONE}, no information is output
6244 (equivalent to omitting the @option{/REPRESENTATION_INFO} qualifier).
6245 @option{/REPRESENTATION_INFO} without option is equivalent to
6246 @option{/REPRESENTATION_INFO=ARRAYS}.
6247 For @option{/REPRESENTATION_INFO=ARRAYS}, size and alignment
6248 information is listed for declared array and record types. For
6249 @option{/REPRESENTATION_INFO=OBJECTS}, size and alignment information
6250 is listed for all expression information for values that are computed
6251 at run time for variant records. These symbolic expressions have a mostly
6252 obvious format with #n being used to represent the value of the n'th
6253 discriminant. See source files @file{REPINFO.ADS/ADB} in the
6254 @code{GNAT} sources for full details on the format of
6255 @option{/REPRESENTATION_INFO=SYMBOLIC} output.
6256 If _FILE is added at the end of an option
6257 (e.g. @option{/REPRESENTATION_INFO=ARRAYS_FILE}),
6258 then the output is to a file with the name @file{file_REP} where
6259 file is the name of the corresponding source file.
6260 @end ifset
6261
6262 @item -gnatS
6263 @cindex @option{-gnatS} (@code{gcc})
6264 The use of the switch @option{-gnatS} for an
6265 Ada compilation will cause the compiler to output a
6266 representation of package Standard in a form very
6267 close to standard Ada. It is not quite possible to
6268 do this entirely in standard Ada (since new
6269 numeric base types cannot be created in standard
6270 Ada), but the output is easily
6271 readable to any Ada programmer, and is useful to
6272 determine the characteristics of target dependent
6273 types in package Standard.
6274
6275 @item -gnatx
6276 @cindex @option{-gnatx} (@code{gcc})
6277 Normally the compiler generates full cross-referencing information in
6278 the @file{ALI} file. This information is used by a number of tools,
6279 including @code{gnatfind} and @code{gnatxref}. The @option{-gnatx} switch
6280 suppresses this information. This saves some space and may slightly
6281 speed up compilation, but means that these tools cannot be used.
6282 @end table
6283
6284 @node Exception Handling Control
6285 @subsection Exception Handling Control
6286
6287 @noindent
6288 GNAT uses two methods for handling exceptions at run-time. The
6289 @code{longjmp/setjmp} method saves the context when entering
6290 a frame with an exception handler. Then when an exception is
6291 raised, the context can be restored immediately, without the
6292 need for tracing stack frames. This method provides very fast
6293 exception propagation, but introduces significant overhead for
6294 the use of exception handlers, even if no exception is raised.
6295
6296 The other approach is called ``zero cost'' exception handling.
6297 With this method, the compiler builds static tables to describe
6298 the exception ranges. No dynamic code is required when entering
6299 a frame containing an exception handler. When an exception is
6300 raised, the tables are used to control a back trace of the
6301 subprogram invocation stack to locate the required exception
6302 handler. This method has considerably poorer performance for
6303 the propagation of exceptions, but there is no overhead for
6304 exception handlers if no exception is raised.
6305
6306 The following switches can be used to control which of the
6307 two exception handling methods is used.
6308
6309 @table @option
6310 @c !sort!
6311
6312 @item -gnatL
6313 @cindex @option{-gnatL} (@code{gcc})
6314 This switch causes the longjmp/setjmp approach to be used
6315 for exception handling. If this is the default mechanism for the
6316 target (see below), then this has no effect. If the default
6317 mechanism for the target is zero cost exceptions, then
6318 this switch can be used to modify this default, but it must be
6319 used for all units in the partition, including all run-time
6320 library units. One way to achieve this is to use the
6321 @option{-a} and @option{-f} switches for @code{gnatmake}.
6322 This option is rarely used. One case in which it may be
6323 advantageous is if you have an application where exception
6324 raising is common and the overall performance of the
6325 application is improved by favoring exception propagation.
6326
6327 @item -gnatZ
6328 @cindex @option{-gnatZ} (@code{gcc})
6329 @cindex Zero Cost Exceptions
6330 This switch causes the zero cost approach to be sed
6331 for exception handling. If this is the default mechanism for the
6332 target (see below), then this has no effect. If the default
6333 mechanism for the target is longjmp/setjmp exceptions, then
6334 this switch can be used to modify this default, but it must be
6335 used for all units in the partition, including all run-time
6336 library units. One way to achieve this is to use the
6337 @option{-a} and @option{-f} switches for @code{gnatmake}.
6338 This option can only be used if the zero cost approach
6339 is available for the target in use (see below).
6340 @end table
6341
6342 @noindent
6343 The @code{longjmp/setjmp} approach is available on all targets, but
6344 the @code{zero cost} approach is only available on selected targets.
6345 To determine whether zero cost exceptions can be used for a
6346 particular target, look at the private part of the file system.ads.
6347 Either @code{GCC_ZCX_Support} or @code{Front_End_ZCX_Support} must
6348 be True to use the zero cost approach. If both of these switches
6349 are set to False, this means that zero cost exception handling
6350 is not yet available for that target. The switch
6351 @code{ZCX_By_Default} indicates the default approach. If this
6352 switch is set to True, then the @code{zero cost} approach is
6353 used by default.
6354
6355 @node Units to Sources Mapping Files
6356 @subsection Units to Sources Mapping Files
6357
6358 @table @option
6359
6360 @item -gnatem^^=^@var{path}
6361 @cindex @option{-gnatem} (@code{gcc})
6362 A mapping file is a way to communicate to the compiler two mappings:
6363 from unit names to file names (without any directory information) and from
6364 file names to path names (with full directory information). These mappings
6365 are used by the compiler to short-circuit the path search.
6366
6367 The use of mapping files is not required for correct operation of the
6368 compiler, but mapping files can improve efficiency, particularly when
6369 sources are read over a slow network connection. In normal operation,
6370 you need not be concerned with the format or use of mapping files,
6371 and the @option{-gnatem} switch is not a switch that you would use
6372 explicitly. it is intended only for use by automatic tools such as
6373 @code{gnatmake} running under the project file facility. The
6374 description here of the format of mapping files is provided
6375 for completeness and for possible use by other tools.
6376
6377 A mapping file is a sequence of sets of three lines. In each set,
6378 the first line is the unit name, in lower case, with ``@code{%s}''
6379 appended for
6380 specifications and ``@code{%b}'' appended for bodies; the second line is the
6381 file name; and the third line is the path name.
6382
6383 Example:
6384 @smallexample
6385 main%b
6386 main.2.ada
6387 /gnat/project1/sources/main.2.ada
6388 @end smallexample
6389
6390 When the switch @option{-gnatem} is specified, the compiler will create
6391 in memory the two mappings from the specified file. If there is any problem
6392 (non existent file, truncated file or duplicate entries), no mapping
6393 will be created.
6394
6395 Several @option{-gnatem} switches may be specified; however, only the last
6396 one on the command line will be taken into account.
6397
6398 When using a project file, @code{gnatmake} create a temporary mapping file
6399 and communicates it to the compiler using this switch.
6400
6401 @end table
6402
6403
6404 @node Integrated Preprocessing
6405 @subsection Integrated Preprocessing
6406
6407 @noindent
6408 GNAT sources may be preprocessed immediately before compilation; the actual
6409 text of the source is not the text of the source file, but is derived from it
6410 through a process called preprocessing. Integrated preprocessing is specified
6411 through switches @option{-gnatep} and/or @option{-gnateD}. @option{-gnatep}
6412 indicates, through a text file, the preprocessing data to be used.
6413 @option{-gnateD} specifies or modifies the values of preprocessing symbol.
6414
6415 @noindent
6416 It is recommended that @code{gnatmake} switch ^-s^/SWITCH_CHECK^ should be
6417 used when Integrated Preprocessing is used. The reason is that preprocessing
6418 with another Preprocessing Data file without changing the sources will
6419 not trigger recompilation without this switch.
6420
6421 @noindent
6422 Note that @code{gnatmake} switch ^-m^/MINIMAL_RECOMPILATION^ will almost
6423 always trigger recompilation for sources that are preprocessed,
6424 because @code{gnatmake} cannot compute the checksum of the source after
6425 preprocessing.
6426
6427 @noindent
6428 The actual preprocessing function is described in details in section
6429 @ref{Preprocessing Using gnatprep}. This section only describes how integrated
6430 preprocessing is triggered and parameterized.
6431
6432 @table @code
6433
6434 @item -gnatep=@var{file}
6435 @cindex @option{-gnatep} (@code{gcc})
6436 This switch indicates to the compiler the file name (without directory
6437 information) of the preprocessor data file to use. The preprocessor data file
6438 should be found in the source directories.
6439
6440 @noindent
6441 A preprocessing data file is a text file with significant lines indicating
6442 how should be preprocessed either a specific source or all sources not
6443 mentioned in other lines. A significant line is a non empty, non comment line.
6444 Comments are similar to Ada comments.
6445
6446 @noindent
6447 Each significant line starts with either a literal string or the character '*'.
6448 A literal string is the file name (without directory information) of the source
6449 to preprocess. A character '*' indicates the preprocessing for all the sources
6450 that are not specified explicitly on other lines (order of the lines is not
6451 significant). It is an error to have two lines with the same file name or two
6452 lines starting with the character '*'.
6453
6454 @noindent
6455 After the file name or the character '*', another optional literal string
6456 indicating the file name of the definition file to be used for preprocessing.
6457 (see @ref{Form of Definitions File}. The definition files are found by the
6458 compiler in one of the source directories. In some cases, when compiling
6459 a source in a directory other than the current directory, if the definition
6460 file is in the current directory, it may be necessary to add the current
6461 directory as a source directory through switch ^-I.^/SEARCH=[]^, otherwise
6462 the compiler would not find the definition file.
6463
6464 @noindent
6465 Then, optionally, ^switches^switches^ similar to those of @code{gnatprep} may
6466 be found. Those ^switches^switches^ are:
6467
6468 @table @code
6469
6470 @item -b
6471 Causes both preprocessor lines and the lines deleted by
6472 preprocessing to be replaced by blank lines, preserving the line number.
6473 This ^switch^switch^ is always implied; however, if specified after @option{-c}
6474 it cancels the effect of @option{-c}.
6475
6476 @item -c
6477 Causes both preprocessor lines and the lines deleted
6478 by preprocessing to be retained as comments marked
6479 with the special string ``@code{--! }''.
6480
6481 @item -Dsymbol=value
6482 Define or redefine a symbol, associated with value. A symbol is an Ada
6483 identifier, or an Ada reserved word, with the exception of @code{if},
6484 @code{else}, @code{elsif}, @code{end}, @code{and}, @code{or} and @code{then}.
6485 @code{value} is either a literal string, an Ada identifier or any Ada reserved
6486 word. A symbol declared with this ^switch^switch^ replaces a symbol with the
6487 same name defined in a definition file.
6488
6489 @item -s
6490 Causes a sorted list of symbol names and values to be
6491 listed on the standard output file.
6492
6493 @item -u
6494 Causes undefined symbols to be treated as having the value @code{FALSE}
6495 in the context
6496 of a preprocessor test. In the absence of this option, an undefined symbol in
6497 a @code{#if} or @code{#elsif} test will be treated as an error.
6498
6499 @end table
6500
6501 @noindent
6502 Examples of valid lines in a preprocessor data file:
6503
6504 @smallexample
6505 "toto.adb" "prep.def" -u
6506 -- preprocess "toto.adb", using definition file "prep.def",
6507 -- undefined symbol are False.
6508
6509 * -c -DVERSION=V101
6510 -- preprocess all other sources without a definition file;
6511 -- suppressed lined are commented; symbol VERSION has the value V101.
6512
6513 "titi.adb" "prep2.def" -s
6514 -- preprocess "titi.adb", using definition file "prep2.def";
6515 -- list all symbols with their values.
6516 @end smallexample
6517
6518 @item ^-gnateD^/DATA_PREPROCESSING=^symbol[=value]
6519 @cindex @option{-gnateD} (@code{gcc})
6520 Define or redefine a preprocessing symbol, associated with value. If no value
6521 is given on the command line, then the value of the symbol is @code{True}.
6522 A symbol is an identifier, following normal Ada (case-insensitive)
6523 rules for its syntax, and value is any sequence (including an empty sequence)
6524 of characters from the set (letters, digits, period, underline).
6525 Ada reserved words may be used as symbols, with the exceptions of @code{if},
6526 @code{else}, @code{elsif}, @code{end}, @code{and}, @code{or} and @code{then}.
6527
6528 @noindent
6529 A symbol declared with this ^switch^switch^ on the command line replaces a
6530 symbol with the same name either in a definition file or specified with a
6531 ^switch^switch^ -D in the preprocessor data file.
6532
6533 @noindent
6534 This switch is similar to switch @option{^-D^/ASSOCIATE^} of @code{gnatprep}.
6535
6536 @end table
6537
6538 @node Code Generation Control
6539 @subsection Code Generation Control
6540
6541 @noindent
6542
6543 The GCC technology provides a wide range of target dependent
6544 @option{-m} switches for controlling
6545 details of code generation with respect to different versions of
6546 architectures. This includes variations in instruction sets (e.g.
6547 different members of the power pc family), and different requirements
6548 for optimal arrangement of instructions (e.g. different members of
6549 the x86 family). The list of available @option{-m} switches may be
6550 found in the GCC documentation.
6551
6552 Use of the these @option{-m} switches may in some cases result in improved
6553 code performance.
6554
6555 The GNAT Pro technology is tested and qualified without any
6556 @option{-m} switches,
6557 so generally the most reliable approach is to avoid the use of these
6558 switches. However, we generally expect most of these switches to work
6559 successfully with GNAT Pro, and many customers have reported successful
6560 use of these options.
6561
6562 Our general advice is to avoid the use of @option{-m} switches unless
6563 special needs lead to requirements in this area. In particular,
6564 there is no point in using @option{-m} switches to improve performance
6565 unless you actually see a performance improvement.
6566
6567 @ifset vms
6568 @node Return Codes
6569 @subsection Return Codes
6570 @cindex Return Codes
6571 @cindex @option{/RETURN_CODES=VMS}
6572
6573 @noindent
6574 On VMS, GNAT compiled programs return POSIX-style codes by default,
6575 e.g. @option{/RETURN_CODES=POSIX}.
6576
6577 To enable VMS style return codes, GNAT LINK with the option
6578 @option{/RETURN_CODES=VMS}. For example:
6579
6580 @smallexample
6581 GNAT LINK MYMAIN.ALI /RETURN_CODES=VMS
6582 @end smallexample
6583
6584 @noindent
6585 Programs built with /RETURN_CODES=VMS are suitable to be called in
6586 VMS DCL scripts. Programs compiled with the default /RETURN_CODES=POSIX
6587 are suitable for spawning with appropriate GNAT RTL routines.
6588
6589 @end ifset
6590
6591
6592 @node Search Paths and the Run-Time Library (RTL)
6593 @section Search Paths and the Run-Time Library (RTL)
6594
6595 @noindent
6596 With the GNAT source-based library system, the compiler must be able to
6597 find source files for units that are needed by the unit being compiled.
6598 Search paths are used to guide this process.
6599
6600 The compiler compiles one source file whose name must be given
6601 explicitly on the command line. In other words, no searching is done
6602 for this file. To find all other source files that are needed (the most
6603 common being the specs of units), the compiler examines the following
6604 directories, in the following order:
6605
6606 @enumerate
6607 @item
6608 The directory containing the source file of the main unit being compiled
6609 (the file name on the command line).
6610
6611 @item
6612 Each directory named by an @option{^-I^/SOURCE_SEARCH^} switch given on the
6613 @code{gcc} command line, in the order given.
6614
6615 @item
6616 @findex ADA_INCLUDE_PATH
6617 Each of the directories listed in the value of the
6618 @code{ADA_INCLUDE_PATH} ^environment variable^logical name^.
6619 @ifclear vms
6620 Construct this value
6621 exactly as the @code{PATH} environment variable: a list of directory
6622 names separated by colons (semicolons when working with the NT version).
6623 @end ifclear
6624 @ifset vms
6625 Normally, define this value as a logical name containing a comma separated
6626 list of directory names.
6627
6628 This variable can also be defined by means of an environment string
6629 (an argument to the DEC C exec* set of functions).
6630
6631 Logical Name:
6632 @smallexample
6633 DEFINE ANOTHER_PATH FOO:[BAG]
6634 DEFINE ADA_INCLUDE_PATH ANOTHER_PATH,FOO:[BAM],FOO:[BAR]
6635 @end smallexample
6636
6637 By default, the path includes GNU:[LIB.OPENVMS7_x.2_8_x.DECLIB]
6638 first, followed by the standard Ada 95
6639 libraries in GNU:[LIB.OPENVMS7_x.2_8_x.ADAINCLUDE].
6640 If this is not redefined, the user will obtain the DEC Ada 83 IO packages
6641 (Text_IO, Sequential_IO, etc)
6642 instead of the Ada95 packages. Thus, in order to get the Ada 95
6643 packages by default, ADA_INCLUDE_PATH must be redefined.
6644 @end ifset
6645
6646 @item
6647 @findex ADA_PRJ_INCLUDE_FILE
6648 Each of the directories listed in the text file whose name is given
6649 by the @code{ADA_PRJ_INCLUDE_FILE} ^environment variable^logical name^.
6650
6651 @noindent
6652 @code{ADA_PRJ_INCLUDE_FILE} is normally set by gnatmake or by the ^gnat^GNAT^
6653 driver when project files are used. It should not normally be set
6654 by other means.
6655
6656 @item
6657 The content of the @file{ada_source_path} file which is part of the GNAT
6658 installation tree and is used to store standard libraries such as the
6659 GNAT Run Time Library (RTL) source files.
6660 @ifclear vms
6661 @ref{Installing the library}
6662 @end ifclear
6663 @end enumerate
6664
6665 @noindent
6666 Specifying the switch @option{^-I-^/NOCURRENT_DIRECTORY^}
6667 inhibits the use of the directory
6668 containing the source file named in the command line. You can still
6669 have this directory on your search path, but in this case it must be
6670 explicitly requested with a @option{^-I^/SOURCE_SEARCH^} switch.
6671
6672 Specifying the switch @option{-nostdinc}
6673 inhibits the search of the default location for the GNAT Run Time
6674 Library (RTL) source files.
6675
6676 The compiler outputs its object files and ALI files in the current
6677 working directory.
6678 @ifclear vms
6679 Caution: The object file can be redirected with the @option{-o} switch;
6680 however, @code{gcc} and @code{gnat1} have not been coordinated on this
6681 so the @file{ALI} file will not go to the right place. Therefore, you should
6682 avoid using the @option{-o} switch.
6683 @end ifclear
6684
6685 @findex System.IO
6686 The packages @code{Ada}, @code{System}, and @code{Interfaces} and their
6687 children make up the GNAT RTL, together with the simple @code{System.IO}
6688 package used in the @code{"Hello World"} example. The sources for these units
6689 are needed by the compiler and are kept together in one directory. Not
6690 all of the bodies are needed, but all of the sources are kept together
6691 anyway. In a normal installation, you need not specify these directory
6692 names when compiling or binding. Either the environment variables or
6693 the built-in defaults cause these files to be found.
6694
6695 In addition to the language-defined hierarchies (@code{System}, @code{Ada} and
6696 @code{Interfaces}), the GNAT distribution provides a fourth hierarchy,
6697 consisting of child units of @code{GNAT}. This is a collection of generally
6698 useful types, subprograms, etc. See the @cite{GNAT Reference Manual} for
6699 further details.
6700
6701 Besides simplifying access to the RTL, a major use of search paths is
6702 in compiling sources from multiple directories. This can make
6703 development environments much more flexible.
6704
6705
6706 @node Order of Compilation Issues
6707 @section Order of Compilation Issues
6708
6709 @noindent
6710 If, in our earlier example, there was a spec for the @code{hello}
6711 procedure, it would be contained in the file @file{hello.ads}; yet this
6712 file would not have to be explicitly compiled. This is the result of the
6713 model we chose to implement library management. Some of the consequences
6714 of this model are as follows:
6715
6716 @itemize @bullet
6717 @item
6718 There is no point in compiling specs (except for package
6719 specs with no bodies) because these are compiled as needed by clients. If
6720 you attempt a useless compilation, you will receive an error message.
6721 It is also useless to compile subunits because they are compiled as needed
6722 by the parent.
6723
6724 @item
6725 There are no order of compilation requirements: performing a
6726 compilation never obsoletes anything. The only way you can obsolete
6727 something and require recompilations is to modify one of the
6728 source files on which it depends.
6729
6730 @item
6731 There is no library as such, apart from the ALI files
6732 (@pxref{The Ada Library Information Files}, for information on the format
6733 of these files). For now we find it convenient to create separate ALI files,
6734 but eventually the information therein may be incorporated into the object
6735 file directly.
6736
6737 @item
6738 When you compile a unit, the source files for the specs of all units
6739 that it @code{with}'s, all its subunits, and the bodies of any generics it
6740 instantiates must be available (reachable by the search-paths mechanism
6741 described above), or you will receive a fatal error message.
6742 @end itemize
6743
6744 @node Examples
6745 @section Examples
6746
6747 @noindent
6748 The following are some typical Ada compilation command line examples:
6749
6750 @table @code
6751 @item $ gcc -c xyz.adb
6752 Compile body in file @file{xyz.adb} with all default options.
6753
6754 @ifclear vms
6755 @item $ gcc -c -O2 -gnata xyz-def.adb
6756 @end ifclear
6757 @ifset vms
6758 @item $ GNAT COMPILE /OPTIMIZE=ALL -gnata xyz-def.adb
6759 @end ifset
6760
6761 Compile the child unit package in file @file{xyz-def.adb} with extensive
6762 optimizations, and pragma @code{Assert}/@code{Debug} statements
6763 enabled.
6764
6765 @item $ gcc -c -gnatc abc-def.adb
6766 Compile the subunit in file @file{abc-def.adb} in semantic-checking-only
6767 mode.
6768 @end table
6769
6770 @node Binding Using gnatbind
6771 @chapter Binding Using @code{gnatbind}
6772 @findex gnatbind
6773
6774 @menu
6775 * Running gnatbind::
6776 * Switches for gnatbind::
6777 * Command-Line Access::
6778 * Search Paths for gnatbind::
6779 * Examples of gnatbind Usage::
6780 @end menu
6781
6782 @noindent
6783 This chapter describes the GNAT binder, @code{gnatbind}, which is used
6784 to bind compiled GNAT objects. The @code{gnatbind} program performs
6785 four separate functions:
6786
6787 @enumerate
6788 @item
6789 Checks that a program is consistent, in accordance with the rules in
6790 Chapter 10 of the Ada 95 Reference Manual. In particular, error
6791 messages are generated if a program uses inconsistent versions of a
6792 given unit.
6793
6794 @item
6795 Checks that an acceptable order of elaboration exists for the program
6796 and issues an error message if it cannot find an order of elaboration
6797 that satisfies the rules in Chapter 10 of the Ada 95 Language Manual.
6798
6799 @item
6800 Generates a main program incorporating the given elaboration order.
6801 This program is a small Ada package (body and spec) that
6802 must be subsequently compiled
6803 using the GNAT compiler. The necessary compilation step is usually
6804 performed automatically by @code{gnatlink}. The two most important
6805 functions of this program
6806 are to call the elaboration routines of units in an appropriate order
6807 and to call the main program.
6808
6809 @item
6810 Determines the set of object files required by the given main program.
6811 This information is output in the forms of comments in the generated program,
6812 to be read by the @code{gnatlink} utility used to link the Ada application.
6813 @end enumerate
6814
6815
6816 @node Running gnatbind
6817 @section Running @code{gnatbind}
6818
6819 @noindent
6820 The form of the @code{gnatbind} command is
6821
6822 @smallexample
6823 $ gnatbind [@i{switches}] @i{mainprog}[.ali] [@i{switches}]
6824 @end smallexample
6825
6826 @noindent
6827 where @file{@i{mainprog}.adb} is the Ada file containing the main program
6828 unit body. If no switches are specified, @code{gnatbind} constructs an Ada
6829 package in two files whose names are
6830 @file{b~@i{mainprog}.ads}, and @file{b~@i{mainprog}.adb}.
6831 For example, if given the
6832 parameter @file{hello.ali}, for a main program contained in file
6833 @file{hello.adb}, the binder output files would be @file{b~hello.ads}
6834 and @file{b~hello.adb}.
6835
6836 When doing consistency checking, the binder takes into consideration
6837 any source files it can locate. For example, if the binder determines
6838 that the given main program requires the package @code{Pack}, whose
6839 @file{.ALI}
6840 file is @file{pack.ali} and whose corresponding source spec file is
6841 @file{pack.ads}, it attempts to locate the source file @file{pack.ads}
6842 (using the same search path conventions as previously described for the
6843 @code{gcc} command). If it can locate this source file, it checks that
6844 the time stamps
6845 or source checksums of the source and its references to in @file{ALI} files
6846 match. In other words, any @file{ALI} files that mentions this spec must have
6847 resulted from compiling this version of the source file (or in the case
6848 where the source checksums match, a version close enough that the
6849 difference does not matter).
6850
6851 @cindex Source files, use by binder
6852 The effect of this consistency checking, which includes source files, is
6853 that the binder ensures that the program is consistent with the latest
6854 version of the source files that can be located at bind time. Editing a
6855 source file without compiling files that depend on the source file cause
6856 error messages to be generated by the binder.
6857
6858 For example, suppose you have a main program @file{hello.adb} and a
6859 package @code{P}, from file @file{p.ads} and you perform the following
6860 steps:
6861
6862 @enumerate
6863 @item
6864 Enter @code{gcc -c hello.adb} to compile the main program.
6865
6866 @item
6867 Enter @code{gcc -c p.ads} to compile package @code{P}.
6868
6869 @item
6870 Edit file @file{p.ads}.
6871
6872 @item
6873 Enter @code{gnatbind hello}.
6874 @end enumerate
6875
6876 @noindent
6877 At this point, the file @file{p.ali} contains an out-of-date time stamp
6878 because the file @file{p.ads} has been edited. The attempt at binding
6879 fails, and the binder generates the following error messages:
6880
6881 @smallexample
6882 error: "hello.adb" must be recompiled ("p.ads" has been modified)
6883 error: "p.ads" has been modified and must be recompiled
6884 @end smallexample
6885
6886 @noindent
6887 Now both files must be recompiled as indicated, and then the bind can
6888 succeed, generating a main program. You need not normally be concerned
6889 with the contents of this file, but for reference purposes a sample
6890 binder output file is given in @ref{Example of Binder Output File}.
6891
6892 In most normal usage, the default mode of @command{gnatbind} which is to
6893 generate the main package in Ada, as described in the previous section.
6894 In particular, this means that any Ada programmer can read and understand
6895 the generated main program. It can also be debugged just like any other
6896 Ada code provided the @option{^-g^/DEBUG^} switch is used for
6897 @command{gnatbind} and @command{gnatlink}.
6898
6899 However for some purposes it may be convenient to generate the main
6900 program in C rather than Ada. This may for example be helpful when you
6901 are generating a mixed language program with the main program in C. The
6902 GNAT compiler itself is an example.
6903 The use of the @option{^-C^/BIND_FILE=C^} switch
6904 for both @code{gnatbind} and @code{gnatlink} will cause the program to
6905 be generated in C (and compiled using the gnu C compiler).
6906
6907
6908 @node Switches for gnatbind
6909 @section Switches for @command{gnatbind}
6910
6911 @noindent
6912 The following switches are available with @code{gnatbind}; details will
6913 be presented in subsequent sections.
6914
6915 @menu
6916 * Consistency-Checking Modes::
6917 * Binder Error Message Control::
6918 * Elaboration Control::
6919 * Output Control::
6920 * Binding with Non-Ada Main Programs::
6921 * Binding Programs with No Main Subprogram::
6922 @end menu
6923
6924 @table @option
6925 @c !sort!
6926 @item ^-aO^/OBJECT_SEARCH^
6927 @cindex @option{^-aO^/OBJECT_SEARCH^} (@command{gnatbind})
6928 Specify directory to be searched for ALI files.
6929
6930 @item ^-aI^/SOURCE_SEARCH^
6931 @cindex @option{^-aI^/SOURCE_SEARCH^} (@command{gnatbind})
6932 Specify directory to be searched for source file.
6933
6934 @item ^-A^/BIND_FILE=ADA^
6935 @cindex @option{^-A^/BIND_FILE=ADA^} (@command{gnatbind})
6936 Generate binder program in Ada (default)
6937
6938 @item ^-b^/REPORT_ERRORS=BRIEF^
6939 @cindex @option{^-b^/REPORT_ERRORS=BRIEF^} (@command{gnatbind})
6940 Generate brief messages to @file{stderr} even if verbose mode set.
6941
6942 @item ^-c^/NOOUTPUT^
6943 @cindex @option{^-c^/NOOUTPUT^} (@command{gnatbind})
6944 Check only, no generation of binder output file.
6945
6946 @item ^-C^/BIND_FILE=C^
6947 @cindex @option{^-C^/BIND_FILE=C^} (@command{gnatbind})
6948 Generate binder program in C
6949
6950 @item ^-e^/ELABORATION_DEPENDENCIES^
6951 @cindex @option{^-e^/ELABORATION_DEPENDENCIES^} (@command{gnatbind})
6952 Output complete list of elaboration-order dependencies.
6953
6954 @item ^-E^/STORE_TRACEBACKS^
6955 @cindex @option{^-E^/STORE_TRACEBACKS^} (@command{gnatbind})
6956 Store tracebacks in exception occurrences when the target supports it.
6957 This is the default with the zero cost exception mechanism.
6958 @ignore
6959 @c The following may get moved to an appendix
6960 This option is currently supported on the following targets:
6961 all x86 ports, Solaris, Windows, HP-UX, AIX, PowerPC VxWorks and Alpha VxWorks.
6962 @end ignore
6963 See also the packages @code{GNAT.Traceback} and
6964 @code{GNAT.Traceback.Symbolic} for more information.
6965 @ifclear vms
6966 Note that on x86 ports, you must not use @option{-fomit-frame-pointer}
6967 @code{gcc} option.
6968 @end ifclear
6969
6970 @item ^-F^/FORCE_ELABS_FLAGS^
6971 @cindex @option{^-F^/FORCE_ELABS_FLAGS^} (@command{gnatbind})
6972 Force the checks of elaboration flags. @command{gnatbind} does not normally
6973 generate checks of elaboration flags for the main executable, except when
6974 a Stand-Alone Library is used. However, there are cases when this cannot be
6975 detected by gnatbind. An example is importing an interface of a Stand-Alone
6976 Library through a pragma Import and only specifying through a linker switch
6977 this Stand-Alone Library. This switch is used to guarantee that elaboration
6978 flag checks are generated.
6979
6980 @item ^-h^/HELP^
6981 @cindex @option{^-h^/HELP^} (@command{gnatbind})
6982 Output usage (help) information
6983
6984 @item ^-I^/SEARCH^
6985 @cindex @option{^-I^/SEARCH^} (@command{gnatbind})
6986 Specify directory to be searched for source and ALI files.
6987
6988 @item ^-I-^/NOCURRENT_DIRECTORY^
6989 @cindex @option{^-I-^/NOCURRENT_DIRECTORY^} (@command{gnatbind})
6990 Do not look for sources in the current directory where @code{gnatbind} was
6991 invoked, and do not look for ALI files in the directory containing the
6992 ALI file named in the @code{gnatbind} command line.
6993
6994 @item ^-l^/ORDER_OF_ELABORATION^
6995 @cindex @option{^-l^/ORDER_OF_ELABORATION^} (@command{gnatbind})
6996 Output chosen elaboration order.
6997
6998 @item ^-Lxxx^/BUILD_LIBRARY=xxx^
6999 @cindex @option{^-L^/BUILD_LIBRARY^} (@command{gnatbind})
7000 Binds the units for library building. In this case the adainit and
7001 adafinal procedures (See @pxref{Binding with Non-Ada Main Programs})
7002 are renamed to ^xxxinit^XXXINIT^ and
7003 ^xxxfinal^XXXFINAL^.
7004 Implies ^-n^/NOCOMPILE^.
7005 @ifclear vms
7006 (@pxref{GNAT and Libraries}, for more details.)
7007 @end ifclear
7008 @ifset vms
7009 On OpenVMS, these init and final procedures are exported in uppercase
7010 letters. For example if /BUILD_LIBRARY=toto is used, the exported name of
7011 the init procedure will be "TOTOINIT" and the exported name of the final
7012 procedure will be "TOTOFINAL".
7013 @end ifset
7014
7015 @item ^-Mxyz^/RENAME_MAIN=xyz^
7016 @cindex @option{^-M^/RENAME_MAIN^} (@command{gnatbind})
7017 Rename generated main program from main to xyz
7018
7019 @item ^-m^/ERROR_LIMIT=^@var{n}
7020 @cindex @option{^-m^/ERROR_LIMIT^} (@command{gnatbind})
7021 Limit number of detected errors to @var{n}, where @var{n} is
7022 in the range 1..999_999. The default value if no switch is
7023 given is 9999. Binding is terminated if the limit is exceeded.
7024 @ifset unw
7025 Furthermore, under Windows, the sources pointed to by the libraries path
7026 set in the registry are not searched for.
7027 @end ifset
7028
7029 @item ^-n^/NOMAIN^
7030 @cindex @option{^-n^/NOMAIN^} (@command{gnatbind})
7031 No main program.
7032
7033 @item -nostdinc
7034 @cindex @option{-nostdinc} (@command{gnatbind})
7035 Do not look for sources in the system default directory.
7036
7037 @item -nostdlib
7038 @cindex @option{-nostdlib} (@command{gnatbind})
7039 Do not look for library files in the system default directory.
7040
7041 @item --RTS=@var{rts-path}
7042 @cindex @option{--RTS} (@code{gnatbind})
7043 Specifies the default location of the runtime library. Same meaning as the
7044 equivalent @code{gnatmake} flag (see @ref{Switches for gnatmake}).
7045
7046 @item ^-o ^/OUTPUT=^@var{file}
7047 @cindex @option{^-o ^/OUTPUT^} (@command{gnatbind})
7048 Name the output file @var{file} (default is @file{b~@var{xxx}.adb}).
7049 Note that if this option is used, then linking must be done manually,
7050 gnatlink cannot be used.
7051
7052 @item ^-O^/OBJECT_LIST^
7053 @cindex @option{^-O^/OBJECT_LIST^} (@command{gnatbind})
7054 Output object list.
7055
7056 @item ^-p^/PESSIMISTIC_ELABORATION^
7057 @cindex @option{^-p^/PESSIMISTIC_ELABORATION^} (@command{gnatbind})
7058 Pessimistic (worst-case) elaboration order
7059
7060 @item ^-s^/READ_SOURCES=ALL^
7061 @cindex @option{^-s^/READ_SOURCES=ALL^} (@command{gnatbind})
7062 Require all source files to be present.
7063
7064 @item ^-S@var{xxx}^/INITIALIZE_SCALARS=@var{xxx}^
7065 @cindex @option{^-S^/INITIALIZE_SCALARS^} (@command{gnatbind})
7066 Specifies the value to be used when detecting uninitialized scalar
7067 objects with pragma Initialize_Scalars.
7068 The @var{xxx} ^string specified with the switch^option^ may be either
7069 @itemize @bullet
7070 @item ``@option{^in^INVALID^}'' requesting an invalid value where possible
7071 @item ``@option{^lo^LOW^}'' for the lowest possible value
7072 possible, and the low
7073 @item ``@option{^hi^HIGH^}'' for the highest possible value
7074 @item ``@option{xx}'' for a value consisting of repeated bytes with the
7075 value 16#xx# (i.e. xx is a string of two hexadecimal digits).
7076 @end itemize
7077
7078 In addition, you can specify @option{-Sev} to indicate that the value is
7079 to be set at run time. In this case, the program will look for an environment
7080 @cindex GNAT_INIT_SCALARS
7081 variable of the form @code{GNAT_INIT_SCALARS=xx}, where xx is one
7082 of @option{in/lo/hi/xx} with the same meanings as above.
7083 If no environment variable is found, or if it does not have a valid value,
7084 then the default is @option{in} (invalid values).
7085
7086 @ifclear vms
7087 @item -static
7088 @cindex @option{-static} (@code{gnatbind})
7089 Link against a static GNAT run time.
7090
7091 @item -shared
7092 @cindex @option{-shared} (@code{gnatbind})
7093 Link against a shared GNAT run time when available.
7094 @end ifclear
7095
7096 @item ^-t^/NOTIME_STAMP_CHECK^
7097 @cindex @option{^-t^/NOTIME_STAMP_CHECK^} (@code{gnatbind})
7098 Tolerate time stamp and other consistency errors
7099
7100 @item ^-T@var{n}^/TIME_SLICE=@var{n}^
7101 @cindex @option{^-T^/TIME_SLICE^} (@code{gnatbind})
7102 Set the time slice value to @var{n} milliseconds. If the system supports
7103 the specification of a specific time slice value, then the indicated value
7104 is used. If the system does not support specific time slice values, but
7105 does support some general notion of round-robin scheduling, then any
7106 non-zero value will activate round-robin scheduling.
7107
7108 A value of zero is treated specially. It turns off time
7109 slicing, and in addition, indicates to the tasking run time that the
7110 semantics should match as closely as possible the Annex D
7111 requirements of the Ada RM, and in particular sets the default
7112 scheduling policy to @code{FIFO_Within_Priorities}.
7113
7114 @item ^-v^/REPORT_ERRORS=VERBOSE^
7115 @cindex @option{^-v^/REPORT_ERRORS=VERBOSE^} (@code{gnatbind})
7116 Verbose mode. Write error messages, header, summary output to
7117 @file{stdout}.
7118
7119 @ifclear vms
7120 @item -w@var{x}
7121 @cindex @option{-w} (@code{gnatbind})
7122 Warning mode (@var{x}=s/e for suppress/treat as error)
7123 @end ifclear
7124
7125 @ifset vms
7126 @item /WARNINGS=NORMAL
7127 @cindex @option{/WARNINGS} (@code{gnatbind})
7128 Normal warnings mode. Warnings are issued but ignored
7129
7130 @item /WARNINGS=SUPPRESS
7131 @cindex @option{/WARNINGS} (@code{gnatbind})
7132 All warning messages are suppressed
7133
7134 @item /WARNINGS=ERROR
7135 @cindex @option{/WARNINGS} (@code{gnatbind})
7136 Warning messages are treated as fatal errors
7137 @end ifset
7138
7139 @item ^-x^/READ_SOURCES=NONE^
7140 @cindex @option{^-x^/READ_SOURCES^} (@code{gnatbind})
7141 Exclude source files (check object consistency only).
7142
7143 @ifset vms
7144 @item /READ_SOURCES=AVAILABLE
7145 @cindex @option{/READ_SOURCES} (@code{gnatbind})
7146 Default mode, in which sources are checked for consistency only if
7147 they are available.
7148 @end ifset
7149
7150 @item ^-z^/ZERO_MAIN^
7151 @cindex @option{^-z^/ZERO_MAIN^} (@code{gnatbind})
7152 No main subprogram.
7153 @end table
7154
7155 @ifclear vms
7156 @noindent
7157 You may obtain this listing of switches by running @code{gnatbind} with
7158 no arguments.
7159 @end ifclear
7160
7161
7162 @node Consistency-Checking Modes
7163 @subsection Consistency-Checking Modes
7164
7165 @noindent
7166 As described earlier, by default @code{gnatbind} checks
7167 that object files are consistent with one another and are consistent
7168 with any source files it can locate. The following switches control binder
7169 access to sources.
7170
7171 @table @option
7172 @c !sort!
7173 @item ^-s^/READ_SOURCES=ALL^
7174 @cindex @option{^-s^/READ_SOURCES=ALL^} (@code{gnatbind})
7175 Require source files to be present. In this mode, the binder must be
7176 able to locate all source files that are referenced, in order to check
7177 their consistency. In normal mode, if a source file cannot be located it
7178 is simply ignored. If you specify this switch, a missing source
7179 file is an error.
7180
7181 @item ^-x^/READ_SOURCES=NONE^
7182 @cindex @option{^-x^/READ_SOURCES=NONE^} (@code{gnatbind})
7183 Exclude source files. In this mode, the binder only checks that ALI
7184 files are consistent with one another. Source files are not accessed.
7185 The binder runs faster in this mode, and there is still a guarantee that
7186 the resulting program is self-consistent.
7187 If a source file has been edited since it was last compiled, and you
7188 specify this switch, the binder will not detect that the object
7189 file is out of date with respect to the source file. Note that this is the
7190 mode that is automatically used by @code{gnatmake} because in this
7191 case the checking against sources has already been performed by
7192 @code{gnatmake} in the course of compilation (i.e. before binding).
7193
7194 @ifset vms
7195 @item /READ_SOURCES=AVAILABLE
7196 @cindex @code{/READ_SOURCES=AVAILABLE} (@code{gnatbind})
7197 This is the default mode in which source files are checked if they are
7198 available, and ignored if they are not available.
7199 @end ifset
7200 @end table
7201
7202 @node Binder Error Message Control
7203 @subsection Binder Error Message Control
7204
7205 @noindent
7206 The following switches provide control over the generation of error
7207 messages from the binder:
7208
7209 @table @option
7210 @c !sort!
7211 @item ^-v^/REPORT_ERRORS=VERBOSE^
7212 @cindex @option{^-v^/REPORT_ERRORS=VERBOSE^} (@code{gnatbind})
7213 Verbose mode. In the normal mode, brief error messages are generated to
7214 @file{stderr}. If this switch is present, a header is written
7215 to @file{stdout} and any error messages are directed to @file{stdout}.
7216 All that is written to @file{stderr} is a brief summary message.
7217
7218 @item ^-b^/REPORT_ERRORS=BRIEF^
7219 @cindex @option{^-b^/REPORT_ERRORS=BRIEF^} (@code{gnatbind})
7220 Generate brief error messages to @file{stderr} even if verbose mode is
7221 specified. This is relevant only when used with the
7222 @option{^-v^/REPORT_ERRORS=VERBOSE^} switch.
7223
7224 @ifclear vms
7225 @item -m@var{n}
7226 @cindex @option{-m} (@code{gnatbind})
7227 Limits the number of error messages to @var{n}, a decimal integer in the
7228 range 1-999. The binder terminates immediately if this limit is reached.
7229
7230 @item -M@var{xxx}
7231 @cindex @option{-M} (@code{gnatbind})
7232 Renames the generated main program from @code{main} to @code{xxx}.
7233 This is useful in the case of some cross-building environments, where
7234 the actual main program is separate from the one generated
7235 by @code{gnatbind}.
7236 @end ifclear
7237
7238 @item ^-ws^/WARNINGS=SUPPRESS^
7239 @cindex @option{^-ws^/WARNINGS=SUPPRESS^} (@code{gnatbind})
7240 @cindex Warnings
7241 Suppress all warning messages.
7242
7243 @item ^-we^/WARNINGS=ERROR^
7244 @cindex @option{^-we^/WARNINGS=ERROR^} (@code{gnatbind})
7245 Treat any warning messages as fatal errors.
7246
7247 @ifset vms
7248 @item /WARNINGS=NORMAL
7249 Standard mode with warnings generated, but warnings do not get treated
7250 as errors.
7251 @end ifset
7252
7253 @item ^-t^/NOTIME_STAMP_CHECK^
7254 @cindex @option{^-t^/NOTIME_STAMP_CHECK^} (@code{gnatbind})
7255 @cindex Time stamp checks, in binder
7256 @cindex Binder consistency checks
7257 @cindex Consistency checks, in binder
7258 The binder performs a number of consistency checks including:
7259
7260 @itemize @bullet
7261 @item
7262 Check that time stamps of a given source unit are consistent
7263 @item
7264 Check that checksums of a given source unit are consistent
7265 @item
7266 Check that consistent versions of @code{GNAT} were used for compilation
7267 @item
7268 Check consistency of configuration pragmas as required
7269 @end itemize
7270
7271 @noindent
7272 Normally failure of such checks, in accordance with the consistency
7273 requirements of the Ada Reference Manual, causes error messages to be
7274 generated which abort the binder and prevent the output of a binder
7275 file and subsequent link to obtain an executable.
7276
7277 The @option{^-t^/NOTIME_STAMP_CHECK^} switch converts these error messages
7278 into warnings, so that
7279 binding and linking can continue to completion even in the presence of such
7280 errors. The result may be a failed link (due to missing symbols), or a
7281 non-functional executable which has undefined semantics.
7282 @emph{This means that
7283 @option{^-t^/NOTIME_STAMP_CHECK^} should be used only in unusual situations,
7284 with extreme care.}
7285 @end table
7286
7287 @node Elaboration Control
7288 @subsection Elaboration Control
7289
7290 @noindent
7291 The following switches provide additional control over the elaboration
7292 order. For full details see @xref{Elaboration Order Handling in GNAT}.
7293
7294 @table @option
7295 @item ^-p^/PESSIMISTIC_ELABORATION^
7296 @cindex @option{^-p^/PESSIMISTIC_ELABORATION^} (@code{gnatbind})
7297 Normally the binder attempts to choose an elaboration order that is
7298 likely to minimize the likelihood of an elaboration order error resulting
7299 in raising a @code{Program_Error} exception. This switch reverses the
7300 action of the binder, and requests that it deliberately choose an order
7301 that is likely to maximize the likelihood of an elaboration error.
7302 This is useful in ensuring portability and avoiding dependence on
7303 accidental fortuitous elaboration ordering.
7304
7305 Normally it only makes sense to use the @option{^-p^/PESSIMISTIC_ELABORATION^}
7306 switch if dynamic
7307 elaboration checking is used (@option{-gnatE} switch used for compilation).
7308 This is because in the default static elaboration mode, all necessary
7309 @code{Elaborate_All} pragmas are implicitly inserted.
7310 These implicit pragmas are still respected by the binder in
7311 @option{^-p^/PESSIMISTIC_ELABORATION^} mode, so a
7312 safe elaboration order is assured.
7313 @end table
7314
7315 @node Output Control
7316 @subsection Output Control
7317
7318 @noindent
7319 The following switches allow additional control over the output
7320 generated by the binder.
7321
7322 @table @option
7323 @c !sort!
7324
7325 @item ^-A^/BIND_FILE=ADA^
7326 @cindex @option{^-A^/BIND_FILE=ADA^} (@code{gnatbind})
7327 Generate binder program in Ada (default). The binder program is named
7328 @file{b~@var{mainprog}.adb} by default. This can be changed with
7329 @option{^-o^/OUTPUT^} @code{gnatbind} option.
7330
7331 @item ^-c^/NOOUTPUT^
7332 @cindex @option{^-c^/NOOUTPUT^} (@code{gnatbind})
7333 Check only. Do not generate the binder output file. In this mode the
7334 binder performs all error checks but does not generate an output file.
7335
7336 @item ^-C^/BIND_FILE=C^
7337 @cindex @option{^-C^/BIND_FILE=C^} (@code{gnatbind})
7338 Generate binder program in C. The binder program is named
7339 @file{b_@var{mainprog}.c}.
7340 This can be changed with @option{^-o^/OUTPUT^} @code{gnatbind}
7341 option.
7342
7343 @item ^-e^/ELABORATION_DEPENDENCIES^
7344 @cindex @option{^-e^/ELABORATION_DEPENDENCIES^} (@code{gnatbind})
7345 Output complete list of elaboration-order dependencies, showing the
7346 reason for each dependency. This output can be rather extensive but may
7347 be useful in diagnosing problems with elaboration order. The output is
7348 written to @file{stdout}.
7349
7350 @item ^-h^/HELP^
7351 @cindex @option{^-h^/HELP^} (@code{gnatbind})
7352 Output usage information. The output is written to @file{stdout}.
7353
7354 @item ^-K^/LINKER_OPTION_LIST^
7355 @cindex @option{^-K^/LINKER_OPTION_LIST^} (@code{gnatbind})
7356 Output linker options to @file{stdout}. Includes library search paths,
7357 contents of pragmas Ident and Linker_Options, and libraries added
7358 by @code{gnatbind}.
7359
7360 @item ^-l^/ORDER_OF_ELABORATION^
7361 @cindex @option{^-l^/ORDER_OF_ELABORATION^} (@code{gnatbind})
7362 Output chosen elaboration order. The output is written to @file{stdout}.
7363
7364 @item ^-O^/OBJECT_LIST^
7365 @cindex @option{^-O^/OBJECT_LIST^} (@code{gnatbind})
7366 Output full names of all the object files that must be linked to provide
7367 the Ada component of the program. The output is written to @file{stdout}.
7368 This list includes the files explicitly supplied and referenced by the user
7369 as well as implicitly referenced run-time unit files. The latter are
7370 omitted if the corresponding units reside in shared libraries. The
7371 directory names for the run-time units depend on the system configuration.
7372
7373 @item ^-o ^/OUTPUT=^@var{file}
7374 @cindex @option{^-o^/OUTPUT^} (@code{gnatbind})
7375 Set name of output file to @var{file} instead of the normal
7376 @file{b~@var{mainprog}.adb} default. Note that @var{file} denote the Ada
7377 binder generated body filename. In C mode you would normally give
7378 @var{file} an extension of @file{.c} because it will be a C source program.
7379 Note that if this option is used, then linking must be done manually.
7380 It is not possible to use gnatlink in this case, since it cannot locate
7381 the binder file.
7382
7383 @item ^-r^/RESTRICTION_LIST^
7384 @cindex @option{^-r^/RESTRICTION_LIST^} (@code{gnatbind})
7385 Generate list of @code{pragma Restrictions} that could be applied to
7386 the current unit. This is useful for code audit purposes, and also may
7387 be used to improve code generation in some cases.
7388
7389 @end table
7390
7391 @node Binding with Non-Ada Main Programs
7392 @subsection Binding with Non-Ada Main Programs
7393
7394 @noindent
7395 In our description so far we have assumed that the main
7396 program is in Ada, and that the task of the binder is to generate a
7397 corresponding function @code{main} that invokes this Ada main
7398 program. GNAT also supports the building of executable programs where
7399 the main program is not in Ada, but some of the called routines are
7400 written in Ada and compiled using GNAT (@pxref{Mixed Language Programming}).
7401 The following switch is used in this situation:
7402
7403 @table @option
7404 @item ^-n^/NOMAIN^
7405 @cindex @option{^-n^/NOMAIN^} (@code{gnatbind})
7406 No main program. The main program is not in Ada.
7407 @end table
7408
7409 @noindent
7410 In this case, most of the functions of the binder are still required,
7411 but instead of generating a main program, the binder generates a file
7412 containing the following callable routines:
7413
7414 @table @code
7415 @item adainit
7416 @findex adainit
7417 You must call this routine to initialize the Ada part of the program by
7418 calling the necessary elaboration routines. A call to @code{adainit} is
7419 required before the first call to an Ada subprogram.
7420
7421 Note that it is assumed that the basic execution environment must be setup
7422 to be appropriate for Ada execution at the point where the first Ada
7423 subprogram is called. In particular, if the Ada code will do any
7424 floating-point operations, then the FPU must be setup in an appropriate
7425 manner. For the case of the x86, for example, full precision mode is
7426 required. The procedure GNAT.Float_Control.Reset may be used to ensure
7427 that the FPU is in the right state.
7428
7429 @item adafinal
7430 @findex adafinal
7431 You must call this routine to perform any library-level finalization
7432 required by the Ada subprograms. A call to @code{adafinal} is required
7433 after the last call to an Ada subprogram, and before the program
7434 terminates.
7435 @end table
7436
7437 @noindent
7438 If the @option{^-n^/NOMAIN^} switch
7439 @cindex @option{^-n^/NOMAIN^} (@command{gnatbind})
7440 @cindex Binder, multiple input files
7441 is given, more than one ALI file may appear on
7442 the command line for @code{gnatbind}. The normal @dfn{closure}
7443 calculation is performed for each of the specified units. Calculating
7444 the closure means finding out the set of units involved by tracing
7445 @code{with} references. The reason it is necessary to be able to
7446 specify more than one ALI file is that a given program may invoke two or
7447 more quite separate groups of Ada units.
7448
7449 The binder takes the name of its output file from the last specified ALI
7450 file, unless overridden by the use of the @option{^-o file^/OUTPUT=file^}.
7451 @cindex @option{^-o^/OUTPUT^} (@command{gnatbind})
7452 The output is an Ada unit in source form that can
7453 be compiled with GNAT unless the -C switch is used in which case the
7454 output is a C source file, which must be compiled using the C compiler.
7455 This compilation occurs automatically as part of the @code{gnatlink}
7456 processing.
7457
7458 Currently the GNAT run time requires a FPU using 80 bits mode
7459 precision. Under targets where this is not the default it is required to
7460 call GNAT.Float_Control.Reset before using floating point numbers (this
7461 include float computation, float input and output) in the Ada code. A
7462 side effect is that this could be the wrong mode for the foreign code
7463 where floating point computation could be broken after this call.
7464
7465 @node Binding Programs with No Main Subprogram
7466 @subsection Binding Programs with No Main Subprogram
7467
7468 @noindent
7469 It is possible to have an Ada program which does not have a main
7470 subprogram. This program will call the elaboration routines of all the
7471 packages, then the finalization routines.
7472
7473 The following switch is used to bind programs organized in this manner:
7474
7475 @table @option
7476 @item ^-z^/ZERO_MAIN^
7477 @cindex @option{^-z^/ZERO_MAIN^} (@code{gnatbind})
7478 Normally the binder checks that the unit name given on the command line
7479 corresponds to a suitable main subprogram. When this switch is used,
7480 a list of ALI files can be given, and the execution of the program
7481 consists of elaboration of these units in an appropriate order.
7482 @end table
7483
7484
7485 @node Command-Line Access
7486 @section Command-Line Access
7487
7488 @noindent
7489 The package @code{Ada.Command_Line} provides access to the command-line
7490 arguments and program name. In order for this interface to operate
7491 correctly, the two variables
7492
7493 @smallexample
7494 @group
7495 int gnat_argc;
7496 char **gnat_argv;
7497 @end group
7498 @end smallexample
7499
7500 @noindent
7501 @findex gnat_argv
7502 @findex gnat_argc
7503 are declared in one of the GNAT library routines. These variables must
7504 be set from the actual @code{argc} and @code{argv} values passed to the
7505 main program. With no @option{^n^/NOMAIN^} present, @code{gnatbind}
7506 generates the C main program to automatically set these variables.
7507 If the @option{^n^/NOMAIN^} switch is used, there is no automatic way to
7508 set these variables. If they are not set, the procedures in
7509 @code{Ada.Command_Line} will not be available, and any attempt to use
7510 them will raise @code{Constraint_Error}. If command line access is
7511 required, your main program must set @code{gnat_argc} and
7512 @code{gnat_argv} from the @code{argc} and @code{argv} values passed to
7513 it.
7514
7515
7516 @node Search Paths for gnatbind
7517 @section Search Paths for @code{gnatbind}
7518
7519 @noindent
7520 The binder takes the name of an ALI file as its argument and needs to
7521 locate source files as well as other ALI files to verify object consistency.
7522
7523 For source files, it follows exactly the same search rules as @code{gcc}
7524 (@pxref{Search Paths and the Run-Time Library (RTL)}). For ALI files the
7525 directories searched are:
7526
7527 @enumerate
7528 @item
7529 The directory containing the ALI file named in the command line, unless
7530 the switch @option{^-I-^/NOCURRENT_DIRECTORY^} is specified.
7531
7532 @item
7533 All directories specified by @option{^-I^/SEARCH^}
7534 switches on the @code{gnatbind}
7535 command line, in the order given.
7536
7537 @item
7538 @findex ADA_OBJECTS_PATH
7539 Each of the directories listed in the value of the
7540 @code{ADA_OBJECTS_PATH} ^environment variable^logical name^.
7541 @ifset unw
7542 Construct this value
7543 exactly as the @code{PATH} environment variable: a list of directory
7544 names separated by colons (semicolons when working with the NT version
7545 of GNAT).
7546 @end ifset
7547 @ifset vms
7548 Normally, define this value as a logical name containing a comma separated
7549 list of directory names.
7550
7551 This variable can also be defined by means of an environment string
7552 (an argument to the DEC C exec* set of functions).
7553
7554 Logical Name:
7555 @smallexample
7556 DEFINE ANOTHER_PATH FOO:[BAG]
7557 DEFINE ADA_OBJECTS_PATH ANOTHER_PATH,FOO:[BAM],FOO:[BAR]
7558 @end smallexample
7559
7560 By default, the path includes GNU:[LIB.OPENVMS7_x.2_8_x.DECLIB]
7561 first, followed by the standard Ada 95
7562 libraries in GNU:[LIB.OPENVMS7_x.2_8_x.ADALIB].
7563 If this is not redefined, the user will obtain the DEC Ada 83 IO packages
7564 (Text_IO, Sequential_IO, etc)
7565 instead of the Ada95 packages. Thus, in order to get the Ada 95
7566 packages by default, ADA_OBJECTS_PATH must be redefined.
7567 @end ifset
7568
7569 @item
7570 @findex ADA_PRJ_OBJECTS_FILE
7571 Each of the directories listed in the text file whose name is given
7572 by the @code{ADA_PRJ_OBJECTS_FILE} ^environment variable^logical name^.
7573
7574 @noindent
7575 @code{ADA_PRJ_OBJECTS_FILE} is normally set by gnatmake or by the ^gnat^GNAT^
7576 driver when project files are used. It should not normally be set
7577 by other means.
7578
7579 @item
7580 The content of the @file{ada_object_path} file which is part of the GNAT
7581 installation tree and is used to store standard libraries such as the
7582 GNAT Run Time Library (RTL) unless the switch @option{-nostdlib} is
7583 specified.
7584 @ifclear vms
7585 @ref{Installing the library}
7586 @end ifclear
7587 @end enumerate
7588
7589 @noindent
7590 In the binder the switch @option{^-I^/SEARCH^}
7591 @cindex @option{^-I^/SEARCH^} (@command{gnatbind})
7592 is used to specify both source and
7593 library file paths. Use @option{^-aI^/SOURCE_SEARCH^}
7594 @cindex @option{^-aI^/SOURCE_SEARCH^} (@command{gnatbind})
7595 instead if you want to specify
7596 source paths only, and @option{^-aO^/LIBRARY_SEARCH^}
7597 @cindex @option{^-aO^/LIBRARY_SEARCH^} (@command{gnatbind})
7598 if you want to specify library paths
7599 only. This means that for the binder
7600 @option{^-I^/SEARCH=^}@var{dir} is equivalent to
7601 @option{^-aI^/SOURCE_SEARCH=^}@var{dir}
7602 @option{^-aO^/OBJECT_SEARCH=^}@var{dir}.
7603 The binder generates the bind file (a C language source file) in the
7604 current working directory.
7605
7606 @findex Ada
7607 @findex System
7608 @findex Interfaces
7609 @findex GNAT
7610 The packages @code{Ada}, @code{System}, and @code{Interfaces} and their
7611 children make up the GNAT Run-Time Library, together with the package
7612 GNAT and its children, which contain a set of useful additional
7613 library functions provided by GNAT. The sources for these units are
7614 needed by the compiler and are kept together in one directory. The ALI
7615 files and object files generated by compiling the RTL are needed by the
7616 binder and the linker and are kept together in one directory, typically
7617 different from the directory containing the sources. In a normal
7618 installation, you need not specify these directory names when compiling
7619 or binding. Either the environment variables or the built-in defaults
7620 cause these files to be found.
7621
7622 Besides simplifying access to the RTL, a major use of search paths is
7623 in compiling sources from multiple directories. This can make
7624 development environments much more flexible.
7625
7626 @node Examples of gnatbind Usage
7627 @section Examples of @code{gnatbind} Usage
7628
7629 @noindent
7630 This section contains a number of examples of using the GNAT binding
7631 utility @code{gnatbind}.
7632
7633 @table @code
7634 @item gnatbind hello
7635 The main program @code{Hello} (source program in @file{hello.adb}) is
7636 bound using the standard switch settings. The generated main program is
7637 @file{b~hello.adb}. This is the normal, default use of the binder.
7638
7639 @ifclear vms
7640 @item gnatbind hello -o mainprog.adb
7641 @end ifclear
7642 @ifset vms
7643 @item gnatbind HELLO.ALI /OUTPUT=Mainprog.ADB
7644 @end ifset
7645 The main program @code{Hello} (source program in @file{hello.adb}) is
7646 bound using the standard switch settings. The generated main program is
7647 @file{mainprog.adb} with the associated spec in
7648 @file{mainprog.ads}. Note that you must specify the body here not the
7649 spec, in the case where the output is in Ada. Note that if this option
7650 is used, then linking must be done manually, since gnatlink will not
7651 be able to find the generated file.
7652
7653 @ifclear vms
7654 @item gnatbind main -C -o mainprog.c -x
7655 @end ifclear
7656 @ifset vms
7657 @item gnatbind MAIN.ALI /BIND_FILE=C /OUTPUT=Mainprog.C /READ_SOURCES=NONE
7658 @end ifset
7659 The main program @code{Main} (source program in
7660 @file{main.adb}) is bound, excluding source files from the
7661 consistency checking, generating
7662 the file @file{mainprog.c}.
7663
7664 @ifclear vms
7665 @item gnatbind -x main_program -C -o mainprog.c
7666 This command is exactly the same as the previous example. Switches may
7667 appear anywhere in the command line, and single letter switches may be
7668 combined into a single switch.
7669 @end ifclear
7670
7671 @ifclear vms
7672 @item gnatbind -n math dbase -C -o ada-control.c
7673 @end ifclear
7674 @ifset vms
7675 @item gnatbind /NOMAIN math dbase /BIND_FILE=C /OUTPUT=ada-control.c
7676 @end ifset
7677 The main program is in a language other than Ada, but calls to
7678 subprograms in packages @code{Math} and @code{Dbase} appear. This call
7679 to @code{gnatbind} generates the file @file{ada-control.c} containing
7680 the @code{adainit} and @code{adafinal} routines to be called before and
7681 after accessing the Ada units.
7682 @end table
7683
7684
7685 @c ------------------------------------
7686 @node Linking Using gnatlink
7687 @chapter Linking Using @code{gnatlink}
7688 @c ------------------------------------
7689 @findex gnatlink
7690
7691 @noindent
7692 This chapter discusses @code{gnatlink}, a tool that links
7693 an Ada program and builds an executable file. This utility
7694 invokes the system linker ^(via the @code{gcc} command)^^
7695 with a correct list of object files and library references.
7696 @code{gnatlink} automatically determines the list of files and
7697 references for the Ada part of a program. It uses the binder file
7698 generated by the @command{gnatbind} to determine this list.
7699
7700 @menu
7701 * Running gnatlink::
7702 * Switches for gnatlink::
7703 * Setting Stack Size from gnatlink::
7704 * Setting Heap Size from gnatlink::
7705 @end menu
7706
7707 @node Running gnatlink
7708 @section Running @code{gnatlink}
7709
7710 @noindent
7711 The form of the @code{gnatlink} command is
7712
7713 @smallexample
7714 $ gnatlink [@var{switches}] @var{mainprog}[.ali]
7715 [@var{non-Ada objects}] [@var{linker options}]
7716 @end smallexample
7717
7718 @noindent
7719 The arguments of @code{gnatlink} (switches, main @file{ALI} file,
7720 non-Ada objects
7721 or linker options) may be in any order, provided that no non-Ada object may
7722 be mistaken for a main @file{ALI} file.
7723 Any file name @file{F} without the @file{.ali}
7724 extension will be taken as the main @file{ALI} file if a file exists
7725 whose name is the concatenation of @file{F} and @file{.ali}.
7726
7727 @noindent
7728 @file{@var{mainprog}.ali} references the ALI file of the main program.
7729 The @file{.ali} extension of this file can be omitted. From this
7730 reference, @code{gnatlink} locates the corresponding binder file
7731 @file{b~@var{mainprog}.adb} and, using the information in this file along
7732 with the list of non-Ada objects and linker options, constructs a
7733 linker command file to create the executable.
7734
7735 The arguments other than the @code{gnatlink} switches and the main @file{ALI}
7736 file are passed to the linker uninterpreted.
7737 They typically include the names of
7738 object files for units written in other languages than Ada and any library
7739 references required to resolve references in any of these foreign language
7740 units, or in @code{Import} pragmas in any Ada units.
7741
7742 @var{linker options} is an optional list of linker specific
7743 switches.
7744 The default linker called by gnatlink is @var{gcc} which in
7745 turn calls the appropriate system linker.
7746 Standard options for the linker such as @option{-lmy_lib} or
7747 @option{-Ldir} can be added as is.
7748 For options that are not recognized by
7749 @var{gcc} as linker options, use the @var{gcc} switches @option{-Xlinker} or
7750 @option{-Wl,}.
7751 Refer to the GCC documentation for
7752 details. Here is an example showing how to generate a linker map:
7753
7754 @ifclear vms
7755 @smallexample
7756 $ gnatlink my_prog -Wl,-Map,MAPFILE
7757 @end smallexample
7758 @end ifclear
7759
7760 @ifset vms
7761 <<Need example for VMS>>
7762 @end ifset
7763
7764 Using @var{linker options} it is possible to set the program stack and
7765 heap size. See @ref{Setting Stack Size from gnatlink}, and
7766 @ref{Setting Heap Size from gnatlink}.
7767
7768 @code{gnatlink} determines the list of objects required by the Ada
7769 program and prepends them to the list of objects passed to the linker.
7770 @code{gnatlink} also gathers any arguments set by the use of
7771 @code{pragma Linker_Options} and adds them to the list of arguments
7772 presented to the linker.
7773
7774 @ifset vms
7775 @code{gnatlink} accepts the following types of extra files on the command
7776 line: objects (.OBJ), libraries (.OLB), sharable images (.EXE), and
7777 options files (.OPT). These are recognized and handled according to their
7778 extension.
7779 @end ifset
7780
7781 @node Switches for gnatlink
7782 @section Switches for @code{gnatlink}
7783
7784 @noindent
7785 The following switches are available with the @code{gnatlink} utility:
7786
7787 @table @option
7788 @c !sort!
7789
7790 @item ^-A^/BIND_FILE=ADA^
7791 @cindex @option{^-A^/BIND_FILE=ADA^} (@code{gnatlink})
7792 The binder has generated code in Ada. This is the default.
7793
7794 @item ^-C^/BIND_FILE=C^
7795 @cindex @option{^-C^/BIND_FILE=C^} (@code{gnatlink})
7796 If instead of generating a file in Ada, the binder has generated one in
7797 C, then the linker needs to know about it. Use this switch to signal
7798 to @code{gnatlink} that the binder has generated C code rather than
7799 Ada code.
7800
7801 @item ^-f^/FORCE_OBJECT_FILE_LIST^
7802 @cindex Command line length
7803 @cindex @option{^-f^/FORCE_OBJECT_FILE_LIST^} (@code{gnatlink})
7804 On some targets, the command line length is limited, and @code{gnatlink}
7805 will generate a separate file for the linker if the list of object files
7806 is too long.
7807 The @option{^-f^/FORCE_OBJECT_FILE_LIST^} switch forces this file
7808 to be generated even if
7809 the limit is not exceeded. This is useful in some cases to deal with
7810 special situations where the command line length is exceeded.
7811
7812 @item ^-g^/DEBUG^
7813 @cindex Debugging information, including
7814 @cindex @option{^-g^/DEBUG^} (@code{gnatlink})
7815 The option to include debugging information causes the Ada bind file (in
7816 other words, @file{b~@var{mainprog}.adb}) to be compiled with
7817 @option{^-g^/DEBUG^}.
7818 In addition, the binder does not delete the @file{b~@var{mainprog}.adb},
7819 @file{b~@var{mainprog}.o} and @file{b~@var{mainprog}.ali} files.
7820 Without @option{^-g^/DEBUG^}, the binder removes these files by
7821 default. The same procedure apply if a C bind file was generated using
7822 @option{^-C^/BIND_FILE=C^} @code{gnatbind} option, in this case the filenames
7823 are @file{b_@var{mainprog}.c} and @file{b_@var{mainprog}.o}.
7824
7825 @item ^-n^/NOCOMPILE^
7826 @cindex @option{^-n^/NOCOMPILE^} (@code{gnatlink})
7827 Do not compile the file generated by the binder. This may be used when
7828 a link is rerun with different options, but there is no need to recompile
7829 the binder file.
7830
7831 @item ^-v^/VERBOSE^
7832 @cindex @option{^-v^/VERBOSE^} (@code{gnatlink})
7833 Causes additional information to be output, including a full list of the
7834 included object files. This switch option is most useful when you want
7835 to see what set of object files are being used in the link step.
7836
7837 @item ^-v -v^/VERBOSE/VERBOSE^
7838 @cindex @option{^-v -v^/VERBOSE/VERBOSE^} (@code{gnatlink})
7839 Very verbose mode. Requests that the compiler operate in verbose mode when
7840 it compiles the binder file, and that the system linker run in verbose mode.
7841
7842 @item ^-o ^/EXECUTABLE=^@var{exec-name}
7843 @cindex @option{^-o^/EXECUTABLE^} (@code{gnatlink})
7844 @var{exec-name} specifies an alternate name for the generated
7845 executable program. If this switch is omitted, the executable has the same
7846 name as the main unit. For example, @code{gnatlink try.ali} creates
7847 an executable called @file{^try^TRY.EXE^}.
7848
7849 @ifclear vms
7850 @item -b @var{target}
7851 @cindex @option{-b} (@code{gnatlink})
7852 Compile your program to run on @var{target}, which is the name of a
7853 system configuration. You must have a GNAT cross-compiler built if
7854 @var{target} is not the same as your host system.
7855
7856 @item -B@var{dir}
7857 @cindex @option{-B} (@code{gnatlink})
7858 Load compiler executables (for example, @code{gnat1}, the Ada compiler)
7859 from @var{dir} instead of the default location. Only use this switch
7860 when multiple versions of the GNAT compiler are available. See the
7861 @code{gcc} manual page for further details. You would normally use the
7862 @option{-b} or @option{-V} switch instead.
7863
7864 @item --GCC=@var{compiler_name}
7865 @cindex @option{--GCC=compiler_name} (@code{gnatlink})
7866 Program used for compiling the binder file. The default is
7867 `@code{gcc}'. You need to use quotes around @var{compiler_name} if
7868 @code{compiler_name} contains spaces or other separator characters. As
7869 an example @option{--GCC="foo -x -y"} will instruct @code{gnatlink} to use
7870 @code{foo -x -y} as your compiler. Note that switch @option{-c} is always
7871 inserted after your command name. Thus in the above example the compiler
7872 command that will be used by @code{gnatlink} will be @code{foo -c -x -y}.
7873 If several @option{--GCC=compiler_name} are used, only the last
7874 @var{compiler_name} is taken into account. However, all the additional
7875 switches are also taken into account. Thus,
7876 @option{--GCC="foo -x -y" --GCC="bar -z -t"} is equivalent to
7877 @option{--GCC="bar -x -y -z -t"}.
7878
7879 @item --LINK=@var{name}
7880 @cindex @option{--LINK=} (@code{gnatlink})
7881 @var{name} is the name of the linker to be invoked. This is especially
7882 useful in mixed language programs since languages such as C++ require
7883 their own linker to be used. When this switch is omitted, the default
7884 name for the linker is (@file{gcc}). When this switch is used, the
7885 specified linker is called instead of (@file{gcc}) with exactly the same
7886 parameters that would have been passed to (@file{gcc}) so if the desired
7887 linker requires different parameters it is necessary to use a wrapper
7888 script that massages the parameters before invoking the real linker. It
7889 may be useful to control the exact invocation by using the verbose
7890 switch.
7891
7892 @end ifclear
7893
7894 @ifset vms
7895 @item /DEBUG=TRACEBACK
7896 @cindex @code{/DEBUG=TRACEBACK} (@code{gnatlink})
7897 This qualifier causes sufficient information to be included in the
7898 executable file to allow a traceback, but does not include the full
7899 symbol information needed by the debugger.
7900
7901 @item /IDENTIFICATION="<string>"
7902 @code{"<string>"} specifies the string to be stored in the image file
7903 identification field in the image header.
7904 It overrides any pragma @code{Ident} specified string.
7905
7906 @item /NOINHIBIT-EXEC
7907 Generate the executable file even if there are linker warnings.
7908
7909 @item /NOSTART_FILES
7910 Don't link in the object file containing the ``main'' transfer address.
7911 Used when linking with a foreign language main program compiled with a
7912 Digital compiler.
7913
7914 @item /STATIC
7915 Prefer linking with object libraries over sharable images, even without
7916 /DEBUG.
7917 @end ifset
7918
7919 @end table
7920
7921 @node Setting Stack Size from gnatlink
7922 @section Setting Stack Size from @code{gnatlink}
7923
7924 @noindent
7925 Under Windows systems, it is possible to specify the program stack size from
7926 @code{gnatlink} using either:
7927
7928 @itemize @bullet
7929
7930 @item using @option{-Xlinker} linker option
7931
7932 @smallexample
7933 $ gnatlink hello -Xlinker --stack=0x10000,0x1000
7934 @end smallexample
7935
7936 This sets the stack reserve size to 0x10000 bytes and the stack commit
7937 size to 0x1000 bytes.
7938
7939 @item using @option{-Wl} linker option
7940
7941 @smallexample
7942 $ gnatlink hello -Wl,--stack=0x1000000
7943 @end smallexample
7944
7945 This sets the stack reserve size to 0x1000000 bytes. Note that with
7946 @option{-Wl} option it is not possible to set the stack commit size
7947 because the coma is a separator for this option.
7948
7949 @end itemize
7950
7951 @node Setting Heap Size from gnatlink
7952 @section Setting Heap Size from @code{gnatlink}
7953
7954 @noindent
7955 Under Windows systems, it is possible to specify the program heap size from
7956 @code{gnatlink} using either:
7957
7958 @itemize @bullet
7959
7960 @item using @option{-Xlinker} linker option
7961
7962 @smallexample
7963 $ gnatlink hello -Xlinker --heap=0x10000,0x1000
7964 @end smallexample
7965
7966 This sets the heap reserve size to 0x10000 bytes and the heap commit
7967 size to 0x1000 bytes.
7968
7969 @item using @option{-Wl} linker option
7970
7971 @smallexample
7972 $ gnatlink hello -Wl,--heap=0x1000000
7973 @end smallexample
7974
7975 This sets the heap reserve size to 0x1000000 bytes. Note that with
7976 @option{-Wl} option it is not possible to set the heap commit size
7977 because the coma is a separator for this option.
7978
7979 @end itemize
7980
7981 @node The GNAT Make Program gnatmake
7982 @chapter The GNAT Make Program @code{gnatmake}
7983 @findex gnatmake
7984
7985 @menu
7986 * Running gnatmake::
7987 * Switches for gnatmake::
7988 * Mode Switches for gnatmake::
7989 * Notes on the Command Line::
7990 * How gnatmake Works::
7991 * Examples of gnatmake Usage::
7992 @end menu
7993 @noindent
7994 A typical development cycle when working on an Ada program consists of
7995 the following steps:
7996
7997 @enumerate
7998 @item
7999 Edit some sources to fix bugs.
8000
8001 @item
8002 Add enhancements.
8003
8004 @item
8005 Compile all sources affected.
8006
8007 @item
8008 Rebind and relink.
8009
8010 @item
8011 Test.
8012 @end enumerate
8013
8014 @noindent
8015 The third step can be tricky, because not only do the modified files
8016 @cindex Dependency rules
8017 have to be compiled, but any files depending on these files must also be
8018 recompiled. The dependency rules in Ada can be quite complex, especially
8019 in the presence of overloading, @code{use} clauses, generics and inlined
8020 subprograms.
8021
8022 @code{gnatmake} automatically takes care of the third and fourth steps
8023 of this process. It determines which sources need to be compiled,
8024 compiles them, and binds and links the resulting object files.
8025
8026 Unlike some other Ada make programs, the dependencies are always
8027 accurately recomputed from the new sources. The source based approach of
8028 the GNAT compilation model makes this possible. This means that if
8029 changes to the source program cause corresponding changes in
8030 dependencies, they will always be tracked exactly correctly by
8031 @code{gnatmake}.
8032
8033 @node Running gnatmake
8034 @section Running @code{gnatmake}
8035
8036 @noindent
8037 The usual form of the @code{gnatmake} command is
8038
8039 @smallexample
8040 $ gnatmake [@var{switches}] @var{file_name}
8041 [@var{file_names}] [@var{mode_switches}]
8042 @end smallexample
8043
8044 @noindent
8045 The only required argument is one @var{file_name}, which specifies
8046 a compilation unit that is a main program. Several @var{file_names} can be
8047 specified: this will result in several executables being built.
8048 If @code{switches} are present, they can be placed before the first
8049 @var{file_name}, between @var{file_names} or after the last @var{file_name}.
8050 If @var{mode_switches} are present, they must always be placed after
8051 the last @var{file_name} and all @code{switches}.
8052
8053 If you are using standard file extensions (.adb and .ads), then the
8054 extension may be omitted from the @var{file_name} arguments. However, if
8055 you are using non-standard extensions, then it is required that the
8056 extension be given. A relative or absolute directory path can be
8057 specified in a @var{file_name}, in which case, the input source file will
8058 be searched for in the specified directory only. Otherwise, the input
8059 source file will first be searched in the directory where
8060 @code{gnatmake} was invoked and if it is not found, it will be search on
8061 the source path of the compiler as described in
8062 @ref{Search Paths and the Run-Time Library (RTL)}.
8063
8064 All @code{gnatmake} output (except when you specify
8065 @option{^-M^/DEPENDENCIES_LIST^}) is to
8066 @file{stderr}. The output produced by the
8067 @option{^-M^/DEPENDENCIES_LIST^} switch is send to
8068 @file{stdout}.
8069
8070 @node Switches for gnatmake
8071 @section Switches for @code{gnatmake}
8072
8073 @noindent
8074 You may specify any of the following switches to @code{gnatmake}:
8075
8076 @table @option
8077 @c !sort!
8078 @ifclear vms
8079 @item --GCC=@var{compiler_name}
8080 @cindex @option{--GCC=compiler_name} (@code{gnatmake})
8081 Program used for compiling. The default is `@code{gcc}'. You need to use
8082 quotes around @var{compiler_name} if @code{compiler_name} contains
8083 spaces or other separator characters. As an example @option{--GCC="foo -x
8084 -y"} will instruct @code{gnatmake} to use @code{foo -x -y} as your
8085 compiler. Note that switch @option{-c} is always inserted after your
8086 command name. Thus in the above example the compiler command that will
8087 be used by @code{gnatmake} will be @code{foo -c -x -y}.
8088 If several @option{--GCC=compiler_name} are used, only the last
8089 @var{compiler_name} is taken into account. However, all the additional
8090 switches are also taken into account. Thus,
8091 @option{--GCC="foo -x -y" --GCC="bar -z -t"} is equivalent to
8092 @option{--GCC="bar -x -y -z -t"}.
8093
8094 @item --GNATBIND=@var{binder_name}
8095 @cindex @option{--GNATBIND=binder_name} (@code{gnatmake})
8096 Program used for binding. The default is `@code{gnatbind}'. You need to
8097 use quotes around @var{binder_name} if @var{binder_name} contains spaces
8098 or other separator characters. As an example @option{--GNATBIND="bar -x
8099 -y"} will instruct @code{gnatmake} to use @code{bar -x -y} as your
8100 binder. Binder switches that are normally appended by @code{gnatmake} to
8101 `@code{gnatbind}' are now appended to the end of @code{bar -x -y}.
8102
8103 @item --GNATLINK=@var{linker_name}
8104 @cindex @option{--GNATLINK=linker_name} (@code{gnatmake})
8105 Program used for linking. The default is `@code{gnatlink}'. You need to
8106 use quotes around @var{linker_name} if @var{linker_name} contains spaces
8107 or other separator characters. As an example @option{--GNATLINK="lan -x
8108 -y"} will instruct @code{gnatmake} to use @code{lan -x -y} as your
8109 linker. Linker switches that are normally appended by @code{gnatmake} to
8110 `@code{gnatlink}' are now appended to the end of @code{lan -x -y}.
8111
8112 @end ifclear
8113
8114 @item ^-a^/ALL_FILES^
8115 @cindex @option{^-a^/ALL_FILES^} (@code{gnatmake})
8116 Consider all files in the make process, even the GNAT internal system
8117 files (for example, the predefined Ada library files), as well as any
8118 locked files. Locked files are files whose ALI file is write-protected.
8119 By default,
8120 @code{gnatmake} does not check these files,
8121 because the assumption is that the GNAT internal files are properly up
8122 to date, and also that any write protected ALI files have been properly
8123 installed. Note that if there is an installation problem, such that one
8124 of these files is not up to date, it will be properly caught by the
8125 binder.
8126 You may have to specify this switch if you are working on GNAT
8127 itself. The switch @option{^-a^/ALL_FILES^} is also useful
8128 in conjunction with @option{^-f^/FORCE_COMPILE^}
8129 if you need to recompile an entire application,
8130 including run-time files, using special configuration pragmas,
8131 such as a @code{Normalize_Scalars} pragma.
8132
8133 By default
8134 @code{gnatmake ^-a^/ALL_FILES^} compiles all GNAT
8135 internal files with
8136 @ifclear vms
8137 @code{gcc -c -gnatpg} rather than @code{gcc -c}.
8138 @end ifclear
8139 @ifset vms
8140 the @code{/CHECKS=SUPPRESS_ALL /STYLE_CHECKS=GNAT} switch.
8141 @end ifset
8142
8143 @item ^-b^/ACTIONS=BIND^
8144 @cindex @option{^-b^/ACTIONS=BIND^} (@code{gnatmake})
8145 Bind only. Can be combined with @option{^-c^/ACTIONS=COMPILE^} to do
8146 compilation and binding, but no link.
8147 Can be combined with @option{^-l^/ACTIONS=LINK^}
8148 to do binding and linking. When not combined with
8149 @option{^-c^/ACTIONS=COMPILE^}
8150 all the units in the closure of the main program must have been previously
8151 compiled and must be up to date. The root unit specified by @var{file_name}
8152 may be given without extension, with the source extension or, if no GNAT
8153 Project File is specified, with the ALI file extension.
8154
8155 @item ^-c^/ACTIONS=COMPILE^
8156 @cindex @option{^-c^/ACTIONS=COMPILE^} (@code{gnatmake})
8157 Compile only. Do not perform binding, except when @option{^-b^/ACTIONS=BIND^}
8158 is also specified. Do not perform linking, except if both
8159 @option{^-b^/ACTIONS=BIND^} and
8160 @option{^-l^/ACTIONS=LINK^} are also specified.
8161 If the root unit specified by @var{file_name} is not a main unit, this is the
8162 default. Otherwise @code{gnatmake} will attempt binding and linking
8163 unless all objects are up to date and the executable is more recent than
8164 the objects.
8165
8166 @item ^-C^/MAPPING^
8167 @cindex @option{^-C^/MAPPING^} (@code{gnatmake})
8168 Use a temporary mapping file. A mapping file is a way to communicate to the
8169 compiler two mappings: from unit names to file names (without any directory
8170 information) and from file names to path names (with full directory
8171 information). These mappings are used by the compiler to short-circuit the path
8172 search. When @code{gnatmake} is invoked with this switch, it will create
8173 a temporary mapping file, initially populated by the project manager,
8174 if @option{^-P^/PROJECT_FILE^} is used, otherwise initially empty.
8175 Each invocation of the compiler will add the newly accessed sources to the
8176 mapping file. This will improve the source search during the next invocation
8177 of the compiler.
8178
8179 @item ^-C=^/USE_MAPPING_FILE=^@var{file}
8180 @cindex @option{^-C=^/USE_MAPPING^} (@code{gnatmake})
8181 Use a specific mapping file. The file, specified as a path name (absolute or
8182 relative) by this switch, should already exist, otherwise the switch is
8183 ineffective. The specified mapping file will be communicated to the compiler.
8184 This switch is not compatible with a project file
8185 (^-P^/PROJECT_FILE=^@var{file}) or with multiple compiling processes
8186 (^-j^/PROCESSES=^nnn, when nnn is greater than 1).
8187
8188 @item ^-D ^/DIRECTORY_OBJECTS=^@var{dir}
8189 @cindex @option{^-D^/DIRECTORY_OBJECTS^} (@code{gnatmake})
8190 Put all object files and ALI file in directory @var{dir}.
8191 If the @option{^-D^/DIRECTORY_OBJECTS^} switch is not used, all object files
8192 and ALI files go in the current working directory.
8193
8194 This switch cannot be used when using a project file.
8195
8196 @ifclear vms
8197 @item -eL
8198 @cindex @option{-eL} (@code{gnatmake})
8199 Follow all symbolic links when processing project files.
8200 @end ifclear
8201
8202 @item ^-f^/FORCE_COMPILE^
8203 @cindex @option{^-f^/FORCE_COMPILE^} (@code{gnatmake})
8204 Force recompilations. Recompile all sources, even though some object
8205 files may be up to date, but don't recompile predefined or GNAT internal
8206 files or locked files (files with a write-protected ALI file),
8207 unless the @option{^-a^/ALL_FILES^} switch is also specified.
8208
8209 @item ^-F^/FULL_PATH_IN_BRIEF_MESSAGES^
8210 @cindex @option{^-F^/FULL_PATH_IN_BRIEF_MESSAGES^} (@code{gnatmake})
8211 When using project files, if some errors or warnings are detected during
8212 parsing and verbose mode is not in effect (no use of switch
8213 ^-v^/VERBOSE^), then error lines start with the full path name of the project
8214 file, rather than its simple file name.
8215
8216 @item ^-i^/IN_PLACE^
8217 @cindex @option{^-i^/IN_PLACE^} (@code{gnatmake})
8218 In normal mode, @code{gnatmake} compiles all object files and ALI files
8219 into the current directory. If the @option{^-i^/IN_PLACE^} switch is used,
8220 then instead object files and ALI files that already exist are overwritten
8221 in place. This means that once a large project is organized into separate
8222 directories in the desired manner, then @code{gnatmake} will automatically
8223 maintain and update this organization. If no ALI files are found on the
8224 Ada object path (@ref{Search Paths and the Run-Time Library (RTL)}),
8225 the new object and ALI files are created in the
8226 directory containing the source being compiled. If another organization
8227 is desired, where objects and sources are kept in different directories,
8228 a useful technique is to create dummy ALI files in the desired directories.
8229 When detecting such a dummy file, @code{gnatmake} will be forced to recompile
8230 the corresponding source file, and it will be put the resulting object
8231 and ALI files in the directory where it found the dummy file.
8232
8233 @item ^-j^/PROCESSES=^@var{n}
8234 @cindex @option{^-j^/PROCESSES^} (@code{gnatmake})
8235 @cindex Parallel make
8236 Use @var{n} processes to carry out the (re)compilations. On a
8237 multiprocessor machine compilations will occur in parallel. In the
8238 event of compilation errors, messages from various compilations might
8239 get interspersed (but @code{gnatmake} will give you the full ordered
8240 list of failing compiles at the end). If this is problematic, rerun
8241 the make process with n set to 1 to get a clean list of messages.
8242
8243 @item ^-k^/CONTINUE_ON_ERROR^
8244 @cindex @option{^-k^/CONTINUE_ON_ERROR^} (@code{gnatmake})
8245 Keep going. Continue as much as possible after a compilation error. To
8246 ease the programmer's task in case of compilation errors, the list of
8247 sources for which the compile fails is given when @code{gnatmake}
8248 terminates.
8249
8250 If @code{gnatmake} is invoked with several @file{file_names} and with this
8251 switch, if there are compilation errors when building an executable,
8252 @code{gnatmake} will not attempt to build the following executables.
8253
8254 @item ^-l^/ACTIONS=LINK^
8255 @cindex @option{^-l^/ACTIONS=LINK^} (@code{gnatmake})
8256 Link only. Can be combined with @option{^-b^/ACTIONS=BIND^} to binding
8257 and linking. Linking will not be performed if combined with
8258 @option{^-c^/ACTIONS=COMPILE^}
8259 but not with @option{^-b^/ACTIONS=BIND^}.
8260 When not combined with @option{^-b^/ACTIONS=BIND^}
8261 all the units in the closure of the main program must have been previously
8262 compiled and must be up to date, and the main program need to have been bound.
8263 The root unit specified by @var{file_name}
8264 may be given without extension, with the source extension or, if no GNAT
8265 Project File is specified, with the ALI file extension.
8266
8267 @item ^-m^/MINIMAL_RECOMPILATION^
8268 @cindex @option{^-m^/MINIMAL_RECOMPILATION^} (@code{gnatmake})
8269 Specifies that the minimum necessary amount of recompilations
8270 be performed. In this mode @code{gnatmake} ignores time
8271 stamp differences when the only
8272 modifications to a source file consist in adding/removing comments,
8273 empty lines, spaces or tabs. This means that if you have changed the
8274 comments in a source file or have simply reformatted it, using this
8275 switch will tell gnatmake not to recompile files that depend on it
8276 (provided other sources on which these files depend have undergone no
8277 semantic modifications). Note that the debugging information may be
8278 out of date with respect to the sources if the @option{-m} switch causes
8279 a compilation to be switched, so the use of this switch represents a
8280 trade-off between compilation time and accurate debugging information.
8281
8282 @item ^-M^/DEPENDENCIES_LIST^
8283 @cindex Dependencies, producing list
8284 @cindex @option{^-M^/DEPENDENCIES_LIST^} (@code{gnatmake})
8285 Check if all objects are up to date. If they are, output the object
8286 dependences to @file{stdout} in a form that can be directly exploited in
8287 a @file{Makefile}. By default, each source file is prefixed with its
8288 (relative or absolute) directory name. This name is whatever you
8289 specified in the various @option{^-aI^/SOURCE_SEARCH^}
8290 and @option{^-I^/SEARCH^} switches. If you use
8291 @code{gnatmake ^-M^/DEPENDENCIES_LIST^}
8292 @option{^-q^/QUIET^}
8293 (see below), only the source file names,
8294 without relative paths, are output. If you just specify the
8295 @option{^-M^/DEPENDENCIES_LIST^}
8296 switch, dependencies of the GNAT internal system files are omitted. This
8297 is typically what you want. If you also specify
8298 the @option{^-a^/ALL_FILES^} switch,
8299 dependencies of the GNAT internal files are also listed. Note that
8300 dependencies of the objects in external Ada libraries (see switch
8301 @option{^-aL^/SKIP_MISSING=^}@var{dir} in the following list)
8302 are never reported.
8303
8304 @item ^-n^/DO_OBJECT_CHECK^
8305 @cindex @option{^-n^/DO_OBJECT_CHECK^} (@code{gnatmake})
8306 Don't compile, bind, or link. Checks if all objects are up to date.
8307 If they are not, the full name of the first file that needs to be
8308 recompiled is printed.
8309 Repeated use of this option, followed by compiling the indicated source
8310 file, will eventually result in recompiling all required units.
8311
8312 @item ^-o ^/EXECUTABLE=^@var{exec_name}
8313 @cindex @option{^-o^/EXECUTABLE^} (@code{gnatmake})
8314 Output executable name. The name of the final executable program will be
8315 @var{exec_name}. If the @option{^-o^/EXECUTABLE^} switch is omitted the default
8316 name for the executable will be the name of the input file in appropriate form
8317 for an executable file on the host system.
8318
8319 This switch cannot be used when invoking @code{gnatmake} with several
8320 @file{file_names}.
8321
8322 @item ^-P^/PROJECT_FILE=^@var{project}
8323 @cindex @option{^-P^/PROJECT_FILE^} (@code{gnatmake})
8324 Use project file @var{project}. Only one such switch can be used.
8325 See @ref{gnatmake and Project Files}.
8326
8327 @item ^-q^/QUIET^
8328 @cindex @option{^-q^/QUIET^} (@code{gnatmake})
8329 Quiet. When this flag is not set, the commands carried out by
8330 @code{gnatmake} are displayed.
8331
8332 @item ^-s^/SWITCH_CHECK/^
8333 @cindex @option{^-s^/SWITCH_CHECK^} (@code{gnatmake})
8334 Recompile if compiler switches have changed since last compilation.
8335 All compiler switches but -I and -o are taken into account in the
8336 following way:
8337 orders between different ``first letter'' switches are ignored, but
8338 orders between same switches are taken into account. For example,
8339 @option{-O -O2} is different than @option{-O2 -O}, but @option{-g -O}
8340 is equivalent to @option{-O -g}.
8341
8342 This switch is recommended when Integrated Preprocessing is used.
8343
8344 @item ^-u^/UNIQUE^
8345 @cindex @option{^-u^/UNIQUE^} (@code{gnatmake})
8346 Unique. Recompile at most the main files. It implies -c. Combined with
8347 -f, it is equivalent to calling the compiler directly. Note that using
8348 ^-u^/UNIQUE^ with a project file and no main has a special meaning
8349 (see @ref{Project Files and Main Subprograms}).
8350
8351 @item ^-U^/ALL_PROJECTS^
8352 @cindex @option{^-U^/ALL_PROJECTS^} (@code{gnatmake})
8353 When used without a project file or with one or several mains on the command
8354 line, is equivalent to ^-u^/UNIQUE^. When used with a project file and no main
8355 on the command line, all sources of all project files are checked and compiled
8356 if not up to date, and libraries are rebuilt, if necessary.
8357
8358 @item ^-v^/REASONS^
8359 @cindex @option{^-v^/REASONS^} (@code{gnatmake})
8360 Verbose. Displays the reason for all recompilations @code{gnatmake}
8361 decides are necessary.
8362
8363 @item ^-vP^/MESSAGES_PROJECT_FILE=^@emph{x}
8364 Indicates the verbosity of the parsing of GNAT project files.
8365 See @ref{Switches Related to Project Files}.
8366
8367 @item ^-x^/NON_PROJECT_UNIT_COMPILATION^
8368 @cindex @option{^-x^/NON_PROJECT_UNIT_COMPILATION^} (@code{gnatmake})
8369 Indicates that sources that are not part of any Project File may be compiled.
8370 Normally, when using Project Files, only sources that are part of a Project
8371 File may be compile. When this switch is used, a source outside of all Project
8372 Files may be compiled. The ALI file and the object file will be put in the
8373 object directory of the main Project. The compilation switches used will only
8374 be those specified on the command line.
8375
8376 @item ^-X^/EXTERNAL_REFERENCE=^@var{name=value}
8377 Indicates that external variable @var{name} has the value @var{value}.
8378 The Project Manager will use this value for occurrences of
8379 @code{external(name)} when parsing the project file.
8380 See @ref{Switches Related to Project Files}.
8381
8382 @item ^-z^/NOMAIN^
8383 @cindex @option{^-z^/NOMAIN^} (@code{gnatmake})
8384 No main subprogram. Bind and link the program even if the unit name
8385 given on the command line is a package name. The resulting executable
8386 will execute the elaboration routines of the package and its closure,
8387 then the finalization routines.
8388
8389 @item ^-g^/DEBUG^
8390 @cindex @option{^-g^/DEBUG^} (@code{gnatmake})
8391 Enable debugging. This switch is simply passed to the compiler and to the
8392 linker.
8393
8394 @end table
8395
8396 @table @asis
8397 @item @code{gcc} @asis{switches}
8398 @ifclear vms
8399 Any uppercase or multi-character switch that is not a @code{gnatmake} switch
8400 is passed to @code{gcc} (e.g. @option{-O}, @option{-gnato,} etc.)
8401 @end ifclear
8402 @ifset vms
8403 Any qualifier that cannot be recognized as a qualifier for @code{GNAT MAKE}
8404 but is recognizable as a valid qualifier for @code{GNAT COMPILE} is
8405 automatically treated as a compiler switch, and passed on to all
8406 compilations that are carried out.
8407 @end ifset
8408 @end table
8409
8410 @noindent
8411 Source and library search path switches:
8412
8413 @table @option
8414 @c !sort!
8415 @item ^-aI^/SOURCE_SEARCH=^@var{dir}
8416 @cindex @option{^-aI^/SOURCE_SEARCH^} (@code{gnatmake})
8417 When looking for source files also look in directory @var{dir}.
8418 The order in which source files search is undertaken is
8419 described in @ref{Search Paths and the Run-Time Library (RTL)}.
8420
8421 @item ^-aL^/SKIP_MISSING=^@var{dir}
8422 @cindex @option{^-aL^/SKIP_MISSING^} (@code{gnatmake})
8423 Consider @var{dir} as being an externally provided Ada library.
8424 Instructs @code{gnatmake} to skip compilation units whose @file{.ALI}
8425 files have been located in directory @var{dir}. This allows you to have
8426 missing bodies for the units in @var{dir} and to ignore out of date bodies
8427 for the same units. You still need to specify
8428 the location of the specs for these units by using the switches
8429 @option{^-aI^/SOURCE_SEARCH=^@var{dir}}
8430 or @option{^-I^/SEARCH=^@var{dir}}.
8431 Note: this switch is provided for compatibility with previous versions
8432 of @code{gnatmake}. The easier method of causing standard libraries
8433 to be excluded from consideration is to write-protect the corresponding
8434 ALI files.
8435
8436 @item ^-aO^/OBJECT_SEARCH=^@var{dir}
8437 @cindex @option{^-aO^/OBJECT_SEARCH^} (@code{gnatmake})
8438 When searching for library and object files, look in directory
8439 @var{dir}. The order in which library files are searched is described in
8440 @ref{Search Paths for gnatbind}.
8441
8442 @item ^-A^/CONDITIONAL_SOURCE_SEARCH=^@var{dir}
8443 @cindex Search paths, for @code{gnatmake}
8444 @cindex @option{^-A^/CONDITIONAL_SOURCE_SEARCH^} (@code{gnatmake})
8445 Equivalent to @option{^-aL^/SKIP_MISSING=^@var{dir}
8446 ^-aI^/SOURCE_SEARCH=^@var{dir}}.
8447
8448 @item ^-I^/SEARCH=^@var{dir}
8449 @cindex @option{^-I^/SEARCH^} (@code{gnatmake})
8450 Equivalent to @option{^-aO^/OBJECT_SEARCH=^@var{dir}
8451 ^-aI^/SOURCE_SEARCH=^@var{dir}}.
8452
8453 @item ^-I-^/NOCURRENT_DIRECTORY^
8454 @cindex @option{^-I-^/NOCURRENT_DIRECTORY^} (@code{gnatmake})
8455 @cindex Source files, suppressing search
8456 Do not look for source files in the directory containing the source
8457 file named in the command line.
8458 Do not look for ALI or object files in the directory
8459 where @code{gnatmake} was invoked.
8460
8461 @item ^-L^/LIBRARY_SEARCH=^@var{dir}
8462 @cindex @option{^-L^/LIBRARY_SEARCH^} (@code{gnatmake})
8463 @cindex Linker libraries
8464 Add directory @var{dir} to the list of directories in which the linker
8465 will search for libraries. This is equivalent to
8466 @option{-largs ^-L^/LIBRARY_SEARCH=^}@var{dir}.
8467 @ifclear vms
8468 Furthermore, under Windows, the sources pointed to by the libraries path
8469 set in the registry are not searched for.
8470 @end ifclear
8471
8472 @item -nostdinc
8473 @cindex @option{-nostdinc} (@code{gnatmake})
8474 Do not look for source files in the system default directory.
8475
8476 @item -nostdlib
8477 @cindex @option{-nostdlib} (@code{gnatmake})
8478 Do not look for library files in the system default directory.
8479
8480 @item --RTS=@var{rts-path}
8481 @cindex @option{--RTS} (@code{gnatmake})
8482 Specifies the default location of the runtime library. GNAT looks for the
8483 runtime
8484 in the following directories, and stops as soon as a valid runtime is found
8485 (@file{adainclude} or @file{ada_source_path}, and @file{adalib} or
8486 @file{ada_object_path} present):
8487
8488 @itemize @bullet
8489 @item <current directory>/$rts_path
8490
8491 @item <default-search-dir>/$rts_path
8492
8493 @item <default-search-dir>/rts-$rts_path
8494 @end itemize
8495
8496 @noindent
8497 The selected path is handled like a normal RTS path.
8498
8499 @end table
8500
8501 @node Mode Switches for gnatmake
8502 @section Mode Switches for @code{gnatmake}
8503
8504 @noindent
8505 The mode switches (referred to as @code{mode_switches}) allow the
8506 inclusion of switches that are to be passed to the compiler itself, the
8507 binder or the linker. The effect of a mode switch is to cause all
8508 subsequent switches up to the end of the switch list, or up to the next
8509 mode switch, to be interpreted as switches to be passed on to the
8510 designated component of GNAT.
8511
8512 @table @option
8513 @c !sort!
8514 @item -cargs @var{switches}
8515 @cindex @option{-cargs} (@code{gnatmake})
8516 Compiler switches. Here @var{switches} is a list of switches
8517 that are valid switches for @code{gcc}. They will be passed on to
8518 all compile steps performed by @code{gnatmake}.
8519
8520 @item -bargs @var{switches}
8521 @cindex @option{-bargs} (@code{gnatmake})
8522 Binder switches. Here @var{switches} is a list of switches
8523 that are valid switches for @code{gnatbind}. They will be passed on to
8524 all bind steps performed by @code{gnatmake}.
8525
8526 @item -largs @var{switches}
8527 @cindex @option{-largs} (@code{gnatmake})
8528 Linker switches. Here @var{switches} is a list of switches
8529 that are valid switches for @code{gnatlink}. They will be passed on to
8530 all link steps performed by @code{gnatmake}.
8531
8532 @item -margs @var{switches}
8533 @cindex @option{-margs} (@code{gnatmake})
8534 Make switches. The switches are directly interpreted by @code{gnatmake},
8535 regardless of any previous occurrence of @option{-cargs}, @option{-bargs}
8536 or @option{-largs}.
8537 @end table
8538
8539 @node Notes on the Command Line
8540 @section Notes on the Command Line
8541
8542 @noindent
8543 This section contains some additional useful notes on the operation
8544 of the @code{gnatmake} command.
8545
8546 @itemize @bullet
8547 @item
8548 @cindex Recompilation, by @code{gnatmake}
8549 If @code{gnatmake} finds no ALI files, it recompiles the main program
8550 and all other units required by the main program.
8551 This means that @code{gnatmake}
8552 can be used for the initial compile, as well as during subsequent steps of
8553 the development cycle.
8554
8555 @item
8556 If you enter @code{gnatmake @var{file}.adb}, where @file{@var{file}.adb}
8557 is a subunit or body of a generic unit, @code{gnatmake} recompiles
8558 @file{@var{file}.adb} (because it finds no ALI) and stops, issuing a
8559 warning.
8560
8561 @item
8562 In @code{gnatmake} the switch @option{^-I^/SEARCH^}
8563 is used to specify both source and
8564 library file paths. Use @option{^-aI^/SOURCE_SEARCH^}
8565 instead if you just want to specify
8566 source paths only and @option{^-aO^/OBJECT_SEARCH^}
8567 if you want to specify library paths
8568 only.
8569
8570 @item
8571 @code{gnatmake} examines both an ALI file and its corresponding object file
8572 for consistency. If an ALI is more recent than its corresponding object,
8573 or if the object file is missing, the corresponding source will be recompiled.
8574 Note that @code{gnatmake} expects an ALI and the corresponding object file
8575 to be in the same directory.
8576
8577 @item
8578 @code{gnatmake} will ignore any files whose ALI file is write-protected.
8579 This may conveniently be used to exclude standard libraries from
8580 consideration and in particular it means that the use of the
8581 @option{^-f^/FORCE_COMPILE^} switch will not recompile these files
8582 unless @option{^-a^/ALL_FILES^} is also specified.
8583
8584 @item
8585 @code{gnatmake} has been designed to make the use of Ada libraries
8586 particularly convenient. Assume you have an Ada library organized
8587 as follows: @i{^obj-dir^[OBJ_DIR]^} contains the objects and ALI files for
8588 of your Ada compilation units,
8589 whereas @i{^include-dir^[INCLUDE_DIR]^} contains the
8590 specs of these units, but no bodies. Then to compile a unit
8591 stored in @code{main.adb}, which uses this Ada library you would just type
8592
8593 @smallexample
8594 @ifclear vms
8595 $ gnatmake -aI@var{include-dir} -aL@var{obj-dir} main
8596 @end ifclear
8597 @ifset vms
8598 $ gnatmake /SOURCE_SEARCH=@i{[INCLUDE_DIR]}
8599 /SKIP_MISSING=@i{[OBJ_DIR]} main
8600 @end ifset
8601 @end smallexample
8602
8603 @item
8604 Using @code{gnatmake} along with the
8605 @option{^-m (minimal recompilation)^/MINIMAL_RECOMPILATION^}
8606 switch provides a mechanism for avoiding unnecessary rcompilations. Using
8607 this switch,
8608 you can update the comments/format of your
8609 source files without having to recompile everything. Note, however, that
8610 adding or deleting lines in a source files may render its debugging
8611 info obsolete. If the file in question is a spec, the impact is rather
8612 limited, as that debugging info will only be useful during the
8613 elaboration phase of your program. For bodies the impact can be more
8614 significant. In all events, your debugger will warn you if a source file
8615 is more recent than the corresponding object, and alert you to the fact
8616 that the debugging information may be out of date.
8617 @end itemize
8618
8619 @node How gnatmake Works
8620 @section How @code{gnatmake} Works
8621
8622 @noindent
8623 Generally @code{gnatmake} automatically performs all necessary
8624 recompilations and you don't need to worry about how it works. However,
8625 it may be useful to have some basic understanding of the @code{gnatmake}
8626 approach and in particular to understand how it uses the results of
8627 previous compilations without incorrectly depending on them.
8628
8629 First a definition: an object file is considered @dfn{up to date} if the
8630 corresponding ALI file exists and its time stamp predates that of the
8631 object file and if all the source files listed in the
8632 dependency section of this ALI file have time stamps matching those in
8633 the ALI file. This means that neither the source file itself nor any
8634 files that it depends on have been modified, and hence there is no need
8635 to recompile this file.
8636
8637 @code{gnatmake} works by first checking if the specified main unit is up
8638 to date. If so, no compilations are required for the main unit. If not,
8639 @code{gnatmake} compiles the main program to build a new ALI file that
8640 reflects the latest sources. Then the ALI file of the main unit is
8641 examined to find all the source files on which the main program depends,
8642 and @code{gnatmake} recursively applies the above procedure on all these files.
8643
8644 This process ensures that @code{gnatmake} only trusts the dependencies
8645 in an existing ALI file if they are known to be correct. Otherwise it
8646 always recompiles to determine a new, guaranteed accurate set of
8647 dependencies. As a result the program is compiled ``upside down'' from what may
8648 be more familiar as the required order of compilation in some other Ada
8649 systems. In particular, clients are compiled before the units on which
8650 they depend. The ability of GNAT to compile in any order is critical in
8651 allowing an order of compilation to be chosen that guarantees that
8652 @code{gnatmake} will recompute a correct set of new dependencies if
8653 necessary.
8654
8655 When invoking @code{gnatmake} with several @var{file_names}, if a unit is
8656 imported by several of the executables, it will be recompiled at most once.
8657
8658 Note: when using non-standard naming conventions
8659 (See @ref{Using Other File Names}), changing through a configuration pragmas
8660 file the version of a source and invoking @code{gnatmake} to recompile may
8661 have no effect, if the previous version of the source is still accessible
8662 by @code{gnatmake}. It may be necessary to use the switch ^-f^/FORCE_COMPILE^.
8663
8664 @node Examples of gnatmake Usage
8665 @section Examples of @code{gnatmake} Usage
8666
8667 @table @code
8668 @item gnatmake hello.adb
8669 Compile all files necessary to bind and link the main program
8670 @file{hello.adb} (containing unit @code{Hello}) and bind and link the
8671 resulting object files to generate an executable file @file{^hello^HELLO.EXE^}.
8672
8673 @item gnatmake main1 main2 main3
8674 Compile all files necessary to bind and link the main programs
8675 @file{main1.adb} (containing unit @code{Main1}), @file{main2.adb}
8676 (containing unit @code{Main2}) and @file{main3.adb}
8677 (containing unit @code{Main3}) and bind and link the resulting object files
8678 to generate three executable files @file{^main1^MAIN1.EXE^},
8679 @file{^main2^MAIN2.EXE^}
8680 and @file{^main3^MAIN3.EXE^}.
8681
8682 @ifclear vms
8683 @item gnatmake -q Main_Unit -cargs -O2 -bargs -l
8684 @end ifclear
8685
8686 @ifset vms
8687 @item gnatmake Main_Unit /QUIET
8688 /COMPILER_QUALIFIERS /OPTIMIZE=ALL
8689 /BINDER_QUALIFIERS /ORDER_OF_ELABORATION
8690 @end ifset
8691 Compile all files necessary to bind and link the main program unit
8692 @code{Main_Unit} (from file @file{main_unit.adb}). All compilations will
8693 be done with optimization level 2 and the order of elaboration will be
8694 listed by the binder. @code{gnatmake} will operate in quiet mode, not
8695 displaying commands it is executing.
8696 @end table
8697
8698
8699 @c *************************
8700 @node Improving Performance
8701 @chapter Improving Performance
8702 @cindex Improving performance
8703
8704 @noindent
8705 This chapter presents several topics related to program performance.
8706 It first describes some of the tradeoffs that need to be considered
8707 and some of the techniques for making your program run faster.
8708 It then documents the @command{gnatelim} tool, which can reduce
8709 the size of program executables.
8710
8711 @ifnottex
8712 @menu
8713 * Performance Considerations::
8714 * Reducing the Size of Ada Executables with gnatelim::
8715 @end menu
8716 @end ifnottex
8717
8718
8719 @c *****************************
8720 @node Performance Considerations
8721 @section Performance Considerations
8722
8723 @noindent
8724 The GNAT system provides a number of options that allow a trade-off
8725 between
8726
8727 @itemize @bullet
8728 @item
8729 performance of the generated code
8730
8731 @item
8732 speed of compilation
8733
8734 @item
8735 minimization of dependences and recompilation
8736
8737 @item
8738 the degree of run-time checking.
8739 @end itemize
8740
8741 @noindent
8742 The defaults (if no options are selected) aim at improving the speed
8743 of compilation and minimizing dependences, at the expense of performance
8744 of the generated code:
8745
8746 @itemize @bullet
8747 @item
8748 no optimization
8749
8750 @item
8751 no inlining of subprogram calls
8752
8753 @item
8754 all run-time checks enabled except overflow and elaboration checks
8755 @end itemize
8756
8757 @noindent
8758 These options are suitable for most program development purposes. This
8759 chapter describes how you can modify these choices, and also provides
8760 some guidelines on debugging optimized code.
8761
8762 @menu
8763 * Controlling Run-Time Checks::
8764 * Use of Restrictions::
8765 * Optimization Levels::
8766 * Debugging Optimized Code::
8767 * Inlining of Subprograms::
8768 * Optimization and Strict Aliasing::
8769 @ifset vms
8770 * Coverage Analysis::
8771 @end ifset
8772 @end menu
8773
8774 @node Controlling Run-Time Checks
8775 @subsection Controlling Run-Time Checks
8776
8777 @noindent
8778 By default, GNAT generates all run-time checks, except arithmetic overflow
8779 checking for integer operations and checks for access before elaboration on
8780 subprogram calls. The latter are not required in default mode, because all
8781 necessary checking is done at compile time.
8782 @cindex @option{-gnatp} (@code{gcc})
8783 @cindex @option{-gnato} (@code{gcc})
8784 Two gnat switches, @option{-gnatp} and @option{-gnato} allow this default to
8785 be modified. @xref{Run-Time Checks}.
8786
8787 Our experience is that the default is suitable for most development
8788 purposes.
8789
8790 We treat integer overflow specially because these
8791 are quite expensive and in our experience are not as important as other
8792 run-time checks in the development process. Note that division by zero
8793 is not considered an overflow check, and divide by zero checks are
8794 generated where required by default.
8795
8796 Elaboration checks are off by default, and also not needed by default, since
8797 GNAT uses a static elaboration analysis approach that avoids the need for
8798 run-time checking. This manual contains a full chapter discussing the issue
8799 of elaboration checks, and if the default is not satisfactory for your use,
8800 you should read this chapter.
8801
8802 For validity checks, the minimal checks required by the Ada Reference
8803 Manual (for case statements and assignments to array elements) are on
8804 by default. These can be suppressed by use of the @option{-gnatVn} switch.
8805 Note that in Ada 83, there were no validity checks, so if the Ada 83 mode
8806 is acceptable (or when comparing GNAT performance with an Ada 83 compiler),
8807 it may be reasonable to routinely use @option{-gnatVn}. Validity checks
8808 are also suppressed entirely if @option{-gnatp} is used.
8809
8810 @cindex Overflow checks
8811 @cindex Checks, overflow
8812 @findex Suppress
8813 @findex Unsuppress
8814 @cindex pragma Suppress
8815 @cindex pragma Unsuppress
8816 Note that the setting of the switches controls the default setting of
8817 the checks. They may be modified using either @code{pragma Suppress} (to
8818 remove checks) or @code{pragma Unsuppress} (to add back suppressed
8819 checks) in the program source.
8820
8821 @node Use of Restrictions
8822 @subsection Use of Restrictions
8823
8824 @noindent
8825 The use of pragma Restrictions allows you to control which features are
8826 permitted in your program. Apart from the obvious point that if you avoid
8827 relatively expensive features like finalization (enforceable by the use
8828 of pragma Restrictions (No_Finalization), the use of this pragma does not
8829 affect the generated code in most cases.
8830
8831 One notable exception to this rule is that the possibility of task abort
8832 results in some distributed overhead, particularly if finalization or
8833 exception handlers are used. The reason is that certain sections of code
8834 have to be marked as non-abortable.
8835
8836 If you use neither the @code{abort} statement, nor asynchronous transfer
8837 of control (@code{select .. then abort}), then this distributed overhead
8838 is removed, which may have a general positive effect in improving
8839 overall performance. Especially code involving frequent use of tasking
8840 constructs and controlled types will show much improved performance.
8841 The relevant restrictions pragmas are
8842
8843 @smallexample
8844 pragma Restrictions (No_Abort_Statements);
8845 pragma Restrictions (Max_Asynchronous_Select_Nesting => 0);
8846 @end smallexample
8847
8848 @noindent
8849 It is recommended that these restriction pragmas be used if possible. Note
8850 that this also means that you can write code without worrying about the
8851 possibility of an immediate abort at any point.
8852
8853 @node Optimization Levels
8854 @subsection Optimization Levels
8855 @cindex @option{^-O^/OPTIMIZE^} (@code{gcc})
8856
8857 @noindent
8858 The default is optimization off. This results in the fastest compile
8859 times, but GNAT makes absolutely no attempt to optimize, and the
8860 generated programs are considerably larger and slower than when
8861 optimization is enabled. You can use the
8862 @ifclear vms
8863 @option{-O@var{n}} switch, where @var{n} is an integer from 0 to 3,
8864 @end ifclear
8865 @ifset vms
8866 @code{OPTIMIZE} qualifier
8867 @end ifset
8868 to @code{gcc} to control the optimization level:
8869
8870 @table @option
8871 @item ^-O0^/OPTIMIZE=NONE^
8872 No optimization (the default);
8873 generates unoptimized code but has
8874 the fastest compilation time.
8875
8876 @item ^-O1^/OPTIMIZE=SOME^
8877 Medium level optimization;
8878 optimizes reasonably well but does not
8879 degrade compilation time significantly.
8880
8881 @item ^-O2^/OPTIMIZE=ALL^
8882 @ifset vms
8883 @itemx /OPTIMIZE=DEVELOPMENT
8884 @end ifset
8885 Full optimization;
8886 generates highly optimized code and has
8887 the slowest compilation time.
8888
8889 @item ^-O3^/OPTIMIZE=INLINING^
8890 Full optimization as in @option{-O2},
8891 and also attempts automatic inlining of small
8892 subprograms within a unit (@pxref{Inlining of Subprograms}).
8893 @end table
8894
8895 @noindent
8896 Higher optimization levels perform more global transformations on the
8897 program and apply more expensive analysis algorithms in order to generate
8898 faster and more compact code. The price in compilation time, and the
8899 resulting improvement in execution time,
8900 both depend on the particular application and the hardware environment.
8901 You should experiment to find the best level for your application.
8902
8903 Since the precise set of optimizations done at each level will vary from
8904 release to release (and sometime from target to target), it is best to think
8905 of the optimization settings in general terms.
8906 The @cite{Using GNU GCC} manual contains details about
8907 ^the @option{-O} settings and a number of @option{-f} options that^how to^
8908 individually enable or disable specific optimizations.
8909
8910 Unlike some other compilation systems, ^@command{gcc}^GNAT^ has
8911 been tested extensively at all optimization levels. There are some bugs
8912 which appear only with optimization turned on, but there have also been
8913 bugs which show up only in @emph{unoptimized} code. Selecting a lower
8914 level of optimization does not improve the reliability of the code
8915 generator, which in practice is highly reliable at all optimization
8916 levels.
8917
8918 Note regarding the use of @option{-O3}: The use of this optimization level
8919 is generally discouraged with GNAT, since it often results in larger
8920 executables which run more slowly. See further discussion of this point
8921 in @pxref{Inlining of Subprograms}.
8922
8923
8924 @node Debugging Optimized Code
8925 @subsection Debugging Optimized Code
8926 @cindex Debugging optimized code
8927 @cindex Optimization and debugging
8928
8929 @noindent
8930 Although it is possible to do a reasonable amount of debugging at
8931 @ifclear vms
8932 non-zero optimization levels,
8933 the higher the level the more likely that
8934 @end ifclear
8935 @ifset vms
8936 @option{/OPTIMIZE} settings other than @code{NONE},
8937 such settings will make it more likely that
8938 @end ifset
8939 source-level constructs will have been eliminated by optimization.
8940 For example, if a loop is strength-reduced, the loop
8941 control variable may be completely eliminated and thus cannot be
8942 displayed in the debugger.
8943 This can only happen at @option{-O2} or @option{-O3}.
8944 Explicit temporary variables that you code might be eliminated at
8945 ^level^setting^ @option{-O1} or higher.
8946
8947 The use of the @option{^-g^/DEBUG^} switch,
8948 @cindex @option{^-g^/DEBUG^} (@code{gcc})
8949 which is needed for source-level debugging,
8950 affects the size of the program executable on disk,
8951 and indeed the debugging information can be quite large.
8952 However, it has no effect on the generated code (and thus does not
8953 degrade performance)
8954
8955 Since the compiler generates debugging tables for a compilation unit before
8956 it performs optimizations, the optimizing transformations may invalidate some
8957 of the debugging data. You therefore need to anticipate certain
8958 anomalous situations that may arise while debugging optimized code.
8959 These are the most common cases:
8960
8961 @enumerate
8962 @item
8963 @i{The ``hopping Program Counter'':} Repeated @code{step} or @code{next}
8964 commands show
8965 the PC bouncing back and forth in the code. This may result from any of
8966 the following optimizations:
8967
8968 @itemize @bullet
8969 @item
8970 @i{Common subexpression elimination:} using a single instance of code for a
8971 quantity that the source computes several times. As a result you
8972 may not be able to stop on what looks like a statement.
8973
8974 @item
8975 @i{Invariant code motion:} moving an expression that does not change within a
8976 loop, to the beginning of the loop.
8977
8978 @item
8979 @i{Instruction scheduling:} moving instructions so as to
8980 overlap loads and stores (typically) with other code, or in
8981 general to move computations of values closer to their uses. Often
8982 this causes you to pass an assignment statement without the assignment
8983 happening and then later bounce back to the statement when the
8984 value is actually needed. Placing a breakpoint on a line of code
8985 and then stepping over it may, therefore, not always cause all the
8986 expected side-effects.
8987 @end itemize
8988
8989 @item
8990 @i{The ``big leap'':} More commonly known as @emph{cross-jumping}, in which
8991 two identical pieces of code are merged and the program counter suddenly
8992 jumps to a statement that is not supposed to be executed, simply because
8993 it (and the code following) translates to the same thing as the code
8994 that @emph{was} supposed to be executed. This effect is typically seen in
8995 sequences that end in a jump, such as a @code{goto}, a @code{return}, or
8996 a @code{break} in a C @code{^switch^switch^} statement.
8997
8998 @item
8999 @i{The ``roving variable'':} The symptom is an unexpected value in a variable.
9000 There are various reasons for this effect:
9001
9002 @itemize @bullet
9003 @item
9004 In a subprogram prologue, a parameter may not yet have been moved to its
9005 ``home''.
9006
9007 @item
9008 A variable may be dead, and its register re-used. This is
9009 probably the most common cause.
9010
9011 @item
9012 As mentioned above, the assignment of a value to a variable may
9013 have been moved.
9014
9015 @item
9016 A variable may be eliminated entirely by value propagation or
9017 other means. In this case, GCC may incorrectly generate debugging
9018 information for the variable
9019 @end itemize
9020
9021 @noindent
9022 In general, when an unexpected value appears for a local variable or parameter
9023 you should first ascertain if that value was actually computed by
9024 your program, as opposed to being incorrectly reported by the debugger.
9025 Record fields or
9026 array elements in an object designated by an access value
9027 are generally less of a problem, once you have ascertained that the access
9028 value is sensible.
9029 Typically, this means checking variables in the preceding code and in the
9030 calling subprogram to verify that the value observed is explainable from other
9031 values (one must apply the procedure recursively to those
9032 other values); or re-running the code and stopping a little earlier
9033 (perhaps before the call) and stepping to better see how the variable obtained
9034 the value in question; or continuing to step @emph{from} the point of the
9035 strange value to see if code motion had simply moved the variable's
9036 assignments later.
9037 @end enumerate
9038
9039 @noindent
9040 In light of such anomalies, a recommended technique is to use @option{-O0}
9041 early in the software development cycle, when extensive debugging capabilities
9042 are most needed, and then move to @option{-O1} and later @option{-O2} as
9043 the debugger becomes less critical.
9044 Whether to use the @option{^-g^/DEBUG^} switch in the release version is
9045 a release management issue.
9046 @ifclear vms
9047 Note that if you use @option{-g} you can then use the @command{strip} program
9048 on the resulting executable,
9049 which removes both debugging information and global symbols.
9050 @end ifclear
9051
9052
9053 @node Inlining of Subprograms
9054 @subsection Inlining of Subprograms
9055
9056 @noindent
9057 A call to a subprogram in the current unit is inlined if all the
9058 following conditions are met:
9059
9060 @itemize @bullet
9061 @item
9062 The optimization level is at least @option{-O1}.
9063
9064 @item
9065 The called subprogram is suitable for inlining: It must be small enough
9066 and not contain nested subprograms or anything else that @code{gcc}
9067 cannot support in inlined subprograms.
9068
9069 @item
9070 The call occurs after the definition of the body of the subprogram.
9071
9072 @item
9073 @cindex pragma Inline
9074 @findex Inline
9075 Either @code{pragma Inline} applies to the subprogram or it is
9076 small and automatic inlining (optimization level @option{-O3}) is
9077 specified.
9078 @end itemize
9079
9080 @noindent
9081 Calls to subprograms in @code{with}'ed units are normally not inlined.
9082 To achieve this level of inlining, the following conditions must all be
9083 true:
9084
9085 @itemize @bullet
9086 @item
9087 The optimization level is at least @option{-O1}.
9088
9089 @item
9090 The called subprogram is suitable for inlining: It must be small enough
9091 and not contain nested subprograms or anything else @code{gcc} cannot
9092 support in inlined subprograms.
9093
9094 @item
9095 The call appears in a body (not in a package spec).
9096
9097 @item
9098 There is a @code{pragma Inline} for the subprogram.
9099
9100 @item
9101 @cindex @option{-gnatn} (@code{gcc})
9102 The @option{^-gnatn^/INLINE^} switch
9103 is used in the @code{gcc} command line
9104 @end itemize
9105
9106 Note that specifying the @option{-gnatn} switch causes additional
9107 compilation dependencies. Consider the following:
9108
9109 @smallexample @c ada
9110 @cartouche
9111 package R is
9112 procedure Q;
9113 pragma Inline (Q);
9114 end R;
9115 package body R is
9116 ...
9117 end R;
9118
9119 with R;
9120 procedure Main is
9121 begin
9122 ...
9123 R.Q;
9124 end Main;
9125 @end cartouche
9126 @end smallexample
9127
9128 @noindent
9129 With the default behavior (no @option{-gnatn} switch specified), the
9130 compilation of the @code{Main} procedure depends only on its own source,
9131 @file{main.adb}, and the spec of the package in file @file{r.ads}. This
9132 means that editing the body of @code{R} does not require recompiling
9133 @code{Main}.
9134
9135 On the other hand, the call @code{R.Q} is not inlined under these
9136 circumstances. If the @option{-gnatn} switch is present when @code{Main}
9137 is compiled, the call will be inlined if the body of @code{Q} is small
9138 enough, but now @code{Main} depends on the body of @code{R} in
9139 @file{r.adb} as well as on the spec. This means that if this body is edited,
9140 the main program must be recompiled. Note that this extra dependency
9141 occurs whether or not the call is in fact inlined by @code{gcc}.
9142
9143 The use of front end inlining with @option{-gnatN} generates similar
9144 additional dependencies.
9145
9146 @cindex @option{^-fno-inline^/INLINE=SUPPRESS^} (@code{gcc})
9147 Note: The @option{^-fno-inline^/INLINE=SUPPRESS^} switch
9148 can be used to prevent
9149 all inlining. This switch overrides all other conditions and ensures
9150 that no inlining occurs. The extra dependences resulting from
9151 @option{-gnatn} will still be active, even if
9152 this switch is used to suppress the resulting inlining actions.
9153
9154 Note regarding the use of @option{-O3}: There is no difference in inlining
9155 behavior between @option{-O2} and @option{-O3} for subprograms with an explicit
9156 pragma @code{Inline} assuming the use of @option{-gnatn}
9157 or @option{-gnatN} (the switches that activate inlining). If you have used
9158 pragma @code{Inline} in appropriate cases, then it is usually much better
9159 to use @option{-O2} and @option{-gnatn} and avoid the use of @option{-O3} which
9160 in this case only has the effect of inlining subprograms you did not
9161 think should be inlined. We often find that the use of @option{-O3} slows
9162 down code by performing excessive inlining, leading to increased instruction
9163 cache pressure from the increased code size. So the bottom line here is
9164 that you should not automatically assume that @option{-O3} is better than
9165 @option{-O2}, and indeed you should use @option{-O3} only if tests show that
9166 it actually improves performance.
9167
9168 @node Optimization and Strict Aliasing
9169 @subsection Optimization and Strict Aliasing
9170 @cindex Aliasing
9171 @cindex Strict Aliasing
9172 @cindex No_Strict_Aliasing
9173
9174 @noindent
9175 The strong typing capabilities of Ada allow an optimizer to generate
9176 efficient code in situations where other languages would be forced to
9177 make worst case assumptions preventing such optimizations. Consider
9178 the following example:
9179
9180 @smallexample @c ada
9181 @cartouche
9182 procedure R is
9183 type Int1 is new Integer;
9184 type Int2 is new Integer;
9185 type Int1A is access Int1;
9186 type Int2A is access Int2;
9187 Int1V : Int1A;
9188 Int2V : Int2A;
9189 ...
9190
9191 begin
9192 ...
9193 for J in Data'Range loop
9194 if Data (J) = Int1V.all then
9195 Int2V.all := Int2V.all + 1;
9196 end if;
9197 end loop;
9198 ...
9199 end R;
9200 @end cartouche
9201 @end smallexample
9202
9203 @noindent
9204 In this example, since the variable @code{Int1V} can only access objects
9205 of type @code{Int1}, and @code{Int2V} can only access objects of type
9206 @code{Int2}, there is no possibility that the assignment to
9207 @code{Int2V.all} affects the value of @code{Int1V.all}. This means that
9208 the compiler optimizer can "know" that the value @code{Int1V.all} is constant
9209 for all iterations of the loop and avoid the extra memory reference
9210 required to dereference it each time through the loop.
9211
9212 This kind of optimziation, called strict aliasing analysis, is
9213 triggered by specifying an optimization level of @option{-O2} or
9214 higher and allows @code{GNAT} to generate more efficient code
9215 when access values are involved.
9216
9217 However, although this optimization is always correct in terms of
9218 the formal semantics of the Ada Reference Manual, difficulties can
9219 arise if features like @code{Unchecked_Conversion} are used to break
9220 the typing system. Consider the following complete program example:
9221
9222 @smallexample @c ada
9223 @cartouche
9224 package p1 is
9225 type int1 is new integer;
9226 type int2 is new integer;
9227 type a1 is access int1;
9228 type a2 is access int2;
9229 end p1;
9230
9231 with p1; use p1;
9232 package p2 is
9233 function to_a2 (Input : a1) return a2;
9234 end p2;
9235
9236 with Unchecked_Conversion;
9237 package body p2 is
9238 function to_a2 (Input : a1) return a2 is
9239 function to_a2u is
9240 new Unchecked_Conversion (a1, a2);
9241 begin
9242 return to_a2u (Input);
9243 end to_a2;
9244 end p2;
9245
9246 with p2; use p2;
9247 with p1; use p1;
9248 with Text_IO; use Text_IO;
9249 procedure m is
9250 v1 : a1 := new int1;
9251 v2 : a2 := to_a2 (v1);
9252 begin
9253 v1.all := 1;
9254 v2.all := 0;
9255 put_line (int1'image (v1.all));
9256 end;
9257 @end cartouche
9258 @end smallexample
9259
9260 @noindent
9261 This program prints out 0 in @code{-O0} or @code{-O1}
9262 mode, but it prints out 1 in @code{-O2} mode. That's
9263 because in strict aliasing mode, the compiler can and
9264 does assume that the assignment to @code{v2.all} could not
9265 affect the value of @code{v1.all}, since different types
9266 are involved.
9267
9268 This behavior is not a case of non-conformance with the standard, since
9269 the Ada RM specifies that an unchecked conversion where the resulting
9270 bit pattern is not a correct value of the target type can result in an
9271 abnormal value and attempting to reference an abnormal value makes the
9272 execution of a program erroneous. That's the case here since the result
9273 does not point to an object of type @code{int2}. This means that the
9274 effect is entirely unpredictable.
9275
9276 However, although that explanation may satisfy a language
9277 lawyer, in practice an applications programmer expects an
9278 unchecked conversion involving pointers to create true
9279 aliases and the behavior of printing 1 seems plain wrong.
9280 In this case, the strict aliasing optimization is unwelcome.
9281
9282 Indeed the compiler recognizes this possibility, and the
9283 unchecked conversion generates a warning:
9284
9285 @smallexample
9286 p2.adb:5:07: warning: possible aliasing problem with type "a2"
9287 p2.adb:5:07: warning: use -fno-strict-aliasing switch for references
9288 p2.adb:5:07: warning: or use "pragma No_Strict_Aliasing (a2);"
9289 @end smallexample
9290
9291 @noindent
9292 Unfortunately the problem is recognized when compiling the body of
9293 package @code{p2}, but the actual "bad" code is generated while
9294 compiling the body of @code{m} and this latter compilation does not see
9295 the suspicious @code{Unchecked_Conversion}.
9296
9297 As implied by the warning message, there are approaches you can use to
9298 avoid the unwanted strict aliasing optimization in a case like this.
9299
9300 One possibility is to simply avoid the use of @code{-O2}, but
9301 that is a bit drastic, since it throws away a number of useful
9302 optimizations that do not involve strict aliasing assumptions.
9303
9304 A less drastic approach is to compile the program using the
9305 option @code{-fno-strict-aliasing}. Actually it is only the
9306 unit containing the dereferencing of the suspicious pointer
9307 that needs to be compiled. So in this case, if we compile
9308 unit @code{m} with this switch, then we get the expected
9309 value of zero printed. Analyzing which units might need
9310 the switch can be painful, so a more reasonable approach
9311 is to compile the entire program with options @code{-O2}
9312 and @code{-fno-strict-aliasing}. If the performance is
9313 satisfactory with this combination of options, then the
9314 advantage is that the entire issue of possible "wrong"
9315 optimization due to strict aliasing is avoided.
9316
9317 To avoid the use of compiler switches, the configuration
9318 pragma @code{No_Strict_Aliasing} with no parameters may be
9319 used to specify that for all access types, the strict
9320 aliasing optimization should be suppressed.
9321
9322 However, these approaches are still overkill, in that they causes
9323 all manipulations of all access values to be deoptimized. A more
9324 refined approach is to concentrate attention on the specific
9325 access type identified as problematic.
9326
9327 First, if a careful analysis of uses of the pointer shows
9328 that there are no possible problematic references, then
9329 the warning can be suppressed by bracketing the
9330 instantiation of @code{Unchecked_Conversion} to turn
9331 the warning off:
9332
9333 @smallexample @c ada
9334 pragma Warnings (Off);
9335 function to_a2u is
9336 new Unchecked_Conversion (a1, a2);
9337 pragma Warnings (On);
9338 @end smallexample
9339
9340 @noindent
9341 Of course that approach is not appropriate for this particular
9342 example, since indeed there is a problematic reference. In this
9343 case we can take one of two other approaches.
9344
9345 The first possibility is to move the instantiation of unchecked
9346 conversion to the unit in which the type is declared. In
9347 this example, we would move the instantiation of
9348 @code{Unchecked_Conversion} from the body of package
9349 @code{p2} to the spec of package @code{p1}. Now the
9350 warning disappears. That's because any use of the
9351 access type knows there is a suspicious unchecked
9352 conversion, and the strict aliasing optimization
9353 is automatically suppressed for the type.
9354
9355 If it is not practical to move the unchecked conversion to the same unit
9356 in which the destination access type is declared (perhaps because the
9357 source type is not visible in that unit), you may use pragma
9358 @code{No_Strict_Aliasing} for the type. This pragma must occur in the
9359 same declarative sequence as the declaration of the access type:
9360
9361 @smallexample @c ada
9362 type a2 is access int2;
9363 pragma No_Strict_Aliasing (a2);
9364 @end smallexample
9365
9366 @noindent
9367 Here again, the compiler now knows that the strict aliasing optimization
9368 should be suppressed for any reference to type @code{a2} and the
9369 expected behavior is obtained.
9370
9371 Finally, note that although the compiler can generate warnings for
9372 simple cases of unchecked conversions, there are tricker and more
9373 indirect ways of creating type incorrect aliases which the compiler
9374 cannot detect. Examples are the use of address overlays and unchecked
9375 conversions involving composite types containing access types as
9376 components. In such cases, no warnings are generated, but there can
9377 still be aliasing problems. One safe coding practice is to forbid the
9378 use of address clauses for type overlaying, and to allow unchecked
9379 conversion only for primitive types. This is not really a significant
9380 restriction since any possible desired effect can be achieved by
9381 unchecked conversion of access values.
9382
9383 @ifset vms
9384 @node Coverage Analysis
9385 @subsection Coverage Analysis
9386
9387 @noindent
9388 GNAT supports the Digital Performance Coverage Analyzer (PCA), which allows
9389 the user to determine the distribution of execution time across a program,
9390 @pxref{Profiling} for details of usage.
9391 @end ifset
9392
9393 @node Reducing the Size of Ada Executables with gnatelim
9394 @section Reducing the Size of Ada Executables with @code{gnatelim}
9395 @findex gnatelim
9396
9397 @noindent
9398 This section describes @command{gnatelim}, a tool which detects unused
9399 subprograms and helps the compiler to create a smaller executable for your
9400 program.
9401
9402 @menu
9403 * About gnatelim::
9404 * Running gnatelim::
9405 * Correcting the List of Eliminate Pragmas::
9406 * Making Your Executables Smaller::
9407 * Summary of the gnatelim Usage Cycle::
9408 @end menu
9409
9410 @node About gnatelim
9411 @subsection About @code{gnatelim}
9412
9413 @noindent
9414 When a program shares a set of Ada
9415 packages with other programs, it may happen that this program uses
9416 only a fraction of the subprograms defined in these packages. The code
9417 created for these unused subprograms increases the size of the executable.
9418
9419 @code{gnatelim} tracks unused subprograms in an Ada program and
9420 outputs a list of GNAT-specific pragmas @code{Eliminate} marking all the
9421 subprograms that are declared but never called. By placing the list of
9422 @code{Eliminate} pragmas in the GNAT configuration file @file{gnat.adc} and
9423 recompiling your program, you may decrease the size of its executable,
9424 because the compiler will not generate the code for 'eliminated' subprograms.
9425 See GNAT Reference Manual for more information about this pragma.
9426
9427 @code{gnatelim} needs as its input data the name of the main subprogram
9428 and a bind file for a main subprogram.
9429
9430 To create a bind file for @code{gnatelim}, run @code{gnatbind} for
9431 the main subprogram. @code{gnatelim} can work with both Ada and C
9432 bind files; when both are present, it uses the Ada bind file.
9433 The following commands will build the program and create the bind file:
9434
9435 @smallexample
9436 $ gnatmake ^-c Main_Prog^/ACTIONS=COMPILE MAIN_PROG^
9437 $ gnatbind main_prog
9438 @end smallexample
9439
9440 Note that @code{gnatelim} needs neither object nor ALI files.
9441
9442 @node Running gnatelim
9443 @subsection Running @code{gnatelim}
9444
9445 @noindent
9446 @code{gnatelim} has the following command-line interface:
9447
9448 @smallexample
9449 $ gnatelim [options] name
9450 @end smallexample
9451
9452 @noindent
9453 @code{name} should be a name of a source file that contains the main subprogram
9454 of a program (partition).
9455
9456 @code{gnatelim} has the following switches:
9457
9458 @table @option
9459 @c !sort!
9460 @item ^-q^/QUIET^
9461 @cindex @option{^-q^/QUIET^} (@command{gnatelim})
9462 Quiet mode: by default @code{gnatelim} outputs to the standard error
9463 stream the number of program units left to be processed. This option turns
9464 this trace off.
9465
9466 @item ^-v^/VERBOSE^
9467 @cindex @option{^-v^/VERBOSE^} (@command{gnatelim})
9468 Verbose mode: @code{gnatelim} version information is printed as Ada
9469 comments to the standard output stream. Also, in addition to the number of
9470 program units left @code{gnatelim} will output the name of the current unit
9471 being processed.
9472
9473 @item ^-a^/ALL^
9474 @cindex @option{^-a^/ALL^} (@command{gnatelim})
9475 Also look for subprograms from the GNAT run time that can be eliminated. Note
9476 that when @file{gnat.adc} is produced using this switch, the entire program
9477 must be recompiled with switch @option{^-a^/ALL_FILES^} to @code{gnatmake}.
9478
9479 @item ^-I^/INCLUDE_DIRS=^@var{dir}
9480 @cindex @option{^-I^/INCLUDE_DIRS^} (@command{gnatelim})
9481 When looking for source files also look in directory @var{dir}. Specifying
9482 @option{^-I-^/INCLUDE_DIRS=-^} instructs @code{gnatelim} not to look for
9483 sources in the current directory.
9484
9485 @item ^-b^/BIND_FILE=^@var{bind_file}
9486 @cindex @option{^-b^/BIND_FILE^} (@command{gnatelim})
9487 Specifies @var{bind_file} as the bind file to process. If not set, the name
9488 of the bind file is computed from the full expanded Ada name
9489 of a main subprogram.
9490
9491 @item ^-C^/CONFIG_FILE=^@var{config_file}
9492 @cindex @option{^-C^/CONFIG_FILE^} (@command{gnatelim})
9493 Specifies a file @var{config_file} that contains configuration pragmas. The
9494 file must be specified with full path.
9495
9496 @item ^--GCC^/COMPILER^=@var{compiler_name}
9497 @cindex @option{^-GCC^/COMPILER^} (@command{gnatelim})
9498 Instructs @code{gnatelim} to use specific @code{gcc} compiler instead of one
9499 available on the path.
9500
9501 @item ^--GNATMAKE^/GNATMAKE^=@var{gnatmake_name}
9502 @cindex @option{^--GNATMAKE^/GNATMAKE^} (@command{gnatelim})
9503 Instructs @code{gnatelim} to use specific @code{gnatmake} instead of one
9504 available on the path.
9505
9506 @item -d@var{x}
9507 @cindex @option{-d@var{x}} (@command{gnatelim})
9508 Activate internal debugging switches. @var{x} is a letter or digit, or
9509 string of letters or digits, which specifies the type of debugging
9510 mode desired. Normally these are used only for internal development
9511 or system debugging purposes. You can find full documentation for these
9512 switches in the spec of the @code{Gnatelim} unit in the compiler
9513 source file @file{gnatelim.ads}.
9514 @end table
9515
9516 @noindent
9517 @code{gnatelim} sends its output to the standard output stream, and all the
9518 tracing and debug information is sent to the standard error stream.
9519 In order to produce a proper GNAT configuration file
9520 @file{gnat.adc}, redirection must be used:
9521
9522 @smallexample
9523 @ifset vms
9524 $ PIPE GNAT ELIM MAIN_PROG.ADB > GNAT.ADC
9525 @end ifset
9526 @ifclear vms
9527 $ gnatelim main_prog.adb > gnat.adc
9528 @end ifclear
9529 @end smallexample
9530
9531 @ifclear vms
9532 @noindent
9533 or
9534
9535 @smallexample
9536 $ gnatelim main_prog.adb >> gnat.adc
9537 @end smallexample
9538
9539 @noindent
9540 in order to append the @code{gnatelim} output to the existing contents of
9541 @file{gnat.adc}.
9542 @end ifclear
9543
9544 @node Correcting the List of Eliminate Pragmas
9545 @subsection Correcting the List of Eliminate Pragmas
9546
9547 @noindent
9548 In some rare cases @code{gnatelim} may try to eliminate
9549 subprograms that are actually called in the program. In this case, the
9550 compiler will generate an error message of the form:
9551
9552 @smallexample
9553 file.adb:106:07: cannot call eliminated subprogram "My_Prog"
9554 @end smallexample
9555
9556 @noindent
9557 You will need to manually remove the wrong @code{Eliminate} pragmas from
9558 the @file{gnat.adc} file. You should recompile your program
9559 from scratch after that, because you need a consistent @file{gnat.adc} file
9560 during the entire compilation.
9561
9562
9563 @node Making Your Executables Smaller
9564 @subsection Making Your Executables Smaller
9565
9566 @noindent
9567 In order to get a smaller executable for your program you now have to
9568 recompile the program completely with the new @file{gnat.adc} file
9569 created by @code{gnatelim} in your current directory:
9570
9571 @smallexample
9572 $ gnatmake ^-f main_prog^/FORCE_COMPILE MAIN_PROG^
9573 @end smallexample
9574
9575 @noindent
9576 (Use the @option{^-f^/FORCE_COMPILE^} option for @command{gnatmake} to
9577 recompile everything
9578 with the set of pragmas @code{Eliminate} that you have obtained with
9579 @command{gnatelim}).
9580
9581 Be aware that the set of @code{Eliminate} pragmas is specific to each
9582 program. It is not recommended to merge sets of @code{Eliminate}
9583 pragmas created for different programs in one @file{gnat.adc} file.
9584
9585 @node Summary of the gnatelim Usage Cycle
9586 @subsection Summary of the gnatelim Usage Cycle
9587
9588 @noindent
9589 Here is a quick summary of the steps to be taken in order to reduce
9590 the size of your executables with @code{gnatelim}. You may use
9591 other GNAT options to control the optimization level,
9592 to produce the debugging information, to set search path, etc.
9593
9594 @enumerate
9595 @item
9596 Produce a bind file
9597
9598 @smallexample
9599 $ gnatmake ^-c main_prog^/ACTIONS=COMPILE MAIN_PROG^
9600 $ gnatbind main_prog
9601 @end smallexample
9602
9603 @item
9604 Generate a list of @code{Eliminate} pragmas
9605 @smallexample
9606 @ifset vms
9607 $ PIPE GNAT ELIM MAIN_PROG > GNAT.ADC
9608 @end ifset
9609 @ifclear vms
9610 $ gnatelim main_prog >[>] gnat.adc
9611 @end ifclear
9612 @end smallexample
9613
9614 @item
9615 Recompile the application
9616
9617 @smallexample
9618 $ gnatmake ^-f main_prog^/FORCE_COMPILE MAIN_PROG^
9619 @end smallexample
9620
9621 @end enumerate
9622
9623
9624
9625
9626 @c ********************************
9627 @node Renaming Files Using gnatchop
9628 @chapter Renaming Files Using @code{gnatchop}
9629 @findex gnatchop
9630
9631 @noindent
9632 This chapter discusses how to handle files with multiple units by using
9633 the @code{gnatchop} utility. This utility is also useful in renaming
9634 files to meet the standard GNAT default file naming conventions.
9635
9636 @menu
9637 * Handling Files with Multiple Units::
9638 * Operating gnatchop in Compilation Mode::
9639 * Command Line for gnatchop::
9640 * Switches for gnatchop::
9641 * Examples of gnatchop Usage::
9642 @end menu
9643
9644 @node Handling Files with Multiple Units
9645 @section Handling Files with Multiple Units
9646
9647 @noindent
9648 The basic compilation model of GNAT requires that a file submitted to the
9649 compiler have only one unit and there be a strict correspondence
9650 between the file name and the unit name.
9651
9652 The @code{gnatchop} utility allows both of these rules to be relaxed,
9653 allowing GNAT to process files which contain multiple compilation units
9654 and files with arbitrary file names. @code{gnatchop}
9655 reads the specified file and generates one or more output files,
9656 containing one unit per file. The unit and the file name correspond,
9657 as required by GNAT.
9658
9659 If you want to permanently restructure a set of ``foreign'' files so that
9660 they match the GNAT rules, and do the remaining development using the
9661 GNAT structure, you can simply use @command{gnatchop} once, generate the
9662 new set of files and work with them from that point on.
9663
9664 Alternatively, if you want to keep your files in the ``foreign'' format,
9665 perhaps to maintain compatibility with some other Ada compilation
9666 system, you can set up a procedure where you use @command{gnatchop} each
9667 time you compile, regarding the source files that it writes as temporary
9668 files that you throw away.
9669
9670
9671 @node Operating gnatchop in Compilation Mode
9672 @section Operating gnatchop in Compilation Mode
9673
9674 @noindent
9675 The basic function of @code{gnatchop} is to take a file with multiple units
9676 and split it into separate files. The boundary between files is reasonably
9677 clear, except for the issue of comments and pragmas. In default mode, the
9678 rule is that any pragmas between units belong to the previous unit, except
9679 that configuration pragmas always belong to the following unit. Any comments
9680 belong to the following unit. These rules
9681 almost always result in the right choice of
9682 the split point without needing to mark it explicitly and most users will
9683 find this default to be what they want. In this default mode it is incorrect to
9684 submit a file containing only configuration pragmas, or one that ends in
9685 configuration pragmas, to @code{gnatchop}.
9686
9687 However, using a special option to activate ``compilation mode'',
9688 @code{gnatchop}
9689 can perform another function, which is to provide exactly the semantics
9690 required by the RM for handling of configuration pragmas in a compilation.
9691 In the absence of configuration pragmas (at the main file level), this
9692 option has no effect, but it causes such configuration pragmas to be handled
9693 in a quite different manner.
9694
9695 First, in compilation mode, if @code{gnatchop} is given a file that consists of
9696 only configuration pragmas, then this file is appended to the
9697 @file{gnat.adc} file in the current directory. This behavior provides
9698 the required behavior described in the RM for the actions to be taken
9699 on submitting such a file to the compiler, namely that these pragmas
9700 should apply to all subsequent compilations in the same compilation
9701 environment. Using GNAT, the current directory, possibly containing a
9702 @file{gnat.adc} file is the representation
9703 of a compilation environment. For more information on the
9704 @file{gnat.adc} file, see the section on handling of configuration
9705 pragmas @pxref{Handling of Configuration Pragmas}.
9706
9707 Second, in compilation mode, if @code{gnatchop}
9708 is given a file that starts with
9709 configuration pragmas, and contains one or more units, then these
9710 configuration pragmas are prepended to each of the chopped files. This
9711 behavior provides the required behavior described in the RM for the
9712 actions to be taken on compiling such a file, namely that the pragmas
9713 apply to all units in the compilation, but not to subsequently compiled
9714 units.
9715
9716 Finally, if configuration pragmas appear between units, they are appended
9717 to the previous unit. This results in the previous unit being illegal,
9718 since the compiler does not accept configuration pragmas that follow
9719 a unit. This provides the required RM behavior that forbids configuration
9720 pragmas other than those preceding the first compilation unit of a
9721 compilation.
9722
9723 For most purposes, @code{gnatchop} will be used in default mode. The
9724 compilation mode described above is used only if you need exactly
9725 accurate behavior with respect to compilations, and you have files
9726 that contain multiple units and configuration pragmas. In this
9727 circumstance the use of @code{gnatchop} with the compilation mode
9728 switch provides the required behavior, and is for example the mode
9729 in which GNAT processes the ACVC tests.
9730
9731 @node Command Line for gnatchop
9732 @section Command Line for @code{gnatchop}
9733
9734 @noindent
9735 The @code{gnatchop} command has the form:
9736
9737 @smallexample
9738 $ gnatchop switches @var{file name} [@var{file name} @var{file name} ...]
9739 [@var{directory}]
9740 @end smallexample
9741
9742 @noindent
9743 The only required argument is the file name of the file to be chopped.
9744 There are no restrictions on the form of this file name. The file itself
9745 contains one or more Ada units, in normal GNAT format, concatenated
9746 together. As shown, more than one file may be presented to be chopped.
9747
9748 When run in default mode, @code{gnatchop} generates one output file in
9749 the current directory for each unit in each of the files.
9750
9751 @var{directory}, if specified, gives the name of the directory to which
9752 the output files will be written. If it is not specified, all files are
9753 written to the current directory.
9754
9755 For example, given a
9756 file called @file{hellofiles} containing
9757
9758 @smallexample @c ada
9759 @group
9760 @cartouche
9761 procedure hello;
9762
9763 with Text_IO; use Text_IO;
9764 procedure hello is
9765 begin
9766 Put_Line ("Hello");
9767 end hello;
9768 @end cartouche
9769 @end group
9770 @end smallexample
9771
9772 @noindent
9773 the command
9774
9775 @smallexample
9776 $ gnatchop ^hellofiles^HELLOFILES.^
9777 @end smallexample
9778
9779 @noindent
9780 generates two files in the current directory, one called
9781 @file{hello.ads} containing the single line that is the procedure spec,
9782 and the other called @file{hello.adb} containing the remaining text. The
9783 original file is not affected. The generated files can be compiled in
9784 the normal manner.
9785
9786 @noindent
9787 When gnatchop is invoked on a file that is empty or that contains only empty
9788 lines and/or comments, gnatchop will not fail, but will not produce any
9789 new sources.
9790
9791 For example, given a
9792 file called @file{toto.txt} containing
9793
9794 @smallexample @c ada
9795 @group
9796 @cartouche
9797 -- Just a comment
9798 @end cartouche
9799 @end group
9800 @end smallexample
9801
9802 @noindent
9803 the command
9804
9805 @smallexample
9806 $ gnatchop ^toto.txt^TOT.TXT^
9807 @end smallexample
9808
9809 @noindent
9810 will not produce any new file and will result in the following warnings:
9811
9812 @smallexample
9813 toto.txt:1:01: warning: empty file, contains no compilation units
9814 no compilation units found
9815 no source files written
9816 @end smallexample
9817
9818 @node Switches for gnatchop
9819 @section Switches for @code{gnatchop}
9820
9821 @noindent
9822 @command{gnatchop} recognizes the following switches:
9823
9824 @table @option
9825 @c !sort!
9826
9827 @item ^-c^/COMPILATION^
9828 @cindex @option{^-c^/COMPILATION^} (@code{gnatchop})
9829 Causes @code{gnatchop} to operate in compilation mode, in which
9830 configuration pragmas are handled according to strict RM rules. See
9831 previous section for a full description of this mode.
9832
9833 @ifclear vms
9834 @item -gnatxxx
9835 This passes the given @option{-gnatxxx} switch to @code{gnat} which is
9836 used to parse the given file. Not all @code{xxx} options make sense,
9837 but for example, the use of @option{-gnati2} allows @code{gnatchop} to
9838 process a source file that uses Latin-2 coding for identifiers.
9839 @end ifclear
9840
9841 @item ^-h^/HELP^
9842 Causes @code{gnatchop} to generate a brief help summary to the standard
9843 output file showing usage information.
9844
9845 @item ^-k@var{mm}^/FILE_NAME_MAX_LENGTH=@var{mm}^
9846 @cindex @option{^-k^/FILE_NAME_MAX_LENGTH^} (@code{gnatchop})
9847 Limit generated file names to the specified number @code{mm}
9848 of characters.
9849 This is useful if the
9850 resulting set of files is required to be interoperable with systems
9851 which limit the length of file names.
9852 @ifset vms
9853 If no value is given, or
9854 if no @code{/FILE_NAME_MAX_LENGTH} qualifier is given,
9855 a default of 39, suitable for OpenVMS Alpha
9856 Systems, is assumed
9857 @end ifset
9858 @ifclear vms
9859 No space is allowed between the @option{-k} and the numeric value. The numeric
9860 value may be omitted in which case a default of @option{-k8},
9861 suitable for use
9862 with DOS-like file systems, is used. If no @option{-k} switch
9863 is present then
9864 there is no limit on the length of file names.
9865 @end ifclear
9866
9867 @item ^-p^/PRESERVE^
9868 @cindex @option{^-p^/PRESERVE^} (@code{gnatchop})
9869 Causes the file ^modification^creation^ time stamp of the input file to be
9870 preserved and used for the time stamp of the output file(s). This may be
9871 useful for preserving coherency of time stamps in an environment where
9872 @code{gnatchop} is used as part of a standard build process.
9873
9874 @item ^-q^/QUIET^
9875 @cindex @option{^-q^/QUIET^} (@code{gnatchop})
9876 Causes output of informational messages indicating the set of generated
9877 files to be suppressed. Warnings and error messages are unaffected.
9878
9879 @item ^-r^/REFERENCE^
9880 @cindex @option{^-r^/REFERENCE^} (@code{gnatchop})
9881 @findex Source_Reference
9882 Generate @code{Source_Reference} pragmas. Use this switch if the output
9883 files are regarded as temporary and development is to be done in terms
9884 of the original unchopped file. This switch causes
9885 @code{Source_Reference} pragmas to be inserted into each of the
9886 generated files to refers back to the original file name and line number.
9887 The result is that all error messages refer back to the original
9888 unchopped file.
9889 In addition, the debugging information placed into the object file (when
9890 the @option{^-g^/DEBUG^} switch of @code{gcc} or @code{gnatmake} is specified)
9891 also refers back to this original file so that tools like profilers and
9892 debuggers will give information in terms of the original unchopped file.
9893
9894 If the original file to be chopped itself contains
9895 a @code{Source_Reference}
9896 pragma referencing a third file, then gnatchop respects
9897 this pragma, and the generated @code{Source_Reference} pragmas
9898 in the chopped file refer to the original file, with appropriate
9899 line numbers. This is particularly useful when @code{gnatchop}
9900 is used in conjunction with @code{gnatprep} to compile files that
9901 contain preprocessing statements and multiple units.
9902
9903 @item ^-v^/VERBOSE^
9904 @cindex @option{^-v^/VERBOSE^} (@code{gnatchop})
9905 Causes @code{gnatchop} to operate in verbose mode. The version
9906 number and copyright notice are output, as well as exact copies of
9907 the gnat1 commands spawned to obtain the chop control information.
9908
9909 @item ^-w^/OVERWRITE^
9910 @cindex @option{^-w^/OVERWRITE^} (@code{gnatchop})
9911 Overwrite existing file names. Normally @code{gnatchop} regards it as a
9912 fatal error if there is already a file with the same name as a
9913 file it would otherwise output, in other words if the files to be
9914 chopped contain duplicated units. This switch bypasses this
9915 check, and causes all but the last instance of such duplicated
9916 units to be skipped.
9917
9918 @ifclear vms
9919 @item --GCC=xxxx
9920 @cindex @option{--GCC=} (@code{gnatchop})
9921 Specify the path of the GNAT parser to be used. When this switch is used,
9922 no attempt is made to add the prefix to the GNAT parser executable.
9923 @end ifclear
9924 @end table
9925
9926 @node Examples of gnatchop Usage
9927 @section Examples of @code{gnatchop} Usage
9928
9929 @table @code
9930 @ifset vms
9931 @item gnatchop /OVERWRITE HELLO_S.ADA [PRERELEASE.FILES]
9932 @end ifset
9933 @ifclear vms
9934 @item gnatchop -w hello_s.ada prerelease/files
9935 @end ifclear
9936
9937 Chops the source file @file{hello_s.ada}. The output files will be
9938 placed in the directory @file{^prerelease/files^[PRERELEASE.FILES]^},
9939 overwriting any
9940 files with matching names in that directory (no files in the current
9941 directory are modified).
9942
9943 @item gnatchop ^archive^ARCHIVE.^
9944 Chops the source file @file{^archive^ARCHIVE.^}
9945 into the current directory. One
9946 useful application of @code{gnatchop} is in sending sets of sources
9947 around, for example in email messages. The required sources are simply
9948 concatenated (for example, using a ^Unix @code{cat}^VMS @code{APPEND/NEW}^
9949 command), and then
9950 @code{gnatchop} is used at the other end to reconstitute the original
9951 file names.
9952
9953 @item gnatchop file1 file2 file3 direc
9954 Chops all units in files @file{file1}, @file{file2}, @file{file3}, placing
9955 the resulting files in the directory @file{direc}. Note that if any units
9956 occur more than once anywhere within this set of files, an error message
9957 is generated, and no files are written. To override this check, use the
9958 @option{^-w^/OVERWRITE^} switch,
9959 in which case the last occurrence in the last file will
9960 be the one that is output, and earlier duplicate occurrences for a given
9961 unit will be skipped.
9962 @end table
9963
9964 @node Configuration Pragmas
9965 @chapter Configuration Pragmas
9966 @cindex Configuration pragmas
9967 @cindex Pragmas, configuration
9968
9969 @noindent
9970 In Ada 95, configuration pragmas include those pragmas described as
9971 such in the Ada 95 Reference Manual, as well as
9972 implementation-dependent pragmas that are configuration pragmas. See the
9973 individual descriptions of pragmas in the GNAT Reference Manual for
9974 details on these additional GNAT-specific configuration pragmas. Most
9975 notably, the pragma @code{Source_File_Name}, which allows
9976 specifying non-default names for source files, is a configuration
9977 pragma. The following is a complete list of configuration pragmas
9978 recognized by @code{GNAT}:
9979
9980 @smallexample
9981 Ada_83
9982 Ada_95
9983 C_Pass_By_Copy
9984 Component_Alignment
9985 Discard_Names
9986 Elaboration_Checks
9987 Eliminate
9988 Extend_System
9989 Extensions_Allowed
9990 External_Name_Casing
9991 Float_Representation
9992 Initialize_Scalars
9993 License
9994 Locking_Policy
9995 Long_Float
9996 Normalize_Scalars
9997 Polling
9998 Propagate_Exceptions
9999 Queuing_Policy
10000 Ravenscar
10001 Restricted_Run_Time
10002 Restrictions
10003 Reviewable
10004 Source_File_Name
10005 Style_Checks
10006 Suppress
10007 Task_Dispatching_Policy
10008 Universal_Data
10009 Unsuppress
10010 Use_VADS_Size
10011 Warnings
10012 Validity_Checks
10013 @end smallexample
10014
10015 @menu
10016 * Handling of Configuration Pragmas::
10017 * The Configuration Pragmas Files::
10018 @end menu
10019
10020 @node Handling of Configuration Pragmas
10021 @section Handling of Configuration Pragmas
10022
10023 Configuration pragmas may either appear at the start of a compilation
10024 unit, in which case they apply only to that unit, or they may apply to
10025 all compilations performed in a given compilation environment.
10026
10027 GNAT also provides the @code{gnatchop} utility to provide an automatic
10028 way to handle configuration pragmas following the semantics for
10029 compilations (that is, files with multiple units), described in the RM.
10030 See section @pxref{Operating gnatchop in Compilation Mode} for details.
10031 However, for most purposes, it will be more convenient to edit the
10032 @file{gnat.adc} file that contains configuration pragmas directly,
10033 as described in the following section.
10034
10035 @node The Configuration Pragmas Files
10036 @section The Configuration Pragmas Files
10037 @cindex @file{gnat.adc}
10038
10039 @noindent
10040 In GNAT a compilation environment is defined by the current
10041 directory at the time that a compile command is given. This current
10042 directory is searched for a file whose name is @file{gnat.adc}. If
10043 this file is present, it is expected to contain one or more
10044 configuration pragmas that will be applied to the current compilation.
10045 However, if the switch @option{-gnatA} is used, @file{gnat.adc} is not
10046 considered.
10047
10048 Configuration pragmas may be entered into the @file{gnat.adc} file
10049 either by running @code{gnatchop} on a source file that consists only of
10050 configuration pragmas, or more conveniently by
10051 direct editing of the @file{gnat.adc} file, which is a standard format
10052 source file.
10053
10054 In addition to @file{gnat.adc}, one additional file containing configuration
10055 pragmas may be applied to the current compilation using the switch
10056 @option{-gnatec}@var{path}. @var{path} must designate an existing file that
10057 contains only configuration pragmas. These configuration pragmas are
10058 in addition to those found in @file{gnat.adc} (provided @file{gnat.adc}
10059 is present and switch @option{-gnatA} is not used).
10060
10061 It is allowed to specify several switches @option{-gnatec}, however only
10062 the last one on the command line will be taken into account.
10063
10064 If you are using project file, a separate mechanism is provided using
10065 project attributes, see @ref{Specifying Configuration Pragmas} for more
10066 details.
10067
10068 @ifset vms
10069 Of special interest to GNAT OpenVMS Alpha is the following
10070 configuration pragma:
10071
10072 @smallexample @c ada
10073 @cartouche
10074 pragma Extend_System (Aux_DEC);
10075 @end cartouche
10076 @end smallexample
10077
10078 @noindent
10079 In the presence of this pragma, GNAT adds to the definition of the
10080 predefined package SYSTEM all the additional types and subprograms that are
10081 defined in DEC Ada. See @pxref{Compatibility with DEC Ada} for details.
10082 @end ifset
10083
10084 @node Handling Arbitrary File Naming Conventions Using gnatname
10085 @chapter Handling Arbitrary File Naming Conventions Using @code{gnatname}
10086 @cindex Arbitrary File Naming Conventions
10087
10088 @menu
10089 * Arbitrary File Naming Conventions::
10090 * Running gnatname::
10091 * Switches for gnatname::
10092 * Examples of gnatname Usage::
10093 @end menu
10094
10095 @node Arbitrary File Naming Conventions
10096 @section Arbitrary File Naming Conventions
10097
10098 @noindent
10099 The GNAT compiler must be able to know the source file name of a compilation
10100 unit. When using the standard GNAT default file naming conventions
10101 (@code{.ads} for specs, @code{.adb} for bodies), the GNAT compiler
10102 does not need additional information.
10103
10104 @noindent
10105 When the source file names do not follow the standard GNAT default file naming
10106 conventions, the GNAT compiler must be given additional information through
10107 a configuration pragmas file (see @ref{Configuration Pragmas})
10108 or a project file.
10109 When the non standard file naming conventions are well-defined,
10110 a small number of pragmas @code{Source_File_Name} specifying a naming pattern
10111 (see @ref{Alternative File Naming Schemes}) may be sufficient. However,
10112 if the file naming conventions are irregular or arbitrary, a number
10113 of pragma @code{Source_File_Name} for individual compilation units
10114 must be defined.
10115 To help maintain the correspondence between compilation unit names and
10116 source file names within the compiler,
10117 GNAT provides a tool @code{gnatname} to generate the required pragmas for a
10118 set of files.
10119
10120 @node Running gnatname
10121 @section Running @code{gnatname}
10122
10123 @noindent
10124 The usual form of the @code{gnatname} command is
10125
10126 @smallexample
10127 $ gnatname [@var{switches}] @var{naming_pattern} [@var{naming_patterns}]
10128 @end smallexample
10129
10130 @noindent
10131 All of the arguments are optional. If invoked without any argument,
10132 @code{gnatname} will display its usage.
10133
10134 @noindent
10135 When used with at least one naming pattern, @code{gnatname} will attempt to
10136 find all the compilation units in files that follow at least one of the
10137 naming patterns. To find these compilation units,
10138 @code{gnatname} will use the GNAT compiler in syntax-check-only mode on all
10139 regular files.
10140
10141 @noindent
10142 One or several Naming Patterns may be given as arguments to @code{gnatname}.
10143 Each Naming Pattern is enclosed between double quotes.
10144 A Naming Pattern is a regular expression similar to the wildcard patterns
10145 used in file names by the Unix shells or the DOS prompt.
10146
10147 @noindent
10148 Examples of Naming Patterns are
10149
10150 @smallexample
10151 "*.[12].ada"
10152 "*.ad[sb]*"
10153 "body_*" "spec_*"
10154 @end smallexample
10155
10156 @noindent
10157 For a more complete description of the syntax of Naming Patterns,
10158 see the second kind of regular expressions described in @file{g-regexp.ads}
10159 (the ``Glob'' regular expressions).
10160
10161 @noindent
10162 When invoked with no switches, @code{gnatname} will create a configuration
10163 pragmas file @file{gnat.adc} in the current working directory, with pragmas
10164 @code{Source_File_Name} for each file that contains a valid Ada unit.
10165
10166 @node Switches for gnatname
10167 @section Switches for @code{gnatname}
10168
10169 @noindent
10170 Switches for @code{gnatname} must precede any specified Naming Pattern.
10171
10172 @noindent
10173 You may specify any of the following switches to @code{gnatname}:
10174
10175 @table @option
10176 @c !sort!
10177
10178 @item ^-c^/CONFIG_FILE=^@file{file}
10179 @cindex @option{^-c^/CONFIG_FILE^} (@code{gnatname})
10180 Create a configuration pragmas file @file{file} (instead of the default
10181 @file{gnat.adc}).
10182 @ifclear vms
10183 There may be zero, one or more space between @option{-c} and
10184 @file{file}.
10185 @end ifclear
10186 @file{file} may include directory information. @file{file} must be
10187 writable. There may be only one switch @option{^-c^/CONFIG_FILE^}.
10188 When a switch @option{^-c^/CONFIG_FILE^} is
10189 specified, no switch @option{^-P^/PROJECT_FILE^} may be specified (see below).
10190
10191 @item ^-d^/SOURCE_DIRS=^@file{dir}
10192 @cindex @option{^-d^/SOURCE_DIRS^} (@code{gnatname})
10193 Look for source files in directory @file{dir}. There may be zero, one or more
10194 spaces between @option{^-d^/SOURCE_DIRS=^} and @file{dir}.
10195 When a switch @option{^-d^/SOURCE_DIRS^}
10196 is specified, the current working directory will not be searched for source
10197 files, unless it is explicitly specified with a @option{^-d^/SOURCE_DIRS^}
10198 or @option{^-D^/DIR_FILES^} switch.
10199 Several switches @option{^-d^/SOURCE_DIRS^} may be specified.
10200 If @file{dir} is a relative path, it is relative to the directory of
10201 the configuration pragmas file specified with switch
10202 @option{^-c^/CONFIG_FILE^},
10203 or to the directory of the project file specified with switch
10204 @option{^-P^/PROJECT_FILE^} or,
10205 if neither switch @option{^-c^/CONFIG_FILE^}
10206 nor switch @option{^-P^/PROJECT_FILE^} are specified, it is relative to the
10207 current working directory. The directory
10208 specified with switch @option{^-d^/SOURCE_DIRS^} must exist and be readable.
10209
10210 @item ^-D^/DIRS_FILE=^@file{file}
10211 @cindex @option{^-D^/DIRS_FILE^} (@code{gnatname})
10212 Look for source files in all directories listed in text file @file{file}.
10213 There may be zero, one or more spaces between @option{^-D^/DIRS_FILE=^}
10214 and @file{file}.
10215 @file{file} must be an existing, readable text file.
10216 Each non empty line in @file{file} must be a directory.
10217 Specifying switch @option{^-D^/DIRS_FILE^} is equivalent to specifying as many
10218 switches @option{^-d^/SOURCE_DIRS^} as there are non empty lines in
10219 @file{file}.
10220
10221 @item ^-f^/FOREIGN_PATTERN=^@file{pattern}
10222 @cindex @option{^-f^/FOREIGN_PATTERN^} (@code{gnatname})
10223 Foreign patterns. Using this switch, it is possible to add sources of languages
10224 other than Ada to the list of sources of a project file.
10225 It is only useful if a ^-P^/PROJECT_FILE^ switch is used.
10226 For example,
10227 @smallexample
10228 gnatname ^-Pprj -f"*.c"^/PROJECT_FILE=PRJ /FOREIGN_PATTERN=*.C^ "*.ada"
10229 @end smallexample
10230 @noindent
10231 will look for Ada units in all files with the @file{.ada} extension,
10232 and will add to the list of file for project @file{prj.gpr} the C files
10233 with extension ".^c^C^".
10234
10235 @item ^-h^/HELP^
10236 @cindex @option{^-h^/HELP^} (@code{gnatname})
10237 Output usage (help) information. The output is written to @file{stdout}.
10238
10239 @item ^-P^/PROJECT_FILE=^@file{proj}
10240 @cindex @option{^-P^/PROJECT_FILE^} (@code{gnatname})
10241 Create or update project file @file{proj}. There may be zero, one or more space
10242 between @option{-P} and @file{proj}. @file{proj} may include directory
10243 information. @file{proj} must be writable.
10244 There may be only one switch @option{^-P^/PROJECT_FILE^}.
10245 When a switch @option{^-P^/PROJECT_FILE^} is specified,
10246 no switch @option{^-c^/CONFIG_FILE^} may be specified.
10247
10248 @item ^-v^/VERBOSE^
10249 @cindex @option{^-v^/VERBOSE^} (@code{gnatname})
10250 Verbose mode. Output detailed explanation of behavior to @file{stdout}.
10251 This includes name of the file written, the name of the directories to search
10252 and, for each file in those directories whose name matches at least one of
10253 the Naming Patterns, an indication of whether the file contains a unit,
10254 and if so the name of the unit.
10255
10256 @item ^-v -v^/VERBOSE /VERBOSE^
10257 @cindex @option{^-v -v^/VERBOSE /VERBOSE^} (@code{gnatname})
10258 Very Verbose mode. In addition to the output produced in verbose mode,
10259 for each file in the searched directories whose name matches none of
10260 the Naming Patterns, an indication is given that there is no match.
10261
10262 @item ^-x^/EXCLUDED_PATTERN=^@file{pattern}
10263 @cindex @option{^-x^/EXCLUDED_PATTERN^} (@code{gnatname})
10264 Excluded patterns. Using this switch, it is possible to exclude some files
10265 that would match the name patterns. For example,
10266 @smallexample
10267 gnatname ^-x "*_nt.ada"^/EXCLUDED_PATTERN=*_nt.ada^ "*.ada"
10268 @end smallexample
10269 @noindent
10270 will look for Ada units in all files with the @file{.ada} extension,
10271 except those whose names end with @file{_nt.ada}.
10272
10273 @end table
10274
10275 @node Examples of gnatname Usage
10276 @section Examples of @code{gnatname} Usage
10277
10278 @ifset vms
10279 @smallexample
10280 $ gnatname /CONFIG_FILE=[HOME.ME]NAMES.ADC /SOURCE_DIRS=SOURCES "[a-z]*.ada*"
10281 @end smallexample
10282 @end ifset
10283
10284 @ifclear vms
10285 @smallexample
10286 $ gnatname -c /home/me/names.adc -d sources "[a-z]*.ada*"
10287 @end smallexample
10288 @end ifclear
10289
10290 @noindent
10291 In this example, the directory @file{^/home/me^[HOME.ME]^} must already exist
10292 and be writable. In addition, the directory
10293 @file{^/home/me/sources^[HOME.ME.SOURCES]^} (specified by
10294 @option{^-d sources^/SOURCE_DIRS=SOURCES^}) must exist and be readable.
10295
10296 @ifclear vms
10297 Note the optional spaces after @option{-c} and @option{-d}.
10298 @end ifclear
10299
10300 @smallexample
10301 @ifclear vms
10302 $ gnatname -P/home/me/proj -x "*_nt_body.ada"
10303 -dsources -dsources/plus -Dcommon_dirs.txt "body_*" "spec_*"
10304 @end ifclear
10305 @ifset vms
10306 $ gnatname /PROJECT_FILE=[HOME.ME]PROJ
10307 /EXCLUDED_PATTERN=*_nt_body.ada
10308 /SOURCE_DIRS=(SOURCES,[SOURCES.PLUS])
10309 /DIRS_FILE=COMMON_DIRS.TXT "body_*" "spec_*"
10310 @end ifset
10311 @end smallexample
10312
10313 Note that several switches @option{^-d^/SOURCE_DIRS^} may be used,
10314 even in conjunction with one or several switches
10315 @option{^-D^/DIRS_FILE^}. Several Naming Patterns and one excluded pattern
10316 are used in this example.
10317
10318
10319 @c *****************************************
10320 @c * G N A T P r o j e c t M a n a g e r *
10321 @c *****************************************
10322 @node GNAT Project Manager
10323 @chapter GNAT Project Manager
10324
10325 @menu
10326 * Introduction::
10327 * Examples of Project Files::
10328 * Project File Syntax::
10329 * Objects and Sources in Project Files::
10330 * Importing Projects::
10331 * Project Extension::
10332 * External References in Project Files::
10333 * Packages in Project Files::
10334 * Variables from Imported Projects::
10335 * Naming Schemes::
10336 * Library Projects::
10337 * Using Third-Party Libraries through Projects::
10338 * Stand-alone Library Projects::
10339 * Switches Related to Project Files::
10340 * Tools Supporting Project Files::
10341 * An Extended Example::
10342 * Project File Complete Syntax::
10343 @end menu
10344
10345 @c ****************
10346 @c * Introduction *
10347 @c ****************
10348
10349 @node Introduction
10350 @section Introduction
10351
10352 @noindent
10353 This chapter describes GNAT's @emph{Project Manager}, a facility that allows
10354 you to manage complex builds involving a number of source files, directories,
10355 and compilation options for different system configurations. In particular,
10356 project files allow you to specify:
10357 @itemize @bullet
10358 @item
10359 The directory or set of directories containing the source files, and/or the
10360 names of the specific source files themselves
10361 @item
10362 The directory in which the compiler's output
10363 (@file{ALI} files, object files, tree files) is to be placed
10364 @item
10365 The directory in which the executable programs is to be placed
10366 @item
10367 ^Switch^Switch^ settings for any of the project-enabled tools
10368 (@command{gnatmake}, compiler, binder, linker, @code{gnatls}, @code{gnatxref},
10369 @code{gnatfind}); you can apply these settings either globally or to individual
10370 compilation units.
10371 @item
10372 The source files containing the main subprogram(s) to be built
10373 @item
10374 The source programming language(s) (currently Ada and/or C)
10375 @item
10376 Source file naming conventions; you can specify these either globally or for
10377 individual compilation units
10378 @end itemize
10379
10380 @menu
10381 * Project Files::
10382 @end menu
10383
10384 @node Project Files
10385 @subsection Project Files
10386
10387 @noindent
10388 Project files are written in a syntax close to that of Ada, using familiar
10389 notions such as packages, context clauses, declarations, default values,
10390 assignments, and inheritance. Finally, project files can be built
10391 hierarchically from other project files, simplifying complex system
10392 integration and project reuse.
10393
10394 A @dfn{project} is a specific set of values for various compilation properties.
10395 The settings for a given project are described by means of
10396 a @dfn{project file}, which is a text file written in an Ada-like syntax.
10397 Property values in project files are either strings or lists of strings.
10398 Properties that are not explicitly set receive default values. A project
10399 file may interrogate the values of @dfn{external variables} (user-defined
10400 command-line switches or environment variables), and it may specify property
10401 settings conditionally, based on the value of such variables.
10402
10403 In simple cases, a project's source files depend only on other source files
10404 in the same project, or on the predefined libraries. (@emph{Dependence} is
10405 used in
10406 the Ada technical sense; as in one Ada unit @code{with}ing another.) However,
10407 the Project Manager also allows more sophisticated arrangements,
10408 where the source files in one project depend on source files in other
10409 projects:
10410 @itemize @bullet
10411 @item
10412 One project can @emph{import} other projects containing needed source files.
10413 @item
10414 You can organize GNAT projects in a hierarchy: a @emph{child} project
10415 can extend a @emph{parent} project, inheriting the parent's source files and
10416 optionally overriding any of them with alternative versions
10417 @end itemize
10418
10419 @noindent
10420 More generally, the Project Manager lets you structure large development
10421 efforts into hierarchical subsystems, where build decisions are delegated
10422 to the subsystem level, and thus different compilation environments
10423 (^switch^switch^ settings) used for different subsystems.
10424
10425 The Project Manager is invoked through the
10426 @option{^-P^/PROJECT_FILE=^@emph{projectfile}}
10427 switch to @command{gnatmake} or to the @command{^gnat^GNAT^} front driver.
10428 @ifclear vms
10429 There may be zero, one or more spaces between @option{-P} and
10430 @option{@emph{projectfile}}.
10431 @end ifclear
10432 If you want to define (on the command line) an external variable that is
10433 queried by the project file, you must use the
10434 @option{^-X^/EXTERNAT_REFERENCE=^@emph{vbl}=@emph{value}} switch.
10435 The Project Manager parses and interprets the project file, and drives the
10436 invoked tool based on the project settings.
10437
10438 The Project Manager supports a wide range of development strategies,
10439 for systems of all sizes. Here are some typical practices that are
10440 easily handled:
10441 @itemize @bullet
10442 @item
10443 Using a common set of source files, but generating object files in different
10444 directories via different ^switch^switch^ settings
10445 @item
10446 Using a mostly-shared set of source files, but with different versions of
10447 some unit or units
10448 @end itemize
10449
10450 @noindent
10451 The destination of an executable can be controlled inside a project file
10452 using the @option{^-o^-o^}
10453 ^switch^switch^.
10454 In the absence of such a ^switch^switch^ either inside
10455 the project file or on the command line, any executable files generated by
10456 @command{gnatmake} are placed in the directory @code{Exec_Dir} specified
10457 in the project file. If no @code{Exec_Dir} is specified, they will be placed
10458 in the object directory of the project.
10459
10460 You can use project files to achieve some of the effects of a source
10461 versioning system (for example, defining separate projects for
10462 the different sets of sources that comprise different releases) but the
10463 Project Manager is independent of any source configuration management tools
10464 that might be used by the developers.
10465
10466 The next section introduces the main features of GNAT's project facility
10467 through a sequence of examples; subsequent sections will present the syntax
10468 and semantics in more detail. A more formal description of the project
10469 facility appears in the GNAT Reference Manual.
10470
10471 @c *****************************
10472 @c * Examples of Project Files *
10473 @c *****************************
10474
10475 @node Examples of Project Files
10476 @section Examples of Project Files
10477 @noindent
10478 This section illustrates some of the typical uses of project files and
10479 explains their basic structure and behavior.
10480
10481 @menu
10482 * Common Sources with Different ^Switches^Switches^ and Directories::
10483 * Using External Variables::
10484 * Importing Other Projects::
10485 * Extending a Project::
10486 @end menu
10487
10488 @node Common Sources with Different ^Switches^Switches^ and Directories
10489 @subsection Common Sources with Different ^Switches^Switches^ and Directories
10490
10491 @menu
10492 * Source Files::
10493 * Specifying the Object Directory::
10494 * Specifying the Exec Directory::
10495 * Project File Packages::
10496 * Specifying ^Switch^Switch^ Settings::
10497 * Main Subprograms::
10498 * Executable File Names::
10499 * Source File Naming Conventions::
10500 * Source Language(s)::
10501 @end menu
10502
10503 @noindent
10504 Suppose that the Ada source files @file{pack.ads}, @file{pack.adb}, and
10505 @file{proc.adb} are in the @file{/common} directory. The file
10506 @file{proc.adb} contains an Ada main subprogram @code{Proc} that @code{with}s
10507 package @code{Pack}. We want to compile these source files under two sets
10508 of ^switches^switches^:
10509 @itemize @bullet
10510 @item
10511 When debugging, we want to pass the @option{-g} switch to @command{gnatmake},
10512 and the @option{^-gnata^-gnata^},
10513 @option{^-gnato^-gnato^},
10514 and @option{^-gnatE^-gnatE^} switches to the
10515 compiler; the compiler's output is to appear in @file{/common/debug}
10516 @item
10517 When preparing a release version, we want to pass the @option{^-O2^O2^} switch
10518 to the compiler; the compiler's output is to appear in @file{/common/release}
10519 @end itemize
10520
10521 @noindent
10522 The GNAT project files shown below, respectively @file{debug.gpr} and
10523 @file{release.gpr} in the @file{/common} directory, achieve these effects.
10524
10525 Schematically:
10526 @smallexample
10527 @group
10528 ^/common^[COMMON]^
10529 debug.gpr
10530 release.gpr
10531 pack.ads
10532 pack.adb
10533 proc.adb
10534 @end group
10535 @group
10536 ^/common/debug^[COMMON.DEBUG]^
10537 proc.ali, proc.o
10538 pack.ali, pack.o
10539 @end group
10540 @group
10541 ^/common/release^[COMMON.RELEASE]^
10542 proc.ali, proc.o
10543 pack.ali, pack.o
10544 @end group
10545 @end smallexample
10546 Here are the corresponding project files:
10547
10548 @smallexample @c projectfile
10549 @group
10550 project Debug is
10551 for Object_Dir use "debug";
10552 for Main use ("proc");
10553
10554 package Builder is
10555 for ^Default_Switches^Default_Switches^ ("Ada")
10556 use ("^-g^-g^");
10557 for Executable ("proc.adb") use "proc1";
10558 end Builder;
10559 @end group
10560
10561 @group
10562 package Compiler is
10563 for ^Default_Switches^Default_Switches^ ("Ada")
10564 use ("-fstack-check",
10565 "^-gnata^-gnata^",
10566 "^-gnato^-gnato^",
10567 "^-gnatE^-gnatE^");
10568 end Compiler;
10569 end Debug;
10570 @end group
10571 @end smallexample
10572
10573 @smallexample @c projectfile
10574 @group
10575 project Release is
10576 for Object_Dir use "release";
10577 for Exec_Dir use ".";
10578 for Main use ("proc");
10579
10580 package Compiler is
10581 for ^Default_Switches^Default_Switches^ ("Ada")
10582 use ("^-O2^-O2^");
10583 end Compiler;
10584 end Release;
10585 @end group
10586 @end smallexample
10587
10588 @noindent
10589 The name of the project defined by @file{debug.gpr} is @code{"Debug"} (case
10590 insensitive), and analogously the project defined by @file{release.gpr} is
10591 @code{"Release"}. For consistency the file should have the same name as the
10592 project, and the project file's extension should be @code{"gpr"}. These
10593 conventions are not required, but a warning is issued if they are not followed.
10594
10595 If the current directory is @file{^/temp^[TEMP]^}, then the command
10596 @smallexample
10597 gnatmake ^-P/common/debug.gpr^/PROJECT_FILE=[COMMON]DEBUG^
10598 @end smallexample
10599
10600 @noindent
10601 generates object and ALI files in @file{^/common/debug^[COMMON.DEBUG]^},
10602 as well as the @code{^proc1^PROC1.EXE^} executable,
10603 using the ^switch^switch^ settings defined in the project file.
10604
10605 Likewise, the command
10606 @smallexample
10607 gnatmake ^-P/common/release.gpr^/PROJECT_FILE=[COMMON]RELEASE^
10608 @end smallexample
10609
10610 @noindent
10611 generates object and ALI files in @file{^/common/release^[COMMON.RELEASE]^},
10612 and the @code{^proc^PROC.EXE^}
10613 executable in @file{^/common^[COMMON]^},
10614 using the ^switch^switch^ settings from the project file.
10615
10616 @node Source Files
10617 @unnumberedsubsubsec Source Files
10618
10619 @noindent
10620 If a project file does not explicitly specify a set of source directories or
10621 a set of source files, then by default the project's source files are the
10622 Ada source files in the project file directory. Thus @file{pack.ads},
10623 @file{pack.adb}, and @file{proc.adb} are the source files for both projects.
10624
10625 @node Specifying the Object Directory
10626 @unnumberedsubsubsec Specifying the Object Directory
10627
10628 @noindent
10629 Several project properties are modeled by Ada-style @emph{attributes};
10630 a property is defined by supplying the equivalent of an Ada attribute
10631 definition clause in the project file.
10632 A project's object directory is another such a property; the corresponding
10633 attribute is @code{Object_Dir}, and its value is also a string expression,
10634 specified either as absolute or relative. In the later case,
10635 it is relative to the project file directory. Thus the compiler's
10636 output is directed to @file{^/common/debug^[COMMON.DEBUG]^}
10637 (for the @code{Debug} project)
10638 and to @file{^/common/release^[COMMON.RELEASE]^}
10639 (for the @code{Release} project).
10640 If @code{Object_Dir} is not specified, then the default is the project file
10641 directory itself.
10642
10643 @node Specifying the Exec Directory
10644 @unnumberedsubsubsec Specifying the Exec Directory
10645
10646 @noindent
10647 A project's exec directory is another property; the corresponding
10648 attribute is @code{Exec_Dir}, and its value is also a string expression,
10649 either specified as relative or absolute. If @code{Exec_Dir} is not specified,
10650 then the default is the object directory (which may also be the project file
10651 directory if attribute @code{Object_Dir} is not specified). Thus the executable
10652 is placed in @file{^/common/debug^[COMMON.DEBUG]^}
10653 for the @code{Debug} project (attribute @code{Exec_Dir} not specified)
10654 and in @file{^/common^[COMMON]^} for the @code{Release} project.
10655
10656 @node Project File Packages
10657 @unnumberedsubsubsec Project File Packages
10658
10659 @noindent
10660 A GNAT tool that is integrated with the Project Manager is modeled by a
10661 corresponding package in the project file. In the example above,
10662 The @code{Debug} project defines the packages @code{Builder}
10663 (for @command{gnatmake}) and @code{Compiler};
10664 the @code{Release} project defines only the @code{Compiler} package.
10665
10666 The Ada-like package syntax is not to be taken literally. Although packages in
10667 project files bear a surface resemblance to packages in Ada source code, the
10668 notation is simply a way to convey a grouping of properties for a named
10669 entity. Indeed, the package names permitted in project files are restricted
10670 to a predefined set, corresponding to the project-aware tools, and the contents
10671 of packages are limited to a small set of constructs.
10672 The packages in the example above contain attribute definitions.
10673
10674 @node Specifying ^Switch^Switch^ Settings
10675 @unnumberedsubsubsec Specifying ^Switch^Switch^ Settings
10676
10677 @noindent
10678 ^Switch^Switch^ settings for a project-aware tool can be specified through
10679 attributes in the package that corresponds to the tool.
10680 The example above illustrates one of the relevant attributes,
10681 @code{^Default_Switches^Default_Switches^}, which is defined in packages
10682 in both project files.
10683 Unlike simple attributes like @code{Source_Dirs},
10684 @code{^Default_Switches^Default_Switches^} is
10685 known as an @emph{associative array}. When you define this attribute, you must
10686 supply an ``index'' (a literal string), and the effect of the attribute
10687 definition is to set the value of the array at the specified index.
10688 For the @code{^Default_Switches^Default_Switches^} attribute,
10689 the index is a programming language (in our case, Ada),
10690 and the value specified (after @code{use}) must be a list
10691 of string expressions.
10692
10693 The attributes permitted in project files are restricted to a predefined set.
10694 Some may appear at project level, others in packages.
10695 For any attribute that is an associative array, the index must always be a
10696 literal string, but the restrictions on this string (e.g., a file name or a
10697 language name) depend on the individual attribute.
10698 Also depending on the attribute, its specified value will need to be either a
10699 string or a string list.
10700
10701 In the @code{Debug} project, we set the switches for two tools,
10702 @command{gnatmake} and the compiler, and thus we include the two corresponding
10703 packages; each package defines the @code{^Default_Switches^Default_Switches^}
10704 attribute with index @code{"Ada"}.
10705 Note that the package corresponding to
10706 @command{gnatmake} is named @code{Builder}. The @code{Release} project is
10707 similar, but only includes the @code{Compiler} package.
10708
10709 In project @code{Debug} above, the ^switches^switches^ starting with
10710 @option{-gnat} that are specified in package @code{Compiler}
10711 could have been placed in package @code{Builder}, since @command{gnatmake}
10712 transmits all such ^switches^switches^ to the compiler.
10713
10714 @node Main Subprograms
10715 @unnumberedsubsubsec Main Subprograms
10716
10717 @noindent
10718 One of the specifiable properties of a project is a list of files that contain
10719 main subprograms. This property is captured in the @code{Main} attribute,
10720 whose value is a list of strings. If a project defines the @code{Main}
10721 attribute, it is not necessary to identify the main subprogram(s) when
10722 invoking @command{gnatmake} (see @ref{gnatmake and Project Files}).
10723
10724 @node Executable File Names
10725 @unnumberedsubsubsec Executable File Names
10726
10727 @noindent
10728 By default, the executable file name corresponding to a main source is
10729 deducted from the main source file name. Through the attributes
10730 @code{Executable} and @code{Executable_Suffix} of package @code{Builder},
10731 it is possible to change this default.
10732 In project @code{Debug} above, the executable file name
10733 for main source @file{^proc.adb^PROC.ADB^} is
10734 @file{^proc1^PROC1.EXE^}.
10735 Attribute @code{Executable_Suffix}, when specified, may change the suffix
10736 of the the executable files, when no attribute @code{Executable} applies:
10737 its value replace the platform-specific executable suffix.
10738 Attributes @code{Executable} and @code{Executable_Suffix} are the only ways to
10739 specify a non default executable file name when several mains are built at once
10740 in a single @command{gnatmake} command.
10741
10742 @node Source File Naming Conventions
10743 @unnumberedsubsubsec Source File Naming Conventions
10744
10745 @noindent
10746 Since the project files above do not specify any source file naming
10747 conventions, the GNAT defaults are used. The mechanism for defining source
10748 file naming conventions -- a package named @code{Naming} --
10749 is described below (@pxref{Naming Schemes}).
10750
10751 @node Source Language(s)
10752 @unnumberedsubsubsec Source Language(s)
10753
10754 @noindent
10755 Since the project files do not specify a @code{Languages} attribute, by
10756 default the GNAT tools assume that the language of the project file is Ada.
10757 More generally, a project can comprise source files
10758 in Ada, C, and/or other languages.
10759
10760 @node Using External Variables
10761 @subsection Using External Variables
10762
10763 @noindent
10764 Instead of supplying different project files for debug and release, we can
10765 define a single project file that queries an external variable (set either
10766 on the command line or via an ^environment variable^logical name^) in order to
10767 conditionally define the appropriate settings. Again, assume that the
10768 source files @file{pack.ads}, @file{pack.adb}, and @file{proc.adb} are
10769 located in directory @file{^/common^[COMMON]^}. The following project file,
10770 @file{build.gpr}, queries the external variable named @code{STYLE} and
10771 defines an object directory and ^switch^switch^ settings based on whether
10772 the value is @code{"deb"} (debug) or @code{"rel"} (release), and where
10773 the default is @code{"deb"}.
10774
10775 @smallexample @c projectfile
10776 @group
10777 project Build is
10778 for Main use ("proc");
10779
10780 type Style_Type is ("deb", "rel");
10781 Style : Style_Type := external ("STYLE", "deb");
10782
10783 case Style is
10784 when "deb" =>
10785 for Object_Dir use "debug";
10786
10787 when "rel" =>
10788 for Object_Dir use "release";
10789 for Exec_Dir use ".";
10790 end case;
10791 @end group
10792
10793 @group
10794 package Builder is
10795
10796 case Style is
10797 when "deb" =>
10798 for ^Default_Switches^Default_Switches^ ("Ada")
10799 use ("^-g^-g^");
10800 for Executable ("proc") use "proc1";
10801 end case;
10802
10803 end Builder;
10804 @end group
10805
10806 @group
10807 package Compiler is
10808
10809 case Style is
10810 when "deb" =>
10811 for ^Default_Switches^Default_Switches^ ("Ada")
10812 use ("^-gnata^-gnata^",
10813 "^-gnato^-gnato^",
10814 "^-gnatE^-gnatE^");
10815
10816 when "rel" =>
10817 for ^Default_Switches^Default_Switches^ ("Ada")
10818 use ("^-O2^-O2^");
10819 end case;
10820
10821 end Compiler;
10822
10823 end Build;
10824 @end group
10825 @end smallexample
10826
10827 @noindent
10828 @code{Style_Type} is an example of a @emph{string type}, which is the project
10829 file analog of an Ada enumeration type but whose components are string literals
10830 rather than identifiers. @code{Style} is declared as a variable of this type.
10831
10832 The form @code{external("STYLE", "deb")} is known as an
10833 @emph{external reference}; its first argument is the name of an
10834 @emph{external variable}, and the second argument is a default value to be
10835 used if the external variable doesn't exist. You can define an external
10836 variable on the command line via the @option{^-X^/EXTERNAL_REFERENCE^} switch,
10837 or you can use ^an environment variable^a logical name^
10838 as an external variable.
10839
10840 Each @code{case} construct is expanded by the Project Manager based on the
10841 value of @code{Style}. Thus the command
10842 @ifclear vms
10843 @smallexample
10844 gnatmake -P/common/build.gpr -XSTYLE=deb
10845 @end smallexample
10846 @end ifclear
10847
10848 @ifset vms
10849 @smallexample
10850 gnatmake /PROJECT_FILE=[COMMON]BUILD.GPR /EXTERNAL_REFERENCE=STYLE=deb
10851 @end smallexample
10852 @end ifset
10853
10854 @noindent
10855 is equivalent to the @command{gnatmake} invocation using the project file
10856 @file{debug.gpr} in the earlier example. So is the command
10857 @smallexample
10858 gnatmake ^-P/common/build.gpr^/PROJECT_FILE=[COMMON]BUILD.GPR^
10859 @end smallexample
10860
10861 @noindent
10862 since @code{"deb"} is the default for @code{STYLE}.
10863
10864 Analogously,
10865
10866 @ifclear vms
10867 @smallexample
10868 gnatmake -P/common/build.gpr -XSTYLE=rel
10869 @end smallexample
10870 @end ifclear
10871
10872 @ifset vms
10873 @smallexample
10874 GNAT MAKE /PROJECT_FILE=[COMMON]BUILD.GPR /EXTERNAL_REFERENCE=STYLE=rel
10875 @end smallexample
10876 @end ifset
10877
10878 @noindent
10879 is equivalent to the @command{gnatmake} invocation using the project file
10880 @file{release.gpr} in the earlier example.
10881
10882 @node Importing Other Projects
10883 @subsection Importing Other Projects
10884
10885 @noindent
10886 A compilation unit in a source file in one project may depend on compilation
10887 units in source files in other projects. To compile this unit under
10888 control of a project file, the
10889 dependent project must @emph{import} the projects containing the needed source
10890 files.
10891 This effect is obtained using syntax similar to an Ada @code{with} clause,
10892 but where @code{with}ed entities are strings that denote project files.
10893
10894 As an example, suppose that the two projects @code{GUI_Proj} and
10895 @code{Comm_Proj} are defined in the project files @file{gui_proj.gpr} and
10896 @file{comm_proj.gpr} in directories @file{^/gui^[GUI]^}
10897 and @file{^/comm^[COMM]^}, respectively.
10898 Suppose that the source files for @code{GUI_Proj} are
10899 @file{gui.ads} and @file{gui.adb}, and that the source files for
10900 @code{Comm_Proj} are @file{comm.ads} and @file{comm.adb}, where each set of
10901 files is located in its respective project file directory. Schematically:
10902
10903 @smallexample
10904 @group
10905 ^/gui^[GUI]^
10906 gui_proj.gpr
10907 gui.ads
10908 gui.adb
10909 @end group
10910
10911 @group
10912 ^/comm^[COMM]^
10913 comm_proj.gpr
10914 comm.ads
10915 comm.adb
10916 @end group
10917 @end smallexample
10918
10919 @noindent
10920 We want to develop an application in directory @file{^/app^[APP]^} that
10921 @code{with} the packages @code{GUI} and @code{Comm}, using the properties of
10922 the corresponding project files (e.g. the ^switch^switch^ settings
10923 and object directory).
10924 Skeletal code for a main procedure might be something like the following:
10925
10926 @smallexample @c ada
10927 @group
10928 with GUI, Comm;
10929 procedure App_Main is
10930 ...
10931 begin
10932 ...
10933 end App_Main;
10934 @end group
10935 @end smallexample
10936
10937 @noindent
10938 Here is a project file, @file{app_proj.gpr}, that achieves the desired
10939 effect:
10940
10941 @smallexample @c projectfile
10942 @group
10943 with "/gui/gui_proj", "/comm/comm_proj";
10944 project App_Proj is
10945 for Main use ("app_main");
10946 end App_Proj;
10947 @end group
10948 @end smallexample
10949
10950 @noindent
10951 Building an executable is achieved through the command:
10952 @smallexample
10953 gnatmake ^-P/app/app_proj^/PROJECT_FILE=[APP]APP_PROJ^
10954 @end smallexample
10955 @noindent
10956 which will generate the @code{^app_main^APP_MAIN.EXE^} executable
10957 in the directory where @file{app_proj.gpr} resides.
10958
10959 If an imported project file uses the standard extension (@code{^gpr^GPR^}) then
10960 (as illustrated above) the @code{with} clause can omit the extension.
10961
10962 Our example specified an absolute path for each imported project file.
10963 Alternatively, the directory name of an imported object can be omitted
10964 if either
10965 @itemize @bullet
10966 @item
10967 The imported project file is in the same directory as the importing project
10968 file, or
10969 @item
10970 You have defined ^an environment variable^a logical name^
10971 that includes the directory containing
10972 the needed project file. The syntax of @code{ADA_PROJECT_PATH} is the same as
10973 the syntax of @code{ADA_INCLUDE_PATH} and @code{ADA_OBJECTS_PATH}: a list of
10974 directory names separated by colons (semicolons on Windows).
10975 @end itemize
10976
10977 @noindent
10978 Thus, if we define @code{ADA_PROJECT_PATH} to include @file{^/gui^[GUI]^} and
10979 @file{^/comm^[COMM]^}, then our project file @file{app_proj.gpr} can be written
10980 as follows:
10981
10982 @smallexample @c projectfile
10983 @group
10984 with "gui_proj", "comm_proj";
10985 project App_Proj is
10986 for Main use ("app_main");
10987 end App_Proj;
10988 @end group
10989 @end smallexample
10990
10991 @noindent
10992 Importing other projects can create ambiguities.
10993 For example, the same unit might be present in different imported projects, or
10994 it might be present in both the importing project and in an imported project.
10995 Both of these conditions are errors. Note that in the current version of
10996 the Project Manager, it is illegal to have an ambiguous unit even if the
10997 unit is never referenced by the importing project. This restriction may be
10998 relaxed in a future release.
10999
11000 @node Extending a Project
11001 @subsection Extending a Project
11002
11003 @noindent
11004 In large software systems it is common to have multiple
11005 implementations of a common interface; in Ada terms, multiple versions of a
11006 package body for the same specification. For example, one implementation
11007 might be safe for use in tasking programs, while another might only be used
11008 in sequential applications. This can be modeled in GNAT using the concept
11009 of @emph{project extension}. If one project (the ``child'') @emph{extends}
11010 another project (the ``parent'') then by default all source files of the
11011 parent project are inherited by the child, but the child project can
11012 override any of the parent's source files with new versions, and can also
11013 add new files. This facility is the project analog of a type extension in
11014 Object-Oriented Programming. Project hierarchies are permitted (a child
11015 project may be the parent of yet another project), and a project that
11016 inherits one project can also import other projects.
11017
11018 As an example, suppose that directory @file{^/seq^[SEQ]^} contains the project
11019 file @file{seq_proj.gpr} as well as the source files @file{pack.ads},
11020 @file{pack.adb}, and @file{proc.adb}:
11021
11022 @smallexample
11023 @group
11024 ^/seq^[SEQ]^
11025 pack.ads
11026 pack.adb
11027 proc.adb
11028 seq_proj.gpr
11029 @end group
11030 @end smallexample
11031
11032 @noindent
11033 Note that the project file can simply be empty (that is, no attribute or
11034 package is defined):
11035
11036 @smallexample @c projectfile
11037 @group
11038 project Seq_Proj is
11039 end Seq_Proj;
11040 @end group
11041 @end smallexample
11042
11043 @noindent
11044 implying that its source files are all the Ada source files in the project
11045 directory.
11046
11047 Suppose we want to supply an alternate version of @file{pack.adb}, in
11048 directory @file{^/tasking^[TASKING]^}, but use the existing versions of
11049 @file{pack.ads} and @file{proc.adb}. We can define a project
11050 @code{Tasking_Proj} that inherits @code{Seq_Proj}:
11051
11052 @smallexample
11053 @group
11054 ^/tasking^[TASKING]^
11055 pack.adb
11056 tasking_proj.gpr
11057 @end group
11058
11059 @group
11060 project Tasking_Proj extends "/seq/seq_proj" is
11061 end Tasking_Proj;
11062 @end group
11063 @end smallexample
11064
11065 @noindent
11066 The version of @file{pack.adb} used in a build depends on which project file
11067 is specified.
11068
11069 Note that we could have obtained the desired behavior using project import
11070 rather than project inheritance; a @code{base} project would contain the
11071 sources for @file{pack.ads} and @file{proc.adb}, a sequential project would
11072 import @code{base} and add @file{pack.adb}, and likewise a tasking project
11073 would import @code{base} and add a different version of @file{pack.adb}. The
11074 choice depends on whether other sources in the original project need to be
11075 overridden. If they do, then project extension is necessary, otherwise,
11076 importing is sufficient.
11077
11078 @noindent
11079 In a project file that extends another project file, it is possible to
11080 indicate that an inherited source is not part of the sources of the extending
11081 project. This is necessary sometimes when a package spec has been overloaded
11082 and no longer requires a body: in this case, it is necessary to indicate that
11083 the inherited body is not part of the sources of the project, otherwise there
11084 will be a compilation error when compiling the spec.
11085
11086 For that purpose, the attribute @code{Locally_Removed_Files} is used.
11087 Its value is a string list: a list of file names.
11088
11089 @smallexample @c @projectfile
11090 project B extends "a" is
11091 for Source_Files use ("pkg.ads");
11092 -- New spec of Pkg does not need a completion
11093 for Locally_Removed_Files use ("pkg.adb");
11094 end B;
11095 @end smallexample
11096
11097 Attribute @code{Locally_Removed_Files} may also be used to check if a source
11098 is still needed: if it is possible to build using @code{gnatmake} when such
11099 a source is put in attribute @code{Locally_Removed_Files} of a project P, then
11100 it is possible to remove the source completely from a system that includes
11101 project P.
11102
11103 @c ***********************
11104 @c * Project File Syntax *
11105 @c ***********************
11106
11107 @node Project File Syntax
11108 @section Project File Syntax
11109
11110 @menu
11111 * Basic Syntax::
11112 * Packages::
11113 * Expressions::
11114 * String Types::
11115 * Variables::
11116 * Attributes::
11117 * Associative Array Attributes::
11118 * case Constructions::
11119 @end menu
11120
11121 @noindent
11122 This section describes the structure of project files.
11123
11124 A project may be an @emph{independent project}, entirely defined by a single
11125 project file. Any Ada source file in an independent project depends only
11126 on the predefined library and other Ada source files in the same project.
11127
11128 @noindent
11129 A project may also @dfn{depend on} other projects, in either or both of
11130 the following ways:
11131 @itemize @bullet
11132 @item It may import any number of projects
11133 @item It may extend at most one other project
11134 @end itemize
11135
11136 @noindent
11137 The dependence relation is a directed acyclic graph (the subgraph reflecting
11138 the ``extends'' relation is a tree).
11139
11140 A project's @dfn{immediate sources} are the source files directly defined by
11141 that project, either implicitly by residing in the project file's directory,
11142 or explicitly through any of the source-related attributes described below.
11143 More generally, a project @var{proj}'s @dfn{sources} are the immediate sources
11144 of @var{proj} together with the immediate sources (unless overridden) of any
11145 project on which @var{proj} depends (either directly or indirectly).
11146
11147 @node Basic Syntax
11148 @subsection Basic Syntax
11149
11150 @noindent
11151 As seen in the earlier examples, project files have an Ada-like syntax.
11152 The minimal project file is:
11153 @smallexample @c projectfile
11154 @group
11155 project Empty is
11156
11157 end Empty;
11158 @end group
11159 @end smallexample
11160
11161 @noindent
11162 The identifier @code{Empty} is the name of the project.
11163 This project name must be present after the reserved
11164 word @code{end} at the end of the project file, followed by a semi-colon.
11165
11166 Any name in a project file, such as the project name or a variable name,
11167 has the same syntax as an Ada identifier.
11168
11169 The reserved words of project files are the Ada reserved words plus
11170 @code{extends}, @code{external}, and @code{project}. Note that the only Ada
11171 reserved words currently used in project file syntax are:
11172
11173 @itemize @bullet
11174 @item
11175 @code{case}
11176 @item
11177 @code{end}
11178 @item
11179 @code{for}
11180 @item
11181 @code{is}
11182 @item
11183 @code{others}
11184 @item
11185 @code{package}
11186 @item
11187 @code{renames}
11188 @item
11189 @code{type}
11190 @item
11191 @code{use}
11192 @item
11193 @code{when}
11194 @item
11195 @code{with}
11196 @end itemize
11197
11198 @noindent
11199 Comments in project files have the same syntax as in Ada, two consecutives
11200 hyphens through the end of the line.
11201
11202 @node Packages
11203 @subsection Packages
11204
11205 @noindent
11206 A project file may contain @emph{packages}. The name of a package must be one
11207 of the identifiers from the following list. A package
11208 with a given name may only appear once in a project file. Package names are
11209 case insensitive. The following package names are legal:
11210
11211 @itemize @bullet
11212 @item
11213 @code{Naming}
11214 @item
11215 @code{Builder}
11216 @item
11217 @code{Compiler}
11218 @item
11219 @code{Binder}
11220 @item
11221 @code{Linker}
11222 @item
11223 @code{Finder}
11224 @item
11225 @code{Cross_Reference}
11226 @item
11227 @code{Eliminate}
11228 @item
11229 @code{gnatls}
11230 @item
11231 @code{gnatstub}
11232 @item
11233 @code{IDE}
11234 @end itemize
11235
11236 @noindent
11237 In its simplest form, a package may be empty:
11238
11239 @smallexample @c projectfile
11240 @group
11241 project Simple is
11242 package Builder is
11243 end Builder;
11244 end Simple;
11245 @end group
11246 @end smallexample
11247
11248 @noindent
11249 A package may contain @emph{attribute declarations},
11250 @emph{variable declarations} and @emph{case constructions}, as will be
11251 described below.
11252
11253 When there is ambiguity between a project name and a package name,
11254 the name always designates the project. To avoid possible confusion, it is
11255 always a good idea to avoid naming a project with one of the
11256 names allowed for packages or any name that starts with @code{gnat}.
11257
11258 @node Expressions
11259 @subsection Expressions
11260
11261 @noindent
11262 An @emph{expression} is either a @emph{string expression} or a
11263 @emph{string list expression}.
11264
11265 A @emph{string expression} is either a @emph{simple string expression} or a
11266 @emph{compound string expression}.
11267
11268 A @emph{simple string expression} is one of the following:
11269 @itemize @bullet
11270 @item A literal string; e.g.@code{"comm/my_proj.gpr"}
11271 @item A string-valued variable reference (see @ref{Variables})
11272 @item A string-valued attribute reference (see @ref{Attributes})
11273 @item An external reference (see @ref{External References in Project Files})
11274 @end itemize
11275
11276 @noindent
11277 A @emph{compound string expression} is a concatenation of string expressions,
11278 using the operator @code{"&"}
11279 @smallexample
11280 Path & "/" & File_Name & ".ads"
11281 @end smallexample
11282
11283 @noindent
11284 A @emph{string list expression} is either a
11285 @emph{simple string list expression} or a
11286 @emph{compound string list expression}.
11287
11288 A @emph{simple string list expression} is one of the following:
11289 @itemize @bullet
11290 @item A parenthesized list of zero or more string expressions,
11291 separated by commas
11292 @smallexample
11293 File_Names := (File_Name, "gnat.adc", File_Name & ".orig");
11294 Empty_List := ();
11295 @end smallexample
11296 @item A string list-valued variable reference
11297 @item A string list-valued attribute reference
11298 @end itemize
11299
11300 @noindent
11301 A @emph{compound string list expression} is the concatenation (using
11302 @code{"&"}) of a simple string list expression and an expression. Note that
11303 each term in a compound string list expression, except the first, may be
11304 either a string expression or a string list expression.
11305
11306 @smallexample @c projectfile
11307 @group
11308 File_Name_List := () & File_Name; -- One string in this list
11309 Extended_File_Name_List := File_Name_List & (File_Name & ".orig");
11310 -- Two strings
11311 Big_List := File_Name_List & Extended_File_Name_List;
11312 -- Concatenation of two string lists: three strings
11313 Illegal_List := "gnat.adc" & Extended_File_Name_List;
11314 -- Illegal: must start with a string list
11315 @end group
11316 @end smallexample
11317
11318 @node String Types
11319 @subsection String Types
11320
11321 @noindent
11322 A @emph{string type declaration} introduces a discrete set of string literals.
11323 If a string variable is declared to have this type, its value
11324 is restricted to the given set of literals.
11325
11326 Here is an example of a string type declaration:
11327
11328 @smallexample @c projectfile
11329 type OS is ("NT", "nt", "Unix", "GNU/Linux", "other OS");
11330 @end smallexample
11331
11332 @noindent
11333 Variables of a string type are called @emph{typed variables}; all other
11334 variables are called @emph{untyped variables}. Typed variables are
11335 particularly useful in @code{case} constructions, to support conditional
11336 attribute declarations.
11337 (see @ref{case Constructions}).
11338
11339 The string literals in the list are case sensitive and must all be different.
11340 They may include any graphic characters allowed in Ada, including spaces.
11341
11342 A string type may only be declared at the project level, not inside a package.
11343
11344 A string type may be referenced by its name if it has been declared in the same
11345 project file, or by an expanded name whose prefix is the name of the project
11346 in which it is declared.
11347
11348 @node Variables
11349 @subsection Variables
11350
11351 @noindent
11352 A variable may be declared at the project file level, or within a package.
11353 Here are some examples of variable declarations:
11354
11355 @smallexample @c projectfile
11356 @group
11357 This_OS : OS := external ("OS"); -- a typed variable declaration
11358 That_OS := "GNU/Linux"; -- an untyped variable declaration
11359 @end group
11360 @end smallexample
11361
11362 @noindent
11363 The syntax of a @emph{typed variable declaration} is identical to the Ada
11364 syntax for an object declaration. By contrast, the syntax of an untyped
11365 variable declaration is identical to an Ada assignment statement. In fact,
11366 variable declarations in project files have some of the characteristics of
11367 an assignment, in that successive declarations for the same variable are
11368 allowed. Untyped variable declarations do establish the expected kind of the
11369 variable (string or string list), and successive declarations for it must
11370 respect the initial kind.
11371
11372 @noindent
11373 A string variable declaration (typed or untyped) declares a variable
11374 whose value is a string. This variable may be used as a string expression.
11375 @smallexample @c projectfile
11376 File_Name := "readme.txt";
11377 Saved_File_Name := File_Name & ".saved";
11378 @end smallexample
11379
11380 @noindent
11381 A string list variable declaration declares a variable whose value is a list
11382 of strings. The list may contain any number (zero or more) of strings.
11383
11384 @smallexample @c projectfile
11385 Empty_List := ();
11386 List_With_One_Element := ("^-gnaty^-gnaty^");
11387 List_With_Two_Elements := List_With_One_Element & "^-gnatg^-gnatg^";
11388 Long_List := ("main.ada", "pack1_.ada", "pack1.ada", "pack2_.ada"
11389 "pack2.ada", "util_.ada", "util.ada");
11390 @end smallexample
11391
11392 @noindent
11393 The same typed variable may not be declared more than once at project level,
11394 and it may not be declared more than once in any package; it is in effect
11395 a constant.
11396
11397 The same untyped variable may be declared several times. Declarations are
11398 elaborated in the order in which they appear, so the new value replaces
11399 the old one, and any subsequent reference to the variable uses the new value.
11400 However, as noted above, if a variable has been declared as a string, all
11401 subsequent
11402 declarations must give it a string value. Similarly, if a variable has
11403 been declared as a string list, all subsequent declarations
11404 must give it a string list value.
11405
11406 A @emph{variable reference} may take several forms:
11407
11408 @itemize @bullet
11409 @item The simple variable name, for a variable in the current package (if any)
11410 or in the current project
11411 @item An expanded name, whose prefix is a context name.
11412 @end itemize
11413
11414 @noindent
11415 A @emph{context} may be one of the following:
11416
11417 @itemize @bullet
11418 @item The name of an existing package in the current project
11419 @item The name of an imported project of the current project
11420 @item The name of an ancestor project (i.e., a project extended by the current
11421 project, either directly or indirectly)
11422 @item An expanded name whose prefix is an imported/parent project name, and
11423 whose selector is a package name in that project.
11424 @end itemize
11425
11426 @noindent
11427 A variable reference may be used in an expression.
11428
11429 @node Attributes
11430 @subsection Attributes
11431
11432 @noindent
11433 A project (and its packages) may have @emph{attributes} that define
11434 the project's properties. Some attributes have values that are strings;
11435 others have values that are string lists.
11436
11437 There are two categories of attributes: @emph{simple attributes}
11438 and @emph{associative arrays} (see @ref{Associative Array Attributes}).
11439
11440 Legal project attribute names, and attribute names for each legal package are
11441 listed below. Attributes names are case-insensitive.
11442
11443 The following attributes are defined on projects (all are simple attributes):
11444
11445 @multitable @columnfractions .4 .3
11446 @item @emph{Attribute Name}
11447 @tab @emph{Value}
11448 @item @code{Source_Files}
11449 @tab string list
11450 @item @code{Source_Dirs}
11451 @tab string list
11452 @item @code{Source_List_File}
11453 @tab string
11454 @item @code{Object_Dir}
11455 @tab string
11456 @item @code{Exec_Dir}
11457 @tab string
11458 @item @code{Locally_Removed_Files}
11459 @tab string list
11460 @item @code{Main}
11461 @tab string list
11462 @item @code{Languages}
11463 @tab string list
11464 @item @code{Main_Language}
11465 @tab string
11466 @item @code{Library_Dir}
11467 @tab string
11468 @item @code{Library_Name}
11469 @tab string
11470 @item @code{Library_Kind}
11471 @tab string
11472 @item @code{Library_Version}
11473 @tab string
11474 @item @code{Library_Interface}
11475 @tab string
11476 @item @code{Library_Auto_Init}
11477 @tab string
11478 @item @code{Library_Options}
11479 @tab string list
11480 @item @code{Library_GCC}
11481 @tab string
11482 @end multitable
11483
11484 @noindent
11485 The following attributes are defined for package @code{Naming}
11486 (see @ref{Naming Schemes}):
11487
11488 @multitable @columnfractions .4 .2 .2 .2
11489 @item Attribute Name @tab Category @tab Index @tab Value
11490 @item @code{Spec_Suffix}
11491 @tab associative array
11492 @tab language name
11493 @tab string
11494 @item @code{Body_Suffix}
11495 @tab associative array
11496 @tab language name
11497 @tab string
11498 @item @code{Separate_Suffix}
11499 @tab simple attribute
11500 @tab n/a
11501 @tab string
11502 @item @code{Casing}
11503 @tab simple attribute
11504 @tab n/a
11505 @tab string
11506 @item @code{Dot_Replacement}
11507 @tab simple attribute
11508 @tab n/a
11509 @tab string
11510 @item @code{Spec}
11511 @tab associative array
11512 @tab Ada unit name
11513 @tab string
11514 @item @code{Body}
11515 @tab associative array
11516 @tab Ada unit name
11517 @tab string
11518 @item @code{Specification_Exceptions}
11519 @tab associative array
11520 @tab language name
11521 @tab string list
11522 @item @code{Implementation_Exceptions}
11523 @tab associative array
11524 @tab language name
11525 @tab string list
11526 @end multitable
11527
11528 @noindent
11529 The following attributes are defined for packages @code{Builder},
11530 @code{Compiler}, @code{Binder},
11531 @code{Linker}, @code{Cross_Reference}, and @code{Finder}
11532 (see @ref{^Switches^Switches^ and Project Files}).
11533
11534 @multitable @columnfractions .4 .2 .2 .2
11535 @item Attribute Name @tab Category @tab Index @tab Value
11536 @item @code{^Default_Switches^Default_Switches^}
11537 @tab associative array
11538 @tab language name
11539 @tab string list
11540 @item @code{^Switches^Switches^}
11541 @tab associative array
11542 @tab file name
11543 @tab string list
11544 @end multitable
11545
11546 @noindent
11547 In addition, package @code{Compiler} has a single string attribute
11548 @code{Local_Configuration_Pragmas} and package @code{Builder} has a single
11549 string attribute @code{Global_Configuration_Pragmas}.
11550
11551 @noindent
11552 Each simple attribute has a default value: the empty string (for string-valued
11553 attributes) and the empty list (for string list-valued attributes).
11554
11555 An attribute declaration defines a new value for an attribute.
11556
11557 Examples of simple attribute declarations:
11558
11559 @smallexample @c projectfile
11560 for Object_Dir use "objects";
11561 for Source_Dirs use ("units", "test/drivers");
11562 @end smallexample
11563
11564 @noindent
11565 The syntax of a @dfn{simple attribute declaration} is similar to that of an
11566 attribute definition clause in Ada.
11567
11568 Attributes references may be appear in expressions.
11569 The general form for such a reference is @code{<entity>'<attribute>}:
11570 Associative array attributes are functions. Associative
11571 array attribute references must have an argument that is a string literal.
11572
11573 Examples are:
11574
11575 @smallexample @c projectfile
11576 project'Object_Dir
11577 Naming'Dot_Replacement
11578 Imported_Project'Source_Dirs
11579 Imported_Project.Naming'Casing
11580 Builder'^Default_Switches^Default_Switches^("Ada")
11581 @end smallexample
11582
11583 @noindent
11584 The prefix of an attribute may be:
11585 @itemize @bullet
11586 @item @code{project} for an attribute of the current project
11587 @item The name of an existing package of the current project
11588 @item The name of an imported project
11589 @item The name of a parent project that is extended by the current project
11590 @item An expanded name whose prefix is imported/parent project name,
11591 and whose selector is a package name
11592 @end itemize
11593
11594 @noindent
11595 Example:
11596 @smallexample @c projectfile
11597 @group
11598 project Prj is
11599 for Source_Dirs use project'Source_Dirs & "units";
11600 for Source_Dirs use project'Source_Dirs & "test/drivers"
11601 end Prj;
11602 @end group
11603 @end smallexample
11604
11605 @noindent
11606 In the first attribute declaration, initially the attribute @code{Source_Dirs}
11607 has the default value: an empty string list. After this declaration,
11608 @code{Source_Dirs} is a string list of one element: @code{"units"}.
11609 After the second attribute declaration @code{Source_Dirs} is a string list of
11610 two elements: @code{"units"} and @code{"test/drivers"}.
11611
11612 Note: this example is for illustration only. In practice,
11613 the project file would contain only one attribute declaration:
11614
11615 @smallexample @c projectfile
11616 for Source_Dirs use ("units", "test/drivers");
11617 @end smallexample
11618
11619 @node Associative Array Attributes
11620 @subsection Associative Array Attributes
11621
11622 @noindent
11623 Some attributes are defined as @emph{associative arrays}. An associative
11624 array may be regarded as a function that takes a string as a parameter
11625 and delivers a string or string list value as its result.
11626
11627 Here are some examples of single associative array attribute associations:
11628
11629 @smallexample @c projectfile
11630 for Body ("main") use "Main.ada";
11631 for ^Switches^Switches^ ("main.ada")
11632 use ("^-v^-v^",
11633 "^-gnatv^-gnatv^");
11634 for ^Switches^Switches^ ("main.ada")
11635 use Builder'^Switches^Switches^ ("main.ada")
11636 & "^-g^-g^";
11637 @end smallexample
11638
11639 @noindent
11640 Like untyped variables and simple attributes, associative array attributes
11641 may be declared several times. Each declaration supplies a new value for the
11642 attribute, and replaces the previous setting.
11643
11644 @noindent
11645 An associative array attribute may be declared as a full associative array
11646 declaration, with the value of the same attribute in an imported or extended
11647 project.
11648
11649 @smallexample @c projectfile
11650 package Builder is
11651 for Default_Switches use Default.Builder'Default_Switches;
11652 end Builder;
11653 @end smallexample
11654
11655 @noindent
11656 In this example, @code{Default} must be either an project imported by the
11657 current project, or the project that the current project extends. If the
11658 attribute is in a package (in this case, in package @code{Builder}), the same
11659 package needs to be specified.
11660
11661 @noindent
11662 A full associative array declaration replaces any other declaration for the
11663 attribute, including other full associative array declaration. Single
11664 associative array associations may be declare after a full associative
11665 declaration, modifying the value for a single association of the attribute.
11666
11667 @node case Constructions
11668 @subsection @code{case} Constructions
11669
11670 @noindent
11671 A @code{case} construction is used in a project file to effect conditional
11672 behavior.
11673 Here is a typical example:
11674
11675 @smallexample @c projectfile
11676 @group
11677 project MyProj is
11678 type OS_Type is ("GNU/Linux", "Unix", "NT", "VMS");
11679
11680 OS : OS_Type := external ("OS", "GNU/Linux");
11681 @end group
11682
11683 @group
11684 package Compiler is
11685 case OS is
11686 when "GNU/Linux" | "Unix" =>
11687 for ^Default_Switches^Default_Switches^ ("Ada")
11688 use ("^-gnath^-gnath^");
11689 when "NT" =>
11690 for ^Default_Switches^Default_Switches^ ("Ada")
11691 use ("^-gnatP^-gnatP^");
11692 when others =>
11693 end case;
11694 end Compiler;
11695 end MyProj;
11696 @end group
11697 @end smallexample
11698
11699 @noindent
11700 The syntax of a @code{case} construction is based on the Ada case statement
11701 (although there is no @code{null} construction for empty alternatives).
11702
11703 The case expression must a typed string variable.
11704 Each alternative comprises the reserved word @code{when}, either a list of
11705 literal strings separated by the @code{"|"} character or the reserved word
11706 @code{others}, and the @code{"=>"} token.
11707 Each literal string must belong to the string type that is the type of the
11708 case variable.
11709 An @code{others} alternative, if present, must occur last.
11710
11711 After each @code{=>}, there are zero or more constructions. The only
11712 constructions allowed in a case construction are other case constructions and
11713 attribute declarations. String type declarations, variable declarations and
11714 package declarations are not allowed.
11715
11716 The value of the case variable is often given by an external reference
11717 (see @ref{External References in Project Files}).
11718
11719 @c ****************************************
11720 @c * Objects and Sources in Project Files *
11721 @c ****************************************
11722
11723 @node Objects and Sources in Project Files
11724 @section Objects and Sources in Project Files
11725
11726 @menu
11727 * Object Directory::
11728 * Exec Directory::
11729 * Source Directories::
11730 * Source File Names::
11731 @end menu
11732
11733 @noindent
11734 Each project has exactly one object directory and one or more source
11735 directories. The source directories must contain at least one source file,
11736 unless the project file explicitly specifies that no source files are present
11737 (see @ref{Source File Names}).
11738
11739 @node Object Directory
11740 @subsection Object Directory
11741
11742 @noindent
11743 The object directory for a project is the directory containing the compiler's
11744 output (such as @file{ALI} files and object files) for the project's immediate
11745 sources.
11746
11747 The object directory is given by the value of the attribute @code{Object_Dir}
11748 in the project file.
11749
11750 @smallexample @c projectfile
11751 for Object_Dir use "objects";
11752 @end smallexample
11753
11754 @noindent
11755 The attribute @var{Object_Dir} has a string value, the path name of the object
11756 directory. The path name may be absolute or relative to the directory of the
11757 project file. This directory must already exist, and be readable and writable.
11758
11759 By default, when the attribute @code{Object_Dir} is not given an explicit value
11760 or when its value is the empty string, the object directory is the same as the
11761 directory containing the project file.
11762
11763 @node Exec Directory
11764 @subsection Exec Directory
11765
11766 @noindent
11767 The exec directory for a project is the directory containing the executables
11768 for the project's main subprograms.
11769
11770 The exec directory is given by the value of the attribute @code{Exec_Dir}
11771 in the project file.
11772
11773 @smallexample @c projectfile
11774 for Exec_Dir use "executables";
11775 @end smallexample
11776
11777 @noindent
11778 The attribute @var{Exec_Dir} has a string value, the path name of the exec
11779 directory. The path name may be absolute or relative to the directory of the
11780 project file. This directory must already exist, and be writable.
11781
11782 By default, when the attribute @code{Exec_Dir} is not given an explicit value
11783 or when its value is the empty string, the exec directory is the same as the
11784 object directory of the project file.
11785
11786 @node Source Directories
11787 @subsection Source Directories
11788
11789 @noindent
11790 The source directories of a project are specified by the project file
11791 attribute @code{Source_Dirs}.
11792
11793 This attribute's value is a string list. If the attribute is not given an
11794 explicit value, then there is only one source directory, the one where the
11795 project file resides.
11796
11797 A @code{Source_Dirs} attribute that is explicitly defined to be the empty list,
11798 as in
11799
11800 @smallexample @c projectfile
11801 for Source_Dirs use ();
11802 @end smallexample
11803
11804 @noindent
11805 indicates that the project contains no source files.
11806
11807 Otherwise, each string in the string list designates one or more
11808 source directories.
11809
11810 @smallexample @c projectfile
11811 for Source_Dirs use ("sources", "test/drivers");
11812 @end smallexample
11813
11814 @noindent
11815 If a string in the list ends with @code{"/**"}, then the directory whose path
11816 name precedes the two asterisks, as well as all its subdirectories
11817 (recursively), are source directories.
11818
11819 @smallexample @c projectfile
11820 for Source_Dirs use ("/system/sources/**");
11821 @end smallexample
11822
11823 @noindent
11824 Here the directory @code{/system/sources} and all of its subdirectories
11825 (recursively) are source directories.
11826
11827 To specify that the source directories are the directory of the project file
11828 and all of its subdirectories, you can declare @code{Source_Dirs} as follows:
11829 @smallexample @c projectfile
11830 for Source_Dirs use ("./**");
11831 @end smallexample
11832
11833 @noindent
11834 Each of the source directories must exist and be readable.
11835
11836 @node Source File Names
11837 @subsection Source File Names
11838
11839 @noindent
11840 In a project that contains source files, their names may be specified by the
11841 attributes @code{Source_Files} (a string list) or @code{Source_List_File}
11842 (a string). Source file names never include any directory information.
11843
11844 If the attribute @code{Source_Files} is given an explicit value, then each
11845 element of the list is a source file name.
11846
11847 @smallexample @c projectfile
11848 for Source_Files use ("main.adb");
11849 for Source_Files use ("main.adb", "pack1.ads", "pack2.adb");
11850 @end smallexample
11851
11852 @noindent
11853 If the attribute @code{Source_Files} is not given an explicit value,
11854 but the attribute @code{Source_List_File} is given a string value,
11855 then the source file names are contained in the text file whose path name
11856 (absolute or relative to the directory of the project file) is the
11857 value of the attribute @code{Source_List_File}.
11858
11859 Each line in the file that is not empty or is not a comment
11860 contains a source file name.
11861
11862 @smallexample @c projectfile
11863 for Source_List_File use "source_list.txt";
11864 @end smallexample
11865
11866 @noindent
11867 By default, if neither the attribute @code{Source_Files} nor the attribute
11868 @code{Source_List_File} is given an explicit value, then each file in the
11869 source directories that conforms to the project's naming scheme
11870 (see @ref{Naming Schemes}) is an immediate source of the project.
11871
11872 A warning is issued if both attributes @code{Source_Files} and
11873 @code{Source_List_File} are given explicit values. In this case, the attribute
11874 @code{Source_Files} prevails.
11875
11876 Each source file name must be the name of one existing source file
11877 in one of the source directories.
11878
11879 A @code{Source_Files} attribute whose value is an empty list
11880 indicates that there are no source files in the project.
11881
11882 If the order of the source directories is known statically, that is if
11883 @code{"/**"} is not used in the string list @code{Source_Dirs}, then there may
11884 be several files with the same source file name. In this case, only the file
11885 in the first directory is considered as an immediate source of the project
11886 file. If the order of the source directories is not known statically, it is
11887 an error to have several files with the same source file name.
11888
11889 Projects can be specified to have no Ada source
11890 files: the value of (@code{Source_Dirs} or @code{Source_Files} may be an empty
11891 list, or the @code{"Ada"} may be absent from @code{Languages}:
11892
11893 @smallexample @c projectfile
11894 for Source_Dirs use ();
11895 for Source_Files use ();
11896 for Languages use ("C", "C++");
11897 @end smallexample
11898
11899 @noindent
11900 Otherwise, a project must contain at least one immediate source.
11901
11902 Projects with no source files are useful as template packages
11903 (see @ref{Packages in Project Files}) for other projects; in particular to
11904 define a package @code{Naming} (see @ref{Naming Schemes}).
11905
11906 @c ****************************
11907 @c * Importing Projects *
11908 @c ****************************
11909
11910 @node Importing Projects
11911 @section Importing Projects
11912
11913 @noindent
11914 An immediate source of a project P may depend on source files that
11915 are neither immediate sources of P nor in the predefined library.
11916 To get this effect, P must @emph{import} the projects that contain the needed
11917 source files.
11918
11919 @smallexample @c projectfile
11920 @group
11921 with "project1", "utilities.gpr";
11922 with "/namings/apex.gpr";
11923 project Main is
11924 ...
11925 @end group
11926 @end smallexample
11927
11928 @noindent
11929 As can be seen in this example, the syntax for importing projects is similar
11930 to the syntax for importing compilation units in Ada. However, project files
11931 use literal strings instead of names, and the @code{with} clause identifies
11932 project files rather than packages.
11933
11934 Each literal string is the file name or path name (absolute or relative) of a
11935 project file. If a string is simply a file name, with no path, then its
11936 location is determined by the @emph{project path}:
11937
11938 @itemize @bullet
11939 @item
11940 If the ^environment variable^logical name^ @env{ADA_PROJECT_PATH} exists,
11941 then the project path includes all the directories in this
11942 ^environment variable^logical name^, plus the directory of the project file.
11943
11944 @item
11945 If the ^environment variable^logical name^ @env{ADA_PROJECT_PATH} does not
11946 exist, then the project path contains only one directory, namely the one where
11947 the project file is located.
11948 @end itemize
11949
11950 @noindent
11951 If a relative pathname is used, as in
11952
11953 @smallexample @c projectfile
11954 with "tests/proj";
11955 @end smallexample
11956
11957 @noindent
11958 then the path is relative to the directory where the importing project file is
11959 located. Any symbolic link will be fully resolved in the directory
11960 of the importing project file before the imported project file is examined.
11961
11962 If the @code{with}'ed project file name does not have an extension,
11963 the default is @file{^.gpr^.GPR^}. If a file with this extension is not found,
11964 then the file name as specified in the @code{with} clause (no extension) will
11965 be used. In the above example, if a file @code{project1.gpr} is found, then it
11966 will be used; otherwise, if a file @code{^project1^PROJECT1^} exists
11967 then it will be used; if neither file exists, this is an error.
11968
11969 A warning is issued if the name of the project file does not match the
11970 name of the project; this check is case insensitive.
11971
11972 Any source file that is an immediate source of the imported project can be
11973 used by the immediate sources of the importing project, transitively. Thus
11974 if @code{A} imports @code{B}, and @code{B} imports @code{C}, the immediate
11975 sources of @code{A} may depend on the immediate sources of @code{C}, even if
11976 @code{A} does not import @code{C} explicitly. However, this is not recommended,
11977 because if and when @code{B} ceases to import @code{C}, some sources in
11978 @code{A} will no longer compile.
11979
11980 A side effect of this capability is that normally cyclic dependencies are not
11981 permitted: if @code{A} imports @code{B} (directly or indirectly) then @code{B}
11982 is not allowed to import @code{A}. However, there are cases when cyclic
11983 dependencies would be beneficial. For these cases, another form of import
11984 between projects exists, the @code{limited with}: a project @code{A} that
11985 imports a project @code{B} with a straigh @code{with} may also be imported,
11986 directly or indirectly, by @code{B} on the condition that imports from @code{B}
11987 to @code{A} include at least one @code{limited with}.
11988
11989 @smallexample @c 0projectfile
11990 with "../b/b.gpr";
11991 with "../c/c.gpr";
11992 project A is
11993 end A;
11994
11995 limited with "../a/a.gpr";
11996 project B is
11997 end B;
11998
11999 with "../d/d.gpr";
12000 project C is
12001 end C;
12002
12003 limited with "../a/a.gpr";
12004 project D is
12005 end D;
12006 @end smallexample
12007
12008 @noindent
12009 In the above legal example, there are two project cycles:
12010 @itemize @bullet
12011 @item A-> B-> A
12012 @item A -> C -> D -> A
12013 @end itemize
12014
12015 @noindent
12016 In each of these cycle there is one @code{limited with}: import of @code{A}
12017 from @code{B} and import of @code{A} from @code{D}.
12018
12019 The difference between straight @code{with} and @code{limited with} is that
12020 the name of a project imported with a @code{limited with} cannot be used in the
12021 project that imports it. In particular, its packages cannot be renamed and
12022 its variables cannot be referred to.
12023
12024 An exception to the above rules for @code{limited with} is that for the main
12025 project specified to @command{gnatmake} or to the @command{GNAT} driver a
12026 @code{limited with} is equivalent to a straight @code{with}. For example,
12027 in the example above, projects @code{B} and @code{D} could not be main
12028 projects for @command{gnatmake} or to the @command{GNAT} driver, because they
12029 each have a @code{limited with} that is the only one in a cycle of importing
12030 projects.
12031
12032 @c *********************
12033 @c * Project Extension *
12034 @c *********************
12035
12036 @node Project Extension
12037 @section Project Extension
12038
12039 @noindent
12040 During development of a large system, it is sometimes necessary to use
12041 modified versions of some of the source files, without changing the original
12042 sources. This can be achieved through the @emph{project extension} facility.
12043
12044 @smallexample @c projectfile
12045 project Modified_Utilities extends "/baseline/utilities.gpr" is ...
12046 @end smallexample
12047
12048 @noindent
12049 A project extension declaration introduces an extending project
12050 (the @emph{child}) and a project being extended (the @emph{parent}).
12051
12052 By default, a child project inherits all the sources of its parent.
12053 However, inherited sources can be overridden: a unit in a parent is hidden
12054 by a unit of the same name in the child.
12055
12056 Inherited sources are considered to be sources (but not immediate sources)
12057 of the child project; see @ref{Project File Syntax}.
12058
12059 An inherited source file retains any switches specified in the parent project.
12060
12061 For example if the project @code{Utilities} contains the specification and the
12062 body of an Ada package @code{Util_IO}, then the project
12063 @code{Modified_Utilities} can contain a new body for package @code{Util_IO}.
12064 The original body of @code{Util_IO} will not be considered in program builds.
12065 However, the package specification will still be found in the project
12066 @code{Utilities}.
12067
12068 A child project can have only one parent but it may import any number of other
12069 projects.
12070
12071 A project is not allowed to import directly or indirectly at the same time a
12072 child project and any of its ancestors.
12073
12074 @c ****************************************
12075 @c * External References in Project Files *
12076 @c ****************************************
12077
12078 @node External References in Project Files
12079 @section External References in Project Files
12080
12081 @noindent
12082 A project file may contain references to external variables; such references
12083 are called @emph{external references}.
12084
12085 An external variable is either defined as part of the environment (an
12086 environment variable in Unix, for example) or else specified on the command
12087 line via the @option{^-X^/EXTERNAL_REFERENCE=^@emph{vbl}=@emph{value}} switch.
12088 If both, then the command line value is used.
12089
12090 The value of an external reference is obtained by means of the built-in
12091 function @code{external}, which returns a string value.
12092 This function has two forms:
12093 @itemize @bullet
12094 @item @code{external (external_variable_name)}
12095 @item @code{external (external_variable_name, default_value)}
12096 @end itemize
12097
12098 @noindent
12099 Each parameter must be a string literal. For example:
12100
12101 @smallexample @c projectfile
12102 external ("USER")
12103 external ("OS", "GNU/Linux")
12104 @end smallexample
12105
12106 @noindent
12107 In the form with one parameter, the function returns the value of
12108 the external variable given as parameter. If this name is not present in the
12109 environment, the function returns an empty string.
12110
12111 In the form with two string parameters, the second argument is
12112 the value returned when the variable given as the first argument is not
12113 present in the environment. In the example above, if @code{"OS"} is not
12114 the name of ^an environment variable^a logical name^ and is not passed on
12115 the command line, then the returned value is @code{"GNU/Linux"}.
12116
12117 An external reference may be part of a string expression or of a string
12118 list expression, and can therefore appear in a variable declaration or
12119 an attribute declaration.
12120
12121 @smallexample @c projectfile
12122 @group
12123 type Mode_Type is ("Debug", "Release");
12124 Mode : Mode_Type := external ("MODE");
12125 case Mode is
12126 when "Debug" =>
12127 ...
12128 @end group
12129 @end smallexample
12130
12131 @c *****************************
12132 @c * Packages in Project Files *
12133 @c *****************************
12134
12135 @node Packages in Project Files
12136 @section Packages in Project Files
12137
12138 @noindent
12139 A @emph{package} defines the settings for project-aware tools within a
12140 project.
12141 For each such tool one can declare a package; the names for these
12142 packages are preset (see @ref{Packages}).
12143 A package may contain variable declarations, attribute declarations, and case
12144 constructions.
12145
12146 @smallexample @c projectfile
12147 @group
12148 project Proj is
12149 package Builder is -- used by gnatmake
12150 for ^Default_Switches^Default_Switches^ ("Ada")
12151 use ("^-v^-v^",
12152 "^-g^-g^");
12153 end Builder;
12154 end Proj;
12155 @end group
12156 @end smallexample
12157
12158 @noindent
12159 The syntax of package declarations mimics that of package in Ada.
12160
12161 Most of the packages have an attribute
12162 @code{^Default_Switches^Default_Switches^}.
12163 This attribute is an associative array, and its value is a string list.
12164 The index of the associative array is the name of a programming language (case
12165 insensitive). This attribute indicates the ^switch^switch^
12166 or ^switches^switches^ to be used
12167 with the corresponding tool.
12168
12169 Some packages also have another attribute, @code{^Switches^Switches^},
12170 an associative array whose value is a string list.
12171 The index is the name of a source file.
12172 This attribute indicates the ^switch^switch^
12173 or ^switches^switches^ to be used by the corresponding
12174 tool when dealing with this specific file.
12175
12176 Further information on these ^switch^switch^-related attributes is found in
12177 @ref{^Switches^Switches^ and Project Files}.
12178
12179 A package may be declared as a @emph{renaming} of another package; e.g., from
12180 the project file for an imported project.
12181
12182 @smallexample @c projectfile
12183 @group
12184 with "/global/apex.gpr";
12185 project Example is
12186 package Naming renames Apex.Naming;
12187 ...
12188 end Example;
12189 @end group
12190 @end smallexample
12191
12192 @noindent
12193 Packages that are renamed in other project files often come from project files
12194 that have no sources: they are just used as templates. Any modification in the
12195 template will be reflected automatically in all the project files that rename
12196 a package from the template.
12197
12198 In addition to the tool-oriented packages, you can also declare a package
12199 named @code{Naming} to establish specialized source file naming conventions
12200 (see @ref{Naming Schemes}).
12201
12202 @c ************************************
12203 @c * Variables from Imported Projects *
12204 @c ************************************
12205
12206 @node Variables from Imported Projects
12207 @section Variables from Imported Projects
12208
12209 @noindent
12210 An attribute or variable defined in an imported or parent project can
12211 be used in expressions in the importing / extending project.
12212 Such an attribute or variable is denoted by an expanded name whose prefix
12213 is either the name of the project or the expanded name of a package within
12214 a project.
12215
12216 @smallexample @c projectfile
12217 @group
12218 with "imported";
12219 project Main extends "base" is
12220 Var1 := Imported.Var;
12221 Var2 := Base.Var & ".new";
12222 @end group
12223
12224 @group
12225 package Builder is
12226 for ^Default_Switches^Default_Switches^ ("Ada")
12227 use Imported.Builder.Ada_^Switches^Switches^ &
12228 "^-gnatg^-gnatg^" &
12229 "^-v^-v^";
12230 end Builder;
12231 @end group
12232
12233 @group
12234 package Compiler is
12235 for ^Default_Switches^Default_Switches^ ("Ada")
12236 use Base.Compiler.Ada_^Switches^Switches^;
12237 end Compiler;
12238 end Main;
12239 @end group
12240 @end smallexample
12241
12242 @noindent
12243 In this example:
12244
12245 @itemize @bullet
12246 @item
12247 The value of @code{Var1} is a copy of the variable @code{Var} defined
12248 in the project file @file{"imported.gpr"}
12249 @item
12250 the value of @code{Var2} is a copy of the value of variable @code{Var}
12251 defined in the project file @file{base.gpr}, concatenated with @code{".new"}
12252 @item
12253 attribute @code{^Default_Switches^Default_Switches^ ("Ada")} in package
12254 @code{Builder} is a string list that includes in its value a copy of the value
12255 of @code{Ada_^Switches^Switches^} defined in the @code{Builder} package
12256 in project file @file{imported.gpr} plus two new elements:
12257 @option{"^-gnatg^-gnatg^"}
12258 and @option{"^-v^-v^"};
12259 @item
12260 attribute @code{^Default_Switches^Default_Switches^ ("Ada")} in package
12261 @code{Compiler} is a copy of the variable @code{Ada_^Switches^Switches^}
12262 defined in the @code{Compiler} package in project file @file{base.gpr},
12263 the project being extended.
12264 @end itemize
12265
12266 @c ******************
12267 @c * Naming Schemes *
12268 @c ******************
12269
12270 @node Naming Schemes
12271 @section Naming Schemes
12272
12273 @noindent
12274 Sometimes an Ada software system is ported from a foreign compilation
12275 environment to GNAT, and the file names do not use the default GNAT
12276 conventions. Instead of changing all the file names (which for a variety
12277 of reasons might not be possible), you can define the relevant file
12278 naming scheme in the @code{Naming} package in your project file.
12279
12280 @noindent
12281 Note that the use of pragmas described in @ref{Alternative
12282 File Naming Schemes} by mean of a configuration pragmas file is not
12283 supported when using project files. You must use the features described
12284 in this paragraph. You can however use specify other configuration
12285 pragmas (see @ref{Specifying Configuration Pragmas}).
12286
12287 @ifclear vms
12288 For example, the following
12289 package models the Apex file naming rules:
12290
12291 @smallexample @c projectfile
12292 @group
12293 package Naming is
12294 for Casing use "lowercase";
12295 for Dot_Replacement use ".";
12296 for Spec_Suffix ("Ada") use ".1.ada";
12297 for Body_Suffix ("Ada") use ".2.ada";
12298 end Naming;
12299 @end group
12300 @end smallexample
12301 @end ifclear
12302
12303 @ifset vms
12304 For example, the following package models the DEC Ada file naming rules:
12305
12306 @smallexample @c projectfile
12307 @group
12308 package Naming is
12309 for Casing use "lowercase";
12310 for Dot_Replacement use "__";
12311 for Spec_Suffix ("Ada") use "_.^ada^ada^";
12312 for Body_Suffix ("Ada") use ".^ada^ada^";
12313 end Naming;
12314 @end group
12315 @end smallexample
12316
12317 @noindent
12318 (Note that @code{Casing} is @code{"lowercase"} because GNAT gets the file
12319 names in lower case)
12320 @end ifset
12321
12322 @noindent
12323 You can define the following attributes in package @code{Naming}:
12324
12325 @table @code
12326
12327 @item @var{Casing}
12328 This must be a string with one of the three values @code{"lowercase"},
12329 @code{"uppercase"} or @code{"mixedcase"}; these strings are case insensitive.
12330
12331 @noindent
12332 If @var{Casing} is not specified, then the default is @code{"lowercase"}.
12333
12334 @item @var{Dot_Replacement}
12335 This must be a string whose value satisfies the following conditions:
12336
12337 @itemize @bullet
12338 @item It must not be empty
12339 @item It cannot start or end with an alphanumeric character
12340 @item It cannot be a single underscore
12341 @item It cannot start with an underscore followed by an alphanumeric
12342 @item It cannot contain a dot @code{'.'} except if the entire string
12343 is @code{"."}
12344 @end itemize
12345
12346 @noindent
12347 If @code{Dot_Replacement} is not specified, then the default is @code{"-"}.
12348
12349 @item @var{Spec_Suffix}
12350 This is an associative array (indexed by the programming language name, case
12351 insensitive) whose value is a string that must satisfy the following
12352 conditions:
12353
12354 @itemize @bullet
12355 @item It must not be empty
12356 @item It must include at least one dot
12357 @end itemize
12358 @noindent
12359 If @code{Spec_Suffix ("Ada")} is not specified, then the default is
12360 @code{"^.ads^.ADS^"}.
12361
12362 @item @var{Body_Suffix}
12363 This is an associative array (indexed by the programming language name, case
12364 insensitive) whose value is a string that must satisfy the following
12365 conditions:
12366
12367 @itemize @bullet
12368 @item It must not be empty
12369 @item It must include at least one dot
12370 @item It cannot end with the same string as @code{Spec_Suffix ("Ada")}
12371 @end itemize
12372 @noindent
12373 If @code{Body_Suffix ("Ada")} is not specified, then the default is
12374 @code{"^.adb^.ADB^"}.
12375
12376 @item @var{Separate_Suffix}
12377 This must be a string whose value satisfies the same conditions as
12378 @code{Body_Suffix}.
12379
12380 @noindent
12381 If @code{Separate_Suffix ("Ada")} is not specified, then it defaults to same
12382 value as @code{Body_Suffix ("Ada")}.
12383
12384 @item @var{Spec}
12385 @noindent
12386 You can use the associative array attribute @code{Spec} to define
12387 the source file name for an individual Ada compilation unit's spec. The array
12388 index must be a string literal that identifies the Ada unit (case insensitive).
12389 The value of this attribute must be a string that identifies the file that
12390 contains this unit's spec (case sensitive or insensitive depending on the
12391 operating system).
12392
12393 @smallexample @c projectfile
12394 for Spec ("MyPack.MyChild") use "mypack.mychild.spec";
12395 @end smallexample
12396
12397 @item @var{Body}
12398
12399 You can use the associative array attribute @code{Body} to
12400 define the source file name for an individual Ada compilation unit's body
12401 (possibly a subunit). The array index must be a string literal that identifies
12402 the Ada unit (case insensitive). The value of this attribute must be a string
12403 that identifies the file that contains this unit's body or subunit (case
12404 sensitive or insensitive depending on the operating system).
12405
12406 @smallexample @c projectfile
12407 for Body ("MyPack.MyChild") use "mypack.mychild.body";
12408 @end smallexample
12409 @end table
12410
12411 @c ********************
12412 @c * Library Projects *
12413 @c ********************
12414
12415 @node Library Projects
12416 @section Library Projects
12417
12418 @noindent
12419 @emph{Library projects} are projects whose object code is placed in a library.
12420 (Note that this facility is not yet supported on all platforms)
12421
12422 To create a library project, you need to define in its project file
12423 two project-level attributes: @code{Library_Name} and @code{Library_Dir}.
12424 Additionally, you may define the library-related attributes
12425 @code{Library_Kind}, @code{Library_Version}, @code{Library_Interface},
12426 @code{Library_Auto_Init}, @code{Library_Options} and @code{Library_GCC}.
12427
12428 The @code{Library_Name} attribute has a string value. There is no restriction
12429 on the name of a library. It is the responsability of the developer to
12430 choose a name that will be accepted by the platform. It is recommanded to
12431 choose names that could be Ada identifiers; such names are almost guaranteed
12432 to be acceptable on all platforms.
12433
12434 The @code{Library_Dir} attribute has a string value that designates the path
12435 (absolute or relative) of the directory where the library will reside.
12436 It must designate an existing directory, and this directory must be
12437 different from the project's object directory. It also needs to be writable.
12438
12439 If both @code{Library_Name} and @code{Library_Dir} are specified and
12440 are legal, then the project file defines a library project. The optional
12441 library-related attributes are checked only for such project files.
12442
12443 The @code{Library_Kind} attribute has a string value that must be one of the
12444 following (case insensitive): @code{"static"}, @code{"dynamic"} or
12445 @code{"relocatable"}. If this attribute is not specified, the library is a
12446 static library, that is an archive of object files that can be potentially
12447 linked into an static executable. Otherwise, the library may be dynamic or
12448 relocatable, that is a library that is loaded only at the start of execution.
12449 Depending on the operating system, there may or may not be a distinction
12450 between dynamic and relocatable libraries. For Unix and VMS Unix there is no
12451 such distinction.
12452
12453 If you need to build both a static and a dynamic library, you should use two
12454 different object directories, since in some cases some extra code needs to
12455 be generated for the latter. For such cases, it is recommended to either use
12456 two different project files, or a single one which uses external variables
12457 to indicate what kind of library should be build.
12458
12459 The @code{Library_Version} attribute has a string value whose interpretation
12460 is platform dependent. It has no effect on VMS and Windows. On Unix, it is
12461 used only for dynamic/relocatable libraries as the internal name of the
12462 library (the @code{"soname"}). If the library file name (built from the
12463 @code{Library_Name}) is different from the @code{Library_Version}, then the
12464 library file will be a symbolic link to the actual file whose name will be
12465 @code{Library_Version}.
12466
12467 Example (on Unix):
12468
12469 @smallexample @c projectfile
12470 @group
12471 project Plib is
12472
12473 Version := "1";
12474
12475 for Library_Dir use "lib_dir";
12476 for Library_Name use "dummy";
12477 for Library_Kind use "relocatable";
12478 for Library_Version use "libdummy.so." & Version;
12479
12480 end Plib;
12481 @end group
12482 @end smallexample
12483
12484 @noindent
12485 Directory @file{lib_dir} will contain the internal library file whose name
12486 will be @file{libdummy.so.1}, and @file{libdummy.so} will be a symbolic link to
12487 @file{libdummy.so.1}.
12488
12489 When @command{gnatmake} detects that a project file
12490 is a library project file, it will check all immediate sources of the project
12491 and rebuild the library if any of the sources have been recompiled.
12492
12493 Standard project files can import library project files. In such cases,
12494 the libraries will only be rebuild if some of its sources are recompiled
12495 because they are in the closure of some other source in an importing project.
12496 Sources of the library project files that are not in such a closure will
12497 not be checked, unless the full library is checked, because one of its sources
12498 needs to be recompiled.
12499
12500 For instance, assume the project file @code{A} imports the library project file
12501 @code{L}. The immediate sources of A are @file{a1.adb}, @file{a2.ads} and
12502 @file{a2.adb}. The immediate sources of L are @file{l1.ads}, @file{l1.adb},
12503 @file{l2.ads}, @file{l2.adb}.
12504
12505 If @file{l1.adb} has been modified, then the library associated with @code{L}
12506 will be rebuild when compiling all the immediate sources of @code{A} only
12507 if @file{a1.ads}, @file{a2.ads} or @file{a2.adb} includes a statement
12508 @code{"with L1;"}.
12509
12510 To be sure that all the sources in the library associated with @code{L} are
12511 up to date, and that all the sources of parject @code{A} are also up to date,
12512 the following two commands needs to be used:
12513
12514 @smallexample
12515 gnatmake -Pl.gpr
12516 gnatmake -Pa.gpr
12517 @end smallexample
12518
12519 When a library is built or rebuilt, an attempt is made first to delete all
12520 files in the library directory.
12521 All @file{ALI} files will also be copied from the object directory to the
12522 library directory. To build executables, @command{gnatmake} will use the
12523 library rather than the individual object files.
12524
12525
12526 @c **********************************************
12527 @c * Using Third-Party Libraries through Projects
12528 @c **********************************************
12529 @node Using Third-Party Libraries through Projects
12530 @section Using Third-Party Libraries through Projects
12531
12532 Whether you are exporting your own library to make it available to
12533 clients, or you are using a library provided by a third party, it is
12534 convenient to have project files that automatically set the correct
12535 command line switches for the compiler and linker.
12536
12537 Such project files are very similar to the library project files;
12538 @xref{Library Projects}. The only difference is that you set the
12539 @code{Source_Dirs} and @code{Object_Dir} attribute so that they point to the
12540 directories where, respectively, the sources and the read-only ALI files have
12541 been installed.
12542
12543 If you need to interface with a set of libraries, as opposed to a
12544 single one, you need to create one library project for each of the
12545 libraries. In addition, a top-level project that imports all these
12546 library projects should be provided, so that the user of your library
12547 has a single @code{with} clause to add to his own projects.
12548
12549 For instance, let's assume you are providing two static libraries
12550 @file{liba.a} and @file{libb.a}. The user needs to link with
12551 both of these libraries. Each of these is associated with its
12552 own set of header files. Let's assume furthermore that all the
12553 header files for the two libraries have been installed in the same
12554 directory @file{headers}. The @file{ALI} files are found in the same
12555 @file{headers} directory.
12556
12557 In this case, you should provide the following three projects:
12558
12559 @smallexample @c projectfile
12560 @group
12561 with "liba", "libb";
12562 project My_Library is
12563 for Source_Dirs use ("headers");
12564 for Object_Dir use "headers";
12565 end My_Library;
12566 @end group
12567
12568 @group
12569 project Liba is
12570 for Source_Dirs use ();
12571 for Library_Dir use "lib";
12572 for Library_Name use "a";
12573 for Library_Kind use "static";
12574 end Liba;
12575 @end group
12576
12577 @group
12578 project Libb is
12579 for Source_Dirs use ();
12580 for Library_Dir use "lib";
12581 for Library_Name use "b";
12582 for Library_Kind use "static";
12583 end Libb;
12584 @end group
12585 @end smallexample
12586
12587 @c *******************************
12588 @c * Stand-alone Library Projects *
12589 @c *******************************
12590
12591 @node Stand-alone Library Projects
12592 @section Stand-alone Library Projects
12593
12594 @noindent
12595 A Stand-alone Library is a library that contains the necessary code to
12596 elaborate the Ada units that are included in the library. A Stand-alone
12597 Library is suitable to be used in an executable when the main is not
12598 in Ada. However, Stand-alone Libraries may also be used with an Ada main
12599 subprogram.
12600
12601 A Stand-alone Library Project is a Library Project where the library is
12602 a Stand-alone Library.
12603
12604 To be a Stand-alone Library Project, in addition to the two attributes
12605 that make a project a Library Project (@code{Library_Name} and
12606 @code{Library_Dir}, see @ref{Library Projects}), the attribute
12607 @code{Library_Interface} must be defined.
12608
12609 @smallexample @c projectfile
12610 @group
12611 for Library_Dir use "lib_dir";
12612 for Library_Name use "dummy";
12613 for Library_Interface use ("int1", "int1.child");
12614 @end group
12615 @end smallexample
12616
12617 Attribute @code{Library_Interface} has a non empty string list value,
12618 each string in the list designating a unit contained in an immediate source
12619 of the project file.
12620
12621 When a Stand-alone Library is built, first the binder is invoked to build
12622 a package whose name depends on the library name
12623 (^b~dummy.ads/b^B$DUMMY.ADS/B^ in the example above).
12624 This binder-generated package includes initialization and
12625 finalization procedures whose
12626 names depend on the library name (dummyinit and dummyfinal in the example
12627 above). The object corresponding to this package is included in the library.
12628
12629 A dynamic or relocatable Stand-alone Library is automatically initialized
12630 if automatic initialization of Stand-alone Libraries is supported on the
12631 platform and if attribute @code{Library_Auto_Init} is not specified or
12632 is specified with the value "true". A static Stand-alone Library is never
12633 automatically initialized.
12634
12635 Single string attribute @code{Library_Auto_Init} may be specified with only
12636 two possible values: "false" or "true" (case-insensitive). Specifying
12637 "false" for attribute @code{Library_Auto_Init} will prevent automatic
12638 initialization of dynamic or relocatable libraries.
12639
12640 When a non automatically initialized Stand-alone Library is used
12641 in an executable, its initialization procedure must be called before
12642 any service of the library is used.
12643 When the main subprogram is in Ada, it may mean that the initialization
12644 procedure has to be called during elaboration of another package.
12645
12646 For a Stand-Alone Library, only the @file{ALI} files of the Interface Units
12647 (those that are listed in attribute @code{Library_Interface}) are copied to
12648 the Library Directory. As a consequence, only the Interface Units may be
12649 imported from Ada units outside of the library. If other units are imported,
12650 the binding phase will fail.
12651
12652 When a Stand-Alone Library is bound, the switches that are specified in
12653 the attribute @code{Default_Switches ("Ada")} in package @code{Binder} are
12654 used in the call to @command{gnatbind}.
12655
12656 The string list attribute @code{Library_Options} may be used to specified
12657 additional switches to the call to @command{gcc} to link the library.
12658
12659 The attribute @code{Library_Src_Dir}, may be specified for a
12660 Stand-Alone Library. @code{Library_Src_Dir} is a simple attribute that has a
12661 single string value. Its value must be the path (absolute or relative to the
12662 project directory) of an existing directory. This directory cannot be the
12663 object directory or one of the source directories, but it can be the same as
12664 the library directory. The sources of the Interface
12665 Units of the library, necessary to an Ada client of the library, will be
12666 copied to the designated directory, called Interface Copy directory.
12667 These sources includes the specs of the Interface Units, but they may also
12668 include bodies and subunits, when pragmas @code{Inline} or @code{Inline_Always}
12669 are used, or when there is a generic units in the spec. Before the sources
12670 are copied to the Interface Copy directory, an attempt is made to delete all
12671 files in the Interface Copy directory.
12672
12673 @c *************************************
12674 @c * Switches Related to Project Files *
12675 @c *************************************
12676 @node Switches Related to Project Files
12677 @section Switches Related to Project Files
12678
12679 @noindent
12680 The following switches are used by GNAT tools that support project files:
12681
12682 @table @option
12683
12684 @item ^-P^/PROJECT_FILE=^@var{project}
12685 @cindex @option{^-P^/PROJECT_FILE^} (any tool supporting project files)
12686 Indicates the name of a project file. This project file will be parsed with
12687 the verbosity indicated by @option{^-vP^MESSAGE_PROJECT_FILES=^@emph{x}},
12688 if any, and using the external references indicated
12689 by @option{^-X^/EXTERNAL_REFERENCE^} switches, if any.
12690 @ifclear vms
12691 There may zero, one or more spaces between @option{-P} and @var{project}.
12692 @end ifclear
12693
12694 @noindent
12695 There must be only one @option{^-P^/PROJECT_FILE^} switch on the command line.
12696
12697 @noindent
12698 Since the Project Manager parses the project file only after all the switches
12699 on the command line are checked, the order of the switches
12700 @option{^-P^/PROJECT_FILE^},
12701 @option{^-vP^/MESSAGES_PROJECT_FILE=^@emph{x}}
12702 or @option{^-X^/EXTERNAL_REFERENCE^} is not significant.
12703
12704 @item ^-X^/EXTERNAL_REFERENCE=^@var{name=value}
12705 @cindex @option{^-X^/EXTERNAL_REFERENCE^} (any tool supporting project files)
12706 Indicates that external variable @var{name} has the value @var{value}.
12707 The Project Manager will use this value for occurrences of
12708 @code{external(name)} when parsing the project file.
12709
12710 @ifclear vms
12711 @noindent
12712 If @var{name} or @var{value} includes a space, then @var{name=value} should be
12713 put between quotes.
12714 @smallexample
12715 -XOS=NT
12716 -X"user=John Doe"
12717 @end smallexample
12718 @end ifclear
12719
12720 @noindent
12721 Several @option{^-X^/EXTERNAL_REFERENCE^} switches can be used simultaneously.
12722 If several @option{^-X^/EXTERNAL_REFERENCE^} switches specify the same
12723 @var{name}, only the last one is used.
12724
12725 @noindent
12726 An external variable specified with a @option{^-X^/EXTERNAL_REFERENCE^} switch
12727 takes precedence over the value of the same name in the environment.
12728
12729 @item ^-vP^/MESSAGES_PROJECT_FILE=^@emph{x}
12730 @cindex @code{^-vP^/MESSAGES_PROJECT_FILE^} (any tool supporting project files)
12731 @c Previous line uses code vs option command, to stay less than 80 chars
12732 Indicates the verbosity of the parsing of GNAT project files.
12733
12734 @ifclear vms
12735 @option{-vP0} means Default;
12736 @option{-vP1} means Medium;
12737 @option{-vP2} means High.
12738 @end ifclear
12739
12740 @ifset vms
12741 There are three possible options for this qualifier: DEFAULT, MEDIUM and
12742 HIGH.
12743 @end ifset
12744
12745 @noindent
12746 The default is ^Default^DEFAULT^: no output for syntactically correct
12747 project files.
12748 @noindent
12749 If several @option{^-vP^/MESSAGES_PROJECT_FILE=^@emph{x}} switches are present,
12750 only the last one is used.
12751
12752 @end table
12753
12754 @c **********************************
12755 @c * Tools Supporting Project Files *
12756 @c **********************************
12757
12758 @node Tools Supporting Project Files
12759 @section Tools Supporting Project Files
12760
12761 @menu
12762 * gnatmake and Project Files::
12763 * The GNAT Driver and Project Files::
12764 @ifclear vms
12765 * Glide and Project Files::
12766 @end ifclear
12767 @end menu
12768
12769 @node gnatmake and Project Files
12770 @subsection gnatmake and Project Files
12771
12772 @noindent
12773 This section covers several topics related to @command{gnatmake} and
12774 project files: defining ^switches^switches^ for @command{gnatmake}
12775 and for the tools that it invokes; specifying configuration pragmas;
12776 the use of the @code{Main} attribute; building and rebuilding library project
12777 files.
12778
12779 @menu
12780 * ^Switches^Switches^ and Project Files::
12781 * Specifying Configuration Pragmas::
12782 * Project Files and Main Subprograms::
12783 * Library Project Files::
12784 @end menu
12785
12786 @node ^Switches^Switches^ and Project Files
12787 @subsubsection ^Switches^Switches^ and Project Files
12788
12789 @ifset vms
12790 It is not currently possible to specify VMS style qualifiers in the project
12791 files; only Unix style ^switches^switches^ may be specified.
12792 @end ifset
12793
12794 @noindent
12795 For each of the packages @code{Builder}, @code{Compiler}, @code{Binder}, and
12796 @code{Linker}, you can specify a @code{^Default_Switches^Default_Switches^}
12797 attribute, a @code{^Switches^Switches^} attribute, or both;
12798 as their names imply, these ^switch^switch^-related
12799 attributes affect the ^switches^switches^ that are used for each of these GNAT
12800 components when
12801 @command{gnatmake} is invoked. As will be explained below, these
12802 component-specific ^switches^switches^ precede
12803 the ^switches^switches^ provided on the @command{gnatmake} command line.
12804
12805 The @code{^Default_Switches^Default_Switches^} attribute is an associative
12806 array indexed by language name (case insensitive) whose value is a string list.
12807 For example:
12808
12809 @smallexample @c projectfile
12810 @group
12811 package Compiler is
12812 for ^Default_Switches^Default_Switches^ ("Ada")
12813 use ("^-gnaty^-gnaty^",
12814 "^-v^-v^");
12815 end Compiler;
12816 @end group
12817 @end smallexample
12818
12819 @noindent
12820 The @code{^Switches^Switches^} attribute is also an associative array,
12821 indexed by a file name (which may or may not be case sensitive, depending
12822 on the operating system) whose value is a string list. For example:
12823
12824 @smallexample @c projectfile
12825 @group
12826 package Builder is
12827 for ^Switches^Switches^ ("main1.adb")
12828 use ("^-O2^-O2^");
12829 for ^Switches^Switches^ ("main2.adb")
12830 use ("^-g^-g^");
12831 end Builder;
12832 @end group
12833 @end smallexample
12834
12835 @noindent
12836 For the @code{Builder} package, the file names must designate source files
12837 for main subprograms. For the @code{Binder} and @code{Linker} packages, the
12838 file names must designate @file{ALI} or source files for main subprograms.
12839 In each case just the file name without an explicit extension is acceptable.
12840
12841 For each tool used in a program build (@command{gnatmake}, the compiler, the
12842 binder, and the linker), the corresponding package @dfn{contributes} a set of
12843 ^switches^switches^ for each file on which the tool is invoked, based on the
12844 ^switch^switch^-related attributes defined in the package.
12845 In particular, the ^switches^switches^
12846 that each of these packages contributes for a given file @var{f} comprise:
12847
12848 @itemize @bullet
12849 @item
12850 the value of attribute @code{^Switches^Switches^ (@var{f})},
12851 if it is specified in the package for the given file,
12852 @item
12853 otherwise, the value of @code{^Default_Switches^Default_Switches^ ("Ada")},
12854 if it is specified in the package.
12855 @end itemize
12856
12857 @noindent
12858 If neither of these attributes is defined in the package, then the package does
12859 not contribute any ^switches^switches^ for the given file.
12860
12861 When @command{gnatmake} is invoked on a file, the ^switches^switches^ comprise
12862 two sets, in the following order: those contributed for the file
12863 by the @code{Builder} package;
12864 and the switches passed on the command line.
12865
12866 When @command{gnatmake} invokes a tool (compiler, binder, linker) on a file,
12867 the ^switches^switches^ passed to the tool comprise three sets,
12868 in the following order:
12869
12870 @enumerate
12871 @item
12872 the applicable ^switches^switches^ contributed for the file
12873 by the @code{Builder} package in the project file supplied on the command line;
12874
12875 @item
12876 those contributed for the file by the package (in the relevant project file --
12877 see below) corresponding to the tool; and
12878
12879 @item
12880 the applicable switches passed on the command line.
12881 @end enumerate
12882
12883 @noindent
12884 The term @emph{applicable ^switches^switches^} reflects the fact that
12885 @command{gnatmake} ^switches^switches^ may or may not be passed to individual
12886 tools, depending on the individual ^switch^switch^.
12887
12888 @command{gnatmake} may invoke the compiler on source files from different
12889 projects. The Project Manager will use the appropriate project file to
12890 determine the @code{Compiler} package for each source file being compiled.
12891 Likewise for the @code{Binder} and @code{Linker} packages.
12892
12893 As an example, consider the following package in a project file:
12894
12895 @smallexample @c projectfile
12896 @group
12897 project Proj1 is
12898 package Compiler is
12899 for ^Default_Switches^Default_Switches^ ("Ada")
12900 use ("^-g^-g^");
12901 for ^Switches^Switches^ ("a.adb")
12902 use ("^-O1^-O1^");
12903 for ^Switches^Switches^ ("b.adb")
12904 use ("^-O2^-O2^",
12905 "^-gnaty^-gnaty^");
12906 end Compiler;
12907 end Proj1;
12908 @end group
12909 @end smallexample
12910
12911 @noindent
12912 If @command{gnatmake} is invoked with this project file, and it needs to
12913 compile, say, the files @file{a.adb}, @file{b.adb}, and @file{c.adb}, then
12914 @file{a.adb} will be compiled with the ^switch^switch^
12915 @option{^-O1^-O1^},
12916 @file{b.adb} with ^switches^switches^
12917 @option{^-O2^-O2^}
12918 and @option{^-gnaty^-gnaty^},
12919 and @file{c.adb} with @option{^-g^-g^}.
12920
12921 The following example illustrates the ordering of the ^switches^switches^
12922 contributed by different packages:
12923
12924 @smallexample @c projectfile
12925 @group
12926 project Proj2 is
12927 package Builder is
12928 for ^Switches^Switches^ ("main.adb")
12929 use ("^-g^-g^",
12930 "^-O1^-)1^",
12931 "^-f^-f^");
12932 end Builder;
12933 @end group
12934
12935 @group
12936 package Compiler is
12937 for ^Switches^Switches^ ("main.adb")
12938 use ("^-O2^-O2^");
12939 end Compiler;
12940 end Proj2;
12941 @end group
12942 @end smallexample
12943
12944 @noindent
12945 If you issue the command:
12946
12947 @smallexample
12948 gnatmake ^-Pproj2^/PROJECT_FILE=PROJ2^ -O0 main
12949 @end smallexample
12950
12951 @noindent
12952 then the compiler will be invoked on @file{main.adb} with the following
12953 sequence of ^switches^switches^
12954
12955 @smallexample
12956 ^-g -O1 -O2 -O0^-g -O1 -O2 -O0^
12957 @end smallexample
12958
12959 with the last @option{^-O^-O^}
12960 ^switch^switch^ having precedence over the earlier ones;
12961 several other ^switches^switches^
12962 (such as @option{^-c^-c^}) are added implicitly.
12963
12964 The ^switches^switches^
12965 @option{^-g^-g^}
12966 and @option{^-O1^-O1^} are contributed by package
12967 @code{Builder}, @option{^-O2^-O2^} is contributed
12968 by the package @code{Compiler}
12969 and @option{^-O0^-O0^} comes from the command line.
12970
12971 The @option{^-g^-g^}
12972 ^switch^switch^ will also be passed in the invocation of
12973 @command{Gnatlink.}
12974
12975 A final example illustrates switch contributions from packages in different
12976 project files:
12977
12978 @smallexample @c projectfile
12979 @group
12980 project Proj3 is
12981 for Source_Files use ("pack.ads", "pack.adb");
12982 package Compiler is
12983 for ^Default_Switches^Default_Switches^ ("Ada")
12984 use ("^-gnata^-gnata^");
12985 end Compiler;
12986 end Proj3;
12987 @end group
12988
12989 @group
12990 with "Proj3";
12991 project Proj4 is
12992 for Source_Files use ("foo_main.adb", "bar_main.adb");
12993 package Builder is
12994 for ^Switches^Switches^ ("foo_main.adb")
12995 use ("^-s^-s^",
12996 "^-g^-g^");
12997 end Builder;
12998 end Proj4;
12999 @end group
13000
13001 @group
13002 -- Ada source file:
13003 with Pack;
13004 procedure Foo_Main is
13005 ...
13006 end Foo_Main;
13007 @end group
13008 @end smallexample
13009
13010 If the command is
13011 @smallexample
13012 gnatmake ^-PProj4^/PROJECT_FILE=PROJ4^ foo_main.adb -cargs -gnato
13013 @end smallexample
13014
13015 @noindent
13016 then the ^switches^switches^ passed to the compiler for @file{foo_main.adb} are
13017 @option{^-g^-g^} (contributed by the package @code{Proj4.Builder}) and
13018 @option{^-gnato^-gnato^} (passed on the command line).
13019 When the imported package @code{Pack} is compiled, the ^switches^switches^ used
13020 are @option{^-g^-g^} from @code{Proj4.Builder},
13021 @option{^-gnata^-gnata^} (contributed from package @code{Proj3.Compiler},
13022 and @option{^-gnato^-gnato^} from the command line.
13023
13024 @noindent
13025 When using @command{gnatmake} with project files, some ^switches^switches^ or
13026 arguments may be expressed as relative paths. As the working directory where
13027 compilation occurs may change, these relative paths are converted to absolute
13028 paths. For the ^switches^switches^ found in a project file, the relative paths
13029 are relative to the project file directory, for the switches on the command
13030 line, they are relative to the directory where @command{gnatmake} is invoked.
13031 The ^switches^switches^ for which this occurs are:
13032 ^-I^-I^,
13033 ^-A^-A^,
13034 ^-L^-L^,
13035 ^-aO^-aO^,
13036 ^-aL^-aL^,
13037 ^-aI^-aI^, as well as all arguments that are not switches (arguments to
13038 ^switch^switch^
13039 ^-o^-o^, object files specified in package @code{Linker} or after
13040 -largs on the command line). The exception to this rule is the ^switch^switch^
13041 ^--RTS=^--RTS=^ for which a relative path argument is never converted.
13042
13043 @node Specifying Configuration Pragmas
13044 @subsubsection Specifying Configuration Pragmas
13045
13046 When using @command{gnatmake} with project files, if there exists a file
13047 @file{gnat.adc} that contains configuration pragmas, this file will be
13048 ignored.
13049
13050 Configuration pragmas can be defined by means of the following attributes in
13051 project files: @code{Global_Configuration_Pragmas} in package @code{Builder}
13052 and @code{Local_Configuration_Pragmas} in package @code{Compiler}.
13053
13054 Both these attributes are single string attributes. Their values is the path
13055 name of a file containing configuration pragmas. If a path name is relative,
13056 then it is relative to the project directory of the project file where the
13057 attribute is defined.
13058
13059 When compiling a source, the configuration pragmas used are, in order,
13060 those listed in the file designated by attribute
13061 @code{Global_Configuration_Pragmas} in package @code{Builder} of the main
13062 project file, if it is specified, and those listed in the file designated by
13063 attribute @code{Local_Configuration_Pragmas} in package @code{Compiler} of
13064 the project file of the source, if it exists.
13065
13066 @node Project Files and Main Subprograms
13067 @subsubsection Project Files and Main Subprograms
13068
13069 @noindent
13070 When using a project file, you can invoke @command{gnatmake}
13071 with one or several main subprograms, by specifying their source files on the
13072 command line.
13073
13074 @smallexample
13075 gnatmake ^-P^/PROJECT_FILE=^prj main1 main2 main3
13076 @end smallexample
13077
13078 @noindent
13079 Each of these needs to be a source file of the same project, except
13080 when the switch ^-u^/UNIQUE^ is used.
13081
13082 @noindent
13083 When ^-u^/UNIQUE^ is not used, all the mains need to be sources of the
13084 same project, one of the project in the tree rooted at the project specified
13085 on the command line. The package @code{Builder} of this common project, the
13086 "main project" is the one that is considered by @command{gnatmake}.
13087
13088 @noindent
13089 When ^-u^/UNIQUE^ is used, the specified source files may be in projects
13090 imported directly or indirectly by the project specified on the command line.
13091 Note that if such a source file is not part of the project specified on the
13092 command line, the ^switches^switches^ found in package @code{Builder} of the
13093 project specified on the command line, if any, that are transmitted
13094 to the compiler will still be used, not those found in the project file of
13095 the source file.
13096
13097 @noindent
13098 When using a project file, you can also invoke @command{gnatmake} without
13099 explicitly specifying any main, and the effect depends on whether you have
13100 defined the @code{Main} attribute. This attribute has a string list value,
13101 where each element in the list is the name of a source file (the file
13102 extension is optional) that contains a unit that can be a main subprogram.
13103
13104 If the @code{Main} attribute is defined in a project file as a non-empty
13105 string list and the switch @option{^-u^/UNIQUE^} is not used on the command
13106 line, then invoking @command{gnatmake} with this project file but without any
13107 main on the command line is equivalent to invoking @command{gnatmake} with all
13108 the file names in the @code{Main} attribute on the command line.
13109
13110 Example:
13111 @smallexample @c projectfile
13112 @group
13113 project Prj is
13114 for Main use ("main1", "main2", "main3");
13115 end Prj;
13116 @end group
13117 @end smallexample
13118
13119 @noindent
13120 With this project file, @code{"gnatmake ^-Pprj^/PROJECT_FILE=PRJ^"}
13121 is equivalent to
13122 @code{"gnatmake ^-Pprj^/PROJECT_FILE=PRJ^ main1 main2 main3"}.
13123
13124 When the project attribute @code{Main} is not specified, or is specified
13125 as an empty string list, or when the switch @option{-u} is used on the command
13126 line, then invoking @command{gnatmake} with no main on the command line will
13127 result in all immediate sources of the project file being checked, and
13128 potentially recompiled. Depending on the presence of the switch @option{-u},
13129 sources from other project files on which the immediate sources of the main
13130 project file depend are also checked and potentially recompiled. In other
13131 words, the @option{-u} switch is applied to all of the immediate sources of the
13132 main project file.
13133
13134 When no main is specified on the command line and attribute @code{Main} exists
13135 and includes several mains, or when several mains are specified on the
13136 command line, the default ^switches^switches^ in package @code{Builder} will
13137 be used for all mains, even if there are specific ^switches^switches^
13138 specified for one or several mains.
13139
13140 But the ^switches^switches^ from package @code{Binder} or @code{Linker} will be
13141 the specific ^switches^switches^ for each main, if they are specified.
13142
13143 @node Library Project Files
13144 @subsubsection Library Project Files
13145
13146 @noindent
13147 When @command{gnatmake} is invoked with a main project file that is a library
13148 project file, it is not allowed to specify one or more mains on the command
13149 line.
13150
13151 @noindent
13152 When a library project file is specified, switches ^-b^/ACTION=BIND^ and
13153 ^-l^/ACTION=LINK^ have special meanings.
13154
13155 @itemize @bullet
13156 @item ^-b^/ACTION=BIND^ is only allwed for stand-alone libraries. It indicates
13157 to @command{gnatmake} that @command{gnatbind} should be invoked for the
13158 library.
13159
13160 @item ^-l^/ACTION=LINK^ may be used for all library projects. It indicates
13161 to @command{gnatmake} that the binder generated file should be compiled
13162 (in the case of a stand-alone library) and that the library should be built.
13163
13164 @end itemize
13165
13166 @node The GNAT Driver and Project Files
13167 @subsection The GNAT Driver and Project Files
13168
13169 @noindent
13170 A number of GNAT tools, other than @command{^gnatmake^gnatmake^}
13171 are project-aware:
13172 @command{^gnatbind^gnatbind^},
13173 @command{^gnatfind^gnatfind^},
13174 @command{^gnatlink^gnatlink^},
13175 @command{^gnatls^gnatls^},
13176 @command{^gnatelim^gnatelim^},
13177 @command{^gnatpp^gnatpp^},
13178 and @command{^gnatxref^gnatxref^}. However, none of these tools can be invoked
13179 directly with a project file switch (@option{^-P^/PROJECT_FILE=^}).
13180 They must be invoked through the @command{gnat} driver.
13181
13182 The @command{gnat} driver is a front-end that accepts a number of commands and
13183 call the corresponding tool. It has been designed initially for VMS to convert
13184 VMS style qualifiers to Unix style switches, but it is now available to all
13185 the GNAT supported platforms.
13186
13187 On non VMS platforms, the @command{gnat} driver accepts the following commands
13188 (case insensitive):
13189
13190 @itemize @bullet
13191 @item
13192 BIND to invoke @command{^gnatbind^gnatbind^}
13193 @item
13194 CHOP to invoke @command{^gnatchop^gnatchop^}
13195 @item
13196 CLEAN to invoke @command{^gnatclean^gnatclean^}
13197 @item
13198 COMP or COMPILE to invoke the compiler
13199 @item
13200 ELIM to invoke @command{^gnatelim^gnatelim^}
13201 @item
13202 FIND to invoke @command{^gnatfind^gnatfind^}
13203 @item
13204 KR or KRUNCH to invoke @command{^gnatkr^gnatkr^}
13205 @item
13206 LINK to invoke @command{^gnatlink^gnatlink^}
13207 @item
13208 LS or LIST to invoke @command{^gnatls^gnatls^}
13209 @item
13210 MAKE to invoke @command{^gnatmake^gnatmake^}
13211 @item
13212 NAME to invoke @command{^gnatname^gnatname^}
13213 @item
13214 PREP or PREPROCESS to invoke @command{^gnatprep^gnatprep^}
13215 @item
13216 PP or PRETTY to invoke @command{^gnatpp^gnatpp^}
13217 @item
13218 STUB to invoke @command{^gnatstub^gnatstub^}
13219 @item
13220 XREF to invoke @command{^gnatxref^gnatxref^}
13221 @end itemize
13222
13223 @noindent
13224 Note that the compiler is invoked using the command
13225 @command{^gnatmake -f -u -c^gnatmake -f -u -c^}.
13226
13227 @noindent
13228 The command may be followed by switches and arguments for the invoked
13229 tool.
13230
13231 @smallexample
13232 gnat bind -C main.ali
13233 gnat ls -a main
13234 gnat chop foo.txt
13235 @end smallexample
13236
13237 @noindent
13238 Switches may also be put in text files, one switch per line, and the text
13239 files may be specified with their path name preceded by '@@'.
13240
13241 @smallexample
13242 gnat bind @@args.txt main.ali
13243 @end smallexample
13244
13245 @noindent
13246 In addition, for command BIND, COMP or COMPILE, FIND, ELIM, LS or LIST, LINK,
13247 PP or PRETTY and XREF, the project file related switches
13248 (@option{^-P^/PROJECT_FILE^},
13249 @option{^-X^/EXTERNAL_REFERENCE^} and
13250 @option{^-vP^/MESSAGES_PROJECT_FILE=^x}) may be used in addition to
13251 the switches of the invoking tool.
13252
13253 @noindent
13254 When GNAT PP or GNAT PRETTY is used with a project file, but with no source
13255 specified on the command line, it invokes @command{^gnatpp^gnatpp^} with all
13256 the immediate sources of the specified project file.
13257
13258 @noindent
13259 For each of these commands, there is optionally a corresponding package
13260 in the main project.
13261
13262 @itemize @bullet
13263 @item
13264 package @code{Binder} for command BIND (invoking @code{^gnatbind^gnatbind^})
13265
13266 @item
13267 package @code{Compiler} for command COMP or COMPILE (invoking the compiler)
13268
13269 @item
13270 package @code{Finder} for command FIND (invoking @code{^gnatfind^gnatfind^})
13271
13272 @item
13273 package @code{Eliminate} for command ELIM (invoking
13274 @code{^gnatelim^gnatelim^})
13275
13276 @item
13277 package @code{Gnatls} for command LS or LIST (invoking @code{^gnatls^gnatls^})
13278
13279 @item
13280 package @code{Linker} for command LINK (invoking @code{^gnatlink^gnatlink^})
13281
13282 @item
13283 package @code{Pretty_Printer} for command PP or PRETTY
13284 (invoking @code{^gnatpp^gnatpp^})
13285
13286 @item
13287 package @code{Cross_Reference} for command XREF (invoking
13288 @code{^gnatxref^gnatxref^})
13289
13290 @end itemize
13291
13292 @noindent
13293 Package @code{Gnatls} has a unique attribute @code{^Switches^Switches^},
13294 a simple variable with a string list value. It contains ^switches^switches^
13295 for the invocation of @code{^gnatls^gnatls^}.
13296
13297 @smallexample @c projectfile
13298 @group
13299 project Proj1 is
13300 package gnatls is
13301 for ^Switches^Switches^
13302 use ("^-a^-a^",
13303 "^-v^-v^");
13304 end gnatls;
13305 end Proj1;
13306 @end group
13307 @end smallexample
13308
13309 @noindent
13310 All other packages have two attribute @code{^Switches^Switches^} and
13311 @code{^Default_Switches^Default_Switches^}.
13312
13313 @noindent
13314 @code{^Switches^Switches^} is an associated array attribute, indexed by the
13315 source file name, that has a string list value: the ^switches^switches^ to be
13316 used when the tool corresponding to the package is invoked for the specific
13317 source file.
13318
13319 @noindent
13320 @code{^Default_Switches^Default_Switches^} is an associative array attribute,
13321 indexed by the programming language that has a string list value.
13322 @code{^Default_Switches^Default_Switches^ ("Ada")} contains the
13323 ^switches^switches^ for the invocation of the tool corresponding
13324 to the package, except if a specific @code{^Switches^Switches^} attribute
13325 is specified for the source file.
13326
13327 @smallexample @c projectfile
13328 @group
13329 project Proj is
13330
13331 for Source_Dirs use ("./**");
13332
13333 package gnatls is
13334 for ^Switches^Switches^ use
13335 ("^-a^-a^",
13336 "^-v^-v^");
13337 end gnatls;
13338 @end group
13339 @group
13340
13341 package Compiler is
13342 for ^Default_Switches^Default_Switches^ ("Ada")
13343 use ("^-gnatv^-gnatv^",
13344 "^-gnatwa^-gnatwa^");
13345 end Binder;
13346 @end group
13347 @group
13348
13349 package Binder is
13350 for ^Default_Switches^Default_Switches^ ("Ada")
13351 use ("^-C^-C^",
13352 "^-e^-e^");
13353 end Binder;
13354 @end group
13355 @group
13356
13357 package Linker is
13358 for ^Default_Switches^Default_Switches^ ("Ada")
13359 use ("^-C^-C^");
13360 for ^Switches^Switches^ ("main.adb")
13361 use ("^-C^-C^",
13362 "^-v^-v^",
13363 "^-v^-v^");
13364 end Linker;
13365 @end group
13366 @group
13367
13368 package Finder is
13369 for ^Default_Switches^Default_Switches^ ("Ada")
13370 use ("^-a^-a^",
13371 "^-f^-f^");
13372 end Finder;
13373 @end group
13374 @group
13375
13376 package Cross_Reference is
13377 for ^Default_Switches^Default_Switches^ ("Ada")
13378 use ("^-a^-a^",
13379 "^-f^-f^",
13380 "^-d^-d^",
13381 "^-u^-u^");
13382 end Cross_Reference;
13383 end Proj;
13384 @end group
13385 @end smallexample
13386
13387 @noindent
13388 With the above project file, commands such as
13389
13390 @smallexample
13391 ^gnat comp -Pproj main^GNAT COMP /PROJECT_FILE=PROJ MAIN^
13392 ^gnat ls -Pproj main^GNAT LIST /PROJECT_FILE=PROJ MAIN^
13393 ^gnat xref -Pproj main^GNAT XREF /PROJECT_FILE=PROJ MAIN^
13394 ^gnat bind -Pproj main.ali^GNAT BIND /PROJECT_FILE=PROJ MAIN.ALI^
13395 ^gnat link -Pproj main.ali^GNAT LINK /PROJECT_FILE=PROJ MAIN.ALI^
13396 @end smallexample
13397
13398 @noindent
13399 will set up the environment properly and invoke the tool with the switches
13400 found in the package corresponding to the tool:
13401 @code{^Default_Switches^Default_Switches^ ("Ada")} for all tools,
13402 except @code{^Switches^Switches^ ("main.adb")}
13403 for @code{^gnatlink^gnatlink^}.
13404
13405 @ifclear vms
13406 @node Glide and Project Files
13407 @subsection Glide and Project Files
13408
13409 @noindent
13410 Glide will automatically recognize the @file{.gpr} extension for
13411 project files, and will
13412 convert them to its own internal format automatically. However, it
13413 doesn't provide a syntax-oriented editor for modifying these
13414 files.
13415 The project file will be loaded as text when you select the menu item
13416 @code{Ada} @result{} @code{Project} @result{} @code{Edit}.
13417 You can edit this text and save the @file{gpr} file;
13418 when you next select this project file in Glide it
13419 will be automatically reloaded.
13420 @end ifclear
13421
13422 @c **********************
13423 @node An Extended Example
13424 @section An Extended Example
13425
13426 @noindent
13427 Suppose that we have two programs, @var{prog1} and @var{prog2},
13428 whose sources are in corresponding directories. We would like
13429 to build them with a single @command{gnatmake} command, and we want to place
13430 their object files into @file{build} subdirectories of the source directories.
13431 Furthermore, we want to have to have two separate subdirectories
13432 in @file{build} -- @file{release} and @file{debug} -- which will contain
13433 the object files compiled with different set of compilation flags.
13434
13435 In other words, we have the following structure:
13436
13437 @smallexample
13438 @group
13439 main
13440 |- prog1
13441 | |- build
13442 | | debug
13443 | | release
13444 |- prog2
13445 |- build
13446 | debug
13447 | release
13448 @end group
13449 @end smallexample
13450
13451 @noindent
13452 Here are the project files that we must place in a directory @file{main}
13453 to maintain this structure:
13454
13455 @enumerate
13456
13457 @item We create a @code{Common} project with a package @code{Compiler} that
13458 specifies the compilation ^switches^switches^:
13459
13460 @smallexample
13461 File "common.gpr":
13462 @group
13463 @b{project} Common @b{is}
13464
13465 @b{for} Source_Dirs @b{use} (); -- No source files
13466 @end group
13467
13468 @group
13469 @b{type} Build_Type @b{is} ("release", "debug");
13470 Build : Build_Type := External ("BUILD", "debug");
13471 @end group
13472 @group
13473 @b{package} Compiler @b{is}
13474 @b{case} Build @b{is}
13475 @b{when} "release" =>
13476 @b{for} ^Default_Switches^Default_Switches^ ("Ada")
13477 @b{use} ("^-O2^-O2^");
13478 @b{when} "debug" =>
13479 @b{for} ^Default_Switches^Default_Switches^ ("Ada")
13480 @b{use} ("^-g^-g^");
13481 @b{end case};
13482 @b{end} Compiler;
13483
13484 @b{end} Common;
13485 @end group
13486 @end smallexample
13487
13488 @item We create separate projects for the two programs:
13489
13490 @smallexample
13491 @group
13492 File "prog1.gpr":
13493
13494 @b{with} "common";
13495 @b{project} Prog1 @b{is}
13496
13497 @b{for} Source_Dirs @b{use} ("prog1");
13498 @b{for} Object_Dir @b{use} "prog1/build/" & Common.Build;
13499
13500 @b{package} Compiler @b{renames} Common.Compiler;
13501
13502 @b{end} Prog1;
13503 @end group
13504 @end smallexample
13505
13506 @smallexample
13507 @group
13508 File "prog2.gpr":
13509
13510 @b{with} "common";
13511 @b{project} Prog2 @b{is}
13512
13513 @b{for} Source_Dirs @b{use} ("prog2");
13514 @b{for} Object_Dir @b{use} "prog2/build/" & Common.Build;
13515
13516 @b{package} Compiler @b{renames} Common.Compiler;
13517
13518 @end group
13519 @b{end} Prog2;
13520 @end smallexample
13521
13522 @item We create a wrapping project @code{Main}:
13523
13524 @smallexample
13525 @group
13526 File "main.gpr":
13527
13528 @b{with} "common";
13529 @b{with} "prog1";
13530 @b{with} "prog2";
13531 @b{project} Main @b{is}
13532
13533 @b{package} Compiler @b{renames} Common.Compiler;
13534
13535 @b{end} Main;
13536 @end group
13537 @end smallexample
13538
13539 @item Finally we need to create a dummy procedure that @code{with}s (either
13540 explicitly or implicitly) all the sources of our two programs.
13541
13542 @end enumerate
13543
13544 @noindent
13545 Now we can build the programs using the command
13546
13547 @smallexample
13548 gnatmake ^-P^/PROJECT_FILE=^main dummy
13549 @end smallexample
13550
13551 @noindent
13552 for the Debug mode, or
13553
13554 @ifclear vms
13555 @smallexample
13556 gnatmake -Pmain -XBUILD=release
13557 @end smallexample
13558 @end ifclear
13559
13560 @ifset vms
13561 @smallexample
13562 GNAT MAKE /PROJECT_FILE=main /EXTERNAL_REFERENCE=BUILD=release
13563 @end smallexample
13564 @end ifset
13565
13566 @noindent
13567 for the Release mode.
13568
13569 @c ********************************
13570 @c * Project File Complete Syntax *
13571 @c ********************************
13572
13573 @node Project File Complete Syntax
13574 @section Project File Complete Syntax
13575
13576 @smallexample
13577 project ::=
13578 context_clause project_declaration
13579
13580 context_clause ::=
13581 @{with_clause@}
13582
13583 with_clause ::=
13584 @b{with} path_name @{ , path_name @} ;
13585
13586 path_name ::=
13587 string_literal
13588
13589 project_declaration ::=
13590 simple_project_declaration | project_extension
13591
13592 simple_project_declaration ::=
13593 @b{project} <project_>simple_name @b{is}
13594 @{declarative_item@}
13595 @b{end} <project_>simple_name;
13596
13597 project_extension ::=
13598 @b{project} <project_>simple_name @b{extends} path_name @b{is}
13599 @{declarative_item@}
13600 @b{end} <project_>simple_name;
13601
13602 declarative_item ::=
13603 package_declaration |
13604 typed_string_declaration |
13605 other_declarative_item
13606
13607 package_declaration ::=
13608 package_specification | package_renaming
13609
13610 package_specification ::=
13611 @b{package} package_identifier @b{is}
13612 @{simple_declarative_item@}
13613 @b{end} package_identifier ;
13614
13615 package_identifier ::=
13616 @code{Naming} | @code{Builder} | @code{Compiler} | @code{Binder} |
13617 @code{Linker} | @code{Finder} | @code{Cross_Reference} |
13618 @code{^gnatls^gnatls^} | @code{IDE} | @code{Pretty_Printer}
13619
13620 package_renaming ::==
13621 @b{package} package_identifier @b{renames}
13622 <project_>simple_name.package_identifier ;
13623
13624 typed_string_declaration ::=
13625 @b{type} <typed_string_>_simple_name @b{is}
13626 ( string_literal @{, string_literal@} );
13627
13628 other_declarative_item ::=
13629 attribute_declaration |
13630 typed_variable_declaration |
13631 variable_declaration |
13632 case_construction
13633
13634 attribute_declaration ::=
13635 full_associative_array_declaration |
13636 @b{for} attribute_designator @b{use} expression ;
13637
13638 full_associative_array_declaration ::=
13639 @b{for} <associative_array_attribute_>simple_name @b{use}
13640 <project_>simple_name [ . <package_>simple_Name ] ' <attribute_>simple_name ;
13641
13642 attribute_designator ::=
13643 <simple_attribute_>simple_name |
13644 <associative_array_attribute_>simple_name ( string_literal )
13645
13646 typed_variable_declaration ::=
13647 <typed_variable_>simple_name : <typed_string_>name := string_expression ;
13648
13649 variable_declaration ::=
13650 <variable_>simple_name := expression;
13651
13652 expression ::=
13653 term @{& term@}
13654
13655 term ::=
13656 literal_string |
13657 string_list |
13658 <variable_>name |
13659 external_value |
13660 attribute_reference
13661
13662 string_literal ::=
13663 (same as Ada)
13664
13665 string_list ::=
13666 ( <string_>expression @{ , <string_>expression @} )
13667
13668 external_value ::=
13669 @b{external} ( string_literal [, string_literal] )
13670
13671 attribute_reference ::=
13672 attribute_prefix ' <simple_attribute_>simple_name [ ( literal_string ) ]
13673
13674 attribute_prefix ::=
13675 @b{project} |
13676 <project_>simple_name | package_identifier |
13677 <project_>simple_name . package_identifier
13678
13679 case_construction ::=
13680 @b{case} <typed_variable_>name @b{is}
13681 @{case_item@}
13682 @b{end case} ;
13683
13684 case_item ::=
13685 @b{when} discrete_choice_list =>
13686 @{case_construction | attribute_declaration@}
13687
13688 discrete_choice_list ::=
13689 string_literal @{| string_literal@} |
13690 @b{others}
13691
13692 name ::=
13693 simple_name @{. simple_name@}
13694
13695 simple_name ::=
13696 identifier (same as Ada)
13697
13698 @end smallexample
13699
13700
13701 @node The Cross-Referencing Tools gnatxref and gnatfind
13702 @chapter The Cross-Referencing Tools @code{gnatxref} and @code{gnatfind}
13703 @findex gnatxref
13704 @findex gnatfind
13705
13706 @noindent
13707 The compiler generates cross-referencing information (unless
13708 you set the @samp{-gnatx} switch), which are saved in the @file{.ali} files.
13709 This information indicates where in the source each entity is declared and
13710 referenced. Note that entities in package Standard are not included, but
13711 entities in all other predefined units are included in the output.
13712
13713 Before using any of these two tools, you need to compile successfully your
13714 application, so that GNAT gets a chance to generate the cross-referencing
13715 information.
13716
13717 The two tools @code{gnatxref} and @code{gnatfind} take advantage of this
13718 information to provide the user with the capability to easily locate the
13719 declaration and references to an entity. These tools are quite similar,
13720 the difference being that @code{gnatfind} is intended for locating
13721 definitions and/or references to a specified entity or entities, whereas
13722 @code{gnatxref} is oriented to generating a full report of all
13723 cross-references.
13724
13725 To use these tools, you must not compile your application using the
13726 @option{-gnatx} switch on the @file{gnatmake} command line
13727 (see @ref{The GNAT Make Program gnatmake}). Otherwise, cross-referencing
13728 information will not be generated.
13729
13730 @menu
13731 * gnatxref Switches::
13732 * gnatfind Switches::
13733 * Project Files for gnatxref and gnatfind::
13734 * Regular Expressions in gnatfind and gnatxref::
13735 * Examples of gnatxref Usage::
13736 * Examples of gnatfind Usage::
13737 @end menu
13738
13739 @node gnatxref Switches
13740 @section @code{gnatxref} Switches
13741
13742 @noindent
13743 The command invocation for @code{gnatxref} is:
13744 @smallexample
13745 $ gnatxref [switches] sourcefile1 [sourcefile2 ...]
13746 @end smallexample
13747
13748 @noindent
13749 where
13750
13751 @table @code
13752 @item sourcefile1, sourcefile2
13753 identifies the source files for which a report is to be generated. The
13754 ``with''ed units will be processed too. You must provide at least one file.
13755
13756 These file names are considered to be regular expressions, so for instance
13757 specifying @file{source*.adb} is the same as giving every file in the current
13758 directory whose name starts with @file{source} and whose extension is
13759 @file{adb}.
13760
13761 @end table
13762
13763 @noindent
13764 The switches can be :
13765 @table @option
13766 @c !sort!
13767 @item ^-a^/ALL_FILES^
13768 @cindex @option{^-a^/ALL_FILES^} (@command{gnatxref})
13769 If this switch is present, @code{gnatfind} and @code{gnatxref} will parse
13770 the read-only files found in the library search path. Otherwise, these files
13771 will be ignored. This option can be used to protect Gnat sources or your own
13772 libraries from being parsed, thus making @code{gnatfind} and @code{gnatxref}
13773 much faster, and their output much smaller. Read-only here refers to access
13774 or permissions status in the file system for the current user.
13775
13776 @item -aIDIR
13777 @cindex @option{-aIDIR} (@command{gnatxref})
13778 When looking for source files also look in directory DIR. The order in which
13779 source file search is undertaken is the same as for @file{gnatmake}.
13780
13781 @item -aODIR
13782 @cindex @option{-aODIR} (@command{gnatxref})
13783 When searching for library and object files, look in directory
13784 DIR. The order in which library files are searched is the same as for
13785 @file{gnatmake}.
13786
13787 @item -nostdinc
13788 @cindex @option{-nostdinc} (@command{gnatxref})
13789 Do not look for sources in the system default directory.
13790
13791 @item -nostdlib
13792 @cindex @option{-nostdlib} (@command{gnatxref})
13793 Do not look for library files in the system default directory.
13794
13795 @item --RTS=@var{rts-path}
13796 @cindex @option{--RTS} (@command{gnatxref})
13797 Specifies the default location of the runtime library. Same meaning as the
13798 equivalent @code{gnatmake} flag (see @ref{Switches for gnatmake}).
13799
13800 @item ^-d^/DERIVED_TYPES^
13801 @cindex @option{^-d^/DERIVED_TYPES^} (@command{gnatxref})
13802 If this switch is set @code{gnatxref} will output the parent type
13803 reference for each matching derived types.
13804
13805 @item ^-f^/FULL_PATHNAME^
13806 @cindex @option{^-f^/FULL_PATHNAME^} (@command{gnatxref})
13807 If this switch is set, the output file names will be preceded by their
13808 directory (if the file was found in the search path). If this switch is
13809 not set, the directory will not be printed.
13810
13811 @item ^-g^/IGNORE_LOCALS^
13812 @cindex @option{^-g^/IGNORE_LOCALS^} (@command{gnatxref})
13813 If this switch is set, information is output only for library-level
13814 entities, ignoring local entities. The use of this switch may accelerate
13815 @code{gnatfind} and @code{gnatxref}.
13816
13817 @item -IDIR
13818 @cindex @option{-IDIR} (@command{gnatxref})
13819 Equivalent to @samp{-aODIR -aIDIR}.
13820
13821 @item -pFILE
13822 @cindex @option{-pFILE} (@command{gnatxref})
13823 Specify a project file to use @xref{Project Files}. These project files are
13824 the @file{.adp} files used by Glide. If you need to use the @file{.gpr}
13825 project files, you should use gnatxref through the GNAT driver
13826 (@command{gnat xref -Pproject}).
13827
13828 By default, @code{gnatxref} and @code{gnatfind} will try to locate a
13829 project file in the current directory.
13830
13831 If a project file is either specified or found by the tools, then the content
13832 of the source directory and object directory lines are added as if they
13833 had been specified respectively by @samp{^-aI^/SOURCE_SEARCH^}
13834 and @samp{^-aO^OBJECT_SEARCH^}.
13835 @item ^-u^/UNUSED^
13836 Output only unused symbols. This may be really useful if you give your
13837 main compilation unit on the command line, as @code{gnatxref} will then
13838 display every unused entity and 'with'ed package.
13839
13840 @ifclear vms
13841 @item -v
13842 Instead of producing the default output, @code{gnatxref} will generate a
13843 @file{tags} file that can be used by vi. For examples how to use this
13844 feature, see @xref{Examples of gnatxref Usage}. The tags file is output
13845 to the standard output, thus you will have to redirect it to a file.
13846 @end ifclear
13847
13848 @end table
13849
13850 @noindent
13851 All these switches may be in any order on the command line, and may even
13852 appear after the file names. They need not be separated by spaces, thus
13853 you can say @samp{gnatxref ^-ag^/ALL_FILES/IGNORE_LOCALS^} instead of
13854 @samp{gnatxref ^-a -g^/ALL_FILES /IGNORE_LOCALS^}.
13855
13856 @node gnatfind Switches
13857 @section @code{gnatfind} Switches
13858
13859 @noindent
13860 The command line for @code{gnatfind} is:
13861
13862 @smallexample
13863 $ gnatfind [switches] pattern[:sourcefile[:line[:column]]]
13864 [file1 file2 ...]
13865 @end smallexample
13866
13867 @noindent
13868 where
13869
13870 @table @code
13871 @item pattern
13872 An entity will be output only if it matches the regular expression found
13873 in @samp{pattern}, see @xref{Regular Expressions in gnatfind and gnatxref}.
13874
13875 Omitting the pattern is equivalent to specifying @samp{*}, which
13876 will match any entity. Note that if you do not provide a pattern, you
13877 have to provide both a sourcefile and a line.
13878
13879 Entity names are given in Latin-1, with uppercase/lowercase equivalence
13880 for matching purposes. At the current time there is no support for
13881 8-bit codes other than Latin-1, or for wide characters in identifiers.
13882
13883 @item sourcefile
13884 @code{gnatfind} will look for references, bodies or declarations
13885 of symbols referenced in @file{sourcefile}, at line @samp{line}
13886 and column @samp{column}. See @pxref{Examples of gnatfind Usage}
13887 for syntax examples.
13888
13889 @item line
13890 is a decimal integer identifying the line number containing
13891 the reference to the entity (or entities) to be located.
13892
13893 @item column
13894 is a decimal integer identifying the exact location on the
13895 line of the first character of the identifier for the
13896 entity reference. Columns are numbered from 1.
13897
13898 @item file1 file2 ...
13899 The search will be restricted to these source files. If none are given, then
13900 the search will be done for every library file in the search path.
13901 These file must appear only after the pattern or sourcefile.
13902
13903 These file names are considered to be regular expressions, so for instance
13904 specifying 'source*.adb' is the same as giving every file in the current
13905 directory whose name starts with 'source' and whose extension is 'adb'.
13906
13907 The location of the spec of the entity will always be displayed, even if it
13908 isn't in one of file1, file2,... The occurrences of the entity in the
13909 separate units of the ones given on the command line will also be displayed.
13910
13911 Note that if you specify at least one file in this part, @code{gnatfind} may
13912 sometimes not be able to find the body of the subprograms...
13913
13914 @end table
13915
13916 @noindent
13917 At least one of 'sourcefile' or 'pattern' has to be present on
13918 the command line.
13919
13920 The following switches are available:
13921 @table @option
13922 @c !sort!
13923
13924 @item ^-a^/ALL_FILES^
13925 @cindex @option{^-a^/ALL_FILES^} (@command{gnatfind})
13926 If this switch is present, @code{gnatfind} and @code{gnatxref} will parse
13927 the read-only files found in the library search path. Otherwise, these files
13928 will be ignored. This option can be used to protect Gnat sources or your own
13929 libraries from being parsed, thus making @code{gnatfind} and @code{gnatxref}
13930 much faster, and their output much smaller. Read-only here refers to access
13931 or permission status in the file system for the current user.
13932
13933 @item -aIDIR
13934 @cindex @option{-aIDIR} (@command{gnatfind})
13935 When looking for source files also look in directory DIR. The order in which
13936 source file search is undertaken is the same as for @file{gnatmake}.
13937
13938 @item -aODIR
13939 @cindex @option{-aODIR} (@command{gnatfind})
13940 When searching for library and object files, look in directory
13941 DIR. The order in which library files are searched is the same as for
13942 @file{gnatmake}.
13943
13944 @item -nostdinc
13945 @cindex @option{-nostdinc} (@command{gnatfind})
13946 Do not look for sources in the system default directory.
13947
13948 @item -nostdlib
13949 @cindex @option{-nostdlib} (@command{gnatfind})
13950 Do not look for library files in the system default directory.
13951
13952 @item --RTS=@var{rts-path}
13953 @cindex @option{--RTS} (@command{gnatfind})
13954 Specifies the default location of the runtime library. Same meaning as the
13955 equivalent @code{gnatmake} flag (see @ref{Switches for gnatmake}).
13956
13957 @item ^-d^/DERIVED_TYPE_INFORMATION^
13958 @cindex @option{^-d^/DERIVED_TYPE_INFORMATION^} (@code{gnatfind})
13959 If this switch is set, then @code{gnatfind} will output the parent type
13960 reference for each matching derived types.
13961
13962 @item ^-e^/EXPRESSIONS^
13963 @cindex @option{^-e^/EXPRESSIONS^} (@command{gnatfind})
13964 By default, @code{gnatfind} accept the simple regular expression set for
13965 @samp{pattern}. If this switch is set, then the pattern will be
13966 considered as full Unix-style regular expression.
13967
13968 @item ^-f^/FULL_PATHNAME^
13969 @cindex @option{^-f^/FULL_PATHNAME^} (@command{gnatfind})
13970 If this switch is set, the output file names will be preceded by their
13971 directory (if the file was found in the search path). If this switch is
13972 not set, the directory will not be printed.
13973
13974 @item ^-g^/IGNORE_LOCALS^
13975 @cindex @option{^-g^/IGNORE_LOCALS^} (@command{gnatfind})
13976 If this switch is set, information is output only for library-level
13977 entities, ignoring local entities. The use of this switch may accelerate
13978 @code{gnatfind} and @code{gnatxref}.
13979
13980 @item -IDIR
13981 @cindex @option{-IDIR} (@command{gnatfind})
13982 Equivalent to @samp{-aODIR -aIDIR}.
13983
13984 @item -pFILE
13985 @cindex @option{-pFILE} (@command{gnatfind})
13986 Specify a project file (@pxref{Project Files}) to use.
13987 By default, @code{gnatxref} and @code{gnatfind} will try to locate a
13988 project file in the current directory.
13989
13990 If a project file is either specified or found by the tools, then the content
13991 of the source directory and object directory lines are added as if they
13992 had been specified respectively by @samp{^-aI^/SOURCE_SEARCH^} and
13993 @samp{^-aO^/OBJECT_SEARCH^}.
13994
13995 @item ^-r^/REFERENCES^
13996 @cindex @option{^-r^/REFERENCES^} (@command{gnatfind})
13997 By default, @code{gnatfind} will output only the information about the
13998 declaration, body or type completion of the entities. If this switch is
13999 set, the @code{gnatfind} will locate every reference to the entities in
14000 the files specified on the command line (or in every file in the search
14001 path if no file is given on the command line).
14002
14003 @item ^-s^/PRINT_LINES^
14004 @cindex @option{^-s^/PRINT_LINES^} (@command{gnatfind})
14005 If this switch is set, then @code{gnatfind} will output the content
14006 of the Ada source file lines were the entity was found.
14007
14008 @item ^-t^/TYPE_HIERARCHY^
14009 @cindex @option{^-t^/TYPE_HIERARCHY^} (@command{gnatfind})
14010 If this switch is set, then @code{gnatfind} will output the type hierarchy for
14011 the specified type. It act like -d option but recursively from parent
14012 type to parent type. When this switch is set it is not possible to
14013 specify more than one file.
14014
14015 @end table
14016
14017 @noindent
14018 All these switches may be in any order on the command line, and may even
14019 appear after the file names. They need not be separated by spaces, thus
14020 you can say @samp{gnatxref ^-ag^/ALL_FILES/IGNORE_LOCALS^} instead of
14021 @samp{gnatxref ^-a -g^/ALL_FILES /IGNORE_LOCALS^}.
14022
14023 As stated previously, gnatfind will search in every directory in the
14024 search path. You can force it to look only in the current directory if
14025 you specify @code{*} at the end of the command line.
14026
14027 @node Project Files for gnatxref and gnatfind
14028 @section Project Files for @command{gnatxref} and @command{gnatfind}
14029
14030 @noindent
14031 Project files allow a programmer to specify how to compile its
14032 application, where to find sources, etc. These files are used
14033 @ifclear vms
14034 primarily by the Glide Ada mode, but they can also be used
14035 @end ifclear
14036 by the two tools
14037 @code{gnatxref} and @code{gnatfind}.
14038
14039 A project file name must end with @file{.gpr}. If a single one is
14040 present in the current directory, then @code{gnatxref} and @code{gnatfind} will
14041 extract the information from it. If multiple project files are found, none of
14042 them is read, and you have to use the @samp{-p} switch to specify the one
14043 you want to use.
14044
14045 The following lines can be included, even though most of them have default
14046 values which can be used in most cases.
14047 The lines can be entered in any order in the file.
14048 Except for @file{src_dir} and @file{obj_dir}, you can only have one instance of
14049 each line. If you have multiple instances, only the last one is taken into
14050 account.
14051
14052 @table @code
14053 @item src_dir=DIR
14054 [default: @code{"^./^[]^"}]
14055 specifies a directory where to look for source files. Multiple @code{src_dir}
14056 lines can be specified and they will be searched in the order they
14057 are specified.
14058
14059 @item obj_dir=DIR
14060 [default: @code{"^./^[]^"}]
14061 specifies a directory where to look for object and library files. Multiple
14062 @code{obj_dir} lines can be specified, and they will be searched in the order
14063 they are specified
14064
14065 @item comp_opt=SWITCHES
14066 [default: @code{""}]
14067 creates a variable which can be referred to subsequently by using
14068 the @code{$@{comp_opt@}} notation. This is intended to store the default
14069 switches given to @command{gnatmake} and @command{gcc}.
14070
14071 @item bind_opt=SWITCHES
14072 [default: @code{""}]
14073 creates a variable which can be referred to subsequently by using
14074 the @samp{$@{bind_opt@}} notation. This is intended to store the default
14075 switches given to @command{gnatbind}.
14076
14077 @item link_opt=SWITCHES
14078 [default: @code{""}]
14079 creates a variable which can be referred to subsequently by using
14080 the @samp{$@{link_opt@}} notation. This is intended to store the default
14081 switches given to @command{gnatlink}.
14082
14083 @item main=EXECUTABLE
14084 [default: @code{""}]
14085 specifies the name of the executable for the application. This variable can
14086 be referred to in the following lines by using the @samp{$@{main@}} notation.
14087
14088 @ifset vms
14089 @item comp_cmd=COMMAND
14090 [default: @code{"GNAT COMPILE /SEARCH=$@{src_dir@} /DEBUG /TRY_SEMANTICS"}]
14091 @end ifset
14092 @ifclear vms
14093 @item comp_cmd=COMMAND
14094 [default: @code{"gcc -c -I$@{src_dir@} -g -gnatq"}]
14095 @end ifclear
14096 specifies the command used to compile a single file in the application.
14097
14098 @ifset vms
14099 @item make_cmd=COMMAND
14100 [default: @code{"GNAT MAKE $@{main@}
14101 /SOURCE_SEARCH=$@{src_dir@} /OBJECT_SEARCH=$@{obj_dir@}
14102 /DEBUG /TRY_SEMANTICS /COMPILER_QUALIFIERS $@{comp_opt@}
14103 /BINDER_QUALIFIERS $@{bind_opt@} /LINKER_QUALIFIERS $@{link_opt@}"}]
14104 @end ifset
14105 @ifclear vms
14106 @item make_cmd=COMMAND
14107 [default: @code{"gnatmake $@{main@} -aI$@{src_dir@}
14108 -aO$@{obj_dir@} -g -gnatq -cargs $@{comp_opt@}
14109 -bargs $@{bind_opt@} -largs $@{link_opt@}"}]
14110 @end ifclear
14111 specifies the command used to recompile the whole application.
14112
14113 @item run_cmd=COMMAND
14114 [default: @code{"$@{main@}"}]
14115 specifies the command used to run the application.
14116
14117 @item debug_cmd=COMMAND
14118 [default: @code{"gdb $@{main@}"}]
14119 specifies the command used to debug the application
14120
14121 @end table
14122
14123 @noindent
14124 @command{gnatxref} and @command{gnatfind} only take into account the
14125 @code{src_dir} and @code{obj_dir} lines, and ignore the others.
14126
14127 @node Regular Expressions in gnatfind and gnatxref
14128 @section Regular Expressions in @code{gnatfind} and @code{gnatxref}
14129
14130 @noindent
14131 As specified in the section about @command{gnatfind}, the pattern can be a
14132 regular expression. Actually, there are to set of regular expressions
14133 which are recognized by the program :
14134
14135 @table @code
14136 @item globbing patterns
14137 These are the most usual regular expression. They are the same that you
14138 generally used in a Unix shell command line, or in a DOS session.
14139
14140 Here is a more formal grammar :
14141 @smallexample
14142 @group
14143 @iftex
14144 @leftskip=.5cm
14145 @end iftex
14146 regexp ::= term
14147 term ::= elmt -- matches elmt
14148 term ::= elmt elmt -- concatenation (elmt then elmt)
14149 term ::= * -- any string of 0 or more characters
14150 term ::= ? -- matches any character
14151 term ::= [char @{char@}] -- matches any character listed
14152 term ::= [char - char] -- matches any character in range
14153 @end group
14154 @end smallexample
14155
14156 @item full regular expression
14157 The second set of regular expressions is much more powerful. This is the
14158 type of regular expressions recognized by utilities such a @file{grep}.
14159
14160 The following is the form of a regular expression, expressed in Ada
14161 reference manual style BNF is as follows
14162
14163 @smallexample
14164 @iftex
14165 @leftskip=.5cm
14166 @end iftex
14167 @group
14168 regexp ::= term @{| term@} -- alternation (term or term ...)
14169
14170 term ::= item @{item@} -- concatenation (item then item)
14171
14172 item ::= elmt -- match elmt
14173 item ::= elmt * -- zero or more elmt's
14174 item ::= elmt + -- one or more elmt's
14175 item ::= elmt ? -- matches elmt or nothing
14176 @end group
14177 @group
14178 elmt ::= nschar -- matches given character
14179 elmt ::= [nschar @{nschar@}] -- matches any character listed
14180 elmt ::= [^^^ nschar @{nschar@}] -- matches any character not listed
14181 elmt ::= [char - char] -- matches chars in given range
14182 elmt ::= \ char -- matches given character
14183 elmt ::= . -- matches any single character
14184 elmt ::= ( regexp ) -- parens used for grouping
14185
14186 char ::= any character, including special characters
14187 nschar ::= any character except ()[].*+?^^^
14188 @end group
14189 @end smallexample
14190
14191 Following are a few examples :
14192
14193 @table @samp
14194 @item abcde|fghi
14195 will match any of the two strings 'abcde' and 'fghi'.
14196
14197 @item abc*d
14198 will match any string like 'abd', 'abcd', 'abccd', 'abcccd', and so on
14199
14200 @item [a-z]+
14201 will match any string which has only lowercase characters in it (and at
14202 least one character
14203
14204 @end table
14205 @end table
14206
14207 @node Examples of gnatxref Usage
14208 @section Examples of @code{gnatxref} Usage
14209
14210 @subsection General Usage
14211
14212 @noindent
14213 For the following examples, we will consider the following units :
14214
14215 @smallexample @c ada
14216 @group
14217 @cartouche
14218 main.ads:
14219 1: with Bar;
14220 2: package Main is
14221 3: procedure Foo (B : in Integer);
14222 4: C : Integer;
14223 5: private
14224 6: D : Integer;
14225 7: end Main;
14226
14227 main.adb:
14228 1: package body Main is
14229 2: procedure Foo (B : in Integer) is
14230 3: begin
14231 4: C := B;
14232 5: D := B;
14233 6: Bar.Print (B);
14234 7: Bar.Print (C);
14235 8: end Foo;
14236 9: end Main;
14237
14238 bar.ads:
14239 1: package Bar is
14240 2: procedure Print (B : Integer);
14241 3: end bar;
14242 @end cartouche
14243 @end group
14244 @end smallexample
14245
14246 @table @code
14247
14248 @noindent
14249 The first thing to do is to recompile your application (for instance, in
14250 that case just by doing a @samp{gnatmake main}, so that GNAT generates
14251 the cross-referencing information.
14252 You can then issue any of the following commands:
14253
14254 @item gnatxref main.adb
14255 @code{gnatxref} generates cross-reference information for main.adb
14256 and every unit 'with'ed by main.adb.
14257
14258 The output would be:
14259 @smallexample
14260 @iftex
14261 @leftskip=0cm
14262 @end iftex
14263 B Type: Integer
14264 Decl: bar.ads 2:22
14265 B Type: Integer
14266 Decl: main.ads 3:20
14267 Body: main.adb 2:20
14268 Ref: main.adb 4:13 5:13 6:19
14269 Bar Type: Unit
14270 Decl: bar.ads 1:9
14271 Ref: main.adb 6:8 7:8
14272 main.ads 1:6
14273 C Type: Integer
14274 Decl: main.ads 4:5
14275 Modi: main.adb 4:8
14276 Ref: main.adb 7:19
14277 D Type: Integer
14278 Decl: main.ads 6:5
14279 Modi: main.adb 5:8
14280 Foo Type: Unit
14281 Decl: main.ads 3:15
14282 Body: main.adb 2:15
14283 Main Type: Unit
14284 Decl: main.ads 2:9
14285 Body: main.adb 1:14
14286 Print Type: Unit
14287 Decl: bar.ads 2:15
14288 Ref: main.adb 6:12 7:12
14289 @end smallexample
14290
14291 @noindent
14292 that is the entity @code{Main} is declared in main.ads, line 2, column 9,
14293 its body is in main.adb, line 1, column 14 and is not referenced any where.
14294
14295 The entity @code{Print} is declared in bar.ads, line 2, column 15 and it
14296 it referenced in main.adb, line 6 column 12 and line 7 column 12.
14297
14298 @item gnatxref package1.adb package2.ads
14299 @code{gnatxref} will generates cross-reference information for
14300 package1.adb, package2.ads and any other package 'with'ed by any
14301 of these.
14302
14303 @end table
14304
14305 @ifclear vms
14306 @subsection Using gnatxref with vi
14307
14308 @code{gnatxref} can generate a tags file output, which can be used
14309 directly from @file{vi}. Note that the standard version of @file{vi}
14310 will not work properly with overloaded symbols. Consider using another
14311 free implementation of @file{vi}, such as @file{vim}.
14312
14313 @smallexample
14314 $ gnatxref -v gnatfind.adb > tags
14315 @end smallexample
14316
14317 @noindent
14318 will generate the tags file for @code{gnatfind} itself (if the sources
14319 are in the search path!).
14320
14321 From @file{vi}, you can then use the command @samp{:tag @i{entity}}
14322 (replacing @i{entity} by whatever you are looking for), and vi will
14323 display a new file with the corresponding declaration of entity.
14324 @end ifclear
14325
14326 @node Examples of gnatfind Usage
14327 @section Examples of @code{gnatfind} Usage
14328
14329 @table @code
14330
14331 @item gnatfind ^-f^/FULL_PATHNAME^ xyz:main.adb
14332 Find declarations for all entities xyz referenced at least once in
14333 main.adb. The references are search in every library file in the search
14334 path.
14335
14336 The directories will be printed as well (as the @samp{^-f^/FULL_PATHNAME^}
14337 switch is set)
14338
14339 The output will look like:
14340 @smallexample
14341 ^directory/^[directory]^main.ads:106:14: xyz <= declaration
14342 ^directory/^[directory]^main.adb:24:10: xyz <= body
14343 ^directory/^[directory]^foo.ads:45:23: xyz <= declaration
14344 @end smallexample
14345
14346 @noindent
14347 that is to say, one of the entities xyz found in main.adb is declared at
14348 line 12 of main.ads (and its body is in main.adb), and another one is
14349 declared at line 45 of foo.ads
14350
14351 @item gnatfind ^-fs^/FULL_PATHNAME/SOURCE_LINE^ xyz:main.adb
14352 This is the same command as the previous one, instead @code{gnatfind} will
14353 display the content of the Ada source file lines.
14354
14355 The output will look like:
14356
14357 @smallexample
14358 ^directory/^[directory]^main.ads:106:14: xyz <= declaration
14359 procedure xyz;
14360 ^directory/^[directory]^main.adb:24:10: xyz <= body
14361 procedure xyz is
14362 ^directory/^[directory]^foo.ads:45:23: xyz <= declaration
14363 xyz : Integer;
14364 @end smallexample
14365
14366 @noindent
14367 This can make it easier to find exactly the location your are looking
14368 for.
14369
14370 @item gnatfind ^-r^/REFERENCES^ "*x*":main.ads:123 foo.adb
14371 Find references to all entities containing an x that are
14372 referenced on line 123 of main.ads.
14373 The references will be searched only in main.ads and foo.adb.
14374
14375 @item gnatfind main.ads:123
14376 Find declarations and bodies for all entities that are referenced on
14377 line 123 of main.ads.
14378
14379 This is the same as @code{gnatfind "*":main.adb:123}.
14380
14381 @item gnatfind ^mydir/^[mydir]^main.adb:123:45
14382 Find the declaration for the entity referenced at column 45 in
14383 line 123 of file main.adb in directory mydir. Note that it
14384 is usual to omit the identifier name when the column is given,
14385 since the column position identifies a unique reference.
14386
14387 The column has to be the beginning of the identifier, and should not
14388 point to any character in the middle of the identifier.
14389
14390 @end table
14391
14392
14393 @c *********************************
14394 @node The GNAT Pretty-Printer gnatpp
14395 @chapter The GNAT Pretty-Printer @command{gnatpp}
14396 @findex gnatpp
14397 @cindex Pretty-Printer
14398
14399 @noindent
14400 ^The @command{gnatpp} tool^GNAT PRETTY^ is an ASIS-based utility
14401 for source reformatting / pretty-printing.
14402 It takes an Ada source file as input and generates a reformatted
14403 version as output.
14404 You can specify various style directives via switches; e.g.,
14405 identifier case conventions, rules of indentation, and comment layout.
14406
14407 To produce a reformatted file, @command{gnatpp} generates and uses the ASIS
14408 tree for the input source and thus requires the input to be syntactically and
14409 semantically legal.
14410 If this condition is not met, @command{gnatpp} will terminate with an
14411 error message; no output file will be generated.
14412
14413 If the compilation unit
14414 contained in the input source depends semantically upon units located
14415 outside the current directory, you have to provide the source search path
14416 when invoking @command{gnatpp}; see the description of the @command{gnatpp}
14417 switches below.
14418
14419 The @command{gnatpp} command has the form
14420
14421 @smallexample
14422 $ gnatpp [@var{switches}] @var{filename}
14423 @end smallexample
14424
14425 @noindent
14426 where
14427 @itemize @bullet
14428 @item
14429 @var{switches} is an optional sequence of switches defining such properties as
14430 the formatting rules, the source search path, and the destination for the
14431 output source file
14432
14433 @item
14434 @var{filename} is the name (including the extension) of the source file to
14435 reformat; ``wildcards'' or several file names on the same gnatpp command are
14436 allowed. The file name may contain path information; it does not have to
14437 follow the GNAT file naming rules
14438 @end itemize
14439
14440
14441 @menu
14442 * Switches for gnatpp::
14443 * Formatting Rules::
14444 @end menu
14445
14446 @node Switches for gnatpp
14447 @section Switches for @command{gnatpp}
14448
14449 @noindent
14450 The following subsections describe the various switches accepted by
14451 @command{gnatpp}, organized by category.
14452
14453 @ifclear vms
14454 You specify a switch by supplying a name and generally also a value.
14455 In many cases the values for a switch with a given name are incompatible with
14456 each other
14457 (for example the switch that controls the casing of a reserved word may have
14458 exactly one value: upper case, lower case, or
14459 mixed case) and thus exactly one such switch can be in effect for an
14460 invocation of @command{gnatpp}.
14461 If more than one is supplied, the last one is used.
14462 However, some values for the same switch are mutually compatible.
14463 You may supply several such switches to @command{gnatpp}, but then
14464 each must be specified in full, with both the name and the value.
14465 Abbreviated forms (the name appearing once, followed by each value) are
14466 not permitted.
14467 For example, to set
14468 the alignment of the assignment delimiter both in declarations and in
14469 assignment statements, you must write @option{-A2A3}
14470 (or @option{-A2 -A3}), but not @option{-A23}.
14471 @end ifclear
14472
14473 @ifset vms
14474 In many cases the set of options for a given qualifier are incompatible with
14475 each other (for example the qualifier that controls the casing of a reserved
14476 word may have exactly one option, which specifies either upper case, lower
14477 case, or mixed case), and thus exactly one such option can be in effect for
14478 an invocation of @command{gnatpp}.
14479 If more than one is supplied, the last one is used.
14480 However, some qualifiers have options that are mutually compatible,
14481 and then you may then supply several such options when invoking
14482 @command{gnatpp}.
14483 @end ifset
14484
14485 In most cases, it is obvious whether or not the
14486 ^values for a switch with a given name^options for a given qualifier^
14487 are compatible with each other.
14488 When the semantics might not be evident, the summaries below explicitly
14489 indicate the effect.
14490
14491 @menu
14492 * Alignment Control::
14493 * Casing Control::
14494 * Construct Layout Control::
14495 * General Text Layout Control::
14496 * Other Formatting Options::
14497 * Setting the Source Search Path::
14498 * Output File Control::
14499 * Other gnatpp Switches::
14500 @end menu
14501
14502
14503 @node Alignment Control
14504 @subsection Alignment Control
14505 @cindex Alignment control in @command{gnatpp}
14506
14507 @noindent
14508 Programs can be easier to read if certain constructs are vertically aligned.
14509 By default all alignments are set ON.
14510 Through the @option{^-A0^/ALIGN=OFF^} switch you may reset the default to
14511 OFF, and then use one or more of the other
14512 ^@option{-A@var{n}} switches^@option{/ALIGN} options^
14513 to activate alignment for specific constructs.
14514
14515 @table @option
14516 @cindex @option{^-A@var{n}^/ALIGN^} (@command{gnatpp})
14517
14518 @ifset vms
14519 @item /ALIGN=ON
14520 Set all alignments to ON
14521 @end ifset
14522
14523 @item ^-A0^/ALIGN=OFF^
14524 Set all alignments to OFF
14525
14526 @item ^-A1^/ALIGN=COLONS^
14527 Align @code{:} in declarations
14528
14529 @item ^-A2^/ALIGN=DECLARATIONS^
14530 Align @code{:=} in initializations in declarations
14531
14532 @item ^-A3^/ALIGN=STATEMENTS^
14533 Align @code{:=} in assignment statements
14534
14535 @item ^-A4^/ALIGN=ARROWS^
14536 Align @code{=>} in associations
14537 @end table
14538
14539 @noindent
14540 The @option{^-A^/ALIGN^} switches are mutually compatible; any combination
14541 is allowed.
14542
14543
14544 @node Casing Control
14545 @subsection Casing Control
14546 @cindex Casing control in @command{gnatpp}
14547
14548 @noindent
14549 @command{gnatpp} allows you to specify the casing for reserved words,
14550 pragma names, attribute designators and identifiers.
14551 For identifiers you may define a
14552 general rule for name casing but also override this rule
14553 via a set of dictionary files.
14554
14555 Three types of casing are supported: lower case, upper case, and mixed case.
14556 Lower and upper case are self-explanatory (but since some letters in
14557 Latin1 and other GNAT-supported character sets
14558 exist only in lower-case form, an upper case conversion will have no
14559 effect on them.)
14560 ``Mixed case'' means that the first letter, and also each letter immediately
14561 following an underscore, are converted to their uppercase forms;
14562 all the other letters are converted to their lowercase forms.
14563
14564 @table @option
14565 @cindex @option{^-a@var{x}^/ATTRIBUTE^} (@command{gnatpp})
14566 @item ^-aL^/ATTRIBUTE_CASING=LOWER_CASE^
14567 Attribute designators are lower case
14568
14569 @item ^-aU^/ATTRIBUTE_CASING=UPPER_CASE^
14570 Attribute designators are upper case
14571
14572 @item ^-aM^/ATTRIBUTE_CASING=MIXED_CASE^
14573 Attribute designators are mixed case (this is the default)
14574
14575 @cindex @option{^-k@var{x}^/KEYWORD_CASING^} (@command{gnatpp})
14576 @item ^-kL^/KEYWORD_CASING=LOWER_CASE^
14577 Keywords (technically, these are known in Ada as @emph{reserved words}) are
14578 lower case (this is the default)
14579
14580 @item ^-kU^/KEYWORD_CASING=UPPER_CASE^
14581 Keywords are upper case
14582
14583 @cindex @option{^-n@var{x}^/NAME_CASING^} (@command{gnatpp})
14584 @item ^-nD^/NAME_CASING=AS_DECLARED^
14585 Name casing for defining occurrences are as they appear in the source file
14586 (this is the default)
14587
14588 @item ^-nU^/NAME_CASING=UPPER_CASE^
14589 Names are in upper case
14590
14591 @item ^-nL^/NAME_CASING=LOWER_CASE^
14592 Names are in lower case
14593
14594 @item ^-nM^/NAME_CASING=MIXED_CASE^
14595 Names are in mixed case
14596
14597 @cindex @option{^-p@var{x}^/PRAGMA_CASING^} (@command{gnatpp})
14598 @item ^-pL^/PRAGMA_CASING=LOWER_CASE^
14599 Pragma names are lower case
14600
14601 @item ^-pU^/PRAGMA_CASING=UPPER_CASE^
14602 Pragma names are upper case
14603
14604 @item ^-pM^/PRAGMA_CASING=MIXED_CASE^
14605 Pragma names are mixed case (this is the default)
14606
14607 @item ^-D@var{file}^/DICTIONARY=@var{file}^
14608 @cindex @option{^-D^/DICTIONARY^} (@command{gnatpp})
14609 Use @var{file} as a @emph{dictionary file} that defines
14610 the casing for a set of specified names,
14611 thereby overriding the effect on these names by
14612 any explicit or implicit
14613 ^-n^/NAME_CASING^ switch.
14614 To supply more than one dictionary file,
14615 use ^several @option{-D} switches^a list of files as options^.
14616
14617 @noindent
14618 @option{gnatpp} implicitly uses a @emph{default dictionary file}
14619 to define the casing for the Ada predefined names and
14620 the names declared in the GNAT libraries.
14621
14622 @item ^-D-^/SPECIFIC_CASING^
14623 @cindex @option{^-D-^/SPECIFIC_CASING^} (@command{gnatpp})
14624 Do not use the default dictionary file;
14625 instead, use the casing
14626 defined by a @option{^-n^/NAME_CASING^} switch and any explicit
14627 dictionary file(s)
14628 @end table
14629
14630 @noindent
14631 The structure of a dictionary file, and details on the conventions
14632 used in the default dictionary file, are defined in @ref{Name Casing}.
14633
14634 The @option{^-D-^/SPECIFIC_CASING^} and
14635 @option{^-D@var{file}^/DICTIONARY=@var{file}^} switches are mutually
14636 compatible.
14637
14638
14639 @node Construct Layout Control
14640 @subsection Construct Layout Control
14641 @cindex Layout control in @command{gnatpp}
14642
14643 @noindent
14644 This group of @command{gnatpp} switches controls the layout of comments and
14645 complex syntactic constructs. See @ref{Formatting Comments}, for details
14646 on their effect.
14647
14648 @table @option
14649 @cindex @option{^-c@var{n}^/COMMENTS_LAYOUT^} (@command{gnatpp})
14650 @item ^-c1^/COMMENTS_LAYOUT=DEFAULT^
14651 GNAT-style comment line indentation (this is the default).
14652
14653 @item ^-c2^/COMMENTS_LAYOUT=STANDARD_INDENT^
14654 Reference-manual comment line indentation.
14655
14656 @item ^-c3^/COMMENTS_LAYOUT=GNAT_BEGINNING^
14657 GNAT-style comment beginning
14658
14659 @item ^-c4^/COMMENTS_LAYOUT=REFORMAT^
14660 Reformat comment blocks
14661
14662 @cindex @option{^-l@var{n}^/CONSTRUCT_LAYOUT^} (@command{gnatpp})
14663 @item ^-l1^/CONSTRUCT_LAYOUT=GNAT^
14664 GNAT-style layout (this is the default)
14665
14666 @item ^-l2^/CONSTRUCT_LAYOUT=COMPACT^
14667 Compact layout
14668
14669 @item ^-l3^/CONSTRUCT_LAYOUT=UNCOMPACT^
14670 Uncompact layout
14671
14672 @item ^-notab^/NOTABS^
14673 All the VT characters are removed from the comment text. All the HT characters
14674 are expanded with the sequences of space characters to get to the next tab
14675 stops.
14676
14677 @end table
14678
14679 @ifclear vms
14680 @noindent
14681 The @option{-c1} and @option{-c2} switches are incompatible.
14682 The @option{-c3} and @option{-c4} switches are compatible with each other and
14683 also with @option{-c1} and @option{-c2}.
14684
14685 The @option{-l1}, @option{-l2}, and @option{-l3} switches are incompatible.
14686 @end ifclear
14687
14688 @ifset vms
14689 @noindent
14690 For the @option{/COMMENTS_LAYOUT} qualifier:
14691 @itemize @bullet
14692 @item
14693 The @option{DEFAULT} and @option{STANDARD_INDENT} options are incompatible.
14694 @item
14695 The @option{GNAT_BEGINNING} and @option{REFORMAT} options are compatible with
14696 each other and also with @option{DEFAULT} and @option{STANDARD_INDENT}.
14697 @end itemize
14698
14699 @noindent
14700 The @option{GNAT}, @option{COMPACT}, and @option{UNCOMPACT} options for the
14701 @option{/CONSTRUCT_LAYOUT} qualifier are incompatible.
14702 @end ifset
14703
14704 @node General Text Layout Control
14705 @subsection General Text Layout Control
14706
14707 @noindent
14708 These switches allow control over line length and indentation.
14709
14710 @table @option
14711 @item ^-M@i{nnn}^/LINE_LENGTH_MAX=@i{nnn}^
14712 @cindex @option{^-M^/LINE_LENGTH^} (@command{gnatpp})
14713 Maximum line length, @i{nnn} from 32 ..256, the default value is 79
14714
14715 @item ^-i@i{nnn}^/INDENTATION_LEVEL=@i{nnn}^
14716 @cindex @option{^-i^/INDENTATION_LEVEL^} (@command{gnatpp})
14717 Indentation level, @i{nnn} from 1 .. 9, the default value is 3
14718
14719 @item ^-cl@i{nnn}^/CONTINUATION_INDENT=@i{nnn}^
14720 @cindex @option{^-cl^/CONTINUATION_INDENT^} (@command{gnatpp})
14721 Indentation level for continuation lines (relative to the line being
14722 continued), @i{nnn} from 1 .. 9.
14723 The default
14724 value is one less then the (normal) indentation level, unless the
14725 indentation is set to 1 (in which case the default value for continuation
14726 line indentation is also 1)
14727 @end table
14728
14729
14730 @node Other Formatting Options
14731 @subsection Other Formatting Options
14732
14733 @noindent
14734 These switches control the inclusion of missing end/exit labels, and
14735 the indentation level in @b{case} statements.
14736
14737 @table @option
14738 @item ^-e^/NO_MISSED_LABELS^
14739 @cindex @option{^-e^/NO_MISSED_LABELS^} (@command{gnatpp})
14740 Do not insert missing end/exit labels. An end label is the name of
14741 a construct that may optionally be repeated at the end of the
14742 construct's declaration;
14743 e.g., the names of packages, subprograms, and tasks.
14744 An exit label is the name of a loop that may appear as target
14745 of an exit statement within the loop.
14746 By default, @command{gnatpp} inserts these end/exit labels when
14747 they are absent from the original source. This option suppresses such
14748 insertion, so that the formatted source reflects the original.
14749
14750 @item ^-ff^/FORM_FEED_AFTER_PRAGMA_PAGE^
14751 @cindex @option{^-ff^/FORM_FEED_AFTER_PRAGMA_PAGE^} (@command{gnatpp})
14752 Insert a Form Feed character after a pragma Page.
14753
14754 @item ^-T@i{nnn}^/MAX_INDENT=@i{nnn}^
14755 @cindex @option{^-T^/MAX_INDENT^} (@command{gnatpp})
14756 Do not use an additional indentation level for @b{case} alternatives
14757 and variants if there are @i{nnn} or more (the default
14758 value is 10).
14759 If @i{nnn} is 0, an additional indentation level is
14760 used for @b{case} alternatives and variants regardless of their number.
14761 @end table
14762
14763 @node Setting the Source Search Path
14764 @subsection Setting the Source Search Path
14765
14766 @noindent
14767 To define the search path for the input source file, @command{gnatpp}
14768 uses the same switches as the GNAT compiler, with the same effects.
14769
14770 @table @option
14771 @item ^-I^/SEARCH=^@var{dir}
14772 @cindex @option{^-I^/SEARCH^} (@code{gnatpp})
14773 The same as the corresponding gcc switch
14774
14775 @item ^-I-^/NOCURRENT_DIRECTORY^
14776 @cindex @option{^-I-^/NOCURRENT_DIRECTORY^} (@code{gnatpp})
14777 The same as the corresponding gcc switch
14778
14779 @item ^-gnatec^/CONFIGURATION_PRAGMAS_FILE^=@var{path}
14780 @cindex @option{^-gnatec^/CONFIGURATION_PRAGMAS_FILE^} (@code{gnatpp})
14781 The same as the corresponding gcc switch
14782
14783 @item ^--RTS^/RUNTIME_SYSTEM^=@var{path}
14784 @cindex @option{^--RTS^/RUNTIME_SYSTEM^} (@code{gnatpp})
14785 The same as the corresponding gcc switch
14786
14787 @end table
14788
14789
14790 @node Output File Control
14791 @subsection Output File Control
14792
14793 @noindent
14794 By default the output is sent to the file whose name is obtained by appending
14795 the ^@file{.pp}^@file{$PP}^ suffix to the name of the input file
14796 (if the file with this name already exists, it is unconditionally overwritten).
14797 Thus if the input file is @file{^my_ada_proc.adb^MY_ADA_PROC.ADB^} then
14798 @command{gnatpp} will produce @file{^my_ada_proc.adb.pp^MY_ADA_PROC.ADB$PP^}
14799 as output file.
14800 The output may be redirected by the following switches:
14801
14802 @table @option
14803 @item ^-pipe^/STANDARD_OUTPUT^
14804 @cindex @option{^-pipe^/STANDARD_OUTPUT^} (@code{gnatpp})
14805 Send the output to @code{Standard_Output}
14806
14807 @item ^-o @var{output_file}^/OUTPUT=@var{output_file}^
14808 @cindex @option{^-o^/OUTPUT^} (@code{gnatpp})
14809 Write the output into @var{output_file}.
14810 If @var{output_file} already exists, @command{gnatpp} terminates without
14811 reading or processing the input file.
14812
14813 @item ^-of ^/FORCED_OUTPUT=^@var{output_file}
14814 @cindex @option{^-of^/FORCED_OUTPUT^} (@code{gnatpp})
14815 Write the output into @var{output_file}, overwriting the existing file
14816 (if one is present).
14817
14818 @item ^-r^/REPLACE^
14819 @cindex @option{^-r^/REPLACE^} (@code{gnatpp})
14820 Replace the input source file with the reformatted output, and copy the
14821 original input source into the file whose name is obtained by appending the
14822 ^@file{.npp}^@file{$NPP}^ suffix to the name of the input file.
14823 If a file with this name already exists, @command{gnatpp} terminates without
14824 reading or processing the input file.
14825
14826 @item ^-rf^/OVERRIDING_REPLACE^
14827 @cindex @option{^-rf^/OVERRIDING_REPLACE^} (@code{gnatpp})
14828 Like @option{^-r^/REPLACE^} except that if the file with the specified name
14829 already exists, it is overwritten.
14830 @end table
14831
14832 @noindent
14833 Options @option{^-pipe^/STANDARD_OUTPUT^},
14834 @option{^-o^/OUTPUT^} and
14835 @option{^-of^/FORCED_OUTPUT^} are allowed only if the call to gnatpp
14836 contains only one file to reformat
14837
14838 @node Other gnatpp Switches
14839 @subsection Other @code{gnatpp} Switches
14840
14841 @noindent
14842 The additional @command{gnatpp} switches are defined in this subsection.
14843
14844 @table @option
14845 @item ^-v^/VERBOSE^
14846 @cindex @option{^-v^/VERBOSE^} (@code{gnatpp})
14847 Verbose mode;
14848 @command{gnatpp} generates version information and then
14849 a trace of the actions it takes to produce or obtain the ASIS tree.
14850
14851 @item ^-w^/WARNINGS^
14852 @cindex @option{^-w^/WARNINGS^} (@code{gnatpp})
14853 Warning mode;
14854 @command{gnatpp} generates a warning whenever it can not provide
14855 a required layout in the result source.
14856 @end table
14857
14858
14859 @node Formatting Rules
14860 @section Formatting Rules
14861
14862 @noindent
14863 The following subsections show how @command{gnatpp} treats ``white space'',
14864 comments, program layout, and name casing.
14865 They provide the detailed descriptions of the switches shown above.
14866
14867 @menu
14868 * White Space and Empty Lines::
14869 * Formatting Comments::
14870 * Construct Layout::
14871 * Name Casing::
14872 @end menu
14873
14874
14875 @node White Space and Empty Lines
14876 @subsection White Space and Empty Lines
14877
14878 @noindent
14879 @command{gnatpp} does not have an option to control space characters.
14880 It will add or remove spaces according to the style illustrated by the
14881 examples in the @cite{Ada Reference Manual}.
14882
14883 The only format effectors
14884 (see @cite{Ada Reference Manual}, paragraph 2.1(13))
14885 that will appear in the output file are platform-specific line breaks,
14886 and also format effectors within (but not at the end of) comments.
14887 In particular, each horizontal tab character that is not inside
14888 a comment will be treated as a space and thus will appear in the
14889 output file as zero or more spaces depending on
14890 the reformatting of the line in which it appears.
14891 The only exception is a Form Feed character, which is inserted after a
14892 pragma @code{Page} when @option{-ff} is set.
14893
14894 The output file will contain no lines with trailing ``white space'' (spaces,
14895 format effectors).
14896
14897 Empty lines in the original source are preserved
14898 only if they separate declarations or statements.
14899 In such contexts, a
14900 sequence of two or more empty lines is replaced by exactly one empty line.
14901 Note that a blank line will be removed if it separates two ``comment blocks''
14902 (a comment block is a sequence of whole-line comments).
14903 In order to preserve a visual separation between comment blocks, use an
14904 ``empty comment'' (a line comprising only hyphens) rather than an empty line.
14905 Likewise, if for some reason you wish to have a sequence of empty lines,
14906 use a sequence of empty comments instead.
14907
14908
14909 @node Formatting Comments
14910 @subsection Formatting Comments
14911
14912 @noindent
14913 Comments in Ada code are of two kinds:
14914 @itemize @bullet
14915 @item
14916 a @emph{whole-line comment}, which appears by itself (possibly preceded by
14917 ``white space'') on a line
14918
14919 @item
14920 an @emph{end-of-line comment}, which follows some other Ada lexical element
14921 on the same line.
14922 @end itemize
14923
14924 @noindent
14925 The indentation of a whole-line comment is that of either
14926 the preceding or following line in
14927 the formatted source, depending on switch settings as will be described below.
14928
14929 For an end-of-line comment, @command{gnatpp} leaves the same number of spaces
14930 between the end of the preceding Ada lexical element and the beginning
14931 of the comment as appear in the original source,
14932 unless either the comment has to be split to
14933 satisfy the line length limitation, or else the next line contains a
14934 whole line comment that is considered a continuation of this end-of-line
14935 comment (because it starts at the same position).
14936 In the latter two
14937 cases, the start of the end-of-line comment is moved right to the nearest
14938 multiple of the indentation level.
14939 This may result in a ``line overflow'' (the right-shifted comment extending
14940 beyond the maximum line length), in which case the comment is split as
14941 described below.
14942
14943 There is a difference between @option{^-c1^/COMMENTS_LAYOUT=DEFAULT^}
14944 (GNAT-style comment line indentation)
14945 and @option{^-c2^/COMMENTS_LAYOUT=STANDARD_INDENT^}
14946 (reference-manual comment line indentation).
14947 With reference-manual style, a whole-line comment is indented as if it
14948 were a declaration or statement at the same place
14949 (i.e., according to the indentation of the preceding line(s)).
14950 With GNAT style, a whole-line comment that is immediately followed by an
14951 @b{if} or @b{case} statement alternative, a record variant, or the reserved
14952 word @b{begin}, is indented based on the construct that follows it.
14953
14954 For example:
14955 @smallexample @c ada
14956 @cartouche
14957 if A then
14958 null;
14959 -- some comment
14960 else
14961 null;
14962 end if;
14963 @end cartouche
14964 @end smallexample
14965
14966 @noindent
14967 Reference-manual indentation produces:
14968
14969 @smallexample @c ada
14970 @cartouche
14971 if A then
14972 null;
14973 -- some comment
14974 else
14975 null;
14976 end if;
14977 @end cartouche
14978 @end smallexample
14979
14980 @noindent
14981 while GNAT-style indentation produces:
14982
14983 @smallexample @c ada
14984 @cartouche
14985 if A then
14986 null;
14987 -- some comment
14988 else
14989 null;
14990 end if;
14991 @end cartouche
14992 @end smallexample
14993
14994 @noindent
14995 The @option{^-c3^/COMMENTS_LAYOUT=GNAT_BEGINNING^} switch
14996 (GNAT style comment beginning) has the following
14997 effect:
14998
14999 @itemize @bullet
15000 @item
15001 For each whole-line comment that does not end with two hyphens,
15002 @command{gnatpp} inserts spaces if necessary after the starting two hyphens
15003 to ensure that there are at least two spaces between these hyphens and the
15004 first non-blank character of the comment.
15005 @end itemize
15006
15007 @noindent
15008 For an end-of-line comment, if in the original source the next line is a
15009 whole-line comment that starts at the same position
15010 as the end-of-line comment,
15011 then the whole-line comment (and all whole-line comments
15012 that follow it and that start at the same position)
15013 will start at this position in the output file.
15014
15015 @noindent
15016 That is, if in the original source we have:
15017
15018 @smallexample @c ada
15019 @cartouche
15020 begin
15021 A := B + C; -- B must be in the range Low1..High1
15022 -- C must be in the range Low2..High2
15023 --B+C will be in the range Low1+Low2..High1+High2
15024 X := X + 1;
15025 @end cartouche
15026 @end smallexample
15027
15028 @noindent
15029 Then in the formatted source we get
15030
15031 @smallexample @c ada
15032 @cartouche
15033 begin
15034 A := B + C; -- B must be in the range Low1..High1
15035 -- C must be in the range Low2..High2
15036 -- B+C will be in the range Low1+Low2..High1+High2
15037 X := X + 1;
15038 @end cartouche
15039 @end smallexample
15040
15041 @noindent
15042 A comment that exceeds the line length limit will be split.
15043 Unless switch
15044 @option{^-c4^/COMMENTS_LAYOUT=REFORMAT^} (reformat comment blocks) is set and
15045 the line belongs to a reformattable block, splitting the line generates a
15046 @command{gnatpp} warning.
15047 The @option{^-c4^/COMMENTS_LAYOUT=REFORMAT^} switch specifies that whole-line
15048 comments may be reformatted in typical
15049 word processor style (that is, moving words between lines and putting as
15050 many words in a line as possible).
15051
15052
15053 @node Construct Layout
15054 @subsection Construct Layout
15055
15056 @noindent
15057 The difference between GNAT style @option{^-l1^/CONSTRUCT_LAYOUT=GNAT^}
15058 and compact @option{^-l2^/CONSTRUCT_LAYOUT=COMPACT^}
15059 layout on the one hand, and uncompact layout
15060 @option{^-l3^/CONSTRUCT_LAYOUT=UNCOMPACT^} on the other hand,
15061 can be illustrated by the following examples:
15062
15063 @iftex
15064 @cartouche
15065 @multitable @columnfractions .5 .5
15066 @item @i{GNAT style, compact layout} @tab @i{Uncompact layout}
15067
15068 @item
15069 @smallexample @c ada
15070 type q is record
15071 a : integer;
15072 b : integer;
15073 end record;
15074 @end smallexample
15075 @tab
15076 @smallexample @c ada
15077 type q is
15078 record
15079 a : integer;
15080 b : integer;
15081 end record;
15082 @end smallexample
15083
15084 @item
15085 @smallexample @c ada
15086 Block : declare
15087 A : Integer := 3;
15088 begin
15089 Proc (A, A);
15090 end Block;
15091 @end smallexample
15092 @tab
15093 @smallexample @c ada
15094 Block :
15095 declare
15096 A : Integer := 3;
15097 begin
15098 Proc (A, A);
15099 end Block;
15100 @end smallexample
15101
15102 @item
15103 @smallexample @c ada
15104 Clear : for J in 1 .. 10 loop
15105 A (J) := 0;
15106 end loop Clear;
15107 @end smallexample
15108 @tab
15109 @smallexample @c ada
15110 Clear :
15111 for J in 1 .. 10 loop
15112 A (J) := 0;
15113 end loop Clear;
15114 @end smallexample
15115 @end multitable
15116 @end cartouche
15117 @end iftex
15118
15119 @ifnottex
15120 @smallexample
15121 @cartouche
15122 GNAT style, compact layout Uncompact layout
15123
15124 type q is record type q is
15125 a : integer; record
15126 b : integer; a : integer;
15127 end record; b : integer;
15128 end record;
15129
15130
15131 Block : declare Block :
15132 A : Integer := 3; declare
15133 begin A : Integer := 3;
15134 Proc (A, A); begin
15135 end Block; Proc (A, A);
15136 end Block;
15137
15138 Clear : for J in 1 .. 10 loop Clear :
15139 A (J) := 0; for J in 1 .. 10 loop
15140 end loop Clear; A (J) := 0;
15141 end loop Clear;
15142 @end cartouche
15143 @end smallexample
15144 @end ifnottex
15145
15146 @noindent
15147 A further difference between GNAT style layout and compact layout is that
15148 GNAT style layout inserts empty lines as separation for
15149 compound statements, return statements and bodies.
15150
15151
15152 @node Name Casing
15153 @subsection Name Casing
15154
15155 @noindent
15156 @command{gnatpp} always converts the usage occurrence of a (simple) name to
15157 the same casing as the corresponding defining identifier.
15158
15159 You control the casing for defining occurrences via the
15160 @option{^-n^/NAME_CASING^} switch.
15161 @ifclear vms
15162 With @option{-nD} (``as declared'', which is the default),
15163 @end ifclear
15164 @ifset vms
15165 With @option{/NAME_CASING=AS_DECLARED}, which is the default,
15166 @end ifset
15167 defining occurrences appear exactly as in the source file
15168 where they are declared.
15169 The other ^values for this switch^options for this qualifier^ ---
15170 @option{^-nU^UPPER_CASE^},
15171 @option{^-nL^LOWER_CASE^},
15172 @option{^-nM^MIXED_CASE^} ---
15173 result in
15174 ^upper, lower, or mixed case, respectively^the corresponding casing^.
15175 If @command{gnatpp} changes the casing of a defining
15176 occurrence, it analogously changes the casing of all the
15177 usage occurrences of this name.
15178
15179 If the defining occurrence of a name is not in the source compilation unit
15180 currently being processed by @command{gnatpp}, the casing of each reference to
15181 this name is changed according to the value of the @option{^-n^/NAME_CASING^}
15182 switch (subject to the dictionary file mechanism described below).
15183 Thus @command{gnatpp} acts as though the @option{^-n^/NAME_CASING^} switch
15184 had affected the
15185 casing for the defining occurrence of the name.
15186
15187 Some names may need to be spelled with casing conventions that are not
15188 covered by the upper-, lower-, and mixed-case transformations.
15189 You can arrange correct casing by placing such names in a
15190 @emph{dictionary file},
15191 and then supplying a @option{^-D^/DICTIONARY^} switch.
15192 The casing of names from dictionary files overrides
15193 any @option{^-n^/NAME_CASING^} switch.
15194
15195 To handle the casing of Ada predefined names and the names from GNAT libraries,
15196 @command{gnatpp} assumes a default dictionary file.
15197 The name of each predefined entity is spelled with the same casing as is used
15198 for the entity in the @cite{Ada Reference Manual}.
15199 The name of each entity in the GNAT libraries is spelled with the same casing
15200 as is used in the declaration of that entity.
15201
15202 The @w{@option{^-D-^/SPECIFIC_CASING^}} switch suppresses the use of the
15203 default dictionary file.
15204 Instead, the casing for predefined and GNAT-defined names will be established
15205 by the @option{^-n^/NAME_CASING^} switch or explicit dictionary files.
15206 For example, by default the names @code{Ada.Text_IO} and @code{GNAT.OS_Lib}
15207 will appear as just shown,
15208 even in the presence of a @option{^-nU^/NAME_CASING=UPPER_CASE^} switch.
15209 To ensure that even such names are rendered in uppercase,
15210 additionally supply the @w{@option{^-D-^/SPECIFIC_CASING^}} switch
15211 (or else, less conveniently, place these names in upper case in a dictionary
15212 file).
15213
15214 A dictionary file is
15215 a plain text file; each line in this file can be either a blank line
15216 (containing only space characters and ASCII.HT characters), an Ada comment
15217 line, or the specification of exactly one @emph{casing schema}.
15218
15219 A casing schema is a string that has the following syntax:
15220
15221 @smallexample
15222 @cartouche
15223 @var{casing_schema} ::= @var{identifier} | [*]@var{simple_identifier}[*]
15224
15225 @var{simple_identifier} ::= @var{letter}@{@var{letter_or_digit}@}
15226 @end cartouche
15227 @end smallexample
15228
15229 @noindent
15230 (The @code{[]} metanotation stands for an optional part;
15231 see @cite{Ada Reference Manual}, Section 2.3) for the definition of the
15232 @var{identifier} lexical element and the @var{letter_or_digit} category).
15233
15234 The casing schema string can be followed by white space and/or an Ada-style
15235 comment; any amount of white space is allowed before the string.
15236
15237 If a dictionary file is passed as
15238 @ifclear vms
15239 the value of a @option{-D@var{file}} switch
15240 @end ifclear
15241 @ifset vms
15242 an option to the @option{/DICTIONARY} qualifier
15243 @end ifset
15244 then for every
15245 simple name and every identifier, @command{gnatpp} checks if the dictionary
15246 defines the casing for the name or for some of its parts (the term ``subword''
15247 is used below to denote the part of a name which is delimited by ``_'' or by
15248 the beginning or end of the word and which does not contain any ``_'' inside):
15249
15250 @itemize @bullet
15251 @item
15252 if the whole name is in the dictionary, @command{gnatpp} uses for this name
15253 the casing defined by the dictionary; no subwords are checked for this word
15254
15255 @item
15256 for the first subword (that is, for the subword preceding the leftmost
15257 ``_''), @command{gnatpp} checks if the dictionary contains the corresponding
15258 string of the form @code{@var{simple_identifier}*}, and if it does, the
15259 casing of this @var{simple_identifier} is used for this subword
15260
15261 @item
15262 for the last subword (following the rightmost ``_'') @command{gnatpp}
15263 checks if the dictionary contains the corresponding string of the form
15264 @code{*@var{simple_identifier}}, and if it does, the casing of this
15265 @var{simple_identifier} is used for this subword
15266
15267 @item
15268 for every intermediate subword (surrounded by two'_') @command{gnatpp} checks
15269 if the dictionary contains the corresponding string of the form
15270 @code{*@var{simple_identifier}*}, and if it does, the casing of this
15271 simple_identifier is used for this subword
15272
15273 @item
15274 if more than one dictionary file is passed as @command{gnatpp} switches, each
15275 dictionary adds new casing exceptions and overrides all the existing casing
15276 exceptions set by the previous dictionaries
15277
15278 @item
15279 when @command{gnatpp} checks if the word or subword is in the dictionary,
15280 this check is not case sensitive
15281 @end itemize
15282
15283 @noindent
15284 For example, suppose we have the following source to reformat:
15285
15286 @smallexample @c ada
15287 @cartouche
15288 procedure test is
15289 name1 : integer := 1;
15290 name4_name3_name2 : integer := 2;
15291 name2_name3_name4 : Boolean;
15292 name1_var : Float;
15293 begin
15294 name2_name3_name4 := name4_name3_name2 > name1;
15295 end;
15296 @end cartouche
15297 @end smallexample
15298
15299 @noindent
15300 And suppose we have two dictionaries:
15301
15302 @smallexample
15303 @cartouche
15304 @i{dict1:}
15305 NAME1
15306 *NaMe3*
15307 *NAME2
15308 @end cartouche
15309
15310 @cartouche
15311 @i{dict2:}
15312 *NAME3*
15313 @end cartouche
15314 @end smallexample
15315
15316 @noindent
15317 If @command{gnatpp} is called with the following switches:
15318
15319 @smallexample
15320 @ifclear vms
15321 @command{gnatpp -nM -D dict1 -D dict2 test.adb}
15322 @end ifclear
15323 @ifset vms
15324 @command{gnatpp test.adb /NAME_CASING=MIXED_CASE /DICTIONARY=(dict1, dict2)}
15325 @end ifset
15326 @end smallexample
15327
15328 @noindent
15329 then we will get the following name casing in the @command{gnatpp} output:
15330
15331 @smallexample @c ada
15332 @cartouche
15333 procedure Test is
15334 NAME1 : Integer := 1;
15335 Name4_NAME3_NAME2 : integer := 2;
15336 Name2_NAME3_Name4 : Boolean;
15337 Name1_Var : Float;
15338 begin
15339 Name2_NAME3_Name4 := Name4_NAME3_NAME2 > NAME1;
15340 end Test;
15341 @end cartouche
15342 @end smallexample
15343
15344
15345
15346 @c ***********************************
15347 @node File Name Krunching Using gnatkr
15348 @chapter File Name Krunching Using @code{gnatkr}
15349 @findex gnatkr
15350
15351 @noindent
15352 This chapter discusses the method used by the compiler to shorten
15353 the default file names chosen for Ada units so that they do not
15354 exceed the maximum length permitted. It also describes the
15355 @code{gnatkr} utility that can be used to determine the result of
15356 applying this shortening.
15357 @menu
15358 * About gnatkr::
15359 * Using gnatkr::
15360 * Krunching Method::
15361 * Examples of gnatkr Usage::
15362 @end menu
15363
15364 @node About gnatkr
15365 @section About @code{gnatkr}
15366
15367 @noindent
15368 The default file naming rule in GNAT
15369 is that the file name must be derived from
15370 the unit name. The exact default rule is as follows:
15371 @itemize @bullet
15372 @item
15373 Take the unit name and replace all dots by hyphens.
15374 @item
15375 If such a replacement occurs in the
15376 second character position of a name, and the first character is
15377 ^a, g, s, or i^A, G, S, or I^ then replace the dot by the character
15378 ^~ (tilde)^$ (dollar sign)^
15379 instead of a minus.
15380 @end itemize
15381 The reason for this exception is to avoid clashes
15382 with the standard names for children of System, Ada, Interfaces,
15383 and GNAT, which use the prefixes ^s- a- i- and g-^S- A- I- and G-^
15384 respectively.
15385
15386 The @option{^-gnatk^/FILE_NAME_MAX_LENGTH=^@var{nn}}
15387 switch of the compiler activates a ``krunching''
15388 circuit that limits file names to nn characters (where nn is a decimal
15389 integer). For example, using OpenVMS,
15390 where the maximum file name length is
15391 39, the value of nn is usually set to 39, but if you want to generate
15392 a set of files that would be usable if ported to a system with some
15393 different maximum file length, then a different value can be specified.
15394 The default value of 39 for OpenVMS need not be specified.
15395
15396 The @code{gnatkr} utility can be used to determine the krunched name for
15397 a given file, when krunched to a specified maximum length.
15398
15399 @node Using gnatkr
15400 @section Using @code{gnatkr}
15401
15402 @noindent
15403 The @code{gnatkr} command has the form
15404
15405 @ifclear vms
15406 @smallexample
15407 $ gnatkr @var{name} [@var{length}]
15408 @end smallexample
15409 @end ifclear
15410
15411 @ifset vms
15412 @smallexample
15413 $ gnatkr @var{name} /COUNT=nn
15414 @end smallexample
15415 @end ifset
15416
15417 @noindent
15418 @var{name} is the uncrunched file name, derived from the name of the unit
15419 in the standard manner described in the previous section (i.e. in particular
15420 all dots are replaced by hyphens). The file name may or may not have an
15421 extension (defined as a suffix of the form period followed by arbitrary
15422 characters other than period). If an extension is present then it will
15423 be preserved in the output. For example, when krunching @file{hellofile.ads}
15424 to eight characters, the result will be hellofil.ads.
15425
15426 Note: for compatibility with previous versions of @code{gnatkr} dots may
15427 appear in the name instead of hyphens, but the last dot will always be
15428 taken as the start of an extension. So if @code{gnatkr} is given an argument
15429 such as @file{Hello.World.adb} it will be treated exactly as if the first
15430 period had been a hyphen, and for example krunching to eight characters
15431 gives the result @file{hellworl.adb}.
15432
15433 Note that the result is always all lower case (except on OpenVMS where it is
15434 all upper case). Characters of the other case are folded as required.
15435
15436 @var{length} represents the length of the krunched name. The default
15437 when no argument is given is ^8^39^ characters. A length of zero stands for
15438 unlimited, in other words do not chop except for system files where the
15439 impled crunching length is always eight characters.
15440
15441 @noindent
15442 The output is the krunched name. The output has an extension only if the
15443 original argument was a file name with an extension.
15444
15445 @node Krunching Method
15446 @section Krunching Method
15447
15448 @noindent
15449 The initial file name is determined by the name of the unit that the file
15450 contains. The name is formed by taking the full expanded name of the
15451 unit and replacing the separating dots with hyphens and
15452 using ^lowercase^uppercase^
15453 for all letters, except that a hyphen in the second character position is
15454 replaced by a ^tilde^dollar sign^ if the first character is
15455 ^a, i, g, or s^A, I, G, or S^.
15456 The extension is @code{.ads} for a
15457 specification and @code{.adb} for a body.
15458 Krunching does not affect the extension, but the file name is shortened to
15459 the specified length by following these rules:
15460
15461 @itemize @bullet
15462 @item
15463 The name is divided into segments separated by hyphens, tildes or
15464 underscores and all hyphens, tildes, and underscores are
15465 eliminated. If this leaves the name short enough, we are done.
15466
15467 @item
15468 If the name is too long, the longest segment is located (left-most
15469 if there are two of equal length), and shortened by dropping
15470 its last character. This is repeated until the name is short enough.
15471
15472 As an example, consider the krunching of @*@file{our-strings-wide_fixed.adb}
15473 to fit the name into 8 characters as required by some operating systems.
15474
15475 @smallexample
15476 our-strings-wide_fixed 22
15477 our strings wide fixed 19
15478 our string wide fixed 18
15479 our strin wide fixed 17
15480 our stri wide fixed 16
15481 our stri wide fixe 15
15482 our str wide fixe 14
15483 our str wid fixe 13
15484 our str wid fix 12
15485 ou str wid fix 11
15486 ou st wid fix 10
15487 ou st wi fix 9
15488 ou st wi fi 8
15489 Final file name: oustwifi.adb
15490 @end smallexample
15491
15492 @item
15493 The file names for all predefined units are always krunched to eight
15494 characters. The krunching of these predefined units uses the following
15495 special prefix replacements:
15496
15497 @table @file
15498 @item ada-
15499 replaced by @file{^a^A^-}
15500
15501 @item gnat-
15502 replaced by @file{^g^G^-}
15503
15504 @item interfaces-
15505 replaced by @file{^i^I^-}
15506
15507 @item system-
15508 replaced by @file{^s^S^-}
15509 @end table
15510
15511 These system files have a hyphen in the second character position. That
15512 is why normal user files replace such a character with a
15513 ^tilde^dollar sign^, to
15514 avoid confusion with system file names.
15515
15516 As an example of this special rule, consider
15517 @*@file{ada-strings-wide_fixed.adb}, which gets krunched as follows:
15518
15519 @smallexample
15520 ada-strings-wide_fixed 22
15521 a- strings wide fixed 18
15522 a- string wide fixed 17
15523 a- strin wide fixed 16
15524 a- stri wide fixed 15
15525 a- stri wide fixe 14
15526 a- str wide fixe 13
15527 a- str wid fixe 12
15528 a- str wid fix 11
15529 a- st wid fix 10
15530 a- st wi fix 9
15531 a- st wi fi 8
15532 Final file name: a-stwifi.adb
15533 @end smallexample
15534 @end itemize
15535
15536 Of course no file shortening algorithm can guarantee uniqueness over all
15537 possible unit names, and if file name krunching is used then it is your
15538 responsibility to ensure that no name clashes occur. The utility
15539 program @code{gnatkr} is supplied for conveniently determining the
15540 krunched name of a file.
15541
15542 @node Examples of gnatkr Usage
15543 @section Examples of @code{gnatkr} Usage
15544
15545 @smallexample
15546 @iftex
15547 @leftskip=0cm
15548 @end iftex
15549 @ifclear vms
15550 $ gnatkr very_long_unit_name.ads --> velounna.ads
15551 $ gnatkr grandparent-parent-child.ads --> grparchi.ads
15552 $ gnatkr Grandparent.Parent.Child.ads --> grparchi.ads
15553 $ gnatkr grandparent-parent-child --> grparchi
15554 @end ifclear
15555 $ gnatkr very_long_unit_name.ads/count=6 --> vlunna.ads
15556 $ gnatkr very_long_unit_name.ads/count=0 --> very_long_unit_name.ads
15557 @end smallexample
15558
15559 @node Preprocessing Using gnatprep
15560 @chapter Preprocessing Using @code{gnatprep}
15561 @findex gnatprep
15562
15563 @noindent
15564 The @code{gnatprep} utility provides
15565 a simple preprocessing capability for Ada programs.
15566 It is designed for use with GNAT, but is not dependent on any special
15567 features of GNAT.
15568
15569 @menu
15570 * Using gnatprep::
15571 * Switches for gnatprep::
15572 * Form of Definitions File::
15573 * Form of Input Text for gnatprep::
15574 @end menu
15575
15576 @node Using gnatprep
15577 @section Using @code{gnatprep}
15578
15579 @noindent
15580 To call @code{gnatprep} use
15581
15582 @smallexample
15583 $ gnatprep [-bcrsu] [-Dsymbol=value] infile outfile [deffile]
15584 @end smallexample
15585
15586 @noindent
15587 where
15588 @table @code
15589 @item infile
15590 is the full name of the input file, which is an Ada source
15591 file containing preprocessor directives.
15592
15593 @item outfile
15594 is the full name of the output file, which is an Ada source
15595 in standard Ada form. When used with GNAT, this file name will
15596 normally have an ads or adb suffix.
15597
15598 @item deffile
15599 is the full name of a text file containing definitions of
15600 symbols to be referenced by the preprocessor. This argument is
15601 optional, and can be replaced by the use of the @option{-D} switch.
15602
15603 @item switches
15604 is an optional sequence of switches as described in the next section.
15605 @end table
15606
15607 @node Switches for gnatprep
15608 @section Switches for @code{gnatprep}
15609
15610 @table @option
15611 @c !sort!
15612
15613 @item ^-b^/BLANK_LINES^
15614 @cindex @option{^-b^/BLANK_LINES^} (@command{gnatprep})
15615 Causes both preprocessor lines and the lines deleted by
15616 preprocessing to be replaced by blank lines in the output source file,
15617 preserving line numbers in the output file.
15618
15619 @item ^-c^/COMMENTS^
15620 @cindex @option{^-c^/COMMENTS^} (@command{gnatprep})
15621 Causes both preprocessor lines and the lines deleted
15622 by preprocessing to be retained in the output source as comments marked
15623 with the special string @code{"--! "}. This option will result in line numbers
15624 being preserved in the output file.
15625
15626 @item ^-Dsymbol=value^/ASSOCIATE="symbol=value"^
15627 @cindex @option{^-D^/ASSOCIATE^} (@command{gnatprep})
15628 Defines a new symbol, associated with value. If no value is given on the
15629 command line, then symbol is considered to be @code{True}. This switch
15630 can be used in place of a definition file.
15631
15632 @ifset vms
15633 @item /REMOVE
15634 @cindex @option{/REMOVE} (@command{gnatprep})
15635 This is the default setting which causes lines deleted by preprocessing
15636 to be entirely removed from the output file.
15637 @end ifset
15638
15639 @item ^-r^/REFERENCE^
15640 @cindex @option{^-r^/REFERENCE^} (@command{gnatprep})
15641 Causes a @code{Source_Reference} pragma to be generated that
15642 references the original input file, so that error messages will use
15643 the file name of this original file. The use of this switch implies
15644 that preprocessor lines are not to be removed from the file, so its
15645 use will force @option{^-b^/BLANK_LINES^} mode if
15646 @option{^-c^/COMMENTS^}
15647 has not been specified explicitly.
15648
15649 Note that if the file to be preprocessed contains multiple units, then
15650 it will be necessary to @code{gnatchop} the output file from
15651 @code{gnatprep}. If a @code{Source_Reference} pragma is present
15652 in the preprocessed file, it will be respected by
15653 @code{gnatchop ^-r^/REFERENCE^}
15654 so that the final chopped files will correctly refer to the original
15655 input source file for @code{gnatprep}.
15656
15657 @item ^-s^/SYMBOLS^
15658 @cindex @option{^-s^/SYMBOLS^} (@command{gnatprep})
15659 Causes a sorted list of symbol names and values to be
15660 listed on the standard output file.
15661
15662 @item ^-u^/UNDEFINED^
15663 @cindex @option{^-u^/UNDEFINED^} (@command{gnatprep})
15664 Causes undefined symbols to be treated as having the value FALSE in the context
15665 of a preprocessor test. In the absence of this option, an undefined symbol in
15666 a @code{#if} or @code{#elsif} test will be treated as an error.
15667
15668 @end table
15669
15670 @ifclear vms
15671 @noindent
15672 Note: if neither @option{-b} nor @option{-c} is present,
15673 then preprocessor lines and
15674 deleted lines are completely removed from the output, unless -r is
15675 specified, in which case -b is assumed.
15676 @end ifclear
15677
15678 @node Form of Definitions File
15679 @section Form of Definitions File
15680
15681 @noindent
15682 The definitions file contains lines of the form
15683
15684 @smallexample
15685 symbol := value
15686 @end smallexample
15687
15688 @noindent
15689 where symbol is an identifier, following normal Ada (case-insensitive)
15690 rules for its syntax, and value is one of the following:
15691
15692 @itemize @bullet
15693 @item
15694 Empty, corresponding to a null substitution
15695 @item
15696 A string literal using normal Ada syntax
15697 @item
15698 Any sequence of characters from the set
15699 (letters, digits, period, underline).
15700 @end itemize
15701
15702 @noindent
15703 Comment lines may also appear in the definitions file, starting with
15704 the usual @code{--},
15705 and comments may be added to the definitions lines.
15706
15707 @node Form of Input Text for gnatprep
15708 @section Form of Input Text for @code{gnatprep}
15709
15710 @noindent
15711 The input text may contain preprocessor conditional inclusion lines,
15712 as well as general symbol substitution sequences.
15713
15714 The preprocessor conditional inclusion commands have the form
15715
15716 @smallexample
15717 @group
15718 @cartouche
15719 #if @i{expression} [then]
15720 lines
15721 #elsif @i{expression} [then]
15722 lines
15723 #elsif @i{expression} [then]
15724 lines
15725 ...
15726 #else
15727 lines
15728 #end if;
15729 @end cartouche
15730 @end group
15731 @end smallexample
15732
15733 @noindent
15734 In this example, @i{expression} is defined by the following grammar:
15735 @smallexample
15736 @i{expression} ::= <symbol>
15737 @i{expression} ::= <symbol> = "<value>"
15738 @i{expression} ::= <symbol> = <symbol>
15739 @i{expression} ::= <symbol> 'Defined
15740 @i{expression} ::= not @i{expression}
15741 @i{expression} ::= @i{expression} and @i{expression}
15742 @i{expression} ::= @i{expression} or @i{expression}
15743 @i{expression} ::= @i{expression} and then @i{expression}
15744 @i{expression} ::= @i{expression} or else @i{expression}
15745 @i{expression} ::= ( @i{expression} )
15746 @end smallexample
15747
15748 @noindent
15749 For the first test (@i{expression} ::= <symbol>) the symbol must have
15750 either the value true or false, that is to say the right-hand of the
15751 symbol definition must be one of the (case-insensitive) literals
15752 @code{True} or @code{False}. If the value is true, then the
15753 corresponding lines are included, and if the value is false, they are
15754 excluded.
15755
15756 The test (@i{expression} ::= <symbol> @code{'Defined}) is true only if
15757 the symbol has been defined in the definition file or by a @option{-D}
15758 switch on the command line. Otherwise, the test is false.
15759
15760 The equality tests are case insensitive, as are all the preprocessor lines.
15761
15762 If the symbol referenced is not defined in the symbol definitions file,
15763 then the effect depends on whether or not switch @option{-u}
15764 is specified. If so, then the symbol is treated as if it had the value
15765 false and the test fails. If this switch is not specified, then
15766 it is an error to reference an undefined symbol. It is also an error to
15767 reference a symbol that is defined with a value other than @code{True}
15768 or @code{False}.
15769
15770 The use of the @code{not} operator inverts the sense of this logical test, so
15771 that the lines are included only if the symbol is not defined.
15772 The @code{then} keyword is optional as shown
15773
15774 The @code{#} must be the first non-blank character on a line, but
15775 otherwise the format is free form. Spaces or tabs may appear between
15776 the @code{#} and the keyword. The keywords and the symbols are case
15777 insensitive as in normal Ada code. Comments may be used on a
15778 preprocessor line, but other than that, no other tokens may appear on a
15779 preprocessor line. Any number of @code{elsif} clauses can be present,
15780 including none at all. The @code{else} is optional, as in Ada.
15781
15782 The @code{#} marking the start of a preprocessor line must be the first
15783 non-blank character on the line, i.e. it must be preceded only by
15784 spaces or horizontal tabs.
15785
15786 Symbol substitution outside of preprocessor lines is obtained by using
15787 the sequence
15788
15789 @smallexample
15790 $symbol
15791 @end smallexample
15792
15793 @noindent
15794 anywhere within a source line, except in a comment or within a
15795 string literal. The identifier
15796 following the @code{$} must match one of the symbols defined in the symbol
15797 definition file, and the result is to substitute the value of the
15798 symbol in place of @code{$symbol} in the output file.
15799
15800 Note that although the substitution of strings within a string literal
15801 is not possible, it is possible to have a symbol whose defined value is
15802 a string literal. So instead of setting XYZ to @code{hello} and writing:
15803
15804 @smallexample
15805 Header : String := "$XYZ";
15806 @end smallexample
15807
15808 @noindent
15809 you should set XYZ to @code{"hello"} and write:
15810
15811 @smallexample
15812 Header : String := $XYZ;
15813 @end smallexample
15814
15815 @noindent
15816 and then the substitution will occur as desired.
15817
15818 @ifset vms
15819 @node The GNAT Run-Time Library Builder gnatlbr
15820 @chapter The GNAT Run-Time Library Builder @code{gnatlbr}
15821 @findex gnatlbr
15822 @cindex Library builder
15823
15824 @noindent
15825 @code{gnatlbr} is a tool for rebuilding the GNAT run time with user
15826 supplied configuration pragmas.
15827
15828 @menu
15829 * Running gnatlbr::
15830 * Switches for gnatlbr::
15831 * Examples of gnatlbr Usage::
15832 @end menu
15833
15834 @node Running gnatlbr
15835 @section Running @code{gnatlbr}
15836
15837 @noindent
15838 The @code{gnatlbr} command has the form
15839
15840 @smallexample
15841 $ GNAT LIBRARY /[CREATE | SET | DELETE]=directory [/CONFIG=file]
15842 @end smallexample
15843
15844 @node Switches for gnatlbr
15845 @section Switches for @code{gnatlbr}
15846
15847 @noindent
15848 @code{gnatlbr} recognizes the following switches:
15849
15850 @table @option
15851 @c !sort!
15852 @item /CREATE=directory
15853 @cindex @code{/CREATE} (@code{gnatlbr})
15854 Create the new run-time library in the specified directory.
15855
15856 @item /SET=directory
15857 @cindex @code{/SET} (@code{gnatlbr})
15858 Make the library in the specified directory the current run-time
15859 library.
15860
15861 @item /DELETE=directory
15862 @cindex @code{/DELETE} (@code{gnatlbr})
15863 Delete the run-time library in the specified directory.
15864
15865 @item /CONFIG=file
15866 @cindex @code{/CONFIG} (@code{gnatlbr})
15867 With /CREATE:
15868 Use the configuration pragmas in the specified file when building
15869 the library.
15870
15871 With /SET:
15872 Use the configuration pragmas in the specified file when compiling.
15873
15874 @end table
15875
15876 @node Examples of gnatlbr Usage
15877 @section Example of @code{gnatlbr} Usage
15878
15879 @smallexample
15880 Contents of VAXFLOAT.ADC:
15881 pragma Float_Representation (VAX_Float);
15882
15883 $ GNAT LIBRARY /CREATE=[.VAXFLOAT] /CONFIG=VAXFLOAT.ADC
15884
15885 GNAT LIBRARY rebuilds the run-time library in directory [.VAXFLOAT]
15886
15887 @end smallexample
15888 @end ifset
15889
15890 @node The GNAT Library Browser gnatls
15891 @chapter The GNAT Library Browser @code{gnatls}
15892 @findex gnatls
15893 @cindex Library browser
15894
15895 @noindent
15896 @code{gnatls} is a tool that outputs information about compiled
15897 units. It gives the relationship between objects, unit names and source
15898 files. It can also be used to check the source dependencies of a unit
15899 as well as various characteristics.
15900
15901 @menu
15902 * Running gnatls::
15903 * Switches for gnatls::
15904 * Examples of gnatls Usage::
15905 @end menu
15906
15907 @node Running gnatls
15908 @section Running @code{gnatls}
15909
15910 @noindent
15911 The @code{gnatls} command has the form
15912
15913 @smallexample
15914 $ gnatls switches @var{object_or_ali_file}
15915 @end smallexample
15916
15917 @noindent
15918 The main argument is the list of object or @file{ali} files
15919 (@pxref{The Ada Library Information Files})
15920 for which information is requested.
15921
15922 In normal mode, without additional option, @code{gnatls} produces a
15923 four-column listing. Each line represents information for a specific
15924 object. The first column gives the full path of the object, the second
15925 column gives the name of the principal unit in this object, the third
15926 column gives the status of the source and the fourth column gives the
15927 full path of the source representing this unit.
15928 Here is a simple example of use:
15929
15930 @smallexample
15931 $ gnatls *.o
15932 ^./^[]^demo1.o demo1 DIF demo1.adb
15933 ^./^[]^demo2.o demo2 OK demo2.adb
15934 ^./^[]^hello.o h1 OK hello.adb
15935 ^./^[]^instr-child.o instr.child MOK instr-child.adb
15936 ^./^[]^instr.o instr OK instr.adb
15937 ^./^[]^tef.o tef DIF tef.adb
15938 ^./^[]^text_io_example.o text_io_example OK text_io_example.adb
15939 ^./^[]^tgef.o tgef DIF tgef.adb
15940 @end smallexample
15941
15942 @noindent
15943 The first line can be interpreted as follows: the main unit which is
15944 contained in
15945 object file @file{demo1.o} is demo1, whose main source is in
15946 @file{demo1.adb}. Furthermore, the version of the source used for the
15947 compilation of demo1 has been modified (DIF). Each source file has a status
15948 qualifier which can be:
15949
15950 @table @code
15951 @item OK (unchanged)
15952 The version of the source file used for the compilation of the
15953 specified unit corresponds exactly to the actual source file.
15954
15955 @item MOK (slightly modified)
15956 The version of the source file used for the compilation of the
15957 specified unit differs from the actual source file but not enough to
15958 require recompilation. If you use gnatmake with the qualifier
15959 @option{^-m (minimal recompilation)^/MINIMAL_RECOMPILATION^}, a file marked
15960 MOK will not be recompiled.
15961
15962 @item DIF (modified)
15963 No version of the source found on the path corresponds to the source
15964 used to build this object.
15965
15966 @item ??? (file not found)
15967 No source file was found for this unit.
15968
15969 @item HID (hidden, unchanged version not first on PATH)
15970 The version of the source that corresponds exactly to the source used
15971 for compilation has been found on the path but it is hidden by another
15972 version of the same source that has been modified.
15973
15974 @end table
15975
15976 @node Switches for gnatls
15977 @section Switches for @code{gnatls}
15978
15979 @noindent
15980 @code{gnatls} recognizes the following switches:
15981
15982 @table @option
15983 @c !sort!
15984 @item ^-a^/ALL_UNITS^
15985 @cindex @option{^-a^/ALL_UNITS^} (@code{gnatls})
15986 Consider all units, including those of the predefined Ada library.
15987 Especially useful with @option{^-d^/DEPENDENCIES^}.
15988
15989 @item ^-d^/DEPENDENCIES^
15990 @cindex @option{^-d^/DEPENDENCIES^} (@code{gnatls})
15991 List sources from which specified units depend on.
15992
15993 @item ^-h^/OUTPUT=OPTIONS^
15994 @cindex @option{^-h^/OUTPUT=OPTIONS^} (@code{gnatls})
15995 Output the list of options.
15996
15997 @item ^-o^/OUTPUT=OBJECTS^
15998 @cindex @option{^-o^/OUTPUT=OBJECTS^} (@code{gnatls})
15999 Only output information about object files.
16000
16001 @item ^-s^/OUTPUT=SOURCES^
16002 @cindex @option{^-s^/OUTPUT=SOURCES^} (@code{gnatls})
16003 Only output information about source files.
16004
16005 @item ^-u^/OUTPUT=UNITS^
16006 @cindex @option{^-u^/OUTPUT=UNITS^} (@code{gnatls})
16007 Only output information about compilation units.
16008
16009 @item ^-aO^/OBJECT_SEARCH=^@var{dir}
16010 @itemx ^-aI^/SOURCE_SEARCH=^@var{dir}
16011 @itemx ^-I^/SEARCH=^@var{dir}
16012 @itemx ^-I-^/NOCURRENT_DIRECTORY^
16013 @itemx -nostdinc
16014 @cindex @option{^-aO^/OBJECT_SEARCH^} (@code{gnatls})
16015 @cindex @option{^-aI^/SOURCE_SEARCH^} (@code{gnatls})
16016 @cindex @option{^-I^/SEARCH^} (@code{gnatls})
16017 @cindex @option{^-I-^/NOCURRENT_DIRECTORY^} (@code{gnatls})
16018 Source path manipulation. Same meaning as the equivalent @code{gnatmake} flags
16019 (see @ref{Switches for gnatmake}).
16020
16021 @item --RTS=@var{rts-path}
16022 @cindex @option{--RTS} (@code{gnatls})
16023 Specifies the default location of the runtime library. Same meaning as the
16024 equivalent @code{gnatmake} flag (see @ref{Switches for gnatmake}).
16025
16026 @item ^-v^/OUTPUT=VERBOSE^
16027 @cindex @option{^-v^/OUTPUT=VERBOSE^} (@code{gnatls})
16028 Verbose mode. Output the complete source and object paths. Do not use
16029 the default column layout but instead use long format giving as much as
16030 information possible on each requested units, including special
16031 characteristics such as:
16032
16033 @table @code
16034 @item Preelaborable
16035 The unit is preelaborable in the Ada 95 sense.
16036
16037 @item No_Elab_Code
16038 No elaboration code has been produced by the compiler for this unit.
16039
16040 @item Pure
16041 The unit is pure in the Ada 95 sense.
16042
16043 @item Elaborate_Body
16044 The unit contains a pragma Elaborate_Body.
16045
16046 @item Remote_Types
16047 The unit contains a pragma Remote_Types.
16048
16049 @item Shared_Passive
16050 The unit contains a pragma Shared_Passive.
16051
16052 @item Predefined
16053 This unit is part of the predefined environment and cannot be modified
16054 by the user.
16055
16056 @item Remote_Call_Interface
16057 The unit contains a pragma Remote_Call_Interface.
16058
16059 @end table
16060
16061 @end table
16062
16063 @node Examples of gnatls Usage
16064 @section Example of @code{gnatls} Usage
16065 @ifclear vms
16066
16067 @noindent
16068 Example of using the verbose switch. Note how the source and
16069 object paths are affected by the -I switch.
16070
16071 @smallexample
16072 $ gnatls -v -I.. demo1.o
16073
16074 GNATLS 3.10w (970212) Copyright 1999 Free Software Foundation, Inc.
16075
16076 Source Search Path:
16077 <Current_Directory>
16078 ../
16079 /home/comar/local/adainclude/
16080
16081 Object Search Path:
16082 <Current_Directory>
16083 ../
16084 /home/comar/local/lib/gcc-lib/mips-sni-sysv4/2.7.2/adalib/
16085
16086 ./demo1.o
16087 Unit =>
16088 Name => demo1
16089 Kind => subprogram body
16090 Flags => No_Elab_Code
16091 Source => demo1.adb modified
16092 @end smallexample
16093
16094 @noindent
16095 The following is an example of use of the dependency list.
16096 Note the use of the -s switch
16097 which gives a straight list of source files. This can be useful for
16098 building specialized scripts.
16099
16100 @smallexample
16101 $ gnatls -d demo2.o
16102 ./demo2.o demo2 OK demo2.adb
16103 OK gen_list.ads
16104 OK gen_list.adb
16105 OK instr.ads
16106 OK instr-child.ads
16107
16108 $ gnatls -d -s -a demo1.o
16109 demo1.adb
16110 /home/comar/local/adainclude/ada.ads
16111 /home/comar/local/adainclude/a-finali.ads
16112 /home/comar/local/adainclude/a-filico.ads
16113 /home/comar/local/adainclude/a-stream.ads
16114 /home/comar/local/adainclude/a-tags.ads
16115 gen_list.ads
16116 gen_list.adb
16117 /home/comar/local/adainclude/gnat.ads
16118 /home/comar/local/adainclude/g-io.ads
16119 instr.ads
16120 /home/comar/local/adainclude/system.ads
16121 /home/comar/local/adainclude/s-exctab.ads
16122 /home/comar/local/adainclude/s-finimp.ads
16123 /home/comar/local/adainclude/s-finroo.ads
16124 /home/comar/local/adainclude/s-secsta.ads
16125 /home/comar/local/adainclude/s-stalib.ads
16126 /home/comar/local/adainclude/s-stoele.ads
16127 /home/comar/local/adainclude/s-stratt.ads
16128 /home/comar/local/adainclude/s-tasoli.ads
16129 /home/comar/local/adainclude/s-unstyp.ads
16130 /home/comar/local/adainclude/unchconv.ads
16131 @end smallexample
16132 @end ifclear
16133
16134 @ifset vms
16135 @smallexample
16136 GNAT LIST /DEPENDENCIES /OUTPUT=SOURCES /ALL_UNITS DEMO1.ADB
16137
16138 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]ada.ads
16139 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]a-finali.ads
16140 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]a-filico.ads
16141 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]a-stream.ads
16142 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]a-tags.ads
16143 demo1.adb
16144 gen_list.ads
16145 gen_list.adb
16146 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]gnat.ads
16147 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]g-io.ads
16148 instr.ads
16149 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]system.ads
16150 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]s-exctab.ads
16151 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]s-finimp.ads
16152 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]s-finroo.ads
16153 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]s-secsta.ads
16154 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]s-stalib.ads
16155 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]s-stoele.ads
16156 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]s-stratt.ads
16157 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]s-tasoli.ads
16158 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]s-unstyp.ads
16159 GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB]unchconv.ads
16160 @end smallexample
16161 @end ifset
16162
16163 @node Cleaning Up Using gnatclean
16164 @chapter Cleaning Up Using @code{gnatclean}
16165 @findex gnatclean
16166 @cindex Cleaning tool
16167
16168 @noindent
16169 @code{gnatclean} is a tool that allows the deletion of files produced by the
16170 compiler, binder and linker, including ALI files, object files, tree files,
16171 expanded source files, library files, interface copy source files, binder
16172 generated files and executable files.
16173
16174 @menu
16175 * Running gnatclean::
16176 * Switches for gnatclean::
16177 * Examples of gnatclean Usage::
16178 @end menu
16179
16180 @node Running gnatclean
16181 @section Running @code{gnatclean}
16182
16183 @noindent
16184 The @code{gnatclean} command has the form:
16185
16186 @smallexample
16187 $ gnatclean switches @var{names}
16188 @end smallexample
16189
16190 @noindent
16191 @var{names} is a list of source file names. Suffixes @code{.^ads^ADS^} and
16192 @code{^adb^ADB^} may be omitted. If a project file is specified using switch
16193 @code{^-P^/PROJECT_FILE=^}, then @var{names} may be completely omitted.
16194
16195 @noindent
16196 In normal mode, @code{gnatclean} delete the files produced by the compiler and,
16197 if switch @code{^-c^/COMPILER_FILES_ONLY^} is not specified, by the binder and
16198 the linker. In informative-only mode, specified by switch
16199 @code{^-n^/NODELETE^}, the list of files that would have been deleted in
16200 normal mode is listed, but no file is actually deleted.
16201
16202 @node Switches for gnatclean
16203 @section Switches for @code{gnatclean}
16204
16205 @noindent
16206 @code{gnatclean} recognizes the following switches:
16207
16208 @table @option
16209 @c !sort!
16210 @item ^-c^/COMPILER_FILES_ONLY^
16211 @cindex @option{^-c^/COMPILER_FILES_ONLY^} (@code{gnatclean})
16212 Only attempt to delete the files produced by the compiler, not those produced
16213 by the binder or the linker. The files that are not to be deleted are library
16214 files, interface copy files, binder generated files and executable files.
16215
16216 @item ^-D ^/DIRECTORY_OBJECTS=^@var{dir}
16217 @cindex @option{^-D^/DIRECTORY_OBJECTS^} (@code{gnatclean})
16218 Indicate that ALI and object files should normally be found in directory
16219 @var{dir}.
16220
16221 @item ^-F^/FULL_PATH_IN_BRIEF_MESSAGES^
16222 @cindex @option{^-F^/FULL_PATH_IN_BRIEF_MESSAGES^} (@code{gnatclean})
16223 When using project files, if some errors or warnings are detected during
16224 parsing and verbose mode is not in effect (no use of switch
16225 ^-v^/VERBOSE^), then error lines start with the full path name of the project
16226 file, rather than its simple file name.
16227
16228 @item ^-h^/HELP^
16229 @cindex @option{^-h^/HELP^} (@code{gnatclean})
16230 Output a message explaining the usage of @code{^gnatclean^gnatclean^}.
16231
16232 @item ^-n^/NODELETE^
16233 @cindex @option{^-n^/NODELETE^} (@code{gnatclean})
16234 Informative-only mode. Do not delete any files. Output the list of the files
16235 that would have been deleted if this switch was not specified.
16236
16237 @item ^-P^/PROJECT_FILE=^@var{project}
16238 @cindex @option{^-P^/PROJECT_FILE^} (@code{gnatclean})
16239 Use project file @var{project}. Only one such switch can be used.
16240 When cleaning a project file, the files produced by the compilation of the
16241 immediate sources or inherited sources of the project files are to be
16242 deleted. This is not depending on the presence or not of executable names
16243 on the command line.
16244
16245 @item ^-q^/QUIET^
16246 @cindex @option{^-q^/QUIET^} (@code{gnatclean})
16247 Quiet output. If there are no error, do not ouuput anything, except in
16248 verbose mode (switch ^-v^/VERBOSE^) or in informative-only mode
16249 (switch ^-n^/NODELETE^).
16250
16251 @item ^-r^/RECURSIVE^
16252 @cindex @option{^-r^/RECURSIVE^} (@code{gnatclean})
16253 When a project file is specified (using switch ^-P^/PROJECT_FILE=^),
16254 clean all imported and extended project files, recursively. If this switch
16255 is not specified, only the files related to the main project file are to be
16256 deleted. This switch has no effect if no project file is specified.
16257
16258 @item ^-v^/VERBOSE^
16259 @cindex @option{^-v^/VERBOSE^} (@code{gnatclean})
16260 Verbose mode.
16261
16262 @item ^-vP^/MESSAGES_PROJECT_FILE=^@emph{x}
16263 @cindex @option{^-vP^/MESSAGES_PROJECT_FILE^} (@code{gnatclean})
16264 Indicates the verbosity of the parsing of GNAT project files.
16265 See @ref{Switches Related to Project Files}.
16266
16267 @item ^-X^/EXTERNAL_REFERENCE=^@var{name=value}
16268 @cindex @option{^-X^/EXTERNAL_REFERENCE^} (@code{gnatclean})
16269 Indicates that external variable @var{name} has the value @var{value}.
16270 The Project Manager will use this value for occurrences of
16271 @code{external(name)} when parsing the project file.
16272 See @ref{Switches Related to Project Files}.
16273
16274 @item ^-aO^/OBJECT_SEARCH=^@var{dir}
16275 @cindex @option{^-aO^/OBJECT_SEARCH^} (@code{gnatclean})
16276 When searching for ALI and object files, look in directory
16277 @var{dir}.
16278
16279 @item ^-I^/SEARCH=^@var{dir}
16280 @cindex @option{^-I^/SEARCH^} (@code{gnatclean})
16281 Equivalent to @option{^-aO^/OBJECT_SEARCH=^@var{dir}}.
16282
16283 @item ^-I-^/NOCURRENT_DIRECTORY^
16284 @cindex @option{^-I-^/NOCURRENT_DIRECTORY^} (@code{gnatclean})
16285 @cindex Source files, suppressing search
16286 Do not look for ALI or object files in the directory
16287 where @code{gnatclean} was invoked.
16288
16289 @end table
16290
16291 @node Examples of gnatclean Usage
16292 @section Examples of @code{gnatclean} Usage
16293
16294 @ifclear vms
16295 @node GNAT and Libraries
16296 @chapter GNAT and Libraries
16297 @cindex Library, building, installing, using
16298
16299 @noindent
16300 This chapter addresses the issues related to building and using
16301 libraries with GNAT. It also shows how the GNAT run-time library can be
16302 recompiled. It is recommended that the user understands how to use the
16303 @ref{GNAT Project Manager} facility before reading this chapter.
16304
16305 @menu
16306 * Introduction to Libraries in GNAT::
16307 * General Ada Libraries::
16308 * Stand-alone Ada Libraries::
16309 * Rebuilding the GNAT Run-Time Library::
16310 @end menu
16311
16312 @node Introduction to Libraries in GNAT
16313 @section Introduction to Libraries in GNAT
16314
16315 @noindent
16316 A library is, conceptually, a collection of objects which does not have its
16317 own main thread of execution, but rather provides certain services to the
16318 applications that use it. A library can be either statically linked with the
16319 application, in which case its code is directly included in the application,
16320 or, on platforms that support it, be dynamically linked, in which case
16321 its code is shared by all applications making use of this library. GNAT
16322 supports both types of libraries. In the static case, the compiled code can
16323 be provided in different ways. The simplest way is to provide directly the
16324 set of objects produced by the compiler during the compilation of the library.
16325 It is also possible to group the objects into an archive using whatever
16326 commands are provided by the operating system. For the later case, the objects
16327 are grouped into a shared library.
16328
16329 In the GNAT environment, a library has two types of components:
16330 @itemize @bullet
16331 @item
16332 Source files.
16333 @item
16334 Compiled code and Ali files. See @ref{The Ada Library Information Files}.
16335 @end itemize
16336
16337 @noindent
16338 GNAT libraries can either completely expose their source files to the
16339 compilation context of the user's application, or alternatively only expose
16340 a limited set of source files, called interface units, in which case they are
16341 called @ref{Stand-alone Ada Libraries}. In addition, GNAT provides full support
16342 for foreign libraries which are only available in the object format.
16343
16344 Ada semantics requires that all compilation units comprising the application
16345 are elaborated in the timely fashion. Where possible, GNAT provides facilities
16346 to ensure that compilation units of a library are automatically elaborated;
16347 however, there are cases where this must be responsibility of a user. This will
16348 be addressed in greater detail further on.
16349
16350 @node General Ada Libraries
16351 @section General Ada Libraries
16352
16353 @menu
16354 * Building the library::
16355 * Installing the library::
16356 * Using the library::
16357 @end menu
16358
16359 @node Building the library
16360 @subsection Building the library
16361
16362 @noindent
16363 The easiest way to build a library is to use the @ref{GNAT Project Manager},
16364 which supports a special type of projects called @ref{Library Projects}.
16365
16366 A project is considered a library project, when two project-level attributes
16367 are defined in it: @code{Library_Name} and @code{Library_Dir}. In order to
16368 control different aspects of library configuration, additional optional
16369 project-level attributes can be specified:
16370 @itemize
16371 @item @code{Library_Kind}
16372 This attribute controls whether the library is to be static or shared
16373 @item @code{Library_Version}
16374 This attribute specifies what is the library version; this value is used
16375 during dynamic linking of shared libraries to determine if the currently
16376 installed versions of the binaries are compatible.
16377 @item @code{Library_Options}, @code{Library_GCC}
16378 These attributes specify additional low-level options to be used during
16379 library generation, and redefine the actual application used to generate
16380 library.
16381 @end itemize
16382
16383 @noindent
16384 GNAT Project Manager takes full care of the library maintenance task,
16385 including recompilation of the source files for which objects do not exist
16386 or are not up to date, assembly of the library archive, and installation of
16387 the library, i.e. the copy of associated source, object and ALI files to the
16388 specific location.
16389
16390 It is not entirely trivial to correctly do all the steps required to
16391 produce a library. We recommend that you use @ref{GNAT Project Manager}
16392 for this task. In special cases where this is not desired, the necessary
16393 steps are discussed below.
16394
16395 There are various possibilities for compiling the units that make up the
16396 library: for example with a Makefile @ref{Using the GNU make Utility},
16397 or with a conventional script.
16398 For simple libraries, it is also possible to create a
16399 dummy main program which depends upon all the packages that comprise the
16400 interface of the library. This dummy main program can then be given to
16401 gnatmake, which will ensure that all necessary objects are built.
16402
16403 After this task is accomplished, the user should follow the standard procedure
16404 of the underlying operating system to produce the static or shared library.
16405
16406 Below is an example of such a dummy program and the generic commands used to
16407 build an archive or a shared library.
16408
16409 @smallexample @c ada
16410 @iftex
16411 @leftskip=.7cm
16412 @end iftex
16413 with My_Lib.Service1;
16414 with My_Lib.Service2;
16415 with My_Lib.Service3;
16416 procedure My_Lib_Dummy is
16417 begin
16418 null;
16419 end;
16420 @end smallexample
16421
16422 @smallexample
16423 # compiling the library
16424 $ gnatmake -c my_lib_dummy.adb
16425
16426 # we don't need the dummy object itself
16427 $ rm my_lib_dummy.o my_lib_dummy.ali
16428
16429 # create an archive with the remaining objects
16430 $ ar rc libmy_lib.a *.o
16431 # some systems may require "ranlib" to be run as well
16432
16433 # or create a shared library
16434 $ gcc -shared -o libmy_lib.so *.o
16435 # some systems may require the code to have been compiled with -fPIC
16436
16437 # remove the object files that are now in the library
16438 $ rm *.o
16439
16440 # Make the ALI files read-only so that gnatmake will not try to
16441 # regenerate the objects that are in the library
16442 $ chmod -w *.ali
16443
16444 @end smallexample
16445
16446 @noindent
16447 Please note that the library must have a name of the form libxxx.a or
16448 libxxx.so in order to be accessed by the directive -lxxx at link
16449 time.
16450
16451 @node Installing the library
16452 @subsection Installing the library
16453
16454 @noindent
16455 In the GNAT model, installing a library consists in copying into a specific
16456 location the files that make up this library. When the library is built using
16457 projects, it is automatically installed in the location specified in the
16458 project by means of the attribute @code{Library_Dir}, otherwise it is
16459 responsibility of the user. GNAT also supports installing the sources in a
16460 different directory from the other files (ALI, objects, archives) since the
16461 source path and the object path can be specified separately.
16462
16463 For general purpose libraries, it is possible for the system
16464 administrator to put those libraries in the default compiler paths. To
16465 achieve this, he must specify their location in the configuration files
16466 @file{ada_source_path} and @file{ada_object_path} that must be located in
16467 the GNAT
16468 installation tree at the same place as the gcc spec file. The location of
16469 the gcc spec file can be determined as follows:
16470 @smallexample
16471 $ gcc -v
16472 @end smallexample
16473
16474 @noindent
16475 The configuration files mentioned above have simple format: each line in them
16476 must contain one unique
16477 directory name. Those names are added to the corresponding path
16478 in their order of appearance in the file. The names can be either absolute
16479 or relative, in the latter case, they are relative to where theses files
16480 are located.
16481
16482 @file{ada_source_path} and @file{ada_object_path} might actually not be
16483 present in a
16484 GNAT installation, in which case, GNAT will look for its run-time library in
16485 he directories @file{adainclude} for the sources and @file{adalib} for the
16486 objects and @file{ALI} files. When the files exist, the compiler does not
16487 look in @file{adainclude} and @file{adalib} at all, and thus the
16488 @file{ada_source_path} file
16489 must contain the location for the GNAT run-time sources (which can simply
16490 be @file{adainclude}). In the same way, the @file{ada_object_path} file must
16491 contain the location for the GNAT run-time objects (which can simply
16492 be @file{adalib}).
16493
16494 You can also specify a new default path to the runtime library at compilation
16495 time with the switch @option{--RTS=rts-path}. You can easily choose and change
16496 the runtime you want your program to be compiled with. This switch is
16497 recognized by gcc, gnatmake, gnatbind, gnatls, gnatfind and gnatxref.
16498
16499 It is possible to install a library before or after the standard GNAT
16500 library, by reordering the lines in the configuration files. In general, a
16501 library must be installed before the GNAT library if it redefines
16502 any part of it.
16503
16504
16505 @node Using the library
16506 @subsection Using the library
16507
16508 @noindent
16509 Once again, the project facility greatly simplifies the addition of libraries
16510 to the compilation. If the project file for an application lists a library
16511 project in its @code{with} clause, the project manager will ensure that the
16512 library files are consistent, and are considered during compilation and
16513 linking of the main application.
16514
16515 Even if you have a third-party, non-Ada library, you can still use GNAT
16516 Project facility to provide a wrapper for it. The following project for
16517 example, when "withed" in your main project, will link with the third-party
16518 library liba.a:
16519
16520 @smallexample @c projectfile
16521 @group
16522 project Liba is
16523 for Source_Dirs use ();
16524 for Library_Dir use "lib";
16525 for Library_Name use "a";
16526 for Library_Kind use "static";
16527 end Liba;
16528 @end group
16529 @end smallexample
16530
16531 @noindent
16532 In order to use an Ada library manually, you need to make sure that this
16533 library is on both your source and object path
16534 @ref{Search Paths and the Run-Time Library (RTL)}
16535 and @ref{Search Paths for gnatbind}. Furthermore, when the objects are grouped
16536 in an archive or a shared library, the user needs to specify the desired
16537 library at link time.
16538
16539 By means of example, you can use the library @file{mylib} installed in
16540 @file{/dir/my_lib_src} and @file{/dir/my_lib_obj} with the following commands:
16541
16542 @smallexample
16543 $ gnatmake -aI/dir/my_lib_src -aO/dir/my_lib_obj my_appl \
16544 -largs -lmy_lib
16545 @end smallexample
16546
16547 @noindent
16548 This can be simplified down to the following:
16549 @smallexample
16550 $ gnatmake my_appl
16551 @end smallexample
16552 when the following conditions are met:
16553 @itemize @bullet
16554 @item
16555 @file{/dir/my_lib_src} has been added by the user to the environment
16556 variable @code{ADA_INCLUDE_PATH}, or by the administrator to the file
16557 @file{ada_source_path}
16558 @item
16559 @file{/dir/my_lib_obj} has been added by the user to the environment
16560 variable @code{ADA_OBJECTS_PATH}, or by the administrator to the file
16561 @file{ada_object_path}
16562 @item
16563 a pragma @code{Linker_Options}, has been added to one of the sources.
16564 For example:
16565
16566 @smallexample @c ada
16567 pragma Linker_Options ("-lmy_lib");
16568 @end smallexample
16569 @end itemize
16570
16571
16572 @node Stand-alone Ada Libraries
16573 @section Stand-alone Ada Libraries
16574 @cindex Stand-alone library, building, using
16575
16576 @menu
16577 * Introduction to Stand-Alone Libraries::
16578 * Building SAL::
16579 * Creating SAL to be used in a non-Ada context::
16580 * Restrictions in SALs::
16581 @end menu
16582
16583 @node Introduction to Stand-Alone Libraries
16584 @subsection Introduction to Stand-Alone Libraries
16585
16586 @noindent
16587 A Stand-alone Library (SAL) is a library that contains the necessary code to
16588 elaborate the Ada units that are included in the library. Different from
16589 ordinary libraries, which consist of all sources, objects and ALI files of the
16590 library, the SAL creator can specify a restricted subset of compilation units
16591 comprising SAL to serve as a library interface. In this case, the fully
16592 self-sufficient set of files of such library will normally consist of objects
16593 archive, sources of interface units specs, and ALI files of interface units.
16594 Note that if interface specs contain generics or inlined subprograms, body
16595 source must also be provided; if the units that must be provided in the source
16596 form depend on other units, the source and ALIs of those must also be provided.
16597
16598 The main purpose of SAL is to minimize the recompilation overhead of client
16599 applications when the new version of the library is installed. Specifically,
16600 if the interface sources have not changed, client applications do not need to
16601 be recompiled. If, furthermore, SAL is provided in the shared form and its
16602 version, controlled by @code{Library_Version} attribute, is not changed, the
16603 clients don't need to be relinked, either.
16604
16605 SALs also allow the library providers to minimize amount of library source
16606 text exposed to the clients, which might be necessary for different reasons.
16607
16608 Stand-alone libraries are also well suited to be used in an executable which
16609 main is not written in Ada.
16610
16611 @node Building SAL
16612 @subsection Building SAL
16613
16614 @noindent
16615 GNAT Project facility provides a simple way of building and installing
16616 stand-alone libraries, see @ref{Stand-alone Library Projects}.
16617 To be a Stand-alone Library Project, in addition to the two attributes
16618 that make a project a Library Project (@code{Library_Name} and
16619 @code{Library_Dir}, see @ref{Library Projects}), the attribute
16620 @code{Library_Interface} must be defined.
16621
16622 @smallexample @c projectfile
16623 @group
16624 for Library_Dir use "lib_dir";
16625 for Library_Name use "dummy";
16626 for Library_Interface use ("int1", "int1.child");
16627 @end group
16628 @end smallexample
16629
16630 Attribute @code{Library_Interface} has a non empty string list value,
16631 each string in the list designating a unit contained in an immediate source
16632 of the project file.
16633
16634 When a Stand-alone Library is built, first the binder is invoked to build
16635 a package whose name depends on the library name
16636 (^b~dummy.ads/b^B$DUMMY.ADS/B^ in the example above).
16637 This binder-generated package includes initialization and
16638 finalization procedures whose
16639 names depend on the library name (dummyinit and dummyfinal in the example
16640 above). The object corresponding to this package is included in the library.
16641
16642 The user must ensure timely (e.g. prior to any use of interfaces in the SAL)
16643 calling of these procedures if static SAL is built, or shared SAL is built
16644 with project-level attribute @code{Library_Auto_Init} set to "false".
16645
16646 For a Stand-Alone Library, only the @file{ALI} files of the Interface Units
16647 (those that are listed in attribute @code{Library_Interface}) are copied to
16648 the Library Directory. As a consequence, only the Interface Units may be
16649 imported from Ada units outside of the library. If other units are imported,
16650 the binding phase will fail.
16651
16652 The attribute @code{Library_Src_Dir}, may be specified for a
16653 Stand-Alone Library. @code{Library_Src_Dir} is a simple attribute that has a
16654 single string value. Its value must be the path (absolute or relative to the
16655 project directory) of an existing directory. This directory cannot be the
16656 object directory or one of the source directories, but it can be the same as
16657 the library directory. The sources of the Interface
16658 Units of the library, necessary to an Ada client of the library, will be
16659 copied to the designated directory, called Interface Copy directory.
16660 These sources includes the specs of the Interface Units, but they may also
16661 include bodies and subunits, when pragmas @code{Inline} or @code{Inline_Always}
16662 are used, or when there is a generic units in the spec. Before the sources
16663 are copied to the Interface Copy directory, an attempt is made to delete all
16664 files in the Interface Copy directory.
16665
16666 Building stand-alone libraries by hand is difficult. Below are listed the steps
16667 necessary to be done by the user:
16668 @itemize @bullet
16669 @item
16670 compile all library sources
16671 @item
16672 invoke the binder with the switch -n (No Ada main program),
16673 with all the ALI files of the interfaces, and
16674 with the switch -L to give specific names to the init and final
16675 procedure.
16676 @smallexample
16677 gnatbind -n int1.ali int2.ali -Lsal1
16678 @end smallexample
16679 @item
16680 compile the binder generated file
16681 @smallexample
16682 gcc -c b~int2.adb
16683 @end smallexample
16684 @item
16685 link the dynamic library with all the necessary object files,
16686 indicating to the linker the names of the init (and possibly
16687 final) procedures for automatic initialization (and finalization).
16688 The built library should be put in a directory different from
16689 the object directory.
16690 @item
16691 copy the ALI files of the interface to the library directory,
16692 add in the copy the indication that it is an interface to a SAL
16693 (i.e. add a word @option{SL} on the line in ALI file that starts
16694 with letter P) and make the modified copy of the ALI file read-only.
16695 @end itemize
16696
16697 @noindent
16698 Using SALs is not different from using other libraries
16699 (see @ref{Using the library}).
16700
16701 @node Creating SAL to be used in a non-Ada context
16702 @subsection Creating SAL to be used in a non-Ada context
16703
16704 @noindent
16705 It is easy to adapt SAL build procedure discussed above for use of SAL in
16706 a non-Ada context.
16707
16708 The only extra step required is to ensure that library interface subprograms
16709 are compatible with the main program, by means of @code{pragma Export}
16710 or @code{pragma Convention}.
16711
16712 Here is an example of simple library interface for use with C main program:
16713
16714 @smallexample @c ada
16715 package Interface is
16716
16717 procedure Do_Something;
16718 pragma Export (C, Do_Something, "do_something");
16719
16720 procedure Do_Something_Else;
16721 pragma Export (C, Do_Something_Else, "do_something_else");
16722
16723 end Interface;
16724 @end smallexample
16725
16726 @noindent
16727 On the foreign language side, you must provide a ``foreign'' view of the
16728 library interface; remeber that it should contain elaboration routines in
16729 addition to interface subrporams.
16730
16731 The example below shows the content of @code{mylib_interface.h} (note
16732 that there is no rule for the naming of this file, any name can be used)
16733 @smallexample
16734 /* the library elaboration procedure */
16735 extern void mylibinit (void);
16736
16737 /* the library finalization procedure */
16738 extern void mylibfinal (void);
16739
16740 /* the interface exported by the library */
16741 extern void do_something (void);
16742 extern void do_something_else (void);
16743 @end smallexample
16744
16745 @noindent
16746 Libraries built as explained above can be used from any program, provided
16747 that the elaboration procedures (named @code{mylibinit} in the previous
16748 example) are called before the library services are used. Any number of
16749 libraries can be used simultaneously, as long as the elaboration
16750 procedure of each library is called.
16751
16752 Below is an example of C program that uses our @code{mylib} library.
16753
16754 @smallexample
16755 #include "mylib_interface.h"
16756
16757 int
16758 main (void)
16759 @{
16760 /* First, elaborate the library before using it */
16761 mylibinit ();
16762
16763 /* Main program, using the library exported entities */
16764 do_something ();
16765 do_something_else ();
16766
16767 /* Library finalization at the end of the program */
16768 mylibfinal ();
16769 return 0;
16770 @}
16771 @end smallexample
16772
16773 @noindent
16774 Note that invoking any library finalization procedure generated by
16775 @code{gnatbind} shuts down the Ada run time permanently. Consequently, the
16776 finalization of all Ada libraries must be performed at the end of the program.
16777 No call to these libraries nor the Ada run time should be made past the
16778 finalization phase.
16779
16780 @node Restrictions in SALs
16781 @subsection Restrictions in SALs
16782
16783 @noindent
16784 The pragmas listed below should be used with caution inside libraries,
16785 as they can create incompatibilities with other Ada libraries:
16786 @itemize @bullet
16787 @item pragma @code{Locking_Policy}
16788 @item pragma @code{Queuing_Policy}
16789 @item pragma @code{Task_Dispatching_Policy}
16790 @item pragma @code{Unreserve_All_Interrupts}
16791 @end itemize
16792 When using a library that contains such pragmas, the user must make sure
16793 that all libraries use the same pragmas with the same values. Otherwise,
16794 a @code{Program_Error} will
16795 be raised during the elaboration of the conflicting
16796 libraries. The usage of these pragmas and its consequences for the user
16797 should therefore be well documented.
16798
16799 Similarly, the traceback in exception occurrences mechanism should be
16800 enabled or disabled in a consistent manner across all libraries.
16801 Otherwise, a Program_Error will be raised during the elaboration of the
16802 conflicting libraries.
16803
16804 If the @code{'Version} and @code{'Body_Version}
16805 attributes are used inside a library, then it is necessary to
16806 perform a @code{gnatbind} step that mentions all @file{ALI} files in all
16807 libraries, so that version identifiers can be properly computed.
16808 In practice these attributes are rarely used, so this is unlikely
16809 to be a consideration.
16810
16811 @node Rebuilding the GNAT Run-Time Library
16812 @section Rebuilding the GNAT Run-Time Library
16813 @cindex GNAT Run-Time Library, rebuilding
16814
16815 @noindent
16816 It may be useful to recompile the GNAT library in various contexts, the
16817 most important one being the use of partition-wide configuration pragmas
16818 such as @code{Normalize_Scalars}. A special Makefile called
16819 @code{Makefile.adalib} is provided to that effect and can be found in
16820 the directory containing the GNAT library. The location of this
16821 directory depends on the way the GNAT environment has been installed and can
16822 be determined by means of the command:
16823
16824 @smallexample
16825 $ gnatls -v
16826 @end smallexample
16827
16828 @noindent
16829 The last entry in the object search path usually contains the
16830 gnat library. This Makefile contains its own documentation and in
16831 particular the set of instructions needed to rebuild a new library and
16832 to use it.
16833
16834
16835 @node Using the GNU make Utility
16836 @chapter Using the GNU @code{make} Utility
16837 @findex make
16838
16839 @noindent
16840 This chapter offers some examples of makefiles that solve specific
16841 problems. It does not explain how to write a makefile (see the GNU make
16842 documentation), nor does it try to replace the @code{gnatmake} utility
16843 (@pxref{The GNAT Make Program gnatmake}).
16844
16845 All the examples in this section are specific to the GNU version of
16846 make. Although @code{make} is a standard utility, and the basic language
16847 is the same, these examples use some advanced features found only in
16848 @code{GNU make}.
16849
16850 @menu
16851 * Using gnatmake in a Makefile::
16852 * Automatically Creating a List of Directories::
16853 * Generating the Command Line Switches::
16854 * Overcoming Command Line Length Limits::
16855 @end menu
16856
16857 @node Using gnatmake in a Makefile
16858 @section Using gnatmake in a Makefile
16859 @findex makefile
16860 @cindex GNU make
16861
16862 @noindent
16863 Complex project organizations can be handled in a very powerful way by
16864 using GNU make combined with gnatmake. For instance, here is a Makefile
16865 which allows you to build each subsystem of a big project into a separate
16866 shared library. Such a makefile allows you to significantly reduce the link
16867 time of very big applications while maintaining full coherence at
16868 each step of the build process.
16869
16870 The list of dependencies are handled automatically by
16871 @code{gnatmake}. The Makefile is simply used to call gnatmake in each of
16872 the appropriate directories.
16873
16874 Note that you should also read the example on how to automatically
16875 create the list of directories
16876 (@pxref{Automatically Creating a List of Directories})
16877 which might help you in case your project has a lot of subdirectories.
16878
16879 @smallexample
16880 @iftex
16881 @leftskip=0cm
16882 @font@heightrm=cmr8
16883 @heightrm
16884 @end iftex
16885 ## This Makefile is intended to be used with the following directory
16886 ## configuration:
16887 ## - The sources are split into a series of csc (computer software components)
16888 ## Each of these csc is put in its own directory.
16889 ## Their name are referenced by the directory names.
16890 ## They will be compiled into shared library (although this would also work
16891 ## with static libraries
16892 ## - The main program (and possibly other packages that do not belong to any
16893 ## csc is put in the top level directory (where the Makefile is).
16894 ## toplevel_dir __ first_csc (sources) __ lib (will contain the library)
16895 ## \_ second_csc (sources) __ lib (will contain the library)
16896 ## \_ ...
16897 ## Although this Makefile is build for shared library, it is easy to modify
16898 ## to build partial link objects instead (modify the lines with -shared and
16899 ## gnatlink below)
16900 ##
16901 ## With this makefile, you can change any file in the system or add any new
16902 ## file, and everything will be recompiled correctly (only the relevant shared
16903 ## objects will be recompiled, and the main program will be re-linked).
16904
16905 # The list of computer software component for your project. This might be
16906 # generated automatically.
16907 CSC_LIST=aa bb cc
16908
16909 # Name of the main program (no extension)
16910 MAIN=main
16911
16912 # If we need to build objects with -fPIC, uncomment the following line
16913 #NEED_FPIC=-fPIC
16914
16915 # The following variable should give the directory containing libgnat.so
16916 # You can get this directory through 'gnatls -v'. This is usually the last
16917 # directory in the Object_Path.
16918 GLIB=...
16919
16920 # The directories for the libraries
16921 # (This macro expands the list of CSC to the list of shared libraries, you
16922 # could simply use the expanded form :
16923 # LIB_DIR=aa/lib/libaa.so bb/lib/libbb.so cc/lib/libcc.so
16924 LIB_DIR=$@{foreach dir,$@{CSC_LIST@},$@{dir@}/lib/lib$@{dir@}.so@}
16925
16926 $@{MAIN@}: objects $@{LIB_DIR@}
16927 gnatbind $@{MAIN@} $@{CSC_LIST:%=-aO%/lib@} -shared
16928 gnatlink $@{MAIN@} $@{CSC_LIST:%=-l%@}
16929
16930 objects::
16931 # recompile the sources
16932 gnatmake -c -i $@{MAIN@}.adb $@{NEED_FPIC@} $@{CSC_LIST:%=-I%@}
16933
16934 # Note: In a future version of GNAT, the following commands will be simplified
16935 # by a new tool, gnatmlib
16936 $@{LIB_DIR@}:
16937 mkdir -p $@{dir $@@ @}
16938 cd $@{dir $@@ @}; gcc -shared -o $@{notdir $@@ @} ../*.o -L$@{GLIB@} -lgnat
16939 cd $@{dir $@@ @}; cp -f ../*.ali .
16940
16941 # The dependencies for the modules
16942 # Note that we have to force the expansion of *.o, since in some cases
16943 # make won't be able to do it itself.
16944 aa/lib/libaa.so: $@{wildcard aa/*.o@}
16945 bb/lib/libbb.so: $@{wildcard bb/*.o@}
16946 cc/lib/libcc.so: $@{wildcard cc/*.o@}
16947
16948 # Make sure all of the shared libraries are in the path before starting the
16949 # program
16950 run::
16951 LD_LIBRARY_PATH=`pwd`/aa/lib:`pwd`/bb/lib:`pwd`/cc/lib ./$@{MAIN@}
16952
16953 clean::
16954 $@{RM@} -rf $@{CSC_LIST:%=%/lib@}
16955 $@{RM@} $@{CSC_LIST:%=%/*.ali@}
16956 $@{RM@} $@{CSC_LIST:%=%/*.o@}
16957 $@{RM@} *.o *.ali $@{MAIN@}
16958 @end smallexample
16959
16960 @node Automatically Creating a List of Directories
16961 @section Automatically Creating a List of Directories
16962
16963 @noindent
16964 In most makefiles, you will have to specify a list of directories, and
16965 store it in a variable. For small projects, it is often easier to
16966 specify each of them by hand, since you then have full control over what
16967 is the proper order for these directories, which ones should be
16968 included...
16969
16970 However, in larger projects, which might involve hundreds of
16971 subdirectories, it might be more convenient to generate this list
16972 automatically.
16973
16974 The example below presents two methods. The first one, although less
16975 general, gives you more control over the list. It involves wildcard
16976 characters, that are automatically expanded by @code{make}. Its
16977 shortcoming is that you need to explicitly specify some of the
16978 organization of your project, such as for instance the directory tree
16979 depth, whether some directories are found in a separate tree,...
16980
16981 The second method is the most general one. It requires an external
16982 program, called @code{find}, which is standard on all Unix systems. All
16983 the directories found under a given root directory will be added to the
16984 list.
16985
16986 @smallexample
16987 @iftex
16988 @leftskip=0cm
16989 @font@heightrm=cmr8
16990 @heightrm
16991 @end iftex
16992 # The examples below are based on the following directory hierarchy:
16993 # All the directories can contain any number of files
16994 # ROOT_DIRECTORY -> a -> aa -> aaa
16995 # -> ab
16996 # -> ac
16997 # -> b -> ba -> baa
16998 # -> bb
16999 # -> bc
17000 # This Makefile creates a variable called DIRS, that can be reused any time
17001 # you need this list (see the other examples in this section)
17002
17003 # The root of your project's directory hierarchy
17004 ROOT_DIRECTORY=.
17005
17006 ####
17007 # First method: specify explicitly the list of directories
17008 # This allows you to specify any subset of all the directories you need.
17009 ####
17010
17011 DIRS := a/aa/ a/ab/ b/ba/
17012
17013 ####
17014 # Second method: use wildcards
17015 # Note that the argument(s) to wildcard below should end with a '/'.
17016 # Since wildcards also return file names, we have to filter them out
17017 # to avoid duplicate directory names.
17018 # We thus use make's @code{dir} and @code{sort} functions.
17019 # It sets DIRs to the following value (note that the directories aaa and baa
17020 # are not given, unless you change the arguments to wildcard).
17021 # DIRS= ./a/a/ ./b/ ./a/aa/ ./a/ab/ ./a/ac/ ./b/ba/ ./b/bb/ ./b/bc/
17022 ####
17023
17024 DIRS := $@{sort $@{dir $@{wildcard $@{ROOT_DIRECTORY@}/*/
17025 $@{ROOT_DIRECTORY@}/*/*/@}@}@}
17026
17027 ####
17028 # Third method: use an external program
17029 # This command is much faster if run on local disks, avoiding NFS slowdowns.
17030 # This is the most complete command: it sets DIRs to the following value:
17031 # DIRS= ./a ./a/aa ./a/aa/aaa ./a/ab ./a/ac ./b ./b/ba ./b/ba/baa ./b/bb ./b/bc
17032 ####
17033
17034 DIRS := $@{shell find $@{ROOT_DIRECTORY@} -type d -print@}
17035
17036 @end smallexample
17037
17038 @node Generating the Command Line Switches
17039 @section Generating the Command Line Switches
17040
17041 @noindent
17042 Once you have created the list of directories as explained in the
17043 previous section (@pxref{Automatically Creating a List of Directories}),
17044 you can easily generate the command line arguments to pass to gnatmake.
17045
17046 For the sake of completeness, this example assumes that the source path
17047 is not the same as the object path, and that you have two separate lists
17048 of directories.
17049
17050 @smallexample
17051 # see "Automatically creating a list of directories" to create
17052 # these variables
17053 SOURCE_DIRS=
17054 OBJECT_DIRS=
17055
17056 GNATMAKE_SWITCHES := $@{patsubst %,-aI%,$@{SOURCE_DIRS@}@}
17057 GNATMAKE_SWITCHES += $@{patsubst %,-aO%,$@{OBJECT_DIRS@}@}
17058
17059 all:
17060 gnatmake $@{GNATMAKE_SWITCHES@} main_unit
17061 @end smallexample
17062
17063 @node Overcoming Command Line Length Limits
17064 @section Overcoming Command Line Length Limits
17065
17066 @noindent
17067 One problem that might be encountered on big projects is that many
17068 operating systems limit the length of the command line. It is thus hard to give
17069 gnatmake the list of source and object directories.
17070
17071 This example shows how you can set up environment variables, which will
17072 make @code{gnatmake} behave exactly as if the directories had been
17073 specified on the command line, but have a much higher length limit (or
17074 even none on most systems).
17075
17076 It assumes that you have created a list of directories in your Makefile,
17077 using one of the methods presented in
17078 @ref{Automatically Creating a List of Directories}.
17079 For the sake of completeness, we assume that the object
17080 path (where the ALI files are found) is different from the sources patch.
17081
17082 Note a small trick in the Makefile below: for efficiency reasons, we
17083 create two temporary variables (SOURCE_LIST and OBJECT_LIST), that are
17084 expanded immediately by @code{make}. This way we overcome the standard
17085 make behavior which is to expand the variables only when they are
17086 actually used.
17087
17088 On Windows, if you are using the standard Windows command shell, you must
17089 replace colons with semicolons in the assignments to these variables.
17090
17091 @smallexample
17092 @iftex
17093 @leftskip=0cm
17094 @font@heightrm=cmr8
17095 @heightrm
17096 @end iftex
17097 # In this example, we create both ADA_INCLUDE_PATH and ADA_OBJECT_PATH.
17098 # This is the same thing as putting the -I arguments on the command line.
17099 # (the equivalent of using -aI on the command line would be to define
17100 # only ADA_INCLUDE_PATH, the equivalent of -aO is ADA_OBJECT_PATH).
17101 # You can of course have different values for these variables.
17102 #
17103 # Note also that we need to keep the previous values of these variables, since
17104 # they might have been set before running 'make' to specify where the GNAT
17105 # library is installed.
17106
17107 # see "Automatically creating a list of directories" to create these
17108 # variables
17109 SOURCE_DIRS=
17110 OBJECT_DIRS=
17111
17112 empty:=
17113 space:=$@{empty@} $@{empty@}
17114 SOURCE_LIST := $@{subst $@{space@},:,$@{SOURCE_DIRS@}@}
17115 OBJECT_LIST := $@{subst $@{space@},:,$@{OBJECT_DIRS@}@}
17116 ADA_INCLUDE_PATH += $@{SOURCE_LIST@}
17117 ADA_OBJECT_PATH += $@{OBJECT_LIST@}
17118 export ADA_INCLUDE_PATH
17119 export ADA_OBJECT_PATH
17120
17121 all:
17122 gnatmake main_unit
17123 @end smallexample
17124 @end ifclear
17125
17126
17127 @node Finding Memory Problems
17128 @chapter Finding Memory Problems
17129
17130 @noindent
17131 This chapter describes
17132 @ifclear vms
17133 the @command{gnatmem} tool, which can be used to track down
17134 ``memory leaks'', and
17135 @end ifclear
17136 the GNAT Debug Pool facility, which can be used to detect incorrect uses of
17137 access values (including ``dangling references'').
17138
17139 @menu
17140 @ifclear vms
17141 * The gnatmem Tool::
17142 @end ifclear
17143 * The GNAT Debug Pool Facility::
17144 @end menu
17145
17146
17147 @ifclear vms
17148 @node The gnatmem Tool
17149 @section The @command{gnatmem} Tool
17150 @findex gnatmem
17151
17152 @noindent
17153 The @code{gnatmem} utility monitors dynamic allocation and
17154 deallocation activity in a program, and displays information about
17155 incorrect deallocations and possible sources of memory leaks.
17156 It provides three type of information:
17157 @itemize @bullet
17158 @item
17159 General information concerning memory management, such as the total
17160 number of allocations and deallocations, the amount of allocated
17161 memory and the high water mark, i.e. the largest amount of allocated
17162 memory in the course of program execution.
17163
17164 @item
17165 Backtraces for all incorrect deallocations, that is to say deallocations
17166 which do not correspond to a valid allocation.
17167
17168 @item
17169 Information on each allocation that is potentially the origin of a memory
17170 leak.
17171 @end itemize
17172
17173 @menu
17174 * Running gnatmem::
17175 * Switches for gnatmem::
17176 * Example of gnatmem Usage::
17177 @end menu
17178
17179 @node Running gnatmem
17180 @subsection Running @code{gnatmem}
17181
17182 @noindent
17183 @code{gnatmem} makes use of the output created by the special version of
17184 allocation and deallocation routines that record call information. This
17185 allows to obtain accurate dynamic memory usage history at a minimal cost to
17186 the execution speed. Note however, that @code{gnatmem} is not supported on
17187 all platforms (currently, it is supported on AIX, HP-UX, GNU/Linux x86,
17188 Solaris (sparc and x86) and Windows NT/2000/XP (x86).
17189
17190 @noindent
17191 The @code{gnatmem} command has the form
17192
17193 @smallexample
17194 $ gnatmem [switches] user_program
17195 @end smallexample
17196
17197 @noindent
17198 The program must have been linked with the instrumented version of the
17199 allocation and deallocation routines. This is done by linking with the
17200 @file{libgmem.a} library. For correct symbolic backtrace information,
17201 the user program should be compiled with debugging options
17202 @ref{Switches for gcc}. For example to build @file{my_program}:
17203
17204 @smallexample
17205 $ gnatmake -g my_program -largs -lgmem
17206 @end smallexample
17207
17208 @noindent
17209 When running @file{my_program} the file @file{gmem.out} is produced. This file
17210 contains information about all allocations and deallocations done by the
17211 program. It is produced by the instrumented allocations and
17212 deallocations routines and will be used by @code{gnatmem}.
17213
17214 @noindent
17215 Gnatmem must be supplied with the @file{gmem.out} file and the executable to
17216 examine. If the location of @file{gmem.out} file was not explicitly supplied by
17217 @code{-i} switch, gnatmem will assume that this file can be found in the
17218 current directory. For example, after you have executed @file{my_program},
17219 @file{gmem.out} can be analyzed by @code{gnatmem} using the command:
17220
17221 @smallexample
17222 $ gnatmem my_program
17223 @end smallexample
17224
17225 @noindent
17226 This will produce the output with the following format:
17227
17228 *************** debut cc
17229 @smallexample
17230 $ gnatmem my_program
17231
17232 Global information
17233 ------------------
17234 Total number of allocations : 45
17235 Total number of deallocations : 6
17236 Final Water Mark (non freed mem) : 11.29 Kilobytes
17237 High Water Mark : 11.40 Kilobytes
17238
17239 .
17240 .
17241 .
17242 Allocation Root # 2
17243 -------------------
17244 Number of non freed allocations : 11
17245 Final Water Mark (non freed mem) : 1.16 Kilobytes
17246 High Water Mark : 1.27 Kilobytes
17247 Backtrace :
17248 my_program.adb:23 my_program.alloc
17249 .
17250 .
17251 .
17252 @end smallexample
17253
17254 The first block of output gives general information. In this case, the
17255 Ada construct ``@code{@b{new}}'' was executed 45 times, and only 6 calls to an
17256 Unchecked_Deallocation routine occurred.
17257
17258 @noindent
17259 Subsequent paragraphs display information on all allocation roots.
17260 An allocation root is a specific point in the execution of the program
17261 that generates some dynamic allocation, such as a ``@code{@b{new}}''
17262 construct. This root is represented by an execution backtrace (or subprogram
17263 call stack). By default the backtrace depth for allocations roots is 1, so
17264 that a root corresponds exactly to a source location. The backtrace can
17265 be made deeper, to make the root more specific.
17266
17267 @node Switches for gnatmem
17268 @subsection Switches for @code{gnatmem}
17269
17270 @noindent
17271 @code{gnatmem} recognizes the following switches:
17272
17273 @table @option
17274
17275 @item -q
17276 @cindex @option{-q} (@code{gnatmem})
17277 Quiet. Gives the minimum output needed to identify the origin of the
17278 memory leaks. Omits statistical information.
17279
17280 @item @var{N}
17281 @cindex @var{N} (@code{gnatmem})
17282 N is an integer literal (usually between 1 and 10) which controls the
17283 depth of the backtraces defining allocation root. The default value for
17284 N is 1. The deeper the backtrace, the more precise the localization of
17285 the root. Note that the total number of roots can depend on this
17286 parameter. This parameter must be specified @emph{before} the name of the
17287 executable to be analyzed, to avoid ambiguity.
17288
17289 @item -b n
17290 @cindex @option{-b} (@code{gnatmem})
17291 This switch has the same effect as just depth parameter.
17292
17293 @item -i @var{file}
17294 @cindex @option{-i} (@code{gnatmem})
17295 Do the @code{gnatmem} processing starting from @file{file}, rather than
17296 @file{gmem.out} in the current directory.
17297
17298 @item -m n
17299 @cindex @option{-m} (@code{gnatmem})
17300 This switch causes @code{gnatmem} to mask the allocation roots that have less
17301 than n leaks. The default value is 1. Specifying the value of 0 will allow to
17302 examine even the roots that didn't result in leaks.
17303
17304 @item -s order
17305 @cindex @option{-s} (@code{gnatmem})
17306 This switch causes @code{gnatmem} to sort the allocation roots according to the
17307 specified order of sort criteria, each identified by a single letter. The
17308 currently supported criteria are @code{n, h, w} standing respectively for
17309 number of unfreed allocations, high watermark, and final watermark
17310 corresponding to a specific root. The default order is @code{nwh}.
17311
17312 @end table
17313
17314 @node Example of gnatmem Usage
17315 @subsection Example of @code{gnatmem} Usage
17316
17317 @noindent
17318 The following example shows the use of @code{gnatmem}
17319 on a simple memory-leaking program.
17320 Suppose that we have the following Ada program:
17321
17322 @smallexample @c ada
17323 @group
17324 @cartouche
17325 with Unchecked_Deallocation;
17326 procedure Test_Gm is
17327
17328 type T is array (1..1000) of Integer;
17329 type Ptr is access T;
17330 procedure Free is new Unchecked_Deallocation (T, Ptr);
17331 A : Ptr;
17332
17333 procedure My_Alloc is
17334 begin
17335 A := new T;
17336 end My_Alloc;
17337
17338 procedure My_DeAlloc is
17339 B : Ptr := A;
17340 begin
17341 Free (B);
17342 end My_DeAlloc;
17343
17344 begin
17345 My_Alloc;
17346 for I in 1 .. 5 loop
17347 for J in I .. 5 loop
17348 My_Alloc;
17349 end loop;
17350 My_Dealloc;
17351 end loop;
17352 end;
17353 @end cartouche
17354 @end group
17355 @end smallexample
17356
17357 @noindent
17358 The program needs to be compiled with debugging option and linked with
17359 @code{gmem} library:
17360
17361 @smallexample
17362 $ gnatmake -g test_gm -largs -lgmem
17363 @end smallexample
17364
17365 @noindent
17366 Then we execute the program as usual:
17367
17368 @smallexample
17369 $ test_gm
17370 @end smallexample
17371
17372 @noindent
17373 Then @code{gnatmem} is invoked simply with
17374 @smallexample
17375 $ gnatmem test_gm
17376 @end smallexample
17377
17378 @noindent
17379 which produces the following output (result may vary on different platforms):
17380
17381 @smallexample
17382 Global information
17383 ------------------
17384 Total number of allocations : 18
17385 Total number of deallocations : 5
17386 Final Water Mark (non freed mem) : 53.00 Kilobytes
17387 High Water Mark : 56.90 Kilobytes
17388
17389 Allocation Root # 1
17390 -------------------
17391 Number of non freed allocations : 11
17392 Final Water Mark (non freed mem) : 42.97 Kilobytes
17393 High Water Mark : 46.88 Kilobytes
17394 Backtrace :
17395 test_gm.adb:11 test_gm.my_alloc
17396
17397 Allocation Root # 2
17398 -------------------
17399 Number of non freed allocations : 1
17400 Final Water Mark (non freed mem) : 10.02 Kilobytes
17401 High Water Mark : 10.02 Kilobytes
17402 Backtrace :
17403 s-secsta.adb:81 system.secondary_stack.ss_init
17404
17405 Allocation Root # 3
17406 -------------------
17407 Number of non freed allocations : 1
17408 Final Water Mark (non freed mem) : 12 Bytes
17409 High Water Mark : 12 Bytes
17410 Backtrace :
17411 s-secsta.adb:181 system.secondary_stack.ss_init
17412 @end smallexample
17413
17414 @noindent
17415 Note that the GNAT run time contains itself a certain number of
17416 allocations that have no corresponding deallocation,
17417 as shown here for root #2 and root
17418 #3. This is a normal behavior when the number of non freed allocations
17419 is one, it allocates dynamic data structures that the run time needs for
17420 the complete lifetime of the program. Note also that there is only one
17421 allocation root in the user program with a single line back trace:
17422 test_gm.adb:11 test_gm.my_alloc, whereas a careful analysis of the
17423 program shows that 'My_Alloc' is called at 2 different points in the
17424 source (line 21 and line 24). If those two allocation roots need to be
17425 distinguished, the backtrace depth parameter can be used:
17426
17427 @smallexample
17428 $ gnatmem 3 test_gm
17429 @end smallexample
17430
17431 @noindent
17432 which will give the following output:
17433
17434 @smallexample
17435 Global information
17436 ------------------
17437 Total number of allocations : 18
17438 Total number of deallocations : 5
17439 Final Water Mark (non freed mem) : 53.00 Kilobytes
17440 High Water Mark : 56.90 Kilobytes
17441
17442 Allocation Root # 1
17443 -------------------
17444 Number of non freed allocations : 10
17445 Final Water Mark (non freed mem) : 39.06 Kilobytes
17446 High Water Mark : 42.97 Kilobytes
17447 Backtrace :
17448 test_gm.adb:11 test_gm.my_alloc
17449 test_gm.adb:24 test_gm
17450 b_test_gm.c:52 main
17451
17452 Allocation Root # 2
17453 -------------------
17454 Number of non freed allocations : 1
17455 Final Water Mark (non freed mem) : 10.02 Kilobytes
17456 High Water Mark : 10.02 Kilobytes
17457 Backtrace :
17458 s-secsta.adb:81 system.secondary_stack.ss_init
17459 s-secsta.adb:283 <system__secondary_stack___elabb>
17460 b_test_gm.c:33 adainit
17461
17462 Allocation Root # 3
17463 -------------------
17464 Number of non freed allocations : 1
17465 Final Water Mark (non freed mem) : 3.91 Kilobytes
17466 High Water Mark : 3.91 Kilobytes
17467 Backtrace :
17468 test_gm.adb:11 test_gm.my_alloc
17469 test_gm.adb:21 test_gm
17470 b_test_gm.c:52 main
17471
17472 Allocation Root # 4
17473 -------------------
17474 Number of non freed allocations : 1
17475 Final Water Mark (non freed mem) : 12 Bytes
17476 High Water Mark : 12 Bytes
17477 Backtrace :
17478 s-secsta.adb:181 system.secondary_stack.ss_init
17479 s-secsta.adb:283 <system__secondary_stack___elabb>
17480 b_test_gm.c:33 adainit
17481 @end smallexample
17482
17483 @noindent
17484 The allocation root #1 of the first example has been split in 2 roots #1
17485 and #3 thanks to the more precise associated backtrace.
17486
17487 @end ifclear
17488
17489
17490 @node The GNAT Debug Pool Facility
17491 @section The GNAT Debug Pool Facility
17492 @findex Debug Pool
17493 @cindex storage, pool, memory corruption
17494
17495 @noindent
17496 The use of unchecked deallocation and unchecked conversion can easily
17497 lead to incorrect memory references. The problems generated by such
17498 references are usually difficult to tackle because the symptoms can be
17499 very remote from the origin of the problem. In such cases, it is
17500 very helpful to detect the problem as early as possible. This is the
17501 purpose of the Storage Pool provided by @code{GNAT.Debug_Pools}.
17502
17503 In order to use the GNAT specific debugging pool, the user must
17504 associate a debug pool object with each of the access types that may be
17505 related to suspected memory problems. See Ada Reference Manual 13.11.
17506 @smallexample @c ada
17507 type Ptr is access Some_Type;
17508 Pool : GNAT.Debug_Pools.Debug_Pool;
17509 for Ptr'Storage_Pool use Pool;
17510 @end smallexample
17511
17512 @noindent
17513 @code{GNAT.Debug_Pools} is derived from a GNAT-specific kind of
17514 pool: the @code{Checked_Pool}. Such pools, like standard Ada storage pools,
17515 allow the user to redefine allocation and deallocation strategies. They
17516 also provide a checkpoint for each dereference, through the use of
17517 the primitive operation @code{Dereference} which is implicitly called at
17518 each dereference of an access value.
17519
17520 Once an access type has been associated with a debug pool, operations on
17521 values of the type may raise four distinct exceptions,
17522 which correspond to four potential kinds of memory corruption:
17523 @itemize @bullet
17524 @item
17525 @code{GNAT.Debug_Pools.Accessing_Not_Allocated_Storage}
17526 @item
17527 @code{GNAT.Debug_Pools.Accessing_Deallocated_Storage}
17528 @item
17529 @code{GNAT.Debug_Pools.Freeing_Not_Allocated_Storage}
17530 @item
17531 @code{GNAT.Debug_Pools.Freeing_Deallocated_Storage }
17532 @end itemize
17533
17534 @noindent
17535 For types associated with a Debug_Pool, dynamic allocation is performed using
17536 the standard
17537 GNAT allocation routine. References to all allocated chunks of memory
17538 are kept in an internal dictionary.
17539 Several deallocation strategies are provided, whereupon the user can choose
17540 to release the memory to the system, keep it allocated for further invalid
17541 access checks, or fill it with an easily recognizable pattern for debug
17542 sessions.
17543 The memory pattern is the old IBM hexadecimal convention: @code{16#DEADBEEF#}.
17544
17545 See the documentation in the file g-debpoo.ads for more information on the
17546 various strategies.
17547
17548 Upon each dereference, a check is made that the access value denotes a
17549 properly allocated memory location. Here is a complete example of use of
17550 @code{Debug_Pools}, that includes typical instances of memory corruption:
17551 @smallexample @c ada
17552 @iftex
17553 @leftskip=0cm
17554 @end iftex
17555 with Gnat.Io; use Gnat.Io;
17556 with Unchecked_Deallocation;
17557 with Unchecked_Conversion;
17558 with GNAT.Debug_Pools;
17559 with System.Storage_Elements;
17560 with Ada.Exceptions; use Ada.Exceptions;
17561 procedure Debug_Pool_Test is
17562
17563 type T is access Integer;
17564 type U is access all T;
17565
17566 P : GNAT.Debug_Pools.Debug_Pool;
17567 for T'Storage_Pool use P;
17568
17569 procedure Free is new Unchecked_Deallocation (Integer, T);
17570 function UC is new Unchecked_Conversion (U, T);
17571 A, B : aliased T;
17572
17573 procedure Info is new GNAT.Debug_Pools.Print_Info(Put_Line);
17574
17575 begin
17576 Info (P);
17577 A := new Integer;
17578 B := new Integer;
17579 B := A;
17580 Info (P);
17581 Free (A);
17582 begin
17583 Put_Line (Integer'Image(B.all));
17584 exception
17585 when E : others => Put_Line ("raised: " & Exception_Name (E));
17586 end;
17587 begin
17588 Free (B);
17589 exception
17590 when E : others => Put_Line ("raised: " & Exception_Name (E));
17591 end;
17592 B := UC(A'Access);
17593 begin
17594 Put_Line (Integer'Image(B.all));
17595 exception
17596 when E : others => Put_Line ("raised: " & Exception_Name (E));
17597 end;
17598 begin
17599 Free (B);
17600 exception
17601 when E : others => Put_Line ("raised: " & Exception_Name (E));
17602 end;
17603 Info (P);
17604 end Debug_Pool_Test;
17605 @end smallexample
17606
17607 @noindent
17608 The debug pool mechanism provides the following precise diagnostics on the
17609 execution of this erroneous program:
17610 @smallexample
17611 Debug Pool info:
17612 Total allocated bytes : 0
17613 Total deallocated bytes : 0
17614 Current Water Mark: 0
17615 High Water Mark: 0
17616
17617 Debug Pool info:
17618 Total allocated bytes : 8
17619 Total deallocated bytes : 0
17620 Current Water Mark: 8
17621 High Water Mark: 8
17622
17623 raised: GNAT.DEBUG_POOLS.ACCESSING_DEALLOCATED_STORAGE
17624 raised: GNAT.DEBUG_POOLS.FREEING_DEALLOCATED_STORAGE
17625 raised: GNAT.DEBUG_POOLS.ACCESSING_NOT_ALLOCATED_STORAGE
17626 raised: GNAT.DEBUG_POOLS.FREEING_NOT_ALLOCATED_STORAGE
17627 Debug Pool info:
17628 Total allocated bytes : 8
17629 Total deallocated bytes : 4
17630 Current Water Mark: 4
17631 High Water Mark: 8
17632 @end smallexample
17633
17634
17635 @node Creating Sample Bodies Using gnatstub
17636 @chapter Creating Sample Bodies Using @command{gnatstub}
17637 @findex gnatstub
17638
17639 @noindent
17640 @command{gnatstub} creates body stubs, that is, empty but compilable bodies
17641 for library unit declarations.
17642
17643 To create a body stub, @command{gnatstub} has to compile the library
17644 unit declaration. Therefore, bodies can be created only for legal
17645 library units. Moreover, if a library unit depends semantically upon
17646 units located outside the current directory, you have to provide
17647 the source search path when calling @command{gnatstub}, see the description
17648 of @command{gnatstub} switches below.
17649
17650 @menu
17651 * Running gnatstub::
17652 * Switches for gnatstub::
17653 @end menu
17654
17655 @node Running gnatstub
17656 @section Running @command{gnatstub}
17657
17658 @noindent
17659 @command{gnatstub} has the command-line interface of the form
17660
17661 @smallexample
17662 $ gnatstub [switches] filename [directory]
17663 @end smallexample
17664
17665 @noindent
17666 where
17667 @table @emph
17668 @item filename
17669 is the name of the source file that contains a library unit declaration
17670 for which a body must be created. The file name may contain the path
17671 information.
17672 The file name does not have to follow the GNAT file name conventions. If the
17673 name
17674 does not follow GNAT file naming conventions, the name of the body file must
17675 be provided
17676 explicitly as the value of the @option{^-o^/BODY=^@var{body-name}} option.
17677 If the file name follows the GNAT file naming
17678 conventions and the name of the body file is not provided,
17679 @command{gnatstub}
17680 creates the name
17681 of the body file from the argument file name by replacing the @file{.ads}
17682 suffix
17683 with the @file{.adb} suffix.
17684
17685 @item directory
17686 indicates the directory in which the body stub is to be placed (the default
17687 is the
17688 current directory)
17689
17690 @item switches
17691 is an optional sequence of switches as described in the next section
17692 @end table
17693
17694 @node Switches for gnatstub
17695 @section Switches for @command{gnatstub}
17696
17697 @table @option
17698 @c !sort!
17699
17700 @item ^-f^/FULL^
17701 @cindex @option{^-f^/FULL^} (@command{gnatstub})
17702 If the destination directory already contains a file with the name of the
17703 body file
17704 for the argument spec file, replace it with the generated body stub.
17705
17706 @item ^-hs^/HEADER=SPEC^
17707 @cindex @option{^-hs^/HEADER=SPEC^} (@command{gnatstub})
17708 Put the comment header (i.e., all the comments preceding the
17709 compilation unit) from the source of the library unit declaration
17710 into the body stub.
17711
17712 @item ^-hg^/HEADER=GENERAL^
17713 @cindex @option{^-hg^/HEADER=GENERAL^} (@command{gnatstub})
17714 Put a sample comment header into the body stub.
17715
17716 @ifclear vms
17717 @item -IDIR
17718 @cindex @option{-IDIR} (@command{gnatstub})
17719 @itemx -I-
17720 @cindex @option{-I-} (@command{gnatstub})
17721 @end ifclear
17722 @ifset vms
17723 @item /NOCURRENT_DIRECTORY
17724 @cindex @option{/NOCURRENT_DIRECTORY} (@command{gnatstub})
17725 @end ifset
17726 ^These switches have ^This switch has^ the same meaning as in calls to
17727 @command{gcc}.
17728 ^They define ^It defines ^ the source search path in the call to
17729 @command{gcc} issued
17730 by @command{gnatstub} to compile an argument source file.
17731
17732 @item ^-gnatec^/CONFIGURATION_PRAGMAS_FILE=^@var{PATH}
17733 @cindex @option{^-gnatec^/CONFIGURATION_PRAGMAS_FILE^} (@command{gnatstub})
17734 This switch has the same meaning as in calls to @command{gcc}.
17735 It defines the additional configuration file to be passed to the call to
17736 @command{gcc} issued
17737 by @command{gnatstub} to compile an argument source file.
17738
17739 @item ^-gnatyM^/MAX_LINE_LENGTH=^@var{n}
17740 @cindex @option{^-gnatyM^/MAX_LINE_LENGTH^} (@command{gnatstub})
17741 (@var{n} is a non-negative integer). Set the maximum line length in the
17742 body stub to @var{n}; the default is 79. The maximum value that can be
17743 specified is 32767. Note that in the special case of configuration
17744 pragma files, the maximum is always 32767 regardless of whether or
17745 not this switch appears.
17746
17747 @item ^-gnaty^/STYLE_CHECKS=^@var{n}
17748 @cindex @option{^-gnaty^/STYLE_CHECKS=^} (@command{gnatstub})
17749 (@var{n} is a non-negative integer from 1 to 9). Set the indentation level in
17750 the generated body sample to @var{n}.
17751 The default indentation is 3.
17752
17753 @item ^-gnatyo^/ORDERED_SUBPROGRAMS^
17754 @cindex @option{^-gnato^/ORDERED_SUBPROGRAMS^} (@command{gnatstub})
17755 Order local bodies alphabetically. (By default local bodies are ordered
17756 in the same way as the corresponding local specs in the argument spec file.)
17757
17758 @item ^-i^/INDENTATION=^@var{n}
17759 @cindex @option{^-i^/INDENTATION^} (@command{gnatstub})
17760 Same as @option{^-gnaty^/STYLE_CHECKS=^@var{n}}
17761
17762 @item ^-k^/TREE_FILE=SAVE^
17763 @cindex @option{^-k^/TREE_FILE=SAVE^} (@command{gnatstub})
17764 Do not remove the tree file (i.e., the snapshot of the compiler internal
17765 structures used by @command{gnatstub}) after creating the body stub.
17766
17767 @item ^-l^/LINE_LENGTH=^@var{n}
17768 @cindex @option{^-l^/LINE_LENGTH^} (@command{gnatstub})
17769 Same as @option{^-gnatyM^/MAX_LINE_LENGTH=^@var{n}}
17770
17771 @item ^-o^/BODY=^@var{body-name}
17772 @cindex @option{^-o^/BODY^} (@command{gnatstub})
17773 Body file name. This should be set if the argument file name does not
17774 follow
17775 the GNAT file naming
17776 conventions. If this switch is omitted the default name for the body will be
17777 obtained
17778 from the argument file name according to the GNAT file naming conventions.
17779
17780 @item ^-q^/QUIET^
17781 @cindex @option{^-q^/QUIET^} (@command{gnatstub})
17782 Quiet mode: do not generate a confirmation when a body is
17783 successfully created, and do not generate a message when a body is not
17784 required for an
17785 argument unit.
17786
17787 @item ^-r^/TREE_FILE=REUSE^
17788 @cindex @option{^-r^/TREE_FILE=REUSE^} (@command{gnatstub})
17789 Reuse the tree file (if it exists) instead of creating it. Instead of
17790 creating the tree file for the library unit declaration, @command{gnatstub}
17791 tries to find it in the current directory and use it for creating
17792 a body. If the tree file is not found, no body is created. This option
17793 also implies @option{^-k^/SAVE^}, whether or not
17794 the latter is set explicitly.
17795
17796 @item ^-t^/TREE_FILE=OVERWRITE^
17797 @cindex @option{^-t^/TREE_FILE=OVERWRITE^} (@command{gnatstub})
17798 Overwrite the existing tree file. If the current directory already
17799 contains the file which, according to the GNAT file naming rules should
17800 be considered as a tree file for the argument source file,
17801 @command{gnatstub}
17802 will refuse to create the tree file needed to create a sample body
17803 unless this option is set.
17804
17805 @item ^-v^/VERBOSE^
17806 @cindex @option{^-v^/VERBOSE^} (@command{gnatstub})
17807 Verbose mode: generate version information.
17808
17809 @end table
17810
17811
17812 @node Other Utility Programs
17813 @chapter Other Utility Programs
17814
17815 @noindent
17816 This chapter discusses some other utility programs available in the Ada
17817 environment.
17818
17819 @menu
17820 * Using Other Utility Programs with GNAT::
17821 * The External Symbol Naming Scheme of GNAT::
17822 @ifclear vms
17823 * Ada Mode for Glide::
17824 @end ifclear
17825 * Converting Ada Files to html with gnathtml::
17826 * Installing gnathtml::
17827 @ifset vms
17828 * LSE::
17829 * Profiling::
17830 @end ifset
17831 @end menu
17832
17833 @node Using Other Utility Programs with GNAT
17834 @section Using Other Utility Programs with GNAT
17835
17836 @noindent
17837 The object files generated by GNAT are in standard system format and in
17838 particular the debugging information uses this format. This means
17839 programs generated by GNAT can be used with existing utilities that
17840 depend on these formats.
17841
17842 @ifclear vms
17843 In general, any utility program that works with C will also often work with
17844 Ada programs generated by GNAT. This includes software utilities such as
17845 gprof (a profiling program), @code{gdb} (the FSF debugger), and utilities such
17846 as Purify.
17847 @end ifclear
17848
17849 @node The External Symbol Naming Scheme of GNAT
17850 @section The External Symbol Naming Scheme of GNAT
17851
17852 @noindent
17853 In order to interpret the output from GNAT, when using tools that are
17854 originally intended for use with other languages, it is useful to
17855 understand the conventions used to generate link names from the Ada
17856 entity names.
17857
17858 All link names are in all lowercase letters. With the exception of library
17859 procedure names, the mechanism used is simply to use the full expanded
17860 Ada name with dots replaced by double underscores. For example, suppose
17861 we have the following package spec:
17862
17863 @smallexample @c ada
17864 @group
17865 @cartouche
17866 package QRS is
17867 MN : Integer;
17868 end QRS;
17869 @end cartouche
17870 @end group
17871 @end smallexample
17872
17873 @noindent
17874 The variable @code{MN} has a full expanded Ada name of @code{QRS.MN}, so
17875 the corresponding link name is @code{qrs__mn}.
17876 @findex Export
17877 Of course if a @code{pragma Export} is used this may be overridden:
17878
17879 @smallexample @c ada
17880 @group
17881 @cartouche
17882 package Exports is
17883 Var1 : Integer;
17884 pragma Export (Var1, C, External_Name => "var1_name");
17885 Var2 : Integer;
17886 pragma Export (Var2, C, Link_Name => "var2_link_name");
17887 end Exports;
17888 @end cartouche
17889 @end group
17890 @end smallexample
17891
17892 @noindent
17893 In this case, the link name for @var{Var1} is whatever link name the
17894 C compiler would assign for the C function @var{var1_name}. This typically
17895 would be either @var{var1_name} or @var{_var1_name}, depending on operating
17896 system conventions, but other possibilities exist. The link name for
17897 @var{Var2} is @var{var2_link_name}, and this is not operating system
17898 dependent.
17899
17900 @findex _main
17901 One exception occurs for library level procedures. A potential ambiguity
17902 arises between the required name @code{_main} for the C main program,
17903 and the name we would otherwise assign to an Ada library level procedure
17904 called @code{Main} (which might well not be the main program).
17905
17906 To avoid this ambiguity, we attach the prefix @code{_ada_} to such
17907 names. So if we have a library level procedure such as
17908
17909 @smallexample @c ada
17910 @group
17911 @cartouche
17912 procedure Hello (S : String);
17913 @end cartouche
17914 @end group
17915 @end smallexample
17916
17917 @noindent
17918 the external name of this procedure will be @var{_ada_hello}.
17919
17920 @ifclear vms
17921 @node Ada Mode for Glide
17922 @section Ada Mode for @code{Glide}
17923 @cindex Ada mode (for Glide)
17924
17925 @noindent
17926 The Glide mode for programming in Ada (both Ada83 and Ada95) helps the
17927 user to understand and navigate existing code, and facilitates writing
17928 new code. It furthermore provides some utility functions for easier
17929 integration of standard Emacs features when programming in Ada.
17930
17931 Its general features include:
17932
17933 @itemize @bullet
17934 @item
17935 An Integrated Development Environment with functionality such as the
17936 following
17937
17938 @itemize @bullet
17939 @item
17940 ``Project files'' for configuration-specific aspects
17941 (e.g. directories and compilation options)
17942
17943 @item
17944 Compiling and stepping through error messages.
17945
17946 @item
17947 Running and debugging an applications within Glide.
17948 @end itemize
17949
17950 @item
17951 Pull-down menus
17952
17953 @item
17954 User configurability
17955 @end itemize
17956
17957 Some of the specific Ada mode features are:
17958
17959 @itemize @bullet
17960 @item
17961 Functions for easy and quick stepping through Ada code
17962
17963 @item
17964 Getting cross reference information for identifiers (e.g., finding a
17965 defining occurrence)
17966
17967 @item
17968 Displaying an index menu of types and subprograms, allowing
17969 direct selection for browsing
17970
17971 @item
17972 Automatic color highlighting of the various Ada entities
17973 @end itemize
17974
17975 Glide directly supports writing Ada code, via several facilities:
17976
17977 @itemize @bullet
17978 @item
17979 Switching between spec and body files with possible
17980 autogeneration of body files
17981
17982 @item
17983 Automatic formating of subprogram parameter lists
17984
17985 @item
17986 Automatic indentation according to Ada syntax
17987
17988 @item
17989 Automatic completion of identifiers
17990
17991 @item
17992 Automatic (and configurable) casing of identifiers, keywords, and attributes
17993
17994 @item
17995 Insertion of syntactic templates
17996
17997 @item
17998 Block commenting / uncommenting
17999 @end itemize
18000
18001 @noindent
18002 For more information, please refer to the online documentation
18003 available in the @code{Glide} @result{} @code{Help} menu.
18004 @end ifclear
18005
18006
18007 @node Converting Ada Files to html with gnathtml
18008 @section Converting Ada Files to HTML with @code{gnathtml}
18009
18010 @noindent
18011 This @code{Perl} script allows Ada source files to be browsed using
18012 standard Web browsers. For installation procedure, see the section
18013 @xref{Installing gnathtml}.
18014
18015 Ada reserved keywords are highlighted in a bold font and Ada comments in
18016 a blue font. Unless your program was compiled with the gcc @option{-gnatx}
18017 switch to suppress the generation of cross-referencing information, user
18018 defined variables and types will appear in a different color; you will
18019 be able to click on any identifier and go to its declaration.
18020
18021 The command line is as follow:
18022 @smallexample
18023 $ perl gnathtml.pl [switches] ada-files
18024 @end smallexample
18025
18026 @noindent
18027 You can pass it as many Ada files as you want. @code{gnathtml} will generate
18028 an html file for every ada file, and a global file called @file{index.htm}.
18029 This file is an index of every identifier defined in the files.
18030
18031 The available switches are the following ones :
18032
18033 @table @option
18034 @item -83
18035 @cindex @option{-83} (@code{gnathtml})
18036 Only the subset on the Ada 83 keywords will be highlighted, not the full
18037 Ada 95 keywords set.
18038
18039 @item -cc @var{color}
18040 @cindex @option{-cc} (@code{gnathtml})
18041 This option allows you to change the color used for comments. The default
18042 value is green. The color argument can be any name accepted by html.
18043
18044 @item -d
18045 @cindex @option{-d} (@code{gnathtml})
18046 If the ada files depend on some other files (using for instance the
18047 @code{with} command, the latter will also be converted to html.
18048 Only the files in the user project will be converted to html, not the files
18049 in the run-time library itself.
18050
18051 @item -D
18052 @cindex @option{-D} (@code{gnathtml})
18053 This command is the same as @option{-d} above, but @command{gnathtml} will
18054 also look for files in the run-time library, and generate html files for them.
18055
18056 @item -ext @var{extension}
18057 @cindex @option{-ext} (@code{gnathtml})
18058 This option allows you to change the extension of the generated HTML files.
18059 If you do not specify an extension, it will default to @file{htm}.
18060
18061 @item -f
18062 @cindex @option{-f} (@code{gnathtml})
18063 By default, gnathtml will generate html links only for global entities
18064 ('with'ed units, global variables and types,...). If you specify the
18065 @option{-f} on the command line, then links will be generated for local
18066 entities too.
18067
18068 @item -l @var{number}
18069 @cindex @option{-l} (@code{gnathtml})
18070 If this switch is provided and @var{number} is not 0, then @code{gnathtml}
18071 will number the html files every @var{number} line.
18072
18073 @item -I @var{dir}
18074 @cindex @option{-I} (@code{gnathtml})
18075 Specify a directory to search for library files (@file{.ALI} files) and
18076 source files. You can provide several -I switches on the command line,
18077 and the directories will be parsed in the order of the command line.
18078
18079 @item -o @var{dir}
18080 @cindex @option{-o} (@code{gnathtml})
18081 Specify the output directory for html files. By default, gnathtml will
18082 saved the generated html files in a subdirectory named @file{html/}.
18083
18084 @item -p @var{file}
18085 @cindex @option{-p} (@code{gnathtml})
18086 If you are using Emacs and the most recent Emacs Ada mode, which provides
18087 a full Integrated Development Environment for compiling, checking,
18088 running and debugging applications, you may use @file{.gpr} files
18089 to give the directories where Emacs can find sources and object files.
18090
18091 Using this switch, you can tell gnathtml to use these files. This allows
18092 you to get an html version of your application, even if it is spread
18093 over multiple directories.
18094
18095 @item -sc @var{color}
18096 @cindex @option{-sc} (@code{gnathtml})
18097 This option allows you to change the color used for symbol definitions.
18098 The default value is red. The color argument can be any name accepted by html.
18099
18100 @item -t @var{file}
18101 @cindex @option{-t} (@code{gnathtml})
18102 This switch provides the name of a file. This file contains a list of
18103 file names to be converted, and the effect is exactly as though they had
18104 appeared explicitly on the command line. This
18105 is the recommended way to work around the command line length limit on some
18106 systems.
18107
18108 @end table
18109
18110 @node Installing gnathtml
18111 @section Installing @code{gnathtml}
18112
18113 @noindent
18114 @code{Perl} needs to be installed on your machine to run this script.
18115 @code{Perl} is freely available for almost every architecture and
18116 Operating System via the Internet.
18117
18118 On Unix systems, you may want to modify the first line of the script
18119 @code{gnathtml}, to explicitly tell the Operating system where Perl
18120 is. The syntax of this line is :
18121 @smallexample
18122 #!full_path_name_to_perl
18123 @end smallexample
18124
18125 @noindent
18126 Alternatively, you may run the script using the following command line:
18127
18128 @smallexample
18129 $ perl gnathtml.pl [switches] files
18130 @end smallexample
18131
18132 @ifset vms
18133 @node LSE
18134 @section LSE
18135 @findex LSE
18136
18137 @noindent
18138 The GNAT distribution provides an Ada 95 template for the Digital Language
18139 Sensitive Editor (LSE), a component of DECset. In order to
18140 access it, invoke LSE with the qualifier /ENVIRONMENT=GNU:[LIB]ADA95.ENV.
18141
18142 @node Profiling
18143 @section Profiling
18144 @findex PCA
18145
18146 @noindent
18147 GNAT supports The Digital Performance Coverage Analyzer (PCA), a component
18148 of DECset. To use it proceed as outlined under ``HELP PCA'', except for running
18149 the collection phase with the /DEBUG qualifier.
18150
18151 @smallexample
18152 $ GNAT MAKE /DEBUG <PROGRAM_NAME>
18153 $ DEFINE LIB$DEBUG PCA$COLLECTOR
18154 $ RUN/DEBUG <PROGRAM_NAME>
18155 @end smallexample
18156 @noindent
18157 @end ifset
18158
18159 @node Running and Debugging Ada Programs
18160 @chapter Running and Debugging Ada Programs
18161 @cindex Debugging
18162
18163 @noindent
18164 This chapter discusses how to debug Ada programs. An incorrect Ada program
18165 may be handled in three ways by the GNAT compiler:
18166
18167 @enumerate
18168 @item
18169 The illegality may be a violation of the static semantics of Ada. In
18170 that case GNAT diagnoses the constructs in the program that are illegal.
18171 It is then a straightforward matter for the user to modify those parts of
18172 the program.
18173
18174 @item
18175 The illegality may be a violation of the dynamic semantics of Ada. In
18176 that case the program compiles and executes, but may generate incorrect
18177 results, or may terminate abnormally with some exception.
18178
18179 @item
18180 When presented with a program that contains convoluted errors, GNAT
18181 itself may terminate abnormally without providing full diagnostics on
18182 the incorrect user program.
18183 @end enumerate
18184
18185 @menu
18186 * The GNAT Debugger GDB::
18187 * Running GDB::
18188 * Introduction to GDB Commands::
18189 * Using Ada Expressions::
18190 * Calling User-Defined Subprograms::
18191 * Using the Next Command in a Function::
18192 * Ada Exceptions::
18193 * Ada Tasks::
18194 * Debugging Generic Units::
18195 * GNAT Abnormal Termination or Failure to Terminate::
18196 * Naming Conventions for GNAT Source Files::
18197 * Getting Internal Debugging Information::
18198 * Stack Traceback::
18199 @end menu
18200
18201 @cindex Debugger
18202 @findex gdb
18203
18204 @node The GNAT Debugger GDB
18205 @section The GNAT Debugger GDB
18206
18207 @noindent
18208 @code{GDB} is a general purpose, platform-independent debugger that
18209 can be used to debug mixed-language programs compiled with @code{GCC},
18210 and in particular is capable of debugging Ada programs compiled with
18211 GNAT. The latest versions of @code{GDB} are Ada-aware and can handle
18212 complex Ada data structures.
18213
18214 The manual @cite{Debugging with GDB}
18215 @ifset vms
18216 , located in the GNU:[DOCS] directory,
18217 @end ifset
18218 contains full details on the usage of @code{GDB}, including a section on
18219 its usage on programs. This manual should be consulted for full
18220 details. The section that follows is a brief introduction to the
18221 philosophy and use of @code{GDB}.
18222
18223 When GNAT programs are compiled, the compiler optionally writes debugging
18224 information into the generated object file, including information on
18225 line numbers, and on declared types and variables. This information is
18226 separate from the generated code. It makes the object files considerably
18227 larger, but it does not add to the size of the actual executable that
18228 will be loaded into memory, and has no impact on run-time performance. The
18229 generation of debug information is triggered by the use of the
18230 ^-g^/DEBUG^ switch in the gcc or gnatmake command used to carry out
18231 the compilations. It is important to emphasize that the use of these
18232 options does not change the generated code.
18233
18234 The debugging information is written in standard system formats that
18235 are used by many tools, including debuggers and profilers. The format
18236 of the information is typically designed to describe C types and
18237 semantics, but GNAT implements a translation scheme which allows full
18238 details about Ada types and variables to be encoded into these
18239 standard C formats. Details of this encoding scheme may be found in
18240 the file exp_dbug.ads in the GNAT source distribution. However, the
18241 details of this encoding are, in general, of no interest to a user,
18242 since @code{GDB} automatically performs the necessary decoding.
18243
18244 When a program is bound and linked, the debugging information is
18245 collected from the object files, and stored in the executable image of
18246 the program. Again, this process significantly increases the size of
18247 the generated executable file, but it does not increase the size of
18248 the executable program itself. Furthermore, if this program is run in
18249 the normal manner, it runs exactly as if the debug information were
18250 not present, and takes no more actual memory.
18251
18252 However, if the program is run under control of @code{GDB}, the
18253 debugger is activated. The image of the program is loaded, at which
18254 point it is ready to run. If a run command is given, then the program
18255 will run exactly as it would have if @code{GDB} were not present. This
18256 is a crucial part of the @code{GDB} design philosophy. @code{GDB} is
18257 entirely non-intrusive until a breakpoint is encountered. If no
18258 breakpoint is ever hit, the program will run exactly as it would if no
18259 debugger were present. When a breakpoint is hit, @code{GDB} accesses
18260 the debugging information and can respond to user commands to inspect
18261 variables, and more generally to report on the state of execution.
18262
18263 @c **************
18264 @node Running GDB
18265 @section Running GDB
18266
18267 @noindent
18268 The debugger can be launched directly and simply from @code{glide} or
18269 through its graphical interface: @code{gvd}. It can also be used
18270 directly in text mode. Here is described the basic use of @code{GDB}
18271 in text mode. All the commands described below can be used in the
18272 @code{gvd} console window even though there is usually other more
18273 graphical ways to achieve the same goals.
18274
18275 @ifclear vms
18276 @noindent
18277 The command to run the graphical interface of the debugger is
18278 @smallexample
18279 $ gvd program
18280 @end smallexample
18281 @end ifclear
18282
18283 @noindent
18284 The command to run @code{GDB} in text mode is
18285
18286 @smallexample
18287 $ ^gdb program^$ GDB PROGRAM^
18288 @end smallexample
18289
18290 @noindent
18291 where @code{^program^PROGRAM^} is the name of the executable file. This
18292 activates the debugger and results in a prompt for debugger commands.
18293 The simplest command is simply @code{run}, which causes the program to run
18294 exactly as if the debugger were not present. The following section
18295 describes some of the additional commands that can be given to @code{GDB}.
18296
18297
18298 @c *******************************
18299 @node Introduction to GDB Commands
18300 @section Introduction to GDB Commands
18301
18302 @noindent
18303 @code{GDB} contains a large repertoire of commands. The manual
18304 @cite{Debugging with GDB}
18305 @ifset vms
18306 , located in the GNU:[DOCS] directory,
18307 @end ifset
18308 includes extensive documentation on the use
18309 of these commands, together with examples of their use. Furthermore,
18310 the command @var{help} invoked from within @code{GDB} activates a simple help
18311 facility which summarizes the available commands and their options.
18312 In this section we summarize a few of the most commonly
18313 used commands to give an idea of what @code{GDB} is about. You should create
18314 a simple program with debugging information and experiment with the use of
18315 these @code{GDB} commands on the program as you read through the
18316 following section.
18317
18318 @table @code
18319 @item set args @var{arguments}
18320 The @var{arguments} list above is a list of arguments to be passed to
18321 the program on a subsequent run command, just as though the arguments
18322 had been entered on a normal invocation of the program. The @code{set args}
18323 command is not needed if the program does not require arguments.
18324
18325 @item run
18326 The @code{run} command causes execution of the program to start from
18327 the beginning. If the program is already running, that is to say if
18328 you are currently positioned at a breakpoint, then a prompt will ask
18329 for confirmation that you want to abandon the current execution and
18330 restart.
18331
18332 @item breakpoint @var{location}
18333 The breakpoint command sets a breakpoint, that is to say a point at which
18334 execution will halt and @code{GDB} will await further
18335 commands. @var{location} is
18336 either a line number within a file, given in the format @code{file:linenumber},
18337 or it is the name of a subprogram. If you request that a breakpoint be set on
18338 a subprogram that is overloaded, a prompt will ask you to specify on which of
18339 those subprograms you want to breakpoint. You can also
18340 specify that all of them should be breakpointed. If the program is run
18341 and execution encounters the breakpoint, then the program
18342 stops and @code{GDB} signals that the breakpoint was encountered by
18343 printing the line of code before which the program is halted.
18344
18345 @item breakpoint exception @var{name}
18346 A special form of the breakpoint command which breakpoints whenever
18347 exception @var{name} is raised.
18348 If @var{name} is omitted,
18349 then a breakpoint will occur when any exception is raised.
18350
18351 @item print @var{expression}
18352 This will print the value of the given expression. Most simple
18353 Ada expression formats are properly handled by @code{GDB}, so the expression
18354 can contain function calls, variables, operators, and attribute references.
18355
18356 @item continue
18357 Continues execution following a breakpoint, until the next breakpoint or the
18358 termination of the program.
18359
18360 @item step
18361 Executes a single line after a breakpoint. If the next statement
18362 is a subprogram call, execution continues into (the first statement of)
18363 the called subprogram.
18364
18365 @item next
18366 Executes a single line. If this line is a subprogram call, executes and
18367 returns from the call.
18368
18369 @item list
18370 Lists a few lines around the current source location. In practice, it
18371 is usually more convenient to have a separate edit window open with the
18372 relevant source file displayed. Successive applications of this command
18373 print subsequent lines. The command can be given an argument which is a
18374 line number, in which case it displays a few lines around the specified one.
18375
18376 @item backtrace
18377 Displays a backtrace of the call chain. This command is typically
18378 used after a breakpoint has occurred, to examine the sequence of calls that
18379 leads to the current breakpoint. The display includes one line for each
18380 activation record (frame) corresponding to an active subprogram.
18381
18382 @item up
18383 At a breakpoint, @code{GDB} can display the values of variables local
18384 to the current frame. The command @code{up} can be used to
18385 examine the contents of other active frames, by moving the focus up
18386 the stack, that is to say from callee to caller, one frame at a time.
18387
18388 @item down
18389 Moves the focus of @code{GDB} down from the frame currently being
18390 examined to the frame of its callee (the reverse of the previous command),
18391
18392 @item frame @var{n}
18393 Inspect the frame with the given number. The value 0 denotes the frame
18394 of the current breakpoint, that is to say the top of the call stack.
18395
18396 @end table
18397
18398 The above list is a very short introduction to the commands that
18399 @code{GDB} provides. Important additional capabilities, including conditional
18400 breakpoints, the ability to execute command sequences on a breakpoint,
18401 the ability to debug at the machine instruction level and many other
18402 features are described in detail in @cite{Debugging with GDB}.
18403 Note that most commands can be abbreviated
18404 (for example, c for continue, bt for backtrace).
18405
18406 @node Using Ada Expressions
18407 @section Using Ada Expressions
18408 @cindex Ada expressions
18409
18410 @noindent
18411 @code{GDB} supports a fairly large subset of Ada expression syntax, with some
18412 extensions. The philosophy behind the design of this subset is
18413
18414 @itemize @bullet
18415 @item
18416 That @code{GDB} should provide basic literals and access to operations for
18417 arithmetic, dereferencing, field selection, indexing, and subprogram calls,
18418 leaving more sophisticated computations to subprograms written into the
18419 program (which therefore may be called from @code{GDB}).
18420
18421 @item
18422 That type safety and strict adherence to Ada language restrictions
18423 are not particularly important to the @code{GDB} user.
18424
18425 @item
18426 That brevity is important to the @code{GDB} user.
18427 @end itemize
18428
18429 Thus, for brevity, the debugger acts as if there were
18430 implicit @code{with} and @code{use} clauses in effect for all user-written
18431 packages, thus making it unnecessary to fully qualify most names with
18432 their packages, regardless of context. Where this causes ambiguity,
18433 @code{GDB} asks the user's intent.
18434
18435 For details on the supported Ada syntax, see @cite{Debugging with GDB}.
18436
18437 @node Calling User-Defined Subprograms
18438 @section Calling User-Defined Subprograms
18439
18440 @noindent
18441 An important capability of @code{GDB} is the ability to call user-defined
18442 subprograms while debugging. This is achieved simply by entering
18443 a subprogram call statement in the form:
18444
18445 @smallexample
18446 call subprogram-name (parameters)
18447 @end smallexample
18448
18449 @noindent
18450 The keyword @code{call} can be omitted in the normal case where the
18451 @code{subprogram-name} does not coincide with any of the predefined
18452 @code{GDB} commands.
18453
18454 The effect is to invoke the given subprogram, passing it the
18455 list of parameters that is supplied. The parameters can be expressions and
18456 can include variables from the program being debugged. The
18457 subprogram must be defined
18458 at the library level within your program, and @code{GDB} will call the
18459 subprogram within the environment of your program execution (which
18460 means that the subprogram is free to access or even modify variables
18461 within your program).
18462
18463 The most important use of this facility is in allowing the inclusion of
18464 debugging routines that are tailored to particular data structures
18465 in your program. Such debugging routines can be written to provide a suitably
18466 high-level description of an abstract type, rather than a low-level dump
18467 of its physical layout. After all, the standard
18468 @code{GDB print} command only knows the physical layout of your
18469 types, not their abstract meaning. Debugging routines can provide information
18470 at the desired semantic level and are thus enormously useful.
18471
18472 For example, when debugging GNAT itself, it is crucial to have access to
18473 the contents of the tree nodes used to represent the program internally.
18474 But tree nodes are represented simply by an integer value (which in turn
18475 is an index into a table of nodes).
18476 Using the @code{print} command on a tree node would simply print this integer
18477 value, which is not very useful. But the PN routine (defined in file
18478 treepr.adb in the GNAT sources) takes a tree node as input, and displays
18479 a useful high level representation of the tree node, which includes the
18480 syntactic category of the node, its position in the source, the integers
18481 that denote descendant nodes and parent node, as well as varied
18482 semantic information. To study this example in more detail, you might want to
18483 look at the body of the PN procedure in the stated file.
18484
18485 @node Using the Next Command in a Function
18486 @section Using the Next Command in a Function
18487
18488 @noindent
18489 When you use the @code{next} command in a function, the current source
18490 location will advance to the next statement as usual. A special case
18491 arises in the case of a @code{return} statement.
18492
18493 Part of the code for a return statement is the ``epilog'' of the function.
18494 This is the code that returns to the caller. There is only one copy of
18495 this epilog code, and it is typically associated with the last return
18496 statement in the function if there is more than one return. In some
18497 implementations, this epilog is associated with the first statement
18498 of the function.
18499
18500 The result is that if you use the @code{next} command from a return
18501 statement that is not the last return statement of the function you
18502 may see a strange apparent jump to the last return statement or to
18503 the start of the function. You should simply ignore this odd jump.
18504 The value returned is always that from the first return statement
18505 that was stepped through.
18506
18507 @node Ada Exceptions
18508 @section Breaking on Ada Exceptions
18509 @cindex Exceptions
18510
18511 @noindent
18512 You can set breakpoints that trip when your program raises
18513 selected exceptions.
18514
18515 @table @code
18516 @item break exception
18517 Set a breakpoint that trips whenever (any task in the) program raises
18518 any exception.
18519
18520 @item break exception @var{name}
18521 Set a breakpoint that trips whenever (any task in the) program raises
18522 the exception @var{name}.
18523
18524 @item break exception unhandled
18525 Set a breakpoint that trips whenever (any task in the) program raises an
18526 exception for which there is no handler.
18527
18528 @item info exceptions
18529 @itemx info exceptions @var{regexp}
18530 The @code{info exceptions} command permits the user to examine all defined
18531 exceptions within Ada programs. With a regular expression, @var{regexp}, as
18532 argument, prints out only those exceptions whose name matches @var{regexp}.
18533 @end table
18534
18535 @node Ada Tasks
18536 @section Ada Tasks
18537 @cindex Tasks
18538
18539 @noindent
18540 @code{GDB} allows the following task-related commands:
18541
18542 @table @code
18543 @item info tasks
18544 This command shows a list of current Ada tasks, as in the following example:
18545
18546 @smallexample
18547 @iftex
18548 @leftskip=0cm
18549 @end iftex
18550 (gdb) info tasks
18551 ID TID P-ID Thread Pri State Name
18552 1 8088000 0 807e000 15 Child Activation Wait main_task
18553 2 80a4000 1 80ae000 15 Accept/Select Wait b
18554 3 809a800 1 80a4800 15 Child Activation Wait a
18555 * 4 80ae800 3 80b8000 15 Running c
18556 @end smallexample
18557
18558 @noindent
18559 In this listing, the asterisk before the first task indicates it to be the
18560 currently running task. The first column lists the task ID that is used
18561 to refer to tasks in the following commands.
18562
18563 @item break @var{linespec} task @var{taskid}
18564 @itemx break @var{linespec} task @var{taskid} if @dots{}
18565 @cindex Breakpoints and tasks
18566 These commands are like the @code{break @dots{} thread @dots{}}.
18567 @var{linespec} specifies source lines.
18568
18569 Use the qualifier @samp{task @var{taskid}} with a breakpoint command
18570 to specify that you only want @code{GDB} to stop the program when a
18571 particular Ada task reaches this breakpoint. @var{taskid} is one of the
18572 numeric task identifiers assigned by @code{GDB}, shown in the first
18573 column of the @samp{info tasks} display.
18574
18575 If you do not specify @samp{task @var{taskid}} when you set a
18576 breakpoint, the breakpoint applies to @emph{all} tasks of your
18577 program.
18578
18579 You can use the @code{task} qualifier on conditional breakpoints as
18580 well; in this case, place @samp{task @var{taskid}} before the
18581 breakpoint condition (before the @code{if}).
18582
18583 @item task @var{taskno}
18584 @cindex Task switching
18585
18586 This command allows to switch to the task referred by @var{taskno}. In
18587 particular, This allows to browse the backtrace of the specified
18588 task. It is advised to switch back to the original task before
18589 continuing execution otherwise the scheduling of the program may be
18590 perturbated.
18591 @end table
18592
18593 @noindent
18594 For more detailed information on the tasking support,
18595 see @cite{Debugging with GDB}.
18596
18597 @node Debugging Generic Units
18598 @section Debugging Generic Units
18599 @cindex Debugging Generic Units
18600 @cindex Generics
18601
18602 @noindent
18603 GNAT always uses code expansion for generic instantiation. This means that
18604 each time an instantiation occurs, a complete copy of the original code is
18605 made, with appropriate substitutions of formals by actuals.
18606
18607 It is not possible to refer to the original generic entities in
18608 @code{GDB}, but it is always possible to debug a particular instance of
18609 a generic, by using the appropriate expanded names. For example, if we have
18610
18611 @smallexample @c ada
18612 @group
18613 @cartouche
18614 procedure g is
18615
18616 generic package k is
18617 procedure kp (v1 : in out integer);
18618 end k;
18619
18620 package body k is
18621 procedure kp (v1 : in out integer) is
18622 begin
18623 v1 := v1 + 1;
18624 end kp;
18625 end k;
18626
18627 package k1 is new k;
18628 package k2 is new k;
18629
18630 var : integer := 1;
18631
18632 begin
18633 k1.kp (var);
18634 k2.kp (var);
18635 k1.kp (var);
18636 k2.kp (var);
18637 end;
18638 @end cartouche
18639 @end group
18640 @end smallexample
18641
18642 @noindent
18643 Then to break on a call to procedure kp in the k2 instance, simply
18644 use the command:
18645
18646 @smallexample
18647 (gdb) break g.k2.kp
18648 @end smallexample
18649
18650 @noindent
18651 When the breakpoint occurs, you can step through the code of the
18652 instance in the normal manner and examine the values of local variables, as for
18653 other units.
18654
18655 @node GNAT Abnormal Termination or Failure to Terminate
18656 @section GNAT Abnormal Termination or Failure to Terminate
18657 @cindex GNAT Abnormal Termination or Failure to Terminate
18658
18659 @noindent
18660 When presented with programs that contain serious errors in syntax
18661 or semantics,
18662 GNAT may on rare occasions experience problems in operation, such
18663 as aborting with a
18664 segmentation fault or illegal memory access, raising an internal
18665 exception, terminating abnormally, or failing to terminate at all.
18666 In such cases, you can activate
18667 various features of GNAT that can help you pinpoint the construct in your
18668 program that is the likely source of the problem.
18669
18670 The following strategies are presented in increasing order of
18671 difficulty, corresponding to your experience in using GNAT and your
18672 familiarity with compiler internals.
18673
18674 @enumerate
18675 @item
18676 Run @code{gcc} with the @option{-gnatf}. This first
18677 switch causes all errors on a given line to be reported. In its absence,
18678 only the first error on a line is displayed.
18679
18680 The @option{-gnatdO} switch causes errors to be displayed as soon as they
18681 are encountered, rather than after compilation is terminated. If GNAT
18682 terminates prematurely or goes into an infinite loop, the last error
18683 message displayed may help to pinpoint the culprit.
18684
18685 @item
18686 Run @code{gcc} with the @option{^-v (verbose)^/VERBOSE^} switch. In this mode,
18687 @code{gcc} produces ongoing information about the progress of the
18688 compilation and provides the name of each procedure as code is
18689 generated. This switch allows you to find which Ada procedure was being
18690 compiled when it encountered a code generation problem.
18691
18692 @item
18693 @cindex @option{-gnatdc} switch
18694 Run @code{gcc} with the @option{-gnatdc} switch. This is a GNAT specific
18695 switch that does for the front-end what @option{^-v^VERBOSE^} does
18696 for the back end. The system prints the name of each unit,
18697 either a compilation unit or nested unit, as it is being analyzed.
18698 @item
18699 Finally, you can start
18700 @code{gdb} directly on the @code{gnat1} executable. @code{gnat1} is the
18701 front-end of GNAT, and can be run independently (normally it is just
18702 called from @code{gcc}). You can use @code{gdb} on @code{gnat1} as you
18703 would on a C program (but @pxref{The GNAT Debugger GDB} for caveats). The
18704 @code{where} command is the first line of attack; the variable
18705 @code{lineno} (seen by @code{print lineno}), used by the second phase of
18706 @code{gnat1} and by the @code{gcc} backend, indicates the source line at
18707 which the execution stopped, and @code{input_file name} indicates the name of
18708 the source file.
18709 @end enumerate
18710
18711 @node Naming Conventions for GNAT Source Files
18712 @section Naming Conventions for GNAT Source Files
18713
18714 @noindent
18715 In order to examine the workings of the GNAT system, the following
18716 brief description of its organization may be helpful:
18717
18718 @itemize @bullet
18719 @item
18720 Files with prefix @file{^sc^SC^} contain the lexical scanner.
18721
18722 @item
18723 All files prefixed with @file{^par^PAR^} are components of the parser. The
18724 numbers correspond to chapters of the Ada 95 Reference Manual. For example,
18725 parsing of select statements can be found in @file{par-ch9.adb}.
18726
18727 @item
18728 All files prefixed with @file{^sem^SEM^} perform semantic analysis. The
18729 numbers correspond to chapters of the Ada standard. For example, all
18730 issues involving context clauses can be found in @file{sem_ch10.adb}. In
18731 addition, some features of the language require sufficient special processing
18732 to justify their own semantic files: sem_aggr for aggregates, sem_disp for
18733 dynamic dispatching, etc.
18734
18735 @item
18736 All files prefixed with @file{^exp^EXP^} perform normalization and
18737 expansion of the intermediate representation (abstract syntax tree, or AST).
18738 these files use the same numbering scheme as the parser and semantics files.
18739 For example, the construction of record initialization procedures is done in
18740 @file{exp_ch3.adb}.
18741
18742 @item
18743 The files prefixed with @file{^bind^BIND^} implement the binder, which
18744 verifies the consistency of the compilation, determines an order of
18745 elaboration, and generates the bind file.
18746
18747 @item
18748 The files @file{atree.ads} and @file{atree.adb} detail the low-level
18749 data structures used by the front-end.
18750
18751 @item
18752 The files @file{sinfo.ads} and @file{sinfo.adb} detail the structure of
18753 the abstract syntax tree as produced by the parser.
18754
18755 @item
18756 The files @file{einfo.ads} and @file{einfo.adb} detail the attributes of
18757 all entities, computed during semantic analysis.
18758
18759 @item
18760 Library management issues are dealt with in files with prefix
18761 @file{^lib^LIB^}.
18762
18763 @item
18764 @findex Ada
18765 @cindex Annex A
18766 Ada files with the prefix @file{^a-^A-^} are children of @code{Ada}, as
18767 defined in Annex A.
18768
18769 @item
18770 @findex Interfaces
18771 @cindex Annex B
18772 Files with prefix @file{^i-^I-^} are children of @code{Interfaces}, as
18773 defined in Annex B.
18774
18775 @item
18776 @findex System
18777 Files with prefix @file{^s-^S-^} are children of @code{System}. This includes
18778 both language-defined children and GNAT run-time routines.
18779
18780 @item
18781 @findex GNAT
18782 Files with prefix @file{^g-^G-^} are children of @code{GNAT}. These are useful
18783 general-purpose packages, fully documented in their specifications. All
18784 the other @file{.c} files are modifications of common @code{gcc} files.
18785 @end itemize
18786
18787 @node Getting Internal Debugging Information
18788 @section Getting Internal Debugging Information
18789
18790 @noindent
18791 Most compilers have internal debugging switches and modes. GNAT
18792 does also, except GNAT internal debugging switches and modes are not
18793 secret. A summary and full description of all the compiler and binder
18794 debug flags are in the file @file{debug.adb}. You must obtain the
18795 sources of the compiler to see the full detailed effects of these flags.
18796
18797 The switches that print the source of the program (reconstructed from
18798 the internal tree) are of general interest for user programs, as are the
18799 options to print
18800 the full internal tree, and the entity table (the symbol table
18801 information). The reconstructed source provides a readable version of the
18802 program after the front-end has completed analysis and expansion,
18803 and is useful when studying the performance of specific constructs.
18804 For example, constraint checks are indicated, complex aggregates
18805 are replaced with loops and assignments, and tasking primitives
18806 are replaced with run-time calls.
18807
18808 @node Stack Traceback
18809 @section Stack Traceback
18810 @cindex traceback
18811 @cindex stack traceback
18812 @cindex stack unwinding
18813
18814 @noindent
18815 Traceback is a mechanism to display the sequence of subprogram calls that
18816 leads to a specified execution point in a program. Often (but not always)
18817 the execution point is an instruction at which an exception has been raised.
18818 This mechanism is also known as @i{stack unwinding} because it obtains
18819 its information by scanning the run-time stack and recovering the activation
18820 records of all active subprograms. Stack unwinding is one of the most
18821 important tools for program debugging.
18822
18823 The first entry stored in traceback corresponds to the deepest calling level,
18824 that is to say the subprogram currently executing the instruction
18825 from which we want to obtain the traceback.
18826
18827 Note that there is no runtime performance penalty when stack traceback
18828 is enabled, and no exception is raised during program execution.
18829
18830 @menu
18831 * Non-Symbolic Traceback::
18832 * Symbolic Traceback::
18833 @end menu
18834
18835 @node Non-Symbolic Traceback
18836 @subsection Non-Symbolic Traceback
18837 @cindex traceback, non-symbolic
18838
18839 @noindent
18840 Note: this feature is not supported on all platforms. See
18841 @file{GNAT.Traceback spec in g-traceb.ads} for a complete list of supported
18842 platforms.
18843
18844 @menu
18845 * Tracebacks From an Unhandled Exception::
18846 * Tracebacks From Exception Occurrences (non-symbolic)::
18847 * Tracebacks From Anywhere in a Program (non-symbolic)::
18848 @end menu
18849
18850 @node Tracebacks From an Unhandled Exception
18851 @subsubsection Tracebacks From an Unhandled Exception
18852
18853 @noindent
18854 A runtime non-symbolic traceback is a list of addresses of call instructions.
18855 To enable this feature you must use the @option{-E}
18856 @code{gnatbind}'s option. With this option a stack traceback is stored as part
18857 of exception information. You can retrieve this information using the
18858 @code{addr2line} tool.
18859
18860 Here is a simple example:
18861
18862 @smallexample @c ada
18863 @cartouche
18864 procedure STB is
18865
18866 procedure P1 is
18867 begin
18868 raise Constraint_Error;
18869 end P1;
18870
18871 procedure P2 is
18872 begin
18873 P1;
18874 end P2;
18875
18876 begin
18877 P2;
18878 end STB;
18879 @end cartouche
18880 @end smallexample
18881
18882 @smallexample
18883 $ gnatmake stb -bargs -E
18884 $ stb
18885
18886 Execution terminated by unhandled exception
18887 Exception name: CONSTRAINT_ERROR
18888 Message: stb.adb:5
18889 Call stack traceback locations:
18890 0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4
18891 @end smallexample
18892
18893 @noindent
18894 As we see the traceback lists a sequence of addresses for the unhandled
18895 exception @code{CONSTRAINT_ERROR} raised in procedure P1. It is easy to
18896 guess that this exception come from procedure P1. To translate these
18897 addresses into the source lines where the calls appear, the
18898 @code{addr2line} tool, described below, is invaluable. The use of this tool
18899 requires the program to be compiled with debug information.
18900
18901 @smallexample
18902 $ gnatmake -g stb -bargs -E
18903 $ stb
18904
18905 Execution terminated by unhandled exception
18906 Exception name: CONSTRAINT_ERROR
18907 Message: stb.adb:5
18908 Call stack traceback locations:
18909 0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4
18910
18911 $ addr2line --exe=stb 0x401373 0x40138b 0x40139c 0x401335 0x4011c4
18912 0x4011f1 0x77e892a4
18913
18914 00401373 at d:/stb/stb.adb:5
18915 0040138B at d:/stb/stb.adb:10
18916 0040139C at d:/stb/stb.adb:14
18917 00401335 at d:/stb/b~stb.adb:104
18918 004011C4 at /build/.../crt1.c:200
18919 004011F1 at /build/.../crt1.c:222
18920 77E892A4 in ?? at ??:0
18921 @end smallexample
18922
18923 @noindent
18924 The @code{addr2line} tool has several other useful options:
18925
18926 @table @code
18927 @item --functions
18928 to get the function name corresponding to any location
18929
18930 @item --demangle=gnat
18931 to use the gnat decoding mode for the function names. Note that
18932 for binutils version 2.9.x the option is simply @option{--demangle}.
18933 @end table
18934
18935 @smallexample
18936 $ addr2line --exe=stb --functions --demangle=gnat 0x401373 0x40138b
18937 0x40139c 0x401335 0x4011c4 0x4011f1
18938
18939 00401373 in stb.p1 at d:/stb/stb.adb:5
18940 0040138B in stb.p2 at d:/stb/stb.adb:10
18941 0040139C in stb at d:/stb/stb.adb:14
18942 00401335 in main at d:/stb/b~stb.adb:104
18943 004011C4 in <__mingw_CRTStartup> at /build/.../crt1.c:200
18944 004011F1 in <mainCRTStartup> at /build/.../crt1.c:222
18945 @end smallexample
18946
18947 @noindent
18948 From this traceback we can see that the exception was raised in
18949 @file{stb.adb} at line 5, which was reached from a procedure call in
18950 @file{stb.adb} at line 10, and so on. The @file{b~std.adb} is the binder file,
18951 which contains the call to the main program.
18952 @pxref{Running gnatbind}. The remaining entries are assorted runtime routines,
18953 and the output will vary from platform to platform.
18954
18955 It is also possible to use @code{GDB} with these traceback addresses to debug
18956 the program. For example, we can break at a given code location, as reported
18957 in the stack traceback:
18958
18959 @smallexample
18960 $ gdb -nw stb
18961 @ifclear vms
18962 @noindent
18963 Furthermore, this feature is not implemented inside Windows DLL. Only
18964 the non-symbolic traceback is reported in this case.
18965 @end ifclear
18966
18967 (gdb) break *0x401373
18968 Breakpoint 1 at 0x401373: file stb.adb, line 5.
18969 @end smallexample
18970
18971 @noindent
18972 It is important to note that the stack traceback addresses
18973 do not change when debug information is included. This is particularly useful
18974 because it makes it possible to release software without debug information (to
18975 minimize object size), get a field report that includes a stack traceback
18976 whenever an internal bug occurs, and then be able to retrieve the sequence
18977 of calls with the same program compiled with debug information.
18978
18979 @node Tracebacks From Exception Occurrences (non-symbolic)
18980 @subsubsection Tracebacks From Exception Occurrences
18981
18982 @noindent
18983 Non-symbolic tracebacks are obtained by using the @option{-E} binder argument.
18984 The stack traceback is attached to the exception information string, and can
18985 be retrieved in an exception handler within the Ada program, by means of the
18986 Ada95 facilities defined in @code{Ada.Exceptions}. Here is a simple example:
18987
18988 @smallexample @c ada
18989 with Ada.Text_IO;
18990 with Ada.Exceptions;
18991
18992 procedure STB is
18993
18994 use Ada;
18995 use Ada.Exceptions;
18996
18997 procedure P1 is
18998 K : Positive := 1;
18999 begin
19000 K := K - 1;
19001 exception
19002 when E : others =>
19003 Text_IO.Put_Line (Exception_Information (E));
19004 end P1;
19005
19006 procedure P2 is
19007 begin
19008 P1;
19009 end P2;
19010
19011 begin
19012 P2;
19013 end STB;
19014 @end smallexample
19015
19016 @noindent
19017 This program will output:
19018
19019 @smallexample
19020 $ stb
19021
19022 Exception name: CONSTRAINT_ERROR
19023 Message: stb.adb:12
19024 Call stack traceback locations:
19025 0x4015e4 0x401633 0x401644 0x401461 0x4011c4 0x4011f1 0x77e892a4
19026 @end smallexample
19027
19028 @node Tracebacks From Anywhere in a Program (non-symbolic)
19029 @subsubsection Tracebacks From Anywhere in a Program
19030
19031 @noindent
19032 It is also possible to retrieve a stack traceback from anywhere in a
19033 program. For this you need to
19034 use the @code{GNAT.Traceback} API. This package includes a procedure called
19035 @code{Call_Chain} that computes a complete stack traceback, as well as useful
19036 display procedures described below. It is not necessary to use the
19037 @option{-E gnatbind} option in this case, because the stack traceback mechanism
19038 is invoked explicitly.
19039
19040 @noindent
19041 In the following example we compute a traceback at a specific location in
19042 the program, and we display it using @code{GNAT.Debug_Utilities.Image} to
19043 convert addresses to strings:
19044
19045 @smallexample @c ada
19046 with Ada.Text_IO;
19047 with GNAT.Traceback;
19048 with GNAT.Debug_Utilities;
19049
19050 procedure STB is
19051
19052 use Ada;
19053 use GNAT;
19054 use GNAT.Traceback;
19055
19056 procedure P1 is
19057 TB : Tracebacks_Array (1 .. 10);
19058 -- We are asking for a maximum of 10 stack frames.
19059 Len : Natural;
19060 -- Len will receive the actual number of stack frames returned.
19061 begin
19062 Call_Chain (TB, Len);
19063
19064 Text_IO.Put ("In STB.P1 : ");
19065
19066 for K in 1 .. Len loop
19067 Text_IO.Put (Debug_Utilities.Image (TB (K)));
19068 Text_IO.Put (' ');
19069 end loop;
19070
19071 Text_IO.New_Line;
19072 end P1;
19073
19074 procedure P2 is
19075 begin
19076 P1;
19077 end P2;
19078
19079 begin
19080 P2;
19081 end STB;
19082 @end smallexample
19083
19084 @smallexample
19085 $ gnatmake -g stb
19086 $ stb
19087
19088 In STB.P1 : 16#0040_F1E4# 16#0040_14F2# 16#0040_170B# 16#0040_171C#
19089 16#0040_1461# 16#0040_11C4# 16#0040_11F1# 16#77E8_92A4#
19090 @end smallexample
19091
19092 @noindent
19093 You can then get further information by invoking the @code{addr2line}
19094 tool as described earlier (note that the hexadecimal addresses
19095 need to be specified in C format, with a leading ``0x'').
19096
19097
19098 @node Symbolic Traceback
19099 @subsection Symbolic Traceback
19100 @cindex traceback, symbolic
19101
19102 @noindent
19103 A symbolic traceback is a stack traceback in which procedure names are
19104 associated with each code location.
19105
19106 @noindent
19107 Note that this feature is not supported on all platforms. See
19108 @file{GNAT.Traceback.Symbolic spec in g-trasym.ads} for a complete
19109 list of currently supported platforms.
19110
19111 @noindent
19112 Note that the symbolic traceback requires that the program be compiled
19113 with debug information. If it is not compiled with debug information
19114 only the non-symbolic information will be valid.
19115
19116 @menu
19117 * Tracebacks From Exception Occurrences (symbolic)::
19118 * Tracebacks From Anywhere in a Program (symbolic)::
19119 @end menu
19120
19121 @node Tracebacks From Exception Occurrences (symbolic)
19122 @subsubsection Tracebacks From Exception Occurrences
19123
19124 @smallexample @c ada
19125 with Ada.Text_IO;
19126 with GNAT.Traceback.Symbolic;
19127
19128 procedure STB is
19129
19130 procedure P1 is
19131 begin
19132 raise Constraint_Error;
19133 end P1;
19134
19135 procedure P2 is
19136 begin
19137 P1;
19138 end P2;
19139
19140 procedure P3 is
19141 begin
19142 P2;
19143 end P3;
19144
19145 begin
19146 P3;
19147 exception
19148 when E : others =>
19149 Ada.Text_IO.Put_Line (GNAT.Traceback.Symbolic.Symbolic_Traceback (E));
19150 end STB;
19151 @end smallexample
19152
19153 @smallexample
19154 $ gnatmake -g .\stb -bargs -E -largs -lgnat -laddr2line -lintl
19155 $ stb
19156
19157 0040149F in stb.p1 at stb.adb:8
19158 004014B7 in stb.p2 at stb.adb:13
19159 004014CF in stb.p3 at stb.adb:18
19160 004015DD in ada.stb at stb.adb:22
19161 00401461 in main at b~stb.adb:168
19162 004011C4 in __mingw_CRTStartup at crt1.c:200
19163 004011F1 in mainCRTStartup at crt1.c:222
19164 77E892A4 in ?? at ??:0
19165 @end smallexample
19166
19167 @noindent
19168 In the above example the ``.\'' syntax in the @command{gnatmake} command
19169 is currently required by @command{addr2line} for files that are in
19170 the current working directory.
19171 Moreover, the exact sequence of linker options may vary from platform
19172 to platform.
19173 The above @option{-largs} section is for Windows platforms. By contrast,
19174 under Unix there is no need for the @option{-largs} section.
19175 Differences across platforms are due to details of linker implementation.
19176
19177 @node Tracebacks From Anywhere in a Program (symbolic)
19178 @subsubsection Tracebacks From Anywhere in a Program
19179
19180 @noindent
19181 It is possible to get a symbolic stack traceback
19182 from anywhere in a program, just as for non-symbolic tracebacks.
19183 The first step is to obtain a non-symbolic
19184 traceback, and then call @code{Symbolic_Traceback} to compute the symbolic
19185 information. Here is an example:
19186
19187 @smallexample @c ada
19188 with Ada.Text_IO;
19189 with GNAT.Traceback;
19190 with GNAT.Traceback.Symbolic;
19191
19192 procedure STB is
19193
19194 use Ada;
19195 use GNAT.Traceback;
19196 use GNAT.Traceback.Symbolic;
19197
19198 procedure P1 is
19199 TB : Tracebacks_Array (1 .. 10);
19200 -- We are asking for a maximum of 10 stack frames.
19201 Len : Natural;
19202 -- Len will receive the actual number of stack frames returned.
19203 begin
19204 Call_Chain (TB, Len);
19205 Text_IO.Put_Line (Symbolic_Traceback (TB (1 .. Len)));
19206 end P1;
19207
19208 procedure P2 is
19209 begin
19210 P1;
19211 end P2;
19212
19213 begin
19214 P2;
19215 end STB;
19216 @end smallexample
19217
19218 @ifset vms
19219 @node Compatibility with DEC Ada
19220 @chapter Compatibility with DEC Ada
19221 @cindex Compatibility
19222
19223 @noindent
19224 This section of the manual compares DEC Ada for OpenVMS Alpha and GNAT
19225 OpenVMS Alpha. GNAT achieves a high level of compatibility
19226 with DEC Ada, and it should generally be straightforward to port code
19227 from the DEC Ada environment to GNAT. However, there are a few language
19228 and implementation differences of which the user must be aware. These
19229 differences are discussed in this section. In
19230 addition, the operating environment and command structure for the
19231 compiler are different, and these differences are also discussed.
19232
19233 Note that this discussion addresses specifically the implementation
19234 of Ada 83 for DIGITAL OpenVMS Alpha Systems. In cases where the implementation
19235 of DEC Ada differs between OpenVMS Alpha Systems and OpenVMS VAX Systems,
19236 GNAT always follows the Alpha implementation.
19237
19238 @menu
19239 * Ada 95 Compatibility::
19240 * Differences in the Definition of Package System::
19241 * Language-Related Features::
19242 * The Package STANDARD::
19243 * The Package SYSTEM::
19244 * Tasking and Task-Related Features::
19245 * Implementation of Tasks in DEC Ada for OpenVMS Alpha Systems::
19246 * Pragmas and Pragma-Related Features::
19247 * Library of Predefined Units::
19248 * Bindings::
19249 * Main Program Definition::
19250 * Implementation-Defined Attributes::
19251 * Compiler and Run-Time Interfacing::
19252 * Program Compilation and Library Management::
19253 * Input-Output::
19254 * Implementation Limits::
19255 * Tools::
19256 @end menu
19257
19258 @node Ada 95 Compatibility
19259 @section Ada 95 Compatibility
19260
19261 @noindent
19262 GNAT is an Ada 95 compiler, and DEC Ada is an Ada 83
19263 compiler. Ada 95 is almost completely upwards compatible
19264 with Ada 83, and therefore Ada 83 programs will compile
19265 and run under GNAT with
19266 no changes or only minor changes. The Ada 95 Reference
19267 Manual (ANSI/ISO/IEC-8652:1995) provides details on specific
19268 incompatibilities.
19269
19270 GNAT provides the switch /83 on the GNAT COMPILE command,
19271 as well as the pragma ADA_83, to force the compiler to
19272 operate in Ada 83 mode. This mode does not guarantee complete
19273 conformance to Ada 83, but in practice is sufficient to
19274 eliminate most sources of incompatibilities.
19275 In particular, it eliminates the recognition of the
19276 additional Ada 95 keywords, so that their use as identifiers
19277 in Ada83 program is legal, and handles the cases of packages
19278 with optional bodies, and generics that instantiate unconstrained
19279 types without the use of @code{(<>)}.
19280
19281 @node Differences in the Definition of Package System
19282 @section Differences in the Definition of Package System
19283
19284 @noindent
19285 Both the Ada 95 and Ada 83 reference manuals permit a compiler to add
19286 implementation-dependent declarations to package System. In normal mode,
19287 GNAT does not take advantage of this permission, and the version of System
19288 provided by GNAT exactly matches that in the Ada 95 Reference Manual.
19289
19290 However, DEC Ada adds an extensive set of declarations to package System,
19291 as fully documented in the DEC Ada manuals. To minimize changes required
19292 for programs that make use of these extensions, GNAT provides the pragma
19293 Extend_System for extending the definition of package System. By using:
19294
19295 @smallexample @c ada
19296 @group
19297 @cartouche
19298 pragma Extend_System (Aux_DEC);
19299 @end cartouche
19300 @end group
19301 @end smallexample
19302
19303 @noindent
19304 The set of definitions in System is extended to include those in package
19305 @code{System.Aux_DEC}.
19306 These definitions are incorporated directly into package
19307 System, as though they had been declared there in the first place. For a
19308 list of the declarations added, see the specification of this package,
19309 which can be found in the file @code{s-auxdec.ads} in the GNAT library.
19310 The pragma Extend_System is a configuration pragma, which means that
19311 it can be placed in the file @file{gnat.adc}, so that it will automatically
19312 apply to all subsequent compilations. See the section on Configuration
19313 Pragmas for further details.
19314
19315 An alternative approach that avoids the use of the non-standard
19316 Extend_System pragma is to add a context clause to the unit that
19317 references these facilities:
19318
19319 @smallexample @c ada
19320 @group
19321 @cartouche
19322 with System.Aux_DEC;
19323 use System.Aux_DEC;
19324 @end cartouche
19325 @end group
19326 @end smallexample
19327
19328 @noindent
19329 The effect is not quite semantically identical to incorporating
19330 the declarations directly into package @code{System},
19331 but most programs will not notice a difference
19332 unless they use prefix notation (e.g. @code{System.Integer_8})
19333 to reference the
19334 entities directly in package @code{System}.
19335 For units containing such references,
19336 the prefixes must either be removed, or the pragma @code{Extend_System}
19337 must be used.
19338
19339 @node Language-Related Features
19340 @section Language-Related Features
19341
19342 @noindent
19343 The following sections highlight differences in types,
19344 representations of types, operations, alignment, and
19345 related topics.
19346
19347 @menu
19348 * Integer Types and Representations::
19349 * Floating-Point Types and Representations::
19350 * Pragmas Float_Representation and Long_Float::
19351 * Fixed-Point Types and Representations::
19352 * Record and Array Component Alignment::
19353 * Address Clauses::
19354 * Other Representation Clauses::
19355 @end menu
19356
19357 @node Integer Types and Representations
19358 @subsection Integer Types and Representations
19359
19360 @noindent
19361 The set of predefined integer types is identical in DEC Ada and GNAT.
19362 Furthermore the representation of these integer types is also identical,
19363 including the capability of size clauses forcing biased representation.
19364
19365 In addition,
19366 DEC Ada for OpenVMS Alpha systems has defined the
19367 following additional integer types in package System:
19368
19369 @itemize @bullet
19370
19371 @item
19372 INTEGER_8
19373
19374 @item
19375 INTEGER_16
19376
19377 @item
19378 INTEGER_32
19379
19380 @item
19381 INTEGER_64
19382
19383 @item
19384 LARGEST_INTEGER
19385 @end itemize
19386
19387 @noindent
19388 When using GNAT, the first four of these types may be obtained from the
19389 standard Ada 95 package @code{Interfaces}.
19390 Alternatively, by use of the pragma
19391 @code{Extend_System}, identical
19392 declarations can be referenced directly in package @code{System}.
19393 On both GNAT and DEC Ada, the maximum integer size is 64 bits.
19394
19395 @node Floating-Point Types and Representations
19396 @subsection Floating-Point Types and Representations
19397 @cindex Floating-Point types
19398
19399 @noindent
19400 The set of predefined floating-point types is identical in DEC Ada and GNAT.
19401 Furthermore the representation of these floating-point
19402 types is also identical. One important difference is that the default
19403 representation for DEC Ada is VAX_Float, but the default representation
19404 for GNAT is IEEE.
19405
19406 Specific types may be declared to be VAX_Float or IEEE, using the pragma
19407 @code{Float_Representation} as described in the DEC Ada documentation.
19408 For example, the declarations:
19409
19410 @smallexample @c ada
19411 @group
19412 @cartouche
19413 type F_Float is digits 6;
19414 pragma Float_Representation (VAX_Float, F_Float);
19415 @end cartouche
19416 @end group
19417 @end smallexample
19418
19419 @noindent
19420 declare a type F_Float that will be represented in VAX_Float format.
19421 This set of declarations actually appears in System.Aux_DEC, which provides
19422 the full set of additional floating-point declarations provided in
19423 the DEC Ada version of package
19424 System. This and similar declarations may be accessed in a user program
19425 by using pragma @code{Extend_System}. The use of this
19426 pragma, and the related pragma @code{Long_Float} is described in further
19427 detail in the following section.
19428
19429 @node Pragmas Float_Representation and Long_Float
19430 @subsection Pragmas Float_Representation and Long_Float
19431
19432 @noindent
19433 DEC Ada provides the pragma @code{Float_Representation}, which
19434 acts as a program library switch to allow control over
19435 the internal representation chosen for the predefined
19436 floating-point types declared in the package @code{Standard}.
19437 The format of this pragma is as follows:
19438
19439 @smallexample
19440 @group
19441 @cartouche
19442 @b{pragma} @code{Float_Representation}(VAX_Float | IEEE_Float);
19443 @end cartouche
19444 @end group
19445 @end smallexample
19446
19447 @noindent
19448 This pragma controls the representation of floating-point
19449 types as follows:
19450
19451 @itemize @bullet
19452 @item
19453 @code{VAX_Float} specifies that floating-point
19454 types are represented by default with the VAX hardware types
19455 F-floating, D-floating, G-floating. Note that the H-floating
19456 type is available only on DIGITAL Vax systems, and is not available
19457 in either DEC Ada or GNAT for Alpha systems.
19458
19459 @item
19460 @code{IEEE_Float} specifies that floating-point
19461 types are represented by default with the IEEE single and
19462 double floating-point types.
19463 @end itemize
19464
19465 @noindent
19466 GNAT provides an identical implementation of the pragma
19467 @code{Float_Representation}, except that it functions as a
19468 configuration pragma, as defined by Ada 95. Note that the
19469 notion of configuration pragma corresponds closely to the
19470 DEC Ada notion of a program library switch.
19471
19472 When no pragma is used in GNAT, the default is IEEE_Float, which is different
19473 from DEC Ada 83, where the default is VAX_Float. In addition, the
19474 predefined libraries in GNAT are built using IEEE_Float, so it is not
19475 advisable to change the format of numbers passed to standard library
19476 routines, and if necessary explicit type conversions may be needed.
19477
19478 The use of IEEE_Float is recommended in GNAT since it is more efficient,
19479 and (given that it conforms to an international standard) potentially more
19480 portable. The situation in which VAX_Float may be useful is in interfacing
19481 to existing code and data that expects the use of VAX_Float. There are
19482 two possibilities here. If the requirement for the use of VAX_Float is
19483 localized, then the best approach is to use the predefined VAX_Float
19484 types in package @code{System}, as extended by
19485 @code{Extend_System}. For example, use @code{System.F_Float}
19486 to specify the 32-bit @code{F-Float} format.
19487
19488 Alternatively, if an entire program depends heavily on the use of
19489 the @code{VAX_Float} and in particular assumes that the types in
19490 package @code{Standard} are in @code{Vax_Float} format, then it
19491 may be desirable to reconfigure GNAT to assume Vax_Float by default.
19492 This is done by using the GNAT LIBRARY command to rebuild the library, and
19493 then using the general form of the @code{Float_Representation}
19494 pragma to ensure that this default format is used throughout.
19495 The form of the GNAT LIBRARY command is:
19496
19497 @smallexample
19498 GNAT LIBRARY /CONFIG=@i{file} /CREATE=@i{directory}
19499 @end smallexample
19500
19501 @noindent
19502 where @i{file} contains the new configuration pragmas
19503 and @i{directory} is the directory to be created to contain
19504 the new library.
19505
19506 @noindent
19507 On OpenVMS systems, DEC Ada provides the pragma @code{Long_Float}
19508 to allow control over the internal representation chosen
19509 for the predefined type @code{Long_Float} and for floating-point
19510 type declarations with digits specified in the range 7 .. 15.
19511 The format of this pragma is as follows:
19512
19513 @smallexample @c ada
19514 @cartouche
19515 pragma Long_Float (D_FLOAT | G_FLOAT);
19516 @end cartouche
19517 @end smallexample
19518
19519 @node Fixed-Point Types and Representations
19520 @subsection Fixed-Point Types and Representations
19521
19522 @noindent
19523 On DEC Ada for OpenVMS Alpha systems, rounding is
19524 away from zero for both positive and negative numbers.
19525 Therefore, +0.5 rounds to 1 and -0.5 rounds to -1.
19526
19527 On GNAT for OpenVMS Alpha, the results of operations
19528 on fixed-point types are in accordance with the Ada 95
19529 rules. In particular, results of operations on decimal
19530 fixed-point types are truncated.
19531
19532 @node Record and Array Component Alignment
19533 @subsection Record and Array Component Alignment
19534
19535 @noindent
19536 On DEC Ada for OpenVMS Alpha, all non composite components
19537 are aligned on natural boundaries. For example, 1-byte
19538 components are aligned on byte boundaries, 2-byte
19539 components on 2-byte boundaries, 4-byte components on 4-byte
19540 byte boundaries, and so on. The OpenVMS Alpha hardware
19541 runs more efficiently with naturally aligned data.
19542
19543 ON GNAT for OpenVMS Alpha, alignment rules are compatible
19544 with DEC Ada for OpenVMS Alpha.
19545
19546 @node Address Clauses
19547 @subsection Address Clauses
19548
19549 @noindent
19550 In DEC Ada and GNAT, address clauses are supported for
19551 objects and imported subprograms.
19552 The predefined type @code{System.Address} is a private type
19553 in both compilers, with the same representation (it is simply
19554 a machine pointer). Addition, subtraction, and comparison
19555 operations are available in the standard Ada 95 package
19556 @code{System.Storage_Elements}, or in package @code{System}
19557 if it is extended to include @code{System.Aux_DEC} using a
19558 pragma @code{Extend_System} as previously described.
19559
19560 Note that code that with's both this extended package @code{System}
19561 and the package @code{System.Storage_Elements} should not @code{use}
19562 both packages, or ambiguities will result. In general it is better
19563 not to mix these two sets of facilities. The Ada 95 package was
19564 designed specifically to provide the kind of features that DEC Ada
19565 adds directly to package @code{System}.
19566
19567 GNAT is compatible with DEC Ada in its handling of address
19568 clauses, except for some limitations in
19569 the form of address clauses for composite objects with
19570 initialization. Such address clauses are easily replaced
19571 by the use of an explicitly-defined constant as described
19572 in the Ada 95 Reference Manual (13.1(22)). For example, the sequence
19573 of declarations:
19574
19575 @smallexample @c ada
19576 @cartouche
19577 X, Y : Integer := Init_Func;
19578 Q : String (X .. Y) := "abc";
19579 ...
19580 for Q'Address use Compute_Address;
19581 @end cartouche
19582 @end smallexample
19583
19584 @noindent
19585 will be rejected by GNAT, since the address cannot be computed at the time
19586 that Q is declared. To achieve the intended effect, write instead:
19587
19588 @smallexample @c ada
19589 @group
19590 @cartouche
19591 X, Y : Integer := Init_Func;
19592 Q_Address : constant Address := Compute_Address;
19593 Q : String (X .. Y) := "abc";
19594 ...
19595 for Q'Address use Q_Address;
19596 @end cartouche
19597 @end group
19598 @end smallexample
19599
19600 @noindent
19601 which will be accepted by GNAT (and other Ada 95 compilers), and is also
19602 backwards compatible with Ada 83. A fuller description of the restrictions
19603 on address specifications is found in the GNAT Reference Manual.
19604
19605 @node Other Representation Clauses
19606 @subsection Other Representation Clauses
19607
19608 @noindent
19609 GNAT supports in a compatible manner all the representation
19610 clauses supported by DEC Ada. In addition, it
19611 supports representation clause forms that are new in Ada 95
19612 including COMPONENT_SIZE and SIZE clauses for objects.
19613
19614 @node The Package STANDARD
19615 @section The Package STANDARD
19616
19617 @noindent
19618 The package STANDARD, as implemented by DEC Ada, is fully
19619 described in the Reference Manual for the Ada Programming
19620 Language (ANSI/MIL-STD-1815A-1983) and in the DEC Ada
19621 Language Reference Manual. As implemented by GNAT, the
19622 package STANDARD is described in the Ada 95 Reference
19623 Manual.
19624
19625 In addition, DEC Ada supports the Latin-1 character set in
19626 the type CHARACTER. GNAT supports the Latin-1 character set
19627 in the type CHARACTER and also Unicode (ISO 10646 BMP) in
19628 the type WIDE_CHARACTER.
19629
19630 The floating-point types supported by GNAT are those
19631 supported by DEC Ada, but defaults are different, and are controlled by
19632 pragmas. See @pxref{Floating-Point Types and Representations} for details.
19633
19634 @node The Package SYSTEM
19635 @section The Package SYSTEM
19636
19637 @noindent
19638 DEC Ada provides a system-specific version of the package
19639 SYSTEM for each platform on which the language ships.
19640 For the complete specification of the package SYSTEM, see
19641 Appendix F of the DEC Ada Language Reference Manual.
19642
19643 On DEC Ada, the package SYSTEM includes the following conversion functions:
19644 @itemize @bullet
19645 @item TO_ADDRESS(INTEGER)
19646
19647 @item TO_ADDRESS(UNSIGNED_LONGWORD)
19648
19649 @item TO_ADDRESS(universal_integer)
19650
19651 @item TO_INTEGER(ADDRESS)
19652
19653 @item TO_UNSIGNED_LONGWORD(ADDRESS)
19654
19655 @item Function IMPORT_VALUE return UNSIGNED_LONGWORD and the
19656 functions IMPORT_ADDRESS and IMPORT_LARGEST_VALUE
19657 @end itemize
19658
19659 @noindent
19660 By default, GNAT supplies a version of SYSTEM that matches
19661 the definition given in the Ada 95 Reference Manual.
19662 This
19663 is a subset of the DIGITAL system definitions, which is as
19664 close as possible to the original definitions. The only difference
19665 is that the definition of SYSTEM_NAME is different:
19666
19667 @smallexample @c ada
19668 @group
19669 @cartouche
19670 type Name is (SYSTEM_NAME_GNAT);
19671 System_Name : constant Name := SYSTEM_NAME_GNAT;
19672 @end cartouche
19673 @end group
19674 @end smallexample
19675
19676 @noindent
19677 Also, GNAT adds the new Ada 95 declarations for
19678 BIT_ORDER and DEFAULT_BIT_ORDER.
19679
19680 However, the use of the following pragma causes GNAT
19681 to extend the definition of package SYSTEM so that it
19682 encompasses the full set of DIGITAL-specific extensions,
19683 including the functions listed above:
19684
19685 @smallexample @c ada
19686 @cartouche
19687 pragma Extend_System (Aux_DEC);
19688 @end cartouche
19689 @end smallexample
19690
19691 @noindent
19692 The pragma Extend_System is a configuration pragma that
19693 is most conveniently placed in the @file{gnat.adc} file. See the
19694 GNAT Reference Manual for further details.
19695
19696 DEC Ada does not allow the recompilation of the package
19697 SYSTEM. Instead DEC Ada provides several pragmas (SYSTEM_
19698 NAME, STORAGE_UNIT, and MEMORY_SIZE) to modify values in
19699 the package SYSTEM. On OpenVMS Alpha systems, the pragma
19700 SYSTEM_NAME takes the enumeration literal OPENVMS_AXP as
19701 its single argument.
19702
19703 GNAT does permit the recompilation of package SYSTEM using
19704 a special switch (@option{-gnatg}) and this switch can be used if
19705 it is necessary to modify the definitions in SYSTEM. GNAT does
19706 not permit the specification of SYSTEM_NAME, STORAGE_UNIT
19707 or MEMORY_SIZE by any other means.
19708
19709 On GNAT systems, the pragma SYSTEM_NAME takes the
19710 enumeration literal SYSTEM_NAME_GNAT.
19711
19712 The definitions provided by the use of
19713
19714 @smallexample @c ada
19715 pragma Extend_System (AUX_Dec);
19716 @end smallexample
19717
19718 @noindent
19719 are virtually identical to those provided by the DEC Ada 83 package
19720 System. One important difference is that the name of the TO_ADDRESS
19721 function for type UNSIGNED_LONGWORD is changed to TO_ADDRESS_LONG.
19722 See the GNAT Reference manual for a discussion of why this change was
19723 necessary.
19724
19725 @noindent
19726 The version of TO_ADDRESS taking a universal integer argument is in fact
19727 an extension to Ada 83 not strictly compatible with the reference manual.
19728 In GNAT, we are constrained to be exactly compatible with the standard,
19729 and this means we cannot provide this capability. In DEC Ada 83, the
19730 point of this definition is to deal with a call like:
19731
19732 @smallexample @c ada
19733 TO_ADDRESS (16#12777#);
19734 @end smallexample
19735
19736 @noindent
19737 Normally, according to the Ada 83 standard, one would expect this to be
19738 ambiguous, since it matches both the INTEGER and UNSIGNED_LONGWORD forms
19739 of TO_ADDRESS. However, in DEC Ada 83, there is no ambiguity, since the
19740 definition using universal_integer takes precedence.
19741
19742 In GNAT, since the version with universal_integer cannot be supplied, it is
19743 not possible to be 100% compatible. Since there are many programs using
19744 numeric constants for the argument to TO_ADDRESS, the decision in GNAT was
19745 to change the name of the function in the UNSIGNED_LONGWORD case, so the
19746 declarations provided in the GNAT version of AUX_Dec are:
19747
19748 @smallexample @c ada
19749 function To_Address (X : Integer) return Address;
19750 pragma Pure_Function (To_Address);
19751
19752 function To_Address_Long (X : Unsigned_Longword) return Address;
19753 pragma Pure_Function (To_Address_Long);
19754 @end smallexample
19755
19756 @noindent
19757 This means that programs using TO_ADDRESS for UNSIGNED_LONGWORD must
19758 change the name to TO_ADDRESS_LONG.
19759
19760 @node Tasking and Task-Related Features
19761 @section Tasking and Task-Related Features
19762
19763 @noindent
19764 The concepts relevant to a comparison of tasking on GNAT
19765 and on DEC Ada for OpenVMS Alpha systems are discussed in
19766 the following sections.
19767
19768 For detailed information on concepts related to tasking in
19769 DEC Ada, see the DEC Ada Language Reference Manual and the
19770 relevant run-time reference manual.
19771
19772 @node Implementation of Tasks in DEC Ada for OpenVMS Alpha Systems
19773 @section Implementation of Tasks in DEC Ada for OpenVMS Alpha Systems
19774
19775 @noindent
19776 On OpenVMS Alpha systems, each Ada task (except a passive
19777 task) is implemented as a single stream of execution
19778 that is created and managed by the kernel. On these
19779 systems, DEC Ada tasking support is based on DECthreads,
19780 an implementation of the POSIX standard for threads.
19781
19782 Although tasks are implemented as threads, all tasks in
19783 an Ada program are part of the same process. As a result,
19784 resources such as open files and virtual memory can be
19785 shared easily among tasks. Having all tasks in one process
19786 allows better integration with the programming environment
19787 (the shell and the debugger, for example).
19788
19789 Also, on OpenVMS Alpha systems, DEC Ada tasks and foreign
19790 code that calls DECthreads routines can be used together.
19791 The interaction between Ada tasks and DECthreads routines
19792 can have some benefits. For example when on OpenVMS Alpha,
19793 DEC Ada can call C code that is already threaded.
19794 GNAT on OpenVMS Alpha uses the facilities of DECthreads,
19795 and Ada tasks are mapped to threads.
19796
19797 @menu
19798 * Assigning Task IDs::
19799 * Task IDs and Delays::
19800 * Task-Related Pragmas::
19801 * Scheduling and Task Priority::
19802 * The Task Stack::
19803 * External Interrupts::
19804 @end menu
19805
19806 @node Assigning Task IDs
19807 @subsection Assigning Task IDs
19808
19809 @noindent
19810 The DEC Ada Run-Time Library always assigns %TASK 1 to
19811 the environment task that executes the main program. On
19812 OpenVMS Alpha systems, %TASK 0 is often used for tasks
19813 that have been created but are not yet activated.
19814
19815 On OpenVMS Alpha systems, task IDs are assigned at
19816 activation. On GNAT systems, task IDs are also assigned at
19817 task creation but do not have the same form or values as
19818 task ID values in DEC Ada. There is no null task, and the
19819 environment task does not have a specific task ID value.
19820
19821 @node Task IDs and Delays
19822 @subsection Task IDs and Delays
19823
19824 @noindent
19825 On OpenVMS Alpha systems, tasking delays are implemented
19826 using Timer System Services. The Task ID is used for the
19827 identification of the timer request (the REQIDT parameter).
19828 If Timers are used in the application take care not to use
19829 0 for the identification, because cancelling such a timer
19830 will cancel all timers and may lead to unpredictable results.
19831
19832 @node Task-Related Pragmas
19833 @subsection Task-Related Pragmas
19834
19835 @noindent
19836 Ada supplies the pragma TASK_STORAGE, which allows
19837 specification of the size of the guard area for a task
19838 stack. (The guard area forms an area of memory that has no
19839 read or write access and thus helps in the detection of
19840 stack overflow.) On OpenVMS Alpha systems, if the pragma
19841 TASK_STORAGE specifies a value of zero, a minimal guard
19842 area is created. In the absence of a pragma TASK_STORAGE, a default guard
19843 area is created.
19844
19845 GNAT supplies the following task-related pragmas:
19846
19847 @itemize @bullet
19848 @item TASK_INFO
19849
19850 This pragma appears within a task definition and
19851 applies to the task in which it appears. The argument
19852 must be of type SYSTEM.TASK_INFO.TASK_INFO_TYPE.
19853
19854 @item TASK_STORAGE
19855
19856 GNAT implements pragma TASK_STORAGE in the same way as
19857 DEC Ada.
19858 Both DEC Ada and GNAT supply the pragmas PASSIVE,
19859 SUPPRESS, and VOLATILE.
19860 @end itemize
19861 @node Scheduling and Task Priority
19862 @subsection Scheduling and Task Priority
19863
19864 @noindent
19865 DEC Ada implements the Ada language requirement that
19866 when two tasks are eligible for execution and they have
19867 different priorities, the lower priority task does not
19868 execute while the higher priority task is waiting. The DEC
19869 Ada Run-Time Library keeps a task running until either the
19870 task is suspended or a higher priority task becomes ready.
19871
19872 On OpenVMS Alpha systems, the default strategy is round-
19873 robin with preemption. Tasks of equal priority take turns
19874 at the processor. A task is run for a certain period of
19875 time and then placed at the rear of the ready queue for
19876 its priority level.
19877
19878 DEC Ada provides the implementation-defined pragma TIME_SLICE,
19879 which can be used to enable or disable round-robin
19880 scheduling of tasks with the same priority.
19881 See the relevant DEC Ada run-time reference manual for
19882 information on using the pragmas to control DEC Ada task
19883 scheduling.
19884
19885 GNAT follows the scheduling rules of Annex D (real-time
19886 Annex) of the Ada 95 Reference Manual. In general, this
19887 scheduling strategy is fully compatible with DEC Ada
19888 although it provides some additional constraints (as
19889 fully documented in Annex D).
19890 GNAT implements time slicing control in a manner compatible with
19891 DEC Ada 83, by means of the pragma Time_Slice, whose semantics are identical
19892 to the DEC Ada 83 pragma of the same name.
19893 Note that it is not possible to mix GNAT tasking and
19894 DEC Ada 83 tasking in the same program, since the two run times are
19895 not compatible.
19896
19897 @node The Task Stack
19898 @subsection The Task Stack
19899
19900 @noindent
19901 In DEC Ada, a task stack is allocated each time a
19902 non passive task is activated. As soon as the task is
19903 terminated, the storage for the task stack is deallocated.
19904 If you specify a size of zero (bytes) with T'STORAGE_SIZE,
19905 a default stack size is used. Also, regardless of the size
19906 specified, some additional space is allocated for task
19907 management purposes. On OpenVMS Alpha systems, at least
19908 one page is allocated.
19909
19910 GNAT handles task stacks in a similar manner. According to
19911 the Ada 95 rules, it provides the pragma STORAGE_SIZE as
19912 an alternative method for controlling the task stack size.
19913 The specification of the attribute T'STORAGE_SIZE is also
19914 supported in a manner compatible with DEC Ada.
19915
19916 @node External Interrupts
19917 @subsection External Interrupts
19918
19919 @noindent
19920 On DEC Ada, external interrupts can be associated with task entries.
19921 GNAT is compatible with DEC Ada in its handling of external interrupts.
19922
19923 @node Pragmas and Pragma-Related Features
19924 @section Pragmas and Pragma-Related Features
19925
19926 @noindent
19927 Both DEC Ada and GNAT supply all language-defined pragmas
19928 as specified by the Ada 83 standard. GNAT also supplies all
19929 language-defined pragmas specified in the Ada 95 Reference Manual.
19930 In addition, GNAT implements the implementation-defined pragmas
19931 from DEC Ada 83.
19932
19933 @itemize @bullet
19934 @item AST_ENTRY
19935
19936 @item COMMON_OBJECT
19937
19938 @item COMPONENT_ALIGNMENT
19939
19940 @item EXPORT_EXCEPTION
19941
19942 @item EXPORT_FUNCTION
19943
19944 @item EXPORT_OBJECT
19945
19946 @item EXPORT_PROCEDURE
19947
19948 @item EXPORT_VALUED_PROCEDURE
19949
19950 @item FLOAT_REPRESENTATION
19951
19952 @item IDENT
19953
19954 @item IMPORT_EXCEPTION
19955
19956 @item IMPORT_FUNCTION
19957
19958 @item IMPORT_OBJECT
19959
19960 @item IMPORT_PROCEDURE
19961
19962 @item IMPORT_VALUED_PROCEDURE
19963
19964 @item INLINE_GENERIC
19965
19966 @item INTERFACE_NAME
19967
19968 @item LONG_FLOAT
19969
19970 @item MAIN_STORAGE
19971
19972 @item PASSIVE
19973
19974 @item PSET_OBJECT
19975
19976 @item SHARE_GENERIC
19977
19978 @item SUPPRESS_ALL
19979
19980 @item TASK_STORAGE
19981
19982 @item TIME_SLICE
19983
19984 @item TITLE
19985 @end itemize
19986
19987 @noindent
19988 These pragmas are all fully implemented, with the exception of @code{Title},
19989 @code{Passive}, and @code{Share_Generic}, which are
19990 recognized, but which have no
19991 effect in GNAT. The effect of @code{Passive} may be obtained by the
19992 use of protected objects in Ada 95. In GNAT, all generics are inlined.
19993
19994 Unlike DEC Ada, the GNAT 'EXPORT_@i{subprogram}' pragmas require
19995 a separate subprogram specification which must appear before the
19996 subprogram body.
19997
19998 GNAT also supplies a number of implementation-defined pragmas as follows:
19999 @itemize @bullet
20000 @item C_PASS_BY_COPY
20001
20002 @item EXTEND_SYSTEM
20003
20004 @item SOURCE_FILE_NAME
20005
20006 @item UNSUPPRESS
20007
20008 @item WARNINGS
20009
20010 @item ABORT_DEFER
20011
20012 @item ADA_83
20013
20014 @item ADA_95
20015
20016 @item ANNOTATE
20017
20018 @item ASSERT
20019
20020 @item CPP_CLASS
20021
20022 @item CPP_CONSTRUCTOR
20023
20024 @item CPP_DESTRUCTOR
20025
20026 @item CPP_VIRTUAL
20027
20028 @item CP_VTABLE
20029
20030 @item DEBUG
20031
20032 @item LINKER_ALIAS
20033
20034 @item LINKER_SECTION
20035
20036 @item MACHINE_ATTRIBUTE
20037
20038 @item NO_RETURN
20039
20040 @item PURE_FUNCTION
20041
20042 @item SOURCE_REFERENCE
20043
20044 @item TASK_INFO
20045
20046 @item UNCHECKED_UNION
20047
20048 @item UNIMPLEMENTED_UNIT
20049
20050 @item UNIVERSAL_DATA
20051
20052 @item WEAK_EXTERNAL
20053 @end itemize
20054
20055 @noindent
20056 For full details on these GNAT implementation-defined pragmas, see
20057 the GNAT Reference Manual.
20058
20059 @menu
20060 * Restrictions on the Pragma INLINE::
20061 * Restrictions on the Pragma INTERFACE::
20062 * Restrictions on the Pragma SYSTEM_NAME::
20063 @end menu
20064
20065 @node Restrictions on the Pragma INLINE
20066 @subsection Restrictions on the Pragma INLINE
20067
20068 @noindent
20069 DEC Ada applies the following restrictions to the pragma INLINE:
20070 @itemize @bullet
20071 @item Parameters cannot be a task type.
20072
20073 @item Function results cannot be task types, unconstrained
20074 array types, or unconstrained types with discriminants.
20075
20076 @item Bodies cannot declare the following:
20077 @itemize @bullet
20078 @item Subprogram body or stub (imported subprogram is allowed)
20079
20080 @item Tasks
20081
20082 @item Generic declarations
20083
20084 @item Instantiations
20085
20086 @item Exceptions
20087
20088 @item Access types (types derived from access types allowed)
20089
20090 @item Array or record types
20091
20092 @item Dependent tasks
20093
20094 @item Direct recursive calls of subprogram or containing
20095 subprogram, directly or via a renaming
20096
20097 @end itemize
20098 @end itemize
20099
20100 @noindent
20101 In GNAT, the only restriction on pragma INLINE is that the
20102 body must occur before the call if both are in the same
20103 unit, and the size must be appropriately small. There are
20104 no other specific restrictions which cause subprograms to
20105 be incapable of being inlined.
20106
20107 @node Restrictions on the Pragma INTERFACE
20108 @subsection Restrictions on the Pragma INTERFACE
20109
20110 @noindent
20111 The following lists and describes the restrictions on the
20112 pragma INTERFACE on DEC Ada and GNAT:
20113 @itemize @bullet
20114 @item Languages accepted: Ada, Bliss, C, Fortran, Default.
20115 Default is the default on OpenVMS Alpha systems.
20116
20117 @item Parameter passing: Language specifies default
20118 mechanisms but can be overridden with an EXPORT pragma.
20119
20120 @itemize @bullet
20121 @item Ada: Use internal Ada rules.
20122
20123 @item Bliss, C: Parameters must be mode @code{in}; cannot be
20124 record or task type. Result cannot be a string, an
20125 array, or a record.
20126
20127 @item Fortran: Parameters cannot be a task. Result cannot
20128 be a string, an array, or a record.
20129 @end itemize
20130 @end itemize
20131
20132 @noindent
20133 GNAT is entirely upwards compatible with DEC Ada, and in addition allows
20134 record parameters for all languages.
20135
20136 @node Restrictions on the Pragma SYSTEM_NAME
20137 @subsection Restrictions on the Pragma SYSTEM_NAME
20138
20139 @noindent
20140 For DEC Ada for OpenVMS Alpha, the enumeration literal
20141 for the type NAME is OPENVMS_AXP. In GNAT, the enumeration
20142 literal for the type NAME is SYSTEM_NAME_GNAT.
20143
20144 @node Library of Predefined Units
20145 @section Library of Predefined Units
20146
20147 @noindent
20148 A library of predefined units is provided as part of the
20149 DEC Ada and GNAT implementations. DEC Ada does not provide
20150 the package MACHINE_CODE but instead recommends importing
20151 assembler code.
20152
20153 The GNAT versions of the DEC Ada Run-Time Library (ADA$PREDEFINED:)
20154 units are taken from the OpenVMS Alpha version, not the OpenVMS VAX
20155 version. During GNAT installation, the DEC Ada Predefined
20156 Library units are copied into the GNU:[LIB.OPENVMS7_x.2_8_x.DECLIB]
20157 (aka DECLIB) directory and patched to remove Ada 95 incompatibilities
20158 and to make them interoperable with GNAT, @pxref{Changes to DECLIB}
20159 for details.
20160
20161 The GNAT RTL is contained in
20162 the GNU:[LIB.OPENVMS7_x.2_8_x.ADALIB] (aka ADALIB) directory and
20163 the default search path is set up to find DECLIB units in preference
20164 to ADALIB units with the same name (TEXT_IO, SEQUENTIAL_IO, and DIRECT_IO,
20165 for example).
20166
20167 However, it is possible to change the default so that the
20168 reverse is true, or even to mix them using child package
20169 notation. The DEC Ada 83 units are available as DEC.xxx where xxx
20170 is the package name, and the Ada units are available in the
20171 standard manner defined for Ada 95, that is to say as Ada.xxx. To
20172 change the default, set ADA_INCLUDE_PATH and ADA_OBJECTS_PATH
20173 appropriately. For example, to change the default to use the Ada95
20174 versions do:
20175
20176 @smallexample
20177 $ DEFINE ADA_INCLUDE_PATH GNU:[LIB.OPENVMS7_1.2_8_1.ADAINCLUDE],-
20178 GNU:[LIB.OPENVMS7_1.2_8_1.DECLIB]
20179 $ DEFINE ADA_OBJECTS_PATH GNU:[LIB.OPENVMS7_1.2_8_1.ADALIB],-
20180 GNU:[LIB.OPENVMS7_1.2_8_1.DECLIB]
20181 @end smallexample
20182
20183 @menu
20184 * Changes to DECLIB::
20185 @end menu
20186
20187 @node Changes to DECLIB
20188 @subsection Changes to DECLIB
20189
20190 @noindent
20191 The changes made to the DEC Ada predefined library for GNAT and Ada 95
20192 compatibility are minor and include the following:
20193
20194 @itemize @bullet
20195 @item Adjusting the location of pragmas and record representation
20196 clauses to obey Ada 95 rules
20197
20198 @item Adding the proper notation to generic formal parameters
20199 that take unconstrained types in instantiation
20200
20201 @item Adding pragma ELABORATE_BODY to package specifications
20202 that have package bodies not otherwise allowed
20203
20204 @item Occurrences of the identifier @code{"PROTECTED"} are renamed to
20205 @code{"PROTECTD"}.
20206 Currently these are found only in the STARLET package spec.
20207 @end itemize
20208
20209 @noindent
20210 None of the above changes is visible to users.
20211
20212 @node Bindings
20213 @section Bindings
20214
20215 @noindent
20216 On OpenVMS Alpha, DEC Ada provides the following strongly-typed bindings:
20217 @itemize @bullet
20218
20219 @item Command Language Interpreter (CLI interface)
20220
20221 @item DECtalk Run-Time Library (DTK interface)
20222
20223 @item Librarian utility routines (LBR interface)
20224
20225 @item General Purpose Run-Time Library (LIB interface)
20226
20227 @item Math Run-Time Library (MTH interface)
20228
20229 @item National Character Set Run-Time Library (NCS interface)
20230
20231 @item Compiled Code Support Run-Time Library (OTS interface)
20232
20233 @item Parallel Processing Run-Time Library (PPL interface)
20234
20235 @item Screen Management Run-Time Library (SMG interface)
20236
20237 @item Sort Run-Time Library (SOR interface)
20238
20239 @item String Run-Time Library (STR interface)
20240
20241 @item STARLET System Library
20242 @findex Starlet
20243
20244 @item X Window System Version 11R4 and 11R5 (X, XLIB interface)
20245
20246 @item X Windows Toolkit (XT interface)
20247
20248 @item X/Motif Version 1.1.3 and 1.2 (XM interface)
20249 @end itemize
20250
20251 @noindent
20252 GNAT provides implementations of these DEC bindings in the DECLIB directory.
20253
20254 The X/Motif bindings used to build DECLIB are whatever versions are in the
20255 DEC Ada @file{ADA$PREDEFINED} directory with extension @file{.ADC}.
20256 The build script will
20257 automatically add a pragma Linker_Options to packages @code{Xm}, @code{Xt},
20258 and @code{X_Lib}
20259 causing the default X/Motif sharable image libraries to be linked in. This
20260 is done via options files named @file{xm.opt}, @file{xt.opt}, and
20261 @file{x_lib.opt} (also located in the @file{DECLIB} directory).
20262
20263 It may be necessary to edit these options files to update or correct the
20264 library names if, for example, the newer X/Motif bindings from
20265 @file{ADA$EXAMPLES}
20266 had been (previous to installing GNAT) copied and renamed to supersede the
20267 default @file{ADA$PREDEFINED} versions.
20268
20269 @menu
20270 * Shared Libraries and Options Files::
20271 * Interfaces to C::
20272 @end menu
20273
20274 @node Shared Libraries and Options Files
20275 @subsection Shared Libraries and Options Files
20276
20277 @noindent
20278 When using the DEC Ada
20279 predefined X and Motif bindings, the linking with their sharable images is
20280 done automatically by @command{GNAT LINK}.
20281 When using other X and Motif bindings, you need
20282 to add the corresponding sharable images to the command line for
20283 @code{GNAT LINK}. When linking with shared libraries, or with
20284 @file{.OPT} files, you must
20285 also add them to the command line for @command{GNAT LINK}.
20286
20287 A shared library to be used with GNAT is built in the same way as other
20288 libraries under VMS. The VMS Link command can be used in standard fashion.
20289
20290 @node Interfaces to C
20291 @subsection Interfaces to C
20292
20293 @noindent
20294 DEC Ada
20295 provides the following Ada types and operations:
20296
20297 @itemize @bullet
20298 @item C types package (C_TYPES)
20299
20300 @item C strings (C_TYPES.NULL_TERMINATED)
20301
20302 @item Other_types (SHORT_INT)
20303 @end itemize
20304
20305 @noindent
20306 Interfacing to C with GNAT, one can use the above approach
20307 described for DEC Ada or the facilities of Annex B of
20308 the Ada 95 Reference Manual (packages INTERFACES.C,
20309 INTERFACES.C.STRINGS and INTERFACES.C.POINTERS). For more
20310 information, see the section ``Interfacing to C'' in the
20311 @cite{GNAT Reference Manual}.
20312
20313 The @option{-gnatF} qualifier forces default and explicit
20314 @code{External_Name} parameters in pragmas Import and Export
20315 to be uppercased for compatibility with the default behavior
20316 of Compaq C. The qualifier has no effect on @code{Link_Name} parameters.
20317
20318 @node Main Program Definition
20319 @section Main Program Definition
20320
20321 @noindent
20322 The following section discusses differences in the
20323 definition of main programs on DEC Ada and GNAT.
20324 On DEC Ada, main programs are defined to meet the
20325 following conditions:
20326 @itemize @bullet
20327 @item Procedure with no formal parameters (returns 0 upon
20328 normal completion)
20329
20330 @item Procedure with no formal parameters (returns 42 when
20331 unhandled exceptions are raised)
20332
20333 @item Function with no formal parameters whose returned value
20334 is of a discrete type
20335
20336 @item Procedure with one OUT formal of a discrete type for
20337 which a specification of pragma EXPORT_VALUED_PROCEDURE is given.
20338
20339 @end itemize
20340
20341 @noindent
20342 When declared with the pragma EXPORT_VALUED_PROCEDURE,
20343 a main function or main procedure returns a discrete
20344 value whose size is less than 64 bits (32 on VAX systems),
20345 the value is zero- or sign-extended as appropriate.
20346 On GNAT, main programs are defined as follows:
20347 @itemize @bullet
20348 @item Must be a non-generic, parameter-less subprogram that
20349 is either a procedure or function returning an Ada
20350 STANDARD.INTEGER (the predefined type)
20351
20352 @item Cannot be a generic subprogram or an instantiation of a
20353 generic subprogram
20354 @end itemize
20355
20356 @node Implementation-Defined Attributes
20357 @section Implementation-Defined Attributes
20358
20359 @noindent
20360 GNAT provides all DEC Ada implementation-defined
20361 attributes.
20362
20363 @node Compiler and Run-Time Interfacing
20364 @section Compiler and Run-Time Interfacing
20365
20366 @noindent
20367 DEC Ada provides the following ways to pass options to the linker
20368 (ACS LINK):
20369 @itemize @bullet
20370 @item /WAIT and /SUBMIT qualifiers
20371
20372 @item /COMMAND qualifier
20373
20374 @item /[NO]MAP qualifier
20375
20376 @item /OUTPUT=file-spec
20377
20378 @item /[NO]DEBUG and /[NO]TRACEBACK qualifiers
20379 @end itemize
20380
20381 @noindent
20382 To pass options to the linker, GNAT provides the following
20383 switches:
20384
20385 @itemize @bullet
20386 @item @option{/EXECUTABLE=exec-name}
20387
20388 @item @option{/VERBOSE qualifier}
20389
20390 @item @option{/[NO]DEBUG} and @option{/[NO]TRACEBACK} qualifiers
20391 @end itemize
20392
20393 @noindent
20394 For more information on these switches, see
20395 @ref{Switches for gnatlink}.
20396 In DEC Ada, the command-line switch @option{/OPTIMIZE} is available
20397 to control optimization. DEC Ada also supplies the
20398 following pragmas:
20399 @itemize @bullet
20400 @item @code{OPTIMIZE}
20401
20402 @item @code{INLINE}
20403
20404 @item @code{INLINE_GENERIC}
20405
20406 @item @code{SUPPRESS_ALL}
20407
20408 @item @code{PASSIVE}
20409 @end itemize
20410
20411 @noindent
20412 In GNAT, optimization is controlled strictly by command
20413 line parameters, as described in the corresponding section of this guide.
20414 The DIGITAL pragmas for control of optimization are
20415 recognized but ignored.
20416
20417 Note that in GNAT, the default is optimization off, whereas in DEC Ada 83,
20418 the default is that optimization is turned on.
20419
20420 @node Program Compilation and Library Management
20421 @section Program Compilation and Library Management
20422
20423 @noindent
20424 DEC Ada and GNAT provide a comparable set of commands to
20425 build programs. DEC Ada also provides a program library,
20426 which is a concept that does not exist on GNAT. Instead,
20427 GNAT provides directories of sources that are compiled as
20428 needed.
20429
20430 The following table summarizes
20431 the DEC Ada commands and provides
20432 equivalent GNAT commands. In this table, some GNAT
20433 equivalents reflect the fact that GNAT does not use the
20434 concept of a program library. Instead, it uses a model
20435 in which collections of source and object files are used
20436 in a manner consistent with other languages like C and
20437 Fortran. Therefore, standard system file commands are used
20438 to manipulate these elements. Those GNAT commands are marked with
20439 an asterisk.
20440 Note that, unlike DEC Ada, none of the GNAT commands accepts wild cards.
20441
20442 @need 1500
20443 @multitable @columnfractions .35 .65
20444
20445 @item @emph{DEC Ada Command}
20446 @tab @emph{GNAT Equivalent / Description}
20447
20448 @item @command{ADA}
20449 @tab @command{GNAT COMPILE}@*
20450 Invokes the compiler to compile one or more Ada source files.
20451
20452 @item @command{ACS ATTACH}@*
20453 @tab [No equivalent]@*
20454 Switches control of terminal from current process running the program
20455 library manager.
20456
20457 @item @command{ACS CHECK}
20458 @tab @command{GNAT MAKE /DEPENDENCY_LIST}@*
20459 Forms the execution closure of one
20460 or more compiled units and checks completeness and currency.
20461
20462 @item @command{ACS COMPILE}
20463 @tab @command{GNAT MAKE /ACTIONS=COMPILE}@*
20464 Forms the execution closure of one or
20465 more specified units, checks completeness and currency,
20466 identifies units that have revised source files, compiles same,
20467 and recompiles units that are or will become obsolete.
20468 Also completes incomplete generic instantiations.
20469
20470 @item @command{ACS COPY FOREIGN}
20471 @tab Copy (*)@*
20472 Copies a foreign object file into the program library as a
20473 library unit body.
20474
20475 @item @command{ACS COPY UNIT}
20476 @tab Copy (*)@*
20477 Copies a compiled unit from one program library to another.
20478
20479 @item @command{ACS CREATE LIBRARY}
20480 @tab Create /directory (*)@*
20481 Creates a program library.
20482
20483 @item @command{ACS CREATE SUBLIBRARY}
20484 @tab Create /directory (*)@*
20485 Creates a program sublibrary.
20486
20487 @item @command{ACS DELETE LIBRARY}
20488 @tab @*
20489 Deletes a program library and its contents.
20490
20491 @item @command{ACS DELETE SUBLIBRARY}
20492 @tab @*
20493 Deletes a program sublibrary and its contents.
20494
20495 @item @command{ACS DELETE UNIT}
20496 @tab Delete file (*)@*
20497 On OpenVMS systems, deletes one or more compiled units from
20498 the current program library.
20499
20500 @item @command{ACS DIRECTORY}
20501 @tab Directory (*)@*
20502 On OpenVMS systems, lists units contained in the current
20503 program library.
20504
20505 @item @command{ACS ENTER FOREIGN}
20506 @tab Copy (*)@*
20507 Allows the import of a foreign body as an Ada library
20508 specification and enters a reference to a pointer.
20509
20510 @item @command{ACS ENTER UNIT}
20511 @tab Copy (*)@*
20512 Enters a reference (pointer) from the current program library to
20513 a unit compiled into another program library.
20514
20515 @item @command{ACS EXIT}
20516 @tab [No equivalent]@*
20517 Exits from the program library manager.
20518
20519 @item @command{ACS EXPORT}
20520 @tab Copy (*)@*
20521 Creates an object file that contains system-specific object code
20522 for one or more units. With GNAT, object files can simply be copied
20523 into the desired directory.
20524
20525 @item @command{ACS EXTRACT SOURCE}
20526 @tab Copy (*)@*
20527 Allows access to the copied source file for each Ada compilation unit
20528
20529 @item @command{ACS HELP}
20530 @tab @command{HELP GNAT}@*
20531 Provides online help.
20532
20533 @item @command{ACS LINK}
20534 @tab @command{GNAT LINK}@*
20535 Links an object file containing Ada units into an executable file.
20536
20537 @item @command{ACS LOAD}
20538 @tab Copy (*)@*
20539 Loads (partially compiles) Ada units into the program library.
20540 Allows loading a program from a collection of files into a library
20541 without knowing the relationship among units.
20542
20543 @item @command{ACS MERGE}
20544 @tab Copy (*)@*
20545 Merges into the current program library, one or more units from
20546 another library where they were modified.
20547
20548 @item @command{ACS RECOMPILE}
20549 @tab @command{GNAT MAKE /ACTIONS=COMPILE}@*
20550 Recompiles from external or copied source files any obsolete
20551 unit in the closure. Also, completes any incomplete generic
20552 instantiations.
20553
20554 @item @command{ACS REENTER}
20555 @tab @command{GNAT MAKE}@*
20556 Reenters current references to units compiled after last entered
20557 with the @command{ACS ENTER UNIT} command.
20558
20559 @item @command{ACS SET LIBRARY}
20560 @tab Set default (*)@*
20561 Defines a program library to be the compilation context as well
20562 as the target library for compiler output and commands in general.
20563
20564 @item @command{ACS SET PRAGMA}
20565 @tab Edit @file{gnat.adc} (*)@*
20566 Redefines specified values of the library characteristics
20567 @code{LONG_ FLOAT}, @code{MEMORY_SIZE}, @code{SYSTEM_NAME},
20568 and @code{Float_Representation}.
20569
20570 @item @command{ACS SET SOURCE}
20571 @tab Define @code{ADA_INCLUDE_PATH} path (*)@*
20572 Defines the source file search list for the @command{ACS COMPILE} command.
20573
20574 @item @command{ACS SHOW LIBRARY}
20575 @tab Directory (*)@*
20576 Lists information about one or more program libraries.
20577
20578 @item @command{ACS SHOW PROGRAM}
20579 @tab [No equivalent]@*
20580 Lists information about the execution closure of one or
20581 more units in the program library.
20582
20583 @item @command{ACS SHOW SOURCE}
20584 @tab Show logical @code{ADA_INCLUDE_PATH}@*
20585 Shows the source file search used when compiling units.
20586
20587 @item @command{ACS SHOW VERSION}
20588 @tab Compile with @option{VERBOSE} option
20589 Displays the version number of the compiler and program library
20590 manager used.
20591
20592 @item @command{ACS SPAWN}
20593 @tab [No equivalent]@*
20594 Creates a subprocess of the current process (same as @command{DCL SPAWN}
20595 command).
20596
20597 @item @command{ACS VERIFY}
20598 @tab [No equivalent]@*
20599 Performs a series of consistency checks on a program library to
20600 determine whether the library structure and library files are in
20601 valid form.
20602 @end multitable
20603
20604 @noindent
20605
20606 @node Input-Output
20607 @section Input-Output
20608
20609 @noindent
20610 On OpenVMS Alpha systems, DEC Ada uses OpenVMS Record
20611 Management Services (RMS) to perform operations on
20612 external files.
20613
20614 @noindent
20615 DEC Ada and GNAT predefine an identical set of input-
20616 output packages. To make the use of the
20617 generic TEXT_IO operations more convenient, DEC Ada
20618 provides predefined library packages that instantiate the
20619 integer and floating-point operations for the predefined
20620 integer and floating-point types as shown in the following table.
20621
20622 @multitable @columnfractions .45 .55
20623 @item @emph{Package Name} @tab Instantiation
20624
20625 @item @code{INTEGER_TEXT_IO}
20626 @tab @code{INTEGER_IO(INTEGER)}
20627
20628 @item @code{SHORT_INTEGER_TEXT_IO}
20629 @tab @code{INTEGER_IO(SHORT_INTEGER)}
20630
20631 @item @code{SHORT_SHORT_INTEGER_TEXT_IO}
20632 @tab @code{INTEGER_IO(SHORT_SHORT_INTEGER)}
20633
20634 @item @code{FLOAT_TEXT_IO}
20635 @tab @code{FLOAT_IO(FLOAT)}
20636
20637 @item @code{LONG_FLOAT_TEXT_IO}
20638 @tab @code{FLOAT_IO(LONG_FLOAT)}
20639 @end multitable
20640
20641 @noindent
20642 The DEC Ada predefined packages and their operations
20643 are implemented using OpenVMS Alpha files and input-
20644 output facilities. DEC Ada supports asynchronous input-
20645 output on OpenVMS Alpha. Familiarity with the following is
20646 recommended:
20647 @itemize @bullet
20648 @item RMS file organizations and access methods
20649
20650 @item OpenVMS file specifications and directories
20651
20652 @item OpenVMS File Definition Language (FDL)
20653 @end itemize
20654
20655 @noindent
20656 GNAT provides I/O facilities that are completely
20657 compatible with DEC Ada. The distribution includes the
20658 standard DEC Ada versions of all I/O packages, operating
20659 in a manner compatible with DEC Ada. In particular, the
20660 following packages are by default the DEC Ada (Ada 83)
20661 versions of these packages rather than the renamings
20662 suggested in annex J of the Ada 95 Reference Manual:
20663 @itemize @bullet
20664 @item @code{TEXT_IO}
20665
20666 @item @code{SEQUENTIAL_IO}
20667
20668 @item @code{DIRECT_IO}
20669 @end itemize
20670
20671 @noindent
20672 The use of the standard Ada 95 syntax for child packages (for
20673 example, @code{ADA.TEXT_IO}) retrieves the Ada 95 versions of these
20674 packages, as defined in the Ada 95 Reference Manual.
20675 GNAT provides DIGITAL-compatible predefined instantiations
20676 of the @code{TEXT_IO} packages, and also
20677 provides the standard predefined instantiations required
20678 by the Ada 95 Reference Manual.
20679
20680 For further information on how GNAT interfaces to the file
20681 system or how I/O is implemented in programs written in
20682 mixed languages, see the chapter ``Implementation of the
20683 Standard I/O'' in the @cite{GNAT Reference Manual}.
20684 This chapter covers the following:
20685 @itemize @bullet
20686 @item Standard I/O packages
20687
20688 @item @code{FORM} strings
20689
20690 @item @code{ADA.DIRECT_IO}
20691
20692 @item @code{ADA.SEQUENTIAL_IO}
20693
20694 @item @code{ADA.TEXT_IO}
20695
20696 @item Stream pointer positioning
20697
20698 @item Reading and writing non-regular files
20699
20700 @item @code{GET_IMMEDIATE}
20701
20702 @item Treating @code{TEXT_IO} files as streams
20703
20704 @item Shared files
20705
20706 @item Open modes
20707 @end itemize
20708
20709 @node Implementation Limits
20710 @section Implementation Limits
20711
20712 @noindent
20713 The following table lists implementation limits for DEC Ada
20714 and GNAT systems.
20715 @multitable @columnfractions .60 .20 .20
20716 @sp 1
20717 @item @emph{Compilation Parameter}
20718 @tab @emph{DEC Ada}
20719 @tab @emph{GNAT}
20720 @sp 1
20721
20722 @item In a subprogram or entry declaration, maximum number of
20723 formal parameters that are of an unconstrained record type
20724 @tab 32
20725 @tab No set limit
20726 @sp 1
20727
20728 @item Maximum identifier length (number of characters)
20729 @tab 255
20730 @tab 255
20731 @sp 1
20732
20733 @item Maximum number of characters in a source line
20734 @tab 255
20735 @tab 255
20736 @sp 1
20737
20738 @item Maximum collection size (number of bytes)
20739 @tab 2**31-1
20740 @tab 2**31-1
20741 @sp 1
20742
20743 @item Maximum number of discriminants for a record type
20744 @tab 245
20745 @tab No set limit
20746 @sp 1
20747
20748 @item Maximum number of formal parameters in an entry or
20749 subprogram declaration
20750 @tab 246
20751 @tab No set limit
20752 @sp 1
20753
20754 @item Maximum number of dimensions in an array type
20755 @tab 255
20756 @tab No set limit
20757 @sp 1
20758
20759 @item Maximum number of library units and subunits in a compilation.
20760 @tab 4095
20761 @tab No set limit
20762 @sp 1
20763
20764 @item Maximum number of library units and subunits in an execution.
20765 @tab 16383
20766 @tab No set limit
20767 @sp 1
20768
20769 @item Maximum number of objects declared with the pragma @code{COMMON_OBJECT}
20770 or @code{PSECT_OBJECT}
20771 @tab 32757
20772 @tab No set limit
20773 @sp 1
20774
20775 @item Maximum number of enumeration literals in an enumeration type
20776 definition
20777 @tab 65535
20778 @tab No set limit
20779 @sp 1
20780
20781 @item Maximum number of lines in a source file
20782 @tab 65534
20783 @tab No set limit
20784 @sp 1
20785
20786 @item Maximum number of bits in any object
20787 @tab 2**31-1
20788 @tab 2**31-1
20789 @sp 1
20790
20791 @item Maximum size of the static portion of a stack frame (approximate)
20792 @tab 2**31-1
20793 @tab 2**31-1
20794 @end multitable
20795
20796 @node Tools
20797 @section Tools
20798
20799 @end ifset
20800
20801
20802 @c **************************************
20803 @node Platform-Specific Information for the Run-Time Libraries
20804 @appendix Platform-Specific Information for the Run-Time Libraries
20805 @cindex Tasking and threads libraries
20806 @cindex Threads libraries and tasking
20807 @cindex Run-time libraries (platform-specific information)
20808
20809 @noindent
20810 The GNAT run-time implementation
20811 may vary with respect to both the underlying threads library and
20812 the exception handling scheme.
20813 For threads support, one or more of the following are supplied:
20814 @itemize @bullet
20815 @item @b{native threads library}, a binding to the thread package from
20816 the underlying operating system
20817
20818 @item @b{FSU threads library}, a binding to the Florida State University
20819 threads implementation, which complies fully with the requirements of Annex D
20820
20821 @item @b{pthreads library} (Sparc Solaris only), a binding to the Solaris
20822 POSIX thread package
20823 @end itemize
20824
20825 @noindent
20826 For exception handling, either or both of two models are supplied:
20827 @itemize @bullet
20828 @item @b{Zero-Cost Exceptions} (``ZCX''),@footnote{
20829 Most programs should experience a substantial speed improvement by
20830 being compiled with a ZCX run-time.
20831 This is especially true for
20832 tasking applications or applications with many exception handlers.}
20833 @cindex Zero-Cost Exceptions
20834 @cindex ZCX (Zero-Cost Exceptions)
20835 which uses binder-generated tables that
20836 are interrogated at run time to locate a handler
20837
20838 @item @b{setjmp / longjmp} (``SJLJ''),
20839 @cindex setjmp/longjmp Exception Model
20840 @cindex SJLJ (setjmp/longjmp Exception Model)
20841 which uses dynamically-set data to establish
20842 the set of handlers
20843 @end itemize
20844
20845 @noindent
20846 This appendix summarizes which combinations of threads and exception support
20847 are supplied on various GNAT platforms.
20848 It then shows how to select a particular library either
20849 permanently or temporarily,
20850 explains the properties of (and tradeoffs among) the various threads
20851 libraries, and provides some additional
20852 information about several specific platforms.
20853
20854 @menu
20855 * Summary of Run-Time Configurations::
20856 * Specifying a Run-Time Library::
20857 * Choosing between Native and FSU Threads Libraries::
20858 * Choosing the Scheduling Policy::
20859 * Solaris-Specific Considerations::
20860 * IRIX-Specific Considerations::
20861 * Linux-Specific Considerations::
20862 * AIX-Specific Considerations::
20863 @end menu
20864
20865
20866 @node Summary of Run-Time Configurations
20867 @section Summary of Run-Time Configurations
20868
20869
20870 @multitable @columnfractions .30 .70
20871 @item @b{alpha-openvms}
20872 @item @code{@ @ }@i{rts-native (default)}
20873 @item @code{@ @ @ @ }Tasking @tab native VMS threads
20874 @item @code{@ @ @ @ }Exceptions @tab ZCX
20875 @*
20876 @item @b{pa-hpux}
20877 @item @code{@ @ }@i{rts-native (default)}
20878 @item @code{@ @ @ @ }Tasking @tab native HP threads library
20879 @item @code{@ @ @ @ }Exceptions @tab ZCX
20880 @*
20881 @item @code{@ @ }@i{rts-sjlj}
20882 @item @code{@ @ @ @ }Tasking @tab native HP threads library
20883 @item @code{@ @ @ @ }Exceptions @tab SJLJ
20884 @*
20885 @item @b{sparc-solaris} @tab
20886 @item @code{@ @ }@i{rts-native (default)}
20887 @item @code{@ @ @ @ }Tasking @tab native Solaris threads library
20888 @item @code{@ @ @ @ }Exceptions @tab ZCX
20889 @*
20890 @item @code{@ @ }@i{rts-fsu} @tab
20891 @item @code{@ @ @ @ }Tasking @tab FSU threads library
20892 @item @code{@ @ @ @ }Exceptions @tab SJLJ
20893 @*
20894 @item @code{@ @ }@i{rts-m64}
20895 @item @code{@ @ @ @ }Tasking @tab native Solaris threads library
20896 @item @code{@ @ @ @ }Exceptions @tab ZCX
20897 @item @code{@ @ @ @ }Constraints @tab Use only when compiling in 64-bit mode;
20898 @item @tab Use only on Solaris 8 or later.
20899 @item @tab @xref{Building and Debugging 64-bit Applications}, for details.
20900 @*
20901 @item @code{@ @ }@i{rts-pthread}
20902 @item @code{@ @ @ @ }Tasking @tab pthreads library
20903 @item @code{@ @ @ @ }Exceptions @tab ZCX
20904 @*
20905 @item @code{@ @ }@i{rts-sjlj}
20906 @item @code{@ @ @ @ }Tasking @tab native Solaris threads library
20907 @item @code{@ @ @ @ }Exceptions @tab SJLJ
20908 @*
20909 @item @b{x86-linux}
20910 @item @code{@ @ }@i{rts-native (default)}
20911 @item @code{@ @ @ @ }Tasking @tab LinuxThread library
20912 @item @code{@ @ @ @ }Exceptions @tab ZCX
20913 @*
20914 @item @code{@ @ }@i{rts-fsu}
20915 @item @code{@ @ @ @ }Tasking @tab FSU threads library
20916 @item @code{@ @ @ @ }Exceptions @tab SJLJ
20917 @*
20918 @item @code{@ @ }@i{rts-sjlj}
20919 @item @code{@ @ @ @ }Tasking @tab LinuxThread library
20920 @item @code{@ @ @ @ }Exceptions @tab SJLJ
20921 @*
20922 @item @b{x86-windows}
20923 @item @code{@ @ }@i{rts-native (default)}
20924 @item @code{@ @ @ @ }Tasking @tab native Win32 threads
20925 @item @code{@ @ @ @ }Exceptions @tab SJLJ
20926 @*
20927 @end multitable
20928
20929
20930
20931 @node Specifying a Run-Time Library
20932 @section Specifying a Run-Time Library
20933
20934 @noindent
20935 The @file{adainclude} subdirectory containing the sources of the GNAT
20936 run-time library, and the @file{adalib} subdirectory containing the
20937 @file{ALI} files and the static and/or shared GNAT library, are located
20938 in the gcc target-dependent area:
20939
20940 @smallexample
20941 target=$prefix/lib/gcc-lib/gcc-@i{dumpmachine}/gcc-@i{dumpversion}/
20942 @end smallexample
20943
20944 @noindent
20945 As indicated above, on some platforms several run-time libraries are supplied.
20946 These libraries are installed in the target dependent area and
20947 contain a complete source and binary subdirectory. The detailed description
20948 below explains the differences between the different libraries in terms of
20949 their thread support.
20950
20951 The default run-time library (when GNAT is installed) is @emph{rts-native}.
20952 This default run time is selected by the means of soft links.
20953 For example on x86-linux:
20954
20955 @smallexample
20956 @group
20957 $(target-dir)
20958 |
20959 +--- adainclude----------+
20960 | |
20961 +--- adalib-----------+ |
20962 | | |
20963 +--- rts-native | |
20964 | | | |
20965 | +--- adainclude <---+
20966 | | |
20967 | +--- adalib <----+
20968 |
20969 +--- rts-fsu
20970 | |
20971 | +--- adainclude
20972 | |
20973 | +--- adalib
20974 |
20975 +--- rts-sjlj
20976 |
20977 +--- adainclude
20978 |
20979 +--- adalib
20980 @end group
20981 @end smallexample
20982
20983 @noindent
20984 If the @i{rts-fsu} library is to be selected on a permanent basis,
20985 these soft links can be modified with the following commands:
20986
20987 @smallexample
20988 $ cd $target
20989 $ rm -f adainclude adalib
20990 $ ln -s rts-fsu/adainclude adainclude
20991 $ ln -s rts-fsu/adalib adalib
20992 @end smallexample
20993
20994 @noindent
20995 Alternatively, you can specify @file{rts-fsu/adainclude} in the file
20996 @file{$target/ada_source_path} and @file{rts-fsu/adalib} in
20997 @file{$target/ada_object_path}.
20998
20999 Selecting another run-time library temporarily can be
21000 achieved by the regular mechanism for GNAT object or source path selection:
21001
21002 @itemize @bullet
21003 @item
21004 Set the environment variables:
21005
21006 @smallexample
21007 $ ADA_INCLUDE_PATH=$target/rts-fsu/adainclude:$ADA_INCLUDE_PATH
21008 $ ADA_OBJECTS_PATH=$target/rts-fsu/adalib:$ADA_OBJECTS_PATH
21009 $ export ADA_INCLUDE_PATH ADA_OBJECTS_PATH
21010 @end smallexample
21011
21012 @item
21013 Use @option{-aI$target/rts-fsu/adainclude}
21014 and @option{-aO$target/rts-fsu/adalib}
21015 on the @command{gnatmake} command line
21016
21017 @item
21018 Use the switch @option{--RTS}; e.g., @option{--RTS=fsu}
21019 @cindex @option{--RTS} option
21020 @end itemize
21021
21022 @noindent
21023 You can similarly switch to @emph{rts-sjlj}.
21024
21025 @node Choosing between Native and FSU Threads Libraries
21026 @section Choosing between Native and FSU Threads Libraries
21027 @cindex Native threads library
21028 @cindex FSU threads library
21029
21030 @noindent
21031 Some GNAT implementations offer a choice between
21032 native threads and FSU threads.
21033
21034 @itemize @bullet
21035 @item
21036 The @emph{native threads} library correspond to the standard system threads
21037 implementation (e.g. LinuxThreads on GNU/Linux,
21038 @cindex LinuxThreads library
21039 POSIX threads on AIX, or
21040 Solaris threads on Solaris). When this option is chosen, GNAT provides
21041 a full and accurate implementation of the core language tasking model
21042 as described in Chapter 9 of the Ada Reference Manual,
21043 but might not (and probably does not) implement
21044 the exact semantics as specified in @w{Annex D} (the Real-Time Systems Annex).
21045 @cindex Annex D (Real-Time Systems Annex) compliance
21046 @cindex Real-Time Systems Annex compliance
21047 Indeed, the reason that a choice of libraries is offered
21048 on a given target is because some of the
21049 ACATS tests for @w{Annex D} fail using the native threads library.
21050 As far as possible, this library is implemented
21051 in accordance with Ada semantics (e.g., modifying priorities as required
21052 to simulate ceiling locking),
21053 but there are often slight inaccuracies, most often in the area of
21054 absolutely respecting the priority rules on a single
21055 processor.
21056 Moreover, it is not possible in general to define the exact behavior,
21057 because the native threads implementations
21058 are not well enough documented.
21059
21060 On systems where the @code{SCHED_FIFO} POSIX scheduling policy is supported,
21061 @cindex POSIX scheduling policies
21062 @cindex @code{SCHED_FIFO} scheduling policy
21063 native threads will provide a behavior very close to the @w{Annex D}
21064 requirements (i.e., a run-till-blocked scheduler with fixed priorities), but
21065 on some systems (in particular GNU/Linux and Solaris), you need to have root
21066 privileges to use the @code{SCHED_FIFO} policy.
21067
21068 @item
21069 The @emph{FSU threads} library provides a completely accurate implementation
21070 of @w{Annex D}.
21071 Thus, operating with this library, GNAT is 100% compliant with both the core
21072 and all @w{Annex D}
21073 requirements.
21074 The formal validations for implementations offering
21075 a choice of threads packages are always carried out using the FSU
21076 threads option.
21077 @end itemize
21078
21079 @noindent
21080 From these considerations, it might seem that FSU threads are the
21081 better choice,
21082 but that is by no means always the case. The FSU threads package
21083 operates with all Ada tasks appearing to the system to be a single
21084 thread. This is often considerably more efficient than operating
21085 with separate threads, since for example, switching between tasks
21086 can be accomplished without the (in some cases considerable)
21087 overhead of a context switch between two system threads. However,
21088 it means that you may well lose concurrency at the system
21089 level. Notably, some system operations (such as I/O) may block all
21090 tasks in a program and not just the calling task. More
21091 significantly, the FSU threads approach likely means you cannot
21092 take advantage of multiple processors, since for this you need
21093 separate threads (or even separate processes) to operate on
21094 different processors.
21095
21096 For most programs, the native threads library is
21097 usually the better choice. Use the FSU threads if absolute
21098 conformance to @w{Annex D} is important for your application, or if
21099 you find that the improved efficiency of FSU threads is significant to you.
21100
21101 Note also that to take full advantage of Florist and Glade, it is highly
21102 recommended that you use native threads.
21103
21104
21105 @node Choosing the Scheduling Policy
21106 @section Choosing the Scheduling Policy
21107
21108 @noindent
21109 When using a POSIX threads implementation, you have a choice of several
21110 scheduling policies: @code{SCHED_FIFO},
21111 @cindex @code{SCHED_FIFO} scheduling policy
21112 @code{SCHED_RR}
21113 @cindex @code{SCHED_RR} scheduling policy
21114 and @code{SCHED_OTHER}.
21115 @cindex @code{SCHED_OTHER} scheduling policy
21116 Typically, the default is @code{SCHED_OTHER}, while using @code{SCHED_FIFO}
21117 or @code{SCHED_RR} requires special (e.g., root) privileges.
21118
21119 By default, GNAT uses the @code{SCHED_OTHER} policy. To specify
21120 @code{SCHED_FIFO},
21121 @cindex @code{SCHED_FIFO} scheduling policy
21122 you can use one of the following:
21123
21124 @itemize @bullet
21125 @item
21126 @code{pragma Time_Slice (0.0)}
21127 @cindex pragma Time_Slice
21128 @item
21129 the corresponding binder option @option{-T0}
21130 @cindex @option{-T0} option
21131 @item
21132 @code{pragma Task_Dispatching_Policy (FIFO_Within_Priorities)}
21133 @cindex pragma Task_Dispatching_Policy
21134 @end itemize
21135
21136 @noindent
21137 To specify @code{SCHED_RR},
21138 @cindex @code{SCHED_RR} scheduling policy
21139 you should use @code{pragma Time_Slice} with a
21140 value greater than @code{0.0}, or else use the corresponding @option{-T}
21141 binder option.
21142
21143
21144
21145 @node Solaris-Specific Considerations
21146 @section Solaris-Specific Considerations
21147 @cindex Solaris Sparc threads libraries
21148
21149 @noindent
21150 This section addresses some topics related to the various threads libraries
21151 on Sparc Solaris and then provides some information on building and
21152 debugging 64-bit applications.
21153
21154 @menu
21155 * Solaris Threads Issues::
21156 * Building and Debugging 64-bit Applications::
21157 @end menu
21158
21159
21160 @node Solaris Threads Issues
21161 @subsection Solaris Threads Issues
21162
21163 @noindent
21164 Starting with version 3.14, GNAT under Solaris comes with a new tasking
21165 run-time library based on POSIX threads --- @emph{rts-pthread}.
21166 @cindex rts-pthread threads library
21167 This run-time library has the advantage of being mostly shared across all
21168 POSIX-compliant thread implementations, and it also provides under
21169 @w{Solaris 8} the @code{PTHREAD_PRIO_INHERIT}
21170 @cindex @code{PTHREAD_PRIO_INHERIT} policy (under rts-pthread)
21171 and @code{PTHREAD_PRIO_PROTECT}
21172 @cindex @code{PTHREAD_PRIO_PROTECT} policy (under rts-pthread)
21173 semantics that can be selected using the predefined pragma
21174 @code{Locking_Policy}
21175 @cindex pragma Locking_Policy (under rts-pthread)
21176 with respectively
21177 @code{Inheritance_Locking} and @code{Ceiling_Locking} as the policy.
21178 @cindex @code{Inheritance_Locking} (under rts-pthread)
21179 @cindex @code{Ceiling_Locking} (under rts-pthread)
21180
21181 As explained above, the native run-time library is based on the Solaris thread
21182 library (@code{libthread}) and is the default library.
21183 The FSU run-time library is based on the FSU threads.
21184 @cindex FSU threads library
21185
21186 Starting with Solaris 2.5.1, when the Solaris threads library is used
21187 (this is the default), programs
21188 compiled with GNAT can automatically take advantage of
21189 and can thus execute on multiple processors.
21190 The user can alternatively specify a processor on which the program should run
21191 to emulate a single-processor system. The multiprocessor / uniprocessor choice
21192 is made by
21193 setting the environment variable @code{GNAT_PROCESSOR}
21194 @cindex @code{GNAT_PROCESSOR} environment variable (on Sparc Solaris)
21195 to one of the following:
21196
21197 @table @code
21198 @item -2
21199 Use the default configuration (run the program on all
21200 available processors) - this is the same as having
21201 @code{GNAT_PROCESSOR} unset
21202
21203 @item -1
21204 Let the run-time implementation choose one processor and run the program on
21205 that processor
21206
21207 @item 0 .. Last_Proc
21208 Run the program on the specified processor.
21209 @code{Last_Proc} is equal to @code{_SC_NPROCESSORS_CONF - 1}
21210 (where @code{_SC_NPROCESSORS_CONF} is a system variable).
21211 @end table
21212
21213
21214 @node Building and Debugging 64-bit Applications
21215 @subsection Building and Debugging 64-bit Applications
21216
21217 @noindent
21218 In a 64-bit application, all the sources involved must be compiled with the
21219 @option{-m64} command-line option, and a specific GNAT library (compiled with
21220 this option) is required.
21221 The easiest way to build a 64bit application is to add
21222 @option{-m64 --RTS=m64} to the @command{gnatmake} flags.
21223
21224 To debug these applications, dwarf-2 debug information is required, so you
21225 have to add @option{-gdwarf-2} to your gnatmake arguments.
21226 In addition, a special
21227 version of gdb, called @command{gdb64}, needs to be used.
21228
21229 To summarize, building and debugging a ``Hello World'' program in 64-bit mode
21230 amounts to:
21231
21232 @smallexample
21233 $ gnatmake -m64 -gdwarf-2 --RTS=m64 hello.adb
21234 $ gdb64 hello
21235 @end smallexample
21236
21237
21238
21239 @node IRIX-Specific Considerations
21240 @section IRIX-Specific Considerations
21241 @cindex IRIX thread library
21242
21243 @noindent
21244 On SGI IRIX, the thread library depends on which compiler is used.
21245 The @emph{o32 ABI} compiler comes with a run-time library based on the
21246 user-level @code{athread}
21247 library. Thus kernel-level capabilities such as nonblocking system
21248 calls or time slicing can only be achieved reliably by specifying different
21249 @code{sprocs} via the pragma @code{Task_Info}
21250 @cindex pragma Task_Info (and IRIX threads)
21251 and the
21252 @code{System.Task_Info} package.
21253 @cindex @code{System.Task_Info} package (and IRIX threads)
21254 See the @cite{GNAT Reference Manual} for further information.
21255
21256 The @emph{n32 ABI} compiler comes with a run-time library based on the
21257 kernel POSIX threads and thus does not have the limitations mentioned above.
21258
21259
21260 @node Linux-Specific Considerations
21261 @section Linux-Specific Considerations
21262 @cindex Linux threads libraries
21263
21264 @noindent
21265 The default thread library under GNU/Linux has the following disadvantages
21266 compared to other native thread libraries:
21267
21268 @itemize @bullet
21269 @item The size of the task's stack is limited to 2 megabytes.
21270 @item The signal model is not POSIX compliant, which means that to send a
21271 signal to the process, you need to send the signal to all threads,
21272 e.g. by using @code{killpg()}.
21273 @end itemize
21274
21275 @node AIX-Specific Considerations
21276 @section AIX-Specific Considerations
21277 @cindex AIX resolver library
21278
21279 @noindent
21280 On AIX, the resolver library initializes some internal structure on
21281 the first call to @code{get*by*} functions, which are used to implement
21282 @code{GNAT.Sockets.Get_Host_By_Name} and @code{GNAT.Sockets.Get_Host_By_Addrss}.
21283 If such initialization occurs within an Ada task, and the stack size for
21284 the task is the default size, a stack overflow may occur.
21285
21286 To avoid this overflow, the user should either ensure that the first call
21287 to @code{GNAT.Sockets.Get_Host_By_Name} or @code{GNAT.Sockets.Get_Host_By_Addrss}
21288 occurs in the environment task, or use @code{pragma Storage_Size} to
21289 specify a sufficiently large size for the stack of the task that contains
21290 this call.
21291
21292 @c *******************************
21293 @node Example of Binder Output File
21294 @appendix Example of Binder Output File
21295
21296 @noindent
21297 This Appendix displays the source code for @command{gnatbind}'s output
21298 file generated for a simple ``Hello World'' program.
21299 Comments have been added for clarification purposes.
21300
21301
21302 @smallexample @c adanocomment
21303 @iftex
21304 @leftskip=0cm
21305 @end iftex
21306 -- The package is called Ada_Main unless this name is actually used
21307 -- as a unit name in the partition, in which case some other unique
21308 -- name is used.
21309
21310 with System;
21311 package ada_main is
21312
21313 Elab_Final_Code : Integer;
21314 pragma Import (C, Elab_Final_Code, "__gnat_inside_elab_final_code");
21315
21316 -- The main program saves the parameters (argument count,
21317 -- argument values, environment pointer) in global variables
21318 -- for later access by other units including
21319 -- Ada.Command_Line.
21320
21321 gnat_argc : Integer;
21322 gnat_argv : System.Address;
21323 gnat_envp : System.Address;
21324
21325 -- The actual variables are stored in a library routine. This
21326 -- is useful for some shared library situations, where there
21327 -- are problems if variables are not in the library.
21328
21329 pragma Import (C, gnat_argc);
21330 pragma Import (C, gnat_argv);
21331 pragma Import (C, gnat_envp);
21332
21333 -- The exit status is similarly an external location
21334
21335 gnat_exit_status : Integer;
21336 pragma Import (C, gnat_exit_status);
21337
21338 GNAT_Version : constant String :=
21339 "GNAT Version: 3.15w (20010315)";
21340 pragma Export (C, GNAT_Version, "__gnat_version");
21341
21342 -- This is the generated adafinal routine that performs
21343 -- finalization at the end of execution. In the case where
21344 -- Ada is the main program, this main program makes a call
21345 -- to adafinal at program termination.
21346
21347 procedure adafinal;
21348 pragma Export (C, adafinal, "adafinal");
21349
21350 -- This is the generated adainit routine that performs
21351 -- initialization at the start of execution. In the case
21352 -- where Ada is the main program, this main program makes
21353 -- a call to adainit at program startup.
21354
21355 procedure adainit;
21356 pragma Export (C, adainit, "adainit");
21357
21358 -- This routine is called at the start of execution. It is
21359 -- a dummy routine that is used by the debugger to breakpoint
21360 -- at the start of execution.
21361
21362 procedure Break_Start;
21363 pragma Import (C, Break_Start, "__gnat_break_start");
21364
21365 -- This is the actual generated main program (it would be
21366 -- suppressed if the no main program switch were used). As
21367 -- required by standard system conventions, this program has
21368 -- the external name main.
21369
21370 function main
21371 (argc : Integer;
21372 argv : System.Address;
21373 envp : System.Address)
21374 return Integer;
21375 pragma Export (C, main, "main");
21376
21377 -- The following set of constants give the version
21378 -- identification values for every unit in the bound
21379 -- partition. This identification is computed from all
21380 -- dependent semantic units, and corresponds to the
21381 -- string that would be returned by use of the
21382 -- Body_Version or Version attributes.
21383
21384 type Version_32 is mod 2 ** 32;
21385 u00001 : constant Version_32 := 16#7880BEB3#;
21386 u00002 : constant Version_32 := 16#0D24CBD0#;
21387 u00003 : constant Version_32 := 16#3283DBEB#;
21388 u00004 : constant Version_32 := 16#2359F9ED#;
21389 u00005 : constant Version_32 := 16#664FB847#;
21390 u00006 : constant Version_32 := 16#68E803DF#;
21391 u00007 : constant Version_32 := 16#5572E604#;
21392 u00008 : constant Version_32 := 16#46B173D8#;
21393 u00009 : constant Version_32 := 16#156A40CF#;
21394 u00010 : constant Version_32 := 16#033DABE0#;
21395 u00011 : constant Version_32 := 16#6AB38FEA#;
21396 u00012 : constant Version_32 := 16#22B6217D#;
21397 u00013 : constant Version_32 := 16#68A22947#;
21398 u00014 : constant Version_32 := 16#18CC4A56#;
21399 u00015 : constant Version_32 := 16#08258E1B#;
21400 u00016 : constant Version_32 := 16#367D5222#;
21401 u00017 : constant Version_32 := 16#20C9ECA4#;
21402 u00018 : constant Version_32 := 16#50D32CB6#;
21403 u00019 : constant Version_32 := 16#39A8BB77#;
21404 u00020 : constant Version_32 := 16#5CF8FA2B#;
21405 u00021 : constant Version_32 := 16#2F1EB794#;
21406 u00022 : constant Version_32 := 16#31AB6444#;
21407 u00023 : constant Version_32 := 16#1574B6E9#;
21408 u00024 : constant Version_32 := 16#5109C189#;
21409 u00025 : constant Version_32 := 16#56D770CD#;
21410 u00026 : constant Version_32 := 16#02F9DE3D#;
21411 u00027 : constant Version_32 := 16#08AB6B2C#;
21412 u00028 : constant Version_32 := 16#3FA37670#;
21413 u00029 : constant Version_32 := 16#476457A0#;
21414 u00030 : constant Version_32 := 16#731E1B6E#;
21415 u00031 : constant Version_32 := 16#23C2E789#;
21416 u00032 : constant Version_32 := 16#0F1BD6A1#;
21417 u00033 : constant Version_32 := 16#7C25DE96#;
21418 u00034 : constant Version_32 := 16#39ADFFA2#;
21419 u00035 : constant Version_32 := 16#571DE3E7#;
21420 u00036 : constant Version_32 := 16#5EB646AB#;
21421 u00037 : constant Version_32 := 16#4249379B#;
21422 u00038 : constant Version_32 := 16#0357E00A#;
21423 u00039 : constant Version_32 := 16#3784FB72#;
21424 u00040 : constant Version_32 := 16#2E723019#;
21425 u00041 : constant Version_32 := 16#623358EA#;
21426 u00042 : constant Version_32 := 16#107F9465#;
21427 u00043 : constant Version_32 := 16#6843F68A#;
21428 u00044 : constant Version_32 := 16#63305874#;
21429 u00045 : constant Version_32 := 16#31E56CE1#;
21430 u00046 : constant Version_32 := 16#02917970#;
21431 u00047 : constant Version_32 := 16#6CCBA70E#;
21432 u00048 : constant Version_32 := 16#41CD4204#;
21433 u00049 : constant Version_32 := 16#572E3F58#;
21434 u00050 : constant Version_32 := 16#20729FF5#;
21435 u00051 : constant Version_32 := 16#1D4F93E8#;
21436 u00052 : constant Version_32 := 16#30B2EC3D#;
21437 u00053 : constant Version_32 := 16#34054F96#;
21438 u00054 : constant Version_32 := 16#5A199860#;
21439 u00055 : constant Version_32 := 16#0E7F912B#;
21440 u00056 : constant Version_32 := 16#5760634A#;
21441 u00057 : constant Version_32 := 16#5D851835#;
21442
21443 -- The following Export pragmas export the version numbers
21444 -- with symbolic names ending in B (for body) or S
21445 -- (for spec) so that they can be located in a link. The
21446 -- information provided here is sufficient to track down
21447 -- the exact versions of units used in a given build.
21448
21449 pragma Export (C, u00001, "helloB");
21450 pragma Export (C, u00002, "system__standard_libraryB");
21451 pragma Export (C, u00003, "system__standard_libraryS");
21452 pragma Export (C, u00004, "adaS");
21453 pragma Export (C, u00005, "ada__text_ioB");
21454 pragma Export (C, u00006, "ada__text_ioS");
21455 pragma Export (C, u00007, "ada__exceptionsB");
21456 pragma Export (C, u00008, "ada__exceptionsS");
21457 pragma Export (C, u00009, "gnatS");
21458 pragma Export (C, u00010, "gnat__heap_sort_aB");
21459 pragma Export (C, u00011, "gnat__heap_sort_aS");
21460 pragma Export (C, u00012, "systemS");
21461 pragma Export (C, u00013, "system__exception_tableB");
21462 pragma Export (C, u00014, "system__exception_tableS");
21463 pragma Export (C, u00015, "gnat__htableB");
21464 pragma Export (C, u00016, "gnat__htableS");
21465 pragma Export (C, u00017, "system__exceptionsS");
21466 pragma Export (C, u00018, "system__machine_state_operationsB");
21467 pragma Export (C, u00019, "system__machine_state_operationsS");
21468 pragma Export (C, u00020, "system__machine_codeS");
21469 pragma Export (C, u00021, "system__storage_elementsB");
21470 pragma Export (C, u00022, "system__storage_elementsS");
21471 pragma Export (C, u00023, "system__secondary_stackB");
21472 pragma Export (C, u00024, "system__secondary_stackS");
21473 pragma Export (C, u00025, "system__parametersB");
21474 pragma Export (C, u00026, "system__parametersS");
21475 pragma Export (C, u00027, "system__soft_linksB");
21476 pragma Export (C, u00028, "system__soft_linksS");
21477 pragma Export (C, u00029, "system__stack_checkingB");
21478 pragma Export (C, u00030, "system__stack_checkingS");
21479 pragma Export (C, u00031, "system__tracebackB");
21480 pragma Export (C, u00032, "system__tracebackS");
21481 pragma Export (C, u00033, "ada__streamsS");
21482 pragma Export (C, u00034, "ada__tagsB");
21483 pragma Export (C, u00035, "ada__tagsS");
21484 pragma Export (C, u00036, "system__string_opsB");
21485 pragma Export (C, u00037, "system__string_opsS");
21486 pragma Export (C, u00038, "interfacesS");
21487 pragma Export (C, u00039, "interfaces__c_streamsB");
21488 pragma Export (C, u00040, "interfaces__c_streamsS");
21489 pragma Export (C, u00041, "system__file_ioB");
21490 pragma Export (C, u00042, "system__file_ioS");
21491 pragma Export (C, u00043, "ada__finalizationB");
21492 pragma Export (C, u00044, "ada__finalizationS");
21493 pragma Export (C, u00045, "system__finalization_rootB");
21494 pragma Export (C, u00046, "system__finalization_rootS");
21495 pragma Export (C, u00047, "system__finalization_implementationB");
21496 pragma Export (C, u00048, "system__finalization_implementationS");
21497 pragma Export (C, u00049, "system__string_ops_concat_3B");
21498 pragma Export (C, u00050, "system__string_ops_concat_3S");
21499 pragma Export (C, u00051, "system__stream_attributesB");
21500 pragma Export (C, u00052, "system__stream_attributesS");
21501 pragma Export (C, u00053, "ada__io_exceptionsS");
21502 pragma Export (C, u00054, "system__unsigned_typesS");
21503 pragma Export (C, u00055, "system__file_control_blockS");
21504 pragma Export (C, u00056, "ada__finalization__list_controllerB");
21505 pragma Export (C, u00057, "ada__finalization__list_controllerS");
21506
21507 -- BEGIN ELABORATION ORDER
21508 -- ada (spec)
21509 -- gnat (spec)
21510 -- gnat.heap_sort_a (spec)
21511 -- gnat.heap_sort_a (body)
21512 -- gnat.htable (spec)
21513 -- gnat.htable (body)
21514 -- interfaces (spec)
21515 -- system (spec)
21516 -- system.machine_code (spec)
21517 -- system.parameters (spec)
21518 -- system.parameters (body)
21519 -- interfaces.c_streams (spec)
21520 -- interfaces.c_streams (body)
21521 -- system.standard_library (spec)
21522 -- ada.exceptions (spec)
21523 -- system.exception_table (spec)
21524 -- system.exception_table (body)
21525 -- ada.io_exceptions (spec)
21526 -- system.exceptions (spec)
21527 -- system.storage_elements (spec)
21528 -- system.storage_elements (body)
21529 -- system.machine_state_operations (spec)
21530 -- system.machine_state_operations (body)
21531 -- system.secondary_stack (spec)
21532 -- system.stack_checking (spec)
21533 -- system.soft_links (spec)
21534 -- system.soft_links (body)
21535 -- system.stack_checking (body)
21536 -- system.secondary_stack (body)
21537 -- system.standard_library (body)
21538 -- system.string_ops (spec)
21539 -- system.string_ops (body)
21540 -- ada.tags (spec)
21541 -- ada.tags (body)
21542 -- ada.streams (spec)
21543 -- system.finalization_root (spec)
21544 -- system.finalization_root (body)
21545 -- system.string_ops_concat_3 (spec)
21546 -- system.string_ops_concat_3 (body)
21547 -- system.traceback (spec)
21548 -- system.traceback (body)
21549 -- ada.exceptions (body)
21550 -- system.unsigned_types (spec)
21551 -- system.stream_attributes (spec)
21552 -- system.stream_attributes (body)
21553 -- system.finalization_implementation (spec)
21554 -- system.finalization_implementation (body)
21555 -- ada.finalization (spec)
21556 -- ada.finalization (body)
21557 -- ada.finalization.list_controller (spec)
21558 -- ada.finalization.list_controller (body)
21559 -- system.file_control_block (spec)
21560 -- system.file_io (spec)
21561 -- system.file_io (body)
21562 -- ada.text_io (spec)
21563 -- ada.text_io (body)
21564 -- hello (body)
21565 -- END ELABORATION ORDER
21566
21567 end ada_main;
21568
21569 -- The following source file name pragmas allow the generated file
21570 -- names to be unique for different main programs. They are needed
21571 -- since the package name will always be Ada_Main.
21572
21573 pragma Source_File_Name (ada_main, Spec_File_Name => "b~hello.ads");
21574 pragma Source_File_Name (ada_main, Body_File_Name => "b~hello.adb");
21575
21576 -- Generated package body for Ada_Main starts here
21577
21578 package body ada_main is
21579
21580 -- The actual finalization is performed by calling the
21581 -- library routine in System.Standard_Library.Adafinal
21582
21583 procedure Do_Finalize;
21584 pragma Import (C, Do_Finalize, "system__standard_library__adafinal");
21585
21586 -------------
21587 -- adainit --
21588 -------------
21589
21590 @findex adainit
21591 procedure adainit is
21592
21593 -- These booleans are set to True once the associated unit has
21594 -- been elaborated. It is also used to avoid elaborating the
21595 -- same unit twice.
21596
21597 E040 : Boolean;
21598 pragma Import (Ada, E040, "interfaces__c_streams_E");
21599
21600 E008 : Boolean;
21601 pragma Import (Ada, E008, "ada__exceptions_E");
21602
21603 E014 : Boolean;
21604 pragma Import (Ada, E014, "system__exception_table_E");
21605
21606 E053 : Boolean;
21607 pragma Import (Ada, E053, "ada__io_exceptions_E");
21608
21609 E017 : Boolean;
21610 pragma Import (Ada, E017, "system__exceptions_E");
21611
21612 E024 : Boolean;
21613 pragma Import (Ada, E024, "system__secondary_stack_E");
21614
21615 E030 : Boolean;
21616 pragma Import (Ada, E030, "system__stack_checking_E");
21617
21618 E028 : Boolean;
21619 pragma Import (Ada, E028, "system__soft_links_E");
21620
21621 E035 : Boolean;
21622 pragma Import (Ada, E035, "ada__tags_E");
21623
21624 E033 : Boolean;
21625 pragma Import (Ada, E033, "ada__streams_E");
21626
21627 E046 : Boolean;
21628 pragma Import (Ada, E046, "system__finalization_root_E");
21629
21630 E048 : Boolean;
21631 pragma Import (Ada, E048, "system__finalization_implementation_E");
21632
21633 E044 : Boolean;
21634 pragma Import (Ada, E044, "ada__finalization_E");
21635
21636 E057 : Boolean;
21637 pragma Import (Ada, E057, "ada__finalization__list_controller_E");
21638
21639 E055 : Boolean;
21640 pragma Import (Ada, E055, "system__file_control_block_E");
21641
21642 E042 : Boolean;
21643 pragma Import (Ada, E042, "system__file_io_E");
21644
21645 E006 : Boolean;
21646 pragma Import (Ada, E006, "ada__text_io_E");
21647
21648 -- Set_Globals is a library routine that stores away the
21649 -- value of the indicated set of global values in global
21650 -- variables within the library.
21651
21652 procedure Set_Globals
21653 (Main_Priority : Integer;
21654 Time_Slice_Value : Integer;
21655 WC_Encoding : Character;
21656 Locking_Policy : Character;
21657 Queuing_Policy : Character;
21658 Task_Dispatching_Policy : Character;
21659 Adafinal : System.Address;
21660 Unreserve_All_Interrupts : Integer;
21661 Exception_Tracebacks : Integer);
21662 @findex __gnat_set_globals
21663 pragma Import (C, Set_Globals, "__gnat_set_globals");
21664
21665 -- SDP_Table_Build is a library routine used to build the
21666 -- exception tables. See unit Ada.Exceptions in files
21667 -- a-except.ads/adb for full details of how zero cost
21668 -- exception handling works. This procedure, the call to
21669 -- it, and the two following tables are all omitted if the
21670 -- build is in longjmp/setjump exception mode.
21671
21672 @findex SDP_Table_Build
21673 @findex Zero Cost Exceptions
21674 procedure SDP_Table_Build
21675 (SDP_Addresses : System.Address;
21676 SDP_Count : Natural;
21677 Elab_Addresses : System.Address;
21678 Elab_Addr_Count : Natural);
21679 pragma Import (C, SDP_Table_Build, "__gnat_SDP_Table_Build");
21680
21681 -- Table of Unit_Exception_Table addresses. Used for zero
21682 -- cost exception handling to build the top level table.
21683
21684 ST : aliased constant array (1 .. 23) of System.Address := (
21685 Hello'UET_Address,
21686 Ada.Text_Io'UET_Address,
21687 Ada.Exceptions'UET_Address,
21688 Gnat.Heap_Sort_A'UET_Address,
21689 System.Exception_Table'UET_Address,
21690 System.Machine_State_Operations'UET_Address,
21691 System.Secondary_Stack'UET_Address,
21692 System.Parameters'UET_Address,
21693 System.Soft_Links'UET_Address,
21694 System.Stack_Checking'UET_Address,
21695 System.Traceback'UET_Address,
21696 Ada.Streams'UET_Address,
21697 Ada.Tags'UET_Address,
21698 System.String_Ops'UET_Address,
21699 Interfaces.C_Streams'UET_Address,
21700 System.File_Io'UET_Address,
21701 Ada.Finalization'UET_Address,
21702 System.Finalization_Root'UET_Address,
21703 System.Finalization_Implementation'UET_Address,
21704 System.String_Ops_Concat_3'UET_Address,
21705 System.Stream_Attributes'UET_Address,
21706 System.File_Control_Block'UET_Address,
21707 Ada.Finalization.List_Controller'UET_Address);
21708
21709 -- Table of addresses of elaboration routines. Used for
21710 -- zero cost exception handling to make sure these
21711 -- addresses are included in the top level procedure
21712 -- address table.
21713
21714 EA : aliased constant array (1 .. 23) of System.Address := (
21715 adainit'Code_Address,
21716 Do_Finalize'Code_Address,
21717 Ada.Exceptions'Elab_Spec'Address,
21718 System.Exceptions'Elab_Spec'Address,
21719 Interfaces.C_Streams'Elab_Spec'Address,
21720 System.Exception_Table'Elab_Body'Address,
21721 Ada.Io_Exceptions'Elab_Spec'Address,
21722 System.Stack_Checking'Elab_Spec'Address,
21723 System.Soft_Links'Elab_Body'Address,
21724 System.Secondary_Stack'Elab_Body'Address,
21725 Ada.Tags'Elab_Spec'Address,
21726 Ada.Tags'Elab_Body'Address,
21727 Ada.Streams'Elab_Spec'Address,
21728 System.Finalization_Root'Elab_Spec'Address,
21729 Ada.Exceptions'Elab_Body'Address,
21730 System.Finalization_Implementation'Elab_Spec'Address,
21731 System.Finalization_Implementation'Elab_Body'Address,
21732 Ada.Finalization'Elab_Spec'Address,
21733 Ada.Finalization.List_Controller'Elab_Spec'Address,
21734 System.File_Control_Block'Elab_Spec'Address,
21735 System.File_Io'Elab_Body'Address,
21736 Ada.Text_Io'Elab_Spec'Address,
21737 Ada.Text_Io'Elab_Body'Address);
21738
21739 -- Start of processing for adainit
21740
21741 begin
21742
21743 -- Call SDP_Table_Build to build the top level procedure
21744 -- table for zero cost exception handling (omitted in
21745 -- longjmp/setjump mode).
21746
21747 SDP_Table_Build (ST'Address, 23, EA'Address, 23);
21748
21749 -- Call Set_Globals to record various information for
21750 -- this partition. The values are derived by the binder
21751 -- from information stored in the ali files by the compiler.
21752
21753 @findex __gnat_set_globals
21754 Set_Globals
21755 (Main_Priority => -1,
21756 -- Priority of main program, -1 if no pragma Priority used
21757
21758 Time_Slice_Value => -1,
21759 -- Time slice from Time_Slice pragma, -1 if none used
21760
21761 WC_Encoding => 'b',
21762 -- Wide_Character encoding used, default is brackets
21763
21764 Locking_Policy => ' ',
21765 -- Locking_Policy used, default of space means not
21766 -- specified, otherwise it is the first character of
21767 -- the policy name.
21768
21769 Queuing_Policy => ' ',
21770 -- Queuing_Policy used, default of space means not
21771 -- specified, otherwise it is the first character of
21772 -- the policy name.
21773
21774 Task_Dispatching_Policy => ' ',
21775 -- Task_Dispatching_Policy used, default of space means
21776 -- not specified, otherwise first character of the
21777 -- policy name.
21778
21779 Adafinal => System.Null_Address,
21780 -- Address of Adafinal routine, not used anymore
21781
21782 Unreserve_All_Interrupts => 0,
21783 -- Set true if pragma Unreserve_All_Interrupts was used
21784
21785 Exception_Tracebacks => 0);
21786 -- Indicates if exception tracebacks are enabled
21787
21788 Elab_Final_Code := 1;
21789
21790 -- Now we have the elaboration calls for all units in the partition.
21791 -- The Elab_Spec and Elab_Body attributes generate references to the
21792 -- implicit elaboration procedures generated by the compiler for
21793 -- each unit that requires elaboration.
21794
21795 if not E040 then
21796 Interfaces.C_Streams'Elab_Spec;
21797 end if;
21798 E040 := True;
21799 if not E008 then
21800 Ada.Exceptions'Elab_Spec;
21801 end if;
21802 if not E014 then
21803 System.Exception_Table'Elab_Body;
21804 E014 := True;
21805 end if;
21806 if not E053 then
21807 Ada.Io_Exceptions'Elab_Spec;
21808 E053 := True;
21809 end if;
21810 if not E017 then
21811 System.Exceptions'Elab_Spec;
21812 E017 := True;
21813 end if;
21814 if not E030 then
21815 System.Stack_Checking'Elab_Spec;
21816 end if;
21817 if not E028 then
21818 System.Soft_Links'Elab_Body;
21819 E028 := True;
21820 end if;
21821 E030 := True;
21822 if not E024 then
21823 System.Secondary_Stack'Elab_Body;
21824 E024 := True;
21825 end if;
21826 if not E035 then
21827 Ada.Tags'Elab_Spec;
21828 end if;
21829 if not E035 then
21830 Ada.Tags'Elab_Body;
21831 E035 := True;
21832 end if;
21833 if not E033 then
21834 Ada.Streams'Elab_Spec;
21835 E033 := True;
21836 end if;
21837 if not E046 then
21838 System.Finalization_Root'Elab_Spec;
21839 end if;
21840 E046 := True;
21841 if not E008 then
21842 Ada.Exceptions'Elab_Body;
21843 E008 := True;
21844 end if;
21845 if not E048 then
21846 System.Finalization_Implementation'Elab_Spec;
21847 end if;
21848 if not E048 then
21849 System.Finalization_Implementation'Elab_Body;
21850 E048 := True;
21851 end if;
21852 if not E044 then
21853 Ada.Finalization'Elab_Spec;
21854 end if;
21855 E044 := True;
21856 if not E057 then
21857 Ada.Finalization.List_Controller'Elab_Spec;
21858 end if;
21859 E057 := True;
21860 if not E055 then
21861 System.File_Control_Block'Elab_Spec;
21862 E055 := True;
21863 end if;
21864 if not E042 then
21865 System.File_Io'Elab_Body;
21866 E042 := True;
21867 end if;
21868 if not E006 then
21869 Ada.Text_Io'Elab_Spec;
21870 end if;
21871 if not E006 then
21872 Ada.Text_Io'Elab_Body;
21873 E006 := True;
21874 end if;
21875
21876 Elab_Final_Code := 0;
21877 end adainit;
21878
21879 --------------
21880 -- adafinal --
21881 --------------
21882
21883 @findex adafinal
21884 procedure adafinal is
21885 begin
21886 Do_Finalize;
21887 end adafinal;
21888
21889 ----------
21890 -- main --
21891 ----------
21892
21893 -- main is actually a function, as in the ANSI C standard,
21894 -- defined to return the exit status. The three parameters
21895 -- are the argument count, argument values and environment
21896 -- pointer.
21897
21898 @findex Main Program
21899 function main
21900 (argc : Integer;
21901 argv : System.Address;
21902 envp : System.Address)
21903 return Integer
21904 is
21905 -- The initialize routine performs low level system
21906 -- initialization using a standard library routine which
21907 -- sets up signal handling and performs any other
21908 -- required setup. The routine can be found in file
21909 -- a-init.c.
21910
21911 @findex __gnat_initialize
21912 procedure initialize;
21913 pragma Import (C, initialize, "__gnat_initialize");
21914
21915 -- The finalize routine performs low level system
21916 -- finalization using a standard library routine. The
21917 -- routine is found in file a-final.c and in the standard
21918 -- distribution is a dummy routine that does nothing, so
21919 -- really this is a hook for special user finalization.
21920
21921 @findex __gnat_finalize
21922 procedure finalize;
21923 pragma Import (C, finalize, "__gnat_finalize");
21924
21925 -- We get to the main program of the partition by using
21926 -- pragma Import because if we try to with the unit and
21927 -- call it Ada style, then not only do we waste time
21928 -- recompiling it, but also, we don't really know the right
21929 -- switches (e.g. identifier character set) to be used
21930 -- to compile it.
21931
21932 procedure Ada_Main_Program;
21933 pragma Import (Ada, Ada_Main_Program, "_ada_hello");
21934
21935 -- Start of processing for main
21936
21937 begin
21938 -- Save global variables
21939
21940 gnat_argc := argc;
21941 gnat_argv := argv;
21942 gnat_envp := envp;
21943
21944 -- Call low level system initialization
21945
21946 Initialize;
21947
21948 -- Call our generated Ada initialization routine
21949
21950 adainit;
21951
21952 -- This is the point at which we want the debugger to get
21953 -- control
21954
21955 Break_Start;
21956
21957 -- Now we call the main program of the partition
21958
21959 Ada_Main_Program;
21960
21961 -- Perform Ada finalization
21962
21963 adafinal;
21964
21965 -- Perform low level system finalization
21966
21967 Finalize;
21968
21969 -- Return the proper exit status
21970 return (gnat_exit_status);
21971 end;
21972
21973 -- This section is entirely comments, so it has no effect on the
21974 -- compilation of the Ada_Main package. It provides the list of
21975 -- object files and linker options, as well as some standard
21976 -- libraries needed for the link. The gnatlink utility parses
21977 -- this b~hello.adb file to read these comment lines to generate
21978 -- the appropriate command line arguments for the call to the
21979 -- system linker. The BEGIN/END lines are used for sentinels for
21980 -- this parsing operation.
21981
21982 -- The exact file names will of course depend on the environment,
21983 -- host/target and location of files on the host system.
21984
21985 @findex Object file list
21986 -- BEGIN Object file/option list
21987 -- ./hello.o
21988 -- -L./
21989 -- -L/usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/
21990 -- /usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/libgnat.a
21991 -- END Object file/option list
21992
21993 end ada_main;
21994 @end smallexample
21995
21996 @noindent
21997 The Ada code in the above example is exactly what is generated by the
21998 binder. We have added comments to more clearly indicate the function
21999 of each part of the generated @code{Ada_Main} package.
22000
22001 The code is standard Ada in all respects, and can be processed by any
22002 tools that handle Ada. In particular, it is possible to use the debugger
22003 in Ada mode to debug the generated @code{Ada_Main} package. For example,
22004 suppose that for reasons that you do not understand, your program is crashing
22005 during elaboration of the body of @code{Ada.Text_IO}. To locate this bug,
22006 you can place a breakpoint on the call:
22007
22008 @smallexample @c ada
22009 Ada.Text_Io'Elab_Body;
22010 @end smallexample
22011
22012 @noindent
22013 and trace the elaboration routine for this package to find out where
22014 the problem might be (more usually of course you would be debugging
22015 elaboration code in your own application).
22016
22017
22018 @node Elaboration Order Handling in GNAT
22019 @appendix Elaboration Order Handling in GNAT
22020 @cindex Order of elaboration
22021 @cindex Elaboration control
22022
22023 @menu
22024 * Elaboration Code in Ada 95::
22025 * Checking the Elaboration Order in Ada 95::
22026 * Controlling the Elaboration Order in Ada 95::
22027 * Controlling Elaboration in GNAT - Internal Calls::
22028 * Controlling Elaboration in GNAT - External Calls::
22029 * Default Behavior in GNAT - Ensuring Safety::
22030 * Treatment of Pragma Elaborate::
22031 * Elaboration Issues for Library Tasks::
22032 * Mixing Elaboration Models::
22033 * What to Do If the Default Elaboration Behavior Fails::
22034 * Elaboration for Access-to-Subprogram Values::
22035 * Summary of Procedures for Elaboration Control::
22036 * Other Elaboration Order Considerations::
22037 @end menu
22038
22039 @noindent
22040 This chapter describes the handling of elaboration code in Ada 95 and
22041 in GNAT, and discusses how the order of elaboration of program units can
22042 be controlled in GNAT, either automatically or with explicit programming
22043 features.
22044
22045 @node Elaboration Code in Ada 95
22046 @section Elaboration Code in Ada 95
22047
22048 @noindent
22049 Ada 95 provides rather general mechanisms for executing code at elaboration
22050 time, that is to say before the main program starts executing. Such code arises
22051 in three contexts:
22052
22053 @table @asis
22054 @item Initializers for variables.
22055 Variables declared at the library level, in package specs or bodies, can
22056 require initialization that is performed at elaboration time, as in:
22057 @smallexample @c ada
22058 @cartouche
22059 Sqrt_Half : Float := Sqrt (0.5);
22060 @end cartouche
22061 @end smallexample
22062
22063 @item Package initialization code
22064 Code in a @code{BEGIN-END} section at the outer level of a package body is
22065 executed as part of the package body elaboration code.
22066
22067 @item Library level task allocators
22068 Tasks that are declared using task allocators at the library level
22069 start executing immediately and hence can execute at elaboration time.
22070 @end table
22071
22072 @noindent
22073 Subprogram calls are possible in any of these contexts, which means that
22074 any arbitrary part of the program may be executed as part of the elaboration
22075 code. It is even possible to write a program which does all its work at
22076 elaboration time, with a null main program, although stylistically this
22077 would usually be considered an inappropriate way to structure
22078 a program.
22079
22080 An important concern arises in the context of elaboration code:
22081 we have to be sure that it is executed in an appropriate order. What we
22082 have is a series of elaboration code sections, potentially one section
22083 for each unit in the program. It is important that these execute
22084 in the correct order. Correctness here means that, taking the above
22085 example of the declaration of @code{Sqrt_Half},
22086 if some other piece of
22087 elaboration code references @code{Sqrt_Half},
22088 then it must run after the
22089 section of elaboration code that contains the declaration of
22090 @code{Sqrt_Half}.
22091
22092 There would never be any order of elaboration problem if we made a rule
22093 that whenever you @code{with} a unit, you must elaborate both the spec and body
22094 of that unit before elaborating the unit doing the @code{with}'ing:
22095
22096 @smallexample @c ada
22097 @group
22098 @cartouche
22099 with Unit_1;
22100 package Unit_2 is ...
22101 @end cartouche
22102 @end group
22103 @end smallexample
22104
22105 @noindent
22106 would require that both the body and spec of @code{Unit_1} be elaborated
22107 before the spec of @code{Unit_2}. However, a rule like that would be far too
22108 restrictive. In particular, it would make it impossible to have routines
22109 in separate packages that were mutually recursive.
22110
22111 You might think that a clever enough compiler could look at the actual
22112 elaboration code and determine an appropriate correct order of elaboration,
22113 but in the general case, this is not possible. Consider the following
22114 example.
22115
22116 In the body of @code{Unit_1}, we have a procedure @code{Func_1}
22117 that references
22118 the variable @code{Sqrt_1}, which is declared in the elaboration code
22119 of the body of @code{Unit_1}:
22120
22121 @smallexample @c ada
22122 @cartouche
22123 Sqrt_1 : Float := Sqrt (0.1);
22124 @end cartouche
22125 @end smallexample
22126
22127 @noindent
22128 The elaboration code of the body of @code{Unit_1} also contains:
22129
22130 @smallexample @c ada
22131 @group
22132 @cartouche
22133 if expression_1 = 1 then
22134 Q := Unit_2.Func_2;
22135 end if;
22136 @end cartouche
22137 @end group
22138 @end smallexample
22139
22140 @noindent
22141 @code{Unit_2} is exactly parallel,
22142 it has a procedure @code{Func_2} that references
22143 the variable @code{Sqrt_2}, which is declared in the elaboration code of
22144 the body @code{Unit_2}:
22145
22146 @smallexample @c ada
22147 @cartouche
22148 Sqrt_2 : Float := Sqrt (0.1);
22149 @end cartouche
22150 @end smallexample
22151
22152 @noindent
22153 The elaboration code of the body of @code{Unit_2} also contains:
22154
22155 @smallexample @c ada
22156 @group
22157 @cartouche
22158 if expression_2 = 2 then
22159 Q := Unit_1.Func_1;
22160 end if;
22161 @end cartouche
22162 @end group
22163 @end smallexample
22164
22165 @noindent
22166 Now the question is, which of the following orders of elaboration is
22167 acceptable:
22168
22169 @smallexample
22170 @group
22171 Spec of Unit_1
22172 Spec of Unit_2
22173 Body of Unit_1
22174 Body of Unit_2
22175 @end group
22176 @end smallexample
22177
22178 @noindent
22179 or
22180
22181 @smallexample
22182 @group
22183 Spec of Unit_2
22184 Spec of Unit_1
22185 Body of Unit_2
22186 Body of Unit_1
22187 @end group
22188 @end smallexample
22189
22190 @noindent
22191 If you carefully analyze the flow here, you will see that you cannot tell
22192 at compile time the answer to this question.
22193 If @code{expression_1} is not equal to 1,
22194 and @code{expression_2} is not equal to 2,
22195 then either order is acceptable, because neither of the function calls is
22196 executed. If both tests evaluate to true, then neither order is acceptable
22197 and in fact there is no correct order.
22198
22199 If one of the two expressions is true, and the other is false, then one
22200 of the above orders is correct, and the other is incorrect. For example,
22201 if @code{expression_1} = 1 and @code{expression_2} /= 2,
22202 then the call to @code{Func_2}
22203 will occur, but not the call to @code{Func_1.}
22204 This means that it is essential
22205 to elaborate the body of @code{Unit_1} before
22206 the body of @code{Unit_2}, so the first
22207 order of elaboration is correct and the second is wrong.
22208
22209 By making @code{expression_1} and @code{expression_2}
22210 depend on input data, or perhaps
22211 the time of day, we can make it impossible for the compiler or binder
22212 to figure out which of these expressions will be true, and hence it
22213 is impossible to guarantee a safe order of elaboration at run time.
22214
22215 @node Checking the Elaboration Order in Ada 95
22216 @section Checking the Elaboration Order in Ada 95
22217
22218 @noindent
22219 In some languages that involve the same kind of elaboration problems,
22220 e.g. Java and C++, the programmer is expected to worry about these
22221 ordering problems himself, and it is common to
22222 write a program in which an incorrect elaboration order gives
22223 surprising results, because it references variables before they
22224 are initialized.
22225 Ada 95 is designed to be a safe language, and a programmer-beware approach is
22226 clearly not sufficient. Consequently, the language provides three lines
22227 of defense:
22228
22229 @table @asis
22230 @item Standard rules
22231 Some standard rules restrict the possible choice of elaboration
22232 order. In particular, if you @code{with} a unit, then its spec is always
22233 elaborated before the unit doing the @code{with}. Similarly, a parent
22234 spec is always elaborated before the child spec, and finally
22235 a spec is always elaborated before its corresponding body.
22236
22237 @item Dynamic elaboration checks
22238 @cindex Elaboration checks
22239 @cindex Checks, elaboration
22240 Dynamic checks are made at run time, so that if some entity is accessed
22241 before it is elaborated (typically by means of a subprogram call)
22242 then the exception (@code{Program_Error}) is raised.
22243
22244 @item Elaboration control
22245 Facilities are provided for the programmer to specify the desired order
22246 of elaboration.
22247 @end table
22248
22249 Let's look at these facilities in more detail. First, the rules for
22250 dynamic checking. One possible rule would be simply to say that the
22251 exception is raised if you access a variable which has not yet been
22252 elaborated. The trouble with this approach is that it could require
22253 expensive checks on every variable reference. Instead Ada 95 has two
22254 rules which are a little more restrictive, but easier to check, and
22255 easier to state:
22256
22257 @table @asis
22258 @item Restrictions on calls
22259 A subprogram can only be called at elaboration time if its body
22260 has been elaborated. The rules for elaboration given above guarantee
22261 that the spec of the subprogram has been elaborated before the
22262 call, but not the body. If this rule is violated, then the
22263 exception @code{Program_Error} is raised.
22264
22265 @item Restrictions on instantiations
22266 A generic unit can only be instantiated if the body of the generic
22267 unit has been elaborated. Again, the rules for elaboration given above
22268 guarantee that the spec of the generic unit has been elaborated
22269 before the instantiation, but not the body. If this rule is
22270 violated, then the exception @code{Program_Error} is raised.
22271 @end table
22272
22273 @noindent
22274 The idea is that if the body has been elaborated, then any variables
22275 it references must have been elaborated; by checking for the body being
22276 elaborated we guarantee that none of its references causes any
22277 trouble. As we noted above, this is a little too restrictive, because a
22278 subprogram that has no non-local references in its body may in fact be safe
22279 to call. However, it really would be unsafe to rely on this, because
22280 it would mean that the caller was aware of details of the implementation
22281 in the body. This goes against the basic tenets of Ada.
22282
22283 A plausible implementation can be described as follows.
22284 A Boolean variable is associated with each subprogram
22285 and each generic unit. This variable is initialized to False, and is set to
22286 True at the point body is elaborated. Every call or instantiation checks the
22287 variable, and raises @code{Program_Error} if the variable is False.
22288
22289 Note that one might think that it would be good enough to have one Boolean
22290 variable for each package, but that would not deal with cases of trying
22291 to call a body in the same package as the call
22292 that has not been elaborated yet.
22293 Of course a compiler may be able to do enough analysis to optimize away
22294 some of the Boolean variables as unnecessary, and @code{GNAT} indeed
22295 does such optimizations, but still the easiest conceptual model is to
22296 think of there being one variable per subprogram.
22297
22298 @node Controlling the Elaboration Order in Ada 95
22299 @section Controlling the Elaboration Order in Ada 95
22300
22301 @noindent
22302 In the previous section we discussed the rules in Ada 95 which ensure
22303 that @code{Program_Error} is raised if an incorrect elaboration order is
22304 chosen. This prevents erroneous executions, but we need mechanisms to
22305 specify a correct execution and avoid the exception altogether.
22306 To achieve this, Ada 95 provides a number of features for controlling
22307 the order of elaboration. We discuss these features in this section.
22308
22309 First, there are several ways of indicating to the compiler that a given
22310 unit has no elaboration problems:
22311
22312 @table @asis
22313 @item packages that do not require a body
22314 In Ada 95, a library package that does not require a body does not permit
22315 a body. This means that if we have a such a package, as in:
22316
22317 @smallexample @c ada
22318 @group
22319 @cartouche
22320 package Definitions is
22321 generic
22322 type m is new integer;
22323 package Subp is
22324 type a is array (1 .. 10) of m;
22325 type b is array (1 .. 20) of m;
22326 end Subp;
22327 end Definitions;
22328 @end cartouche
22329 @end group
22330 @end smallexample
22331
22332 @noindent
22333 A package that @code{with}'s @code{Definitions} may safely instantiate
22334 @code{Definitions.Subp} because the compiler can determine that there
22335 definitely is no package body to worry about in this case
22336
22337 @item pragma Pure
22338 @cindex pragma Pure
22339 @findex Pure
22340 Places sufficient restrictions on a unit to guarantee that
22341 no call to any subprogram in the unit can result in an
22342 elaboration problem. This means that the compiler does not need
22343 to worry about the point of elaboration of such units, and in
22344 particular, does not need to check any calls to any subprograms
22345 in this unit.
22346
22347 @item pragma Preelaborate
22348 @findex Preelaborate
22349 @cindex pragma Preelaborate
22350 This pragma places slightly less stringent restrictions on a unit than
22351 does pragma Pure,
22352 but these restrictions are still sufficient to ensure that there
22353 are no elaboration problems with any calls to the unit.
22354
22355 @item pragma Elaborate_Body
22356 @findex Elaborate_Body
22357 @cindex pragma Elaborate_Body
22358 This pragma requires that the body of a unit be elaborated immediately
22359 after its spec. Suppose a unit @code{A} has such a pragma,
22360 and unit @code{B} does
22361 a @code{with} of unit @code{A}. Recall that the standard rules require
22362 the spec of unit @code{A}
22363 to be elaborated before the @code{with}'ing unit; given the pragma in
22364 @code{A}, we also know that the body of @code{A}
22365 will be elaborated before @code{B}, so
22366 that calls to @code{A} are safe and do not need a check.
22367 @end table
22368
22369 @noindent
22370 Note that,
22371 unlike pragma @code{Pure} and pragma @code{Preelaborate},
22372 the use of
22373 @code{Elaborate_Body} does not guarantee that the program is
22374 free of elaboration problems, because it may not be possible
22375 to satisfy the requested elaboration order.
22376 Let's go back to the example with @code{Unit_1} and @code{Unit_2}.
22377 If a programmer
22378 marks @code{Unit_1} as @code{Elaborate_Body},
22379 and not @code{Unit_2,} then the order of
22380 elaboration will be:
22381
22382 @smallexample
22383 @group
22384 Spec of Unit_2
22385 Spec of Unit_1
22386 Body of Unit_1
22387 Body of Unit_2
22388 @end group
22389 @end smallexample
22390
22391 @noindent
22392 Now that means that the call to @code{Func_1} in @code{Unit_2}
22393 need not be checked,
22394 it must be safe. But the call to @code{Func_2} in
22395 @code{Unit_1} may still fail if
22396 @code{Expression_1} is equal to 1,
22397 and the programmer must still take
22398 responsibility for this not being the case.
22399
22400 If all units carry a pragma @code{Elaborate_Body}, then all problems are
22401 eliminated, except for calls entirely within a body, which are
22402 in any case fully under programmer control. However, using the pragma
22403 everywhere is not always possible.
22404 In particular, for our @code{Unit_1}/@code{Unit_2} example, if
22405 we marked both of them as having pragma @code{Elaborate_Body}, then
22406 clearly there would be no possible elaboration order.
22407
22408 The above pragmas allow a server to guarantee safe use by clients, and
22409 clearly this is the preferable approach. Consequently a good rule in
22410 Ada 95 is to mark units as @code{Pure} or @code{Preelaborate} if possible,
22411 and if this is not possible,
22412 mark them as @code{Elaborate_Body} if possible.
22413 As we have seen, there are situations where neither of these
22414 three pragmas can be used.
22415 So we also provide methods for clients to control the
22416 order of elaboration of the servers on which they depend:
22417
22418 @table @asis
22419 @item pragma Elaborate (unit)
22420 @findex Elaborate
22421 @cindex pragma Elaborate
22422 This pragma is placed in the context clause, after a @code{with} clause,
22423 and it requires that the body of the named unit be elaborated before
22424 the unit in which the pragma occurs. The idea is to use this pragma
22425 if the current unit calls at elaboration time, directly or indirectly,
22426 some subprogram in the named unit.
22427
22428 @item pragma Elaborate_All (unit)
22429 @findex Elaborate_All
22430 @cindex pragma Elaborate_All
22431 This is a stronger version of the Elaborate pragma. Consider the
22432 following example:
22433
22434 @smallexample
22435 Unit A @code{with}'s unit B and calls B.Func in elab code
22436 Unit B @code{with}'s unit C, and B.Func calls C.Func
22437 @end smallexample
22438
22439 @noindent
22440 Now if we put a pragma @code{Elaborate (B)}
22441 in unit @code{A}, this ensures that the
22442 body of @code{B} is elaborated before the call, but not the
22443 body of @code{C}, so
22444 the call to @code{C.Func} could still cause @code{Program_Error} to
22445 be raised.
22446
22447 The effect of a pragma @code{Elaborate_All} is stronger, it requires
22448 not only that the body of the named unit be elaborated before the
22449 unit doing the @code{with}, but also the bodies of all units that the
22450 named unit uses, following @code{with} links transitively. For example,
22451 if we put a pragma @code{Elaborate_All (B)} in unit @code{A},
22452 then it requires
22453 not only that the body of @code{B} be elaborated before @code{A},
22454 but also the
22455 body of @code{C}, because @code{B} @code{with}'s @code{C}.
22456 @end table
22457
22458 @noindent
22459 We are now in a position to give a usage rule in Ada 95 for avoiding
22460 elaboration problems, at least if dynamic dispatching and access to
22461 subprogram values are not used. We will handle these cases separately
22462 later.
22463
22464 The rule is simple. If a unit has elaboration code that can directly or
22465 indirectly make a call to a subprogram in a @code{with}'ed unit, or instantiate
22466 a generic unit in a @code{with}'ed unit,
22467 then if the @code{with}'ed unit does not have
22468 pragma @code{Pure} or @code{Preelaborate}, then the client should have
22469 a pragma @code{Elaborate_All}
22470 for the @code{with}'ed unit. By following this rule a client is
22471 assured that calls can be made without risk of an exception.
22472 If this rule is not followed, then a program may be in one of four
22473 states:
22474
22475 @table @asis
22476 @item No order exists
22477 No order of elaboration exists which follows the rules, taking into
22478 account any @code{Elaborate}, @code{Elaborate_All},
22479 or @code{Elaborate_Body} pragmas. In
22480 this case, an Ada 95 compiler must diagnose the situation at bind
22481 time, and refuse to build an executable program.
22482
22483 @item One or more orders exist, all incorrect
22484 One or more acceptable elaboration orders exists, and all of them
22485 generate an elaboration order problem. In this case, the binder
22486 can build an executable program, but @code{Program_Error} will be raised
22487 when the program is run.
22488
22489 @item Several orders exist, some right, some incorrect
22490 One or more acceptable elaboration orders exists, and some of them
22491 work, and some do not. The programmer has not controlled
22492 the order of elaboration, so the binder may or may not pick one of
22493 the correct orders, and the program may or may not raise an
22494 exception when it is run. This is the worst case, because it means
22495 that the program may fail when moved to another compiler, or even
22496 another version of the same compiler.
22497
22498 @item One or more orders exists, all correct
22499 One ore more acceptable elaboration orders exist, and all of them
22500 work. In this case the program runs successfully. This state of
22501 affairs can be guaranteed by following the rule we gave above, but
22502 may be true even if the rule is not followed.
22503 @end table
22504
22505 @noindent
22506 Note that one additional advantage of following our Elaborate_All rule
22507 is that the program continues to stay in the ideal (all orders OK) state
22508 even if maintenance
22509 changes some bodies of some subprograms. Conversely, if a program that does
22510 not follow this rule happens to be safe at some point, this state of affairs
22511 may deteriorate silently as a result of maintenance changes.
22512
22513 You may have noticed that the above discussion did not mention
22514 the use of @code{Elaborate_Body}. This was a deliberate omission. If you
22515 @code{with} an @code{Elaborate_Body} unit, it still may be the case that
22516 code in the body makes calls to some other unit, so it is still necessary
22517 to use @code{Elaborate_All} on such units.
22518
22519 @node Controlling Elaboration in GNAT - Internal Calls
22520 @section Controlling Elaboration in GNAT - Internal Calls
22521
22522 @noindent
22523 In the case of internal calls, i.e. calls within a single package, the
22524 programmer has full control over the order of elaboration, and it is up
22525 to the programmer to elaborate declarations in an appropriate order. For
22526 example writing:
22527
22528 @smallexample @c ada
22529 @group
22530 @cartouche
22531 function One return Float;
22532
22533 Q : Float := One;
22534
22535 function One return Float is
22536 begin
22537 return 1.0;
22538 end One;
22539 @end cartouche
22540 @end group
22541 @end smallexample
22542
22543 @noindent
22544 will obviously raise @code{Program_Error} at run time, because function
22545 One will be called before its body is elaborated. In this case GNAT will
22546 generate a warning that the call will raise @code{Program_Error}:
22547
22548 @smallexample
22549 @group
22550 @cartouche
22551 1. procedure y is
22552 2. function One return Float;
22553 3.
22554 4. Q : Float := One;
22555 |
22556 >>> warning: cannot call "One" before body is elaborated
22557 >>> warning: Program_Error will be raised at run time
22558
22559 5.
22560 6. function One return Float is
22561 7. begin
22562 8. return 1.0;
22563 9. end One;
22564 10.
22565 11. begin
22566 12. null;
22567 13. end;
22568 @end cartouche
22569 @end group
22570 @end smallexample
22571
22572 @noindent
22573 Note that in this particular case, it is likely that the call is safe, because
22574 the function @code{One} does not access any global variables.
22575 Nevertheless in Ada 95, we do not want the validity of the check to depend on
22576 the contents of the body (think about the separate compilation case), so this
22577 is still wrong, as we discussed in the previous sections.
22578
22579 The error is easily corrected by rearranging the declarations so that the
22580 body of One appears before the declaration containing the call
22581 (note that in Ada 95,
22582 declarations can appear in any order, so there is no restriction that
22583 would prevent this reordering, and if we write:
22584
22585 @smallexample @c ada
22586 @group
22587 @cartouche
22588 function One return Float;
22589
22590 function One return Float is
22591 begin
22592 return 1.0;
22593 end One;
22594
22595 Q : Float := One;
22596 @end cartouche
22597 @end group
22598 @end smallexample
22599
22600 @noindent
22601 then all is well, no warning is generated, and no
22602 @code{Program_Error} exception
22603 will be raised.
22604 Things are more complicated when a chain of subprograms is executed:
22605
22606 @smallexample @c ada
22607 @group
22608 @cartouche
22609 function A return Integer;
22610 function B return Integer;
22611 function C return Integer;
22612
22613 function B return Integer is begin return A; end;
22614 function C return Integer is begin return B; end;
22615
22616 X : Integer := C;
22617
22618 function A return Integer is begin return 1; end;
22619 @end cartouche
22620 @end group
22621 @end smallexample
22622
22623 @noindent
22624 Now the call to @code{C}
22625 at elaboration time in the declaration of @code{X} is correct, because
22626 the body of @code{C} is already elaborated,
22627 and the call to @code{B} within the body of
22628 @code{C} is correct, but the call
22629 to @code{A} within the body of @code{B} is incorrect, because the body
22630 of @code{A} has not been elaborated, so @code{Program_Error}
22631 will be raised on the call to @code{A}.
22632 In this case GNAT will generate a
22633 warning that @code{Program_Error} may be
22634 raised at the point of the call. Let's look at the warning:
22635
22636 @smallexample
22637 @group
22638 @cartouche
22639 1. procedure x is
22640 2. function A return Integer;
22641 3. function B return Integer;
22642 4. function C return Integer;
22643 5.
22644 6. function B return Integer is begin return A; end;
22645 |
22646 >>> warning: call to "A" before body is elaborated may
22647 raise Program_Error
22648 >>> warning: "B" called at line 7
22649 >>> warning: "C" called at line 9
22650
22651 7. function C return Integer is begin return B; end;
22652 8.
22653 9. X : Integer := C;
22654 10.
22655 11. function A return Integer is begin return 1; end;
22656 12.
22657 13. begin
22658 14. null;
22659 15. end;
22660 @end cartouche
22661 @end group
22662 @end smallexample
22663
22664 @noindent
22665 Note that the message here says ``may raise'', instead of the direct case,
22666 where the message says ``will be raised''. That's because whether
22667 @code{A} is
22668 actually called depends in general on run-time flow of control.
22669 For example, if the body of @code{B} said
22670
22671 @smallexample @c ada
22672 @group
22673 @cartouche
22674 function B return Integer is
22675 begin
22676 if some-condition-depending-on-input-data then
22677 return A;
22678 else
22679 return 1;
22680 end if;
22681 end B;
22682 @end cartouche
22683 @end group
22684 @end smallexample
22685
22686 @noindent
22687 then we could not know until run time whether the incorrect call to A would
22688 actually occur, so @code{Program_Error} might
22689 or might not be raised. It is possible for a compiler to
22690 do a better job of analyzing bodies, to
22691 determine whether or not @code{Program_Error}
22692 might be raised, but it certainly
22693 couldn't do a perfect job (that would require solving the halting problem
22694 and is provably impossible), and because this is a warning anyway, it does
22695 not seem worth the effort to do the analysis. Cases in which it
22696 would be relevant are rare.
22697
22698 In practice, warnings of either of the forms given
22699 above will usually correspond to
22700 real errors, and should be examined carefully and eliminated.
22701 In the rare case where a warning is bogus, it can be suppressed by any of
22702 the following methods:
22703
22704 @itemize @bullet
22705 @item
22706 Compile with the @option{-gnatws} switch set
22707
22708 @item
22709 Suppress @code{Elaboration_Check} for the called subprogram
22710
22711 @item
22712 Use pragma @code{Warnings_Off} to turn warnings off for the call
22713 @end itemize
22714
22715 @noindent
22716 For the internal elaboration check case,
22717 GNAT by default generates the
22718 necessary run-time checks to ensure
22719 that @code{Program_Error} is raised if any
22720 call fails an elaboration check. Of course this can only happen if a
22721 warning has been issued as described above. The use of pragma
22722 @code{Suppress (Elaboration_Check)} may (but is not guaranteed to) suppress
22723 some of these checks, meaning that it may be possible (but is not
22724 guaranteed) for a program to be able to call a subprogram whose body
22725 is not yet elaborated, without raising a @code{Program_Error} exception.
22726
22727 @node Controlling Elaboration in GNAT - External Calls
22728 @section Controlling Elaboration in GNAT - External Calls
22729
22730 @noindent
22731 The previous section discussed the case in which the execution of a
22732 particular thread of elaboration code occurred entirely within a
22733 single unit. This is the easy case to handle, because a programmer
22734 has direct and total control over the order of elaboration, and
22735 furthermore, checks need only be generated in cases which are rare
22736 and which the compiler can easily detect.
22737 The situation is more complex when separate compilation is taken into account.
22738 Consider the following:
22739
22740 @smallexample @c ada
22741 @cartouche
22742 @group
22743 package Math is
22744 function Sqrt (Arg : Float) return Float;
22745 end Math;
22746
22747 package body Math is
22748 function Sqrt (Arg : Float) return Float is
22749 begin
22750 ...
22751 end Sqrt;
22752 end Math;
22753 @end group
22754 @group
22755 with Math;
22756 package Stuff is
22757 X : Float := Math.Sqrt (0.5);
22758 end Stuff;
22759
22760 with Stuff;
22761 procedure Main is
22762 begin
22763 ...
22764 end Main;
22765 @end group
22766 @end cartouche
22767 @end smallexample
22768
22769 @noindent
22770 where @code{Main} is the main program. When this program is executed, the
22771 elaboration code must first be executed, and one of the jobs of the
22772 binder is to determine the order in which the units of a program are
22773 to be elaborated. In this case we have four units: the spec and body
22774 of @code{Math},
22775 the spec of @code{Stuff} and the body of @code{Main}).
22776 In what order should the four separate sections of elaboration code
22777 be executed?
22778
22779 There are some restrictions in the order of elaboration that the binder
22780 can choose. In particular, if unit U has a @code{with}
22781 for a package @code{X}, then you
22782 are assured that the spec of @code{X}
22783 is elaborated before U , but you are
22784 not assured that the body of @code{X}
22785 is elaborated before U.
22786 This means that in the above case, the binder is allowed to choose the
22787 order:
22788
22789 @smallexample
22790 spec of Math
22791 spec of Stuff
22792 body of Math
22793 body of Main
22794 @end smallexample
22795
22796 @noindent
22797 but that's not good, because now the call to @code{Math.Sqrt}
22798 that happens during
22799 the elaboration of the @code{Stuff}
22800 spec happens before the body of @code{Math.Sqrt} is
22801 elaborated, and hence causes @code{Program_Error} exception to be raised.
22802 At first glance, one might say that the binder is misbehaving, because
22803 obviously you want to elaborate the body of something you @code{with}
22804 first, but
22805 that is not a general rule that can be followed in all cases. Consider
22806
22807 @smallexample @c ada
22808 @group
22809 @cartouche
22810 package X is ...
22811
22812 package Y is ...
22813
22814 with X;
22815 package body Y is ...
22816
22817 with Y;
22818 package body X is ...
22819 @end cartouche
22820 @end group
22821 @end smallexample
22822
22823 @noindent
22824 This is a common arrangement, and, apart from the order of elaboration
22825 problems that might arise in connection with elaboration code, this works fine.
22826 A rule that says that you must first elaborate the body of anything you
22827 @code{with} cannot work in this case:
22828 the body of @code{X} @code{with}'s @code{Y},
22829 which means you would have to
22830 elaborate the body of @code{Y} first, but that @code{with}'s @code{X},
22831 which means
22832 you have to elaborate the body of @code{X} first, but ... and we have a
22833 loop that cannot be broken.
22834
22835 It is true that the binder can in many cases guess an order of elaboration
22836 that is unlikely to cause a @code{Program_Error}
22837 exception to be raised, and it tries to do so (in the
22838 above example of @code{Math/Stuff/Spec}, the GNAT binder will
22839 by default
22840 elaborate the body of @code{Math} right after its spec, so all will be well).
22841
22842 However, a program that blindly relies on the binder to be helpful can
22843 get into trouble, as we discussed in the previous sections, so
22844 GNAT
22845 provides a number of facilities for assisting the programmer in
22846 developing programs that are robust with respect to elaboration order.
22847
22848 @node Default Behavior in GNAT - Ensuring Safety
22849 @section Default Behavior in GNAT - Ensuring Safety
22850
22851 @noindent
22852 The default behavior in GNAT ensures elaboration safety. In its
22853 default mode GNAT implements the
22854 rule we previously described as the right approach. Let's restate it:
22855
22856 @itemize
22857 @item
22858 @emph{If a unit has elaboration code that can directly or indirectly make a
22859 call to a subprogram in a @code{with}'ed unit, or instantiate a generic unit
22860 in a @code{with}'ed unit, then if the @code{with}'ed unit
22861 does not have pragma @code{Pure} or
22862 @code{Preelaborate}, then the client should have an
22863 @code{Elaborate_All} for the @code{with}'ed unit.}
22864 @end itemize
22865
22866 @noindent
22867 By following this rule a client is assured that calls and instantiations
22868 can be made without risk of an exception.
22869
22870 In this mode GNAT traces all calls that are potentially made from
22871 elaboration code, and puts in any missing implicit @code{Elaborate_All}
22872 pragmas.
22873 The advantage of this approach is that no elaboration problems
22874 are possible if the binder can find an elaboration order that is
22875 consistent with these implicit @code{Elaborate_All} pragmas. The
22876 disadvantage of this approach is that no such order may exist.
22877
22878 If the binder does not generate any diagnostics, then it means that it
22879 has found an elaboration order that is guaranteed to be safe. However,
22880 the binder may still be relying on implicitly generated
22881 @code{Elaborate_All} pragmas so portability to other compilers than
22882 GNAT is not guaranteed.
22883
22884 If it is important to guarantee portability, then the compilations should
22885 use the
22886 @option{-gnatwl}
22887 (warn on elaboration problems) switch. This will cause warning messages
22888 to be generated indicating the missing @code{Elaborate_All} pragmas.
22889 Consider the following source program:
22890
22891 @smallexample @c ada
22892 @group
22893 @cartouche
22894 with k;
22895 package j is
22896 m : integer := k.r;
22897 end;
22898 @end cartouche
22899 @end group
22900 @end smallexample
22901
22902 @noindent
22903 where it is clear that there
22904 should be a pragma @code{Elaborate_All}
22905 for unit @code{k}. An implicit pragma will be generated, and it is
22906 likely that the binder will be able to honor it. However, if you want
22907 to port this program to some other Ada compiler than GNAT.
22908 it is safer to include the pragma explicitly in the source. If this
22909 unit is compiled with the
22910 @option{-gnatwl}
22911 switch, then the compiler outputs a warning:
22912
22913 @smallexample
22914 @group
22915 @cartouche
22916 1. with k;
22917 2. package j is
22918 3. m : integer := k.r;
22919 |
22920 >>> warning: call to "r" may raise Program_Error
22921 >>> warning: missing pragma Elaborate_All for "k"
22922
22923 4. end;
22924 @end cartouche
22925 @end group
22926 @end smallexample
22927
22928 @noindent
22929 and these warnings can be used as a guide for supplying manually
22930 the missing pragmas. It is usually a bad idea to use this warning
22931 option during development. That's because it will warn you when
22932 you need to put in a pragma, but cannot warn you when it is time
22933 to take it out. So the use of pragma Elaborate_All may lead to
22934 unnecessary dependencies and even false circularities.
22935
22936 This default mode is more restrictive than the Ada Reference
22937 Manual, and it is possible to construct programs which will compile
22938 using the dynamic model described there, but will run into a
22939 circularity using the safer static model we have described.
22940
22941 Of course any Ada compiler must be able to operate in a mode
22942 consistent with the requirements of the Ada Reference Manual,
22943 and in particular must have the capability of implementing the
22944 standard dynamic model of elaboration with run-time checks.
22945
22946 In GNAT, this standard mode can be achieved either by the use of
22947 the @option{-gnatE} switch on the compiler (@code{gcc} or @code{gnatmake})
22948 command, or by the use of the configuration pragma:
22949
22950 @smallexample @c ada
22951 pragma Elaboration_Checks (RM);
22952 @end smallexample
22953
22954 @noindent
22955 Either approach will cause the unit affected to be compiled using the
22956 standard dynamic run-time elaboration checks described in the Ada
22957 Reference Manual. The static model is generally preferable, since it
22958 is clearly safer to rely on compile and link time checks rather than
22959 run-time checks. However, in the case of legacy code, it may be
22960 difficult to meet the requirements of the static model. This
22961 issue is further discussed in
22962 @ref{What to Do If the Default Elaboration Behavior Fails}.
22963
22964 Note that the static model provides a strict subset of the allowed
22965 behavior and programs of the Ada Reference Manual, so if you do
22966 adhere to the static model and no circularities exist,
22967 then you are assured that your program will
22968 work using the dynamic model, providing that you remove any
22969 pragma Elaborate statements from the source.
22970
22971 @node Treatment of Pragma Elaborate
22972 @section Treatment of Pragma Elaborate
22973 @cindex Pragma Elaborate
22974
22975 @noindent
22976 The use of @code{pragma Elaborate}
22977 should generally be avoided in Ada 95 programs.
22978 The reason for this is that there is no guarantee that transitive calls
22979 will be properly handled. Indeed at one point, this pragma was placed
22980 in Annex J (Obsolescent Features), on the grounds that it is never useful.
22981
22982 Now that's a bit restrictive. In practice, the case in which
22983 @code{pragma Elaborate} is useful is when the caller knows that there
22984 are no transitive calls, or that the called unit contains all necessary
22985 transitive @code{pragma Elaborate} statements, and legacy code often
22986 contains such uses.
22987
22988 Strictly speaking the static mode in GNAT should ignore such pragmas,
22989 since there is no assurance at compile time that the necessary safety
22990 conditions are met. In practice, this would cause GNAT to be incompatible
22991 with correctly written Ada 83 code that had all necessary
22992 @code{pragma Elaborate} statements in place. Consequently, we made the
22993 decision that GNAT in its default mode will believe that if it encounters
22994 a @code{pragma Elaborate} then the programmer knows what they are doing,
22995 and it will trust that no elaboration errors can occur.
22996
22997 The result of this decision is two-fold. First to be safe using the
22998 static mode, you should remove all @code{pragma Elaborate} statements.
22999 Second, when fixing circularities in existing code, you can selectively
23000 use @code{pragma Elaborate} statements to convince the static mode of
23001 GNAT that it need not generate an implicit @code{pragma Elaborate_All}
23002 statement.
23003
23004 When using the static mode with @option{-gnatwl}, any use of
23005 @code{pragma Elaborate} will generate a warning about possible
23006 problems.
23007
23008 @node Elaboration Issues for Library Tasks
23009 @section Elaboration Issues for Library Tasks
23010 @cindex Library tasks, elaboration issues
23011 @cindex Elaboration of library tasks
23012
23013 @noindent
23014 In this section we examine special elaboration issues that arise for
23015 programs that declare library level tasks.
23016
23017 Generally the model of execution of an Ada program is that all units are
23018 elaborated, and then execution of the program starts. However, the
23019 declaration of library tasks definitely does not fit this model. The
23020 reason for this is that library tasks start as soon as they are declared
23021 (more precisely, as soon as the statement part of the enclosing package
23022 body is reached), that is to say before elaboration
23023 of the program is complete. This means that if such a task calls a
23024 subprogram, or an entry in another task, the callee may or may not be
23025 elaborated yet, and in the standard
23026 Reference Manual model of dynamic elaboration checks, you can even
23027 get timing dependent Program_Error exceptions, since there can be
23028 a race between the elaboration code and the task code.
23029
23030 The static model of elaboration in GNAT seeks to avoid all such
23031 dynamic behavior, by being conservative, and the conservative
23032 approach in this particular case is to assume that all the code
23033 in a task body is potentially executed at elaboration time if
23034 a task is declared at the library level.
23035
23036 This can definitely result in unexpected circularities. Consider
23037 the following example
23038
23039 @smallexample @c ada
23040 package Decls is
23041 task Lib_Task is
23042 entry Start;
23043 end Lib_Task;
23044
23045 type My_Int is new Integer;
23046
23047 function Ident (M : My_Int) return My_Int;
23048 end Decls;
23049
23050 with Utils;
23051 package body Decls is
23052 task body Lib_Task is
23053 begin
23054 accept Start;
23055 Utils.Put_Val (2);
23056 end Lib_Task;
23057
23058 function Ident (M : My_Int) return My_Int is
23059 begin
23060 return M;
23061 end Ident;
23062 end Decls;
23063
23064 with Decls;
23065 package Utils is
23066 procedure Put_Val (Arg : Decls.My_Int);
23067 end Utils;
23068
23069 with Text_IO;
23070 package body Utils is
23071 procedure Put_Val (Arg : Decls.My_Int) is
23072 begin
23073 Text_IO.Put_Line (Decls.My_Int'Image (Decls.Ident (Arg)));
23074 end Put_Val;
23075 end Utils;
23076
23077 with Decls;
23078 procedure Main is
23079 begin
23080 Decls.Lib_Task.Start;
23081 end;
23082 @end smallexample
23083
23084 @noindent
23085 If the above example is compiled in the default static elaboration
23086 mode, then a circularity occurs. The circularity comes from the call
23087 @code{Utils.Put_Val} in the task body of @code{Decls.Lib_Task}. Since
23088 this call occurs in elaboration code, we need an implicit pragma
23089 @code{Elaborate_All} for @code{Utils}. This means that not only must
23090 the spec and body of @code{Utils} be elaborated before the body
23091 of @code{Decls}, but also the spec and body of any unit that is
23092 @code{with'ed} by the body of @code{Utils} must also be elaborated before
23093 the body of @code{Decls}. This is the transitive implication of
23094 pragma @code{Elaborate_All} and it makes sense, because in general
23095 the body of @code{Put_Val} might have a call to something in a
23096 @code{with'ed} unit.
23097
23098 In this case, the body of Utils (actually its spec) @code{with's}
23099 @code{Decls}. Unfortunately this means that the body of @code{Decls}
23100 must be elaborated before itself, in case there is a call from the
23101 body of @code{Utils}.
23102
23103 Here is the exact chain of events we are worrying about:
23104
23105 @enumerate
23106 @item
23107 In the body of @code{Decls} a call is made from within the body of a library
23108 task to a subprogram in the package @code{Utils}. Since this call may
23109 occur at elaboration time (given that the task is activated at elaboration
23110 time), we have to assume the worst, i.e. that the
23111 call does happen at elaboration time.
23112
23113 @item
23114 This means that the body and spec of @code{Util} must be elaborated before
23115 the body of @code{Decls} so that this call does not cause an access before
23116 elaboration.
23117
23118 @item
23119 Within the body of @code{Util}, specifically within the body of
23120 @code{Util.Put_Val} there may be calls to any unit @code{with}'ed
23121 by this package.
23122
23123 @item
23124 One such @code{with}'ed package is package @code{Decls}, so there
23125 might be a call to a subprogram in @code{Decls} in @code{Put_Val}.
23126 In fact there is such a call in this example, but we would have to
23127 assume that there was such a call even if it were not there, since
23128 we are not supposed to write the body of @code{Decls} knowing what
23129 is in the body of @code{Utils}; certainly in the case of the
23130 static elaboration model, the compiler does not know what is in
23131 other bodies and must assume the worst.
23132
23133 @item
23134 This means that the spec and body of @code{Decls} must also be
23135 elaborated before we elaborate the unit containing the call, but
23136 that unit is @code{Decls}! This means that the body of @code{Decls}
23137 must be elaborated before itself, and that's a circularity.
23138 @end enumerate
23139
23140 @noindent
23141 Indeed, if you add an explicit pragma Elaborate_All for @code{Utils} in
23142 the body of @code{Decls} you will get a true Ada Reference Manual
23143 circularity that makes the program illegal.
23144
23145 In practice, we have found that problems with the static model of
23146 elaboration in existing code often arise from library tasks, so
23147 we must address this particular situation.
23148
23149 Note that if we compile and run the program above, using the dynamic model of
23150 elaboration (that is to say use the @option{-gnatE} switch),
23151 then it compiles, binds,
23152 links, and runs, printing the expected result of 2. Therefore in some sense
23153 the circularity here is only apparent, and we need to capture
23154 the properties of this program that distinguish it from other library-level
23155 tasks that have real elaboration problems.
23156
23157 We have four possible answers to this question:
23158
23159 @itemize @bullet
23160
23161 @item
23162 Use the dynamic model of elaboration.
23163
23164 If we use the @option{-gnatE} switch, then as noted above, the program works.
23165 Why is this? If we examine the task body, it is apparent that the task cannot
23166 proceed past the
23167 @code{accept} statement until after elaboration has been completed, because
23168 the corresponding entry call comes from the main program, not earlier.
23169 This is why the dynamic model works here. But that's really giving
23170 up on a precise analysis, and we prefer to take this approach only if we cannot
23171 solve the
23172 problem in any other manner. So let us examine two ways to reorganize
23173 the program to avoid the potential elaboration problem.
23174
23175 @item
23176 Split library tasks into separate packages.
23177
23178 Write separate packages, so that library tasks are isolated from
23179 other declarations as much as possible. Let us look at a variation on
23180 the above program.
23181
23182 @smallexample @c ada
23183 package Decls1 is
23184 task Lib_Task is
23185 entry Start;
23186 end Lib_Task;
23187 end Decls1;
23188
23189 with Utils;
23190 package body Decls1 is
23191 task body Lib_Task is
23192 begin
23193 accept Start;
23194 Utils.Put_Val (2);
23195 end Lib_Task;
23196 end Decls1;
23197
23198 package Decls2 is
23199 type My_Int is new Integer;
23200 function Ident (M : My_Int) return My_Int;
23201 end Decls2;
23202
23203 with Utils;
23204 package body Decls2 is
23205 function Ident (M : My_Int) return My_Int is
23206 begin
23207 return M;
23208 end Ident;
23209 end Decls2;
23210
23211 with Decls2;
23212 package Utils is
23213 procedure Put_Val (Arg : Decls2.My_Int);
23214 end Utils;
23215
23216 with Text_IO;
23217 package body Utils is
23218 procedure Put_Val (Arg : Decls2.My_Int) is
23219 begin
23220 Text_IO.Put_Line (Decls2.My_Int'Image (Decls2.Ident (Arg)));
23221 end Put_Val;
23222 end Utils;
23223
23224 with Decls1;
23225 procedure Main is
23226 begin
23227 Decls1.Lib_Task.Start;
23228 end;
23229 @end smallexample
23230
23231 @noindent
23232 All we have done is to split @code{Decls} into two packages, one
23233 containing the library task, and one containing everything else. Now
23234 there is no cycle, and the program compiles, binds, links and executes
23235 using the default static model of elaboration.
23236
23237 @item
23238 Declare separate task types.
23239
23240 A significant part of the problem arises because of the use of the
23241 single task declaration form. This means that the elaboration of
23242 the task type, and the elaboration of the task itself (i.e. the
23243 creation of the task) happen at the same time. A good rule
23244 of style in Ada 95 is to always create explicit task types. By
23245 following the additional step of placing task objects in separate
23246 packages from the task type declaration, many elaboration problems
23247 are avoided. Here is another modified example of the example program:
23248
23249 @smallexample @c ada
23250 package Decls is
23251 task type Lib_Task_Type is
23252 entry Start;
23253 end Lib_Task_Type;
23254
23255 type My_Int is new Integer;
23256
23257 function Ident (M : My_Int) return My_Int;
23258 end Decls;
23259
23260 with Utils;
23261 package body Decls is
23262 task body Lib_Task_Type is
23263 begin
23264 accept Start;
23265 Utils.Put_Val (2);
23266 end Lib_Task_Type;
23267
23268 function Ident (M : My_Int) return My_Int is
23269 begin
23270 return M;
23271 end Ident;
23272 end Decls;
23273
23274 with Decls;
23275 package Utils is
23276 procedure Put_Val (Arg : Decls.My_Int);
23277 end Utils;
23278
23279 with Text_IO;
23280 package body Utils is
23281 procedure Put_Val (Arg : Decls.My_Int) is
23282 begin
23283 Text_IO.Put_Line (Decls.My_Int'Image (Decls.Ident (Arg)));
23284 end Put_Val;
23285 end Utils;
23286
23287 with Decls;
23288 package Declst is
23289 Lib_Task : Decls.Lib_Task_Type;
23290 end Declst;
23291
23292 with Declst;
23293 procedure Main is
23294 begin
23295 Declst.Lib_Task.Start;
23296 end;
23297 @end smallexample
23298
23299 @noindent
23300 What we have done here is to replace the @code{task} declaration in
23301 package @code{Decls} with a @code{task type} declaration. Then we
23302 introduce a separate package @code{Declst} to contain the actual
23303 task object. This separates the elaboration issues for
23304 the @code{task type}
23305 declaration, which causes no trouble, from the elaboration issues
23306 of the task object, which is also unproblematic, since it is now independent
23307 of the elaboration of @code{Utils}.
23308 This separation of concerns also corresponds to
23309 a generally sound engineering principle of separating declarations
23310 from instances. This version of the program also compiles, binds, links,
23311 and executes, generating the expected output.
23312
23313 @item
23314 Use No_Entry_Calls_In_Elaboration_Code restriction.
23315 @cindex No_Entry_Calls_In_Elaboration_Code
23316
23317 The previous two approaches described how a program can be restructured
23318 to avoid the special problems caused by library task bodies. in practice,
23319 however, such restructuring may be difficult to apply to existing legacy code,
23320 so we must consider solutions that do not require massive rewriting.
23321
23322 Let us consider more carefully why our original sample program works
23323 under the dynamic model of elaboration. The reason is that the code
23324 in the task body blocks immediately on the @code{accept}
23325 statement. Now of course there is nothing to prohibit elaboration
23326 code from making entry calls (for example from another library level task),
23327 so we cannot tell in isolation that
23328 the task will not execute the accept statement during elaboration.
23329
23330 However, in practice it is very unusual to see elaboration code
23331 make any entry calls, and the pattern of tasks starting
23332 at elaboration time and then immediately blocking on @code{accept} or
23333 @code{select} statements is very common. What this means is that
23334 the compiler is being too pessimistic when it analyzes the
23335 whole package body as though it might be executed at elaboration
23336 time.
23337
23338 If we know that the elaboration code contains no entry calls, (a very safe
23339 assumption most of the time, that could almost be made the default
23340 behavior), then we can compile all units of the program under control
23341 of the following configuration pragma:
23342
23343 @smallexample
23344 pragma Restrictions (No_Entry_Calls_In_Elaboration_Code);
23345 @end smallexample
23346
23347 @noindent
23348 This pragma can be placed in the @file{gnat.adc} file in the usual
23349 manner. If we take our original unmodified program and compile it
23350 in the presence of a @file{gnat.adc} containing the above pragma,
23351 then once again, we can compile, bind, link, and execute, obtaining
23352 the expected result. In the presence of this pragma, the compiler does
23353 not trace calls in a task body, that appear after the first @code{accept}
23354 or @code{select} statement, and therefore does not report a potential
23355 circularity in the original program.
23356
23357 The compiler will check to the extent it can that the above
23358 restriction is not violated, but it is not always possible to do a
23359 complete check at compile time, so it is important to use this
23360 pragma only if the stated restriction is in fact met, that is to say
23361 no task receives an entry call before elaboration of all units is completed.
23362
23363 @end itemize
23364
23365 @node Mixing Elaboration Models
23366 @section Mixing Elaboration Models
23367 @noindent
23368 So far, we have assumed that the entire program is either compiled
23369 using the dynamic model or static model, ensuring consistency. It
23370 is possible to mix the two models, but rules have to be followed
23371 if this mixing is done to ensure that elaboration checks are not
23372 omitted.
23373
23374 The basic rule is that @emph{a unit compiled with the static model cannot
23375 be @code{with'ed} by a unit compiled with the dynamic model}. The
23376 reason for this is that in the static model, a unit assumes that
23377 its clients guarantee to use (the equivalent of) pragma
23378 @code{Elaborate_All} so that no elaboration checks are required
23379 in inner subprograms, and this assumption is violated if the
23380 client is compiled with dynamic checks.
23381
23382 The precise rule is as follows. A unit that is compiled with dynamic
23383 checks can only @code{with} a unit that meets at least one of the
23384 following criteria:
23385
23386 @itemize @bullet
23387
23388 @item
23389 The @code{with'ed} unit is itself compiled with dynamic elaboration
23390 checks (that is with the @option{-gnatE} switch.
23391
23392 @item
23393 The @code{with'ed} unit is an internal GNAT implementation unit from
23394 the System, Interfaces, Ada, or GNAT hierarchies.
23395
23396 @item
23397 The @code{with'ed} unit has pragma Preelaborate or pragma Pure.
23398
23399 @item
23400 The @code{with'ing} unit (that is the client) has an explicit pragma
23401 @code{Elaborate_All} for the @code{with'ed} unit.
23402
23403 @end itemize
23404
23405 @noindent
23406 If this rule is violated, that is if a unit with dynamic elaboration
23407 checks @code{with's} a unit that does not meet one of the above four
23408 criteria, then the binder (@code{gnatbind}) will issue a warning
23409 similar to that in the following example:
23410
23411 @smallexample
23412 warning: "x.ads" has dynamic elaboration checks and with's
23413 warning: "y.ads" which has static elaboration checks
23414 @end smallexample
23415
23416 @noindent
23417 These warnings indicate that the rule has been violated, and that as a result
23418 elaboration checks may be missed in the resulting executable file.
23419 This warning may be suppressed using the @option{-ws} binder switch
23420 in the usual manner.
23421
23422 One useful application of this mixing rule is in the case of a subsystem
23423 which does not itself @code{with} units from the remainder of the
23424 application. In this case, the entire subsystem can be compiled with
23425 dynamic checks to resolve a circularity in the subsystem, while
23426 allowing the main application that uses this subsystem to be compiled
23427 using the more reliable default static model.
23428
23429 @node What to Do If the Default Elaboration Behavior Fails
23430 @section What to Do If the Default Elaboration Behavior Fails
23431
23432 @noindent
23433 If the binder cannot find an acceptable order, it outputs detailed
23434 diagnostics. For example:
23435 @smallexample
23436 @group
23437 @iftex
23438 @leftskip=0cm
23439 @end iftex
23440 error: elaboration circularity detected
23441 info: "proc (body)" must be elaborated before "pack (body)"
23442 info: reason: Elaborate_All probably needed in unit "pack (body)"
23443 info: recompile "pack (body)" with -gnatwl
23444 info: for full details
23445 info: "proc (body)"
23446 info: is needed by its spec:
23447 info: "proc (spec)"
23448 info: which is withed by:
23449 info: "pack (body)"
23450 info: "pack (body)" must be elaborated before "proc (body)"
23451 info: reason: pragma Elaborate in unit "proc (body)"
23452 @end group
23453
23454 @end smallexample
23455
23456 @noindent
23457 In this case we have a cycle that the binder cannot break. On the one
23458 hand, there is an explicit pragma Elaborate in @code{proc} for
23459 @code{pack}. This means that the body of @code{pack} must be elaborated
23460 before the body of @code{proc}. On the other hand, there is elaboration
23461 code in @code{pack} that calls a subprogram in @code{proc}. This means
23462 that for maximum safety, there should really be a pragma
23463 Elaborate_All in @code{pack} for @code{proc} which would require that
23464 the body of @code{proc} be elaborated before the body of
23465 @code{pack}. Clearly both requirements cannot be satisfied.
23466 Faced with a circularity of this kind, you have three different options.
23467
23468 @table @asis
23469 @item Fix the program
23470 The most desirable option from the point of view of long-term maintenance
23471 is to rearrange the program so that the elaboration problems are avoided.
23472 One useful technique is to place the elaboration code into separate
23473 child packages. Another is to move some of the initialization code to
23474 explicitly called subprograms, where the program controls the order
23475 of initialization explicitly. Although this is the most desirable option,
23476 it may be impractical and involve too much modification, especially in
23477 the case of complex legacy code.
23478
23479 @item Perform dynamic checks
23480 If the compilations are done using the
23481 @option{-gnatE}
23482 (dynamic elaboration check) switch, then GNAT behaves in
23483 a quite different manner. Dynamic checks are generated for all calls
23484 that could possibly result in raising an exception. With this switch,
23485 the compiler does not generate implicit @code{Elaborate_All} pragmas.
23486 The behavior then is exactly as specified in the Ada 95 Reference Manual.
23487 The binder will generate an executable program that may or may not
23488 raise @code{Program_Error}, and then it is the programmer's job to ensure
23489 that it does not raise an exception. Note that it is important to
23490 compile all units with the switch, it cannot be used selectively.
23491
23492 @item Suppress checks
23493 The drawback of dynamic checks is that they generate a
23494 significant overhead at run time, both in space and time. If you
23495 are absolutely sure that your program cannot raise any elaboration
23496 exceptions, and you still want to use the dynamic elaboration model,
23497 then you can use the configuration pragma
23498 @code{Suppress (Elaboration_Check)} to suppress all such checks. For
23499 example this pragma could be placed in the @file{gnat.adc} file.
23500
23501 @item Suppress checks selectively
23502 When you know that certain calls in elaboration code cannot possibly
23503 lead to an elaboration error, and the binder nevertheless generates warnings
23504 on those calls and inserts Elaborate_All pragmas that lead to elaboration
23505 circularities, it is possible to remove those warnings locally and obtain
23506 a program that will bind. Clearly this can be unsafe, and it is the
23507 responsibility of the programmer to make sure that the resulting program has
23508 no elaboration anomalies. The pragma @code{Suppress (Elaboration_Check)} can
23509 be used with different granularity to suppress warnings and break
23510 elaboration circularities:
23511
23512 @itemize @bullet
23513 @item
23514 Place the pragma that names the called subprogram in the declarative part
23515 that contains the call.
23516
23517 @item
23518 Place the pragma in the declarative part, without naming an entity. This
23519 disables warnings on all calls in the corresponding declarative region.
23520
23521 @item
23522 Place the pragma in the package spec that declares the called subprogram,
23523 and name the subprogram. This disables warnings on all elaboration calls to
23524 that subprogram.
23525
23526 @item
23527 Place the pragma in the package spec that declares the called subprogram,
23528 without naming any entity. This disables warnings on all elaboration calls to
23529 all subprograms declared in this spec.
23530
23531 @item Use Pragma Elaborate
23532 As previously described in section @xref{Treatment of Pragma Elaborate},
23533 GNAT in static mode assumes that a @code{pragma} Elaborate indicates correctly
23534 that no elaboration checks are required on calls to the designated unit.
23535 There may be cases in which the caller knows that no transitive calls
23536 can occur, so that a @code{pragma Elaborate} will be sufficient in a
23537 case where @code{pragma Elaborate_All} would cause a circularity.
23538 @end itemize
23539
23540 @noindent
23541 These five cases are listed in order of decreasing safety, and therefore
23542 require increasing programmer care in their application. Consider the
23543 following program:
23544
23545 @smallexample @c adanocomment
23546 package Pack1 is
23547 function F1 return Integer;
23548 X1 : Integer;
23549 end Pack1;
23550
23551 package Pack2 is
23552 function F2 return Integer;
23553 function Pure (x : integer) return integer;
23554 -- pragma Suppress (Elaboration_Check, On => Pure); -- (3)
23555 -- pragma Suppress (Elaboration_Check); -- (4)
23556 end Pack2;
23557
23558 with Pack2;
23559 package body Pack1 is
23560 function F1 return Integer is
23561 begin
23562 return 100;
23563 end F1;
23564 Val : integer := Pack2.Pure (11); -- Elab. call (1)
23565 begin
23566 declare
23567 -- pragma Suppress(Elaboration_Check, Pack2.F2); -- (1)
23568 -- pragma Suppress(Elaboration_Check); -- (2)
23569 begin
23570 X1 := Pack2.F2 + 1; -- Elab. call (2)
23571 end;
23572 end Pack1;
23573
23574 with Pack1;
23575 package body Pack2 is
23576 function F2 return Integer is
23577 begin
23578 return Pack1.F1;
23579 end F2;
23580 function Pure (x : integer) return integer is
23581 begin
23582 return x ** 3 - 3 * x;
23583 end;
23584 end Pack2;
23585
23586 with Pack1, Ada.Text_IO;
23587 procedure Proc3 is
23588 begin
23589 Ada.Text_IO.Put_Line(Pack1.X1'Img); -- 101
23590 end Proc3;
23591 @end smallexample
23592 In the absence of any pragmas, an attempt to bind this program produces
23593 the following diagnostics:
23594 @smallexample
23595 @group
23596 @iftex
23597 @leftskip=.5cm
23598 @end iftex
23599 error: elaboration circularity detected
23600 info: "pack1 (body)" must be elaborated before "pack1 (body)"
23601 info: reason: Elaborate_All probably needed in unit "pack1 (body)"
23602 info: recompile "pack1 (body)" with -gnatwl for full details
23603 info: "pack1 (body)"
23604 info: must be elaborated along with its spec:
23605 info: "pack1 (spec)"
23606 info: which is withed by:
23607 info: "pack2 (body)"
23608 info: which must be elaborated along with its spec:
23609 info: "pack2 (spec)"
23610 info: which is withed by:
23611 info: "pack1 (body)"
23612 @end group
23613 @end smallexample
23614 The sources of the circularity are the two calls to @code{Pack2.Pure} and
23615 @code{Pack2.F2} in the body of @code{Pack1}. We can see that the call to
23616 F2 is safe, even though F2 calls F1, because the call appears after the
23617 elaboration of the body of F1. Therefore the pragma (1) is safe, and will
23618 remove the warning on the call. It is also possible to use pragma (2)
23619 because there are no other potentially unsafe calls in the block.
23620
23621 @noindent
23622 The call to @code{Pure} is safe because this function does not depend on the
23623 state of @code{Pack2}. Therefore any call to this function is safe, and it
23624 is correct to place pragma (3) in the corresponding package spec.
23625
23626 @noindent
23627 Finally, we could place pragma (4) in the spec of @code{Pack2} to disable
23628 warnings on all calls to functions declared therein. Note that this is not
23629 necessarily safe, and requires more detailed examination of the subprogram
23630 bodies involved. In particular, a call to @code{F2} requires that @code{F1}
23631 be already elaborated.
23632 @end table
23633
23634 @noindent
23635 It is hard to generalize on which of these four approaches should be
23636 taken. Obviously if it is possible to fix the program so that the default
23637 treatment works, this is preferable, but this may not always be practical.
23638 It is certainly simple enough to use
23639 @option{-gnatE}
23640 but the danger in this case is that, even if the GNAT binder
23641 finds a correct elaboration order, it may not always do so,
23642 and certainly a binder from another Ada compiler might not. A
23643 combination of testing and analysis (for which the warnings generated
23644 with the
23645 @option{-gnatwl}
23646 switch can be useful) must be used to ensure that the program is free
23647 of errors. One switch that is useful in this testing is the
23648 @option{^-p (pessimistic elaboration order)^/PESSIMISTIC_ELABORATION_ORDER^}
23649 switch for
23650 @code{gnatbind}.
23651 Normally the binder tries to find an order that has the best chance of
23652 of avoiding elaboration problems. With this switch, the binder
23653 plays a devil's advocate role, and tries to choose the order that
23654 has the best chance of failing. If your program works even with this
23655 switch, then it has a better chance of being error free, but this is still
23656 not a guarantee.
23657
23658 For an example of this approach in action, consider the C-tests (executable
23659 tests) from the ACVC suite. If these are compiled and run with the default
23660 treatment, then all but one of them succeed without generating any error
23661 diagnostics from the binder. However, there is one test that fails, and
23662 this is not surprising, because the whole point of this test is to ensure
23663 that the compiler can handle cases where it is impossible to determine
23664 a correct order statically, and it checks that an exception is indeed
23665 raised at run time.
23666
23667 This one test must be compiled and run using the
23668 @option{-gnatE}
23669 switch, and then it passes. Alternatively, the entire suite can
23670 be run using this switch. It is never wrong to run with the dynamic
23671 elaboration switch if your code is correct, and we assume that the
23672 C-tests are indeed correct (it is less efficient, but efficiency is
23673 not a factor in running the ACVC tests.)
23674
23675 @node Elaboration for Access-to-Subprogram Values
23676 @section Elaboration for Access-to-Subprogram Values
23677 @cindex Access-to-subprogram
23678
23679 @noindent
23680 The introduction of access-to-subprogram types in Ada 95 complicates
23681 the handling of elaboration. The trouble is that it becomes
23682 impossible to tell at compile time which procedure
23683 is being called. This means that it is not possible for the binder
23684 to analyze the elaboration requirements in this case.
23685
23686 If at the point at which the access value is created
23687 (i.e., the evaluation of @code{P'Access} for a subprogram @code{P}),
23688 the body of the subprogram is
23689 known to have been elaborated, then the access value is safe, and its use
23690 does not require a check. This may be achieved by appropriate arrangement
23691 of the order of declarations if the subprogram is in the current unit,
23692 or, if the subprogram is in another unit, by using pragma
23693 @code{Pure}, @code{Preelaborate}, or @code{Elaborate_Body}
23694 on the referenced unit.
23695
23696 If the referenced body is not known to have been elaborated at the point
23697 the access value is created, then any use of the access value must do a
23698 dynamic check, and this dynamic check will fail and raise a
23699 @code{Program_Error} exception if the body has not been elaborated yet.
23700 GNAT will generate the necessary checks, and in addition, if the
23701 @option{-gnatwl}
23702 switch is set, will generate warnings that such checks are required.
23703
23704 The use of dynamic dispatching for tagged types similarly generates
23705 a requirement for dynamic checks, and premature calls to any primitive
23706 operation of a tagged type before the body of the operation has been
23707 elaborated, will result in the raising of @code{Program_Error}.
23708
23709 @node Summary of Procedures for Elaboration Control
23710 @section Summary of Procedures for Elaboration Control
23711 @cindex Elaboration control
23712
23713 @noindent
23714 First, compile your program with the default options, using none of
23715 the special elaboration control switches. If the binder successfully
23716 binds your program, then you can be confident that, apart from issues
23717 raised by the use of access-to-subprogram types and dynamic dispatching,
23718 the program is free of elaboration errors. If it is important that the
23719 program be portable, then use the
23720 @option{-gnatwl}
23721 switch to generate warnings about missing @code{Elaborate_All}
23722 pragmas, and supply the missing pragmas.
23723
23724 If the program fails to bind using the default static elaboration
23725 handling, then you can fix the program to eliminate the binder
23726 message, or recompile the entire program with the
23727 @option{-gnatE} switch to generate dynamic elaboration checks,
23728 and, if you are sure there really are no elaboration problems,
23729 use a global pragma @code{Suppress (Elaboration_Check)}.
23730
23731 @node Other Elaboration Order Considerations
23732 @section Other Elaboration Order Considerations
23733 @noindent
23734 This section has been entirely concerned with the issue of finding a valid
23735 elaboration order, as defined by the Ada Reference Manual. In a case
23736 where several elaboration orders are valid, the task is to find one
23737 of the possible valid elaboration orders (and the static model in GNAT
23738 will ensure that this is achieved).
23739
23740 The purpose of the elaboration rules in the Ada Reference Manual is to
23741 make sure that no entity is accessed before it has been elaborated. For
23742 a subprogram, this means that the spec and body must have been elaborated
23743 before the subprogram is called. For an object, this means that the object
23744 must have been elaborated before its value is read or written. A violation
23745 of either of these two requirements is an access before elaboration order,
23746 and this section has been all about avoiding such errors.
23747
23748 In the case where more than one order of elaboration is possible, in the
23749 sense that access before elaboration errors are avoided, then any one of
23750 the orders is ``correct'' in the sense that it meets the requirements of
23751 the Ada Reference Manual, and no such error occurs.
23752
23753 However, it may be the case for a given program, that there are
23754 constraints on the order of elaboration that come not from consideration
23755 of avoiding elaboration errors, but rather from extra-lingual logic
23756 requirements. Consider this example:
23757
23758 @smallexample @c ada
23759 with Init_Constants;
23760 package Constants is
23761 X : Integer := 0;
23762 Y : Integer := 0;
23763 end Constants;
23764
23765 package Init_Constants is
23766 procedure P; -- require a body
23767 end Init_Constants;
23768
23769 with Constants;
23770 package body Init_Constants is
23771 procedure P is begin null; end;
23772 begin
23773 Constants.X := 3;
23774 Constants.Y := 4;
23775 end Init_Constants;
23776
23777 with Constants;
23778 package Calc is
23779 Z : Integer := Constants.X + Constants.Y;
23780 end Calc;
23781
23782 with Calc;
23783 with Text_IO; use Text_IO;
23784 procedure Main is
23785 begin
23786 Put_Line (Calc.Z'Img);
23787 end Main;
23788 @end smallexample
23789
23790 @noindent
23791 In this example, there is more than one valid order of elaboration. For
23792 example both the following are correct orders:
23793
23794 @smallexample
23795 Init_Constants spec
23796 Constants spec
23797 Calc spec
23798 Init_Constants body
23799 Main body
23800
23801 and
23802
23803 Init_Constants spec
23804 Init_Constants body
23805 Constants spec
23806 Calc spec
23807 Main body
23808 @end smallexample
23809
23810 @noindent
23811 There is no language rule to prefer one or the other, both are correct
23812 from an order of elaboration point of view. But the programmatic effects
23813 of the two orders are very different. In the first, the elaboration routine
23814 of @code{Calc} initializes @code{Z} to zero, and then the main program
23815 runs with this value of zero. But in the second order, the elaboration
23816 routine of @code{Calc} runs after the body of Init_Constants has set
23817 @code{X} and @code{Y} and thus @code{Z} is set to 7 before @code{Main}
23818 runs.
23819
23820 One could perhaps by applying pretty clever non-artificial intelligence
23821 to the situation guess that it is more likely that the second order of
23822 elaboration is the one desired, but there is no formal linguistic reason
23823 to prefer one over the other. In fact in this particular case, GNAT will
23824 prefer the second order, because of the rule that bodies are elaborated
23825 as soon as possible, but it's just luck that this is what was wanted
23826 (if indeed the second order was preferred).
23827
23828 If the program cares about the order of elaboration routines in a case like
23829 this, it is important to specify the order required. In this particular
23830 case, that could have been achieved by adding to the spec of Calc:
23831
23832 @smallexample @c ada
23833 pragma Elaborate_All (Constants);
23834 @end smallexample
23835
23836 @noindent
23837 which requires that the body (if any) and spec of @code{Constants},
23838 as well as the body and spec of any unit @code{with}'ed by
23839 @code{Constants} be elaborated before @code{Calc} is elaborated.
23840
23841 Clearly no automatic method can always guess which alternative you require,
23842 and if you are working with legacy code that had constraints of this kind
23843 which were not properly specified by adding @code{Elaborate} or
23844 @code{Elaborate_All} pragmas, then indeed it is possible that two different
23845 compilers can choose different orders.
23846
23847 The @code{gnatbind}
23848 @option{^-p^/PESSIMISTIC_ELABORATION^} switch may be useful in smoking
23849 out problems. This switch causes bodies to be elaborated as late as possible
23850 instead of as early as possible. In the example above, it would have forced
23851 the choice of the first elaboration order. If you get different results
23852 when using this switch, and particularly if one set of results is right,
23853 and one is wrong as far as you are concerned, it shows that you have some
23854 missing @code{Elaborate} pragmas. For the example above, we have the
23855 following output:
23856
23857 @smallexample
23858 gnatmake -f -q main
23859 main
23860 7
23861 gnatmake -f -q main -bargs -p
23862 main
23863 0
23864 @end smallexample
23865
23866 @noindent
23867 It is of course quite unlikely that both these results are correct, so
23868 it is up to you in a case like this to investigate the source of the
23869 difference, by looking at the two elaboration orders that are chosen,
23870 and figuring out which is correct, and then adding the necessary
23871 @code{Elaborate_All} pragmas to ensure the desired order.
23872
23873
23874 @node Inline Assembler
23875 @appendix Inline Assembler
23876
23877 @noindent
23878 If you need to write low-level software that interacts directly
23879 with the hardware, Ada provides two ways to incorporate assembly
23880 language code into your program. First, you can import and invoke
23881 external routines written in assembly language, an Ada feature fully
23882 supported by GNAT. However, for small sections of code it may be simpler
23883 or more efficient to include assembly language statements directly
23884 in your Ada source program, using the facilities of the implementation-defined
23885 package @code{System.Machine_Code}, which incorporates the gcc
23886 Inline Assembler. The Inline Assembler approach offers a number of advantages,
23887 including the following:
23888
23889 @itemize @bullet
23890 @item No need to use non-Ada tools
23891 @item Consistent interface over different targets
23892 @item Automatic usage of the proper calling conventions
23893 @item Access to Ada constants and variables
23894 @item Definition of intrinsic routines
23895 @item Possibility of inlining a subprogram comprising assembler code
23896 @item Code optimizer can take Inline Assembler code into account
23897 @end itemize
23898
23899 This chapter presents a series of examples to show you how to use
23900 the Inline Assembler. Although it focuses on the Intel x86,
23901 the general approach applies also to other processors.
23902 It is assumed that you are familiar with Ada
23903 and with assembly language programming.
23904
23905 @menu
23906 * Basic Assembler Syntax::
23907 * A Simple Example of Inline Assembler::
23908 * Output Variables in Inline Assembler::
23909 * Input Variables in Inline Assembler::
23910 * Inlining Inline Assembler Code::
23911 * Other Asm Functionality::
23912 * A Complete Example::
23913 @end menu
23914
23915 @c ---------------------------------------------------------------------------
23916 @node Basic Assembler Syntax
23917 @section Basic Assembler Syntax
23918
23919 @noindent
23920 The assembler used by GNAT and gcc is based not on the Intel assembly
23921 language, but rather on a language that descends from the AT&T Unix
23922 assembler @emph{as} (and which is often referred to as ``AT&T syntax'').
23923 The following table summarizes the main features of @emph{as} syntax
23924 and points out the differences from the Intel conventions.
23925 See the gcc @emph{as} and @emph{gas} (an @emph{as} macro
23926 pre-processor) documentation for further information.
23927
23928 @table @asis
23929 @item Register names
23930 gcc / @emph{as}: Prefix with ``%''; for example @code{%eax}
23931 @*
23932 Intel: No extra punctuation; for example @code{eax}
23933
23934 @item Immediate operand
23935 gcc / @emph{as}: Prefix with ``$''; for example @code{$4}
23936 @*
23937 Intel: No extra punctuation; for example @code{4}
23938
23939 @item Address
23940 gcc / @emph{as}: Prefix with ``$''; for example @code{$loc}
23941 @*
23942 Intel: No extra punctuation; for example @code{loc}
23943
23944 @item Memory contents
23945 gcc / @emph{as}: No extra punctuation; for example @code{loc}
23946 @*
23947 Intel: Square brackets; for example @code{[loc]}
23948
23949 @item Register contents
23950 gcc / @emph{as}: Parentheses; for example @code{(%eax)}
23951 @*
23952 Intel: Square brackets; for example @code{[eax]}
23953
23954 @item Hexadecimal numbers
23955 gcc / @emph{as}: Leading ``0x'' (C language syntax); for example @code{0xA0}
23956 @*
23957 Intel: Trailing ``h''; for example @code{A0h}
23958
23959 @item Operand size
23960 gcc / @emph{as}: Explicit in op code; for example @code{movw} to move
23961 a 16-bit word
23962 @*
23963 Intel: Implicit, deduced by assembler; for example @code{mov}
23964
23965 @item Instruction repetition
23966 gcc / @emph{as}: Split into two lines; for example
23967 @*
23968 @code{rep}
23969 @*
23970 @code{stosl}
23971 @*
23972 Intel: Keep on one line; for example @code{rep stosl}
23973
23974 @item Order of operands
23975 gcc / @emph{as}: Source first; for example @code{movw $4, %eax}
23976 @*
23977 Intel: Destination first; for example @code{mov eax, 4}
23978 @end table
23979
23980 @c ---------------------------------------------------------------------------
23981 @node A Simple Example of Inline Assembler
23982 @section A Simple Example of Inline Assembler
23983
23984 @noindent
23985 The following example will generate a single assembly language statement,
23986 @code{nop}, which does nothing. Despite its lack of run-time effect,
23987 the example will be useful in illustrating the basics of
23988 the Inline Assembler facility.
23989
23990 @smallexample @c ada
23991 @group
23992 with System.Machine_Code; use System.Machine_Code;
23993 procedure Nothing is
23994 begin
23995 Asm ("nop");
23996 end Nothing;
23997 @end group
23998 @end smallexample
23999
24000 @code{Asm} is a procedure declared in package @code{System.Machine_Code};
24001 here it takes one parameter, a @emph{template string} that must be a static
24002 expression and that will form the generated instruction.
24003 @code{Asm} may be regarded as a compile-time procedure that parses
24004 the template string and additional parameters (none here),
24005 from which it generates a sequence of assembly language instructions.
24006
24007 The examples in this chapter will illustrate several of the forms
24008 for invoking @code{Asm}; a complete specification of the syntax
24009 is found in the @cite{GNAT Reference Manual}.
24010
24011 Under the standard GNAT conventions, the @code{Nothing} procedure
24012 should be in a file named @file{nothing.adb}.
24013 You can build the executable in the usual way:
24014 @smallexample
24015 gnatmake nothing
24016 @end smallexample
24017 However, the interesting aspect of this example is not its run-time behavior
24018 but rather the generated assembly code.
24019 To see this output, invoke the compiler as follows:
24020 @smallexample
24021 gcc -c -S -fomit-frame-pointer -gnatp @file{nothing.adb}
24022 @end smallexample
24023 where the options are:
24024
24025 @table @code
24026 @item -c
24027 compile only (no bind or link)
24028 @item -S
24029 generate assembler listing
24030 @item -fomit-frame-pointer
24031 do not set up separate stack frames
24032 @item -gnatp
24033 do not add runtime checks
24034 @end table
24035
24036 This gives a human-readable assembler version of the code. The resulting
24037 file will have the same name as the Ada source file, but with a @code{.s}
24038 extension. In our example, the file @file{nothing.s} has the following
24039 contents:
24040
24041 @smallexample
24042 @group
24043 .file "nothing.adb"
24044 gcc2_compiled.:
24045 ___gnu_compiled_ada:
24046 .text
24047 .align 4
24048 .globl __ada_nothing
24049 __ada_nothing:
24050 #APP
24051 nop
24052 #NO_APP
24053 jmp L1
24054 .align 2,0x90
24055 L1:
24056 ret
24057 @end group
24058 @end smallexample
24059
24060 The assembly code you included is clearly indicated by
24061 the compiler, between the @code{#APP} and @code{#NO_APP}
24062 delimiters. The character before the 'APP' and 'NOAPP'
24063 can differ on different targets. For example, GNU/Linux uses '#APP' while
24064 on NT you will see '/APP'.
24065
24066 If you make a mistake in your assembler code (such as using the
24067 wrong size modifier, or using a wrong operand for the instruction) GNAT
24068 will report this error in a temporary file, which will be deleted when
24069 the compilation is finished. Generating an assembler file will help
24070 in such cases, since you can assemble this file separately using the
24071 @emph{as} assembler that comes with gcc.
24072
24073 Assembling the file using the command
24074
24075 @smallexample
24076 as @file{nothing.s}
24077 @end smallexample
24078 @noindent
24079 will give you error messages whose lines correspond to the assembler
24080 input file, so you can easily find and correct any mistakes you made.
24081 If there are no errors, @emph{as} will generate an object file
24082 @file{nothing.out}.
24083
24084 @c ---------------------------------------------------------------------------
24085 @node Output Variables in Inline Assembler
24086 @section Output Variables in Inline Assembler
24087
24088 @noindent
24089 The examples in this section, showing how to access the processor flags,
24090 illustrate how to specify the destination operands for assembly language
24091 statements.
24092
24093 @smallexample @c ada
24094 @group
24095 with Interfaces; use Interfaces;
24096 with Ada.Text_IO; use Ada.Text_IO;
24097 with System.Machine_Code; use System.Machine_Code;
24098 procedure Get_Flags is
24099 Flags : Unsigned_32;
24100 use ASCII;
24101 begin
24102 Asm ("pushfl" & LF & HT & -- push flags on stack
24103 "popl %%eax" & LF & HT & -- load eax with flags
24104 "movl %%eax, %0", -- store flags in variable
24105 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
24106 Put_Line ("Flags register:" & Flags'Img);
24107 end Get_Flags;
24108 @end group
24109 @end smallexample
24110
24111 In order to have a nicely aligned assembly listing, we have separated
24112 multiple assembler statements in the Asm template string with linefeed
24113 (ASCII.LF) and horizontal tab (ASCII.HT) characters.
24114 The resulting section of the assembly output file is:
24115
24116 @smallexample
24117 @group
24118 #APP
24119 pushfl
24120 popl %eax
24121 movl %eax, -40(%ebp)
24122 #NO_APP
24123 @end group
24124 @end smallexample
24125
24126 It would have been legal to write the Asm invocation as:
24127
24128 @smallexample
24129 Asm ("pushfl popl %%eax movl %%eax, %0")
24130 @end smallexample
24131
24132 but in the generated assembler file, this would come out as:
24133
24134 @smallexample
24135 #APP
24136 pushfl popl %eax movl %eax, -40(%ebp)
24137 #NO_APP
24138 @end smallexample
24139
24140 which is not so convenient for the human reader.
24141
24142 We use Ada comments
24143 at the end of each line to explain what the assembler instructions
24144 actually do. This is a useful convention.
24145
24146 When writing Inline Assembler instructions, you need to precede each register
24147 and variable name with a percent sign. Since the assembler already requires
24148 a percent sign at the beginning of a register name, you need two consecutive
24149 percent signs for such names in the Asm template string, thus @code{%%eax}.
24150 In the generated assembly code, one of the percent signs will be stripped off.
24151
24152 Names such as @code{%0}, @code{%1}, @code{%2}, etc., denote input or output
24153 variables: operands you later define using @code{Input} or @code{Output}
24154 parameters to @code{Asm}.
24155 An output variable is illustrated in
24156 the third statement in the Asm template string:
24157 @smallexample
24158 movl %%eax, %0
24159 @end smallexample
24160 The intent is to store the contents of the eax register in a variable that can
24161 be accessed in Ada. Simply writing @code{movl %%eax, Flags} would not
24162 necessarily work, since the compiler might optimize by using a register
24163 to hold Flags, and the expansion of the @code{movl} instruction would not be
24164 aware of this optimization. The solution is not to store the result directly
24165 but rather to advise the compiler to choose the correct operand form;
24166 that is the purpose of the @code{%0} output variable.
24167
24168 Information about the output variable is supplied in the @code{Outputs}
24169 parameter to @code{Asm}:
24170 @smallexample
24171 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
24172 @end smallexample
24173
24174 The output is defined by the @code{Asm_Output} attribute of the target type;
24175 the general format is
24176 @smallexample
24177 Type'Asm_Output (constraint_string, variable_name)
24178 @end smallexample
24179
24180 The constraint string directs the compiler how
24181 to store/access the associated variable. In the example
24182 @smallexample
24183 Unsigned_32'Asm_Output ("=m", Flags);
24184 @end smallexample
24185 the @code{"m"} (memory) constraint tells the compiler that the variable
24186 @code{Flags} should be stored in a memory variable, thus preventing
24187 the optimizer from keeping it in a register. In contrast,
24188 @smallexample
24189 Unsigned_32'Asm_Output ("=r", Flags);
24190 @end smallexample
24191 uses the @code{"r"} (register) constraint, telling the compiler to
24192 store the variable in a register.
24193
24194 If the constraint is preceded by the equal character (@strong{=}), it tells
24195 the compiler that the variable will be used to store data into it.
24196
24197 In the @code{Get_Flags} example, we used the @code{"g"} (global) constraint,
24198 allowing the optimizer to choose whatever it deems best.
24199
24200 There are a fairly large number of constraints, but the ones that are
24201 most useful (for the Intel x86 processor) are the following:
24202
24203 @table @code
24204 @item =
24205 output constraint
24206 @item g
24207 global (i.e. can be stored anywhere)
24208 @item m
24209 in memory
24210 @item I
24211 a constant
24212 @item a
24213 use eax
24214 @item b
24215 use ebx
24216 @item c
24217 use ecx
24218 @item d
24219 use edx
24220 @item S
24221 use esi
24222 @item D
24223 use edi
24224 @item r
24225 use one of eax, ebx, ecx or edx
24226 @item q
24227 use one of eax, ebx, ecx, edx, esi or edi
24228 @end table
24229
24230 The full set of constraints is described in the gcc and @emph{as}
24231 documentation; note that it is possible to combine certain constraints
24232 in one constraint string.
24233
24234 You specify the association of an output variable with an assembler operand
24235 through the @code{%}@emph{n} notation, where @emph{n} is a non-negative
24236 integer. Thus in
24237 @smallexample @c ada
24238 @group
24239 Asm ("pushfl" & LF & HT & -- push flags on stack
24240 "popl %%eax" & LF & HT & -- load eax with flags
24241 "movl %%eax, %0", -- store flags in variable
24242 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
24243 @end group
24244 @end smallexample
24245 @noindent
24246 @code{%0} will be replaced in the expanded code by the appropriate operand,
24247 whatever
24248 the compiler decided for the @code{Flags} variable.
24249
24250 In general, you may have any number of output variables:
24251 @itemize @bullet
24252 @item
24253 Count the operands starting at 0; thus @code{%0}, @code{%1}, etc.
24254 @item
24255 Specify the @code{Outputs} parameter as a parenthesized comma-separated list
24256 of @code{Asm_Output} attributes
24257 @end itemize
24258
24259 For example:
24260 @smallexample @c ada
24261 @group
24262 Asm ("movl %%eax, %0" & LF & HT &
24263 "movl %%ebx, %1" & LF & HT &
24264 "movl %%ecx, %2",
24265 Outputs => (Unsigned_32'Asm_Output ("=g", Var_A), -- %0 = Var_A
24266 Unsigned_32'Asm_Output ("=g", Var_B), -- %1 = Var_B
24267 Unsigned_32'Asm_Output ("=g", Var_C))); -- %2 = Var_C
24268 @end group
24269 @end smallexample
24270 @noindent
24271 where @code{Var_A}, @code{Var_B}, and @code{Var_C} are variables
24272 in the Ada program.
24273
24274 As a variation on the @code{Get_Flags} example, we can use the constraints
24275 string to direct the compiler to store the eax register into the @code{Flags}
24276 variable, instead of including the store instruction explicitly in the
24277 @code{Asm} template string:
24278
24279 @smallexample @c ada
24280 @group
24281 with Interfaces; use Interfaces;
24282 with Ada.Text_IO; use Ada.Text_IO;
24283 with System.Machine_Code; use System.Machine_Code;
24284 procedure Get_Flags_2 is
24285 Flags : Unsigned_32;
24286 use ASCII;
24287 begin
24288 Asm ("pushfl" & LF & HT & -- push flags on stack
24289 "popl %%eax", -- save flags in eax
24290 Outputs => Unsigned_32'Asm_Output ("=a", Flags));
24291 Put_Line ("Flags register:" & Flags'Img);
24292 end Get_Flags_2;
24293 @end group
24294 @end smallexample
24295
24296 @noindent
24297 The @code{"a"} constraint tells the compiler that the @code{Flags}
24298 variable will come from the eax register. Here is the resulting code:
24299
24300 @smallexample
24301 @group
24302 #APP
24303 pushfl
24304 popl %eax
24305 #NO_APP
24306 movl %eax,-40(%ebp)
24307 @end group
24308 @end smallexample
24309
24310 @noindent
24311 The compiler generated the store of eax into Flags after
24312 expanding the assembler code.
24313
24314 Actually, there was no need to pop the flags into the eax register;
24315 more simply, we could just pop the flags directly into the program variable:
24316
24317 @smallexample @c ada
24318 @group
24319 with Interfaces; use Interfaces;
24320 with Ada.Text_IO; use Ada.Text_IO;
24321 with System.Machine_Code; use System.Machine_Code;
24322 procedure Get_Flags_3 is
24323 Flags : Unsigned_32;
24324 use ASCII;
24325 begin
24326 Asm ("pushfl" & LF & HT & -- push flags on stack
24327 "pop %0", -- save flags in Flags
24328 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
24329 Put_Line ("Flags register:" & Flags'Img);
24330 end Get_Flags_3;
24331 @end group
24332 @end smallexample
24333
24334 @c ---------------------------------------------------------------------------
24335 @node Input Variables in Inline Assembler
24336 @section Input Variables in Inline Assembler
24337
24338 @noindent
24339 The example in this section illustrates how to specify the source operands
24340 for assembly language statements.
24341 The program simply increments its input value by 1:
24342
24343 @smallexample @c ada
24344 @group
24345 with Interfaces; use Interfaces;
24346 with Ada.Text_IO; use Ada.Text_IO;
24347 with System.Machine_Code; use System.Machine_Code;
24348 procedure Increment is
24349
24350 function Incr (Value : Unsigned_32) return Unsigned_32 is
24351 Result : Unsigned_32;
24352 begin
24353 Asm ("incl %0",
24354 Inputs => Unsigned_32'Asm_Input ("a", Value),
24355 Outputs => Unsigned_32'Asm_Output ("=a", Result));
24356 return Result;
24357 end Incr;
24358
24359 Value : Unsigned_32;
24360
24361 begin
24362 Value := 5;
24363 Put_Line ("Value before is" & Value'Img);
24364 Value := Incr (Value);
24365 Put_Line ("Value after is" & Value'Img);
24366 end Increment;
24367 @end group
24368 @end smallexample
24369
24370 The @code{Outputs} parameter to @code{Asm} specifies
24371 that the result will be in the eax register and that it is to be stored
24372 in the @code{Result} variable.
24373
24374 The @code{Inputs} parameter looks much like the @code{Outputs} parameter,
24375 but with an @code{Asm_Input} attribute.
24376 The @code{"="} constraint, indicating an output value, is not present.
24377
24378 You can have multiple input variables, in the same way that you can have more
24379 than one output variable.
24380
24381 The parameter count (%0, %1) etc, now starts at the first input
24382 statement, and continues with the output statements.
24383 When both parameters use the same variable, the
24384 compiler will treat them as the same %n operand, which is the case here.
24385
24386 Just as the @code{Outputs} parameter causes the register to be stored into the
24387 target variable after execution of the assembler statements, so does the
24388 @code{Inputs} parameter cause its variable to be loaded into the register
24389 before execution of the assembler statements.
24390
24391 Thus the effect of the @code{Asm} invocation is:
24392 @enumerate
24393 @item load the 32-bit value of @code{Value} into eax
24394 @item execute the @code{incl %eax} instruction
24395 @item store the contents of eax into the @code{Result} variable
24396 @end enumerate
24397
24398 The resulting assembler file (with @option{-O2} optimization) contains:
24399 @smallexample
24400 @group
24401 _increment__incr.1:
24402 subl $4,%esp
24403 movl 8(%esp),%eax
24404 #APP
24405 incl %eax
24406 #NO_APP
24407 movl %eax,%edx
24408 movl %ecx,(%esp)
24409 addl $4,%esp
24410 ret
24411 @end group
24412 @end smallexample
24413
24414 @c ---------------------------------------------------------------------------
24415 @node Inlining Inline Assembler Code
24416 @section Inlining Inline Assembler Code
24417
24418 @noindent
24419 For a short subprogram such as the @code{Incr} function in the previous
24420 section, the overhead of the call and return (creating / deleting the stack
24421 frame) can be significant, compared to the amount of code in the subprogram
24422 body. A solution is to apply Ada's @code{Inline} pragma to the subprogram,
24423 which directs the compiler to expand invocations of the subprogram at the
24424 point(s) of call, instead of setting up a stack frame for out-of-line calls.
24425 Here is the resulting program:
24426
24427 @smallexample @c ada
24428 @group
24429 with Interfaces; use Interfaces;
24430 with Ada.Text_IO; use Ada.Text_IO;
24431 with System.Machine_Code; use System.Machine_Code;
24432 procedure Increment_2 is
24433
24434 function Incr (Value : Unsigned_32) return Unsigned_32 is
24435 Result : Unsigned_32;
24436 begin
24437 Asm ("incl %0",
24438 Inputs => Unsigned_32'Asm_Input ("a", Value),
24439 Outputs => Unsigned_32'Asm_Output ("=a", Result));
24440 return Result;
24441 end Incr;
24442 pragma Inline (Increment);
24443
24444 Value : Unsigned_32;
24445
24446 begin
24447 Value := 5;
24448 Put_Line ("Value before is" & Value'Img);
24449 Value := Increment (Value);
24450 Put_Line ("Value after is" & Value'Img);
24451 end Increment_2;
24452 @end group
24453 @end smallexample
24454
24455 Compile the program with both optimization (@option{-O2}) and inlining
24456 enabled (@option{-gnatpn} instead of @option{-gnatp}).
24457
24458 The @code{Incr} function is still compiled as usual, but at the
24459 point in @code{Increment} where our function used to be called:
24460
24461 @smallexample
24462 @group
24463 pushl %edi
24464 call _increment__incr.1
24465 @end group
24466 @end smallexample
24467
24468 @noindent
24469 the code for the function body directly appears:
24470
24471 @smallexample
24472 @group
24473 movl %esi,%eax
24474 #APP
24475 incl %eax
24476 #NO_APP
24477 movl %eax,%edx
24478 @end group
24479 @end smallexample
24480
24481 @noindent
24482 thus saving the overhead of stack frame setup and an out-of-line call.
24483
24484 @c ---------------------------------------------------------------------------
24485 @node Other Asm Functionality
24486 @section Other @code{Asm} Functionality
24487
24488 @noindent
24489 This section describes two important parameters to the @code{Asm}
24490 procedure: @code{Clobber}, which identifies register usage;
24491 and @code{Volatile}, which inhibits unwanted optimizations.
24492
24493 @menu
24494 * The Clobber Parameter::
24495 * The Volatile Parameter::
24496 @end menu
24497
24498 @c ---------------------------------------------------------------------------
24499 @node The Clobber Parameter
24500 @subsection The @code{Clobber} Parameter
24501
24502 @noindent
24503 One of the dangers of intermixing assembly language and a compiled language
24504 such as Ada is that the compiler needs to be aware of which registers are
24505 being used by the assembly code. In some cases, such as the earlier examples,
24506 the constraint string is sufficient to indicate register usage (e.g.,
24507 @code{"a"} for
24508 the eax register). But more generally, the compiler needs an explicit
24509 identification of the registers that are used by the Inline Assembly
24510 statements.
24511
24512 Using a register that the compiler doesn't know about
24513 could be a side effect of an instruction (like @code{mull}
24514 storing its result in both eax and edx).
24515 It can also arise from explicit register usage in your
24516 assembly code; for example:
24517 @smallexample
24518 @group
24519 Asm ("movl %0, %%ebx" & LF & HT &
24520 "movl %%ebx, %1",
24521 Inputs => Unsigned_32'Asm_Input ("g", Var_In),
24522 Outputs => Unsigned_32'Asm_Output ("=g", Var_Out));
24523 @end group
24524 @end smallexample
24525 @noindent
24526 where the compiler (since it does not analyze the @code{Asm} template string)
24527 does not know you are using the ebx register.
24528
24529 In such cases you need to supply the @code{Clobber} parameter to @code{Asm},
24530 to identify the registers that will be used by your assembly code:
24531
24532 @smallexample
24533 @group
24534 Asm ("movl %0, %%ebx" & LF & HT &
24535 "movl %%ebx, %1",
24536 Inputs => Unsigned_32'Asm_Input ("g", Var_In),
24537 Outputs => Unsigned_32'Asm_Output ("=g", Var_Out),
24538 Clobber => "ebx");
24539 @end group
24540 @end smallexample
24541
24542 The Clobber parameter is a static string expression specifying the
24543 register(s) you are using. Note that register names are @emph{not} prefixed
24544 by a percent sign. Also, if more than one register is used then their names
24545 are separated by commas; e.g., @code{"eax, ebx"}
24546
24547 The @code{Clobber} parameter has several additional uses:
24548 @enumerate
24549 @item Use ``register'' name @code{cc} to indicate that flags might have changed
24550 @item Use ``register'' name @code{memory} if you changed a memory location
24551 @end enumerate
24552
24553 @c ---------------------------------------------------------------------------
24554 @node The Volatile Parameter
24555 @subsection The @code{Volatile} Parameter
24556 @cindex Volatile parameter
24557
24558 @noindent
24559 Compiler optimizations in the presence of Inline Assembler may sometimes have
24560 unwanted effects. For example, when an @code{Asm} invocation with an input
24561 variable is inside a loop, the compiler might move the loading of the input
24562 variable outside the loop, regarding it as a one-time initialization.
24563
24564 If this effect is not desired, you can disable such optimizations by setting
24565 the @code{Volatile} parameter to @code{True}; for example:
24566
24567 @smallexample @c ada
24568 @group
24569 Asm ("movl %0, %%ebx" & LF & HT &
24570 "movl %%ebx, %1",
24571 Inputs => Unsigned_32'Asm_Input ("g", Var_In),
24572 Outputs => Unsigned_32'Asm_Output ("=g", Var_Out),
24573 Clobber => "ebx",
24574 Volatile => True);
24575 @end group
24576 @end smallexample
24577
24578 By default, @code{Volatile} is set to @code{False} unless there is no
24579 @code{Outputs} parameter.
24580
24581 Although setting @code{Volatile} to @code{True} prevents unwanted
24582 optimizations, it will also disable other optimizations that might be
24583 important for efficiency. In general, you should set @code{Volatile}
24584 to @code{True} only if the compiler's optimizations have created
24585 problems.
24586
24587 @c ---------------------------------------------------------------------------
24588 @node A Complete Example
24589 @section A Complete Example
24590
24591 @noindent
24592 This section contains a complete program illustrating a realistic usage
24593 of GNAT's Inline Assembler capabilities. It comprises a main procedure
24594 @code{Check_CPU} and a package @code{Intel_CPU}.
24595 The package declares a collection of functions that detect the properties
24596 of the 32-bit x86 processor that is running the program.
24597 The main procedure invokes these functions and displays the information.
24598
24599 The Intel_CPU package could be enhanced by adding functions to
24600 detect the type of x386 co-processor, the processor caching options and
24601 special operations such as the SIMD extensions.
24602
24603 Although the Intel_CPU package has been written for 32-bit Intel
24604 compatible CPUs, it is OS neutral. It has been tested on DOS,
24605 Windows/NT and GNU/Linux.
24606
24607 @menu
24608 * Check_CPU Procedure::
24609 * Intel_CPU Package Specification::
24610 * Intel_CPU Package Body::
24611 @end menu
24612
24613 @c ---------------------------------------------------------------------------
24614 @node Check_CPU Procedure
24615 @subsection @code{Check_CPU} Procedure
24616 @cindex Check_CPU procedure
24617
24618 @smallexample @c adanocomment
24619 ---------------------------------------------------------------------
24620 -- --
24621 -- Uses the Intel_CPU package to identify the CPU the program is --
24622 -- running on, and some of the features it supports. --
24623 -- --
24624 ---------------------------------------------------------------------
24625
24626 with Intel_CPU; -- Intel CPU detection functions
24627 with Ada.Text_IO; -- Standard text I/O
24628 with Ada.Command_Line; -- To set the exit status
24629
24630 procedure Check_CPU is
24631
24632 Type_Found : Boolean := False;
24633 -- Flag to indicate that processor was identified
24634
24635 Features : Intel_CPU.Processor_Features;
24636 -- The processor features
24637
24638 Signature : Intel_CPU.Processor_Signature;
24639 -- The processor type signature
24640
24641 begin
24642
24643 -----------------------------------
24644 -- Display the program banner. --
24645 -----------------------------------
24646
24647 Ada.Text_IO.Put_Line (Ada.Command_Line.Command_Name &
24648 ": check Intel CPU version and features, v1.0");
24649 Ada.Text_IO.Put_Line ("distribute freely, but no warranty whatsoever");
24650 Ada.Text_IO.New_Line;
24651
24652 -----------------------------------------------------------------------
24653 -- We can safely start with the assumption that we are on at least --
24654 -- a x386 processor. If the CPUID instruction is present, then we --
24655 -- have a later processor type. --
24656 -----------------------------------------------------------------------
24657
24658 if Intel_CPU.Has_CPUID = False then
24659
24660 -- No CPUID instruction, so we assume this is indeed a x386
24661 -- processor. We can still check if it has a FP co-processor.
24662 if Intel_CPU.Has_FPU then
24663 Ada.Text_IO.Put_Line
24664 ("x386-type processor with a FP co-processor");
24665 else
24666 Ada.Text_IO.Put_Line
24667 ("x386-type processor without a FP co-processor");
24668 end if; -- check for FPU
24669
24670 -- Program done
24671 Ada.Command_Line.Set_Exit_Status (Ada.Command_Line.Success);
24672 return;
24673
24674 end if; -- check for CPUID
24675
24676 -----------------------------------------------------------------------
24677 -- If CPUID is supported, check if this is a true Intel processor, --
24678 -- if it is not, display a warning. --
24679 -----------------------------------------------------------------------
24680
24681 if Intel_CPU.Vendor_ID /= Intel_CPU.Intel_Processor then
24682 Ada.Text_IO.Put_Line ("*** This is a Intel compatible processor");
24683 Ada.Text_IO.Put_Line ("*** Some information may be incorrect");
24684 end if; -- check if Intel
24685
24686 ----------------------------------------------------------------------
24687 -- With the CPUID instruction present, we can assume at least a --
24688 -- x486 processor. If the CPUID support level is < 1 then we have --
24689 -- to leave it at that. --
24690 ----------------------------------------------------------------------
24691
24692 if Intel_CPU.CPUID_Level < 1 then
24693
24694 -- Ok, this is a x486 processor. we still can get the Vendor ID
24695 Ada.Text_IO.Put_Line ("x486-type processor");
24696 Ada.Text_IO.Put_Line ("Vendor ID is " & Intel_CPU.Vendor_ID);
24697
24698 -- We can also check if there is a FPU present
24699 if Intel_CPU.Has_FPU then
24700 Ada.Text_IO.Put_Line ("Floating-Point support");
24701 else
24702 Ada.Text_IO.Put_Line ("No Floating-Point support");
24703 end if; -- check for FPU
24704
24705 -- Program done
24706 Ada.Command_Line.Set_Exit_Status (Ada.Command_Line.Success);
24707 return;
24708
24709 end if; -- check CPUID level
24710
24711 ---------------------------------------------------------------------
24712 -- With a CPUID level of 1 we can use the processor signature to --
24713 -- determine it's exact type. --
24714 ---------------------------------------------------------------------
24715
24716 Signature := Intel_CPU.Signature;
24717
24718 ----------------------------------------------------------------------
24719 -- Ok, now we go into a lot of messy comparisons to get the --
24720 -- processor type. For clarity, no attememt to try to optimize the --
24721 -- comparisons has been made. Note that since Intel_CPU does not --
24722 -- support getting cache info, we cannot distinguish between P5 --
24723 -- and Celeron types yet. --
24724 ----------------------------------------------------------------------
24725
24726 -- x486SL
24727 if Signature.Processor_Type = 2#00# and
24728 Signature.Family = 2#0100# and
24729 Signature.Model = 2#0100# then
24730 Type_Found := True;
24731 Ada.Text_IO.Put_Line ("x486SL processor");
24732 end if;
24733
24734 -- x486DX2 Write-Back
24735 if Signature.Processor_Type = 2#00# and
24736 Signature.Family = 2#0100# and
24737 Signature.Model = 2#0111# then
24738 Type_Found := True;
24739 Ada.Text_IO.Put_Line ("Write-Back Enhanced x486DX2 processor");
24740 end if;
24741
24742 -- x486DX4
24743 if Signature.Processor_Type = 2#00# and
24744 Signature.Family = 2#0100# and
24745 Signature.Model = 2#1000# then
24746 Type_Found := True;
24747 Ada.Text_IO.Put_Line ("x486DX4 processor");
24748 end if;
24749
24750 -- x486DX4 Overdrive
24751 if Signature.Processor_Type = 2#01# and
24752 Signature.Family = 2#0100# and
24753 Signature.Model = 2#1000# then
24754 Type_Found := True;
24755 Ada.Text_IO.Put_Line ("x486DX4 OverDrive processor");
24756 end if;
24757
24758 -- Pentium (60, 66)
24759 if Signature.Processor_Type = 2#00# and
24760 Signature.Family = 2#0101# and
24761 Signature.Model = 2#0001# then
24762 Type_Found := True;
24763 Ada.Text_IO.Put_Line ("Pentium processor (60, 66)");
24764 end if;
24765
24766 -- Pentium (75, 90, 100, 120, 133, 150, 166, 200)
24767 if Signature.Processor_Type = 2#00# and
24768 Signature.Family = 2#0101# and
24769 Signature.Model = 2#0010# then
24770 Type_Found := True;
24771 Ada.Text_IO.Put_Line
24772 ("Pentium processor (75, 90, 100, 120, 133, 150, 166, 200)");
24773 end if;
24774
24775 -- Pentium OverDrive (60, 66)
24776 if Signature.Processor_Type = 2#01# and
24777 Signature.Family = 2#0101# and
24778 Signature.Model = 2#0001# then
24779 Type_Found := True;
24780 Ada.Text_IO.Put_Line ("Pentium OverDrive processor (60, 66)");
24781 end if;
24782
24783 -- Pentium OverDrive (75, 90, 100, 120, 133, 150, 166, 200)
24784 if Signature.Processor_Type = 2#01# and
24785 Signature.Family = 2#0101# and
24786 Signature.Model = 2#0010# then
24787 Type_Found := True;
24788 Ada.Text_IO.Put_Line
24789 ("Pentium OverDrive cpu (75, 90, 100, 120, 133, 150, 166, 200)");
24790 end if;
24791
24792 -- Pentium OverDrive processor for x486 processor-based systems
24793 if Signature.Processor_Type = 2#01# and
24794 Signature.Family = 2#0101# and
24795 Signature.Model = 2#0011# then
24796 Type_Found := True;
24797 Ada.Text_IO.Put_Line
24798 ("Pentium OverDrive processor for x486 processor-based systems");
24799 end if;
24800
24801 -- Pentium processor with MMX technology (166, 200)
24802 if Signature.Processor_Type = 2#00# and
24803 Signature.Family = 2#0101# and
24804 Signature.Model = 2#0100# then
24805 Type_Found := True;
24806 Ada.Text_IO.Put_Line
24807 ("Pentium processor with MMX technology (166, 200)");
24808 end if;
24809
24810 -- Pentium OverDrive with MMX for Pentium (75, 90, 100, 120, 133)
24811 if Signature.Processor_Type = 2#01# and
24812 Signature.Family = 2#0101# and
24813 Signature.Model = 2#0100# then
24814 Type_Found := True;
24815 Ada.Text_IO.Put_Line
24816 ("Pentium OverDrive processor with MMX " &
24817 "technology for Pentium processor (75, 90, 100, 120, 133)");
24818 end if;
24819
24820 -- Pentium Pro processor
24821 if Signature.Processor_Type = 2#00# and
24822 Signature.Family = 2#0110# and
24823 Signature.Model = 2#0001# then
24824 Type_Found := True;
24825 Ada.Text_IO.Put_Line ("Pentium Pro processor");
24826 end if;
24827
24828 -- Pentium II processor, model 3
24829 if Signature.Processor_Type = 2#00# and
24830 Signature.Family = 2#0110# and
24831 Signature.Model = 2#0011# then
24832 Type_Found := True;
24833 Ada.Text_IO.Put_Line ("Pentium II processor, model 3");
24834 end if;
24835
24836 -- Pentium II processor, model 5 or Celeron processor
24837 if Signature.Processor_Type = 2#00# and
24838 Signature.Family = 2#0110# and
24839 Signature.Model = 2#0101# then
24840 Type_Found := True;
24841 Ada.Text_IO.Put_Line
24842 ("Pentium II processor, model 5 or Celeron processor");
24843 end if;
24844
24845 -- Pentium Pro OverDrive processor
24846 if Signature.Processor_Type = 2#01# and
24847 Signature.Family = 2#0110# and
24848 Signature.Model = 2#0011# then
24849 Type_Found := True;
24850 Ada.Text_IO.Put_Line ("Pentium Pro OverDrive processor");
24851 end if;
24852
24853 -- If no type recognized, we have an unknown. Display what
24854 -- we _do_ know
24855 if Type_Found = False then
24856 Ada.Text_IO.Put_Line ("Unknown processor");
24857 end if;
24858
24859 -----------------------------------------
24860 -- Display processor stepping level. --
24861 -----------------------------------------
24862
24863 Ada.Text_IO.Put_Line ("Stepping level:" & Signature.Stepping'Img);
24864
24865 ---------------------------------
24866 -- Display vendor ID string. --
24867 ---------------------------------
24868
24869 Ada.Text_IO.Put_Line ("Vendor ID: " & Intel_CPU.Vendor_ID);
24870
24871 ------------------------------------
24872 -- Get the processors features. --
24873 ------------------------------------
24874
24875 Features := Intel_CPU.Features;
24876
24877 -----------------------------
24878 -- Check for a FPU unit. --
24879 -----------------------------
24880
24881 if Features.FPU = True then
24882 Ada.Text_IO.Put_Line ("Floating-Point unit available");
24883 else
24884 Ada.Text_IO.Put_Line ("no Floating-Point unit");
24885 end if; -- check for FPU
24886
24887 --------------------------------
24888 -- List processor features. --
24889 --------------------------------
24890
24891 Ada.Text_IO.Put_Line ("Supported features: ");
24892
24893 -- Virtual Mode Extension
24894 if Features.VME = True then
24895 Ada.Text_IO.Put_Line (" VME - Virtual Mode Extension");
24896 end if;
24897
24898 -- Debugging Extension
24899 if Features.DE = True then
24900 Ada.Text_IO.Put_Line (" DE - Debugging Extension");
24901 end if;
24902
24903 -- Page Size Extension
24904 if Features.PSE = True then
24905 Ada.Text_IO.Put_Line (" PSE - Page Size Extension");
24906 end if;
24907
24908 -- Time Stamp Counter
24909 if Features.TSC = True then
24910 Ada.Text_IO.Put_Line (" TSC - Time Stamp Counter");
24911 end if;
24912
24913 -- Model Specific Registers
24914 if Features.MSR = True then
24915 Ada.Text_IO.Put_Line (" MSR - Model Specific Registers");
24916 end if;
24917
24918 -- Physical Address Extension
24919 if Features.PAE = True then
24920 Ada.Text_IO.Put_Line (" PAE - Physical Address Extension");
24921 end if;
24922
24923 -- Machine Check Extension
24924 if Features.MCE = True then
24925 Ada.Text_IO.Put_Line (" MCE - Machine Check Extension");
24926 end if;
24927
24928 -- CMPXCHG8 instruction supported
24929 if Features.CX8 = True then
24930 Ada.Text_IO.Put_Line (" CX8 - CMPXCHG8 instruction");
24931 end if;
24932
24933 -- on-chip APIC hardware support
24934 if Features.APIC = True then
24935 Ada.Text_IO.Put_Line (" APIC - on-chip APIC hardware support");
24936 end if;
24937
24938 -- Fast System Call
24939 if Features.SEP = True then
24940 Ada.Text_IO.Put_Line (" SEP - Fast System Call");
24941 end if;
24942
24943 -- Memory Type Range Registers
24944 if Features.MTRR = True then
24945 Ada.Text_IO.Put_Line (" MTTR - Memory Type Range Registers");
24946 end if;
24947
24948 -- Page Global Enable
24949 if Features.PGE = True then
24950 Ada.Text_IO.Put_Line (" PGE - Page Global Enable");
24951 end if;
24952
24953 -- Machine Check Architecture
24954 if Features.MCA = True then
24955 Ada.Text_IO.Put_Line (" MCA - Machine Check Architecture");
24956 end if;
24957
24958 -- Conditional Move Instruction Supported
24959 if Features.CMOV = True then
24960 Ada.Text_IO.Put_Line
24961 (" CMOV - Conditional Move Instruction Supported");
24962 end if;
24963
24964 -- Page Attribute Table
24965 if Features.PAT = True then
24966 Ada.Text_IO.Put_Line (" PAT - Page Attribute Table");
24967 end if;
24968
24969 -- 36-bit Page Size Extension
24970 if Features.PSE_36 = True then
24971 Ada.Text_IO.Put_Line (" PSE_36 - 36-bit Page Size Extension");
24972 end if;
24973
24974 -- MMX technology supported
24975 if Features.MMX = True then
24976 Ada.Text_IO.Put_Line (" MMX - MMX technology supported");
24977 end if;
24978
24979 -- Fast FP Save and Restore
24980 if Features.FXSR = True then
24981 Ada.Text_IO.Put_Line (" FXSR - Fast FP Save and Restore");
24982 end if;
24983
24984 ---------------------
24985 -- Program done. --
24986 ---------------------
24987
24988 Ada.Command_Line.Set_Exit_Status (Ada.Command_Line.Success);
24989
24990 exception
24991
24992 when others =>
24993 Ada.Command_Line.Set_Exit_Status (Ada.Command_Line.Failure);
24994 raise;
24995
24996 end Check_CPU;
24997 @end smallexample
24998
24999 @c ---------------------------------------------------------------------------
25000 @node Intel_CPU Package Specification
25001 @subsection @code{Intel_CPU} Package Specification
25002 @cindex Intel_CPU package specification
25003
25004 @smallexample @c adanocomment
25005 -------------------------------------------------------------------------
25006 -- --
25007 -- file: intel_cpu.ads --
25008 -- --
25009 -- ********************************************* --
25010 -- * WARNING: for 32-bit Intel processors only * --
25011 -- ********************************************* --
25012 -- --
25013 -- This package contains a number of subprograms that are useful in --
25014 -- determining the Intel x86 CPU (and the features it supports) on --
25015 -- which the program is running. --
25016 -- --
25017 -- The package is based upon the information given in the Intel --
25018 -- Application Note AP-485: "Intel Processor Identification and the --
25019 -- CPUID Instruction" as of April 1998. This application note can be --
25020 -- found on www.intel.com. --
25021 -- --
25022 -- It currently deals with 32-bit processors only, will not detect --
25023 -- features added after april 1998, and does not guarantee proper --
25024 -- results on Intel-compatible processors. --
25025 -- --
25026 -- Cache info and x386 fpu type detection are not supported. --
25027 -- --
25028 -- This package does not use any privileged instructions, so should --
25029 -- work on any OS running on a 32-bit Intel processor. --
25030 -- --
25031 -------------------------------------------------------------------------
25032
25033 with Interfaces; use Interfaces;
25034 -- for using unsigned types
25035
25036 with System.Machine_Code; use System.Machine_Code;
25037 -- for using inline assembler code
25038
25039 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
25040 -- for inserting control characters
25041
25042 package Intel_CPU is
25043
25044 ----------------------
25045 -- Processor bits --
25046 ----------------------
25047
25048 subtype Num_Bits is Natural range 0 .. 31;
25049 -- the number of processor bits (32)
25050
25051 --------------------------
25052 -- Processor register --
25053 --------------------------
25054
25055 -- define a processor register type for easy access to
25056 -- the individual bits
25057
25058 type Processor_Register is array (Num_Bits) of Boolean;
25059 pragma Pack (Processor_Register);
25060 for Processor_Register'Size use 32;
25061
25062 -------------------------
25063 -- Unsigned register --
25064 -------------------------
25065
25066 -- define a processor register type for easy access to
25067 -- the individual bytes
25068
25069 type Unsigned_Register is
25070 record
25071 L1 : Unsigned_8;
25072 H1 : Unsigned_8;
25073 L2 : Unsigned_8;
25074 H2 : Unsigned_8;
25075 end record;
25076
25077 for Unsigned_Register use
25078 record
25079 L1 at 0 range 0 .. 7;
25080 H1 at 0 range 8 .. 15;
25081 L2 at 0 range 16 .. 23;
25082 H2 at 0 range 24 .. 31;
25083 end record;
25084
25085 for Unsigned_Register'Size use 32;
25086
25087 ---------------------------------
25088 -- Intel processor vendor ID --
25089 ---------------------------------
25090
25091 Intel_Processor : constant String (1 .. 12) := "GenuineIntel";
25092 -- indicates an Intel manufactured processor
25093
25094 ------------------------------------
25095 -- Processor signature register --
25096 ------------------------------------
25097
25098 -- a register type to hold the processor signature
25099
25100 type Processor_Signature is
25101 record
25102 Stepping : Natural range 0 .. 15;
25103 Model : Natural range 0 .. 15;
25104 Family : Natural range 0 .. 15;
25105 Processor_Type : Natural range 0 .. 3;
25106 Reserved : Natural range 0 .. 262143;
25107 end record;
25108
25109 for Processor_Signature use
25110 record
25111 Stepping at 0 range 0 .. 3;
25112 Model at 0 range 4 .. 7;
25113 Family at 0 range 8 .. 11;
25114 Processor_Type at 0 range 12 .. 13;
25115 Reserved at 0 range 14 .. 31;
25116 end record;
25117
25118 for Processor_Signature'Size use 32;
25119
25120 -----------------------------------
25121 -- Processor features register --
25122 -----------------------------------
25123
25124 -- a processor register to hold the processor feature flags
25125
25126 type Processor_Features is
25127 record
25128 FPU : Boolean; -- floating point unit on chip
25129 VME : Boolean; -- virtual mode extension
25130 DE : Boolean; -- debugging extension
25131 PSE : Boolean; -- page size extension
25132 TSC : Boolean; -- time stamp counter
25133 MSR : Boolean; -- model specific registers
25134 PAE : Boolean; -- physical address extension
25135 MCE : Boolean; -- machine check extension
25136 CX8 : Boolean; -- cmpxchg8 instruction
25137 APIC : Boolean; -- on-chip apic hardware
25138 Res_1 : Boolean; -- reserved for extensions
25139 SEP : Boolean; -- fast system call
25140 MTRR : Boolean; -- memory type range registers
25141 PGE : Boolean; -- page global enable
25142 MCA : Boolean; -- machine check architecture
25143 CMOV : Boolean; -- conditional move supported
25144 PAT : Boolean; -- page attribute table
25145 PSE_36 : Boolean; -- 36-bit page size extension
25146 Res_2 : Natural range 0 .. 31; -- reserved for extensions
25147 MMX : Boolean; -- MMX technology supported
25148 FXSR : Boolean; -- fast FP save and restore
25149 Res_3 : Natural range 0 .. 127; -- reserved for extensions
25150 end record;
25151
25152 for Processor_Features use
25153 record
25154 FPU at 0 range 0 .. 0;
25155 VME at 0 range 1 .. 1;
25156 DE at 0 range 2 .. 2;
25157 PSE at 0 range 3 .. 3;
25158 TSC at 0 range 4 .. 4;
25159 MSR at 0 range 5 .. 5;
25160 PAE at 0 range 6 .. 6;
25161 MCE at 0 range 7 .. 7;
25162 CX8 at 0 range 8 .. 8;
25163 APIC at 0 range 9 .. 9;
25164 Res_1 at 0 range 10 .. 10;
25165 SEP at 0 range 11 .. 11;
25166 MTRR at 0 range 12 .. 12;
25167 PGE at 0 range 13 .. 13;
25168 MCA at 0 range 14 .. 14;
25169 CMOV at 0 range 15 .. 15;
25170 PAT at 0 range 16 .. 16;
25171 PSE_36 at 0 range 17 .. 17;
25172 Res_2 at 0 range 18 .. 22;
25173 MMX at 0 range 23 .. 23;
25174 FXSR at 0 range 24 .. 24;
25175 Res_3 at 0 range 25 .. 31;
25176 end record;
25177
25178 for Processor_Features'Size use 32;
25179
25180 -------------------
25181 -- Subprograms --
25182 -------------------
25183
25184 function Has_FPU return Boolean;
25185 -- return True if a FPU is found
25186 -- use only if CPUID is not supported
25187
25188 function Has_CPUID return Boolean;
25189 -- return True if the processor supports the CPUID instruction
25190
25191 function CPUID_Level return Natural;
25192 -- return the CPUID support level (0, 1 or 2)
25193 -- can only be called if the CPUID instruction is supported
25194
25195 function Vendor_ID return String;
25196 -- return the processor vendor identification string
25197 -- can only be called if the CPUID instruction is supported
25198
25199 function Signature return Processor_Signature;
25200 -- return the processor signature
25201 -- can only be called if the CPUID instruction is supported
25202
25203 function Features return Processor_Features;
25204 -- return the processors features
25205 -- can only be called if the CPUID instruction is supported
25206
25207 private
25208
25209 ------------------------
25210 -- EFLAGS bit names --
25211 ------------------------
25212
25213 ID_Flag : constant Num_Bits := 21;
25214 -- ID flag bit
25215
25216 end Intel_CPU;
25217 @end smallexample
25218
25219 @c ---------------------------------------------------------------------------
25220 @node Intel_CPU Package Body
25221 @subsection @code{Intel_CPU} Package Body
25222 @cindex Intel_CPU package body
25223
25224 @smallexample @c adanocomment
25225 package body Intel_CPU is
25226
25227 ---------------------------
25228 -- Detect FPU presence --
25229 ---------------------------
25230
25231 -- There is a FPU present if we can set values to the FPU Status
25232 -- and Control Words.
25233
25234 function Has_FPU return Boolean is
25235
25236 Register : Unsigned_16;
25237 -- processor register to store a word
25238
25239 begin
25240
25241 -- check if we can change the status word
25242 Asm (
25243
25244 -- the assembler code
25245 "finit" & LF & HT & -- reset status word
25246 "movw $0x5A5A, %%ax" & LF & HT & -- set value status word
25247 "fnstsw %0" & LF & HT & -- save status word
25248 "movw %%ax, %0", -- store status word
25249
25250 -- output stored in Register
25251 -- register must be a memory location
25252 Outputs => Unsigned_16'Asm_output ("=m", Register),
25253
25254 -- tell compiler that we used eax
25255 Clobber => "eax");
25256
25257 -- if the status word is zero, there is no FPU
25258 if Register = 0 then
25259 return False; -- no status word
25260 end if; -- check status word value
25261
25262 -- check if we can get the control word
25263 Asm (
25264
25265 -- the assembler code
25266 "fnstcw %0", -- save the control word
25267
25268 -- output into Register
25269 -- register must be a memory location
25270 Outputs => Unsigned_16'Asm_output ("=m", Register));
25271
25272 -- check the relevant bits
25273 if (Register and 16#103F#) /= 16#003F# then
25274 return False; -- no control word
25275 end if; -- check control word value
25276
25277 -- FPU found
25278 return True;
25279
25280 end Has_FPU;
25281
25282 --------------------------------
25283 -- Detect CPUID instruction --
25284 --------------------------------
25285
25286 -- The processor supports the CPUID instruction if it is possible
25287 -- to change the value of ID flag bit in the EFLAGS register.
25288
25289 function Has_CPUID return Boolean is
25290
25291 Original_Flags, Modified_Flags : Processor_Register;
25292 -- EFLAG contents before and after changing the ID flag
25293
25294 begin
25295
25296 -- try flipping the ID flag in the EFLAGS register
25297 Asm (
25298
25299 -- the assembler code
25300 "pushfl" & LF & HT & -- push EFLAGS on stack
25301 "pop %%eax" & LF & HT & -- pop EFLAGS into eax
25302 "movl %%eax, %0" & LF & HT & -- save EFLAGS content
25303 "xor $0x200000, %%eax" & LF & HT & -- flip ID flag
25304 "push %%eax" & LF & HT & -- push EFLAGS on stack
25305 "popfl" & LF & HT & -- load EFLAGS register
25306 "pushfl" & LF & HT & -- push EFLAGS on stack
25307 "pop %1", -- save EFLAGS content
25308
25309 -- output values, may be anything
25310 -- Original_Flags is %0
25311 -- Modified_Flags is %1
25312 Outputs =>
25313 (Processor_Register'Asm_output ("=g", Original_Flags),
25314 Processor_Register'Asm_output ("=g", Modified_Flags)),
25315
25316 -- tell compiler eax is destroyed
25317 Clobber => "eax");
25318
25319 -- check if CPUID is supported
25320 if Original_Flags(ID_Flag) /= Modified_Flags(ID_Flag) then
25321 return True; -- ID flag was modified
25322 else
25323 return False; -- ID flag unchanged
25324 end if; -- check for CPUID
25325
25326 end Has_CPUID;
25327
25328 -------------------------------
25329 -- Get CPUID support level --
25330 -------------------------------
25331
25332 function CPUID_Level return Natural is
25333
25334 Level : Unsigned_32;
25335 -- returned support level
25336
25337 begin
25338
25339 -- execute CPUID, storing the results in the Level register
25340 Asm (
25341
25342 -- the assembler code
25343 "cpuid", -- execute CPUID
25344
25345 -- zero is stored in eax
25346 -- returning the support level in eax
25347 Inputs => Unsigned_32'Asm_input ("a", 0),
25348
25349 -- eax is stored in Level
25350 Outputs => Unsigned_32'Asm_output ("=a", Level),
25351
25352 -- tell compiler ebx, ecx and edx registers are destroyed
25353 Clobber => "ebx, ecx, edx");
25354
25355 -- return the support level
25356 return Natural (Level);
25357
25358 end CPUID_Level;
25359
25360 --------------------------------
25361 -- Get CPU Vendor ID String --
25362 --------------------------------
25363
25364 -- The vendor ID string is returned in the ebx, ecx and edx register
25365 -- after executing the CPUID instruction with eax set to zero.
25366 -- In case of a true Intel processor the string returned is
25367 -- "GenuineIntel"
25368
25369 function Vendor_ID return String is
25370
25371 Ebx, Ecx, Edx : Unsigned_Register;
25372 -- registers containing the vendor ID string
25373
25374 Vendor_ID : String (1 .. 12);
25375 -- the vendor ID string
25376
25377 begin
25378
25379 -- execute CPUID, storing the results in the processor registers
25380 Asm (
25381
25382 -- the assembler code
25383 "cpuid", -- execute CPUID
25384
25385 -- zero stored in eax
25386 -- vendor ID string returned in ebx, ecx and edx
25387 Inputs => Unsigned_32'Asm_input ("a", 0),
25388
25389 -- ebx is stored in Ebx
25390 -- ecx is stored in Ecx
25391 -- edx is stored in Edx
25392 Outputs => (Unsigned_Register'Asm_output ("=b", Ebx),
25393 Unsigned_Register'Asm_output ("=c", Ecx),
25394 Unsigned_Register'Asm_output ("=d", Edx)));
25395
25396 -- now build the vendor ID string
25397 Vendor_ID( 1) := Character'Val (Ebx.L1);
25398 Vendor_ID( 2) := Character'Val (Ebx.H1);
25399 Vendor_ID( 3) := Character'Val (Ebx.L2);
25400 Vendor_ID( 4) := Character'Val (Ebx.H2);
25401 Vendor_ID( 5) := Character'Val (Edx.L1);
25402 Vendor_ID( 6) := Character'Val (Edx.H1);
25403 Vendor_ID( 7) := Character'Val (Edx.L2);
25404 Vendor_ID( 8) := Character'Val (Edx.H2);
25405 Vendor_ID( 9) := Character'Val (Ecx.L1);
25406 Vendor_ID(10) := Character'Val (Ecx.H1);
25407 Vendor_ID(11) := Character'Val (Ecx.L2);
25408 Vendor_ID(12) := Character'Val (Ecx.H2);
25409
25410 -- return string
25411 return Vendor_ID;
25412
25413 end Vendor_ID;
25414
25415 -------------------------------
25416 -- Get processor signature --
25417 -------------------------------
25418
25419 function Signature return Processor_Signature is
25420
25421 Result : Processor_Signature;
25422 -- processor signature returned
25423
25424 begin
25425
25426 -- execute CPUID, storing the results in the Result variable
25427 Asm (
25428
25429 -- the assembler code
25430 "cpuid", -- execute CPUID
25431
25432 -- one is stored in eax
25433 -- processor signature returned in eax
25434 Inputs => Unsigned_32'Asm_input ("a", 1),
25435
25436 -- eax is stored in Result
25437 Outputs => Processor_Signature'Asm_output ("=a", Result),
25438
25439 -- tell compiler that ebx, ecx and edx are also destroyed
25440 Clobber => "ebx, ecx, edx");
25441
25442 -- return processor signature
25443 return Result;
25444
25445 end Signature;
25446
25447 ------------------------------
25448 -- Get processor features --
25449 ------------------------------
25450
25451 function Features return Processor_Features is
25452
25453 Result : Processor_Features;
25454 -- processor features returned
25455
25456 begin
25457
25458 -- execute CPUID, storing the results in the Result variable
25459 Asm (
25460
25461 -- the assembler code
25462 "cpuid", -- execute CPUID
25463
25464 -- one stored in eax
25465 -- processor features returned in edx
25466 Inputs => Unsigned_32'Asm_input ("a", 1),
25467
25468 -- edx is stored in Result
25469 Outputs => Processor_Features'Asm_output ("=d", Result),
25470
25471 -- tell compiler that ebx and ecx are also destroyed
25472 Clobber => "ebx, ecx");
25473
25474 -- return processor signature
25475 return Result;
25476
25477 end Features;
25478
25479 end Intel_CPU;
25480 @end smallexample
25481 @c END OF INLINE ASSEMBLER CHAPTER
25482 @c ===============================
25483
25484
25485
25486 @c ***********************************
25487 @c * Compatibility and Porting Guide *
25488 @c ***********************************
25489 @node Compatibility and Porting Guide
25490 @appendix Compatibility and Porting Guide
25491
25492 @noindent
25493 This chapter describes the compatibility issues that may arise between
25494 GNAT and other Ada 83 and Ada 95 compilation systems, and shows how GNAT
25495 can expedite porting
25496 applications developed in other Ada environments.
25497
25498 @menu
25499 * Compatibility with Ada 83::
25500 * Implementation-dependent characteristics::
25501 * Compatibility with DEC Ada 83::
25502 * Compatibility with Other Ada 95 Systems::
25503 * Representation Clauses::
25504 @end menu
25505
25506 @node Compatibility with Ada 83
25507 @section Compatibility with Ada 83
25508 @cindex Compatibility (between Ada 83 and Ada 95)
25509
25510 @noindent
25511 Ada 95 is designed to be highly upwards compatible with Ada 83. In
25512 particular, the design intention is that the difficulties associated
25513 with moving from Ada 83 to Ada 95 should be no greater than those
25514 that occur when moving from one Ada 83 system to another.
25515
25516 However, there are a number of points at which there are minor
25517 incompatibilities. The @cite{Ada 95 Annotated Reference Manual} contains
25518 full details of these issues,
25519 and should be consulted for a complete treatment.
25520 In practice the
25521 following subsections treat the most likely issues to be encountered.
25522
25523 @menu
25524 * Legal Ada 83 programs that are illegal in Ada 95::
25525 * More deterministic semantics::
25526 * Changed semantics::
25527 * Other language compatibility issues::
25528 @end menu
25529
25530 @node Legal Ada 83 programs that are illegal in Ada 95
25531 @subsection Legal Ada 83 programs that are illegal in Ada 95
25532
25533 @table @asis
25534 @item Character literals
25535 Some uses of character literals are ambiguous. Since Ada 95 has introduced
25536 @code{Wide_Character} as a new predefined character type, some uses of
25537 character literals that were legal in Ada 83 are illegal in Ada 95.
25538 For example:
25539 @smallexample @c ada
25540 for Char in 'A' .. 'Z' loop ... end loop;
25541 @end smallexample
25542 @noindent
25543 The problem is that @code{'A'} and @code{'Z'} could be from either
25544 @code{Character} or @code{Wide_Character}. The simplest correction
25545 is to make the type explicit; e.g.:
25546 @smallexample @c ada
25547 for Char in Character range 'A' .. 'Z' loop ... end loop;
25548 @end smallexample
25549
25550 @item New reserved words
25551 The identifiers @code{abstract}, @code{aliased}, @code{protected},
25552 @code{requeue}, @code{tagged}, and @code{until} are reserved in Ada 95.
25553 Existing Ada 83 code using any of these identifiers must be edited to
25554 use some alternative name.
25555
25556 @item Freezing rules
25557 The rules in Ada 95 are slightly different with regard to the point at
25558 which entities are frozen, and representation pragmas and clauses are
25559 not permitted past the freeze point. This shows up most typically in
25560 the form of an error message complaining that a representation item
25561 appears too late, and the appropriate corrective action is to move
25562 the item nearer to the declaration of the entity to which it refers.
25563
25564 A particular case is that representation pragmas
25565 @ifset vms
25566 (including the
25567 extended DEC Ada 83 compatibility pragmas such as @code{Export_Procedure})
25568 @end ifset
25569 cannot be applied to a subprogram body. If necessary, a separate subprogram
25570 declaration must be introduced to which the pragma can be applied.
25571
25572 @item Optional bodies for library packages
25573 In Ada 83, a package that did not require a package body was nevertheless
25574 allowed to have one. This lead to certain surprises in compiling large
25575 systems (situations in which the body could be unexpectedly ignored by the
25576 binder). In Ada 95, if a package does not require a body then it is not
25577 permitted to have a body. To fix this problem, simply remove a redundant
25578 body if it is empty, or, if it is non-empty, introduce a dummy declaration
25579 into the spec that makes the body required. One approach is to add a private
25580 part to the package declaration (if necessary), and define a parameterless
25581 procedure called @code{Requires_Body}, which must then be given a dummy
25582 procedure body in the package body, which then becomes required.
25583 Another approach (assuming that this does not introduce elaboration
25584 circularities) is to add an @code{Elaborate_Body} pragma to the package spec,
25585 since one effect of this pragma is to require the presence of a package body.
25586
25587 @item @code{Numeric_Error} is now the same as @code{Constraint_Error}
25588 In Ada 95, the exception @code{Numeric_Error} is a renaming of
25589 @code{Constraint_Error}.
25590 This means that it is illegal to have separate exception handlers for
25591 the two exceptions. The fix is simply to remove the handler for the
25592 @code{Numeric_Error} case (since even in Ada 83, a compiler was free to raise
25593 @code{Constraint_Error} in place of @code{Numeric_Error} in all cases).
25594
25595 @item Indefinite subtypes in generics
25596 In Ada 83, it was permissible to pass an indefinite type (e.g.@: @code{String})
25597 as the actual for a generic formal private type, but then the instantiation
25598 would be illegal if there were any instances of declarations of variables
25599 of this type in the generic body. In Ada 95, to avoid this clear violation
25600 of the methodological principle known as the ``contract model'',
25601 the generic declaration explicitly indicates whether
25602 or not such instantiations are permitted. If a generic formal parameter
25603 has explicit unknown discriminants, indicated by using @code{(<>)} after the
25604 type name, then it can be instantiated with indefinite types, but no
25605 stand-alone variables can be declared of this type. Any attempt to declare
25606 such a variable will result in an illegality at the time the generic is
25607 declared. If the @code{(<>)} notation is not used, then it is illegal
25608 to instantiate the generic with an indefinite type.
25609 This is the potential incompatibility issue when porting Ada 83 code to Ada 95.
25610 It will show up as a compile time error, and
25611 the fix is usually simply to add the @code{(<>)} to the generic declaration.
25612 @end table
25613
25614 @node More deterministic semantics
25615 @subsection More deterministic semantics
25616
25617 @table @asis
25618 @item Conversions
25619 Conversions from real types to integer types round away from 0. In Ada 83
25620 the conversion Integer(2.5) could deliver either 2 or 3 as its value. This
25621 implementation freedom was intended to support unbiased rounding in
25622 statistical applications, but in practice it interfered with portability.
25623 In Ada 95 the conversion semantics are unambiguous, and rounding away from 0
25624 is required. Numeric code may be affected by this change in semantics.
25625 Note, though, that this issue is no worse than already existed in Ada 83
25626 when porting code from one vendor to another.
25627
25628 @item Tasking
25629 The Real-Time Annex introduces a set of policies that define the behavior of
25630 features that were implementation dependent in Ada 83, such as the order in
25631 which open select branches are executed.
25632 @end table
25633
25634 @node Changed semantics
25635 @subsection Changed semantics
25636
25637 @noindent
25638 The worst kind of incompatibility is one where a program that is legal in
25639 Ada 83 is also legal in Ada 95 but can have an effect in Ada 95 that was not
25640 possible in Ada 83. Fortunately this is extremely rare, but the one
25641 situation that you should be alert to is the change in the predefined type
25642 @code{Character} from 7-bit ASCII to 8-bit Latin-1.
25643
25644 @table @asis
25645 @item range of @code{Character}
25646 The range of @code{Standard.Character} is now the full 256 characters
25647 of Latin-1, whereas in most Ada 83 implementations it was restricted
25648 to 128 characters. Although some of the effects of
25649 this change will be manifest in compile-time rejection of legal
25650 Ada 83 programs it is possible for a working Ada 83 program to have
25651 a different effect in Ada 95, one that was not permitted in Ada 83.
25652 As an example, the expression
25653 @code{Character'Pos(Character'Last)} returned @code{127} in Ada 83 and now
25654 delivers @code{255} as its value.
25655 In general, you should look at the logic of any
25656 character-processing Ada 83 program and see whether it needs to be adapted
25657 to work correctly with Latin-1. Note that the predefined Ada 95 API has a
25658 character handling package that may be relevant if code needs to be adapted
25659 to account for the additional Latin-1 elements.
25660 The desirable fix is to
25661 modify the program to accommodate the full character set, but in some cases
25662 it may be convenient to define a subtype or derived type of Character that
25663 covers only the restricted range.
25664 @cindex Latin-1
25665 @end table
25666
25667 @node Other language compatibility issues
25668 @subsection Other language compatibility issues
25669 @table @asis
25670 @item @option{-gnat83 switch}
25671 All implementations of GNAT provide a switch that causes GNAT to operate
25672 in Ada 83 mode. In this mode, some but not all compatibility problems
25673 of the type described above are handled automatically. For example, the
25674 new Ada 95 reserved words are treated simply as identifiers as in Ada 83.
25675 However,
25676 in practice, it is usually advisable to make the necessary modifications
25677 to the program to remove the need for using this switch.
25678 See @ref{Compiling Ada 83 Programs}.
25679
25680 @item Support for removed Ada 83 pragmas and attributes
25681 A number of pragmas and attributes from Ada 83 have been removed from Ada 95,
25682 generally because they have been replaced by other mechanisms. Ada 95
25683 compilers are allowed, but not required, to implement these missing
25684 elements. In contrast with some other Ada 95 compilers, GNAT implements all
25685 such pragmas and attributes, eliminating this compatibility concern. These
25686 include @code{pragma Interface} and the floating point type attributes
25687 (@code{Emax}, @code{Mantissa}, etc.), among other items.
25688 @end table
25689
25690
25691 @node Implementation-dependent characteristics
25692 @section Implementation-dependent characteristics
25693 @noindent
25694 Although the Ada language defines the semantics of each construct as
25695 precisely as practical, in some situations (for example for reasons of
25696 efficiency, or where the effect is heavily dependent on the host or target
25697 platform) the implementation is allowed some freedom. In porting Ada 83
25698 code to GNAT, you need to be aware of whether / how the existing code
25699 exercised such implementation dependencies. Such characteristics fall into
25700 several categories, and GNAT offers specific support in assisting the
25701 transition from certain Ada 83 compilers.
25702
25703 @menu
25704 * Implementation-defined pragmas::
25705 * Implementation-defined attributes::
25706 * Libraries::
25707 * Elaboration order::
25708 * Target-specific aspects::
25709 @end menu
25710
25711
25712 @node Implementation-defined pragmas
25713 @subsection Implementation-defined pragmas
25714
25715 @noindent
25716 Ada compilers are allowed to supplement the language-defined pragmas, and
25717 these are a potential source of non-portability. All GNAT-defined pragmas
25718 are described in the GNAT Reference Manual, and these include several that
25719 are specifically intended to correspond to other vendors' Ada 83 pragmas.
25720 For migrating from VADS, the pragma @code{Use_VADS_Size} may be useful.
25721 For
25722 compatibility with DEC Ada 83, GNAT supplies the pragmas
25723 @code{Extend_System}, @code{Ident}, @code{Inline_Generic},
25724 @code{Interface_Name}, @code{Passive}, @code{Suppress_All},
25725 and @code{Volatile}.
25726 Other relevant pragmas include @code{External} and @code{Link_With}.
25727 Some vendor-specific
25728 Ada 83 pragmas (@code{Share_Generic}, @code{Subtitle}, and @code{Title}) are
25729 recognized, thus
25730 avoiding compiler rejection of units that contain such pragmas; they are not
25731 relevant in a GNAT context and hence are not otherwise implemented.
25732
25733 @node Implementation-defined attributes
25734 @subsection Implementation-defined attributes
25735
25736 Analogous to pragmas, the set of attributes may be extended by an
25737 implementation. All GNAT-defined attributes are described in the
25738 @cite{GNAT Reference Manual}, and these include several that are specifically
25739 intended
25740 to correspond to other vendors' Ada 83 attributes. For migrating from VADS,
25741 the attribute @code{VADS_Size} may be useful. For compatibility with DEC
25742 Ada 83, GNAT supplies the attributes @code{Bit}, @code{Machine_Size} and
25743 @code{Type_Class}.
25744
25745 @node Libraries
25746 @subsection Libraries
25747 @noindent
25748 Vendors may supply libraries to supplement the standard Ada API. If Ada 83
25749 code uses vendor-specific libraries then there are several ways to manage
25750 this in Ada 95:
25751 @enumerate
25752 @item
25753 If the source code for the libraries (specifications and bodies) are
25754 available, then the libraries can be migrated in the same way as the
25755 application.
25756 @item
25757 If the source code for the specifications but not the bodies are
25758 available, then you can reimplement the bodies.
25759 @item
25760 Some new Ada 95 features obviate the need for library support. For
25761 example most Ada 83 vendors supplied a package for unsigned integers. The
25762 Ada 95 modular type feature is the preferred way to handle this need, so
25763 instead of migrating or reimplementing the unsigned integer package it may
25764 be preferable to retrofit the application using modular types.
25765 @end enumerate
25766
25767 @node Elaboration order
25768 @subsection Elaboration order
25769 @noindent
25770 The implementation can choose any elaboration order consistent with the unit
25771 dependency relationship. This freedom means that some orders can result in
25772 Program_Error being raised due to an ``Access Before Elaboration'': an attempt
25773 to invoke a subprogram its body has been elaborated, or to instantiate a
25774 generic before the generic body has been elaborated. By default GNAT
25775 attempts to choose a safe order (one that will not encounter access before
25776 elaboration problems) by implicitly inserting Elaborate_All pragmas where
25777 needed. However, this can lead to the creation of elaboration circularities
25778 and a resulting rejection of the program by gnatbind. This issue is
25779 thoroughly described in @ref{Elaboration Order Handling in GNAT}.
25780 In brief, there are several
25781 ways to deal with this situation:
25782
25783 @itemize @bullet
25784 @item
25785 Modify the program to eliminate the circularities, e.g. by moving
25786 elaboration-time code into explicitly-invoked procedures
25787 @item
25788 Constrain the elaboration order by including explicit @code{Elaborate_Body} or
25789 @code{Elaborate} pragmas, and then inhibit the generation of implicit
25790 @code{Elaborate_All}
25791 pragmas either globally (as an effect of the @option{-gnatE} switch) or locally
25792 (by selectively suppressing elaboration checks via pragma
25793 @code{Suppress(Elaboration_Check)} when it is safe to do so).
25794 @end itemize
25795
25796 @node Target-specific aspects
25797 @subsection Target-specific aspects
25798 @noindent
25799 Low-level applications need to deal with machine addresses, data
25800 representations, interfacing with assembler code, and similar issues. If
25801 such an Ada 83 application is being ported to different target hardware (for
25802 example where the byte endianness has changed) then you will need to
25803 carefully examine the program logic; the porting effort will heavily depend
25804 on the robustness of the original design. Moreover, Ada 95 is sometimes
25805 incompatible with typical Ada 83 compiler practices regarding implicit
25806 packing, the meaning of the Size attribute, and the size of access values.
25807 GNAT's approach to these issues is described in @ref{Representation Clauses}.
25808
25809
25810 @node Compatibility with Other Ada 95 Systems
25811 @section Compatibility with Other Ada 95 Systems
25812
25813 @noindent
25814 Providing that programs avoid the use of implementation dependent and
25815 implementation defined features of Ada 95, as documented in the Ada 95
25816 reference manual, there should be a high degree of portability between
25817 GNAT and other Ada 95 systems. The following are specific items which
25818 have proved troublesome in moving GNAT programs to other Ada 95
25819 compilers, but do not affect porting code to GNAT@.
25820
25821 @table @asis
25822 @item Ada 83 Pragmas and Attributes
25823 Ada 95 compilers are allowed, but not required, to implement the missing
25824 Ada 83 pragmas and attributes that are no longer defined in Ada 95.
25825 GNAT implements all such pragmas and attributes, eliminating this as
25826 a compatibility concern, but some other Ada 95 compilers reject these
25827 pragmas and attributes.
25828
25829 @item Special-needs Annexes
25830 GNAT implements the full set of special needs annexes. At the
25831 current time, it is the only Ada 95 compiler to do so. This means that
25832 programs making use of these features may not be portable to other Ada
25833 95 compilation systems.
25834
25835 @item Representation Clauses
25836 Some other Ada 95 compilers implement only the minimal set of
25837 representation clauses required by the Ada 95 reference manual. GNAT goes
25838 far beyond this minimal set, as described in the next section.
25839 @end table
25840
25841 @node Representation Clauses
25842 @section Representation Clauses
25843
25844 @noindent
25845 The Ada 83 reference manual was quite vague in describing both the minimal
25846 required implementation of representation clauses, and also their precise
25847 effects. The Ada 95 reference manual is much more explicit, but the minimal
25848 set of capabilities required in Ada 95 is quite limited.
25849
25850 GNAT implements the full required set of capabilities described in the
25851 Ada 95 reference manual, but also goes much beyond this, and in particular
25852 an effort has been made to be compatible with existing Ada 83 usage to the
25853 greatest extent possible.
25854
25855 A few cases exist in which Ada 83 compiler behavior is incompatible with
25856 requirements in the Ada 95 reference manual. These are instances of
25857 intentional or accidental dependence on specific implementation dependent
25858 characteristics of these Ada 83 compilers. The following is a list of
25859 the cases most likely to arise in existing legacy Ada 83 code.
25860
25861 @table @asis
25862 @item Implicit Packing
25863 Some Ada 83 compilers allowed a Size specification to cause implicit
25864 packing of an array or record. This could cause expensive implicit
25865 conversions for change of representation in the presence of derived
25866 types, and the Ada design intends to avoid this possibility.
25867 Subsequent AI's were issued to make it clear that such implicit
25868 change of representation in response to a Size clause is inadvisable,
25869 and this recommendation is represented explicitly in the Ada 95 RM
25870 as implementation advice that is followed by GNAT@.
25871 The problem will show up as an error
25872 message rejecting the size clause. The fix is simply to provide
25873 the explicit pragma @code{Pack}, or for more fine tuned control, provide
25874 a Component_Size clause.
25875
25876 @item Meaning of Size Attribute
25877 The Size attribute in Ada 95 for discrete types is defined as being the
25878 minimal number of bits required to hold values of the type. For example,
25879 on a 32-bit machine, the size of Natural will typically be 31 and not
25880 32 (since no sign bit is required). Some Ada 83 compilers gave 31, and
25881 some 32 in this situation. This problem will usually show up as a compile
25882 time error, but not always. It is a good idea to check all uses of the
25883 'Size attribute when porting Ada 83 code. The GNAT specific attribute
25884 Object_Size can provide a useful way of duplicating the behavior of
25885 some Ada 83 compiler systems.
25886
25887 @item Size of Access Types
25888 A common assumption in Ada 83 code is that an access type is in fact a pointer,
25889 and that therefore it will be the same size as a System.Address value. This
25890 assumption is true for GNAT in most cases with one exception. For the case of
25891 a pointer to an unconstrained array type (where the bounds may vary from one
25892 value of the access type to another), the default is to use a ``fat pointer'',
25893 which is represented as two separate pointers, one to the bounds, and one to
25894 the array. This representation has a number of advantages, including improved
25895 efficiency. However, it may cause some difficulties in porting existing Ada 83
25896 code which makes the assumption that, for example, pointers fit in 32 bits on
25897 a machine with 32-bit addressing.
25898
25899 To get around this problem, GNAT also permits the use of ``thin pointers'' for
25900 access types in this case (where the designated type is an unconstrained array
25901 type). These thin pointers are indeed the same size as a System.Address value.
25902 To specify a thin pointer, use a size clause for the type, for example:
25903
25904 @smallexample @c ada
25905 type X is access all String;
25906 for X'Size use Standard'Address_Size;
25907 @end smallexample
25908
25909 @noindent
25910 which will cause the type X to be represented using a single pointer.
25911 When using this representation, the bounds are right behind the array.
25912 This representation is slightly less efficient, and does not allow quite
25913 such flexibility in the use of foreign pointers or in using the
25914 Unrestricted_Access attribute to create pointers to non-aliased objects.
25915 But for any standard portable use of the access type it will work in
25916 a functionally correct manner and allow porting of existing code.
25917 Note that another way of forcing a thin pointer representation
25918 is to use a component size clause for the element size in an array,
25919 or a record representation clause for an access field in a record.
25920 @end table
25921
25922 @node Compatibility with DEC Ada 83
25923 @section Compatibility with DEC Ada 83
25924
25925 @noindent
25926 The VMS version of GNAT fully implements all the pragmas and attributes
25927 provided by DEC Ada 83, as well as providing the standard DEC Ada 83
25928 libraries, including Starlet. In addition, data layouts and parameter
25929 passing conventions are highly compatible. This means that porting
25930 existing DEC Ada 83 code to GNAT in VMS systems should be easier than
25931 most other porting efforts. The following are some of the most
25932 significant differences between GNAT and DEC Ada 83.
25933
25934 @table @asis
25935 @item Default floating-point representation
25936 In GNAT, the default floating-point format is IEEE, whereas in DEC Ada 83,
25937 it is VMS format. GNAT does implement the necessary pragmas
25938 (Long_Float, Float_Representation) for changing this default.
25939
25940 @item System
25941 The package System in GNAT exactly corresponds to the definition in the
25942 Ada 95 reference manual, which means that it excludes many of the
25943 DEC Ada 83 extensions. However, a separate package Aux_DEC is provided
25944 that contains the additional definitions, and a special pragma,
25945 Extend_System allows this package to be treated transparently as an
25946 extension of package System.
25947
25948 @item To_Address
25949 The definitions provided by Aux_DEC are exactly compatible with those
25950 in the DEC Ada 83 version of System, with one exception.
25951 DEC Ada provides the following declarations:
25952
25953 @smallexample @c ada
25954 TO_ADDRESS (INTEGER)
25955 TO_ADDRESS (UNSIGNED_LONGWORD)
25956 TO_ADDRESS (universal_integer)
25957 @end smallexample
25958
25959 @noindent
25960 The version of TO_ADDRESS taking a universal integer argument is in fact
25961 an extension to Ada 83 not strictly compatible with the reference manual.
25962 In GNAT, we are constrained to be exactly compatible with the standard,
25963 and this means we cannot provide this capability. In DEC Ada 83, the
25964 point of this definition is to deal with a call like:
25965
25966 @smallexample @c ada
25967 TO_ADDRESS (16#12777#);
25968 @end smallexample
25969
25970 @noindent
25971 Normally, according to the Ada 83 standard, one would expect this to be
25972 ambiguous, since it matches both the INTEGER and UNSIGNED_LONGWORD forms
25973 of TO_ADDRESS@. However, in DEC Ada 83, there is no ambiguity, since the
25974 definition using universal_integer takes precedence.
25975
25976 In GNAT, since the version with universal_integer cannot be supplied, it is
25977 not possible to be 100% compatible. Since there are many programs using
25978 numeric constants for the argument to TO_ADDRESS, the decision in GNAT was
25979 to change the name of the function in the UNSIGNED_LONGWORD case, so the
25980 declarations provided in the GNAT version of AUX_Dec are:
25981
25982 @smallexample @c ada
25983 function To_Address (X : Integer) return Address;
25984 pragma Pure_Function (To_Address);
25985
25986 function To_Address_Long (X : Unsigned_Longword)
25987 return Address;
25988 pragma Pure_Function (To_Address_Long);
25989 @end smallexample
25990
25991 @noindent
25992 This means that programs using TO_ADDRESS for UNSIGNED_LONGWORD must
25993 change the name to TO_ADDRESS_LONG@.
25994
25995 @item Task_Id values
25996 The Task_Id values assigned will be different in the two systems, and GNAT
25997 does not provide a specified value for the Task_Id of the environment task,
25998 which in GNAT is treated like any other declared task.
25999 @end table
26000
26001 For full details on these and other less significant compatibility issues,
26002 see appendix E of the Digital publication entitled @cite{DEC Ada, Technical
26003 Overview and Comparison on DIGITAL Platforms}.
26004
26005 For GNAT running on other than VMS systems, all the DEC Ada 83 pragmas and
26006 attributes are recognized, although only a subset of them can sensibly
26007 be implemented. The description of pragmas in this reference manual
26008 indicates whether or not they are applicable to non-VMS systems.
26009
26010
26011
26012 @ifset unw
26013 @node Microsoft Windows Topics
26014 @appendix Microsoft Windows Topics
26015 @cindex Windows NT
26016 @cindex Windows 95
26017 @cindex Windows 98
26018
26019 @noindent
26020 This chapter describes topics that are specific to the Microsoft Windows
26021 platforms (NT, 2000, and XP Professional).
26022
26023 @menu
26024 * Using GNAT on Windows::
26025 * Using a network installation of GNAT::
26026 * CONSOLE and WINDOWS subsystems::
26027 * Temporary Files::
26028 * Mixed-Language Programming on Windows::
26029 * Windows Calling Conventions::
26030 * Introduction to Dynamic Link Libraries (DLLs)::
26031 * Using DLLs with GNAT::
26032 * Building DLLs with GNAT::
26033 * GNAT and Windows Resources::
26034 * Debugging a DLL::
26035 * GNAT and COM/DCOM Objects::
26036 @end menu
26037
26038 @node Using GNAT on Windows
26039 @section Using GNAT on Windows
26040
26041 @noindent
26042 One of the strengths of the GNAT technology is that its tool set
26043 (@code{gcc}, @code{gnatbind}, @code{gnatlink}, @code{gnatmake}, the
26044 @code{gdb} debugger, etc.) is used in the same way regardless of the
26045 platform.
26046
26047 On Windows this tool set is complemented by a number of Microsoft-specific
26048 tools that have been provided to facilitate interoperability with Windows
26049 when this is required. With these tools:
26050
26051 @itemize @bullet
26052
26053 @item
26054 You can build applications using the @code{CONSOLE} or @code{WINDOWS}
26055 subsystems.
26056
26057 @item
26058 You can use any Dynamically Linked Library (DLL) in your Ada code (both
26059 relocatable and non-relocatable DLLs are supported).
26060
26061 @item
26062 You can build Ada DLLs for use in other applications. These applications
26063 can be written in a language other than Ada (e.g., C, C++, etc). Again both
26064 relocatable and non-relocatable Ada DLLs are supported.
26065
26066 @item
26067 You can include Windows resources in your Ada application.
26068
26069 @item
26070 You can use or create COM/DCOM objects.
26071 @end itemize
26072
26073 @noindent
26074 Immediately below are listed all known general GNAT-for-Windows restrictions.
26075 Other restrictions about specific features like Windows Resources and DLLs
26076 are listed in separate sections below.
26077
26078 @itemize @bullet
26079
26080 @item
26081 It is not possible to use @code{GetLastError} and @code{SetLastError}
26082 when tasking, protected records, or exceptions are used. In these
26083 cases, in order to implement Ada semantics, the GNAT run-time system
26084 calls certain Win32 routines that set the last error variable to 0 upon
26085 success. It should be possible to use @code{GetLastError} and
26086 @code{SetLastError} when tasking, protected record, and exception
26087 features are not used, but it is not guaranteed to work.
26088
26089 @item
26090 It is not possible to link against Microsoft libraries except for
26091 import libraries. The library must be built to be compatible with
26092 @file{MSVCRT.LIB} (/MD Microsoft compiler option), @file{LIBC.LIB} and
26093 @file{LIBCMT.LIB} (/ML or /MT Microsoft compiler options) are known to
26094 not be compatible with the GNAT runtime. Even if the library is
26095 compatible with @file{MSVCRT.LIB} it is not guaranteed to work.
26096
26097 @item
26098 When the compilation environment is located on FAT32 drives, users may
26099 experience recompilations of the source files that have not changed if
26100 Daylight Saving Time (DST) state has changed since the last time files
26101 were compiled. NTFS drives do not have this problem.
26102
26103 @item
26104 No components of the GNAT toolset use any entries in the Windows
26105 registry. The only entries that can be created are file associations and
26106 PATH settings, provided the user has chosen to create them at installation
26107 time, as well as some minimal book-keeping information needed to correctly
26108 uninstall or integrate different GNAT products.
26109 @end itemize
26110
26111 @node Using a network installation of GNAT
26112 @section Using a network installation of GNAT
26113
26114 @noindent
26115 Make sure the system on which GNAT is installed is accessible from the
26116 current machine, i.e. the install location is shared over the network.
26117 Shared resources are accessed on Windows by means of UNC paths, which
26118 have the format @code{\\server\sharename\path}
26119
26120 In order to use such a network installation, simply add the UNC path of the
26121 @file{bin} directory of your GNAT installation in front of your PATH. For
26122 example, if GNAT is installed in @file{\GNAT} directory of a share location
26123 called @file{c-drive} on a machine @file{LOKI}, the following command will
26124 make it available:
26125
26126 @code{@ @ @ path \\loki\c-drive\gnat\bin;%path%}
26127
26128 Be aware that every compilation using the network installation results in the
26129 transfer of large amounts of data across the network and will likely cause
26130 serious performance penalty.
26131
26132 @node CONSOLE and WINDOWS subsystems
26133 @section CONSOLE and WINDOWS subsystems
26134 @cindex CONSOLE Subsystem
26135 @cindex WINDOWS Subsystem
26136 @cindex -mwindows
26137
26138 @noindent
26139 There are two main subsystems under Windows. The @code{CONSOLE} subsystem
26140 (which is the default subsystem) will always create a console when
26141 launching the application. This is not something desirable when the
26142 application has a Windows GUI. To get rid of this console the
26143 application must be using the @code{WINDOWS} subsystem. To do so
26144 the @option{-mwindows} linker option must be specified.
26145
26146 @smallexample
26147 $ gnatmake winprog -largs -mwindows
26148 @end smallexample
26149
26150 @node Temporary Files
26151 @section Temporary Files
26152 @cindex Temporary files
26153
26154 @noindent
26155 It is possible to control where temporary files gets created by setting
26156 the TMP environment variable. The file will be created:
26157
26158 @itemize
26159 @item Under the directory pointed to by the TMP environment variable if
26160 this directory exists.
26161
26162 @item Under c:\temp, if the TMP environment variable is not set (or not
26163 pointing to a directory) and if this directory exists.
26164
26165 @item Under the current working directory otherwise.
26166 @end itemize
26167
26168 @noindent
26169 This allows you to determine exactly where the temporary
26170 file will be created. This is particularly useful in networked
26171 environments where you may not have write access to some
26172 directories.
26173
26174 @node Mixed-Language Programming on Windows
26175 @section Mixed-Language Programming on Windows
26176
26177 @noindent
26178 Developing pure Ada applications on Windows is no different than on
26179 other GNAT-supported platforms. However, when developing or porting an
26180 application that contains a mix of Ada and C/C++, the choice of your
26181 Windows C/C++ development environment conditions your overall
26182 interoperability strategy.
26183
26184 If you use @code{gcc} to compile the non-Ada part of your application,
26185 there are no Windows-specific restrictions that affect the overall
26186 interoperability with your Ada code. If you plan to use
26187 Microsoft tools (e.g. Microsoft Visual C/C++), you should be aware of
26188 the following limitations:
26189
26190 @itemize @bullet
26191 @item
26192 You cannot link your Ada code with an object or library generated with
26193 Microsoft tools if these use the @code{.tls} section (Thread Local
26194 Storage section) since the GNAT linker does not yet support this section.
26195
26196 @item
26197 You cannot link your Ada code with an object or library generated with
26198 Microsoft tools if these use I/O routines other than those provided in
26199 the Microsoft DLL: @code{msvcrt.dll}. This is because the GNAT run time
26200 uses the services of @code{msvcrt.dll} for its I/Os. Use of other I/O
26201 libraries can cause a conflict with @code{msvcrt.dll} services. For
26202 instance Visual C++ I/O stream routines conflict with those in
26203 @code{msvcrt.dll}.
26204 @end itemize
26205
26206 @noindent
26207 If you do want to use the Microsoft tools for your non-Ada code and hit one
26208 of the above limitations, you have two choices:
26209
26210 @enumerate
26211 @item
26212 Encapsulate your non Ada code in a DLL to be linked with your Ada
26213 application. In this case, use the Microsoft or whatever environment to
26214 build the DLL and use GNAT to build your executable
26215 (@pxref{Using DLLs with GNAT}).
26216
26217 @item
26218 Or you can encapsulate your Ada code in a DLL to be linked with the
26219 other part of your application. In this case, use GNAT to build the DLL
26220 (@pxref{Building DLLs with GNAT}) and use the Microsoft or whatever
26221 environment to build your executable.
26222 @end enumerate
26223
26224 @node Windows Calling Conventions
26225 @section Windows Calling Conventions
26226 @findex Stdcall
26227 @findex APIENTRY
26228
26229 @menu
26230 * C Calling Convention::
26231 * Stdcall Calling Convention::
26232 * DLL Calling Convention::
26233 @end menu
26234
26235 @noindent
26236 When a subprogram @code{F} (caller) calls a subprogram @code{G}
26237 (callee), there are several ways to push @code{G}'s parameters on the
26238 stack and there are several possible scenarios to clean up the stack
26239 upon @code{G}'s return. A calling convention is an agreed upon software
26240 protocol whereby the responsibilities between the caller (@code{F}) and
26241 the callee (@code{G}) are clearly defined. Several calling conventions
26242 are available for Windows:
26243
26244 @itemize @bullet
26245 @item
26246 @code{C} (Microsoft defined)
26247
26248 @item
26249 @code{Stdcall} (Microsoft defined)
26250
26251 @item
26252 @code{DLL} (GNAT specific)
26253 @end itemize
26254
26255 @node C Calling Convention
26256 @subsection @code{C} Calling Convention
26257
26258 @noindent
26259 This is the default calling convention used when interfacing to C/C++
26260 routines compiled with either @code{gcc} or Microsoft Visual C++.
26261
26262 In the @code{C} calling convention subprogram parameters are pushed on the
26263 stack by the caller from right to left. The caller itself is in charge of
26264 cleaning up the stack after the call. In addition, the name of a routine
26265 with @code{C} calling convention is mangled by adding a leading underscore.
26266
26267 The name to use on the Ada side when importing (or exporting) a routine
26268 with @code{C} calling convention is the name of the routine. For
26269 instance the C function:
26270
26271 @smallexample
26272 int get_val (long);
26273 @end smallexample
26274
26275 @noindent
26276 should be imported from Ada as follows:
26277
26278 @smallexample @c ada
26279 @group
26280 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
26281 pragma Import (C, Get_Val, External_Name => "get_val");
26282 @end group
26283 @end smallexample
26284
26285 @noindent
26286 Note that in this particular case the @code{External_Name} parameter could
26287 have been omitted since, when missing, this parameter is taken to be the
26288 name of the Ada entity in lower case. When the @code{Link_Name} parameter
26289 is missing, as in the above example, this parameter is set to be the
26290 @code{External_Name} with a leading underscore.
26291
26292 When importing a variable defined in C, you should always use the @code{C}
26293 calling convention unless the object containing the variable is part of a
26294 DLL (in which case you should use the @code{DLL} calling convention,
26295 @pxref{DLL Calling Convention}).
26296
26297 @node Stdcall Calling Convention
26298 @subsection @code{Stdcall} Calling Convention
26299
26300 @noindent
26301 This convention, which was the calling convention used for Pascal
26302 programs, is used by Microsoft for all the routines in the Win32 API for
26303 efficiency reasons. It must be used to import any routine for which this
26304 convention was specified.
26305
26306 In the @code{Stdcall} calling convention subprogram parameters are pushed
26307 on the stack by the caller from right to left. The callee (and not the
26308 caller) is in charge of cleaning the stack on routine exit. In addition,
26309 the name of a routine with @code{Stdcall} calling convention is mangled by
26310 adding a leading underscore (as for the @code{C} calling convention) and a
26311 trailing @code{@@}@code{@i{nn}}, where @i{nn} is the overall size (in
26312 bytes) of the parameters passed to the routine.
26313
26314 The name to use on the Ada side when importing a C routine with a
26315 @code{Stdcall} calling convention is the name of the C routine. The leading
26316 underscore and trailing @code{@@}@code{@i{nn}} are added automatically by
26317 the compiler. For instance the Win32 function:
26318
26319 @smallexample
26320 @b{APIENTRY} int get_val (long);
26321 @end smallexample
26322
26323 @noindent
26324 should be imported from Ada as follows:
26325
26326 @smallexample @c ada
26327 @group
26328 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
26329 pragma Import (Stdcall, Get_Val);
26330 -- On the x86 a long is 4 bytes, so the Link_Name is "_get_val@@4"
26331 @end group
26332 @end smallexample
26333
26334 @noindent
26335 As for the @code{C} calling convention, when the @code{External_Name}
26336 parameter is missing, it is taken to be the name of the Ada entity in lower
26337 case. If instead of writing the above import pragma you write:
26338
26339 @smallexample @c ada
26340 @group
26341 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
26342 pragma Import (Stdcall, Get_Val, External_Name => "retrieve_val");
26343 @end group
26344 @end smallexample
26345
26346 @noindent
26347 then the imported routine is @code{_retrieve_val@@4}. However, if instead
26348 of specifying the @code{External_Name} parameter you specify the
26349 @code{Link_Name} as in the following example:
26350
26351 @smallexample @c ada
26352 @group
26353 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
26354 pragma Import (Stdcall, Get_Val, Link_Name => "retrieve_val");
26355 @end group
26356 @end smallexample
26357
26358 @noindent
26359 then the imported routine is @code{retrieve_val@@4}, that is, there is no
26360 trailing underscore but the appropriate @code{@@}@code{@i{nn}} is always
26361 added at the end of the @code{Link_Name} by the compiler.
26362
26363 @noindent
26364 Note, that in some special cases a DLL's entry point name lacks a trailing
26365 @code{@@}@code{@i{nn}} while the exported name generated for a call has it.
26366 The @code{gnatdll} tool, which creates the import library for the DLL, is able
26367 to handle those cases (see the description of the switches in
26368 @pxref{Using gnatdll} section).
26369
26370 @node DLL Calling Convention
26371 @subsection @code{DLL} Calling Convention
26372
26373 @noindent
26374 This convention, which is GNAT-specific, must be used when you want to
26375 import in Ada a variables defined in a DLL. For functions and procedures
26376 this convention is equivalent to the @code{Stdcall} convention. As an
26377 example, if a DLL contains a variable defined as:
26378
26379 @smallexample
26380 int my_var;
26381 @end smallexample
26382
26383 @noindent
26384 then, to access this variable from Ada you should write:
26385
26386 @smallexample @c ada
26387 @group
26388 My_Var : Interfaces.C.int;
26389 pragma Import (DLL, My_Var);
26390 @end group
26391 @end smallexample
26392
26393 The remarks concerning the @code{External_Name} and @code{Link_Name}
26394 parameters given in the previous sections equally apply to the @code{DLL}
26395 calling convention.
26396
26397 @node Introduction to Dynamic Link Libraries (DLLs)
26398 @section Introduction to Dynamic Link Libraries (DLLs)
26399 @findex DLL
26400
26401 @noindent
26402 A Dynamically Linked Library (DLL) is a library that can be shared by
26403 several applications running under Windows. A DLL can contain any number of
26404 routines and variables.
26405
26406 One advantage of DLLs is that you can change and enhance them without
26407 forcing all the applications that depend on them to be relinked or
26408 recompiled. However, you should be aware than all calls to DLL routines are
26409 slower since, as you will understand below, such calls are indirect.
26410
26411 To illustrate the remainder of this section, suppose that an application
26412 wants to use the services of a DLL @file{API.dll}. To use the services
26413 provided by @file{API.dll} you must statically link against an import
26414 library which contains a jump table with an entry for each routine and
26415 variable exported by the DLL. In the Microsoft world this import library is
26416 called @file{API.lib}. When using GNAT this import library is called either
26417 @file{libAPI.a} or @file{libapi.a} (names are case insensitive).
26418
26419 After you have statically linked your application with the import library
26420 and you run your application, here is what happens:
26421
26422 @enumerate
26423 @item
26424 Your application is loaded into memory.
26425
26426 @item
26427 The DLL @file{API.dll} is mapped into the address space of your
26428 application. This means that:
26429
26430 @itemize @bullet
26431 @item
26432 The DLL will use the stack of the calling thread.
26433
26434 @item
26435 The DLL will use the virtual address space of the calling process.
26436
26437 @item
26438 The DLL will allocate memory from the virtual address space of the calling
26439 process.
26440
26441 @item
26442 Handles (pointers) can be safely exchanged between routines in the DLL
26443 routines and routines in the application using the DLL.
26444 @end itemize
26445
26446 @item
26447 The entries in the @file{libAPI.a} or @file{API.lib} jump table which is
26448 part of your application are initialized with the addresses of the routines
26449 and variables in @file{API.dll}.
26450
26451 @item
26452 If present in @file{API.dll}, routines @code{DllMain} or
26453 @code{DllMainCRTStartup} are invoked. These routines typically contain
26454 the initialization code needed for the well-being of the routines and
26455 variables exported by the DLL.
26456 @end enumerate
26457
26458 @noindent
26459 There is an additional point which is worth mentioning. In the Windows
26460 world there are two kind of DLLs: relocatable and non-relocatable
26461 DLLs. Non-relocatable DLLs can only be loaded at a very specific address
26462 in the target application address space. If the addresses of two
26463 non-relocatable DLLs overlap and these happen to be used by the same
26464 application, a conflict will occur and the application will run
26465 incorrectly. Hence, when possible, it is always preferable to use and
26466 build relocatable DLLs. Both relocatable and non-relocatable DLLs are
26467 supported by GNAT. Note that the @option{-s} linker option (see GNU Linker
26468 User's Guide) removes the debugging symbols from the DLL but the DLL can
26469 still be relocated.
26470
26471 As a side note, an interesting difference between Microsoft DLLs and
26472 Unix shared libraries, is the fact that on most Unix systems all public
26473 routines are exported by default in a Unix shared library, while under
26474 Windows the exported routines must be listed explicitly in a definition
26475 file (@pxref{The Definition File}).
26476
26477 @node Using DLLs with GNAT
26478 @section Using DLLs with GNAT
26479
26480 @menu
26481 * Creating an Ada Spec for the DLL Services::
26482 * Creating an Import Library::
26483 @end menu
26484
26485 @noindent
26486 To use the services of a DLL, say @file{API.dll}, in your Ada application
26487 you must have:
26488
26489 @enumerate
26490 @item
26491 The Ada spec for the routines and/or variables you want to access in
26492 @file{API.dll}. If not available this Ada spec must be built from the C/C++
26493 header files provided with the DLL.
26494
26495 @item
26496 The import library (@file{libAPI.a} or @file{API.lib}). As previously
26497 mentioned an import library is a statically linked library containing the
26498 import table which will be filled at load time to point to the actual
26499 @file{API.dll} routines. Sometimes you don't have an import library for the
26500 DLL you want to use. The following sections will explain how to build one.
26501
26502 @item
26503 The actual DLL, @file{API.dll}.
26504 @end enumerate
26505
26506 @noindent
26507 Once you have all the above, to compile an Ada application that uses the
26508 services of @file{API.dll} and whose main subprogram is @code{My_Ada_App},
26509 you simply issue the command
26510
26511 @smallexample
26512 $ gnatmake my_ada_app -largs -lAPI
26513 @end smallexample
26514
26515 @noindent
26516 The argument @option{-largs -lAPI} at the end of the @code{gnatmake} command
26517 tells the GNAT linker to look first for a library named @file{API.lib}
26518 (Microsoft-style name) and if not found for a library named @file{libAPI.a}
26519 (GNAT-style name). Note that if the Ada package spec for @file{API.dll}
26520 contains the following pragma
26521
26522 @smallexample @c ada
26523 pragma Linker_Options ("-lAPI");
26524 @end smallexample
26525
26526 @noindent
26527 you do not have to add @option{-largs -lAPI} at the end of the @code{gnatmake}
26528 command.
26529
26530 If any one of the items above is missing you will have to create it
26531 yourself. The following sections explain how to do so using as an
26532 example a fictitious DLL called @file{API.dll}.
26533
26534 @node Creating an Ada Spec for the DLL Services
26535 @subsection Creating an Ada Spec for the DLL Services
26536
26537 @noindent
26538 A DLL typically comes with a C/C++ header file which provides the
26539 definitions of the routines and variables exported by the DLL. The Ada
26540 equivalent of this header file is a package spec that contains definitions
26541 for the imported entities. If the DLL you intend to use does not come with
26542 an Ada spec you have to generate one such spec yourself. For example if
26543 the header file of @file{API.dll} is a file @file{api.h} containing the
26544 following two definitions:
26545
26546 @smallexample
26547 @group
26548 @cartouche
26549 int some_var;
26550 int get (char *);
26551 @end cartouche
26552 @end group
26553 @end smallexample
26554
26555 @noindent
26556 then the equivalent Ada spec could be:
26557
26558 @smallexample @c ada
26559 @group
26560 @cartouche
26561 with Interfaces.C.Strings;
26562 package API is
26563 use Interfaces;
26564
26565 Some_Var : C.int;
26566 function Get (Str : C.Strings.Chars_Ptr) return C.int;
26567
26568 private
26569 pragma Import (C, Get);
26570 pragma Import (DLL, Some_Var);
26571 end API;
26572 @end cartouche
26573 @end group
26574 @end smallexample
26575
26576 @noindent
26577 Note that a variable is @strong{always imported with a DLL convention}. A
26578 function can have @code{C}, @code{Stdcall} or @code{DLL} convention. For
26579 subprograms, the @code{DLL} convention is a synonym of @code{Stdcall}
26580 (@pxref{Windows Calling Conventions}).
26581
26582 @node Creating an Import Library
26583 @subsection Creating an Import Library
26584 @cindex Import library
26585
26586 @menu
26587 * The Definition File::
26588 * GNAT-Style Import Library::
26589 * Microsoft-Style Import Library::
26590 @end menu
26591
26592 @noindent
26593 If a Microsoft-style import library @file{API.lib} or a GNAT-style
26594 import library @file{libAPI.a} is available with @file{API.dll} you
26595 can skip this section. Otherwise read on.
26596
26597 @node The Definition File
26598 @subsubsection The Definition File
26599 @cindex Definition file
26600 @findex .def
26601
26602 @noindent
26603 As previously mentioned, and unlike Unix systems, the list of symbols
26604 that are exported from a DLL must be provided explicitly in Windows.
26605 The main goal of a definition file is precisely that: list the symbols
26606 exported by a DLL. A definition file (usually a file with a @code{.def}
26607 suffix) has the following structure:
26608
26609 @smallexample
26610 @group
26611 @cartouche
26612 [LIBRARY @i{name}]
26613 [DESCRIPTION @i{string}]
26614 EXPORTS
26615 @i{symbol1}
26616 @i{symbol2}
26617 ...
26618 @end cartouche
26619 @end group
26620 @end smallexample
26621
26622 @table @code
26623 @item LIBRARY @i{name}
26624 This section, which is optional, gives the name of the DLL.
26625
26626 @item DESCRIPTION @i{string}
26627 This section, which is optional, gives a description string that will be
26628 embedded in the import library.
26629
26630 @item EXPORTS
26631 This section gives the list of exported symbols (procedures, functions or
26632 variables). For instance in the case of @file{API.dll} the @code{EXPORTS}
26633 section of @file{API.def} looks like:
26634
26635 @smallexample
26636 @group
26637 @cartouche
26638 EXPORTS
26639 some_var
26640 get
26641 @end cartouche
26642 @end group
26643 @end smallexample
26644 @end table
26645
26646 @noindent
26647 Note that you must specify the correct suffix (@code{@@}@code{@i{nn}})
26648 (@pxref{Windows Calling Conventions}) for a Stdcall
26649 calling convention function in the exported symbols list.
26650
26651 @noindent
26652 There can actually be other sections in a definition file, but these
26653 sections are not relevant to the discussion at hand.
26654
26655 @node GNAT-Style Import Library
26656 @subsubsection GNAT-Style Import Library
26657
26658 @noindent
26659 To create a static import library from @file{API.dll} with the GNAT tools
26660 you should proceed as follows:
26661
26662 @enumerate
26663 @item
26664 Create the definition file @file{API.def} (@pxref{The Definition File}).
26665 For that use the @code{dll2def} tool as follows:
26666
26667 @smallexample
26668 $ dll2def API.dll > API.def
26669 @end smallexample
26670
26671 @noindent
26672 @code{dll2def} is a very simple tool: it takes as input a DLL and prints
26673 to standard output the list of entry points in the DLL. Note that if
26674 some routines in the DLL have the @code{Stdcall} convention
26675 (@pxref{Windows Calling Conventions}) with stripped @code{@@}@i{nn}
26676 suffix then you'll have to edit @file{api.def} to add it.
26677
26678 @noindent
26679 Here are some hints to find the right @code{@@}@i{nn} suffix.
26680
26681 @enumerate
26682 @item
26683 If you have the Microsoft import library (.lib), it is possible to get
26684 the right symbols by using Microsoft @code{dumpbin} tool (see the
26685 corresponding Microsoft documentation for further details).
26686
26687 @smallexample
26688 $ dumpbin /exports api.lib
26689 @end smallexample
26690
26691 @item
26692 If you have a message about a missing symbol at link time the compiler
26693 tells you what symbol is expected. You just have to go back to the
26694 definition file and add the right suffix.
26695 @end enumerate
26696
26697 @item
26698 Build the import library @code{libAPI.a}, using @code{gnatdll}
26699 (@pxref{Using gnatdll}) as follows:
26700
26701 @smallexample
26702 $ gnatdll -e API.def -d API.dll
26703 @end smallexample
26704
26705 @noindent
26706 @code{gnatdll} takes as input a definition file @file{API.def} and the
26707 name of the DLL containing the services listed in the definition file
26708 @file{API.dll}. The name of the static import library generated is
26709 computed from the name of the definition file as follows: if the
26710 definition file name is @i{xyz}@code{.def}, the import library name will
26711 be @code{lib}@i{xyz}@code{.a}. Note that in the previous example option
26712 @option{-e} could have been removed because the name of the definition
26713 file (before the ``@code{.def}'' suffix) is the same as the name of the
26714 DLL (@pxref{Using gnatdll} for more information about @code{gnatdll}).
26715 @end enumerate
26716
26717 @node Microsoft-Style Import Library
26718 @subsubsection Microsoft-Style Import Library
26719
26720 @noindent
26721 With GNAT you can either use a GNAT-style or Microsoft-style import
26722 library. A Microsoft import library is needed only if you plan to make an
26723 Ada DLL available to applications developed with Microsoft
26724 tools (@pxref{Mixed-Language Programming on Windows}).
26725
26726 To create a Microsoft-style import library for @file{API.dll} you
26727 should proceed as follows:
26728
26729 @enumerate
26730 @item
26731 Create the definition file @file{API.def} from the DLL. For this use either
26732 the @code{dll2def} tool as described above or the Microsoft @code{dumpbin}
26733 tool (see the corresponding Microsoft documentation for further details).
26734
26735 @item
26736 Build the actual import library using Microsoft's @code{lib} utility:
26737
26738 @smallexample
26739 $ lib -machine:IX86 -def:API.def -out:API.lib
26740 @end smallexample
26741
26742 @noindent
26743 If you use the above command the definition file @file{API.def} must
26744 contain a line giving the name of the DLL:
26745
26746 @smallexample
26747 LIBRARY "API"
26748 @end smallexample
26749
26750 @noindent
26751 See the Microsoft documentation for further details about the usage of
26752 @code{lib}.
26753 @end enumerate
26754
26755 @node Building DLLs with GNAT
26756 @section Building DLLs with GNAT
26757 @cindex DLLs, building
26758
26759 @menu
26760 * Limitations When Using Ada DLLs from Ada::
26761 * Exporting Ada Entities::
26762 * Ada DLLs and Elaboration::
26763 * Ada DLLs and Finalization::
26764 * Creating a Spec for Ada DLLs::
26765 * Creating the Definition File::
26766 * Using gnatdll::
26767 @end menu
26768
26769 @noindent
26770 This section explains how to build DLLs containing Ada code. These DLLs
26771 will be referred to as Ada DLLs in the remainder of this section.
26772
26773 The steps required to build an Ada DLL that is to be used by Ada as well as
26774 non-Ada applications are as follows:
26775
26776 @enumerate
26777 @item
26778 You need to mark each Ada @i{entity} exported by the DLL with a @code{C} or
26779 @code{Stdcall} calling convention to avoid any Ada name mangling for the
26780 entities exported by the DLL (@pxref{Exporting Ada Entities}). You can
26781 skip this step if you plan to use the Ada DLL only from Ada applications.
26782
26783 @item
26784 Your Ada code must export an initialization routine which calls the routine
26785 @code{adainit} generated by @code{gnatbind} to perform the elaboration of
26786 the Ada code in the DLL (@pxref{Ada DLLs and Elaboration}). The initialization
26787 routine exported by the Ada DLL must be invoked by the clients of the DLL
26788 to initialize the DLL.
26789
26790 @item
26791 When useful, the DLL should also export a finalization routine which calls
26792 routine @code{adafinal} generated by @code{gnatbind} to perform the
26793 finalization of the Ada code in the DLL (@pxref{Ada DLLs and Finalization}).
26794 The finalization routine exported by the Ada DLL must be invoked by the
26795 clients of the DLL when the DLL services are no further needed.
26796
26797 @item
26798 You must provide a spec for the services exported by the Ada DLL in each
26799 of the programming languages to which you plan to make the DLL available.
26800
26801 @item
26802 You must provide a definition file listing the exported entities
26803 (@pxref{The Definition File}).
26804
26805 @item
26806 Finally you must use @code{gnatdll} to produce the DLL and the import
26807 library (@pxref{Using gnatdll}).
26808 @end enumerate
26809
26810 @noindent
26811 Note that a relocatable DLL stripped using the @code{strip} binutils
26812 tool will not be relocatable anymore. To build a DLL without debug
26813 information pass @code{-largs -s} to @code{gnatdll}.
26814
26815 @node Limitations When Using Ada DLLs from Ada
26816 @subsection Limitations When Using Ada DLLs from Ada
26817
26818 @noindent
26819 When using Ada DLLs from Ada applications there is a limitation users
26820 should be aware of. Because on Windows the GNAT run time is not in a DLL of
26821 its own, each Ada DLL includes a part of the GNAT run time. Specifically,
26822 each Ada DLL includes the services of the GNAT run time that are necessary
26823 to the Ada code inside the DLL. As a result, when an Ada program uses an
26824 Ada DLL there are two independent GNAT run times: one in the Ada DLL and
26825 one in the main program.
26826
26827 It is therefore not possible to exchange GNAT run-time objects between the
26828 Ada DLL and the main Ada program. Example of GNAT run-time objects are file
26829 handles (e.g. @code{Text_IO.File_Type}), tasks types, protected objects
26830 types, etc.
26831
26832 It is completely safe to exchange plain elementary, array or record types,
26833 Windows object handles, etc.
26834
26835 @node Exporting Ada Entities
26836 @subsection Exporting Ada Entities
26837 @cindex Export table
26838
26839 @noindent
26840 Building a DLL is a way to encapsulate a set of services usable from any
26841 application. As a result, the Ada entities exported by a DLL should be
26842 exported with the @code{C} or @code{Stdcall} calling conventions to avoid
26843 any Ada name mangling. Please note that the @code{Stdcall} convention
26844 should only be used for subprograms, not for variables. As an example here
26845 is an Ada package @code{API}, spec and body, exporting two procedures, a
26846 function, and a variable:
26847
26848 @smallexample @c ada
26849 @group
26850 @cartouche
26851 with Interfaces.C; use Interfaces;
26852 package API is
26853 Count : C.int := 0;
26854 function Factorial (Val : C.int) return C.int;
26855
26856 procedure Initialize_API;
26857 procedure Finalize_API;
26858 -- Initialization & Finalization routines. More in the next section.
26859 private
26860 pragma Export (C, Initialize_API);
26861 pragma Export (C, Finalize_API);
26862 pragma Export (C, Count);
26863 pragma Export (C, Factorial);
26864 end API;
26865 @end cartouche
26866 @end group
26867 @end smallexample
26868
26869 @smallexample @c ada
26870 @group
26871 @cartouche
26872 package body API is
26873 function Factorial (Val : C.int) return C.int is
26874 Fact : C.int := 1;
26875 begin
26876 Count := Count + 1;
26877 for K in 1 .. Val loop
26878 Fact := Fact * K;
26879 end loop;
26880 return Fact;
26881 end Factorial;
26882
26883 procedure Initialize_API is
26884 procedure Adainit;
26885 pragma Import (C, Adainit);
26886 begin
26887 Adainit;
26888 end Initialize_API;
26889
26890 procedure Finalize_API is
26891 procedure Adafinal;
26892 pragma Import (C, Adafinal);
26893 begin
26894 Adafinal;
26895 end Finalize_API;
26896 end API;
26897 @end cartouche
26898 @end group
26899 @end smallexample
26900
26901 @noindent
26902 If the Ada DLL you are building will only be used by Ada applications
26903 you do not have to export Ada entities with a @code{C} or @code{Stdcall}
26904 convention. As an example, the previous package could be written as
26905 follows:
26906
26907 @smallexample @c ada
26908 @group
26909 @cartouche
26910 package API is
26911 Count : Integer := 0;
26912 function Factorial (Val : Integer) return Integer;
26913
26914 procedure Initialize_API;
26915 procedure Finalize_API;
26916 -- Initialization and Finalization routines.
26917 end API;
26918 @end cartouche
26919 @end group
26920 @end smallexample
26921
26922 @smallexample @c ada
26923 @group
26924 @cartouche
26925 package body API is
26926 function Factorial (Val : Integer) return Integer is
26927 Fact : Integer := 1;
26928 begin
26929 Count := Count + 1;
26930 for K in 1 .. Val loop
26931 Fact := Fact * K;
26932 end loop;
26933 return Fact;
26934 end Factorial;
26935
26936 ...
26937 -- The remainder of this package body is unchanged.
26938 end API;
26939 @end cartouche
26940 @end group
26941 @end smallexample
26942
26943 @noindent
26944 Note that if you do not export the Ada entities with a @code{C} or
26945 @code{Stdcall} convention you will have to provide the mangled Ada names
26946 in the definition file of the Ada DLL
26947 (@pxref{Creating the Definition File}).
26948
26949 @node Ada DLLs and Elaboration
26950 @subsection Ada DLLs and Elaboration
26951 @cindex DLLs and elaboration
26952
26953 @noindent
26954 The DLL that you are building contains your Ada code as well as all the
26955 routines in the Ada library that are needed by it. The first thing a
26956 user of your DLL must do is elaborate the Ada code
26957 (@pxref{Elaboration Order Handling in GNAT}).
26958
26959 To achieve this you must export an initialization routine
26960 (@code{Initialize_API} in the previous example), which must be invoked
26961 before using any of the DLL services. This elaboration routine must call
26962 the Ada elaboration routine @code{adainit} generated by the GNAT binder
26963 (@pxref{Binding with Non-Ada Main Programs}). See the body of
26964 @code{Initialize_Api} for an example. Note that the GNAT binder is
26965 automatically invoked during the DLL build process by the @code{gnatdll}
26966 tool (@pxref{Using gnatdll}).
26967
26968 When a DLL is loaded, Windows systematically invokes a routine called
26969 @code{DllMain}. It would therefore be possible to call @code{adainit}
26970 directly from @code{DllMain} without having to provide an explicit
26971 initialization routine. Unfortunately, it is not possible to call
26972 @code{adainit} from the @code{DllMain} if your program has library level
26973 tasks because access to the @code{DllMain} entry point is serialized by
26974 the system (that is, only a single thread can execute ``through'' it at a
26975 time), which means that the GNAT run time will deadlock waiting for the
26976 newly created task to complete its initialization.
26977
26978 @node Ada DLLs and Finalization
26979 @subsection Ada DLLs and Finalization
26980 @cindex DLLs and finalization
26981
26982 @noindent
26983 When the services of an Ada DLL are no longer needed, the client code should
26984 invoke the DLL finalization routine, if available. The DLL finalization
26985 routine is in charge of releasing all resources acquired by the DLL. In the
26986 case of the Ada code contained in the DLL, this is achieved by calling
26987 routine @code{adafinal} generated by the GNAT binder
26988 (@pxref{Binding with Non-Ada Main Programs}).
26989 See the body of @code{Finalize_Api} for an
26990 example. As already pointed out the GNAT binder is automatically invoked
26991 during the DLL build process by the @code{gnatdll} tool
26992 (@pxref{Using gnatdll}).
26993
26994 @node Creating a Spec for Ada DLLs
26995 @subsection Creating a Spec for Ada DLLs
26996
26997 @noindent
26998 To use the services exported by the Ada DLL from another programming
26999 language (e.g. C), you have to translate the specs of the exported Ada
27000 entities in that language. For instance in the case of @code{API.dll},
27001 the corresponding C header file could look like:
27002
27003 @smallexample
27004 @group
27005 @cartouche
27006 extern int *_imp__count;
27007 #define count (*_imp__count)
27008 int factorial (int);
27009 @end cartouche
27010 @end group
27011 @end smallexample
27012
27013 @noindent
27014 It is important to understand that when building an Ada DLL to be used by
27015 other Ada applications, you need two different specs for the packages
27016 contained in the DLL: one for building the DLL and the other for using
27017 the DLL. This is because the @code{DLL} calling convention is needed to
27018 use a variable defined in a DLL, but when building the DLL, the variable
27019 must have either the @code{Ada} or @code{C} calling convention. As an
27020 example consider a DLL comprising the following package @code{API}:
27021
27022 @smallexample @c ada
27023 @group
27024 @cartouche
27025 package API is
27026 Count : Integer := 0;
27027 ...
27028 -- Remainder of the package omitted.
27029 end API;
27030 @end cartouche
27031 @end group
27032 @end smallexample
27033
27034 @noindent
27035 After producing a DLL containing package @code{API}, the spec that
27036 must be used to import @code{API.Count} from Ada code outside of the
27037 DLL is:
27038
27039 @smallexample @c ada
27040 @group
27041 @cartouche
27042 package API is
27043 Count : Integer;
27044 pragma Import (DLL, Count);
27045 end API;
27046 @end cartouche
27047 @end group
27048 @end smallexample
27049
27050 @node Creating the Definition File
27051 @subsection Creating the Definition File
27052
27053 @noindent
27054 The definition file is the last file needed to build the DLL. It lists
27055 the exported symbols. As an example, the definition file for a DLL
27056 containing only package @code{API} (where all the entities are exported
27057 with a @code{C} calling convention) is:
27058
27059 @smallexample
27060 @group
27061 @cartouche
27062 EXPORTS
27063 count
27064 factorial
27065 finalize_api
27066 initialize_api
27067 @end cartouche
27068 @end group
27069 @end smallexample
27070
27071 @noindent
27072 If the @code{C} calling convention is missing from package @code{API},
27073 then the definition file contains the mangled Ada names of the above
27074 entities, which in this case are:
27075
27076 @smallexample
27077 @group
27078 @cartouche
27079 EXPORTS
27080 api__count
27081 api__factorial
27082 api__finalize_api
27083 api__initialize_api
27084 @end cartouche
27085 @end group
27086 @end smallexample
27087
27088 @node Using gnatdll
27089 @subsection Using @code{gnatdll}
27090 @findex gnatdll
27091
27092 @menu
27093 * gnatdll Example::
27094 * gnatdll behind the Scenes::
27095 * Using dlltool::
27096 @end menu
27097
27098 @noindent
27099 @code{gnatdll} is a tool to automate the DLL build process once all the Ada
27100 and non-Ada sources that make up your DLL have been compiled.
27101 @code{gnatdll} is actually in charge of two distinct tasks: build the
27102 static import library for the DLL and the actual DLL. The form of the
27103 @code{gnatdll} command is
27104
27105 @smallexample
27106 @cartouche
27107 $ gnatdll [@var{switches}] @var{list-of-files} [-largs @var{opts}]
27108 @end cartouche
27109 @end smallexample
27110
27111 @noindent
27112 where @i{list-of-files} is a list of ALI and object files. The object
27113 file list must be the exact list of objects corresponding to the non-Ada
27114 sources whose services are to be included in the DLL. The ALI file list
27115 must be the exact list of ALI files for the corresponding Ada sources
27116 whose services are to be included in the DLL. If @i{list-of-files} is
27117 missing, only the static import library is generated.
27118
27119 @noindent
27120 You may specify any of the following switches to @code{gnatdll}:
27121
27122 @table @code
27123 @item -a[@var{address}]
27124 @cindex @option{-a} (@code{gnatdll})
27125 Build a non-relocatable DLL at @var{address}. If @var{address} is not
27126 specified the default address @var{0x11000000} will be used. By default,
27127 when this switch is missing, @code{gnatdll} builds relocatable DLL. We
27128 advise the reader to build relocatable DLL.
27129
27130 @item -b @var{address}
27131 @cindex @option{-b} (@code{gnatdll})
27132 Set the relocatable DLL base address. By default the address is
27133 @var{0x11000000}.
27134
27135 @item -bargs @var{opts}
27136 @cindex @option{-bargs} (@code{gnatdll})
27137 Binder options. Pass @var{opts} to the binder.
27138
27139 @item -d @var{dllfile}
27140 @cindex @option{-d} (@code{gnatdll})
27141 @var{dllfile} is the name of the DLL. This switch must be present for
27142 @code{gnatdll} to do anything. The name of the generated import library is
27143 obtained algorithmically from @var{dllfile} as shown in the following
27144 example: if @var{dllfile} is @code{xyz.dll}, the import library name is
27145 @code{libxyz.a}. The name of the definition file to use (if not specified
27146 by option @option{-e}) is obtained algorithmically from @var{dllfile}
27147 as shown in the following example:
27148 if @var{dllfile} is @code{xyz.dll}, the definition
27149 file used is @code{xyz.def}.
27150
27151 @item -e @var{deffile}
27152 @cindex @option{-e} (@code{gnatdll})
27153 @var{deffile} is the name of the definition file.
27154
27155 @item -g
27156 @cindex @option{-g} (@code{gnatdll})
27157 Generate debugging information. This information is stored in the object
27158 file and copied from there to the final DLL file by the linker,
27159 where it can be read by the debugger. You must use the
27160 @option{-g} switch if you plan on using the debugger or the symbolic
27161 stack traceback.
27162
27163 @item -h
27164 @cindex @option{-h} (@code{gnatdll})
27165 Help mode. Displays @code{gnatdll} switch usage information.
27166
27167 @item -Idir
27168 @cindex @option{-I} (@code{gnatdll})
27169 Direct @code{gnatdll} to search the @var{dir} directory for source and
27170 object files needed to build the DLL.
27171 (@pxref{Search Paths and the Run-Time Library (RTL)}).
27172
27173 @item -k
27174 @cindex @option{-k} (@code{gnatdll})
27175 Removes the @code{@@}@i{nn} suffix from the import library's exported
27176 names. You must specified this option if you want to use a
27177 @code{Stdcall} function in a DLL for which the @code{@@}@i{nn} suffix
27178 has been removed. This is the case for most of the Windows NT DLL for
27179 example. This option has no effect when @option{-n} option is specified.
27180
27181 @item -l @var{file}
27182 @cindex @option{-l} (@code{gnatdll})
27183 The list of ALI and object files used to build the DLL are listed in
27184 @var{file}, instead of being given in the command line. Each line in
27185 @var{file} contains the name of an ALI or object file.
27186
27187 @item -n
27188 @cindex @option{-n} (@code{gnatdll})
27189 No Import. Do not create the import library.
27190
27191 @item -q
27192 @cindex @option{-q} (@code{gnatdll})
27193 Quiet mode. Do not display unnecessary messages.
27194
27195 @item -v
27196 @cindex @option{-v} (@code{gnatdll})
27197 Verbose mode. Display extra information.
27198
27199 @item -largs @var{opts}
27200 @cindex @option{-largs} (@code{gnatdll})
27201 Linker options. Pass @var{opts} to the linker.
27202 @end table
27203
27204 @node gnatdll Example
27205 @subsubsection @code{gnatdll} Example
27206
27207 @noindent
27208 As an example the command to build a relocatable DLL from @file{api.adb}
27209 once @file{api.adb} has been compiled and @file{api.def} created is
27210
27211 @smallexample
27212 $ gnatdll -d api.dll api.ali
27213 @end smallexample
27214
27215 @noindent
27216 The above command creates two files: @file{libapi.a} (the import
27217 library) and @file{api.dll} (the actual DLL). If you want to create
27218 only the DLL, just type:
27219
27220 @smallexample
27221 $ gnatdll -d api.dll -n api.ali
27222 @end smallexample
27223
27224 @noindent
27225 Alternatively if you want to create just the import library, type:
27226
27227 @smallexample
27228 $ gnatdll -d api.dll
27229 @end smallexample
27230
27231 @node gnatdll behind the Scenes
27232 @subsubsection @code{gnatdll} behind the Scenes
27233
27234 @noindent
27235 This section details the steps involved in creating a DLL. @code{gnatdll}
27236 does these steps for you. Unless you are interested in understanding what
27237 goes on behind the scenes, you should skip this section.
27238
27239 We use the previous example of a DLL containing the Ada package @code{API},
27240 to illustrate the steps necessary to build a DLL. The starting point is a
27241 set of objects that will make up the DLL and the corresponding ALI
27242 files. In the case of this example this means that @file{api.o} and
27243 @file{api.ali} are available. To build a relocatable DLL, @code{gnatdll} does
27244 the following:
27245
27246 @enumerate
27247 @item
27248 @code{gnatdll} builds the base file (@file{api.base}). A base file gives
27249 the information necessary to generate relocation information for the
27250 DLL.
27251
27252 @smallexample
27253 @group
27254 $ gnatbind -n api
27255 $ gnatlink api -o api.jnk -mdll -Wl,--base-file,api.base
27256 @end group
27257 @end smallexample
27258
27259 @noindent
27260 In addition to the base file, the @code{gnatlink} command generates an
27261 output file @file{api.jnk} which can be discarded. The @option{-mdll} switch
27262 asks @code{gnatlink} to generate the routines @code{DllMain} and
27263 @code{DllMainCRTStartup} that are called by the Windows loader when the DLL
27264 is loaded into memory.
27265
27266 @item
27267 @code{gnatdll} uses @code{dlltool} (@pxref{Using dlltool}) to build the
27268 export table (@file{api.exp}). The export table contains the relocation
27269 information in a form which can be used during the final link to ensure
27270 that the Windows loader is able to place the DLL anywhere in memory.
27271
27272 @smallexample
27273 @group
27274 $ dlltool --dllname api.dll --def api.def --base-file api.base \
27275 --output-exp api.exp
27276 @end group
27277 @end smallexample
27278
27279 @item
27280 @code{gnatdll} builds the base file using the new export table. Note that
27281 @code{gnatbind} must be called once again since the binder generated file
27282 has been deleted during the previous call to @code{gnatlink}.
27283
27284 @smallexample
27285 @group
27286 $ gnatbind -n api
27287 $ gnatlink api -o api.jnk api.exp -mdll
27288 -Wl,--base-file,api.base
27289 @end group
27290 @end smallexample
27291
27292 @item
27293 @code{gnatdll} builds the new export table using the new base file and
27294 generates the DLL import library @file{libAPI.a}.
27295
27296 @smallexample
27297 @group
27298 $ dlltool --dllname api.dll --def api.def --base-file api.base \
27299 --output-exp api.exp --output-lib libAPI.a
27300 @end group
27301 @end smallexample
27302
27303 @item
27304 Finally @code{gnatdll} builds the relocatable DLL using the final export
27305 table.
27306
27307 @smallexample
27308 @group
27309 $ gnatbind -n api
27310 $ gnatlink api api.exp -o api.dll -mdll
27311 @end group
27312 @end smallexample
27313 @end enumerate
27314
27315 @node Using dlltool
27316 @subsubsection Using @code{dlltool}
27317
27318 @noindent
27319 @code{dlltool} is the low-level tool used by @code{gnatdll} to build
27320 DLLs and static import libraries. This section summarizes the most
27321 common @code{dlltool} switches. The form of the @code{dlltool} command
27322 is
27323
27324 @smallexample
27325 $ dlltool [@var{switches}]
27326 @end smallexample
27327
27328 @noindent
27329 @code{dlltool} switches include:
27330
27331 @table @option
27332 @item --base-file @var{basefile}
27333 @cindex @option{--base-file} (@command{dlltool})
27334 Read the base file @var{basefile} generated by the linker. This switch
27335 is used to create a relocatable DLL.
27336
27337 @item --def @var{deffile}
27338 @cindex @option{--def} (@command{dlltool})
27339 Read the definition file.
27340
27341 @item --dllname @var{name}
27342 @cindex @option{--dllname} (@command{dlltool})
27343 Gives the name of the DLL. This switch is used to embed the name of the
27344 DLL in the static import library generated by @code{dlltool} with switch
27345 @option{--output-lib}.
27346
27347 @item -k
27348 @cindex @option{-k} (@command{dlltool})
27349 Kill @code{@@}@i{nn} from exported names
27350 (@pxref{Windows Calling Conventions}
27351 for a discussion about @code{Stdcall}-style symbols.
27352
27353 @item --help
27354 @cindex @option{--help} (@command{dlltool})
27355 Prints the @code{dlltool} switches with a concise description.
27356
27357 @item --output-exp @var{exportfile}
27358 @cindex @option{--output-exp} (@command{dlltool})
27359 Generate an export file @var{exportfile}. The export file contains the
27360 export table (list of symbols in the DLL) and is used to create the DLL.
27361
27362 @item --output-lib @i{libfile}
27363 @cindex @option{--output-lib} (@command{dlltool})
27364 Generate a static import library @var{libfile}.
27365
27366 @item -v
27367 @cindex @option{-v} (@command{dlltool})
27368 Verbose mode.
27369
27370 @item --as @i{assembler-name}
27371 @cindex @option{--as} (@command{dlltool})
27372 Use @i{assembler-name} as the assembler. The default is @code{as}.
27373 @end table
27374
27375 @node GNAT and Windows Resources
27376 @section GNAT and Windows Resources
27377 @cindex Resources, windows
27378
27379 @menu
27380 * Building Resources::
27381 * Compiling Resources::
27382 * Using Resources::
27383 @end menu
27384
27385 @noindent
27386 Resources are an easy way to add Windows specific objects to your
27387 application. The objects that can be added as resources include:
27388
27389 @itemize @bullet
27390 @item
27391 menus
27392
27393 @item
27394 accelerators
27395
27396 @item
27397 dialog boxes
27398
27399 @item
27400 string tables
27401
27402 @item
27403 bitmaps
27404
27405 @item
27406 cursors
27407
27408 @item
27409 icons
27410
27411 @item
27412 fonts
27413 @end itemize
27414
27415 @noindent
27416 This section explains how to build, compile and use resources.
27417
27418 @node Building Resources
27419 @subsection Building Resources
27420 @cindex Resources, building
27421
27422 @noindent
27423 A resource file is an ASCII file. By convention resource files have an
27424 @file{.rc} extension.
27425 The easiest way to build a resource file is to use Microsoft tools
27426 such as @code{imagedit.exe} to build bitmaps, icons and cursors and
27427 @code{dlgedit.exe} to build dialogs.
27428 It is always possible to build an @file{.rc} file yourself by writing a
27429 resource script.
27430
27431 It is not our objective to explain how to write a resource file. A
27432 complete description of the resource script language can be found in the
27433 Microsoft documentation.
27434
27435 @node Compiling Resources
27436 @subsection Compiling Resources
27437 @findex rc
27438 @findex windres
27439 @cindex Resources, compiling
27440
27441 @noindent
27442 This section describes how to build a GNAT-compatible (COFF) object file
27443 containing the resources. This is done using the Resource Compiler
27444 @code{windres} as follows:
27445
27446 @smallexample
27447 $ windres -i myres.rc -o myres.o
27448 @end smallexample
27449
27450 @noindent
27451 By default @code{windres} will run @code{gcc} to preprocess the @file{.rc}
27452 file. You can specify an alternate preprocessor (usually named
27453 @file{cpp.exe}) using the @code{windres} @option{--preprocessor}
27454 parameter. A list of all possible options may be obtained by entering
27455 the command @code{windres} @option{--help}.
27456
27457 It is also possible to use the Microsoft resource compiler @code{rc.exe}
27458 to produce a @file{.res} file (binary resource file). See the
27459 corresponding Microsoft documentation for further details. In this case
27460 you need to use @code{windres} to translate the @file{.res} file to a
27461 GNAT-compatible object file as follows:
27462
27463 @smallexample
27464 $ windres -i myres.res -o myres.o
27465 @end smallexample
27466
27467 @node Using Resources
27468 @subsection Using Resources
27469 @cindex Resources, using
27470
27471 @noindent
27472 To include the resource file in your program just add the
27473 GNAT-compatible object file for the resource(s) to the linker
27474 arguments. With @code{gnatmake} this is done by using the @option{-largs}
27475 option:
27476
27477 @smallexample
27478 $ gnatmake myprog -largs myres.o
27479 @end smallexample
27480
27481 @node Debugging a DLL
27482 @section Debugging a DLL
27483 @cindex DLL debugging
27484
27485 @menu
27486 * Program and DLL Both Built with GCC/GNAT::
27487 * Program Built with Foreign Tools and DLL Built with GCC/GNAT::
27488 @end menu
27489
27490 @noindent
27491 Debugging a DLL is similar to debugging a standard program. But
27492 we have to deal with two different executable parts: the DLL and the
27493 program that uses it. We have the following four possibilities:
27494
27495 @enumerate 1
27496 @item
27497 The program and the DLL are built with @code{GCC/GNAT}.
27498 @item
27499 The program is built with foreign tools and the DLL is built with
27500 @code{GCC/GNAT}.
27501 @item
27502 The program is built with @code{GCC/GNAT} and the DLL is built with
27503 foreign tools.
27504 @item
27505 @end enumerate
27506
27507 @noindent
27508 In this section we address only cases one and two above.
27509 There is no point in trying to debug
27510 a DLL with @code{GNU/GDB}, if there is no GDB-compatible debugging
27511 information in it. To do so you must use a debugger compatible with the
27512 tools suite used to build the DLL.
27513
27514 @node Program and DLL Both Built with GCC/GNAT
27515 @subsection Program and DLL Both Built with GCC/GNAT
27516
27517 @noindent
27518 This is the simplest case. Both the DLL and the program have @code{GDB}
27519 compatible debugging information. It is then possible to break anywhere in
27520 the process. Let's suppose here that the main procedure is named
27521 @code{ada_main} and that in the DLL there is an entry point named
27522 @code{ada_dll}.
27523
27524 @noindent
27525 The DLL (@pxref{Introduction to Dynamic Link Libraries (DLLs)}) and
27526 program must have been built with the debugging information (see GNAT -g
27527 switch). Here are the step-by-step instructions for debugging it:
27528
27529 @enumerate 1
27530 @item Launch @code{GDB} on the main program.
27531
27532 @smallexample
27533 $ gdb -nw ada_main
27534 @end smallexample
27535
27536 @item Break on the main procedure and run the program.
27537
27538 @smallexample
27539 (gdb) break ada_main
27540 (gdb) run
27541 @end smallexample
27542
27543 @noindent
27544 This step is required to be able to set a breakpoint inside the DLL. As long
27545 as the program is not run, the DLL is not loaded. This has the
27546 consequence that the DLL debugging information is also not loaded, so it is not
27547 possible to set a breakpoint in the DLL.
27548
27549 @item Set a breakpoint inside the DLL
27550
27551 @smallexample
27552 (gdb) break ada_dll
27553 (gdb) run
27554 @end smallexample
27555
27556 @end enumerate
27557
27558 @noindent
27559 At this stage a breakpoint is set inside the DLL. From there on
27560 you can use the standard approach to debug the whole program
27561 (@pxref{Running and Debugging Ada Programs}).
27562
27563 @node Program Built with Foreign Tools and DLL Built with GCC/GNAT
27564 @subsection Program Built with Foreign Tools and DLL Built with GCC/GNAT
27565
27566 @menu
27567 * Debugging the DLL Directly::
27568 * Attaching to a Running Process::
27569 @end menu
27570
27571 @noindent
27572 In this case things are slightly more complex because it is not possible to
27573 start the main program and then break at the beginning to load the DLL and the
27574 associated DLL debugging information. It is not possible to break at the
27575 beginning of the program because there is no @code{GDB} debugging information,
27576 and therefore there is no direct way of getting initial control. This
27577 section addresses this issue by describing some methods that can be used
27578 to break somewhere in the DLL to debug it.
27579
27580 @noindent
27581 First suppose that the main procedure is named @code{main} (this is for
27582 example some C code built with Microsoft Visual C) and that there is a
27583 DLL named @code{test.dll} containing an Ada entry point named
27584 @code{ada_dll}.
27585
27586 @noindent
27587 The DLL (@pxref{Introduction to Dynamic Link Libraries (DLLs)}) must have
27588 been built with debugging information (see GNAT -g option).
27589
27590 @node Debugging the DLL Directly
27591 @subsubsection Debugging the DLL Directly
27592
27593 @enumerate 1
27594 @item
27595 Launch the debugger on the DLL.
27596
27597 @smallexample
27598 $ gdb -nw test.dll
27599 @end smallexample
27600
27601 @item Set a breakpoint on a DLL subroutine.
27602
27603 @smallexample
27604 (gdb) break ada_dll
27605 @end smallexample
27606
27607 @item
27608 Specify the executable file to @code{GDB}.
27609
27610 @smallexample
27611 (gdb) exec-file main.exe
27612 @end smallexample
27613
27614 @item
27615 Run the program.
27616
27617 @smallexample
27618 (gdb) run
27619 @end smallexample
27620
27621 @noindent
27622 This will run the program until it reaches the breakpoint that has been
27623 set. From that point you can use the standard way to debug a program
27624 as described in (@pxref{Running and Debugging Ada Programs}).
27625
27626 @end enumerate
27627
27628 @noindent
27629 It is also possible to debug the DLL by attaching to a running process.
27630
27631 @node Attaching to a Running Process
27632 @subsubsection Attaching to a Running Process
27633 @cindex DLL debugging, attach to process
27634
27635 @noindent
27636 With @code{GDB} it is always possible to debug a running process by
27637 attaching to it. It is possible to debug a DLL this way. The limitation
27638 of this approach is that the DLL must run long enough to perform the
27639 attach operation. It may be useful for instance to insert a time wasting
27640 loop in the code of the DLL to meet this criterion.
27641
27642 @enumerate 1
27643
27644 @item Launch the main program @file{main.exe}.
27645
27646 @smallexample
27647 $ main
27648 @end smallexample
27649
27650 @item Use the Windows @i{Task Manager} to find the process ID. Let's say
27651 that the process PID for @file{main.exe} is 208.
27652
27653 @item Launch gdb.
27654
27655 @smallexample
27656 $ gdb -nw
27657 @end smallexample
27658
27659 @item Attach to the running process to be debugged.
27660
27661 @smallexample
27662 (gdb) attach 208
27663 @end smallexample
27664
27665 @item Load the process debugging information.
27666
27667 @smallexample
27668 (gdb) symbol-file main.exe
27669 @end smallexample
27670
27671 @item Break somewhere in the DLL.
27672
27673 @smallexample
27674 (gdb) break ada_dll
27675 @end smallexample
27676
27677 @item Continue process execution.
27678
27679 @smallexample
27680 (gdb) continue
27681 @end smallexample
27682
27683 @end enumerate
27684
27685 @noindent
27686 This last step will resume the process execution, and stop at
27687 the breakpoint we have set. From there you can use the standard
27688 approach to debug a program as described in
27689 (@pxref{Running and Debugging Ada Programs}).
27690
27691 @node GNAT and COM/DCOM Objects
27692 @section GNAT and COM/DCOM Objects
27693 @findex COM
27694 @findex DCOM
27695
27696 @noindent
27697 This section is temporarily left blank.
27698
27699 @end ifset
27700
27701
27702 @c **********************************
27703 @c * GNU Free Documentation License *
27704 @c **********************************
27705 @include fdl.texi
27706 @c GNU Free Documentation License
27707
27708 @node Index,,GNU Free Documentation License, Top
27709 @unnumbered Index
27710
27711 @printindex cp
27712
27713 @contents
27714 @c Put table of contents at end, otherwise it precedes the "title page" in
27715 @c the .txt version
27716 @c Edit the pdf file to move the contents to the beginning, after the title
27717 @c page
27718
27719 @bye