[multiple changes]
[gcc.git] / gcc / ada / lib-xref.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L I B . X R E F --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Csets; use Csets;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Nlists; use Nlists;
31 with Opt; use Opt;
32 with Restrict; use Restrict;
33 with Rident; use Rident;
34 with Sem; use Sem;
35 with Sem_Aux; use Sem_Aux;
36 with Sem_Prag; use Sem_Prag;
37 with Sem_Util; use Sem_Util;
38 with Sem_Warn; use Sem_Warn;
39 with Sinfo; use Sinfo;
40 with Sinput; use Sinput;
41 with Snames; use Snames;
42 with Stringt; use Stringt;
43 with Stand; use Stand;
44 with Table; use Table;
45
46 with GNAT.Heap_Sort_G;
47 with GNAT.HTable;
48
49 package body Lib.Xref is
50
51 ------------------
52 -- Declarations --
53 ------------------
54
55 -- The Xref table is used to record references. The Loc field is set
56 -- to No_Location for a definition entry.
57
58 subtype Xref_Entry_Number is Int;
59
60 type Xref_Key is record
61 -- These are the components of Xref_Entry that participate in hash
62 -- lookups.
63
64 Ent : Entity_Id;
65 -- Entity referenced (E parameter to Generate_Reference)
66
67 Loc : Source_Ptr;
68 -- Location of reference (Original_Location (Sloc field of N parameter
69 -- to Generate_Reference)). Set to No_Location for the case of a
70 -- defining occurrence.
71
72 Typ : Character;
73 -- Reference type (Typ param to Generate_Reference)
74
75 Eun : Unit_Number_Type;
76 -- Unit number corresponding to Ent
77
78 Lun : Unit_Number_Type;
79 -- Unit number corresponding to Loc. Value is undefined and not
80 -- referenced if Loc is set to No_Location.
81
82 -- The following components are only used for SPARK cross-references
83
84 Ref_Scope : Entity_Id;
85 -- Entity of the closest subprogram or package enclosing the reference
86
87 Ent_Scope : Entity_Id;
88 -- Entity of the closest subprogram or package enclosing the definition,
89 -- which should be located in the same file as the definition itself.
90 end record;
91
92 type Xref_Entry is record
93 Key : Xref_Key;
94
95 Ent_Scope_File : Unit_Number_Type;
96 -- File for entity Ent_Scope
97
98 Def : Source_Ptr;
99 -- Original source location for entity being referenced. Note that these
100 -- values are used only during the output process, they are not set when
101 -- the entries are originally built. This is because private entities
102 -- can be swapped when the initial call is made.
103
104 HTable_Next : Xref_Entry_Number;
105 -- For use only by Static_HTable
106 end record;
107
108 package Xrefs is new Table.Table (
109 Table_Component_Type => Xref_Entry,
110 Table_Index_Type => Xref_Entry_Number,
111 Table_Low_Bound => 1,
112 Table_Initial => Alloc.Xrefs_Initial,
113 Table_Increment => Alloc.Xrefs_Increment,
114 Table_Name => "Xrefs");
115
116 --------------
117 -- Xref_Set --
118 --------------
119
120 -- We keep a set of xref entries, in order to avoid inserting duplicate
121 -- entries into the above Xrefs table. An entry is in Xref_Set if and only
122 -- if it is in Xrefs.
123
124 Num_Buckets : constant := 2**16;
125
126 subtype Header_Num is Integer range 0 .. Num_Buckets - 1;
127 type Null_Type is null record;
128 pragma Unreferenced (Null_Type);
129
130 function Hash (F : Xref_Entry_Number) return Header_Num;
131
132 function Equal (F1, F2 : Xref_Entry_Number) return Boolean;
133
134 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number);
135
136 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number;
137
138 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number;
139
140 pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key);
141
142 package Xref_Set is new GNAT.HTable.Static_HTable (
143 Header_Num,
144 Element => Xref_Entry,
145 Elmt_Ptr => Xref_Entry_Number,
146 Null_Ptr => 0,
147 Set_Next => HT_Set_Next,
148 Next => HT_Next,
149 Key => Xref_Entry_Number,
150 Get_Key => Get_Key,
151 Hash => Hash,
152 Equal => Equal);
153
154 -----------------------------
155 -- SPARK Xrefs Information --
156 -----------------------------
157
158 package body SPARK_Specific is separate;
159
160 ------------------------
161 -- Local Subprograms --
162 ------------------------
163
164 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type);
165 -- Add an entry to the tables of Xref_Entries, avoiding duplicates
166
167 procedure Generate_Prim_Op_References (Typ : Entity_Id);
168 -- For a tagged type, generate implicit references to its primitive
169 -- operations, for source navigation. This is done right before emitting
170 -- cross-reference information rather than at the freeze point of the type
171 -- in order to handle late bodies that are primitive operations.
172
173 function Lt (T1, T2 : Xref_Entry) return Boolean;
174 -- Order cross-references
175
176 ---------------
177 -- Add_Entry --
178 ---------------
179
180 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is
181 begin
182 Xrefs.Increment_Last; -- tentative
183 Xrefs.Table (Xrefs.Last).Key := Key;
184
185 -- Set the entry in Xref_Set, and if newly set, keep the above
186 -- tentative increment.
187
188 if Xref_Set.Set_If_Not_Present (Xrefs.Last) then
189 Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File;
190 -- Leave Def and HTable_Next uninitialized
191
192 Set_Has_Xref_Entry (Key.Ent);
193
194 -- It was already in Xref_Set, so throw away the tentatively-added entry
195
196 else
197 Xrefs.Decrement_Last;
198 end if;
199 end Add_Entry;
200
201 -----------
202 -- Equal --
203 -----------
204
205 function Equal (F1, F2 : Xref_Entry_Number) return Boolean is
206 Result : constant Boolean :=
207 Xrefs.Table (F1).Key = Xrefs.Table (F2).Key;
208 begin
209 return Result;
210 end Equal;
211
212 -------------------------
213 -- Generate_Definition --
214 -------------------------
215
216 procedure Generate_Definition (E : Entity_Id) is
217 begin
218 pragma Assert (Nkind (E) in N_Entity);
219
220 -- Note that we do not test Xref_Entity_Letters here. It is too early
221 -- to do so, since we are often called before the entity is fully
222 -- constructed, so that the Ekind is still E_Void.
223
224 if Opt.Xref_Active
225
226 -- Definition must come from source
227
228 -- We make an exception for subprogram child units that have no spec.
229 -- For these we generate a subprogram declaration for library use,
230 -- and the corresponding entity does not come from source.
231 -- Nevertheless, all references will be attached to it and we have
232 -- to treat is as coming from user code.
233
234 and then (Comes_From_Source (E) or else Is_Child_Unit (E))
235
236 -- And must have a reasonable source location that is not
237 -- within an instance (all entities in instances are ignored)
238
239 and then Sloc (E) > No_Location
240 and then Instantiation_Location (Sloc (E)) = No_Location
241
242 -- And must be a non-internal name from the main source unit
243
244 and then In_Extended_Main_Source_Unit (E)
245 and then not Is_Internal_Name (Chars (E))
246 then
247 Add_Entry
248 ((Ent => E,
249 Loc => No_Location,
250 Typ => ' ',
251 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
252 Lun => No_Unit,
253 Ref_Scope => Empty,
254 Ent_Scope => Empty),
255 Ent_Scope_File => No_Unit);
256
257 if In_Inlined_Body then
258 Set_Referenced (E);
259 end if;
260 end if;
261 end Generate_Definition;
262
263 ---------------------------------
264 -- Generate_Operator_Reference --
265 ---------------------------------
266
267 procedure Generate_Operator_Reference
268 (N : Node_Id;
269 T : Entity_Id)
270 is
271 begin
272 if not In_Extended_Main_Source_Unit (N) then
273 return;
274 end if;
275
276 -- If the operator is not a Standard operator, then we generate a real
277 -- reference to the user defined operator.
278
279 if Sloc (Entity (N)) /= Standard_Location then
280 Generate_Reference (Entity (N), N);
281
282 -- A reference to an implicit inequality operator is also a reference
283 -- to the user-defined equality.
284
285 if Nkind (N) = N_Op_Ne
286 and then not Comes_From_Source (Entity (N))
287 and then Present (Corresponding_Equality (Entity (N)))
288 then
289 Generate_Reference (Corresponding_Equality (Entity (N)), N);
290 end if;
291
292 -- For the case of Standard operators, we mark the result type as
293 -- referenced. This ensures that in the case where we are using a
294 -- derived operator, we mark an entity of the unit that implicitly
295 -- defines this operator as used. Otherwise we may think that no entity
296 -- of the unit is used. The actual entity marked as referenced is the
297 -- first subtype, which is the relevant user defined entity.
298
299 -- Note: we only do this for operators that come from source. The
300 -- generated code sometimes reaches for entities that do not need to be
301 -- explicitly visible (for example, when we expand the code for
302 -- comparing two record objects, the fields of the record may not be
303 -- visible).
304
305 elsif Comes_From_Source (N) then
306 Set_Referenced (First_Subtype (T));
307 end if;
308 end Generate_Operator_Reference;
309
310 ---------------------------------
311 -- Generate_Prim_Op_References --
312 ---------------------------------
313
314 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
315 Base_T : Entity_Id;
316 Prim : Elmt_Id;
317 Prim_List : Elist_Id;
318
319 begin
320 -- Handle subtypes of synchronized types
321
322 if Ekind (Typ) = E_Protected_Subtype
323 or else Ekind (Typ) = E_Task_Subtype
324 then
325 Base_T := Etype (Typ);
326 else
327 Base_T := Typ;
328 end if;
329
330 -- References to primitive operations are only relevant for tagged types
331
332 if not Is_Tagged_Type (Base_T)
333 or else Is_Class_Wide_Type (Base_T)
334 then
335 return;
336 end if;
337
338 -- Ada 2005 (AI-345): For synchronized types generate reference to the
339 -- wrapper that allow us to dispatch calls through their implemented
340 -- abstract interface types.
341
342 -- The check for Present here is to protect against previously reported
343 -- critical errors.
344
345 Prim_List := Primitive_Operations (Base_T);
346
347 if No (Prim_List) then
348 return;
349 end if;
350
351 Prim := First_Elmt (Prim_List);
352 while Present (Prim) loop
353
354 -- If the operation is derived, get the original for cross-reference
355 -- reference purposes (it is the original for which we want the xref
356 -- and for which the comes_from_source test must be performed).
357
358 Generate_Reference
359 (Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False);
360 Next_Elmt (Prim);
361 end loop;
362 end Generate_Prim_Op_References;
363
364 ------------------------
365 -- Generate_Reference --
366 ------------------------
367
368 procedure Generate_Reference
369 (E : Entity_Id;
370 N : Node_Id;
371 Typ : Character := 'r';
372 Set_Ref : Boolean := True;
373 Force : Boolean := False)
374 is
375 Actual_Typ : Character := Typ;
376 Call : Node_Id;
377 Def : Source_Ptr;
378 Ent : Entity_Id;
379 Ent_Scope : Entity_Id;
380 Formal : Entity_Id;
381 Kind : Entity_Kind;
382 Nod : Node_Id;
383 Ref : Source_Ptr;
384 Ref_Scope : Entity_Id;
385
386 function Get_Through_Renamings (E : Entity_Id) return Entity_Id;
387 -- Get the enclosing entity through renamings, which may come from
388 -- source or from the translation of generic instantiations.
389
390 function Is_On_LHS (Node : Node_Id) return Boolean;
391 -- Used to check if a node is on the left hand side of an assignment.
392 -- The following cases are handled:
393 --
394 -- Variable Node is a direct descendant of left hand side of an
395 -- assignment statement.
396 --
397 -- Prefix Of an indexed or selected component that is present in
398 -- a subtree rooted by an assignment statement. There is
399 -- no restriction of nesting of components, thus cases
400 -- such as A.B (C).D are handled properly. However a prefix
401 -- of a dereference (either implicit or explicit) is never
402 -- considered as on a LHS.
403 --
404 -- Out param Same as above cases, but OUT parameter
405
406 function OK_To_Set_Referenced return Boolean;
407 -- Returns True if the Referenced flag can be set. There are a few
408 -- exceptions where we do not want to set this flag, see body for
409 -- details of these exceptional cases.
410
411 ---------------------------
412 -- Get_Through_Renamings --
413 ---------------------------
414
415 function Get_Through_Renamings (E : Entity_Id) return Entity_Id is
416 Result : Entity_Id := E;
417
418 begin
419 while Present (Result)
420 and then Is_Object (Result)
421 and then Present (Renamed_Object (Result))
422 loop
423 Result := Get_Enclosing_Object (Renamed_Object (Result));
424 end loop;
425
426 return Result;
427 end Get_Through_Renamings;
428
429 ---------------
430 -- Is_On_LHS --
431 ---------------
432
433 -- ??? There are several routines here and there that perform a similar
434 -- (but subtly different) computation, which should be factored:
435
436 -- Sem_Util.Is_LHS
437 -- Sem_Util.May_Be_Lvalue
438 -- Sem_Util.Known_To_Be_Assigned
439 -- Exp_Ch2.Expand_Entry_Parameter.In_Assignment_Context
440 -- Exp_Smem.Is_Out_Actual
441
442 function Is_On_LHS (Node : Node_Id) return Boolean is
443 N : Node_Id;
444 P : Node_Id;
445 K : Node_Kind;
446
447 begin
448 -- Only identifiers are considered, is this necessary???
449
450 if Nkind (Node) /= N_Identifier then
451 return False;
452 end if;
453
454 -- Immediate return if appeared as OUT parameter
455
456 if Kind = E_Out_Parameter then
457 return True;
458 end if;
459
460 -- Search for assignment statement subtree root
461
462 N := Node;
463 loop
464 P := Parent (N);
465 K := Nkind (P);
466
467 if K = N_Assignment_Statement then
468 return Name (P) = N;
469
470 -- Check whether the parent is a component and the current node is
471 -- its prefix, but return False if the current node has an access
472 -- type, as in that case the selected or indexed component is an
473 -- implicit dereference, and the LHS is the designated object, not
474 -- the access object.
475
476 -- ??? case of a slice assignment?
477
478 elsif (K = N_Selected_Component or else K = N_Indexed_Component)
479 and then Prefix (P) = N
480 then
481 -- Check for access type. First a special test, In some cases
482 -- this is called too early (see comments in Find_Direct_Name),
483 -- at a point where the tree is not fully typed yet. In that
484 -- case we may lack an Etype for N, and we can't check the
485 -- Etype. For now, we always return False in such a case,
486 -- but this is clearly not right in all cases ???
487
488 if No (Etype (N)) then
489 return False;
490
491 elsif Is_Access_Type (Etype (N)) then
492 return False;
493
494 -- Access type case dealt with, keep going
495
496 else
497 N := P;
498 end if;
499
500 -- All other cases, definitely not on left side
501
502 else
503 return False;
504 end if;
505 end loop;
506 end Is_On_LHS;
507
508 ---------------------------
509 -- OK_To_Set_Referenced --
510 ---------------------------
511
512 function OK_To_Set_Referenced return Boolean is
513 P : Node_Id;
514
515 begin
516 -- A reference from a pragma Unreferenced or pragma Unmodified or
517 -- pragma Warnings does not cause the Referenced flag to be set.
518 -- This avoids silly warnings about things being referenced and
519 -- not assigned when the only reference is from the pragma.
520
521 if Nkind (N) = N_Identifier then
522 P := Parent (N);
523
524 if Nkind (P) = N_Pragma_Argument_Association then
525 P := Parent (P);
526
527 if Nkind (P) = N_Pragma then
528 if Nam_In (Pragma_Name (P), Name_Warnings,
529 Name_Unmodified,
530 Name_Unreferenced)
531 then
532 return False;
533 end if;
534 end if;
535
536 -- A reference to a formal in a named parameter association does
537 -- not make the formal referenced. Formals that are unused in the
538 -- subprogram body are properly flagged as such, even if calls
539 -- elsewhere use named notation.
540
541 elsif Nkind (P) = N_Parameter_Association
542 and then N = Selector_Name (P)
543 then
544 return False;
545 end if;
546 end if;
547
548 return True;
549 end OK_To_Set_Referenced;
550
551 -- Start of processing for Generate_Reference
552
553 begin
554 pragma Assert (Nkind (E) in N_Entity);
555 Find_Actual (N, Formal, Call);
556
557 if Present (Formal) then
558 Kind := Ekind (Formal);
559 else
560 Kind := E_Void;
561 end if;
562
563 -- Check for obsolescent reference to package ASCII. GNAT treats this
564 -- element of annex J specially since in practice, programs make a lot
565 -- of use of this feature, so we don't include it in the set of features
566 -- diagnosed when Warn_On_Obsolescent_Features mode is set. However we
567 -- are required to note it as a violation of the RM defined restriction.
568
569 if E = Standard_ASCII then
570 Check_Restriction (No_Obsolescent_Features, N);
571 end if;
572
573 -- Check for reference to entity marked with Is_Obsolescent
574
575 -- Note that we always allow obsolescent references in the compiler
576 -- itself and the run time, since we assume that we know what we are
577 -- doing in such cases. For example the calls in Ada.Characters.Handling
578 -- to its own obsolescent subprograms are just fine.
579
580 -- In any case we only generate warnings if we are in the extended main
581 -- source unit, and the entity itself is not in the extended main source
582 -- unit, since we assume the source unit itself knows what is going on
583 -- (and for sure we do not want silly warnings, e.g. on the end line of
584 -- an obsolescent procedure body).
585
586 if Is_Obsolescent (E)
587 and then not GNAT_Mode
588 and then not In_Extended_Main_Source_Unit (E)
589 and then In_Extended_Main_Source_Unit (N)
590 then
591 Check_Restriction (No_Obsolescent_Features, N);
592
593 if Warn_On_Obsolescent_Feature then
594 Output_Obsolescent_Entity_Warnings (N, E);
595 end if;
596 end if;
597
598 -- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only
599 -- detect real explicit references (modifications and references).
600
601 if Comes_From_Source (N)
602 and then Is_Ada_2005_Only (E)
603 and then Ada_Version < Ada_2005
604 and then Warn_On_Ada_2005_Compatibility
605 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')
606 then
607 Error_Msg_NE ("& is only defined in Ada 2005?y?", N, E);
608 end if;
609
610 -- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only
611 -- detect real explicit references (modifications and references).
612
613 if Comes_From_Source (N)
614 and then Is_Ada_2012_Only (E)
615 and then Ada_Version < Ada_2012
616 and then Warn_On_Ada_2012_Compatibility
617 and then (Typ = 'm' or else Typ = 'r')
618 then
619 Error_Msg_NE ("& is only defined in Ada 2012?y?", N, E);
620 end if;
621
622 -- Do not generate references if we are within a postcondition sub-
623 -- program, because the reference does not comes from source, and the
624 -- pre-analysis of the aspect has already created an entry for the ALI
625 -- file at the proper source location.
626
627 if Chars (Current_Scope) = Name_uPostconditions then
628 return;
629 end if;
630
631 -- Never collect references if not in main source unit. However, we omit
632 -- this test if Typ is 'e' or 'k', since these entries are structural,
633 -- and it is useful to have them in units that reference packages as
634 -- well as units that define packages. We also omit the test for the
635 -- case of 'p' since we want to include inherited primitive operations
636 -- from other packages.
637
638 -- We also omit this test is this is a body reference for a subprogram
639 -- instantiation. In this case the reference is to the generic body,
640 -- which clearly need not be in the main unit containing the instance.
641 -- For the same reason we accept an implicit reference generated for
642 -- a default in an instance.
643
644 -- We also set the referenced flag in a generic package that is not in
645 -- then main source unit, when the variable is of a formal private type,
646 -- to warn in the instance if the corresponding type is not a fully
647 -- initialized type.
648
649 if not In_Extended_Main_Source_Unit (N) then
650 if Typ = 'e' or else
651 Typ = 'I' or else
652 Typ = 'p' or else
653 Typ = 'i' or else
654 Typ = 'k'
655 or else (Typ = 'b' and then Is_Generic_Instance (E))
656
657 -- Allow the generation of references to reads, writes and calls
658 -- in SPARK mode when the related context comes from an instance.
659
660 or else
661 (GNATprove_Mode
662 and then In_Extended_Main_Code_Unit (N)
663 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's'))
664 then
665 null;
666
667 elsif In_Instance_Body
668 and then In_Extended_Main_Code_Unit (N)
669 and then Is_Generic_Type (Etype (E))
670 then
671 Set_Referenced (E);
672 return;
673
674 elsif Inside_A_Generic
675 and then Is_Generic_Type (Etype (E))
676 then
677 Set_Referenced (E);
678 return;
679
680 else
681 return;
682 end if;
683 end if;
684
685 -- For reference type p, the entity must be in main source unit
686
687 if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then
688 return;
689 end if;
690
691 -- Unless the reference is forced, we ignore references where the
692 -- reference itself does not come from source.
693
694 if not Force and then not Comes_From_Source (N) then
695 return;
696 end if;
697
698 -- Deal with setting entity as referenced, unless suppressed. Note that
699 -- we still do Set_Referenced on entities that do not come from source.
700 -- This situation arises when we have a source reference to a derived
701 -- operation, where the derived operation itself does not come from
702 -- source, but we still want to mark it as referenced, since we really
703 -- are referencing an entity in the corresponding package (this avoids
704 -- wrong complaints that the package contains no referenced entities).
705
706 if Set_Ref then
707
708 -- Assignable object appearing on left side of assignment or as
709 -- an out parameter.
710
711 if Is_Assignable (E)
712 and then Is_On_LHS (N)
713 and then Ekind (E) /= E_In_Out_Parameter
714 then
715 -- For objects that are renamings, just set as simply referenced
716 -- we do not try to do assignment type tracking in this case.
717
718 if Present (Renamed_Object (E)) then
719 Set_Referenced (E);
720
721 -- Out parameter case
722
723 elsif Kind = E_Out_Parameter then
724
725 -- If warning mode for all out parameters is set, or this is
726 -- the only warning parameter, then we want to mark this for
727 -- later warning logic by setting Referenced_As_Out_Parameter
728
729 if Warn_On_Modified_As_Out_Parameter (Formal) then
730 Set_Referenced_As_Out_Parameter (E, True);
731 Set_Referenced_As_LHS (E, False);
732
733 -- For OUT parameter not covered by the above cases, we simply
734 -- regard it as a normal reference (in this case we do not
735 -- want any of the warning machinery for out parameters).
736
737 else
738 Set_Referenced (E);
739 end if;
740
741 -- For the left hand of an assignment case, we do nothing here.
742 -- The processing for Analyze_Assignment_Statement will set the
743 -- Referenced_As_LHS flag.
744
745 else
746 null;
747 end if;
748
749 -- Check for a reference in a pragma that should not count as a
750 -- making the variable referenced for warning purposes.
751
752 elsif Is_Non_Significant_Pragma_Reference (N) then
753 null;
754
755 -- A reference in an attribute definition clause does not count as a
756 -- reference except for the case of Address. The reason that 'Address
757 -- is an exception is that it creates an alias through which the
758 -- variable may be referenced.
759
760 elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause
761 and then Chars (Parent (N)) /= Name_Address
762 and then N = Name (Parent (N))
763 then
764 null;
765
766 -- Constant completion does not count as a reference
767
768 elsif Typ = 'c'
769 and then Ekind (E) = E_Constant
770 then
771 null;
772
773 -- Record representation clause does not count as a reference
774
775 elsif Nkind (N) = N_Identifier
776 and then Nkind (Parent (N)) = N_Record_Representation_Clause
777 then
778 null;
779
780 -- Discriminants do not need to produce a reference to record type
781
782 elsif Typ = 'd'
783 and then Nkind (Parent (N)) = N_Discriminant_Specification
784 then
785 null;
786
787 -- All other cases
788
789 else
790 -- Special processing for IN OUT parameters, where we have an
791 -- implicit assignment to a simple variable.
792
793 if Kind = E_In_Out_Parameter
794 and then Is_Assignable (E)
795 then
796 -- For sure this counts as a normal read reference
797
798 Set_Referenced (E);
799 Set_Last_Assignment (E, Empty);
800
801 -- We count it as being referenced as an out parameter if the
802 -- option is set to warn on all out parameters, except that we
803 -- have a special exclusion for an intrinsic subprogram, which
804 -- is most likely an instantiation of Unchecked_Deallocation
805 -- which we do not want to consider as an assignment since it
806 -- generates false positives. We also exclude the case of an
807 -- IN OUT parameter if the name of the procedure is Free,
808 -- since we suspect similar semantics.
809
810 if Warn_On_All_Unread_Out_Parameters
811 and then Is_Entity_Name (Name (Call))
812 and then not Is_Intrinsic_Subprogram (Entity (Name (Call)))
813 and then Chars (Name (Call)) /= Name_Free
814 then
815 Set_Referenced_As_Out_Parameter (E, True);
816 Set_Referenced_As_LHS (E, False);
817 end if;
818
819 -- Don't count a recursive reference within a subprogram as a
820 -- reference (that allows detection of a recursive subprogram
821 -- whose only references are recursive calls as unreferenced).
822
823 elsif Is_Subprogram (E)
824 and then E = Nearest_Dynamic_Scope (Current_Scope)
825 then
826 null;
827
828 -- Any other occurrence counts as referencing the entity
829
830 elsif OK_To_Set_Referenced then
831 Set_Referenced (E);
832
833 -- If variable, this is an OK reference after an assignment
834 -- so we can clear the Last_Assignment indication.
835
836 if Is_Assignable (E) then
837 Set_Last_Assignment (E, Empty);
838 end if;
839 end if;
840 end if;
841
842 -- Check for pragma Unreferenced given and reference is within
843 -- this source unit (occasion for possible warning to be issued).
844 -- Note that the entity may be marked as unreferenced by pragma
845 -- Unused.
846
847 if Has_Unreferenced (E)
848 and then In_Same_Extended_Unit (E, N)
849 then
850 -- A reference as a named parameter in a call does not count
851 -- as a violation of pragma Unreferenced for this purpose...
852
853 if Nkind (N) = N_Identifier
854 and then Nkind (Parent (N)) = N_Parameter_Association
855 and then Selector_Name (Parent (N)) = N
856 then
857 null;
858
859 -- ... Neither does a reference to a variable on the left side
860 -- of an assignment.
861
862 elsif Is_On_LHS (N) then
863 null;
864
865 -- For entry formals, we want to place the warning message on the
866 -- corresponding entity in the accept statement. The current scope
867 -- is the body of the accept, so we find the formal whose name
868 -- matches that of the entry formal (there is no link between the
869 -- two entities, and the one in the accept statement is only used
870 -- for conformance checking).
871
872 elsif Ekind (Scope (E)) = E_Entry then
873 declare
874 BE : Entity_Id;
875
876 begin
877 BE := First_Entity (Current_Scope);
878 while Present (BE) loop
879 if Chars (BE) = Chars (E) then
880 if Has_Pragma_Unused (E) then
881 Error_Msg_NE -- CODEFIX
882 ("??pragma Unused given for&!", N, BE);
883 else
884 Error_Msg_NE -- CODEFIX
885 ("??pragma Unreferenced given for&!", N, BE);
886 end if;
887 exit;
888 end if;
889
890 Next_Entity (BE);
891 end loop;
892 end;
893
894 -- Here we issue the warning, since this is a real reference
895
896 elsif Has_Pragma_Unused (E) then
897 Error_Msg_NE -- CODEFIX
898 ("??pragma Unused given for&!", N, E);
899 else
900 Error_Msg_NE -- CODEFIX
901 ("??pragma Unreferenced given for&!", N, E);
902 end if;
903 end if;
904
905 -- If this is a subprogram instance, mark as well the internal
906 -- subprogram in the wrapper package, which may be a visible
907 -- compilation unit.
908
909 if Is_Overloadable (E)
910 and then Is_Generic_Instance (E)
911 and then Present (Alias (E))
912 then
913 Set_Referenced (Alias (E));
914 end if;
915 end if;
916
917 -- Generate reference if all conditions are met:
918
919 if
920 -- Cross referencing must be active
921
922 Opt.Xref_Active
923
924 -- The entity must be one for which we collect references
925
926 and then Xref_Entity_Letters (Ekind (E)) /= ' '
927
928 -- Both Sloc values must be set to something sensible
929
930 and then Sloc (E) > No_Location
931 and then Sloc (N) > No_Location
932
933 -- Ignore references from within an instance. The only exceptions to
934 -- this are default subprograms, for which we generate an implicit
935 -- reference and compilations in SPARK mode.
936
937 and then
938 (Instantiation_Location (Sloc (N)) = No_Location
939 or else Typ = 'i'
940 or else GNATprove_Mode)
941
942 -- Ignore dummy references
943
944 and then Typ /= ' '
945 then
946 if Nkind_In (N, N_Identifier,
947 N_Defining_Identifier,
948 N_Defining_Operator_Symbol,
949 N_Operator_Symbol,
950 N_Defining_Character_Literal)
951 or else Nkind (N) in N_Op
952 or else (Nkind (N) = N_Character_Literal
953 and then Sloc (Entity (N)) /= Standard_Location)
954 then
955 Nod := N;
956
957 elsif Nkind_In (N, N_Expanded_Name, N_Selected_Component) then
958 Nod := Selector_Name (N);
959
960 else
961 return;
962 end if;
963
964 -- Normal case of source entity comes from source
965
966 if Comes_From_Source (E) then
967 Ent := E;
968
969 -- Because a declaration may be generated for a subprogram body
970 -- without declaration in GNATprove mode, for inlining, some
971 -- parameters may end up being marked as not coming from source
972 -- although they are. Take these into account specially.
973
974 elsif GNATprove_Mode and then Ekind (E) in Formal_Kind then
975 Ent := E;
976
977 -- Entity does not come from source, but is a derived subprogram and
978 -- the derived subprogram comes from source (after one or more
979 -- derivations) in which case the reference is to parent subprogram.
980
981 elsif Is_Overloadable (E)
982 and then Present (Alias (E))
983 then
984 Ent := Alias (E);
985 while not Comes_From_Source (Ent) loop
986 if No (Alias (Ent)) then
987 return;
988 end if;
989
990 Ent := Alias (Ent);
991 end loop;
992
993 -- The internally created defining entity for a child subprogram
994 -- that has no previous spec has valid references.
995
996 elsif Is_Overloadable (E)
997 and then Is_Child_Unit (E)
998 then
999 Ent := E;
1000
1001 -- Ditto for the formals of such a subprogram
1002
1003 elsif Is_Overloadable (Scope (E))
1004 and then Is_Child_Unit (Scope (E))
1005 then
1006 Ent := E;
1007
1008 -- Record components of discriminated subtypes or derived types must
1009 -- be treated as references to the original component.
1010
1011 elsif Ekind (E) = E_Component
1012 and then Comes_From_Source (Original_Record_Component (E))
1013 then
1014 Ent := Original_Record_Component (E);
1015
1016 -- If this is an expanded reference to a discriminant, recover the
1017 -- original discriminant, which gets the reference.
1018
1019 elsif Ekind (E) = E_In_Parameter
1020 and then Present (Discriminal_Link (E))
1021 then
1022 Ent := Discriminal_Link (E);
1023 Set_Referenced (Ent);
1024
1025 -- Ignore reference to any other entity that is not from source
1026
1027 else
1028 return;
1029 end if;
1030
1031 -- In SPARK mode, consider the underlying entity renamed instead of
1032 -- the renaming, which is needed to compute a valid set of effects
1033 -- (reads, writes) for the enclosing subprogram.
1034
1035 if GNATprove_Mode then
1036 Ent := Get_Through_Renamings (Ent);
1037
1038 -- If no enclosing object, then it could be a reference to any
1039 -- location not tracked individually, like heap-allocated data.
1040 -- Conservatively approximate this possibility by generating a
1041 -- dereference, and return.
1042
1043 if No (Ent) then
1044 if Actual_Typ = 'w' then
1045 SPARK_Specific.Generate_Dereference (Nod, 'r');
1046 SPARK_Specific.Generate_Dereference (Nod, 'w');
1047 else
1048 SPARK_Specific.Generate_Dereference (Nod, 'r');
1049 end if;
1050
1051 return;
1052 end if;
1053 end if;
1054
1055 -- Record reference to entity
1056
1057 if Actual_Typ = 'p'
1058 and then Is_Subprogram (Nod)
1059 and then Present (Overridden_Operation (Nod))
1060 then
1061 Actual_Typ := 'P';
1062 end if;
1063
1064 -- Comment needed here for special SPARK code ???
1065
1066 if GNATprove_Mode then
1067 Ref := Sloc (Nod);
1068 Def := Sloc (Ent);
1069
1070 Ref_Scope :=
1071 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Nod);
1072 Ent_Scope :=
1073 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Ent);
1074
1075 -- Since we are reaching through renamings in SPARK mode, we may
1076 -- end up with standard constants. Ignore those.
1077
1078 if Sloc (Ent_Scope) <= Standard_Location
1079 or else Def <= Standard_Location
1080 then
1081 return;
1082 end if;
1083
1084 Add_Entry
1085 ((Ent => Ent,
1086 Loc => Ref,
1087 Typ => Actual_Typ,
1088 Eun => Get_Top_Level_Code_Unit (Def),
1089 Lun => Get_Top_Level_Code_Unit (Ref),
1090 Ref_Scope => Ref_Scope,
1091 Ent_Scope => Ent_Scope),
1092 Ent_Scope_File => Get_Top_Level_Code_Unit (Ent));
1093
1094 else
1095 Ref := Original_Location (Sloc (Nod));
1096 Def := Original_Location (Sloc (Ent));
1097
1098 -- If this is an operator symbol, skip the initial quote for
1099 -- navigation purposes. This is not done for the end label,
1100 -- where we want the actual position after the closing quote.
1101
1102 if Typ = 't' then
1103 null;
1104
1105 elsif Nkind (N) = N_Defining_Operator_Symbol
1106 or else Nkind (Nod) = N_Operator_Symbol
1107 then
1108 Ref := Ref + 1;
1109 end if;
1110
1111 Add_Entry
1112 ((Ent => Ent,
1113 Loc => Ref,
1114 Typ => Actual_Typ,
1115 Eun => Get_Source_Unit (Def),
1116 Lun => Get_Source_Unit (Ref),
1117 Ref_Scope => Empty,
1118 Ent_Scope => Empty),
1119 Ent_Scope_File => No_Unit);
1120
1121 -- Generate reference to the first private entity
1122
1123 if Typ = 'e'
1124 and then Comes_From_Source (E)
1125 and then Nkind (Ent) = N_Defining_Identifier
1126 and then (Is_Package_Or_Generic_Package (Ent)
1127 or else Is_Concurrent_Type (Ent))
1128 and then Present (First_Private_Entity (E))
1129 and then In_Extended_Main_Source_Unit (N)
1130 then
1131 -- Handle case in which the full-view and partial-view of the
1132 -- first private entity are swapped.
1133
1134 declare
1135 First_Private : Entity_Id := First_Private_Entity (E);
1136
1137 begin
1138 if Is_Private_Type (First_Private)
1139 and then Present (Full_View (First_Private))
1140 then
1141 First_Private := Full_View (First_Private);
1142 end if;
1143
1144 Add_Entry
1145 ((Ent => Ent,
1146 Loc => Sloc (First_Private),
1147 Typ => 'E',
1148 Eun => Get_Source_Unit (Def),
1149 Lun => Get_Source_Unit (Ref),
1150 Ref_Scope => Empty,
1151 Ent_Scope => Empty),
1152 Ent_Scope_File => No_Unit);
1153 end;
1154 end if;
1155 end if;
1156 end if;
1157 end Generate_Reference;
1158
1159 -----------------------------------
1160 -- Generate_Reference_To_Formals --
1161 -----------------------------------
1162
1163 procedure Generate_Reference_To_Formals (E : Entity_Id) is
1164 Formal : Entity_Id;
1165
1166 begin
1167 if Is_Generic_Subprogram (E) then
1168 Formal := First_Entity (E);
1169
1170 while Present (Formal)
1171 and then not Is_Formal (Formal)
1172 loop
1173 Next_Entity (Formal);
1174 end loop;
1175
1176 elsif Ekind (E) in Access_Subprogram_Kind then
1177 Formal := First_Formal (Designated_Type (E));
1178
1179 else
1180 Formal := First_Formal (E);
1181 end if;
1182
1183 while Present (Formal) loop
1184 if Ekind (Formal) = E_In_Parameter then
1185
1186 if Nkind (Parameter_Type (Parent (Formal))) = N_Access_Definition
1187 then
1188 Generate_Reference (E, Formal, '^', False);
1189 else
1190 Generate_Reference (E, Formal, '>', False);
1191 end if;
1192
1193 elsif Ekind (Formal) = E_In_Out_Parameter then
1194 Generate_Reference (E, Formal, '=', False);
1195
1196 else
1197 Generate_Reference (E, Formal, '<', False);
1198 end if;
1199
1200 Next_Formal (Formal);
1201 end loop;
1202 end Generate_Reference_To_Formals;
1203
1204 -------------------------------------------
1205 -- Generate_Reference_To_Generic_Formals --
1206 -------------------------------------------
1207
1208 procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is
1209 Formal : Entity_Id;
1210
1211 begin
1212 Formal := First_Entity (E);
1213 while Present (Formal) loop
1214 if Comes_From_Source (Formal) then
1215 Generate_Reference (E, Formal, 'z', False);
1216 end if;
1217
1218 Next_Entity (Formal);
1219 end loop;
1220 end Generate_Reference_To_Generic_Formals;
1221
1222 -------------
1223 -- Get_Key --
1224 -------------
1225
1226 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is
1227 begin
1228 return E;
1229 end Get_Key;
1230
1231 ----------------------------
1232 -- Has_Deferred_Reference --
1233 ----------------------------
1234
1235 function Has_Deferred_Reference (Ent : Entity_Id) return Boolean is
1236 begin
1237 for J in Deferred_References.First .. Deferred_References.Last loop
1238 if Deferred_References.Table (J).E = Ent then
1239 return True;
1240 end if;
1241 end loop;
1242
1243 return False;
1244 end Has_Deferred_Reference;
1245
1246 ----------
1247 -- Hash --
1248 ----------
1249
1250 function Hash (F : Xref_Entry_Number) return Header_Num is
1251 -- It is unlikely to have two references to the same entity at the same
1252 -- source location, so the hash function depends only on the Ent and Loc
1253 -- fields.
1254
1255 XE : Xref_Entry renames Xrefs.Table (F);
1256 type M is mod 2**32;
1257
1258 H : constant M := M (XE.Key.Ent) + 2 ** 7 * M (abs XE.Key.Loc);
1259 -- It would be more natural to write:
1260 --
1261 -- H : constant M := M'Mod (XE.Key.Ent) + 2**7 * M'Mod (XE.Key.Loc);
1262 --
1263 -- But we can't use M'Mod, because it prevents bootstrapping with older
1264 -- compilers. Loc can be negative, so we do "abs" before converting.
1265 -- One day this can be cleaned up ???
1266
1267 begin
1268 return Header_Num (H mod Num_Buckets);
1269 end Hash;
1270
1271 -----------------
1272 -- HT_Set_Next --
1273 -----------------
1274
1275 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is
1276 begin
1277 Xrefs.Table (E).HTable_Next := Next;
1278 end HT_Set_Next;
1279
1280 -------------
1281 -- HT_Next --
1282 -------------
1283
1284 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is
1285 begin
1286 return Xrefs.Table (E).HTable_Next;
1287 end HT_Next;
1288
1289 ----------------
1290 -- Initialize --
1291 ----------------
1292
1293 procedure Initialize is
1294 begin
1295 Xrefs.Init;
1296 end Initialize;
1297
1298 --------
1299 -- Lt --
1300 --------
1301
1302 function Lt (T1, T2 : Xref_Entry) return Boolean is
1303 begin
1304 -- First test: if entity is in different unit, sort by unit
1305
1306 if T1.Key.Eun /= T2.Key.Eun then
1307 return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun);
1308
1309 -- Second test: within same unit, sort by entity Sloc
1310
1311 elsif T1.Def /= T2.Def then
1312 return T1.Def < T2.Def;
1313
1314 -- Third test: sort definitions ahead of references
1315
1316 elsif T1.Key.Loc = No_Location then
1317 return True;
1318
1319 elsif T2.Key.Loc = No_Location then
1320 return False;
1321
1322 -- Fourth test: for same entity, sort by reference location unit
1323
1324 elsif T1.Key.Lun /= T2.Key.Lun then
1325 return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun);
1326
1327 -- Fifth test: order of location within referencing unit
1328
1329 elsif T1.Key.Loc /= T2.Key.Loc then
1330 return T1.Key.Loc < T2.Key.Loc;
1331
1332 -- Finally, for two locations at the same address, we prefer
1333 -- the one that does NOT have the type 'r' so that a modification
1334 -- or extension takes preference, when there are more than one
1335 -- reference at the same location. As a result, in the case of
1336 -- entities that are in-out actuals, the read reference follows
1337 -- the modify reference.
1338
1339 else
1340 return T2.Key.Typ = 'r';
1341 end if;
1342 end Lt;
1343
1344 -----------------------
1345 -- Output_References --
1346 -----------------------
1347
1348 procedure Output_References is
1349
1350 procedure Get_Type_Reference
1351 (Ent : Entity_Id;
1352 Tref : out Entity_Id;
1353 Left : out Character;
1354 Right : out Character);
1355 -- Given an Entity_Id Ent, determines whether a type reference is
1356 -- required. If so, Tref is set to the entity for the type reference
1357 -- and Left and Right are set to the left/right brackets to be output
1358 -- for the reference. If no type reference is required, then Tref is
1359 -- set to Empty, and Left/Right are set to space.
1360
1361 procedure Output_Import_Export_Info (Ent : Entity_Id);
1362 -- Output language and external name information for an interfaced
1363 -- entity, using the format <language, external_name>.
1364
1365 ------------------------
1366 -- Get_Type_Reference --
1367 ------------------------
1368
1369 procedure Get_Type_Reference
1370 (Ent : Entity_Id;
1371 Tref : out Entity_Id;
1372 Left : out Character;
1373 Right : out Character)
1374 is
1375 Sav : Entity_Id;
1376
1377 begin
1378 -- See if we have a type reference
1379
1380 Tref := Ent;
1381 Left := '{';
1382 Right := '}';
1383
1384 loop
1385 Sav := Tref;
1386
1387 -- Processing for types
1388
1389 if Is_Type (Tref) then
1390
1391 -- Case of base type
1392
1393 if Base_Type (Tref) = Tref then
1394
1395 -- If derived, then get first subtype
1396
1397 if Tref /= Etype (Tref) then
1398 Tref := First_Subtype (Etype (Tref));
1399
1400 -- Set brackets for derived type, but don't override
1401 -- pointer case since the fact that something is a
1402 -- pointer is more important.
1403
1404 if Left /= '(' then
1405 Left := '<';
1406 Right := '>';
1407 end if;
1408
1409 -- If the completion of a private type is itself a derived
1410 -- type, we need the parent of the full view.
1411
1412 elsif Is_Private_Type (Tref)
1413 and then Present (Full_View (Tref))
1414 and then Etype (Full_View (Tref)) /= Full_View (Tref)
1415 then
1416 Tref := Etype (Full_View (Tref));
1417
1418 if Left /= '(' then
1419 Left := '<';
1420 Right := '>';
1421 end if;
1422
1423 -- If non-derived pointer, get directly designated type.
1424 -- If the type has a full view, all references are on the
1425 -- partial view that is seen first.
1426
1427 elsif Is_Access_Type (Tref) then
1428 Tref := Directly_Designated_Type (Tref);
1429 Left := '(';
1430 Right := ')';
1431
1432 elsif Is_Private_Type (Tref)
1433 and then Present (Full_View (Tref))
1434 then
1435 if Is_Access_Type (Full_View (Tref)) then
1436 Tref := Directly_Designated_Type (Full_View (Tref));
1437 Left := '(';
1438 Right := ')';
1439
1440 -- If the full view is an array type, we also retrieve
1441 -- the corresponding component type, because the ali
1442 -- entry already indicates that this is an array.
1443
1444 elsif Is_Array_Type (Full_View (Tref)) then
1445 Tref := Component_Type (Full_View (Tref));
1446 Left := '(';
1447 Right := ')';
1448 end if;
1449
1450 -- If non-derived array, get component type. Skip component
1451 -- type for case of String or Wide_String, saves worthwhile
1452 -- space.
1453
1454 elsif Is_Array_Type (Tref)
1455 and then Tref /= Standard_String
1456 and then Tref /= Standard_Wide_String
1457 then
1458 Tref := Component_Type (Tref);
1459 Left := '(';
1460 Right := ')';
1461
1462 -- For other non-derived base types, nothing
1463
1464 else
1465 exit;
1466 end if;
1467
1468 -- For a subtype, go to ancestor subtype
1469
1470 else
1471 Tref := Ancestor_Subtype (Tref);
1472
1473 -- If no ancestor subtype, go to base type
1474
1475 if No (Tref) then
1476 Tref := Base_Type (Sav);
1477 end if;
1478 end if;
1479
1480 -- For objects, functions, enum literals, just get type from
1481 -- Etype field.
1482
1483 elsif Is_Object (Tref)
1484 or else Ekind (Tref) = E_Enumeration_Literal
1485 or else Ekind (Tref) = E_Function
1486 or else Ekind (Tref) = E_Operator
1487 then
1488 Tref := Etype (Tref);
1489
1490 -- Another special case: an object of a classwide type
1491 -- initialized with a tag-indeterminate call gets a subtype
1492 -- of the classwide type during expansion. See if the original
1493 -- type in the declaration is named, and return it instead
1494 -- of going to the root type. The expression may be a class-
1495 -- wide function call whose result is on the secondary stack,
1496 -- which forces the declaration to be rewritten as a renaming,
1497 -- so examine the source declaration.
1498
1499 if Ekind (Tref) = E_Class_Wide_Subtype then
1500 declare
1501 Decl : constant Node_Id := Original_Node (Parent (Ent));
1502 begin
1503 if Nkind (Decl) = N_Object_Declaration
1504 and then Is_Entity_Name
1505 (Original_Node (Object_Definition (Decl)))
1506 then
1507 Tref :=
1508 Entity (Original_Node (Object_Definition (Decl)));
1509 end if;
1510 end;
1511
1512 -- For a function that returns a class-wide type, Tref is
1513 -- already correct.
1514
1515 elsif Is_Overloadable (Ent)
1516 and then Is_Class_Wide_Type (Tref)
1517 then
1518 return;
1519 end if;
1520
1521 -- For anything else, exit
1522
1523 else
1524 exit;
1525 end if;
1526
1527 -- Exit if no type reference, or we are stuck in some loop trying
1528 -- to find the type reference, or if the type is standard void
1529 -- type (the latter is an implementation artifact that should not
1530 -- show up in the generated cross-references).
1531
1532 exit when No (Tref)
1533 or else Tref = Sav
1534 or else Tref = Standard_Void_Type;
1535
1536 -- If we have a usable type reference, return, otherwise keep
1537 -- looking for something useful (we are looking for something
1538 -- that either comes from source or standard)
1539
1540 if Sloc (Tref) = Standard_Location
1541 or else Comes_From_Source (Tref)
1542 then
1543 -- If the reference is a subtype created for a generic actual,
1544 -- go actual directly, the inner subtype is not user visible.
1545
1546 if Nkind (Parent (Tref)) = N_Subtype_Declaration
1547 and then not Comes_From_Source (Parent (Tref))
1548 and then
1549 (Is_Wrapper_Package (Scope (Tref))
1550 or else Is_Generic_Instance (Scope (Tref)))
1551 then
1552 Tref := First_Subtype (Base_Type (Tref));
1553 end if;
1554
1555 return;
1556 end if;
1557 end loop;
1558
1559 -- If we fall through the loop, no type reference
1560
1561 Tref := Empty;
1562 Left := ' ';
1563 Right := ' ';
1564 end Get_Type_Reference;
1565
1566 -------------------------------
1567 -- Output_Import_Export_Info --
1568 -------------------------------
1569
1570 procedure Output_Import_Export_Info (Ent : Entity_Id) is
1571 Language_Name : Name_Id;
1572 Conv : constant Convention_Id := Convention (Ent);
1573
1574 begin
1575 -- Generate language name from convention
1576
1577 if Conv = Convention_C then
1578 Language_Name := Name_C;
1579
1580 elsif Conv = Convention_CPP then
1581 Language_Name := Name_CPP;
1582
1583 elsif Conv = Convention_Ada then
1584 Language_Name := Name_Ada;
1585
1586 else
1587 -- For the moment we ignore all other cases ???
1588
1589 return;
1590 end if;
1591
1592 Write_Info_Char ('<');
1593 Get_Unqualified_Name_String (Language_Name);
1594
1595 for J in 1 .. Name_Len loop
1596 Write_Info_Char (Name_Buffer (J));
1597 end loop;
1598
1599 if Present (Interface_Name (Ent)) then
1600 Write_Info_Char (',');
1601 String_To_Name_Buffer (Strval (Interface_Name (Ent)));
1602
1603 for J in 1 .. Name_Len loop
1604 Write_Info_Char (Name_Buffer (J));
1605 end loop;
1606 end if;
1607
1608 Write_Info_Char ('>');
1609 end Output_Import_Export_Info;
1610
1611 -- Start of processing for Output_References
1612
1613 begin
1614 -- First we add references to the primitive operations of tagged types
1615 -- declared in the main unit.
1616
1617 Handle_Prim_Ops : declare
1618 Ent : Entity_Id;
1619
1620 begin
1621 for J in 1 .. Xrefs.Last loop
1622 Ent := Xrefs.Table (J).Key.Ent;
1623
1624 if Is_Type (Ent)
1625 and then Is_Tagged_Type (Ent)
1626 and then Is_Base_Type (Ent)
1627 and then In_Extended_Main_Source_Unit (Ent)
1628 then
1629 Generate_Prim_Op_References (Ent);
1630 end if;
1631 end loop;
1632 end Handle_Prim_Ops;
1633
1634 -- Before we go ahead and output the references we have a problem
1635 -- that needs dealing with. So far we have captured things that are
1636 -- definitely referenced by the main unit, or defined in the main
1637 -- unit. That's because we don't want to clutter up the ali file
1638 -- for this unit with definition lines for entities in other units
1639 -- that are not referenced.
1640
1641 -- But there is a glitch. We may reference an entity in another unit,
1642 -- and it may have a type reference to an entity that is not directly
1643 -- referenced in the main unit, which may mean that there is no xref
1644 -- entry for this entity yet in the list of references.
1645
1646 -- If we don't do something about this, we will end with an orphan type
1647 -- reference, i.e. it will point to an entity that does not appear
1648 -- within the generated references in the ali file. That is not good for
1649 -- tools using the xref information.
1650
1651 -- To fix this, we go through the references adding definition entries
1652 -- for any unreferenced entities that can be referenced in a type
1653 -- reference. There is a recursion problem here, and that is dealt with
1654 -- by making sure that this traversal also traverses any entries that
1655 -- get added by the traversal.
1656
1657 Handle_Orphan_Type_References : declare
1658 J : Nat;
1659 Tref : Entity_Id;
1660 Ent : Entity_Id;
1661
1662 L, R : Character;
1663 pragma Warnings (Off, L);
1664 pragma Warnings (Off, R);
1665
1666 procedure New_Entry (E : Entity_Id);
1667 -- Make an additional entry into the Xref table for a type entity
1668 -- that is related to the current entity (parent, type ancestor,
1669 -- progenitor, etc.).
1670
1671 ----------------
1672 -- New_Entry --
1673 ----------------
1674
1675 procedure New_Entry (E : Entity_Id) is
1676 begin
1677 pragma Assert (Present (E));
1678
1679 if not Has_Xref_Entry (Implementation_Base_Type (E))
1680 and then Sloc (E) > No_Location
1681 then
1682 Add_Entry
1683 ((Ent => E,
1684 Loc => No_Location,
1685 Typ => Character'First,
1686 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
1687 Lun => No_Unit,
1688 Ref_Scope => Empty,
1689 Ent_Scope => Empty),
1690 Ent_Scope_File => No_Unit);
1691 end if;
1692 end New_Entry;
1693
1694 -- Start of processing for Handle_Orphan_Type_References
1695
1696 begin
1697 -- Note that this is not a for loop for a very good reason. The
1698 -- processing of items in the table can add new items to the table,
1699 -- and they must be processed as well.
1700
1701 J := 1;
1702 while J <= Xrefs.Last loop
1703 Ent := Xrefs.Table (J).Key.Ent;
1704
1705 -- Do not generate reference information for an ignored Ghost
1706 -- entity because neither the entity nor its references will
1707 -- appear in the final tree.
1708
1709 if Is_Ignored_Ghost_Entity (Ent) then
1710 goto Orphan_Continue;
1711 end if;
1712
1713 Get_Type_Reference (Ent, Tref, L, R);
1714
1715 if Present (Tref)
1716 and then not Has_Xref_Entry (Tref)
1717 and then Sloc (Tref) > No_Location
1718 then
1719 New_Entry (Tref);
1720
1721 if Is_Record_Type (Ent)
1722 and then Present (Interfaces (Ent))
1723 then
1724 -- Add an entry for each one of the given interfaces
1725 -- implemented by type Ent.
1726
1727 declare
1728 Elmt : Elmt_Id := First_Elmt (Interfaces (Ent));
1729 begin
1730 while Present (Elmt) loop
1731 New_Entry (Node (Elmt));
1732 Next_Elmt (Elmt);
1733 end loop;
1734 end;
1735 end if;
1736 end if;
1737
1738 -- Collect inherited primitive operations that may be declared in
1739 -- another unit and have no visible reference in the current one.
1740
1741 if Is_Type (Ent)
1742 and then Is_Tagged_Type (Ent)
1743 and then Is_Derived_Type (Ent)
1744 and then Is_Base_Type (Ent)
1745 and then In_Extended_Main_Source_Unit (Ent)
1746 then
1747 declare
1748 Op_List : constant Elist_Id := Primitive_Operations (Ent);
1749 Op : Elmt_Id;
1750 Prim : Entity_Id;
1751
1752 function Parent_Op (E : Entity_Id) return Entity_Id;
1753 -- Find original operation, which may be inherited through
1754 -- several derivations.
1755
1756 function Parent_Op (E : Entity_Id) return Entity_Id is
1757 Orig_Op : constant Entity_Id := Alias (E);
1758
1759 begin
1760 if No (Orig_Op) then
1761 return Empty;
1762
1763 elsif not Comes_From_Source (E)
1764 and then not Has_Xref_Entry (Orig_Op)
1765 and then Comes_From_Source (Orig_Op)
1766 then
1767 return Orig_Op;
1768 else
1769 return Parent_Op (Orig_Op);
1770 end if;
1771 end Parent_Op;
1772
1773 begin
1774 Op := First_Elmt (Op_List);
1775 while Present (Op) loop
1776 Prim := Parent_Op (Node (Op));
1777
1778 if Present (Prim) then
1779 Add_Entry
1780 ((Ent => Prim,
1781 Loc => No_Location,
1782 Typ => Character'First,
1783 Eun => Get_Source_Unit (Sloc (Prim)),
1784 Lun => No_Unit,
1785 Ref_Scope => Empty,
1786 Ent_Scope => Empty),
1787 Ent_Scope_File => No_Unit);
1788 end if;
1789
1790 Next_Elmt (Op);
1791 end loop;
1792 end;
1793 end if;
1794
1795 <<Orphan_Continue>>
1796 J := J + 1;
1797 end loop;
1798 end Handle_Orphan_Type_References;
1799
1800 -- Now we have all the references, including those for any embedded type
1801 -- references, so we can sort them, and output them.
1802
1803 Output_Refs : declare
1804 Nrefs : constant Nat := Xrefs.Last;
1805 -- Number of references in table
1806
1807 Rnums : array (0 .. Nrefs) of Nat;
1808 -- This array contains numbers of references in the Xrefs table.
1809 -- This list is sorted in output order. The extra 0'th entry is
1810 -- convenient for the call to sort. When we sort the table, we
1811 -- move the entries in Rnums around, but we do not move the
1812 -- original table entries.
1813
1814 Curxu : Unit_Number_Type;
1815 -- Current xref unit
1816
1817 Curru : Unit_Number_Type;
1818 -- Current reference unit for one entity
1819
1820 Curent : Entity_Id;
1821 -- Current entity
1822
1823 Curnam : String (1 .. Name_Buffer'Length);
1824 Curlen : Natural;
1825 -- Simple name and length of current entity
1826
1827 Curdef : Source_Ptr;
1828 -- Original source location for current entity
1829
1830 Crloc : Source_Ptr;
1831 -- Current reference location
1832
1833 Ctyp : Character;
1834 -- Entity type character
1835
1836 Prevt : Character;
1837 -- reference kind of previous reference
1838
1839 Tref : Entity_Id;
1840 -- Type reference
1841
1842 Rref : Node_Id;
1843 -- Renaming reference
1844
1845 Trunit : Unit_Number_Type;
1846 -- Unit number for type reference
1847
1848 function Lt (Op1, Op2 : Natural) return Boolean;
1849 -- Comparison function for Sort call
1850
1851 function Name_Change (X : Entity_Id) return Boolean;
1852 -- Determines if entity X has a different simple name from Curent
1853
1854 procedure Move (From : Natural; To : Natural);
1855 -- Move procedure for Sort call
1856
1857 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
1858
1859 --------
1860 -- Lt --
1861 --------
1862
1863 function Lt (Op1, Op2 : Natural) return Boolean is
1864 T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1)));
1865 T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2)));
1866
1867 begin
1868 return Lt (T1, T2);
1869 end Lt;
1870
1871 ----------
1872 -- Move --
1873 ----------
1874
1875 procedure Move (From : Natural; To : Natural) is
1876 begin
1877 Rnums (Nat (To)) := Rnums (Nat (From));
1878 end Move;
1879
1880 -----------------
1881 -- Name_Change --
1882 -----------------
1883
1884 -- Why a string comparison here??? Why not compare Name_Id values???
1885
1886 function Name_Change (X : Entity_Id) return Boolean is
1887 begin
1888 Get_Unqualified_Name_String (Chars (X));
1889
1890 if Name_Len /= Curlen then
1891 return True;
1892 else
1893 return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen);
1894 end if;
1895 end Name_Change;
1896
1897 -- Start of processing for Output_Refs
1898
1899 begin
1900 -- Capture the definition Sloc values. We delay doing this till now,
1901 -- since at the time the reference or definition is made, private
1902 -- types may be swapped, and the Sloc value may be incorrect. We
1903 -- also set up the pointer vector for the sort.
1904
1905 -- For user-defined operators we need to skip the initial quote and
1906 -- point to the first character of the name, for navigation purposes.
1907
1908 for J in 1 .. Nrefs loop
1909 declare
1910 E : constant Entity_Id := Xrefs.Table (J).Key.Ent;
1911 Loc : constant Source_Ptr := Original_Location (Sloc (E));
1912
1913 begin
1914 Rnums (J) := J;
1915
1916 if Nkind (E) = N_Defining_Operator_Symbol then
1917 Xrefs.Table (J).Def := Loc + 1;
1918 else
1919 Xrefs.Table (J).Def := Loc;
1920 end if;
1921 end;
1922 end loop;
1923
1924 -- Sort the references
1925
1926 Sorting.Sort (Integer (Nrefs));
1927
1928 -- Initialize loop through references
1929
1930 Curxu := No_Unit;
1931 Curent := Empty;
1932 Curdef := No_Location;
1933 Curru := No_Unit;
1934 Crloc := No_Location;
1935 Prevt := 'm';
1936
1937 -- Loop to output references
1938
1939 for Refno in 1 .. Nrefs loop
1940 Output_One_Ref : declare
1941 Ent : Entity_Id;
1942
1943 XE : Xref_Entry renames Xrefs.Table (Rnums (Refno));
1944 -- The current entry to be accessed
1945
1946 Left : Character;
1947 Right : Character;
1948 -- Used for {} or <> or () for type reference
1949
1950 procedure Check_Type_Reference
1951 (Ent : Entity_Id;
1952 List_Interface : Boolean;
1953 Is_Component : Boolean := False);
1954 -- Find whether there is a meaningful type reference for
1955 -- Ent, and display it accordingly. If List_Interface is
1956 -- true, then Ent is a progenitor interface of the current
1957 -- type entity being listed. In that case list it as is,
1958 -- without looking for a type reference for it. Flag is also
1959 -- used for index types of an array type, where the caller
1960 -- supplies the intended type reference. Is_Component serves
1961 -- the same purpose, to display the component type of a
1962 -- derived array type, for which only the parent type has
1963 -- ben displayed so far.
1964
1965 procedure Output_Instantiation_Refs (Loc : Source_Ptr);
1966 -- Recursive procedure to output instantiation references for
1967 -- the given source ptr in [file|line[...]] form. No output
1968 -- if the given location is not a generic template reference.
1969
1970 procedure Output_Overridden_Op (Old_E : Entity_Id);
1971 -- For a subprogram that is overriding, display information
1972 -- about the inherited operation that it overrides.
1973
1974 --------------------------
1975 -- Check_Type_Reference --
1976 --------------------------
1977
1978 procedure Check_Type_Reference
1979 (Ent : Entity_Id;
1980 List_Interface : Boolean;
1981 Is_Component : Boolean := False)
1982 is
1983 begin
1984 if List_Interface then
1985
1986 -- This is a progenitor interface of the type for which
1987 -- xref information is being generated.
1988
1989 Tref := Ent;
1990 Left := '<';
1991 Right := '>';
1992
1993 -- The following is not documented in lib-xref.ads ???
1994
1995 elsif Is_Component then
1996 Tref := Ent;
1997 Left := '(';
1998 Right := ')';
1999
2000 else
2001 Get_Type_Reference (Ent, Tref, Left, Right);
2002 end if;
2003
2004 if Present (Tref) then
2005
2006 -- Case of standard entity, output name
2007
2008 if Sloc (Tref) = Standard_Location then
2009 Write_Info_Char (Left);
2010 Write_Info_Name (Chars (Tref));
2011 Write_Info_Char (Right);
2012
2013 -- Case of source entity, output location
2014
2015 else
2016 Write_Info_Char (Left);
2017 Trunit := Get_Source_Unit (Sloc (Tref));
2018
2019 if Trunit /= Curxu then
2020 Write_Info_Nat (Dependency_Num (Trunit));
2021 Write_Info_Char ('|');
2022 end if;
2023
2024 Write_Info_Nat
2025 (Int (Get_Logical_Line_Number (Sloc (Tref))));
2026
2027 declare
2028 Ent : Entity_Id;
2029 Ctyp : Character;
2030
2031 begin
2032 Ent := Tref;
2033 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2034
2035 if Ctyp = '+'
2036 and then Present (Full_View (Ent))
2037 then
2038 Ent := Underlying_Type (Ent);
2039
2040 if Present (Ent) then
2041 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2042 end if;
2043 end if;
2044
2045 Write_Info_Char (Ctyp);
2046 end;
2047
2048 Write_Info_Nat
2049 (Int (Get_Column_Number (Sloc (Tref))));
2050
2051 -- If the type comes from an instantiation, add the
2052 -- corresponding info.
2053
2054 Output_Instantiation_Refs (Sloc (Tref));
2055 Write_Info_Char (Right);
2056 end if;
2057 end if;
2058 end Check_Type_Reference;
2059
2060 -------------------------------
2061 -- Output_Instantiation_Refs --
2062 -------------------------------
2063
2064 procedure Output_Instantiation_Refs (Loc : Source_Ptr) is
2065 Iloc : constant Source_Ptr := Instantiation_Location (Loc);
2066 Lun : Unit_Number_Type;
2067 Cu : constant Unit_Number_Type := Curru;
2068
2069 begin
2070 -- Nothing to do if this is not an instantiation
2071
2072 if Iloc = No_Location then
2073 return;
2074 end if;
2075
2076 -- Output instantiation reference
2077
2078 Write_Info_Char ('[');
2079 Lun := Get_Source_Unit (Iloc);
2080
2081 if Lun /= Curru then
2082 Curru := Lun;
2083 Write_Info_Nat (Dependency_Num (Curru));
2084 Write_Info_Char ('|');
2085 end if;
2086
2087 Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc)));
2088
2089 -- Recursive call to get nested instantiations
2090
2091 Output_Instantiation_Refs (Iloc);
2092
2093 -- Output final ] after call to get proper nesting
2094
2095 Write_Info_Char (']');
2096 Curru := Cu;
2097 return;
2098 end Output_Instantiation_Refs;
2099
2100 --------------------------
2101 -- Output_Overridden_Op --
2102 --------------------------
2103
2104 procedure Output_Overridden_Op (Old_E : Entity_Id) is
2105 Op : Entity_Id;
2106
2107 begin
2108 -- The overridden operation has an implicit declaration
2109 -- at the point of derivation. What we want to display
2110 -- is the original operation, which has the actual body
2111 -- (or abstract declaration) that is being overridden.
2112 -- The overridden operation is not always set, e.g. when
2113 -- it is a predefined operator.
2114
2115 if No (Old_E) then
2116 return;
2117
2118 -- Follow alias chain if one is present
2119
2120 elsif Present (Alias (Old_E)) then
2121
2122 -- The subprogram may have been implicitly inherited
2123 -- through several levels of derivation, so find the
2124 -- ultimate (source) ancestor.
2125
2126 Op := Ultimate_Alias (Old_E);
2127
2128 -- Normal case of no alias present. We omit generated
2129 -- primitives like tagged equality, that have no source
2130 -- representation.
2131
2132 else
2133 Op := Old_E;
2134 end if;
2135
2136 if Present (Op)
2137 and then Sloc (Op) /= Standard_Location
2138 and then Comes_From_Source (Op)
2139 then
2140 declare
2141 Loc : constant Source_Ptr := Sloc (Op);
2142 Par_Unit : constant Unit_Number_Type :=
2143 Get_Source_Unit (Loc);
2144
2145 begin
2146 Write_Info_Char ('<');
2147
2148 if Par_Unit /= Curxu then
2149 Write_Info_Nat (Dependency_Num (Par_Unit));
2150 Write_Info_Char ('|');
2151 end if;
2152
2153 Write_Info_Nat (Int (Get_Logical_Line_Number (Loc)));
2154 Write_Info_Char ('p');
2155 Write_Info_Nat (Int (Get_Column_Number (Loc)));
2156 Write_Info_Char ('>');
2157 end;
2158 end if;
2159 end Output_Overridden_Op;
2160
2161 -- Start of processing for Output_One_Ref
2162
2163 begin
2164 Ent := XE.Key.Ent;
2165
2166 -- Do not generate reference information for an ignored Ghost
2167 -- entity because neither the entity nor its references will
2168 -- appear in the final tree.
2169
2170 if Is_Ignored_Ghost_Entity (Ent) then
2171 goto Continue;
2172 end if;
2173
2174 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2175
2176 -- Skip reference if it is the only reference to an entity,
2177 -- and it is an END line reference, and the entity is not in
2178 -- the current extended source. This prevents junk entries
2179 -- consisting only of packages with END lines, where no
2180 -- entity from the package is actually referenced.
2181
2182 if XE.Key.Typ = 'e'
2183 and then Ent /= Curent
2184 and then (Refno = Nrefs
2185 or else
2186 Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent)
2187 and then not In_Extended_Main_Source_Unit (Ent)
2188 then
2189 goto Continue;
2190 end if;
2191
2192 -- For private type, get full view type
2193
2194 if Ctyp = '+'
2195 and then Present (Full_View (XE.Key.Ent))
2196 then
2197 Ent := Underlying_Type (Ent);
2198
2199 if Present (Ent) then
2200 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2201 end if;
2202 end if;
2203
2204 -- Special exception for Boolean
2205
2206 if Ctyp = 'E' and then Is_Boolean_Type (Ent) then
2207 Ctyp := 'B';
2208 end if;
2209
2210 -- For variable reference, get corresponding type
2211
2212 if Ctyp = '*' then
2213 Ent := Etype (XE.Key.Ent);
2214 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2215
2216 -- If variable is private type, get full view type
2217
2218 if Ctyp = '+'
2219 and then Present (Full_View (Etype (XE.Key.Ent)))
2220 then
2221 Ent := Underlying_Type (Etype (XE.Key.Ent));
2222
2223 if Present (Ent) then
2224 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2225 end if;
2226
2227 elsif Is_Generic_Type (Ent) then
2228
2229 -- If the type of the entity is a generic private type,
2230 -- there is no usable full view, so retain the indication
2231 -- that this is an object.
2232
2233 Ctyp := '*';
2234 end if;
2235
2236 -- Special handling for access parameters and objects and
2237 -- components of an anonymous access type.
2238
2239 if Ekind_In (Etype (XE.Key.Ent),
2240 E_Anonymous_Access_Type,
2241 E_Anonymous_Access_Subprogram_Type,
2242 E_Anonymous_Access_Protected_Subprogram_Type)
2243 then
2244 if Is_Formal (XE.Key.Ent)
2245 or else
2246 Ekind_In
2247 (XE.Key.Ent, E_Variable, E_Constant, E_Component)
2248 then
2249 Ctyp := 'p';
2250 end if;
2251
2252 -- Special handling for Boolean
2253
2254 elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then
2255 Ctyp := 'b';
2256 end if;
2257 end if;
2258
2259 -- Special handling for abstract types and operations
2260
2261 if Is_Overloadable (XE.Key.Ent)
2262 and then Is_Abstract_Subprogram (XE.Key.Ent)
2263 then
2264 if Ctyp = 'U' then
2265 Ctyp := 'x'; -- Abstract procedure
2266
2267 elsif Ctyp = 'V' then
2268 Ctyp := 'y'; -- Abstract function
2269 end if;
2270
2271 elsif Is_Type (XE.Key.Ent)
2272 and then Is_Abstract_Type (XE.Key.Ent)
2273 then
2274 if Is_Interface (XE.Key.Ent) then
2275 Ctyp := 'h';
2276
2277 elsif Ctyp = 'R' then
2278 Ctyp := 'H'; -- Abstract type
2279 end if;
2280 end if;
2281
2282 -- Only output reference if interesting type of entity
2283
2284 if Ctyp = ' '
2285
2286 -- Suppress references to object definitions, used for local
2287 -- references.
2288
2289 or else XE.Key.Typ = 'D'
2290 or else XE.Key.Typ = 'I'
2291
2292 -- Suppress self references, except for bodies that act as
2293 -- specs.
2294
2295 or else (XE.Key.Loc = XE.Def
2296 and then
2297 (XE.Key.Typ /= 'b'
2298 or else not Is_Subprogram (XE.Key.Ent)))
2299
2300 -- Also suppress definitions of body formals (we only
2301 -- treat these as references, and the references were
2302 -- separately recorded).
2303
2304 or else (Is_Formal (XE.Key.Ent)
2305 and then Present (Spec_Entity (XE.Key.Ent)))
2306 then
2307 null;
2308
2309 else
2310 -- Start new Xref section if new xref unit
2311
2312 if XE.Key.Eun /= Curxu then
2313 if Write_Info_Col > 1 then
2314 Write_Info_EOL;
2315 end if;
2316
2317 Curxu := XE.Key.Eun;
2318
2319 Write_Info_Initiate ('X');
2320 Write_Info_Char (' ');
2321 Write_Info_Nat (Dependency_Num (XE.Key.Eun));
2322 Write_Info_Char (' ');
2323 Write_Info_Name
2324 (Reference_Name (Source_Index (XE.Key.Eun)));
2325 end if;
2326
2327 -- Start new Entity line if new entity. Note that we
2328 -- consider two entities the same if they have the same
2329 -- name and source location. This causes entities in
2330 -- instantiations to be treated as though they referred
2331 -- to the template.
2332
2333 if No (Curent)
2334 or else
2335 (XE.Key.Ent /= Curent
2336 and then
2337 (Name_Change (XE.Key.Ent) or else XE.Def /= Curdef))
2338 then
2339 Curent := XE.Key.Ent;
2340 Curdef := XE.Def;
2341
2342 Get_Unqualified_Name_String (Chars (XE.Key.Ent));
2343 Curlen := Name_Len;
2344 Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen);
2345
2346 if Write_Info_Col > 1 then
2347 Write_Info_EOL;
2348 end if;
2349
2350 -- Write column number information
2351
2352 Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def)));
2353 Write_Info_Char (Ctyp);
2354 Write_Info_Nat (Int (Get_Column_Number (XE.Def)));
2355
2356 -- Write level information
2357
2358 Write_Level_Info : declare
2359 function Is_Visible_Generic_Entity
2360 (E : Entity_Id) return Boolean;
2361 -- Check whether E is declared in the visible part
2362 -- of a generic package. For source navigation
2363 -- purposes, treat this as a visible entity.
2364
2365 function Is_Private_Record_Component
2366 (E : Entity_Id) return Boolean;
2367 -- Check whether E is a non-inherited component of a
2368 -- private extension. Even if the enclosing record is
2369 -- public, we want to treat the component as private
2370 -- for navigation purposes.
2371
2372 ---------------------------------
2373 -- Is_Private_Record_Component --
2374 ---------------------------------
2375
2376 function Is_Private_Record_Component
2377 (E : Entity_Id) return Boolean
2378 is
2379 S : constant Entity_Id := Scope (E);
2380 begin
2381 return
2382 Ekind (E) = E_Component
2383 and then Nkind (Declaration_Node (S)) =
2384 N_Private_Extension_Declaration
2385 and then Original_Record_Component (E) = E;
2386 end Is_Private_Record_Component;
2387
2388 -------------------------------
2389 -- Is_Visible_Generic_Entity --
2390 -------------------------------
2391
2392 function Is_Visible_Generic_Entity
2393 (E : Entity_Id) return Boolean
2394 is
2395 Par : Node_Id;
2396
2397 begin
2398 -- The Present check here is an error defense
2399
2400 if Present (Scope (E))
2401 and then Ekind (Scope (E)) /= E_Generic_Package
2402 then
2403 return False;
2404 end if;
2405
2406 Par := Parent (E);
2407 while Present (Par) loop
2408 if
2409 Nkind (Par) = N_Generic_Package_Declaration
2410 then
2411 -- Entity is a generic formal
2412
2413 return False;
2414
2415 elsif
2416 Nkind (Parent (Par)) = N_Package_Specification
2417 then
2418 return
2419 Is_List_Member (Par)
2420 and then List_Containing (Par) =
2421 Visible_Declarations (Parent (Par));
2422 else
2423 Par := Parent (Par);
2424 end if;
2425 end loop;
2426
2427 return False;
2428 end Is_Visible_Generic_Entity;
2429
2430 -- Start of processing for Write_Level_Info
2431
2432 begin
2433 if Is_Hidden (Curent)
2434 or else Is_Private_Record_Component (Curent)
2435 then
2436 Write_Info_Char (' ');
2437
2438 elsif
2439 Is_Public (Curent)
2440 or else Is_Visible_Generic_Entity (Curent)
2441 then
2442 Write_Info_Char ('*');
2443
2444 else
2445 Write_Info_Char (' ');
2446 end if;
2447 end Write_Level_Info;
2448
2449 -- Output entity name. We use the occurrence from the
2450 -- actual source program at the definition point.
2451
2452 declare
2453 Ent_Name : constant String :=
2454 Exact_Source_Name (Sloc (XE.Key.Ent));
2455 begin
2456 for C in Ent_Name'Range loop
2457 Write_Info_Char (Ent_Name (C));
2458 end loop;
2459 end;
2460
2461 -- See if we have a renaming reference
2462
2463 if Is_Object (XE.Key.Ent)
2464 and then Present (Renamed_Object (XE.Key.Ent))
2465 then
2466 Rref := Renamed_Object (XE.Key.Ent);
2467
2468 elsif Is_Overloadable (XE.Key.Ent)
2469 and then Nkind (Parent (Declaration_Node (XE.Key.Ent)))
2470 = N_Subprogram_Renaming_Declaration
2471 then
2472 Rref := Name (Parent (Declaration_Node (XE.Key.Ent)));
2473
2474 elsif Ekind (XE.Key.Ent) = E_Package
2475 and then Nkind (Declaration_Node (XE.Key.Ent)) =
2476 N_Package_Renaming_Declaration
2477 then
2478 Rref := Name (Declaration_Node (XE.Key.Ent));
2479
2480 else
2481 Rref := Empty;
2482 end if;
2483
2484 if Present (Rref) then
2485 if Nkind (Rref) = N_Expanded_Name then
2486 Rref := Selector_Name (Rref);
2487 end if;
2488
2489 if Nkind (Rref) = N_Identifier
2490 or else Nkind (Rref) = N_Operator_Symbol
2491 then
2492 null;
2493
2494 -- For renamed array components, use the array name
2495 -- for the renamed entity, which reflect the fact that
2496 -- in general the whole array is aliased.
2497
2498 elsif Nkind (Rref) = N_Indexed_Component then
2499 if Nkind (Prefix (Rref)) = N_Identifier then
2500 Rref := Prefix (Rref);
2501 elsif Nkind (Prefix (Rref)) = N_Expanded_Name then
2502 Rref := Selector_Name (Prefix (Rref));
2503 else
2504 Rref := Empty;
2505 end if;
2506
2507 else
2508 Rref := Empty;
2509 end if;
2510 end if;
2511
2512 -- Write out renaming reference if we have one
2513
2514 if Present (Rref) then
2515 Write_Info_Char ('=');
2516 Write_Info_Nat
2517 (Int (Get_Logical_Line_Number (Sloc (Rref))));
2518 Write_Info_Char (':');
2519 Write_Info_Nat
2520 (Int (Get_Column_Number (Sloc (Rref))));
2521 end if;
2522
2523 -- Indicate that the entity is in the unit of the current
2524 -- xref section.
2525
2526 Curru := Curxu;
2527
2528 -- Write out information about generic parent, if entity
2529 -- is an instance.
2530
2531 if Is_Generic_Instance (XE.Key.Ent) then
2532 declare
2533 Gen_Par : constant Entity_Id :=
2534 Generic_Parent
2535 (Specification
2536 (Unit_Declaration_Node
2537 (XE.Key.Ent)));
2538 Loc : constant Source_Ptr := Sloc (Gen_Par);
2539 Gen_U : constant Unit_Number_Type :=
2540 Get_Source_Unit (Loc);
2541
2542 begin
2543 Write_Info_Char ('[');
2544
2545 if Curru /= Gen_U then
2546 Write_Info_Nat (Dependency_Num (Gen_U));
2547 Write_Info_Char ('|');
2548 end if;
2549
2550 Write_Info_Nat
2551 (Int (Get_Logical_Line_Number (Loc)));
2552 Write_Info_Char (']');
2553 end;
2554 end if;
2555
2556 -- See if we have a type reference and if so output
2557
2558 Check_Type_Reference (XE.Key.Ent, False);
2559
2560 -- Additional information for types with progenitors,
2561 -- including synchronized tagged types.
2562
2563 declare
2564 Typ : constant Entity_Id := XE.Key.Ent;
2565 Elmt : Elmt_Id;
2566
2567 begin
2568 if Is_Record_Type (Typ)
2569 and then Present (Interfaces (Typ))
2570 then
2571 Elmt := First_Elmt (Interfaces (Typ));
2572
2573 elsif Is_Concurrent_Type (Typ)
2574 and then Present (Corresponding_Record_Type (Typ))
2575 and then Present (
2576 Interfaces (Corresponding_Record_Type (Typ)))
2577 then
2578 Elmt :=
2579 First_Elmt (
2580 Interfaces (Corresponding_Record_Type (Typ)));
2581
2582 else
2583 Elmt := No_Elmt;
2584 end if;
2585
2586 while Present (Elmt) loop
2587 Check_Type_Reference (Node (Elmt), True);
2588 Next_Elmt (Elmt);
2589 end loop;
2590 end;
2591
2592 -- For array types, list index types as well. (This is
2593 -- not C, indexes have distinct types).
2594
2595 if Is_Array_Type (XE.Key.Ent) then
2596 declare
2597 A_Typ : constant Entity_Id := XE.Key.Ent;
2598 Indx : Node_Id;
2599
2600 begin
2601 -- If this is a derived array type, we have
2602 -- output the parent type, so add the component
2603 -- type now.
2604
2605 if Is_Derived_Type (A_Typ) then
2606 Check_Type_Reference
2607 (Component_Type (A_Typ), False, True);
2608 end if;
2609
2610 -- Add references to index types.
2611
2612 Indx := First_Index (XE.Key.Ent);
2613 while Present (Indx) loop
2614 Check_Type_Reference
2615 (First_Subtype (Etype (Indx)), True);
2616 Next_Index (Indx);
2617 end loop;
2618 end;
2619 end if;
2620
2621 -- If the entity is an overriding operation, write info
2622 -- on operation that was overridden.
2623
2624 if Is_Subprogram (XE.Key.Ent)
2625 and then Present (Overridden_Operation (XE.Key.Ent))
2626 then
2627 Output_Overridden_Op
2628 (Overridden_Operation (XE.Key.Ent));
2629 end if;
2630
2631 -- End of processing for entity output
2632
2633 Crloc := No_Location;
2634 end if;
2635
2636 -- Output the reference if it is not as the same location
2637 -- as the previous one, or it is a read-reference that
2638 -- indicates that the entity is an in-out actual in a call.
2639
2640 if XE.Key.Loc /= No_Location
2641 and then
2642 (XE.Key.Loc /= Crloc
2643 or else (Prevt = 'm' and then XE.Key.Typ = 'r'))
2644 then
2645 Crloc := XE.Key.Loc;
2646 Prevt := XE.Key.Typ;
2647
2648 -- Start continuation if line full, else blank
2649
2650 if Write_Info_Col > 72 then
2651 Write_Info_EOL;
2652 Write_Info_Initiate ('.');
2653 end if;
2654
2655 Write_Info_Char (' ');
2656
2657 -- Output file number if changed
2658
2659 if XE.Key.Lun /= Curru then
2660 Curru := XE.Key.Lun;
2661 Write_Info_Nat (Dependency_Num (Curru));
2662 Write_Info_Char ('|');
2663 end if;
2664
2665 Write_Info_Nat
2666 (Int (Get_Logical_Line_Number (XE.Key.Loc)));
2667 Write_Info_Char (XE.Key.Typ);
2668
2669 if Is_Overloadable (XE.Key.Ent) then
2670 if (Is_Imported (XE.Key.Ent) and then XE.Key.Typ = 'b')
2671 or else
2672 (Is_Exported (XE.Key.Ent) and then XE.Key.Typ = 'i')
2673 then
2674 Output_Import_Export_Info (XE.Key.Ent);
2675 end if;
2676 end if;
2677
2678 Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc)));
2679
2680 Output_Instantiation_Refs (Sloc (XE.Key.Ent));
2681 end if;
2682 end if;
2683 end Output_One_Ref;
2684
2685 <<Continue>>
2686 null;
2687 end loop;
2688
2689 Write_Info_EOL;
2690 end Output_Refs;
2691 end Output_References;
2692
2693 ---------------------------------
2694 -- Process_Deferred_References --
2695 ---------------------------------
2696
2697 procedure Process_Deferred_References is
2698 begin
2699 for J in Deferred_References.First .. Deferred_References.Last loop
2700 declare
2701 D : Deferred_Reference_Entry renames Deferred_References.Table (J);
2702
2703 begin
2704 case Is_LHS (D.N) is
2705 when Yes =>
2706 Generate_Reference (D.E, D.N, 'm');
2707
2708 when No =>
2709 Generate_Reference (D.E, D.N, 'r');
2710
2711 -- Not clear if Unknown can occur at this stage, but if it
2712 -- does we will treat it as a normal reference.
2713
2714 when Unknown =>
2715 Generate_Reference (D.E, D.N, 'r');
2716 end case;
2717 end;
2718 end loop;
2719
2720 -- Clear processed entries from table
2721
2722 Deferred_References.Init;
2723 end Process_Deferred_References;
2724
2725 -- Start of elaboration for Lib.Xref
2726
2727 begin
2728 -- Reset is necessary because Elmt_Ptr does not default to Null_Ptr,
2729 -- because it's not an access type.
2730
2731 Xref_Set.Reset;
2732 end Lib.Xref;