[multiple changes]
[gcc.git] / gcc / ada / lib-xref.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L I B . X R E F --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Csets; use Csets;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Nlists; use Nlists;
31 with Opt; use Opt;
32 with Restrict; use Restrict;
33 with Rident; use Rident;
34 with Sem; use Sem;
35 with Sem_Aux; use Sem_Aux;
36 with Sem_Prag; use Sem_Prag;
37 with Sem_Util; use Sem_Util;
38 with Sem_Warn; use Sem_Warn;
39 with Sinfo; use Sinfo;
40 with Sinput; use Sinput;
41 with Snames; use Snames;
42 with Stringt; use Stringt;
43 with Stand; use Stand;
44 with Table; use Table;
45
46 with GNAT.Heap_Sort_G;
47 with GNAT.HTable;
48
49 package body Lib.Xref is
50
51 ------------------
52 -- Declarations --
53 ------------------
54
55 -- The Xref table is used to record references. The Loc field is set
56 -- to No_Location for a definition entry.
57
58 subtype Xref_Entry_Number is Int;
59
60 type Xref_Key is record
61 -- These are the components of Xref_Entry that participate in hash
62 -- lookups.
63
64 Ent : Entity_Id;
65 -- Entity referenced (E parameter to Generate_Reference)
66
67 Loc : Source_Ptr;
68 -- Location of reference (Original_Location (Sloc field of N parameter
69 -- to Generate_Reference)). Set to No_Location for the case of a
70 -- defining occurrence.
71
72 Typ : Character;
73 -- Reference type (Typ param to Generate_Reference)
74
75 Eun : Unit_Number_Type;
76 -- Unit number corresponding to Ent
77
78 Lun : Unit_Number_Type;
79 -- Unit number corresponding to Loc. Value is undefined and not
80 -- referenced if Loc is set to No_Location.
81
82 -- The following components are only used for SPARK cross-references
83
84 Ref_Scope : Entity_Id;
85 -- Entity of the closest subprogram or package enclosing the reference
86
87 Ent_Scope : Entity_Id;
88 -- Entity of the closest subprogram or package enclosing the definition,
89 -- which should be located in the same file as the definition itself.
90 end record;
91
92 type Xref_Entry is record
93 Key : Xref_Key;
94
95 Ent_Scope_File : Unit_Number_Type;
96 -- File for entity Ent_Scope
97
98 Def : Source_Ptr;
99 -- Original source location for entity being referenced. Note that these
100 -- values are used only during the output process, they are not set when
101 -- the entries are originally built. This is because private entities
102 -- can be swapped when the initial call is made.
103
104 HTable_Next : Xref_Entry_Number;
105 -- For use only by Static_HTable
106 end record;
107
108 package Xrefs is new Table.Table (
109 Table_Component_Type => Xref_Entry,
110 Table_Index_Type => Xref_Entry_Number,
111 Table_Low_Bound => 1,
112 Table_Initial => Alloc.Xrefs_Initial,
113 Table_Increment => Alloc.Xrefs_Increment,
114 Table_Name => "Xrefs");
115
116 --------------
117 -- Xref_Set --
118 --------------
119
120 -- We keep a set of xref entries, in order to avoid inserting duplicate
121 -- entries into the above Xrefs table. An entry is in Xref_Set if and only
122 -- if it is in Xrefs.
123
124 Num_Buckets : constant := 2**16;
125
126 subtype Header_Num is Integer range 0 .. Num_Buckets - 1;
127 type Null_Type is null record;
128 pragma Unreferenced (Null_Type);
129
130 function Hash (F : Xref_Entry_Number) return Header_Num;
131
132 function Equal (F1, F2 : Xref_Entry_Number) return Boolean;
133
134 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number);
135
136 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number;
137
138 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number;
139
140 pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key);
141
142 package Xref_Set is new GNAT.HTable.Static_HTable (
143 Header_Num,
144 Element => Xref_Entry,
145 Elmt_Ptr => Xref_Entry_Number,
146 Null_Ptr => 0,
147 Set_Next => HT_Set_Next,
148 Next => HT_Next,
149 Key => Xref_Entry_Number,
150 Get_Key => Get_Key,
151 Hash => Hash,
152 Equal => Equal);
153
154 -----------------------------
155 -- SPARK Xrefs Information --
156 -----------------------------
157
158 package body SPARK_Specific is separate;
159
160 ------------------------
161 -- Local Subprograms --
162 ------------------------
163
164 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type);
165 -- Add an entry to the tables of Xref_Entries, avoiding duplicates
166
167 procedure Generate_Prim_Op_References (Typ : Entity_Id);
168 -- For a tagged type, generate implicit references to its primitive
169 -- operations, for source navigation. This is done right before emitting
170 -- cross-reference information rather than at the freeze point of the type
171 -- in order to handle late bodies that are primitive operations.
172
173 function Lt (T1, T2 : Xref_Entry) return Boolean;
174 -- Order cross-references
175
176 ---------------
177 -- Add_Entry --
178 ---------------
179
180 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is
181 begin
182 Xrefs.Increment_Last; -- tentative
183 Xrefs.Table (Xrefs.Last).Key := Key;
184
185 -- Set the entry in Xref_Set, and if newly set, keep the above
186 -- tentative increment.
187
188 if Xref_Set.Set_If_Not_Present (Xrefs.Last) then
189 Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File;
190 -- Leave Def and HTable_Next uninitialized
191
192 Set_Has_Xref_Entry (Key.Ent);
193
194 -- It was already in Xref_Set, so throw away the tentatively-added entry
195
196 else
197 Xrefs.Decrement_Last;
198 end if;
199 end Add_Entry;
200
201 -----------
202 -- Equal --
203 -----------
204
205 function Equal (F1, F2 : Xref_Entry_Number) return Boolean is
206 Result : constant Boolean :=
207 Xrefs.Table (F1).Key = Xrefs.Table (F2).Key;
208 begin
209 return Result;
210 end Equal;
211
212 -------------------------
213 -- Generate_Definition --
214 -------------------------
215
216 procedure Generate_Definition (E : Entity_Id) is
217 begin
218 pragma Assert (Nkind (E) in N_Entity);
219
220 -- Note that we do not test Xref_Entity_Letters here. It is too early
221 -- to do so, since we are often called before the entity is fully
222 -- constructed, so that the Ekind is still E_Void.
223
224 if Opt.Xref_Active
225
226 -- Definition must come from source
227
228 -- We make an exception for subprogram child units that have no spec.
229 -- For these we generate a subprogram declaration for library use,
230 -- and the corresponding entity does not come from source.
231 -- Nevertheless, all references will be attached to it and we have
232 -- to treat is as coming from user code.
233
234 and then (Comes_From_Source (E) or else Is_Child_Unit (E))
235
236 -- And must have a reasonable source location that is not
237 -- within an instance (all entities in instances are ignored)
238
239 and then Sloc (E) > No_Location
240 and then Instantiation_Location (Sloc (E)) = No_Location
241
242 -- And must be a non-internal name from the main source unit
243
244 and then In_Extended_Main_Source_Unit (E)
245 and then not Is_Internal_Name (Chars (E))
246 then
247 Add_Entry
248 ((Ent => E,
249 Loc => No_Location,
250 Typ => ' ',
251 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
252 Lun => No_Unit,
253 Ref_Scope => Empty,
254 Ent_Scope => Empty),
255 Ent_Scope_File => No_Unit);
256
257 if In_Inlined_Body then
258 Set_Referenced (E);
259 end if;
260 end if;
261 end Generate_Definition;
262
263 ---------------------------------
264 -- Generate_Operator_Reference --
265 ---------------------------------
266
267 procedure Generate_Operator_Reference
268 (N : Node_Id;
269 T : Entity_Id)
270 is
271 begin
272 if not In_Extended_Main_Source_Unit (N) then
273 return;
274 end if;
275
276 -- If the operator is not a Standard operator, then we generate a real
277 -- reference to the user defined operator.
278
279 if Sloc (Entity (N)) /= Standard_Location then
280 Generate_Reference (Entity (N), N);
281
282 -- A reference to an implicit inequality operator is also a reference
283 -- to the user-defined equality.
284
285 if Nkind (N) = N_Op_Ne
286 and then not Comes_From_Source (Entity (N))
287 and then Present (Corresponding_Equality (Entity (N)))
288 then
289 Generate_Reference (Corresponding_Equality (Entity (N)), N);
290 end if;
291
292 -- For the case of Standard operators, we mark the result type as
293 -- referenced. This ensures that in the case where we are using a
294 -- derived operator, we mark an entity of the unit that implicitly
295 -- defines this operator as used. Otherwise we may think that no entity
296 -- of the unit is used. The actual entity marked as referenced is the
297 -- first subtype, which is the relevant user defined entity.
298
299 -- Note: we only do this for operators that come from source. The
300 -- generated code sometimes reaches for entities that do not need to be
301 -- explicitly visible (for example, when we expand the code for
302 -- comparing two record objects, the fields of the record may not be
303 -- visible).
304
305 elsif Comes_From_Source (N) then
306 Set_Referenced (First_Subtype (T));
307 end if;
308 end Generate_Operator_Reference;
309
310 ---------------------------------
311 -- Generate_Prim_Op_References --
312 ---------------------------------
313
314 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
315 Base_T : Entity_Id;
316 Prim : Elmt_Id;
317 Prim_List : Elist_Id;
318
319 begin
320 -- Handle subtypes of synchronized types
321
322 if Ekind (Typ) = E_Protected_Subtype
323 or else Ekind (Typ) = E_Task_Subtype
324 then
325 Base_T := Etype (Typ);
326 else
327 Base_T := Typ;
328 end if;
329
330 -- References to primitive operations are only relevant for tagged types
331
332 if not Is_Tagged_Type (Base_T)
333 or else Is_Class_Wide_Type (Base_T)
334 then
335 return;
336 end if;
337
338 -- Ada 2005 (AI-345): For synchronized types generate reference to the
339 -- wrapper that allow us to dispatch calls through their implemented
340 -- abstract interface types.
341
342 -- The check for Present here is to protect against previously reported
343 -- critical errors.
344
345 Prim_List := Primitive_Operations (Base_T);
346
347 if No (Prim_List) then
348 return;
349 end if;
350
351 Prim := First_Elmt (Prim_List);
352 while Present (Prim) loop
353
354 -- If the operation is derived, get the original for cross-reference
355 -- reference purposes (it is the original for which we want the xref
356 -- and for which the comes_from_source test must be performed).
357
358 Generate_Reference
359 (Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False);
360 Next_Elmt (Prim);
361 end loop;
362 end Generate_Prim_Op_References;
363
364 ------------------------
365 -- Generate_Reference --
366 ------------------------
367
368 procedure Generate_Reference
369 (E : Entity_Id;
370 N : Node_Id;
371 Typ : Character := 'r';
372 Set_Ref : Boolean := True;
373 Force : Boolean := False)
374 is
375 Actual_Typ : Character := Typ;
376 Call : Node_Id;
377 Def : Source_Ptr;
378 Ent : Entity_Id;
379 Ent_Scope : Entity_Id;
380 Formal : Entity_Id;
381 Kind : Entity_Kind;
382 Nod : Node_Id;
383 Ref : Source_Ptr;
384 Ref_Scope : Entity_Id;
385
386 function Get_Through_Renamings (E : Entity_Id) return Entity_Id;
387 -- Get the enclosing entity through renamings, which may come from
388 -- source or from the translation of generic instantiations.
389
390 function Is_On_LHS (Node : Node_Id) return Boolean;
391 -- Used to check if a node is on the left hand side of an assignment.
392 -- The following cases are handled:
393 --
394 -- Variable Node is a direct descendant of left hand side of an
395 -- assignment statement.
396 --
397 -- Prefix Of an indexed or selected component that is present in
398 -- a subtree rooted by an assignment statement. There is
399 -- no restriction of nesting of components, thus cases
400 -- such as A.B (C).D are handled properly. However a prefix
401 -- of a dereference (either implicit or explicit) is never
402 -- considered as on a LHS.
403 --
404 -- Out param Same as above cases, but OUT parameter
405
406 function OK_To_Set_Referenced return Boolean;
407 -- Returns True if the Referenced flag can be set. There are a few
408 -- exceptions where we do not want to set this flag, see body for
409 -- details of these exceptional cases.
410
411 ---------------------------
412 -- Get_Through_Renamings --
413 ---------------------------
414
415 function Get_Through_Renamings (E : Entity_Id) return Entity_Id is
416 begin
417 case Ekind (E) is
418 -- For subprograms we just need to check once if they are have a
419 -- Renamed_Entity, because Renamed_Entity is set transitively.
420
421 when Subprogram_Kind =>
422 declare
423 Renamed : constant Entity_Id := Renamed_Entity (E);
424
425 begin
426 if Present (Renamed) then
427 return Renamed;
428 else
429 return E;
430 end if;
431 end;
432
433 -- For objects we need to repeatedly call Renamed_Object, because
434 -- it is not transitive.
435
436 when Object_Kind =>
437 declare
438 Obj : Entity_Id := E;
439
440 begin
441 loop
442 pragma Assert (Present (Obj));
443
444 declare
445 Renamed : constant Entity_Id := Renamed_Object (Obj);
446 begin
447 if Present (Renamed) then
448 Obj := Get_Enclosing_Object (Renamed);
449
450 -- The renamed expression denotes a non-object,
451 -- e.g. function call, slicing of a function call,
452 -- pointer dereference, etc.
453 if No (Obj) then
454 return Empty;
455 end if;
456 else
457 return Obj;
458 end if;
459 end;
460 end loop;
461 end;
462
463 when others =>
464 return E;
465
466 end case;
467 end Get_Through_Renamings;
468
469 ---------------
470 -- Is_On_LHS --
471 ---------------
472
473 -- ??? There are several routines here and there that perform a similar
474 -- (but subtly different) computation, which should be factored:
475
476 -- Sem_Util.Is_LHS
477 -- Sem_Util.May_Be_Lvalue
478 -- Sem_Util.Known_To_Be_Assigned
479 -- Exp_Ch2.Expand_Entry_Parameter.In_Assignment_Context
480 -- Exp_Smem.Is_Out_Actual
481
482 function Is_On_LHS (Node : Node_Id) return Boolean is
483 N : Node_Id;
484 P : Node_Id;
485 K : Node_Kind;
486
487 begin
488 -- Only identifiers are considered, is this necessary???
489
490 if Nkind (Node) /= N_Identifier then
491 return False;
492 end if;
493
494 -- Immediate return if appeared as OUT parameter
495
496 if Kind = E_Out_Parameter then
497 return True;
498 end if;
499
500 -- Search for assignment statement subtree root
501
502 N := Node;
503 loop
504 P := Parent (N);
505 K := Nkind (P);
506
507 if K = N_Assignment_Statement then
508 return Name (P) = N;
509
510 -- Check whether the parent is a component and the current node is
511 -- its prefix, but return False if the current node has an access
512 -- type, as in that case the selected or indexed component is an
513 -- implicit dereference, and the LHS is the designated object, not
514 -- the access object.
515
516 -- ??? case of a slice assignment?
517
518 elsif (K = N_Selected_Component or else K = N_Indexed_Component)
519 and then Prefix (P) = N
520 then
521 -- Check for access type. First a special test, In some cases
522 -- this is called too early (see comments in Find_Direct_Name),
523 -- at a point where the tree is not fully typed yet. In that
524 -- case we may lack an Etype for N, and we can't check the
525 -- Etype. For now, we always return False in such a case,
526 -- but this is clearly not right in all cases ???
527
528 if No (Etype (N)) then
529 return False;
530
531 elsif Is_Access_Type (Etype (N)) then
532 return False;
533
534 -- Access type case dealt with, keep going
535
536 else
537 N := P;
538 end if;
539
540 -- All other cases, definitely not on left side
541
542 else
543 return False;
544 end if;
545 end loop;
546 end Is_On_LHS;
547
548 ---------------------------
549 -- OK_To_Set_Referenced --
550 ---------------------------
551
552 function OK_To_Set_Referenced return Boolean is
553 P : Node_Id;
554
555 begin
556 -- A reference from a pragma Unreferenced or pragma Unmodified or
557 -- pragma Warnings does not cause the Referenced flag to be set.
558 -- This avoids silly warnings about things being referenced and
559 -- not assigned when the only reference is from the pragma.
560
561 if Nkind (N) = N_Identifier then
562 P := Parent (N);
563
564 if Nkind (P) = N_Pragma_Argument_Association then
565 P := Parent (P);
566
567 if Nkind (P) = N_Pragma then
568 if Nam_In (Pragma_Name_Unmapped (P),
569 Name_Warnings,
570 Name_Unmodified,
571 Name_Unreferenced)
572 then
573 return False;
574 end if;
575 end if;
576
577 -- A reference to a formal in a named parameter association does
578 -- not make the formal referenced. Formals that are unused in the
579 -- subprogram body are properly flagged as such, even if calls
580 -- elsewhere use named notation.
581
582 elsif Nkind (P) = N_Parameter_Association
583 and then N = Selector_Name (P)
584 then
585 return False;
586 end if;
587 end if;
588
589 return True;
590 end OK_To_Set_Referenced;
591
592 -- Start of processing for Generate_Reference
593
594 begin
595 pragma Assert (Nkind (E) in N_Entity);
596 Find_Actual (N, Formal, Call);
597
598 if Present (Formal) then
599 Kind := Ekind (Formal);
600 else
601 Kind := E_Void;
602 end if;
603
604 -- Check for obsolescent reference to package ASCII. GNAT treats this
605 -- element of annex J specially since in practice, programs make a lot
606 -- of use of this feature, so we don't include it in the set of features
607 -- diagnosed when Warn_On_Obsolescent_Features mode is set. However we
608 -- are required to note it as a violation of the RM defined restriction.
609
610 if E = Standard_ASCII then
611 Check_Restriction (No_Obsolescent_Features, N);
612 end if;
613
614 -- Check for reference to entity marked with Is_Obsolescent
615
616 -- Note that we always allow obsolescent references in the compiler
617 -- itself and the run time, since we assume that we know what we are
618 -- doing in such cases. For example the calls in Ada.Characters.Handling
619 -- to its own obsolescent subprograms are just fine.
620
621 -- In any case we only generate warnings if we are in the extended main
622 -- source unit, and the entity itself is not in the extended main source
623 -- unit, since we assume the source unit itself knows what is going on
624 -- (and for sure we do not want silly warnings, e.g. on the end line of
625 -- an obsolescent procedure body).
626
627 if Is_Obsolescent (E)
628 and then not GNAT_Mode
629 and then not In_Extended_Main_Source_Unit (E)
630 and then In_Extended_Main_Source_Unit (N)
631 then
632 Check_Restriction (No_Obsolescent_Features, N);
633
634 if Warn_On_Obsolescent_Feature then
635 Output_Obsolescent_Entity_Warnings (N, E);
636 end if;
637 end if;
638
639 -- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only
640 -- detect real explicit references (modifications and references).
641
642 if Comes_From_Source (N)
643 and then Is_Ada_2005_Only (E)
644 and then Ada_Version < Ada_2005
645 and then Warn_On_Ada_2005_Compatibility
646 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')
647 then
648 Error_Msg_NE ("& is only defined in Ada 2005?y?", N, E);
649 end if;
650
651 -- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only
652 -- detect real explicit references (modifications and references).
653
654 if Comes_From_Source (N)
655 and then Is_Ada_2012_Only (E)
656 and then Ada_Version < Ada_2012
657 and then Warn_On_Ada_2012_Compatibility
658 and then (Typ = 'm' or else Typ = 'r')
659 then
660 Error_Msg_NE ("& is only defined in Ada 2012?y?", N, E);
661 end if;
662
663 -- Do not generate references if we are within a postcondition sub-
664 -- program, because the reference does not comes from source, and the
665 -- pre-analysis of the aspect has already created an entry for the ALI
666 -- file at the proper source location.
667
668 if Chars (Current_Scope) = Name_uPostconditions then
669 return;
670 end if;
671
672 -- Never collect references if not in main source unit. However, we omit
673 -- this test if Typ is 'e' or 'k', since these entries are structural,
674 -- and it is useful to have them in units that reference packages as
675 -- well as units that define packages. We also omit the test for the
676 -- case of 'p' since we want to include inherited primitive operations
677 -- from other packages.
678
679 -- We also omit this test is this is a body reference for a subprogram
680 -- instantiation. In this case the reference is to the generic body,
681 -- which clearly need not be in the main unit containing the instance.
682 -- For the same reason we accept an implicit reference generated for
683 -- a default in an instance.
684
685 -- We also set the referenced flag in a generic package that is not in
686 -- then main source unit, when the variable is of a formal private type,
687 -- to warn in the instance if the corresponding type is not a fully
688 -- initialized type.
689
690 if not In_Extended_Main_Source_Unit (N) then
691 if Typ = 'e' or else
692 Typ = 'I' or else
693 Typ = 'p' or else
694 Typ = 'i' or else
695 Typ = 'k'
696 or else (Typ = 'b' and then Is_Generic_Instance (E))
697
698 -- Allow the generation of references to reads, writes and calls
699 -- in SPARK mode when the related context comes from an instance.
700
701 or else
702 (GNATprove_Mode
703 and then In_Extended_Main_Code_Unit (N)
704 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's'))
705 then
706 null;
707
708 elsif In_Instance_Body
709 and then In_Extended_Main_Code_Unit (N)
710 and then Is_Generic_Type (Etype (E))
711 then
712 Set_Referenced (E);
713 return;
714
715 elsif Inside_A_Generic
716 and then Is_Generic_Type (Etype (E))
717 then
718 Set_Referenced (E);
719 return;
720
721 else
722 return;
723 end if;
724 end if;
725
726 -- For reference type p, the entity must be in main source unit
727
728 if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then
729 return;
730 end if;
731
732 -- Unless the reference is forced, we ignore references where the
733 -- reference itself does not come from source.
734
735 if not Force and then not Comes_From_Source (N) then
736 return;
737 end if;
738
739 -- Deal with setting entity as referenced, unless suppressed. Note that
740 -- we still do Set_Referenced on entities that do not come from source.
741 -- This situation arises when we have a source reference to a derived
742 -- operation, where the derived operation itself does not come from
743 -- source, but we still want to mark it as referenced, since we really
744 -- are referencing an entity in the corresponding package (this avoids
745 -- wrong complaints that the package contains no referenced entities).
746
747 if Set_Ref then
748
749 -- Assignable object appearing on left side of assignment or as
750 -- an out parameter.
751
752 if Is_Assignable (E)
753 and then Is_On_LHS (N)
754 and then Ekind (E) /= E_In_Out_Parameter
755 then
756 -- For objects that are renamings, just set as simply referenced
757 -- we do not try to do assignment type tracking in this case.
758
759 if Present (Renamed_Object (E)) then
760 Set_Referenced (E);
761
762 -- Out parameter case
763
764 elsif Kind = E_Out_Parameter then
765
766 -- If warning mode for all out parameters is set, or this is
767 -- the only warning parameter, then we want to mark this for
768 -- later warning logic by setting Referenced_As_Out_Parameter
769
770 if Warn_On_Modified_As_Out_Parameter (Formal) then
771 Set_Referenced_As_Out_Parameter (E, True);
772 Set_Referenced_As_LHS (E, False);
773
774 -- For OUT parameter not covered by the above cases, we simply
775 -- regard it as a normal reference (in this case we do not
776 -- want any of the warning machinery for out parameters).
777
778 else
779 Set_Referenced (E);
780 end if;
781
782 -- For the left hand of an assignment case, we do nothing here.
783 -- The processing for Analyze_Assignment_Statement will set the
784 -- Referenced_As_LHS flag.
785
786 else
787 null;
788 end if;
789
790 -- Check for a reference in a pragma that should not count as a
791 -- making the variable referenced for warning purposes.
792
793 elsif Is_Non_Significant_Pragma_Reference (N) then
794 null;
795
796 -- A reference in an attribute definition clause does not count as a
797 -- reference except for the case of Address. The reason that 'Address
798 -- is an exception is that it creates an alias through which the
799 -- variable may be referenced.
800
801 elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause
802 and then Chars (Parent (N)) /= Name_Address
803 and then N = Name (Parent (N))
804 then
805 null;
806
807 -- Constant completion does not count as a reference
808
809 elsif Typ = 'c'
810 and then Ekind (E) = E_Constant
811 then
812 null;
813
814 -- Record representation clause does not count as a reference
815
816 elsif Nkind (N) = N_Identifier
817 and then Nkind (Parent (N)) = N_Record_Representation_Clause
818 then
819 null;
820
821 -- Discriminants do not need to produce a reference to record type
822
823 elsif Typ = 'd'
824 and then Nkind (Parent (N)) = N_Discriminant_Specification
825 then
826 null;
827
828 -- All other cases
829
830 else
831 -- Special processing for IN OUT parameters, where we have an
832 -- implicit assignment to a simple variable.
833
834 if Kind = E_In_Out_Parameter
835 and then Is_Assignable (E)
836 then
837 -- For sure this counts as a normal read reference
838
839 Set_Referenced (E);
840 Set_Last_Assignment (E, Empty);
841
842 -- We count it as being referenced as an out parameter if the
843 -- option is set to warn on all out parameters, except that we
844 -- have a special exclusion for an intrinsic subprogram, which
845 -- is most likely an instantiation of Unchecked_Deallocation
846 -- which we do not want to consider as an assignment since it
847 -- generates false positives. We also exclude the case of an
848 -- IN OUT parameter if the name of the procedure is Free,
849 -- since we suspect similar semantics.
850
851 if Warn_On_All_Unread_Out_Parameters
852 and then Is_Entity_Name (Name (Call))
853 and then not Is_Intrinsic_Subprogram (Entity (Name (Call)))
854 and then Chars (Name (Call)) /= Name_Free
855 then
856 Set_Referenced_As_Out_Parameter (E, True);
857 Set_Referenced_As_LHS (E, False);
858 end if;
859
860 -- Don't count a recursive reference within a subprogram as a
861 -- reference (that allows detection of a recursive subprogram
862 -- whose only references are recursive calls as unreferenced).
863
864 elsif Is_Subprogram (E)
865 and then E = Nearest_Dynamic_Scope (Current_Scope)
866 then
867 null;
868
869 -- Any other occurrence counts as referencing the entity
870
871 elsif OK_To_Set_Referenced then
872 Set_Referenced (E);
873
874 -- If variable, this is an OK reference after an assignment
875 -- so we can clear the Last_Assignment indication.
876
877 if Is_Assignable (E) then
878 Set_Last_Assignment (E, Empty);
879 end if;
880 end if;
881 end if;
882
883 -- Check for pragma Unreferenced given and reference is within
884 -- this source unit (occasion for possible warning to be issued).
885 -- Note that the entity may be marked as unreferenced by pragma
886 -- Unused.
887
888 if Has_Unreferenced (E)
889 and then In_Same_Extended_Unit (E, N)
890 then
891 -- A reference as a named parameter in a call does not count as a
892 -- violation of pragma Unreferenced for this purpose...
893
894 if Nkind (N) = N_Identifier
895 and then Nkind (Parent (N)) = N_Parameter_Association
896 and then Selector_Name (Parent (N)) = N
897 then
898 null;
899
900 -- ... Neither does a reference to a variable on the left side of
901 -- an assignment.
902
903 elsif Is_On_LHS (N) then
904 null;
905
906 -- Do not consider F'Result as a violation of pragma Unreferenced
907 -- since the attribute acts as an anonymous alias of the function
908 -- result and not as a real reference to the function.
909
910 elsif Ekind_In (E, E_Function, E_Generic_Function)
911 and then Is_Entity_Name (N)
912 and then Is_Attribute_Result (Parent (N))
913 then
914 null;
915
916 -- No warning if the reference is in a call that does not come
917 -- from source (e.g. a call to a controlled type primitive).
918
919 elsif not Comes_From_Source (Parent (N))
920 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
921 then
922 null;
923
924 -- For entry formals, we want to place the warning message on the
925 -- corresponding entity in the accept statement. The current scope
926 -- is the body of the accept, so we find the formal whose name
927 -- matches that of the entry formal (there is no link between the
928 -- two entities, and the one in the accept statement is only used
929 -- for conformance checking).
930
931 elsif Ekind (Scope (E)) = E_Entry then
932 declare
933 BE : Entity_Id;
934
935 begin
936 BE := First_Entity (Current_Scope);
937 while Present (BE) loop
938 if Chars (BE) = Chars (E) then
939 if Has_Pragma_Unused (E) then
940 Error_Msg_NE -- CODEFIX
941 ("??pragma Unused given for&!", N, BE);
942 else
943 Error_Msg_NE -- CODEFIX
944 ("??pragma Unreferenced given for&!", N, BE);
945 end if;
946 exit;
947 end if;
948
949 Next_Entity (BE);
950 end loop;
951 end;
952
953 -- Here we issue the warning, since this is a real reference
954
955 elsif Has_Pragma_Unused (E) then
956 Error_Msg_NE -- CODEFIX
957 ("??pragma Unused given for&!", N, E);
958 else
959 Error_Msg_NE -- CODEFIX
960 ("??pragma Unreferenced given for&!", N, E);
961 end if;
962 end if;
963
964 -- If this is a subprogram instance, mark as well the internal
965 -- subprogram in the wrapper package, which may be a visible
966 -- compilation unit.
967
968 if Is_Overloadable (E)
969 and then Is_Generic_Instance (E)
970 and then Present (Alias (E))
971 then
972 Set_Referenced (Alias (E));
973 end if;
974 end if;
975
976 -- Generate reference if all conditions are met:
977
978 if
979 -- Cross referencing must be active
980
981 Opt.Xref_Active
982
983 -- The entity must be one for which we collect references
984
985 and then Xref_Entity_Letters (Ekind (E)) /= ' '
986
987 -- Both Sloc values must be set to something sensible
988
989 and then Sloc (E) > No_Location
990 and then Sloc (N) > No_Location
991
992 -- Ignore references from within an instance. The only exceptions to
993 -- this are default subprograms, for which we generate an implicit
994 -- reference and compilations in SPARK mode.
995
996 and then
997 (Instantiation_Location (Sloc (N)) = No_Location
998 or else Typ = 'i'
999 or else GNATprove_Mode)
1000
1001 -- Ignore dummy references
1002
1003 and then Typ /= ' '
1004 then
1005 if Nkind_In (N, N_Identifier,
1006 N_Defining_Identifier,
1007 N_Defining_Operator_Symbol,
1008 N_Operator_Symbol,
1009 N_Defining_Character_Literal)
1010 or else Nkind (N) in N_Op
1011 or else (Nkind (N) = N_Character_Literal
1012 and then Sloc (Entity (N)) /= Standard_Location)
1013 then
1014 Nod := N;
1015
1016 elsif Nkind_In (N, N_Expanded_Name, N_Selected_Component) then
1017 Nod := Selector_Name (N);
1018
1019 else
1020 return;
1021 end if;
1022
1023 -- Normal case of source entity comes from source
1024
1025 if Comes_From_Source (E) then
1026 Ent := E;
1027
1028 -- Because a declaration may be generated for a subprogram body
1029 -- without declaration in GNATprove mode, for inlining, some
1030 -- parameters may end up being marked as not coming from source
1031 -- although they are. Take these into account specially.
1032
1033 elsif GNATprove_Mode and then Ekind (E) in Formal_Kind then
1034 Ent := E;
1035
1036 -- Entity does not come from source, but is a derived subprogram and
1037 -- the derived subprogram comes from source (after one or more
1038 -- derivations) in which case the reference is to parent subprogram.
1039
1040 elsif Is_Overloadable (E)
1041 and then Present (Alias (E))
1042 then
1043 Ent := Alias (E);
1044 while not Comes_From_Source (Ent) loop
1045 if No (Alias (Ent)) then
1046 return;
1047 end if;
1048
1049 Ent := Alias (Ent);
1050 end loop;
1051
1052 -- The internally created defining entity for a child subprogram
1053 -- that has no previous spec has valid references.
1054
1055 elsif Is_Overloadable (E)
1056 and then Is_Child_Unit (E)
1057 then
1058 Ent := E;
1059
1060 -- Ditto for the formals of such a subprogram
1061
1062 elsif Is_Overloadable (Scope (E))
1063 and then Is_Child_Unit (Scope (E))
1064 then
1065 Ent := E;
1066
1067 -- Record components of discriminated subtypes or derived types must
1068 -- be treated as references to the original component.
1069
1070 elsif Ekind (E) = E_Component
1071 and then Comes_From_Source (Original_Record_Component (E))
1072 then
1073 Ent := Original_Record_Component (E);
1074
1075 -- If this is an expanded reference to a discriminant, recover the
1076 -- original discriminant, which gets the reference.
1077
1078 elsif Ekind (E) = E_In_Parameter
1079 and then Present (Discriminal_Link (E))
1080 then
1081 Ent := Discriminal_Link (E);
1082 Set_Referenced (Ent);
1083
1084 -- Ignore reference to any other entity that is not from source
1085
1086 else
1087 return;
1088 end if;
1089
1090 -- In SPARK mode, consider the underlying entity renamed instead of
1091 -- the renaming, which is needed to compute a valid set of effects
1092 -- (reads, writes) for the enclosing subprogram.
1093
1094 if GNATprove_Mode then
1095 Ent := Get_Through_Renamings (Ent);
1096
1097 -- If no enclosing object, then it could be a reference to any
1098 -- location not tracked individually, like heap-allocated data.
1099 -- Conservatively approximate this possibility by generating a
1100 -- dereference, and return.
1101
1102 if No (Ent) then
1103 if Actual_Typ = 'w' then
1104 SPARK_Specific.Generate_Dereference (Nod, 'r');
1105 SPARK_Specific.Generate_Dereference (Nod, 'w');
1106 else
1107 SPARK_Specific.Generate_Dereference (Nod, 'r');
1108 end if;
1109
1110 return;
1111 end if;
1112 end if;
1113
1114 -- Record reference to entity
1115
1116 if Actual_Typ = 'p'
1117 and then Is_Subprogram (Nod)
1118 and then Present (Overridden_Operation (Nod))
1119 then
1120 Actual_Typ := 'P';
1121 end if;
1122
1123 -- Comment needed here for special SPARK code ???
1124
1125 if GNATprove_Mode then
1126 Ref := Sloc (Nod);
1127 Def := Sloc (Ent);
1128
1129 Ref_Scope :=
1130 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Nod);
1131 Ent_Scope :=
1132 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Ent);
1133
1134 -- Since we are reaching through renamings in SPARK mode, we may
1135 -- end up with standard constants. Ignore those.
1136
1137 if Sloc (Ent_Scope) <= Standard_Location
1138 or else Def <= Standard_Location
1139 then
1140 return;
1141 end if;
1142
1143 Add_Entry
1144 ((Ent => Ent,
1145 Loc => Ref,
1146 Typ => Actual_Typ,
1147 Eun => Get_Top_Level_Code_Unit (Def),
1148 Lun => Get_Top_Level_Code_Unit (Ref),
1149 Ref_Scope => Ref_Scope,
1150 Ent_Scope => Ent_Scope),
1151 Ent_Scope_File => Get_Top_Level_Code_Unit (Ent));
1152
1153 else
1154 Ref := Original_Location (Sloc (Nod));
1155 Def := Original_Location (Sloc (Ent));
1156
1157 -- If this is an operator symbol, skip the initial quote for
1158 -- navigation purposes. This is not done for the end label,
1159 -- where we want the actual position after the closing quote.
1160
1161 if Typ = 't' then
1162 null;
1163
1164 elsif Nkind (N) = N_Defining_Operator_Symbol
1165 or else Nkind (Nod) = N_Operator_Symbol
1166 then
1167 Ref := Ref + 1;
1168 end if;
1169
1170 Add_Entry
1171 ((Ent => Ent,
1172 Loc => Ref,
1173 Typ => Actual_Typ,
1174 Eun => Get_Source_Unit (Def),
1175 Lun => Get_Source_Unit (Ref),
1176 Ref_Scope => Empty,
1177 Ent_Scope => Empty),
1178 Ent_Scope_File => No_Unit);
1179
1180 -- Generate reference to the first private entity
1181
1182 if Typ = 'e'
1183 and then Comes_From_Source (E)
1184 and then Nkind (Ent) = N_Defining_Identifier
1185 and then (Is_Package_Or_Generic_Package (Ent)
1186 or else Is_Concurrent_Type (Ent))
1187 and then Present (First_Private_Entity (E))
1188 and then In_Extended_Main_Source_Unit (N)
1189 then
1190 -- Handle case in which the full-view and partial-view of the
1191 -- first private entity are swapped.
1192
1193 declare
1194 First_Private : Entity_Id := First_Private_Entity (E);
1195
1196 begin
1197 if Is_Private_Type (First_Private)
1198 and then Present (Full_View (First_Private))
1199 then
1200 First_Private := Full_View (First_Private);
1201 end if;
1202
1203 Add_Entry
1204 ((Ent => Ent,
1205 Loc => Sloc (First_Private),
1206 Typ => 'E',
1207 Eun => Get_Source_Unit (Def),
1208 Lun => Get_Source_Unit (Ref),
1209 Ref_Scope => Empty,
1210 Ent_Scope => Empty),
1211 Ent_Scope_File => No_Unit);
1212 end;
1213 end if;
1214 end if;
1215 end if;
1216 end Generate_Reference;
1217
1218 -----------------------------------
1219 -- Generate_Reference_To_Formals --
1220 -----------------------------------
1221
1222 procedure Generate_Reference_To_Formals (E : Entity_Id) is
1223 Formal : Entity_Id;
1224
1225 begin
1226 if Is_Generic_Subprogram (E) then
1227 Formal := First_Entity (E);
1228
1229 while Present (Formal)
1230 and then not Is_Formal (Formal)
1231 loop
1232 Next_Entity (Formal);
1233 end loop;
1234
1235 elsif Ekind (E) in Access_Subprogram_Kind then
1236 Formal := First_Formal (Designated_Type (E));
1237
1238 else
1239 Formal := First_Formal (E);
1240 end if;
1241
1242 while Present (Formal) loop
1243 if Ekind (Formal) = E_In_Parameter then
1244
1245 if Nkind (Parameter_Type (Parent (Formal))) = N_Access_Definition
1246 then
1247 Generate_Reference (E, Formal, '^', False);
1248 else
1249 Generate_Reference (E, Formal, '>', False);
1250 end if;
1251
1252 elsif Ekind (Formal) = E_In_Out_Parameter then
1253 Generate_Reference (E, Formal, '=', False);
1254
1255 else
1256 Generate_Reference (E, Formal, '<', False);
1257 end if;
1258
1259 Next_Formal (Formal);
1260 end loop;
1261 end Generate_Reference_To_Formals;
1262
1263 -------------------------------------------
1264 -- Generate_Reference_To_Generic_Formals --
1265 -------------------------------------------
1266
1267 procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is
1268 Formal : Entity_Id;
1269
1270 begin
1271 Formal := First_Entity (E);
1272 while Present (Formal) loop
1273 if Comes_From_Source (Formal) then
1274 Generate_Reference (E, Formal, 'z', False);
1275 end if;
1276
1277 Next_Entity (Formal);
1278 end loop;
1279 end Generate_Reference_To_Generic_Formals;
1280
1281 -------------
1282 -- Get_Key --
1283 -------------
1284
1285 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is
1286 begin
1287 return E;
1288 end Get_Key;
1289
1290 ----------------------------
1291 -- Has_Deferred_Reference --
1292 ----------------------------
1293
1294 function Has_Deferred_Reference (Ent : Entity_Id) return Boolean is
1295 begin
1296 for J in Deferred_References.First .. Deferred_References.Last loop
1297 if Deferred_References.Table (J).E = Ent then
1298 return True;
1299 end if;
1300 end loop;
1301
1302 return False;
1303 end Has_Deferred_Reference;
1304
1305 ----------
1306 -- Hash --
1307 ----------
1308
1309 function Hash (F : Xref_Entry_Number) return Header_Num is
1310 -- It is unlikely to have two references to the same entity at the same
1311 -- source location, so the hash function depends only on the Ent and Loc
1312 -- fields.
1313
1314 XE : Xref_Entry renames Xrefs.Table (F);
1315 type M is mod 2**32;
1316
1317 H : constant M := M (XE.Key.Ent) + 2 ** 7 * M (abs XE.Key.Loc);
1318 -- It would be more natural to write:
1319 --
1320 -- H : constant M := M'Mod (XE.Key.Ent) + 2**7 * M'Mod (XE.Key.Loc);
1321 --
1322 -- But we can't use M'Mod, because it prevents bootstrapping with older
1323 -- compilers. Loc can be negative, so we do "abs" before converting.
1324 -- One day this can be cleaned up ???
1325
1326 begin
1327 return Header_Num (H mod Num_Buckets);
1328 end Hash;
1329
1330 -----------------
1331 -- HT_Set_Next --
1332 -----------------
1333
1334 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is
1335 begin
1336 Xrefs.Table (E).HTable_Next := Next;
1337 end HT_Set_Next;
1338
1339 -------------
1340 -- HT_Next --
1341 -------------
1342
1343 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is
1344 begin
1345 return Xrefs.Table (E).HTable_Next;
1346 end HT_Next;
1347
1348 ----------------
1349 -- Initialize --
1350 ----------------
1351
1352 procedure Initialize is
1353 begin
1354 Xrefs.Init;
1355 end Initialize;
1356
1357 --------
1358 -- Lt --
1359 --------
1360
1361 function Lt (T1, T2 : Xref_Entry) return Boolean is
1362 begin
1363 -- First test: if entity is in different unit, sort by unit
1364
1365 if T1.Key.Eun /= T2.Key.Eun then
1366 return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun);
1367
1368 -- Second test: within same unit, sort by entity Sloc
1369
1370 elsif T1.Def /= T2.Def then
1371 return T1.Def < T2.Def;
1372
1373 -- Third test: sort definitions ahead of references
1374
1375 elsif T1.Key.Loc = No_Location then
1376 return True;
1377
1378 elsif T2.Key.Loc = No_Location then
1379 return False;
1380
1381 -- Fourth test: for same entity, sort by reference location unit
1382
1383 elsif T1.Key.Lun /= T2.Key.Lun then
1384 return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun);
1385
1386 -- Fifth test: order of location within referencing unit
1387
1388 elsif T1.Key.Loc /= T2.Key.Loc then
1389 return T1.Key.Loc < T2.Key.Loc;
1390
1391 -- Finally, for two locations at the same address, we prefer
1392 -- the one that does NOT have the type 'r' so that a modification
1393 -- or extension takes preference, when there are more than one
1394 -- reference at the same location. As a result, in the case of
1395 -- entities that are in-out actuals, the read reference follows
1396 -- the modify reference.
1397
1398 else
1399 return T2.Key.Typ = 'r';
1400 end if;
1401 end Lt;
1402
1403 -----------------------
1404 -- Output_References --
1405 -----------------------
1406
1407 procedure Output_References is
1408
1409 procedure Get_Type_Reference
1410 (Ent : Entity_Id;
1411 Tref : out Entity_Id;
1412 Left : out Character;
1413 Right : out Character);
1414 -- Given an Entity_Id Ent, determines whether a type reference is
1415 -- required. If so, Tref is set to the entity for the type reference
1416 -- and Left and Right are set to the left/right brackets to be output
1417 -- for the reference. If no type reference is required, then Tref is
1418 -- set to Empty, and Left/Right are set to space.
1419
1420 procedure Output_Import_Export_Info (Ent : Entity_Id);
1421 -- Output language and external name information for an interfaced
1422 -- entity, using the format <language, external_name>.
1423
1424 ------------------------
1425 -- Get_Type_Reference --
1426 ------------------------
1427
1428 procedure Get_Type_Reference
1429 (Ent : Entity_Id;
1430 Tref : out Entity_Id;
1431 Left : out Character;
1432 Right : out Character)
1433 is
1434 Sav : Entity_Id;
1435
1436 begin
1437 -- See if we have a type reference
1438
1439 Tref := Ent;
1440 Left := '{';
1441 Right := '}';
1442
1443 loop
1444 Sav := Tref;
1445
1446 -- Processing for types
1447
1448 if Is_Type (Tref) then
1449
1450 -- Case of base type
1451
1452 if Base_Type (Tref) = Tref then
1453
1454 -- If derived, then get first subtype
1455
1456 if Tref /= Etype (Tref) then
1457 Tref := First_Subtype (Etype (Tref));
1458
1459 -- Set brackets for derived type, but don't override
1460 -- pointer case since the fact that something is a
1461 -- pointer is more important.
1462
1463 if Left /= '(' then
1464 Left := '<';
1465 Right := '>';
1466 end if;
1467
1468 -- If the completion of a private type is itself a derived
1469 -- type, we need the parent of the full view.
1470
1471 elsif Is_Private_Type (Tref)
1472 and then Present (Full_View (Tref))
1473 and then Etype (Full_View (Tref)) /= Full_View (Tref)
1474 then
1475 Tref := Etype (Full_View (Tref));
1476
1477 if Left /= '(' then
1478 Left := '<';
1479 Right := '>';
1480 end if;
1481
1482 -- If non-derived pointer, get directly designated type.
1483 -- If the type has a full view, all references are on the
1484 -- partial view that is seen first.
1485
1486 elsif Is_Access_Type (Tref) then
1487 Tref := Directly_Designated_Type (Tref);
1488 Left := '(';
1489 Right := ')';
1490
1491 elsif Is_Private_Type (Tref)
1492 and then Present (Full_View (Tref))
1493 then
1494 if Is_Access_Type (Full_View (Tref)) then
1495 Tref := Directly_Designated_Type (Full_View (Tref));
1496 Left := '(';
1497 Right := ')';
1498
1499 -- If the full view is an array type, we also retrieve
1500 -- the corresponding component type, because the ali
1501 -- entry already indicates that this is an array.
1502
1503 elsif Is_Array_Type (Full_View (Tref)) then
1504 Tref := Component_Type (Full_View (Tref));
1505 Left := '(';
1506 Right := ')';
1507 end if;
1508
1509 -- If non-derived array, get component type. Skip component
1510 -- type for case of String or Wide_String, saves worthwhile
1511 -- space.
1512
1513 elsif Is_Array_Type (Tref)
1514 and then Tref /= Standard_String
1515 and then Tref /= Standard_Wide_String
1516 then
1517 Tref := Component_Type (Tref);
1518 Left := '(';
1519 Right := ')';
1520
1521 -- For other non-derived base types, nothing
1522
1523 else
1524 exit;
1525 end if;
1526
1527 -- For a subtype, go to ancestor subtype
1528
1529 else
1530 Tref := Ancestor_Subtype (Tref);
1531
1532 -- If no ancestor subtype, go to base type
1533
1534 if No (Tref) then
1535 Tref := Base_Type (Sav);
1536 end if;
1537 end if;
1538
1539 -- For objects, functions, enum literals, just get type from
1540 -- Etype field.
1541
1542 elsif Is_Object (Tref)
1543 or else Ekind (Tref) = E_Enumeration_Literal
1544 or else Ekind (Tref) = E_Function
1545 or else Ekind (Tref) = E_Operator
1546 then
1547 Tref := Etype (Tref);
1548
1549 -- Another special case: an object of a classwide type
1550 -- initialized with a tag-indeterminate call gets a subtype
1551 -- of the classwide type during expansion. See if the original
1552 -- type in the declaration is named, and return it instead
1553 -- of going to the root type. The expression may be a class-
1554 -- wide function call whose result is on the secondary stack,
1555 -- which forces the declaration to be rewritten as a renaming,
1556 -- so examine the source declaration.
1557
1558 if Ekind (Tref) = E_Class_Wide_Subtype then
1559 declare
1560 Decl : constant Node_Id := Original_Node (Parent (Ent));
1561 begin
1562 if Nkind (Decl) = N_Object_Declaration
1563 and then Is_Entity_Name
1564 (Original_Node (Object_Definition (Decl)))
1565 then
1566 Tref :=
1567 Entity (Original_Node (Object_Definition (Decl)));
1568 end if;
1569 end;
1570
1571 -- For a function that returns a class-wide type, Tref is
1572 -- already correct.
1573
1574 elsif Is_Overloadable (Ent)
1575 and then Is_Class_Wide_Type (Tref)
1576 then
1577 return;
1578 end if;
1579
1580 -- For anything else, exit
1581
1582 else
1583 exit;
1584 end if;
1585
1586 -- Exit if no type reference, or we are stuck in some loop trying
1587 -- to find the type reference, or if the type is standard void
1588 -- type (the latter is an implementation artifact that should not
1589 -- show up in the generated cross-references).
1590
1591 exit when No (Tref)
1592 or else Tref = Sav
1593 or else Tref = Standard_Void_Type;
1594
1595 -- If we have a usable type reference, return, otherwise keep
1596 -- looking for something useful (we are looking for something
1597 -- that either comes from source or standard)
1598
1599 if Sloc (Tref) = Standard_Location
1600 or else Comes_From_Source (Tref)
1601 then
1602 -- If the reference is a subtype created for a generic actual,
1603 -- go actual directly, the inner subtype is not user visible.
1604
1605 if Nkind (Parent (Tref)) = N_Subtype_Declaration
1606 and then not Comes_From_Source (Parent (Tref))
1607 and then
1608 (Is_Wrapper_Package (Scope (Tref))
1609 or else Is_Generic_Instance (Scope (Tref)))
1610 then
1611 Tref := First_Subtype (Base_Type (Tref));
1612 end if;
1613
1614 return;
1615 end if;
1616 end loop;
1617
1618 -- If we fall through the loop, no type reference
1619
1620 Tref := Empty;
1621 Left := ' ';
1622 Right := ' ';
1623 end Get_Type_Reference;
1624
1625 -------------------------------
1626 -- Output_Import_Export_Info --
1627 -------------------------------
1628
1629 procedure Output_Import_Export_Info (Ent : Entity_Id) is
1630 Language_Name : Name_Id;
1631 Conv : constant Convention_Id := Convention (Ent);
1632
1633 begin
1634 -- Generate language name from convention
1635
1636 if Conv = Convention_C then
1637 Language_Name := Name_C;
1638
1639 elsif Conv = Convention_CPP then
1640 Language_Name := Name_CPP;
1641
1642 elsif Conv = Convention_Ada then
1643 Language_Name := Name_Ada;
1644
1645 else
1646 -- For the moment we ignore all other cases ???
1647
1648 return;
1649 end if;
1650
1651 Write_Info_Char ('<');
1652 Get_Unqualified_Name_String (Language_Name);
1653
1654 for J in 1 .. Name_Len loop
1655 Write_Info_Char (Name_Buffer (J));
1656 end loop;
1657
1658 if Present (Interface_Name (Ent)) then
1659 Write_Info_Char (',');
1660 String_To_Name_Buffer (Strval (Interface_Name (Ent)));
1661
1662 for J in 1 .. Name_Len loop
1663 Write_Info_Char (Name_Buffer (J));
1664 end loop;
1665 end if;
1666
1667 Write_Info_Char ('>');
1668 end Output_Import_Export_Info;
1669
1670 -- Start of processing for Output_References
1671
1672 begin
1673 -- First we add references to the primitive operations of tagged types
1674 -- declared in the main unit.
1675
1676 Handle_Prim_Ops : declare
1677 Ent : Entity_Id;
1678
1679 begin
1680 for J in 1 .. Xrefs.Last loop
1681 Ent := Xrefs.Table (J).Key.Ent;
1682
1683 if Is_Type (Ent)
1684 and then Is_Tagged_Type (Ent)
1685 and then Is_Base_Type (Ent)
1686 and then In_Extended_Main_Source_Unit (Ent)
1687 then
1688 Generate_Prim_Op_References (Ent);
1689 end if;
1690 end loop;
1691 end Handle_Prim_Ops;
1692
1693 -- Before we go ahead and output the references we have a problem
1694 -- that needs dealing with. So far we have captured things that are
1695 -- definitely referenced by the main unit, or defined in the main
1696 -- unit. That's because we don't want to clutter up the ali file
1697 -- for this unit with definition lines for entities in other units
1698 -- that are not referenced.
1699
1700 -- But there is a glitch. We may reference an entity in another unit,
1701 -- and it may have a type reference to an entity that is not directly
1702 -- referenced in the main unit, which may mean that there is no xref
1703 -- entry for this entity yet in the list of references.
1704
1705 -- If we don't do something about this, we will end with an orphan type
1706 -- reference, i.e. it will point to an entity that does not appear
1707 -- within the generated references in the ali file. That is not good for
1708 -- tools using the xref information.
1709
1710 -- To fix this, we go through the references adding definition entries
1711 -- for any unreferenced entities that can be referenced in a type
1712 -- reference. There is a recursion problem here, and that is dealt with
1713 -- by making sure that this traversal also traverses any entries that
1714 -- get added by the traversal.
1715
1716 Handle_Orphan_Type_References : declare
1717 J : Nat;
1718 Tref : Entity_Id;
1719 Ent : Entity_Id;
1720
1721 L, R : Character;
1722 pragma Warnings (Off, L);
1723 pragma Warnings (Off, R);
1724
1725 procedure New_Entry (E : Entity_Id);
1726 -- Make an additional entry into the Xref table for a type entity
1727 -- that is related to the current entity (parent, type ancestor,
1728 -- progenitor, etc.).
1729
1730 ----------------
1731 -- New_Entry --
1732 ----------------
1733
1734 procedure New_Entry (E : Entity_Id) is
1735 begin
1736 pragma Assert (Present (E));
1737
1738 if not Has_Xref_Entry (Implementation_Base_Type (E))
1739 and then Sloc (E) > No_Location
1740 then
1741 Add_Entry
1742 ((Ent => E,
1743 Loc => No_Location,
1744 Typ => Character'First,
1745 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
1746 Lun => No_Unit,
1747 Ref_Scope => Empty,
1748 Ent_Scope => Empty),
1749 Ent_Scope_File => No_Unit);
1750 end if;
1751 end New_Entry;
1752
1753 -- Start of processing for Handle_Orphan_Type_References
1754
1755 begin
1756 -- Note that this is not a for loop for a very good reason. The
1757 -- processing of items in the table can add new items to the table,
1758 -- and they must be processed as well.
1759
1760 J := 1;
1761 while J <= Xrefs.Last loop
1762 Ent := Xrefs.Table (J).Key.Ent;
1763
1764 -- Do not generate reference information for an ignored Ghost
1765 -- entity because neither the entity nor its references will
1766 -- appear in the final tree.
1767
1768 if Is_Ignored_Ghost_Entity (Ent) then
1769 goto Orphan_Continue;
1770 end if;
1771
1772 Get_Type_Reference (Ent, Tref, L, R);
1773
1774 if Present (Tref)
1775 and then not Has_Xref_Entry (Tref)
1776 and then Sloc (Tref) > No_Location
1777 then
1778 New_Entry (Tref);
1779
1780 if Is_Record_Type (Ent)
1781 and then Present (Interfaces (Ent))
1782 then
1783 -- Add an entry for each one of the given interfaces
1784 -- implemented by type Ent.
1785
1786 declare
1787 Elmt : Elmt_Id := First_Elmt (Interfaces (Ent));
1788 begin
1789 while Present (Elmt) loop
1790 New_Entry (Node (Elmt));
1791 Next_Elmt (Elmt);
1792 end loop;
1793 end;
1794 end if;
1795 end if;
1796
1797 -- Collect inherited primitive operations that may be declared in
1798 -- another unit and have no visible reference in the current one.
1799
1800 if Is_Type (Ent)
1801 and then Is_Tagged_Type (Ent)
1802 and then Is_Derived_Type (Ent)
1803 and then Is_Base_Type (Ent)
1804 and then In_Extended_Main_Source_Unit (Ent)
1805 then
1806 declare
1807 Op_List : constant Elist_Id := Primitive_Operations (Ent);
1808 Op : Elmt_Id;
1809 Prim : Entity_Id;
1810
1811 function Parent_Op (E : Entity_Id) return Entity_Id;
1812 -- Find original operation, which may be inherited through
1813 -- several derivations.
1814
1815 function Parent_Op (E : Entity_Id) return Entity_Id is
1816 Orig_Op : constant Entity_Id := Alias (E);
1817
1818 begin
1819 if No (Orig_Op) then
1820 return Empty;
1821
1822 elsif not Comes_From_Source (E)
1823 and then not Has_Xref_Entry (Orig_Op)
1824 and then Comes_From_Source (Orig_Op)
1825 then
1826 return Orig_Op;
1827 else
1828 return Parent_Op (Orig_Op);
1829 end if;
1830 end Parent_Op;
1831
1832 begin
1833 Op := First_Elmt (Op_List);
1834 while Present (Op) loop
1835 Prim := Parent_Op (Node (Op));
1836
1837 if Present (Prim) then
1838 Add_Entry
1839 ((Ent => Prim,
1840 Loc => No_Location,
1841 Typ => Character'First,
1842 Eun => Get_Source_Unit (Sloc (Prim)),
1843 Lun => No_Unit,
1844 Ref_Scope => Empty,
1845 Ent_Scope => Empty),
1846 Ent_Scope_File => No_Unit);
1847 end if;
1848
1849 Next_Elmt (Op);
1850 end loop;
1851 end;
1852 end if;
1853
1854 <<Orphan_Continue>>
1855 J := J + 1;
1856 end loop;
1857 end Handle_Orphan_Type_References;
1858
1859 -- Now we have all the references, including those for any embedded type
1860 -- references, so we can sort them, and output them.
1861
1862 Output_Refs : declare
1863 Nrefs : constant Nat := Xrefs.Last;
1864 -- Number of references in table
1865
1866 Rnums : array (0 .. Nrefs) of Nat;
1867 -- This array contains numbers of references in the Xrefs table.
1868 -- This list is sorted in output order. The extra 0'th entry is
1869 -- convenient for the call to sort. When we sort the table, we
1870 -- move the entries in Rnums around, but we do not move the
1871 -- original table entries.
1872
1873 Curxu : Unit_Number_Type;
1874 -- Current xref unit
1875
1876 Curru : Unit_Number_Type;
1877 -- Current reference unit for one entity
1878
1879 Curent : Entity_Id;
1880 -- Current entity
1881
1882 Curnam : String (1 .. Name_Buffer'Length);
1883 Curlen : Natural;
1884 -- Simple name and length of current entity
1885
1886 Curdef : Source_Ptr;
1887 -- Original source location for current entity
1888
1889 Crloc : Source_Ptr;
1890 -- Current reference location
1891
1892 Ctyp : Character;
1893 -- Entity type character
1894
1895 Prevt : Character;
1896 -- reference kind of previous reference
1897
1898 Tref : Entity_Id;
1899 -- Type reference
1900
1901 Rref : Node_Id;
1902 -- Renaming reference
1903
1904 Trunit : Unit_Number_Type;
1905 -- Unit number for type reference
1906
1907 function Lt (Op1, Op2 : Natural) return Boolean;
1908 -- Comparison function for Sort call
1909
1910 function Name_Change (X : Entity_Id) return Boolean;
1911 -- Determines if entity X has a different simple name from Curent
1912
1913 procedure Move (From : Natural; To : Natural);
1914 -- Move procedure for Sort call
1915
1916 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
1917
1918 --------
1919 -- Lt --
1920 --------
1921
1922 function Lt (Op1, Op2 : Natural) return Boolean is
1923 T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1)));
1924 T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2)));
1925
1926 begin
1927 return Lt (T1, T2);
1928 end Lt;
1929
1930 ----------
1931 -- Move --
1932 ----------
1933
1934 procedure Move (From : Natural; To : Natural) is
1935 begin
1936 Rnums (Nat (To)) := Rnums (Nat (From));
1937 end Move;
1938
1939 -----------------
1940 -- Name_Change --
1941 -----------------
1942
1943 -- Why a string comparison here??? Why not compare Name_Id values???
1944
1945 function Name_Change (X : Entity_Id) return Boolean is
1946 begin
1947 Get_Unqualified_Name_String (Chars (X));
1948
1949 if Name_Len /= Curlen then
1950 return True;
1951 else
1952 return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen);
1953 end if;
1954 end Name_Change;
1955
1956 -- Start of processing for Output_Refs
1957
1958 begin
1959 -- Capture the definition Sloc values. We delay doing this till now,
1960 -- since at the time the reference or definition is made, private
1961 -- types may be swapped, and the Sloc value may be incorrect. We
1962 -- also set up the pointer vector for the sort.
1963
1964 -- For user-defined operators we need to skip the initial quote and
1965 -- point to the first character of the name, for navigation purposes.
1966
1967 for J in 1 .. Nrefs loop
1968 declare
1969 E : constant Entity_Id := Xrefs.Table (J).Key.Ent;
1970 Loc : constant Source_Ptr := Original_Location (Sloc (E));
1971
1972 begin
1973 Rnums (J) := J;
1974
1975 if Nkind (E) = N_Defining_Operator_Symbol then
1976 Xrefs.Table (J).Def := Loc + 1;
1977 else
1978 Xrefs.Table (J).Def := Loc;
1979 end if;
1980 end;
1981 end loop;
1982
1983 -- Sort the references
1984
1985 Sorting.Sort (Integer (Nrefs));
1986
1987 -- Initialize loop through references
1988
1989 Curxu := No_Unit;
1990 Curent := Empty;
1991 Curdef := No_Location;
1992 Curru := No_Unit;
1993 Crloc := No_Location;
1994 Prevt := 'm';
1995
1996 -- Loop to output references
1997
1998 for Refno in 1 .. Nrefs loop
1999 Output_One_Ref : declare
2000 Ent : Entity_Id;
2001
2002 XE : Xref_Entry renames Xrefs.Table (Rnums (Refno));
2003 -- The current entry to be accessed
2004
2005 Left : Character;
2006 Right : Character;
2007 -- Used for {} or <> or () for type reference
2008
2009 procedure Check_Type_Reference
2010 (Ent : Entity_Id;
2011 List_Interface : Boolean;
2012 Is_Component : Boolean := False);
2013 -- Find whether there is a meaningful type reference for
2014 -- Ent, and display it accordingly. If List_Interface is
2015 -- true, then Ent is a progenitor interface of the current
2016 -- type entity being listed. In that case list it as is,
2017 -- without looking for a type reference for it. Flag is also
2018 -- used for index types of an array type, where the caller
2019 -- supplies the intended type reference. Is_Component serves
2020 -- the same purpose, to display the component type of a
2021 -- derived array type, for which only the parent type has
2022 -- ben displayed so far.
2023
2024 procedure Output_Instantiation_Refs (Loc : Source_Ptr);
2025 -- Recursive procedure to output instantiation references for
2026 -- the given source ptr in [file|line[...]] form. No output
2027 -- if the given location is not a generic template reference.
2028
2029 procedure Output_Overridden_Op (Old_E : Entity_Id);
2030 -- For a subprogram that is overriding, display information
2031 -- about the inherited operation that it overrides.
2032
2033 --------------------------
2034 -- Check_Type_Reference --
2035 --------------------------
2036
2037 procedure Check_Type_Reference
2038 (Ent : Entity_Id;
2039 List_Interface : Boolean;
2040 Is_Component : Boolean := False)
2041 is
2042 begin
2043 if List_Interface then
2044
2045 -- This is a progenitor interface of the type for which
2046 -- xref information is being generated.
2047
2048 Tref := Ent;
2049 Left := '<';
2050 Right := '>';
2051
2052 -- The following is not documented in lib-xref.ads ???
2053
2054 elsif Is_Component then
2055 Tref := Ent;
2056 Left := '(';
2057 Right := ')';
2058
2059 else
2060 Get_Type_Reference (Ent, Tref, Left, Right);
2061 end if;
2062
2063 if Present (Tref) then
2064
2065 -- Case of standard entity, output name
2066
2067 if Sloc (Tref) = Standard_Location then
2068 Write_Info_Char (Left);
2069 Write_Info_Name (Chars (Tref));
2070 Write_Info_Char (Right);
2071
2072 -- Case of source entity, output location
2073
2074 else
2075 Write_Info_Char (Left);
2076 Trunit := Get_Source_Unit (Sloc (Tref));
2077
2078 if Trunit /= Curxu then
2079 Write_Info_Nat (Dependency_Num (Trunit));
2080 Write_Info_Char ('|');
2081 end if;
2082
2083 Write_Info_Nat
2084 (Int (Get_Logical_Line_Number (Sloc (Tref))));
2085
2086 declare
2087 Ent : Entity_Id;
2088 Ctyp : Character;
2089
2090 begin
2091 Ent := Tref;
2092 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2093
2094 if Ctyp = '+'
2095 and then Present (Full_View (Ent))
2096 then
2097 Ent := Underlying_Type (Ent);
2098
2099 if Present (Ent) then
2100 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2101 end if;
2102 end if;
2103
2104 Write_Info_Char (Ctyp);
2105 end;
2106
2107 Write_Info_Nat
2108 (Int (Get_Column_Number (Sloc (Tref))));
2109
2110 -- If the type comes from an instantiation, add the
2111 -- corresponding info.
2112
2113 Output_Instantiation_Refs (Sloc (Tref));
2114 Write_Info_Char (Right);
2115 end if;
2116 end if;
2117 end Check_Type_Reference;
2118
2119 -------------------------------
2120 -- Output_Instantiation_Refs --
2121 -------------------------------
2122
2123 procedure Output_Instantiation_Refs (Loc : Source_Ptr) is
2124 Iloc : constant Source_Ptr := Instantiation_Location (Loc);
2125 Lun : Unit_Number_Type;
2126 Cu : constant Unit_Number_Type := Curru;
2127
2128 begin
2129 -- Nothing to do if this is not an instantiation
2130
2131 if Iloc = No_Location then
2132 return;
2133 end if;
2134
2135 -- Output instantiation reference
2136
2137 Write_Info_Char ('[');
2138 Lun := Get_Source_Unit (Iloc);
2139
2140 if Lun /= Curru then
2141 Curru := Lun;
2142 Write_Info_Nat (Dependency_Num (Curru));
2143 Write_Info_Char ('|');
2144 end if;
2145
2146 Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc)));
2147
2148 -- Recursive call to get nested instantiations
2149
2150 Output_Instantiation_Refs (Iloc);
2151
2152 -- Output final ] after call to get proper nesting
2153
2154 Write_Info_Char (']');
2155 Curru := Cu;
2156 return;
2157 end Output_Instantiation_Refs;
2158
2159 --------------------------
2160 -- Output_Overridden_Op --
2161 --------------------------
2162
2163 procedure Output_Overridden_Op (Old_E : Entity_Id) is
2164 Op : Entity_Id;
2165
2166 begin
2167 -- The overridden operation has an implicit declaration
2168 -- at the point of derivation. What we want to display
2169 -- is the original operation, which has the actual body
2170 -- (or abstract declaration) that is being overridden.
2171 -- The overridden operation is not always set, e.g. when
2172 -- it is a predefined operator.
2173
2174 if No (Old_E) then
2175 return;
2176
2177 -- Follow alias chain if one is present
2178
2179 elsif Present (Alias (Old_E)) then
2180
2181 -- The subprogram may have been implicitly inherited
2182 -- through several levels of derivation, so find the
2183 -- ultimate (source) ancestor.
2184
2185 Op := Ultimate_Alias (Old_E);
2186
2187 -- Normal case of no alias present. We omit generated
2188 -- primitives like tagged equality, that have no source
2189 -- representation.
2190
2191 else
2192 Op := Old_E;
2193 end if;
2194
2195 if Present (Op)
2196 and then Sloc (Op) /= Standard_Location
2197 and then Comes_From_Source (Op)
2198 then
2199 declare
2200 Loc : constant Source_Ptr := Sloc (Op);
2201 Par_Unit : constant Unit_Number_Type :=
2202 Get_Source_Unit (Loc);
2203
2204 begin
2205 Write_Info_Char ('<');
2206
2207 if Par_Unit /= Curxu then
2208 Write_Info_Nat (Dependency_Num (Par_Unit));
2209 Write_Info_Char ('|');
2210 end if;
2211
2212 Write_Info_Nat (Int (Get_Logical_Line_Number (Loc)));
2213 Write_Info_Char ('p');
2214 Write_Info_Nat (Int (Get_Column_Number (Loc)));
2215 Write_Info_Char ('>');
2216 end;
2217 end if;
2218 end Output_Overridden_Op;
2219
2220 -- Start of processing for Output_One_Ref
2221
2222 begin
2223 Ent := XE.Key.Ent;
2224
2225 -- Do not generate reference information for an ignored Ghost
2226 -- entity because neither the entity nor its references will
2227 -- appear in the final tree.
2228
2229 if Is_Ignored_Ghost_Entity (Ent) then
2230 goto Continue;
2231 end if;
2232
2233 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2234
2235 -- Skip reference if it is the only reference to an entity,
2236 -- and it is an END line reference, and the entity is not in
2237 -- the current extended source. This prevents junk entries
2238 -- consisting only of packages with END lines, where no
2239 -- entity from the package is actually referenced.
2240
2241 if XE.Key.Typ = 'e'
2242 and then Ent /= Curent
2243 and then (Refno = Nrefs
2244 or else
2245 Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent)
2246 and then not In_Extended_Main_Source_Unit (Ent)
2247 then
2248 goto Continue;
2249 end if;
2250
2251 -- For private type, get full view type
2252
2253 if Ctyp = '+'
2254 and then Present (Full_View (XE.Key.Ent))
2255 then
2256 Ent := Underlying_Type (Ent);
2257
2258 if Present (Ent) then
2259 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2260 end if;
2261 end if;
2262
2263 -- Special exception for Boolean
2264
2265 if Ctyp = 'E' and then Is_Boolean_Type (Ent) then
2266 Ctyp := 'B';
2267 end if;
2268
2269 -- For variable reference, get corresponding type
2270
2271 if Ctyp = '*' then
2272 Ent := Etype (XE.Key.Ent);
2273 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2274
2275 -- If variable is private type, get full view type
2276
2277 if Ctyp = '+'
2278 and then Present (Full_View (Etype (XE.Key.Ent)))
2279 then
2280 Ent := Underlying_Type (Etype (XE.Key.Ent));
2281
2282 if Present (Ent) then
2283 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2284 end if;
2285
2286 elsif Is_Generic_Type (Ent) then
2287
2288 -- If the type of the entity is a generic private type,
2289 -- there is no usable full view, so retain the indication
2290 -- that this is an object.
2291
2292 Ctyp := '*';
2293 end if;
2294
2295 -- Special handling for access parameters and objects and
2296 -- components of an anonymous access type.
2297
2298 if Ekind_In (Etype (XE.Key.Ent),
2299 E_Anonymous_Access_Type,
2300 E_Anonymous_Access_Subprogram_Type,
2301 E_Anonymous_Access_Protected_Subprogram_Type)
2302 then
2303 if Is_Formal (XE.Key.Ent)
2304 or else
2305 Ekind_In
2306 (XE.Key.Ent, E_Variable, E_Constant, E_Component)
2307 then
2308 Ctyp := 'p';
2309 end if;
2310
2311 -- Special handling for Boolean
2312
2313 elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then
2314 Ctyp := 'b';
2315 end if;
2316 end if;
2317
2318 -- Special handling for abstract types and operations
2319
2320 if Is_Overloadable (XE.Key.Ent)
2321 and then Is_Abstract_Subprogram (XE.Key.Ent)
2322 then
2323 if Ctyp = 'U' then
2324 Ctyp := 'x'; -- Abstract procedure
2325
2326 elsif Ctyp = 'V' then
2327 Ctyp := 'y'; -- Abstract function
2328 end if;
2329
2330 elsif Is_Type (XE.Key.Ent)
2331 and then Is_Abstract_Type (XE.Key.Ent)
2332 then
2333 if Is_Interface (XE.Key.Ent) then
2334 Ctyp := 'h';
2335
2336 elsif Ctyp = 'R' then
2337 Ctyp := 'H'; -- Abstract type
2338 end if;
2339 end if;
2340
2341 -- Only output reference if interesting type of entity
2342
2343 if Ctyp = ' '
2344
2345 -- Suppress references to object definitions, used for local
2346 -- references.
2347
2348 or else XE.Key.Typ = 'D'
2349 or else XE.Key.Typ = 'I'
2350
2351 -- Suppress self references, except for bodies that act as
2352 -- specs.
2353
2354 or else (XE.Key.Loc = XE.Def
2355 and then
2356 (XE.Key.Typ /= 'b'
2357 or else not Is_Subprogram (XE.Key.Ent)))
2358
2359 -- Also suppress definitions of body formals (we only
2360 -- treat these as references, and the references were
2361 -- separately recorded).
2362
2363 or else (Is_Formal (XE.Key.Ent)
2364 and then Present (Spec_Entity (XE.Key.Ent)))
2365 then
2366 null;
2367
2368 else
2369 -- Start new Xref section if new xref unit
2370
2371 if XE.Key.Eun /= Curxu then
2372 if Write_Info_Col > 1 then
2373 Write_Info_EOL;
2374 end if;
2375
2376 Curxu := XE.Key.Eun;
2377
2378 Write_Info_Initiate ('X');
2379 Write_Info_Char (' ');
2380 Write_Info_Nat (Dependency_Num (XE.Key.Eun));
2381 Write_Info_Char (' ');
2382 Write_Info_Name
2383 (Reference_Name (Source_Index (XE.Key.Eun)));
2384 end if;
2385
2386 -- Start new Entity line if new entity. Note that we
2387 -- consider two entities the same if they have the same
2388 -- name and source location. This causes entities in
2389 -- instantiations to be treated as though they referred
2390 -- to the template.
2391
2392 if No (Curent)
2393 or else
2394 (XE.Key.Ent /= Curent
2395 and then
2396 (Name_Change (XE.Key.Ent) or else XE.Def /= Curdef))
2397 then
2398 Curent := XE.Key.Ent;
2399 Curdef := XE.Def;
2400
2401 Get_Unqualified_Name_String (Chars (XE.Key.Ent));
2402 Curlen := Name_Len;
2403 Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen);
2404
2405 if Write_Info_Col > 1 then
2406 Write_Info_EOL;
2407 end if;
2408
2409 -- Write column number information
2410
2411 Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def)));
2412 Write_Info_Char (Ctyp);
2413 Write_Info_Nat (Int (Get_Column_Number (XE.Def)));
2414
2415 -- Write level information
2416
2417 Write_Level_Info : declare
2418 function Is_Visible_Generic_Entity
2419 (E : Entity_Id) return Boolean;
2420 -- Check whether E is declared in the visible part
2421 -- of a generic package. For source navigation
2422 -- purposes, treat this as a visible entity.
2423
2424 function Is_Private_Record_Component
2425 (E : Entity_Id) return Boolean;
2426 -- Check whether E is a non-inherited component of a
2427 -- private extension. Even if the enclosing record is
2428 -- public, we want to treat the component as private
2429 -- for navigation purposes.
2430
2431 ---------------------------------
2432 -- Is_Private_Record_Component --
2433 ---------------------------------
2434
2435 function Is_Private_Record_Component
2436 (E : Entity_Id) return Boolean
2437 is
2438 S : constant Entity_Id := Scope (E);
2439 begin
2440 return
2441 Ekind (E) = E_Component
2442 and then Nkind (Declaration_Node (S)) =
2443 N_Private_Extension_Declaration
2444 and then Original_Record_Component (E) = E;
2445 end Is_Private_Record_Component;
2446
2447 -------------------------------
2448 -- Is_Visible_Generic_Entity --
2449 -------------------------------
2450
2451 function Is_Visible_Generic_Entity
2452 (E : Entity_Id) return Boolean
2453 is
2454 Par : Node_Id;
2455
2456 begin
2457 -- The Present check here is an error defense
2458
2459 if Present (Scope (E))
2460 and then Ekind (Scope (E)) /= E_Generic_Package
2461 then
2462 return False;
2463 end if;
2464
2465 Par := Parent (E);
2466 while Present (Par) loop
2467 if
2468 Nkind (Par) = N_Generic_Package_Declaration
2469 then
2470 -- Entity is a generic formal
2471
2472 return False;
2473
2474 elsif
2475 Nkind (Parent (Par)) = N_Package_Specification
2476 then
2477 return
2478 Is_List_Member (Par)
2479 and then List_Containing (Par) =
2480 Visible_Declarations (Parent (Par));
2481 else
2482 Par := Parent (Par);
2483 end if;
2484 end loop;
2485
2486 return False;
2487 end Is_Visible_Generic_Entity;
2488
2489 -- Start of processing for Write_Level_Info
2490
2491 begin
2492 if Is_Hidden (Curent)
2493 or else Is_Private_Record_Component (Curent)
2494 then
2495 Write_Info_Char (' ');
2496
2497 elsif
2498 Is_Public (Curent)
2499 or else Is_Visible_Generic_Entity (Curent)
2500 then
2501 Write_Info_Char ('*');
2502
2503 else
2504 Write_Info_Char (' ');
2505 end if;
2506 end Write_Level_Info;
2507
2508 -- Output entity name. We use the occurrence from the
2509 -- actual source program at the definition point.
2510
2511 declare
2512 Ent_Name : constant String :=
2513 Exact_Source_Name (Sloc (XE.Key.Ent));
2514 begin
2515 for C in Ent_Name'Range loop
2516 Write_Info_Char (Ent_Name (C));
2517 end loop;
2518 end;
2519
2520 -- See if we have a renaming reference
2521
2522 if Is_Object (XE.Key.Ent)
2523 and then Present (Renamed_Object (XE.Key.Ent))
2524 then
2525 Rref := Renamed_Object (XE.Key.Ent);
2526
2527 elsif Is_Overloadable (XE.Key.Ent)
2528 and then Nkind (Parent (Declaration_Node (XE.Key.Ent)))
2529 = N_Subprogram_Renaming_Declaration
2530 then
2531 Rref := Name (Parent (Declaration_Node (XE.Key.Ent)));
2532
2533 elsif Ekind (XE.Key.Ent) = E_Package
2534 and then Nkind (Declaration_Node (XE.Key.Ent)) =
2535 N_Package_Renaming_Declaration
2536 then
2537 Rref := Name (Declaration_Node (XE.Key.Ent));
2538
2539 else
2540 Rref := Empty;
2541 end if;
2542
2543 if Present (Rref) then
2544 if Nkind (Rref) = N_Expanded_Name then
2545 Rref := Selector_Name (Rref);
2546 end if;
2547
2548 if Nkind (Rref) = N_Identifier
2549 or else Nkind (Rref) = N_Operator_Symbol
2550 then
2551 null;
2552
2553 -- For renamed array components, use the array name
2554 -- for the renamed entity, which reflect the fact that
2555 -- in general the whole array is aliased.
2556
2557 elsif Nkind (Rref) = N_Indexed_Component then
2558 if Nkind (Prefix (Rref)) = N_Identifier then
2559 Rref := Prefix (Rref);
2560 elsif Nkind (Prefix (Rref)) = N_Expanded_Name then
2561 Rref := Selector_Name (Prefix (Rref));
2562 else
2563 Rref := Empty;
2564 end if;
2565
2566 else
2567 Rref := Empty;
2568 end if;
2569 end if;
2570
2571 -- Write out renaming reference if we have one
2572
2573 if Present (Rref) then
2574 Write_Info_Char ('=');
2575 Write_Info_Nat
2576 (Int (Get_Logical_Line_Number (Sloc (Rref))));
2577 Write_Info_Char (':');
2578 Write_Info_Nat
2579 (Int (Get_Column_Number (Sloc (Rref))));
2580 end if;
2581
2582 -- Indicate that the entity is in the unit of the current
2583 -- xref section.
2584
2585 Curru := Curxu;
2586
2587 -- Write out information about generic parent, if entity
2588 -- is an instance.
2589
2590 if Is_Generic_Instance (XE.Key.Ent) then
2591 declare
2592 Gen_Par : constant Entity_Id :=
2593 Generic_Parent
2594 (Specification
2595 (Unit_Declaration_Node
2596 (XE.Key.Ent)));
2597 Loc : constant Source_Ptr := Sloc (Gen_Par);
2598 Gen_U : constant Unit_Number_Type :=
2599 Get_Source_Unit (Loc);
2600
2601 begin
2602 Write_Info_Char ('[');
2603
2604 if Curru /= Gen_U then
2605 Write_Info_Nat (Dependency_Num (Gen_U));
2606 Write_Info_Char ('|');
2607 end if;
2608
2609 Write_Info_Nat
2610 (Int (Get_Logical_Line_Number (Loc)));
2611 Write_Info_Char (']');
2612 end;
2613 end if;
2614
2615 -- See if we have a type reference and if so output
2616
2617 Check_Type_Reference (XE.Key.Ent, False);
2618
2619 -- Additional information for types with progenitors,
2620 -- including synchronized tagged types.
2621
2622 declare
2623 Typ : constant Entity_Id := XE.Key.Ent;
2624 Elmt : Elmt_Id;
2625
2626 begin
2627 if Is_Record_Type (Typ)
2628 and then Present (Interfaces (Typ))
2629 then
2630 Elmt := First_Elmt (Interfaces (Typ));
2631
2632 elsif Is_Concurrent_Type (Typ)
2633 and then Present (Corresponding_Record_Type (Typ))
2634 and then Present (
2635 Interfaces (Corresponding_Record_Type (Typ)))
2636 then
2637 Elmt :=
2638 First_Elmt (
2639 Interfaces (Corresponding_Record_Type (Typ)));
2640
2641 else
2642 Elmt := No_Elmt;
2643 end if;
2644
2645 while Present (Elmt) loop
2646 Check_Type_Reference (Node (Elmt), True);
2647 Next_Elmt (Elmt);
2648 end loop;
2649 end;
2650
2651 -- For array types, list index types as well. (This is
2652 -- not C, indexes have distinct types).
2653
2654 if Is_Array_Type (XE.Key.Ent) then
2655 declare
2656 A_Typ : constant Entity_Id := XE.Key.Ent;
2657 Indx : Node_Id;
2658
2659 begin
2660 -- If this is a derived array type, we have
2661 -- output the parent type, so add the component
2662 -- type now.
2663
2664 if Is_Derived_Type (A_Typ) then
2665 Check_Type_Reference
2666 (Component_Type (A_Typ), False, True);
2667 end if;
2668
2669 -- Add references to index types.
2670
2671 Indx := First_Index (XE.Key.Ent);
2672 while Present (Indx) loop
2673 Check_Type_Reference
2674 (First_Subtype (Etype (Indx)), True);
2675 Next_Index (Indx);
2676 end loop;
2677 end;
2678 end if;
2679
2680 -- If the entity is an overriding operation, write info
2681 -- on operation that was overridden.
2682
2683 if Is_Subprogram (XE.Key.Ent)
2684 and then Present (Overridden_Operation (XE.Key.Ent))
2685 then
2686 Output_Overridden_Op
2687 (Overridden_Operation (XE.Key.Ent));
2688 end if;
2689
2690 -- End of processing for entity output
2691
2692 Crloc := No_Location;
2693 end if;
2694
2695 -- Output the reference if it is not as the same location
2696 -- as the previous one, or it is a read-reference that
2697 -- indicates that the entity is an in-out actual in a call.
2698
2699 if XE.Key.Loc /= No_Location
2700 and then
2701 (XE.Key.Loc /= Crloc
2702 or else (Prevt = 'm' and then XE.Key.Typ = 'r'))
2703 then
2704 Crloc := XE.Key.Loc;
2705 Prevt := XE.Key.Typ;
2706
2707 -- Start continuation if line full, else blank
2708
2709 if Write_Info_Col > 72 then
2710 Write_Info_EOL;
2711 Write_Info_Initiate ('.');
2712 end if;
2713
2714 Write_Info_Char (' ');
2715
2716 -- Output file number if changed
2717
2718 if XE.Key.Lun /= Curru then
2719 Curru := XE.Key.Lun;
2720 Write_Info_Nat (Dependency_Num (Curru));
2721 Write_Info_Char ('|');
2722 end if;
2723
2724 Write_Info_Nat
2725 (Int (Get_Logical_Line_Number (XE.Key.Loc)));
2726 Write_Info_Char (XE.Key.Typ);
2727
2728 if Is_Overloadable (XE.Key.Ent) then
2729 if (Is_Imported (XE.Key.Ent) and then XE.Key.Typ = 'b')
2730 or else
2731 (Is_Exported (XE.Key.Ent) and then XE.Key.Typ = 'i')
2732 then
2733 Output_Import_Export_Info (XE.Key.Ent);
2734 end if;
2735 end if;
2736
2737 Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc)));
2738
2739 Output_Instantiation_Refs (Sloc (XE.Key.Ent));
2740 end if;
2741 end if;
2742 end Output_One_Ref;
2743
2744 <<Continue>>
2745 null;
2746 end loop;
2747
2748 Write_Info_EOL;
2749 end Output_Refs;
2750 end Output_References;
2751
2752 ---------------------------------
2753 -- Process_Deferred_References --
2754 ---------------------------------
2755
2756 procedure Process_Deferred_References is
2757 begin
2758 for J in Deferred_References.First .. Deferred_References.Last loop
2759 declare
2760 D : Deferred_Reference_Entry renames Deferred_References.Table (J);
2761
2762 begin
2763 case Is_LHS (D.N) is
2764 when Yes =>
2765 Generate_Reference (D.E, D.N, 'm');
2766
2767 when No =>
2768 Generate_Reference (D.E, D.N, 'r');
2769
2770 -- Not clear if Unknown can occur at this stage, but if it
2771 -- does we will treat it as a normal reference.
2772
2773 when Unknown =>
2774 Generate_Reference (D.E, D.N, 'r');
2775 end case;
2776 end;
2777 end loop;
2778
2779 -- Clear processed entries from table
2780
2781 Deferred_References.Init;
2782 end Process_Deferred_References;
2783
2784 -- Start of elaboration for Lib.Xref
2785
2786 begin
2787 -- Reset is necessary because Elmt_Ptr does not default to Null_Ptr,
2788 -- because it's not an access type.
2789
2790 Xref_Set.Reset;
2791 end Lib.Xref;