[Ada] Remove ASIS tree generation
[gcc.git] / gcc / ada / gnat_ugn.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename gnat_ugn.info
4 @documentencoding UTF-8
5 @ifinfo
6 @*Generated by Sphinx 1.4.6.@*
7 @end ifinfo
8 @settitle GNAT User's Guide for Native Platforms
9 @defindex ge
10 @paragraphindent 0
11 @exampleindent 4
12 @finalout
13 @dircategory GNU Ada Tools
14 @direntry
15 * gnat_ugn: (gnat_ugn.info). gnat_ugn
16 @end direntry
17
18 @definfoenclose strong,`,'
19 @definfoenclose emph,`,'
20 @c %**end of header
21
22 @copying
23 @quotation
24 GNAT User's Guide for Native Platforms , May 04, 2020
25
26 AdaCore
27
28 Copyright @copyright{} 2008-2020, Free Software Foundation
29 @end quotation
30
31 @end copying
32
33 @titlepage
34 @title GNAT User's Guide for Native Platforms
35 @insertcopying
36 @end titlepage
37 @contents
38
39 @c %** start of user preamble
40
41 @c %** end of user preamble
42
43 @ifnottex
44 @node Top
45 @top GNAT User's Guide for Native Platforms
46 @insertcopying
47 @end ifnottex
48
49 @c %**start of body
50 @anchor{gnat_ugn doc}@anchor{0}
51 @emph{GNAT, The GNU Ada Development Environment}
52
53
54 @include gcc-common.texi
55 GCC version @value{version-GCC}@*
56 AdaCore
57
58 Permission is granted to copy, distribute and/or modify this document
59 under the terms of the GNU Free Documentation License, Version 1.3 or
60 any later version published by the Free Software Foundation; with no
61 Invariant Sections, with the Front-Cover Texts being
62 "GNAT User's Guide for Native Platforms",
63 and with no Back-Cover Texts. A copy of the license is
64 included in the section entitled @ref{1,,GNU Free Documentation License}.
65
66 @menu
67 * About This Guide::
68 * Getting Started with GNAT::
69 * The GNAT Compilation Model::
70 * Building Executable Programs with GNAT::
71 * GNAT Utility Programs::
72 * GNAT and Program Execution::
73 * Platform-Specific Information::
74 * Example of Binder Output File::
75 * Elaboration Order Handling in GNAT::
76 * Inline Assembler::
77 * GNU Free Documentation License::
78 * Index::
79
80 @detailmenu
81 --- The Detailed Node Listing ---
82
83 About This Guide
84
85 * What This Guide Contains::
86 * What You Should Know before Reading This Guide::
87 * Related Information::
88 * A Note to Readers of Previous Versions of the Manual::
89 * Conventions::
90
91 Getting Started with GNAT
92
93 * Running GNAT::
94 * Running a Simple Ada Program::
95 * Running a Program with Multiple Units::
96 * Using the gnatmake Utility::
97
98 The GNAT Compilation Model
99
100 * Source Representation::
101 * Foreign Language Representation::
102 * File Naming Topics and Utilities::
103 * Configuration Pragmas::
104 * Generating Object Files::
105 * Source Dependencies::
106 * The Ada Library Information Files::
107 * Binding an Ada Program::
108 * GNAT and Libraries::
109 * Conditional Compilation::
110 * Mixed Language Programming::
111 * GNAT and Other Compilation Models::
112 * Using GNAT Files with External Tools::
113
114 Foreign Language Representation
115
116 * Latin-1::
117 * Other 8-Bit Codes::
118 * Wide_Character Encodings::
119 * Wide_Wide_Character Encodings::
120
121 File Naming Topics and Utilities
122
123 * File Naming Rules::
124 * Using Other File Names::
125 * Alternative File Naming Schemes::
126 * Handling Arbitrary File Naming Conventions with gnatname::
127 * File Name Krunching with gnatkr::
128 * Renaming Files with gnatchop::
129
130 Handling Arbitrary File Naming Conventions with gnatname
131
132 * Arbitrary File Naming Conventions::
133 * Running gnatname::
134 * Switches for gnatname::
135 * Examples of gnatname Usage::
136
137 File Name Krunching with gnatkr
138
139 * About gnatkr::
140 * Using gnatkr::
141 * Krunching Method::
142 * Examples of gnatkr Usage::
143
144 Renaming Files with gnatchop
145
146 * Handling Files with Multiple Units::
147 * Operating gnatchop in Compilation Mode::
148 * Command Line for gnatchop::
149 * Switches for gnatchop::
150 * Examples of gnatchop Usage::
151
152 Configuration Pragmas
153
154 * Handling of Configuration Pragmas::
155 * The Configuration Pragmas Files::
156
157 GNAT and Libraries
158
159 * Introduction to Libraries in GNAT::
160 * General Ada Libraries::
161 * Stand-alone Ada Libraries::
162 * Rebuilding the GNAT Run-Time Library::
163
164 General Ada Libraries
165
166 * Building a library::
167 * Installing a library::
168 * Using a library::
169
170 Stand-alone Ada Libraries
171
172 * Introduction to Stand-alone Libraries::
173 * Building a Stand-alone Library::
174 * Creating a Stand-alone Library to be used in a non-Ada context::
175 * Restrictions in Stand-alone Libraries::
176
177 Conditional Compilation
178
179 * Modeling Conditional Compilation in Ada::
180 * Preprocessing with gnatprep::
181 * Integrated Preprocessing::
182
183 Modeling Conditional Compilation in Ada
184
185 * Use of Boolean Constants::
186 * Debugging - A Special Case::
187 * Conditionalizing Declarations::
188 * Use of Alternative Implementations::
189 * Preprocessing::
190
191 Preprocessing with gnatprep
192
193 * Preprocessing Symbols::
194 * Using gnatprep::
195 * Switches for gnatprep::
196 * Form of Definitions File::
197 * Form of Input Text for gnatprep::
198
199 Mixed Language Programming
200
201 * Interfacing to C::
202 * Calling Conventions::
203 * Building Mixed Ada and C++ Programs::
204 * Generating Ada Bindings for C and C++ headers::
205 * Generating C Headers for Ada Specifications::
206
207 Building Mixed Ada and C++ Programs
208
209 * Interfacing to C++::
210 * Linking a Mixed C++ & Ada Program::
211 * A Simple Example::
212 * Interfacing with C++ constructors::
213 * Interfacing with C++ at the Class Level::
214
215 Generating Ada Bindings for C and C++ headers
216
217 * Running the Binding Generator::
218 * Generating Bindings for C++ Headers::
219 * Switches::
220
221 Generating C Headers for Ada Specifications
222
223 * Running the C Header Generator::
224
225 GNAT and Other Compilation Models
226
227 * Comparison between GNAT and C/C++ Compilation Models::
228 * Comparison between GNAT and Conventional Ada Library Models::
229
230 Using GNAT Files with External Tools
231
232 * Using Other Utility Programs with GNAT::
233 * The External Symbol Naming Scheme of GNAT::
234
235 Building Executable Programs with GNAT
236
237 * Building with gnatmake::
238 * Compiling with gcc::
239 * Compiler Switches::
240 * Linker Switches::
241 * Binding with gnatbind::
242 * Linking with gnatlink::
243 * Using the GNU make Utility::
244
245 Building with gnatmake
246
247 * Running gnatmake::
248 * Switches for gnatmake::
249 * Mode Switches for gnatmake::
250 * Notes on the Command Line::
251 * How gnatmake Works::
252 * Examples of gnatmake Usage::
253
254 Compiling with gcc
255
256 * Compiling Programs::
257 * Search Paths and the Run-Time Library (RTL): Search Paths and the Run-Time Library RTL.
258 * Order of Compilation Issues::
259 * Examples::
260
261 Compiler Switches
262
263 * Alphabetical List of All Switches::
264 * Output and Error Message Control::
265 * Warning Message Control::
266 * Debugging and Assertion Control::
267 * Validity Checking::
268 * Style Checking::
269 * Run-Time Checks::
270 * Using gcc for Syntax Checking::
271 * Using gcc for Semantic Checking::
272 * Compiling Different Versions of Ada::
273 * Character Set Control::
274 * File Naming Control::
275 * Subprogram Inlining Control::
276 * Auxiliary Output Control::
277 * Debugging Control::
278 * Exception Handling Control::
279 * Units to Sources Mapping Files::
280 * Code Generation Control::
281
282 Binding with gnatbind
283
284 * Running gnatbind::
285 * Switches for gnatbind::
286 * Command-Line Access::
287 * Search Paths for gnatbind::
288 * Examples of gnatbind Usage::
289
290 Switches for gnatbind
291
292 * Consistency-Checking Modes::
293 * Binder Error Message Control::
294 * Elaboration Control::
295 * Output Control::
296 * Dynamic Allocation Control::
297 * Binding with Non-Ada Main Programs::
298 * Binding Programs with No Main Subprogram::
299
300 Linking with gnatlink
301
302 * Running gnatlink::
303 * Switches for gnatlink::
304
305 Using the GNU make Utility
306
307 * Using gnatmake in a Makefile::
308 * Automatically Creating a List of Directories::
309 * Generating the Command Line Switches::
310 * Overcoming Command Line Length Limits::
311
312 GNAT Utility Programs
313
314 * The File Cleanup Utility gnatclean::
315 * The GNAT Library Browser gnatls::
316 * The Cross-Referencing Tools gnatxref and gnatfind::
317 * The Ada to HTML Converter gnathtml::
318
319 The File Cleanup Utility gnatclean
320
321 * Running gnatclean::
322 * Switches for gnatclean::
323
324 The GNAT Library Browser gnatls
325
326 * Running gnatls::
327 * Switches for gnatls::
328 * Example of gnatls Usage::
329
330 The Cross-Referencing Tools gnatxref and gnatfind
331
332 * gnatxref Switches::
333 * gnatfind Switches::
334 * Configuration Files for gnatxref and gnatfind::
335 * Regular Expressions in gnatfind and gnatxref::
336 * Examples of gnatxref Usage::
337 * Examples of gnatfind Usage::
338
339 Examples of gnatxref Usage
340
341 * General Usage::
342 * Using gnatxref with vi::
343
344 The Ada to HTML Converter gnathtml
345
346 * Invoking gnathtml::
347 * Installing gnathtml::
348
349 GNAT and Program Execution
350
351 * Running and Debugging Ada Programs::
352 * Profiling::
353 * Improving Performance::
354 * Overflow Check Handling in GNAT::
355 * Performing Dimensionality Analysis in GNAT::
356 * Stack Related Facilities::
357 * Memory Management Issues::
358
359 Running and Debugging Ada Programs
360
361 * The GNAT Debugger GDB::
362 * Running GDB::
363 * Introduction to GDB Commands::
364 * Using Ada Expressions::
365 * Calling User-Defined Subprograms::
366 * Using the next Command in a Function::
367 * Stopping When Ada Exceptions Are Raised::
368 * Ada Tasks::
369 * Debugging Generic Units::
370 * Remote Debugging with gdbserver::
371 * GNAT Abnormal Termination or Failure to Terminate::
372 * Naming Conventions for GNAT Source Files::
373 * Getting Internal Debugging Information::
374 * Stack Traceback::
375 * Pretty-Printers for the GNAT runtime::
376
377 Stack Traceback
378
379 * Non-Symbolic Traceback::
380 * Symbolic Traceback::
381
382 Profiling
383
384 * Profiling an Ada Program with gprof::
385
386 Profiling an Ada Program with gprof
387
388 * Compilation for profiling::
389 * Program execution::
390 * Running gprof::
391 * Interpretation of profiling results::
392
393 Improving Performance
394
395 * Performance Considerations::
396 * Text_IO Suggestions::
397 * Reducing Size of Executables with Unused Subprogram/Data Elimination::
398
399 Performance Considerations
400
401 * Controlling Run-Time Checks::
402 * Use of Restrictions::
403 * Optimization Levels::
404 * Debugging Optimized Code::
405 * Inlining of Subprograms::
406 * Floating_Point_Operations::
407 * Vectorization of loops::
408 * Other Optimization Switches::
409 * Optimization and Strict Aliasing::
410 * Aliased Variables and Optimization::
411 * Atomic Variables and Optimization::
412 * Passive Task Optimization::
413
414 Reducing Size of Executables with Unused Subprogram/Data Elimination
415
416 * About unused subprogram/data elimination::
417 * Compilation options::
418 * Example of unused subprogram/data elimination::
419
420 Overflow Check Handling in GNAT
421
422 * Background::
423 * Management of Overflows in GNAT::
424 * Specifying the Desired Mode::
425 * Default Settings::
426 * Implementation Notes::
427
428 Stack Related Facilities
429
430 * Stack Overflow Checking::
431 * Static Stack Usage Analysis::
432 * Dynamic Stack Usage Analysis::
433
434 Memory Management Issues
435
436 * Some Useful Memory Pools::
437 * The GNAT Debug Pool Facility::
438
439 Platform-Specific Information
440
441 * Run-Time Libraries::
442 * Specifying a Run-Time Library::
443 * GNU/Linux Topics::
444 * Microsoft Windows Topics::
445 * Mac OS Topics::
446
447 Run-Time Libraries
448
449 * Summary of Run-Time Configurations::
450
451 Specifying a Run-Time Library
452
453 * Choosing the Scheduling Policy::
454
455 GNU/Linux Topics
456
457 * Required Packages on GNU/Linux::
458
459 Microsoft Windows Topics
460
461 * Using GNAT on Windows::
462 * Using a network installation of GNAT::
463 * CONSOLE and WINDOWS subsystems::
464 * Temporary Files::
465 * Disabling Command Line Argument Expansion::
466 * Windows Socket Timeouts::
467 * Mixed-Language Programming on Windows::
468 * Windows Specific Add-Ons::
469
470 Mixed-Language Programming on Windows
471
472 * Windows Calling Conventions::
473 * Introduction to Dynamic Link Libraries (DLLs): Introduction to Dynamic Link Libraries DLLs.
474 * Using DLLs with GNAT::
475 * Building DLLs with GNAT Project files::
476 * Building DLLs with GNAT::
477 * Building DLLs with gnatdll::
478 * Ada DLLs and Finalization::
479 * Creating a Spec for Ada DLLs::
480 * GNAT and Windows Resources::
481 * Using GNAT DLLs from Microsoft Visual Studio Applications::
482 * Debugging a DLL::
483 * Setting Stack Size from gnatlink::
484 * Setting Heap Size from gnatlink::
485
486 Windows Calling Conventions
487
488 * C Calling Convention::
489 * Stdcall Calling Convention::
490 * Win32 Calling Convention::
491 * DLL Calling Convention::
492
493 Using DLLs with GNAT
494
495 * Creating an Ada Spec for the DLL Services::
496 * Creating an Import Library::
497
498 Building DLLs with gnatdll
499
500 * Limitations When Using Ada DLLs from Ada::
501 * Exporting Ada Entities::
502 * Ada DLLs and Elaboration::
503
504 Creating a Spec for Ada DLLs
505
506 * Creating the Definition File::
507 * Using gnatdll::
508
509 GNAT and Windows Resources
510
511 * Building Resources::
512 * Compiling Resources::
513 * Using Resources::
514
515 Debugging a DLL
516
517 * Program and DLL Both Built with GCC/GNAT::
518 * Program Built with Foreign Tools and DLL Built with GCC/GNAT::
519
520 Windows Specific Add-Ons
521
522 * Win32Ada::
523 * wPOSIX::
524
525 Mac OS Topics
526
527 * Codesigning the Debugger::
528
529 Elaboration Order Handling in GNAT
530
531 * Elaboration Code::
532 * Elaboration Order::
533 * Checking the Elaboration Order::
534 * Controlling the Elaboration Order in Ada::
535 * Controlling the Elaboration Order in GNAT::
536 * Mixing Elaboration Models::
537 * ABE Diagnostics::
538 * SPARK Diagnostics::
539 * Elaboration Circularities::
540 * Resolving Elaboration Circularities::
541 * Elaboration-related Compiler Switches::
542 * Summary of Procedures for Elaboration Control::
543 * Inspecting the Chosen Elaboration Order::
544
545 Inline Assembler
546
547 * Basic Assembler Syntax::
548 * A Simple Example of Inline Assembler::
549 * Output Variables in Inline Assembler::
550 * Input Variables in Inline Assembler::
551 * Inlining Inline Assembler Code::
552 * Other Asm Functionality::
553
554 Other Asm Functionality
555
556 * The Clobber Parameter::
557 * The Volatile Parameter::
558
559 @end detailmenu
560 @end menu
561
562 @node About This Guide,Getting Started with GNAT,Top,Top
563 @anchor{gnat_ugn/about_this_guide about-this-guide}@anchor{2}@anchor{gnat_ugn/about_this_guide doc}@anchor{3}@anchor{gnat_ugn/about_this_guide gnat-user-s-guide-for-native-platforms}@anchor{4}@anchor{gnat_ugn/about_this_guide id1}@anchor{5}
564 @chapter About This Guide
565
566
567
568 This guide describes the use of GNAT,
569 a compiler and software development
570 toolset for the full Ada programming language.
571 It documents the features of the compiler and tools, and explains
572 how to use them to build Ada applications.
573
574 GNAT implements Ada 95, Ada 2005 and Ada 2012, and it may also be
575 invoked in Ada 83 compatibility mode.
576 By default, GNAT assumes Ada 2012, but you can override with a
577 compiler switch (@ref{6,,Compiling Different Versions of Ada})
578 to explicitly specify the language version.
579 Throughout this manual, references to 'Ada' without a year suffix
580 apply to all Ada 95/2005/2012 versions of the language.
581
582 @menu
583 * What This Guide Contains::
584 * What You Should Know before Reading This Guide::
585 * Related Information::
586 * A Note to Readers of Previous Versions of the Manual::
587 * Conventions::
588
589 @end menu
590
591 @node What This Guide Contains,What You Should Know before Reading This Guide,,About This Guide
592 @anchor{gnat_ugn/about_this_guide what-this-guide-contains}@anchor{7}
593 @section What This Guide Contains
594
595
596 This guide contains the following chapters:
597
598
599 @itemize *
600
601 @item
602 @ref{8,,Getting Started with GNAT} describes how to get started compiling
603 and running Ada programs with the GNAT Ada programming environment.
604
605 @item
606 @ref{9,,The GNAT Compilation Model} describes the compilation model used
607 by GNAT.
608
609 @item
610 @ref{a,,Building Executable Programs with GNAT} describes how to use the
611 main GNAT tools to build executable programs, and it also gives examples of
612 using the GNU make utility with GNAT.
613
614 @item
615 @ref{b,,GNAT Utility Programs} explains the various utility programs that
616 are included in the GNAT environment
617
618 @item
619 @ref{c,,GNAT and Program Execution} covers a number of topics related to
620 running, debugging, and tuning the performace of programs developed
621 with GNAT
622 @end itemize
623
624 Appendices cover several additional topics:
625
626
627 @itemize *
628
629 @item
630 @ref{d,,Platform-Specific Information} describes the different run-time
631 library implementations and also presents information on how to use
632 GNAT on several specific platforms
633
634 @item
635 @ref{e,,Example of Binder Output File} shows the source code for the binder
636 output file for a sample program.
637
638 @item
639 @ref{f,,Elaboration Order Handling in GNAT} describes how GNAT helps
640 you deal with elaboration order issues.
641
642 @item
643 @ref{10,,Inline Assembler} shows how to use the inline assembly facility
644 in an Ada program.
645 @end itemize
646
647 @node What You Should Know before Reading This Guide,Related Information,What This Guide Contains,About This Guide
648 @anchor{gnat_ugn/about_this_guide what-you-should-know-before-reading-this-guide}@anchor{11}
649 @section What You Should Know before Reading This Guide
650
651
652 @geindex Ada 95 Language Reference Manual
653
654 @geindex Ada 2005 Language Reference Manual
655
656 This guide assumes a basic familiarity with the Ada 95 language, as
657 described in the International Standard ANSI/ISO/IEC-8652:1995, January
658 1995.
659 It does not require knowledge of the features introduced by Ada 2005
660 or Ada 2012.
661 Reference manuals for Ada 95, Ada 2005, and Ada 2012 are included in
662 the GNAT documentation package.
663
664 @node Related Information,A Note to Readers of Previous Versions of the Manual,What You Should Know before Reading This Guide,About This Guide
665 @anchor{gnat_ugn/about_this_guide related-information}@anchor{12}
666 @section Related Information
667
668
669 For further information about Ada and related tools, please refer to the
670 following documents:
671
672
673 @itemize *
674
675 @item
676 @cite{Ada 95 Reference Manual}, @cite{Ada 2005 Reference Manual}, and
677 @cite{Ada 2012 Reference Manual}, which contain reference
678 material for the several revisions of the Ada language standard.
679
680 @item
681 @cite{GNAT Reference_Manual}, which contains all reference material for the GNAT
682 implementation of Ada.
683
684 @item
685 @cite{Using GNAT Studio}, which describes the GNAT Studio
686 Integrated Development Environment.
687
688 @item
689 @cite{GNAT Studio Tutorial}, which introduces the
690 main GNAT Studio features through examples.
691
692 @item
693 @cite{Debugging with GDB},
694 for all details on the use of the GNU source-level debugger.
695
696 @item
697 @cite{GNU Emacs Manual},
698 for full information on the extensible editor and programming
699 environment Emacs.
700 @end itemize
701
702 @node A Note to Readers of Previous Versions of the Manual,Conventions,Related Information,About This Guide
703 @anchor{gnat_ugn/about_this_guide a-note-to-readers-of-previous-versions-of-the-manual}@anchor{13}
704 @section A Note to Readers of Previous Versions of the Manual
705
706
707 In early 2015 the GNAT manuals were transitioned to the
708 reStructuredText (rst) / Sphinx documentation generator technology.
709 During that process the @cite{GNAT User's Guide} was reorganized
710 so that related topics would be described together in the same chapter
711 or appendix. Here's a summary of the major changes realized in
712 the new document structure.
713
714
715 @itemize *
716
717 @item
718 @ref{9,,The GNAT Compilation Model} has been extended so that it now covers
719 the following material:
720
721
722 @itemize -
723
724 @item
725 The @code{gnatname}, @code{gnatkr}, and @code{gnatchop} tools
726
727 @item
728 @ref{14,,Configuration Pragmas}
729
730 @item
731 @ref{15,,GNAT and Libraries}
732
733 @item
734 @ref{16,,Conditional Compilation} including @ref{17,,Preprocessing with gnatprep}
735 and @ref{18,,Integrated Preprocessing}
736
737 @item
738 @ref{19,,Generating Ada Bindings for C and C++ headers}
739
740 @item
741 @ref{1a,,Using GNAT Files with External Tools}
742 @end itemize
743
744 @item
745 @ref{a,,Building Executable Programs with GNAT} is a new chapter consolidating
746 the following content:
747
748
749 @itemize -
750
751 @item
752 @ref{1b,,Building with gnatmake}
753
754 @item
755 @ref{1c,,Compiling with gcc}
756
757 @item
758 @ref{1d,,Binding with gnatbind}
759
760 @item
761 @ref{1e,,Linking with gnatlink}
762
763 @item
764 @ref{1f,,Using the GNU make Utility}
765 @end itemize
766
767 @item
768 @ref{b,,GNAT Utility Programs} is a new chapter consolidating the information about several
769 GNAT tools:
770
771
772
773 @itemize -
774
775 @item
776 @ref{20,,The File Cleanup Utility gnatclean}
777
778 @item
779 @ref{21,,The GNAT Library Browser gnatls}
780
781 @item
782 @ref{22,,The Cross-Referencing Tools gnatxref and gnatfind}
783
784 @item
785 @ref{23,,The Ada to HTML Converter gnathtml}
786 @end itemize
787
788 @item
789 @ref{c,,GNAT and Program Execution} is a new chapter consolidating the following:
790
791
792 @itemize -
793
794 @item
795 @ref{24,,Running and Debugging Ada Programs}
796
797 @item
798 @ref{25,,Profiling}
799
800 @item
801 @ref{26,,Improving Performance}
802
803 @item
804 @ref{27,,Overflow Check Handling in GNAT}
805
806 @item
807 @ref{28,,Performing Dimensionality Analysis in GNAT}
808
809 @item
810 @ref{29,,Stack Related Facilities}
811
812 @item
813 @ref{2a,,Memory Management Issues}
814 @end itemize
815
816 @item
817 @ref{d,,Platform-Specific Information} is a new appendix consolidating the following:
818
819
820 @itemize -
821
822 @item
823 @ref{2b,,Run-Time Libraries}
824
825 @item
826 @ref{2c,,Microsoft Windows Topics}
827
828 @item
829 @ref{2d,,Mac OS Topics}
830 @end itemize
831
832 @item
833 The @emph{Compatibility and Porting Guide} appendix has been moved to the
834 @cite{GNAT Reference Manual}. It now includes a section
835 @emph{Writing Portable Fixed-Point Declarations} which was previously
836 a separate chapter in the @cite{GNAT User's Guide}.
837 @end itemize
838
839 @node Conventions,,A Note to Readers of Previous Versions of the Manual,About This Guide
840 @anchor{gnat_ugn/about_this_guide conventions}@anchor{2e}
841 @section Conventions
842
843
844 @geindex Conventions
845 @geindex typographical
846
847 @geindex Typographical conventions
848
849 Following are examples of the typographical and graphic conventions used
850 in this guide:
851
852
853 @itemize *
854
855 @item
856 @code{Functions}, @code{utility program names}, @code{standard names},
857 and @code{classes}.
858
859 @item
860 @code{Option flags}
861
862 @item
863 @code{File names}
864
865 @item
866 @code{Variables}
867
868 @item
869 @emph{Emphasis}
870
871 @item
872 [optional information or parameters]
873
874 @item
875 Examples are described by text
876
877 @example
878 and then shown this way.
879 @end example
880
881 @item
882 Commands that are entered by the user are shown as preceded by a prompt string
883 comprising the @code{$} character followed by a space.
884
885 @item
886 Full file names are shown with the '/' character
887 as the directory separator; e.g., @code{parent-dir/subdir/myfile.adb}.
888 If you are using GNAT on a Windows platform, please note that
889 the '\' character should be used instead.
890 @end itemize
891
892 @node Getting Started with GNAT,The GNAT Compilation Model,About This Guide,Top
893 @anchor{gnat_ugn/getting_started_with_gnat getting-started-with-gnat}@anchor{8}@anchor{gnat_ugn/getting_started_with_gnat doc}@anchor{2f}@anchor{gnat_ugn/getting_started_with_gnat id1}@anchor{30}
894 @chapter Getting Started with GNAT
895
896
897 This chapter describes how to use GNAT's command line interface to build
898 executable Ada programs.
899 On most platforms a visually oriented Integrated Development Environment
900 is also available, the GNAT Programming Studio (GNAT Studio).
901 GNAT Studio offers a graphical "look and feel", support for development in
902 other programming languages, comprehensive browsing features, and
903 many other capabilities.
904 For information on GNAT Studio please refer to
905 @cite{Using the GNAT Programming Studio}.
906
907 @menu
908 * Running GNAT::
909 * Running a Simple Ada Program::
910 * Running a Program with Multiple Units::
911 * Using the gnatmake Utility::
912
913 @end menu
914
915 @node Running GNAT,Running a Simple Ada Program,,Getting Started with GNAT
916 @anchor{gnat_ugn/getting_started_with_gnat running-gnat}@anchor{31}@anchor{gnat_ugn/getting_started_with_gnat id2}@anchor{32}
917 @section Running GNAT
918
919
920 Three steps are needed to create an executable file from an Ada source
921 file:
922
923
924 @itemize *
925
926 @item
927 The source file(s) must be compiled.
928
929 @item
930 The file(s) must be bound using the GNAT binder.
931
932 @item
933 All appropriate object files must be linked to produce an executable.
934 @end itemize
935
936 All three steps are most commonly handled by using the @code{gnatmake}
937 utility program that, given the name of the main program, automatically
938 performs the necessary compilation, binding and linking steps.
939
940 @node Running a Simple Ada Program,Running a Program with Multiple Units,Running GNAT,Getting Started with GNAT
941 @anchor{gnat_ugn/getting_started_with_gnat running-a-simple-ada-program}@anchor{33}@anchor{gnat_ugn/getting_started_with_gnat id3}@anchor{34}
942 @section Running a Simple Ada Program
943
944
945 Any text editor may be used to prepare an Ada program.
946 (If Emacs is used, the optional Ada mode may be helpful in laying out the
947 program.)
948 The program text is a normal text file. We will assume in our initial
949 example that you have used your editor to prepare the following
950 standard format text file:
951
952 @example
953 with Ada.Text_IO; use Ada.Text_IO;
954 procedure Hello is
955 begin
956 Put_Line ("Hello WORLD!");
957 end Hello;
958 @end example
959
960 This file should be named @code{hello.adb}.
961 With the normal default file naming conventions, GNAT requires
962 that each file
963 contain a single compilation unit whose file name is the
964 unit name,
965 with periods replaced by hyphens; the
966 extension is @code{ads} for a
967 spec and @code{adb} for a body.
968 You can override this default file naming convention by use of the
969 special pragma @code{Source_File_Name} (for further information please
970 see @ref{35,,Using Other File Names}).
971 Alternatively, if you want to rename your files according to this default
972 convention, which is probably more convenient if you will be using GNAT
973 for all your compilations, then the @code{gnatchop} utility
974 can be used to generate correctly-named source files
975 (see @ref{36,,Renaming Files with gnatchop}).
976
977 You can compile the program using the following command (@code{$} is used
978 as the command prompt in the examples in this document):
979
980 @example
981 $ gcc -c hello.adb
982 @end example
983
984 @code{gcc} is the command used to run the compiler. This compiler is
985 capable of compiling programs in several languages, including Ada and
986 C. It assumes that you have given it an Ada program if the file extension is
987 either @code{.ads} or @code{.adb}, and it will then call
988 the GNAT compiler to compile the specified file.
989
990 The @code{-c} switch is required. It tells @code{gcc} to only do a
991 compilation. (For C programs, @code{gcc} can also do linking, but this
992 capability is not used directly for Ada programs, so the @code{-c}
993 switch must always be present.)
994
995 This compile command generates a file
996 @code{hello.o}, which is the object
997 file corresponding to your Ada program. It also generates
998 an 'Ada Library Information' file @code{hello.ali},
999 which contains additional information used to check
1000 that an Ada program is consistent.
1001 To build an executable file,
1002 use @code{gnatbind} to bind the program
1003 and @code{gnatlink} to link it. The
1004 argument to both @code{gnatbind} and @code{gnatlink} is the name of the
1005 @code{ALI} file, but the default extension of @code{.ali} can
1006 be omitted. This means that in the most common case, the argument
1007 is simply the name of the main program:
1008
1009 @example
1010 $ gnatbind hello
1011 $ gnatlink hello
1012 @end example
1013
1014 A simpler method of carrying out these steps is to use @code{gnatmake},
1015 a master program that invokes all the required
1016 compilation, binding and linking tools in the correct order. In particular,
1017 @code{gnatmake} automatically recompiles any sources that have been
1018 modified since they were last compiled, or sources that depend
1019 on such modified sources, so that 'version skew' is avoided.
1020
1021 @geindex Version skew (avoided by `@w{`}gnatmake`@w{`})
1022
1023 @example
1024 $ gnatmake hello.adb
1025 @end example
1026
1027 The result is an executable program called @code{hello}, which can be
1028 run by entering:
1029
1030 @example
1031 $ hello
1032 @end example
1033
1034 assuming that the current directory is on the search path
1035 for executable programs.
1036
1037 and, if all has gone well, you will see:
1038
1039 @example
1040 Hello WORLD!
1041 @end example
1042
1043 appear in response to this command.
1044
1045 @node Running a Program with Multiple Units,Using the gnatmake Utility,Running a Simple Ada Program,Getting Started with GNAT
1046 @anchor{gnat_ugn/getting_started_with_gnat id4}@anchor{37}@anchor{gnat_ugn/getting_started_with_gnat running-a-program-with-multiple-units}@anchor{38}
1047 @section Running a Program with Multiple Units
1048
1049
1050 Consider a slightly more complicated example that has three files: a
1051 main program, and the spec and body of a package:
1052
1053 @example
1054 package Greetings is
1055 procedure Hello;
1056 procedure Goodbye;
1057 end Greetings;
1058
1059 with Ada.Text_IO; use Ada.Text_IO;
1060 package body Greetings is
1061 procedure Hello is
1062 begin
1063 Put_Line ("Hello WORLD!");
1064 end Hello;
1065
1066 procedure Goodbye is
1067 begin
1068 Put_Line ("Goodbye WORLD!");
1069 end Goodbye;
1070 end Greetings;
1071
1072 with Greetings;
1073 procedure Gmain is
1074 begin
1075 Greetings.Hello;
1076 Greetings.Goodbye;
1077 end Gmain;
1078 @end example
1079
1080 Following the one-unit-per-file rule, place this program in the
1081 following three separate files:
1082
1083
1084 @table @asis
1085
1086 @item @emph{greetings.ads}
1087
1088 spec of package @code{Greetings}
1089
1090 @item @emph{greetings.adb}
1091
1092 body of package @code{Greetings}
1093
1094 @item @emph{gmain.adb}
1095
1096 body of main program
1097 @end table
1098
1099 To build an executable version of
1100 this program, we could use four separate steps to compile, bind, and link
1101 the program, as follows:
1102
1103 @example
1104 $ gcc -c gmain.adb
1105 $ gcc -c greetings.adb
1106 $ gnatbind gmain
1107 $ gnatlink gmain
1108 @end example
1109
1110 Note that there is no required order of compilation when using GNAT.
1111 In particular it is perfectly fine to compile the main program first.
1112 Also, it is not necessary to compile package specs in the case where
1113 there is an accompanying body; you only need to compile the body. If you want
1114 to submit these files to the compiler for semantic checking and not code
1115 generation, then use the @code{-gnatc} switch:
1116
1117 @example
1118 $ gcc -c greetings.ads -gnatc
1119 @end example
1120
1121 Although the compilation can be done in separate steps as in the
1122 above example, in practice it is almost always more convenient
1123 to use the @code{gnatmake} tool. All you need to know in this case
1124 is the name of the main program's source file. The effect of the above four
1125 commands can be achieved with a single one:
1126
1127 @example
1128 $ gnatmake gmain.adb
1129 @end example
1130
1131 In the next section we discuss the advantages of using @code{gnatmake} in
1132 more detail.
1133
1134 @node Using the gnatmake Utility,,Running a Program with Multiple Units,Getting Started with GNAT
1135 @anchor{gnat_ugn/getting_started_with_gnat using-the-gnatmake-utility}@anchor{39}@anchor{gnat_ugn/getting_started_with_gnat id5}@anchor{3a}
1136 @section Using the @code{gnatmake} Utility
1137
1138
1139 If you work on a program by compiling single components at a time using
1140 @code{gcc}, you typically keep track of the units you modify. In order to
1141 build a consistent system, you compile not only these units, but also any
1142 units that depend on the units you have modified.
1143 For example, in the preceding case,
1144 if you edit @code{gmain.adb}, you only need to recompile that file. But if
1145 you edit @code{greetings.ads}, you must recompile both
1146 @code{greetings.adb} and @code{gmain.adb}, because both files contain
1147 units that depend on @code{greetings.ads}.
1148
1149 @code{gnatbind} will warn you if you forget one of these compilation
1150 steps, so that it is impossible to generate an inconsistent program as a
1151 result of forgetting to do a compilation. Nevertheless it is tedious and
1152 error-prone to keep track of dependencies among units.
1153 One approach to handle the dependency-bookkeeping is to use a
1154 makefile. However, makefiles present maintenance problems of their own:
1155 if the dependencies change as you change the program, you must make
1156 sure that the makefile is kept up-to-date manually, which is also an
1157 error-prone process.
1158
1159 The @code{gnatmake} utility takes care of these details automatically.
1160 Invoke it using either one of the following forms:
1161
1162 @example
1163 $ gnatmake gmain.adb
1164 $ gnatmake gmain
1165 @end example
1166
1167 The argument is the name of the file containing the main program;
1168 you may omit the extension. @code{gnatmake}
1169 examines the environment, automatically recompiles any files that need
1170 recompiling, and binds and links the resulting set of object files,
1171 generating the executable file, @code{gmain}.
1172 In a large program, it
1173 can be extremely helpful to use @code{gnatmake}, because working out by hand
1174 what needs to be recompiled can be difficult.
1175
1176 Note that @code{gnatmake} takes into account all the Ada rules that
1177 establish dependencies among units. These include dependencies that result
1178 from inlining subprogram bodies, and from
1179 generic instantiation. Unlike some other
1180 Ada make tools, @code{gnatmake} does not rely on the dependencies that were
1181 found by the compiler on a previous compilation, which may possibly
1182 be wrong when sources change. @code{gnatmake} determines the exact set of
1183 dependencies from scratch each time it is run.
1184
1185 @c -- Example: A |withing| unit has a |with| clause, it |withs| a |withed| unit
1186
1187 @node The GNAT Compilation Model,Building Executable Programs with GNAT,Getting Started with GNAT,Top
1188 @anchor{gnat_ugn/the_gnat_compilation_model doc}@anchor{3b}@anchor{gnat_ugn/the_gnat_compilation_model the-gnat-compilation-model}@anchor{9}@anchor{gnat_ugn/the_gnat_compilation_model id1}@anchor{3c}
1189 @chapter The GNAT Compilation Model
1190
1191
1192 @geindex GNAT compilation model
1193
1194 @geindex Compilation model
1195
1196 This chapter describes the compilation model used by GNAT. Although
1197 similar to that used by other languages such as C and C++, this model
1198 is substantially different from the traditional Ada compilation models,
1199 which are based on a centralized program library. The chapter covers
1200 the following material:
1201
1202
1203 @itemize *
1204
1205 @item
1206 Topics related to source file makeup and naming
1207
1208
1209 @itemize *
1210
1211 @item
1212 @ref{3d,,Source Representation}
1213
1214 @item
1215 @ref{3e,,Foreign Language Representation}
1216
1217 @item
1218 @ref{3f,,File Naming Topics and Utilities}
1219 @end itemize
1220
1221 @item
1222 @ref{14,,Configuration Pragmas}
1223
1224 @item
1225 @ref{40,,Generating Object Files}
1226
1227 @item
1228 @ref{41,,Source Dependencies}
1229
1230 @item
1231 @ref{42,,The Ada Library Information Files}
1232
1233 @item
1234 @ref{43,,Binding an Ada Program}
1235
1236 @item
1237 @ref{15,,GNAT and Libraries}
1238
1239 @item
1240 @ref{16,,Conditional Compilation}
1241
1242 @item
1243 @ref{44,,Mixed Language Programming}
1244
1245 @item
1246 @ref{45,,GNAT and Other Compilation Models}
1247
1248 @item
1249 @ref{1a,,Using GNAT Files with External Tools}
1250 @end itemize
1251
1252 @menu
1253 * Source Representation::
1254 * Foreign Language Representation::
1255 * File Naming Topics and Utilities::
1256 * Configuration Pragmas::
1257 * Generating Object Files::
1258 * Source Dependencies::
1259 * The Ada Library Information Files::
1260 * Binding an Ada Program::
1261 * GNAT and Libraries::
1262 * Conditional Compilation::
1263 * Mixed Language Programming::
1264 * GNAT and Other Compilation Models::
1265 * Using GNAT Files with External Tools::
1266
1267 @end menu
1268
1269 @node Source Representation,Foreign Language Representation,,The GNAT Compilation Model
1270 @anchor{gnat_ugn/the_gnat_compilation_model source-representation}@anchor{3d}@anchor{gnat_ugn/the_gnat_compilation_model id2}@anchor{46}
1271 @section Source Representation
1272
1273
1274 @geindex Latin-1
1275
1276 @geindex VT
1277 @geindex HT
1278 @geindex CR
1279 @geindex LF
1280 @geindex FF
1281
1282 Ada source programs are represented in standard text files, using
1283 Latin-1 coding. Latin-1 is an 8-bit code that includes the familiar
1284 7-bit ASCII set, plus additional characters used for
1285 representing foreign languages (see @ref{3e,,Foreign Language Representation}
1286 for support of non-USA character sets). The format effector characters
1287 are represented using their standard ASCII encodings, as follows:
1288
1289 @quotation
1290
1291
1292 @multitable {xxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxx}
1293 @item
1294
1295 Character
1296
1297 @tab
1298
1299 Effect
1300
1301 @tab
1302
1303 Code
1304
1305 @item
1306
1307 @code{VT}
1308
1309 @tab
1310
1311 Vertical tab
1312
1313 @tab
1314
1315 @code{16#0B#}
1316
1317 @item
1318
1319 @code{HT}
1320
1321 @tab
1322
1323 Horizontal tab
1324
1325 @tab
1326
1327 @code{16#09#}
1328
1329 @item
1330
1331 @code{CR}
1332
1333 @tab
1334
1335 Carriage return
1336
1337 @tab
1338
1339 @code{16#0D#}
1340
1341 @item
1342
1343 @code{LF}
1344
1345 @tab
1346
1347 Line feed
1348
1349 @tab
1350
1351 @code{16#0A#}
1352
1353 @item
1354
1355 @code{FF}
1356
1357 @tab
1358
1359 Form feed
1360
1361 @tab
1362
1363 @code{16#0C#}
1364
1365 @end multitable
1366
1367 @end quotation
1368
1369 Source files are in standard text file format. In addition, GNAT will
1370 recognize a wide variety of stream formats, in which the end of
1371 physical lines is marked by any of the following sequences:
1372 @code{LF}, @code{CR}, @code{CR-LF}, or @code{LF-CR}. This is useful
1373 in accommodating files that are imported from other operating systems.
1374
1375 @geindex End of source file; Source file@comma{} end
1376
1377 @geindex SUB (control character)
1378
1379 The end of a source file is normally represented by the physical end of
1380 file. However, the control character @code{16#1A#} (@code{SUB}) is also
1381 recognized as signalling the end of the source file. Again, this is
1382 provided for compatibility with other operating systems where this
1383 code is used to represent the end of file.
1384
1385 @geindex spec (definition)
1386 @geindex compilation (definition)
1387
1388 Each file contains a single Ada compilation unit, including any pragmas
1389 associated with the unit. For example, this means you must place a
1390 package declaration (a package @emph{spec}) and the corresponding body in
1391 separate files. An Ada @emph{compilation} (which is a sequence of
1392 compilation units) is represented using a sequence of files. Similarly,
1393 you will place each subunit or child unit in a separate file.
1394
1395 @node Foreign Language Representation,File Naming Topics and Utilities,Source Representation,The GNAT Compilation Model
1396 @anchor{gnat_ugn/the_gnat_compilation_model foreign-language-representation}@anchor{3e}@anchor{gnat_ugn/the_gnat_compilation_model id3}@anchor{47}
1397 @section Foreign Language Representation
1398
1399
1400 GNAT supports the standard character sets defined in Ada as well as
1401 several other non-standard character sets for use in localized versions
1402 of the compiler (@ref{48,,Character Set Control}).
1403
1404 @menu
1405 * Latin-1::
1406 * Other 8-Bit Codes::
1407 * Wide_Character Encodings::
1408 * Wide_Wide_Character Encodings::
1409
1410 @end menu
1411
1412 @node Latin-1,Other 8-Bit Codes,,Foreign Language Representation
1413 @anchor{gnat_ugn/the_gnat_compilation_model id4}@anchor{49}@anchor{gnat_ugn/the_gnat_compilation_model latin-1}@anchor{4a}
1414 @subsection Latin-1
1415
1416
1417 @geindex Latin-1
1418
1419 The basic character set is Latin-1. This character set is defined by ISO
1420 standard 8859, part 1. The lower half (character codes @code{16#00#}
1421 ... @code{16#7F#)} is identical to standard ASCII coding, but the upper
1422 half is used to represent additional characters. These include extended letters
1423 used by European languages, such as French accents, the vowels with umlauts
1424 used in German, and the extra letter A-ring used in Swedish.
1425
1426 @geindex Ada.Characters.Latin_1
1427
1428 For a complete list of Latin-1 codes and their encodings, see the source
1429 file of library unit @code{Ada.Characters.Latin_1} in file
1430 @code{a-chlat1.ads}.
1431 You may use any of these extended characters freely in character or
1432 string literals. In addition, the extended characters that represent
1433 letters can be used in identifiers.
1434
1435 @node Other 8-Bit Codes,Wide_Character Encodings,Latin-1,Foreign Language Representation
1436 @anchor{gnat_ugn/the_gnat_compilation_model other-8-bit-codes}@anchor{4b}@anchor{gnat_ugn/the_gnat_compilation_model id5}@anchor{4c}
1437 @subsection Other 8-Bit Codes
1438
1439
1440 GNAT also supports several other 8-bit coding schemes:
1441
1442 @geindex Latin-2
1443
1444 @geindex ISO 8859-2
1445
1446
1447 @table @asis
1448
1449 @item @emph{ISO 8859-2 (Latin-2)}
1450
1451 Latin-2 letters allowed in identifiers, with uppercase and lowercase
1452 equivalence.
1453 @end table
1454
1455 @geindex Latin-3
1456
1457 @geindex ISO 8859-3
1458
1459
1460 @table @asis
1461
1462 @item @emph{ISO 8859-3 (Latin-3)}
1463
1464 Latin-3 letters allowed in identifiers, with uppercase and lowercase
1465 equivalence.
1466 @end table
1467
1468 @geindex Latin-4
1469
1470 @geindex ISO 8859-4
1471
1472
1473 @table @asis
1474
1475 @item @emph{ISO 8859-4 (Latin-4)}
1476
1477 Latin-4 letters allowed in identifiers, with uppercase and lowercase
1478 equivalence.
1479 @end table
1480
1481 @geindex ISO 8859-5
1482
1483 @geindex Cyrillic
1484
1485
1486 @table @asis
1487
1488 @item @emph{ISO 8859-5 (Cyrillic)}
1489
1490 ISO 8859-5 letters (Cyrillic) allowed in identifiers, with uppercase and
1491 lowercase equivalence.
1492 @end table
1493
1494 @geindex ISO 8859-15
1495
1496 @geindex Latin-9
1497
1498
1499 @table @asis
1500
1501 @item @emph{ISO 8859-15 (Latin-9)}
1502
1503 ISO 8859-15 (Latin-9) letters allowed in identifiers, with uppercase and
1504 lowercase equivalence
1505 @end table
1506
1507 @geindex code page 437 (IBM PC)
1508
1509
1510 @table @asis
1511
1512 @item @emph{IBM PC (code page 437)}
1513
1514 This code page is the normal default for PCs in the U.S. It corresponds
1515 to the original IBM PC character set. This set has some, but not all, of
1516 the extended Latin-1 letters, but these letters do not have the same
1517 encoding as Latin-1. In this mode, these letters are allowed in
1518 identifiers with uppercase and lowercase equivalence.
1519 @end table
1520
1521 @geindex code page 850 (IBM PC)
1522
1523
1524 @table @asis
1525
1526 @item @emph{IBM PC (code page 850)}
1527
1528 This code page is a modification of 437 extended to include all the
1529 Latin-1 letters, but still not with the usual Latin-1 encoding. In this
1530 mode, all these letters are allowed in identifiers with uppercase and
1531 lowercase equivalence.
1532
1533 @item @emph{Full Upper 8-bit}
1534
1535 Any character in the range 80-FF allowed in identifiers, and all are
1536 considered distinct. In other words, there are no uppercase and lowercase
1537 equivalences in this range. This is useful in conjunction with
1538 certain encoding schemes used for some foreign character sets (e.g.,
1539 the typical method of representing Chinese characters on the PC).
1540
1541 @item @emph{No Upper-Half}
1542
1543 No upper-half characters in the range 80-FF are allowed in identifiers.
1544 This gives Ada 83 compatibility for identifier names.
1545 @end table
1546
1547 For precise data on the encodings permitted, and the uppercase and lowercase
1548 equivalences that are recognized, see the file @code{csets.adb} in
1549 the GNAT compiler sources. You will need to obtain a full source release
1550 of GNAT to obtain this file.
1551
1552 @node Wide_Character Encodings,Wide_Wide_Character Encodings,Other 8-Bit Codes,Foreign Language Representation
1553 @anchor{gnat_ugn/the_gnat_compilation_model id6}@anchor{4d}@anchor{gnat_ugn/the_gnat_compilation_model wide-character-encodings}@anchor{4e}
1554 @subsection Wide_Character Encodings
1555
1556
1557 GNAT allows wide character codes to appear in character and string
1558 literals, and also optionally in identifiers, by means of the following
1559 possible encoding schemes:
1560
1561
1562 @table @asis
1563
1564 @item @emph{Hex Coding}
1565
1566 In this encoding, a wide character is represented by the following five
1567 character sequence:
1568
1569 @example
1570 ESC a b c d
1571 @end example
1572
1573 where @code{a}, @code{b}, @code{c}, @code{d} are the four hexadecimal
1574 characters (using uppercase letters) of the wide character code. For
1575 example, ESC A345 is used to represent the wide character with code
1576 @code{16#A345#}.
1577 This scheme is compatible with use of the full Wide_Character set.
1578
1579 @item @emph{Upper-Half Coding}
1580
1581 @geindex Upper-Half Coding
1582
1583 The wide character with encoding @code{16#abcd#} where the upper bit is on
1584 (in other words, 'a' is in the range 8-F) is represented as two bytes,
1585 @code{16#ab#} and @code{16#cd#}. The second byte cannot be a format control
1586 character, but is not required to be in the upper half. This method can
1587 be also used for shift-JIS or EUC, where the internal coding matches the
1588 external coding.
1589
1590 @item @emph{Shift JIS Coding}
1591
1592 @geindex Shift JIS Coding
1593
1594 A wide character is represented by a two-character sequence,
1595 @code{16#ab#} and
1596 @code{16#cd#}, with the restrictions described for upper-half encoding as
1597 described above. The internal character code is the corresponding JIS
1598 character according to the standard algorithm for Shift-JIS
1599 conversion. Only characters defined in the JIS code set table can be
1600 used with this encoding method.
1601
1602 @item @emph{EUC Coding}
1603
1604 @geindex EUC Coding
1605
1606 A wide character is represented by a two-character sequence
1607 @code{16#ab#} and
1608 @code{16#cd#}, with both characters being in the upper half. The internal
1609 character code is the corresponding JIS character according to the EUC
1610 encoding algorithm. Only characters defined in the JIS code set table
1611 can be used with this encoding method.
1612
1613 @item @emph{UTF-8 Coding}
1614
1615 A wide character is represented using
1616 UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO
1617 10646-1/Am.2. Depending on the character value, the representation
1618 is a one, two, or three byte sequence:
1619
1620 @example
1621 16#0000#-16#007f#: 2#0xxxxxxx#
1622 16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#
1623 16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#
1624 @end example
1625
1626 where the @code{xxx} bits correspond to the left-padded bits of the
1627 16-bit character value. Note that all lower half ASCII characters
1628 are represented as ASCII bytes and all upper half characters and
1629 other wide characters are represented as sequences of upper-half
1630 (The full UTF-8 scheme allows for encoding 31-bit characters as
1631 6-byte sequences, and in the following section on wide wide
1632 characters, the use of these sequences is documented).
1633
1634 @item @emph{Brackets Coding}
1635
1636 In this encoding, a wide character is represented by the following eight
1637 character sequence:
1638
1639 @example
1640 [ " a b c d " ]
1641 @end example
1642
1643 where @code{a}, @code{b}, @code{c}, @code{d} are the four hexadecimal
1644 characters (using uppercase letters) of the wide character code. For
1645 example, ['A345'] is used to represent the wide character with code
1646 @code{16#A345#}. It is also possible (though not required) to use the
1647 Brackets coding for upper half characters. For example, the code
1648 @code{16#A3#} can be represented as @code{['A3']}.
1649
1650 This scheme is compatible with use of the full Wide_Character set,
1651 and is also the method used for wide character encoding in some standard
1652 ACATS (Ada Conformity Assessment Test Suite) test suite distributions.
1653 @end table
1654
1655 @cartouche
1656 @quotation Note
1657 Some of these coding schemes do not permit the full use of the
1658 Ada character set. For example, neither Shift JIS nor EUC allow the
1659 use of the upper half of the Latin-1 set.
1660 @end quotation
1661 @end cartouche
1662
1663 @node Wide_Wide_Character Encodings,,Wide_Character Encodings,Foreign Language Representation
1664 @anchor{gnat_ugn/the_gnat_compilation_model id7}@anchor{4f}@anchor{gnat_ugn/the_gnat_compilation_model wide-wide-character-encodings}@anchor{50}
1665 @subsection Wide_Wide_Character Encodings
1666
1667
1668 GNAT allows wide wide character codes to appear in character and string
1669 literals, and also optionally in identifiers, by means of the following
1670 possible encoding schemes:
1671
1672
1673 @table @asis
1674
1675 @item @emph{UTF-8 Coding}
1676
1677 A wide character is represented using
1678 UCS Transformation Format 8 (UTF-8) as defined in Annex R of ISO
1679 10646-1/Am.2. Depending on the character value, the representation
1680 of character codes with values greater than 16#FFFF# is a
1681 is a four, five, or six byte sequence:
1682
1683 @example
1684 16#01_0000#-16#10_FFFF#: 11110xxx 10xxxxxx 10xxxxxx
1685 10xxxxxx
1686 16#0020_0000#-16#03FF_FFFF#: 111110xx 10xxxxxx 10xxxxxx
1687 10xxxxxx 10xxxxxx
1688 16#0400_0000#-16#7FFF_FFFF#: 1111110x 10xxxxxx 10xxxxxx
1689 10xxxxxx 10xxxxxx 10xxxxxx
1690 @end example
1691
1692 where the @code{xxx} bits correspond to the left-padded bits of the
1693 32-bit character value.
1694
1695 @item @emph{Brackets Coding}
1696
1697 In this encoding, a wide wide character is represented by the following ten or
1698 twelve byte character sequence:
1699
1700 @example
1701 [ " a b c d e f " ]
1702 [ " a b c d e f g h " ]
1703 @end example
1704
1705 where @code{a-h} are the six or eight hexadecimal
1706 characters (using uppercase letters) of the wide wide character code. For
1707 example, ["1F4567"] is used to represent the wide wide character with code
1708 @code{16#001F_4567#}.
1709
1710 This scheme is compatible with use of the full Wide_Wide_Character set,
1711 and is also the method used for wide wide character encoding in some standard
1712 ACATS (Ada Conformity Assessment Test Suite) test suite distributions.
1713 @end table
1714
1715 @node File Naming Topics and Utilities,Configuration Pragmas,Foreign Language Representation,The GNAT Compilation Model
1716 @anchor{gnat_ugn/the_gnat_compilation_model id8}@anchor{51}@anchor{gnat_ugn/the_gnat_compilation_model file-naming-topics-and-utilities}@anchor{3f}
1717 @section File Naming Topics and Utilities
1718
1719
1720 GNAT has a default file naming scheme and also provides the user with
1721 a high degree of control over how the names and extensions of the
1722 source files correspond to the Ada compilation units that they contain.
1723
1724 @menu
1725 * File Naming Rules::
1726 * Using Other File Names::
1727 * Alternative File Naming Schemes::
1728 * Handling Arbitrary File Naming Conventions with gnatname::
1729 * File Name Krunching with gnatkr::
1730 * Renaming Files with gnatchop::
1731
1732 @end menu
1733
1734 @node File Naming Rules,Using Other File Names,,File Naming Topics and Utilities
1735 @anchor{gnat_ugn/the_gnat_compilation_model file-naming-rules}@anchor{52}@anchor{gnat_ugn/the_gnat_compilation_model id9}@anchor{53}
1736 @subsection File Naming Rules
1737
1738
1739 The default file name is determined by the name of the unit that the
1740 file contains. The name is formed by taking the full expanded name of
1741 the unit and replacing the separating dots with hyphens and using
1742 lowercase for all letters.
1743
1744 An exception arises if the file name generated by the above rules starts
1745 with one of the characters
1746 @code{a}, @code{g}, @code{i}, or @code{s}, and the second character is a
1747 minus. In this case, the character tilde is used in place
1748 of the minus. The reason for this special rule is to avoid clashes with
1749 the standard names for child units of the packages System, Ada,
1750 Interfaces, and GNAT, which use the prefixes
1751 @code{s-}, @code{a-}, @code{i-}, and @code{g-},
1752 respectively.
1753
1754 The file extension is @code{.ads} for a spec and
1755 @code{.adb} for a body. The following table shows some
1756 examples of these rules.
1757
1758 @quotation
1759
1760
1761 @multitable {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
1762 @item
1763
1764 Source File
1765
1766 @tab
1767
1768 Ada Compilation Unit
1769
1770 @item
1771
1772 @code{main.ads}
1773
1774 @tab
1775
1776 Main (spec)
1777
1778 @item
1779
1780 @code{main.adb}
1781
1782 @tab
1783
1784 Main (body)
1785
1786 @item
1787
1788 @code{arith_functions.ads}
1789
1790 @tab
1791
1792 Arith_Functions (package spec)
1793
1794 @item
1795
1796 @code{arith_functions.adb}
1797
1798 @tab
1799
1800 Arith_Functions (package body)
1801
1802 @item
1803
1804 @code{func-spec.ads}
1805
1806 @tab
1807
1808 Func.Spec (child package spec)
1809
1810 @item
1811
1812 @code{func-spec.adb}
1813
1814 @tab
1815
1816 Func.Spec (child package body)
1817
1818 @item
1819
1820 @code{main-sub.adb}
1821
1822 @tab
1823
1824 Sub (subunit of Main)
1825
1826 @item
1827
1828 @code{a~bad.adb}
1829
1830 @tab
1831
1832 A.Bad (child package body)
1833
1834 @end multitable
1835
1836 @end quotation
1837
1838 Following these rules can result in excessively long
1839 file names if corresponding
1840 unit names are long (for example, if child units or subunits are
1841 heavily nested). An option is available to shorten such long file names
1842 (called file name 'krunching'). This may be particularly useful when
1843 programs being developed with GNAT are to be used on operating systems
1844 with limited file name lengths. @ref{54,,Using gnatkr}.
1845
1846 Of course, no file shortening algorithm can guarantee uniqueness over
1847 all possible unit names; if file name krunching is used, it is your
1848 responsibility to ensure no name clashes occur. Alternatively you
1849 can specify the exact file names that you want used, as described
1850 in the next section. Finally, if your Ada programs are migrating from a
1851 compiler with a different naming convention, you can use the gnatchop
1852 utility to produce source files that follow the GNAT naming conventions.
1853 (For details see @ref{36,,Renaming Files with gnatchop}.)
1854
1855 Note: in the case of Windows or Mac OS operating systems, case is not
1856 significant. So for example on Windows if the canonical name is
1857 @code{main-sub.adb}, you can use the file name @code{Main-Sub.adb} instead.
1858 However, case is significant for other operating systems, so for example,
1859 if you want to use other than canonically cased file names on a Unix system,
1860 you need to follow the procedures described in the next section.
1861
1862 @node Using Other File Names,Alternative File Naming Schemes,File Naming Rules,File Naming Topics and Utilities
1863 @anchor{gnat_ugn/the_gnat_compilation_model id10}@anchor{55}@anchor{gnat_ugn/the_gnat_compilation_model using-other-file-names}@anchor{35}
1864 @subsection Using Other File Names
1865
1866
1867 @geindex File names
1868
1869 In the previous section, we have described the default rules used by
1870 GNAT to determine the file name in which a given unit resides. It is
1871 often convenient to follow these default rules, and if you follow them,
1872 the compiler knows without being explicitly told where to find all
1873 the files it needs.
1874
1875 @geindex Source_File_Name pragma
1876
1877 However, in some cases, particularly when a program is imported from
1878 another Ada compiler environment, it may be more convenient for the
1879 programmer to specify which file names contain which units. GNAT allows
1880 arbitrary file names to be used by means of the Source_File_Name pragma.
1881 The form of this pragma is as shown in the following examples:
1882
1883 @example
1884 pragma Source_File_Name (My_Utilities.Stacks,
1885 Spec_File_Name => "myutilst_a.ada");
1886 pragma Source_File_name (My_Utilities.Stacks,
1887 Body_File_Name => "myutilst.ada");
1888 @end example
1889
1890 As shown in this example, the first argument for the pragma is the unit
1891 name (in this example a child unit). The second argument has the form
1892 of a named association. The identifier
1893 indicates whether the file name is for a spec or a body;
1894 the file name itself is given by a string literal.
1895
1896 The source file name pragma is a configuration pragma, which means that
1897 normally it will be placed in the @code{gnat.adc}
1898 file used to hold configuration
1899 pragmas that apply to a complete compilation environment.
1900 For more details on how the @code{gnat.adc} file is created and used
1901 see @ref{56,,Handling of Configuration Pragmas}.
1902
1903 @geindex gnat.adc
1904
1905 GNAT allows completely arbitrary file names to be specified using the
1906 source file name pragma. However, if the file name specified has an
1907 extension other than @code{.ads} or @code{.adb} it is necessary to use
1908 a special syntax when compiling the file. The name in this case must be
1909 preceded by the special sequence @code{-x} followed by a space and the name
1910 of the language, here @code{ada}, as in:
1911
1912 @example
1913 $ gcc -c -x ada peculiar_file_name.sim
1914 @end example
1915
1916 @code{gnatmake} handles non-standard file names in the usual manner (the
1917 non-standard file name for the main program is simply used as the
1918 argument to gnatmake). Note that if the extension is also non-standard,
1919 then it must be included in the @code{gnatmake} command, it may not
1920 be omitted.
1921
1922 @node Alternative File Naming Schemes,Handling Arbitrary File Naming Conventions with gnatname,Using Other File Names,File Naming Topics and Utilities
1923 @anchor{gnat_ugn/the_gnat_compilation_model id11}@anchor{57}@anchor{gnat_ugn/the_gnat_compilation_model alternative-file-naming-schemes}@anchor{58}
1924 @subsection Alternative File Naming Schemes
1925
1926
1927 @geindex File naming schemes
1928 @geindex alternative
1929
1930 @geindex File names
1931
1932 The previous section described the use of the @code{Source_File_Name}
1933 pragma to allow arbitrary names to be assigned to individual source files.
1934 However, this approach requires one pragma for each file, and especially in
1935 large systems can result in very long @code{gnat.adc} files, and also create
1936 a maintenance problem.
1937
1938 @geindex Source_File_Name pragma
1939
1940 GNAT also provides a facility for specifying systematic file naming schemes
1941 other than the standard default naming scheme previously described. An
1942 alternative scheme for naming is specified by the use of
1943 @code{Source_File_Name} pragmas having the following format:
1944
1945 @example
1946 pragma Source_File_Name (
1947 Spec_File_Name => FILE_NAME_PATTERN
1948 [ , Casing => CASING_SPEC]
1949 [ , Dot_Replacement => STRING_LITERAL ] );
1950
1951 pragma Source_File_Name (
1952 Body_File_Name => FILE_NAME_PATTERN
1953 [ , Casing => CASING_SPEC ]
1954 [ , Dot_Replacement => STRING_LITERAL ] ) ;
1955
1956 pragma Source_File_Name (
1957 Subunit_File_Name => FILE_NAME_PATTERN
1958 [ , Casing => CASING_SPEC ]
1959 [ , Dot_Replacement => STRING_LITERAL ] ) ;
1960
1961 FILE_NAME_PATTERN ::= STRING_LITERAL
1962 CASING_SPEC ::= Lowercase | Uppercase | Mixedcase
1963 @end example
1964
1965 The @code{FILE_NAME_PATTERN} string shows how the file name is constructed.
1966 It contains a single asterisk character, and the unit name is substituted
1967 systematically for this asterisk. The optional parameter
1968 @code{Casing} indicates
1969 whether the unit name is to be all upper-case letters, all lower-case letters,
1970 or mixed-case. If no
1971 @code{Casing} parameter is used, then the default is all
1972 lower-case.
1973
1974 The optional @code{Dot_Replacement} string is used to replace any periods
1975 that occur in subunit or child unit names. If no @code{Dot_Replacement}
1976 argument is used then separating dots appear unchanged in the resulting
1977 file name.
1978 Although the above syntax indicates that the
1979 @code{Casing} argument must appear
1980 before the @code{Dot_Replacement} argument, but it
1981 is also permissible to write these arguments in the opposite order.
1982
1983 As indicated, it is possible to specify different naming schemes for
1984 bodies, specs, and subunits. Quite often the rule for subunits is the
1985 same as the rule for bodies, in which case, there is no need to give
1986 a separate @code{Subunit_File_Name} rule, and in this case the
1987 @code{Body_File_name} rule is used for subunits as well.
1988
1989 The separate rule for subunits can also be used to implement the rather
1990 unusual case of a compilation environment (e.g., a single directory) which
1991 contains a subunit and a child unit with the same unit name. Although
1992 both units cannot appear in the same partition, the Ada Reference Manual
1993 allows (but does not require) the possibility of the two units coexisting
1994 in the same environment.
1995
1996 The file name translation works in the following steps:
1997
1998
1999 @itemize *
2000
2001 @item
2002 If there is a specific @code{Source_File_Name} pragma for the given unit,
2003 then this is always used, and any general pattern rules are ignored.
2004
2005 @item
2006 If there is a pattern type @code{Source_File_Name} pragma that applies to
2007 the unit, then the resulting file name will be used if the file exists. If
2008 more than one pattern matches, the latest one will be tried first, and the
2009 first attempt resulting in a reference to a file that exists will be used.
2010
2011 @item
2012 If no pattern type @code{Source_File_Name} pragma that applies to the unit
2013 for which the corresponding file exists, then the standard GNAT default
2014 naming rules are used.
2015 @end itemize
2016
2017 As an example of the use of this mechanism, consider a commonly used scheme
2018 in which file names are all lower case, with separating periods copied
2019 unchanged to the resulting file name, and specs end with @code{.1.ada}, and
2020 bodies end with @code{.2.ada}. GNAT will follow this scheme if the following
2021 two pragmas appear:
2022
2023 @example
2024 pragma Source_File_Name
2025 (Spec_File_Name => ".1.ada");
2026 pragma Source_File_Name
2027 (Body_File_Name => ".2.ada");
2028 @end example
2029
2030 The default GNAT scheme is actually implemented by providing the following
2031 default pragmas internally:
2032
2033 @example
2034 pragma Source_File_Name
2035 (Spec_File_Name => ".ads", Dot_Replacement => "-");
2036 pragma Source_File_Name
2037 (Body_File_Name => ".adb", Dot_Replacement => "-");
2038 @end example
2039
2040 Our final example implements a scheme typically used with one of the
2041 Ada 83 compilers, where the separator character for subunits was '__'
2042 (two underscores), specs were identified by adding @code{_.ADA}, bodies
2043 by adding @code{.ADA}, and subunits by
2044 adding @code{.SEP}. All file names were
2045 upper case. Child units were not present of course since this was an
2046 Ada 83 compiler, but it seems reasonable to extend this scheme to use
2047 the same double underscore separator for child units.
2048
2049 @example
2050 pragma Source_File_Name
2051 (Spec_File_Name => "_.ADA",
2052 Dot_Replacement => "__",
2053 Casing = Uppercase);
2054 pragma Source_File_Name
2055 (Body_File_Name => ".ADA",
2056 Dot_Replacement => "__",
2057 Casing = Uppercase);
2058 pragma Source_File_Name
2059 (Subunit_File_Name => ".SEP",
2060 Dot_Replacement => "__",
2061 Casing = Uppercase);
2062 @end example
2063
2064 @geindex gnatname
2065
2066 @node Handling Arbitrary File Naming Conventions with gnatname,File Name Krunching with gnatkr,Alternative File Naming Schemes,File Naming Topics and Utilities
2067 @anchor{gnat_ugn/the_gnat_compilation_model handling-arbitrary-file-naming-conventions-with-gnatname}@anchor{59}@anchor{gnat_ugn/the_gnat_compilation_model id12}@anchor{5a}
2068 @subsection Handling Arbitrary File Naming Conventions with @code{gnatname}
2069
2070
2071 @geindex File Naming Conventions
2072
2073 @menu
2074 * Arbitrary File Naming Conventions::
2075 * Running gnatname::
2076 * Switches for gnatname::
2077 * Examples of gnatname Usage::
2078
2079 @end menu
2080
2081 @node Arbitrary File Naming Conventions,Running gnatname,,Handling Arbitrary File Naming Conventions with gnatname
2082 @anchor{gnat_ugn/the_gnat_compilation_model arbitrary-file-naming-conventions}@anchor{5b}@anchor{gnat_ugn/the_gnat_compilation_model id13}@anchor{5c}
2083 @subsubsection Arbitrary File Naming Conventions
2084
2085
2086 The GNAT compiler must be able to know the source file name of a compilation
2087 unit. When using the standard GNAT default file naming conventions
2088 (@code{.ads} for specs, @code{.adb} for bodies), the GNAT compiler
2089 does not need additional information.
2090
2091 When the source file names do not follow the standard GNAT default file naming
2092 conventions, the GNAT compiler must be given additional information through
2093 a configuration pragmas file (@ref{14,,Configuration Pragmas})
2094 or a project file.
2095 When the non-standard file naming conventions are well-defined,
2096 a small number of pragmas @code{Source_File_Name} specifying a naming pattern
2097 (@ref{58,,Alternative File Naming Schemes}) may be sufficient. However,
2098 if the file naming conventions are irregular or arbitrary, a number
2099 of pragma @code{Source_File_Name} for individual compilation units
2100 must be defined.
2101 To help maintain the correspondence between compilation unit names and
2102 source file names within the compiler,
2103 GNAT provides a tool @code{gnatname} to generate the required pragmas for a
2104 set of files.
2105
2106 @node Running gnatname,Switches for gnatname,Arbitrary File Naming Conventions,Handling Arbitrary File Naming Conventions with gnatname
2107 @anchor{gnat_ugn/the_gnat_compilation_model running-gnatname}@anchor{5d}@anchor{gnat_ugn/the_gnat_compilation_model id14}@anchor{5e}
2108 @subsubsection Running @code{gnatname}
2109
2110
2111 The usual form of the @code{gnatname} command is:
2112
2113 @example
2114 $ gnatname [ switches ] naming_pattern [ naming_patterns ]
2115 [--and [ switches ] naming_pattern [ naming_patterns ]]
2116 @end example
2117
2118 All of the arguments are optional. If invoked without any argument,
2119 @code{gnatname} will display its usage.
2120
2121 When used with at least one naming pattern, @code{gnatname} will attempt to
2122 find all the compilation units in files that follow at least one of the
2123 naming patterns. To find these compilation units,
2124 @code{gnatname} will use the GNAT compiler in syntax-check-only mode on all
2125 regular files.
2126
2127 One or several Naming Patterns may be given as arguments to @code{gnatname}.
2128 Each Naming Pattern is enclosed between double quotes (or single
2129 quotes on Windows).
2130 A Naming Pattern is a regular expression similar to the wildcard patterns
2131 used in file names by the Unix shells or the DOS prompt.
2132
2133 @code{gnatname} may be called with several sections of directories/patterns.
2134 Sections are separated by the switch @code{--and}. In each section, there must be
2135 at least one pattern. If no directory is specified in a section, the current
2136 directory (or the project directory if @code{-P} is used) is implied.
2137 The options other that the directory switches and the patterns apply globally
2138 even if they are in different sections.
2139
2140 Examples of Naming Patterns are:
2141
2142 @example
2143 "*.[12].ada"
2144 "*.ad[sb]*"
2145 "body_*" "spec_*"
2146 @end example
2147
2148 For a more complete description of the syntax of Naming Patterns,
2149 see the second kind of regular expressions described in @code{g-regexp.ads}
2150 (the 'Glob' regular expressions).
2151
2152 When invoked without the switch @code{-P}, @code{gnatname} will create a
2153 configuration pragmas file @code{gnat.adc} in the current working directory,
2154 with pragmas @code{Source_File_Name} for each file that contains a valid Ada
2155 unit.
2156
2157 @node Switches for gnatname,Examples of gnatname Usage,Running gnatname,Handling Arbitrary File Naming Conventions with gnatname
2158 @anchor{gnat_ugn/the_gnat_compilation_model id15}@anchor{5f}@anchor{gnat_ugn/the_gnat_compilation_model switches-for-gnatname}@anchor{60}
2159 @subsubsection Switches for @code{gnatname}
2160
2161
2162 Switches for @code{gnatname} must precede any specified Naming Pattern.
2163
2164 You may specify any of the following switches to @code{gnatname}:
2165
2166 @geindex --version (gnatname)
2167
2168
2169 @table @asis
2170
2171 @item @code{--version}
2172
2173 Display Copyright and version, then exit disregarding all other options.
2174 @end table
2175
2176 @geindex --help (gnatname)
2177
2178
2179 @table @asis
2180
2181 @item @code{--help}
2182
2183 If @code{--version} was not used, display usage, then exit disregarding
2184 all other options.
2185
2186 @item @code{--subdirs=@emph{dir}}
2187
2188 Real object, library or exec directories are subdirectories <dir> of the
2189 specified ones.
2190
2191 @item @code{--no-backup}
2192
2193 Do not create a backup copy of an existing project file.
2194
2195 @item @code{--and}
2196
2197 Start another section of directories/patterns.
2198 @end table
2199
2200 @geindex -c (gnatname)
2201
2202
2203 @table @asis
2204
2205 @item @code{-c@emph{filename}}
2206
2207 Create a configuration pragmas file @code{filename} (instead of the default
2208 @code{gnat.adc}).
2209 There may be zero, one or more space between @code{-c} and
2210 @code{filename}.
2211 @code{filename} may include directory information. @code{filename} must be
2212 writable. There may be only one switch @code{-c}.
2213 When a switch @code{-c} is
2214 specified, no switch @code{-P} may be specified (see below).
2215 @end table
2216
2217 @geindex -d (gnatname)
2218
2219
2220 @table @asis
2221
2222 @item @code{-d@emph{dir}}
2223
2224 Look for source files in directory @code{dir}. There may be zero, one or more
2225 spaces between @code{-d} and @code{dir}.
2226 @code{dir} may end with @code{/**}, that is it may be of the form
2227 @code{root_dir/**}. In this case, the directory @code{root_dir} and all of its
2228 subdirectories, recursively, have to be searched for sources.
2229 When a switch @code{-d}
2230 is specified, the current working directory will not be searched for source
2231 files, unless it is explicitly specified with a @code{-d}
2232 or @code{-D} switch.
2233 Several switches @code{-d} may be specified.
2234 If @code{dir} is a relative path, it is relative to the directory of
2235 the configuration pragmas file specified with switch
2236 @code{-c},
2237 or to the directory of the project file specified with switch
2238 @code{-P} or,
2239 if neither switch @code{-c}
2240 nor switch @code{-P} are specified, it is relative to the
2241 current working directory. The directory
2242 specified with switch @code{-d} must exist and be readable.
2243 @end table
2244
2245 @geindex -D (gnatname)
2246
2247
2248 @table @asis
2249
2250 @item @code{-D@emph{filename}}
2251
2252 Look for source files in all directories listed in text file @code{filename}.
2253 There may be zero, one or more spaces between @code{-D}
2254 and @code{filename}.
2255 @code{filename} must be an existing, readable text file.
2256 Each nonempty line in @code{filename} must be a directory.
2257 Specifying switch @code{-D} is equivalent to specifying as many
2258 switches @code{-d} as there are nonempty lines in
2259 @code{file}.
2260
2261 @item @code{-eL}
2262
2263 Follow symbolic links when processing project files.
2264
2265 @geindex -f (gnatname)
2266
2267 @item @code{-f@emph{pattern}}
2268
2269 Foreign patterns. Using this switch, it is possible to add sources of languages
2270 other than Ada to the list of sources of a project file.
2271 It is only useful if a -P switch is used.
2272 For example,
2273
2274 @example
2275 gnatname -Pprj -f"*.c" "*.ada"
2276 @end example
2277
2278 will look for Ada units in all files with the @code{.ada} extension,
2279 and will add to the list of file for project @code{prj.gpr} the C files
2280 with extension @code{.c}.
2281
2282 @geindex -h (gnatname)
2283
2284 @item @code{-h}
2285
2286 Output usage (help) information. The output is written to @code{stdout}.
2287
2288 @geindex -P (gnatname)
2289
2290 @item @code{-P@emph{proj}}
2291
2292 Create or update project file @code{proj}. There may be zero, one or more space
2293 between @code{-P} and @code{proj}. @code{proj} may include directory
2294 information. @code{proj} must be writable.
2295 There may be only one switch @code{-P}.
2296 When a switch @code{-P} is specified,
2297 no switch @code{-c} may be specified.
2298 On all platforms, except on VMS, when @code{gnatname} is invoked for an
2299 existing project file <proj>.gpr, a backup copy of the project file is created
2300 in the project directory with file name <proj>.gpr.saved_x. 'x' is the first
2301 non negative number that makes this backup copy a new file.
2302
2303 @geindex -v (gnatname)
2304
2305 @item @code{-v}
2306
2307 Verbose mode. Output detailed explanation of behavior to @code{stdout}.
2308 This includes name of the file written, the name of the directories to search
2309 and, for each file in those directories whose name matches at least one of
2310 the Naming Patterns, an indication of whether the file contains a unit,
2311 and if so the name of the unit.
2312 @end table
2313
2314 @geindex -v -v (gnatname)
2315
2316
2317 @table @asis
2318
2319 @item @code{-v -v}
2320
2321 Very Verbose mode. In addition to the output produced in verbose mode,
2322 for each file in the searched directories whose name matches none of
2323 the Naming Patterns, an indication is given that there is no match.
2324
2325 @geindex -x (gnatname)
2326
2327 @item @code{-x@emph{pattern}}
2328
2329 Excluded patterns. Using this switch, it is possible to exclude some files
2330 that would match the name patterns. For example,
2331
2332 @example
2333 gnatname -x "*_nt.ada" "*.ada"
2334 @end example
2335
2336 will look for Ada units in all files with the @code{.ada} extension,
2337 except those whose names end with @code{_nt.ada}.
2338 @end table
2339
2340 @node Examples of gnatname Usage,,Switches for gnatname,Handling Arbitrary File Naming Conventions with gnatname
2341 @anchor{gnat_ugn/the_gnat_compilation_model examples-of-gnatname-usage}@anchor{61}@anchor{gnat_ugn/the_gnat_compilation_model id16}@anchor{62}
2342 @subsubsection Examples of @code{gnatname} Usage
2343
2344
2345 @example
2346 $ gnatname -c /home/me/names.adc -d sources "[a-z]*.ada*"
2347 @end example
2348
2349 In this example, the directory @code{/home/me} must already exist
2350 and be writable. In addition, the directory
2351 @code{/home/me/sources} (specified by
2352 @code{-d sources}) must exist and be readable.
2353
2354 Note the optional spaces after @code{-c} and @code{-d}.
2355
2356 @example
2357 $ gnatname -P/home/me/proj -x "*_nt_body.ada"
2358 -dsources -dsources/plus -Dcommon_dirs.txt "body_*" "spec_*"
2359 @end example
2360
2361 Note that several switches @code{-d} may be used,
2362 even in conjunction with one or several switches
2363 @code{-D}. Several Naming Patterns and one excluded pattern
2364 are used in this example.
2365
2366 @node File Name Krunching with gnatkr,Renaming Files with gnatchop,Handling Arbitrary File Naming Conventions with gnatname,File Naming Topics and Utilities
2367 @anchor{gnat_ugn/the_gnat_compilation_model file-name-krunching-with-gnatkr}@anchor{63}@anchor{gnat_ugn/the_gnat_compilation_model id17}@anchor{64}
2368 @subsection File Name Krunching with @code{gnatkr}
2369
2370
2371 @geindex gnatkr
2372
2373 This section discusses the method used by the compiler to shorten
2374 the default file names chosen for Ada units so that they do not
2375 exceed the maximum length permitted. It also describes the
2376 @code{gnatkr} utility that can be used to determine the result of
2377 applying this shortening.
2378
2379 @menu
2380 * About gnatkr::
2381 * Using gnatkr::
2382 * Krunching Method::
2383 * Examples of gnatkr Usage::
2384
2385 @end menu
2386
2387 @node About gnatkr,Using gnatkr,,File Name Krunching with gnatkr
2388 @anchor{gnat_ugn/the_gnat_compilation_model id18}@anchor{65}@anchor{gnat_ugn/the_gnat_compilation_model about-gnatkr}@anchor{66}
2389 @subsubsection About @code{gnatkr}
2390
2391
2392 The default file naming rule in GNAT
2393 is that the file name must be derived from
2394 the unit name. The exact default rule is as follows:
2395
2396
2397 @itemize *
2398
2399 @item
2400 Take the unit name and replace all dots by hyphens.
2401
2402 @item
2403 If such a replacement occurs in the
2404 second character position of a name, and the first character is
2405 @code{a}, @code{g}, @code{s}, or @code{i},
2406 then replace the dot by the character
2407 @code{~} (tilde)
2408 instead of a minus.
2409
2410 The reason for this exception is to avoid clashes
2411 with the standard names for children of System, Ada, Interfaces,
2412 and GNAT, which use the prefixes
2413 @code{s-}, @code{a-}, @code{i-}, and @code{g-},
2414 respectively.
2415 @end itemize
2416
2417 The @code{-gnatk@emph{nn}}
2418 switch of the compiler activates a 'krunching'
2419 circuit that limits file names to nn characters (where nn is a decimal
2420 integer).
2421
2422 The @code{gnatkr} utility can be used to determine the krunched name for
2423 a given file, when krunched to a specified maximum length.
2424
2425 @node Using gnatkr,Krunching Method,About gnatkr,File Name Krunching with gnatkr
2426 @anchor{gnat_ugn/the_gnat_compilation_model id19}@anchor{67}@anchor{gnat_ugn/the_gnat_compilation_model using-gnatkr}@anchor{54}
2427 @subsubsection Using @code{gnatkr}
2428
2429
2430 The @code{gnatkr} command has the form:
2431
2432 @example
2433 $ gnatkr name [ length ]
2434 @end example
2435
2436 @code{name} is the uncrunched file name, derived from the name of the unit
2437 in the standard manner described in the previous section (i.e., in particular
2438 all dots are replaced by hyphens). The file name may or may not have an
2439 extension (defined as a suffix of the form period followed by arbitrary
2440 characters other than period). If an extension is present then it will
2441 be preserved in the output. For example, when krunching @code{hellofile.ads}
2442 to eight characters, the result will be hellofil.ads.
2443
2444 Note: for compatibility with previous versions of @code{gnatkr} dots may
2445 appear in the name instead of hyphens, but the last dot will always be
2446 taken as the start of an extension. So if @code{gnatkr} is given an argument
2447 such as @code{Hello.World.adb} it will be treated exactly as if the first
2448 period had been a hyphen, and for example krunching to eight characters
2449 gives the result @code{hellworl.adb}.
2450
2451 Note that the result is always all lower case.
2452 Characters of the other case are folded as required.
2453
2454 @code{length} represents the length of the krunched name. The default
2455 when no argument is given is 8 characters. A length of zero stands for
2456 unlimited, in other words do not chop except for system files where the
2457 implied crunching length is always eight characters.
2458
2459 The output is the krunched name. The output has an extension only if the
2460 original argument was a file name with an extension.
2461
2462 @node Krunching Method,Examples of gnatkr Usage,Using gnatkr,File Name Krunching with gnatkr
2463 @anchor{gnat_ugn/the_gnat_compilation_model id20}@anchor{68}@anchor{gnat_ugn/the_gnat_compilation_model krunching-method}@anchor{69}
2464 @subsubsection Krunching Method
2465
2466
2467 The initial file name is determined by the name of the unit that the file
2468 contains. The name is formed by taking the full expanded name of the
2469 unit and replacing the separating dots with hyphens and
2470 using lowercase
2471 for all letters, except that a hyphen in the second character position is
2472 replaced by a tilde if the first character is
2473 @code{a}, @code{i}, @code{g}, or @code{s}.
2474 The extension is @code{.ads} for a
2475 spec and @code{.adb} for a body.
2476 Krunching does not affect the extension, but the file name is shortened to
2477 the specified length by following these rules:
2478
2479
2480 @itemize *
2481
2482 @item
2483 The name is divided into segments separated by hyphens, tildes or
2484 underscores and all hyphens, tildes, and underscores are
2485 eliminated. If this leaves the name short enough, we are done.
2486
2487 @item
2488 If the name is too long, the longest segment is located (left-most
2489 if there are two of equal length), and shortened by dropping
2490 its last character. This is repeated until the name is short enough.
2491
2492 As an example, consider the krunching of @code{our-strings-wide_fixed.adb}
2493 to fit the name into 8 characters as required by some operating systems:
2494
2495 @example
2496 our-strings-wide_fixed 22
2497 our strings wide fixed 19
2498 our string wide fixed 18
2499 our strin wide fixed 17
2500 our stri wide fixed 16
2501 our stri wide fixe 15
2502 our str wide fixe 14
2503 our str wid fixe 13
2504 our str wid fix 12
2505 ou str wid fix 11
2506 ou st wid fix 10
2507 ou st wi fix 9
2508 ou st wi fi 8
2509 Final file name: oustwifi.adb
2510 @end example
2511
2512 @item
2513 The file names for all predefined units are always krunched to eight
2514 characters. The krunching of these predefined units uses the following
2515 special prefix replacements:
2516
2517
2518 @multitable {xxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxx}
2519 @item
2520
2521 Prefix
2522
2523 @tab
2524
2525 Replacement
2526
2527 @item
2528
2529 @code{ada-}
2530
2531 @tab
2532
2533 @code{a-}
2534
2535 @item
2536
2537 @code{gnat-}
2538
2539 @tab
2540
2541 @code{g-}
2542
2543 @item
2544
2545 @code{interfac es-}
2546
2547 @tab
2548
2549 @code{i-}
2550
2551 @item
2552
2553 @code{system-}
2554
2555 @tab
2556
2557 @code{s-}
2558
2559 @end multitable
2560
2561
2562 These system files have a hyphen in the second character position. That
2563 is why normal user files replace such a character with a
2564 tilde, to avoid confusion with system file names.
2565
2566 As an example of this special rule, consider
2567 @code{ada-strings-wide_fixed.adb}, which gets krunched as follows:
2568
2569 @example
2570 ada-strings-wide_fixed 22
2571 a- strings wide fixed 18
2572 a- string wide fixed 17
2573 a- strin wide fixed 16
2574 a- stri wide fixed 15
2575 a- stri wide fixe 14
2576 a- str wide fixe 13
2577 a- str wid fixe 12
2578 a- str wid fix 11
2579 a- st wid fix 10
2580 a- st wi fix 9
2581 a- st wi fi 8
2582 Final file name: a-stwifi.adb
2583 @end example
2584 @end itemize
2585
2586 Of course no file shortening algorithm can guarantee uniqueness over all
2587 possible unit names, and if file name krunching is used then it is your
2588 responsibility to ensure that no name clashes occur. The utility
2589 program @code{gnatkr} is supplied for conveniently determining the
2590 krunched name of a file.
2591
2592 @node Examples of gnatkr Usage,,Krunching Method,File Name Krunching with gnatkr
2593 @anchor{gnat_ugn/the_gnat_compilation_model id21}@anchor{6a}@anchor{gnat_ugn/the_gnat_compilation_model examples-of-gnatkr-usage}@anchor{6b}
2594 @subsubsection Examples of @code{gnatkr} Usage
2595
2596
2597 @example
2598 $ gnatkr very_long_unit_name.ads --> velounna.ads
2599 $ gnatkr grandparent-parent-child.ads --> grparchi.ads
2600 $ gnatkr Grandparent.Parent.Child.ads --> grparchi.ads
2601 $ gnatkr grandparent-parent-child --> grparchi
2602 $ gnatkr very_long_unit_name.ads/count=6 --> vlunna.ads
2603 $ gnatkr very_long_unit_name.ads/count=0 --> very_long_unit_name.ads
2604 @end example
2605
2606 @node Renaming Files with gnatchop,,File Name Krunching with gnatkr,File Naming Topics and Utilities
2607 @anchor{gnat_ugn/the_gnat_compilation_model id22}@anchor{6c}@anchor{gnat_ugn/the_gnat_compilation_model renaming-files-with-gnatchop}@anchor{36}
2608 @subsection Renaming Files with @code{gnatchop}
2609
2610
2611 @geindex gnatchop
2612
2613 This section discusses how to handle files with multiple units by using
2614 the @code{gnatchop} utility. This utility is also useful in renaming
2615 files to meet the standard GNAT default file naming conventions.
2616
2617 @menu
2618 * Handling Files with Multiple Units::
2619 * Operating gnatchop in Compilation Mode::
2620 * Command Line for gnatchop::
2621 * Switches for gnatchop::
2622 * Examples of gnatchop Usage::
2623
2624 @end menu
2625
2626 @node Handling Files with Multiple Units,Operating gnatchop in Compilation Mode,,Renaming Files with gnatchop
2627 @anchor{gnat_ugn/the_gnat_compilation_model id23}@anchor{6d}@anchor{gnat_ugn/the_gnat_compilation_model handling-files-with-multiple-units}@anchor{6e}
2628 @subsubsection Handling Files with Multiple Units
2629
2630
2631 The basic compilation model of GNAT requires that a file submitted to the
2632 compiler have only one unit and there be a strict correspondence
2633 between the file name and the unit name.
2634
2635 The @code{gnatchop} utility allows both of these rules to be relaxed,
2636 allowing GNAT to process files which contain multiple compilation units
2637 and files with arbitrary file names. @code{gnatchop}
2638 reads the specified file and generates one or more output files,
2639 containing one unit per file. The unit and the file name correspond,
2640 as required by GNAT.
2641
2642 If you want to permanently restructure a set of 'foreign' files so that
2643 they match the GNAT rules, and do the remaining development using the
2644 GNAT structure, you can simply use @code{gnatchop} once, generate the
2645 new set of files and work with them from that point on.
2646
2647 Alternatively, if you want to keep your files in the 'foreign' format,
2648 perhaps to maintain compatibility with some other Ada compilation
2649 system, you can set up a procedure where you use @code{gnatchop} each
2650 time you compile, regarding the source files that it writes as temporary
2651 files that you throw away.
2652
2653 Note that if your file containing multiple units starts with a byte order
2654 mark (BOM) specifying UTF-8 encoding, then the files generated by gnatchop
2655 will each start with a copy of this BOM, meaning that they can be compiled
2656 automatically in UTF-8 mode without needing to specify an explicit encoding.
2657
2658 @node Operating gnatchop in Compilation Mode,Command Line for gnatchop,Handling Files with Multiple Units,Renaming Files with gnatchop
2659 @anchor{gnat_ugn/the_gnat_compilation_model operating-gnatchop-in-compilation-mode}@anchor{6f}@anchor{gnat_ugn/the_gnat_compilation_model id24}@anchor{70}
2660 @subsubsection Operating gnatchop in Compilation Mode
2661
2662
2663 The basic function of @code{gnatchop} is to take a file with multiple units
2664 and split it into separate files. The boundary between files is reasonably
2665 clear, except for the issue of comments and pragmas. In default mode, the
2666 rule is that any pragmas between units belong to the previous unit, except
2667 that configuration pragmas always belong to the following unit. Any comments
2668 belong to the following unit. These rules
2669 almost always result in the right choice of
2670 the split point without needing to mark it explicitly and most users will
2671 find this default to be what they want. In this default mode it is incorrect to
2672 submit a file containing only configuration pragmas, or one that ends in
2673 configuration pragmas, to @code{gnatchop}.
2674
2675 However, using a special option to activate 'compilation mode',
2676 @code{gnatchop}
2677 can perform another function, which is to provide exactly the semantics
2678 required by the RM for handling of configuration pragmas in a compilation.
2679 In the absence of configuration pragmas (at the main file level), this
2680 option has no effect, but it causes such configuration pragmas to be handled
2681 in a quite different manner.
2682
2683 First, in compilation mode, if @code{gnatchop} is given a file that consists of
2684 only configuration pragmas, then this file is appended to the
2685 @code{gnat.adc} file in the current directory. This behavior provides
2686 the required behavior described in the RM for the actions to be taken
2687 on submitting such a file to the compiler, namely that these pragmas
2688 should apply to all subsequent compilations in the same compilation
2689 environment. Using GNAT, the current directory, possibly containing a
2690 @code{gnat.adc} file is the representation
2691 of a compilation environment. For more information on the
2692 @code{gnat.adc} file, see @ref{56,,Handling of Configuration Pragmas}.
2693
2694 Second, in compilation mode, if @code{gnatchop}
2695 is given a file that starts with
2696 configuration pragmas, and contains one or more units, then these
2697 configuration pragmas are prepended to each of the chopped files. This
2698 behavior provides the required behavior described in the RM for the
2699 actions to be taken on compiling such a file, namely that the pragmas
2700 apply to all units in the compilation, but not to subsequently compiled
2701 units.
2702
2703 Finally, if configuration pragmas appear between units, they are appended
2704 to the previous unit. This results in the previous unit being illegal,
2705 since the compiler does not accept configuration pragmas that follow
2706 a unit. This provides the required RM behavior that forbids configuration
2707 pragmas other than those preceding the first compilation unit of a
2708 compilation.
2709
2710 For most purposes, @code{gnatchop} will be used in default mode. The
2711 compilation mode described above is used only if you need exactly
2712 accurate behavior with respect to compilations, and you have files
2713 that contain multiple units and configuration pragmas. In this
2714 circumstance the use of @code{gnatchop} with the compilation mode
2715 switch provides the required behavior, and is for example the mode
2716 in which GNAT processes the ACVC tests.
2717
2718 @node Command Line for gnatchop,Switches for gnatchop,Operating gnatchop in Compilation Mode,Renaming Files with gnatchop
2719 @anchor{gnat_ugn/the_gnat_compilation_model id25}@anchor{71}@anchor{gnat_ugn/the_gnat_compilation_model command-line-for-gnatchop}@anchor{72}
2720 @subsubsection Command Line for @code{gnatchop}
2721
2722
2723 The @code{gnatchop} command has the form:
2724
2725 @example
2726 $ gnatchop switches file_name [file_name ...]
2727 [directory]
2728 @end example
2729
2730 The only required argument is the file name of the file to be chopped.
2731 There are no restrictions on the form of this file name. The file itself
2732 contains one or more Ada units, in normal GNAT format, concatenated
2733 together. As shown, more than one file may be presented to be chopped.
2734
2735 When run in default mode, @code{gnatchop} generates one output file in
2736 the current directory for each unit in each of the files.
2737
2738 @code{directory}, if specified, gives the name of the directory to which
2739 the output files will be written. If it is not specified, all files are
2740 written to the current directory.
2741
2742 For example, given a
2743 file called @code{hellofiles} containing
2744
2745 @example
2746 procedure Hello;
2747
2748 with Ada.Text_IO; use Ada.Text_IO;
2749 procedure Hello is
2750 begin
2751 Put_Line ("Hello");
2752 end Hello;
2753 @end example
2754
2755 the command
2756
2757 @example
2758 $ gnatchop hellofiles
2759 @end example
2760
2761 generates two files in the current directory, one called
2762 @code{hello.ads} containing the single line that is the procedure spec,
2763 and the other called @code{hello.adb} containing the remaining text. The
2764 original file is not affected. The generated files can be compiled in
2765 the normal manner.
2766
2767 When gnatchop is invoked on a file that is empty or that contains only empty
2768 lines and/or comments, gnatchop will not fail, but will not produce any
2769 new sources.
2770
2771 For example, given a
2772 file called @code{toto.txt} containing
2773
2774 @example
2775 -- Just a comment
2776 @end example
2777
2778 the command
2779
2780 @example
2781 $ gnatchop toto.txt
2782 @end example
2783
2784 will not produce any new file and will result in the following warnings:
2785
2786 @example
2787 toto.txt:1:01: warning: empty file, contains no compilation units
2788 no compilation units found
2789 no source files written
2790 @end example
2791
2792 @node Switches for gnatchop,Examples of gnatchop Usage,Command Line for gnatchop,Renaming Files with gnatchop
2793 @anchor{gnat_ugn/the_gnat_compilation_model switches-for-gnatchop}@anchor{73}@anchor{gnat_ugn/the_gnat_compilation_model id26}@anchor{74}
2794 @subsubsection Switches for @code{gnatchop}
2795
2796
2797 @code{gnatchop} recognizes the following switches:
2798
2799 @geindex --version (gnatchop)
2800
2801
2802 @table @asis
2803
2804 @item @code{--version}
2805
2806 Display Copyright and version, then exit disregarding all other options.
2807 @end table
2808
2809 @geindex --help (gnatchop)
2810
2811
2812 @table @asis
2813
2814 @item @code{--help}
2815
2816 If @code{--version} was not used, display usage, then exit disregarding
2817 all other options.
2818 @end table
2819
2820 @geindex -c (gnatchop)
2821
2822
2823 @table @asis
2824
2825 @item @code{-c}
2826
2827 Causes @code{gnatchop} to operate in compilation mode, in which
2828 configuration pragmas are handled according to strict RM rules. See
2829 previous section for a full description of this mode.
2830
2831 @item @code{-gnat@emph{xxx}}
2832
2833 This passes the given @code{-gnat@emph{xxx}} switch to @code{gnat} which is
2834 used to parse the given file. Not all @emph{xxx} options make sense,
2835 but for example, the use of @code{-gnati2} allows @code{gnatchop} to
2836 process a source file that uses Latin-2 coding for identifiers.
2837
2838 @item @code{-h}
2839
2840 Causes @code{gnatchop} to generate a brief help summary to the standard
2841 output file showing usage information.
2842 @end table
2843
2844 @geindex -k (gnatchop)
2845
2846
2847 @table @asis
2848
2849 @item @code{-k@emph{mm}}
2850
2851 Limit generated file names to the specified number @code{mm}
2852 of characters.
2853 This is useful if the
2854 resulting set of files is required to be interoperable with systems
2855 which limit the length of file names.
2856 No space is allowed between the @code{-k} and the numeric value. The numeric
2857 value may be omitted in which case a default of @code{-k8},
2858 suitable for use
2859 with DOS-like file systems, is used. If no @code{-k} switch
2860 is present then
2861 there is no limit on the length of file names.
2862 @end table
2863
2864 @geindex -p (gnatchop)
2865
2866
2867 @table @asis
2868
2869 @item @code{-p}
2870
2871 Causes the file modification time stamp of the input file to be
2872 preserved and used for the time stamp of the output file(s). This may be
2873 useful for preserving coherency of time stamps in an environment where
2874 @code{gnatchop} is used as part of a standard build process.
2875 @end table
2876
2877 @geindex -q (gnatchop)
2878
2879
2880 @table @asis
2881
2882 @item @code{-q}
2883
2884 Causes output of informational messages indicating the set of generated
2885 files to be suppressed. Warnings and error messages are unaffected.
2886 @end table
2887
2888 @geindex -r (gnatchop)
2889
2890 @geindex Source_Reference pragmas
2891
2892
2893 @table @asis
2894
2895 @item @code{-r}
2896
2897 Generate @code{Source_Reference} pragmas. Use this switch if the output
2898 files are regarded as temporary and development is to be done in terms
2899 of the original unchopped file. This switch causes
2900 @code{Source_Reference} pragmas to be inserted into each of the
2901 generated files to refers back to the original file name and line number.
2902 The result is that all error messages refer back to the original
2903 unchopped file.
2904 In addition, the debugging information placed into the object file (when
2905 the @code{-g} switch of @code{gcc} or @code{gnatmake} is
2906 specified)
2907 also refers back to this original file so that tools like profilers and
2908 debuggers will give information in terms of the original unchopped file.
2909
2910 If the original file to be chopped itself contains
2911 a @code{Source_Reference}
2912 pragma referencing a third file, then gnatchop respects
2913 this pragma, and the generated @code{Source_Reference} pragmas
2914 in the chopped file refer to the original file, with appropriate
2915 line numbers. This is particularly useful when @code{gnatchop}
2916 is used in conjunction with @code{gnatprep} to compile files that
2917 contain preprocessing statements and multiple units.
2918 @end table
2919
2920 @geindex -v (gnatchop)
2921
2922
2923 @table @asis
2924
2925 @item @code{-v}
2926
2927 Causes @code{gnatchop} to operate in verbose mode. The version
2928 number and copyright notice are output, as well as exact copies of
2929 the gnat1 commands spawned to obtain the chop control information.
2930 @end table
2931
2932 @geindex -w (gnatchop)
2933
2934
2935 @table @asis
2936
2937 @item @code{-w}
2938
2939 Overwrite existing file names. Normally @code{gnatchop} regards it as a
2940 fatal error if there is already a file with the same name as a
2941 file it would otherwise output, in other words if the files to be
2942 chopped contain duplicated units. This switch bypasses this
2943 check, and causes all but the last instance of such duplicated
2944 units to be skipped.
2945 @end table
2946
2947 @geindex --GCC= (gnatchop)
2948
2949
2950 @table @asis
2951
2952 @item @code{--GCC=@emph{xxxx}}
2953
2954 Specify the path of the GNAT parser to be used. When this switch is used,
2955 no attempt is made to add the prefix to the GNAT parser executable.
2956 @end table
2957
2958 @node Examples of gnatchop Usage,,Switches for gnatchop,Renaming Files with gnatchop
2959 @anchor{gnat_ugn/the_gnat_compilation_model id27}@anchor{75}@anchor{gnat_ugn/the_gnat_compilation_model examples-of-gnatchop-usage}@anchor{76}
2960 @subsubsection Examples of @code{gnatchop} Usage
2961
2962
2963 @example
2964 $ gnatchop -w hello_s.ada prerelease/files
2965 @end example
2966
2967 Chops the source file @code{hello_s.ada}. The output files will be
2968 placed in the directory @code{prerelease/files},
2969 overwriting any
2970 files with matching names in that directory (no files in the current
2971 directory are modified).
2972
2973 @example
2974 $ gnatchop archive
2975 @end example
2976
2977 Chops the source file @code{archive}
2978 into the current directory. One
2979 useful application of @code{gnatchop} is in sending sets of sources
2980 around, for example in email messages. The required sources are simply
2981 concatenated (for example, using a Unix @code{cat}
2982 command), and then
2983 @code{gnatchop} is used at the other end to reconstitute the original
2984 file names.
2985
2986 @example
2987 $ gnatchop file1 file2 file3 direc
2988 @end example
2989
2990 Chops all units in files @code{file1}, @code{file2}, @code{file3}, placing
2991 the resulting files in the directory @code{direc}. Note that if any units
2992 occur more than once anywhere within this set of files, an error message
2993 is generated, and no files are written. To override this check, use the
2994 @code{-w} switch,
2995 in which case the last occurrence in the last file will
2996 be the one that is output, and earlier duplicate occurrences for a given
2997 unit will be skipped.
2998
2999 @node Configuration Pragmas,Generating Object Files,File Naming Topics and Utilities,The GNAT Compilation Model
3000 @anchor{gnat_ugn/the_gnat_compilation_model id28}@anchor{77}@anchor{gnat_ugn/the_gnat_compilation_model configuration-pragmas}@anchor{14}
3001 @section Configuration Pragmas
3002
3003
3004 @geindex Configuration pragmas
3005
3006 @geindex Pragmas
3007 @geindex configuration
3008
3009 Configuration pragmas include those pragmas described as
3010 such in the Ada Reference Manual, as well as
3011 implementation-dependent pragmas that are configuration pragmas.
3012 See the @code{Implementation_Defined_Pragmas} chapter in the
3013 @cite{GNAT_Reference_Manual} for details on these
3014 additional GNAT-specific configuration pragmas.
3015 Most notably, the pragma @code{Source_File_Name}, which allows
3016 specifying non-default names for source files, is a configuration
3017 pragma. The following is a complete list of configuration pragmas
3018 recognized by GNAT:
3019
3020 @example
3021 Ada_83
3022 Ada_95
3023 Ada_05
3024 Ada_2005
3025 Ada_12
3026 Ada_2012
3027 Allow_Integer_Address
3028 Annotate
3029 Assertion_Policy
3030 Assume_No_Invalid_Values
3031 C_Pass_By_Copy
3032 Check_Float_Overflow
3033 Check_Name
3034 Check_Policy
3035 Compile_Time_Error
3036 Compile_Time_Warning
3037 Compiler_Unit
3038 Compiler_Unit_Warning
3039 Component_Alignment
3040 Convention_Identifier
3041 Debug_Policy
3042 Detect_Blocking
3043 Default_Scalar_Storage_Order
3044 Default_Storage_Pool
3045 Disable_Atomic_Synchronization
3046 Discard_Names
3047 Elaboration_Checks
3048 Eliminate
3049 Enable_Atomic_Synchronization
3050 Extend_System
3051 Extensions_Allowed
3052 External_Name_Casing
3053 Fast_Math
3054 Favor_Top_Level
3055 Ignore_Pragma
3056 Implicit_Packing
3057 Initialize_Scalars
3058 Interrupt_State
3059 License
3060 Locking_Policy
3061 No_Component_Reordering
3062 No_Heap_Finalization
3063 No_Run_Time
3064 No_Strict_Aliasing
3065 Normalize_Scalars
3066 Optimize_Alignment
3067 Overflow_Mode
3068 Overriding_Renamings
3069 Partition_Elaboration_Policy
3070 Persistent_BSS
3071 Polling
3072 Prefix_Exception_Messages
3073 Priority_Specific_Dispatching
3074 Profile
3075 Profile_Warnings
3076 Propagate_Exceptions
3077 Queuing_Policy
3078 Rational
3079 Ravenscar
3080 Rename_Pragma
3081 Restricted_Run_Time
3082 Restrictions
3083 Restrictions_Warnings
3084 Reviewable
3085 Short_Circuit_And_Or
3086 Short_Descriptors
3087 Source_File_Name
3088 Source_File_Name_Project
3089 SPARK_Mode
3090 Style_Checks
3091 Suppress
3092 Suppress_Exception_Locations
3093 Task_Dispatching_Policy
3094 Unevaluated_Use_Of_Old
3095 Universal_Data
3096 Unsuppress
3097 Use_VADS_Size
3098 Validity_Checks
3099 Warning_As_Error
3100 Warnings
3101 Wide_Character_Encoding
3102 @end example
3103
3104 @menu
3105 * Handling of Configuration Pragmas::
3106 * The Configuration Pragmas Files::
3107
3108 @end menu
3109
3110 @node Handling of Configuration Pragmas,The Configuration Pragmas Files,,Configuration Pragmas
3111 @anchor{gnat_ugn/the_gnat_compilation_model id29}@anchor{78}@anchor{gnat_ugn/the_gnat_compilation_model handling-of-configuration-pragmas}@anchor{56}
3112 @subsection Handling of Configuration Pragmas
3113
3114
3115 Configuration pragmas may either appear at the start of a compilation
3116 unit, or they can appear in a configuration pragma file to apply to
3117 all compilations performed in a given compilation environment.
3118
3119 GNAT also provides the @code{gnatchop} utility to provide an automatic
3120 way to handle configuration pragmas following the semantics for
3121 compilations (that is, files with multiple units), described in the RM.
3122 See @ref{6f,,Operating gnatchop in Compilation Mode} for details.
3123 However, for most purposes, it will be more convenient to edit the
3124 @code{gnat.adc} file that contains configuration pragmas directly,
3125 as described in the following section.
3126
3127 In the case of @code{Restrictions} pragmas appearing as configuration
3128 pragmas in individual compilation units, the exact handling depends on
3129 the type of restriction.
3130
3131 Restrictions that require partition-wide consistency (like
3132 @code{No_Tasking}) are
3133 recognized wherever they appear
3134 and can be freely inherited, e.g. from a @emph{with}ed unit to the @emph{with}ing
3135 unit. This makes sense since the binder will in any case insist on seeing
3136 consistent use, so any unit not conforming to any restrictions that are
3137 anywhere in the partition will be rejected, and you might as well find
3138 that out at compile time rather than at bind time.
3139
3140 For restrictions that do not require partition-wide consistency, e.g.
3141 SPARK or No_Implementation_Attributes, in general the restriction applies
3142 only to the unit in which the pragma appears, and not to any other units.
3143
3144 The exception is No_Elaboration_Code which always applies to the entire
3145 object file from a compilation, i.e. to the body, spec, and all subunits.
3146 This restriction can be specified in a configuration pragma file, or it
3147 can be on the body and/or the spec (in eithe case it applies to all the
3148 relevant units). It can appear on a subunit only if it has previously
3149 appeared in the body of spec.
3150
3151 @node The Configuration Pragmas Files,,Handling of Configuration Pragmas,Configuration Pragmas
3152 @anchor{gnat_ugn/the_gnat_compilation_model the-configuration-pragmas-files}@anchor{79}@anchor{gnat_ugn/the_gnat_compilation_model id30}@anchor{7a}
3153 @subsection The Configuration Pragmas Files
3154
3155
3156 @geindex gnat.adc
3157
3158 In GNAT a compilation environment is defined by the current
3159 directory at the time that a compile command is given. This current
3160 directory is searched for a file whose name is @code{gnat.adc}. If
3161 this file is present, it is expected to contain one or more
3162 configuration pragmas that will be applied to the current compilation.
3163 However, if the switch @code{-gnatA} is used, @code{gnat.adc} is not
3164 considered. When taken into account, @code{gnat.adc} is added to the
3165 dependencies, so that if @code{gnat.adc} is modified later, an invocation of
3166 @code{gnatmake} will recompile the source.
3167
3168 Configuration pragmas may be entered into the @code{gnat.adc} file
3169 either by running @code{gnatchop} on a source file that consists only of
3170 configuration pragmas, or more conveniently by direct editing of the
3171 @code{gnat.adc} file, which is a standard format source file.
3172
3173 Besides @code{gnat.adc}, additional files containing configuration
3174 pragmas may be applied to the current compilation using the switch
3175 @code{-gnatec=@emph{path}} where @code{path} must designate an existing file that
3176 contains only configuration pragmas. These configuration pragmas are
3177 in addition to those found in @code{gnat.adc} (provided @code{gnat.adc}
3178 is present and switch @code{-gnatA} is not used).
3179
3180 It is allowable to specify several switches @code{-gnatec=}, all of which
3181 will be taken into account.
3182
3183 Files containing configuration pragmas specified with switches
3184 @code{-gnatec=} are added to the dependencies, unless they are
3185 temporary files. A file is considered temporary if its name ends in
3186 @code{.tmp} or @code{.TMP}. Certain tools follow this naming
3187 convention because they pass information to @code{gcc} via
3188 temporary files that are immediately deleted; it doesn't make sense to
3189 depend on a file that no longer exists. Such tools include
3190 @code{gprbuild}, @code{gnatmake}, and @code{gnatcheck}.
3191
3192 If you are using project file, a separate mechanism is provided using
3193 project attributes.
3194
3195 @c --Comment
3196 @c See :ref:`Specifying_Configuration_Pragmas` for more details.
3197
3198 @node Generating Object Files,Source Dependencies,Configuration Pragmas,The GNAT Compilation Model
3199 @anchor{gnat_ugn/the_gnat_compilation_model generating-object-files}@anchor{40}@anchor{gnat_ugn/the_gnat_compilation_model id31}@anchor{7b}
3200 @section Generating Object Files
3201
3202
3203 An Ada program consists of a set of source files, and the first step in
3204 compiling the program is to generate the corresponding object files.
3205 These are generated by compiling a subset of these source files.
3206 The files you need to compile are the following:
3207
3208
3209 @itemize *
3210
3211 @item
3212 If a package spec has no body, compile the package spec to produce the
3213 object file for the package.
3214
3215 @item
3216 If a package has both a spec and a body, compile the body to produce the
3217 object file for the package. The source file for the package spec need
3218 not be compiled in this case because there is only one object file, which
3219 contains the code for both the spec and body of the package.
3220
3221 @item
3222 For a subprogram, compile the subprogram body to produce the object file
3223 for the subprogram. The spec, if one is present, is as usual in a
3224 separate file, and need not be compiled.
3225 @end itemize
3226
3227 @geindex Subunits
3228
3229
3230 @itemize *
3231
3232 @item
3233 In the case of subunits, only compile the parent unit. A single object
3234 file is generated for the entire subunit tree, which includes all the
3235 subunits.
3236
3237 @item
3238 Compile child units independently of their parent units
3239 (though, of course, the spec of all the ancestor unit must be present in order
3240 to compile a child unit).
3241
3242 @geindex Generics
3243
3244 @item
3245 Compile generic units in the same manner as any other units. The object
3246 files in this case are small dummy files that contain at most the
3247 flag used for elaboration checking. This is because GNAT always handles generic
3248 instantiation by means of macro expansion. However, it is still necessary to
3249 compile generic units, for dependency checking and elaboration purposes.
3250 @end itemize
3251
3252 The preceding rules describe the set of files that must be compiled to
3253 generate the object files for a program. Each object file has the same
3254 name as the corresponding source file, except that the extension is
3255 @code{.o} as usual.
3256
3257 You may wish to compile other files for the purpose of checking their
3258 syntactic and semantic correctness. For example, in the case where a
3259 package has a separate spec and body, you would not normally compile the
3260 spec. However, it is convenient in practice to compile the spec to make
3261 sure it is error-free before compiling clients of this spec, because such
3262 compilations will fail if there is an error in the spec.
3263
3264 GNAT provides an option for compiling such files purely for the
3265 purposes of checking correctness; such compilations are not required as
3266 part of the process of building a program. To compile a file in this
3267 checking mode, use the @code{-gnatc} switch.
3268
3269 @node Source Dependencies,The Ada Library Information Files,Generating Object Files,The GNAT Compilation Model
3270 @anchor{gnat_ugn/the_gnat_compilation_model id32}@anchor{7c}@anchor{gnat_ugn/the_gnat_compilation_model source-dependencies}@anchor{41}
3271 @section Source Dependencies
3272
3273
3274 A given object file clearly depends on the source file which is compiled
3275 to produce it. Here we are using "depends" in the sense of a typical
3276 @code{make} utility; in other words, an object file depends on a source
3277 file if changes to the source file require the object file to be
3278 recompiled.
3279 In addition to this basic dependency, a given object may depend on
3280 additional source files as follows:
3281
3282
3283 @itemize *
3284
3285 @item
3286 If a file being compiled @emph{with}s a unit @code{X}, the object file
3287 depends on the file containing the spec of unit @code{X}. This includes
3288 files that are @emph{with}ed implicitly either because they are parents
3289 of @emph{with}ed child units or they are run-time units required by the
3290 language constructs used in a particular unit.
3291
3292 @item
3293 If a file being compiled instantiates a library level generic unit, the
3294 object file depends on both the spec and body files for this generic
3295 unit.
3296
3297 @item
3298 If a file being compiled instantiates a generic unit defined within a
3299 package, the object file depends on the body file for the package as
3300 well as the spec file.
3301 @end itemize
3302
3303 @geindex Inline
3304
3305 @geindex -gnatn switch
3306
3307
3308 @itemize *
3309
3310 @item
3311 If a file being compiled contains a call to a subprogram for which
3312 pragma @code{Inline} applies and inlining is activated with the
3313 @code{-gnatn} switch, the object file depends on the file containing the
3314 body of this subprogram as well as on the file containing the spec. Note
3315 that for inlining to actually occur as a result of the use of this switch,
3316 it is necessary to compile in optimizing mode.
3317
3318 @geindex -gnatN switch
3319
3320 The use of @code{-gnatN} activates inlining optimization
3321 that is performed by the front end of the compiler. This inlining does
3322 not require that the code generation be optimized. Like @code{-gnatn},
3323 the use of this switch generates additional dependencies.
3324
3325 When using a gcc-based back end (in practice this means using any version
3326 of GNAT other than for the JVM, .NET or GNAAMP platforms), then the use of
3327 @code{-gnatN} is deprecated, and the use of @code{-gnatn} is preferred.
3328 Historically front end inlining was more extensive than the gcc back end
3329 inlining, but that is no longer the case.
3330
3331 @item
3332 If an object file @code{O} depends on the proper body of a subunit through
3333 inlining or instantiation, it depends on the parent unit of the subunit.
3334 This means that any modification of the parent unit or one of its subunits
3335 affects the compilation of @code{O}.
3336
3337 @item
3338 The object file for a parent unit depends on all its subunit body files.
3339
3340 @item
3341 The previous two rules meant that for purposes of computing dependencies and
3342 recompilation, a body and all its subunits are treated as an indivisible whole.
3343
3344 These rules are applied transitively: if unit @code{A} @emph{with}s
3345 unit @code{B}, whose elaboration calls an inlined procedure in package
3346 @code{C}, the object file for unit @code{A} will depend on the body of
3347 @code{C}, in file @code{c.adb}.
3348
3349 The set of dependent files described by these rules includes all the
3350 files on which the unit is semantically dependent, as dictated by the
3351 Ada language standard. However, it is a superset of what the
3352 standard describes, because it includes generic, inline, and subunit
3353 dependencies.
3354
3355 An object file must be recreated by recompiling the corresponding source
3356 file if any of the source files on which it depends are modified. For
3357 example, if the @code{make} utility is used to control compilation,
3358 the rule for an Ada object file must mention all the source files on
3359 which the object file depends, according to the above definition.
3360 The determination of the necessary
3361 recompilations is done automatically when one uses @code{gnatmake}.
3362 @end itemize
3363
3364 @node The Ada Library Information Files,Binding an Ada Program,Source Dependencies,The GNAT Compilation Model
3365 @anchor{gnat_ugn/the_gnat_compilation_model id33}@anchor{7d}@anchor{gnat_ugn/the_gnat_compilation_model the-ada-library-information-files}@anchor{42}
3366 @section The Ada Library Information Files
3367
3368
3369 @geindex Ada Library Information files
3370
3371 @geindex ALI files
3372
3373 Each compilation actually generates two output files. The first of these
3374 is the normal object file that has a @code{.o} extension. The second is a
3375 text file containing full dependency information. It has the same
3376 name as the source file, but an @code{.ali} extension.
3377 This file is known as the Ada Library Information (@code{ALI}) file.
3378 The following information is contained in the @code{ALI} file.
3379
3380
3381 @itemize *
3382
3383 @item
3384 Version information (indicates which version of GNAT was used to compile
3385 the unit(s) in question)
3386
3387 @item
3388 Main program information (including priority and time slice settings,
3389 as well as the wide character encoding used during compilation).
3390
3391 @item
3392 List of arguments used in the @code{gcc} command for the compilation
3393
3394 @item
3395 Attributes of the unit, including configuration pragmas used, an indication
3396 of whether the compilation was successful, exception model used etc.
3397
3398 @item
3399 A list of relevant restrictions applying to the unit (used for consistency)
3400 checking.
3401
3402 @item
3403 Categorization information (e.g., use of pragma @code{Pure}).
3404
3405 @item
3406 Information on all @emph{with}ed units, including presence of
3407 @code{Elaborate} or @code{Elaborate_All} pragmas.
3408
3409 @item
3410 Information from any @code{Linker_Options} pragmas used in the unit
3411
3412 @item
3413 Information on the use of @code{Body_Version} or @code{Version}
3414 attributes in the unit.
3415
3416 @item
3417 Dependency information. This is a list of files, together with
3418 time stamp and checksum information. These are files on which
3419 the unit depends in the sense that recompilation is required
3420 if any of these units are modified.
3421
3422 @item
3423 Cross-reference data. Contains information on all entities referenced
3424 in the unit. Used by tools like @code{gnatxref} and @code{gnatfind} to
3425 provide cross-reference information.
3426 @end itemize
3427
3428 For a full detailed description of the format of the @code{ALI} file,
3429 see the source of the body of unit @code{Lib.Writ}, contained in file
3430 @code{lib-writ.adb} in the GNAT compiler sources.
3431
3432 @node Binding an Ada Program,GNAT and Libraries,The Ada Library Information Files,The GNAT Compilation Model
3433 @anchor{gnat_ugn/the_gnat_compilation_model id34}@anchor{7e}@anchor{gnat_ugn/the_gnat_compilation_model binding-an-ada-program}@anchor{43}
3434 @section Binding an Ada Program
3435
3436
3437 When using languages such as C and C++, once the source files have been
3438 compiled the only remaining step in building an executable program
3439 is linking the object modules together. This means that it is possible to
3440 link an inconsistent version of a program, in which two units have
3441 included different versions of the same header.
3442
3443 The rules of Ada do not permit such an inconsistent program to be built.
3444 For example, if two clients have different versions of the same package,
3445 it is illegal to build a program containing these two clients.
3446 These rules are enforced by the GNAT binder, which also determines an
3447 elaboration order consistent with the Ada rules.
3448
3449 The GNAT binder is run after all the object files for a program have
3450 been created. It is given the name of the main program unit, and from
3451 this it determines the set of units required by the program, by reading the
3452 corresponding ALI files. It generates error messages if the program is
3453 inconsistent or if no valid order of elaboration exists.
3454
3455 If no errors are detected, the binder produces a main program, in Ada by
3456 default, that contains calls to the elaboration procedures of those
3457 compilation unit that require them, followed by
3458 a call to the main program. This Ada program is compiled to generate the
3459 object file for the main program. The name of
3460 the Ada file is @code{b~xxx}.adb` (with the corresponding spec
3461 @code{b~xxx}.ads`) where @code{xxx} is the name of the
3462 main program unit.
3463
3464 Finally, the linker is used to build the resulting executable program,
3465 using the object from the main program from the bind step as well as the
3466 object files for the Ada units of the program.
3467
3468 @node GNAT and Libraries,Conditional Compilation,Binding an Ada Program,The GNAT Compilation Model
3469 @anchor{gnat_ugn/the_gnat_compilation_model gnat-and-libraries}@anchor{15}@anchor{gnat_ugn/the_gnat_compilation_model id35}@anchor{7f}
3470 @section GNAT and Libraries
3471
3472
3473 @geindex Library building and using
3474
3475 This section describes how to build and use libraries with GNAT, and also shows
3476 how to recompile the GNAT run-time library. You should be familiar with the
3477 Project Manager facility (see the @emph{GNAT_Project_Manager} chapter of the
3478 @emph{GPRbuild User's Guide}) before reading this chapter.
3479
3480 @menu
3481 * Introduction to Libraries in GNAT::
3482 * General Ada Libraries::
3483 * Stand-alone Ada Libraries::
3484 * Rebuilding the GNAT Run-Time Library::
3485
3486 @end menu
3487
3488 @node Introduction to Libraries in GNAT,General Ada Libraries,,GNAT and Libraries
3489 @anchor{gnat_ugn/the_gnat_compilation_model introduction-to-libraries-in-gnat}@anchor{80}@anchor{gnat_ugn/the_gnat_compilation_model id36}@anchor{81}
3490 @subsection Introduction to Libraries in GNAT
3491
3492
3493 A library is, conceptually, a collection of objects which does not have its
3494 own main thread of execution, but rather provides certain services to the
3495 applications that use it. A library can be either statically linked with the
3496 application, in which case its code is directly included in the application,
3497 or, on platforms that support it, be dynamically linked, in which case
3498 its code is shared by all applications making use of this library.
3499
3500 GNAT supports both types of libraries.
3501 In the static case, the compiled code can be provided in different ways. The
3502 simplest approach is to provide directly the set of objects resulting from
3503 compilation of the library source files. Alternatively, you can group the
3504 objects into an archive using whatever commands are provided by the operating
3505 system. For the latter case, the objects are grouped into a shared library.
3506
3507 In the GNAT environment, a library has three types of components:
3508
3509
3510 @itemize *
3511
3512 @item
3513 Source files,
3514
3515 @item
3516 @code{ALI} files (see @ref{42,,The Ada Library Information Files}), and
3517
3518 @item
3519 Object files, an archive or a shared library.
3520 @end itemize
3521
3522 A GNAT library may expose all its source files, which is useful for
3523 documentation purposes. Alternatively, it may expose only the units needed by
3524 an external user to make use of the library. That is to say, the specs
3525 reflecting the library services along with all the units needed to compile
3526 those specs, which can include generic bodies or any body implementing an
3527 inlined routine. In the case of @emph{stand-alone libraries} those exposed
3528 units are called @emph{interface units} (@ref{82,,Stand-alone Ada Libraries}).
3529
3530 All compilation units comprising an application, including those in a library,
3531 need to be elaborated in an order partially defined by Ada's semantics. GNAT
3532 computes the elaboration order from the @code{ALI} files and this is why they
3533 constitute a mandatory part of GNAT libraries.
3534 @emph{Stand-alone libraries} are the exception to this rule because a specific
3535 library elaboration routine is produced independently of the application(s)
3536 using the library.
3537
3538 @node General Ada Libraries,Stand-alone Ada Libraries,Introduction to Libraries in GNAT,GNAT and Libraries
3539 @anchor{gnat_ugn/the_gnat_compilation_model general-ada-libraries}@anchor{83}@anchor{gnat_ugn/the_gnat_compilation_model id37}@anchor{84}
3540 @subsection General Ada Libraries
3541
3542
3543 @menu
3544 * Building a library::
3545 * Installing a library::
3546 * Using a library::
3547
3548 @end menu
3549
3550 @node Building a library,Installing a library,,General Ada Libraries
3551 @anchor{gnat_ugn/the_gnat_compilation_model building-a-library}@anchor{85}@anchor{gnat_ugn/the_gnat_compilation_model id38}@anchor{86}
3552 @subsubsection Building a library
3553
3554
3555 The easiest way to build a library is to use the Project Manager,
3556 which supports a special type of project called a @emph{Library Project}
3557 (see the @emph{Library Projects} section in the @emph{GNAT Project Manager}
3558 chapter of the @emph{GPRbuild User's Guide}).
3559
3560 A project is considered a library project, when two project-level attributes
3561 are defined in it: @code{Library_Name} and @code{Library_Dir}. In order to
3562 control different aspects of library configuration, additional optional
3563 project-level attributes can be specified:
3564
3565
3566 @itemize *
3567
3568 @item
3569
3570 @table @asis
3571
3572 @item @code{Library_Kind}
3573
3574 This attribute controls whether the library is to be static or dynamic
3575 @end table
3576
3577 @item
3578
3579 @table @asis
3580
3581 @item @code{Library_Version}
3582
3583 This attribute specifies the library version; this value is used
3584 during dynamic linking of shared libraries to determine if the currently
3585 installed versions of the binaries are compatible.
3586 @end table
3587
3588 @item
3589 @code{Library_Options}
3590
3591 @item
3592
3593 @table @asis
3594
3595 @item @code{Library_GCC}
3596
3597 These attributes specify additional low-level options to be used during
3598 library generation, and redefine the actual application used to generate
3599 library.
3600 @end table
3601 @end itemize
3602
3603 The GNAT Project Manager takes full care of the library maintenance task,
3604 including recompilation of the source files for which objects do not exist
3605 or are not up to date, assembly of the library archive, and installation of
3606 the library (i.e., copying associated source, object and @code{ALI} files
3607 to the specified location).
3608
3609 Here is a simple library project file:
3610
3611 @example
3612 project My_Lib is
3613 for Source_Dirs use ("src1", "src2");
3614 for Object_Dir use "obj";
3615 for Library_Name use "mylib";
3616 for Library_Dir use "lib";
3617 for Library_Kind use "dynamic";
3618 end My_lib;
3619 @end example
3620
3621 and the compilation command to build and install the library:
3622
3623 @example
3624 $ gnatmake -Pmy_lib
3625 @end example
3626
3627 It is not entirely trivial to perform manually all the steps required to
3628 produce a library. We recommend that you use the GNAT Project Manager
3629 for this task. In special cases where this is not desired, the necessary
3630 steps are discussed below.
3631
3632 There are various possibilities for compiling the units that make up the
3633 library: for example with a Makefile (@ref{1f,,Using the GNU make Utility}) or
3634 with a conventional script. For simple libraries, it is also possible to create
3635 a dummy main program which depends upon all the packages that comprise the
3636 interface of the library. This dummy main program can then be given to
3637 @code{gnatmake}, which will ensure that all necessary objects are built.
3638
3639 After this task is accomplished, you should follow the standard procedure
3640 of the underlying operating system to produce the static or shared library.
3641
3642 Here is an example of such a dummy program:
3643
3644 @example
3645 with My_Lib.Service1;
3646 with My_Lib.Service2;
3647 with My_Lib.Service3;
3648 procedure My_Lib_Dummy is
3649 begin
3650 null;
3651 end;
3652 @end example
3653
3654 Here are the generic commands that will build an archive or a shared library.
3655
3656 @example
3657 # compiling the library
3658 $ gnatmake -c my_lib_dummy.adb
3659
3660 # we don't need the dummy object itself
3661 $ rm my_lib_dummy.o my_lib_dummy.ali
3662
3663 # create an archive with the remaining objects
3664 $ ar rc libmy_lib.a *.o
3665 # some systems may require "ranlib" to be run as well
3666
3667 # or create a shared library
3668 $ gcc -shared -o libmy_lib.so *.o
3669 # some systems may require the code to have been compiled with -fPIC
3670
3671 # remove the object files that are now in the library
3672 $ rm *.o
3673
3674 # Make the ALI files read-only so that gnatmake will not try to
3675 # regenerate the objects that are in the library
3676 $ chmod -w *.ali
3677 @end example
3678
3679 Please note that the library must have a name of the form @code{lib@emph{xxx}.a}
3680 or @code{lib@emph{xxx}.so} (or @code{lib@emph{xxx}.dll} on Windows) in order to
3681 be accessed by the directive @code{-l@emph{xxx}} at link time.
3682
3683 @node Installing a library,Using a library,Building a library,General Ada Libraries
3684 @anchor{gnat_ugn/the_gnat_compilation_model installing-a-library}@anchor{87}@anchor{gnat_ugn/the_gnat_compilation_model id39}@anchor{88}
3685 @subsubsection Installing a library
3686
3687
3688 @geindex ADA_PROJECT_PATH
3689
3690 @geindex GPR_PROJECT_PATH
3691
3692 If you use project files, library installation is part of the library build
3693 process (see the @emph{Installing a Library with Project Files} section of the
3694 @emph{GNAT Project Manager} chapter of the @emph{GPRbuild User's Guide}).
3695
3696 When project files are not an option, it is also possible, but not recommended,
3697 to install the library so that the sources needed to use the library are on the
3698 Ada source path and the ALI files & libraries be on the Ada Object path (see
3699 @ref{89,,Search Paths and the Run-Time Library (RTL)}. Alternatively, the system
3700 administrator can place general-purpose libraries in the default compiler
3701 paths, by specifying the libraries' location in the configuration files
3702 @code{ada_source_path} and @code{ada_object_path}. These configuration files
3703 must be located in the GNAT installation tree at the same place as the gcc spec
3704 file. The location of the gcc spec file can be determined as follows:
3705
3706 @example
3707 $ gcc -v
3708 @end example
3709
3710 The configuration files mentioned above have a simple format: each line
3711 must contain one unique directory name.
3712 Those names are added to the corresponding path
3713 in their order of appearance in the file. The names can be either absolute
3714 or relative; in the latter case, they are relative to where theses files
3715 are located.
3716
3717 The files @code{ada_source_path} and @code{ada_object_path} might not be
3718 present in a
3719 GNAT installation, in which case, GNAT will look for its run-time library in
3720 the directories @code{adainclude} (for the sources) and @code{adalib} (for the
3721 objects and @code{ALI} files). When the files exist, the compiler does not
3722 look in @code{adainclude} and @code{adalib}, and thus the
3723 @code{ada_source_path} file
3724 must contain the location for the GNAT run-time sources (which can simply
3725 be @code{adainclude}). In the same way, the @code{ada_object_path} file must
3726 contain the location for the GNAT run-time objects (which can simply
3727 be @code{adalib}).
3728
3729 You can also specify a new default path to the run-time library at compilation
3730 time with the switch @code{--RTS=rts-path}. You can thus choose / change
3731 the run-time library you want your program to be compiled with. This switch is
3732 recognized by @code{gcc}, @code{gnatmake}, @code{gnatbind},
3733 @code{gnatls}, @code{gnatfind} and @code{gnatxref}.
3734
3735 It is possible to install a library before or after the standard GNAT
3736 library, by reordering the lines in the configuration files. In general, a
3737 library must be installed before the GNAT library if it redefines
3738 any part of it.
3739
3740 @node Using a library,,Installing a library,General Ada Libraries
3741 @anchor{gnat_ugn/the_gnat_compilation_model using-a-library}@anchor{8a}@anchor{gnat_ugn/the_gnat_compilation_model id40}@anchor{8b}
3742 @subsubsection Using a library
3743
3744
3745 Once again, the project facility greatly simplifies the use of
3746 libraries. In this context, using a library is just a matter of adding a
3747 @emph{with} clause in the user project. For instance, to make use of the
3748 library @code{My_Lib} shown in examples in earlier sections, you can
3749 write:
3750
3751 @example
3752 with "my_lib";
3753 project My_Proj is
3754 ...
3755 end My_Proj;
3756 @end example
3757
3758 Even if you have a third-party, non-Ada library, you can still use GNAT's
3759 Project Manager facility to provide a wrapper for it. For example, the
3760 following project, when @emph{with}ed by your main project, will link with the
3761 third-party library @code{liba.a}:
3762
3763 @example
3764 project Liba is
3765 for Externally_Built use "true";
3766 for Source_Files use ();
3767 for Library_Dir use "lib";
3768 for Library_Name use "a";
3769 for Library_Kind use "static";
3770 end Liba;
3771 @end example
3772
3773 This is an alternative to the use of @code{pragma Linker_Options}. It is
3774 especially interesting in the context of systems with several interdependent
3775 static libraries where finding a proper linker order is not easy and best be
3776 left to the tools having visibility over project dependence information.
3777
3778 In order to use an Ada library manually, you need to make sure that this
3779 library is on both your source and object path
3780 (see @ref{89,,Search Paths and the Run-Time Library (RTL)}
3781 and @ref{8c,,Search Paths for gnatbind}). Furthermore, when the objects are grouped
3782 in an archive or a shared library, you need to specify the desired
3783 library at link time.
3784
3785 For example, you can use the library @code{mylib} installed in
3786 @code{/dir/my_lib_src} and @code{/dir/my_lib_obj} with the following commands:
3787
3788 @example
3789 $ gnatmake -aI/dir/my_lib_src -aO/dir/my_lib_obj my_appl \\
3790 -largs -lmy_lib
3791 @end example
3792
3793 This can be expressed more simply:
3794
3795 @example
3796 $ gnatmake my_appl
3797 @end example
3798
3799 when the following conditions are met:
3800
3801
3802 @itemize *
3803
3804 @item
3805 @code{/dir/my_lib_src} has been added by the user to the environment
3806 variable
3807 @geindex ADA_INCLUDE_PATH
3808 @geindex environment variable; ADA_INCLUDE_PATH
3809 @code{ADA_INCLUDE_PATH}, or by the administrator to the file
3810 @code{ada_source_path}
3811
3812 @item
3813 @code{/dir/my_lib_obj} has been added by the user to the environment
3814 variable
3815 @geindex ADA_OBJECTS_PATH
3816 @geindex environment variable; ADA_OBJECTS_PATH
3817 @code{ADA_OBJECTS_PATH}, or by the administrator to the file
3818 @code{ada_object_path}
3819
3820 @item
3821 a pragma @code{Linker_Options} has been added to one of the sources.
3822 For example:
3823
3824 @example
3825 pragma Linker_Options ("-lmy_lib");
3826 @end example
3827 @end itemize
3828
3829 Note that you may also load a library dynamically at
3830 run time given its filename, as illustrated in the GNAT @code{plugins} example
3831 in the directory @code{share/examples/gnat/plugins} within the GNAT
3832 install area.
3833
3834 @node Stand-alone Ada Libraries,Rebuilding the GNAT Run-Time Library,General Ada Libraries,GNAT and Libraries
3835 @anchor{gnat_ugn/the_gnat_compilation_model stand-alone-ada-libraries}@anchor{82}@anchor{gnat_ugn/the_gnat_compilation_model id41}@anchor{8d}
3836 @subsection Stand-alone Ada Libraries
3837
3838
3839 @geindex Stand-alone libraries
3840
3841 @menu
3842 * Introduction to Stand-alone Libraries::
3843 * Building a Stand-alone Library::
3844 * Creating a Stand-alone Library to be used in a non-Ada context::
3845 * Restrictions in Stand-alone Libraries::
3846
3847 @end menu
3848
3849 @node Introduction to Stand-alone Libraries,Building a Stand-alone Library,,Stand-alone Ada Libraries
3850 @anchor{gnat_ugn/the_gnat_compilation_model introduction-to-stand-alone-libraries}@anchor{8e}@anchor{gnat_ugn/the_gnat_compilation_model id42}@anchor{8f}
3851 @subsubsection Introduction to Stand-alone Libraries
3852
3853
3854 A Stand-alone Library (abbreviated 'SAL') is a library that contains the
3855 necessary code to
3856 elaborate the Ada units that are included in the library. In contrast with
3857 an ordinary library, which consists of all sources, objects and @code{ALI}
3858 files of the
3859 library, a SAL may specify a restricted subset of compilation units
3860 to serve as a library interface. In this case, the fully
3861 self-sufficient set of files will normally consist of an objects
3862 archive, the sources of interface units' specs, and the @code{ALI}
3863 files of interface units.
3864 If an interface spec contains a generic unit or an inlined subprogram,
3865 the body's
3866 source must also be provided; if the units that must be provided in the source
3867 form depend on other units, the source and @code{ALI} files of those must
3868 also be provided.
3869
3870 The main purpose of a SAL is to minimize the recompilation overhead of client
3871 applications when a new version of the library is installed. Specifically,
3872 if the interface sources have not changed, client applications do not need to
3873 be recompiled. If, furthermore, a SAL is provided in the shared form and its
3874 version, controlled by @code{Library_Version} attribute, is not changed,
3875 then the clients do not need to be relinked.
3876
3877 SALs also allow the library providers to minimize the amount of library source
3878 text exposed to the clients. Such 'information hiding' might be useful or
3879 necessary for various reasons.
3880
3881 Stand-alone libraries are also well suited to be used in an executable whose
3882 main routine is not written in Ada.
3883
3884 @node Building a Stand-alone Library,Creating a Stand-alone Library to be used in a non-Ada context,Introduction to Stand-alone Libraries,Stand-alone Ada Libraries
3885 @anchor{gnat_ugn/the_gnat_compilation_model id43}@anchor{90}@anchor{gnat_ugn/the_gnat_compilation_model building-a-stand-alone-library}@anchor{91}
3886 @subsubsection Building a Stand-alone Library
3887
3888
3889 GNAT's Project facility provides a simple way of building and installing
3890 stand-alone libraries; see the @emph{Stand-alone Library Projects} section
3891 in the @emph{GNAT Project Manager} chapter of the @emph{GPRbuild User's Guide}.
3892 To be a Stand-alone Library Project, in addition to the two attributes
3893 that make a project a Library Project (@code{Library_Name} and
3894 @code{Library_Dir}; see the @emph{Library Projects} section in the
3895 @emph{GNAT Project Manager} chapter of the @emph{GPRbuild User's Guide}),
3896 the attribute @code{Library_Interface} must be defined. For example:
3897
3898 @example
3899 for Library_Dir use "lib_dir";
3900 for Library_Name use "dummy";
3901 for Library_Interface use ("int1", "int1.child");
3902 @end example
3903
3904 Attribute @code{Library_Interface} has a non-empty string list value,
3905 each string in the list designating a unit contained in an immediate source
3906 of the project file.
3907
3908 When a Stand-alone Library is built, first the binder is invoked to build
3909 a package whose name depends on the library name
3910 (@code{b~dummy.ads/b} in the example above).
3911 This binder-generated package includes initialization and
3912 finalization procedures whose
3913 names depend on the library name (@code{dummyinit} and @code{dummyfinal}
3914 in the example
3915 above). The object corresponding to this package is included in the library.
3916
3917 You must ensure timely (e.g., prior to any use of interfaces in the SAL)
3918 calling of these procedures if a static SAL is built, or if a shared SAL
3919 is built
3920 with the project-level attribute @code{Library_Auto_Init} set to
3921 @code{"false"}.
3922
3923 For a Stand-Alone Library, only the @code{ALI} files of the Interface Units
3924 (those that are listed in attribute @code{Library_Interface}) are copied to
3925 the Library Directory. As a consequence, only the Interface Units may be
3926 imported from Ada units outside of the library. If other units are imported,
3927 the binding phase will fail.
3928
3929 It is also possible to build an encapsulated library where not only
3930 the code to elaborate and finalize the library is embedded but also
3931 ensuring that the library is linked only against static
3932 libraries. So an encapsulated library only depends on system
3933 libraries, all other code, including the GNAT runtime, is embedded. To
3934 build an encapsulated library the attribute
3935 @code{Library_Standalone} must be set to @code{encapsulated}:
3936
3937 @example
3938 for Library_Dir use "lib_dir";
3939 for Library_Name use "dummy";
3940 for Library_Kind use "dynamic";
3941 for Library_Interface use ("int1", "int1.child");
3942 for Library_Standalone use "encapsulated";
3943 @end example
3944
3945 The default value for this attribute is @code{standard} in which case
3946 a stand-alone library is built.
3947
3948 The attribute @code{Library_Src_Dir} may be specified for a
3949 Stand-Alone Library. @code{Library_Src_Dir} is a simple attribute that has a
3950 single string value. Its value must be the path (absolute or relative to the
3951 project directory) of an existing directory. This directory cannot be the
3952 object directory or one of the source directories, but it can be the same as
3953 the library directory. The sources of the Interface
3954 Units of the library that are needed by an Ada client of the library will be
3955 copied to the designated directory, called the Interface Copy directory.
3956 These sources include the specs of the Interface Units, but they may also
3957 include bodies and subunits, when pragmas @code{Inline} or @code{Inline_Always}
3958 are used, or when there is a generic unit in the spec. Before the sources
3959 are copied to the Interface Copy directory, an attempt is made to delete all
3960 files in the Interface Copy directory.
3961
3962 Building stand-alone libraries by hand is somewhat tedious, but for those
3963 occasions when it is necessary here are the steps that you need to perform:
3964
3965
3966 @itemize *
3967
3968 @item
3969 Compile all library sources.
3970
3971 @item
3972 Invoke the binder with the switch @code{-n} (No Ada main program),
3973 with all the @code{ALI} files of the interfaces, and
3974 with the switch @code{-L} to give specific names to the @code{init}
3975 and @code{final} procedures. For example:
3976
3977 @example
3978 $ gnatbind -n int1.ali int2.ali -Lsal1
3979 @end example
3980
3981 @item
3982 Compile the binder generated file:
3983
3984 @example
3985 $ gcc -c b~int2.adb
3986 @end example
3987
3988 @item
3989 Link the dynamic library with all the necessary object files,
3990 indicating to the linker the names of the @code{init} (and possibly
3991 @code{final}) procedures for automatic initialization (and finalization).
3992 The built library should be placed in a directory different from
3993 the object directory.
3994
3995 @item
3996 Copy the @code{ALI} files of the interface to the library directory,
3997 add in this copy an indication that it is an interface to a SAL
3998 (i.e., add a word @code{SL} on the line in the @code{ALI} file that starts
3999 with letter 'P') and make the modified copy of the @code{ALI} file
4000 read-only.
4001 @end itemize
4002
4003 Using SALs is not different from using other libraries
4004 (see @ref{8a,,Using a library}).
4005
4006 @node Creating a Stand-alone Library to be used in a non-Ada context,Restrictions in Stand-alone Libraries,Building a Stand-alone Library,Stand-alone Ada Libraries
4007 @anchor{gnat_ugn/the_gnat_compilation_model creating-a-stand-alone-library-to-be-used-in-a-non-ada-context}@anchor{92}@anchor{gnat_ugn/the_gnat_compilation_model id44}@anchor{93}
4008 @subsubsection Creating a Stand-alone Library to be used in a non-Ada context
4009
4010
4011 It is easy to adapt the SAL build procedure discussed above for use of a SAL in
4012 a non-Ada context.
4013
4014 The only extra step required is to ensure that library interface subprograms
4015 are compatible with the main program, by means of @code{pragma Export}
4016 or @code{pragma Convention}.
4017
4018 Here is an example of simple library interface for use with C main program:
4019
4020 @example
4021 package My_Package is
4022
4023 procedure Do_Something;
4024 pragma Export (C, Do_Something, "do_something");
4025
4026 procedure Do_Something_Else;
4027 pragma Export (C, Do_Something_Else, "do_something_else");
4028
4029 end My_Package;
4030 @end example
4031
4032 On the foreign language side, you must provide a 'foreign' view of the
4033 library interface; remember that it should contain elaboration routines in
4034 addition to interface subprograms.
4035
4036 The example below shows the content of @code{mylib_interface.h} (note
4037 that there is no rule for the naming of this file, any name can be used)
4038
4039 @example
4040 /* the library elaboration procedure */
4041 extern void mylibinit (void);
4042
4043 /* the library finalization procedure */
4044 extern void mylibfinal (void);
4045
4046 /* the interface exported by the library */
4047 extern void do_something (void);
4048 extern void do_something_else (void);
4049 @end example
4050
4051 Libraries built as explained above can be used from any program, provided
4052 that the elaboration procedures (named @code{mylibinit} in the previous
4053 example) are called before the library services are used. Any number of
4054 libraries can be used simultaneously, as long as the elaboration
4055 procedure of each library is called.
4056
4057 Below is an example of a C program that uses the @code{mylib} library.
4058
4059 @example
4060 #include "mylib_interface.h"
4061
4062 int
4063 main (void)
4064 @{
4065 /* First, elaborate the library before using it */
4066 mylibinit ();
4067
4068 /* Main program, using the library exported entities */
4069 do_something ();
4070 do_something_else ();
4071
4072 /* Library finalization at the end of the program */
4073 mylibfinal ();
4074 return 0;
4075 @}
4076 @end example
4077
4078 Note that invoking any library finalization procedure generated by
4079 @code{gnatbind} shuts down the Ada run-time environment.
4080 Consequently, the
4081 finalization of all Ada libraries must be performed at the end of the program.
4082 No call to these libraries or to the Ada run-time library should be made
4083 after the finalization phase.
4084
4085 Note also that special care must be taken with multi-tasks
4086 applications. The initialization and finalization routines are not
4087 protected against concurrent access. If such requirement is needed it
4088 must be ensured at the application level using a specific operating
4089 system services like a mutex or a critical-section.
4090
4091 @node Restrictions in Stand-alone Libraries,,Creating a Stand-alone Library to be used in a non-Ada context,Stand-alone Ada Libraries
4092 @anchor{gnat_ugn/the_gnat_compilation_model id45}@anchor{94}@anchor{gnat_ugn/the_gnat_compilation_model restrictions-in-stand-alone-libraries}@anchor{95}
4093 @subsubsection Restrictions in Stand-alone Libraries
4094
4095
4096 The pragmas listed below should be used with caution inside libraries,
4097 as they can create incompatibilities with other Ada libraries:
4098
4099
4100 @itemize *
4101
4102 @item
4103 pragma @code{Locking_Policy}
4104
4105 @item
4106 pragma @code{Partition_Elaboration_Policy}
4107
4108 @item
4109 pragma @code{Queuing_Policy}
4110
4111 @item
4112 pragma @code{Task_Dispatching_Policy}
4113
4114 @item
4115 pragma @code{Unreserve_All_Interrupts}
4116 @end itemize
4117
4118 When using a library that contains such pragmas, the user must make sure
4119 that all libraries use the same pragmas with the same values. Otherwise,
4120 @code{Program_Error} will
4121 be raised during the elaboration of the conflicting
4122 libraries. The usage of these pragmas and its consequences for the user
4123 should therefore be well documented.
4124
4125 Similarly, the traceback in the exception occurrence mechanism should be
4126 enabled or disabled in a consistent manner across all libraries.
4127 Otherwise, Program_Error will be raised during the elaboration of the
4128 conflicting libraries.
4129
4130 If the @code{Version} or @code{Body_Version}
4131 attributes are used inside a library, then you need to
4132 perform a @code{gnatbind} step that specifies all @code{ALI} files in all
4133 libraries, so that version identifiers can be properly computed.
4134 In practice these attributes are rarely used, so this is unlikely
4135 to be a consideration.
4136
4137 @node Rebuilding the GNAT Run-Time Library,,Stand-alone Ada Libraries,GNAT and Libraries
4138 @anchor{gnat_ugn/the_gnat_compilation_model id46}@anchor{96}@anchor{gnat_ugn/the_gnat_compilation_model rebuilding-the-gnat-run-time-library}@anchor{97}
4139 @subsection Rebuilding the GNAT Run-Time Library
4140
4141
4142 @geindex GNAT Run-Time Library
4143 @geindex rebuilding
4144
4145 @geindex Building the GNAT Run-Time Library
4146
4147 @geindex Rebuilding the GNAT Run-Time Library
4148
4149 @geindex Run-Time Library
4150 @geindex rebuilding
4151
4152 It may be useful to recompile the GNAT library in various contexts, the
4153 most important one being the use of partition-wide configuration pragmas
4154 such as @code{Normalize_Scalars}. A special Makefile called
4155 @code{Makefile.adalib} is provided to that effect and can be found in
4156 the directory containing the GNAT library. The location of this
4157 directory depends on the way the GNAT environment has been installed and can
4158 be determined by means of the command:
4159
4160 @example
4161 $ gnatls -v
4162 @end example
4163
4164 The last entry in the object search path usually contains the
4165 gnat library. This Makefile contains its own documentation and in
4166 particular the set of instructions needed to rebuild a new library and
4167 to use it.
4168
4169 @geindex Conditional compilation
4170
4171 @node Conditional Compilation,Mixed Language Programming,GNAT and Libraries,The GNAT Compilation Model
4172 @anchor{gnat_ugn/the_gnat_compilation_model id47}@anchor{98}@anchor{gnat_ugn/the_gnat_compilation_model conditional-compilation}@anchor{16}
4173 @section Conditional Compilation
4174
4175
4176 This section presents some guidelines for modeling conditional compilation in Ada and describes the
4177 gnatprep preprocessor utility.
4178
4179 @geindex Conditional compilation
4180
4181 @menu
4182 * Modeling Conditional Compilation in Ada::
4183 * Preprocessing with gnatprep::
4184 * Integrated Preprocessing::
4185
4186 @end menu
4187
4188 @node Modeling Conditional Compilation in Ada,Preprocessing with gnatprep,,Conditional Compilation
4189 @anchor{gnat_ugn/the_gnat_compilation_model modeling-conditional-compilation-in-ada}@anchor{99}@anchor{gnat_ugn/the_gnat_compilation_model id48}@anchor{9a}
4190 @subsection Modeling Conditional Compilation in Ada
4191
4192
4193 It is often necessary to arrange for a single source program
4194 to serve multiple purposes, where it is compiled in different
4195 ways to achieve these different goals. Some examples of the
4196 need for this feature are
4197
4198
4199 @itemize *
4200
4201 @item
4202 Adapting a program to a different hardware environment
4203
4204 @item
4205 Adapting a program to a different target architecture
4206
4207 @item
4208 Turning debugging features on and off
4209
4210 @item
4211 Arranging for a program to compile with different compilers
4212 @end itemize
4213
4214 In C, or C++, the typical approach would be to use the preprocessor
4215 that is defined as part of the language. The Ada language does not
4216 contain such a feature. This is not an oversight, but rather a very
4217 deliberate design decision, based on the experience that overuse of
4218 the preprocessing features in C and C++ can result in programs that
4219 are extremely difficult to maintain. For example, if we have ten
4220 switches that can be on or off, this means that there are a thousand
4221 separate programs, any one of which might not even be syntactically
4222 correct, and even if syntactically correct, the resulting program
4223 might not work correctly. Testing all combinations can quickly become
4224 impossible.
4225
4226 Nevertheless, the need to tailor programs certainly exists, and in
4227 this section we will discuss how this can
4228 be achieved using Ada in general, and GNAT in particular.
4229
4230 @menu
4231 * Use of Boolean Constants::
4232 * Debugging - A Special Case::
4233 * Conditionalizing Declarations::
4234 * Use of Alternative Implementations::
4235 * Preprocessing::
4236
4237 @end menu
4238
4239 @node Use of Boolean Constants,Debugging - A Special Case,,Modeling Conditional Compilation in Ada
4240 @anchor{gnat_ugn/the_gnat_compilation_model id49}@anchor{9b}@anchor{gnat_ugn/the_gnat_compilation_model use-of-boolean-constants}@anchor{9c}
4241 @subsubsection Use of Boolean Constants
4242
4243
4244 In the case where the difference is simply which code
4245 sequence is executed, the cleanest solution is to use Boolean
4246 constants to control which code is executed.
4247
4248 @example
4249 FP_Initialize_Required : constant Boolean := True;
4250 ...
4251 if FP_Initialize_Required then
4252 ...
4253 end if;
4254 @end example
4255
4256 Not only will the code inside the @code{if} statement not be executed if
4257 the constant Boolean is @code{False}, but it will also be completely
4258 deleted from the program.
4259 However, the code is only deleted after the @code{if} statement
4260 has been checked for syntactic and semantic correctness.
4261 (In contrast, with preprocessors the code is deleted before the
4262 compiler ever gets to see it, so it is not checked until the switch
4263 is turned on.)
4264
4265 @geindex Preprocessors (contrasted with conditional compilation)
4266
4267 Typically the Boolean constants will be in a separate package,
4268 something like:
4269
4270 @example
4271 package Config is
4272 FP_Initialize_Required : constant Boolean := True;
4273 Reset_Available : constant Boolean := False;
4274 ...
4275 end Config;
4276 @end example
4277
4278 The @code{Config} package exists in multiple forms for the various targets,
4279 with an appropriate script selecting the version of @code{Config} needed.
4280 Then any other unit requiring conditional compilation can do a @emph{with}
4281 of @code{Config} to make the constants visible.
4282
4283 @node Debugging - A Special Case,Conditionalizing Declarations,Use of Boolean Constants,Modeling Conditional Compilation in Ada
4284 @anchor{gnat_ugn/the_gnat_compilation_model debugging-a-special-case}@anchor{9d}@anchor{gnat_ugn/the_gnat_compilation_model id50}@anchor{9e}
4285 @subsubsection Debugging - A Special Case
4286
4287
4288 A common use of conditional code is to execute statements (for example
4289 dynamic checks, or output of intermediate results) under control of a
4290 debug switch, so that the debugging behavior can be turned on and off.
4291 This can be done using a Boolean constant to control whether the code
4292 is active:
4293
4294 @example
4295 if Debugging then
4296 Put_Line ("got to the first stage!");
4297 end if;
4298 @end example
4299
4300 or
4301
4302 @example
4303 if Debugging and then Temperature > 999.0 then
4304 raise Temperature_Crazy;
4305 end if;
4306 @end example
4307
4308 @geindex pragma Assert
4309
4310 Since this is a common case, there are special features to deal with
4311 this in a convenient manner. For the case of tests, Ada 2005 has added
4312 a pragma @code{Assert} that can be used for such tests. This pragma is modeled
4313 on the @code{Assert} pragma that has always been available in GNAT, so this
4314 feature may be used with GNAT even if you are not using Ada 2005 features.
4315 The use of pragma @code{Assert} is described in the
4316 @cite{GNAT_Reference_Manual}, but as an
4317 example, the last test could be written:
4318
4319 @example
4320 pragma Assert (Temperature <= 999.0, "Temperature Crazy");
4321 @end example
4322
4323 or simply
4324
4325 @example
4326 pragma Assert (Temperature <= 999.0);
4327 @end example
4328
4329 In both cases, if assertions are active and the temperature is excessive,
4330 the exception @code{Assert_Failure} will be raised, with the given string in
4331 the first case or a string indicating the location of the pragma in the second
4332 case used as the exception message.
4333
4334 @geindex pragma Assertion_Policy
4335
4336 You can turn assertions on and off by using the @code{Assertion_Policy}
4337 pragma.
4338
4339 @geindex -gnata switch
4340
4341 This is an Ada 2005 pragma which is implemented in all modes by
4342 GNAT. Alternatively, you can use the @code{-gnata} switch
4343 to enable assertions from the command line, which applies to
4344 all versions of Ada.
4345
4346 @geindex pragma Debug
4347
4348 For the example above with the @code{Put_Line}, the GNAT-specific pragma
4349 @code{Debug} can be used:
4350
4351 @example
4352 pragma Debug (Put_Line ("got to the first stage!"));
4353 @end example
4354
4355 If debug pragmas are enabled, the argument, which must be of the form of
4356 a procedure call, is executed (in this case, @code{Put_Line} will be called).
4357 Only one call can be present, but of course a special debugging procedure
4358 containing any code you like can be included in the program and then
4359 called in a pragma @code{Debug} argument as needed.
4360
4361 One advantage of pragma @code{Debug} over the @code{if Debugging then}
4362 construct is that pragma @code{Debug} can appear in declarative contexts,
4363 such as at the very beginning of a procedure, before local declarations have
4364 been elaborated.
4365
4366 @geindex pragma Debug_Policy
4367
4368 Debug pragmas are enabled using either the @code{-gnata} switch that also
4369 controls assertions, or with a separate Debug_Policy pragma.
4370
4371 The latter pragma is new in the Ada 2005 versions of GNAT (but it can be used
4372 in Ada 95 and Ada 83 programs as well), and is analogous to
4373 pragma @code{Assertion_Policy} to control assertions.
4374
4375 @code{Assertion_Policy} and @code{Debug_Policy} are configuration pragmas,
4376 and thus they can appear in @code{gnat.adc} if you are not using a
4377 project file, or in the file designated to contain configuration pragmas
4378 in a project file.
4379 They then apply to all subsequent compilations. In practice the use of
4380 the @code{-gnata} switch is often the most convenient method of controlling
4381 the status of these pragmas.
4382
4383 Note that a pragma is not a statement, so in contexts where a statement
4384 sequence is required, you can't just write a pragma on its own. You have
4385 to add a @code{null} statement.
4386
4387 @example
4388 if ... then
4389 ... -- some statements
4390 else
4391 pragma Assert (Num_Cases < 10);
4392 null;
4393 end if;
4394 @end example
4395
4396 @node Conditionalizing Declarations,Use of Alternative Implementations,Debugging - A Special Case,Modeling Conditional Compilation in Ada
4397 @anchor{gnat_ugn/the_gnat_compilation_model conditionalizing-declarations}@anchor{9f}@anchor{gnat_ugn/the_gnat_compilation_model id51}@anchor{a0}
4398 @subsubsection Conditionalizing Declarations
4399
4400
4401 In some cases it may be necessary to conditionalize declarations to meet
4402 different requirements. For example we might want a bit string whose length
4403 is set to meet some hardware message requirement.
4404
4405 This may be possible using declare blocks controlled
4406 by conditional constants:
4407
4408 @example
4409 if Small_Machine then
4410 declare
4411 X : Bit_String (1 .. 10);
4412 begin
4413 ...
4414 end;
4415 else
4416 declare
4417 X : Large_Bit_String (1 .. 1000);
4418 begin
4419 ...
4420 end;
4421 end if;
4422 @end example
4423
4424 Note that in this approach, both declarations are analyzed by the
4425 compiler so this can only be used where both declarations are legal,
4426 even though one of them will not be used.
4427
4428 Another approach is to define integer constants, e.g., @code{Bits_Per_Word},
4429 or Boolean constants, e.g., @code{Little_Endian}, and then write declarations
4430 that are parameterized by these constants. For example
4431
4432 @example
4433 for Rec use
4434 Field1 at 0 range Boolean'Pos (Little_Endian) * 10 .. Bits_Per_Word;
4435 end record;
4436 @end example
4437
4438 If @code{Bits_Per_Word} is set to 32, this generates either
4439
4440 @example
4441 for Rec use
4442 Field1 at 0 range 0 .. 32;
4443 end record;
4444 @end example
4445
4446 for the big endian case, or
4447
4448 @example
4449 for Rec use record
4450 Field1 at 0 range 10 .. 32;
4451 end record;
4452 @end example
4453
4454 for the little endian case. Since a powerful subset of Ada expression
4455 notation is usable for creating static constants, clever use of this
4456 feature can often solve quite difficult problems in conditionalizing
4457 compilation (note incidentally that in Ada 95, the little endian
4458 constant was introduced as @code{System.Default_Bit_Order}, so you do not
4459 need to define this one yourself).
4460
4461 @node Use of Alternative Implementations,Preprocessing,Conditionalizing Declarations,Modeling Conditional Compilation in Ada
4462 @anchor{gnat_ugn/the_gnat_compilation_model use-of-alternative-implementations}@anchor{a1}@anchor{gnat_ugn/the_gnat_compilation_model id52}@anchor{a2}
4463 @subsubsection Use of Alternative Implementations
4464
4465
4466 In some cases, none of the approaches described above are adequate. This
4467 can occur for example if the set of declarations required is radically
4468 different for two different configurations.
4469
4470 In this situation, the official Ada way of dealing with conditionalizing
4471 such code is to write separate units for the different cases. As long as
4472 this does not result in excessive duplication of code, this can be done
4473 without creating maintenance problems. The approach is to share common
4474 code as far as possible, and then isolate the code and declarations
4475 that are different. Subunits are often a convenient method for breaking
4476 out a piece of a unit that is to be conditionalized, with separate files
4477 for different versions of the subunit for different targets, where the
4478 build script selects the right one to give to the compiler.
4479
4480 @geindex Subunits (and conditional compilation)
4481
4482 As an example, consider a situation where a new feature in Ada 2005
4483 allows something to be done in a really nice way. But your code must be able
4484 to compile with an Ada 95 compiler. Conceptually you want to say:
4485
4486 @example
4487 if Ada_2005 then
4488 ... neat Ada 2005 code
4489 else
4490 ... not quite as neat Ada 95 code
4491 end if;
4492 @end example
4493
4494 where @code{Ada_2005} is a Boolean constant.
4495
4496 But this won't work when @code{Ada_2005} is set to @code{False},
4497 since the @code{then} clause will be illegal for an Ada 95 compiler.
4498 (Recall that although such unreachable code would eventually be deleted
4499 by the compiler, it still needs to be legal. If it uses features
4500 introduced in Ada 2005, it will be illegal in Ada 95.)
4501
4502 So instead we write
4503
4504 @example
4505 procedure Insert is separate;
4506 @end example
4507
4508 Then we have two files for the subunit @code{Insert}, with the two sets of
4509 code.
4510 If the package containing this is called @code{File_Queries}, then we might
4511 have two files
4512
4513
4514 @itemize *
4515
4516 @item
4517 @code{file_queries-insert-2005.adb}
4518
4519 @item
4520 @code{file_queries-insert-95.adb}
4521 @end itemize
4522
4523 and the build script renames the appropriate file to @code{file_queries-insert.adb} and then carries out the compilation.
4524
4525 This can also be done with project files' naming schemes. For example:
4526
4527 @example
4528 for body ("File_Queries.Insert") use "file_queries-insert-2005.ada";
4529 @end example
4530
4531 Note also that with project files it is desirable to use a different extension
4532 than @code{ads} / @code{adb} for alternative versions. Otherwise a naming
4533 conflict may arise through another commonly used feature: to declare as part
4534 of the project a set of directories containing all the sources obeying the
4535 default naming scheme.
4536
4537 The use of alternative units is certainly feasible in all situations,
4538 and for example the Ada part of the GNAT run-time is conditionalized
4539 based on the target architecture using this approach. As a specific example,
4540 consider the implementation of the AST feature in VMS. There is one
4541 spec: @code{s-asthan.ads} which is the same for all architectures, and three
4542 bodies:
4543
4544
4545 @itemize *
4546
4547 @item
4548
4549 @table @asis
4550
4551 @item @code{s-asthan.adb}
4552
4553 used for all non-VMS operating systems
4554 @end table
4555
4556 @item
4557
4558 @table @asis
4559
4560 @item @code{s-asthan-vms-alpha.adb}
4561
4562 used for VMS on the Alpha
4563 @end table
4564
4565 @item
4566
4567 @table @asis
4568
4569 @item @code{s-asthan-vms-ia64.adb}
4570
4571 used for VMS on the ia64
4572 @end table
4573 @end itemize
4574
4575 The dummy version @code{s-asthan.adb} simply raises exceptions noting that
4576 this operating system feature is not available, and the two remaining
4577 versions interface with the corresponding versions of VMS to provide
4578 VMS-compatible AST handling. The GNAT build script knows the architecture
4579 and operating system, and automatically selects the right version,
4580 renaming it if necessary to @code{s-asthan.adb} before the run-time build.
4581
4582 Another style for arranging alternative implementations is through Ada's
4583 access-to-subprogram facility.
4584 In case some functionality is to be conditionally included,
4585 you can declare an access-to-procedure variable @code{Ref} that is initialized
4586 to designate a 'do nothing' procedure, and then invoke @code{Ref.all}
4587 when appropriate.
4588 In some library package, set @code{Ref} to @code{Proc'Access} for some
4589 procedure @code{Proc} that performs the relevant processing.
4590 The initialization only occurs if the library package is included in the
4591 program.
4592 The same idea can also be implemented using tagged types and dispatching
4593 calls.
4594
4595 @node Preprocessing,,Use of Alternative Implementations,Modeling Conditional Compilation in Ada
4596 @anchor{gnat_ugn/the_gnat_compilation_model preprocessing}@anchor{a3}@anchor{gnat_ugn/the_gnat_compilation_model id53}@anchor{a4}
4597 @subsubsection Preprocessing
4598
4599
4600 @geindex Preprocessing
4601
4602 Although it is quite possible to conditionalize code without the use of
4603 C-style preprocessing, as described earlier in this section, it is
4604 nevertheless convenient in some cases to use the C approach. Moreover,
4605 older Ada compilers have often provided some preprocessing capability,
4606 so legacy code may depend on this approach, even though it is not
4607 standard.
4608
4609 To accommodate such use, GNAT provides a preprocessor (modeled to a large
4610 extent on the various preprocessors that have been used
4611 with legacy code on other compilers, to enable easier transition).
4612
4613 @geindex gnatprep
4614
4615 The preprocessor may be used in two separate modes. It can be used quite
4616 separately from the compiler, to generate a separate output source file
4617 that is then fed to the compiler as a separate step. This is the
4618 @code{gnatprep} utility, whose use is fully described in
4619 @ref{17,,Preprocessing with gnatprep}.
4620
4621 The preprocessing language allows such constructs as
4622
4623 @example
4624 #if DEBUG or else (PRIORITY > 4) then
4625 sequence of declarations
4626 #else
4627 completely different sequence of declarations
4628 #end if;
4629 @end example
4630
4631 The values of the symbols @code{DEBUG} and @code{PRIORITY} can be
4632 defined either on the command line or in a separate file.
4633
4634 The other way of running the preprocessor is even closer to the C style and
4635 often more convenient. In this approach the preprocessing is integrated into
4636 the compilation process. The compiler is given the preprocessor input which
4637 includes @code{#if} lines etc, and then the compiler carries out the
4638 preprocessing internally and processes the resulting output.
4639 For more details on this approach, see @ref{18,,Integrated Preprocessing}.
4640
4641 @node Preprocessing with gnatprep,Integrated Preprocessing,Modeling Conditional Compilation in Ada,Conditional Compilation
4642 @anchor{gnat_ugn/the_gnat_compilation_model id54}@anchor{a5}@anchor{gnat_ugn/the_gnat_compilation_model preprocessing-with-gnatprep}@anchor{17}
4643 @subsection Preprocessing with @code{gnatprep}
4644
4645
4646 @geindex gnatprep
4647
4648 @geindex Preprocessing (gnatprep)
4649
4650 This section discusses how to use GNAT's @code{gnatprep} utility for simple
4651 preprocessing.
4652 Although designed for use with GNAT, @code{gnatprep} does not depend on any
4653 special GNAT features.
4654 For further discussion of conditional compilation in general, see
4655 @ref{16,,Conditional Compilation}.
4656
4657 @menu
4658 * Preprocessing Symbols::
4659 * Using gnatprep::
4660 * Switches for gnatprep::
4661 * Form of Definitions File::
4662 * Form of Input Text for gnatprep::
4663
4664 @end menu
4665
4666 @node Preprocessing Symbols,Using gnatprep,,Preprocessing with gnatprep
4667 @anchor{gnat_ugn/the_gnat_compilation_model id55}@anchor{a6}@anchor{gnat_ugn/the_gnat_compilation_model preprocessing-symbols}@anchor{a7}
4668 @subsubsection Preprocessing Symbols
4669
4670
4671 Preprocessing symbols are defined in @emph{definition files} and referenced in the
4672 sources to be preprocessed. A preprocessing symbol is an identifier, following
4673 normal Ada (case-insensitive) rules for its syntax, with the restriction that
4674 all characters need to be in the ASCII set (no accented letters).
4675
4676 @node Using gnatprep,Switches for gnatprep,Preprocessing Symbols,Preprocessing with gnatprep
4677 @anchor{gnat_ugn/the_gnat_compilation_model using-gnatprep}@anchor{a8}@anchor{gnat_ugn/the_gnat_compilation_model id56}@anchor{a9}
4678 @subsubsection Using @code{gnatprep}
4679
4680
4681 To call @code{gnatprep} use:
4682
4683 @example
4684 $ gnatprep [ switches ] infile outfile [ deffile ]
4685 @end example
4686
4687 where
4688
4689
4690 @itemize *
4691
4692 @item
4693
4694 @table @asis
4695
4696 @item @emph{switches}
4697
4698 is an optional sequence of switches as described in the next section.
4699 @end table
4700
4701 @item
4702
4703 @table @asis
4704
4705 @item @emph{infile}
4706
4707 is the full name of the input file, which is an Ada source
4708 file containing preprocessor directives.
4709 @end table
4710
4711 @item
4712
4713 @table @asis
4714
4715 @item @emph{outfile}
4716
4717 is the full name of the output file, which is an Ada source
4718 in standard Ada form. When used with GNAT, this file name will
4719 normally have an @code{ads} or @code{adb} suffix.
4720 @end table
4721
4722 @item
4723
4724 @table @asis
4725
4726 @item @code{deffile}
4727
4728 is the full name of a text file containing definitions of
4729 preprocessing symbols to be referenced by the preprocessor. This argument is
4730 optional, and can be replaced by the use of the @code{-D} switch.
4731 @end table
4732 @end itemize
4733
4734 @node Switches for gnatprep,Form of Definitions File,Using gnatprep,Preprocessing with gnatprep
4735 @anchor{gnat_ugn/the_gnat_compilation_model switches-for-gnatprep}@anchor{aa}@anchor{gnat_ugn/the_gnat_compilation_model id57}@anchor{ab}
4736 @subsubsection Switches for @code{gnatprep}
4737
4738
4739 @geindex --version (gnatprep)
4740
4741
4742 @table @asis
4743
4744 @item @code{--version}
4745
4746 Display Copyright and version, then exit disregarding all other options.
4747 @end table
4748
4749 @geindex --help (gnatprep)
4750
4751
4752 @table @asis
4753
4754 @item @code{--help}
4755
4756 If @code{--version} was not used, display usage and then exit disregarding
4757 all other options.
4758 @end table
4759
4760 @geindex -b (gnatprep)
4761
4762
4763 @table @asis
4764
4765 @item @code{-b}
4766
4767 Causes both preprocessor lines and the lines deleted by
4768 preprocessing to be replaced by blank lines in the output source file,
4769 preserving line numbers in the output file.
4770 @end table
4771
4772 @geindex -c (gnatprep)
4773
4774
4775 @table @asis
4776
4777 @item @code{-c}
4778
4779 Causes both preprocessor lines and the lines deleted
4780 by preprocessing to be retained in the output source as comments marked
4781 with the special string @code{"--! "}. This option will result in line numbers
4782 being preserved in the output file.
4783 @end table
4784
4785 @geindex -C (gnatprep)
4786
4787
4788 @table @asis
4789
4790 @item @code{-C}
4791
4792 Causes comments to be scanned. Normally comments are ignored by gnatprep.
4793 If this option is specified, then comments are scanned and any $symbol
4794 substitutions performed as in program text. This is particularly useful
4795 when structured comments are used (e.g., for programs written in a
4796 pre-2014 version of the SPARK Ada subset). Note that this switch is not
4797 available when doing integrated preprocessing (it would be useless in
4798 this context since comments are ignored by the compiler in any case).
4799 @end table
4800
4801 @geindex -D (gnatprep)
4802
4803
4804 @table @asis
4805
4806 @item @code{-D@emph{symbol}[=@emph{value}]}
4807
4808 Defines a new preprocessing symbol with the specified value. If no value is given
4809 on the command line, then symbol is considered to be @code{True}. This switch
4810 can be used in place of a definition file.
4811 @end table
4812
4813 @geindex -r (gnatprep)
4814
4815
4816 @table @asis
4817
4818 @item @code{-r}
4819
4820 Causes a @code{Source_Reference} pragma to be generated that
4821 references the original input file, so that error messages will use
4822 the file name of this original file. The use of this switch implies
4823 that preprocessor lines are not to be removed from the file, so its
4824 use will force @code{-b} mode if @code{-c}
4825 has not been specified explicitly.
4826
4827 Note that if the file to be preprocessed contains multiple units, then
4828 it will be necessary to @code{gnatchop} the output file from
4829 @code{gnatprep}. If a @code{Source_Reference} pragma is present
4830 in the preprocessed file, it will be respected by
4831 @code{gnatchop -r}
4832 so that the final chopped files will correctly refer to the original
4833 input source file for @code{gnatprep}.
4834 @end table
4835
4836 @geindex -s (gnatprep)
4837
4838
4839 @table @asis
4840
4841 @item @code{-s}
4842
4843 Causes a sorted list of symbol names and values to be
4844 listed on the standard output file.
4845 @end table
4846
4847 @geindex -T (gnatprep)
4848
4849
4850 @table @asis
4851
4852 @item @code{-T}
4853
4854 Use LF as line terminators when writing files. By default the line terminator
4855 of the host (LF under unix, CR/LF under Windows) is used.
4856 @end table
4857
4858 @geindex -u (gnatprep)
4859
4860
4861 @table @asis
4862
4863 @item @code{-u}
4864
4865 Causes undefined symbols to be treated as having the value FALSE in the context
4866 of a preprocessor test. In the absence of this option, an undefined symbol in
4867 a @code{#if} or @code{#elsif} test will be treated as an error.
4868 @end table
4869
4870 @geindex -v (gnatprep)
4871
4872
4873 @table @asis
4874
4875 @item @code{-v}
4876
4877 Verbose mode: generates more output about work done.
4878 @end table
4879
4880 Note: if neither @code{-b} nor @code{-c} is present,
4881 then preprocessor lines and
4882 deleted lines are completely removed from the output, unless -r is
4883 specified, in which case -b is assumed.
4884
4885 @node Form of Definitions File,Form of Input Text for gnatprep,Switches for gnatprep,Preprocessing with gnatprep
4886 @anchor{gnat_ugn/the_gnat_compilation_model form-of-definitions-file}@anchor{ac}@anchor{gnat_ugn/the_gnat_compilation_model id58}@anchor{ad}
4887 @subsubsection Form of Definitions File
4888
4889
4890 The definitions file contains lines of the form:
4891
4892 @example
4893 symbol := value
4894 @end example
4895
4896 where @code{symbol} is a preprocessing symbol, and @code{value} is one of the following:
4897
4898
4899 @itemize *
4900
4901 @item
4902 Empty, corresponding to a null substitution,
4903
4904 @item
4905 A string literal using normal Ada syntax, or
4906
4907 @item
4908 Any sequence of characters from the set @{letters, digits, period, underline@}.
4909 @end itemize
4910
4911 Comment lines may also appear in the definitions file, starting with
4912 the usual @code{--},
4913 and comments may be added to the definitions lines.
4914
4915 @node Form of Input Text for gnatprep,,Form of Definitions File,Preprocessing with gnatprep
4916 @anchor{gnat_ugn/the_gnat_compilation_model id59}@anchor{ae}@anchor{gnat_ugn/the_gnat_compilation_model form-of-input-text-for-gnatprep}@anchor{af}
4917 @subsubsection Form of Input Text for @code{gnatprep}
4918
4919
4920 The input text may contain preprocessor conditional inclusion lines,
4921 as well as general symbol substitution sequences.
4922
4923 The preprocessor conditional inclusion commands have the form:
4924
4925 @example
4926 #if <expression> [then]
4927 lines
4928 #elsif <expression> [then]
4929 lines
4930 #elsif <expression> [then]
4931 lines
4932 ...
4933 #else
4934 lines
4935 #end if;
4936 @end example
4937
4938 In this example, <expression> is defined by the following grammar:
4939
4940 @example
4941 <expression> ::= <symbol>
4942 <expression> ::= <symbol> = "<value>"
4943 <expression> ::= <symbol> = <symbol>
4944 <expression> ::= <symbol> = <integer>
4945 <expression> ::= <symbol> > <integer>
4946 <expression> ::= <symbol> >= <integer>
4947 <expression> ::= <symbol> < <integer>
4948 <expression> ::= <symbol> <= <integer>
4949 <expression> ::= <symbol> 'Defined
4950 <expression> ::= not <expression>
4951 <expression> ::= <expression> and <expression>
4952 <expression> ::= <expression> or <expression>
4953 <expression> ::= <expression> and then <expression>
4954 <expression> ::= <expression> or else <expression>
4955 <expression> ::= ( <expression> )
4956 @end example
4957
4958 Note the following restriction: it is not allowed to have "and" or "or"
4959 following "not" in the same expression without parentheses. For example, this
4960 is not allowed:
4961
4962 @example
4963 not X or Y
4964 @end example
4965
4966 This can be expressed instead as one of the following forms:
4967
4968 @example
4969 (not X) or Y
4970 not (X or Y)
4971 @end example
4972
4973 For the first test (<expression> ::= <symbol>) the symbol must have
4974 either the value true or false, that is to say the right-hand of the
4975 symbol definition must be one of the (case-insensitive) literals
4976 @code{True} or @code{False}. If the value is true, then the
4977 corresponding lines are included, and if the value is false, they are
4978 excluded.
4979
4980 When comparing a symbol to an integer, the integer is any non negative
4981 literal integer as defined in the Ada Reference Manual, such as 3, 16#FF# or
4982 2#11#. The symbol value must also be a non negative integer. Integer values
4983 in the range 0 .. 2**31-1 are supported.
4984
4985 The test (<expression> ::= <symbol>'Defined) is true only if
4986 the symbol has been defined in the definition file or by a @code{-D}
4987 switch on the command line. Otherwise, the test is false.
4988
4989 The equality tests are case insensitive, as are all the preprocessor lines.
4990
4991 If the symbol referenced is not defined in the symbol definitions file,
4992 then the effect depends on whether or not switch @code{-u}
4993 is specified. If so, then the symbol is treated as if it had the value
4994 false and the test fails. If this switch is not specified, then
4995 it is an error to reference an undefined symbol. It is also an error to
4996 reference a symbol that is defined with a value other than @code{True}
4997 or @code{False}.
4998
4999 The use of the @code{not} operator inverts the sense of this logical test.
5000 The @code{not} operator cannot be combined with the @code{or} or @code{and}
5001 operators, without parentheses. For example, "if not X or Y then" is not
5002 allowed, but "if (not X) or Y then" and "if not (X or Y) then" are.
5003
5004 The @code{then} keyword is optional as shown
5005
5006 The @code{#} must be the first non-blank character on a line, but
5007 otherwise the format is free form. Spaces or tabs may appear between
5008 the @code{#} and the keyword. The keywords and the symbols are case
5009 insensitive as in normal Ada code. Comments may be used on a
5010 preprocessor line, but other than that, no other tokens may appear on a
5011 preprocessor line. Any number of @code{elsif} clauses can be present,
5012 including none at all. The @code{else} is optional, as in Ada.
5013
5014 The @code{#} marking the start of a preprocessor line must be the first
5015 non-blank character on the line, i.e., it must be preceded only by
5016 spaces or horizontal tabs.
5017
5018 Symbol substitution outside of preprocessor lines is obtained by using
5019 the sequence:
5020
5021 @example
5022 $symbol
5023 @end example
5024
5025 anywhere within a source line, except in a comment or within a
5026 string literal. The identifier
5027 following the @code{$} must match one of the symbols defined in the symbol
5028 definition file, and the result is to substitute the value of the
5029 symbol in place of @code{$symbol} in the output file.
5030
5031 Note that although the substitution of strings within a string literal
5032 is not possible, it is possible to have a symbol whose defined value is
5033 a string literal. So instead of setting XYZ to @code{hello} and writing:
5034
5035 @example
5036 Header : String := "$XYZ";
5037 @end example
5038
5039 you should set XYZ to @code{"hello"} and write:
5040
5041 @example
5042 Header : String := $XYZ;
5043 @end example
5044
5045 and then the substitution will occur as desired.
5046
5047 @node Integrated Preprocessing,,Preprocessing with gnatprep,Conditional Compilation
5048 @anchor{gnat_ugn/the_gnat_compilation_model id60}@anchor{b0}@anchor{gnat_ugn/the_gnat_compilation_model integrated-preprocessing}@anchor{18}
5049 @subsection Integrated Preprocessing
5050
5051
5052 As noted above, a file to be preprocessed consists of Ada source code
5053 in which preprocessing lines have been inserted. However,
5054 instead of using @code{gnatprep} to explicitly preprocess a file as a separate
5055 step before compilation, you can carry out the preprocessing implicitly
5056 as part of compilation. Such @emph{integrated preprocessing}, which is the common
5057 style with C, is performed when either or both of the following switches
5058 are passed to the compiler:
5059
5060 @quotation
5061
5062
5063 @itemize *
5064
5065 @item
5066 @code{-gnatep}, which specifies the @emph{preprocessor data file}.
5067 This file dictates how the source files will be preprocessed (e.g., which
5068 symbol definition files apply to which sources).
5069
5070 @item
5071 @code{-gnateD}, which defines values for preprocessing symbols.
5072 @end itemize
5073 @end quotation
5074
5075 Integrated preprocessing applies only to Ada source files, it is
5076 not available for configuration pragma files.
5077
5078 With integrated preprocessing, the output from the preprocessor is not,
5079 by default, written to any external file. Instead it is passed
5080 internally to the compiler. To preserve the result of
5081 preprocessing in a file, either run @code{gnatprep}
5082 in standalone mode or else supply the @code{-gnateG} switch
5083 (described below) to the compiler.
5084
5085 When using project files:
5086
5087 @quotation
5088
5089
5090 @itemize *
5091
5092 @item
5093 the builder switch @code{-x} should be used if any Ada source is
5094 compiled with @code{gnatep=}, so that the compiler finds the
5095 @emph{preprocessor data file}.
5096
5097 @item
5098 the preprocessing data file and the symbol definition files should be
5099 located in the source directories of the project.
5100 @end itemize
5101 @end quotation
5102
5103 Note that the @code{gnatmake} switch @code{-m} will almost
5104 always trigger recompilation for sources that are preprocessed,
5105 because @code{gnatmake} cannot compute the checksum of the source after
5106 preprocessing.
5107
5108 The actual preprocessing function is described in detail in
5109 @ref{17,,Preprocessing with gnatprep}. This section explains the switches
5110 that relate to integrated preprocessing.
5111
5112 @geindex -gnatep (gcc)
5113
5114
5115 @table @asis
5116
5117 @item @code{-gnatep=@emph{preprocessor_data_file}}
5118
5119 This switch specifies the file name (without directory
5120 information) of the preprocessor data file. Either place this file
5121 in one of the source directories, or, when using project
5122 files, reference the project file's directory via the
5123 @code{project_name'Project_Dir} project attribute; e.g:
5124
5125 @quotation
5126
5127 @example
5128 project Prj is
5129 package Compiler is
5130 for Switches ("Ada") use
5131 ("-gnatep=" & Prj'Project_Dir & "prep.def");
5132 end Compiler;
5133 end Prj;
5134 @end example
5135 @end quotation
5136
5137 A preprocessor data file is a text file that contains @emph{preprocessor
5138 control lines}. A preprocessor control line directs the preprocessing of
5139 either a particular source file, or, analogous to @code{others} in Ada,
5140 all sources not specified elsewhere in the preprocessor data file.
5141 A preprocessor control line
5142 can optionally identify a @emph{definition file} that assigns values to
5143 preprocessor symbols, as well as a list of switches that relate to
5144 preprocessing.
5145 Empty lines and comments (using Ada syntax) are also permitted, with no
5146 semantic effect.
5147
5148 Here's an example of a preprocessor data file:
5149
5150 @quotation
5151
5152 @example
5153 "toto.adb" "prep.def" -u
5154 -- Preprocess toto.adb, using definition file prep.def
5155 -- Undefined symbols are treated as False
5156
5157 * -c -DVERSION=V101
5158 -- Preprocess all other sources without using a definition file
5159 -- Suppressed lined are commented
5160 -- Symbol VERSION has the value V101
5161
5162 "tata.adb" "prep2.def" -s
5163 -- Preprocess tata.adb, using definition file prep2.def
5164 -- List all symbols with their values
5165 @end example
5166 @end quotation
5167
5168 A preprocessor control line has the following syntax:
5169
5170 @quotation
5171
5172 @example
5173 <preprocessor_control_line> ::=
5174 <preprocessor_input> [ <definition_file_name> ] @{ <switch> @}
5175
5176 <preprocessor_input> ::= <source_file_name> | '*'
5177
5178 <definition_file_name> ::= <string_literal>
5179
5180 <source_file_name> := <string_literal>
5181
5182 <switch> := (See below for list)
5183 @end example
5184 @end quotation
5185
5186 Thus each preprocessor control line starts with either a literal string or
5187 the character '*':
5188
5189
5190 @itemize *
5191
5192 @item
5193 A literal string is the file name (without directory information) of the source
5194 file that will be input to the preprocessor.
5195
5196 @item
5197 The character '*' is a wild-card indicator; the additional parameters on the line
5198 indicate the preprocessing for all the sources
5199 that are not specified explicitly on other lines (the order of the lines is not
5200 significant).
5201 @end itemize
5202
5203 It is an error to have two lines with the same file name or two
5204 lines starting with the character '*'.
5205
5206 After the file name or '*', an optional literal string specifies the name of
5207 the definition file to be used for preprocessing
5208 (@ref{ac,,Form of Definitions File}). The definition files are found by the
5209 compiler in one of the source directories. In some cases, when compiling
5210 a source in a directory other than the current directory, if the definition
5211 file is in the current directory, it may be necessary to add the current
5212 directory as a source directory through the @code{-I} switch; otherwise
5213 the compiler would not find the definition file.
5214
5215 Finally, switches similar to those of @code{gnatprep} may optionally appear:
5216
5217
5218 @table @asis
5219
5220 @item @code{-b}
5221
5222 Causes both preprocessor lines and the lines deleted by
5223 preprocessing to be replaced by blank lines, preserving the line number.
5224 This switch is always implied; however, if specified after @code{-c}
5225 it cancels the effect of @code{-c}.
5226
5227 @item @code{-c}
5228
5229 Causes both preprocessor lines and the lines deleted
5230 by preprocessing to be retained as comments marked
5231 with the special string '@cite{--!}'.
5232
5233 @item @code{-D@emph{symbol}=@emph{new_value}}
5234
5235 Define or redefine @code{symbol} to have @code{new_value} as its value.
5236 The permitted form for @code{symbol} is either an Ada identifier, or any Ada reserved word
5237 aside from @code{if},
5238 @code{else}, @code{elsif}, @code{end}, @code{and}, @code{or} and @code{then}.
5239 The permitted form for @code{new_value} is a literal string, an Ada identifier or any Ada reserved
5240 word. A symbol declared with this switch replaces a symbol with the
5241 same name defined in a definition file.
5242
5243 @item @code{-s}
5244
5245 Causes a sorted list of symbol names and values to be
5246 listed on the standard output file.
5247
5248 @item @code{-u}
5249
5250 Causes undefined symbols to be treated as having the value @code{FALSE}
5251 in the context
5252 of a preprocessor test. In the absence of this option, an undefined symbol in
5253 a @code{#if} or @code{#elsif} test will be treated as an error.
5254 @end table
5255 @end table
5256
5257 @geindex -gnateD (gcc)
5258
5259
5260 @table @asis
5261
5262 @item @code{-gnateD@emph{symbol}[=@emph{new_value}]}
5263
5264 Define or redefine @code{symbol} to have @code{new_value} as its value. If no value
5265 is supplied, then the value of @code{symbol} is @code{True}.
5266 The form of @code{symbol} is an identifier, following normal Ada (case-insensitive)
5267 rules for its syntax, and @code{new_value} is either an arbitrary string between double
5268 quotes or any sequence (including an empty sequence) of characters from the
5269 set (letters, digits, period, underline).
5270 Ada reserved words may be used as symbols, with the exceptions of @code{if},
5271 @code{else}, @code{elsif}, @code{end}, @code{and}, @code{or} and @code{then}.
5272
5273 Examples:
5274
5275 @quotation
5276
5277 @example
5278 -gnateDToto=Tata
5279 -gnateDFoo
5280 -gnateDFoo=\"Foo-Bar\"
5281 @end example
5282 @end quotation
5283
5284 A symbol declared with this switch on the command line replaces a
5285 symbol with the same name either in a definition file or specified with a
5286 switch @code{-D} in the preprocessor data file.
5287
5288 This switch is similar to switch @code{-D} of @code{gnatprep}.
5289
5290 @item @code{-gnateG}
5291
5292 When integrated preprocessing is performed on source file @code{filename.extension},
5293 create or overwrite @code{filename.extension.prep} to contain
5294 the result of the preprocessing.
5295 For example if the source file is @code{foo.adb} then
5296 the output file will be @code{foo.adb.prep}.
5297 @end table
5298
5299 @node Mixed Language Programming,GNAT and Other Compilation Models,Conditional Compilation,The GNAT Compilation Model
5300 @anchor{gnat_ugn/the_gnat_compilation_model mixed-language-programming}@anchor{44}@anchor{gnat_ugn/the_gnat_compilation_model id61}@anchor{b1}
5301 @section Mixed Language Programming
5302
5303
5304 @geindex Mixed Language Programming
5305
5306 This section describes how to develop a mixed-language program,
5307 with a focus on combining Ada with C or C++.
5308
5309 @menu
5310 * Interfacing to C::
5311 * Calling Conventions::
5312 * Building Mixed Ada and C++ Programs::
5313 * Generating Ada Bindings for C and C++ headers::
5314 * Generating C Headers for Ada Specifications::
5315
5316 @end menu
5317
5318 @node Interfacing to C,Calling Conventions,,Mixed Language Programming
5319 @anchor{gnat_ugn/the_gnat_compilation_model interfacing-to-c}@anchor{b2}@anchor{gnat_ugn/the_gnat_compilation_model id62}@anchor{b3}
5320 @subsection Interfacing to C
5321
5322
5323 Interfacing Ada with a foreign language such as C involves using
5324 compiler directives to import and/or export entity definitions in each
5325 language -- using @code{extern} statements in C, for instance, and the
5326 @code{Import}, @code{Export}, and @code{Convention} pragmas in Ada.
5327 A full treatment of these topics is provided in Appendix B, section 1
5328 of the Ada Reference Manual.
5329
5330 There are two ways to build a program using GNAT that contains some Ada
5331 sources and some foreign language sources, depending on whether or not
5332 the main subprogram is written in Ada. Here is a source example with
5333 the main subprogram in Ada:
5334
5335 @example
5336 /* file1.c */
5337 #include <stdio.h>
5338
5339 void print_num (int num)
5340 @{
5341 printf ("num is %d.\\n", num);
5342 return;
5343 @}
5344 @end example
5345
5346 @example
5347 /* file2.c */
5348
5349 /* num_from_Ada is declared in my_main.adb */
5350 extern int num_from_Ada;
5351
5352 int get_num (void)
5353 @{
5354 return num_from_Ada;
5355 @}
5356 @end example
5357
5358 @example
5359 -- my_main.adb
5360 procedure My_Main is
5361
5362 -- Declare then export an Integer entity called num_from_Ada
5363 My_Num : Integer := 10;
5364 pragma Export (C, My_Num, "num_from_Ada");
5365
5366 -- Declare an Ada function spec for Get_Num, then use
5367 -- C function get_num for the implementation.
5368 function Get_Num return Integer;
5369 pragma Import (C, Get_Num, "get_num");
5370
5371 -- Declare an Ada procedure spec for Print_Num, then use
5372 -- C function print_num for the implementation.
5373 procedure Print_Num (Num : Integer);
5374 pragma Import (C, Print_Num, "print_num");
5375
5376 begin
5377 Print_Num (Get_Num);
5378 end My_Main;
5379 @end example
5380
5381 To build this example:
5382
5383
5384 @itemize *
5385
5386 @item
5387 First compile the foreign language files to
5388 generate object files:
5389
5390 @example
5391 $ gcc -c file1.c
5392 $ gcc -c file2.c
5393 @end example
5394
5395 @item
5396 Then, compile the Ada units to produce a set of object files and ALI
5397 files:
5398
5399 @example
5400 $ gnatmake -c my_main.adb
5401 @end example
5402
5403 @item
5404 Run the Ada binder on the Ada main program:
5405
5406 @example
5407 $ gnatbind my_main.ali
5408 @end example
5409
5410 @item
5411 Link the Ada main program, the Ada objects and the other language
5412 objects:
5413
5414 @example
5415 $ gnatlink my_main.ali file1.o file2.o
5416 @end example
5417 @end itemize
5418
5419 The last three steps can be grouped in a single command:
5420
5421 @example
5422 $ gnatmake my_main.adb -largs file1.o file2.o
5423 @end example
5424
5425 @geindex Binder output file
5426
5427 If the main program is in a language other than Ada, then you may have
5428 more than one entry point into the Ada subsystem. You must use a special
5429 binder option to generate callable routines that initialize and
5430 finalize the Ada units (@ref{b4,,Binding with Non-Ada Main Programs}).
5431 Calls to the initialization and finalization routines must be inserted
5432 in the main program, or some other appropriate point in the code. The
5433 call to initialize the Ada units must occur before the first Ada
5434 subprogram is called, and the call to finalize the Ada units must occur
5435 after the last Ada subprogram returns. The binder will place the
5436 initialization and finalization subprograms into the
5437 @code{b~xxx.adb} file where they can be accessed by your C
5438 sources. To illustrate, we have the following example:
5439
5440 @example
5441 /* main.c */
5442 extern void adainit (void);
5443 extern void adafinal (void);
5444 extern int add (int, int);
5445 extern int sub (int, int);
5446
5447 int main (int argc, char *argv[])
5448 @{
5449 int a = 21, b = 7;
5450
5451 adainit();
5452
5453 /* Should print "21 + 7 = 28" */
5454 printf ("%d + %d = %d\\n", a, b, add (a, b));
5455
5456 /* Should print "21 - 7 = 14" */
5457 printf ("%d - %d = %d\\n", a, b, sub (a, b));
5458
5459 adafinal();
5460 @}
5461 @end example
5462
5463 @example
5464 -- unit1.ads
5465 package Unit1 is
5466 function Add (A, B : Integer) return Integer;
5467 pragma Export (C, Add, "add");
5468 end Unit1;
5469 @end example
5470
5471 @example
5472 -- unit1.adb
5473 package body Unit1 is
5474 function Add (A, B : Integer) return Integer is
5475 begin
5476 return A + B;
5477 end Add;
5478 end Unit1;
5479 @end example
5480
5481 @example
5482 -- unit2.ads
5483 package Unit2 is
5484 function Sub (A, B : Integer) return Integer;
5485 pragma Export (C, Sub, "sub");
5486 end Unit2;
5487 @end example
5488
5489 @example
5490 -- unit2.adb
5491 package body Unit2 is
5492 function Sub (A, B : Integer) return Integer is
5493 begin
5494 return A - B;
5495 end Sub;
5496 end Unit2;
5497 @end example
5498
5499 The build procedure for this application is similar to the last
5500 example's:
5501
5502
5503 @itemize *
5504
5505 @item
5506 First, compile the foreign language files to generate object files:
5507
5508 @example
5509 $ gcc -c main.c
5510 @end example
5511
5512 @item
5513 Next, compile the Ada units to produce a set of object files and ALI
5514 files:
5515
5516 @example
5517 $ gnatmake -c unit1.adb
5518 $ gnatmake -c unit2.adb
5519 @end example
5520
5521 @item
5522 Run the Ada binder on every generated ALI file. Make sure to use the
5523 @code{-n} option to specify a foreign main program:
5524
5525 @example
5526 $ gnatbind -n unit1.ali unit2.ali
5527 @end example
5528
5529 @item
5530 Link the Ada main program, the Ada objects and the foreign language
5531 objects. You need only list the last ALI file here:
5532
5533 @example
5534 $ gnatlink unit2.ali main.o -o exec_file
5535 @end example
5536
5537 This procedure yields a binary executable called @code{exec_file}.
5538 @end itemize
5539
5540 Depending on the circumstances (for example when your non-Ada main object
5541 does not provide symbol @code{main}), you may also need to instruct the
5542 GNAT linker not to include the standard startup objects by passing the
5543 @code{-nostartfiles} switch to @code{gnatlink}.
5544
5545 @node Calling Conventions,Building Mixed Ada and C++ Programs,Interfacing to C,Mixed Language Programming
5546 @anchor{gnat_ugn/the_gnat_compilation_model calling-conventions}@anchor{b5}@anchor{gnat_ugn/the_gnat_compilation_model id63}@anchor{b6}
5547 @subsection Calling Conventions
5548
5549
5550 @geindex Foreign Languages
5551
5552 @geindex Calling Conventions
5553
5554 GNAT follows standard calling sequence conventions and will thus interface
5555 to any other language that also follows these conventions. The following
5556 Convention identifiers are recognized by GNAT:
5557
5558 @geindex Interfacing to Ada
5559
5560 @geindex Other Ada compilers
5561
5562 @geindex Convention Ada
5563
5564
5565 @table @asis
5566
5567 @item @code{Ada}
5568
5569 This indicates that the standard Ada calling sequence will be
5570 used and all Ada data items may be passed without any limitations in the
5571 case where GNAT is used to generate both the caller and callee. It is also
5572 possible to mix GNAT generated code and code generated by another Ada
5573 compiler. In this case, the data types should be restricted to simple
5574 cases, including primitive types. Whether complex data types can be passed
5575 depends on the situation. Probably it is safe to pass simple arrays, such
5576 as arrays of integers or floats. Records may or may not work, depending
5577 on whether both compilers lay them out identically. Complex structures
5578 involving variant records, access parameters, tasks, or protected types,
5579 are unlikely to be able to be passed.
5580
5581 Note that in the case of GNAT running
5582 on a platform that supports HP Ada 83, a higher degree of compatibility
5583 can be guaranteed, and in particular records are laid out in an identical
5584 manner in the two compilers. Note also that if output from two different
5585 compilers is mixed, the program is responsible for dealing with elaboration
5586 issues. Probably the safest approach is to write the main program in the
5587 version of Ada other than GNAT, so that it takes care of its own elaboration
5588 requirements, and then call the GNAT-generated adainit procedure to ensure
5589 elaboration of the GNAT components. Consult the documentation of the other
5590 Ada compiler for further details on elaboration.
5591
5592 However, it is not possible to mix the tasking run time of GNAT and
5593 HP Ada 83, All the tasking operations must either be entirely within
5594 GNAT compiled sections of the program, or entirely within HP Ada 83
5595 compiled sections of the program.
5596 @end table
5597
5598 @geindex Interfacing to Assembly
5599
5600 @geindex Convention Assembler
5601
5602
5603 @table @asis
5604
5605 @item @code{Assembler}
5606
5607 Specifies assembler as the convention. In practice this has the
5608 same effect as convention Ada (but is not equivalent in the sense of being
5609 considered the same convention).
5610 @end table
5611
5612 @geindex Convention Asm
5613
5614 @geindex Asm
5615
5616
5617 @table @asis
5618
5619 @item @code{Asm}
5620
5621 Equivalent to Assembler.
5622
5623 @geindex Interfacing to COBOL
5624
5625 @geindex Convention COBOL
5626 @end table
5627
5628 @geindex COBOL
5629
5630
5631 @table @asis
5632
5633 @item @code{COBOL}
5634
5635 Data will be passed according to the conventions described
5636 in section B.4 of the Ada Reference Manual.
5637 @end table
5638
5639 @geindex C
5640
5641 @geindex Interfacing to C
5642
5643 @geindex Convention C
5644
5645
5646 @table @asis
5647
5648 @item @code{C}
5649
5650 Data will be passed according to the conventions described
5651 in section B.3 of the Ada Reference Manual.
5652
5653 A note on interfacing to a C 'varargs' function:
5654
5655 @quotation
5656
5657 @geindex C varargs function
5658
5659 @geindex Interfacing to C varargs function
5660
5661 @geindex varargs function interfaces
5662
5663 In C, @code{varargs} allows a function to take a variable number of
5664 arguments. There is no direct equivalent in this to Ada. One
5665 approach that can be used is to create a C wrapper for each
5666 different profile and then interface to this C wrapper. For
5667 example, to print an @code{int} value using @code{printf},
5668 create a C function @code{printfi} that takes two arguments, a
5669 pointer to a string and an int, and calls @code{printf}.
5670 Then in the Ada program, use pragma @code{Import} to
5671 interface to @code{printfi}.
5672
5673 It may work on some platforms to directly interface to
5674 a @code{varargs} function by providing a specific Ada profile
5675 for a particular call. However, this does not work on
5676 all platforms, since there is no guarantee that the
5677 calling sequence for a two argument normal C function
5678 is the same as for calling a @code{varargs} C function with
5679 the same two arguments.
5680 @end quotation
5681 @end table
5682
5683 @geindex Convention Default
5684
5685 @geindex Default
5686
5687
5688 @table @asis
5689
5690 @item @code{Default}
5691
5692 Equivalent to C.
5693 @end table
5694
5695 @geindex Convention External
5696
5697 @geindex External
5698
5699
5700 @table @asis
5701
5702 @item @code{External}
5703
5704 Equivalent to C.
5705 @end table
5706
5707 @geindex C++
5708
5709 @geindex Interfacing to C++
5710
5711 @geindex Convention C++
5712
5713
5714 @table @asis
5715
5716 @item @code{C_Plus_Plus} (or @code{CPP})
5717
5718 This stands for C++. For most purposes this is identical to C.
5719 See the separate description of the specialized GNAT pragmas relating to
5720 C++ interfacing for further details.
5721 @end table
5722
5723 @geindex Fortran
5724
5725 @geindex Interfacing to Fortran
5726
5727 @geindex Convention Fortran
5728
5729
5730 @table @asis
5731
5732 @item @code{Fortran}
5733
5734 Data will be passed according to the conventions described
5735 in section B.5 of the Ada Reference Manual.
5736
5737 @item @code{Intrinsic}
5738
5739 This applies to an intrinsic operation, as defined in the Ada
5740 Reference Manual. If a pragma Import (Intrinsic) applies to a subprogram,
5741 this means that the body of the subprogram is provided by the compiler itself,
5742 usually by means of an efficient code sequence, and that the user does not
5743 supply an explicit body for it. In an application program, the pragma may
5744 be applied to the following sets of names:
5745
5746
5747 @itemize *
5748
5749 @item
5750 Rotate_Left, Rotate_Right, Shift_Left, Shift_Right, Shift_Right_Arithmetic.
5751 The corresponding subprogram declaration must have
5752 two formal parameters. The
5753 first one must be a signed integer type or a modular type with a binary
5754 modulus, and the second parameter must be of type Natural.
5755 The return type must be the same as the type of the first argument. The size
5756 of this type can only be 8, 16, 32, or 64.
5757
5758 @item
5759 Binary arithmetic operators: '+', '-', '*', '/'.
5760 The corresponding operator declaration must have parameters and result type
5761 that have the same root numeric type (for example, all three are long_float
5762 types). This simplifies the definition of operations that use type checking
5763 to perform dimensional checks:
5764 @end itemize
5765
5766 @example
5767 type Distance is new Long_Float;
5768 type Time is new Long_Float;
5769 type Velocity is new Long_Float;
5770 function "/" (D : Distance; T : Time)
5771 return Velocity;
5772 pragma Import (Intrinsic, "/");
5773
5774 This common idiom is often programmed with a generic definition and an
5775 explicit body. The pragma makes it simpler to introduce such declarations.
5776 It incurs no overhead in compilation time or code size, because it is
5777 implemented as a single machine instruction.
5778 @end example
5779
5780
5781 @itemize *
5782
5783 @item
5784 General subprogram entities. This is used to bind an Ada subprogram
5785 declaration to
5786 a compiler builtin by name with back-ends where such interfaces are
5787 available. A typical example is the set of @code{__builtin} functions
5788 exposed by the GCC back-end, as in the following example:
5789
5790 @example
5791 function builtin_sqrt (F : Float) return Float;
5792 pragma Import (Intrinsic, builtin_sqrt, "__builtin_sqrtf");
5793 @end example
5794
5795 Most of the GCC builtins are accessible this way, and as for other
5796 import conventions (e.g. C), it is the user's responsibility to ensure
5797 that the Ada subprogram profile matches the underlying builtin
5798 expectations.
5799 @end itemize
5800 @end table
5801
5802 @geindex Stdcall
5803
5804 @geindex Convention Stdcall
5805
5806
5807 @table @asis
5808
5809 @item @code{Stdcall}
5810
5811 This is relevant only to Windows implementations of GNAT,
5812 and specifies that the @code{Stdcall} calling sequence will be used,
5813 as defined by the NT API. Nevertheless, to ease building
5814 cross-platform bindings this convention will be handled as a @code{C} calling
5815 convention on non-Windows platforms.
5816 @end table
5817
5818 @geindex DLL
5819
5820 @geindex Convention DLL
5821
5822
5823 @table @asis
5824
5825 @item @code{DLL}
5826
5827 This is equivalent to @code{Stdcall}.
5828 @end table
5829
5830 @geindex Win32
5831
5832 @geindex Convention Win32
5833
5834
5835 @table @asis
5836
5837 @item @code{Win32}
5838
5839 This is equivalent to @code{Stdcall}.
5840 @end table
5841
5842 @geindex Stubbed
5843
5844 @geindex Convention Stubbed
5845
5846
5847 @table @asis
5848
5849 @item @code{Stubbed}
5850
5851 This is a special convention that indicates that the compiler
5852 should provide a stub body that raises @code{Program_Error}.
5853 @end table
5854
5855 GNAT additionally provides a useful pragma @code{Convention_Identifier}
5856 that can be used to parameterize conventions and allow additional synonyms
5857 to be specified. For example if you have legacy code in which the convention
5858 identifier Fortran77 was used for Fortran, you can use the configuration
5859 pragma:
5860
5861 @example
5862 pragma Convention_Identifier (Fortran77, Fortran);
5863 @end example
5864
5865 And from now on the identifier Fortran77 may be used as a convention
5866 identifier (for example in an @code{Import} pragma) with the same
5867 meaning as Fortran.
5868
5869 @node Building Mixed Ada and C++ Programs,Generating Ada Bindings for C and C++ headers,Calling Conventions,Mixed Language Programming
5870 @anchor{gnat_ugn/the_gnat_compilation_model id64}@anchor{b7}@anchor{gnat_ugn/the_gnat_compilation_model building-mixed-ada-and-c-programs}@anchor{b8}
5871 @subsection Building Mixed Ada and C++ Programs
5872
5873
5874 A programmer inexperienced with mixed-language development may find that
5875 building an application containing both Ada and C++ code can be a
5876 challenge. This section gives a few hints that should make this task easier.
5877
5878 @menu
5879 * Interfacing to C++::
5880 * Linking a Mixed C++ & Ada Program::
5881 * A Simple Example::
5882 * Interfacing with C++ constructors::
5883 * Interfacing with C++ at the Class Level::
5884
5885 @end menu
5886
5887 @node Interfacing to C++,Linking a Mixed C++ & Ada Program,,Building Mixed Ada and C++ Programs
5888 @anchor{gnat_ugn/the_gnat_compilation_model id65}@anchor{b9}@anchor{gnat_ugn/the_gnat_compilation_model id66}@anchor{ba}
5889 @subsubsection Interfacing to C++
5890
5891
5892 GNAT supports interfacing with the G++ compiler (or any C++ compiler
5893 generating code that is compatible with the G++ Application Binary
5894 Interface ---see @indicateurl{http://www.codesourcery.com/archives/cxx-abi}).
5895
5896 Interfacing can be done at 3 levels: simple data, subprograms, and
5897 classes. In the first two cases, GNAT offers a specific @code{Convention C_Plus_Plus}
5898 (or @code{CPP}) that behaves exactly like @code{Convention C}.
5899 Usually, C++ mangles the names of subprograms. To generate proper mangled
5900 names automatically, see @ref{19,,Generating Ada Bindings for C and C++ headers}).
5901 This problem can also be addressed manually in two ways:
5902
5903
5904 @itemize *
5905
5906 @item
5907 by modifying the C++ code in order to force a C convention using
5908 the @code{extern "C"} syntax.
5909
5910 @item
5911 by figuring out the mangled name (using e.g. @code{nm}) and using it as the
5912 Link_Name argument of the pragma import.
5913 @end itemize
5914
5915 Interfacing at the class level can be achieved by using the GNAT specific
5916 pragmas such as @code{CPP_Constructor}. See the @cite{GNAT_Reference_Manual} for additional information.
5917
5918 @node Linking a Mixed C++ & Ada Program,A Simple Example,Interfacing to C++,Building Mixed Ada and C++ Programs
5919 @anchor{gnat_ugn/the_gnat_compilation_model linking-a-mixed-c-ada-program}@anchor{bb}@anchor{gnat_ugn/the_gnat_compilation_model linking-a-mixed-c-and-ada-program}@anchor{bc}
5920 @subsubsection Linking a Mixed C++ & Ada Program
5921
5922
5923 Usually the linker of the C++ development system must be used to link
5924 mixed applications because most C++ systems will resolve elaboration
5925 issues (such as calling constructors on global class instances)
5926 transparently during the link phase. GNAT has been adapted to ease the
5927 use of a foreign linker for the last phase. Three cases can be
5928 considered:
5929
5930
5931 @itemize *
5932
5933 @item
5934 Using GNAT and G++ (GNU C++ compiler) from the same GCC installation:
5935 The C++ linker can simply be called by using the C++ specific driver
5936 called @code{g++}.
5937
5938 Note that if the C++ code uses inline functions, you will need to
5939 compile your C++ code with the @code{-fkeep-inline-functions} switch in
5940 order to provide an existing function implementation that the Ada code can
5941 link with.
5942
5943 @example
5944 $ g++ -c -fkeep-inline-functions file1.C
5945 $ g++ -c -fkeep-inline-functions file2.C
5946 $ gnatmake ada_unit -largs file1.o file2.o --LINK=g++
5947 @end example
5948
5949 @item
5950 Using GNAT and G++ from two different GCC installations: If both
5951 compilers are on the :envvar`PATH`, the previous method may be used. It is
5952 important to note that environment variables such as
5953 @geindex C_INCLUDE_PATH
5954 @geindex environment variable; C_INCLUDE_PATH
5955 @code{C_INCLUDE_PATH},
5956 @geindex GCC_EXEC_PREFIX
5957 @geindex environment variable; GCC_EXEC_PREFIX
5958 @code{GCC_EXEC_PREFIX},
5959 @geindex BINUTILS_ROOT
5960 @geindex environment variable; BINUTILS_ROOT
5961 @code{BINUTILS_ROOT}, and
5962 @geindex GCC_ROOT
5963 @geindex environment variable; GCC_ROOT
5964 @code{GCC_ROOT} will affect both compilers
5965 at the same time and may make one of the two compilers operate
5966 improperly if set during invocation of the wrong compiler. It is also
5967 very important that the linker uses the proper @code{libgcc.a} GCC
5968 library -- that is, the one from the C++ compiler installation. The
5969 implicit link command as suggested in the @code{gnatmake} command
5970 from the former example can be replaced by an explicit link command with
5971 the full-verbosity option in order to verify which library is used:
5972
5973 @example
5974 $ gnatbind ada_unit
5975 $ gnatlink -v -v ada_unit file1.o file2.o --LINK=c++
5976 @end example
5977
5978 If there is a problem due to interfering environment variables, it can
5979 be worked around by using an intermediate script. The following example
5980 shows the proper script to use when GNAT has not been installed at its
5981 default location and g++ has been installed at its default location:
5982
5983 @example
5984 $ cat ./my_script
5985 #!/bin/sh
5986 unset BINUTILS_ROOT
5987 unset GCC_ROOT
5988 c++ $*
5989 $ gnatlink -v -v ada_unit file1.o file2.o --LINK=./my_script
5990 @end example
5991
5992 @item
5993 Using a non-GNU C++ compiler: The commands previously described can be
5994 used to insure that the C++ linker is used. Nonetheless, you need to add
5995 a few more parameters to the link command line, depending on the exception
5996 mechanism used.
5997
5998 If the @code{setjmp} / @code{longjmp} exception mechanism is used, only the paths
5999 to the @code{libgcc} libraries are required:
6000
6001 @example
6002 $ cat ./my_script
6003 #!/bin/sh
6004 CC $* gcc -print-file-name=libgcc.a gcc -print-file-name=libgcc_eh.a
6005 $ gnatlink ada_unit file1.o file2.o --LINK=./my_script
6006 @end example
6007
6008 where CC is the name of the non-GNU C++ compiler.
6009
6010 If the "zero cost" exception mechanism is used, and the platform
6011 supports automatic registration of exception tables (e.g., Solaris),
6012 paths to more objects are required:
6013
6014 @example
6015 $ cat ./my_script
6016 #!/bin/sh
6017 CC gcc -print-file-name=crtbegin.o $* \\
6018 gcc -print-file-name=libgcc.a gcc -print-file-name=libgcc_eh.a \\
6019 gcc -print-file-name=crtend.o
6020 $ gnatlink ada_unit file1.o file2.o --LINK=./my_script
6021 @end example
6022
6023 If the "zero cost exception" mechanism is used, and the platform
6024 doesn't support automatic registration of exception tables (e.g., HP-UX
6025 or AIX), the simple approach described above will not work and
6026 a pre-linking phase using GNAT will be necessary.
6027 @end itemize
6028
6029 Another alternative is to use the @code{gprbuild} multi-language builder
6030 which has a large knowledge base and knows how to link Ada and C++ code
6031 together automatically in most cases.
6032
6033 @node A Simple Example,Interfacing with C++ constructors,Linking a Mixed C++ & Ada Program,Building Mixed Ada and C++ Programs
6034 @anchor{gnat_ugn/the_gnat_compilation_model id67}@anchor{bd}@anchor{gnat_ugn/the_gnat_compilation_model a-simple-example}@anchor{be}
6035 @subsubsection A Simple Example
6036
6037
6038 The following example, provided as part of the GNAT examples, shows how
6039 to achieve procedural interfacing between Ada and C++ in both
6040 directions. The C++ class A has two methods. The first method is exported
6041 to Ada by the means of an extern C wrapper function. The second method
6042 calls an Ada subprogram. On the Ada side, The C++ calls are modelled by
6043 a limited record with a layout comparable to the C++ class. The Ada
6044 subprogram, in turn, calls the C++ method. So, starting from the C++
6045 main program, the process passes back and forth between the two
6046 languages.
6047
6048 Here are the compilation commands:
6049
6050 @example
6051 $ gnatmake -c simple_cpp_interface
6052 $ g++ -c cpp_main.C
6053 $ g++ -c ex7.C
6054 $ gnatbind -n simple_cpp_interface
6055 $ gnatlink simple_cpp_interface -o cpp_main --LINK=g++ -lstdc++ ex7.o cpp_main.o
6056 @end example
6057
6058 Here are the corresponding sources:
6059
6060 @example
6061 //cpp_main.C
6062
6063 #include "ex7.h"
6064
6065 extern "C" @{
6066 void adainit (void);
6067 void adafinal (void);
6068 void method1 (A *t);
6069 @}
6070
6071 void method1 (A *t)
6072 @{
6073 t->method1 ();
6074 @}
6075
6076 int main ()
6077 @{
6078 A obj;
6079 adainit ();
6080 obj.method2 (3030);
6081 adafinal ();
6082 @}
6083 @end example
6084
6085 @example
6086 //ex7.h
6087
6088 class Origin @{
6089 public:
6090 int o_value;
6091 @};
6092 class A : public Origin @{
6093 public:
6094 void method1 (void);
6095 void method2 (int v);
6096 A();
6097 int a_value;
6098 @};
6099 @end example
6100
6101 @example
6102 //ex7.C
6103
6104 #include "ex7.h"
6105 #include <stdio.h>
6106
6107 extern "C" @{ void ada_method2 (A *t, int v);@}
6108
6109 void A::method1 (void)
6110 @{
6111 a_value = 2020;
6112 printf ("in A::method1, a_value = %d \\n",a_value);
6113 @}
6114
6115 void A::method2 (int v)
6116 @{
6117 ada_method2 (this, v);
6118 printf ("in A::method2, a_value = %d \\n",a_value);
6119 @}
6120
6121 A::A(void)
6122 @{
6123 a_value = 1010;
6124 printf ("in A::A, a_value = %d \\n",a_value);
6125 @}
6126 @end example
6127
6128 @example
6129 -- simple_cpp_interface.ads
6130 with System;
6131 package Simple_Cpp_Interface is
6132 type A is limited
6133 record
6134 Vptr : System.Address;
6135 O_Value : Integer;
6136 A_Value : Integer;
6137 end record;
6138 pragma Convention (C, A);
6139
6140 procedure Method1 (This : in out A);
6141 pragma Import (C, Method1);
6142
6143 procedure Ada_Method2 (This : in out A; V : Integer);
6144 pragma Export (C, Ada_Method2);
6145
6146 end Simple_Cpp_Interface;
6147 @end example
6148
6149 @example
6150 -- simple_cpp_interface.adb
6151 package body Simple_Cpp_Interface is
6152
6153 procedure Ada_Method2 (This : in out A; V : Integer) is
6154 begin
6155 Method1 (This);
6156 This.A_Value := V;
6157 end Ada_Method2;
6158
6159 end Simple_Cpp_Interface;
6160 @end example
6161
6162 @node Interfacing with C++ constructors,Interfacing with C++ at the Class Level,A Simple Example,Building Mixed Ada and C++ Programs
6163 @anchor{gnat_ugn/the_gnat_compilation_model id68}@anchor{bf}@anchor{gnat_ugn/the_gnat_compilation_model interfacing-with-c-constructors}@anchor{c0}
6164 @subsubsection Interfacing with C++ constructors
6165
6166
6167 In order to interface with C++ constructors GNAT provides the
6168 @code{pragma CPP_Constructor} (see the @cite{GNAT_Reference_Manual}
6169 for additional information).
6170 In this section we present some common uses of C++ constructors
6171 in mixed-languages programs in GNAT.
6172
6173 Let us assume that we need to interface with the following
6174 C++ class:
6175
6176 @example
6177 class Root @{
6178 public:
6179 int a_value;
6180 int b_value;
6181 virtual int Get_Value ();
6182 Root(); // Default constructor
6183 Root(int v); // 1st non-default constructor
6184 Root(int v, int w); // 2nd non-default constructor
6185 @};
6186 @end example
6187
6188 For this purpose we can write the following package spec (further
6189 information on how to build this spec is available in
6190 @ref{c1,,Interfacing with C++ at the Class Level} and
6191 @ref{19,,Generating Ada Bindings for C and C++ headers}).
6192
6193 @example
6194 with Interfaces.C; use Interfaces.C;
6195 package Pkg_Root is
6196 type Root is tagged limited record
6197 A_Value : int;
6198 B_Value : int;
6199 end record;
6200 pragma Import (CPP, Root);
6201
6202 function Get_Value (Obj : Root) return int;
6203 pragma Import (CPP, Get_Value);
6204
6205 function Constructor return Root;
6206 pragma Cpp_Constructor (Constructor, "_ZN4RootC1Ev");
6207
6208 function Constructor (v : Integer) return Root;
6209 pragma Cpp_Constructor (Constructor, "_ZN4RootC1Ei");
6210
6211 function Constructor (v, w : Integer) return Root;
6212 pragma Cpp_Constructor (Constructor, "_ZN4RootC1Eii");
6213 end Pkg_Root;
6214 @end example
6215
6216 On the Ada side the constructor is represented by a function (whose
6217 name is arbitrary) that returns the classwide type corresponding to
6218 the imported C++ class. Although the constructor is described as a
6219 function, it is typically a procedure with an extra implicit argument
6220 (the object being initialized) at the implementation level. GNAT
6221 issues the appropriate call, whatever it is, to get the object
6222 properly initialized.
6223
6224 Constructors can only appear in the following contexts:
6225
6226
6227 @itemize *
6228
6229 @item
6230 On the right side of an initialization of an object of type @code{T}.
6231
6232 @item
6233 On the right side of an initialization of a record component of type @code{T}.
6234
6235 @item
6236 In an Ada 2005 limited aggregate.
6237
6238 @item
6239 In an Ada 2005 nested limited aggregate.
6240
6241 @item
6242 In an Ada 2005 limited aggregate that initializes an object built in
6243 place by an extended return statement.
6244 @end itemize
6245
6246 In a declaration of an object whose type is a class imported from C++,
6247 either the default C++ constructor is implicitly called by GNAT, or
6248 else the required C++ constructor must be explicitly called in the
6249 expression that initializes the object. For example:
6250
6251 @example
6252 Obj1 : Root;
6253 Obj2 : Root := Constructor;
6254 Obj3 : Root := Constructor (v => 10);
6255 Obj4 : Root := Constructor (30, 40);
6256 @end example
6257
6258 The first two declarations are equivalent: in both cases the default C++
6259 constructor is invoked (in the former case the call to the constructor is
6260 implicit, and in the latter case the call is explicit in the object
6261 declaration). @code{Obj3} is initialized by the C++ non-default constructor
6262 that takes an integer argument, and @code{Obj4} is initialized by the
6263 non-default C++ constructor that takes two integers.
6264
6265 Let us derive the imported C++ class in the Ada side. For example:
6266
6267 @example
6268 type DT is new Root with record
6269 C_Value : Natural := 2009;
6270 end record;
6271 @end example
6272
6273 In this case the components DT inherited from the C++ side must be
6274 initialized by a C++ constructor, and the additional Ada components
6275 of type DT are initialized by GNAT. The initialization of such an
6276 object is done either by default, or by means of a function returning
6277 an aggregate of type DT, or by means of an extension aggregate.
6278
6279 @example
6280 Obj5 : DT;
6281 Obj6 : DT := Function_Returning_DT (50);
6282 Obj7 : DT := (Constructor (30,40) with C_Value => 50);
6283 @end example
6284
6285 The declaration of @code{Obj5} invokes the default constructors: the
6286 C++ default constructor of the parent type takes care of the initialization
6287 of the components inherited from Root, and GNAT takes care of the default
6288 initialization of the additional Ada components of type DT (that is,
6289 @code{C_Value} is initialized to value 2009). The order of invocation of
6290 the constructors is consistent with the order of elaboration required by
6291 Ada and C++. That is, the constructor of the parent type is always called
6292 before the constructor of the derived type.
6293
6294 Let us now consider a record that has components whose type is imported
6295 from C++. For example:
6296
6297 @example
6298 type Rec1 is limited record
6299 Data1 : Root := Constructor (10);
6300 Value : Natural := 1000;
6301 end record;
6302
6303 type Rec2 (D : Integer := 20) is limited record
6304 Rec : Rec1;
6305 Data2 : Root := Constructor (D, 30);
6306 end record;
6307 @end example
6308
6309 The initialization of an object of type @code{Rec2} will call the
6310 non-default C++ constructors specified for the imported components.
6311 For example:
6312
6313 @example
6314 Obj8 : Rec2 (40);
6315 @end example
6316
6317 Using Ada 2005 we can use limited aggregates to initialize an object
6318 invoking C++ constructors that differ from those specified in the type
6319 declarations. For example:
6320
6321 @example
6322 Obj9 : Rec2 := (Rec => (Data1 => Constructor (15, 16),
6323 others => <>),
6324 others => <>);
6325 @end example
6326
6327 The above declaration uses an Ada 2005 limited aggregate to
6328 initialize @code{Obj9}, and the C++ constructor that has two integer
6329 arguments is invoked to initialize the @code{Data1} component instead
6330 of the constructor specified in the declaration of type @code{Rec1}. In
6331 Ada 2005 the box in the aggregate indicates that unspecified components
6332 are initialized using the expression (if any) available in the component
6333 declaration. That is, in this case discriminant @code{D} is initialized
6334 to value @code{20}, @code{Value} is initialized to value 1000, and the
6335 non-default C++ constructor that handles two integers takes care of
6336 initializing component @code{Data2} with values @code{20,30}.
6337
6338 In Ada 2005 we can use the extended return statement to build the Ada
6339 equivalent to C++ non-default constructors. For example:
6340
6341 @example
6342 function Constructor (V : Integer) return Rec2 is
6343 begin
6344 return Obj : Rec2 := (Rec => (Data1 => Constructor (V, 20),
6345 others => <>),
6346 others => <>) do
6347 -- Further actions required for construction of
6348 -- objects of type Rec2
6349 ...
6350 end record;
6351 end Constructor;
6352 @end example
6353
6354 In this example the extended return statement construct is used to
6355 build in place the returned object whose components are initialized
6356 by means of a limited aggregate. Any further action associated with
6357 the constructor can be placed inside the construct.
6358
6359 @node Interfacing with C++ at the Class Level,,Interfacing with C++ constructors,Building Mixed Ada and C++ Programs
6360 @anchor{gnat_ugn/the_gnat_compilation_model interfacing-with-c-at-the-class-level}@anchor{c1}@anchor{gnat_ugn/the_gnat_compilation_model id69}@anchor{c2}
6361 @subsubsection Interfacing with C++ at the Class Level
6362
6363
6364 In this section we demonstrate the GNAT features for interfacing with
6365 C++ by means of an example making use of Ada 2005 abstract interface
6366 types. This example consists of a classification of animals; classes
6367 have been used to model our main classification of animals, and
6368 interfaces provide support for the management of secondary
6369 classifications. We first demonstrate a case in which the types and
6370 constructors are defined on the C++ side and imported from the Ada
6371 side, and latter the reverse case.
6372
6373 The root of our derivation will be the @code{Animal} class, with a
6374 single private attribute (the @code{Age} of the animal), a constructor,
6375 and two public primitives to set and get the value of this attribute.
6376
6377 @example
6378 class Animal @{
6379 public:
6380 virtual void Set_Age (int New_Age);
6381 virtual int Age ();
6382 Animal() @{Age_Count = 0;@};
6383 private:
6384 int Age_Count;
6385 @};
6386 @end example
6387
6388 Abstract interface types are defined in C++ by means of classes with pure
6389 virtual functions and no data members. In our example we will use two
6390 interfaces that provide support for the common management of @code{Carnivore}
6391 and @code{Domestic} animals:
6392
6393 @example
6394 class Carnivore @{
6395 public:
6396 virtual int Number_Of_Teeth () = 0;
6397 @};
6398
6399 class Domestic @{
6400 public:
6401 virtual void Set_Owner (char* Name) = 0;
6402 @};
6403 @end example
6404
6405 Using these declarations, we can now say that a @code{Dog} is an animal that is
6406 both Carnivore and Domestic, that is:
6407
6408 @example
6409 class Dog : Animal, Carnivore, Domestic @{
6410 public:
6411 virtual int Number_Of_Teeth ();
6412 virtual void Set_Owner (char* Name);
6413
6414 Dog(); // Constructor
6415 private:
6416 int Tooth_Count;
6417 char *Owner;
6418 @};
6419 @end example
6420
6421 In the following examples we will assume that the previous declarations are
6422 located in a file named @code{animals.h}. The following package demonstrates
6423 how to import these C++ declarations from the Ada side:
6424
6425 @example
6426 with Interfaces.C.Strings; use Interfaces.C.Strings;
6427 package Animals is
6428 type Carnivore is limited interface;
6429 pragma Convention (C_Plus_Plus, Carnivore);
6430 function Number_Of_Teeth (X : Carnivore)
6431 return Natural is abstract;
6432
6433 type Domestic is limited interface;
6434 pragma Convention (C_Plus_Plus, Domestic);
6435 procedure Set_Owner
6436 (X : in out Domestic;
6437 Name : Chars_Ptr) is abstract;
6438
6439 type Animal is tagged limited record
6440 Age : Natural;
6441 end record;
6442 pragma Import (C_Plus_Plus, Animal);
6443
6444 procedure Set_Age (X : in out Animal; Age : Integer);
6445 pragma Import (C_Plus_Plus, Set_Age);
6446
6447 function Age (X : Animal) return Integer;
6448 pragma Import (C_Plus_Plus, Age);
6449
6450 function New_Animal return Animal;
6451 pragma CPP_Constructor (New_Animal);
6452 pragma Import (CPP, New_Animal, "_ZN6AnimalC1Ev");
6453
6454 type Dog is new Animal and Carnivore and Domestic with record
6455 Tooth_Count : Natural;
6456 Owner : Chars_Ptr;
6457 end record;
6458 pragma Import (C_Plus_Plus, Dog);
6459
6460 function Number_Of_Teeth (A : Dog) return Natural;
6461 pragma Import (C_Plus_Plus, Number_Of_Teeth);
6462
6463 procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);
6464 pragma Import (C_Plus_Plus, Set_Owner);
6465
6466 function New_Dog return Dog;
6467 pragma CPP_Constructor (New_Dog);
6468 pragma Import (CPP, New_Dog, "_ZN3DogC2Ev");
6469 end Animals;
6470 @end example
6471
6472 Thanks to the compatibility between GNAT run-time structures and the C++ ABI,
6473 interfacing with these C++ classes is easy. The only requirement is that all
6474 the primitives and components must be declared exactly in the same order in
6475 the two languages.
6476
6477 Regarding the abstract interfaces, we must indicate to the GNAT compiler by
6478 means of a @code{pragma Convention (C_Plus_Plus)}, the convention used to pass
6479 the arguments to the called primitives will be the same as for C++. For the
6480 imported classes we use @code{pragma Import} with convention @code{C_Plus_Plus}
6481 to indicate that they have been defined on the C++ side; this is required
6482 because the dispatch table associated with these tagged types will be built
6483 in the C++ side and therefore will not contain the predefined Ada primitives
6484 which Ada would otherwise expect.
6485
6486 As the reader can see there is no need to indicate the C++ mangled names
6487 associated with each subprogram because it is assumed that all the calls to
6488 these primitives will be dispatching calls. The only exception is the
6489 constructor, which must be registered with the compiler by means of
6490 @code{pragma CPP_Constructor} and needs to provide its associated C++
6491 mangled name because the Ada compiler generates direct calls to it.
6492
6493 With the above packages we can now declare objects of type Dog on the Ada side
6494 and dispatch calls to the corresponding subprograms on the C++ side. We can
6495 also extend the tagged type Dog with further fields and primitives, and
6496 override some of its C++ primitives on the Ada side. For example, here we have
6497 a type derivation defined on the Ada side that inherits all the dispatching
6498 primitives of the ancestor from the C++ side.
6499
6500 @example
6501 with Animals; use Animals;
6502 package Vaccinated_Animals is
6503 type Vaccinated_Dog is new Dog with null record;
6504 function Vaccination_Expired (A : Vaccinated_Dog) return Boolean;
6505 end Vaccinated_Animals;
6506 @end example
6507
6508 It is important to note that, because of the ABI compatibility, the programmer
6509 does not need to add any further information to indicate either the object
6510 layout or the dispatch table entry associated with each dispatching operation.
6511
6512 Now let us define all the types and constructors on the Ada side and export
6513 them to C++, using the same hierarchy of our previous example:
6514
6515 @example
6516 with Interfaces.C.Strings;
6517 use Interfaces.C.Strings;
6518 package Animals is
6519 type Carnivore is limited interface;
6520 pragma Convention (C_Plus_Plus, Carnivore);
6521 function Number_Of_Teeth (X : Carnivore)
6522 return Natural is abstract;
6523
6524 type Domestic is limited interface;
6525 pragma Convention (C_Plus_Plus, Domestic);
6526 procedure Set_Owner
6527 (X : in out Domestic;
6528 Name : Chars_Ptr) is abstract;
6529
6530 type Animal is tagged record
6531 Age : Natural;
6532 end record;
6533 pragma Convention (C_Plus_Plus, Animal);
6534
6535 procedure Set_Age (X : in out Animal; Age : Integer);
6536 pragma Export (C_Plus_Plus, Set_Age);
6537
6538 function Age (X : Animal) return Integer;
6539 pragma Export (C_Plus_Plus, Age);
6540
6541 function New_Animal return Animal'Class;
6542 pragma Export (C_Plus_Plus, New_Animal);
6543
6544 type Dog is new Animal and Carnivore and Domestic with record
6545 Tooth_Count : Natural;
6546 Owner : String (1 .. 30);
6547 end record;
6548 pragma Convention (C_Plus_Plus, Dog);
6549
6550 function Number_Of_Teeth (A : Dog) return Natural;
6551 pragma Export (C_Plus_Plus, Number_Of_Teeth);
6552
6553 procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);
6554 pragma Export (C_Plus_Plus, Set_Owner);
6555
6556 function New_Dog return Dog'Class;
6557 pragma Export (C_Plus_Plus, New_Dog);
6558 end Animals;
6559 @end example
6560
6561 Compared with our previous example the only differences are the use of
6562 @code{pragma Convention} (instead of @code{pragma Import}), and the use of
6563 @code{pragma Export} to indicate to the GNAT compiler that the primitives will
6564 be available to C++. Thanks to the ABI compatibility, on the C++ side there is
6565 nothing else to be done; as explained above, the only requirement is that all
6566 the primitives and components are declared in exactly the same order.
6567
6568 For completeness, let us see a brief C++ main program that uses the
6569 declarations available in @code{animals.h} (presented in our first example) to
6570 import and use the declarations from the Ada side, properly initializing and
6571 finalizing the Ada run-time system along the way:
6572
6573 @example
6574 #include "animals.h"
6575 #include <iostream>
6576 using namespace std;
6577
6578 void Check_Carnivore (Carnivore *obj) @{...@}
6579 void Check_Domestic (Domestic *obj) @{...@}
6580 void Check_Animal (Animal *obj) @{...@}
6581 void Check_Dog (Dog *obj) @{...@}
6582
6583 extern "C" @{
6584 void adainit (void);
6585 void adafinal (void);
6586 Dog* new_dog ();
6587 @}
6588
6589 void test ()
6590 @{
6591 Dog *obj = new_dog(); // Ada constructor
6592 Check_Carnivore (obj); // Check secondary DT
6593 Check_Domestic (obj); // Check secondary DT
6594 Check_Animal (obj); // Check primary DT
6595 Check_Dog (obj); // Check primary DT
6596 @}
6597
6598 int main ()
6599 @{
6600 adainit (); test(); adafinal ();
6601 return 0;
6602 @}
6603 @end example
6604
6605 @node Generating Ada Bindings for C and C++ headers,Generating C Headers for Ada Specifications,Building Mixed Ada and C++ Programs,Mixed Language Programming
6606 @anchor{gnat_ugn/the_gnat_compilation_model id70}@anchor{c3}@anchor{gnat_ugn/the_gnat_compilation_model generating-ada-bindings-for-c-and-c-headers}@anchor{19}
6607 @subsection Generating Ada Bindings for C and C++ headers
6608
6609
6610 @geindex Binding generation (for C and C++ headers)
6611
6612 @geindex C headers (binding generation)
6613
6614 @geindex C++ headers (binding generation)
6615
6616 GNAT includes a binding generator for C and C++ headers which is
6617 intended to do 95% of the tedious work of generating Ada specs from C
6618 or C++ header files.
6619
6620 Note that this capability is not intended to generate 100% correct Ada specs,
6621 and will is some cases require manual adjustments, although it can often
6622 be used out of the box in practice.
6623
6624 Some of the known limitations include:
6625
6626
6627 @itemize *
6628
6629 @item
6630 only very simple character constant macros are translated into Ada
6631 constants. Function macros (macros with arguments) are partially translated
6632 as comments, to be completed manually if needed.
6633
6634 @item
6635 some extensions (e.g. vector types) are not supported
6636
6637 @item
6638 pointers to pointers or complex structures are mapped to System.Address
6639
6640 @item
6641 identifiers with identical name (except casing) will generate compilation
6642 errors (e.g. @code{shm_get} vs @code{SHM_GET}).
6643 @end itemize
6644
6645 The code is generated using Ada 2012 syntax, which makes it easier to interface
6646 with other languages. In most cases you can still use the generated binding
6647 even if your code is compiled using earlier versions of Ada (e.g. @code{-gnat95}).
6648
6649 @menu
6650 * Running the Binding Generator::
6651 * Generating Bindings for C++ Headers::
6652 * Switches::
6653
6654 @end menu
6655
6656 @node Running the Binding Generator,Generating Bindings for C++ Headers,,Generating Ada Bindings for C and C++ headers
6657 @anchor{gnat_ugn/the_gnat_compilation_model id71}@anchor{c4}@anchor{gnat_ugn/the_gnat_compilation_model running-the-binding-generator}@anchor{c5}
6658 @subsubsection Running the Binding Generator
6659
6660
6661 The binding generator is part of the @code{gcc} compiler and can be
6662 invoked via the @code{-fdump-ada-spec} switch, which will generate Ada
6663 spec files for the header files specified on the command line, and all
6664 header files needed by these files transitively. For example:
6665
6666 @example
6667 $ g++ -c -fdump-ada-spec -C /usr/include/time.h
6668 $ gcc -c *.ads
6669 @end example
6670
6671 will generate, under GNU/Linux, the following files: @code{time_h.ads},
6672 @code{bits_time_h.ads}, @code{stddef_h.ads}, @code{bits_types_h.ads} which
6673 correspond to the files @code{/usr/include/time.h},
6674 @code{/usr/include/bits/time.h}, etc..., and will then compile these Ada specs
6675 in Ada 2005 mode.
6676
6677 The @code{-C} switch tells @code{gcc} to extract comments from headers,
6678 and will attempt to generate corresponding Ada comments.
6679
6680 If you want to generate a single Ada file and not the transitive closure, you
6681 can use instead the @code{-fdump-ada-spec-slim} switch.
6682
6683 You can optionally specify a parent unit, of which all generated units will
6684 be children, using @code{-fada-spec-parent=@emph{unit}}.
6685
6686 Note that we recommend when possible to use the @emph{g++} driver to
6687 generate bindings, even for most C headers, since this will in general
6688 generate better Ada specs. For generating bindings for C++ headers, it is
6689 mandatory to use the @emph{g++} command, or @emph{gcc -x c++} which
6690 is equivalent in this case. If @emph{g++} cannot work on your C headers
6691 because of incompatibilities between C and C++, then you can fallback to
6692 @code{gcc} instead.
6693
6694 For an example of better bindings generated from the C++ front-end,
6695 the name of the parameters (when available) are actually ignored by the C
6696 front-end. Consider the following C header:
6697
6698 @example
6699 extern void foo (int variable);
6700 @end example
6701
6702 with the C front-end, @code{variable} is ignored, and the above is handled as:
6703
6704 @example
6705 extern void foo (int);
6706 @end example
6707
6708 generating a generic:
6709
6710 @example
6711 procedure foo (param1 : int);
6712 @end example
6713
6714 with the C++ front-end, the name is available, and we generate:
6715
6716 @example
6717 procedure foo (variable : int);
6718 @end example
6719
6720 In some cases, the generated bindings will be more complete or more meaningful
6721 when defining some macros, which you can do via the @code{-D} switch. This
6722 is for example the case with @code{Xlib.h} under GNU/Linux:
6723
6724 @example
6725 $ g++ -c -fdump-ada-spec -DXLIB_ILLEGAL_ACCESS -C /usr/include/X11/Xlib.h
6726 @end example
6727
6728 The above will generate more complete bindings than a straight call without
6729 the @code{-DXLIB_ILLEGAL_ACCESS} switch.
6730
6731 In other cases, it is not possible to parse a header file in a stand-alone
6732 manner, because other include files need to be included first. In this
6733 case, the solution is to create a small header file including the needed
6734 @code{#include} and possible @code{#define} directives. For example, to
6735 generate Ada bindings for @code{readline/readline.h}, you need to first
6736 include @code{stdio.h}, so you can create a file with the following two
6737 lines in e.g. @code{readline1.h}:
6738
6739 @example
6740 #include <stdio.h>
6741 #include <readline/readline.h>
6742 @end example
6743
6744 and then generate Ada bindings from this file:
6745
6746 @example
6747 $ g++ -c -fdump-ada-spec readline1.h
6748 @end example
6749
6750 @node Generating Bindings for C++ Headers,Switches,Running the Binding Generator,Generating Ada Bindings for C and C++ headers
6751 @anchor{gnat_ugn/the_gnat_compilation_model id72}@anchor{c6}@anchor{gnat_ugn/the_gnat_compilation_model generating-bindings-for-c-headers}@anchor{c7}
6752 @subsubsection Generating Bindings for C++ Headers
6753
6754
6755 Generating bindings for C++ headers is done using the same options, always
6756 with the @emph{g++} compiler. Note that generating Ada spec from C++ headers is a
6757 much more complex job and support for C++ headers is much more limited that
6758 support for C headers. As a result, you will need to modify the resulting
6759 bindings by hand more extensively when using C++ headers.
6760
6761 In this mode, C++ classes will be mapped to Ada tagged types, constructors
6762 will be mapped using the @code{CPP_Constructor} pragma, and when possible,
6763 multiple inheritance of abstract classes will be mapped to Ada interfaces
6764 (see the @emph{Interfacing to C++} section in the @cite{GNAT Reference Manual}
6765 for additional information on interfacing to C++).
6766
6767 For example, given the following C++ header file:
6768
6769 @example
6770 class Carnivore @{
6771 public:
6772 virtual int Number_Of_Teeth () = 0;
6773 @};
6774
6775 class Domestic @{
6776 public:
6777 virtual void Set_Owner (char* Name) = 0;
6778 @};
6779
6780 class Animal @{
6781 public:
6782 int Age_Count;
6783 virtual void Set_Age (int New_Age);
6784 @};
6785
6786 class Dog : Animal, Carnivore, Domestic @{
6787 public:
6788 int Tooth_Count;
6789 char *Owner;
6790
6791 virtual int Number_Of_Teeth ();
6792 virtual void Set_Owner (char* Name);
6793
6794 Dog();
6795 @};
6796 @end example
6797
6798 The corresponding Ada code is generated:
6799
6800 @example
6801 package Class_Carnivore is
6802 type Carnivore is limited interface;
6803 pragma Import (CPP, Carnivore);
6804
6805 function Number_Of_Teeth (this : access Carnivore) return int is abstract;
6806 end;
6807 use Class_Carnivore;
6808
6809 package Class_Domestic is
6810 type Domestic is limited interface;
6811 pragma Import (CPP, Domestic);
6812
6813 procedure Set_Owner
6814 (this : access Domestic;
6815 Name : Interfaces.C.Strings.chars_ptr) is abstract;
6816 end;
6817 use Class_Domestic;
6818
6819 package Class_Animal is
6820 type Animal is tagged limited record
6821 Age_Count : aliased int;
6822 end record;
6823 pragma Import (CPP, Animal);
6824
6825 procedure Set_Age (this : access Animal; New_Age : int);
6826 pragma Import (CPP, Set_Age, "_ZN6Animal7Set_AgeEi");
6827 end;
6828 use Class_Animal;
6829
6830 package Class_Dog is
6831 type Dog is new Animal and Carnivore and Domestic with record
6832 Tooth_Count : aliased int;
6833 Owner : Interfaces.C.Strings.chars_ptr;
6834 end record;
6835 pragma Import (CPP, Dog);
6836
6837 function Number_Of_Teeth (this : access Dog) return int;
6838 pragma Import (CPP, Number_Of_Teeth, "_ZN3Dog15Number_Of_TeethEv");
6839
6840 procedure Set_Owner
6841 (this : access Dog; Name : Interfaces.C.Strings.chars_ptr);
6842 pragma Import (CPP, Set_Owner, "_ZN3Dog9Set_OwnerEPc");
6843
6844 function New_Dog return Dog;
6845 pragma CPP_Constructor (New_Dog);
6846 pragma Import (CPP, New_Dog, "_ZN3DogC1Ev");
6847 end;
6848 use Class_Dog;
6849 @end example
6850
6851 @node Switches,,Generating Bindings for C++ Headers,Generating Ada Bindings for C and C++ headers
6852 @anchor{gnat_ugn/the_gnat_compilation_model switches}@anchor{c8}@anchor{gnat_ugn/the_gnat_compilation_model switches-for-ada-binding-generation}@anchor{c9}
6853 @subsubsection Switches
6854
6855
6856 @geindex -fdump-ada-spec (gcc)
6857
6858
6859 @table @asis
6860
6861 @item @code{-fdump-ada-spec}
6862
6863 Generate Ada spec files for the given header files transitively (including
6864 all header files that these headers depend upon).
6865 @end table
6866
6867 @geindex -fdump-ada-spec-slim (gcc)
6868
6869
6870 @table @asis
6871
6872 @item @code{-fdump-ada-spec-slim}
6873
6874 Generate Ada spec files for the header files specified on the command line
6875 only.
6876 @end table
6877
6878 @geindex -fada-spec-parent (gcc)
6879
6880
6881 @table @asis
6882
6883 @item @code{-fada-spec-parent=@emph{unit}}
6884
6885 Specifies that all files generated by @code{-fdump-ada-spec} are
6886 to be child units of the specified parent unit.
6887 @end table
6888
6889 @geindex -C (gcc)
6890
6891
6892 @table @asis
6893
6894 @item @code{-C}
6895
6896 Extract comments from headers and generate Ada comments in the Ada spec files.
6897 @end table
6898
6899 @node Generating C Headers for Ada Specifications,,Generating Ada Bindings for C and C++ headers,Mixed Language Programming
6900 @anchor{gnat_ugn/the_gnat_compilation_model generating-c-headers-for-ada-specifications}@anchor{ca}@anchor{gnat_ugn/the_gnat_compilation_model id73}@anchor{cb}
6901 @subsection Generating C Headers for Ada Specifications
6902
6903
6904 @geindex Binding generation (for Ada specs)
6905
6906 @geindex C headers (binding generation)
6907
6908 GNAT includes a C header generator for Ada specifications which supports
6909 Ada types that have a direct mapping to C types. This includes in particular
6910 support for:
6911
6912
6913 @itemize *
6914
6915 @item
6916 Scalar types
6917
6918 @item
6919 Constrained arrays
6920
6921 @item
6922 Records (untagged)
6923
6924 @item
6925 Composition of the above types
6926
6927 @item
6928 Constant declarations
6929
6930 @item
6931 Object declarations
6932
6933 @item
6934 Subprogram declarations
6935 @end itemize
6936
6937 @menu
6938 * Running the C Header Generator::
6939
6940 @end menu
6941
6942 @node Running the C Header Generator,,,Generating C Headers for Ada Specifications
6943 @anchor{gnat_ugn/the_gnat_compilation_model running-the-c-header-generator}@anchor{cc}
6944 @subsubsection Running the C Header Generator
6945
6946
6947 The C header generator is part of the GNAT compiler and can be invoked via
6948 the @code{-gnatceg} combination of switches, which will generate a @code{.h}
6949 file corresponding to the given input file (Ada spec or body). Note that
6950 only spec files are processed in any case, so giving a spec or a body file
6951 as input is equivalent. For example:
6952
6953 @example
6954 $ gcc -c -gnatceg pack1.ads
6955 @end example
6956
6957 will generate a self-contained file called @code{pack1.h} including
6958 common definitions from the Ada Standard package, followed by the
6959 definitions included in @code{pack1.ads}, as well as all the other units
6960 withed by this file.
6961
6962 For instance, given the following Ada files:
6963
6964 @example
6965 package Pack2 is
6966 type Int is range 1 .. 10;
6967 end Pack2;
6968 @end example
6969
6970 @example
6971 with Pack2;
6972
6973 package Pack1 is
6974 type Rec is record
6975 Field1, Field2 : Pack2.Int;
6976 end record;
6977
6978 Global : Rec := (1, 2);
6979
6980 procedure Proc1 (R : Rec);
6981 procedure Proc2 (R : in out Rec);
6982 end Pack1;
6983 @end example
6984
6985 The above @code{gcc} command will generate the following @code{pack1.h} file:
6986
6987 @example
6988 /* Standard definitions skipped */
6989 #ifndef PACK2_ADS
6990 #define PACK2_ADS
6991 typedef short_short_integer pack2__TintB;
6992 typedef pack2__TintB pack2__int;
6993 #endif /* PACK2_ADS */
6994
6995 #ifndef PACK1_ADS
6996 #define PACK1_ADS
6997 typedef struct _pack1__rec @{
6998 pack2__int field1;
6999 pack2__int field2;
7000 @} pack1__rec;
7001 extern pack1__rec pack1__global;
7002 extern void pack1__proc1(const pack1__rec r);
7003 extern void pack1__proc2(pack1__rec *r);
7004 #endif /* PACK1_ADS */
7005 @end example
7006
7007 You can then @code{include} @code{pack1.h} from a C source file and use the types,
7008 call subprograms, reference objects, and constants.
7009
7010 @node GNAT and Other Compilation Models,Using GNAT Files with External Tools,Mixed Language Programming,The GNAT Compilation Model
7011 @anchor{gnat_ugn/the_gnat_compilation_model id74}@anchor{cd}@anchor{gnat_ugn/the_gnat_compilation_model gnat-and-other-compilation-models}@anchor{45}
7012 @section GNAT and Other Compilation Models
7013
7014
7015 This section compares the GNAT model with the approaches taken in
7016 other environents, first the C/C++ model and then the mechanism that
7017 has been used in other Ada systems, in particular those traditionally
7018 used for Ada 83.
7019
7020 @menu
7021 * Comparison between GNAT and C/C++ Compilation Models::
7022 * Comparison between GNAT and Conventional Ada Library Models::
7023
7024 @end menu
7025
7026 @node Comparison between GNAT and C/C++ Compilation Models,Comparison between GNAT and Conventional Ada Library Models,,GNAT and Other Compilation Models
7027 @anchor{gnat_ugn/the_gnat_compilation_model comparison-between-gnat-and-c-c-compilation-models}@anchor{ce}@anchor{gnat_ugn/the_gnat_compilation_model id75}@anchor{cf}
7028 @subsection Comparison between GNAT and C/C++ Compilation Models
7029
7030
7031 The GNAT model of compilation is close to the C and C++ models. You can
7032 think of Ada specs as corresponding to header files in C. As in C, you
7033 don't need to compile specs; they are compiled when they are used. The
7034 Ada @emph{with} is similar in effect to the @code{#include} of a C
7035 header.
7036
7037 One notable difference is that, in Ada, you may compile specs separately
7038 to check them for semantic and syntactic accuracy. This is not always
7039 possible with C headers because they are fragments of programs that have
7040 less specific syntactic or semantic rules.
7041
7042 The other major difference is the requirement for running the binder,
7043 which performs two important functions. First, it checks for
7044 consistency. In C or C++, the only defense against assembling
7045 inconsistent programs lies outside the compiler, in a makefile, for
7046 example. The binder satisfies the Ada requirement that it be impossible
7047 to construct an inconsistent program when the compiler is used in normal
7048 mode.
7049
7050 @geindex Elaboration order control
7051
7052 The other important function of the binder is to deal with elaboration
7053 issues. There are also elaboration issues in C++ that are handled
7054 automatically. This automatic handling has the advantage of being
7055 simpler to use, but the C++ programmer has no control over elaboration.
7056 Where @code{gnatbind} might complain there was no valid order of
7057 elaboration, a C++ compiler would simply construct a program that
7058 malfunctioned at run time.
7059
7060 @node Comparison between GNAT and Conventional Ada Library Models,,Comparison between GNAT and C/C++ Compilation Models,GNAT and Other Compilation Models
7061 @anchor{gnat_ugn/the_gnat_compilation_model comparison-between-gnat-and-conventional-ada-library-models}@anchor{d0}@anchor{gnat_ugn/the_gnat_compilation_model id76}@anchor{d1}
7062 @subsection Comparison between GNAT and Conventional Ada Library Models
7063
7064
7065 This section is intended for Ada programmers who have
7066 used an Ada compiler implementing the traditional Ada library
7067 model, as described in the Ada Reference Manual.
7068
7069 @geindex GNAT library
7070
7071 In GNAT, there is no 'library' in the normal sense. Instead, the set of
7072 source files themselves acts as the library. Compiling Ada programs does
7073 not generate any centralized information, but rather an object file and
7074 a ALI file, which are of interest only to the binder and linker.
7075 In a traditional system, the compiler reads information not only from
7076 the source file being compiled, but also from the centralized library.
7077 This means that the effect of a compilation depends on what has been
7078 previously compiled. In particular:
7079
7080
7081 @itemize *
7082
7083 @item
7084 When a unit is @emph{with}ed, the unit seen by the compiler corresponds
7085 to the version of the unit most recently compiled into the library.
7086
7087 @item
7088 Inlining is effective only if the necessary body has already been
7089 compiled into the library.
7090
7091 @item
7092 Compiling a unit may obsolete other units in the library.
7093 @end itemize
7094
7095 In GNAT, compiling one unit never affects the compilation of any other
7096 units because the compiler reads only source files. Only changes to source
7097 files can affect the results of a compilation. In particular:
7098
7099
7100 @itemize *
7101
7102 @item
7103 When a unit is @emph{with}ed, the unit seen by the compiler corresponds
7104 to the source version of the unit that is currently accessible to the
7105 compiler.
7106
7107 @geindex Inlining
7108
7109 @item
7110 Inlining requires the appropriate source files for the package or
7111 subprogram bodies to be available to the compiler. Inlining is always
7112 effective, independent of the order in which units are compiled.
7113
7114 @item
7115 Compiling a unit never affects any other compilations. The editing of
7116 sources may cause previous compilations to be out of date if they
7117 depended on the source file being modified.
7118 @end itemize
7119
7120 The most important result of these differences is that order of compilation
7121 is never significant in GNAT. There is no situation in which one is
7122 required to do one compilation before another. What shows up as order of
7123 compilation requirements in the traditional Ada library becomes, in
7124 GNAT, simple source dependencies; in other words, there is only a set
7125 of rules saying what source files must be present when a file is
7126 compiled.
7127
7128 @node Using GNAT Files with External Tools,,GNAT and Other Compilation Models,The GNAT Compilation Model
7129 @anchor{gnat_ugn/the_gnat_compilation_model using-gnat-files-with-external-tools}@anchor{1a}@anchor{gnat_ugn/the_gnat_compilation_model id77}@anchor{d2}
7130 @section Using GNAT Files with External Tools
7131
7132
7133 This section explains how files that are produced by GNAT may be
7134 used with tools designed for other languages.
7135
7136 @menu
7137 * Using Other Utility Programs with GNAT::
7138 * The External Symbol Naming Scheme of GNAT::
7139
7140 @end menu
7141
7142 @node Using Other Utility Programs with GNAT,The External Symbol Naming Scheme of GNAT,,Using GNAT Files with External Tools
7143 @anchor{gnat_ugn/the_gnat_compilation_model using-other-utility-programs-with-gnat}@anchor{d3}@anchor{gnat_ugn/the_gnat_compilation_model id78}@anchor{d4}
7144 @subsection Using Other Utility Programs with GNAT
7145
7146
7147 The object files generated by GNAT are in standard system format and in
7148 particular the debugging information uses this format. This means
7149 programs generated by GNAT can be used with existing utilities that
7150 depend on these formats.
7151
7152 In general, any utility program that works with C will also often work with
7153 Ada programs generated by GNAT. This includes software utilities such as
7154 gprof (a profiling program), gdb (the FSF debugger), and utilities such
7155 as Purify.
7156
7157 @node The External Symbol Naming Scheme of GNAT,,Using Other Utility Programs with GNAT,Using GNAT Files with External Tools
7158 @anchor{gnat_ugn/the_gnat_compilation_model the-external-symbol-naming-scheme-of-gnat}@anchor{d5}@anchor{gnat_ugn/the_gnat_compilation_model id79}@anchor{d6}
7159 @subsection The External Symbol Naming Scheme of GNAT
7160
7161
7162 In order to interpret the output from GNAT, when using tools that are
7163 originally intended for use with other languages, it is useful to
7164 understand the conventions used to generate link names from the Ada
7165 entity names.
7166
7167 All link names are in all lowercase letters. With the exception of library
7168 procedure names, the mechanism used is simply to use the full expanded
7169 Ada name with dots replaced by double underscores. For example, suppose
7170 we have the following package spec:
7171
7172 @example
7173 package QRS is
7174 MN : Integer;
7175 end QRS;
7176 @end example
7177
7178 @geindex pragma Export
7179
7180 The variable @code{MN} has a full expanded Ada name of @code{QRS.MN}, so
7181 the corresponding link name is @code{qrs__mn}.
7182 Of course if a @code{pragma Export} is used this may be overridden:
7183
7184 @example
7185 package Exports is
7186 Var1 : Integer;
7187 pragma Export (Var1, C, External_Name => "var1_name");
7188 Var2 : Integer;
7189 pragma Export (Var2, C, Link_Name => "var2_link_name");
7190 end Exports;
7191 @end example
7192
7193 In this case, the link name for @code{Var1} is whatever link name the
7194 C compiler would assign for the C function @code{var1_name}. This typically
7195 would be either @code{var1_name} or @code{_var1_name}, depending on operating
7196 system conventions, but other possibilities exist. The link name for
7197 @code{Var2} is @code{var2_link_name}, and this is not operating system
7198 dependent.
7199
7200 One exception occurs for library level procedures. A potential ambiguity
7201 arises between the required name @code{_main} for the C main program,
7202 and the name we would otherwise assign to an Ada library level procedure
7203 called @code{Main} (which might well not be the main program).
7204
7205 To avoid this ambiguity, we attach the prefix @code{_ada_} to such
7206 names. So if we have a library level procedure such as:
7207
7208 @example
7209 procedure Hello (S : String);
7210 @end example
7211
7212 the external name of this procedure will be @code{_ada_hello}.
7213
7214 @c -- Example: A |withing| unit has a |with| clause, it |withs| a |withed| unit
7215
7216 @node Building Executable Programs with GNAT,GNAT Utility Programs,The GNAT Compilation Model,Top
7217 @anchor{gnat_ugn/building_executable_programs_with_gnat building-executable-programs-with-gnat}@anchor{a}@anchor{gnat_ugn/building_executable_programs_with_gnat doc}@anchor{d7}@anchor{gnat_ugn/building_executable_programs_with_gnat id1}@anchor{d8}
7218 @chapter Building Executable Programs with GNAT
7219
7220
7221 This chapter describes first the gnatmake tool
7222 (@ref{1b,,Building with gnatmake}),
7223 which automatically determines the set of sources
7224 needed by an Ada compilation unit and executes the necessary
7225 (re)compilations, binding and linking.
7226 It also explains how to use each tool individually: the
7227 compiler (gcc, see @ref{1c,,Compiling with gcc}),
7228 binder (gnatbind, see @ref{1d,,Binding with gnatbind}),
7229 and linker (gnatlink, see @ref{1e,,Linking with gnatlink})
7230 to build executable programs.
7231 Finally, this chapter provides examples of
7232 how to make use of the general GNU make mechanism
7233 in a GNAT context (see @ref{1f,,Using the GNU make Utility}).
7234
7235
7236 @menu
7237 * Building with gnatmake::
7238 * Compiling with gcc::
7239 * Compiler Switches::
7240 * Linker Switches::
7241 * Binding with gnatbind::
7242 * Linking with gnatlink::
7243 * Using the GNU make Utility::
7244
7245 @end menu
7246
7247 @node Building with gnatmake,Compiling with gcc,,Building Executable Programs with GNAT
7248 @anchor{gnat_ugn/building_executable_programs_with_gnat the-gnat-make-program-gnatmake}@anchor{1b}@anchor{gnat_ugn/building_executable_programs_with_gnat building-with-gnatmake}@anchor{d9}
7249 @section Building with @code{gnatmake}
7250
7251
7252 @geindex gnatmake
7253
7254 A typical development cycle when working on an Ada program consists of
7255 the following steps:
7256
7257
7258 @enumerate
7259
7260 @item
7261 Edit some sources to fix bugs;
7262
7263 @item
7264 Add enhancements;
7265
7266 @item
7267 Compile all sources affected;
7268
7269 @item
7270 Rebind and relink; and
7271
7272 @item
7273 Test.
7274 @end enumerate
7275
7276 @geindex Dependency rules (compilation)
7277
7278 The third step in particular can be tricky, because not only do the modified
7279 files have to be compiled, but any files depending on these files must also be
7280 recompiled. The dependency rules in Ada can be quite complex, especially
7281 in the presence of overloading, @code{use} clauses, generics and inlined
7282 subprograms.
7283
7284 @code{gnatmake} automatically takes care of the third and fourth steps
7285 of this process. It determines which sources need to be compiled,
7286 compiles them, and binds and links the resulting object files.
7287
7288 Unlike some other Ada make programs, the dependencies are always
7289 accurately recomputed from the new sources. The source based approach of
7290 the GNAT compilation model makes this possible. This means that if
7291 changes to the source program cause corresponding changes in
7292 dependencies, they will always be tracked exactly correctly by
7293 @code{gnatmake}.
7294
7295 Note that for advanced forms of project structure, we recommend creating
7296 a project file as explained in the @emph{GNAT_Project_Manager} chapter in the
7297 @emph{GPRbuild User's Guide}, and using the
7298 @code{gprbuild} tool which supports building with project files and works similarly
7299 to @code{gnatmake}.
7300
7301 @menu
7302 * Running gnatmake::
7303 * Switches for gnatmake::
7304 * Mode Switches for gnatmake::
7305 * Notes on the Command Line::
7306 * How gnatmake Works::
7307 * Examples of gnatmake Usage::
7308
7309 @end menu
7310
7311 @node Running gnatmake,Switches for gnatmake,,Building with gnatmake
7312 @anchor{gnat_ugn/building_executable_programs_with_gnat running-gnatmake}@anchor{da}@anchor{gnat_ugn/building_executable_programs_with_gnat id2}@anchor{db}
7313 @subsection Running @code{gnatmake}
7314
7315
7316 The usual form of the @code{gnatmake} command is
7317
7318 @example
7319 $ gnatmake [<switches>] <file_name> [<file_names>] [<mode_switches>]
7320 @end example
7321
7322 The only required argument is one @code{file_name}, which specifies
7323 a compilation unit that is a main program. Several @code{file_names} can be
7324 specified: this will result in several executables being built.
7325 If @code{switches} are present, they can be placed before the first
7326 @code{file_name}, between @code{file_names} or after the last @code{file_name}.
7327 If @code{mode_switches} are present, they must always be placed after
7328 the last @code{file_name} and all @code{switches}.
7329
7330 If you are using standard file extensions (@code{.adb} and
7331 @code{.ads}), then the
7332 extension may be omitted from the @code{file_name} arguments. However, if
7333 you are using non-standard extensions, then it is required that the
7334 extension be given. A relative or absolute directory path can be
7335 specified in a @code{file_name}, in which case, the input source file will
7336 be searched for in the specified directory only. Otherwise, the input
7337 source file will first be searched in the directory where
7338 @code{gnatmake} was invoked and if it is not found, it will be search on
7339 the source path of the compiler as described in
7340 @ref{89,,Search Paths and the Run-Time Library (RTL)}.
7341
7342 All @code{gnatmake} output (except when you specify @code{-M}) is sent to
7343 @code{stderr}. The output produced by the
7344 @code{-M} switch is sent to @code{stdout}.
7345
7346 @node Switches for gnatmake,Mode Switches for gnatmake,Running gnatmake,Building with gnatmake
7347 @anchor{gnat_ugn/building_executable_programs_with_gnat switches-for-gnatmake}@anchor{dc}@anchor{gnat_ugn/building_executable_programs_with_gnat id3}@anchor{dd}
7348 @subsection Switches for @code{gnatmake}
7349
7350
7351 You may specify any of the following switches to @code{gnatmake}:
7352
7353 @geindex --version (gnatmake)
7354
7355
7356 @table @asis
7357
7358 @item @code{--version}
7359
7360 Display Copyright and version, then exit disregarding all other options.
7361 @end table
7362
7363 @geindex --help (gnatmake)
7364
7365
7366 @table @asis
7367
7368 @item @code{--help}
7369
7370 If @code{--version} was not used, display usage, then exit disregarding
7371 all other options.
7372 @end table
7373
7374 @geindex --GCC=compiler_name (gnatmake)
7375
7376
7377 @table @asis
7378
7379 @item @code{--GCC=@emph{compiler_name}}
7380
7381 Program used for compiling. The default is @code{gcc}. You need to use
7382 quotes around @code{compiler_name} if @code{compiler_name} contains
7383 spaces or other separator characters.
7384 As an example @code{--GCC="foo -x -y"}
7385 will instruct @code{gnatmake} to use @code{foo -x -y} as your
7386 compiler. A limitation of this syntax is that the name and path name of
7387 the executable itself must not include any embedded spaces. Note that
7388 switch @code{-c} is always inserted after your command name. Thus in the
7389 above example the compiler command that will be used by @code{gnatmake}
7390 will be @code{foo -c -x -y}. If several @code{--GCC=compiler_name} are
7391 used, only the last @code{compiler_name} is taken into account. However,
7392 all the additional switches are also taken into account. Thus,
7393 @code{--GCC="foo -x -y" --GCC="bar -z -t"} is equivalent to
7394 @code{--GCC="bar -x -y -z -t"}.
7395 @end table
7396
7397 @geindex --GNATBIND=binder_name (gnatmake)
7398
7399
7400 @table @asis
7401
7402 @item @code{--GNATBIND=@emph{binder_name}}
7403
7404 Program used for binding. The default is @code{gnatbind}. You need to
7405 use quotes around @code{binder_name} if @code{binder_name} contains spaces
7406 or other separator characters.
7407 As an example @code{--GNATBIND="bar -x -y"}
7408 will instruct @code{gnatmake} to use @code{bar -x -y} as your
7409 binder. Binder switches that are normally appended by @code{gnatmake}
7410 to @code{gnatbind} are now appended to the end of @code{bar -x -y}.
7411 A limitation of this syntax is that the name and path name of the executable
7412 itself must not include any embedded spaces.
7413 @end table
7414
7415 @geindex --GNATLINK=linker_name (gnatmake)
7416
7417
7418 @table @asis
7419
7420 @item @code{--GNATLINK=@emph{linker_name}}
7421
7422 Program used for linking. The default is @code{gnatlink}. You need to
7423 use quotes around @code{linker_name} if @code{linker_name} contains spaces
7424 or other separator characters.
7425 As an example @code{--GNATLINK="lan -x -y"}
7426 will instruct @code{gnatmake} to use @code{lan -x -y} as your
7427 linker. Linker switches that are normally appended by @code{gnatmake} to
7428 @code{gnatlink} are now appended to the end of @code{lan -x -y}.
7429 A limitation of this syntax is that the name and path name of the executable
7430 itself must not include any embedded spaces.
7431
7432 @item @code{--create-map-file}
7433
7434 When linking an executable, create a map file. The name of the map file
7435 has the same name as the executable with extension ".map".
7436
7437 @item @code{--create-map-file=@emph{mapfile}}
7438
7439 When linking an executable, create a map file with the specified name.
7440 @end table
7441
7442 @geindex --create-missing-dirs (gnatmake)
7443
7444
7445 @table @asis
7446
7447 @item @code{--create-missing-dirs}
7448
7449 When using project files (@code{-P@emph{project}}), automatically create
7450 missing object directories, library directories and exec
7451 directories.
7452
7453 @item @code{--single-compile-per-obj-dir}
7454
7455 Disallow simultaneous compilations in the same object directory when
7456 project files are used.
7457
7458 @item @code{--subdirs=@emph{subdir}}
7459
7460 Actual object directory of each project file is the subdirectory subdir of the
7461 object directory specified or defaulted in the project file.
7462
7463 @item @code{--unchecked-shared-lib-imports}
7464
7465 By default, shared library projects are not allowed to import static library
7466 projects. When this switch is used on the command line, this restriction is
7467 relaxed.
7468
7469 @item @code{--source-info=@emph{source info file}}
7470
7471 Specify a source info file. This switch is active only when project files
7472 are used. If the source info file is specified as a relative path, then it is
7473 relative to the object directory of the main project. If the source info file
7474 does not exist, then after the Project Manager has successfully parsed and
7475 processed the project files and found the sources, it creates the source info
7476 file. If the source info file already exists and can be read successfully,
7477 then the Project Manager will get all the needed information about the sources
7478 from the source info file and will not look for them. This reduces the time
7479 to process the project files, especially when looking for sources that take a
7480 long time. If the source info file exists but cannot be parsed successfully,
7481 the Project Manager will attempt to recreate it. If the Project Manager fails
7482 to create the source info file, a message is issued, but gnatmake does not
7483 fail. @code{gnatmake} "trusts" the source info file. This means that
7484 if the source files have changed (addition, deletion, moving to a different
7485 source directory), then the source info file need to be deleted and recreated.
7486 @end table
7487
7488 @geindex -a (gnatmake)
7489
7490
7491 @table @asis
7492
7493 @item @code{-a}
7494
7495 Consider all files in the make process, even the GNAT internal system
7496 files (for example, the predefined Ada library files), as well as any
7497 locked files. Locked files are files whose ALI file is write-protected.
7498 By default,
7499 @code{gnatmake} does not check these files,
7500 because the assumption is that the GNAT internal files are properly up
7501 to date, and also that any write protected ALI files have been properly
7502 installed. Note that if there is an installation problem, such that one
7503 of these files is not up to date, it will be properly caught by the
7504 binder.
7505 You may have to specify this switch if you are working on GNAT
7506 itself. The switch @code{-a} is also useful
7507 in conjunction with @code{-f}
7508 if you need to recompile an entire application,
7509 including run-time files, using special configuration pragmas,
7510 such as a @code{Normalize_Scalars} pragma.
7511
7512 By default
7513 @code{gnatmake -a} compiles all GNAT
7514 internal files with
7515 @code{gcc -c -gnatpg} rather than @code{gcc -c}.
7516 @end table
7517
7518 @geindex -b (gnatmake)
7519
7520
7521 @table @asis
7522
7523 @item @code{-b}
7524
7525 Bind only. Can be combined with @code{-c} to do
7526 compilation and binding, but no link.
7527 Can be combined with @code{-l}
7528 to do binding and linking. When not combined with
7529 @code{-c}
7530 all the units in the closure of the main program must have been previously
7531 compiled and must be up to date. The root unit specified by @code{file_name}
7532 may be given without extension, with the source extension or, if no GNAT
7533 Project File is specified, with the ALI file extension.
7534 @end table
7535
7536 @geindex -c (gnatmake)
7537
7538
7539 @table @asis
7540
7541 @item @code{-c}
7542
7543 Compile only. Do not perform binding, except when @code{-b}
7544 is also specified. Do not perform linking, except if both
7545 @code{-b} and
7546 @code{-l} are also specified.
7547 If the root unit specified by @code{file_name} is not a main unit, this is the
7548 default. Otherwise @code{gnatmake} will attempt binding and linking
7549 unless all objects are up to date and the executable is more recent than
7550 the objects.
7551 @end table
7552
7553 @geindex -C (gnatmake)
7554
7555
7556 @table @asis
7557
7558 @item @code{-C}
7559
7560 Use a temporary mapping file. A mapping file is a way to communicate
7561 to the compiler two mappings: from unit names to file names (without
7562 any directory information) and from file names to path names (with
7563 full directory information). A mapping file can make the compiler's
7564 file searches faster, especially if there are many source directories,
7565 or the sources are read over a slow network connection. If
7566 @code{-P} is used, a mapping file is always used, so
7567 @code{-C} is unnecessary; in this case the mapping file
7568 is initially populated based on the project file. If
7569 @code{-C} is used without
7570 @code{-P},
7571 the mapping file is initially empty. Each invocation of the compiler
7572 will add any newly accessed sources to the mapping file.
7573 @end table
7574
7575 @geindex -C= (gnatmake)
7576
7577
7578 @table @asis
7579
7580 @item @code{-C=@emph{file}}
7581
7582 Use a specific mapping file. The file, specified as a path name (absolute or
7583 relative) by this switch, should already exist, otherwise the switch is
7584 ineffective. The specified mapping file will be communicated to the compiler.
7585 This switch is not compatible with a project file
7586 (-P`file`) or with multiple compiling processes
7587 (-jnnn, when nnn is greater than 1).
7588 @end table
7589
7590 @geindex -d (gnatmake)
7591
7592
7593 @table @asis
7594
7595 @item @code{-d}
7596
7597 Display progress for each source, up to date or not, as a single line:
7598
7599 @example
7600 completed x out of y (zz%)
7601 @end example
7602
7603 If the file needs to be compiled this is displayed after the invocation of
7604 the compiler. These lines are displayed even in quiet output mode.
7605 @end table
7606
7607 @geindex -D (gnatmake)
7608
7609
7610 @table @asis
7611
7612 @item @code{-D @emph{dir}}
7613
7614 Put all object files and ALI file in directory @code{dir}.
7615 If the @code{-D} switch is not used, all object files
7616 and ALI files go in the current working directory.
7617
7618 This switch cannot be used when using a project file.
7619 @end table
7620
7621 @geindex -eI (gnatmake)
7622
7623
7624 @table @asis
7625
7626 @item @code{-eI@emph{nnn}}
7627
7628 Indicates that the main source is a multi-unit source and the rank of the unit
7629 in the source file is nnn. nnn needs to be a positive number and a valid
7630 index in the source. This switch cannot be used when @code{gnatmake} is
7631 invoked for several mains.
7632 @end table
7633
7634 @geindex -eL (gnatmake)
7635
7636 @geindex symbolic links
7637
7638
7639 @table @asis
7640
7641 @item @code{-eL}
7642
7643 Follow all symbolic links when processing project files.
7644 This should be used if your project uses symbolic links for files or
7645 directories, but is not needed in other cases.
7646
7647 @geindex naming scheme
7648
7649 This also assumes that no directory matches the naming scheme for files (for
7650 instance that you do not have a directory called "sources.ads" when using the
7651 default GNAT naming scheme).
7652
7653 When you do not have to use this switch (i.e., by default), gnatmake is able to
7654 save a lot of system calls (several per source file and object file), which
7655 can result in a significant speed up to load and manipulate a project file,
7656 especially when using source files from a remote system.
7657 @end table
7658
7659 @geindex -eS (gnatmake)
7660
7661
7662 @table @asis
7663
7664 @item @code{-eS}
7665
7666 Output the commands for the compiler, the binder and the linker
7667 on standard output,
7668 instead of standard error.
7669 @end table
7670
7671 @geindex -f (gnatmake)
7672
7673
7674 @table @asis
7675
7676 @item @code{-f}
7677
7678 Force recompilations. Recompile all sources, even though some object
7679 files may be up to date, but don't recompile predefined or GNAT internal
7680 files or locked files (files with a write-protected ALI file),
7681 unless the @code{-a} switch is also specified.
7682 @end table
7683
7684 @geindex -F (gnatmake)
7685
7686
7687 @table @asis
7688
7689 @item @code{-F}
7690
7691 When using project files, if some errors or warnings are detected during
7692 parsing and verbose mode is not in effect (no use of switch
7693 -v), then error lines start with the full path name of the project
7694 file, rather than its simple file name.
7695 @end table
7696
7697 @geindex -g (gnatmake)
7698
7699
7700 @table @asis
7701
7702 @item @code{-g}
7703
7704 Enable debugging. This switch is simply passed to the compiler and to the
7705 linker.
7706 @end table
7707
7708 @geindex -i (gnatmake)
7709
7710
7711 @table @asis
7712
7713 @item @code{-i}
7714
7715 In normal mode, @code{gnatmake} compiles all object files and ALI files
7716 into the current directory. If the @code{-i} switch is used,
7717 then instead object files and ALI files that already exist are overwritten
7718 in place. This means that once a large project is organized into separate
7719 directories in the desired manner, then @code{gnatmake} will automatically
7720 maintain and update this organization. If no ALI files are found on the
7721 Ada object path (see @ref{89,,Search Paths and the Run-Time Library (RTL)}),
7722 the new object and ALI files are created in the
7723 directory containing the source being compiled. If another organization
7724 is desired, where objects and sources are kept in different directories,
7725 a useful technique is to create dummy ALI files in the desired directories.
7726 When detecting such a dummy file, @code{gnatmake} will be forced to
7727 recompile the corresponding source file, and it will be put the resulting
7728 object and ALI files in the directory where it found the dummy file.
7729 @end table
7730
7731 @geindex -j (gnatmake)
7732
7733 @geindex Parallel make
7734
7735
7736 @table @asis
7737
7738 @item @code{-j@emph{n}}
7739
7740 Use @code{n} processes to carry out the (re)compilations. On a multiprocessor
7741 machine compilations will occur in parallel. If @code{n} is 0, then the
7742 maximum number of parallel compilations is the number of core processors
7743 on the platform. In the event of compilation errors, messages from various
7744 compilations might get interspersed (but @code{gnatmake} will give you the
7745 full ordered list of failing compiles at the end). If this is problematic,
7746 rerun the make process with n set to 1 to get a clean list of messages.
7747 @end table
7748
7749 @geindex -k (gnatmake)
7750
7751
7752 @table @asis
7753
7754 @item @code{-k}
7755
7756 Keep going. Continue as much as possible after a compilation error. To
7757 ease the programmer's task in case of compilation errors, the list of
7758 sources for which the compile fails is given when @code{gnatmake}
7759 terminates.
7760
7761 If @code{gnatmake} is invoked with several @code{file_names} and with this
7762 switch, if there are compilation errors when building an executable,
7763 @code{gnatmake} will not attempt to build the following executables.
7764 @end table
7765
7766 @geindex -l (gnatmake)
7767
7768
7769 @table @asis
7770
7771 @item @code{-l}
7772
7773 Link only. Can be combined with @code{-b} to binding
7774 and linking. Linking will not be performed if combined with
7775 @code{-c}
7776 but not with @code{-b}.
7777 When not combined with @code{-b}
7778 all the units in the closure of the main program must have been previously
7779 compiled and must be up to date, and the main program needs to have been bound.
7780 The root unit specified by @code{file_name}
7781 may be given without extension, with the source extension or, if no GNAT
7782 Project File is specified, with the ALI file extension.
7783 @end table
7784
7785 @geindex -m (gnatmake)
7786
7787
7788 @table @asis
7789
7790 @item @code{-m}
7791
7792 Specify that the minimum necessary amount of recompilations
7793 be performed. In this mode @code{gnatmake} ignores time
7794 stamp differences when the only
7795 modifications to a source file consist in adding/removing comments,
7796 empty lines, spaces or tabs. This means that if you have changed the
7797 comments in a source file or have simply reformatted it, using this
7798 switch will tell @code{gnatmake} not to recompile files that depend on it
7799 (provided other sources on which these files depend have undergone no
7800 semantic modifications). Note that the debugging information may be
7801 out of date with respect to the sources if the @code{-m} switch causes
7802 a compilation to be switched, so the use of this switch represents a
7803 trade-off between compilation time and accurate debugging information.
7804 @end table
7805
7806 @geindex Dependencies
7807 @geindex producing list
7808
7809 @geindex -M (gnatmake)
7810
7811
7812 @table @asis
7813
7814 @item @code{-M}
7815
7816 Check if all objects are up to date. If they are, output the object
7817 dependences to @code{stdout} in a form that can be directly exploited in
7818 a @code{Makefile}. By default, each source file is prefixed with its
7819 (relative or absolute) directory name. This name is whatever you
7820 specified in the various @code{-aI}
7821 and @code{-I} switches. If you use
7822 @code{gnatmake -M} @code{-q}
7823 (see below), only the source file names,
7824 without relative paths, are output. If you just specify the @code{-M}
7825 switch, dependencies of the GNAT internal system files are omitted. This
7826 is typically what you want. If you also specify
7827 the @code{-a} switch,
7828 dependencies of the GNAT internal files are also listed. Note that
7829 dependencies of the objects in external Ada libraries (see
7830 switch @code{-aL@emph{dir}} in the following list)
7831 are never reported.
7832 @end table
7833
7834 @geindex -n (gnatmake)
7835
7836
7837 @table @asis
7838
7839 @item @code{-n}
7840
7841 Don't compile, bind, or link. Checks if all objects are up to date.
7842 If they are not, the full name of the first file that needs to be
7843 recompiled is printed.
7844 Repeated use of this option, followed by compiling the indicated source
7845 file, will eventually result in recompiling all required units.
7846 @end table
7847
7848 @geindex -o (gnatmake)
7849
7850
7851 @table @asis
7852
7853 @item @code{-o @emph{exec_name}}
7854
7855 Output executable name. The name of the final executable program will be
7856 @code{exec_name}. If the @code{-o} switch is omitted the default
7857 name for the executable will be the name of the input file in appropriate form
7858 for an executable file on the host system.
7859
7860 This switch cannot be used when invoking @code{gnatmake} with several
7861 @code{file_names}.
7862 @end table
7863
7864 @geindex -p (gnatmake)
7865
7866
7867 @table @asis
7868
7869 @item @code{-p}
7870
7871 Same as @code{--create-missing-dirs}
7872 @end table
7873
7874 @geindex -P (gnatmake)
7875
7876
7877 @table @asis
7878
7879 @item @code{-P@emph{project}}
7880
7881 Use project file @code{project}. Only one such switch can be used.
7882 @end table
7883
7884 @c -- Comment:
7885 @c :ref:`gnatmake_and_Project_Files`.
7886
7887 @geindex -q (gnatmake)
7888
7889
7890 @table @asis
7891
7892 @item @code{-q}
7893
7894 Quiet. When this flag is not set, the commands carried out by
7895 @code{gnatmake} are displayed.
7896 @end table
7897
7898 @geindex -s (gnatmake)
7899
7900
7901 @table @asis
7902
7903 @item @code{-s}
7904
7905 Recompile if compiler switches have changed since last compilation.
7906 All compiler switches but -I and -o are taken into account in the
7907 following way:
7908 orders between different 'first letter' switches are ignored, but
7909 orders between same switches are taken into account. For example,
7910 @code{-O -O2} is different than @code{-O2 -O}, but @code{-g -O}
7911 is equivalent to @code{-O -g}.
7912
7913 This switch is recommended when Integrated Preprocessing is used.
7914 @end table
7915
7916 @geindex -u (gnatmake)
7917
7918
7919 @table @asis
7920
7921 @item @code{-u}
7922
7923 Unique. Recompile at most the main files. It implies -c. Combined with
7924 -f, it is equivalent to calling the compiler directly. Note that using
7925 -u with a project file and no main has a special meaning.
7926 @end table
7927
7928 @c --Comment
7929 @c (See :ref:`Project_Files_and_Main_Subprograms`.)
7930
7931 @geindex -U (gnatmake)
7932
7933
7934 @table @asis
7935
7936 @item @code{-U}
7937
7938 When used without a project file or with one or several mains on the command
7939 line, is equivalent to -u. When used with a project file and no main
7940 on the command line, all sources of all project files are checked and compiled
7941 if not up to date, and libraries are rebuilt, if necessary.
7942 @end table
7943
7944 @geindex -v (gnatmake)
7945
7946
7947 @table @asis
7948
7949 @item @code{-v}
7950
7951 Verbose. Display the reason for all recompilations @code{gnatmake}
7952 decides are necessary, with the highest verbosity level.
7953 @end table
7954
7955 @geindex -vl (gnatmake)
7956
7957
7958 @table @asis
7959
7960 @item @code{-vl}
7961
7962 Verbosity level Low. Display fewer lines than in verbosity Medium.
7963 @end table
7964
7965 @geindex -vm (gnatmake)
7966
7967
7968 @table @asis
7969
7970 @item @code{-vm}
7971
7972 Verbosity level Medium. Potentially display fewer lines than in verbosity High.
7973 @end table
7974
7975 @geindex -vm (gnatmake)
7976
7977
7978 @table @asis
7979
7980 @item @code{-vh}
7981
7982 Verbosity level High. Equivalent to -v.
7983
7984 @item @code{-vP@emph{x}}
7985
7986 Indicate the verbosity of the parsing of GNAT project files.
7987 See @ref{de,,Switches Related to Project Files}.
7988 @end table
7989
7990 @geindex -x (gnatmake)
7991
7992
7993 @table @asis
7994
7995 @item @code{-x}
7996
7997 Indicate that sources that are not part of any Project File may be compiled.
7998 Normally, when using Project Files, only sources that are part of a Project
7999 File may be compile. When this switch is used, a source outside of all Project
8000 Files may be compiled. The ALI file and the object file will be put in the
8001 object directory of the main Project. The compilation switches used will only
8002 be those specified on the command line. Even when
8003 @code{-x} is used, mains specified on the
8004 command line need to be sources of a project file.
8005
8006 @item @code{-X@emph{name}=@emph{value}}
8007
8008 Indicate that external variable @code{name} has the value @code{value}.
8009 The Project Manager will use this value for occurrences of
8010 @code{external(name)} when parsing the project file.
8011 @ref{de,,Switches Related to Project Files}.
8012 @end table
8013
8014 @geindex -z (gnatmake)
8015
8016
8017 @table @asis
8018
8019 @item @code{-z}
8020
8021 No main subprogram. Bind and link the program even if the unit name
8022 given on the command line is a package name. The resulting executable
8023 will execute the elaboration routines of the package and its closure,
8024 then the finalization routines.
8025 @end table
8026
8027 @subsubheading GCC switches
8028
8029
8030 Any uppercase or multi-character switch that is not a @code{gnatmake} switch
8031 is passed to @code{gcc} (e.g., @code{-O}, @code{-gnato,} etc.)
8032
8033 @subsubheading Source and library search path switches
8034
8035
8036 @geindex -aI (gnatmake)
8037
8038
8039 @table @asis
8040
8041 @item @code{-aI@emph{dir}}
8042
8043 When looking for source files also look in directory @code{dir}.
8044 The order in which source files search is undertaken is
8045 described in @ref{89,,Search Paths and the Run-Time Library (RTL)}.
8046 @end table
8047
8048 @geindex -aL (gnatmake)
8049
8050
8051 @table @asis
8052
8053 @item @code{-aL@emph{dir}}
8054
8055 Consider @code{dir} as being an externally provided Ada library.
8056 Instructs @code{gnatmake} to skip compilation units whose @code{.ALI}
8057 files have been located in directory @code{dir}. This allows you to have
8058 missing bodies for the units in @code{dir} and to ignore out of date bodies
8059 for the same units. You still need to specify
8060 the location of the specs for these units by using the switches
8061 @code{-aI@emph{dir}} or @code{-I@emph{dir}}.
8062 Note: this switch is provided for compatibility with previous versions
8063 of @code{gnatmake}. The easier method of causing standard libraries
8064 to be excluded from consideration is to write-protect the corresponding
8065 ALI files.
8066 @end table
8067
8068 @geindex -aO (gnatmake)
8069
8070
8071 @table @asis
8072
8073 @item @code{-aO@emph{dir}}
8074
8075 When searching for library and object files, look in directory
8076 @code{dir}. The order in which library files are searched is described in
8077 @ref{8c,,Search Paths for gnatbind}.
8078 @end table
8079
8080 @geindex Search paths
8081 @geindex for gnatmake
8082
8083 @geindex -A (gnatmake)
8084
8085
8086 @table @asis
8087
8088 @item @code{-A@emph{dir}}
8089
8090 Equivalent to @code{-aL@emph{dir}} @code{-aI@emph{dir}}.
8091
8092 @geindex -I (gnatmake)
8093
8094 @item @code{-I@emph{dir}}
8095
8096 Equivalent to @code{-aO@emph{dir} -aI@emph{dir}}.
8097 @end table
8098
8099 @geindex -I- (gnatmake)
8100
8101 @geindex Source files
8102 @geindex suppressing search
8103
8104
8105 @table @asis
8106
8107 @item @code{-I-}
8108
8109 Do not look for source files in the directory containing the source
8110 file named in the command line.
8111 Do not look for ALI or object files in the directory
8112 where @code{gnatmake} was invoked.
8113 @end table
8114
8115 @geindex -L (gnatmake)
8116
8117 @geindex Linker libraries
8118
8119
8120 @table @asis
8121
8122 @item @code{-L@emph{dir}}
8123
8124 Add directory @code{dir} to the list of directories in which the linker
8125 will search for libraries. This is equivalent to
8126 @code{-largs} @code{-L@emph{dir}}.
8127 Furthermore, under Windows, the sources pointed to by the libraries path
8128 set in the registry are not searched for.
8129 @end table
8130
8131 @geindex -nostdinc (gnatmake)
8132
8133
8134 @table @asis
8135
8136 @item @code{-nostdinc}
8137
8138 Do not look for source files in the system default directory.
8139 @end table
8140
8141 @geindex -nostdlib (gnatmake)
8142
8143
8144 @table @asis
8145
8146 @item @code{-nostdlib}
8147
8148 Do not look for library files in the system default directory.
8149 @end table
8150
8151 @geindex --RTS (gnatmake)
8152
8153
8154 @table @asis
8155
8156 @item @code{--RTS=@emph{rts-path}}
8157
8158 Specifies the default location of the run-time library. GNAT looks for the
8159 run-time
8160 in the following directories, and stops as soon as a valid run-time is found
8161 (@code{adainclude} or @code{ada_source_path}, and @code{adalib} or
8162 @code{ada_object_path} present):
8163
8164
8165 @itemize *
8166
8167 @item
8168 @emph{<current directory>/$rts_path}
8169
8170 @item
8171 @emph{<default-search-dir>/$rts_path}
8172
8173 @item
8174 @emph{<default-search-dir>/rts-$rts_path}
8175
8176 @item
8177 The selected path is handled like a normal RTS path.
8178 @end itemize
8179 @end table
8180
8181 @node Mode Switches for gnatmake,Notes on the Command Line,Switches for gnatmake,Building with gnatmake
8182 @anchor{gnat_ugn/building_executable_programs_with_gnat id4}@anchor{df}@anchor{gnat_ugn/building_executable_programs_with_gnat mode-switches-for-gnatmake}@anchor{e0}
8183 @subsection Mode Switches for @code{gnatmake}
8184
8185
8186 The mode switches (referred to as @code{mode_switches}) allow the
8187 inclusion of switches that are to be passed to the compiler itself, the
8188 binder or the linker. The effect of a mode switch is to cause all
8189 subsequent switches up to the end of the switch list, or up to the next
8190 mode switch, to be interpreted as switches to be passed on to the
8191 designated component of GNAT.
8192
8193 @geindex -cargs (gnatmake)
8194
8195
8196 @table @asis
8197
8198 @item @code{-cargs @emph{switches}}
8199
8200 Compiler switches. Here @code{switches} is a list of switches
8201 that are valid switches for @code{gcc}. They will be passed on to
8202 all compile steps performed by @code{gnatmake}.
8203 @end table
8204
8205 @geindex -bargs (gnatmake)
8206
8207
8208 @table @asis
8209
8210 @item @code{-bargs @emph{switches}}
8211
8212 Binder switches. Here @code{switches} is a list of switches
8213 that are valid switches for @code{gnatbind}. They will be passed on to
8214 all bind steps performed by @code{gnatmake}.
8215 @end table
8216
8217 @geindex -largs (gnatmake)
8218
8219
8220 @table @asis
8221
8222 @item @code{-largs @emph{switches}}
8223
8224 Linker switches. Here @code{switches} is a list of switches
8225 that are valid switches for @code{gnatlink}. They will be passed on to
8226 all link steps performed by @code{gnatmake}.
8227 @end table
8228
8229 @geindex -margs (gnatmake)
8230
8231
8232 @table @asis
8233
8234 @item @code{-margs @emph{switches}}
8235
8236 Make switches. The switches are directly interpreted by @code{gnatmake},
8237 regardless of any previous occurrence of @code{-cargs}, @code{-bargs}
8238 or @code{-largs}.
8239 @end table
8240
8241 @node Notes on the Command Line,How gnatmake Works,Mode Switches for gnatmake,Building with gnatmake
8242 @anchor{gnat_ugn/building_executable_programs_with_gnat id5}@anchor{e1}@anchor{gnat_ugn/building_executable_programs_with_gnat notes-on-the-command-line}@anchor{e2}
8243 @subsection Notes on the Command Line
8244
8245
8246 This section contains some additional useful notes on the operation
8247 of the @code{gnatmake} command.
8248
8249 @geindex Recompilation (by gnatmake)
8250
8251
8252 @itemize *
8253
8254 @item
8255 If @code{gnatmake} finds no ALI files, it recompiles the main program
8256 and all other units required by the main program.
8257 This means that @code{gnatmake}
8258 can be used for the initial compile, as well as during subsequent steps of
8259 the development cycle.
8260
8261 @item
8262 If you enter @code{gnatmake foo.adb}, where @code{foo}
8263 is a subunit or body of a generic unit, @code{gnatmake} recompiles
8264 @code{foo.adb} (because it finds no ALI) and stops, issuing a
8265 warning.
8266
8267 @item
8268 In @code{gnatmake} the switch @code{-I}
8269 is used to specify both source and
8270 library file paths. Use @code{-aI}
8271 instead if you just want to specify
8272 source paths only and @code{-aO}
8273 if you want to specify library paths
8274 only.
8275
8276 @item
8277 @code{gnatmake} will ignore any files whose ALI file is write-protected.
8278 This may conveniently be used to exclude standard libraries from
8279 consideration and in particular it means that the use of the
8280 @code{-f} switch will not recompile these files
8281 unless @code{-a} is also specified.
8282
8283 @item
8284 @code{gnatmake} has been designed to make the use of Ada libraries
8285 particularly convenient. Assume you have an Ada library organized
8286 as follows: @emph{obj-dir} contains the objects and ALI files for
8287 of your Ada compilation units,
8288 whereas @emph{include-dir} contains the
8289 specs of these units, but no bodies. Then to compile a unit
8290 stored in @code{main.adb}, which uses this Ada library you would just type:
8291
8292 @example
8293 $ gnatmake -aI`include-dir` -aL`obj-dir` main
8294 @end example
8295
8296 @item
8297 Using @code{gnatmake} along with the @code{-m (minimal recompilation)}
8298 switch provides a mechanism for avoiding unnecessary recompilations. Using
8299 this switch,
8300 you can update the comments/format of your
8301 source files without having to recompile everything. Note, however, that
8302 adding or deleting lines in a source files may render its debugging
8303 info obsolete. If the file in question is a spec, the impact is rather
8304 limited, as that debugging info will only be useful during the
8305 elaboration phase of your program. For bodies the impact can be more
8306 significant. In all events, your debugger will warn you if a source file
8307 is more recent than the corresponding object, and alert you to the fact
8308 that the debugging information may be out of date.
8309 @end itemize
8310
8311 @node How gnatmake Works,Examples of gnatmake Usage,Notes on the Command Line,Building with gnatmake
8312 @anchor{gnat_ugn/building_executable_programs_with_gnat id6}@anchor{e3}@anchor{gnat_ugn/building_executable_programs_with_gnat how-gnatmake-works}@anchor{e4}
8313 @subsection How @code{gnatmake} Works
8314
8315
8316 Generally @code{gnatmake} automatically performs all necessary
8317 recompilations and you don't need to worry about how it works. However,
8318 it may be useful to have some basic understanding of the @code{gnatmake}
8319 approach and in particular to understand how it uses the results of
8320 previous compilations without incorrectly depending on them.
8321
8322 First a definition: an object file is considered @emph{up to date} if the
8323 corresponding ALI file exists and if all the source files listed in the
8324 dependency section of this ALI file have time stamps matching those in
8325 the ALI file. This means that neither the source file itself nor any
8326 files that it depends on have been modified, and hence there is no need
8327 to recompile this file.
8328
8329 @code{gnatmake} works by first checking if the specified main unit is up
8330 to date. If so, no compilations are required for the main unit. If not,
8331 @code{gnatmake} compiles the main program to build a new ALI file that
8332 reflects the latest sources. Then the ALI file of the main unit is
8333 examined to find all the source files on which the main program depends,
8334 and @code{gnatmake} recursively applies the above procedure on all these
8335 files.
8336
8337 This process ensures that @code{gnatmake} only trusts the dependencies
8338 in an existing ALI file if they are known to be correct. Otherwise it
8339 always recompiles to determine a new, guaranteed accurate set of
8340 dependencies. As a result the program is compiled 'upside down' from what may
8341 be more familiar as the required order of compilation in some other Ada
8342 systems. In particular, clients are compiled before the units on which
8343 they depend. The ability of GNAT to compile in any order is critical in
8344 allowing an order of compilation to be chosen that guarantees that
8345 @code{gnatmake} will recompute a correct set of new dependencies if
8346 necessary.
8347
8348 When invoking @code{gnatmake} with several @code{file_names}, if a unit is
8349 imported by several of the executables, it will be recompiled at most once.
8350
8351 Note: when using non-standard naming conventions
8352 (@ref{35,,Using Other File Names}), changing through a configuration pragmas
8353 file the version of a source and invoking @code{gnatmake} to recompile may
8354 have no effect, if the previous version of the source is still accessible
8355 by @code{gnatmake}. It may be necessary to use the switch
8356 -f.
8357
8358 @node Examples of gnatmake Usage,,How gnatmake Works,Building with gnatmake
8359 @anchor{gnat_ugn/building_executable_programs_with_gnat examples-of-gnatmake-usage}@anchor{e5}@anchor{gnat_ugn/building_executable_programs_with_gnat id7}@anchor{e6}
8360 @subsection Examples of @code{gnatmake} Usage
8361
8362
8363
8364 @table @asis
8365
8366 @item @emph{gnatmake hello.adb}
8367
8368 Compile all files necessary to bind and link the main program
8369 @code{hello.adb} (containing unit @code{Hello}) and bind and link the
8370 resulting object files to generate an executable file @code{hello}.
8371
8372 @item @emph{gnatmake main1 main2 main3}
8373
8374 Compile all files necessary to bind and link the main programs
8375 @code{main1.adb} (containing unit @code{Main1}), @code{main2.adb}
8376 (containing unit @code{Main2}) and @code{main3.adb}
8377 (containing unit @code{Main3}) and bind and link the resulting object files
8378 to generate three executable files @code{main1},
8379 @code{main2} and @code{main3}.
8380
8381 @item @emph{gnatmake -q Main_Unit -cargs -O2 -bargs -l}
8382
8383 Compile all files necessary to bind and link the main program unit
8384 @code{Main_Unit} (from file @code{main_unit.adb}). All compilations will
8385 be done with optimization level 2 and the order of elaboration will be
8386 listed by the binder. @code{gnatmake} will operate in quiet mode, not
8387 displaying commands it is executing.
8388 @end table
8389
8390 @node Compiling with gcc,Compiler Switches,Building with gnatmake,Building Executable Programs with GNAT
8391 @anchor{gnat_ugn/building_executable_programs_with_gnat compiling-with-gcc}@anchor{1c}@anchor{gnat_ugn/building_executable_programs_with_gnat id8}@anchor{e7}
8392 @section Compiling with @code{gcc}
8393
8394
8395 This section discusses how to compile Ada programs using the @code{gcc}
8396 command. It also describes the set of switches
8397 that can be used to control the behavior of the compiler.
8398
8399 @menu
8400 * Compiling Programs::
8401 * Search Paths and the Run-Time Library (RTL): Search Paths and the Run-Time Library RTL.
8402 * Order of Compilation Issues::
8403 * Examples::
8404
8405 @end menu
8406
8407 @node Compiling Programs,Search Paths and the Run-Time Library RTL,,Compiling with gcc
8408 @anchor{gnat_ugn/building_executable_programs_with_gnat compiling-programs}@anchor{e8}@anchor{gnat_ugn/building_executable_programs_with_gnat id9}@anchor{e9}
8409 @subsection Compiling Programs
8410
8411
8412 The first step in creating an executable program is to compile the units
8413 of the program using the @code{gcc} command. You must compile the
8414 following files:
8415
8416
8417 @itemize *
8418
8419 @item
8420 the body file (@code{.adb}) for a library level subprogram or generic
8421 subprogram
8422
8423 @item
8424 the spec file (@code{.ads}) for a library level package or generic
8425 package that has no body
8426
8427 @item
8428 the body file (@code{.adb}) for a library level package
8429 or generic package that has a body
8430 @end itemize
8431
8432 You need @emph{not} compile the following files
8433
8434
8435 @itemize *
8436
8437 @item
8438 the spec of a library unit which has a body
8439
8440 @item
8441 subunits
8442 @end itemize
8443
8444 because they are compiled as part of compiling related units. GNAT
8445 package specs
8446 when the corresponding body is compiled, and subunits when the parent is
8447 compiled.
8448
8449 @geindex cannot generate code
8450
8451 If you attempt to compile any of these files, you will get one of the
8452 following error messages (where @code{fff} is the name of the file you
8453 compiled):
8454
8455 @quotation
8456
8457 @example
8458 cannot generate code for file `@w{`}fff`@w{`} (package spec)
8459 to check package spec, use -gnatc
8460
8461 cannot generate code for file `@w{`}fff`@w{`} (missing subunits)
8462 to check parent unit, use -gnatc
8463
8464 cannot generate code for file `@w{`}fff`@w{`} (subprogram spec)
8465 to check subprogram spec, use -gnatc
8466
8467 cannot generate code for file `@w{`}fff`@w{`} (subunit)
8468 to check subunit, use -gnatc
8469 @end example
8470 @end quotation
8471
8472 As indicated by the above error messages, if you want to submit
8473 one of these files to the compiler to check for correct semantics
8474 without generating code, then use the @code{-gnatc} switch.
8475
8476 The basic command for compiling a file containing an Ada unit is:
8477
8478 @example
8479 $ gcc -c [switches] <file name>
8480 @end example
8481
8482 where @code{file name} is the name of the Ada file (usually
8483 having an extension @code{.ads} for a spec or @code{.adb} for a body).
8484 You specify the
8485 @code{-c} switch to tell @code{gcc} to compile, but not link, the file.
8486 The result of a successful compilation is an object file, which has the
8487 same name as the source file but an extension of @code{.o} and an Ada
8488 Library Information (ALI) file, which also has the same name as the
8489 source file, but with @code{.ali} as the extension. GNAT creates these
8490 two output files in the current directory, but you may specify a source
8491 file in any directory using an absolute or relative path specification
8492 containing the directory information.
8493
8494 TESTING: the @code{--foobar@emph{NN}} switch
8495
8496 @geindex gnat1
8497
8498 @code{gcc} is actually a driver program that looks at the extensions of
8499 the file arguments and loads the appropriate compiler. For example, the
8500 GNU C compiler is @code{cc1}, and the Ada compiler is @code{gnat1}.
8501 These programs are in directories known to the driver program (in some
8502 configurations via environment variables you set), but need not be in
8503 your path. The @code{gcc} driver also calls the assembler and any other
8504 utilities needed to complete the generation of the required object
8505 files.
8506
8507 It is possible to supply several file names on the same @code{gcc}
8508 command. This causes @code{gcc} to call the appropriate compiler for
8509 each file. For example, the following command lists two separate
8510 files to be compiled:
8511
8512 @example
8513 $ gcc -c x.adb y.adb
8514 @end example
8515
8516 calls @code{gnat1} (the Ada compiler) twice to compile @code{x.adb} and
8517 @code{y.adb}.
8518 The compiler generates two object files @code{x.o} and @code{y.o}
8519 and the two ALI files @code{x.ali} and @code{y.ali}.
8520
8521 Any switches apply to all the files listed, see @ref{ea,,Compiler Switches} for a
8522 list of available @code{gcc} switches.
8523
8524 @node Search Paths and the Run-Time Library RTL,Order of Compilation Issues,Compiling Programs,Compiling with gcc
8525 @anchor{gnat_ugn/building_executable_programs_with_gnat id10}@anchor{eb}@anchor{gnat_ugn/building_executable_programs_with_gnat search-paths-and-the-run-time-library-rtl}@anchor{89}
8526 @subsection Search Paths and the Run-Time Library (RTL)
8527
8528
8529 With the GNAT source-based library system, the compiler must be able to
8530 find source files for units that are needed by the unit being compiled.
8531 Search paths are used to guide this process.
8532
8533 The compiler compiles one source file whose name must be given
8534 explicitly on the command line. In other words, no searching is done
8535 for this file. To find all other source files that are needed (the most
8536 common being the specs of units), the compiler examines the following
8537 directories, in the following order:
8538
8539
8540 @itemize *
8541
8542 @item
8543 The directory containing the source file of the main unit being compiled
8544 (the file name on the command line).
8545
8546 @item
8547 Each directory named by an @code{-I} switch given on the @code{gcc}
8548 command line, in the order given.
8549
8550 @geindex ADA_PRJ_INCLUDE_FILE
8551
8552 @item
8553 Each of the directories listed in the text file whose name is given
8554 by the
8555 @geindex ADA_PRJ_INCLUDE_FILE
8556 @geindex environment variable; ADA_PRJ_INCLUDE_FILE
8557 @code{ADA_PRJ_INCLUDE_FILE} environment variable.
8558 @geindex ADA_PRJ_INCLUDE_FILE
8559 @geindex environment variable; ADA_PRJ_INCLUDE_FILE
8560 @code{ADA_PRJ_INCLUDE_FILE} is normally set by gnatmake or by the gnat
8561 driver when project files are used. It should not normally be set
8562 by other means.
8563
8564 @geindex ADA_INCLUDE_PATH
8565
8566 @item
8567 Each of the directories listed in the value of the
8568 @geindex ADA_INCLUDE_PATH
8569 @geindex environment variable; ADA_INCLUDE_PATH
8570 @code{ADA_INCLUDE_PATH} environment variable.
8571 Construct this value
8572 exactly as the
8573 @geindex PATH
8574 @geindex environment variable; PATH
8575 @code{PATH} environment variable: a list of directory
8576 names separated by colons (semicolons when working with the NT version).
8577
8578 @item
8579 The content of the @code{ada_source_path} file which is part of the GNAT
8580 installation tree and is used to store standard libraries such as the
8581 GNAT Run Time Library (RTL) source files.
8582 @ref{87,,Installing a library}
8583 @end itemize
8584
8585 Specifying the switch @code{-I-}
8586 inhibits the use of the directory
8587 containing the source file named in the command line. You can still
8588 have this directory on your search path, but in this case it must be
8589 explicitly requested with a @code{-I} switch.
8590
8591 Specifying the switch @code{-nostdinc}
8592 inhibits the search of the default location for the GNAT Run Time
8593 Library (RTL) source files.
8594
8595 The compiler outputs its object files and ALI files in the current
8596 working directory.
8597 Caution: The object file can be redirected with the @code{-o} switch;
8598 however, @code{gcc} and @code{gnat1} have not been coordinated on this
8599 so the @code{ALI} file will not go to the right place. Therefore, you should
8600 avoid using the @code{-o} switch.
8601
8602 @geindex System.IO
8603
8604 The packages @code{Ada}, @code{System}, and @code{Interfaces} and their
8605 children make up the GNAT RTL, together with the simple @code{System.IO}
8606 package used in the @code{"Hello World"} example. The sources for these units
8607 are needed by the compiler and are kept together in one directory. Not
8608 all of the bodies are needed, but all of the sources are kept together
8609 anyway. In a normal installation, you need not specify these directory
8610 names when compiling or binding. Either the environment variables or
8611 the built-in defaults cause these files to be found.
8612
8613 In addition to the language-defined hierarchies (@code{System}, @code{Ada} and
8614 @code{Interfaces}), the GNAT distribution provides a fourth hierarchy,
8615 consisting of child units of @code{GNAT}. This is a collection of generally
8616 useful types, subprograms, etc. See the @cite{GNAT_Reference_Manual}
8617 for further details.
8618
8619 Besides simplifying access to the RTL, a major use of search paths is
8620 in compiling sources from multiple directories. This can make
8621 development environments much more flexible.
8622
8623 @node Order of Compilation Issues,Examples,Search Paths and the Run-Time Library RTL,Compiling with gcc
8624 @anchor{gnat_ugn/building_executable_programs_with_gnat id11}@anchor{ec}@anchor{gnat_ugn/building_executable_programs_with_gnat order-of-compilation-issues}@anchor{ed}
8625 @subsection Order of Compilation Issues
8626
8627
8628 If, in our earlier example, there was a spec for the @code{hello}
8629 procedure, it would be contained in the file @code{hello.ads}; yet this
8630 file would not have to be explicitly compiled. This is the result of the
8631 model we chose to implement library management. Some of the consequences
8632 of this model are as follows:
8633
8634
8635 @itemize *
8636
8637 @item
8638 There is no point in compiling specs (except for package
8639 specs with no bodies) because these are compiled as needed by clients. If
8640 you attempt a useless compilation, you will receive an error message.
8641 It is also useless to compile subunits because they are compiled as needed
8642 by the parent.
8643
8644 @item
8645 There are no order of compilation requirements: performing a
8646 compilation never obsoletes anything. The only way you can obsolete
8647 something and require recompilations is to modify one of the
8648 source files on which it depends.
8649
8650 @item
8651 There is no library as such, apart from the ALI files
8652 (@ref{42,,The Ada Library Information Files}, for information on the format
8653 of these files). For now we find it convenient to create separate ALI files,
8654 but eventually the information therein may be incorporated into the object
8655 file directly.
8656
8657 @item
8658 When you compile a unit, the source files for the specs of all units
8659 that it @emph{with}s, all its subunits, and the bodies of any generics it
8660 instantiates must be available (reachable by the search-paths mechanism
8661 described above), or you will receive a fatal error message.
8662 @end itemize
8663
8664 @node Examples,,Order of Compilation Issues,Compiling with gcc
8665 @anchor{gnat_ugn/building_executable_programs_with_gnat id12}@anchor{ee}@anchor{gnat_ugn/building_executable_programs_with_gnat examples}@anchor{ef}
8666 @subsection Examples
8667
8668
8669 The following are some typical Ada compilation command line examples:
8670
8671 @example
8672 $ gcc -c xyz.adb
8673 @end example
8674
8675 Compile body in file @code{xyz.adb} with all default options.
8676
8677 @example
8678 $ gcc -c -O2 -gnata xyz-def.adb
8679 @end example
8680
8681 Compile the child unit package in file @code{xyz-def.adb} with extensive
8682 optimizations, and pragma @code{Assert}/@cite{Debug} statements
8683 enabled.
8684
8685 @example
8686 $ gcc -c -gnatc abc-def.adb
8687 @end example
8688
8689 Compile the subunit in file @code{abc-def.adb} in semantic-checking-only
8690 mode.
8691
8692 @node Compiler Switches,Linker Switches,Compiling with gcc,Building Executable Programs with GNAT
8693 @anchor{gnat_ugn/building_executable_programs_with_gnat compiler-switches}@anchor{f0}@anchor{gnat_ugn/building_executable_programs_with_gnat switches-for-gcc}@anchor{ea}
8694 @section Compiler Switches
8695
8696
8697 The @code{gcc} command accepts switches that control the
8698 compilation process. These switches are fully described in this section:
8699 first an alphabetical listing of all switches with a brief description,
8700 and then functionally grouped sets of switches with more detailed
8701 information.
8702
8703 More switches exist for GCC than those documented here, especially
8704 for specific targets. However, their use is not recommended as
8705 they may change code generation in ways that are incompatible with
8706 the Ada run-time library, or can cause inconsistencies between
8707 compilation units.
8708
8709 @menu
8710 * Alphabetical List of All Switches::
8711 * Output and Error Message Control::
8712 * Warning Message Control::
8713 * Debugging and Assertion Control::
8714 * Validity Checking::
8715 * Style Checking::
8716 * Run-Time Checks::
8717 * Using gcc for Syntax Checking::
8718 * Using gcc for Semantic Checking::
8719 * Compiling Different Versions of Ada::
8720 * Character Set Control::
8721 * File Naming Control::
8722 * Subprogram Inlining Control::
8723 * Auxiliary Output Control::
8724 * Debugging Control::
8725 * Exception Handling Control::
8726 * Units to Sources Mapping Files::
8727 * Code Generation Control::
8728
8729 @end menu
8730
8731 @node Alphabetical List of All Switches,Output and Error Message Control,,Compiler Switches
8732 @anchor{gnat_ugn/building_executable_programs_with_gnat id13}@anchor{f1}@anchor{gnat_ugn/building_executable_programs_with_gnat alphabetical-list-of-all-switches}@anchor{f2}
8733 @subsection Alphabetical List of All Switches
8734
8735
8736 @geindex -b (gcc)
8737
8738
8739 @table @asis
8740
8741 @item @code{-b @emph{target}}
8742
8743 Compile your program to run on @code{target}, which is the name of a
8744 system configuration. You must have a GNAT cross-compiler built if
8745 @code{target} is not the same as your host system.
8746 @end table
8747
8748 @geindex -B (gcc)
8749
8750
8751 @table @asis
8752
8753 @item @code{-B@emph{dir}}
8754
8755 Load compiler executables (for example, @code{gnat1}, the Ada compiler)
8756 from @code{dir} instead of the default location. Only use this switch
8757 when multiple versions of the GNAT compiler are available.
8758 See the "Options for Directory Search" section in the
8759 @cite{Using the GNU Compiler Collection (GCC)} manual for further details.
8760 You would normally use the @code{-b} or @code{-V} switch instead.
8761 @end table
8762
8763 @geindex -c (gcc)
8764
8765
8766 @table @asis
8767
8768 @item @code{-c}
8769
8770 Compile. Always use this switch when compiling Ada programs.
8771
8772 Note: for some other languages when using @code{gcc}, notably in
8773 the case of C and C++, it is possible to use
8774 use @code{gcc} without a @code{-c} switch to
8775 compile and link in one step. In the case of GNAT, you
8776 cannot use this approach, because the binder must be run
8777 and @code{gcc} cannot be used to run the GNAT binder.
8778 @end table
8779
8780 @geindex -fcallgraph-info (gcc)
8781
8782
8783 @table @asis
8784
8785 @item @code{-fcallgraph-info[=su,da]}
8786
8787 Makes the compiler output callgraph information for the program, on a
8788 per-file basis. The information is generated in the VCG format. It can
8789 be decorated with additional, per-node and/or per-edge information, if a
8790 list of comma-separated markers is additionally specified. When the
8791 @code{su} marker is specified, the callgraph is decorated with stack usage
8792 information; it is equivalent to @code{-fstack-usage}. When the @code{da}
8793 marker is specified, the callgraph is decorated with information about
8794 dynamically allocated objects.
8795 @end table
8796
8797 @geindex -fdump-scos (gcc)
8798
8799
8800 @table @asis
8801
8802 @item @code{-fdump-scos}
8803
8804 Generates SCO (Source Coverage Obligation) information in the ALI file.
8805 This information is used by advanced coverage tools. See unit @code{SCOs}
8806 in the compiler sources for details in files @code{scos.ads} and
8807 @code{scos.adb}.
8808 @end table
8809
8810 @geindex -fgnat-encodings (gcc)
8811
8812
8813 @table @asis
8814
8815 @item @code{-fgnat-encodings=[all|gdb|minimal]}
8816
8817 This switch controls the balance between GNAT encodings and standard DWARF
8818 emitted in the debug information.
8819 @end table
8820
8821 @geindex -flto (gcc)
8822
8823
8824 @table @asis
8825
8826 @item @code{-flto[=@emph{n}]}
8827
8828 Enables Link Time Optimization. This switch must be used in conjunction
8829 with the @code{-Ox} switches (but not with the @code{-gnatn} switch
8830 since it is a full replacement for the latter) and instructs the compiler
8831 to defer most optimizations until the link stage. The advantage of this
8832 approach is that the compiler can do a whole-program analysis and choose
8833 the best interprocedural optimization strategy based on a complete view
8834 of the program, instead of a fragmentary view with the usual approach.
8835 This can also speed up the compilation of big programs and reduce the
8836 size of the executable, compared with a traditional per-unit compilation
8837 with inlining across units enabled by the @code{-gnatn} switch.
8838 The drawback of this approach is that it may require more memory and that
8839 the debugging information generated by -g with it might be hardly usable.
8840 The switch, as well as the accompanying @code{-Ox} switches, must be
8841 specified both for the compilation and the link phases.
8842 If the @code{n} parameter is specified, the optimization and final code
8843 generation at link time are executed using @code{n} parallel jobs by
8844 means of an installed @code{make} program.
8845 @end table
8846
8847 @geindex -fno-inline (gcc)
8848
8849
8850 @table @asis
8851
8852 @item @code{-fno-inline}
8853
8854 Suppresses all inlining, unless requested with pragma @code{Inline_Always}. The
8855 effect is enforced regardless of other optimization or inlining switches.
8856 Note that inlining can also be suppressed on a finer-grained basis with
8857 pragma @code{No_Inline}.
8858 @end table
8859
8860 @geindex -fno-inline-functions (gcc)
8861
8862
8863 @table @asis
8864
8865 @item @code{-fno-inline-functions}
8866
8867 Suppresses automatic inlining of subprograms, which is enabled
8868 if @code{-O3} is used.
8869 @end table
8870
8871 @geindex -fno-inline-small-functions (gcc)
8872
8873
8874 @table @asis
8875
8876 @item @code{-fno-inline-small-functions}
8877
8878 Suppresses automatic inlining of small subprograms, which is enabled
8879 if @code{-O2} is used.
8880 @end table
8881
8882 @geindex -fno-inline-functions-called-once (gcc)
8883
8884
8885 @table @asis
8886
8887 @item @code{-fno-inline-functions-called-once}
8888
8889 Suppresses inlining of subprograms local to the unit and called once
8890 from within it, which is enabled if @code{-O1} is used.
8891 @end table
8892
8893 @geindex -fno-ivopts (gcc)
8894
8895
8896 @table @asis
8897
8898 @item @code{-fno-ivopts}
8899
8900 Suppresses high-level loop induction variable optimizations, which are
8901 enabled if @code{-O1} is used. These optimizations are generally
8902 profitable but, for some specific cases of loops with numerous uses
8903 of the iteration variable that follow a common pattern, they may end
8904 up destroying the regularity that could be exploited at a lower level
8905 and thus producing inferior code.
8906 @end table
8907
8908 @geindex -fno-strict-aliasing (gcc)
8909
8910
8911 @table @asis
8912
8913 @item @code{-fno-strict-aliasing}
8914
8915 Causes the compiler to avoid assumptions regarding non-aliasing
8916 of objects of different types. See
8917 @ref{f3,,Optimization and Strict Aliasing} for details.
8918 @end table
8919
8920 @geindex -fno-strict-overflow (gcc)
8921
8922
8923 @table @asis
8924
8925 @item @code{-fno-strict-overflow}
8926
8927 Causes the compiler to avoid assumptions regarding the rules of signed
8928 integer overflow. These rules specify that signed integer overflow will
8929 result in a Constraint_Error exception at run time and are enforced in
8930 default mode by the compiler, so this switch should not be necessary in
8931 normal operating mode. It might be useful in conjunction with @code{-gnato0}
8932 for very peculiar cases of low-level programming.
8933 @end table
8934
8935 @geindex -fstack-check (gcc)
8936
8937
8938 @table @asis
8939
8940 @item @code{-fstack-check}
8941
8942 Activates stack checking.
8943 See @ref{f4,,Stack Overflow Checking} for details.
8944 @end table
8945
8946 @geindex -fstack-usage (gcc)
8947
8948
8949 @table @asis
8950
8951 @item @code{-fstack-usage}
8952
8953 Makes the compiler output stack usage information for the program, on a
8954 per-subprogram basis. See @ref{f5,,Static Stack Usage Analysis} for details.
8955 @end table
8956
8957 @geindex -g (gcc)
8958
8959
8960 @table @asis
8961
8962 @item @code{-g}
8963
8964 Generate debugging information. This information is stored in the object
8965 file and copied from there to the final executable file by the linker,
8966 where it can be read by the debugger. You must use the
8967 @code{-g} switch if you plan on using the debugger.
8968 @end table
8969
8970 @geindex -gnat05 (gcc)
8971
8972
8973 @table @asis
8974
8975 @item @code{-gnat05}
8976
8977 Allow full Ada 2005 features.
8978 @end table
8979
8980 @geindex -gnat12 (gcc)
8981
8982
8983 @table @asis
8984
8985 @item @code{-gnat12}
8986
8987 Allow full Ada 2012 features.
8988 @end table
8989
8990 @geindex -gnat83 (gcc)
8991
8992 @geindex -gnat2005 (gcc)
8993
8994
8995 @table @asis
8996
8997 @item @code{-gnat2005}
8998
8999 Allow full Ada 2005 features (same as @code{-gnat05})
9000 @end table
9001
9002 @geindex -gnat2012 (gcc)
9003
9004
9005 @table @asis
9006
9007 @item @code{-gnat2012}
9008
9009 Allow full Ada 2012 features (same as @code{-gnat12})
9010
9011 @item @code{-gnat83}
9012
9013 Enforce Ada 83 restrictions.
9014 @end table
9015
9016 @geindex -gnat95 (gcc)
9017
9018
9019 @table @asis
9020
9021 @item @code{-gnat95}
9022
9023 Enforce Ada 95 restrictions.
9024
9025 Note: for compatibility with some Ada 95 compilers which support only
9026 the @code{overriding} keyword of Ada 2005, the @code{-gnatd.D} switch can
9027 be used along with @code{-gnat95} to achieve a similar effect with GNAT.
9028
9029 @code{-gnatd.D} instructs GNAT to consider @code{overriding} as a keyword
9030 and handle its associated semantic checks, even in Ada 95 mode.
9031 @end table
9032
9033 @geindex -gnata (gcc)
9034
9035
9036 @table @asis
9037
9038 @item @code{-gnata}
9039
9040 Assertions enabled. @code{Pragma Assert} and @code{pragma Debug} to be
9041 activated. Note that these pragmas can also be controlled using the
9042 configuration pragmas @code{Assertion_Policy} and @code{Debug_Policy}.
9043 It also activates pragmas @code{Check}, @code{Precondition}, and
9044 @code{Postcondition}. Note that these pragmas can also be controlled
9045 using the configuration pragma @code{Check_Policy}. In Ada 2012, it
9046 also activates all assertions defined in the RM as aspects: preconditions,
9047 postconditions, type invariants and (sub)type predicates. In all Ada modes,
9048 corresponding pragmas for type invariants and (sub)type predicates are
9049 also activated. The default is that all these assertions are disabled,
9050 and have no effect, other than being checked for syntactic validity, and
9051 in the case of subtype predicates, constructions such as membership tests
9052 still test predicates even if assertions are turned off.
9053 @end table
9054
9055 @geindex -gnatA (gcc)
9056
9057
9058 @table @asis
9059
9060 @item @code{-gnatA}
9061
9062 Avoid processing @code{gnat.adc}. If a @code{gnat.adc} file is present,
9063 it will be ignored.
9064 @end table
9065
9066 @geindex -gnatb (gcc)
9067
9068
9069 @table @asis
9070
9071 @item @code{-gnatb}
9072
9073 Generate brief messages to @code{stderr} even if verbose mode set.
9074 @end table
9075
9076 @geindex -gnatB (gcc)
9077
9078
9079 @table @asis
9080
9081 @item @code{-gnatB}
9082
9083 Assume no invalid (bad) values except for 'Valid attribute use
9084 (@ref{f6,,Validity Checking}).
9085 @end table
9086
9087 @geindex -gnatc (gcc)
9088
9089
9090 @table @asis
9091
9092 @item @code{-gnatc}
9093
9094 Check syntax and semantics only (no code generation attempted). When the
9095 compiler is invoked by @code{gnatmake}, if the switch @code{-gnatc} is
9096 only given to the compiler (after @code{-cargs} or in package Compiler of
9097 the project file, @code{gnatmake} will fail because it will not find the
9098 object file after compilation. If @code{gnatmake} is called with
9099 @code{-gnatc} as a builder switch (before @code{-cargs} or in package
9100 Builder of the project file) then @code{gnatmake} will not fail because
9101 it will not look for the object files after compilation, and it will not try
9102 to build and link.
9103 @end table
9104
9105 @geindex -gnatC (gcc)
9106
9107
9108 @table @asis
9109
9110 @item @code{-gnatC}
9111
9112 Generate CodePeer intermediate format (no code generation attempted).
9113 This switch will generate an intermediate representation suitable for
9114 use by CodePeer (@code{.scil} files). This switch is not compatible with
9115 code generation (it will, among other things, disable some switches such
9116 as -gnatn, and enable others such as -gnata).
9117 @end table
9118
9119 @geindex -gnatd (gcc)
9120
9121
9122 @table @asis
9123
9124 @item @code{-gnatd}
9125
9126 Specify debug options for the compiler. The string of characters after
9127 the @code{-gnatd} specify the specific debug options. The possible
9128 characters are 0-9, a-z, A-Z, optionally preceded by a dot. See
9129 compiler source file @code{debug.adb} for details of the implemented
9130 debug options. Certain debug options are relevant to applications
9131 programmers, and these are documented at appropriate points in this
9132 users guide.
9133 @end table
9134
9135 @geindex -gnatD[nn] (gcc)
9136
9137
9138 @table @asis
9139
9140 @item @code{-gnatD}
9141
9142 Create expanded source files for source level debugging. This switch
9143 also suppresses generation of cross-reference information
9144 (see @code{-gnatx}). Note that this switch is not allowed if a previous
9145 -gnatR switch has been given, since these two switches are not compatible.
9146 @end table
9147
9148 @geindex -gnateA (gcc)
9149
9150
9151 @table @asis
9152
9153 @item @code{-gnateA}
9154
9155 Check that the actual parameters of a subprogram call are not aliases of one
9156 another. To qualify as aliasing, the actuals must denote objects of a composite
9157 type, their memory locations must be identical or overlapping, and at least one
9158 of the corresponding formal parameters must be of mode OUT or IN OUT.
9159
9160 @example
9161 type Rec_Typ is record
9162 Data : Integer := 0;
9163 end record;
9164
9165 function Self (Val : Rec_Typ) return Rec_Typ is
9166 begin
9167 return Val;
9168 end Self;
9169
9170 procedure Detect_Aliasing (Val_1 : in out Rec_Typ; Val_2 : Rec_Typ) is
9171 begin
9172 null;
9173 end Detect_Aliasing;
9174
9175 Obj : Rec_Typ;
9176
9177 Detect_Aliasing (Obj, Obj);
9178 Detect_Aliasing (Obj, Self (Obj));
9179 @end example
9180
9181 In the example above, the first call to @code{Detect_Aliasing} fails with a
9182 @code{Program_Error} at run time because the actuals for @code{Val_1} and
9183 @code{Val_2} denote the same object. The second call executes without raising
9184 an exception because @code{Self(Obj)} produces an anonymous object which does
9185 not share the memory location of @code{Obj}.
9186 @end table
9187
9188 @geindex -gnatec (gcc)
9189
9190
9191 @table @asis
9192
9193 @item @code{-gnatec=@emph{path}}
9194
9195 Specify a configuration pragma file
9196 (the equal sign is optional)
9197 (@ref{79,,The Configuration Pragmas Files}).
9198 @end table
9199
9200 @geindex -gnateC (gcc)
9201
9202
9203 @table @asis
9204
9205 @item @code{-gnateC}
9206
9207 Generate CodePeer messages in a compiler-like format. This switch is only
9208 effective if @code{-gnatcC} is also specified and requires an installation
9209 of CodePeer.
9210 @end table
9211
9212 @geindex -gnated (gcc)
9213
9214
9215 @table @asis
9216
9217 @item @code{-gnated}
9218
9219 Disable atomic synchronization
9220 @end table
9221
9222 @geindex -gnateD (gcc)
9223
9224
9225 @table @asis
9226
9227 @item @code{-gnateDsymbol[=@emph{value}]}
9228
9229 Defines a symbol, associated with @code{value}, for preprocessing.
9230 (@ref{18,,Integrated Preprocessing}).
9231 @end table
9232
9233 @geindex -gnateE (gcc)
9234
9235
9236 @table @asis
9237
9238 @item @code{-gnateE}
9239
9240 Generate extra information in exception messages. In particular, display
9241 extra column information and the value and range associated with index and
9242 range check failures, and extra column information for access checks.
9243 In cases where the compiler is able to determine at compile time that
9244 a check will fail, it gives a warning, and the extra information is not
9245 produced at run time.
9246 @end table
9247
9248 @geindex -gnatef (gcc)
9249
9250
9251 @table @asis
9252
9253 @item @code{-gnatef}
9254
9255 Display full source path name in brief error messages.
9256 @end table
9257
9258 @geindex -gnateF (gcc)
9259
9260
9261 @table @asis
9262
9263 @item @code{-gnateF}
9264
9265 Check for overflow on all floating-point operations, including those
9266 for unconstrained predefined types. See description of pragma
9267 @code{Check_Float_Overflow} in GNAT RM.
9268 @end table
9269
9270 @geindex -gnateg (gcc)
9271
9272 @code{-gnateg}
9273 @code{-gnatceg}
9274
9275 @quotation
9276
9277 The @code{-gnatc} switch must always be specified before this switch, e.g.
9278 @code{-gnatceg}. Generate a C header from the Ada input file. See
9279 @ref{ca,,Generating C Headers for Ada Specifications} for more
9280 information.
9281 @end quotation
9282
9283 @geindex -gnateG (gcc)
9284
9285
9286 @table @asis
9287
9288 @item @code{-gnateG}
9289
9290 Save result of preprocessing in a text file.
9291 @end table
9292
9293 @geindex -gnatei (gcc)
9294
9295
9296 @table @asis
9297
9298 @item @code{-gnatei@emph{nnn}}
9299
9300 Set maximum number of instantiations during compilation of a single unit to
9301 @code{nnn}. This may be useful in increasing the default maximum of 8000 for
9302 the rare case when a single unit legitimately exceeds this limit.
9303 @end table
9304
9305 @geindex -gnateI (gcc)
9306
9307
9308 @table @asis
9309
9310 @item @code{-gnateI@emph{nnn}}
9311
9312 Indicates that the source is a multi-unit source and that the index of the
9313 unit to compile is @code{nnn}. @code{nnn} needs to be a positive number and need
9314 to be a valid index in the multi-unit source.
9315 @end table
9316
9317 @geindex -gnatel (gcc)
9318
9319
9320 @table @asis
9321
9322 @item @code{-gnatel}
9323
9324 This switch can be used with the static elaboration model to issue info
9325 messages showing
9326 where implicit @code{pragma Elaborate} and @code{pragma Elaborate_All}
9327 are generated. This is useful in diagnosing elaboration circularities
9328 caused by these implicit pragmas when using the static elaboration
9329 model. See See the section in this guide on elaboration checking for
9330 further details. These messages are not generated by default, and are
9331 intended only for temporary use when debugging circularity problems.
9332 @end table
9333
9334 @geindex -gnatel (gcc)
9335
9336
9337 @table @asis
9338
9339 @item @code{-gnateL}
9340
9341 This switch turns off the info messages about implicit elaboration pragmas.
9342 @end table
9343
9344 @geindex -gnatem (gcc)
9345
9346
9347 @table @asis
9348
9349 @item @code{-gnatem=@emph{path}}
9350
9351 Specify a mapping file
9352 (the equal sign is optional)
9353 (@ref{f7,,Units to Sources Mapping Files}).
9354 @end table
9355
9356 @geindex -gnatep (gcc)
9357
9358
9359 @table @asis
9360
9361 @item @code{-gnatep=@emph{file}}
9362
9363 Specify a preprocessing data file
9364 (the equal sign is optional)
9365 (@ref{18,,Integrated Preprocessing}).
9366 @end table
9367
9368 @geindex -gnateP (gcc)
9369
9370
9371 @table @asis
9372
9373 @item @code{-gnateP}
9374
9375 Turn categorization dependency errors into warnings.
9376 Ada requires that units that WITH one another have compatible categories, for
9377 example a Pure unit cannot WITH a Preelaborate unit. If this switch is used,
9378 these errors become warnings (which can be ignored, or suppressed in the usual
9379 manner). This can be useful in some specialized circumstances such as the
9380 temporary use of special test software.
9381 @end table
9382
9383 @geindex -gnateS (gcc)
9384
9385
9386 @table @asis
9387
9388 @item @code{-gnateS}
9389
9390 Synonym of @code{-fdump-scos}, kept for backwards compatibility.
9391 @end table
9392
9393 @geindex -gnatet=file (gcc)
9394
9395
9396 @table @asis
9397
9398 @item @code{-gnatet=@emph{path}}
9399
9400 Generate target dependent information. The format of the output file is
9401 described in the section about switch @code{-gnateT}.
9402 @end table
9403
9404 @geindex -gnateT (gcc)
9405
9406
9407 @table @asis
9408
9409 @item @code{-gnateT=@emph{path}}
9410
9411 Read target dependent information, such as endianness or sizes and alignments
9412 of base type. If this switch is passed, the default target dependent
9413 information of the compiler is replaced by the one read from the input file.
9414 This is used by tools other than the compiler, e.g. to do
9415 semantic analysis of programs that will run on some other target than
9416 the machine on which the tool is run.
9417
9418 The following target dependent values should be defined,
9419 where @code{Nat} denotes a natural integer value, @code{Pos} denotes a
9420 positive integer value, and fields marked with a question mark are
9421 boolean fields, where a value of 0 is False, and a value of 1 is True:
9422
9423 @example
9424 Bits_BE : Nat; -- Bits stored big-endian?
9425 Bits_Per_Unit : Pos; -- Bits in a storage unit
9426 Bits_Per_Word : Pos; -- Bits in a word
9427 Bytes_BE : Nat; -- Bytes stored big-endian?
9428 Char_Size : Pos; -- Standard.Character'Size
9429 Double_Float_Alignment : Nat; -- Alignment of double float
9430 Double_Scalar_Alignment : Nat; -- Alignment of double length scalar
9431 Double_Size : Pos; -- Standard.Long_Float'Size
9432 Float_Size : Pos; -- Standard.Float'Size
9433 Float_Words_BE : Nat; -- Float words stored big-endian?
9434 Int_Size : Pos; -- Standard.Integer'Size
9435 Long_Double_Size : Pos; -- Standard.Long_Long_Float'Size
9436 Long_Long_Size : Pos; -- Standard.Long_Long_Integer'Size
9437 Long_Size : Pos; -- Standard.Long_Integer'Size
9438 Maximum_Alignment : Pos; -- Maximum permitted alignment
9439 Max_Unaligned_Field : Pos; -- Maximum size for unaligned bit field
9440 Pointer_Size : Pos; -- System.Address'Size
9441 Short_Enums : Nat; -- Foreign enums use short size?
9442 Short_Size : Pos; -- Standard.Short_Integer'Size
9443 Strict_Alignment : Nat; -- Strict alignment?
9444 System_Allocator_Alignment : Nat; -- Alignment for malloc calls
9445 Wchar_T_Size : Pos; -- Interfaces.C.wchar_t'Size
9446 Words_BE : Nat; -- Words stored big-endian?
9447 @end example
9448
9449 @code{Bits_Per_Unit} is the number of bits in a storage unit, the equivalent of
9450 GCC macro @code{BITS_PER_UNIT} documented as follows: @cite{Define this macro to be the number of bits in an addressable storage unit (byte); normally 8.}
9451
9452 @code{Bits_Per_Word} is the number of bits in a machine word, the equivalent of
9453 GCC macro @code{BITS_PER_WORD} documented as follows: @cite{Number of bits in a word; normally 32.}
9454
9455 @code{Double_Float_Alignment}, if not zero, is the maximum alignment that the
9456 compiler can choose by default for a 64-bit floating-point type or object.
9457
9458 @code{Double_Scalar_Alignment}, if not zero, is the maximum alignment that the
9459 compiler can choose by default for a 64-bit or larger scalar type or object.
9460
9461 @code{Maximum_Alignment} is the maximum alignment that the compiler can choose
9462 by default for a type or object, which is also the maximum alignment that can
9463 be specified in GNAT. It is computed for GCC backends as @code{BIGGEST_ALIGNMENT
9464 / BITS_PER_UNIT} where GCC macro @code{BIGGEST_ALIGNMENT} is documented as
9465 follows: @cite{Biggest alignment that any data type can require on this machine@comma{} in bits.}
9466
9467 @code{Max_Unaligned_Field} is the maximum size for unaligned bit field, which is
9468 64 for the majority of GCC targets (but can be different on some targets like
9469 AAMP).
9470
9471 @code{Strict_Alignment} is the equivalent of GCC macro @code{STRICT_ALIGNMENT}
9472 documented as follows: @cite{Define this macro to be the value 1 if instructions will fail to work if given data not on the nominal alignment. If instructions will merely go slower in that case@comma{} define this macro as 0.}
9473
9474 @code{System_Allocator_Alignment} is the guaranteed alignment of data returned
9475 by calls to @code{malloc}.
9476
9477 The format of the input file is as follows. First come the values of
9478 the variables defined above, with one line per value:
9479
9480 @example
9481 name value
9482 @end example
9483
9484 where @code{name} is the name of the parameter, spelled out in full,
9485 and cased as in the above list, and @code{value} is an unsigned decimal
9486 integer. Two or more blanks separates the name from the value.
9487
9488 All the variables must be present, in alphabetical order (i.e. the
9489 same order as the list above).
9490
9491 Then there is a blank line to separate the two parts of the file. Then
9492 come the lines showing the floating-point types to be registered, with
9493 one line per registered mode:
9494
9495 @example
9496 name digs float_rep size alignment
9497 @end example
9498
9499 where @code{name} is the string name of the type (which can have
9500 single spaces embedded in the name (e.g. long double), @code{digs} is
9501 the number of digits for the floating-point type, @code{float_rep} is
9502 the float representation (I/V/A for IEEE-754-Binary, Vax_Native,
9503 AAMP), @code{size} is the size in bits, @code{alignment} is the
9504 alignment in bits. The name is followed by at least two blanks, fields
9505 are separated by at least one blank, and a LF character immediately
9506 follows the alignment field.
9507
9508 Here is an example of a target parameterization file:
9509
9510 @example
9511 Bits_BE 0
9512 Bits_Per_Unit 8
9513 Bits_Per_Word 64
9514 Bytes_BE 0
9515 Char_Size 8
9516 Double_Float_Alignment 0
9517 Double_Scalar_Alignment 0
9518 Double_Size 64
9519 Float_Size 32
9520 Float_Words_BE 0
9521 Int_Size 64
9522 Long_Double_Size 128
9523 Long_Long_Size 64
9524 Long_Size 64
9525 Maximum_Alignment 16
9526 Max_Unaligned_Field 64
9527 Pointer_Size 64
9528 Short_Size 16
9529 Strict_Alignment 0
9530 System_Allocator_Alignment 16
9531 Wchar_T_Size 32
9532 Words_BE 0
9533
9534 float 15 I 64 64
9535 double 15 I 64 64
9536 long double 18 I 80 128
9537 TF 33 I 128 128
9538 @end example
9539 @end table
9540
9541 @geindex -gnateu (gcc)
9542
9543
9544 @table @asis
9545
9546 @item @code{-gnateu}
9547
9548 Ignore unrecognized validity, warning, and style switches that
9549 appear after this switch is given. This may be useful when
9550 compiling sources developed on a later version of the compiler
9551 with an earlier version. Of course the earlier version must
9552 support this switch.
9553 @end table
9554
9555 @geindex -gnateV (gcc)
9556
9557
9558 @table @asis
9559
9560 @item @code{-gnateV}
9561
9562 Check that all actual parameters of a subprogram call are valid according to
9563 the rules of validity checking (@ref{f6,,Validity Checking}).
9564 @end table
9565
9566 @geindex -gnateY (gcc)
9567
9568
9569 @table @asis
9570
9571 @item @code{-gnateY}
9572
9573 Ignore all STYLE_CHECKS pragmas. Full legality checks
9574 are still carried out, but the pragmas have no effect
9575 on what style checks are active. This allows all style
9576 checking options to be controlled from the command line.
9577 @end table
9578
9579 @geindex -gnatE (gcc)
9580
9581
9582 @table @asis
9583
9584 @item @code{-gnatE}
9585
9586 Dynamic elaboration checking mode enabled. For further details see
9587 @ref{f,,Elaboration Order Handling in GNAT}.
9588 @end table
9589
9590 @geindex -gnatf (gcc)
9591
9592
9593 @table @asis
9594
9595 @item @code{-gnatf}
9596
9597 Full errors. Multiple errors per line, all undefined references, do not
9598 attempt to suppress cascaded errors.
9599 @end table
9600
9601 @geindex -gnatF (gcc)
9602
9603
9604 @table @asis
9605
9606 @item @code{-gnatF}
9607
9608 Externals names are folded to all uppercase.
9609 @end table
9610
9611 @geindex -gnatg (gcc)
9612
9613
9614 @table @asis
9615
9616 @item @code{-gnatg}
9617
9618 Internal GNAT implementation mode. This should not be used for applications
9619 programs, it is intended only for use by the compiler and its run-time
9620 library. For documentation, see the GNAT sources. Note that @code{-gnatg}
9621 implies @code{-gnatw.ge} and @code{-gnatyg} so that all standard
9622 warnings and all standard style options are turned on. All warnings and style
9623 messages are treated as errors.
9624 @end table
9625
9626 @geindex -gnatG[nn] (gcc)
9627
9628
9629 @table @asis
9630
9631 @item @code{-gnatG=nn}
9632
9633 List generated expanded code in source form.
9634 @end table
9635
9636 @geindex -gnath (gcc)
9637
9638
9639 @table @asis
9640
9641 @item @code{-gnath}
9642
9643 Output usage information. The output is written to @code{stdout}.
9644 @end table
9645
9646 @geindex -gnatH (gcc)
9647
9648
9649 @table @asis
9650
9651 @item @code{-gnatH}
9652
9653 Legacy elaboration-checking mode enabled. When this switch is in effect,
9654 the pre-18.x access-before-elaboration model becomes the de facto model.
9655 For further details see @ref{f,,Elaboration Order Handling in GNAT}.
9656 @end table
9657
9658 @geindex -gnati (gcc)
9659
9660
9661 @table @asis
9662
9663 @item @code{-gnati@emph{c}}
9664
9665 Identifier character set (@code{c} = 1/2/3/4/8/9/p/f/n/w).
9666 For details of the possible selections for @code{c},
9667 see @ref{48,,Character Set Control}.
9668 @end table
9669
9670 @geindex -gnatI (gcc)
9671
9672
9673 @table @asis
9674
9675 @item @code{-gnatI}
9676
9677 Ignore representation clauses. When this switch is used,
9678 representation clauses are treated as comments. This is useful
9679 when initially porting code where you want to ignore rep clause
9680 problems, and also for compiling foreign code (particularly
9681 for use with ASIS). The representation clauses that are ignored
9682 are: enumeration_representation_clause, record_representation_clause,
9683 and attribute_definition_clause for the following attributes:
9684 Address, Alignment, Bit_Order, Component_Size, Machine_Radix,
9685 Object_Size, Scalar_Storage_Order, Size, Small, Stream_Size,
9686 and Value_Size. Pragma Default_Scalar_Storage_Order is also ignored.
9687 Note that this option should be used only for compiling -- the
9688 code is likely to malfunction at run time.
9689 @end table
9690
9691 @geindex -gnatjnn (gcc)
9692
9693
9694 @table @asis
9695
9696 @item @code{-gnatj@emph{nn}}
9697
9698 Reformat error messages to fit on @code{nn} character lines
9699 @end table
9700
9701 @geindex -gnatJ (gcc)
9702
9703
9704 @table @asis
9705
9706 @item @code{-gnatJ}
9707
9708 Permissive elaboration-checking mode enabled. When this switch is in effect,
9709 the post-18.x access-before-elaboration model ignores potential issues with:
9710
9711
9712 @itemize -
9713
9714 @item
9715 Accept statements
9716
9717 @item
9718 Activations of tasks defined in instances
9719
9720 @item
9721 Assertion pragmas
9722
9723 @item
9724 Calls from within an instance to its enclosing context
9725
9726 @item
9727 Calls through generic formal parameters
9728
9729 @item
9730 Calls to subprograms defined in instances
9731
9732 @item
9733 Entry calls
9734
9735 @item
9736 Indirect calls using 'Access
9737
9738 @item
9739 Requeue statements
9740
9741 @item
9742 Select statements
9743
9744 @item
9745 Synchronous task suspension
9746 @end itemize
9747
9748 and does not emit compile-time diagnostics or run-time checks. For further
9749 details see @ref{f,,Elaboration Order Handling in GNAT}.
9750 @end table
9751
9752 @geindex -gnatk (gcc)
9753
9754
9755 @table @asis
9756
9757 @item @code{-gnatk=@emph{n}}
9758
9759 Limit file names to @code{n} (1-999) characters (@code{k} = krunch).
9760 @end table
9761
9762 @geindex -gnatl (gcc)
9763
9764
9765 @table @asis
9766
9767 @item @code{-gnatl}
9768
9769 Output full source listing with embedded error messages.
9770 @end table
9771
9772 @geindex -gnatL (gcc)
9773
9774
9775 @table @asis
9776
9777 @item @code{-gnatL}
9778
9779 Used in conjunction with -gnatG or -gnatD to intersperse original
9780 source lines (as comment lines with line numbers) in the expanded
9781 source output.
9782 @end table
9783
9784 @geindex -gnatm (gcc)
9785
9786
9787 @table @asis
9788
9789 @item @code{-gnatm=@emph{n}}
9790
9791 Limit number of detected error or warning messages to @code{n}
9792 where @code{n} is in the range 1..999999. The default setting if
9793 no switch is given is 9999. If the number of warnings reaches this
9794 limit, then a message is output and further warnings are suppressed,
9795 but the compilation is continued. If the number of error messages
9796 reaches this limit, then a message is output and the compilation
9797 is abandoned. The equal sign here is optional. A value of zero
9798 means that no limit applies.
9799 @end table
9800
9801 @geindex -gnatn (gcc)
9802
9803
9804 @table @asis
9805
9806 @item @code{-gnatn[12]}
9807
9808 Activate inlining across units for subprograms for which pragma @code{Inline}
9809 is specified. This inlining is performed by the GCC back-end. An optional
9810 digit sets the inlining level: 1 for moderate inlining across units
9811 or 2 for full inlining across units. If no inlining level is specified,
9812 the compiler will pick it based on the optimization level.
9813 @end table
9814
9815 @geindex -gnatN (gcc)
9816
9817
9818 @table @asis
9819
9820 @item @code{-gnatN}
9821
9822 Activate front end inlining for subprograms for which
9823 pragma @code{Inline} is specified. This inlining is performed
9824 by the front end and will be visible in the
9825 @code{-gnatG} output.
9826
9827 When using a gcc-based back end (in practice this means using any version
9828 of GNAT other than the JGNAT, .NET or GNAAMP versions), then the use of
9829 @code{-gnatN} is deprecated, and the use of @code{-gnatn} is preferred.
9830 Historically front end inlining was more extensive than the gcc back end
9831 inlining, but that is no longer the case.
9832 @end table
9833
9834 @geindex -gnato0 (gcc)
9835
9836
9837 @table @asis
9838
9839 @item @code{-gnato0}
9840
9841 Suppresses overflow checking. This causes the behavior of the compiler to
9842 match the default for older versions where overflow checking was suppressed
9843 by default. This is equivalent to having
9844 @code{pragma Suppress (Overflow_Check)} in a configuration pragma file.
9845 @end table
9846
9847 @geindex -gnato?? (gcc)
9848
9849
9850 @table @asis
9851
9852 @item @code{-gnato??}
9853
9854 Set default mode for handling generation of code to avoid intermediate
9855 arithmetic overflow. Here @code{??} is two digits, a
9856 single digit, or nothing. Each digit is one of the digits @code{1}
9857 through @code{3}:
9858
9859
9860 @multitable {xxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
9861 @item
9862
9863 Digit
9864
9865 @tab
9866
9867 Interpretation
9868
9869 @item
9870
9871 @emph{1}
9872
9873 @tab
9874
9875 All intermediate overflows checked against base type (@code{STRICT})
9876
9877 @item
9878
9879 @emph{2}
9880
9881 @tab
9882
9883 Minimize intermediate overflows (@code{MINIMIZED})
9884
9885 @item
9886
9887 @emph{3}
9888
9889 @tab
9890
9891 Eliminate intermediate overflows (@code{ELIMINATED})
9892
9893 @end multitable
9894
9895
9896 If only one digit appears, then it applies to all
9897 cases; if two digits are given, then the first applies outside
9898 assertions, pre/postconditions, and type invariants, and the second
9899 applies within assertions, pre/postconditions, and type invariants.
9900
9901 If no digits follow the @code{-gnato}, then it is equivalent to
9902 @code{-gnato11},
9903 causing all intermediate overflows to be handled in strict
9904 mode.
9905
9906 This switch also causes arithmetic overflow checking to be performed
9907 (as though @code{pragma Unsuppress (Overflow_Check)} had been specified).
9908
9909 The default if no option @code{-gnato} is given is that overflow handling
9910 is in @code{STRICT} mode (computations done using the base type), and that
9911 overflow checking is enabled.
9912
9913 Note that division by zero is a separate check that is not
9914 controlled by this switch (divide-by-zero checking is on by default).
9915
9916 See also @ref{f8,,Specifying the Desired Mode}.
9917 @end table
9918
9919 @geindex -gnatp (gcc)
9920
9921
9922 @table @asis
9923
9924 @item @code{-gnatp}
9925
9926 Suppress all checks. See @ref{f9,,Run-Time Checks} for details. This switch
9927 has no effect if cancelled by a subsequent @code{-gnat-p} switch.
9928 @end table
9929
9930 @geindex -gnat-p (gcc)
9931
9932
9933 @table @asis
9934
9935 @item @code{-gnat-p}
9936
9937 Cancel effect of previous @code{-gnatp} switch.
9938 @end table
9939
9940 @geindex -gnatP (gcc)
9941
9942
9943 @table @asis
9944
9945 @item @code{-gnatP}
9946
9947 Enable polling. This is required on some systems (notably Windows NT) to
9948 obtain asynchronous abort and asynchronous transfer of control capability.
9949 See @code{Pragma_Polling} in the @cite{GNAT_Reference_Manual} for full
9950 details.
9951 @end table
9952
9953 @geindex -gnatq (gcc)
9954
9955
9956 @table @asis
9957
9958 @item @code{-gnatq}
9959
9960 Don't quit. Try semantics, even if parse errors.
9961 @end table
9962
9963 @geindex -gnatQ (gcc)
9964
9965
9966 @table @asis
9967
9968 @item @code{-gnatQ}
9969
9970 Don't quit. Generate @code{ALI} and tree files even if illegalities.
9971 Note that code generation is still suppressed in the presence of any
9972 errors, so even with @code{-gnatQ} no object file is generated.
9973 @end table
9974
9975 @geindex -gnatr (gcc)
9976
9977
9978 @table @asis
9979
9980 @item @code{-gnatr}
9981
9982 Treat pragma Restrictions as Restriction_Warnings.
9983 @end table
9984
9985 @geindex -gnatR (gcc)
9986
9987
9988 @table @asis
9989
9990 @item @code{-gnatR[0|1|2|3|4][e][j][m][s]}
9991
9992 Output representation information for declared types, objects and
9993 subprograms. Note that this switch is not allowed if a previous
9994 @code{-gnatD} switch has been given, since these two switches
9995 are not compatible.
9996 @end table
9997
9998 @geindex -gnats (gcc)
9999
10000
10001 @table @asis
10002
10003 @item @code{-gnats}
10004
10005 Syntax check only.
10006 @end table
10007
10008 @geindex -gnatS (gcc)
10009
10010
10011 @table @asis
10012
10013 @item @code{-gnatS}
10014
10015 Print package Standard.
10016 @end table
10017
10018 @geindex -gnatT (gcc)
10019
10020
10021 @table @asis
10022
10023 @item @code{-gnatT@emph{nnn}}
10024
10025 All compiler tables start at @code{nnn} times usual starting size.
10026 @end table
10027
10028 @geindex -gnatu (gcc)
10029
10030
10031 @table @asis
10032
10033 @item @code{-gnatu}
10034
10035 List units for this compilation.
10036 @end table
10037
10038 @geindex -gnatU (gcc)
10039
10040
10041 @table @asis
10042
10043 @item @code{-gnatU}
10044
10045 Tag all error messages with the unique string 'error:'
10046 @end table
10047
10048 @geindex -gnatv (gcc)
10049
10050
10051 @table @asis
10052
10053 @item @code{-gnatv}
10054
10055 Verbose mode. Full error output with source lines to @code{stdout}.
10056 @end table
10057
10058 @geindex -gnatV (gcc)
10059
10060
10061 @table @asis
10062
10063 @item @code{-gnatV}
10064
10065 Control level of validity checking (@ref{f6,,Validity Checking}).
10066 @end table
10067
10068 @geindex -gnatw (gcc)
10069
10070
10071 @table @asis
10072
10073 @item @code{-gnatw@emph{xxx}}
10074
10075 Warning mode where
10076 @code{xxx} is a string of option letters that denotes
10077 the exact warnings that
10078 are enabled or disabled (@ref{fa,,Warning Message Control}).
10079 @end table
10080
10081 @geindex -gnatW (gcc)
10082
10083
10084 @table @asis
10085
10086 @item @code{-gnatW@emph{e}}
10087
10088 Wide character encoding method
10089 (@code{e}=n/h/u/s/e/8).
10090 @end table
10091
10092 @geindex -gnatx (gcc)
10093
10094
10095 @table @asis
10096
10097 @item @code{-gnatx}
10098
10099 Suppress generation of cross-reference information.
10100 @end table
10101
10102 @geindex -gnatX (gcc)
10103
10104
10105 @table @asis
10106
10107 @item @code{-gnatX}
10108
10109 Enable GNAT implementation extensions and latest Ada version.
10110 @end table
10111
10112 @geindex -gnaty (gcc)
10113
10114
10115 @table @asis
10116
10117 @item @code{-gnaty}
10118
10119 Enable built-in style checks (@ref{fb,,Style Checking}).
10120 @end table
10121
10122 @geindex -gnatz (gcc)
10123
10124
10125 @table @asis
10126
10127 @item @code{-gnatz@emph{m}}
10128
10129 Distribution stub generation and compilation
10130 (@code{m}=r/c for receiver/caller stubs).
10131 @end table
10132
10133 @geindex -I (gcc)
10134
10135
10136 @table @asis
10137
10138 @item @code{-I@emph{dir}}
10139
10140 @geindex RTL
10141
10142 Direct GNAT to search the @code{dir} directory for source files needed by
10143 the current compilation
10144 (see @ref{89,,Search Paths and the Run-Time Library (RTL)}).
10145 @end table
10146
10147 @geindex -I- (gcc)
10148
10149
10150 @table @asis
10151
10152 @item @code{-I-}
10153
10154 @geindex RTL
10155
10156 Except for the source file named in the command line, do not look for source
10157 files in the directory containing the source file named in the command line
10158 (see @ref{89,,Search Paths and the Run-Time Library (RTL)}).
10159 @end table
10160
10161 @geindex -o (gcc)
10162
10163
10164 @table @asis
10165
10166 @item @code{-o @emph{file}}
10167
10168 This switch is used in @code{gcc} to redirect the generated object file
10169 and its associated ALI file. Beware of this switch with GNAT, because it may
10170 cause the object file and ALI file to have different names which in turn
10171 may confuse the binder and the linker.
10172 @end table
10173
10174 @geindex -nostdinc (gcc)
10175
10176
10177 @table @asis
10178
10179 @item @code{-nostdinc}
10180
10181 Inhibit the search of the default location for the GNAT Run Time
10182 Library (RTL) source files.
10183 @end table
10184
10185 @geindex -nostdlib (gcc)
10186
10187
10188 @table @asis
10189
10190 @item @code{-nostdlib}
10191
10192 Inhibit the search of the default location for the GNAT Run Time
10193 Library (RTL) ALI files.
10194 @end table
10195
10196 @geindex -O (gcc)
10197
10198
10199 @table @asis
10200
10201 @item @code{-O[@emph{n}]}
10202
10203 @code{n} controls the optimization level:
10204
10205
10206 @multitable {xxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
10207 @item
10208
10209 @emph{n}
10210
10211 @tab
10212
10213 Effect
10214
10215 @item
10216
10217 @emph{0}
10218
10219 @tab
10220
10221 No optimization, the default setting if no @code{-O} appears
10222
10223 @item
10224
10225 @emph{1}
10226
10227 @tab
10228
10229 Normal optimization, the default if you specify @code{-O} without an
10230 operand. A good compromise between code quality and compilation
10231 time.
10232
10233 @item
10234
10235 @emph{2}
10236
10237 @tab
10238
10239 Extensive optimization, may improve execution time, possibly at
10240 the cost of substantially increased compilation time.
10241
10242 @item
10243
10244 @emph{3}
10245
10246 @tab
10247
10248 Same as @code{-O2}, and also includes inline expansion for small
10249 subprograms in the same unit.
10250
10251 @item
10252
10253 @emph{s}
10254
10255 @tab
10256
10257 Optimize space usage
10258
10259 @end multitable
10260
10261
10262 See also @ref{fc,,Optimization Levels}.
10263 @end table
10264
10265 @geindex -pass-exit-codes (gcc)
10266
10267
10268 @table @asis
10269
10270 @item @code{-pass-exit-codes}
10271
10272 Catch exit codes from the compiler and use the most meaningful as
10273 exit status.
10274 @end table
10275
10276 @geindex --RTS (gcc)
10277
10278
10279 @table @asis
10280
10281 @item @code{--RTS=@emph{rts-path}}
10282
10283 Specifies the default location of the run-time library. Same meaning as the
10284 equivalent @code{gnatmake} flag (@ref{dc,,Switches for gnatmake}).
10285 @end table
10286
10287 @geindex -S (gcc)
10288
10289
10290 @table @asis
10291
10292 @item @code{-S}
10293
10294 Used in place of @code{-c} to
10295 cause the assembler source file to be
10296 generated, using @code{.s} as the extension,
10297 instead of the object file.
10298 This may be useful if you need to examine the generated assembly code.
10299 @end table
10300
10301 @geindex -fverbose-asm (gcc)
10302
10303
10304 @table @asis
10305
10306 @item @code{-fverbose-asm}
10307
10308 Used in conjunction with @code{-S}
10309 to cause the generated assembly code file to be annotated with variable
10310 names, making it significantly easier to follow.
10311 @end table
10312
10313 @geindex -v (gcc)
10314
10315
10316 @table @asis
10317
10318 @item @code{-v}
10319
10320 Show commands generated by the @code{gcc} driver. Normally used only for
10321 debugging purposes or if you need to be sure what version of the
10322 compiler you are executing.
10323 @end table
10324
10325 @geindex -V (gcc)
10326
10327
10328 @table @asis
10329
10330 @item @code{-V @emph{ver}}
10331
10332 Execute @code{ver} version of the compiler. This is the @code{gcc}
10333 version, not the GNAT version.
10334 @end table
10335
10336 @geindex -w (gcc)
10337
10338
10339 @table @asis
10340
10341 @item @code{-w}
10342
10343 Turn off warnings generated by the back end of the compiler. Use of
10344 this switch also causes the default for front end warnings to be set
10345 to suppress (as though @code{-gnatws} had appeared at the start of
10346 the options).
10347 @end table
10348
10349 @geindex Combining GNAT switches
10350
10351 You may combine a sequence of GNAT switches into a single switch. For
10352 example, the combined switch
10353
10354 @quotation
10355
10356 @example
10357 -gnatofi3
10358 @end example
10359 @end quotation
10360
10361 is equivalent to specifying the following sequence of switches:
10362
10363 @quotation
10364
10365 @example
10366 -gnato -gnatf -gnati3
10367 @end example
10368 @end quotation
10369
10370 The following restrictions apply to the combination of switches
10371 in this manner:
10372
10373
10374 @itemize *
10375
10376 @item
10377 The switch @code{-gnatc} if combined with other switches must come
10378 first in the string.
10379
10380 @item
10381 The switch @code{-gnats} if combined with other switches must come
10382 first in the string.
10383
10384 @item
10385 The switches
10386 @code{-gnatzc} and @code{-gnatzr} may not be combined with any other
10387 switches, and only one of them may appear in the command line.
10388
10389 @item
10390 The switch @code{-gnat-p} may not be combined with any other switch.
10391
10392 @item
10393 Once a 'y' appears in the string (that is a use of the @code{-gnaty}
10394 switch), then all further characters in the switch are interpreted
10395 as style modifiers (see description of @code{-gnaty}).
10396
10397 @item
10398 Once a 'd' appears in the string (that is a use of the @code{-gnatd}
10399 switch), then all further characters in the switch are interpreted
10400 as debug flags (see description of @code{-gnatd}).
10401
10402 @item
10403 Once a 'w' appears in the string (that is a use of the @code{-gnatw}
10404 switch), then all further characters in the switch are interpreted
10405 as warning mode modifiers (see description of @code{-gnatw}).
10406
10407 @item
10408 Once a 'V' appears in the string (that is a use of the @code{-gnatV}
10409 switch), then all further characters in the switch are interpreted
10410 as validity checking options (@ref{f6,,Validity Checking}).
10411
10412 @item
10413 Option 'em', 'ec', 'ep', 'l=' and 'R' must be the last options in
10414 a combined list of options.
10415 @end itemize
10416
10417 @node Output and Error Message Control,Warning Message Control,Alphabetical List of All Switches,Compiler Switches
10418 @anchor{gnat_ugn/building_executable_programs_with_gnat id14}@anchor{fd}@anchor{gnat_ugn/building_executable_programs_with_gnat output-and-error-message-control}@anchor{fe}
10419 @subsection Output and Error Message Control
10420
10421
10422 @geindex stderr
10423
10424 The standard default format for error messages is called 'brief format'.
10425 Brief format messages are written to @code{stderr} (the standard error
10426 file) and have the following form:
10427
10428 @example
10429 e.adb:3:04: Incorrect spelling of keyword "function"
10430 e.adb:4:20: ";" should be "is"
10431 @end example
10432
10433 The first integer after the file name is the line number in the file,
10434 and the second integer is the column number within the line.
10435 @code{GNAT Studio} can parse the error messages
10436 and point to the referenced character.
10437 The following switches provide control over the error message
10438 format:
10439
10440 @geindex -gnatv (gcc)
10441
10442
10443 @table @asis
10444
10445 @item @code{-gnatv}
10446
10447 The @code{v} stands for verbose.
10448 The effect of this setting is to write long-format error
10449 messages to @code{stdout} (the standard output file.
10450 The same program compiled with the
10451 @code{-gnatv} switch would generate:
10452
10453 @example
10454 3. funcion X (Q : Integer)
10455 |
10456 >>> Incorrect spelling of keyword "function"
10457 4. return Integer;
10458 |
10459 >>> ";" should be "is"
10460 @end example
10461
10462 The vertical bar indicates the location of the error, and the @code{>>>}
10463 prefix can be used to search for error messages. When this switch is
10464 used the only source lines output are those with errors.
10465 @end table
10466
10467 @geindex -gnatl (gcc)
10468
10469
10470 @table @asis
10471
10472 @item @code{-gnatl}
10473
10474 The @code{l} stands for list.
10475 This switch causes a full listing of
10476 the file to be generated. In the case where a body is
10477 compiled, the corresponding spec is also listed, along
10478 with any subunits. Typical output from compiling a package
10479 body @code{p.adb} might look like:
10480
10481 @example
10482 Compiling: p.adb
10483
10484 1. package body p is
10485 2. procedure a;
10486 3. procedure a is separate;
10487 4. begin
10488 5. null
10489 |
10490 >>> missing ";"
10491
10492 6. end;
10493
10494 Compiling: p.ads
10495
10496 1. package p is
10497 2. pragma Elaborate_Body
10498 |
10499 >>> missing ";"
10500
10501 3. end p;
10502
10503 Compiling: p-a.adb
10504
10505 1. separate p
10506 |
10507 >>> missing "("
10508
10509 2. procedure a is
10510 3. begin
10511 4. null
10512 |
10513 >>> missing ";"
10514
10515 5. end;
10516 @end example
10517
10518 When you specify the @code{-gnatv} or @code{-gnatl} switches and
10519 standard output is redirected, a brief summary is written to
10520 @code{stderr} (standard error) giving the number of error messages and
10521 warning messages generated.
10522 @end table
10523
10524 @geindex -gnatl=fname (gcc)
10525
10526
10527 @table @asis
10528
10529 @item @code{-gnatl=@emph{fname}}
10530
10531 This has the same effect as @code{-gnatl} except that the output is
10532 written to a file instead of to standard output. If the given name
10533 @code{fname} does not start with a period, then it is the full name
10534 of the file to be written. If @code{fname} is an extension, it is
10535 appended to the name of the file being compiled. For example, if
10536 file @code{xyz.adb} is compiled with @code{-gnatl=.lst},
10537 then the output is written to file xyz.adb.lst.
10538 @end table
10539
10540 @geindex -gnatU (gcc)
10541
10542
10543 @table @asis
10544
10545 @item @code{-gnatU}
10546
10547 This switch forces all error messages to be preceded by the unique
10548 string 'error:'. This means that error messages take a few more
10549 characters in space, but allows easy searching for and identification
10550 of error messages.
10551 @end table
10552
10553 @geindex -gnatb (gcc)
10554
10555
10556 @table @asis
10557
10558 @item @code{-gnatb}
10559
10560 The @code{b} stands for brief.
10561 This switch causes GNAT to generate the
10562 brief format error messages to @code{stderr} (the standard error
10563 file) as well as the verbose
10564 format message or full listing (which as usual is written to
10565 @code{stdout} (the standard output file).
10566 @end table
10567
10568 @geindex -gnatm (gcc)
10569
10570
10571 @table @asis
10572
10573 @item @code{-gnatm=@emph{n}}
10574
10575 The @code{m} stands for maximum.
10576 @code{n} is a decimal integer in the
10577 range of 1 to 999999 and limits the number of error or warning
10578 messages to be generated. For example, using
10579 @code{-gnatm2} might yield
10580
10581 @example
10582 e.adb:3:04: Incorrect spelling of keyword "function"
10583 e.adb:5:35: missing ".."
10584 fatal error: maximum number of errors detected
10585 compilation abandoned
10586 @end example
10587
10588 The default setting if
10589 no switch is given is 9999. If the number of warnings reaches this
10590 limit, then a message is output and further warnings are suppressed,
10591 but the compilation is continued. If the number of error messages
10592 reaches this limit, then a message is output and the compilation
10593 is abandoned. A value of zero means that no limit applies.
10594
10595 Note that the equal sign is optional, so the switches
10596 @code{-gnatm2} and @code{-gnatm=2} are equivalent.
10597 @end table
10598
10599 @geindex -gnatf (gcc)
10600
10601
10602 @table @asis
10603
10604 @item @code{-gnatf}
10605
10606 @geindex Error messages
10607 @geindex suppressing
10608
10609 The @code{f} stands for full.
10610 Normally, the compiler suppresses error messages that are likely to be
10611 redundant. This switch causes all error
10612 messages to be generated. In particular, in the case of
10613 references to undefined variables. If a given variable is referenced
10614 several times, the normal format of messages is
10615
10616 @example
10617 e.adb:7:07: "V" is undefined (more references follow)
10618 @end example
10619
10620 where the parenthetical comment warns that there are additional
10621 references to the variable @code{V}. Compiling the same program with the
10622 @code{-gnatf} switch yields
10623
10624 @example
10625 e.adb:7:07: "V" is undefined
10626 e.adb:8:07: "V" is undefined
10627 e.adb:8:12: "V" is undefined
10628 e.adb:8:16: "V" is undefined
10629 e.adb:9:07: "V" is undefined
10630 e.adb:9:12: "V" is undefined
10631 @end example
10632
10633 The @code{-gnatf} switch also generates additional information for
10634 some error messages. Some examples are:
10635
10636
10637 @itemize *
10638
10639 @item
10640 Details on possibly non-portable unchecked conversion
10641
10642 @item
10643 List possible interpretations for ambiguous calls
10644
10645 @item
10646 Additional details on incorrect parameters
10647 @end itemize
10648 @end table
10649
10650 @geindex -gnatjnn (gcc)
10651
10652
10653 @table @asis
10654
10655 @item @code{-gnatjnn}
10656
10657 In normal operation mode (or if @code{-gnatj0} is used), then error messages
10658 with continuation lines are treated as though the continuation lines were
10659 separate messages (and so a warning with two continuation lines counts as
10660 three warnings, and is listed as three separate messages).
10661
10662 If the @code{-gnatjnn} switch is used with a positive value for nn, then
10663 messages are output in a different manner. A message and all its continuation
10664 lines are treated as a unit, and count as only one warning or message in the
10665 statistics totals. Furthermore, the message is reformatted so that no line
10666 is longer than nn characters.
10667 @end table
10668
10669 @geindex -gnatq (gcc)
10670
10671
10672 @table @asis
10673
10674 @item @code{-gnatq}
10675
10676 The @code{q} stands for quit (really 'don't quit').
10677 In normal operation mode, the compiler first parses the program and
10678 determines if there are any syntax errors. If there are, appropriate
10679 error messages are generated and compilation is immediately terminated.
10680 This switch tells
10681 GNAT to continue with semantic analysis even if syntax errors have been
10682 found. This may enable the detection of more errors in a single run. On
10683 the other hand, the semantic analyzer is more likely to encounter some
10684 internal fatal error when given a syntactically invalid tree.
10685 @end table
10686
10687 @geindex -gnatQ (gcc)
10688
10689
10690 @table @asis
10691
10692 @item @code{-gnatQ}
10693
10694 In normal operation mode, the @code{ALI} file is not generated if any
10695 illegalities are detected in the program. The use of @code{-gnatQ} forces
10696 generation of the @code{ALI} file. This file is marked as being in
10697 error, so it cannot be used for binding purposes, but it does contain
10698 reasonably complete cross-reference information, and thus may be useful
10699 for use by tools (e.g., semantic browsing tools or integrated development
10700 environments) that are driven from the @code{ALI} file. This switch
10701 implies @code{-gnatq}, since the semantic phase must be run to get a
10702 meaningful ALI file.
10703
10704 When @code{-gnatQ} is used and the generated @code{ALI} file is marked as
10705 being in error, @code{gnatmake} will attempt to recompile the source when it
10706 finds such an @code{ALI} file, including with switch @code{-gnatc}.
10707
10708 Note that @code{-gnatQ} has no effect if @code{-gnats} is specified,
10709 since ALI files are never generated if @code{-gnats} is set.
10710 @end table
10711
10712 @node Warning Message Control,Debugging and Assertion Control,Output and Error Message Control,Compiler Switches
10713 @anchor{gnat_ugn/building_executable_programs_with_gnat warning-message-control}@anchor{fa}@anchor{gnat_ugn/building_executable_programs_with_gnat id15}@anchor{ff}
10714 @subsection Warning Message Control
10715
10716
10717 @geindex Warning messages
10718
10719 In addition to error messages, which correspond to illegalities as defined
10720 in the Ada Reference Manual, the compiler detects two kinds of warning
10721 situations.
10722
10723 First, the compiler considers some constructs suspicious and generates a
10724 warning message to alert you to a possible error. Second, if the
10725 compiler detects a situation that is sure to raise an exception at
10726 run time, it generates a warning message. The following shows an example
10727 of warning messages:
10728
10729 @example
10730 e.adb:4:24: warning: creation of object may raise Storage_Error
10731 e.adb:10:17: warning: static value out of range
10732 e.adb:10:17: warning: "Constraint_Error" will be raised at run time
10733 @end example
10734
10735 GNAT considers a large number of situations as appropriate
10736 for the generation of warning messages. As always, warnings are not
10737 definite indications of errors. For example, if you do an out-of-range
10738 assignment with the deliberate intention of raising a
10739 @code{Constraint_Error} exception, then the warning that may be
10740 issued does not indicate an error. Some of the situations for which GNAT
10741 issues warnings (at least some of the time) are given in the following
10742 list. This list is not complete, and new warnings are often added to
10743 subsequent versions of GNAT. The list is intended to give a general idea
10744 of the kinds of warnings that are generated.
10745
10746
10747 @itemize *
10748
10749 @item
10750 Possible infinitely recursive calls
10751
10752 @item
10753 Out-of-range values being assigned
10754
10755 @item
10756 Possible order of elaboration problems
10757
10758 @item
10759 Size not a multiple of alignment for a record type
10760
10761 @item
10762 Assertions (pragma Assert) that are sure to fail
10763
10764 @item
10765 Unreachable code
10766
10767 @item
10768 Address clauses with possibly unaligned values, or where an attempt is
10769 made to overlay a smaller variable with a larger one.
10770
10771 @item
10772 Fixed-point type declarations with a null range
10773
10774 @item
10775 Direct_IO or Sequential_IO instantiated with a type that has access values
10776
10777 @item
10778 Variables that are never assigned a value
10779
10780 @item
10781 Variables that are referenced before being initialized
10782
10783 @item
10784 Task entries with no corresponding @code{accept} statement
10785
10786 @item
10787 Duplicate accepts for the same task entry in a @code{select}
10788
10789 @item
10790 Objects that take too much storage
10791
10792 @item
10793 Unchecked conversion between types of differing sizes
10794
10795 @item
10796 Missing @code{return} statement along some execution path in a function
10797
10798 @item
10799 Incorrect (unrecognized) pragmas
10800
10801 @item
10802 Incorrect external names
10803
10804 @item
10805 Allocation from empty storage pool
10806
10807 @item
10808 Potentially blocking operation in protected type
10809
10810 @item
10811 Suspicious parenthesization of expressions
10812
10813 @item
10814 Mismatching bounds in an aggregate
10815
10816 @item
10817 Attempt to return local value by reference
10818
10819 @item
10820 Premature instantiation of a generic body
10821
10822 @item
10823 Attempt to pack aliased components
10824
10825 @item
10826 Out of bounds array subscripts
10827
10828 @item
10829 Wrong length on string assignment
10830
10831 @item
10832 Violations of style rules if style checking is enabled
10833
10834 @item
10835 Unused @emph{with} clauses
10836
10837 @item
10838 @code{Bit_Order} usage that does not have any effect
10839
10840 @item
10841 @code{Standard.Duration} used to resolve universal fixed expression
10842
10843 @item
10844 Dereference of possibly null value
10845
10846 @item
10847 Declaration that is likely to cause storage error
10848
10849 @item
10850 Internal GNAT unit @emph{with}ed by application unit
10851
10852 @item
10853 Values known to be out of range at compile time
10854
10855 @item
10856 Unreferenced or unmodified variables. Note that a special
10857 exemption applies to variables which contain any of the substrings
10858 @code{DISCARD, DUMMY, IGNORE, JUNK, UNUSED}, in any casing. Such variables
10859 are considered likely to be intentionally used in a situation where
10860 otherwise a warning would be given, so warnings of this kind are
10861 always suppressed for such variables.
10862
10863 @item
10864 Address overlays that could clobber memory
10865
10866 @item
10867 Unexpected initialization when address clause present
10868
10869 @item
10870 Bad alignment for address clause
10871
10872 @item
10873 Useless type conversions
10874
10875 @item
10876 Redundant assignment statements and other redundant constructs
10877
10878 @item
10879 Useless exception handlers
10880
10881 @item
10882 Accidental hiding of name by child unit
10883
10884 @item
10885 Access before elaboration detected at compile time
10886
10887 @item
10888 A range in a @code{for} loop that is known to be null or might be null
10889 @end itemize
10890
10891 The following section lists compiler switches that are available
10892 to control the handling of warning messages. It is also possible
10893 to exercise much finer control over what warnings are issued and
10894 suppressed using the GNAT pragma Warnings (see the description
10895 of the pragma in the @cite{GNAT_Reference_manual}).
10896
10897 @geindex -gnatwa (gcc)
10898
10899
10900 @table @asis
10901
10902 @item @code{-gnatwa}
10903
10904 @emph{Activate most optional warnings.}
10905
10906 This switch activates most optional warning messages. See the remaining list
10907 in this section for details on optional warning messages that can be
10908 individually controlled. The warnings that are not turned on by this
10909 switch are:
10910
10911
10912 @itemize *
10913
10914 @item
10915 @code{-gnatwd} (implicit dereferencing)
10916
10917 @item
10918 @code{-gnatw.d} (tag warnings with -gnatw switch)
10919
10920 @item
10921 @code{-gnatwh} (hiding)
10922
10923 @item
10924 @code{-gnatw.h} (holes in record layouts)
10925
10926 @item
10927 @code{-gnatw.j} (late primitives of tagged types)
10928
10929 @item
10930 @code{-gnatw.k} (redefinition of names in standard)
10931
10932 @item
10933 @code{-gnatwl} (elaboration warnings)
10934
10935 @item
10936 @code{-gnatw.l} (inherited aspects)
10937
10938 @item
10939 @code{-gnatw.n} (atomic synchronization)
10940
10941 @item
10942 @code{-gnatwo} (address clause overlay)
10943
10944 @item
10945 @code{-gnatw.o} (values set by out parameters ignored)
10946
10947 @item
10948 @code{-gnatw.q} (questionable layout of record types)
10949
10950 @item
10951 @code{-gnatw_r} (out-of-order record representation clauses)
10952
10953 @item
10954 @code{-gnatw.s} (overridden size clause)
10955
10956 @item
10957 @code{-gnatwt} (tracking of deleted conditional code)
10958
10959 @item
10960 @code{-gnatw.u} (unordered enumeration)
10961
10962 @item
10963 @code{-gnatw.w} (use of Warnings Off)
10964
10965 @item
10966 @code{-gnatw.y} (reasons for package needing body)
10967 @end itemize
10968
10969 All other optional warnings are turned on.
10970 @end table
10971
10972 @geindex -gnatwA (gcc)
10973
10974
10975 @table @asis
10976
10977 @item @code{-gnatwA}
10978
10979 @emph{Suppress all optional errors.}
10980
10981 This switch suppresses all optional warning messages, see remaining list
10982 in this section for details on optional warning messages that can be
10983 individually controlled. Note that unlike switch @code{-gnatws}, the
10984 use of switch @code{-gnatwA} does not suppress warnings that are
10985 normally given unconditionally and cannot be individually controlled
10986 (for example, the warning about a missing exit path in a function).
10987 Also, again unlike switch @code{-gnatws}, warnings suppressed by
10988 the use of switch @code{-gnatwA} can be individually turned back
10989 on. For example the use of switch @code{-gnatwA} followed by
10990 switch @code{-gnatwd} will suppress all optional warnings except
10991 the warnings for implicit dereferencing.
10992 @end table
10993
10994 @geindex -gnatw.a (gcc)
10995
10996
10997 @table @asis
10998
10999 @item @code{-gnatw.a}
11000
11001 @emph{Activate warnings on failing assertions.}
11002
11003 @geindex Assert failures
11004
11005 This switch activates warnings for assertions where the compiler can tell at
11006 compile time that the assertion will fail. Note that this warning is given
11007 even if assertions are disabled. The default is that such warnings are
11008 generated.
11009 @end table
11010
11011 @geindex -gnatw.A (gcc)
11012
11013
11014 @table @asis
11015
11016 @item @code{-gnatw.A}
11017
11018 @emph{Suppress warnings on failing assertions.}
11019
11020 @geindex Assert failures
11021
11022 This switch suppresses warnings for assertions where the compiler can tell at
11023 compile time that the assertion will fail.
11024 @end table
11025
11026 @geindex -gnatw_a
11027
11028
11029 @table @asis
11030
11031 @item @code{-gnatw_a}
11032
11033 @emph{Activate warnings on anonymous allocators.}
11034
11035 @geindex Anonymous allocators
11036
11037 This switch activates warnings for allocators of anonymous access types,
11038 which can involve run-time accessibility checks and lead to unexpected
11039 accessibility violations. For more details on the rules involved, see
11040 RM 3.10.2 (14).
11041 @end table
11042
11043 @geindex -gnatw_A
11044
11045
11046 @table @asis
11047
11048 @item @code{-gnatw_A}
11049
11050 @emph{Supress warnings on anonymous allocators.}
11051
11052 @geindex Anonymous allocators
11053
11054 This switch suppresses warnings for anonymous access type allocators.
11055 @end table
11056
11057 @geindex -gnatwb (gcc)
11058
11059
11060 @table @asis
11061
11062 @item @code{-gnatwb}
11063
11064 @emph{Activate warnings on bad fixed values.}
11065
11066 @geindex Bad fixed values
11067
11068 @geindex Fixed-point Small value
11069
11070 @geindex Small value
11071
11072 This switch activates warnings for static fixed-point expressions whose
11073 value is not an exact multiple of Small. Such values are implementation
11074 dependent, since an implementation is free to choose either of the multiples
11075 that surround the value. GNAT always chooses the closer one, but this is not
11076 required behavior, and it is better to specify a value that is an exact
11077 multiple, ensuring predictable execution. The default is that such warnings
11078 are not generated.
11079 @end table
11080
11081 @geindex -gnatwB (gcc)
11082
11083
11084 @table @asis
11085
11086 @item @code{-gnatwB}
11087
11088 @emph{Suppress warnings on bad fixed values.}
11089
11090 This switch suppresses warnings for static fixed-point expressions whose
11091 value is not an exact multiple of Small.
11092 @end table
11093
11094 @geindex -gnatw.b (gcc)
11095
11096
11097 @table @asis
11098
11099 @item @code{-gnatw.b}
11100
11101 @emph{Activate warnings on biased representation.}
11102
11103 @geindex Biased representation
11104
11105 This switch activates warnings when a size clause, value size clause, component
11106 clause, or component size clause forces the use of biased representation for an
11107 integer type (e.g. representing a range of 10..11 in a single bit by using 0/1
11108 to represent 10/11). The default is that such warnings are generated.
11109 @end table
11110
11111 @geindex -gnatwB (gcc)
11112
11113
11114 @table @asis
11115
11116 @item @code{-gnatw.B}
11117
11118 @emph{Suppress warnings on biased representation.}
11119
11120 This switch suppresses warnings for representation clauses that force the use
11121 of biased representation.
11122 @end table
11123
11124 @geindex -gnatwc (gcc)
11125
11126
11127 @table @asis
11128
11129 @item @code{-gnatwc}
11130
11131 @emph{Activate warnings on conditionals.}
11132
11133 @geindex Conditionals
11134 @geindex constant
11135
11136 This switch activates warnings for conditional expressions used in
11137 tests that are known to be True or False at compile time. The default
11138 is that such warnings are not generated.
11139 Note that this warning does
11140 not get issued for the use of boolean variables or constants whose
11141 values are known at compile time, since this is a standard technique
11142 for conditional compilation in Ada, and this would generate too many
11143 false positive warnings.
11144
11145 This warning option also activates a special test for comparisons using
11146 the operators '>=' and' <='.
11147 If the compiler can tell that only the equality condition is possible,
11148 then it will warn that the '>' or '<' part of the test
11149 is useless and that the operator could be replaced by '='.
11150 An example would be comparing a @code{Natural} variable <= 0.
11151
11152 This warning option also generates warnings if
11153 one or both tests is optimized away in a membership test for integer
11154 values if the result can be determined at compile time. Range tests on
11155 enumeration types are not included, since it is common for such tests
11156 to include an end point.
11157
11158 This warning can also be turned on using @code{-gnatwa}.
11159 @end table
11160
11161 @geindex -gnatwC (gcc)
11162
11163
11164 @table @asis
11165
11166 @item @code{-gnatwC}
11167
11168 @emph{Suppress warnings on conditionals.}
11169
11170 This switch suppresses warnings for conditional expressions used in
11171 tests that are known to be True or False at compile time.
11172 @end table
11173
11174 @geindex -gnatw.c (gcc)
11175
11176
11177 @table @asis
11178
11179 @item @code{-gnatw.c}
11180
11181 @emph{Activate warnings on missing component clauses.}
11182
11183 @geindex Component clause
11184 @geindex missing
11185
11186 This switch activates warnings for record components where a record
11187 representation clause is present and has component clauses for the
11188 majority, but not all, of the components. A warning is given for each
11189 component for which no component clause is present.
11190 @end table
11191
11192 @geindex -gnatw.C (gcc)
11193
11194
11195 @table @asis
11196
11197 @item @code{-gnatw.C}
11198
11199 @emph{Suppress warnings on missing component clauses.}
11200
11201 This switch suppresses warnings for record components that are
11202 missing a component clause in the situation described above.
11203 @end table
11204
11205 @geindex -gnatw_c (gcc)
11206
11207
11208 @table @asis
11209
11210 @item @code{-gnatw_c}
11211
11212 @emph{Activate warnings on unknown condition in Compile_Time_Warning.}
11213
11214 @geindex Compile_Time_Warning
11215
11216 @geindex Compile_Time_Error
11217
11218 This switch activates warnings on a pragma Compile_Time_Warning
11219 or Compile_Time_Error whose condition has a value that is not
11220 known at compile time.
11221 The default is that such warnings are generated.
11222 @end table
11223
11224 @geindex -gnatw_C (gcc)
11225
11226
11227 @table @asis
11228
11229 @item @code{-gnatw_C}
11230
11231 @emph{Suppress warnings on unknown condition in Compile_Time_Warning.}
11232
11233 This switch supresses warnings on a pragma Compile_Time_Warning
11234 or Compile_Time_Error whose condition has a value that is not
11235 known at compile time.
11236 @end table
11237
11238 @geindex -gnatwd (gcc)
11239
11240
11241 @table @asis
11242
11243 @item @code{-gnatwd}
11244
11245 @emph{Activate warnings on implicit dereferencing.}
11246
11247 If this switch is set, then the use of a prefix of an access type
11248 in an indexed component, slice, or selected component without an
11249 explicit @code{.all} will generate a warning. With this warning
11250 enabled, access checks occur only at points where an explicit
11251 @code{.all} appears in the source code (assuming no warnings are
11252 generated as a result of this switch). The default is that such
11253 warnings are not generated.
11254 @end table
11255
11256 @geindex -gnatwD (gcc)
11257
11258
11259 @table @asis
11260
11261 @item @code{-gnatwD}
11262
11263 @emph{Suppress warnings on implicit dereferencing.}
11264
11265 @geindex Implicit dereferencing
11266
11267 @geindex Dereferencing
11268 @geindex implicit
11269
11270 This switch suppresses warnings for implicit dereferences in
11271 indexed components, slices, and selected components.
11272 @end table
11273
11274 @geindex -gnatw.d (gcc)
11275
11276
11277 @table @asis
11278
11279 @item @code{-gnatw.d}
11280
11281 @emph{Activate tagging of warning and info messages.}
11282
11283 If this switch is set, then warning messages are tagged, with one of the
11284 following strings:
11285
11286 @quotation
11287
11288
11289 @itemize -
11290
11291 @item
11292 @emph{[-gnatw?]}
11293 Used to tag warnings controlled by the switch @code{-gnatwx} where x
11294 is a letter a-z.
11295
11296 @item
11297 @emph{[-gnatw.?]}
11298 Used to tag warnings controlled by the switch @code{-gnatw.x} where x
11299 is a letter a-z.
11300
11301 @item
11302 @emph{[-gnatel]}
11303 Used to tag elaboration information (info) messages generated when the
11304 static model of elaboration is used and the @code{-gnatel} switch is set.
11305
11306 @item
11307 @emph{[restriction warning]}
11308 Used to tag warning messages for restriction violations, activated by use
11309 of the pragma @code{Restriction_Warnings}.
11310
11311 @item
11312 @emph{[warning-as-error]}
11313 Used to tag warning messages that have been converted to error messages by
11314 use of the pragma Warning_As_Error. Note that such warnings are prefixed by
11315 the string "error: " rather than "warning: ".
11316
11317 @item
11318 @emph{[enabled by default]}
11319 Used to tag all other warnings that are always given by default, unless
11320 warnings are completely suppressed using pragma @emph{Warnings(Off)} or
11321 the switch @code{-gnatws}.
11322 @end itemize
11323 @end quotation
11324 @end table
11325
11326 @geindex -gnatw.d (gcc)
11327
11328
11329 @table @asis
11330
11331 @item @code{-gnatw.D}
11332
11333 @emph{Deactivate tagging of warning and info messages messages.}
11334
11335 If this switch is set, then warning messages return to the default
11336 mode in which warnings and info messages are not tagged as described above for
11337 @code{-gnatw.d}.
11338 @end table
11339
11340 @geindex -gnatwe (gcc)
11341
11342 @geindex Warnings
11343 @geindex treat as error
11344
11345
11346 @table @asis
11347
11348 @item @code{-gnatwe}
11349
11350 @emph{Treat warnings and style checks as errors.}
11351
11352 This switch causes warning messages and style check messages to be
11353 treated as errors.
11354 The warning string still appears, but the warning messages are counted
11355 as errors, and prevent the generation of an object file. Note that this
11356 is the only -gnatw switch that affects the handling of style check messages.
11357 Note also that this switch has no effect on info (information) messages, which
11358 are not treated as errors if this switch is present.
11359 @end table
11360
11361 @geindex -gnatw.e (gcc)
11362
11363
11364 @table @asis
11365
11366 @item @code{-gnatw.e}
11367
11368 @emph{Activate every optional warning.}
11369
11370 @geindex Warnings
11371 @geindex activate every optional warning
11372
11373 This switch activates all optional warnings, including those which
11374 are not activated by @code{-gnatwa}. The use of this switch is not
11375 recommended for normal use. If you turn this switch on, it is almost
11376 certain that you will get large numbers of useless warnings. The
11377 warnings that are excluded from @code{-gnatwa} are typically highly
11378 specialized warnings that are suitable for use only in code that has
11379 been specifically designed according to specialized coding rules.
11380 @end table
11381
11382 @geindex -gnatwE (gcc)
11383
11384 @geindex Warnings
11385 @geindex treat as error
11386
11387
11388 @table @asis
11389
11390 @item @code{-gnatwE}
11391
11392 @emph{Treat all run-time exception warnings as errors.}
11393
11394 This switch causes warning messages regarding errors that will be raised
11395 during run-time execution to be treated as errors.
11396 @end table
11397
11398 @geindex -gnatwf (gcc)
11399
11400
11401 @table @asis
11402
11403 @item @code{-gnatwf}
11404
11405 @emph{Activate warnings on unreferenced formals.}
11406
11407 @geindex Formals
11408 @geindex unreferenced
11409
11410 This switch causes a warning to be generated if a formal parameter
11411 is not referenced in the body of the subprogram. This warning can
11412 also be turned on using @code{-gnatwu}. The
11413 default is that these warnings are not generated.
11414 @end table
11415
11416 @geindex -gnatwF (gcc)
11417
11418
11419 @table @asis
11420
11421 @item @code{-gnatwF}
11422
11423 @emph{Suppress warnings on unreferenced formals.}
11424
11425 This switch suppresses warnings for unreferenced formal
11426 parameters. Note that the
11427 combination @code{-gnatwu} followed by @code{-gnatwF} has the
11428 effect of warning on unreferenced entities other than subprogram
11429 formals.
11430 @end table
11431
11432 @geindex -gnatwg (gcc)
11433
11434
11435 @table @asis
11436
11437 @item @code{-gnatwg}
11438
11439 @emph{Activate warnings on unrecognized pragmas.}
11440
11441 @geindex Pragmas
11442 @geindex unrecognized
11443
11444 This switch causes a warning to be generated if an unrecognized
11445 pragma is encountered. Apart from issuing this warning, the
11446 pragma is ignored and has no effect. The default
11447 is that such warnings are issued (satisfying the Ada Reference
11448 Manual requirement that such warnings appear).
11449 @end table
11450
11451 @geindex -gnatwG (gcc)
11452
11453
11454 @table @asis
11455
11456 @item @code{-gnatwG}
11457
11458 @emph{Suppress warnings on unrecognized pragmas.}
11459
11460 This switch suppresses warnings for unrecognized pragmas.
11461 @end table
11462
11463 @geindex -gnatw.g (gcc)
11464
11465
11466 @table @asis
11467
11468 @item @code{-gnatw.g}
11469
11470 @emph{Warnings used for GNAT sources.}
11471
11472 This switch sets the warning categories that are used by the standard
11473 GNAT style. Currently this is equivalent to
11474 @code{-gnatwAao.q.s.CI.V.X.Z}
11475 but more warnings may be added in the future without advanced notice.
11476 @end table
11477
11478 @geindex -gnatwh (gcc)
11479
11480
11481 @table @asis
11482
11483 @item @code{-gnatwh}
11484
11485 @emph{Activate warnings on hiding.}
11486
11487 @geindex Hiding of Declarations
11488
11489 This switch activates warnings on hiding declarations that are considered
11490 potentially confusing. Not all cases of hiding cause warnings; for example an
11491 overriding declaration hides an implicit declaration, which is just normal
11492 code. The default is that warnings on hiding are not generated.
11493 @end table
11494
11495 @geindex -gnatwH (gcc)
11496
11497
11498 @table @asis
11499
11500 @item @code{-gnatwH}
11501
11502 @emph{Suppress warnings on hiding.}
11503
11504 This switch suppresses warnings on hiding declarations.
11505 @end table
11506
11507 @geindex -gnatw.h (gcc)
11508
11509
11510 @table @asis
11511
11512 @item @code{-gnatw.h}
11513
11514 @emph{Activate warnings on holes/gaps in records.}
11515
11516 @geindex Record Representation (gaps)
11517
11518 This switch activates warnings on component clauses in record
11519 representation clauses that leave holes (gaps) in the record layout.
11520 If this warning option is active, then record representation clauses
11521 should specify a contiguous layout, adding unused fill fields if needed.
11522 @end table
11523
11524 @geindex -gnatw.H (gcc)
11525
11526
11527 @table @asis
11528
11529 @item @code{-gnatw.H}
11530
11531 @emph{Suppress warnings on holes/gaps in records.}
11532
11533 This switch suppresses warnings on component clauses in record
11534 representation clauses that leave holes (haps) in the record layout.
11535 @end table
11536
11537 @geindex -gnatwi (gcc)
11538
11539
11540 @table @asis
11541
11542 @item @code{-gnatwi}
11543
11544 @emph{Activate warnings on implementation units.}
11545
11546 This switch activates warnings for a @emph{with} of an internal GNAT
11547 implementation unit, defined as any unit from the @code{Ada},
11548 @code{Interfaces}, @code{GNAT},
11549 or @code{System}
11550 hierarchies that is not
11551 documented in either the Ada Reference Manual or the GNAT
11552 Programmer's Reference Manual. Such units are intended only
11553 for internal implementation purposes and should not be @emph{with}ed
11554 by user programs. The default is that such warnings are generated
11555 @end table
11556
11557 @geindex -gnatwI (gcc)
11558
11559
11560 @table @asis
11561
11562 @item @code{-gnatwI}
11563
11564 @emph{Disable warnings on implementation units.}
11565
11566 This switch disables warnings for a @emph{with} of an internal GNAT
11567 implementation unit.
11568 @end table
11569
11570 @geindex -gnatw.i (gcc)
11571
11572
11573 @table @asis
11574
11575 @item @code{-gnatw.i}
11576
11577 @emph{Activate warnings on overlapping actuals.}
11578
11579 This switch enables a warning on statically detectable overlapping actuals in
11580 a subprogram call, when one of the actuals is an in-out parameter, and the
11581 types of the actuals are not by-copy types. This warning is off by default.
11582 @end table
11583
11584 @geindex -gnatw.I (gcc)
11585
11586
11587 @table @asis
11588
11589 @item @code{-gnatw.I}
11590
11591 @emph{Disable warnings on overlapping actuals.}
11592
11593 This switch disables warnings on overlapping actuals in a call..
11594 @end table
11595
11596 @geindex -gnatwj (gcc)
11597
11598
11599 @table @asis
11600
11601 @item @code{-gnatwj}
11602
11603 @emph{Activate warnings on obsolescent features (Annex J).}
11604
11605 @geindex Features
11606 @geindex obsolescent
11607
11608 @geindex Obsolescent features
11609
11610 If this warning option is activated, then warnings are generated for
11611 calls to subprograms marked with @code{pragma Obsolescent} and
11612 for use of features in Annex J of the Ada Reference Manual. In the
11613 case of Annex J, not all features are flagged. In particular use
11614 of the renamed packages (like @code{Text_IO}) and use of package
11615 @code{ASCII} are not flagged, since these are very common and
11616 would generate many annoying positive warnings. The default is that
11617 such warnings are not generated.
11618
11619 In addition to the above cases, warnings are also generated for
11620 GNAT features that have been provided in past versions but which
11621 have been superseded (typically by features in the new Ada standard).
11622 For example, @code{pragma Ravenscar} will be flagged since its
11623 function is replaced by @code{pragma Profile(Ravenscar)}, and
11624 @code{pragma Interface_Name} will be flagged since its function
11625 is replaced by @code{pragma Import}.
11626
11627 Note that this warning option functions differently from the
11628 restriction @code{No_Obsolescent_Features} in two respects.
11629 First, the restriction applies only to annex J features.
11630 Second, the restriction does flag uses of package @code{ASCII}.
11631 @end table
11632
11633 @geindex -gnatwJ (gcc)
11634
11635
11636 @table @asis
11637
11638 @item @code{-gnatwJ}
11639
11640 @emph{Suppress warnings on obsolescent features (Annex J).}
11641
11642 This switch disables warnings on use of obsolescent features.
11643 @end table
11644
11645 @geindex -gnatw.j (gcc)
11646
11647
11648 @table @asis
11649
11650 @item @code{-gnatw.j}
11651
11652 @emph{Activate warnings on late declarations of tagged type primitives.}
11653
11654 This switch activates warnings on visible primitives added to a
11655 tagged type after deriving a private extension from it.
11656 @end table
11657
11658 @geindex -gnatw.J (gcc)
11659
11660
11661 @table @asis
11662
11663 @item @code{-gnatw.J}
11664
11665 @emph{Suppress warnings on late declarations of tagged type primitives.}
11666
11667 This switch suppresses warnings on visible primitives added to a
11668 tagged type after deriving a private extension from it.
11669 @end table
11670
11671 @geindex -gnatwk (gcc)
11672
11673
11674 @table @asis
11675
11676 @item @code{-gnatwk}
11677
11678 @emph{Activate warnings on variables that could be constants.}
11679
11680 This switch activates warnings for variables that are initialized but
11681 never modified, and then could be declared constants. The default is that
11682 such warnings are not given.
11683 @end table
11684
11685 @geindex -gnatwK (gcc)
11686
11687
11688 @table @asis
11689
11690 @item @code{-gnatwK}
11691
11692 @emph{Suppress warnings on variables that could be constants.}
11693
11694 This switch disables warnings on variables that could be declared constants.
11695 @end table
11696
11697 @geindex -gnatw.k (gcc)
11698
11699
11700 @table @asis
11701
11702 @item @code{-gnatw.k}
11703
11704 @emph{Activate warnings on redefinition of names in standard.}
11705
11706 This switch activates warnings for declarations that declare a name that
11707 is defined in package Standard. Such declarations can be confusing,
11708 especially since the names in package Standard continue to be directly
11709 visible, meaning that use visibiliy on such redeclared names does not
11710 work as expected. Names of discriminants and components in records are
11711 not included in this check.
11712 @end table
11713
11714 @geindex -gnatwK (gcc)
11715
11716
11717 @table @asis
11718
11719 @item @code{-gnatw.K}
11720
11721 @emph{Suppress warnings on redefinition of names in standard.}
11722
11723 This switch activates warnings for declarations that declare a name that
11724 is defined in package Standard.
11725 @end table
11726
11727 @geindex -gnatwl (gcc)
11728
11729
11730 @table @asis
11731
11732 @item @code{-gnatwl}
11733
11734 @emph{Activate warnings for elaboration pragmas.}
11735
11736 @geindex Elaboration
11737 @geindex warnings
11738
11739 This switch activates warnings for possible elaboration problems,
11740 including suspicious use
11741 of @code{Elaborate} pragmas, when using the static elaboration model, and
11742 possible situations that may raise @code{Program_Error} when using the
11743 dynamic elaboration model.
11744 See the section in this guide on elaboration checking for further details.
11745 The default is that such warnings
11746 are not generated.
11747 @end table
11748
11749 @geindex -gnatwL (gcc)
11750
11751
11752 @table @asis
11753
11754 @item @code{-gnatwL}
11755
11756 @emph{Suppress warnings for elaboration pragmas.}
11757
11758 This switch suppresses warnings for possible elaboration problems.
11759 @end table
11760
11761 @geindex -gnatw.l (gcc)
11762
11763
11764 @table @asis
11765
11766 @item @code{-gnatw.l}
11767
11768 @emph{List inherited aspects.}
11769
11770 This switch causes the compiler to list inherited invariants,
11771 preconditions, and postconditions from Type_Invariant'Class, Invariant'Class,
11772 Pre'Class, and Post'Class aspects. Also list inherited subtype predicates.
11773 @end table
11774
11775 @geindex -gnatw.L (gcc)
11776
11777
11778 @table @asis
11779
11780 @item @code{-gnatw.L}
11781
11782 @emph{Suppress listing of inherited aspects.}
11783
11784 This switch suppresses listing of inherited aspects.
11785 @end table
11786
11787 @geindex -gnatwm (gcc)
11788
11789
11790 @table @asis
11791
11792 @item @code{-gnatwm}
11793
11794 @emph{Activate warnings on modified but unreferenced variables.}
11795
11796 This switch activates warnings for variables that are assigned (using
11797 an initialization value or with one or more assignment statements) but
11798 whose value is never read. The warning is suppressed for volatile
11799 variables and also for variables that are renamings of other variables
11800 or for which an address clause is given.
11801 The default is that these warnings are not given.
11802 @end table
11803
11804 @geindex -gnatwM (gcc)
11805
11806
11807 @table @asis
11808
11809 @item @code{-gnatwM}
11810
11811 @emph{Disable warnings on modified but unreferenced variables.}
11812
11813 This switch disables warnings for variables that are assigned or
11814 initialized, but never read.
11815 @end table
11816
11817 @geindex -gnatw.m (gcc)
11818
11819
11820 @table @asis
11821
11822 @item @code{-gnatw.m}
11823
11824 @emph{Activate warnings on suspicious modulus values.}
11825
11826 This switch activates warnings for modulus values that seem suspicious.
11827 The cases caught are where the size is the same as the modulus (e.g.
11828 a modulus of 7 with a size of 7 bits), and modulus values of 32 or 64
11829 with no size clause. The guess in both cases is that 2**x was intended
11830 rather than x. In addition expressions of the form 2*x for small x
11831 generate a warning (the almost certainly accurate guess being that
11832 2**x was intended). The default is that these warnings are given.
11833 @end table
11834
11835 @geindex -gnatw.M (gcc)
11836
11837
11838 @table @asis
11839
11840 @item @code{-gnatw.M}
11841
11842 @emph{Disable warnings on suspicious modulus values.}
11843
11844 This switch disables warnings for suspicious modulus values.
11845 @end table
11846
11847 @geindex -gnatwn (gcc)
11848
11849
11850 @table @asis
11851
11852 @item @code{-gnatwn}
11853
11854 @emph{Set normal warnings mode.}
11855
11856 This switch sets normal warning mode, in which enabled warnings are
11857 issued and treated as warnings rather than errors. This is the default
11858 mode. the switch @code{-gnatwn} can be used to cancel the effect of
11859 an explicit @code{-gnatws} or
11860 @code{-gnatwe}. It also cancels the effect of the
11861 implicit @code{-gnatwe} that is activated by the
11862 use of @code{-gnatg}.
11863 @end table
11864
11865 @geindex -gnatw.n (gcc)
11866
11867 @geindex Atomic Synchronization
11868 @geindex warnings
11869
11870
11871 @table @asis
11872
11873 @item @code{-gnatw.n}
11874
11875 @emph{Activate warnings on atomic synchronization.}
11876
11877 This switch actives warnings when an access to an atomic variable
11878 requires the generation of atomic synchronization code. These
11879 warnings are off by default.
11880 @end table
11881
11882 @geindex -gnatw.N (gcc)
11883
11884
11885 @table @asis
11886
11887 @item @code{-gnatw.N}
11888
11889 @emph{Suppress warnings on atomic synchronization.}
11890
11891 @geindex Atomic Synchronization
11892 @geindex warnings
11893
11894 This switch suppresses warnings when an access to an atomic variable
11895 requires the generation of atomic synchronization code.
11896 @end table
11897
11898 @geindex -gnatwo (gcc)
11899
11900 @geindex Address Clauses
11901 @geindex warnings
11902
11903
11904 @table @asis
11905
11906 @item @code{-gnatwo}
11907
11908 @emph{Activate warnings on address clause overlays.}
11909
11910 This switch activates warnings for possibly unintended initialization
11911 effects of defining address clauses that cause one variable to overlap
11912 another. The default is that such warnings are generated.
11913 @end table
11914
11915 @geindex -gnatwO (gcc)
11916
11917
11918 @table @asis
11919
11920 @item @code{-gnatwO}
11921
11922 @emph{Suppress warnings on address clause overlays.}
11923
11924 This switch suppresses warnings on possibly unintended initialization
11925 effects of defining address clauses that cause one variable to overlap
11926 another.
11927 @end table
11928
11929 @geindex -gnatw.o (gcc)
11930
11931
11932 @table @asis
11933
11934 @item @code{-gnatw.o}
11935
11936 @emph{Activate warnings on modified but unreferenced out parameters.}
11937
11938 This switch activates warnings for variables that are modified by using
11939 them as actuals for a call to a procedure with an out mode formal, where
11940 the resulting assigned value is never read. It is applicable in the case
11941 where there is more than one out mode formal. If there is only one out
11942 mode formal, the warning is issued by default (controlled by -gnatwu).
11943 The warning is suppressed for volatile
11944 variables and also for variables that are renamings of other variables
11945 or for which an address clause is given.
11946 The default is that these warnings are not given.
11947 @end table
11948
11949 @geindex -gnatw.O (gcc)
11950
11951
11952 @table @asis
11953
11954 @item @code{-gnatw.O}
11955
11956 @emph{Disable warnings on modified but unreferenced out parameters.}
11957
11958 This switch suppresses warnings for variables that are modified by using
11959 them as actuals for a call to a procedure with an out mode formal, where
11960 the resulting assigned value is never read.
11961 @end table
11962
11963 @geindex -gnatwp (gcc)
11964
11965 @geindex Inlining
11966 @geindex warnings
11967
11968
11969 @table @asis
11970
11971 @item @code{-gnatwp}
11972
11973 @emph{Activate warnings on ineffective pragma Inlines.}
11974
11975 This switch activates warnings for failure of front end inlining
11976 (activated by @code{-gnatN}) to inline a particular call. There are
11977 many reasons for not being able to inline a call, including most
11978 commonly that the call is too complex to inline. The default is
11979 that such warnings are not given.
11980 Warnings on ineffective inlining by the gcc back-end can be activated
11981 separately, using the gcc switch -Winline.
11982 @end table
11983
11984 @geindex -gnatwP (gcc)
11985
11986
11987 @table @asis
11988
11989 @item @code{-gnatwP}
11990
11991 @emph{Suppress warnings on ineffective pragma Inlines.}
11992
11993 This switch suppresses warnings on ineffective pragma Inlines. If the
11994 inlining mechanism cannot inline a call, it will simply ignore the
11995 request silently.
11996 @end table
11997
11998 @geindex -gnatw.p (gcc)
11999
12000 @geindex Parameter order
12001 @geindex warnings
12002
12003
12004 @table @asis
12005
12006 @item @code{-gnatw.p}
12007
12008 @emph{Activate warnings on parameter ordering.}
12009
12010 This switch activates warnings for cases of suspicious parameter
12011 ordering when the list of arguments are all simple identifiers that
12012 match the names of the formals, but are in a different order. The
12013 warning is suppressed if any use of named parameter notation is used,
12014 so this is the appropriate way to suppress a false positive (and
12015 serves to emphasize that the "misordering" is deliberate). The
12016 default is that such warnings are not given.
12017 @end table
12018
12019 @geindex -gnatw.P (gcc)
12020
12021
12022 @table @asis
12023
12024 @item @code{-gnatw.P}
12025
12026 @emph{Suppress warnings on parameter ordering.}
12027
12028 This switch suppresses warnings on cases of suspicious parameter
12029 ordering.
12030 @end table
12031
12032 @geindex -gnatwq (gcc)
12033
12034 @geindex Parentheses
12035 @geindex warnings
12036
12037
12038 @table @asis
12039
12040 @item @code{-gnatwq}
12041
12042 @emph{Activate warnings on questionable missing parentheses.}
12043
12044 This switch activates warnings for cases where parentheses are not used and
12045 the result is potential ambiguity from a readers point of view. For example
12046 (not a > b) when a and b are modular means ((not a) > b) and very likely the
12047 programmer intended (not (a > b)). Similarly (-x mod 5) means (-(x mod 5)) and
12048 quite likely ((-x) mod 5) was intended. In such situations it seems best to
12049 follow the rule of always parenthesizing to make the association clear, and
12050 this warning switch warns if such parentheses are not present. The default
12051 is that these warnings are given.
12052 @end table
12053
12054 @geindex -gnatwQ (gcc)
12055
12056
12057 @table @asis
12058
12059 @item @code{-gnatwQ}
12060
12061 @emph{Suppress warnings on questionable missing parentheses.}
12062
12063 This switch suppresses warnings for cases where the association is not
12064 clear and the use of parentheses is preferred.
12065 @end table
12066
12067 @geindex -gnatw.q (gcc)
12068
12069 @geindex Layout
12070 @geindex warnings
12071
12072
12073 @table @asis
12074
12075 @item @code{-gnatw.q}
12076
12077 @emph{Activate warnings on questionable layout of record types.}
12078
12079 This switch activates warnings for cases where the default layout of
12080 a record type, that is to say the layout of its components in textual
12081 order of the source code, would very likely cause inefficiencies in
12082 the code generated by the compiler, both in terms of space and speed
12083 during execution. One warning is issued for each problematic component
12084 without representation clause in the nonvariant part and then in each
12085 variant recursively, if any.
12086
12087 The purpose of these warnings is neither to prescribe an optimal layout
12088 nor to force the use of representation clauses, but rather to get rid of
12089 the most blatant inefficiencies in the layout. Therefore, the default
12090 layout is matched against the following synthetic ordered layout and
12091 the deviations are flagged on a component-by-component basis:
12092
12093
12094 @itemize *
12095
12096 @item
12097 first all components or groups of components whose length is fixed
12098 and a multiple of the storage unit,
12099
12100 @item
12101 then the remaining components whose length is fixed and not a multiple
12102 of the storage unit,
12103
12104 @item
12105 then the remaining components whose length doesn't depend on discriminants
12106 (that is to say, with variable but uniform length for all objects),
12107
12108 @item
12109 then all components whose length depends on discriminants,
12110
12111 @item
12112 finally the variant part (if any),
12113 @end itemize
12114
12115 for the nonvariant part and for each variant recursively, if any.
12116
12117 The exact wording of the warning depends on whether the compiler is allowed
12118 to reorder the components in the record type or precluded from doing it by
12119 means of pragma @code{No_Component_Reordering}.
12120
12121 The default is that these warnings are not given.
12122 @end table
12123
12124 @geindex -gnatw.Q (gcc)
12125
12126
12127 @table @asis
12128
12129 @item @code{-gnatw.Q}
12130
12131 @emph{Suppress warnings on questionable layout of record types.}
12132
12133 This switch suppresses warnings for cases where the default layout of
12134 a record type would very likely cause inefficiencies.
12135 @end table
12136
12137 @geindex -gnatwr (gcc)
12138
12139
12140 @table @asis
12141
12142 @item @code{-gnatwr}
12143
12144 @emph{Activate warnings on redundant constructs.}
12145
12146 This switch activates warnings for redundant constructs. The following
12147 is the current list of constructs regarded as redundant:
12148
12149
12150 @itemize *
12151
12152 @item
12153 Assignment of an item to itself.
12154
12155 @item
12156 Type conversion that converts an expression to its own type.
12157
12158 @item
12159 Use of the attribute @code{Base} where @code{typ'Base} is the same
12160 as @code{typ}.
12161
12162 @item
12163 Use of pragma @code{Pack} when all components are placed by a record
12164 representation clause.
12165
12166 @item
12167 Exception handler containing only a reraise statement (raise with no
12168 operand) which has no effect.
12169
12170 @item
12171 Use of the operator abs on an operand that is known at compile time
12172 to be non-negative
12173
12174 @item
12175 Comparison of an object or (unary or binary) operation of boolean type to
12176 an explicit True value.
12177 @end itemize
12178
12179 The default is that warnings for redundant constructs are not given.
12180 @end table
12181
12182 @geindex -gnatwR (gcc)
12183
12184
12185 @table @asis
12186
12187 @item @code{-gnatwR}
12188
12189 @emph{Suppress warnings on redundant constructs.}
12190
12191 This switch suppresses warnings for redundant constructs.
12192 @end table
12193
12194 @geindex -gnatw.r (gcc)
12195
12196
12197 @table @asis
12198
12199 @item @code{-gnatw.r}
12200
12201 @emph{Activate warnings for object renaming function.}
12202
12203 This switch activates warnings for an object renaming that renames a
12204 function call, which is equivalent to a constant declaration (as
12205 opposed to renaming the function itself). The default is that these
12206 warnings are given.
12207 @end table
12208
12209 @geindex -gnatw.R (gcc)
12210
12211
12212 @table @asis
12213
12214 @item @code{-gnatw.R}
12215
12216 @emph{Suppress warnings for object renaming function.}
12217
12218 This switch suppresses warnings for object renaming function.
12219 @end table
12220
12221 @geindex -gnatw_r (gcc)
12222
12223
12224 @table @asis
12225
12226 @item @code{-gnatw_r}
12227
12228 @emph{Activate warnings for out-of-order record representation clauses.}
12229
12230 This switch activates warnings for record representation clauses,
12231 if the order of component declarations, component clauses,
12232 and bit-level layout do not all agree.
12233 The default is that these warnings are not given.
12234 @end table
12235
12236 @geindex -gnatw_R (gcc)
12237
12238
12239 @table @asis
12240
12241 @item @code{-gnatw_R}
12242
12243 @emph{Suppress warnings for out-of-order record representation clauses.}
12244 @end table
12245
12246 @geindex -gnatws (gcc)
12247
12248
12249 @table @asis
12250
12251 @item @code{-gnatws}
12252
12253 @emph{Suppress all warnings.}
12254
12255 This switch completely suppresses the
12256 output of all warning messages from the GNAT front end, including
12257 both warnings that can be controlled by switches described in this
12258 section, and those that are normally given unconditionally. The
12259 effect of this suppress action can only be cancelled by a subsequent
12260 use of the switch @code{-gnatwn}.
12261
12262 Note that switch @code{-gnatws} does not suppress
12263 warnings from the @code{gcc} back end.
12264 To suppress these back end warnings as well, use the switch @code{-w}
12265 in addition to @code{-gnatws}. Also this switch has no effect on the
12266 handling of style check messages.
12267 @end table
12268
12269 @geindex -gnatw.s (gcc)
12270
12271 @geindex Record Representation (component sizes)
12272
12273
12274 @table @asis
12275
12276 @item @code{-gnatw.s}
12277
12278 @emph{Activate warnings on overridden size clauses.}
12279
12280 This switch activates warnings on component clauses in record
12281 representation clauses where the length given overrides that
12282 specified by an explicit size clause for the component type. A
12283 warning is similarly given in the array case if a specified
12284 component size overrides an explicit size clause for the array
12285 component type.
12286 @end table
12287
12288 @geindex -gnatw.S (gcc)
12289
12290
12291 @table @asis
12292
12293 @item @code{-gnatw.S}
12294
12295 @emph{Suppress warnings on overridden size clauses.}
12296
12297 This switch suppresses warnings on component clauses in record
12298 representation clauses that override size clauses, and similar
12299 warnings when an array component size overrides a size clause.
12300 @end table
12301
12302 @geindex -gnatwt (gcc)
12303
12304 @geindex Deactivated code
12305 @geindex warnings
12306
12307 @geindex Deleted code
12308 @geindex warnings
12309
12310
12311 @table @asis
12312
12313 @item @code{-gnatwt}
12314
12315 @emph{Activate warnings for tracking of deleted conditional code.}
12316
12317 This switch activates warnings for tracking of code in conditionals (IF and
12318 CASE statements) that is detected to be dead code which cannot be executed, and
12319 which is removed by the front end. This warning is off by default. This may be
12320 useful for detecting deactivated code in certified applications.
12321 @end table
12322
12323 @geindex -gnatwT (gcc)
12324
12325
12326 @table @asis
12327
12328 @item @code{-gnatwT}
12329
12330 @emph{Suppress warnings for tracking of deleted conditional code.}
12331
12332 This switch suppresses warnings for tracking of deleted conditional code.
12333 @end table
12334
12335 @geindex -gnatw.t (gcc)
12336
12337
12338 @table @asis
12339
12340 @item @code{-gnatw.t}
12341
12342 @emph{Activate warnings on suspicious contracts.}
12343
12344 This switch activates warnings on suspicious contracts. This includes
12345 warnings on suspicious postconditions (whether a pragma @code{Postcondition} or a
12346 @code{Post} aspect in Ada 2012) and suspicious contract cases (pragma or aspect
12347 @code{Contract_Cases}). A function postcondition or contract case is suspicious
12348 when no postcondition or contract case for this function mentions the result
12349 of the function. A procedure postcondition or contract case is suspicious
12350 when it only refers to the pre-state of the procedure, because in that case
12351 it should rather be expressed as a precondition. This switch also controls
12352 warnings on suspicious cases of expressions typically found in contracts like
12353 quantified expressions and uses of Update attribute. The default is that such
12354 warnings are generated.
12355 @end table
12356
12357 @geindex -gnatw.T (gcc)
12358
12359
12360 @table @asis
12361
12362 @item @code{-gnatw.T}
12363
12364 @emph{Suppress warnings on suspicious contracts.}
12365
12366 This switch suppresses warnings on suspicious contracts.
12367 @end table
12368
12369 @geindex -gnatwu (gcc)
12370
12371
12372 @table @asis
12373
12374 @item @code{-gnatwu}
12375
12376 @emph{Activate warnings on unused entities.}
12377
12378 This switch activates warnings to be generated for entities that
12379 are declared but not referenced, and for units that are @emph{with}ed
12380 and not
12381 referenced. In the case of packages, a warning is also generated if
12382 no entities in the package are referenced. This means that if a with'ed
12383 package is referenced but the only references are in @code{use}
12384 clauses or @code{renames}
12385 declarations, a warning is still generated. A warning is also generated
12386 for a generic package that is @emph{with}ed but never instantiated.
12387 In the case where a package or subprogram body is compiled, and there
12388 is a @emph{with} on the corresponding spec
12389 that is only referenced in the body,
12390 a warning is also generated, noting that the
12391 @emph{with} can be moved to the body. The default is that
12392 such warnings are not generated.
12393 This switch also activates warnings on unreferenced formals
12394 (it includes the effect of @code{-gnatwf}).
12395 @end table
12396
12397 @geindex -gnatwU (gcc)
12398
12399
12400 @table @asis
12401
12402 @item @code{-gnatwU}
12403
12404 @emph{Suppress warnings on unused entities.}
12405
12406 This switch suppresses warnings for unused entities and packages.
12407 It also turns off warnings on unreferenced formals (and thus includes
12408 the effect of @code{-gnatwF}).
12409 @end table
12410
12411 @geindex -gnatw.u (gcc)
12412
12413
12414 @table @asis
12415
12416 @item @code{-gnatw.u}
12417
12418 @emph{Activate warnings on unordered enumeration types.}
12419
12420 This switch causes enumeration types to be considered as conceptually
12421 unordered, unless an explicit pragma @code{Ordered} is given for the type.
12422 The effect is to generate warnings in clients that use explicit comparisons
12423 or subranges, since these constructs both treat objects of the type as
12424 ordered. (A @emph{client} is defined as a unit that is other than the unit in
12425 which the type is declared, or its body or subunits.) Please refer to
12426 the description of pragma @code{Ordered} in the
12427 @cite{GNAT Reference Manual} for further details.
12428 The default is that such warnings are not generated.
12429 @end table
12430
12431 @geindex -gnatw.U (gcc)
12432
12433
12434 @table @asis
12435
12436 @item @code{-gnatw.U}
12437
12438 @emph{Deactivate warnings on unordered enumeration types.}
12439
12440 This switch causes all enumeration types to be considered as ordered, so
12441 that no warnings are given for comparisons or subranges for any type.
12442 @end table
12443
12444 @geindex -gnatwv (gcc)
12445
12446 @geindex Unassigned variable warnings
12447
12448
12449 @table @asis
12450
12451 @item @code{-gnatwv}
12452
12453 @emph{Activate warnings on unassigned variables.}
12454
12455 This switch activates warnings for access to variables which
12456 may not be properly initialized. The default is that
12457 such warnings are generated.
12458 @end table
12459
12460 @geindex -gnatwV (gcc)
12461
12462
12463 @table @asis
12464
12465 @item @code{-gnatwV}
12466
12467 @emph{Suppress warnings on unassigned variables.}
12468
12469 This switch suppresses warnings for access to variables which
12470 may not be properly initialized.
12471 For variables of a composite type, the warning can also be suppressed in
12472 Ada 2005 by using a default initialization with a box. For example, if
12473 Table is an array of records whose components are only partially uninitialized,
12474 then the following code:
12475
12476 @example
12477 Tab : Table := (others => <>);
12478 @end example
12479
12480 will suppress warnings on subsequent statements that access components
12481 of variable Tab.
12482 @end table
12483
12484 @geindex -gnatw.v (gcc)
12485
12486 @geindex bit order warnings
12487
12488
12489 @table @asis
12490
12491 @item @code{-gnatw.v}
12492
12493 @emph{Activate info messages for non-default bit order.}
12494
12495 This switch activates messages (labeled "info", they are not warnings,
12496 just informational messages) about the effects of non-default bit-order
12497 on records to which a component clause is applied. The effect of specifying
12498 non-default bit ordering is a bit subtle (and changed with Ada 2005), so
12499 these messages, which are given by default, are useful in understanding the
12500 exact consequences of using this feature.
12501 @end table
12502
12503 @geindex -gnatw.V (gcc)
12504
12505
12506 @table @asis
12507
12508 @item @code{-gnatw.V}
12509
12510 @emph{Suppress info messages for non-default bit order.}
12511
12512 This switch suppresses information messages for the effects of specifying
12513 non-default bit order on record components with component clauses.
12514 @end table
12515
12516 @geindex -gnatww (gcc)
12517
12518 @geindex String indexing warnings
12519
12520
12521 @table @asis
12522
12523 @item @code{-gnatww}
12524
12525 @emph{Activate warnings on wrong low bound assumption.}
12526
12527 This switch activates warnings for indexing an unconstrained string parameter
12528 with a literal or S'Length. This is a case where the code is assuming that the
12529 low bound is one, which is in general not true (for example when a slice is
12530 passed). The default is that such warnings are generated.
12531 @end table
12532
12533 @geindex -gnatwW (gcc)
12534
12535
12536 @table @asis
12537
12538 @item @code{-gnatwW}
12539
12540 @emph{Suppress warnings on wrong low bound assumption.}
12541
12542 This switch suppresses warnings for indexing an unconstrained string parameter
12543 with a literal or S'Length. Note that this warning can also be suppressed
12544 in a particular case by adding an assertion that the lower bound is 1,
12545 as shown in the following example:
12546
12547 @example
12548 procedure K (S : String) is
12549 pragma Assert (S'First = 1);
12550 ...
12551 @end example
12552 @end table
12553
12554 @geindex -gnatw.w (gcc)
12555
12556 @geindex Warnings Off control
12557
12558
12559 @table @asis
12560
12561 @item @code{-gnatw.w}
12562
12563 @emph{Activate warnings on Warnings Off pragmas.}
12564
12565 This switch activates warnings for use of @code{pragma Warnings (Off, entity)}
12566 where either the pragma is entirely useless (because it suppresses no
12567 warnings), or it could be replaced by @code{pragma Unreferenced} or
12568 @code{pragma Unmodified}.
12569 Also activates warnings for the case of
12570 Warnings (Off, String), where either there is no matching
12571 Warnings (On, String), or the Warnings (Off) did not suppress any warning.
12572 The default is that these warnings are not given.
12573 @end table
12574
12575 @geindex -gnatw.W (gcc)
12576
12577
12578 @table @asis
12579
12580 @item @code{-gnatw.W}
12581
12582 @emph{Suppress warnings on unnecessary Warnings Off pragmas.}
12583
12584 This switch suppresses warnings for use of @code{pragma Warnings (Off, ...)}.
12585 @end table
12586
12587 @geindex -gnatwx (gcc)
12588
12589 @geindex Export/Import pragma warnings
12590
12591
12592 @table @asis
12593
12594 @item @code{-gnatwx}
12595
12596 @emph{Activate warnings on Export/Import pragmas.}
12597
12598 This switch activates warnings on Export/Import pragmas when
12599 the compiler detects a possible conflict between the Ada and
12600 foreign language calling sequences. For example, the use of
12601 default parameters in a convention C procedure is dubious
12602 because the C compiler cannot supply the proper default, so
12603 a warning is issued. The default is that such warnings are
12604 generated.
12605 @end table
12606
12607 @geindex -gnatwX (gcc)
12608
12609
12610 @table @asis
12611
12612 @item @code{-gnatwX}
12613
12614 @emph{Suppress warnings on Export/Import pragmas.}
12615
12616 This switch suppresses warnings on Export/Import pragmas.
12617 The sense of this is that you are telling the compiler that
12618 you know what you are doing in writing the pragma, and it
12619 should not complain at you.
12620 @end table
12621
12622 @geindex -gnatwm (gcc)
12623
12624
12625 @table @asis
12626
12627 @item @code{-gnatw.x}
12628
12629 @emph{Activate warnings for No_Exception_Propagation mode.}
12630
12631 This switch activates warnings for exception usage when pragma Restrictions
12632 (No_Exception_Propagation) is in effect. Warnings are given for implicit or
12633 explicit exception raises which are not covered by a local handler, and for
12634 exception handlers which do not cover a local raise. The default is that
12635 these warnings are given for units that contain exception handlers.
12636
12637 @item @code{-gnatw.X}
12638
12639 @emph{Disable warnings for No_Exception_Propagation mode.}
12640
12641 This switch disables warnings for exception usage when pragma Restrictions
12642 (No_Exception_Propagation) is in effect.
12643 @end table
12644
12645 @geindex -gnatwy (gcc)
12646
12647 @geindex Ada compatibility issues warnings
12648
12649
12650 @table @asis
12651
12652 @item @code{-gnatwy}
12653
12654 @emph{Activate warnings for Ada compatibility issues.}
12655
12656 For the most part, newer versions of Ada are upwards compatible
12657 with older versions. For example, Ada 2005 programs will almost
12658 always work when compiled as Ada 2012.
12659 However there are some exceptions (for example the fact that
12660 @code{some} is now a reserved word in Ada 2012). This
12661 switch activates several warnings to help in identifying
12662 and correcting such incompatibilities. The default is that
12663 these warnings are generated. Note that at one point Ada 2005
12664 was called Ada 0Y, hence the choice of character.
12665 @end table
12666
12667 @geindex -gnatwY (gcc)
12668
12669 @geindex Ada compatibility issues warnings
12670
12671
12672 @table @asis
12673
12674 @item @code{-gnatwY}
12675
12676 @emph{Disable warnings for Ada compatibility issues.}
12677
12678 This switch suppresses the warnings intended to help in identifying
12679 incompatibilities between Ada language versions.
12680 @end table
12681
12682 @geindex -gnatw.y (gcc)
12683
12684 @geindex Package spec needing body
12685
12686
12687 @table @asis
12688
12689 @item @code{-gnatw.y}
12690
12691 @emph{Activate information messages for why package spec needs body.}
12692
12693 There are a number of cases in which a package spec needs a body.
12694 For example, the use of pragma Elaborate_Body, or the declaration
12695 of a procedure specification requiring a completion. This switch
12696 causes information messages to be output showing why a package
12697 specification requires a body. This can be useful in the case of
12698 a large package specification which is unexpectedly requiring a
12699 body. The default is that such information messages are not output.
12700 @end table
12701
12702 @geindex -gnatw.Y (gcc)
12703
12704 @geindex No information messages for why package spec needs body
12705
12706
12707 @table @asis
12708
12709 @item @code{-gnatw.Y}
12710
12711 @emph{Disable information messages for why package spec needs body.}
12712
12713 This switch suppresses the output of information messages showing why
12714 a package specification needs a body.
12715 @end table
12716
12717 @geindex -gnatwz (gcc)
12718
12719 @geindex Unchecked_Conversion warnings
12720
12721
12722 @table @asis
12723
12724 @item @code{-gnatwz}
12725
12726 @emph{Activate warnings on unchecked conversions.}
12727
12728 This switch activates warnings for unchecked conversions
12729 where the types are known at compile time to have different
12730 sizes. The default is that such warnings are generated. Warnings are also
12731 generated for subprogram pointers with different conventions.
12732 @end table
12733
12734 @geindex -gnatwZ (gcc)
12735
12736
12737 @table @asis
12738
12739 @item @code{-gnatwZ}
12740
12741 @emph{Suppress warnings on unchecked conversions.}
12742
12743 This switch suppresses warnings for unchecked conversions
12744 where the types are known at compile time to have different
12745 sizes or conventions.
12746 @end table
12747
12748 @geindex -gnatw.z (gcc)
12749
12750 @geindex Size/Alignment warnings
12751
12752
12753 @table @asis
12754
12755 @item @code{-gnatw.z}
12756
12757 @emph{Activate warnings for size not a multiple of alignment.}
12758
12759 This switch activates warnings for cases of array and record types
12760 with specified @code{Size} and @code{Alignment} attributes where the
12761 size is not a multiple of the alignment, resulting in an object
12762 size that is greater than the specified size. The default
12763 is that such warnings are generated.
12764 @end table
12765
12766 @geindex -gnatw.Z (gcc)
12767
12768 @geindex Size/Alignment warnings
12769
12770
12771 @table @asis
12772
12773 @item @code{-gnatw.Z}
12774
12775 @emph{Suppress warnings for size not a multiple of alignment.}
12776
12777 This switch suppresses warnings for cases of array and record types
12778 with specified @code{Size} and @code{Alignment} attributes where the
12779 size is not a multiple of the alignment, resulting in an object
12780 size that is greater than the specified size. The warning can also
12781 be suppressed by giving an explicit @code{Object_Size} value.
12782 @end table
12783
12784 @geindex -Wunused (gcc)
12785
12786
12787 @table @asis
12788
12789 @item @code{-Wunused}
12790
12791 The warnings controlled by the @code{-gnatw} switch are generated by
12792 the front end of the compiler. The GCC back end can provide
12793 additional warnings and they are controlled by the @code{-W} switch.
12794 For example, @code{-Wunused} activates back end
12795 warnings for entities that are declared but not referenced.
12796 @end table
12797
12798 @geindex -Wuninitialized (gcc)
12799
12800
12801 @table @asis
12802
12803 @item @code{-Wuninitialized}
12804
12805 Similarly, @code{-Wuninitialized} activates
12806 the back end warning for uninitialized variables. This switch must be
12807 used in conjunction with an optimization level greater than zero.
12808 @end table
12809
12810 @geindex -Wstack-usage (gcc)
12811
12812
12813 @table @asis
12814
12815 @item @code{-Wstack-usage=@emph{len}}
12816
12817 Warn if the stack usage of a subprogram might be larger than @code{len} bytes.
12818 See @ref{f5,,Static Stack Usage Analysis} for details.
12819 @end table
12820
12821 @geindex -Wall (gcc)
12822
12823
12824 @table @asis
12825
12826 @item @code{-Wall}
12827
12828 This switch enables most warnings from the GCC back end.
12829 The code generator detects a number of warning situations that are missed
12830 by the GNAT front end, and this switch can be used to activate them.
12831 The use of this switch also sets the default front end warning mode to
12832 @code{-gnatwa}, that is, most front end warnings activated as well.
12833 @end table
12834
12835 @geindex -w (gcc)
12836
12837
12838 @table @asis
12839
12840 @item @code{-w}
12841
12842 Conversely, this switch suppresses warnings from the GCC back end.
12843 The use of this switch also sets the default front end warning mode to
12844 @code{-gnatws}, that is, front end warnings suppressed as well.
12845 @end table
12846
12847 @geindex -Werror (gcc)
12848
12849
12850 @table @asis
12851
12852 @item @code{-Werror}
12853
12854 This switch causes warnings from the GCC back end to be treated as
12855 errors. The warning string still appears, but the warning messages are
12856 counted as errors, and prevent the generation of an object file.
12857 @end table
12858
12859 A string of warning parameters can be used in the same parameter. For example:
12860
12861 @example
12862 -gnatwaGe
12863 @end example
12864
12865 will turn on all optional warnings except for unrecognized pragma warnings,
12866 and also specify that warnings should be treated as errors.
12867
12868 When no switch @code{-gnatw} is used, this is equivalent to:
12869
12870 @quotation
12871
12872
12873 @itemize *
12874
12875 @item
12876 @code{-gnatw.a}
12877
12878 @item
12879 @code{-gnatwB}
12880
12881 @item
12882 @code{-gnatw.b}
12883
12884 @item
12885 @code{-gnatwC}
12886
12887 @item
12888 @code{-gnatw.C}
12889
12890 @item
12891 @code{-gnatwD}
12892
12893 @item
12894 @code{-gnatw.D}
12895
12896 @item
12897 @code{-gnatwF}
12898
12899 @item
12900 @code{-gnatw.F}
12901
12902 @item
12903 @code{-gnatwg}
12904
12905 @item
12906 @code{-gnatwH}
12907
12908 @item
12909 @code{-gnatw.H}
12910
12911 @item
12912 @code{-gnatwi}
12913
12914 @item
12915 @code{-gnatwJ}
12916
12917 @item
12918 @code{-gnatw.J}
12919
12920 @item
12921 @code{-gnatwK}
12922
12923 @item
12924 @code{-gnatw.K}
12925
12926 @item
12927 @code{-gnatwL}
12928
12929 @item
12930 @code{-gnatw.L}
12931
12932 @item
12933 @code{-gnatwM}
12934
12935 @item
12936 @code{-gnatw.m}
12937
12938 @item
12939 @code{-gnatwn}
12940
12941 @item
12942 @code{-gnatw.N}
12943
12944 @item
12945 @code{-gnatwo}
12946
12947 @item
12948 @code{-gnatw.O}
12949
12950 @item
12951 @code{-gnatwP}
12952
12953 @item
12954 @code{-gnatw.P}
12955
12956 @item
12957 @code{-gnatwq}
12958
12959 @item
12960 @code{-gnatw.Q}
12961
12962 @item
12963 @code{-gnatwR}
12964
12965 @item
12966 @code{-gnatw.R}
12967
12968 @item
12969 @code{-gnatw.S}
12970
12971 @item
12972 @code{-gnatwT}
12973
12974 @item
12975 @code{-gnatw.t}
12976
12977 @item
12978 @code{-gnatwU}
12979
12980 @item
12981 @code{-gnatw.U}
12982
12983 @item
12984 @code{-gnatwv}
12985
12986 @item
12987 @code{-gnatw.v}
12988
12989 @item
12990 @code{-gnatww}
12991
12992 @item
12993 @code{-gnatw.W}
12994
12995 @item
12996 @code{-gnatwx}
12997
12998 @item
12999 @code{-gnatw.X}
13000
13001 @item
13002 @code{-gnatwy}
13003
13004 @item
13005 @code{-gnatw.Y}
13006
13007 @item
13008 @code{-gnatwz}
13009
13010 @item
13011 @code{-gnatw.z}
13012 @end itemize
13013 @end quotation
13014
13015 @node Debugging and Assertion Control,Validity Checking,Warning Message Control,Compiler Switches
13016 @anchor{gnat_ugn/building_executable_programs_with_gnat debugging-and-assertion-control}@anchor{100}@anchor{gnat_ugn/building_executable_programs_with_gnat id16}@anchor{101}
13017 @subsection Debugging and Assertion Control
13018
13019
13020 @geindex -gnata (gcc)
13021
13022
13023 @table @asis
13024
13025 @item @code{-gnata}
13026
13027 @geindex Assert
13028
13029 @geindex Debug
13030
13031 @geindex Assertions
13032
13033 @geindex Precondition
13034
13035 @geindex Postcondition
13036
13037 @geindex Type invariants
13038
13039 @geindex Subtype predicates
13040
13041 The @code{-gnata} option is equivalent to the following @code{Assertion_Policy} pragma:
13042
13043 @example
13044 pragma Assertion_Policy (Check);
13045 @end example
13046
13047 Which is a shorthand for:
13048
13049 @example
13050 pragma Assertion_Policy
13051 (Assert => Check,
13052 Static_Predicate => Check,
13053 Dynamic_Predicate => Check,
13054 Pre => Check,
13055 Pre'Class => Check,
13056 Post => Check,
13057 Post'Class => Check,
13058 Type_Invariant => Check,
13059 Type_Invariant'Class => Check);
13060 @end example
13061
13062 The pragmas @code{Assert} and @code{Debug} normally have no effect and
13063 are ignored. This switch, where @code{a} stands for 'assert', causes
13064 pragmas @code{Assert} and @code{Debug} to be activated. This switch also
13065 causes preconditions, postconditions, subtype predicates, and
13066 type invariants to be activated.
13067
13068 The pragmas have the form:
13069
13070 @example
13071 pragma Assert (<Boolean-expression> [, <static-string-expression>])
13072 pragma Debug (<procedure call>)
13073 pragma Type_Invariant (<type-local-name>, <Boolean-expression>)
13074 pragma Predicate (<type-local-name>, <Boolean-expression>)
13075 pragma Precondition (<Boolean-expression>, <string-expression>)
13076 pragma Postcondition (<Boolean-expression>, <string-expression>)
13077 @end example
13078
13079 The aspects have the form:
13080
13081 @example
13082 with [Pre|Post|Type_Invariant|Dynamic_Predicate|Static_Predicate]
13083 => <Boolean-expression>;
13084 @end example
13085
13086 The @code{Assert} pragma causes @code{Boolean-expression} to be tested.
13087 If the result is @code{True}, the pragma has no effect (other than
13088 possible side effects from evaluating the expression). If the result is
13089 @code{False}, the exception @code{Assert_Failure} declared in the package
13090 @code{System.Assertions} is raised (passing @code{static-string-expression}, if
13091 present, as the message associated with the exception). If no string
13092 expression is given, the default is a string containing the file name and
13093 line number of the pragma.
13094
13095 The @code{Debug} pragma causes @code{procedure} to be called. Note that
13096 @code{pragma Debug} may appear within a declaration sequence, allowing
13097 debugging procedures to be called between declarations.
13098
13099 For the aspect specification, the @code{Boolean-expression} is evaluated.
13100 If the result is @code{True}, the aspect has no effect. If the result
13101 is @code{False}, the exception @code{Assert_Failure} is raised.
13102 @end table
13103
13104 @node Validity Checking,Style Checking,Debugging and Assertion Control,Compiler Switches
13105 @anchor{gnat_ugn/building_executable_programs_with_gnat validity-checking}@anchor{f6}@anchor{gnat_ugn/building_executable_programs_with_gnat id17}@anchor{102}
13106 @subsection Validity Checking
13107
13108
13109 @geindex Validity Checking
13110
13111 The Ada Reference Manual defines the concept of invalid values (see
13112 RM 13.9.1). The primary source of invalid values is uninitialized
13113 variables. A scalar variable that is left uninitialized may contain
13114 an invalid value; the concept of invalid does not apply to access or
13115 composite types.
13116
13117 It is an error to read an invalid value, but the RM does not require
13118 run-time checks to detect such errors, except for some minimal
13119 checking to prevent erroneous execution (i.e. unpredictable
13120 behavior). This corresponds to the @code{-gnatVd} switch below,
13121 which is the default. For example, by default, if the expression of a
13122 case statement is invalid, it will raise Constraint_Error rather than
13123 causing a wild jump, and if an array index on the left-hand side of an
13124 assignment is invalid, it will raise Constraint_Error rather than
13125 overwriting an arbitrary memory location.
13126
13127 The @code{-gnatVa} may be used to enable additional validity checks,
13128 which are not required by the RM. These checks are often very
13129 expensive (which is why the RM does not require them). These checks
13130 are useful in tracking down uninitialized variables, but they are
13131 not usually recommended for production builds, and in particular
13132 we do not recommend using these extra validity checking options in
13133 combination with optimization, since this can confuse the optimizer.
13134 If performance is a consideration, leading to the need to optimize,
13135 then the validity checking options should not be used.
13136
13137 The other @code{-gnatV@emph{x}} switches below allow finer-grained
13138 control; you can enable whichever validity checks you desire. However,
13139 for most debugging purposes, @code{-gnatVa} is sufficient, and the
13140 default @code{-gnatVd} (i.e. standard Ada behavior) is usually
13141 sufficient for non-debugging use.
13142
13143 The @code{-gnatB} switch tells the compiler to assume that all
13144 values are valid (that is, within their declared subtype range)
13145 except in the context of a use of the Valid attribute. This means
13146 the compiler can generate more efficient code, since the range
13147 of values is better known at compile time. However, an uninitialized
13148 variable can cause wild jumps and memory corruption in this mode.
13149
13150 The @code{-gnatV@emph{x}} switch allows control over the validity
13151 checking mode as described below.
13152 The @code{x} argument is a string of letters that
13153 indicate validity checks that are performed or not performed in addition
13154 to the default checks required by Ada as described above.
13155
13156 @geindex -gnatVa (gcc)
13157
13158
13159 @table @asis
13160
13161 @item @code{-gnatVa}
13162
13163 @emph{All validity checks.}
13164
13165 All validity checks are turned on.
13166 That is, @code{-gnatVa} is
13167 equivalent to @code{gnatVcdfimorst}.
13168 @end table
13169
13170 @geindex -gnatVc (gcc)
13171
13172
13173 @table @asis
13174
13175 @item @code{-gnatVc}
13176
13177 @emph{Validity checks for copies.}
13178
13179 The right hand side of assignments, and the initializing values of
13180 object declarations are validity checked.
13181 @end table
13182
13183 @geindex -gnatVd (gcc)
13184
13185
13186 @table @asis
13187
13188 @item @code{-gnatVd}
13189
13190 @emph{Default (RM) validity checks.}
13191
13192 Some validity checks are done by default following normal Ada semantics
13193 (RM 13.9.1 (9-11)).
13194 A check is done in case statements that the expression is within the range
13195 of the subtype. If it is not, Constraint_Error is raised.
13196 For assignments to array components, a check is done that the expression used
13197 as index is within the range. If it is not, Constraint_Error is raised.
13198 Both these validity checks may be turned off using switch @code{-gnatVD}.
13199 They are turned on by default. If @code{-gnatVD} is specified, a subsequent
13200 switch @code{-gnatVd} will leave the checks turned on.
13201 Switch @code{-gnatVD} should be used only if you are sure that all such
13202 expressions have valid values. If you use this switch and invalid values
13203 are present, then the program is erroneous, and wild jumps or memory
13204 overwriting may occur.
13205 @end table
13206
13207 @geindex -gnatVe (gcc)
13208
13209
13210 @table @asis
13211
13212 @item @code{-gnatVe}
13213
13214 @emph{Validity checks for elementary components.}
13215
13216 In the absence of this switch, assignments to record or array components are
13217 not validity checked, even if validity checks for assignments generally
13218 (@code{-gnatVc}) are turned on. In Ada, assignment of composite values do not
13219 require valid data, but assignment of individual components does. So for
13220 example, there is a difference between copying the elements of an array with a
13221 slice assignment, compared to assigning element by element in a loop. This
13222 switch allows you to turn off validity checking for components, even when they
13223 are assigned component by component.
13224 @end table
13225
13226 @geindex -gnatVf (gcc)
13227
13228
13229 @table @asis
13230
13231 @item @code{-gnatVf}
13232
13233 @emph{Validity checks for floating-point values.}
13234
13235 In the absence of this switch, validity checking occurs only for discrete
13236 values. If @code{-gnatVf} is specified, then validity checking also applies
13237 for floating-point values, and NaNs and infinities are considered invalid,
13238 as well as out of range values for constrained types. Note that this means
13239 that standard IEEE infinity mode is not allowed. The exact contexts
13240 in which floating-point values are checked depends on the setting of other
13241 options. For example, @code{-gnatVif} or @code{-gnatVfi}
13242 (the order does not matter) specifies that floating-point parameters of mode
13243 @code{in} should be validity checked.
13244 @end table
13245
13246 @geindex -gnatVi (gcc)
13247
13248
13249 @table @asis
13250
13251 @item @code{-gnatVi}
13252
13253 @emph{Validity checks for `@w{`}in`@w{`} mode parameters.}
13254
13255 Arguments for parameters of mode @code{in} are validity checked in function
13256 and procedure calls at the point of call.
13257 @end table
13258
13259 @geindex -gnatVm (gcc)
13260
13261
13262 @table @asis
13263
13264 @item @code{-gnatVm}
13265
13266 @emph{Validity checks for `@w{`}in out`@w{`} mode parameters.}
13267
13268 Arguments for parameters of mode @code{in out} are validity checked in
13269 procedure calls at the point of call. The @code{'m'} here stands for
13270 modify, since this concerns parameters that can be modified by the call.
13271 Note that there is no specific option to test @code{out} parameters,
13272 but any reference within the subprogram will be tested in the usual
13273 manner, and if an invalid value is copied back, any reference to it
13274 will be subject to validity checking.
13275 @end table
13276
13277 @geindex -gnatVn (gcc)
13278
13279
13280 @table @asis
13281
13282 @item @code{-gnatVn}
13283
13284 @emph{No validity checks.}
13285
13286 This switch turns off all validity checking, including the default checking
13287 for case statements and left hand side subscripts. Note that the use of
13288 the switch @code{-gnatp} suppresses all run-time checks, including
13289 validity checks, and thus implies @code{-gnatVn}. When this switch
13290 is used, it cancels any other @code{-gnatV} previously issued.
13291 @end table
13292
13293 @geindex -gnatVo (gcc)
13294
13295
13296 @table @asis
13297
13298 @item @code{-gnatVo}
13299
13300 @emph{Validity checks for operator and attribute operands.}
13301
13302 Arguments for predefined operators and attributes are validity checked.
13303 This includes all operators in package @code{Standard},
13304 the shift operators defined as intrinsic in package @code{Interfaces}
13305 and operands for attributes such as @code{Pos}. Checks are also made
13306 on individual component values for composite comparisons, and on the
13307 expressions in type conversions and qualified expressions. Checks are
13308 also made on explicit ranges using @code{..} (e.g., slices, loops etc).
13309 @end table
13310
13311 @geindex -gnatVp (gcc)
13312
13313
13314 @table @asis
13315
13316 @item @code{-gnatVp}
13317
13318 @emph{Validity checks for parameters.}
13319
13320 This controls the treatment of parameters within a subprogram (as opposed
13321 to @code{-gnatVi} and @code{-gnatVm} which control validity testing
13322 of parameters on a call. If either of these call options is used, then
13323 normally an assumption is made within a subprogram that the input arguments
13324 have been validity checking at the point of call, and do not need checking
13325 again within a subprogram). If @code{-gnatVp} is set, then this assumption
13326 is not made, and parameters are not assumed to be valid, so their validity
13327 will be checked (or rechecked) within the subprogram.
13328 @end table
13329
13330 @geindex -gnatVr (gcc)
13331
13332
13333 @table @asis
13334
13335 @item @code{-gnatVr}
13336
13337 @emph{Validity checks for function returns.}
13338
13339 The expression in @code{return} statements in functions is validity
13340 checked.
13341 @end table
13342
13343 @geindex -gnatVs (gcc)
13344
13345
13346 @table @asis
13347
13348 @item @code{-gnatVs}
13349
13350 @emph{Validity checks for subscripts.}
13351
13352 All subscripts expressions are checked for validity, whether they appear
13353 on the right side or left side (in default mode only left side subscripts
13354 are validity checked).
13355 @end table
13356
13357 @geindex -gnatVt (gcc)
13358
13359
13360 @table @asis
13361
13362 @item @code{-gnatVt}
13363
13364 @emph{Validity checks for tests.}
13365
13366 Expressions used as conditions in @code{if}, @code{while} or @code{exit}
13367 statements are checked, as well as guard expressions in entry calls.
13368 @end table
13369
13370 The @code{-gnatV} switch may be followed by a string of letters
13371 to turn on a series of validity checking options.
13372 For example, @code{-gnatVcr}
13373 specifies that in addition to the default validity checking, copies and
13374 function return expressions are to be validity checked.
13375 In order to make it easier to specify the desired combination of effects,
13376 the upper case letters @code{CDFIMORST} may
13377 be used to turn off the corresponding lower case option.
13378 Thus @code{-gnatVaM} turns on all validity checking options except for
13379 checking of @code{in out} parameters.
13380
13381 The specification of additional validity checking generates extra code (and
13382 in the case of @code{-gnatVa} the code expansion can be substantial).
13383 However, these additional checks can be very useful in detecting
13384 uninitialized variables, incorrect use of unchecked conversion, and other
13385 errors leading to invalid values. The use of pragma @code{Initialize_Scalars}
13386 is useful in conjunction with the extra validity checking, since this
13387 ensures that wherever possible uninitialized variables have invalid values.
13388
13389 See also the pragma @code{Validity_Checks} which allows modification of
13390 the validity checking mode at the program source level, and also allows for
13391 temporary disabling of validity checks.
13392
13393 @node Style Checking,Run-Time Checks,Validity Checking,Compiler Switches
13394 @anchor{gnat_ugn/building_executable_programs_with_gnat id18}@anchor{103}@anchor{gnat_ugn/building_executable_programs_with_gnat style-checking}@anchor{fb}
13395 @subsection Style Checking
13396
13397
13398 @geindex Style checking
13399
13400 @geindex -gnaty (gcc)
13401
13402 The @code{-gnatyx} switch causes the compiler to
13403 enforce specified style rules. A limited set of style rules has been used
13404 in writing the GNAT sources themselves. This switch allows user programs
13405 to activate all or some of these checks. If the source program fails a
13406 specified style check, an appropriate message is given, preceded by
13407 the character sequence '(style)'. This message does not prevent
13408 successful compilation (unless the @code{-gnatwe} switch is used).
13409
13410 Note that this is by no means intended to be a general facility for
13411 checking arbitrary coding standards. It is simply an embedding of the
13412 style rules we have chosen for the GNAT sources. If you are starting
13413 a project which does not have established style standards, you may
13414 find it useful to adopt the entire set of GNAT coding standards, or
13415 some subset of them.
13416
13417
13418 The string @code{x} is a sequence of letters or digits
13419 indicating the particular style
13420 checks to be performed. The following checks are defined:
13421
13422 @geindex -gnaty[0-9] (gcc)
13423
13424
13425 @table @asis
13426
13427 @item @code{-gnaty0}
13428
13429 @emph{Specify indentation level.}
13430
13431 If a digit from 1-9 appears
13432 in the string after @code{-gnaty}
13433 then proper indentation is checked, with the digit indicating the
13434 indentation level required. A value of zero turns off this style check.
13435 The general style of required indentation is as specified by
13436 the examples in the Ada Reference Manual. Full line comments must be
13437 aligned with the @code{--} starting on a column that is a multiple of
13438 the alignment level, or they may be aligned the same way as the following
13439 non-blank line (this is useful when full line comments appear in the middle
13440 of a statement, or they may be aligned with the source line on the previous
13441 non-blank line.
13442 @end table
13443
13444 @geindex -gnatya (gcc)
13445
13446
13447 @table @asis
13448
13449 @item @code{-gnatya}
13450
13451 @emph{Check attribute casing.}
13452
13453 Attribute names, including the case of keywords such as @code{digits}
13454 used as attributes names, must be written in mixed case, that is, the
13455 initial letter and any letter following an underscore must be uppercase.
13456 All other letters must be lowercase.
13457 @end table
13458
13459 @geindex -gnatyA (gcc)
13460
13461
13462 @table @asis
13463
13464 @item @code{-gnatyA}
13465
13466 @emph{Use of array index numbers in array attributes.}
13467
13468 When using the array attributes First, Last, Range,
13469 or Length, the index number must be omitted for one-dimensional arrays
13470 and is required for multi-dimensional arrays.
13471 @end table
13472
13473 @geindex -gnatyb (gcc)
13474
13475
13476 @table @asis
13477
13478 @item @code{-gnatyb}
13479
13480 @emph{Blanks not allowed at statement end.}
13481
13482 Trailing blanks are not allowed at the end of statements. The purpose of this
13483 rule, together with h (no horizontal tabs), is to enforce a canonical format
13484 for the use of blanks to separate source tokens.
13485 @end table
13486
13487 @geindex -gnatyB (gcc)
13488
13489
13490 @table @asis
13491
13492 @item @code{-gnatyB}
13493
13494 @emph{Check Boolean operators.}
13495
13496 The use of AND/OR operators is not permitted except in the cases of modular
13497 operands, array operands, and simple stand-alone boolean variables or
13498 boolean constants. In all other cases @code{and then}/@cite{or else} are
13499 required.
13500 @end table
13501
13502 @geindex -gnatyc (gcc)
13503
13504
13505 @table @asis
13506
13507 @item @code{-gnatyc}
13508
13509 @emph{Check comments, double space.}
13510
13511 Comments must meet the following set of rules:
13512
13513
13514 @itemize *
13515
13516 @item
13517 The @code{--} that starts the column must either start in column one,
13518 or else at least one blank must precede this sequence.
13519
13520 @item
13521 Comments that follow other tokens on a line must have at least one blank
13522 following the @code{--} at the start of the comment.
13523
13524 @item
13525 Full line comments must have at least two blanks following the
13526 @code{--} that starts the comment, with the following exceptions.
13527
13528 @item
13529 A line consisting only of the @code{--} characters, possibly preceded
13530 by blanks is permitted.
13531
13532 @item
13533 A comment starting with @code{--x} where @code{x} is a special character
13534 is permitted.
13535 This allows proper processing of the output from specialized tools
13536 such as @code{gnatprep} (where @code{--!} is used) and in earlier versions of the SPARK
13537 annotation
13538 language (where @code{--#} is used). For the purposes of this rule, a
13539 special character is defined as being in one of the ASCII ranges
13540 @code{16#21#...16#2F#} or @code{16#3A#...16#3F#}.
13541 Note that this usage is not permitted
13542 in GNAT implementation units (i.e., when @code{-gnatg} is used).
13543
13544 @item
13545 A line consisting entirely of minus signs, possibly preceded by blanks, is
13546 permitted. This allows the construction of box comments where lines of minus
13547 signs are used to form the top and bottom of the box.
13548
13549 @item
13550 A comment that starts and ends with @code{--} is permitted as long as at
13551 least one blank follows the initial @code{--}. Together with the preceding
13552 rule, this allows the construction of box comments, as shown in the following
13553 example:
13554
13555 @example
13556 ---------------------------
13557 -- This is a box comment --
13558 -- with two text lines. --
13559 ---------------------------
13560 @end example
13561 @end itemize
13562 @end table
13563
13564 @geindex -gnatyC (gcc)
13565
13566
13567 @table @asis
13568
13569 @item @code{-gnatyC}
13570
13571 @emph{Check comments, single space.}
13572
13573 This is identical to @code{c} except that only one space
13574 is required following the @code{--} of a comment instead of two.
13575 @end table
13576
13577 @geindex -gnatyd (gcc)
13578
13579
13580 @table @asis
13581
13582 @item @code{-gnatyd}
13583
13584 @emph{Check no DOS line terminators present.}
13585
13586 All lines must be terminated by a single ASCII.LF
13587 character (in particular the DOS line terminator sequence CR/LF is not
13588 allowed).
13589 @end table
13590
13591 @geindex -gnatyD (gcc)
13592
13593
13594 @table @asis
13595
13596 @item @code{-gnatyD}
13597
13598 @emph{Check declared identifiers in mixed case.}
13599
13600 Declared identifiers must be in mixed case, as in
13601 This_Is_An_Identifier. Use -gnatyr in addition to ensure
13602 that references match declarations.
13603 @end table
13604
13605 @geindex -gnatye (gcc)
13606
13607
13608 @table @asis
13609
13610 @item @code{-gnatye}
13611
13612 @emph{Check end/exit labels.}
13613
13614 Optional labels on @code{end} statements ending subprograms and on
13615 @code{exit} statements exiting named loops, are required to be present.
13616 @end table
13617
13618 @geindex -gnatyf (gcc)
13619
13620
13621 @table @asis
13622
13623 @item @code{-gnatyf}
13624
13625 @emph{No form feeds or vertical tabs.}
13626
13627 Neither form feeds nor vertical tab characters are permitted
13628 in the source text.
13629 @end table
13630
13631 @geindex -gnatyg (gcc)
13632
13633
13634 @table @asis
13635
13636 @item @code{-gnatyg}
13637
13638 @emph{GNAT style mode.}
13639
13640 The set of style check switches is set to match that used by the GNAT sources.
13641 This may be useful when developing code that is eventually intended to be
13642 incorporated into GNAT. Currently this is equivalent to @code{-gnatyydISux})
13643 but additional style switches may be added to this set in the future without
13644 advance notice.
13645 @end table
13646
13647 @geindex -gnatyh (gcc)
13648
13649
13650 @table @asis
13651
13652 @item @code{-gnatyh}
13653
13654 @emph{No horizontal tabs.}
13655
13656 Horizontal tab characters are not permitted in the source text.
13657 Together with the b (no blanks at end of line) check, this
13658 enforces a canonical form for the use of blanks to separate
13659 source tokens.
13660 @end table
13661
13662 @geindex -gnatyi (gcc)
13663
13664
13665 @table @asis
13666
13667 @item @code{-gnatyi}
13668
13669 @emph{Check if-then layout.}
13670
13671 The keyword @code{then} must appear either on the same
13672 line as corresponding @code{if}, or on a line on its own, lined
13673 up under the @code{if}.
13674 @end table
13675
13676 @geindex -gnatyI (gcc)
13677
13678
13679 @table @asis
13680
13681 @item @code{-gnatyI}
13682
13683 @emph{check mode IN keywords.}
13684
13685 Mode @code{in} (the default mode) is not
13686 allowed to be given explicitly. @code{in out} is fine,
13687 but not @code{in} on its own.
13688 @end table
13689
13690 @geindex -gnatyk (gcc)
13691
13692
13693 @table @asis
13694
13695 @item @code{-gnatyk}
13696
13697 @emph{Check keyword casing.}
13698
13699 All keywords must be in lower case (with the exception of keywords
13700 such as @code{digits} used as attribute names to which this check
13701 does not apply).
13702 @end table
13703
13704 @geindex -gnatyl (gcc)
13705
13706
13707 @table @asis
13708
13709 @item @code{-gnatyl}
13710
13711 @emph{Check layout.}
13712
13713 Layout of statement and declaration constructs must follow the
13714 recommendations in the Ada Reference Manual, as indicated by the
13715 form of the syntax rules. For example an @code{else} keyword must
13716 be lined up with the corresponding @code{if} keyword.
13717
13718 There are two respects in which the style rule enforced by this check
13719 option are more liberal than those in the Ada Reference Manual. First
13720 in the case of record declarations, it is permissible to put the
13721 @code{record} keyword on the same line as the @code{type} keyword, and
13722 then the @code{end} in @code{end record} must line up under @code{type}.
13723 This is also permitted when the type declaration is split on two lines.
13724 For example, any of the following three layouts is acceptable:
13725
13726 @example
13727 type q is record
13728 a : integer;
13729 b : integer;
13730 end record;
13731
13732 type q is
13733 record
13734 a : integer;
13735 b : integer;
13736 end record;
13737
13738 type q is
13739 record
13740 a : integer;
13741 b : integer;
13742 end record;
13743 @end example
13744
13745 Second, in the case of a block statement, a permitted alternative
13746 is to put the block label on the same line as the @code{declare} or
13747 @code{begin} keyword, and then line the @code{end} keyword up under
13748 the block label. For example both the following are permitted:
13749
13750 @example
13751 Block : declare
13752 A : Integer := 3;
13753 begin
13754 Proc (A, A);
13755 end Block;
13756
13757 Block :
13758 declare
13759 A : Integer := 3;
13760 begin
13761 Proc (A, A);
13762 end Block;
13763 @end example
13764
13765 The same alternative format is allowed for loops. For example, both of
13766 the following are permitted:
13767
13768 @example
13769 Clear : while J < 10 loop
13770 A (J) := 0;
13771 end loop Clear;
13772
13773 Clear :
13774 while J < 10 loop
13775 A (J) := 0;
13776 end loop Clear;
13777 @end example
13778 @end table
13779
13780 @geindex -gnatyLnnn (gcc)
13781
13782
13783 @table @asis
13784
13785 @item @code{-gnatyL}
13786
13787 @emph{Set maximum nesting level.}
13788
13789 The maximum level of nesting of constructs (including subprograms, loops,
13790 blocks, packages, and conditionals) may not exceed the given value
13791 @emph{nnn}. A value of zero disconnects this style check.
13792 @end table
13793
13794 @geindex -gnatym (gcc)
13795
13796
13797 @table @asis
13798
13799 @item @code{-gnatym}
13800
13801 @emph{Check maximum line length.}
13802
13803 The length of source lines must not exceed 79 characters, including
13804 any trailing blanks. The value of 79 allows convenient display on an
13805 80 character wide device or window, allowing for possible special
13806 treatment of 80 character lines. Note that this count is of
13807 characters in the source text. This means that a tab character counts
13808 as one character in this count and a wide character sequence counts as
13809 a single character (however many bytes are needed in the encoding).
13810 @end table
13811
13812 @geindex -gnatyMnnn (gcc)
13813
13814
13815 @table @asis
13816
13817 @item @code{-gnatyM}
13818
13819 @emph{Set maximum line length.}
13820
13821 The length of lines must not exceed the
13822 given value @emph{nnn}. The maximum value that can be specified is 32767.
13823 If neither style option for setting the line length is used, then the
13824 default is 255. This also controls the maximum length of lexical elements,
13825 where the only restriction is that they must fit on a single line.
13826 @end table
13827
13828 @geindex -gnatyn (gcc)
13829
13830
13831 @table @asis
13832
13833 @item @code{-gnatyn}
13834
13835 @emph{Check casing of entities in Standard.}
13836
13837 Any identifier from Standard must be cased
13838 to match the presentation in the Ada Reference Manual (for example,
13839 @code{Integer} and @code{ASCII.NUL}).
13840 @end table
13841
13842 @geindex -gnatyN (gcc)
13843
13844
13845 @table @asis
13846
13847 @item @code{-gnatyN}
13848
13849 @emph{Turn off all style checks.}
13850
13851 All style check options are turned off.
13852 @end table
13853
13854 @geindex -gnatyo (gcc)
13855
13856
13857 @table @asis
13858
13859 @item @code{-gnatyo}
13860
13861 @emph{Check order of subprogram bodies.}
13862
13863 All subprogram bodies in a given scope
13864 (e.g., a package body) must be in alphabetical order. The ordering
13865 rule uses normal Ada rules for comparing strings, ignoring casing
13866 of letters, except that if there is a trailing numeric suffix, then
13867 the value of this suffix is used in the ordering (e.g., Junk2 comes
13868 before Junk10).
13869 @end table
13870
13871 @geindex -gnatyO (gcc)
13872
13873
13874 @table @asis
13875
13876 @item @code{-gnatyO}
13877
13878 @emph{Check that overriding subprograms are explicitly marked as such.}
13879
13880 This applies to all subprograms of a derived type that override a primitive
13881 operation of the type, for both tagged and untagged types. In particular,
13882 the declaration of a primitive operation of a type extension that overrides
13883 an inherited operation must carry an overriding indicator. Another case is
13884 the declaration of a function that overrides a predefined operator (such
13885 as an equality operator).
13886 @end table
13887
13888 @geindex -gnatyp (gcc)
13889
13890
13891 @table @asis
13892
13893 @item @code{-gnatyp}
13894
13895 @emph{Check pragma casing.}
13896
13897 Pragma names must be written in mixed case, that is, the
13898 initial letter and any letter following an underscore must be uppercase.
13899 All other letters must be lowercase. An exception is that SPARK_Mode is
13900 allowed as an alternative for Spark_Mode.
13901 @end table
13902
13903 @geindex -gnatyr (gcc)
13904
13905
13906 @table @asis
13907
13908 @item @code{-gnatyr}
13909
13910 @emph{Check references.}
13911
13912 All identifier references must be cased in the same way as the
13913 corresponding declaration. No specific casing style is imposed on
13914 identifiers. The only requirement is for consistency of references
13915 with declarations.
13916 @end table
13917
13918 @geindex -gnatys (gcc)
13919
13920
13921 @table @asis
13922
13923 @item @code{-gnatys}
13924
13925 @emph{Check separate specs.}
13926
13927 Separate declarations ('specs') are required for subprograms (a
13928 body is not allowed to serve as its own declaration). The only
13929 exception is that parameterless library level procedures are
13930 not required to have a separate declaration. This exception covers
13931 the most frequent form of main program procedures.
13932 @end table
13933
13934 @geindex -gnatyS (gcc)
13935
13936
13937 @table @asis
13938
13939 @item @code{-gnatyS}
13940
13941 @emph{Check no statements after then/else.}
13942
13943 No statements are allowed
13944 on the same line as a @code{then} or @code{else} keyword following the
13945 keyword in an @code{if} statement. @code{or else} and @code{and then} are not
13946 affected, and a special exception allows a pragma to appear after @code{else}.
13947 @end table
13948
13949 @geindex -gnatyt (gcc)
13950
13951
13952 @table @asis
13953
13954 @item @code{-gnatyt}
13955
13956 @emph{Check token spacing.}
13957
13958 The following token spacing rules are enforced:
13959
13960
13961 @itemize *
13962
13963 @item
13964 The keywords @code{abs} and @code{not} must be followed by a space.
13965
13966 @item
13967 The token @code{=>} must be surrounded by spaces.
13968
13969 @item
13970 The token @code{<>} must be preceded by a space or a left parenthesis.
13971
13972 @item
13973 Binary operators other than @code{**} must be surrounded by spaces.
13974 There is no restriction on the layout of the @code{**} binary operator.
13975
13976 @item
13977 Colon must be surrounded by spaces.
13978
13979 @item
13980 Colon-equal (assignment, initialization) must be surrounded by spaces.
13981
13982 @item
13983 Comma must be the first non-blank character on the line, or be
13984 immediately preceded by a non-blank character, and must be followed
13985 by a space.
13986
13987 @item
13988 If the token preceding a left parenthesis ends with a letter or digit, then
13989 a space must separate the two tokens.
13990
13991 @item
13992 If the token following a right parenthesis starts with a letter or digit, then
13993 a space must separate the two tokens.
13994
13995 @item
13996 A right parenthesis must either be the first non-blank character on
13997 a line, or it must be preceded by a non-blank character.
13998
13999 @item
14000 A semicolon must not be preceded by a space, and must not be followed by
14001 a non-blank character.
14002
14003 @item
14004 A unary plus or minus may not be followed by a space.
14005
14006 @item
14007 A vertical bar must be surrounded by spaces.
14008 @end itemize
14009
14010 Exactly one blank (and no other white space) must appear between
14011 a @code{not} token and a following @code{in} token.
14012 @end table
14013
14014 @geindex -gnatyu (gcc)
14015
14016
14017 @table @asis
14018
14019 @item @code{-gnatyu}
14020
14021 @emph{Check unnecessary blank lines.}
14022
14023 Unnecessary blank lines are not allowed. A blank line is considered
14024 unnecessary if it appears at the end of the file, or if more than
14025 one blank line occurs in sequence.
14026 @end table
14027
14028 @geindex -gnatyx (gcc)
14029
14030
14031 @table @asis
14032
14033 @item @code{-gnatyx}
14034
14035 @emph{Check extra parentheses.}
14036
14037 Unnecessary extra level of parentheses (C-style) are not allowed
14038 around conditions in @code{if} statements, @code{while} statements and
14039 @code{exit} statements.
14040 @end table
14041
14042 @geindex -gnatyy (gcc)
14043
14044
14045 @table @asis
14046
14047 @item @code{-gnatyy}
14048
14049 @emph{Set all standard style check options.}
14050
14051 This is equivalent to @code{gnaty3aAbcefhiklmnprst}, that is all checking
14052 options enabled with the exception of @code{-gnatyB}, @code{-gnatyd},
14053 @code{-gnatyI}, @code{-gnatyLnnn}, @code{-gnatyo}, @code{-gnatyO},
14054 @code{-gnatyS}, @code{-gnatyu}, and @code{-gnatyx}.
14055 @end table
14056
14057 @geindex -gnaty- (gcc)
14058
14059
14060 @table @asis
14061
14062 @item @code{-gnaty-}
14063
14064 @emph{Remove style check options.}
14065
14066 This causes any subsequent options in the string to act as canceling the
14067 corresponding style check option. To cancel maximum nesting level control,
14068 use the @code{L} parameter without any integer value after that, because any
14069 digit following @emph{-} in the parameter string of the @code{-gnaty}
14070 option will be treated as canceling the indentation check. The same is true
14071 for the @code{M} parameter. @code{y} and @code{N} parameters are not
14072 allowed after @emph{-}.
14073 @end table
14074
14075 @geindex -gnaty+ (gcc)
14076
14077
14078 @table @asis
14079
14080 @item @code{-gnaty+}
14081
14082 @emph{Enable style check options.}
14083
14084 This causes any subsequent options in the string to enable the corresponding
14085 style check option. That is, it cancels the effect of a previous -,
14086 if any.
14087 @end table
14088
14089 @c end of switch description (leave this comment to ease automatic parsing for
14090
14091 @c GNAT Studio
14092
14093 In the above rules, appearing in column one is always permitted, that is,
14094 counts as meeting either a requirement for a required preceding space,
14095 or as meeting a requirement for no preceding space.
14096
14097 Appearing at the end of a line is also always permitted, that is, counts
14098 as meeting either a requirement for a following space, or as meeting
14099 a requirement for no following space.
14100
14101 If any of these style rules is violated, a message is generated giving
14102 details on the violation. The initial characters of such messages are
14103 always '@cite{(style)}'. Note that these messages are treated as warning
14104 messages, so they normally do not prevent the generation of an object
14105 file. The @code{-gnatwe} switch can be used to treat warning messages,
14106 including style messages, as fatal errors.
14107
14108 The switch @code{-gnaty} on its own (that is not
14109 followed by any letters or digits) is equivalent
14110 to the use of @code{-gnatyy} as described above, that is all
14111 built-in standard style check options are enabled.
14112
14113 The switch @code{-gnatyN} clears any previously set style checks.
14114
14115 @node Run-Time Checks,Using gcc for Syntax Checking,Style Checking,Compiler Switches
14116 @anchor{gnat_ugn/building_executable_programs_with_gnat run-time-checks}@anchor{f9}@anchor{gnat_ugn/building_executable_programs_with_gnat id19}@anchor{104}
14117 @subsection Run-Time Checks
14118
14119
14120 @geindex Division by zero
14121
14122 @geindex Access before elaboration
14123
14124 @geindex Checks
14125 @geindex division by zero
14126
14127 @geindex Checks
14128 @geindex access before elaboration
14129
14130 @geindex Checks
14131 @geindex stack overflow checking
14132
14133 By default, the following checks are suppressed: stack overflow
14134 checks, and checks for access before elaboration on subprogram
14135 calls. All other checks, including overflow checks, range checks and
14136 array bounds checks, are turned on by default. The following @code{gcc}
14137 switches refine this default behavior.
14138
14139 @geindex -gnatp (gcc)
14140
14141
14142 @table @asis
14143
14144 @item @code{-gnatp}
14145
14146 @geindex Suppressing checks
14147
14148 @geindex Checks
14149 @geindex suppressing
14150
14151 This switch causes the unit to be compiled
14152 as though @code{pragma Suppress (All_checks)}
14153 had been present in the source. Validity checks are also eliminated (in
14154 other words @code{-gnatp} also implies @code{-gnatVn}.
14155 Use this switch to improve the performance
14156 of the code at the expense of safety in the presence of invalid data or
14157 program bugs.
14158
14159 Note that when checks are suppressed, the compiler is allowed, but not
14160 required, to omit the checking code. If the run-time cost of the
14161 checking code is zero or near-zero, the compiler will generate it even
14162 if checks are suppressed. In particular, if the compiler can prove
14163 that a certain check will necessarily fail, it will generate code to
14164 do an unconditional 'raise', even if checks are suppressed. The
14165 compiler warns in this case. Another case in which checks may not be
14166 eliminated is when they are embedded in certain run-time routines such
14167 as math library routines.
14168
14169 Of course, run-time checks are omitted whenever the compiler can prove
14170 that they will not fail, whether or not checks are suppressed.
14171
14172 Note that if you suppress a check that would have failed, program
14173 execution is erroneous, which means the behavior is totally
14174 unpredictable. The program might crash, or print wrong answers, or
14175 do anything else. It might even do exactly what you wanted it to do
14176 (and then it might start failing mysteriously next week or next
14177 year). The compiler will generate code based on the assumption that
14178 the condition being checked is true, which can result in erroneous
14179 execution if that assumption is wrong.
14180
14181 The checks subject to suppression include all the checks defined by the Ada
14182 standard, the additional implementation defined checks @code{Alignment_Check},
14183 @code{Duplicated_Tag_Check}, @code{Predicate_Check}, @code{Container_Checks}, @code{Tampering_Check},
14184 and @code{Validity_Check}, as well as any checks introduced using @code{pragma Check_Name}.
14185 Note that @code{Atomic_Synchronization} is not automatically suppressed by use of this option.
14186
14187 If the code depends on certain checks being active, you can use
14188 pragma @code{Unsuppress} either as a configuration pragma or as
14189 a local pragma to make sure that a specified check is performed
14190 even if @code{gnatp} is specified.
14191
14192 The @code{-gnatp} switch has no effect if a subsequent
14193 @code{-gnat-p} switch appears.
14194 @end table
14195
14196 @geindex -gnat-p (gcc)
14197
14198 @geindex Suppressing checks
14199
14200 @geindex Checks
14201 @geindex suppressing
14202
14203 @geindex Suppress
14204
14205
14206 @table @asis
14207
14208 @item @code{-gnat-p}
14209
14210 This switch cancels the effect of a previous @code{gnatp} switch.
14211 @end table
14212
14213 @geindex -gnato?? (gcc)
14214
14215 @geindex Overflow checks
14216
14217 @geindex Overflow mode
14218
14219 @geindex Check
14220 @geindex overflow
14221
14222
14223 @table @asis
14224
14225 @item @code{-gnato??}
14226
14227 This switch controls the mode used for computing intermediate
14228 arithmetic integer operations, and also enables overflow checking.
14229 For a full description of overflow mode and checking control, see
14230 the 'Overflow Check Handling in GNAT' appendix in this
14231 User's Guide.
14232
14233 Overflow checks are always enabled by this switch. The argument
14234 controls the mode, using the codes
14235
14236
14237 @table @asis
14238
14239 @item @emph{1 = STRICT}
14240
14241 In STRICT mode, intermediate operations are always done using the
14242 base type, and overflow checking ensures that the result is within
14243 the base type range.
14244
14245 @item @emph{2 = MINIMIZED}
14246
14247 In MINIMIZED mode, overflows in intermediate operations are avoided
14248 where possible by using a larger integer type for the computation
14249 (typically @code{Long_Long_Integer}). Overflow checking ensures that
14250 the result fits in this larger integer type.
14251
14252 @item @emph{3 = ELIMINATED}
14253
14254 In ELIMINATED mode, overflows in intermediate operations are avoided
14255 by using multi-precision arithmetic. In this case, overflow checking
14256 has no effect on intermediate operations (since overflow is impossible).
14257 @end table
14258
14259 If two digits are present after @code{-gnato} then the first digit
14260 sets the mode for expressions outside assertions, and the second digit
14261 sets the mode for expressions within assertions. Here assertions is used
14262 in the technical sense (which includes for example precondition and
14263 postcondition expressions).
14264
14265 If one digit is present, the corresponding mode is applicable to both
14266 expressions within and outside assertion expressions.
14267
14268 If no digits are present, the default is to enable overflow checks
14269 and set STRICT mode for both kinds of expressions. This is compatible
14270 with the use of @code{-gnato} in previous versions of GNAT.
14271
14272 @geindex Machine_Overflows
14273
14274 Note that the @code{-gnato??} switch does not affect the code generated
14275 for any floating-point operations; it applies only to integer semantics.
14276 For floating-point, GNAT has the @code{Machine_Overflows}
14277 attribute set to @code{False} and the normal mode of operation is to
14278 generate IEEE NaN and infinite values on overflow or invalid operations
14279 (such as dividing 0.0 by 0.0).
14280
14281 The reason that we distinguish overflow checking from other kinds of
14282 range constraint checking is that a failure of an overflow check, unlike
14283 for example the failure of a range check, can result in an incorrect
14284 value, but cannot cause random memory destruction (like an out of range
14285 subscript), or a wild jump (from an out of range case value). Overflow
14286 checking is also quite expensive in time and space, since in general it
14287 requires the use of double length arithmetic.
14288
14289 Note again that the default is @code{-gnato11} (equivalent to @code{-gnato1}),
14290 so overflow checking is performed in STRICT mode by default.
14291 @end table
14292
14293 @geindex -gnatE (gcc)
14294
14295 @geindex Elaboration checks
14296
14297 @geindex Check
14298 @geindex elaboration
14299
14300
14301 @table @asis
14302
14303 @item @code{-gnatE}
14304
14305 Enables dynamic checks for access-before-elaboration
14306 on subprogram calls and generic instantiations.
14307 Note that @code{-gnatE} is not necessary for safety, because in the
14308 default mode, GNAT ensures statically that the checks would not fail.
14309 For full details of the effect and use of this switch,
14310 @ref{1c,,Compiling with gcc}.
14311 @end table
14312
14313 @geindex -fstack-check (gcc)
14314
14315 @geindex Stack Overflow Checking
14316
14317 @geindex Checks
14318 @geindex stack overflow checking
14319
14320
14321 @table @asis
14322
14323 @item @code{-fstack-check}
14324
14325 Activates stack overflow checking. For full details of the effect and use of
14326 this switch see @ref{f4,,Stack Overflow Checking}.
14327 @end table
14328
14329 @geindex Unsuppress
14330
14331 The setting of these switches only controls the default setting of the
14332 checks. You may modify them using either @code{Suppress} (to remove
14333 checks) or @code{Unsuppress} (to add back suppressed checks) pragmas in
14334 the program source.
14335
14336 @node Using gcc for Syntax Checking,Using gcc for Semantic Checking,Run-Time Checks,Compiler Switches
14337 @anchor{gnat_ugn/building_executable_programs_with_gnat id20}@anchor{105}@anchor{gnat_ugn/building_executable_programs_with_gnat using-gcc-for-syntax-checking}@anchor{106}
14338 @subsection Using @code{gcc} for Syntax Checking
14339
14340
14341 @geindex -gnats (gcc)
14342
14343
14344 @table @asis
14345
14346 @item @code{-gnats}
14347
14348 The @code{s} stands for 'syntax'.
14349
14350 Run GNAT in syntax checking only mode. For
14351 example, the command
14352
14353 @example
14354 $ gcc -c -gnats x.adb
14355 @end example
14356
14357 compiles file @code{x.adb} in syntax-check-only mode. You can check a
14358 series of files in a single command
14359 , and can use wildcards to specify such a group of files.
14360 Note that you must specify the @code{-c} (compile
14361 only) flag in addition to the @code{-gnats} flag.
14362
14363 You may use other switches in conjunction with @code{-gnats}. In
14364 particular, @code{-gnatl} and @code{-gnatv} are useful to control the
14365 format of any generated error messages.
14366
14367 When the source file is empty or contains only empty lines and/or comments,
14368 the output is a warning:
14369
14370 @example
14371 $ gcc -c -gnats -x ada toto.txt
14372 toto.txt:1:01: warning: empty file, contains no compilation units
14373 $
14374 @end example
14375
14376 Otherwise, the output is simply the error messages, if any. No object file or
14377 ALI file is generated by a syntax-only compilation. Also, no units other
14378 than the one specified are accessed. For example, if a unit @code{X}
14379 @emph{with}s a unit @code{Y}, compiling unit @code{X} in syntax
14380 check only mode does not access the source file containing unit
14381 @code{Y}.
14382
14383 @geindex Multiple units
14384 @geindex syntax checking
14385
14386 Normally, GNAT allows only a single unit in a source file. However, this
14387 restriction does not apply in syntax-check-only mode, and it is possible
14388 to check a file containing multiple compilation units concatenated
14389 together. This is primarily used by the @code{gnatchop} utility
14390 (@ref{36,,Renaming Files with gnatchop}).
14391 @end table
14392
14393 @node Using gcc for Semantic Checking,Compiling Different Versions of Ada,Using gcc for Syntax Checking,Compiler Switches
14394 @anchor{gnat_ugn/building_executable_programs_with_gnat id21}@anchor{107}@anchor{gnat_ugn/building_executable_programs_with_gnat using-gcc-for-semantic-checking}@anchor{108}
14395 @subsection Using @code{gcc} for Semantic Checking
14396
14397
14398 @geindex -gnatc (gcc)
14399
14400
14401 @table @asis
14402
14403 @item @code{-gnatc}
14404
14405 The @code{c} stands for 'check'.
14406 Causes the compiler to operate in semantic check mode,
14407 with full checking for all illegalities specified in the
14408 Ada Reference Manual, but without generation of any object code
14409 (no object file is generated).
14410
14411 Because dependent files must be accessed, you must follow the GNAT
14412 semantic restrictions on file structuring to operate in this mode:
14413
14414
14415 @itemize *
14416
14417 @item
14418 The needed source files must be accessible
14419 (see @ref{89,,Search Paths and the Run-Time Library (RTL)}).
14420
14421 @item
14422 Each file must contain only one compilation unit.
14423
14424 @item
14425 The file name and unit name must match (@ref{52,,File Naming Rules}).
14426 @end itemize
14427
14428 The output consists of error messages as appropriate. No object file is
14429 generated. An @code{ALI} file is generated for use in the context of
14430 cross-reference tools, but this file is marked as not being suitable
14431 for binding (since no object file is generated).
14432 The checking corresponds exactly to the notion of
14433 legality in the Ada Reference Manual.
14434
14435 Any unit can be compiled in semantics-checking-only mode, including
14436 units that would not normally be compiled (subunits,
14437 and specifications where a separate body is present).
14438 @end table
14439
14440 @node Compiling Different Versions of Ada,Character Set Control,Using gcc for Semantic Checking,Compiler Switches
14441 @anchor{gnat_ugn/building_executable_programs_with_gnat compiling-different-versions-of-ada}@anchor{6}@anchor{gnat_ugn/building_executable_programs_with_gnat id22}@anchor{109}
14442 @subsection Compiling Different Versions of Ada
14443
14444
14445 The switches described in this section allow you to explicitly specify
14446 the version of the Ada language that your programs are written in.
14447 The default mode is Ada 2012,
14448 but you can also specify Ada 95, Ada 2005 mode, or
14449 indicate Ada 83 compatibility mode.
14450
14451 @geindex Compatibility with Ada 83
14452
14453 @geindex -gnat83 (gcc)
14454
14455 @geindex ACVC
14456 @geindex Ada 83 tests
14457
14458 @geindex Ada 83 mode
14459
14460
14461 @table @asis
14462
14463 @item @code{-gnat83} (Ada 83 Compatibility Mode)
14464
14465 Although GNAT is primarily an Ada 95 / Ada 2005 compiler, this switch
14466 specifies that the program is to be compiled in Ada 83 mode. With
14467 @code{-gnat83}, GNAT rejects most post-Ada 83 extensions and applies Ada 83
14468 semantics where this can be done easily.
14469 It is not possible to guarantee this switch does a perfect
14470 job; some subtle tests, such as are
14471 found in earlier ACVC tests (and that have been removed from the ACATS suite
14472 for Ada 95), might not compile correctly.
14473 Nevertheless, this switch may be useful in some circumstances, for example
14474 where, due to contractual reasons, existing code needs to be maintained
14475 using only Ada 83 features.
14476
14477 With few exceptions (most notably the need to use @code{<>} on
14478 unconstrained
14479 @geindex Generic formal parameters
14480 generic formal parameters,
14481 the use of the new Ada 95 / Ada 2005
14482 reserved words, and the use of packages
14483 with optional bodies), it is not necessary to specify the
14484 @code{-gnat83} switch when compiling Ada 83 programs, because, with rare
14485 exceptions, Ada 95 and Ada 2005 are upwardly compatible with Ada 83. Thus
14486 a correct Ada 83 program is usually also a correct program
14487 in these later versions of the language standard. For further information
14488 please refer to the @emph{Compatibility and Porting Guide} chapter in the
14489 @cite{GNAT Reference Manual}.
14490 @end table
14491
14492 @geindex -gnat95 (gcc)
14493
14494 @geindex Ada 95 mode
14495
14496
14497 @table @asis
14498
14499 @item @code{-gnat95} (Ada 95 mode)
14500
14501 This switch directs the compiler to implement the Ada 95 version of the
14502 language.
14503 Since Ada 95 is almost completely upwards
14504 compatible with Ada 83, Ada 83 programs may generally be compiled using
14505 this switch (see the description of the @code{-gnat83} switch for further
14506 information about Ada 83 mode).
14507 If an Ada 2005 program is compiled in Ada 95 mode,
14508 uses of the new Ada 2005 features will cause error
14509 messages or warnings.
14510
14511 This switch also can be used to cancel the effect of a previous
14512 @code{-gnat83}, @code{-gnat05/2005}, or @code{-gnat12/2012}
14513 switch earlier in the command line.
14514 @end table
14515
14516 @geindex -gnat05 (gcc)
14517
14518 @geindex -gnat2005 (gcc)
14519
14520 @geindex Ada 2005 mode
14521
14522
14523 @table @asis
14524
14525 @item @code{-gnat05} or @code{-gnat2005} (Ada 2005 mode)
14526
14527 This switch directs the compiler to implement the Ada 2005 version of the
14528 language, as documented in the official Ada standards document.
14529 Since Ada 2005 is almost completely upwards
14530 compatible with Ada 95 (and thus also with Ada 83), Ada 83 and Ada 95 programs
14531 may generally be compiled using this switch (see the description of the
14532 @code{-gnat83} and @code{-gnat95} switches for further
14533 information).
14534 @end table
14535
14536 @geindex -gnat12 (gcc)
14537
14538 @geindex -gnat2012 (gcc)
14539
14540 @geindex Ada 2012 mode
14541
14542
14543 @table @asis
14544
14545 @item @code{-gnat12} or @code{-gnat2012} (Ada 2012 mode)
14546
14547 This switch directs the compiler to implement the Ada 2012 version of the
14548 language (also the default).
14549 Since Ada 2012 is almost completely upwards
14550 compatible with Ada 2005 (and thus also with Ada 83, and Ada 95),
14551 Ada 83 and Ada 95 programs
14552 may generally be compiled using this switch (see the description of the
14553 @code{-gnat83}, @code{-gnat95}, and @code{-gnat05/2005} switches
14554 for further information).
14555 @end table
14556
14557 @geindex -gnatX (gcc)
14558
14559 @geindex Ada language extensions
14560
14561 @geindex GNAT extensions
14562
14563
14564 @table @asis
14565
14566 @item @code{-gnatX} (Enable GNAT Extensions)
14567
14568 This switch directs the compiler to implement the latest version of the
14569 language (currently Ada 2012) and also to enable certain GNAT implementation
14570 extensions that are not part of any Ada standard. For a full list of these
14571 extensions, see the GNAT reference manual.
14572 @end table
14573
14574 @node Character Set Control,File Naming Control,Compiling Different Versions of Ada,Compiler Switches
14575 @anchor{gnat_ugn/building_executable_programs_with_gnat id23}@anchor{10a}@anchor{gnat_ugn/building_executable_programs_with_gnat character-set-control}@anchor{48}
14576 @subsection Character Set Control
14577
14578
14579 @geindex -gnati (gcc)
14580
14581
14582 @table @asis
14583
14584 @item @code{-gnati@emph{c}}
14585
14586 Normally GNAT recognizes the Latin-1 character set in source program
14587 identifiers, as described in the Ada Reference Manual.
14588 This switch causes
14589 GNAT to recognize alternate character sets in identifiers. @code{c} is a
14590 single character indicating the character set, as follows:
14591
14592
14593 @multitable {xxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
14594 @item
14595
14596 @emph{1}
14597
14598 @tab
14599
14600 ISO 8859-1 (Latin-1) identifiers
14601
14602 @item
14603
14604 @emph{2}
14605
14606 @tab
14607
14608 ISO 8859-2 (Latin-2) letters allowed in identifiers
14609
14610 @item
14611
14612 @emph{3}
14613
14614 @tab
14615
14616 ISO 8859-3 (Latin-3) letters allowed in identifiers
14617
14618 @item
14619
14620 @emph{4}
14621
14622 @tab
14623
14624 ISO 8859-4 (Latin-4) letters allowed in identifiers
14625
14626 @item
14627
14628 @emph{5}
14629
14630 @tab
14631
14632 ISO 8859-5 (Cyrillic) letters allowed in identifiers
14633
14634 @item
14635
14636 @emph{9}
14637
14638 @tab
14639
14640 ISO 8859-15 (Latin-9) letters allowed in identifiers
14641
14642 @item
14643
14644 @emph{p}
14645
14646 @tab
14647
14648 IBM PC letters (code page 437) allowed in identifiers
14649
14650 @item
14651
14652 @emph{8}
14653
14654 @tab
14655
14656 IBM PC letters (code page 850) allowed in identifiers
14657
14658 @item
14659
14660 @emph{f}
14661
14662 @tab
14663
14664 Full upper-half codes allowed in identifiers
14665
14666 @item
14667
14668 @emph{n}
14669
14670 @tab
14671
14672 No upper-half codes allowed in identifiers
14673
14674 @item
14675
14676 @emph{w}
14677
14678 @tab
14679
14680 Wide-character codes (that is, codes greater than 255)
14681 allowed in identifiers
14682
14683 @end multitable
14684
14685
14686 See @ref{3e,,Foreign Language Representation} for full details on the
14687 implementation of these character sets.
14688 @end table
14689
14690 @geindex -gnatW (gcc)
14691
14692
14693 @table @asis
14694
14695 @item @code{-gnatW@emph{e}}
14696
14697 Specify the method of encoding for wide characters.
14698 @code{e} is one of the following:
14699
14700
14701 @multitable {xxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
14702 @item
14703
14704 @emph{h}
14705
14706 @tab
14707
14708 Hex encoding (brackets coding also recognized)
14709
14710 @item
14711
14712 @emph{u}
14713
14714 @tab
14715
14716 Upper half encoding (brackets encoding also recognized)
14717
14718 @item
14719
14720 @emph{s}
14721
14722 @tab
14723
14724 Shift/JIS encoding (brackets encoding also recognized)
14725
14726 @item
14727
14728 @emph{e}
14729
14730 @tab
14731
14732 EUC encoding (brackets encoding also recognized)
14733
14734 @item
14735
14736 @emph{8}
14737
14738 @tab
14739
14740 UTF-8 encoding (brackets encoding also recognized)
14741
14742 @item
14743
14744 @emph{b}
14745
14746 @tab
14747
14748 Brackets encoding only (default value)
14749
14750 @end multitable
14751
14752
14753 For full details on these encoding
14754 methods see @ref{4e,,Wide_Character Encodings}.
14755 Note that brackets coding is always accepted, even if one of the other
14756 options is specified, so for example @code{-gnatW8} specifies that both
14757 brackets and UTF-8 encodings will be recognized. The units that are
14758 with'ed directly or indirectly will be scanned using the specified
14759 representation scheme, and so if one of the non-brackets scheme is
14760 used, it must be used consistently throughout the program. However,
14761 since brackets encoding is always recognized, it may be conveniently
14762 used in standard libraries, allowing these libraries to be used with
14763 any of the available coding schemes.
14764
14765 Note that brackets encoding only applies to program text. Within comments,
14766 brackets are considered to be normal graphic characters, and bracket sequences
14767 are never recognized as wide characters.
14768
14769 If no @code{-gnatW?} parameter is present, then the default
14770 representation is normally Brackets encoding only. However, if the
14771 first three characters of the file are 16#EF# 16#BB# 16#BF# (the standard
14772 byte order mark or BOM for UTF-8), then these three characters are
14773 skipped and the default representation for the file is set to UTF-8.
14774
14775 Note that the wide character representation that is specified (explicitly
14776 or by default) for the main program also acts as the default encoding used
14777 for Wide_Text_IO files if not specifically overridden by a WCEM form
14778 parameter.
14779 @end table
14780
14781 When no @code{-gnatW?} is specified, then characters (other than wide
14782 characters represented using brackets notation) are treated as 8-bit
14783 Latin-1 codes. The codes recognized are the Latin-1 graphic characters,
14784 and ASCII format effectors (CR, LF, HT, VT). Other lower half control
14785 characters in the range 16#00#..16#1F# are not accepted in program text
14786 or in comments. Upper half control characters (16#80#..16#9F#) are rejected
14787 in program text, but allowed and ignored in comments. Note in particular
14788 that the Next Line (NEL) character whose encoding is 16#85# is not recognized
14789 as an end of line in this default mode. If your source program contains
14790 instances of the NEL character used as a line terminator,
14791 you must use UTF-8 encoding for the whole
14792 source program. In default mode, all lines must be ended by a standard
14793 end of line sequence (CR, CR/LF, or LF).
14794
14795 Note that the convention of simply accepting all upper half characters in
14796 comments means that programs that use standard ASCII for program text, but
14797 UTF-8 encoding for comments are accepted in default mode, providing that the
14798 comments are ended by an appropriate (CR, or CR/LF, or LF) line terminator.
14799 This is a common mode for many programs with foreign language comments.
14800
14801 @node File Naming Control,Subprogram Inlining Control,Character Set Control,Compiler Switches
14802 @anchor{gnat_ugn/building_executable_programs_with_gnat file-naming-control}@anchor{10b}@anchor{gnat_ugn/building_executable_programs_with_gnat id24}@anchor{10c}
14803 @subsection File Naming Control
14804
14805
14806 @geindex -gnatk (gcc)
14807
14808
14809 @table @asis
14810
14811 @item @code{-gnatk@emph{n}}
14812
14813 Activates file name 'krunching'. @code{n}, a decimal integer in the range
14814 1-999, indicates the maximum allowable length of a file name (not
14815 including the @code{.ads} or @code{.adb} extension). The default is not
14816 to enable file name krunching.
14817
14818 For the source file naming rules, @ref{52,,File Naming Rules}.
14819 @end table
14820
14821 @node Subprogram Inlining Control,Auxiliary Output Control,File Naming Control,Compiler Switches
14822 @anchor{gnat_ugn/building_executable_programs_with_gnat subprogram-inlining-control}@anchor{10d}@anchor{gnat_ugn/building_executable_programs_with_gnat id25}@anchor{10e}
14823 @subsection Subprogram Inlining Control
14824
14825
14826 @geindex -gnatn (gcc)
14827
14828
14829 @table @asis
14830
14831 @item @code{-gnatn[12]}
14832
14833 The @code{n} here is intended to suggest the first syllable of the word 'inline'.
14834 GNAT recognizes and processes @code{Inline} pragmas. However, for inlining to
14835 actually occur, optimization must be enabled and, by default, inlining of
14836 subprograms across units is not performed. If you want to additionally
14837 enable inlining of subprograms specified by pragma @code{Inline} across units,
14838 you must also specify this switch.
14839
14840 In the absence of this switch, GNAT does not attempt inlining across units
14841 and does not access the bodies of subprograms for which @code{pragma Inline} is
14842 specified if they are not in the current unit.
14843
14844 You can optionally specify the inlining level: 1 for moderate inlining across
14845 units, which is a good compromise between compilation times and performances
14846 at run time, or 2 for full inlining across units, which may bring about
14847 longer compilation times. If no inlining level is specified, the compiler will
14848 pick it based on the optimization level: 1 for @code{-O1}, @code{-O2} or
14849 @code{-Os} and 2 for @code{-O3}.
14850
14851 If you specify this switch the compiler will access these bodies,
14852 creating an extra source dependency for the resulting object file, and
14853 where possible, the call will be inlined.
14854 For further details on when inlining is possible
14855 see @ref{10f,,Inlining of Subprograms}.
14856 @end table
14857
14858 @geindex -gnatN (gcc)
14859
14860
14861 @table @asis
14862
14863 @item @code{-gnatN}
14864
14865 This switch activates front-end inlining which also
14866 generates additional dependencies.
14867
14868 When using a gcc-based back end (in practice this means using any version
14869 of GNAT other than the JGNAT, .NET or GNAAMP versions), then the use of
14870 @code{-gnatN} is deprecated, and the use of @code{-gnatn} is preferred.
14871 Historically front end inlining was more extensive than the gcc back end
14872 inlining, but that is no longer the case.
14873 @end table
14874
14875 @node Auxiliary Output Control,Debugging Control,Subprogram Inlining Control,Compiler Switches
14876 @anchor{gnat_ugn/building_executable_programs_with_gnat auxiliary-output-control}@anchor{110}@anchor{gnat_ugn/building_executable_programs_with_gnat id26}@anchor{111}
14877 @subsection Auxiliary Output Control
14878
14879
14880 @geindex -gnatu (gcc)
14881
14882
14883 @table @asis
14884
14885 @item @code{-gnatu}
14886
14887 Print a list of units required by this compilation on @code{stdout}.
14888 The listing includes all units on which the unit being compiled depends
14889 either directly or indirectly.
14890 @end table
14891
14892 @geindex -pass-exit-codes (gcc)
14893
14894
14895 @table @asis
14896
14897 @item @code{-pass-exit-codes}
14898
14899 If this switch is not used, the exit code returned by @code{gcc} when
14900 compiling multiple files indicates whether all source files have
14901 been successfully used to generate object files or not.
14902
14903 When @code{-pass-exit-codes} is used, @code{gcc} exits with an extended
14904 exit status and allows an integrated development environment to better
14905 react to a compilation failure. Those exit status are:
14906
14907
14908 @multitable {xxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
14909 @item
14910
14911 @emph{5}
14912
14913 @tab
14914
14915 There was an error in at least one source file.
14916
14917 @item
14918
14919 @emph{3}
14920
14921 @tab
14922
14923 At least one source file did not generate an object file.
14924
14925 @item
14926
14927 @emph{2}
14928
14929 @tab
14930
14931 The compiler died unexpectedly (internal error for example).
14932
14933 @item
14934
14935 @emph{0}
14936
14937 @tab
14938
14939 An object file has been generated for every source file.
14940
14941 @end multitable
14942
14943 @end table
14944
14945 @node Debugging Control,Exception Handling Control,Auxiliary Output Control,Compiler Switches
14946 @anchor{gnat_ugn/building_executable_programs_with_gnat debugging-control}@anchor{112}@anchor{gnat_ugn/building_executable_programs_with_gnat id27}@anchor{113}
14947 @subsection Debugging Control
14948
14949
14950 @quotation
14951
14952 @geindex Debugging options
14953 @end quotation
14954
14955 @geindex -gnatd (gcc)
14956
14957
14958 @table @asis
14959
14960 @item @code{-gnatd@emph{x}}
14961
14962 Activate internal debugging switches. @code{x} is a letter or digit, or
14963 string of letters or digits, which specifies the type of debugging
14964 outputs desired. Normally these are used only for internal development
14965 or system debugging purposes. You can find full documentation for these
14966 switches in the body of the @code{Debug} unit in the compiler source
14967 file @code{debug.adb}.
14968 @end table
14969
14970 @geindex -gnatG (gcc)
14971
14972
14973 @table @asis
14974
14975 @item @code{-gnatG[=@emph{nn}]}
14976
14977 This switch causes the compiler to generate auxiliary output containing
14978 a pseudo-source listing of the generated expanded code. Like most Ada
14979 compilers, GNAT works by first transforming the high level Ada code into
14980 lower level constructs. For example, tasking operations are transformed
14981 into calls to the tasking run-time routines. A unique capability of GNAT
14982 is to list this expanded code in a form very close to normal Ada source.
14983 This is very useful in understanding the implications of various Ada
14984 usage on the efficiency of the generated code. There are many cases in
14985 Ada (e.g., the use of controlled types), where simple Ada statements can
14986 generate a lot of run-time code. By using @code{-gnatG} you can identify
14987 these cases, and consider whether it may be desirable to modify the coding
14988 approach to improve efficiency.
14989
14990 The optional parameter @code{nn} if present after -gnatG specifies an
14991 alternative maximum line length that overrides the normal default of 72.
14992 This value is in the range 40-999999, values less than 40 being silently
14993 reset to 40. The equal sign is optional.
14994
14995 The format of the output is very similar to standard Ada source, and is
14996 easily understood by an Ada programmer. The following special syntactic
14997 additions correspond to low level features used in the generated code that
14998 do not have any exact analogies in pure Ada source form. The following
14999 is a partial list of these special constructions. See the spec
15000 of package @code{Sprint} in file @code{sprint.ads} for a full list.
15001
15002 @geindex -gnatL (gcc)
15003
15004 If the switch @code{-gnatL} is used in conjunction with
15005 @code{-gnatG}, then the original source lines are interspersed
15006 in the expanded source (as comment lines with the original line number).
15007
15008
15009 @table @asis
15010
15011 @item @code{new @emph{xxx} [storage_pool = @emph{yyy}]}
15012
15013 Shows the storage pool being used for an allocator.
15014
15015 @item @code{at end @emph{procedure-name};}
15016
15017 Shows the finalization (cleanup) procedure for a scope.
15018
15019 @item @code{(if @emph{expr} then @emph{expr} else @emph{expr})}
15020
15021 Conditional expression equivalent to the @code{x?y:z} construction in C.
15022
15023 @item @code{@emph{target}^(@emph{source})}
15024
15025 A conversion with floating-point truncation instead of rounding.
15026
15027 @item @code{@emph{target}?(@emph{source})}
15028
15029 A conversion that bypasses normal Ada semantic checking. In particular
15030 enumeration types and fixed-point types are treated simply as integers.
15031
15032 @item @code{@emph{target}?^(@emph{source})}
15033
15034 Combines the above two cases.
15035 @end table
15036
15037 @code{@emph{x} #/ @emph{y}}
15038
15039 @code{@emph{x} #mod @emph{y}}
15040
15041 @code{@emph{x} # @emph{y}}
15042
15043
15044 @table @asis
15045
15046 @item @code{@emph{x} #rem @emph{y}}
15047
15048 A division or multiplication of fixed-point values which are treated as
15049 integers without any kind of scaling.
15050
15051 @item @code{free @emph{expr} [storage_pool = @emph{xxx}]}
15052
15053 Shows the storage pool associated with a @code{free} statement.
15054
15055 @item @code{[subtype or type declaration]}
15056
15057 Used to list an equivalent declaration for an internally generated
15058 type that is referenced elsewhere in the listing.
15059
15060 @item @code{freeze @emph{type-name} [@emph{actions}]}
15061
15062 Shows the point at which @code{type-name} is frozen, with possible
15063 associated actions to be performed at the freeze point.
15064
15065 @item @code{reference @emph{itype}}
15066
15067 Reference (and hence definition) to internal type @code{itype}.
15068
15069 @item @code{@emph{function-name}! (@emph{arg}, @emph{arg}, @emph{arg})}
15070
15071 Intrinsic function call.
15072
15073 @item @code{@emph{label-name} : label}
15074
15075 Declaration of label @code{labelname}.
15076
15077 @item @code{#$ @emph{subprogram-name}}
15078
15079 An implicit call to a run-time support routine
15080 (to meet the requirement of H.3.1(9) in a
15081 convenient manner).
15082
15083 @item @code{@emph{expr} && @emph{expr} && @emph{expr} ... && @emph{expr}}
15084
15085 A multiple concatenation (same effect as @code{expr} & @code{expr} &
15086 @code{expr}, but handled more efficiently).
15087
15088 @item @code{[constraint_error]}
15089
15090 Raise the @code{Constraint_Error} exception.
15091
15092 @item @code{@emph{expression}'reference}
15093
15094 A pointer to the result of evaluating @{expression@}.
15095
15096 @item @code{@emph{target-type}!(@emph{source-expression})}
15097
15098 An unchecked conversion of @code{source-expression} to @code{target-type}.
15099
15100 @item @code{[@emph{numerator}/@emph{denominator}]}
15101
15102 Used to represent internal real literals (that) have no exact
15103 representation in base 2-16 (for example, the result of compile time
15104 evaluation of the expression 1.0/27.0).
15105 @end table
15106 @end table
15107
15108 @geindex -gnatD (gcc)
15109
15110
15111 @table @asis
15112
15113 @item @code{-gnatD[=nn]}
15114
15115 When used in conjunction with @code{-gnatG}, this switch causes
15116 the expanded source, as described above for
15117 @code{-gnatG} to be written to files with names
15118 @code{xxx.dg}, where @code{xxx} is the normal file name,
15119 instead of to the standard output file. For
15120 example, if the source file name is @code{hello.adb}, then a file
15121 @code{hello.adb.dg} will be written. The debugging
15122 information generated by the @code{gcc} @code{-g} switch
15123 will refer to the generated @code{xxx.dg} file. This allows
15124 you to do source level debugging using the generated code which is
15125 sometimes useful for complex code, for example to find out exactly
15126 which part of a complex construction raised an exception. This switch
15127 also suppresses generation of cross-reference information (see
15128 @code{-gnatx}) since otherwise the cross-reference information
15129 would refer to the @code{.dg} file, which would cause
15130 confusion since this is not the original source file.
15131
15132 Note that @code{-gnatD} actually implies @code{-gnatG}
15133 automatically, so it is not necessary to give both options.
15134 In other words @code{-gnatD} is equivalent to @code{-gnatDG}).
15135
15136 @geindex -gnatL (gcc)
15137
15138 If the switch @code{-gnatL} is used in conjunction with
15139 @code{-gnatDG}, then the original source lines are interspersed
15140 in the expanded source (as comment lines with the original line number).
15141
15142 The optional parameter @code{nn} if present after -gnatD specifies an
15143 alternative maximum line length that overrides the normal default of 72.
15144 This value is in the range 40-999999, values less than 40 being silently
15145 reset to 40. The equal sign is optional.
15146 @end table
15147
15148 @geindex -gnatr (gcc)
15149
15150 @geindex pragma Restrictions
15151
15152
15153 @table @asis
15154
15155 @item @code{-gnatr}
15156
15157 This switch causes pragma Restrictions to be treated as Restriction_Warnings
15158 so that violation of restrictions causes warnings rather than illegalities.
15159 This is useful during the development process when new restrictions are added
15160 or investigated. The switch also causes pragma Profile to be treated as
15161 Profile_Warnings, and pragma Restricted_Run_Time and pragma Ravenscar set
15162 restriction warnings rather than restrictions.
15163 @end table
15164
15165 @geindex -gnatR (gcc)
15166
15167
15168 @table @asis
15169
15170 @item @code{-gnatR[0|1|2|3|4][e][j][m][s]}
15171
15172 This switch controls output from the compiler of a listing showing
15173 representation information for declared types, objects and subprograms.
15174 For @code{-gnatR0}, no information is output (equivalent to omitting
15175 the @code{-gnatR} switch). For @code{-gnatR1} (which is the default,
15176 so @code{-gnatR} with no parameter has the same effect), size and
15177 alignment information is listed for declared array and record types.
15178
15179 For @code{-gnatR2}, size and alignment information is listed for all
15180 declared types and objects. The @code{Linker_Section} is also listed for any
15181 entity for which the @code{Linker_Section} is set explicitly or implicitly (the
15182 latter case occurs for objects of a type for which a @code{Linker_Section}
15183 is set).
15184
15185 For @code{-gnatR3}, symbolic expressions for values that are computed
15186 at run time for records are included. These symbolic expressions have
15187 a mostly obvious format with #n being used to represent the value of the
15188 n'th discriminant. See source files @code{repinfo.ads/adb} in the
15189 GNAT sources for full details on the format of @code{-gnatR3} output.
15190
15191 For @code{-gnatR4}, information for relevant compiler-generated types
15192 is also listed, i.e. when they are structurally part of other declared
15193 types and objects.
15194
15195 If the switch is followed by an @code{e} (e.g. @code{-gnatR2e}), then
15196 extended representation information for record sub-components of records
15197 is included.
15198
15199 If the switch is followed by an @code{m} (e.g. @code{-gnatRm}), then
15200 subprogram conventions and parameter passing mechanisms for all the
15201 subprograms are included.
15202
15203 If the switch is followed by a @code{j} (e.g., @code{-gnatRj}), then
15204 the output is in the JSON data interchange format specified by the
15205 ECMA-404 standard. The semantic description of this JSON output is
15206 available in the specification of the Repinfo unit present in the
15207 compiler sources.
15208
15209 If the switch is followed by an @code{s} (e.g., @code{-gnatR3s}), then
15210 the output is to a file with the name @code{file.rep} where @code{file} is
15211 the name of the corresponding source file, except if @code{j} is also
15212 specified, in which case the file name is @code{file.json}.
15213
15214 Note that it is possible for record components to have zero size. In
15215 this case, the component clause uses an obvious extension of permitted
15216 Ada syntax, for example @code{at 0 range 0 .. -1}.
15217 @end table
15218
15219 @geindex -gnatS (gcc)
15220
15221
15222 @table @asis
15223
15224 @item @code{-gnatS}
15225
15226 The use of the switch @code{-gnatS} for an
15227 Ada compilation will cause the compiler to output a
15228 representation of package Standard in a form very
15229 close to standard Ada. It is not quite possible to
15230 do this entirely in standard Ada (since new
15231 numeric base types cannot be created in standard
15232 Ada), but the output is easily
15233 readable to any Ada programmer, and is useful to
15234 determine the characteristics of target dependent
15235 types in package Standard.
15236 @end table
15237
15238 @geindex -gnatx (gcc)
15239
15240
15241 @table @asis
15242
15243 @item @code{-gnatx}
15244
15245 Normally the compiler generates full cross-referencing information in
15246 the @code{ALI} file. This information is used by a number of tools,
15247 including @code{gnatfind} and @code{gnatxref}. The @code{-gnatx} switch
15248 suppresses this information. This saves some space and may slightly
15249 speed up compilation, but means that these tools cannot be used.
15250 @end table
15251
15252 @geindex -fgnat-encodings (gcc)
15253
15254
15255 @table @asis
15256
15257 @item @code{-fgnat-encodings=[all|gdb|minimal]}
15258
15259 This switch controls the balance between GNAT encodings and standard DWARF
15260 emitted in the debug information.
15261
15262 Historically, old debug formats like stabs were not powerful enough to
15263 express some Ada types (for instance, variant records or fixed-point types).
15264 To work around this, GNAT introduced proprietary encodings that embed the
15265 missing information ("GNAT encodings").
15266
15267 Recent versions of the DWARF debug information format are now able to
15268 correctly describe most of these Ada constructs ("standard DWARF"). As
15269 third-party tools started to use this format, GNAT has been enhanced to
15270 generate it. However, most tools (including GDB) are still relying on GNAT
15271 encodings.
15272
15273 To support all tools, GNAT needs to be versatile about the balance between
15274 generation of GNAT encodings and standard DWARF. This is what
15275 @code{-fgnat-encodings} is about.
15276
15277
15278 @itemize *
15279
15280 @item
15281 @code{=all}: Emit all GNAT encodings, and then emit as much standard DWARF as
15282 possible so it does not conflict with GNAT encodings.
15283
15284 @item
15285 @code{=gdb}: Emit as much standard DWARF as possible as long as the current
15286 GDB handles it. Emit GNAT encodings for the rest.
15287
15288 @item
15289 @code{=minimal}: Emit as much standard DWARF as possible and emit GNAT
15290 encodings for the rest.
15291 @end itemize
15292 @end table
15293
15294 @node Exception Handling Control,Units to Sources Mapping Files,Debugging Control,Compiler Switches
15295 @anchor{gnat_ugn/building_executable_programs_with_gnat id28}@anchor{114}@anchor{gnat_ugn/building_executable_programs_with_gnat exception-handling-control}@anchor{115}
15296 @subsection Exception Handling Control
15297
15298
15299 GNAT uses two methods for handling exceptions at run time. The
15300 @code{setjmp/longjmp} method saves the context when entering
15301 a frame with an exception handler. Then when an exception is
15302 raised, the context can be restored immediately, without the
15303 need for tracing stack frames. This method provides very fast
15304 exception propagation, but introduces significant overhead for
15305 the use of exception handlers, even if no exception is raised.
15306
15307 The other approach is called 'zero cost' exception handling.
15308 With this method, the compiler builds static tables to describe
15309 the exception ranges. No dynamic code is required when entering
15310 a frame containing an exception handler. When an exception is
15311 raised, the tables are used to control a back trace of the
15312 subprogram invocation stack to locate the required exception
15313 handler. This method has considerably poorer performance for
15314 the propagation of exceptions, but there is no overhead for
15315 exception handlers if no exception is raised. Note that in this
15316 mode and in the context of mixed Ada and C/C++ programming,
15317 to propagate an exception through a C/C++ code, the C/C++ code
15318 must be compiled with the @code{-funwind-tables} GCC's
15319 option.
15320
15321 The following switches may be used to control which of the
15322 two exception handling methods is used.
15323
15324 @geindex --RTS=sjlj (gnatmake)
15325
15326
15327 @table @asis
15328
15329 @item @code{--RTS=sjlj}
15330
15331 This switch causes the setjmp/longjmp run-time (when available) to be used
15332 for exception handling. If the default
15333 mechanism for the target is zero cost exceptions, then
15334 this switch can be used to modify this default, and must be
15335 used for all units in the partition.
15336 This option is rarely used. One case in which it may be
15337 advantageous is if you have an application where exception
15338 raising is common and the overall performance of the
15339 application is improved by favoring exception propagation.
15340 @end table
15341
15342 @geindex --RTS=zcx (gnatmake)
15343
15344 @geindex Zero Cost Exceptions
15345
15346
15347 @table @asis
15348
15349 @item @code{--RTS=zcx}
15350
15351 This switch causes the zero cost approach to be used
15352 for exception handling. If this is the default mechanism for the
15353 target (see below), then this switch is unneeded. If the default
15354 mechanism for the target is setjmp/longjmp exceptions, then
15355 this switch can be used to modify this default, and must be
15356 used for all units in the partition.
15357 This option can only be used if the zero cost approach
15358 is available for the target in use, otherwise it will generate an error.
15359 @end table
15360
15361 The same option @code{--RTS} must be used both for @code{gcc}
15362 and @code{gnatbind}. Passing this option to @code{gnatmake}
15363 (@ref{dc,,Switches for gnatmake}) will ensure the required consistency
15364 through the compilation and binding steps.
15365
15366 @node Units to Sources Mapping Files,Code Generation Control,Exception Handling Control,Compiler Switches
15367 @anchor{gnat_ugn/building_executable_programs_with_gnat id29}@anchor{116}@anchor{gnat_ugn/building_executable_programs_with_gnat units-to-sources-mapping-files}@anchor{f7}
15368 @subsection Units to Sources Mapping Files
15369
15370
15371 @geindex -gnatem (gcc)
15372
15373
15374 @table @asis
15375
15376 @item @code{-gnatem=@emph{path}}
15377
15378 A mapping file is a way to communicate to the compiler two mappings:
15379 from unit names to file names (without any directory information) and from
15380 file names to path names (with full directory information). These mappings
15381 are used by the compiler to short-circuit the path search.
15382
15383 The use of mapping files is not required for correct operation of the
15384 compiler, but mapping files can improve efficiency, particularly when
15385 sources are read over a slow network connection. In normal operation,
15386 you need not be concerned with the format or use of mapping files,
15387 and the @code{-gnatem} switch is not a switch that you would use
15388 explicitly. It is intended primarily for use by automatic tools such as
15389 @code{gnatmake} running under the project file facility. The
15390 description here of the format of mapping files is provided
15391 for completeness and for possible use by other tools.
15392
15393 A mapping file is a sequence of sets of three lines. In each set, the
15394 first line is the unit name, in lower case, with @code{%s} appended
15395 for specs and @code{%b} appended for bodies; the second line is the
15396 file name; and the third line is the path name.
15397
15398 Example:
15399
15400 @example
15401 main%b
15402 main.2.ada
15403 /gnat/project1/sources/main.2.ada
15404 @end example
15405
15406 When the switch @code{-gnatem} is specified, the compiler will
15407 create in memory the two mappings from the specified file. If there is
15408 any problem (nonexistent file, truncated file or duplicate entries),
15409 no mapping will be created.
15410
15411 Several @code{-gnatem} switches may be specified; however, only the
15412 last one on the command line will be taken into account.
15413
15414 When using a project file, @code{gnatmake} creates a temporary
15415 mapping file and communicates it to the compiler using this switch.
15416 @end table
15417
15418 @node Code Generation Control,,Units to Sources Mapping Files,Compiler Switches
15419 @anchor{gnat_ugn/building_executable_programs_with_gnat code-generation-control}@anchor{117}@anchor{gnat_ugn/building_executable_programs_with_gnat id30}@anchor{118}
15420 @subsection Code Generation Control
15421
15422
15423 The GCC technology provides a wide range of target dependent
15424 @code{-m} switches for controlling
15425 details of code generation with respect to different versions of
15426 architectures. This includes variations in instruction sets (e.g.,
15427 different members of the power pc family), and different requirements
15428 for optimal arrangement of instructions (e.g., different members of
15429 the x86 family). The list of available @code{-m} switches may be
15430 found in the GCC documentation.
15431
15432 Use of these @code{-m} switches may in some cases result in improved
15433 code performance.
15434
15435 The GNAT technology is tested and qualified without any
15436 @code{-m} switches,
15437 so generally the most reliable approach is to avoid the use of these
15438 switches. However, we generally expect most of these switches to work
15439 successfully with GNAT, and many customers have reported successful
15440 use of these options.
15441
15442 Our general advice is to avoid the use of @code{-m} switches unless
15443 special needs lead to requirements in this area. In particular,
15444 there is no point in using @code{-m} switches to improve performance
15445 unless you actually see a performance improvement.
15446
15447 @node Linker Switches,Binding with gnatbind,Compiler Switches,Building Executable Programs with GNAT
15448 @anchor{gnat_ugn/building_executable_programs_with_gnat linker-switches}@anchor{119}@anchor{gnat_ugn/building_executable_programs_with_gnat id31}@anchor{11a}
15449 @section Linker Switches
15450
15451
15452 Linker switches can be specified after @code{-largs} builder switch.
15453
15454 @geindex -fuse-ld=name
15455
15456
15457 @table @asis
15458
15459 @item @code{-fuse-ld=@emph{name}}
15460
15461 Linker to be used. The default is @code{bfd} for @code{ld.bfd},
15462 the alternative being @code{gold} for @code{ld.gold}. The later is
15463 a more recent and faster linker, but only available on GNU/Linux
15464 platforms.
15465 @end table
15466
15467 @node Binding with gnatbind,Linking with gnatlink,Linker Switches,Building Executable Programs with GNAT
15468 @anchor{gnat_ugn/building_executable_programs_with_gnat binding-with-gnatbind}@anchor{1d}@anchor{gnat_ugn/building_executable_programs_with_gnat id32}@anchor{11b}
15469 @section Binding with @code{gnatbind}
15470
15471
15472 @geindex gnatbind
15473
15474 This chapter describes the GNAT binder, @code{gnatbind}, which is used
15475 to bind compiled GNAT objects.
15476
15477 The @code{gnatbind} program performs four separate functions:
15478
15479
15480 @itemize *
15481
15482 @item
15483 Checks that a program is consistent, in accordance with the rules in
15484 Chapter 10 of the Ada Reference Manual. In particular, error
15485 messages are generated if a program uses inconsistent versions of a
15486 given unit.
15487
15488 @item
15489 Checks that an acceptable order of elaboration exists for the program
15490 and issues an error message if it cannot find an order of elaboration
15491 that satisfies the rules in Chapter 10 of the Ada Language Manual.
15492
15493 @item
15494 Generates a main program incorporating the given elaboration order.
15495 This program is a small Ada package (body and spec) that
15496 must be subsequently compiled
15497 using the GNAT compiler. The necessary compilation step is usually
15498 performed automatically by @code{gnatlink}. The two most important
15499 functions of this program
15500 are to call the elaboration routines of units in an appropriate order
15501 and to call the main program.
15502
15503 @item
15504 Determines the set of object files required by the given main program.
15505 This information is output in the forms of comments in the generated program,
15506 to be read by the @code{gnatlink} utility used to link the Ada application.
15507 @end itemize
15508
15509 @menu
15510 * Running gnatbind::
15511 * Switches for gnatbind::
15512 * Command-Line Access::
15513 * Search Paths for gnatbind::
15514 * Examples of gnatbind Usage::
15515
15516 @end menu
15517
15518 @node Running gnatbind,Switches for gnatbind,,Binding with gnatbind
15519 @anchor{gnat_ugn/building_executable_programs_with_gnat running-gnatbind}@anchor{11c}@anchor{gnat_ugn/building_executable_programs_with_gnat id33}@anchor{11d}
15520 @subsection Running @code{gnatbind}
15521
15522
15523 The form of the @code{gnatbind} command is
15524
15525 @example
15526 $ gnatbind [ switches ] mainprog[.ali] [ switches ]
15527 @end example
15528
15529 where @code{mainprog.adb} is the Ada file containing the main program
15530 unit body. @code{gnatbind} constructs an Ada
15531 package in two files whose names are
15532 @code{b~mainprog.ads}, and @code{b~mainprog.adb}.
15533 For example, if given the
15534 parameter @code{hello.ali}, for a main program contained in file
15535 @code{hello.adb}, the binder output files would be @code{b~hello.ads}
15536 and @code{b~hello.adb}.
15537
15538 When doing consistency checking, the binder takes into consideration
15539 any source files it can locate. For example, if the binder determines
15540 that the given main program requires the package @code{Pack}, whose
15541 @code{.ALI}
15542 file is @code{pack.ali} and whose corresponding source spec file is
15543 @code{pack.ads}, it attempts to locate the source file @code{pack.ads}
15544 (using the same search path conventions as previously described for the
15545 @code{gcc} command). If it can locate this source file, it checks that
15546 the time stamps
15547 or source checksums of the source and its references to in @code{ALI} files
15548 match. In other words, any @code{ALI} files that mentions this spec must have
15549 resulted from compiling this version of the source file (or in the case
15550 where the source checksums match, a version close enough that the
15551 difference does not matter).
15552
15553 @geindex Source files
15554 @geindex use by binder
15555
15556 The effect of this consistency checking, which includes source files, is
15557 that the binder ensures that the program is consistent with the latest
15558 version of the source files that can be located at bind time. Editing a
15559 source file without compiling files that depend on the source file cause
15560 error messages to be generated by the binder.
15561
15562 For example, suppose you have a main program @code{hello.adb} and a
15563 package @code{P}, from file @code{p.ads} and you perform the following
15564 steps:
15565
15566
15567 @itemize *
15568
15569 @item
15570 Enter @code{gcc -c hello.adb} to compile the main program.
15571
15572 @item
15573 Enter @code{gcc -c p.ads} to compile package @code{P}.
15574
15575 @item
15576 Edit file @code{p.ads}.
15577
15578 @item
15579 Enter @code{gnatbind hello}.
15580 @end itemize
15581
15582 At this point, the file @code{p.ali} contains an out-of-date time stamp
15583 because the file @code{p.ads} has been edited. The attempt at binding
15584 fails, and the binder generates the following error messages:
15585
15586 @example
15587 error: "hello.adb" must be recompiled ("p.ads" has been modified)
15588 error: "p.ads" has been modified and must be recompiled
15589 @end example
15590
15591 Now both files must be recompiled as indicated, and then the bind can
15592 succeed, generating a main program. You need not normally be concerned
15593 with the contents of this file, but for reference purposes a sample
15594 binder output file is given in @ref{e,,Example of Binder Output File}.
15595
15596 In most normal usage, the default mode of @code{gnatbind} which is to
15597 generate the main package in Ada, as described in the previous section.
15598 In particular, this means that any Ada programmer can read and understand
15599 the generated main program. It can also be debugged just like any other
15600 Ada code provided the @code{-g} switch is used for
15601 @code{gnatbind} and @code{gnatlink}.
15602
15603 @node Switches for gnatbind,Command-Line Access,Running gnatbind,Binding with gnatbind
15604 @anchor{gnat_ugn/building_executable_programs_with_gnat id34}@anchor{11e}@anchor{gnat_ugn/building_executable_programs_with_gnat switches-for-gnatbind}@anchor{11f}
15605 @subsection Switches for @code{gnatbind}
15606
15607
15608 The following switches are available with @code{gnatbind}; details will
15609 be presented in subsequent sections.
15610
15611 @geindex --version (gnatbind)
15612
15613
15614 @table @asis
15615
15616 @item @code{--version}
15617
15618 Display Copyright and version, then exit disregarding all other options.
15619 @end table
15620
15621 @geindex --help (gnatbind)
15622
15623
15624 @table @asis
15625
15626 @item @code{--help}
15627
15628 If @code{--version} was not used, display usage, then exit disregarding
15629 all other options.
15630 @end table
15631
15632 @geindex -a (gnatbind)
15633
15634
15635 @table @asis
15636
15637 @item @code{-a}
15638
15639 Indicates that, if supported by the platform, the adainit procedure should
15640 be treated as an initialisation routine by the linker (a constructor). This
15641 is intended to be used by the Project Manager to automatically initialize
15642 shared Stand-Alone Libraries.
15643 @end table
15644
15645 @geindex -aO (gnatbind)
15646
15647
15648 @table @asis
15649
15650 @item @code{-aO}
15651
15652 Specify directory to be searched for ALI files.
15653 @end table
15654
15655 @geindex -aI (gnatbind)
15656
15657
15658 @table @asis
15659
15660 @item @code{-aI}
15661
15662 Specify directory to be searched for source file.
15663 @end table
15664
15665 @geindex -A (gnatbind)
15666
15667
15668 @table @asis
15669
15670 @item @code{-A[=@emph{filename}]}
15671
15672 Output ALI list (to standard output or to the named file).
15673 @end table
15674
15675 @geindex -b (gnatbind)
15676
15677
15678 @table @asis
15679
15680 @item @code{-b}
15681
15682 Generate brief messages to @code{stderr} even if verbose mode set.
15683 @end table
15684
15685 @geindex -c (gnatbind)
15686
15687
15688 @table @asis
15689
15690 @item @code{-c}
15691
15692 Check only, no generation of binder output file.
15693 @end table
15694
15695 @geindex -dnn[k|m] (gnatbind)
15696
15697
15698 @table @asis
15699
15700 @item @code{-d@emph{nn}[k|m]}
15701
15702 This switch can be used to change the default task stack size value
15703 to a specified size @code{nn}, which is expressed in bytes by default, or
15704 in kilobytes when suffixed with @code{k} or in megabytes when suffixed
15705 with @code{m}.
15706 In the absence of a @code{[k|m]} suffix, this switch is equivalent,
15707 in effect, to completing all task specs with
15708
15709 @example
15710 pragma Storage_Size (nn);
15711 @end example
15712
15713 When they do not already have such a pragma.
15714 @end table
15715
15716 @geindex -D (gnatbind)
15717
15718
15719 @table @asis
15720
15721 @item @code{-D@emph{nn}[k|m]}
15722
15723 Set the default secondary stack size to @code{nn}. The suffix indicates whether
15724 the size is in bytes (no suffix), kilobytes (@code{k} suffix) or megabytes
15725 (@code{m} suffix).
15726
15727 The secondary stack holds objects of unconstrained types that are returned by
15728 functions, for example unconstrained Strings. The size of the secondary stack
15729 can be dynamic or fixed depending on the target.
15730
15731 For most targets, the secondary stack grows on demand and is implemented as
15732 a chain of blocks in the heap. In this case, the default secondary stack size
15733 determines the initial size of the secondary stack for each task and the
15734 smallest amount the secondary stack can grow by.
15735
15736 For Ravenscar, ZFP, and Cert run-times the size of the secondary stack is
15737 fixed. This switch can be used to change the default size of these stacks.
15738 The default secondary stack size can be overridden on a per-task basis if
15739 individual tasks have different secondary stack requirements. This is
15740 achieved through the Secondary_Stack_Size aspect that takes the size of the
15741 secondary stack in bytes.
15742 @end table
15743
15744 @geindex -e (gnatbind)
15745
15746
15747 @table @asis
15748
15749 @item @code{-e}
15750
15751 Output complete list of elaboration-order dependencies.
15752 @end table
15753
15754 @geindex -Ea (gnatbind)
15755
15756
15757 @table @asis
15758
15759 @item @code{-Ea}
15760
15761 Store tracebacks in exception occurrences when the target supports it.
15762 The "a" is for "address"; tracebacks will contain hexadecimal addresses,
15763 unless symbolic tracebacks are enabled.
15764
15765 See also the packages @code{GNAT.Traceback} and
15766 @code{GNAT.Traceback.Symbolic} for more information.
15767 Note that on x86 ports, you must not use @code{-fomit-frame-pointer}
15768 @code{gcc} option.
15769 @end table
15770
15771 @geindex -Es (gnatbind)
15772
15773
15774 @table @asis
15775
15776 @item @code{-Es}
15777
15778 Store tracebacks in exception occurrences when the target supports it.
15779 The "s" is for "symbolic"; symbolic tracebacks are enabled.
15780 @end table
15781
15782 @geindex -E (gnatbind)
15783
15784
15785 @table @asis
15786
15787 @item @code{-E}
15788
15789 Currently the same as @code{-Ea}.
15790 @end table
15791
15792 @geindex -f (gnatbind)
15793
15794
15795 @table @asis
15796
15797 @item @code{-f@emph{elab-order}}
15798
15799 Force elaboration order. For further details see @ref{120,,Elaboration Control}
15800 and @ref{f,,Elaboration Order Handling in GNAT}.
15801 @end table
15802
15803 @geindex -F (gnatbind)
15804
15805
15806 @table @asis
15807
15808 @item @code{-F}
15809
15810 Force the checks of elaboration flags. @code{gnatbind} does not normally
15811 generate checks of elaboration flags for the main executable, except when
15812 a Stand-Alone Library is used. However, there are cases when this cannot be
15813 detected by gnatbind. An example is importing an interface of a Stand-Alone
15814 Library through a pragma Import and only specifying through a linker switch
15815 this Stand-Alone Library. This switch is used to guarantee that elaboration
15816 flag checks are generated.
15817 @end table
15818
15819 @geindex -h (gnatbind)
15820
15821
15822 @table @asis
15823
15824 @item @code{-h}
15825
15826 Output usage (help) information.
15827 @end table
15828
15829 @geindex -H (gnatbind)
15830
15831
15832 @table @asis
15833
15834 @item @code{-H}
15835
15836 Legacy elaboration order model enabled. For further details see
15837 @ref{f,,Elaboration Order Handling in GNAT}.
15838 @end table
15839
15840 @geindex -H32 (gnatbind)
15841
15842
15843 @table @asis
15844
15845 @item @code{-H32}
15846
15847 Use 32-bit allocations for @code{__gnat_malloc} (and thus for access types).
15848 For further details see @ref{121,,Dynamic Allocation Control}.
15849 @end table
15850
15851 @geindex -H64 (gnatbind)
15852
15853 @geindex __gnat_malloc
15854
15855
15856 @table @asis
15857
15858 @item @code{-H64}
15859
15860 Use 64-bit allocations for @code{__gnat_malloc} (and thus for access types).
15861 For further details see @ref{121,,Dynamic Allocation Control}.
15862
15863 @geindex -I (gnatbind)
15864
15865 @item @code{-I}
15866
15867 Specify directory to be searched for source and ALI files.
15868
15869 @geindex -I- (gnatbind)
15870
15871 @item @code{-I-}
15872
15873 Do not look for sources in the current directory where @code{gnatbind} was
15874 invoked, and do not look for ALI files in the directory containing the
15875 ALI file named in the @code{gnatbind} command line.
15876
15877 @geindex -l (gnatbind)
15878
15879 @item @code{-l}
15880
15881 Output chosen elaboration order.
15882
15883 @geindex -L (gnatbind)
15884
15885 @item @code{-L@emph{xxx}}
15886
15887 Bind the units for library building. In this case the @code{adainit} and
15888 @code{adafinal} procedures (@ref{b4,,Binding with Non-Ada Main Programs})
15889 are renamed to @code{@emph{xxx}init} and
15890 @code{@emph{xxx}final}.
15891 Implies -n.
15892 (@ref{15,,GNAT and Libraries}, for more details.)
15893
15894 @geindex -M (gnatbind)
15895
15896 @item @code{-M@emph{xyz}}
15897
15898 Rename generated main program from main to xyz. This option is
15899 supported on cross environments only.
15900
15901 @geindex -m (gnatbind)
15902
15903 @item @code{-m@emph{n}}
15904
15905 Limit number of detected errors or warnings to @code{n}, where @code{n} is
15906 in the range 1..999999. The default value if no switch is
15907 given is 9999. If the number of warnings reaches this limit, then a
15908 message is output and further warnings are suppressed, the bind
15909 continues in this case. If the number of errors reaches this
15910 limit, then a message is output and the bind is abandoned.
15911 A value of zero means that no limit is enforced. The equal
15912 sign is optional.
15913
15914 @geindex -minimal (gnatbind)
15915
15916 @item @code{-minimal}
15917
15918 Generate a binder file suitable for space-constrained applications. When
15919 active, binder-generated objects not required for program operation are no
15920 longer generated. @strong{Warning:} this option comes with the following
15921 limitations:
15922
15923
15924 @itemize *
15925
15926 @item
15927 Starting the program's execution in the debugger will cause it to
15928 stop at the start of the @code{main} function instead of the main subprogram.
15929 This can be worked around by manually inserting a breakpoint on that
15930 subprogram and resuming the program's execution until reaching that breakpoint.
15931
15932 @item
15933 Programs using GNAT.Compiler_Version will not link.
15934 @end itemize
15935
15936 @geindex -n (gnatbind)
15937
15938 @item @code{-n}
15939
15940 No main program.
15941
15942 @geindex -nostdinc (gnatbind)
15943
15944 @item @code{-nostdinc}
15945
15946 Do not look for sources in the system default directory.
15947
15948 @geindex -nostdlib (gnatbind)
15949
15950 @item @code{-nostdlib}
15951
15952 Do not look for library files in the system default directory.
15953
15954 @geindex --RTS (gnatbind)
15955
15956 @item @code{--RTS=@emph{rts-path}}
15957
15958 Specifies the default location of the run-time library. Same meaning as the
15959 equivalent @code{gnatmake} flag (@ref{dc,,Switches for gnatmake}).
15960
15961 @geindex -o (gnatbind)
15962
15963 @item @code{-o @emph{file}}
15964
15965 Name the output file @code{file} (default is @code{b~`xxx}.adb`).
15966 Note that if this option is used, then linking must be done manually,
15967 gnatlink cannot be used.
15968
15969 @geindex -O (gnatbind)
15970
15971 @item @code{-O[=@emph{filename}]}
15972
15973 Output object list (to standard output or to the named file).
15974
15975 @geindex -p (gnatbind)
15976
15977 @item @code{-p}
15978
15979 Pessimistic (worst-case) elaboration order.
15980
15981 @geindex -P (gnatbind)
15982
15983 @item @code{-P}
15984
15985 Generate binder file suitable for CodePeer.
15986
15987 @geindex -R (gnatbind)
15988
15989 @item @code{-R}
15990
15991 Output closure source list, which includes all non-run-time units that are
15992 included in the bind.
15993
15994 @geindex -Ra (gnatbind)
15995
15996 @item @code{-Ra}
15997
15998 Like @code{-R} but the list includes run-time units.
15999
16000 @geindex -s (gnatbind)
16001
16002 @item @code{-s}
16003
16004 Require all source files to be present.
16005
16006 @geindex -S (gnatbind)
16007
16008 @item @code{-S@emph{xxx}}
16009
16010 Specifies the value to be used when detecting uninitialized scalar
16011 objects with pragma Initialize_Scalars.
16012 The @code{xxx} string specified with the switch is one of:
16013
16014
16015 @itemize *
16016
16017 @item
16018 @code{in} for an invalid value.
16019
16020 If zero is invalid for the discrete type in question,
16021 then the scalar value is set to all zero bits.
16022 For signed discrete types, the largest possible negative value of
16023 the underlying scalar is set (i.e. a one bit followed by all zero bits).
16024 For unsigned discrete types, the underlying scalar value is set to all
16025 one bits. For floating-point types, a NaN value is set
16026 (see body of package System.Scalar_Values for exact values).
16027
16028 @item
16029 @code{lo} for low value.
16030
16031 If zero is invalid for the discrete type in question,
16032 then the scalar value is set to all zero bits.
16033 For signed discrete types, the largest possible negative value of
16034 the underlying scalar is set (i.e. a one bit followed by all zero bits).
16035 For unsigned discrete types, the underlying scalar value is set to all
16036 zero bits. For floating-point, a small value is set
16037 (see body of package System.Scalar_Values for exact values).
16038
16039 @item
16040 @code{hi} for high value.
16041
16042 If zero is invalid for the discrete type in question,
16043 then the scalar value is set to all one bits.
16044 For signed discrete types, the largest possible positive value of
16045 the underlying scalar is set (i.e. a zero bit followed by all one bits).
16046 For unsigned discrete types, the underlying scalar value is set to all
16047 one bits. For floating-point, a large value is set
16048 (see body of package System.Scalar_Values for exact values).
16049
16050 @item
16051 @code{xx} for hex value (two hex digits).
16052
16053 The underlying scalar is set to a value consisting of repeated bytes, whose
16054 value corresponds to the given value. For example if @code{BF} is given,
16055 then a 32-bit scalar value will be set to the bit patterm @code{16#BFBFBFBF#}.
16056 @end itemize
16057
16058 @geindex GNAT_INIT_SCALARS
16059
16060 In addition, you can specify @code{-Sev} to indicate that the value is
16061 to be set at run time. In this case, the program will look for an environment
16062 variable of the form @code{GNAT_INIT_SCALARS=@emph{yy}}, where @code{yy} is one
16063 of @code{in/lo/hi/@emph{xx}} with the same meanings as above.
16064 If no environment variable is found, or if it does not have a valid value,
16065 then the default is @code{in} (invalid values).
16066 @end table
16067
16068 @geindex -static (gnatbind)
16069
16070
16071 @table @asis
16072
16073 @item @code{-static}
16074
16075 Link against a static GNAT run-time.
16076
16077 @geindex -shared (gnatbind)
16078
16079 @item @code{-shared}
16080
16081 Link against a shared GNAT run-time when available.
16082
16083 @geindex -t (gnatbind)
16084
16085 @item @code{-t}
16086
16087 Tolerate time stamp and other consistency errors.
16088
16089 @geindex -T (gnatbind)
16090
16091 @item @code{-T@emph{n}}
16092
16093 Set the time slice value to @code{n} milliseconds. If the system supports
16094 the specification of a specific time slice value, then the indicated value
16095 is used. If the system does not support specific time slice values, but
16096 does support some general notion of round-robin scheduling, then any
16097 nonzero value will activate round-robin scheduling.
16098
16099 A value of zero is treated specially. It turns off time
16100 slicing, and in addition, indicates to the tasking run-time that the
16101 semantics should match as closely as possible the Annex D
16102 requirements of the Ada RM, and in particular sets the default
16103 scheduling policy to @code{FIFO_Within_Priorities}.
16104
16105 @geindex -u (gnatbind)
16106
16107 @item @code{-u@emph{n}}
16108
16109 Enable dynamic stack usage, with @code{n} results stored and displayed
16110 at program termination. A result is generated when a task
16111 terminates. Results that can't be stored are displayed on the fly, at
16112 task termination. This option is currently not supported on Itanium
16113 platforms. (See @ref{122,,Dynamic Stack Usage Analysis} for details.)
16114
16115 @geindex -v (gnatbind)
16116
16117 @item @code{-v}
16118
16119 Verbose mode. Write error messages, header, summary output to
16120 @code{stdout}.
16121
16122 @geindex -V (gnatbind)
16123
16124 @item @code{-V@emph{key}=@emph{value}}
16125
16126 Store the given association of @code{key} to @code{value} in the bind environment.
16127 Values stored this way can be retrieved at run time using
16128 @code{GNAT.Bind_Environment}.
16129
16130 @geindex -w (gnatbind)
16131
16132 @item @code{-w@emph{x}}
16133
16134 Warning mode; @code{x} = s/e for suppress/treat as error.
16135
16136 @geindex -Wx (gnatbind)
16137
16138 @item @code{-Wx@emph{e}}
16139
16140 Override default wide character encoding for standard Text_IO files.
16141
16142 @geindex -x (gnatbind)
16143
16144 @item @code{-x}
16145
16146 Exclude source files (check object consistency only).
16147
16148 @geindex -Xnnn (gnatbind)
16149
16150 @item @code{-X@emph{nnn}}
16151
16152 Set default exit status value, normally 0 for POSIX compliance.
16153
16154 @geindex -y (gnatbind)
16155
16156 @item @code{-y}
16157
16158 Enable leap seconds support in @code{Ada.Calendar} and its children.
16159
16160 @geindex -z (gnatbind)
16161
16162 @item @code{-z}
16163
16164 No main subprogram.
16165 @end table
16166
16167 You may obtain this listing of switches by running @code{gnatbind} with
16168 no arguments.
16169
16170 @menu
16171 * Consistency-Checking Modes::
16172 * Binder Error Message Control::
16173 * Elaboration Control::
16174 * Output Control::
16175 * Dynamic Allocation Control::
16176 * Binding with Non-Ada Main Programs::
16177 * Binding Programs with No Main Subprogram::
16178
16179 @end menu
16180
16181 @node Consistency-Checking Modes,Binder Error Message Control,,Switches for gnatbind
16182 @anchor{gnat_ugn/building_executable_programs_with_gnat consistency-checking-modes}@anchor{123}@anchor{gnat_ugn/building_executable_programs_with_gnat id35}@anchor{124}
16183 @subsubsection Consistency-Checking Modes
16184
16185
16186 As described earlier, by default @code{gnatbind} checks
16187 that object files are consistent with one another and are consistent
16188 with any source files it can locate. The following switches control binder
16189 access to sources.
16190
16191 @quotation
16192
16193 @geindex -s (gnatbind)
16194 @end quotation
16195
16196
16197 @table @asis
16198
16199 @item @code{-s}
16200
16201 Require source files to be present. In this mode, the binder must be
16202 able to locate all source files that are referenced, in order to check
16203 their consistency. In normal mode, if a source file cannot be located it
16204 is simply ignored. If you specify this switch, a missing source
16205 file is an error.
16206
16207 @geindex -Wx (gnatbind)
16208
16209 @item @code{-Wx@emph{e}}
16210
16211 Override default wide character encoding for standard Text_IO files.
16212 Normally the default wide character encoding method used for standard
16213 [Wide_[Wide_]]Text_IO files is taken from the encoding specified for
16214 the main source input (see description of switch
16215 @code{-gnatWx} for the compiler). The
16216 use of this switch for the binder (which has the same set of
16217 possible arguments) overrides this default as specified.
16218
16219 @geindex -x (gnatbind)
16220
16221 @item @code{-x}
16222
16223 Exclude source files. In this mode, the binder only checks that ALI
16224 files are consistent with one another. Source files are not accessed.
16225 The binder runs faster in this mode, and there is still a guarantee that
16226 the resulting program is self-consistent.
16227 If a source file has been edited since it was last compiled, and you
16228 specify this switch, the binder will not detect that the object
16229 file is out of date with respect to the source file. Note that this is the
16230 mode that is automatically used by @code{gnatmake} because in this
16231 case the checking against sources has already been performed by
16232 @code{gnatmake} in the course of compilation (i.e., before binding).
16233 @end table
16234
16235 @node Binder Error Message Control,Elaboration Control,Consistency-Checking Modes,Switches for gnatbind
16236 @anchor{gnat_ugn/building_executable_programs_with_gnat id36}@anchor{125}@anchor{gnat_ugn/building_executable_programs_with_gnat binder-error-message-control}@anchor{126}
16237 @subsubsection Binder Error Message Control
16238
16239
16240 The following switches provide control over the generation of error
16241 messages from the binder:
16242
16243 @quotation
16244
16245 @geindex -v (gnatbind)
16246 @end quotation
16247
16248
16249 @table @asis
16250
16251 @item @code{-v}
16252
16253 Verbose mode. In the normal mode, brief error messages are generated to
16254 @code{stderr}. If this switch is present, a header is written
16255 to @code{stdout} and any error messages are directed to @code{stdout}.
16256 All that is written to @code{stderr} is a brief summary message.
16257
16258 @geindex -b (gnatbind)
16259
16260 @item @code{-b}
16261
16262 Generate brief error messages to @code{stderr} even if verbose mode is
16263 specified. This is relevant only when used with the
16264 @code{-v} switch.
16265
16266 @geindex -m (gnatbind)
16267
16268 @item @code{-m@emph{n}}
16269
16270 Limits the number of error messages to @code{n}, a decimal integer in the
16271 range 1-999. The binder terminates immediately if this limit is reached.
16272
16273 @geindex -M (gnatbind)
16274
16275 @item @code{-M@emph{xxx}}
16276
16277 Renames the generated main program from @code{main} to @code{xxx}.
16278 This is useful in the case of some cross-building environments, where
16279 the actual main program is separate from the one generated
16280 by @code{gnatbind}.
16281
16282 @geindex -ws (gnatbind)
16283
16284 @geindex Warnings
16285
16286 @item @code{-ws}
16287
16288 Suppress all warning messages.
16289
16290 @geindex -we (gnatbind)
16291
16292 @item @code{-we}
16293
16294 Treat any warning messages as fatal errors.
16295
16296 @geindex -t (gnatbind)
16297
16298 @geindex Time stamp checks
16299 @geindex in binder
16300
16301 @geindex Binder consistency checks
16302
16303 @geindex Consistency checks
16304 @geindex in binder
16305
16306 @item @code{-t}
16307
16308 The binder performs a number of consistency checks including:
16309
16310
16311 @itemize *
16312
16313 @item
16314 Check that time stamps of a given source unit are consistent
16315
16316 @item
16317 Check that checksums of a given source unit are consistent
16318
16319 @item
16320 Check that consistent versions of @code{GNAT} were used for compilation
16321
16322 @item
16323 Check consistency of configuration pragmas as required
16324 @end itemize
16325
16326 Normally failure of such checks, in accordance with the consistency
16327 requirements of the Ada Reference Manual, causes error messages to be
16328 generated which abort the binder and prevent the output of a binder
16329 file and subsequent link to obtain an executable.
16330
16331 The @code{-t} switch converts these error messages
16332 into warnings, so that
16333 binding and linking can continue to completion even in the presence of such
16334 errors. The result may be a failed link (due to missing symbols), or a
16335 non-functional executable which has undefined semantics.
16336
16337 @cartouche
16338 @quotation Note
16339 This means that @code{-t} should be used only in unusual situations,
16340 with extreme care.
16341 @end quotation
16342 @end cartouche
16343 @end table
16344
16345 @node Elaboration Control,Output Control,Binder Error Message Control,Switches for gnatbind
16346 @anchor{gnat_ugn/building_executable_programs_with_gnat id37}@anchor{127}@anchor{gnat_ugn/building_executable_programs_with_gnat elaboration-control}@anchor{120}
16347 @subsubsection Elaboration Control
16348
16349
16350 The following switches provide additional control over the elaboration
16351 order. For further details see @ref{f,,Elaboration Order Handling in GNAT}.
16352
16353 @geindex -f (gnatbind)
16354
16355
16356 @table @asis
16357
16358 @item @code{-f@emph{elab-order}}
16359
16360 Force elaboration order.
16361
16362 @code{elab-order} should be the name of a "forced elaboration order file", that
16363 is, a text file containing library item names, one per line. A name of the
16364 form "some.unit%s" or "some.unit (spec)" denotes the spec of Some.Unit. A
16365 name of the form "some.unit%b" or "some.unit (body)" denotes the body of
16366 Some.Unit. Each pair of lines is taken to mean that there is an elaboration
16367 dependence of the second line on the first. For example, if the file
16368 contains:
16369
16370 @example
16371 this (spec)
16372 this (body)
16373 that (spec)
16374 that (body)
16375 @end example
16376
16377 then the spec of This will be elaborated before the body of This, and the
16378 body of This will be elaborated before the spec of That, and the spec of That
16379 will be elaborated before the body of That. The first and last of these three
16380 dependences are already required by Ada rules, so this file is really just
16381 forcing the body of This to be elaborated before the spec of That.
16382
16383 The given order must be consistent with Ada rules, or else @code{gnatbind} will
16384 give elaboration cycle errors. For example, if you say x (body) should be
16385 elaborated before x (spec), there will be a cycle, because Ada rules require
16386 x (spec) to be elaborated before x (body); you can't have the spec and body
16387 both elaborated before each other.
16388
16389 If you later add "with That;" to the body of This, there will be a cycle, in
16390 which case you should erase either "this (body)" or "that (spec)" from the
16391 above forced elaboration order file.
16392
16393 Blank lines and Ada-style comments are ignored. Unit names that do not exist
16394 in the program are ignored. Units in the GNAT predefined library are also
16395 ignored.
16396 @end table
16397
16398 @geindex -p (gnatbind)
16399
16400
16401 @table @asis
16402
16403 @item @code{-p}
16404
16405 Pessimistic elaboration order
16406
16407 This switch is only applicable to the pre-20.x legacy elaboration models.
16408 The post-20.x elaboration model uses a more informed approach of ordering
16409 the units.
16410
16411 Normally the binder attempts to choose an elaboration order that is likely to
16412 minimize the likelihood of an elaboration order error resulting in raising a
16413 @code{Program_Error} exception. This switch reverses the action of the binder,
16414 and requests that it deliberately choose an order that is likely to maximize
16415 the likelihood of an elaboration error. This is useful in ensuring
16416 portability and avoiding dependence on accidental fortuitous elaboration
16417 ordering.
16418
16419 Normally it only makes sense to use the @code{-p} switch if dynamic
16420 elaboration checking is used (@code{-gnatE} switch used for compilation).
16421 This is because in the default static elaboration mode, all necessary
16422 @code{Elaborate} and @code{Elaborate_All} pragmas are implicitly inserted.
16423 These implicit pragmas are still respected by the binder in @code{-p}
16424 mode, so a safe elaboration order is assured.
16425
16426 Note that @code{-p} is not intended for production use; it is more for
16427 debugging/experimental use.
16428 @end table
16429
16430 @node Output Control,Dynamic Allocation Control,Elaboration Control,Switches for gnatbind
16431 @anchor{gnat_ugn/building_executable_programs_with_gnat output-control}@anchor{128}@anchor{gnat_ugn/building_executable_programs_with_gnat id38}@anchor{129}
16432 @subsubsection Output Control
16433
16434
16435 The following switches allow additional control over the output
16436 generated by the binder.
16437
16438 @quotation
16439
16440 @geindex -c (gnatbind)
16441 @end quotation
16442
16443
16444 @table @asis
16445
16446 @item @code{-c}
16447
16448 Check only. Do not generate the binder output file. In this mode the
16449 binder performs all error checks but does not generate an output file.
16450
16451 @geindex -e (gnatbind)
16452
16453 @item @code{-e}
16454
16455 Output complete list of elaboration-order dependencies, showing the
16456 reason for each dependency. This output can be rather extensive but may
16457 be useful in diagnosing problems with elaboration order. The output is
16458 written to @code{stdout}.
16459
16460 @geindex -h (gnatbind)
16461
16462 @item @code{-h}
16463
16464 Output usage information. The output is written to @code{stdout}.
16465
16466 @geindex -K (gnatbind)
16467
16468 @item @code{-K}
16469
16470 Output linker options to @code{stdout}. Includes library search paths,
16471 contents of pragmas Ident and Linker_Options, and libraries added
16472 by @code{gnatbind}.
16473
16474 @geindex -l (gnatbind)
16475
16476 @item @code{-l}
16477
16478 Output chosen elaboration order. The output is written to @code{stdout}.
16479
16480 @geindex -O (gnatbind)
16481
16482 @item @code{-O}
16483
16484 Output full names of all the object files that must be linked to provide
16485 the Ada component of the program. The output is written to @code{stdout}.
16486 This list includes the files explicitly supplied and referenced by the user
16487 as well as implicitly referenced run-time unit files. The latter are
16488 omitted if the corresponding units reside in shared libraries. The
16489 directory names for the run-time units depend on the system configuration.
16490
16491 @geindex -o (gnatbind)
16492
16493 @item @code{-o @emph{file}}
16494
16495 Set name of output file to @code{file} instead of the normal
16496 @code{b~`mainprog}.adb` default. Note that @code{file} denote the Ada
16497 binder generated body filename.
16498 Note that if this option is used, then linking must be done manually.
16499 It is not possible to use gnatlink in this case, since it cannot locate
16500 the binder file.
16501
16502 @geindex -r (gnatbind)
16503
16504 @item @code{-r}
16505
16506 Generate list of @code{pragma Restrictions} that could be applied to
16507 the current unit. This is useful for code audit purposes, and also may
16508 be used to improve code generation in some cases.
16509 @end table
16510
16511 @node Dynamic Allocation Control,Binding with Non-Ada Main Programs,Output Control,Switches for gnatbind
16512 @anchor{gnat_ugn/building_executable_programs_with_gnat dynamic-allocation-control}@anchor{121}@anchor{gnat_ugn/building_executable_programs_with_gnat id39}@anchor{12a}
16513 @subsubsection Dynamic Allocation Control
16514
16515
16516 The heap control switches -- @code{-H32} and @code{-H64} --
16517 determine whether dynamic allocation uses 32-bit or 64-bit memory.
16518 They only affect compiler-generated allocations via @code{__gnat_malloc};
16519 explicit calls to @code{malloc} and related functions from the C
16520 run-time library are unaffected.
16521
16522
16523 @table @asis
16524
16525 @item @code{-H32}
16526
16527 Allocate memory on 32-bit heap
16528
16529 @item @code{-H64}
16530
16531 Allocate memory on 64-bit heap. This is the default
16532 unless explicitly overridden by a @code{'Size} clause on the access type.
16533 @end table
16534
16535 These switches are only effective on VMS platforms.
16536
16537 @node Binding with Non-Ada Main Programs,Binding Programs with No Main Subprogram,Dynamic Allocation Control,Switches for gnatbind
16538 @anchor{gnat_ugn/building_executable_programs_with_gnat binding-with-non-ada-main-programs}@anchor{b4}@anchor{gnat_ugn/building_executable_programs_with_gnat id40}@anchor{12b}
16539 @subsubsection Binding with Non-Ada Main Programs
16540
16541
16542 The description so far has assumed that the main
16543 program is in Ada, and that the task of the binder is to generate a
16544 corresponding function @code{main} that invokes this Ada main
16545 program. GNAT also supports the building of executable programs where
16546 the main program is not in Ada, but some of the called routines are
16547 written in Ada and compiled using GNAT (@ref{44,,Mixed Language Programming}).
16548 The following switch is used in this situation:
16549
16550 @quotation
16551
16552 @geindex -n (gnatbind)
16553 @end quotation
16554
16555
16556 @table @asis
16557
16558 @item @code{-n}
16559
16560 No main program. The main program is not in Ada.
16561 @end table
16562
16563 In this case, most of the functions of the binder are still required,
16564 but instead of generating a main program, the binder generates a file
16565 containing the following callable routines:
16566
16567 @quotation
16568
16569 @geindex adainit
16570
16571
16572 @table @asis
16573
16574 @item @code{adainit}
16575
16576 You must call this routine to initialize the Ada part of the program by
16577 calling the necessary elaboration routines. A call to @code{adainit} is
16578 required before the first call to an Ada subprogram.
16579
16580 Note that it is assumed that the basic execution environment must be setup
16581 to be appropriate for Ada execution at the point where the first Ada
16582 subprogram is called. In particular, if the Ada code will do any
16583 floating-point operations, then the FPU must be setup in an appropriate
16584 manner. For the case of the x86, for example, full precision mode is
16585 required. The procedure GNAT.Float_Control.Reset may be used to ensure
16586 that the FPU is in the right state.
16587 @end table
16588
16589 @geindex adafinal
16590
16591
16592 @table @asis
16593
16594 @item @code{adafinal}
16595
16596 You must call this routine to perform any library-level finalization
16597 required by the Ada subprograms. A call to @code{adafinal} is required
16598 after the last call to an Ada subprogram, and before the program
16599 terminates.
16600 @end table
16601 @end quotation
16602
16603 @geindex -n (gnatbind)
16604
16605 @geindex Binder
16606 @geindex multiple input files
16607
16608 If the @code{-n} switch
16609 is given, more than one ALI file may appear on
16610 the command line for @code{gnatbind}. The normal @code{closure}
16611 calculation is performed for each of the specified units. Calculating
16612 the closure means finding out the set of units involved by tracing
16613 @emph{with} references. The reason it is necessary to be able to
16614 specify more than one ALI file is that a given program may invoke two or
16615 more quite separate groups of Ada units.
16616
16617 The binder takes the name of its output file from the last specified ALI
16618 file, unless overridden by the use of the @code{-o file}.
16619
16620 @geindex -o (gnatbind)
16621
16622 The output is an Ada unit in source form that can be compiled with GNAT.
16623 This compilation occurs automatically as part of the @code{gnatlink}
16624 processing.
16625
16626 Currently the GNAT run-time requires a FPU using 80 bits mode
16627 precision. Under targets where this is not the default it is required to
16628 call GNAT.Float_Control.Reset before using floating point numbers (this
16629 include float computation, float input and output) in the Ada code. A
16630 side effect is that this could be the wrong mode for the foreign code
16631 where floating point computation could be broken after this call.
16632
16633 @node Binding Programs with No Main Subprogram,,Binding with Non-Ada Main Programs,Switches for gnatbind
16634 @anchor{gnat_ugn/building_executable_programs_with_gnat binding-programs-with-no-main-subprogram}@anchor{12c}@anchor{gnat_ugn/building_executable_programs_with_gnat id41}@anchor{12d}
16635 @subsubsection Binding Programs with No Main Subprogram
16636
16637
16638 It is possible to have an Ada program which does not have a main
16639 subprogram. This program will call the elaboration routines of all the
16640 packages, then the finalization routines.
16641
16642 The following switch is used to bind programs organized in this manner:
16643
16644 @quotation
16645
16646 @geindex -z (gnatbind)
16647 @end quotation
16648
16649
16650 @table @asis
16651
16652 @item @code{-z}
16653
16654 Normally the binder checks that the unit name given on the command line
16655 corresponds to a suitable main subprogram. When this switch is used,
16656 a list of ALI files can be given, and the execution of the program
16657 consists of elaboration of these units in an appropriate order. Note
16658 that the default wide character encoding method for standard Text_IO
16659 files is always set to Brackets if this switch is set (you can use
16660 the binder switch
16661 @code{-Wx} to override this default).
16662 @end table
16663
16664 @node Command-Line Access,Search Paths for gnatbind,Switches for gnatbind,Binding with gnatbind
16665 @anchor{gnat_ugn/building_executable_programs_with_gnat id42}@anchor{12e}@anchor{gnat_ugn/building_executable_programs_with_gnat command-line-access}@anchor{12f}
16666 @subsection Command-Line Access
16667
16668
16669 The package @code{Ada.Command_Line} provides access to the command-line
16670 arguments and program name. In order for this interface to operate
16671 correctly, the two variables
16672
16673 @example
16674 int gnat_argc;
16675 char **gnat_argv;
16676 @end example
16677
16678 @geindex gnat_argv
16679
16680 @geindex gnat_argc
16681
16682 are declared in one of the GNAT library routines. These variables must
16683 be set from the actual @code{argc} and @code{argv} values passed to the
16684 main program. With no @emph{n} present, @code{gnatbind}
16685 generates the C main program to automatically set these variables.
16686 If the @emph{n} switch is used, there is no automatic way to
16687 set these variables. If they are not set, the procedures in
16688 @code{Ada.Command_Line} will not be available, and any attempt to use
16689 them will raise @code{Constraint_Error}. If command line access is
16690 required, your main program must set @code{gnat_argc} and
16691 @code{gnat_argv} from the @code{argc} and @code{argv} values passed to
16692 it.
16693
16694 @node Search Paths for gnatbind,Examples of gnatbind Usage,Command-Line Access,Binding with gnatbind
16695 @anchor{gnat_ugn/building_executable_programs_with_gnat search-paths-for-gnatbind}@anchor{8c}@anchor{gnat_ugn/building_executable_programs_with_gnat id43}@anchor{130}
16696 @subsection Search Paths for @code{gnatbind}
16697
16698
16699 The binder takes the name of an ALI file as its argument and needs to
16700 locate source files as well as other ALI files to verify object consistency.
16701
16702 For source files, it follows exactly the same search rules as @code{gcc}
16703 (see @ref{89,,Search Paths and the Run-Time Library (RTL)}). For ALI files the
16704 directories searched are:
16705
16706
16707 @itemize *
16708
16709 @item
16710 The directory containing the ALI file named in the command line, unless
16711 the switch @code{-I-} is specified.
16712
16713 @item
16714 All directories specified by @code{-I}
16715 switches on the @code{gnatbind}
16716 command line, in the order given.
16717
16718 @geindex ADA_PRJ_OBJECTS_FILE
16719
16720 @item
16721 Each of the directories listed in the text file whose name is given
16722 by the
16723 @geindex ADA_PRJ_OBJECTS_FILE
16724 @geindex environment variable; ADA_PRJ_OBJECTS_FILE
16725 @code{ADA_PRJ_OBJECTS_FILE} environment variable.
16726
16727 @geindex ADA_PRJ_OBJECTS_FILE
16728 @geindex environment variable; ADA_PRJ_OBJECTS_FILE
16729 @code{ADA_PRJ_OBJECTS_FILE} is normally set by gnatmake or by the gnat
16730 driver when project files are used. It should not normally be set
16731 by other means.
16732
16733 @geindex ADA_OBJECTS_PATH
16734
16735 @item
16736 Each of the directories listed in the value of the
16737 @geindex ADA_OBJECTS_PATH
16738 @geindex environment variable; ADA_OBJECTS_PATH
16739 @code{ADA_OBJECTS_PATH} environment variable.
16740 Construct this value
16741 exactly as the
16742 @geindex PATH
16743 @geindex environment variable; PATH
16744 @code{PATH} environment variable: a list of directory
16745 names separated by colons (semicolons when working with the NT version
16746 of GNAT).
16747
16748 @item
16749 The content of the @code{ada_object_path} file which is part of the GNAT
16750 installation tree and is used to store standard libraries such as the
16751 GNAT Run-Time Library (RTL) unless the switch @code{-nostdlib} is
16752 specified. See @ref{87,,Installing a library}
16753 @end itemize
16754
16755 @geindex -I (gnatbind)
16756
16757 @geindex -aI (gnatbind)
16758
16759 @geindex -aO (gnatbind)
16760
16761 In the binder the switch @code{-I}
16762 is used to specify both source and
16763 library file paths. Use @code{-aI}
16764 instead if you want to specify
16765 source paths only, and @code{-aO}
16766 if you want to specify library paths
16767 only. This means that for the binder
16768 @code{-I@emph{dir}} is equivalent to
16769 @code{-aI@emph{dir}}
16770 @code{-aO`@emph{dir}}.
16771 The binder generates the bind file (a C language source file) in the
16772 current working directory.
16773
16774 @geindex Ada
16775
16776 @geindex System
16777
16778 @geindex Interfaces
16779
16780 @geindex GNAT
16781
16782 The packages @code{Ada}, @code{System}, and @code{Interfaces} and their
16783 children make up the GNAT Run-Time Library, together with the package
16784 GNAT and its children, which contain a set of useful additional
16785 library functions provided by GNAT. The sources for these units are
16786 needed by the compiler and are kept together in one directory. The ALI
16787 files and object files generated by compiling the RTL are needed by the
16788 binder and the linker and are kept together in one directory, typically
16789 different from the directory containing the sources. In a normal
16790 installation, you need not specify these directory names when compiling
16791 or binding. Either the environment variables or the built-in defaults
16792 cause these files to be found.
16793
16794 Besides simplifying access to the RTL, a major use of search paths is
16795 in compiling sources from multiple directories. This can make
16796 development environments much more flexible.
16797
16798 @node Examples of gnatbind Usage,,Search Paths for gnatbind,Binding with gnatbind
16799 @anchor{gnat_ugn/building_executable_programs_with_gnat id44}@anchor{131}@anchor{gnat_ugn/building_executable_programs_with_gnat examples-of-gnatbind-usage}@anchor{132}
16800 @subsection Examples of @code{gnatbind} Usage
16801
16802
16803 Here are some examples of @code{gnatbind} invovations:
16804
16805 @quotation
16806
16807 @example
16808 gnatbind hello
16809 @end example
16810
16811 The main program @code{Hello} (source program in @code{hello.adb}) is
16812 bound using the standard switch settings. The generated main program is
16813 @code{b~hello.adb}. This is the normal, default use of the binder.
16814
16815 @example
16816 gnatbind hello -o mainprog.adb
16817 @end example
16818
16819 The main program @code{Hello} (source program in @code{hello.adb}) is
16820 bound using the standard switch settings. The generated main program is
16821 @code{mainprog.adb} with the associated spec in
16822 @code{mainprog.ads}. Note that you must specify the body here not the
16823 spec. Note that if this option is used, then linking must be done manually,
16824 since gnatlink will not be able to find the generated file.
16825 @end quotation
16826
16827 @node Linking with gnatlink,Using the GNU make Utility,Binding with gnatbind,Building Executable Programs with GNAT
16828 @anchor{gnat_ugn/building_executable_programs_with_gnat id45}@anchor{133}@anchor{gnat_ugn/building_executable_programs_with_gnat linking-with-gnatlink}@anchor{1e}
16829 @section Linking with @code{gnatlink}
16830
16831
16832 @geindex gnatlink
16833
16834 This chapter discusses @code{gnatlink}, a tool that links
16835 an Ada program and builds an executable file. This utility
16836 invokes the system linker (via the @code{gcc} command)
16837 with a correct list of object files and library references.
16838 @code{gnatlink} automatically determines the list of files and
16839 references for the Ada part of a program. It uses the binder file
16840 generated by the @code{gnatbind} to determine this list.
16841
16842 @menu
16843 * Running gnatlink::
16844 * Switches for gnatlink::
16845
16846 @end menu
16847
16848 @node Running gnatlink,Switches for gnatlink,,Linking with gnatlink
16849 @anchor{gnat_ugn/building_executable_programs_with_gnat id46}@anchor{134}@anchor{gnat_ugn/building_executable_programs_with_gnat running-gnatlink}@anchor{135}
16850 @subsection Running @code{gnatlink}
16851
16852
16853 The form of the @code{gnatlink} command is
16854
16855 @example
16856 $ gnatlink [ switches ] mainprog [.ali]
16857 [ non-Ada objects ] [ linker options ]
16858 @end example
16859
16860 The arguments of @code{gnatlink} (switches, main @code{ALI} file,
16861 non-Ada objects
16862 or linker options) may be in any order, provided that no non-Ada object may
16863 be mistaken for a main @code{ALI} file.
16864 Any file name @code{F} without the @code{.ali}
16865 extension will be taken as the main @code{ALI} file if a file exists
16866 whose name is the concatenation of @code{F} and @code{.ali}.
16867
16868 @code{mainprog.ali} references the ALI file of the main program.
16869 The @code{.ali} extension of this file can be omitted. From this
16870 reference, @code{gnatlink} locates the corresponding binder file
16871 @code{b~mainprog.adb} and, using the information in this file along
16872 with the list of non-Ada objects and linker options, constructs a
16873 linker command file to create the executable.
16874
16875 The arguments other than the @code{gnatlink} switches and the main
16876 @code{ALI} file are passed to the linker uninterpreted.
16877 They typically include the names of
16878 object files for units written in other languages than Ada and any library
16879 references required to resolve references in any of these foreign language
16880 units, or in @code{Import} pragmas in any Ada units.
16881
16882 @code{linker options} is an optional list of linker specific
16883 switches.
16884 The default linker called by gnatlink is @code{gcc} which in
16885 turn calls the appropriate system linker.
16886
16887 One useful option for the linker is @code{-s}: it reduces the size of the
16888 executable by removing all symbol table and relocation information from the
16889 executable.
16890
16891 Standard options for the linker such as @code{-lmy_lib} or
16892 @code{-Ldir} can be added as is.
16893 For options that are not recognized by
16894 @code{gcc} as linker options, use the @code{gcc} switches
16895 @code{-Xlinker} or @code{-Wl,}.
16896
16897 Refer to the GCC documentation for
16898 details.
16899
16900 Here is an example showing how to generate a linker map:
16901
16902 @example
16903 $ gnatlink my_prog -Wl,-Map,MAPFILE
16904 @end example
16905
16906 Using @code{linker options} it is possible to set the program stack and
16907 heap size.
16908 See @ref{136,,Setting Stack Size from gnatlink} and
16909 @ref{137,,Setting Heap Size from gnatlink}.
16910
16911 @code{gnatlink} determines the list of objects required by the Ada
16912 program and prepends them to the list of objects passed to the linker.
16913 @code{gnatlink} also gathers any arguments set by the use of
16914 @code{pragma Linker_Options} and adds them to the list of arguments
16915 presented to the linker.
16916
16917 @node Switches for gnatlink,,Running gnatlink,Linking with gnatlink
16918 @anchor{gnat_ugn/building_executable_programs_with_gnat id47}@anchor{138}@anchor{gnat_ugn/building_executable_programs_with_gnat switches-for-gnatlink}@anchor{139}
16919 @subsection Switches for @code{gnatlink}
16920
16921
16922 The following switches are available with the @code{gnatlink} utility:
16923
16924 @geindex --version (gnatlink)
16925
16926
16927 @table @asis
16928
16929 @item @code{--version}
16930
16931 Display Copyright and version, then exit disregarding all other options.
16932 @end table
16933
16934 @geindex --help (gnatlink)
16935
16936
16937 @table @asis
16938
16939 @item @code{--help}
16940
16941 If @code{--version} was not used, display usage, then exit disregarding
16942 all other options.
16943 @end table
16944
16945 @geindex Command line length
16946
16947 @geindex -f (gnatlink)
16948
16949
16950 @table @asis
16951
16952 @item @code{-f}
16953
16954 On some targets, the command line length is limited, and @code{gnatlink}
16955 will generate a separate file for the linker if the list of object files
16956 is too long.
16957 The @code{-f} switch forces this file
16958 to be generated even if
16959 the limit is not exceeded. This is useful in some cases to deal with
16960 special situations where the command line length is exceeded.
16961 @end table
16962
16963 @geindex Debugging information
16964 @geindex including
16965
16966 @geindex -g (gnatlink)
16967
16968
16969 @table @asis
16970
16971 @item @code{-g}
16972
16973 The option to include debugging information causes the Ada bind file (in
16974 other words, @code{b~mainprog.adb}) to be compiled with @code{-g}.
16975 In addition, the binder does not delete the @code{b~mainprog.adb},
16976 @code{b~mainprog.o} and @code{b~mainprog.ali} files.
16977 Without @code{-g}, the binder removes these files by default.
16978 @end table
16979
16980 @geindex -n (gnatlink)
16981
16982
16983 @table @asis
16984
16985 @item @code{-n}
16986
16987 Do not compile the file generated by the binder. This may be used when
16988 a link is rerun with different options, but there is no need to recompile
16989 the binder file.
16990 @end table
16991
16992 @geindex -v (gnatlink)
16993
16994
16995 @table @asis
16996
16997 @item @code{-v}
16998
16999 Verbose mode. Causes additional information to be output, including a full
17000 list of the included object files.
17001 This switch option is most useful when you want
17002 to see what set of object files are being used in the link step.
17003 @end table
17004
17005 @geindex -v -v (gnatlink)
17006
17007
17008 @table @asis
17009
17010 @item @code{-v -v}
17011
17012 Very verbose mode. Requests that the compiler operate in verbose mode when
17013 it compiles the binder file, and that the system linker run in verbose mode.
17014 @end table
17015
17016 @geindex -o (gnatlink)
17017
17018
17019 @table @asis
17020
17021 @item @code{-o @emph{exec-name}}
17022
17023 @code{exec-name} specifies an alternate name for the generated
17024 executable program. If this switch is omitted, the executable has the same
17025 name as the main unit. For example, @code{gnatlink try.ali} creates
17026 an executable called @code{try}.
17027 @end table
17028
17029 @geindex -B (gnatlink)
17030
17031
17032 @table @asis
17033
17034 @item @code{-B@emph{dir}}
17035
17036 Load compiler executables (for example, @code{gnat1}, the Ada compiler)
17037 from @code{dir} instead of the default location. Only use this switch
17038 when multiple versions of the GNAT compiler are available.
17039 See the @code{Directory Options} section in @cite{The_GNU_Compiler_Collection}
17040 for further details. You would normally use the @code{-b} or
17041 @code{-V} switch instead.
17042 @end table
17043
17044 @geindex -M (gnatlink)
17045
17046
17047 @table @asis
17048
17049 @item @code{-M}
17050
17051 When linking an executable, create a map file. The name of the map file
17052 has the same name as the executable with extension ".map".
17053 @end table
17054
17055 @geindex -M= (gnatlink)
17056
17057
17058 @table @asis
17059
17060 @item @code{-M=@emph{mapfile}}
17061
17062 When linking an executable, create a map file. The name of the map file is
17063 @code{mapfile}.
17064 @end table
17065
17066 @geindex --GCC=compiler_name (gnatlink)
17067
17068
17069 @table @asis
17070
17071 @item @code{--GCC=@emph{compiler_name}}
17072
17073 Program used for compiling the binder file. The default is
17074 @code{gcc}. You need to use quotes around @code{compiler_name} if
17075 @code{compiler_name} contains spaces or other separator characters.
17076 As an example @code{--GCC="foo -x -y"} will instruct @code{gnatlink} to
17077 use @code{foo -x -y} as your compiler. Note that switch @code{-c} is always
17078 inserted after your command name. Thus in the above example the compiler
17079 command that will be used by @code{gnatlink} will be @code{foo -c -x -y}.
17080 A limitation of this syntax is that the name and path name of the executable
17081 itself must not include any embedded spaces. If the compiler executable is
17082 different from the default one (gcc or <prefix>-gcc), then the back-end
17083 switches in the ALI file are not used to compile the binder generated source.
17084 For example, this is the case with @code{--GCC="foo -x -y"}. But the back end
17085 switches will be used for @code{--GCC="gcc -gnatv"}. If several
17086 @code{--GCC=compiler_name} are used, only the last @code{compiler_name}
17087 is taken into account. However, all the additional switches are also taken
17088 into account. Thus,
17089 @code{--GCC="foo -x -y" --GCC="bar -z -t"} is equivalent to
17090 @code{--GCC="bar -x -y -z -t"}.
17091 @end table
17092
17093 @geindex --LINK= (gnatlink)
17094
17095
17096 @table @asis
17097
17098 @item @code{--LINK=@emph{name}}
17099
17100 @code{name} is the name of the linker to be invoked. This is especially
17101 useful in mixed language programs since languages such as C++ require
17102 their own linker to be used. When this switch is omitted, the default
17103 name for the linker is @code{gcc}. When this switch is used, the
17104 specified linker is called instead of @code{gcc} with exactly the same
17105 parameters that would have been passed to @code{gcc} so if the desired
17106 linker requires different parameters it is necessary to use a wrapper
17107 script that massages the parameters before invoking the real linker. It
17108 may be useful to control the exact invocation by using the verbose
17109 switch.
17110 @end table
17111
17112 @node Using the GNU make Utility,,Linking with gnatlink,Building Executable Programs with GNAT
17113 @anchor{gnat_ugn/building_executable_programs_with_gnat using-the-gnu-make-utility}@anchor{1f}@anchor{gnat_ugn/building_executable_programs_with_gnat id48}@anchor{13a}
17114 @section Using the GNU @code{make} Utility
17115
17116
17117 @geindex make (GNU)
17118 @geindex GNU make
17119
17120 This chapter offers some examples of makefiles that solve specific
17121 problems. It does not explain how to write a makefile, nor does it try to replace the
17122 @code{gnatmake} utility (@ref{1b,,Building with gnatmake}).
17123
17124 All the examples in this section are specific to the GNU version of
17125 make. Although @code{make} is a standard utility, and the basic language
17126 is the same, these examples use some advanced features found only in
17127 @code{GNU make}.
17128
17129 @menu
17130 * Using gnatmake in a Makefile::
17131 * Automatically Creating a List of Directories::
17132 * Generating the Command Line Switches::
17133 * Overcoming Command Line Length Limits::
17134
17135 @end menu
17136
17137 @node Using gnatmake in a Makefile,Automatically Creating a List of Directories,,Using the GNU make Utility
17138 @anchor{gnat_ugn/building_executable_programs_with_gnat using-gnatmake-in-a-makefile}@anchor{13b}@anchor{gnat_ugn/building_executable_programs_with_gnat id49}@anchor{13c}
17139 @subsection Using gnatmake in a Makefile
17140
17141
17142 @c index makefile (GNU make)
17143
17144 Complex project organizations can be handled in a very powerful way by
17145 using GNU make combined with gnatmake. For instance, here is a Makefile
17146 which allows you to build each subsystem of a big project into a separate
17147 shared library. Such a makefile allows you to significantly reduce the link
17148 time of very big applications while maintaining full coherence at
17149 each step of the build process.
17150
17151 The list of dependencies are handled automatically by
17152 @code{gnatmake}. The Makefile is simply used to call gnatmake in each of
17153 the appropriate directories.
17154
17155 Note that you should also read the example on how to automatically
17156 create the list of directories
17157 (@ref{13d,,Automatically Creating a List of Directories})
17158 which might help you in case your project has a lot of subdirectories.
17159
17160 @example
17161 ## This Makefile is intended to be used with the following directory
17162 ## configuration:
17163 ## - The sources are split into a series of csc (computer software components)
17164 ## Each of these csc is put in its own directory.
17165 ## Their name are referenced by the directory names.
17166 ## They will be compiled into shared library (although this would also work
17167 ## with static libraries
17168 ## - The main program (and possibly other packages that do not belong to any
17169 ## csc is put in the top level directory (where the Makefile is).
17170 ## toplevel_dir __ first_csc (sources) __ lib (will contain the library)
17171 ## \\_ second_csc (sources) __ lib (will contain the library)
17172 ## \\_ ...
17173 ## Although this Makefile is build for shared library, it is easy to modify
17174 ## to build partial link objects instead (modify the lines with -shared and
17175 ## gnatlink below)
17176 ##
17177 ## With this makefile, you can change any file in the system or add any new
17178 ## file, and everything will be recompiled correctly (only the relevant shared
17179 ## objects will be recompiled, and the main program will be re-linked).
17180
17181 # The list of computer software component for your project. This might be
17182 # generated automatically.
17183 CSC_LIST=aa bb cc
17184
17185 # Name of the main program (no extension)
17186 MAIN=main
17187
17188 # If we need to build objects with -fPIC, uncomment the following line
17189 #NEED_FPIC=-fPIC
17190
17191 # The following variable should give the directory containing libgnat.so
17192 # You can get this directory through 'gnatls -v'. This is usually the last
17193 # directory in the Object_Path.
17194 GLIB=...
17195
17196 # The directories for the libraries
17197 # (This macro expands the list of CSC to the list of shared libraries, you
17198 # could simply use the expanded form:
17199 # LIB_DIR=aa/lib/libaa.so bb/lib/libbb.so cc/lib/libcc.so
17200 LIB_DIR=$@{foreach dir,$@{CSC_LIST@},$@{dir@}/lib/lib$@{dir@}.so@}
17201
17202 $@{MAIN@}: objects $@{LIB_DIR@}
17203 gnatbind $@{MAIN@} $@{CSC_LIST:%=-aO%/lib@} -shared
17204 gnatlink $@{MAIN@} $@{CSC_LIST:%=-l%@}
17205
17206 objects::
17207 # recompile the sources
17208 gnatmake -c -i $@{MAIN@}.adb $@{NEED_FPIC@} $@{CSC_LIST:%=-I%@}
17209
17210 # Note: In a future version of GNAT, the following commands will be simplified
17211 # by a new tool, gnatmlib
17212 $@{LIB_DIR@}:
17213 mkdir -p $@{dir $@@ @}
17214 cd $@{dir $@@ @} && gcc -shared -o $@{notdir $@@ @} ../*.o -L$@{GLIB@} -lgnat
17215 cd $@{dir $@@ @} && cp -f ../*.ali .
17216
17217 # The dependencies for the modules
17218 # Note that we have to force the expansion of *.o, since in some cases
17219 # make won't be able to do it itself.
17220 aa/lib/libaa.so: $@{wildcard aa/*.o@}
17221 bb/lib/libbb.so: $@{wildcard bb/*.o@}
17222 cc/lib/libcc.so: $@{wildcard cc/*.o@}
17223
17224 # Make sure all of the shared libraries are in the path before starting the
17225 # program
17226 run::
17227 LD_LIBRARY_PATH=`pwd`/aa/lib:`pwd`/bb/lib:`pwd`/cc/lib ./$@{MAIN@}
17228
17229 clean::
17230 $@{RM@} -rf $@{CSC_LIST:%=%/lib@}
17231 $@{RM@} $@{CSC_LIST:%=%/*.ali@}
17232 $@{RM@} $@{CSC_LIST:%=%/*.o@}
17233 $@{RM@} *.o *.ali $@{MAIN@}
17234 @end example
17235
17236 @node Automatically Creating a List of Directories,Generating the Command Line Switches,Using gnatmake in a Makefile,Using the GNU make Utility
17237 @anchor{gnat_ugn/building_executable_programs_with_gnat id50}@anchor{13e}@anchor{gnat_ugn/building_executable_programs_with_gnat automatically-creating-a-list-of-directories}@anchor{13d}
17238 @subsection Automatically Creating a List of Directories
17239
17240
17241 In most makefiles, you will have to specify a list of directories, and
17242 store it in a variable. For small projects, it is often easier to
17243 specify each of them by hand, since you then have full control over what
17244 is the proper order for these directories, which ones should be
17245 included.
17246
17247 However, in larger projects, which might involve hundreds of
17248 subdirectories, it might be more convenient to generate this list
17249 automatically.
17250
17251 The example below presents two methods. The first one, although less
17252 general, gives you more control over the list. It involves wildcard
17253 characters, that are automatically expanded by @code{make}. Its
17254 shortcoming is that you need to explicitly specify some of the
17255 organization of your project, such as for instance the directory tree
17256 depth, whether some directories are found in a separate tree, etc.
17257
17258 The second method is the most general one. It requires an external
17259 program, called @code{find}, which is standard on all Unix systems. All
17260 the directories found under a given root directory will be added to the
17261 list.
17262
17263 @example
17264 # The examples below are based on the following directory hierarchy:
17265 # All the directories can contain any number of files
17266 # ROOT_DIRECTORY -> a -> aa -> aaa
17267 # -> ab
17268 # -> ac
17269 # -> b -> ba -> baa
17270 # -> bb
17271 # -> bc
17272 # This Makefile creates a variable called DIRS, that can be reused any time
17273 # you need this list (see the other examples in this section)
17274
17275 # The root of your project's directory hierarchy
17276 ROOT_DIRECTORY=.
17277
17278 ####
17279 # First method: specify explicitly the list of directories
17280 # This allows you to specify any subset of all the directories you need.
17281 ####
17282
17283 DIRS := a/aa/ a/ab/ b/ba/
17284
17285 ####
17286 # Second method: use wildcards
17287 # Note that the argument(s) to wildcard below should end with a '/'.
17288 # Since wildcards also return file names, we have to filter them out
17289 # to avoid duplicate directory names.
17290 # We thus use make's `@w{`}dir`@w{`} and `@w{`}sort`@w{`} functions.
17291 # It sets DIRs to the following value (note that the directories aaa and baa
17292 # are not given, unless you change the arguments to wildcard).
17293 # DIRS= ./a/a/ ./b/ ./a/aa/ ./a/ab/ ./a/ac/ ./b/ba/ ./b/bb/ ./b/bc/
17294 ####
17295
17296 DIRS := $@{sort $@{dir $@{wildcard $@{ROOT_DIRECTORY@}/*/
17297 $@{ROOT_DIRECTORY@}/*/*/@}@}@}
17298
17299 ####
17300 # Third method: use an external program
17301 # This command is much faster if run on local disks, avoiding NFS slowdowns.
17302 # This is the most complete command: it sets DIRs to the following value:
17303 # DIRS= ./a ./a/aa ./a/aa/aaa ./a/ab ./a/ac ./b ./b/ba ./b/ba/baa ./b/bb ./b/bc
17304 ####
17305
17306 DIRS := $@{shell find $@{ROOT_DIRECTORY@} -type d -print@}
17307 @end example
17308
17309 @node Generating the Command Line Switches,Overcoming Command Line Length Limits,Automatically Creating a List of Directories,Using the GNU make Utility
17310 @anchor{gnat_ugn/building_executable_programs_with_gnat id51}@anchor{13f}@anchor{gnat_ugn/building_executable_programs_with_gnat generating-the-command-line-switches}@anchor{140}
17311 @subsection Generating the Command Line Switches
17312
17313
17314 Once you have created the list of directories as explained in the
17315 previous section (@ref{13d,,Automatically Creating a List of Directories}),
17316 you can easily generate the command line arguments to pass to gnatmake.
17317
17318 For the sake of completeness, this example assumes that the source path
17319 is not the same as the object path, and that you have two separate lists
17320 of directories.
17321
17322 @example
17323 # see "Automatically creating a list of directories" to create
17324 # these variables
17325 SOURCE_DIRS=
17326 OBJECT_DIRS=
17327
17328 GNATMAKE_SWITCHES := $@{patsubst %,-aI%,$@{SOURCE_DIRS@}@}
17329 GNATMAKE_SWITCHES += $@{patsubst %,-aO%,$@{OBJECT_DIRS@}@}
17330
17331 all:
17332 gnatmake $@{GNATMAKE_SWITCHES@} main_unit
17333 @end example
17334
17335 @node Overcoming Command Line Length Limits,,Generating the Command Line Switches,Using the GNU make Utility
17336 @anchor{gnat_ugn/building_executable_programs_with_gnat overcoming-command-line-length-limits}@anchor{141}@anchor{gnat_ugn/building_executable_programs_with_gnat id52}@anchor{142}
17337 @subsection Overcoming Command Line Length Limits
17338
17339
17340 One problem that might be encountered on big projects is that many
17341 operating systems limit the length of the command line. It is thus hard to give
17342 gnatmake the list of source and object directories.
17343
17344 This example shows how you can set up environment variables, which will
17345 make @code{gnatmake} behave exactly as if the directories had been
17346 specified on the command line, but have a much higher length limit (or
17347 even none on most systems).
17348
17349 It assumes that you have created a list of directories in your Makefile,
17350 using one of the methods presented in
17351 @ref{13d,,Automatically Creating a List of Directories}.
17352 For the sake of completeness, we assume that the object
17353 path (where the ALI files are found) is different from the sources patch.
17354
17355 Note a small trick in the Makefile below: for efficiency reasons, we
17356 create two temporary variables (SOURCE_LIST and OBJECT_LIST), that are
17357 expanded immediately by @code{make}. This way we overcome the standard
17358 make behavior which is to expand the variables only when they are
17359 actually used.
17360
17361 On Windows, if you are using the standard Windows command shell, you must
17362 replace colons with semicolons in the assignments to these variables.
17363
17364 @example
17365 # In this example, we create both ADA_INCLUDE_PATH and ADA_OBJECTS_PATH.
17366 # This is the same thing as putting the -I arguments on the command line.
17367 # (the equivalent of using -aI on the command line would be to define
17368 # only ADA_INCLUDE_PATH, the equivalent of -aO is ADA_OBJECTS_PATH).
17369 # You can of course have different values for these variables.
17370 #
17371 # Note also that we need to keep the previous values of these variables, since
17372 # they might have been set before running 'make' to specify where the GNAT
17373 # library is installed.
17374
17375 # see "Automatically creating a list of directories" to create these
17376 # variables
17377 SOURCE_DIRS=
17378 OBJECT_DIRS=
17379
17380 empty:=
17381 space:=$@{empty@} $@{empty@}
17382 SOURCE_LIST := $@{subst $@{space@},:,$@{SOURCE_DIRS@}@}
17383 OBJECT_LIST := $@{subst $@{space@},:,$@{OBJECT_DIRS@}@}
17384 ADA_INCLUDE_PATH += $@{SOURCE_LIST@}
17385 ADA_OBJECTS_PATH += $@{OBJECT_LIST@}
17386 export ADA_INCLUDE_PATH
17387 export ADA_OBJECTS_PATH
17388
17389 all:
17390 gnatmake main_unit
17391 @end example
17392
17393 @node GNAT Utility Programs,GNAT and Program Execution,Building Executable Programs with GNAT,Top
17394 @anchor{gnat_ugn/gnat_utility_programs doc}@anchor{143}@anchor{gnat_ugn/gnat_utility_programs gnat-utility-programs}@anchor{b}@anchor{gnat_ugn/gnat_utility_programs id1}@anchor{144}
17395 @chapter GNAT Utility Programs
17396
17397
17398 This chapter describes a number of utility programs:
17399
17400
17401
17402 @itemize *
17403
17404 @item
17405 @ref{20,,The File Cleanup Utility gnatclean}
17406
17407 @item
17408 @ref{21,,The GNAT Library Browser gnatls}
17409
17410 @item
17411 @ref{22,,The Cross-Referencing Tools gnatxref and gnatfind}
17412
17413 @item
17414 @ref{23,,The Ada to HTML Converter gnathtml}
17415 @end itemize
17416
17417 Other GNAT utilities are described elsewhere in this manual:
17418
17419
17420 @itemize *
17421
17422 @item
17423 @ref{59,,Handling Arbitrary File Naming Conventions with gnatname}
17424
17425 @item
17426 @ref{63,,File Name Krunching with gnatkr}
17427
17428 @item
17429 @ref{36,,Renaming Files with gnatchop}
17430
17431 @item
17432 @ref{17,,Preprocessing with gnatprep}
17433 @end itemize
17434
17435 @menu
17436 * The File Cleanup Utility gnatclean::
17437 * The GNAT Library Browser gnatls::
17438 * The Cross-Referencing Tools gnatxref and gnatfind::
17439 * The Ada to HTML Converter gnathtml::
17440
17441 @end menu
17442
17443 @node The File Cleanup Utility gnatclean,The GNAT Library Browser gnatls,,GNAT Utility Programs
17444 @anchor{gnat_ugn/gnat_utility_programs id2}@anchor{145}@anchor{gnat_ugn/gnat_utility_programs the-file-cleanup-utility-gnatclean}@anchor{20}
17445 @section The File Cleanup Utility @code{gnatclean}
17446
17447
17448 @geindex File cleanup tool
17449
17450 @geindex gnatclean
17451
17452 @code{gnatclean} is a tool that allows the deletion of files produced by the
17453 compiler, binder and linker, including ALI files, object files, tree files,
17454 expanded source files, library files, interface copy source files, binder
17455 generated files and executable files.
17456
17457 @menu
17458 * Running gnatclean::
17459 * Switches for gnatclean::
17460
17461 @end menu
17462
17463 @node Running gnatclean,Switches for gnatclean,,The File Cleanup Utility gnatclean
17464 @anchor{gnat_ugn/gnat_utility_programs running-gnatclean}@anchor{146}@anchor{gnat_ugn/gnat_utility_programs id3}@anchor{147}
17465 @subsection Running @code{gnatclean}
17466
17467
17468 The @code{gnatclean} command has the form:
17469
17470 @quotation
17471
17472 @example
17473 $ gnatclean switches names
17474 @end example
17475 @end quotation
17476
17477 where @code{names} is a list of source file names. Suffixes @code{.ads} and
17478 @code{adb} may be omitted. If a project file is specified using switch
17479 @code{-P}, then @code{names} may be completely omitted.
17480
17481 In normal mode, @code{gnatclean} delete the files produced by the compiler and,
17482 if switch @code{-c} is not specified, by the binder and
17483 the linker. In informative-only mode, specified by switch
17484 @code{-n}, the list of files that would have been deleted in
17485 normal mode is listed, but no file is actually deleted.
17486
17487 @node Switches for gnatclean,,Running gnatclean,The File Cleanup Utility gnatclean
17488 @anchor{gnat_ugn/gnat_utility_programs id4}@anchor{148}@anchor{gnat_ugn/gnat_utility_programs switches-for-gnatclean}@anchor{149}
17489 @subsection Switches for @code{gnatclean}
17490
17491
17492 @code{gnatclean} recognizes the following switches:
17493
17494 @geindex --version (gnatclean)
17495
17496
17497 @table @asis
17498
17499 @item @code{--version}
17500
17501 Display copyright and version, then exit disregarding all other options.
17502 @end table
17503
17504 @geindex --help (gnatclean)
17505
17506
17507 @table @asis
17508
17509 @item @code{--help}
17510
17511 If @code{--version} was not used, display usage, then exit disregarding
17512 all other options.
17513
17514 @item @code{--subdirs=@emph{subdir}}
17515
17516 Actual object directory of each project file is the subdirectory subdir of the
17517 object directory specified or defaulted in the project file.
17518
17519 @item @code{--unchecked-shared-lib-imports}
17520
17521 By default, shared library projects are not allowed to import static library
17522 projects. When this switch is used on the command line, this restriction is
17523 relaxed.
17524 @end table
17525
17526 @geindex -c (gnatclean)
17527
17528
17529 @table @asis
17530
17531 @item @code{-c}
17532
17533 Only attempt to delete the files produced by the compiler, not those produced
17534 by the binder or the linker. The files that are not to be deleted are library
17535 files, interface copy files, binder generated files and executable files.
17536 @end table
17537
17538 @geindex -D (gnatclean)
17539
17540
17541 @table @asis
17542
17543 @item @code{-D @emph{dir}}
17544
17545 Indicate that ALI and object files should normally be found in directory @code{dir}.
17546 @end table
17547
17548 @geindex -F (gnatclean)
17549
17550
17551 @table @asis
17552
17553 @item @code{-F}
17554
17555 When using project files, if some errors or warnings are detected during
17556 parsing and verbose mode is not in effect (no use of switch
17557 -v), then error lines start with the full path name of the project
17558 file, rather than its simple file name.
17559 @end table
17560
17561 @geindex -h (gnatclean)
17562
17563
17564 @table @asis
17565
17566 @item @code{-h}
17567
17568 Output a message explaining the usage of @code{gnatclean}.
17569 @end table
17570
17571 @geindex -n (gnatclean)
17572
17573
17574 @table @asis
17575
17576 @item @code{-n}
17577
17578 Informative-only mode. Do not delete any files. Output the list of the files
17579 that would have been deleted if this switch was not specified.
17580 @end table
17581
17582 @geindex -P (gnatclean)
17583
17584
17585 @table @asis
17586
17587 @item @code{-P@emph{project}}
17588
17589 Use project file @code{project}. Only one such switch can be used.
17590 When cleaning a project file, the files produced by the compilation of the
17591 immediate sources or inherited sources of the project files are to be
17592 deleted. This is not depending on the presence or not of executable names
17593 on the command line.
17594 @end table
17595
17596 @geindex -q (gnatclean)
17597
17598
17599 @table @asis
17600
17601 @item @code{-q}
17602
17603 Quiet output. If there are no errors, do not output anything, except in
17604 verbose mode (switch -v) or in informative-only mode
17605 (switch -n).
17606 @end table
17607
17608 @geindex -r (gnatclean)
17609
17610
17611 @table @asis
17612
17613 @item @code{-r}
17614
17615 When a project file is specified (using switch -P),
17616 clean all imported and extended project files, recursively. If this switch
17617 is not specified, only the files related to the main project file are to be
17618 deleted. This switch has no effect if no project file is specified.
17619 @end table
17620
17621 @geindex -v (gnatclean)
17622
17623
17624 @table @asis
17625
17626 @item @code{-v}
17627
17628 Verbose mode.
17629 @end table
17630
17631 @geindex -vP (gnatclean)
17632
17633
17634 @table @asis
17635
17636 @item @code{-vP@emph{x}}
17637
17638 Indicates the verbosity of the parsing of GNAT project files.
17639 @ref{de,,Switches Related to Project Files}.
17640 @end table
17641
17642 @geindex -X (gnatclean)
17643
17644
17645 @table @asis
17646
17647 @item @code{-X@emph{name}=@emph{value}}
17648
17649 Indicates that external variable @code{name} has the value @code{value}.
17650 The Project Manager will use this value for occurrences of
17651 @code{external(name)} when parsing the project file.
17652 See @ref{de,,Switches Related to Project Files}.
17653 @end table
17654
17655 @geindex -aO (gnatclean)
17656
17657
17658 @table @asis
17659
17660 @item @code{-aO@emph{dir}}
17661
17662 When searching for ALI and object files, look in directory @code{dir}.
17663 @end table
17664
17665 @geindex -I (gnatclean)
17666
17667
17668 @table @asis
17669
17670 @item @code{-I@emph{dir}}
17671
17672 Equivalent to @code{-aO@emph{dir}}.
17673 @end table
17674
17675 @geindex -I- (gnatclean)
17676
17677 @geindex Source files
17678 @geindex suppressing search
17679
17680
17681 @table @asis
17682
17683 @item @code{-I-}
17684
17685 Do not look for ALI or object files in the directory
17686 where @code{gnatclean} was invoked.
17687 @end table
17688
17689 @node The GNAT Library Browser gnatls,The Cross-Referencing Tools gnatxref and gnatfind,The File Cleanup Utility gnatclean,GNAT Utility Programs
17690 @anchor{gnat_ugn/gnat_utility_programs the-gnat-library-browser-gnatls}@anchor{21}@anchor{gnat_ugn/gnat_utility_programs id5}@anchor{14a}
17691 @section The GNAT Library Browser @code{gnatls}
17692
17693
17694 @geindex Library browser
17695
17696 @geindex gnatls
17697
17698 @code{gnatls} is a tool that outputs information about compiled
17699 units. It gives the relationship between objects, unit names and source
17700 files. It can also be used to check the source dependencies of a unit
17701 as well as various characteristics.
17702
17703 @menu
17704 * Running gnatls::
17705 * Switches for gnatls::
17706 * Example of gnatls Usage::
17707
17708 @end menu
17709
17710 @node Running gnatls,Switches for gnatls,,The GNAT Library Browser gnatls
17711 @anchor{gnat_ugn/gnat_utility_programs id6}@anchor{14b}@anchor{gnat_ugn/gnat_utility_programs running-gnatls}@anchor{14c}
17712 @subsection Running @code{gnatls}
17713
17714
17715 The @code{gnatls} command has the form
17716
17717 @quotation
17718
17719 @example
17720 $ gnatls switches object_or_ali_file
17721 @end example
17722 @end quotation
17723
17724 The main argument is the list of object or @code{ali} files
17725 (see @ref{42,,The Ada Library Information Files})
17726 for which information is requested.
17727
17728 In normal mode, without additional option, @code{gnatls} produces a
17729 four-column listing. Each line represents information for a specific
17730 object. The first column gives the full path of the object, the second
17731 column gives the name of the principal unit in this object, the third
17732 column gives the status of the source and the fourth column gives the
17733 full path of the source representing this unit.
17734 Here is a simple example of use:
17735
17736 @quotation
17737
17738 @example
17739 $ gnatls *.o
17740 ./demo1.o demo1 DIF demo1.adb
17741 ./demo2.o demo2 OK demo2.adb
17742 ./hello.o h1 OK hello.adb
17743 ./instr-child.o instr.child MOK instr-child.adb
17744 ./instr.o instr OK instr.adb
17745 ./tef.o tef DIF tef.adb
17746 ./text_io_example.o text_io_example OK text_io_example.adb
17747 ./tgef.o tgef DIF tgef.adb
17748 @end example
17749 @end quotation
17750
17751 The first line can be interpreted as follows: the main unit which is
17752 contained in
17753 object file @code{demo1.o} is demo1, whose main source is in
17754 @code{demo1.adb}. Furthermore, the version of the source used for the
17755 compilation of demo1 has been modified (DIF). Each source file has a status
17756 qualifier which can be:
17757
17758
17759 @table @asis
17760
17761 @item @emph{OK (unchanged)}
17762
17763 The version of the source file used for the compilation of the
17764 specified unit corresponds exactly to the actual source file.
17765
17766 @item @emph{MOK (slightly modified)}
17767
17768 The version of the source file used for the compilation of the
17769 specified unit differs from the actual source file but not enough to
17770 require recompilation. If you use gnatmake with the option
17771 @code{-m} (minimal recompilation), a file marked
17772 MOK will not be recompiled.
17773
17774 @item @emph{DIF (modified)}
17775
17776 No version of the source found on the path corresponds to the source
17777 used to build this object.
17778
17779 @item @emph{??? (file not found)}
17780
17781 No source file was found for this unit.
17782
17783 @item @emph{HID (hidden, unchanged version not first on PATH)}
17784
17785 The version of the source that corresponds exactly to the source used
17786 for compilation has been found on the path but it is hidden by another
17787 version of the same source that has been modified.
17788 @end table
17789
17790 @node Switches for gnatls,Example of gnatls Usage,Running gnatls,The GNAT Library Browser gnatls
17791 @anchor{gnat_ugn/gnat_utility_programs id7}@anchor{14d}@anchor{gnat_ugn/gnat_utility_programs switches-for-gnatls}@anchor{14e}
17792 @subsection Switches for @code{gnatls}
17793
17794
17795 @code{gnatls} recognizes the following switches:
17796
17797 @geindex --version (gnatls)
17798
17799
17800 @table @asis
17801
17802 @item @code{--version}
17803
17804 Display copyright and version, then exit disregarding all other options.
17805 @end table
17806
17807 @geindex --help (gnatls)
17808
17809
17810 @table @asis
17811
17812 @item @code{--help}
17813
17814 If @code{--version} was not used, display usage, then exit disregarding
17815 all other options.
17816 @end table
17817
17818 @geindex -a (gnatls)
17819
17820
17821 @table @asis
17822
17823 @item @code{-a}
17824
17825 Consider all units, including those of the predefined Ada library.
17826 Especially useful with @code{-d}.
17827 @end table
17828
17829 @geindex -d (gnatls)
17830
17831
17832 @table @asis
17833
17834 @item @code{-d}
17835
17836 List sources from which specified units depend on.
17837 @end table
17838
17839 @geindex -h (gnatls)
17840
17841
17842 @table @asis
17843
17844 @item @code{-h}
17845
17846 Output the list of options.
17847 @end table
17848
17849 @geindex -o (gnatls)
17850
17851
17852 @table @asis
17853
17854 @item @code{-o}
17855
17856 Only output information about object files.
17857 @end table
17858
17859 @geindex -s (gnatls)
17860
17861
17862 @table @asis
17863
17864 @item @code{-s}
17865
17866 Only output information about source files.
17867 @end table
17868
17869 @geindex -u (gnatls)
17870
17871
17872 @table @asis
17873
17874 @item @code{-u}
17875
17876 Only output information about compilation units.
17877 @end table
17878
17879 @geindex -files (gnatls)
17880
17881
17882 @table @asis
17883
17884 @item @code{-files=@emph{file}}
17885
17886 Take as arguments the files listed in text file @code{file}.
17887 Text file @code{file} may contain empty lines that are ignored.
17888 Each nonempty line should contain the name of an existing file.
17889 Several such switches may be specified simultaneously.
17890 @end table
17891
17892 @geindex -aO (gnatls)
17893
17894 @geindex -aI (gnatls)
17895
17896 @geindex -I (gnatls)
17897
17898 @geindex -I- (gnatls)
17899
17900
17901 @table @asis
17902
17903 @item @code{-aO@emph{dir}}, @code{-aI@emph{dir}}, @code{-I@emph{dir}}, @code{-I-}, @code{-nostdinc}
17904
17905 Source path manipulation. Same meaning as the equivalent @code{gnatmake}
17906 flags (@ref{dc,,Switches for gnatmake}).
17907 @end table
17908
17909 @geindex -aP (gnatls)
17910
17911
17912 @table @asis
17913
17914 @item @code{-aP@emph{dir}}
17915
17916 Add @code{dir} at the beginning of the project search dir.
17917 @end table
17918
17919 @geindex --RTS (gnatls)
17920
17921
17922 @table @asis
17923
17924 @item @code{--RTS=@emph{rts-path}}
17925
17926 Specifies the default location of the runtime library. Same meaning as the
17927 equivalent @code{gnatmake} flag (@ref{dc,,Switches for gnatmake}).
17928 @end table
17929
17930 @geindex -v (gnatls)
17931
17932
17933 @table @asis
17934
17935 @item @code{-v}
17936
17937 Verbose mode. Output the complete source, object and project paths. Do not use
17938 the default column layout but instead use long format giving as much as
17939 information possible on each requested units, including special
17940 characteristics such as:
17941
17942
17943 @itemize *
17944
17945 @item
17946 @emph{Preelaborable}: The unit is preelaborable in the Ada sense.
17947
17948 @item
17949 @emph{No_Elab_Code}: No elaboration code has been produced by the compiler for this unit.
17950
17951 @item
17952 @emph{Pure}: The unit is pure in the Ada sense.
17953
17954 @item
17955 @emph{Elaborate_Body}: The unit contains a pragma Elaborate_Body.
17956
17957 @item
17958 @emph{Remote_Types}: The unit contains a pragma Remote_Types.
17959
17960 @item
17961 @emph{Shared_Passive}: The unit contains a pragma Shared_Passive.
17962
17963 @item
17964 @emph{Predefined}: This unit is part of the predefined environment and cannot be modified
17965 by the user.
17966
17967 @item
17968 @emph{Remote_Call_Interface}: The unit contains a pragma Remote_Call_Interface.
17969 @end itemize
17970 @end table
17971
17972 @node Example of gnatls Usage,,Switches for gnatls,The GNAT Library Browser gnatls
17973 @anchor{gnat_ugn/gnat_utility_programs id8}@anchor{14f}@anchor{gnat_ugn/gnat_utility_programs example-of-gnatls-usage}@anchor{150}
17974 @subsection Example of @code{gnatls} Usage
17975
17976
17977 Example of using the verbose switch. Note how the source and
17978 object paths are affected by the -I switch.
17979
17980 @quotation
17981
17982 @example
17983 $ gnatls -v -I.. demo1.o
17984
17985 GNATLS 5.03w (20041123-34)
17986 Copyright 1997-2004 Free Software Foundation, Inc.
17987
17988 Source Search Path:
17989 <Current_Directory>
17990 ../
17991 /home/comar/local/adainclude/
17992
17993 Object Search Path:
17994 <Current_Directory>
17995 ../
17996 /home/comar/local/lib/gcc-lib/x86-linux/3.4.3/adalib/
17997
17998 Project Search Path:
17999 <Current_Directory>
18000 /home/comar/local/lib/gnat/
18001
18002 ./demo1.o
18003 Unit =>
18004 Name => demo1
18005 Kind => subprogram body
18006 Flags => No_Elab_Code
18007 Source => demo1.adb modified
18008 @end example
18009 @end quotation
18010
18011 The following is an example of use of the dependency list.
18012 Note the use of the -s switch
18013 which gives a straight list of source files. This can be useful for
18014 building specialized scripts.
18015
18016 @quotation
18017
18018 @example
18019 $ gnatls -d demo2.o
18020 ./demo2.o demo2 OK demo2.adb
18021 OK gen_list.ads
18022 OK gen_list.adb
18023 OK instr.ads
18024 OK instr-child.ads
18025
18026 $ gnatls -d -s -a demo1.o
18027 demo1.adb
18028 /home/comar/local/adainclude/ada.ads
18029 /home/comar/local/adainclude/a-finali.ads
18030 /home/comar/local/adainclude/a-filico.ads
18031 /home/comar/local/adainclude/a-stream.ads
18032 /home/comar/local/adainclude/a-tags.ads
18033 gen_list.ads
18034 gen_list.adb
18035 /home/comar/local/adainclude/gnat.ads
18036 /home/comar/local/adainclude/g-io.ads
18037 instr.ads
18038 /home/comar/local/adainclude/system.ads
18039 /home/comar/local/adainclude/s-exctab.ads
18040 /home/comar/local/adainclude/s-finimp.ads
18041 /home/comar/local/adainclude/s-finroo.ads
18042 /home/comar/local/adainclude/s-secsta.ads
18043 /home/comar/local/adainclude/s-stalib.ads
18044 /home/comar/local/adainclude/s-stoele.ads
18045 /home/comar/local/adainclude/s-stratt.ads
18046 /home/comar/local/adainclude/s-tasoli.ads
18047 /home/comar/local/adainclude/s-unstyp.ads
18048 /home/comar/local/adainclude/unchconv.ads
18049 @end example
18050 @end quotation
18051
18052 @node The Cross-Referencing Tools gnatxref and gnatfind,The Ada to HTML Converter gnathtml,The GNAT Library Browser gnatls,GNAT Utility Programs
18053 @anchor{gnat_ugn/gnat_utility_programs the-cross-referencing-tools-gnatxref-and-gnatfind}@anchor{22}@anchor{gnat_ugn/gnat_utility_programs id9}@anchor{151}
18054 @section The Cross-Referencing Tools @code{gnatxref} and @code{gnatfind}
18055
18056
18057 @geindex gnatxref
18058
18059 @geindex gnatfind
18060
18061 The compiler generates cross-referencing information (unless
18062 you set the @code{-gnatx} switch), which are saved in the @code{.ali} files.
18063 This information indicates where in the source each entity is declared and
18064 referenced. Note that entities in package Standard are not included, but
18065 entities in all other predefined units are included in the output.
18066
18067 Before using any of these two tools, you need to compile successfully your
18068 application, so that GNAT gets a chance to generate the cross-referencing
18069 information.
18070
18071 The two tools @code{gnatxref} and @code{gnatfind} take advantage of this
18072 information to provide the user with the capability to easily locate the
18073 declaration and references to an entity. These tools are quite similar,
18074 the difference being that @code{gnatfind} is intended for locating
18075 definitions and/or references to a specified entity or entities, whereas
18076 @code{gnatxref} is oriented to generating a full report of all
18077 cross-references.
18078
18079 To use these tools, you must not compile your application using the
18080 @code{-gnatx} switch on the @code{gnatmake} command line
18081 (see @ref{1b,,Building with gnatmake}). Otherwise, cross-referencing
18082 information will not be generated.
18083
18084 @menu
18085 * gnatxref Switches::
18086 * gnatfind Switches::
18087 * Configuration Files for gnatxref and gnatfind::
18088 * Regular Expressions in gnatfind and gnatxref::
18089 * Examples of gnatxref Usage::
18090 * Examples of gnatfind Usage::
18091
18092 @end menu
18093
18094 @node gnatxref Switches,gnatfind Switches,,The Cross-Referencing Tools gnatxref and gnatfind
18095 @anchor{gnat_ugn/gnat_utility_programs id10}@anchor{152}@anchor{gnat_ugn/gnat_utility_programs gnatxref-switches}@anchor{153}
18096 @subsection @code{gnatxref} Switches
18097
18098
18099 The command invocation for @code{gnatxref} is:
18100
18101 @quotation
18102
18103 @example
18104 $ gnatxref [ switches ] sourcefile1 [ sourcefile2 ... ]
18105 @end example
18106 @end quotation
18107
18108 where
18109
18110
18111 @table @asis
18112
18113 @item @code{sourcefile1} [, @code{sourcefile2} ...]
18114
18115 identify the source files for which a report is to be generated. The
18116 @code{with}ed units will be processed too. You must provide at least one file.
18117
18118 These file names are considered to be regular expressions, so for instance
18119 specifying @code{source*.adb} is the same as giving every file in the current
18120 directory whose name starts with @code{source} and whose extension is
18121 @code{adb}.
18122
18123 You shouldn't specify any directory name, just base names. @code{gnatxref}
18124 and @code{gnatfind} will be able to locate these files by themselves using
18125 the source path. If you specify directories, no result is produced.
18126 @end table
18127
18128 The following switches are available for @code{gnatxref}:
18129
18130 @geindex --version (gnatxref)
18131
18132
18133 @table @asis
18134
18135 @item @code{--version}
18136
18137 Display copyright and version, then exit disregarding all other options.
18138 @end table
18139
18140 @geindex --help (gnatxref)
18141
18142
18143 @table @asis
18144
18145 @item @code{--help}
18146
18147 If @code{--version} was not used, display usage, then exit disregarding
18148 all other options.
18149 @end table
18150
18151 @geindex -a (gnatxref)
18152
18153
18154 @table @asis
18155
18156 @item @code{-a}
18157
18158 If this switch is present, @code{gnatfind} and @code{gnatxref} will parse
18159 the read-only files found in the library search path. Otherwise, these files
18160 will be ignored. This option can be used to protect Gnat sources or your own
18161 libraries from being parsed, thus making @code{gnatfind} and @code{gnatxref}
18162 much faster, and their output much smaller. Read-only here refers to access
18163 or permissions status in the file system for the current user.
18164 @end table
18165
18166 @geindex -aIDIR (gnatxref)
18167
18168
18169 @table @asis
18170
18171 @item @code{-aI@emph{DIR}}
18172
18173 When looking for source files also look in directory DIR. The order in which
18174 source file search is undertaken is the same as for @code{gnatmake}.
18175 @end table
18176
18177 @geindex -aODIR (gnatxref)
18178
18179
18180 @table @asis
18181
18182 @item @code{aO@emph{DIR}}
18183
18184 When -searching for library and object files, look in directory
18185 DIR. The order in which library files are searched is the same as for
18186 @code{gnatmake}.
18187 @end table
18188
18189 @geindex -nostdinc (gnatxref)
18190
18191
18192 @table @asis
18193
18194 @item @code{-nostdinc}
18195
18196 Do not look for sources in the system default directory.
18197 @end table
18198
18199 @geindex -nostdlib (gnatxref)
18200
18201
18202 @table @asis
18203
18204 @item @code{-nostdlib}
18205
18206 Do not look for library files in the system default directory.
18207 @end table
18208
18209 @geindex --ext (gnatxref)
18210
18211
18212 @table @asis
18213
18214 @item @code{--ext=@emph{extension}}
18215
18216 Specify an alternate ali file extension. The default is @code{ali} and other
18217 extensions (e.g. @code{gli} for C/C++ sources) may be specified via this switch.
18218 Note that if this switch overrides the default, only the new extension will
18219 be considered.
18220 @end table
18221
18222 @geindex --RTS (gnatxref)
18223
18224
18225 @table @asis
18226
18227 @item @code{--RTS=@emph{rts-path}}
18228
18229 Specifies the default location of the runtime library. Same meaning as the
18230 equivalent @code{gnatmake} flag (@ref{dc,,Switches for gnatmake}).
18231 @end table
18232
18233 @geindex -d (gnatxref)
18234
18235
18236 @table @asis
18237
18238 @item @code{-d}
18239
18240 If this switch is set @code{gnatxref} will output the parent type
18241 reference for each matching derived types.
18242 @end table
18243
18244 @geindex -f (gnatxref)
18245
18246
18247 @table @asis
18248
18249 @item @code{-f}
18250
18251 If this switch is set, the output file names will be preceded by their
18252 directory (if the file was found in the search path). If this switch is
18253 not set, the directory will not be printed.
18254 @end table
18255
18256 @geindex -g (gnatxref)
18257
18258
18259 @table @asis
18260
18261 @item @code{-g}
18262
18263 If this switch is set, information is output only for library-level
18264 entities, ignoring local entities. The use of this switch may accelerate
18265 @code{gnatfind} and @code{gnatxref}.
18266 @end table
18267
18268 @geindex -IDIR (gnatxref)
18269
18270
18271 @table @asis
18272
18273 @item @code{-I@emph{DIR}}
18274
18275 Equivalent to @code{-aODIR -aIDIR}.
18276 @end table
18277
18278 @geindex -pFILE (gnatxref)
18279
18280
18281 @table @asis
18282
18283 @item @code{-p@emph{FILE}}
18284
18285 Specify a configuration file to use to list the source and object directories.
18286
18287 If a file is specified, then the content of the source directory and object
18288 directory lines are added as if they had been specified respectively
18289 by @code{-aI} and @code{-aO}.
18290
18291 See @ref{154,,Configuration Files for gnatxref and gnatfind} for the syntax
18292 of this configuration file.
18293
18294 @item @code{-u}
18295
18296 Output only unused symbols. This may be really useful if you give your
18297 main compilation unit on the command line, as @code{gnatxref} will then
18298 display every unused entity and 'with'ed package.
18299
18300 @item @code{-v}
18301
18302 Instead of producing the default output, @code{gnatxref} will generate a
18303 @code{tags} file that can be used by vi. For examples how to use this
18304 feature, see @ref{155,,Examples of gnatxref Usage}. The tags file is output
18305 to the standard output, thus you will have to redirect it to a file.
18306 @end table
18307
18308 All these switches may be in any order on the command line, and may even
18309 appear after the file names. They need not be separated by spaces, thus
18310 you can say @code{gnatxref -ag} instead of @code{gnatxref -a -g}.
18311
18312 @node gnatfind Switches,Configuration Files for gnatxref and gnatfind,gnatxref Switches,The Cross-Referencing Tools gnatxref and gnatfind
18313 @anchor{gnat_ugn/gnat_utility_programs id11}@anchor{156}@anchor{gnat_ugn/gnat_utility_programs gnatfind-switches}@anchor{157}
18314 @subsection @code{gnatfind} Switches
18315
18316
18317 The command invocation for @code{gnatfind} is:
18318
18319 @quotation
18320
18321 @example
18322 $ gnatfind [ switches ] pattern[:sourcefile[:line[:column]]]
18323 [file1 file2 ...]
18324 @end example
18325 @end quotation
18326
18327 with the following iterpretation of the command arguments:
18328
18329
18330 @table @asis
18331
18332 @item @emph{pattern}
18333
18334 An entity will be output only if it matches the regular expression found
18335 in @emph{pattern}, see @ref{158,,Regular Expressions in gnatfind and gnatxref}.
18336
18337 Omitting the pattern is equivalent to specifying @code{*}, which
18338 will match any entity. Note that if you do not provide a pattern, you
18339 have to provide both a sourcefile and a line.
18340
18341 Entity names are given in Latin-1, with uppercase/lowercase equivalence
18342 for matching purposes. At the current time there is no support for
18343 8-bit codes other than Latin-1, or for wide characters in identifiers.
18344
18345 @item @emph{sourcefile}
18346
18347 @code{gnatfind} will look for references, bodies or declarations
18348 of symbols referenced in @code{sourcefile}, at line @code{line}
18349 and column @code{column}. See @ref{159,,Examples of gnatfind Usage}
18350 for syntax examples.
18351
18352 @item @emph{line}
18353
18354 A decimal integer identifying the line number containing
18355 the reference to the entity (or entities) to be located.
18356
18357 @item @emph{column}
18358
18359 A decimal integer identifying the exact location on the
18360 line of the first character of the identifier for the
18361 entity reference. Columns are numbered from 1.
18362
18363 @item @emph{file1 file2 ...}
18364
18365 The search will be restricted to these source files. If none are given, then
18366 the search will be conducted for every library file in the search path.
18367 These files must appear only after the pattern or sourcefile.
18368
18369 These file names are considered to be regular expressions, so for instance
18370 specifying @code{source*.adb} is the same as giving every file in the current
18371 directory whose name starts with @code{source} and whose extension is
18372 @code{adb}.
18373
18374 The location of the spec of the entity will always be displayed, even if it
18375 isn't in one of @code{file1}, @code{file2}, ... The
18376 occurrences of the entity in the separate units of the ones given on the
18377 command line will also be displayed.
18378
18379 Note that if you specify at least one file in this part, @code{gnatfind} may
18380 sometimes not be able to find the body of the subprograms.
18381 @end table
18382
18383 At least one of 'sourcefile' or 'pattern' has to be present on
18384 the command line.
18385
18386 The following switches are available:
18387
18388 @geindex --version (gnatfind)
18389
18390
18391 @table @asis
18392
18393 @item @code{--version}
18394
18395 Display copyright and version, then exit disregarding all other options.
18396 @end table
18397
18398 @geindex --help (gnatfind)
18399
18400
18401 @table @asis
18402
18403 @item @code{--help}
18404
18405 If @code{--version} was not used, display usage, then exit disregarding
18406 all other options.
18407 @end table
18408
18409 @geindex -a (gnatfind)
18410
18411
18412 @table @asis
18413
18414 @item @code{-a}
18415
18416 If this switch is present, @code{gnatfind} and @code{gnatxref} will parse
18417 the read-only files found in the library search path. Otherwise, these files
18418 will be ignored. This option can be used to protect Gnat sources or your own
18419 libraries from being parsed, thus making @code{gnatfind} and @code{gnatxref}
18420 much faster, and their output much smaller. Read-only here refers to access
18421 or permission status in the file system for the current user.
18422 @end table
18423
18424 @geindex -aIDIR (gnatfind)
18425
18426
18427 @table @asis
18428
18429 @item @code{-aI@emph{DIR}}
18430
18431 When looking for source files also look in directory DIR. The order in which
18432 source file search is undertaken is the same as for @code{gnatmake}.
18433 @end table
18434
18435 @geindex -aODIR (gnatfind)
18436
18437
18438 @table @asis
18439
18440 @item @code{-aO@emph{DIR}}
18441
18442 When searching for library and object files, look in directory
18443 DIR. The order in which library files are searched is the same as for
18444 @code{gnatmake}.
18445 @end table
18446
18447 @geindex -nostdinc (gnatfind)
18448
18449
18450 @table @asis
18451
18452 @item @code{-nostdinc}
18453
18454 Do not look for sources in the system default directory.
18455 @end table
18456
18457 @geindex -nostdlib (gnatfind)
18458
18459
18460 @table @asis
18461
18462 @item @code{-nostdlib}
18463
18464 Do not look for library files in the system default directory.
18465 @end table
18466
18467 @geindex --ext (gnatfind)
18468
18469
18470 @table @asis
18471
18472 @item @code{--ext=@emph{extension}}
18473
18474 Specify an alternate ali file extension. The default is @code{ali} and other
18475 extensions may be specified via this switch. Note that if this switch
18476 overrides the default, only the new extension will be considered.
18477 @end table
18478
18479 @geindex --RTS (gnatfind)
18480
18481
18482 @table @asis
18483
18484 @item @code{--RTS=@emph{rts-path}}
18485
18486 Specifies the default location of the runtime library. Same meaning as the
18487 equivalent @code{gnatmake} flag (@ref{dc,,Switches for gnatmake}).
18488 @end table
18489
18490 @geindex -d (gnatfind)
18491
18492
18493 @table @asis
18494
18495 @item @code{-d}
18496
18497 If this switch is set, then @code{gnatfind} will output the parent type
18498 reference for each matching derived types.
18499 @end table
18500
18501 @geindex -e (gnatfind)
18502
18503
18504 @table @asis
18505
18506 @item @code{-e}
18507
18508 By default, @code{gnatfind} accept the simple regular expression set for
18509 @code{pattern}. If this switch is set, then the pattern will be
18510 considered as full Unix-style regular expression.
18511 @end table
18512
18513 @geindex -f (gnatfind)
18514
18515
18516 @table @asis
18517
18518 @item @code{-f}
18519
18520 If this switch is set, the output file names will be preceded by their
18521 directory (if the file was found in the search path). If this switch is
18522 not set, the directory will not be printed.
18523 @end table
18524
18525 @geindex -g (gnatfind)
18526
18527
18528 @table @asis
18529
18530 @item @code{-g}
18531
18532 If this switch is set, information is output only for library-level
18533 entities, ignoring local entities. The use of this switch may accelerate
18534 @code{gnatfind} and @code{gnatxref}.
18535 @end table
18536
18537 @geindex -IDIR (gnatfind)
18538
18539
18540 @table @asis
18541
18542 @item @code{-I@emph{DIR}}
18543
18544 Equivalent to @code{-aODIR -aIDIR}.
18545 @end table
18546
18547 @geindex -pFILE (gnatfind)
18548
18549
18550 @table @asis
18551
18552 @item @code{-p@emph{FILE}}
18553
18554 Specify a configuration file to use to list the source and object directories.
18555
18556 If a file is specified, then the content of the source directory and object
18557 directory lines are added as if they had been specified respectively
18558 by @code{-aI} and @code{-aO}.
18559
18560 See @ref{154,,Configuration Files for gnatxref and gnatfind} for the syntax
18561 of this configuration file.
18562 @end table
18563
18564 @geindex -r (gnatfind)
18565
18566
18567 @table @asis
18568
18569 @item @code{-r}
18570
18571 By default, @code{gnatfind} will output only the information about the
18572 declaration, body or type completion of the entities. If this switch is
18573 set, the @code{gnatfind} will locate every reference to the entities in
18574 the files specified on the command line (or in every file in the search
18575 path if no file is given on the command line).
18576 @end table
18577
18578 @geindex -s (gnatfind)
18579
18580
18581 @table @asis
18582
18583 @item @code{-s}
18584
18585 If this switch is set, then @code{gnatfind} will output the content
18586 of the Ada source file lines were the entity was found.
18587 @end table
18588
18589 @geindex -t (gnatfind)
18590
18591
18592 @table @asis
18593
18594 @item @code{-t}
18595
18596 If this switch is set, then @code{gnatfind} will output the type hierarchy for
18597 the specified type. It act like -d option but recursively from parent
18598 type to parent type. When this switch is set it is not possible to
18599 specify more than one file.
18600 @end table
18601
18602 All these switches may be in any order on the command line, and may even
18603 appear after the file names. They need not be separated by spaces, thus
18604 you can say @code{gnatxref -ag} instead of
18605 @code{gnatxref -a -g}.
18606
18607 As stated previously, @code{gnatfind} will search in every directory in the
18608 search path. You can force it to look only in the current directory if
18609 you specify @code{*} at the end of the command line.
18610
18611 @node Configuration Files for gnatxref and gnatfind,Regular Expressions in gnatfind and gnatxref,gnatfind Switches,The Cross-Referencing Tools gnatxref and gnatfind
18612 @anchor{gnat_ugn/gnat_utility_programs configuration-files-for-gnatxref-and-gnatfind}@anchor{154}@anchor{gnat_ugn/gnat_utility_programs id12}@anchor{15a}
18613 @subsection Configuration Files for @code{gnatxref} and @code{gnatfind}
18614
18615
18616 Configuration files are used by @code{gnatxref} and @code{gnatfind} to specify
18617 the list of source and object directories to consider. They can be
18618 specified via the @code{-p} switch.
18619
18620 The following lines can be included, in any order in the file:
18621
18622
18623 @itemize *
18624
18625 @item
18626
18627 @table @asis
18628
18629 @item @emph{src_dir=DIR}
18630
18631 [default: @code{"./"}].
18632 Specifies a directory where to look for source files. Multiple @code{src_dir}
18633 lines can be specified and they will be searched in the order they
18634 are specified.
18635 @end table
18636
18637 @item
18638
18639 @table @asis
18640
18641 @item @emph{obj_dir=DIR}
18642
18643 [default: @code{"./"}].
18644 Specifies a directory where to look for object and library files. Multiple
18645 @code{obj_dir} lines can be specified, and they will be searched in the order
18646 they are specified
18647 @end table
18648 @end itemize
18649
18650 Any other line will be silently ignored.
18651
18652 @node Regular Expressions in gnatfind and gnatxref,Examples of gnatxref Usage,Configuration Files for gnatxref and gnatfind,The Cross-Referencing Tools gnatxref and gnatfind
18653 @anchor{gnat_ugn/gnat_utility_programs id13}@anchor{15b}@anchor{gnat_ugn/gnat_utility_programs regular-expressions-in-gnatfind-and-gnatxref}@anchor{158}
18654 @subsection Regular Expressions in @code{gnatfind} and @code{gnatxref}
18655
18656
18657 As specified in the section about @code{gnatfind}, the pattern can be a
18658 regular expression. Two kinds of regular expressions
18659 are recognized:
18660
18661
18662 @itemize *
18663
18664 @item
18665
18666 @table @asis
18667
18668 @item @emph{Globbing pattern}
18669
18670 These are the most common regular expression. They are the same as are
18671 generally used in a Unix shell command line, or in a DOS session.
18672
18673 Here is a more formal grammar:
18674
18675 @example
18676 regexp ::= term
18677 term ::= elmt -- matches elmt
18678 term ::= elmt elmt -- concatenation (elmt then elmt)
18679 term ::= * -- any string of 0 or more characters
18680 term ::= ? -- matches any character
18681 term ::= [char @{char@}] -- matches any character listed
18682 term ::= [char - char] -- matches any character in range
18683 @end example
18684 @end table
18685
18686 @item
18687
18688 @table @asis
18689
18690 @item @emph{Full regular expression}
18691
18692 The second set of regular expressions is much more powerful. This is the
18693 type of regular expressions recognized by utilities such as @code{grep}.
18694
18695 The following is the form of a regular expression, expressed in same BNF
18696 style as is found in the Ada Reference Manual:
18697
18698 @example
18699 regexp ::= term @{| term@} -- alternation (term or term ...)
18700
18701 term ::= item @{item@} -- concatenation (item then item)
18702
18703 item ::= elmt -- match elmt
18704 item ::= elmt * -- zero or more elmt's
18705 item ::= elmt + -- one or more elmt's
18706 item ::= elmt ? -- matches elmt or nothing
18707
18708 elmt ::= nschar -- matches given character
18709 elmt ::= [nschar @{nschar@}] -- matches any character listed
18710 elmt ::= [^ nschar @{nschar@}] -- matches any character not listed
18711 elmt ::= [char - char] -- matches chars in given range
18712 elmt ::= \\ char -- matches given character
18713 elmt ::= . -- matches any single character
18714 elmt ::= ( regexp ) -- parens used for grouping
18715
18716 char ::= any character, including special characters
18717 nschar ::= any character except ()[].*+?^
18718 @end example
18719
18720 Here are a few examples:
18721
18722 @quotation
18723
18724
18725 @table @asis
18726
18727 @item @code{abcde|fghi}
18728
18729 will match any of the two strings @code{abcde} and @code{fghi},
18730
18731 @item @code{abc*d}
18732
18733 will match any string like @code{abd}, @code{abcd}, @code{abccd},
18734 @code{abcccd}, and so on,
18735
18736 @item @code{[a-z]+}
18737
18738 will match any string which has only lowercase characters in it (and at
18739 least one character.
18740 @end table
18741 @end quotation
18742 @end table
18743 @end itemize
18744
18745 @node Examples of gnatxref Usage,Examples of gnatfind Usage,Regular Expressions in gnatfind and gnatxref,The Cross-Referencing Tools gnatxref and gnatfind
18746 @anchor{gnat_ugn/gnat_utility_programs examples-of-gnatxref-usage}@anchor{155}@anchor{gnat_ugn/gnat_utility_programs id14}@anchor{15c}
18747 @subsection Examples of @code{gnatxref} Usage
18748
18749
18750 @menu
18751 * General Usage::
18752 * Using gnatxref with vi::
18753
18754 @end menu
18755
18756 @node General Usage,Using gnatxref with vi,,Examples of gnatxref Usage
18757 @anchor{gnat_ugn/gnat_utility_programs general-usage}@anchor{15d}
18758 @subsubsection General Usage
18759
18760
18761 For the following examples, we will consider the following units:
18762
18763 @quotation
18764
18765 @example
18766 main.ads:
18767 1: with Bar;
18768 2: package Main is
18769 3: procedure Foo (B : in Integer);
18770 4: C : Integer;
18771 5: private
18772 6: D : Integer;
18773 7: end Main;
18774
18775 main.adb:
18776 1: package body Main is
18777 2: procedure Foo (B : in Integer) is
18778 3: begin
18779 4: C := B;
18780 5: D := B;
18781 6: Bar.Print (B);
18782 7: Bar.Print (C);
18783 8: end Foo;
18784 9: end Main;
18785
18786 bar.ads:
18787 1: package Bar is
18788 2: procedure Print (B : Integer);
18789 3: end bar;
18790 @end example
18791 @end quotation
18792
18793 The first thing to do is to recompile your application (for instance, in
18794 that case just by doing a @code{gnatmake main}, so that GNAT generates
18795 the cross-referencing information.
18796 You can then issue any of the following commands:
18797
18798 @quotation
18799
18800
18801 @itemize *
18802
18803 @item
18804 @code{gnatxref main.adb}
18805 @code{gnatxref} generates cross-reference information for main.adb
18806 and every unit 'with'ed by main.adb.
18807
18808 The output would be:
18809
18810 @quotation
18811
18812 @example
18813 B Type: Integer
18814 Decl: bar.ads 2:22
18815 B Type: Integer
18816 Decl: main.ads 3:20
18817 Body: main.adb 2:20
18818 Ref: main.adb 4:13 5:13 6:19
18819 Bar Type: Unit
18820 Decl: bar.ads 1:9
18821 Ref: main.adb 6:8 7:8
18822 main.ads 1:6
18823 C Type: Integer
18824 Decl: main.ads 4:5
18825 Modi: main.adb 4:8
18826 Ref: main.adb 7:19
18827 D Type: Integer
18828 Decl: main.ads 6:5
18829 Modi: main.adb 5:8
18830 Foo Type: Unit
18831 Decl: main.ads 3:15
18832 Body: main.adb 2:15
18833 Main Type: Unit
18834 Decl: main.ads 2:9
18835 Body: main.adb 1:14
18836 Print Type: Unit
18837 Decl: bar.ads 2:15
18838 Ref: main.adb 6:12 7:12
18839 @end example
18840 @end quotation
18841
18842 This shows that the entity @code{Main} is declared in main.ads, line 2, column 9,
18843 its body is in main.adb, line 1, column 14 and is not referenced any where.
18844
18845 The entity @code{Print} is declared in @code{bar.ads}, line 2, column 15 and it
18846 is referenced in @code{main.adb}, line 6 column 12 and line 7 column 12.
18847
18848 @item
18849 @code{gnatxref package1.adb package2.ads}
18850 @code{gnatxref} will generates cross-reference information for
18851 @code{package1.adb}, @code{package2.ads} and any other package @code{with}ed by any
18852 of these.
18853 @end itemize
18854 @end quotation
18855
18856 @node Using gnatxref with vi,,General Usage,Examples of gnatxref Usage
18857 @anchor{gnat_ugn/gnat_utility_programs using-gnatxref-with-vi}@anchor{15e}
18858 @subsubsection Using @code{gnatxref} with @code{vi}
18859
18860
18861 @code{gnatxref} can generate a tags file output, which can be used
18862 directly from @code{vi}. Note that the standard version of @code{vi}
18863 will not work properly with overloaded symbols. Consider using another
18864 free implementation of @code{vi}, such as @code{vim}.
18865
18866 @quotation
18867
18868 @example
18869 $ gnatxref -v gnatfind.adb > tags
18870 @end example
18871 @end quotation
18872
18873 The following command will generate the tags file for @code{gnatfind} itself
18874 (if the sources are in the search path!):
18875
18876 @quotation
18877
18878 @example
18879 $ gnatxref -v gnatfind.adb > tags
18880 @end example
18881 @end quotation
18882
18883 From @code{vi}, you can then use the command @code{:tag @emph{entity}}
18884 (replacing @code{entity} by whatever you are looking for), and vi will
18885 display a new file with the corresponding declaration of entity.
18886
18887 @node Examples of gnatfind Usage,,Examples of gnatxref Usage,The Cross-Referencing Tools gnatxref and gnatfind
18888 @anchor{gnat_ugn/gnat_utility_programs id15}@anchor{15f}@anchor{gnat_ugn/gnat_utility_programs examples-of-gnatfind-usage}@anchor{159}
18889 @subsection Examples of @code{gnatfind} Usage
18890
18891
18892
18893 @itemize *
18894
18895 @item
18896 @code{gnatfind -f xyz:main.adb}
18897 Find declarations for all entities xyz referenced at least once in
18898 main.adb. The references are search in every library file in the search
18899 path.
18900
18901 The directories will be printed as well (as the @code{-f}
18902 switch is set)
18903
18904 The output will look like:
18905
18906 @quotation
18907
18908 @example
18909 directory/main.ads:106:14: xyz <= declaration
18910 directory/main.adb:24:10: xyz <= body
18911 directory/foo.ads:45:23: xyz <= declaration
18912 @end example
18913 @end quotation
18914
18915 I.e., one of the entities xyz found in main.adb is declared at
18916 line 12 of main.ads (and its body is in main.adb), and another one is
18917 declared at line 45 of foo.ads
18918
18919 @item
18920 @code{gnatfind -fs xyz:main.adb}
18921 This is the same command as the previous one, but @code{gnatfind} will
18922 display the content of the Ada source file lines.
18923
18924 The output will look like:
18925
18926 @example
18927 directory/main.ads:106:14: xyz <= declaration
18928 procedure xyz;
18929 directory/main.adb:24:10: xyz <= body
18930 procedure xyz is
18931 directory/foo.ads:45:23: xyz <= declaration
18932 xyz : Integer;
18933 @end example
18934
18935 This can make it easier to find exactly the location your are looking
18936 for.
18937
18938 @item
18939 @code{gnatfind -r "*x*":main.ads:123 foo.adb}
18940 Find references to all entities containing an x that are
18941 referenced on line 123 of main.ads.
18942 The references will be searched only in main.ads and foo.adb.
18943
18944 @item
18945 @code{gnatfind main.ads:123}
18946 Find declarations and bodies for all entities that are referenced on
18947 line 123 of main.ads.
18948
18949 This is the same as @code{gnatfind "*":main.adb:123`}
18950
18951 @item
18952 @code{gnatfind mydir/main.adb:123:45}
18953 Find the declaration for the entity referenced at column 45 in
18954 line 123 of file main.adb in directory mydir. Note that it
18955 is usual to omit the identifier name when the column is given,
18956 since the column position identifies a unique reference.
18957
18958 The column has to be the beginning of the identifier, and should not
18959 point to any character in the middle of the identifier.
18960 @end itemize
18961
18962 @node The Ada to HTML Converter gnathtml,,The Cross-Referencing Tools gnatxref and gnatfind,GNAT Utility Programs
18963 @anchor{gnat_ugn/gnat_utility_programs the-ada-to-html-converter-gnathtml}@anchor{23}@anchor{gnat_ugn/gnat_utility_programs id16}@anchor{160}
18964 @section The Ada to HTML Converter @code{gnathtml}
18965
18966
18967 @geindex gnathtml
18968
18969 @code{gnathtml} is a Perl script that allows Ada source files to be browsed using
18970 standard Web browsers. For installation information, see @ref{161,,Installing gnathtml}.
18971
18972 Ada reserved keywords are highlighted in a bold font and Ada comments in
18973 a blue font. Unless your program was compiled with the gcc @code{-gnatx}
18974 switch to suppress the generation of cross-referencing information, user
18975 defined variables and types will appear in a different color; you will
18976 be able to click on any identifier and go to its declaration.
18977
18978 @menu
18979 * Invoking gnathtml::
18980 * Installing gnathtml::
18981
18982 @end menu
18983
18984 @node Invoking gnathtml,Installing gnathtml,,The Ada to HTML Converter gnathtml
18985 @anchor{gnat_ugn/gnat_utility_programs invoking-gnathtml}@anchor{162}@anchor{gnat_ugn/gnat_utility_programs id17}@anchor{163}
18986 @subsection Invoking @code{gnathtml}
18987
18988
18989 The command line is as follows:
18990
18991 @quotation
18992
18993 @example
18994 $ perl gnathtml.pl [ switches ] ada-files
18995 @end example
18996 @end quotation
18997
18998 You can specify as many Ada files as you want. @code{gnathtml} will generate
18999 an html file for every ada file, and a global file called @code{index.htm}.
19000 This file is an index of every identifier defined in the files.
19001
19002 The following switches are available:
19003
19004 @geindex -83 (gnathtml)
19005
19006
19007 @table @asis
19008
19009 @item @code{83}
19010
19011 Only the Ada 83 subset of keywords will be highlighted.
19012 @end table
19013
19014 @geindex -cc (gnathtml)
19015
19016
19017 @table @asis
19018
19019 @item @code{cc @emph{color}}
19020
19021 This option allows you to change the color used for comments. The default
19022 value is green. The color argument can be any name accepted by html.
19023 @end table
19024
19025 @geindex -d (gnathtml)
19026
19027
19028 @table @asis
19029
19030 @item @code{d}
19031
19032 If the Ada files depend on some other files (for instance through
19033 @code{with} clauses, the latter files will also be converted to html.
19034 Only the files in the user project will be converted to html, not the files
19035 in the run-time library itself.
19036 @end table
19037
19038 @geindex -D (gnathtml)
19039
19040
19041 @table @asis
19042
19043 @item @code{D}
19044
19045 This command is the same as @code{-d} above, but @code{gnathtml} will
19046 also look for files in the run-time library, and generate html files for them.
19047 @end table
19048
19049 @geindex -ext (gnathtml)
19050
19051
19052 @table @asis
19053
19054 @item @code{ext @emph{extension}}
19055
19056 This option allows you to change the extension of the generated HTML files.
19057 If you do not specify an extension, it will default to @code{htm}.
19058 @end table
19059
19060 @geindex -f (gnathtml)
19061
19062
19063 @table @asis
19064
19065 @item @code{f}
19066
19067 By default, gnathtml will generate html links only for global entities
19068 ('with'ed units, global variables and types,...). If you specify
19069 @code{-f} on the command line, then links will be generated for local
19070 entities too.
19071 @end table
19072
19073 @geindex -l (gnathtml)
19074
19075
19076 @table @asis
19077
19078 @item @code{l @emph{number}}
19079
19080 If this switch is provided and @code{number} is not 0, then
19081 @code{gnathtml} will number the html files every @code{number} line.
19082 @end table
19083
19084 @geindex -I (gnathtml)
19085
19086
19087 @table @asis
19088
19089 @item @code{I @emph{dir}}
19090
19091 Specify a directory to search for library files (@code{.ALI} files) and
19092 source files. You can provide several -I switches on the command line,
19093 and the directories will be parsed in the order of the command line.
19094 @end table
19095
19096 @geindex -o (gnathtml)
19097
19098
19099 @table @asis
19100
19101 @item @code{o @emph{dir}}
19102
19103 Specify the output directory for html files. By default, gnathtml will
19104 saved the generated html files in a subdirectory named @code{html/}.
19105 @end table
19106
19107 @geindex -p (gnathtml)
19108
19109
19110 @table @asis
19111
19112 @item @code{p @emph{file}}
19113
19114 If you are using Emacs and the most recent Emacs Ada mode, which provides
19115 a full Integrated Development Environment for compiling, checking,
19116 running and debugging applications, you may use @code{.gpr} files
19117 to give the directories where Emacs can find sources and object files.
19118
19119 Using this switch, you can tell gnathtml to use these files.
19120 This allows you to get an html version of your application, even if it
19121 is spread over multiple directories.
19122 @end table
19123
19124 @geindex -sc (gnathtml)
19125
19126
19127 @table @asis
19128
19129 @item @code{sc @emph{color}}
19130
19131 This switch allows you to change the color used for symbol
19132 definitions.
19133 The default value is red. The color argument can be any name accepted by html.
19134 @end table
19135
19136 @geindex -t (gnathtml)
19137
19138
19139 @table @asis
19140
19141 @item @code{t @emph{file}}
19142
19143 This switch provides the name of a file. This file contains a list of
19144 file names to be converted, and the effect is exactly as though they had
19145 appeared explicitly on the command line. This
19146 is the recommended way to work around the command line length limit on some
19147 systems.
19148 @end table
19149
19150 @node Installing gnathtml,,Invoking gnathtml,The Ada to HTML Converter gnathtml
19151 @anchor{gnat_ugn/gnat_utility_programs installing-gnathtml}@anchor{161}@anchor{gnat_ugn/gnat_utility_programs id18}@anchor{164}
19152 @subsection Installing @code{gnathtml}
19153
19154
19155 @code{Perl} needs to be installed on your machine to run this script.
19156 @code{Perl} is freely available for almost every architecture and
19157 operating system via the Internet.
19158
19159 On Unix systems, you may want to modify the first line of the script
19160 @code{gnathtml}, to explicitly specify where Perl
19161 is located. The syntax of this line is:
19162
19163 @quotation
19164
19165 @example
19166 #!full_path_name_to_perl
19167 @end example
19168 @end quotation
19169
19170 Alternatively, you may run the script using the following command line:
19171
19172 @quotation
19173
19174 @example
19175 $ perl gnathtml.pl [ switches ] files
19176 @end example
19177 @end quotation
19178
19179 @c -- +---------------------------------------------------------------------+
19180
19181 @c -- | The following sections are present only in the PRO and GPL editions |
19182
19183 @c -- +---------------------------------------------------------------------+
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193 @c -- Example: A |withing| unit has a |with| clause, it |withs| a |withed| unit
19194
19195 @node GNAT and Program Execution,Platform-Specific Information,GNAT Utility Programs,Top
19196 @anchor{gnat_ugn/gnat_and_program_execution gnat-and-program-execution}@anchor{c}@anchor{gnat_ugn/gnat_and_program_execution doc}@anchor{165}@anchor{gnat_ugn/gnat_and_program_execution id1}@anchor{166}
19197 @chapter GNAT and Program Execution
19198
19199
19200 This chapter covers several topics:
19201
19202
19203 @itemize *
19204
19205 @item
19206 @ref{167,,Running and Debugging Ada Programs}
19207
19208 @item
19209 @ref{25,,Profiling}
19210
19211 @item
19212 @ref{168,,Improving Performance}
19213
19214 @item
19215 @ref{169,,Overflow Check Handling in GNAT}
19216
19217 @item
19218 @ref{16a,,Performing Dimensionality Analysis in GNAT}
19219
19220 @item
19221 @ref{16b,,Stack Related Facilities}
19222
19223 @item
19224 @ref{16c,,Memory Management Issues}
19225 @end itemize
19226
19227 @menu
19228 * Running and Debugging Ada Programs::
19229 * Profiling::
19230 * Improving Performance::
19231 * Overflow Check Handling in GNAT::
19232 * Performing Dimensionality Analysis in GNAT::
19233 * Stack Related Facilities::
19234 * Memory Management Issues::
19235
19236 @end menu
19237
19238 @node Running and Debugging Ada Programs,Profiling,,GNAT and Program Execution
19239 @anchor{gnat_ugn/gnat_and_program_execution id2}@anchor{167}@anchor{gnat_ugn/gnat_and_program_execution running-and-debugging-ada-programs}@anchor{24}
19240 @section Running and Debugging Ada Programs
19241
19242
19243 @geindex Debugging
19244
19245 This section discusses how to debug Ada programs.
19246
19247 An incorrect Ada program may be handled in three ways by the GNAT compiler:
19248
19249
19250 @itemize *
19251
19252 @item
19253 The illegality may be a violation of the static semantics of Ada. In
19254 that case GNAT diagnoses the constructs in the program that are illegal.
19255 It is then a straightforward matter for the user to modify those parts of
19256 the program.
19257
19258 @item
19259 The illegality may be a violation of the dynamic semantics of Ada. In
19260 that case the program compiles and executes, but may generate incorrect
19261 results, or may terminate abnormally with some exception.
19262
19263 @item
19264 When presented with a program that contains convoluted errors, GNAT
19265 itself may terminate abnormally without providing full diagnostics on
19266 the incorrect user program.
19267 @end itemize
19268
19269 @geindex Debugger
19270
19271 @geindex gdb
19272
19273 @menu
19274 * The GNAT Debugger GDB::
19275 * Running GDB::
19276 * Introduction to GDB Commands::
19277 * Using Ada Expressions::
19278 * Calling User-Defined Subprograms::
19279 * Using the next Command in a Function::
19280 * Stopping When Ada Exceptions Are Raised::
19281 * Ada Tasks::
19282 * Debugging Generic Units::
19283 * Remote Debugging with gdbserver::
19284 * GNAT Abnormal Termination or Failure to Terminate::
19285 * Naming Conventions for GNAT Source Files::
19286 * Getting Internal Debugging Information::
19287 * Stack Traceback::
19288 * Pretty-Printers for the GNAT runtime::
19289
19290 @end menu
19291
19292 @node The GNAT Debugger GDB,Running GDB,,Running and Debugging Ada Programs
19293 @anchor{gnat_ugn/gnat_and_program_execution the-gnat-debugger-gdb}@anchor{16d}@anchor{gnat_ugn/gnat_and_program_execution id3}@anchor{16e}
19294 @subsection The GNAT Debugger GDB
19295
19296
19297 @code{GDB} is a general purpose, platform-independent debugger that
19298 can be used to debug mixed-language programs compiled with @code{gcc},
19299 and in particular is capable of debugging Ada programs compiled with
19300 GNAT. The latest versions of @code{GDB} are Ada-aware and can handle
19301 complex Ada data structures.
19302
19303 See @cite{Debugging with GDB},
19304 for full details on the usage of @code{GDB}, including a section on
19305 its usage on programs. This manual should be consulted for full
19306 details. The section that follows is a brief introduction to the
19307 philosophy and use of @code{GDB}.
19308
19309 When GNAT programs are compiled, the compiler optionally writes debugging
19310 information into the generated object file, including information on
19311 line numbers, and on declared types and variables. This information is
19312 separate from the generated code. It makes the object files considerably
19313 larger, but it does not add to the size of the actual executable that
19314 will be loaded into memory, and has no impact on run-time performance. The
19315 generation of debug information is triggered by the use of the
19316 @code{-g} switch in the @code{gcc} or @code{gnatmake} command
19317 used to carry out the compilations. It is important to emphasize that
19318 the use of these options does not change the generated code.
19319
19320 The debugging information is written in standard system formats that
19321 are used by many tools, including debuggers and profilers. The format
19322 of the information is typically designed to describe C types and
19323 semantics, but GNAT implements a translation scheme which allows full
19324 details about Ada types and variables to be encoded into these
19325 standard C formats. Details of this encoding scheme may be found in
19326 the file exp_dbug.ads in the GNAT source distribution. However, the
19327 details of this encoding are, in general, of no interest to a user,
19328 since @code{GDB} automatically performs the necessary decoding.
19329
19330 When a program is bound and linked, the debugging information is
19331 collected from the object files, and stored in the executable image of
19332 the program. Again, this process significantly increases the size of
19333 the generated executable file, but it does not increase the size of
19334 the executable program itself. Furthermore, if this program is run in
19335 the normal manner, it runs exactly as if the debug information were
19336 not present, and takes no more actual memory.
19337
19338 However, if the program is run under control of @code{GDB}, the
19339 debugger is activated. The image of the program is loaded, at which
19340 point it is ready to run. If a run command is given, then the program
19341 will run exactly as it would have if @code{GDB} were not present. This
19342 is a crucial part of the @code{GDB} design philosophy. @code{GDB} is
19343 entirely non-intrusive until a breakpoint is encountered. If no
19344 breakpoint is ever hit, the program will run exactly as it would if no
19345 debugger were present. When a breakpoint is hit, @code{GDB} accesses
19346 the debugging information and can respond to user commands to inspect
19347 variables, and more generally to report on the state of execution.
19348
19349 @node Running GDB,Introduction to GDB Commands,The GNAT Debugger GDB,Running and Debugging Ada Programs
19350 @anchor{gnat_ugn/gnat_and_program_execution id4}@anchor{16f}@anchor{gnat_ugn/gnat_and_program_execution running-gdb}@anchor{170}
19351 @subsection Running GDB
19352
19353
19354 This section describes how to initiate the debugger.
19355
19356 The debugger can be launched from a @code{GNAT Studio} menu or
19357 directly from the command line. The description below covers the latter use.
19358 All the commands shown can be used in the @code{GNAT Studio} debug console window,
19359 but there are usually more GUI-based ways to achieve the same effect.
19360
19361 The command to run @code{GDB} is
19362
19363 @quotation
19364
19365 @example
19366 $ gdb program
19367 @end example
19368 @end quotation
19369
19370 where @code{program} is the name of the executable file. This
19371 activates the debugger and results in a prompt for debugger commands.
19372 The simplest command is simply @code{run}, which causes the program to run
19373 exactly as if the debugger were not present. The following section
19374 describes some of the additional commands that can be given to @code{GDB}.
19375
19376 @node Introduction to GDB Commands,Using Ada Expressions,Running GDB,Running and Debugging Ada Programs
19377 @anchor{gnat_ugn/gnat_and_program_execution introduction-to-gdb-commands}@anchor{171}@anchor{gnat_ugn/gnat_and_program_execution id5}@anchor{172}
19378 @subsection Introduction to GDB Commands
19379
19380
19381 @code{GDB} contains a large repertoire of commands.
19382 See @cite{Debugging with GDB} for extensive documentation on the use
19383 of these commands, together with examples of their use. Furthermore,
19384 the command @emph{help} invoked from within GDB activates a simple help
19385 facility which summarizes the available commands and their options.
19386 In this section we summarize a few of the most commonly
19387 used commands to give an idea of what @code{GDB} is about. You should create
19388 a simple program with debugging information and experiment with the use of
19389 these @code{GDB} commands on the program as you read through the
19390 following section.
19391
19392
19393 @itemize *
19394
19395 @item
19396
19397 @table @asis
19398
19399 @item @code{set args @emph{arguments}}
19400
19401 The @emph{arguments} list above is a list of arguments to be passed to
19402 the program on a subsequent run command, just as though the arguments
19403 had been entered on a normal invocation of the program. The @code{set args}
19404 command is not needed if the program does not require arguments.
19405 @end table
19406
19407 @item
19408
19409 @table @asis
19410
19411 @item @code{run}
19412
19413 The @code{run} command causes execution of the program to start from
19414 the beginning. If the program is already running, that is to say if
19415 you are currently positioned at a breakpoint, then a prompt will ask
19416 for confirmation that you want to abandon the current execution and
19417 restart.
19418 @end table
19419
19420 @item
19421
19422 @table @asis
19423
19424 @item @code{breakpoint @emph{location}}
19425
19426 The breakpoint command sets a breakpoint, that is to say a point at which
19427 execution will halt and @code{GDB} will await further
19428 commands. @emph{location} is
19429 either a line number within a file, given in the format @code{file:linenumber},
19430 or it is the name of a subprogram. If you request that a breakpoint be set on
19431 a subprogram that is overloaded, a prompt will ask you to specify on which of
19432 those subprograms you want to breakpoint. You can also
19433 specify that all of them should be breakpointed. If the program is run
19434 and execution encounters the breakpoint, then the program
19435 stops and @code{GDB} signals that the breakpoint was encountered by
19436 printing the line of code before which the program is halted.
19437 @end table
19438
19439 @item
19440
19441 @table @asis
19442
19443 @item @code{catch exception @emph{name}}
19444
19445 This command causes the program execution to stop whenever exception
19446 @code{name} is raised. If @code{name} is omitted, then the execution is
19447 suspended when any exception is raised.
19448 @end table
19449
19450 @item
19451
19452 @table @asis
19453
19454 @item @code{print @emph{expression}}
19455
19456 This will print the value of the given expression. Most simple
19457 Ada expression formats are properly handled by @code{GDB}, so the expression
19458 can contain function calls, variables, operators, and attribute references.
19459 @end table
19460
19461 @item
19462
19463 @table @asis
19464
19465 @item @code{continue}
19466
19467 Continues execution following a breakpoint, until the next breakpoint or the
19468 termination of the program.
19469 @end table
19470
19471 @item
19472
19473 @table @asis
19474
19475 @item @code{step}
19476
19477 Executes a single line after a breakpoint. If the next statement
19478 is a subprogram call, execution continues into (the first statement of)
19479 the called subprogram.
19480 @end table
19481
19482 @item
19483
19484 @table @asis
19485
19486 @item @code{next}
19487
19488 Executes a single line. If this line is a subprogram call, executes and
19489 returns from the call.
19490 @end table
19491
19492 @item
19493
19494 @table @asis
19495
19496 @item @code{list}
19497
19498 Lists a few lines around the current source location. In practice, it
19499 is usually more convenient to have a separate edit window open with the
19500 relevant source file displayed. Successive applications of this command
19501 print subsequent lines. The command can be given an argument which is a
19502 line number, in which case it displays a few lines around the specified one.
19503 @end table
19504
19505 @item
19506
19507 @table @asis
19508
19509 @item @code{backtrace}
19510
19511 Displays a backtrace of the call chain. This command is typically
19512 used after a breakpoint has occurred, to examine the sequence of calls that
19513 leads to the current breakpoint. The display includes one line for each
19514 activation record (frame) corresponding to an active subprogram.
19515 @end table
19516
19517 @item
19518
19519 @table @asis
19520
19521 @item @code{up}
19522
19523 At a breakpoint, @code{GDB} can display the values of variables local
19524 to the current frame. The command @code{up} can be used to
19525 examine the contents of other active frames, by moving the focus up
19526 the stack, that is to say from callee to caller, one frame at a time.
19527 @end table
19528
19529 @item
19530
19531 @table @asis
19532
19533 @item @code{down}
19534
19535 Moves the focus of @code{GDB} down from the frame currently being
19536 examined to the frame of its callee (the reverse of the previous command),
19537 @end table
19538
19539 @item
19540
19541 @table @asis
19542
19543 @item @code{frame @emph{n}}
19544
19545 Inspect the frame with the given number. The value 0 denotes the frame
19546 of the current breakpoint, that is to say the top of the call stack.
19547 @end table
19548
19549 @item
19550
19551 @table @asis
19552
19553 @item @code{kill}
19554
19555 Kills the child process in which the program is running under GDB.
19556 This may be useful for several purposes:
19557
19558
19559 @itemize *
19560
19561 @item
19562 It allows you to recompile and relink your program, since on many systems
19563 you cannot regenerate an executable file while it is running in a process.
19564
19565 @item
19566 You can run your program outside the debugger, on systems that do not
19567 permit executing a program outside GDB while breakpoints are set
19568 within GDB.
19569
19570 @item
19571 It allows you to debug a core dump rather than a running process.
19572 @end itemize
19573 @end table
19574 @end itemize
19575
19576 The above list is a very short introduction to the commands that
19577 @code{GDB} provides. Important additional capabilities, including conditional
19578 breakpoints, the ability to execute command sequences on a breakpoint,
19579 the ability to debug at the machine instruction level and many other
19580 features are described in detail in @cite{Debugging with GDB}.
19581 Note that most commands can be abbreviated
19582 (for example, c for continue, bt for backtrace).
19583
19584 @node Using Ada Expressions,Calling User-Defined Subprograms,Introduction to GDB Commands,Running and Debugging Ada Programs
19585 @anchor{gnat_ugn/gnat_and_program_execution id6}@anchor{173}@anchor{gnat_ugn/gnat_and_program_execution using-ada-expressions}@anchor{174}
19586 @subsection Using Ada Expressions
19587
19588
19589 @geindex Ada expressions (in gdb)
19590
19591 @code{GDB} supports a fairly large subset of Ada expression syntax, with some
19592 extensions. The philosophy behind the design of this subset is
19593
19594 @quotation
19595
19596
19597 @itemize *
19598
19599 @item
19600 That @code{GDB} should provide basic literals and access to operations for
19601 arithmetic, dereferencing, field selection, indexing, and subprogram calls,
19602 leaving more sophisticated computations to subprograms written into the
19603 program (which therefore may be called from @code{GDB}).
19604
19605 @item
19606 That type safety and strict adherence to Ada language restrictions
19607 are not particularly relevant in a debugging context.
19608
19609 @item
19610 That brevity is important to the @code{GDB} user.
19611 @end itemize
19612 @end quotation
19613
19614 Thus, for brevity, the debugger acts as if there were
19615 implicit @code{with} and @code{use} clauses in effect for all user-written
19616 packages, thus making it unnecessary to fully qualify most names with
19617 their packages, regardless of context. Where this causes ambiguity,
19618 @code{GDB} asks the user's intent.
19619
19620 For details on the supported Ada syntax, see @cite{Debugging with GDB}.
19621
19622 @node Calling User-Defined Subprograms,Using the next Command in a Function,Using Ada Expressions,Running and Debugging Ada Programs
19623 @anchor{gnat_ugn/gnat_and_program_execution id7}@anchor{175}@anchor{gnat_ugn/gnat_and_program_execution calling-user-defined-subprograms}@anchor{176}
19624 @subsection Calling User-Defined Subprograms
19625
19626
19627 An important capability of @code{GDB} is the ability to call user-defined
19628 subprograms while debugging. This is achieved simply by entering
19629 a subprogram call statement in the form:
19630
19631 @quotation
19632
19633 @example
19634 call subprogram-name (parameters)
19635 @end example
19636 @end quotation
19637
19638 The keyword @code{call} can be omitted in the normal case where the
19639 @code{subprogram-name} does not coincide with any of the predefined
19640 @code{GDB} commands.
19641
19642 The effect is to invoke the given subprogram, passing it the
19643 list of parameters that is supplied. The parameters can be expressions and
19644 can include variables from the program being debugged. The
19645 subprogram must be defined
19646 at the library level within your program, and @code{GDB} will call the
19647 subprogram within the environment of your program execution (which
19648 means that the subprogram is free to access or even modify variables
19649 within your program).
19650
19651 The most important use of this facility is in allowing the inclusion of
19652 debugging routines that are tailored to particular data structures
19653 in your program. Such debugging routines can be written to provide a suitably
19654 high-level description of an abstract type, rather than a low-level dump
19655 of its physical layout. After all, the standard
19656 @code{GDB print} command only knows the physical layout of your
19657 types, not their abstract meaning. Debugging routines can provide information
19658 at the desired semantic level and are thus enormously useful.
19659
19660 For example, when debugging GNAT itself, it is crucial to have access to
19661 the contents of the tree nodes used to represent the program internally.
19662 But tree nodes are represented simply by an integer value (which in turn
19663 is an index into a table of nodes).
19664 Using the @code{print} command on a tree node would simply print this integer
19665 value, which is not very useful. But the PN routine (defined in file
19666 treepr.adb in the GNAT sources) takes a tree node as input, and displays
19667 a useful high level representation of the tree node, which includes the
19668 syntactic category of the node, its position in the source, the integers
19669 that denote descendant nodes and parent node, as well as varied
19670 semantic information. To study this example in more detail, you might want to
19671 look at the body of the PN procedure in the stated file.
19672
19673 Another useful application of this capability is to deal with situations of
19674 complex data which are not handled suitably by GDB. For example, if you specify
19675 Convention Fortran for a multi-dimensional array, GDB does not know that
19676 the ordering of array elements has been switched and will not properly
19677 address the array elements. In such a case, instead of trying to print the
19678 elements directly from GDB, you can write a callable procedure that prints
19679 the elements in the desired format.
19680
19681 @node Using the next Command in a Function,Stopping When Ada Exceptions Are Raised,Calling User-Defined Subprograms,Running and Debugging Ada Programs
19682 @anchor{gnat_ugn/gnat_and_program_execution using-the-next-command-in-a-function}@anchor{177}@anchor{gnat_ugn/gnat_and_program_execution id8}@anchor{178}
19683 @subsection Using the @emph{next} Command in a Function
19684
19685
19686 When you use the @code{next} command in a function, the current source
19687 location will advance to the next statement as usual. A special case
19688 arises in the case of a @code{return} statement.
19689
19690 Part of the code for a return statement is the 'epilogue' of the function.
19691 This is the code that returns to the caller. There is only one copy of
19692 this epilogue code, and it is typically associated with the last return
19693 statement in the function if there is more than one return. In some
19694 implementations, this epilogue is associated with the first statement
19695 of the function.
19696
19697 The result is that if you use the @code{next} command from a return
19698 statement that is not the last return statement of the function you
19699 may see a strange apparent jump to the last return statement or to
19700 the start of the function. You should simply ignore this odd jump.
19701 The value returned is always that from the first return statement
19702 that was stepped through.
19703
19704 @node Stopping When Ada Exceptions Are Raised,Ada Tasks,Using the next Command in a Function,Running and Debugging Ada Programs
19705 @anchor{gnat_ugn/gnat_and_program_execution stopping-when-ada-exceptions-are-raised}@anchor{179}@anchor{gnat_ugn/gnat_and_program_execution id9}@anchor{17a}
19706 @subsection Stopping When Ada Exceptions Are Raised
19707
19708
19709 @geindex Exceptions (in gdb)
19710
19711 You can set catchpoints that stop the program execution when your program
19712 raises selected exceptions.
19713
19714
19715 @itemize *
19716
19717 @item
19718
19719 @table @asis
19720
19721 @item @code{catch exception}
19722
19723 Set a catchpoint that stops execution whenever (any task in the) program
19724 raises any exception.
19725 @end table
19726
19727 @item
19728
19729 @table @asis
19730
19731 @item @code{catch exception @emph{name}}
19732
19733 Set a catchpoint that stops execution whenever (any task in the) program
19734 raises the exception @emph{name}.
19735 @end table
19736
19737 @item
19738
19739 @table @asis
19740
19741 @item @code{catch exception unhandled}
19742
19743 Set a catchpoint that stops executing whenever (any task in the) program
19744 raises an exception for which there is no handler.
19745 @end table
19746
19747 @item
19748
19749 @table @asis
19750
19751 @item @code{info exceptions}, @code{info exceptions @emph{regexp}}
19752
19753 The @code{info exceptions} command permits the user to examine all defined
19754 exceptions within Ada programs. With a regular expression, @emph{regexp}, as
19755 argument, prints out only those exceptions whose name matches @emph{regexp}.
19756 @end table
19757 @end itemize
19758
19759 @geindex Tasks (in gdb)
19760
19761 @node Ada Tasks,Debugging Generic Units,Stopping When Ada Exceptions Are Raised,Running and Debugging Ada Programs
19762 @anchor{gnat_ugn/gnat_and_program_execution ada-tasks}@anchor{17b}@anchor{gnat_ugn/gnat_and_program_execution id10}@anchor{17c}
19763 @subsection Ada Tasks
19764
19765
19766 @code{GDB} allows the following task-related commands:
19767
19768
19769 @itemize *
19770
19771 @item
19772
19773 @table @asis
19774
19775 @item @code{info tasks}
19776
19777 This command shows a list of current Ada tasks, as in the following example:
19778
19779 @example
19780 (gdb) info tasks
19781 ID TID P-ID Thread Pri State Name
19782 1 8088000 0 807e000 15 Child Activation Wait main_task
19783 2 80a4000 1 80ae000 15 Accept/Select Wait b
19784 3 809a800 1 80a4800 15 Child Activation Wait a
19785 * 4 80ae800 3 80b8000 15 Running c
19786 @end example
19787
19788 In this listing, the asterisk before the first task indicates it to be the
19789 currently running task. The first column lists the task ID that is used
19790 to refer to tasks in the following commands.
19791 @end table
19792 @end itemize
19793
19794 @geindex Breakpoints and tasks
19795
19796
19797 @itemize *
19798
19799 @item
19800 @code{break`@w{`}*linespec* `@w{`}task} @emph{taskid}, @code{break} @emph{linespec} @code{task} @emph{taskid} @code{if} ...
19801
19802 @quotation
19803
19804 These commands are like the @code{break ... thread ...}.
19805 @emph{linespec} specifies source lines.
19806
19807 Use the qualifier @code{task @emph{taskid}} with a breakpoint command
19808 to specify that you only want @code{GDB} to stop the program when a
19809 particular Ada task reaches this breakpoint. @emph{taskid} is one of the
19810 numeric task identifiers assigned by @code{GDB}, shown in the first
19811 column of the @code{info tasks} display.
19812
19813 If you do not specify @code{task @emph{taskid}} when you set a
19814 breakpoint, the breakpoint applies to @emph{all} tasks of your
19815 program.
19816
19817 You can use the @code{task} qualifier on conditional breakpoints as
19818 well; in this case, place @code{task @emph{taskid}} before the
19819 breakpoint condition (before the @code{if}).
19820 @end quotation
19821 @end itemize
19822
19823 @geindex Task switching (in gdb)
19824
19825
19826 @itemize *
19827
19828 @item
19829 @code{task @emph{taskno}}
19830
19831 @quotation
19832
19833 This command allows switching to the task referred by @emph{taskno}. In
19834 particular, this allows browsing of the backtrace of the specified
19835 task. It is advisable to switch back to the original task before
19836 continuing execution otherwise the scheduling of the program may be
19837 perturbed.
19838 @end quotation
19839 @end itemize
19840
19841 For more detailed information on the tasking support,
19842 see @cite{Debugging with GDB}.
19843
19844 @geindex Debugging Generic Units
19845
19846 @geindex Generics
19847
19848 @node Debugging Generic Units,Remote Debugging with gdbserver,Ada Tasks,Running and Debugging Ada Programs
19849 @anchor{gnat_ugn/gnat_and_program_execution debugging-generic-units}@anchor{17d}@anchor{gnat_ugn/gnat_and_program_execution id11}@anchor{17e}
19850 @subsection Debugging Generic Units
19851
19852
19853 GNAT always uses code expansion for generic instantiation. This means that
19854 each time an instantiation occurs, a complete copy of the original code is
19855 made, with appropriate substitutions of formals by actuals.
19856
19857 It is not possible to refer to the original generic entities in
19858 @code{GDB}, but it is always possible to debug a particular instance of
19859 a generic, by using the appropriate expanded names. For example, if we have
19860
19861 @quotation
19862
19863 @example
19864 procedure g is
19865
19866 generic package k is
19867 procedure kp (v1 : in out integer);
19868 end k;
19869
19870 package body k is
19871 procedure kp (v1 : in out integer) is
19872 begin
19873 v1 := v1 + 1;
19874 end kp;
19875 end k;
19876
19877 package k1 is new k;
19878 package k2 is new k;
19879
19880 var : integer := 1;
19881
19882 begin
19883 k1.kp (var);
19884 k2.kp (var);
19885 k1.kp (var);
19886 k2.kp (var);
19887 end;
19888 @end example
19889 @end quotation
19890
19891 Then to break on a call to procedure kp in the k2 instance, simply
19892 use the command:
19893
19894 @quotation
19895
19896 @example
19897 (gdb) break g.k2.kp
19898 @end example
19899 @end quotation
19900
19901 When the breakpoint occurs, you can step through the code of the
19902 instance in the normal manner and examine the values of local variables, as for
19903 other units.
19904
19905 @geindex Remote Debugging with gdbserver
19906
19907 @node Remote Debugging with gdbserver,GNAT Abnormal Termination or Failure to Terminate,Debugging Generic Units,Running and Debugging Ada Programs
19908 @anchor{gnat_ugn/gnat_and_program_execution remote-debugging-with-gdbserver}@anchor{17f}@anchor{gnat_ugn/gnat_and_program_execution id12}@anchor{180}
19909 @subsection Remote Debugging with gdbserver
19910
19911
19912 On platforms where gdbserver is supported, it is possible to use this tool
19913 to debug your application remotely. This can be useful in situations
19914 where the program needs to be run on a target host that is different
19915 from the host used for development, particularly when the target has
19916 a limited amount of resources (either CPU and/or memory).
19917
19918 To do so, start your program using gdbserver on the target machine.
19919 gdbserver then automatically suspends the execution of your program
19920 at its entry point, waiting for a debugger to connect to it. The
19921 following commands starts an application and tells gdbserver to
19922 wait for a connection with the debugger on localhost port 4444.
19923
19924 @quotation
19925
19926 @example
19927 $ gdbserver localhost:4444 program
19928 Process program created; pid = 5685
19929 Listening on port 4444
19930 @end example
19931 @end quotation
19932
19933 Once gdbserver has started listening, we can tell the debugger to establish
19934 a connection with this gdbserver, and then start the same debugging session
19935 as if the program was being debugged on the same host, directly under
19936 the control of GDB.
19937
19938 @quotation
19939
19940 @example
19941 $ gdb program
19942 (gdb) target remote targethost:4444
19943 Remote debugging using targethost:4444
19944 0x00007f29936d0af0 in ?? () from /lib64/ld-linux-x86-64.so.
19945 (gdb) b foo.adb:3
19946 Breakpoint 1 at 0x401f0c: file foo.adb, line 3.
19947 (gdb) continue
19948 Continuing.
19949
19950 Breakpoint 1, foo () at foo.adb:4
19951 4 end foo;
19952 @end example
19953 @end quotation
19954
19955 It is also possible to use gdbserver to attach to an already running
19956 program, in which case the execution of that program is simply suspended
19957 until the connection between the debugger and gdbserver is established.
19958
19959 For more information on how to use gdbserver, see the @emph{Using the gdbserver Program}
19960 section in @cite{Debugging with GDB}.
19961 GNAT provides support for gdbserver on x86-linux, x86-windows and x86_64-linux.
19962
19963 @geindex Abnormal Termination or Failure to Terminate
19964
19965 @node GNAT Abnormal Termination or Failure to Terminate,Naming Conventions for GNAT Source Files,Remote Debugging with gdbserver,Running and Debugging Ada Programs
19966 @anchor{gnat_ugn/gnat_and_program_execution gnat-abnormal-termination-or-failure-to-terminate}@anchor{181}@anchor{gnat_ugn/gnat_and_program_execution id13}@anchor{182}
19967 @subsection GNAT Abnormal Termination or Failure to Terminate
19968
19969
19970 When presented with programs that contain serious errors in syntax
19971 or semantics,
19972 GNAT may on rare occasions experience problems in operation, such
19973 as aborting with a
19974 segmentation fault or illegal memory access, raising an internal
19975 exception, terminating abnormally, or failing to terminate at all.
19976 In such cases, you can activate
19977 various features of GNAT that can help you pinpoint the construct in your
19978 program that is the likely source of the problem.
19979
19980 The following strategies are presented in increasing order of
19981 difficulty, corresponding to your experience in using GNAT and your
19982 familiarity with compiler internals.
19983
19984
19985 @itemize *
19986
19987 @item
19988 Run @code{gcc} with the @code{-gnatf}. This first
19989 switch causes all errors on a given line to be reported. In its absence,
19990 only the first error on a line is displayed.
19991
19992 The @code{-gnatdO} switch causes errors to be displayed as soon as they
19993 are encountered, rather than after compilation is terminated. If GNAT
19994 terminates prematurely or goes into an infinite loop, the last error
19995 message displayed may help to pinpoint the culprit.
19996
19997 @item
19998 Run @code{gcc} with the @code{-v} (verbose) switch. In this
19999 mode, @code{gcc} produces ongoing information about the progress of the
20000 compilation and provides the name of each procedure as code is
20001 generated. This switch allows you to find which Ada procedure was being
20002 compiled when it encountered a code generation problem.
20003 @end itemize
20004
20005 @geindex -gnatdc switch
20006
20007
20008 @itemize *
20009
20010 @item
20011 Run @code{gcc} with the @code{-gnatdc} switch. This is a GNAT specific
20012 switch that does for the front-end what @code{-v} does
20013 for the back end. The system prints the name of each unit,
20014 either a compilation unit or nested unit, as it is being analyzed.
20015
20016 @item
20017 Finally, you can start
20018 @code{gdb} directly on the @code{gnat1} executable. @code{gnat1} is the
20019 front-end of GNAT, and can be run independently (normally it is just
20020 called from @code{gcc}). You can use @code{gdb} on @code{gnat1} as you
20021 would on a C program (but @ref{16d,,The GNAT Debugger GDB} for caveats). The
20022 @code{where} command is the first line of attack; the variable
20023 @code{lineno} (seen by @code{print lineno}), used by the second phase of
20024 @code{gnat1} and by the @code{gcc} backend, indicates the source line at
20025 which the execution stopped, and @code{input_file name} indicates the name of
20026 the source file.
20027 @end itemize
20028
20029 @node Naming Conventions for GNAT Source Files,Getting Internal Debugging Information,GNAT Abnormal Termination or Failure to Terminate,Running and Debugging Ada Programs
20030 @anchor{gnat_ugn/gnat_and_program_execution naming-conventions-for-gnat-source-files}@anchor{183}@anchor{gnat_ugn/gnat_and_program_execution id14}@anchor{184}
20031 @subsection Naming Conventions for GNAT Source Files
20032
20033
20034 In order to examine the workings of the GNAT system, the following
20035 brief description of its organization may be helpful:
20036
20037
20038 @itemize *
20039
20040 @item
20041 Files with prefix @code{sc} contain the lexical scanner.
20042
20043 @item
20044 All files prefixed with @code{par} are components of the parser. The
20045 numbers correspond to chapters of the Ada Reference Manual. For example,
20046 parsing of select statements can be found in @code{par-ch9.adb}.
20047
20048 @item
20049 All files prefixed with @code{sem} perform semantic analysis. The
20050 numbers correspond to chapters of the Ada standard. For example, all
20051 issues involving context clauses can be found in @code{sem_ch10.adb}. In
20052 addition, some features of the language require sufficient special processing
20053 to justify their own semantic files: sem_aggr for aggregates, sem_disp for
20054 dynamic dispatching, etc.
20055
20056 @item
20057 All files prefixed with @code{exp} perform normalization and
20058 expansion of the intermediate representation (abstract syntax tree, or AST).
20059 these files use the same numbering scheme as the parser and semantics files.
20060 For example, the construction of record initialization procedures is done in
20061 @code{exp_ch3.adb}.
20062
20063 @item
20064 The files prefixed with @code{bind} implement the binder, which
20065 verifies the consistency of the compilation, determines an order of
20066 elaboration, and generates the bind file.
20067
20068 @item
20069 The files @code{atree.ads} and @code{atree.adb} detail the low-level
20070 data structures used by the front-end.
20071
20072 @item
20073 The files @code{sinfo.ads} and @code{sinfo.adb} detail the structure of
20074 the abstract syntax tree as produced by the parser.
20075
20076 @item
20077 The files @code{einfo.ads} and @code{einfo.adb} detail the attributes of
20078 all entities, computed during semantic analysis.
20079
20080 @item
20081 Library management issues are dealt with in files with prefix
20082 @code{lib}.
20083
20084 @geindex Annex A (in Ada Reference Manual)
20085
20086 @item
20087 Ada files with the prefix @code{a-} are children of @code{Ada}, as
20088 defined in Annex A.
20089
20090 @geindex Annex B (in Ada reference Manual)
20091
20092 @item
20093 Files with prefix @code{i-} are children of @code{Interfaces}, as
20094 defined in Annex B.
20095
20096 @geindex System (package in Ada Reference Manual)
20097
20098 @item
20099 Files with prefix @code{s-} are children of @code{System}. This includes
20100 both language-defined children and GNAT run-time routines.
20101
20102 @geindex GNAT (package)
20103
20104 @item
20105 Files with prefix @code{g-} are children of @code{GNAT}. These are useful
20106 general-purpose packages, fully documented in their specs. All
20107 the other @code{.c} files are modifications of common @code{gcc} files.
20108 @end itemize
20109
20110 @node Getting Internal Debugging Information,Stack Traceback,Naming Conventions for GNAT Source Files,Running and Debugging Ada Programs
20111 @anchor{gnat_ugn/gnat_and_program_execution id15}@anchor{185}@anchor{gnat_ugn/gnat_and_program_execution getting-internal-debugging-information}@anchor{186}
20112 @subsection Getting Internal Debugging Information
20113
20114
20115 Most compilers have internal debugging switches and modes. GNAT
20116 does also, except GNAT internal debugging switches and modes are not
20117 secret. A summary and full description of all the compiler and binder
20118 debug flags are in the file @code{debug.adb}. You must obtain the
20119 sources of the compiler to see the full detailed effects of these flags.
20120
20121 The switches that print the source of the program (reconstructed from
20122 the internal tree) are of general interest for user programs, as are the
20123 options to print
20124 the full internal tree, and the entity table (the symbol table
20125 information). The reconstructed source provides a readable version of the
20126 program after the front-end has completed analysis and expansion,
20127 and is useful when studying the performance of specific constructs.
20128 For example, constraint checks are indicated, complex aggregates
20129 are replaced with loops and assignments, and tasking primitives
20130 are replaced with run-time calls.
20131
20132 @geindex traceback
20133
20134 @geindex stack traceback
20135
20136 @geindex stack unwinding
20137
20138 @node Stack Traceback,Pretty-Printers for the GNAT runtime,Getting Internal Debugging Information,Running and Debugging Ada Programs
20139 @anchor{gnat_ugn/gnat_and_program_execution stack-traceback}@anchor{187}@anchor{gnat_ugn/gnat_and_program_execution id16}@anchor{188}
20140 @subsection Stack Traceback
20141
20142
20143 Traceback is a mechanism to display the sequence of subprogram calls that
20144 leads to a specified execution point in a program. Often (but not always)
20145 the execution point is an instruction at which an exception has been raised.
20146 This mechanism is also known as @emph{stack unwinding} because it obtains
20147 its information by scanning the run-time stack and recovering the activation
20148 records of all active subprograms. Stack unwinding is one of the most
20149 important tools for program debugging.
20150
20151 The first entry stored in traceback corresponds to the deepest calling level,
20152 that is to say the subprogram currently executing the instruction
20153 from which we want to obtain the traceback.
20154
20155 Note that there is no runtime performance penalty when stack traceback
20156 is enabled, and no exception is raised during program execution.
20157
20158 @geindex traceback
20159 @geindex non-symbolic
20160
20161 @menu
20162 * Non-Symbolic Traceback::
20163 * Symbolic Traceback::
20164
20165 @end menu
20166
20167 @node Non-Symbolic Traceback,Symbolic Traceback,,Stack Traceback
20168 @anchor{gnat_ugn/gnat_and_program_execution non-symbolic-traceback}@anchor{189}@anchor{gnat_ugn/gnat_and_program_execution id17}@anchor{18a}
20169 @subsubsection Non-Symbolic Traceback
20170
20171
20172 Note: this feature is not supported on all platforms. See
20173 @code{GNAT.Traceback} spec in @code{g-traceb.ads}
20174 for a complete list of supported platforms.
20175
20176 @subsubheading Tracebacks From an Unhandled Exception
20177
20178
20179 A runtime non-symbolic traceback is a list of addresses of call instructions.
20180 To enable this feature you must use the @code{-E}
20181 @code{gnatbind} option. With this option a stack traceback is stored as part
20182 of exception information. You can retrieve this information using the
20183 @code{addr2line} tool.
20184
20185 Here is a simple example:
20186
20187 @quotation
20188
20189 @example
20190 procedure STB is
20191
20192 procedure P1 is
20193 begin
20194 raise Constraint_Error;
20195 end P1;
20196
20197 procedure P2 is
20198 begin
20199 P1;
20200 end P2;
20201
20202 begin
20203 P2;
20204 end STB;
20205 @end example
20206
20207 @example
20208 $ gnatmake stb -bargs -E
20209 $ stb
20210
20211 Execution terminated by unhandled exception
20212 Exception name: CONSTRAINT_ERROR
20213 Message: stb.adb:5
20214 Call stack traceback locations:
20215 0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4
20216 @end example
20217 @end quotation
20218
20219 As we see the traceback lists a sequence of addresses for the unhandled
20220 exception @code{CONSTRAINT_ERROR} raised in procedure P1. It is easy to
20221 guess that this exception come from procedure P1. To translate these
20222 addresses into the source lines where the calls appear, the
20223 @code{addr2line} tool, described below, is invaluable. The use of this tool
20224 requires the program to be compiled with debug information.
20225
20226 @quotation
20227
20228 @example
20229 $ gnatmake -g stb -bargs -E
20230 $ stb
20231
20232 Execution terminated by unhandled exception
20233 Exception name: CONSTRAINT_ERROR
20234 Message: stb.adb:5
20235 Call stack traceback locations:
20236 0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4
20237
20238 $ addr2line --exe=stb 0x401373 0x40138b 0x40139c 0x401335 0x4011c4
20239 0x4011f1 0x77e892a4
20240
20241 00401373 at d:/stb/stb.adb:5
20242 0040138B at d:/stb/stb.adb:10
20243 0040139C at d:/stb/stb.adb:14
20244 00401335 at d:/stb/b~stb.adb:104
20245 004011C4 at /build/.../crt1.c:200
20246 004011F1 at /build/.../crt1.c:222
20247 77E892A4 in ?? at ??:0
20248 @end example
20249 @end quotation
20250
20251 The @code{addr2line} tool has several other useful options:
20252
20253 @quotation
20254
20255
20256 @multitable {xxxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
20257 @item
20258
20259 @code{--functions}
20260
20261 @tab
20262
20263 to get the function name corresponding to any location
20264
20265 @item
20266
20267 @code{--demangle=gnat}
20268
20269 @tab
20270
20271 to use the gnat decoding mode for the function names.
20272 Note that for binutils version 2.9.x the option is
20273 simply @code{--demangle}.
20274
20275 @end multitable
20276
20277
20278 @example
20279 $ addr2line --exe=stb --functions --demangle=gnat 0x401373 0x40138b
20280 0x40139c 0x401335 0x4011c4 0x4011f1
20281
20282 00401373 in stb.p1 at d:/stb/stb.adb:5
20283 0040138B in stb.p2 at d:/stb/stb.adb:10
20284 0040139C in stb at d:/stb/stb.adb:14
20285 00401335 in main at d:/stb/b~stb.adb:104
20286 004011C4 in <__mingw_CRTStartup> at /build/.../crt1.c:200
20287 004011F1 in <mainCRTStartup> at /build/.../crt1.c:222
20288 @end example
20289 @end quotation
20290
20291 From this traceback we can see that the exception was raised in
20292 @code{stb.adb} at line 5, which was reached from a procedure call in
20293 @code{stb.adb} at line 10, and so on. The @code{b~std.adb} is the binder file,
20294 which contains the call to the main program.
20295 @ref{11c,,Running gnatbind}. The remaining entries are assorted runtime routines,
20296 and the output will vary from platform to platform.
20297
20298 It is also possible to use @code{GDB} with these traceback addresses to debug
20299 the program. For example, we can break at a given code location, as reported
20300 in the stack traceback:
20301
20302 @quotation
20303
20304 @example
20305 $ gdb -nw stb
20306 @end example
20307 @end quotation
20308
20309 Furthermore, this feature is not implemented inside Windows DLL. Only
20310 the non-symbolic traceback is reported in this case.
20311
20312 @quotation
20313
20314 @example
20315 (gdb) break *0x401373
20316 Breakpoint 1 at 0x401373: file stb.adb, line 5.
20317 @end example
20318 @end quotation
20319
20320 It is important to note that the stack traceback addresses
20321 do not change when debug information is included. This is particularly useful
20322 because it makes it possible to release software without debug information (to
20323 minimize object size), get a field report that includes a stack traceback
20324 whenever an internal bug occurs, and then be able to retrieve the sequence
20325 of calls with the same program compiled with debug information.
20326
20327 @subsubheading Tracebacks From Exception Occurrences
20328
20329
20330 Non-symbolic tracebacks are obtained by using the @code{-E} binder argument.
20331 The stack traceback is attached to the exception information string, and can
20332 be retrieved in an exception handler within the Ada program, by means of the
20333 Ada facilities defined in @code{Ada.Exceptions}. Here is a simple example:
20334
20335 @quotation
20336
20337 @example
20338 with Ada.Text_IO;
20339 with Ada.Exceptions;
20340
20341 procedure STB is
20342
20343 use Ada;
20344 use Ada.Exceptions;
20345
20346 procedure P1 is
20347 K : Positive := 1;
20348 begin
20349 K := K - 1;
20350 exception
20351 when E : others =>
20352 Text_IO.Put_Line (Exception_Information (E));
20353 end P1;
20354
20355 procedure P2 is
20356 begin
20357 P1;
20358 end P2;
20359
20360 begin
20361 P2;
20362 end STB;
20363 @end example
20364 @end quotation
20365
20366 This program will output:
20367
20368 @quotation
20369
20370 @example
20371 $ stb
20372
20373 Exception name: CONSTRAINT_ERROR
20374 Message: stb.adb:12
20375 Call stack traceback locations:
20376 0x4015e4 0x401633 0x401644 0x401461 0x4011c4 0x4011f1 0x77e892a4
20377 @end example
20378 @end quotation
20379
20380 @subsubheading Tracebacks From Anywhere in a Program
20381
20382
20383 It is also possible to retrieve a stack traceback from anywhere in a
20384 program. For this you need to
20385 use the @code{GNAT.Traceback} API. This package includes a procedure called
20386 @code{Call_Chain} that computes a complete stack traceback, as well as useful
20387 display procedures described below. It is not necessary to use the
20388 @code{-E} @code{gnatbind} option in this case, because the stack traceback mechanism
20389 is invoked explicitly.
20390
20391 In the following example we compute a traceback at a specific location in
20392 the program, and we display it using @code{GNAT.Debug_Utilities.Image} to
20393 convert addresses to strings:
20394
20395 @quotation
20396
20397 @example
20398 with Ada.Text_IO;
20399 with GNAT.Traceback;
20400 with GNAT.Debug_Utilities;
20401
20402 procedure STB is
20403
20404 use Ada;
20405 use GNAT;
20406 use GNAT.Traceback;
20407
20408 procedure P1 is
20409 TB : Tracebacks_Array (1 .. 10);
20410 -- We are asking for a maximum of 10 stack frames.
20411 Len : Natural;
20412 -- Len will receive the actual number of stack frames returned.
20413 begin
20414 Call_Chain (TB, Len);
20415
20416 Text_IO.Put ("In STB.P1 : ");
20417
20418 for K in 1 .. Len loop
20419 Text_IO.Put (Debug_Utilities.Image (TB (K)));
20420 Text_IO.Put (' ');
20421 end loop;
20422
20423 Text_IO.New_Line;
20424 end P1;
20425
20426 procedure P2 is
20427 begin
20428 P1;
20429 end P2;
20430
20431 begin
20432 P2;
20433 end STB;
20434 @end example
20435
20436 @example
20437 $ gnatmake -g stb
20438 $ stb
20439
20440 In STB.P1 : 16#0040_F1E4# 16#0040_14F2# 16#0040_170B# 16#0040_171C#
20441 16#0040_1461# 16#0040_11C4# 16#0040_11F1# 16#77E8_92A4#
20442 @end example
20443 @end quotation
20444
20445 You can then get further information by invoking the @code{addr2line}
20446 tool as described earlier (note that the hexadecimal addresses
20447 need to be specified in C format, with a leading '0x').
20448
20449 @geindex traceback
20450 @geindex symbolic
20451
20452 @node Symbolic Traceback,,Non-Symbolic Traceback,Stack Traceback
20453 @anchor{gnat_ugn/gnat_and_program_execution id18}@anchor{18b}@anchor{gnat_ugn/gnat_and_program_execution symbolic-traceback}@anchor{18c}
20454 @subsubsection Symbolic Traceback
20455
20456
20457 A symbolic traceback is a stack traceback in which procedure names are
20458 associated with each code location.
20459
20460 Note that this feature is not supported on all platforms. See
20461 @code{GNAT.Traceback.Symbolic} spec in @code{g-trasym.ads} for a complete
20462 list of currently supported platforms.
20463
20464 Note that the symbolic traceback requires that the program be compiled
20465 with debug information. If it is not compiled with debug information
20466 only the non-symbolic information will be valid.
20467
20468 @subsubheading Tracebacks From Exception Occurrences
20469
20470
20471 Here is an example:
20472
20473 @quotation
20474
20475 @example
20476 with Ada.Text_IO;
20477 with GNAT.Traceback.Symbolic;
20478
20479 procedure STB is
20480
20481 procedure P1 is
20482 begin
20483 raise Constraint_Error;
20484 end P1;
20485
20486 procedure P2 is
20487 begin
20488 P1;
20489 end P2;
20490
20491 procedure P3 is
20492 begin
20493 P2;
20494 end P3;
20495
20496 begin
20497 P3;
20498 exception
20499 when E : others =>
20500 Ada.Text_IO.Put_Line (GNAT.Traceback.Symbolic.Symbolic_Traceback (E));
20501 end STB;
20502 @end example
20503
20504 @example
20505 $ gnatmake -g .\stb -bargs -E
20506 $ stb
20507
20508 0040149F in stb.p1 at stb.adb:8
20509 004014B7 in stb.p2 at stb.adb:13
20510 004014CF in stb.p3 at stb.adb:18
20511 004015DD in ada.stb at stb.adb:22
20512 00401461 in main at b~stb.adb:168
20513 004011C4 in __mingw_CRTStartup at crt1.c:200
20514 004011F1 in mainCRTStartup at crt1.c:222
20515 77E892A4 in ?? at ??:0
20516 @end example
20517 @end quotation
20518
20519 In the above example the @code{.\} syntax in the @code{gnatmake} command
20520 is currently required by @code{addr2line} for files that are in
20521 the current working directory.
20522 Moreover, the exact sequence of linker options may vary from platform
20523 to platform.
20524 The above @code{-largs} section is for Windows platforms. By contrast,
20525 under Unix there is no need for the @code{-largs} section.
20526 Differences across platforms are due to details of linker implementation.
20527
20528 @subsubheading Tracebacks From Anywhere in a Program
20529
20530
20531 It is possible to get a symbolic stack traceback
20532 from anywhere in a program, just as for non-symbolic tracebacks.
20533 The first step is to obtain a non-symbolic
20534 traceback, and then call @code{Symbolic_Traceback} to compute the symbolic
20535 information. Here is an example:
20536
20537 @quotation
20538
20539 @example
20540 with Ada.Text_IO;
20541 with GNAT.Traceback;
20542 with GNAT.Traceback.Symbolic;
20543
20544 procedure STB is
20545
20546 use Ada;
20547 use GNAT.Traceback;
20548 use GNAT.Traceback.Symbolic;
20549
20550 procedure P1 is
20551 TB : Tracebacks_Array (1 .. 10);
20552 -- We are asking for a maximum of 10 stack frames.
20553 Len : Natural;
20554 -- Len will receive the actual number of stack frames returned.
20555 begin
20556 Call_Chain (TB, Len);
20557 Text_IO.Put_Line (Symbolic_Traceback (TB (1 .. Len)));
20558 end P1;
20559
20560 procedure P2 is
20561 begin
20562 P1;
20563 end P2;
20564
20565 begin
20566 P2;
20567 end STB;
20568 @end example
20569 @end quotation
20570
20571 @subsubheading Automatic Symbolic Tracebacks
20572
20573
20574 Symbolic tracebacks may also be enabled by using the -Es switch to gnatbind (as
20575 in @code{gprbuild -g ... -bargs -Es}).
20576 This will cause the Exception_Information to contain a symbolic traceback,
20577 which will also be printed if an unhandled exception terminates the
20578 program.
20579
20580 @node Pretty-Printers for the GNAT runtime,,Stack Traceback,Running and Debugging Ada Programs
20581 @anchor{gnat_ugn/gnat_and_program_execution id19}@anchor{18d}@anchor{gnat_ugn/gnat_and_program_execution pretty-printers-for-the-gnat-runtime}@anchor{18e}
20582 @subsection Pretty-Printers for the GNAT runtime
20583
20584
20585 As discussed in @cite{Calling User-Defined Subprograms}, GDB's
20586 @code{print} command only knows about the physical layout of program data
20587 structures and therefore normally displays only low-level dumps, which
20588 are often hard to understand.
20589
20590 An example of this is when trying to display the contents of an Ada
20591 standard container, such as @code{Ada.Containers.Ordered_Maps.Map}:
20592
20593 @quotation
20594
20595 @example
20596 with Ada.Containers.Ordered_Maps;
20597
20598 procedure PP is
20599 package Int_To_Nat is
20600 new Ada.Containers.Ordered_Maps (Integer, Natural);
20601
20602 Map : Int_To_Nat.Map;
20603 begin
20604 Map.Insert (1, 10);
20605 Map.Insert (2, 20);
20606 Map.Insert (3, 30);
20607
20608 Map.Clear; -- BREAK HERE
20609 end PP;
20610 @end example
20611 @end quotation
20612
20613 When this program is built with debugging information and run under
20614 GDB up to the @code{Map.Clear} statement, trying to print @code{Map} will
20615 yield information that is only relevant to the developers of our standard
20616 containers:
20617
20618 @quotation
20619
20620 @example
20621 (gdb) print map
20622 $1 = (
20623 tree => (
20624 first => 0x64e010,
20625 last => 0x64e070,
20626 root => 0x64e040,
20627 length => 3,
20628 tc => (
20629 busy => 0,
20630 lock => 0
20631 )
20632 )
20633 )
20634 @end example
20635 @end quotation
20636
20637 Fortunately, GDB has a feature called pretty-printers@footnote{http://docs.adacore.com/gdb-docs/html/gdb.html#Pretty_002dPrinter-Introduction},
20638 which allows customizing how GDB displays data structures. The GDB
20639 shipped with GNAT embeds such pretty-printers for the most common
20640 containers in the standard library. To enable them, either run the
20641 following command manually under GDB or add it to your @code{.gdbinit} file:
20642
20643 @quotation
20644
20645 @example
20646 python import gnatdbg; gnatdbg.setup()
20647 @end example
20648 @end quotation
20649
20650 Once this is done, GDB's @code{print} command will automatically use
20651 these pretty-printers when appropriate. Using the previous example:
20652
20653 @quotation
20654
20655 @example
20656 (gdb) print map
20657 $1 = pp.int_to_nat.map of length 3 = @{
20658 [1] = 10,
20659 [2] = 20,
20660 [3] = 30
20661 @}
20662 @end example
20663 @end quotation
20664
20665 Pretty-printers are invoked each time GDB tries to display a value,
20666 including when displaying the arguments of a called subprogram (in
20667 GDB's @code{backtrace} command) or when printing the value returned by a
20668 function (in GDB's @code{finish} command).
20669
20670 To display a value without involving pretty-printers, @code{print} can be
20671 invoked with its @code{/r} option:
20672
20673 @quotation
20674
20675 @example
20676 (gdb) print/r map
20677 $1 = (
20678 tree => (...
20679 @end example
20680 @end quotation
20681
20682 Finer control of pretty-printers is also possible: see GDB's online documentation@footnote{http://docs.adacore.com/gdb-docs/html/gdb.html#Pretty_002dPrinter-Commands}
20683 for more information.
20684
20685 @geindex Profiling
20686
20687 @node Profiling,Improving Performance,Running and Debugging Ada Programs,GNAT and Program Execution
20688 @anchor{gnat_ugn/gnat_and_program_execution profiling}@anchor{25}@anchor{gnat_ugn/gnat_and_program_execution id20}@anchor{18f}
20689 @section Profiling
20690
20691
20692 This section describes how to use the @code{gprof} profiler tool on Ada programs.
20693
20694 @geindex gprof
20695
20696 @geindex Profiling
20697
20698 @menu
20699 * Profiling an Ada Program with gprof::
20700
20701 @end menu
20702
20703 @node Profiling an Ada Program with gprof,,,Profiling
20704 @anchor{gnat_ugn/gnat_and_program_execution id21}@anchor{190}@anchor{gnat_ugn/gnat_and_program_execution profiling-an-ada-program-with-gprof}@anchor{191}
20705 @subsection Profiling an Ada Program with gprof
20706
20707
20708 This section is not meant to be an exhaustive documentation of @code{gprof}.
20709 Full documentation for it can be found in the @cite{GNU Profiler User's Guide}
20710 documentation that is part of this GNAT distribution.
20711
20712 Profiling a program helps determine the parts of a program that are executed
20713 most often, and are therefore the most time-consuming.
20714
20715 @code{gprof} is the standard GNU profiling tool; it has been enhanced to
20716 better handle Ada programs and multitasking.
20717 It is currently supported on the following platforms
20718
20719
20720 @itemize *
20721
20722 @item
20723 linux x86/x86_64
20724
20725 @item
20726 windows x86
20727 @end itemize
20728
20729 In order to profile a program using @code{gprof}, several steps are needed:
20730
20731
20732 @enumerate
20733
20734 @item
20735 Instrument the code, which requires a full recompilation of the project with the
20736 proper switches.
20737
20738 @item
20739 Execute the program under the analysis conditions, i.e. with the desired
20740 input.
20741
20742 @item
20743 Analyze the results using the @code{gprof} tool.
20744 @end enumerate
20745
20746 The following sections detail the different steps, and indicate how
20747 to interpret the results.
20748
20749 @menu
20750 * Compilation for profiling::
20751 * Program execution::
20752 * Running gprof::
20753 * Interpretation of profiling results::
20754
20755 @end menu
20756
20757 @node Compilation for profiling,Program execution,,Profiling an Ada Program with gprof
20758 @anchor{gnat_ugn/gnat_and_program_execution id22}@anchor{192}@anchor{gnat_ugn/gnat_and_program_execution compilation-for-profiling}@anchor{193}
20759 @subsubsection Compilation for profiling
20760
20761
20762 @geindex -pg (gcc)
20763 @geindex for profiling
20764
20765 @geindex -pg (gnatlink)
20766 @geindex for profiling
20767
20768 In order to profile a program the first step is to tell the compiler
20769 to generate the necessary profiling information. The compiler switch to be used
20770 is @code{-pg}, which must be added to other compilation switches. This
20771 switch needs to be specified both during compilation and link stages, and can
20772 be specified once when using gnatmake:
20773
20774 @quotation
20775
20776 @example
20777 $ gnatmake -f -pg -P my_project
20778 @end example
20779 @end quotation
20780
20781 Note that only the objects that were compiled with the @code{-pg} switch will
20782 be profiled; if you need to profile your whole project, use the @code{-f}
20783 gnatmake switch to force full recompilation.
20784
20785 @node Program execution,Running gprof,Compilation for profiling,Profiling an Ada Program with gprof
20786 @anchor{gnat_ugn/gnat_and_program_execution program-execution}@anchor{194}@anchor{gnat_ugn/gnat_and_program_execution id23}@anchor{195}
20787 @subsubsection Program execution
20788
20789
20790 Once the program has been compiled for profiling, you can run it as usual.
20791
20792 The only constraint imposed by profiling is that the program must terminate
20793 normally. An interrupted program (via a Ctrl-C, kill, etc.) will not be
20794 properly analyzed.
20795
20796 Once the program completes execution, a data file called @code{gmon.out} is
20797 generated in the directory where the program was launched from. If this file
20798 already exists, it will be overwritten.
20799
20800 @node Running gprof,Interpretation of profiling results,Program execution,Profiling an Ada Program with gprof
20801 @anchor{gnat_ugn/gnat_and_program_execution running-gprof}@anchor{196}@anchor{gnat_ugn/gnat_and_program_execution id24}@anchor{197}
20802 @subsubsection Running gprof
20803
20804
20805 The @code{gprof} tool is called as follow:
20806
20807 @quotation
20808
20809 @example
20810 $ gprof my_prog gmon.out
20811 @end example
20812 @end quotation
20813
20814 or simply:
20815
20816 @quotation
20817
20818 @example
20819 $ gprof my_prog
20820 @end example
20821 @end quotation
20822
20823 The complete form of the gprof command line is the following:
20824
20825 @quotation
20826
20827 @example
20828 $ gprof [switches] [executable [data-file]]
20829 @end example
20830 @end quotation
20831
20832 @code{gprof} supports numerous switches. The order of these
20833 switch does not matter. The full list of options can be found in
20834 the GNU Profiler User's Guide documentation that comes with this documentation.
20835
20836 The following is the subset of those switches that is most relevant:
20837
20838 @geindex --demangle (gprof)
20839
20840
20841 @table @asis
20842
20843 @item @code{--demangle[=@emph{style}]}, @code{--no-demangle}
20844
20845 These options control whether symbol names should be demangled when
20846 printing output. The default is to demangle C++ symbols. The
20847 @code{--no-demangle} option may be used to turn off demangling. Different
20848 compilers have different mangling styles. The optional demangling style
20849 argument can be used to choose an appropriate demangling style for your
20850 compiler, in particular Ada symbols generated by GNAT can be demangled using
20851 @code{--demangle=gnat}.
20852 @end table
20853
20854 @geindex -e (gprof)
20855
20856
20857 @table @asis
20858
20859 @item @code{-e @emph{function_name}}
20860
20861 The @code{-e @emph{function}} option tells @code{gprof} not to print
20862 information about the function @code{function_name} (and its
20863 children...) in the call graph. The function will still be listed
20864 as a child of any functions that call it, but its index number will be
20865 shown as @code{[not printed]}. More than one @code{-e} option may be
20866 given; only one @code{function_name} may be indicated with each @code{-e}
20867 option.
20868 @end table
20869
20870 @geindex -E (gprof)
20871
20872
20873 @table @asis
20874
20875 @item @code{-E @emph{function_name}}
20876
20877 The @code{-E @emph{function}} option works like the @code{-e} option, but
20878 execution time spent in the function (and children who were not called from
20879 anywhere else), will not be used to compute the percentages-of-time for
20880 the call graph. More than one @code{-E} option may be given; only one
20881 @code{function_name} may be indicated with each @code{-E`} option.
20882 @end table
20883
20884 @geindex -f (gprof)
20885
20886
20887 @table @asis
20888
20889 @item @code{-f @emph{function_name}}
20890
20891 The @code{-f @emph{function}} option causes @code{gprof} to limit the
20892 call graph to the function @code{function_name} and its children (and
20893 their children...). More than one @code{-f} option may be given;
20894 only one @code{function_name} may be indicated with each @code{-f}
20895 option.
20896 @end table
20897
20898 @geindex -F (gprof)
20899
20900
20901 @table @asis
20902
20903 @item @code{-F @emph{function_name}}
20904
20905 The @code{-F @emph{function}} option works like the @code{-f} option, but
20906 only time spent in the function and its children (and their
20907 children...) will be used to determine total-time and
20908 percentages-of-time for the call graph. More than one @code{-F} option
20909 may be given; only one @code{function_name} may be indicated with each
20910 @code{-F} option. The @code{-F} option overrides the @code{-E} option.
20911 @end table
20912
20913 @node Interpretation of profiling results,,Running gprof,Profiling an Ada Program with gprof
20914 @anchor{gnat_ugn/gnat_and_program_execution id25}@anchor{198}@anchor{gnat_ugn/gnat_and_program_execution interpretation-of-profiling-results}@anchor{199}
20915 @subsubsection Interpretation of profiling results
20916
20917
20918 The results of the profiling analysis are represented by two arrays: the
20919 'flat profile' and the 'call graph'. Full documentation of those outputs
20920 can be found in the GNU Profiler User's Guide.
20921
20922 The flat profile shows the time spent in each function of the program, and how
20923 many time it has been called. This allows you to locate easily the most
20924 time-consuming functions.
20925
20926 The call graph shows, for each subprogram, the subprograms that call it,
20927 and the subprograms that it calls. It also provides an estimate of the time
20928 spent in each of those callers/called subprograms.
20929
20930 @node Improving Performance,Overflow Check Handling in GNAT,Profiling,GNAT and Program Execution
20931 @anchor{gnat_ugn/gnat_and_program_execution improving-performance}@anchor{26}@anchor{gnat_ugn/gnat_and_program_execution id26}@anchor{168}
20932 @section Improving Performance
20933
20934
20935 @geindex Improving performance
20936
20937 This section presents several topics related to program performance.
20938 It first describes some of the tradeoffs that need to be considered
20939 and some of the techniques for making your program run faster.
20940
20941 It then documents the unused subprogram/data elimination feature,
20942 which can reduce the size of program executables.
20943
20944 @menu
20945 * Performance Considerations::
20946 * Text_IO Suggestions::
20947 * Reducing Size of Executables with Unused Subprogram/Data Elimination::
20948
20949 @end menu
20950
20951 @node Performance Considerations,Text_IO Suggestions,,Improving Performance
20952 @anchor{gnat_ugn/gnat_and_program_execution performance-considerations}@anchor{19a}@anchor{gnat_ugn/gnat_and_program_execution id27}@anchor{19b}
20953 @subsection Performance Considerations
20954
20955
20956 The GNAT system provides a number of options that allow a trade-off
20957 between
20958
20959
20960 @itemize *
20961
20962 @item
20963 performance of the generated code
20964
20965 @item
20966 speed of compilation
20967
20968 @item
20969 minimization of dependences and recompilation
20970
20971 @item
20972 the degree of run-time checking.
20973 @end itemize
20974
20975 The defaults (if no options are selected) aim at improving the speed
20976 of compilation and minimizing dependences, at the expense of performance
20977 of the generated code:
20978
20979
20980 @itemize *
20981
20982 @item
20983 no optimization
20984
20985 @item
20986 no inlining of subprogram calls
20987
20988 @item
20989 all run-time checks enabled except overflow and elaboration checks
20990 @end itemize
20991
20992 These options are suitable for most program development purposes. This
20993 section describes how you can modify these choices, and also provides
20994 some guidelines on debugging optimized code.
20995
20996 @menu
20997 * Controlling Run-Time Checks::
20998 * Use of Restrictions::
20999 * Optimization Levels::
21000 * Debugging Optimized Code::
21001 * Inlining of Subprograms::
21002 * Floating_Point_Operations::
21003 * Vectorization of loops::
21004 * Other Optimization Switches::
21005 * Optimization and Strict Aliasing::
21006 * Aliased Variables and Optimization::
21007 * Atomic Variables and Optimization::
21008 * Passive Task Optimization::
21009
21010 @end menu
21011
21012 @node Controlling Run-Time Checks,Use of Restrictions,,Performance Considerations
21013 @anchor{gnat_ugn/gnat_and_program_execution id28}@anchor{19c}@anchor{gnat_ugn/gnat_and_program_execution controlling-run-time-checks}@anchor{19d}
21014 @subsubsection Controlling Run-Time Checks
21015
21016
21017 By default, GNAT generates all run-time checks, except stack overflow
21018 checks, and checks for access before elaboration on subprogram
21019 calls. The latter are not required in default mode, because all
21020 necessary checking is done at compile time.
21021
21022 @geindex -gnatp (gcc)
21023
21024 @geindex -gnato (gcc)
21025
21026 The gnat switch, @code{-gnatp} allows this default to be modified. See
21027 @ref{f9,,Run-Time Checks}.
21028
21029 Our experience is that the default is suitable for most development
21030 purposes.
21031
21032 Elaboration checks are off by default, and also not needed by default, since
21033 GNAT uses a static elaboration analysis approach that avoids the need for
21034 run-time checking. This manual contains a full chapter discussing the issue
21035 of elaboration checks, and if the default is not satisfactory for your use,
21036 you should read this chapter.
21037
21038 For validity checks, the minimal checks required by the Ada Reference
21039 Manual (for case statements and assignments to array elements) are on
21040 by default. These can be suppressed by use of the @code{-gnatVn} switch.
21041 Note that in Ada 83, there were no validity checks, so if the Ada 83 mode
21042 is acceptable (or when comparing GNAT performance with an Ada 83 compiler),
21043 it may be reasonable to routinely use @code{-gnatVn}. Validity checks
21044 are also suppressed entirely if @code{-gnatp} is used.
21045
21046 @geindex Overflow checks
21047
21048 @geindex Checks
21049 @geindex overflow
21050
21051 @geindex Suppress
21052
21053 @geindex Unsuppress
21054
21055 @geindex pragma Suppress
21056
21057 @geindex pragma Unsuppress
21058
21059 Note that the setting of the switches controls the default setting of
21060 the checks. They may be modified using either @code{pragma Suppress} (to
21061 remove checks) or @code{pragma Unsuppress} (to add back suppressed
21062 checks) in the program source.
21063
21064 @node Use of Restrictions,Optimization Levels,Controlling Run-Time Checks,Performance Considerations
21065 @anchor{gnat_ugn/gnat_and_program_execution id29}@anchor{19e}@anchor{gnat_ugn/gnat_and_program_execution use-of-restrictions}@anchor{19f}
21066 @subsubsection Use of Restrictions
21067
21068
21069 The use of pragma Restrictions allows you to control which features are
21070 permitted in your program. Apart from the obvious point that if you avoid
21071 relatively expensive features like finalization (enforceable by the use
21072 of pragma Restrictions (No_Finalization), the use of this pragma does not
21073 affect the generated code in most cases.
21074
21075 One notable exception to this rule is that the possibility of task abort
21076 results in some distributed overhead, particularly if finalization or
21077 exception handlers are used. The reason is that certain sections of code
21078 have to be marked as non-abortable.
21079
21080 If you use neither the @code{abort} statement, nor asynchronous transfer
21081 of control (@code{select ... then abort}), then this distributed overhead
21082 is removed, which may have a general positive effect in improving
21083 overall performance. Especially code involving frequent use of tasking
21084 constructs and controlled types will show much improved performance.
21085 The relevant restrictions pragmas are
21086
21087 @quotation
21088
21089 @example
21090 pragma Restrictions (No_Abort_Statements);
21091 pragma Restrictions (Max_Asynchronous_Select_Nesting => 0);
21092 @end example
21093 @end quotation
21094
21095 It is recommended that these restriction pragmas be used if possible. Note
21096 that this also means that you can write code without worrying about the
21097 possibility of an immediate abort at any point.
21098
21099 @node Optimization Levels,Debugging Optimized Code,Use of Restrictions,Performance Considerations
21100 @anchor{gnat_ugn/gnat_and_program_execution id30}@anchor{1a0}@anchor{gnat_ugn/gnat_and_program_execution optimization-levels}@anchor{fc}
21101 @subsubsection Optimization Levels
21102
21103
21104 @geindex -O (gcc)
21105
21106 Without any optimization option,
21107 the compiler's goal is to reduce the cost of
21108 compilation and to make debugging produce the expected results.
21109 Statements are independent: if you stop the program with a breakpoint between
21110 statements, you can then assign a new value to any variable or change
21111 the program counter to any other statement in the subprogram and get exactly
21112 the results you would expect from the source code.
21113
21114 Turning on optimization makes the compiler attempt to improve the
21115 performance and/or code size at the expense of compilation time and
21116 possibly the ability to debug the program.
21117
21118 If you use multiple
21119 -O options, with or without level numbers,
21120 the last such option is the one that is effective.
21121
21122 The default is optimization off. This results in the fastest compile
21123 times, but GNAT makes absolutely no attempt to optimize, and the
21124 generated programs are considerably larger and slower than when
21125 optimization is enabled. You can use the
21126 @code{-O} switch (the permitted forms are @code{-O0}, @code{-O1}
21127 @code{-O2}, @code{-O3}, and @code{-Os})
21128 to @code{gcc} to control the optimization level:
21129
21130
21131 @itemize *
21132
21133 @item
21134
21135 @table @asis
21136
21137 @item @code{-O0}
21138
21139 No optimization (the default);
21140 generates unoptimized code but has
21141 the fastest compilation time.
21142
21143 Note that many other compilers do substantial optimization even
21144 if 'no optimization' is specified. With gcc, it is very unusual
21145 to use @code{-O0} for production if execution time is of any concern,
21146 since @code{-O0} means (almost) no optimization. This difference
21147 between gcc and other compilers should be kept in mind when
21148 doing performance comparisons.
21149 @end table
21150
21151 @item
21152
21153 @table @asis
21154
21155 @item @code{-O1}
21156
21157 Moderate optimization;
21158 optimizes reasonably well but does not
21159 degrade compilation time significantly.
21160 @end table
21161
21162 @item
21163
21164 @table @asis
21165
21166 @item @code{-O2}
21167
21168 Full optimization;
21169 generates highly optimized code and has
21170 the slowest compilation time.
21171 @end table
21172
21173 @item
21174
21175 @table @asis
21176
21177 @item @code{-O3}
21178
21179 Full optimization as in @code{-O2};
21180 also uses more aggressive automatic inlining of subprograms within a unit
21181 (@ref{10f,,Inlining of Subprograms}) and attempts to vectorize loops.
21182 @end table
21183
21184 @item
21185
21186 @table @asis
21187
21188 @item @code{-Os}
21189
21190 Optimize space usage (code and data) of resulting program.
21191 @end table
21192 @end itemize
21193
21194 Higher optimization levels perform more global transformations on the
21195 program and apply more expensive analysis algorithms in order to generate
21196 faster and more compact code. The price in compilation time, and the
21197 resulting improvement in execution time,
21198 both depend on the particular application and the hardware environment.
21199 You should experiment to find the best level for your application.
21200
21201 Since the precise set of optimizations done at each level will vary from
21202 release to release (and sometime from target to target), it is best to think
21203 of the optimization settings in general terms.
21204 See the @emph{Options That Control Optimization} section in
21205 @cite{Using the GNU Compiler Collection (GCC)}
21206 for details about
21207 the @code{-O} settings and a number of @code{-f} options that
21208 individually enable or disable specific optimizations.
21209
21210 Unlike some other compilation systems, @code{gcc} has
21211 been tested extensively at all optimization levels. There are some bugs
21212 which appear only with optimization turned on, but there have also been
21213 bugs which show up only in @emph{unoptimized} code. Selecting a lower
21214 level of optimization does not improve the reliability of the code
21215 generator, which in practice is highly reliable at all optimization
21216 levels.
21217
21218 Note regarding the use of @code{-O3}: The use of this optimization level
21219 ought not to be automatically preferred over that of level @code{-O2},
21220 since it often results in larger executables which may run more slowly.
21221 See further discussion of this point in @ref{10f,,Inlining of Subprograms}.
21222
21223 @node Debugging Optimized Code,Inlining of Subprograms,Optimization Levels,Performance Considerations
21224 @anchor{gnat_ugn/gnat_and_program_execution debugging-optimized-code}@anchor{1a1}@anchor{gnat_ugn/gnat_and_program_execution id31}@anchor{1a2}
21225 @subsubsection Debugging Optimized Code
21226
21227
21228 @geindex Debugging optimized code
21229
21230 @geindex Optimization and debugging
21231
21232 Although it is possible to do a reasonable amount of debugging at
21233 nonzero optimization levels,
21234 the higher the level the more likely that
21235 source-level constructs will have been eliminated by optimization.
21236 For example, if a loop is strength-reduced, the loop
21237 control variable may be completely eliminated and thus cannot be
21238 displayed in the debugger.
21239 This can only happen at @code{-O2} or @code{-O3}.
21240 Explicit temporary variables that you code might be eliminated at
21241 level @code{-O1} or higher.
21242
21243 @geindex -g (gcc)
21244
21245 The use of the @code{-g} switch,
21246 which is needed for source-level debugging,
21247 affects the size of the program executable on disk,
21248 and indeed the debugging information can be quite large.
21249 However, it has no effect on the generated code (and thus does not
21250 degrade performance)
21251
21252 Since the compiler generates debugging tables for a compilation unit before
21253 it performs optimizations, the optimizing transformations may invalidate some
21254 of the debugging data. You therefore need to anticipate certain
21255 anomalous situations that may arise while debugging optimized code.
21256 These are the most common cases:
21257
21258
21259 @itemize *
21260
21261 @item
21262 @emph{The 'hopping Program Counter':} Repeated @code{step} or @code{next}
21263 commands show
21264 the PC bouncing back and forth in the code. This may result from any of
21265 the following optimizations:
21266
21267
21268 @itemize -
21269
21270 @item
21271 @emph{Common subexpression elimination:} using a single instance of code for a
21272 quantity that the source computes several times. As a result you
21273 may not be able to stop on what looks like a statement.
21274
21275 @item
21276 @emph{Invariant code motion:} moving an expression that does not change within a
21277 loop, to the beginning of the loop.
21278
21279 @item
21280 @emph{Instruction scheduling:} moving instructions so as to
21281 overlap loads and stores (typically) with other code, or in
21282 general to move computations of values closer to their uses. Often
21283 this causes you to pass an assignment statement without the assignment
21284 happening and then later bounce back to the statement when the
21285 value is actually needed. Placing a breakpoint on a line of code
21286 and then stepping over it may, therefore, not always cause all the
21287 expected side-effects.
21288 @end itemize
21289
21290 @item
21291 @emph{The 'big leap':} More commonly known as @emph{cross-jumping}, in which
21292 two identical pieces of code are merged and the program counter suddenly
21293 jumps to a statement that is not supposed to be executed, simply because
21294 it (and the code following) translates to the same thing as the code
21295 that @emph{was} supposed to be executed. This effect is typically seen in
21296 sequences that end in a jump, such as a @code{goto}, a @code{return}, or
21297 a @code{break} in a C @code{switch} statement.
21298
21299 @item
21300 @emph{The 'roving variable':} The symptom is an unexpected value in a variable.
21301 There are various reasons for this effect:
21302
21303
21304 @itemize -
21305
21306 @item
21307 In a subprogram prologue, a parameter may not yet have been moved to its
21308 'home'.
21309
21310 @item
21311 A variable may be dead, and its register re-used. This is
21312 probably the most common cause.
21313
21314 @item
21315 As mentioned above, the assignment of a value to a variable may
21316 have been moved.
21317
21318 @item
21319 A variable may be eliminated entirely by value propagation or
21320 other means. In this case, GCC may incorrectly generate debugging
21321 information for the variable
21322 @end itemize
21323
21324 In general, when an unexpected value appears for a local variable or parameter
21325 you should first ascertain if that value was actually computed by
21326 your program, as opposed to being incorrectly reported by the debugger.
21327 Record fields or
21328 array elements in an object designated by an access value
21329 are generally less of a problem, once you have ascertained that the access
21330 value is sensible.
21331 Typically, this means checking variables in the preceding code and in the
21332 calling subprogram to verify that the value observed is explainable from other
21333 values (one must apply the procedure recursively to those
21334 other values); or re-running the code and stopping a little earlier
21335 (perhaps before the call) and stepping to better see how the variable obtained
21336 the value in question; or continuing to step @emph{from} the point of the
21337 strange value to see if code motion had simply moved the variable's
21338 assignments later.
21339 @end itemize
21340
21341 In light of such anomalies, a recommended technique is to use @code{-O0}
21342 early in the software development cycle, when extensive debugging capabilities
21343 are most needed, and then move to @code{-O1} and later @code{-O2} as
21344 the debugger becomes less critical.
21345 Whether to use the @code{-g} switch in the release version is
21346 a release management issue.
21347 Note that if you use @code{-g} you can then use the @code{strip} program
21348 on the resulting executable,
21349 which removes both debugging information and global symbols.
21350
21351 @node Inlining of Subprograms,Floating_Point_Operations,Debugging Optimized Code,Performance Considerations
21352 @anchor{gnat_ugn/gnat_and_program_execution id32}@anchor{1a3}@anchor{gnat_ugn/gnat_and_program_execution inlining-of-subprograms}@anchor{10f}
21353 @subsubsection Inlining of Subprograms
21354
21355
21356 A call to a subprogram in the current unit is inlined if all the
21357 following conditions are met:
21358
21359
21360 @itemize *
21361
21362 @item
21363 The optimization level is at least @code{-O1}.
21364
21365 @item
21366 The called subprogram is suitable for inlining: It must be small enough
21367 and not contain something that @code{gcc} cannot support in inlined
21368 subprograms.
21369
21370 @geindex pragma Inline
21371
21372 @geindex Inline
21373
21374 @item
21375 Any one of the following applies: @code{pragma Inline} is applied to the
21376 subprogram; the subprogram is local to the unit and called once from
21377 within it; the subprogram is small and optimization level @code{-O2} is
21378 specified; optimization level @code{-O3} is specified.
21379 @end itemize
21380
21381 Calls to subprograms in @emph{with}ed units are normally not inlined.
21382 To achieve actual inlining (that is, replacement of the call by the code
21383 in the body of the subprogram), the following conditions must all be true:
21384
21385
21386 @itemize *
21387
21388 @item
21389 The optimization level is at least @code{-O1}.
21390
21391 @item
21392 The called subprogram is suitable for inlining: It must be small enough
21393 and not contain something that @code{gcc} cannot support in inlined
21394 subprograms.
21395
21396 @item
21397 There is a @code{pragma Inline} for the subprogram.
21398
21399 @item
21400 The @code{-gnatn} switch is used on the command line.
21401 @end itemize
21402
21403 Even if all these conditions are met, it may not be possible for
21404 the compiler to inline the call, due to the length of the body,
21405 or features in the body that make it impossible for the compiler
21406 to do the inlining.
21407
21408 Note that specifying the @code{-gnatn} switch causes additional
21409 compilation dependencies. Consider the following:
21410
21411 @quotation
21412
21413 @example
21414 package R is
21415 procedure Q;
21416 pragma Inline (Q);
21417 end R;
21418 package body R is
21419 ...
21420 end R;
21421
21422 with R;
21423 procedure Main is
21424 begin
21425 ...
21426 R.Q;
21427 end Main;
21428 @end example
21429 @end quotation
21430
21431 With the default behavior (no @code{-gnatn} switch specified), the
21432 compilation of the @code{Main} procedure depends only on its own source,
21433 @code{main.adb}, and the spec of the package in file @code{r.ads}. This
21434 means that editing the body of @code{R} does not require recompiling
21435 @code{Main}.
21436
21437 On the other hand, the call @code{R.Q} is not inlined under these
21438 circumstances. If the @code{-gnatn} switch is present when @code{Main}
21439 is compiled, the call will be inlined if the body of @code{Q} is small
21440 enough, but now @code{Main} depends on the body of @code{R} in
21441 @code{r.adb} as well as on the spec. This means that if this body is edited,
21442 the main program must be recompiled. Note that this extra dependency
21443 occurs whether or not the call is in fact inlined by @code{gcc}.
21444
21445 The use of front end inlining with @code{-gnatN} generates similar
21446 additional dependencies.
21447
21448 @geindex -fno-inline (gcc)
21449
21450 Note: The @code{-fno-inline} switch overrides all other conditions and ensures that
21451 no inlining occurs, unless requested with pragma Inline_Always for @code{gcc}
21452 back-ends. The extra dependences resulting from @code{-gnatn} will still be active,
21453 even if this switch is used to suppress the resulting inlining actions.
21454
21455 @geindex -fno-inline-functions (gcc)
21456
21457 Note: The @code{-fno-inline-functions} switch can be used to prevent
21458 automatic inlining of subprograms if @code{-O3} is used.
21459
21460 @geindex -fno-inline-small-functions (gcc)
21461
21462 Note: The @code{-fno-inline-small-functions} switch can be used to prevent
21463 automatic inlining of small subprograms if @code{-O2} is used.
21464
21465 @geindex -fno-inline-functions-called-once (gcc)
21466
21467 Note: The @code{-fno-inline-functions-called-once} switch
21468 can be used to prevent inlining of subprograms local to the unit
21469 and called once from within it if @code{-O1} is used.
21470
21471 Note regarding the use of @code{-O3}: @code{-gnatn} is made up of two
21472 sub-switches @code{-gnatn1} and @code{-gnatn2} that can be directly
21473 specified in lieu of it, @code{-gnatn} being translated into one of them
21474 based on the optimization level. With @code{-O2} or below, @code{-gnatn}
21475 is equivalent to @code{-gnatn1} which activates pragma @code{Inline} with
21476 moderate inlining across modules. With @code{-O3}, @code{-gnatn} is
21477 equivalent to @code{-gnatn2} which activates pragma @code{Inline} with
21478 full inlining across modules. If you have used pragma @code{Inline} in
21479 appropriate cases, then it is usually much better to use @code{-O2}
21480 and @code{-gnatn} and avoid the use of @code{-O3} which has the additional
21481 effect of inlining subprograms you did not think should be inlined. We have
21482 found that the use of @code{-O3} may slow down the compilation and increase
21483 the code size by performing excessive inlining, leading to increased
21484 instruction cache pressure from the increased code size and thus minor
21485 performance improvements. So the bottom line here is that you should not
21486 automatically assume that @code{-O3} is better than @code{-O2}, and
21487 indeed you should use @code{-O3} only if tests show that it actually
21488 improves performance for your program.
21489
21490 @node Floating_Point_Operations,Vectorization of loops,Inlining of Subprograms,Performance Considerations
21491 @anchor{gnat_ugn/gnat_and_program_execution floating-point-operations}@anchor{1a4}@anchor{gnat_ugn/gnat_and_program_execution id33}@anchor{1a5}
21492 @subsubsection Floating_Point_Operations
21493
21494
21495 @geindex Floating-Point Operations
21496
21497 On almost all targets, GNAT maps Float and Long_Float to the 32-bit and
21498 64-bit standard IEEE floating-point representations, and operations will
21499 use standard IEEE arithmetic as provided by the processor. On most, but
21500 not all, architectures, the attribute Machine_Overflows is False for these
21501 types, meaning that the semantics of overflow is implementation-defined.
21502 In the case of GNAT, these semantics correspond to the normal IEEE
21503 treatment of infinities and NaN (not a number) values. For example,
21504 1.0 / 0.0 yields plus infinitiy and 0.0 / 0.0 yields a NaN. By
21505 avoiding explicit overflow checks, the performance is greatly improved
21506 on many targets. However, if required, floating-point overflow can be
21507 enabled by the use of the pragma Check_Float_Overflow.
21508
21509 Another consideration that applies specifically to x86 32-bit
21510 architectures is which form of floating-point arithmetic is used.
21511 By default the operations use the old style x86 floating-point,
21512 which implements an 80-bit extended precision form (on these
21513 architectures the type Long_Long_Float corresponds to that form).
21514 In addition, generation of efficient code in this mode means that
21515 the extended precision form will be used for intermediate results.
21516 This may be helpful in improving the final precision of a complex
21517 expression. However it means that the results obtained on the x86
21518 will be different from those on other architectures, and for some
21519 algorithms, the extra intermediate precision can be detrimental.
21520
21521 In addition to this old-style floating-point, all modern x86 chips
21522 implement an alternative floating-point operation model referred
21523 to as SSE2. In this model there is no extended form, and furthermore
21524 execution performance is significantly enhanced. To force GNAT to use
21525 this more modern form, use both of the switches:
21526
21527 @quotation
21528
21529 -msse2 -mfpmath=sse
21530 @end quotation
21531
21532 A unit compiled with these switches will automatically use the more
21533 efficient SSE2 instruction set for Float and Long_Float operations.
21534 Note that the ABI has the same form for both floating-point models,
21535 so it is permissible to mix units compiled with and without these
21536 switches.
21537
21538 @node Vectorization of loops,Other Optimization Switches,Floating_Point_Operations,Performance Considerations
21539 @anchor{gnat_ugn/gnat_and_program_execution id34}@anchor{1a6}@anchor{gnat_ugn/gnat_and_program_execution vectorization-of-loops}@anchor{1a7}
21540 @subsubsection Vectorization of loops
21541
21542
21543 @geindex Optimization Switches
21544
21545 You can take advantage of the auto-vectorizer present in the @code{gcc}
21546 back end to vectorize loops with GNAT. The corresponding command line switch
21547 is @code{-ftree-vectorize} but, as it is enabled by default at @code{-O3}
21548 and other aggressive optimizations helpful for vectorization also are enabled
21549 by default at this level, using @code{-O3} directly is recommended.
21550
21551 You also need to make sure that the target architecture features a supported
21552 SIMD instruction set. For example, for the x86 architecture, you should at
21553 least specify @code{-msse2} to get significant vectorization (but you don't
21554 need to specify it for x86-64 as it is part of the base 64-bit architecture).
21555 Similarly, for the PowerPC architecture, you should specify @code{-maltivec}.
21556
21557 The preferred loop form for vectorization is the @code{for} iteration scheme.
21558 Loops with a @code{while} iteration scheme can also be vectorized if they are
21559 very simple, but the vectorizer will quickly give up otherwise. With either
21560 iteration scheme, the flow of control must be straight, in particular no
21561 @code{exit} statement may appear in the loop body. The loop may however
21562 contain a single nested loop, if it can be vectorized when considered alone:
21563
21564 @quotation
21565
21566 @example
21567 A : array (1..4, 1..4) of Long_Float;
21568 S : array (1..4) of Long_Float;
21569
21570 procedure Sum is
21571 begin
21572 for I in A'Range(1) loop
21573 for J in A'Range(2) loop
21574 S (I) := S (I) + A (I, J);
21575 end loop;
21576 end loop;
21577 end Sum;
21578 @end example
21579 @end quotation
21580
21581 The vectorizable operations depend on the targeted SIMD instruction set, but
21582 the adding and some of the multiplying operators are generally supported, as
21583 well as the logical operators for modular types. Note that compiling
21584 with @code{-gnatp} might well reveal cases where some checks do thwart
21585 vectorization.
21586
21587 Type conversions may also prevent vectorization if they involve semantics that
21588 are not directly supported by the code generator or the SIMD instruction set.
21589 A typical example is direct conversion from floating-point to integer types.
21590 The solution in this case is to use the following idiom:
21591
21592 @quotation
21593
21594 @example
21595 Integer (S'Truncation (F))
21596 @end example
21597 @end quotation
21598
21599 if @code{S} is the subtype of floating-point object @code{F}.
21600
21601 In most cases, the vectorizable loops are loops that iterate over arrays.
21602 All kinds of array types are supported, i.e. constrained array types with
21603 static bounds:
21604
21605 @quotation
21606
21607 @example
21608 type Array_Type is array (1 .. 4) of Long_Float;
21609 @end example
21610 @end quotation
21611
21612 constrained array types with dynamic bounds:
21613
21614 @quotation
21615
21616 @example
21617 type Array_Type is array (1 .. Q.N) of Long_Float;
21618
21619 type Array_Type is array (Q.K .. 4) of Long_Float;
21620
21621 type Array_Type is array (Q.K .. Q.N) of Long_Float;
21622 @end example
21623 @end quotation
21624
21625 or unconstrained array types:
21626
21627 @quotation
21628
21629 @example
21630 type Array_Type is array (Positive range <>) of Long_Float;
21631 @end example
21632 @end quotation
21633
21634 The quality of the generated code decreases when the dynamic aspect of the
21635 array type increases, the worst code being generated for unconstrained array
21636 types. This is so because, the less information the compiler has about the
21637 bounds of the array, the more fallback code it needs to generate in order to
21638 fix things up at run time.
21639
21640 It is possible to specify that a given loop should be subject to vectorization
21641 preferably to other optimizations by means of pragma @code{Loop_Optimize}:
21642
21643 @quotation
21644
21645 @example
21646 pragma Loop_Optimize (Vector);
21647 @end example
21648 @end quotation
21649
21650 placed immediately within the loop will convey the appropriate hint to the
21651 compiler for this loop.
21652
21653 It is also possible to help the compiler generate better vectorized code
21654 for a given loop by asserting that there are no loop-carried dependencies
21655 in the loop. Consider for example the procedure:
21656
21657 @quotation
21658
21659 @example
21660 type Arr is array (1 .. 4) of Long_Float;
21661
21662 procedure Add (X, Y : not null access Arr; R : not null access Arr) is
21663 begin
21664 for I in Arr'Range loop
21665 R(I) := X(I) + Y(I);
21666 end loop;
21667 end;
21668 @end example
21669 @end quotation
21670
21671 By default, the compiler cannot unconditionally vectorize the loop because
21672 assigning to a component of the array designated by R in one iteration could
21673 change the value read from the components of the array designated by X or Y
21674 in a later iteration. As a result, the compiler will generate two versions
21675 of the loop in the object code, one vectorized and the other not vectorized,
21676 as well as a test to select the appropriate version at run time. This can
21677 be overcome by another hint:
21678
21679 @quotation
21680
21681 @example
21682 pragma Loop_Optimize (Ivdep);
21683 @end example
21684 @end quotation
21685
21686 placed immediately within the loop will tell the compiler that it can safely
21687 omit the non-vectorized version of the loop as well as the run-time test.
21688
21689 @node Other Optimization Switches,Optimization and Strict Aliasing,Vectorization of loops,Performance Considerations
21690 @anchor{gnat_ugn/gnat_and_program_execution other-optimization-switches}@anchor{1a8}@anchor{gnat_ugn/gnat_and_program_execution id35}@anchor{1a9}
21691 @subsubsection Other Optimization Switches
21692
21693
21694 @geindex Optimization Switches
21695
21696 Since GNAT uses the @code{gcc} back end, all the specialized
21697 @code{gcc} optimization switches are potentially usable. These switches
21698 have not been extensively tested with GNAT but can generally be expected
21699 to work. Examples of switches in this category are @code{-funroll-loops}
21700 and the various target-specific @code{-m} options (in particular, it has
21701 been observed that @code{-march=xxx} can significantly improve performance
21702 on appropriate machines). For full details of these switches, see
21703 the @emph{Submodel Options} section in the @emph{Hardware Models and Configurations}
21704 chapter of @cite{Using the GNU Compiler Collection (GCC)}.
21705
21706 @node Optimization and Strict Aliasing,Aliased Variables and Optimization,Other Optimization Switches,Performance Considerations
21707 @anchor{gnat_ugn/gnat_and_program_execution optimization-and-strict-aliasing}@anchor{f3}@anchor{gnat_ugn/gnat_and_program_execution id36}@anchor{1aa}
21708 @subsubsection Optimization and Strict Aliasing
21709
21710
21711 @geindex Aliasing
21712
21713 @geindex Strict Aliasing
21714
21715 @geindex No_Strict_Aliasing
21716
21717 The strong typing capabilities of Ada allow an optimizer to generate
21718 efficient code in situations where other languages would be forced to
21719 make worst case assumptions preventing such optimizations. Consider
21720 the following example:
21721
21722 @quotation
21723
21724 @example
21725 procedure R is
21726 type Int1 is new Integer;
21727 type Int2 is new Integer;
21728 type Int1A is access Int1;
21729 type Int2A is access Int2;
21730 Int1V : Int1A;
21731 Int2V : Int2A;
21732 ...
21733
21734 begin
21735 ...
21736 for J in Data'Range loop
21737 if Data (J) = Int1V.all then
21738 Int2V.all := Int2V.all + 1;
21739 end if;
21740 end loop;
21741 ...
21742 end R;
21743 @end example
21744 @end quotation
21745
21746 In this example, since the variable @code{Int1V} can only access objects
21747 of type @code{Int1}, and @code{Int2V} can only access objects of type
21748 @code{Int2}, there is no possibility that the assignment to
21749 @code{Int2V.all} affects the value of @code{Int1V.all}. This means that
21750 the compiler optimizer can "know" that the value @code{Int1V.all} is constant
21751 for all iterations of the loop and avoid the extra memory reference
21752 required to dereference it each time through the loop.
21753
21754 This kind of optimization, called strict aliasing analysis, is
21755 triggered by specifying an optimization level of @code{-O2} or
21756 higher or @code{-Os} and allows GNAT to generate more efficient code
21757 when access values are involved.
21758
21759 However, although this optimization is always correct in terms of
21760 the formal semantics of the Ada Reference Manual, difficulties can
21761 arise if features like @code{Unchecked_Conversion} are used to break
21762 the typing system. Consider the following complete program example:
21763
21764 @quotation
21765
21766 @example
21767 package p1 is
21768 type int1 is new integer;
21769 type int2 is new integer;
21770 type a1 is access int1;
21771 type a2 is access int2;
21772 end p1;
21773
21774 with p1; use p1;
21775 package p2 is
21776 function to_a2 (Input : a1) return a2;
21777 end p2;
21778
21779 with Unchecked_Conversion;
21780 package body p2 is
21781 function to_a2 (Input : a1) return a2 is
21782 function to_a2u is
21783 new Unchecked_Conversion (a1, a2);
21784 begin
21785 return to_a2u (Input);
21786 end to_a2;
21787 end p2;
21788
21789 with p2; use p2;
21790 with p1; use p1;
21791 with Text_IO; use Text_IO;
21792 procedure m is
21793 v1 : a1 := new int1;
21794 v2 : a2 := to_a2 (v1);
21795 begin
21796 v1.all := 1;
21797 v2.all := 0;
21798 put_line (int1'image (v1.all));
21799 end;
21800 @end example
21801 @end quotation
21802
21803 This program prints out 0 in @code{-O0} or @code{-O1}
21804 mode, but it prints out 1 in @code{-O2} mode. That's
21805 because in strict aliasing mode, the compiler can and
21806 does assume that the assignment to @code{v2.all} could not
21807 affect the value of @code{v1.all}, since different types
21808 are involved.
21809
21810 This behavior is not a case of non-conformance with the standard, since
21811 the Ada RM specifies that an unchecked conversion where the resulting
21812 bit pattern is not a correct value of the target type can result in an
21813 abnormal value and attempting to reference an abnormal value makes the
21814 execution of a program erroneous. That's the case here since the result
21815 does not point to an object of type @code{int2}. This means that the
21816 effect is entirely unpredictable.
21817
21818 However, although that explanation may satisfy a language
21819 lawyer, in practice an applications programmer expects an
21820 unchecked conversion involving pointers to create true
21821 aliases and the behavior of printing 1 seems plain wrong.
21822 In this case, the strict aliasing optimization is unwelcome.
21823
21824 Indeed the compiler recognizes this possibility, and the
21825 unchecked conversion generates a warning:
21826
21827 @quotation
21828
21829 @example
21830 p2.adb:5:07: warning: possible aliasing problem with type "a2"
21831 p2.adb:5:07: warning: use -fno-strict-aliasing switch for references
21832 p2.adb:5:07: warning: or use "pragma No_Strict_Aliasing (a2);"
21833 @end example
21834 @end quotation
21835
21836 Unfortunately the problem is recognized when compiling the body of
21837 package @code{p2}, but the actual "bad" code is generated while
21838 compiling the body of @code{m} and this latter compilation does not see
21839 the suspicious @code{Unchecked_Conversion}.
21840
21841 As implied by the warning message, there are approaches you can use to
21842 avoid the unwanted strict aliasing optimization in a case like this.
21843
21844 One possibility is to simply avoid the use of @code{-O2}, but
21845 that is a bit drastic, since it throws away a number of useful
21846 optimizations that do not involve strict aliasing assumptions.
21847
21848 A less drastic approach is to compile the program using the
21849 option @code{-fno-strict-aliasing}. Actually it is only the
21850 unit containing the dereferencing of the suspicious pointer
21851 that needs to be compiled. So in this case, if we compile
21852 unit @code{m} with this switch, then we get the expected
21853 value of zero printed. Analyzing which units might need
21854 the switch can be painful, so a more reasonable approach
21855 is to compile the entire program with options @code{-O2}
21856 and @code{-fno-strict-aliasing}. If the performance is
21857 satisfactory with this combination of options, then the
21858 advantage is that the entire issue of possible "wrong"
21859 optimization due to strict aliasing is avoided.
21860
21861 To avoid the use of compiler switches, the configuration
21862 pragma @code{No_Strict_Aliasing} with no parameters may be
21863 used to specify that for all access types, the strict
21864 aliasing optimization should be suppressed.
21865
21866 However, these approaches are still overkill, in that they causes
21867 all manipulations of all access values to be deoptimized. A more
21868 refined approach is to concentrate attention on the specific
21869 access type identified as problematic.
21870
21871 First, if a careful analysis of uses of the pointer shows
21872 that there are no possible problematic references, then
21873 the warning can be suppressed by bracketing the
21874 instantiation of @code{Unchecked_Conversion} to turn
21875 the warning off:
21876
21877 @quotation
21878
21879 @example
21880 pragma Warnings (Off);
21881 function to_a2u is
21882 new Unchecked_Conversion (a1, a2);
21883 pragma Warnings (On);
21884 @end example
21885 @end quotation
21886
21887 Of course that approach is not appropriate for this particular
21888 example, since indeed there is a problematic reference. In this
21889 case we can take one of two other approaches.
21890
21891 The first possibility is to move the instantiation of unchecked
21892 conversion to the unit in which the type is declared. In
21893 this example, we would move the instantiation of
21894 @code{Unchecked_Conversion} from the body of package
21895 @code{p2} to the spec of package @code{p1}. Now the
21896 warning disappears. That's because any use of the
21897 access type knows there is a suspicious unchecked
21898 conversion, and the strict aliasing optimization
21899 is automatically suppressed for the type.
21900
21901 If it is not practical to move the unchecked conversion to the same unit
21902 in which the destination access type is declared (perhaps because the
21903 source type is not visible in that unit), you may use pragma
21904 @code{No_Strict_Aliasing} for the type. This pragma must occur in the
21905 same declarative sequence as the declaration of the access type:
21906
21907 @quotation
21908
21909 @example
21910 type a2 is access int2;
21911 pragma No_Strict_Aliasing (a2);
21912 @end example
21913 @end quotation
21914
21915 Here again, the compiler now knows that the strict aliasing optimization
21916 should be suppressed for any reference to type @code{a2} and the
21917 expected behavior is obtained.
21918
21919 Finally, note that although the compiler can generate warnings for
21920 simple cases of unchecked conversions, there are tricker and more
21921 indirect ways of creating type incorrect aliases which the compiler
21922 cannot detect. Examples are the use of address overlays and unchecked
21923 conversions involving composite types containing access types as
21924 components. In such cases, no warnings are generated, but there can
21925 still be aliasing problems. One safe coding practice is to forbid the
21926 use of address clauses for type overlaying, and to allow unchecked
21927 conversion only for primitive types. This is not really a significant
21928 restriction since any possible desired effect can be achieved by
21929 unchecked conversion of access values.
21930
21931 The aliasing analysis done in strict aliasing mode can certainly
21932 have significant benefits. We have seen cases of large scale
21933 application code where the time is increased by up to 5% by turning
21934 this optimization off. If you have code that includes significant
21935 usage of unchecked conversion, you might want to just stick with
21936 @code{-O1} and avoid the entire issue. If you get adequate
21937 performance at this level of optimization level, that's probably
21938 the safest approach. If tests show that you really need higher
21939 levels of optimization, then you can experiment with @code{-O2}
21940 and @code{-O2 -fno-strict-aliasing} to see how much effect this
21941 has on size and speed of the code. If you really need to use
21942 @code{-O2} with strict aliasing in effect, then you should
21943 review any uses of unchecked conversion of access types,
21944 particularly if you are getting the warnings described above.
21945
21946 @node Aliased Variables and Optimization,Atomic Variables and Optimization,Optimization and Strict Aliasing,Performance Considerations
21947 @anchor{gnat_ugn/gnat_and_program_execution id37}@anchor{1ab}@anchor{gnat_ugn/gnat_and_program_execution aliased-variables-and-optimization}@anchor{1ac}
21948 @subsubsection Aliased Variables and Optimization
21949
21950
21951 @geindex Aliasing
21952
21953 There are scenarios in which programs may
21954 use low level techniques to modify variables
21955 that otherwise might be considered to be unassigned. For example,
21956 a variable can be passed to a procedure by reference, which takes
21957 the address of the parameter and uses the address to modify the
21958 variable's value, even though it is passed as an IN parameter.
21959 Consider the following example:
21960
21961 @quotation
21962
21963 @example
21964 procedure P is
21965 Max_Length : constant Natural := 16;
21966 type Char_Ptr is access all Character;
21967
21968 procedure Get_String(Buffer: Char_Ptr; Size : Integer);
21969 pragma Import (C, Get_String, "get_string");
21970
21971 Name : aliased String (1 .. Max_Length) := (others => ' ');
21972 Temp : Char_Ptr;
21973
21974 function Addr (S : String) return Char_Ptr is
21975 function To_Char_Ptr is
21976 new Ada.Unchecked_Conversion (System.Address, Char_Ptr);
21977 begin
21978 return To_Char_Ptr (S (S'First)'Address);
21979 end;
21980
21981 begin
21982 Temp := Addr (Name);
21983 Get_String (Temp, Max_Length);
21984 end;
21985 @end example
21986 @end quotation
21987
21988 where Get_String is a C function that uses the address in Temp to
21989 modify the variable @code{Name}. This code is dubious, and arguably
21990 erroneous, and the compiler would be entitled to assume that
21991 @code{Name} is never modified, and generate code accordingly.
21992
21993 However, in practice, this would cause some existing code that
21994 seems to work with no optimization to start failing at high
21995 levels of optimzization.
21996
21997 What the compiler does for such cases is to assume that marking
21998 a variable as aliased indicates that some "funny business" may
21999 be going on. The optimizer recognizes the aliased keyword and
22000 inhibits optimizations that assume the value cannot be assigned.
22001 This means that the above example will in fact "work" reliably,
22002 that is, it will produce the expected results.
22003
22004 @node Atomic Variables and Optimization,Passive Task Optimization,Aliased Variables and Optimization,Performance Considerations
22005 @anchor{gnat_ugn/gnat_and_program_execution atomic-variables-and-optimization}@anchor{1ad}@anchor{gnat_ugn/gnat_and_program_execution id38}@anchor{1ae}
22006 @subsubsection Atomic Variables and Optimization
22007
22008
22009 @geindex Atomic
22010
22011 There are two considerations with regard to performance when
22012 atomic variables are used.
22013
22014 First, the RM only guarantees that access to atomic variables
22015 be atomic, it has nothing to say about how this is achieved,
22016 though there is a strong implication that this should not be
22017 achieved by explicit locking code. Indeed GNAT will never
22018 generate any locking code for atomic variable access (it will
22019 simply reject any attempt to make a variable or type atomic
22020 if the atomic access cannot be achieved without such locking code).
22021
22022 That being said, it is important to understand that you cannot
22023 assume that the entire variable will always be accessed. Consider
22024 this example:
22025
22026 @quotation
22027
22028 @example
22029 type R is record
22030 A,B,C,D : Character;
22031 end record;
22032 for R'Size use 32;
22033 for R'Alignment use 4;
22034
22035 RV : R;
22036 pragma Atomic (RV);
22037 X : Character;
22038 ...
22039 X := RV.B;
22040 @end example
22041 @end quotation
22042
22043 You cannot assume that the reference to @code{RV.B}
22044 will read the entire 32-bit
22045 variable with a single load instruction. It is perfectly legitimate if
22046 the hardware allows it to do a byte read of just the B field. This read
22047 is still atomic, which is all the RM requires. GNAT can and does take
22048 advantage of this, depending on the architecture and optimization level.
22049 Any assumption to the contrary is non-portable and risky. Even if you
22050 examine the assembly language and see a full 32-bit load, this might
22051 change in a future version of the compiler.
22052
22053 If your application requires that all accesses to @code{RV} in this
22054 example be full 32-bit loads, you need to make a copy for the access
22055 as in:
22056
22057 @quotation
22058
22059 @example
22060 declare
22061 RV_Copy : constant R := RV;
22062 begin
22063 X := RV_Copy.B;
22064 end;
22065 @end example
22066 @end quotation
22067
22068 Now the reference to RV must read the whole variable.
22069 Actually one can imagine some compiler which figures
22070 out that the whole copy is not required (because only
22071 the B field is actually accessed), but GNAT
22072 certainly won't do that, and we don't know of any
22073 compiler that would not handle this right, and the
22074 above code will in practice work portably across
22075 all architectures (that permit the Atomic declaration).
22076
22077 The second issue with atomic variables has to do with
22078 the possible requirement of generating synchronization
22079 code. For more details on this, consult the sections on
22080 the pragmas Enable/Disable_Atomic_Synchronization in the
22081 GNAT Reference Manual. If performance is critical, and
22082 such synchronization code is not required, it may be
22083 useful to disable it.
22084
22085 @node Passive Task Optimization,,Atomic Variables and Optimization,Performance Considerations
22086 @anchor{gnat_ugn/gnat_and_program_execution passive-task-optimization}@anchor{1af}@anchor{gnat_ugn/gnat_and_program_execution id39}@anchor{1b0}
22087 @subsubsection Passive Task Optimization
22088
22089
22090 @geindex Passive Task
22091
22092 A passive task is one which is sufficiently simple that
22093 in theory a compiler could recognize it an implement it
22094 efficiently without creating a new thread. The original design
22095 of Ada 83 had in mind this kind of passive task optimization, but
22096 only a few Ada 83 compilers attempted it. The problem was that
22097 it was difficult to determine the exact conditions under which
22098 the optimization was possible. The result is a very fragile
22099 optimization where a very minor change in the program can
22100 suddenly silently make a task non-optimizable.
22101
22102 With the revisiting of this issue in Ada 95, there was general
22103 agreement that this approach was fundamentally flawed, and the
22104 notion of protected types was introduced. When using protected
22105 types, the restrictions are well defined, and you KNOW that the
22106 operations will be optimized, and furthermore this optimized
22107 performance is fully portable.
22108
22109 Although it would theoretically be possible for GNAT to attempt to
22110 do this optimization, but it really doesn't make sense in the
22111 context of Ada 95, and none of the Ada 95 compilers implement
22112 this optimization as far as we know. In particular GNAT never
22113 attempts to perform this optimization.
22114
22115 In any new Ada 95 code that is written, you should always
22116 use protected types in place of tasks that might be able to
22117 be optimized in this manner.
22118 Of course this does not help if you have legacy Ada 83 code
22119 that depends on this optimization, but it is unusual to encounter
22120 a case where the performance gains from this optimization
22121 are significant.
22122
22123 Your program should work correctly without this optimization. If
22124 you have performance problems, then the most practical
22125 approach is to figure out exactly where these performance problems
22126 arise, and update those particular tasks to be protected types. Note
22127 that typically clients of the tasks who call entries, will not have
22128 to be modified, only the task definition itself.
22129
22130 @node Text_IO Suggestions,Reducing Size of Executables with Unused Subprogram/Data Elimination,Performance Considerations,Improving Performance
22131 @anchor{gnat_ugn/gnat_and_program_execution text-io-suggestions}@anchor{1b1}@anchor{gnat_ugn/gnat_and_program_execution id40}@anchor{1b2}
22132 @subsection @code{Text_IO} Suggestions
22133
22134
22135 @geindex Text_IO and performance
22136
22137 The @code{Ada.Text_IO} package has fairly high overheads due in part to
22138 the requirement of maintaining page and line counts. If performance
22139 is critical, a recommendation is to use @code{Stream_IO} instead of
22140 @code{Text_IO} for volume output, since this package has less overhead.
22141
22142 If @code{Text_IO} must be used, note that by default output to the standard
22143 output and standard error files is unbuffered (this provides better
22144 behavior when output statements are used for debugging, or if the
22145 progress of a program is observed by tracking the output, e.g. by
22146 using the Unix @emph{tail -f} command to watch redirected output.
22147
22148 If you are generating large volumes of output with @code{Text_IO} and
22149 performance is an important factor, use a designated file instead
22150 of the standard output file, or change the standard output file to
22151 be buffered using @code{Interfaces.C_Streams.setvbuf}.
22152
22153 @node Reducing Size of Executables with Unused Subprogram/Data Elimination,,Text_IO Suggestions,Improving Performance
22154 @anchor{gnat_ugn/gnat_and_program_execution id41}@anchor{1b3}@anchor{gnat_ugn/gnat_and_program_execution reducing-size-of-executables-with-unused-subprogram-data-elimination}@anchor{1b4}
22155 @subsection Reducing Size of Executables with Unused Subprogram/Data Elimination
22156
22157
22158 @geindex Uunused subprogram/data elimination
22159
22160 This section describes how you can eliminate unused subprograms and data from
22161 your executable just by setting options at compilation time.
22162
22163 @menu
22164 * About unused subprogram/data elimination::
22165 * Compilation options::
22166 * Example of unused subprogram/data elimination::
22167
22168 @end menu
22169
22170 @node About unused subprogram/data elimination,Compilation options,,Reducing Size of Executables with Unused Subprogram/Data Elimination
22171 @anchor{gnat_ugn/gnat_and_program_execution id42}@anchor{1b5}@anchor{gnat_ugn/gnat_and_program_execution about-unused-subprogram-data-elimination}@anchor{1b6}
22172 @subsubsection About unused subprogram/data elimination
22173
22174
22175 By default, an executable contains all code and data of its composing objects
22176 (directly linked or coming from statically linked libraries), even data or code
22177 never used by this executable.
22178
22179 This feature will allow you to eliminate such unused code from your
22180 executable, making it smaller (in disk and in memory).
22181
22182 This functionality is available on all Linux platforms except for the IA-64
22183 architecture and on all cross platforms using the ELF binary file format.
22184 In both cases GNU binutils version 2.16 or later are required to enable it.
22185
22186 @node Compilation options,Example of unused subprogram/data elimination,About unused subprogram/data elimination,Reducing Size of Executables with Unused Subprogram/Data Elimination
22187 @anchor{gnat_ugn/gnat_and_program_execution id43}@anchor{1b7}@anchor{gnat_ugn/gnat_and_program_execution compilation-options}@anchor{1b8}
22188 @subsubsection Compilation options
22189
22190
22191 The operation of eliminating the unused code and data from the final executable
22192 is directly performed by the linker.
22193
22194 @geindex -ffunction-sections (gcc)
22195
22196 @geindex -fdata-sections (gcc)
22197
22198 In order to do this, it has to work with objects compiled with the
22199 following options:
22200 @code{-ffunction-sections} @code{-fdata-sections}.
22201
22202 These options are usable with C and Ada files.
22203 They will place respectively each
22204 function or data in a separate section in the resulting object file.
22205
22206 Once the objects and static libraries are created with these options, the
22207 linker can perform the dead code elimination. You can do this by setting
22208 the @code{-Wl,--gc-sections} option to gcc command or in the
22209 @code{-largs} section of @code{gnatmake}. This will perform a
22210 garbage collection of code and data never referenced.
22211
22212 If the linker performs a partial link (@code{-r} linker option), then you
22213 will need to provide the entry point using the @code{-e} / @code{--entry}
22214 linker option.
22215
22216 Note that objects compiled without the @code{-ffunction-sections} and
22217 @code{-fdata-sections} options can still be linked with the executable.
22218 However, no dead code elimination will be performed on those objects (they will
22219 be linked as is).
22220
22221 The GNAT static library is now compiled with -ffunction-sections and
22222 -fdata-sections on some platforms. This allows you to eliminate the unused code
22223 and data of the GNAT library from your executable.
22224
22225 @node Example of unused subprogram/data elimination,,Compilation options,Reducing Size of Executables with Unused Subprogram/Data Elimination
22226 @anchor{gnat_ugn/gnat_and_program_execution example-of-unused-subprogram-data-elimination}@anchor{1b9}@anchor{gnat_ugn/gnat_and_program_execution id44}@anchor{1ba}
22227 @subsubsection Example of unused subprogram/data elimination
22228
22229
22230 Here is a simple example:
22231
22232 @quotation
22233
22234 @example
22235 with Aux;
22236
22237 procedure Test is
22238 begin
22239 Aux.Used (10);
22240 end Test;
22241
22242 package Aux is
22243 Used_Data : Integer;
22244 Unused_Data : Integer;
22245
22246 procedure Used (Data : Integer);
22247 procedure Unused (Data : Integer);
22248 end Aux;
22249
22250 package body Aux is
22251 procedure Used (Data : Integer) is
22252 begin
22253 Used_Data := Data;
22254 end Used;
22255
22256 procedure Unused (Data : Integer) is
22257 begin
22258 Unused_Data := Data;
22259 end Unused;
22260 end Aux;
22261 @end example
22262 @end quotation
22263
22264 @code{Unused} and @code{Unused_Data} are never referenced in this code
22265 excerpt, and hence they may be safely removed from the final executable.
22266
22267 @quotation
22268
22269 @example
22270 $ gnatmake test
22271
22272 $ nm test | grep used
22273 020015f0 T aux__unused
22274 02005d88 B aux__unused_data
22275 020015cc T aux__used
22276 02005d84 B aux__used_data
22277
22278 $ gnatmake test -cargs -fdata-sections -ffunction-sections \\
22279 -largs -Wl,--gc-sections
22280
22281 $ nm test | grep used
22282 02005350 T aux__used
22283 0201ffe0 B aux__used_data
22284 @end example
22285 @end quotation
22286
22287 It can be observed that the procedure @code{Unused} and the object
22288 @code{Unused_Data} are removed by the linker when using the
22289 appropriate options.
22290
22291 @geindex Overflow checks
22292
22293 @geindex Checks (overflow)
22294
22295 @node Overflow Check Handling in GNAT,Performing Dimensionality Analysis in GNAT,Improving Performance,GNAT and Program Execution
22296 @anchor{gnat_ugn/gnat_and_program_execution id45}@anchor{169}@anchor{gnat_ugn/gnat_and_program_execution overflow-check-handling-in-gnat}@anchor{27}
22297 @section Overflow Check Handling in GNAT
22298
22299
22300 This section explains how to control the handling of overflow checks.
22301
22302 @menu
22303 * Background::
22304 * Management of Overflows in GNAT::
22305 * Specifying the Desired Mode::
22306 * Default Settings::
22307 * Implementation Notes::
22308
22309 @end menu
22310
22311 @node Background,Management of Overflows in GNAT,,Overflow Check Handling in GNAT
22312 @anchor{gnat_ugn/gnat_and_program_execution id46}@anchor{1bb}@anchor{gnat_ugn/gnat_and_program_execution background}@anchor{1bc}
22313 @subsection Background
22314
22315
22316 Overflow checks are checks that the compiler may make to ensure
22317 that intermediate results are not out of range. For example:
22318
22319 @quotation
22320
22321 @example
22322 A : Integer;
22323 ...
22324 A := A + 1;
22325 @end example
22326 @end quotation
22327
22328 If @code{A} has the value @code{Integer'Last}, then the addition may cause
22329 overflow since the result is out of range of the type @code{Integer}.
22330 In this case @code{Constraint_Error} will be raised if checks are
22331 enabled.
22332
22333 A trickier situation arises in examples like the following:
22334
22335 @quotation
22336
22337 @example
22338 A, C : Integer;
22339 ...
22340 A := (A + 1) + C;
22341 @end example
22342 @end quotation
22343
22344 where @code{A} is @code{Integer'Last} and @code{C} is @code{-1}.
22345 Now the final result of the expression on the right hand side is
22346 @code{Integer'Last} which is in range, but the question arises whether the
22347 intermediate addition of @code{(A + 1)} raises an overflow error.
22348
22349 The (perhaps surprising) answer is that the Ada language
22350 definition does not answer this question. Instead it leaves
22351 it up to the implementation to do one of two things if overflow
22352 checks are enabled.
22353
22354
22355 @itemize *
22356
22357 @item
22358 raise an exception (@code{Constraint_Error}), or
22359
22360 @item
22361 yield the correct mathematical result which is then used in
22362 subsequent operations.
22363 @end itemize
22364
22365 If the compiler chooses the first approach, then the assignment of this
22366 example will indeed raise @code{Constraint_Error} if overflow checking is
22367 enabled, or result in erroneous execution if overflow checks are suppressed.
22368
22369 But if the compiler
22370 chooses the second approach, then it can perform both additions yielding
22371 the correct mathematical result, which is in range, so no exception
22372 will be raised, and the right result is obtained, regardless of whether
22373 overflow checks are suppressed.
22374
22375 Note that in the first example an
22376 exception will be raised in either case, since if the compiler
22377 gives the correct mathematical result for the addition, it will
22378 be out of range of the target type of the assignment, and thus
22379 fails the range check.
22380
22381 This lack of specified behavior in the handling of overflow for
22382 intermediate results is a source of non-portability, and can thus
22383 be problematic when programs are ported. Most typically this arises
22384 in a situation where the original compiler did not raise an exception,
22385 and then the application is moved to a compiler where the check is
22386 performed on the intermediate result and an unexpected exception is
22387 raised.
22388
22389 Furthermore, when using Ada 2012's preconditions and other
22390 assertion forms, another issue arises. Consider:
22391
22392 @quotation
22393
22394 @example
22395 procedure P (A, B : Integer) with
22396 Pre => A + B <= Integer'Last;
22397 @end example
22398 @end quotation
22399
22400 One often wants to regard arithmetic in a context like this from
22401 a mathematical point of view. So for example, if the two actual parameters
22402 for a call to @code{P} are both @code{Integer'Last}, then
22403 the precondition should be regarded as False. If we are executing
22404 in a mode with run-time checks enabled for preconditions, then we would
22405 like this precondition to fail, rather than raising an exception
22406 because of the intermediate overflow.
22407
22408 However, the language definition leaves the specification of
22409 whether the above condition fails (raising @code{Assert_Error}) or
22410 causes an intermediate overflow (raising @code{Constraint_Error})
22411 up to the implementation.
22412
22413 The situation is worse in a case such as the following:
22414
22415 @quotation
22416
22417 @example
22418 procedure Q (A, B, C : Integer) with
22419 Pre => A + B + C <= Integer'Last;
22420 @end example
22421 @end quotation
22422
22423 Consider the call
22424
22425 @quotation
22426
22427 @example
22428 Q (A => Integer'Last, B => 1, C => -1);
22429 @end example
22430 @end quotation
22431
22432 From a mathematical point of view the precondition
22433 is True, but at run time we may (but are not guaranteed to) get an
22434 exception raised because of the intermediate overflow (and we really
22435 would prefer this precondition to be considered True at run time).
22436
22437 @node Management of Overflows in GNAT,Specifying the Desired Mode,Background,Overflow Check Handling in GNAT
22438 @anchor{gnat_ugn/gnat_and_program_execution id47}@anchor{1bd}@anchor{gnat_ugn/gnat_and_program_execution management-of-overflows-in-gnat}@anchor{1be}
22439 @subsection Management of Overflows in GNAT
22440
22441
22442 To deal with the portability issue, and with the problem of
22443 mathematical versus run-time interpretation of the expressions in
22444 assertions, GNAT provides comprehensive control over the handling
22445 of intermediate overflow. GNAT can operate in three modes, and
22446 furthemore, permits separate selection of operating modes for
22447 the expressions within assertions (here the term 'assertions'
22448 is used in the technical sense, which includes preconditions and so forth)
22449 and for expressions appearing outside assertions.
22450
22451 The three modes are:
22452
22453
22454 @itemize *
22455
22456 @item
22457 @emph{Use base type for intermediate operations} (@code{STRICT})
22458
22459 In this mode, all intermediate results for predefined arithmetic
22460 operators are computed using the base type, and the result must
22461 be in range of the base type. If this is not the
22462 case then either an exception is raised (if overflow checks are
22463 enabled) or the execution is erroneous (if overflow checks are suppressed).
22464 This is the normal default mode.
22465
22466 @item
22467 @emph{Most intermediate overflows avoided} (@code{MINIMIZED})
22468
22469 In this mode, the compiler attempts to avoid intermediate overflows by
22470 using a larger integer type, typically @code{Long_Long_Integer},
22471 as the type in which arithmetic is
22472 performed for predefined arithmetic operators. This may be slightly more
22473 expensive at
22474 run time (compared to suppressing intermediate overflow checks), though
22475 the cost is negligible on modern 64-bit machines. For the examples given
22476 earlier, no intermediate overflows would have resulted in exceptions,
22477 since the intermediate results are all in the range of
22478 @code{Long_Long_Integer} (typically 64-bits on nearly all implementations
22479 of GNAT). In addition, if checks are enabled, this reduces the number of
22480 checks that must be made, so this choice may actually result in an
22481 improvement in space and time behavior.
22482
22483 However, there are cases where @code{Long_Long_Integer} is not large
22484 enough, consider the following example:
22485
22486 @quotation
22487
22488 @example
22489 procedure R (A, B, C, D : Integer) with
22490 Pre => (A**2 * B**2) / (C**2 * D**2) <= 10;
22491 @end example
22492 @end quotation
22493
22494 where @code{A} = @code{B} = @code{C} = @code{D} = @code{Integer'Last}.
22495 Now the intermediate results are
22496 out of the range of @code{Long_Long_Integer} even though the final result
22497 is in range and the precondition is True (from a mathematical point
22498 of view). In such a case, operating in this mode, an overflow occurs
22499 for the intermediate computation (which is why this mode
22500 says @emph{most} intermediate overflows are avoided). In this case,
22501 an exception is raised if overflow checks are enabled, and the
22502 execution is erroneous if overflow checks are suppressed.
22503
22504 @item
22505 @emph{All intermediate overflows avoided} (@code{ELIMINATED})
22506
22507 In this mode, the compiler avoids all intermediate overflows
22508 by using arbitrary precision arithmetic as required. In this
22509 mode, the above example with @code{A**2 * B**2} would
22510 not cause intermediate overflow, because the intermediate result
22511 would be evaluated using sufficient precision, and the result
22512 of evaluating the precondition would be True.
22513
22514 This mode has the advantage of avoiding any intermediate
22515 overflows, but at the expense of significant run-time overhead,
22516 including the use of a library (included automatically in this
22517 mode) for multiple-precision arithmetic.
22518
22519 This mode provides cleaner semantics for assertions, since now
22520 the run-time behavior emulates true arithmetic behavior for the
22521 predefined arithmetic operators, meaning that there is never a
22522 conflict between the mathematical view of the assertion, and its
22523 run-time behavior.
22524
22525 Note that in this mode, the behavior is unaffected by whether or
22526 not overflow checks are suppressed, since overflow does not occur.
22527 It is possible for gigantic intermediate expressions to raise
22528 @code{Storage_Error} as a result of attempting to compute the
22529 results of such expressions (e.g. @code{Integer'Last ** Integer'Last})
22530 but overflow is impossible.
22531 @end itemize
22532
22533 Note that these modes apply only to the evaluation of predefined
22534 arithmetic, membership, and comparison operators for signed integer
22535 arithmetic.
22536
22537 For fixed-point arithmetic, checks can be suppressed. But if checks
22538 are enabled
22539 then fixed-point values are always checked for overflow against the
22540 base type for intermediate expressions (that is such checks always
22541 operate in the equivalent of @code{STRICT} mode).
22542
22543 For floating-point, on nearly all architectures, @code{Machine_Overflows}
22544 is False, and IEEE infinities are generated, so overflow exceptions
22545 are never raised. If you want to avoid infinities, and check that
22546 final results of expressions are in range, then you can declare a
22547 constrained floating-point type, and range checks will be carried
22548 out in the normal manner (with infinite values always failing all
22549 range checks).
22550
22551 @node Specifying the Desired Mode,Default Settings,Management of Overflows in GNAT,Overflow Check Handling in GNAT
22552 @anchor{gnat_ugn/gnat_and_program_execution specifying-the-desired-mode}@anchor{f8}@anchor{gnat_ugn/gnat_and_program_execution id48}@anchor{1bf}
22553 @subsection Specifying the Desired Mode
22554
22555
22556 @geindex pragma Overflow_Mode
22557
22558 The desired mode of for handling intermediate overflow can be specified using
22559 either the @code{Overflow_Mode} pragma or an equivalent compiler switch.
22560 The pragma has the form
22561
22562 @quotation
22563
22564 @example
22565 pragma Overflow_Mode ([General =>] MODE [, [Assertions =>] MODE]);
22566 @end example
22567 @end quotation
22568
22569 where @code{MODE} is one of
22570
22571
22572 @itemize *
22573
22574 @item
22575 @code{STRICT}: intermediate overflows checked (using base type)
22576
22577 @item
22578 @code{MINIMIZED}: minimize intermediate overflows
22579
22580 @item
22581 @code{ELIMINATED}: eliminate intermediate overflows
22582 @end itemize
22583
22584 The case is ignored, so @code{MINIMIZED}, @code{Minimized} and
22585 @code{minimized} all have the same effect.
22586
22587 If only the @code{General} parameter is present, then the given @code{MODE} applies
22588 to expressions both within and outside assertions. If both arguments
22589 are present, then @code{General} applies to expressions outside assertions,
22590 and @code{Assertions} applies to expressions within assertions. For example:
22591
22592 @quotation
22593
22594 @example
22595 pragma Overflow_Mode
22596 (General => Minimized, Assertions => Eliminated);
22597 @end example
22598 @end quotation
22599
22600 specifies that general expressions outside assertions be evaluated
22601 in 'minimize intermediate overflows' mode, and expressions within
22602 assertions be evaluated in 'eliminate intermediate overflows' mode.
22603 This is often a reasonable choice, avoiding excessive overhead
22604 outside assertions, but assuring a high degree of portability
22605 when importing code from another compiler, while incurring
22606 the extra overhead for assertion expressions to ensure that
22607 the behavior at run time matches the expected mathematical
22608 behavior.
22609
22610 The @code{Overflow_Mode} pragma has the same scoping and placement
22611 rules as pragma @code{Suppress}, so it can occur either as a
22612 configuration pragma, specifying a default for the whole
22613 program, or in a declarative scope, where it applies to the
22614 remaining declarations and statements in that scope.
22615
22616 Note that pragma @code{Overflow_Mode} does not affect whether
22617 overflow checks are enabled or suppressed. It only controls the
22618 method used to compute intermediate values. To control whether
22619 overflow checking is enabled or suppressed, use pragma @code{Suppress}
22620 or @code{Unsuppress} in the usual manner.
22621
22622 @geindex -gnato? (gcc)
22623
22624 @geindex -gnato?? (gcc)
22625
22626 Additionally, a compiler switch @code{-gnato?} or @code{-gnato??}
22627 can be used to control the checking mode default (which can be subsequently
22628 overridden using pragmas).
22629
22630 Here @code{?} is one of the digits @code{1} through @code{3}:
22631
22632 @quotation
22633
22634
22635 @multitable {xxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
22636 @item
22637
22638 @code{1}
22639
22640 @tab
22641
22642 use base type for intermediate operations (@code{STRICT})
22643
22644 @item
22645
22646 @code{2}
22647
22648 @tab
22649
22650 minimize intermediate overflows (@code{MINIMIZED})
22651
22652 @item
22653
22654 @code{3}
22655
22656 @tab
22657
22658 eliminate intermediate overflows (@code{ELIMINATED})
22659
22660 @end multitable
22661
22662 @end quotation
22663
22664 As with the pragma, if only one digit appears then it applies to all
22665 cases; if two digits are given, then the first applies outside
22666 assertions, and the second within assertions. Thus the equivalent
22667 of the example pragma above would be
22668 @code{-gnato23}.
22669
22670 If no digits follow the @code{-gnato}, then it is equivalent to
22671 @code{-gnato11},
22672 causing all intermediate operations to be computed using the base
22673 type (@code{STRICT} mode).
22674
22675 @node Default Settings,Implementation Notes,Specifying the Desired Mode,Overflow Check Handling in GNAT
22676 @anchor{gnat_ugn/gnat_and_program_execution id49}@anchor{1c0}@anchor{gnat_ugn/gnat_and_program_execution default-settings}@anchor{1c1}
22677 @subsection Default Settings
22678
22679
22680 The default mode for overflow checks is
22681
22682 @quotation
22683
22684 @example
22685 General => Strict
22686 @end example
22687 @end quotation
22688
22689 which causes all computations both inside and outside assertions to use
22690 the base type.
22691
22692 This retains compatibility with previous versions of
22693 GNAT which suppressed overflow checks by default and always
22694 used the base type for computation of intermediate results.
22695
22696 @c Sphinx allows no emphasis within :index: role. As a workaround we
22697 @c point the index to "switch" and use emphasis for "-gnato".
22698
22699 The
22700 @geindex -gnato (gcc)
22701 switch @code{-gnato} (with no digits following)
22702 is equivalent to
22703
22704 @quotation
22705
22706 @example
22707 General => Strict
22708 @end example
22709 @end quotation
22710
22711 which causes overflow checking of all intermediate overflows
22712 both inside and outside assertions against the base type.
22713
22714 The pragma @code{Suppress (Overflow_Check)} disables overflow
22715 checking, but it has no effect on the method used for computing
22716 intermediate results.
22717
22718 The pragma @code{Unsuppress (Overflow_Check)} enables overflow
22719 checking, but it has no effect on the method used for computing
22720 intermediate results.
22721
22722 @node Implementation Notes,,Default Settings,Overflow Check Handling in GNAT
22723 @anchor{gnat_ugn/gnat_and_program_execution implementation-notes}@anchor{1c2}@anchor{gnat_ugn/gnat_and_program_execution id50}@anchor{1c3}
22724 @subsection Implementation Notes
22725
22726
22727 In practice on typical 64-bit machines, the @code{MINIMIZED} mode is
22728 reasonably efficient, and can be generally used. It also helps
22729 to ensure compatibility with code imported from some other
22730 compiler to GNAT.
22731
22732 Setting all intermediate overflows checking (@code{CHECKED} mode)
22733 makes sense if you want to
22734 make sure that your code is compatible with any other possible
22735 Ada implementation. This may be useful in ensuring portability
22736 for code that is to be exported to some other compiler than GNAT.
22737
22738 The Ada standard allows the reassociation of expressions at
22739 the same precedence level if no parentheses are present. For
22740 example, @code{A+B+C} parses as though it were @code{(A+B)+C}, but
22741 the compiler can reintepret this as @code{A+(B+C)}, possibly
22742 introducing or eliminating an overflow exception. The GNAT
22743 compiler never takes advantage of this freedom, and the
22744 expression @code{A+B+C} will be evaluated as @code{(A+B)+C}.
22745 If you need the other order, you can write the parentheses
22746 explicitly @code{A+(B+C)} and GNAT will respect this order.
22747
22748 The use of @code{ELIMINATED} mode will cause the compiler to
22749 automatically include an appropriate arbitrary precision
22750 integer arithmetic package. The compiler will make calls
22751 to this package, though only in cases where it cannot be
22752 sure that @code{Long_Long_Integer} is sufficient to guard against
22753 intermediate overflows. This package does not use dynamic
22754 allocation, but it does use the secondary stack, so an
22755 appropriate secondary stack package must be present (this
22756 is always true for standard full Ada, but may require
22757 specific steps for restricted run times such as ZFP).
22758
22759 Although @code{ELIMINATED} mode causes expressions to use arbitrary
22760 precision arithmetic, avoiding overflow, the final result
22761 must be in an appropriate range. This is true even if the
22762 final result is of type @code{[Long_[Long_]]Integer'Base}, which
22763 still has the same bounds as its associated constrained
22764 type at run-time.
22765
22766 Currently, the @code{ELIMINATED} mode is only available on target
22767 platforms for which @code{Long_Long_Integer} is 64-bits (nearly all GNAT
22768 platforms).
22769
22770 @node Performing Dimensionality Analysis in GNAT,Stack Related Facilities,Overflow Check Handling in GNAT,GNAT and Program Execution
22771 @anchor{gnat_ugn/gnat_and_program_execution performing-dimensionality-analysis-in-gnat}@anchor{28}@anchor{gnat_ugn/gnat_and_program_execution id51}@anchor{16a}
22772 @section Performing Dimensionality Analysis in GNAT
22773
22774
22775 @geindex Dimensionality analysis
22776
22777 The GNAT compiler supports dimensionality checking. The user can
22778 specify physical units for objects, and the compiler will verify that uses
22779 of these objects are compatible with their dimensions, in a fashion that is
22780 familiar to engineering practice. The dimensions of algebraic expressions
22781 (including powers with static exponents) are computed from their constituents.
22782
22783 @geindex Dimension_System aspect
22784
22785 @geindex Dimension aspect
22786
22787 This feature depends on Ada 2012 aspect specifications, and is available from
22788 version 7.0.1 of GNAT onwards.
22789 The GNAT-specific aspect @code{Dimension_System}
22790 allows you to define a system of units; the aspect @code{Dimension}
22791 then allows the user to declare dimensioned quantities within a given system.
22792 (These aspects are described in the @emph{Implementation Defined Aspects}
22793 chapter of the @emph{GNAT Reference Manual}).
22794
22795 The major advantage of this model is that it does not require the declaration of
22796 multiple operators for all possible combinations of types: it is only necessary
22797 to use the proper subtypes in object declarations.
22798
22799 @geindex System.Dim.Mks package (GNAT library)
22800
22801 @geindex MKS_Type type
22802
22803 The simplest way to impose dimensionality checking on a computation is to make
22804 use of one of the instantiations of the package @code{System.Dim.Generic_Mks}, which
22805 are part of the GNAT library. This generic package defines a floating-point
22806 type @code{MKS_Type}, for which a sequence of dimension names are specified,
22807 together with their conventional abbreviations. The following should be read
22808 together with the full specification of the package, in file
22809 @code{s-digemk.ads}.
22810
22811 @quotation
22812
22813 @geindex s-digemk.ads file
22814
22815 @example
22816 type Mks_Type is new Float_Type
22817 with
22818 Dimension_System => (
22819 (Unit_Name => Meter, Unit_Symbol => 'm', Dim_Symbol => 'L'),
22820 (Unit_Name => Kilogram, Unit_Symbol => "kg", Dim_Symbol => 'M'),
22821 (Unit_Name => Second, Unit_Symbol => 's', Dim_Symbol => 'T'),
22822 (Unit_Name => Ampere, Unit_Symbol => 'A', Dim_Symbol => 'I'),
22823 (Unit_Name => Kelvin, Unit_Symbol => 'K', Dim_Symbol => "Theta"),
22824 (Unit_Name => Mole, Unit_Symbol => "mol", Dim_Symbol => 'N'),
22825 (Unit_Name => Candela, Unit_Symbol => "cd", Dim_Symbol => 'J'));
22826 @end example
22827 @end quotation
22828
22829 The package then defines a series of subtypes that correspond to these
22830 conventional units. For example:
22831
22832 @quotation
22833
22834 @example
22835 subtype Length is Mks_Type
22836 with
22837 Dimension => (Symbol => 'm', Meter => 1, others => 0);
22838 @end example
22839 @end quotation
22840
22841 and similarly for @code{Mass}, @code{Time}, @code{Electric_Current},
22842 @code{Thermodynamic_Temperature}, @code{Amount_Of_Substance}, and
22843 @code{Luminous_Intensity} (the standard set of units of the SI system).
22844
22845 The package also defines conventional names for values of each unit, for
22846 example:
22847
22848 @quotation
22849
22850 @example
22851 m : constant Length := 1.0;
22852 kg : constant Mass := 1.0;
22853 s : constant Time := 1.0;
22854 A : constant Electric_Current := 1.0;
22855 @end example
22856 @end quotation
22857
22858 as well as useful multiples of these units:
22859
22860 @quotation
22861
22862 @example
22863 cm : constant Length := 1.0E-02;
22864 g : constant Mass := 1.0E-03;
22865 min : constant Time := 60.0;
22866 day : constant Time := 60.0 * 24.0 * min;
22867 ...
22868 @end example
22869 @end quotation
22870
22871 There are three instantiations of @code{System.Dim.Generic_Mks} defined in the
22872 GNAT library:
22873
22874
22875 @itemize *
22876
22877 @item
22878 @code{System.Dim.Float_Mks} based on @code{Float} defined in @code{s-diflmk.ads}.
22879
22880 @item
22881 @code{System.Dim.Long_Mks} based on @code{Long_Float} defined in @code{s-dilomk.ads}.
22882
22883 @item
22884 @code{System.Dim.Mks} based on @code{Long_Long_Float} defined in @code{s-dimmks.ads}.
22885 @end itemize
22886
22887 Using one of these packages, you can then define a derived unit by providing
22888 the aspect that specifies its dimensions within the MKS system, as well as the
22889 string to be used for output of a value of that unit:
22890
22891 @quotation
22892
22893 @example
22894 subtype Acceleration is Mks_Type
22895 with Dimension => ("m/sec^2",
22896 Meter => 1,
22897 Second => -2,
22898 others => 0);
22899 @end example
22900 @end quotation
22901
22902 Here is a complete example of use:
22903
22904 @quotation
22905
22906 @example
22907 with System.Dim.MKS; use System.Dim.Mks;
22908 with System.Dim.Mks_IO; use System.Dim.Mks_IO;
22909 with Text_IO; use Text_IO;
22910 procedure Free_Fall is
22911 subtype Acceleration is Mks_Type
22912 with Dimension => ("m/sec^2", 1, 0, -2, others => 0);
22913 G : constant acceleration := 9.81 * m / (s ** 2);
22914 T : Time := 10.0*s;
22915 Distance : Length;
22916
22917 begin
22918 Put ("Gravitational constant: ");
22919 Put (G, Aft => 2, Exp => 0); Put_Line ("");
22920 Distance := 0.5 * G * T ** 2;
22921 Put ("distance travelled in 10 seconds of free fall ");
22922 Put (Distance, Aft => 2, Exp => 0);
22923 Put_Line ("");
22924 end Free_Fall;
22925 @end example
22926 @end quotation
22927
22928 Execution of this program yields:
22929
22930 @quotation
22931
22932 @example
22933 Gravitational constant: 9.81 m/sec^2
22934 distance travelled in 10 seconds of free fall 490.50 m
22935 @end example
22936 @end quotation
22937
22938 However, incorrect assignments such as:
22939
22940 @quotation
22941
22942 @example
22943 Distance := 5.0;
22944 Distance := 5.0 * kg;
22945 @end example
22946 @end quotation
22947
22948 are rejected with the following diagnoses:
22949
22950 @quotation
22951
22952 @example
22953 Distance := 5.0;
22954 >>> dimensions mismatch in assignment
22955 >>> left-hand side has dimension [L]
22956 >>> right-hand side is dimensionless
22957
22958 Distance := 5.0 * kg:
22959 >>> dimensions mismatch in assignment
22960 >>> left-hand side has dimension [L]
22961 >>> right-hand side has dimension [M]
22962 @end example
22963 @end quotation
22964
22965 The dimensions of an expression are properly displayed, even if there is
22966 no explicit subtype for it. If we add to the program:
22967
22968 @quotation
22969
22970 @example
22971 Put ("Final velocity: ");
22972 Put (G * T, Aft =>2, Exp =>0);
22973 Put_Line ("");
22974 @end example
22975 @end quotation
22976
22977 then the output includes:
22978
22979 @quotation
22980
22981 @example
22982 Final velocity: 98.10 m.s**(-1)
22983 @end example
22984
22985 @geindex Dimensionable type
22986
22987 @geindex Dimensioned subtype
22988 @end quotation
22989
22990 The type @code{Mks_Type} is said to be a @emph{dimensionable type} since it has a
22991 @code{Dimension_System} aspect, and the subtypes @code{Length}, @code{Mass}, etc.,
22992 are said to be @emph{dimensioned subtypes} since each one has a @code{Dimension}
22993 aspect.
22994
22995 @quotation
22996
22997 @geindex Dimension Vector (for a dimensioned subtype)
22998
22999 @geindex Dimension aspect
23000
23001 @geindex Dimension_System aspect
23002 @end quotation
23003
23004 The @code{Dimension} aspect of a dimensioned subtype @code{S} defines a mapping
23005 from the base type's Unit_Names to integer (or, more generally, rational)
23006 values. This mapping is the @emph{dimension vector} (also referred to as the
23007 @emph{dimensionality}) for that subtype, denoted by @code{DV(S)}, and thus for each
23008 object of that subtype. Intuitively, the value specified for each
23009 @code{Unit_Name} is the exponent associated with that unit; a zero value
23010 means that the unit is not used. For example:
23011
23012 @quotation
23013
23014 @example
23015 declare
23016 Acc : Acceleration;
23017 ...
23018 begin
23019 ...
23020 end;
23021 @end example
23022 @end quotation
23023
23024 Here @code{DV(Acc)} = @code{DV(Acceleration)} =
23025 @code{(Meter=>1, Kilogram=>0, Second=>-2, Ampere=>0, Kelvin=>0, Mole=>0, Candela=>0)}.
23026 Symbolically, we can express this as @code{Meter / Second**2}.
23027
23028 The dimension vector of an arithmetic expression is synthesized from the
23029 dimension vectors of its components, with compile-time dimensionality checks
23030 that help prevent mismatches such as using an @code{Acceleration} where a
23031 @code{Length} is required.
23032
23033 The dimension vector of the result of an arithmetic expression @emph{expr}, or
23034 @code{DV(@emph{expr})}, is defined as follows, assuming conventional
23035 mathematical definitions for the vector operations that are used:
23036
23037
23038 @itemize *
23039
23040 @item
23041 If @emph{expr} is of the type @emph{universal_real}, or is not of a dimensioned subtype,
23042 then @emph{expr} is dimensionless; @code{DV(@emph{expr})} is the empty vector.
23043
23044 @item
23045 @code{DV(@emph{op expr})}, where @emph{op} is a unary operator, is @code{DV(@emph{expr})}
23046
23047 @item
23048 @code{DV(@emph{expr1 op expr2})} where @emph{op} is "+" or "-" is @code{DV(@emph{expr1})}
23049 provided that @code{DV(@emph{expr1})} = @code{DV(@emph{expr2})}.
23050 If this condition is not met then the construct is illegal.
23051
23052 @item
23053 @code{DV(@emph{expr1} * @emph{expr2})} is @code{DV(@emph{expr1})} + @code{DV(@emph{expr2})},
23054 and @code{DV(@emph{expr1} / @emph{expr2})} = @code{DV(@emph{expr1})} - @code{DV(@emph{expr2})}.
23055 In this context if one of the @emph{expr}s is dimensionless then its empty
23056 dimension vector is treated as @code{(others => 0)}.
23057
23058 @item
23059 @code{DV(@emph{expr} ** @emph{power})} is @emph{power} * @code{DV(@emph{expr})},
23060 provided that @emph{power} is a static rational value. If this condition is not
23061 met then the construct is illegal.
23062 @end itemize
23063
23064 Note that, by the above rules, it is illegal to use binary "+" or "-" to
23065 combine a dimensioned and dimensionless value. Thus an expression such as
23066 @code{acc-10.0} is illegal, where @code{acc} is an object of subtype
23067 @code{Acceleration}.
23068
23069 The dimensionality checks for relationals use the same rules as
23070 for "+" and "-", except when comparing to a literal; thus
23071
23072 @quotation
23073
23074 @example
23075 acc > len
23076 @end example
23077 @end quotation
23078
23079 is equivalent to
23080
23081 @quotation
23082
23083 @example
23084 acc-len > 0.0
23085 @end example
23086 @end quotation
23087
23088 and is thus illegal, but
23089
23090 @quotation
23091
23092 @example
23093 acc > 10.0
23094 @end example
23095 @end quotation
23096
23097 is accepted with a warning. Analogously a conditional expression requires the
23098 same dimension vector for each branch (with no exception for literals).
23099
23100 The dimension vector of a type conversion @code{T(@emph{expr})} is defined
23101 as follows, based on the nature of @code{T}:
23102
23103
23104 @itemize *
23105
23106 @item
23107 If @code{T} is a dimensioned subtype then @code{DV(T(@emph{expr}))} is @code{DV(T)}
23108 provided that either @emph{expr} is dimensionless or
23109 @code{DV(T)} = @code{DV(@emph{expr})}. The conversion is illegal
23110 if @emph{expr} is dimensioned and @code{DV(@emph{expr})} /= @code{DV(T)}.
23111 Note that vector equality does not require that the corresponding
23112 Unit_Names be the same.
23113
23114 As a consequence of the above rule, it is possible to convert between
23115 different dimension systems that follow the same international system
23116 of units, with the seven physical components given in the standard order
23117 (length, mass, time, etc.). Thus a length in meters can be converted to
23118 a length in inches (with a suitable conversion factor) but cannot be
23119 converted, for example, to a mass in pounds.
23120
23121 @item
23122 If @code{T} is the base type for @emph{expr} (and the dimensionless root type of
23123 the dimension system), then @code{DV(T(@emph{expr}))} is @code{DV(expr)}.
23124 Thus, if @emph{expr} is of a dimensioned subtype of @code{T}, the conversion may
23125 be regarded as a "view conversion" that preserves dimensionality.
23126
23127 This rule makes it possible to write generic code that can be instantiated
23128 with compatible dimensioned subtypes. The generic unit will contain
23129 conversions that will consequently be present in instantiations, but
23130 conversions to the base type will preserve dimensionality and make it
23131 possible to write generic code that is correct with respect to
23132 dimensionality.
23133
23134 @item
23135 Otherwise (i.e., @code{T} is neither a dimensioned subtype nor a dimensionable
23136 base type), @code{DV(T(@emph{expr}))} is the empty vector. Thus a dimensioned
23137 value can be explicitly converted to a non-dimensioned subtype, which
23138 of course then escapes dimensionality analysis.
23139 @end itemize
23140
23141 The dimension vector for a type qualification @code{T'(@emph{expr})} is the same
23142 as for the type conversion @code{T(@emph{expr})}.
23143
23144 An assignment statement
23145
23146 @quotation
23147
23148 @example
23149 Source := Target;
23150 @end example
23151 @end quotation
23152
23153 requires @code{DV(Source)} = @code{DV(Target)}, and analogously for parameter
23154 passing (the dimension vector for the actual parameter must be equal to the
23155 dimension vector for the formal parameter).
23156
23157 @node Stack Related Facilities,Memory Management Issues,Performing Dimensionality Analysis in GNAT,GNAT and Program Execution
23158 @anchor{gnat_ugn/gnat_and_program_execution stack-related-facilities}@anchor{29}@anchor{gnat_ugn/gnat_and_program_execution id52}@anchor{16b}
23159 @section Stack Related Facilities
23160
23161
23162 This section describes some useful tools associated with stack
23163 checking and analysis. In
23164 particular, it deals with dynamic and static stack usage measurements.
23165
23166 @menu
23167 * Stack Overflow Checking::
23168 * Static Stack Usage Analysis::
23169 * Dynamic Stack Usage Analysis::
23170
23171 @end menu
23172
23173 @node Stack Overflow Checking,Static Stack Usage Analysis,,Stack Related Facilities
23174 @anchor{gnat_ugn/gnat_and_program_execution id53}@anchor{1c4}@anchor{gnat_ugn/gnat_and_program_execution stack-overflow-checking}@anchor{f4}
23175 @subsection Stack Overflow Checking
23176
23177
23178 @geindex Stack Overflow Checking
23179
23180 @geindex -fstack-check (gcc)
23181
23182 For most operating systems, @code{gcc} does not perform stack overflow
23183 checking by default. This means that if the main environment task or
23184 some other task exceeds the available stack space, then unpredictable
23185 behavior will occur. Most native systems offer some level of protection by
23186 adding a guard page at the end of each task stack. This mechanism is usually
23187 not enough for dealing properly with stack overflow situations because
23188 a large local variable could "jump" above the guard page.
23189 Furthermore, when the
23190 guard page is hit, there may not be any space left on the stack for executing
23191 the exception propagation code. Enabling stack checking avoids
23192 such situations.
23193
23194 To activate stack checking, compile all units with the @code{gcc} option
23195 @code{-fstack-check}. For example:
23196
23197 @quotation
23198
23199 @example
23200 $ gcc -c -fstack-check package1.adb
23201 @end example
23202 @end quotation
23203
23204 Units compiled with this option will generate extra instructions to check
23205 that any use of the stack (for procedure calls or for declaring local
23206 variables in declare blocks) does not exceed the available stack space.
23207 If the space is exceeded, then a @code{Storage_Error} exception is raised.
23208
23209 For declared tasks, the default stack size is defined by the GNAT runtime,
23210 whose size may be modified at bind time through the @code{-d} bind switch
23211 (@ref{11f,,Switches for gnatbind}). Task specific stack sizes may be set using the
23212 @code{Storage_Size} pragma.
23213
23214 For the environment task, the stack size is determined by the operating system.
23215 Consequently, to modify the size of the environment task please refer to your
23216 operating system documentation.
23217
23218 @node Static Stack Usage Analysis,Dynamic Stack Usage Analysis,Stack Overflow Checking,Stack Related Facilities
23219 @anchor{gnat_ugn/gnat_and_program_execution id54}@anchor{1c5}@anchor{gnat_ugn/gnat_and_program_execution static-stack-usage-analysis}@anchor{f5}
23220 @subsection Static Stack Usage Analysis
23221
23222
23223 @geindex Static Stack Usage Analysis
23224
23225 @geindex -fstack-usage
23226
23227 A unit compiled with @code{-fstack-usage} will generate an extra file
23228 that specifies
23229 the maximum amount of stack used, on a per-function basis.
23230 The file has the same
23231 basename as the target object file with a @code{.su} extension.
23232 Each line of this file is made up of three fields:
23233
23234
23235 @itemize *
23236
23237 @item
23238 The name of the function.
23239
23240 @item
23241 A number of bytes.
23242
23243 @item
23244 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
23245 @end itemize
23246
23247 The second field corresponds to the size of the known part of the function
23248 frame.
23249
23250 The qualifier @code{static} means that the function frame size
23251 is purely static.
23252 It usually means that all local variables have a static size.
23253 In this case, the second field is a reliable measure of the function stack
23254 utilization.
23255
23256 The qualifier @code{dynamic} means that the function frame size is not static.
23257 It happens mainly when some local variables have a dynamic size. When this
23258 qualifier appears alone, the second field is not a reliable measure
23259 of the function stack analysis. When it is qualified with @code{bounded}, it
23260 means that the second field is a reliable maximum of the function stack
23261 utilization.
23262
23263 A unit compiled with @code{-Wstack-usage} will issue a warning for each
23264 subprogram whose stack usage might be larger than the specified amount of
23265 bytes. The wording is in keeping with the qualifier documented above.
23266
23267 @node Dynamic Stack Usage Analysis,,Static Stack Usage Analysis,Stack Related Facilities
23268 @anchor{gnat_ugn/gnat_and_program_execution id55}@anchor{1c6}@anchor{gnat_ugn/gnat_and_program_execution dynamic-stack-usage-analysis}@anchor{122}
23269 @subsection Dynamic Stack Usage Analysis
23270
23271
23272 It is possible to measure the maximum amount of stack used by a task, by
23273 adding a switch to @code{gnatbind}, as:
23274
23275 @quotation
23276
23277 @example
23278 $ gnatbind -u0 file
23279 @end example
23280 @end quotation
23281
23282 With this option, at each task termination, its stack usage is output on
23283 @code{stderr}.
23284 Note that this switch is not compatible with tools like
23285 Valgrind and DrMemory; they will report errors.
23286
23287 It is not always convenient to output the stack usage when the program
23288 is still running. Hence, it is possible to delay this output until program
23289 termination. for a given number of tasks specified as the argument of the
23290 @code{-u} option. For instance:
23291
23292 @quotation
23293
23294 @example
23295 $ gnatbind -u100 file
23296 @end example
23297 @end quotation
23298
23299 will buffer the stack usage information of the first 100 tasks to terminate and
23300 output this info at program termination. Results are displayed in four
23301 columns:
23302
23303 @quotation
23304
23305 @example
23306 Index | Task Name | Stack Size | Stack Usage
23307 @end example
23308 @end quotation
23309
23310 where:
23311
23312
23313 @itemize *
23314
23315 @item
23316 @emph{Index} is a number associated with each task.
23317
23318 @item
23319 @emph{Task Name} is the name of the task analyzed.
23320
23321 @item
23322 @emph{Stack Size} is the maximum size for the stack.
23323
23324 @item
23325 @emph{Stack Usage} is the measure done by the stack analyzer.
23326 In order to prevent overflow, the stack
23327 is not entirely analyzed, and it's not possible to know exactly how
23328 much has actually been used.
23329 @end itemize
23330
23331 By default the environment task stack, the stack that contains the main unit,
23332 is not processed. To enable processing of the environment task stack, the
23333 environment variable GNAT_STACK_LIMIT needs to be set to the maximum size of
23334 the environment task stack. This amount is given in kilobytes. For example:
23335
23336 @quotation
23337
23338 @example
23339 $ set GNAT_STACK_LIMIT 1600
23340 @end example
23341 @end quotation
23342
23343 would specify to the analyzer that the environment task stack has a limit
23344 of 1.6 megabytes. Any stack usage beyond this will be ignored by the analysis.
23345
23346 The package @code{GNAT.Task_Stack_Usage} provides facilities to get
23347 stack-usage reports at run time. See its body for the details.
23348
23349 @node Memory Management Issues,,Stack Related Facilities,GNAT and Program Execution
23350 @anchor{gnat_ugn/gnat_and_program_execution id56}@anchor{16c}@anchor{gnat_ugn/gnat_and_program_execution memory-management-issues}@anchor{2a}
23351 @section Memory Management Issues
23352
23353
23354 This section describes some useful memory pools provided in the GNAT library
23355 and in particular the GNAT Debug Pool facility, which can be used to detect
23356 incorrect uses of access values (including 'dangling references').
23357
23358
23359 @menu
23360 * Some Useful Memory Pools::
23361 * The GNAT Debug Pool Facility::
23362
23363 @end menu
23364
23365 @node Some Useful Memory Pools,The GNAT Debug Pool Facility,,Memory Management Issues
23366 @anchor{gnat_ugn/gnat_and_program_execution id57}@anchor{1c7}@anchor{gnat_ugn/gnat_and_program_execution some-useful-memory-pools}@anchor{1c8}
23367 @subsection Some Useful Memory Pools
23368
23369
23370 @geindex Memory Pool
23371
23372 @geindex storage
23373 @geindex pool
23374
23375 The @code{System.Pool_Global} package offers the Unbounded_No_Reclaim_Pool
23376 storage pool. Allocations use the standard system call @code{malloc} while
23377 deallocations use the standard system call @code{free}. No reclamation is
23378 performed when the pool goes out of scope. For performance reasons, the
23379 standard default Ada allocators/deallocators do not use any explicit storage
23380 pools but if they did, they could use this storage pool without any change in
23381 behavior. That is why this storage pool is used when the user
23382 manages to make the default implicit allocator explicit as in this example:
23383
23384 @quotation
23385
23386 @example
23387 type T1 is access Something;
23388 -- no Storage pool is defined for T2
23389
23390 type T2 is access Something_Else;
23391 for T2'Storage_Pool use T1'Storage_Pool;
23392 -- the above is equivalent to
23393 for T2'Storage_Pool use System.Pool_Global.Global_Pool_Object;
23394 @end example
23395 @end quotation
23396
23397 The @code{System.Pool_Local} package offers the @code{Unbounded_Reclaim_Pool} storage
23398 pool. The allocation strategy is similar to @code{Pool_Local}
23399 except that the all
23400 storage allocated with this pool is reclaimed when the pool object goes out of
23401 scope. This pool provides a explicit mechanism similar to the implicit one
23402 provided by several Ada 83 compilers for allocations performed through a local
23403 access type and whose purpose was to reclaim memory when exiting the
23404 scope of a given local access. As an example, the following program does not
23405 leak memory even though it does not perform explicit deallocation:
23406
23407 @quotation
23408
23409 @example
23410 with System.Pool_Local;
23411 procedure Pooloc1 is
23412 procedure Internal is
23413 type A is access Integer;
23414 X : System.Pool_Local.Unbounded_Reclaim_Pool;
23415 for A'Storage_Pool use X;
23416 v : A;
23417 begin
23418 for I in 1 .. 50 loop
23419 v := new Integer;
23420 end loop;
23421 end Internal;
23422 begin
23423 for I in 1 .. 100 loop
23424 Internal;
23425 end loop;
23426 end Pooloc1;
23427 @end example
23428 @end quotation
23429
23430 The @code{System.Pool_Size} package implements the @code{Stack_Bounded_Pool} used when
23431 @code{Storage_Size} is specified for an access type.
23432 The whole storage for the pool is
23433 allocated at once, usually on the stack at the point where the access type is
23434 elaborated. It is automatically reclaimed when exiting the scope where the
23435 access type is defined. This package is not intended to be used directly by the
23436 user and it is implicitly used for each such declaration:
23437
23438 @quotation
23439
23440 @example
23441 type T1 is access Something;
23442 for T1'Storage_Size use 10_000;
23443 @end example
23444 @end quotation
23445
23446 @node The GNAT Debug Pool Facility,,Some Useful Memory Pools,Memory Management Issues
23447 @anchor{gnat_ugn/gnat_and_program_execution id58}@anchor{1c9}@anchor{gnat_ugn/gnat_and_program_execution the-gnat-debug-pool-facility}@anchor{1ca}
23448 @subsection The GNAT Debug Pool Facility
23449
23450
23451 @geindex Debug Pool
23452
23453 @geindex storage
23454 @geindex pool
23455 @geindex memory corruption
23456
23457 The use of unchecked deallocation and unchecked conversion can easily
23458 lead to incorrect memory references. The problems generated by such
23459 references are usually difficult to tackle because the symptoms can be
23460 very remote from the origin of the problem. In such cases, it is
23461 very helpful to detect the problem as early as possible. This is the
23462 purpose of the Storage Pool provided by @code{GNAT.Debug_Pools}.
23463
23464 In order to use the GNAT specific debugging pool, the user must
23465 associate a debug pool object with each of the access types that may be
23466 related to suspected memory problems. See Ada Reference Manual 13.11.
23467
23468 @quotation
23469
23470 @example
23471 type Ptr is access Some_Type;
23472 Pool : GNAT.Debug_Pools.Debug_Pool;
23473 for Ptr'Storage_Pool use Pool;
23474 @end example
23475 @end quotation
23476
23477 @code{GNAT.Debug_Pools} is derived from a GNAT-specific kind of
23478 pool: the @code{Checked_Pool}. Such pools, like standard Ada storage pools,
23479 allow the user to redefine allocation and deallocation strategies. They
23480 also provide a checkpoint for each dereference, through the use of
23481 the primitive operation @code{Dereference} which is implicitly called at
23482 each dereference of an access value.
23483
23484 Once an access type has been associated with a debug pool, operations on
23485 values of the type may raise four distinct exceptions,
23486 which correspond to four potential kinds of memory corruption:
23487
23488
23489 @itemize *
23490
23491 @item
23492 @code{GNAT.Debug_Pools.Accessing_Not_Allocated_Storage}
23493
23494 @item
23495 @code{GNAT.Debug_Pools.Accessing_Deallocated_Storage}
23496
23497 @item
23498 @code{GNAT.Debug_Pools.Freeing_Not_Allocated_Storage}
23499
23500 @item
23501 @code{GNAT.Debug_Pools.Freeing_Deallocated_Storage}
23502 @end itemize
23503
23504 For types associated with a Debug_Pool, dynamic allocation is performed using
23505 the standard GNAT allocation routine. References to all allocated chunks of
23506 memory are kept in an internal dictionary. Several deallocation strategies are
23507 provided, whereupon the user can choose to release the memory to the system,
23508 keep it allocated for further invalid access checks, or fill it with an easily
23509 recognizable pattern for debug sessions. The memory pattern is the old IBM
23510 hexadecimal convention: @code{16#DEADBEEF#}.
23511
23512 See the documentation in the file g-debpoo.ads for more information on the
23513 various strategies.
23514
23515 Upon each dereference, a check is made that the access value denotes a
23516 properly allocated memory location. Here is a complete example of use of
23517 @code{Debug_Pools}, that includes typical instances of memory corruption:
23518
23519 @quotation
23520
23521 @example
23522 with Gnat.Io; use Gnat.Io;
23523 with Unchecked_Deallocation;
23524 with Unchecked_Conversion;
23525 with GNAT.Debug_Pools;
23526 with System.Storage_Elements;
23527 with Ada.Exceptions; use Ada.Exceptions;
23528 procedure Debug_Pool_Test is
23529
23530 type T is access Integer;
23531 type U is access all T;
23532
23533 P : GNAT.Debug_Pools.Debug_Pool;
23534 for T'Storage_Pool use P;
23535
23536 procedure Free is new Unchecked_Deallocation (Integer, T);
23537 function UC is new Unchecked_Conversion (U, T);
23538 A, B : aliased T;
23539
23540 procedure Info is new GNAT.Debug_Pools.Print_Info(Put_Line);
23541
23542 begin
23543 Info (P);
23544 A := new Integer;
23545 B := new Integer;
23546 B := A;
23547 Info (P);
23548 Free (A);
23549 begin
23550 Put_Line (Integer'Image(B.all));
23551 exception
23552 when E : others => Put_Line ("raised: " & Exception_Name (E));
23553 end;
23554 begin
23555 Free (B);
23556 exception
23557 when E : others => Put_Line ("raised: " & Exception_Name (E));
23558 end;
23559 B := UC(A'Access);
23560 begin
23561 Put_Line (Integer'Image(B.all));
23562 exception
23563 when E : others => Put_Line ("raised: " & Exception_Name (E));
23564 end;
23565 begin
23566 Free (B);
23567 exception
23568 when E : others => Put_Line ("raised: " & Exception_Name (E));
23569 end;
23570 Info (P);
23571 end Debug_Pool_Test;
23572 @end example
23573 @end quotation
23574
23575 The debug pool mechanism provides the following precise diagnostics on the
23576 execution of this erroneous program:
23577
23578 @quotation
23579
23580 @example
23581 Debug Pool info:
23582 Total allocated bytes : 0
23583 Total deallocated bytes : 0
23584 Current Water Mark: 0
23585 High Water Mark: 0
23586
23587 Debug Pool info:
23588 Total allocated bytes : 8
23589 Total deallocated bytes : 0
23590 Current Water Mark: 8
23591 High Water Mark: 8
23592
23593 raised: GNAT.DEBUG_POOLS.ACCESSING_DEALLOCATED_STORAGE
23594 raised: GNAT.DEBUG_POOLS.FREEING_DEALLOCATED_STORAGE
23595 raised: GNAT.DEBUG_POOLS.ACCESSING_NOT_ALLOCATED_STORAGE
23596 raised: GNAT.DEBUG_POOLS.FREEING_NOT_ALLOCATED_STORAGE
23597 Debug Pool info:
23598 Total allocated bytes : 8
23599 Total deallocated bytes : 4
23600 Current Water Mark: 4
23601 High Water Mark: 8
23602 @end example
23603 @end quotation
23604
23605
23606 @c -- Non-breaking space in running text
23607 @c -- E.g. Ada |nbsp| 95
23608
23609 @node Platform-Specific Information,Example of Binder Output File,GNAT and Program Execution,Top
23610 @anchor{gnat_ugn/platform_specific_information platform-specific-information}@anchor{d}@anchor{gnat_ugn/platform_specific_information doc}@anchor{1cb}@anchor{gnat_ugn/platform_specific_information id1}@anchor{1cc}
23611 @chapter Platform-Specific Information
23612
23613
23614 This appendix contains information relating to the implementation
23615 of run-time libraries on various platforms and also covers
23616 topics related to the GNAT implementation on Windows and Mac OS.
23617
23618 @menu
23619 * Run-Time Libraries::
23620 * Specifying a Run-Time Library::
23621 * GNU/Linux Topics::
23622 * Microsoft Windows Topics::
23623 * Mac OS Topics::
23624
23625 @end menu
23626
23627 @node Run-Time Libraries,Specifying a Run-Time Library,,Platform-Specific Information
23628 @anchor{gnat_ugn/platform_specific_information id2}@anchor{1cd}@anchor{gnat_ugn/platform_specific_information run-time-libraries}@anchor{2b}
23629 @section Run-Time Libraries
23630
23631
23632 @geindex Tasking and threads libraries
23633
23634 @geindex Threads libraries and tasking
23635
23636 @geindex Run-time libraries (platform-specific information)
23637
23638 The GNAT run-time implementation may vary with respect to both the
23639 underlying threads library and the exception-handling scheme.
23640 For threads support, the default run-time will bind to the thread
23641 package of the underlying operating system.
23642
23643 For exception handling, either or both of two models are supplied:
23644
23645 @quotation
23646
23647 @geindex Zero-Cost Exceptions
23648
23649 @geindex ZCX (Zero-Cost Exceptions)
23650 @end quotation
23651
23652
23653 @itemize *
23654
23655 @item
23656 @strong{Zero-Cost Exceptions} ("ZCX"),
23657 which uses binder-generated tables that
23658 are interrogated at run time to locate a handler.
23659
23660 @geindex setjmp/longjmp Exception Model
23661
23662 @geindex SJLJ (setjmp/longjmp Exception Model)
23663
23664 @item
23665 @strong{setjmp / longjmp} ('SJLJ'),
23666 which uses dynamically-set data to establish
23667 the set of handlers
23668 @end itemize
23669
23670 Most programs should experience a substantial speed improvement by
23671 being compiled with a ZCX run-time.
23672 This is especially true for
23673 tasking applications or applications with many exception handlers.
23674 Note however that the ZCX run-time does not support asynchronous abort
23675 of tasks (@code{abort} and @code{select-then-abort} constructs) and will instead
23676 implement abort by polling points in the runtime. You can also add additional
23677 polling points explicitly if needed in your application via @code{pragma
23678 Abort_Defer}.
23679
23680 This section summarizes which combinations of threads and exception support
23681 are supplied on various GNAT platforms.
23682
23683 @menu
23684 * Summary of Run-Time Configurations::
23685
23686 @end menu
23687
23688 @node Summary of Run-Time Configurations,,,Run-Time Libraries
23689 @anchor{gnat_ugn/platform_specific_information summary-of-run-time-configurations}@anchor{1ce}@anchor{gnat_ugn/platform_specific_information id3}@anchor{1cf}
23690 @subsection Summary of Run-Time Configurations
23691
23692
23693
23694 @multitable {xxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxx} {xxxxxxxxxxxxxx}
23695 @headitem
23696
23697 Platform
23698
23699 @tab
23700
23701 Run-Time
23702
23703 @tab
23704
23705 Tasking
23706
23707 @tab
23708
23709 Exceptions
23710
23711 @item
23712
23713 GNU/Linux
23714
23715 @tab
23716
23717 rts-native
23718 (default)
23719
23720 @tab
23721
23722 pthread library
23723
23724 @tab
23725
23726 ZCX
23727
23728 @item
23729
23730 rts-sjlj
23731
23732 @tab
23733
23734 pthread library
23735
23736 @tab
23737
23738 SJLJ
23739
23740 @item
23741
23742 Windows
23743
23744 @tab
23745
23746 rts-native
23747 (default)
23748
23749 @tab
23750
23751 native Win32 threads
23752
23753 @tab
23754
23755 ZCX
23756
23757 @item
23758
23759 rts-sjlj
23760
23761 @tab
23762
23763 native Win32 threads
23764
23765 @tab
23766
23767 SJLJ
23768
23769 @item
23770
23771 Mac OS
23772
23773 @tab
23774
23775 rts-native
23776
23777 @tab
23778
23779 pthread library
23780
23781 @tab
23782
23783 ZCX
23784
23785 @end multitable
23786
23787
23788 @node Specifying a Run-Time Library,GNU/Linux Topics,Run-Time Libraries,Platform-Specific Information
23789 @anchor{gnat_ugn/platform_specific_information specifying-a-run-time-library}@anchor{1d0}@anchor{gnat_ugn/platform_specific_information id4}@anchor{1d1}
23790 @section Specifying a Run-Time Library
23791
23792
23793 The @code{adainclude} subdirectory containing the sources of the GNAT
23794 run-time library, and the @code{adalib} subdirectory containing the
23795 @code{ALI} files and the static and/or shared GNAT library, are located
23796 in the gcc target-dependent area:
23797
23798 @quotation
23799
23800 @example
23801 target=$prefix/lib/gcc/gcc-*dumpmachine*/gcc-*dumpversion*/
23802 @end example
23803 @end quotation
23804
23805 As indicated above, on some platforms several run-time libraries are supplied.
23806 These libraries are installed in the target dependent area and
23807 contain a complete source and binary subdirectory. The detailed description
23808 below explains the differences between the different libraries in terms of
23809 their thread support.
23810
23811 The default run-time library (when GNAT is installed) is @emph{rts-native}.
23812 This default run-time is selected by the means of soft links.
23813 For example on x86-linux:
23814
23815 @c --
23816 @c -- $(target-dir)
23817 @c -- |
23818 @c -- +--- adainclude----------+
23819 @c -- | |
23820 @c -- +--- adalib-----------+ |
23821 @c -- | | |
23822 @c -- +--- rts-native | |
23823 @c -- | | | |
23824 @c -- | +--- adainclude <---+
23825 @c -- | | |
23826 @c -- | +--- adalib <----+
23827 @c -- |
23828 @c -- +--- rts-sjlj
23829 @c -- |
23830 @c -- +--- adainclude
23831 @c -- |
23832 @c -- +--- adalib
23833
23834
23835 @example
23836 $(target-dir)
23837 __/ / \ \___
23838 _______/ / \ \_________________
23839 / / \ \
23840 / / \ \
23841 ADAINCLUDE ADALIB rts-native rts-sjlj
23842 : : / \ / \
23843 : : / \ / \
23844 : : / \ / \
23845 : : / \ / \
23846 +-------------> adainclude adalib adainclude adalib
23847 : ^
23848 : :
23849 +---------------------+
23850
23851 Run-Time Library Directory Structure
23852 (Upper-case names and dotted/dashed arrows represent soft links)
23853 @end example
23854
23855 If the @emph{rts-sjlj} library is to be selected on a permanent basis,
23856 these soft links can be modified with the following commands:
23857
23858 @quotation
23859
23860 @example
23861 $ cd $target
23862 $ rm -f adainclude adalib
23863 $ ln -s rts-sjlj/adainclude adainclude
23864 $ ln -s rts-sjlj/adalib adalib
23865 @end example
23866 @end quotation
23867
23868 Alternatively, you can specify @code{rts-sjlj/adainclude} in the file
23869 @code{$target/ada_source_path} and @code{rts-sjlj/adalib} in
23870 @code{$target/ada_object_path}.
23871
23872 @geindex --RTS option
23873
23874 Selecting another run-time library temporarily can be
23875 achieved by using the @code{--RTS} switch, e.g., @code{--RTS=sjlj}
23876 @anchor{gnat_ugn/platform_specific_information choosing-the-scheduling-policy}@anchor{1d2}
23877 @geindex SCHED_FIFO scheduling policy
23878
23879 @geindex SCHED_RR scheduling policy
23880
23881 @geindex SCHED_OTHER scheduling policy
23882
23883 @menu
23884 * Choosing the Scheduling Policy::
23885
23886 @end menu
23887
23888 @node Choosing the Scheduling Policy,,,Specifying a Run-Time Library
23889 @anchor{gnat_ugn/platform_specific_information id5}@anchor{1d3}
23890 @subsection Choosing the Scheduling Policy
23891
23892
23893 When using a POSIX threads implementation, you have a choice of several
23894 scheduling policies: @code{SCHED_FIFO}, @code{SCHED_RR} and @code{SCHED_OTHER}.
23895
23896 Typically, the default is @code{SCHED_OTHER}, while using @code{SCHED_FIFO}
23897 or @code{SCHED_RR} requires special (e.g., root) privileges.
23898
23899 @geindex pragma Time_Slice
23900
23901 @geindex -T0 option
23902
23903 @geindex pragma Task_Dispatching_Policy
23904
23905 By default, GNAT uses the @code{SCHED_OTHER} policy. To specify
23906 @code{SCHED_FIFO},
23907 you can use one of the following:
23908
23909
23910 @itemize *
23911
23912 @item
23913 @code{pragma Time_Slice (0.0)}
23914
23915 @item
23916 the corresponding binder option @code{-T0}
23917
23918 @item
23919 @code{pragma Task_Dispatching_Policy (FIFO_Within_Priorities)}
23920 @end itemize
23921
23922 To specify @code{SCHED_RR},
23923 you should use @code{pragma Time_Slice} with a
23924 value greater than 0.0, or else use the corresponding @code{-T}
23925 binder option.
23926
23927 To make sure a program is running as root, you can put something like
23928 this in a library package body in your application:
23929
23930 @quotation
23931
23932 @example
23933 function geteuid return Integer;
23934 pragma Import (C, geteuid, "geteuid");
23935 Ignore : constant Boolean :=
23936 (if geteuid = 0 then True else raise Program_Error with "must be root");
23937 @end example
23938 @end quotation
23939
23940 It gets the effective user id, and if it's not 0 (i.e. root), it raises
23941 Program_Error.
23942
23943 @geindex Linux
23944
23945 @geindex GNU/Linux
23946
23947 @node GNU/Linux Topics,Microsoft Windows Topics,Specifying a Run-Time Library,Platform-Specific Information
23948 @anchor{gnat_ugn/platform_specific_information id6}@anchor{1d4}@anchor{gnat_ugn/platform_specific_information gnu-linux-topics}@anchor{1d5}
23949 @section GNU/Linux Topics
23950
23951
23952 This section describes topics that are specific to GNU/Linux platforms.
23953
23954 @menu
23955 * Required Packages on GNU/Linux::
23956
23957 @end menu
23958
23959 @node Required Packages on GNU/Linux,,,GNU/Linux Topics
23960 @anchor{gnat_ugn/platform_specific_information id7}@anchor{1d6}@anchor{gnat_ugn/platform_specific_information required-packages-on-gnu-linux}@anchor{1d7}
23961 @subsection Required Packages on GNU/Linux
23962
23963
23964 GNAT requires the C library developer's package to be installed.
23965 The name of of that package depends on your GNU/Linux distribution:
23966
23967
23968 @itemize *
23969
23970 @item
23971 RedHat, SUSE: @code{glibc-devel};
23972
23973 @item
23974 Debian, Ubuntu: @code{libc6-dev} (normally installed by default).
23975 @end itemize
23976
23977 If using the 32-bit version of GNAT on a 64-bit version of GNU/Linux,
23978 you'll need the 32-bit version of the following packages:
23979
23980
23981 @itemize *
23982
23983 @item
23984 RedHat, SUSE: @code{glibc.i686}, @code{glibc-devel.i686}, @code{ncurses-libs.i686}
23985
23986 @item
23987 Debian, Ubuntu: @code{libc6:i386}, @code{libc6-dev:i386}, @code{lib32ncursesw5}
23988 @end itemize
23989
23990 Other GNU/Linux distributions might be choosing a different name
23991 for those packages.
23992
23993 @geindex Windows
23994
23995 @node Microsoft Windows Topics,Mac OS Topics,GNU/Linux Topics,Platform-Specific Information
23996 @anchor{gnat_ugn/platform_specific_information microsoft-windows-topics}@anchor{2c}@anchor{gnat_ugn/platform_specific_information id8}@anchor{1d8}
23997 @section Microsoft Windows Topics
23998
23999
24000 This section describes topics that are specific to the Microsoft Windows
24001 platforms.
24002
24003
24004 @menu
24005 * Using GNAT on Windows::
24006 * Using a network installation of GNAT::
24007 * CONSOLE and WINDOWS subsystems::
24008 * Temporary Files::
24009 * Disabling Command Line Argument Expansion::
24010 * Windows Socket Timeouts::
24011 * Mixed-Language Programming on Windows::
24012 * Windows Specific Add-Ons::
24013
24014 @end menu
24015
24016 @node Using GNAT on Windows,Using a network installation of GNAT,,Microsoft Windows Topics
24017 @anchor{gnat_ugn/platform_specific_information using-gnat-on-windows}@anchor{1d9}@anchor{gnat_ugn/platform_specific_information id9}@anchor{1da}
24018 @subsection Using GNAT on Windows
24019
24020
24021 One of the strengths of the GNAT technology is that its tool set
24022 (@code{gcc}, @code{gnatbind}, @code{gnatlink}, @code{gnatmake}, the
24023 @code{gdb} debugger, etc.) is used in the same way regardless of the
24024 platform.
24025
24026 On Windows this tool set is complemented by a number of Microsoft-specific
24027 tools that have been provided to facilitate interoperability with Windows
24028 when this is required. With these tools:
24029
24030
24031 @itemize *
24032
24033 @item
24034 You can build applications using the @code{CONSOLE} or @code{WINDOWS}
24035 subsystems.
24036
24037 @item
24038 You can use any Dynamically Linked Library (DLL) in your Ada code (both
24039 relocatable and non-relocatable DLLs are supported).
24040
24041 @item
24042 You can build Ada DLLs for use in other applications. These applications
24043 can be written in a language other than Ada (e.g., C, C++, etc). Again both
24044 relocatable and non-relocatable Ada DLLs are supported.
24045
24046 @item
24047 You can include Windows resources in your Ada application.
24048
24049 @item
24050 You can use or create COM/DCOM objects.
24051 @end itemize
24052
24053 Immediately below are listed all known general GNAT-for-Windows restrictions.
24054 Other restrictions about specific features like Windows Resources and DLLs
24055 are listed in separate sections below.
24056
24057
24058 @itemize *
24059
24060 @item
24061 It is not possible to use @code{GetLastError} and @code{SetLastError}
24062 when tasking, protected records, or exceptions are used. In these
24063 cases, in order to implement Ada semantics, the GNAT run-time system
24064 calls certain Win32 routines that set the last error variable to 0 upon
24065 success. It should be possible to use @code{GetLastError} and
24066 @code{SetLastError} when tasking, protected record, and exception
24067 features are not used, but it is not guaranteed to work.
24068
24069 @item
24070 It is not possible to link against Microsoft C++ libraries except for
24071 import libraries. Interfacing must be done by the mean of DLLs.
24072
24073 @item
24074 It is possible to link against Microsoft C libraries. Yet the preferred
24075 solution is to use C/C++ compiler that comes with GNAT, since it
24076 doesn't require having two different development environments and makes the
24077 inter-language debugging experience smoother.
24078
24079 @item
24080 When the compilation environment is located on FAT32 drives, users may
24081 experience recompilations of the source files that have not changed if
24082 Daylight Saving Time (DST) state has changed since the last time files
24083 were compiled. NTFS drives do not have this problem.
24084
24085 @item
24086 No components of the GNAT toolset use any entries in the Windows
24087 registry. The only entries that can be created are file associations and
24088 PATH settings, provided the user has chosen to create them at installation
24089 time, as well as some minimal book-keeping information needed to correctly
24090 uninstall or integrate different GNAT products.
24091 @end itemize
24092
24093 @node Using a network installation of GNAT,CONSOLE and WINDOWS subsystems,Using GNAT on Windows,Microsoft Windows Topics
24094 @anchor{gnat_ugn/platform_specific_information id10}@anchor{1db}@anchor{gnat_ugn/platform_specific_information using-a-network-installation-of-gnat}@anchor{1dc}
24095 @subsection Using a network installation of GNAT
24096
24097
24098 Make sure the system on which GNAT is installed is accessible from the
24099 current machine, i.e., the install location is shared over the network.
24100 Shared resources are accessed on Windows by means of UNC paths, which
24101 have the format @code{\\\\server\\sharename\\path}
24102
24103 In order to use such a network installation, simply add the UNC path of the
24104 @code{bin} directory of your GNAT installation in front of your PATH. For
24105 example, if GNAT is installed in @code{\GNAT} directory of a share location
24106 called @code{c-drive} on a machine @code{LOKI}, the following command will
24107 make it available:
24108
24109 @quotation
24110
24111 @example
24112 $ path \\loki\c-drive\gnat\bin;%path%`
24113 @end example
24114 @end quotation
24115
24116 Be aware that every compilation using the network installation results in the
24117 transfer of large amounts of data across the network and will likely cause
24118 serious performance penalty.
24119
24120 @node CONSOLE and WINDOWS subsystems,Temporary Files,Using a network installation of GNAT,Microsoft Windows Topics
24121 @anchor{gnat_ugn/platform_specific_information id11}@anchor{1dd}@anchor{gnat_ugn/platform_specific_information console-and-windows-subsystems}@anchor{1de}
24122 @subsection CONSOLE and WINDOWS subsystems
24123
24124
24125 @geindex CONSOLE Subsystem
24126
24127 @geindex WINDOWS Subsystem
24128
24129 @geindex -mwindows
24130
24131 There are two main subsystems under Windows. The @code{CONSOLE} subsystem
24132 (which is the default subsystem) will always create a console when
24133 launching the application. This is not something desirable when the
24134 application has a Windows GUI. To get rid of this console the
24135 application must be using the @code{WINDOWS} subsystem. To do so
24136 the @code{-mwindows} linker option must be specified.
24137
24138 @quotation
24139
24140 @example
24141 $ gnatmake winprog -largs -mwindows
24142 @end example
24143 @end quotation
24144
24145 @node Temporary Files,Disabling Command Line Argument Expansion,CONSOLE and WINDOWS subsystems,Microsoft Windows Topics
24146 @anchor{gnat_ugn/platform_specific_information id12}@anchor{1df}@anchor{gnat_ugn/platform_specific_information temporary-files}@anchor{1e0}
24147 @subsection Temporary Files
24148
24149
24150 @geindex Temporary files
24151
24152 It is possible to control where temporary files gets created by setting
24153 the
24154 @geindex TMP
24155 @geindex environment variable; TMP
24156 @code{TMP} environment variable. The file will be created:
24157
24158
24159 @itemize *
24160
24161 @item
24162 Under the directory pointed to by the
24163 @geindex TMP
24164 @geindex environment variable; TMP
24165 @code{TMP} environment variable if
24166 this directory exists.
24167
24168 @item
24169 Under @code{c:\temp}, if the
24170 @geindex TMP
24171 @geindex environment variable; TMP
24172 @code{TMP} environment variable is not
24173 set (or not pointing to a directory) and if this directory exists.
24174
24175 @item
24176 Under the current working directory otherwise.
24177 @end itemize
24178
24179 This allows you to determine exactly where the temporary
24180 file will be created. This is particularly useful in networked
24181 environments where you may not have write access to some
24182 directories.
24183
24184 @node Disabling Command Line Argument Expansion,Windows Socket Timeouts,Temporary Files,Microsoft Windows Topics
24185 @anchor{gnat_ugn/platform_specific_information disabling-command-line-argument-expansion}@anchor{1e1}
24186 @subsection Disabling Command Line Argument Expansion
24187
24188
24189 @geindex Command Line Argument Expansion
24190
24191 By default, an executable compiled for the Windows platform will do
24192 the following postprocessing on the arguments passed on the command
24193 line:
24194
24195
24196 @itemize *
24197
24198 @item
24199 If the argument contains the characters @code{*} and/or @code{?}, then
24200 file expansion will be attempted. For example, if the current directory
24201 contains @code{a.txt} and @code{b.txt}, then when calling:
24202
24203 @example
24204 $ my_ada_program *.txt
24205 @end example
24206
24207 The following arguments will effectively be passed to the main program
24208 (for example when using @code{Ada.Command_Line.Argument}):
24209
24210 @example
24211 Ada.Command_Line.Argument (1) -> "a.txt"
24212 Ada.Command_Line.Argument (2) -> "b.txt"
24213 @end example
24214
24215 @item
24216 Filename expansion can be disabled for a given argument by using single
24217 quotes. Thus, calling:
24218
24219 @example
24220 $ my_ada_program '*.txt'
24221 @end example
24222
24223 will result in:
24224
24225 @example
24226 Ada.Command_Line.Argument (1) -> "*.txt"
24227 @end example
24228 @end itemize
24229
24230 Note that if the program is launched from a shell such as Cygwin Bash
24231 then quote removal might be performed by the shell.
24232
24233 In some contexts it might be useful to disable this feature (for example if
24234 the program performs its own argument expansion). In order to do this, a C
24235 symbol needs to be defined and set to @code{0}. You can do this by
24236 adding the following code fragment in one of your Ada units:
24237
24238 @example
24239 Do_Argv_Expansion : Integer := 0;
24240 pragma Export (C, Do_Argv_Expansion, "__gnat_do_argv_expansion");
24241 @end example
24242
24243 The results of previous examples will be respectively:
24244
24245 @example
24246 Ada.Command_Line.Argument (1) -> "*.txt"
24247 @end example
24248
24249 and:
24250
24251 @example
24252 Ada.Command_Line.Argument (1) -> "'*.txt'"
24253 @end example
24254
24255 @node Windows Socket Timeouts,Mixed-Language Programming on Windows,Disabling Command Line Argument Expansion,Microsoft Windows Topics
24256 @anchor{gnat_ugn/platform_specific_information windows-socket-timeouts}@anchor{1e2}
24257 @subsection Windows Socket Timeouts
24258
24259
24260 Microsoft Windows desktops older than @code{8.0} and Microsoft Windows Servers
24261 older than @code{2019} set a socket timeout 500 milliseconds longer than the value
24262 set by setsockopt with @code{SO_RCVTIMEO} and @code{SO_SNDTIMEO} options. The GNAT
24263 runtime makes a correction for the difference in the corresponding Windows
24264 versions. For Windows Server starting with version @code{2019}, the user must
24265 provide a manifest file for the GNAT runtime to be able to recognize that
24266 the Windows version does not need the timeout correction. The manifest file
24267 should be located in the same directory as the executable file, and its file
24268 name must match the executable name suffixed by @code{.manifest}. For example,
24269 if the executable name is @code{sock_wto.exe}, then the manifest file name
24270 has to be @code{sock_wto.exe.manifest}. The manifest file must contain at
24271 least the following data:
24272
24273 @example
24274 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
24275 <assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
24276 <compatibility xmlns="urn:schemas-microsoft-com:compatibility.v1">
24277 <application>
24278 <!-- Windows Vista -->
24279 <supportedOS Id="@{e2011457-1546-43c5-a5fe-008deee3d3f0@}"/>
24280 <!-- Windows 7 -->
24281 <supportedOS Id="@{35138b9a-5d96-4fbd-8e2d-a2440225f93a@}"/>
24282 <!-- Windows 8 -->
24283 <supportedOS Id="@{4a2f28e3-53b9-4441-ba9c-d69d4a4a6e38@}"/>
24284 <!-- Windows 8.1 -->
24285 <supportedOS Id="@{1f676c76-80e1-4239-95bb-83d0f6d0da78@}"/>
24286 <!-- Windows 10 -->
24287 <supportedOS Id="@{8e0f7a12-bfb3-4fe8-b9a5-48fd50a15a9a@}"/>
24288 </application>
24289 </compatibility>
24290 </assembly>
24291 @end example
24292
24293 Without the manifest file, the socket timeout is going to be overcorrected on
24294 these Windows Server versions and the actual time is going to be 500
24295 milliseconds shorter than what was set with GNAT.Sockets.Set_Socket_Option.
24296 Note that on Microsoft Windows versions where correction is necessary, there
24297 is no way to set a socket timeout shorter than 500 ms. If a socket timeout
24298 shorter than 500 ms is needed on these Windows versions, a call to
24299 Check_Selector should be added before any socket read or write operations.
24300
24301 @node Mixed-Language Programming on Windows,Windows Specific Add-Ons,Windows Socket Timeouts,Microsoft Windows Topics
24302 @anchor{gnat_ugn/platform_specific_information id13}@anchor{1e3}@anchor{gnat_ugn/platform_specific_information mixed-language-programming-on-windows}@anchor{1e4}
24303 @subsection Mixed-Language Programming on Windows
24304
24305
24306 Developing pure Ada applications on Windows is no different than on
24307 other GNAT-supported platforms. However, when developing or porting an
24308 application that contains a mix of Ada and C/C++, the choice of your
24309 Windows C/C++ development environment conditions your overall
24310 interoperability strategy.
24311
24312 If you use @code{gcc} or Microsoft C to compile the non-Ada part of
24313 your application, there are no Windows-specific restrictions that
24314 affect the overall interoperability with your Ada code. If you do want
24315 to use the Microsoft tools for your C++ code, you have two choices:
24316
24317
24318 @itemize *
24319
24320 @item
24321 Encapsulate your C++ code in a DLL to be linked with your Ada
24322 application. In this case, use the Microsoft or whatever environment to
24323 build the DLL and use GNAT to build your executable
24324 (@ref{1e5,,Using DLLs with GNAT}).
24325
24326 @item
24327 Or you can encapsulate your Ada code in a DLL to be linked with the
24328 other part of your application. In this case, use GNAT to build the DLL
24329 (@ref{1e6,,Building DLLs with GNAT Project files}) and use the Microsoft
24330 or whatever environment to build your executable.
24331 @end itemize
24332
24333 In addition to the description about C main in
24334 @ref{44,,Mixed Language Programming} section, if the C main uses a
24335 stand-alone library it is required on x86-windows to
24336 setup the SEH context. For this the C main must looks like this:
24337
24338 @quotation
24339
24340 @example
24341 /* main.c */
24342 extern void adainit (void);
24343 extern void adafinal (void);
24344 extern void __gnat_initialize(void*);
24345 extern void call_to_ada (void);
24346
24347 int main (int argc, char *argv[])
24348 @{
24349 int SEH [2];
24350
24351 /* Initialize the SEH context */
24352 __gnat_initialize (&SEH);
24353
24354 adainit();
24355
24356 /* Then call Ada services in the stand-alone library */
24357
24358 call_to_ada();
24359
24360 adafinal();
24361 @}
24362 @end example
24363 @end quotation
24364
24365 Note that this is not needed on x86_64-windows where the Windows
24366 native SEH support is used.
24367
24368 @menu
24369 * Windows Calling Conventions::
24370 * Introduction to Dynamic Link Libraries (DLLs): Introduction to Dynamic Link Libraries DLLs.
24371 * Using DLLs with GNAT::
24372 * Building DLLs with GNAT Project files::
24373 * Building DLLs with GNAT::
24374 * Building DLLs with gnatdll::
24375 * Ada DLLs and Finalization::
24376 * Creating a Spec for Ada DLLs::
24377 * GNAT and Windows Resources::
24378 * Using GNAT DLLs from Microsoft Visual Studio Applications::
24379 * Debugging a DLL::
24380 * Setting Stack Size from gnatlink::
24381 * Setting Heap Size from gnatlink::
24382
24383 @end menu
24384
24385 @node Windows Calling Conventions,Introduction to Dynamic Link Libraries DLLs,,Mixed-Language Programming on Windows
24386 @anchor{gnat_ugn/platform_specific_information windows-calling-conventions}@anchor{1e7}@anchor{gnat_ugn/platform_specific_information id14}@anchor{1e8}
24387 @subsubsection Windows Calling Conventions
24388
24389
24390 @geindex Stdcall
24391
24392 @geindex APIENTRY
24393
24394 This section pertain only to Win32. On Win64 there is a single native
24395 calling convention. All convention specifiers are ignored on this
24396 platform.
24397
24398 When a subprogram @code{F} (caller) calls a subprogram @code{G}
24399 (callee), there are several ways to push @code{G}'s parameters on the
24400 stack and there are several possible scenarios to clean up the stack
24401 upon @code{G}'s return. A calling convention is an agreed upon software
24402 protocol whereby the responsibilities between the caller (@code{F}) and
24403 the callee (@code{G}) are clearly defined. Several calling conventions
24404 are available for Windows:
24405
24406
24407 @itemize *
24408
24409 @item
24410 @code{C} (Microsoft defined)
24411
24412 @item
24413 @code{Stdcall} (Microsoft defined)
24414
24415 @item
24416 @code{Win32} (GNAT specific)
24417
24418 @item
24419 @code{DLL} (GNAT specific)
24420 @end itemize
24421
24422 @menu
24423 * C Calling Convention::
24424 * Stdcall Calling Convention::
24425 * Win32 Calling Convention::
24426 * DLL Calling Convention::
24427
24428 @end menu
24429
24430 @node C Calling Convention,Stdcall Calling Convention,,Windows Calling Conventions
24431 @anchor{gnat_ugn/platform_specific_information c-calling-convention}@anchor{1e9}@anchor{gnat_ugn/platform_specific_information id15}@anchor{1ea}
24432 @subsubsection @code{C} Calling Convention
24433
24434
24435 This is the default calling convention used when interfacing to C/C++
24436 routines compiled with either @code{gcc} or Microsoft Visual C++.
24437
24438 In the @code{C} calling convention subprogram parameters are pushed on the
24439 stack by the caller from right to left. The caller itself is in charge of
24440 cleaning up the stack after the call. In addition, the name of a routine
24441 with @code{C} calling convention is mangled by adding a leading underscore.
24442
24443 The name to use on the Ada side when importing (or exporting) a routine
24444 with @code{C} calling convention is the name of the routine. For
24445 instance the C function:
24446
24447 @quotation
24448
24449 @example
24450 int get_val (long);
24451 @end example
24452 @end quotation
24453
24454 should be imported from Ada as follows:
24455
24456 @quotation
24457
24458 @example
24459 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
24460 pragma Import (C, Get_Val, External_Name => "get_val");
24461 @end example
24462 @end quotation
24463
24464 Note that in this particular case the @code{External_Name} parameter could
24465 have been omitted since, when missing, this parameter is taken to be the
24466 name of the Ada entity in lower case. When the @code{Link_Name} parameter
24467 is missing, as in the above example, this parameter is set to be the
24468 @code{External_Name} with a leading underscore.
24469
24470 When importing a variable defined in C, you should always use the @code{C}
24471 calling convention unless the object containing the variable is part of a
24472 DLL (in which case you should use the @code{Stdcall} calling
24473 convention, @ref{1eb,,Stdcall Calling Convention}).
24474
24475 @node Stdcall Calling Convention,Win32 Calling Convention,C Calling Convention,Windows Calling Conventions
24476 @anchor{gnat_ugn/platform_specific_information stdcall-calling-convention}@anchor{1eb}@anchor{gnat_ugn/platform_specific_information id16}@anchor{1ec}
24477 @subsubsection @code{Stdcall} Calling Convention
24478
24479
24480 This convention, which was the calling convention used for Pascal
24481 programs, is used by Microsoft for all the routines in the Win32 API for
24482 efficiency reasons. It must be used to import any routine for which this
24483 convention was specified.
24484
24485 In the @code{Stdcall} calling convention subprogram parameters are pushed
24486 on the stack by the caller from right to left. The callee (and not the
24487 caller) is in charge of cleaning the stack on routine exit. In addition,
24488 the name of a routine with @code{Stdcall} calling convention is mangled by
24489 adding a leading underscore (as for the @code{C} calling convention) and a
24490 trailing @code{@@@emph{nn}}, where @code{nn} is the overall size (in
24491 bytes) of the parameters passed to the routine.
24492
24493 The name to use on the Ada side when importing a C routine with a
24494 @code{Stdcall} calling convention is the name of the C routine. The leading
24495 underscore and trailing @code{@@@emph{nn}} are added automatically by
24496 the compiler. For instance the Win32 function:
24497
24498 @quotation
24499
24500 @example
24501 APIENTRY int get_val (long);
24502 @end example
24503 @end quotation
24504
24505 should be imported from Ada as follows:
24506
24507 @quotation
24508
24509 @example
24510 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
24511 pragma Import (Stdcall, Get_Val);
24512 -- On the x86 a long is 4 bytes, so the Link_Name is "_get_val@@4"
24513 @end example
24514 @end quotation
24515
24516 As for the @code{C} calling convention, when the @code{External_Name}
24517 parameter is missing, it is taken to be the name of the Ada entity in lower
24518 case. If instead of writing the above import pragma you write:
24519
24520 @quotation
24521
24522 @example
24523 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
24524 pragma Import (Stdcall, Get_Val, External_Name => "retrieve_val");
24525 @end example
24526 @end quotation
24527
24528 then the imported routine is @code{_retrieve_val@@4}. However, if instead
24529 of specifying the @code{External_Name} parameter you specify the
24530 @code{Link_Name} as in the following example:
24531
24532 @quotation
24533
24534 @example
24535 function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;
24536 pragma Import (Stdcall, Get_Val, Link_Name => "retrieve_val");
24537 @end example
24538 @end quotation
24539
24540 then the imported routine is @code{retrieve_val}, that is, there is no
24541 decoration at all. No leading underscore and no Stdcall suffix
24542 @code{@@@emph{nn}}.
24543
24544 This is especially important as in some special cases a DLL's entry
24545 point name lacks a trailing @code{@@@emph{nn}} while the exported
24546 name generated for a call has it.
24547
24548 It is also possible to import variables defined in a DLL by using an
24549 import pragma for a variable. As an example, if a DLL contains a
24550 variable defined as:
24551
24552 @quotation
24553
24554 @example
24555 int my_var;
24556 @end example
24557 @end quotation
24558
24559 then, to access this variable from Ada you should write:
24560
24561 @quotation
24562
24563 @example
24564 My_Var : Interfaces.C.int;
24565 pragma Import (Stdcall, My_Var);
24566 @end example
24567 @end quotation
24568
24569 Note that to ease building cross-platform bindings this convention
24570 will be handled as a @code{C} calling convention on non-Windows platforms.
24571
24572 @node Win32 Calling Convention,DLL Calling Convention,Stdcall Calling Convention,Windows Calling Conventions
24573 @anchor{gnat_ugn/platform_specific_information win32-calling-convention}@anchor{1ed}@anchor{gnat_ugn/platform_specific_information id17}@anchor{1ee}
24574 @subsubsection @code{Win32} Calling Convention
24575
24576
24577 This convention, which is GNAT-specific is fully equivalent to the
24578 @code{Stdcall} calling convention described above.
24579
24580 @node DLL Calling Convention,,Win32 Calling Convention,Windows Calling Conventions
24581 @anchor{gnat_ugn/platform_specific_information id18}@anchor{1ef}@anchor{gnat_ugn/platform_specific_information dll-calling-convention}@anchor{1f0}
24582 @subsubsection @code{DLL} Calling Convention
24583
24584
24585 This convention, which is GNAT-specific is fully equivalent to the
24586 @code{Stdcall} calling convention described above.
24587
24588 @node Introduction to Dynamic Link Libraries DLLs,Using DLLs with GNAT,Windows Calling Conventions,Mixed-Language Programming on Windows
24589 @anchor{gnat_ugn/platform_specific_information id19}@anchor{1f1}@anchor{gnat_ugn/platform_specific_information introduction-to-dynamic-link-libraries-dlls}@anchor{1f2}
24590 @subsubsection Introduction to Dynamic Link Libraries (DLLs)
24591
24592
24593 @geindex DLL
24594
24595 A Dynamically Linked Library (DLL) is a library that can be shared by
24596 several applications running under Windows. A DLL can contain any number of
24597 routines and variables.
24598
24599 One advantage of DLLs is that you can change and enhance them without
24600 forcing all the applications that depend on them to be relinked or
24601 recompiled. However, you should be aware than all calls to DLL routines are
24602 slower since, as you will understand below, such calls are indirect.
24603
24604 To illustrate the remainder of this section, suppose that an application
24605 wants to use the services of a DLL @code{API.dll}. To use the services
24606 provided by @code{API.dll} you must statically link against the DLL or
24607 an import library which contains a jump table with an entry for each
24608 routine and variable exported by the DLL. In the Microsoft world this
24609 import library is called @code{API.lib}. When using GNAT this import
24610 library is called either @code{libAPI.dll.a}, @code{libapi.dll.a},
24611 @code{libAPI.a} or @code{libapi.a} (names are case insensitive).
24612
24613 After you have linked your application with the DLL or the import library
24614 and you run your application, here is what happens:
24615
24616
24617 @itemize *
24618
24619 @item
24620 Your application is loaded into memory.
24621
24622 @item
24623 The DLL @code{API.dll} is mapped into the address space of your
24624 application. This means that:
24625
24626
24627 @itemize -
24628
24629 @item
24630 The DLL will use the stack of the calling thread.
24631
24632 @item
24633 The DLL will use the virtual address space of the calling process.
24634
24635 @item
24636 The DLL will allocate memory from the virtual address space of the calling
24637 process.
24638
24639 @item
24640 Handles (pointers) can be safely exchanged between routines in the DLL
24641 routines and routines in the application using the DLL.
24642 @end itemize
24643
24644 @item
24645 The entries in the jump table (from the import library @code{libAPI.dll.a}
24646 or @code{API.lib} or automatically created when linking against a DLL)
24647 which is part of your application are initialized with the addresses
24648 of the routines and variables in @code{API.dll}.
24649
24650 @item
24651 If present in @code{API.dll}, routines @code{DllMain} or
24652 @code{DllMainCRTStartup} are invoked. These routines typically contain
24653 the initialization code needed for the well-being of the routines and
24654 variables exported by the DLL.
24655 @end itemize
24656
24657 There is an additional point which is worth mentioning. In the Windows
24658 world there are two kind of DLLs: relocatable and non-relocatable
24659 DLLs. Non-relocatable DLLs can only be loaded at a very specific address
24660 in the target application address space. If the addresses of two
24661 non-relocatable DLLs overlap and these happen to be used by the same
24662 application, a conflict will occur and the application will run
24663 incorrectly. Hence, when possible, it is always preferable to use and
24664 build relocatable DLLs. Both relocatable and non-relocatable DLLs are
24665 supported by GNAT. Note that the @code{-s} linker option (see GNU Linker
24666 User's Guide) removes the debugging symbols from the DLL but the DLL can
24667 still be relocated.
24668
24669 As a side note, an interesting difference between Microsoft DLLs and
24670 Unix shared libraries, is the fact that on most Unix systems all public
24671 routines are exported by default in a Unix shared library, while under
24672 Windows it is possible (but not required) to list exported routines in
24673 a definition file (see @ref{1f3,,The Definition File}).
24674
24675 @node Using DLLs with GNAT,Building DLLs with GNAT Project files,Introduction to Dynamic Link Libraries DLLs,Mixed-Language Programming on Windows
24676 @anchor{gnat_ugn/platform_specific_information id20}@anchor{1f4}@anchor{gnat_ugn/platform_specific_information using-dlls-with-gnat}@anchor{1e5}
24677 @subsubsection Using DLLs with GNAT
24678
24679
24680 To use the services of a DLL, say @code{API.dll}, in your Ada application
24681 you must have:
24682
24683
24684 @itemize *
24685
24686 @item
24687 The Ada spec for the routines and/or variables you want to access in
24688 @code{API.dll}. If not available this Ada spec must be built from the C/C++
24689 header files provided with the DLL.
24690
24691 @item
24692 The import library (@code{libAPI.dll.a} or @code{API.lib}). As previously
24693 mentioned an import library is a statically linked library containing the
24694 import table which will be filled at load time to point to the actual
24695 @code{API.dll} routines. Sometimes you don't have an import library for the
24696 DLL you want to use. The following sections will explain how to build
24697 one. Note that this is optional.
24698
24699 @item
24700 The actual DLL, @code{API.dll}.
24701 @end itemize
24702
24703 Once you have all the above, to compile an Ada application that uses the
24704 services of @code{API.dll} and whose main subprogram is @code{My_Ada_App},
24705 you simply issue the command
24706
24707 @quotation
24708
24709 @example
24710 $ gnatmake my_ada_app -largs -lAPI
24711 @end example
24712 @end quotation
24713
24714 The argument @code{-largs -lAPI} at the end of the @code{gnatmake} command
24715 tells the GNAT linker to look for an import library. The linker will
24716 look for a library name in this specific order:
24717
24718
24719 @itemize *
24720
24721 @item
24722 @code{libAPI.dll.a}
24723
24724 @item
24725 @code{API.dll.a}
24726
24727 @item
24728 @code{libAPI.a}
24729
24730 @item
24731 @code{API.lib}
24732
24733 @item
24734 @code{libAPI.dll}
24735
24736 @item
24737 @code{API.dll}
24738 @end itemize
24739
24740 The first three are the GNU style import libraries. The third is the
24741 Microsoft style import libraries. The last two are the actual DLL names.
24742
24743 Note that if the Ada package spec for @code{API.dll} contains the
24744 following pragma
24745
24746 @quotation
24747
24748 @example
24749 pragma Linker_Options ("-lAPI");
24750 @end example
24751 @end quotation
24752
24753 you do not have to add @code{-largs -lAPI} at the end of the
24754 @code{gnatmake} command.
24755
24756 If any one of the items above is missing you will have to create it
24757 yourself. The following sections explain how to do so using as an
24758 example a fictitious DLL called @code{API.dll}.
24759
24760 @menu
24761 * Creating an Ada Spec for the DLL Services::
24762 * Creating an Import Library::
24763
24764 @end menu
24765
24766 @node Creating an Ada Spec for the DLL Services,Creating an Import Library,,Using DLLs with GNAT
24767 @anchor{gnat_ugn/platform_specific_information id21}@anchor{1f5}@anchor{gnat_ugn/platform_specific_information creating-an-ada-spec-for-the-dll-services}@anchor{1f6}
24768 @subsubsection Creating an Ada Spec for the DLL Services
24769
24770
24771 A DLL typically comes with a C/C++ header file which provides the
24772 definitions of the routines and variables exported by the DLL. The Ada
24773 equivalent of this header file is a package spec that contains definitions
24774 for the imported entities. If the DLL you intend to use does not come with
24775 an Ada spec you have to generate one such spec yourself. For example if
24776 the header file of @code{API.dll} is a file @code{api.h} containing the
24777 following two definitions:
24778
24779 @quotation
24780
24781 @example
24782 int some_var;
24783 int get (char *);
24784 @end example
24785 @end quotation
24786
24787 then the equivalent Ada spec could be:
24788
24789 @quotation
24790
24791 @example
24792 with Interfaces.C.Strings;
24793 package API is
24794 use Interfaces;
24795
24796 Some_Var : C.int;
24797 function Get (Str : C.Strings.Chars_Ptr) return C.int;
24798
24799 private
24800 pragma Import (C, Get);
24801 pragma Import (DLL, Some_Var);
24802 end API;
24803 @end example
24804 @end quotation
24805
24806 @node Creating an Import Library,,Creating an Ada Spec for the DLL Services,Using DLLs with GNAT
24807 @anchor{gnat_ugn/platform_specific_information id22}@anchor{1f7}@anchor{gnat_ugn/platform_specific_information creating-an-import-library}@anchor{1f8}
24808 @subsubsection Creating an Import Library
24809
24810
24811 @geindex Import library
24812
24813 If a Microsoft-style import library @code{API.lib} or a GNAT-style
24814 import library @code{libAPI.dll.a} or @code{libAPI.a} is available
24815 with @code{API.dll} you can skip this section. You can also skip this
24816 section if @code{API.dll} or @code{libAPI.dll} is built with GNU tools
24817 as in this case it is possible to link directly against the
24818 DLL. Otherwise read on.
24819
24820 @geindex Definition file
24821 @anchor{gnat_ugn/platform_specific_information the-definition-file}@anchor{1f3}
24822 @subsubheading The Definition File
24823
24824
24825 As previously mentioned, and unlike Unix systems, the list of symbols
24826 that are exported from a DLL must be provided explicitly in Windows.
24827 The main goal of a definition file is precisely that: list the symbols
24828 exported by a DLL. A definition file (usually a file with a @code{.def}
24829 suffix) has the following structure:
24830
24831 @quotation
24832
24833 @example
24834 [LIBRARY `@w{`}name`@w{`}]
24835 [DESCRIPTION `@w{`}string`@w{`}]
24836 EXPORTS
24837 `@w{`}symbol1`@w{`}
24838 `@w{`}symbol2`@w{`}
24839 ...
24840 @end example
24841 @end quotation
24842
24843
24844 @table @asis
24845
24846 @item @emph{LIBRARY name}
24847
24848 This section, which is optional, gives the name of the DLL.
24849
24850 @item @emph{DESCRIPTION string}
24851
24852 This section, which is optional, gives a description string that will be
24853 embedded in the import library.
24854
24855 @item @emph{EXPORTS}
24856
24857 This section gives the list of exported symbols (procedures, functions or
24858 variables). For instance in the case of @code{API.dll} the @code{EXPORTS}
24859 section of @code{API.def} looks like:
24860
24861 @example
24862 EXPORTS
24863 some_var
24864 get
24865 @end example
24866 @end table
24867
24868 Note that you must specify the correct suffix (@code{@@@emph{nn}})
24869 (see @ref{1e7,,Windows Calling Conventions}) for a Stdcall
24870 calling convention function in the exported symbols list.
24871
24872 There can actually be other sections in a definition file, but these
24873 sections are not relevant to the discussion at hand.
24874 @anchor{gnat_ugn/platform_specific_information create-def-file-automatically}@anchor{1f9}
24875 @subsubheading Creating a Definition File Automatically
24876
24877
24878 You can automatically create the definition file @code{API.def}
24879 (see @ref{1f3,,The Definition File}) from a DLL.
24880 For that use the @code{dlltool} program as follows:
24881
24882 @quotation
24883
24884 @example
24885 $ dlltool API.dll -z API.def --export-all-symbols
24886 @end example
24887
24888 Note that if some routines in the DLL have the @code{Stdcall} convention
24889 (@ref{1e7,,Windows Calling Conventions}) with stripped @code{@@@emph{nn}}
24890 suffix then you'll have to edit @code{api.def} to add it, and specify
24891 @code{-k} to @code{gnatdll} when creating the import library.
24892
24893 Here are some hints to find the right @code{@@@emph{nn}} suffix.
24894
24895
24896 @itemize -
24897
24898 @item
24899 If you have the Microsoft import library (.lib), it is possible to get
24900 the right symbols by using Microsoft @code{dumpbin} tool (see the
24901 corresponding Microsoft documentation for further details).
24902
24903 @example
24904 $ dumpbin /exports api.lib
24905 @end example
24906
24907 @item
24908 If you have a message about a missing symbol at link time the compiler
24909 tells you what symbol is expected. You just have to go back to the
24910 definition file and add the right suffix.
24911 @end itemize
24912 @end quotation
24913 @anchor{gnat_ugn/platform_specific_information gnat-style-import-library}@anchor{1fa}
24914 @subsubheading GNAT-Style Import Library
24915
24916
24917 To create a static import library from @code{API.dll} with the GNAT tools
24918 you should create the .def file, then use @code{gnatdll} tool
24919 (see @ref{1fb,,Using gnatdll}) as follows:
24920
24921 @quotation
24922
24923 @example
24924 $ gnatdll -e API.def -d API.dll
24925 @end example
24926
24927 @code{gnatdll} takes as input a definition file @code{API.def} and the
24928 name of the DLL containing the services listed in the definition file
24929 @code{API.dll}. The name of the static import library generated is
24930 computed from the name of the definition file as follows: if the
24931 definition file name is @code{xyz.def}, the import library name will
24932 be @code{libxyz.a}. Note that in the previous example option
24933 @code{-e} could have been removed because the name of the definition
24934 file (before the @code{.def} suffix) is the same as the name of the
24935 DLL (@ref{1fb,,Using gnatdll} for more information about @code{gnatdll}).
24936 @end quotation
24937 @anchor{gnat_ugn/platform_specific_information msvs-style-import-library}@anchor{1fc}
24938 @subsubheading Microsoft-Style Import Library
24939
24940
24941 A Microsoft import library is needed only if you plan to make an
24942 Ada DLL available to applications developed with Microsoft
24943 tools (@ref{1e4,,Mixed-Language Programming on Windows}).
24944
24945 To create a Microsoft-style import library for @code{API.dll} you
24946 should create the .def file, then build the actual import library using
24947 Microsoft's @code{lib} utility:
24948
24949 @quotation
24950
24951 @example
24952 $ lib -machine:IX86 -def:API.def -out:API.lib
24953 @end example
24954
24955 If you use the above command the definition file @code{API.def} must
24956 contain a line giving the name of the DLL:
24957
24958 @example
24959 LIBRARY "API"
24960 @end example
24961
24962 See the Microsoft documentation for further details about the usage of
24963 @code{lib}.
24964 @end quotation
24965
24966 @node Building DLLs with GNAT Project files,Building DLLs with GNAT,Using DLLs with GNAT,Mixed-Language Programming on Windows
24967 @anchor{gnat_ugn/platform_specific_information id23}@anchor{1fd}@anchor{gnat_ugn/platform_specific_information building-dlls-with-gnat-project-files}@anchor{1e6}
24968 @subsubsection Building DLLs with GNAT Project files
24969
24970
24971 @geindex DLLs
24972 @geindex building
24973
24974 There is nothing specific to Windows in the build process.
24975 See the @emph{Library Projects} section in the @emph{GNAT Project Manager}
24976 chapter of the @emph{GPRbuild User's Guide}.
24977
24978 Due to a system limitation, it is not possible under Windows to create threads
24979 when inside the @code{DllMain} routine which is used for auto-initialization
24980 of shared libraries, so it is not possible to have library level tasks in SALs.
24981
24982 @node Building DLLs with GNAT,Building DLLs with gnatdll,Building DLLs with GNAT Project files,Mixed-Language Programming on Windows
24983 @anchor{gnat_ugn/platform_specific_information building-dlls-with-gnat}@anchor{1fe}@anchor{gnat_ugn/platform_specific_information id24}@anchor{1ff}
24984 @subsubsection Building DLLs with GNAT
24985
24986
24987 @geindex DLLs
24988 @geindex building
24989
24990 This section explain how to build DLLs using the GNAT built-in DLL
24991 support. With the following procedure it is straight forward to build
24992 and use DLLs with GNAT.
24993
24994
24995 @itemize *
24996
24997 @item
24998 Building object files.
24999 The first step is to build all objects files that are to be included
25000 into the DLL. This is done by using the standard @code{gnatmake} tool.
25001
25002 @item
25003 Building the DLL.
25004 To build the DLL you must use the @code{gcc} @code{-shared} and
25005 @code{-shared-libgcc} options. It is quite simple to use this method:
25006
25007 @example
25008 $ gcc -shared -shared-libgcc -o api.dll obj1.o obj2.o ...
25009 @end example
25010
25011 It is important to note that in this case all symbols found in the
25012 object files are automatically exported. It is possible to restrict
25013 the set of symbols to export by passing to @code{gcc} a definition
25014 file (see @ref{1f3,,The Definition File}).
25015 For example:
25016
25017 @example
25018 $ gcc -shared -shared-libgcc -o api.dll api.def obj1.o obj2.o ...
25019 @end example
25020
25021 If you use a definition file you must export the elaboration procedures
25022 for every package that required one. Elaboration procedures are named
25023 using the package name followed by "_E".
25024
25025 @item
25026 Preparing DLL to be used.
25027 For the DLL to be used by client programs the bodies must be hidden
25028 from it and the .ali set with read-only attribute. This is very important
25029 otherwise GNAT will recompile all packages and will not actually use
25030 the code in the DLL. For example:
25031
25032 @example
25033 $ mkdir apilib
25034 $ copy *.ads *.ali api.dll apilib
25035 $ attrib +R apilib\\*.ali
25036 @end example
25037 @end itemize
25038
25039 At this point it is possible to use the DLL by directly linking
25040 against it. Note that you must use the GNAT shared runtime when using
25041 GNAT shared libraries. This is achieved by using the @code{-shared} binder
25042 option.
25043
25044 @quotation
25045
25046 @example
25047 $ gnatmake main -Iapilib -bargs -shared -largs -Lapilib -lAPI
25048 @end example
25049 @end quotation
25050
25051 @node Building DLLs with gnatdll,Ada DLLs and Finalization,Building DLLs with GNAT,Mixed-Language Programming on Windows
25052 @anchor{gnat_ugn/platform_specific_information building-dlls-with-gnatdll}@anchor{200}@anchor{gnat_ugn/platform_specific_information id25}@anchor{201}
25053 @subsubsection Building DLLs with gnatdll
25054
25055
25056 @geindex DLLs
25057 @geindex building
25058
25059 Note that it is preferred to use GNAT Project files
25060 (@ref{1e6,,Building DLLs with GNAT Project files}) or the built-in GNAT
25061 DLL support (@ref{1fe,,Building DLLs with GNAT}) or to build DLLs.
25062
25063 This section explains how to build DLLs containing Ada code using
25064 @code{gnatdll}. These DLLs will be referred to as Ada DLLs in the
25065 remainder of this section.
25066
25067 The steps required to build an Ada DLL that is to be used by Ada as well as
25068 non-Ada applications are as follows:
25069
25070
25071 @itemize *
25072
25073 @item
25074 You need to mark each Ada entity exported by the DLL with a @code{C} or
25075 @code{Stdcall} calling convention to avoid any Ada name mangling for the
25076 entities exported by the DLL
25077 (see @ref{202,,Exporting Ada Entities}). You can
25078 skip this step if you plan to use the Ada DLL only from Ada applications.
25079
25080 @item
25081 Your Ada code must export an initialization routine which calls the routine
25082 @code{adainit} generated by @code{gnatbind} to perform the elaboration of
25083 the Ada code in the DLL (@ref{203,,Ada DLLs and Elaboration}). The initialization
25084 routine exported by the Ada DLL must be invoked by the clients of the DLL
25085 to initialize the DLL.
25086
25087 @item
25088 When useful, the DLL should also export a finalization routine which calls
25089 routine @code{adafinal} generated by @code{gnatbind} to perform the
25090 finalization of the Ada code in the DLL (@ref{204,,Ada DLLs and Finalization}).
25091 The finalization routine exported by the Ada DLL must be invoked by the
25092 clients of the DLL when the DLL services are no further needed.
25093
25094 @item
25095 You must provide a spec for the services exported by the Ada DLL in each
25096 of the programming languages to which you plan to make the DLL available.
25097
25098 @item
25099 You must provide a definition file listing the exported entities
25100 (@ref{1f3,,The Definition File}).
25101
25102 @item
25103 Finally you must use @code{gnatdll} to produce the DLL and the import
25104 library (@ref{1fb,,Using gnatdll}).
25105 @end itemize
25106
25107 Note that a relocatable DLL stripped using the @code{strip}
25108 binutils tool will not be relocatable anymore. To build a DLL without
25109 debug information pass @code{-largs -s} to @code{gnatdll}. This
25110 restriction does not apply to a DLL built using a Library Project.
25111 See the @emph{Library Projects} section in the @emph{GNAT Project Manager}
25112 chapter of the @emph{GPRbuild User's Guide}.
25113
25114 @c Limitations_When_Using_Ada_DLLs_from Ada:
25115
25116 @menu
25117 * Limitations When Using Ada DLLs from Ada::
25118 * Exporting Ada Entities::
25119 * Ada DLLs and Elaboration::
25120
25121 @end menu
25122
25123 @node Limitations When Using Ada DLLs from Ada,Exporting Ada Entities,,Building DLLs with gnatdll
25124 @anchor{gnat_ugn/platform_specific_information limitations-when-using-ada-dlls-from-ada}@anchor{205}
25125 @subsubsection Limitations When Using Ada DLLs from Ada
25126
25127
25128 When using Ada DLLs from Ada applications there is a limitation users
25129 should be aware of. Because on Windows the GNAT run-time is not in a DLL of
25130 its own, each Ada DLL includes a part of the GNAT run-time. Specifically,
25131 each Ada DLL includes the services of the GNAT run-time that are necessary
25132 to the Ada code inside the DLL. As a result, when an Ada program uses an
25133 Ada DLL there are two independent GNAT run-times: one in the Ada DLL and
25134 one in the main program.
25135
25136 It is therefore not possible to exchange GNAT run-time objects between the
25137 Ada DLL and the main Ada program. Example of GNAT run-time objects are file
25138 handles (e.g., @code{Text_IO.File_Type}), tasks types, protected objects
25139 types, etc.
25140
25141 It is completely safe to exchange plain elementary, array or record types,
25142 Windows object handles, etc.
25143
25144 @node Exporting Ada Entities,Ada DLLs and Elaboration,Limitations When Using Ada DLLs from Ada,Building DLLs with gnatdll
25145 @anchor{gnat_ugn/platform_specific_information exporting-ada-entities}@anchor{202}@anchor{gnat_ugn/platform_specific_information id26}@anchor{206}
25146 @subsubsection Exporting Ada Entities
25147
25148
25149 @geindex Export table
25150
25151 Building a DLL is a way to encapsulate a set of services usable from any
25152 application. As a result, the Ada entities exported by a DLL should be
25153 exported with the @code{C} or @code{Stdcall} calling conventions to avoid
25154 any Ada name mangling. As an example here is an Ada package
25155 @code{API}, spec and body, exporting two procedures, a function, and a
25156 variable:
25157
25158 @quotation
25159
25160 @example
25161 with Interfaces.C; use Interfaces;
25162 package API is
25163 Count : C.int := 0;
25164 function Factorial (Val : C.int) return C.int;
25165
25166 procedure Initialize_API;
25167 procedure Finalize_API;
25168 -- Initialization & Finalization routines. More in the next section.
25169 private
25170 pragma Export (C, Initialize_API);
25171 pragma Export (C, Finalize_API);
25172 pragma Export (C, Count);
25173 pragma Export (C, Factorial);
25174 end API;
25175 @end example
25176
25177 @example
25178 package body API is
25179 function Factorial (Val : C.int) return C.int is
25180 Fact : C.int := 1;
25181 begin
25182 Count := Count + 1;
25183 for K in 1 .. Val loop
25184 Fact := Fact * K;
25185 end loop;
25186 return Fact;
25187 end Factorial;
25188
25189 procedure Initialize_API is
25190 procedure Adainit;
25191 pragma Import (C, Adainit);
25192 begin
25193 Adainit;
25194 end Initialize_API;
25195
25196 procedure Finalize_API is
25197 procedure Adafinal;
25198 pragma Import (C, Adafinal);
25199 begin
25200 Adafinal;
25201 end Finalize_API;
25202 end API;
25203 @end example
25204 @end quotation
25205
25206 If the Ada DLL you are building will only be used by Ada applications
25207 you do not have to export Ada entities with a @code{C} or @code{Stdcall}
25208 convention. As an example, the previous package could be written as
25209 follows:
25210
25211 @quotation
25212
25213 @example
25214 package API is
25215 Count : Integer := 0;
25216 function Factorial (Val : Integer) return Integer;
25217
25218 procedure Initialize_API;
25219 procedure Finalize_API;
25220 -- Initialization and Finalization routines.
25221 end API;
25222 @end example
25223
25224 @example
25225 package body API is
25226 function Factorial (Val : Integer) return Integer is
25227 Fact : Integer := 1;
25228 begin
25229 Count := Count + 1;
25230 for K in 1 .. Val loop
25231 Fact := Fact * K;
25232 end loop;
25233 return Fact;
25234 end Factorial;
25235
25236 ...
25237 -- The remainder of this package body is unchanged.
25238 end API;
25239 @end example
25240 @end quotation
25241
25242 Note that if you do not export the Ada entities with a @code{C} or
25243 @code{Stdcall} convention you will have to provide the mangled Ada names
25244 in the definition file of the Ada DLL
25245 (@ref{207,,Creating the Definition File}).
25246
25247 @node Ada DLLs and Elaboration,,Exporting Ada Entities,Building DLLs with gnatdll
25248 @anchor{gnat_ugn/platform_specific_information ada-dlls-and-elaboration}@anchor{203}@anchor{gnat_ugn/platform_specific_information id27}@anchor{208}
25249 @subsubsection Ada DLLs and Elaboration
25250
25251
25252 @geindex DLLs and elaboration
25253
25254 The DLL that you are building contains your Ada code as well as all the
25255 routines in the Ada library that are needed by it. The first thing a
25256 user of your DLL must do is elaborate the Ada code
25257 (@ref{f,,Elaboration Order Handling in GNAT}).
25258
25259 To achieve this you must export an initialization routine
25260 (@code{Initialize_API} in the previous example), which must be invoked
25261 before using any of the DLL services. This elaboration routine must call
25262 the Ada elaboration routine @code{adainit} generated by the GNAT binder
25263 (@ref{b4,,Binding with Non-Ada Main Programs}). See the body of
25264 @code{Initialize_Api} for an example. Note that the GNAT binder is
25265 automatically invoked during the DLL build process by the @code{gnatdll}
25266 tool (@ref{1fb,,Using gnatdll}).
25267
25268 When a DLL is loaded, Windows systematically invokes a routine called
25269 @code{DllMain}. It would therefore be possible to call @code{adainit}
25270 directly from @code{DllMain} without having to provide an explicit
25271 initialization routine. Unfortunately, it is not possible to call
25272 @code{adainit} from the @code{DllMain} if your program has library level
25273 tasks because access to the @code{DllMain} entry point is serialized by
25274 the system (that is, only a single thread can execute 'through' it at a
25275 time), which means that the GNAT run-time will deadlock waiting for the
25276 newly created task to complete its initialization.
25277
25278 @node Ada DLLs and Finalization,Creating a Spec for Ada DLLs,Building DLLs with gnatdll,Mixed-Language Programming on Windows
25279 @anchor{gnat_ugn/platform_specific_information id28}@anchor{209}@anchor{gnat_ugn/platform_specific_information ada-dlls-and-finalization}@anchor{204}
25280 @subsubsection Ada DLLs and Finalization
25281
25282
25283 @geindex DLLs and finalization
25284
25285 When the services of an Ada DLL are no longer needed, the client code should
25286 invoke the DLL finalization routine, if available. The DLL finalization
25287 routine is in charge of releasing all resources acquired by the DLL. In the
25288 case of the Ada code contained in the DLL, this is achieved by calling
25289 routine @code{adafinal} generated by the GNAT binder
25290 (@ref{b4,,Binding with Non-Ada Main Programs}).
25291 See the body of @code{Finalize_Api} for an
25292 example. As already pointed out the GNAT binder is automatically invoked
25293 during the DLL build process by the @code{gnatdll} tool
25294 (@ref{1fb,,Using gnatdll}).
25295
25296 @node Creating a Spec for Ada DLLs,GNAT and Windows Resources,Ada DLLs and Finalization,Mixed-Language Programming on Windows
25297 @anchor{gnat_ugn/platform_specific_information id29}@anchor{20a}@anchor{gnat_ugn/platform_specific_information creating-a-spec-for-ada-dlls}@anchor{20b}
25298 @subsubsection Creating a Spec for Ada DLLs
25299
25300
25301 To use the services exported by the Ada DLL from another programming
25302 language (e.g., C), you have to translate the specs of the exported Ada
25303 entities in that language. For instance in the case of @code{API.dll},
25304 the corresponding C header file could look like:
25305
25306 @quotation
25307
25308 @example
25309 extern int *_imp__count;
25310 #define count (*_imp__count)
25311 int factorial (int);
25312 @end example
25313 @end quotation
25314
25315 It is important to understand that when building an Ada DLL to be used by
25316 other Ada applications, you need two different specs for the packages
25317 contained in the DLL: one for building the DLL and the other for using
25318 the DLL. This is because the @code{DLL} calling convention is needed to
25319 use a variable defined in a DLL, but when building the DLL, the variable
25320 must have either the @code{Ada} or @code{C} calling convention. As an
25321 example consider a DLL comprising the following package @code{API}:
25322
25323 @quotation
25324
25325 @example
25326 package API is
25327 Count : Integer := 0;
25328 ...
25329 -- Remainder of the package omitted.
25330 end API;
25331 @end example
25332 @end quotation
25333
25334 After producing a DLL containing package @code{API}, the spec that
25335 must be used to import @code{API.Count} from Ada code outside of the
25336 DLL is:
25337
25338 @quotation
25339
25340 @example
25341 package API is
25342 Count : Integer;
25343 pragma Import (DLL, Count);
25344 end API;
25345 @end example
25346 @end quotation
25347
25348 @menu
25349 * Creating the Definition File::
25350 * Using gnatdll::
25351
25352 @end menu
25353
25354 @node Creating the Definition File,Using gnatdll,,Creating a Spec for Ada DLLs
25355 @anchor{gnat_ugn/platform_specific_information creating-the-definition-file}@anchor{207}@anchor{gnat_ugn/platform_specific_information id30}@anchor{20c}
25356 @subsubsection Creating the Definition File
25357
25358
25359 The definition file is the last file needed to build the DLL. It lists
25360 the exported symbols. As an example, the definition file for a DLL
25361 containing only package @code{API} (where all the entities are exported
25362 with a @code{C} calling convention) is:
25363
25364 @quotation
25365
25366 @example
25367 EXPORTS
25368 count
25369 factorial
25370 finalize_api
25371 initialize_api
25372 @end example
25373 @end quotation
25374
25375 If the @code{C} calling convention is missing from package @code{API},
25376 then the definition file contains the mangled Ada names of the above
25377 entities, which in this case are:
25378
25379 @quotation
25380
25381 @example
25382 EXPORTS
25383 api__count
25384 api__factorial
25385 api__finalize_api
25386 api__initialize_api
25387 @end example
25388 @end quotation
25389
25390 @node Using gnatdll,,Creating the Definition File,Creating a Spec for Ada DLLs
25391 @anchor{gnat_ugn/platform_specific_information using-gnatdll}@anchor{1fb}@anchor{gnat_ugn/platform_specific_information id31}@anchor{20d}
25392 @subsubsection Using @code{gnatdll}
25393
25394
25395 @geindex gnatdll
25396
25397 @code{gnatdll} is a tool to automate the DLL build process once all the Ada
25398 and non-Ada sources that make up your DLL have been compiled.
25399 @code{gnatdll} is actually in charge of two distinct tasks: build the
25400 static import library for the DLL and the actual DLL. The form of the
25401 @code{gnatdll} command is
25402
25403 @quotation
25404
25405 @example
25406 $ gnatdll [ switches ] list-of-files [ -largs opts ]
25407 @end example
25408 @end quotation
25409
25410 where @code{list-of-files} is a list of ALI and object files. The object
25411 file list must be the exact list of objects corresponding to the non-Ada
25412 sources whose services are to be included in the DLL. The ALI file list
25413 must be the exact list of ALI files for the corresponding Ada sources
25414 whose services are to be included in the DLL. If @code{list-of-files} is
25415 missing, only the static import library is generated.
25416
25417 You may specify any of the following switches to @code{gnatdll}:
25418
25419 @quotation
25420
25421 @geindex -a (gnatdll)
25422 @end quotation
25423
25424
25425 @table @asis
25426
25427 @item @code{-a[@emph{address}]}
25428
25429 Build a non-relocatable DLL at @code{address}. If @code{address} is not
25430 specified the default address @code{0x11000000} will be used. By default,
25431 when this switch is missing, @code{gnatdll} builds relocatable DLL. We
25432 advise the reader to build relocatable DLL.
25433
25434 @geindex -b (gnatdll)
25435
25436 @item @code{-b @emph{address}}
25437
25438 Set the relocatable DLL base address. By default the address is
25439 @code{0x11000000}.
25440
25441 @geindex -bargs (gnatdll)
25442
25443 @item @code{-bargs @emph{opts}}
25444
25445 Binder options. Pass @code{opts} to the binder.
25446
25447 @geindex -d (gnatdll)
25448
25449 @item @code{-d @emph{dllfile}}
25450
25451 @code{dllfile} is the name of the DLL. This switch must be present for
25452 @code{gnatdll} to do anything. The name of the generated import library is
25453 obtained algorithmically from @code{dllfile} as shown in the following
25454 example: if @code{dllfile} is @code{xyz.dll}, the import library name is
25455 @code{libxyz.dll.a}. The name of the definition file to use (if not specified
25456 by option @code{-e}) is obtained algorithmically from @code{dllfile}
25457 as shown in the following example:
25458 if @code{dllfile} is @code{xyz.dll}, the definition
25459 file used is @code{xyz.def}.
25460
25461 @geindex -e (gnatdll)
25462
25463 @item @code{-e @emph{deffile}}
25464
25465 @code{deffile} is the name of the definition file.
25466
25467 @geindex -g (gnatdll)
25468
25469 @item @code{-g}
25470
25471 Generate debugging information. This information is stored in the object
25472 file and copied from there to the final DLL file by the linker,
25473 where it can be read by the debugger. You must use the
25474 @code{-g} switch if you plan on using the debugger or the symbolic
25475 stack traceback.
25476
25477 @geindex -h (gnatdll)
25478
25479 @item @code{-h}
25480
25481 Help mode. Displays @code{gnatdll} switch usage information.
25482
25483 @geindex -I (gnatdll)
25484
25485 @item @code{-I@emph{dir}}
25486
25487 Direct @code{gnatdll} to search the @code{dir} directory for source and
25488 object files needed to build the DLL.
25489 (@ref{89,,Search Paths and the Run-Time Library (RTL)}).
25490
25491 @geindex -k (gnatdll)
25492
25493 @item @code{-k}
25494
25495 Removes the @code{@@@emph{nn}} suffix from the import library's exported
25496 names, but keeps them for the link names. You must specify this
25497 option if you want to use a @code{Stdcall} function in a DLL for which
25498 the @code{@@@emph{nn}} suffix has been removed. This is the case for most
25499 of the Windows NT DLL for example. This option has no effect when
25500 @code{-n} option is specified.
25501
25502 @geindex -l (gnatdll)
25503
25504 @item @code{-l @emph{file}}
25505
25506 The list of ALI and object files used to build the DLL are listed in
25507 @code{file}, instead of being given in the command line. Each line in
25508 @code{file} contains the name of an ALI or object file.
25509
25510 @geindex -n (gnatdll)
25511
25512 @item @code{-n}
25513
25514 No Import. Do not create the import library.
25515
25516 @geindex -q (gnatdll)
25517
25518 @item @code{-q}
25519
25520 Quiet mode. Do not display unnecessary messages.
25521
25522 @geindex -v (gnatdll)
25523
25524 @item @code{-v}
25525
25526 Verbose mode. Display extra information.
25527
25528 @geindex -largs (gnatdll)
25529
25530 @item @code{-largs @emph{opts}}
25531
25532 Linker options. Pass @code{opts} to the linker.
25533 @end table
25534
25535 @subsubheading @code{gnatdll} Example
25536
25537
25538 As an example the command to build a relocatable DLL from @code{api.adb}
25539 once @code{api.adb} has been compiled and @code{api.def} created is
25540
25541 @quotation
25542
25543 @example
25544 $ gnatdll -d api.dll api.ali
25545 @end example
25546 @end quotation
25547
25548 The above command creates two files: @code{libapi.dll.a} (the import
25549 library) and @code{api.dll} (the actual DLL). If you want to create
25550 only the DLL, just type:
25551
25552 @quotation
25553
25554 @example
25555 $ gnatdll -d api.dll -n api.ali
25556 @end example
25557 @end quotation
25558
25559 Alternatively if you want to create just the import library, type:
25560
25561 @quotation
25562
25563 @example
25564 $ gnatdll -d api.dll
25565 @end example
25566 @end quotation
25567
25568 @subsubheading @code{gnatdll} behind the Scenes
25569
25570
25571 This section details the steps involved in creating a DLL. @code{gnatdll}
25572 does these steps for you. Unless you are interested in understanding what
25573 goes on behind the scenes, you should skip this section.
25574
25575 We use the previous example of a DLL containing the Ada package @code{API},
25576 to illustrate the steps necessary to build a DLL. The starting point is a
25577 set of objects that will make up the DLL and the corresponding ALI
25578 files. In the case of this example this means that @code{api.o} and
25579 @code{api.ali} are available. To build a relocatable DLL, @code{gnatdll} does
25580 the following:
25581
25582
25583 @itemize *
25584
25585 @item
25586 @code{gnatdll} builds the base file (@code{api.base}). A base file gives
25587 the information necessary to generate relocation information for the
25588 DLL.
25589
25590 @example
25591 $ gnatbind -n api
25592 $ gnatlink api -o api.jnk -mdll -Wl,--base-file,api.base
25593 @end example
25594
25595 In addition to the base file, the @code{gnatlink} command generates an
25596 output file @code{api.jnk} which can be discarded. The @code{-mdll} switch
25597 asks @code{gnatlink} to generate the routines @code{DllMain} and
25598 @code{DllMainCRTStartup} that are called by the Windows loader when the DLL
25599 is loaded into memory.
25600
25601 @item
25602 @code{gnatdll} uses @code{dlltool} (see @ref{20e,,Using dlltool}) to build the
25603 export table (@code{api.exp}). The export table contains the relocation
25604 information in a form which can be used during the final link to ensure
25605 that the Windows loader is able to place the DLL anywhere in memory.
25606
25607 @example
25608 $ dlltool --dllname api.dll --def api.def --base-file api.base \\
25609 --output-exp api.exp
25610 @end example
25611
25612 @item
25613 @code{gnatdll} builds the base file using the new export table. Note that
25614 @code{gnatbind} must be called once again since the binder generated file
25615 has been deleted during the previous call to @code{gnatlink}.
25616
25617 @example
25618 $ gnatbind -n api
25619 $ gnatlink api -o api.jnk api.exp -mdll
25620 -Wl,--base-file,api.base
25621 @end example
25622
25623 @item
25624 @code{gnatdll} builds the new export table using the new base file and
25625 generates the DLL import library @code{libAPI.dll.a}.
25626
25627 @example
25628 $ dlltool --dllname api.dll --def api.def --base-file api.base \\
25629 --output-exp api.exp --output-lib libAPI.a
25630 @end example
25631
25632 @item
25633 Finally @code{gnatdll} builds the relocatable DLL using the final export
25634 table.
25635
25636 @example
25637 $ gnatbind -n api
25638 $ gnatlink api api.exp -o api.dll -mdll
25639 @end example
25640 @end itemize
25641 @anchor{gnat_ugn/platform_specific_information using-dlltool}@anchor{20e}
25642 @subsubheading Using @code{dlltool}
25643
25644
25645 @code{dlltool} is the low-level tool used by @code{gnatdll} to build
25646 DLLs and static import libraries. This section summarizes the most
25647 common @code{dlltool} switches. The form of the @code{dlltool} command
25648 is
25649
25650 @quotation
25651
25652 @example
25653 $ dlltool [`switches`]
25654 @end example
25655 @end quotation
25656
25657 @code{dlltool} switches include:
25658
25659 @geindex --base-file (dlltool)
25660
25661
25662 @table @asis
25663
25664 @item @code{--base-file @emph{basefile}}
25665
25666 Read the base file @code{basefile} generated by the linker. This switch
25667 is used to create a relocatable DLL.
25668 @end table
25669
25670 @geindex --def (dlltool)
25671
25672
25673 @table @asis
25674
25675 @item @code{--def @emph{deffile}}
25676
25677 Read the definition file.
25678 @end table
25679
25680 @geindex --dllname (dlltool)
25681
25682
25683 @table @asis
25684
25685 @item @code{--dllname @emph{name}}
25686
25687 Gives the name of the DLL. This switch is used to embed the name of the
25688 DLL in the static import library generated by @code{dlltool} with switch
25689 @code{--output-lib}.
25690 @end table
25691
25692 @geindex -k (dlltool)
25693
25694
25695 @table @asis
25696
25697 @item @code{-k}
25698
25699 Kill @code{@@@emph{nn}} from exported names
25700 (@ref{1e7,,Windows Calling Conventions}
25701 for a discussion about @code{Stdcall}-style symbols.
25702 @end table
25703
25704 @geindex --help (dlltool)
25705
25706
25707 @table @asis
25708
25709 @item @code{--help}
25710
25711 Prints the @code{dlltool} switches with a concise description.
25712 @end table
25713
25714 @geindex --output-exp (dlltool)
25715
25716
25717 @table @asis
25718
25719 @item @code{--output-exp @emph{exportfile}}
25720
25721 Generate an export file @code{exportfile}. The export file contains the
25722 export table (list of symbols in the DLL) and is used to create the DLL.
25723 @end table
25724
25725 @geindex --output-lib (dlltool)
25726
25727
25728 @table @asis
25729
25730 @item @code{--output-lib @emph{libfile}}
25731
25732 Generate a static import library @code{libfile}.
25733 @end table
25734
25735 @geindex -v (dlltool)
25736
25737
25738 @table @asis
25739
25740 @item @code{-v}
25741
25742 Verbose mode.
25743 @end table
25744
25745 @geindex --as (dlltool)
25746
25747
25748 @table @asis
25749
25750 @item @code{--as @emph{assembler-name}}
25751
25752 Use @code{assembler-name} as the assembler. The default is @code{as}.
25753 @end table
25754
25755 @node GNAT and Windows Resources,Using GNAT DLLs from Microsoft Visual Studio Applications,Creating a Spec for Ada DLLs,Mixed-Language Programming on Windows
25756 @anchor{gnat_ugn/platform_specific_information gnat-and-windows-resources}@anchor{20f}@anchor{gnat_ugn/platform_specific_information id32}@anchor{210}
25757 @subsubsection GNAT and Windows Resources
25758
25759
25760 @geindex Resources
25761 @geindex windows
25762
25763 Resources are an easy way to add Windows specific objects to your
25764 application. The objects that can be added as resources include:
25765
25766
25767 @itemize *
25768
25769 @item
25770 menus
25771
25772 @item
25773 accelerators
25774
25775 @item
25776 dialog boxes
25777
25778 @item
25779 string tables
25780
25781 @item
25782 bitmaps
25783
25784 @item
25785 cursors
25786
25787 @item
25788 icons
25789
25790 @item
25791 fonts
25792
25793 @item
25794 version information
25795 @end itemize
25796
25797 For example, a version information resource can be defined as follow and
25798 embedded into an executable or DLL:
25799
25800 A version information resource can be used to embed information into an
25801 executable or a DLL. These information can be viewed using the file properties
25802 from the Windows Explorer. Here is an example of a version information
25803 resource:
25804
25805 @quotation
25806
25807 @example
25808 1 VERSIONINFO
25809 FILEVERSION 1,0,0,0
25810 PRODUCTVERSION 1,0,0,0
25811 BEGIN
25812 BLOCK "StringFileInfo"
25813 BEGIN
25814 BLOCK "080904E4"
25815 BEGIN
25816 VALUE "CompanyName", "My Company Name"
25817 VALUE "FileDescription", "My application"
25818 VALUE "FileVersion", "1.0"
25819 VALUE "InternalName", "my_app"
25820 VALUE "LegalCopyright", "My Name"
25821 VALUE "OriginalFilename", "my_app.exe"
25822 VALUE "ProductName", "My App"
25823 VALUE "ProductVersion", "1.0"
25824 END
25825 END
25826
25827 BLOCK "VarFileInfo"
25828 BEGIN
25829 VALUE "Translation", 0x809, 1252
25830 END
25831 END
25832 @end example
25833 @end quotation
25834
25835 The value @code{0809} (langID) is for the U.K English language and
25836 @code{04E4} (charsetID), which is equal to @code{1252} decimal, for
25837 multilingual.
25838
25839 This section explains how to build, compile and use resources. Note that this
25840 section does not cover all resource objects, for a complete description see
25841 the corresponding Microsoft documentation.
25842
25843 @menu
25844 * Building Resources::
25845 * Compiling Resources::
25846 * Using Resources::
25847
25848 @end menu
25849
25850 @node Building Resources,Compiling Resources,,GNAT and Windows Resources
25851 @anchor{gnat_ugn/platform_specific_information building-resources}@anchor{211}@anchor{gnat_ugn/platform_specific_information id33}@anchor{212}
25852 @subsubsection Building Resources
25853
25854
25855 @geindex Resources
25856 @geindex building
25857
25858 A resource file is an ASCII file. By convention resource files have an
25859 @code{.rc} extension.
25860 The easiest way to build a resource file is to use Microsoft tools
25861 such as @code{imagedit.exe} to build bitmaps, icons and cursors and
25862 @code{dlgedit.exe} to build dialogs.
25863 It is always possible to build an @code{.rc} file yourself by writing a
25864 resource script.
25865
25866 It is not our objective to explain how to write a resource file. A
25867 complete description of the resource script language can be found in the
25868 Microsoft documentation.
25869
25870 @node Compiling Resources,Using Resources,Building Resources,GNAT and Windows Resources
25871 @anchor{gnat_ugn/platform_specific_information compiling-resources}@anchor{213}@anchor{gnat_ugn/platform_specific_information id34}@anchor{214}
25872 @subsubsection Compiling Resources
25873
25874
25875 @geindex rc
25876
25877 @geindex windres
25878
25879 @geindex Resources
25880 @geindex compiling
25881
25882 This section describes how to build a GNAT-compatible (COFF) object file
25883 containing the resources. This is done using the Resource Compiler
25884 @code{windres} as follows:
25885
25886 @quotation
25887
25888 @example
25889 $ windres -i myres.rc -o myres.o
25890 @end example
25891 @end quotation
25892
25893 By default @code{windres} will run @code{gcc} to preprocess the @code{.rc}
25894 file. You can specify an alternate preprocessor (usually named
25895 @code{cpp.exe}) using the @code{windres} @code{--preprocessor}
25896 parameter. A list of all possible options may be obtained by entering
25897 the command @code{windres} @code{--help}.
25898
25899 It is also possible to use the Microsoft resource compiler @code{rc.exe}
25900 to produce a @code{.res} file (binary resource file). See the
25901 corresponding Microsoft documentation for further details. In this case
25902 you need to use @code{windres} to translate the @code{.res} file to a
25903 GNAT-compatible object file as follows:
25904
25905 @quotation
25906
25907 @example
25908 $ windres -i myres.res -o myres.o
25909 @end example
25910 @end quotation
25911
25912 @node Using Resources,,Compiling Resources,GNAT and Windows Resources
25913 @anchor{gnat_ugn/platform_specific_information using-resources}@anchor{215}@anchor{gnat_ugn/platform_specific_information id35}@anchor{216}
25914 @subsubsection Using Resources
25915
25916
25917 @geindex Resources
25918 @geindex using
25919
25920 To include the resource file in your program just add the
25921 GNAT-compatible object file for the resource(s) to the linker
25922 arguments. With @code{gnatmake} this is done by using the @code{-largs}
25923 option:
25924
25925 @quotation
25926
25927 @example
25928 $ gnatmake myprog -largs myres.o
25929 @end example
25930 @end quotation
25931
25932 @node Using GNAT DLLs from Microsoft Visual Studio Applications,Debugging a DLL,GNAT and Windows Resources,Mixed-Language Programming on Windows
25933 @anchor{gnat_ugn/platform_specific_information using-gnat-dll-from-msvs}@anchor{217}@anchor{gnat_ugn/platform_specific_information using-gnat-dlls-from-microsoft-visual-studio-applications}@anchor{218}
25934 @subsubsection Using GNAT DLLs from Microsoft Visual Studio Applications
25935
25936
25937 @geindex Microsoft Visual Studio
25938 @geindex use with GNAT DLLs
25939
25940 This section describes a common case of mixed GNAT/Microsoft Visual Studio
25941 application development, where the main program is developed using MSVS, and
25942 is linked with a DLL developed using GNAT. Such a mixed application should
25943 be developed following the general guidelines outlined above; below is the
25944 cookbook-style sequence of steps to follow:
25945
25946
25947 @enumerate
25948
25949 @item
25950 First develop and build the GNAT shared library using a library project
25951 (let's assume the project is @code{mylib.gpr}, producing the library @code{libmylib.dll}):
25952 @end enumerate
25953
25954 @quotation
25955
25956 @example
25957 $ gprbuild -p mylib.gpr
25958 @end example
25959 @end quotation
25960
25961
25962 @enumerate 2
25963
25964 @item
25965 Produce a .def file for the symbols you need to interface with, either by
25966 hand or automatically with possibly some manual adjustments
25967 (see @ref{1f9,,Creating Definition File Automatically}):
25968 @end enumerate
25969
25970 @quotation
25971
25972 @example
25973 $ dlltool libmylib.dll -z libmylib.def --export-all-symbols
25974 @end example
25975 @end quotation
25976
25977
25978 @enumerate 3
25979
25980 @item
25981 Make sure that MSVS command-line tools are accessible on the path.
25982
25983 @item
25984 Create the Microsoft-style import library (see @ref{1fc,,MSVS-Style Import Library}):
25985 @end enumerate
25986
25987 @quotation
25988
25989 @example
25990 $ lib -machine:IX86 -def:libmylib.def -out:libmylib.lib
25991 @end example
25992 @end quotation
25993
25994 If you are using a 64-bit toolchain, the above becomes...
25995
25996 @quotation
25997
25998 @example
25999 $ lib -machine:X64 -def:libmylib.def -out:libmylib.lib
26000 @end example
26001 @end quotation
26002
26003
26004 @enumerate 5
26005
26006 @item
26007 Build the C main
26008 @end enumerate
26009
26010 @quotation
26011
26012 @example
26013 $ cl /O2 /MD main.c libmylib.lib
26014 @end example
26015 @end quotation
26016
26017
26018 @enumerate 6
26019
26020 @item
26021 Before running the executable, make sure you have set the PATH to the DLL,
26022 or copy the DLL into into the directory containing the .exe.
26023 @end enumerate
26024
26025 @node Debugging a DLL,Setting Stack Size from gnatlink,Using GNAT DLLs from Microsoft Visual Studio Applications,Mixed-Language Programming on Windows
26026 @anchor{gnat_ugn/platform_specific_information id36}@anchor{219}@anchor{gnat_ugn/platform_specific_information debugging-a-dll}@anchor{21a}
26027 @subsubsection Debugging a DLL
26028
26029
26030 @geindex DLL debugging
26031
26032 Debugging a DLL is similar to debugging a standard program. But
26033 we have to deal with two different executable parts: the DLL and the
26034 program that uses it. We have the following four possibilities:
26035
26036
26037 @itemize *
26038
26039 @item
26040 The program and the DLL are built with GCC/GNAT.
26041
26042 @item
26043 The program is built with foreign tools and the DLL is built with
26044 GCC/GNAT.
26045
26046 @item
26047 The program is built with GCC/GNAT and the DLL is built with
26048 foreign tools.
26049 @end itemize
26050
26051 In this section we address only cases one and two above.
26052 There is no point in trying to debug
26053 a DLL with GNU/GDB, if there is no GDB-compatible debugging
26054 information in it. To do so you must use a debugger compatible with the
26055 tools suite used to build the DLL.
26056
26057 @menu
26058 * Program and DLL Both Built with GCC/GNAT::
26059 * Program Built with Foreign Tools and DLL Built with GCC/GNAT::
26060
26061 @end menu
26062
26063 @node Program and DLL Both Built with GCC/GNAT,Program Built with Foreign Tools and DLL Built with GCC/GNAT,,Debugging a DLL
26064 @anchor{gnat_ugn/platform_specific_information id37}@anchor{21b}@anchor{gnat_ugn/platform_specific_information program-and-dll-both-built-with-gcc-gnat}@anchor{21c}
26065 @subsubsection Program and DLL Both Built with GCC/GNAT
26066
26067
26068 This is the simplest case. Both the DLL and the program have @code{GDB}
26069 compatible debugging information. It is then possible to break anywhere in
26070 the process. Let's suppose here that the main procedure is named
26071 @code{ada_main} and that in the DLL there is an entry point named
26072 @code{ada_dll}.
26073
26074 The DLL (@ref{1f2,,Introduction to Dynamic Link Libraries (DLLs)}) and
26075 program must have been built with the debugging information (see GNAT -g
26076 switch). Here are the step-by-step instructions for debugging it:
26077
26078
26079 @itemize *
26080
26081 @item
26082 Launch @code{GDB} on the main program.
26083
26084 @example
26085 $ gdb -nw ada_main
26086 @end example
26087
26088 @item
26089 Start the program and stop at the beginning of the main procedure
26090
26091 @example
26092 (gdb) start
26093 @end example
26094
26095 This step is required to be able to set a breakpoint inside the DLL. As long
26096 as the program is not run, the DLL is not loaded. This has the
26097 consequence that the DLL debugging information is also not loaded, so it is not
26098 possible to set a breakpoint in the DLL.
26099
26100 @item
26101 Set a breakpoint inside the DLL
26102
26103 @example
26104 (gdb) break ada_dll
26105 (gdb) cont
26106 @end example
26107 @end itemize
26108
26109 At this stage a breakpoint is set inside the DLL. From there on
26110 you can use the standard approach to debug the whole program
26111 (@ref{24,,Running and Debugging Ada Programs}).
26112
26113 @node Program Built with Foreign Tools and DLL Built with GCC/GNAT,,Program and DLL Both Built with GCC/GNAT,Debugging a DLL
26114 @anchor{gnat_ugn/platform_specific_information program-built-with-foreign-tools-and-dll-built-with-gcc-gnat}@anchor{21d}@anchor{gnat_ugn/platform_specific_information id38}@anchor{21e}
26115 @subsubsection Program Built with Foreign Tools and DLL Built with GCC/GNAT
26116
26117
26118 In this case things are slightly more complex because it is not possible to
26119 start the main program and then break at the beginning to load the DLL and the
26120 associated DLL debugging information. It is not possible to break at the
26121 beginning of the program because there is no @code{GDB} debugging information,
26122 and therefore there is no direct way of getting initial control. This
26123 section addresses this issue by describing some methods that can be used
26124 to break somewhere in the DLL to debug it.
26125
26126 First suppose that the main procedure is named @code{main} (this is for
26127 example some C code built with Microsoft Visual C) and that there is a
26128 DLL named @code{test.dll} containing an Ada entry point named
26129 @code{ada_dll}.
26130
26131 The DLL (see @ref{1f2,,Introduction to Dynamic Link Libraries (DLLs)}) must have
26132 been built with debugging information (see the GNAT @code{-g} option).
26133
26134 @subsubheading Debugging the DLL Directly
26135
26136
26137
26138 @itemize *
26139
26140 @item
26141 Find out the executable starting address
26142
26143 @example
26144 $ objdump --file-header main.exe
26145 @end example
26146
26147 The starting address is reported on the last line. For example:
26148
26149 @example
26150 main.exe: file format pei-i386
26151 architecture: i386, flags 0x0000010a:
26152 EXEC_P, HAS_DEBUG, D_PAGED
26153 start address 0x00401010
26154 @end example
26155
26156 @item
26157 Launch the debugger on the executable.
26158
26159 @example
26160 $ gdb main.exe
26161 @end example
26162
26163 @item
26164 Set a breakpoint at the starting address, and launch the program.
26165
26166 @example
26167 $ (gdb) break *0x00401010
26168 $ (gdb) run
26169 @end example
26170
26171 The program will stop at the given address.
26172
26173 @item
26174 Set a breakpoint on a DLL subroutine.
26175
26176 @example
26177 (gdb) break ada_dll.adb:45
26178 @end example
26179
26180 Or if you want to break using a symbol on the DLL, you need first to
26181 select the Ada language (language used by the DLL).
26182
26183 @example
26184 (gdb) set language ada
26185 (gdb) break ada_dll
26186 @end example
26187
26188 @item
26189 Continue the program.
26190
26191 @example
26192 (gdb) cont
26193 @end example
26194
26195 This will run the program until it reaches the breakpoint that has been
26196 set. From that point you can use the standard way to debug a program
26197 as described in (@ref{24,,Running and Debugging Ada Programs}).
26198 @end itemize
26199
26200 It is also possible to debug the DLL by attaching to a running process.
26201
26202 @subsubheading Attaching to a Running Process
26203
26204
26205 @geindex DLL debugging
26206 @geindex attach to process
26207
26208 With @code{GDB} it is always possible to debug a running process by
26209 attaching to it. It is possible to debug a DLL this way. The limitation
26210 of this approach is that the DLL must run long enough to perform the
26211 attach operation. It may be useful for instance to insert a time wasting
26212 loop in the code of the DLL to meet this criterion.
26213
26214
26215 @itemize *
26216
26217 @item
26218 Launch the main program @code{main.exe}.
26219
26220 @example
26221 $ main
26222 @end example
26223
26224 @item
26225 Use the Windows @emph{Task Manager} to find the process ID. Let's say
26226 that the process PID for @code{main.exe} is 208.
26227
26228 @item
26229 Launch gdb.
26230
26231 @example
26232 $ gdb
26233 @end example
26234
26235 @item
26236 Attach to the running process to be debugged.
26237
26238 @example
26239 (gdb) attach 208
26240 @end example
26241
26242 @item
26243 Load the process debugging information.
26244
26245 @example
26246 (gdb) symbol-file main.exe
26247 @end example
26248
26249 @item
26250 Break somewhere in the DLL.
26251
26252 @example
26253 (gdb) break ada_dll
26254 @end example
26255
26256 @item
26257 Continue process execution.
26258
26259 @example
26260 (gdb) cont
26261 @end example
26262 @end itemize
26263
26264 This last step will resume the process execution, and stop at
26265 the breakpoint we have set. From there you can use the standard
26266 approach to debug a program as described in
26267 @ref{24,,Running and Debugging Ada Programs}.
26268
26269 @node Setting Stack Size from gnatlink,Setting Heap Size from gnatlink,Debugging a DLL,Mixed-Language Programming on Windows
26270 @anchor{gnat_ugn/platform_specific_information setting-stack-size-from-gnatlink}@anchor{136}@anchor{gnat_ugn/platform_specific_information id39}@anchor{21f}
26271 @subsubsection Setting Stack Size from @code{gnatlink}
26272
26273
26274 It is possible to specify the program stack size at link time. On modern
26275 versions of Windows, starting with XP, this is mostly useful to set the size of
26276 the main stack (environment task). The other task stacks are set with pragma
26277 Storage_Size or with the @emph{gnatbind -d} command.
26278
26279 Since older versions of Windows (2000, NT4, etc.) do not allow setting the
26280 reserve size of individual tasks, the link-time stack size applies to all
26281 tasks, and pragma Storage_Size has no effect.
26282 In particular, Stack Overflow checks are made against this
26283 link-time specified size.
26284
26285 This setting can be done with @code{gnatlink} using either of the following:
26286
26287
26288 @itemize *
26289
26290 @item
26291 @code{-Xlinker} linker option
26292
26293 @example
26294 $ gnatlink hello -Xlinker --stack=0x10000,0x1000
26295 @end example
26296
26297 This sets the stack reserve size to 0x10000 bytes and the stack commit
26298 size to 0x1000 bytes.
26299
26300 @item
26301 @code{-Wl} linker option
26302
26303 @example
26304 $ gnatlink hello -Wl,--stack=0x1000000
26305 @end example
26306
26307 This sets the stack reserve size to 0x1000000 bytes. Note that with
26308 @code{-Wl} option it is not possible to set the stack commit size
26309 because the comma is a separator for this option.
26310 @end itemize
26311
26312 @node Setting Heap Size from gnatlink,,Setting Stack Size from gnatlink,Mixed-Language Programming on Windows
26313 @anchor{gnat_ugn/platform_specific_information setting-heap-size-from-gnatlink}@anchor{137}@anchor{gnat_ugn/platform_specific_information id40}@anchor{220}
26314 @subsubsection Setting Heap Size from @code{gnatlink}
26315
26316
26317 Under Windows systems, it is possible to specify the program heap size from
26318 @code{gnatlink} using either of the following:
26319
26320
26321 @itemize *
26322
26323 @item
26324 @code{-Xlinker} linker option
26325
26326 @example
26327 $ gnatlink hello -Xlinker --heap=0x10000,0x1000
26328 @end example
26329
26330 This sets the heap reserve size to 0x10000 bytes and the heap commit
26331 size to 0x1000 bytes.
26332
26333 @item
26334 @code{-Wl} linker option
26335
26336 @example
26337 $ gnatlink hello -Wl,--heap=0x1000000
26338 @end example
26339
26340 This sets the heap reserve size to 0x1000000 bytes. Note that with
26341 @code{-Wl} option it is not possible to set the heap commit size
26342 because the comma is a separator for this option.
26343 @end itemize
26344
26345 @node Windows Specific Add-Ons,,Mixed-Language Programming on Windows,Microsoft Windows Topics
26346 @anchor{gnat_ugn/platform_specific_information windows-specific-add-ons}@anchor{221}@anchor{gnat_ugn/platform_specific_information win32-specific-addons}@anchor{222}
26347 @subsection Windows Specific Add-Ons
26348
26349
26350 This section describes the Windows specific add-ons.
26351
26352 @menu
26353 * Win32Ada::
26354 * wPOSIX::
26355
26356 @end menu
26357
26358 @node Win32Ada,wPOSIX,,Windows Specific Add-Ons
26359 @anchor{gnat_ugn/platform_specific_information win32ada}@anchor{223}@anchor{gnat_ugn/platform_specific_information id41}@anchor{224}
26360 @subsubsection Win32Ada
26361
26362
26363 Win32Ada is a binding for the Microsoft Win32 API. This binding can be
26364 easily installed from the provided installer. To use the Win32Ada
26365 binding you need to use a project file, and adding a single with_clause
26366 will give you full access to the Win32Ada binding sources and ensure
26367 that the proper libraries are passed to the linker.
26368
26369 @quotation
26370
26371 @example
26372 with "win32ada";
26373 project P is
26374 for Sources use ...;
26375 end P;
26376 @end example
26377 @end quotation
26378
26379 To build the application you just need to call gprbuild for the
26380 application's project, here p.gpr:
26381
26382 @quotation
26383
26384 @example
26385 gprbuild p.gpr
26386 @end example
26387 @end quotation
26388
26389 @node wPOSIX,,Win32Ada,Windows Specific Add-Ons
26390 @anchor{gnat_ugn/platform_specific_information id42}@anchor{225}@anchor{gnat_ugn/platform_specific_information wposix}@anchor{226}
26391 @subsubsection wPOSIX
26392
26393
26394 wPOSIX is a minimal POSIX binding whose goal is to help with building
26395 cross-platforms applications. This binding is not complete though, as
26396 the Win32 API does not provide the necessary support for all POSIX APIs.
26397
26398 To use the wPOSIX binding you need to use a project file, and adding
26399 a single with_clause will give you full access to the wPOSIX binding
26400 sources and ensure that the proper libraries are passed to the linker.
26401
26402 @quotation
26403
26404 @example
26405 with "wposix";
26406 project P is
26407 for Sources use ...;
26408 end P;
26409 @end example
26410 @end quotation
26411
26412 To build the application you just need to call gprbuild for the
26413 application's project, here p.gpr:
26414
26415 @quotation
26416
26417 @example
26418 gprbuild p.gpr
26419 @end example
26420 @end quotation
26421
26422 @node Mac OS Topics,,Microsoft Windows Topics,Platform-Specific Information
26423 @anchor{gnat_ugn/platform_specific_information mac-os-topics}@anchor{2d}@anchor{gnat_ugn/platform_specific_information id43}@anchor{227}
26424 @section Mac OS Topics
26425
26426
26427 @geindex OS X
26428
26429 This section describes topics that are specific to Apple's OS X
26430 platform.
26431
26432 @menu
26433 * Codesigning the Debugger::
26434
26435 @end menu
26436
26437 @node Codesigning the Debugger,,,Mac OS Topics
26438 @anchor{gnat_ugn/platform_specific_information codesigning-the-debugger}@anchor{228}
26439 @subsection Codesigning the Debugger
26440
26441
26442 The Darwin Kernel requires the debugger to have special permissions
26443 before it is allowed to control other processes. These permissions
26444 are granted by codesigning the GDB executable. Without these
26445 permissions, the debugger will report error messages such as:
26446
26447 @example
26448 Starting program: /x/y/foo
26449 Unable to find Mach task port for process-id 28885: (os/kern) failure (0x5).
26450 (please check gdb is codesigned - see taskgated(8))
26451 @end example
26452
26453 Codesigning requires a certificate. The following procedure explains
26454 how to create one:
26455
26456
26457 @itemize *
26458
26459 @item
26460 Start the Keychain Access application (in
26461 /Applications/Utilities/Keychain Access.app)
26462
26463 @item
26464 Select the Keychain Access -> Certificate Assistant ->
26465 Create a Certificate... menu
26466
26467 @item
26468 Then:
26469
26470
26471 @itemize *
26472
26473 @item
26474 Choose a name for the new certificate (this procedure will use
26475 "gdb-cert" as an example)
26476
26477 @item
26478 Set "Identity Type" to "Self Signed Root"
26479
26480 @item
26481 Set "Certificate Type" to "Code Signing"
26482
26483 @item
26484 Activate the "Let me override defaults" option
26485 @end itemize
26486
26487 @item
26488 Click several times on "Continue" until the "Specify a Location
26489 For The Certificate" screen appears, then set "Keychain" to "System"
26490
26491 @item
26492 Click on "Continue" until the certificate is created
26493
26494 @item
26495 Finally, in the view, double-click on the new certificate,
26496 and set "When using this certificate" to "Always Trust"
26497
26498 @item
26499 Exit the Keychain Access application and restart the computer
26500 (this is unfortunately required)
26501 @end itemize
26502
26503 Once a certificate has been created, the debugger can be codesigned
26504 as follow. In a Terminal, run the following command:
26505
26506 @quotation
26507
26508 @example
26509 $ codesign -f -s "gdb-cert" <gnat_install_prefix>/bin/gdb
26510 @end example
26511 @end quotation
26512
26513 where "gdb-cert" should be replaced by the actual certificate
26514 name chosen above, and <gnat_install_prefix> should be replaced by
26515 the location where you installed GNAT. Also, be sure that users are
26516 in the Unix group @code{_developer}.
26517
26518 @node Example of Binder Output File,Elaboration Order Handling in GNAT,Platform-Specific Information,Top
26519 @anchor{gnat_ugn/example_of_binder_output example-of-binder-output-file}@anchor{e}@anchor{gnat_ugn/example_of_binder_output doc}@anchor{229}@anchor{gnat_ugn/example_of_binder_output id1}@anchor{22a}
26520 @chapter Example of Binder Output File
26521
26522
26523 @geindex Binder output (example)
26524
26525 This Appendix displays the source code for the output file
26526 generated by @emph{gnatbind} for a simple 'Hello World' program.
26527 Comments have been added for clarification purposes.
26528
26529 @example
26530 -- The package is called Ada_Main unless this name is actually used
26531 -- as a unit name in the partition, in which case some other unique
26532 -- name is used.
26533
26534 pragma Ada_95;
26535 with System;
26536 package ada_main is
26537 pragma Warnings (Off);
26538
26539 -- The main program saves the parameters (argument count,
26540 -- argument values, environment pointer) in global variables
26541 -- for later access by other units including
26542 -- Ada.Command_Line.
26543
26544 gnat_argc : Integer;
26545 gnat_argv : System.Address;
26546 gnat_envp : System.Address;
26547
26548 -- The actual variables are stored in a library routine. This
26549 -- is useful for some shared library situations, where there
26550 -- are problems if variables are not in the library.
26551
26552 pragma Import (C, gnat_argc);
26553 pragma Import (C, gnat_argv);
26554 pragma Import (C, gnat_envp);
26555
26556 -- The exit status is similarly an external location
26557
26558 gnat_exit_status : Integer;
26559 pragma Import (C, gnat_exit_status);
26560
26561 GNAT_Version : constant String :=
26562 "GNAT Version: Pro 7.4.0w (20141119-49)" & ASCII.NUL;
26563 pragma Export (C, GNAT_Version, "__gnat_version");
26564
26565 Ada_Main_Program_Name : constant String := "_ada_hello" & ASCII.NUL;
26566 pragma Export (C, Ada_Main_Program_Name, "__gnat_ada_main_program_name");
26567
26568 -- This is the generated adainit routine that performs
26569 -- initialization at the start of execution. In the case
26570 -- where Ada is the main program, this main program makes
26571 -- a call to adainit at program startup.
26572
26573 procedure adainit;
26574 pragma Export (C, adainit, "adainit");
26575
26576 -- This is the generated adafinal routine that performs
26577 -- finalization at the end of execution. In the case where
26578 -- Ada is the main program, this main program makes a call
26579 -- to adafinal at program termination.
26580
26581 procedure adafinal;
26582 pragma Export (C, adafinal, "adafinal");
26583
26584 -- This routine is called at the start of execution. It is
26585 -- a dummy routine that is used by the debugger to breakpoint
26586 -- at the start of execution.
26587
26588 -- This is the actual generated main program (it would be
26589 -- suppressed if the no main program switch were used). As
26590 -- required by standard system conventions, this program has
26591 -- the external name main.
26592
26593 function main
26594 (argc : Integer;
26595 argv : System.Address;
26596 envp : System.Address)
26597 return Integer;
26598 pragma Export (C, main, "main");
26599
26600 -- The following set of constants give the version
26601 -- identification values for every unit in the bound
26602 -- partition. This identification is computed from all
26603 -- dependent semantic units, and corresponds to the
26604 -- string that would be returned by use of the
26605 -- Body_Version or Version attributes.
26606
26607 -- The following Export pragmas export the version numbers
26608 -- with symbolic names ending in B (for body) or S
26609 -- (for spec) so that they can be located in a link. The
26610 -- information provided here is sufficient to track down
26611 -- the exact versions of units used in a given build.
26612
26613 type Version_32 is mod 2 ** 32;
26614 u00001 : constant Version_32 := 16#8ad6e54a#;
26615 pragma Export (C, u00001, "helloB");
26616 u00002 : constant Version_32 := 16#fbff4c67#;
26617 pragma Export (C, u00002, "system__standard_libraryB");
26618 u00003 : constant Version_32 := 16#1ec6fd90#;
26619 pragma Export (C, u00003, "system__standard_libraryS");
26620 u00004 : constant Version_32 := 16#3ffc8e18#;
26621 pragma Export (C, u00004, "adaS");
26622 u00005 : constant Version_32 := 16#28f088c2#;
26623 pragma Export (C, u00005, "ada__text_ioB");
26624 u00006 : constant Version_32 := 16#f372c8ac#;
26625 pragma Export (C, u00006, "ada__text_ioS");
26626 u00007 : constant Version_32 := 16#2c143749#;
26627 pragma Export (C, u00007, "ada__exceptionsB");
26628 u00008 : constant Version_32 := 16#f4f0cce8#;
26629 pragma Export (C, u00008, "ada__exceptionsS");
26630 u00009 : constant Version_32 := 16#a46739c0#;
26631 pragma Export (C, u00009, "ada__exceptions__last_chance_handlerB");
26632 u00010 : constant Version_32 := 16#3aac8c92#;
26633 pragma Export (C, u00010, "ada__exceptions__last_chance_handlerS");
26634 u00011 : constant Version_32 := 16#1d274481#;
26635 pragma Export (C, u00011, "systemS");
26636 u00012 : constant Version_32 := 16#a207fefe#;
26637 pragma Export (C, u00012, "system__soft_linksB");
26638 u00013 : constant Version_32 := 16#467d9556#;
26639 pragma Export (C, u00013, "system__soft_linksS");
26640 u00014 : constant Version_32 := 16#b01dad17#;
26641 pragma Export (C, u00014, "system__parametersB");
26642 u00015 : constant Version_32 := 16#630d49fe#;
26643 pragma Export (C, u00015, "system__parametersS");
26644 u00016 : constant Version_32 := 16#b19b6653#;
26645 pragma Export (C, u00016, "system__secondary_stackB");
26646 u00017 : constant Version_32 := 16#b6468be8#;
26647 pragma Export (C, u00017, "system__secondary_stackS");
26648 u00018 : constant Version_32 := 16#39a03df9#;
26649 pragma Export (C, u00018, "system__storage_elementsB");
26650 u00019 : constant Version_32 := 16#30e40e85#;
26651 pragma Export (C, u00019, "system__storage_elementsS");
26652 u00020 : constant Version_32 := 16#41837d1e#;
26653 pragma Export (C, u00020, "system__stack_checkingB");
26654 u00021 : constant Version_32 := 16#93982f69#;
26655 pragma Export (C, u00021, "system__stack_checkingS");
26656 u00022 : constant Version_32 := 16#393398c1#;
26657 pragma Export (C, u00022, "system__exception_tableB");
26658 u00023 : constant Version_32 := 16#b33e2294#;
26659 pragma Export (C, u00023, "system__exception_tableS");
26660 u00024 : constant Version_32 := 16#ce4af020#;
26661 pragma Export (C, u00024, "system__exceptionsB");
26662 u00025 : constant Version_32 := 16#75442977#;
26663 pragma Export (C, u00025, "system__exceptionsS");
26664 u00026 : constant Version_32 := 16#37d758f1#;
26665 pragma Export (C, u00026, "system__exceptions__machineS");
26666 u00027 : constant Version_32 := 16#b895431d#;
26667 pragma Export (C, u00027, "system__exceptions_debugB");
26668 u00028 : constant Version_32 := 16#aec55d3f#;
26669 pragma Export (C, u00028, "system__exceptions_debugS");
26670 u00029 : constant Version_32 := 16#570325c8#;
26671 pragma Export (C, u00029, "system__img_intB");
26672 u00030 : constant Version_32 := 16#1ffca443#;
26673 pragma Export (C, u00030, "system__img_intS");
26674 u00031 : constant Version_32 := 16#b98c3e16#;
26675 pragma Export (C, u00031, "system__tracebackB");
26676 u00032 : constant Version_32 := 16#831a9d5a#;
26677 pragma Export (C, u00032, "system__tracebackS");
26678 u00033 : constant Version_32 := 16#9ed49525#;
26679 pragma Export (C, u00033, "system__traceback_entriesB");
26680 u00034 : constant Version_32 := 16#1d7cb2f1#;
26681 pragma Export (C, u00034, "system__traceback_entriesS");
26682 u00035 : constant Version_32 := 16#8c33a517#;
26683 pragma Export (C, u00035, "system__wch_conB");
26684 u00036 : constant Version_32 := 16#065a6653#;
26685 pragma Export (C, u00036, "system__wch_conS");
26686 u00037 : constant Version_32 := 16#9721e840#;
26687 pragma Export (C, u00037, "system__wch_stwB");
26688 u00038 : constant Version_32 := 16#2b4b4a52#;
26689 pragma Export (C, u00038, "system__wch_stwS");
26690 u00039 : constant Version_32 := 16#92b797cb#;
26691 pragma Export (C, u00039, "system__wch_cnvB");
26692 u00040 : constant Version_32 := 16#09eddca0#;
26693 pragma Export (C, u00040, "system__wch_cnvS");
26694 u00041 : constant Version_32 := 16#6033a23f#;
26695 pragma Export (C, u00041, "interfacesS");
26696 u00042 : constant Version_32 := 16#ece6fdb6#;
26697 pragma Export (C, u00042, "system__wch_jisB");
26698 u00043 : constant Version_32 := 16#899dc581#;
26699 pragma Export (C, u00043, "system__wch_jisS");
26700 u00044 : constant Version_32 := 16#10558b11#;
26701 pragma Export (C, u00044, "ada__streamsB");
26702 u00045 : constant Version_32 := 16#2e6701ab#;
26703 pragma Export (C, u00045, "ada__streamsS");
26704 u00046 : constant Version_32 := 16#db5c917c#;
26705 pragma Export (C, u00046, "ada__io_exceptionsS");
26706 u00047 : constant Version_32 := 16#12c8cd7d#;
26707 pragma Export (C, u00047, "ada__tagsB");
26708 u00048 : constant Version_32 := 16#ce72c228#;
26709 pragma Export (C, u00048, "ada__tagsS");
26710 u00049 : constant Version_32 := 16#c3335bfd#;
26711 pragma Export (C, u00049, "system__htableB");
26712 u00050 : constant Version_32 := 16#99e5f76b#;
26713 pragma Export (C, u00050, "system__htableS");
26714 u00051 : constant Version_32 := 16#089f5cd0#;
26715 pragma Export (C, u00051, "system__string_hashB");
26716 u00052 : constant Version_32 := 16#3bbb9c15#;
26717 pragma Export (C, u00052, "system__string_hashS");
26718 u00053 : constant Version_32 := 16#807fe041#;
26719 pragma Export (C, u00053, "system__unsigned_typesS");
26720 u00054 : constant Version_32 := 16#d27be59e#;
26721 pragma Export (C, u00054, "system__val_lluB");
26722 u00055 : constant Version_32 := 16#fa8db733#;
26723 pragma Export (C, u00055, "system__val_lluS");
26724 u00056 : constant Version_32 := 16#27b600b2#;
26725 pragma Export (C, u00056, "system__val_utilB");
26726 u00057 : constant Version_32 := 16#b187f27f#;
26727 pragma Export (C, u00057, "system__val_utilS");
26728 u00058 : constant Version_32 := 16#d1060688#;
26729 pragma Export (C, u00058, "system__case_utilB");
26730 u00059 : constant Version_32 := 16#392e2d56#;
26731 pragma Export (C, u00059, "system__case_utilS");
26732 u00060 : constant Version_32 := 16#84a27f0d#;
26733 pragma Export (C, u00060, "interfaces__c_streamsB");
26734 u00061 : constant Version_32 := 16#8bb5f2c0#;
26735 pragma Export (C, u00061, "interfaces__c_streamsS");
26736 u00062 : constant Version_32 := 16#6db6928f#;
26737 pragma Export (C, u00062, "system__crtlS");
26738 u00063 : constant Version_32 := 16#4e6a342b#;
26739 pragma Export (C, u00063, "system__file_ioB");
26740 u00064 : constant Version_32 := 16#ba56a5e4#;
26741 pragma Export (C, u00064, "system__file_ioS");
26742 u00065 : constant Version_32 := 16#b7ab275c#;
26743 pragma Export (C, u00065, "ada__finalizationB");
26744 u00066 : constant Version_32 := 16#19f764ca#;
26745 pragma Export (C, u00066, "ada__finalizationS");
26746 u00067 : constant Version_32 := 16#95817ed8#;
26747 pragma Export (C, u00067, "system__finalization_rootB");
26748 u00068 : constant Version_32 := 16#52d53711#;
26749 pragma Export (C, u00068, "system__finalization_rootS");
26750 u00069 : constant Version_32 := 16#769e25e6#;
26751 pragma Export (C, u00069, "interfaces__cB");
26752 u00070 : constant Version_32 := 16#4a38bedb#;
26753 pragma Export (C, u00070, "interfaces__cS");
26754 u00071 : constant Version_32 := 16#07e6ee66#;
26755 pragma Export (C, u00071, "system__os_libB");
26756 u00072 : constant Version_32 := 16#d7b69782#;
26757 pragma Export (C, u00072, "system__os_libS");
26758 u00073 : constant Version_32 := 16#1a817b8e#;
26759 pragma Export (C, u00073, "system__stringsB");
26760 u00074 : constant Version_32 := 16#639855e7#;
26761 pragma Export (C, u00074, "system__stringsS");
26762 u00075 : constant Version_32 := 16#e0b8de29#;
26763 pragma Export (C, u00075, "system__file_control_blockS");
26764 u00076 : constant Version_32 := 16#b5b2aca1#;
26765 pragma Export (C, u00076, "system__finalization_mastersB");
26766 u00077 : constant Version_32 := 16#69316dc1#;
26767 pragma Export (C, u00077, "system__finalization_mastersS");
26768 u00078 : constant Version_32 := 16#57a37a42#;
26769 pragma Export (C, u00078, "system__address_imageB");
26770 u00079 : constant Version_32 := 16#bccbd9bb#;
26771 pragma Export (C, u00079, "system__address_imageS");
26772 u00080 : constant Version_32 := 16#7268f812#;
26773 pragma Export (C, u00080, "system__img_boolB");
26774 u00081 : constant Version_32 := 16#e8fe356a#;
26775 pragma Export (C, u00081, "system__img_boolS");
26776 u00082 : constant Version_32 := 16#d7aac20c#;
26777 pragma Export (C, u00082, "system__ioB");
26778 u00083 : constant Version_32 := 16#8365b3ce#;
26779 pragma Export (C, u00083, "system__ioS");
26780 u00084 : constant Version_32 := 16#6d4d969a#;
26781 pragma Export (C, u00084, "system__storage_poolsB");
26782 u00085 : constant Version_32 := 16#e87cc305#;
26783 pragma Export (C, u00085, "system__storage_poolsS");
26784 u00086 : constant Version_32 := 16#e34550ca#;
26785 pragma Export (C, u00086, "system__pool_globalB");
26786 u00087 : constant Version_32 := 16#c88d2d16#;
26787 pragma Export (C, u00087, "system__pool_globalS");
26788 u00088 : constant Version_32 := 16#9d39c675#;
26789 pragma Export (C, u00088, "system__memoryB");
26790 u00089 : constant Version_32 := 16#445a22b5#;
26791 pragma Export (C, u00089, "system__memoryS");
26792 u00090 : constant Version_32 := 16#6a859064#;
26793 pragma Export (C, u00090, "system__storage_pools__subpoolsB");
26794 u00091 : constant Version_32 := 16#e3b008dc#;
26795 pragma Export (C, u00091, "system__storage_pools__subpoolsS");
26796 u00092 : constant Version_32 := 16#63f11652#;
26797 pragma Export (C, u00092, "system__storage_pools__subpools__finalizationB");
26798 u00093 : constant Version_32 := 16#fe2f4b3a#;
26799 pragma Export (C, u00093, "system__storage_pools__subpools__finalizationS");
26800
26801 -- BEGIN ELABORATION ORDER
26802 -- ada%s
26803 -- interfaces%s
26804 -- system%s
26805 -- system.case_util%s
26806 -- system.case_util%b
26807 -- system.htable%s
26808 -- system.img_bool%s
26809 -- system.img_bool%b
26810 -- system.img_int%s
26811 -- system.img_int%b
26812 -- system.io%s
26813 -- system.io%b
26814 -- system.parameters%s
26815 -- system.parameters%b
26816 -- system.crtl%s
26817 -- interfaces.c_streams%s
26818 -- interfaces.c_streams%b
26819 -- system.standard_library%s
26820 -- system.exceptions_debug%s
26821 -- system.exceptions_debug%b
26822 -- system.storage_elements%s
26823 -- system.storage_elements%b
26824 -- system.stack_checking%s
26825 -- system.stack_checking%b
26826 -- system.string_hash%s
26827 -- system.string_hash%b
26828 -- system.htable%b
26829 -- system.strings%s
26830 -- system.strings%b
26831 -- system.os_lib%s
26832 -- system.traceback_entries%s
26833 -- system.traceback_entries%b
26834 -- ada.exceptions%s
26835 -- system.soft_links%s
26836 -- system.unsigned_types%s
26837 -- system.val_llu%s
26838 -- system.val_util%s
26839 -- system.val_util%b
26840 -- system.val_llu%b
26841 -- system.wch_con%s
26842 -- system.wch_con%b
26843 -- system.wch_cnv%s
26844 -- system.wch_jis%s
26845 -- system.wch_jis%b
26846 -- system.wch_cnv%b
26847 -- system.wch_stw%s
26848 -- system.wch_stw%b
26849 -- ada.exceptions.last_chance_handler%s
26850 -- ada.exceptions.last_chance_handler%b
26851 -- system.address_image%s
26852 -- system.exception_table%s
26853 -- system.exception_table%b
26854 -- ada.io_exceptions%s
26855 -- ada.tags%s
26856 -- ada.streams%s
26857 -- ada.streams%b
26858 -- interfaces.c%s
26859 -- system.exceptions%s
26860 -- system.exceptions%b
26861 -- system.exceptions.machine%s
26862 -- system.finalization_root%s
26863 -- system.finalization_root%b
26864 -- ada.finalization%s
26865 -- ada.finalization%b
26866 -- system.storage_pools%s
26867 -- system.storage_pools%b
26868 -- system.finalization_masters%s
26869 -- system.storage_pools.subpools%s
26870 -- system.storage_pools.subpools.finalization%s
26871 -- system.storage_pools.subpools.finalization%b
26872 -- system.memory%s
26873 -- system.memory%b
26874 -- system.standard_library%b
26875 -- system.pool_global%s
26876 -- system.pool_global%b
26877 -- system.file_control_block%s
26878 -- system.file_io%s
26879 -- system.secondary_stack%s
26880 -- system.file_io%b
26881 -- system.storage_pools.subpools%b
26882 -- system.finalization_masters%b
26883 -- interfaces.c%b
26884 -- ada.tags%b
26885 -- system.soft_links%b
26886 -- system.os_lib%b
26887 -- system.secondary_stack%b
26888 -- system.address_image%b
26889 -- system.traceback%s
26890 -- ada.exceptions%b
26891 -- system.traceback%b
26892 -- ada.text_io%s
26893 -- ada.text_io%b
26894 -- hello%b
26895 -- END ELABORATION ORDER
26896
26897 end ada_main;
26898 @end example
26899
26900 @example
26901 pragma Ada_95;
26902 -- The following source file name pragmas allow the generated file
26903 -- names to be unique for different main programs. They are needed
26904 -- since the package name will always be Ada_Main.
26905
26906 pragma Source_File_Name (ada_main, Spec_File_Name => "b~hello.ads");
26907 pragma Source_File_Name (ada_main, Body_File_Name => "b~hello.adb");
26908
26909 pragma Suppress (Overflow_Check);
26910 with Ada.Exceptions;
26911
26912 -- Generated package body for Ada_Main starts here
26913
26914 package body ada_main is
26915 pragma Warnings (Off);
26916
26917 -- These values are reference counter associated to units which have
26918 -- been elaborated. It is also used to avoid elaborating the
26919 -- same unit twice.
26920
26921 E72 : Short_Integer; pragma Import (Ada, E72, "system__os_lib_E");
26922 E13 : Short_Integer; pragma Import (Ada, E13, "system__soft_links_E");
26923 E23 : Short_Integer; pragma Import (Ada, E23, "system__exception_table_E");
26924 E46 : Short_Integer; pragma Import (Ada, E46, "ada__io_exceptions_E");
26925 E48 : Short_Integer; pragma Import (Ada, E48, "ada__tags_E");
26926 E45 : Short_Integer; pragma Import (Ada, E45, "ada__streams_E");
26927 E70 : Short_Integer; pragma Import (Ada, E70, "interfaces__c_E");
26928 E25 : Short_Integer; pragma Import (Ada, E25, "system__exceptions_E");
26929 E68 : Short_Integer; pragma Import (Ada, E68, "system__finalization_root_E");
26930 E66 : Short_Integer; pragma Import (Ada, E66, "ada__finalization_E");
26931 E85 : Short_Integer; pragma Import (Ada, E85, "system__storage_pools_E");
26932 E77 : Short_Integer; pragma Import (Ada, E77, "system__finalization_masters_E");
26933 E91 : Short_Integer; pragma Import (Ada, E91, "system__storage_pools__subpools_E");
26934 E87 : Short_Integer; pragma Import (Ada, E87, "system__pool_global_E");
26935 E75 : Short_Integer; pragma Import (Ada, E75, "system__file_control_block_E");
26936 E64 : Short_Integer; pragma Import (Ada, E64, "system__file_io_E");
26937 E17 : Short_Integer; pragma Import (Ada, E17, "system__secondary_stack_E");
26938 E06 : Short_Integer; pragma Import (Ada, E06, "ada__text_io_E");
26939
26940 Local_Priority_Specific_Dispatching : constant String := "";
26941 Local_Interrupt_States : constant String := "";
26942
26943 Is_Elaborated : Boolean := False;
26944
26945 procedure finalize_library is
26946 begin
26947 E06 := E06 - 1;
26948 declare
26949 procedure F1;
26950 pragma Import (Ada, F1, "ada__text_io__finalize_spec");
26951 begin
26952 F1;
26953 end;
26954 E77 := E77 - 1;
26955 E91 := E91 - 1;
26956 declare
26957 procedure F2;
26958 pragma Import (Ada, F2, "system__file_io__finalize_body");
26959 begin
26960 E64 := E64 - 1;
26961 F2;
26962 end;
26963 declare
26964 procedure F3;
26965 pragma Import (Ada, F3, "system__file_control_block__finalize_spec");
26966 begin
26967 E75 := E75 - 1;
26968 F3;
26969 end;
26970 E87 := E87 - 1;
26971 declare
26972 procedure F4;
26973 pragma Import (Ada, F4, "system__pool_global__finalize_spec");
26974 begin
26975 F4;
26976 end;
26977 declare
26978 procedure F5;
26979 pragma Import (Ada, F5, "system__storage_pools__subpools__finalize_spec");
26980 begin
26981 F5;
26982 end;
26983 declare
26984 procedure F6;
26985 pragma Import (Ada, F6, "system__finalization_masters__finalize_spec");
26986 begin
26987 F6;
26988 end;
26989 declare
26990 procedure Reraise_Library_Exception_If_Any;
26991 pragma Import (Ada, Reraise_Library_Exception_If_Any, "__gnat_reraise_library_exception_if_any");
26992 begin
26993 Reraise_Library_Exception_If_Any;
26994 end;
26995 end finalize_library;
26996
26997 -------------
26998 -- adainit --
26999 -------------
27000
27001 procedure adainit is
27002
27003 Main_Priority : Integer;
27004 pragma Import (C, Main_Priority, "__gl_main_priority");
27005 Time_Slice_Value : Integer;
27006 pragma Import (C, Time_Slice_Value, "__gl_time_slice_val");
27007 WC_Encoding : Character;
27008 pragma Import (C, WC_Encoding, "__gl_wc_encoding");
27009 Locking_Policy : Character;
27010 pragma Import (C, Locking_Policy, "__gl_locking_policy");
27011 Queuing_Policy : Character;
27012 pragma Import (C, Queuing_Policy, "__gl_queuing_policy");
27013 Task_Dispatching_Policy : Character;
27014 pragma Import (C, Task_Dispatching_Policy, "__gl_task_dispatching_policy");
27015 Priority_Specific_Dispatching : System.Address;
27016 pragma Import (C, Priority_Specific_Dispatching, "__gl_priority_specific_dispatching");
27017 Num_Specific_Dispatching : Integer;
27018 pragma Import (C, Num_Specific_Dispatching, "__gl_num_specific_dispatching");
27019 Main_CPU : Integer;
27020 pragma Import (C, Main_CPU, "__gl_main_cpu");
27021 Interrupt_States : System.Address;
27022 pragma Import (C, Interrupt_States, "__gl_interrupt_states");
27023 Num_Interrupt_States : Integer;
27024 pragma Import (C, Num_Interrupt_States, "__gl_num_interrupt_states");
27025 Unreserve_All_Interrupts : Integer;
27026 pragma Import (C, Unreserve_All_Interrupts, "__gl_unreserve_all_interrupts");
27027 Detect_Blocking : Integer;
27028 pragma Import (C, Detect_Blocking, "__gl_detect_blocking");
27029 Default_Stack_Size : Integer;
27030 pragma Import (C, Default_Stack_Size, "__gl_default_stack_size");
27031 Leap_Seconds_Support : Integer;
27032 pragma Import (C, Leap_Seconds_Support, "__gl_leap_seconds_support");
27033
27034 procedure Runtime_Initialize;
27035 pragma Import (C, Runtime_Initialize, "__gnat_runtime_initialize");
27036
27037 Finalize_Library_Objects : No_Param_Proc;
27038 pragma Import (C, Finalize_Library_Objects, "__gnat_finalize_library_objects");
27039
27040 -- Start of processing for adainit
27041
27042 begin
27043
27044 -- Record various information for this partition. The values
27045 -- are derived by the binder from information stored in the ali
27046 -- files by the compiler.
27047
27048 if Is_Elaborated then
27049 return;
27050 end if;
27051 Is_Elaborated := True;
27052 Main_Priority := -1;
27053 Time_Slice_Value := -1;
27054 WC_Encoding := 'b';
27055 Locking_Policy := ' ';
27056 Queuing_Policy := ' ';
27057 Task_Dispatching_Policy := ' ';
27058 Priority_Specific_Dispatching :=
27059 Local_Priority_Specific_Dispatching'Address;
27060 Num_Specific_Dispatching := 0;
27061 Main_CPU := -1;
27062 Interrupt_States := Local_Interrupt_States'Address;
27063 Num_Interrupt_States := 0;
27064 Unreserve_All_Interrupts := 0;
27065 Detect_Blocking := 0;
27066 Default_Stack_Size := -1;
27067 Leap_Seconds_Support := 0;
27068
27069 Runtime_Initialize;
27070
27071 Finalize_Library_Objects := finalize_library'access;
27072
27073 -- Now we have the elaboration calls for all units in the partition.
27074 -- The Elab_Spec and Elab_Body attributes generate references to the
27075 -- implicit elaboration procedures generated by the compiler for
27076 -- each unit that requires elaboration. Increment a counter of
27077 -- reference for each unit.
27078
27079 System.Soft_Links'Elab_Spec;
27080 System.Exception_Table'Elab_Body;
27081 E23 := E23 + 1;
27082 Ada.Io_Exceptions'Elab_Spec;
27083 E46 := E46 + 1;
27084 Ada.Tags'Elab_Spec;
27085 Ada.Streams'Elab_Spec;
27086 E45 := E45 + 1;
27087 Interfaces.C'Elab_Spec;
27088 System.Exceptions'Elab_Spec;
27089 E25 := E25 + 1;
27090 System.Finalization_Root'Elab_Spec;
27091 E68 := E68 + 1;
27092 Ada.Finalization'Elab_Spec;
27093 E66 := E66 + 1;
27094 System.Storage_Pools'Elab_Spec;
27095 E85 := E85 + 1;
27096 System.Finalization_Masters'Elab_Spec;
27097 System.Storage_Pools.Subpools'Elab_Spec;
27098 System.Pool_Global'Elab_Spec;
27099 E87 := E87 + 1;
27100 System.File_Control_Block'Elab_Spec;
27101 E75 := E75 + 1;
27102 System.File_Io'Elab_Body;
27103 E64 := E64 + 1;
27104 E91 := E91 + 1;
27105 System.Finalization_Masters'Elab_Body;
27106 E77 := E77 + 1;
27107 E70 := E70 + 1;
27108 Ada.Tags'Elab_Body;
27109 E48 := E48 + 1;
27110 System.Soft_Links'Elab_Body;
27111 E13 := E13 + 1;
27112 System.Os_Lib'Elab_Body;
27113 E72 := E72 + 1;
27114 System.Secondary_Stack'Elab_Body;
27115 E17 := E17 + 1;
27116 Ada.Text_Io'Elab_Spec;
27117 Ada.Text_Io'Elab_Body;
27118 E06 := E06 + 1;
27119 end adainit;
27120
27121 --------------
27122 -- adafinal --
27123 --------------
27124
27125 procedure adafinal is
27126 procedure s_stalib_adafinal;
27127 pragma Import (C, s_stalib_adafinal, "system__standard_library__adafinal");
27128
27129 procedure Runtime_Finalize;
27130 pragma Import (C, Runtime_Finalize, "__gnat_runtime_finalize");
27131
27132 begin
27133 if not Is_Elaborated then
27134 return;
27135 end if;
27136 Is_Elaborated := False;
27137 Runtime_Finalize;
27138 s_stalib_adafinal;
27139 end adafinal;
27140
27141 -- We get to the main program of the partition by using
27142 -- pragma Import because if we try to with the unit and
27143 -- call it Ada style, then not only do we waste time
27144 -- recompiling it, but also, we don't really know the right
27145 -- switches (e.g.@@: identifier character set) to be used
27146 -- to compile it.
27147
27148 procedure Ada_Main_Program;
27149 pragma Import (Ada, Ada_Main_Program, "_ada_hello");
27150
27151 ----------
27152 -- main --
27153 ----------
27154
27155 -- main is actually a function, as in the ANSI C standard,
27156 -- defined to return the exit status. The three parameters
27157 -- are the argument count, argument values and environment
27158 -- pointer.
27159
27160 function main
27161 (argc : Integer;
27162 argv : System.Address;
27163 envp : System.Address)
27164 return Integer
27165 is
27166 -- The initialize routine performs low level system
27167 -- initialization using a standard library routine which
27168 -- sets up signal handling and performs any other
27169 -- required setup. The routine can be found in file
27170 -- a-init.c.
27171
27172 procedure initialize;
27173 pragma Import (C, initialize, "__gnat_initialize");
27174
27175 -- The finalize routine performs low level system
27176 -- finalization using a standard library routine. The
27177 -- routine is found in file a-final.c and in the standard
27178 -- distribution is a dummy routine that does nothing, so
27179 -- really this is a hook for special user finalization.
27180
27181 procedure finalize;
27182 pragma Import (C, finalize, "__gnat_finalize");
27183
27184 -- The following is to initialize the SEH exceptions
27185
27186 SEH : aliased array (1 .. 2) of Integer;
27187
27188 Ensure_Reference : aliased System.Address := Ada_Main_Program_Name'Address;
27189 pragma Volatile (Ensure_Reference);
27190
27191 -- Start of processing for main
27192
27193 begin
27194 -- Save global variables
27195
27196 gnat_argc := argc;
27197 gnat_argv := argv;
27198 gnat_envp := envp;
27199
27200 -- Call low level system initialization
27201
27202 Initialize (SEH'Address);
27203
27204 -- Call our generated Ada initialization routine
27205
27206 adainit;
27207
27208 -- Now we call the main program of the partition
27209
27210 Ada_Main_Program;
27211
27212 -- Perform Ada finalization
27213
27214 adafinal;
27215
27216 -- Perform low level system finalization
27217
27218 Finalize;
27219
27220 -- Return the proper exit status
27221 return (gnat_exit_status);
27222 end;
27223
27224 -- This section is entirely comments, so it has no effect on the
27225 -- compilation of the Ada_Main package. It provides the list of
27226 -- object files and linker options, as well as some standard
27227 -- libraries needed for the link. The gnatlink utility parses
27228 -- this b~hello.adb file to read these comment lines to generate
27229 -- the appropriate command line arguments for the call to the
27230 -- system linker. The BEGIN/END lines are used for sentinels for
27231 -- this parsing operation.
27232
27233 -- The exact file names will of course depend on the environment,
27234 -- host/target and location of files on the host system.
27235
27236 -- BEGIN Object file/option list
27237 -- ./hello.o
27238 -- -L./
27239 -- -L/usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/
27240 -- /usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/libgnat.a
27241 -- END Object file/option list
27242
27243 end ada_main;
27244 @end example
27245
27246 The Ada code in the above example is exactly what is generated by the
27247 binder. We have added comments to more clearly indicate the function
27248 of each part of the generated @code{Ada_Main} package.
27249
27250 The code is standard Ada in all respects, and can be processed by any
27251 tools that handle Ada. In particular, it is possible to use the debugger
27252 in Ada mode to debug the generated @code{Ada_Main} package. For example,
27253 suppose that for reasons that you do not understand, your program is crashing
27254 during elaboration of the body of @code{Ada.Text_IO}. To locate this bug,
27255 you can place a breakpoint on the call:
27256
27257 @quotation
27258
27259 @example
27260 Ada.Text_Io'Elab_Body;
27261 @end example
27262 @end quotation
27263
27264 and trace the elaboration routine for this package to find out where
27265 the problem might be (more usually of course you would be debugging
27266 elaboration code in your own application).
27267
27268 @c -- Example: A |withing| unit has a |with| clause, it |withs| a |withed| unit
27269
27270 @node Elaboration Order Handling in GNAT,Inline Assembler,Example of Binder Output File,Top
27271 @anchor{gnat_ugn/elaboration_order_handling_in_gnat elaboration-order-handling-in-gnat}@anchor{f}@anchor{gnat_ugn/elaboration_order_handling_in_gnat doc}@anchor{22b}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id1}@anchor{22c}
27272 @chapter Elaboration Order Handling in GNAT
27273
27274
27275 @geindex Order of elaboration
27276
27277 @geindex Elaboration control
27278
27279 This appendix describes the handling of elaboration code in Ada and GNAT, and
27280 discusses how the order of elaboration of program units can be controlled in
27281 GNAT, either automatically or with explicit programming features.
27282
27283 @menu
27284 * Elaboration Code::
27285 * Elaboration Order::
27286 * Checking the Elaboration Order::
27287 * Controlling the Elaboration Order in Ada::
27288 * Controlling the Elaboration Order in GNAT::
27289 * Mixing Elaboration Models::
27290 * ABE Diagnostics::
27291 * SPARK Diagnostics::
27292 * Elaboration Circularities::
27293 * Resolving Elaboration Circularities::
27294 * Elaboration-related Compiler Switches::
27295 * Summary of Procedures for Elaboration Control::
27296 * Inspecting the Chosen Elaboration Order::
27297
27298 @end menu
27299
27300 @node Elaboration Code,Elaboration Order,,Elaboration Order Handling in GNAT
27301 @anchor{gnat_ugn/elaboration_order_handling_in_gnat elaboration-code}@anchor{22d}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id2}@anchor{22e}
27302 @section Elaboration Code
27303
27304
27305 Ada defines the term @emph{execution} as the process by which a construct achieves
27306 its run-time effect. This process is also referred to as @strong{elaboration} for
27307 declarations and @emph{evaluation} for expressions.
27308
27309 The execution model in Ada allows for certain sections of an Ada program to be
27310 executed prior to execution of the program itself, primarily with the intent of
27311 initializing data. These sections are referred to as @strong{elaboration code}.
27312 Elaboration code is executed as follows:
27313
27314
27315 @itemize *
27316
27317 @item
27318 All partitions of an Ada program are executed in parallel with one another,
27319 possibly in a separate address space, and possibly on a separate computer.
27320
27321 @item
27322 The execution of a partition involves running the environment task for that
27323 partition.
27324
27325 @item
27326 The environment task executes all elaboration code (if available) for all
27327 units within that partition. This code is said to be executed at
27328 @strong{elaboration time}.
27329
27330 @item
27331 The environment task executes the Ada program (if available) for that
27332 partition.
27333 @end itemize
27334
27335 In addition to the Ada terminology, this appendix defines the following terms:
27336
27337
27338 @itemize *
27339
27340 @item
27341 @emph{Invocation}
27342
27343 The act of calling a subprogram, instantiating a generic, or activating a
27344 task.
27345
27346 @item
27347 @emph{Scenario}
27348
27349 A construct that is elaborated or invoked by elaboration code is referred to
27350 as an @emph{elaboration scenario} or simply a @strong{scenario}. GNAT recognizes the
27351 following scenarios:
27352
27353
27354 @itemize -
27355
27356 @item
27357 @code{'Access} of entries, operators, and subprograms
27358
27359 @item
27360 Activation of tasks
27361
27362 @item
27363 Calls to entries, operators, and subprograms
27364
27365 @item
27366 Instantiations of generic templates
27367 @end itemize
27368
27369 @item
27370 @emph{Target}
27371
27372 A construct elaborated by a scenario is referred to as @emph{elaboration target}
27373 or simply @strong{target}. GNAT recognizes the following targets:
27374
27375
27376 @itemize -
27377
27378 @item
27379 For @code{'Access} of entries, operators, and subprograms, the target is the
27380 entry, operator, or subprogram being aliased.
27381
27382 @item
27383 For activation of tasks, the target is the task body
27384
27385 @item
27386 For calls to entries, operators, and subprograms, the target is the entry,
27387 operator, or subprogram being invoked.
27388
27389 @item
27390 For instantiations of generic templates, the target is the generic template
27391 being instantiated.
27392 @end itemize
27393 @end itemize
27394
27395 Elaboration code may appear in two distinct contexts:
27396
27397
27398 @itemize *
27399
27400 @item
27401 @emph{Library level}
27402
27403 A scenario appears at the library level when it is encapsulated by a package
27404 [body] compilation unit, ignoring any other package [body] declarations in
27405 between.
27406
27407 @example
27408 with Server;
27409 package Client is
27410 procedure Proc;
27411
27412 package Nested is
27413 Val : ... := Server.Func;
27414 end Nested;
27415 end Client;
27416 @end example
27417
27418 In the example above, the call to @code{Server.Func} is an elaboration scenario
27419 because it appears at the library level of package @code{Client}. Note that the
27420 declaration of package @code{Nested} is ignored according to the definition
27421 given above. As a result, the call to @code{Server.Func} will be invoked when
27422 the spec of unit @code{Client} is elaborated.
27423
27424 @item
27425 @emph{Package body statements}
27426
27427 A scenario appears within the statement sequence of a package body when it is
27428 bounded by the region starting from the @code{begin} keyword of the package body
27429 and ending at the @code{end} keyword of the package body.
27430
27431 @example
27432 package body Client is
27433 procedure Proc is
27434 begin
27435 ...
27436 end Proc;
27437 begin
27438 Proc;
27439 end Client;
27440 @end example
27441
27442 In the example above, the call to @code{Proc} is an elaboration scenario because
27443 it appears within the statement sequence of package body @code{Client}. As a
27444 result, the call to @code{Proc} will be invoked when the body of @code{Client} is
27445 elaborated.
27446 @end itemize
27447
27448 @node Elaboration Order,Checking the Elaboration Order,Elaboration Code,Elaboration Order Handling in GNAT
27449 @anchor{gnat_ugn/elaboration_order_handling_in_gnat elaboration-order}@anchor{22f}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id3}@anchor{230}
27450 @section Elaboration Order
27451
27452
27453 The sequence by which the elaboration code of all units within a partition is
27454 executed is referred to as @strong{elaboration order}.
27455
27456 Within a single unit, elaboration code is executed in sequential order.
27457
27458 @quotation
27459
27460 @example
27461 package body Client is
27462 Result : ... := Server.Func;
27463
27464 procedure Proc is
27465 package Inst is new Server.Gen;
27466 begin
27467 Inst.Eval (Result);
27468 end Proc;
27469 begin
27470 Proc;
27471 end Client;
27472 @end example
27473 @end quotation
27474
27475 In the example above, the elaboration order within package body @code{Client} is
27476 as follows:
27477
27478
27479 @enumerate
27480
27481 @item
27482 The object declaration of @code{Result} is elaborated.
27483
27484
27485 @itemize *
27486
27487 @item
27488 Function @code{Server.Func} is invoked.
27489 @end itemize
27490
27491 @item
27492 The subprogram body of @code{Proc} is elaborated.
27493
27494 @item
27495 Procedure @code{Proc} is invoked.
27496
27497
27498 @itemize *
27499
27500 @item
27501 Generic unit @code{Server.Gen} is instantiated as @code{Inst}.
27502
27503 @item
27504 Instance @code{Inst} is elaborated.
27505
27506 @item
27507 Procedure @code{Inst.Eval} is invoked.
27508 @end itemize
27509 @end enumerate
27510
27511 The elaboration order of all units within a partition depends on the following
27512 factors:
27513
27514
27515 @itemize *
27516
27517 @item
27518 @emph{with}ed units
27519
27520 @item
27521 parent units
27522
27523 @item
27524 purity of units
27525
27526 @item
27527 preelaborability of units
27528
27529 @item
27530 presence of elaboration-control pragmas
27531
27532 @item
27533 invocations performed in elaboration code
27534 @end itemize
27535
27536 A program may have several elaboration orders depending on its structure.
27537
27538 @quotation
27539
27540 @example
27541 package Server is
27542 function Func (Index : Integer) return Integer;
27543 end Server;
27544 @end example
27545
27546 @example
27547 package body Server is
27548 Results : array (1 .. 5) of Integer := (1, 2, 3, 4, 5);
27549
27550 function Func (Index : Integer) return Integer is
27551 begin
27552 return Results (Index);
27553 end Func;
27554 end Server;
27555 @end example
27556
27557 @example
27558 with Server;
27559 package Client is
27560 Val : constant Integer := Server.Func (3);
27561 end Client;
27562 @end example
27563
27564 @example
27565 with Client;
27566 procedure Main is begin null; end Main;
27567 @end example
27568 @end quotation
27569
27570 The following elaboration order exhibits a fundamental problem referred to as
27571 @emph{access-before-elaboration} or simply @strong{ABE}.
27572
27573 @quotation
27574
27575 @example
27576 spec of Server
27577 spec of Client
27578 body of Server
27579 body of Main
27580 @end example
27581 @end quotation
27582
27583 The elaboration of @code{Server}'s spec materializes function @code{Func}, making it
27584 callable. The elaboration of @code{Client}'s spec elaborates the declaration of
27585 @code{Val}. This invokes function @code{Server.Func}, however the body of
27586 @code{Server.Func} has not been elaborated yet because @code{Server}'s body comes
27587 after @code{Client}'s spec in the elaboration order. As a result, the value of
27588 constant @code{Val} is now undefined.
27589
27590 Without any guarantees from the language, an undetected ABE problem may hinder
27591 proper initialization of data, which in turn may lead to undefined behavior at
27592 run time. To prevent such ABE problems, Ada employs dynamic checks in the same
27593 vein as index or null exclusion checks. A failed ABE check raises exception
27594 @code{Program_Error}.
27595
27596 The following elaboration order avoids the ABE problem and the program can be
27597 successfully elaborated.
27598
27599 @quotation
27600
27601 @example
27602 spec of Server
27603 body of Server
27604 spec of Client
27605 body of Main
27606 @end example
27607 @end quotation
27608
27609 Ada states that a total elaboration order must exist, but it does not define
27610 what this order is. A compiler is thus tasked with choosing a suitable
27611 elaboration order which satisfies the dependencies imposed by @emph{with} clauses,
27612 unit categorization, elaboration-control pragmas, and invocations performed in
27613 elaboration code. Ideally an order that avoids ABE problems should be chosen,
27614 however a compiler may not always find such an order due to complications with
27615 respect to control and data flow.
27616
27617 @node Checking the Elaboration Order,Controlling the Elaboration Order in Ada,Elaboration Order,Elaboration Order Handling in GNAT
27618 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id4}@anchor{231}@anchor{gnat_ugn/elaboration_order_handling_in_gnat checking-the-elaboration-order}@anchor{232}
27619 @section Checking the Elaboration Order
27620
27621
27622 To avoid placing the entire elaboration-order burden on the programmer, Ada
27623 provides three lines of defense:
27624
27625
27626 @itemize *
27627
27628 @item
27629 @emph{Static semantics}
27630
27631 Static semantic rules restrict the possible choice of elaboration order. For
27632 instance, if unit Client @emph{with}s unit Server, then the spec of Server is
27633 always elaborated prior to Client. The same principle applies to child units
27634 - the spec of a parent unit is always elaborated prior to the child unit.
27635
27636 @item
27637 @emph{Dynamic semantics}
27638
27639 Dynamic checks are performed at run time, to ensure that a target is
27640 elaborated prior to a scenario that invokes it, thus avoiding ABE problems.
27641 A failed run-time check raises exception @code{Program_Error}. The following
27642 restrictions apply:
27643
27644
27645 @itemize -
27646
27647 @item
27648 @emph{Restrictions on calls}
27649
27650 An entry, operator, or subprogram can be called from elaboration code only
27651 when the corresponding body has been elaborated.
27652
27653 @item
27654 @emph{Restrictions on instantiations}
27655
27656 A generic unit can be instantiated by elaboration code only when the
27657 corresponding body has been elaborated.
27658
27659 @item
27660 @emph{Restrictions on task activation}
27661
27662 A task can be activated by elaboration code only when the body of the
27663 associated task type has been elaborated.
27664 @end itemize
27665
27666 The restrictions above can be summarized by the following rule:
27667
27668 @emph{If a target has a body, then this body must be elaborated prior to the
27669 scenario that invokes the target.}
27670
27671 @item
27672 @emph{Elaboration control}
27673
27674 Pragmas are provided for the programmer to specify the desired elaboration
27675 order.
27676 @end itemize
27677
27678 @node Controlling the Elaboration Order in Ada,Controlling the Elaboration Order in GNAT,Checking the Elaboration Order,Elaboration Order Handling in GNAT
27679 @anchor{gnat_ugn/elaboration_order_handling_in_gnat controlling-the-elaboration-order-in-ada}@anchor{233}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id5}@anchor{234}
27680 @section Controlling the Elaboration Order in Ada
27681
27682
27683 Ada provides several idioms and pragmas to aid the programmer with specifying
27684 the desired elaboration order and avoiding ABE problems altogether.
27685
27686
27687 @itemize *
27688
27689 @item
27690 @emph{Packages without a body}
27691
27692 A library package which does not require a completing body does not suffer
27693 from ABE problems.
27694
27695 @example
27696 package Pack is
27697 generic
27698 type Element is private;
27699 package Containers is
27700 type Element_Array is array (1 .. 10) of Element;
27701 end Containers;
27702 end Pack;
27703 @end example
27704
27705 In the example above, package @code{Pack} does not require a body because it
27706 does not contain any constructs which require completion in a body. As a
27707 result, generic @code{Pack.Containers} can be instantiated without encountering
27708 any ABE problems.
27709 @end itemize
27710
27711 @geindex pragma Pure
27712
27713
27714 @itemize *
27715
27716 @item
27717 @emph{pragma Pure}
27718
27719 Pragma @code{Pure} places sufficient restrictions on a unit to guarantee that no
27720 scenario within the unit can result in an ABE problem.
27721 @end itemize
27722
27723 @geindex pragma Preelaborate
27724
27725
27726 @itemize *
27727
27728 @item
27729 @emph{pragma Preelaborate}
27730
27731 Pragma @code{Preelaborate} is slightly less restrictive than pragma @code{Pure},
27732 but still strong enough to prevent ABE problems within a unit.
27733 @end itemize
27734
27735 @geindex pragma Elaborate_Body
27736
27737
27738 @itemize *
27739
27740 @item
27741 @emph{pragma Elaborate_Body}
27742
27743 Pragma @code{Elaborate_Body} requires that the body of a unit is elaborated
27744 immediately after its spec. This restriction guarantees that no client
27745 scenario can invoke a server target before the target body has been
27746 elaborated because the spec and body are effectively "glued" together.
27747
27748 @example
27749 package Server is
27750 pragma Elaborate_Body;
27751
27752 function Func return Integer;
27753 end Server;
27754 @end example
27755
27756 @example
27757 package body Server is
27758 function Func return Integer is
27759 begin
27760 ...
27761 end Func;
27762 end Server;
27763 @end example
27764
27765 @example
27766 with Server;
27767 package Client is
27768 Val : constant Integer := Server.Func;
27769 end Client;
27770 @end example
27771
27772 In the example above, pragma @code{Elaborate_Body} guarantees the following
27773 elaboration order:
27774
27775 @example
27776 spec of Server
27777 body of Server
27778 spec of Client
27779 @end example
27780
27781 because the spec of @code{Server} must be elaborated prior to @code{Client} by
27782 virtue of the @emph{with} clause, and in addition the body of @code{Server} must be
27783 elaborated immediately after the spec of @code{Server}.
27784
27785 Removing pragma @code{Elaborate_Body} could result in the following incorrect
27786 elaboration order:
27787
27788 @example
27789 spec of Server
27790 spec of Client
27791 body of Server
27792 @end example
27793
27794 where @code{Client} invokes @code{Server.Func}, but the body of @code{Server.Func} has
27795 not been elaborated yet.
27796 @end itemize
27797
27798 The pragmas outlined above allow a server unit to guarantee safe elaboration
27799 use by client units. Thus it is a good rule to mark units as @code{Pure} or
27800 @code{Preelaborate}, and if this is not possible, mark them as @code{Elaborate_Body}.
27801
27802 There are however situations where @code{Pure}, @code{Preelaborate}, and
27803 @code{Elaborate_Body} are not applicable. Ada provides another set of pragmas for
27804 use by client units to help ensure the elaboration safety of server units they
27805 depend on.
27806
27807 @geindex pragma Elaborate (Unit)
27808
27809
27810 @itemize *
27811
27812 @item
27813 @emph{pragma Elaborate (Unit)}
27814
27815 Pragma @code{Elaborate} can be placed in the context clauses of a unit, after a
27816 @emph{with} clause. It guarantees that both the spec and body of its argument will
27817 be elaborated prior to the unit with the pragma. Note that other unrelated
27818 units may be elaborated in between the spec and the body.
27819
27820 @example
27821 package Server is
27822 function Func return Integer;
27823 end Server;
27824 @end example
27825
27826 @example
27827 package body Server is
27828 function Func return Integer is
27829 begin
27830 ...
27831 end Func;
27832 end Server;
27833 @end example
27834
27835 @example
27836 with Server;
27837 pragma Elaborate (Server);
27838 package Client is
27839 Val : constant Integer := Server.Func;
27840 end Client;
27841 @end example
27842
27843 In the example above, pragma @code{Elaborate} guarantees the following
27844 elaboration order:
27845
27846 @example
27847 spec of Server
27848 body of Server
27849 spec of Client
27850 @end example
27851
27852 Removing pragma @code{Elaborate} could result in the following incorrect
27853 elaboration order:
27854
27855 @example
27856 spec of Server
27857 spec of Client
27858 body of Server
27859 @end example
27860
27861 where @code{Client} invokes @code{Server.Func}, but the body of @code{Server.Func}
27862 has not been elaborated yet.
27863 @end itemize
27864
27865 @geindex pragma Elaborate_All (Unit)
27866
27867
27868 @itemize *
27869
27870 @item
27871 @emph{pragma Elaborate_All (Unit)}
27872
27873 Pragma @code{Elaborate_All} is placed in the context clauses of a unit, after
27874 a @emph{with} clause. It guarantees that both the spec and body of its argument
27875 will be elaborated prior to the unit with the pragma, as well as all units
27876 @emph{with}ed by the spec and body of the argument, recursively. Note that other
27877 unrelated units may be elaborated in between the spec and the body.
27878
27879 @example
27880 package Math is
27881 function Factorial (Val : Natural) return Natural;
27882 end Math;
27883 @end example
27884
27885 @example
27886 package body Math is
27887 function Factorial (Val : Natural) return Natural is
27888 begin
27889 ...;
27890 end Factorial;
27891 end Math;
27892 @end example
27893
27894 @example
27895 package Computer is
27896 type Operation_Kind is (None, Op_Factorial);
27897
27898 function Compute
27899 (Val : Natural;
27900 Op : Operation_Kind) return Natural;
27901 end Computer;
27902 @end example
27903
27904 @example
27905 with Math;
27906 package body Computer is
27907 function Compute
27908 (Val : Natural;
27909 Op : Operation_Kind) return Natural
27910 is
27911 if Op = Op_Factorial then
27912 return Math.Factorial (Val);
27913 end if;
27914
27915 return 0;
27916 end Compute;
27917 end Computer;
27918 @end example
27919
27920 @example
27921 with Computer;
27922 pragma Elaborate_All (Computer);
27923 package Client is
27924 Val : constant Natural :=
27925 Computer.Compute (123, Computer.Op_Factorial);
27926 end Client;
27927 @end example
27928
27929 In the example above, pragma @code{Elaborate_All} can result in the following
27930 elaboration order:
27931
27932 @example
27933 spec of Math
27934 body of Math
27935 spec of Computer
27936 body of Computer
27937 spec of Client
27938 @end example
27939
27940 Note that there are several allowable suborders for the specs and bodies of
27941 @code{Math} and @code{Computer}, but the point is that these specs and bodies will
27942 be elaborated prior to @code{Client}.
27943
27944 Removing pragma @code{Elaborate_All} could result in the following incorrect
27945 elaboration order:
27946
27947 @example
27948 spec of Math
27949 spec of Computer
27950 body of Computer
27951 spec of Client
27952 body of Math
27953 @end example
27954
27955 where @code{Client} invokes @code{Computer.Compute}, which in turn invokes
27956 @code{Math.Factorial}, but the body of @code{Math.Factorial} has not been
27957 elaborated yet.
27958 @end itemize
27959
27960 All pragmas shown above can be summarized by the following rule:
27961
27962 @emph{If a client unit elaborates a server target directly or indirectly, then if
27963 the server unit requires a body and does not have pragma Pure, Preelaborate,
27964 or Elaborate_Body, then the client unit should have pragma Elaborate or
27965 Elaborate_All for the server unit.}
27966
27967 If the rule outlined above is not followed, then a program may fall in one of
27968 the following states:
27969
27970
27971 @itemize *
27972
27973 @item
27974 @emph{No elaboration order exists}
27975
27976 In this case a compiler must diagnose the situation, and refuse to build an
27977 executable program.
27978
27979 @item
27980 @emph{One or more incorrect elaboration orders exist}
27981
27982 In this case a compiler can build an executable program, but
27983 @code{Program_Error} will be raised when the program is run.
27984
27985 @item
27986 @emph{Several elaboration orders exist, some correct, some incorrect}
27987
27988 In this case the programmer has not controlled the elaboration order. As a
27989 result, a compiler may or may not pick one of the correct orders, and the
27990 program may or may not raise @code{Program_Error} when it is run. This is the
27991 worst possible state because the program may fail on another compiler, or
27992 even another version of the same compiler.
27993
27994 @item
27995 @emph{One or more correct orders exist}
27996
27997 In this case a compiler can build an executable program, and the program is
27998 run successfully. This state may be guaranteed by following the outlined
27999 rules, or may be the result of good program architecture.
28000 @end itemize
28001
28002 Note that one additional advantage of using @code{Elaborate} and @code{Elaborate_All}
28003 is that the program continues to stay in the last state (one or more correct
28004 orders exist) even if maintenance changes the bodies of targets.
28005
28006 @node Controlling the Elaboration Order in GNAT,Mixing Elaboration Models,Controlling the Elaboration Order in Ada,Elaboration Order Handling in GNAT
28007 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id6}@anchor{235}@anchor{gnat_ugn/elaboration_order_handling_in_gnat controlling-the-elaboration-order-in-gnat}@anchor{236}
28008 @section Controlling the Elaboration Order in GNAT
28009
28010
28011 In addition to Ada semantics and rules synthesized from them, GNAT offers
28012 three elaboration models to aid the programmer with specifying the correct
28013 elaboration order and to diagnose elaboration problems.
28014
28015 @geindex Dynamic elaboration model
28016
28017
28018 @itemize *
28019
28020 @item
28021 @emph{Dynamic elaboration model}
28022
28023 This is the most permissive of the three elaboration models and emulates the
28024 behavior specified by the Ada Reference Manual. When the dynamic model is in
28025 effect, GNAT makes the following assumptions:
28026
28027
28028 @itemize -
28029
28030 @item
28031 All code within all units in a partition is considered to be elaboration
28032 code.
28033
28034 @item
28035 Some of the invocations in elaboration code may not take place at run time
28036 due to conditional execution.
28037 @end itemize
28038
28039 GNAT performs extensive diagnostics on a unit-by-unit basis for all scenarios
28040 that invoke internal targets. In addition, GNAT generates run-time checks for
28041 all external targets and for all scenarios that may exhibit ABE problems.
28042
28043 The elaboration order is obtained by honoring all @emph{with} clauses, purity and
28044 preelaborability of units, and elaboration-control pragmas. The dynamic model
28045 attempts to take all invocations in elaboration code into account. If an
28046 invocation leads to a circularity, GNAT ignores the invocation based on the
28047 assumptions stated above. An order obtained using the dynamic model may fail
28048 an ABE check at run time when GNAT ignored an invocation.
28049
28050 The dynamic model is enabled with compiler switch @code{-gnatE}.
28051 @end itemize
28052
28053 @geindex Static elaboration model
28054
28055
28056 @itemize *
28057
28058 @item
28059 @emph{Static elaboration model}
28060
28061 This is the middle ground of the three models. When the static model is in
28062 effect, GNAT makes the following assumptions:
28063
28064
28065 @itemize -
28066
28067 @item
28068 Only code at the library level and in package body statements within all
28069 units in a partition is considered to be elaboration code.
28070
28071 @item
28072 All invocations in elaboration will take place at run time, regardless of
28073 conditional execution.
28074 @end itemize
28075
28076 GNAT performs extensive diagnostics on a unit-by-unit basis for all scenarios
28077 that invoke internal targets. In addition, GNAT generates run-time checks for
28078 all external targets and for all scenarios that may exhibit ABE problems.
28079
28080 The elaboration order is obtained by honoring all @emph{with} clauses, purity and
28081 preelaborability of units, presence of elaboration-control pragmas, and all
28082 invocations in elaboration code. An order obtained using the static model is
28083 guaranteed to be ABE problem-free, excluding dispatching calls and
28084 access-to-subprogram types.
28085
28086 The static model is the default model in GNAT.
28087 @end itemize
28088
28089 @geindex SPARK elaboration model
28090
28091
28092 @itemize *
28093
28094 @item
28095 @emph{SPARK elaboration model}
28096
28097 This is the most conservative of the three models and enforces the SPARK
28098 rules of elaboration as defined in the SPARK Reference Manual, section 7.7.
28099 The SPARK model is in effect only when a scenario and a target reside in a
28100 region subject to @code{SPARK_Mode On}, otherwise the dynamic or static model
28101 is in effect.
28102
28103 The SPARK model is enabled with compiler switch @code{-gnatd.v}.
28104 @end itemize
28105
28106 @geindex Legacy elaboration models
28107
28108
28109 @itemize *
28110
28111 @item
28112 @emph{Legacy elaboration models}
28113
28114 In addition to the three elaboration models outlined above, GNAT provides the
28115 following legacy models:
28116
28117
28118 @itemize -
28119
28120 @item
28121 @cite{Legacy elaboration-checking model} available in pre-18.x versions of GNAT.
28122 This model is enabled with compiler switch @code{-gnatH}.
28123
28124 @item
28125 @cite{Legacy elaboration-order model} available in pre-20.x versions of GNAT.
28126 This model is enabled with binder switch @code{-H}.
28127 @end itemize
28128 @end itemize
28129
28130 @geindex Relaxed elaboration mode
28131
28132 The dynamic, legacy, and static models can be relaxed using compiler switch
28133 @code{-gnatJ}, making them more permissive. Note that in this mode, GNAT
28134 may not diagnose certain elaboration issues or install run-time checks.
28135
28136 @node Mixing Elaboration Models,ABE Diagnostics,Controlling the Elaboration Order in GNAT,Elaboration Order Handling in GNAT
28137 @anchor{gnat_ugn/elaboration_order_handling_in_gnat mixing-elaboration-models}@anchor{237}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id7}@anchor{238}
28138 @section Mixing Elaboration Models
28139
28140
28141 It is possible to mix units compiled with a different elaboration model,
28142 however the following rules must be observed:
28143
28144
28145 @itemize *
28146
28147 @item
28148 A client unit compiled with the dynamic model can only @emph{with} a server unit
28149 that meets at least one of the following criteria:
28150
28151
28152 @itemize -
28153
28154 @item
28155 The server unit is compiled with the dynamic model.
28156
28157 @item
28158 The server unit is a GNAT implementation unit from the @code{Ada}, @code{GNAT},
28159 @code{Interfaces}, or @code{System} hierarchies.
28160
28161 @item
28162 The server unit has pragma @code{Pure} or @code{Preelaborate}.
28163
28164 @item
28165 The client unit has an explicit @code{Elaborate_All} pragma for the server
28166 unit.
28167 @end itemize
28168 @end itemize
28169
28170 These rules ensure that elaboration checks are not omitted. If the rules are
28171 violated, the binder emits a warning:
28172
28173 @quotation
28174
28175 @example
28176 warning: "x.ads" has dynamic elaboration checks and with's
28177 warning: "y.ads" which has static elaboration checks
28178 @end example
28179 @end quotation
28180
28181 The warnings can be suppressed by binder switch @code{-ws}.
28182
28183 @node ABE Diagnostics,SPARK Diagnostics,Mixing Elaboration Models,Elaboration Order Handling in GNAT
28184 @anchor{gnat_ugn/elaboration_order_handling_in_gnat abe-diagnostics}@anchor{239}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id8}@anchor{23a}
28185 @section ABE Diagnostics
28186
28187
28188 GNAT performs extensive diagnostics on a unit-by-unit basis for all scenarios
28189 that invoke internal targets, regardless of whether the dynamic, SPARK, or
28190 static model is in effect.
28191
28192 Note that GNAT emits warnings rather than hard errors whenever it encounters an
28193 elaboration problem. This is because the elaboration model in effect may be too
28194 conservative, or a particular scenario may not be invoked due conditional
28195 execution. The warnings can be suppressed selectively with @code{pragma Warnings
28196 (Off)} or globally with compiler switch @code{-gnatwL}.
28197
28198 A @emph{guaranteed ABE} arises when the body of a target is not elaborated early
28199 enough, and causes @emph{all} scenarios that directly invoke the target to fail.
28200
28201 @quotation
28202
28203 @example
28204 package body Guaranteed_ABE is
28205 function ABE return Integer;
28206
28207 Val : constant Integer := ABE;
28208
28209 function ABE return Integer is
28210 begin
28211 ...
28212 end ABE;
28213 end Guaranteed_ABE;
28214 @end example
28215 @end quotation
28216
28217 In the example above, the elaboration of @code{Guaranteed_ABE}'s body elaborates
28218 the declaration of @code{Val}. This invokes function @code{ABE}, however the body of
28219 @code{ABE} has not been elaborated yet. GNAT emits the following diagnostic:
28220
28221 @quotation
28222
28223 @example
28224 4. Val : constant Integer := ABE;
28225 |
28226 >>> warning: cannot call "ABE" before body seen
28227 >>> warning: Program_Error will be raised at run time
28228 @end example
28229 @end quotation
28230
28231 A @emph{conditional ABE} arises when the body of a target is not elaborated early
28232 enough, and causes @emph{some} scenarios that directly invoke the target to fail.
28233
28234 @quotation
28235
28236 @example
28237 1. package body Conditional_ABE is
28238 2. procedure Force_Body is null;
28239 3.
28240 4. generic
28241 5. with function Func return Integer;
28242 6. package Gen is
28243 7. Val : constant Integer := Func;
28244 8. end Gen;
28245 9.
28246 10. function ABE return Integer;
28247 11.
28248 12. function Cause_ABE return Boolean is
28249 13. package Inst is new Gen (ABE);
28250 14. begin
28251 15. ...
28252 16. end Cause_ABE;
28253 17.
28254 18. Val : constant Boolean := Cause_ABE;
28255 19.
28256 20. function ABE return Integer is
28257 21. begin
28258 22. ...
28259 23. end ABE;
28260 24.
28261 25. Safe : constant Boolean := Cause_ABE;
28262 26. end Conditional_ABE;
28263 @end example
28264 @end quotation
28265
28266 In the example above, the elaboration of package body @code{Conditional_ABE}
28267 elaborates the declaration of @code{Val}. This invokes function @code{Cause_ABE},
28268 which instantiates generic unit @code{Gen} as @code{Inst}. The elaboration of
28269 @code{Inst} invokes function @code{ABE}, however the body of @code{ABE} has not been
28270 elaborated yet. GNAT emits the following diagnostic:
28271
28272 @quotation
28273
28274 @example
28275 13. package Inst is new Gen (ABE);
28276 |
28277 >>> warning: in instantiation at line 7
28278 >>> warning: cannot call "ABE" before body seen
28279 >>> warning: Program_Error may be raised at run time
28280 >>> warning: body of unit "Conditional_ABE" elaborated
28281 >>> warning: function "Cause_ABE" called at line 18
28282 >>> warning: function "ABE" called at line 7, instance at line 13
28283 @end example
28284 @end quotation
28285
28286 Note that the same ABE problem does not occur with the elaboration of
28287 declaration @code{Safe} because the body of function @code{ABE} has already been
28288 elaborated at that point.
28289
28290 @node SPARK Diagnostics,Elaboration Circularities,ABE Diagnostics,Elaboration Order Handling in GNAT
28291 @anchor{gnat_ugn/elaboration_order_handling_in_gnat spark-diagnostics}@anchor{23b}@anchor{gnat_ugn/elaboration_order_handling_in_gnat id9}@anchor{23c}
28292 @section SPARK Diagnostics
28293
28294
28295 GNAT enforces the SPARK rules of elaboration as defined in the SPARK Reference
28296 Manual section 7.7 when compiler switch @code{-gnatd.v} is in effect. Note
28297 that GNAT emits hard errors whenever it encounters a violation of the SPARK
28298 rules.
28299
28300 @quotation
28301
28302 @example
28303 1. with Server;
28304 2. package body SPARK_Diagnostics with SPARK_Mode is
28305 3. Val : constant Integer := Server.Func;
28306 |
28307 >>> call to "Func" during elaboration in SPARK
28308 >>> unit "SPARK_Diagnostics" requires pragma "Elaborate_All" for "Server"
28309 >>> body of unit "SPARK_Model" elaborated
28310 >>> function "Func" called at line 3
28311
28312 4. end SPARK_Diagnostics;
28313 @end example
28314 @end quotation
28315
28316 @node Elaboration Circularities,Resolving Elaboration Circularities,SPARK Diagnostics,Elaboration Order Handling in GNAT
28317 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id10}@anchor{23d}@anchor{gnat_ugn/elaboration_order_handling_in_gnat elaboration-circularities}@anchor{23e}
28318 @section Elaboration Circularities
28319
28320
28321 An @strong{elaboration circularity} occurs whenever the elaboration of a set of
28322 units enters a deadlocked state, where each unit is waiting for another unit
28323 to be elaborated. This situation may be the result of improper use of @emph{with}
28324 clauses, elaboration-control pragmas, or invocations in elaboration code.
28325
28326 The following example exhibits an elaboration circularity.
28327
28328 @quotation
28329
28330 @example
28331 with B; pragma Elaborate (B);
28332 package A is
28333 end A;
28334 @end example
28335
28336 @example
28337 package B is
28338 procedure Force_Body;
28339 end B;
28340 @end example
28341
28342 @example
28343 with C;
28344 package body B is
28345 procedure Force_Body is null;
28346
28347 Elab : constant Integer := C.Func;
28348 end B;
28349 @end example
28350
28351 @example
28352 package C is
28353 function Func return Integer;
28354 end C;
28355 @end example
28356
28357 @example
28358 with A;
28359 package body C is
28360 function Func return Integer is
28361 begin
28362 ...
28363 end Func;
28364 end C;
28365 @end example
28366 @end quotation
28367
28368 The binder emits the following diagnostic:
28369
28370 @quotation
28371
28372 @example
28373 error: Elaboration circularity detected
28374 info:
28375 info: Reason:
28376 info:
28377 info: unit "a (spec)" depends on its own elaboration
28378 info:
28379 info: Circularity:
28380 info:
28381 info: unit "a (spec)" has with clause and pragma Elaborate for unit "b (spec)"
28382 info: unit "b (body)" is in the closure of pragma Elaborate
28383 info: unit "b (body)" invokes a construct of unit "c (body)" at elaboration time
28384 info: unit "c (body)" has with clause for unit "a (spec)"
28385 info:
28386 info: Suggestions:
28387 info:
28388 info: remove pragma Elaborate for unit "b (body)" in unit "a (spec)"
28389 info: use the dynamic elaboration model (compiler switch -gnatE)
28390 @end example
28391 @end quotation
28392
28393 The diagnostic consist of the following sections:
28394
28395
28396 @itemize *
28397
28398 @item
28399 Reason
28400
28401 This section provides a short explanation describing why the set of units
28402 could not be ordered.
28403
28404 @item
28405 Circularity
28406
28407 This section enumerates the units comprising the deadlocked set, along with
28408 their interdependencies.
28409
28410 @item
28411 Suggestions
28412
28413 This section enumerates various tactics for eliminating the circularity.
28414 @end itemize
28415
28416 @node Resolving Elaboration Circularities,Elaboration-related Compiler Switches,Elaboration Circularities,Elaboration Order Handling in GNAT
28417 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id11}@anchor{23f}@anchor{gnat_ugn/elaboration_order_handling_in_gnat resolving-elaboration-circularities}@anchor{240}
28418 @section Resolving Elaboration Circularities
28419
28420
28421 The most desirable option from the point of view of long-term maintenance is to
28422 rearrange the program so that the elaboration problems are avoided. One useful
28423 technique is to place the elaboration code into separate child packages.
28424 Another is to move some of the initialization code to explicitly invoked
28425 subprograms, where the program controls the order of initialization explicitly.
28426 Although this is the most desirable option, it may be impractical and involve
28427 too much modification, especially in the case of complex legacy code.
28428
28429 When faced with an elaboration circularity, the programmer should also consider
28430 the tactics given in the suggestions section of the circularity diagnostic.
28431 Depending on the units involved in the circularity, their @emph{with} clauses,
28432 purity, preelaborability, presence of elaboration-control pragmas and
28433 invocations at elaboration time, the binder may suggest one or more of the
28434 following tactics to eliminate the circularity:
28435
28436
28437 @itemize *
28438
28439 @item
28440 Pragma Elaborate elimination
28441
28442 @example
28443 remove pragma Elaborate for unit "..." in unit "..."
28444 @end example
28445
28446 This tactic is suggested when the binder has determined that pragma
28447 @code{Elaborate}:
28448
28449
28450 @itemize -
28451
28452 @item
28453 Prevents a set of units from being elaborated.
28454
28455 @item
28456 The removal of the pragma will not eliminate the semantic effects of the
28457 pragma. In other words, the argument of the pragma will still be elaborated
28458 prior to the unit containing the pragma.
28459
28460 @item
28461 The removal of the pragma will enable the successful ordering of the units.
28462 @end itemize
28463
28464 The programmer should remove the pragma as advised, and rebuild the program.
28465
28466 @item
28467 Pragma Elaborate_All elimination
28468
28469 @example
28470 remove pragma Elaborate_All for unit "..." in unit "..."
28471 @end example
28472
28473 This tactic is suggested when the binder has determined that pragma
28474 @code{Elaborate_All}:
28475
28476
28477 @itemize -
28478
28479 @item
28480 Prevents a set of units from being elaborated.
28481
28482 @item
28483 The removal of the pragma will not eliminate the semantic effects of the
28484 pragma. In other words, the argument of the pragma along with its @emph{with}
28485 closure will still be elaborated prior to the unit containing the pragma.
28486
28487 @item
28488 The removal of the pragma will enable the successful ordering of the units.
28489 @end itemize
28490
28491 The programmer should remove the pragma as advised, and rebuild the program.
28492
28493 @item
28494 Pragma Elaborate_All downgrade
28495
28496 @example
28497 change pragma Elaborate_All for unit "..." to Elaborate in unit "..."
28498 @end example
28499
28500 This tactic is always suggested with the pragma @code{Elaborate_All} elimination
28501 tactic. It offers a different alernative of guaranteeing that the argument of
28502 the pragma will still be elaborated prior to the unit containing the pragma.
28503
28504 The programmer should update the pragma as advised, and rebuild the program.
28505
28506 @item
28507 Pragma Elaborate_Body elimination
28508
28509 @example
28510 remove pragma Elaborate_Body in unit "..."
28511 @end example
28512
28513 This tactic is suggested when the binder has determined that pragma
28514 @code{Elaborate_Body}:
28515
28516
28517 @itemize -
28518
28519 @item
28520 Prevents a set of units from being elaborated.
28521
28522 @item
28523 The removal of the pragma will enable the successful ordering of the units.
28524 @end itemize
28525
28526 Note that the binder cannot determine whether the pragma is required for
28527 other purposes, such as guaranteeing the initialization of a variable
28528 declared in the spec by elaboration code in the body.
28529
28530 The programmer should remove the pragma as advised, and rebuild the program.
28531
28532 @item
28533 Use of pragma Restrictions
28534
28535 @example
28536 use pragma Restrictions (No_Entry_Calls_In_Elaboration_Code)
28537 @end example
28538
28539 This tactic is suggested when the binder has determined that a task
28540 activation at elaboration time:
28541
28542
28543 @itemize -
28544
28545 @item
28546 Prevents a set of units from being elaborated.
28547 @end itemize
28548
28549 Note that the binder cannot determine with certainty whether the task will
28550 block at elaboration time.
28551
28552 The programmer should create a configuration file, place the pragma within,
28553 update the general compilation arguments, and rebuild the program.
28554
28555 @item
28556 Use of dynamic elaboration model
28557
28558 @example
28559 use the dynamic elaboration model (compiler switch -gnatE)
28560 @end example
28561
28562 This tactic is suggested when the binder has determined that an invocation at
28563 elaboration time:
28564
28565
28566 @itemize -
28567
28568 @item
28569 Prevents a set of units from being elaborated.
28570
28571 @item
28572 The use of the dynamic model will enable the successful ordering of the
28573 units.
28574 @end itemize
28575
28576 The programmer has two options:
28577
28578
28579 @itemize -
28580
28581 @item
28582 Determine the units involved in the invocation using the detailed
28583 invocation information, and add compiler switch @code{-gnatE} to the
28584 compilation arguments of selected files only. This approach will yield
28585 safer elaboration orders compared to the other option because it will
28586 minimize the opportunities presented to the dynamic model for ignoring
28587 invocations.
28588
28589 @item
28590 Add compiler switch @code{-gnatE} to the general compilation arguments.
28591 @end itemize
28592
28593 @item
28594 Use of detailed invocation information
28595
28596 @example
28597 use detailed invocation information (compiler switch -gnatd_F)
28598 @end example
28599
28600 This tactic is always suggested with the use of the dynamic model tactic. It
28601 causes the circularity section of the circularity diagnostic to describe the
28602 flow of elaboration code from a unit to a unit, enumerating all such paths in
28603 the process.
28604
28605 The programmer should analyze this information to determine which units
28606 should be compiled with the dynamic model.
28607
28608 @item
28609 Forced-dependency elimination
28610
28611 @example
28612 remove the dependency of unit "..." on unit "..." from the argument of switch -f
28613 @end example
28614
28615 This tactic is suggested when the binder has determined that a dependency
28616 present in the forced-elaboration-order file indicated by binder switch
28617 @code{-f}:
28618
28619
28620 @itemize -
28621
28622 @item
28623 Prevents a set of units from being elaborated.
28624
28625 @item
28626 The removal of the dependency will enable the successful ordering of the
28627 units.
28628 @end itemize
28629
28630 The programmer should edit the forced-elaboration-order file, remove the
28631 dependency, and rebind the program.
28632
28633 @item
28634 All forced-dependency elimination
28635
28636 @example
28637 remove switch -f
28638 @end example
28639
28640 This tactic is suggested in case editing the forced-elaboration-order file is
28641 not an option.
28642
28643 The programmer should remove binder switch @code{-f} from the binder
28644 arguments, and rebind.
28645
28646 @item
28647 Multiple-circularities diagnostic
28648
28649 @example
28650 diagnose all circularities (binder switch -d_C)
28651 @end example
28652
28653 By default, the binder will diagnose only the highest-precedence circularity.
28654 If the program contains multiple circularities, the binder will suggest the
28655 use of binder switch @code{-d_C} in order to obtain the diagnostics of all
28656 circularities.
28657
28658 The programmer should add binder switch @code{-d_C} to the binder
28659 arguments, and rebind.
28660 @end itemize
28661
28662 If none of the tactics suggested by the binder eliminate the elaboration
28663 circularity, the programmer should consider using one of the legacy elaboration
28664 models, in the following order:
28665
28666
28667 @itemize *
28668
28669 @item
28670 Use the pre-20.x legacy elaboration-order model, with binder switch
28671 @code{-H}.
28672
28673 @item
28674 Use both pre-18.x and pre-20.x legacy elaboration models, with compiler
28675 switch @code{-gnatH} and binder switch @code{-H}.
28676
28677 @item
28678 Use the relaxed static-elaboration model, with compiler switches
28679 @code{-gnatH} @code{-gnatJ} and binder switch @code{-H}.
28680
28681 @item
28682 Use the relaxed dynamic-elaboration model, with compiler switches
28683 @code{-gnatH} @code{-gnatJ} @code{-gnatE} and binder switch
28684 @code{-H}.
28685 @end itemize
28686
28687 @node Elaboration-related Compiler Switches,Summary of Procedures for Elaboration Control,Resolving Elaboration Circularities,Elaboration Order Handling in GNAT
28688 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id12}@anchor{241}@anchor{gnat_ugn/elaboration_order_handling_in_gnat elaboration-related-compiler-switches}@anchor{242}
28689 @section Elaboration-related Compiler Switches
28690
28691
28692 GNAT has several switches that affect the elaboration model and consequently
28693 the elaboration order chosen by the binder.
28694
28695 @geindex -gnatE (gnat)
28696
28697
28698 @table @asis
28699
28700 @item @code{-gnatE}
28701
28702 Dynamic elaboration checking mode enabled
28703
28704 When this switch is in effect, GNAT activates the dynamic model.
28705 @end table
28706
28707 @geindex -gnatel (gnat)
28708
28709
28710 @table @asis
28711
28712 @item @code{-gnatel}
28713
28714 Turn on info messages on generated Elaborate[_All] pragmas
28715
28716 This switch is only applicable to the pre-20.x legacy elaboration models.
28717 The post-20.x elaboration model no longer relies on implicitly generated
28718 @code{Elaborate} and @code{Elaborate_All} pragmas to order units.
28719
28720 When this switch is in effect, GNAT will emit the following supplementary
28721 information depending on the elaboration model in effect.
28722
28723
28724 @itemize -
28725
28726 @item
28727 @emph{Dynamic model}
28728
28729 GNAT will indicate missing @code{Elaborate} and @code{Elaborate_All} pragmas for
28730 all library-level scenarios within the partition.
28731
28732 @item
28733 @emph{Static model}
28734
28735 GNAT will indicate all scenarios invoked during elaboration. In addition,
28736 it will provide detailed traceback when an implicit @code{Elaborate} or
28737 @code{Elaborate_All} pragma is generated.
28738
28739 @item
28740 @emph{SPARK model}
28741
28742 GNAT will indicate how an elaboration requirement is met by the context of
28743 a unit. This diagnostic requires compiler switch @code{-gnatd.v}.
28744
28745 @example
28746 1. with Server; pragma Elaborate_All (Server);
28747 2. package Client with SPARK_Mode is
28748 3. Val : constant Integer := Server.Func;
28749 |
28750 >>> info: call to "Func" during elaboration in SPARK
28751 >>> info: "Elaborate_All" requirement for unit "Server" met by pragma at line 1
28752
28753 4. end Client;
28754 @end example
28755 @end itemize
28756 @end table
28757
28758 @geindex -gnatH (gnat)
28759
28760
28761 @table @asis
28762
28763 @item @code{-gnatH}
28764
28765 Legacy elaboration checking mode enabled
28766
28767 When this switch is in effect, GNAT will utilize the pre-18.x elaboration
28768 model.
28769 @end table
28770
28771 @geindex -gnatJ (gnat)
28772
28773
28774 @table @asis
28775
28776 @item @code{-gnatJ}
28777
28778 Relaxed elaboration checking mode enabled
28779
28780 When this switch is in effect, GNAT will not process certain scenarios,
28781 resulting in a more permissive elaboration model. Note that this may
28782 eliminate some diagnostics and run-time checks.
28783 @end table
28784
28785 @geindex -gnatw.f (gnat)
28786
28787
28788 @table @asis
28789
28790 @item @code{-gnatw.f}
28791
28792 Turn on warnings for suspicious Subp'Access
28793
28794 When this switch is in effect, GNAT will treat @code{'Access} of an entry,
28795 operator, or subprogram as a potential call to the target and issue warnings:
28796
28797 @example
28798 1. package body Attribute_Call is
28799 2. function Func return Integer;
28800 3. type Func_Ptr is access function return Integer;
28801 4.
28802 5. Ptr : constant Func_Ptr := Func'Access;
28803 |
28804 >>> warning: "Access" attribute of "Func" before body seen
28805 >>> warning: possible Program_Error on later references
28806 >>> warning: body of unit "Attribute_Call" elaborated
28807 >>> warning: "Access" of "Func" taken at line 5
28808
28809 6.
28810 7. function Func return Integer is
28811 8. begin
28812 9. ...
28813 10. end Func;
28814 11. end Attribute_Call;
28815 @end example
28816
28817 In the example above, the elaboration of declaration @code{Ptr} is assigned
28818 @code{Func'Access} before the body of @code{Func} has been elaborated.
28819 @end table
28820
28821 @geindex -gnatwl (gnat)
28822
28823
28824 @table @asis
28825
28826 @item @code{-gnatwl}
28827
28828 Turn on warnings for elaboration problems
28829
28830 When this switch is in effect, GNAT emits diagnostics in the form of warnings
28831 concerning various elaboration problems. The warnings are enabled by default.
28832 The switch is provided in case all warnings are suppressed, but elaboration
28833 warnings are still desired.
28834
28835 @item @code{-gnatwL}
28836
28837 Turn off warnings for elaboration problems
28838
28839 When this switch is in effect, GNAT no longer emits any diagnostics in the
28840 form of warnings. Selective suppression of elaboration problems is possible
28841 using @code{pragma Warnings (Off)}.
28842
28843 @example
28844 1. package body Selective_Suppression is
28845 2. function ABE return Integer;
28846 3.
28847 4. Val_1 : constant Integer := ABE;
28848 |
28849 >>> warning: cannot call "ABE" before body seen
28850 >>> warning: Program_Error will be raised at run time
28851
28852 5.
28853 6. pragma Warnings (Off);
28854 7. Val_2 : constant Integer := ABE;
28855 8. pragma Warnings (On);
28856 9.
28857 10. function ABE return Integer is
28858 11. begin
28859 12. ...
28860 13. end ABE;
28861 14. end Selective_Suppression;
28862 @end example
28863
28864 Note that suppressing elaboration warnings does not eliminate run-time
28865 checks. The example above will still fail at run time with an ABE.
28866 @end table
28867
28868 @node Summary of Procedures for Elaboration Control,Inspecting the Chosen Elaboration Order,Elaboration-related Compiler Switches,Elaboration Order Handling in GNAT
28869 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id13}@anchor{243}@anchor{gnat_ugn/elaboration_order_handling_in_gnat summary-of-procedures-for-elaboration-control}@anchor{244}
28870 @section Summary of Procedures for Elaboration Control
28871
28872
28873 A programmer should first compile the program with the default options, using
28874 none of the binder or compiler switches. If the binder succeeds in finding an
28875 elaboration order, then apart from possible cases involing dispatching calls
28876 and access-to-subprogram types, the program is free of elaboration errors.
28877
28878 If it is important for the program to be portable to compilers other than GNAT,
28879 then the programmer should use compiler switch @code{-gnatel} and consider
28880 the messages about missing or implicitly created @code{Elaborate} and
28881 @code{Elaborate_All} pragmas.
28882
28883 If the binder reports an elaboration circularity, the programmer has several
28884 options:
28885
28886
28887 @itemize *
28888
28889 @item
28890 Ensure that elaboration warnings are enabled. This will allow the static
28891 model to output trace information of elaboration issues. The trace
28892 information could shed light on previously unforeseen dependencies, as well
28893 as their origins. Elaboration warnings are enabled with compiler switch
28894 @code{-gnatwl}.
28895
28896 @item
28897 Cosider the tactics given in the suggestions section of the circularity
28898 diagnostic.
28899
28900 @item
28901 If none of the steps outlined above resolve the circularity, use a more
28902 permissive elaboration model, in the following order:
28903
28904
28905 @itemize -
28906
28907 @item
28908 Use the pre-20.x legacy elaboration-order model, with binder switch
28909 @code{-H}.
28910
28911 @item
28912 Use both pre-18.x and pre-20.x legacy elaboration models, with compiler
28913 switch @code{-gnatH} and binder switch @code{-H}.
28914
28915 @item
28916 Use the relaxed static elaboration model, with compiler switches
28917 @code{-gnatH} @code{-gnatJ} and binder switch @code{-H}.
28918
28919 @item
28920 Use the relaxed dynamic elaboration model, with compiler switches
28921 @code{-gnatH} @code{-gnatJ} @code{-gnatE} and binder switch
28922 @code{-H}.
28923 @end itemize
28924 @end itemize
28925
28926 @node Inspecting the Chosen Elaboration Order,,Summary of Procedures for Elaboration Control,Elaboration Order Handling in GNAT
28927 @anchor{gnat_ugn/elaboration_order_handling_in_gnat id14}@anchor{245}@anchor{gnat_ugn/elaboration_order_handling_in_gnat inspecting-the-chosen-elaboration-order}@anchor{246}
28928 @section Inspecting the Chosen Elaboration Order
28929
28930
28931 To see the elaboration order chosen by the binder, inspect the contents of file
28932 @cite{b~xxx.adb}. On certain targets, this file appears as @cite{b_xxx.adb}. The
28933 elaboration order appears as a sequence of calls to @code{Elab_Body} and
28934 @code{Elab_Spec}, interspersed with assignments to @cite{Exxx} which indicates that a
28935 particular unit is elaborated. For example:
28936
28937 @quotation
28938
28939 @example
28940 System.Soft_Links'Elab_Body;
28941 E14 := True;
28942 System.Secondary_Stack'Elab_Body;
28943 E18 := True;
28944 System.Exception_Table'Elab_Body;
28945 E24 := True;
28946 Ada.Io_Exceptions'Elab_Spec;
28947 E67 := True;
28948 Ada.Tags'Elab_Spec;
28949 Ada.Streams'Elab_Spec;
28950 E43 := True;
28951 Interfaces.C'Elab_Spec;
28952 E69 := True;
28953 System.Finalization_Root'Elab_Spec;
28954 E60 := True;
28955 System.Os_Lib'Elab_Body;
28956 E71 := True;
28957 System.Finalization_Implementation'Elab_Spec;
28958 System.Finalization_Implementation'Elab_Body;
28959 E62 := True;
28960 Ada.Finalization'Elab_Spec;
28961 E58 := True;
28962 Ada.Finalization.List_Controller'Elab_Spec;
28963 E76 := True;
28964 System.File_Control_Block'Elab_Spec;
28965 E74 := True;
28966 System.File_Io'Elab_Body;
28967 E56 := True;
28968 Ada.Tags'Elab_Body;
28969 E45 := True;
28970 Ada.Text_Io'Elab_Spec;
28971 Ada.Text_Io'Elab_Body;
28972 E07 := True;
28973 @end example
28974 @end quotation
28975
28976 Note also binder switch @code{-l}, which outputs the chosen elaboration
28977 order and provides a more readable form of the above:
28978
28979 @quotation
28980
28981 @example
28982 ada (spec)
28983 interfaces (spec)
28984 system (spec)
28985 system.case_util (spec)
28986 system.case_util (body)
28987 system.concat_2 (spec)
28988 system.concat_2 (body)
28989 system.concat_3 (spec)
28990 system.concat_3 (body)
28991 system.htable (spec)
28992 system.parameters (spec)
28993 system.parameters (body)
28994 system.crtl (spec)
28995 interfaces.c_streams (spec)
28996 interfaces.c_streams (body)
28997 system.restrictions (spec)
28998 system.restrictions (body)
28999 system.standard_library (spec)
29000 system.exceptions (spec)
29001 system.exceptions (body)
29002 system.storage_elements (spec)
29003 system.storage_elements (body)
29004 system.secondary_stack (spec)
29005 system.stack_checking (spec)
29006 system.stack_checking (body)
29007 system.string_hash (spec)
29008 system.string_hash (body)
29009 system.htable (body)
29010 system.strings (spec)
29011 system.strings (body)
29012 system.traceback (spec)
29013 system.traceback (body)
29014 system.traceback_entries (spec)
29015 system.traceback_entries (body)
29016 ada.exceptions (spec)
29017 ada.exceptions.last_chance_handler (spec)
29018 system.soft_links (spec)
29019 system.soft_links (body)
29020 ada.exceptions.last_chance_handler (body)
29021 system.secondary_stack (body)
29022 system.exception_table (spec)
29023 system.exception_table (body)
29024 ada.io_exceptions (spec)
29025 ada.tags (spec)
29026 ada.streams (spec)
29027 interfaces.c (spec)
29028 interfaces.c (body)
29029 system.finalization_root (spec)
29030 system.finalization_root (body)
29031 system.memory (spec)
29032 system.memory (body)
29033 system.standard_library (body)
29034 system.os_lib (spec)
29035 system.os_lib (body)
29036 system.unsigned_types (spec)
29037 system.stream_attributes (spec)
29038 system.stream_attributes (body)
29039 system.finalization_implementation (spec)
29040 system.finalization_implementation (body)
29041 ada.finalization (spec)
29042 ada.finalization (body)
29043 ada.finalization.list_controller (spec)
29044 ada.finalization.list_controller (body)
29045 system.file_control_block (spec)
29046 system.file_io (spec)
29047 system.file_io (body)
29048 system.val_uns (spec)
29049 system.val_util (spec)
29050 system.val_util (body)
29051 system.val_uns (body)
29052 system.wch_con (spec)
29053 system.wch_con (body)
29054 system.wch_cnv (spec)
29055 system.wch_jis (spec)
29056 system.wch_jis (body)
29057 system.wch_cnv (body)
29058 system.wch_stw (spec)
29059 system.wch_stw (body)
29060 ada.tags (body)
29061 ada.exceptions (body)
29062 ada.text_io (spec)
29063 ada.text_io (body)
29064 text_io (spec)
29065 gdbstr (body)
29066 @end example
29067 @end quotation
29068
29069 @node Inline Assembler,GNU Free Documentation License,Elaboration Order Handling in GNAT,Top
29070 @anchor{gnat_ugn/inline_assembler inline-assembler}@anchor{10}@anchor{gnat_ugn/inline_assembler doc}@anchor{247}@anchor{gnat_ugn/inline_assembler id1}@anchor{248}
29071 @chapter Inline Assembler
29072
29073
29074 @geindex Inline Assembler
29075
29076 If you need to write low-level software that interacts directly
29077 with the hardware, Ada provides two ways to incorporate assembly
29078 language code into your program. First, you can import and invoke
29079 external routines written in assembly language, an Ada feature fully
29080 supported by GNAT. However, for small sections of code it may be simpler
29081 or more efficient to include assembly language statements directly
29082 in your Ada source program, using the facilities of the implementation-defined
29083 package @code{System.Machine_Code}, which incorporates the gcc
29084 Inline Assembler. The Inline Assembler approach offers a number of advantages,
29085 including the following:
29086
29087
29088 @itemize *
29089
29090 @item
29091 No need to use non-Ada tools
29092
29093 @item
29094 Consistent interface over different targets
29095
29096 @item
29097 Automatic usage of the proper calling conventions
29098
29099 @item
29100 Access to Ada constants and variables
29101
29102 @item
29103 Definition of intrinsic routines
29104
29105 @item
29106 Possibility of inlining a subprogram comprising assembler code
29107
29108 @item
29109 Code optimizer can take Inline Assembler code into account
29110 @end itemize
29111
29112 This appendix presents a series of examples to show you how to use
29113 the Inline Assembler. Although it focuses on the Intel x86,
29114 the general approach applies also to other processors.
29115 It is assumed that you are familiar with Ada
29116 and with assembly language programming.
29117
29118 @menu
29119 * Basic Assembler Syntax::
29120 * A Simple Example of Inline Assembler::
29121 * Output Variables in Inline Assembler::
29122 * Input Variables in Inline Assembler::
29123 * Inlining Inline Assembler Code::
29124 * Other Asm Functionality::
29125
29126 @end menu
29127
29128 @node Basic Assembler Syntax,A Simple Example of Inline Assembler,,Inline Assembler
29129 @anchor{gnat_ugn/inline_assembler id2}@anchor{249}@anchor{gnat_ugn/inline_assembler basic-assembler-syntax}@anchor{24a}
29130 @section Basic Assembler Syntax
29131
29132
29133 The assembler used by GNAT and gcc is based not on the Intel assembly
29134 language, but rather on a language that descends from the AT&T Unix
29135 assembler @code{as} (and which is often referred to as 'AT&T syntax').
29136 The following table summarizes the main features of @code{as} syntax
29137 and points out the differences from the Intel conventions.
29138 See the gcc @code{as} and @code{gas} (an @code{as} macro
29139 pre-processor) documentation for further information.
29140
29141
29142 @display
29143 @emph{Register names}@w{ }
29144 @display
29145 gcc / @code{as}: Prefix with '%'; for example @code{%eax}@w{ }
29146 Intel: No extra punctuation; for example @code{eax}@w{ }
29147 @end display
29148 @end display
29149
29150
29151
29152
29153 @display
29154 @emph{Immediate operand}@w{ }
29155 @display
29156 gcc / @code{as}: Prefix with '$'; for example @code{$4}@w{ }
29157 Intel: No extra punctuation; for example @code{4}@w{ }
29158 @end display
29159 @end display
29160
29161
29162
29163
29164 @display
29165 @emph{Address}@w{ }
29166 @display
29167 gcc / @code{as}: Prefix with '$'; for example @code{$loc}@w{ }
29168 Intel: No extra punctuation; for example @code{loc}@w{ }
29169 @end display
29170 @end display
29171
29172
29173
29174
29175 @display
29176 @emph{Memory contents}@w{ }
29177 @display
29178 gcc / @code{as}: No extra punctuation; for example @code{loc}@w{ }
29179 Intel: Square brackets; for example @code{[loc]}@w{ }
29180 @end display
29181 @end display
29182
29183
29184
29185
29186 @display
29187 @emph{Register contents}@w{ }
29188 @display
29189 gcc / @code{as}: Parentheses; for example @code{(%eax)}@w{ }
29190 Intel: Square brackets; for example @code{[eax]}@w{ }
29191 @end display
29192 @end display
29193
29194
29195
29196
29197 @display
29198 @emph{Hexadecimal numbers}@w{ }
29199 @display
29200 gcc / @code{as}: Leading '0x' (C language syntax); for example @code{0xA0}@w{ }
29201 Intel: Trailing 'h'; for example @code{A0h}@w{ }
29202 @end display
29203 @end display
29204
29205
29206
29207
29208 @display
29209 @emph{Operand size}@w{ }
29210 @display
29211 gcc / @code{as}: Explicit in op code; for example @code{movw} to move a 16-bit word@w{ }
29212 Intel: Implicit, deduced by assembler; for example @code{mov}@w{ }
29213 @end display
29214 @end display
29215
29216
29217
29218
29219 @display
29220 @emph{Instruction repetition}@w{ }
29221 @display
29222 gcc / @code{as}: Split into two lines; for example@w{ }
29223 @display
29224 @code{rep}@w{ }
29225 @code{stosl}@w{ }
29226 @end display
29227 Intel: Keep on one line; for example @code{rep stosl}@w{ }
29228 @end display
29229 @end display
29230
29231
29232
29233
29234 @display
29235 @emph{Order of operands}@w{ }
29236 @display
29237 gcc / @code{as}: Source first; for example @code{movw $4, %eax}@w{ }
29238 Intel: Destination first; for example @code{mov eax, 4}@w{ }
29239 @end display
29240 @end display
29241
29242
29243
29244 @node A Simple Example of Inline Assembler,Output Variables in Inline Assembler,Basic Assembler Syntax,Inline Assembler
29245 @anchor{gnat_ugn/inline_assembler a-simple-example-of-inline-assembler}@anchor{24b}@anchor{gnat_ugn/inline_assembler id3}@anchor{24c}
29246 @section A Simple Example of Inline Assembler
29247
29248
29249 The following example will generate a single assembly language statement,
29250 @code{nop}, which does nothing. Despite its lack of run-time effect,
29251 the example will be useful in illustrating the basics of
29252 the Inline Assembler facility.
29253
29254 @quotation
29255
29256 @example
29257 with System.Machine_Code; use System.Machine_Code;
29258 procedure Nothing is
29259 begin
29260 Asm ("nop");
29261 end Nothing;
29262 @end example
29263 @end quotation
29264
29265 @code{Asm} is a procedure declared in package @code{System.Machine_Code};
29266 here it takes one parameter, a @emph{template string} that must be a static
29267 expression and that will form the generated instruction.
29268 @code{Asm} may be regarded as a compile-time procedure that parses
29269 the template string and additional parameters (none here),
29270 from which it generates a sequence of assembly language instructions.
29271
29272 The examples in this chapter will illustrate several of the forms
29273 for invoking @code{Asm}; a complete specification of the syntax
29274 is found in the @code{Machine_Code_Insertions} section of the
29275 @cite{GNAT Reference Manual}.
29276
29277 Under the standard GNAT conventions, the @code{Nothing} procedure
29278 should be in a file named @code{nothing.adb}.
29279 You can build the executable in the usual way:
29280
29281 @quotation
29282
29283 @example
29284 $ gnatmake nothing
29285 @end example
29286 @end quotation
29287
29288 However, the interesting aspect of this example is not its run-time behavior
29289 but rather the generated assembly code.
29290 To see this output, invoke the compiler as follows:
29291
29292 @quotation
29293
29294 @example
29295 $ gcc -c -S -fomit-frame-pointer -gnatp nothing.adb
29296 @end example
29297 @end quotation
29298
29299 where the options are:
29300
29301
29302 @itemize *
29303
29304 @item
29305
29306 @table @asis
29307
29308 @item @code{-c}
29309
29310 compile only (no bind or link)
29311 @end table
29312
29313 @item
29314
29315 @table @asis
29316
29317 @item @code{-S}
29318
29319 generate assembler listing
29320 @end table
29321
29322 @item
29323
29324 @table @asis
29325
29326 @item @code{-fomit-frame-pointer}
29327
29328 do not set up separate stack frames
29329 @end table
29330
29331 @item
29332
29333 @table @asis
29334
29335 @item @code{-gnatp}
29336
29337 do not add runtime checks
29338 @end table
29339 @end itemize
29340
29341 This gives a human-readable assembler version of the code. The resulting
29342 file will have the same name as the Ada source file, but with a @code{.s}
29343 extension. In our example, the file @code{nothing.s} has the following
29344 contents:
29345
29346 @quotation
29347
29348 @example
29349 .file "nothing.adb"
29350 gcc2_compiled.:
29351 ___gnu_compiled_ada:
29352 .text
29353 .align 4
29354 .globl __ada_nothing
29355 __ada_nothing:
29356 #APP
29357 nop
29358 #NO_APP
29359 jmp L1
29360 .align 2,0x90
29361 L1:
29362 ret
29363 @end example
29364 @end quotation
29365
29366 The assembly code you included is clearly indicated by
29367 the compiler, between the @code{#APP} and @code{#NO_APP}
29368 delimiters. The character before the 'APP' and 'NOAPP'
29369 can differ on different targets. For example, GNU/Linux uses '#APP' while
29370 on NT you will see '/APP'.
29371
29372 If you make a mistake in your assembler code (such as using the
29373 wrong size modifier, or using a wrong operand for the instruction) GNAT
29374 will report this error in a temporary file, which will be deleted when
29375 the compilation is finished. Generating an assembler file will help
29376 in such cases, since you can assemble this file separately using the
29377 @code{as} assembler that comes with gcc.
29378
29379 Assembling the file using the command
29380
29381 @quotation
29382
29383 @example
29384 $ as nothing.s
29385 @end example
29386 @end quotation
29387
29388 will give you error messages whose lines correspond to the assembler
29389 input file, so you can easily find and correct any mistakes you made.
29390 If there are no errors, @code{as} will generate an object file
29391 @code{nothing.out}.
29392
29393 @node Output Variables in Inline Assembler,Input Variables in Inline Assembler,A Simple Example of Inline Assembler,Inline Assembler
29394 @anchor{gnat_ugn/inline_assembler id4}@anchor{24d}@anchor{gnat_ugn/inline_assembler output-variables-in-inline-assembler}@anchor{24e}
29395 @section Output Variables in Inline Assembler
29396
29397
29398 The examples in this section, showing how to access the processor flags,
29399 illustrate how to specify the destination operands for assembly language
29400 statements.
29401
29402 @quotation
29403
29404 @example
29405 with Interfaces; use Interfaces;
29406 with Ada.Text_IO; use Ada.Text_IO;
29407 with System.Machine_Code; use System.Machine_Code;
29408 procedure Get_Flags is
29409 Flags : Unsigned_32;
29410 use ASCII;
29411 begin
29412 Asm ("pushfl" & LF & HT & -- push flags on stack
29413 "popl %%eax" & LF & HT & -- load eax with flags
29414 "movl %%eax, %0", -- store flags in variable
29415 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
29416 Put_Line ("Flags register:" & Flags'Img);
29417 end Get_Flags;
29418 @end example
29419 @end quotation
29420
29421 In order to have a nicely aligned assembly listing, we have separated
29422 multiple assembler statements in the Asm template string with linefeed
29423 (ASCII.LF) and horizontal tab (ASCII.HT) characters.
29424 The resulting section of the assembly output file is:
29425
29426 @quotation
29427
29428 @example
29429 #APP
29430 pushfl
29431 popl %eax
29432 movl %eax, -40(%ebp)
29433 #NO_APP
29434 @end example
29435 @end quotation
29436
29437 It would have been legal to write the Asm invocation as:
29438
29439 @quotation
29440
29441 @example
29442 Asm ("pushfl popl %%eax movl %%eax, %0")
29443 @end example
29444 @end quotation
29445
29446 but in the generated assembler file, this would come out as:
29447
29448 @quotation
29449
29450 @example
29451 #APP
29452 pushfl popl %eax movl %eax, -40(%ebp)
29453 #NO_APP
29454 @end example
29455 @end quotation
29456
29457 which is not so convenient for the human reader.
29458
29459 We use Ada comments
29460 at the end of each line to explain what the assembler instructions
29461 actually do. This is a useful convention.
29462
29463 When writing Inline Assembler instructions, you need to precede each register
29464 and variable name with a percent sign. Since the assembler already requires
29465 a percent sign at the beginning of a register name, you need two consecutive
29466 percent signs for such names in the Asm template string, thus @code{%%eax}.
29467 In the generated assembly code, one of the percent signs will be stripped off.
29468
29469 Names such as @code{%0}, @code{%1}, @code{%2}, etc., denote input or output
29470 variables: operands you later define using @code{Input} or @code{Output}
29471 parameters to @code{Asm}.
29472 An output variable is illustrated in
29473 the third statement in the Asm template string:
29474
29475 @quotation
29476
29477 @example
29478 movl %%eax, %0
29479 @end example
29480 @end quotation
29481
29482 The intent is to store the contents of the eax register in a variable that can
29483 be accessed in Ada. Simply writing @code{movl %%eax, Flags} would not
29484 necessarily work, since the compiler might optimize by using a register
29485 to hold Flags, and the expansion of the @code{movl} instruction would not be
29486 aware of this optimization. The solution is not to store the result directly
29487 but rather to advise the compiler to choose the correct operand form;
29488 that is the purpose of the @code{%0} output variable.
29489
29490 Information about the output variable is supplied in the @code{Outputs}
29491 parameter to @code{Asm}:
29492
29493 @quotation
29494
29495 @example
29496 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
29497 @end example
29498 @end quotation
29499
29500 The output is defined by the @code{Asm_Output} attribute of the target type;
29501 the general format is
29502
29503 @quotation
29504
29505 @example
29506 Type'Asm_Output (constraint_string, variable_name)
29507 @end example
29508 @end quotation
29509
29510 The constraint string directs the compiler how
29511 to store/access the associated variable. In the example
29512
29513 @quotation
29514
29515 @example
29516 Unsigned_32'Asm_Output ("=m", Flags);
29517 @end example
29518 @end quotation
29519
29520 the @code{"m"} (memory) constraint tells the compiler that the variable
29521 @code{Flags} should be stored in a memory variable, thus preventing
29522 the optimizer from keeping it in a register. In contrast,
29523
29524 @quotation
29525
29526 @example
29527 Unsigned_32'Asm_Output ("=r", Flags);
29528 @end example
29529 @end quotation
29530
29531 uses the @code{"r"} (register) constraint, telling the compiler to
29532 store the variable in a register.
29533
29534 If the constraint is preceded by the equal character '=', it tells
29535 the compiler that the variable will be used to store data into it.
29536
29537 In the @code{Get_Flags} example, we used the @code{"g"} (global) constraint,
29538 allowing the optimizer to choose whatever it deems best.
29539
29540 There are a fairly large number of constraints, but the ones that are
29541 most useful (for the Intel x86 processor) are the following:
29542
29543 @quotation
29544
29545
29546 @multitable {xxxxxxxx} {xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}
29547 @item
29548
29549 @emph{=}
29550
29551 @tab
29552
29553 output constraint
29554
29555 @item
29556
29557 @emph{g}
29558
29559 @tab
29560
29561 global (i.e., can be stored anywhere)
29562
29563 @item
29564
29565 @emph{m}
29566
29567 @tab
29568
29569 in memory
29570
29571 @item
29572
29573 @emph{I}
29574
29575 @tab
29576
29577 a constant
29578
29579 @item
29580
29581 @emph{a}
29582
29583 @tab
29584
29585 use eax
29586
29587 @item
29588
29589 @emph{b}
29590
29591 @tab
29592
29593 use ebx
29594
29595 @item
29596
29597 @emph{c}
29598
29599 @tab
29600
29601 use ecx
29602
29603 @item
29604
29605 @emph{d}
29606
29607 @tab
29608
29609 use edx
29610
29611 @item
29612
29613 @emph{S}
29614
29615 @tab
29616
29617 use esi
29618
29619 @item
29620
29621 @emph{D}
29622
29623 @tab
29624
29625 use edi
29626
29627 @item
29628
29629 @emph{r}
29630
29631 @tab
29632
29633 use one of eax, ebx, ecx or edx
29634
29635 @item
29636
29637 @emph{q}
29638
29639 @tab
29640
29641 use one of eax, ebx, ecx, edx, esi or edi
29642
29643 @end multitable
29644
29645 @end quotation
29646
29647 The full set of constraints is described in the gcc and @code{as}
29648 documentation; note that it is possible to combine certain constraints
29649 in one constraint string.
29650
29651 You specify the association of an output variable with an assembler operand
29652 through the @code{%@emph{n}} notation, where @emph{n} is a non-negative
29653 integer. Thus in
29654
29655 @quotation
29656
29657 @example
29658 Asm ("pushfl" & LF & HT & -- push flags on stack
29659 "popl %%eax" & LF & HT & -- load eax with flags
29660 "movl %%eax, %0", -- store flags in variable
29661 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
29662 @end example
29663 @end quotation
29664
29665 @code{%0} will be replaced in the expanded code by the appropriate operand,
29666 whatever
29667 the compiler decided for the @code{Flags} variable.
29668
29669 In general, you may have any number of output variables:
29670
29671
29672 @itemize *
29673
29674 @item
29675 Count the operands starting at 0; thus @code{%0}, @code{%1}, etc.
29676
29677 @item
29678 Specify the @code{Outputs} parameter as a parenthesized comma-separated list
29679 of @code{Asm_Output} attributes
29680 @end itemize
29681
29682 For example:
29683
29684 @quotation
29685
29686 @example
29687 Asm ("movl %%eax, %0" & LF & HT &
29688 "movl %%ebx, %1" & LF & HT &
29689 "movl %%ecx, %2",
29690 Outputs => (Unsigned_32'Asm_Output ("=g", Var_A), -- %0 = Var_A
29691 Unsigned_32'Asm_Output ("=g", Var_B), -- %1 = Var_B
29692 Unsigned_32'Asm_Output ("=g", Var_C))); -- %2 = Var_C
29693 @end example
29694 @end quotation
29695
29696 where @code{Var_A}, @code{Var_B}, and @code{Var_C} are variables
29697 in the Ada program.
29698
29699 As a variation on the @code{Get_Flags} example, we can use the constraints
29700 string to direct the compiler to store the eax register into the @code{Flags}
29701 variable, instead of including the store instruction explicitly in the
29702 @code{Asm} template string:
29703
29704 @quotation
29705
29706 @example
29707 with Interfaces; use Interfaces;
29708 with Ada.Text_IO; use Ada.Text_IO;
29709 with System.Machine_Code; use System.Machine_Code;
29710 procedure Get_Flags_2 is
29711 Flags : Unsigned_32;
29712 use ASCII;
29713 begin
29714 Asm ("pushfl" & LF & HT & -- push flags on stack
29715 "popl %%eax", -- save flags in eax
29716 Outputs => Unsigned_32'Asm_Output ("=a", Flags));
29717 Put_Line ("Flags register:" & Flags'Img);
29718 end Get_Flags_2;
29719 @end example
29720 @end quotation
29721
29722 The @code{"a"} constraint tells the compiler that the @code{Flags}
29723 variable will come from the eax register. Here is the resulting code:
29724
29725 @quotation
29726
29727 @example
29728 #APP
29729 pushfl
29730 popl %eax
29731 #NO_APP
29732 movl %eax,-40(%ebp)
29733 @end example
29734 @end quotation
29735
29736 The compiler generated the store of eax into Flags after
29737 expanding the assembler code.
29738
29739 Actually, there was no need to pop the flags into the eax register;
29740 more simply, we could just pop the flags directly into the program variable:
29741
29742 @quotation
29743
29744 @example
29745 with Interfaces; use Interfaces;
29746 with Ada.Text_IO; use Ada.Text_IO;
29747 with System.Machine_Code; use System.Machine_Code;
29748 procedure Get_Flags_3 is
29749 Flags : Unsigned_32;
29750 use ASCII;
29751 begin
29752 Asm ("pushfl" & LF & HT & -- push flags on stack
29753 "pop %0", -- save flags in Flags
29754 Outputs => Unsigned_32'Asm_Output ("=g", Flags));
29755 Put_Line ("Flags register:" & Flags'Img);
29756 end Get_Flags_3;
29757 @end example
29758 @end quotation
29759
29760 @node Input Variables in Inline Assembler,Inlining Inline Assembler Code,Output Variables in Inline Assembler,Inline Assembler
29761 @anchor{gnat_ugn/inline_assembler id5}@anchor{24f}@anchor{gnat_ugn/inline_assembler input-variables-in-inline-assembler}@anchor{250}
29762 @section Input Variables in Inline Assembler
29763
29764
29765 The example in this section illustrates how to specify the source operands
29766 for assembly language statements.
29767 The program simply increments its input value by 1:
29768
29769 @quotation
29770
29771 @example
29772 with Interfaces; use Interfaces;
29773 with Ada.Text_IO; use Ada.Text_IO;
29774 with System.Machine_Code; use System.Machine_Code;
29775 procedure Increment is
29776
29777 function Incr (Value : Unsigned_32) return Unsigned_32 is
29778 Result : Unsigned_32;
29779 begin
29780 Asm ("incl %0",
29781 Outputs => Unsigned_32'Asm_Output ("=a", Result),
29782 Inputs => Unsigned_32'Asm_Input ("a", Value));
29783 return Result;
29784 end Incr;
29785
29786 Value : Unsigned_32;
29787
29788 begin
29789 Value := 5;
29790 Put_Line ("Value before is" & Value'Img);
29791 Value := Incr (Value);
29792 Put_Line ("Value after is" & Value'Img);
29793 end Increment;
29794 @end example
29795 @end quotation
29796
29797 The @code{Outputs} parameter to @code{Asm} specifies
29798 that the result will be in the eax register and that it is to be stored
29799 in the @code{Result} variable.
29800
29801 The @code{Inputs} parameter looks much like the @code{Outputs} parameter,
29802 but with an @code{Asm_Input} attribute.
29803 The @code{"="} constraint, indicating an output value, is not present.
29804
29805 You can have multiple input variables, in the same way that you can have more
29806 than one output variable.
29807
29808 The parameter count (%0, %1) etc, still starts at the first output statement,
29809 and continues with the input statements.
29810
29811 Just as the @code{Outputs} parameter causes the register to be stored into the
29812 target variable after execution of the assembler statements, so does the
29813 @code{Inputs} parameter cause its variable to be loaded into the register
29814 before execution of the assembler statements.
29815
29816 Thus the effect of the @code{Asm} invocation is:
29817
29818
29819 @itemize *
29820
29821 @item
29822 load the 32-bit value of @code{Value} into eax
29823
29824 @item
29825 execute the @code{incl %eax} instruction
29826
29827 @item
29828 store the contents of eax into the @code{Result} variable
29829 @end itemize
29830
29831 The resulting assembler file (with @code{-O2} optimization) contains:
29832
29833 @quotation
29834
29835 @example
29836 _increment__incr.1:
29837 subl $4,%esp
29838 movl 8(%esp),%eax
29839 #APP
29840 incl %eax
29841 #NO_APP
29842 movl %eax,%edx
29843 movl %ecx,(%esp)
29844 addl $4,%esp
29845 ret
29846 @end example
29847 @end quotation
29848
29849 @node Inlining Inline Assembler Code,Other Asm Functionality,Input Variables in Inline Assembler,Inline Assembler
29850 @anchor{gnat_ugn/inline_assembler id6}@anchor{251}@anchor{gnat_ugn/inline_assembler inlining-inline-assembler-code}@anchor{252}
29851 @section Inlining Inline Assembler Code
29852
29853
29854 For a short subprogram such as the @code{Incr} function in the previous
29855 section, the overhead of the call and return (creating / deleting the stack
29856 frame) can be significant, compared to the amount of code in the subprogram
29857 body. A solution is to apply Ada's @code{Inline} pragma to the subprogram,
29858 which directs the compiler to expand invocations of the subprogram at the
29859 point(s) of call, instead of setting up a stack frame for out-of-line calls.
29860 Here is the resulting program:
29861
29862 @quotation
29863
29864 @example
29865 with Interfaces; use Interfaces;
29866 with Ada.Text_IO; use Ada.Text_IO;
29867 with System.Machine_Code; use System.Machine_Code;
29868 procedure Increment_2 is
29869
29870 function Incr (Value : Unsigned_32) return Unsigned_32 is
29871 Result : Unsigned_32;
29872 begin
29873 Asm ("incl %0",
29874 Outputs => Unsigned_32'Asm_Output ("=a", Result),
29875 Inputs => Unsigned_32'Asm_Input ("a", Value));
29876 return Result;
29877 end Incr;
29878 pragma Inline (Increment);
29879
29880 Value : Unsigned_32;
29881
29882 begin
29883 Value := 5;
29884 Put_Line ("Value before is" & Value'Img);
29885 Value := Increment (Value);
29886 Put_Line ("Value after is" & Value'Img);
29887 end Increment_2;
29888 @end example
29889 @end quotation
29890
29891 Compile the program with both optimization (@code{-O2}) and inlining
29892 (@code{-gnatn}) enabled.
29893
29894 The @code{Incr} function is still compiled as usual, but at the
29895 point in @code{Increment} where our function used to be called:
29896
29897 @quotation
29898
29899 @example
29900 pushl %edi
29901 call _increment__incr.1
29902 @end example
29903 @end quotation
29904
29905 the code for the function body directly appears:
29906
29907 @quotation
29908
29909 @example
29910 movl %esi,%eax
29911 #APP
29912 incl %eax
29913 #NO_APP
29914 movl %eax,%edx
29915 @end example
29916 @end quotation
29917
29918 thus saving the overhead of stack frame setup and an out-of-line call.
29919
29920 @node Other Asm Functionality,,Inlining Inline Assembler Code,Inline Assembler
29921 @anchor{gnat_ugn/inline_assembler other-asm-functionality}@anchor{253}@anchor{gnat_ugn/inline_assembler id7}@anchor{254}
29922 @section Other @code{Asm} Functionality
29923
29924
29925 This section describes two important parameters to the @code{Asm}
29926 procedure: @code{Clobber}, which identifies register usage;
29927 and @code{Volatile}, which inhibits unwanted optimizations.
29928
29929 @menu
29930 * The Clobber Parameter::
29931 * The Volatile Parameter::
29932
29933 @end menu
29934
29935 @node The Clobber Parameter,The Volatile Parameter,,Other Asm Functionality
29936 @anchor{gnat_ugn/inline_assembler the-clobber-parameter}@anchor{255}@anchor{gnat_ugn/inline_assembler id8}@anchor{256}
29937 @subsection The @code{Clobber} Parameter
29938
29939
29940 One of the dangers of intermixing assembly language and a compiled language
29941 such as Ada is that the compiler needs to be aware of which registers are
29942 being used by the assembly code. In some cases, such as the earlier examples,
29943 the constraint string is sufficient to indicate register usage (e.g.,
29944 @code{"a"} for
29945 the eax register). But more generally, the compiler needs an explicit
29946 identification of the registers that are used by the Inline Assembly
29947 statements.
29948
29949 Using a register that the compiler doesn't know about
29950 could be a side effect of an instruction (like @code{mull}
29951 storing its result in both eax and edx).
29952 It can also arise from explicit register usage in your
29953 assembly code; for example:
29954
29955 @quotation
29956
29957 @example
29958 Asm ("movl %0, %%ebx" & LF & HT &
29959 "movl %%ebx, %1",
29960 Outputs => Unsigned_32'Asm_Output ("=g", Var_Out),
29961 Inputs => Unsigned_32'Asm_Input ("g", Var_In));
29962 @end example
29963 @end quotation
29964
29965 where the compiler (since it does not analyze the @code{Asm} template string)
29966 does not know you are using the ebx register.
29967
29968 In such cases you need to supply the @code{Clobber} parameter to @code{Asm},
29969 to identify the registers that will be used by your assembly code:
29970
29971 @quotation
29972
29973 @example
29974 Asm ("movl %0, %%ebx" & LF & HT &
29975 "movl %%ebx, %1",
29976 Outputs => Unsigned_32'Asm_Output ("=g", Var_Out),
29977 Inputs => Unsigned_32'Asm_Input ("g", Var_In),
29978 Clobber => "ebx");
29979 @end example
29980 @end quotation
29981
29982 The Clobber parameter is a static string expression specifying the
29983 register(s) you are using. Note that register names are @emph{not} prefixed
29984 by a percent sign. Also, if more than one register is used then their names
29985 are separated by commas; e.g., @code{"eax, ebx"}
29986
29987 The @code{Clobber} parameter has several additional uses:
29988
29989
29990 @itemize *
29991
29992 @item
29993 Use 'register' name @code{cc} to indicate that flags might have changed
29994
29995 @item
29996 Use 'register' name @code{memory} if you changed a memory location
29997 @end itemize
29998
29999 @node The Volatile Parameter,,The Clobber Parameter,Other Asm Functionality
30000 @anchor{gnat_ugn/inline_assembler the-volatile-parameter}@anchor{257}@anchor{gnat_ugn/inline_assembler id9}@anchor{258}
30001 @subsection The @code{Volatile} Parameter
30002
30003
30004 @geindex Volatile parameter
30005
30006 Compiler optimizations in the presence of Inline Assembler may sometimes have
30007 unwanted effects. For example, when an @code{Asm} invocation with an input
30008 variable is inside a loop, the compiler might move the loading of the input
30009 variable outside the loop, regarding it as a one-time initialization.
30010
30011 If this effect is not desired, you can disable such optimizations by setting
30012 the @code{Volatile} parameter to @code{True}; for example:
30013
30014 @quotation
30015
30016 @example
30017 Asm ("movl %0, %%ebx" & LF & HT &
30018 "movl %%ebx, %1",
30019 Outputs => Unsigned_32'Asm_Output ("=g", Var_Out),
30020 Inputs => Unsigned_32'Asm_Input ("g", Var_In),
30021 Clobber => "ebx",
30022 Volatile => True);
30023 @end example
30024 @end quotation
30025
30026 By default, @code{Volatile} is set to @code{False} unless there is no
30027 @code{Outputs} parameter.
30028
30029 Although setting @code{Volatile} to @code{True} prevents unwanted
30030 optimizations, it will also disable other optimizations that might be
30031 important for efficiency. In general, you should set @code{Volatile}
30032 to @code{True} only if the compiler's optimizations have created
30033 problems.
30034
30035 @node GNU Free Documentation License,Index,Inline Assembler,Top
30036 @anchor{share/gnu_free_documentation_license gnu-fdl}@anchor{1}@anchor{share/gnu_free_documentation_license doc}@anchor{259}@anchor{share/gnu_free_documentation_license gnu-free-documentation-license}@anchor{25a}
30037 @chapter GNU Free Documentation License
30038
30039
30040 Version 1.3, 3 November 2008
30041
30042 Copyright 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc
30043 @indicateurl{http://fsf.org/}
30044
30045 Everyone is permitted to copy and distribute verbatim copies of this
30046 license document, but changing it is not allowed.
30047
30048 @strong{Preamble}
30049
30050 The purpose of this License is to make a manual, textbook, or other
30051 functional and useful document "free" in the sense of freedom: to
30052 assure everyone the effective freedom to copy and redistribute it,
30053 with or without modifying it, either commercially or noncommercially.
30054 Secondarily, this License preserves for the author and publisher a way
30055 to get credit for their work, while not being considered responsible
30056 for modifications made by others.
30057
30058 This License is a kind of "copyleft", which means that derivative
30059 works of the document must themselves be free in the same sense. It
30060 complements the GNU General Public License, which is a copyleft
30061 license designed for free software.
30062
30063 We have designed this License in order to use it for manuals for free
30064 software, because free software needs free documentation: a free
30065 program should come with manuals providing the same freedoms that the
30066 software does. But this License is not limited to software manuals;
30067 it can be used for any textual work, regardless of subject matter or
30068 whether it is published as a printed book. We recommend this License
30069 principally for works whose purpose is instruction or reference.
30070
30071 @strong{1. APPLICABILITY AND DEFINITIONS}
30072
30073 This License applies to any manual or other work, in any medium, that
30074 contains a notice placed by the copyright holder saying it can be
30075 distributed under the terms of this License. Such a notice grants a
30076 world-wide, royalty-free license, unlimited in duration, to use that
30077 work under the conditions stated herein. The @strong{Document}, below,
30078 refers to any such manual or work. Any member of the public is a
30079 licensee, and is addressed as "@strong{you}". You accept the license if you
30080 copy, modify or distribute the work in a way requiring permission
30081 under copyright law.
30082
30083 A "@strong{Modified Version}" of the Document means any work containing the
30084 Document or a portion of it, either copied verbatim, or with
30085 modifications and/or translated into another language.
30086
30087 A "@strong{Secondary Section}" is a named appendix or a front-matter section of
30088 the Document that deals exclusively with the relationship of the
30089 publishers or authors of the Document to the Document's overall subject
30090 (or to related matters) and contains nothing that could fall directly
30091 within that overall subject. (Thus, if the Document is in part a
30092 textbook of mathematics, a Secondary Section may not explain any
30093 mathematics.) The relationship could be a matter of historical
30094 connection with the subject or with related matters, or of legal,
30095 commercial, philosophical, ethical or political position regarding
30096 them.
30097
30098 The "@strong{Invariant Sections}" are certain Secondary Sections whose titles
30099 are designated, as being those of Invariant Sections, in the notice
30100 that says that the Document is released under this License. If a
30101 section does not fit the above definition of Secondary then it is not
30102 allowed to be designated as Invariant. The Document may contain zero
30103 Invariant Sections. If the Document does not identify any Invariant
30104 Sections then there are none.
30105
30106 The "@strong{Cover Texts}" are certain short passages of text that are listed,
30107 as Front-Cover Texts or Back-Cover Texts, in the notice that says that
30108 the Document is released under this License. A Front-Cover Text may
30109 be at most 5 words, and a Back-Cover Text may be at most 25 words.
30110
30111 A "@strong{Transparent}" copy of the Document means a machine-readable copy,
30112 represented in a format whose specification is available to the
30113 general public, that is suitable for revising the document
30114 straightforwardly with generic text editors or (for images composed of
30115 pixels) generic paint programs or (for drawings) some widely available
30116 drawing editor, and that is suitable for input to text formatters or
30117 for automatic translation to a variety of formats suitable for input
30118 to text formatters. A copy made in an otherwise Transparent file
30119 format whose markup, or absence of markup, has been arranged to thwart
30120 or discourage subsequent modification by readers is not Transparent.
30121 An image format is not Transparent if used for any substantial amount
30122 of text. A copy that is not "Transparent" is called @strong{Opaque}.
30123
30124 Examples of suitable formats for Transparent copies include plain
30125 ASCII without markup, Texinfo input format, LaTeX input format, SGML
30126 or XML using a publicly available DTD, and standard-conforming simple
30127 HTML, PostScript or PDF designed for human modification. Examples of
30128 transparent image formats include PNG, XCF and JPG. Opaque formats
30129 include proprietary formats that can be read and edited only by
30130 proprietary word processors, SGML or XML for which the DTD and/or
30131 processing tools are not generally available, and the
30132 machine-generated HTML, PostScript or PDF produced by some word
30133 processors for output purposes only.
30134
30135 The "@strong{Title Page}" means, for a printed book, the title page itself,
30136 plus such following pages as are needed to hold, legibly, the material
30137 this License requires to appear in the title page. For works in
30138 formats which do not have any title page as such, "Title Page" means
30139 the text near the most prominent appearance of the work's title,
30140 preceding the beginning of the body of the text.
30141
30142 The "@strong{publisher}" means any person or entity that distributes
30143 copies of the Document to the public.
30144
30145 A section "@strong{Entitled XYZ}" means a named subunit of the Document whose
30146 title either is precisely XYZ or contains XYZ in parentheses following
30147 text that translates XYZ in another language. (Here XYZ stands for a
30148 specific section name mentioned below, such as "@strong{Acknowledgements}",
30149 "@strong{Dedications}", "@strong{Endorsements}", or "@strong{History}".)
30150 To "@strong{Preserve the Title}"
30151 of such a section when you modify the Document means that it remains a
30152 section "Entitled XYZ" according to this definition.
30153
30154 The Document may include Warranty Disclaimers next to the notice which
30155 states that this License applies to the Document. These Warranty
30156 Disclaimers are considered to be included by reference in this
30157 License, but only as regards disclaiming warranties: any other
30158 implication that these Warranty Disclaimers may have is void and has
30159 no effect on the meaning of this License.
30160
30161 @strong{2. VERBATIM COPYING}
30162
30163 You may copy and distribute the Document in any medium, either
30164 commercially or noncommercially, provided that this License, the
30165 copyright notices, and the license notice saying this License applies
30166 to the Document are reproduced in all copies, and that you add no other
30167 conditions whatsoever to those of this License. You may not use
30168 technical measures to obstruct or control the reading or further
30169 copying of the copies you make or distribute. However, you may accept
30170 compensation in exchange for copies. If you distribute a large enough
30171 number of copies you must also follow the conditions in section 3.
30172
30173 You may also lend copies, under the same conditions stated above, and
30174 you may publicly display copies.
30175
30176 @strong{3. COPYING IN QUANTITY}
30177
30178 If you publish printed copies (or copies in media that commonly have
30179 printed covers) of the Document, numbering more than 100, and the
30180 Document's license notice requires Cover Texts, you must enclose the
30181 copies in covers that carry, clearly and legibly, all these Cover
30182 Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
30183 the back cover. Both covers must also clearly and legibly identify
30184 you as the publisher of these copies. The front cover must present
30185 the full title with all words of the title equally prominent and
30186 visible. You may add other material on the covers in addition.
30187 Copying with changes limited to the covers, as long as they preserve
30188 the title of the Document and satisfy these conditions, can be treated
30189 as verbatim copying in other respects.
30190
30191 If the required texts for either cover are too voluminous to fit
30192 legibly, you should put the first ones listed (as many as fit
30193 reasonably) on the actual cover, and continue the rest onto adjacent
30194 pages.
30195
30196 If you publish or distribute Opaque copies of the Document numbering
30197 more than 100, you must either include a machine-readable Transparent
30198 copy along with each Opaque copy, or state in or with each Opaque copy
30199 a computer-network location from which the general network-using
30200 public has access to download using public-standard network protocols
30201 a complete Transparent copy of the Document, free of added material.
30202 If you use the latter option, you must take reasonably prudent steps,
30203 when you begin distribution of Opaque copies in quantity, to ensure
30204 that this Transparent copy will remain thus accessible at the stated
30205 location until at least one year after the last time you distribute an
30206 Opaque copy (directly or through your agents or retailers) of that
30207 edition to the public.
30208
30209 It is requested, but not required, that you contact the authors of the
30210 Document well before redistributing any large number of copies, to give
30211 them a chance to provide you with an updated version of the Document.
30212
30213 @strong{4. MODIFICATIONS}
30214
30215 You may copy and distribute a Modified Version of the Document under
30216 the conditions of sections 2 and 3 above, provided that you release
30217 the Modified Version under precisely this License, with the Modified
30218 Version filling the role of the Document, thus licensing distribution
30219 and modification of the Modified Version to whoever possesses a copy
30220 of it. In addition, you must do these things in the Modified Version:
30221
30222
30223 @enumerate A
30224
30225 @item
30226 Use in the Title Page (and on the covers, if any) a title distinct
30227 from that of the Document, and from those of previous versions
30228 (which should, if there were any, be listed in the History section
30229 of the Document). You may use the same title as a previous version
30230 if the original publisher of that version gives permission.
30231
30232 @item
30233 List on the Title Page, as authors, one or more persons or entities
30234 responsible for authorship of the modifications in the Modified
30235 Version, together with at least five of the principal authors of the
30236 Document (all of its principal authors, if it has fewer than five),
30237 unless they release you from this requirement.
30238
30239 @item
30240 State on the Title page the name of the publisher of the
30241 Modified Version, as the publisher.
30242
30243 @item
30244 Preserve all the copyright notices of the Document.
30245
30246 @item
30247 Add an appropriate copyright notice for your modifications
30248 adjacent to the other copyright notices.
30249
30250 @item
30251 Include, immediately after the copyright notices, a license notice
30252 giving the public permission to use the Modified Version under the
30253 terms of this License, in the form shown in the Addendum below.
30254
30255 @item
30256 Preserve in that license notice the full lists of Invariant Sections
30257 and required Cover Texts given in the Document's license notice.
30258
30259 @item
30260 Include an unaltered copy of this License.
30261
30262 @item
30263 Preserve the section Entitled "History", Preserve its Title, and add
30264 to it an item stating at least the title, year, new authors, and
30265 publisher of the Modified Version as given on the Title Page. If
30266 there is no section Entitled "History" in the Document, create one
30267 stating the title, year, authors, and publisher of the Document as
30268 given on its Title Page, then add an item describing the Modified
30269 Version as stated in the previous sentence.
30270
30271 @item
30272 Preserve the network location, if any, given in the Document for
30273 public access to a Transparent copy of the Document, and likewise
30274 the network locations given in the Document for previous versions
30275 it was based on. These may be placed in the "History" section.
30276 You may omit a network location for a work that was published at
30277 least four years before the Document itself, or if the original
30278 publisher of the version it refers to gives permission.
30279
30280 @item
30281 For any section Entitled "Acknowledgements" or "Dedications",
30282 Preserve the Title of the section, and preserve in the section all
30283 the substance and tone of each of the contributor acknowledgements
30284 and/or dedications given therein.
30285
30286 @item
30287 Preserve all the Invariant Sections of the Document,
30288 unaltered in their text and in their titles. Section numbers
30289 or the equivalent are not considered part of the section titles.
30290
30291 @item
30292 Delete any section Entitled "Endorsements". Such a section
30293 may not be included in the Modified Version.
30294
30295 @item
30296 Do not retitle any existing section to be Entitled "Endorsements"
30297 or to conflict in title with any Invariant Section.
30298
30299 @item
30300 Preserve any Warranty Disclaimers.
30301 @end enumerate
30302
30303 If the Modified Version includes new front-matter sections or
30304 appendices that qualify as Secondary Sections and contain no material
30305 copied from the Document, you may at your option designate some or all
30306 of these sections as invariant. To do this, add their titles to the
30307 list of Invariant Sections in the Modified Version's license notice.
30308 These titles must be distinct from any other section titles.
30309
30310 You may add a section Entitled "Endorsements", provided it contains
30311 nothing but endorsements of your Modified Version by various
30312 parties---for example, statements of peer review or that the text has
30313 been approved by an organization as the authoritative definition of a
30314 standard.
30315
30316 You may add a passage of up to five words as a Front-Cover Text, and a
30317 passage of up to 25 words as a Back-Cover Text, to the end of the list
30318 of Cover Texts in the Modified Version. Only one passage of
30319 Front-Cover Text and one of Back-Cover Text may be added by (or
30320 through arrangements made by) any one entity. If the Document already
30321 includes a cover text for the same cover, previously added by you or
30322 by arrangement made by the same entity you are acting on behalf of,
30323 you may not add another; but you may replace the old one, on explicit
30324 permission from the previous publisher that added the old one.
30325
30326 The author(s) and publisher(s) of the Document do not by this License
30327 give permission to use their names for publicity for or to assert or
30328 imply endorsement of any Modified Version.
30329
30330 @strong{5. COMBINING DOCUMENTS}
30331
30332 You may combine the Document with other documents released under this
30333 License, under the terms defined in section 4 above for modified
30334 versions, provided that you include in the combination all of the
30335 Invariant Sections of all of the original documents, unmodified, and
30336 list them all as Invariant Sections of your combined work in its
30337 license notice, and that you preserve all their Warranty Disclaimers.
30338
30339 The combined work need only contain one copy of this License, and
30340 multiple identical Invariant Sections may be replaced with a single
30341 copy. If there are multiple Invariant Sections with the same name but
30342 different contents, make the title of each such section unique by
30343 adding at the end of it, in parentheses, the name of the original
30344 author or publisher of that section if known, or else a unique number.
30345 Make the same adjustment to the section titles in the list of
30346 Invariant Sections in the license notice of the combined work.
30347
30348 In the combination, you must combine any sections Entitled "History"
30349 in the various original documents, forming one section Entitled
30350 "History"; likewise combine any sections Entitled "Acknowledgements",
30351 and any sections Entitled "Dedications". You must delete all sections
30352 Entitled "Endorsements".
30353
30354 @strong{6. COLLECTIONS OF DOCUMENTS}
30355
30356 You may make a collection consisting of the Document and other documents
30357 released under this License, and replace the individual copies of this
30358 License in the various documents with a single copy that is included in
30359 the collection, provided that you follow the rules of this License for
30360 verbatim copying of each of the documents in all other respects.
30361
30362 You may extract a single document from such a collection, and distribute
30363 it individually under this License, provided you insert a copy of this
30364 License into the extracted document, and follow this License in all
30365 other respects regarding verbatim copying of that document.
30366
30367 @strong{7. AGGREGATION WITH INDEPENDENT WORKS}
30368
30369 A compilation of the Document or its derivatives with other separate
30370 and independent documents or works, in or on a volume of a storage or
30371 distribution medium, is called an "aggregate" if the copyright
30372 resulting from the compilation is not used to limit the legal rights
30373 of the compilation's users beyond what the individual works permit.
30374 When the Document is included in an aggregate, this License does not
30375 apply to the other works in the aggregate which are not themselves
30376 derivative works of the Document.
30377
30378 If the Cover Text requirement of section 3 is applicable to these
30379 copies of the Document, then if the Document is less than one half of
30380 the entire aggregate, the Document's Cover Texts may be placed on
30381 covers that bracket the Document within the aggregate, or the
30382 electronic equivalent of covers if the Document is in electronic form.
30383 Otherwise they must appear on printed covers that bracket the whole
30384 aggregate.
30385
30386 @strong{8. TRANSLATION}
30387
30388 Translation is considered a kind of modification, so you may
30389 distribute translations of the Document under the terms of section 4.
30390 Replacing Invariant Sections with translations requires special
30391 permission from their copyright holders, but you may include
30392 translations of some or all Invariant Sections in addition to the
30393 original versions of these Invariant Sections. You may include a
30394 translation of this License, and all the license notices in the
30395 Document, and any Warranty Disclaimers, provided that you also include
30396 the original English version of this License and the original versions
30397 of those notices and disclaimers. In case of a disagreement between
30398 the translation and the original version of this License or a notice
30399 or disclaimer, the original version will prevail.
30400
30401 If a section in the Document is Entitled "Acknowledgements",
30402 "Dedications", or "History", the requirement (section 4) to Preserve
30403 its Title (section 1) will typically require changing the actual
30404 title.
30405
30406 @strong{9. TERMINATION}
30407
30408 You may not copy, modify, sublicense, or distribute the Document
30409 except as expressly provided under this License. Any attempt
30410 otherwise to copy, modify, sublicense, or distribute it is void, and
30411 will automatically terminate your rights under this License.
30412
30413 However, if you cease all violation of this License, then your license
30414 from a particular copyright holder is reinstated (a) provisionally,
30415 unless and until the copyright holder explicitly and finally
30416 terminates your license, and (b) permanently, if the copyright holder
30417 fails to notify you of the violation by some reasonable means prior to
30418 60 days after the cessation.
30419
30420 Moreover, your license from a particular copyright holder is
30421 reinstated permanently if the copyright holder notifies you of the
30422 violation by some reasonable means, this is the first time you have
30423 received notice of violation of this License (for any work) from that
30424 copyright holder, and you cure the violation prior to 30 days after
30425 your receipt of the notice.
30426
30427 Termination of your rights under this section does not terminate the
30428 licenses of parties who have received copies or rights from you under
30429 this License. If your rights have been terminated and not permanently
30430 reinstated, receipt of a copy of some or all of the same material does
30431 not give you any rights to use it.
30432
30433 @strong{10. FUTURE REVISIONS OF THIS LICENSE}
30434
30435 The Free Software Foundation may publish new, revised versions
30436 of the GNU Free Documentation License from time to time. Such new
30437 versions will be similar in spirit to the present version, but may
30438 differ in detail to address new problems or concerns. See
30439 @indicateurl{http://www.gnu.org/copyleft/}.
30440
30441 Each version of the License is given a distinguishing version number.
30442 If the Document specifies that a particular numbered version of this
30443 License "or any later version" applies to it, you have the option of
30444 following the terms and conditions either of that specified version or
30445 of any later version that has been published (not as a draft) by the
30446 Free Software Foundation. If the Document does not specify a version
30447 number of this License, you may choose any version ever published (not
30448 as a draft) by the Free Software Foundation. If the Document
30449 specifies that a proxy can decide which future versions of this
30450 License can be used, that proxy's public statement of acceptance of a
30451 version permanently authorizes you to choose that version for the
30452 Document.
30453
30454 @strong{11. RELICENSING}
30455
30456 "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
30457 World Wide Web server that publishes copyrightable works and also
30458 provides prominent facilities for anybody to edit those works. A
30459 public wiki that anybody can edit is an example of such a server. A
30460 "Massive Multiauthor Collaboration" (or "MMC") contained in the
30461 site means any set of copyrightable works thus published on the MMC
30462 site.
30463
30464 "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
30465 license published by Creative Commons Corporation, a not-for-profit
30466 corporation with a principal place of business in San Francisco,
30467 California, as well as future copyleft versions of that license
30468 published by that same organization.
30469
30470 "Incorporate" means to publish or republish a Document, in whole or
30471 in part, as part of another Document.
30472
30473 An MMC is "eligible for relicensing" if it is licensed under this
30474 License, and if all works that were first published under this License
30475 somewhere other than this MMC, and subsequently incorporated in whole
30476 or in part into the MMC, (1) had no cover texts or invariant sections,
30477 and (2) were thus incorporated prior to November 1, 2008.
30478
30479 The operator of an MMC Site may republish an MMC contained in the site
30480 under CC-BY-SA on the same site at any time before August 1, 2009,
30481 provided the MMC is eligible for relicensing.
30482
30483 @strong{ADDENDUM: How to use this License for your documents}
30484
30485 To use this License in a document you have written, include a copy of
30486 the License in the document and put the following copyright and
30487 license notices just after the title page:
30488
30489 @quotation
30490
30491 Copyright © YEAR YOUR NAME.
30492 Permission is granted to copy, distribute and/or modify this document
30493 under the terms of the GNU Free Documentation License, Version 1.3
30494 or any later version published by the Free Software Foundation;
30495 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
30496 A copy of the license is included in the section entitled "GNU
30497 Free Documentation License".
30498 @end quotation
30499
30500 If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
30501 replace the "with ... Texts." line with this:
30502
30503 @quotation
30504
30505 with the Invariant Sections being LIST THEIR TITLES, with the
30506 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
30507 @end quotation
30508
30509 If you have Invariant Sections without Cover Texts, or some other
30510 combination of the three, merge those two alternatives to suit the
30511 situation.
30512
30513 If your document contains nontrivial examples of program code, we
30514 recommend releasing these examples in parallel under your choice of
30515 free software license, such as the GNU General Public License,
30516 to permit their use in free software.
30517
30518 @node Index,,GNU Free Documentation License,Top
30519 @unnumbered Index
30520
30521
30522 @printindex ge
30523
30524 @anchor{de}@w{ }
30525 @anchor{gnat_ugn/gnat_utility_programs switches-related-to-project-files}@w{ }
30526
30527 @c %**end of body
30528 @bye