[multiple changes]
[gcc.git] / gcc / ada / lib-xref.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L I B . X R E F --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Csets; use Csets;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Nlists; use Nlists;
31 with Opt; use Opt;
32 with Restrict; use Restrict;
33 with Rident; use Rident;
34 with Sem; use Sem;
35 with Sem_Aux; use Sem_Aux;
36 with Sem_Prag; use Sem_Prag;
37 with Sem_Util; use Sem_Util;
38 with Sem_Warn; use Sem_Warn;
39 with Sinfo; use Sinfo;
40 with Sinput; use Sinput;
41 with Snames; use Snames;
42 with Stringt; use Stringt;
43 with Stand; use Stand;
44 with Table; use Table;
45
46 with GNAT.Heap_Sort_G;
47 with GNAT.HTable;
48
49 package body Lib.Xref is
50
51 ------------------
52 -- Declarations --
53 ------------------
54
55 -- The Xref table is used to record references. The Loc field is set
56 -- to No_Location for a definition entry.
57
58 subtype Xref_Entry_Number is Int;
59
60 type Xref_Key is record
61 -- These are the components of Xref_Entry that participate in hash
62 -- lookups.
63
64 Ent : Entity_Id;
65 -- Entity referenced (E parameter to Generate_Reference)
66
67 Loc : Source_Ptr;
68 -- Location of reference (Original_Location (Sloc field of N parameter
69 -- to Generate_Reference)). Set to No_Location for the case of a
70 -- defining occurrence.
71
72 Typ : Character;
73 -- Reference type (Typ param to Generate_Reference)
74
75 Eun : Unit_Number_Type;
76 -- Unit number corresponding to Ent
77
78 Lun : Unit_Number_Type;
79 -- Unit number corresponding to Loc. Value is undefined and not
80 -- referenced if Loc is set to No_Location.
81
82 -- The following components are only used for SPARK cross-references
83
84 Ref_Scope : Entity_Id;
85 -- Entity of the closest subprogram or package enclosing the reference
86
87 Ent_Scope : Entity_Id;
88 -- Entity of the closest subprogram or package enclosing the definition,
89 -- which should be located in the same file as the definition itself.
90 end record;
91
92 type Xref_Entry is record
93 Key : Xref_Key;
94
95 Ent_Scope_File : Unit_Number_Type;
96 -- File for entity Ent_Scope
97
98 Def : Source_Ptr;
99 -- Original source location for entity being referenced. Note that these
100 -- values are used only during the output process, they are not set when
101 -- the entries are originally built. This is because private entities
102 -- can be swapped when the initial call is made.
103
104 HTable_Next : Xref_Entry_Number;
105 -- For use only by Static_HTable
106 end record;
107
108 package Xrefs is new Table.Table (
109 Table_Component_Type => Xref_Entry,
110 Table_Index_Type => Xref_Entry_Number,
111 Table_Low_Bound => 1,
112 Table_Initial => Alloc.Xrefs_Initial,
113 Table_Increment => Alloc.Xrefs_Increment,
114 Table_Name => "Xrefs");
115
116 --------------
117 -- Xref_Set --
118 --------------
119
120 -- We keep a set of xref entries, in order to avoid inserting duplicate
121 -- entries into the above Xrefs table. An entry is in Xref_Set if and only
122 -- if it is in Xrefs.
123
124 Num_Buckets : constant := 2**16;
125
126 subtype Header_Num is Integer range 0 .. Num_Buckets - 1;
127 type Null_Type is null record;
128 pragma Unreferenced (Null_Type);
129
130 function Hash (F : Xref_Entry_Number) return Header_Num;
131
132 function Equal (F1, F2 : Xref_Entry_Number) return Boolean;
133
134 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number);
135
136 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number;
137
138 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number;
139
140 pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key);
141
142 package Xref_Set is new GNAT.HTable.Static_HTable (
143 Header_Num,
144 Element => Xref_Entry,
145 Elmt_Ptr => Xref_Entry_Number,
146 Null_Ptr => 0,
147 Set_Next => HT_Set_Next,
148 Next => HT_Next,
149 Key => Xref_Entry_Number,
150 Get_Key => Get_Key,
151 Hash => Hash,
152 Equal => Equal);
153
154 -----------------------------
155 -- SPARK Xrefs Information --
156 -----------------------------
157
158 package body SPARK_Specific is separate;
159
160 ------------------------
161 -- Local Subprograms --
162 ------------------------
163
164 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type);
165 -- Add an entry to the tables of Xref_Entries, avoiding duplicates
166
167 procedure Generate_Prim_Op_References (Typ : Entity_Id);
168 -- For a tagged type, generate implicit references to its primitive
169 -- operations, for source navigation. This is done right before emitting
170 -- cross-reference information rather than at the freeze point of the type
171 -- in order to handle late bodies that are primitive operations.
172
173 function Lt (T1, T2 : Xref_Entry) return Boolean;
174 -- Order cross-references
175
176 ---------------
177 -- Add_Entry --
178 ---------------
179
180 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is
181 begin
182 Xrefs.Increment_Last; -- tentative
183 Xrefs.Table (Xrefs.Last).Key := Key;
184
185 -- Set the entry in Xref_Set, and if newly set, keep the above
186 -- tentative increment.
187
188 if Xref_Set.Set_If_Not_Present (Xrefs.Last) then
189 Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File;
190 -- Leave Def and HTable_Next uninitialized
191
192 Set_Has_Xref_Entry (Key.Ent);
193
194 -- It was already in Xref_Set, so throw away the tentatively-added entry
195
196 else
197 Xrefs.Decrement_Last;
198 end if;
199 end Add_Entry;
200
201 -----------
202 -- Equal --
203 -----------
204
205 function Equal (F1, F2 : Xref_Entry_Number) return Boolean is
206 Result : constant Boolean :=
207 Xrefs.Table (F1).Key = Xrefs.Table (F2).Key;
208 begin
209 return Result;
210 end Equal;
211
212 -------------------------
213 -- Generate_Definition --
214 -------------------------
215
216 procedure Generate_Definition (E : Entity_Id) is
217 begin
218 pragma Assert (Nkind (E) in N_Entity);
219
220 -- Note that we do not test Xref_Entity_Letters here. It is too early
221 -- to do so, since we are often called before the entity is fully
222 -- constructed, so that the Ekind is still E_Void.
223
224 if Opt.Xref_Active
225
226 -- Definition must come from source
227
228 -- We make an exception for subprogram child units that have no spec.
229 -- For these we generate a subprogram declaration for library use,
230 -- and the corresponding entity does not come from source.
231 -- Nevertheless, all references will be attached to it and we have
232 -- to treat is as coming from user code.
233
234 and then (Comes_From_Source (E) or else Is_Child_Unit (E))
235
236 -- And must have a reasonable source location that is not
237 -- within an instance (all entities in instances are ignored)
238
239 and then Sloc (E) > No_Location
240 and then Instantiation_Location (Sloc (E)) = No_Location
241
242 -- And must be a non-internal name from the main source unit
243
244 and then In_Extended_Main_Source_Unit (E)
245 and then not Is_Internal_Name (Chars (E))
246 then
247 Add_Entry
248 ((Ent => E,
249 Loc => No_Location,
250 Typ => ' ',
251 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
252 Lun => No_Unit,
253 Ref_Scope => Empty,
254 Ent_Scope => Empty),
255 Ent_Scope_File => No_Unit);
256
257 if In_Inlined_Body then
258 Set_Referenced (E);
259 end if;
260 end if;
261 end Generate_Definition;
262
263 ---------------------------------
264 -- Generate_Operator_Reference --
265 ---------------------------------
266
267 procedure Generate_Operator_Reference
268 (N : Node_Id;
269 T : Entity_Id)
270 is
271 begin
272 if not In_Extended_Main_Source_Unit (N) then
273 return;
274 end if;
275
276 -- If the operator is not a Standard operator, then we generate a real
277 -- reference to the user defined operator.
278
279 if Sloc (Entity (N)) /= Standard_Location then
280 Generate_Reference (Entity (N), N);
281
282 -- A reference to an implicit inequality operator is also a reference
283 -- to the user-defined equality.
284
285 if Nkind (N) = N_Op_Ne
286 and then not Comes_From_Source (Entity (N))
287 and then Present (Corresponding_Equality (Entity (N)))
288 then
289 Generate_Reference (Corresponding_Equality (Entity (N)), N);
290 end if;
291
292 -- For the case of Standard operators, we mark the result type as
293 -- referenced. This ensures that in the case where we are using a
294 -- derived operator, we mark an entity of the unit that implicitly
295 -- defines this operator as used. Otherwise we may think that no entity
296 -- of the unit is used. The actual entity marked as referenced is the
297 -- first subtype, which is the relevant user defined entity.
298
299 -- Note: we only do this for operators that come from source. The
300 -- generated code sometimes reaches for entities that do not need to be
301 -- explicitly visible (for example, when we expand the code for
302 -- comparing two record objects, the fields of the record may not be
303 -- visible).
304
305 elsif Comes_From_Source (N) then
306 Set_Referenced (First_Subtype (T));
307 end if;
308 end Generate_Operator_Reference;
309
310 ---------------------------------
311 -- Generate_Prim_Op_References --
312 ---------------------------------
313
314 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
315 Base_T : Entity_Id;
316 Prim : Elmt_Id;
317 Prim_List : Elist_Id;
318
319 begin
320 -- Handle subtypes of synchronized types
321
322 if Ekind (Typ) = E_Protected_Subtype
323 or else Ekind (Typ) = E_Task_Subtype
324 then
325 Base_T := Etype (Typ);
326 else
327 Base_T := Typ;
328 end if;
329
330 -- References to primitive operations are only relevant for tagged types
331
332 if not Is_Tagged_Type (Base_T)
333 or else Is_Class_Wide_Type (Base_T)
334 then
335 return;
336 end if;
337
338 -- Ada 2005 (AI-345): For synchronized types generate reference to the
339 -- wrapper that allow us to dispatch calls through their implemented
340 -- abstract interface types.
341
342 -- The check for Present here is to protect against previously reported
343 -- critical errors.
344
345 Prim_List := Primitive_Operations (Base_T);
346
347 if No (Prim_List) then
348 return;
349 end if;
350
351 Prim := First_Elmt (Prim_List);
352 while Present (Prim) loop
353
354 -- If the operation is derived, get the original for cross-reference
355 -- reference purposes (it is the original for which we want the xref
356 -- and for which the comes_from_source test must be performed).
357
358 Generate_Reference
359 (Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False);
360 Next_Elmt (Prim);
361 end loop;
362 end Generate_Prim_Op_References;
363
364 ------------------------
365 -- Generate_Reference --
366 ------------------------
367
368 procedure Generate_Reference
369 (E : Entity_Id;
370 N : Node_Id;
371 Typ : Character := 'r';
372 Set_Ref : Boolean := True;
373 Force : Boolean := False)
374 is
375 Actual_Typ : Character := Typ;
376 Call : Node_Id;
377 Def : Source_Ptr;
378 Ent : Entity_Id;
379 Ent_Scope : Entity_Id;
380 Formal : Entity_Id;
381 Kind : Entity_Kind;
382 Nod : Node_Id;
383 Ref : Source_Ptr;
384 Ref_Scope : Entity_Id;
385
386 function Get_Through_Renamings (E : Entity_Id) return Entity_Id;
387 -- Get the enclosing entity through renamings, which may come from
388 -- source or from the translation of generic instantiations.
389
390 function Is_On_LHS (Node : Node_Id) return Boolean;
391 -- Used to check if a node is on the left hand side of an assignment.
392 -- The following cases are handled:
393 --
394 -- Variable Node is a direct descendant of left hand side of an
395 -- assignment statement.
396 --
397 -- Prefix Of an indexed or selected component that is present in
398 -- a subtree rooted by an assignment statement. There is
399 -- no restriction of nesting of components, thus cases
400 -- such as A.B (C).D are handled properly. However a prefix
401 -- of a dereference (either implicit or explicit) is never
402 -- considered as on a LHS.
403 --
404 -- Out param Same as above cases, but OUT parameter
405
406 function OK_To_Set_Referenced return Boolean;
407 -- Returns True if the Referenced flag can be set. There are a few
408 -- exceptions where we do not want to set this flag, see body for
409 -- details of these exceptional cases.
410
411 ---------------------------
412 -- Get_Through_Renamings --
413 ---------------------------
414
415 function Get_Through_Renamings (E : Entity_Id) return Entity_Id is
416 begin
417 case Ekind (E) is
418
419 -- For subprograms we just need to check once if they are have a
420 -- Renamed_Entity, because Renamed_Entity is set transitively.
421
422 when Subprogram_Kind =>
423 declare
424 Renamed : constant Entity_Id := Renamed_Entity (E);
425
426 begin
427 if Present (Renamed) then
428 return Renamed;
429 else
430 return E;
431 end if;
432 end;
433
434 -- For objects we need to repeatedly call Renamed_Object, because
435 -- it is not transitive.
436
437 when Object_Kind =>
438 declare
439 Obj : Entity_Id := E;
440
441 begin
442 loop
443 pragma Assert (Present (Obj));
444
445 declare
446 Renamed : constant Entity_Id := Renamed_Object (Obj);
447
448 begin
449 if Present (Renamed) then
450 Obj := Get_Enclosing_Object (Renamed);
451
452 -- The renamed expression denotes a non-object,
453 -- e.g. function call, slicing of a function call,
454 -- pointer dereference, etc.
455
456 if No (Obj) then
457 return Empty;
458 end if;
459 else
460 return Obj;
461 end if;
462 end;
463 end loop;
464 end;
465
466 when others =>
467 return E;
468
469 end case;
470 end Get_Through_Renamings;
471
472 ---------------
473 -- Is_On_LHS --
474 ---------------
475
476 -- ??? There are several routines here and there that perform a similar
477 -- (but subtly different) computation, which should be factored:
478
479 -- Sem_Util.Is_LHS
480 -- Sem_Util.May_Be_Lvalue
481 -- Sem_Util.Known_To_Be_Assigned
482 -- Exp_Ch2.Expand_Entry_Parameter.In_Assignment_Context
483 -- Exp_Smem.Is_Out_Actual
484
485 function Is_On_LHS (Node : Node_Id) return Boolean is
486 N : Node_Id;
487 P : Node_Id;
488 K : Node_Kind;
489
490 begin
491 -- Only identifiers are considered, is this necessary???
492
493 if Nkind (Node) /= N_Identifier then
494 return False;
495 end if;
496
497 -- Immediate return if appeared as OUT parameter
498
499 if Kind = E_Out_Parameter then
500 return True;
501 end if;
502
503 -- Search for assignment statement subtree root
504
505 N := Node;
506 loop
507 P := Parent (N);
508 K := Nkind (P);
509
510 if K = N_Assignment_Statement then
511 return Name (P) = N;
512
513 -- Check whether the parent is a component and the current node is
514 -- its prefix, but return False if the current node has an access
515 -- type, as in that case the selected or indexed component is an
516 -- implicit dereference, and the LHS is the designated object, not
517 -- the access object.
518
519 -- ??? case of a slice assignment?
520
521 elsif (K = N_Selected_Component or else K = N_Indexed_Component)
522 and then Prefix (P) = N
523 then
524 -- Check for access type. First a special test, In some cases
525 -- this is called too early (see comments in Find_Direct_Name),
526 -- at a point where the tree is not fully typed yet. In that
527 -- case we may lack an Etype for N, and we can't check the
528 -- Etype. For now, we always return False in such a case,
529 -- but this is clearly not right in all cases ???
530
531 if No (Etype (N)) then
532 return False;
533
534 elsif Is_Access_Type (Etype (N)) then
535 return False;
536
537 -- Access type case dealt with, keep going
538
539 else
540 N := P;
541 end if;
542
543 -- All other cases, definitely not on left side
544
545 else
546 return False;
547 end if;
548 end loop;
549 end Is_On_LHS;
550
551 ---------------------------
552 -- OK_To_Set_Referenced --
553 ---------------------------
554
555 function OK_To_Set_Referenced return Boolean is
556 P : Node_Id;
557
558 begin
559 -- A reference from a pragma Unreferenced or pragma Unmodified or
560 -- pragma Warnings does not cause the Referenced flag to be set.
561 -- This avoids silly warnings about things being referenced and
562 -- not assigned when the only reference is from the pragma.
563
564 if Nkind (N) = N_Identifier then
565 P := Parent (N);
566
567 if Nkind (P) = N_Pragma_Argument_Association then
568 P := Parent (P);
569
570 if Nkind (P) = N_Pragma then
571 if Nam_In (Pragma_Name_Unmapped (P),
572 Name_Warnings,
573 Name_Unmodified,
574 Name_Unreferenced)
575 then
576 return False;
577 end if;
578 end if;
579
580 -- A reference to a formal in a named parameter association does
581 -- not make the formal referenced. Formals that are unused in the
582 -- subprogram body are properly flagged as such, even if calls
583 -- elsewhere use named notation.
584
585 elsif Nkind (P) = N_Parameter_Association
586 and then N = Selector_Name (P)
587 then
588 return False;
589 end if;
590 end if;
591
592 return True;
593 end OK_To_Set_Referenced;
594
595 -- Start of processing for Generate_Reference
596
597 begin
598 pragma Assert (Nkind (E) in N_Entity);
599 Find_Actual (N, Formal, Call);
600
601 if Present (Formal) then
602 Kind := Ekind (Formal);
603 else
604 Kind := E_Void;
605 end if;
606
607 -- Check for obsolescent reference to package ASCII. GNAT treats this
608 -- element of annex J specially since in practice, programs make a lot
609 -- of use of this feature, so we don't include it in the set of features
610 -- diagnosed when Warn_On_Obsolescent_Features mode is set. However we
611 -- are required to note it as a violation of the RM defined restriction.
612
613 if E = Standard_ASCII then
614 Check_Restriction (No_Obsolescent_Features, N);
615 end if;
616
617 -- Check for reference to entity marked with Is_Obsolescent
618
619 -- Note that we always allow obsolescent references in the compiler
620 -- itself and the run time, since we assume that we know what we are
621 -- doing in such cases. For example the calls in Ada.Characters.Handling
622 -- to its own obsolescent subprograms are just fine.
623
624 -- In any case we only generate warnings if we are in the extended main
625 -- source unit, and the entity itself is not in the extended main source
626 -- unit, since we assume the source unit itself knows what is going on
627 -- (and for sure we do not want silly warnings, e.g. on the end line of
628 -- an obsolescent procedure body).
629
630 if Is_Obsolescent (E)
631 and then not GNAT_Mode
632 and then not In_Extended_Main_Source_Unit (E)
633 and then In_Extended_Main_Source_Unit (N)
634 then
635 Check_Restriction (No_Obsolescent_Features, N);
636
637 if Warn_On_Obsolescent_Feature then
638 Output_Obsolescent_Entity_Warnings (N, E);
639 end if;
640 end if;
641
642 -- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only
643 -- detect real explicit references (modifications and references).
644
645 if Comes_From_Source (N)
646 and then Is_Ada_2005_Only (E)
647 and then Ada_Version < Ada_2005
648 and then Warn_On_Ada_2005_Compatibility
649 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')
650 then
651 Error_Msg_NE ("& is only defined in Ada 2005?y?", N, E);
652 end if;
653
654 -- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only
655 -- detect real explicit references (modifications and references).
656
657 if Comes_From_Source (N)
658 and then Is_Ada_2012_Only (E)
659 and then Ada_Version < Ada_2012
660 and then Warn_On_Ada_2012_Compatibility
661 and then (Typ = 'm' or else Typ = 'r')
662 then
663 Error_Msg_NE ("& is only defined in Ada 2012?y?", N, E);
664 end if;
665
666 -- Do not generate references if we are within a postcondition sub-
667 -- program, because the reference does not comes from source, and the
668 -- pre-analysis of the aspect has already created an entry for the ALI
669 -- file at the proper source location.
670
671 if Chars (Current_Scope) = Name_uPostconditions then
672 return;
673 end if;
674
675 -- Never collect references if not in main source unit. However, we omit
676 -- this test if Typ is 'e' or 'k', since these entries are structural,
677 -- and it is useful to have them in units that reference packages as
678 -- well as units that define packages. We also omit the test for the
679 -- case of 'p' since we want to include inherited primitive operations
680 -- from other packages.
681
682 -- We also omit this test is this is a body reference for a subprogram
683 -- instantiation. In this case the reference is to the generic body,
684 -- which clearly need not be in the main unit containing the instance.
685 -- For the same reason we accept an implicit reference generated for
686 -- a default in an instance.
687
688 -- We also set the referenced flag in a generic package that is not in
689 -- then main source unit, when the variable is of a formal private type,
690 -- to warn in the instance if the corresponding type is not a fully
691 -- initialized type.
692
693 if not In_Extended_Main_Source_Unit (N) then
694 if Typ = 'e' or else
695 Typ = 'I' or else
696 Typ = 'p' or else
697 Typ = 'i' or else
698 Typ = 'k'
699 or else (Typ = 'b' and then Is_Generic_Instance (E))
700
701 -- Allow the generation of references to reads, writes and calls
702 -- in SPARK mode when the related context comes from an instance.
703
704 or else
705 (GNATprove_Mode
706 and then In_Extended_Main_Code_Unit (N)
707 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's'))
708 then
709 null;
710
711 elsif In_Instance_Body
712 and then In_Extended_Main_Code_Unit (N)
713 and then Is_Generic_Type (Etype (E))
714 then
715 Set_Referenced (E);
716 return;
717
718 elsif Inside_A_Generic
719 and then Is_Generic_Type (Etype (E))
720 then
721 Set_Referenced (E);
722 return;
723
724 else
725 return;
726 end if;
727 end if;
728
729 -- For reference type p, the entity must be in main source unit
730
731 if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then
732 return;
733 end if;
734
735 -- Unless the reference is forced, we ignore references where the
736 -- reference itself does not come from source.
737
738 if not Force and then not Comes_From_Source (N) then
739 return;
740 end if;
741
742 -- Deal with setting entity as referenced, unless suppressed. Note that
743 -- we still do Set_Referenced on entities that do not come from source.
744 -- This situation arises when we have a source reference to a derived
745 -- operation, where the derived operation itself does not come from
746 -- source, but we still want to mark it as referenced, since we really
747 -- are referencing an entity in the corresponding package (this avoids
748 -- wrong complaints that the package contains no referenced entities).
749
750 if Set_Ref then
751
752 -- Assignable object appearing on left side of assignment or as
753 -- an out parameter.
754
755 if Is_Assignable (E)
756 and then Is_On_LHS (N)
757 and then Ekind (E) /= E_In_Out_Parameter
758 then
759 -- For objects that are renamings, just set as simply referenced
760 -- we do not try to do assignment type tracking in this case.
761
762 if Present (Renamed_Object (E)) then
763 Set_Referenced (E);
764
765 -- Out parameter case
766
767 elsif Kind = E_Out_Parameter then
768
769 -- If warning mode for all out parameters is set, or this is
770 -- the only warning parameter, then we want to mark this for
771 -- later warning logic by setting Referenced_As_Out_Parameter
772
773 if Warn_On_Modified_As_Out_Parameter (Formal) then
774 Set_Referenced_As_Out_Parameter (E, True);
775 Set_Referenced_As_LHS (E, False);
776
777 -- For OUT parameter not covered by the above cases, we simply
778 -- regard it as a normal reference (in this case we do not
779 -- want any of the warning machinery for out parameters).
780
781 else
782 Set_Referenced (E);
783 end if;
784
785 -- For the left hand of an assignment case, we do nothing here.
786 -- The processing for Analyze_Assignment_Statement will set the
787 -- Referenced_As_LHS flag.
788
789 else
790 null;
791 end if;
792
793 -- Check for a reference in a pragma that should not count as a
794 -- making the variable referenced for warning purposes.
795
796 elsif Is_Non_Significant_Pragma_Reference (N) then
797 null;
798
799 -- A reference in an attribute definition clause does not count as a
800 -- reference except for the case of Address. The reason that 'Address
801 -- is an exception is that it creates an alias through which the
802 -- variable may be referenced.
803
804 elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause
805 and then Chars (Parent (N)) /= Name_Address
806 and then N = Name (Parent (N))
807 then
808 null;
809
810 -- Constant completion does not count as a reference
811
812 elsif Typ = 'c'
813 and then Ekind (E) = E_Constant
814 then
815 null;
816
817 -- Record representation clause does not count as a reference
818
819 elsif Nkind (N) = N_Identifier
820 and then Nkind (Parent (N)) = N_Record_Representation_Clause
821 then
822 null;
823
824 -- Discriminants do not need to produce a reference to record type
825
826 elsif Typ = 'd'
827 and then Nkind (Parent (N)) = N_Discriminant_Specification
828 then
829 null;
830
831 -- All other cases
832
833 else
834 -- Special processing for IN OUT parameters, where we have an
835 -- implicit assignment to a simple variable.
836
837 if Kind = E_In_Out_Parameter
838 and then Is_Assignable (E)
839 then
840 -- For sure this counts as a normal read reference
841
842 Set_Referenced (E);
843 Set_Last_Assignment (E, Empty);
844
845 -- We count it as being referenced as an out parameter if the
846 -- option is set to warn on all out parameters, except that we
847 -- have a special exclusion for an intrinsic subprogram, which
848 -- is most likely an instantiation of Unchecked_Deallocation
849 -- which we do not want to consider as an assignment since it
850 -- generates false positives. We also exclude the case of an
851 -- IN OUT parameter if the name of the procedure is Free,
852 -- since we suspect similar semantics.
853
854 if Warn_On_All_Unread_Out_Parameters
855 and then Is_Entity_Name (Name (Call))
856 and then not Is_Intrinsic_Subprogram (Entity (Name (Call)))
857 and then Chars (Name (Call)) /= Name_Free
858 then
859 Set_Referenced_As_Out_Parameter (E, True);
860 Set_Referenced_As_LHS (E, False);
861 end if;
862
863 -- Don't count a recursive reference within a subprogram as a
864 -- reference (that allows detection of a recursive subprogram
865 -- whose only references are recursive calls as unreferenced).
866
867 elsif Is_Subprogram (E)
868 and then E = Nearest_Dynamic_Scope (Current_Scope)
869 then
870 null;
871
872 -- Any other occurrence counts as referencing the entity
873
874 elsif OK_To_Set_Referenced then
875 Set_Referenced (E);
876
877 -- If variable, this is an OK reference after an assignment
878 -- so we can clear the Last_Assignment indication.
879
880 if Is_Assignable (E) then
881 Set_Last_Assignment (E, Empty);
882 end if;
883 end if;
884 end if;
885
886 -- Check for pragma Unreferenced given and reference is within
887 -- this source unit (occasion for possible warning to be issued).
888 -- Note that the entity may be marked as unreferenced by pragma
889 -- Unused.
890
891 if Has_Unreferenced (E)
892 and then In_Same_Extended_Unit (E, N)
893 then
894 -- A reference as a named parameter in a call does not count as a
895 -- violation of pragma Unreferenced for this purpose...
896
897 if Nkind (N) = N_Identifier
898 and then Nkind (Parent (N)) = N_Parameter_Association
899 and then Selector_Name (Parent (N)) = N
900 then
901 null;
902
903 -- ... Neither does a reference to a variable on the left side of
904 -- an assignment.
905
906 elsif Is_On_LHS (N) then
907 null;
908
909 -- Do not consider F'Result as a violation of pragma Unreferenced
910 -- since the attribute acts as an anonymous alias of the function
911 -- result and not as a real reference to the function.
912
913 elsif Ekind_In (E, E_Function, E_Generic_Function)
914 and then Is_Entity_Name (N)
915 and then Is_Attribute_Result (Parent (N))
916 then
917 null;
918
919 -- No warning if the reference is in a call that does not come
920 -- from source (e.g. a call to a controlled type primitive).
921
922 elsif not Comes_From_Source (Parent (N))
923 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
924 then
925 null;
926
927 -- For entry formals, we want to place the warning message on the
928 -- corresponding entity in the accept statement. The current scope
929 -- is the body of the accept, so we find the formal whose name
930 -- matches that of the entry formal (there is no link between the
931 -- two entities, and the one in the accept statement is only used
932 -- for conformance checking).
933
934 elsif Ekind (Scope (E)) = E_Entry then
935 declare
936 BE : Entity_Id;
937
938 begin
939 BE := First_Entity (Current_Scope);
940 while Present (BE) loop
941 if Chars (BE) = Chars (E) then
942 if Has_Pragma_Unused (E) then
943 Error_Msg_NE -- CODEFIX
944 ("??pragma Unused given for&!", N, BE);
945 else
946 Error_Msg_NE -- CODEFIX
947 ("??pragma Unreferenced given for&!", N, BE);
948 end if;
949 exit;
950 end if;
951
952 Next_Entity (BE);
953 end loop;
954 end;
955
956 -- Here we issue the warning, since this is a real reference
957
958 elsif Has_Pragma_Unused (E) then
959 Error_Msg_NE -- CODEFIX
960 ("??pragma Unused given for&!", N, E);
961 else
962 Error_Msg_NE -- CODEFIX
963 ("??pragma Unreferenced given for&!", N, E);
964 end if;
965 end if;
966
967 -- If this is a subprogram instance, mark as well the internal
968 -- subprogram in the wrapper package, which may be a visible
969 -- compilation unit.
970
971 if Is_Overloadable (E)
972 and then Is_Generic_Instance (E)
973 and then Present (Alias (E))
974 then
975 Set_Referenced (Alias (E));
976 end if;
977 end if;
978
979 -- Generate reference if all conditions are met:
980
981 if
982 -- Cross referencing must be active
983
984 Opt.Xref_Active
985
986 -- The entity must be one for which we collect references
987
988 and then Xref_Entity_Letters (Ekind (E)) /= ' '
989
990 -- Both Sloc values must be set to something sensible
991
992 and then Sloc (E) > No_Location
993 and then Sloc (N) > No_Location
994
995 -- Ignore references from within an instance. The only exceptions to
996 -- this are default subprograms, for which we generate an implicit
997 -- reference and compilations in SPARK mode.
998
999 and then
1000 (Instantiation_Location (Sloc (N)) = No_Location
1001 or else Typ = 'i'
1002 or else GNATprove_Mode)
1003
1004 -- Ignore dummy references
1005
1006 and then Typ /= ' '
1007 then
1008 if Nkind_In (N, N_Identifier,
1009 N_Defining_Identifier,
1010 N_Defining_Operator_Symbol,
1011 N_Operator_Symbol,
1012 N_Defining_Character_Literal)
1013 or else Nkind (N) in N_Op
1014 or else (Nkind (N) = N_Character_Literal
1015 and then Sloc (Entity (N)) /= Standard_Location)
1016 then
1017 Nod := N;
1018
1019 elsif Nkind_In (N, N_Expanded_Name, N_Selected_Component) then
1020 Nod := Selector_Name (N);
1021
1022 else
1023 return;
1024 end if;
1025
1026 -- Normal case of source entity comes from source
1027
1028 if Comes_From_Source (E) then
1029 Ent := E;
1030
1031 -- Because a declaration may be generated for a subprogram body
1032 -- without declaration in GNATprove mode, for inlining, some
1033 -- parameters may end up being marked as not coming from source
1034 -- although they are. Take these into account specially.
1035
1036 elsif GNATprove_Mode and then Ekind (E) in Formal_Kind then
1037 Ent := E;
1038
1039 -- Entity does not come from source, but is a derived subprogram and
1040 -- the derived subprogram comes from source (after one or more
1041 -- derivations) in which case the reference is to parent subprogram.
1042
1043 elsif Is_Overloadable (E)
1044 and then Present (Alias (E))
1045 then
1046 Ent := Alias (E);
1047 while not Comes_From_Source (Ent) loop
1048 if No (Alias (Ent)) then
1049 return;
1050 end if;
1051
1052 Ent := Alias (Ent);
1053 end loop;
1054
1055 -- The internally created defining entity for a child subprogram
1056 -- that has no previous spec has valid references.
1057
1058 elsif Is_Overloadable (E)
1059 and then Is_Child_Unit (E)
1060 then
1061 Ent := E;
1062
1063 -- Ditto for the formals of such a subprogram
1064
1065 elsif Is_Overloadable (Scope (E))
1066 and then Is_Child_Unit (Scope (E))
1067 then
1068 Ent := E;
1069
1070 -- Record components of discriminated subtypes or derived types must
1071 -- be treated as references to the original component.
1072
1073 elsif Ekind (E) = E_Component
1074 and then Comes_From_Source (Original_Record_Component (E))
1075 then
1076 Ent := Original_Record_Component (E);
1077
1078 -- If this is an expanded reference to a discriminant, recover the
1079 -- original discriminant, which gets the reference.
1080
1081 elsif Ekind (E) = E_In_Parameter
1082 and then Present (Discriminal_Link (E))
1083 then
1084 Ent := Discriminal_Link (E);
1085 Set_Referenced (Ent);
1086
1087 -- Ignore reference to any other entity that is not from source
1088
1089 else
1090 return;
1091 end if;
1092
1093 -- In SPARK mode, consider the underlying entity renamed instead of
1094 -- the renaming, which is needed to compute a valid set of effects
1095 -- (reads, writes) for the enclosing subprogram.
1096
1097 if GNATprove_Mode then
1098 Ent := Get_Through_Renamings (Ent);
1099
1100 -- If no enclosing object, then it could be a reference to any
1101 -- location not tracked individually, like heap-allocated data.
1102 -- Conservatively approximate this possibility by generating a
1103 -- dereference, and return.
1104
1105 if No (Ent) then
1106 if Actual_Typ = 'w' then
1107 SPARK_Specific.Generate_Dereference (Nod, 'r');
1108 SPARK_Specific.Generate_Dereference (Nod, 'w');
1109 else
1110 SPARK_Specific.Generate_Dereference (Nod, 'r');
1111 end if;
1112
1113 return;
1114 end if;
1115 end if;
1116
1117 -- Record reference to entity
1118
1119 if Actual_Typ = 'p'
1120 and then Is_Subprogram (Nod)
1121 and then Present (Overridden_Operation (Nod))
1122 then
1123 Actual_Typ := 'P';
1124 end if;
1125
1126 -- Comment needed here for special SPARK code ???
1127
1128 if GNATprove_Mode then
1129
1130 -- Ignore references to an entity which is a Part_Of single
1131 -- concurrent object. Ideally we would prefer to add it as a
1132 -- reference to the corresponding concurrent type, but it is quite
1133 -- difficult (as such references are not currently added even for)
1134 -- reads/writes of private protected components) and not worth the
1135 -- effort.
1136
1137 if Ekind_In (Ent, E_Abstract_State, E_Constant, E_Variable)
1138 and then Present (Encapsulating_State (Ent))
1139 and then Is_Single_Concurrent_Object (Encapsulating_State (Ent))
1140 then
1141 return;
1142 end if;
1143
1144 Ref := Sloc (Nod);
1145 Def := Sloc (Ent);
1146
1147 Ref_Scope :=
1148 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Nod);
1149 Ent_Scope :=
1150 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Ent);
1151
1152 -- Since we are reaching through renamings in SPARK mode, we may
1153 -- end up with standard constants. Ignore those.
1154
1155 if Sloc (Ent_Scope) <= Standard_Location
1156 or else Def <= Standard_Location
1157 then
1158 return;
1159 end if;
1160
1161 Add_Entry
1162 ((Ent => Ent,
1163 Loc => Ref,
1164 Typ => Actual_Typ,
1165 Eun => Get_Top_Level_Code_Unit (Def),
1166 Lun => Get_Top_Level_Code_Unit (Ref),
1167 Ref_Scope => Ref_Scope,
1168 Ent_Scope => Ent_Scope),
1169 Ent_Scope_File => Get_Top_Level_Code_Unit (Ent));
1170
1171 else
1172 Ref := Original_Location (Sloc (Nod));
1173 Def := Original_Location (Sloc (Ent));
1174
1175 -- If this is an operator symbol, skip the initial quote for
1176 -- navigation purposes. This is not done for the end label,
1177 -- where we want the actual position after the closing quote.
1178
1179 if Typ = 't' then
1180 null;
1181
1182 elsif Nkind (N) = N_Defining_Operator_Symbol
1183 or else Nkind (Nod) = N_Operator_Symbol
1184 then
1185 Ref := Ref + 1;
1186 end if;
1187
1188 Add_Entry
1189 ((Ent => Ent,
1190 Loc => Ref,
1191 Typ => Actual_Typ,
1192 Eun => Get_Source_Unit (Def),
1193 Lun => Get_Source_Unit (Ref),
1194 Ref_Scope => Empty,
1195 Ent_Scope => Empty),
1196 Ent_Scope_File => No_Unit);
1197
1198 -- Generate reference to the first private entity
1199
1200 if Typ = 'e'
1201 and then Comes_From_Source (E)
1202 and then Nkind (Ent) = N_Defining_Identifier
1203 and then (Is_Package_Or_Generic_Package (Ent)
1204 or else Is_Concurrent_Type (Ent))
1205 and then Present (First_Private_Entity (E))
1206 and then In_Extended_Main_Source_Unit (N)
1207 then
1208 -- Handle case in which the full-view and partial-view of the
1209 -- first private entity are swapped.
1210
1211 declare
1212 First_Private : Entity_Id := First_Private_Entity (E);
1213
1214 begin
1215 if Is_Private_Type (First_Private)
1216 and then Present (Full_View (First_Private))
1217 then
1218 First_Private := Full_View (First_Private);
1219 end if;
1220
1221 Add_Entry
1222 ((Ent => Ent,
1223 Loc => Sloc (First_Private),
1224 Typ => 'E',
1225 Eun => Get_Source_Unit (Def),
1226 Lun => Get_Source_Unit (Ref),
1227 Ref_Scope => Empty,
1228 Ent_Scope => Empty),
1229 Ent_Scope_File => No_Unit);
1230 end;
1231 end if;
1232 end if;
1233 end if;
1234 end Generate_Reference;
1235
1236 -----------------------------------
1237 -- Generate_Reference_To_Formals --
1238 -----------------------------------
1239
1240 procedure Generate_Reference_To_Formals (E : Entity_Id) is
1241 Formal : Entity_Id;
1242
1243 begin
1244 if Is_Generic_Subprogram (E) then
1245 Formal := First_Entity (E);
1246
1247 while Present (Formal)
1248 and then not Is_Formal (Formal)
1249 loop
1250 Next_Entity (Formal);
1251 end loop;
1252
1253 elsif Ekind (E) in Access_Subprogram_Kind then
1254 Formal := First_Formal (Designated_Type (E));
1255
1256 else
1257 Formal := First_Formal (E);
1258 end if;
1259
1260 while Present (Formal) loop
1261 if Ekind (Formal) = E_In_Parameter then
1262
1263 if Nkind (Parameter_Type (Parent (Formal))) = N_Access_Definition
1264 then
1265 Generate_Reference (E, Formal, '^', False);
1266 else
1267 Generate_Reference (E, Formal, '>', False);
1268 end if;
1269
1270 elsif Ekind (Formal) = E_In_Out_Parameter then
1271 Generate_Reference (E, Formal, '=', False);
1272
1273 else
1274 Generate_Reference (E, Formal, '<', False);
1275 end if;
1276
1277 Next_Formal (Formal);
1278 end loop;
1279 end Generate_Reference_To_Formals;
1280
1281 -------------------------------------------
1282 -- Generate_Reference_To_Generic_Formals --
1283 -------------------------------------------
1284
1285 procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is
1286 Formal : Entity_Id;
1287
1288 begin
1289 Formal := First_Entity (E);
1290 while Present (Formal) loop
1291 if Comes_From_Source (Formal) then
1292 Generate_Reference (E, Formal, 'z', False);
1293 end if;
1294
1295 Next_Entity (Formal);
1296 end loop;
1297 end Generate_Reference_To_Generic_Formals;
1298
1299 -------------
1300 -- Get_Key --
1301 -------------
1302
1303 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is
1304 begin
1305 return E;
1306 end Get_Key;
1307
1308 ----------------------------
1309 -- Has_Deferred_Reference --
1310 ----------------------------
1311
1312 function Has_Deferred_Reference (Ent : Entity_Id) return Boolean is
1313 begin
1314 for J in Deferred_References.First .. Deferred_References.Last loop
1315 if Deferred_References.Table (J).E = Ent then
1316 return True;
1317 end if;
1318 end loop;
1319
1320 return False;
1321 end Has_Deferred_Reference;
1322
1323 ----------
1324 -- Hash --
1325 ----------
1326
1327 function Hash (F : Xref_Entry_Number) return Header_Num is
1328 -- It is unlikely to have two references to the same entity at the same
1329 -- source location, so the hash function depends only on the Ent and Loc
1330 -- fields.
1331
1332 XE : Xref_Entry renames Xrefs.Table (F);
1333 type M is mod 2**32;
1334
1335 H : constant M := M (XE.Key.Ent) + 2 ** 7 * M (abs XE.Key.Loc);
1336 -- It would be more natural to write:
1337 --
1338 -- H : constant M := M'Mod (XE.Key.Ent) + 2**7 * M'Mod (XE.Key.Loc);
1339 --
1340 -- But we can't use M'Mod, because it prevents bootstrapping with older
1341 -- compilers. Loc can be negative, so we do "abs" before converting.
1342 -- One day this can be cleaned up ???
1343
1344 begin
1345 return Header_Num (H mod Num_Buckets);
1346 end Hash;
1347
1348 -----------------
1349 -- HT_Set_Next --
1350 -----------------
1351
1352 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is
1353 begin
1354 Xrefs.Table (E).HTable_Next := Next;
1355 end HT_Set_Next;
1356
1357 -------------
1358 -- HT_Next --
1359 -------------
1360
1361 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is
1362 begin
1363 return Xrefs.Table (E).HTable_Next;
1364 end HT_Next;
1365
1366 ----------------
1367 -- Initialize --
1368 ----------------
1369
1370 procedure Initialize is
1371 begin
1372 Xrefs.Init;
1373 end Initialize;
1374
1375 --------
1376 -- Lt --
1377 --------
1378
1379 function Lt (T1, T2 : Xref_Entry) return Boolean is
1380 begin
1381 -- First test: if entity is in different unit, sort by unit
1382
1383 if T1.Key.Eun /= T2.Key.Eun then
1384 return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun);
1385
1386 -- Second test: within same unit, sort by entity Sloc
1387
1388 elsif T1.Def /= T2.Def then
1389 return T1.Def < T2.Def;
1390
1391 -- Third test: sort definitions ahead of references
1392
1393 elsif T1.Key.Loc = No_Location then
1394 return True;
1395
1396 elsif T2.Key.Loc = No_Location then
1397 return False;
1398
1399 -- Fourth test: for same entity, sort by reference location unit
1400
1401 elsif T1.Key.Lun /= T2.Key.Lun then
1402 return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun);
1403
1404 -- Fifth test: order of location within referencing unit
1405
1406 elsif T1.Key.Loc /= T2.Key.Loc then
1407 return T1.Key.Loc < T2.Key.Loc;
1408
1409 -- Finally, for two locations at the same address, we prefer
1410 -- the one that does NOT have the type 'r' so that a modification
1411 -- or extension takes preference, when there are more than one
1412 -- reference at the same location. As a result, in the case of
1413 -- entities that are in-out actuals, the read reference follows
1414 -- the modify reference.
1415
1416 else
1417 return T2.Key.Typ = 'r';
1418 end if;
1419 end Lt;
1420
1421 -----------------------
1422 -- Output_References --
1423 -----------------------
1424
1425 procedure Output_References is
1426
1427 procedure Get_Type_Reference
1428 (Ent : Entity_Id;
1429 Tref : out Entity_Id;
1430 Left : out Character;
1431 Right : out Character);
1432 -- Given an Entity_Id Ent, determines whether a type reference is
1433 -- required. If so, Tref is set to the entity for the type reference
1434 -- and Left and Right are set to the left/right brackets to be output
1435 -- for the reference. If no type reference is required, then Tref is
1436 -- set to Empty, and Left/Right are set to space.
1437
1438 procedure Output_Import_Export_Info (Ent : Entity_Id);
1439 -- Output language and external name information for an interfaced
1440 -- entity, using the format <language, external_name>.
1441
1442 ------------------------
1443 -- Get_Type_Reference --
1444 ------------------------
1445
1446 procedure Get_Type_Reference
1447 (Ent : Entity_Id;
1448 Tref : out Entity_Id;
1449 Left : out Character;
1450 Right : out Character)
1451 is
1452 Sav : Entity_Id;
1453
1454 begin
1455 -- See if we have a type reference
1456
1457 Tref := Ent;
1458 Left := '{';
1459 Right := '}';
1460
1461 loop
1462 Sav := Tref;
1463
1464 -- Processing for types
1465
1466 if Is_Type (Tref) then
1467
1468 -- Case of base type
1469
1470 if Base_Type (Tref) = Tref then
1471
1472 -- If derived, then get first subtype
1473
1474 if Tref /= Etype (Tref) then
1475 Tref := First_Subtype (Etype (Tref));
1476
1477 -- Set brackets for derived type, but don't override
1478 -- pointer case since the fact that something is a
1479 -- pointer is more important.
1480
1481 if Left /= '(' then
1482 Left := '<';
1483 Right := '>';
1484 end if;
1485
1486 -- If the completion of a private type is itself a derived
1487 -- type, we need the parent of the full view.
1488
1489 elsif Is_Private_Type (Tref)
1490 and then Present (Full_View (Tref))
1491 and then Etype (Full_View (Tref)) /= Full_View (Tref)
1492 then
1493 Tref := Etype (Full_View (Tref));
1494
1495 if Left /= '(' then
1496 Left := '<';
1497 Right := '>';
1498 end if;
1499
1500 -- If non-derived pointer, get directly designated type.
1501 -- If the type has a full view, all references are on the
1502 -- partial view that is seen first.
1503
1504 elsif Is_Access_Type (Tref) then
1505 Tref := Directly_Designated_Type (Tref);
1506 Left := '(';
1507 Right := ')';
1508
1509 elsif Is_Private_Type (Tref)
1510 and then Present (Full_View (Tref))
1511 then
1512 if Is_Access_Type (Full_View (Tref)) then
1513 Tref := Directly_Designated_Type (Full_View (Tref));
1514 Left := '(';
1515 Right := ')';
1516
1517 -- If the full view is an array type, we also retrieve
1518 -- the corresponding component type, because the ali
1519 -- entry already indicates that this is an array.
1520
1521 elsif Is_Array_Type (Full_View (Tref)) then
1522 Tref := Component_Type (Full_View (Tref));
1523 Left := '(';
1524 Right := ')';
1525 end if;
1526
1527 -- If non-derived array, get component type. Skip component
1528 -- type for case of String or Wide_String, saves worthwhile
1529 -- space.
1530
1531 elsif Is_Array_Type (Tref)
1532 and then Tref /= Standard_String
1533 and then Tref /= Standard_Wide_String
1534 then
1535 Tref := Component_Type (Tref);
1536 Left := '(';
1537 Right := ')';
1538
1539 -- For other non-derived base types, nothing
1540
1541 else
1542 exit;
1543 end if;
1544
1545 -- For a subtype, go to ancestor subtype
1546
1547 else
1548 Tref := Ancestor_Subtype (Tref);
1549
1550 -- If no ancestor subtype, go to base type
1551
1552 if No (Tref) then
1553 Tref := Base_Type (Sav);
1554 end if;
1555 end if;
1556
1557 -- For objects, functions, enum literals, just get type from
1558 -- Etype field.
1559
1560 elsif Is_Object (Tref)
1561 or else Ekind (Tref) = E_Enumeration_Literal
1562 or else Ekind (Tref) = E_Function
1563 or else Ekind (Tref) = E_Operator
1564 then
1565 Tref := Etype (Tref);
1566
1567 -- Another special case: an object of a classwide type
1568 -- initialized with a tag-indeterminate call gets a subtype
1569 -- of the classwide type during expansion. See if the original
1570 -- type in the declaration is named, and return it instead
1571 -- of going to the root type. The expression may be a class-
1572 -- wide function call whose result is on the secondary stack,
1573 -- which forces the declaration to be rewritten as a renaming,
1574 -- so examine the source declaration.
1575
1576 if Ekind (Tref) = E_Class_Wide_Subtype then
1577 declare
1578 Decl : constant Node_Id := Original_Node (Parent (Ent));
1579 begin
1580 if Nkind (Decl) = N_Object_Declaration
1581 and then Is_Entity_Name
1582 (Original_Node (Object_Definition (Decl)))
1583 then
1584 Tref :=
1585 Entity (Original_Node (Object_Definition (Decl)));
1586 end if;
1587 end;
1588
1589 -- For a function that returns a class-wide type, Tref is
1590 -- already correct.
1591
1592 elsif Is_Overloadable (Ent)
1593 and then Is_Class_Wide_Type (Tref)
1594 then
1595 return;
1596 end if;
1597
1598 -- For anything else, exit
1599
1600 else
1601 exit;
1602 end if;
1603
1604 -- Exit if no type reference, or we are stuck in some loop trying
1605 -- to find the type reference, or if the type is standard void
1606 -- type (the latter is an implementation artifact that should not
1607 -- show up in the generated cross-references).
1608
1609 exit when No (Tref)
1610 or else Tref = Sav
1611 or else Tref = Standard_Void_Type;
1612
1613 -- If we have a usable type reference, return, otherwise keep
1614 -- looking for something useful (we are looking for something
1615 -- that either comes from source or standard)
1616
1617 if Sloc (Tref) = Standard_Location
1618 or else Comes_From_Source (Tref)
1619 then
1620 -- If the reference is a subtype created for a generic actual,
1621 -- go actual directly, the inner subtype is not user visible.
1622
1623 if Nkind (Parent (Tref)) = N_Subtype_Declaration
1624 and then not Comes_From_Source (Parent (Tref))
1625 and then
1626 (Is_Wrapper_Package (Scope (Tref))
1627 or else Is_Generic_Instance (Scope (Tref)))
1628 then
1629 Tref := First_Subtype (Base_Type (Tref));
1630 end if;
1631
1632 return;
1633 end if;
1634 end loop;
1635
1636 -- If we fall through the loop, no type reference
1637
1638 Tref := Empty;
1639 Left := ' ';
1640 Right := ' ';
1641 end Get_Type_Reference;
1642
1643 -------------------------------
1644 -- Output_Import_Export_Info --
1645 -------------------------------
1646
1647 procedure Output_Import_Export_Info (Ent : Entity_Id) is
1648 Language_Name : Name_Id;
1649 Conv : constant Convention_Id := Convention (Ent);
1650
1651 begin
1652 -- Generate language name from convention
1653
1654 if Conv = Convention_C then
1655 Language_Name := Name_C;
1656
1657 elsif Conv = Convention_CPP then
1658 Language_Name := Name_CPP;
1659
1660 elsif Conv = Convention_Ada then
1661 Language_Name := Name_Ada;
1662
1663 else
1664 -- For the moment we ignore all other cases ???
1665
1666 return;
1667 end if;
1668
1669 Write_Info_Char ('<');
1670 Get_Unqualified_Name_String (Language_Name);
1671
1672 for J in 1 .. Name_Len loop
1673 Write_Info_Char (Name_Buffer (J));
1674 end loop;
1675
1676 if Present (Interface_Name (Ent)) then
1677 Write_Info_Char (',');
1678 String_To_Name_Buffer (Strval (Interface_Name (Ent)));
1679
1680 for J in 1 .. Name_Len loop
1681 Write_Info_Char (Name_Buffer (J));
1682 end loop;
1683 end if;
1684
1685 Write_Info_Char ('>');
1686 end Output_Import_Export_Info;
1687
1688 -- Start of processing for Output_References
1689
1690 begin
1691 -- First we add references to the primitive operations of tagged types
1692 -- declared in the main unit.
1693
1694 Handle_Prim_Ops : declare
1695 Ent : Entity_Id;
1696
1697 begin
1698 for J in 1 .. Xrefs.Last loop
1699 Ent := Xrefs.Table (J).Key.Ent;
1700
1701 if Is_Type (Ent)
1702 and then Is_Tagged_Type (Ent)
1703 and then Is_Base_Type (Ent)
1704 and then In_Extended_Main_Source_Unit (Ent)
1705 then
1706 Generate_Prim_Op_References (Ent);
1707 end if;
1708 end loop;
1709 end Handle_Prim_Ops;
1710
1711 -- Before we go ahead and output the references we have a problem
1712 -- that needs dealing with. So far we have captured things that are
1713 -- definitely referenced by the main unit, or defined in the main
1714 -- unit. That's because we don't want to clutter up the ali file
1715 -- for this unit with definition lines for entities in other units
1716 -- that are not referenced.
1717
1718 -- But there is a glitch. We may reference an entity in another unit,
1719 -- and it may have a type reference to an entity that is not directly
1720 -- referenced in the main unit, which may mean that there is no xref
1721 -- entry for this entity yet in the list of references.
1722
1723 -- If we don't do something about this, we will end with an orphan type
1724 -- reference, i.e. it will point to an entity that does not appear
1725 -- within the generated references in the ali file. That is not good for
1726 -- tools using the xref information.
1727
1728 -- To fix this, we go through the references adding definition entries
1729 -- for any unreferenced entities that can be referenced in a type
1730 -- reference. There is a recursion problem here, and that is dealt with
1731 -- by making sure that this traversal also traverses any entries that
1732 -- get added by the traversal.
1733
1734 Handle_Orphan_Type_References : declare
1735 J : Nat;
1736 Tref : Entity_Id;
1737 Ent : Entity_Id;
1738
1739 L, R : Character;
1740 pragma Warnings (Off, L);
1741 pragma Warnings (Off, R);
1742
1743 procedure New_Entry (E : Entity_Id);
1744 -- Make an additional entry into the Xref table for a type entity
1745 -- that is related to the current entity (parent, type ancestor,
1746 -- progenitor, etc.).
1747
1748 ----------------
1749 -- New_Entry --
1750 ----------------
1751
1752 procedure New_Entry (E : Entity_Id) is
1753 begin
1754 pragma Assert (Present (E));
1755
1756 if not Has_Xref_Entry (Implementation_Base_Type (E))
1757 and then Sloc (E) > No_Location
1758 then
1759 Add_Entry
1760 ((Ent => E,
1761 Loc => No_Location,
1762 Typ => Character'First,
1763 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
1764 Lun => No_Unit,
1765 Ref_Scope => Empty,
1766 Ent_Scope => Empty),
1767 Ent_Scope_File => No_Unit);
1768 end if;
1769 end New_Entry;
1770
1771 -- Start of processing for Handle_Orphan_Type_References
1772
1773 begin
1774 -- Note that this is not a for loop for a very good reason. The
1775 -- processing of items in the table can add new items to the table,
1776 -- and they must be processed as well.
1777
1778 J := 1;
1779 while J <= Xrefs.Last loop
1780 Ent := Xrefs.Table (J).Key.Ent;
1781
1782 -- Do not generate reference information for an ignored Ghost
1783 -- entity because neither the entity nor its references will
1784 -- appear in the final tree.
1785
1786 if Is_Ignored_Ghost_Entity (Ent) then
1787 goto Orphan_Continue;
1788 end if;
1789
1790 Get_Type_Reference (Ent, Tref, L, R);
1791
1792 if Present (Tref)
1793 and then not Has_Xref_Entry (Tref)
1794 and then Sloc (Tref) > No_Location
1795 then
1796 New_Entry (Tref);
1797
1798 if Is_Record_Type (Ent)
1799 and then Present (Interfaces (Ent))
1800 then
1801 -- Add an entry for each one of the given interfaces
1802 -- implemented by type Ent.
1803
1804 declare
1805 Elmt : Elmt_Id := First_Elmt (Interfaces (Ent));
1806 begin
1807 while Present (Elmt) loop
1808 New_Entry (Node (Elmt));
1809 Next_Elmt (Elmt);
1810 end loop;
1811 end;
1812 end if;
1813 end if;
1814
1815 -- Collect inherited primitive operations that may be declared in
1816 -- another unit and have no visible reference in the current one.
1817
1818 if Is_Type (Ent)
1819 and then Is_Tagged_Type (Ent)
1820 and then Is_Derived_Type (Ent)
1821 and then Is_Base_Type (Ent)
1822 and then In_Extended_Main_Source_Unit (Ent)
1823 then
1824 declare
1825 Op_List : constant Elist_Id := Primitive_Operations (Ent);
1826 Op : Elmt_Id;
1827 Prim : Entity_Id;
1828
1829 function Parent_Op (E : Entity_Id) return Entity_Id;
1830 -- Find original operation, which may be inherited through
1831 -- several derivations.
1832
1833 function Parent_Op (E : Entity_Id) return Entity_Id is
1834 Orig_Op : constant Entity_Id := Alias (E);
1835
1836 begin
1837 if No (Orig_Op) then
1838 return Empty;
1839
1840 elsif not Comes_From_Source (E)
1841 and then not Has_Xref_Entry (Orig_Op)
1842 and then Comes_From_Source (Orig_Op)
1843 then
1844 return Orig_Op;
1845 else
1846 return Parent_Op (Orig_Op);
1847 end if;
1848 end Parent_Op;
1849
1850 begin
1851 Op := First_Elmt (Op_List);
1852 while Present (Op) loop
1853 Prim := Parent_Op (Node (Op));
1854
1855 if Present (Prim) then
1856 Add_Entry
1857 ((Ent => Prim,
1858 Loc => No_Location,
1859 Typ => Character'First,
1860 Eun => Get_Source_Unit (Sloc (Prim)),
1861 Lun => No_Unit,
1862 Ref_Scope => Empty,
1863 Ent_Scope => Empty),
1864 Ent_Scope_File => No_Unit);
1865 end if;
1866
1867 Next_Elmt (Op);
1868 end loop;
1869 end;
1870 end if;
1871
1872 <<Orphan_Continue>>
1873 J := J + 1;
1874 end loop;
1875 end Handle_Orphan_Type_References;
1876
1877 -- Now we have all the references, including those for any embedded type
1878 -- references, so we can sort them, and output them.
1879
1880 Output_Refs : declare
1881 Nrefs : constant Nat := Xrefs.Last;
1882 -- Number of references in table
1883
1884 Rnums : array (0 .. Nrefs) of Nat;
1885 -- This array contains numbers of references in the Xrefs table.
1886 -- This list is sorted in output order. The extra 0'th entry is
1887 -- convenient for the call to sort. When we sort the table, we
1888 -- move the entries in Rnums around, but we do not move the
1889 -- original table entries.
1890
1891 Curxu : Unit_Number_Type;
1892 -- Current xref unit
1893
1894 Curru : Unit_Number_Type;
1895 -- Current reference unit for one entity
1896
1897 Curent : Entity_Id;
1898 -- Current entity
1899
1900 Curnam : String (1 .. Name_Buffer'Length);
1901 Curlen : Natural;
1902 -- Simple name and length of current entity
1903
1904 Curdef : Source_Ptr;
1905 -- Original source location for current entity
1906
1907 Crloc : Source_Ptr;
1908 -- Current reference location
1909
1910 Ctyp : Character;
1911 -- Entity type character
1912
1913 Prevt : Character;
1914 -- reference kind of previous reference
1915
1916 Tref : Entity_Id;
1917 -- Type reference
1918
1919 Rref : Node_Id;
1920 -- Renaming reference
1921
1922 Trunit : Unit_Number_Type;
1923 -- Unit number for type reference
1924
1925 function Lt (Op1, Op2 : Natural) return Boolean;
1926 -- Comparison function for Sort call
1927
1928 function Name_Change (X : Entity_Id) return Boolean;
1929 -- Determines if entity X has a different simple name from Curent
1930
1931 procedure Move (From : Natural; To : Natural);
1932 -- Move procedure for Sort call
1933
1934 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
1935
1936 --------
1937 -- Lt --
1938 --------
1939
1940 function Lt (Op1, Op2 : Natural) return Boolean is
1941 T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1)));
1942 T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2)));
1943
1944 begin
1945 return Lt (T1, T2);
1946 end Lt;
1947
1948 ----------
1949 -- Move --
1950 ----------
1951
1952 procedure Move (From : Natural; To : Natural) is
1953 begin
1954 Rnums (Nat (To)) := Rnums (Nat (From));
1955 end Move;
1956
1957 -----------------
1958 -- Name_Change --
1959 -----------------
1960
1961 -- Why a string comparison here??? Why not compare Name_Id values???
1962
1963 function Name_Change (X : Entity_Id) return Boolean is
1964 begin
1965 Get_Unqualified_Name_String (Chars (X));
1966
1967 if Name_Len /= Curlen then
1968 return True;
1969 else
1970 return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen);
1971 end if;
1972 end Name_Change;
1973
1974 -- Start of processing for Output_Refs
1975
1976 begin
1977 -- Capture the definition Sloc values. We delay doing this till now,
1978 -- since at the time the reference or definition is made, private
1979 -- types may be swapped, and the Sloc value may be incorrect. We
1980 -- also set up the pointer vector for the sort.
1981
1982 -- For user-defined operators we need to skip the initial quote and
1983 -- point to the first character of the name, for navigation purposes.
1984
1985 for J in 1 .. Nrefs loop
1986 declare
1987 E : constant Entity_Id := Xrefs.Table (J).Key.Ent;
1988 Loc : constant Source_Ptr := Original_Location (Sloc (E));
1989
1990 begin
1991 Rnums (J) := J;
1992
1993 if Nkind (E) = N_Defining_Operator_Symbol then
1994 Xrefs.Table (J).Def := Loc + 1;
1995 else
1996 Xrefs.Table (J).Def := Loc;
1997 end if;
1998 end;
1999 end loop;
2000
2001 -- Sort the references
2002
2003 Sorting.Sort (Integer (Nrefs));
2004
2005 -- Initialize loop through references
2006
2007 Curxu := No_Unit;
2008 Curent := Empty;
2009 Curdef := No_Location;
2010 Curru := No_Unit;
2011 Crloc := No_Location;
2012 Prevt := 'm';
2013
2014 -- Loop to output references
2015
2016 for Refno in 1 .. Nrefs loop
2017 Output_One_Ref : declare
2018 Ent : Entity_Id;
2019
2020 XE : Xref_Entry renames Xrefs.Table (Rnums (Refno));
2021 -- The current entry to be accessed
2022
2023 Left : Character;
2024 Right : Character;
2025 -- Used for {} or <> or () for type reference
2026
2027 procedure Check_Type_Reference
2028 (Ent : Entity_Id;
2029 List_Interface : Boolean;
2030 Is_Component : Boolean := False);
2031 -- Find whether there is a meaningful type reference for
2032 -- Ent, and display it accordingly. If List_Interface is
2033 -- true, then Ent is a progenitor interface of the current
2034 -- type entity being listed. In that case list it as is,
2035 -- without looking for a type reference for it. Flag is also
2036 -- used for index types of an array type, where the caller
2037 -- supplies the intended type reference. Is_Component serves
2038 -- the same purpose, to display the component type of a
2039 -- derived array type, for which only the parent type has
2040 -- ben displayed so far.
2041
2042 procedure Output_Instantiation_Refs (Loc : Source_Ptr);
2043 -- Recursive procedure to output instantiation references for
2044 -- the given source ptr in [file|line[...]] form. No output
2045 -- if the given location is not a generic template reference.
2046
2047 procedure Output_Overridden_Op (Old_E : Entity_Id);
2048 -- For a subprogram that is overriding, display information
2049 -- about the inherited operation that it overrides.
2050
2051 --------------------------
2052 -- Check_Type_Reference --
2053 --------------------------
2054
2055 procedure Check_Type_Reference
2056 (Ent : Entity_Id;
2057 List_Interface : Boolean;
2058 Is_Component : Boolean := False)
2059 is
2060 begin
2061 if List_Interface then
2062
2063 -- This is a progenitor interface of the type for which
2064 -- xref information is being generated.
2065
2066 Tref := Ent;
2067 Left := '<';
2068 Right := '>';
2069
2070 -- The following is not documented in lib-xref.ads ???
2071
2072 elsif Is_Component then
2073 Tref := Ent;
2074 Left := '(';
2075 Right := ')';
2076
2077 else
2078 Get_Type_Reference (Ent, Tref, Left, Right);
2079 end if;
2080
2081 if Present (Tref) then
2082
2083 -- Case of standard entity, output name
2084
2085 if Sloc (Tref) = Standard_Location then
2086 Write_Info_Char (Left);
2087 Write_Info_Name (Chars (Tref));
2088 Write_Info_Char (Right);
2089
2090 -- Case of source entity, output location
2091
2092 else
2093 Write_Info_Char (Left);
2094 Trunit := Get_Source_Unit (Sloc (Tref));
2095
2096 if Trunit /= Curxu then
2097 Write_Info_Nat (Dependency_Num (Trunit));
2098 Write_Info_Char ('|');
2099 end if;
2100
2101 Write_Info_Nat
2102 (Int (Get_Logical_Line_Number (Sloc (Tref))));
2103
2104 declare
2105 Ent : Entity_Id;
2106 Ctyp : Character;
2107
2108 begin
2109 Ent := Tref;
2110 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2111
2112 if Ctyp = '+'
2113 and then Present (Full_View (Ent))
2114 then
2115 Ent := Underlying_Type (Ent);
2116
2117 if Present (Ent) then
2118 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2119 end if;
2120 end if;
2121
2122 Write_Info_Char (Ctyp);
2123 end;
2124
2125 Write_Info_Nat
2126 (Int (Get_Column_Number (Sloc (Tref))));
2127
2128 -- If the type comes from an instantiation, add the
2129 -- corresponding info.
2130
2131 Output_Instantiation_Refs (Sloc (Tref));
2132 Write_Info_Char (Right);
2133 end if;
2134 end if;
2135 end Check_Type_Reference;
2136
2137 -------------------------------
2138 -- Output_Instantiation_Refs --
2139 -------------------------------
2140
2141 procedure Output_Instantiation_Refs (Loc : Source_Ptr) is
2142 Iloc : constant Source_Ptr := Instantiation_Location (Loc);
2143 Lun : Unit_Number_Type;
2144 Cu : constant Unit_Number_Type := Curru;
2145
2146 begin
2147 -- Nothing to do if this is not an instantiation
2148
2149 if Iloc = No_Location then
2150 return;
2151 end if;
2152
2153 -- Output instantiation reference
2154
2155 Write_Info_Char ('[');
2156 Lun := Get_Source_Unit (Iloc);
2157
2158 if Lun /= Curru then
2159 Curru := Lun;
2160 Write_Info_Nat (Dependency_Num (Curru));
2161 Write_Info_Char ('|');
2162 end if;
2163
2164 Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc)));
2165
2166 -- Recursive call to get nested instantiations
2167
2168 Output_Instantiation_Refs (Iloc);
2169
2170 -- Output final ] after call to get proper nesting
2171
2172 Write_Info_Char (']');
2173 Curru := Cu;
2174 return;
2175 end Output_Instantiation_Refs;
2176
2177 --------------------------
2178 -- Output_Overridden_Op --
2179 --------------------------
2180
2181 procedure Output_Overridden_Op (Old_E : Entity_Id) is
2182 Op : Entity_Id;
2183
2184 begin
2185 -- The overridden operation has an implicit declaration
2186 -- at the point of derivation. What we want to display
2187 -- is the original operation, which has the actual body
2188 -- (or abstract declaration) that is being overridden.
2189 -- The overridden operation is not always set, e.g. when
2190 -- it is a predefined operator.
2191
2192 if No (Old_E) then
2193 return;
2194
2195 -- Follow alias chain if one is present
2196
2197 elsif Present (Alias (Old_E)) then
2198
2199 -- The subprogram may have been implicitly inherited
2200 -- through several levels of derivation, so find the
2201 -- ultimate (source) ancestor.
2202
2203 Op := Ultimate_Alias (Old_E);
2204
2205 -- Normal case of no alias present. We omit generated
2206 -- primitives like tagged equality, that have no source
2207 -- representation.
2208
2209 else
2210 Op := Old_E;
2211 end if;
2212
2213 if Present (Op)
2214 and then Sloc (Op) /= Standard_Location
2215 and then Comes_From_Source (Op)
2216 then
2217 declare
2218 Loc : constant Source_Ptr := Sloc (Op);
2219 Par_Unit : constant Unit_Number_Type :=
2220 Get_Source_Unit (Loc);
2221
2222 begin
2223 Write_Info_Char ('<');
2224
2225 if Par_Unit /= Curxu then
2226 Write_Info_Nat (Dependency_Num (Par_Unit));
2227 Write_Info_Char ('|');
2228 end if;
2229
2230 Write_Info_Nat (Int (Get_Logical_Line_Number (Loc)));
2231 Write_Info_Char ('p');
2232 Write_Info_Nat (Int (Get_Column_Number (Loc)));
2233 Write_Info_Char ('>');
2234 end;
2235 end if;
2236 end Output_Overridden_Op;
2237
2238 -- Start of processing for Output_One_Ref
2239
2240 begin
2241 Ent := XE.Key.Ent;
2242
2243 -- Do not generate reference information for an ignored Ghost
2244 -- entity because neither the entity nor its references will
2245 -- appear in the final tree.
2246
2247 if Is_Ignored_Ghost_Entity (Ent) then
2248 goto Continue;
2249 end if;
2250
2251 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2252
2253 -- Skip reference if it is the only reference to an entity,
2254 -- and it is an END line reference, and the entity is not in
2255 -- the current extended source. This prevents junk entries
2256 -- consisting only of packages with END lines, where no
2257 -- entity from the package is actually referenced.
2258
2259 if XE.Key.Typ = 'e'
2260 and then Ent /= Curent
2261 and then (Refno = Nrefs
2262 or else
2263 Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent)
2264 and then not In_Extended_Main_Source_Unit (Ent)
2265 then
2266 goto Continue;
2267 end if;
2268
2269 -- For private type, get full view type
2270
2271 if Ctyp = '+'
2272 and then Present (Full_View (XE.Key.Ent))
2273 then
2274 Ent := Underlying_Type (Ent);
2275
2276 if Present (Ent) then
2277 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2278 end if;
2279 end if;
2280
2281 -- Special exception for Boolean
2282
2283 if Ctyp = 'E' and then Is_Boolean_Type (Ent) then
2284 Ctyp := 'B';
2285 end if;
2286
2287 -- For variable reference, get corresponding type
2288
2289 if Ctyp = '*' then
2290 Ent := Etype (XE.Key.Ent);
2291 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2292
2293 -- If variable is private type, get full view type
2294
2295 if Ctyp = '+'
2296 and then Present (Full_View (Etype (XE.Key.Ent)))
2297 then
2298 Ent := Underlying_Type (Etype (XE.Key.Ent));
2299
2300 if Present (Ent) then
2301 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2302 end if;
2303
2304 elsif Is_Generic_Type (Ent) then
2305
2306 -- If the type of the entity is a generic private type,
2307 -- there is no usable full view, so retain the indication
2308 -- that this is an object.
2309
2310 Ctyp := '*';
2311 end if;
2312
2313 -- Special handling for access parameters and objects and
2314 -- components of an anonymous access type.
2315
2316 if Ekind_In (Etype (XE.Key.Ent),
2317 E_Anonymous_Access_Type,
2318 E_Anonymous_Access_Subprogram_Type,
2319 E_Anonymous_Access_Protected_Subprogram_Type)
2320 then
2321 if Is_Formal (XE.Key.Ent)
2322 or else
2323 Ekind_In
2324 (XE.Key.Ent, E_Variable, E_Constant, E_Component)
2325 then
2326 Ctyp := 'p';
2327 end if;
2328
2329 -- Special handling for Boolean
2330
2331 elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then
2332 Ctyp := 'b';
2333 end if;
2334 end if;
2335
2336 -- Special handling for abstract types and operations
2337
2338 if Is_Overloadable (XE.Key.Ent)
2339 and then Is_Abstract_Subprogram (XE.Key.Ent)
2340 then
2341 if Ctyp = 'U' then
2342 Ctyp := 'x'; -- Abstract procedure
2343
2344 elsif Ctyp = 'V' then
2345 Ctyp := 'y'; -- Abstract function
2346 end if;
2347
2348 elsif Is_Type (XE.Key.Ent)
2349 and then Is_Abstract_Type (XE.Key.Ent)
2350 then
2351 if Is_Interface (XE.Key.Ent) then
2352 Ctyp := 'h';
2353
2354 elsif Ctyp = 'R' then
2355 Ctyp := 'H'; -- Abstract type
2356 end if;
2357 end if;
2358
2359 -- Only output reference if interesting type of entity
2360
2361 if Ctyp = ' '
2362
2363 -- Suppress references to object definitions, used for local
2364 -- references.
2365
2366 or else XE.Key.Typ = 'D'
2367 or else XE.Key.Typ = 'I'
2368
2369 -- Suppress self references, except for bodies that act as
2370 -- specs.
2371
2372 or else (XE.Key.Loc = XE.Def
2373 and then
2374 (XE.Key.Typ /= 'b'
2375 or else not Is_Subprogram (XE.Key.Ent)))
2376
2377 -- Also suppress definitions of body formals (we only
2378 -- treat these as references, and the references were
2379 -- separately recorded).
2380
2381 or else (Is_Formal (XE.Key.Ent)
2382 and then Present (Spec_Entity (XE.Key.Ent)))
2383 then
2384 null;
2385
2386 else
2387 -- Start new Xref section if new xref unit
2388
2389 if XE.Key.Eun /= Curxu then
2390 if Write_Info_Col > 1 then
2391 Write_Info_EOL;
2392 end if;
2393
2394 Curxu := XE.Key.Eun;
2395
2396 Write_Info_Initiate ('X');
2397 Write_Info_Char (' ');
2398 Write_Info_Nat (Dependency_Num (XE.Key.Eun));
2399 Write_Info_Char (' ');
2400 Write_Info_Name
2401 (Reference_Name (Source_Index (XE.Key.Eun)));
2402 end if;
2403
2404 -- Start new Entity line if new entity. Note that we
2405 -- consider two entities the same if they have the same
2406 -- name and source location. This causes entities in
2407 -- instantiations to be treated as though they referred
2408 -- to the template.
2409
2410 if No (Curent)
2411 or else
2412 (XE.Key.Ent /= Curent
2413 and then
2414 (Name_Change (XE.Key.Ent) or else XE.Def /= Curdef))
2415 then
2416 Curent := XE.Key.Ent;
2417 Curdef := XE.Def;
2418
2419 Get_Unqualified_Name_String (Chars (XE.Key.Ent));
2420 Curlen := Name_Len;
2421 Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen);
2422
2423 if Write_Info_Col > 1 then
2424 Write_Info_EOL;
2425 end if;
2426
2427 -- Write column number information
2428
2429 Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def)));
2430 Write_Info_Char (Ctyp);
2431 Write_Info_Nat (Int (Get_Column_Number (XE.Def)));
2432
2433 -- Write level information
2434
2435 Write_Level_Info : declare
2436 function Is_Visible_Generic_Entity
2437 (E : Entity_Id) return Boolean;
2438 -- Check whether E is declared in the visible part
2439 -- of a generic package. For source navigation
2440 -- purposes, treat this as a visible entity.
2441
2442 function Is_Private_Record_Component
2443 (E : Entity_Id) return Boolean;
2444 -- Check whether E is a non-inherited component of a
2445 -- private extension. Even if the enclosing record is
2446 -- public, we want to treat the component as private
2447 -- for navigation purposes.
2448
2449 ---------------------------------
2450 -- Is_Private_Record_Component --
2451 ---------------------------------
2452
2453 function Is_Private_Record_Component
2454 (E : Entity_Id) return Boolean
2455 is
2456 S : constant Entity_Id := Scope (E);
2457 begin
2458 return
2459 Ekind (E) = E_Component
2460 and then Nkind (Declaration_Node (S)) =
2461 N_Private_Extension_Declaration
2462 and then Original_Record_Component (E) = E;
2463 end Is_Private_Record_Component;
2464
2465 -------------------------------
2466 -- Is_Visible_Generic_Entity --
2467 -------------------------------
2468
2469 function Is_Visible_Generic_Entity
2470 (E : Entity_Id) return Boolean
2471 is
2472 Par : Node_Id;
2473
2474 begin
2475 -- The Present check here is an error defense
2476
2477 if Present (Scope (E))
2478 and then Ekind (Scope (E)) /= E_Generic_Package
2479 then
2480 return False;
2481 end if;
2482
2483 Par := Parent (E);
2484 while Present (Par) loop
2485 if
2486 Nkind (Par) = N_Generic_Package_Declaration
2487 then
2488 -- Entity is a generic formal
2489
2490 return False;
2491
2492 elsif
2493 Nkind (Parent (Par)) = N_Package_Specification
2494 then
2495 return
2496 Is_List_Member (Par)
2497 and then List_Containing (Par) =
2498 Visible_Declarations (Parent (Par));
2499 else
2500 Par := Parent (Par);
2501 end if;
2502 end loop;
2503
2504 return False;
2505 end Is_Visible_Generic_Entity;
2506
2507 -- Start of processing for Write_Level_Info
2508
2509 begin
2510 if Is_Hidden (Curent)
2511 or else Is_Private_Record_Component (Curent)
2512 then
2513 Write_Info_Char (' ');
2514
2515 elsif
2516 Is_Public (Curent)
2517 or else Is_Visible_Generic_Entity (Curent)
2518 then
2519 Write_Info_Char ('*');
2520
2521 else
2522 Write_Info_Char (' ');
2523 end if;
2524 end Write_Level_Info;
2525
2526 -- Output entity name. We use the occurrence from the
2527 -- actual source program at the definition point.
2528
2529 declare
2530 Ent_Name : constant String :=
2531 Exact_Source_Name (Sloc (XE.Key.Ent));
2532 begin
2533 for C in Ent_Name'Range loop
2534 Write_Info_Char (Ent_Name (C));
2535 end loop;
2536 end;
2537
2538 -- See if we have a renaming reference
2539
2540 if Is_Object (XE.Key.Ent)
2541 and then Present (Renamed_Object (XE.Key.Ent))
2542 then
2543 Rref := Renamed_Object (XE.Key.Ent);
2544
2545 elsif Is_Overloadable (XE.Key.Ent)
2546 and then Nkind (Parent (Declaration_Node (XE.Key.Ent)))
2547 = N_Subprogram_Renaming_Declaration
2548 then
2549 Rref := Name (Parent (Declaration_Node (XE.Key.Ent)));
2550
2551 elsif Ekind (XE.Key.Ent) = E_Package
2552 and then Nkind (Declaration_Node (XE.Key.Ent)) =
2553 N_Package_Renaming_Declaration
2554 then
2555 Rref := Name (Declaration_Node (XE.Key.Ent));
2556
2557 else
2558 Rref := Empty;
2559 end if;
2560
2561 if Present (Rref) then
2562 if Nkind (Rref) = N_Expanded_Name then
2563 Rref := Selector_Name (Rref);
2564 end if;
2565
2566 if Nkind (Rref) = N_Identifier
2567 or else Nkind (Rref) = N_Operator_Symbol
2568 then
2569 null;
2570
2571 -- For renamed array components, use the array name
2572 -- for the renamed entity, which reflect the fact that
2573 -- in general the whole array is aliased.
2574
2575 elsif Nkind (Rref) = N_Indexed_Component then
2576 if Nkind (Prefix (Rref)) = N_Identifier then
2577 Rref := Prefix (Rref);
2578 elsif Nkind (Prefix (Rref)) = N_Expanded_Name then
2579 Rref := Selector_Name (Prefix (Rref));
2580 else
2581 Rref := Empty;
2582 end if;
2583
2584 else
2585 Rref := Empty;
2586 end if;
2587 end if;
2588
2589 -- Write out renaming reference if we have one
2590
2591 if Present (Rref) then
2592 Write_Info_Char ('=');
2593 Write_Info_Nat
2594 (Int (Get_Logical_Line_Number (Sloc (Rref))));
2595 Write_Info_Char (':');
2596 Write_Info_Nat
2597 (Int (Get_Column_Number (Sloc (Rref))));
2598 end if;
2599
2600 -- Indicate that the entity is in the unit of the current
2601 -- xref section.
2602
2603 Curru := Curxu;
2604
2605 -- Write out information about generic parent, if entity
2606 -- is an instance.
2607
2608 if Is_Generic_Instance (XE.Key.Ent) then
2609 declare
2610 Gen_Par : constant Entity_Id :=
2611 Generic_Parent
2612 (Specification
2613 (Unit_Declaration_Node
2614 (XE.Key.Ent)));
2615 Loc : constant Source_Ptr := Sloc (Gen_Par);
2616 Gen_U : constant Unit_Number_Type :=
2617 Get_Source_Unit (Loc);
2618
2619 begin
2620 Write_Info_Char ('[');
2621
2622 if Curru /= Gen_U then
2623 Write_Info_Nat (Dependency_Num (Gen_U));
2624 Write_Info_Char ('|');
2625 end if;
2626
2627 Write_Info_Nat
2628 (Int (Get_Logical_Line_Number (Loc)));
2629 Write_Info_Char (']');
2630 end;
2631 end if;
2632
2633 -- See if we have a type reference and if so output
2634
2635 Check_Type_Reference (XE.Key.Ent, False);
2636
2637 -- Additional information for types with progenitors,
2638 -- including synchronized tagged types.
2639
2640 declare
2641 Typ : constant Entity_Id := XE.Key.Ent;
2642 Elmt : Elmt_Id;
2643
2644 begin
2645 if Is_Record_Type (Typ)
2646 and then Present (Interfaces (Typ))
2647 then
2648 Elmt := First_Elmt (Interfaces (Typ));
2649
2650 elsif Is_Concurrent_Type (Typ)
2651 and then Present (Corresponding_Record_Type (Typ))
2652 and then Present (
2653 Interfaces (Corresponding_Record_Type (Typ)))
2654 then
2655 Elmt :=
2656 First_Elmt (
2657 Interfaces (Corresponding_Record_Type (Typ)));
2658
2659 else
2660 Elmt := No_Elmt;
2661 end if;
2662
2663 while Present (Elmt) loop
2664 Check_Type_Reference (Node (Elmt), True);
2665 Next_Elmt (Elmt);
2666 end loop;
2667 end;
2668
2669 -- For array types, list index types as well. (This is
2670 -- not C, indexes have distinct types).
2671
2672 if Is_Array_Type (XE.Key.Ent) then
2673 declare
2674 A_Typ : constant Entity_Id := XE.Key.Ent;
2675 Indx : Node_Id;
2676
2677 begin
2678 -- If this is a derived array type, we have
2679 -- output the parent type, so add the component
2680 -- type now.
2681
2682 if Is_Derived_Type (A_Typ) then
2683 Check_Type_Reference
2684 (Component_Type (A_Typ), False, True);
2685 end if;
2686
2687 -- Add references to index types.
2688
2689 Indx := First_Index (XE.Key.Ent);
2690 while Present (Indx) loop
2691 Check_Type_Reference
2692 (First_Subtype (Etype (Indx)), True);
2693 Next_Index (Indx);
2694 end loop;
2695 end;
2696 end if;
2697
2698 -- If the entity is an overriding operation, write info
2699 -- on operation that was overridden.
2700
2701 if Is_Subprogram (XE.Key.Ent)
2702 and then Present (Overridden_Operation (XE.Key.Ent))
2703 then
2704 Output_Overridden_Op
2705 (Overridden_Operation (XE.Key.Ent));
2706 end if;
2707
2708 -- End of processing for entity output
2709
2710 Crloc := No_Location;
2711 end if;
2712
2713 -- Output the reference if it is not as the same location
2714 -- as the previous one, or it is a read-reference that
2715 -- indicates that the entity is an in-out actual in a call.
2716
2717 if XE.Key.Loc /= No_Location
2718 and then
2719 (XE.Key.Loc /= Crloc
2720 or else (Prevt = 'm' and then XE.Key.Typ = 'r'))
2721 then
2722 Crloc := XE.Key.Loc;
2723 Prevt := XE.Key.Typ;
2724
2725 -- Start continuation if line full, else blank
2726
2727 if Write_Info_Col > 72 then
2728 Write_Info_EOL;
2729 Write_Info_Initiate ('.');
2730 end if;
2731
2732 Write_Info_Char (' ');
2733
2734 -- Output file number if changed
2735
2736 if XE.Key.Lun /= Curru then
2737 Curru := XE.Key.Lun;
2738 Write_Info_Nat (Dependency_Num (Curru));
2739 Write_Info_Char ('|');
2740 end if;
2741
2742 Write_Info_Nat
2743 (Int (Get_Logical_Line_Number (XE.Key.Loc)));
2744 Write_Info_Char (XE.Key.Typ);
2745
2746 if Is_Overloadable (XE.Key.Ent) then
2747 if (Is_Imported (XE.Key.Ent) and then XE.Key.Typ = 'b')
2748 or else
2749 (Is_Exported (XE.Key.Ent) and then XE.Key.Typ = 'i')
2750 then
2751 Output_Import_Export_Info (XE.Key.Ent);
2752 end if;
2753 end if;
2754
2755 Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc)));
2756
2757 Output_Instantiation_Refs (Sloc (XE.Key.Ent));
2758 end if;
2759 end if;
2760 end Output_One_Ref;
2761
2762 <<Continue>>
2763 null;
2764 end loop;
2765
2766 Write_Info_EOL;
2767 end Output_Refs;
2768 end Output_References;
2769
2770 ---------------------------------
2771 -- Process_Deferred_References --
2772 ---------------------------------
2773
2774 procedure Process_Deferred_References is
2775 begin
2776 for J in Deferred_References.First .. Deferred_References.Last loop
2777 declare
2778 D : Deferred_Reference_Entry renames Deferred_References.Table (J);
2779
2780 begin
2781 case Is_LHS (D.N) is
2782 when Yes =>
2783 Generate_Reference (D.E, D.N, 'm');
2784
2785 when No =>
2786 Generate_Reference (D.E, D.N, 'r');
2787
2788 -- Not clear if Unknown can occur at this stage, but if it
2789 -- does we will treat it as a normal reference.
2790
2791 when Unknown =>
2792 Generate_Reference (D.E, D.N, 'r');
2793 end case;
2794 end;
2795 end loop;
2796
2797 -- Clear processed entries from table
2798
2799 Deferred_References.Init;
2800 end Process_Deferred_References;
2801
2802 -- Start of elaboration for Lib.Xref
2803
2804 begin
2805 -- Reset is necessary because Elmt_Ptr does not default to Null_Ptr,
2806 -- because it's not an access type.
2807
2808 Xref_Set.Reset;
2809 end Lib.Xref;