[multiple changes]
[gcc.git] / gcc / ada / lib-xref.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L I B . X R E F --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Csets; use Csets;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Nlists; use Nlists;
31 with Opt; use Opt;
32 with Restrict; use Restrict;
33 with Rident; use Rident;
34 with Sem; use Sem;
35 with Sem_Aux; use Sem_Aux;
36 with Sem_Prag; use Sem_Prag;
37 with Sem_Util; use Sem_Util;
38 with Sem_Warn; use Sem_Warn;
39 with Sinfo; use Sinfo;
40 with Sinput; use Sinput;
41 with Snames; use Snames;
42 with Stringt; use Stringt;
43 with Stand; use Stand;
44 with Table; use Table;
45
46 with GNAT.Heap_Sort_G;
47 with GNAT.HTable;
48
49 package body Lib.Xref is
50
51 ------------------
52 -- Declarations --
53 ------------------
54
55 -- The Xref table is used to record references. The Loc field is set
56 -- to No_Location for a definition entry.
57
58 subtype Xref_Entry_Number is Int;
59
60 type Xref_Key is record
61 -- These are the components of Xref_Entry that participate in hash
62 -- lookups.
63
64 Ent : Entity_Id;
65 -- Entity referenced (E parameter to Generate_Reference)
66
67 Loc : Source_Ptr;
68 -- Location of reference (Original_Location (Sloc field of N parameter
69 -- to Generate_Reference). Set to No_Location for the case of a
70 -- defining occurrence.
71
72 Typ : Character;
73 -- Reference type (Typ param to Generate_Reference)
74
75 Eun : Unit_Number_Type;
76 -- Unit number corresponding to Ent
77
78 Lun : Unit_Number_Type;
79 -- Unit number corresponding to Loc. Value is undefined and not
80 -- referenced if Loc is set to No_Location.
81
82 -- The following components are only used for Alfa cross-references
83
84 Ref_Scope : Entity_Id;
85 -- Entity of the closest subprogram or package enclosing the reference
86
87 Ent_Scope : Entity_Id;
88 -- Entity of the closest subprogram or package enclosing the definition,
89 -- which should be located in the same file as the definition itself.
90 end record;
91
92 type Xref_Entry is record
93 Key : Xref_Key;
94
95 Ent_Scope_File : Unit_Number_Type;
96 -- File for entity Ent_Scope
97
98 Def : Source_Ptr;
99 -- Original source location for entity being referenced. Note that these
100 -- values are used only during the output process, they are not set when
101 -- the entries are originally built. This is because private entities
102 -- can be swapped when the initial call is made.
103
104 HTable_Next : Xref_Entry_Number;
105 -- For use only by Static_HTable
106 end record;
107
108 package Xrefs is new Table.Table (
109 Table_Component_Type => Xref_Entry,
110 Table_Index_Type => Xref_Entry_Number,
111 Table_Low_Bound => 1,
112 Table_Initial => Alloc.Xrefs_Initial,
113 Table_Increment => Alloc.Xrefs_Increment,
114 Table_Name => "Xrefs");
115
116 --------------
117 -- Xref_Set --
118 --------------
119
120 -- We keep a set of xref entries, in order to avoid inserting duplicate
121 -- entries into the above Xrefs table. An entry is in Xref_Set if and only
122 -- if it is in Xrefs.
123
124 Num_Buckets : constant := 2**16;
125
126 subtype Header_Num is Integer range 0 .. Num_Buckets - 1;
127 type Null_Type is null record;
128 pragma Unreferenced (Null_Type);
129
130 function Hash (F : Xref_Entry_Number) return Header_Num;
131
132 function Equal (F1, F2 : Xref_Entry_Number) return Boolean;
133
134 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number);
135
136 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number;
137
138 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number;
139
140 pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key);
141
142 package Xref_Set is new GNAT.HTable.Static_HTable (
143 Header_Num,
144 Element => Xref_Entry,
145 Elmt_Ptr => Xref_Entry_Number,
146 Null_Ptr => 0,
147 Set_Next => HT_Set_Next,
148 Next => HT_Next,
149 Key => Xref_Entry_Number,
150 Get_Key => Get_Key,
151 Hash => Hash,
152 Equal => Equal);
153
154 ----------------------
155 -- Alfa Information --
156 ----------------------
157
158 package body Alfa is separate;
159
160 ------------------------
161 -- Local Subprograms --
162 ------------------------
163
164 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type);
165 -- Add an entry to the tables of Xref_Entries, avoiding duplicates
166
167 procedure Generate_Prim_Op_References (Typ : Entity_Id);
168 -- For a tagged type, generate implicit references to its primitive
169 -- operations, for source navigation. This is done right before emitting
170 -- cross-reference information rather than at the freeze point of the type
171 -- in order to handle late bodies that are primitive operations.
172
173 function Lt (T1, T2 : Xref_Entry) return Boolean;
174 -- Order cross-references
175
176 ---------------
177 -- Add_Entry --
178 ---------------
179
180 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is
181 begin
182 Xrefs.Increment_Last; -- tentative
183 Xrefs.Table (Xrefs.Last).Key := Key;
184
185 -- Set the entry in Xref_Set, and if newly set, keep the above
186 -- tentative increment.
187
188 if Xref_Set.Set_If_Not_Present (Xrefs.Last) then
189 Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File;
190 -- Leave Def and HTable_Next uninitialized
191
192 Set_Has_Xref_Entry (Key.Ent);
193
194 -- It was already in Xref_Set, so throw away the tentatively-added
195 -- entry
196
197 else
198 Xrefs.Decrement_Last;
199 end if;
200 end Add_Entry;
201
202 -----------
203 -- Equal --
204 -----------
205
206 function Equal (F1, F2 : Xref_Entry_Number) return Boolean is
207 Result : constant Boolean :=
208 Xrefs.Table (F1).Key = Xrefs.Table (F2).Key;
209 begin
210 return Result;
211 end Equal;
212
213 -------------------------
214 -- Generate_Definition --
215 -------------------------
216
217 procedure Generate_Definition (E : Entity_Id) is
218 begin
219 pragma Assert (Nkind (E) in N_Entity);
220
221 -- Note that we do not test Xref_Entity_Letters here. It is too early
222 -- to do so, since we are often called before the entity is fully
223 -- constructed, so that the Ekind is still E_Void.
224
225 if Opt.Xref_Active
226
227 -- Definition must come from source
228
229 -- We make an exception for subprogram child units that have no spec.
230 -- For these we generate a subprogram declaration for library use,
231 -- and the corresponding entity does not come from source.
232 -- Nevertheless, all references will be attached to it and we have
233 -- to treat is as coming from user code.
234
235 and then (Comes_From_Source (E) or else Is_Child_Unit (E))
236
237 -- And must have a reasonable source location that is not
238 -- within an instance (all entities in instances are ignored)
239
240 and then Sloc (E) > No_Location
241 and then Instantiation_Location (Sloc (E)) = No_Location
242
243 -- And must be a non-internal name from the main source unit
244
245 and then In_Extended_Main_Source_Unit (E)
246 and then not Is_Internal_Name (Chars (E))
247 then
248 Add_Entry
249 ((Ent => E,
250 Loc => No_Location,
251 Typ => ' ',
252 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
253 Lun => No_Unit,
254 Ref_Scope => Empty,
255 Ent_Scope => Empty),
256 Ent_Scope_File => No_Unit);
257
258 if In_Inlined_Body then
259 Set_Referenced (E);
260 end if;
261 end if;
262 end Generate_Definition;
263
264 ---------------------------------
265 -- Generate_Operator_Reference --
266 ---------------------------------
267
268 procedure Generate_Operator_Reference
269 (N : Node_Id;
270 T : Entity_Id)
271 is
272 begin
273 if not In_Extended_Main_Source_Unit (N) then
274 return;
275 end if;
276
277 -- If the operator is not a Standard operator, then we generate a real
278 -- reference to the user defined operator.
279
280 if Sloc (Entity (N)) /= Standard_Location then
281 Generate_Reference (Entity (N), N);
282
283 -- A reference to an implicit inequality operator is also a reference
284 -- to the user-defined equality.
285
286 if Nkind (N) = N_Op_Ne
287 and then not Comes_From_Source (Entity (N))
288 and then Present (Corresponding_Equality (Entity (N)))
289 then
290 Generate_Reference (Corresponding_Equality (Entity (N)), N);
291 end if;
292
293 -- For the case of Standard operators, we mark the result type as
294 -- referenced. This ensures that in the case where we are using a
295 -- derived operator, we mark an entity of the unit that implicitly
296 -- defines this operator as used. Otherwise we may think that no entity
297 -- of the unit is used. The actual entity marked as referenced is the
298 -- first subtype, which is the relevant user defined entity.
299
300 -- Note: we only do this for operators that come from source. The
301 -- generated code sometimes reaches for entities that do not need to be
302 -- explicitly visible (for example, when we expand the code for
303 -- comparing two record objects, the fields of the record may not be
304 -- visible).
305
306 elsif Comes_From_Source (N) then
307 Set_Referenced (First_Subtype (T));
308 end if;
309 end Generate_Operator_Reference;
310
311 ---------------------------------
312 -- Generate_Prim_Op_References --
313 ---------------------------------
314
315 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
316 Base_T : Entity_Id;
317 Prim : Elmt_Id;
318 Prim_List : Elist_Id;
319
320 begin
321 -- Handle subtypes of synchronized types
322
323 if Ekind (Typ) = E_Protected_Subtype
324 or else Ekind (Typ) = E_Task_Subtype
325 then
326 Base_T := Etype (Typ);
327 else
328 Base_T := Typ;
329 end if;
330
331 -- References to primitive operations are only relevant for tagged types
332
333 if not Is_Tagged_Type (Base_T)
334 or else Is_Class_Wide_Type (Base_T)
335 then
336 return;
337 end if;
338
339 -- Ada 2005 (AI-345): For synchronized types generate reference to the
340 -- wrapper that allow us to dispatch calls through their implemented
341 -- abstract interface types.
342
343 -- The check for Present here is to protect against previously reported
344 -- critical errors.
345
346 Prim_List := Primitive_Operations (Base_T);
347
348 if No (Prim_List) then
349 return;
350 end if;
351
352 Prim := First_Elmt (Prim_List);
353 while Present (Prim) loop
354
355 -- If the operation is derived, get the original for cross-reference
356 -- reference purposes (it is the original for which we want the xref
357 -- and for which the comes_from_source test must be performed).
358
359 Generate_Reference
360 (Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False);
361 Next_Elmt (Prim);
362 end loop;
363 end Generate_Prim_Op_References;
364
365 ------------------------
366 -- Generate_Reference --
367 ------------------------
368
369 procedure Generate_Reference
370 (E : Entity_Id;
371 N : Node_Id;
372 Typ : Character := 'r';
373 Set_Ref : Boolean := True;
374 Force : Boolean := False)
375 is
376 Actual_Typ : Character := Typ;
377 Call : Node_Id;
378 Def : Source_Ptr;
379 Ent : Entity_Id;
380 Ent_Scope : Entity_Id;
381 Formal : Entity_Id;
382 Kind : Entity_Kind;
383 Nod : Node_Id;
384 Ref : Source_Ptr;
385 Ref_Scope : Entity_Id;
386
387 function Get_Through_Renamings (E : Entity_Id) return Entity_Id;
388 -- Get the enclosing entity through renamings, which may come from
389 -- source or from the translation of generic instantiations.
390
391 function Is_On_LHS (Node : Node_Id) return Boolean;
392 -- Used to check if a node is on the left hand side of an assignment.
393 -- The following cases are handled:
394 --
395 -- Variable Node is a direct descendant of left hand side of an
396 -- assignment statement.
397 --
398 -- Prefix Of an indexed or selected component that is present in
399 -- a subtree rooted by an assignment statement. There is
400 -- no restriction of nesting of components, thus cases
401 -- such as A.B (C).D are handled properly. However a prefix
402 -- of a dereference (either implicit or explicit) is never
403 -- considered as on a LHS.
404 --
405 -- Out param Same as above cases, but OUT parameter
406
407 function OK_To_Set_Referenced return Boolean;
408 -- Returns True if the Referenced flag can be set. There are a few
409 -- exceptions where we do not want to set this flag, see body for
410 -- details of these exceptional cases.
411
412 ---------------------------
413 -- Get_Through_Renamings --
414 ---------------------------
415
416 function Get_Through_Renamings (E : Entity_Id) return Entity_Id is
417 Result : Entity_Id := E;
418 begin
419 while Present (Result)
420 and then Is_Object (Result)
421 and then Present (Renamed_Object (Result))
422 loop
423 Result := Get_Enclosing_Object (Renamed_Object (Result));
424 end loop;
425 return Result;
426 end Get_Through_Renamings;
427
428 ---------------
429 -- Is_On_LHS --
430 ---------------
431
432 -- ??? There are several routines here and there that perform a similar
433 -- (but subtly different) computation, which should be factored:
434
435 -- Sem_Util.May_Be_Lvalue
436 -- Sem_Util.Known_To_Be_Assigned
437 -- Exp_Ch2.Expand_Entry_Parameter.In_Assignment_Context
438 -- Exp_Smem.Is_Out_Actual
439
440 function Is_On_LHS (Node : Node_Id) return Boolean is
441 N : Node_Id;
442 P : Node_Id;
443 K : Node_Kind;
444
445 begin
446 -- Only identifiers are considered, is this necessary???
447
448 if Nkind (Node) /= N_Identifier then
449 return False;
450 end if;
451
452 -- Immediate return if appeared as OUT parameter
453
454 if Kind = E_Out_Parameter then
455 return True;
456 end if;
457
458 -- Search for assignment statement subtree root
459
460 N := Node;
461 loop
462 P := Parent (N);
463 K := Nkind (P);
464
465 if K = N_Assignment_Statement then
466 return Name (P) = N;
467
468 -- Check whether the parent is a component and the current node is
469 -- its prefix, but return False if the current node has an access
470 -- type, as in that case the selected or indexed component is an
471 -- implicit dereference, and the LHS is the designated object, not
472 -- the access object.
473
474 -- ??? case of a slice assignment?
475
476 -- ??? Note that in some cases this is called too early
477 -- (see comments in Sem_Ch8.Find_Direct_Name), at a point where
478 -- the tree is not fully typed yet. In that case we may lack
479 -- an Etype for N, and we must disable the check for an implicit
480 -- dereference. If the dereference is on an LHS, this causes a
481 -- false positive.
482
483 elsif (K = N_Selected_Component or else K = N_Indexed_Component)
484 and then Prefix (P) = N
485 and then not (Present (Etype (N))
486 and then
487 Is_Access_Type (Etype (N)))
488 then
489 N := P;
490
491 -- All other cases, definitely not on left side
492
493 else
494 return False;
495 end if;
496 end loop;
497 end Is_On_LHS;
498
499 ---------------------------
500 -- OK_To_Set_Referenced --
501 ---------------------------
502
503 function OK_To_Set_Referenced return Boolean is
504 P : Node_Id;
505
506 begin
507 -- A reference from a pragma Unreferenced or pragma Unmodified or
508 -- pragma Warnings does not cause the Referenced flag to be set.
509 -- This avoids silly warnings about things being referenced and
510 -- not assigned when the only reference is from the pragma.
511
512 if Nkind (N) = N_Identifier then
513 P := Parent (N);
514
515 if Nkind (P) = N_Pragma_Argument_Association then
516 P := Parent (P);
517
518 if Nkind (P) = N_Pragma then
519 if Pragma_Name (P) = Name_Warnings
520 or else
521 Pragma_Name (P) = Name_Unmodified
522 or else
523 Pragma_Name (P) = Name_Unreferenced
524 then
525 return False;
526 end if;
527 end if;
528
529 -- A reference to a formal in a named parameter association does
530 -- not make the formal referenced. Formals that are unused in the
531 -- subprogram body are properly flagged as such, even if calls
532 -- elsewhere use named notation.
533
534 elsif Nkind (P) = N_Parameter_Association
535 and then N = Selector_Name (P)
536 then
537 return False;
538 end if;
539 end if;
540
541 return True;
542 end OK_To_Set_Referenced;
543
544 -- Start of processing for Generate_Reference
545
546 begin
547 pragma Assert (Nkind (E) in N_Entity);
548 Find_Actual (N, Formal, Call);
549
550 if Present (Formal) then
551 Kind := Ekind (Formal);
552 else
553 Kind := E_Void;
554 end if;
555
556 -- Check for obsolescent reference to package ASCII. GNAT treats this
557 -- element of annex J specially since in practice, programs make a lot
558 -- of use of this feature, so we don't include it in the set of features
559 -- diagnosed when Warn_On_Obsolescent_Features mode is set. However we
560 -- are required to note it as a violation of the RM defined restriction.
561
562 if E = Standard_ASCII then
563 Check_Restriction (No_Obsolescent_Features, N);
564 end if;
565
566 -- Check for reference to entity marked with Is_Obsolescent
567
568 -- Note that we always allow obsolescent references in the compiler
569 -- itself and the run time, since we assume that we know what we are
570 -- doing in such cases. For example the calls in Ada.Characters.Handling
571 -- to its own obsolescent subprograms are just fine.
572
573 -- In any case we only generate warnings if we are in the extended main
574 -- source unit, and the entity itself is not in the extended main source
575 -- unit, since we assume the source unit itself knows what is going on
576 -- (and for sure we do not want silly warnings, e.g. on the end line of
577 -- an obsolescent procedure body).
578
579 if Is_Obsolescent (E)
580 and then not GNAT_Mode
581 and then not In_Extended_Main_Source_Unit (E)
582 and then In_Extended_Main_Source_Unit (N)
583 then
584 Check_Restriction (No_Obsolescent_Features, N);
585
586 if Warn_On_Obsolescent_Feature then
587 Output_Obsolescent_Entity_Warnings (N, E);
588 end if;
589 end if;
590
591 -- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only
592 -- detect real explicit references (modifications and references).
593
594 if Comes_From_Source (N)
595 and then Is_Ada_2005_Only (E)
596 and then Ada_Version < Ada_2005
597 and then Warn_On_Ada_2005_Compatibility
598 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')
599 then
600 Error_Msg_NE ("& is only defined in Ada 2005?", N, E);
601 end if;
602
603 -- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only
604 -- detect real explicit references (modifications and references).
605
606 if Comes_From_Source (N)
607 and then Is_Ada_2012_Only (E)
608 and then Ada_Version < Ada_2012
609 and then Warn_On_Ada_2012_Compatibility
610 and then (Typ = 'm' or else Typ = 'r')
611 then
612 Error_Msg_NE ("& is only defined in Ada 2012?", N, E);
613 end if;
614
615 -- Never collect references if not in main source unit. However, we omit
616 -- this test if Typ is 'e' or 'k', since these entries are structural,
617 -- and it is useful to have them in units that reference packages as
618 -- well as units that define packages. We also omit the test for the
619 -- case of 'p' since we want to include inherited primitive operations
620 -- from other packages.
621
622 -- We also omit this test is this is a body reference for a subprogram
623 -- instantiation. In this case the reference is to the generic body,
624 -- which clearly need not be in the main unit containing the instance.
625 -- For the same reason we accept an implicit reference generated for
626 -- a default in an instance.
627
628 if not In_Extended_Main_Source_Unit (N) then
629 if Typ = 'e'
630 or else Typ = 'I'
631 or else Typ = 'p'
632 or else Typ = 'i'
633 or else Typ = 'k'
634 or else (Typ = 'b' and then Is_Generic_Instance (E))
635
636 -- Allow the generation of references to reads, writes and calls
637 -- in Alfa mode when the related context comes from an instance.
638
639 or else
640 (Alfa_Mode
641 and then In_Extended_Main_Code_Unit (N)
642 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's'))
643 then
644 null;
645 else
646 return;
647 end if;
648 end if;
649
650 -- For reference type p, the entity must be in main source unit
651
652 if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then
653 return;
654 end if;
655
656 -- Unless the reference is forced, we ignore references where the
657 -- reference itself does not come from source.
658
659 if not Force and then not Comes_From_Source (N) then
660 return;
661 end if;
662
663 -- Deal with setting entity as referenced, unless suppressed. Note that
664 -- we still do Set_Referenced on entities that do not come from source.
665 -- This situation arises when we have a source reference to a derived
666 -- operation, where the derived operation itself does not come from
667 -- source, but we still want to mark it as referenced, since we really
668 -- are referencing an entity in the corresponding package (this avoids
669 -- wrong complaints that the package contains no referenced entities).
670
671 if Set_Ref then
672
673 -- Assignable object appearing on left side of assignment or as
674 -- an out parameter.
675
676 if Is_Assignable (E)
677 and then Is_On_LHS (N)
678 and then Ekind (E) /= E_In_Out_Parameter
679 then
680 -- For objects that are renamings, just set as simply referenced
681 -- we do not try to do assignment type tracking in this case.
682
683 if Present (Renamed_Object (E)) then
684 Set_Referenced (E);
685
686 -- Out parameter case
687
688 elsif Kind = E_Out_Parameter then
689
690 -- If warning mode for all out parameters is set, or this is
691 -- the only warning parameter, then we want to mark this for
692 -- later warning logic by setting Referenced_As_Out_Parameter
693
694 if Warn_On_Modified_As_Out_Parameter (Formal) then
695 Set_Referenced_As_Out_Parameter (E, True);
696 Set_Referenced_As_LHS (E, False);
697
698 -- For OUT parameter not covered by the above cases, we simply
699 -- regard it as a normal reference (in this case we do not
700 -- want any of the warning machinery for out parameters).
701
702 else
703 Set_Referenced (E);
704 end if;
705
706 -- For the left hand of an assignment case, we do nothing here.
707 -- The processing for Analyze_Assignment_Statement will set the
708 -- Referenced_As_LHS flag.
709
710 else
711 null;
712 end if;
713
714 -- Check for a reference in a pragma that should not count as a
715 -- making the variable referenced for warning purposes.
716
717 elsif Is_Non_Significant_Pragma_Reference (N) then
718 null;
719
720 -- A reference in an attribute definition clause does not count as a
721 -- reference except for the case of Address. The reason that 'Address
722 -- is an exception is that it creates an alias through which the
723 -- variable may be referenced.
724
725 elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause
726 and then Chars (Parent (N)) /= Name_Address
727 and then N = Name (Parent (N))
728 then
729 null;
730
731 -- Constant completion does not count as a reference
732
733 elsif Typ = 'c'
734 and then Ekind (E) = E_Constant
735 then
736 null;
737
738 -- Record representation clause does not count as a reference
739
740 elsif Nkind (N) = N_Identifier
741 and then Nkind (Parent (N)) = N_Record_Representation_Clause
742 then
743 null;
744
745 -- Discriminants do not need to produce a reference to record type
746
747 elsif Typ = 'd'
748 and then Nkind (Parent (N)) = N_Discriminant_Specification
749 then
750 null;
751
752 -- All other cases
753
754 else
755 -- Special processing for IN OUT parameters, where we have an
756 -- implicit assignment to a simple variable.
757
758 if Kind = E_In_Out_Parameter
759 and then Is_Assignable (E)
760 then
761 -- For sure this counts as a normal read reference
762
763 Set_Referenced (E);
764 Set_Last_Assignment (E, Empty);
765
766 -- We count it as being referenced as an out parameter if the
767 -- option is set to warn on all out parameters, except that we
768 -- have a special exclusion for an intrinsic subprogram, which
769 -- is most likely an instantiation of Unchecked_Deallocation
770 -- which we do not want to consider as an assignment since it
771 -- generates false positives. We also exclude the case of an
772 -- IN OUT parameter if the name of the procedure is Free,
773 -- since we suspect similar semantics.
774
775 if Warn_On_All_Unread_Out_Parameters
776 and then Is_Entity_Name (Name (Call))
777 and then not Is_Intrinsic_Subprogram (Entity (Name (Call)))
778 and then Chars (Name (Call)) /= Name_Free
779 then
780 Set_Referenced_As_Out_Parameter (E, True);
781 Set_Referenced_As_LHS (E, False);
782 end if;
783
784 -- Don't count a recursive reference within a subprogram as a
785 -- reference (that allows detection of a recursive subprogram
786 -- whose only references are recursive calls as unreferenced).
787
788 elsif Is_Subprogram (E)
789 and then E = Nearest_Dynamic_Scope (Current_Scope)
790 then
791 null;
792
793 -- Any other occurrence counts as referencing the entity
794
795 elsif OK_To_Set_Referenced then
796 Set_Referenced (E);
797
798 -- If variable, this is an OK reference after an assignment
799 -- so we can clear the Last_Assignment indication.
800
801 if Is_Assignable (E) then
802 Set_Last_Assignment (E, Empty);
803 end if;
804 end if;
805 end if;
806
807 -- Check for pragma Unreferenced given and reference is within
808 -- this source unit (occasion for possible warning to be issued).
809
810 if Has_Unreferenced (E)
811 and then In_Same_Extended_Unit (E, N)
812 then
813 -- A reference as a named parameter in a call does not count
814 -- as a violation of pragma Unreferenced for this purpose...
815
816 if Nkind (N) = N_Identifier
817 and then Nkind (Parent (N)) = N_Parameter_Association
818 and then Selector_Name (Parent (N)) = N
819 then
820 null;
821
822 -- ... Neither does a reference to a variable on the left side
823 -- of an assignment.
824
825 elsif Is_On_LHS (N) then
826 null;
827
828 -- For entry formals, we want to place the warning message on the
829 -- corresponding entity in the accept statement. The current scope
830 -- is the body of the accept, so we find the formal whose name
831 -- matches that of the entry formal (there is no link between the
832 -- two entities, and the one in the accept statement is only used
833 -- for conformance checking).
834
835 elsif Ekind (Scope (E)) = E_Entry then
836 declare
837 BE : Entity_Id;
838
839 begin
840 BE := First_Entity (Current_Scope);
841 while Present (BE) loop
842 if Chars (BE) = Chars (E) then
843 Error_Msg_NE -- CODEFIX
844 ("?pragma Unreferenced given for&!", N, BE);
845 exit;
846 end if;
847
848 Next_Entity (BE);
849 end loop;
850 end;
851
852 -- Here we issue the warning, since this is a real reference
853
854 else
855 Error_Msg_NE -- CODEFIX
856 ("?pragma Unreferenced given for&!", N, E);
857 end if;
858 end if;
859
860 -- If this is a subprogram instance, mark as well the internal
861 -- subprogram in the wrapper package, which may be a visible
862 -- compilation unit.
863
864 if Is_Overloadable (E)
865 and then Is_Generic_Instance (E)
866 and then Present (Alias (E))
867 then
868 Set_Referenced (Alias (E));
869 end if;
870 end if;
871
872 -- Generate reference if all conditions are met:
873
874 if
875 -- Cross referencing must be active
876
877 Opt.Xref_Active
878
879 -- The entity must be one for which we collect references
880
881 and then Xref_Entity_Letters (Ekind (E)) /= ' '
882
883 -- Both Sloc values must be set to something sensible
884
885 and then Sloc (E) > No_Location
886 and then Sloc (N) > No_Location
887
888 -- Ignore references from within an instance. The only exceptions to
889 -- this are default subprograms, for which we generate an implicit
890 -- reference and compilations in Alfa_Mode.
891
892 and then
893 (Instantiation_Location (Sloc (N)) = No_Location
894 or else Typ = 'i'
895 or else Alfa_Mode)
896
897 -- Ignore dummy references
898
899 and then Typ /= ' '
900 then
901 if Nkind_In (N, N_Identifier,
902 N_Defining_Identifier,
903 N_Defining_Operator_Symbol,
904 N_Operator_Symbol,
905 N_Defining_Character_Literal)
906 or else Nkind (N) in N_Op
907 or else (Nkind (N) = N_Character_Literal
908 and then Sloc (Entity (N)) /= Standard_Location)
909 then
910 Nod := N;
911
912 elsif Nkind_In (N, N_Expanded_Name, N_Selected_Component) then
913 Nod := Selector_Name (N);
914
915 else
916 return;
917 end if;
918
919 -- Normal case of source entity comes from source
920
921 if Comes_From_Source (E) then
922 Ent := E;
923
924 -- Entity does not come from source, but is a derived subprogram and
925 -- the derived subprogram comes from source (after one or more
926 -- derivations) in which case the reference is to parent subprogram.
927
928 elsif Is_Overloadable (E)
929 and then Present (Alias (E))
930 then
931 Ent := Alias (E);
932 while not Comes_From_Source (Ent) loop
933 if No (Alias (Ent)) then
934 return;
935 end if;
936
937 Ent := Alias (Ent);
938 end loop;
939
940 -- The internally created defining entity for a child subprogram
941 -- that has no previous spec has valid references.
942
943 elsif Is_Overloadable (E)
944 and then Is_Child_Unit (E)
945 then
946 Ent := E;
947
948 -- Record components of discriminated subtypes or derived types must
949 -- be treated as references to the original component.
950
951 elsif Ekind (E) = E_Component
952 and then Comes_From_Source (Original_Record_Component (E))
953 then
954 Ent := Original_Record_Component (E);
955
956 -- If this is an expanded reference to a discriminant, recover the
957 -- original discriminant, which gets the reference.
958
959 elsif Ekind (E) = E_In_Parameter
960 and then Present (Discriminal_Link (E))
961 then
962 Ent := Discriminal_Link (E);
963 Set_Referenced (Ent);
964
965 -- Ignore reference to any other entity that is not from source
966
967 else
968 return;
969 end if;
970
971 -- In Alfa mode, consider the underlying entity renamed instead of
972 -- the renaming, which is needed to compute a valid set of effects
973 -- (reads, writes) for the enclosing subprogram.
974
975 if Alfa_Mode then
976 Ent := Get_Through_Renamings (Ent);
977
978 -- If no enclosing object, then it could be a reference to any
979 -- location not tracked individually, like heap-allocated data.
980 -- Conservatively approximate this possibility by generating a
981 -- dereference, and return.
982
983 if No (Ent) then
984 if Actual_Typ = 'w' then
985 Alfa.Generate_Dereference (Nod, 'r');
986 Alfa.Generate_Dereference (Nod, 'w');
987 else
988 Alfa.Generate_Dereference (Nod, 'r');
989 end if;
990
991 return;
992 end if;
993 end if;
994
995 -- Record reference to entity
996
997 if Actual_Typ = 'p'
998 and then Is_Subprogram (Nod)
999 and then Present (Overridden_Operation (Nod))
1000 then
1001 Actual_Typ := 'P';
1002 end if;
1003
1004 if Alfa_Mode then
1005 Ref := Sloc (Nod);
1006 Def := Sloc (Ent);
1007
1008 Ref_Scope := Alfa.Enclosing_Subprogram_Or_Package (Nod);
1009 Ent_Scope := Alfa.Enclosing_Subprogram_Or_Package (Ent);
1010
1011 -- Since we are reaching through renamings in Alfa mode, we may
1012 -- end up with standard constants. Ignore those.
1013
1014 if Sloc (Ent_Scope) <= Standard_Location
1015 or else Def <= Standard_Location
1016 then
1017 return;
1018 end if;
1019
1020 Add_Entry
1021 ((Ent => Ent,
1022 Loc => Ref,
1023 Typ => Actual_Typ,
1024 Eun => Get_Code_Unit (Def),
1025 Lun => Get_Code_Unit (Ref),
1026 Ref_Scope => Ref_Scope,
1027 Ent_Scope => Ent_Scope),
1028 Ent_Scope_File => Get_Code_Unit (Ent));
1029
1030 else
1031 Ref := Original_Location (Sloc (Nod));
1032 Def := Original_Location (Sloc (Ent));
1033
1034 -- If this is an operator symbol, skip the initial
1035 -- quote, for navigation purposes.
1036
1037 if Nkind (N) = N_Defining_Operator_Symbol
1038 or else Nkind (Nod) = N_Operator_Symbol
1039 then
1040 Ref := Ref + 1;
1041 end if;
1042
1043 Add_Entry
1044 ((Ent => Ent,
1045 Loc => Ref,
1046 Typ => Actual_Typ,
1047 Eun => Get_Source_Unit (Def),
1048 Lun => Get_Source_Unit (Ref),
1049 Ref_Scope => Empty,
1050 Ent_Scope => Empty),
1051 Ent_Scope_File => No_Unit);
1052 end if;
1053 end if;
1054 end Generate_Reference;
1055
1056 -----------------------------------
1057 -- Generate_Reference_To_Formals --
1058 -----------------------------------
1059
1060 procedure Generate_Reference_To_Formals (E : Entity_Id) is
1061 Formal : Entity_Id;
1062
1063 begin
1064 if Is_Generic_Subprogram (E) then
1065 Formal := First_Entity (E);
1066
1067 while Present (Formal)
1068 and then not Is_Formal (Formal)
1069 loop
1070 Next_Entity (Formal);
1071 end loop;
1072
1073 else
1074 Formal := First_Formal (E);
1075 end if;
1076
1077 while Present (Formal) loop
1078 if Ekind (Formal) = E_In_Parameter then
1079
1080 if Nkind (Parameter_Type (Parent (Formal)))
1081 = N_Access_Definition
1082 then
1083 Generate_Reference (E, Formal, '^', False);
1084 else
1085 Generate_Reference (E, Formal, '>', False);
1086 end if;
1087
1088 elsif Ekind (Formal) = E_In_Out_Parameter then
1089 Generate_Reference (E, Formal, '=', False);
1090
1091 else
1092 Generate_Reference (E, Formal, '<', False);
1093 end if;
1094
1095 Next_Formal (Formal);
1096 end loop;
1097 end Generate_Reference_To_Formals;
1098
1099 -------------------------------------------
1100 -- Generate_Reference_To_Generic_Formals --
1101 -------------------------------------------
1102
1103 procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is
1104 Formal : Entity_Id;
1105
1106 begin
1107 Formal := First_Entity (E);
1108 while Present (Formal) loop
1109 if Comes_From_Source (Formal) then
1110 Generate_Reference (E, Formal, 'z', False);
1111 end if;
1112
1113 Next_Entity (Formal);
1114 end loop;
1115 end Generate_Reference_To_Generic_Formals;
1116
1117 -------------
1118 -- Get_Key --
1119 -------------
1120
1121 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is
1122 begin
1123 return E;
1124 end Get_Key;
1125
1126 ----------
1127 -- Hash --
1128 ----------
1129
1130 function Hash (F : Xref_Entry_Number) return Header_Num is
1131 -- It is unlikely to have two references to the same entity at the same
1132 -- source location, so the hash function depends only on the Ent and Loc
1133 -- fields.
1134
1135 XE : Xref_Entry renames Xrefs.Table (F);
1136 type M is mod 2**32;
1137
1138 H : constant M := M (XE.Key.Ent) + 2 ** 7 * M (abs XE.Key.Loc);
1139 -- It would be more natural to write:
1140 --
1141 -- H : constant M := M'Mod (XE.Key.Ent) + 2**7 * M'Mod (XE.Key.Loc);
1142 --
1143 -- But we can't use M'Mod, because it prevents bootstrapping with older
1144 -- compilers. Loc can be negative, so we do "abs" before converting.
1145 -- One day this can be cleaned up ???
1146
1147 begin
1148 return Header_Num (H mod Num_Buckets);
1149 end Hash;
1150
1151 -----------------
1152 -- HT_Set_Next --
1153 -----------------
1154
1155 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is
1156 begin
1157 Xrefs.Table (E).HTable_Next := Next;
1158 end HT_Set_Next;
1159
1160 -------------
1161 -- HT_Next --
1162 -------------
1163
1164 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is
1165 begin
1166 return Xrefs.Table (E).HTable_Next;
1167 end HT_Next;
1168
1169 ----------------
1170 -- Initialize --
1171 ----------------
1172
1173 procedure Initialize is
1174 begin
1175 Xrefs.Init;
1176 end Initialize;
1177
1178 --------
1179 -- Lt --
1180 --------
1181
1182 function Lt (T1, T2 : Xref_Entry) return Boolean is
1183 begin
1184 -- First test: if entity is in different unit, sort by unit
1185
1186 if T1.Key.Eun /= T2.Key.Eun then
1187 return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun);
1188
1189 -- Second test: within same unit, sort by entity Sloc
1190
1191 elsif T1.Def /= T2.Def then
1192 return T1.Def < T2.Def;
1193
1194 -- Third test: sort definitions ahead of references
1195
1196 elsif T1.Key.Loc = No_Location then
1197 return True;
1198
1199 elsif T2.Key.Loc = No_Location then
1200 return False;
1201
1202 -- Fourth test: for same entity, sort by reference location unit
1203
1204 elsif T1.Key.Lun /= T2.Key.Lun then
1205 return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun);
1206
1207 -- Fifth test: order of location within referencing unit
1208
1209 elsif T1.Key.Loc /= T2.Key.Loc then
1210 return T1.Key.Loc < T2.Key.Loc;
1211
1212 -- Finally, for two locations at the same address, we prefer
1213 -- the one that does NOT have the type 'r' so that a modification
1214 -- or extension takes preference, when there are more than one
1215 -- reference at the same location. As a result, in the case of
1216 -- entities that are in-out actuals, the read reference follows
1217 -- the modify reference.
1218
1219 else
1220 return T2.Key.Typ = 'r';
1221 end if;
1222 end Lt;
1223
1224 -----------------------
1225 -- Output_References --
1226 -----------------------
1227
1228 procedure Output_References is
1229
1230 procedure Get_Type_Reference
1231 (Ent : Entity_Id;
1232 Tref : out Entity_Id;
1233 Left : out Character;
1234 Right : out Character);
1235 -- Given an Entity_Id Ent, determines whether a type reference is
1236 -- required. If so, Tref is set to the entity for the type reference
1237 -- and Left and Right are set to the left/right brackets to be output
1238 -- for the reference. If no type reference is required, then Tref is
1239 -- set to Empty, and Left/Right are set to space.
1240
1241 procedure Output_Import_Export_Info (Ent : Entity_Id);
1242 -- Output language and external name information for an interfaced
1243 -- entity, using the format <language, external_name>.
1244
1245 ------------------------
1246 -- Get_Type_Reference --
1247 ------------------------
1248
1249 procedure Get_Type_Reference
1250 (Ent : Entity_Id;
1251 Tref : out Entity_Id;
1252 Left : out Character;
1253 Right : out Character)
1254 is
1255 Sav : Entity_Id;
1256
1257 begin
1258 -- See if we have a type reference
1259
1260 Tref := Ent;
1261 Left := '{';
1262 Right := '}';
1263
1264 loop
1265 Sav := Tref;
1266
1267 -- Processing for types
1268
1269 if Is_Type (Tref) then
1270
1271 -- Case of base type
1272
1273 if Base_Type (Tref) = Tref then
1274
1275 -- If derived, then get first subtype
1276
1277 if Tref /= Etype (Tref) then
1278 Tref := First_Subtype (Etype (Tref));
1279
1280 -- Set brackets for derived type, but don't override
1281 -- pointer case since the fact that something is a
1282 -- pointer is more important.
1283
1284 if Left /= '(' then
1285 Left := '<';
1286 Right := '>';
1287 end if;
1288
1289 -- If non-derived ptr, get directly designated type.
1290 -- If the type has a full view, all references are on the
1291 -- partial view, that is seen first.
1292
1293 elsif Is_Access_Type (Tref) then
1294 Tref := Directly_Designated_Type (Tref);
1295 Left := '(';
1296 Right := ')';
1297
1298 elsif Is_Private_Type (Tref)
1299 and then Present (Full_View (Tref))
1300 then
1301 if Is_Access_Type (Full_View (Tref)) then
1302 Tref := Directly_Designated_Type (Full_View (Tref));
1303 Left := '(';
1304 Right := ')';
1305
1306 -- If the full view is an array type, we also retrieve
1307 -- the corresponding component type, because the ali
1308 -- entry already indicates that this is an array.
1309
1310 elsif Is_Array_Type (Full_View (Tref)) then
1311 Tref := Component_Type (Full_View (Tref));
1312 Left := '(';
1313 Right := ')';
1314 end if;
1315
1316 -- If non-derived array, get component type. Skip component
1317 -- type for case of String or Wide_String, saves worthwhile
1318 -- space.
1319
1320 elsif Is_Array_Type (Tref)
1321 and then Tref /= Standard_String
1322 and then Tref /= Standard_Wide_String
1323 then
1324 Tref := Component_Type (Tref);
1325 Left := '(';
1326 Right := ')';
1327
1328 -- For other non-derived base types, nothing
1329
1330 else
1331 exit;
1332 end if;
1333
1334 -- For a subtype, go to ancestor subtype
1335
1336 else
1337 Tref := Ancestor_Subtype (Tref);
1338
1339 -- If no ancestor subtype, go to base type
1340
1341 if No (Tref) then
1342 Tref := Base_Type (Sav);
1343 end if;
1344 end if;
1345
1346 -- For objects, functions, enum literals, just get type from
1347 -- Etype field.
1348
1349 elsif Is_Object (Tref)
1350 or else Ekind (Tref) = E_Enumeration_Literal
1351 or else Ekind (Tref) = E_Function
1352 or else Ekind (Tref) = E_Operator
1353 then
1354 Tref := Etype (Tref);
1355
1356 -- For anything else, exit
1357
1358 else
1359 exit;
1360 end if;
1361
1362 -- Exit if no type reference, or we are stuck in some loop trying
1363 -- to find the type reference, or if the type is standard void
1364 -- type (the latter is an implementation artifact that should not
1365 -- show up in the generated cross-references).
1366
1367 exit when No (Tref)
1368 or else Tref = Sav
1369 or else Tref = Standard_Void_Type;
1370
1371 -- If we have a usable type reference, return, otherwise keep
1372 -- looking for something useful (we are looking for something
1373 -- that either comes from source or standard)
1374
1375 if Sloc (Tref) = Standard_Location
1376 or else Comes_From_Source (Tref)
1377 then
1378 -- If the reference is a subtype created for a generic actual,
1379 -- go actual directly, the inner subtype is not user visible.
1380
1381 if Nkind (Parent (Tref)) = N_Subtype_Declaration
1382 and then not Comes_From_Source (Parent (Tref))
1383 and then
1384 (Is_Wrapper_Package (Scope (Tref))
1385 or else Is_Generic_Instance (Scope (Tref)))
1386 then
1387 Tref := First_Subtype (Base_Type (Tref));
1388 end if;
1389
1390 return;
1391 end if;
1392 end loop;
1393
1394 -- If we fall through the loop, no type reference
1395
1396 Tref := Empty;
1397 Left := ' ';
1398 Right := ' ';
1399 end Get_Type_Reference;
1400
1401 -------------------------------
1402 -- Output_Import_Export_Info --
1403 -------------------------------
1404
1405 procedure Output_Import_Export_Info (Ent : Entity_Id) is
1406 Language_Name : Name_Id;
1407 Conv : constant Convention_Id := Convention (Ent);
1408
1409 begin
1410 -- Generate language name from convention
1411
1412 if Conv = Convention_C then
1413 Language_Name := Name_C;
1414
1415 elsif Conv = Convention_CPP then
1416 Language_Name := Name_CPP;
1417
1418 elsif Conv = Convention_Ada then
1419 Language_Name := Name_Ada;
1420
1421 else
1422 -- For the moment we ignore all other cases ???
1423
1424 return;
1425 end if;
1426
1427 Write_Info_Char ('<');
1428 Get_Unqualified_Name_String (Language_Name);
1429
1430 for J in 1 .. Name_Len loop
1431 Write_Info_Char (Name_Buffer (J));
1432 end loop;
1433
1434 if Present (Interface_Name (Ent)) then
1435 Write_Info_Char (',');
1436 String_To_Name_Buffer (Strval (Interface_Name (Ent)));
1437
1438 for J in 1 .. Name_Len loop
1439 Write_Info_Char (Name_Buffer (J));
1440 end loop;
1441 end if;
1442
1443 Write_Info_Char ('>');
1444 end Output_Import_Export_Info;
1445
1446 -- Start of processing for Output_References
1447
1448 begin
1449 -- First we add references to the primitive operations of tagged types
1450 -- declared in the main unit.
1451
1452 Handle_Prim_Ops : declare
1453 Ent : Entity_Id;
1454
1455 begin
1456 for J in 1 .. Xrefs.Last loop
1457 Ent := Xrefs.Table (J).Key.Ent;
1458
1459 if Is_Type (Ent)
1460 and then Is_Tagged_Type (Ent)
1461 and then Is_Base_Type (Ent)
1462 and then In_Extended_Main_Source_Unit (Ent)
1463 then
1464 Generate_Prim_Op_References (Ent);
1465 end if;
1466 end loop;
1467 end Handle_Prim_Ops;
1468
1469 -- Before we go ahead and output the references we have a problem
1470 -- that needs dealing with. So far we have captured things that are
1471 -- definitely referenced by the main unit, or defined in the main
1472 -- unit. That's because we don't want to clutter up the ali file
1473 -- for this unit with definition lines for entities in other units
1474 -- that are not referenced.
1475
1476 -- But there is a glitch. We may reference an entity in another unit,
1477 -- and it may have a type reference to an entity that is not directly
1478 -- referenced in the main unit, which may mean that there is no xref
1479 -- entry for this entity yet in the list of references.
1480
1481 -- If we don't do something about this, we will end with an orphan type
1482 -- reference, i.e. it will point to an entity that does not appear
1483 -- within the generated references in the ali file. That is not good for
1484 -- tools using the xref information.
1485
1486 -- To fix this, we go through the references adding definition entries
1487 -- for any unreferenced entities that can be referenced in a type
1488 -- reference. There is a recursion problem here, and that is dealt with
1489 -- by making sure that this traversal also traverses any entries that
1490 -- get added by the traversal.
1491
1492 Handle_Orphan_Type_References : declare
1493 J : Nat;
1494 Tref : Entity_Id;
1495 Ent : Entity_Id;
1496
1497 L, R : Character;
1498 pragma Warnings (Off, L);
1499 pragma Warnings (Off, R);
1500
1501 procedure New_Entry (E : Entity_Id);
1502 -- Make an additional entry into the Xref table for a type entity
1503 -- that is related to the current entity (parent, type ancestor,
1504 -- progenitor, etc.).
1505
1506 ----------------
1507 -- New_Entry --
1508 ----------------
1509
1510 procedure New_Entry (E : Entity_Id) is
1511 begin
1512 pragma Assert (Present (E));
1513
1514 if not Has_Xref_Entry (Implementation_Base_Type (E))
1515 and then Sloc (E) > No_Location
1516 then
1517 Add_Entry
1518 ((Ent => E,
1519 Loc => No_Location,
1520 Typ => Character'First,
1521 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
1522 Lun => No_Unit,
1523 Ref_Scope => Empty,
1524 Ent_Scope => Empty),
1525 Ent_Scope_File => No_Unit);
1526 end if;
1527 end New_Entry;
1528
1529 -- Start of processing for Handle_Orphan_Type_References
1530
1531 begin
1532 -- Note that this is not a for loop for a very good reason. The
1533 -- processing of items in the table can add new items to the table,
1534 -- and they must be processed as well.
1535
1536 J := 1;
1537 while J <= Xrefs.Last loop
1538 Ent := Xrefs.Table (J).Key.Ent;
1539 Get_Type_Reference (Ent, Tref, L, R);
1540
1541 if Present (Tref)
1542 and then not Has_Xref_Entry (Tref)
1543 and then Sloc (Tref) > No_Location
1544 then
1545 New_Entry (Tref);
1546
1547 if Is_Record_Type (Ent)
1548 and then Present (Interfaces (Ent))
1549 then
1550 -- Add an entry for each one of the given interfaces
1551 -- implemented by type Ent.
1552
1553 declare
1554 Elmt : Elmt_Id := First_Elmt (Interfaces (Ent));
1555 begin
1556 while Present (Elmt) loop
1557 New_Entry (Node (Elmt));
1558 Next_Elmt (Elmt);
1559 end loop;
1560 end;
1561 end if;
1562 end if;
1563
1564 -- Collect inherited primitive operations that may be declared in
1565 -- another unit and have no visible reference in the current one.
1566
1567 if Is_Type (Ent)
1568 and then Is_Tagged_Type (Ent)
1569 and then Is_Derived_Type (Ent)
1570 and then Is_Base_Type (Ent)
1571 and then In_Extended_Main_Source_Unit (Ent)
1572 then
1573 declare
1574 Op_List : constant Elist_Id := Primitive_Operations (Ent);
1575 Op : Elmt_Id;
1576 Prim : Entity_Id;
1577
1578 function Parent_Op (E : Entity_Id) return Entity_Id;
1579 -- Find original operation, which may be inherited through
1580 -- several derivations.
1581
1582 function Parent_Op (E : Entity_Id) return Entity_Id is
1583 Orig_Op : constant Entity_Id := Alias (E);
1584
1585 begin
1586 if No (Orig_Op) then
1587 return Empty;
1588
1589 elsif not Comes_From_Source (E)
1590 and then not Has_Xref_Entry (Orig_Op)
1591 and then Comes_From_Source (Orig_Op)
1592 then
1593 return Orig_Op;
1594 else
1595 return Parent_Op (Orig_Op);
1596 end if;
1597 end Parent_Op;
1598
1599 begin
1600 Op := First_Elmt (Op_List);
1601 while Present (Op) loop
1602 Prim := Parent_Op (Node (Op));
1603
1604 if Present (Prim) then
1605 Add_Entry
1606 ((Ent => Prim,
1607 Loc => No_Location,
1608 Typ => Character'First,
1609 Eun => Get_Source_Unit (Sloc (Prim)),
1610 Lun => No_Unit,
1611 Ref_Scope => Empty,
1612 Ent_Scope => Empty),
1613 Ent_Scope_File => No_Unit);
1614 end if;
1615
1616 Next_Elmt (Op);
1617 end loop;
1618 end;
1619 end if;
1620
1621 J := J + 1;
1622 end loop;
1623 end Handle_Orphan_Type_References;
1624
1625 -- Now we have all the references, including those for any embedded
1626 -- type references, so we can sort them, and output them.
1627
1628 Output_Refs : declare
1629
1630 Nrefs : constant Nat := Xrefs.Last;
1631 -- Number of references in table
1632
1633 Rnums : array (0 .. Nrefs) of Nat;
1634 -- This array contains numbers of references in the Xrefs table.
1635 -- This list is sorted in output order. The extra 0'th entry is
1636 -- convenient for the call to sort. When we sort the table, we
1637 -- move the entries in Rnums around, but we do not move the
1638 -- original table entries.
1639
1640 Curxu : Unit_Number_Type;
1641 -- Current xref unit
1642
1643 Curru : Unit_Number_Type;
1644 -- Current reference unit for one entity
1645
1646 Curent : Entity_Id;
1647 -- Current entity
1648
1649 Curnam : String (1 .. Name_Buffer'Length);
1650 Curlen : Natural;
1651 -- Simple name and length of current entity
1652
1653 Curdef : Source_Ptr;
1654 -- Original source location for current entity
1655
1656 Crloc : Source_Ptr;
1657 -- Current reference location
1658
1659 Ctyp : Character;
1660 -- Entity type character
1661
1662 Prevt : Character;
1663 -- reference kind of previous reference
1664
1665 Tref : Entity_Id;
1666 -- Type reference
1667
1668 Rref : Node_Id;
1669 -- Renaming reference
1670
1671 Trunit : Unit_Number_Type;
1672 -- Unit number for type reference
1673
1674 function Lt (Op1, Op2 : Natural) return Boolean;
1675 -- Comparison function for Sort call
1676
1677 function Name_Change (X : Entity_Id) return Boolean;
1678 -- Determines if entity X has a different simple name from Curent
1679
1680 procedure Move (From : Natural; To : Natural);
1681 -- Move procedure for Sort call
1682
1683 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
1684
1685 --------
1686 -- Lt --
1687 --------
1688
1689 function Lt (Op1, Op2 : Natural) return Boolean is
1690 T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1)));
1691 T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2)));
1692
1693 begin
1694 return Lt (T1, T2);
1695 end Lt;
1696
1697 ----------
1698 -- Move --
1699 ----------
1700
1701 procedure Move (From : Natural; To : Natural) is
1702 begin
1703 Rnums (Nat (To)) := Rnums (Nat (From));
1704 end Move;
1705
1706 -----------------
1707 -- Name_Change --
1708 -----------------
1709
1710 -- Why a string comparison here??? Why not compare Name_Id values???
1711
1712 function Name_Change (X : Entity_Id) return Boolean is
1713 begin
1714 Get_Unqualified_Name_String (Chars (X));
1715
1716 if Name_Len /= Curlen then
1717 return True;
1718 else
1719 return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen);
1720 end if;
1721 end Name_Change;
1722
1723 -- Start of processing for Output_Refs
1724
1725 begin
1726 -- Capture the definition Sloc values. We delay doing this till now,
1727 -- since at the time the reference or definition is made, private
1728 -- types may be swapped, and the Sloc value may be incorrect. We
1729 -- also set up the pointer vector for the sort.
1730 -- For user-defined operators we need to skip the initial
1731 -- quote and point to the first character of the name, for
1732 -- navigation purposes.
1733
1734 for J in 1 .. Nrefs loop
1735 declare
1736 E : constant Entity_Id := Xrefs.Table (J).Key.Ent;
1737 Loc : constant Source_Ptr := Original_Location (Sloc (E));
1738
1739 begin
1740 Rnums (J) := J;
1741
1742 if Nkind (E) = N_Defining_Operator_Symbol then
1743 Xrefs.Table (J).Def := Loc + 1;
1744 else
1745 Xrefs.Table (J).Def := Loc;
1746 end if;
1747 end;
1748 end loop;
1749
1750 -- Sort the references
1751
1752 Sorting.Sort (Integer (Nrefs));
1753
1754 -- Initialize loop through references
1755
1756 Curxu := No_Unit;
1757 Curent := Empty;
1758 Curdef := No_Location;
1759 Curru := No_Unit;
1760 Crloc := No_Location;
1761 Prevt := 'm';
1762
1763 -- Loop to output references
1764
1765 for Refno in 1 .. Nrefs loop
1766 Output_One_Ref : declare
1767 Ent : Entity_Id;
1768
1769 XE : Xref_Entry renames Xrefs.Table (Rnums (Refno));
1770 -- The current entry to be accessed
1771
1772 Left : Character;
1773 Right : Character;
1774 -- Used for {} or <> or () for type reference
1775
1776 procedure Check_Type_Reference
1777 (Ent : Entity_Id;
1778 List_Interface : Boolean);
1779 -- Find whether there is a meaningful type reference for
1780 -- Ent, and display it accordingly. If List_Interface is
1781 -- true, then Ent is a progenitor interface of the current
1782 -- type entity being listed. In that case list it as is,
1783 -- without looking for a type reference for it.
1784
1785 procedure Output_Instantiation_Refs (Loc : Source_Ptr);
1786 -- Recursive procedure to output instantiation references for
1787 -- the given source ptr in [file|line[...]] form. No output
1788 -- if the given location is not a generic template reference.
1789
1790 procedure Output_Overridden_Op (Old_E : Entity_Id);
1791 -- For a subprogram that is overriding, display information
1792 -- about the inherited operation that it overrides.
1793
1794 --------------------------
1795 -- Check_Type_Reference --
1796 --------------------------
1797
1798 procedure Check_Type_Reference
1799 (Ent : Entity_Id;
1800 List_Interface : Boolean)
1801 is
1802 begin
1803 if List_Interface then
1804
1805 -- This is a progenitor interface of the type for which
1806 -- xref information is being generated.
1807
1808 Tref := Ent;
1809 Left := '<';
1810 Right := '>';
1811
1812 else
1813 Get_Type_Reference (Ent, Tref, Left, Right);
1814 end if;
1815
1816 if Present (Tref) then
1817
1818 -- Case of standard entity, output name
1819
1820 if Sloc (Tref) = Standard_Location then
1821 Write_Info_Char (Left);
1822 Write_Info_Name (Chars (Tref));
1823 Write_Info_Char (Right);
1824
1825 -- Case of source entity, output location
1826
1827 else
1828 Write_Info_Char (Left);
1829 Trunit := Get_Source_Unit (Sloc (Tref));
1830
1831 if Trunit /= Curxu then
1832 Write_Info_Nat (Dependency_Num (Trunit));
1833 Write_Info_Char ('|');
1834 end if;
1835
1836 Write_Info_Nat
1837 (Int (Get_Logical_Line_Number (Sloc (Tref))));
1838
1839 declare
1840 Ent : Entity_Id;
1841 Ctyp : Character;
1842
1843 begin
1844 Ent := Tref;
1845 Ctyp := Xref_Entity_Letters (Ekind (Ent));
1846
1847 if Ctyp = '+'
1848 and then Present (Full_View (Ent))
1849 then
1850 Ent := Underlying_Type (Ent);
1851
1852 if Present (Ent) then
1853 Ctyp := Xref_Entity_Letters (Ekind (Ent));
1854 end if;
1855 end if;
1856
1857 Write_Info_Char (Ctyp);
1858 end;
1859
1860 Write_Info_Nat
1861 (Int (Get_Column_Number (Sloc (Tref))));
1862
1863 -- If the type comes from an instantiation, add the
1864 -- corresponding info.
1865
1866 Output_Instantiation_Refs (Sloc (Tref));
1867 Write_Info_Char (Right);
1868 end if;
1869 end if;
1870 end Check_Type_Reference;
1871
1872 -------------------------------
1873 -- Output_Instantiation_Refs --
1874 -------------------------------
1875
1876 procedure Output_Instantiation_Refs (Loc : Source_Ptr) is
1877 Iloc : constant Source_Ptr := Instantiation_Location (Loc);
1878 Lun : Unit_Number_Type;
1879 Cu : constant Unit_Number_Type := Curru;
1880
1881 begin
1882 -- Nothing to do if this is not an instantiation
1883
1884 if Iloc = No_Location then
1885 return;
1886 end if;
1887
1888 -- Output instantiation reference
1889
1890 Write_Info_Char ('[');
1891 Lun := Get_Source_Unit (Iloc);
1892
1893 if Lun /= Curru then
1894 Curru := Lun;
1895 Write_Info_Nat (Dependency_Num (Curru));
1896 Write_Info_Char ('|');
1897 end if;
1898
1899 Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc)));
1900
1901 -- Recursive call to get nested instantiations
1902
1903 Output_Instantiation_Refs (Iloc);
1904
1905 -- Output final ] after call to get proper nesting
1906
1907 Write_Info_Char (']');
1908 Curru := Cu;
1909 return;
1910 end Output_Instantiation_Refs;
1911
1912 --------------------------
1913 -- Output_Overridden_Op --
1914 --------------------------
1915
1916 procedure Output_Overridden_Op (Old_E : Entity_Id) is
1917 Op : Entity_Id;
1918
1919 begin
1920 -- The overridden operation has an implicit declaration
1921 -- at the point of derivation. What we want to display
1922 -- is the original operation, which has the actual body
1923 -- (or abstract declaration) that is being overridden.
1924 -- The overridden operation is not always set, e.g. when
1925 -- it is a predefined operator.
1926
1927 if No (Old_E) then
1928 return;
1929
1930 -- Follow alias chain if one is present
1931
1932 elsif Present (Alias (Old_E)) then
1933
1934 -- The subprogram may have been implicitly inherited
1935 -- through several levels of derivation, so find the
1936 -- ultimate (source) ancestor.
1937
1938 Op := Ultimate_Alias (Old_E);
1939
1940 -- Normal case of no alias present. We omit generated
1941 -- primitives like tagged equality, that have no source
1942 -- representation.
1943
1944 else
1945 Op := Old_E;
1946 end if;
1947
1948 if Present (Op)
1949 and then Sloc (Op) /= Standard_Location
1950 and then Comes_From_Source (Op)
1951 then
1952 declare
1953 Loc : constant Source_Ptr := Sloc (Op);
1954 Par_Unit : constant Unit_Number_Type :=
1955 Get_Source_Unit (Loc);
1956
1957 begin
1958 Write_Info_Char ('<');
1959
1960 if Par_Unit /= Curxu then
1961 Write_Info_Nat (Dependency_Num (Par_Unit));
1962 Write_Info_Char ('|');
1963 end if;
1964
1965 Write_Info_Nat (Int (Get_Logical_Line_Number (Loc)));
1966 Write_Info_Char ('p');
1967 Write_Info_Nat (Int (Get_Column_Number (Loc)));
1968 Write_Info_Char ('>');
1969 end;
1970 end if;
1971 end Output_Overridden_Op;
1972
1973 -- Start of processing for Output_One_Ref
1974
1975 begin
1976 Ent := XE.Key.Ent;
1977 Ctyp := Xref_Entity_Letters (Ekind (Ent));
1978
1979 -- Skip reference if it is the only reference to an entity,
1980 -- and it is an END line reference, and the entity is not in
1981 -- the current extended source. This prevents junk entries
1982 -- consisting only of packages with END lines, where no
1983 -- entity from the package is actually referenced.
1984
1985 if XE.Key.Typ = 'e'
1986 and then Ent /= Curent
1987 and then (Refno = Nrefs
1988 or else
1989 Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent)
1990 and then not In_Extended_Main_Source_Unit (Ent)
1991 then
1992 goto Continue;
1993 end if;
1994
1995 -- For private type, get full view type
1996
1997 if Ctyp = '+'
1998 and then Present (Full_View (XE.Key.Ent))
1999 then
2000 Ent := Underlying_Type (Ent);
2001
2002 if Present (Ent) then
2003 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2004 end if;
2005 end if;
2006
2007 -- Special exception for Boolean
2008
2009 if Ctyp = 'E' and then Is_Boolean_Type (Ent) then
2010 Ctyp := 'B';
2011 end if;
2012
2013 -- For variable reference, get corresponding type
2014
2015 if Ctyp = '*' then
2016 Ent := Etype (XE.Key.Ent);
2017 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2018
2019 -- If variable is private type, get full view type
2020
2021 if Ctyp = '+'
2022 and then Present (Full_View (Etype (XE.Key.Ent)))
2023 then
2024 Ent := Underlying_Type (Etype (XE.Key.Ent));
2025
2026 if Present (Ent) then
2027 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2028 end if;
2029
2030 elsif Is_Generic_Type (Ent) then
2031
2032 -- If the type of the entity is a generic private type,
2033 -- there is no usable full view, so retain the indication
2034 -- that this is an object.
2035
2036 Ctyp := '*';
2037 end if;
2038
2039 -- Special handling for access parameters and objects of
2040 -- an anonymous access type.
2041
2042 if Ekind_In (Etype (XE.Key.Ent),
2043 E_Anonymous_Access_Type,
2044 E_Anonymous_Access_Subprogram_Type,
2045 E_Anonymous_Access_Protected_Subprogram_Type)
2046 then
2047 if Is_Formal (XE.Key.Ent)
2048 or else Ekind_In (XE.Key.Ent, E_Variable, E_Constant)
2049 then
2050 Ctyp := 'p';
2051 end if;
2052
2053 -- Special handling for Boolean
2054
2055 elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then
2056 Ctyp := 'b';
2057 end if;
2058 end if;
2059
2060 -- Special handling for abstract types and operations
2061
2062 if Is_Overloadable (XE.Key.Ent)
2063 and then Is_Abstract_Subprogram (XE.Key.Ent)
2064 then
2065 if Ctyp = 'U' then
2066 Ctyp := 'x'; -- Abstract procedure
2067
2068 elsif Ctyp = 'V' then
2069 Ctyp := 'y'; -- Abstract function
2070 end if;
2071
2072 elsif Is_Type (XE.Key.Ent)
2073 and then Is_Abstract_Type (XE.Key.Ent)
2074 then
2075 if Is_Interface (XE.Key.Ent) then
2076 Ctyp := 'h';
2077
2078 elsif Ctyp = 'R' then
2079 Ctyp := 'H'; -- Abstract type
2080 end if;
2081 end if;
2082
2083 -- Only output reference if interesting type of entity
2084
2085 if Ctyp = ' '
2086
2087 -- Suppress references to object definitions, used for local
2088 -- references.
2089
2090 or else XE.Key.Typ = 'D'
2091 or else XE.Key.Typ = 'I'
2092
2093 -- Suppress self references, except for bodies that act as
2094 -- specs.
2095
2096 or else (XE.Key.Loc = XE.Def
2097 and then
2098 (XE.Key.Typ /= 'b'
2099 or else not Is_Subprogram (XE.Key.Ent)))
2100
2101 -- Also suppress definitions of body formals (we only
2102 -- treat these as references, and the references were
2103 -- separately recorded).
2104
2105 or else (Is_Formal (XE.Key.Ent)
2106 and then Present (Spec_Entity (XE.Key.Ent)))
2107 then
2108 null;
2109
2110 else
2111 -- Start new Xref section if new xref unit
2112
2113 if XE.Key.Eun /= Curxu then
2114 if Write_Info_Col > 1 then
2115 Write_Info_EOL;
2116 end if;
2117
2118 Curxu := XE.Key.Eun;
2119
2120 Write_Info_Initiate ('X');
2121 Write_Info_Char (' ');
2122 Write_Info_Nat (Dependency_Num (XE.Key.Eun));
2123 Write_Info_Char (' ');
2124 Write_Info_Name
2125 (Reference_Name (Source_Index (XE.Key.Eun)));
2126 end if;
2127
2128 -- Start new Entity line if new entity. Note that we
2129 -- consider two entities the same if they have the same
2130 -- name and source location. This causes entities in
2131 -- instantiations to be treated as though they referred
2132 -- to the template.
2133
2134 if No (Curent)
2135 or else
2136 (XE.Key.Ent /= Curent
2137 and then
2138 (Name_Change (XE.Key.Ent) or else XE.Def /= Curdef))
2139 then
2140 Curent := XE.Key.Ent;
2141 Curdef := XE.Def;
2142
2143 Get_Unqualified_Name_String (Chars (XE.Key.Ent));
2144 Curlen := Name_Len;
2145 Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen);
2146
2147 if Write_Info_Col > 1 then
2148 Write_Info_EOL;
2149 end if;
2150
2151 -- Write column number information
2152
2153 Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def)));
2154 Write_Info_Char (Ctyp);
2155 Write_Info_Nat (Int (Get_Column_Number (XE.Def)));
2156
2157 -- Write level information
2158
2159 Write_Level_Info : declare
2160 function Is_Visible_Generic_Entity
2161 (E : Entity_Id) return Boolean;
2162 -- Check whether E is declared in the visible part
2163 -- of a generic package. For source navigation
2164 -- purposes, treat this as a visible entity.
2165
2166 function Is_Private_Record_Component
2167 (E : Entity_Id) return Boolean;
2168 -- Check whether E is a non-inherited component of a
2169 -- private extension. Even if the enclosing record is
2170 -- public, we want to treat the component as private
2171 -- for navigation purposes.
2172
2173 ---------------------------------
2174 -- Is_Private_Record_Component --
2175 ---------------------------------
2176
2177 function Is_Private_Record_Component
2178 (E : Entity_Id) return Boolean
2179 is
2180 S : constant Entity_Id := Scope (E);
2181 begin
2182 return
2183 Ekind (E) = E_Component
2184 and then Nkind (Declaration_Node (S)) =
2185 N_Private_Extension_Declaration
2186 and then Original_Record_Component (E) = E;
2187 end Is_Private_Record_Component;
2188
2189 -------------------------------
2190 -- Is_Visible_Generic_Entity --
2191 -------------------------------
2192
2193 function Is_Visible_Generic_Entity
2194 (E : Entity_Id) return Boolean
2195 is
2196 Par : Node_Id;
2197
2198 begin
2199 -- The Present check here is an error defense
2200
2201 if Present (Scope (E))
2202 and then Ekind (Scope (E)) /= E_Generic_Package
2203 then
2204 return False;
2205 end if;
2206
2207 Par := Parent (E);
2208 while Present (Par) loop
2209 if
2210 Nkind (Par) = N_Generic_Package_Declaration
2211 then
2212 -- Entity is a generic formal
2213
2214 return False;
2215
2216 elsif
2217 Nkind (Parent (Par)) = N_Package_Specification
2218 then
2219 return
2220 Is_List_Member (Par)
2221 and then List_Containing (Par) =
2222 Visible_Declarations (Parent (Par));
2223 else
2224 Par := Parent (Par);
2225 end if;
2226 end loop;
2227
2228 return False;
2229 end Is_Visible_Generic_Entity;
2230
2231 -- Start of processing for Write_Level_Info
2232
2233 begin
2234 if Is_Hidden (Curent)
2235 or else Is_Private_Record_Component (Curent)
2236 then
2237 Write_Info_Char (' ');
2238
2239 elsif
2240 Is_Public (Curent)
2241 or else Is_Visible_Generic_Entity (Curent)
2242 then
2243 Write_Info_Char ('*');
2244
2245 else
2246 Write_Info_Char (' ');
2247 end if;
2248 end Write_Level_Info;
2249
2250 -- Output entity name. We use the occurrence from the
2251 -- actual source program at the definition point.
2252
2253 declare
2254 Ent_Name : constant String :=
2255 Exact_Source_Name (Sloc (XE.Key.Ent));
2256 begin
2257 for C in Ent_Name'Range loop
2258 Write_Info_Char (Ent_Name (C));
2259 end loop;
2260 end;
2261
2262 -- See if we have a renaming reference
2263
2264 if Is_Object (XE.Key.Ent)
2265 and then Present (Renamed_Object (XE.Key.Ent))
2266 then
2267 Rref := Renamed_Object (XE.Key.Ent);
2268
2269 elsif Is_Overloadable (XE.Key.Ent)
2270 and then Nkind (Parent (Declaration_Node (XE.Key.Ent)))
2271 = N_Subprogram_Renaming_Declaration
2272 then
2273 Rref := Name (Parent (Declaration_Node (XE.Key.Ent)));
2274
2275 elsif Ekind (XE.Key.Ent) = E_Package
2276 and then Nkind (Declaration_Node (XE.Key.Ent)) =
2277 N_Package_Renaming_Declaration
2278 then
2279 Rref := Name (Declaration_Node (XE.Key.Ent));
2280
2281 else
2282 Rref := Empty;
2283 end if;
2284
2285 if Present (Rref) then
2286 if Nkind (Rref) = N_Expanded_Name then
2287 Rref := Selector_Name (Rref);
2288 end if;
2289
2290 if Nkind (Rref) = N_Identifier
2291 or else Nkind (Rref) = N_Operator_Symbol
2292 then
2293 null;
2294
2295 -- For renamed array components, use the array name
2296 -- for the renamed entity, which reflect the fact that
2297 -- in general the whole array is aliased.
2298
2299 elsif Nkind (Rref) = N_Indexed_Component then
2300 if Nkind (Prefix (Rref)) = N_Identifier then
2301 Rref := Prefix (Rref);
2302 elsif Nkind (Prefix (Rref)) = N_Expanded_Name then
2303 Rref := Selector_Name (Prefix (Rref));
2304 else
2305 Rref := Empty;
2306 end if;
2307
2308 else
2309 Rref := Empty;
2310 end if;
2311 end if;
2312
2313 -- Write out renaming reference if we have one
2314
2315 if Present (Rref) then
2316 Write_Info_Char ('=');
2317 Write_Info_Nat
2318 (Int (Get_Logical_Line_Number (Sloc (Rref))));
2319 Write_Info_Char (':');
2320 Write_Info_Nat
2321 (Int (Get_Column_Number (Sloc (Rref))));
2322 end if;
2323
2324 -- Indicate that the entity is in the unit of the current
2325 -- xref section.
2326
2327 Curru := Curxu;
2328
2329 -- Write out information about generic parent, if entity
2330 -- is an instance.
2331
2332 if Is_Generic_Instance (XE.Key.Ent) then
2333 declare
2334 Gen_Par : constant Entity_Id :=
2335 Generic_Parent
2336 (Specification
2337 (Unit_Declaration_Node
2338 (XE.Key.Ent)));
2339 Loc : constant Source_Ptr := Sloc (Gen_Par);
2340 Gen_U : constant Unit_Number_Type :=
2341 Get_Source_Unit (Loc);
2342
2343 begin
2344 Write_Info_Char ('[');
2345
2346 if Curru /= Gen_U then
2347 Write_Info_Nat (Dependency_Num (Gen_U));
2348 Write_Info_Char ('|');
2349 end if;
2350
2351 Write_Info_Nat
2352 (Int (Get_Logical_Line_Number (Loc)));
2353 Write_Info_Char (']');
2354 end;
2355 end if;
2356
2357 -- See if we have a type reference and if so output
2358
2359 Check_Type_Reference (XE.Key.Ent, False);
2360
2361 -- Additional information for types with progenitors
2362
2363 if Is_Record_Type (XE.Key.Ent)
2364 and then Present (Interfaces (XE.Key.Ent))
2365 then
2366 declare
2367 Elmt : Elmt_Id :=
2368 First_Elmt (Interfaces (XE.Key.Ent));
2369 begin
2370 while Present (Elmt) loop
2371 Check_Type_Reference (Node (Elmt), True);
2372 Next_Elmt (Elmt);
2373 end loop;
2374 end;
2375
2376 -- For array types, list index types as well. (This is
2377 -- not C, indexes have distinct types).
2378
2379 elsif Is_Array_Type (XE.Key.Ent) then
2380 declare
2381 Indx : Node_Id;
2382 begin
2383 Indx := First_Index (XE.Key.Ent);
2384 while Present (Indx) loop
2385 Check_Type_Reference
2386 (First_Subtype (Etype (Indx)), True);
2387 Next_Index (Indx);
2388 end loop;
2389 end;
2390 end if;
2391
2392 -- If the entity is an overriding operation, write info
2393 -- on operation that was overridden.
2394
2395 if Is_Subprogram (XE.Key.Ent)
2396 and then Present (Overridden_Operation (XE.Key.Ent))
2397 then
2398 Output_Overridden_Op
2399 (Overridden_Operation (XE.Key.Ent));
2400 end if;
2401
2402 -- End of processing for entity output
2403
2404 Crloc := No_Location;
2405 end if;
2406
2407 -- Output the reference if it is not as the same location
2408 -- as the previous one, or it is a read-reference that
2409 -- indicates that the entity is an in-out actual in a call.
2410
2411 if XE.Key.Loc /= No_Location
2412 and then
2413 (XE.Key.Loc /= Crloc
2414 or else (Prevt = 'm' and then XE.Key.Typ = 'r'))
2415 then
2416 Crloc := XE.Key.Loc;
2417 Prevt := XE.Key.Typ;
2418
2419 -- Start continuation if line full, else blank
2420
2421 if Write_Info_Col > 72 then
2422 Write_Info_EOL;
2423 Write_Info_Initiate ('.');
2424 end if;
2425
2426 Write_Info_Char (' ');
2427
2428 -- Output file number if changed
2429
2430 if XE.Key.Lun /= Curru then
2431 Curru := XE.Key.Lun;
2432 Write_Info_Nat (Dependency_Num (Curru));
2433 Write_Info_Char ('|');
2434 end if;
2435
2436 Write_Info_Nat
2437 (Int (Get_Logical_Line_Number (XE.Key.Loc)));
2438 Write_Info_Char (XE.Key.Typ);
2439
2440 if Is_Overloadable (XE.Key.Ent)
2441 and then Is_Imported (XE.Key.Ent)
2442 and then XE.Key.Typ = 'b'
2443 then
2444 Output_Import_Export_Info (XE.Key.Ent);
2445 end if;
2446
2447 Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc)));
2448
2449 Output_Instantiation_Refs (Sloc (XE.Key.Ent));
2450 end if;
2451 end if;
2452 end Output_One_Ref;
2453
2454 <<Continue>>
2455 null;
2456 end loop;
2457
2458 Write_Info_EOL;
2459 end Output_Refs;
2460 end Output_References;
2461
2462 -- Start of elaboration for Lib.Xref
2463
2464 begin
2465 -- Reset is necessary because Elmt_Ptr does not default to Null_Ptr,
2466 -- because it's not an access type.
2467
2468 Xref_Set.Reset;
2469 end Lib.Xref;