[multiple changes]
[gcc.git] / gcc / ada / lib-xref.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L I B . X R E F --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Csets; use Csets;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Nlists; use Nlists;
31 with Opt; use Opt;
32 with Restrict; use Restrict;
33 with Rident; use Rident;
34 with Sem; use Sem;
35 with Sem_Aux; use Sem_Aux;
36 with Sem_Prag; use Sem_Prag;
37 with Sem_Util; use Sem_Util;
38 with Sem_Warn; use Sem_Warn;
39 with Sinfo; use Sinfo;
40 with Sinput; use Sinput;
41 with Snames; use Snames;
42 with Stringt; use Stringt;
43 with Stand; use Stand;
44 with Table; use Table;
45
46 with GNAT.Heap_Sort_G;
47 with GNAT.HTable;
48
49 package body Lib.Xref is
50
51 ------------------
52 -- Declarations --
53 ------------------
54
55 -- The Xref table is used to record references. The Loc field is set
56 -- to No_Location for a definition entry.
57
58 subtype Xref_Entry_Number is Int;
59
60 type Xref_Key is record
61 -- These are the components of Xref_Entry that participate in hash
62 -- lookups.
63
64 Ent : Entity_Id;
65 -- Entity referenced (E parameter to Generate_Reference)
66
67 Loc : Source_Ptr;
68 -- Location of reference (Original_Location (Sloc field of N parameter
69 -- to Generate_Reference). Set to No_Location for the case of a
70 -- defining occurrence.
71
72 Typ : Character;
73 -- Reference type (Typ param to Generate_Reference)
74
75 Eun : Unit_Number_Type;
76 -- Unit number corresponding to Ent
77
78 Lun : Unit_Number_Type;
79 -- Unit number corresponding to Loc. Value is undefined and not
80 -- referenced if Loc is set to No_Location.
81
82 -- The following components are only used for SPARK cross-references
83
84 Ref_Scope : Entity_Id;
85 -- Entity of the closest subprogram or package enclosing the reference
86
87 Ent_Scope : Entity_Id;
88 -- Entity of the closest subprogram or package enclosing the definition,
89 -- which should be located in the same file as the definition itself.
90 end record;
91
92 type Xref_Entry is record
93 Key : Xref_Key;
94
95 Ent_Scope_File : Unit_Number_Type;
96 -- File for entity Ent_Scope
97
98 Def : Source_Ptr;
99 -- Original source location for entity being referenced. Note that these
100 -- values are used only during the output process, they are not set when
101 -- the entries are originally built. This is because private entities
102 -- can be swapped when the initial call is made.
103
104 HTable_Next : Xref_Entry_Number;
105 -- For use only by Static_HTable
106 end record;
107
108 package Xrefs is new Table.Table (
109 Table_Component_Type => Xref_Entry,
110 Table_Index_Type => Xref_Entry_Number,
111 Table_Low_Bound => 1,
112 Table_Initial => Alloc.Xrefs_Initial,
113 Table_Increment => Alloc.Xrefs_Increment,
114 Table_Name => "Xrefs");
115
116 --------------
117 -- Xref_Set --
118 --------------
119
120 -- We keep a set of xref entries, in order to avoid inserting duplicate
121 -- entries into the above Xrefs table. An entry is in Xref_Set if and only
122 -- if it is in Xrefs.
123
124 Num_Buckets : constant := 2**16;
125
126 subtype Header_Num is Integer range 0 .. Num_Buckets - 1;
127 type Null_Type is null record;
128 pragma Unreferenced (Null_Type);
129
130 function Hash (F : Xref_Entry_Number) return Header_Num;
131
132 function Equal (F1, F2 : Xref_Entry_Number) return Boolean;
133
134 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number);
135
136 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number;
137
138 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number;
139
140 pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key);
141
142 package Xref_Set is new GNAT.HTable.Static_HTable (
143 Header_Num,
144 Element => Xref_Entry,
145 Elmt_Ptr => Xref_Entry_Number,
146 Null_Ptr => 0,
147 Set_Next => HT_Set_Next,
148 Next => HT_Next,
149 Key => Xref_Entry_Number,
150 Get_Key => Get_Key,
151 Hash => Hash,
152 Equal => Equal);
153
154 -----------------------------
155 -- SPARK Xrefs Information --
156 -----------------------------
157
158 package body SPARK_Specific is separate;
159
160 ------------------------
161 -- Local Subprograms --
162 ------------------------
163
164 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type);
165 -- Add an entry to the tables of Xref_Entries, avoiding duplicates
166
167 procedure Generate_Prim_Op_References (Typ : Entity_Id);
168 -- For a tagged type, generate implicit references to its primitive
169 -- operations, for source navigation. This is done right before emitting
170 -- cross-reference information rather than at the freeze point of the type
171 -- in order to handle late bodies that are primitive operations.
172
173 function Lt (T1, T2 : Xref_Entry) return Boolean;
174 -- Order cross-references
175
176 ---------------
177 -- Add_Entry --
178 ---------------
179
180 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is
181 begin
182 Xrefs.Increment_Last; -- tentative
183 Xrefs.Table (Xrefs.Last).Key := Key;
184
185 -- Set the entry in Xref_Set, and if newly set, keep the above
186 -- tentative increment.
187
188 if Xref_Set.Set_If_Not_Present (Xrefs.Last) then
189 Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File;
190 -- Leave Def and HTable_Next uninitialized
191
192 Set_Has_Xref_Entry (Key.Ent);
193
194 -- It was already in Xref_Set, so throw away the tentatively-added
195 -- entry
196
197 else
198 Xrefs.Decrement_Last;
199 end if;
200 end Add_Entry;
201
202 -----------
203 -- Equal --
204 -----------
205
206 function Equal (F1, F2 : Xref_Entry_Number) return Boolean is
207 Result : constant Boolean :=
208 Xrefs.Table (F1).Key = Xrefs.Table (F2).Key;
209 begin
210 return Result;
211 end Equal;
212
213 -------------------------
214 -- Generate_Definition --
215 -------------------------
216
217 procedure Generate_Definition (E : Entity_Id) is
218 begin
219 pragma Assert (Nkind (E) in N_Entity);
220
221 -- Note that we do not test Xref_Entity_Letters here. It is too early
222 -- to do so, since we are often called before the entity is fully
223 -- constructed, so that the Ekind is still E_Void.
224
225 if Opt.Xref_Active
226
227 -- Definition must come from source
228
229 -- We make an exception for subprogram child units that have no spec.
230 -- For these we generate a subprogram declaration for library use,
231 -- and the corresponding entity does not come from source.
232 -- Nevertheless, all references will be attached to it and we have
233 -- to treat is as coming from user code.
234
235 and then (Comes_From_Source (E) or else Is_Child_Unit (E))
236
237 -- And must have a reasonable source location that is not
238 -- within an instance (all entities in instances are ignored)
239
240 and then Sloc (E) > No_Location
241 and then Instantiation_Location (Sloc (E)) = No_Location
242
243 -- And must be a non-internal name from the main source unit
244
245 and then In_Extended_Main_Source_Unit (E)
246 and then not Is_Internal_Name (Chars (E))
247 then
248 Add_Entry
249 ((Ent => E,
250 Loc => No_Location,
251 Typ => ' ',
252 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
253 Lun => No_Unit,
254 Ref_Scope => Empty,
255 Ent_Scope => Empty),
256 Ent_Scope_File => No_Unit);
257
258 if In_Inlined_Body then
259 Set_Referenced (E);
260 end if;
261 end if;
262 end Generate_Definition;
263
264 ---------------------------------
265 -- Generate_Operator_Reference --
266 ---------------------------------
267
268 procedure Generate_Operator_Reference
269 (N : Node_Id;
270 T : Entity_Id)
271 is
272 begin
273 if not In_Extended_Main_Source_Unit (N) then
274 return;
275 end if;
276
277 -- If the operator is not a Standard operator, then we generate a real
278 -- reference to the user defined operator.
279
280 if Sloc (Entity (N)) /= Standard_Location then
281 Generate_Reference (Entity (N), N);
282
283 -- A reference to an implicit inequality operator is also a reference
284 -- to the user-defined equality.
285
286 if Nkind (N) = N_Op_Ne
287 and then not Comes_From_Source (Entity (N))
288 and then Present (Corresponding_Equality (Entity (N)))
289 then
290 Generate_Reference (Corresponding_Equality (Entity (N)), N);
291 end if;
292
293 -- For the case of Standard operators, we mark the result type as
294 -- referenced. This ensures that in the case where we are using a
295 -- derived operator, we mark an entity of the unit that implicitly
296 -- defines this operator as used. Otherwise we may think that no entity
297 -- of the unit is used. The actual entity marked as referenced is the
298 -- first subtype, which is the relevant user defined entity.
299
300 -- Note: we only do this for operators that come from source. The
301 -- generated code sometimes reaches for entities that do not need to be
302 -- explicitly visible (for example, when we expand the code for
303 -- comparing two record objects, the fields of the record may not be
304 -- visible).
305
306 elsif Comes_From_Source (N) then
307 Set_Referenced (First_Subtype (T));
308 end if;
309 end Generate_Operator_Reference;
310
311 ---------------------------------
312 -- Generate_Prim_Op_References --
313 ---------------------------------
314
315 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
316 Base_T : Entity_Id;
317 Prim : Elmt_Id;
318 Prim_List : Elist_Id;
319
320 begin
321 -- Handle subtypes of synchronized types
322
323 if Ekind (Typ) = E_Protected_Subtype
324 or else Ekind (Typ) = E_Task_Subtype
325 then
326 Base_T := Etype (Typ);
327 else
328 Base_T := Typ;
329 end if;
330
331 -- References to primitive operations are only relevant for tagged types
332
333 if not Is_Tagged_Type (Base_T)
334 or else Is_Class_Wide_Type (Base_T)
335 then
336 return;
337 end if;
338
339 -- Ada 2005 (AI-345): For synchronized types generate reference to the
340 -- wrapper that allow us to dispatch calls through their implemented
341 -- abstract interface types.
342
343 -- The check for Present here is to protect against previously reported
344 -- critical errors.
345
346 Prim_List := Primitive_Operations (Base_T);
347
348 if No (Prim_List) then
349 return;
350 end if;
351
352 Prim := First_Elmt (Prim_List);
353 while Present (Prim) loop
354
355 -- If the operation is derived, get the original for cross-reference
356 -- reference purposes (it is the original for which we want the xref
357 -- and for which the comes_from_source test must be performed).
358
359 Generate_Reference
360 (Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False);
361 Next_Elmt (Prim);
362 end loop;
363 end Generate_Prim_Op_References;
364
365 ------------------------
366 -- Generate_Reference --
367 ------------------------
368
369 procedure Generate_Reference
370 (E : Entity_Id;
371 N : Node_Id;
372 Typ : Character := 'r';
373 Set_Ref : Boolean := True;
374 Force : Boolean := False)
375 is
376 Actual_Typ : Character := Typ;
377 Call : Node_Id;
378 Def : Source_Ptr;
379 Ent : Entity_Id;
380 Ent_Scope : Entity_Id;
381 Formal : Entity_Id;
382 Kind : Entity_Kind;
383 Nod : Node_Id;
384 Ref : Source_Ptr;
385 Ref_Scope : Entity_Id;
386
387 function Get_Through_Renamings (E : Entity_Id) return Entity_Id;
388 -- Get the enclosing entity through renamings, which may come from
389 -- source or from the translation of generic instantiations.
390
391 function Is_On_LHS (Node : Node_Id) return Boolean;
392 -- Used to check if a node is on the left hand side of an assignment.
393 -- The following cases are handled:
394 --
395 -- Variable Node is a direct descendant of left hand side of an
396 -- assignment statement.
397 --
398 -- Prefix Of an indexed or selected component that is present in
399 -- a subtree rooted by an assignment statement. There is
400 -- no restriction of nesting of components, thus cases
401 -- such as A.B (C).D are handled properly. However a prefix
402 -- of a dereference (either implicit or explicit) is never
403 -- considered as on a LHS.
404 --
405 -- Out param Same as above cases, but OUT parameter
406
407 function OK_To_Set_Referenced return Boolean;
408 -- Returns True if the Referenced flag can be set. There are a few
409 -- exceptions where we do not want to set this flag, see body for
410 -- details of these exceptional cases.
411
412 ---------------------------
413 -- Get_Through_Renamings --
414 ---------------------------
415
416 function Get_Through_Renamings (E : Entity_Id) return Entity_Id is
417 Result : Entity_Id := E;
418 begin
419 while Present (Result)
420 and then Is_Object (Result)
421 and then Present (Renamed_Object (Result))
422 loop
423 Result := Get_Enclosing_Object (Renamed_Object (Result));
424 end loop;
425 return Result;
426 end Get_Through_Renamings;
427
428 ---------------
429 -- Is_On_LHS --
430 ---------------
431
432 -- ??? There are several routines here and there that perform a similar
433 -- (but subtly different) computation, which should be factored:
434
435 -- Sem_Util.May_Be_Lvalue
436 -- Sem_Util.Known_To_Be_Assigned
437 -- Exp_Ch2.Expand_Entry_Parameter.In_Assignment_Context
438 -- Exp_Smem.Is_Out_Actual
439
440 function Is_On_LHS (Node : Node_Id) return Boolean is
441 N : Node_Id;
442 P : Node_Id;
443 K : Node_Kind;
444
445 begin
446 -- Only identifiers are considered, is this necessary???
447
448 if Nkind (Node) /= N_Identifier then
449 return False;
450 end if;
451
452 -- Immediate return if appeared as OUT parameter
453
454 if Kind = E_Out_Parameter then
455 return True;
456 end if;
457
458 -- Search for assignment statement subtree root
459
460 N := Node;
461 loop
462 P := Parent (N);
463 K := Nkind (P);
464
465 if K = N_Assignment_Statement then
466 return Name (P) = N;
467
468 -- Check whether the parent is a component and the current node is
469 -- its prefix, but return False if the current node has an access
470 -- type, as in that case the selected or indexed component is an
471 -- implicit dereference, and the LHS is the designated object, not
472 -- the access object.
473
474 -- ??? case of a slice assignment?
475
476 -- ??? Note that in some cases this is called too early
477 -- (see comments in Sem_Ch8.Find_Direct_Name), at a point where
478 -- the tree is not fully typed yet. In that case we may lack
479 -- an Etype for N, and we must disable the check for an implicit
480 -- dereference. If the dereference is on an LHS, this causes a
481 -- false positive.
482
483 elsif (K = N_Selected_Component or else K = N_Indexed_Component)
484 and then Prefix (P) = N
485 and then not (Present (Etype (N))
486 and then
487 Is_Access_Type (Etype (N)))
488 then
489 N := P;
490
491 -- All other cases, definitely not on left side
492
493 else
494 return False;
495 end if;
496 end loop;
497 end Is_On_LHS;
498
499 ---------------------------
500 -- OK_To_Set_Referenced --
501 ---------------------------
502
503 function OK_To_Set_Referenced return Boolean is
504 P : Node_Id;
505
506 begin
507 -- A reference from a pragma Unreferenced or pragma Unmodified or
508 -- pragma Warnings does not cause the Referenced flag to be set.
509 -- This avoids silly warnings about things being referenced and
510 -- not assigned when the only reference is from the pragma.
511
512 if Nkind (N) = N_Identifier then
513 P := Parent (N);
514
515 if Nkind (P) = N_Pragma_Argument_Association then
516 P := Parent (P);
517
518 if Nkind (P) = N_Pragma then
519 if Nam_In (Pragma_Name (P), Name_Warnings,
520 Name_Unmodified,
521 Name_Unreferenced)
522 then
523 return False;
524 end if;
525 end if;
526
527 -- A reference to a formal in a named parameter association does
528 -- not make the formal referenced. Formals that are unused in the
529 -- subprogram body are properly flagged as such, even if calls
530 -- elsewhere use named notation.
531
532 elsif Nkind (P) = N_Parameter_Association
533 and then N = Selector_Name (P)
534 then
535 return False;
536 end if;
537 end if;
538
539 return True;
540 end OK_To_Set_Referenced;
541
542 -- Start of processing for Generate_Reference
543
544 begin
545 pragma Assert (Nkind (E) in N_Entity);
546 Find_Actual (N, Formal, Call);
547
548 if Present (Formal) then
549 Kind := Ekind (Formal);
550 else
551 Kind := E_Void;
552 end if;
553
554 -- Check for obsolescent reference to package ASCII. GNAT treats this
555 -- element of annex J specially since in practice, programs make a lot
556 -- of use of this feature, so we don't include it in the set of features
557 -- diagnosed when Warn_On_Obsolescent_Features mode is set. However we
558 -- are required to note it as a violation of the RM defined restriction.
559
560 if E = Standard_ASCII then
561 Check_Restriction (No_Obsolescent_Features, N);
562 end if;
563
564 -- Check for reference to entity marked with Is_Obsolescent
565
566 -- Note that we always allow obsolescent references in the compiler
567 -- itself and the run time, since we assume that we know what we are
568 -- doing in such cases. For example the calls in Ada.Characters.Handling
569 -- to its own obsolescent subprograms are just fine.
570
571 -- In any case we only generate warnings if we are in the extended main
572 -- source unit, and the entity itself is not in the extended main source
573 -- unit, since we assume the source unit itself knows what is going on
574 -- (and for sure we do not want silly warnings, e.g. on the end line of
575 -- an obsolescent procedure body).
576
577 if Is_Obsolescent (E)
578 and then not GNAT_Mode
579 and then not In_Extended_Main_Source_Unit (E)
580 and then In_Extended_Main_Source_Unit (N)
581 then
582 Check_Restriction (No_Obsolescent_Features, N);
583
584 if Warn_On_Obsolescent_Feature then
585 Output_Obsolescent_Entity_Warnings (N, E);
586 end if;
587 end if;
588
589 -- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only
590 -- detect real explicit references (modifications and references).
591
592 if Comes_From_Source (N)
593 and then Is_Ada_2005_Only (E)
594 and then Ada_Version < Ada_2005
595 and then Warn_On_Ada_2005_Compatibility
596 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')
597 then
598 Error_Msg_NE ("& is only defined in Ada 2005?y?", N, E);
599 end if;
600
601 -- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only
602 -- detect real explicit references (modifications and references).
603
604 if Comes_From_Source (N)
605 and then Is_Ada_2012_Only (E)
606 and then Ada_Version < Ada_2012
607 and then Warn_On_Ada_2012_Compatibility
608 and then (Typ = 'm' or else Typ = 'r')
609 then
610 Error_Msg_NE ("& is only defined in Ada 2012?y?", N, E);
611 end if;
612
613 -- Do not generate references if we are within a postcondition sub-
614 -- program, because the reference does not comes from source, and the
615 -- pre-analysis of the aspect has already created an entry for the ali
616 -- file at the proper source location.
617
618 if Chars (Current_Scope) = Name_uPostconditions then
619 return;
620 end if;
621
622 -- Never collect references if not in main source unit. However, we omit
623 -- this test if Typ is 'e' or 'k', since these entries are structural,
624 -- and it is useful to have them in units that reference packages as
625 -- well as units that define packages. We also omit the test for the
626 -- case of 'p' since we want to include inherited primitive operations
627 -- from other packages.
628
629 -- We also omit this test is this is a body reference for a subprogram
630 -- instantiation. In this case the reference is to the generic body,
631 -- which clearly need not be in the main unit containing the instance.
632 -- For the same reason we accept an implicit reference generated for
633 -- a default in an instance.
634
635 if not In_Extended_Main_Source_Unit (N) then
636 if Typ = 'e'
637 or else Typ = 'I'
638 or else Typ = 'p'
639 or else Typ = 'i'
640 or else Typ = 'k'
641 or else (Typ = 'b' and then Is_Generic_Instance (E))
642
643 -- Allow the generation of references to reads, writes and calls
644 -- in SPARK mode when the related context comes from an instance.
645
646 or else
647 (GNATprove_Mode
648 and then In_Extended_Main_Code_Unit (N)
649 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's'))
650 then
651 null;
652 else
653 return;
654 end if;
655 end if;
656
657 -- For reference type p, the entity must be in main source unit
658
659 if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then
660 return;
661 end if;
662
663 -- Unless the reference is forced, we ignore references where the
664 -- reference itself does not come from source.
665
666 if not Force and then not Comes_From_Source (N) then
667 return;
668 end if;
669
670 -- Deal with setting entity as referenced, unless suppressed. Note that
671 -- we still do Set_Referenced on entities that do not come from source.
672 -- This situation arises when we have a source reference to a derived
673 -- operation, where the derived operation itself does not come from
674 -- source, but we still want to mark it as referenced, since we really
675 -- are referencing an entity in the corresponding package (this avoids
676 -- wrong complaints that the package contains no referenced entities).
677
678 if Set_Ref then
679
680 -- Assignable object appearing on left side of assignment or as
681 -- an out parameter.
682
683 if Is_Assignable (E)
684 and then Is_On_LHS (N)
685 and then Ekind (E) /= E_In_Out_Parameter
686 then
687 -- For objects that are renamings, just set as simply referenced
688 -- we do not try to do assignment type tracking in this case.
689
690 if Present (Renamed_Object (E)) then
691 Set_Referenced (E);
692
693 -- Out parameter case
694
695 elsif Kind = E_Out_Parameter then
696
697 -- If warning mode for all out parameters is set, or this is
698 -- the only warning parameter, then we want to mark this for
699 -- later warning logic by setting Referenced_As_Out_Parameter
700
701 if Warn_On_Modified_As_Out_Parameter (Formal) then
702 Set_Referenced_As_Out_Parameter (E, True);
703 Set_Referenced_As_LHS (E, False);
704
705 -- For OUT parameter not covered by the above cases, we simply
706 -- regard it as a normal reference (in this case we do not
707 -- want any of the warning machinery for out parameters).
708
709 else
710 Set_Referenced (E);
711 end if;
712
713 -- For the left hand of an assignment case, we do nothing here.
714 -- The processing for Analyze_Assignment_Statement will set the
715 -- Referenced_As_LHS flag.
716
717 else
718 null;
719 end if;
720
721 -- Check for a reference in a pragma that should not count as a
722 -- making the variable referenced for warning purposes.
723
724 elsif Is_Non_Significant_Pragma_Reference (N) then
725 null;
726
727 -- A reference in an attribute definition clause does not count as a
728 -- reference except for the case of Address. The reason that 'Address
729 -- is an exception is that it creates an alias through which the
730 -- variable may be referenced.
731
732 elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause
733 and then Chars (Parent (N)) /= Name_Address
734 and then N = Name (Parent (N))
735 then
736 null;
737
738 -- Constant completion does not count as a reference
739
740 elsif Typ = 'c'
741 and then Ekind (E) = E_Constant
742 then
743 null;
744
745 -- Record representation clause does not count as a reference
746
747 elsif Nkind (N) = N_Identifier
748 and then Nkind (Parent (N)) = N_Record_Representation_Clause
749 then
750 null;
751
752 -- Discriminants do not need to produce a reference to record type
753
754 elsif Typ = 'd'
755 and then Nkind (Parent (N)) = N_Discriminant_Specification
756 then
757 null;
758
759 -- All other cases
760
761 else
762 -- Special processing for IN OUT parameters, where we have an
763 -- implicit assignment to a simple variable.
764
765 if Kind = E_In_Out_Parameter
766 and then Is_Assignable (E)
767 then
768 -- For sure this counts as a normal read reference
769
770 Set_Referenced (E);
771 Set_Last_Assignment (E, Empty);
772
773 -- We count it as being referenced as an out parameter if the
774 -- option is set to warn on all out parameters, except that we
775 -- have a special exclusion for an intrinsic subprogram, which
776 -- is most likely an instantiation of Unchecked_Deallocation
777 -- which we do not want to consider as an assignment since it
778 -- generates false positives. We also exclude the case of an
779 -- IN OUT parameter if the name of the procedure is Free,
780 -- since we suspect similar semantics.
781
782 if Warn_On_All_Unread_Out_Parameters
783 and then Is_Entity_Name (Name (Call))
784 and then not Is_Intrinsic_Subprogram (Entity (Name (Call)))
785 and then Chars (Name (Call)) /= Name_Free
786 then
787 Set_Referenced_As_Out_Parameter (E, True);
788 Set_Referenced_As_LHS (E, False);
789 end if;
790
791 -- Don't count a recursive reference within a subprogram as a
792 -- reference (that allows detection of a recursive subprogram
793 -- whose only references are recursive calls as unreferenced).
794
795 elsif Is_Subprogram (E)
796 and then E = Nearest_Dynamic_Scope (Current_Scope)
797 then
798 null;
799
800 -- Any other occurrence counts as referencing the entity
801
802 elsif OK_To_Set_Referenced then
803 Set_Referenced (E);
804
805 -- If variable, this is an OK reference after an assignment
806 -- so we can clear the Last_Assignment indication.
807
808 if Is_Assignable (E) then
809 Set_Last_Assignment (E, Empty);
810 end if;
811 end if;
812 end if;
813
814 -- Check for pragma Unreferenced given and reference is within
815 -- this source unit (occasion for possible warning to be issued).
816
817 if Has_Unreferenced (E)
818 and then In_Same_Extended_Unit (E, N)
819 then
820 -- A reference as a named parameter in a call does not count
821 -- as a violation of pragma Unreferenced for this purpose...
822
823 if Nkind (N) = N_Identifier
824 and then Nkind (Parent (N)) = N_Parameter_Association
825 and then Selector_Name (Parent (N)) = N
826 then
827 null;
828
829 -- ... Neither does a reference to a variable on the left side
830 -- of an assignment.
831
832 elsif Is_On_LHS (N) then
833 null;
834
835 -- For entry formals, we want to place the warning message on the
836 -- corresponding entity in the accept statement. The current scope
837 -- is the body of the accept, so we find the formal whose name
838 -- matches that of the entry formal (there is no link between the
839 -- two entities, and the one in the accept statement is only used
840 -- for conformance checking).
841
842 elsif Ekind (Scope (E)) = E_Entry then
843 declare
844 BE : Entity_Id;
845
846 begin
847 BE := First_Entity (Current_Scope);
848 while Present (BE) loop
849 if Chars (BE) = Chars (E) then
850 Error_Msg_NE -- CODEFIX
851 ("??pragma Unreferenced given for&!", N, BE);
852 exit;
853 end if;
854
855 Next_Entity (BE);
856 end loop;
857 end;
858
859 -- Here we issue the warning, since this is a real reference
860
861 else
862 Error_Msg_NE -- CODEFIX
863 ("?pragma Unreferenced given for&!", N, E);
864 end if;
865 end if;
866
867 -- If this is a subprogram instance, mark as well the internal
868 -- subprogram in the wrapper package, which may be a visible
869 -- compilation unit.
870
871 if Is_Overloadable (E)
872 and then Is_Generic_Instance (E)
873 and then Present (Alias (E))
874 then
875 Set_Referenced (Alias (E));
876 end if;
877 end if;
878
879 -- Generate reference if all conditions are met:
880
881 if
882 -- Cross referencing must be active
883
884 Opt.Xref_Active
885
886 -- The entity must be one for which we collect references
887
888 and then Xref_Entity_Letters (Ekind (E)) /= ' '
889
890 -- Both Sloc values must be set to something sensible
891
892 and then Sloc (E) > No_Location
893 and then Sloc (N) > No_Location
894
895 -- Ignore references from within an instance. The only exceptions to
896 -- this are default subprograms, for which we generate an implicit
897 -- reference and compilations in SPARK mode.
898
899 and then
900 (Instantiation_Location (Sloc (N)) = No_Location
901 or else Typ = 'i'
902 or else GNATprove_Mode)
903
904 -- Ignore dummy references
905
906 and then Typ /= ' '
907 then
908 if Nkind_In (N, N_Identifier,
909 N_Defining_Identifier,
910 N_Defining_Operator_Symbol,
911 N_Operator_Symbol,
912 N_Defining_Character_Literal)
913 or else Nkind (N) in N_Op
914 or else (Nkind (N) = N_Character_Literal
915 and then Sloc (Entity (N)) /= Standard_Location)
916 then
917 Nod := N;
918
919 elsif Nkind_In (N, N_Expanded_Name, N_Selected_Component) then
920 Nod := Selector_Name (N);
921
922 else
923 return;
924 end if;
925
926 -- Normal case of source entity comes from source
927
928 if Comes_From_Source (E) then
929 Ent := E;
930
931 -- Entity does not come from source, but is a derived subprogram and
932 -- the derived subprogram comes from source (after one or more
933 -- derivations) in which case the reference is to parent subprogram.
934
935 elsif Is_Overloadable (E)
936 and then Present (Alias (E))
937 then
938 Ent := Alias (E);
939 while not Comes_From_Source (Ent) loop
940 if No (Alias (Ent)) then
941 return;
942 end if;
943
944 Ent := Alias (Ent);
945 end loop;
946
947 -- The internally created defining entity for a child subprogram
948 -- that has no previous spec has valid references.
949
950 elsif Is_Overloadable (E)
951 and then Is_Child_Unit (E)
952 then
953 Ent := E;
954
955 -- Ditto for the formals of such a subprogram
956
957 elsif Is_Overloadable (Scope (E))
958 and then Is_Child_Unit (Scope (E))
959 then
960 Ent := E;
961
962 -- Record components of discriminated subtypes or derived types must
963 -- be treated as references to the original component.
964
965 elsif Ekind (E) = E_Component
966 and then Comes_From_Source (Original_Record_Component (E))
967 then
968 Ent := Original_Record_Component (E);
969
970 -- If this is an expanded reference to a discriminant, recover the
971 -- original discriminant, which gets the reference.
972
973 elsif Ekind (E) = E_In_Parameter
974 and then Present (Discriminal_Link (E))
975 then
976 Ent := Discriminal_Link (E);
977 Set_Referenced (Ent);
978
979 -- Ignore reference to any other entity that is not from source
980
981 else
982 return;
983 end if;
984
985 -- In SPARK mode, consider the underlying entity renamed instead of
986 -- the renaming, which is needed to compute a valid set of effects
987 -- (reads, writes) for the enclosing subprogram.
988
989 if GNATprove_Mode then
990 Ent := Get_Through_Renamings (Ent);
991
992 -- If no enclosing object, then it could be a reference to any
993 -- location not tracked individually, like heap-allocated data.
994 -- Conservatively approximate this possibility by generating a
995 -- dereference, and return.
996
997 if No (Ent) then
998 if Actual_Typ = 'w' then
999 SPARK_Specific.Generate_Dereference (Nod, 'r');
1000 SPARK_Specific.Generate_Dereference (Nod, 'w');
1001 else
1002 SPARK_Specific.Generate_Dereference (Nod, 'r');
1003 end if;
1004
1005 return;
1006 end if;
1007 end if;
1008
1009 -- Record reference to entity
1010
1011 if Actual_Typ = 'p'
1012 and then Is_Subprogram (Nod)
1013 and then Present (Overridden_Operation (Nod))
1014 then
1015 Actual_Typ := 'P';
1016 end if;
1017
1018 -- Comment needed here for special SPARK code ???
1019
1020 if GNATprove_Mode then
1021 Ref := Sloc (Nod);
1022 Def := Sloc (Ent);
1023
1024 Ref_Scope := SPARK_Specific.Enclosing_Subprogram_Or_Package (Nod);
1025 Ent_Scope := SPARK_Specific.Enclosing_Subprogram_Or_Package (Ent);
1026
1027 -- Since we are reaching through renamings in SPARK mode, we may
1028 -- end up with standard constants. Ignore those.
1029
1030 if Sloc (Ent_Scope) <= Standard_Location
1031 or else Def <= Standard_Location
1032 then
1033 return;
1034 end if;
1035
1036 Add_Entry
1037 ((Ent => Ent,
1038 Loc => Ref,
1039 Typ => Actual_Typ,
1040 Eun => Get_Code_Unit (Def),
1041 Lun => Get_Code_Unit (Ref),
1042 Ref_Scope => Ref_Scope,
1043 Ent_Scope => Ent_Scope),
1044 Ent_Scope_File => Get_Code_Unit (Ent));
1045
1046 else
1047 Ref := Original_Location (Sloc (Nod));
1048 Def := Original_Location (Sloc (Ent));
1049
1050 -- If this is an operator symbol, skip the initial quote for
1051 -- navigation purposes. This is not done for the end label,
1052 -- where we want the actual position after the closing quote.
1053
1054 if Typ = 't' then
1055 null;
1056
1057 elsif Nkind (N) = N_Defining_Operator_Symbol
1058 or else Nkind (Nod) = N_Operator_Symbol
1059 then
1060 Ref := Ref + 1;
1061 end if;
1062
1063 Add_Entry
1064 ((Ent => Ent,
1065 Loc => Ref,
1066 Typ => Actual_Typ,
1067 Eun => Get_Source_Unit (Def),
1068 Lun => Get_Source_Unit (Ref),
1069 Ref_Scope => Empty,
1070 Ent_Scope => Empty),
1071 Ent_Scope_File => No_Unit);
1072 end if;
1073 end if;
1074 end Generate_Reference;
1075
1076 -----------------------------------
1077 -- Generate_Reference_To_Formals --
1078 -----------------------------------
1079
1080 procedure Generate_Reference_To_Formals (E : Entity_Id) is
1081 Formal : Entity_Id;
1082
1083 begin
1084 if Is_Generic_Subprogram (E) then
1085 Formal := First_Entity (E);
1086
1087 while Present (Formal)
1088 and then not Is_Formal (Formal)
1089 loop
1090 Next_Entity (Formal);
1091 end loop;
1092
1093 elsif Ekind (E) in Access_Subprogram_Kind then
1094 Formal := First_Formal (Designated_Type (E));
1095
1096 else
1097 Formal := First_Formal (E);
1098 end if;
1099
1100 while Present (Formal) loop
1101 if Ekind (Formal) = E_In_Parameter then
1102
1103 if Nkind (Parameter_Type (Parent (Formal)))
1104 = N_Access_Definition
1105 then
1106 Generate_Reference (E, Formal, '^', False);
1107 else
1108 Generate_Reference (E, Formal, '>', False);
1109 end if;
1110
1111 elsif Ekind (Formal) = E_In_Out_Parameter then
1112 Generate_Reference (E, Formal, '=', False);
1113
1114 else
1115 Generate_Reference (E, Formal, '<', False);
1116 end if;
1117
1118 Next_Formal (Formal);
1119 end loop;
1120 end Generate_Reference_To_Formals;
1121
1122 -------------------------------------------
1123 -- Generate_Reference_To_Generic_Formals --
1124 -------------------------------------------
1125
1126 procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is
1127 Formal : Entity_Id;
1128
1129 begin
1130 Formal := First_Entity (E);
1131 while Present (Formal) loop
1132 if Comes_From_Source (Formal) then
1133 Generate_Reference (E, Formal, 'z', False);
1134 end if;
1135
1136 Next_Entity (Formal);
1137 end loop;
1138 end Generate_Reference_To_Generic_Formals;
1139
1140 -------------
1141 -- Get_Key --
1142 -------------
1143
1144 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is
1145 begin
1146 return E;
1147 end Get_Key;
1148
1149 ----------
1150 -- Hash --
1151 ----------
1152
1153 function Hash (F : Xref_Entry_Number) return Header_Num is
1154 -- It is unlikely to have two references to the same entity at the same
1155 -- source location, so the hash function depends only on the Ent and Loc
1156 -- fields.
1157
1158 XE : Xref_Entry renames Xrefs.Table (F);
1159 type M is mod 2**32;
1160
1161 H : constant M := M (XE.Key.Ent) + 2 ** 7 * M (abs XE.Key.Loc);
1162 -- It would be more natural to write:
1163 --
1164 -- H : constant M := M'Mod (XE.Key.Ent) + 2**7 * M'Mod (XE.Key.Loc);
1165 --
1166 -- But we can't use M'Mod, because it prevents bootstrapping with older
1167 -- compilers. Loc can be negative, so we do "abs" before converting.
1168 -- One day this can be cleaned up ???
1169
1170 begin
1171 return Header_Num (H mod Num_Buckets);
1172 end Hash;
1173
1174 -----------------
1175 -- HT_Set_Next --
1176 -----------------
1177
1178 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is
1179 begin
1180 Xrefs.Table (E).HTable_Next := Next;
1181 end HT_Set_Next;
1182
1183 -------------
1184 -- HT_Next --
1185 -------------
1186
1187 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is
1188 begin
1189 return Xrefs.Table (E).HTable_Next;
1190 end HT_Next;
1191
1192 ----------------
1193 -- Initialize --
1194 ----------------
1195
1196 procedure Initialize is
1197 begin
1198 Xrefs.Init;
1199 end Initialize;
1200
1201 --------
1202 -- Lt --
1203 --------
1204
1205 function Lt (T1, T2 : Xref_Entry) return Boolean is
1206 begin
1207 -- First test: if entity is in different unit, sort by unit
1208
1209 if T1.Key.Eun /= T2.Key.Eun then
1210 return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun);
1211
1212 -- Second test: within same unit, sort by entity Sloc
1213
1214 elsif T1.Def /= T2.Def then
1215 return T1.Def < T2.Def;
1216
1217 -- Third test: sort definitions ahead of references
1218
1219 elsif T1.Key.Loc = No_Location then
1220 return True;
1221
1222 elsif T2.Key.Loc = No_Location then
1223 return False;
1224
1225 -- Fourth test: for same entity, sort by reference location unit
1226
1227 elsif T1.Key.Lun /= T2.Key.Lun then
1228 return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun);
1229
1230 -- Fifth test: order of location within referencing unit
1231
1232 elsif T1.Key.Loc /= T2.Key.Loc then
1233 return T1.Key.Loc < T2.Key.Loc;
1234
1235 -- Finally, for two locations at the same address, we prefer
1236 -- the one that does NOT have the type 'r' so that a modification
1237 -- or extension takes preference, when there are more than one
1238 -- reference at the same location. As a result, in the case of
1239 -- entities that are in-out actuals, the read reference follows
1240 -- the modify reference.
1241
1242 else
1243 return T2.Key.Typ = 'r';
1244 end if;
1245 end Lt;
1246
1247 -----------------------
1248 -- Output_References --
1249 -----------------------
1250
1251 procedure Output_References is
1252
1253 procedure Get_Type_Reference
1254 (Ent : Entity_Id;
1255 Tref : out Entity_Id;
1256 Left : out Character;
1257 Right : out Character);
1258 -- Given an Entity_Id Ent, determines whether a type reference is
1259 -- required. If so, Tref is set to the entity for the type reference
1260 -- and Left and Right are set to the left/right brackets to be output
1261 -- for the reference. If no type reference is required, then Tref is
1262 -- set to Empty, and Left/Right are set to space.
1263
1264 procedure Output_Import_Export_Info (Ent : Entity_Id);
1265 -- Output language and external name information for an interfaced
1266 -- entity, using the format <language, external_name>.
1267
1268 ------------------------
1269 -- Get_Type_Reference --
1270 ------------------------
1271
1272 procedure Get_Type_Reference
1273 (Ent : Entity_Id;
1274 Tref : out Entity_Id;
1275 Left : out Character;
1276 Right : out Character)
1277 is
1278 Sav : Entity_Id;
1279
1280 begin
1281 -- See if we have a type reference
1282
1283 Tref := Ent;
1284 Left := '{';
1285 Right := '}';
1286
1287 loop
1288 Sav := Tref;
1289
1290 -- Processing for types
1291
1292 if Is_Type (Tref) then
1293
1294 -- Case of base type
1295
1296 if Base_Type (Tref) = Tref then
1297
1298 -- If derived, then get first subtype
1299
1300 if Tref /= Etype (Tref) then
1301 Tref := First_Subtype (Etype (Tref));
1302
1303 -- Set brackets for derived type, but don't override
1304 -- pointer case since the fact that something is a
1305 -- pointer is more important.
1306
1307 if Left /= '(' then
1308 Left := '<';
1309 Right := '>';
1310 end if;
1311
1312 -- If the completion of a private type is itself a derived
1313 -- type, we need the parent of the full view.
1314
1315 elsif Is_Private_Type (Tref)
1316 and then Present (Full_View (Tref))
1317 and then Etype (Full_View (Tref)) /= Full_View (Tref)
1318 then
1319 Tref := Etype (Full_View (Tref));
1320
1321 if Left /= '(' then
1322 Left := '<';
1323 Right := '>';
1324 end if;
1325
1326 -- If non-derived pointer, get directly designated type.
1327 -- If the type has a full view, all references are on the
1328 -- partial view that is seen first.
1329
1330 elsif Is_Access_Type (Tref) then
1331 Tref := Directly_Designated_Type (Tref);
1332 Left := '(';
1333 Right := ')';
1334
1335 elsif Is_Private_Type (Tref)
1336 and then Present (Full_View (Tref))
1337 then
1338 if Is_Access_Type (Full_View (Tref)) then
1339 Tref := Directly_Designated_Type (Full_View (Tref));
1340 Left := '(';
1341 Right := ')';
1342
1343 -- If the full view is an array type, we also retrieve
1344 -- the corresponding component type, because the ali
1345 -- entry already indicates that this is an array.
1346
1347 elsif Is_Array_Type (Full_View (Tref)) then
1348 Tref := Component_Type (Full_View (Tref));
1349 Left := '(';
1350 Right := ')';
1351 end if;
1352
1353 -- If non-derived array, get component type. Skip component
1354 -- type for case of String or Wide_String, saves worthwhile
1355 -- space.
1356
1357 elsif Is_Array_Type (Tref)
1358 and then Tref /= Standard_String
1359 and then Tref /= Standard_Wide_String
1360 then
1361 Tref := Component_Type (Tref);
1362 Left := '(';
1363 Right := ')';
1364
1365 -- For other non-derived base types, nothing
1366
1367 else
1368 exit;
1369 end if;
1370
1371 -- For a subtype, go to ancestor subtype
1372
1373 else
1374 Tref := Ancestor_Subtype (Tref);
1375
1376 -- If no ancestor subtype, go to base type
1377
1378 if No (Tref) then
1379 Tref := Base_Type (Sav);
1380 end if;
1381 end if;
1382
1383 -- For objects, functions, enum literals, just get type from
1384 -- Etype field.
1385
1386 elsif Is_Object (Tref)
1387 or else Ekind (Tref) = E_Enumeration_Literal
1388 or else Ekind (Tref) = E_Function
1389 or else Ekind (Tref) = E_Operator
1390 then
1391 Tref := Etype (Tref);
1392
1393 -- Another special case: an object of a classwide type
1394 -- initialized with a tag-indeterminate call gets a subtype
1395 -- of the classwide type during expansion. See if the original
1396 -- type in the declaration is named, and return it instead
1397 -- of going to the root type.
1398
1399 if Ekind (Tref) = E_Class_Wide_Subtype
1400 and then Nkind (Parent (Ent)) = N_Object_Declaration
1401 and then
1402 Nkind (Original_Node (Object_Definition (Parent (Ent))))
1403 = N_Identifier
1404 then
1405 Tref :=
1406 Entity
1407 (Original_Node ((Object_Definition (Parent (Ent)))));
1408 end if;
1409
1410 -- For anything else, exit
1411
1412 else
1413 exit;
1414 end if;
1415
1416 -- Exit if no type reference, or we are stuck in some loop trying
1417 -- to find the type reference, or if the type is standard void
1418 -- type (the latter is an implementation artifact that should not
1419 -- show up in the generated cross-references).
1420
1421 exit when No (Tref)
1422 or else Tref = Sav
1423 or else Tref = Standard_Void_Type;
1424
1425 -- If we have a usable type reference, return, otherwise keep
1426 -- looking for something useful (we are looking for something
1427 -- that either comes from source or standard)
1428
1429 if Sloc (Tref) = Standard_Location
1430 or else Comes_From_Source (Tref)
1431 then
1432 -- If the reference is a subtype created for a generic actual,
1433 -- go actual directly, the inner subtype is not user visible.
1434
1435 if Nkind (Parent (Tref)) = N_Subtype_Declaration
1436 and then not Comes_From_Source (Parent (Tref))
1437 and then
1438 (Is_Wrapper_Package (Scope (Tref))
1439 or else Is_Generic_Instance (Scope (Tref)))
1440 then
1441 Tref := First_Subtype (Base_Type (Tref));
1442 end if;
1443
1444 return;
1445 end if;
1446 end loop;
1447
1448 -- If we fall through the loop, no type reference
1449
1450 Tref := Empty;
1451 Left := ' ';
1452 Right := ' ';
1453 end Get_Type_Reference;
1454
1455 -------------------------------
1456 -- Output_Import_Export_Info --
1457 -------------------------------
1458
1459 procedure Output_Import_Export_Info (Ent : Entity_Id) is
1460 Language_Name : Name_Id;
1461 Conv : constant Convention_Id := Convention (Ent);
1462
1463 begin
1464 -- Generate language name from convention
1465
1466 if Conv = Convention_C then
1467 Language_Name := Name_C;
1468
1469 elsif Conv = Convention_CPP then
1470 Language_Name := Name_CPP;
1471
1472 elsif Conv = Convention_Ada then
1473 Language_Name := Name_Ada;
1474
1475 else
1476 -- For the moment we ignore all other cases ???
1477
1478 return;
1479 end if;
1480
1481 Write_Info_Char ('<');
1482 Get_Unqualified_Name_String (Language_Name);
1483
1484 for J in 1 .. Name_Len loop
1485 Write_Info_Char (Name_Buffer (J));
1486 end loop;
1487
1488 if Present (Interface_Name (Ent)) then
1489 Write_Info_Char (',');
1490 String_To_Name_Buffer (Strval (Interface_Name (Ent)));
1491
1492 for J in 1 .. Name_Len loop
1493 Write_Info_Char (Name_Buffer (J));
1494 end loop;
1495 end if;
1496
1497 Write_Info_Char ('>');
1498 end Output_Import_Export_Info;
1499
1500 -- Start of processing for Output_References
1501
1502 begin
1503 -- First we add references to the primitive operations of tagged types
1504 -- declared in the main unit.
1505
1506 Handle_Prim_Ops : declare
1507 Ent : Entity_Id;
1508
1509 begin
1510 for J in 1 .. Xrefs.Last loop
1511 Ent := Xrefs.Table (J).Key.Ent;
1512
1513 if Is_Type (Ent)
1514 and then Is_Tagged_Type (Ent)
1515 and then Is_Base_Type (Ent)
1516 and then In_Extended_Main_Source_Unit (Ent)
1517 then
1518 Generate_Prim_Op_References (Ent);
1519 end if;
1520 end loop;
1521 end Handle_Prim_Ops;
1522
1523 -- Before we go ahead and output the references we have a problem
1524 -- that needs dealing with. So far we have captured things that are
1525 -- definitely referenced by the main unit, or defined in the main
1526 -- unit. That's because we don't want to clutter up the ali file
1527 -- for this unit with definition lines for entities in other units
1528 -- that are not referenced.
1529
1530 -- But there is a glitch. We may reference an entity in another unit,
1531 -- and it may have a type reference to an entity that is not directly
1532 -- referenced in the main unit, which may mean that there is no xref
1533 -- entry for this entity yet in the list of references.
1534
1535 -- If we don't do something about this, we will end with an orphan type
1536 -- reference, i.e. it will point to an entity that does not appear
1537 -- within the generated references in the ali file. That is not good for
1538 -- tools using the xref information.
1539
1540 -- To fix this, we go through the references adding definition entries
1541 -- for any unreferenced entities that can be referenced in a type
1542 -- reference. There is a recursion problem here, and that is dealt with
1543 -- by making sure that this traversal also traverses any entries that
1544 -- get added by the traversal.
1545
1546 Handle_Orphan_Type_References : declare
1547 J : Nat;
1548 Tref : Entity_Id;
1549 Ent : Entity_Id;
1550
1551 L, R : Character;
1552 pragma Warnings (Off, L);
1553 pragma Warnings (Off, R);
1554
1555 procedure New_Entry (E : Entity_Id);
1556 -- Make an additional entry into the Xref table for a type entity
1557 -- that is related to the current entity (parent, type ancestor,
1558 -- progenitor, etc.).
1559
1560 ----------------
1561 -- New_Entry --
1562 ----------------
1563
1564 procedure New_Entry (E : Entity_Id) is
1565 begin
1566 pragma Assert (Present (E));
1567
1568 if not Has_Xref_Entry (Implementation_Base_Type (E))
1569 and then Sloc (E) > No_Location
1570 then
1571 Add_Entry
1572 ((Ent => E,
1573 Loc => No_Location,
1574 Typ => Character'First,
1575 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
1576 Lun => No_Unit,
1577 Ref_Scope => Empty,
1578 Ent_Scope => Empty),
1579 Ent_Scope_File => No_Unit);
1580 end if;
1581 end New_Entry;
1582
1583 -- Start of processing for Handle_Orphan_Type_References
1584
1585 begin
1586 -- Note that this is not a for loop for a very good reason. The
1587 -- processing of items in the table can add new items to the table,
1588 -- and they must be processed as well.
1589
1590 J := 1;
1591 while J <= Xrefs.Last loop
1592 Ent := Xrefs.Table (J).Key.Ent;
1593 Get_Type_Reference (Ent, Tref, L, R);
1594
1595 if Present (Tref)
1596 and then not Has_Xref_Entry (Tref)
1597 and then Sloc (Tref) > No_Location
1598 then
1599 New_Entry (Tref);
1600
1601 if Is_Record_Type (Ent)
1602 and then Present (Interfaces (Ent))
1603 then
1604 -- Add an entry for each one of the given interfaces
1605 -- implemented by type Ent.
1606
1607 declare
1608 Elmt : Elmt_Id := First_Elmt (Interfaces (Ent));
1609 begin
1610 while Present (Elmt) loop
1611 New_Entry (Node (Elmt));
1612 Next_Elmt (Elmt);
1613 end loop;
1614 end;
1615 end if;
1616 end if;
1617
1618 -- Collect inherited primitive operations that may be declared in
1619 -- another unit and have no visible reference in the current one.
1620
1621 if Is_Type (Ent)
1622 and then Is_Tagged_Type (Ent)
1623 and then Is_Derived_Type (Ent)
1624 and then Is_Base_Type (Ent)
1625 and then In_Extended_Main_Source_Unit (Ent)
1626 then
1627 declare
1628 Op_List : constant Elist_Id := Primitive_Operations (Ent);
1629 Op : Elmt_Id;
1630 Prim : Entity_Id;
1631
1632 function Parent_Op (E : Entity_Id) return Entity_Id;
1633 -- Find original operation, which may be inherited through
1634 -- several derivations.
1635
1636 function Parent_Op (E : Entity_Id) return Entity_Id is
1637 Orig_Op : constant Entity_Id := Alias (E);
1638
1639 begin
1640 if No (Orig_Op) then
1641 return Empty;
1642
1643 elsif not Comes_From_Source (E)
1644 and then not Has_Xref_Entry (Orig_Op)
1645 and then Comes_From_Source (Orig_Op)
1646 then
1647 return Orig_Op;
1648 else
1649 return Parent_Op (Orig_Op);
1650 end if;
1651 end Parent_Op;
1652
1653 begin
1654 Op := First_Elmt (Op_List);
1655 while Present (Op) loop
1656 Prim := Parent_Op (Node (Op));
1657
1658 if Present (Prim) then
1659 Add_Entry
1660 ((Ent => Prim,
1661 Loc => No_Location,
1662 Typ => Character'First,
1663 Eun => Get_Source_Unit (Sloc (Prim)),
1664 Lun => No_Unit,
1665 Ref_Scope => Empty,
1666 Ent_Scope => Empty),
1667 Ent_Scope_File => No_Unit);
1668 end if;
1669
1670 Next_Elmt (Op);
1671 end loop;
1672 end;
1673 end if;
1674
1675 J := J + 1;
1676 end loop;
1677 end Handle_Orphan_Type_References;
1678
1679 -- Now we have all the references, including those for any embedded
1680 -- type references, so we can sort them, and output them.
1681
1682 Output_Refs : declare
1683
1684 Nrefs : constant Nat := Xrefs.Last;
1685 -- Number of references in table
1686
1687 Rnums : array (0 .. Nrefs) of Nat;
1688 -- This array contains numbers of references in the Xrefs table.
1689 -- This list is sorted in output order. The extra 0'th entry is
1690 -- convenient for the call to sort. When we sort the table, we
1691 -- move the entries in Rnums around, but we do not move the
1692 -- original table entries.
1693
1694 Curxu : Unit_Number_Type;
1695 -- Current xref unit
1696
1697 Curru : Unit_Number_Type;
1698 -- Current reference unit for one entity
1699
1700 Curent : Entity_Id;
1701 -- Current entity
1702
1703 Curnam : String (1 .. Name_Buffer'Length);
1704 Curlen : Natural;
1705 -- Simple name and length of current entity
1706
1707 Curdef : Source_Ptr;
1708 -- Original source location for current entity
1709
1710 Crloc : Source_Ptr;
1711 -- Current reference location
1712
1713 Ctyp : Character;
1714 -- Entity type character
1715
1716 Prevt : Character;
1717 -- reference kind of previous reference
1718
1719 Tref : Entity_Id;
1720 -- Type reference
1721
1722 Rref : Node_Id;
1723 -- Renaming reference
1724
1725 Trunit : Unit_Number_Type;
1726 -- Unit number for type reference
1727
1728 function Lt (Op1, Op2 : Natural) return Boolean;
1729 -- Comparison function for Sort call
1730
1731 function Name_Change (X : Entity_Id) return Boolean;
1732 -- Determines if entity X has a different simple name from Curent
1733
1734 procedure Move (From : Natural; To : Natural);
1735 -- Move procedure for Sort call
1736
1737 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
1738
1739 --------
1740 -- Lt --
1741 --------
1742
1743 function Lt (Op1, Op2 : Natural) return Boolean is
1744 T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1)));
1745 T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2)));
1746
1747 begin
1748 return Lt (T1, T2);
1749 end Lt;
1750
1751 ----------
1752 -- Move --
1753 ----------
1754
1755 procedure Move (From : Natural; To : Natural) is
1756 begin
1757 Rnums (Nat (To)) := Rnums (Nat (From));
1758 end Move;
1759
1760 -----------------
1761 -- Name_Change --
1762 -----------------
1763
1764 -- Why a string comparison here??? Why not compare Name_Id values???
1765
1766 function Name_Change (X : Entity_Id) return Boolean is
1767 begin
1768 Get_Unqualified_Name_String (Chars (X));
1769
1770 if Name_Len /= Curlen then
1771 return True;
1772 else
1773 return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen);
1774 end if;
1775 end Name_Change;
1776
1777 -- Start of processing for Output_Refs
1778
1779 begin
1780 -- Capture the definition Sloc values. We delay doing this till now,
1781 -- since at the time the reference or definition is made, private
1782 -- types may be swapped, and the Sloc value may be incorrect. We
1783 -- also set up the pointer vector for the sort.
1784
1785 -- For user-defined operators we need to skip the initial quote and
1786 -- point to the first character of the name, for navigation purposes.
1787
1788 for J in 1 .. Nrefs loop
1789 declare
1790 E : constant Entity_Id := Xrefs.Table (J).Key.Ent;
1791 Loc : constant Source_Ptr := Original_Location (Sloc (E));
1792
1793 begin
1794 Rnums (J) := J;
1795
1796 if Nkind (E) = N_Defining_Operator_Symbol then
1797 Xrefs.Table (J).Def := Loc + 1;
1798 else
1799 Xrefs.Table (J).Def := Loc;
1800 end if;
1801 end;
1802 end loop;
1803
1804 -- Sort the references
1805
1806 Sorting.Sort (Integer (Nrefs));
1807
1808 -- Initialize loop through references
1809
1810 Curxu := No_Unit;
1811 Curent := Empty;
1812 Curdef := No_Location;
1813 Curru := No_Unit;
1814 Crloc := No_Location;
1815 Prevt := 'm';
1816
1817 -- Loop to output references
1818
1819 for Refno in 1 .. Nrefs loop
1820 Output_One_Ref : declare
1821 Ent : Entity_Id;
1822
1823 XE : Xref_Entry renames Xrefs.Table (Rnums (Refno));
1824 -- The current entry to be accessed
1825
1826 Left : Character;
1827 Right : Character;
1828 -- Used for {} or <> or () for type reference
1829
1830 procedure Check_Type_Reference
1831 (Ent : Entity_Id;
1832 List_Interface : Boolean);
1833 -- Find whether there is a meaningful type reference for
1834 -- Ent, and display it accordingly. If List_Interface is
1835 -- true, then Ent is a progenitor interface of the current
1836 -- type entity being listed. In that case list it as is,
1837 -- without looking for a type reference for it.
1838
1839 procedure Output_Instantiation_Refs (Loc : Source_Ptr);
1840 -- Recursive procedure to output instantiation references for
1841 -- the given source ptr in [file|line[...]] form. No output
1842 -- if the given location is not a generic template reference.
1843
1844 procedure Output_Overridden_Op (Old_E : Entity_Id);
1845 -- For a subprogram that is overriding, display information
1846 -- about the inherited operation that it overrides.
1847
1848 --------------------------
1849 -- Check_Type_Reference --
1850 --------------------------
1851
1852 procedure Check_Type_Reference
1853 (Ent : Entity_Id;
1854 List_Interface : Boolean)
1855 is
1856 begin
1857 if List_Interface then
1858
1859 -- This is a progenitor interface of the type for which
1860 -- xref information is being generated.
1861
1862 Tref := Ent;
1863 Left := '<';
1864 Right := '>';
1865
1866 else
1867 Get_Type_Reference (Ent, Tref, Left, Right);
1868 end if;
1869
1870 if Present (Tref) then
1871
1872 -- Case of standard entity, output name
1873
1874 if Sloc (Tref) = Standard_Location then
1875 Write_Info_Char (Left);
1876 Write_Info_Name (Chars (Tref));
1877 Write_Info_Char (Right);
1878
1879 -- Case of source entity, output location
1880
1881 else
1882 Write_Info_Char (Left);
1883 Trunit := Get_Source_Unit (Sloc (Tref));
1884
1885 if Trunit /= Curxu then
1886 Write_Info_Nat (Dependency_Num (Trunit));
1887 Write_Info_Char ('|');
1888 end if;
1889
1890 Write_Info_Nat
1891 (Int (Get_Logical_Line_Number (Sloc (Tref))));
1892
1893 declare
1894 Ent : Entity_Id;
1895 Ctyp : Character;
1896
1897 begin
1898 Ent := Tref;
1899 Ctyp := Xref_Entity_Letters (Ekind (Ent));
1900
1901 if Ctyp = '+'
1902 and then Present (Full_View (Ent))
1903 then
1904 Ent := Underlying_Type (Ent);
1905
1906 if Present (Ent) then
1907 Ctyp := Xref_Entity_Letters (Ekind (Ent));
1908 end if;
1909 end if;
1910
1911 Write_Info_Char (Ctyp);
1912 end;
1913
1914 Write_Info_Nat
1915 (Int (Get_Column_Number (Sloc (Tref))));
1916
1917 -- If the type comes from an instantiation, add the
1918 -- corresponding info.
1919
1920 Output_Instantiation_Refs (Sloc (Tref));
1921 Write_Info_Char (Right);
1922 end if;
1923 end if;
1924 end Check_Type_Reference;
1925
1926 -------------------------------
1927 -- Output_Instantiation_Refs --
1928 -------------------------------
1929
1930 procedure Output_Instantiation_Refs (Loc : Source_Ptr) is
1931 Iloc : constant Source_Ptr := Instantiation_Location (Loc);
1932 Lun : Unit_Number_Type;
1933 Cu : constant Unit_Number_Type := Curru;
1934
1935 begin
1936 -- Nothing to do if this is not an instantiation
1937
1938 if Iloc = No_Location then
1939 return;
1940 end if;
1941
1942 -- Output instantiation reference
1943
1944 Write_Info_Char ('[');
1945 Lun := Get_Source_Unit (Iloc);
1946
1947 if Lun /= Curru then
1948 Curru := Lun;
1949 Write_Info_Nat (Dependency_Num (Curru));
1950 Write_Info_Char ('|');
1951 end if;
1952
1953 Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc)));
1954
1955 -- Recursive call to get nested instantiations
1956
1957 Output_Instantiation_Refs (Iloc);
1958
1959 -- Output final ] after call to get proper nesting
1960
1961 Write_Info_Char (']');
1962 Curru := Cu;
1963 return;
1964 end Output_Instantiation_Refs;
1965
1966 --------------------------
1967 -- Output_Overridden_Op --
1968 --------------------------
1969
1970 procedure Output_Overridden_Op (Old_E : Entity_Id) is
1971 Op : Entity_Id;
1972
1973 begin
1974 -- The overridden operation has an implicit declaration
1975 -- at the point of derivation. What we want to display
1976 -- is the original operation, which has the actual body
1977 -- (or abstract declaration) that is being overridden.
1978 -- The overridden operation is not always set, e.g. when
1979 -- it is a predefined operator.
1980
1981 if No (Old_E) then
1982 return;
1983
1984 -- Follow alias chain if one is present
1985
1986 elsif Present (Alias (Old_E)) then
1987
1988 -- The subprogram may have been implicitly inherited
1989 -- through several levels of derivation, so find the
1990 -- ultimate (source) ancestor.
1991
1992 Op := Ultimate_Alias (Old_E);
1993
1994 -- Normal case of no alias present. We omit generated
1995 -- primitives like tagged equality, that have no source
1996 -- representation.
1997
1998 else
1999 Op := Old_E;
2000 end if;
2001
2002 if Present (Op)
2003 and then Sloc (Op) /= Standard_Location
2004 and then Comes_From_Source (Op)
2005 then
2006 declare
2007 Loc : constant Source_Ptr := Sloc (Op);
2008 Par_Unit : constant Unit_Number_Type :=
2009 Get_Source_Unit (Loc);
2010
2011 begin
2012 Write_Info_Char ('<');
2013
2014 if Par_Unit /= Curxu then
2015 Write_Info_Nat (Dependency_Num (Par_Unit));
2016 Write_Info_Char ('|');
2017 end if;
2018
2019 Write_Info_Nat (Int (Get_Logical_Line_Number (Loc)));
2020 Write_Info_Char ('p');
2021 Write_Info_Nat (Int (Get_Column_Number (Loc)));
2022 Write_Info_Char ('>');
2023 end;
2024 end if;
2025 end Output_Overridden_Op;
2026
2027 -- Start of processing for Output_One_Ref
2028
2029 begin
2030 Ent := XE.Key.Ent;
2031 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2032
2033 -- Skip reference if it is the only reference to an entity,
2034 -- and it is an END line reference, and the entity is not in
2035 -- the current extended source. This prevents junk entries
2036 -- consisting only of packages with END lines, where no
2037 -- entity from the package is actually referenced.
2038
2039 if XE.Key.Typ = 'e'
2040 and then Ent /= Curent
2041 and then (Refno = Nrefs
2042 or else
2043 Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent)
2044 and then not In_Extended_Main_Source_Unit (Ent)
2045 then
2046 goto Continue;
2047 end if;
2048
2049 -- For private type, get full view type
2050
2051 if Ctyp = '+'
2052 and then Present (Full_View (XE.Key.Ent))
2053 then
2054 Ent := Underlying_Type (Ent);
2055
2056 if Present (Ent) then
2057 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2058 end if;
2059 end if;
2060
2061 -- Special exception for Boolean
2062
2063 if Ctyp = 'E' and then Is_Boolean_Type (Ent) then
2064 Ctyp := 'B';
2065 end if;
2066
2067 -- For variable reference, get corresponding type
2068
2069 if Ctyp = '*' then
2070 Ent := Etype (XE.Key.Ent);
2071 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2072
2073 -- If variable is private type, get full view type
2074
2075 if Ctyp = '+'
2076 and then Present (Full_View (Etype (XE.Key.Ent)))
2077 then
2078 Ent := Underlying_Type (Etype (XE.Key.Ent));
2079
2080 if Present (Ent) then
2081 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2082 end if;
2083
2084 elsif Is_Generic_Type (Ent) then
2085
2086 -- If the type of the entity is a generic private type,
2087 -- there is no usable full view, so retain the indication
2088 -- that this is an object.
2089
2090 Ctyp := '*';
2091 end if;
2092
2093 -- Special handling for access parameters and objects and
2094 -- components of an anonymous access type.
2095
2096 if Ekind_In (Etype (XE.Key.Ent),
2097 E_Anonymous_Access_Type,
2098 E_Anonymous_Access_Subprogram_Type,
2099 E_Anonymous_Access_Protected_Subprogram_Type)
2100 then
2101 if Is_Formal (XE.Key.Ent)
2102 or else
2103 Ekind_In
2104 (XE.Key.Ent, E_Variable, E_Constant, E_Component)
2105 then
2106 Ctyp := 'p';
2107 end if;
2108
2109 -- Special handling for Boolean
2110
2111 elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then
2112 Ctyp := 'b';
2113 end if;
2114 end if;
2115
2116 -- Special handling for abstract types and operations
2117
2118 if Is_Overloadable (XE.Key.Ent)
2119 and then Is_Abstract_Subprogram (XE.Key.Ent)
2120 then
2121 if Ctyp = 'U' then
2122 Ctyp := 'x'; -- Abstract procedure
2123
2124 elsif Ctyp = 'V' then
2125 Ctyp := 'y'; -- Abstract function
2126 end if;
2127
2128 elsif Is_Type (XE.Key.Ent)
2129 and then Is_Abstract_Type (XE.Key.Ent)
2130 then
2131 if Is_Interface (XE.Key.Ent) then
2132 Ctyp := 'h';
2133
2134 elsif Ctyp = 'R' then
2135 Ctyp := 'H'; -- Abstract type
2136 end if;
2137 end if;
2138
2139 -- Only output reference if interesting type of entity
2140
2141 if Ctyp = ' '
2142
2143 -- Suppress references to object definitions, used for local
2144 -- references.
2145
2146 or else XE.Key.Typ = 'D'
2147 or else XE.Key.Typ = 'I'
2148
2149 -- Suppress self references, except for bodies that act as
2150 -- specs.
2151
2152 or else (XE.Key.Loc = XE.Def
2153 and then
2154 (XE.Key.Typ /= 'b'
2155 or else not Is_Subprogram (XE.Key.Ent)))
2156
2157 -- Also suppress definitions of body formals (we only
2158 -- treat these as references, and the references were
2159 -- separately recorded).
2160
2161 or else (Is_Formal (XE.Key.Ent)
2162 and then Present (Spec_Entity (XE.Key.Ent)))
2163 then
2164 null;
2165
2166 else
2167 -- Start new Xref section if new xref unit
2168
2169 if XE.Key.Eun /= Curxu then
2170 if Write_Info_Col > 1 then
2171 Write_Info_EOL;
2172 end if;
2173
2174 Curxu := XE.Key.Eun;
2175
2176 Write_Info_Initiate ('X');
2177 Write_Info_Char (' ');
2178 Write_Info_Nat (Dependency_Num (XE.Key.Eun));
2179 Write_Info_Char (' ');
2180 Write_Info_Name
2181 (Reference_Name (Source_Index (XE.Key.Eun)));
2182 end if;
2183
2184 -- Start new Entity line if new entity. Note that we
2185 -- consider two entities the same if they have the same
2186 -- name and source location. This causes entities in
2187 -- instantiations to be treated as though they referred
2188 -- to the template.
2189
2190 if No (Curent)
2191 or else
2192 (XE.Key.Ent /= Curent
2193 and then
2194 (Name_Change (XE.Key.Ent) or else XE.Def /= Curdef))
2195 then
2196 Curent := XE.Key.Ent;
2197 Curdef := XE.Def;
2198
2199 Get_Unqualified_Name_String (Chars (XE.Key.Ent));
2200 Curlen := Name_Len;
2201 Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen);
2202
2203 if Write_Info_Col > 1 then
2204 Write_Info_EOL;
2205 end if;
2206
2207 -- Write column number information
2208
2209 Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def)));
2210 Write_Info_Char (Ctyp);
2211 Write_Info_Nat (Int (Get_Column_Number (XE.Def)));
2212
2213 -- Write level information
2214
2215 Write_Level_Info : declare
2216 function Is_Visible_Generic_Entity
2217 (E : Entity_Id) return Boolean;
2218 -- Check whether E is declared in the visible part
2219 -- of a generic package. For source navigation
2220 -- purposes, treat this as a visible entity.
2221
2222 function Is_Private_Record_Component
2223 (E : Entity_Id) return Boolean;
2224 -- Check whether E is a non-inherited component of a
2225 -- private extension. Even if the enclosing record is
2226 -- public, we want to treat the component as private
2227 -- for navigation purposes.
2228
2229 ---------------------------------
2230 -- Is_Private_Record_Component --
2231 ---------------------------------
2232
2233 function Is_Private_Record_Component
2234 (E : Entity_Id) return Boolean
2235 is
2236 S : constant Entity_Id := Scope (E);
2237 begin
2238 return
2239 Ekind (E) = E_Component
2240 and then Nkind (Declaration_Node (S)) =
2241 N_Private_Extension_Declaration
2242 and then Original_Record_Component (E) = E;
2243 end Is_Private_Record_Component;
2244
2245 -------------------------------
2246 -- Is_Visible_Generic_Entity --
2247 -------------------------------
2248
2249 function Is_Visible_Generic_Entity
2250 (E : Entity_Id) return Boolean
2251 is
2252 Par : Node_Id;
2253
2254 begin
2255 -- The Present check here is an error defense
2256
2257 if Present (Scope (E))
2258 and then Ekind (Scope (E)) /= E_Generic_Package
2259 then
2260 return False;
2261 end if;
2262
2263 Par := Parent (E);
2264 while Present (Par) loop
2265 if
2266 Nkind (Par) = N_Generic_Package_Declaration
2267 then
2268 -- Entity is a generic formal
2269
2270 return False;
2271
2272 elsif
2273 Nkind (Parent (Par)) = N_Package_Specification
2274 then
2275 return
2276 Is_List_Member (Par)
2277 and then List_Containing (Par) =
2278 Visible_Declarations (Parent (Par));
2279 else
2280 Par := Parent (Par);
2281 end if;
2282 end loop;
2283
2284 return False;
2285 end Is_Visible_Generic_Entity;
2286
2287 -- Start of processing for Write_Level_Info
2288
2289 begin
2290 if Is_Hidden (Curent)
2291 or else Is_Private_Record_Component (Curent)
2292 then
2293 Write_Info_Char (' ');
2294
2295 elsif
2296 Is_Public (Curent)
2297 or else Is_Visible_Generic_Entity (Curent)
2298 then
2299 Write_Info_Char ('*');
2300
2301 else
2302 Write_Info_Char (' ');
2303 end if;
2304 end Write_Level_Info;
2305
2306 -- Output entity name. We use the occurrence from the
2307 -- actual source program at the definition point.
2308
2309 declare
2310 Ent_Name : constant String :=
2311 Exact_Source_Name (Sloc (XE.Key.Ent));
2312 begin
2313 for C in Ent_Name'Range loop
2314 Write_Info_Char (Ent_Name (C));
2315 end loop;
2316 end;
2317
2318 -- See if we have a renaming reference
2319
2320 if Is_Object (XE.Key.Ent)
2321 and then Present (Renamed_Object (XE.Key.Ent))
2322 then
2323 Rref := Renamed_Object (XE.Key.Ent);
2324
2325 elsif Is_Overloadable (XE.Key.Ent)
2326 and then Nkind (Parent (Declaration_Node (XE.Key.Ent)))
2327 = N_Subprogram_Renaming_Declaration
2328 then
2329 Rref := Name (Parent (Declaration_Node (XE.Key.Ent)));
2330
2331 elsif Ekind (XE.Key.Ent) = E_Package
2332 and then Nkind (Declaration_Node (XE.Key.Ent)) =
2333 N_Package_Renaming_Declaration
2334 then
2335 Rref := Name (Declaration_Node (XE.Key.Ent));
2336
2337 else
2338 Rref := Empty;
2339 end if;
2340
2341 if Present (Rref) then
2342 if Nkind (Rref) = N_Expanded_Name then
2343 Rref := Selector_Name (Rref);
2344 end if;
2345
2346 if Nkind (Rref) = N_Identifier
2347 or else Nkind (Rref) = N_Operator_Symbol
2348 then
2349 null;
2350
2351 -- For renamed array components, use the array name
2352 -- for the renamed entity, which reflect the fact that
2353 -- in general the whole array is aliased.
2354
2355 elsif Nkind (Rref) = N_Indexed_Component then
2356 if Nkind (Prefix (Rref)) = N_Identifier then
2357 Rref := Prefix (Rref);
2358 elsif Nkind (Prefix (Rref)) = N_Expanded_Name then
2359 Rref := Selector_Name (Prefix (Rref));
2360 else
2361 Rref := Empty;
2362 end if;
2363
2364 else
2365 Rref := Empty;
2366 end if;
2367 end if;
2368
2369 -- Write out renaming reference if we have one
2370
2371 if Present (Rref) then
2372 Write_Info_Char ('=');
2373 Write_Info_Nat
2374 (Int (Get_Logical_Line_Number (Sloc (Rref))));
2375 Write_Info_Char (':');
2376 Write_Info_Nat
2377 (Int (Get_Column_Number (Sloc (Rref))));
2378 end if;
2379
2380 -- Indicate that the entity is in the unit of the current
2381 -- xref section.
2382
2383 Curru := Curxu;
2384
2385 -- Write out information about generic parent, if entity
2386 -- is an instance.
2387
2388 if Is_Generic_Instance (XE.Key.Ent) then
2389 declare
2390 Gen_Par : constant Entity_Id :=
2391 Generic_Parent
2392 (Specification
2393 (Unit_Declaration_Node
2394 (XE.Key.Ent)));
2395 Loc : constant Source_Ptr := Sloc (Gen_Par);
2396 Gen_U : constant Unit_Number_Type :=
2397 Get_Source_Unit (Loc);
2398
2399 begin
2400 Write_Info_Char ('[');
2401
2402 if Curru /= Gen_U then
2403 Write_Info_Nat (Dependency_Num (Gen_U));
2404 Write_Info_Char ('|');
2405 end if;
2406
2407 Write_Info_Nat
2408 (Int (Get_Logical_Line_Number (Loc)));
2409 Write_Info_Char (']');
2410 end;
2411 end if;
2412
2413 -- See if we have a type reference and if so output
2414
2415 Check_Type_Reference (XE.Key.Ent, False);
2416
2417 -- Additional information for types with progenitors
2418
2419 if Is_Record_Type (XE.Key.Ent)
2420 and then Present (Interfaces (XE.Key.Ent))
2421 then
2422 declare
2423 Elmt : Elmt_Id :=
2424 First_Elmt (Interfaces (XE.Key.Ent));
2425 begin
2426 while Present (Elmt) loop
2427 Check_Type_Reference (Node (Elmt), True);
2428 Next_Elmt (Elmt);
2429 end loop;
2430 end;
2431
2432 -- For array types, list index types as well. (This is
2433 -- not C, indexes have distinct types).
2434
2435 elsif Is_Array_Type (XE.Key.Ent) then
2436 declare
2437 Indx : Node_Id;
2438 begin
2439 Indx := First_Index (XE.Key.Ent);
2440 while Present (Indx) loop
2441 Check_Type_Reference
2442 (First_Subtype (Etype (Indx)), True);
2443 Next_Index (Indx);
2444 end loop;
2445 end;
2446 end if;
2447
2448 -- If the entity is an overriding operation, write info
2449 -- on operation that was overridden.
2450
2451 if Is_Subprogram (XE.Key.Ent)
2452 and then Present (Overridden_Operation (XE.Key.Ent))
2453 then
2454 Output_Overridden_Op
2455 (Overridden_Operation (XE.Key.Ent));
2456 end if;
2457
2458 -- End of processing for entity output
2459
2460 Crloc := No_Location;
2461 end if;
2462
2463 -- Output the reference if it is not as the same location
2464 -- as the previous one, or it is a read-reference that
2465 -- indicates that the entity is an in-out actual in a call.
2466
2467 if XE.Key.Loc /= No_Location
2468 and then
2469 (XE.Key.Loc /= Crloc
2470 or else (Prevt = 'm' and then XE.Key.Typ = 'r'))
2471 then
2472 Crloc := XE.Key.Loc;
2473 Prevt := XE.Key.Typ;
2474
2475 -- Start continuation if line full, else blank
2476
2477 if Write_Info_Col > 72 then
2478 Write_Info_EOL;
2479 Write_Info_Initiate ('.');
2480 end if;
2481
2482 Write_Info_Char (' ');
2483
2484 -- Output file number if changed
2485
2486 if XE.Key.Lun /= Curru then
2487 Curru := XE.Key.Lun;
2488 Write_Info_Nat (Dependency_Num (Curru));
2489 Write_Info_Char ('|');
2490 end if;
2491
2492 Write_Info_Nat
2493 (Int (Get_Logical_Line_Number (XE.Key.Loc)));
2494 Write_Info_Char (XE.Key.Typ);
2495
2496 if Is_Overloadable (XE.Key.Ent) then
2497 if (Is_Imported (XE.Key.Ent) and then XE.Key.Typ = 'b')
2498 or else
2499 (Is_Exported (XE.Key.Ent) and then XE.Key.Typ = 'i')
2500 then
2501 Output_Import_Export_Info (XE.Key.Ent);
2502 end if;
2503 end if;
2504
2505 Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc)));
2506
2507 Output_Instantiation_Refs (Sloc (XE.Key.Ent));
2508 end if;
2509 end if;
2510 end Output_One_Ref;
2511
2512 <<Continue>>
2513 null;
2514 end loop;
2515
2516 Write_Info_EOL;
2517 end Output_Refs;
2518 end Output_References;
2519
2520 -- Start of elaboration for Lib.Xref
2521
2522 begin
2523 -- Reset is necessary because Elmt_Ptr does not default to Null_Ptr,
2524 -- because it's not an access type.
2525
2526 Xref_Set.Reset;
2527 end Lib.Xref;