[multiple changes]
[gcc.git] / gcc / ada / lib-xref.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L I B . X R E F --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Csets; use Csets;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Nlists; use Nlists;
31 with Opt; use Opt;
32 with Restrict; use Restrict;
33 with Rident; use Rident;
34 with Sem; use Sem;
35 with Sem_Aux; use Sem_Aux;
36 with Sem_Prag; use Sem_Prag;
37 with Sem_Util; use Sem_Util;
38 with Sem_Warn; use Sem_Warn;
39 with Sinfo; use Sinfo;
40 with Sinput; use Sinput;
41 with Snames; use Snames;
42 with Stringt; use Stringt;
43 with Stand; use Stand;
44 with Table; use Table;
45
46 with GNAT.Heap_Sort_G;
47 with GNAT.HTable;
48
49 package body Lib.Xref is
50
51 ------------------
52 -- Declarations --
53 ------------------
54
55 -- The Xref table is used to record references. The Loc field is set
56 -- to No_Location for a definition entry.
57
58 subtype Xref_Entry_Number is Int;
59
60 type Xref_Key is record
61 -- These are the components of Xref_Entry that participate in hash
62 -- lookups.
63
64 Ent : Entity_Id;
65 -- Entity referenced (E parameter to Generate_Reference)
66
67 Loc : Source_Ptr;
68 -- Location of reference (Original_Location (Sloc field of N parameter
69 -- to Generate_Reference). Set to No_Location for the case of a
70 -- defining occurrence.
71
72 Typ : Character;
73 -- Reference type (Typ param to Generate_Reference)
74
75 Eun : Unit_Number_Type;
76 -- Unit number corresponding to Ent
77
78 Lun : Unit_Number_Type;
79 -- Unit number corresponding to Loc. Value is undefined and not
80 -- referenced if Loc is set to No_Location.
81
82 -- The following components are only used for SPARK cross-references
83
84 Ref_Scope : Entity_Id;
85 -- Entity of the closest subprogram or package enclosing the reference
86
87 Ent_Scope : Entity_Id;
88 -- Entity of the closest subprogram or package enclosing the definition,
89 -- which should be located in the same file as the definition itself.
90 end record;
91
92 type Xref_Entry is record
93 Key : Xref_Key;
94
95 Ent_Scope_File : Unit_Number_Type;
96 -- File for entity Ent_Scope
97
98 Def : Source_Ptr;
99 -- Original source location for entity being referenced. Note that these
100 -- values are used only during the output process, they are not set when
101 -- the entries are originally built. This is because private entities
102 -- can be swapped when the initial call is made.
103
104 HTable_Next : Xref_Entry_Number;
105 -- For use only by Static_HTable
106 end record;
107
108 package Xrefs is new Table.Table (
109 Table_Component_Type => Xref_Entry,
110 Table_Index_Type => Xref_Entry_Number,
111 Table_Low_Bound => 1,
112 Table_Initial => Alloc.Xrefs_Initial,
113 Table_Increment => Alloc.Xrefs_Increment,
114 Table_Name => "Xrefs");
115
116 --------------
117 -- Xref_Set --
118 --------------
119
120 -- We keep a set of xref entries, in order to avoid inserting duplicate
121 -- entries into the above Xrefs table. An entry is in Xref_Set if and only
122 -- if it is in Xrefs.
123
124 Num_Buckets : constant := 2**16;
125
126 subtype Header_Num is Integer range 0 .. Num_Buckets - 1;
127 type Null_Type is null record;
128 pragma Unreferenced (Null_Type);
129
130 function Hash (F : Xref_Entry_Number) return Header_Num;
131
132 function Equal (F1, F2 : Xref_Entry_Number) return Boolean;
133
134 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number);
135
136 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number;
137
138 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number;
139
140 pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key);
141
142 package Xref_Set is new GNAT.HTable.Static_HTable (
143 Header_Num,
144 Element => Xref_Entry,
145 Elmt_Ptr => Xref_Entry_Number,
146 Null_Ptr => 0,
147 Set_Next => HT_Set_Next,
148 Next => HT_Next,
149 Key => Xref_Entry_Number,
150 Get_Key => Get_Key,
151 Hash => Hash,
152 Equal => Equal);
153
154 -----------------------------
155 -- SPARK Xrefs Information --
156 -----------------------------
157
158 package body SPARK_Specific is separate;
159
160 ------------------------
161 -- Local Subprograms --
162 ------------------------
163
164 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type);
165 -- Add an entry to the tables of Xref_Entries, avoiding duplicates
166
167 procedure Generate_Prim_Op_References (Typ : Entity_Id);
168 -- For a tagged type, generate implicit references to its primitive
169 -- operations, for source navigation. This is done right before emitting
170 -- cross-reference information rather than at the freeze point of the type
171 -- in order to handle late bodies that are primitive operations.
172
173 function Lt (T1, T2 : Xref_Entry) return Boolean;
174 -- Order cross-references
175
176 ---------------
177 -- Add_Entry --
178 ---------------
179
180 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is
181 begin
182 Xrefs.Increment_Last; -- tentative
183 Xrefs.Table (Xrefs.Last).Key := Key;
184
185 -- Set the entry in Xref_Set, and if newly set, keep the above
186 -- tentative increment.
187
188 if Xref_Set.Set_If_Not_Present (Xrefs.Last) then
189 Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File;
190 -- Leave Def and HTable_Next uninitialized
191
192 Set_Has_Xref_Entry (Key.Ent);
193
194 -- It was already in Xref_Set, so throw away the tentatively-added
195 -- entry
196
197 else
198 Xrefs.Decrement_Last;
199 end if;
200 end Add_Entry;
201
202 -----------
203 -- Equal --
204 -----------
205
206 function Equal (F1, F2 : Xref_Entry_Number) return Boolean is
207 Result : constant Boolean :=
208 Xrefs.Table (F1).Key = Xrefs.Table (F2).Key;
209 begin
210 return Result;
211 end Equal;
212
213 -------------------------
214 -- Generate_Definition --
215 -------------------------
216
217 procedure Generate_Definition (E : Entity_Id) is
218 begin
219 pragma Assert (Nkind (E) in N_Entity);
220
221 -- Note that we do not test Xref_Entity_Letters here. It is too early
222 -- to do so, since we are often called before the entity is fully
223 -- constructed, so that the Ekind is still E_Void.
224
225 if Opt.Xref_Active
226
227 -- Definition must come from source
228
229 -- We make an exception for subprogram child units that have no spec.
230 -- For these we generate a subprogram declaration for library use,
231 -- and the corresponding entity does not come from source.
232 -- Nevertheless, all references will be attached to it and we have
233 -- to treat is as coming from user code.
234
235 and then (Comes_From_Source (E) or else Is_Child_Unit (E))
236
237 -- And must have a reasonable source location that is not
238 -- within an instance (all entities in instances are ignored)
239
240 and then Sloc (E) > No_Location
241 and then Instantiation_Location (Sloc (E)) = No_Location
242
243 -- And must be a non-internal name from the main source unit
244
245 and then In_Extended_Main_Source_Unit (E)
246 and then not Is_Internal_Name (Chars (E))
247 then
248 Add_Entry
249 ((Ent => E,
250 Loc => No_Location,
251 Typ => ' ',
252 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
253 Lun => No_Unit,
254 Ref_Scope => Empty,
255 Ent_Scope => Empty),
256 Ent_Scope_File => No_Unit);
257
258 if In_Inlined_Body then
259 Set_Referenced (E);
260 end if;
261 end if;
262 end Generate_Definition;
263
264 ---------------------------------
265 -- Generate_Operator_Reference --
266 ---------------------------------
267
268 procedure Generate_Operator_Reference
269 (N : Node_Id;
270 T : Entity_Id)
271 is
272 begin
273 if not In_Extended_Main_Source_Unit (N) then
274 return;
275 end if;
276
277 -- If the operator is not a Standard operator, then we generate a real
278 -- reference to the user defined operator.
279
280 if Sloc (Entity (N)) /= Standard_Location then
281 Generate_Reference (Entity (N), N);
282
283 -- A reference to an implicit inequality operator is also a reference
284 -- to the user-defined equality.
285
286 if Nkind (N) = N_Op_Ne
287 and then not Comes_From_Source (Entity (N))
288 and then Present (Corresponding_Equality (Entity (N)))
289 then
290 Generate_Reference (Corresponding_Equality (Entity (N)), N);
291 end if;
292
293 -- For the case of Standard operators, we mark the result type as
294 -- referenced. This ensures that in the case where we are using a
295 -- derived operator, we mark an entity of the unit that implicitly
296 -- defines this operator as used. Otherwise we may think that no entity
297 -- of the unit is used. The actual entity marked as referenced is the
298 -- first subtype, which is the relevant user defined entity.
299
300 -- Note: we only do this for operators that come from source. The
301 -- generated code sometimes reaches for entities that do not need to be
302 -- explicitly visible (for example, when we expand the code for
303 -- comparing two record objects, the fields of the record may not be
304 -- visible).
305
306 elsif Comes_From_Source (N) then
307 Set_Referenced (First_Subtype (T));
308 end if;
309 end Generate_Operator_Reference;
310
311 ---------------------------------
312 -- Generate_Prim_Op_References --
313 ---------------------------------
314
315 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
316 Base_T : Entity_Id;
317 Prim : Elmt_Id;
318 Prim_List : Elist_Id;
319
320 begin
321 -- Handle subtypes of synchronized types
322
323 if Ekind (Typ) = E_Protected_Subtype
324 or else Ekind (Typ) = E_Task_Subtype
325 then
326 Base_T := Etype (Typ);
327 else
328 Base_T := Typ;
329 end if;
330
331 -- References to primitive operations are only relevant for tagged types
332
333 if not Is_Tagged_Type (Base_T)
334 or else Is_Class_Wide_Type (Base_T)
335 then
336 return;
337 end if;
338
339 -- Ada 2005 (AI-345): For synchronized types generate reference to the
340 -- wrapper that allow us to dispatch calls through their implemented
341 -- abstract interface types.
342
343 -- The check for Present here is to protect against previously reported
344 -- critical errors.
345
346 Prim_List := Primitive_Operations (Base_T);
347
348 if No (Prim_List) then
349 return;
350 end if;
351
352 Prim := First_Elmt (Prim_List);
353 while Present (Prim) loop
354
355 -- If the operation is derived, get the original for cross-reference
356 -- reference purposes (it is the original for which we want the xref
357 -- and for which the comes_from_source test must be performed).
358
359 Generate_Reference
360 (Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False);
361 Next_Elmt (Prim);
362 end loop;
363 end Generate_Prim_Op_References;
364
365 ------------------------
366 -- Generate_Reference --
367 ------------------------
368
369 procedure Generate_Reference
370 (E : Entity_Id;
371 N : Node_Id;
372 Typ : Character := 'r';
373 Set_Ref : Boolean := True;
374 Force : Boolean := False)
375 is
376 Actual_Typ : Character := Typ;
377 Call : Node_Id;
378 Def : Source_Ptr;
379 Ent : Entity_Id;
380 Ent_Scope : Entity_Id;
381 Formal : Entity_Id;
382 Kind : Entity_Kind;
383 Nod : Node_Id;
384 Ref : Source_Ptr;
385 Ref_Scope : Entity_Id;
386
387 function Get_Through_Renamings (E : Entity_Id) return Entity_Id;
388 -- Get the enclosing entity through renamings, which may come from
389 -- source or from the translation of generic instantiations.
390
391 function Is_On_LHS (Node : Node_Id) return Boolean;
392 -- Used to check if a node is on the left hand side of an assignment.
393 -- The following cases are handled:
394 --
395 -- Variable Node is a direct descendant of left hand side of an
396 -- assignment statement.
397 --
398 -- Prefix Of an indexed or selected component that is present in
399 -- a subtree rooted by an assignment statement. There is
400 -- no restriction of nesting of components, thus cases
401 -- such as A.B (C).D are handled properly. However a prefix
402 -- of a dereference (either implicit or explicit) is never
403 -- considered as on a LHS.
404 --
405 -- Out param Same as above cases, but OUT parameter
406
407 function OK_To_Set_Referenced return Boolean;
408 -- Returns True if the Referenced flag can be set. There are a few
409 -- exceptions where we do not want to set this flag, see body for
410 -- details of these exceptional cases.
411
412 ---------------------------
413 -- Get_Through_Renamings --
414 ---------------------------
415
416 function Get_Through_Renamings (E : Entity_Id) return Entity_Id is
417 Result : Entity_Id := E;
418 begin
419 while Present (Result)
420 and then Is_Object (Result)
421 and then Present (Renamed_Object (Result))
422 loop
423 Result := Get_Enclosing_Object (Renamed_Object (Result));
424 end loop;
425 return Result;
426 end Get_Through_Renamings;
427
428 ---------------
429 -- Is_On_LHS --
430 ---------------
431
432 -- ??? There are several routines here and there that perform a similar
433 -- (but subtly different) computation, which should be factored:
434
435 -- Sem_Util.May_Be_Lvalue
436 -- Sem_Util.Known_To_Be_Assigned
437 -- Exp_Ch2.Expand_Entry_Parameter.In_Assignment_Context
438 -- Exp_Smem.Is_Out_Actual
439
440 function Is_On_LHS (Node : Node_Id) return Boolean is
441 N : Node_Id;
442 P : Node_Id;
443 K : Node_Kind;
444
445 begin
446 -- Only identifiers are considered, is this necessary???
447
448 if Nkind (Node) /= N_Identifier then
449 return False;
450 end if;
451
452 -- Immediate return if appeared as OUT parameter
453
454 if Kind = E_Out_Parameter then
455 return True;
456 end if;
457
458 -- Search for assignment statement subtree root
459
460 N := Node;
461 loop
462 P := Parent (N);
463 K := Nkind (P);
464
465 if K = N_Assignment_Statement then
466 return Name (P) = N;
467
468 -- Check whether the parent is a component and the current node is
469 -- its prefix, but return False if the current node has an access
470 -- type, as in that case the selected or indexed component is an
471 -- implicit dereference, and the LHS is the designated object, not
472 -- the access object.
473
474 -- ??? case of a slice assignment?
475
476 -- ??? Note that in some cases this is called too early
477 -- (see comments in Sem_Ch8.Find_Direct_Name), at a point where
478 -- the tree is not fully typed yet. In that case we may lack
479 -- an Etype for N, and we must disable the check for an implicit
480 -- dereference. If the dereference is on an LHS, this causes a
481 -- false positive.
482
483 elsif (K = N_Selected_Component or else K = N_Indexed_Component)
484 and then Prefix (P) = N
485 and then not (Present (Etype (N))
486 and then
487 Is_Access_Type (Etype (N)))
488 then
489 N := P;
490
491 -- All other cases, definitely not on left side
492
493 else
494 return False;
495 end if;
496 end loop;
497 end Is_On_LHS;
498
499 ---------------------------
500 -- OK_To_Set_Referenced --
501 ---------------------------
502
503 function OK_To_Set_Referenced return Boolean is
504 P : Node_Id;
505
506 begin
507 -- A reference from a pragma Unreferenced or pragma Unmodified or
508 -- pragma Warnings does not cause the Referenced flag to be set.
509 -- This avoids silly warnings about things being referenced and
510 -- not assigned when the only reference is from the pragma.
511
512 if Nkind (N) = N_Identifier then
513 P := Parent (N);
514
515 if Nkind (P) = N_Pragma_Argument_Association then
516 P := Parent (P);
517
518 if Nkind (P) = N_Pragma then
519 if Nam_In (Pragma_Name (P), Name_Warnings,
520 Name_Unmodified,
521 Name_Unreferenced)
522 then
523 return False;
524 end if;
525 end if;
526
527 -- A reference to a formal in a named parameter association does
528 -- not make the formal referenced. Formals that are unused in the
529 -- subprogram body are properly flagged as such, even if calls
530 -- elsewhere use named notation.
531
532 elsif Nkind (P) = N_Parameter_Association
533 and then N = Selector_Name (P)
534 then
535 return False;
536 end if;
537 end if;
538
539 return True;
540 end OK_To_Set_Referenced;
541
542 -- Start of processing for Generate_Reference
543
544 begin
545 pragma Assert (Nkind (E) in N_Entity);
546 Find_Actual (N, Formal, Call);
547
548 if Present (Formal) then
549 Kind := Ekind (Formal);
550 else
551 Kind := E_Void;
552 end if;
553
554 -- Check for obsolescent reference to package ASCII. GNAT treats this
555 -- element of annex J specially since in practice, programs make a lot
556 -- of use of this feature, so we don't include it in the set of features
557 -- diagnosed when Warn_On_Obsolescent_Features mode is set. However we
558 -- are required to note it as a violation of the RM defined restriction.
559
560 if E = Standard_ASCII then
561 Check_Restriction (No_Obsolescent_Features, N);
562 end if;
563
564 -- Check for reference to entity marked with Is_Obsolescent
565
566 -- Note that we always allow obsolescent references in the compiler
567 -- itself and the run time, since we assume that we know what we are
568 -- doing in such cases. For example the calls in Ada.Characters.Handling
569 -- to its own obsolescent subprograms are just fine.
570
571 -- In any case we only generate warnings if we are in the extended main
572 -- source unit, and the entity itself is not in the extended main source
573 -- unit, since we assume the source unit itself knows what is going on
574 -- (and for sure we do not want silly warnings, e.g. on the end line of
575 -- an obsolescent procedure body).
576
577 if Is_Obsolescent (E)
578 and then not GNAT_Mode
579 and then not In_Extended_Main_Source_Unit (E)
580 and then In_Extended_Main_Source_Unit (N)
581 then
582 Check_Restriction (No_Obsolescent_Features, N);
583
584 if Warn_On_Obsolescent_Feature then
585 Output_Obsolescent_Entity_Warnings (N, E);
586 end if;
587 end if;
588
589 -- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only
590 -- detect real explicit references (modifications and references).
591
592 if Comes_From_Source (N)
593 and then Is_Ada_2005_Only (E)
594 and then Ada_Version < Ada_2005
595 and then Warn_On_Ada_2005_Compatibility
596 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')
597 then
598 Error_Msg_NE ("& is only defined in Ada 2005?y?", N, E);
599 end if;
600
601 -- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only
602 -- detect real explicit references (modifications and references).
603
604 if Comes_From_Source (N)
605 and then Is_Ada_2012_Only (E)
606 and then Ada_Version < Ada_2012
607 and then Warn_On_Ada_2012_Compatibility
608 and then (Typ = 'm' or else Typ = 'r')
609 then
610 Error_Msg_NE ("& is only defined in Ada 2012?y?", N, E);
611 end if;
612
613 -- Do not generate references if we are within a postcondition sub-
614 -- program, because the reference does not comes from source, and the
615 -- pre-analysis of the aspect has already created an entry for the ali
616 -- file at the proper source location.
617
618 if Chars (Current_Scope) = Name_uPostconditions then
619 return;
620 end if;
621
622 -- Never collect references if not in main source unit. However, we omit
623 -- this test if Typ is 'e' or 'k', since these entries are structural,
624 -- and it is useful to have them in units that reference packages as
625 -- well as units that define packages. We also omit the test for the
626 -- case of 'p' since we want to include inherited primitive operations
627 -- from other packages.
628
629 -- We also omit this test is this is a body reference for a subprogram
630 -- instantiation. In this case the reference is to the generic body,
631 -- which clearly need not be in the main unit containing the instance.
632 -- For the same reason we accept an implicit reference generated for
633 -- a default in an instance.
634
635 if not In_Extended_Main_Source_Unit (N) then
636 if Typ = 'e'
637 or else Typ = 'I'
638 or else Typ = 'p'
639 or else Typ = 'i'
640 or else Typ = 'k'
641 or else (Typ = 'b' and then Is_Generic_Instance (E))
642
643 -- Allow the generation of references to reads, writes and calls
644 -- in SPARK mode when the related context comes from an instance.
645
646 or else
647 (SPARK_Mode
648 and then In_Extended_Main_Code_Unit (N)
649 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's'))
650 then
651 null;
652 else
653 return;
654 end if;
655 end if;
656
657 -- For reference type p, the entity must be in main source unit
658
659 if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then
660 return;
661 end if;
662
663 -- Unless the reference is forced, we ignore references where the
664 -- reference itself does not come from source.
665
666 if not Force and then not Comes_From_Source (N) then
667 return;
668 end if;
669
670 -- Deal with setting entity as referenced, unless suppressed. Note that
671 -- we still do Set_Referenced on entities that do not come from source.
672 -- This situation arises when we have a source reference to a derived
673 -- operation, where the derived operation itself does not come from
674 -- source, but we still want to mark it as referenced, since we really
675 -- are referencing an entity in the corresponding package (this avoids
676 -- wrong complaints that the package contains no referenced entities).
677
678 if Set_Ref then
679
680 -- Assignable object appearing on left side of assignment or as
681 -- an out parameter.
682
683 if Is_Assignable (E)
684 and then Is_On_LHS (N)
685 and then Ekind (E) /= E_In_Out_Parameter
686 then
687 -- For objects that are renamings, just set as simply referenced
688 -- we do not try to do assignment type tracking in this case.
689
690 if Present (Renamed_Object (E)) then
691 Set_Referenced (E);
692
693 -- Out parameter case
694
695 elsif Kind = E_Out_Parameter then
696
697 -- If warning mode for all out parameters is set, or this is
698 -- the only warning parameter, then we want to mark this for
699 -- later warning logic by setting Referenced_As_Out_Parameter
700
701 if Warn_On_Modified_As_Out_Parameter (Formal) then
702 Set_Referenced_As_Out_Parameter (E, True);
703 Set_Referenced_As_LHS (E, False);
704
705 -- For OUT parameter not covered by the above cases, we simply
706 -- regard it as a normal reference (in this case we do not
707 -- want any of the warning machinery for out parameters).
708
709 else
710 Set_Referenced (E);
711 end if;
712
713 -- For the left hand of an assignment case, we do nothing here.
714 -- The processing for Analyze_Assignment_Statement will set the
715 -- Referenced_As_LHS flag.
716
717 else
718 null;
719 end if;
720
721 -- Check for a reference in a pragma that should not count as a
722 -- making the variable referenced for warning purposes.
723
724 elsif Is_Non_Significant_Pragma_Reference (N) then
725 null;
726
727 -- A reference in an attribute definition clause does not count as a
728 -- reference except for the case of Address. The reason that 'Address
729 -- is an exception is that it creates an alias through which the
730 -- variable may be referenced.
731
732 elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause
733 and then Chars (Parent (N)) /= Name_Address
734 and then N = Name (Parent (N))
735 then
736 null;
737
738 -- Constant completion does not count as a reference
739
740 elsif Typ = 'c'
741 and then Ekind (E) = E_Constant
742 then
743 null;
744
745 -- Record representation clause does not count as a reference
746
747 elsif Nkind (N) = N_Identifier
748 and then Nkind (Parent (N)) = N_Record_Representation_Clause
749 then
750 null;
751
752 -- Discriminants do not need to produce a reference to record type
753
754 elsif Typ = 'd'
755 and then Nkind (Parent (N)) = N_Discriminant_Specification
756 then
757 null;
758
759 -- All other cases
760
761 else
762 -- Special processing for IN OUT parameters, where we have an
763 -- implicit assignment to a simple variable.
764
765 if Kind = E_In_Out_Parameter
766 and then Is_Assignable (E)
767 then
768 -- For sure this counts as a normal read reference
769
770 Set_Referenced (E);
771 Set_Last_Assignment (E, Empty);
772
773 -- We count it as being referenced as an out parameter if the
774 -- option is set to warn on all out parameters, except that we
775 -- have a special exclusion for an intrinsic subprogram, which
776 -- is most likely an instantiation of Unchecked_Deallocation
777 -- which we do not want to consider as an assignment since it
778 -- generates false positives. We also exclude the case of an
779 -- IN OUT parameter if the name of the procedure is Free,
780 -- since we suspect similar semantics.
781
782 if Warn_On_All_Unread_Out_Parameters
783 and then Is_Entity_Name (Name (Call))
784 and then not Is_Intrinsic_Subprogram (Entity (Name (Call)))
785 and then Chars (Name (Call)) /= Name_Free
786 then
787 Set_Referenced_As_Out_Parameter (E, True);
788 Set_Referenced_As_LHS (E, False);
789 end if;
790
791 -- Don't count a recursive reference within a subprogram as a
792 -- reference (that allows detection of a recursive subprogram
793 -- whose only references are recursive calls as unreferenced).
794
795 elsif Is_Subprogram (E)
796 and then E = Nearest_Dynamic_Scope (Current_Scope)
797 then
798 null;
799
800 -- Any other occurrence counts as referencing the entity
801
802 elsif OK_To_Set_Referenced then
803 Set_Referenced (E);
804
805 -- If variable, this is an OK reference after an assignment
806 -- so we can clear the Last_Assignment indication.
807
808 if Is_Assignable (E) then
809 Set_Last_Assignment (E, Empty);
810 end if;
811 end if;
812 end if;
813
814 -- Check for pragma Unreferenced given and reference is within
815 -- this source unit (occasion for possible warning to be issued).
816
817 if Has_Unreferenced (E)
818 and then In_Same_Extended_Unit (E, N)
819 then
820 -- A reference as a named parameter in a call does not count
821 -- as a violation of pragma Unreferenced for this purpose...
822
823 if Nkind (N) = N_Identifier
824 and then Nkind (Parent (N)) = N_Parameter_Association
825 and then Selector_Name (Parent (N)) = N
826 then
827 null;
828
829 -- ... Neither does a reference to a variable on the left side
830 -- of an assignment.
831
832 elsif Is_On_LHS (N) then
833 null;
834
835 -- For entry formals, we want to place the warning message on the
836 -- corresponding entity in the accept statement. The current scope
837 -- is the body of the accept, so we find the formal whose name
838 -- matches that of the entry formal (there is no link between the
839 -- two entities, and the one in the accept statement is only used
840 -- for conformance checking).
841
842 elsif Ekind (Scope (E)) = E_Entry then
843 declare
844 BE : Entity_Id;
845
846 begin
847 BE := First_Entity (Current_Scope);
848 while Present (BE) loop
849 if Chars (BE) = Chars (E) then
850 Error_Msg_NE -- CODEFIX
851 ("??pragma Unreferenced given for&!", N, BE);
852 exit;
853 end if;
854
855 Next_Entity (BE);
856 end loop;
857 end;
858
859 -- Here we issue the warning, since this is a real reference
860
861 else
862 Error_Msg_NE -- CODEFIX
863 ("?pragma Unreferenced given for&!", N, E);
864 end if;
865 end if;
866
867 -- If this is a subprogram instance, mark as well the internal
868 -- subprogram in the wrapper package, which may be a visible
869 -- compilation unit.
870
871 if Is_Overloadable (E)
872 and then Is_Generic_Instance (E)
873 and then Present (Alias (E))
874 then
875 Set_Referenced (Alias (E));
876 end if;
877 end if;
878
879 -- Generate reference if all conditions are met:
880
881 if
882 -- Cross referencing must be active
883
884 Opt.Xref_Active
885
886 -- The entity must be one for which we collect references
887
888 and then Xref_Entity_Letters (Ekind (E)) /= ' '
889
890 -- Both Sloc values must be set to something sensible
891
892 and then Sloc (E) > No_Location
893 and then Sloc (N) > No_Location
894
895 -- Ignore references from within an instance. The only exceptions to
896 -- this are default subprograms, for which we generate an implicit
897 -- reference and compilations in SPARK mode.
898
899 and then
900 (Instantiation_Location (Sloc (N)) = No_Location
901 or else Typ = 'i'
902 or else SPARK_Mode)
903
904 -- Ignore dummy references
905
906 and then Typ /= ' '
907 then
908 if Nkind_In (N, N_Identifier,
909 N_Defining_Identifier,
910 N_Defining_Operator_Symbol,
911 N_Operator_Symbol,
912 N_Defining_Character_Literal)
913 or else Nkind (N) in N_Op
914 or else (Nkind (N) = N_Character_Literal
915 and then Sloc (Entity (N)) /= Standard_Location)
916 then
917 Nod := N;
918
919 elsif Nkind_In (N, N_Expanded_Name, N_Selected_Component) then
920 Nod := Selector_Name (N);
921
922 else
923 return;
924 end if;
925
926 -- Normal case of source entity comes from source
927
928 if Comes_From_Source (E) then
929 Ent := E;
930
931 -- Entity does not come from source, but is a derived subprogram and
932 -- the derived subprogram comes from source (after one or more
933 -- derivations) in which case the reference is to parent subprogram.
934
935 elsif Is_Overloadable (E)
936 and then Present (Alias (E))
937 then
938 Ent := Alias (E);
939 while not Comes_From_Source (Ent) loop
940 if No (Alias (Ent)) then
941 return;
942 end if;
943
944 Ent := Alias (Ent);
945 end loop;
946
947 -- The internally created defining entity for a child subprogram
948 -- that has no previous spec has valid references.
949
950 elsif Is_Overloadable (E)
951 and then Is_Child_Unit (E)
952 then
953 Ent := E;
954
955 -- Ditto for the formals of such a subprogram
956
957 elsif Is_Overloadable (Scope (E))
958 and then Is_Child_Unit (Scope (E))
959 then
960 Ent := E;
961
962 -- Record components of discriminated subtypes or derived types must
963 -- be treated as references to the original component.
964
965 elsif Ekind (E) = E_Component
966 and then Comes_From_Source (Original_Record_Component (E))
967 then
968 Ent := Original_Record_Component (E);
969
970 -- If this is an expanded reference to a discriminant, recover the
971 -- original discriminant, which gets the reference.
972
973 elsif Ekind (E) = E_In_Parameter
974 and then Present (Discriminal_Link (E))
975 then
976 Ent := Discriminal_Link (E);
977 Set_Referenced (Ent);
978
979 -- Ignore reference to any other entity that is not from source
980
981 else
982 return;
983 end if;
984
985 -- In SPARK mode, consider the underlying entity renamed instead of
986 -- the renaming, which is needed to compute a valid set of effects
987 -- (reads, writes) for the enclosing subprogram.
988
989 if SPARK_Mode then
990 Ent := Get_Through_Renamings (Ent);
991
992 -- If no enclosing object, then it could be a reference to any
993 -- location not tracked individually, like heap-allocated data.
994 -- Conservatively approximate this possibility by generating a
995 -- dereference, and return.
996
997 if No (Ent) then
998 if Actual_Typ = 'w' then
999 SPARK_Specific.Generate_Dereference (Nod, 'r');
1000 SPARK_Specific.Generate_Dereference (Nod, 'w');
1001 else
1002 SPARK_Specific.Generate_Dereference (Nod, 'r');
1003 end if;
1004
1005 return;
1006 end if;
1007 end if;
1008
1009 -- Record reference to entity
1010
1011 if Actual_Typ = 'p'
1012 and then Is_Subprogram (Nod)
1013 and then Present (Overridden_Operation (Nod))
1014 then
1015 Actual_Typ := 'P';
1016 end if;
1017
1018 if SPARK_Mode then
1019 Ref := Sloc (Nod);
1020 Def := Sloc (Ent);
1021
1022 Ref_Scope := SPARK_Specific.Enclosing_Subprogram_Or_Package (Nod);
1023 Ent_Scope := SPARK_Specific.Enclosing_Subprogram_Or_Package (Ent);
1024
1025 -- Since we are reaching through renamings in SPARK mode, we may
1026 -- end up with standard constants. Ignore those.
1027
1028 if Sloc (Ent_Scope) <= Standard_Location
1029 or else Def <= Standard_Location
1030 then
1031 return;
1032 end if;
1033
1034 Add_Entry
1035 ((Ent => Ent,
1036 Loc => Ref,
1037 Typ => Actual_Typ,
1038 Eun => Get_Code_Unit (Def),
1039 Lun => Get_Code_Unit (Ref),
1040 Ref_Scope => Ref_Scope,
1041 Ent_Scope => Ent_Scope),
1042 Ent_Scope_File => Get_Code_Unit (Ent));
1043
1044 else
1045 Ref := Original_Location (Sloc (Nod));
1046 Def := Original_Location (Sloc (Ent));
1047
1048 -- If this is an operator symbol, skip the initial quote for
1049 -- navigation purposes. This is not done for the end label,
1050 -- where we want the actual position after the closing quote.
1051
1052 if Typ = 't' then
1053 null;
1054
1055 elsif Nkind (N) = N_Defining_Operator_Symbol
1056 or else Nkind (Nod) = N_Operator_Symbol
1057 then
1058 Ref := Ref + 1;
1059 end if;
1060
1061 Add_Entry
1062 ((Ent => Ent,
1063 Loc => Ref,
1064 Typ => Actual_Typ,
1065 Eun => Get_Source_Unit (Def),
1066 Lun => Get_Source_Unit (Ref),
1067 Ref_Scope => Empty,
1068 Ent_Scope => Empty),
1069 Ent_Scope_File => No_Unit);
1070 end if;
1071 end if;
1072 end Generate_Reference;
1073
1074 -----------------------------------
1075 -- Generate_Reference_To_Formals --
1076 -----------------------------------
1077
1078 procedure Generate_Reference_To_Formals (E : Entity_Id) is
1079 Formal : Entity_Id;
1080
1081 begin
1082 if Is_Generic_Subprogram (E) then
1083 Formal := First_Entity (E);
1084
1085 while Present (Formal)
1086 and then not Is_Formal (Formal)
1087 loop
1088 Next_Entity (Formal);
1089 end loop;
1090
1091 elsif Ekind (E) in Access_Subprogram_Kind then
1092 Formal := First_Formal (Designated_Type (E));
1093
1094 else
1095 Formal := First_Formal (E);
1096 end if;
1097
1098 while Present (Formal) loop
1099 if Ekind (Formal) = E_In_Parameter then
1100
1101 if Nkind (Parameter_Type (Parent (Formal)))
1102 = N_Access_Definition
1103 then
1104 Generate_Reference (E, Formal, '^', False);
1105 else
1106 Generate_Reference (E, Formal, '>', False);
1107 end if;
1108
1109 elsif Ekind (Formal) = E_In_Out_Parameter then
1110 Generate_Reference (E, Formal, '=', False);
1111
1112 else
1113 Generate_Reference (E, Formal, '<', False);
1114 end if;
1115
1116 Next_Formal (Formal);
1117 end loop;
1118 end Generate_Reference_To_Formals;
1119
1120 -------------------------------------------
1121 -- Generate_Reference_To_Generic_Formals --
1122 -------------------------------------------
1123
1124 procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is
1125 Formal : Entity_Id;
1126
1127 begin
1128 Formal := First_Entity (E);
1129 while Present (Formal) loop
1130 if Comes_From_Source (Formal) then
1131 Generate_Reference (E, Formal, 'z', False);
1132 end if;
1133
1134 Next_Entity (Formal);
1135 end loop;
1136 end Generate_Reference_To_Generic_Formals;
1137
1138 -------------
1139 -- Get_Key --
1140 -------------
1141
1142 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is
1143 begin
1144 return E;
1145 end Get_Key;
1146
1147 ----------
1148 -- Hash --
1149 ----------
1150
1151 function Hash (F : Xref_Entry_Number) return Header_Num is
1152 -- It is unlikely to have two references to the same entity at the same
1153 -- source location, so the hash function depends only on the Ent and Loc
1154 -- fields.
1155
1156 XE : Xref_Entry renames Xrefs.Table (F);
1157 type M is mod 2**32;
1158
1159 H : constant M := M (XE.Key.Ent) + 2 ** 7 * M (abs XE.Key.Loc);
1160 -- It would be more natural to write:
1161 --
1162 -- H : constant M := M'Mod (XE.Key.Ent) + 2**7 * M'Mod (XE.Key.Loc);
1163 --
1164 -- But we can't use M'Mod, because it prevents bootstrapping with older
1165 -- compilers. Loc can be negative, so we do "abs" before converting.
1166 -- One day this can be cleaned up ???
1167
1168 begin
1169 return Header_Num (H mod Num_Buckets);
1170 end Hash;
1171
1172 -----------------
1173 -- HT_Set_Next --
1174 -----------------
1175
1176 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is
1177 begin
1178 Xrefs.Table (E).HTable_Next := Next;
1179 end HT_Set_Next;
1180
1181 -------------
1182 -- HT_Next --
1183 -------------
1184
1185 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is
1186 begin
1187 return Xrefs.Table (E).HTable_Next;
1188 end HT_Next;
1189
1190 ----------------
1191 -- Initialize --
1192 ----------------
1193
1194 procedure Initialize is
1195 begin
1196 Xrefs.Init;
1197 end Initialize;
1198
1199 --------
1200 -- Lt --
1201 --------
1202
1203 function Lt (T1, T2 : Xref_Entry) return Boolean is
1204 begin
1205 -- First test: if entity is in different unit, sort by unit
1206
1207 if T1.Key.Eun /= T2.Key.Eun then
1208 return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun);
1209
1210 -- Second test: within same unit, sort by entity Sloc
1211
1212 elsif T1.Def /= T2.Def then
1213 return T1.Def < T2.Def;
1214
1215 -- Third test: sort definitions ahead of references
1216
1217 elsif T1.Key.Loc = No_Location then
1218 return True;
1219
1220 elsif T2.Key.Loc = No_Location then
1221 return False;
1222
1223 -- Fourth test: for same entity, sort by reference location unit
1224
1225 elsif T1.Key.Lun /= T2.Key.Lun then
1226 return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun);
1227
1228 -- Fifth test: order of location within referencing unit
1229
1230 elsif T1.Key.Loc /= T2.Key.Loc then
1231 return T1.Key.Loc < T2.Key.Loc;
1232
1233 -- Finally, for two locations at the same address, we prefer
1234 -- the one that does NOT have the type 'r' so that a modification
1235 -- or extension takes preference, when there are more than one
1236 -- reference at the same location. As a result, in the case of
1237 -- entities that are in-out actuals, the read reference follows
1238 -- the modify reference.
1239
1240 else
1241 return T2.Key.Typ = 'r';
1242 end if;
1243 end Lt;
1244
1245 -----------------------
1246 -- Output_References --
1247 -----------------------
1248
1249 procedure Output_References is
1250
1251 procedure Get_Type_Reference
1252 (Ent : Entity_Id;
1253 Tref : out Entity_Id;
1254 Left : out Character;
1255 Right : out Character);
1256 -- Given an Entity_Id Ent, determines whether a type reference is
1257 -- required. If so, Tref is set to the entity for the type reference
1258 -- and Left and Right are set to the left/right brackets to be output
1259 -- for the reference. If no type reference is required, then Tref is
1260 -- set to Empty, and Left/Right are set to space.
1261
1262 procedure Output_Import_Export_Info (Ent : Entity_Id);
1263 -- Output language and external name information for an interfaced
1264 -- entity, using the format <language, external_name>.
1265
1266 ------------------------
1267 -- Get_Type_Reference --
1268 ------------------------
1269
1270 procedure Get_Type_Reference
1271 (Ent : Entity_Id;
1272 Tref : out Entity_Id;
1273 Left : out Character;
1274 Right : out Character)
1275 is
1276 Sav : Entity_Id;
1277
1278 begin
1279 -- See if we have a type reference
1280
1281 Tref := Ent;
1282 Left := '{';
1283 Right := '}';
1284
1285 loop
1286 Sav := Tref;
1287
1288 -- Processing for types
1289
1290 if Is_Type (Tref) then
1291
1292 -- Case of base type
1293
1294 if Base_Type (Tref) = Tref then
1295
1296 -- If derived, then get first subtype
1297
1298 if Tref /= Etype (Tref) then
1299 Tref := First_Subtype (Etype (Tref));
1300
1301 -- Set brackets for derived type, but don't override
1302 -- pointer case since the fact that something is a
1303 -- pointer is more important.
1304
1305 if Left /= '(' then
1306 Left := '<';
1307 Right := '>';
1308 end if;
1309
1310 -- If the completion of a private type is itself a derived
1311 -- type, we need the parent of the full view.
1312
1313 elsif Is_Private_Type (Tref)
1314 and then Present (Full_View (Tref))
1315 and then Etype (Full_View (Tref)) /= Full_View (Tref)
1316 then
1317 Tref := Etype (Full_View (Tref));
1318
1319 if Left /= '(' then
1320 Left := '<';
1321 Right := '>';
1322 end if;
1323
1324 -- If non-derived pointer, get directly designated type.
1325 -- If the type has a full view, all references are on the
1326 -- partial view that is seen first.
1327
1328 elsif Is_Access_Type (Tref) then
1329 Tref := Directly_Designated_Type (Tref);
1330 Left := '(';
1331 Right := ')';
1332
1333 elsif Is_Private_Type (Tref)
1334 and then Present (Full_View (Tref))
1335 then
1336 if Is_Access_Type (Full_View (Tref)) then
1337 Tref := Directly_Designated_Type (Full_View (Tref));
1338 Left := '(';
1339 Right := ')';
1340
1341 -- If the full view is an array type, we also retrieve
1342 -- the corresponding component type, because the ali
1343 -- entry already indicates that this is an array.
1344
1345 elsif Is_Array_Type (Full_View (Tref)) then
1346 Tref := Component_Type (Full_View (Tref));
1347 Left := '(';
1348 Right := ')';
1349 end if;
1350
1351 -- If non-derived array, get component type. Skip component
1352 -- type for case of String or Wide_String, saves worthwhile
1353 -- space.
1354
1355 elsif Is_Array_Type (Tref)
1356 and then Tref /= Standard_String
1357 and then Tref /= Standard_Wide_String
1358 then
1359 Tref := Component_Type (Tref);
1360 Left := '(';
1361 Right := ')';
1362
1363 -- For other non-derived base types, nothing
1364
1365 else
1366 exit;
1367 end if;
1368
1369 -- For a subtype, go to ancestor subtype
1370
1371 else
1372 Tref := Ancestor_Subtype (Tref);
1373
1374 -- If no ancestor subtype, go to base type
1375
1376 if No (Tref) then
1377 Tref := Base_Type (Sav);
1378 end if;
1379 end if;
1380
1381 -- For objects, functions, enum literals, just get type from
1382 -- Etype field.
1383
1384 elsif Is_Object (Tref)
1385 or else Ekind (Tref) = E_Enumeration_Literal
1386 or else Ekind (Tref) = E_Function
1387 or else Ekind (Tref) = E_Operator
1388 then
1389 Tref := Etype (Tref);
1390
1391 -- Another special case: an object of a classwide type
1392 -- initialized with a tag-indeterminate call gets a subtype
1393 -- of the classwide type during expansion. See if the original
1394 -- type in the declaration is named, and return it instead
1395 -- of going to the root type.
1396
1397 if Ekind (Tref) = E_Class_Wide_Subtype
1398 and then Nkind (Parent (Ent)) = N_Object_Declaration
1399 and then
1400 Nkind (Original_Node (Object_Definition (Parent (Ent))))
1401 = N_Identifier
1402 then
1403 Tref :=
1404 Entity
1405 (Original_Node ((Object_Definition (Parent (Ent)))));
1406 end if;
1407
1408 -- For anything else, exit
1409
1410 else
1411 exit;
1412 end if;
1413
1414 -- Exit if no type reference, or we are stuck in some loop trying
1415 -- to find the type reference, or if the type is standard void
1416 -- type (the latter is an implementation artifact that should not
1417 -- show up in the generated cross-references).
1418
1419 exit when No (Tref)
1420 or else Tref = Sav
1421 or else Tref = Standard_Void_Type;
1422
1423 -- If we have a usable type reference, return, otherwise keep
1424 -- looking for something useful (we are looking for something
1425 -- that either comes from source or standard)
1426
1427 if Sloc (Tref) = Standard_Location
1428 or else Comes_From_Source (Tref)
1429 then
1430 -- If the reference is a subtype created for a generic actual,
1431 -- go actual directly, the inner subtype is not user visible.
1432
1433 if Nkind (Parent (Tref)) = N_Subtype_Declaration
1434 and then not Comes_From_Source (Parent (Tref))
1435 and then
1436 (Is_Wrapper_Package (Scope (Tref))
1437 or else Is_Generic_Instance (Scope (Tref)))
1438 then
1439 Tref := First_Subtype (Base_Type (Tref));
1440 end if;
1441
1442 return;
1443 end if;
1444 end loop;
1445
1446 -- If we fall through the loop, no type reference
1447
1448 Tref := Empty;
1449 Left := ' ';
1450 Right := ' ';
1451 end Get_Type_Reference;
1452
1453 -------------------------------
1454 -- Output_Import_Export_Info --
1455 -------------------------------
1456
1457 procedure Output_Import_Export_Info (Ent : Entity_Id) is
1458 Language_Name : Name_Id;
1459 Conv : constant Convention_Id := Convention (Ent);
1460
1461 begin
1462 -- Generate language name from convention
1463
1464 if Conv = Convention_C then
1465 Language_Name := Name_C;
1466
1467 elsif Conv = Convention_CPP then
1468 Language_Name := Name_CPP;
1469
1470 elsif Conv = Convention_Ada then
1471 Language_Name := Name_Ada;
1472
1473 else
1474 -- For the moment we ignore all other cases ???
1475
1476 return;
1477 end if;
1478
1479 Write_Info_Char ('<');
1480 Get_Unqualified_Name_String (Language_Name);
1481
1482 for J in 1 .. Name_Len loop
1483 Write_Info_Char (Name_Buffer (J));
1484 end loop;
1485
1486 if Present (Interface_Name (Ent)) then
1487 Write_Info_Char (',');
1488 String_To_Name_Buffer (Strval (Interface_Name (Ent)));
1489
1490 for J in 1 .. Name_Len loop
1491 Write_Info_Char (Name_Buffer (J));
1492 end loop;
1493 end if;
1494
1495 Write_Info_Char ('>');
1496 end Output_Import_Export_Info;
1497
1498 -- Start of processing for Output_References
1499
1500 begin
1501 -- First we add references to the primitive operations of tagged types
1502 -- declared in the main unit.
1503
1504 Handle_Prim_Ops : declare
1505 Ent : Entity_Id;
1506
1507 begin
1508 for J in 1 .. Xrefs.Last loop
1509 Ent := Xrefs.Table (J).Key.Ent;
1510
1511 if Is_Type (Ent)
1512 and then Is_Tagged_Type (Ent)
1513 and then Is_Base_Type (Ent)
1514 and then In_Extended_Main_Source_Unit (Ent)
1515 then
1516 Generate_Prim_Op_References (Ent);
1517 end if;
1518 end loop;
1519 end Handle_Prim_Ops;
1520
1521 -- Before we go ahead and output the references we have a problem
1522 -- that needs dealing with. So far we have captured things that are
1523 -- definitely referenced by the main unit, or defined in the main
1524 -- unit. That's because we don't want to clutter up the ali file
1525 -- for this unit with definition lines for entities in other units
1526 -- that are not referenced.
1527
1528 -- But there is a glitch. We may reference an entity in another unit,
1529 -- and it may have a type reference to an entity that is not directly
1530 -- referenced in the main unit, which may mean that there is no xref
1531 -- entry for this entity yet in the list of references.
1532
1533 -- If we don't do something about this, we will end with an orphan type
1534 -- reference, i.e. it will point to an entity that does not appear
1535 -- within the generated references in the ali file. That is not good for
1536 -- tools using the xref information.
1537
1538 -- To fix this, we go through the references adding definition entries
1539 -- for any unreferenced entities that can be referenced in a type
1540 -- reference. There is a recursion problem here, and that is dealt with
1541 -- by making sure that this traversal also traverses any entries that
1542 -- get added by the traversal.
1543
1544 Handle_Orphan_Type_References : declare
1545 J : Nat;
1546 Tref : Entity_Id;
1547 Ent : Entity_Id;
1548
1549 L, R : Character;
1550 pragma Warnings (Off, L);
1551 pragma Warnings (Off, R);
1552
1553 procedure New_Entry (E : Entity_Id);
1554 -- Make an additional entry into the Xref table for a type entity
1555 -- that is related to the current entity (parent, type ancestor,
1556 -- progenitor, etc.).
1557
1558 ----------------
1559 -- New_Entry --
1560 ----------------
1561
1562 procedure New_Entry (E : Entity_Id) is
1563 begin
1564 pragma Assert (Present (E));
1565
1566 if not Has_Xref_Entry (Implementation_Base_Type (E))
1567 and then Sloc (E) > No_Location
1568 then
1569 Add_Entry
1570 ((Ent => E,
1571 Loc => No_Location,
1572 Typ => Character'First,
1573 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
1574 Lun => No_Unit,
1575 Ref_Scope => Empty,
1576 Ent_Scope => Empty),
1577 Ent_Scope_File => No_Unit);
1578 end if;
1579 end New_Entry;
1580
1581 -- Start of processing for Handle_Orphan_Type_References
1582
1583 begin
1584 -- Note that this is not a for loop for a very good reason. The
1585 -- processing of items in the table can add new items to the table,
1586 -- and they must be processed as well.
1587
1588 J := 1;
1589 while J <= Xrefs.Last loop
1590 Ent := Xrefs.Table (J).Key.Ent;
1591 Get_Type_Reference (Ent, Tref, L, R);
1592
1593 if Present (Tref)
1594 and then not Has_Xref_Entry (Tref)
1595 and then Sloc (Tref) > No_Location
1596 then
1597 New_Entry (Tref);
1598
1599 if Is_Record_Type (Ent)
1600 and then Present (Interfaces (Ent))
1601 then
1602 -- Add an entry for each one of the given interfaces
1603 -- implemented by type Ent.
1604
1605 declare
1606 Elmt : Elmt_Id := First_Elmt (Interfaces (Ent));
1607 begin
1608 while Present (Elmt) loop
1609 New_Entry (Node (Elmt));
1610 Next_Elmt (Elmt);
1611 end loop;
1612 end;
1613 end if;
1614 end if;
1615
1616 -- Collect inherited primitive operations that may be declared in
1617 -- another unit and have no visible reference in the current one.
1618
1619 if Is_Type (Ent)
1620 and then Is_Tagged_Type (Ent)
1621 and then Is_Derived_Type (Ent)
1622 and then Is_Base_Type (Ent)
1623 and then In_Extended_Main_Source_Unit (Ent)
1624 then
1625 declare
1626 Op_List : constant Elist_Id := Primitive_Operations (Ent);
1627 Op : Elmt_Id;
1628 Prim : Entity_Id;
1629
1630 function Parent_Op (E : Entity_Id) return Entity_Id;
1631 -- Find original operation, which may be inherited through
1632 -- several derivations.
1633
1634 function Parent_Op (E : Entity_Id) return Entity_Id is
1635 Orig_Op : constant Entity_Id := Alias (E);
1636
1637 begin
1638 if No (Orig_Op) then
1639 return Empty;
1640
1641 elsif not Comes_From_Source (E)
1642 and then not Has_Xref_Entry (Orig_Op)
1643 and then Comes_From_Source (Orig_Op)
1644 then
1645 return Orig_Op;
1646 else
1647 return Parent_Op (Orig_Op);
1648 end if;
1649 end Parent_Op;
1650
1651 begin
1652 Op := First_Elmt (Op_List);
1653 while Present (Op) loop
1654 Prim := Parent_Op (Node (Op));
1655
1656 if Present (Prim) then
1657 Add_Entry
1658 ((Ent => Prim,
1659 Loc => No_Location,
1660 Typ => Character'First,
1661 Eun => Get_Source_Unit (Sloc (Prim)),
1662 Lun => No_Unit,
1663 Ref_Scope => Empty,
1664 Ent_Scope => Empty),
1665 Ent_Scope_File => No_Unit);
1666 end if;
1667
1668 Next_Elmt (Op);
1669 end loop;
1670 end;
1671 end if;
1672
1673 J := J + 1;
1674 end loop;
1675 end Handle_Orphan_Type_References;
1676
1677 -- Now we have all the references, including those for any embedded
1678 -- type references, so we can sort them, and output them.
1679
1680 Output_Refs : declare
1681
1682 Nrefs : constant Nat := Xrefs.Last;
1683 -- Number of references in table
1684
1685 Rnums : array (0 .. Nrefs) of Nat;
1686 -- This array contains numbers of references in the Xrefs table.
1687 -- This list is sorted in output order. The extra 0'th entry is
1688 -- convenient for the call to sort. When we sort the table, we
1689 -- move the entries in Rnums around, but we do not move the
1690 -- original table entries.
1691
1692 Curxu : Unit_Number_Type;
1693 -- Current xref unit
1694
1695 Curru : Unit_Number_Type;
1696 -- Current reference unit for one entity
1697
1698 Curent : Entity_Id;
1699 -- Current entity
1700
1701 Curnam : String (1 .. Name_Buffer'Length);
1702 Curlen : Natural;
1703 -- Simple name and length of current entity
1704
1705 Curdef : Source_Ptr;
1706 -- Original source location for current entity
1707
1708 Crloc : Source_Ptr;
1709 -- Current reference location
1710
1711 Ctyp : Character;
1712 -- Entity type character
1713
1714 Prevt : Character;
1715 -- reference kind of previous reference
1716
1717 Tref : Entity_Id;
1718 -- Type reference
1719
1720 Rref : Node_Id;
1721 -- Renaming reference
1722
1723 Trunit : Unit_Number_Type;
1724 -- Unit number for type reference
1725
1726 function Lt (Op1, Op2 : Natural) return Boolean;
1727 -- Comparison function for Sort call
1728
1729 function Name_Change (X : Entity_Id) return Boolean;
1730 -- Determines if entity X has a different simple name from Curent
1731
1732 procedure Move (From : Natural; To : Natural);
1733 -- Move procedure for Sort call
1734
1735 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
1736
1737 --------
1738 -- Lt --
1739 --------
1740
1741 function Lt (Op1, Op2 : Natural) return Boolean is
1742 T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1)));
1743 T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2)));
1744
1745 begin
1746 return Lt (T1, T2);
1747 end Lt;
1748
1749 ----------
1750 -- Move --
1751 ----------
1752
1753 procedure Move (From : Natural; To : Natural) is
1754 begin
1755 Rnums (Nat (To)) := Rnums (Nat (From));
1756 end Move;
1757
1758 -----------------
1759 -- Name_Change --
1760 -----------------
1761
1762 -- Why a string comparison here??? Why not compare Name_Id values???
1763
1764 function Name_Change (X : Entity_Id) return Boolean is
1765 begin
1766 Get_Unqualified_Name_String (Chars (X));
1767
1768 if Name_Len /= Curlen then
1769 return True;
1770 else
1771 return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen);
1772 end if;
1773 end Name_Change;
1774
1775 -- Start of processing for Output_Refs
1776
1777 begin
1778 -- Capture the definition Sloc values. We delay doing this till now,
1779 -- since at the time the reference or definition is made, private
1780 -- types may be swapped, and the Sloc value may be incorrect. We
1781 -- also set up the pointer vector for the sort.
1782
1783 -- For user-defined operators we need to skip the initial quote and
1784 -- point to the first character of the name, for navigation purposes.
1785
1786 for J in 1 .. Nrefs loop
1787 declare
1788 E : constant Entity_Id := Xrefs.Table (J).Key.Ent;
1789 Loc : constant Source_Ptr := Original_Location (Sloc (E));
1790
1791 begin
1792 Rnums (J) := J;
1793
1794 if Nkind (E) = N_Defining_Operator_Symbol then
1795 Xrefs.Table (J).Def := Loc + 1;
1796 else
1797 Xrefs.Table (J).Def := Loc;
1798 end if;
1799 end;
1800 end loop;
1801
1802 -- Sort the references
1803
1804 Sorting.Sort (Integer (Nrefs));
1805
1806 -- Initialize loop through references
1807
1808 Curxu := No_Unit;
1809 Curent := Empty;
1810 Curdef := No_Location;
1811 Curru := No_Unit;
1812 Crloc := No_Location;
1813 Prevt := 'm';
1814
1815 -- Loop to output references
1816
1817 for Refno in 1 .. Nrefs loop
1818 Output_One_Ref : declare
1819 Ent : Entity_Id;
1820
1821 XE : Xref_Entry renames Xrefs.Table (Rnums (Refno));
1822 -- The current entry to be accessed
1823
1824 Left : Character;
1825 Right : Character;
1826 -- Used for {} or <> or () for type reference
1827
1828 procedure Check_Type_Reference
1829 (Ent : Entity_Id;
1830 List_Interface : Boolean);
1831 -- Find whether there is a meaningful type reference for
1832 -- Ent, and display it accordingly. If List_Interface is
1833 -- true, then Ent is a progenitor interface of the current
1834 -- type entity being listed. In that case list it as is,
1835 -- without looking for a type reference for it.
1836
1837 procedure Output_Instantiation_Refs (Loc : Source_Ptr);
1838 -- Recursive procedure to output instantiation references for
1839 -- the given source ptr in [file|line[...]] form. No output
1840 -- if the given location is not a generic template reference.
1841
1842 procedure Output_Overridden_Op (Old_E : Entity_Id);
1843 -- For a subprogram that is overriding, display information
1844 -- about the inherited operation that it overrides.
1845
1846 --------------------------
1847 -- Check_Type_Reference --
1848 --------------------------
1849
1850 procedure Check_Type_Reference
1851 (Ent : Entity_Id;
1852 List_Interface : Boolean)
1853 is
1854 begin
1855 if List_Interface then
1856
1857 -- This is a progenitor interface of the type for which
1858 -- xref information is being generated.
1859
1860 Tref := Ent;
1861 Left := '<';
1862 Right := '>';
1863
1864 else
1865 Get_Type_Reference (Ent, Tref, Left, Right);
1866 end if;
1867
1868 if Present (Tref) then
1869
1870 -- Case of standard entity, output name
1871
1872 if Sloc (Tref) = Standard_Location then
1873 Write_Info_Char (Left);
1874 Write_Info_Name (Chars (Tref));
1875 Write_Info_Char (Right);
1876
1877 -- Case of source entity, output location
1878
1879 else
1880 Write_Info_Char (Left);
1881 Trunit := Get_Source_Unit (Sloc (Tref));
1882
1883 if Trunit /= Curxu then
1884 Write_Info_Nat (Dependency_Num (Trunit));
1885 Write_Info_Char ('|');
1886 end if;
1887
1888 Write_Info_Nat
1889 (Int (Get_Logical_Line_Number (Sloc (Tref))));
1890
1891 declare
1892 Ent : Entity_Id;
1893 Ctyp : Character;
1894
1895 begin
1896 Ent := Tref;
1897 Ctyp := Xref_Entity_Letters (Ekind (Ent));
1898
1899 if Ctyp = '+'
1900 and then Present (Full_View (Ent))
1901 then
1902 Ent := Underlying_Type (Ent);
1903
1904 if Present (Ent) then
1905 Ctyp := Xref_Entity_Letters (Ekind (Ent));
1906 end if;
1907 end if;
1908
1909 Write_Info_Char (Ctyp);
1910 end;
1911
1912 Write_Info_Nat
1913 (Int (Get_Column_Number (Sloc (Tref))));
1914
1915 -- If the type comes from an instantiation, add the
1916 -- corresponding info.
1917
1918 Output_Instantiation_Refs (Sloc (Tref));
1919 Write_Info_Char (Right);
1920 end if;
1921 end if;
1922 end Check_Type_Reference;
1923
1924 -------------------------------
1925 -- Output_Instantiation_Refs --
1926 -------------------------------
1927
1928 procedure Output_Instantiation_Refs (Loc : Source_Ptr) is
1929 Iloc : constant Source_Ptr := Instantiation_Location (Loc);
1930 Lun : Unit_Number_Type;
1931 Cu : constant Unit_Number_Type := Curru;
1932
1933 begin
1934 -- Nothing to do if this is not an instantiation
1935
1936 if Iloc = No_Location then
1937 return;
1938 end if;
1939
1940 -- Output instantiation reference
1941
1942 Write_Info_Char ('[');
1943 Lun := Get_Source_Unit (Iloc);
1944
1945 if Lun /= Curru then
1946 Curru := Lun;
1947 Write_Info_Nat (Dependency_Num (Curru));
1948 Write_Info_Char ('|');
1949 end if;
1950
1951 Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc)));
1952
1953 -- Recursive call to get nested instantiations
1954
1955 Output_Instantiation_Refs (Iloc);
1956
1957 -- Output final ] after call to get proper nesting
1958
1959 Write_Info_Char (']');
1960 Curru := Cu;
1961 return;
1962 end Output_Instantiation_Refs;
1963
1964 --------------------------
1965 -- Output_Overridden_Op --
1966 --------------------------
1967
1968 procedure Output_Overridden_Op (Old_E : Entity_Id) is
1969 Op : Entity_Id;
1970
1971 begin
1972 -- The overridden operation has an implicit declaration
1973 -- at the point of derivation. What we want to display
1974 -- is the original operation, which has the actual body
1975 -- (or abstract declaration) that is being overridden.
1976 -- The overridden operation is not always set, e.g. when
1977 -- it is a predefined operator.
1978
1979 if No (Old_E) then
1980 return;
1981
1982 -- Follow alias chain if one is present
1983
1984 elsif Present (Alias (Old_E)) then
1985
1986 -- The subprogram may have been implicitly inherited
1987 -- through several levels of derivation, so find the
1988 -- ultimate (source) ancestor.
1989
1990 Op := Ultimate_Alias (Old_E);
1991
1992 -- Normal case of no alias present. We omit generated
1993 -- primitives like tagged equality, that have no source
1994 -- representation.
1995
1996 else
1997 Op := Old_E;
1998 end if;
1999
2000 if Present (Op)
2001 and then Sloc (Op) /= Standard_Location
2002 and then Comes_From_Source (Op)
2003 then
2004 declare
2005 Loc : constant Source_Ptr := Sloc (Op);
2006 Par_Unit : constant Unit_Number_Type :=
2007 Get_Source_Unit (Loc);
2008
2009 begin
2010 Write_Info_Char ('<');
2011
2012 if Par_Unit /= Curxu then
2013 Write_Info_Nat (Dependency_Num (Par_Unit));
2014 Write_Info_Char ('|');
2015 end if;
2016
2017 Write_Info_Nat (Int (Get_Logical_Line_Number (Loc)));
2018 Write_Info_Char ('p');
2019 Write_Info_Nat (Int (Get_Column_Number (Loc)));
2020 Write_Info_Char ('>');
2021 end;
2022 end if;
2023 end Output_Overridden_Op;
2024
2025 -- Start of processing for Output_One_Ref
2026
2027 begin
2028 Ent := XE.Key.Ent;
2029 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2030
2031 -- Skip reference if it is the only reference to an entity,
2032 -- and it is an END line reference, and the entity is not in
2033 -- the current extended source. This prevents junk entries
2034 -- consisting only of packages with END lines, where no
2035 -- entity from the package is actually referenced.
2036
2037 if XE.Key.Typ = 'e'
2038 and then Ent /= Curent
2039 and then (Refno = Nrefs
2040 or else
2041 Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent)
2042 and then not In_Extended_Main_Source_Unit (Ent)
2043 then
2044 goto Continue;
2045 end if;
2046
2047 -- For private type, get full view type
2048
2049 if Ctyp = '+'
2050 and then Present (Full_View (XE.Key.Ent))
2051 then
2052 Ent := Underlying_Type (Ent);
2053
2054 if Present (Ent) then
2055 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2056 end if;
2057 end if;
2058
2059 -- Special exception for Boolean
2060
2061 if Ctyp = 'E' and then Is_Boolean_Type (Ent) then
2062 Ctyp := 'B';
2063 end if;
2064
2065 -- For variable reference, get corresponding type
2066
2067 if Ctyp = '*' then
2068 Ent := Etype (XE.Key.Ent);
2069 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2070
2071 -- If variable is private type, get full view type
2072
2073 if Ctyp = '+'
2074 and then Present (Full_View (Etype (XE.Key.Ent)))
2075 then
2076 Ent := Underlying_Type (Etype (XE.Key.Ent));
2077
2078 if Present (Ent) then
2079 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2080 end if;
2081
2082 elsif Is_Generic_Type (Ent) then
2083
2084 -- If the type of the entity is a generic private type,
2085 -- there is no usable full view, so retain the indication
2086 -- that this is an object.
2087
2088 Ctyp := '*';
2089 end if;
2090
2091 -- Special handling for access parameters and objects and
2092 -- components of an anonymous access type.
2093
2094 if Ekind_In (Etype (XE.Key.Ent),
2095 E_Anonymous_Access_Type,
2096 E_Anonymous_Access_Subprogram_Type,
2097 E_Anonymous_Access_Protected_Subprogram_Type)
2098 then
2099 if Is_Formal (XE.Key.Ent)
2100 or else
2101 Ekind_In
2102 (XE.Key.Ent, E_Variable, E_Constant, E_Component)
2103 then
2104 Ctyp := 'p';
2105 end if;
2106
2107 -- Special handling for Boolean
2108
2109 elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then
2110 Ctyp := 'b';
2111 end if;
2112 end if;
2113
2114 -- Special handling for abstract types and operations
2115
2116 if Is_Overloadable (XE.Key.Ent)
2117 and then Is_Abstract_Subprogram (XE.Key.Ent)
2118 then
2119 if Ctyp = 'U' then
2120 Ctyp := 'x'; -- Abstract procedure
2121
2122 elsif Ctyp = 'V' then
2123 Ctyp := 'y'; -- Abstract function
2124 end if;
2125
2126 elsif Is_Type (XE.Key.Ent)
2127 and then Is_Abstract_Type (XE.Key.Ent)
2128 then
2129 if Is_Interface (XE.Key.Ent) then
2130 Ctyp := 'h';
2131
2132 elsif Ctyp = 'R' then
2133 Ctyp := 'H'; -- Abstract type
2134 end if;
2135 end if;
2136
2137 -- Only output reference if interesting type of entity
2138
2139 if Ctyp = ' '
2140
2141 -- Suppress references to object definitions, used for local
2142 -- references.
2143
2144 or else XE.Key.Typ = 'D'
2145 or else XE.Key.Typ = 'I'
2146
2147 -- Suppress self references, except for bodies that act as
2148 -- specs.
2149
2150 or else (XE.Key.Loc = XE.Def
2151 and then
2152 (XE.Key.Typ /= 'b'
2153 or else not Is_Subprogram (XE.Key.Ent)))
2154
2155 -- Also suppress definitions of body formals (we only
2156 -- treat these as references, and the references were
2157 -- separately recorded).
2158
2159 or else (Is_Formal (XE.Key.Ent)
2160 and then Present (Spec_Entity (XE.Key.Ent)))
2161 then
2162 null;
2163
2164 else
2165 -- Start new Xref section if new xref unit
2166
2167 if XE.Key.Eun /= Curxu then
2168 if Write_Info_Col > 1 then
2169 Write_Info_EOL;
2170 end if;
2171
2172 Curxu := XE.Key.Eun;
2173
2174 Write_Info_Initiate ('X');
2175 Write_Info_Char (' ');
2176 Write_Info_Nat (Dependency_Num (XE.Key.Eun));
2177 Write_Info_Char (' ');
2178 Write_Info_Name
2179 (Reference_Name (Source_Index (XE.Key.Eun)));
2180 end if;
2181
2182 -- Start new Entity line if new entity. Note that we
2183 -- consider two entities the same if they have the same
2184 -- name and source location. This causes entities in
2185 -- instantiations to be treated as though they referred
2186 -- to the template.
2187
2188 if No (Curent)
2189 or else
2190 (XE.Key.Ent /= Curent
2191 and then
2192 (Name_Change (XE.Key.Ent) or else XE.Def /= Curdef))
2193 then
2194 Curent := XE.Key.Ent;
2195 Curdef := XE.Def;
2196
2197 Get_Unqualified_Name_String (Chars (XE.Key.Ent));
2198 Curlen := Name_Len;
2199 Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen);
2200
2201 if Write_Info_Col > 1 then
2202 Write_Info_EOL;
2203 end if;
2204
2205 -- Write column number information
2206
2207 Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def)));
2208 Write_Info_Char (Ctyp);
2209 Write_Info_Nat (Int (Get_Column_Number (XE.Def)));
2210
2211 -- Write level information
2212
2213 Write_Level_Info : declare
2214 function Is_Visible_Generic_Entity
2215 (E : Entity_Id) return Boolean;
2216 -- Check whether E is declared in the visible part
2217 -- of a generic package. For source navigation
2218 -- purposes, treat this as a visible entity.
2219
2220 function Is_Private_Record_Component
2221 (E : Entity_Id) return Boolean;
2222 -- Check whether E is a non-inherited component of a
2223 -- private extension. Even if the enclosing record is
2224 -- public, we want to treat the component as private
2225 -- for navigation purposes.
2226
2227 ---------------------------------
2228 -- Is_Private_Record_Component --
2229 ---------------------------------
2230
2231 function Is_Private_Record_Component
2232 (E : Entity_Id) return Boolean
2233 is
2234 S : constant Entity_Id := Scope (E);
2235 begin
2236 return
2237 Ekind (E) = E_Component
2238 and then Nkind (Declaration_Node (S)) =
2239 N_Private_Extension_Declaration
2240 and then Original_Record_Component (E) = E;
2241 end Is_Private_Record_Component;
2242
2243 -------------------------------
2244 -- Is_Visible_Generic_Entity --
2245 -------------------------------
2246
2247 function Is_Visible_Generic_Entity
2248 (E : Entity_Id) return Boolean
2249 is
2250 Par : Node_Id;
2251
2252 begin
2253 -- The Present check here is an error defense
2254
2255 if Present (Scope (E))
2256 and then Ekind (Scope (E)) /= E_Generic_Package
2257 then
2258 return False;
2259 end if;
2260
2261 Par := Parent (E);
2262 while Present (Par) loop
2263 if
2264 Nkind (Par) = N_Generic_Package_Declaration
2265 then
2266 -- Entity is a generic formal
2267
2268 return False;
2269
2270 elsif
2271 Nkind (Parent (Par)) = N_Package_Specification
2272 then
2273 return
2274 Is_List_Member (Par)
2275 and then List_Containing (Par) =
2276 Visible_Declarations (Parent (Par));
2277 else
2278 Par := Parent (Par);
2279 end if;
2280 end loop;
2281
2282 return False;
2283 end Is_Visible_Generic_Entity;
2284
2285 -- Start of processing for Write_Level_Info
2286
2287 begin
2288 if Is_Hidden (Curent)
2289 or else Is_Private_Record_Component (Curent)
2290 then
2291 Write_Info_Char (' ');
2292
2293 elsif
2294 Is_Public (Curent)
2295 or else Is_Visible_Generic_Entity (Curent)
2296 then
2297 Write_Info_Char ('*');
2298
2299 else
2300 Write_Info_Char (' ');
2301 end if;
2302 end Write_Level_Info;
2303
2304 -- Output entity name. We use the occurrence from the
2305 -- actual source program at the definition point.
2306
2307 declare
2308 Ent_Name : constant String :=
2309 Exact_Source_Name (Sloc (XE.Key.Ent));
2310 begin
2311 for C in Ent_Name'Range loop
2312 Write_Info_Char (Ent_Name (C));
2313 end loop;
2314 end;
2315
2316 -- See if we have a renaming reference
2317
2318 if Is_Object (XE.Key.Ent)
2319 and then Present (Renamed_Object (XE.Key.Ent))
2320 then
2321 Rref := Renamed_Object (XE.Key.Ent);
2322
2323 elsif Is_Overloadable (XE.Key.Ent)
2324 and then Nkind (Parent (Declaration_Node (XE.Key.Ent)))
2325 = N_Subprogram_Renaming_Declaration
2326 then
2327 Rref := Name (Parent (Declaration_Node (XE.Key.Ent)));
2328
2329 elsif Ekind (XE.Key.Ent) = E_Package
2330 and then Nkind (Declaration_Node (XE.Key.Ent)) =
2331 N_Package_Renaming_Declaration
2332 then
2333 Rref := Name (Declaration_Node (XE.Key.Ent));
2334
2335 else
2336 Rref := Empty;
2337 end if;
2338
2339 if Present (Rref) then
2340 if Nkind (Rref) = N_Expanded_Name then
2341 Rref := Selector_Name (Rref);
2342 end if;
2343
2344 if Nkind (Rref) = N_Identifier
2345 or else Nkind (Rref) = N_Operator_Symbol
2346 then
2347 null;
2348
2349 -- For renamed array components, use the array name
2350 -- for the renamed entity, which reflect the fact that
2351 -- in general the whole array is aliased.
2352
2353 elsif Nkind (Rref) = N_Indexed_Component then
2354 if Nkind (Prefix (Rref)) = N_Identifier then
2355 Rref := Prefix (Rref);
2356 elsif Nkind (Prefix (Rref)) = N_Expanded_Name then
2357 Rref := Selector_Name (Prefix (Rref));
2358 else
2359 Rref := Empty;
2360 end if;
2361
2362 else
2363 Rref := Empty;
2364 end if;
2365 end if;
2366
2367 -- Write out renaming reference if we have one
2368
2369 if Present (Rref) then
2370 Write_Info_Char ('=');
2371 Write_Info_Nat
2372 (Int (Get_Logical_Line_Number (Sloc (Rref))));
2373 Write_Info_Char (':');
2374 Write_Info_Nat
2375 (Int (Get_Column_Number (Sloc (Rref))));
2376 end if;
2377
2378 -- Indicate that the entity is in the unit of the current
2379 -- xref section.
2380
2381 Curru := Curxu;
2382
2383 -- Write out information about generic parent, if entity
2384 -- is an instance.
2385
2386 if Is_Generic_Instance (XE.Key.Ent) then
2387 declare
2388 Gen_Par : constant Entity_Id :=
2389 Generic_Parent
2390 (Specification
2391 (Unit_Declaration_Node
2392 (XE.Key.Ent)));
2393 Loc : constant Source_Ptr := Sloc (Gen_Par);
2394 Gen_U : constant Unit_Number_Type :=
2395 Get_Source_Unit (Loc);
2396
2397 begin
2398 Write_Info_Char ('[');
2399
2400 if Curru /= Gen_U then
2401 Write_Info_Nat (Dependency_Num (Gen_U));
2402 Write_Info_Char ('|');
2403 end if;
2404
2405 Write_Info_Nat
2406 (Int (Get_Logical_Line_Number (Loc)));
2407 Write_Info_Char (']');
2408 end;
2409 end if;
2410
2411 -- See if we have a type reference and if so output
2412
2413 Check_Type_Reference (XE.Key.Ent, False);
2414
2415 -- Additional information for types with progenitors
2416
2417 if Is_Record_Type (XE.Key.Ent)
2418 and then Present (Interfaces (XE.Key.Ent))
2419 then
2420 declare
2421 Elmt : Elmt_Id :=
2422 First_Elmt (Interfaces (XE.Key.Ent));
2423 begin
2424 while Present (Elmt) loop
2425 Check_Type_Reference (Node (Elmt), True);
2426 Next_Elmt (Elmt);
2427 end loop;
2428 end;
2429
2430 -- For array types, list index types as well. (This is
2431 -- not C, indexes have distinct types).
2432
2433 elsif Is_Array_Type (XE.Key.Ent) then
2434 declare
2435 Indx : Node_Id;
2436 begin
2437 Indx := First_Index (XE.Key.Ent);
2438 while Present (Indx) loop
2439 Check_Type_Reference
2440 (First_Subtype (Etype (Indx)), True);
2441 Next_Index (Indx);
2442 end loop;
2443 end;
2444 end if;
2445
2446 -- If the entity is an overriding operation, write info
2447 -- on operation that was overridden.
2448
2449 if Is_Subprogram (XE.Key.Ent)
2450 and then Present (Overridden_Operation (XE.Key.Ent))
2451 then
2452 Output_Overridden_Op
2453 (Overridden_Operation (XE.Key.Ent));
2454 end if;
2455
2456 -- End of processing for entity output
2457
2458 Crloc := No_Location;
2459 end if;
2460
2461 -- Output the reference if it is not as the same location
2462 -- as the previous one, or it is a read-reference that
2463 -- indicates that the entity is an in-out actual in a call.
2464
2465 if XE.Key.Loc /= No_Location
2466 and then
2467 (XE.Key.Loc /= Crloc
2468 or else (Prevt = 'm' and then XE.Key.Typ = 'r'))
2469 then
2470 Crloc := XE.Key.Loc;
2471 Prevt := XE.Key.Typ;
2472
2473 -- Start continuation if line full, else blank
2474
2475 if Write_Info_Col > 72 then
2476 Write_Info_EOL;
2477 Write_Info_Initiate ('.');
2478 end if;
2479
2480 Write_Info_Char (' ');
2481
2482 -- Output file number if changed
2483
2484 if XE.Key.Lun /= Curru then
2485 Curru := XE.Key.Lun;
2486 Write_Info_Nat (Dependency_Num (Curru));
2487 Write_Info_Char ('|');
2488 end if;
2489
2490 Write_Info_Nat
2491 (Int (Get_Logical_Line_Number (XE.Key.Loc)));
2492 Write_Info_Char (XE.Key.Typ);
2493
2494 if Is_Overloadable (XE.Key.Ent) then
2495 if (Is_Imported (XE.Key.Ent) and then XE.Key.Typ = 'b')
2496 or else
2497 (Is_Exported (XE.Key.Ent) and then XE.Key.Typ = 'i')
2498 then
2499 Output_Import_Export_Info (XE.Key.Ent);
2500 end if;
2501 end if;
2502
2503 Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc)));
2504
2505 Output_Instantiation_Refs (Sloc (XE.Key.Ent));
2506 end if;
2507 end if;
2508 end Output_One_Ref;
2509
2510 <<Continue>>
2511 null;
2512 end loop;
2513
2514 Write_Info_EOL;
2515 end Output_Refs;
2516 end Output_References;
2517
2518 -- Start of elaboration for Lib.Xref
2519
2520 begin
2521 -- Reset is necessary because Elmt_Ptr does not default to Null_Ptr,
2522 -- because it's not an access type.
2523
2524 Xref_Set.Reset;
2525 end Lib.Xref;