[multiple changes]
[gcc.git] / gcc / ada / lib-xref.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L I B . X R E F --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Csets; use Csets;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Nlists; use Nlists;
31 with Opt; use Opt;
32 with Restrict; use Restrict;
33 with Rident; use Rident;
34 with Sem; use Sem;
35 with Sem_Aux; use Sem_Aux;
36 with Sem_Prag; use Sem_Prag;
37 with Sem_Util; use Sem_Util;
38 with Sem_Warn; use Sem_Warn;
39 with Sinfo; use Sinfo;
40 with Sinput; use Sinput;
41 with Snames; use Snames;
42 with Stringt; use Stringt;
43 with Stand; use Stand;
44 with Table; use Table;
45
46 with GNAT.Heap_Sort_G;
47 with GNAT.HTable;
48
49 package body Lib.Xref is
50
51 ------------------
52 -- Declarations --
53 ------------------
54
55 -- The Xref table is used to record references. The Loc field is set
56 -- to No_Location for a definition entry.
57
58 subtype Xref_Entry_Number is Int;
59
60 type Xref_Key is record
61 -- These are the components of Xref_Entry that participate in hash
62 -- lookups.
63
64 Ent : Entity_Id;
65 -- Entity referenced (E parameter to Generate_Reference)
66
67 Loc : Source_Ptr;
68 -- Location of reference (Original_Location (Sloc field of N parameter
69 -- to Generate_Reference). Set to No_Location for the case of a
70 -- defining occurrence.
71
72 Typ : Character;
73 -- Reference type (Typ param to Generate_Reference)
74
75 Eun : Unit_Number_Type;
76 -- Unit number corresponding to Ent
77
78 Lun : Unit_Number_Type;
79 -- Unit number corresponding to Loc. Value is undefined and not
80 -- referenced if Loc is set to No_Location.
81
82 -- The following components are only used for Alfa cross-references
83
84 Ref_Scope : Entity_Id;
85 -- Entity of the closest subprogram or package enclosing the reference
86
87 Ent_Scope : Entity_Id;
88 -- Entity of the closest subprogram or package enclosing the definition,
89 -- which should be located in the same file as the definition itself.
90 end record;
91
92 type Xref_Entry is record
93 Key : Xref_Key;
94
95 Ent_Scope_File : Unit_Number_Type;
96 -- File for entity Ent_Scope
97
98 Def : Source_Ptr;
99 -- Original source location for entity being referenced. Note that these
100 -- values are used only during the output process, they are not set when
101 -- the entries are originally built. This is because private entities
102 -- can be swapped when the initial call is made.
103
104 HTable_Next : Xref_Entry_Number;
105 -- For use only by Static_HTable
106 end record;
107
108 package Xrefs is new Table.Table (
109 Table_Component_Type => Xref_Entry,
110 Table_Index_Type => Xref_Entry_Number,
111 Table_Low_Bound => 1,
112 Table_Initial => Alloc.Xrefs_Initial,
113 Table_Increment => Alloc.Xrefs_Increment,
114 Table_Name => "Xrefs");
115
116 --------------
117 -- Xref_Set --
118 --------------
119
120 -- We keep a set of xref entries, in order to avoid inserting duplicate
121 -- entries into the above Xrefs table. An entry is in Xref_Set if and only
122 -- if it is in Xrefs.
123
124 Num_Buckets : constant := 2**16;
125
126 subtype Header_Num is Integer range 0 .. Num_Buckets - 1;
127 type Null_Type is null record;
128 pragma Unreferenced (Null_Type);
129
130 function Hash (F : Xref_Entry_Number) return Header_Num;
131
132 function Equal (F1, F2 : Xref_Entry_Number) return Boolean;
133
134 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number);
135
136 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number;
137
138 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number;
139
140 pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key);
141
142 package Xref_Set is new GNAT.HTable.Static_HTable (
143 Header_Num,
144 Element => Xref_Entry,
145 Elmt_Ptr => Xref_Entry_Number,
146 Null_Ptr => 0,
147 Set_Next => HT_Set_Next,
148 Next => HT_Next,
149 Key => Xref_Entry_Number,
150 Get_Key => Get_Key,
151 Hash => Hash,
152 Equal => Equal);
153
154 ----------------------
155 -- Alfa Information --
156 ----------------------
157
158 package body Alfa is separate;
159
160 ------------------------
161 -- Local Subprograms --
162 ------------------------
163
164 procedure Generate_Prim_Op_References (Typ : Entity_Id);
165 -- For a tagged type, generate implicit references to its primitive
166 -- operations, for source navigation. This is done right before emitting
167 -- cross-reference information rather than at the freeze point of the type
168 -- in order to handle late bodies that are primitive operations.
169
170 function Lt (T1, T2 : Xref_Entry) return Boolean;
171 -- Order cross-references
172
173 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type);
174 -- Add an entry to the tables of Xref_Entries, avoiding duplicates
175
176 ---------------
177 -- Add_Entry --
178 ---------------
179
180 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is
181 begin
182 Xrefs.Increment_Last; -- tentative
183 Xrefs.Table (Xrefs.Last).Key := Key;
184
185 -- Set the entry in Xref_Set, and if newly set, keep the above
186 -- tentative increment.
187
188 if Xref_Set.Set_If_Not_Present (Xrefs.Last) then
189 Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File;
190 -- Leave Def and HTable_Next uninitialized
191
192 Set_Has_Xref_Entry (Key.Ent);
193
194 -- It was already in Xref_Set, so throw away the tentatively-added
195 -- entry
196
197 else
198 Xrefs.Decrement_Last;
199 end if;
200 end Add_Entry;
201
202 -----------
203 -- Equal --
204 -----------
205
206 function Equal (F1, F2 : Xref_Entry_Number) return Boolean is
207 Result : constant Boolean :=
208 Xrefs.Table (F1).Key = Xrefs.Table (F2).Key;
209 begin
210 return Result;
211 end Equal;
212
213 -------------------------
214 -- Generate_Definition --
215 -------------------------
216
217 procedure Generate_Definition (E : Entity_Id) is
218 begin
219 pragma Assert (Nkind (E) in N_Entity);
220
221 -- Note that we do not test Xref_Entity_Letters here. It is too early
222 -- to do so, since we are often called before the entity is fully
223 -- constructed, so that the Ekind is still E_Void.
224
225 if Opt.Xref_Active
226
227 -- Definition must come from source
228
229 -- We make an exception for subprogram child units that have no spec.
230 -- For these we generate a subprogram declaration for library use,
231 -- and the corresponding entity does not come from source.
232 -- Nevertheless, all references will be attached to it and we have
233 -- to treat is as coming from user code.
234
235 and then (Comes_From_Source (E) or else Is_Child_Unit (E))
236
237 -- And must have a reasonable source location that is not
238 -- within an instance (all entities in instances are ignored)
239
240 and then Sloc (E) > No_Location
241 and then Instantiation_Location (Sloc (E)) = No_Location
242
243 -- And must be a non-internal name from the main source unit
244
245 and then In_Extended_Main_Source_Unit (E)
246 and then not Is_Internal_Name (Chars (E))
247 then
248 Add_Entry
249 ((Ent => E,
250 Loc => No_Location,
251 Typ => ' ',
252 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
253 Lun => No_Unit,
254 Ref_Scope => Empty,
255 Ent_Scope => Empty),
256 Ent_Scope_File => No_Unit);
257
258 if In_Inlined_Body then
259 Set_Referenced (E);
260 end if;
261 end if;
262 end Generate_Definition;
263
264 ---------------------------------
265 -- Generate_Operator_Reference --
266 ---------------------------------
267
268 procedure Generate_Operator_Reference
269 (N : Node_Id;
270 T : Entity_Id)
271 is
272 begin
273 if not In_Extended_Main_Source_Unit (N) then
274 return;
275 end if;
276
277 -- If the operator is not a Standard operator, then we generate a real
278 -- reference to the user defined operator.
279
280 if Sloc (Entity (N)) /= Standard_Location then
281 Generate_Reference (Entity (N), N);
282
283 -- A reference to an implicit inequality operator is also a reference
284 -- to the user-defined equality.
285
286 if Nkind (N) = N_Op_Ne
287 and then not Comes_From_Source (Entity (N))
288 and then Present (Corresponding_Equality (Entity (N)))
289 then
290 Generate_Reference (Corresponding_Equality (Entity (N)), N);
291 end if;
292
293 -- For the case of Standard operators, we mark the result type as
294 -- referenced. This ensures that in the case where we are using a
295 -- derived operator, we mark an entity of the unit that implicitly
296 -- defines this operator as used. Otherwise we may think that no entity
297 -- of the unit is used. The actual entity marked as referenced is the
298 -- first subtype, which is the relevant user defined entity.
299
300 -- Note: we only do this for operators that come from source. The
301 -- generated code sometimes reaches for entities that do not need to be
302 -- explicitly visible (for example, when we expand the code for
303 -- comparing two record objects, the fields of the record may not be
304 -- visible).
305
306 elsif Comes_From_Source (N) then
307 Set_Referenced (First_Subtype (T));
308 end if;
309 end Generate_Operator_Reference;
310
311 ---------------------------------
312 -- Generate_Prim_Op_References --
313 ---------------------------------
314
315 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
316 Base_T : Entity_Id;
317 Prim : Elmt_Id;
318 Prim_List : Elist_Id;
319
320 begin
321 -- Handle subtypes of synchronized types
322
323 if Ekind (Typ) = E_Protected_Subtype
324 or else Ekind (Typ) = E_Task_Subtype
325 then
326 Base_T := Etype (Typ);
327 else
328 Base_T := Typ;
329 end if;
330
331 -- References to primitive operations are only relevant for tagged types
332
333 if not Is_Tagged_Type (Base_T)
334 or else Is_Class_Wide_Type (Base_T)
335 then
336 return;
337 end if;
338
339 -- Ada 2005 (AI-345): For synchronized types generate reference to the
340 -- wrapper that allow us to dispatch calls through their implemented
341 -- abstract interface types.
342
343 -- The check for Present here is to protect against previously reported
344 -- critical errors.
345
346 Prim_List := Primitive_Operations (Base_T);
347
348 if No (Prim_List) then
349 return;
350 end if;
351
352 Prim := First_Elmt (Prim_List);
353 while Present (Prim) loop
354
355 -- If the operation is derived, get the original for cross-reference
356 -- reference purposes (it is the original for which we want the xref
357 -- and for which the comes_from_source test must be performed).
358
359 Generate_Reference
360 (Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False);
361 Next_Elmt (Prim);
362 end loop;
363 end Generate_Prim_Op_References;
364
365 ------------------------
366 -- Generate_Reference --
367 ------------------------
368
369 procedure Generate_Reference
370 (E : Entity_Id;
371 N : Node_Id;
372 Typ : Character := 'r';
373 Set_Ref : Boolean := True;
374 Force : Boolean := False)
375 is
376 Nod : Node_Id;
377 Ref : Source_Ptr;
378 Def : Source_Ptr;
379 Ent : Entity_Id;
380
381 Actual_Typ : Character := Typ;
382
383 Ref_Scope : Entity_Id;
384 Ent_Scope : Entity_Id;
385 Ent_Scope_File : Unit_Number_Type;
386
387 Call : Node_Id;
388 Formal : Entity_Id;
389 -- Used for call to Find_Actual
390
391 Kind : Entity_Kind;
392 -- If Formal is non-Empty, then its Ekind, otherwise E_Void
393
394 function Is_On_LHS (Node : Node_Id) return Boolean;
395 -- Used to check if a node is on the left hand side of an assignment.
396 -- The following cases are handled:
397 --
398 -- Variable Node is a direct descendant of left hand side of an
399 -- assignment statement.
400 --
401 -- Prefix Of an indexed or selected component that is present in
402 -- a subtree rooted by an assignment statement. There is
403 -- no restriction of nesting of components, thus cases
404 -- such as A.B (C).D are handled properly. However a prefix
405 -- of a dereference (either implicit or explicit) is never
406 -- considered as on a LHS.
407 --
408 -- Out param Same as above cases, but OUT parameter
409
410 function OK_To_Set_Referenced return Boolean;
411 -- Returns True if the Referenced flag can be set. There are a few
412 -- exceptions where we do not want to set this flag, see body for
413 -- details of these exceptional cases.
414
415 ---------------
416 -- Is_On_LHS --
417 ---------------
418
419 -- ??? There are several routines here and there that perform a similar
420 -- (but subtly different) computation, which should be factored:
421
422 -- Sem_Util.May_Be_Lvalue
423 -- Sem_Util.Known_To_Be_Assigned
424 -- Exp_Ch2.Expand_Entry_Parameter.In_Assignment_Context
425 -- Exp_Smem.Is_Out_Actual
426
427 function Is_On_LHS (Node : Node_Id) return Boolean is
428 N : Node_Id;
429 P : Node_Id;
430 K : Node_Kind;
431
432 begin
433 -- Only identifiers are considered, is this necessary???
434
435 if Nkind (Node) /= N_Identifier then
436 return False;
437 end if;
438
439 -- Immediate return if appeared as OUT parameter
440
441 if Kind = E_Out_Parameter then
442 return True;
443 end if;
444
445 -- Search for assignment statement subtree root
446
447 N := Node;
448 loop
449 P := Parent (N);
450 K := Nkind (P);
451
452 if K = N_Assignment_Statement then
453 return Name (P) = N;
454
455 -- Check whether the parent is a component and the current node is
456 -- its prefix, but return False if the current node has an access
457 -- type, as in that case the selected or indexed component is an
458 -- implicit dereference, and the LHS is the designated object, not
459 -- the access object.
460
461 -- ??? case of a slice assignment?
462
463 -- ??? Note that in some cases this is called too early
464 -- (see comments in Sem_Ch8.Find_Direct_Name), at a point where
465 -- the tree is not fully typed yet. In that case we may lack
466 -- an Etype for N, and we must disable the check for an implicit
467 -- dereference. If the dereference is on an LHS, this causes a
468 -- false positive.
469
470 elsif (K = N_Selected_Component or else K = N_Indexed_Component)
471 and then Prefix (P) = N
472 and then not (Present (Etype (N))
473 and then
474 Is_Access_Type (Etype (N)))
475 then
476 N := P;
477
478 -- All other cases, definitely not on left side
479
480 else
481 return False;
482 end if;
483 end loop;
484 end Is_On_LHS;
485
486 ---------------------------
487 -- OK_To_Set_Referenced --
488 ---------------------------
489
490 function OK_To_Set_Referenced return Boolean is
491 P : Node_Id;
492
493 begin
494 -- A reference from a pragma Unreferenced or pragma Unmodified or
495 -- pragma Warnings does not cause the Referenced flag to be set.
496 -- This avoids silly warnings about things being referenced and
497 -- not assigned when the only reference is from the pragma.
498
499 if Nkind (N) = N_Identifier then
500 P := Parent (N);
501
502 if Nkind (P) = N_Pragma_Argument_Association then
503 P := Parent (P);
504
505 if Nkind (P) = N_Pragma then
506 if Pragma_Name (P) = Name_Warnings
507 or else
508 Pragma_Name (P) = Name_Unmodified
509 or else
510 Pragma_Name (P) = Name_Unreferenced
511 then
512 return False;
513 end if;
514 end if;
515
516 -- A reference to a formal in a named parameter association does
517 -- not make the formal referenced. Formals that are unused in the
518 -- subprogram body are properly flagged as such, even if calls
519 -- elsewhere use named notation.
520
521 elsif Nkind (P) = N_Parameter_Association
522 and then N = Selector_Name (P)
523 then
524 return False;
525 end if;
526 end if;
527
528 return True;
529 end OK_To_Set_Referenced;
530
531 -- Start of processing for Generate_Reference
532
533 begin
534 pragma Assert (Nkind (E) in N_Entity);
535 Find_Actual (N, Formal, Call);
536
537 if Present (Formal) then
538 Kind := Ekind (Formal);
539 else
540 Kind := E_Void;
541 end if;
542
543 -- Check for obsolescent reference to package ASCII. GNAT treats this
544 -- element of annex J specially since in practice, programs make a lot
545 -- of use of this feature, so we don't include it in the set of features
546 -- diagnosed when Warn_On_Obsolescent_Features mode is set. However we
547 -- are required to note it as a violation of the RM defined restriction.
548
549 if E = Standard_ASCII then
550 Check_Restriction (No_Obsolescent_Features, N);
551 end if;
552
553 -- Check for reference to entity marked with Is_Obsolescent
554
555 -- Note that we always allow obsolescent references in the compiler
556 -- itself and the run time, since we assume that we know what we are
557 -- doing in such cases. For example the calls in Ada.Characters.Handling
558 -- to its own obsolescent subprograms are just fine.
559
560 -- In any case we do not generate warnings within the extended source
561 -- unit of the entity in question, since we assume the source unit
562 -- itself knows what is going on (and for sure we do not want silly
563 -- warnings, e.g. on the end line of an obsolescent procedure body).
564
565 if Is_Obsolescent (E)
566 and then not GNAT_Mode
567 and then not In_Extended_Main_Source_Unit (E)
568 then
569 Check_Restriction (No_Obsolescent_Features, N);
570
571 if Warn_On_Obsolescent_Feature then
572 Output_Obsolescent_Entity_Warnings (N, E);
573 end if;
574 end if;
575
576 -- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only
577 -- detect real explicit references (modifications and references).
578
579 if Comes_From_Source (N)
580 and then Is_Ada_2005_Only (E)
581 and then Ada_Version < Ada_2005
582 and then Warn_On_Ada_2005_Compatibility
583 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')
584 then
585 Error_Msg_NE ("& is only defined in Ada 2005?", N, E);
586 end if;
587
588 -- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only
589 -- detect real explicit references (modifications and references).
590
591 if Comes_From_Source (N)
592 and then Is_Ada_2012_Only (E)
593 and then Ada_Version < Ada_2012
594 and then Warn_On_Ada_2012_Compatibility
595 and then (Typ = 'm' or else Typ = 'r')
596 then
597 Error_Msg_NE ("& is only defined in Ada 2012?", N, E);
598 end if;
599
600 -- Never collect references if not in main source unit. However, we omit
601 -- this test if Typ is 'e' or 'k', since these entries are structural,
602 -- and it is useful to have them in units that reference packages as
603 -- well as units that define packages. We also omit the test for the
604 -- case of 'p' since we want to include inherited primitive operations
605 -- from other packages.
606
607 -- We also omit this test is this is a body reference for a subprogram
608 -- instantiation. In this case the reference is to the generic body,
609 -- which clearly need not be in the main unit containing the instance.
610 -- For the same reason we accept an implicit reference generated for
611 -- a default in an instance.
612
613 if not In_Extended_Main_Source_Unit (N) then
614 if Typ = 'e'
615 or else Typ = 'I'
616 or else Typ = 'p'
617 or else Typ = 'i'
618 or else Typ = 'k'
619 or else (Typ = 'b' and then Is_Generic_Instance (E))
620 then
621 null;
622 else
623 return;
624 end if;
625 end if;
626
627 -- For reference type p, the entity must be in main source unit
628
629 if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then
630 return;
631 end if;
632
633 -- Unless the reference is forced, we ignore references where the
634 -- reference itself does not come from source.
635
636 if not Force and then not Comes_From_Source (N) then
637 return;
638 end if;
639
640 -- Deal with setting entity as referenced, unless suppressed. Note that
641 -- we still do Set_Referenced on entities that do not come from source.
642 -- This situation arises when we have a source reference to a derived
643 -- operation, where the derived operation itself does not come from
644 -- source, but we still want to mark it as referenced, since we really
645 -- are referencing an entity in the corresponding package (this avoids
646 -- wrong complaints that the package contains no referenced entities).
647
648 if Set_Ref then
649
650 -- Assignable object appearing on left side of assignment or as
651 -- an out parameter.
652
653 if Is_Assignable (E)
654 and then Is_On_LHS (N)
655 and then Ekind (E) /= E_In_Out_Parameter
656 then
657 -- For objects that are renamings, just set as simply referenced
658 -- we do not try to do assignment type tracking in this case.
659
660 if Present (Renamed_Object (E)) then
661 Set_Referenced (E);
662
663 -- Out parameter case
664
665 elsif Kind = E_Out_Parameter then
666
667 -- If warning mode for all out parameters is set, or this is
668 -- the only warning parameter, then we want to mark this for
669 -- later warning logic by setting Referenced_As_Out_Parameter
670
671 if Warn_On_Modified_As_Out_Parameter (Formal) then
672 Set_Referenced_As_Out_Parameter (E, True);
673 Set_Referenced_As_LHS (E, False);
674
675 -- For OUT parameter not covered by the above cases, we simply
676 -- regard it as a normal reference (in this case we do not
677 -- want any of the warning machinery for out parameters).
678
679 else
680 Set_Referenced (E);
681 end if;
682
683 -- For the left hand of an assignment case, we do nothing here.
684 -- The processing for Analyze_Assignment_Statement will set the
685 -- Referenced_As_LHS flag.
686
687 else
688 null;
689 end if;
690
691 -- Check for a reference in a pragma that should not count as a
692 -- making the variable referenced for warning purposes.
693
694 elsif Is_Non_Significant_Pragma_Reference (N) then
695 null;
696
697 -- A reference in an attribute definition clause does not count as a
698 -- reference except for the case of Address. The reason that 'Address
699 -- is an exception is that it creates an alias through which the
700 -- variable may be referenced.
701
702 elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause
703 and then Chars (Parent (N)) /= Name_Address
704 and then N = Name (Parent (N))
705 then
706 null;
707
708 -- Constant completion does not count as a reference
709
710 elsif Typ = 'c'
711 and then Ekind (E) = E_Constant
712 then
713 null;
714
715 -- Record representation clause does not count as a reference
716
717 elsif Nkind (N) = N_Identifier
718 and then Nkind (Parent (N)) = N_Record_Representation_Clause
719 then
720 null;
721
722 -- Discriminants do not need to produce a reference to record type
723
724 elsif Typ = 'd'
725 and then Nkind (Parent (N)) = N_Discriminant_Specification
726 then
727 null;
728
729 -- All other cases
730
731 else
732 -- Special processing for IN OUT parameters, where we have an
733 -- implicit assignment to a simple variable.
734
735 if Kind = E_In_Out_Parameter
736 and then Is_Assignable (E)
737 then
738 -- For sure this counts as a normal read reference
739
740 Set_Referenced (E);
741 Set_Last_Assignment (E, Empty);
742
743 -- We count it as being referenced as an out parameter if the
744 -- option is set to warn on all out parameters, except that we
745 -- have a special exclusion for an intrinsic subprogram, which
746 -- is most likely an instantiation of Unchecked_Deallocation
747 -- which we do not want to consider as an assignment since it
748 -- generates false positives. We also exclude the case of an
749 -- IN OUT parameter if the name of the procedure is Free,
750 -- since we suspect similar semantics.
751
752 if Warn_On_All_Unread_Out_Parameters
753 and then Is_Entity_Name (Name (Call))
754 and then not Is_Intrinsic_Subprogram (Entity (Name (Call)))
755 and then Chars (Name (Call)) /= Name_Free
756 then
757 Set_Referenced_As_Out_Parameter (E, True);
758 Set_Referenced_As_LHS (E, False);
759 end if;
760
761 -- Don't count a recursive reference within a subprogram as a
762 -- reference (that allows detection of a recursive subprogram
763 -- whose only references are recursive calls as unreferenced).
764
765 elsif Is_Subprogram (E)
766 and then E = Nearest_Dynamic_Scope (Current_Scope)
767 then
768 null;
769
770 -- Any other occurrence counts as referencing the entity
771
772 elsif OK_To_Set_Referenced then
773 Set_Referenced (E);
774
775 -- If variable, this is an OK reference after an assignment
776 -- so we can clear the Last_Assignment indication.
777
778 if Is_Assignable (E) then
779 Set_Last_Assignment (E, Empty);
780 end if;
781 end if;
782 end if;
783
784 -- Check for pragma Unreferenced given and reference is within
785 -- this source unit (occasion for possible warning to be issued).
786
787 if Has_Unreferenced (E)
788 and then In_Same_Extended_Unit (E, N)
789 then
790 -- A reference as a named parameter in a call does not count
791 -- as a violation of pragma Unreferenced for this purpose...
792
793 if Nkind (N) = N_Identifier
794 and then Nkind (Parent (N)) = N_Parameter_Association
795 and then Selector_Name (Parent (N)) = N
796 then
797 null;
798
799 -- ... Neither does a reference to a variable on the left side
800 -- of an assignment.
801
802 elsif Is_On_LHS (N) then
803 null;
804
805 -- For entry formals, we want to place the warning message on the
806 -- corresponding entity in the accept statement. The current scope
807 -- is the body of the accept, so we find the formal whose name
808 -- matches that of the entry formal (there is no link between the
809 -- two entities, and the one in the accept statement is only used
810 -- for conformance checking).
811
812 elsif Ekind (Scope (E)) = E_Entry then
813 declare
814 BE : Entity_Id;
815
816 begin
817 BE := First_Entity (Current_Scope);
818 while Present (BE) loop
819 if Chars (BE) = Chars (E) then
820 Error_Msg_NE -- CODEFIX
821 ("?pragma Unreferenced given for&!", N, BE);
822 exit;
823 end if;
824
825 Next_Entity (BE);
826 end loop;
827 end;
828
829 -- Here we issue the warning, since this is a real reference
830
831 else
832 Error_Msg_NE -- CODEFIX
833 ("?pragma Unreferenced given for&!", N, E);
834 end if;
835 end if;
836
837 -- If this is a subprogram instance, mark as well the internal
838 -- subprogram in the wrapper package, which may be a visible
839 -- compilation unit.
840
841 if Is_Overloadable (E)
842 and then Is_Generic_Instance (E)
843 and then Present (Alias (E))
844 then
845 Set_Referenced (Alias (E));
846 end if;
847 end if;
848
849 -- Generate reference if all conditions are met:
850
851 if
852 -- Cross referencing must be active
853
854 Opt.Xref_Active
855
856 -- The entity must be one for which we collect references
857
858 and then Xref_Entity_Letters (Ekind (E)) /= ' '
859
860 -- Both Sloc values must be set to something sensible
861
862 and then Sloc (E) > No_Location
863 and then Sloc (N) > No_Location
864
865 -- We ignore references from within an instance, except for default
866 -- subprograms, for which we generate an implicit reference.
867
868 and then
869 (Instantiation_Location (Sloc (N)) = No_Location or else Typ = 'i')
870
871 -- Ignore dummy references
872
873 and then Typ /= ' '
874 then
875 if Nkind (N) = N_Identifier
876 or else
877 Nkind (N) = N_Defining_Identifier
878 or else
879 Nkind (N) in N_Op
880 or else
881 Nkind (N) = N_Defining_Operator_Symbol
882 or else
883 Nkind (N) = N_Operator_Symbol
884 or else
885 (Nkind (N) = N_Character_Literal
886 and then Sloc (Entity (N)) /= Standard_Location)
887 or else
888 Nkind (N) = N_Defining_Character_Literal
889 then
890 Nod := N;
891
892 elsif Nkind (N) = N_Expanded_Name
893 or else
894 Nkind (N) = N_Selected_Component
895 then
896 Nod := Selector_Name (N);
897
898 else
899 return;
900 end if;
901
902 -- Normal case of source entity comes from source
903
904 if Comes_From_Source (E) then
905 Ent := E;
906
907 -- Entity does not come from source, but is a derived subprogram and
908 -- the derived subprogram comes from source (after one or more
909 -- derivations) in which case the reference is to parent subprogram.
910
911 elsif Is_Overloadable (E)
912 and then Present (Alias (E))
913 then
914 Ent := Alias (E);
915 while not Comes_From_Source (Ent) loop
916 if No (Alias (Ent)) then
917 return;
918 end if;
919
920 Ent := Alias (Ent);
921 end loop;
922
923 -- The internally created defining entity for a child subprogram
924 -- that has no previous spec has valid references.
925
926 elsif Is_Overloadable (E)
927 and then Is_Child_Unit (E)
928 then
929 Ent := E;
930
931 -- Record components of discriminated subtypes or derived types must
932 -- be treated as references to the original component.
933
934 elsif Ekind (E) = E_Component
935 and then Comes_From_Source (Original_Record_Component (E))
936 then
937 Ent := Original_Record_Component (E);
938
939 -- If this is an expanded reference to a discriminant, recover the
940 -- original discriminant, which gets the reference.
941
942 elsif Ekind (E) = E_In_Parameter
943 and then Present (Discriminal_Link (E))
944 then
945 Ent := Discriminal_Link (E);
946 Set_Referenced (Ent);
947
948 -- Ignore reference to any other entity that is not from source
949
950 else
951 return;
952 end if;
953
954 -- Record reference to entity
955
956 Ref := Original_Location (Sloc (Nod));
957 Def := Original_Location (Sloc (Ent));
958
959 if Actual_Typ = 'p'
960 and then Is_Subprogram (N)
961 and then Present (Overridden_Operation (N))
962 then
963 Actual_Typ := 'P';
964 end if;
965
966 if Alfa_Mode then
967 Ref_Scope := Alfa.Enclosing_Subprogram_Or_Package (N);
968 Ent_Scope := Alfa.Enclosing_Subprogram_Or_Package (Ent);
969 Ent_Scope_File := Get_Source_Unit (Ent_Scope);
970
971 else
972 Ref_Scope := Empty;
973 Ent_Scope := Empty;
974 Ent_Scope_File := No_Unit;
975 end if;
976
977 Add_Entry
978 ((Ent => Ent,
979 Loc => Ref,
980 Typ => Actual_Typ,
981 Eun => Get_Source_Unit (Def),
982 Lun => Get_Source_Unit (Ref),
983 Ref_Scope => Ref_Scope,
984 Ent_Scope => Ent_Scope),
985 Ent_Scope_File => Ent_Scope_File);
986 end if;
987 end Generate_Reference;
988
989 -----------------------------------
990 -- Generate_Reference_To_Formals --
991 -----------------------------------
992
993 procedure Generate_Reference_To_Formals (E : Entity_Id) is
994 Formal : Entity_Id;
995
996 begin
997 if Is_Generic_Subprogram (E) then
998 Formal := First_Entity (E);
999
1000 while Present (Formal)
1001 and then not Is_Formal (Formal)
1002 loop
1003 Next_Entity (Formal);
1004 end loop;
1005
1006 else
1007 Formal := First_Formal (E);
1008 end if;
1009
1010 while Present (Formal) loop
1011 if Ekind (Formal) = E_In_Parameter then
1012
1013 if Nkind (Parameter_Type (Parent (Formal)))
1014 = N_Access_Definition
1015 then
1016 Generate_Reference (E, Formal, '^', False);
1017 else
1018 Generate_Reference (E, Formal, '>', False);
1019 end if;
1020
1021 elsif Ekind (Formal) = E_In_Out_Parameter then
1022 Generate_Reference (E, Formal, '=', False);
1023
1024 else
1025 Generate_Reference (E, Formal, '<', False);
1026 end if;
1027
1028 Next_Formal (Formal);
1029 end loop;
1030 end Generate_Reference_To_Formals;
1031
1032 -------------------------------------------
1033 -- Generate_Reference_To_Generic_Formals --
1034 -------------------------------------------
1035
1036 procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is
1037 Formal : Entity_Id;
1038
1039 begin
1040 Formal := First_Entity (E);
1041 while Present (Formal) loop
1042 if Comes_From_Source (Formal) then
1043 Generate_Reference (E, Formal, 'z', False);
1044 end if;
1045
1046 Next_Entity (Formal);
1047 end loop;
1048 end Generate_Reference_To_Generic_Formals;
1049
1050 -------------
1051 -- Get_Key --
1052 -------------
1053
1054 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is
1055 begin
1056 return E;
1057 end Get_Key;
1058
1059 ----------
1060 -- Hash --
1061 ----------
1062
1063 function Hash (F : Xref_Entry_Number) return Header_Num is
1064 -- It is unlikely to have two references to the same entity at the same
1065 -- source location, so the hash function depends only on the Ent and Loc
1066 -- fields.
1067
1068 XE : Xref_Entry renames Xrefs.Table (F);
1069 type M is mod 2**32;
1070
1071 H : constant M := M (XE.Key.Ent) + 2 ** 7 * M (abs XE.Key.Loc);
1072 -- It would be more natural to write:
1073 --
1074 -- H : constant M := M'Mod (XE.Key.Ent) + 2**7 * M'Mod (XE.Key.Loc);
1075 --
1076 -- But we can't use M'Mod, because it prevents bootstrapping with older
1077 -- compilers. Loc can be negative, so we do "abs" before converting.
1078 -- One day this can be cleaned up ???
1079
1080 begin
1081 return Header_Num (H mod Num_Buckets);
1082 end Hash;
1083
1084 -----------------
1085 -- HT_Set_Next --
1086 -----------------
1087
1088 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is
1089 begin
1090 Xrefs.Table (E).HTable_Next := Next;
1091 end HT_Set_Next;
1092
1093 -------------
1094 -- HT_Next --
1095 -------------
1096
1097 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is
1098 begin
1099 return Xrefs.Table (E).HTable_Next;
1100 end HT_Next;
1101
1102 ----------------
1103 -- Initialize --
1104 ----------------
1105
1106 procedure Initialize is
1107 begin
1108 Xrefs.Init;
1109 end Initialize;
1110
1111 --------
1112 -- Lt --
1113 --------
1114
1115 function Lt (T1, T2 : Xref_Entry) return Boolean is
1116 begin
1117 -- First test: if entity is in different unit, sort by unit
1118
1119 if T1.Key.Eun /= T2.Key.Eun then
1120 return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun);
1121
1122 -- Second test: within same unit, sort by entity Sloc
1123
1124 elsif T1.Def /= T2.Def then
1125 return T1.Def < T2.Def;
1126
1127 -- Third test: sort definitions ahead of references
1128
1129 elsif T1.Key.Loc = No_Location then
1130 return True;
1131
1132 elsif T2.Key.Loc = No_Location then
1133 return False;
1134
1135 -- Fourth test: for same entity, sort by reference location unit
1136
1137 elsif T1.Key.Lun /= T2.Key.Lun then
1138 return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun);
1139
1140 -- Fifth test: order of location within referencing unit
1141
1142 elsif T1.Key.Loc /= T2.Key.Loc then
1143 return T1.Key.Loc < T2.Key.Loc;
1144
1145 -- Finally, for two locations at the same address, we prefer
1146 -- the one that does NOT have the type 'r' so that a modification
1147 -- or extension takes preference, when there are more than one
1148 -- reference at the same location. As a result, in the case of
1149 -- entities that are in-out actuals, the read reference follows
1150 -- the modify reference.
1151
1152 else
1153 return T2.Key.Typ = 'r';
1154 end if;
1155 end Lt;
1156
1157 -----------------------
1158 -- Output_References --
1159 -----------------------
1160
1161 procedure Output_References is
1162
1163 procedure Get_Type_Reference
1164 (Ent : Entity_Id;
1165 Tref : out Entity_Id;
1166 Left : out Character;
1167 Right : out Character);
1168 -- Given an Entity_Id Ent, determines whether a type reference is
1169 -- required. If so, Tref is set to the entity for the type reference
1170 -- and Left and Right are set to the left/right brackets to be output
1171 -- for the reference. If no type reference is required, then Tref is
1172 -- set to Empty, and Left/Right are set to space.
1173
1174 procedure Output_Import_Export_Info (Ent : Entity_Id);
1175 -- Output language and external name information for an interfaced
1176 -- entity, using the format <language, external_name>.
1177
1178 ------------------------
1179 -- Get_Type_Reference --
1180 ------------------------
1181
1182 procedure Get_Type_Reference
1183 (Ent : Entity_Id;
1184 Tref : out Entity_Id;
1185 Left : out Character;
1186 Right : out Character)
1187 is
1188 Sav : Entity_Id;
1189
1190 begin
1191 -- See if we have a type reference
1192
1193 Tref := Ent;
1194 Left := '{';
1195 Right := '}';
1196
1197 loop
1198 Sav := Tref;
1199
1200 -- Processing for types
1201
1202 if Is_Type (Tref) then
1203
1204 -- Case of base type
1205
1206 if Base_Type (Tref) = Tref then
1207
1208 -- If derived, then get first subtype
1209
1210 if Tref /= Etype (Tref) then
1211 Tref := First_Subtype (Etype (Tref));
1212
1213 -- Set brackets for derived type, but don't override
1214 -- pointer case since the fact that something is a
1215 -- pointer is more important.
1216
1217 if Left /= '(' then
1218 Left := '<';
1219 Right := '>';
1220 end if;
1221
1222 -- If non-derived ptr, get directly designated type.
1223 -- If the type has a full view, all references are on the
1224 -- partial view, that is seen first.
1225
1226 elsif Is_Access_Type (Tref) then
1227 Tref := Directly_Designated_Type (Tref);
1228 Left := '(';
1229 Right := ')';
1230
1231 elsif Is_Private_Type (Tref)
1232 and then Present (Full_View (Tref))
1233 then
1234 if Is_Access_Type (Full_View (Tref)) then
1235 Tref := Directly_Designated_Type (Full_View (Tref));
1236 Left := '(';
1237 Right := ')';
1238
1239 -- If the full view is an array type, we also retrieve
1240 -- the corresponding component type, because the ali
1241 -- entry already indicates that this is an array.
1242
1243 elsif Is_Array_Type (Full_View (Tref)) then
1244 Tref := Component_Type (Full_View (Tref));
1245 Left := '(';
1246 Right := ')';
1247 end if;
1248
1249 -- If non-derived array, get component type. Skip component
1250 -- type for case of String or Wide_String, saves worthwhile
1251 -- space.
1252
1253 elsif Is_Array_Type (Tref)
1254 and then Tref /= Standard_String
1255 and then Tref /= Standard_Wide_String
1256 then
1257 Tref := Component_Type (Tref);
1258 Left := '(';
1259 Right := ')';
1260
1261 -- For other non-derived base types, nothing
1262
1263 else
1264 exit;
1265 end if;
1266
1267 -- For a subtype, go to ancestor subtype
1268
1269 else
1270 Tref := Ancestor_Subtype (Tref);
1271
1272 -- If no ancestor subtype, go to base type
1273
1274 if No (Tref) then
1275 Tref := Base_Type (Sav);
1276 end if;
1277 end if;
1278
1279 -- For objects, functions, enum literals, just get type from
1280 -- Etype field.
1281
1282 elsif Is_Object (Tref)
1283 or else Ekind (Tref) = E_Enumeration_Literal
1284 or else Ekind (Tref) = E_Function
1285 or else Ekind (Tref) = E_Operator
1286 then
1287 Tref := Etype (Tref);
1288
1289 -- For anything else, exit
1290
1291 else
1292 exit;
1293 end if;
1294
1295 -- Exit if no type reference, or we are stuck in some loop trying
1296 -- to find the type reference, or if the type is standard void
1297 -- type (the latter is an implementation artifact that should not
1298 -- show up in the generated cross-references).
1299
1300 exit when No (Tref)
1301 or else Tref = Sav
1302 or else Tref = Standard_Void_Type;
1303
1304 -- If we have a usable type reference, return, otherwise keep
1305 -- looking for something useful (we are looking for something
1306 -- that either comes from source or standard)
1307
1308 if Sloc (Tref) = Standard_Location
1309 or else Comes_From_Source (Tref)
1310 then
1311 -- If the reference is a subtype created for a generic actual,
1312 -- go actual directly, the inner subtype is not user visible.
1313
1314 if Nkind (Parent (Tref)) = N_Subtype_Declaration
1315 and then not Comes_From_Source (Parent (Tref))
1316 and then
1317 (Is_Wrapper_Package (Scope (Tref))
1318 or else Is_Generic_Instance (Scope (Tref)))
1319 then
1320 Tref := First_Subtype (Base_Type (Tref));
1321 end if;
1322
1323 return;
1324 end if;
1325 end loop;
1326
1327 -- If we fall through the loop, no type reference
1328
1329 Tref := Empty;
1330 Left := ' ';
1331 Right := ' ';
1332 end Get_Type_Reference;
1333
1334 -------------------------------
1335 -- Output_Import_Export_Info --
1336 -------------------------------
1337
1338 procedure Output_Import_Export_Info (Ent : Entity_Id) is
1339 Language_Name : Name_Id;
1340 Conv : constant Convention_Id := Convention (Ent);
1341
1342 begin
1343 -- Generate language name from convention
1344
1345 if Conv = Convention_C then
1346 Language_Name := Name_C;
1347
1348 elsif Conv = Convention_CPP then
1349 Language_Name := Name_CPP;
1350
1351 elsif Conv = Convention_Ada then
1352 Language_Name := Name_Ada;
1353
1354 else
1355 -- For the moment we ignore all other cases ???
1356
1357 return;
1358 end if;
1359
1360 Write_Info_Char ('<');
1361 Get_Unqualified_Name_String (Language_Name);
1362
1363 for J in 1 .. Name_Len loop
1364 Write_Info_Char (Name_Buffer (J));
1365 end loop;
1366
1367 if Present (Interface_Name (Ent)) then
1368 Write_Info_Char (',');
1369 String_To_Name_Buffer (Strval (Interface_Name (Ent)));
1370
1371 for J in 1 .. Name_Len loop
1372 Write_Info_Char (Name_Buffer (J));
1373 end loop;
1374 end if;
1375
1376 Write_Info_Char ('>');
1377 end Output_Import_Export_Info;
1378
1379 -- Start of processing for Output_References
1380
1381 begin
1382 -- First we add references to the primitive operations of tagged types
1383 -- declared in the main unit.
1384
1385 Handle_Prim_Ops : declare
1386 Ent : Entity_Id;
1387
1388 begin
1389 for J in 1 .. Xrefs.Last loop
1390 Ent := Xrefs.Table (J).Key.Ent;
1391
1392 if Is_Type (Ent)
1393 and then Is_Tagged_Type (Ent)
1394 and then Is_Base_Type (Ent)
1395 and then In_Extended_Main_Source_Unit (Ent)
1396 then
1397 Generate_Prim_Op_References (Ent);
1398 end if;
1399 end loop;
1400 end Handle_Prim_Ops;
1401
1402 -- Before we go ahead and output the references we have a problem
1403 -- that needs dealing with. So far we have captured things that are
1404 -- definitely referenced by the main unit, or defined in the main
1405 -- unit. That's because we don't want to clutter up the ali file
1406 -- for this unit with definition lines for entities in other units
1407 -- that are not referenced.
1408
1409 -- But there is a glitch. We may reference an entity in another unit,
1410 -- and it may have a type reference to an entity that is not directly
1411 -- referenced in the main unit, which may mean that there is no xref
1412 -- entry for this entity yet in the list of references.
1413
1414 -- If we don't do something about this, we will end with an orphan type
1415 -- reference, i.e. it will point to an entity that does not appear
1416 -- within the generated references in the ali file. That is not good for
1417 -- tools using the xref information.
1418
1419 -- To fix this, we go through the references adding definition entries
1420 -- for any unreferenced entities that can be referenced in a type
1421 -- reference. There is a recursion problem here, and that is dealt with
1422 -- by making sure that this traversal also traverses any entries that
1423 -- get added by the traversal.
1424
1425 Handle_Orphan_Type_References : declare
1426 J : Nat;
1427 Tref : Entity_Id;
1428 Ent : Entity_Id;
1429
1430 L, R : Character;
1431 pragma Warnings (Off, L);
1432 pragma Warnings (Off, R);
1433
1434 procedure New_Entry (E : Entity_Id);
1435 -- Make an additional entry into the Xref table for a type entity
1436 -- that is related to the current entity (parent, type ancestor,
1437 -- progenitor, etc.).
1438
1439 ----------------
1440 -- New_Entry --
1441 ----------------
1442
1443 procedure New_Entry (E : Entity_Id) is
1444 begin
1445 pragma Assert (Present (E));
1446
1447 if not Has_Xref_Entry (Implementation_Base_Type (E))
1448 and then Sloc (E) > No_Location
1449 then
1450 Add_Entry
1451 ((Ent => E,
1452 Loc => No_Location,
1453 Typ => Character'First,
1454 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
1455 Lun => No_Unit,
1456 Ref_Scope => Empty,
1457 Ent_Scope => Empty),
1458 Ent_Scope_File => No_Unit);
1459 end if;
1460 end New_Entry;
1461
1462 -- Start of processing for Handle_Orphan_Type_References
1463
1464 begin
1465 -- Note that this is not a for loop for a very good reason. The
1466 -- processing of items in the table can add new items to the table,
1467 -- and they must be processed as well.
1468
1469 J := 1;
1470 while J <= Xrefs.Last loop
1471 Ent := Xrefs.Table (J).Key.Ent;
1472 Get_Type_Reference (Ent, Tref, L, R);
1473
1474 if Present (Tref)
1475 and then not Has_Xref_Entry (Tref)
1476 and then Sloc (Tref) > No_Location
1477 then
1478 New_Entry (Tref);
1479
1480 if Is_Record_Type (Ent)
1481 and then Present (Interfaces (Ent))
1482 then
1483 -- Add an entry for each one of the given interfaces
1484 -- implemented by type Ent.
1485
1486 declare
1487 Elmt : Elmt_Id := First_Elmt (Interfaces (Ent));
1488 begin
1489 while Present (Elmt) loop
1490 New_Entry (Node (Elmt));
1491 Next_Elmt (Elmt);
1492 end loop;
1493 end;
1494 end if;
1495 end if;
1496
1497 -- Collect inherited primitive operations that may be declared in
1498 -- another unit and have no visible reference in the current one.
1499
1500 if Is_Type (Ent)
1501 and then Is_Tagged_Type (Ent)
1502 and then Is_Derived_Type (Ent)
1503 and then Is_Base_Type (Ent)
1504 and then In_Extended_Main_Source_Unit (Ent)
1505 then
1506 declare
1507 Op_List : constant Elist_Id := Primitive_Operations (Ent);
1508 Op : Elmt_Id;
1509 Prim : Entity_Id;
1510
1511 function Parent_Op (E : Entity_Id) return Entity_Id;
1512 -- Find original operation, which may be inherited through
1513 -- several derivations.
1514
1515 function Parent_Op (E : Entity_Id) return Entity_Id is
1516 Orig_Op : constant Entity_Id := Alias (E);
1517
1518 begin
1519 if No (Orig_Op) then
1520 return Empty;
1521
1522 elsif not Comes_From_Source (E)
1523 and then not Has_Xref_Entry (Orig_Op)
1524 and then Comes_From_Source (Orig_Op)
1525 then
1526 return Orig_Op;
1527 else
1528 return Parent_Op (Orig_Op);
1529 end if;
1530 end Parent_Op;
1531
1532 begin
1533 Op := First_Elmt (Op_List);
1534 while Present (Op) loop
1535 Prim := Parent_Op (Node (Op));
1536
1537 if Present (Prim) then
1538 Add_Entry
1539 ((Ent => Prim,
1540 Loc => No_Location,
1541 Typ => Character'First,
1542 Eun => Get_Source_Unit (Sloc (Prim)),
1543 Lun => No_Unit,
1544 Ref_Scope => Empty,
1545 Ent_Scope => Empty),
1546 Ent_Scope_File => No_Unit);
1547 end if;
1548
1549 Next_Elmt (Op);
1550 end loop;
1551 end;
1552 end if;
1553
1554 J := J + 1;
1555 end loop;
1556 end Handle_Orphan_Type_References;
1557
1558 -- Now we have all the references, including those for any embedded
1559 -- type references, so we can sort them, and output them.
1560
1561 Output_Refs : declare
1562
1563 Nrefs : constant Nat := Xrefs.Last;
1564 -- Number of references in table
1565
1566 Rnums : array (0 .. Nrefs) of Nat;
1567 -- This array contains numbers of references in the Xrefs table.
1568 -- This list is sorted in output order. The extra 0'th entry is
1569 -- convenient for the call to sort. When we sort the table, we
1570 -- move the entries in Rnums around, but we do not move the
1571 -- original table entries.
1572
1573 Curxu : Unit_Number_Type;
1574 -- Current xref unit
1575
1576 Curru : Unit_Number_Type;
1577 -- Current reference unit for one entity
1578
1579 Curent : Entity_Id;
1580 -- Current entity
1581
1582 Curnam : String (1 .. Name_Buffer'Length);
1583 Curlen : Natural;
1584 -- Simple name and length of current entity
1585
1586 Curdef : Source_Ptr;
1587 -- Original source location for current entity
1588
1589 Crloc : Source_Ptr;
1590 -- Current reference location
1591
1592 Ctyp : Character;
1593 -- Entity type character
1594
1595 Prevt : Character;
1596 -- reference kind of previous reference
1597
1598 Tref : Entity_Id;
1599 -- Type reference
1600
1601 Rref : Node_Id;
1602 -- Renaming reference
1603
1604 Trunit : Unit_Number_Type;
1605 -- Unit number for type reference
1606
1607 function Lt (Op1, Op2 : Natural) return Boolean;
1608 -- Comparison function for Sort call
1609
1610 function Name_Change (X : Entity_Id) return Boolean;
1611 -- Determines if entity X has a different simple name from Curent
1612
1613 procedure Move (From : Natural; To : Natural);
1614 -- Move procedure for Sort call
1615
1616 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
1617
1618 --------
1619 -- Lt --
1620 --------
1621
1622 function Lt (Op1, Op2 : Natural) return Boolean is
1623 T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1)));
1624 T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2)));
1625
1626 begin
1627 return Lt (T1, T2);
1628 end Lt;
1629
1630 ----------
1631 -- Move --
1632 ----------
1633
1634 procedure Move (From : Natural; To : Natural) is
1635 begin
1636 Rnums (Nat (To)) := Rnums (Nat (From));
1637 end Move;
1638
1639 -----------------
1640 -- Name_Change --
1641 -----------------
1642
1643 -- Why a string comparison here??? Why not compare Name_Id values???
1644
1645 function Name_Change (X : Entity_Id) return Boolean is
1646 begin
1647 Get_Unqualified_Name_String (Chars (X));
1648
1649 if Name_Len /= Curlen then
1650 return True;
1651 else
1652 return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen);
1653 end if;
1654 end Name_Change;
1655
1656 -- Start of processing for Output_Refs
1657
1658 begin
1659 -- Capture the definition Sloc values. We delay doing this till now,
1660 -- since at the time the reference or definition is made, private
1661 -- types may be swapped, and the Sloc value may be incorrect. We
1662 -- also set up the pointer vector for the sort.
1663
1664 for J in 1 .. Nrefs loop
1665 Rnums (J) := J;
1666 Xrefs.Table (J).Def :=
1667 Original_Location (Sloc (Xrefs.Table (J).Key.Ent));
1668 end loop;
1669
1670 -- Sort the references
1671
1672 Sorting.Sort (Integer (Nrefs));
1673
1674 -- Initialize loop through references
1675
1676 Curxu := No_Unit;
1677 Curent := Empty;
1678 Curdef := No_Location;
1679 Curru := No_Unit;
1680 Crloc := No_Location;
1681 Prevt := 'm';
1682
1683 -- Loop to output references
1684
1685 for Refno in 1 .. Nrefs loop
1686 Output_One_Ref : declare
1687 Ent : Entity_Id;
1688
1689 XE : Xref_Entry renames Xrefs.Table (Rnums (Refno));
1690 -- The current entry to be accessed
1691
1692 Left : Character;
1693 Right : Character;
1694 -- Used for {} or <> or () for type reference
1695
1696 procedure Check_Type_Reference
1697 (Ent : Entity_Id;
1698 List_Interface : Boolean);
1699 -- Find whether there is a meaningful type reference for
1700 -- Ent, and display it accordingly. If List_Interface is
1701 -- true, then Ent is a progenitor interface of the current
1702 -- type entity being listed. In that case list it as is,
1703 -- without looking for a type reference for it.
1704
1705 procedure Output_Instantiation_Refs (Loc : Source_Ptr);
1706 -- Recursive procedure to output instantiation references for
1707 -- the given source ptr in [file|line[...]] form. No output
1708 -- if the given location is not a generic template reference.
1709
1710 procedure Output_Overridden_Op (Old_E : Entity_Id);
1711 -- For a subprogram that is overriding, display information
1712 -- about the inherited operation that it overrides.
1713
1714 --------------------------
1715 -- Check_Type_Reference --
1716 --------------------------
1717
1718 procedure Check_Type_Reference
1719 (Ent : Entity_Id;
1720 List_Interface : Boolean)
1721 is
1722 begin
1723 if List_Interface then
1724
1725 -- This is a progenitor interface of the type for which
1726 -- xref information is being generated.
1727
1728 Tref := Ent;
1729 Left := '<';
1730 Right := '>';
1731
1732 else
1733 Get_Type_Reference (Ent, Tref, Left, Right);
1734 end if;
1735
1736 if Present (Tref) then
1737
1738 -- Case of standard entity, output name
1739
1740 if Sloc (Tref) = Standard_Location then
1741 Write_Info_Char (Left);
1742 Write_Info_Name (Chars (Tref));
1743 Write_Info_Char (Right);
1744
1745 -- Case of source entity, output location
1746
1747 else
1748 Write_Info_Char (Left);
1749 Trunit := Get_Source_Unit (Sloc (Tref));
1750
1751 if Trunit /= Curxu then
1752 Write_Info_Nat (Dependency_Num (Trunit));
1753 Write_Info_Char ('|');
1754 end if;
1755
1756 Write_Info_Nat
1757 (Int (Get_Logical_Line_Number (Sloc (Tref))));
1758
1759 declare
1760 Ent : Entity_Id;
1761 Ctyp : Character;
1762
1763 begin
1764 Ent := Tref;
1765 Ctyp := Xref_Entity_Letters (Ekind (Ent));
1766
1767 if Ctyp = '+'
1768 and then Present (Full_View (Ent))
1769 then
1770 Ent := Underlying_Type (Ent);
1771
1772 if Present (Ent) then
1773 Ctyp := Xref_Entity_Letters (Ekind (Ent));
1774 end if;
1775 end if;
1776
1777 Write_Info_Char (Ctyp);
1778 end;
1779
1780 Write_Info_Nat
1781 (Int (Get_Column_Number (Sloc (Tref))));
1782
1783 -- If the type comes from an instantiation, add the
1784 -- corresponding info.
1785
1786 Output_Instantiation_Refs (Sloc (Tref));
1787 Write_Info_Char (Right);
1788 end if;
1789 end if;
1790 end Check_Type_Reference;
1791
1792 -------------------------------
1793 -- Output_Instantiation_Refs --
1794 -------------------------------
1795
1796 procedure Output_Instantiation_Refs (Loc : Source_Ptr) is
1797 Iloc : constant Source_Ptr := Instantiation_Location (Loc);
1798 Lun : Unit_Number_Type;
1799 Cu : constant Unit_Number_Type := Curru;
1800
1801 begin
1802 -- Nothing to do if this is not an instantiation
1803
1804 if Iloc = No_Location then
1805 return;
1806 end if;
1807
1808 -- Output instantiation reference
1809
1810 Write_Info_Char ('[');
1811 Lun := Get_Source_Unit (Iloc);
1812
1813 if Lun /= Curru then
1814 Curru := Lun;
1815 Write_Info_Nat (Dependency_Num (Curru));
1816 Write_Info_Char ('|');
1817 end if;
1818
1819 Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc)));
1820
1821 -- Recursive call to get nested instantiations
1822
1823 Output_Instantiation_Refs (Iloc);
1824
1825 -- Output final ] after call to get proper nesting
1826
1827 Write_Info_Char (']');
1828 Curru := Cu;
1829 return;
1830 end Output_Instantiation_Refs;
1831
1832 --------------------------
1833 -- Output_Overridden_Op --
1834 --------------------------
1835
1836 procedure Output_Overridden_Op (Old_E : Entity_Id) is
1837 Op : Entity_Id;
1838
1839 begin
1840 -- The overridden operation has an implicit declaration
1841 -- at the point of derivation. What we want to display
1842 -- is the original operation, which has the actual body
1843 -- (or abstract declaration) that is being overridden.
1844 -- The overridden operation is not always set, e.g. when
1845 -- it is a predefined operator.
1846
1847 if No (Old_E) then
1848 return;
1849
1850 -- Follow alias chain if one is present
1851
1852 elsif Present (Alias (Old_E)) then
1853
1854 -- The subprogram may have been implicitly inherited
1855 -- through several levels of derivation, so find the
1856 -- ultimate (source) ancestor.
1857
1858 Op := Ultimate_Alias (Old_E);
1859
1860 -- Normal case of no alias present
1861
1862 else
1863 Op := Old_E;
1864 end if;
1865
1866 if Present (Op)
1867 and then Sloc (Op) /= Standard_Location
1868 then
1869 declare
1870 Loc : constant Source_Ptr := Sloc (Op);
1871 Par_Unit : constant Unit_Number_Type :=
1872 Get_Source_Unit (Loc);
1873
1874 begin
1875 Write_Info_Char ('<');
1876
1877 if Par_Unit /= Curxu then
1878 Write_Info_Nat (Dependency_Num (Par_Unit));
1879 Write_Info_Char ('|');
1880 end if;
1881
1882 Write_Info_Nat (Int (Get_Logical_Line_Number (Loc)));
1883 Write_Info_Char ('p');
1884 Write_Info_Nat (Int (Get_Column_Number (Loc)));
1885 Write_Info_Char ('>');
1886 end;
1887 end if;
1888 end Output_Overridden_Op;
1889
1890 -- Start of processing for Output_One_Ref
1891
1892 begin
1893 Ent := XE.Key.Ent;
1894 Ctyp := Xref_Entity_Letters (Ekind (Ent));
1895
1896 -- Skip reference if it is the only reference to an entity,
1897 -- and it is an END line reference, and the entity is not in
1898 -- the current extended source. This prevents junk entries
1899 -- consisting only of packages with END lines, where no
1900 -- entity from the package is actually referenced.
1901
1902 if XE.Key.Typ = 'e'
1903 and then Ent /= Curent
1904 and then (Refno = Nrefs
1905 or else
1906 Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent)
1907 and then not In_Extended_Main_Source_Unit (Ent)
1908 then
1909 goto Continue;
1910 end if;
1911
1912 -- For private type, get full view type
1913
1914 if Ctyp = '+'
1915 and then Present (Full_View (XE.Key.Ent))
1916 then
1917 Ent := Underlying_Type (Ent);
1918
1919 if Present (Ent) then
1920 Ctyp := Xref_Entity_Letters (Ekind (Ent));
1921 end if;
1922 end if;
1923
1924 -- Special exception for Boolean
1925
1926 if Ctyp = 'E' and then Is_Boolean_Type (Ent) then
1927 Ctyp := 'B';
1928 end if;
1929
1930 -- For variable reference, get corresponding type
1931
1932 if Ctyp = '*' then
1933 Ent := Etype (XE.Key.Ent);
1934 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
1935
1936 -- If variable is private type, get full view type
1937
1938 if Ctyp = '+'
1939 and then Present (Full_View (Etype (XE.Key.Ent)))
1940 then
1941 Ent := Underlying_Type (Etype (XE.Key.Ent));
1942
1943 if Present (Ent) then
1944 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
1945 end if;
1946
1947 elsif Is_Generic_Type (Ent) then
1948
1949 -- If the type of the entity is a generic private type,
1950 -- there is no usable full view, so retain the indication
1951 -- that this is an object.
1952
1953 Ctyp := '*';
1954 end if;
1955
1956 -- Special handling for access parameters and objects of
1957 -- an anonymous access type.
1958
1959 if Ekind_In (Etype (XE.Key.Ent),
1960 E_Anonymous_Access_Type,
1961 E_Anonymous_Access_Subprogram_Type,
1962 E_Anonymous_Access_Protected_Subprogram_Type)
1963 then
1964 if Is_Formal (XE.Key.Ent)
1965 or else Ekind_In (XE.Key.Ent, E_Variable, E_Constant)
1966 then
1967 Ctyp := 'p';
1968 end if;
1969
1970 -- Special handling for Boolean
1971
1972 elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then
1973 Ctyp := 'b';
1974 end if;
1975 end if;
1976
1977 -- Special handling for abstract types and operations
1978
1979 if Is_Overloadable (XE.Key.Ent)
1980 and then Is_Abstract_Subprogram (XE.Key.Ent)
1981 then
1982 if Ctyp = 'U' then
1983 Ctyp := 'x'; -- Abstract procedure
1984
1985 elsif Ctyp = 'V' then
1986 Ctyp := 'y'; -- Abstract function
1987 end if;
1988
1989 elsif Is_Type (XE.Key.Ent)
1990 and then Is_Abstract_Type (XE.Key.Ent)
1991 then
1992 if Is_Interface (XE.Key.Ent) then
1993 Ctyp := 'h';
1994
1995 elsif Ctyp = 'R' then
1996 Ctyp := 'H'; -- Abstract type
1997 end if;
1998 end if;
1999
2000 -- Only output reference if interesting type of entity
2001
2002 if Ctyp = ' '
2003
2004 -- Suppress references to object definitions, used for local
2005 -- references.
2006
2007 or else XE.Key.Typ = 'D'
2008 or else XE.Key.Typ = 'I'
2009
2010 -- Suppress self references, except for bodies that act as
2011 -- specs.
2012
2013 or else (XE.Key.Loc = XE.Def
2014 and then
2015 (XE.Key.Typ /= 'b'
2016 or else not Is_Subprogram (XE.Key.Ent)))
2017
2018 -- Also suppress definitions of body formals (we only
2019 -- treat these as references, and the references were
2020 -- separately recorded).
2021
2022 or else (Is_Formal (XE.Key.Ent)
2023 and then Present (Spec_Entity (XE.Key.Ent)))
2024 then
2025 null;
2026
2027 else
2028 -- Start new Xref section if new xref unit
2029
2030 if XE.Key.Eun /= Curxu then
2031 if Write_Info_Col > 1 then
2032 Write_Info_EOL;
2033 end if;
2034
2035 Curxu := XE.Key.Eun;
2036
2037 Write_Info_Initiate ('X');
2038 Write_Info_Char (' ');
2039 Write_Info_Nat (Dependency_Num (XE.Key.Eun));
2040 Write_Info_Char (' ');
2041 Write_Info_Name
2042 (Reference_Name (Source_Index (XE.Key.Eun)));
2043 end if;
2044
2045 -- Start new Entity line if new entity. Note that we
2046 -- consider two entities the same if they have the same
2047 -- name and source location. This causes entities in
2048 -- instantiations to be treated as though they referred
2049 -- to the template.
2050
2051 if No (Curent)
2052 or else
2053 (XE.Key.Ent /= Curent
2054 and then
2055 (Name_Change (XE.Key.Ent) or else XE.Def /= Curdef))
2056 then
2057 Curent := XE.Key.Ent;
2058 Curdef := XE.Def;
2059
2060 Get_Unqualified_Name_String (Chars (XE.Key.Ent));
2061 Curlen := Name_Len;
2062 Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen);
2063
2064 if Write_Info_Col > 1 then
2065 Write_Info_EOL;
2066 end if;
2067
2068 -- Write column number information
2069
2070 Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def)));
2071 Write_Info_Char (Ctyp);
2072 Write_Info_Nat (Int (Get_Column_Number (XE.Def)));
2073
2074 -- Write level information
2075
2076 Write_Level_Info : declare
2077 function Is_Visible_Generic_Entity
2078 (E : Entity_Id) return Boolean;
2079 -- Check whether E is declared in the visible part
2080 -- of a generic package. For source navigation
2081 -- purposes, treat this as a visible entity.
2082
2083 function Is_Private_Record_Component
2084 (E : Entity_Id) return Boolean;
2085 -- Check whether E is a non-inherited component of a
2086 -- private extension. Even if the enclosing record is
2087 -- public, we want to treat the component as private
2088 -- for navigation purposes.
2089
2090 ---------------------------------
2091 -- Is_Private_Record_Component --
2092 ---------------------------------
2093
2094 function Is_Private_Record_Component
2095 (E : Entity_Id) return Boolean
2096 is
2097 S : constant Entity_Id := Scope (E);
2098 begin
2099 return
2100 Ekind (E) = E_Component
2101 and then Nkind (Declaration_Node (S)) =
2102 N_Private_Extension_Declaration
2103 and then Original_Record_Component (E) = E;
2104 end Is_Private_Record_Component;
2105
2106 -------------------------------
2107 -- Is_Visible_Generic_Entity --
2108 -------------------------------
2109
2110 function Is_Visible_Generic_Entity
2111 (E : Entity_Id) return Boolean
2112 is
2113 Par : Node_Id;
2114
2115 begin
2116 -- The Present check here is an error defense
2117
2118 if Present (Scope (E))
2119 and then Ekind (Scope (E)) /= E_Generic_Package
2120 then
2121 return False;
2122 end if;
2123
2124 Par := Parent (E);
2125 while Present (Par) loop
2126 if
2127 Nkind (Par) = N_Generic_Package_Declaration
2128 then
2129 -- Entity is a generic formal
2130
2131 return False;
2132
2133 elsif
2134 Nkind (Parent (Par)) = N_Package_Specification
2135 then
2136 return
2137 Is_List_Member (Par)
2138 and then List_Containing (Par) =
2139 Visible_Declarations (Parent (Par));
2140 else
2141 Par := Parent (Par);
2142 end if;
2143 end loop;
2144
2145 return False;
2146 end Is_Visible_Generic_Entity;
2147
2148 -- Start of processing for Write_Level_Info
2149
2150 begin
2151 if Is_Hidden (Curent)
2152 or else Is_Private_Record_Component (Curent)
2153 then
2154 Write_Info_Char (' ');
2155
2156 elsif
2157 Is_Public (Curent)
2158 or else Is_Visible_Generic_Entity (Curent)
2159 then
2160 Write_Info_Char ('*');
2161
2162 else
2163 Write_Info_Char (' ');
2164 end if;
2165 end Write_Level_Info;
2166
2167 -- Output entity name. We use the occurrence from the
2168 -- actual source program at the definition point.
2169
2170 declare
2171 Ent_Name : constant String :=
2172 Exact_Source_Name (Sloc (XE.Key.Ent));
2173 begin
2174 for C in Ent_Name'Range loop
2175 Write_Info_Char (Ent_Name (C));
2176 end loop;
2177 end;
2178
2179 -- See if we have a renaming reference
2180
2181 if Is_Object (XE.Key.Ent)
2182 and then Present (Renamed_Object (XE.Key.Ent))
2183 then
2184 Rref := Renamed_Object (XE.Key.Ent);
2185
2186 elsif Is_Overloadable (XE.Key.Ent)
2187 and then Nkind (Parent (Declaration_Node (XE.Key.Ent)))
2188 = N_Subprogram_Renaming_Declaration
2189 then
2190 Rref := Name (Parent (Declaration_Node (XE.Key.Ent)));
2191
2192 elsif Ekind (XE.Key.Ent) = E_Package
2193 and then Nkind (Declaration_Node (XE.Key.Ent)) =
2194 N_Package_Renaming_Declaration
2195 then
2196 Rref := Name (Declaration_Node (XE.Key.Ent));
2197
2198 else
2199 Rref := Empty;
2200 end if;
2201
2202 if Present (Rref) then
2203 if Nkind (Rref) = N_Expanded_Name then
2204 Rref := Selector_Name (Rref);
2205 end if;
2206
2207 if Nkind (Rref) = N_Identifier
2208 or else Nkind (Rref) = N_Operator_Symbol
2209 then
2210 null;
2211
2212 -- For renamed array components, use the array name
2213 -- for the renamed entity, which reflect the fact that
2214 -- in general the whole array is aliased.
2215
2216 elsif Nkind (Rref) = N_Indexed_Component then
2217 if Nkind (Prefix (Rref)) = N_Identifier then
2218 Rref := Prefix (Rref);
2219 elsif Nkind (Prefix (Rref)) = N_Expanded_Name then
2220 Rref := Selector_Name (Prefix (Rref));
2221 else
2222 Rref := Empty;
2223 end if;
2224
2225 else
2226 Rref := Empty;
2227 end if;
2228 end if;
2229
2230 -- Write out renaming reference if we have one
2231
2232 if Present (Rref) then
2233 Write_Info_Char ('=');
2234 Write_Info_Nat
2235 (Int (Get_Logical_Line_Number (Sloc (Rref))));
2236 Write_Info_Char (':');
2237 Write_Info_Nat
2238 (Int (Get_Column_Number (Sloc (Rref))));
2239 end if;
2240
2241 -- Indicate that the entity is in the unit of the current
2242 -- xref section.
2243
2244 Curru := Curxu;
2245
2246 -- Write out information about generic parent, if entity
2247 -- is an instance.
2248
2249 if Is_Generic_Instance (XE.Key.Ent) then
2250 declare
2251 Gen_Par : constant Entity_Id :=
2252 Generic_Parent
2253 (Specification
2254 (Unit_Declaration_Node
2255 (XE.Key.Ent)));
2256 Loc : constant Source_Ptr := Sloc (Gen_Par);
2257 Gen_U : constant Unit_Number_Type :=
2258 Get_Source_Unit (Loc);
2259
2260 begin
2261 Write_Info_Char ('[');
2262
2263 if Curru /= Gen_U then
2264 Write_Info_Nat (Dependency_Num (Gen_U));
2265 Write_Info_Char ('|');
2266 end if;
2267
2268 Write_Info_Nat
2269 (Int (Get_Logical_Line_Number (Loc)));
2270 Write_Info_Char (']');
2271 end;
2272 end if;
2273
2274 -- See if we have a type reference and if so output
2275
2276 Check_Type_Reference (XE.Key.Ent, False);
2277
2278 -- Additional information for types with progenitors
2279
2280 if Is_Record_Type (XE.Key.Ent)
2281 and then Present (Interfaces (XE.Key.Ent))
2282 then
2283 declare
2284 Elmt : Elmt_Id :=
2285 First_Elmt (Interfaces (XE.Key.Ent));
2286 begin
2287 while Present (Elmt) loop
2288 Check_Type_Reference (Node (Elmt), True);
2289 Next_Elmt (Elmt);
2290 end loop;
2291 end;
2292
2293 -- For array types, list index types as well. (This is
2294 -- not C, indexes have distinct types).
2295
2296 elsif Is_Array_Type (XE.Key.Ent) then
2297 declare
2298 Indx : Node_Id;
2299 begin
2300 Indx := First_Index (XE.Key.Ent);
2301 while Present (Indx) loop
2302 Check_Type_Reference
2303 (First_Subtype (Etype (Indx)), True);
2304 Next_Index (Indx);
2305 end loop;
2306 end;
2307 end if;
2308
2309 -- If the entity is an overriding operation, write info
2310 -- on operation that was overridden.
2311
2312 if Is_Subprogram (XE.Key.Ent)
2313 and then Present (Overridden_Operation (XE.Key.Ent))
2314 then
2315 Output_Overridden_Op
2316 (Overridden_Operation (XE.Key.Ent));
2317 end if;
2318
2319 -- End of processing for entity output
2320
2321 Crloc := No_Location;
2322 end if;
2323
2324 -- Output the reference if it is not as the same location
2325 -- as the previous one, or it is a read-reference that
2326 -- indicates that the entity is an in-out actual in a call.
2327
2328 if XE.Key.Loc /= No_Location
2329 and then
2330 (XE.Key.Loc /= Crloc
2331 or else (Prevt = 'm' and then XE.Key.Typ = 'r'))
2332 then
2333 Crloc := XE.Key.Loc;
2334 Prevt := XE.Key.Typ;
2335
2336 -- Start continuation if line full, else blank
2337
2338 if Write_Info_Col > 72 then
2339 Write_Info_EOL;
2340 Write_Info_Initiate ('.');
2341 end if;
2342
2343 Write_Info_Char (' ');
2344
2345 -- Output file number if changed
2346
2347 if XE.Key.Lun /= Curru then
2348 Curru := XE.Key.Lun;
2349 Write_Info_Nat (Dependency_Num (Curru));
2350 Write_Info_Char ('|');
2351 end if;
2352
2353 Write_Info_Nat
2354 (Int (Get_Logical_Line_Number (XE.Key.Loc)));
2355 Write_Info_Char (XE.Key.Typ);
2356
2357 if Is_Overloadable (XE.Key.Ent)
2358 and then Is_Imported (XE.Key.Ent)
2359 and then XE.Key.Typ = 'b'
2360 then
2361 Output_Import_Export_Info (XE.Key.Ent);
2362 end if;
2363
2364 Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc)));
2365
2366 Output_Instantiation_Refs (Sloc (XE.Key.Ent));
2367 end if;
2368 end if;
2369 end Output_One_Ref;
2370
2371 <<Continue>>
2372 null;
2373 end loop;
2374
2375 Write_Info_EOL;
2376 end Output_Refs;
2377 end Output_References;
2378
2379 begin
2380 -- Reset is necessary because Elmt_Ptr does not default to Null_Ptr,
2381 -- because it's not an access type.
2382
2383 Xref_Set.Reset;
2384 end Lib.Xref;