[multiple changes]
[gcc.git] / gcc / ada / lib-xref.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L I B . X R E F --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Csets; use Csets;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Nlists; use Nlists;
31 with Opt; use Opt;
32 with Restrict; use Restrict;
33 with Rident; use Rident;
34 with Sem; use Sem;
35 with Sem_Aux; use Sem_Aux;
36 with Sem_Prag; use Sem_Prag;
37 with Sem_Util; use Sem_Util;
38 with Sem_Warn; use Sem_Warn;
39 with Sinfo; use Sinfo;
40 with Sinput; use Sinput;
41 with Snames; use Snames;
42 with Stringt; use Stringt;
43 with Stand; use Stand;
44 with Table; use Table;
45
46 with GNAT.Heap_Sort_G;
47 with GNAT.HTable;
48
49 package body Lib.Xref is
50
51 ------------------
52 -- Declarations --
53 ------------------
54
55 -- The Xref table is used to record references. The Loc field is set
56 -- to No_Location for a definition entry.
57
58 subtype Xref_Entry_Number is Int;
59
60 type Xref_Key is record
61 -- These are the components of Xref_Entry that participate in hash
62 -- lookups.
63
64 Ent : Entity_Id;
65 -- Entity referenced (E parameter to Generate_Reference)
66
67 Loc : Source_Ptr;
68 -- Location of reference (Original_Location (Sloc field of N parameter
69 -- to Generate_Reference)). Set to No_Location for the case of a
70 -- defining occurrence.
71
72 Typ : Character;
73 -- Reference type (Typ param to Generate_Reference)
74
75 Eun : Unit_Number_Type;
76 -- Unit number corresponding to Ent
77
78 Lun : Unit_Number_Type;
79 -- Unit number corresponding to Loc. Value is undefined and not
80 -- referenced if Loc is set to No_Location.
81
82 -- The following components are only used for SPARK cross-references
83
84 Ref_Scope : Entity_Id;
85 -- Entity of the closest subprogram or package enclosing the reference
86
87 Ent_Scope : Entity_Id;
88 -- Entity of the closest subprogram or package enclosing the definition,
89 -- which should be located in the same file as the definition itself.
90 end record;
91
92 type Xref_Entry is record
93 Key : Xref_Key;
94
95 Ent_Scope_File : Unit_Number_Type;
96 -- File for entity Ent_Scope
97
98 Def : Source_Ptr;
99 -- Original source location for entity being referenced. Note that these
100 -- values are used only during the output process, they are not set when
101 -- the entries are originally built. This is because private entities
102 -- can be swapped when the initial call is made.
103
104 HTable_Next : Xref_Entry_Number;
105 -- For use only by Static_HTable
106 end record;
107
108 package Xrefs is new Table.Table (
109 Table_Component_Type => Xref_Entry,
110 Table_Index_Type => Xref_Entry_Number,
111 Table_Low_Bound => 1,
112 Table_Initial => Alloc.Xrefs_Initial,
113 Table_Increment => Alloc.Xrefs_Increment,
114 Table_Name => "Xrefs");
115
116 --------------
117 -- Xref_Set --
118 --------------
119
120 -- We keep a set of xref entries, in order to avoid inserting duplicate
121 -- entries into the above Xrefs table. An entry is in Xref_Set if and only
122 -- if it is in Xrefs.
123
124 Num_Buckets : constant := 2**16;
125
126 subtype Header_Num is Integer range 0 .. Num_Buckets - 1;
127 type Null_Type is null record;
128 pragma Unreferenced (Null_Type);
129
130 function Hash (F : Xref_Entry_Number) return Header_Num;
131
132 function Equal (F1, F2 : Xref_Entry_Number) return Boolean;
133
134 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number);
135
136 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number;
137
138 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number;
139
140 pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key);
141
142 package Xref_Set is new GNAT.HTable.Static_HTable (
143 Header_Num,
144 Element => Xref_Entry,
145 Elmt_Ptr => Xref_Entry_Number,
146 Null_Ptr => 0,
147 Set_Next => HT_Set_Next,
148 Next => HT_Next,
149 Key => Xref_Entry_Number,
150 Get_Key => Get_Key,
151 Hash => Hash,
152 Equal => Equal);
153
154 -----------------------------
155 -- SPARK Xrefs Information --
156 -----------------------------
157
158 package body SPARK_Specific is separate;
159
160 ------------------------
161 -- Local Subprograms --
162 ------------------------
163
164 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type);
165 -- Add an entry to the tables of Xref_Entries, avoiding duplicates
166
167 procedure Generate_Prim_Op_References (Typ : Entity_Id);
168 -- For a tagged type, generate implicit references to its primitive
169 -- operations, for source navigation. This is done right before emitting
170 -- cross-reference information rather than at the freeze point of the type
171 -- in order to handle late bodies that are primitive operations.
172
173 function Lt (T1, T2 : Xref_Entry) return Boolean;
174 -- Order cross-references
175
176 ---------------
177 -- Add_Entry --
178 ---------------
179
180 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is
181 begin
182 Xrefs.Increment_Last; -- tentative
183 Xrefs.Table (Xrefs.Last).Key := Key;
184
185 -- Set the entry in Xref_Set, and if newly set, keep the above
186 -- tentative increment.
187
188 if Xref_Set.Set_If_Not_Present (Xrefs.Last) then
189 Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File;
190 -- Leave Def and HTable_Next uninitialized
191
192 Set_Has_Xref_Entry (Key.Ent);
193
194 -- It was already in Xref_Set, so throw away the tentatively-added entry
195
196 else
197 Xrefs.Decrement_Last;
198 end if;
199 end Add_Entry;
200
201 -----------
202 -- Equal --
203 -----------
204
205 function Equal (F1, F2 : Xref_Entry_Number) return Boolean is
206 Result : constant Boolean :=
207 Xrefs.Table (F1).Key = Xrefs.Table (F2).Key;
208 begin
209 return Result;
210 end Equal;
211
212 -------------------------
213 -- Generate_Definition --
214 -------------------------
215
216 procedure Generate_Definition (E : Entity_Id) is
217 begin
218 pragma Assert (Nkind (E) in N_Entity);
219
220 -- Note that we do not test Xref_Entity_Letters here. It is too early
221 -- to do so, since we are often called before the entity is fully
222 -- constructed, so that the Ekind is still E_Void.
223
224 if Opt.Xref_Active
225
226 -- Definition must come from source
227
228 -- We make an exception for subprogram child units that have no spec.
229 -- For these we generate a subprogram declaration for library use,
230 -- and the corresponding entity does not come from source.
231 -- Nevertheless, all references will be attached to it and we have
232 -- to treat is as coming from user code.
233
234 and then (Comes_From_Source (E) or else Is_Child_Unit (E))
235
236 -- And must have a reasonable source location that is not
237 -- within an instance (all entities in instances are ignored)
238
239 and then Sloc (E) > No_Location
240 and then Instantiation_Location (Sloc (E)) = No_Location
241
242 -- And must be a non-internal name from the main source unit
243
244 and then In_Extended_Main_Source_Unit (E)
245 and then not Is_Internal_Name (Chars (E))
246 then
247 Add_Entry
248 ((Ent => E,
249 Loc => No_Location,
250 Typ => ' ',
251 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
252 Lun => No_Unit,
253 Ref_Scope => Empty,
254 Ent_Scope => Empty),
255 Ent_Scope_File => No_Unit);
256
257 if In_Inlined_Body then
258 Set_Referenced (E);
259 end if;
260 end if;
261 end Generate_Definition;
262
263 ---------------------------------
264 -- Generate_Operator_Reference --
265 ---------------------------------
266
267 procedure Generate_Operator_Reference
268 (N : Node_Id;
269 T : Entity_Id)
270 is
271 begin
272 if not In_Extended_Main_Source_Unit (N) then
273 return;
274 end if;
275
276 -- If the operator is not a Standard operator, then we generate a real
277 -- reference to the user defined operator.
278
279 if Sloc (Entity (N)) /= Standard_Location then
280 Generate_Reference (Entity (N), N);
281
282 -- A reference to an implicit inequality operator is also a reference
283 -- to the user-defined equality.
284
285 if Nkind (N) = N_Op_Ne
286 and then not Comes_From_Source (Entity (N))
287 and then Present (Corresponding_Equality (Entity (N)))
288 then
289 Generate_Reference (Corresponding_Equality (Entity (N)), N);
290 end if;
291
292 -- For the case of Standard operators, we mark the result type as
293 -- referenced. This ensures that in the case where we are using a
294 -- derived operator, we mark an entity of the unit that implicitly
295 -- defines this operator as used. Otherwise we may think that no entity
296 -- of the unit is used. The actual entity marked as referenced is the
297 -- first subtype, which is the relevant user defined entity.
298
299 -- Note: we only do this for operators that come from source. The
300 -- generated code sometimes reaches for entities that do not need to be
301 -- explicitly visible (for example, when we expand the code for
302 -- comparing two record objects, the fields of the record may not be
303 -- visible).
304
305 elsif Comes_From_Source (N) then
306 Set_Referenced (First_Subtype (T));
307 end if;
308 end Generate_Operator_Reference;
309
310 ---------------------------------
311 -- Generate_Prim_Op_References --
312 ---------------------------------
313
314 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
315 Base_T : Entity_Id;
316 Prim : Elmt_Id;
317 Prim_List : Elist_Id;
318
319 begin
320 -- Handle subtypes of synchronized types
321
322 if Ekind (Typ) = E_Protected_Subtype
323 or else Ekind (Typ) = E_Task_Subtype
324 then
325 Base_T := Etype (Typ);
326 else
327 Base_T := Typ;
328 end if;
329
330 -- References to primitive operations are only relevant for tagged types
331
332 if not Is_Tagged_Type (Base_T)
333 or else Is_Class_Wide_Type (Base_T)
334 then
335 return;
336 end if;
337
338 -- Ada 2005 (AI-345): For synchronized types generate reference to the
339 -- wrapper that allow us to dispatch calls through their implemented
340 -- abstract interface types.
341
342 -- The check for Present here is to protect against previously reported
343 -- critical errors.
344
345 Prim_List := Primitive_Operations (Base_T);
346
347 if No (Prim_List) then
348 return;
349 end if;
350
351 Prim := First_Elmt (Prim_List);
352 while Present (Prim) loop
353
354 -- If the operation is derived, get the original for cross-reference
355 -- reference purposes (it is the original for which we want the xref
356 -- and for which the comes_from_source test must be performed).
357
358 Generate_Reference
359 (Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False);
360 Next_Elmt (Prim);
361 end loop;
362 end Generate_Prim_Op_References;
363
364 ------------------------
365 -- Generate_Reference --
366 ------------------------
367
368 procedure Generate_Reference
369 (E : Entity_Id;
370 N : Node_Id;
371 Typ : Character := 'r';
372 Set_Ref : Boolean := True;
373 Force : Boolean := False)
374 is
375 Actual_Typ : Character := Typ;
376 Call : Node_Id;
377 Def : Source_Ptr;
378 Ent : Entity_Id;
379 Ent_Scope : Entity_Id;
380 Formal : Entity_Id;
381 Kind : Entity_Kind;
382 Nod : Node_Id;
383 Ref : Source_Ptr;
384 Ref_Scope : Entity_Id;
385
386 function Get_Through_Renamings (E : Entity_Id) return Entity_Id;
387 -- Get the enclosing entity through renamings, which may come from
388 -- source or from the translation of generic instantiations.
389
390 function Is_On_LHS (Node : Node_Id) return Boolean;
391 -- Used to check if a node is on the left hand side of an assignment.
392 -- The following cases are handled:
393 --
394 -- Variable Node is a direct descendant of left hand side of an
395 -- assignment statement.
396 --
397 -- Prefix Of an indexed or selected component that is present in
398 -- a subtree rooted by an assignment statement. There is
399 -- no restriction of nesting of components, thus cases
400 -- such as A.B (C).D are handled properly. However a prefix
401 -- of a dereference (either implicit or explicit) is never
402 -- considered as on a LHS.
403 --
404 -- Out param Same as above cases, but OUT parameter
405
406 function OK_To_Set_Referenced return Boolean;
407 -- Returns True if the Referenced flag can be set. There are a few
408 -- exceptions where we do not want to set this flag, see body for
409 -- details of these exceptional cases.
410
411 ---------------------------
412 -- Get_Through_Renamings --
413 ---------------------------
414
415 function Get_Through_Renamings (E : Entity_Id) return Entity_Id is
416 begin
417 case Ekind (E) is
418
419 -- For subprograms we just need to check once if they are have a
420 -- Renamed_Entity, because Renamed_Entity is set transitively.
421
422 when Subprogram_Kind =>
423 declare
424 Renamed : constant Entity_Id := Renamed_Entity (E);
425
426 begin
427 if Present (Renamed) then
428 return Renamed;
429 else
430 return E;
431 end if;
432 end;
433
434 -- For objects we need to repeatedly call Renamed_Object, because
435 -- it is not transitive.
436
437 when Object_Kind =>
438 declare
439 Obj : Entity_Id := E;
440
441 begin
442 loop
443 pragma Assert (Present (Obj));
444
445 declare
446 Renamed : constant Entity_Id := Renamed_Object (Obj);
447
448 begin
449 if Present (Renamed) then
450 Obj := Get_Enclosing_Object (Renamed);
451
452 -- The renamed expression denotes a non-object,
453 -- e.g. function call, slicing of a function call,
454 -- pointer dereference, etc.
455
456 if No (Obj) then
457 return Empty;
458 end if;
459 else
460 return Obj;
461 end if;
462 end;
463 end loop;
464 end;
465
466 when others =>
467 return E;
468
469 end case;
470 end Get_Through_Renamings;
471
472 ---------------
473 -- Is_On_LHS --
474 ---------------
475
476 -- ??? There are several routines here and there that perform a similar
477 -- (but subtly different) computation, which should be factored:
478
479 -- Sem_Util.Is_LHS
480 -- Sem_Util.May_Be_Lvalue
481 -- Sem_Util.Known_To_Be_Assigned
482 -- Exp_Ch2.Expand_Entry_Parameter.In_Assignment_Context
483 -- Exp_Smem.Is_Out_Actual
484
485 function Is_On_LHS (Node : Node_Id) return Boolean is
486 N : Node_Id;
487 P : Node_Id;
488 K : Node_Kind;
489
490 begin
491 -- Only identifiers are considered, is this necessary???
492
493 if Nkind (Node) /= N_Identifier then
494 return False;
495 end if;
496
497 -- Immediate return if appeared as OUT parameter
498
499 if Kind = E_Out_Parameter then
500 return True;
501 end if;
502
503 -- Search for assignment statement subtree root
504
505 N := Node;
506 loop
507 P := Parent (N);
508 K := Nkind (P);
509
510 if K = N_Assignment_Statement then
511 return Name (P) = N;
512
513 -- Check whether the parent is a component and the current node is
514 -- its prefix, but return False if the current node has an access
515 -- type, as in that case the selected or indexed component is an
516 -- implicit dereference, and the LHS is the designated object, not
517 -- the access object.
518
519 -- ??? case of a slice assignment?
520
521 elsif (K = N_Selected_Component or else K = N_Indexed_Component)
522 and then Prefix (P) = N
523 then
524 -- Check for access type. First a special test, In some cases
525 -- this is called too early (see comments in Find_Direct_Name),
526 -- at a point where the tree is not fully typed yet. In that
527 -- case we may lack an Etype for N, and we can't check the
528 -- Etype. For now, we always return False in such a case,
529 -- but this is clearly not right in all cases ???
530
531 if No (Etype (N)) then
532 return False;
533
534 elsif Is_Access_Type (Etype (N)) then
535 return False;
536
537 -- Access type case dealt with, keep going
538
539 else
540 N := P;
541 end if;
542
543 -- All other cases, definitely not on left side
544
545 else
546 return False;
547 end if;
548 end loop;
549 end Is_On_LHS;
550
551 ---------------------------
552 -- OK_To_Set_Referenced --
553 ---------------------------
554
555 function OK_To_Set_Referenced return Boolean is
556 P : Node_Id;
557
558 begin
559 -- A reference from a pragma Unreferenced or pragma Unmodified or
560 -- pragma Warnings does not cause the Referenced flag to be set.
561 -- This avoids silly warnings about things being referenced and
562 -- not assigned when the only reference is from the pragma.
563
564 if Nkind (N) = N_Identifier then
565 P := Parent (N);
566
567 if Nkind (P) = N_Pragma_Argument_Association then
568 P := Parent (P);
569
570 if Nkind (P) = N_Pragma then
571 if Nam_In (Pragma_Name_Unmapped (P),
572 Name_Warnings,
573 Name_Unmodified,
574 Name_Unreferenced)
575 then
576 return False;
577 end if;
578 end if;
579
580 -- A reference to a formal in a named parameter association does
581 -- not make the formal referenced. Formals that are unused in the
582 -- subprogram body are properly flagged as such, even if calls
583 -- elsewhere use named notation.
584
585 elsif Nkind (P) = N_Parameter_Association
586 and then N = Selector_Name (P)
587 then
588 return False;
589 end if;
590 end if;
591
592 return True;
593 end OK_To_Set_Referenced;
594
595 -- Start of processing for Generate_Reference
596
597 begin
598 pragma Assert (Nkind (E) in N_Entity);
599 Find_Actual (N, Formal, Call);
600
601 if Present (Formal) then
602 Kind := Ekind (Formal);
603 else
604 Kind := E_Void;
605 end if;
606
607 -- Check for obsolescent reference to package ASCII. GNAT treats this
608 -- element of annex J specially since in practice, programs make a lot
609 -- of use of this feature, so we don't include it in the set of features
610 -- diagnosed when Warn_On_Obsolescent_Features mode is set. However we
611 -- are required to note it as a violation of the RM defined restriction.
612
613 if E = Standard_ASCII then
614 Check_Restriction (No_Obsolescent_Features, N);
615 end if;
616
617 -- Check for reference to entity marked with Is_Obsolescent
618
619 -- Note that we always allow obsolescent references in the compiler
620 -- itself and the run time, since we assume that we know what we are
621 -- doing in such cases. For example the calls in Ada.Characters.Handling
622 -- to its own obsolescent subprograms are just fine.
623
624 -- In any case we only generate warnings if we are in the extended main
625 -- source unit, and the entity itself is not in the extended main source
626 -- unit, since we assume the source unit itself knows what is going on
627 -- (and for sure we do not want silly warnings, e.g. on the end line of
628 -- an obsolescent procedure body).
629
630 if Is_Obsolescent (E)
631 and then not GNAT_Mode
632 and then not In_Extended_Main_Source_Unit (E)
633 and then In_Extended_Main_Source_Unit (N)
634 then
635 Check_Restriction (No_Obsolescent_Features, N);
636
637 if Warn_On_Obsolescent_Feature then
638 Output_Obsolescent_Entity_Warnings (N, E);
639 end if;
640 end if;
641
642 -- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only
643 -- detect real explicit references (modifications and references).
644
645 if Comes_From_Source (N)
646 and then Is_Ada_2005_Only (E)
647 and then Ada_Version < Ada_2005
648 and then Warn_On_Ada_2005_Compatibility
649 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')
650 then
651 Error_Msg_NE ("& is only defined in Ada 2005?y?", N, E);
652 end if;
653
654 -- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only
655 -- detect real explicit references (modifications and references).
656
657 if Comes_From_Source (N)
658 and then Is_Ada_2012_Only (E)
659 and then Ada_Version < Ada_2012
660 and then Warn_On_Ada_2012_Compatibility
661 and then (Typ = 'm' or else Typ = 'r')
662 then
663 Error_Msg_NE ("& is only defined in Ada 2012?y?", N, E);
664 end if;
665
666 -- Do not generate references if we are within a postcondition sub-
667 -- program, because the reference does not comes from source, and the
668 -- pre-analysis of the aspect has already created an entry for the ALI
669 -- file at the proper source location.
670
671 if Chars (Current_Scope) = Name_uPostconditions then
672 return;
673 end if;
674
675 -- Never collect references if not in main source unit. However, we omit
676 -- this test if Typ is 'e' or 'k', since these entries are structural,
677 -- and it is useful to have them in units that reference packages as
678 -- well as units that define packages. We also omit the test for the
679 -- case of 'p' since we want to include inherited primitive operations
680 -- from other packages.
681
682 -- We also omit this test is this is a body reference for a subprogram
683 -- instantiation. In this case the reference is to the generic body,
684 -- which clearly need not be in the main unit containing the instance.
685 -- For the same reason we accept an implicit reference generated for
686 -- a default in an instance.
687
688 -- We also set the referenced flag in a generic package that is not in
689 -- then main source unit, when the variable is of a formal private type,
690 -- to warn in the instance if the corresponding type is not a fully
691 -- initialized type.
692
693 if not In_Extended_Main_Source_Unit (N) then
694 if Typ = 'e' or else
695 Typ = 'I' or else
696 Typ = 'p' or else
697 Typ = 'i' or else
698 Typ = 'k'
699 or else (Typ = 'b' and then Is_Generic_Instance (E))
700
701 -- Allow the generation of references to reads, writes and calls
702 -- in SPARK mode when the related context comes from an instance.
703
704 or else
705 (GNATprove_Mode
706 and then In_Extended_Main_Code_Unit (N)
707 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's'))
708 then
709 null;
710
711 elsif In_Instance_Body
712 and then In_Extended_Main_Code_Unit (N)
713 and then Is_Generic_Type (Etype (E))
714 then
715 Set_Referenced (E);
716 return;
717
718 elsif Inside_A_Generic
719 and then Is_Generic_Type (Etype (E))
720 then
721 Set_Referenced (E);
722 return;
723
724 else
725 return;
726 end if;
727 end if;
728
729 -- For reference type p, the entity must be in main source unit
730
731 if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then
732 return;
733 end if;
734
735 -- Unless the reference is forced, we ignore references where the
736 -- reference itself does not come from source.
737
738 if not Force and then not Comes_From_Source (N) then
739 return;
740 end if;
741
742 -- Deal with setting entity as referenced, unless suppressed. Note that
743 -- we still do Set_Referenced on entities that do not come from source.
744 -- This situation arises when we have a source reference to a derived
745 -- operation, where the derived operation itself does not come from
746 -- source, but we still want to mark it as referenced, since we really
747 -- are referencing an entity in the corresponding package (this avoids
748 -- wrong complaints that the package contains no referenced entities).
749
750 if Set_Ref then
751
752 -- Assignable object appearing on left side of assignment or as
753 -- an out parameter.
754
755 if Is_Assignable (E)
756 and then Is_On_LHS (N)
757 and then Ekind (E) /= E_In_Out_Parameter
758 then
759 -- For objects that are renamings, just set as simply referenced
760 -- we do not try to do assignment type tracking in this case.
761
762 if Present (Renamed_Object (E)) then
763 Set_Referenced (E);
764
765 -- Out parameter case
766
767 elsif Kind = E_Out_Parameter then
768
769 -- If warning mode for all out parameters is set, or this is
770 -- the only warning parameter, then we want to mark this for
771 -- later warning logic by setting Referenced_As_Out_Parameter
772
773 if Warn_On_Modified_As_Out_Parameter (Formal) then
774 Set_Referenced_As_Out_Parameter (E, True);
775 Set_Referenced_As_LHS (E, False);
776
777 -- For OUT parameter not covered by the above cases, we simply
778 -- regard it as a normal reference (in this case we do not
779 -- want any of the warning machinery for out parameters).
780
781 else
782 Set_Referenced (E);
783 end if;
784
785 -- For the left hand of an assignment case, we do nothing here.
786 -- The processing for Analyze_Assignment_Statement will set the
787 -- Referenced_As_LHS flag.
788
789 else
790 null;
791 end if;
792
793 -- Check for a reference in a pragma that should not count as a
794 -- making the variable referenced for warning purposes.
795
796 elsif Is_Non_Significant_Pragma_Reference (N) then
797 null;
798
799 -- A reference in an attribute definition clause does not count as a
800 -- reference except for the case of Address. The reason that 'Address
801 -- is an exception is that it creates an alias through which the
802 -- variable may be referenced.
803
804 elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause
805 and then Chars (Parent (N)) /= Name_Address
806 and then N = Name (Parent (N))
807 then
808 null;
809
810 -- Constant completion does not count as a reference
811
812 elsif Typ = 'c'
813 and then Ekind (E) = E_Constant
814 then
815 null;
816
817 -- Record representation clause does not count as a reference
818
819 elsif Nkind (N) = N_Identifier
820 and then Nkind (Parent (N)) = N_Record_Representation_Clause
821 then
822 null;
823
824 -- Discriminants do not need to produce a reference to record type
825
826 elsif Typ = 'd'
827 and then Nkind (Parent (N)) = N_Discriminant_Specification
828 then
829 null;
830
831 -- All other cases
832
833 else
834 -- Special processing for IN OUT parameters, where we have an
835 -- implicit assignment to a simple variable.
836
837 if Kind = E_In_Out_Parameter
838 and then Is_Assignable (E)
839 then
840 -- For sure this counts as a normal read reference
841
842 Set_Referenced (E);
843 Set_Last_Assignment (E, Empty);
844
845 -- We count it as being referenced as an out parameter if the
846 -- option is set to warn on all out parameters, except that we
847 -- have a special exclusion for an intrinsic subprogram, which
848 -- is most likely an instantiation of Unchecked_Deallocation
849 -- which we do not want to consider as an assignment since it
850 -- generates false positives. We also exclude the case of an
851 -- IN OUT parameter if the name of the procedure is Free,
852 -- since we suspect similar semantics.
853
854 if Warn_On_All_Unread_Out_Parameters
855 and then Is_Entity_Name (Name (Call))
856 and then not Is_Intrinsic_Subprogram (Entity (Name (Call)))
857 and then Chars (Name (Call)) /= Name_Free
858 then
859 Set_Referenced_As_Out_Parameter (E, True);
860 Set_Referenced_As_LHS (E, False);
861 end if;
862
863 -- Don't count a recursive reference within a subprogram as a
864 -- reference (that allows detection of a recursive subprogram
865 -- whose only references are recursive calls as unreferenced).
866
867 elsif Is_Subprogram (E)
868 and then E = Nearest_Dynamic_Scope (Current_Scope)
869 then
870 null;
871
872 -- Any other occurrence counts as referencing the entity
873
874 elsif OK_To_Set_Referenced then
875 Set_Referenced (E);
876
877 -- If variable, this is an OK reference after an assignment
878 -- so we can clear the Last_Assignment indication.
879
880 if Is_Assignable (E) then
881 Set_Last_Assignment (E, Empty);
882 end if;
883 end if;
884 end if;
885
886 -- Check for pragma Unreferenced given and reference is within
887 -- this source unit (occasion for possible warning to be issued).
888 -- Note that the entity may be marked as unreferenced by pragma
889 -- Unused.
890
891 if Has_Unreferenced (E)
892 and then In_Same_Extended_Unit (E, N)
893 then
894 -- A reference as a named parameter in a call does not count as a
895 -- violation of pragma Unreferenced for this purpose...
896
897 if Nkind (N) = N_Identifier
898 and then Nkind (Parent (N)) = N_Parameter_Association
899 and then Selector_Name (Parent (N)) = N
900 then
901 null;
902
903 -- ... Neither does a reference to a variable on the left side of
904 -- an assignment.
905
906 elsif Is_On_LHS (N) then
907 null;
908
909 -- Do not consider F'Result as a violation of pragma Unreferenced
910 -- since the attribute acts as an anonymous alias of the function
911 -- result and not as a real reference to the function.
912
913 elsif Ekind_In (E, E_Function, E_Generic_Function)
914 and then Is_Entity_Name (N)
915 and then Is_Attribute_Result (Parent (N))
916 then
917 null;
918
919 -- No warning if the reference is in a call that does not come
920 -- from source (e.g. a call to a controlled type primitive).
921
922 elsif not Comes_From_Source (Parent (N))
923 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
924 then
925 null;
926
927 -- For entry formals, we want to place the warning message on the
928 -- corresponding entity in the accept statement. The current scope
929 -- is the body of the accept, so we find the formal whose name
930 -- matches that of the entry formal (there is no link between the
931 -- two entities, and the one in the accept statement is only used
932 -- for conformance checking).
933
934 elsif Ekind (Scope (E)) = E_Entry then
935 declare
936 BE : Entity_Id;
937
938 begin
939 BE := First_Entity (Current_Scope);
940 while Present (BE) loop
941 if Chars (BE) = Chars (E) then
942 if Has_Pragma_Unused (E) then
943 Error_Msg_NE -- CODEFIX
944 ("??pragma Unused given for&!", N, BE);
945 else
946 Error_Msg_NE -- CODEFIX
947 ("??pragma Unreferenced given for&!", N, BE);
948 end if;
949 exit;
950 end if;
951
952 Next_Entity (BE);
953 end loop;
954 end;
955
956 -- Here we issue the warning, since this is a real reference
957
958 elsif Has_Pragma_Unused (E) then
959 Error_Msg_NE -- CODEFIX
960 ("??pragma Unused given for&!", N, E);
961 else
962 Error_Msg_NE -- CODEFIX
963 ("??pragma Unreferenced given for&!", N, E);
964 end if;
965 end if;
966
967 -- If this is a subprogram instance, mark as well the internal
968 -- subprogram in the wrapper package, which may be a visible
969 -- compilation unit.
970
971 if Is_Overloadable (E)
972 and then Is_Generic_Instance (E)
973 and then Present (Alias (E))
974 then
975 Set_Referenced (Alias (E));
976 end if;
977 end if;
978
979 -- Generate reference if all conditions are met:
980
981 if
982 -- Cross referencing must be active
983
984 Opt.Xref_Active
985
986 -- The entity must be one for which we collect references
987
988 and then Xref_Entity_Letters (Ekind (E)) /= ' '
989
990 -- Both Sloc values must be set to something sensible
991
992 and then Sloc (E) > No_Location
993 and then Sloc (N) > No_Location
994
995 -- Ignore references from within an instance. The only exceptions to
996 -- this are default subprograms, for which we generate an implicit
997 -- reference and compilations in SPARK mode.
998
999 and then
1000 (Instantiation_Location (Sloc (N)) = No_Location
1001 or else Typ = 'i'
1002 or else GNATprove_Mode)
1003
1004 -- Ignore dummy references
1005
1006 and then Typ /= ' '
1007 then
1008 if Nkind_In (N, N_Identifier,
1009 N_Defining_Identifier,
1010 N_Defining_Operator_Symbol,
1011 N_Operator_Symbol,
1012 N_Defining_Character_Literal)
1013 or else Nkind (N) in N_Op
1014 or else (Nkind (N) = N_Character_Literal
1015 and then Sloc (Entity (N)) /= Standard_Location)
1016 then
1017 Nod := N;
1018
1019 elsif Nkind_In (N, N_Expanded_Name, N_Selected_Component) then
1020 Nod := Selector_Name (N);
1021
1022 else
1023 return;
1024 end if;
1025
1026 -- Normal case of source entity comes from source
1027
1028 if Comes_From_Source (E) then
1029 Ent := E;
1030
1031 -- Because a declaration may be generated for a subprogram body
1032 -- without declaration in GNATprove mode, for inlining, some
1033 -- parameters may end up being marked as not coming from source
1034 -- although they are. Take these into account specially.
1035
1036 elsif GNATprove_Mode and then Ekind (E) in Formal_Kind then
1037 Ent := E;
1038
1039 -- Entity does not come from source, but is a derived subprogram and
1040 -- the derived subprogram comes from source (after one or more
1041 -- derivations) in which case the reference is to parent subprogram.
1042
1043 elsif Is_Overloadable (E)
1044 and then Present (Alias (E))
1045 then
1046 Ent := Alias (E);
1047 while not Comes_From_Source (Ent) loop
1048 if No (Alias (Ent)) then
1049 return;
1050 end if;
1051
1052 Ent := Alias (Ent);
1053 end loop;
1054
1055 -- The internally created defining entity for a child subprogram
1056 -- that has no previous spec has valid references.
1057
1058 elsif Is_Overloadable (E)
1059 and then Is_Child_Unit (E)
1060 then
1061 Ent := E;
1062
1063 -- Ditto for the formals of such a subprogram
1064
1065 elsif Is_Overloadable (Scope (E))
1066 and then Is_Child_Unit (Scope (E))
1067 then
1068 Ent := E;
1069
1070 -- Record components of discriminated subtypes or derived types must
1071 -- be treated as references to the original component.
1072
1073 elsif Ekind (E) = E_Component
1074 and then Comes_From_Source (Original_Record_Component (E))
1075 then
1076 Ent := Original_Record_Component (E);
1077
1078 -- If this is an expanded reference to a discriminant, recover the
1079 -- original discriminant, which gets the reference.
1080
1081 elsif Ekind (E) = E_In_Parameter
1082 and then Present (Discriminal_Link (E))
1083 then
1084 Ent := Discriminal_Link (E);
1085 Set_Referenced (Ent);
1086
1087 -- Ignore reference to any other entity that is not from source
1088
1089 else
1090 return;
1091 end if;
1092
1093 -- In SPARK mode, consider the underlying entity renamed instead of
1094 -- the renaming, which is needed to compute a valid set of effects
1095 -- (reads, writes) for the enclosing subprogram.
1096
1097 if GNATprove_Mode then
1098 Ent := Get_Through_Renamings (Ent);
1099
1100 -- If no enclosing object, then it could be a reference to any
1101 -- location not tracked individually, like heap-allocated data.
1102 -- Conservatively approximate this possibility by generating a
1103 -- dereference, and return.
1104
1105 if No (Ent) then
1106 if Actual_Typ = 'w' then
1107 SPARK_Specific.Generate_Dereference (Nod, 'r');
1108 SPARK_Specific.Generate_Dereference (Nod, 'w');
1109 else
1110 SPARK_Specific.Generate_Dereference (Nod, 'r');
1111 end if;
1112
1113 return;
1114 end if;
1115 end if;
1116
1117 -- Record reference to entity
1118
1119 if Actual_Typ = 'p'
1120 and then Is_Subprogram (Nod)
1121 and then Present (Overridden_Operation (Nod))
1122 then
1123 Actual_Typ := 'P';
1124 end if;
1125
1126 -- Comment needed here for special SPARK code ???
1127
1128 if GNATprove_Mode then
1129 Ref := Sloc (Nod);
1130 Def := Sloc (Ent);
1131
1132 Ref_Scope :=
1133 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Nod);
1134 Ent_Scope :=
1135 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Ent);
1136
1137 -- Since we are reaching through renamings in SPARK mode, we may
1138 -- end up with standard constants. Ignore those.
1139
1140 if Sloc (Ent_Scope) <= Standard_Location
1141 or else Def <= Standard_Location
1142 then
1143 return;
1144 end if;
1145
1146 Add_Entry
1147 ((Ent => Ent,
1148 Loc => Ref,
1149 Typ => Actual_Typ,
1150 Eun => Get_Top_Level_Code_Unit (Def),
1151 Lun => Get_Top_Level_Code_Unit (Ref),
1152 Ref_Scope => Ref_Scope,
1153 Ent_Scope => Ent_Scope),
1154 Ent_Scope_File => Get_Top_Level_Code_Unit (Ent));
1155
1156 else
1157 Ref := Original_Location (Sloc (Nod));
1158 Def := Original_Location (Sloc (Ent));
1159
1160 -- If this is an operator symbol, skip the initial quote for
1161 -- navigation purposes. This is not done for the end label,
1162 -- where we want the actual position after the closing quote.
1163
1164 if Typ = 't' then
1165 null;
1166
1167 elsif Nkind (N) = N_Defining_Operator_Symbol
1168 or else Nkind (Nod) = N_Operator_Symbol
1169 then
1170 Ref := Ref + 1;
1171 end if;
1172
1173 Add_Entry
1174 ((Ent => Ent,
1175 Loc => Ref,
1176 Typ => Actual_Typ,
1177 Eun => Get_Source_Unit (Def),
1178 Lun => Get_Source_Unit (Ref),
1179 Ref_Scope => Empty,
1180 Ent_Scope => Empty),
1181 Ent_Scope_File => No_Unit);
1182
1183 -- Generate reference to the first private entity
1184
1185 if Typ = 'e'
1186 and then Comes_From_Source (E)
1187 and then Nkind (Ent) = N_Defining_Identifier
1188 and then (Is_Package_Or_Generic_Package (Ent)
1189 or else Is_Concurrent_Type (Ent))
1190 and then Present (First_Private_Entity (E))
1191 and then In_Extended_Main_Source_Unit (N)
1192 then
1193 -- Handle case in which the full-view and partial-view of the
1194 -- first private entity are swapped.
1195
1196 declare
1197 First_Private : Entity_Id := First_Private_Entity (E);
1198
1199 begin
1200 if Is_Private_Type (First_Private)
1201 and then Present (Full_View (First_Private))
1202 then
1203 First_Private := Full_View (First_Private);
1204 end if;
1205
1206 Add_Entry
1207 ((Ent => Ent,
1208 Loc => Sloc (First_Private),
1209 Typ => 'E',
1210 Eun => Get_Source_Unit (Def),
1211 Lun => Get_Source_Unit (Ref),
1212 Ref_Scope => Empty,
1213 Ent_Scope => Empty),
1214 Ent_Scope_File => No_Unit);
1215 end;
1216 end if;
1217 end if;
1218 end if;
1219 end Generate_Reference;
1220
1221 -----------------------------------
1222 -- Generate_Reference_To_Formals --
1223 -----------------------------------
1224
1225 procedure Generate_Reference_To_Formals (E : Entity_Id) is
1226 Formal : Entity_Id;
1227
1228 begin
1229 if Is_Generic_Subprogram (E) then
1230 Formal := First_Entity (E);
1231
1232 while Present (Formal)
1233 and then not Is_Formal (Formal)
1234 loop
1235 Next_Entity (Formal);
1236 end loop;
1237
1238 elsif Ekind (E) in Access_Subprogram_Kind then
1239 Formal := First_Formal (Designated_Type (E));
1240
1241 else
1242 Formal := First_Formal (E);
1243 end if;
1244
1245 while Present (Formal) loop
1246 if Ekind (Formal) = E_In_Parameter then
1247
1248 if Nkind (Parameter_Type (Parent (Formal))) = N_Access_Definition
1249 then
1250 Generate_Reference (E, Formal, '^', False);
1251 else
1252 Generate_Reference (E, Formal, '>', False);
1253 end if;
1254
1255 elsif Ekind (Formal) = E_In_Out_Parameter then
1256 Generate_Reference (E, Formal, '=', False);
1257
1258 else
1259 Generate_Reference (E, Formal, '<', False);
1260 end if;
1261
1262 Next_Formal (Formal);
1263 end loop;
1264 end Generate_Reference_To_Formals;
1265
1266 -------------------------------------------
1267 -- Generate_Reference_To_Generic_Formals --
1268 -------------------------------------------
1269
1270 procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is
1271 Formal : Entity_Id;
1272
1273 begin
1274 Formal := First_Entity (E);
1275 while Present (Formal) loop
1276 if Comes_From_Source (Formal) then
1277 Generate_Reference (E, Formal, 'z', False);
1278 end if;
1279
1280 Next_Entity (Formal);
1281 end loop;
1282 end Generate_Reference_To_Generic_Formals;
1283
1284 -------------
1285 -- Get_Key --
1286 -------------
1287
1288 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is
1289 begin
1290 return E;
1291 end Get_Key;
1292
1293 ----------------------------
1294 -- Has_Deferred_Reference --
1295 ----------------------------
1296
1297 function Has_Deferred_Reference (Ent : Entity_Id) return Boolean is
1298 begin
1299 for J in Deferred_References.First .. Deferred_References.Last loop
1300 if Deferred_References.Table (J).E = Ent then
1301 return True;
1302 end if;
1303 end loop;
1304
1305 return False;
1306 end Has_Deferred_Reference;
1307
1308 ----------
1309 -- Hash --
1310 ----------
1311
1312 function Hash (F : Xref_Entry_Number) return Header_Num is
1313 -- It is unlikely to have two references to the same entity at the same
1314 -- source location, so the hash function depends only on the Ent and Loc
1315 -- fields.
1316
1317 XE : Xref_Entry renames Xrefs.Table (F);
1318 type M is mod 2**32;
1319
1320 H : constant M := M (XE.Key.Ent) + 2 ** 7 * M (abs XE.Key.Loc);
1321 -- It would be more natural to write:
1322 --
1323 -- H : constant M := M'Mod (XE.Key.Ent) + 2**7 * M'Mod (XE.Key.Loc);
1324 --
1325 -- But we can't use M'Mod, because it prevents bootstrapping with older
1326 -- compilers. Loc can be negative, so we do "abs" before converting.
1327 -- One day this can be cleaned up ???
1328
1329 begin
1330 return Header_Num (H mod Num_Buckets);
1331 end Hash;
1332
1333 -----------------
1334 -- HT_Set_Next --
1335 -----------------
1336
1337 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is
1338 begin
1339 Xrefs.Table (E).HTable_Next := Next;
1340 end HT_Set_Next;
1341
1342 -------------
1343 -- HT_Next --
1344 -------------
1345
1346 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is
1347 begin
1348 return Xrefs.Table (E).HTable_Next;
1349 end HT_Next;
1350
1351 ----------------
1352 -- Initialize --
1353 ----------------
1354
1355 procedure Initialize is
1356 begin
1357 Xrefs.Init;
1358 end Initialize;
1359
1360 --------
1361 -- Lt --
1362 --------
1363
1364 function Lt (T1, T2 : Xref_Entry) return Boolean is
1365 begin
1366 -- First test: if entity is in different unit, sort by unit
1367
1368 if T1.Key.Eun /= T2.Key.Eun then
1369 return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun);
1370
1371 -- Second test: within same unit, sort by entity Sloc
1372
1373 elsif T1.Def /= T2.Def then
1374 return T1.Def < T2.Def;
1375
1376 -- Third test: sort definitions ahead of references
1377
1378 elsif T1.Key.Loc = No_Location then
1379 return True;
1380
1381 elsif T2.Key.Loc = No_Location then
1382 return False;
1383
1384 -- Fourth test: for same entity, sort by reference location unit
1385
1386 elsif T1.Key.Lun /= T2.Key.Lun then
1387 return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun);
1388
1389 -- Fifth test: order of location within referencing unit
1390
1391 elsif T1.Key.Loc /= T2.Key.Loc then
1392 return T1.Key.Loc < T2.Key.Loc;
1393
1394 -- Finally, for two locations at the same address, we prefer
1395 -- the one that does NOT have the type 'r' so that a modification
1396 -- or extension takes preference, when there are more than one
1397 -- reference at the same location. As a result, in the case of
1398 -- entities that are in-out actuals, the read reference follows
1399 -- the modify reference.
1400
1401 else
1402 return T2.Key.Typ = 'r';
1403 end if;
1404 end Lt;
1405
1406 -----------------------
1407 -- Output_References --
1408 -----------------------
1409
1410 procedure Output_References is
1411
1412 procedure Get_Type_Reference
1413 (Ent : Entity_Id;
1414 Tref : out Entity_Id;
1415 Left : out Character;
1416 Right : out Character);
1417 -- Given an Entity_Id Ent, determines whether a type reference is
1418 -- required. If so, Tref is set to the entity for the type reference
1419 -- and Left and Right are set to the left/right brackets to be output
1420 -- for the reference. If no type reference is required, then Tref is
1421 -- set to Empty, and Left/Right are set to space.
1422
1423 procedure Output_Import_Export_Info (Ent : Entity_Id);
1424 -- Output language and external name information for an interfaced
1425 -- entity, using the format <language, external_name>.
1426
1427 ------------------------
1428 -- Get_Type_Reference --
1429 ------------------------
1430
1431 procedure Get_Type_Reference
1432 (Ent : Entity_Id;
1433 Tref : out Entity_Id;
1434 Left : out Character;
1435 Right : out Character)
1436 is
1437 Sav : Entity_Id;
1438
1439 begin
1440 -- See if we have a type reference
1441
1442 Tref := Ent;
1443 Left := '{';
1444 Right := '}';
1445
1446 loop
1447 Sav := Tref;
1448
1449 -- Processing for types
1450
1451 if Is_Type (Tref) then
1452
1453 -- Case of base type
1454
1455 if Base_Type (Tref) = Tref then
1456
1457 -- If derived, then get first subtype
1458
1459 if Tref /= Etype (Tref) then
1460 Tref := First_Subtype (Etype (Tref));
1461
1462 -- Set brackets for derived type, but don't override
1463 -- pointer case since the fact that something is a
1464 -- pointer is more important.
1465
1466 if Left /= '(' then
1467 Left := '<';
1468 Right := '>';
1469 end if;
1470
1471 -- If the completion of a private type is itself a derived
1472 -- type, we need the parent of the full view.
1473
1474 elsif Is_Private_Type (Tref)
1475 and then Present (Full_View (Tref))
1476 and then Etype (Full_View (Tref)) /= Full_View (Tref)
1477 then
1478 Tref := Etype (Full_View (Tref));
1479
1480 if Left /= '(' then
1481 Left := '<';
1482 Right := '>';
1483 end if;
1484
1485 -- If non-derived pointer, get directly designated type.
1486 -- If the type has a full view, all references are on the
1487 -- partial view that is seen first.
1488
1489 elsif Is_Access_Type (Tref) then
1490 Tref := Directly_Designated_Type (Tref);
1491 Left := '(';
1492 Right := ')';
1493
1494 elsif Is_Private_Type (Tref)
1495 and then Present (Full_View (Tref))
1496 then
1497 if Is_Access_Type (Full_View (Tref)) then
1498 Tref := Directly_Designated_Type (Full_View (Tref));
1499 Left := '(';
1500 Right := ')';
1501
1502 -- If the full view is an array type, we also retrieve
1503 -- the corresponding component type, because the ali
1504 -- entry already indicates that this is an array.
1505
1506 elsif Is_Array_Type (Full_View (Tref)) then
1507 Tref := Component_Type (Full_View (Tref));
1508 Left := '(';
1509 Right := ')';
1510 end if;
1511
1512 -- If non-derived array, get component type. Skip component
1513 -- type for case of String or Wide_String, saves worthwhile
1514 -- space.
1515
1516 elsif Is_Array_Type (Tref)
1517 and then Tref /= Standard_String
1518 and then Tref /= Standard_Wide_String
1519 then
1520 Tref := Component_Type (Tref);
1521 Left := '(';
1522 Right := ')';
1523
1524 -- For other non-derived base types, nothing
1525
1526 else
1527 exit;
1528 end if;
1529
1530 -- For a subtype, go to ancestor subtype
1531
1532 else
1533 Tref := Ancestor_Subtype (Tref);
1534
1535 -- If no ancestor subtype, go to base type
1536
1537 if No (Tref) then
1538 Tref := Base_Type (Sav);
1539 end if;
1540 end if;
1541
1542 -- For objects, functions, enum literals, just get type from
1543 -- Etype field.
1544
1545 elsif Is_Object (Tref)
1546 or else Ekind (Tref) = E_Enumeration_Literal
1547 or else Ekind (Tref) = E_Function
1548 or else Ekind (Tref) = E_Operator
1549 then
1550 Tref := Etype (Tref);
1551
1552 -- Another special case: an object of a classwide type
1553 -- initialized with a tag-indeterminate call gets a subtype
1554 -- of the classwide type during expansion. See if the original
1555 -- type in the declaration is named, and return it instead
1556 -- of going to the root type. The expression may be a class-
1557 -- wide function call whose result is on the secondary stack,
1558 -- which forces the declaration to be rewritten as a renaming,
1559 -- so examine the source declaration.
1560
1561 if Ekind (Tref) = E_Class_Wide_Subtype then
1562 declare
1563 Decl : constant Node_Id := Original_Node (Parent (Ent));
1564 begin
1565 if Nkind (Decl) = N_Object_Declaration
1566 and then Is_Entity_Name
1567 (Original_Node (Object_Definition (Decl)))
1568 then
1569 Tref :=
1570 Entity (Original_Node (Object_Definition (Decl)));
1571 end if;
1572 end;
1573
1574 -- For a function that returns a class-wide type, Tref is
1575 -- already correct.
1576
1577 elsif Is_Overloadable (Ent)
1578 and then Is_Class_Wide_Type (Tref)
1579 then
1580 return;
1581 end if;
1582
1583 -- For anything else, exit
1584
1585 else
1586 exit;
1587 end if;
1588
1589 -- Exit if no type reference, or we are stuck in some loop trying
1590 -- to find the type reference, or if the type is standard void
1591 -- type (the latter is an implementation artifact that should not
1592 -- show up in the generated cross-references).
1593
1594 exit when No (Tref)
1595 or else Tref = Sav
1596 or else Tref = Standard_Void_Type;
1597
1598 -- If we have a usable type reference, return, otherwise keep
1599 -- looking for something useful (we are looking for something
1600 -- that either comes from source or standard)
1601
1602 if Sloc (Tref) = Standard_Location
1603 or else Comes_From_Source (Tref)
1604 then
1605 -- If the reference is a subtype created for a generic actual,
1606 -- go actual directly, the inner subtype is not user visible.
1607
1608 if Nkind (Parent (Tref)) = N_Subtype_Declaration
1609 and then not Comes_From_Source (Parent (Tref))
1610 and then
1611 (Is_Wrapper_Package (Scope (Tref))
1612 or else Is_Generic_Instance (Scope (Tref)))
1613 then
1614 Tref := First_Subtype (Base_Type (Tref));
1615 end if;
1616
1617 return;
1618 end if;
1619 end loop;
1620
1621 -- If we fall through the loop, no type reference
1622
1623 Tref := Empty;
1624 Left := ' ';
1625 Right := ' ';
1626 end Get_Type_Reference;
1627
1628 -------------------------------
1629 -- Output_Import_Export_Info --
1630 -------------------------------
1631
1632 procedure Output_Import_Export_Info (Ent : Entity_Id) is
1633 Language_Name : Name_Id;
1634 Conv : constant Convention_Id := Convention (Ent);
1635
1636 begin
1637 -- Generate language name from convention
1638
1639 if Conv = Convention_C then
1640 Language_Name := Name_C;
1641
1642 elsif Conv = Convention_CPP then
1643 Language_Name := Name_CPP;
1644
1645 elsif Conv = Convention_Ada then
1646 Language_Name := Name_Ada;
1647
1648 else
1649 -- For the moment we ignore all other cases ???
1650
1651 return;
1652 end if;
1653
1654 Write_Info_Char ('<');
1655 Get_Unqualified_Name_String (Language_Name);
1656
1657 for J in 1 .. Name_Len loop
1658 Write_Info_Char (Name_Buffer (J));
1659 end loop;
1660
1661 if Present (Interface_Name (Ent)) then
1662 Write_Info_Char (',');
1663 String_To_Name_Buffer (Strval (Interface_Name (Ent)));
1664
1665 for J in 1 .. Name_Len loop
1666 Write_Info_Char (Name_Buffer (J));
1667 end loop;
1668 end if;
1669
1670 Write_Info_Char ('>');
1671 end Output_Import_Export_Info;
1672
1673 -- Start of processing for Output_References
1674
1675 begin
1676 -- First we add references to the primitive operations of tagged types
1677 -- declared in the main unit.
1678
1679 Handle_Prim_Ops : declare
1680 Ent : Entity_Id;
1681
1682 begin
1683 for J in 1 .. Xrefs.Last loop
1684 Ent := Xrefs.Table (J).Key.Ent;
1685
1686 if Is_Type (Ent)
1687 and then Is_Tagged_Type (Ent)
1688 and then Is_Base_Type (Ent)
1689 and then In_Extended_Main_Source_Unit (Ent)
1690 then
1691 Generate_Prim_Op_References (Ent);
1692 end if;
1693 end loop;
1694 end Handle_Prim_Ops;
1695
1696 -- Before we go ahead and output the references we have a problem
1697 -- that needs dealing with. So far we have captured things that are
1698 -- definitely referenced by the main unit, or defined in the main
1699 -- unit. That's because we don't want to clutter up the ali file
1700 -- for this unit with definition lines for entities in other units
1701 -- that are not referenced.
1702
1703 -- But there is a glitch. We may reference an entity in another unit,
1704 -- and it may have a type reference to an entity that is not directly
1705 -- referenced in the main unit, which may mean that there is no xref
1706 -- entry for this entity yet in the list of references.
1707
1708 -- If we don't do something about this, we will end with an orphan type
1709 -- reference, i.e. it will point to an entity that does not appear
1710 -- within the generated references in the ali file. That is not good for
1711 -- tools using the xref information.
1712
1713 -- To fix this, we go through the references adding definition entries
1714 -- for any unreferenced entities that can be referenced in a type
1715 -- reference. There is a recursion problem here, and that is dealt with
1716 -- by making sure that this traversal also traverses any entries that
1717 -- get added by the traversal.
1718
1719 Handle_Orphan_Type_References : declare
1720 J : Nat;
1721 Tref : Entity_Id;
1722 Ent : Entity_Id;
1723
1724 L, R : Character;
1725 pragma Warnings (Off, L);
1726 pragma Warnings (Off, R);
1727
1728 procedure New_Entry (E : Entity_Id);
1729 -- Make an additional entry into the Xref table for a type entity
1730 -- that is related to the current entity (parent, type ancestor,
1731 -- progenitor, etc.).
1732
1733 ----------------
1734 -- New_Entry --
1735 ----------------
1736
1737 procedure New_Entry (E : Entity_Id) is
1738 begin
1739 pragma Assert (Present (E));
1740
1741 if not Has_Xref_Entry (Implementation_Base_Type (E))
1742 and then Sloc (E) > No_Location
1743 then
1744 Add_Entry
1745 ((Ent => E,
1746 Loc => No_Location,
1747 Typ => Character'First,
1748 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
1749 Lun => No_Unit,
1750 Ref_Scope => Empty,
1751 Ent_Scope => Empty),
1752 Ent_Scope_File => No_Unit);
1753 end if;
1754 end New_Entry;
1755
1756 -- Start of processing for Handle_Orphan_Type_References
1757
1758 begin
1759 -- Note that this is not a for loop for a very good reason. The
1760 -- processing of items in the table can add new items to the table,
1761 -- and they must be processed as well.
1762
1763 J := 1;
1764 while J <= Xrefs.Last loop
1765 Ent := Xrefs.Table (J).Key.Ent;
1766
1767 -- Do not generate reference information for an ignored Ghost
1768 -- entity because neither the entity nor its references will
1769 -- appear in the final tree.
1770
1771 if Is_Ignored_Ghost_Entity (Ent) then
1772 goto Orphan_Continue;
1773 end if;
1774
1775 Get_Type_Reference (Ent, Tref, L, R);
1776
1777 if Present (Tref)
1778 and then not Has_Xref_Entry (Tref)
1779 and then Sloc (Tref) > No_Location
1780 then
1781 New_Entry (Tref);
1782
1783 if Is_Record_Type (Ent)
1784 and then Present (Interfaces (Ent))
1785 then
1786 -- Add an entry for each one of the given interfaces
1787 -- implemented by type Ent.
1788
1789 declare
1790 Elmt : Elmt_Id := First_Elmt (Interfaces (Ent));
1791 begin
1792 while Present (Elmt) loop
1793 New_Entry (Node (Elmt));
1794 Next_Elmt (Elmt);
1795 end loop;
1796 end;
1797 end if;
1798 end if;
1799
1800 -- Collect inherited primitive operations that may be declared in
1801 -- another unit and have no visible reference in the current one.
1802
1803 if Is_Type (Ent)
1804 and then Is_Tagged_Type (Ent)
1805 and then Is_Derived_Type (Ent)
1806 and then Is_Base_Type (Ent)
1807 and then In_Extended_Main_Source_Unit (Ent)
1808 then
1809 declare
1810 Op_List : constant Elist_Id := Primitive_Operations (Ent);
1811 Op : Elmt_Id;
1812 Prim : Entity_Id;
1813
1814 function Parent_Op (E : Entity_Id) return Entity_Id;
1815 -- Find original operation, which may be inherited through
1816 -- several derivations.
1817
1818 function Parent_Op (E : Entity_Id) return Entity_Id is
1819 Orig_Op : constant Entity_Id := Alias (E);
1820
1821 begin
1822 if No (Orig_Op) then
1823 return Empty;
1824
1825 elsif not Comes_From_Source (E)
1826 and then not Has_Xref_Entry (Orig_Op)
1827 and then Comes_From_Source (Orig_Op)
1828 then
1829 return Orig_Op;
1830 else
1831 return Parent_Op (Orig_Op);
1832 end if;
1833 end Parent_Op;
1834
1835 begin
1836 Op := First_Elmt (Op_List);
1837 while Present (Op) loop
1838 Prim := Parent_Op (Node (Op));
1839
1840 if Present (Prim) then
1841 Add_Entry
1842 ((Ent => Prim,
1843 Loc => No_Location,
1844 Typ => Character'First,
1845 Eun => Get_Source_Unit (Sloc (Prim)),
1846 Lun => No_Unit,
1847 Ref_Scope => Empty,
1848 Ent_Scope => Empty),
1849 Ent_Scope_File => No_Unit);
1850 end if;
1851
1852 Next_Elmt (Op);
1853 end loop;
1854 end;
1855 end if;
1856
1857 <<Orphan_Continue>>
1858 J := J + 1;
1859 end loop;
1860 end Handle_Orphan_Type_References;
1861
1862 -- Now we have all the references, including those for any embedded type
1863 -- references, so we can sort them, and output them.
1864
1865 Output_Refs : declare
1866 Nrefs : constant Nat := Xrefs.Last;
1867 -- Number of references in table
1868
1869 Rnums : array (0 .. Nrefs) of Nat;
1870 -- This array contains numbers of references in the Xrefs table.
1871 -- This list is sorted in output order. The extra 0'th entry is
1872 -- convenient for the call to sort. When we sort the table, we
1873 -- move the entries in Rnums around, but we do not move the
1874 -- original table entries.
1875
1876 Curxu : Unit_Number_Type;
1877 -- Current xref unit
1878
1879 Curru : Unit_Number_Type;
1880 -- Current reference unit for one entity
1881
1882 Curent : Entity_Id;
1883 -- Current entity
1884
1885 Curnam : String (1 .. Name_Buffer'Length);
1886 Curlen : Natural;
1887 -- Simple name and length of current entity
1888
1889 Curdef : Source_Ptr;
1890 -- Original source location for current entity
1891
1892 Crloc : Source_Ptr;
1893 -- Current reference location
1894
1895 Ctyp : Character;
1896 -- Entity type character
1897
1898 Prevt : Character;
1899 -- reference kind of previous reference
1900
1901 Tref : Entity_Id;
1902 -- Type reference
1903
1904 Rref : Node_Id;
1905 -- Renaming reference
1906
1907 Trunit : Unit_Number_Type;
1908 -- Unit number for type reference
1909
1910 function Lt (Op1, Op2 : Natural) return Boolean;
1911 -- Comparison function for Sort call
1912
1913 function Name_Change (X : Entity_Id) return Boolean;
1914 -- Determines if entity X has a different simple name from Curent
1915
1916 procedure Move (From : Natural; To : Natural);
1917 -- Move procedure for Sort call
1918
1919 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
1920
1921 --------
1922 -- Lt --
1923 --------
1924
1925 function Lt (Op1, Op2 : Natural) return Boolean is
1926 T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1)));
1927 T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2)));
1928
1929 begin
1930 return Lt (T1, T2);
1931 end Lt;
1932
1933 ----------
1934 -- Move --
1935 ----------
1936
1937 procedure Move (From : Natural; To : Natural) is
1938 begin
1939 Rnums (Nat (To)) := Rnums (Nat (From));
1940 end Move;
1941
1942 -----------------
1943 -- Name_Change --
1944 -----------------
1945
1946 -- Why a string comparison here??? Why not compare Name_Id values???
1947
1948 function Name_Change (X : Entity_Id) return Boolean is
1949 begin
1950 Get_Unqualified_Name_String (Chars (X));
1951
1952 if Name_Len /= Curlen then
1953 return True;
1954 else
1955 return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen);
1956 end if;
1957 end Name_Change;
1958
1959 -- Start of processing for Output_Refs
1960
1961 begin
1962 -- Capture the definition Sloc values. We delay doing this till now,
1963 -- since at the time the reference or definition is made, private
1964 -- types may be swapped, and the Sloc value may be incorrect. We
1965 -- also set up the pointer vector for the sort.
1966
1967 -- For user-defined operators we need to skip the initial quote and
1968 -- point to the first character of the name, for navigation purposes.
1969
1970 for J in 1 .. Nrefs loop
1971 declare
1972 E : constant Entity_Id := Xrefs.Table (J).Key.Ent;
1973 Loc : constant Source_Ptr := Original_Location (Sloc (E));
1974
1975 begin
1976 Rnums (J) := J;
1977
1978 if Nkind (E) = N_Defining_Operator_Symbol then
1979 Xrefs.Table (J).Def := Loc + 1;
1980 else
1981 Xrefs.Table (J).Def := Loc;
1982 end if;
1983 end;
1984 end loop;
1985
1986 -- Sort the references
1987
1988 Sorting.Sort (Integer (Nrefs));
1989
1990 -- Initialize loop through references
1991
1992 Curxu := No_Unit;
1993 Curent := Empty;
1994 Curdef := No_Location;
1995 Curru := No_Unit;
1996 Crloc := No_Location;
1997 Prevt := 'm';
1998
1999 -- Loop to output references
2000
2001 for Refno in 1 .. Nrefs loop
2002 Output_One_Ref : declare
2003 Ent : Entity_Id;
2004
2005 XE : Xref_Entry renames Xrefs.Table (Rnums (Refno));
2006 -- The current entry to be accessed
2007
2008 Left : Character;
2009 Right : Character;
2010 -- Used for {} or <> or () for type reference
2011
2012 procedure Check_Type_Reference
2013 (Ent : Entity_Id;
2014 List_Interface : Boolean;
2015 Is_Component : Boolean := False);
2016 -- Find whether there is a meaningful type reference for
2017 -- Ent, and display it accordingly. If List_Interface is
2018 -- true, then Ent is a progenitor interface of the current
2019 -- type entity being listed. In that case list it as is,
2020 -- without looking for a type reference for it. Flag is also
2021 -- used for index types of an array type, where the caller
2022 -- supplies the intended type reference. Is_Component serves
2023 -- the same purpose, to display the component type of a
2024 -- derived array type, for which only the parent type has
2025 -- ben displayed so far.
2026
2027 procedure Output_Instantiation_Refs (Loc : Source_Ptr);
2028 -- Recursive procedure to output instantiation references for
2029 -- the given source ptr in [file|line[...]] form. No output
2030 -- if the given location is not a generic template reference.
2031
2032 procedure Output_Overridden_Op (Old_E : Entity_Id);
2033 -- For a subprogram that is overriding, display information
2034 -- about the inherited operation that it overrides.
2035
2036 --------------------------
2037 -- Check_Type_Reference --
2038 --------------------------
2039
2040 procedure Check_Type_Reference
2041 (Ent : Entity_Id;
2042 List_Interface : Boolean;
2043 Is_Component : Boolean := False)
2044 is
2045 begin
2046 if List_Interface then
2047
2048 -- This is a progenitor interface of the type for which
2049 -- xref information is being generated.
2050
2051 Tref := Ent;
2052 Left := '<';
2053 Right := '>';
2054
2055 -- The following is not documented in lib-xref.ads ???
2056
2057 elsif Is_Component then
2058 Tref := Ent;
2059 Left := '(';
2060 Right := ')';
2061
2062 else
2063 Get_Type_Reference (Ent, Tref, Left, Right);
2064 end if;
2065
2066 if Present (Tref) then
2067
2068 -- Case of standard entity, output name
2069
2070 if Sloc (Tref) = Standard_Location then
2071 Write_Info_Char (Left);
2072 Write_Info_Name (Chars (Tref));
2073 Write_Info_Char (Right);
2074
2075 -- Case of source entity, output location
2076
2077 else
2078 Write_Info_Char (Left);
2079 Trunit := Get_Source_Unit (Sloc (Tref));
2080
2081 if Trunit /= Curxu then
2082 Write_Info_Nat (Dependency_Num (Trunit));
2083 Write_Info_Char ('|');
2084 end if;
2085
2086 Write_Info_Nat
2087 (Int (Get_Logical_Line_Number (Sloc (Tref))));
2088
2089 declare
2090 Ent : Entity_Id;
2091 Ctyp : Character;
2092
2093 begin
2094 Ent := Tref;
2095 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2096
2097 if Ctyp = '+'
2098 and then Present (Full_View (Ent))
2099 then
2100 Ent := Underlying_Type (Ent);
2101
2102 if Present (Ent) then
2103 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2104 end if;
2105 end if;
2106
2107 Write_Info_Char (Ctyp);
2108 end;
2109
2110 Write_Info_Nat
2111 (Int (Get_Column_Number (Sloc (Tref))));
2112
2113 -- If the type comes from an instantiation, add the
2114 -- corresponding info.
2115
2116 Output_Instantiation_Refs (Sloc (Tref));
2117 Write_Info_Char (Right);
2118 end if;
2119 end if;
2120 end Check_Type_Reference;
2121
2122 -------------------------------
2123 -- Output_Instantiation_Refs --
2124 -------------------------------
2125
2126 procedure Output_Instantiation_Refs (Loc : Source_Ptr) is
2127 Iloc : constant Source_Ptr := Instantiation_Location (Loc);
2128 Lun : Unit_Number_Type;
2129 Cu : constant Unit_Number_Type := Curru;
2130
2131 begin
2132 -- Nothing to do if this is not an instantiation
2133
2134 if Iloc = No_Location then
2135 return;
2136 end if;
2137
2138 -- Output instantiation reference
2139
2140 Write_Info_Char ('[');
2141 Lun := Get_Source_Unit (Iloc);
2142
2143 if Lun /= Curru then
2144 Curru := Lun;
2145 Write_Info_Nat (Dependency_Num (Curru));
2146 Write_Info_Char ('|');
2147 end if;
2148
2149 Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc)));
2150
2151 -- Recursive call to get nested instantiations
2152
2153 Output_Instantiation_Refs (Iloc);
2154
2155 -- Output final ] after call to get proper nesting
2156
2157 Write_Info_Char (']');
2158 Curru := Cu;
2159 return;
2160 end Output_Instantiation_Refs;
2161
2162 --------------------------
2163 -- Output_Overridden_Op --
2164 --------------------------
2165
2166 procedure Output_Overridden_Op (Old_E : Entity_Id) is
2167 Op : Entity_Id;
2168
2169 begin
2170 -- The overridden operation has an implicit declaration
2171 -- at the point of derivation. What we want to display
2172 -- is the original operation, which has the actual body
2173 -- (or abstract declaration) that is being overridden.
2174 -- The overridden operation is not always set, e.g. when
2175 -- it is a predefined operator.
2176
2177 if No (Old_E) then
2178 return;
2179
2180 -- Follow alias chain if one is present
2181
2182 elsif Present (Alias (Old_E)) then
2183
2184 -- The subprogram may have been implicitly inherited
2185 -- through several levels of derivation, so find the
2186 -- ultimate (source) ancestor.
2187
2188 Op := Ultimate_Alias (Old_E);
2189
2190 -- Normal case of no alias present. We omit generated
2191 -- primitives like tagged equality, that have no source
2192 -- representation.
2193
2194 else
2195 Op := Old_E;
2196 end if;
2197
2198 if Present (Op)
2199 and then Sloc (Op) /= Standard_Location
2200 and then Comes_From_Source (Op)
2201 then
2202 declare
2203 Loc : constant Source_Ptr := Sloc (Op);
2204 Par_Unit : constant Unit_Number_Type :=
2205 Get_Source_Unit (Loc);
2206
2207 begin
2208 Write_Info_Char ('<');
2209
2210 if Par_Unit /= Curxu then
2211 Write_Info_Nat (Dependency_Num (Par_Unit));
2212 Write_Info_Char ('|');
2213 end if;
2214
2215 Write_Info_Nat (Int (Get_Logical_Line_Number (Loc)));
2216 Write_Info_Char ('p');
2217 Write_Info_Nat (Int (Get_Column_Number (Loc)));
2218 Write_Info_Char ('>');
2219 end;
2220 end if;
2221 end Output_Overridden_Op;
2222
2223 -- Start of processing for Output_One_Ref
2224
2225 begin
2226 Ent := XE.Key.Ent;
2227
2228 -- Do not generate reference information for an ignored Ghost
2229 -- entity because neither the entity nor its references will
2230 -- appear in the final tree.
2231
2232 if Is_Ignored_Ghost_Entity (Ent) then
2233 goto Continue;
2234 end if;
2235
2236 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2237
2238 -- Skip reference if it is the only reference to an entity,
2239 -- and it is an END line reference, and the entity is not in
2240 -- the current extended source. This prevents junk entries
2241 -- consisting only of packages with END lines, where no
2242 -- entity from the package is actually referenced.
2243
2244 if XE.Key.Typ = 'e'
2245 and then Ent /= Curent
2246 and then (Refno = Nrefs
2247 or else
2248 Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent)
2249 and then not In_Extended_Main_Source_Unit (Ent)
2250 then
2251 goto Continue;
2252 end if;
2253
2254 -- For private type, get full view type
2255
2256 if Ctyp = '+'
2257 and then Present (Full_View (XE.Key.Ent))
2258 then
2259 Ent := Underlying_Type (Ent);
2260
2261 if Present (Ent) then
2262 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2263 end if;
2264 end if;
2265
2266 -- Special exception for Boolean
2267
2268 if Ctyp = 'E' and then Is_Boolean_Type (Ent) then
2269 Ctyp := 'B';
2270 end if;
2271
2272 -- For variable reference, get corresponding type
2273
2274 if Ctyp = '*' then
2275 Ent := Etype (XE.Key.Ent);
2276 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2277
2278 -- If variable is private type, get full view type
2279
2280 if Ctyp = '+'
2281 and then Present (Full_View (Etype (XE.Key.Ent)))
2282 then
2283 Ent := Underlying_Type (Etype (XE.Key.Ent));
2284
2285 if Present (Ent) then
2286 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2287 end if;
2288
2289 elsif Is_Generic_Type (Ent) then
2290
2291 -- If the type of the entity is a generic private type,
2292 -- there is no usable full view, so retain the indication
2293 -- that this is an object.
2294
2295 Ctyp := '*';
2296 end if;
2297
2298 -- Special handling for access parameters and objects and
2299 -- components of an anonymous access type.
2300
2301 if Ekind_In (Etype (XE.Key.Ent),
2302 E_Anonymous_Access_Type,
2303 E_Anonymous_Access_Subprogram_Type,
2304 E_Anonymous_Access_Protected_Subprogram_Type)
2305 then
2306 if Is_Formal (XE.Key.Ent)
2307 or else
2308 Ekind_In
2309 (XE.Key.Ent, E_Variable, E_Constant, E_Component)
2310 then
2311 Ctyp := 'p';
2312 end if;
2313
2314 -- Special handling for Boolean
2315
2316 elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then
2317 Ctyp := 'b';
2318 end if;
2319 end if;
2320
2321 -- Special handling for abstract types and operations
2322
2323 if Is_Overloadable (XE.Key.Ent)
2324 and then Is_Abstract_Subprogram (XE.Key.Ent)
2325 then
2326 if Ctyp = 'U' then
2327 Ctyp := 'x'; -- Abstract procedure
2328
2329 elsif Ctyp = 'V' then
2330 Ctyp := 'y'; -- Abstract function
2331 end if;
2332
2333 elsif Is_Type (XE.Key.Ent)
2334 and then Is_Abstract_Type (XE.Key.Ent)
2335 then
2336 if Is_Interface (XE.Key.Ent) then
2337 Ctyp := 'h';
2338
2339 elsif Ctyp = 'R' then
2340 Ctyp := 'H'; -- Abstract type
2341 end if;
2342 end if;
2343
2344 -- Only output reference if interesting type of entity
2345
2346 if Ctyp = ' '
2347
2348 -- Suppress references to object definitions, used for local
2349 -- references.
2350
2351 or else XE.Key.Typ = 'D'
2352 or else XE.Key.Typ = 'I'
2353
2354 -- Suppress self references, except for bodies that act as
2355 -- specs.
2356
2357 or else (XE.Key.Loc = XE.Def
2358 and then
2359 (XE.Key.Typ /= 'b'
2360 or else not Is_Subprogram (XE.Key.Ent)))
2361
2362 -- Also suppress definitions of body formals (we only
2363 -- treat these as references, and the references were
2364 -- separately recorded).
2365
2366 or else (Is_Formal (XE.Key.Ent)
2367 and then Present (Spec_Entity (XE.Key.Ent)))
2368 then
2369 null;
2370
2371 else
2372 -- Start new Xref section if new xref unit
2373
2374 if XE.Key.Eun /= Curxu then
2375 if Write_Info_Col > 1 then
2376 Write_Info_EOL;
2377 end if;
2378
2379 Curxu := XE.Key.Eun;
2380
2381 Write_Info_Initiate ('X');
2382 Write_Info_Char (' ');
2383 Write_Info_Nat (Dependency_Num (XE.Key.Eun));
2384 Write_Info_Char (' ');
2385 Write_Info_Name
2386 (Reference_Name (Source_Index (XE.Key.Eun)));
2387 end if;
2388
2389 -- Start new Entity line if new entity. Note that we
2390 -- consider two entities the same if they have the same
2391 -- name and source location. This causes entities in
2392 -- instantiations to be treated as though they referred
2393 -- to the template.
2394
2395 if No (Curent)
2396 or else
2397 (XE.Key.Ent /= Curent
2398 and then
2399 (Name_Change (XE.Key.Ent) or else XE.Def /= Curdef))
2400 then
2401 Curent := XE.Key.Ent;
2402 Curdef := XE.Def;
2403
2404 Get_Unqualified_Name_String (Chars (XE.Key.Ent));
2405 Curlen := Name_Len;
2406 Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen);
2407
2408 if Write_Info_Col > 1 then
2409 Write_Info_EOL;
2410 end if;
2411
2412 -- Write column number information
2413
2414 Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def)));
2415 Write_Info_Char (Ctyp);
2416 Write_Info_Nat (Int (Get_Column_Number (XE.Def)));
2417
2418 -- Write level information
2419
2420 Write_Level_Info : declare
2421 function Is_Visible_Generic_Entity
2422 (E : Entity_Id) return Boolean;
2423 -- Check whether E is declared in the visible part
2424 -- of a generic package. For source navigation
2425 -- purposes, treat this as a visible entity.
2426
2427 function Is_Private_Record_Component
2428 (E : Entity_Id) return Boolean;
2429 -- Check whether E is a non-inherited component of a
2430 -- private extension. Even if the enclosing record is
2431 -- public, we want to treat the component as private
2432 -- for navigation purposes.
2433
2434 ---------------------------------
2435 -- Is_Private_Record_Component --
2436 ---------------------------------
2437
2438 function Is_Private_Record_Component
2439 (E : Entity_Id) return Boolean
2440 is
2441 S : constant Entity_Id := Scope (E);
2442 begin
2443 return
2444 Ekind (E) = E_Component
2445 and then Nkind (Declaration_Node (S)) =
2446 N_Private_Extension_Declaration
2447 and then Original_Record_Component (E) = E;
2448 end Is_Private_Record_Component;
2449
2450 -------------------------------
2451 -- Is_Visible_Generic_Entity --
2452 -------------------------------
2453
2454 function Is_Visible_Generic_Entity
2455 (E : Entity_Id) return Boolean
2456 is
2457 Par : Node_Id;
2458
2459 begin
2460 -- The Present check here is an error defense
2461
2462 if Present (Scope (E))
2463 and then Ekind (Scope (E)) /= E_Generic_Package
2464 then
2465 return False;
2466 end if;
2467
2468 Par := Parent (E);
2469 while Present (Par) loop
2470 if
2471 Nkind (Par) = N_Generic_Package_Declaration
2472 then
2473 -- Entity is a generic formal
2474
2475 return False;
2476
2477 elsif
2478 Nkind (Parent (Par)) = N_Package_Specification
2479 then
2480 return
2481 Is_List_Member (Par)
2482 and then List_Containing (Par) =
2483 Visible_Declarations (Parent (Par));
2484 else
2485 Par := Parent (Par);
2486 end if;
2487 end loop;
2488
2489 return False;
2490 end Is_Visible_Generic_Entity;
2491
2492 -- Start of processing for Write_Level_Info
2493
2494 begin
2495 if Is_Hidden (Curent)
2496 or else Is_Private_Record_Component (Curent)
2497 then
2498 Write_Info_Char (' ');
2499
2500 elsif
2501 Is_Public (Curent)
2502 or else Is_Visible_Generic_Entity (Curent)
2503 then
2504 Write_Info_Char ('*');
2505
2506 else
2507 Write_Info_Char (' ');
2508 end if;
2509 end Write_Level_Info;
2510
2511 -- Output entity name. We use the occurrence from the
2512 -- actual source program at the definition point.
2513
2514 declare
2515 Ent_Name : constant String :=
2516 Exact_Source_Name (Sloc (XE.Key.Ent));
2517 begin
2518 for C in Ent_Name'Range loop
2519 Write_Info_Char (Ent_Name (C));
2520 end loop;
2521 end;
2522
2523 -- See if we have a renaming reference
2524
2525 if Is_Object (XE.Key.Ent)
2526 and then Present (Renamed_Object (XE.Key.Ent))
2527 then
2528 Rref := Renamed_Object (XE.Key.Ent);
2529
2530 elsif Is_Overloadable (XE.Key.Ent)
2531 and then Nkind (Parent (Declaration_Node (XE.Key.Ent)))
2532 = N_Subprogram_Renaming_Declaration
2533 then
2534 Rref := Name (Parent (Declaration_Node (XE.Key.Ent)));
2535
2536 elsif Ekind (XE.Key.Ent) = E_Package
2537 and then Nkind (Declaration_Node (XE.Key.Ent)) =
2538 N_Package_Renaming_Declaration
2539 then
2540 Rref := Name (Declaration_Node (XE.Key.Ent));
2541
2542 else
2543 Rref := Empty;
2544 end if;
2545
2546 if Present (Rref) then
2547 if Nkind (Rref) = N_Expanded_Name then
2548 Rref := Selector_Name (Rref);
2549 end if;
2550
2551 if Nkind (Rref) = N_Identifier
2552 or else Nkind (Rref) = N_Operator_Symbol
2553 then
2554 null;
2555
2556 -- For renamed array components, use the array name
2557 -- for the renamed entity, which reflect the fact that
2558 -- in general the whole array is aliased.
2559
2560 elsif Nkind (Rref) = N_Indexed_Component then
2561 if Nkind (Prefix (Rref)) = N_Identifier then
2562 Rref := Prefix (Rref);
2563 elsif Nkind (Prefix (Rref)) = N_Expanded_Name then
2564 Rref := Selector_Name (Prefix (Rref));
2565 else
2566 Rref := Empty;
2567 end if;
2568
2569 else
2570 Rref := Empty;
2571 end if;
2572 end if;
2573
2574 -- Write out renaming reference if we have one
2575
2576 if Present (Rref) then
2577 Write_Info_Char ('=');
2578 Write_Info_Nat
2579 (Int (Get_Logical_Line_Number (Sloc (Rref))));
2580 Write_Info_Char (':');
2581 Write_Info_Nat
2582 (Int (Get_Column_Number (Sloc (Rref))));
2583 end if;
2584
2585 -- Indicate that the entity is in the unit of the current
2586 -- xref section.
2587
2588 Curru := Curxu;
2589
2590 -- Write out information about generic parent, if entity
2591 -- is an instance.
2592
2593 if Is_Generic_Instance (XE.Key.Ent) then
2594 declare
2595 Gen_Par : constant Entity_Id :=
2596 Generic_Parent
2597 (Specification
2598 (Unit_Declaration_Node
2599 (XE.Key.Ent)));
2600 Loc : constant Source_Ptr := Sloc (Gen_Par);
2601 Gen_U : constant Unit_Number_Type :=
2602 Get_Source_Unit (Loc);
2603
2604 begin
2605 Write_Info_Char ('[');
2606
2607 if Curru /= Gen_U then
2608 Write_Info_Nat (Dependency_Num (Gen_U));
2609 Write_Info_Char ('|');
2610 end if;
2611
2612 Write_Info_Nat
2613 (Int (Get_Logical_Line_Number (Loc)));
2614 Write_Info_Char (']');
2615 end;
2616 end if;
2617
2618 -- See if we have a type reference and if so output
2619
2620 Check_Type_Reference (XE.Key.Ent, False);
2621
2622 -- Additional information for types with progenitors,
2623 -- including synchronized tagged types.
2624
2625 declare
2626 Typ : constant Entity_Id := XE.Key.Ent;
2627 Elmt : Elmt_Id;
2628
2629 begin
2630 if Is_Record_Type (Typ)
2631 and then Present (Interfaces (Typ))
2632 then
2633 Elmt := First_Elmt (Interfaces (Typ));
2634
2635 elsif Is_Concurrent_Type (Typ)
2636 and then Present (Corresponding_Record_Type (Typ))
2637 and then Present (
2638 Interfaces (Corresponding_Record_Type (Typ)))
2639 then
2640 Elmt :=
2641 First_Elmt (
2642 Interfaces (Corresponding_Record_Type (Typ)));
2643
2644 else
2645 Elmt := No_Elmt;
2646 end if;
2647
2648 while Present (Elmt) loop
2649 Check_Type_Reference (Node (Elmt), True);
2650 Next_Elmt (Elmt);
2651 end loop;
2652 end;
2653
2654 -- For array types, list index types as well. (This is
2655 -- not C, indexes have distinct types).
2656
2657 if Is_Array_Type (XE.Key.Ent) then
2658 declare
2659 A_Typ : constant Entity_Id := XE.Key.Ent;
2660 Indx : Node_Id;
2661
2662 begin
2663 -- If this is a derived array type, we have
2664 -- output the parent type, so add the component
2665 -- type now.
2666
2667 if Is_Derived_Type (A_Typ) then
2668 Check_Type_Reference
2669 (Component_Type (A_Typ), False, True);
2670 end if;
2671
2672 -- Add references to index types.
2673
2674 Indx := First_Index (XE.Key.Ent);
2675 while Present (Indx) loop
2676 Check_Type_Reference
2677 (First_Subtype (Etype (Indx)), True);
2678 Next_Index (Indx);
2679 end loop;
2680 end;
2681 end if;
2682
2683 -- If the entity is an overriding operation, write info
2684 -- on operation that was overridden.
2685
2686 if Is_Subprogram (XE.Key.Ent)
2687 and then Present (Overridden_Operation (XE.Key.Ent))
2688 then
2689 Output_Overridden_Op
2690 (Overridden_Operation (XE.Key.Ent));
2691 end if;
2692
2693 -- End of processing for entity output
2694
2695 Crloc := No_Location;
2696 end if;
2697
2698 -- Output the reference if it is not as the same location
2699 -- as the previous one, or it is a read-reference that
2700 -- indicates that the entity is an in-out actual in a call.
2701
2702 if XE.Key.Loc /= No_Location
2703 and then
2704 (XE.Key.Loc /= Crloc
2705 or else (Prevt = 'm' and then XE.Key.Typ = 'r'))
2706 then
2707 Crloc := XE.Key.Loc;
2708 Prevt := XE.Key.Typ;
2709
2710 -- Start continuation if line full, else blank
2711
2712 if Write_Info_Col > 72 then
2713 Write_Info_EOL;
2714 Write_Info_Initiate ('.');
2715 end if;
2716
2717 Write_Info_Char (' ');
2718
2719 -- Output file number if changed
2720
2721 if XE.Key.Lun /= Curru then
2722 Curru := XE.Key.Lun;
2723 Write_Info_Nat (Dependency_Num (Curru));
2724 Write_Info_Char ('|');
2725 end if;
2726
2727 Write_Info_Nat
2728 (Int (Get_Logical_Line_Number (XE.Key.Loc)));
2729 Write_Info_Char (XE.Key.Typ);
2730
2731 if Is_Overloadable (XE.Key.Ent) then
2732 if (Is_Imported (XE.Key.Ent) and then XE.Key.Typ = 'b')
2733 or else
2734 (Is_Exported (XE.Key.Ent) and then XE.Key.Typ = 'i')
2735 then
2736 Output_Import_Export_Info (XE.Key.Ent);
2737 end if;
2738 end if;
2739
2740 Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc)));
2741
2742 Output_Instantiation_Refs (Sloc (XE.Key.Ent));
2743 end if;
2744 end if;
2745 end Output_One_Ref;
2746
2747 <<Continue>>
2748 null;
2749 end loop;
2750
2751 Write_Info_EOL;
2752 end Output_Refs;
2753 end Output_References;
2754
2755 ---------------------------------
2756 -- Process_Deferred_References --
2757 ---------------------------------
2758
2759 procedure Process_Deferred_References is
2760 begin
2761 for J in Deferred_References.First .. Deferred_References.Last loop
2762 declare
2763 D : Deferred_Reference_Entry renames Deferred_References.Table (J);
2764
2765 begin
2766 case Is_LHS (D.N) is
2767 when Yes =>
2768 Generate_Reference (D.E, D.N, 'm');
2769
2770 when No =>
2771 Generate_Reference (D.E, D.N, 'r');
2772
2773 -- Not clear if Unknown can occur at this stage, but if it
2774 -- does we will treat it as a normal reference.
2775
2776 when Unknown =>
2777 Generate_Reference (D.E, D.N, 'r');
2778 end case;
2779 end;
2780 end loop;
2781
2782 -- Clear processed entries from table
2783
2784 Deferred_References.Init;
2785 end Process_Deferred_References;
2786
2787 -- Start of elaboration for Lib.Xref
2788
2789 begin
2790 -- Reset is necessary because Elmt_Ptr does not default to Null_Ptr,
2791 -- because it's not an access type.
2792
2793 Xref_Set.Reset;
2794 end Lib.Xref;